hexsha
stringlengths
40
40
size
int64
3
1.05M
ext
stringclasses
163 values
lang
stringclasses
53 values
max_stars_repo_path
stringlengths
3
945
max_stars_repo_name
stringlengths
4
112
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
float64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
945
max_issues_repo_name
stringlengths
4
113
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
float64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
945
max_forks_repo_name
stringlengths
4
113
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
float64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.05M
avg_line_length
float64
1
966k
max_line_length
int64
1
977k
alphanum_fraction
float64
0
1
23d90b19744b8c64b80947cdcd77daf770182982
7,987
agda
Agda
Cubical/Algebra/RingSolver/RawAlgebra.agda
barrettj12/cubical
7b41b9171f90473efc98487cb2ea7a4d02320cb2
[ "MIT" ]
301
2018-10-17T18:00:24.000Z
2022-03-24T02:10:47.000Z
Cubical/Algebra/RingSolver/RawAlgebra.agda
barrettj12/cubical
7b41b9171f90473efc98487cb2ea7a4d02320cb2
[ "MIT" ]
584
2018-10-15T09:49:02.000Z
2022-03-30T12:09:17.000Z
Cubical/Algebra/RingSolver/RawAlgebra.agda
barrettj12/cubical
7b41b9171f90473efc98487cb2ea7a4d02320cb2
[ "MIT" ]
134
2018-11-16T06:11:03.000Z
2022-03-23T16:22:13.000Z
{-# OPTIONS --safe #-} module Cubical.Algebra.RingSolver.RawAlgebra where open import Cubical.Foundations.Prelude open import Cubical.Data.Sigma open import Cubical.Data.Nat using (ℕ) open import Cubical.Data.Int renaming (_+_ to _+ℤ_ ; _·_ to _·ℤ_ ; -_ to -ℤ_ ; _-_ to _-ℤ_ ; +Assoc to +ℤAssoc ; +Comm to +ℤComm ; -DistL· to -ℤDistL·ℤ) open import Cubical.Algebra.RingSolver.AlmostRing hiding (⟨_⟩) open import Cubical.Algebra.RingSolver.RawRing renaming (⟨_⟩ to ⟨_⟩ᵣ) open import Cubical.Algebra.RingSolver.IntAsRawRing open import Cubical.Algebra.RingSolver.CommRingAsAlmostRing open import Cubical.Algebra.CommRing open import Cubical.Algebra.Ring private variable ℓ ℓ′ : Level record RawAlgebra (R : RawRing ℓ) (ℓ′ : Level) : Type (ℓ-suc (ℓ-max ℓ ℓ′)) where constructor rawalgebra field Carrier : Type ℓ′ scalar : ⟨ R ⟩ᵣ → Carrier 0r : Carrier 1r : Carrier _+_ : Carrier → Carrier → Carrier _·_ : Carrier → Carrier → Carrier -_ : Carrier → Carrier infixl 8 _·_ infixl 7 -_ infixl 6 _+_ ⟨_⟩ : {R : RawRing ℓ} → RawAlgebra R ℓ′ → Type ℓ′ ⟨_⟩ = RawAlgebra.Carrier {- Mapping to integer scalars and its (homorphism) properties. -} module _ (R : CommRing ℓ) where open CommRingStr (snd R) open Cubical.Algebra.Ring.RingTheory (CommRing→Ring R) scalarℕ : ℕ → (fst R) scalarℕ ℕ.zero = 0r scalarℕ (ℕ.suc ℕ.zero) = 1r scalarℕ (ℕ.suc (ℕ.suc n)) = 1r + scalarℕ (ℕ.suc n) scalar : ℤ → (fst R) scalar (pos k) = scalarℕ k scalar (negsuc k) = - scalarℕ (ℕ.suc k) -DistScalar : (k : ℤ) → scalar (-ℤ k) ≡ - (scalar k) -DistScalar (pos ℕ.zero) = sym 0Selfinverse -DistScalar (pos (ℕ.suc n)) = refl -DistScalar (negsuc n) = sym (-Idempotent _) lemmaSuc : (k : ℤ) → scalar (sucℤ k) ≡ 1r + scalar k lemmaSuc (pos ℕ.zero) = sym (+Rid _) lemmaSuc (pos (ℕ.suc ℕ.zero)) = refl lemmaSuc (pos (ℕ.suc (ℕ.suc n))) = refl lemmaSuc (negsuc ℕ.zero) = sym (+Rinv _) lemmaSuc (negsuc (ℕ.suc n)) = scalar (negsuc n) ≡⟨ sym (+Lid (scalar (negsuc n))) ⟩ 0r + scalar (negsuc n) ≡[ i ]⟨ +Rinv 1r (~ i) + scalar (negsuc n) ⟩ (1r - 1r) + scalar (negsuc n) ≡⟨ sym (+Assoc _ _ _) ⟩ 1r + (- 1r + - scalar (pos (ℕ.suc n))) ≡[ i ]⟨ 1r + -Dist 1r (scalar (pos (ℕ.suc n))) i ⟩ 1r + -(1r + scalar (pos (ℕ.suc n))) ≡⟨ refl ⟩ 1r + -(scalar (pos (ℕ.suc (ℕ.suc n)))) ≡⟨ refl ⟩ 1r + scalar (negsuc (ℕ.suc n)) ∎ lemmaPred : (k : ℤ) → scalar (predℤ k) ≡ - 1r + scalar k lemmaPred k = sym( - 1r + scalar k ≡[ i ]⟨ - 1r + scalar (sucPred k (~ i)) ⟩ - 1r + scalar (sucℤ (predℤ k)) ≡[ i ]⟨ - 1r + lemmaSuc (predℤ k) i ⟩ - 1r + (1r + scalar (predℤ k)) ≡⟨ +Assoc _ _ _ ⟩ (- 1r + 1r) + scalar (predℤ k) ≡[ i ]⟨ +Linv 1r i + scalar (predℤ k) ⟩ 0r + scalar (predℤ k) ≡⟨ +Lid _ ⟩ scalar (predℤ k) ∎) +HomScalar : (k l : ℤ) → scalar (k +ℤ l) ≡ (scalar k) + (scalar l) +HomScalar (pos ℕ.zero) l = scalar (0 +ℤ l) ≡[ i ]⟨ scalar (sym (pos0+ l) i) ⟩ scalar l ≡⟨ sym (+Lid _) ⟩ 0r + scalar l ≡⟨ refl ⟩ scalar 0 + scalar l ∎ +HomScalar (pos (ℕ.suc ℕ.zero)) l = scalar (1 +ℤ l) ≡[ i ]⟨ scalar (+ℤComm 1 l i) ⟩ scalar (l +ℤ 1) ≡⟨ refl ⟩ scalar (sucℤ l) ≡⟨ lemmaSuc l ⟩ 1r + scalar l ≡⟨ refl ⟩ scalar (pos (ℕ.suc ℕ.zero)) + scalar l ∎ +HomScalar (pos (ℕ.suc (ℕ.suc n))) l = scalar (pos (ℕ.suc (ℕ.suc n)) +ℤ l) ≡⟨ refl ⟩ scalar ((pos (ℕ.suc n) +ℤ 1) +ℤ l) ≡[ i ]⟨ scalar ((+ℤComm (pos (ℕ.suc n)) 1 i) +ℤ l) ⟩ scalar ((1 +ℤ (pos (ℕ.suc n))) +ℤ l) ≡[ i ]⟨ scalar (+ℤAssoc 1 (pos (ℕ.suc n)) l (~ i)) ⟩ scalar (1 +ℤ (pos (ℕ.suc n) +ℤ l)) ≡⟨ +HomScalar (pos (ℕ.suc ℕ.zero)) (pos (ℕ.suc n) +ℤ l) ⟩ scalar 1 + scalar (pos (ℕ.suc n) +ℤ l) ≡⟨ refl ⟩ 1r + (scalar (pos (ℕ.suc n) +ℤ l)) ≡[ i ]⟨ 1r + +HomScalar (pos (ℕ.suc n)) l i ⟩ 1r + (scalar (pos (ℕ.suc n)) + scalar l) ≡⟨ +Assoc _ _ _ ⟩ (1r + scalar (pos (ℕ.suc n))) + scalar l ≡⟨ refl ⟩ scalar (pos (ℕ.suc (ℕ.suc n))) + scalar l ∎ +HomScalar (negsuc ℕ.zero) l = scalar (-1 +ℤ l) ≡[ i ]⟨ scalar (+ℤComm -1 l i) ⟩ scalar (l +ℤ -1) ≡⟨ refl ⟩ scalar (predℤ l) ≡⟨ lemmaPred l ⟩ - 1r + scalar l ≡⟨ refl ⟩ scalar -1 + scalar l ∎ +HomScalar (negsuc (ℕ.suc n)) l = scalar (negsuc (ℕ.suc n) +ℤ l) ≡⟨ refl ⟩ scalar ((negsuc n +ℤ -1) +ℤ l) ≡[ i ]⟨ scalar (+ℤComm (negsuc n) -1 i +ℤ l) ⟩ scalar ((-1 +ℤ negsuc n) +ℤ l) ≡[ i ]⟨ scalar (+ℤAssoc -1 (negsuc n) l (~ i)) ⟩ scalar (-1 +ℤ (negsuc n +ℤ l)) ≡⟨ +HomScalar -1 (negsuc n +ℤ l) ⟩ - 1r + scalar (negsuc n +ℤ l) ≡[ i ]⟨ - 1r + +HomScalar (negsuc n) l i ⟩ - 1r + (scalar (negsuc n) + scalar l) ≡⟨ +Assoc (- 1r) _ _ ⟩ (- 1r + (scalar (negsuc n))) + scalar l ≡⟨ refl ⟩ (- 1r + - scalar (pos (ℕ.suc n))) + scalar l ≡[ i ]⟨ -Dist 1r (scalar (pos (ℕ.suc n))) i + scalar l ⟩ (- (1r + scalar (pos (ℕ.suc n)))) + scalar l ≡⟨ refl ⟩ scalar (negsuc (ℕ.suc n)) + scalar l ∎ lemma1 : (n : ℕ) → 1r + scalar (pos n) ≡ scalar (pos (ℕ.suc n)) lemma1 ℕ.zero = +Rid _ lemma1 (ℕ.suc k) = refl lemma-1 : (n : ℕ) → - 1r + scalar (negsuc n) ≡ scalar (negsuc (ℕ.suc n)) lemma-1 ℕ.zero = -Dist _ _ lemma-1 (ℕ.suc k) = - 1r + scalar (negsuc (ℕ.suc k)) ≡⟨ refl ⟩ - 1r + - scalar (pos (ℕ.suc (ℕ.suc k))) ≡⟨ -Dist _ _ ⟩ - (1r + scalar (pos (ℕ.suc (ℕ.suc k)))) ≡⟨ refl ⟩ scalar (negsuc (ℕ.suc (ℕ.suc k))) ∎ ·HomScalar : (k l : ℤ) → scalar (k ·ℤ l) ≡ scalar k · scalar l ·HomScalar (pos ℕ.zero) l = 0r ≡⟨ sym (0LeftAnnihilates (scalar l)) ⟩ 0r · scalar l ∎ ·HomScalar (pos (ℕ.suc n)) l = scalar (l +ℤ (pos n ·ℤ l)) ≡⟨ +HomScalar l (pos n ·ℤ l) ⟩ scalar l + scalar (pos n ·ℤ l) ≡[ i ]⟨ scalar l + ·HomScalar (pos n) l i ⟩ scalar l + (scalar (pos n) · scalar l) ≡[ i ]⟨ ·Lid (scalar l) (~ i) + (scalar (pos n) · scalar l) ⟩ 1r · scalar l + (scalar (pos n) · scalar l) ≡⟨ sym (·Ldist+ 1r _ _) ⟩ (1r + scalar (pos n)) · scalar l ≡[ i ]⟨ lemma1 n i · scalar l ⟩ scalar (pos (ℕ.suc n)) · scalar l ∎ ·HomScalar (negsuc ℕ.zero) l = scalar (-ℤ l) ≡⟨ -DistScalar l ⟩ - scalar l ≡[ i ]⟨ - (·Lid (scalar l) (~ i)) ⟩ - (1r · scalar l) ≡⟨ sym (-DistL· _ _) ⟩ - 1r · scalar l ≡⟨ refl ⟩ scalar (negsuc ℕ.zero) · scalar l ∎ ·HomScalar (negsuc (ℕ.suc n)) l = scalar ((-ℤ l) +ℤ (negsuc n ·ℤ l)) ≡⟨ +HomScalar (-ℤ l) (negsuc n ·ℤ l) ⟩ scalar (-ℤ l) + scalar (negsuc n ·ℤ l) ≡[ i ]⟨ -DistScalar l i + scalar (negsuc n ·ℤ l) ⟩ - scalar l + scalar (negsuc n ·ℤ l) ≡[ i ]⟨ - scalar l + ·HomScalar (negsuc n) l i ⟩ - scalar l + scalar (negsuc n) · scalar l ≡[ i ]⟨ (- ·Lid (scalar l) (~ i)) + scalar (negsuc n) · scalar l ⟩ - (1r · scalar l) + scalar (negsuc n) · scalar l ≡[ i ]⟨ -DistL· 1r (scalar l) (~ i) + scalar (negsuc n) · scalar l ⟩ - 1r · scalar l + scalar (negsuc n) · scalar l ≡⟨ sym (·Ldist+ _ _ _) ⟩ (- 1r + scalar (negsuc n)) · scalar l ≡[ i ]⟨ lemma-1 n i · scalar l ⟩ scalar (negsuc (ℕ.suc n)) · scalar l ∎ CommRing→RawℤAlgebra : CommRing ℓ → RawAlgebra ℤAsRawRing ℓ CommRing→RawℤAlgebra (R , commringstr 0r 1r _+_ _·_ -_ isCommRing) = rawalgebra R (scalar ((R , commringstr 0r 1r _+_ _·_ -_ isCommRing))) 0r 1r _+_ _·_ -_
44.372222
152
0.493928
cbe5702d8fac49ab9b3a8b3ef3fb97b2ca52495e
2,003
agda
Agda
Data/Binary/Multiplication/Properties.agda
oisdk/agda-playground
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
[ "MIT" ]
6
2020-09-11T17:45:41.000Z
2021-11-16T08:11:34.000Z
Data/Binary/Multiplication/Properties.agda
oisdk/agda-playground
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
[ "MIT" ]
null
null
null
Data/Binary/Multiplication/Properties.agda
oisdk/agda-playground
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
[ "MIT" ]
1
2021-11-11T12:30:21.000Z
2021-11-11T12:30:21.000Z
{-# OPTIONS --cubical --safe #-} module Data.Binary.Multiplication.Properties where open import Prelude open import Data.Binary.Definition open import Data.Binary.Addition open import Data.Binary.Addition.Properties using (+-cong) open import Data.Binary.Multiplication open import Data.Binary.Conversion import Data.Nat as ℕ import Data.Nat.Properties as ℕ open import Path.Reasoning open import Data.Binary.Isomorphism double-cong : ∀ xs → ⟦ double xs ⇓⟧ ≡ ⟦ xs ⇓⟧ ℕ.* 2 double-cong 0ᵇ i = zero double-cong (1ᵇ xs) i = 2 ℕ.+ double-cong xs i ℕ.* 2 double-cong (2ᵇ xs) i = ⟦ 2ᵇ 1ᵇ xs ⇓⟧ double-plus : ∀ x → x ℕ.+ x ≡ x ℕ.* 2 double-plus x = cong (x ℕ.+_) (sym (ℕ.+-idʳ x)) ; ℕ.*-comm 2 x lemma₁ : ∀ x y → x ℕ.* y ℕ.* 2 ≡ y ℕ.* 2 ℕ.* x lemma₁ x y = x ℕ.* y ℕ.* 2 ≡⟨ ℕ.*-assoc x y 2 ⟩ x ℕ.* (y ℕ.* 2) ≡⟨ ℕ.*-comm x (y ℕ.* 2) ⟩ y ℕ.* 2 ℕ.* x ∎ lemma₂ : ∀ x y → (x ℕ.+ x ℕ.* y) ℕ.* 2 ≡ x ℕ.+ (x ℕ.+ y ℕ.* 2 ℕ.* x) lemma₂ x y = (x ℕ.+ x ℕ.* y) ℕ.* 2 ≡⟨ ℕ.+-*-distrib x (x ℕ.* y) 2 ⟩ x ℕ.* 2 ℕ.+ x ℕ.* y ℕ.* 2 ≡⟨ cong₂ ℕ._+_ (sym (double-plus x)) (lemma₁ x y) ⟩ x ℕ.+ x ℕ.+ y ℕ.* 2 ℕ.* x ≡⟨ ℕ.+-assoc x x (y ℕ.* 2 ℕ.* x) ⟩ x ℕ.+ (x ℕ.+ y ℕ.* 2 ℕ.* x) ∎ *-cong : ∀ xs ys → ⟦ xs * ys ⇓⟧ ≡ ⟦ xs ⇓⟧ ℕ.* ⟦ ys ⇓⟧ *-cong 0ᵇ ys = refl *-cong (1ᵇ xs) ys = ⟦ ys + double (ys * xs) ⇓⟧ ≡⟨ +-cong ys (double (ys * xs)) ⟩ ⟦ ys ⇓⟧ ℕ.+ ⟦ double (ys * xs) ⇓⟧ ≡⟨ cong (⟦ ys ⇓⟧ ℕ.+_) (double-cong (ys * xs)) ⟩ ⟦ ys ⇓⟧ ℕ.+ ⟦ ys * xs ⇓⟧ ℕ.* 2 ≡⟨ cong (⟦ ys ⇓⟧ ℕ.+_) (cong (ℕ._* 2) (*-cong ys xs)) ⟩ ⟦ ys ⇓⟧ ℕ.+ ⟦ ys ⇓⟧ ℕ.* ⟦ xs ⇓⟧ ℕ.* 2 ≡⟨ cong (⟦ ys ⇓⟧ ℕ.+_) (lemma₁ ⟦ ys ⇓⟧ ⟦ xs ⇓⟧) ⟩ ⟦ ys ⇓⟧ ℕ.+ ⟦ xs ⇓⟧ ℕ.* 2 ℕ.* ⟦ ys ⇓⟧ ∎ *-cong (2ᵇ xs) ys = ⟦ double (ys + ys * xs) ⇓⟧ ≡⟨ double-cong (ys + ys * xs) ⟩ ⟦ ys + ys * xs ⇓⟧ ℕ.* 2 ≡⟨ cong (ℕ._* 2) (+-cong ys (ys * xs)) ⟩ (⟦ ys ⇓⟧ ℕ.+ ⟦ ys * xs ⇓⟧) ℕ.* 2 ≡⟨ cong (ℕ._* 2) (cong (⟦ ys ⇓⟧ ℕ.+_) (*-cong ys xs)) ⟩ (⟦ ys ⇓⟧ ℕ.+ ⟦ ys ⇓⟧ ℕ.* ⟦ xs ⇓⟧) ℕ.* 2 ≡⟨ lemma₂ ⟦ ys ⇓⟧ ⟦ xs ⇓⟧ ⟩ ⟦ ys ⇓⟧ ℕ.+ (⟦ ys ⇓⟧ ℕ.+ ⟦ xs ⇓⟧ ℕ.* 2 ℕ.* ⟦ ys ⇓⟧) ∎
39.27451
90
0.484274
c53c76a27ad96ea668d9619b4a9170958c52f48c
483
agda
Agda
agda-stdlib/src/Data/List/All.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Data/List/All.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Data/List/All.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- This module is DEPRECATED. Please use Data.List.Relation.Unary.All -- directly. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.List.All where open import Data.List.Relation.Unary.All public {-# WARNING_ON_IMPORT "Data.List.All was deprecated in v1.0. Use Data.List.Relation.Unary.All instead." #-}
26.833333
72
0.509317
df13e37661abe85b7f6fd33121a789f47279c4fa
1,993
agda
Agda
Cubical/Displayed/Subst.agda
maxdore/cubical
ef62b84397396d48135d73ba7400b71c721ddc94
[ "MIT" ]
null
null
null
Cubical/Displayed/Subst.agda
maxdore/cubical
ef62b84397396d48135d73ba7400b71c721ddc94
[ "MIT" ]
null
null
null
Cubical/Displayed/Subst.agda
maxdore/cubical
ef62b84397396d48135d73ba7400b71c721ddc94
[ "MIT" ]
null
null
null
{- Given a type A with a UARel and a family B over A, a SubstRel on B is a family of functions a ≅ a' → B a ≃ B a' path-equal to transport in that family. Any SubstRel gives rise to a DUARel in which b and b' are related over p when the transport of b along p is equial to b'. -} {-# OPTIONS --safe #-} module Cubical.Displayed.Subst where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Path open import Cubical.Foundations.Transport open import Cubical.Foundations.Univalence open import Cubical.Displayed.Base private variable ℓA ℓ≅A ℓB : Level record SubstRel {A : Type ℓA} {ℓ≅A : Level} (𝒮-A : UARel A ℓ≅A) (B : A → Type ℓB) : Type (ℓ-max (ℓ-max ℓA ℓB) ℓ≅A) where no-eta-equality constructor substrel open UARel 𝒮-A field act : {a a' : A} → a ≅ a' → B a ≃ B a' uaˢ : {a a' : A} (p : a ≅ a') (b : B a) → subst B (≅→≡ p) b ≡ equivFun (act p) b uaˢ⁻ : {a a' : A} (p : a ≅ a') (b : B a') → subst B (sym (≅→≡ p)) b ≡ invEq (act p) b uaˢ⁻ p b = subst B (sym (≅→≡ p)) b ≡⟨ cong (subst B (sym (≅→≡ p))) (sym (retEq (act p) b)) ⟩ subst B (sym (≅→≡ p)) (equivFun (act p) (invEq (act p) b)) ≡⟨ cong (subst B (sym (≅→≡ p))) (sym (uaˢ p (invEq (act p) b))) ⟩ subst B (sym (≅→≡ p)) (subst B (≅→≡ p) (invEq (act p) b)) ≡⟨ pathToIso (cong B (≅→≡ p)) .Iso.leftInv (invEq (act p) b) ⟩ invEq (act p) b ∎ Subst→DUA : {A : Type ℓA} {ℓ≅A : Level} {𝒮-A : UARel A ℓ≅A} {B : A → Type ℓB} → SubstRel 𝒮-A B → DUARel 𝒮-A B ℓB DUARel._≅ᴰ⟨_⟩_ (Subst→DUA 𝒮ˢ-B) b p b' = equivFun (SubstRel.act 𝒮ˢ-B p) b ≡ b' DUARel.uaᴰ (Subst→DUA {𝒮-A = 𝒮-A} {B = B} 𝒮ˢ-B) b p b' = equivFun (SubstRel.act 𝒮ˢ-B p) b ≡ b' ≃⟨ invEquiv (compPathlEquiv (sym (SubstRel.uaˢ 𝒮ˢ-B p b))) ⟩ subst B (≅→≡ p) b ≡ b' ≃⟨ invEquiv (PathP≃Path (λ i → B (≅→≡ p i)) b b') ⟩ PathP (λ i → B (UARel.≅→≡ 𝒮-A p i)) b b' ■ where open UARel 𝒮-A
32.672131
109
0.581535
df97b058cfa6a1113d52fd7dac91f64614d37bc0
5,132
agda
Agda
src-focusing/Library.agda
andreasabel/ipl
9a6151ad1f0977674b8cc9e9cefb49ae83e8a42a
[ "Unlicense" ]
19
2018-05-16T08:08:51.000Z
2021-04-27T19:10:49.000Z
src-focusing/Library.agda
andreasabel/ipl
9a6151ad1f0977674b8cc9e9cefb49ae83e8a42a
[ "Unlicense" ]
null
null
null
src-focusing/Library.agda
andreasabel/ipl
9a6151ad1f0977674b8cc9e9cefb49ae83e8a42a
[ "Unlicense" ]
2
2018-11-13T16:01:46.000Z
2021-02-25T20:39:03.000Z
{-# OPTIONS --rewriting #-} -- Interface to the standard library. -- Place to add own auxiliary definitions. module Library where open import Size public open import Level public using () renaming (zero to lzero) open import Data.Unit public using (⊤) open import Data.Empty public using (⊥; ⊥-elim) open import Data.Product public using (Σ; ∃; _×_; _,_; proj₁; proj₂; <_,_>; curry; uncurry) renaming (map to map-×) open import Data.Sum public using (_⊎_; inj₁; inj₂; [_,_]; [_,_]′) renaming (map to map-⊎) open import Data.List public using (List; []; _∷_) hiding (module List) open import Data.List.Relation.Unary.All public using (All; []; _∷_) hiding (module All) open import Data.List.Relation.Unary.Any public using (here; there) open import Data.List.Membership.Propositional public using (_∈_) open import Data.List.Relation.Binary.Sublist.Propositional public using (_⊆_; []; _∷_; _∷ʳ_; ⊆-refl; ⊆-trans) renaming (lookup to ⊆-lookup) open import Function public using (_∘_; _∘′_; id; _$_; _ˢ_; case_of_; const; flip) open import Relation.Binary.PropositionalEquality public using (_≡_; refl; sym; trans; cong; cong₂; subst; _≗_) {-# BUILTIN REWRITE _≡_ #-} module All where open import Data.List.Relation.Unary.All public module Any where open import Data.List.Relation.Unary.Any public -- open import Axiom.Extensionality.Propositional public using (Extensionality) -- postulate -- funExt : ∀{a b} → Extensionality a b -- inline to avoid library incomp. postulate funExt : ∀{a b} {A : Set a} {B : A → Set b} {f g : (x : A) → B x} → (∀ x → f x ≡ g x) → f ≡ g funExtH : ∀{a b} {A : Set a} {B : A → Set b} {f g : {x : A} → B x} → (∀ {x} → f {x} ≡ g {x}) → (λ {x} → f {x}) ≡ g ⊥-elim-ext : ∀{a b} {A : Set a} {B : Set b} {f : A → ⊥} {g : A → B} → ⊥-elim {b} {B} ∘ f ≡ g ⊥-elim-ext {f = f} = funExt λ a → ⊥-elim (f a) cong₃ : ∀ {a b c d} {A : Set a} {B : Set b} {C : Set c} {D : Set d} (f : A → B → C → D) {a a' b b' c c'} → a ≡ a' → b ≡ b' → c ≡ c' → f a b c ≡ f a' b' c' cong₃ f refl refl refl = refl _×̇_ : ∀{A B C D : Set} → (A → C) → (B → D) → A × B → C × D (f ×̇ g) (x , y) = f x , g y -- Application (S-combinator) apply : ∀{A B C : Set} (f : C → A → B) (d : C → A) → C → B apply f a = λ c → f c (a c) -- Kripke application kapply : ∀{A B C D : Set} (f : C → A → B) (τ : D → C) (d : D → A) → D → B kapply f τ a = apply (f ∘ τ) a -- kapply f τ a = λ d → f (τ d) (a d) caseof : ∀{A B C D : Set} (f : C → A ⊎ B) (g : C × A → D) (h : C × B → D) → C → D caseof f g h = λ c → [ curry g c , curry h c ]′ (f c) sum-eta : ∀{A B : Set} (x : A ⊎ B) → [ inj₁ , inj₂ ] x ≡ x sum-eta (inj₁ x) = refl sum-eta (inj₂ y) = refl caseof-eta : ∀{A B C : Set} (f : C → A ⊎ B) → caseof f (inj₁ ∘ proj₂) (inj₂ ∘ proj₂) ≡ f caseof-eta f = funExt λ c → sum-eta (f c) sum-perm : ∀{A B C D : Set} (k : C → D) {g : A → C} {h : B → C} (x : A ⊎ B) → [ k ∘ g , k ∘ h ]′ x ≡ k ([ g , h ]′ x) sum-perm k (inj₁ x) = refl sum-perm k (inj₂ y) = refl caseof-perm' : ∀{A B C D E : Set} (k : C → D → E) {f : C → A ⊎ B} {g : C × A → D} {h : C × B → D} → caseof f (apply (k ∘ proj₁) g) (apply (k ∘ proj₁) h) ≡ apply k (caseof f g h) caseof-perm' k {f} = funExt λ c → sum-perm (k c) (f c) caseof-perm : ∀{A B C D E : Set} (k : D → E) {f : C → A ⊎ B} {g : C × A → D} {h : C × B → D} → caseof f (k ∘ g) (k ∘ h) ≡ k ∘ caseof f g h caseof-perm = caseof-perm' ∘ const caseof-wk : ∀{A B C D E : Set} (k : D → C) {f : C → A ⊎ B} {g : C × A → E} {h : C × B → E} → caseof (f ∘ k) (g ∘ (k ×̇ id)) (h ∘ (k ×̇ id)) ≡ caseof f g h ∘ k caseof-wk {A} {B} {C} {D} {E} k {f} {g} {h} = refl caseof-apply : ∀{A B C D E : Set} (f : C → A ⊎ B) {g : C × A → D → E} {h : C × B → D → E} (d : C → D) → caseof f (apply g (d ∘ proj₁)) (apply h (d ∘ proj₁)) ≡ apply (caseof f g h) d caseof-apply f {g} {h} d = funExt λ c → sum-perm (λ z → z (d c)) {curry g c} {curry h c} (f c) -- caseof-apply {A} {B} {C} {D} {E} d {f} {g} {h} = funExt λ c → aux (f c) -- where -- aux : ∀ {c : C} (w : A ⊎ B) → -- [ (λ y → curry g c y (d c)) , (λ y → curry h c y (d c)) ]′ w ≡ -- [ curry g c , curry h c ]′ w (d c) -- aux (inj₁ a) = refl -- aux (inj₂ b) = refl -- caseof (f ∘ τ) -- (apply (g ∘ (τ ×̇ id)) (a ∘ proj₁)) -- (apply (h ∘ (τ ×̇ id)) (a ∘ proj₁)) -- ≡ -- apply (caseof f g h ∘ τ) a caseof-kapply : ∀{A B C D E F : Set} (f : C → A ⊎ B) (g : C × A → E → F) (h : C × B → E → F) (τ : D → C) (a : D → E) → caseof (f ∘ τ) (kapply g (τ ×̇ id) (a ∘ proj₁)) (kapply h (τ ×̇ id) (a ∘ proj₁)) ≡ kapply (caseof f g h) τ a caseof-kapply f g h τ a = caseof-apply (f ∘ τ) a caseof-swap : ∀{A B C D X Y : Set} (f : C → X ⊎ Y) (i : C × X → A ⊎ B) (j : C × Y → A ⊎ B) (g : C → A → D) (h : C → B → D) → caseof f (caseof i (uncurry (g ∘ proj₁)) (uncurry (h ∘ proj₁))) (caseof j (uncurry (g ∘ proj₁)) (uncurry (h ∘ proj₁))) ≡ caseof (caseof f i j) (uncurry g) (uncurry h) caseof-swap {A} {B} {C} {D} {X} {Y} f i j g h = funExt λ c → sum-perm [ (g c) , (h c) ] (f c)
37.188406
142
0.500974
cb153e26b65c2e7fd3547e11ed9c32d3a2d32744
402
agda
Agda
test/Succeed/Issue1834c.agda
pthariensflame/agda
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/Succeed/Issue1834c.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
null
null
null
test/Succeed/Issue1834c.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
1
2019-03-05T20:02:38.000Z
2019-03-05T20:02:38.000Z
-- Andreas & James, 2016-04-18 pre-AIM XXIII -- order of clauses should not matter here! {-# OPTIONS --exact-split #-} open import Common.Prelude record R A : Set where field out : A T : (x y : Bool) → Set T true y = R Bool T false true = R Nat T false false = R String test : (x y : Bool) → T x y R.out (test true y) = y R.out (test false true ) = 0 R.out (test false false) = "hallo"
20.1
44
0.621891
1c932af6caf1e37416964f94c277abb07aa827a3
7,445
agda
Agda
papers/unraveling-recursion/code/src/Compilation/Data.agda
imikushin/plutus
2c5bda20fb94b0f3737ba1a236ef5d7a7fd9f631
[ "Apache-2.0" ]
1,299
2018-10-02T13:41:39.000Z
2022-03-28T01:10:02.000Z
papers/unraveling-recursion/code/src/Compilation/Data.agda
imikushin/plutus
2c5bda20fb94b0f3737ba1a236ef5d7a7fd9f631
[ "Apache-2.0" ]
2,493
2018-09-28T19:28:17.000Z
2022-03-31T15:31:31.000Z
papers/unraveling-recursion/code/src/Compilation/Data.agda
imikushin/plutus
2c5bda20fb94b0f3737ba1a236ef5d7a7fd9f631
[ "Apache-2.0" ]
399
2018-10-05T09:36:10.000Z
2022-03-31T11:18:25.000Z
{-# OPTIONS --type-in-type #-} module Compilation.Data where open import Context open import Type.Core open import Function open import Data.Product open import Data.List.Base infixr 6 _⇒ᶜ_ {- Note [Type denotations] The denotation of a System Fωμ type is an Agda type that somehow corresponds to the original type. For System Fωμ types we'll be using simple and straightforward denotations. For example, we map π ⋆ (Var vz ⇒ Var vz) to (A : Set) -> A -> A and Lam (Var vz) ∙ (π ⋆ (Var vz ⇒ Var vz)) to (λ x -> x) ((A : Set) -> A -> A) which computes to (A : Set) -> A -> A The latter is due to the fact that we map System Fωμ lambdas to Agda lambdas and System Fωμ applications to Agda applications and hence get type normalization of denotations for free. -} {- Note [Kind denotations] Of course before taking denotations of System Fωμ types, we need to be able to take denotations of System Fωμ kinds. We map a System Fωμ `⋆` to an Agda `Set` and a System Fωμ `_⇒ᵏ_` to an Agda `_->_`. For example the denotation of (⋆ ⇒ᵏ ⋆) ⇒ᵏ ⋆ is (Set -> Set) -> Set -} -- | The Agda meaning of a kind. ⟦_⟧ᵏ : Kind -> Set ⟦ ⋆ ⟧ᵏ = Set ⟦ σ ⇒ᵏ τ ⟧ᵏ = ⟦ σ ⟧ᵏ -> ⟦ τ ⟧ᵏ -- | The Agda meaning of a System Fωμ type in an environment. evalᵗ : ∀ {Θ σ} -> Env ⟦_⟧ᵏ Θ -> Θ ⊢ᵗ σ -> ⟦ σ ⟧ᵏ evalᵗ ρ (Var v) = lookupᵉ v ρ -- Look up a variable in the current context. evalᵗ ρ (Lam β) = λ A -> evalᵗ (ρ ▷ A) β -- Map a System Fωμ lambda to an Agda lambda. evalᵗ ρ (φ ∙ α) = evalᵗ ρ φ (evalᵗ ρ α) -- Map a System Fωμ application to an Agda application. evalᵗ ρ (α ⇒ β) = evalᵗ ρ α -> evalᵗ ρ β -- Map a System Fωμ arrow to an Agda arrow. evalᵗ ρ (π σ β) = (A : ⟦ σ ⟧ᵏ) -> evalᵗ (ρ ▷ A) β -- Map a System Fωμ `all` to an Agda `∀`. evalᵗ ρ (μ ψ α) = IFix (evalᵗ ρ ψ) (evalᵗ ρ α) -- Map a System Fωμ `ifix` to an Agda `IFix`. -- | The Agda meaning of a closed System Fωμ type. ⟦_⟧ᵗ : ∀ {σ} -> Type⁽⁾ σ -> ⟦ σ ⟧ᵏ ⟦_⟧ᵗ = evalᵗ ∅ {- Note [Representing data types] We represent a single data type as a list of constructor types. Each constructor type is defined in a non-empty context where the first bound variable is for handling recursion and other variables are parameters of the data type (there can be none). Each constructor type is a sequence of `_⇒ᶜ_` that ends in `endᶜ` where `endᶜ` is a placeholder that will later be substituted either for a type being defined or a type we eliminate the data type into or the unit type, depending on how we denote constructors (there are multiple ways). Consider the `list` data type. Its pattern functor binds two variables: 1. one responsible for recursion 2. one for the type of the elements stored in a list Since we define constructors in contexts, the list constructors are defined in ε ▻ (⋆ ⇒ ⋆) ▻ ⋆ (the parens are for clarity, they're not really needed). The types of the constructors are 1. List A -- The type of the `nil` constructor. 2. A -> List A -> List A -- The type of the `cons` constructor. and we translate them to 1. endᶜ 2. Var vz ⇒ᶜ Var (vs vz) ∙ Var vz ⇒ᶜ endᶜ A more interesting example is data InterList (A B : Set) : Set where InterNil : InterList A B InterCons : A -> B -> InterList B A -> InterList A B The types of its constructors are described as 1. endᶜ 2. Var (vs vz) ⇒ᶜ Var vz ⇒ᶜ Var (vs vs vz) ∙ Var vz ∙ Var (vs vz) ⇒ᶜ endᶜ Below we define the data type that describes constructors and some basic functions over it. -} -- | The type of a constructor is of the `σ₁ ⇒ … ⇒ σₙ ⇒ end` form -- where each `σ` is a type of kind `⋆`. data Cons Θ : Set where endᶜ : Cons Θ _⇒ᶜ_ : (α : Star Θ) -> (ξ : Cons Θ) -> Cons Θ -- | Convert the type of a constructor to an actual type of kind `⋆`. -- -- > consToType (α₁ ⇒ᶜ … ⇒ᶜ αₙ ⇒ᶜ endᶜ) β = α₁ ⇒ … ⇒ αₙ ⇒ β consToType : ∀ {Θ} -> Cons Θ -> Star Θ -> Star Θ consToType endᶜ β = β consToType (α ⇒ᶜ ξ) β = α ⇒ consToType ξ β -- | Rename the type of a constructor. renᶜ : ∀ {Θ Ξ} -> Θ ⊆ Ξ -> Cons Θ -> Cons Ξ renᶜ ι endᶜ = endᶜ renᶜ ι (α ⇒ᶜ ξ) = renᵗ ι α ⇒ᶜ renᶜ ι ξ -- The family we use as an example in docs below. module ProdTreeTree where mutual data ProdTree (A : Set) (B : Set) : Set where Prod : Tree (A × B) -> ProdTree A B data Tree (A : Set) : Set where Leaf : A -> Tree A Fork : ProdTree A A -> Tree A open import Data.Nat.Base open import Data.Bool.Base private example : ProdTree ℕ Bool example = Prod ∘ Fork ∘ Prod ∘ Fork ∘ Prod ∘ Leaf $ ( ( 0 , false ) , ( 1 , true ) ) , ( ( 2 , false ) , (3 , true ) ) -- | A data description is parameterized by a context of contexts of kinds. Inner contexts are those -- single data types are defined in. Outer contexts are needed in order to allow to define mutually -- recursive data types. I.e. each element of an outer context is an inner context, in which -- a single data type is defined. -- -- A single data type is described as a list of described constructors. The context of each -- constructor consists of -- -- 1. all the data types being defined (because we allow mutually recursive data types) -- 2. the particular inner context of the data type that the constructor constructs -- -- For example, consider the `ProdTree`/`Tree` family of data types defined above -- -- Since there are two data types in this family, the length of the outer context is 2. -- Since `ProdTree` is parameterized by two types, it's inner context is `ε ▻ ⋆ ▻ ⋆`. -- Since `Tree` is parameterized by one type, it's inner context is `ε ▻ ⋆`. -- I.e. the context this whole family is defined in, is -- -- > ε ▻ (ε ▻ ⋆ ▻ ⋆) ▻ (ε ▻ ⋆) -- -- The context that the constructor of `ProdTree` is defined in, consists of -- -- 1. References to both `ProdTree` and `Tree` which have the `⋆ ⇒ᵏ ⋆ ⇒ᵏ ⋆` and `⋆ ⇒ᵏ ⋆` -- kinds respectively. -- 2. The inner context of `ProdTree` which has two parameters `A` and `B`, each of kind `⋆`. -- -- hence the final context is -- -- > ε ▻ {- ProdTree :: -} (⋆ ⇒ᵏ ⋆ ⇒ᵏ ⋆) ▻ {- Tree :: -} (⋆ ⇒ᵏ ⋆) ▻ {- A :: -} ⋆ ▻ {- B :: -} ⋆ -- -- (things in `{- … -}` are comments that assign names to variables for clarity). -- -- Analogously, the context that the constructors of Tree` are defined in, is -- -- > ε ▻ {- ProdTree :: -} (⋆ ⇒ᵏ ⋆ ⇒ᵏ ⋆) ▻ {- Tree :: -} (⋆ ⇒ᵏ ⋆) ▻ {- A :: -} ⋆ -- -- I.e. the same as the one of `ProdTree`, except we bind only one type parameter, because `Tree` -- has only one type parameter. record Data Ξ (Θs : Con Conᵏ) : Set where constructor PackData field constructors : Seq (λ Θ -> List (Cons (Ξ ▻▻ mapᶜ (λ Θᵢ -> conToKind Θᵢ ⋆) Θs ▻▻ Θ))) Θs Data⁺ : Con Conᵏ -> Set Data⁺ Θs = ∀ {Ξ} -> Data Ξ Θs module prodTreeTree where -- The encoded `ProdTree`/`Tree` family from the above looks like this: -- (`∀ Q -> (A -> B -> Q) -> Q` is the Scott-encoded `A × B`) prodTreeTree : Data⁺ (ε ▻ (ε ▻ ⋆ ▻ ⋆) ▻ (ε ▻ ⋆)) prodTreeTree = PackData $ ø ▶ ( -- `Tree (∀ Q -> (A -> B -> Q) -> Q) -> ProdTree A B` Var (vs vs vz) ∙ π ⋆ ((Var (vs vs vz) ⇒ Var (vs vz) ⇒ Var vz) ⇒ Var vz) ⇒ᶜ endᶜ ∷ [] ) ▶ ( -- `A -> Tree A` Var vz ⇒ᶜ endᶜ ∷ -- `ProdTree A A -> Tree A` Var (vs vs vz) ∙ Var vz ∙ Var vz ⇒ᶜ endᶜ ∷ [] )
33.38565
106
0.610208
d01b0b23a40f7e3f76a4d868b389d5c4af817cb0
9,753
agda
Agda
agda-stdlib-0.9/src/Data/List/Countdown.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
1
2016-10-20T15:52:05.000Z
2016-10-20T15:52:05.000Z
agda-stdlib-0.9/src/Data/List/Countdown.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
null
null
null
agda-stdlib-0.9/src/Data/List/Countdown.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
null
null
null
------------------------------------------------------------------------ -- The Agda standard library -- -- A data structure which keeps track of an upper bound on the number -- of elements /not/ in a given list ------------------------------------------------------------------------ import Level open import Relation.Binary module Data.List.Countdown (D : DecSetoid Level.zero Level.zero) where open import Data.Empty open import Data.Fin using (Fin; zero; suc) open import Function open import Function.Equality using (_⟨$⟩_) open import Function.Injection using (Injection; module Injection) open import Data.List open import Data.List.Any as Any using (here; there) open import Data.Nat using (ℕ; zero; suc) open import Data.Product open import Data.Sum open import Relation.Nullary open import Relation.Binary.PropositionalEquality as PropEq using (_≡_; _≢_; refl; cong) open PropEq.≡-Reasoning private open module D = DecSetoid D hiding (refl) renaming (Carrier to Elem) open Any.Membership D.setoid ------------------------------------------------------------------------ -- Helper functions private drop-suc : ∀ {n} {i j : Fin n} → _≡_ {A = Fin (suc n)} (suc i) (suc j) → i ≡ j drop-suc refl = refl drop-inj₂ : ∀ {A B : Set} {x y} → inj₂ {A = A} {B = B} x ≡ inj₂ y → x ≡ y drop-inj₂ refl = refl -- The /first/ occurrence of x in xs. first-occurrence : ∀ {xs} x → x ∈ xs → x ∈ xs first-occurrence x (here x≈y) = here x≈y first-occurrence x (there {x = y} x∈xs) with x ≟ y ... | yes x≈y = here x≈y ... | no _ = there $ first-occurrence x x∈xs -- The index of the first occurrence of x in xs. first-index : ∀ {xs} x → x ∈ xs → Fin (length xs) first-index x x∈xs = Any.index $ first-occurrence x x∈xs -- first-index preserves equality of its first argument. first-index-cong : ∀ {x₁ x₂ xs} (x₁∈xs : x₁ ∈ xs) (x₂∈xs : x₂ ∈ xs) → x₁ ≈ x₂ → first-index x₁ x₁∈xs ≡ first-index x₂ x₂∈xs first-index-cong {x₁} {x₂} x₁∈xs x₂∈xs x₁≈x₂ = helper x₁∈xs x₂∈xs where helper : ∀ {xs} (x₁∈xs : x₁ ∈ xs) (x₂∈xs : x₂ ∈ xs) → first-index x₁ x₁∈xs ≡ first-index x₂ x₂∈xs helper (here x₁≈x) (here x₂≈x) = refl helper (here x₁≈x) (there {x = x} x₂∈xs) with x₂ ≟ x ... | yes x₂≈x = refl ... | no x₂≉x = ⊥-elim (x₂≉x (trans (sym x₁≈x₂) x₁≈x)) helper (there {x = x} x₁∈xs) (here x₂≈x) with x₁ ≟ x ... | yes x₁≈x = refl ... | no x₁≉x = ⊥-elim (x₁≉x (trans x₁≈x₂ x₂≈x)) helper (there {x = x} x₁∈xs) (there x₂∈xs) with x₁ ≟ x | x₂ ≟ x ... | yes x₁≈x | yes x₂≈x = refl ... | yes x₁≈x | no x₂≉x = ⊥-elim (x₂≉x (trans (sym x₁≈x₂) x₁≈x)) ... | no x₁≉x | yes x₂≈x = ⊥-elim (x₁≉x (trans x₁≈x₂ x₂≈x)) ... | no x₁≉x | no x₂≉x = cong suc $ helper x₁∈xs x₂∈xs -- first-index is injective in its first argument. first-index-injective : ∀ {x₁ x₂ xs} (x₁∈xs : x₁ ∈ xs) (x₂∈xs : x₂ ∈ xs) → first-index x₁ x₁∈xs ≡ first-index x₂ x₂∈xs → x₁ ≈ x₂ first-index-injective {x₁} {x₂} = helper where helper : ∀ {xs} (x₁∈xs : x₁ ∈ xs) (x₂∈xs : x₂ ∈ xs) → first-index x₁ x₁∈xs ≡ first-index x₂ x₂∈xs → x₁ ≈ x₂ helper (here x₁≈x) (here x₂≈x) _ = trans x₁≈x (sym x₂≈x) helper (here x₁≈x) (there {x = x} x₂∈xs) _ with x₂ ≟ x helper (here x₁≈x) (there {x = x} x₂∈xs) _ | yes x₂≈x = trans x₁≈x (sym x₂≈x) helper (here x₁≈x) (there {x = x} x₂∈xs) () | no x₂≉x helper (there {x = x} x₁∈xs) (here x₂≈x) _ with x₁ ≟ x helper (there {x = x} x₁∈xs) (here x₂≈x) _ | yes x₁≈x = trans x₁≈x (sym x₂≈x) helper (there {x = x} x₁∈xs) (here x₂≈x) () | no x₁≉x helper (there {x = x} x₁∈xs) (there x₂∈xs) _ with x₁ ≟ x | x₂ ≟ x helper (there {x = x} x₁∈xs) (there x₂∈xs) _ | yes x₁≈x | yes x₂≈x = trans x₁≈x (sym x₂≈x) helper (there {x = x} x₁∈xs) (there x₂∈xs) () | yes x₁≈x | no x₂≉x helper (there {x = x} x₁∈xs) (there x₂∈xs) () | no x₁≉x | yes x₂≈x helper (there {x = x} x₁∈xs) (there x₂∈xs) eq | no x₁≉x | no x₂≉x = helper x₁∈xs x₂∈xs (drop-suc eq) -- If there are at least two elements in Fin (suc n), then Fin n is -- inhabited. This is a variant of the thick function from Conor -- McBride's "First-order unification by structural recursion". thick : ∀ {n} (i j : Fin (suc n)) → i ≢ j → Fin n thick zero zero i≢j = ⊥-elim (i≢j refl) thick zero (suc j) _ = j thick {zero} (suc ()) _ _ thick {suc n} (suc i) zero _ = zero thick {suc n} (suc i) (suc j) i≢j = suc (thick i j (i≢j ∘ cong suc)) -- thick i is injective in one of its arguments. thick-injective : ∀ {n} (i j k : Fin (suc n)) {i≢j : i ≢ j} {i≢k : i ≢ k} → thick i j i≢j ≡ thick i k i≢k → j ≡ k thick-injective zero zero _ {i≢j = i≢j} _ = ⊥-elim (i≢j refl) thick-injective zero _ zero {i≢k = i≢k} _ = ⊥-elim (i≢k refl) thick-injective zero (suc j) (suc k) j≡k = cong suc j≡k thick-injective {zero} (suc ()) _ _ _ thick-injective {suc n} (suc i) zero zero _ = refl thick-injective {suc n} (suc i) zero (suc k) () thick-injective {suc n} (suc i) (suc j) zero () thick-injective {suc n} (suc i) (suc j) (suc k) {i≢j} {i≢k} eq = cong suc $ thick-injective i j k {i≢j ∘ cong suc} {i≢k ∘ cong suc} (drop-suc eq) ------------------------------------------------------------------------ -- The countdown data structure -- If counted ⊕ n is inhabited then there are at most n values of type -- Elem which are not members of counted (up to _≈_). You can read the -- symbol _⊕_ as partitioning Elem into two parts: counted and -- uncounted. infix 4 _⊕_ record _⊕_ (counted : List Elem) (n : ℕ) : Set where field -- An element can be of two kinds: -- ⑴ It is provably in counted. -- ⑵ It is one of at most n elements which may or may not be in -- counted. The "at most n" part is guaranteed by the field -- "injective". kind : ∀ x → x ∈ counted ⊎ Fin n injective : ∀ {x y i} → kind x ≡ inj₂ i → kind y ≡ inj₂ i → x ≈ y -- A countdown can be initialised by proving that Elem is finite. empty : ∀ {n} → Injection D.setoid (PropEq.setoid (Fin n)) → [] ⊕ n empty inj = record { kind = inj₂ ∘ _⟨$⟩_ to ; injective = λ {x} {y} {i} eq₁ eq₂ → injective (begin to ⟨$⟩ x ≡⟨ drop-inj₂ eq₁ ⟩ i ≡⟨ PropEq.sym $ drop-inj₂ eq₂ ⟩ to ⟨$⟩ y ∎) } where open Injection inj -- A countdown can also be initialised by proving that Elem is finite. emptyFromList : (counted : List Elem) → (∀ x → x ∈ counted) → [] ⊕ length counted emptyFromList counted complete = empty record { to = record { _⟨$⟩_ = λ x → first-index x (complete x) ; cong = first-index-cong (complete _) (complete _) } ; injective = first-index-injective (complete _) (complete _) } -- Finds out if an element has been counted yet. lookup : ∀ {counted n} → counted ⊕ n → ∀ x → Dec (x ∈ counted) lookup {counted} _ x = Any.any (_≟_ x) counted -- When no element remains to be counted all elements have been -- counted. lookup! : ∀ {counted} → counted ⊕ zero → ∀ x → x ∈ counted lookup! counted⊕0 x with _⊕_.kind counted⊕0 x ... | inj₁ x∈counted = x∈counted ... | inj₂ () private -- A variant of lookup!. lookup‼ : ∀ {m counted} → counted ⊕ m → ∀ x → x ∉ counted → ∃ λ n → m ≡ suc n lookup‼ {suc m} counted⊕n x x∉counted = (m , refl) lookup‼ {zero} counted⊕n x x∉counted = ⊥-elim (x∉counted $ lookup! counted⊕n x) -- Counts a previously uncounted element. insert : ∀ {counted n} → counted ⊕ suc n → ∀ x → x ∉ counted → x ∷ counted ⊕ n insert {counted} {n} counted⊕1+n x x∉counted = record { kind = kind′; injective = inj } where open _⊕_ counted⊕1+n helper : ∀ x y i {j} → kind x ≡ inj₂ i → kind y ≡ inj₂ j → i ≡ j → x ≈ y helper _ _ _ eq₁ eq₂ refl = injective eq₁ eq₂ kind′ : ∀ y → y ∈ x ∷ counted ⊎ Fin n kind′ y with y ≟ x | kind x | kind y | helper x y kind′ y | yes y≈x | _ | _ | _ = inj₁ (here y≈x) kind′ y | _ | inj₁ x∈counted | _ | _ = ⊥-elim (x∉counted x∈counted) kind′ y | _ | _ | inj₁ y∈counted | _ = inj₁ (there y∈counted) kind′ y | no y≉x | inj₂ i | inj₂ j | hlp = inj₂ (thick i j (y≉x ∘ sym ∘ hlp _ refl refl)) inj : ∀ {y z i} → kind′ y ≡ inj₂ i → kind′ z ≡ inj₂ i → y ≈ z inj {y} {z} eq₁ eq₂ with y ≟ x | z ≟ x | kind x | kind y | kind z | helper x y | helper x z | helper y z inj () _ | yes _ | _ | _ | _ | _ | _ | _ | _ inj _ () | _ | yes _ | _ | _ | _ | _ | _ | _ inj _ _ | no _ | no _ | inj₁ x∈counted | _ | _ | _ | _ | _ = ⊥-elim (x∉counted x∈counted) inj () _ | no _ | no _ | inj₂ _ | inj₁ _ | _ | _ | _ | _ inj _ () | no _ | no _ | inj₂ _ | _ | inj₁ _ | _ | _ | _ inj eq₁ eq₂ | no _ | no _ | inj₂ i | inj₂ _ | inj₂ _ | _ | _ | hlp = hlp _ refl refl $ thick-injective i _ _ $ PropEq.trans (drop-inj₂ eq₁) (PropEq.sym (drop-inj₂ eq₂)) -- Counts an element if it has not already been counted. lookupOrInsert : ∀ {counted m} → counted ⊕ m → ∀ x → x ∈ counted ⊎ ∃ λ n → m ≡ suc n × x ∷ counted ⊕ n lookupOrInsert counted⊕n x with lookup counted⊕n x ... | yes x∈counted = inj₁ x∈counted ... | no x∉counted with lookup‼ counted⊕n x x∉counted ... | (n , refl) = inj₂ (n , refl , insert counted⊕n x x∉counted)
40.135802
107
0.532964
106e14f2d8cc8d59f3e62964e30b3ce4858072a6
1,914
agda
Agda
Definition/Typed/Consequences/NeTypeEq.agda
Vtec234/logrel-mltt
4746894adb5b8edbddc8463904ee45c2e9b29b69
[ "MIT" ]
null
null
null
Definition/Typed/Consequences/NeTypeEq.agda
Vtec234/logrel-mltt
4746894adb5b8edbddc8463904ee45c2e9b29b69
[ "MIT" ]
null
null
null
Definition/Typed/Consequences/NeTypeEq.agda
Vtec234/logrel-mltt
4746894adb5b8edbddc8463904ee45c2e9b29b69
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} module Definition.Typed.Consequences.NeTypeEq where open import Definition.Untyped open import Definition.Typed open import Definition.Typed.Consequences.Syntactic open import Definition.Typed.Consequences.Injectivity open import Definition.Typed.Consequences.Substitution open import Tools.Product import Tools.PropositionalEquality as PE -- Helper function for the same variable instance of a context have equal types. varTypeEq′ : ∀ {n R T Γ} → n ∷ R ∈ Γ → n ∷ T ∈ Γ → R PE.≡ T varTypeEq′ here here = PE.refl varTypeEq′ (there n∷R) (there n∷T) rewrite varTypeEq′ n∷R n∷T = PE.refl -- The same variable instance of a context have equal types. varTypeEq : ∀ {x A B Γ} → Γ ⊢ A → Γ ⊢ B → x ∷ A ∈ Γ → x ∷ B ∈ Γ → Γ ⊢ A ≡ B varTypeEq A B x∷A x∷B rewrite varTypeEq′ x∷A x∷B = refl A -- The same neutral term have equal types. neTypeEq : ∀ {t A B Γ} → Neutral t → Γ ⊢ t ∷ A → Γ ⊢ t ∷ B → Γ ⊢ A ≡ B neTypeEq (var x) (var x₁ x₂) (var x₃ x₄) = varTypeEq (syntacticTerm (var x₃ x₂)) (syntacticTerm (var x₃ x₄)) x₂ x₄ neTypeEq (∘ₙ neT) (t∷A ∘ⱼ t∷A₁) (t∷B ∘ⱼ t∷B₁) with neTypeEq neT t∷A t∷B ... | q = let w = proj₂ (injectivity q) in substTypeEq w (refl t∷A₁) neTypeEq (fstₙ neP) (fstⱼ ⊢F ⊢G ⊢t) (fstⱼ ⊢F′ ⊢G′ ⊢t′) with neTypeEq neP ⊢t ⊢t′ ... | q = proj₁ (Σ-injectivity q) neTypeEq (sndₙ neP) (sndⱼ ⊢F ⊢G ⊢t) (sndⱼ ⊢F′ ⊢G′ ⊢t′) with neTypeEq neP ⊢t ⊢t′ ... | q = let G≡G₁ = proj₂ (Σ-injectivity q) ⊢fst = fstⱼ ⊢F ⊢G ⊢t in substTypeEq G≡G₁ (refl ⊢fst) neTypeEq (natrecₙ neT) (natrecⱼ x t∷A t∷A₁ t∷A₂) (natrecⱼ x₁ t∷B t∷B₁ t∷B₂) = refl (substType x₁ t∷B₂) neTypeEq (Emptyrecₙ neT) (Emptyrecⱼ x t∷A) (Emptyrecⱼ x₁ t∷B) = refl x₁ neTypeEq x (conv t∷A x₁) t∷B = let q = neTypeEq x t∷A t∷B in trans (sym x₁) q neTypeEq x t∷A (conv t∷B x₃) = let q = neTypeEq x t∷A t∷B in trans q x₃
42.533333
80
0.626959
0b23419e5b1e5e90dab9a5b56212eb9f5767ae0e
2,925
agda
Agda
BasicIS4/Metatheory/DyadicGentzen-TarskiOvergluedDyadicImplicit.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
29
2016-07-03T18:51:56.000Z
2022-01-01T10:29:18.000Z
BasicIS4/Metatheory/DyadicGentzen-TarskiOvergluedDyadicImplicit.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
1
2018-06-10T09:11:22.000Z
2018-06-10T09:11:22.000Z
BasicIS4/Metatheory/DyadicGentzen-TarskiOvergluedDyadicImplicit.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
null
null
null
module BasicIS4.Metatheory.DyadicGentzen-TarskiOvergluedDyadicImplicit where open import BasicIS4.Syntax.DyadicGentzen public open import BasicIS4.Semantics.TarskiOvergluedDyadicImplicit public open ImplicitSyntax (_⊢_) (mono²⊢) public -- Completeness with respect to a particular model. module _ {{_ : Model}} where reify : ∀ {A Γ Δ} → Γ ⁏ Δ ⊩ A → Γ ⁏ Δ ⊢ A reify {α P} s = syn s reify {A ▻ B} s = syn (s refl⊆²) reify {□ A} s = syn (s refl⊆²) reify {A ∧ B} s = pair (reify (π₁ s)) (reify (π₂ s)) reify {⊤} s = unit reify⋆ : ∀ {Ξ Γ Δ} → Γ ⁏ Δ ⊩⋆ Ξ → Γ ⁏ Δ ⊢⋆ Ξ reify⋆ {∅} ∙ = ∙ reify⋆ {Ξ , A} (ts , t) = reify⋆ ts , reify t -- Soundness with respect to all models, or evaluation. eval : ∀ {A Γ Δ} → Γ ⁏ Δ ⊢ A → Γ ⁏ Δ ⊨ A eval (var i) γ δ = lookup i γ eval (lam t) γ δ = λ ψ → let γ′ = mono²⊩⋆ ψ γ in let δ′ = mono²⊩⋆ ψ δ in multicut² (reify⋆ γ′) (reify⋆ δ′) (lam t) ⅋ λ a → eval t (γ′ , a) δ′ eval (app t u) γ δ = eval t γ δ ⟪$⟫ eval u γ δ eval (mvar i) γ δ = mlookup i δ eval (box t) γ δ = λ ψ → let γ′ = mono²⊩⋆ ψ γ in let δ′ = mono²⊩⋆ ψ δ in multicut² (reify⋆ γ′) (reify⋆ δ′) (box t) ⅋ eval t ∙ δ′ eval (unbox t u) γ δ = eval u γ (δ , eval t γ δ) eval (pair t u) γ δ = eval t γ δ , eval u γ δ eval (fst t) γ δ = π₁ (eval t γ δ) eval (snd t) γ δ = π₂ (eval t γ δ) eval unit γ δ = ∙ -- TODO: Correctness of evaluation with respect to conversion. -- The canonical model. private instance canon : Model canon = record { _⊩ᵅ_ = λ Π P → Π ⊢ α P ; mono²⊩ᵅ = mono²⊢ } -- Soundness with respect to the canonical model. reflectᶜ : ∀ {A Γ Δ} → Γ ⁏ Δ ⊢ A → Γ ⁏ Δ ⊩ A reflectᶜ {α P} t = t ⅋ t reflectᶜ {A ▻ B} t = λ ψ → let t′ = mono²⊢ ψ t in t′ ⅋ λ a → reflectᶜ (app t′ (reify a)) reflectᶜ {□ A} t = λ ψ → let t′ = mono²⊢ ψ t in t′ ⅋ reflectᶜ (down t′) reflectᶜ {A ∧ B} t = reflectᶜ (fst t) , reflectᶜ (snd t) reflectᶜ {⊤} t = ∙ reflectᶜ⋆ : ∀ {Ξ Γ Δ} → Γ ⁏ Δ ⊢⋆ Ξ → Γ ⁏ Δ ⊩⋆ Ξ reflectᶜ⋆ {∅} ∙ = ∙ reflectᶜ⋆ {Ξ , A} (ts , t) = reflectᶜ⋆ ts , reflectᶜ t -- Reflexivity and transitivity. refl⊩⋆ : ∀ {Γ Δ} → Γ ⁏ Δ ⊩⋆ Γ refl⊩⋆ = reflectᶜ⋆ refl⊢⋆ mrefl⊩⋆ : ∀ {Γ Δ} → Γ ⁏ Δ ⊩⋆ □⋆ Δ mrefl⊩⋆ = reflectᶜ⋆ mrefl⊢⋆ trans⊩⋆ : ∀ {Γ Γ′ Δ Δ′ Ξ} → Γ ⁏ Δ ⊩⋆ Γ′ ⧺ (□⋆ Δ′) → Γ′ ⁏ Δ′ ⊩⋆ Ξ → Γ ⁏ Δ ⊩⋆ Ξ trans⊩⋆ ts us = reflectᶜ⋆ (trans⊢⋆ (reify⋆ ts) (reify⋆ us)) -- Completeness with respect to all models, or quotation. quot : ∀ {A Γ Δ} → Γ ⁏ Δ ⊨ A → Γ ⁏ Δ ⊢ A quot s = reify (s refl⊩⋆ mrefl⊩⋆) -- Normalisation by evaluation. norm : ∀ {A Γ Δ} → Γ ⁏ Δ ⊢ A → Γ ⁏ Δ ⊢ A norm = quot ∘ eval -- TODO: Correctness of normalisation with respect to conversion.
29.25
83
0.499829
dccd7c84e870aee124d2542f0fb23fc0d7b2e3a4
3,915
agda
Agda
agda/book/2015-Verified_Functional_programming_in_Agda-Stump/ial/z05-01-bst.agda
haroldcarr/learn-haskell-coq-ml-etc
3dc7abca7ad868316bb08f31c77fbba0d3910225
[ "Unlicense" ]
36
2015-01-29T14:37:15.000Z
2021-07-30T06:55:03.000Z
agda/book/2015-Verified_Functional_programming_in_Agda-Stump/ial/z05-01-bst.agda
haroldcarr/learn-haskell-coq-ml-etc
3dc7abca7ad868316bb08f31c77fbba0d3910225
[ "Unlicense" ]
null
null
null
agda/book/2015-Verified_Functional_programming_in_Agda-Stump/ial/z05-01-bst.agda
haroldcarr/learn-haskell-coq-ml-etc
3dc7abca7ad868316bb08f31c77fbba0d3910225
[ "Unlicense" ]
8
2015-04-13T21:40:15.000Z
2021-09-21T15:58:10.000Z
-- binary search trees (not balanced) open import bool open import bool-thms2 open import eq open import maybe open import product open import product-thms open import bool-relations using (transitive ; total) module z05-01-bst (A : Set) -- type of elements (_≤A_ : A → A → 𝔹) -- ordering function (≤A-trans : transitive _≤A_) -- proof of transitivity of given ordering (≤A-total : total _≤A_) -- proof of totality of given ordering where {- IAL - relations.agda - models binary relation on A as functions from A to A to Set - bool-relations.agda - models binary realtion on A as functions from A to A to 𝔹 Cannot use A→A→Set relations here because code cannot manipulate types. But code can pattern match on values of type 𝔹, so boolean relations more useful. -} open import bool-relations _≤A_ hiding (transitive ; total) open import minmax _≤A_ ≤A-trans ≤A-total -- able to store values in bounds 'l' and 'u' -- l(ower) bound -- | u(upper) bound -- v v data bst : A → A → Set where bst-leaf : ∀ {l u : A} → l ≤A u ≡ tt → bst l u bst-node : ∀ {l l' u' u : A} → (d : A) -- value stored in this node → bst l' d -- left subtree of values ≤ stored value → bst d u' -- right subtree of values ≥ stored value → l ≤A l' ≡ tt → u' ≤A u ≡ tt → bst l u ------------------------------------------------------------------------------ bst-search : ∀ {l u : A} → (d : A) -- find a node that is isomorphic (_=A_) to d → bst l u → maybe (Σ A (λ d' → d iso𝔹 d' ≡ tt)) -- return that node or nothing bst-search d (bst-leaf _) = nothing -- could return proof not in tree instead -- compare given element with stored element bst-search d (bst-node d' L R _ _) with keep (d ≤A d') -- compare given element with stored element (other direction) bst-search d (bst-node d' L R _ _) | tt , p1 with keep (d' ≤A d) -- both are true implying iso, so return that element and proof bst-search d (bst-node d' L R _ _) | tt , p1 | tt , p2 = just (d' , iso𝔹-intro p1 p2) -- if either is false then search the appropriate branch bst-search d (bst-node d' L R _ _) | tt , p1 | ff , p2 = bst-search d L -- search in left bst-search d (bst-node d' L R _ _) | ff , p1 = bst-search d R -- search in right ------------------------------------------------------------------------------ -- change the lower bound from l' to l bst-dec-lb : ∀ {l l' u' : A} → bst l' u' → l ≤A l' ≡ tt → bst l u' bst-dec-lb (bst-leaf p) q = bst-leaf (≤A-trans q p) bst-dec-lb (bst-node d L R p1 p2) q = bst-node d L R (≤A-trans q p1) p2 -- change the upper bound from u' to u bst-inc-ub : ∀ {l' u' u : A} → bst l' u' → u' ≤A u ≡ tt → bst l' u bst-inc-ub (bst-leaf p) q = bst-leaf (≤A-trans p q) bst-inc-ub (bst-node d L R p1 p2) q = bst-node d L R p1 (≤A-trans p2 q) bst-insert : ∀{l u : A} → (d : A) -- insert 'd' → bst l u -- into this 'bst' → bst (min d l) (max d u) -- type might change bst-insert d (bst-leaf p) = bst-node d (bst-leaf ≤A-refl) (bst-leaf ≤A-refl) min-≤1 max-≤1 bst-insert d (bst-node d' L R p1 p2) with keep (d ≤A d') bst-insert d (bst-node d' L R p1 p2) | tt , p with bst-insert d L bst-insert d (bst-node d' L R p1 p2) | tt , p | L' rewrite p = bst-node d' L' (bst-inc-ub R (≤A-trans p2 max-≤2)) (min2-mono p1) ≤A-refl bst-insert d (bst-node d' L R p1 p2) | ff , p with bst-insert d R bst-insert d (bst-node d' L R p1 p2) | ff , p | R' rewrite p = bst-node d' (bst-dec-lb L p1) R' min-≤2 (max2-mono p2)
39.94898
94
0.527203
dfa6162f0738431ce160d67aa2689a3520554a63
3,966
agda
Agda
src/Partiality-algebra/Omega-continuous.agda
nad/partiality-monad
f69749280969f9093e5e13884c6feb0ad2506eae
[ "MIT" ]
2
2020-05-21T22:59:18.000Z
2020-07-03T08:56:08.000Z
src/Partiality-algebra/Omega-continuous.agda
nad/partiality-monad
f69749280969f9093e5e13884c6feb0ad2506eae
[ "MIT" ]
null
null
null
src/Partiality-algebra/Omega-continuous.agda
nad/partiality-monad
f69749280969f9093e5e13884c6feb0ad2506eae
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- ω-continuous functions ------------------------------------------------------------------------ {-# OPTIONS --erased-cubical --safe #-} module Partiality-algebra.Omega-continuous where open import Equality.Propositional.Cubical open import Prelude open import Bijection equality-with-J using (_↔_) import Equivalence equality-with-J as Eq open import Function-universe equality-with-J open import H-level.Closure equality-with-J open import Partiality-algebra as PA open import Partiality-algebra.Monotone -- Definition of ω-continuous functions. record [_⟶_] {a₁ p₁ q₁} {A₁ : Type a₁} (P₁ : Partiality-algebra p₁ q₁ A₁) {a₂ p₂ q₂} {A₂ : Type a₂} (P₂ : Partiality-algebra p₂ q₂ A₂) : Type (p₁ ⊔ p₂ ⊔ q₁ ⊔ q₂) where private module P₁ = Partiality-algebra P₁ module P₂ = Partiality-algebra P₂ field monotone-function : [ P₁ ⟶ P₂ ]⊑ open [_⟶_]⊑ monotone-function public field ω-continuous : ∀ s → function (P₁.⨆ s) ≡ P₂.⨆ [ monotone-function $ s ]-inc open [_⟶_] -- Identity. idω : ∀ {a p q} {A : Type a} {P : Partiality-algebra p q A} → [ P ⟶ P ] monotone-function idω = id⊑ ω-continuous idω _ = refl -- Composition. infixr 40 _∘ω_ _∘ω_ : ∀ {a₁ p₁ q₁} {A₁ : Type a₁} {P₁ : Partiality-algebra p₁ q₁ A₁} {a₂ p₂ q₂} {A₂ : Type a₂} {P₂ : Partiality-algebra p₂ q₂ A₂} {a₃ p₃ q₃} {A₃ : Type a₃} {P₃ : Partiality-algebra p₃ q₃ A₃} → [ P₂ ⟶ P₃ ] → [ P₁ ⟶ P₂ ] → [ P₁ ⟶ P₃ ] monotone-function (f ∘ω g) = monotone-function f ∘⊑ monotone-function g ω-continuous (_∘ω_ {P₁ = P₁} {P₂ = P₂} {P₃ = P₃} f g) s = function f (function g (P₁.⨆ s)) ≡⟨ cong (function f) (ω-continuous g s) ⟩ function f (P₂.⨆ [ monotone-function g $ s ]-inc) ≡⟨ ω-continuous f _ ⟩∎ P₃.⨆ [ monotone-function f ∘⊑ monotone-function g $ s ]-inc ∎ where module P₁ = Partiality-algebra P₁ module P₂ = Partiality-algebra P₂ module P₃ = Partiality-algebra P₃ -- Equality characterisation lemma for ω-continuous functions. equality-characterisation-continuous : ∀ {a₁ p₁ q₁} {A₁ : Type a₁} {P₁ : Partiality-algebra p₁ q₁ A₁} {a₂ p₂ q₂} {A₂ : Type a₂} {P₂ : Partiality-algebra p₂ q₂ A₂} {f g : [ P₁ ⟶ P₂ ]} → (∀ x → function f x ≡ function g x) ↔ f ≡ g equality-characterisation-continuous {P₁ = P₁} {P₂ = P₂} {f} {g} = (∀ x → function f x ≡ function g x) ↝⟨ equality-characterisation-monotone ⟩ monotone-function f ≡ monotone-function g ↝⟨ ignore-propositional-component (Π-closure ext 1 λ _ → P₂.T-is-set) ⟩ _↔_.to rearrange f ≡ _↔_.to rearrange g ↔⟨ Eq.≃-≡ (Eq.↔⇒≃ rearrange) ⟩□ f ≡ g □ where module P₁ = Partiality-algebra P₁ module P₂ = Partiality-algebra P₂ rearrange : [ P₁ ⟶ P₂ ] ↔ ∃ λ (h : [ P₁ ⟶ P₂ ]⊑) → ∀ s → [_⟶_]⊑.function h (P₁.⨆ s) ≡ P₂.⨆ [ h $ s ]-inc rearrange = record { surjection = record { logical-equivalence = record { to = λ f → monotone-function f , ω-continuous f ; from = uncurry λ f c → record { monotone-function = f ; ω-continuous = c } } ; right-inverse-of = λ _ → refl } ; left-inverse-of = λ _ → refl } where open Partiality-algebra -- Composition is associative. ∘ω-assoc : ∀ {a₁ p₁ q₁} {A₁ : Type a₁} {P₁ : Partiality-algebra p₁ q₁ A₁} {a₂ p₂ q₂} {A₂ : Type a₂} {P₂ : Partiality-algebra p₂ q₂ A₂} {a₃ p₃ q₃} {A₃ : Type a₃} {P₃ : Partiality-algebra p₃ q₃ A₃} {a₄ p₄ q₄} {A₄ : Type a₄} {P₄ : Partiality-algebra p₄ q₄ A₄} (f : [ P₃ ⟶ P₄ ]) (g : [ P₂ ⟶ P₃ ]) (h : [ P₁ ⟶ P₂ ]) → f ∘ω (g ∘ω h) ≡ (f ∘ω g) ∘ω h ∘ω-assoc _ _ _ = _↔_.to equality-characterisation-continuous λ _ → refl
33.897436
104
0.549924
230011ed9a3458dc259d19b4c5061c2d1fd17551
3,570
agda
Agda
core/lib/groups/Subgroup.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
null
null
null
core/lib/groups/Subgroup.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
null
null
null
core/lib/groups/Subgroup.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
1
2018-12-26T21:31:57.000Z
2018-12-26T21:31:57.000Z
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics open import lib.NType2 open import lib.Function2 open import lib.types.Group open import lib.types.Sigma open import lib.types.Truncation open import lib.groups.Homomorphism open import lib.groups.Isomorphism open import lib.groups.SubgroupProp module lib.groups.Subgroup where module _ {i j} {G : Group i} (P : SubgroupProp G j) where private module G = Group G module P = SubgroupProp P subgroup-struct : GroupStructure P.SubEl subgroup-struct = record {M} where module M where ident : P.SubEl ident = G.ident , P.ident inv : P.SubEl → P.SubEl inv (g , p) = G.inv g , P.inv p comp : P.SubEl → P.SubEl → P.SubEl comp (g₁ , p₁) (g₂ , p₂) = G.comp g₁ g₂ , P.comp p₁ p₂ abstract unit-l : ∀ g → comp ident g == g unit-l (g , _) = Subtype=-out P.subEl-prop (G.unit-l g) assoc : ∀ g₁ g₂ g₃ → comp (comp g₁ g₂) g₃ == comp g₁ (comp g₂ g₃) assoc (g₁ , _) (g₂ , _) (g₃ , _) = Subtype=-out P.subEl-prop (G.assoc g₁ g₂ g₃) inv-l : ∀ g → comp (inv g) g == ident inv-l (g , _) = Subtype=-out P.subEl-prop (G.inv-l g) Subgroup : Group (lmax i j) Subgroup = group _ SubEl-level subgroup-struct where abstract SubEl-level = Subtype-level P.subEl-prop G.El-level module Subgroup {i j} {G : Group i} (P : SubgroupProp G j) where private module P = SubgroupProp P module G = Group G grp = Subgroup P open Group grp public El=-out : ∀ {s₁ s₂ : El} → fst s₁ == fst s₂ → s₁ == s₂ El=-out = Subtype=-out P.subEl-prop inject : Subgroup P →ᴳ G inject = record {f = fst; pres-comp = λ _ _ → idp} inject-lift : ∀ {j} {H : Group j} (φ : H →ᴳ G) → Π (Group.El H) (P.prop ∘ GroupHom.f φ) → (H →ᴳ Subgroup P) inject-lift {H = H} φ P-all = record {M} where module H = Group H module φ = GroupHom φ module M where f : H.El → P.SubEl f h = φ.f h , P-all h abstract pres-comp : ∀ h₁ h₂ → f (H.comp h₁ h₂) == Group.comp (Subgroup P) (f h₁) (f h₂) pres-comp h₁ h₂ = Subtype=-out P.subEl-prop (φ.pres-comp h₁ h₂) full-subgroup : ∀ {i j} {G : Group i} {P : SubgroupProp G j} → is-fullᴳ P → Subgroup P ≃ᴳ G full-subgroup {G = G} {P} full = Subgroup.inject P , is-eq _ from to-from from-to where from : Group.El G → Subgroup.El P from g = g , full g abstract from-to : ∀ p → from (fst p) == p from-to p = Subtype=-out (SubgroupProp.subEl-prop P) idp to-from : ∀ g → fst (from g) == g to-from g = idp module _ {i} {j} {G : Group i} {H : Group j} (φ : G →ᴳ H) where private module G = Group G module H = Group H module φ = GroupHom φ module Ker = Subgroup (ker-propᴳ φ) Ker = Ker.grp module Im = Subgroup (im-propᴳ φ) Im = Im.grp im-lift : G →ᴳ Im im-lift = Im.inject-lift φ (λ g → [ g , idp ]) im-lift-is-surj : is-surjᴳ im-lift im-lift-is-surj (_ , s) = Trunc-fmap (λ {(g , p) → (g , Subtype=-out (_ , λ _ → Trunc-level) p)}) s module _ {i j k} {G : Group i} (P : SubgroupProp G j) (Q : SubgroupProp G k) where -- FIXME looks like a bad name Subgroup-fmap-r : P ⊆ᴳ Q → Subgroup P →ᴳ Subgroup Q Subgroup-fmap-r P⊆Q = group-hom (Σ-fmap-r P⊆Q) (λ _ _ → Subtype=-out (SubgroupProp.subEl-prop Q) idp) Subgroup-emap-r : P ⊆ᴳ Q → Q ⊆ᴳ P → Subgroup P ≃ᴳ Subgroup Q Subgroup-emap-r P⊆Q Q⊆P = Subgroup-fmap-r P⊆Q , is-eq _ (Σ-fmap-r Q⊆P) (λ _ → Subtype=-out (SubgroupProp.subEl-prop Q) idp) (λ _ → Subtype=-out (SubgroupProp.subEl-prop P) idp)
29.75
87
0.597199
50b5dd3e75a1228da5219eeaa3d901839efeb7e3
9,310
agda
Agda
test/hPropInvestigations.agda
mchristianl/synthetic-reals
10206b5c3eaef99ece5d18bf703c9e8b2371bde4
[ "MIT" ]
3
2020-07-31T18:15:26.000Z
2022-02-19T12:15:21.000Z
test/hPropInvestigations.agda
mchristianl/synthetic-reals
10206b5c3eaef99ece5d18bf703c9e8b2371bde4
[ "MIT" ]
null
null
null
test/hPropInvestigations.agda
mchristianl/synthetic-reals
10206b5c3eaef99ece5d18bf703c9e8b2371bde4
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts #-} module hPropInvestigations where open import Agda.Primitive renaming (_⊔_ to ℓ-max; lsuc to ℓ-suc; lzero to ℓ-zero) private variable ℓ ℓ' ℓ'' : Level open import Cubical.Foundations.Everything renaming (_⁻¹ to _⁻¹ᵖ; assoc to ∙-assoc) open import Cubical.Data.Sigma.Base renaming (_×_ to infixr 4 _×_) open import Cubical.Foundations.Prelude open import Function.Base using (_∋_) open import Cubical.Foundations.Logic open import Cubical.HITs.PropositionalTruncation open import Cubical.Data.Empty renaming (elim to ⊥-elim) renaming (⊥ to ⊥⊥) -- `⊥` and `elim` import Cubical.Data.Empty as Empty open import Cubical.Data.Unit.Base import Cubical.Structures.Axioms -- NOTE: -- we have both: -- the "classic" bundle/unbundle record-based definition of a CommRing from `Cubical.Structures.CommRing` -- -- record IsCommRing {R : Type ℓ} (0r 1r : R) (_+_ _·_ : R → R → R) (-_ : R → R) : Type ℓ where -- field -- isRing : IsRing 0r 1r _+_ _·_ -_ -- ·-comm : (x y : R) → x · y ≡ y · x -- record CommRing : Type (ℓ-suc ℓ) where -- field -- Carrier : Type ℓ -- 0r : Carrier -- 1r : Carrier -- _+_ : Carrier → Carrier → Carrier -- _·_ : Carrier → Carrier → Carrier -- -_ : Carrier → Carrier -- isCommRing : IsCommRing 0r 1r _+_ _·_ -_ -- -- and a CommRingΣTheory -- -- CommRingAxioms R (_+_ , 1r , _·_) = RingAxioms R (_+_ , 1r , _·_) × ((x y : R) → x · y ≡ y · x) -- CommRingStructure = AxiomsStructure RawRingStructure CommRingAxioms -- CommRingΣ = TypeWithStr ℓ CommRingStructure -- CommRingEquivStr : StrEquiv CommRingStructure ℓ -- CommRingEquivStr = AxiomsEquivStr RawRingEquivStr CommRingAxioms -- -- especially when we look at -- -- CommRingEquivStr = AxiomsEquivStr RawRingEquivStr CommRingAxioms -- -- here `AxiomsEquivStr` from `Cubical.Structures.Axioms` -- -- AxiomsEquivStr : {S : Type ℓ → Type ℓ₁} (ι : StrEquiv S ℓ₁') (axioms : (X : Type ℓ) → S X → Type ℓ₂) -- → StrEquiv (AxiomsStructure S axioms) ℓ₁' -- AxiomsEquivStr ι axioms (X , (s , a)) (Y , (t , b)) e = ι (X , s) (Y , t) e -- -- takes the two arguments `RawRingEquivStr` and `CommRingAxioms` -- -- RawRingEquivStr = AutoEquivStr RawRingStructure -- -- CommRingAxioms : (R : Type ℓ) (s : RawRingStructure R) → Type ℓ -- CommRingAxioms R (_+_ , 1r , _·_) = RingAxioms R (_+_ , 1r , _·_) × ((x y : R) → x · y ≡ y · x) -- -- where `AutoEquivStr` is a macro from `Cubical.Structures.Auto` -- -- -- (S : Type ℓ → Type ℓ₁) → StrEquiv (AutoStructure S) _ -- AutoEquivStr : R.Term → R.Term → R.TC Unit -- AutoEquivStr t hole = -- newMeta (tDesc R.unknown) >>= λ d → -- R.unify hole (R.def (quote MacroEquivStr) [ varg d ]) >> -- autoDesc' t d import Cubical.Structures.CommRing open import Cubical.Data.Sigma.Properties import Cubical.Foundations.Transport import Cubical.Foundations.Path ¬[P⊓¬P] : ∀(P : hProp ℓ) → [ ¬(P ⊓ ¬ P) ] ¬[P⊓¬P] _ (p , q) = q p lemma-comm : ∀(P : hProp ℓ) → P ⊓ ¬ P ≡ ¬ P ⊓ P lemma-comm P = ⊓-comm P (¬ P) lemma-comm-elm-forward : ∀(P : hProp ℓ) → [ P ⊓ ¬ P ] → [ ¬ P ⊓ P ] lemma-comm-elm-forward P (p , ¬p) = (¬p , p) lemma-comm-elm-back : ∀(P : hProp ℓ) → [ ¬ P ⊓ P ] → [ P ⊓ ¬ P ] lemma-comm-elm-back P (¬p , p) = (p , ¬p) comm-elm-iso : ∀(P : hProp ℓ) → Iso [ P ⊓ ¬ P ] [ ¬ P ⊓ P ] comm-elm-iso P = λ where .Iso.fun → lemma-comm-elm-forward P .Iso.inv → lemma-comm-elm-back P .Iso.rightInv _ → refl .Iso.leftInv _ → refl -- let A = fst P -- [ P ⊓ ¬ P ] : A × (A → ⊥) -- [ ¬ P ⊓ P ] : (A → ⊥) × A -- we have `P ⊓ ¬ P ≡ ¬ P ⊓ P` -- and we have ≡ for the witness-type `[ P ⊓ ¬ P ] ≡ [ ¬ P ⊓ P ]` -- because `A × (A → ⊥) ≢ (A → ⊥) × A` lemma-Σ-swap-≡ : ∀(A B : Type ℓ) → (A × B) ≡ (B × A) lemma-Σ-swap-≡ A B = isoToPath (Σ-swap-Iso {A = A} {A' = B}) lemma-comm-elm' : ∀(P : hProp ℓ) → [ P ⊓ ¬ P ] ≡ [ ¬ P ⊓ P ] lemma-comm-elm' P = lemma-Σ-swap-≡ _ _ lemma-comm-elm : ∀(P : hProp ℓ) → [ P ⊓ ¬ P ] ≡ [ ¬ P ⊓ P ] lemma-comm-elm P = isoToPath (comm-elm-iso P) -- see `2.8 Classical principles` in Booij's thesis weak-LEM' : ∀(P : hProp ℓ) → [ (¬ ¬ P) ⊔ (¬ P) ] weak-LEM' {ℓ = ℓ} P = {! (¬[P⊓¬P] P) ∘ pathTo⇒ (⊓-comm (¬ P) P) !} -- (⊓-comm P (¬ P)) ∘ (¬[P⊓¬P] P) where γ : P ⊓ ¬ P ≡ ¬ P ⊓ P -- γ : PathP (λ i → ?) γ = ⊓-comm P (¬ P) κ : [ P ⊓ ¬ P ⇒ ¬ P ⊓ P ] -- κ : [ P ⊓ ¬ P ] → [ ¬ P ⊓ P ] -- is the same ! κ = pathTo⇒ γ η : [ P ⊓ ¬ P ] → [ ¬ P ⊓ P ] η p = κ p φ : [ ¬ (¬ P ⊓ P) ] -- and from here we would need deMorgan₁ to obtain the goal which is not provable without further assumptions φ = (¬[P⊓¬P] P) ∘ pathTo⇒ (⊓-comm (¬ P) P) -- (p , q) = Iso.inv ΣPathIsoPathΣ γ pq : Σ[ p ∈ fst (P ⊓ ¬ P) ≡ fst (¬ P ⊓ P) ] PathP (λ i → isProp (p i)) (snd (P ⊓ ¬ P)) (snd (¬ P ⊓ P)) pq = Iso.inv ΣPathIsoPathΣ γ p : fst (P ⊓ ¬ P) ≡ fst (¬ P ⊓ P) p = fst pq q : PathP (λ i → isProp (fst pq i)) (snd (P ⊓ ¬ P)) (snd (¬ P ⊓ P)) q = snd pq k = transport {ℓ = ℓ} {A = isProp (fst (P ⊓ ¬ P))} {B = isProp (fst (¬ P ⊓ P))} {! κ !} l = {! Σ[ A ∈ Type ℓ ] isProp A!} -- ⊓-comm P (¬ P) : P ⊓ ¬ P ≡ ¬ P ⊓ P -- [ ¬ ¬ P ⊔ ¬ P ] -- [ ¬ (¬ P ⊓ P) ] -- hProp ℓ = Σ[ A ∈ Type ℓ ] (∀(x y : A) → x ≡ y) -- = Σ[ A ∈ Type ℓ ] isProp A -- HOTT: Definition 3.3.1. A type P is a mere proposition if for all x, y : P we have x = y. -- NOTE: so `isMere P = isProp P` -- _≡_ : ∀ {ℓ} {A : Set ℓ} → A → A → Set ℓ -- _≡_ {A = A} = PathP (λ i → A) -- transport : {A B : Type ℓ} → A ≡ B → A → B -- transport p a = transp (λ i → p i) i0 a -- pathTo⇒ : P ≡ Q → [ P ⇒ Q ] -- PathP is dependent path type (builtin) -- Path is non-dependent path type -- PathP : ∀ {ℓ} (A : I → Set ℓ) → A i0 → A i1 → Set ℓ -- Path : ∀ {ℓ} (A : Type ℓ) → A → A → Type ℓ -- Path A a b = PathP (λ _ → A) a b -- Direct definitions of lower h-levels -- isContr A = Σ[ x ∈ A ] (∀ y → x ≡ y) -- isProp A = (x y : A) → x ≡ y -- isSet A = (x y : A) → isProp (x ≡ y) -- -- an element of hProp states what the proposition is - the element is the proposition -- an element of [ hProp ] states that the proposition holds - the element is the proof -- pathes such as `P ⊓ ¬ P ≡ ¬ P ⊓ P` just state that the propositions are the same -- we cannot use `transport` on `P ⊓ ¬ P ≡ ¬ P ⊓ P` -- `⇔toPath` can be used to get equality of the propositions from forward and backward implication based on the witnesses -- ⇔toPath : [ P ⇒ Q ] → [ Q ⇒ P ] → P ≡ Q -- similar with `hProp≡` -- hProp≡ : [ P ] ≡ [ Q ] → P ≡ Q -- there is `pathTo⇒` and `pathTo⇐` to create witness-based implications -- pathTo⇒ : P ≡ Q → [ P ⇒ Q ] -- pathTo⇐ : P ≡ Q → [ Q ⇒ P ] -- here, we have that `[ P ⇒ Q ]` is definitionally equivalent to `[ P ] → [ Q ]` -- because `[ P ] → [ Q ]` is the first element of the tuple `P ⇒ Q` which gets projected out with `[_]` -- A ⇒ B = ([ A ] → [ B ]) , isPropΠ λ _ → isProp[] B -- we can use `isoToPath` to create a path `[ P ] ≡ [ Q ]` but only when we are able to formulate an isomorphism -- so `[ P ] ≡ [ Q ]` is what we can transport the witnesses along -- isoToPath : Iso A B → A ≡ B -- isoToEquiv : Iso A B → A ≃ B -- with -- A ≃ B = Σ[ f ∈ A → B ] isEquiv f -- where `isEquiv` is basically -- isEquiv = (f : A → B) → ∀(y : B) → isContr (fiber f y) -- but it seems to be a very strong property of two ≡-equal propositions to have their elements being ≡-equal too -- is it? Or can we always find an isomorphism `Iso [ P ] [ Q ]` for every path `P ≡ Q`? I guess not -- ∥¬A∥≡¬∥A∥ _ = hProp≡ _ = transport _ = ∥ {!!} ∥ _ = _≡_ _ = Path -- Propositions -- -- Definition 2.4.1. A proposition is a type P all whose elements are identical, which is expressed type-theoretically as -- -- isHProp(P) := (Π p, q : P) (p =ₚ q). -- -- We have the type -- -- HProp := (Σ P : U) isHProp(P) -- -- of all propositions, and we identify elements of HProp with their underlying type, that is, their first projection. -- The letter ‘H’ stands for homotopy, which we briefly touch on in Section 2.5.4. -- -- checkout p.31 ff of Booij's thesis -- -- Definition 2.4.5. Univalent logic is defined by the following, where P, Q : HProp and R : X → HProp [91, Definition 3.7.1]: -- -- ⊤ := 1 -- ⊥ := 0 -- P ∧ Q := P × Q -- P ⇒ Q := P → Q -- P ⇔ Q := P = Q -- ¬P := P → 0 -- P ∨ Q := ∥ P + Q ∥ -- (∀ x : X) R(x) := (Π x : X) R(x) -- (∃ x : X) R(x) := ∥ (Σ x : X) R(x) ∥ -- -- NOTE: the important sentence is "we identify elements of HProp with ... their first projection" -- therefore Agda's first projection `[_]` is not present in Booij's writing (it's implicit) import Cubical.Functions.Embedding -- Embeddings are generalizations of injections. The usual -- definition of injection as: -- -- f x ≡ f y → x ≡ y -- -- is not well-behaved with higher h-levels, while embeddings -- are. -- -- isEmbedding : (A → B) → Type _ -- isEmbedding f = ∀ w x → isEquiv {A = w ≡ x} (cong f) -- injEmbedding -- : {f : A → B} -- → isSet A → isSet B -- → (∀{w x} → f w ≡ f x → w ≡ x) -- → isEmbedding f
37.692308
133
0.542213
c579f2a0c67a659156e911e932117081396ec709
3,759
agda
Agda
LibraBFT/ImplShared/Util/Dijkstra/RWS/Syntax.agda
oracle/bft-consensus-agda
49f8b1b70823be805d84ffc3157c3b880edb1e92
[ "UPL-1.0" ]
4
2020-12-16T19:43:41.000Z
2021-12-18T19:24:05.000Z
LibraBFT/ImplShared/Util/Dijkstra/RWS/Syntax.agda
oracle/bft-consensus-agda
49f8b1b70823be805d84ffc3157c3b880edb1e92
[ "UPL-1.0" ]
72
2021-02-04T05:04:33.000Z
2022-03-25T05:36:11.000Z
LibraBFT/ImplShared/Util/Dijkstra/RWS/Syntax.agda
oracle/bft-consensus-agda
49f8b1b70823be805d84ffc3157c3b880edb1e92
[ "UPL-1.0" ]
6
2020-12-16T19:43:52.000Z
2022-02-18T01:04:32.000Z
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.ImplShared.Util.Dijkstra.RWS open import LibraBFT.ImplShared.Util.Dijkstra.Syntax open import LibraBFT.Prelude open import Optics.All -- This module contains definitions allowing RWS programs to be written using -- Agda's do-notation, as well as convenient short names for operations -- (including lens operations). module LibraBFT.ImplShared.Util.Dijkstra.RWS.Syntax where private variable Ev Wr St : Set A B C : Set -- From this instance declaration, we get _<$>_, pure, and _<*>_ also. instance RWS-Monad : Monad (RWS Ev Wr St) Monad.return RWS-Monad = RWS-return Monad._>>=_ RWS-Monad = RWS-bind -- These instance declarations give us variant conditional operations that we -- can define to play nice with `RWS-weakestPre` instance RWS-MonadIfD : MonadIfD{ℓ₃ = ℓ0} (RWS Ev Wr St) MonadIfD.monad RWS-MonadIfD = RWS-Monad MonadIfD.ifD‖ RWS-MonadIfD = RWS-if RWS-MonadMaybeD : MonadMaybeD (RWS Ev Wr St) MonadMaybeD.monad RWS-MonadMaybeD = RWS-Monad MonadMaybeD.maybeSD RWS-MonadMaybeD = RWS-maybe RWS-MonadEitherD : MonadEitherD (RWS Ev Wr St) MonadEitherD.monad RWS-MonadEitherD = RWS-Monad MonadEitherD.eitherSD RWS-MonadEitherD = RWS-either gets : (St → A) → RWS Ev Wr St A gets = RWS-gets get : RWS Ev Wr St St get = gets id put : St → RWS Ev Wr St Unit put = RWS-put modify : (St → St) → RWS Ev Wr St Unit modify f = do st ← get put (f st) ask : RWS Ev Wr St Ev ask = RWS-ask tell : List Wr → RWS Ev Wr St Unit tell = RWS-tell tell1 : Wr → RWS Ev Wr St Unit tell1 x = tell (x ∷ []) act = tell1 void : RWS Ev Wr St A → RWS Ev Wr St Unit void m = do _ ← m pure unit -- -- Composition with error monad ok : A → RWS Ev Wr St (B ⊎ A) ok = pure ∘ Right bail : B → RWS Ev Wr St (B ⊎ A) bail = pure ∘ Left infixl 4 _∙?∙_ _∙?∙_ : RWS Ev Wr St (Either C A) → (A → RWS Ev Wr St (Either C B)) → RWS Ev Wr St (Either C B) _∙?∙_ = RWS-ebind maybeSM : RWS Ev Wr St (Maybe A) → RWS Ev Wr St B → (A → RWS Ev Wr St B) → RWS Ev Wr St B maybeSM mma mb f = do x ← mma caseMD x of λ where nothing → mb (just j) → f j maybeSMP-RWS : RWS Ev Wr St (Maybe A) → B → (A → RWS Ev Wr St B) → RWS Ev Wr St B maybeSMP-RWS ma b f = do x ← ma caseMD x of λ where nothing → pure b (just j) → f j infixl 4 _∙^∙_ _∙^∙_ : RWS Ev Wr St (Either B A) → (B → B) → RWS Ev Wr St (Either B A) m ∙^∙ f = do x ← m either (bail ∘ f) ok x RWS-weakestPre-∙^∙Post : (ev : Ev) (e : C → C) → RWS-Post Wr St (C ⊎ A) → RWS-Post Wr St (C ⊎ A) RWS-weakestPre-∙^∙Post ev e Post = RWS-weakestPre-bindPost ev (either (bail ∘ e) ok) Post -- Lens functionality -- -- If we make RWS work for different level State types, we will break use and -- modify because Lens does not support different levels, we define use and -- modify' here for RoundManager. We are ok as long as we can keep -- RoundManager in Set. If we ever need to make RoundManager at some higher -- Level, we will have to consider making Lens level-agnostic. Preliminary -- exploration by @cwjnkins showed this to be somewhat painful in particular -- around composition, so we are not pursuing it for now. use : Lens St A → RWS Ev Wr St A use f = gets (_^∙ f) modifyL : Lens St A → (A → A) → RWS Ev Wr St Unit modifyL l f = modify (over l f) syntax modifyL l f = l %= f setL : Lens St A → A → RWS Ev Wr St Unit setL l x = l %= const x syntax setL l x = l ∙= x setL? : Lens St (Maybe A) → A → RWS Ev Wr St Unit setL? l x = l ∙= just x syntax setL? l x = l ?= x
28.263158
111
0.667997
20d7c937857be83965e20328d4daabe352b12cd7
814
agda
Agda
test/Succeed/Issue2344.agda
pthariensflame/agda
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/Succeed/Issue2344.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
null
null
null
test/Succeed/Issue2344.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
null
null
null
{-# OPTIONS --allow-unsolved-metas #-} -- Andreas, 2016-12-19, issue #2344, reported by oinkium, shrunk by Ulf -- The function Agda.TypeChecking.Telescope.permuteTel -- used in the unifier was buggy. -- {-# OPTIONS -v tc.meta:25 #-} -- {-# OPTIONS -v tc.lhs:10 #-} -- {-# OPTIONS -v tc.lhs.unify:100 #-} -- {-# OPTIONS -v tc.cover:20 #-} data Nat : Set where zero : Nat suc : Nat → Nat data Fin : Nat → Set where zero : ∀ n → Fin (suc n) postulate T : Nat → Set mkT : ∀{l} → T l toNat : ∀ m → Fin m → Nat -- The underscore in the type signature is originally dependent on A,X,i -- but then pruned to be dependent on A,X only. -- The unifier had a problem with this. toNat-injective : ∀ (A : Set) X i → T (toNat _ i) -- Yellow expected. toNat-injective A X (zero n) = mkT -- Should pass.
26.258065
72
0.624079
1c148f38a445faa847242d5840150a73f56122d8
1,843
agda
Agda
examples/examplesPaperJFP/IOGraphicsLib.agda
agda/ooAgda
7cc45e0148a4a508d20ed67e791544c30fecd795
[ "MIT" ]
23
2016-06-19T12:57:55.000Z
2020-10-12T23:15:25.000Z
examples/examplesPaperJFP/IOGraphicsLib.agda
agda/ooAgda
7cc45e0148a4a508d20ed67e791544c30fecd795
[ "MIT" ]
null
null
null
examples/examplesPaperJFP/IOGraphicsLib.agda
agda/ooAgda
7cc45e0148a4a508d20ed67e791544c30fecd795
[ "MIT" ]
2
2018-09-01T15:02:37.000Z
2022-03-12T11:41:00.000Z
{-# OPTIONS --copatterns #-} module examplesPaperJFP.IOGraphicsLib where open import Data.Bool.Base open import Data.Char.Base open import Data.Nat.Base hiding (_⊓_; _+_; _*_) open import Data.List.Base hiding (_++_) open import Data.Integer.Base hiding (suc) open import Data.String.Base open import Data.Maybe.Base open import Function open import Size open import SizedIO.Base open import SizedIO.IOGraphicsLib hiding (GraphicsCommands; GraphicsResponses; GraphicsInterface; IOGraphics) renaming (Size to WindowSize) open import NativeInt --PrimTypeHelpers open import NativeIO data GraphicsCommands : Set where getWindowEvent : Window → GraphicsCommands openWindow : String → Maybe Point → ℕ → ℕ → RedrawMode → Maybe Word32 → GraphicsCommands closeWindow : Window → GraphicsCommands drawInWindow : Window → Graphic → GraphicsCommands GraphicsResponses : GraphicsCommands → Set GraphicsResponses (getWindowEvent _) = Event GraphicsResponses (openWindow _ _ _ _ _ _) = Window GraphicsResponses (closeWindow _) = Unit GraphicsResponses (drawInWindow _ _) = Unit GraphicsInterface : IOInterface Command GraphicsInterface = GraphicsCommands Response GraphicsInterface = GraphicsResponses IOGraphics : Size → Set → Set IOGraphics i = IO GraphicsInterface i translateNative : (c : GraphicsCommands) → NativeIO (GraphicsResponses c) translateNative (getWindowEvent w) = nativeGetWindowEvent w translateNative (openWindow str point n1 n2 m w) = nativeOpenWindowExNat str point n1 n2 m w translateNative (closeWindow w) = nativeCloseWindow w translateNative (drawInWindow w g) = nativeDrawInWindow w g
33.509091
139
0.700488
cba93fdf19702f0a18ee0a488c516849ea2bf7e3
4,034
agda
Agda
hott/equivalence/alternative.agda
HoTT/M-types
beebe176981953ab48f37de5eb74557cfc5402f4
[ "BSD-3-Clause" ]
27
2015-04-14T15:47:03.000Z
2022-01-09T07:26:57.000Z
src/hott/equivalence/alternative.agda
pcapriotti/agda-base
bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c
[ "BSD-3-Clause" ]
4
2015-02-02T14:32:16.000Z
2016-10-26T11:57:26.000Z
hott/equivalence/alternative.agda
HoTT/M-types
beebe176981953ab48f37de5eb74557cfc5402f4
[ "BSD-3-Clause" ]
4
2015-04-11T17:19:12.000Z
2019-02-26T06:17:38.000Z
{-# OPTIONS --without-K #-} open import function.extensionality.core module hott.equivalence.alternative where open import sum open import equality.core open import equality.calculus open import function.core open import function.extensionality.proof open import function.isomorphism.core open import function.isomorphism.coherent open import function.isomorphism.utils open import hott.level.core open import hott.equivalence.core open import hott.univalence module _ {i j}{X : Set i}{Y : Set j} where open ≅-Reasoning private we-split-iso : (f : X → Y) → _ we-split-iso f = begin weak-equiv f ≅⟨ ΠΣ-swap-iso ⟩ ( Σ ((y : Y) → f ⁻¹ y) λ gβ → (y : Y)(u : f ⁻¹ y) → gβ y ≡ u ) ≅⟨ Σ-ap-iso₁ ΠΣ-swap-iso ⟩ ( Σ (Σ (Y → X) λ g → (y : Y) → f (g y) ≡ y) λ { (g , β) → (y : Y)(u : f ⁻¹ y) → (g y , β y) ≡ u } ) ≅⟨ Σ-assoc-iso ⟩ ( Σ (Y → X) λ g → Σ ((y : Y) → f (g y) ≡ y) λ β → (y : Y)(u : f ⁻¹ y) → (g y , β y) ≡ u ) ≅⟨ ( Σ-ap-iso₂ λ g → Σ-ap-iso₂ λ β → Π-ap-iso refl≅ λ y → curry-iso (λ x p → (g y , β y) ≡ (x , p)) ) ⟩ ( Σ (Y → X) λ g → Σ ((y : Y) → f (g y) ≡ y) λ β → (y : Y)(x : X)(p : f x ≡ y) → (g y , β y) ≡ (x , p) ) ≅⟨ ( Σ-ap-iso₂ λ g → Σ-ap-iso₂ λ β → Π-ap-iso refl≅ λ y → Π-ap-iso refl≅ λ x → Π-ap-iso refl≅ λ p → sym≅ Σ-split-iso ) ⟩ ( Σ (Y → X) λ g → Σ ((y : Y) → f (g y) ≡ y) λ β → (y : Y)(x : X)(p : f x ≡ y) → Σ (g y ≡ x) λ q → subst (λ x' → f x' ≡ y) q (β y) ≡ p ) ≅⟨ ( Σ-ap-iso₂ λ g → Σ-ap-iso₂ λ β → Π-ap-iso refl≅ λ y → Π-ap-iso refl≅ λ x → Π-ap-iso refl≅ λ p → Σ-ap-iso₂ λ q → sym≅ ( trans≡-iso ( subst-naturality (λ x' → x' ≡ y) f q (β y) · subst-eq (ap f q) (β y)) )) ⟩ ( Σ (Y → X) λ g → Σ ((y : Y) → f (g y) ≡ y) λ β → (y : Y)(x : X)(p : f x ≡ y) → Σ (g y ≡ x) λ q → sym (ap f q) · β y ≡ p ) ≅⟨ ( Σ-ap-iso₂ λ g → Σ-ap-iso₂ λ β → Π-comm-iso ) ⟩ ( Σ (Y → X) λ g → Σ ((y : Y) → f (g y) ≡ y) λ β → (x : X)(y : Y)(p : f x ≡ y) → Σ (g y ≡ x) λ q → sym (ap f q) · β y ≡ p ) ≅⟨ ( Σ-ap-iso₂ λ g → Σ-ap-iso₂ λ β → Π-ap-iso refl≅ λ x → sym≅ J-iso ) ⟩ ( Σ (Y → X) λ g → Σ ((y : Y) → f (g y) ≡ y) λ β → (x : X) → Σ (g (f x) ≡ x) λ q → sym (ap f q) · β (f x) ≡ refl ) ≅⟨ ( Σ-ap-iso₂ λ g → Σ-ap-iso₂ λ β → ΠΣ-swap-iso ) ⟩ ( Σ (Y → X) λ g → Σ ((y : Y) → f (g y) ≡ y) λ β → Σ ((x : X) → g (f x) ≡ x) λ α → (x : X) → sym (ap f (α x)) · β (f x) ≡ refl ) ≅⟨ ( Σ-ap-iso₂ λ g → Σ-ap-iso₂ λ β → Σ-ap-iso₂ λ α → Π-ap-iso refl≅ λ x → sym≅ (trans≅ (trans≡-iso (left-unit (ap f (α x)))) (move-≡-iso (ap f (α x)) refl (β (f x)))) ) ⟩ ( Σ (Y → X) λ g → Σ ((y : Y) → f (g y) ≡ y) λ β → Σ ((x : X) → g (f x) ≡ x) λ α → (x : X) → ap f (α x) ≡ β (f x) ) ≅⟨ ( Σ-ap-iso₂ λ g → Σ-comm-iso ) ⟩ ( Σ (Y → X) λ g → Σ ((x : X) → g (f x) ≡ x) λ α → Σ ((y : Y) → f (g y) ≡ y) λ β → ((x : X) → ap f (α x) ≡ β (f x)) ) ∎ ≈⇔≅' : (X ≈ Y) ≅ (X ≅' Y) ≈⇔≅' = begin (X ≈ Y) ≅⟨ Σ-ap-iso₂ we-split-iso ⟩ ( Σ (X → Y) λ f → Σ (Y → X) λ g → Σ ((x : X) → g (f x) ≡ x) λ α → Σ ((y : Y) → f (g y) ≡ y) λ β → ((x : X) → ap f (α x) ≡ β (f x)) ) ≅⟨ record { to = λ {(f , g , α , β , γ) → iso f g α β , γ } ; from = λ { (iso f g α β , γ) → f , g , α , β , γ } ; iso₁ = λ _ → refl ; iso₂ = λ _ → refl } ⟩ (X ≅' Y) ∎ open _≅_ ≈⇔≅' public using () renaming ( to to ≈⇒≅' ; from to ≅'⇒≈ ) ≅⇒≈ : (X ≅ Y) → (X ≈ Y) ≅⇒≈ = ≅'⇒≈ ∘ ≅⇒≅'
30.560606
70
0.359197
df210fc3303199b3d4d56c18f383cf420b217dd2
1,818
agda
Agda
test/asset/agda-stdlib-1.0/Relation/Binary/PropositionalEquality/TrustMe.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
test/asset/agda-stdlib-1.0/Relation/Binary/PropositionalEquality/TrustMe.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Relation/Binary/PropositionalEquality/TrustMe.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- An equality postulate which evaluates ------------------------------------------------------------------------ {-# OPTIONS --with-K #-} module Relation.Binary.PropositionalEquality.TrustMe where open import Relation.Binary.PropositionalEquality.Core using (_≡_; refl) open import Agda.Builtin.TrustMe -- trustMe {x = x} {y = y} evaluates to refl if x and y are -- definitionally equal. trustMe : ∀ {a} {A : Set a} {x y : A} → x ≡ y trustMe = primTrustMe -- "Erases" a proof. The original proof is not inspected. The -- resulting proof reduces to refl if the two sides are definitionally -- equal. Note that checking for definitional equality can be slow. erase : ∀ {a} {A : Set a} {x y : A} → x ≡ y → x ≡ y erase _ = trustMe -- A "postulate with a reduction": postulate[ a ↦ b ] a evaluates to b, -- while postulate[ a ↦ b ] a' gets stuck if a' is not definitionally -- equal to a. This can be used to define a postulate of type (x : A) → B x -- by only specifying the behaviour at B t for some t : A. Introduced in -- -- Alan Jeffrey, Univalence via Agda's primTrustMe again -- 23 January 2015 -- https://lists.chalmers.se/pipermail/agda/2015/007418.html postulate[_↦_] : ∀ {a b} {A : Set a}{B : A → Set b} → (t : A) → B t → (x : A) → B x postulate[ a ↦ b ] a' with trustMe {x = a} {a'} postulate[ a ↦ b ] .a | refl = b ------------------------------------------------------------------------ -- DEPRECATION ------------------------------------------------------------------------ -- Version 0.18 {-# WARNING_ON_USAGE erase "Warning: erase was deprecated in v0.18. Please use the safe function ≡-erase defined in Relation.Binary.PropositionalEquality.WithK instead." #-}
34.301887
101
0.561606
0bd4c5e6fc6f6713798322fb1948d0522172ae76
11,428
agda
Agda
Cubical/Algebra/CommRing/FGIdeal.agda
barrettj12/cubical
7b41b9171f90473efc98487cb2ea7a4d02320cb2
[ "MIT" ]
null
null
null
Cubical/Algebra/CommRing/FGIdeal.agda
barrettj12/cubical
7b41b9171f90473efc98487cb2ea7a4d02320cb2
[ "MIT" ]
null
null
null
Cubical/Algebra/CommRing/FGIdeal.agda
barrettj12/cubical
7b41b9171f90473efc98487cb2ea7a4d02320cb2
[ "MIT" ]
null
null
null
{- Define finitely generated ideals of commutative rings and show that they are an ideal. Parts of this should be reusable for explicit constructions of free modules over a finite set. -} {-# OPTIONS --safe #-} module Cubical.Algebra.CommRing.FGIdeal where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Transport open import Cubical.Foundations.HLevels open import Cubical.Data.Sigma open import Cubical.Data.FinData hiding (elim ; rec) open import Cubical.Data.Nat renaming ( zero to ℕzero ; suc to ℕsuc ; _+_ to _+ℕ_ ; _·_ to _·ℕ_ ; +-assoc to +ℕ-assoc ; +-comm to +ℕ-comm ; ·-assoc to ·ℕ-assoc ; ·-comm to ·ℕ-comm) hiding (elim) open import Cubical.HITs.PropositionalTruncation open import Cubical.Algebra.CommRing open import Cubical.Algebra.CommRing.Ideal open import Cubical.Algebra.Ring.QuotientRing open import Cubical.Algebra.Ring.Properties open import Cubical.Algebra.Ring.BigOps open import Cubical.Algebra.RingSolver.ReflectionSolving open import Cubical.Algebra.Matrix private variable ℓ : Level module _ (Ring@(R , str) : CommRing ℓ) where infixr 5 _holds _holds : hProp ℓ → Type ℓ P holds = fst P open CommRingStr str open RingTheory (CommRing→Ring Ring) open Sum (CommRing→Ring Ring) linearCombination : {n : ℕ} → FinVec R n → FinVec R n → R linearCombination α V = ∑ (λ i → α i · V i) sumDist+ : ∀ {n : ℕ} (α β V : FinVec R n) → linearCombination (λ i → α i + β i) V ≡ linearCombination α V + linearCombination β V sumDist+ α β V = ∑Ext (λ i → ·Ldist+ (α i) (β i) (V i)) ∙ ∑Split (λ i → α i · V i) (λ i → β i · V i) dist- : ∀ {n : ℕ} (α V : FinVec R n) → linearCombination (λ i → - α i) V ≡ - linearCombination α V dist- α V = ∑Ext (λ i → -DistL· (α i) (V i)) ∙ ∑Dist- (λ i → α i · V i) dist0 : ∀ {n : ℕ} (V : FinVec R n) → linearCombination (replicateFinVec n 0r) V ≡ 0r dist0 {n = n} V = ∑Ext (λ i → 0LeftAnnihilates (V i)) ∙ ∑0r n isLinearCombination : {n : ℕ} → FinVec R n → R → Type ℓ isLinearCombination V x = ∃[ α ∈ FinVec R _ ] x ≡ linearCombination α V {- If x and y are linear combinations of l, then (x + y) is a linear combination. -} isLinearCombination+ : {n : ℕ} {x y : R} (V : FinVec R n) → isLinearCombination V x → isLinearCombination V y → isLinearCombination V (x + y) isLinearCombination+ V = map2 λ α β → (λ i → α .fst i + β .fst i) , cong₂ (_+_) (α .snd) (β .snd) ∙ sym (sumDist+ _ _ V) {- If x is a linear combinations of l, then -x is a linear combination. -} isLinearCombination- : {n : ℕ} {x : R} (V : FinVec R n) → isLinearCombination V x → isLinearCombination V (- x) isLinearCombination- V = map λ α → (λ i → - α .fst i) , cong (-_) (α .snd) ∙ sym (dist- _ V) {- 0r is the trivial linear Combination -} isLinearCombination0 : {n : ℕ} (V : FinVec R n) → isLinearCombination V 0r isLinearCombination0 V = ∣ _ , sym (dist0 V) ∣ {- Linear combinations are stable under left multiplication -} isLinearCombinationL· : {n : ℕ} (V : FinVec R n) (r : R) {x : R} → isLinearCombination V x → isLinearCombination V (r · x) isLinearCombinationL· V r = map λ α → (λ i → r · α .fst i) , cong (r ·_) (α .snd) ∙∙ ∑Mulrdist r (λ i → α .fst i · V i) ∙∙ ∑Ext λ i → ·Assoc r (α .fst i) (V i) generatedIdeal : {n : ℕ} → FinVec R n → IdealsIn Ring generatedIdeal V = makeIdeal Ring (λ x → isLinearCombination V x , isPropPropTrunc) (isLinearCombination+ V) (isLinearCombination0 V) λ r → isLinearCombinationL· V r open CommIdeal.isCommIdeal genIdeal : {n : ℕ} (R : CommRing ℓ) → FinVec (fst R) n → CommIdeal.CommIdeal R fst (genIdeal R V) x = isLinearCombination R V x , isPropPropTrunc +Closed (snd (genIdeal R V)) = isLinearCombination+ R V contains0 (snd (genIdeal R V)) = isLinearCombination0 R V ·Closed (snd (genIdeal R V)) r = isLinearCombinationL· R V r syntax genIdeal R V = ⟨ V ⟩[ R ] FGIdealIn : (R : CommRing ℓ) → Type (ℓ-suc ℓ) FGIdealIn R = Σ[ I ∈ CommIdeal.CommIdeal R ] ∃[ nV ∈ Σ[ n ∈ ℕ ] FinVec (fst R) n ] I ≡ ⟨ nV .snd ⟩[ R ] -- The lattice laws module _ (R' : CommRing ℓ) where open CommRingStr (snd R') open RingTheory (CommRing→Ring R') open CommIdeal R' open Sum (CommRing→Ring R') open KroneckerDelta (CommRing→Ring R') private R = fst R' ⟨_⟩ : {n : ℕ} → FinVec R n → CommIdeal ⟨ V ⟩ = ⟨ V ⟩[ R' ] inclOfFGIdeal : {n : ℕ} (V : FinVec R n) (I : CommIdeal) → (∀ i → V i ∈ I) → ⟨ V ⟩ ⊆ I inclOfFGIdeal V I ∀i→Vi∈I x = elim (λ _ → I .fst x .snd) inclOfFGIdealΣ where inclOfFGIdealΣ : Σ[ α ∈ FinVec R _ ] x ≡ linearCombination R' α V → x ∈ I inclOfFGIdealΣ (α , x≡α·V) = subst-∈ I (sym x≡α·V) (∑Closed I (λ i → α i · V i) λ i → ·Closed (I .snd) _ (∀i→Vi∈I i)) indInIdeal : ∀ {n : ℕ} (U : FinVec R n) (i : Fin n) → U i ∈ ⟨ U ⟩ indInIdeal U i = ∣ (δ i) , sym (∑Mul1r _ U i) ∣ sucIncl : ∀ {n : ℕ} (U : FinVec R (ℕsuc n)) → ⟨ U ∘ suc ⟩ ⊆ ⟨ U ⟩ sucIncl U x = map λ (α , x≡∑αUsuc) → (λ { zero → 0r ; (suc i) → α i }) , x≡∑αUsuc ∙ path _ _ where path : ∀ s u₀ → s ≡ 0r · u₀ + s path = solve R' emptyFGIdeal : ∀ (V : FinVec R 0) → ⟨ V ⟩ ≡ 0Ideal emptyFGIdeal V = CommIdeal≡Char (λ _ → rec (is-set _ _) snd) (λ _ x≡0 → ∣ (λ ()) , x≡0 ∣) 0FGIdealLIncl : {n : ℕ} → ⟨ replicateFinVec n 0r ⟩ ⊆ 0Ideal 0FGIdealLIncl x = elim (λ _ → is-set _ _) λ (α , x≡∑α0) → subst-∈ 0Ideal (sym x≡∑α0) (∑Closed 0Ideal (λ i → α i · 0r) λ i → subst-∈ 0Ideal (sym (0RightAnnihilates _)) refl) 0FGIdealRIncl : {n : ℕ} → 0Ideal ⊆ ⟨ replicateFinVec n 0r ⟩ 0FGIdealRIncl x x≡0 = subst-∈ ⟨ replicateFinVec _ 0r ⟩ (sym x≡0) (⟨ replicateFinVec _ 0r ⟩ .snd .contains0) 0FGIdeal : {n : ℕ} → ⟨ replicateFinVec n 0r ⟩ ≡ 0Ideal 0FGIdeal = CommIdeal≡Char 0FGIdealLIncl 0FGIdealRIncl FGIdealAddLemmaLIncl : {n m : ℕ} (U : FinVec R n) (V : FinVec R m) → ⟨ U ++Fin V ⟩ ⊆ (⟨ U ⟩ +i ⟨ V ⟩) FGIdealAddLemmaLIncl {n = ℕzero} U V x x∈⟨V⟩ = ∣ (0r , x) , ⟨ U ⟩ .snd .contains0 , x∈⟨V⟩ , sym (+Lid x) ∣ FGIdealAddLemmaLIncl {n = ℕsuc n} U V x = rec isPropPropTrunc helperΣ where helperΣ : Σ[ α ∈ FinVec R _ ] (x ≡ ∑ λ i → α i · (U ++Fin V) i) → x ∈ (⟨ U ⟩ +i ⟨ V ⟩) helperΣ (α , p) = subst-∈ (⟨ U ⟩ +i ⟨ V ⟩) (sym p) ((⟨ U ⟩ +i ⟨ V ⟩) .snd .+Closed zeroIncl sumIncl) where zeroIncl : (α zero · U zero) ∈ (⟨ U ⟩ +i ⟨ V ⟩) zeroIncl = +iLincl ⟨ U ⟩ ⟨ V ⟩ (α zero · U zero) (⟨ U ⟩ .snd .·Closed (α zero) (indInIdeal U zero)) sumIncl : (∑ λ i → (α ∘ suc) i · ((U ∘ suc) ++Fin V) i) ∈ (⟨ U ⟩ +i ⟨ V ⟩) sumIncl = let sum = ∑ λ i → (α ∘ suc) i · ((U ∘ suc) ++Fin V) i in +iRespLincl ⟨ U ∘ suc ⟩ ⟨ U ⟩ ⟨ V ⟩ (sucIncl U) sum (FGIdealAddLemmaLIncl (U ∘ suc) V _ ∣ (α ∘ suc) , refl ∣) FGIdealAddLemmaRIncl : {n m : ℕ} (U : FinVec R n) (V : FinVec R m) → (⟨ U ⟩ +i ⟨ V ⟩) ⊆ ⟨ U ++Fin V ⟩ FGIdealAddLemmaRIncl U V x = rec isPropPropTrunc (uncurry3 helper) where helperΣ : ((y , z) : R × R) → Σ[ α ∈ FinVec R _ ] (y ≡ ∑ λ i → α i · U i) → Σ[ β ∈ FinVec R _ ] (z ≡ ∑ λ i → β i · V i) → x ≡ y + z → x ∈ ⟨ U ++Fin V ⟩ helperΣ (y , z) (α , y≡∑αU) (β , z≡∑βV) x≡y+z = ∣ (α ++Fin β) , path ∣ where path : x ≡ ∑ λ i → (α ++Fin β) i · (U ++Fin V) i path = x ≡⟨ x≡y+z ⟩ y + z ≡⟨ cong₂ (_+_) y≡∑αU z≡∑βV ⟩ (∑ λ i → α i · U i) + (∑ λ i → β i · V i) ≡⟨ sym (∑Split++ (λ i → α i · U i) _) ⟩ (∑ ((λ i → α i · U i) ++Fin (λ i → β i · V i))) ≡⟨ ∑Ext (mul++dist α U β V) ⟩ (∑ λ i → (α ++Fin β) i · (U ++Fin V) i) ∎ helper : ((y , z) : R × R) → ∃[ α ∈ FinVec R _ ] (y ≡ ∑ λ i → α i · U i) → ∃[ β ∈ FinVec R _ ] (z ≡ ∑ λ i → β i · V i) → x ≡ y + z → x ∈ ⟨ U ++Fin V ⟩ helper _ = rec2 (isPropΠ (λ _ → isPropPropTrunc)) (helperΣ _) FGIdealAddLemma : {n m : ℕ} (U : FinVec R n) (V : FinVec R m) → ⟨ U ++Fin V ⟩ ≡ ⟨ U ⟩ +i ⟨ V ⟩ FGIdealAddLemma U V = CommIdeal≡Char (FGIdealAddLemmaLIncl U V) (FGIdealAddLemmaRIncl U V) IdealAddAssoc : {n m k : ℕ} (U : FinVec R n) (V : FinVec R m) (W : FinVec R k) → ⟨ U ++Fin (V ++Fin W) ⟩ ≡ ⟨ (U ++Fin V) ++Fin W ⟩ IdealAddAssoc {n = n} {m = m} {k = k} U V W = let genIdealExpl : (n : ℕ) → FinVec R n → CommIdeal genIdealExpl _ V = ⟨ V ⟩ in cong₂ genIdealExpl (+ℕ-assoc n m k) (++FinAssoc U V W) ++FinComm : ∀ {n m : ℕ} (V : FinVec R n) (W : FinVec R m) → ⟨ V ++Fin W ⟩ ≡ ⟨ W ++Fin V ⟩ ++FinComm V W = FGIdealAddLemma V W ∙∙ +iComm ⟨ V ⟩ ⟨ W ⟩ ∙∙ sym (FGIdealAddLemma W V) open ProdFin R' prodIn··Ideal : {n m : ℕ} (U : FinVec R n) (V : FinVec R m) (x y : R) → (x ∈ ⟨ U ⟩) → (y ∈ ⟨ V ⟩) → (x · y) ∈ ⟨ U ··Fin V ⟩ prodIn··Ideal {n = n} {m = m} U V x y = map2 Σhelper where Σhelper : Σ[ α ∈ FinVec R n ] x ≡ linearCombination R' α U → Σ[ β ∈ FinVec R m ] y ≡ linearCombination R' β V → Σ[ γ ∈ FinVec R (n ·ℕ m) ] (x · y) ≡ linearCombination R' γ (U ··Fin V) Σhelper (α , x≡∑αU) (β , y≡∑βV) = α ··Fin β , path where path : x · y ≡ ∑ λ i → (α ··Fin β) i · (U ··Fin V) i path = x · y ≡⟨ cong₂ (_·_) x≡∑αU y≡∑βV ⟩ (∑ λ i → α i · U i) · (∑ λ i → β i · V i) ≡⟨ ∑Dist··Fin (λ i → α i · U i) _ ⟩ (∑ λ j → ((λ i → α i · U i) ··Fin (λ i → β i · V i)) j) ≡⟨ ∑Ext (·Dist··Fin α U β V) ⟩ (∑ λ i → (α ··Fin β) i · (U ··Fin V) i) ∎ FGIdealMultLemmaLIncl : {n m : ℕ} (U : FinVec R n) (V : FinVec R m) → ⟨ U ··Fin V ⟩ ⊆ (⟨ U ⟩ ·i ⟨ V ⟩) FGIdealMultLemmaLIncl U V x = elim (λ _ → isPropPropTrunc) λ (α , x≡∑αUV) → subst-∈ (⟨ U ⟩ ·i ⟨ V ⟩) (sym x≡∑αUV) --replace x by ∑αᵢⱼUᵢVⱼ (∑Closed (⟨ U ⟩ ·i ⟨ V ⟩) (λ i → α i · (U ··Fin V) i) --show that each αᵢ(U··V)ᵢ is in product λ i → (⟨ U ⟩ ·i ⟨ V ⟩) .snd .·Closed (α i) --drop the α's (flattenElim {P = _∈ (⟨ U ⟩ ·i ⟨ V ⟩)} (toMatrix U V) --show theat UᵢVⱼ is in product (λ j k → prodInProd ⟨ U ⟩ ⟨ V ⟩ (U j) (V k) (indInIdeal U j) (indInIdeal V k)) i)) FGIdealMultLemmaRIncl : {n m : ℕ} (U : FinVec R n) (V : FinVec R m) → (⟨ U ⟩ ·i ⟨ V ⟩) ⊆ ⟨ U ··Fin V ⟩ FGIdealMultLemmaRIncl U V x = elim (λ _ → isPropPropTrunc) λ (_ , (α , β) , ∀α∈⟨U⟩ , ∀β∈⟨V⟩ , x≡∑αβ) → subst-∈ ⟨ U ··Fin V ⟩ (sym x≡∑αβ) (∑Closed ⟨ U ··Fin V ⟩ _ (λ i → prodIn··Ideal U V (α i) (β i) (∀α∈⟨U⟩ i) (∀β∈⟨V⟩ i))) FGIdealMultLemma : {n m : ℕ} (U : FinVec R n) (V : FinVec R m) → ⟨ U ··Fin V ⟩ ≡ ⟨ U ⟩ ·i ⟨ V ⟩ FGIdealMultLemma U V = CommIdeal≡Char (FGIdealMultLemmaLIncl U V) (FGIdealMultLemmaRIncl U V)
45.712
102
0.506388
203d3890b67923dab46b0128035f2648601a9acd
852
agda
Agda
Data/PolyP/Derivations/Levels.agda
oisdk/agda-playground
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
[ "MIT" ]
6
2020-09-11T17:45:41.000Z
2021-11-16T08:11:34.000Z
Data/PolyP/Derivations/Levels.agda
oisdk/agda-playground
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
[ "MIT" ]
null
null
null
Data/PolyP/Derivations/Levels.agda
oisdk/agda-playground
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
[ "MIT" ]
1
2021-11-11T12:30:21.000Z
2021-11-11T12:30:21.000Z
{-# OPTIONS --cubical --safe --guardedness #-} module Data.PolyP.Derivations.Levels where open import Data.PolyP open import Level open import Data.PolyP.Types open import Data.Sum open import Data.Sigma open import Data.Unit open import Data.Fin open import Data.Nat open import Data.Vec open import Function open import Literals.Number open import Data.Fin.Literals open import Data.Nat.Literals levels : ⟦ FOREST ⟧ ~ A → ⟦ LEVELS ⟧ ~ A levels t = go t []′ where go : ⟦ FOREST ⟧ ~ A → ⟦ LEVELS ⟧ ~ A → ⟦ LEVELS ⟧ ~ A go = cata λ xs zs → cata (λ { (inl _ ) → zs ; (inr (inl _ , qs ) ) → qs ; (inr (inr (x , xs) , []′ ) ) → (x ∷′ []′ ) ∷′ xs []′ ; (inr (inr (x , xs) , q ∷′ qs ) ) → (x ∷′ q ) ∷′ xs qs }) xs
28.4
79
0.521127
fb3bea7423703f96d7fd38011214d0a43598fa13
2,267
agda
Agda
formalization/agda/Spire/Examples/Standard.agda
spire/spire
3d67f137ee9423b7e6f8593634583998cd692353
[ "BSD-3-Clause" ]
43
2015-05-28T23:25:33.000Z
2022-03-08T17:10:59.000Z
formalization/agda/Spire/Examples/Standard.agda
spire/spire
3d67f137ee9423b7e6f8593634583998cd692353
[ "BSD-3-Clause" ]
null
null
null
formalization/agda/Spire/Examples/Standard.agda
spire/spire
3d67f137ee9423b7e6f8593634583998cd692353
[ "BSD-3-Clause" ]
1
2015-08-17T21:00:07.000Z
2015-08-17T21:00:07.000Z
module Spire.Examples.Standard where ---------------------------------------------------------------------- data ℕ : Set where zero : ℕ suc : (n : ℕ) → ℕ data Vec (A : Set) : ℕ → Set where nil : Vec A zero cons : (n : ℕ) (a : A) (xs : Vec A n) → Vec A (suc n) ---------------------------------------------------------------------- elimℕ : (P : ℕ → Set) (pzero : P zero) (psuc : (m : ℕ) → P m → P (suc m)) (n : ℕ) → P n elimℕ P pzero psuc zero = pzero elimℕ P pzero psuc (suc n) = psuc n (elimℕ P pzero psuc n) elimVec : (A : Set) (P : (n : ℕ) → Vec A n → Set) (pnil : P zero nil) (pcons : (n : ℕ) (a : A) (xs : Vec A n) → P n xs → P (suc n) (cons n a xs)) (n : ℕ) (xs : Vec A n) → P n xs elimVec A P pnil pcons .zero nil = pnil elimVec A P pnil pcons .(suc n) (cons n a xs) = pcons n a xs (elimVec A P pnil pcons n xs) ---------------------------------------------------------------------- module PatternMatching where add : ℕ → ℕ → ℕ add zero n = n add (suc m) n = suc (add m n) mult : ℕ → ℕ → ℕ mult zero n = zero mult (suc m) n = add n (mult m n) append : (A : Set) (m : ℕ) (xs : Vec A m) (n : ℕ) (ys : Vec A n) → Vec A (add m n) append A .zero nil n ys = ys append A .(suc m) (cons m x xs) n ys = cons (add m n) x (append A m xs n ys) concat : (A : Set) (m n : ℕ) (xss : Vec (Vec A m) n) → Vec A (mult n m) concat A m .zero nil = nil concat A m .(suc n) (cons n xs xss) = append A m xs (mult n m) (concat A m n xss) ---------------------------------------------------------------------- module Eliminator where add : ℕ → ℕ → ℕ add = elimℕ (λ _ → ℕ → ℕ) (λ n → n) (λ m ih n → suc (ih n)) mult : ℕ → ℕ → ℕ mult = elimℕ (λ _ → ℕ → ℕ) (λ n → zero) (λ m ih n → add n (ih n)) append : (A : Set) (m : ℕ) (xs : Vec A m) (n : ℕ) (ys : Vec A n) → Vec A (add m n) append A = elimVec A (λ m xs → (n : ℕ) (ys : Vec A n) → Vec A (add m n)) (λ n ys → ys) (λ m x xs ih n ys → cons (add m n) x (ih n ys)) concat : (A : Set) (m n : ℕ) (xss : Vec (Vec A m) n) → Vec A (mult n m) concat A m = elimVec (Vec A m) (λ n xss → Vec A (mult n m)) nil (λ n xs xss ih → append A m xs (mult n m) ih) ----------------------------------------------------------------------
29.441558
90
0.430525
4dc229fa7babb31e2e0d2dc4473ae34100f8783c
2,078
agda
Agda
src/Categories/Category/Construction/Core.agda
yourboynico/agda-categories
6a087c592dbe58fc4bd9d02e1be9b94a9e138aca
[ "MIT" ]
279
2019-06-01T14:36:40.000Z
2022-03-22T00:40:14.000Z
src/Categories/Category/Construction/Core.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
236
2019-06-01T14:53:54.000Z
2022-03-28T14:31:43.000Z
src/Categories/Category/Construction/Core.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
64
2019-06-02T16:58:15.000Z
2022-03-14T02:00:59.000Z
{-# OPTIONS --without-K --safe #-} open import Categories.Category -- The core of a category. -- See https://ncatlab.org/nlab/show/core module Categories.Category.Construction.Core {o ℓ e} (𝒞 : Category o ℓ e) where open import Level using (_⊔_) open import Function using (flip) open import Categories.Category.Groupoid using (Groupoid; IsGroupoid) open import Categories.Morphism 𝒞 as Morphism open import Categories.Morphism.IsoEquiv 𝒞 as IsoEquiv open Category 𝒞 open _≃_ Core : Category o (ℓ ⊔ e) e Core = record { Obj = Obj ; _⇒_ = _≅_ ; _≈_ = _≃_ ; id = ≅.refl ; _∘_ = flip ≅.trans ; assoc = ⌞ assoc ⌟ ; sym-assoc = ⌞ sym-assoc ⌟ ; identityˡ = ⌞ identityˡ ⌟ ; identityʳ = ⌞ identityʳ ⌟ ; identity² = ⌞ identity² ⌟ ; equiv = ≃-isEquivalence ; ∘-resp-≈ = λ where ⌞ eq₁ ⌟ ⌞ eq₂ ⌟ → ⌞ ∘-resp-≈ eq₁ eq₂ ⌟ } Core-isGroupoid : IsGroupoid Core Core-isGroupoid = record { _⁻¹ = ≅.sym ; iso = λ {_ _ f} → record { isoˡ = ⌞ isoˡ f ⌟ ; isoʳ = ⌞ isoʳ f ⌟ } } where open _≅_ CoreGroupoid : Groupoid o (ℓ ⊔ e) e CoreGroupoid = record { category = Core; isGroupoid = Core-isGroupoid } module CoreGroupoid = Groupoid CoreGroupoid -- Useful shorthands for reasoning about isomorphisms and morphisms of -- 𝒞 in the same module. module Shorthands where module Commutationᵢ where open Commutation Core public using () renaming ([_⇒_]⟨_≈_⟩ to [_≅_]⟨_≈_⟩) infixl 2 connectᵢ connectᵢ : ∀ {A C : Obj} (B : Obj) → A ≅ B → B ≅ C → A ≅ C connectᵢ B f g = ≅.trans f g syntax connectᵢ B f g = f ≅⟨ B ⟩ g open _≅_ public open _≃_ public open Morphism public using (module _≅_) open IsoEquiv public using (⌞_⌟) renaming (module _≃_ to _≈ᵢ_) open CoreGroupoid public using (_⁻¹) renaming ( _⇒_ to _≅_ ; _≈_ to _≈ᵢ_ ; id to idᵢ ; _∘_ to _∘ᵢ_ ; iso to ⁻¹-iso ; module Equiv to Equivᵢ ; module HomReasoning to HomReasoningᵢ ; module iso to ⁻¹-iso )
27.706667
79
0.598171
4dba82f3a117ac414a87d2107e2dea0061489b47
1,752
agda
Agda
src/plfa-code/Naturals.agda
chirsz-ever/plfa-code
ec5b359a8c22bf5268cae3c36a97e6737c75d5f3
[ "MIT" ]
null
null
null
src/plfa-code/Naturals.agda
chirsz-ever/plfa-code
ec5b359a8c22bf5268cae3c36a97e6737c75d5f3
[ "MIT" ]
null
null
null
src/plfa-code/Naturals.agda
chirsz-ever/plfa-code
ec5b359a8c22bf5268cae3c36a97e6737c75d5f3
[ "MIT" ]
null
null
null
module plfa-code.Naturals where data ℕ : Set where zero : ℕ suc : ℕ → ℕ {-# BUILTIN NATURAL ℕ #-} import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl) open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; _∎) _+_ : ℕ → ℕ → ℕ zero + n = n suc m + n = suc (m + n) _ : 2 + 3 ≡ 5 _ = refl _*_ : ℕ → ℕ → ℕ zero * n = zero suc m * n = n + (m * n) _^_ : ℕ → ℕ → ℕ n ^ zero = suc zero n ^ (suc m) = n * (n ^ m) _ : 3 ^ 4 ≡ 81 _ = begin 3 ^ 4 ≡⟨⟩ 3 * (3 ^ 3) ≡⟨⟩ 3 * (3 * (3 ^ 2)) ≡⟨⟩ 3 * (3 * (3 * (3 ^ 1))) ≡⟨⟩ 3 * (3 * (3 * (3 * (3 ^ 0)))) ≡⟨⟩ 3 * (3 * (3 * (3 * 1))) ≡⟨⟩ 81 ∎ _∸_ : ℕ → ℕ → ℕ m ∸ zero = m zero ∸ suc n = zero suc m ∸ suc n = m ∸ n _ = begin 3 ∸ 2 ≡⟨⟩ 2 ∸ 1 ≡⟨⟩ 1 ∸ 0 ≡⟨⟩ 1 ∎ _ = begin 2 ∸ 3 ≡⟨⟩ 1 ∸ 2 ≡⟨⟩ 0 ∸ 1 ≡⟨⟩ 0 ∎ infixl 6 _+_ _∸_ infixl 7 _*_ data Bin : Set where nil : Bin x0_ : Bin → Bin x1_ : Bin → Bin inc : Bin → Bin inc nil = x1 nil inc (x0 t) = x1 t inc (x1 t) = x0 (inc t) _ : inc (x1 x1 x0 x1 nil) ≡ x0 x0 x1 x1 nil _ = refl _ : inc (x0 nil) ≡ x1 nil _ = refl _ : inc (x1 nil) ≡ x0 x1 nil _ = refl _ : inc (x0 x1 nil) ≡ x1 x1 nil _ = refl _ : inc (x1 x1 nil) ≡ x0 x0 x1 nil _ = refl to : ℕ → Bin to 0 = x0 nil to (suc n) = inc (to n) from : Bin → ℕ from nil = 0 from (x0 t) = (from t) * 2 from (x1 t) = (from t) * 2 + 1 _ : to 0 ≡ x0 nil _ = refl _ : to 1 ≡ x1 nil _ = refl _ : to 2 ≡ x0 x1 nil _ = refl _ : to 3 ≡ x1 x1 nil _ = refl _ : to 4 ≡ x0 x0 x1 nil _ = refl _ : 0 ≡ from (x0 nil) _ = refl _ : 1 ≡ from (x1 nil) _ = refl _ : 2 ≡ from (x0 x1 nil) _ = refl _ : 3 ≡ from (x1 x1 nil) _ = refl _ : 4 ≡ from (x0 x0 x1 nil) _ = refl
12.514286
50
0.447489
1c563d9246f91041eaf9dd754ef32a5ec3e6b0fc
1,298
agda
Agda
src/data/lib/prim/Agda/Builtin/Cubical/Id.agda
banacorn/agda
2a07bfdf2c1c4ae87f428809af0887aceb6632c0
[ "MIT" ]
null
null
null
src/data/lib/prim/Agda/Builtin/Cubical/Id.agda
banacorn/agda
2a07bfdf2c1c4ae87f428809af0887aceb6632c0
[ "MIT" ]
null
null
null
src/data/lib/prim/Agda/Builtin/Cubical/Id.agda
banacorn/agda
2a07bfdf2c1c4ae87f428809af0887aceb6632c0
[ "MIT" ]
null
null
null
{-# OPTIONS --erased-cubical --safe --no-sized-types --no-guardedness --no-subtyping #-} module Agda.Builtin.Cubical.Id where open import Agda.Primitive.Cubical open import Agda.Builtin.Cubical.Path open import Agda.Builtin.Cubical.Sub renaming (primSubOut to ouc; Sub to _[_↦_]) postulate Id : ∀ {ℓ} {A : Set ℓ} → A → A → Set ℓ {-# BUILTIN ID Id #-} {-# BUILTIN CONID conid #-} -- Id x y is treated as a pair of I and x ≡ y, using "i" for the -- first component and "p" for the second. {-# COMPILE JS conid = _ => _ => _ => _ => i => p => { return { "i" : i, "p" : p } } #-} primitive primDepIMin : _ primIdFace : ∀ {ℓ} {A : Set ℓ} {x y : A} → Id x y → I primIdPath : ∀ {ℓ} {A : Set ℓ} {x y : A} → Id x y → x ≡ y primitive primIdJ : ∀ {ℓ ℓ'} {A : Set ℓ} {x : A} (P : ∀ y → Id x y → Set ℓ') → P x (conid i1 (λ i → x)) → ∀ {y} (p : Id x y) → P y p primitive primIdElim : ∀ {a c} {A : Set a} {x : A} (C : (y : A) → Id x y → Set c) → ((φ : I) (y : A [ φ ↦ (λ _ → x) ]) (w : (x ≡ ouc y) [ φ ↦ (λ { (φ = i1) → \ _ → x}) ]) → C (ouc y) (conid φ (ouc w))) → {y : A} (p : Id x y) → C y p
33.282051
82
0.44453
0bd84c0d578a70287c4022d247b8be50a7fda246
6,203
agda
Agda
Projection.agda
fangyi-zhou/mpst-in-agda
3d12eed9d340207d242d70f43c6b34e01d3620de
[ "MIT" ]
1
2021-08-14T17:36:53.000Z
2021-08-14T17:36:53.000Z
Projection.agda
fangyi-zhou/mpst-in-agda
3d12eed9d340207d242d70f43c6b34e01d3620de
[ "MIT" ]
1
2021-08-31T10:15:38.000Z
2021-11-24T11:30:17.000Z
Projection.agda
fangyi-zhou/mpst-in-agda
3d12eed9d340207d242d70f43c6b34e01d3620de
[ "MIT" ]
null
null
null
open import Data.Empty using (⊥-elim) open import Data.Fin using (Fin; _≟_) open import Data.Nat using (ℕ) open import Data.Product using (∃-syntax; _,_) open import Data.Sum using (_⊎_; inj₁; inj₂) open import Data.Vec using (lookup; _[_]≔_) open import Data.Vec.Properties using (lookup∘update; lookup∘update′) open import Relation.Nullary using (yes; no; ¬_) open import Relation.Binary.PropositionalEquality using (sym; trans; _≡_; refl; cong; _≢_; module ≡-Reasoning) open import Data.Product using (∃-syntax; _,_; proj₁; proj₂; _×_) open ≡-Reasoning open import Common open import Global open import Local private variable n : ℕ l : Label p q : Fin n g gSub : Global n lSub : Local n project : Global n -> Fin n -> Local n project endG _ = endL project (msgSingle p q p≢q l gSub) r with p ≟ r | q ≟ r ... | yes _ | no _ = sendSingle q l (project gSub r) ... | no _ | yes _ = recvSingle p l (project gSub r) ... | no _ | no _ = project gSub r ... | yes refl | yes refl = ⊥-elim (p≢q refl) proj-prefix-other : (r s t : Fin n) -> ∀{ r≢s } -> (gSub : Global n) -> r ≢ t -> s ≢ t -> project (msgSingle r s r≢s l gSub) t ≡ project gSub t proj-prefix-other r s t _ r≢t s≢t with r ≟ t | s ≟ t ... | yes refl | _ = ⊥-elim (r≢t refl) ... | _ | yes refl = ⊥-elim (s≢t refl) ... | no _ | no _ = refl proj-prefix-send : (r s : Fin n) -> (gSub : Global n) -> (r≢s : r ≢ s) -> project (msgSingle r s r≢s l gSub) r ≡ sendSingle s l (project gSub r) proj-prefix-send r s _ r≢s with r ≟ r | s ≟ r ... | yes _ | no _ = refl ... | _ | yes refl = ⊥-elim (r≢s refl) ... | no r≢r | no _ = ⊥-elim (r≢r refl) proj-prefix-recv : (r s : Fin n) -> (gSub : Global n) -> (r≢s : r ≢ s) -> project (msgSingle r s r≢s l gSub) s ≡ recvSingle r l (project gSub s) proj-prefix-recv r s _ r≢s with r ≟ s | s ≟ s ... | no _ | yes _ = refl ... | yes refl | _ = ⊥-elim (r≢s refl) ... | _ | no s≢s = ⊥-elim (s≢s refl) record _↔_ { n : ℕ } (g : Global n) (c : Configuration n) : Set where field isProj : ∀(p : Fin n) -> lookup c p ≡ project g p proj-inv-send : project {n} g p ≡ sendSingle q l lSub -> ∃[ p≢q ] ∃[ gSub ] g ≡ msgSingle p q p≢q l gSub × project gSub p ≡ lSub ⊎ ∃[ r ] ∃[ s ] ∃[ r≢s ] ∃[ l′ ] ∃[ gSub ] g ≡ msgSingle r s r≢s l′ gSub × r ≢ p × s ≢ p × project gSub p ≡ sendSingle q l lSub proj-inv-send {g = g@endG} projSend = ⊥-elim (endL≢sendSingle projSend) proj-inv-send {n} {g = g@(msgSingle r s r≢s l′ gSub)} {p} {q} {l} {ltSub} projSend with r ≟ p | s ≟ p ... | yes refl | yes refl = ⊥-elim (r≢s refl) ... | no r≢p | no s≢p = inj₂ (r , s , r≢s , l′ , gSub , refl , r≢p , s≢p , projSend) ... | yes refl | no s≢p with sendSingle-injective projSend ... | refl , refl , refl = inj₁ (r≢s , gSub , refl , refl) proj-inv-recv : project {n} g p ≡ recvSingle q l lSub -> ∃[ p≢q ] ∃[ gSub ] g ≡ msgSingle q p p≢q l gSub × project gSub p ≡ lSub ⊎ ∃[ r ] ∃[ s ] ∃[ r≢s ] ∃[ l′ ] ∃[ gSub ] g ≡ msgSingle r s r≢s l′ gSub × r ≢ p × s ≢ p × project gSub p ≡ recvSingle q l lSub proj-inv-recv {g = g@endG} projRecv = ⊥-elim (endL≢recvSingle projRecv) proj-inv-recv {n} {g = g@(msgSingle r s r≢s l′ gSub)} {p} {q} {l} {lSub} projRecv with r ≟ p | s ≟ p ... | yes refl | yes refl = ⊥-elim (r≢s refl) ... | no r≢p | no s≢p = inj₂ (r , s , r≢s , l′ , gSub , refl , r≢p , s≢p , projRecv) ... | no r≢p | yes refl with recvSingle-injective projRecv ... | refl , refl , refl = inj₁ (r≢s , gSub , refl , refl) proj-inv-send-recv : ∀ { lpSub lqSub } -> project {n} g p ≡ sendSingle q l lpSub -> project {n} g q ≡ recvSingle p l lqSub -> ∃[ p≢q ] ∃[ gSub ] g ≡ msgSingle p q p≢q l gSub × project gSub p ≡ lpSub × project gSub q ≡ lqSub ⊎ ∃[ r ] ∃[ s ] ∃[ r≢s ] ∃[ l′ ] ∃[ gSub ] g ≡ msgSingle r s r≢s l′ gSub × r ≢ p × s ≢ p × r ≢ q × s ≢ q × project gSub p ≡ sendSingle q l lpSub × project gSub q ≡ recvSingle p l lqSub proj-inv-send-recv {n} {g} {p} {q} {l} {lpSub} {lqSub} projSend projRecv with proj-inv-send {n} {g} projSend | proj-inv-recv {n} {g} projRecv ... | inj₁ (p≢q₁ , gSub₁ , refl , proj-g₁-p) | inj₁ (_ , _ , refl , proj-g₂-q) = inj₁ (p≢q₁ , gSub₁ , refl , proj-g₁-p , proj-g₂-q) proj-inv-send-recv {n} {g} {p} {q} {l} {ltp′} {ltq′} projSend projRecv | inj₁ (_ , _ , refl , _) | inj₂ (_ , _ , _ , _ , _ , refl , _ , s≢q , _) = ⊥-elim (s≢q refl) proj-inv-send-recv {n} {g} {p} {q} {l} {ltp′} {ltq′} projSend projRecv | inj₂ (_ , _ , _ , _ , _ , refl , r≢p , _ , _) | inj₁ (_ , _ , refl , _) = ⊥-elim (r≢p refl) proj-inv-send-recv {n} {g} {p} {q} {l} {ltp′} {ltq′} projSend projRecv | inj₂ (r , s , r≢s , l′ , gSub₁ , refl , r≢p , s≢p , proj-g₁-p) | inj₂ (_ , _ , _ , _ , gSub₂ , refl , r≢q , s≢q , proj-g₂-q) = inj₂ (r , s , r≢s , l′ , gSub₁ , refl , r≢p , s≢p , r≢q , s≢q , proj-g₁-p , proj-g₂-q) config-gt-remove-prefix : ∀ { p≢q gSub } -> (g : Global n) -> (c : Configuration n) -> g ↔ c -> g ≡ msgSingle p q p≢q l gSub -> ∃[ cSub ] cSub ≡ (c [ p ]≔ project gSub p) [ q ]≔ project gSub q × gSub ↔ cSub config-gt-remove-prefix {n} {p} {q} {_} {p≢q} {gSub} g c assoc refl = cSub , refl , (record { isProj = isProj-gSub }) where lpSub = project gSub p lqSub = project gSub q cSub = (c [ p ]≔ lpSub) [ q ]≔ lqSub isProj-gSub : ∀ (r : Fin n) -> lookup cSub r ≡ project gSub r isProj-gSub r with p ≟ r | q ≟ r ... | yes refl | yes refl = ⊥-elim (p≢q refl) ... | yes refl | no _ rewrite lookup∘update′ p≢q (c [ p ]≔ lpSub) lqSub rewrite lookup∘update p c lpSub = refl ... | no _ | yes refl rewrite lookup∘update q (c [ p ]≔ lpSub) lqSub = refl ... | no p≢r | no q≢r rewrite lookup∘update′ (¬≡-flip q≢r) (c [ p ]≔ lpSub) lqSub rewrite lookup∘update′ (¬≡-flip p≢r) c lpSub rewrite _↔_.isProj assoc r = proj-prefix-other p q r gSub p≢r q≢r
36.274854
110
0.522328
dcd747dceedd66ca4526fc84dc327dc7d89bcc3d
1,949
agda
Agda
Mockingbird/Problems/Chapter16.agda
splintah/combinatory-logic
df8bf877e60b3059532c54a247a36a3d83cd55b0
[ "MIT" ]
1
2022-02-28T23:44:42.000Z
2022-02-28T23:44:42.000Z
Mockingbird/Problems/Chapter16.agda
splintah/combinatory-logic
df8bf877e60b3059532c54a247a36a3d83cd55b0
[ "MIT" ]
null
null
null
Mockingbird/Problems/Chapter16.agda
splintah/combinatory-logic
df8bf877e60b3059532c54a247a36a3d83cd55b0
[ "MIT" ]
null
null
null
open import Mockingbird.Forest using (Forest) -- The Forest Without a Name module Mockingbird.Problems.Chapter16 {b ℓ} (forest : Forest {b} {ℓ}) where open import Data.Product using (_×_; _,_; ∃-syntax) open import Data.Sum using (_⊎_; inj₁; inj₂) open import Function using (_$_; _⇔_; Equivalence) open import Relation.Binary using (_Respects_) open import Relation.Nullary using (¬_) open import Relation.Unary using (Pred) open Forest forest import Mockingbird.Problems.Chapter14 forest as Chapter₁₄ open import Mockingbird.Problems.Chapter15 forest using (⇔-¬) module _ {s} (Sings : Pred Bird s) (respects : Sings Respects _≈_) (LEM : ∀ x → Sings x ⊎ ¬ Sings x) (e : Bird) (law₁ : ∀ {x y} → Sings (e ∙ x ∙ y) → Sings y) (law₂ : ∀ {x y} → Sings (e ∙ x ∙ y) ⇔ (¬ Sings x)) (law₃ : ∀ {x y} → Sings (e ∙ x ∙ y) ⇔ (¬ Sings x × Sings y)) (law₄ : ∀ x → ∃[ y ] Sings y ⇔ Sings (e ∙ y ∙ x)) where IsSilent : Pred Bird s IsSilent x = ¬ Sings x private respects′ : IsSilent Respects _≈_ respects′ x≈y ¬x-sings y-sings = ¬x-sings $ respects (sym x≈y) y-sings LEM′ : ∀ x → IsSilent x ⊎ ¬ IsSilent x LEM′ x with LEM x ... | inj₁ x-sings = inj₂ λ ¬x-sings → ¬x-sings x-sings ... | inj₂ ¬x-sings = inj₁ ¬x-sings law₁′ : ∀ {x y} → IsSilent y → IsSilent (e ∙ x ∙ y) law₁′ ¬y-sings exy-sings = ¬y-sings $ law₁ exy-sings law₂′ : ∀ {x y} → ¬ IsSilent x → IsSilent (e ∙ x ∙ y) law₂′ = Equivalence.g $ ⇔-¬ law₂ law₃′ : ∀ {x y} → IsSilent x → IsSilent (e ∙ x ∙ y) → IsSilent y law₃′ {x} {y} ¬x-sings ¬exy-sings y-sings = Equivalence.f (⇔-¬ law₃) ¬exy-sings (¬x-sings , y-sings) law₄′ : ∀ x → ∃[ y ] IsSilent y ⇔ IsSilent (e ∙ y ∙ x) law₄′ x = let (y , y-sings⇔eyx-sings) = law₄ x in (y , ⇔-¬ y-sings⇔eyx-sings) problem : ∀ x → ¬ Sings x problem = Chapter₁₄.problem₁ IsSilent respects′ LEM′ e law₁′ law₂′ law₃′ law₄′
36.092593
104
0.586968
4dd46dfb2607ce0e84edddee3af5691eda962c5d
917
agda
Agda
Categories/PushOuts.agda
jmchapman/Relative-Monads
74707d3538bf494f4bd30263d2f5515a84733865
[ "MIT" ]
21
2015-07-30T01:25:12.000Z
2021-02-13T18:02:18.000Z
Categories/PushOuts.agda
jmchapman/Relative-Monads
74707d3538bf494f4bd30263d2f5515a84733865
[ "MIT" ]
3
2019-01-13T13:12:33.000Z
2019-05-29T09:50:26.000Z
Categories/PushOuts.agda
jmchapman/Relative-Monads
74707d3538bf494f4bd30263d2f5515a84733865
[ "MIT" ]
1
2019-11-04T21:33:13.000Z
2019-11-04T21:33:13.000Z
module Categories.PushOuts where open import Library open import Categories open Cat record Square {a}{b}{C : Cat {a}{b}}{X Y Z}(f : Hom C Z X)(g : Hom C Z Y) : Set (a ⊔ b) where constructor square field W : Obj C h : Hom C X W k : Hom C Y W scom : comp C h f ≅ comp C k g record SqMap {a}{b}{C : Cat {a}{b}}{X Y Z : Obj C}{f : Hom C Z X}{g : Hom C Z Y} (sq sq' : Square {a}{b}{C} f g) : Set (a ⊔ b) where constructor sqmap open Square field sqMor : Hom C (W sq) (W sq') leftTr : comp C sqMor (h sq) ≅ h sq' rightTr : comp C sqMor (k sq) ≅ k sq' open SqMap record PushOut {a}{b}{C : Cat {a}{b}}{X Y Z}(f : Hom C Z X)(g : Hom C Z Y) : Set (a ⊔ b) where constructor pushout field sq : Square {a}{b}{C} f g uniqPush : (sq' : Square f g) → Σ (SqMap sq sq') \ u → (u' : SqMap sq sq') → sqMor u ≅ sqMor u'
30.566667
94
0.522356
398b9c03e763fb5106959d89355d8d2e9ea0b5ad
2,252
agda
Agda
TypeTheory/Lecture/PropsAsTypes.agda
hbasold/Sandbox
8fc7a6cd878f37f9595124ee8dea62258da28aa4
[ "MIT" ]
null
null
null
TypeTheory/Lecture/PropsAsTypes.agda
hbasold/Sandbox
8fc7a6cd878f37f9595124ee8dea62258da28aa4
[ "MIT" ]
null
null
null
TypeTheory/Lecture/PropsAsTypes.agda
hbasold/Sandbox
8fc7a6cd878f37f9595124ee8dea62258da28aa4
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} module PropsAsTypes where data Σ {I : Set} (X : I → Set) : Set where _,_ : (i : I) → X i → Σ X drec-Σ : {I : Set} {X : I → Set} {A : Σ X → Set} → ((i : I) → (x : X i) → A (i , x)) → (u : Σ X) → A u drec-Σ f (i , x) = f i x π₁ : {I : Set} {X : I → Set} → Σ X → I π₁ = drec-Σ (λ i x → i) π₂ : {I : Set} {X : I → Set} → (u : Σ X) → X (π₁ u) π₂ = drec-Σ (λ i x → x) _×_ : Set → Set → Set A × B = Σ {A} λ _ → B Prop = Set Pred : Set → Set₁ Pred A = A → Prop Rel : Set → Set₁ Rel A = A → A → Prop _⊆_ : {A : Set} → Pred A → Pred A → Prop P ⊆ Q = ∀ x → P x → Q x _⊑_ : {A : Set} → Rel A → Rel A → Prop R ⊑ S = ∀ {x y} → R x y → S x y _∧_ : Prop → Prop → Prop A ∧ B = A × B ∧-elim₁ : {A₁ A₂ : Prop} → A₁ ∧ A₂ → A₁ ∧-elim₁ = π₁ ∧-elim₂ : {A₁ A₂ : Prop} → A₁ ∧ A₂ → A₂ ∧-elim₂ = π₂ ∧-intro : {A₁ A₂ : Prop} → A₁ → A₂ → A₁ ∧ A₂ ∧-intro a₁ a₂ = (a₁ , a₂) ∃ : {X : Set} → (A : X → Prop) → Prop ∃ = Σ ∃-syntax : ∀ X → (X → Prop) → Prop ∃-syntax X A = ∃ A syntax ∃-syntax X (λ x → A) = ∃[ x ∈ X ] A ∃-intro : {X : Set} {A : X → Prop} → (x : X) → A x → ∃[ x ∈ X ] (A x) ∃-intro x a = (x , a) ∃-elim : {X : Set} {A : X → Prop} {B : Prop} → ((x : X) → A x → B) → ∃[ x ∈ X ] (A x) → B ∃-elim = drec-Σ ∃₂-elim : {X Y : Set} {A : X → Prop} {B : Y → Prop} {C : Prop} → ((x : X) (y : Y) → A x → B y → C) → ∃[ x ∈ X ] (A x) → ∃[ x ∈ Y ] (B x) → C ∃₂-elim f p q = ∃-elim (λ x p' → ∃-elim (λ y q' → f x y p' q') q) p infix 3 _⇔_ _⇔_ : Prop → Prop → Prop A ⇔ B = (A → B) ∧ (B → A) equivalence : {A B : Prop} → (A → B) → (B → A) → A ⇔ B equivalence = ∧-intro data ⊥ : Prop where absurd : ⊥ → ⊥ ⊥-elim : {A : Prop} → ⊥ → A ⊥-elim (absurd p) = ⊥-elim p ¬ : Prop → Prop ¬ A = A → ⊥ data ⊤ : Prop where ∗ : ⊤ open import Data.Nat open import Relation.Binary.PropositionalEquality as PE IsSuc : ℕ → Set IsSuc zero = ⊥ IsSuc (suc _) = ⊤ zero-not-suc : ∀ n → ¬ (suc n ≡ 0) zero-not-suc n p = subst IsSuc p ∗ -- Easier in Agda with absurd elimination -- suc-injective : ∀ n → ¬ (suc n ≡ n) -- suc-injective n () drec-≡ : {X : Set} → {C : (x y : X) → x ≡ y → Set} → ((x : X) → C x x refl) → ∀ x y → (p : x ≡ y) → C x y p drec-≡ f x .x refl = f x
21.245283
69
0.43206
124fb8ea7cd27be76f47a7d8a59c4866f6e367de
225
agda
Agda
src/data/lib/prim/Agda/Builtin/Word.agda
asr/eagda
7220bebfe9f64297880ecec40314c0090018fdd0
[ "BSD-3-Clause" ]
1
2016-03-17T01:45:59.000Z
2016-03-17T01:45:59.000Z
src/data/lib/prim/Agda/Builtin/Word.agda
asr/eagda
7220bebfe9f64297880ecec40314c0090018fdd0
[ "BSD-3-Clause" ]
null
null
null
src/data/lib/prim/Agda/Builtin/Word.agda
asr/eagda
7220bebfe9f64297880ecec40314c0090018fdd0
[ "BSD-3-Clause" ]
1
2019-03-05T20:02:38.000Z
2019-03-05T20:02:38.000Z
{-# OPTIONS --without-K #-} module Agda.Builtin.Word where open import Agda.Builtin.Nat postulate Word64 : Set {-# BUILTIN WORD64 Word64 #-} primitive primWord64ToNat : Word64 → Nat primWord64FromNat : Nat → Word64
17.307692
34
0.715556
dc2dfda41688283f879e81906de30283e7540933
5,111
agda
Agda
src/StateMachineModel.agda
lisandrasilva/agda-liveness
391e148f391dc2d246249193788a0d203285b38e
[ "Apache-2.0" ]
null
null
null
src/StateMachineModel.agda
lisandrasilva/agda-liveness
391e148f391dc2d246249193788a0d203285b38e
[ "Apache-2.0" ]
null
null
null
src/StateMachineModel.agda
lisandrasilva/agda-liveness
391e148f391dc2d246249193788a0d203285b38e
[ "Apache-2.0" ]
null
null
null
{- Copyright 2019 Lisandra Silva Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. -} open import Prelude module StateMachineModel where ----------------------------------------------------------------------------- -- State Machine ----------------------------------------------------------------------------- record StateMachine (State : Set) (Event : Set) : Set₁ where field initial : Pred State 0ℓ enabled : Event → State → Set action : ∀ {preState} {event} → enabled event preState → State open StateMachine data Reachable {State Event} {sm : StateMachine State Event} : State → Set where init : ∀ {s₀} → initial sm s₀ → Reachable s₀ step : ∀ {st event} → Reachable {sm = sm} st → (enEv : enabled sm event st) → Reachable (action sm enEv) Invariant : ∀ {State Event} (sm : StateMachine State Event) (P : Pred State 0ℓ) → Set Invariant sm P = ∀ {state} (rs : Reachable {sm = sm} state) → P state Stable : ∀ {State Event} (sm : StateMachine State Event) (P : Pred State 0ℓ) → Set Stable sm P = ∀ {st ev} (enEv : enabled sm ev st) → P st → P (action sm enEv) EventSet : ∀ {Event : Set} → Set₁ EventSet {Event} = Pred Event 0ℓ record System State Event : Set₁ where field stateMachine : StateMachine State Event weakFairness : Pred (EventSet {Event}) 0ℓ open System enabledSet : ∀ {State Event} → StateMachine State Event → EventSet {Event} → State → Set enabledSet sm evSet state = ∃[ event ] (event ∈ evSet × enabled sm event state) module LeadsTo (State : Set) (Event : Set) (sys : System State Event) where ----------------------------------------------------------------------------- -- HOARE Triple ----------------------------------------------------------------------------- data [_]_[_] (P : Pred State 0ℓ) (event : Event) (Q : Pred State 0ℓ) : Set where hoare : (∀ {st} → P st → (enEv : enabled (stateMachine sys) event st) → Q (action (stateMachine sys) enEv )) → [ P ] event [ Q ] Z : Set Z = ℕ -- Auxiliary properties with syntax renaming for better compliance with paper -- TODO : Try to make this more generic ⋃₁ : ∀ {ℓ ℓ'} {A : Set ℓ'} → (A → Pred State ℓ) → Pred State (ℓ ⊔ ℓ') ⋃₁ {A = A} P = λ x → Σ[ i ∈ A ] P i x syntax ⋃₁ (λ i → P) = [∃ i ∶ P ] ⋃₂ : ∀ {ℓ₁ ℓ₂ ℓ'} {A : Set ℓ'} → (C : Pred A ℓ₁) → (F : A → Pred State ℓ₂) → Pred State _ ⋃₂ {A = A} C F = λ s → Σ[ i ∈ A ] ( C i × F i s ) syntax ⋃₂ C (λ x → P) = [∃ x ⇒ C ∶ P ] ----------------------------------------------------------------------------- -- PROOF RULES for liveness ----------------------------------------------------------------------------- infix 1 _l-t_ data _l-t_ (P : Pred State 0ℓ) (Q : Pred State 0ℓ) : Set₁ where viaEvSet : (evSet : EventSet) → (weakFairness sys evSet) → (∀ (e : Event) → e ∈ evSet → [ P ] e [ Q ]) → (∀ (e : Event) → ¬ (e ∈ evSet) → [ P ] e [ P ∪ Q ]) → Invariant (stateMachine sys) (P ⇒ enabledSet (stateMachine sys) evSet) → P l-t Q viaInv : Invariant (stateMachine sys) (P ⇒ Q) → P l-t Q viaTrans : ∀ {R} → P l-t R → R l-t Q → P l-t Q viaTrans2 : ∀ {R} → P l-t (Q ∪ R) → R l-t Q → P l-t Q viaDisj : ∀ {P₁ P₂} → P ⊆ (P₁ ∪ P₂) → P₁ l-t Q → P₂ l-t Q → P l-t Q viaUseInv : ∀ {R} → Invariant (stateMachine sys) R → (P ∩ R) l-t (R ⇒ Q) → P l-t Q viaWFR : ∀ (F : Z → Pred State 0ℓ) → P l-t (Q ∪ [∃ x ∶ F x ]) → (∀ (w : Z) → F w l-t (Q ∪ [∃ x ⇒ _< w ∶ F x ])) → P l-t Q viaAllVal : ∀ {A : Set} → {R : A → Pred State 0ℓ} → Invariant (stateMachine sys) [∃ x ∶ R x ] → (∀ (a : A) → (P ∩ R a) l-t Q ) → P l-t Q viaStable : ∀ {P' Q' S} → Stable (stateMachine sys) S → P l-t P' ∩ S → P' l-t Q' → Q' ∩ S l-t Q → P l-t Q P⊆QQ→Inv[P⇒Q] : ∀ {P Q} {sm : StateMachine State Event} → P ⊆ Q → Invariant sm (P ⇒ Q) P⊆QQ→Inv[P⇒Q] p⊆q rs pS with p⊆q pS ... | qS = qS invR⇒P-l-t-P∧R : ∀ {P R} {sm : StateMachine State Event} → Invariant (stateMachine sys) R → P l-t P ∩ R invR⇒P-l-t-P∧R invR = viaInv (λ rs ps → ps , (invR rs))
32.974194
92
0.465271
20fff9337a60567cf4b67a8ee1e2e04698842c2f
3,015
agda
Agda
Math/FormalLanguage.agda
rei1024/agda-misc
37200ea91d34a6603d395d8ac81294068303f577
[ "MIT" ]
3
2020-04-07T17:49:42.000Z
2020-04-21T00:03:43.000Z
Math/FormalLanguage.agda
rei1024/agda-misc
37200ea91d34a6603d395d8ac81294068303f577
[ "MIT" ]
null
null
null
Math/FormalLanguage.agda
rei1024/agda-misc
37200ea91d34a6603d395d8ac81294068303f577
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} module Math.FormalLanguage where -- agda-stdlib import Algebra.FunctionProperties as FP import Algebra.Structures as Structures open import Level renaming (zero to lzero; suc to lsuc) open import Data.List as L using (List; []; _++_) import Data.List.Properties as Lₚ open import Data.Nat hiding (_⊔_; _^_) open import Data.Empty open import Data.Product using (proj₁; proj₂; _,_; _×_; ∃₂; ∃) open import Function using (_$_) import Function as F open import Relation.Binary.PropositionalEquality open import Relation.Binary open import Relation.Unary hiding (∅; {_}) import Relation.Unary as U import Relation.Unary.Properties as Uₚ -- Equivalence of predicate infix 4 _≡ᴾ_ _≡ᴾ_ : ∀ {a l} {A : Set a} → Rel (Pred A l) (a ⊔ l) _≡ᴾ_ P Q = (P ⊆ Q) × (Q ⊆ P) ≡ᴾ-refl : ∀ {a l} {A : Set a} → Reflexive {A = Pred A l} _≡ᴾ_ ≡ᴾ-refl = F.id , F.id ≡ᴾ-sym : ∀ {a l} {A : Set a} → Symmetric {A = Pred A l} _≡ᴾ_ ≡ᴾ-sym = Data.Product.swap ≡ᴾ-trans : ∀ {a l} {A : Set a} → Transitive {A = Pred A l} _≡ᴾ_ ≡ᴾ-trans P≡Q Q≡R = proj₁ Q≡R F.∘ proj₁ P≡Q , proj₂ P≡Q F.∘ proj₂ Q≡R ≡ᴾ-isEquivalence : ∀ {a l} {A : Set a} → IsEquivalence {A = Pred A l} _≡ᴾ_ ≡ᴾ-isEquivalence = record { refl = ≡ᴾ-refl ; sym = ≡ᴾ-sym ; trans = ≡ᴾ-trans } ≡ᴾ-setoid : ∀ {a l} {A : Set a} → Setoid _ _ ≡ᴾ-setoid {a} {l} {A} = record { Carrier = Pred A l ; _≈_ = _≡ᴾ_ ; isEquivalence = ≡ᴾ-isEquivalence } ∅ : ∀ {a l} {A : Set a} → Pred A l ∅ {l = l} = λ _ → Lift l ⊥ {_} : ∀ {a l} {A : Set a} → A → Pred A (a ⊔ l) {_}{l = l} x = λ y → Lift l (y ≡ x) Lang : ∀ {s} → Set s → (l : Level) → Set _ Lang Σ l = Pred (List Σ) l -- TODO Move Math.FormalLanguage.Construct.EmptyLang data EmptyLang {a l} {A : Set a} : Lang A (a ⊔ l) where mkEmptyLang : EmptyLang [] -- TODO Move Math.FormalLanguage.Construct.Concat -- TODO Hetero -- Lang A l → Lang B l → Lang (A ⊎ B) l -- map inj₁ xs ++ map inj₂ ys -- concatenation of formal language data _<>_ {a l} {A : Set a} (L₁ L₂ : Lang A l) : Lang A (a ⊔ l) where mk<> : ∀ {xs ys} → L₁ xs → L₂ ys → (L₁ <> L₂) (xs ++ ys) -- TODO Move Math.FormalLanguage.Construct.Concat.Properties module _ {s l} {Σ : Set s} where open FP {A = Lang Σ (s ⊔ l)} _≡ᴾ_ <>-identityˡ : LeftIdentity (EmptyLang {l = l}) _<>_ <>-identityˡ L = to , from where to : EmptyLang <> L ⊆ L to (mk<> mkEmptyLang x₁) = x₁ from : L ⊆ EmptyLang <> L from Lx = mk<> mkEmptyLang Lx <>-identityʳ : RightIdentity (EmptyLang {l = l}) _<>_ <>-identityʳ L = to , from where to : L <> EmptyLang ⊆ L to (mk<> Lx mkEmptyLang) = subst L (sym $ Lₚ.++-identityʳ _) Lx from : L ⊆ L <> EmptyLang from {xs} x = subst (L <> EmptyLang) (Lₚ.++-identityʳ xs) $ mk<> {xs = xs} {ys = []} x mkEmptyLang {- TODO move contents of agda-combinatorics to agda-misc <>-dec : ∀ {L₁ L₂ : Lang Σ l} → U.Decidable L₁ → U.Decidable L₂ → U.Decidable (L₁ <> L₂) <>-dec L₁? L₂? zs with L.filter (L₁? Uₚ.×? L₂?) (splits₂ zs) ... | x = ? -}
30.765306
74
0.593698
5055a15468dd45391b0f08839d1124ab74ccab8a
437
agda
Agda
Cubical/Algebra/RingSolver/IntAsRawRing.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
301
2018-10-17T18:00:24.000Z
2022-03-24T02:10:47.000Z
Cubical/Algebra/RingSolver/IntAsRawRing.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
584
2018-10-15T09:49:02.000Z
2022-03-30T12:09:17.000Z
Cubical/Algebra/RingSolver/IntAsRawRing.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
134
2018-11-16T06:11:03.000Z
2022-03-23T16:22:13.000Z
{-# OPTIONS --safe #-} module Cubical.Algebra.RingSolver.IntAsRawRing where open import Cubical.Data.Nat hiding (_+_; _·_) open import Cubical.Data.Int open import Cubical.Data.Int.Base open import Cubical.Foundations.Prelude open import Cubical.Algebra.RingSolver.RawRing ℤAsRawRing : RawRing ℓ-zero ℤAsRawRing = rawring ℤ (pos zero) (pos (suc zero)) _+_ _·_ (λ k → - k) +Ridℤ : (k : ℤ) → (pos zero) + k ≡ k +Ridℤ k = sym (pos0+ k)
27.3125
70
0.713959
1c4a99d9cd2a83a1078b1d99b0d81cd4d195b6ef
5,628
agda
Agda
core/lib/types/Cover.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
null
null
null
core/lib/types/Cover.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
null
null
null
core/lib/types/Cover.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
1
2018-12-26T21:31:57.000Z
2018-12-26T21:31:57.000Z
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics renaming (pt to pt⊙) open import lib.NConnected open import lib.types.TLevel open import lib.NType2 open import lib.types.Pi open import lib.types.Sigma open import lib.types.LoopSpace open import lib.types.Truncation open import lib.types.PathSet module lib.types.Cover {i} where {- The definition of covering spaces. -} record Cover (A : Type i) j : Type (lmax i (lsucc j)) where constructor cover field Fiber : A → Type j Fiber-level : ∀ a → is-set (Fiber a) Fiber-is-set = Fiber-level TotalSpace = Σ A Fiber ⊙Cover : ∀ (X : Ptd i) j → Type (lmax i (lsucc j)) ⊙Cover X j = Σ (Cover (de⊙ X) j) λ C → Cover.Fiber C (pt⊙ X) module ⊙Cover {X : Ptd i} {j} (⊙cov : ⊙Cover X j) where cov = fst ⊙cov pt = snd ⊙cov open Cover cov public -- Basics module _ {A : Type i} {j} where open Cover -- Equality between covers. private cover=′ : {c₁ c₂ : Cover A j} → Fiber c₁ == Fiber c₂ → c₁ == c₂ cover=′ {cover f _} {cover .f _} idp = ap (cover f) $ prop-has-all-paths (Π-is-prop λ _ → is-set-is-prop) _ _ cover= : {c₁ c₂ : Cover A j} → (∀ a → Fiber c₁ a ≃ Fiber c₂ a) → c₁ == c₂ cover= F≃ = cover=′ (λ= λ a → ua $ F≃ a) -- The definition of universality in terms of connectedness. is-universal : Cover A j → Type (lmax i j) is-universal cov = is-connected 1 $ TotalSpace cov module _ (A : Type i) j where -- In terms of connectedness UniversalCover : Type (lmax i (lsucc j)) UniversalCover = Σ (Cover A j) is-universal module _ (X : Ptd i) j where -- In terms of connectedness ⊙UniversalCover : Type (lmax i (lsucc j)) ⊙UniversalCover = Σ (⊙Cover X j) (λ ⊙cov → is-universal (fst ⊙cov)) module ⊙UniversalCover {X : Ptd i} {j} (⊙uc : ⊙UniversalCover X j) where ⊙cov = fst ⊙uc is-univ = snd ⊙uc open ⊙Cover ⊙cov public -- Theorem: A covering space keeps higher homotopy groups. module _ (X : Ptd i) {j} (c : Cover (de⊙ X) j) (a↑ : Cover.Fiber c (pt⊙ X)) where open Cover c private F = Cover.Fiber c F-level = Cover.Fiber-level c A = de⊙ X a = pt⊙ X private -- The projection map with one end free (in order to apply J). to′ : ∀ {p⇑ : _==_ {A = Σ A F} (a , a↑) (a , a↑)} → idp == p⇑ → idp == fst= p⇑ to′ idp=p⇑ = ap fst= idp=p⇑ -- The projection map from Ω²(Σ A F) to Ω²(A). to : Ω^ 2 ⊙[ Σ A F , (a , a↑) ] → Ω^ 2 X to p²⇑ = to′ {p⇑ = idp} p²⇑ -- Auxiliary synthesized path for injection. idp=p↑ : ∀ {p : a == a} {p↑ : a↑ == a↑ [ F ↓ p ]} → (idp=p : idp == p) → idp == p↑ [ (λ p → a↑ == a↑ [ F ↓ p ]) ↓ idp=p ] idp=p↑ idp = prop-has-all-paths (F-level a _ _) _ _ -- The injection map with some ends free (in order to apply J). from′ : ∀ {p : a == a} {p↑ : a↑ == a↑ [ F ↓ p ]} → (idp=p : idp == p) → idp == p↑ -- aux [ (λ p → a↑ == a↑ [ F ↓ p ]) ↓ idp=p ] → idp == pair= p p↑ from′ idp=p idp=p↑ = pair== idp=p idp=p↑ -- The injection map from Ω²(A) to Ω²(Σ A F). from : Ω^ 2 X → Ω^ 2 ⊙[ Σ A F , (a , a↑) ] from p² = from′ {p = idp} {p↑ = idp} p² (idp=p↑ p²) -- Injection is left-inverse to projection (with some ends free). from′-to′ : ∀ {p⇑ : _==_ {A = Σ A F} (a , a↑) (a , a↑)} → (idp=p⇑ : idp == p⇑) → (idp=snd=p⇑ : idp == snd= p⇑ -- aux [ (λ p → a↑ == a↑ [ F ↓ p ]) ↓ to′ idp=p⇑ ]) → from′ (to′ idp=p⇑) idp=snd=p⇑ == idp=p⇑ [ (λ p⇑ → idp == p⇑) ↓ ! (pair=-η p⇑) ] from′-to′ idp idp=snd=p⇑ = ap (from′ idp) $ contr-has-all-paths (F-level a _ _ _ _) _ _ -- Injection is left-inverse to projection. from-to : ∀ p²⇑ → from (to p²⇑) == p²⇑ from-to p²⇑ = from′-to′ {p⇑ = idp} p²⇑ (idp=p↑ (to′ p²⇑)) -- Injection is right-inverse to projection (with some ends free). to′-from′ : ∀ {p : a == a} {p↑ : a↑ == a↑ [ F ↓ p ]} → (idp=p : idp == p) → (idp=p↑ : idp == p↑ -- aux [ (λ p → a↑ == a↑ [ F ↓ p ]) ↓ idp=p ]) → to′ (from′ idp=p idp=p↑) == idp=p [ (λ p → idp == p) ↓ fst=-β p p↑ ] to′-from′ idp idp = idp -- Injection is right-inverse to projection. to-from : ∀ p² → to (from p²) == p² to-from p² = to′-from′ p² (idp=p↑ p²) -- The theorem. Ω²ΣAFiber≃Ω²A : Ω^ 2 ⊙[ Σ A F , (a , a↑) ] ≃ Ω^ 2 X Ω²ΣAFiber≃Ω²A = to , is-eq to from to-from from-to -- A natural way to construct a π1-set from covering spaces. module _ {A : Type i} where open Cover cover-trace : ∀ {j} (cov : Cover A j) {a₁ a₂} → Fiber cov a₁ → a₁ =₀ a₂ → Fiber cov a₂ cover-trace cov a↑ p = transport₀ (Fiber cov) (Fiber-is-set cov _) p a↑ abstract cover-trace-idp₀ : ∀ {j} (cov : Cover A j) {a₁} → (a↑ : Fiber cov a₁) → cover-trace cov a↑ idp₀ == a↑ cover-trace-idp₀ cov a↑ = idp cover-paste : ∀ {j} (cov : Cover A j) {a₁ a₂} → (a↑ : Fiber cov a₁) → (loop : a₁ =₀ a₁) → (p : a₁ =₀ a₂) → cover-trace cov (cover-trace cov a↑ loop) p == cover-trace cov a↑ (loop ∙₀ p) cover-paste cov a↑ loop p = ! $ transp₀-∙₀ (Fiber-is-set cov) loop p a↑ -- Path sets form a covering space module _ (X : Ptd i) where path-set-cover : Cover (de⊙ X) i path-set-cover = record { Fiber = λ a → pt⊙ X =₀ a ; Fiber-level = λ a → Trunc-level } -- Cover morphisms CoverHom : ∀ {A : Type i} {j₁ j₂} → (cov1 : Cover A j₁) → (cov2 : Cover A j₂) → Type (lmax i (lmax j₁ j₂)) CoverHom (cover F₁ _) (cover F₂ _) = ∀ a → F₁ a → F₂ a
31.617978
75
0.524343
cb2e4429784b05161950b345853ab7b0c945fc18
3,443
agda
Agda
lib/types/Coproduct.agda
UlrikBuchholtz/HoTT-Agda
f8fa68bf753d64d7f45556ca09d0da7976709afa
[ "MIT" ]
1
2021-06-30T00:17:55.000Z
2021-06-30T00:17:55.000Z
lib/types/Coproduct.agda
UlrikBuchholtz/HoTT-Agda
f8fa68bf753d64d7f45556ca09d0da7976709afa
[ "MIT" ]
null
null
null
lib/types/Coproduct.agda
UlrikBuchholtz/HoTT-Agda
f8fa68bf753d64d7f45556ca09d0da7976709afa
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} open import lib.Basics open import lib.types.Bool open import lib.types.Empty open import lib.types.Lift open import lib.types.Pointed module lib.types.Coproduct where module _ {i j} {A : Type i} {B : Type j} where ⊔-code : Coprod A B → Coprod A B → Type (lmax i j) ⊔-code (inl a₁) (inl a₂) = Lift {j = (lmax i j)} $ a₁ == a₂ ⊔-code (inl a₁) (inr b₂) = Lift Empty ⊔-code (inr b₁) (inl a₂) = Lift Empty ⊔-code (inr b₁) (inr b₂) = Lift {j = (lmax i j)} $ b₁ == b₂ ⊔-encode : {x y : Coprod A B} → (x == y) → ⊔-code x y ⊔-encode {inl a₁} {y} p = transport (⊔-code $ inl a₁) p (lift $ idp {a = a₁}) ⊔-encode {inr b₁} {y} p = transport (⊔-code $ inr b₁) p (lift $ idp {a = b₁}) ⊔-decode : {x y : Coprod A B} → ⊔-code x y → (x == y) ⊔-decode {inl _} {inl _} c = ap inl $ lower c ⊔-decode {inl _} {inr _} c = Empty-rec $ lower c ⊔-decode {inr _} {inl _} c = Empty-rec $ lower c ⊔-decode {inr _} {inr _} c = ap inr (lower c) ⊔-code-equiv : (x y : Coprod A B) → (x == y) ≃ ⊔-code x y ⊔-code-equiv x y = equiv ⊔-encode ⊔-decode (f-g x y) (g-f x y) where f-g : ∀ x' y' → ∀ c → ⊔-encode (⊔-decode {x'} {y'} c) == c f-g (inl a₁) (inl .a₁) (lift idp) = idp f-g (inl a₁) (inr b₂) b = Empty-rec $ lower b f-g (inr b₁) (inl a₂) b = Empty-rec $ lower b f-g (inr b₁) (inr .b₁) (lift idp) = idp g-f : ∀ x' y' → ∀ p → ⊔-decode (⊔-encode {x'} {y'} p) == p g-f (inl _) .(inl _) idp = idp g-f (inr _) .(inr _) idp = idp inl=inl-equiv : (a₁ a₂ : A) → (inl a₁ == inl a₂) ≃ (a₁ == a₂) inl=inl-equiv a₁ a₂ = lift-equiv ∘e ⊔-code-equiv (inl a₁) (inl a₂) inr=inr-equiv : (b₁ b₂ : B) → (inr b₁ == inr b₂) ≃ (b₁ == b₂) inr=inr-equiv b₁ b₂ = lift-equiv ∘e ⊔-code-equiv (inr b₁) (inr b₂) inl≠inr : (a₁ : A) (b₂ : B) → (inl a₁ ≠ inr b₂) inl≠inr a₁ b₂ p = lower $ ⊔-encode p inr≠inl : (b₁ : B) (a₂ : A) → (inr b₁ ≠ inl a₂) inr≠inl a₁ b₂ p = lower $ ⊔-encode p ⊔-level : ∀ {n} → has-level (S (S n)) A → has-level (S (S n)) B → has-level (S (S n)) (Coprod A B) ⊔-level pA _ (inl a₁) (inl a₂) = equiv-preserves-level ((inl=inl-equiv a₁ a₂)⁻¹) (pA a₁ a₂) ⊔-level _ _ (inl a₁) (inr b₂) = λ p → Empty-rec (inl≠inr a₁ b₂ p) ⊔-level _ _ (inr b₁) (inl a₂) = λ p → Empty-rec (inr≠inl b₁ a₂ p) ⊔-level _ pB (inr b₁) (inr b₂) = equiv-preserves-level ((inr=inr-equiv b₁ b₂)⁻¹) (pB b₁ b₂) infix 80 _⊙⊔_ _⊙⊔_ : ∀ {i j} → Ptd i → Ptd j → Ptd (lmax i j) X ⊙⊔ Y = ⊙[ Coprod (fst X) (fst Y) , inl (snd X) ] _⊔⊙_ : ∀ {i j} → Ptd i → Ptd j → Ptd (lmax i j) X ⊔⊙ Y = ⊙[ Coprod (fst X) (fst Y) , inr (snd Y) ] codiag : ∀ {i} {A : Type i} → A ⊔ A → A codiag (inl a) = a codiag (inr a) = a ⊙codiag : ∀ {i} {X : Ptd i} → fst (X ⊙⊔ X ⊙→ X) ⊙codiag = (codiag , idp) -- A binary sigma is a coproduct ΣBool-equiv-⊔ : ∀ {i} (Pick : Lift {j = i} Bool → Type i) → Σ _ Pick ≃ (Pick (lift true) ⊔ Pick (lift false)) ΣBool-equiv-⊔ Pick = equiv into out into-out out-into where into : Σ _ Pick → (Pick (lift true) ⊔ Pick (lift false)) into (lift true , a) = inl a into (lift false , b) = inr b out : (Pick (lift true) ⊔ Pick (lift false)) → Σ _ Pick out (inl a) = (lift true , a) out (inr b) = (lift false , b) into-out : ∀ c → into (out c) == c into-out (inl a) = idp into-out (inr b) = idp out-into : ∀ s → out (into s) == s out-into (lift true , a) = idp out-into (lift false , b) = idp
35.864583
79
0.526576
1c4679b695db6afe60a9819a13f9e58c013b65b3
6,188
agda
Agda
theorems/cw/cohomology/cochainequiv/HigherCoboundary.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
294
2015-01-09T16:23:23.000Z
2022-03-20T13:54:45.000Z
theorems/cw/cohomology/cochainequiv/HigherCoboundary.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
31
2015-03-05T20:09:00.000Z
2021-10-03T19:15:25.000Z
theorems/cw/cohomology/cochainequiv/HigherCoboundary.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
50
2015-01-10T01:48:08.000Z
2022-02-14T03:03:25.000Z
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import homotopy.Bouquet open import homotopy.FinWedge open import homotopy.SphereEndomorphism open import groups.SphereEndomorphism open import cw.CW open import cw.FinCW open import cw.WedgeOfCells open import cw.FinBoundary open import cohomology.Theory module cw.cohomology.cochainequiv.HigherCoboundary (OT : OrdinaryTheory lzero) {n} (⊙fin-skel : ⊙FinSkeleton (S (S n))) where open OrdinaryTheory OT open import cohomology.SubFinBouquet OT open import cohomology.RephraseSubFinCoboundary OT private fin-skel = ⊙FinSkeleton.skel ⊙fin-skel I = AttachedFinSkeleton.numCells fin-skel ac = ⊙FinSkeleton-has-cells-with-choice 0 ⊙fin-skel lzero dec = ⊙FinSkeleton-has-cells-with-dec-eq ⊙fin-skel ⊙fin-skel₋₁ = ⊙fcw-init ⊙fin-skel fin-skel₋₁ = ⊙FinSkeleton.skel ⊙fin-skel₋₁ I₋₁ = AttachedFinSkeleton.numCells fin-skel₋₁ ac₋₁ = ⊙FinSkeleton-has-cells-with-choice 0 ⊙fin-skel₋₁ lzero dec₋₁ = ⊙FinSkeleton-has-cells-with-dec-eq ⊙fin-skel₋₁ open import cw.cohomology.WedgeOfCells OT open import cw.cohomology.reconstructed.HigherCoboundary OT ⊙⦉ ⊙fin-skel ⦊ open import cw.cohomology.cochainequiv.HigherCoboundaryAbstractDefs OT ⊙fin-skel abstract rephrase-cw-co∂-last-in-degree : ∀ g → GroupIso.f (CXₙ/Xₙ₋₁-diag-β ⊙⦉ ⊙fin-skel ⦊ ac) (GroupHom.f cw-co∂-last (GroupIso.g (CXₙ/Xₙ₋₁-diag-β ⊙⦉ ⊙fin-skel₋₁ ⦊ ac₋₁) g)) ∼ λ <I → Group.sum (C2 0) (λ <I₋₁ → Group.exp (C2 0) (g <I₋₁) (fdegree-last fin-skel <I <I₋₁)) rephrase-cw-co∂-last-in-degree g <I = GroupIso.f (C-FinBouquet-diag (S (S n)) I) (CEl-fmap (ℕ-to-ℤ (S (S n))) (⊙–> (Bouquet-⊙equiv-Xₙ/Xₙ₋₁ ⦉ fin-skel ⦊)) (GroupHom.f cw-co∂-last (CEl-fmap (ℕ-to-ℤ (S n)) (⊙<– (Bouquet-⊙equiv-Xₙ/Xₙ₋₁ ⦉ fin-skel₋₁ ⦊)) (GroupIso.g (C-FinBouquet-diag (S n) I₋₁) g)))) <I =⟨ ap (λ g → GroupIso.f (C-FinBouquet-diag (S (S n)) I) (CEl-fmap (ℕ-to-ℤ (S (S n))) (⊙–> (Bouquet-⊙equiv-Xₙ/Xₙ₋₁ ⦉ fin-skel ⦊)) g) <I) $ cw-co∂-last-β (CEl-fmap (ℕ-to-ℤ (S n)) (⊙<– (Bouquet-⊙equiv-Xₙ/Xₙ₋₁ ⦉ fin-skel₋₁ ⦊)) (GroupIso.g (C-FinBouquet-diag (S n) I₋₁) g)) ⟩ GroupIso.f (C-FinBouquet-diag (S (S n)) I) (CEl-fmap (ℕ-to-ℤ (S (S n))) (⊙–> (Bouquet-⊙equiv-Xₙ/Xₙ₋₁ ⦉ fin-skel ⦊)) (CEl-fmap (ℕ-to-ℤ (S (S n))) ⊙cw-∂-before-Susp (<– (CEl-Susp (ℕ-to-ℤ (S n)) (⊙Xₙ/Xₙ₋₁ ⦉ fin-skel₋₁ ⦊)) (CEl-fmap (ℕ-to-ℤ (S n)) (⊙<– (Bouquet-⊙equiv-Xₙ/Xₙ₋₁ ⦉ fin-skel₋₁ ⦊)) (GroupIso.g (C-FinBouquet-diag (S n) I₋₁) g))))) <I =⟨ ap (λ g → GroupIso.f (C-FinBouquet-diag (S (S n)) I) (CEl-fmap (ℕ-to-ℤ (S (S n))) (⊙–> (Bouquet-⊙equiv-Xₙ/Xₙ₋₁ ⦉ fin-skel ⦊)) (CEl-fmap (ℕ-to-ℤ (S (S n))) ⊙cw-∂-before-Susp g)) <I) $ C-Susp-fmap' (ℕ-to-ℤ (S n)) (⊙<– (Bouquet-⊙equiv-Xₙ/Xₙ₋₁ ⦉ fin-skel₋₁ ⦊)) □$ᴳ (GroupIso.g (C-FinBouquet-diag (S n) I₋₁) g) ⟩ GroupIso.f (C-FinBouquet-diag (S (S n)) I) (CEl-fmap (ℕ-to-ℤ (S (S n))) (⊙–> (Bouquet-⊙equiv-Xₙ/Xₙ₋₁ ⦉ fin-skel ⦊)) (CEl-fmap (ℕ-to-ℤ (S (S n))) ⊙cw-∂-before-Susp (CEl-fmap (ℕ-to-ℤ (S (S n))) (⊙Susp-fmap (<– (Bouquet-equiv-Xₙ/Xₙ₋₁ ⦉ fin-skel₋₁ ⦊))) (<– (CEl-Susp (ℕ-to-ℤ (S n)) (⊙FinBouquet _ (S n))) (GroupIso.g (C-FinBouquet-diag (S n) I₋₁) g))))) <I =⟨ ap (λ g → GroupIso.f (C-FinBouquet-diag (S (S n)) I) g <I) $ ∘-CEl-fmap (ℕ-to-ℤ (S (S n))) (⊙–> (Bouquet-⊙equiv-Xₙ/Xₙ₋₁ ⦉ fin-skel ⦊)) ⊙cw-∂-before-Susp (CEl-fmap (ℕ-to-ℤ (S (S n))) (⊙Susp-fmap (<– (Bouquet-equiv-Xₙ/Xₙ₋₁ ⦉ fin-skel₋₁ ⦊))) (<– (CEl-Susp (ℕ-to-ℤ (S n)) (⊙FinBouquet _ (S n))) (GroupIso.g (C-FinBouquet-diag (S n) I₋₁) g))) ∙ ∘-CEl-fmap (ℕ-to-ℤ (S (S n))) (⊙cw-∂-before-Susp ⊙∘ ⊙–> (Bouquet-⊙equiv-Xₙ/Xₙ₋₁ ⦉ fin-skel ⦊)) (⊙Susp-fmap (<– (Bouquet-equiv-Xₙ/Xₙ₋₁ ⦉ fin-skel₋₁ ⦊))) (<– (CEl-Susp (ℕ-to-ℤ (S n)) (⊙FinBouquet _ (S n))) (GroupIso.g (C-FinBouquet-diag (S n) I₋₁) g)) ∙ ap (λ f → CEl-fmap (ℕ-to-ℤ (S (S n))) f (<– (CEl-Susp (ℕ-to-ℤ (S n)) (⊙FinBouquet _ (S n))) (GroupIso.g (C-FinBouquet-diag (S n) I₋₁) g))) (! ⊙function₀'-β) ⟩ GroupIso.f (C-FinBouquet-diag (S (S n)) I) (CEl-fmap (ℕ-to-ℤ (S (S n))) ⊙function₀' (<– (CEl-Susp (ℕ-to-ℤ (S n)) (⊙FinBouquet _ (S n))) (GroupIso.g (C-FinBouquet-diag (S n) I₋₁) g))) <I =⟨ rephrase-in-degree' (S n) {I = I} {J = I₋₁} ⊙function₀' g <I ⟩ Group.sum (C2 0) (λ <I₋₁ → Group.exp (C2 0) (g <I₋₁) (⊙SphereS-endo-degree (S n) (⊙Susp-fmap (fwproj <I₋₁) ⊙∘ ⊙function₀' ⊙∘ ⊙fwin <I))) =⟨ ap (Group.sum (C2 0)) (λ= λ <I₋₁ → ap (Group.exp (C2 0) (g <I₋₁)) $ ⊙SphereS-endo-degree-base-indep (S n) {f = ( ⊙Susp-fmap (fwproj <I₋₁) ⊙∘ ⊙function₀' ⊙∘ ⊙fwin <I)} {g = (Susp-fmap (function₁' <I <I₋₁) , idp)} (mega-reduction <I <I₋₁)) ⟩ Group.sum (C2 0) (λ <I₋₁ → Group.exp (C2 0) (g <I₋₁) (⊙SphereS-endo-degree (S n) (Susp-fmap (function₁' <I <I₋₁) , idp))) =⟨ ap (Group.sum (C2 0)) (λ= λ <I₋₁ → ap (Group.exp (C2 0) (g <I₋₁)) $ ⊙SphereS-endo-degree-Susp' n (function₁' <I <I₋₁)) ⟩ Group.sum (C2 0) (λ <I₋₁ → Group.exp (C2 0) (g <I₋₁) (Trunc-⊙SphereS-endo-degree n (Trunc-⊙SphereS-endo-in n [ function₁' <I <I₋₁ ]))) =⟨ ap (Group.sum (C2 0)) (λ= λ <I₋₁ → ap (λ f → Group.exp (C2 0) (g <I₋₁) (Trunc-⊙SphereS-endo-degree n (Trunc-⊙SphereS-endo-in n [ f ]))) (function₁'-β <I <I₋₁)) ⟩ Group.sum (C2 0) (λ <I₋₁ → Group.exp (C2 0) (g <I₋₁) (Trunc-⊙SphereS-endo-degree n (Trunc-⊙SphereS-endo-in n [ function₁ <I <I₋₁ ]))) =∎
44.84058
132
0.507434
c539636a2e51b880277560449e09822f6dcffdf0
919
agda
Agda
src/Categories/Category/Construction/Cowedges.agda
jaykru/agda-categories
a4053cf700bcefdf73b857c3352f1eae29382a60
[ "MIT" ]
279
2019-06-01T14:36:40.000Z
2022-03-22T00:40:14.000Z
src/Categories/Category/Construction/Cowedges.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
236
2019-06-01T14:53:54.000Z
2022-03-28T14:31:43.000Z
src/Categories/Category/Construction/Cowedges.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
64
2019-06-02T16:58:15.000Z
2022-03-14T02:00:59.000Z
{-# OPTIONS --without-K --safe #-} open import Categories.Category.Core using (Category) open import Categories.Functor.Bifunctor using (Bifunctor) module Categories.Category.Construction.Cowedges {o ℓ e o′ ℓ′ e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} (F : Bifunctor (Category.op C) C D) where open import Level open import Categories.Category.Core using (Category) open import Categories.Diagram.Cowedge F Cowedges : Category (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′) (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′) e′ Cowedges = record { Obj = Cowedge ; _⇒_ = Cowedge-Morphism ; _≈_ = λ M N → u M ≈ u N ; id = Cowedge-id ; _∘_ = Cowedge-Morphism-∘ ; assoc = assoc ; sym-assoc = sym-assoc ; identityˡ = identityˡ ; identityʳ = identityʳ ; identity² = identity² ; equiv = record { refl = Equiv.refl ; sym = Equiv.sym ; trans = Equiv.trans } ; ∘-resp-≈ = ∘-resp-≈ } where open Cowedge-Morphism open Category D
28.71875
110
0.645267
123aba03793af34365f2ff689c791296871a7ce8
18,623
agda
Agda
Multidimensional/NNat.agda
wrrnhttn/agda-cubical-multidimensional
55709dd950e319c4a105ace33ddaf8b955354add
[ "MIT" ]
null
null
null
Multidimensional/NNat.agda
wrrnhttn/agda-cubical-multidimensional
55709dd950e319c4a105ace33ddaf8b955354add
[ "MIT" ]
4
2019-06-19T20:40:07.000Z
2019-07-02T16:24:01.000Z
Multidimensional/NNat.agda
wrrnhttn/agda-cubical-multidimensional
55709dd950e319c4a105ace33ddaf8b955354add
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical #-} open import Cubical.Core.Glue open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Univalence open import Cubical.Foundations.Isomorphism open import Cubical.Data.Nat open import Cubical.Data.Empty open import Cubical.Data.Unit open import Cubical.Data.Prod open import Cubical.Data.BinNat open import Cubical.Data.Bool open import Cubical.Relation.Nullary open import Direction module NNat where -- much of this is based directly on the -- BinNat module in the Cubical Agda library data BNat : Type₀ where b0 : BNat b1 : BNat x0 : BNat → BNat x1 : BNat → BNat sucBNat : BNat → BNat sucBNat b0 = b1 sucBNat b1 = x0 b1 sucBNat (x0 bs) = x1 bs sucBNat (x1 bs) = x0 (sucBNat bs) BNat→ℕ : BNat → ℕ BNat→ℕ b0 = 0 BNat→ℕ b1 = 1 BNat→ℕ (x0 x) = doubleℕ (BNat→ℕ x) BNat→ℕ (x1 x) = suc (doubleℕ (BNat→ℕ x)) -- BNat→Binℕ : BNat → Binℕ -- BNat→Binℕ pos0 = binℕ0 -- BNat→Binℕ pos1 = binℕpos pos1 -- BNat→Binℕ (x0 x) = {!binℕpos (x0 binℕpos (BNat→Binℕ x))!} -- BNat→Binℕ (x1 x) = {!!} BNat→ℕsucBNat : (b : BNat) → BNat→ℕ (sucBNat b) ≡ suc (BNat→ℕ b) BNat→ℕsucBNat b0 = refl BNat→ℕsucBNat b1 = refl BNat→ℕsucBNat (x0 b) = refl BNat→ℕsucBNat (x1 b) = λ i → doubleℕ (BNat→ℕsucBNat b i) ℕ→BNat : ℕ → BNat ℕ→BNat zero = b0 ℕ→BNat (suc zero) = b1 ℕ→BNat (suc (suc n)) = sucBNat (ℕ→BNat (suc n)) ℕ→BNatSuc : ∀ n → ℕ→BNat (suc n) ≡ sucBNat (ℕ→BNat n) ℕ→BNatSuc zero = refl ℕ→BNatSuc (suc n) = refl bNatInd : {P : BNat → Type₀} → P b0 → ((b : BNat) → P b → P (sucBNat b)) → (b : BNat) → P b -- prove later... BNat→ℕ→BNat : (b : BNat) → ℕ→BNat (BNat→ℕ b) ≡ b BNat→ℕ→BNat b = bNatInd refl hs b where hs : (b : BNat) → ℕ→BNat (BNat→ℕ b) ≡ b → ℕ→BNat (BNat→ℕ (sucBNat b)) ≡ sucBNat b hs b hb = ℕ→BNat (BNat→ℕ (sucBNat b)) ≡⟨ cong ℕ→BNat (BNat→ℕsucBNat b) ⟩ ℕ→BNat (suc (BNat→ℕ b)) ≡⟨ ℕ→BNatSuc (BNat→ℕ b) ⟩ sucBNat (ℕ→BNat (BNat→ℕ b)) ≡⟨ cong sucBNat hb ⟩ sucBNat b ∎ ℕ→BNat→ℕ : (n : ℕ) → BNat→ℕ (ℕ→BNat n) ≡ n ℕ→BNat→ℕ zero = refl ℕ→BNat→ℕ (suc n) = BNat→ℕ (ℕ→BNat (suc n)) ≡⟨ cong BNat→ℕ (ℕ→BNatSuc n) ⟩ BNat→ℕ (sucBNat (ℕ→BNat n)) ≡⟨ BNat→ℕsucBNat (ℕ→BNat n) ⟩ suc (BNat→ℕ (ℕ→BNat n)) ≡⟨ cong suc (ℕ→BNat→ℕ n) ⟩ suc n ∎ BNat≃ℕ : BNat ≃ ℕ BNat≃ℕ = isoToEquiv (iso BNat→ℕ ℕ→BNat ℕ→BNat→ℕ BNat→ℕ→BNat) BNat≡ℕ : BNat ≡ ℕ BNat≡ℕ = ua BNat≃ℕ open NatImpl NatImplBNat : NatImpl BNat z NatImplBNat = b0 s NatImplBNat = sucBNat -- data np (r : ℕ) : Type₀ where bp : DirNum r → np r zp : ∀ (d d′ : DirNum r) → bp d ≡ bp d′ xp : DirNum r → np r → np r sucnp : ∀ {r} → np r → np r sucnp {zero} (bp tt) = xp tt (bp tt) sucnp {zero} (zp tt tt i) = xp tt (bp tt) sucnp {zero} (xp tt n) = xp tt (sucnp n) sucnp {suc r} (bp d) = xp (one-n (suc r)) (bp d) sucnp {suc r} (zp d d′ i) = xp (one-n (suc r)) (zp d d′ i) sucnp {suc r} (xp d n) with max? d ... | no _ = xp (next d) n ... | yes _ = xp (zero-n (suc r)) (sucnp n) np→ℕ : (r : ℕ) (x : np r) → ℕ np→ℕ r (bp x) = 0 np→ℕ r (zp d d′ i) = 0 np→ℕ zero (xp x x₁) = suc (np→ℕ zero x₁) np→ℕ (suc r) (xp x x₁) = sucn (DirNum→ℕ x) (doublesℕ (suc r) (np→ℕ (suc r) x₁)) ℕ→np : (r : ℕ) → (n : ℕ) → np r ℕ→np r zero = bp (zero-n r) ℕ→np zero (suc n) = xp tt (ℕ→np zero n) ℕ→np (suc r) (suc n) = sucnp (ℕ→np (suc r) n) ---- generalize bnat: data N (r : ℕ) : Type₀ where bn : DirNum r → N r xr : DirNum r → N r → N r -- should define induction principle for N r -- we have 2ⁿ "unary" constructors, analogous to BNat with 2¹ (b0 and b1) -- rename n to r -- this likely introduces inefficiencies compared -- to BinNat, with the max? check etc. sucN : ∀ {n} → N n → N n sucN {zero} (bn tt) = xr tt (bn tt) sucN {zero} (xr tt x) = xr tt (sucN x) sucN {suc n} (bn (↓ , ds)) = (bn (↑ , ds)) sucN {suc n} (bn (↑ , ds)) with max? ds ... | no _ = (bn (↓ , next ds)) ... | yes _ = xr (zero-n (suc n)) (bn (one-n (suc n))) sucN {suc n} (xr d x) with max? d ... | no _ = xr (next d) x ... | yes _ = xr (zero-n (suc n)) (sucN x) sucnN : {r : ℕ} → (n : ℕ) → (N r → N r) sucnN n = iter n sucN doubleN : (r : ℕ) → N r → N r doubleN zero (bn tt) = bn tt doubleN zero (xr d x) = sucN (sucN (doubleN zero x)) doubleN (suc r) (bn x) with zero-n? x ... | yes _ = bn x -- bad: ... | no _ = caseBool (bn (doubleDirNum (suc r) x)) (xr (zero-n (suc r)) (bn x)) (doubleable-n? x) -- ... | no _ | doubleable = {!bn (doubleDirNum x)!} -- ... | no _ | notdoubleable = xr (zero-n (suc r)) (bn x) doubleN (suc r) (xr x x₁) = sucN (sucN (doubleN (suc r) x₁)) doublesN : (r : ℕ) → ℕ → N r → N r doublesN r zero m = m doublesN r (suc n) m = doublesN r n (doubleN r m) N→ℕ : (r : ℕ) (x : N r) → ℕ N→ℕ zero (bn tt) = zero N→ℕ zero (xr tt x) = suc (N→ℕ zero x) N→ℕ (suc r) (bn x) = DirNum→ℕ x N→ℕ (suc r) (xr d x) = sucn (DirNum→ℕ d) (doublesℕ (suc r) (N→ℕ (suc r) x)) N→ℕsucN : (r : ℕ) (x : N r) → N→ℕ r (sucN x) ≡ suc (N→ℕ r x) N→ℕsucN zero (bn tt) = refl N→ℕsucN zero (xr tt x) = suc (N→ℕ zero (sucN x)) ≡⟨ cong suc (N→ℕsucN zero x) ⟩ suc (suc (N→ℕ zero x)) ∎ N→ℕsucN (suc r) (bn (↓ , d)) = refl N→ℕsucN (suc r) (bn (↑ , d)) with max? d ... | no d≠max = doubleℕ (DirNum→ℕ (next d)) ≡⟨ cong doubleℕ (next≡suc r d d≠max) ⟩ doubleℕ (suc (DirNum→ℕ d)) ∎ ... | yes d≡max = -- this can probably be shortened by not reducing down to zero sucn (doubleℕ (DirNum→ℕ (zero-n r))) (doublesℕ r (suc (suc (doubleℕ (doubleℕ (DirNum→ℕ (zero-n r))))))) ≡⟨ cong (λ x → sucn (doubleℕ x) (doublesℕ r (suc (suc (doubleℕ (doubleℕ x)))))) (zero-n→0 {r}) ⟩ sucn (doubleℕ zero) (doublesℕ r (suc (suc (doubleℕ (doubleℕ zero))))) ≡⟨ refl ⟩ doublesℕ (suc r) (suc zero) -- 2^(r+1) ≡⟨ sym (doubleDoubles r 1) ⟩ doubleℕ (doublesℕ r (suc zero)) --2*2^r ≡⟨ sym (sucPred (doubleℕ (doublesℕ r (suc zero))) (doubleDoublesOne≠0 r)) ⟩ suc (predℕ (doubleℕ (doublesℕ r (suc zero)))) ≡⟨ cong suc (sym (sucPred (predℕ (doubleℕ (doublesℕ r (suc zero)))) (predDoubleDoublesOne≠0 r))) ⟩ suc (suc (predℕ (predℕ (doubleℕ (doublesℕ r (suc zero)))))) ≡⟨ cong (λ x → suc (suc x)) (sym (doublePred (doublesℕ r (suc zero)))) ⟩ suc (suc (doubleℕ (predℕ (doublesℕ r (suc zero))))) ≡⟨ cong (λ x → suc (suc (doubleℕ x))) (sym (maxr≡pred2ʳ r d d≡max)) ⟩ suc (suc (doubleℕ (DirNum→ℕ d))) -- 2*(2^r - 1) + 2 = 2^(r+1) - 2 + 2 = 2^(r+1) ∎ N→ℕsucN (suc r) (xr (↓ , d) x) = refl N→ℕsucN (suc r) (xr (↑ , d) x) with max? d ... | no d≠max = sucn (doubleℕ (DirNum→ℕ (next d))) (doublesℕ r (doubleℕ (N→ℕ (suc r) x))) ≡⟨ cong (λ y → sucn (doubleℕ y) (doublesℕ r (doubleℕ (N→ℕ (suc r) x)))) (next≡suc r d d≠max) ⟩ sucn (doubleℕ (suc (DirNum→ℕ d))) (doublesℕ r (doubleℕ (N→ℕ (suc r) x))) ≡⟨ refl ⟩ suc (suc (iter (doubleℕ (DirNum→ℕ d)) suc (doublesℕ r (doubleℕ (N→ℕ (suc r) x))))) ∎ ... | yes d≡max = sucn (doubleℕ (DirNum→ℕ (zero-n r))) (doublesℕ r (doubleℕ (N→ℕ (suc r) (sucN x)))) ≡⟨ cong (λ z → sucn (doubleℕ z) (doublesℕ r (doubleℕ (N→ℕ (suc r) (sucN x))))) (zero-n≡0 {r}) ⟩ sucn (doubleℕ zero) (doublesℕ r (doubleℕ (N→ℕ (suc r) (sucN x)))) ≡⟨ refl ⟩ doublesℕ r (doubleℕ (N→ℕ (suc r) (sucN x))) ≡⟨ cong (λ x → doublesℕ r (doubleℕ x)) (N→ℕsucN (suc r) x) ⟩ doublesℕ r (doubleℕ (suc (N→ℕ (suc r) x))) ≡⟨ refl ⟩ doublesℕ r (suc (suc (doubleℕ (N→ℕ (suc r) x)))) -- 2^r * (2x + 2) = 2^(r+1)x + 2^(r+1) ≡⟨ doublesSucSuc r (doubleℕ (N→ℕ (suc r) x)) ⟩ sucn (doublesℕ (suc r) 1) -- _ + 2^(r+1) (doublesℕ (suc r) (N→ℕ (suc r) x)) -- 2^(r+1)x + 2^(r+1) ≡⟨ H r (doublesℕ (suc r) (N→ℕ (suc r) x)) ⟩ suc (suc (sucn (doubleℕ (predℕ (doublesℕ r 1))) -- _ + 2(2^r - 1) + 2 (doublesℕ (suc r) (N→ℕ (suc r) x)))) ≡⟨ refl ⟩ suc (suc (sucn (doubleℕ (predℕ (doublesℕ r 1))) (doublesℕ r (doubleℕ (N→ℕ (suc r) x))))) ≡⟨ cong (λ z → suc (suc (sucn (doubleℕ z) (doublesℕ r (doubleℕ (N→ℕ (suc r) x)))))) (sym (max→ℕ r)) ⟩ suc (suc (sucn (doubleℕ (DirNum→ℕ (max-n r))) (doublesℕ r (doubleℕ (N→ℕ (suc r) x))))) ≡⟨ cong (λ z → suc (suc (sucn (doubleℕ (DirNum→ℕ z)) (doublesℕ r (doubleℕ (N→ℕ (suc r) x)))))) (sym (d≡max)) ⟩ suc (suc (sucn (doubleℕ (DirNum→ℕ d)) (doublesℕ r (doubleℕ (N→ℕ (suc r) x))))) -- (2^r*2x + (2*(2^r - 1))) + 2 = 2^(r+1)x + 2^(r+1) ∎ where H : (n m : ℕ) → sucn (doublesℕ (suc n) 1) m ≡ suc (suc (sucn (doubleℕ (predℕ (doublesℕ n 1))) m)) H zero m = refl H (suc n) m = sucn (doublesℕ n 4) m ≡⟨ cong (λ z → sucn z m) (doublesSucSuc n 2) ⟩ sucn (sucn (doublesℕ (suc n) 1) (doublesℕ n 2)) m ≡⟨ refl ⟩ sucn (sucn (doublesℕ n 2) (doublesℕ n 2)) m ≡⟨ {!!} ⟩ sucn (doubleℕ (doublesℕ n 2)) m ≡⟨ {!!} ⟩ {!!} ℕ→N : (r : ℕ) → (n : ℕ) → N r ℕ→N r zero = bn (zero-n r) ℕ→N zero (suc n) = xr tt (ℕ→N zero n) ℕ→N (suc r) (suc n) = sucN (ℕ→N (suc r) n) ℕ→Nsuc : (r : ℕ) (n : ℕ) → ℕ→N r (suc n) ≡ sucN (ℕ→N r n) ℕ→Nsuc r n = {!!} ℕ→Nsucn : (r : ℕ) (n m : ℕ) → ℕ→N r (sucn n m) ≡ sucnN n (ℕ→N r m) ℕ→Nsucn r n m = {!!} -- NℕNlemma is actually a pretty important fact; -- this is what allows the direct isomorphism of N and ℕ to go -- without the need for an extra datatype, e.g. Pos for BinNat, -- since each ℕ < 2^r maps to its "numeral" in N r. -- should rename and move elsewhere. numeral-next : (r : ℕ) (d : DirNum r) → N (suc r) numeral-next r d = bn (embed-next r d) -- NℕNlemma : (r : ℕ) (d : DirNum r) → ℕ→N r (DirNum→ℕ d) ≡ bn d NℕNlemma zero tt = refl NℕNlemma (suc r) (↓ , ds) = ℕ→N (suc r) (doubleℕ (DirNum→ℕ ds)) ≡⟨ {!!} ⟩ {!!} NℕNlemma (suc r) (↑ , ds) = {!!} N→ℕ→N : (r : ℕ) → (x : N r) → ℕ→N r (N→ℕ r x) ≡ x N→ℕ→N zero (bn tt) = refl N→ℕ→N zero (xr tt x) = cong (xr tt) (N→ℕ→N zero x) N→ℕ→N (suc r) (bn (↓ , ds)) = ℕ→N (suc r) (doubleℕ (DirNum→ℕ ds)) ≡⟨ cong (λ x → ℕ→N (suc r) x) (double-lemma ds) ⟩ ℕ→N (suc r) (DirNum→ℕ {suc r} (↓ , ds)) ≡⟨ NℕNlemma (suc r) (↓ , ds) ⟩ bn (↓ , ds) ∎ N→ℕ→N (suc r) (bn (↑ , ds)) = sucN (ℕ→N (suc r) (doubleℕ (DirNum→ℕ ds))) ≡⟨ cong (λ x → sucN (ℕ→N (suc r) x)) (double-lemma ds) ⟩ sucN (ℕ→N (suc r) (DirNum→ℕ {suc r} (↓ , ds))) ≡⟨ cong sucN (NℕNlemma (suc r) (↓ , ds)) ⟩ sucN (bn (↓ , ds)) ≡⟨ refl ⟩ bn (↑ , ds) ∎ N→ℕ→N (suc r) (xr (↓ , ds) x) = ℕ→N (suc r) (sucn (doubleℕ (DirNum→ℕ ds)) (doublesℕ r (doubleℕ (N→ℕ (suc r) x)))) ≡⟨ cong (λ z → ℕ→N (suc r) (sucn z (doublesℕ r (doubleℕ (N→ℕ (suc r) x))))) (double-lemma ds) ⟩ ℕ→N (suc r) (sucn (DirNum→ℕ {suc r} (↓ , ds)) (doublesℕ r (doubleℕ (N→ℕ (suc r) x)))) ≡⟨ refl ⟩ ℕ→N (suc r) (sucn (DirNum→ℕ {suc r} (↓ , ds)) (doublesℕ (suc r) (N→ℕ (suc r) x))) ≡⟨ ℕ→Nsucn (suc r) (DirNum→ℕ {suc r} (↓ , ds)) (doublesℕ (suc r) (N→ℕ (suc r) x)) ⟩ sucnN (DirNum→ℕ {suc r} (↓ , ds)) (ℕ→N (suc r) (doublesℕ (suc r) (N→ℕ (suc r) x))) ≡⟨ cong (λ z → sucnN (DirNum→ℕ {suc r} (↓ , ds)) z) (H (suc r) (suc r) (N→ℕ (suc r) x)) ⟩ sucnN (DirNum→ℕ {suc r} (↓ , ds)) (doublesN (suc r) (suc r) (ℕ→N (suc r) (N→ℕ (suc r) x))) ≡⟨ cong (λ z → sucnN (DirNum→ℕ {suc r} (↓ , ds)) (doublesN (suc r) (suc r) z)) (N→ℕ→N (suc r) x) ⟩ sucnN (DirNum→ℕ {suc r} (↓ , ds)) (doublesN (suc r) (suc r) x) ≡⟨ G (suc r) (↓ , ds) x snotz ⟩ xr (↓ , ds) x ∎ where H : (r m n : ℕ) → ℕ→N r (doublesℕ m n) ≡ doublesN r m (ℕ→N r n) H r m n = {!!} G : (r : ℕ) (d : DirNum r) (x : N r) → ¬ (r ≡ 0) → sucnN (DirNum→ℕ {r} d) (doublesN r r x) ≡ xr d x G zero d x 0≠0 = ⊥-elim (0≠0 refl) G (suc r) d (bn x) r≠0 = {!!} G (suc r) d (xr x x₁) r≠0 = {!!} N→ℕ→N (suc r) (xr (↑ , ds) x) with max? ds ... | no ds≠max = sucN (ℕ→N (suc r) (sucn (doubleℕ (DirNum→ℕ ds)) (doublesℕ r (doubleℕ (N→ℕ (suc r) x))))) ≡⟨ sym (ℕ→Nsuc (suc r) (sucn (doubleℕ (DirNum→ℕ ds)) (doublesℕ r (doubleℕ (N→ℕ (suc r) x))))) ⟩ ℕ→N (suc r) (suc (sucn (doubleℕ (DirNum→ℕ ds)) (doublesℕ r (doubleℕ (N→ℕ (suc r) x))))) ≡⟨ refl ⟩ ℕ→N (suc r) (suc (sucn (doubleℕ (DirNum→ℕ ds)) (doublesℕ (suc r) (N→ℕ (suc r) x)))) ≡⟨ cong (λ z → ℕ→N (suc r) z) (sym (sucnsuc (doubleℕ (DirNum→ℕ ds)) (doublesℕ (suc r) (N→ℕ (suc r) x)))) ⟩ ℕ→N (suc r) (sucn (doubleℕ (DirNum→ℕ ds)) (suc (doublesℕ (suc r) (N→ℕ (suc r) x)))) ≡⟨ ℕ→Nsucn (suc r) (doubleℕ (DirNum→ℕ ds)) (suc (doublesℕ (suc r) (N→ℕ (suc r) x))) ⟩ sucnN (doubleℕ (DirNum→ℕ ds)) (ℕ→N (suc r) (suc (doublesℕ (suc r) (N→ℕ (suc r) x)))) ≡⟨ cong (λ z → sucnN (doubleℕ (DirNum→ℕ ds)) z) (ℕ→Nsuc (suc r) (doublesℕ (suc r) (N→ℕ (suc r) x))) ⟩ -- (2^(r+1)*x + 1) + 2*ds -- = 2*(2^r*x + ds) + 1 -- = 2*( sucnN (doubleℕ (DirNum→ℕ ds)) (sucN (ℕ→N (suc r) (doublesℕ (suc r) (N→ℕ (suc r) x)))) ≡⟨ {!!} ⟩ {!!} ... | yes ds≡max = {!!} ℕ→N→ℕ : (r : ℕ) → (n : ℕ) → N→ℕ r (ℕ→N r n) ≡ n ℕ→N→ℕ zero zero = refl ℕ→N→ℕ (suc r) zero = doubleℕ (DirNum→ℕ (zero-n r)) ≡⟨ cong doubleℕ (zero-n≡0 {r}) ⟩ doubleℕ zero ≡⟨ refl ⟩ zero ∎ ℕ→N→ℕ zero (suc n) = cong suc (ℕ→N→ℕ zero n) ℕ→N→ℕ (suc r) (suc n) = N→ℕ (suc r) (sucN (ℕ→N (suc r) n)) ≡⟨ N→ℕsucN (suc r) (ℕ→N (suc r) n) ⟩ suc (N→ℕ (suc r) (ℕ→N (suc r) n)) ≡⟨ cong suc (ℕ→N→ℕ (suc r) n) ⟩ suc n ∎ N≃ℕ : (r : ℕ) → N r ≃ ℕ N≃ℕ r = isoToEquiv (iso (N→ℕ r) (ℕ→N r) (ℕ→N→ℕ r) (N→ℕ→N r)) N≡ℕ : (r : ℕ) → N r ≡ ℕ N≡ℕ r = ua (N≃ℕ r) ---- pos approach: data NPos (n : ℕ) : Type₀ where npos1 : NPos n x⇀ : DirNum n → NPos n → NPos n sucNPos : ∀ {n} → NPos n → NPos n sucNPos {zero} npos1 = x⇀ tt npos1 sucNPos {zero} (x⇀ tt x) = x⇀ tt (sucNPos x) sucNPos {suc n} npos1 = x⇀ (next (one-n (suc n))) npos1 sucNPos {suc n} (x⇀ d x) with (max? d) ... | (no _) = x⇀ (next d) x ... | (yes _) = x⇀ (zero-n (suc n)) (sucNPos x) -- some examples for sanity check 2₂ : NPos 1 2₂ = x⇀ (↓ , tt) npos1 3₂ : NPos 1 3₂ = x⇀ (↑ , tt) npos1 4₂ : NPos 1 4₂ = x⇀ (↓ , tt) (x⇀ (↓ , tt) npos1) 2₄ : NPos 2 2₄ = x⇀ (↓ , (↑ , tt)) npos1 -- how does this make sense? 3₄ : NPos 2 3₄ = x⇀ (↑ , (↑ , tt)) npos1 -- how does this make sense? -- sucnpos1≡x⇀one-n : ∀ {r} → sucNPos npos1 ≡ x⇀ (one-n r) npos1 -- sucnpos1≡x⇀one-n {zero} = refl -- sucnpos1≡x⇀one-n {suc r} = {!!} -- sucnposx⇀zero-n≡x⇀one-n : ∀ {r} {p} → sucNPos (x⇀ (zero-n r) p) ≡ x⇀ (one-n r) p -- sucnposx⇀zero-n≡x⇀one-n {zero} {npos1} = {!!} -- sucnposx⇀zero-n≡x⇀one-n {zero} {x⇀ x p} = {!!} -- sucnposx⇀zero-n≡x⇀one-n {suc r} {p} = refl nPosInd : ∀ {r} {P : NPos r → Type₀} → P npos1 → ((p : NPos r) → P p → P (sucNPos p)) → (p : NPos r) → P p nPosInd {r} {P} h1 hs ps = f ps where H : (p : NPos r) → P (x⇀ (zero-n r) p) → P (x⇀ (zero-n r) (sucNPos p)) --H p hx0p = hs (x⇀ (one-n r) p) (hs (x⇀ (zero-n r) p) hx0p) f : (ps : NPos r) → P ps f npos1 = h1 f (x⇀ d ps) with (max? d) ... | (no _) = {!nPosInd (hs npos1 h1) H ps!} ... | (yes _) = {!hs (x⇀ (zero-n r) ps) (nPosInd (hs npos1 h1) H ps)!} -- nPosInd {zero} {P} h1 hs ps = f ps -- where -- H : (p : NPos zero) → P (x⇀ (zero-n zero) p) → P (x⇀ (zero-n zero) (sucNPos p)) -- H p hx0p = hs (x⇀ tt (x⇀ (zero-n zero) p)) (hs (x⇀ (zero-n zero) p) hx0p) -- f : (ps : NPos zero) → P ps -- f npos1 = h1 -- f (x⇀ tt ps) = nPosInd (hs npos1 h1) H ps -- nPosInd {suc r} {P} h1 hs ps = f ps -- where -- H : (p : NPos (suc r)) → P (x⇀ (zero-n (suc r)) p) → P (x⇀ (zero-n (suc r)) (sucNPos p)) -- --H p hx0p = hs (x⇀ (one-n r) p) (hs (x⇀ (zero-n r) p) hx0p) -- f : (ps : NPos (suc r)) → P ps -- f npos1 = h1 -- f (x⇀ d ps) = {!!} NPos→ℕ : ∀ r → NPos r → ℕ NPos→ℕ zero npos1 = suc zero NPos→ℕ zero (x⇀ tt x) = suc (NPos→ℕ zero x) NPos→ℕ (suc r) npos1 = suc zero NPos→ℕ (suc r) (x⇀ d x) with max? d ... | no _ = sucn (DirNum→ℕ (next d)) (doublesℕ (suc r) (NPos→ℕ (suc r) x)) ... | yes _ = sucn (DirNum→ℕ (next d)) (doublesℕ (suc r) (suc (NPos→ℕ (suc r) x))) -- NPos→ℕ (suc r) (x⇀ d x) = -- sucn (DirNum→ℕ d) (doublesℕ (suc r) (NPos→ℕ (suc r) x)) NPos→ℕsucNPos : ∀ r → (p : NPos r) → NPos→ℕ r (sucNPos p) ≡ suc (NPos→ℕ r p) NPos→ℕsucNPos zero npos1 = refl NPos→ℕsucNPos zero (x⇀ d p) = cong suc (NPos→ℕsucNPos zero p) NPos→ℕsucNPos (suc r) npos1 = {!!} sucn (doubleℕ (DirNum→ℕ (zero-n r))) (doublesℕ r 2) ≡⟨ cong (λ y → sucn y (doublesℕ r 2)) (zero-n→0) ⟩ sucn (doubleℕ zero) (doublesℕ r 2) ≡⟨ refl ⟩ doublesℕ r 2 ≡⟨ {!!} ⟩ {!!} NPos→ℕsucNPos (suc r) (x⇀ d p) with max? d ... | no _ = {!!} ... | yes _ = {!!} -- zero≠NPos→ℕ : ∀ {r} → (p : NPos r) → ¬ (zero ≡ NPos→ℕ r p) -- zero≠NPos→ℕ {r} p = {!!} ℕ→NPos : ∀ r → ℕ → NPos r ℕ→NPos zero zero = npos1 ℕ→NPos zero (suc zero) = npos1 ℕ→NPos zero (suc (suc n)) = sucNPos (ℕ→NPos zero (suc n)) ℕ→NPos (suc r) zero = npos1 ℕ→NPos (suc r) (suc zero) = npos1 ℕ→NPos (suc r) (suc (suc n)) = sucNPos (ℕ→NPos (suc r) (suc n)) lemma : ∀ {r} → (ℕ→NPos r (NPos→ℕ r npos1)) ≡ npos1 lemma {zero} = refl lemma {suc r} = refl NPos→ℕ→NPos : ∀ r → (p : NPos r) → ℕ→NPos r (NPos→ℕ r p) ≡ p NPos→ℕ→NPos r p = nPosInd lemma hs p where hs : (p : NPos r) → ℕ→NPos r (NPos→ℕ r p) ≡ p → ℕ→NPos r (NPos→ℕ r (sucNPos p)) ≡ (sucNPos p) hs p hp = ℕ→NPos r (NPos→ℕ r (sucNPos p)) ≡⟨ {!!} ⟩ ℕ→NPos r (suc (NPos→ℕ r p)) ≡⟨ {!!} ⟩ sucNPos (ℕ→NPos r (NPos→ℕ r p)) ≡⟨ cong sucNPos hp ⟩ sucNPos p ∎ -- note: the cases for zero and suc r are almost identical -- (why) does this need to split? ℕ→NPos→ℕ : ∀ r → (n : ℕ) → NPos→ℕ r (ℕ→NPos r (suc n)) ≡ (suc n) ℕ→NPos→ℕ zero zero = refl ℕ→NPos→ℕ zero (suc n) = NPos→ℕ zero (sucNPos (ℕ→NPos zero (suc n))) ≡⟨ {!!} ⟩ suc (NPos→ℕ zero (ℕ→NPos zero (suc n))) ≡⟨ cong suc (ℕ→NPos→ℕ zero n) ⟩ suc (suc n) ∎ ℕ→NPos→ℕ (suc r) zero = refl ℕ→NPos→ℕ (suc r) (suc n) = NPos→ℕ (suc r) (sucNPos (ℕ→NPos (suc r) (suc n))) ≡⟨ {!!} ⟩ suc (NPos→ℕ (suc r) (ℕ→NPos (suc r) (suc n))) ≡⟨ cong suc (ℕ→NPos→ℕ (suc r) n) ⟩ suc (suc n) ∎
33.019504
116
0.503893
fb62ebea2bf70d9cfd2e34c790a0654d814cea12
110
agda
Agda
agda/Cham/Name.agda
riz0id/chemical-abstract-machine
292023fc36fa67ca4a81cff9a875a325a79b9d6f
[ "BSD-3-Clause" ]
null
null
null
agda/Cham/Name.agda
riz0id/chemical-abstract-machine
292023fc36fa67ca4a81cff9a875a325a79b9d6f
[ "BSD-3-Clause" ]
null
null
null
agda/Cham/Name.agda
riz0id/chemical-abstract-machine
292023fc36fa67ca4a81cff9a875a325a79b9d6f
[ "BSD-3-Clause" ]
null
null
null
{-# OPTIONS --without-K --safe #-} module Cham.Name where open import Data.String Name : Set Name = String
12.222222
34
0.681818
c558fa386b713a5e93bc278797c75acd7380432b
7,607
agda
Agda
agda/book/SFHC/v01-01-basics.agda
haroldcarr/learn-haskell-coq-ml-etc
3dc7abca7ad868316bb08f31c77fbba0d3910225
[ "Unlicense" ]
36
2015-01-29T14:37:15.000Z
2021-07-30T06:55:03.000Z
agda/book/SFHC/v01-01-basics.agda
haroldcarr/learn-haskell-coq-ml-etc
3dc7abca7ad868316bb08f31c77fbba0d3910225
[ "Unlicense" ]
null
null
null
agda/book/SFHC/v01-01-basics.agda
haroldcarr/learn-haskell-coq-ml-etc
3dc7abca7ad868316bb08f31c77fbba0d3910225
[ "Unlicense" ]
8
2015-04-13T21:40:15.000Z
2021-09-21T15:58:10.000Z
-- this is so this can be imported even though it has unresolved holes {-# OPTIONS --allow-unsolved-metas #-} module v01-01-basics where import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl) open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; _∎) data day : Set where mon : day tue : day wed : day thu : day fri : day sat : day sun : day next-weekday : day → day next-weekday mon = tue next-weekday tue = wed next-weekday wed = thu next-weekday thu = fri next-weekday fri = mon next-weekday sat = mon next-weekday sun = mon _ : next-weekday fri ≡ mon _ = refl _ : next-weekday (next-weekday sat) ≡ tue _ = refl data bool : Set where true : bool false : bool negb : bool → bool negb true = false negb false = true andb : bool → bool → bool andb true b2 = b2 andb false _ = false orb : bool → bool → bool orb true _ = true orb false b2 = b2 _ : orb false false ≡ false _ = refl _ : orb false true ≡ true _ = refl _ : orb true false ≡ true _ = refl _ : orb true true ≡ true _ = refl nandb : bool → bool → bool nandb true true = false nandb _ _ = true _ : nandb false false ≡ true _ = refl _ : nandb false true ≡ true _ = refl _ : nandb true false ≡ true _ = refl _ : nandb true true ≡ false _ = refl andb3 : bool → bool → bool → bool andb3 true true true = true andb3 _ _ _ = false _ : andb3 true true true ≡ true _ = refl _ : andb3 false true true ≡ false _ = refl _ : andb3 true false true ≡ false _ = refl _ : andb3 true true false ≡ false _ = refl data rgb : Set where red : rgb green : rgb blue : rgb data color : Set where black : color white : color primary : rgb → color monochrome : color → bool monochrome black = true monochrome white = true monochrome (primary _) = false isred : color → bool isred (primary red) = true isred _ = false data bit : Set where B0 : bit B1 : bit data nybble : Set where bits : (b0 b1 b2 b3 : bit) → nybble all-zero : nybble → bool all-zero (bits B0 B0 B0 B0) = true all-zero _ = false _ : all-zero (bits B1 B0 B1 B0) ≡ false _ = refl _ : all-zero (bits B0 B0 B0 B0) ≡ true _ = refl data nat : Set where O : nat S : nat → nat pred : nat → nat pred O = O pred (S n) = n {-# BUILTIN NATURAL nat #-} _ : S (S (S (S O))) ≡ 4 _ = refl minustwo : nat → nat minustwo O = O minustwo (S O) = O minustwo (S (S n)) = n _ : minustwo 4 ≡ 2 _ = refl evenb : nat → bool evenb O = true evenb (S O) = false evenb (S (S n)) = evenb n oddb : nat → bool oddb n = negb (evenb n) _ : oddb 1 ≡ true _ = refl _ : oddb 4 ≡ false _ = refl plus : nat → nat → nat plus O m = m plus (S n) m = S (plus n m) _ : plus 3 2 ≡ 5 _ = refl mult : nat → nat → nat mult O m = 0 mult (S n) m = plus m (mult n m) _ : mult 3 3 ≡ 9 _ = refl minus : nat → nat → nat minus O _ = O minus x O = x minus (S n) (S m) = minus n m exp : (base power : nat) → nat exp _ O = S O exp b (S p) = mult b (exp b p) _ : exp 2 0 ≡ 1 _ = refl _ : exp 2 1 ≡ 2 _ = refl _ : exp 2 2 ≡ 4 _ = refl _ : exp 2 3 ≡ 8 _ = refl factorial : nat → nat factorial O = 1 factorial (S n) = mult (S n) (factorial n) _ : factorial 3 ≡ 6 _ = refl _ : factorial 5 ≡ mult 10 12 _ = refl _+_ : nat → nat → nat _+_ = plus _-_ : nat → nat → nat _-_ = minus _*_ : nat → nat → nat _*_ = mult infixl 6 _+_ _-_ infixl 7 _*_ {-# BUILTIN NATPLUS _+_ #-} {-# BUILTIN NATTIMES _*_ #-} {-# BUILTIN NATMINUS _-_ #-} eqb : (n m : nat) → bool eqb O O = true eqb O (S _) = false eqb (S _) O = false eqb (S l) (S r) = eqb l r leb : (n m : nat) → bool leb O _ = true leb (S n) O = false leb (S n) (S m) = leb n m _ : leb 2 2 ≡ true _ = refl _ : leb 2 4 ≡ true _ = refl _ : leb 4 2 ≡ false _ = refl _=?_ : (n m : nat) → bool _=?_ = eqb _<=?_ : (n m : nat) → bool _<=?_ = leb infix 4 _=?_ infix 4 _<=?_ _ : (4 <=? 2) ≡ false _ = refl ltb : (n m : nat) → bool ltb O O = false ltb O (S m) = true ltb (S n) O = false ltb (S n) (S m) = ltb n m _<?_ : (n m : nat) → bool _<?_ = ltb infix 4 _<?_ _ : ltb 2 2 ≡ false _ = refl _ : ltb 2 4 ≡ true _ = refl _ : ltb 4 2 ≡ false _ = refl -- proof by simplification plus-O-n : ∀ {n : nat} → 0 + n ≡ n plus-O-n = refl plus-1-l : ∀ {n : nat} → 1 + n ≡ S n plus-1-l = refl mult-O-l : ∀ {n : nat} → 0 * n ≡ 0 mult-O-l = refl -- proof by rewriting plus-id-example : ∀ {n m : nat} → n ≡ m → n + n ≡ m + m plus-id-example n≡m rewrite n≡m = refl plus_id_exercise : ∀ {n m o : nat} → n ≡ m → m ≡ o → n + m ≡ m + o plus_id_exercise n≡m m≡o rewrite n≡m | m≡o = refl *0 : ∀ (m : nat) → m * 0 ≡ 0 *0 0 = refl *0 (S m) = *0 m mult-n-O : ∀ (n : nat) → 0 ≡ n * 0 mult-n-O n rewrite *0 n = refl *1 : ∀ (n : nat) → n * 1 ≡ n *1 0 = refl *1 (S n) rewrite *1 n = refl 1* : ∀ (n : nat) → 1 * n ≡ n 1* 0 = refl 1* (S n) rewrite 1* n = refl mult-n-Sm : ∀ (n m : nat) → n * m + n ≡ n * S m mult-n-Sm O m = refl mult-n-Sm n O rewrite *0 n | plus-O-n {n} | *1 n = refl mult-n-Sm (S n) (S m) = {!!} -- TODO mult-n-0-m-0 : ∀ (p q : nat) → (p * 0) + (q * 0) ≡ 0 mult-n-0-m-0 p q rewrite *0 p | *0 q = refl mult-n-1 : ∀ (p : nat) → p * 1 ≡ p mult-n-1 = *1 -- proof by case analysis plus-1-neq-0 : ∀ (n : nat) → ((n + 1) =? 0) ≡ false plus-1-neq-0 O = refl plus-1-neq-0 (S n) rewrite plus-1-neq-0 n = refl negb-involutive : ∀ (b : bool) → negb (negb b) ≡ b negb-involutive true = refl negb-involutive false = refl andb-commutative : ∀ (b c : bool) → andb b c ≡ andb c b andb-commutative false false = refl andb-commutative false true = refl andb-commutative true false = refl andb-commutative true true = refl andb3-exchange : ∀ (b c d : bool) → andb (andb b c) d ≡ andb (andb b d) c andb3-exchange true true true = refl andb3-exchange true true false = refl andb3-exchange true false true = refl andb3-exchange true false false = refl andb3-exchange false true true = refl andb3-exchange false true false = refl andb3-exchange false false true = refl andb3-exchange false false false = refl andb-true-elim2 : ∀ (b c : bool) → andb b c ≡ true → c ≡ true andb-true-elim2 false _ () andb-true-elim2 true false () andb-true-elim2 true true _ = refl zero-nbeq-plus-1 : ∀ (n : nat) → (0 =? (n + 1)) ≡ false zero-nbeq-plus-1 O = refl zero-nbeq-plus-1 (S n) rewrite zero-nbeq-plus-1 n = refl identity-fn-applied-twice : ∀ {f : bool → bool} (b : bool) → f b ≡ b → f (f b) ≡ b identity-fn-applied-twice b p rewrite p | p = refl negation-fn-applied-twice : ∀ {f : bool → bool} {b : bool} -- TODO → f b ≡ negb b → f (f b) ≡ b negation-fn-applied-twice {f} {false} p = {!!} -- TODO negation-fn-applied-twice {f} {true} p = {!!} -- TODO andb-eq-orb : ∀ (b c : bool) → andb b c ≡ orb b c → b ≡ c andb-eq-orb true c p rewrite p = refl andb-eq-orb false c p rewrite p = refl -- NOTE: lowest order bit is on LEFT data bin : Set where Z : bin B₀ : bin → bin B₁ : bin → bin incr : bin → bin incr Z = B₁ Z incr (B₀ x) = B₁ x incr (B₁ x) = B₀ (incr x) bin-to-nat : bin → nat bin-to-nat Z = 0 bin-to-nat (B₀ x) = 2 * (bin-to-nat x) bin-to-nat (B₁ x) = 1 + 2 * (bin-to-nat x) _ : (incr (B₁ Z)) ≡ B₀ (B₁ Z) _ = refl _ : (incr (B₀ (B₁ Z))) ≡ B₁ (B₁ Z) _ = refl _ : (incr (B₁ (B₁ Z))) ≡ B₀ (B₀ (B₁ Z)) _ = refl _ : bin-to-nat (B₀ (B₁ Z)) ≡ 2 _ = refl _ : bin-to-nat (incr (B₁ Z)) ≡ 1 + bin-to-nat (B₁ Z) _ = refl _ : bin-to-nat (incr (incr (B₁ Z))) ≡ 2 + bin-to-nat (B₁ Z) _ = refl
19.405612
73
0.560273
cb160dc6dfebd8b91ccba3674d3bafb50e1537c4
356
agda
Agda
test/Succeed/ImplicitlyDottedVariable.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/ImplicitlyDottedVariable.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/ImplicitlyDottedVariable.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
open import Agda.Builtin.Nat data Vec (A : Set) : Nat → Set where [] : Vec A 0 cons : (n : Nat) → A → Vec A n → Vec A (suc n) tail : {A : Set} (n : Nat) → Vec A (suc n) → Vec A n tail n (cons n x xs) = xs tail' : {A : Set} (n : Nat) → Vec A (suc n) → Vec A n tail' 0 (cons 0 x []) = [] tail' (suc n) (cons (suc n) x (cons n x₁ xs)) = (cons n x₁ xs)
27.384615
62
0.516854
dccb13a6cc520c23ed589953df57d0495f18f722
4,043
agda
Agda
src/data/lib/prim/Agda/Builtin/Cubical/Glue.agda
cagix/agda
cc026a6a97a3e517bb94bafa9d49233b067c7559
[ "BSD-2-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
src/data/lib/prim/Agda/Builtin/Cubical/Glue.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
src/data/lib/prim/Agda/Builtin/Cubical/Glue.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --cubical --safe --no-sized-types --no-guardedness #-} module Agda.Builtin.Cubical.Glue where open import Agda.Primitive open import Agda.Builtin.Sigma open import Agda.Primitive.Cubical renaming (primINeg to ~_; primIMax to _∨_; primIMin to _∧_; primHComp to hcomp; primTransp to transp; primComp to comp; itIsOne to 1=1) open import Agda.Builtin.Cubical.Path open import Agda.Builtin.Cubical.Sub renaming (Sub to _[_↦_]; primSubOut to ouc) import Agda.Builtin.Cubical.HCompU as HCompU module Helpers = HCompU.Helpers open Helpers -- We make this a record so that isEquiv can be proved using -- copatterns. This is good because copatterns don't get unfolded -- unless a projection is applied so it should be more efficient. record isEquiv {ℓ ℓ'} {A : Set ℓ} {B : Set ℓ'} (f : A → B) : Set (ℓ ⊔ ℓ') where no-eta-equality field equiv-proof : (y : B) → isContr (fiber f y) open isEquiv public infix 4 _≃_ _≃_ : ∀ {ℓ ℓ'} (A : Set ℓ) (B : Set ℓ') → Set (ℓ ⊔ ℓ') A ≃ B = Σ (A → B) \ f → (isEquiv f) equivFun : ∀ {ℓ ℓ'} {A : Set ℓ} {B : Set ℓ'} → A ≃ B → A → B equivFun e = fst e -- Improved version of equivProof compared to Lemma 5 in CCHM. We put -- the (φ = i0) face in contr' making it be definitionally c in this -- case. This makes the computational behavior better, in particular -- for transp in Glue. equivProof : ∀ {la lt} (T : Set la) (A : Set lt) → (w : T ≃ A) → (a : A) → ∀ ψ → (Partial ψ (fiber (w .fst) a)) → fiber (w .fst) a equivProof A B w a ψ fb = contr' {A = fiber (w .fst) a} (w .snd .equiv-proof a) ψ fb where contr' : ∀ {ℓ} {A : Set ℓ} → isContr A → (φ : I) → (u : Partial φ A) → A contr' {A = A} (c , p) φ u = hcomp (λ i → λ { (φ = i1) → p (u 1=1) i ; (φ = i0) → c }) c {-# BUILTIN EQUIV _≃_ #-} {-# BUILTIN EQUIVFUN equivFun #-} {-# BUILTIN EQUIVPROOF equivProof #-} primitive primGlue : ∀ {ℓ ℓ'} (A : Set ℓ) {φ : I} → (T : Partial φ (Set ℓ')) → (e : PartialP φ (λ o → T o ≃ A)) → Set ℓ' prim^glue : ∀ {ℓ ℓ'} {A : Set ℓ} {φ : I} → {T : Partial φ (Set ℓ')} → {e : PartialP φ (λ o → T o ≃ A)} → (t : PartialP φ T) → (a : A) → primGlue A T e prim^unglue : ∀ {ℓ ℓ'} {A : Set ℓ} {φ : I} → {T : Partial φ (Set ℓ')} → {e : PartialP φ (λ o → T o ≃ A)} → primGlue A T e → A module _ {ℓ : I → Level} (P : (i : I) → Set (ℓ i)) where private E : (i : I) → Set (ℓ i) E = λ i → P i ~E : (i : I) → Set (ℓ (~ i)) ~E = λ i → P (~ i) A = P i0 B = P i1 f : A → B f x = transp E i0 x g : B → A g y = transp ~E i0 y u : ∀ i → A → E i u i x = transp (λ j → E (i ∧ j)) (~ i) x v : ∀ i → B → E i v i y = transp (λ j → ~E ( ~ i ∧ j)) i y fiberPath : (y : B) → (xβ0 xβ1 : fiber f y) → xβ0 ≡ xβ1 fiberPath y (x0 , β0) (x1 , β1) k = ω , λ j → δ (~ j) where module _ (j : I) where private sys : A → ∀ i → PartialP (~ j ∨ j) (λ _ → E (~ i)) sys x i (j = i0) = v (~ i) y sys x i (j = i1) = u (~ i) x ω0 = comp ~E (sys x0) ((β0 (~ j))) ω1 = comp ~E (sys x1) ((β1 (~ j))) θ0 = fill ~E (sys x0) (inc (β0 (~ j))) θ1 = fill ~E (sys x1) (inc (β1 (~ j))) sys = λ {j (k = i0) → ω0 j ; j (k = i1) → ω1 j} ω = hcomp sys (g y) θ = hfill sys (inc (g y)) δ = λ (j : I) → comp E (λ i → λ { (j = i0) → v i y ; (k = i0) → θ0 j (~ i) ; (j = i1) → u i ω ; (k = i1) → θ1 j (~ i) }) (θ j) γ : (y : B) → y ≡ f (g y) γ y j = comp E (λ i → λ { (j = i0) → v i y ; (j = i1) → u i (g y) }) (g y) pathToisEquiv : isEquiv f pathToisEquiv .equiv-proof y .fst .fst = g y pathToisEquiv .equiv-proof y .fst .snd = sym (γ y) pathToisEquiv .equiv-proof y .snd = fiberPath y _ pathToEquiv : A ≃ B pathToEquiv .fst = f pathToEquiv .snd = pathToisEquiv
33.413223
104
0.489241
df9cfe14188744d93f880e9fb974eb5bedb92e7f
1,597
agda
Agda
Data/ListSized/Proofs.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
Data/ListSized/Proofs.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
Data/ListSized/Proofs.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
module Data.ListSized.Proofs where import Lvl open import Data.ListSized open import Data.ListSized.Functions open import Functional open import Function.Equals open import Numeral.Finite open import Numeral.Natural open import Numeral.Natural.Function open import Numeral.Natural.Oper open import Numeral.Natural.Oper.Proofs open import Relator.Equals open import Relator.Equals.Proofs.Equiv open import Structure.Operator open import Structure.Relator.Properties open import Syntax.Transitivity open import Type private variable ℓ ℓ₁ ℓ₂ : Lvl.Level private variable T A A₁ A₂ B B₁ B₂ C C₁ C₂ Result : Type{ℓ} private variable a b n n₁ n₂ : ℕ private variable f : B → C private variable g : A → B private variable l l₁ l₂ : List(T)(n) private variable x : T map-id : (map{A = A}{n = n} id ⊜ id) _⊜_.proof map-id {∅} = reflexivity(_≡_) _⊜_.proof map-id {x ⊰ l} = congruence₂ᵣ(_⊰_)(_) (_⊜_.proof map-id {l}) map-[∘] : (map{n = n} (f ∘ g) ⊜ (map f) ∘ (map g)) _⊜_.proof map-[∘] {∅} = reflexivity(_≡_) _⊜_.proof map-[∘] {x ⊰ l} = congruence₂ᵣ(_⊰_)(_) (_⊜_.proof map-[∘] {l}) map-[++] : map f(l₁ ++ l₂) ≡ map f(l₁) ++ map f(l₂) map-[++] {l₁ = ∅} = reflexivity(_≡_) map-[++] {l₁ = x₁ ⊰ l₁} = congruence₂ᵣ(_⊰_)(_) (map-[++] {l₁ = l₁}) map-repeat : map f(repeat x n) ≡ repeat (f(x)) n map-repeat {n = 𝟎} = reflexivity(_≡_) map-repeat {n = 𝐒 n} = congruence₂ᵣ(_⊰_)(_) (map-repeat {n = n}) [+][++]-repeat : repeat x (n₁ + n₂) ≡ repeat x n₁ ++ repeat x n₂ [+][++]-repeat {n₁ = 𝟎} = reflexivity(_≡_) [+][++]-repeat {n₁ = 𝐒 n₁} = congruence₂ᵣ(_⊰_)(_) ([+][++]-repeat {n₁ = n₁})
33.978723
76
0.646212
1c2a8544144d932b0ab915248d59c18245666355
1,911
agda
Agda
Cubical/Data/HomotopyGroup/Base.agda
Rotsor/cubical
d55cd4834ca1f171f58b4a0c46b804ea6d18191f
[ "MIT" ]
null
null
null
Cubical/Data/HomotopyGroup/Base.agda
Rotsor/cubical
d55cd4834ca1f171f58b4a0c46b804ea6d18191f
[ "MIT" ]
null
null
null
Cubical/Data/HomotopyGroup/Base.agda
Rotsor/cubical
d55cd4834ca1f171f58b4a0c46b804ea6d18191f
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --safe #-} module Cubical.Data.HomotopyGroup.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels import Cubical.Foundations.GroupoidLaws as GL open import Cubical.Data.Nat open import Cubical.Data.Group.Base open import Cubical.HITs.SetTruncation Pointed : ∀ {ℓ} → Type (ℓ-suc ℓ) Pointed {ℓ} = Σ[ A ∈ Type ℓ ] A Ω : ∀ {ℓ} → Pointed {ℓ} → Pointed {ℓ} Ω (A , a ) = ( (a ≡ a) , refl) Ω^_ : ∀ {ℓ} → ℕ → Pointed {ℓ} → Pointed {ℓ} (Ω^ 0) p = p (Ω^ (suc n)) p = Ω ((Ω^ n) p) π^_ : ∀ {ℓ} → ℕ → Pointed {ℓ} → Group {ℓ} π^_ {ℓ} n p = group ∥ A ∥₀ squash₀ g where n' : ℕ n' = suc n A : Type ℓ A = (Ω^ n') p .fst g : isGroup ∥ A ∥₀ g = group-struct e _⁻¹ _⊙_ lUnit rUnit assoc lCancel rCancel where e : ∥ A ∥₀ e = ∣ (Ω^ n') p .snd ∣₀ _⁻¹ : ∥ A ∥₀ → ∥ A ∥₀ _⁻¹ = elimSetTrunc {B = λ _ → ∥ A ∥₀} (λ x → squash₀) λ a → ∣ sym a ∣₀ _⊙_ : ∥ A ∥₀ → ∥ A ∥₀ → ∥ A ∥₀ _⊙_ = elimSetTrunc2 (λ _ _ → squash₀) λ a₀ a₁ → ∣ a₀ ∙ a₁ ∣₀ lUnit : (a : ∥ A ∥₀) → (e ⊙ a) ≡ a lUnit = elimSetTrunc (λ _ → isProp→isSet (squash₀ _ _)) (λ a → cong ∣_∣₀ (sym (GL.lUnit a) )) rUnit : (a : ∥ A ∥₀) → a ⊙ e ≡ a rUnit = elimSetTrunc (λ _ → isProp→isSet (squash₀ _ _)) (λ a → cong ∣_∣₀ (sym (GL.rUnit a) )) assoc : (a b c : ∥ A ∥₀) → ((a ⊙ b) ⊙ c) ≡ (a ⊙ (b ⊙ c)) assoc = elimSetTrunc3 (λ _ _ _ → isProp→isSet (squash₀ _ _)) (λ a b c → cong ∣_∣₀ (sym (GL.assoc _ _ _))) lCancel : (a : ∥ A ∥₀) → ((a ⁻¹) ⊙ a) ≡ e lCancel = elimSetTrunc (λ _ → isProp→isSet (squash₀ _ _)) λ a → cong ∣_∣₀ (GL.lCancel _) rCancel : (a : ∥ A ∥₀) → (a ⊙ (a ⁻¹)) ≡ e rCancel = elimSetTrunc (λ _ → isProp→isSet (squash₀ _ _)) λ a → cong ∣_∣₀ (GL.rCancel _)
30.333333
79
0.488226
4a702b49f482f5978ad8a379b08e1f90c2f48198
50,371
agda
Agda
archive/agda-1/Unify-monolithic.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
archive/agda-1/Unify-monolithic.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
1
2019-04-29T00:35:04.000Z
2019-05-11T23:33:04.000Z
archive/agda-1/Unify-monolithic.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
{- https://lists.chalmers.se/pipermail/agda/2013/006033.html http://code.haskell.org/~Saizan/unification/ 18-Nov-2013 Andrea Vezzosi -} module Unify-monolithic where -- some equivalences needed to adapt Tactic.Nat to the standard library module EquivalenceOf≤ where open import Agda.Builtin.Equality open import Agda.Builtin.Nat open import Data.Nat using (less-than-or-equal) renaming (_≤_ to _≤s_) open import Data.Nat.Properties using (≤⇒≤″; ≤″⇒≤) open import Prelude using (diff; id) renaming (_≤_ to _≤p_) open import Tactic.Nat.Generic (quote _≤p_) (quote id) (quote id) using (by) ≤p→≤s : ∀ {a b} → a ≤p b → a ≤s b ≤p→≤s (diff k b₊₁≡k₊₁+a) = ≤″⇒≤ (less-than-or-equal {k = k} (by b₊₁≡k₊₁+a)) ≤s→≤p : ∀ {a b} → a ≤s b → a ≤p b ≤s→≤p a≤sb with ≤⇒≤″ a≤sb ≤s→≤p _ | less-than-or-equal {k = k} a+k≡b = diff k (by a+k≡b) module _ where open EquivalenceOf≤ open import Data.Nat open import Tactic.Nat.Generic (quote _≤_) (quote ≤s→≤p) (quote ≤p→≤s) public open import Data.Fin using (Fin; suc; zero) open import Data.Nat hiding (_≤_) --open import Relation.Binary.PropositionalEquality open import Relation.Binary.PropositionalEquality hiding ([_]) open import Function open import Relation.Nullary --open import Data.Product open import Data.Product renaming (map to _***_) open import Data.Empty data Term (n : ℕ) : Set where i : (x : Fin n) -> Term n leaf : Term n _fork_ : (s t : Term n) -> Term n {- data Term : ℕ -> Set where i : ∀ ..{n} -> (x : Fin n) -> Term n leaf : ∀ ..{n} -> Term n _fork_ : ∀ ..{n} -> (s t : Term n) -> Term n -} _~>_ : (m n : ℕ) -> Set m ~> n = Fin m -> Term n ▹ : ∀ {m n} -> (r : Fin m -> Fin n) -> Fin m -> Term n ▹ r = i ∘ r _◃ : ∀ {m n} -> (f : m ~> n) -> Term m -> Term n (f ◃ ) (i x) = f x (f ◃ ) leaf = leaf (f ◃ ) (s fork t) = (f ◃) s fork (f ◃) t _◃_ : ∀ {m n} -> (f : m ~> n) -> Term m -> Term n _◃_ = _◃ _≐_ : {m n : ℕ} -> (Fin m -> Term n) -> (Fin m -> Term n) -> Set f ≐ g = ∀ x -> f x ≡ g x ◃ext : ∀ {m n} {f g : Fin m -> Term n} -> f ≐ g -> ∀ t -> f ◃ t ≡ g ◃ t ◃ext p (i x) = p x ◃ext p leaf = refl ◃ext p (s fork t) = cong₂ _fork_ (◃ext p s) (◃ext p t) _◇_ : ∀ {l m n : ℕ } -> (f : Fin m -> Term n) (g : Fin l -> Term m) -> Fin l -> Term n f ◇ g = (f ◃) ∘ g ≐-cong : ∀ {m n o} {f : m ~> n} {g} (h : _ ~> o) -> f ≐ g -> (h ◇ f) ≐ (h ◇ g) ≐-cong h f≐g t = cong (h ◃) (f≐g t) ≐-sym : ∀ {m n} {f : m ~> n} {g} -> f ≐ g -> g ≐ f ≐-sym f≐g = sym ∘ f≐g module Sub where fact1 : ∀ {n} -> (t : Term n) -> i ◃ t ≡ t fact1 (i x) = refl fact1 leaf = refl fact1 (s fork t) = cong₂ _fork_ (fact1 s) (fact1 t) fact2 : ∀ {l m n} -> (f : Fin m -> Term n) (g : _) (t : Term l) -> (f ◇ g) ◃ t ≡ f ◃ (g ◃ t) fact2 f g (i x) = refl fact2 f g leaf = refl fact2 f g (s fork t) = cong₂ _fork_ (fact2 f g s) (fact2 f g t) fact3 : ∀ {l m n} (f : Fin m -> Term n) (r : Fin l -> Fin m) -> (f ◇ (▹ r)) ≡ (f ∘ r) fact3 f r = refl -- ext (λ _ -> refl) ◃ext' : ∀ {m n o} {f : Fin m -> Term n}{g : Fin m -> Term o}{h} -> f ≐ (h ◇ g) -> ∀ t -> f ◃ t ≡ h ◃ (g ◃ t) ◃ext' p t = trans (◃ext p t) (Sub.fact2 _ _ t) s : ℕ -> ℕ s = suc thin : ∀ {n} -> (x : Fin (s n)) (y : Fin n) -> Fin (s n) thin zero y = suc y thin (suc x) zero = zero thin (suc x) (suc y) = suc (thin x y) p : ∀ {n} -> Fin (suc (suc n)) -> Fin (suc n) p (suc x) = x p zero = zero module Thin where fact1 : ∀ {n} x y z -> thin {n} x y ≡ thin x z -> y ≡ z fact1 zero y .y refl = refl fact1 (suc x) zero zero r = refl fact1 (suc x) zero (suc z) () fact1 (suc x) (suc y) zero () fact1 (suc x) (suc y) (suc z) r = cong suc (fact1 x y z (cong p r)) fact2 : ∀ {n} x y -> ¬ thin {n} x y ≡ x fact2 zero y () fact2 (suc x) zero () fact2 (suc x) (suc y) r = fact2 x y (cong p r) fact3 : ∀{n} x y -> ¬ x ≡ y -> ∃ λ y' -> thin {n} x y' ≡ y fact3 zero zero ne = ⊥-elim (ne refl) fact3 zero (suc y) _ = y , refl fact3 {zero} (suc ()) _ _ fact3 {suc n} (suc x) zero ne = zero , refl fact3 {suc n} (suc x) (suc y) ne with y | fact3 x y (ne ∘ cong suc) ... | .(thin x y') | y' , refl = suc y' , refl open import Data.Maybe open import Category.Functor open import Category.Monad import Level open RawMonad (Data.Maybe.monad {Level.zero}) thick : ∀ {n} -> (x y : Fin (suc n)) -> Maybe (Fin n) thick zero zero = nothing thick zero (suc y) = just y thick {zero} (suc ()) _ thick {suc _} (suc x) zero = just zero thick {suc _} (suc x) (suc y) = suc <$> (thick x y) open import Data.Sum _≡Fin_ : ∀ {n} -> (x y : Fin n) -> Dec (x ≡ y) zero ≡Fin zero = yes refl zero ≡Fin suc y = no λ () suc x ≡Fin zero = no λ () suc {suc _} x ≡Fin suc y with x ≡Fin y ... | yes r = yes (cong suc r) ... | no r = no λ e -> r (cong p e) suc {zero} () ≡Fin _ module Thick where half1 : ∀ {n} (x : Fin (suc n)) -> thick x x ≡ nothing half1 zero = refl half1 {suc _} (suc x) = cong (_<$>_ suc) (half1 x) half1 {zero} (suc ()) half2 : ∀ {n} (x : Fin (suc n)) y -> ∀ y' -> thin x y' ≡ y -> thick x y ≡ just y' half2 zero zero y' () half2 zero (suc y) .y refl = refl half2 {suc n} (suc x) zero zero refl = refl half2 {suc _} (suc _) zero (suc _) () half2 {suc n} (suc x) (suc y) zero () half2 {suc n} (suc x) (suc .(thin x y')) (suc y') refl with thick x (thin x y') | half2 x (thin x y') y' refl ... | .(just y') | refl = refl half2 {zero} (suc ()) _ _ _ fact1 : ∀ {n} (x : Fin (suc n)) y r -> thick x y ≡ r -> x ≡ y × r ≡ nothing ⊎ ∃ λ y' -> thin x y' ≡ y × r ≡ just y' fact1 x y .(thick x y) refl with x ≡Fin y fact1 x .x ._ refl | yes refl = inj₁ (refl , half1 x) ... | no el with Thin.fact3 x y el ... | y' , thinxy'=y = inj₂ (y' , ( thinxy'=y , half2 x y y' thinxy'=y )) check : ∀{n} (x : Fin (suc n)) (t : Term (suc n)) -> Maybe (Term n) check x (i y) = i <$> thick x y check x leaf = just leaf check x (s fork t) = _fork_ <$> check x s ⊛ check x t _for_ : ∀ {n} (t' : Term n) (x : Fin (suc n)) -> Fin (suc n) -> Term n (t' for x) y = maybe′ i t' (thick x y) data AList : ℕ -> ℕ -> Set where anil : ∀ {n} -> AList n n _asnoc_/_ : ∀ {m n} (σ : AList m n) (t' : Term m) (x : Fin (suc m)) -> AList (suc m) n alist≥ : ∀ m n → AList m n → m Data.Nat.≥ n alist≥ m .m anil = {!!} alist≥ .(suc _) n (x asnoc t' / x₁) with alist≥ _ _ x … | r = {!!} sub : ∀ {m n} (σ : AList m n) -> Fin m -> Term n sub anil = i sub (σ asnoc t' / x) = sub σ ◇ (t' for x) _++_ : ∀ {l m n} (ρ : AList m n) (σ : AList l m) -> AList l n ρ ++ anil = ρ ρ ++ (σ asnoc t' / x) = (ρ ++ σ) asnoc t' / x ++-assoc : ∀ {l m n o} (ρ : AList l m) (σ : AList n _) (τ : AList o _) -> ρ ++ (σ ++ τ) ≡ (ρ ++ σ) ++ τ ++-assoc ρ σ anil = refl ++-assoc ρ σ (τ asnoc t / x) = cong (λ s -> s asnoc t / x) (++-assoc ρ σ τ) module SubList where anil-id-l : ∀ {m n} (σ : AList m n) -> anil ++ σ ≡ σ anil-id-l anil = refl anil-id-l (σ asnoc t' / x) = cong (λ σ -> σ asnoc t' / x) (anil-id-l σ) fact1 : ∀ {l m n} (ρ : AList m n) (σ : AList l m) -> sub (ρ ++ σ) ≐ (sub ρ ◇ sub σ) fact1 ρ anil v = refl fact1 {suc l} {m} {n} r (s asnoc t' / x) v = trans hyp-on-terms ◃-assoc where t = (t' for x) v hyp-on-terms = ◃ext (fact1 r s) t ◃-assoc = Sub.fact2 (sub r) (sub s) t _∃asnoc_/_ : ∀ {m} (a : ∃ (AList m)) (t' : Term m) (x : Fin (suc m)) -> ∃ (AList (suc m)) (n , σ) ∃asnoc t' / x = n , σ asnoc t' / x flexFlex : ∀ {m} (x y : Fin m) -> ∃ (AList m) flexFlex {suc m} x y with thick x y ... | just y' = m , anil asnoc i y' / x ... | nothing = suc m , anil flexFlex {zero} () _ flexRigid : ∀ {m} (x : Fin m) (t : Term m) -> Maybe (∃(AList m)) flexRigid {suc m} x t with check x t ... | just t' = just (m , anil asnoc t' / x) ... | nothing = nothing flexRigid {zero} () _ amgu : ∀ {m} (s t : Term m) (acc : ∃ (AList m)) -> Maybe (∃ (AList m)) amgu leaf leaf acc = just acc amgu leaf (s' fork t') acc = nothing amgu (s' fork t') leaf acc = nothing amgu (s1 fork s2) (t1 fork t2) acc = amgu s2 t2 =<< amgu s1 t1 acc amgu (i x) (i y) (m , anil) = just (flexFlex x y) amgu (i x) t (m , anil) = flexRigid x t amgu t (i x) (m , anil) = flexRigid x t amgu s t (n , σ asnoc r / z) = (λ σ -> σ ∃asnoc r / z) <$> amgu ((r for z) ◃ s) ((r for z) ◃ t) (n , σ) mgu : ∀ {m} -> (s t : Term m) -> Maybe (∃ (AList m)) mgu {m} s t = amgu s t (m , anil) {- open import Data.Fin using (Fin; suc; zero) open import Data.Nat hiding (_≤_) open import Relation.Binary.PropositionalEquality hiding ([_]) open import Function open import Relation.Nullary open import Data.Product renaming (map to _***_) open import Data.Empty -} open import Data.Maybe using (maybe; maybe′; nothing; just; monad; Maybe) open import Data.Sum --open import Unify open import Data.List renaming (_++_ to _++L_) open ≡-Reasoning open import Category.Functor open import Category.Monad import Level as L --open RawMonad (Data.Maybe.monad {L.zero}) record Σ₁ (A : Set1) (F : A -> Set) : Set1 where field π₁ : A π₂ : F π₁ _,,_ : ∀ {A F} (x : A) -> F x -> Σ₁ A F x ,, b = record{ π₁ = x; π₂ = b } open Σ₁ Property⋆ : (m : ℕ) -> Set1 Property⋆ m = ∀ {n} -> (Fin m -> Term n) -> Set Extensional : {m : ℕ} -> Property⋆ m -> Set Extensional P = ∀ {m f g} -> f ≐ g -> P {m} f -> P g Property : (m : ℕ) -> Set1 Property m = Σ₁ (Property⋆ m) Extensional prop-id : ∀ {m n} {f : _ ~> n} {P : Property m} -> π₁ P f -> π₁ P (i ◇ f) prop-id {_} {_} {f} {P'} Pf = π₂ P' (λ x → sym (Sub.fact1 (f x))) Pf Unifies⋆ : ∀ {m} (s t : Term m) -> Property⋆ m Unifies⋆ s t f = f ◃ s ≡ f ◃ t Unifies : ∀ {m} (s t : Term m) -> Property m Unifies s t = (λ {_} -> Unifies⋆ s t) ,, λ {_} {f} {g} f≐g f◃s=f◃t -> begin g ◃ s ≡⟨ sym (◃ext f≐g s) ⟩ f ◃ s ≡⟨ f◃s=f◃t ⟩ f ◃ t ≡⟨ ◃ext f≐g t ⟩ g ◃ t ∎ _∧⋆_ : ∀{m} -> (P Q : Property⋆ m) -> Property⋆ m P ∧⋆ Q = (λ f -> P f × Q f) _∧_ : ∀{m} -> (P Q : Property m) -> Property m P ∧ Q = (λ {_} f -> π₁ P f × π₁ Q f) ,, λ {_} {_} {_} f≐g Pf×Qf -> π₂ P f≐g (proj₁ Pf×Qf) , π₂ Q f≐g (proj₂ Pf×Qf) _⇔⋆_ : ∀{m} -> (P Q : Property⋆ m) -> Set P ⇔⋆ Q = ∀ {n} f -> (P {n} f -> Q f) × (Q f -> P f) _⇔_ : ∀{m} -> (P Q : Property m) -> Set P ⇔ Q = ∀ {n} f -> (π₁ P {n} f -> π₁ Q f) × (π₁ Q f -> π₁ P f) switch⋆ : ∀ {m} (P Q : Property⋆ m) -> P ⇔⋆ Q -> Q ⇔⋆ P switch⋆ _ _ P⇔Q f = proj₂ (P⇔Q f) , proj₁ (P⇔Q f) switch : ∀ {m} (P Q : Property m) -> P ⇔ Q -> Q ⇔ P switch _ _ P⇔Q f = proj₂ (P⇔Q f) , proj₁ (P⇔Q f) Nothing⋆ : ∀{m} -> (P : Property⋆ m) -> Set Nothing⋆ P = ∀{n} f -> P {n} f -> ⊥ Nothing : ∀{m} -> (P : Property m) -> Set Nothing P = ∀{n} f -> π₁ P {n} f -> ⊥ _[-◇⋆_] : ∀{m n} (P : Property⋆ m) (f : Fin m -> Term n) -> Property⋆ n (P [-◇⋆ f ]) g = P (g ◇ f) _[-◇_] : ∀{m n} (P : Property m) (f : Fin m -> Term n) -> Property n P [-◇ f ] = (λ {_} g -> π₁ P (g ◇ f)) ,, λ {_} {f'} {g'} f'≐g' Pf'◇f -> π₂ P (◃ext f'≐g' ∘ f) Pf'◇f module Properties where fact1 : ∀ {m} {s t : Term m} -> (Unifies s t) ⇔ (Unifies t s) fact1 _ = sym , sym fact1'⋆ : ∀ {m} {s1 s2 t1 t2 : Term m} -> Unifies⋆ (s1 fork s2) (t1 fork t2) ⇔⋆ (Unifies⋆ s1 t1 ∧⋆ Unifies⋆ s2 t2) fact1'⋆ f = deconstr _ _ _ _ , uncurry (cong₂ _fork_) where deconstr : ∀ {m} (s1 s2 t1 t2 : Term m) -> (s1 fork s2) ≡ (t1 fork t2) -> (s1 ≡ t1) × (s2 ≡ t2) deconstr s1 s2 .s1 .s2 refl = refl , refl fact1' : ∀ {m} {s1 s2 t1 t2 : Term m} -> Unifies (s1 fork s2) (t1 fork t2) ⇔ (Unifies s1 t1 ∧ Unifies s2 t2) fact1' f = deconstr _ _ _ _ , uncurry (cong₂ _fork_) where deconstr : ∀ {m} (s1 s2 t1 t2 : Term m) -> (s1 fork s2) ≡ (t1 fork t2) -> (s1 ≡ t1) × (s2 ≡ t2) deconstr s1 s2 .s1 .s2 refl = refl , refl fact2⋆ : ∀ {m} (P Q : Property⋆ m) -> P ⇔⋆ Q -> Nothing⋆ P -> Nothing⋆ Q fact2⋆ P Q iff notp f q with iff f ... | (p2q , q2p) = notp f (q2p q) fact2 : ∀ {m} (P Q : Property m) -> P ⇔ Q -> Nothing P -> Nothing Q fact2 P Q iff notp f q with iff f ... | (p2q , q2p) = notp f (q2p q) fact3 : ∀ {m} {P : Property m} -> P ⇔ (P [-◇ i ]) fact3 f = id , id fact4 : ∀{m n} {P : Property m} (f : _ -> Term n) -> Nothing P -> Nothing (P [-◇ f ]) fact4 f nop g = nop (g ◇ f) fact5⋆ : ∀{m n} (P Q : Property⋆ _) (f : m ~> n) -> P ⇔⋆ Q -> (P [-◇⋆ f ]) ⇔⋆ (Q [-◇⋆ f ]) fact5⋆ _ _ f P⇔Q f' = P⇔Q (f' ◇ f) fact5 : ∀{m n} (P Q : Property _) (f : m ~> n) -> P ⇔ Q -> (P [-◇ f ]) ⇔ (Q [-◇ f ]) fact5 _ _ f P⇔Q f' = P⇔Q (f' ◇ f) fact6 : ∀{m n} P {f g : m ~> n} -> f ≐ g -> (P [-◇ f ]) ⇔ (P [-◇ g ]) fact6 P f≐g h = π₂ P (≐-cong h f≐g) , π₂ P (≐-sym (≐-cong h f≐g)) {- fact5 : ∀ {l m n} {f : Fin n -> Term l} {g : Fin m -> Term n} {P : Property _ } -> (P [-◇ g ]) [-◇ f ] ⇔ P [-◇ (f ◇ g) ] fact5 h = {!!} , {!!} -} _≤_ : ∀ {m n n'} (f : Fin m -> Term n) (g : Fin m -> Term n') -> Set f ≤ g = ∃ λ f' -> f ≐ (f' ◇ g) module Order where reflex : ∀ {m n} {f : Fin m -> Term n} -> f ≤ f reflex = i , λ _ -> sym (Sub.fact1 _) transitivity : ∀ {l m n o} {f : Fin l -> Term m}{g : _ -> Term n} {h : _ -> Term o} -> f ≤ g -> g ≤ h -> f ≤ h transitivity {l} {_} {_} {_} {f} {g} {h} (fg , pfg) (gh , pgh) = fg ◇ gh , proof where proof : (x : Fin l) → f x ≡ (λ x' → fg ◃ (gh x')) ◃ (h x) proof x = trans z (sym (Sub.fact2 fg gh (h x))) where z = trans (pfg x) (cong (fg ◃) (pgh x)) i-max : ∀ {m n} (f : Fin m -> Term n) -> f ≤ i i-max f = f , λ _ -> refl dist : ∀{l m n o}{f : Fin l -> Term m}{g : _ -> Term n}(h : Fin o -> _) -> f ≤ g -> (f ◇ h) ≤ (g ◇ h) dist h (fg , pfg) = fg , λ x -> trans (◃ext pfg (h x)) (Sub.fact2 _ _ (h x)) Max⋆ : ∀ {m} (P : Property⋆ m) -> Property⋆ m Max⋆ P f = P f × (∀ {n} f' -> P {n} f' -> f' ≤ f) Max : ∀ {m} (P : Property m) -> Property m Max P' = (λ {_} → Max⋆ P) ,, λ {_} {_} {_} -> lemma1 where open Σ₁ P' renaming (π₁ to P; π₂ to Peq) lemma1 : {m : ℕ} {f : Fin _ → Term m} {g : Fin _ → Term m} → f ≐ g → P f × ({n : ℕ} (f' : Fin _ → Term n) → P f' → f' ≤ f) → P g × ({n : ℕ} (f' : Fin _ → Term n) → P f' → f' ≤ g) lemma1 {_} {f} {g} f≐g (Pf , MaxPf) = Peq f≐g Pf , λ {_} -> lemma2 where lemma2 : ∀ {n} f' → P {n} f' → ∃ λ f0 → f' ≐ (f0 ◇ g) lemma2 f' Pf' = f0 , λ x -> trans (f'≐f0◇f x) (cong (f0 ◃) (f≐g x)) where f0 = proj₁ (MaxPf f' Pf') f'≐f0◇f = proj₂ (MaxPf f' Pf') module Max where fact : ∀{m}(P Q : Property m) -> P ⇔ Q -> Max P ⇔ Max Q fact {m} P Q a f = (λ maxp → pq (proj₁ maxp) , λ f' → proj₂ maxp f' ∘ qp) , λ maxq → qp (proj₁ maxq) , λ f' → proj₂ maxq f' ∘ pq where pq : {n : ℕ} {f0 : Fin m → Term n} → (π₁ P f0 → π₁ Q f0) pq {_} {f} = proj₁ (a f) qp : {n : ℕ} {f0 : Fin m → Term n} → (π₁ Q f0 → π₁ P f0) qp {_} {f} = proj₂ (a f) DClosed : ∀{m} (P : Property m) -> Set DClosed P = ∀ {n} f {o} g -> f ≤ g -> π₁ P {o} g -> π₁ P {n} f module DClosed where fact1 : ∀ {m} s t -> DClosed {m} (Unifies s t) fact1 s t f g (f≤g , p) gs=gt = begin f ◃ s ≡⟨ ◃ext' p s ⟩ f≤g ◃ (g ◃ s) ≡⟨ cong (f≤g ◃) gs=gt ⟩ f≤g ◃ (g ◃ t) ≡⟨ sym (◃ext' p t) ⟩ f ◃ t ∎ optimist : ∀ {l m n o} (a : Fin _ -> Term n) (p : Fin _ -> Term o) (q : Fin _ -> Term l) (P Q : Property m) -> DClosed P -> π₁ (Max (P [-◇ a ])) p -> π₁ (Max (Q [-◇ (p ◇ a) ])) q -> π₁ (Max ((P ∧ Q) [-◇ a ])) (q ◇ p) optimist a p q P' Q' DCP (Ppa , pMax) (Qqpa , qMax) = (Peq (sym ∘ (Sub.fact2 _ _) ∘ a) (DCP (q ◇ (p ◇ a)) (p ◇ a) (q , λ _ -> refl) Ppa) , Qeq (sym ∘ (Sub.fact2 _ _) ∘ a) Qqpa ) , λ {_} -> aux where open Σ₁ P' renaming (π₁ to P; π₂ to Peq) open Σ₁ Q' renaming (π₁ to Q; π₂ to Qeq) aux : ∀ {n} (f : _ -> Term n) -> P (f ◇ a) × Q (f ◇ a) -> f ≤ (q ◇ p) aux f (Pfa , Qfa) = h , λ x -> trans (f≐g◇p x) (◃ext' g≐h◇q (p x)) where one = pMax f Pfa g = proj₁ one f≐g◇p = proj₂ one Qgpa : Q (g ◇ (p ◇ a)) Qgpa = Qeq (λ x -> ◃ext' f≐g◇p (a x)) Qfa g≤q = qMax g Qgpa h = proj₁ g≤q g≐h◇q = proj₂ g≤q module failure-propagation where first⋆ : ∀ {m n} (a : _ ~> n) (P Q : Property⋆ m) -> Nothing⋆ (P [-◇⋆ a ]) -> Nothing⋆ ((P ∧⋆ Q) [-◇⋆ a ]) first⋆ a P' Q' noP-a f (Pfa , Qfa) = noP-a f Pfa first : ∀ {m n} (a : _ ~> n) (P Q : Property m) -> Nothing (P [-◇ a ]) -> Nothing ((P ∧ Q) [-◇ a ]) first a P' Q' noP-a f (Pfa , Qfa) = noP-a f Pfa {- second⋆ : ∀ {m n o} (a : _ ~> n) (p : _ ~> o)(P Q : Property⋆ m) -> (Max⋆ (P [-◇⋆ a ])) p -> Nothing⋆ (Q [-◇⋆ (p ◇ a)]) -> Nothing⋆ ((P ∧⋆ Q) [-◇⋆ a ]) second⋆ a p P' Q' (Ppa , pMax) noQ-p◇a f (Pfa , Qfa) = noQ-p◇a g Qgpa where f≤p = pMax f Pfa g = proj₁ f≤p f≐g◇p = proj₂ f≤p Qgpa : Q' (g ◇ (p ◇ a)) Qgpa = {!!} {- noQ-p◇a g Qgpa where f≤p = pMax f Pfa g = proj₁ f≤p f≐g◇p = proj₂ f≤p Qgpa : π₁ Q' (g ◇ (p ◇ a)) Qgpa = π₂ Q' (◃ext' f≐g◇p ∘ a) Qfa -} -} second⋆ : ∀ {m n o} (a : _ ~> n) (p : _ ~> o)(P : Property⋆ m)(Q : Property m) -> (Max⋆ (P [-◇⋆ a ])) p -> Nothing⋆ (π₁ Q [-◇⋆ (p ◇ a)]) -> Nothing⋆ ((P ∧⋆ π₁ Q) [-◇⋆ a ]) second⋆ a p P' Q' (Ppa , pMax) noQ-p◇a f (Pfa , Qfa) = noQ-p◇a g Qgpa where f≤p = pMax f Pfa g = proj₁ f≤p f≐g◇p = proj₂ f≤p Qgpa : π₁ Q' (g ◇ (p ◇ a)) Qgpa = π₂ Q' (◃ext' f≐g◇p ∘ a) Qfa second : ∀ {m n o} (a : _ ~> n) (p : _ ~> o)(P Q : Property m) -> π₁ (Max (P [-◇ a ])) p -> Nothing (Q [-◇ (p ◇ a)]) -> Nothing ((P ∧ Q) [-◇ a ]) second a p P' Q' (Ppa , pMax) noQ-p◇a f (Pfa , Qfa) = noQ-p◇a g Qgpa where f≤p = pMax f Pfa g = proj₁ f≤p f≐g◇p = proj₂ f≤p Qgpa : π₁ Q' (g ◇ (p ◇ a)) Qgpa = π₂ Q' (◃ext' f≐g◇p ∘ a) Qfa trivial-problem : ∀ {m n t} {f : m ~> n} -> π₁ (Max ((Unifies t t) [-◇ f ])) i trivial-problem = refl , λ f' _ → f' , λ _ → refl var-elim : ∀ {m} (x : Fin (suc m)) (t' : Term _) -> π₁ (Max ((Unifies (i x) ((▹ (thin x) ◃) t')))) (t' for x) var-elim x t' = first , \{_} -> second where lemma : ∀{m}(x : Fin (suc m)) t → i ≐ ((t for x) ◇ (▹ (thin x))) lemma x t x' = sym (cong (maybe i t) (Thick.half2 x _ x' refl)) first = begin (t' for x) ◃ (i x) ≡⟨ cong (maybe i t') (Thick.half1 x) ⟩ t' ≡⟨ sym (Sub.fact1 t') ⟩ i ◃ t' ≡⟨ ◃ext' (lemma x t') t' ⟩ (t' for x) ◃ ((▹ (thin x) ◃) t') ∎ second : ∀ {n} (f : _ ~> n) → f x ≡ f ◃ ((▹ (thin x) ◃) t') → f ≤ (t' for x) second f Unifiesf = (f ∘ thin x) , third where third : ((x' : Fin _) → f x' ≡ (f ∘ thin x) ◃ (maybe′ i t' (thick x x'))) third x' with thick x x' | Thick.fact1 x x' (thick x x') refl third .x | .nothing | inj₁ (refl , refl) = sym (begin (f ∘ thin x) ◃ t' ≡⟨ cong (λ g -> (g ◃) t') (sym (Sub.fact3 f (thin x))) ⟩ (f ◇ (▹ (thin x))) ◃ t' ≡⟨ Sub.fact2 f (▹ (thin x)) t' ⟩ f ◃ ((▹ (thin x) ◃) t') ≡⟨ sym Unifiesf ⟩ f x ∎) third x' | .(just y) | inj₂ (y , ( thinxy≡x' , refl)) = sym (cong f thinxy≡x') var-elim-i : ∀ {m} (x : Fin (suc m)) (t' : Term _) -> π₁ (Max ((Unifies (i x) ((▹ (thin x) ◃) t')))) (i ◇ (t' for x)) var-elim-i {m} x t = prop-id {_} {_} {t for x} {Max (Unifies (i x) ((▹ (thin x) ◃) t))} (var-elim {m} x t) var-elim-i-≡ : ∀ {m} {t'} (x : Fin (suc m)) t1 -> t1 ≡ (i ∘ thin x) ◃ t' -> π₁ (Max (Unifies (i x) t1)) (i ◇ (t' for x)) var-elim-i-≡ {_} {t'} x .((i ∘ thin x) ◃ t') refl = var-elim-i x t' data Step (n : ℕ) : Set where left : Term n -> Step n right : Term n -> Step n fmapS : ∀ {n m} (f : Term n -> Term m) (s : Step n) -> Step m fmapS f (left x) = left (f x) fmapS f (right x) = right (f x) _⊹_ : ∀ {n} (ps : List (Step n)) (t : Term n) -> Term n [] ⊹ t = t (left r ∷ ps) ⊹ t = (ps ⊹ t) fork r (right l ∷ ps) ⊹ t = l fork (ps ⊹ t) _◃S : ∀ {n m} (f : n ~> m) -> List (Step n) -> List (Step m) _◃S f = Data.List.map (fmapS (f ◃)) map-[] : ∀ {n m} (f : n ~> m) ps -> (f ◃S) ps ≡ [] -> ps ≡ [] map-[] f [] _ = refl map-[] f (x ∷ xs) () module StepM where lemma1 : ∀ {n} (x : Step n) xs t -> [ x ] ⊹ ( xs ⊹ t ) ≡ (x ∷ xs) ⊹ t lemma1 (left y) xs t = refl lemma1 (right y) xs t = refl lemma2 : ∀ {n} {r} {t} {xs} (x : Step n) -> xs ⊹ t ≡ r -> ((x ∷ xs) ⊹ t ) ≡ [ x ] ⊹ r lemma2 (left y) eq = cong (λ t -> t fork y) eq lemma2 (right y) eq = cong (λ t -> y fork t) eq fact1 : ∀ {n} ps qs (t : Term n) -> (ps ++L qs) ⊹ t ≡ ps ⊹ (qs ⊹ t) fact1 [] qs t = refl fact1 (p ∷ ps) qs t = begin (p ∷ (ps ++L qs)) ⊹ t ≡⟨ lemma2 p (fact1 ps qs t) ⟩ [ p ] ⊹ (ps ⊹ (qs ⊹ t)) ≡⟨ lemma1 p ps (qs ⊹ t) ⟩ (p ∷ ps) ⊹ (qs ⊹ t) ∎ fact2 : ∀ {m n} (f : m ~> n) t ps -> f ◃ (ps ⊹ t) ≡ (f ◃S) ps ⊹ (f ◃ t) fact2 f t [] = refl fact2 f t (left y ∷ xs) = cong (λ t -> t fork (f ◃ y)) (fact2 f t xs) fact2 f t (right y ∷ xs) = cong (λ t -> (f ◃ y) fork t) (fact2 f t xs) check-prop : ∀ {m} (x : Fin (suc m)) t -> (∃ λ t' -> t ≡ (▹ (thin x) ◃) t' × check x t ≡ just t') ⊎ (∃ λ ps -> t ≡ (ps ⊹ i x) × check x t ≡ nothing) check-prop x (i x') with Thick.fact1 x x' (thick x x') refl check-prop x (i .x) | inj₁ (refl , e) = inj₂ ([] , refl , cong (_<$>_ i) e) ... | inj₂ (y , thinxy≡x' , thickxx'≡justy') = inj₁ (i y , cong i (sym (thinxy≡x')) , cong (_<$>_ i) thickxx'≡justy' ) check-prop x leaf = inj₁ (leaf , (refl , refl)) check-prop x (s fork t) with check-prop x s | check-prop x t ... | inj₁ (s' , s≡thinxs' , checkxs≡s') | inj₁ (t' , t≡thinxt' , checkxt≡t') = inj₁ (s' fork t' , cong₂ _fork_ s≡thinxs' t≡thinxt' , cong₂ (λ a b -> _fork_ <$> a ⊛ b) checkxs≡s' checkxt≡t' ) ... | inj₂ (ps , s≡ps+ix , checkxs≡no ) | _ = inj₂ (left t ∷ ps , cong (λ s -> s fork t) s≡ps+ix , cong (λ a -> _fork_ <$> a ⊛ check x t) checkxs≡no ) ... | _ | inj₂ (ps , s≡ps+ix , checkxs≡no ) = inj₂ (right s ∷ ps , cong (λ t -> s fork t) s≡ps+ix , trans (cong (λ a -> _fork_ <$> check x s ⊛ a) checkxs≡no) (lemma (_fork_ <$> check x s))) where lemma : ∀ {a b : Set} {y : b} (x : Maybe a) -> maybe (λ _ → y) y x ≡ y lemma (just x') = refl lemma nothing = refl fork++ : ∀ {m} {s t : Term m} ps -> (ps ⊹ (s fork t) ≡ (ps ++L [ left t ]) ⊹ s) × (ps ⊹ (s fork t) ≡ (ps ++L [ right s ]) ⊹ t) fork++ [] = refl , refl fork++ (left y' ∷ xs') = (cong (λ a -> a fork y') *** cong (λ a -> a fork y')) (fork++ xs') fork++ (right y' ∷ xs') = (cong (λ a -> y' fork a) *** cong (λ a -> y' fork a)) (fork++ xs') No-Cycle : ∀{m} (t : Term m) ps -> t ≡ ps ⊹ t -> ps ≡ [] No-Cycle _ [] refl = refl No-Cycle (i x) (left _ ∷ xs) () No-Cycle leaf (left y ∷ xs) () No-Cycle {m} (s fork t) (left y ∷ xs) r = proof where f : Term m -> Term m f (s fork t) = s f _ = s hyp : xs ++L [ left t ] ≡ [] hyp = No-Cycle s (xs ++L [ left t ]) (trans (cong f r) (proj₁ (fork++ xs))) proof : left y ∷ xs ≡ [] proof = case (_,_ {B = λ x → x ++L _ ≡ _} xs hyp) of λ { ([] , ()) ; (_ ∷ _ , ()) } No-Cycle (i x) (right _ ∷ xs) () No-Cycle leaf (right _ ∷ xs) () No-Cycle {m} (s fork t) (right y ∷ xs) r = proof where f : Term m -> Term m f (s fork t) = t f _ = s hyp = No-Cycle t (xs ++L [ right s ]) (trans (cong f r) (proj₂ (fork++ xs))) proof : right y ∷ xs ≡ [] proof = case (_,_ {B = λ x → x ++L _ ≡ _} xs hyp) of λ { ([] , ()) ; (_ ∷ _ , ()) } module Step2 where fact : ∀{m} (x : Fin m) p ps -> Nothing (Unifies (i x) ((p ∷ ps) ⊹ i x)) fact x p ps f r with No-Cycle (f x) ((f ◃S) (p ∷ ps)) (trans r (StepM.fact2 f (i x) (p ∷ ps))) ... | () ◇-assoc : ∀ {l m n o} (f : l ~> m) (g : n ~> _) (h : o ~> _) -> (f ◇ (g ◇ h)) ≐ ((f ◇ g) ◇ h) ◇-assoc f g h x = sym (Sub.fact2 f g (h x)) bind-assoc : ∀ {l m n o} (f : l ~> m) (g : n ~> _) (h : o ~> _) t -> (f ◇ g) ◃ (h ◃ t) ≡ (f ◇ (g ◇ h)) ◃ t bind-assoc f g h t = sym (begin (f ◇ (g ◇ h)) ◃ t ≡⟨ ◃ext (◇-assoc f g h) t ⟩ ((f ◇ g) ◇ h) ◃ t ≡⟨ Sub.fact2 (f ◇ g) h t ⟩ (f ◇ g) ◃ (h ◃ t) ∎) step-prop : ∀ {m n} (s t : Term (suc m)) (σ : AList m n) r z -> (Unifies s t [-◇ sub (σ asnoc r / z) ]) ⇔ (Unifies ((r for z) ◃ s) ((r for z) ◃ t) [-◇ sub σ ]) step-prop s t σ r z f = to , from where lemma1 : ∀ t -> (f ◇ sub σ) ◃ ((r for z) ◃ t) ≡ (f ◇ (sub σ ◇ (r for z))) ◃ t lemma1 t = bind-assoc f (sub σ) (r for z) t to = λ a → begin (f ◇ sub σ) ◃ ((r for z) ◃ s) ≡⟨ lemma1 s ⟩ (f ◇ (sub σ ◇ (r for z))) ◃ s ≡⟨ a ⟩ (f ◇ (sub σ ◇ (r for z))) ◃ t ≡⟨ sym (lemma1 t) ⟩ (f ◇ sub σ) ◃ ((r for z) ◃ t) ∎ from = λ a → begin (f ◇ (sub σ ◇ (r for z))) ◃ s ≡⟨ sym (lemma1 s) ⟩ (f ◇ sub σ) ◃ ((r for z) ◃ s) ≡⟨ a ⟩ (f ◇ sub σ) ◃ ((r for z) ◃ t) ≡⟨ lemma1 t ⟩ (f ◇ (sub σ ◇ (r for z))) ◃ t ∎ -- We use a view so that we need to handle fewer cases in the main proof data Amgu : {m : ℕ} -> (s t : Term m) -> ∃ (AList m) -> Maybe (∃ (AList m)) -> Set where Flip : ∀ {m s t acc} -> amgu t s acc ≡ amgu s t acc -> Amgu {m} t s acc (amgu t s acc) -> Amgu s t acc (amgu s t acc) leaf-leaf : ∀ {m acc} -> Amgu {m} leaf leaf acc (just acc) leaf-fork : ∀ {m s t acc} -> Amgu {m} leaf (s fork t) acc nothing fork-fork : ∀ {m s1 s2 t1 t2 acc} -> Amgu {m} (s1 fork s2) (t1 fork t2) acc (amgu s2 t2 =<< amgu s1 t1 acc) var-var : ∀ {m x y} -> Amgu (i x) (i y) (m , anil) (just (flexFlex x y)) var-t : ∀ {m x t} -> i x ≢ t -> Amgu (i x) t (m , anil) (flexRigid x t) s-t : ∀{m s t n σ r z} -> Amgu {suc m} s t (n , σ asnoc r / z) ((λ σ -> σ ∃asnoc r / z) <$> amgu ((r for z) ◃ s) ((r for z) ◃ t) (n , σ)) view : ∀ {m : ℕ} -> (s t : Term m) -> (acc : ∃ (AList m)) -> Amgu s t acc (amgu s t acc) view leaf leaf acc = leaf-leaf view leaf (s fork t) acc = leaf-fork view (s fork t) leaf acc = Flip refl leaf-fork view (s1 fork s2) (t1 fork t2) acc = fork-fork view (i x) (i y) (m , anil) = var-var view (i x) leaf (m , anil) = var-t (λ ()) view (i x) (s fork t) (m , anil) = var-t (λ ()) view leaf (i x) (m , anil) = Flip refl (var-t (λ ())) view (s fork t) (i x) (m , anil) = Flip refl (var-t (λ ())) view (i x) (i x') (n , σ asnoc r / z) = s-t view (i x) leaf (n , σ asnoc r / z) = s-t view (i x) (s fork t) (n , σ asnoc r / z) = s-t view leaf (i x) (n , σ asnoc r / z) = s-t view (s fork t) (i x) (n , σ asnoc r / z) = s-t amgu-Correctness : {m : ℕ} -> (s t : Term m) -> ∃ (AList m) -> Set amgu-Correctness s t (l , ρ) = (∃ λ n → ∃ λ σ → π₁ (Max (Unifies s t [-◇ sub ρ ])) (sub σ) × amgu s t (l , ρ) ≡ just (n , σ ++ ρ )) ⊎ (Nothing ((Unifies s t) [-◇ sub ρ ]) × amgu s t (l , ρ) ≡ nothing) amgu-Correctness⋆ : {m : ℕ} -> (s t : Term m) -> ∃ (AList m) -> Set amgu-Correctness⋆ s t (l , ρ) = (∃ λ n → ∃ λ σ → π₁ (Max (Unifies s t [-◇ sub ρ ])) (sub σ) × amgu s t (l , ρ) ≡ just (n , σ ++ ρ )) ⊎ (Nothing ((Unifies s t) [-◇ sub ρ ]) × amgu s t (l , ρ) ≡ nothing) amgu-Ccomm : ∀ {m} s t acc -> amgu {m} s t acc ≡ amgu t s acc -> amgu-Correctness s t acc -> amgu-Correctness t s acc amgu-Ccomm s t (l , ρ) st≡ts = lemma where Unst = (Unifies s t) [-◇ sub ρ ] Unts = (Unifies t s) [-◇ sub ρ ] Unst⇔Unts : ((Unifies s t) [-◇ sub ρ ]) ⇔ ((Unifies t s) [-◇ sub ρ ]) Unst⇔Unts = Properties.fact5 (Unifies s t) (Unifies t s) (sub ρ) (Properties.fact1 {_} {s} {t}) lemma : amgu-Correctness s t (l , ρ) -> amgu-Correctness t s (l , ρ) lemma (inj₁ (n , σ , MaxUnst , amgu≡just)) = inj₁ (n , σ , proj₁ (Max.fact Unst Unts Unst⇔Unts (sub σ)) MaxUnst , trans (sym st≡ts) amgu≡just) lemma (inj₂ (NoUnst , amgu≡nothing)) = inj₂ ((λ {_} → Properties.fact2 Unst Unts Unst⇔Unts NoUnst) , trans (sym st≡ts) amgu≡nothing) amgu-Ccomm⋆ : ∀ {m} s t acc -> amgu {m} s t acc ≡ amgu t s acc -> amgu-Correctness⋆ s t acc -> amgu-Correctness⋆ t s acc amgu-Ccomm⋆ s t (l , ρ) st≡ts = lemma where Unst = (Unifies s t) [-◇ sub ρ ] Unts = (Unifies t s) [-◇ sub ρ ] Unst⇔Unts : ((Unifies s t) [-◇ sub ρ ]) ⇔ ((Unifies t s) [-◇ sub ρ ]) Unst⇔Unts = Properties.fact5 (Unifies s t) (Unifies t s) (sub ρ) (Properties.fact1 {_} {s} {t}) lemma : amgu-Correctness s t (l , ρ) -> amgu-Correctness t s (l , ρ) lemma (inj₁ (n , σ , MaxUnst , amgu≡just)) = inj₁ (n , σ , proj₁ (Max.fact Unst Unts Unst⇔Unts (sub σ)) MaxUnst , trans (sym st≡ts) amgu≡just) lemma (inj₂ (NoUnst , amgu≡nothing)) = inj₂ ((λ {_} → Properties.fact2 Unst Unts Unst⇔Unts NoUnst) , trans (sym st≡ts) amgu≡nothing) amgu-c : ∀ {m s t l ρ} -> Amgu s t (l , ρ) (amgu s t (l , ρ)) -> (∃ λ n → ∃ λ σ → π₁ (Max ((Unifies s t) [-◇ sub ρ ])) (sub σ) × amgu {m} s t (l , ρ) ≡ just (n , σ ++ ρ )) ⊎ (Nothing ((Unifies s t) [-◇ sub ρ ]) × amgu {m} s t (l , ρ) ≡ nothing) amgu-c {m} {s} {t} {l} {ρ} amg with amgu s t (l , ρ) amgu-c {l = l} {ρ} leaf-leaf | ._ = inj₁ (l , anil , trivial-problem {_} {_} {leaf} {sub ρ} , cong (λ x -> just (l , x)) (sym (SubList.anil-id-l ρ)) ) amgu-c leaf-fork | .nothing = inj₂ ((λ _ () ) , refl) amgu-c {m} {s1 fork s2} {t1 fork t2} {l} {ρ} fork-fork | ._ with amgu s1 t1 (l , ρ) | amgu-c $ view s1 t1 (l , ρ) ... | .nothing | inj₂ (nounify , refl) = inj₂ ((λ {_} -> No[Q◇ρ]→No[P◇ρ] No[Q◇ρ]) , refl) where P = Unifies (s1 fork s2) (t1 fork t2) Q = (Unifies s1 t1 ∧ Unifies s2 t2) Q⇔P : Q ⇔ P Q⇔P = switch P Q (Properties.fact1' {_} {s1} {s2} {t1} {t2}) No[Q◇ρ]→No[P◇ρ] : Nothing (Q [-◇ sub ρ ]) -> Nothing (P [-◇ sub ρ ]) No[Q◇ρ]→No[P◇ρ] = Properties.fact2 (Q [-◇ sub ρ ]) (P [-◇ sub ρ ]) (Properties.fact5 Q P (sub ρ) Q⇔P) No[Q◇ρ] : Nothing (Q [-◇ sub ρ ]) No[Q◇ρ] = failure-propagation.first (sub ρ) (Unifies s1 t1) (Unifies s2 t2) nounify ... | .(just (n , σ ++ ρ)) | inj₁ (n , σ , a , refl) with amgu s2 t2 (n , σ ++ ρ) | amgu-c (view s2 t2 (n , (σ ++ ρ))) ... | .nothing | inj₂ (nounify , refl) = inj₂ ( (λ {_} -> No[Q◇ρ]→No[P◇ρ] No[Q◇ρ]) , refl) where P = Unifies (s1 fork s2) (t1 fork t2) Q = (Unifies s1 t1 ∧ Unifies s2 t2) Q⇔P : Q ⇔ P Q⇔P = switch P Q (Properties.fact1' {_} {s1} {s2} {t1} {t2}) No[Q◇ρ]→No[P◇ρ] : Nothing (Q [-◇ sub ρ ]) -> Nothing (P [-◇ sub ρ ]) No[Q◇ρ]→No[P◇ρ] = Properties.fact2 (Q [-◇ sub ρ ]) (P [-◇ sub ρ ]) (Properties.fact5 Q P (sub ρ) Q⇔P) No[Q◇ρ] : Nothing (Q [-◇ sub ρ ]) No[Q◇ρ] = failure-propagation.second (sub ρ) (sub σ) (Unifies s1 t1) (Unifies s2 t2) a (λ f Unifs2t2-f◇σ◇ρ → nounify f (π₂ (Unifies s2 t2) (λ t → cong (f ◃) (sym (SubList.fact1 σ ρ t))) Unifs2t2-f◇σ◇ρ)) ... | .(just (n1 , σ1 ++ (σ ++ ρ))) | inj₁ (n1 , σ1 , b , refl) = inj₁ (n1 , σ1 ++ σ , Max[P∧Q◇ρ][σ1++σ] , cong (λ σ -> just (n1 , σ)) (++-assoc σ1 σ ρ)) where P = Unifies s1 t1 Q = Unifies s2 t2 P∧Q = P ∧ Q C = Unifies (s1 fork s2) (t1 fork t2) Max[C◇ρ]⇔Max[P∧Q◇ρ] : Max (C [-◇ sub ρ ]) ⇔ Max (P∧Q [-◇ sub ρ ]) Max[C◇ρ]⇔Max[P∧Q◇ρ] = Max.fact (C [-◇ sub ρ ]) (P∧Q [-◇ sub ρ ]) (Properties.fact5 C P∧Q (sub ρ) (Properties.fact1' {_} {s1} {s2} {t1} {t2})) Max[Q◇σ++ρ]⇔Max[Q◇σ◇ρ] : Max (Q [-◇ sub (σ ++ ρ)]) ⇔ Max (Q [-◇ sub σ ◇ sub ρ ]) Max[Q◇σ++ρ]⇔Max[Q◇σ◇ρ] = Max.fact (Q [-◇ sub (σ ++ ρ)]) (Q [-◇ sub σ ◇ sub ρ ]) (Properties.fact6 Q (SubList.fact1 σ ρ)) Max[P∧Q◇ρ][σ1++σ] : π₁ (Max (C [-◇ sub ρ ])) (sub (σ1 ++ σ)) Max[P∧Q◇ρ][σ1++σ] = π₂ (Max (C [-◇ sub ρ ])) (≐-sym (SubList.fact1 σ1 σ)) (proj₂ (Max[C◇ρ]⇔Max[P∧Q◇ρ] (sub σ1 ◇ sub σ)) (optimist (sub ρ) (sub σ) (sub σ1) P Q (DClosed.fact1 s1 t1) a (proj₁ (Max[Q◇σ++ρ]⇔Max[Q◇σ◇ρ] (sub σ1)) b))) amgu-c {suc l} {i x} {i y} (var-var) | .(just (flexFlex x y)) with thick x y | Thick.fact1 x y (thick x y) refl ... | .(just y') | inj₂ (y' , thinxy'≡y , refl ) = inj₁ (l , anil asnoc i y' / x , var-elim-i-≡ x (i y) (sym (cong i thinxy'≡y)) , refl ) ... | .nothing | inj₁ ( x≡y , refl ) rewrite sym x≡y = inj₁ (suc l , anil , trivial-problem {_} {_} {i x} {sub anil} , refl) amgu-c {suc l} {i x} {t} (var-t ix≢t) | .(flexRigid x t) with check x t | check-prop x t ... | .nothing | inj₂ ( ps , r , refl) = inj₂ ( (λ {_} -> No-Unifier ) , refl) where No-Unifier : {n : ℕ} (f : Fin (suc l) → Term n) → f x ≡ f ◃ t → ⊥ No-Unifier f fx≡f◃t = ix≢t (sym (trans r (cong (λ ps -> ps ⊹ i x) ps≡[]))) where ps≡[] : ps ≡ [] ps≡[] = map-[] f ps (No-Cycle (f x) ((f ◃S) ps) (begin f x ≡⟨ fx≡f◃t ⟩ f ◃ t ≡⟨ cong (f ◃) r ⟩ f ◃ (ps ⊹ i x) ≡⟨ StepM.fact2 f (i x) ps ⟩ (f ◃S) ps ⊹ f x ∎)) ... | .(just t') | inj₁ (t' , r , refl) = inj₁ ( l , anil asnoc t' / x , var-elim-i-≡ x t r , refl ) amgu-c {suc m} {s} {t} {l} {ρ asnoc r / z} s-t | .((λ x' → x' ∃asnoc r / z) <$> (amgu ((r for z) ◃ s) ((r for z) ◃ t) (l , ρ))) with amgu-c (view ((r for z) ◃ s) ((r for z) ◃ t) (l , ρ)) ... | inj₂ (nounify , ra) = inj₂ ( (λ {_} -> NoQ→NoP nounify) , cong (_<$>_ (λ x' → x' ∃asnoc r / z)) ra ) where P = Unifies s t [-◇ sub (ρ asnoc r / z) ] Q = Unifies ((r for z) ◃ s) ((r for z) ◃ t) [-◇ sub ρ ] NoQ→NoP : Nothing Q → Nothing P NoQ→NoP = Properties.fact2 Q P (switch P Q (step-prop s t ρ r z)) ... | inj₁ (n , σ , a , ra) = inj₁ (n , σ , proj₂ (MaxP⇔MaxQ (sub σ)) a , cong (_<$>_ (λ x' → x' ∃asnoc r / z)) ra) where P = Unifies s t [-◇ sub (ρ asnoc r / z) ] Q = Unifies ((r for z) ◃ s) ((r for z) ◃ t) [-◇ sub ρ ] MaxP⇔MaxQ : Max P ⇔ Max Q MaxP⇔MaxQ = Max.fact P Q (step-prop s t ρ r z) amgu-c {m} {s} {t} {l} {ρ} (Flip amguts≡amgust amguts) | ._ = amgu-Ccomm t s (l , ρ) amguts≡amgust (amgu-c amguts) amgu-c {zero} {i ()} _ | _ amgu-c⋆ : ∀ {m s t l ρ} -> Amgu s t (l , ρ) (amgu s t (l , ρ)) -> (∃ λ n → ∃ λ σ → (Max⋆ ((Unifies⋆ s t) [-◇⋆ sub ρ ])) (sub σ) × amgu {m} s t (l , ρ) ≡ just (n , σ ++ ρ )) ⊎ (Nothing⋆ ((Unifies⋆ s t) [-◇⋆ sub ρ ]) × amgu {m} s t (l , ρ) ≡ nothing) amgu-c⋆ {m} {s} {t} {l} {ρ} amg with amgu s t (l , ρ) amgu-c⋆ {l = l} {ρ} leaf-leaf | ._ = inj₁ (l , anil , trivial-problem {_} {_} {leaf} {sub ρ} , cong (λ x -> just (l , x)) (sym (SubList.anil-id-l ρ)) ) amgu-c⋆ leaf-fork | .nothing = inj₂ ((λ _ () ) , refl) amgu-c⋆ {m} {s1 fork s2} {t1 fork t2} {l} {ρ} fork-fork | ._ with amgu s1 t1 (l , ρ) | amgu-c⋆ $ view s1 t1 (l , ρ) ... | .nothing | inj₂ (nounify , refl) = inj₂ ((λ {_} -> No[Q◇ρ]→No[P◇ρ] No[Q◇ρ]) , refl) where P = Unifies⋆ (s1 fork s2) (t1 fork t2) Q = (Unifies⋆ s1 t1 ∧⋆ Unifies⋆ s2 t2) Q⇔P : Q ⇔⋆ P Q⇔P = switch⋆ P Q (Properties.fact1' {_} {s1} {s2} {t1} {t2}) No[Q◇ρ]→No[P◇ρ] : Nothing⋆ (Q [-◇⋆ sub ρ ]) -> Nothing⋆ (P [-◇⋆ sub ρ ]) No[Q◇ρ]→No[P◇ρ] = Properties.fact2⋆ (Q [-◇⋆ sub ρ ]) (P [-◇⋆ sub ρ ]) (Properties.fact5⋆ Q P (sub ρ) Q⇔P) No[Q◇ρ] : Nothing⋆ (Q [-◇⋆ sub ρ ]) No[Q◇ρ] = failure-propagation.first⋆ (sub ρ) (Unifies⋆ s1 t1) (Unifies⋆ s2 t2) nounify ... | .(just (n , σ ++ ρ)) | inj₁ (n , σ , a , refl) with amgu s2 t2 (n , σ ++ ρ) | amgu-c⋆ (view s2 t2 (n , (σ ++ ρ))) ... | .nothing | inj₂ (nounify , refl) = inj₂ ( (λ {_} -> No[Q◇ρ]→No[P◇ρ]⋆ No[Q◇ρ]⋆) , refl) where P⋆ = Unifies⋆ (s1 fork s2) (t1 fork t2) Q⋆ = (Unifies⋆ s1 t1 ∧⋆ Unifies⋆ s2 t2) Q⇔P⋆ : Q⋆ ⇔⋆ P⋆ Q⇔P⋆ = switch⋆ P⋆ Q⋆ (Properties.fact1'⋆ {_} {s1} {s2} {t1} {t2}) No[Q◇ρ]→No[P◇ρ]⋆ : Nothing⋆ (Q⋆ [-◇⋆ sub ρ ]) -> Nothing⋆ (P⋆ [-◇⋆ sub ρ ]) No[Q◇ρ]→No[P◇ρ]⋆ = Properties.fact2⋆ (Q⋆ [-◇⋆ sub ρ ]) (P⋆ [-◇⋆ sub ρ ]) (Properties.fact5⋆ Q⋆ P⋆ (sub ρ) Q⇔P⋆) No[Q◇ρ]⋆ : Nothing⋆ (Q⋆ [-◇⋆ sub ρ ]) No[Q◇ρ]⋆ = failure-propagation.second⋆ (sub ρ) (sub σ) (Unifies⋆ s1 t1) (Unifies s2 t2) a (λ f → nounify f ∘ π₂ (Unifies s2 t2) (cong (f ◃) ∘ sym ∘ SubList.fact1 σ ρ)) {- No[Q◇ρ]⋆ = failure-propagation.second (sub ρ) (sub σ) (Unifies s1 t1) (Unifies s2 t2) a -- (λ f Unifs2t2-f◇σ◇ρ → nounify f ((π₂ (Unifies s2 t2) (λ t → cong (f ◃) (sym (SubList.fact1 σ ρ t))) Unifs2t2-f◇σ◇ρ))) -- (λ f → nounify f ∘ π₂ (Unifies s2 t2) (λ t → cong (f ◃) (sym (SubList.fact1 σ ρ t)))) (λ f → nounify f ∘ π₂ (Unifies s2 t2) (cong (f ◃) ∘ sym ∘ SubList.fact1 σ ρ)) -} P = Unifies (s1 fork s2) (t1 fork t2) Q = (Unifies s1 t1 ∧ Unifies s2 t2) Q⇔P : Q ⇔ P Q⇔P = switch P Q (Properties.fact1' {_} {s1} {s2} {t1} {t2}) No[Q◇ρ]→No[P◇ρ] : Nothing (Q [-◇ sub ρ ]) -> Nothing (P [-◇ sub ρ ]) No[Q◇ρ]→No[P◇ρ] = Properties.fact2 (Q [-◇ sub ρ ]) (P [-◇ sub ρ ]) (Properties.fact5 Q P (sub ρ) Q⇔P) No[Q◇ρ] : Nothing (Q [-◇ sub ρ ]) No[Q◇ρ] = failure-propagation.second (sub ρ) (sub σ) (Unifies s1 t1) (Unifies s2 t2) a (λ f Unifs2t2-f◇σ◇ρ → nounify f (π₂ (Unifies s2 t2) (λ t → cong (f ◃) (sym (SubList.fact1 σ ρ t))) Unifs2t2-f◇σ◇ρ)) ... | .(just (n1 , σ1 ++ (σ ++ ρ))) | inj₁ (n1 , σ1 , b , refl) = inj₁ (n1 , σ1 ++ σ , Max[P∧Q◇ρ][σ1++σ] , cong (λ σ -> just (n1 , σ)) (++-assoc σ1 σ ρ)) where P = Unifies s1 t1 Q = Unifies s2 t2 P∧Q = P ∧ Q C = Unifies (s1 fork s2) (t1 fork t2) Max[C◇ρ]⇔Max[P∧Q◇ρ] : Max (C [-◇ sub ρ ]) ⇔ Max (P∧Q [-◇ sub ρ ]) Max[C◇ρ]⇔Max[P∧Q◇ρ] = Max.fact (C [-◇ sub ρ ]) (P∧Q [-◇ sub ρ ]) (Properties.fact5 C P∧Q (sub ρ) (Properties.fact1' {_} {s1} {s2} {t1} {t2})) Max[Q◇σ++ρ]⇔Max[Q◇σ◇ρ] : Max (Q [-◇ sub (σ ++ ρ)]) ⇔ Max (Q [-◇ sub σ ◇ sub ρ ]) Max[Q◇σ++ρ]⇔Max[Q◇σ◇ρ] = Max.fact (Q [-◇ sub (σ ++ ρ)]) (Q [-◇ sub σ ◇ sub ρ ]) (Properties.fact6 Q (SubList.fact1 σ ρ)) Max[P∧Q◇ρ][σ1++σ] : π₁ (Max (C [-◇ sub ρ ])) (sub (σ1 ++ σ)) Max[P∧Q◇ρ][σ1++σ] = π₂ (Max (C [-◇ sub ρ ])) (≐-sym (SubList.fact1 σ1 σ)) (proj₂ (Max[C◇ρ]⇔Max[P∧Q◇ρ] (sub σ1 ◇ sub σ)) (optimist (sub ρ) (sub σ) (sub σ1) P Q (DClosed.fact1 s1 t1) a (proj₁ (Max[Q◇σ++ρ]⇔Max[Q◇σ◇ρ] (sub σ1)) b))) amgu-c⋆ {suc l} {i x} {i y} (var-var) | .(just (flexFlex x y)) with thick x y | Thick.fact1 x y (thick x y) refl ... | .(just y') | inj₂ (y' , thinxy'≡y , refl ) = inj₁ (l , anil asnoc i y' / x , var-elim-i-≡ x (i y) (sym (cong i thinxy'≡y)) , refl ) ... | .nothing | inj₁ ( x≡y , refl ) rewrite sym x≡y = inj₁ (suc l , anil , trivial-problem {_} {_} {i x} {sub anil} , refl) amgu-c⋆ {suc l} {i x} {t} (var-t ix≢t) | .(flexRigid x t) with check x t | check-prop x t ... | .nothing | inj₂ ( ps , r , refl) = inj₂ ( (λ {_} -> No-Unifier ) , refl) where No-Unifier : {n : ℕ} (f : Fin (suc l) → Term n) → f x ≡ f ◃ t → ⊥ No-Unifier f fx≡f◃t = ix≢t (sym (trans r (cong (λ ps -> ps ⊹ i x) ps≡[]))) where ps≡[] : ps ≡ [] ps≡[] = map-[] f ps (No-Cycle (f x) ((f ◃S) ps) (begin f x ≡⟨ fx≡f◃t ⟩ f ◃ t ≡⟨ cong (f ◃) r ⟩ f ◃ (ps ⊹ i x) ≡⟨ StepM.fact2 f (i x) ps ⟩ (f ◃S) ps ⊹ f x ∎)) ... | .(just t') | inj₁ (t' , r , refl) = inj₁ ( l , anil asnoc t' / x , var-elim-i-≡ x t r , refl ) amgu-c⋆ {suc m} {s} {t} {l} {ρ asnoc r / z} s-t | .((λ x' → x' ∃asnoc r / z) <$> (amgu ((r for z) ◃ s) ((r for z) ◃ t) (l , ρ))) with amgu-c⋆ (view ((r for z) ◃ s) ((r for z) ◃ t) (l , ρ)) ... | inj₂ (nounify , ra) = inj₂ ( (λ {_} -> NoQ→NoP nounify) , cong (_<$>_ (λ x' → x' ∃asnoc r / z)) ra ) where P = Unifies s t [-◇ sub (ρ asnoc r / z) ] Q = Unifies ((r for z) ◃ s) ((r for z) ◃ t) [-◇ sub ρ ] NoQ→NoP : Nothing Q → Nothing P NoQ→NoP = Properties.fact2 Q P (switch P Q (step-prop s t ρ r z)) ... | inj₁ (n , σ , a , ra) = inj₁ (n , σ , proj₂ (MaxP⇔MaxQ (sub σ)) a , cong (_<$>_ (λ x' → x' ∃asnoc r / z)) ra) where P = Unifies s t [-◇ sub (ρ asnoc r / z) ] Q = Unifies ((r for z) ◃ s) ((r for z) ◃ t) [-◇ sub ρ ] MaxP⇔MaxQ : Max P ⇔ Max Q MaxP⇔MaxQ = Max.fact P Q (step-prop s t ρ r z) amgu-c⋆ {m} {s} {t} {l} {ρ} (Flip amguts≡amgust amguts) | ._ = amgu-Ccomm⋆ t s (l , ρ) amguts≡amgust (amgu-c⋆ amguts) amgu-c⋆ {zero} {i ()} _ | _ mgu-c : ∀ {m} (s t : Term m) -> (∃ λ n → ∃ λ σ → π₁ (Max (Unifies s t)) (sub σ) × mgu s t ≡ just (n , σ)) ⊎ (Nothing (Unifies s t) × mgu s t ≡ nothing) mgu-c {m} s t = amgu-c (view s t (m , anil)) mgu-c⋆ : ∀ {m} (s t : Term m) -> (∃ λ n → ∃ λ σ → (Max⋆ (Unifies⋆ s t)) (sub σ) × mgu s t ≡ just (n , σ)) ⊎ (Nothing⋆ (Unifies⋆ s t) × mgu s t ≡ nothing) mgu-c⋆ {m} s t = amgu-c (view s t (m , anil)) data SidedTerm (n : ℕ) : Set where i-left : (x : Fin n) -> 2 * Data.Fin.toℕ x Data.Nat.≤ n → SidedTerm n i-right : (x : Fin n) -> n + Data.Fin.toℕ x Data.Nat.≤ 2 * n → SidedTerm n leaf : SidedTerm n _fork_ : (s t : SidedTerm n) -> SidedTerm n data dTerm (n : ℕ) : Term (2 * n) → Set where -- i : l1 : ∀ m → Data.Fin.toℕ (Data.Fin.fromℕ m) ≡ m l1 zero = refl l1 (suc m) = cong suc (l1 m) l2 : ∀ m → m ≡ m + 0 l2 zero = refl l2 (suc m) = cong suc (l2 m) fixup : ∀ m → Fin (Data.Fin.toℕ (Data.Fin.fromℕ m) + m) → Fin (m + (m + 0)) fixup m x rewrite l1 m | sym (l2 m) = x revise-down : ∀ {m} → Fin m → Fin (2 * m) revise-down {m} x = Data.Fin.inject+ (m + 0) x revise-up : ∀ {m} → Fin m → Fin (2 * m) revise-up {m} x = fixup m (Data.Fin.fromℕ m Data.Fin.+ x) {- reduce* : ∀ {m n} (i : Fin (m * 2)) → Fin m reduce* {zero} i i≥m = i reduce* {suc m} zero () reduce* {suc m} (suc i) (s≤s i≥m) = reduce≥ i i≥m -} downFin : ∀ {m} {x : Fin (2 * m)} → suc (Data.Fin.toℕ x) Data.Nat.≤ m → Fin m downFin {zero} {()} p₁ downFin {suc m} {zero} (s≤s p₁) = zero downFin {suc zero} {suc zero} (s≤s p₁) = zero downFin {suc zero} {suc (suc ())} (s≤s p₁) downFin {suc (suc m)} {suc zero} (s≤s x<m) = suc zero downFin {suc (suc m)} {suc (suc x)} (s≤s (s≤s x<m)) = suc ((downFin {suc m} {x = subst Fin (foo m) x} (s≤s {!x<m!}))) where foo : ∀ m → m + suc (suc (m + zero)) ≡ suc (m + suc (m + zero)) foo zero = refl foo (suc m) rewrite foo m = cong suc {!refl!} combineSubs : ∀ {m a} {A : Set a} → (Fin m → A) → (Fin m → A) → Fin (2 * m) → A combineSubs {m} fl fr x with suc (Data.Fin.toℕ x) ≤? m … | yes p = fl (downFin {x = x} p) … | no _ = fr {!!} write-variable-down : ∀ {m} → Term m → Term (2 * m) write-variable-down {m} (i l) = i $ revise-down l write-variable-down {m} leaf = leaf write-variable-down {m} (s fork t) = write-variable-down s fork write-variable-down t write-variable-up : ∀ {m} → Term m → Term (2 * m) write-variable-up {m} (i r) = i (revise-up r) write-variable-up {m} leaf = leaf write-variable-up {m} (s fork t) = write-variable-up s fork write-variable-up t write-variables-apart : ∀ {m} (s t : Term m) → Term (2 * m) × Term (2 * m) write-variables-apart s t = write-variable-down s , write-variable-up t separate-substitutions-down : ∀ {m n} → (Fin (2 * m) → Term n) → Fin m → Term n separate-substitutions-down {m} f x = f $ revise-down x separate-substitutions-up : ∀ {m n} → (Fin (2 * m) → Term n) → Fin m → Term n separate-substitutions-up {m} f x = f $ revise-up x separate-substitutions : ∀ {m n} → (Fin (2 * m) → Term n) → (Fin m → Term n) × (Fin m → Term n) separate-substitutions {m} x = separate-substitutions-down {m} x , separate-substitutions-up {m} x Property⋆2 : (m : ℕ) -> Set1 Property⋆2 m = ∀ {n} -> (Fin m -> Term n) × (Fin m -> Term n) -> Set Nothing⋆2 : ∀{m} -> (P : Property⋆2 m) -> Set Nothing⋆2 P = ∀{n} f -> P {n} f -> ⊥ Unifies⋆2 : ∀ {m} (s t : Term m) -> Property⋆2 m Unifies⋆2 s t (f₁ , f₂) = f₁ ◃ s ≡ f₂ ◃ t _≤2_ : ∀ {m n n'} (f : (Fin m -> Term n) × (Fin m -> Term n)) (g : (Fin m -> Term n') × (Fin m -> Term n')) -> Set (f₁ , f₂) ≤2 (g₁ , g₂) = ∃ λ f' -> f₁ ≐ (f' ◇ g₁) × f₂ ≐ (f' ◇ g₂) Max⋆2 : ∀ {m} (P : Property⋆2 m) -> Property⋆2 m Max⋆2 P f = P f × (∀ {n} f' -> P {n} f' -> f' ≤2 f) pair-mgu : ∀ {m} -> (s t : Term m) -> Maybe (∃ (AList m)) pair-mgu {m} s t = {!!} -- amgu s t (m , anil) write≡separate : ∀ {m n} (σ : AList (2 * m) n) (t : Term m) → (sub σ ◃) (write-variable-down t) ≡ ((separate-substitutions-down $ sub σ) ◃) t write≡separate {zero} {.0} anil (i x) = refl write≡separate {suc m} {.(suc (m + suc (m + 0)))} anil (i x) = refl write≡separate {suc m} {n} (σ asnoc t' / x) (i x₁) = refl write≡separate σ leaf = refl write≡separate σ (t₁ fork t₂) = cong₂ _fork_ (write≡separate σ t₁) (write≡separate σ t₂) write≡separate' : ∀ {m n} (σ : AList (2 * m) n) (t : Term m) → (sub σ ◃) (write-variable-down t) ≡ ((separate-substitutions-down $ sub σ) ◃) t write≡separate' {zero} {.0} anil (i x) = refl write≡separate' {suc m} {.(suc (m + suc (m + 0)))} anil (i x) = refl write≡separate' {suc m} {n} (σ asnoc t' / x) (i x₁) = refl write≡separate' σ leaf = refl write≡separate' σ (t₁ fork t₂) = cong₂ _fork_ (write≡separate σ t₁) (write≡separate σ t₂) {- (sub σ ◃) (write-variable-down s') ≡ (sub σ ◃) (write-variable-up t') → ((separate-substitutions-down $ sub σ) ◃) s' ≡ ((separate-substitutions-up $ sub σ) ◃) t' -} pair-mgu-c⋆! : ∀ {m} (s' t' : Term m) (let (s , t) = write-variables-apart s' t') -> (∃ λ n → ∃ λ σ → ∃ λ σ₁ → ∃ λ σ₂ → (σ₁ , σ₂) ≡ separate-substitutions (sub σ) × (Max⋆2 (Unifies⋆2 s' t')) (σ₁ , σ₂) × mgu s t ≡ just (n , σ)) ⊎ (Nothing⋆2 (Unifies⋆2 s t) × mgu s t ≡ nothing) pair-mgu-c⋆! {m} s' t' with write-variable-down s' | inspect write-variable-down s' | write-variable-up t' | inspect write-variable-up t' … | s | Reveal_·_is_.[_] refl | t | Reveal_·_is_.[_] refl with amgu-c⋆ (view s t (2 * m , anil)) … | (inj₁ (n , σ , (s-un-t , s-un-t-correct) , amgu=nσ)) = inj₁ (_ , σ , ((separate-substitutions-down $ sub σ) , ((separate-substitutions-up $ sub σ) , (refl , (({!trans (sym $ write≡separate σ s') s-un-t!} , (λ {(fl , fr) x → ((proj₁ ∘ s-un-t-correct (combineSubs fl fr)) {!(proj₂ ∘ s-un-t-correct (combineSubs fl fr)) !}) , ({!!} , {!!})})) , amgu=nσ))))) where … | (inj₂ (s-not-un-t , amgu=nothing)) = inj₂ {!!} -- pair-mgu-c⋆ : ∀ {m} (s' t' : Term m) (let (s , t) = write-variables-apart s' t') -> -- (∃ λ n → ∃ λ σ → ∃ λ σ₁ → ∃ λ σ₂ → (σ₁ , σ₂) ≡ separate-substitutions {m} {n} (sub {2 * m} {n} σ) × (Max⋆2 (Unifies⋆2 s t)) (σ₁ , σ₂) × mgu s t ≡ just (n , σ)) -- ⊎ (Nothing⋆2 (Unifies⋆2 s t) × mgu s t ≡ nothing) -- pair-mgu-c⋆ {m} s' t' -- with write-variables-apart s' t' -- … | (s , t) with amgu-c⋆ (view s t (2 * m , anil)) -- pair-mgu-c⋆ {m} s' t' | s , t | (inj₁ (n , σ , (s-un-t , s-un-t-correct) , amgu=nσ)) = inj₁ ({!!} , {!!}) -- pair-mgu-c⋆ {m} s' t' | s , t | (inj₂ (s-not-un-t , amgu=nothing)) = inj₂ {!!} -- -- pair-mgu-c⋆ {m} s t = {!!} -- amgu-c (view s t (m , anil)) -- {- -- Goal: Σ ℕ -- (λ n₁ → -- Σ (AList (m + (m + 0)) n₁) -- (λ σ₁ → -- Σ (Fin (m + (m + 0)) → Term n₁) -- (λ σ₂ → -- Σ (Fin (m + (m + 0)) → Term n₁) -- (λ σ₃ → -- Σ ((σ₂ , σ₃) ≡ (?8 (sub σ₁) , ?9 (sub σ₁))) -- (λ x → -- Σ -- (Σ ((σ₂ ◃) s ≡ (σ₃ ◃) t) -- (λ x₁ → -- {n = n₂ : ℕ} -- (f' -- : Σ (Fin (m + (m + 0)) → Term n₂) -- (λ x₂ → Fin (m + (m + 0)) → Term n₂)) → -- (proj₁ f' ◃) s ≡ (proj₂ f' ◃) t → -- Σ (Fin n₁ → Term n₂) -- (λ f'' → -- Σ ((x₂ : Fin (m + (m + 0))) → proj₁ f' x₂ ≡ (f'' ◃) (σ₂ x₂)) -- (λ x₂ → -- (x₃ : Fin (m + (m + 0))) → proj₂ f' x₃ ≡ (f'' ◃) (σ₃ x₃))))) -- (λ x₁ → amgu s t (m + (m + 0) , anil) ≡ just (n₁ , σ₁))))))) -- ⊎ -- Σ -- ({n = n₁ : ℕ} -- (f -- : Σ (Fin (m + (m + 0)) → Term n₁) -- (λ x → Fin (m + (m + 0)) → Term n₁)) → -- (proj₁ f ◃) s ≡ (proj₂ f ◃) t → ⊥) -- (λ x → amgu s t (m + (m + 0) , anil) ≡ nothing) -- ———————————————————————————————————————————————————————————— -- t' : Term m -- s' : Term m -- amgu=nσ : amgu s t (m + (m + 0) , anil) ≡ just (n , σ) -- s-un-t-correct -- : {n = n₁ : ℕ} (f' : Fin (m + (m + 0)) → Term n₁) → -- (f' ◃) s ≡ (f' ◃) t → -- Σ (Fin n → Term n₁) -- (λ f'' → (x : Fin (m + (m + 0))) → f' x ≡ (f'' ◃) (sub σ x)) -- s-un-t : (sub σ ◃) s ≡ (sub σ ◃) t -- σ : AList (m + (m + 0)) n -- n : ℕ -- t : Term (m + (m + 0)) -- s : Term (m + (m + 0)) -- m : ℕ -- -}
42.435552
364
0.45284
2040232bcb7329a1e76b75c710aab55038a001e0
1,290
agda
Agda
Chapter1/#3.agda
CodaFi/HoTT-Exercises
3411b253b0a49a5f9c3301df175ae8ecdc563b12
[ "MIT" ]
null
null
null
Chapter1/#3.agda
CodaFi/HoTT-Exercises
3411b253b0a49a5f9c3301df175ae8ecdc563b12
[ "MIT" ]
null
null
null
Chapter1/#3.agda
CodaFi/HoTT-Exercises
3411b253b0a49a5f9c3301df175ae8ecdc563b12
[ "MIT" ]
null
null
null
module #3 where open import Data.Product open import Data.Sum open import Relation.Binary.PropositionalEquality {- Exercise 1.3. Derive the induction principle for products indA×B, using only the projections and the propositional uniqueness principle uppt. Verify that the definitional equalities are valid. Generalize uppt to Σ-types, and do the same for Σ-types. (This requires concepts from Chapter 2.) -} module Product { a b c }{A : Set a}{B : Set b}{C : Set c}(g : A → B → C) where uppt : (x : A × B) → (proj₁ x , proj₂ x) ≡ x uppt = λ x → refl indₓ : ∀{k}(P : A × B → Set k) → ((x : A)(y : B) → P (x , y)) → (x : A × B) → P x indₓ P f x = subst P (uppt x) (f (proj₁ x) (proj₂ x)) indₓ-β : ∀{k}(P : A × B → Set k) → (f : (x : A)(y : B) → P (x , y)) → (x : A)(y : B) → indₓ P f (x , y) ≡ f x y indₓ-β P f x y = refl module Sum { a b c }{A : Set a}{B : A → Set b}{C : Set c}(g : (x : A) → B x → C) where uppt : (x : Σ A B) → (proj₁ x , proj₂ x) ≡ x uppt = λ x → refl ind-Σ : ∀{k}(C : Σ A B → Set k) → ((a : A)(b : B a) → C (a , b)) → (p : Σ A B) → C p ind-Σ C f x = subst C (uppt x) (f (proj₁ x) (proj₂ x)) ind-Σ-β : ∀{k}(C : Σ A B → Set k) → (f : (a : A)(b : B a) → C (a , b)) → (x : A)(y : B x) → ind-Σ C f (x , y) ≡ f x y ind-Σ-β C f x y = refl
37.941176
119
0.531008
cbccbeaf919d66402d38856b9ab177a88e92ce8c
613
agda
Agda
Cubical/Algebra/CommAlgebra/Instances/Unit.agda
howsiyu/cubical
1b9c97a2140fe96fe636f4c66beedfd7b8096e8f
[ "MIT" ]
null
null
null
Cubical/Algebra/CommAlgebra/Instances/Unit.agda
howsiyu/cubical
1b9c97a2140fe96fe636f4c66beedfd7b8096e8f
[ "MIT" ]
null
null
null
Cubical/Algebra/CommAlgebra/Instances/Unit.agda
howsiyu/cubical
1b9c97a2140fe96fe636f4c66beedfd7b8096e8f
[ "MIT" ]
null
null
null
{-# OPTIONS --safe #-} module Cubical.Algebra.CommAlgebra.Instances.Unit where open import Cubical.Foundations.Prelude open import Cubical.Data.Unit open import Cubical.Algebra.Ring open import Cubical.Algebra.CommRing open import Cubical.Algebra.CommRing.Instances.Unit open import Cubical.Algebra.CommAlgebra private variable ℓ ℓ' : Level open CommAlgebraStr module _ (R : CommRing ℓ) where UnitCommAlgebra : CommAlgebra R ℓ' UnitCommAlgebra = commAlgebraFromCommRing UnitCommRing (λ _ _ → tt*) (λ _ _ _ → refl) (λ _ _ _ → refl) (λ _ _ _ → refl) (λ _ → refl) (λ _ _ _ → refl)
23.576923
55
0.722675
cba53d3a581b08964ca9788cdc0e0d7c61652d66
4,843
agda
Agda
legacy/RandomAccessList/Redundant/Core/Properties.agda
banacorn/numeral
aae093cc9bf21f11064e7f7b12049448cd6449f1
[ "MIT" ]
1
2015-04-23T15:58:28.000Z
2015-04-23T15:58:28.000Z
legacy/RandomAccessList/Redundant/Core/Properties.agda
banacorn/numeral
aae093cc9bf21f11064e7f7b12049448cd6449f1
[ "MIT" ]
null
null
null
legacy/RandomAccessList/Redundant/Core/Properties.agda
banacorn/numeral
aae093cc9bf21f11064e7f7b12049448cd6449f1
[ "MIT" ]
1
2015-05-30T05:50:50.000Z
2015-05-30T05:50:50.000Z
module RandomAccessList.Redundant.Core.Properties where open import BuildingBlock open import BuildingBlock.BinaryLeafTree using (BinaryLeafTree; Node; Leaf) open import RandomAccessList.Redundant.Core open import Data.Num.Redundant open import Data.Num.Redundant.Properties open import Data.Nat using (ℕ; zero; suc) open import Data.Nat.Etc open import Data.Nat.Properties.Simple open import Relation.Binary.PropositionalEquality as PropEq using (_≡_; _≢_; refl; cong; cong₂; trans; sym; inspect) open PropEq.≡-Reasoning ⟦[]⟧≈zero∷[] : ∀ {n A} → (xs : 0-2-RAL A n) → {xs≣[] : xs ≡ []} → ⟦ xs ⟧ ≈ zero ∷ [] ⟦[]⟧≈zero∷[] {n} {A} [] = <<<-zero n [] {eq refl} ⟦[]⟧≈zero∷[] ( 0∷ xs) {()} ⟦[]⟧≈zero∷[] (x 1∷ xs) {()} ⟦[]⟧≈zero∷[] (x , y 2∷ xs) {()} -------------------------------------------------------------------------------- -- On ⟦_⟧ and ⟦_⟧ₙ {- ⟦[]⟧ₙ≡0 : ∀ {A n} → (xs : 0-2-RAL A n) → {xs≣[] : xs ≡ []} → ⟦ xs ⟧ₙ ≡ zero ∷ [] ⟦[]⟧ₙ≡0 [] = refl ⟦[]⟧ₙ≡0 ( 0∷ xs) {()} ⟦[]⟧ₙ≡0 (x 1∷ xs) {()} ⟦[]⟧ₙ≡0 (x , y 2∷ xs) {()} ⟦[]⟧≡0 : ∀ {n A} → (xs : 0-2-RAL A n) → {xs≣[] : xs ≡ []} → ⟦ xs ⟧ ≡ zero ∷ [] ⟦[]⟧≡0 {n} [] {p} = begin n <<< (zero ∷ []) ≡⟨ {! !} ⟩ zero ∷ [] ∎ ⟦[]⟧≡0 ( 0∷ xs) {()} ⟦[]⟧≡0 (x 1∷ xs) {()} ⟦[]⟧≡0 (x , y 2∷ xs) {()} -- identity ⟦[]⟧ₙ≡0 : ∀ {A n} → (xs : 0-2-RAL A n) → xs ≡ [] → ⟦ xs ⟧ₙ ≡ zero ⟦[]⟧ₙ≡0 [] p = refl ⟦[]⟧ₙ≡0 ( 0∷ xs) () ⟦[]⟧ₙ≡0 (x 1∷ xs) () ⟦[]⟧ₙ≡0 (x , y 2∷ xs) () ⟦[]⟧≡0 : ∀ {n A} → (xs : 0-2-RAL A n) → xs ≡ [] → ⟦ xs ⟧ ≡ 0 ⟦[]⟧≡0 {zero } [] p = refl ⟦[]⟧≡0 {suc n} [] p = *-right-zero (2 * 2 ^ n) ⟦[]⟧≡0 ( 0∷ xs) () ⟦[]⟧≡0 (x 1∷ xs) () ⟦[]⟧≡0 (x , y 2∷ xs) () ⟦0∷xs⟧≡⟦xs⟧ : ∀ {n A} → (xs : 0-2-RAL A (suc n)) → ⟦ 0∷ xs ⟧ ≡ ⟦ xs ⟧ ⟦0∷xs⟧≡⟦xs⟧ {zero} xs = +-right-identity (2 * ⟦ xs ⟧ₙ) ⟦0∷xs⟧≡⟦xs⟧ {suc n} xs = begin 2 * 2 ^ n * (2 * ⟦ xs ⟧ₙ) ≡⟨ sym (*-assoc (2 * 2 ^ n) 2 ⟦ xs ⟧ₙ) ⟩ ((2 * 2 ^ n) * 2) * ⟦ xs ⟧ₙ ≡⟨ cong (λ x → x * ⟦ xs ⟧ₙ) (*-comm (2 * 2 ^ n) 2) ⟩ (2 * (2 * 2 ^ n)) * ⟦ xs ⟧ₙ ∎ ⟦[]⟧≡⟦[]⟧ : ∀ {m n A} → ⟦ [] {A} {m} ⟧ ≡ ⟦ [] {A} {n} ⟧ ⟦[]⟧≡⟦[]⟧ {m} {n} = begin 2 ^ m * 0 ≡⟨ *-right-zero (2 ^ m) ⟩ 0 ≡⟨ sym (*-right-zero (2 ^ n)) ⟩ 2 ^ n * 0 ∎ splitIndex : ∀ {n A} → (x : BinaryLeafTree A n) → (xs : 0-2-RAL A (suc n)) → ⟦ x 1∷ xs ⟧ ≡ 1 * (2 ^ n) + ⟦ xs ⟧ splitIndex {n} x xs = begin 2 ^ n * suc (2 * ⟦ xs ⟧ₙ) ≡⟨ +-*-suc (2 ^ n) (2 * ⟦ xs ⟧ₙ) ⟩ 2 ^ n + 2 ^ n * (2 * ⟦ xs ⟧ₙ) ≡⟨ cong (λ w → 2 ^ n + w) (sym (*-assoc (2 ^ n) 2 ⟦ xs ⟧ₙ)) ⟩ 2 ^ n + (2 ^ n * 2) * ⟦ xs ⟧ₙ ≡⟨ cong (λ w → 2 ^ n + w * ⟦ xs ⟧ₙ) (*-comm (2 ^ n) 2) ⟩ 2 ^ n + (2 * 2 ^ n) * ⟦ xs ⟧ₙ ≡⟨ cong (λ w → w + (2 * 2 ^ n) * ⟦ xs ⟧ₙ) (sym (+-right-identity (2 ^ n))) ⟩ 2 ^ n + 0 + (2 * 2 ^ n) * ⟦ xs ⟧ₙ ∎ splitIndex2 : ∀ {n A} → (x : BinaryLeafTree A n) → (y : BinaryLeafTree A n) → (xs : 0-2-RAL A (suc n)) → ⟦ x , y 2∷ xs ⟧ ≡ 2 * (2 ^ n) + ⟦ xs ⟧ splitIndex2 {n} x y xs = begin 2 ^ n * (1 + (1 + (2 * ⟦ xs ⟧ₙ))) ≡⟨ +-*-suc (2 ^ n) ((1 + (2 * ⟦ xs ⟧ₙ))) ⟩ 2 ^ n + 2 ^ n * (1 + (2 * ⟦ xs ⟧ₙ)) ≡⟨ cong (λ w → 2 ^ n + w) (+-*-suc (2 ^ n) (2 * ⟦ xs ⟧ₙ)) ⟩ 2 ^ n + (2 ^ n + 2 ^ n * (2 * ⟦ xs ⟧ₙ)) ≡⟨ sym (+-assoc (2 ^ n) (2 ^ n) (2 ^ n * (2 * ⟦ xs ⟧ₙ))) ⟩ 2 ^ n + 2 ^ n + 2 ^ n * (2 * ⟦ xs ⟧ₙ) ≡⟨ cong (λ w → 2 ^ n + 2 ^ n + w) (sym (*-assoc (2 ^ n) 2 ⟦ xs ⟧ₙ)) ⟩ 2 ^ n + 2 ^ n + (2 ^ n * 2) * ⟦ xs ⟧ₙ ≡⟨ cong (λ w → 2 ^ n + 2 ^ n + w * ⟦ xs ⟧ₙ) (*-comm (2 ^ n) 2) ⟩ 2 ^ n + 2 ^ n + (2 * 2 ^ n) * ⟦ xs ⟧ₙ ≡⟨ cong (λ w → 2 ^ n + w + (2 * 2 ^ n) * ⟦ xs ⟧ₙ) (sym (+-right-identity (2 ^ n))) ⟩ 2 ^ n + (2 ^ n + 0) + (2 * 2 ^ n) * ⟦ xs ⟧ₙ ≡⟨ refl ⟩ 2 * 2 ^ n + (2 * 2 ^ n) * ⟦ xs ⟧ₙ ∎ begin {! !} ≡⟨ {! !} ⟩ {! !} ≡⟨ {! !} ⟩ {! !} ≡⟨ {! !} ⟩ {! !} ≡⟨ {! !} ⟩ {! !} ∎ -} {- ⟦[]⟧≡⟦[]⟧ : ∀ {n A} → ⟦ [] {A} {suc n} ⟧ ≡ ⟦ [] {A} {n} ⟧ ⟦[]⟧≡⟦[]⟧ {n} = begin (2 * 2 ^ n) * 0 ≡⟨ *-right-zero (2 * 2 ^ n) ⟩ 0 ≡⟨ sym (*-right-zero (2 ^ n)) ⟩ 2 ^ n * 0 ∎ ⟦0∷xs⟧≡⟦xs⟧ {zero} xs = +-right-identity (2 * ⟦ xs ⟧ₙ) ⟦0∷xs⟧≡⟦xs⟧ {suc n} xs = begin 2 * 2 ^ n * (2 * ⟦ xs ⟧ₙ) ≡⟨ sym (*-assoc (2 * 2 ^ n) 2 ⟦ xs ⟧ₙ) ⟩ 2 * 2 ^ n * 2 * ⟦ xs ⟧ₙ ≡⟨ cong (λ x → x * ⟦ xs ⟧ₙ) (*-assoc 2 (2 ^ n) 2) ⟩ 2 * (2 ^ n * 2) * ⟦ xs ⟧ₙ ≡⟨ cong (λ x → 2 * x * ⟦ xs ⟧ₙ) (*-comm (2 ^ n) 2) ⟩ (2 * (2 * 2 ^ n)) * ⟦ xs ⟧ₙ ∎ ⟦0∷xs⟧≢0⇒⟦xs⟧≢0 : ∀ {n A} → (xs : 0-1-RAL A (suc n)) → ⟦ 0∷ xs ⟧ ≢ 0 → ⟦ xs ⟧ ≢ 0 ⟦0∷xs⟧≢0⇒⟦xs⟧≢0 xs p = contraposition (trans (⟦0∷xs⟧≡⟦xs⟧ xs)) p -}
31.044872
143
0.33471
cbf62c75835aed33afe3a308e3938f4d60e5835b
7,187
agda
Agda
nicolai/thesis/Anonymous_Existence_CollSplit.agda
nicolaikraus/HoTT-Agda
939a2d83e090fcc924f69f7dfa5b65b3b79fe633
[ "MIT" ]
1
2021-06-30T00:17:55.000Z
2021-06-30T00:17:55.000Z
nicolai/thesis/Anonymous_Existence_CollSplit.agda
nicolaikraus/HoTT-Agda
939a2d83e090fcc924f69f7dfa5b65b3b79fe633
[ "MIT" ]
null
null
null
nicolai/thesis/Anonymous_Existence_CollSplit.agda
nicolaikraus/HoTT-Agda
939a2d83e090fcc924f69f7dfa5b65b3b79fe633
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} open import lib.Basics open import lib.types.Sigma open import lib.NType2 open import lib.types.Paths open import Preliminaries open import Truncation_Level_Criteria module Anonymous_Existence_CollSplit where -- Chapter 4: Anonymous Existence -- Chapter 4.1: Collapsible Types have Split Support -- Main Lemma 4.1.1 is below. -- Lemma 4.1.2, part 1 constant-implies-path-constant : ∀ {i j} {X : Type i} {Y : Type j} → (f : X → Y) → (const f) → (x₁ x₂ : X) → const (ap f {x = x₁} {y = x₂}) constant-implies-path-constant {X = X} f c x₁ x₂ p₁ p₂ = claim-cor where claim : {x₃ x₄ : X} → {p : x₃ == x₄} → (ap f p) == ! (c x₃ x₃) ∙ (c x₃ x₄) claim {x₃} {p = idp} = ! (!-inv-l (c x₃ x₃)) claim-cor : ap f p₁ == ap f p₂ claim-cor = ap f p₁ =⟨ claim ⟩ ! (c x₁ x₁) ∙ (c x₁ x₂) =⟨ ! claim ⟩ ap f p₂ ∎ -- Lemma 4.1.2, part 2 constant-refl : ∀ {i j} {X : Type i} {Y : Type j} → (f : X → Y) → (const f) → (x : X) → (p : x == x) → ap f p == idp constant-refl f c x p = constant-implies-path-constant f c x x p idp -- We also need the following very simple lemma: ap-id-trivial : ∀ {i} {X : Type i} → {x₁ x₂ : X} → (p : x₁ == x₂) → ap (idf X) p == p ap-id-trivial idp = idp -- Main Lemma 4.1.1 needs a bit of preparation. -- The definition of the type of fixed points: fix : ∀ {i} {X : Type i} → (f : X → X) → Type i fix {X = X} f = Σ X λ x → x == f x -- Let us give a name to the map X → fix f: to-fix : ∀ {i} {X : Type i} → (f : X → X) → (const f) → X → fix f to-fix f c x₀ = f x₀ , c _ _ -- The other direction is just projection: from-fix : ∀ {i} {X : Type i} → (f : X → X) → fix f → X from-fix f (x₀ , p₀) = x₀ -- Let us structure the proof of the fixed point lemma a bit: module fixedpoint {i : ULevel} {X : Type i} (f : X → X) (c : const f) where -- Let us show that (x , p) == (x , q) first module _ (x : X) (p q : x == f x) where t : x == x t = p ∙ ! q r : f x == f x r = ap f t r-is-triv : r == idp r-is-triv = constant-refl f c x t t' : x == x t' = ap (idf X) t t'-is-t : t' == t t'-is-t = ap-id-trivial t trans-t-p-is-q : transport (λ y → y == f y) t p == q trans-t-p-is-q = transport (λ y → y == f y) t p =⟨ transport-is-comp (idf X) f t p ⟩ ! t' ∙ p ∙ r =⟨ ap (λ s → ! s ∙ p ∙ r) t'-is-t ⟩ ! t ∙ p ∙ r =⟨ ! (∙-assoc (! t) _ _) ⟩ (! t ∙ p) ∙ r =⟨ ap (λ s → (! t ∙ p) ∙ s) r-is-triv ⟩ (! t ∙ p) ∙ idp =⟨ ∙-unit-r _ ⟩ ! t ∙ p =⟨ ap (λ s → s ∙ p) (!-∙ p (! q)) ⟩ (! (! q) ∙ ! p) ∙ p =⟨ ∙-assoc (! (! q)) _ _ ⟩ ! (! q) ∙ ! p ∙ p =⟨ ap (λ s → ! (! q) ∙ s) (!-inv-l p) ⟩ ! (! q) ∙ idp =⟨ ∙-unit-r _ ⟩ ! (! q) =⟨ !-! _ ⟩ q ∎ single-x-claim : (x , p) == (x , q) single-x-claim = pair= t (from-transp _ _ trans-t-p-is-q) -- Now, we can prove that (x₁ , p₁) and (x₂ , p₂) are always equal: fix-paths : has-all-paths (fix f) fix-paths (x₁ , p₁) (x₂ , p₂) = (x₁ , p₁) =⟨ pair= (p₁ ∙ c x₁ x₂ ∙ ! p₂) (from-transp _ (p₁ ∙ c x₁ x₂ ∙ ! p₂) idp) ⟩ (x₂ , _) =⟨ single-x-claim x₂ _ _ ⟩ (x₂ , p₂) ∎ -- Main Lemma 4.1.1 -- finally, the proof of the fixed point lemma fixed-point : ∀ {i} {X : Type i} → (f : X → X) → (const f) → is-prop (fix f) fixed-point {X = X} f c = all-paths-is-prop (fixedpoint.fix-paths f c) -- Sattler's argument fixed-point-alt : ∀ {i} {X : Type i} → (f : X → X) → (const f) → is-prop (fix f) fixed-point-alt {X = X} f c = inhab-to-contr-is-prop inh→contr where inh→contr : fix f → is-contr (fix f) inh→contr (x₀ , p₀) = equiv-preserves-level {A = Σ X λ x → x == f x₀} {B = fix f} claim-Σ (pathto-is-contr _) where claim : (x : X) → (x == f x₀) ≃ (x == f x) claim x = (λ p → p ∙ c x₀ x) , post∙-is-equiv _ claim-Σ : (Σ X λ x → x == f x₀) ≃ fix f claim-Σ = equiv-Σ-snd claim --from here, we need truncation module with-weak-trunc where open wtrunc -- Corollary 4.1.3 -- let us define the following map: trunc-to-fix : ∀ {i} {X : Type i} → (fc : coll X) → ∣∣ X ∣∣ → fix (fst fc) trunc-to-fix (f , c) z = tr-rec (fixed-point f c) (to-fix f c) z coll→splitSup : ∀ {i} {X : Type i} → coll X → splitSup X coll→splitSup (f , c) = (from-fix f) ∘ trunc-to-fix (f , c) -- Theorem 4.1.4 coll↔splitSup : ∀ {i} {X : Type i} → coll X ↔ splitSup X coll↔splitSup {X = X} = coll→splitSup , splitSup→coll where splitSup→coll : splitSup X → coll X splitSup→coll hst = f , c where f = hst ∘ ∣_∣ c : const f c x₁ x₂ = f x₁ =⟨ idp ⟩ hst ∣ x₁ ∣ =⟨ ap hst (prop-has-all-paths tr-is-prop _ _) ⟩ hst ∣ x₂ ∣ =⟨ idp ⟩ f x₂ ∎ -- preparation for Proposition 4.1.5 - we need to prove that -- f : X → X with an inhabitant of ∣∣ const f ∣∣ is enough -- to show that fix f is propositional. fixed-point-strong : ∀ {i} {X : Type i} → (f : X → X) → ∣∣ const f ∣∣ → is-prop (fix f) fixed-point-strong {X = X} f = tr-rec {X = const f} {P = is-prop(fix f)} is-prop-is-prop (fixed-point f) -- Proposition 4.1.5 (we exclude the part which is already included in Theorem 4.1.4) -- to get an easy proof of the addendum, we structure it in the following way: module thm46 {i : ULevel} {X : Type i} where module _ (fhc : Σ (X → X) (λ f → ∣∣ const f ∣∣)) where f = fst fhc hc = snd fhc trunc-const-fix : ∣∣ X ∣∣ → ∣∣ const f ∣∣ → fix f trunc-const-fix z = tr-rec {X = const f} {P = fix f} (fixed-point-strong f hc) (λ c → trunc-to-fix (f , c) z) trunc-fix : ∣∣ X ∣∣ → fix f trunc-fix z = trunc-const-fix z hc g : X → X g = fst ∘ trunc-fix ∘ ∣_∣ g-const : const g g-const x₁ x₂ = ap (fst ∘ trunc-fix) (prop-has-all-paths tr-is-prop _ _) coll↔hideProof : ∀ {i} {X : Type i} → coll X ↔ Σ (X → X) (λ f → ∣∣ const f ∣∣) coll↔hideProof {X = X} = one , two where one : coll X → Σ (X → X) (λ f → ∣∣ const f ∣∣) one (f , c) = f , ∣ c ∣ two : (Σ (X → X) (λ f → ∣∣ const f ∣∣)) → coll X two fhc = thm46.g fhc , thm46.g-const fhc -- Proposition 4.1.5 addendum merely-equal : ∀ {i} {X : Type i} → (fhc : Σ (X → X) (λ f → ∣∣ const f ∣∣)) → ∣∣ ((x : X) → fst fhc x == thm46.g fhc x) ∣∣ merely-equal {X = X} (ff , hhc) = tr-rec tr-is-prop (∣_∣ ∘ const-equal) hhc where open thm46 const-equal : const ff → (x : X) → ff x == thm46.g (ff , hhc) x const-equal c x = ff x =⟨ idp ⟩ fst (to-fix ff c x) =⟨ ap fst (! (trunc-β _ _ x)) ⟩ fst (trunc-to-fix (ff , c) ∣ x ∣) =⟨ ap fst (! (trunc-β _ _ c)) ⟩ fst (trunc-const-fix (ff , hhc) ∣ x ∣ ∣ c ∣) =⟨ ap (λ hc' → fst (trunc-const-fix (ff , hhc) ∣ x ∣ hc')) (prop-has-all-paths tr-is-prop _ _) ⟩ fst (trunc-const-fix (ff , hhc) ∣ x ∣ hhc) =⟨ idp ⟩ fst (trunc-fix (ff , hhc) ∣ x ∣) =⟨ idp ⟩ g (ff , hhc) x ∎
39.707182
148
0.488521
fbf2529caf66cd3a37c8e29c78b1428e1adc2d58
810
agda
Agda
test/Succeed/Issue1209-2.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue1209-2.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue1209-2.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- A variant of code reported by Andreas Abel. {-# OPTIONS --guardedness --sized-types #-} open import Common.Coinduction renaming (∞ to Delay) open import Common.Size open import Common.Product data ⊥ : Set where record Stream (A : Set) : Set where inductive constructor delay field force : Delay (A × Stream A) open Stream head : ∀{A} → Stream A → A head s = proj₁ (♭ (force s)) -- This type should be empty, as Stream A is isomorphic to ℕ → A. data D : (i : Size) → Set where lim : ∀ i → Stream (D i) → D (↑ i) -- Emptiness witness for D. empty : ∀ i → D i → ⊥ empty .(↑ i) (lim i s) = empty i (head s) -- BAD: But we can construct an inhabitant. inh : Stream (D ∞) inh = delay (♯ (lim ∞ inh , inh)) -- Should be rejected by termination checker. absurd : ⊥ absurd = empty ∞ (lim ∞ inh)
23.142857
79
0.638272
0b8fd16f2480abce2c9499a921c4c1f2f23048dc
1,088
agda
Agda
agda-stdlib/src/Data/List/Relation/Binary/Equality/DecSetoid.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Data/List/Relation/Binary/Equality/DecSetoid.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Data/List/Relation/Binary/Equality/DecSetoid.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- Pointwise decidable equality over lists parameterised by a setoid ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary module Data.List.Relation.Binary.Equality.DecSetoid {a ℓ} (DS : DecSetoid a ℓ) where import Data.List.Relation.Binary.Equality.Setoid as SetoidEquality import Data.List.Relation.Binary.Pointwise as PW open import Level open import Relation.Binary using (Decidable) open DecSetoid DS ------------------------------------------------------------------------ -- Make all definitions from setoid equality available open SetoidEquality setoid public ------------------------------------------------------------------------ -- Additional properties infix 4 _≋?_ _≋?_ : Decidable _≋_ _≋?_ = PW.decidable _≟_ ≋-isDecEquivalence : IsDecEquivalence _≋_ ≋-isDecEquivalence = PW.isDecEquivalence isDecEquivalence ≋-decSetoid : DecSetoid a (a ⊔ ℓ) ≋-decSetoid = PW.decSetoid DS
28.631579
72
0.5625
dcd62faa00e1629a8b45c893a4f9a177455bafb0
1,055
agda
Agda
test/Succeed/Issue1087.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue1087.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue1087.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2014-04-12, Order of declaration mattered in the presence -- of meta variables involving sizes -- {-# OPTIONS -v tc.meta:10 -v tc.meta.assign:10 #-} -- Error persists without option sized-types {-# OPTIONS --sized-types #-} module _ where open import Common.Size -- different error if we do not use the built-ins (Size vs Size<) module Works where mutual data Colist' i : Set where inn : (xs : Colist i) → Colist' i record Colist i : Set where coinductive field out : ∀ {j : Size< i} → Colist' j module Fails where mutual record Colist i : Set where coinductive field out : ∀ {j : Size< i} → Colist' j data Colist' i : Set where inn : (xs : Colist i) → Colist' i -- Error: Issue1087.agda:21,45-46 -- Cannot instantiate the metavariable _20 to solution (Size< i) since -- it contains the variable i which is not in scope of the -- metavariable or irrelevant in the metavariable but relevant in the -- solution -- when checking that the expression j has type _20 -- Works now.
26.375
70
0.67109
d062fe0363f6f8511ca00c13ac8a006b0edbe1d1
868
agda
Agda
agda-implicit/BoehmBerarducci.agda
mietek/scott-encoding
14e819383dd8730e1c3cbd9c2ce53335bd95188b
[ "X11", "MIT" ]
6
2015-05-27T19:33:52.000Z
2019-08-08T16:31:59.000Z
agda-implicit/BoehmBerarducci.agda
mietek/scott-encoding
14e819383dd8730e1c3cbd9c2ce53335bd95188b
[ "X11", "MIT" ]
null
null
null
agda-implicit/BoehmBerarducci.agda
mietek/scott-encoding
14e819383dd8730e1c3cbd9c2ce53335bd95188b
[ "X11", "MIT" ]
null
null
null
module BoehmBerarducci where open import Data.Nat open import Data.List NatQ : Set₁ NatQ = {A : Set} -> (A -> A) -> A -> A unNatQ : {A : Set} -> (A -> A) -> A -> NatQ -> A unNatQ f a q = q f a succQ : NatQ -> NatQ succQ q = \f a -> f (q f a) zeroQ : NatQ zeroQ = \f a -> a fromNatQ : NatQ -> ℕ fromNatQ q = unNatQ suc zero q toNatQ : ℕ -> NatQ toNatQ (suc n) = succQ (toNatQ n) toNatQ zero = zeroQ ListQ : Set -> Set₁ ListQ A = {B : Set} -> (A -> B -> B) -> B -> B unListQ : {A B : Set} -> (A -> B -> B) -> B -> ListQ A -> B unListQ f b q = q f b consQ : {A : Set} -> A -> ListQ A -> ListQ A consQ a q = \f b -> f a (q f b) nilQ : {A : Set} -> ListQ A nilQ = \f b -> b fromListQ : {A : Set} -> ListQ A -> List A fromListQ q = unListQ (_∷_) [] q toListQ : {A : Set} -> List A -> ListQ A toListQ (a ∷ aa) = consQ a (toListQ aa) toListQ [] = nilQ
19.288889
59
0.528802
39028c902e87ffa414f9df4dc2b22e084f665b89
1,114
agda
Agda
test/Fail/Issue822.agda
pthariensflame/agda
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/Fail/Issue822.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
null
null
null
test/Fail/Issue822.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
1
2022-03-12T11:35:18.000Z
2022-03-12T11:35:18.000Z
-- {-# OPTIONS -v tc.lhs:40 #-} {-# OPTIONS -v scope.pat:40 #-} module Issue822 where module M₁ where postulate [_] : Set module M₂ where data D : Set₁ where [_] : Set → D module M₃ where data D : Set₁ where [_] : Set → D open M₁ open M₂ open M₃ Foo : _ → Set Foo [ A ] = A -- Strange error message: -- Bug.agda:16,1-14 -- Left hand side gives too many arguments to a function of type -- D → Set -- when checking that the clause Foo [ A ] = A has type D → Set -- If the two open statements are swapped, then we get a more -- reasonable error message: -- Bug.agda:16,1-10 -- Ambiguous name [_]. It could refer to any one of -- M₂.[_] bound at /home/nad/research/dtp/pretty/Bug.agda:10,5-8 -- M₁.[_] bound at /home/nad/research/dtp/pretty/Bug.agda:5,13-16 -- when scope checking the left-hand side Foo [ A ] in the definition -- of Foo -- One could perhaps also argue that the code above should be -- syntactically correct, because M₁.[_] can't be used in the pattern -- (except for under a dot). -- Andreas, 2013-03-21 -- To reproduce an error, one now needs ambiguous constructors.
23.208333
69
0.667864
4ae1b7190e6dc5aa22271fdc6c97c3f4f9911d56
44,130
agda
Agda
archive/agda-1/NaturalDeduction-PatternLambdaBug.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
archive/agda-1/NaturalDeduction-PatternLambdaBug.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
1
2019-04-29T00:35:04.000Z
2019-05-11T23:33:04.000Z
archive/agda-1/NaturalDeduction-PatternLambdaBug.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
{-# OPTIONS --rewriting #-} {-# OPTIONS --show-implicit #-} module NaturalDeduction-PatternLambdaBug where record ⊤ : Set where data ⊥ : Set where foo : ⦃ _ : ⊤ ⦄ → ⊥ → Set foo = λ {x → {!x!}} {- C-c C-c above generates invalid syntax: foo = λ { } Found an implicit lambda where an explicit lambda was expected when checking that the expression λ {} has type ⊥ → Set Better would have been foo = λ {()} -} -- module DelayMishMash where -- open import Level --public -- using (Level) renaming (zero to lzero; suc to lsuc) -- open import Size public -- open import Prelude.Monad renaming (Monad to RawMonad) -- --open import Category.Monad public -- -- using (RawMonad; module RawMonad) -- open import Data.Empty --public -- using (⊥; ⊥-elim) -- open import Data.List --public -- using (List; []; _∷_; map) -- open import Data.Maybe --public -- using (Maybe; just; nothing) renaming (map to fmap) -- open import Data.Product public -- using (∃; _×_; _,_) renaming (proj₁ to fst; proj₂ to snd) -- --infixr 1 _,_ -- open import Data.Sum --public -- using (_⊎_; [_,_]′) renaming (inj₁ to inl; inj₂ to inr) -- open import Data.Unit --public -- using (⊤) -- open import Function --public -- using (_∘_; case_of_) -- open import Relation.Nullary --public -- using (Dec; yes; no) -- open import Relation.Binary --public -- using (Setoid; module Setoid) -- import Relation.Binary.PreorderReasoning -- module Pre = Relation.Binary.PreorderReasoning -- open import Relation.Binary.PropositionalEquality --public -- using (_≡_; refl; sym; trans; cong; cong₂; subst; module ≡-Reasoning) -- --open ≡-Reasoning renaming (begin_ to proof_) public -- open import Relation.Binary.HeterogeneousEquality --public -- using (_≅_; refl; ≡-to-≅; module ≅-Reasoning) -- renaming (sym to hsym; trans to htrans; cong to hcong; -- cong₂ to hcong₂; subst to hsubst) -- hcong₃ : {A : Set}{B : A → Set}{C : ∀ a → B a → Set}{D : ∀ a b → C a b → Set} -- (f : ∀ a b c → D a b c) -- {a a′ : A} → a ≅ a′ → -- {b : B a}{b′ : B a′} → b ≅ b′ → -- {c : C a b}{c′ : C a′ b′} → c ≅ c′ → -- f a b c ≅ f a′ b′ c′ -- hcong₃ f refl refl refl = refl -- ≅-to-≡ : ∀ {a} {A : Set a} {x y : A} → x ≅ y → x ≡ y -- ≅-to-≡ refl = refl -- mutual -- data Delay (i : Size) (A : Set) : Set where -- now : A → Delay i A -- later : ∞Delay i A → Delay i A -- record ∞Delay (i : Size) (A : Set) : Set where -- coinductive -- field -- force : {j : Size< i} → Delay j A -- open ∞Delay public -- never : ∀{i A} → ∞Delay i A -- force (never {i}) {j} = later (never {j}) -- module Bind where -- mutual -- bindDelay : ∀ {i A B} → Delay i A → (A → Delay i B) → Delay i B -- bindDelay (now a) f = f a -- bindDelay (later a∞) f = later (bind∞Delay a∞ f) -- bind∞Delay : ∀ {i A B} → ∞Delay i A → (A → Delay i B) → ∞Delay i B -- force (bind∞Delay a∞ f) = bindDelay (force a∞) f -- _d>>=_ : ∀ {i A B} → Delay i A → (A → Delay i B) → Delay i B -- _d>>=_ {i} = Bind.bindDelay {i} -- {- -- open import Prelude.Applicative using (Applicative) -- instance delayApplicative : ∀ {i} → Applicative (Delay i) -- Applicative.pure (delayApplicative {i}) x = now x -- Applicative._<*>_ (delayApplicative {i}) (now f) x = x d>>= (now ∘ f) -- Applicative._<*>_ (delayApplicative {i}) (later f) x = {!force f {i}!} -- {- -- Applicative._<*>_ (delayApplicative {i}) f (now x) = {!x!} -- Bind.bindDelay x (λ x₁ → {!!}) -- Applicative._<*>_ (delayApplicative {i}) (now f) (later x) = {!!} -- Bind.bindDelay x (λ x₁ → {!!}) -- Applicative._<*>_ (delayApplicative {i}) (later f) (later x) = {!!} -- Bind.bindDelay x (λ x₁ → {!!}) -- -} -- Applicative.super (delayApplicative {i}) = {!!} -- -} -- {- -- instance delayMonad : ∀ {i} → RawMonad (Delay i) -- delayMonad {i} = record -- { {-return = now -- ; -}_>>=_ = bindDelay {i} -- } where open Bind -- -} -- {- -- module _ {i : Size} where -- open module DelayMonad = RawMonad (delayMonad {i = i}) -- public -- renaming (_⊛_ to _<*>_) -- -} -- open Bind public using () renaming (bind∞Delay to _∞>>=_) -- -- Map for Delay -- dreturn : {i : Size} → {A : Set} → A → Delay i A -- dreturn {i} = Delay.now {i} -- _d<$>_ : ∀ {i A B} (f : A → B) (a : Delay i A) → Delay i B -- f d<$> a = a d>>= λ a → dreturn (f a) -- -- Map for ∞Delay -- _∞<$>_ : ∀ {i A B} (f : A → B) (∞a : ∞Delay i A) → ∞Delay i B -- f ∞<$> ∞a = ∞a ∞>>= λ a → dreturn (f a) -- -- force (f ∞<$> ∞a) = f <$> force ∞a -- -- Double bind -- _=<<2_,_ : ∀ {i A B C} → (A → B → Delay i C) → Delay i A → Delay i B → Delay i C -- f =<<2 x , y = x d>>= λ a → y d>>= λ b → f a b -- mutual -- data _∼_ {i : Size} {A : Set} : (a? b? : Delay ∞ A) → Set where -- ∼now : ∀ a → now a ∼ now a -- ∼later : ∀ {a∞ b∞} (eq : a∞ ∞∼⟨ i ⟩∼ b∞) → later a∞ ∼ later b∞ -- _∼⟨_⟩∼_ = λ {A} a? i b? → _∼_ {i}{A} a? b? -- record _∞∼⟨_⟩∼_ {A} (a∞ : ∞Delay ∞ A) i (b∞ : ∞Delay ∞ A) : Set where -- coinductive -- field -- ∼force : {j : Size< i} → force a∞ ∼⟨ j ⟩∼ force b∞ -- _∞∼_ = λ {i} {A} a∞ b∞ → _∞∼⟨_⟩∼_ {A} a∞ i b∞ -- open _∞∼⟨_⟩∼_ public -- ∼never : ∀{i A} → (never {A = A}) ∞∼⟨ i ⟩∼ never -- ∼force ∼never = ∼later ∼never -- ∼refl : ∀{i A} (a? : Delay ∞ A) → a? ∼⟨ i ⟩∼ a? -- ∞∼refl : ∀{i A} (a∞ : ∞Delay ∞ A) → a∞ ∞∼⟨ i ⟩∼ a∞ -- ∼sym : ∀{i A}{a? b? : Delay ∞ A } → a? ∼⟨ i ⟩∼ b? → b? ∼⟨ i ⟩∼ a? -- ∞∼sym : ∀{i A}{a∞ b∞ : ∞Delay ∞ A} → a∞ ∞∼⟨ i ⟩∼ b∞ → b∞ ∞∼⟨ i ⟩∼ a∞ -- ∼trans : ∀{i A}{a? b? c? : Delay ∞ A} → -- a? ∼⟨ i ⟩∼ b? → b? ∼⟨ i ⟩∼ c? → a? ∼⟨ i ⟩∼ c? -- ∞∼trans : ∀{i A}{a∞ b∞ c∞ : ∞Delay ∞ A} → -- a∞ ∞∼⟨ i ⟩∼ b∞ → b∞ ∞∼⟨ i ⟩∼ c∞ → a∞ ∞∼⟨ i ⟩∼ c∞ -- ∼refl (now a) = ∼now a -- ∼refl (later a∞) = ∼later (∞∼refl a∞) -- ∼force (∞∼refl a∞) = ∼refl (force a∞) -- ∼sym (∼now a) = ∼now a -- ∼sym (∼later eq) = ∼later (∞∼sym eq) -- ∼force (∞∼sym eq) = ∼sym (∼force eq) -- ∼trans (∼now a) (∼now .a) = ∼now a -- ∼trans (∼later eq) (∼later eq′) = ∼later (∞∼trans eq eq′) -- ∼force (∞∼trans eq eq′) = ∼trans (∼force eq) (∼force eq′) -- -- Equality reasoning -- ∼setoid : (i : Size) (A : Set) → Setoid lzero lzero -- ∼setoid i A = record -- { Carrier = Delay ∞ A -- ; _≈_ = _∼_ {i} -- ; isEquivalence = record -- { refl = λ {a?} → ∼refl a? -- ; sym = ∼sym -- ; trans = ∼trans -- } -- } -- ∞∼setoid : (i : Size) (A : Set) → Setoid lzero lzero -- ∞∼setoid i A = record -- { Carrier = ∞Delay ∞ A -- ; _≈_ = _∞∼_ {i} -- ; isEquivalence = record -- { refl = λ {a?} → ∞∼refl a? -- ; sym = ∞∼sym -- ; trans = ∞∼trans -- } -- } -- module ∼-Reasoning {i : Size} {A : Set} where -- open Pre (Setoid.preorder (∼setoid i A)) public -- -- using (begin_; _∎) (_≈⟨⟩_ to _∼⟨⟩_; _≈⟨_⟩_ to _∼⟨_⟩_) -- renaming (_≈⟨⟩_ to _≡⟨⟩_; _≈⟨_⟩_ to _≡⟨_⟩_; _∼⟨_⟩_ to _∼⟨_⟩_; begin_ to proof_) -- module ∞∼-Reasoning {i : Size} {A : Set} where -- open Pre (Setoid.preorder (∞∼setoid i A)) public -- -- using (begin_; _∎) (_≈⟨⟩_ to _∼⟨⟩_; _≈⟨_⟩_ to _∼⟨_⟩_) -- renaming (_≈⟨⟩_ to _≡⟨⟩_; _≈⟨_⟩_ to _≡⟨_⟩_; _∼⟨_⟩_ to _∞∼⟨_⟩_; begin_ to proof_) -- mutual -- bind-assoc : ∀{i A B C} (m : Delay ∞ A) -- {k : A → Delay ∞ B} {l : B → Delay ∞ C} → -- ((m d>>= k) d>>= l) ∼⟨ i ⟩∼ (m d>>= λ a → (k a d>>= l)) -- bind-assoc (now a) = ∼refl _ -- bind-assoc (later a∞) = ∼later (∞bind-assoc a∞) -- ∞bind-assoc : ∀{i A B C} (a∞ : ∞Delay ∞ A) -- {k : A → Delay ∞ B} {l : B → Delay ∞ C} → -- ((a∞ ∞>>= k) ∞>>= l) ∞∼⟨ i ⟩∼ (a∞ ∞>>= λ a → (k a d>>= l)) -- ∼force (∞bind-assoc a∞) = bind-assoc (force a∞) -- bind-cong-l : ∀{i A B}{a? b? : Delay ∞ A} → a? ∼⟨ i ⟩∼ b? → -- (k : A → Delay ∞ B) → (a? d>>= k) ∼⟨ i ⟩∼ (b? d>>= k) -- ∞bind-cong-l : ∀{i A B}{a∞ b∞ : ∞Delay ∞ A} → a∞ ∞∼⟨ i ⟩∼ b∞ → -- (k : A → Delay ∞ B) → (a∞ ∞>>= k) ∞∼⟨ i ⟩∼ (b∞ ∞>>= k) -- bind-cong-r : ∀{i A B}(a? : Delay ∞ A){k l : A → Delay ∞ B} → -- (∀ a → (k a) ∼⟨ i ⟩∼ (l a)) → (a? d>>= k) ∼⟨ i ⟩∼ (a? d>>= l) -- ∞bind-cong-r : ∀{i A B}(a∞ : ∞Delay ∞ A){k l : A → Delay ∞ B} → -- (∀ a → (k a) ∼⟨ i ⟩∼ (l a)) → (a∞ ∞>>= k) ∞∼⟨ i ⟩∼ (a∞ ∞>>= l) -- bind-cong-l (∼now a) k = ∼refl _ -- bind-cong-l (∼later eq) k = ∼later (∞bind-cong-l eq k) -- ∼force (∞bind-cong-l eq k) = bind-cong-l (∼force eq) k -- bind-cong-r (now a) h = h a -- bind-cong-r (later a∞) h = ∼later (∞bind-cong-r a∞ h) -- ∼force (∞bind-cong-r a∞ h) = bind-cong-r (force a∞) h -- open import Prelude.Functor using (Functor; _<$>_) -- {- -- instance FunctorDelay : {i : Size} → Functor (Delay i) -- Functor.fmap (FunctorDelay {i}) {A} {B} f (now x) = {!!} -- Functor.fmap (FunctorDelay {i}) {A} {B} f (later x) = {!!} -- -} -- open import Prelude.Function using (_∘′_) -- map-compose : ∀{i A B C} (a? : Delay ∞ A) {f : A → B} {g : B → C} → -- (g d<$> (f d<$> a?)) ∼⟨ i ⟩∼ ((g ∘ f) d<$> a?) -- map-compose a? = bind-assoc a? -- map-cong : ∀{i A B}{a? b? : Delay ∞ A} (f : A → B) → -- a? ∼⟨ i ⟩∼ b? → (f d<$> a?) ∼⟨ i ⟩∼ (f d<$> b?) -- map-cong f eq = bind-cong-l eq (now ∘ f) -- data _⇓_ {A : Set} : (a? : Delay ∞ A) (a : A) → Set where -- now⇓ : ∀{a} → now a ⇓ a -- later⇓ : ∀{a} {a∞ : ∞Delay ∞ A} → force a∞ ⇓ a → later a∞ ⇓ a -- _⇓ : {A : Set} (x : Delay ∞ A) → Set -- x ⇓ = ∃ λ a → x ⇓ a -- map⇓ : ∀{A B}{a : A}{a? : Delay ∞ A}(f : A → B) → a? ⇓ a → (f d<$> a?) ⇓ f a -- subst∼⇓ : ∀{A}{a? a?′ : Delay ∞ A}{a : A} → a? ⇓ a → a? ∼ a?′ → a?′ ⇓ a -- bind⇓ : ∀{A B}(f : A → Delay ∞ B){?a : Delay ∞ A}{a : A}{b : B} → -- ?a ⇓ a → f a ⇓ b → (?a d>>= f) ⇓ b -- map⇓ f now⇓ = now⇓ -- map⇓ f (later⇓ a⇓) = later⇓ (map⇓ f a⇓) -- subst∼⇓ now⇓ (∼now a) = now⇓ -- subst∼⇓ (later⇓ p) (∼later eq) = later⇓ (subst∼⇓ p (∼force eq)) -- bind⇓ f now⇓ q = q -- bind⇓ f (later⇓ p) q = later⇓ (bind⇓ f p q) -- --infixr 6 _⇒_ -- --infixl 1 _,_ -- module CustomPrelude where -- open import Prelude public -- renaming (_==_ to _≟_) -- TODO ask Agda to rename Eq._==_ to Eq._≟_ -- hiding (force) -- needed by ∞Delay -- {-# BUILTIN REWRITE _≡_ #-} -- --{-# DISPLAY Eq._==_ _ = _≟_ #-} -- open import Container.List renaming (_∈_ to _∈C_; lookup∈ to lookup∈C) public -- _∈C?_ : ∀ {ℓ} {A : Set ℓ} ⦃ _ : Eq A ⦄ (a : A) → (xs : List A) → Dec (a ∈C xs) -- a ∈C? [] = no λ () -- a ∈C? (x ∷ xs) with a ≟ x -- … | yes a≡x rewrite a≡x = yes (zero refl) -- … | no a≢x with a ∈C? xs -- … | yes a∈xs = yes (suc a∈xs) -- … | no a∉xs = no (λ {(zero a≡x) → a≢x a≡x ; (suc a∈xs) → a∉xs a∈xs}) -- data _∈_ {ℓ} {A : Set ℓ} (a : A) : List A → Set ℓ -- where -- here : (as : List A) → a ∈ (a ∷ as) -- there : (x : A) {as : List A} → a ∈ as → a ∈ (x ∷ as) -- _∉_ : ∀ {ℓ} {A : Set ℓ} ⦃ _ : Eq A ⦄ (a : A) → (xs : List A) → Set ℓ -- a ∉ xs = ¬ (a ∈ xs) -- _∈?_ : ∀ {ℓ} {A : Set ℓ} ⦃ _ : Eq A ⦄ (a : A) → (xs : List A) → Dec (a ∈ xs) -- a ∈? [] = no λ () -- a ∈? (x ∷ xs) with a ≟ x -- … | yes a≡x rewrite a≡x = yes (here xs) -- … | no a≢x with a ∈? xs -- … | yes a∈xs = yes (there x a∈xs) -- … | no a∉xs = no (λ {(here _) → a≢x refl ; (there _ a∈xs) → a∉xs a∈xs}) -- _⊆_ : ∀ {ℓ} {A : Set ℓ} → List A → List A → Set ℓ -- R ⊆ S = ∀ {x} → x ∈ R → x ∈ S -- _≢_ : ∀ {ℓ} {A : Set ℓ} → A → A → Set ℓ -- x ≢ y = ¬ (x ≡ y) -- infix 0 _↔_ -- _↔_ : {ℓ¹ : Level} → Set ℓ¹ → {ℓ² : Level} → Set ℓ² → Set (ℓ¹ ⊔ ℓ²) -- P ↔ Q = (P → Q) × (Q → P) -- ∃ : ∀ {ℓᴬ ℓᴮ} {A : Set ℓᴬ} (B : A → Set ℓᴮ) → Set (ℓᴬ ⊔ ℓᴮ) -- ∃ = Σ _ -- ∄ : ∀ {ℓᴬ ℓᴮ} {A : Set ℓᴬ} (B : A → Set ℓᴮ) → Set (ℓᴬ ⊔ ℓᴮ) -- ∄ = ¬_ ∘ ∃ -- infixl 4 _⊎_ -- _⊎_ = Either -- --open import Agda.Builtin.Size public -- open import Size public -- open import Control.Monad.State public -- open import Control.Monad.Identity public -- open import Container.Traversable public -- sequence : ∀ {a b} {A : Set a} {F : Set a → Set b} ⦃ _ : Applicative F ⦄ → List (F A) → F ⊤′ -- sequence [] = pure tt -- sequence (x ∷ xs) = x *> sequence xs -- open import Tactic.Nat public -- open import Tactic.Deriving.Eq public -- mutual -- data Delay (i : Size) (A : Set) : Set where -- now : A → Delay i A -- later : ∞Delay i A → Delay i A -- record ∞Delay (i : Size) (A : Set) : Set where -- coinductive -- field -- force : {j : Size< i} → Delay j A -- open ∞Delay public -- module BindDelay -- where -- mutual -- bindDelay : ∀ {i A B} → Delay i A → (A → Delay i B) → Delay i B -- bindDelay (now a) f = f a -- bindDelay (later ∞a) f = later (bind∞Delay ∞a f) -- bind∞Delay : ∀ {i A B} → ∞Delay i A → (A → Delay i B) → ∞Delay i B -- force (bind∞Delay ∞a f) = bindDelay (force ∞a) f -- module _ -- where -- open BindDelay -- open BindDelay public using () renaming (bind∞Delay to _∞>>=_) -- instance FunctorDelay : {i : Size} → Functor (Delay i) -- Functor.fmap FunctorDelay f x = bindDelay x $ now ∘ f -- instance ApplicativeDelay : {i : Size} → Applicative (Delay i) -- Applicative.pure ApplicativeDelay x = now x -- Applicative._<*>_ ApplicativeDelay (now f) x = f <$> x -- Applicative._<*>_ ApplicativeDelay (later ∞f) x = later ∘ bind∞Delay ∞f $ flip fmap x -- Applicative.super ApplicativeDelay = FunctorDelay -- instance MonadDelay : {i : Size} → Monad (Delay i) -- Monad._>>=_ MonadDelay = bindDelay -- Monad.super MonadDelay = ApplicativeDelay -- mutual -- data _∼_ {i : Size} {A : Set} : (a? b? : Delay ∞ A) → Set where -- ∼now : ∀ a → now a ∼ now a -- ∼later : ∀ {a∞ b∞} (eq : a∞ ∞∼⟨ i ⟩∼ b∞) → later a∞ ∼ later b∞ -- _∼⟨_⟩∼_ = λ {A} a? i b? → _∼_ {i}{A} a? b? -- record _∞∼⟨_⟩∼_ {A} (a∞ : ∞Delay ∞ A) i (b∞ : ∞Delay ∞ A) : Set where -- coinductive -- field -- ∼force : {j : Size< i} → force a∞ ∼⟨ j ⟩∼ force b∞ -- open _∞∼⟨_⟩∼_ public -- _∞∼_ = λ {i} {A} a∞ b∞ → _∞∼⟨_⟩∼_ {A} a∞ i b∞ -- mutual -- ∼refl : ∀{i A} (a? : Delay ∞ A) → a? ∼⟨ i ⟩∼ a? -- ∼refl (now a) = ∼now a -- ∼refl (later a∞) = ∼later (∞∼refl a∞) -- ∞∼refl : ∀{i A} (a∞ : ∞Delay ∞ A) → a∞ ∞∼⟨ i ⟩∼ a∞ -- ∼force (∞∼refl a∞) = ∼refl (force a∞) -- mutual -- ∼sym : ∀{i A}{a? b? : Delay ∞ A } → a? ∼⟨ i ⟩∼ b? → b? ∼⟨ i ⟩∼ a? -- ∼sym (∼now a) = ∼now a -- ∼sym (∼later eq) = ∼later (∞∼sym eq) -- ∞∼sym : ∀{i A}{a∞ b∞ : ∞Delay ∞ A} → a∞ ∞∼⟨ i ⟩∼ b∞ → b∞ ∞∼⟨ i ⟩∼ a∞ -- ∼force (∞∼sym eq) = ∼sym (∼force eq) -- mutual -- ∼trans : ∀{i A}{a? b? c? : Delay ∞ A} → -- a? ∼⟨ i ⟩∼ b? → b? ∼⟨ i ⟩∼ c? → a? ∼⟨ i ⟩∼ c? -- ∼trans (∼now a) (∼now .a) = ∼now a -- ∼trans (∼later eq) (∼later eq′) = ∼later (∞∼trans eq eq′) -- ∞∼trans : ∀{i A}{a∞ b∞ c∞ : ∞Delay ∞ A} → -- a∞ ∞∼⟨ i ⟩∼ b∞ → b∞ ∞∼⟨ i ⟩∼ c∞ → a∞ ∞∼⟨ i ⟩∼ c∞ -- ∼force (∞∼trans eq eq′) = ∼trans (∼force eq) (∼force eq′) -- --∼setoid : (i : Size) (A : Set) → Setoid lzero lzero -- --∞∼setoid : (i : Size) (A : Set) → Setoid lzero lzero -- mutual -- bind-assoc : ∀{i A B C} (m : Delay ∞ A) -- {k : A → Delay ∞ B} {l : B → Delay ∞ C} → -- ((m >>= k) >>= l) ∼⟨ i ⟩∼ (m >>= λ a → (k a >>= l)) -- bind-assoc (now a) = ∼refl _ -- bind-assoc (later a∞) = ∼later (∞bind-assoc a∞) -- ∞bind-assoc : ∀{i A B C} (a∞ : ∞Delay ∞ A) -- {k : A → Delay ∞ B} {l : B → Delay ∞ C} → -- ((a∞ ∞>>= k) ∞>>= l) ∞∼⟨ i ⟩∼ (a∞ ∞>>= λ a → (k a >>= l)) -- ∼force (∞bind-assoc a∞) = bind-assoc (force a∞) -- mutual -- bind-cong-l : ∀{i A B}{a? b? : Delay ∞ A} → a? ∼⟨ i ⟩∼ b? → -- (k : A → Delay ∞ B) → (a? >>= k) ∼⟨ i ⟩∼ (b? >>= k) -- bind-cong-l (∼now a) k = ∼refl _ -- bind-cong-l (∼later eq) k = ∼later (∞bind-cong-l eq k) -- ∞bind-cong-l : ∀{i A B}{a∞ b∞ : ∞Delay ∞ A} → a∞ ∞∼⟨ i ⟩∼ b∞ → -- (k : A → Delay ∞ B) → (a∞ ∞>>= k) ∞∼⟨ i ⟩∼ (b∞ ∞>>= k) -- ∼force (∞bind-cong-l eq k) = bind-cong-l (∼force eq) k -- mutual -- bind-cong-r : ∀{i A B}(a? : Delay ∞ A){k l : A → Delay ∞ B} → -- (∀ a → (k a) ∼⟨ i ⟩∼ (l a)) → (a? >>= k) ∼⟨ i ⟩∼ (a? >>= l) -- bind-cong-r (now a) h = h a -- bind-cong-r (later a∞) h = ∼later (∞bind-cong-r a∞ h) -- ∞bind-cong-r : ∀{i A B}(a∞ : ∞Delay ∞ A){k l : A → Delay ∞ B} → -- (∀ a → (k a) ∼⟨ i ⟩∼ (l a)) → (a∞ ∞>>= k) ∞∼⟨ i ⟩∼ (a∞ ∞>>= l) -- ∼force (∞bind-cong-r a∞ h) = bind-cong-r (force a∞) h -- map-compose : ∀{i A B C} (a? : Delay ∞ A) {f : A → B} {g : B → C} → -- (g <$> (f <$> a?)) ∼⟨ i ⟩∼ ((g ∘ f) <$> a?) -- map-compose a? = bind-assoc a? -- map-cong : ∀{i A B}{a? b? : Delay ∞ A} (f : A → B) → -- a? ∼⟨ i ⟩∼ b? → (f <$> a?) ∼⟨ i ⟩∼ (f <$> b?) -- map-cong f eq = bind-cong-l eq (now ∘ f) -- data _⇓_ {A : Set} : (a? : Delay ∞ A) (a : A) → Set where -- now⇓ : ∀{a} → now a ⇓ a -- later⇓ : ∀{a} {a∞ : ∞Delay ∞ A} → force a∞ ⇓ a → later a∞ ⇓ a -- _⇓ : {A : Set} (x : Delay ∞ A) → Set -- x ⇓ = ∃ λ a → x ⇓ a -- map⇓ : ∀{A B}{a : A}{a? : Delay ∞ A}(f : A → B) → a? ⇓ a → (f <$> a?) ⇓ f a -- map⇓ f now⇓ = now⇓ -- map⇓ f (later⇓ a⇓) = later⇓ (map⇓ f a⇓) -- bind⇓ : ∀{A B}(f : A → Delay ∞ B){?a : Delay ∞ A}{a : A}{b : B} → -- ?a ⇓ a → f a ⇓ b → (?a >>= f) ⇓ b -- bind⇓ f now⇓ q = q -- bind⇓ f (later⇓ p) q = later⇓ (bind⇓ f p q) -- infixl 4 _>>=⇓_ -- _>>=⇓_ : ∀{A B}{f : A → Delay ∞ B}{?a : Delay ∞ A}{a : A}{b : B} → -- ?a ⇓ a → f a ⇓ b → (?a >>= f) ⇓ b -- _>>=⇓_ = bind⇓ _ -- infixl 4 _⇓>>=⇓_ -- _⇓>>=⇓_ : ∀{A B}{f : A → Delay ∞ B}{?a : Delay ∞ A}{b : B} → -- (?a⇓ : ?a ⇓) → f (fst ?a⇓) ⇓ b → (?a >>= f) ⇓ b -- _⇓>>=⇓_ (_ , a⇓) = bind⇓ _ a⇓ -- _⇓Dec>>=⇓_else⇓_ : ∀{A B}{f-yes : A → Delay ∞ B}{f-no : ¬ A → Delay ∞ B}{?a : Delay ∞ (Dec A)}{b : B} → -- (?a⇓ : ?a ⇓) → -- ((a : A) → f-yes a ⇓ b) → -- ((¬a : ¬ A) → f-no ¬a ⇓ b) → -- ((?a >>= (λ { (yes y) → f-yes y ; (no n) → f-no n }))) ⇓ b -- (yes y , y⇓) ⇓Dec>>=⇓ fy⇓ else⇓ fn⇓ = y⇓ >>=⇓ fy⇓ y -- (no n , n⇓) ⇓Dec>>=⇓ fy⇓ else⇓ fn⇓ = n⇓ >>=⇓ fn⇓ n -- _⇓DecEq>>=⇓_else⇓_ : ∀{A : Set} {A₁ A₂ : A} {B}{f-yes : A₁ ≡ A₂ → Delay ∞ B}{f-no : A₁ ≢ A₂ → Delay ∞ B}{?a : Delay ∞ (Dec (A₁ ≡ A₂))}{b : B} → -- (?a⇓ : ?a ⇓) → -- ((eq : A₁ ≡ A₂) → f-yes eq ⇓ b) → -- ((¬eq : A₁ ≢ A₂) → f-no ¬eq ⇓ b) → -- ((?a >>= (λ { (yes refl) → f-yes refl ; (no n) → f-no n }))) ⇓ b -- (yes refl , y⇓) ⇓DecEq>>=⇓ fy⇓ else⇓ fn⇓ = y⇓ >>=⇓ fy⇓ refl -- (no n , n⇓) ⇓DecEq>>=⇓ fy⇓ else⇓ fn⇓ = n⇓ >>=⇓ fn⇓ n -- app⇓ : ∀{A}{B}{f? : Delay ∞ (A → B)}{f : A → B}{x? : Delay ∞ A}{x : A} → f? ⇓ f → x? ⇓ x → (f? <*> x?) ⇓ f x -- app⇓ now⇓ now⇓ = now⇓ -- app⇓ now⇓ (later⇓ x?) = later⇓ $ map⇓ _ x? -- app⇓ (later⇓ f?) now⇓ = later⇓ $ bind⇓ _ f? now⇓ -- app⇓ (later⇓ ⇓f) (later⇓ ⇓x) = later⇓ $ bind⇓ _ ⇓f $ later⇓ $ bind⇓ _ ⇓x now⇓ -- subst∼⇓ : ∀{A}{a? a?′ : Delay ∞ A}{a : A} → a? ⇓ a → a? ∼ a?′ → a?′ ⇓ a -- subst∼⇓ now⇓ (∼now a) = now⇓ -- subst∼⇓ (later⇓ p) (∼later eq) = later⇓ (subst∼⇓ p (∼force eq)) -- {- -- traverse⇓' : ∀{A}{B}{f? : A → Delay ∞ B}{T : Set → Set}⦃ _ : Traversable T ⦄{X : T A} → (∀ x → f? x ⇓) → ∀ (x : T A) → traverse f? x ⇓ -- traverse⇓' x₁ x₂ = {!!} , {!!} -- -} -- {- -- traverse⇓ : ∀{A}{B}{f : A → B}{T : Set → Set}⦃ _ : Traversable T ⦄{X : T A} → (∀ x → f? x ⇓) → ∀ (x : T A) → traverse f x ⇓ -- traverse⇓ x₁ x₂ = {!!} , {!!} -- -} -- traverse-list⇓ : ∀{A}{B} (f? : A → Delay ∞ B) → (∀ x → f? x ⇓) → (xs : List A) → traverse f? xs ⇓ -- traverse-list⇓ f? f?⇓ [] = [] , now⇓ -- traverse-list⇓ f? f?⇓ (x ∷ xs) -- with f?⇓ x | traverse-list⇓ f? f?⇓ xs -- … | y , y⇓ | ys , ys⇓ = y ∷ ys , app⇓ (map⇓ _ y⇓) ys⇓ -- {- -- traverse-vec⇓' : ∀{A}{B}{𝑎} (f? : A → Delay ∞ B) → (∀ x → f? x ⇓) → (xs : Vector A 𝑎) → traverse f? xs ⇓ -- traverse-vec⇓' f? f?⇓ [] = [] , now⇓ -- traverse-vec⇓' f? f?⇓ (x ∷ xs) -- with f?⇓ x | traverse-vec⇓' f? f?⇓ xs -- … | y , y⇓ | ys , ys⇓ = y ∷ ys , app⇓ (map⇓ _ y⇓) ys⇓ -- traverse-vec⇓ : ∀{A}{B}{𝑎} (f : A → B) → (xs : Vector (Delay ∞ A) 𝑎) → traverse {!f!} xs ⇓ -- traverse-vec⇓ = {!!} -- -} -- open CustomPrelude -- -- infix 15 _╱_ -- -- record Sequent (A : Set) ⦃ _ : BeFormula A ⦄ : Set -- -- where -- -- constructor _╱_ -- -- field -- -- statement : A -- -- suppositions : List A -- -- open Sequent -- -- foooo : {A : Set} ⦃ bf : BeFormula A ⦄ {-⦃ hs : HasNegation A ⦄-} {-(x : Sequent A)-} → -- -- (∃ λ (x : A) → x ∈ List.[]) → ⊥ -- -- {- -- -- Dec -- -- (-- Either -- -- (Σ A -- -- (λ x₁ → -- -- --Σ -- -- ({-BeFormula.formula bf -}x₁ ∈ -- -- {-map (BeFormula.formula bf)-} [] {-(suppositions x)-}) -- -- {- -- -- (λ _ → -- -- ⊤ -- -- --BeFormula.formula bf (HasNegation.~ hs x₁) ∈ -- -- --map (BeFormula.formula bf) (suppositions x) -- -- )-} -- -- )) -- -- {-(BeFormula.formula bf (statement x) ∈ -- -- map (BeFormula.formula bf) (suppositions x))-}) -- -- -} -- -- foooo = λ {x → {!x!}} -- -- {- -- -- foooo (statement₁ ╱ []) = λ {x → {!x!}} -- no (λ {x → {!x!}}) -- -- foooo (statement₁ ╱ (x ∷ suppositions₁)) = {!!} -- -- -} -- -- -- TruthValue = Bool -- -- -- -- reification of elements of the domain -- -- -- Element = Nat -- -- -- record VariableName : Set -- -- -- where -- -- -- constructor ⟨_⟩ -- -- -- field -- -- -- name : Nat -- -- -- open VariableName -- -- -- instance EqVariableName : Eq VariableName -- -- -- Eq._==_ EqVariableName _ = decEq₁ (cong name) ∘ (_≟_ on name $ _) -- -- -- record FunctionName : Set -- -- -- where -- -- -- constructor ⟨_⟩ -- -- -- field -- -- -- name : Nat -- -- -- open FunctionName -- -- -- instance EqFunctionName : Eq FunctionName -- -- -- Eq._==_ EqFunctionName _ = decEq₁ (cong name) ∘ (_≟_ on name $ _) -- -- -- record PredicateName : Set -- -- -- where -- -- -- constructor ⟨_⟩ -- -- -- field -- -- -- name : Nat -- -- -- open PredicateName -- -- -- instance EqPredicateName : Eq PredicateName -- -- -- Eq._==_ EqPredicateName _ = decEq₁ (cong name) ∘ (_≟_ on name $ _) -- -- -- record Arity : Set -- -- -- where -- -- -- constructor ⟨_⟩ -- -- -- field -- -- -- arity : Nat -- -- -- open Arity -- -- -- instance EqArity : Eq Arity -- -- -- Eq._==_ EqArity _ = decEq₁ (cong arity) ∘ (_≟_ on arity $ _) -- -- -- Vector : Set → Arity → Set -- -- -- Vector A = Vec A ∘ arity -- -- -- record Elements : Set -- -- -- where -- -- -- constructor ⟨_⟩ -- -- -- field -- -- -- {arity} : Arity -- -- -- elements : Vector Element arity -- -- -- open Elements -- -- -- instance EqElements : Eq Elements -- -- -- Eq._==_ EqElements (⟨_⟩ {𝑎₁} εs₁) (⟨_⟩ {𝑎₂} εs₂) -- -- -- with 𝑎₁ ≟ 𝑎₂ -- -- -- … | no 𝑎₁≢𝑎₂ = no λ {refl → 𝑎₁≢𝑎₂ refl} -- -- -- … | yes refl -- -- -- with εs₁ ≟ εs₂ -- -- -- … | yes refl = yes refl -- -- -- … | no εs₁≢εs₂ = no λ {refl → εs₁≢εs₂ refl} -- -- -- record Interpretation : Set -- -- -- where -- -- -- field -- -- -- μ⟦_⟧ : VariableName → Element -- -- -- 𝑓⟦_⟧ : FunctionName → Elements → Element -- -- -- 𝑃⟦_⟧ : PredicateName → Elements → TruthValue -- -- -- open Interpretation -- -- -- mutual -- -- -- data Term : Set -- -- -- where -- -- -- variable : VariableName → Term -- -- -- function : FunctionName → Terms → Term -- -- -- record Terms : Set -- -- -- where -- -- -- constructor ⟨_⟩ -- -- -- inductive -- -- -- field -- -- -- {arity} : Arity -- -- -- terms : Vector Term arity -- -- -- open Terms -- -- -- termVariable-inj : ∀ {𝑥₁ 𝑥₂} → Term.variable 𝑥₁ ≡ variable 𝑥₂ → 𝑥₁ ≡ 𝑥₂ -- -- -- termVariable-inj refl = refl -- -- -- termFunction-inj₁ : ∀ {𝑓₁ 𝑓₂ τ₁s τ₂s} → Term.function 𝑓₁ τ₁s ≡ function 𝑓₂ τ₂s → 𝑓₁ ≡ 𝑓₂ -- -- -- termFunction-inj₁ refl = refl -- -- -- termFunction-inj₂ : ∀ {𝑓₁ 𝑓₂ τ₁s τ₂s} → Term.function 𝑓₁ τ₁s ≡ function 𝑓₂ τ₂s → τ₁s ≡ τ₂s -- -- -- termFunction-inj₂ refl = refl -- -- -- foo : ∀ a → (ts1 ts2 : Vec Term (arity a)) → (τ₁≡τ₂ : Terms.⟨ ts1 ⟩ ≡ (⟨_⟩ {a} ts2)) → _≡_ {lzero} {Vec Term (arity a)} ts1 ts2 -- -- -- foo a ts1 .ts1 refl = refl -- -- -- mutual -- -- -- EqTerm⇑ : ∀ {i} → (x y : Term) → Delay i ∘ Dec $ x ≡ y -- -- -- EqTerm⇑ (variable _) (variable _) = now (decEq₁ termVariable-inj $ _≟_ _ _) -- -- -- EqTerm⇑ (function 𝑓₁ τ₁s) (function 𝑓₂ τ₂s) = EqTerms⇑ τ₁s τ₂s >>= λ τ₁s≟τ₂s → now $ decEq₂ termFunction-inj₁ termFunction-inj₂ (𝑓₁ ≟ 𝑓₂) τ₁s≟τ₂s -- -- -- EqTerm⇑ (variable _) (function _ _) = now $ no λ () -- -- -- EqTerm⇑ (function _ _) (variable _) = now $ no λ () -- -- -- EqTerms⇑ : ∀ {i} → (x y : Terms) → Delay i ∘ Dec $ x ≡ y -- -- -- EqTerms⇑ (⟨_⟩ {𝑎₁} τ₁s) (⟨_⟩ {𝑎₂} τ₂s) -- -- -- with 𝑎₁ ≟ 𝑎₂ -- -- -- … | no 𝑎₁≢𝑎₂ = now $ no λ {τ₁≡τ₂ → 𝑎₁≢𝑎₂ (cong arity τ₁≡τ₂)} -- -- -- … | yes refl = EqVecTerm⇑ τ₁s τ₂s >>= λ { (yes refl) → now $ yes refl ; (no τ₁s≢τ₂s) → now $ no (λ ⟨τ₁s⟩≡⟨τ₂s⟩ → τ₁s≢τ₂s (foo ⟨ arity 𝑎₁ ⟩ τ₁s τ₂s ⟨τ₁s⟩≡⟨τ₂s⟩)) } -- -- -- EqVecTerm⇑ : ∀ {i} {n} → (x y : Vec Term n) → Delay i ∘ Dec $ x ≡ y -- -- -- EqVecTerm⇑ [] [] = now (yes refl) -- -- -- EqVecTerm⇑ (τ₁ ∷ τ₁s) (τ₂ ∷ τ₂s) = -- -- -- EqTerm⇑ τ₁ τ₂ >>= λ -- -- -- { (yes refl) → EqVecTerm⇑ τ₁s τ₂s >>= λ -- -- -- { (yes refl) → now $ yes refl -- -- -- ; (no τ₁s≢τ₂s) → now $ no λ τ₁₁s≡τ₁₂s → τ₁s≢τ₂s $ vcons-inj-tail τ₁₁s≡τ₁₂s } -- -- -- ; (no τ₁≢τ₂) → now $ no λ τ₁₁s≡τ₂₂s → τ₁≢τ₂ $ vcons-inj-head τ₁₁s≡τ₂₂s } -- -- -- EqVecTerm⇓ : ∀ {n} → (x y : Vec Term n) → EqVecTerm⇑ x y ⇓ -- -- -- EqVecTerm⇓ [] [] = _ , now⇓ -- -- -- EqVecTerm⇓ (variable 𝑥₁ ∷ τ₁s) (variable 𝑥₂ ∷ τ₂s) -- -- -- with 𝑥₁ ≟ 𝑥₂ -- -- -- … | yes refl with EqVecTerm⇓ τ₁s τ₂s -- -- -- EqVecTerm⇓ (variable 𝑥₁ ∷ τ₁s) (variable .𝑥₁ ∷ .τ₁s) | yes refl | (yes refl , snd₁) = _ , snd₁ >>=⇓ now⇓ -- -- -- EqVecTerm⇓ (variable 𝑥₁ ∷ τ₁s) (variable .𝑥₁ ∷ τ₂s) | yes refl | (no x , snd₁) = _ , snd₁ >>=⇓ now⇓ -- -- -- EqVecTerm⇓ (variable 𝑥₁ ∷ τ₁s) (variable 𝑥₂ ∷ τ₂s) | no 𝑥₁≢𝑥₂ = _ , now⇓ -- -- -- EqVecTerm⇓ (variable x ∷ τ₁s) (function x₁ x₂ ∷ τ₂s) = _ , now⇓ -- -- -- EqVecTerm⇓ (function x x₁ ∷ τ₁s) (variable x₂ ∷ τ₂s) = _ , now⇓ -- -- -- EqVecTerm⇓ (function 𝑓₁ (⟨_⟩ {𝑎₁} τ₁s) ∷ τ₁₂s) (function 𝑓₂ (⟨_⟩ {𝑎₂} τ₂s) ∷ τ₂₂s) -- -- -- with 𝑎₁ ≟ 𝑎₂ | 𝑓₁ ≟ 𝑓₂ -- -- -- … | no 𝑎₁≢𝑎₂ | no 𝑓₁≢𝑓₂ = _ , now⇓ -- -- -- … | no 𝑎₁≢𝑎₂ | yes refl = _ , now⇓ -- -- -- … | yes refl | no 𝑓₁≢𝑓₂ -- -- -- with EqVecTerm⇓ τ₁s τ₂s -- -- -- … | (no τ₁s≢τ₂s , τ⇓) = _ , τ⇓ >>=⇓ now⇓ >>=⇓ now⇓ >>=⇓ now⇓ -- -- -- … | (yes refl , τ⇓) = _ , τ⇓ >>=⇓ now⇓ >>=⇓ now⇓ >>=⇓ now⇓ -- -- -- EqVecTerm⇓ (function 𝑓₁ (⟨_⟩ {𝑎₁} τ₁s) ∷ τ₁₂s) (function 𝑓₂ (⟨_⟩ {𝑎₂} τ₂s) ∷ τ₂₂s) | yes refl | yes refl -- -- -- with EqVecTerm⇓ τ₁s τ₂s | EqVecTerm⇓ τ₁₂s τ₂₂s -- -- -- … | (no τ₁s≢τ₂s , τ⇓) | (no τ₁₂s≢τ₂₂s , τs⇓) = _ , τ⇓ >>=⇓ now⇓ >>=⇓ now⇓ >>=⇓ now⇓ -- -- -- … | (yes refl , τ⇓) | (no τ₁₂s≢τ₂₂s , τs⇓) = _ , τ⇓ >>=⇓ now⇓ >>=⇓ now⇓ >>=⇓ (τs⇓ >>=⇓ now⇓) -- -- -- … | (no τ₁s≢τ₂s , τ⇓) | (yes refl , τs⇓) = _ , τ⇓ >>=⇓ now⇓ >>=⇓ now⇓ >>=⇓ now⇓ -- -- -- … | (yes refl , τ⇓) | (yes refl , τs⇓) = _ , τ⇓ >>=⇓ now⇓ >>=⇓ now⇓ >>=⇓ (τs⇓ >>=⇓ now⇓) -- -- -- EqTerms⇓ : (x y : Terms) → EqTerms⇑ x y ⇓ -- -- -- EqTerms⇓ (⟨_⟩ {𝑎₁} τ₁s) (⟨_⟩ {𝑎₂} τ₂s) -- -- -- with 𝑎₁ ≟ 𝑎₂ -- -- -- … | no 𝑎₁≢𝑎₂ = _ , now⇓ -- -- -- … | yes refl -- -- -- with EqVecTerm⇓ τ₁s τ₂s -- -- -- … | (yes refl , τ⇓) = _ , τ⇓ >>=⇓ now⇓ -- -- -- … | (no _ , τ⇓) = _ , τ⇓ >>=⇓ now⇓ -- -- -- EqTerm⇓ : (x y : Term) → EqTerm⇑ x y ⇓ -- -- -- EqTerm⇓ (variable x) (variable x₁) = _ , now⇓ -- -- -- EqTerm⇓ (function _ τ₁s) (function _ τ₂s) -- -- -- with EqTerms⇓ τ₁s τ₂s -- -- -- … | (_ , τ⇓) = _ , τ⇓ >>=⇓ now⇓ -- -- -- EqTerm⇓ (variable x) (function x₁ x₂) = _ , now⇓ -- -- -- EqTerm⇓ (function x x₁) (variable x₂) = _ , now⇓ -- -- -- instance EqTerm : Eq Term -- -- -- EqTerm = record { _==_ = λ x y → fst (EqTerm⇓ x y) } -- -- -- instance EqTerms : Eq Terms -- -- -- Eq._==_ EqTerms x y = fst (EqTerms⇓ x y) -- -- -- mutual -- -- -- τ⇑⟦_⟧ : Interpretation → {i : Size} → Term → Delay i Element -- -- -- τ⇑⟦ I ⟧ (variable 𝑥) = now $ μ⟦ I ⟧ 𝑥 -- -- -- τ⇑⟦ I ⟧ (function 𝑓 τs) = 𝑓⟦ I ⟧ 𝑓 ∘ ⟨_⟩ <$> τs⇑⟦ I ⟧ τs -- -- -- τs⇑⟦_⟧ : Interpretation → {i : Size} → (τs : Terms) → Delay i (Vector Element (arity τs)) -- -- -- τs⇑⟦ I ⟧ ⟨ [] ⟩ = now [] -- -- -- τs⇑⟦ I ⟧ ⟨ τ ∷ τs ⟩ = τ⇑⟦ I ⟧ τ >>= (λ t → τs⇑⟦ I ⟧ ⟨ τs ⟩ >>= λ ts → now (t ∷ ts)) -- -- -- τs⇓⟦_⟧ : (I : Interpretation) → (τs : Terms) → τs⇑⟦ I ⟧ τs ⇓ -- -- -- τs⇓⟦ I ⟧ ⟨ [] ⟩ = _ , now⇓ -- -- -- τs⇓⟦ I ⟧ ⟨ variable 𝑥 ∷ τs ⟩ = _ , τs⇓⟦ I ⟧ ⟨ τs ⟩ ⇓>>=⇓ now⇓ -- -- -- τs⇓⟦ I ⟧ ⟨ function 𝑓₁ τs₁ ∷ τs₂ ⟩ = -- -- -- _ , τs⇓⟦ I ⟧ τs₁ ⇓>>=⇓ now⇓ >>=⇓ (τs⇓⟦ I ⟧ ⟨ τs₂ ⟩ ⇓>>=⇓ now⇓) -- -- -- τ⇓⟦_⟧ : (I : Interpretation) → (τ : Term) → τ⇑⟦ I ⟧ τ ⇓ -- -- -- τ⇓⟦ I ⟧ (variable 𝑥) = _ , now⇓ -- -- -- τ⇓⟦ I ⟧ (function 𝑓 τs) = _ , τs⇓⟦ I ⟧ τs ⇓>>=⇓ now⇓ -- -- -- τ⟦_⟧ : (I : Interpretation) → {i : Size} → (τ : Term) → Element -- -- -- τ⟦ I ⟧ τ = fst (τ⇓⟦ I ⟧ τ) -- -- -- data Formula : Set -- -- -- where -- -- -- atomic : PredicateName → Terms → Formula -- -- -- logical : Formula → -- -- -- Formula → -- -- -- Formula -- -- -- quantified : VariableName → Formula → Formula -- -- -- formulaAtomic-inj₁ : ∀ {𝑃₁ τs₁ 𝑃₂ τs₂} → Formula.atomic 𝑃₁ τs₁ ≡ atomic 𝑃₂ τs₂ → 𝑃₁ ≡ 𝑃₂ -- -- -- formulaAtomic-inj₁ refl = refl -- -- -- formulaAtomic-inj₂ : ∀ {𝑃₁ τs₁ 𝑃₂ τs₂} → Formula.atomic 𝑃₁ τs₁ ≡ atomic 𝑃₂ τs₂ → τs₁ ≡ τs₂ -- -- -- formulaAtomic-inj₂ refl = refl -- -- -- formulaLogical-inj₁ : ∀ {φ₁₁ φ₁₂ φ₂₁ φ₂₂} → Formula.logical φ₁₁ φ₁₂ ≡ logical φ₂₁ φ₂₂ → φ₁₁ ≡ φ₂₁ -- -- -- formulaLogical-inj₁ refl = refl -- -- -- formulaLogical-inj₂ : ∀ {φ₁₁ φ₁₂ φ₂₁ φ₂₂} → Formula.logical φ₁₁ φ₁₂ ≡ logical φ₂₁ φ₂₂ → φ₁₂ ≡ φ₂₂ -- -- -- formulaLogical-inj₂ refl = refl -- -- -- formulaQuantified-inj₁ : ∀ {𝑥₁ φ₁ 𝑥₂ φ₂} → Formula.quantified 𝑥₁ φ₁ ≡ quantified 𝑥₂ φ₂ → 𝑥₁ ≡ 𝑥₂ -- -- -- formulaQuantified-inj₁ refl = refl -- -- -- formulaQuantified-inj₂ : ∀ {𝑥₁ φ₁ 𝑥₂ φ₂} → Formula.quantified 𝑥₁ φ₁ ≡ quantified 𝑥₂ φ₂ → φ₁ ≡ φ₂ -- -- -- formulaQuantified-inj₂ refl = refl -- -- -- instance EqFormula : Eq Formula -- -- -- Eq._==_ EqFormula (atomic 𝑃₁ τs₁) (atomic 𝑃₂ τs₂) = decEq₂ formulaAtomic-inj₁ formulaAtomic-inj₂ (𝑃₁ ≟ 𝑃₂) (τs₁ ≟ τs₂) -- -- -- Eq._==_ EqFormula (logical φ₁₁ φ₁₂) (logical φ₂₁ φ₂₂) = decEq₂ formulaLogical-inj₁ formulaLogical-inj₂ (φ₁₁ ≟ φ₂₁) (φ₁₂ ≟ φ₂₂) -- -- -- Eq._==_ EqFormula (quantified 𝑥₁ φ₁) (quantified 𝑥₂ φ₂) = decEq₂ formulaQuantified-inj₁ formulaQuantified-inj₂ (𝑥₁ ≟ 𝑥₂) (φ₁ ≟ φ₂) -- -- -- Eq._==_ EqFormula (atomic _ _) (logical _ _) = no λ () -- -- -- Eq._==_ EqFormula (atomic _ _) (quantified _ _) = no λ () -- -- -- Eq._==_ EqFormula (logical _ _) (atomic _ _) = no λ () -- -- -- Eq._==_ EqFormula (logical _ _) (quantified _ _) = no λ () -- -- -- Eq._==_ EqFormula (quantified _ _) (atomic _ _) = no λ () -- -- -- Eq._==_ EqFormula (quantified _ _) (logical _ _) = no λ () -- -- -- record HasNegation (A : Set) : Set -- -- -- where -- -- -- field -- -- -- ~ : A → A -- -- -- open HasNegation ⦃ … ⦄ -- -- -- record BeFormula (A : Set) : Set -- -- -- where -- -- -- constructor ⟨_⟩ -- -- -- field -- -- -- formula : A → Formula -- -- -- open BeFormula ⦃ … ⦄ -- -- -- record HasSatisfaction (A : Set) : Set₁ -- -- -- where -- -- -- field -- -- -- _⊨_ : Interpretation → A → Set -- -- -- _⊭_ : Interpretation → A → Set -- -- -- _⊭_ I = ¬_ ∘ I ⊨_ -- -- -- open HasSatisfaction ⦃ … ⦄ -- -- -- record HasDecidableSatisfaction (A : Set) ⦃ _ : HasSatisfaction A ⦄ : Set₁ -- -- -- where -- -- -- field -- -- -- _⊨?_ : (I : Interpretation) → (x : A) → Dec (I ⊨ x) -- -- -- open HasDecidableSatisfaction ⦃ … ⦄ -- -- -- infix 15 _╱_ -- -- -- record Sequent (A : Set) ⦃ _ : BeFormula A ⦄ : Set -- -- -- where -- -- -- constructor _╱_ -- -- -- field -- -- -- statement : A -- -- -- suppositions : List A -- -- -- open Sequent -- -- -- foooo : {A : Set} ⦃ bf : BeFormula A ⦄ {-⦃ hs : HasNegation A ⦄-} (x : Sequent A) → -- -- -- Dec -- -- -- (-- Either -- -- -- (Σ A -- -- -- (λ x₁ → -- -- -- --Σ -- -- -- ({-BeFormula.formula bf -}x₁ ∈ -- -- -- {-map (BeFormula.formula bf)-} (suppositions x)) -- -- -- {- -- -- -- (λ _ → -- -- -- ⊤ -- -- -- --BeFormula.formula bf (HasNegation.~ hs x₁) ∈ -- -- -- --map (BeFormula.formula bf) (suppositions x) -- -- -- )-} -- -- -- )) -- -- -- {-(BeFormula.formula bf (statement x) ∈ -- -- -- map (BeFormula.formula bf) (suppositions x))-}) -- -- -- foooo (statement₁ ╱ []) = no (λ {x → {!x!}}) -- -- -- foooo (statement₁ ╱ (x ∷ suppositions₁)) = {!!} -- -- -- -- record HasValidation (A : Set) : Set₁ -- -- -- -- where -- -- -- -- field -- -- -- -- ⊨_ : A → Set -- -- -- -- ⊭_ : A → Set -- -- -- -- ⊭_ = ¬_ ∘ ⊨_ -- -- -- -- open HasValidation ⦃ … ⦄ -- -- -- -- 𝑃[_♭_] : PredicateName → Terms → Formula -- -- -- -- 𝑃[_♭_] = atomic -- -- -- -- _⊗_ : Formula → Formula → Formula -- -- -- -- _⊗_ = logical -- -- -- -- instance -- -- -- -- HasNegationFormula : HasNegation Formula -- -- -- -- HasNegation.~ HasNegationFormula φ = φ ⊗ φ -- -- -- -- data IsLiteral : Formula → Set -- -- -- -- where -- -- -- -- atomic : (𝑃 : PredicateName) → (τs : Terms) → IsLiteral $ 𝑃[ 𝑃 ♭ τs ] -- -- -- -- logical : (𝑃 : PredicateName) → (τs : Terms) → IsLiteral ∘ ~ $ 𝑃[ 𝑃 ♭ τs ] -- -- -- -- eqIsLiteral : ∀ {φ} → (lf₁ lf₂ : IsLiteral φ) → lf₁ ≡ lf₂ -- -- -- -- eqIsLiteral (atomic 𝑃 τs) (atomic .𝑃 .τs) = refl -- -- -- -- eqIsLiteral (logical 𝑃 τs) (logical .𝑃 .τs) = refl -- -- -- -- instance EqIsLiteral : ∀ {φ} → Eq (IsLiteral φ) -- -- -- -- Eq._==_ EqIsLiteral lf₁ lf₂ = yes (eqIsLiteral lf₁ lf₂) -- -- -- -- record LiteralFormula : Set -- -- -- -- where -- -- -- -- constructor ⟨_⟩ -- -- -- -- field -- -- -- -- {formula} : Formula -- -- -- -- isLiteral : IsLiteral formula -- -- -- -- open LiteralFormula -- -- -- -- instance EqLiteralFormula : Eq LiteralFormula -- -- -- -- Eq._==_ EqLiteralFormula (⟨_⟩ {φ₁} lf₁) (⟨_⟩ {φ₂} lf₂) -- -- -- -- with φ₁ ≟ φ₂ -- -- -- -- … | no φ₁≢φ₂ = no (λ {refl → φ₁≢φ₂ refl}) -- -- -- -- Eq._==_ EqLiteralFormula (⟨_⟩ {φ₁} lf₁) (⟨_⟩ {φ₂} lf₂) | yes refl = case (eqIsLiteral lf₁ lf₂) of λ {refl → yes refl} -- -- -- -- infix 13 _¶_ -- -- -- -- record Problem (A : Set) ⦃ _ : BeFormula A ⦄ : Set -- -- -- -- where -- -- -- -- constructor _¶_ -- -- -- -- field -- -- -- -- inferences : List (Sequent A) -- -- -- -- interest : Sequent A -- -- -- -- open Problem -- -- -- -- record HasSubstantiveDischarge (+ : Set) (- : Set) : Set₁ -- -- -- -- where -- -- -- -- field -- -- -- -- _≽_ : + → - → Set -- -- -- -- open HasSubstantiveDischarge ⦃ … ⦄ -- -- -- -- record HasVacuousDischarge (+ : Set) : Set₁ -- -- -- -- where -- -- -- -- field -- -- -- -- ◁_ : + → Set -- -- -- -- open HasVacuousDischarge ⦃ … ⦄ -- -- -- -- record HasSalvation (A : Set) : Set₁ -- -- -- -- where -- -- -- -- field -- -- -- -- {isVacuouslyDischargable} : Set -- -- -- -- ⦃ hasVacuousDischarge ⦄ : HasVacuousDischarge isVacuouslyDischargable -- -- -- -- ▷_ : A → Set -- -- -- -- open HasSalvation ⦃ … ⦄ -- -- -- -- record HasDecidableSalvation (A : Set) : Set₁ -- -- -- -- where -- -- -- -- field -- -- -- -- ⦃ hasSalvation ⦄ : HasSalvation A -- -- -- -- ▷?_ : (x : A) → Dec $ ▷_ x -- -- -- -- open HasDecidableSalvation ⦃ … ⦄ -- -- -- -- ∀[_♭_] : VariableName → Formula → Formula -- -- -- -- ∀[_♭_] = quantified -- -- -- -- _∧_ : Formula → Formula → Formula -- -- -- -- φ₁ ∧ φ₂ = ~ φ₁ ⊗ ~ φ₂ -- -- -- -- _∨_ : Formula → Formula → Formula -- -- -- -- φ₁ ∨ φ₂ = ~ (φ₁ ⊗ φ₂) -- -- -- -- _⊃_ : Formula → Formula → Formula -- -- -- -- φ₁ ⊃ φ₂ = ~ φ₁ ∨ φ₂ -- -- -- -- _⟷_ : Formula → Formula → Formula -- -- -- -- φ₁ ⟷ φ₂ = (φ₁ ⊗ (φ₂ ⊗ φ₂)) ⊗ ((φ₁ ⊗ φ₁) ⊗ φ₂) -- TODO check that this is logically equivalent to the more verbose, (φ₁ ⊃ φ₂) ∧ (φ₂ ⊃ φ₁) -- -- -- -- record _≞_/_ (𝓘 : Interpretation) (I : Interpretation) (𝑥 : VariableName) : Set -- -- -- -- where -- -- -- -- field -- -- -- -- μEquality : {𝑥′ : VariableName} → 𝑥′ ≢ 𝑥 → μ⟦ 𝓘 ⟧ 𝑥 ≡ μ⟦ I ⟧ 𝑥′ -- -- -- -- 𝑓Equality : (𝑓 : FunctionName) (μs : Elements) → 𝑓⟦ 𝓘 ⟧ 𝑓 μs ≡ 𝑓⟦ I ⟧ 𝑓 μs -- -- -- -- 𝑃Equality : (𝑃 : PredicateName) → (μs : Elements) → 𝑃⟦ 𝓘 ⟧ 𝑃 μs ≡ 𝑃⟦ I ⟧ 𝑃 μs -- -- -- -- instance -- -- -- -- BeFormulaFormula : BeFormula Formula -- -- -- -- BeFormula.formula BeFormulaFormula = id -- -- -- -- BeFormulaLiteralFormula : BeFormula LiteralFormula -- -- -- -- BeFormula.formula BeFormulaLiteralFormula = formula -- -- -- -- instance -- -- -- -- HasNegationLiteralFormula : HasNegation LiteralFormula -- -- -- -- HasNegation.~ HasNegationLiteralFormula ⟨ atomic 𝑃 τs ⟩ = ⟨ logical 𝑃 τs ⟩ -- -- -- -- HasNegation.~ HasNegationLiteralFormula ⟨ logical 𝑃 τs ⟩ = ⟨ atomic 𝑃 τs ⟩ -- -- -- -- HasNegationSequent : {A : Set} ⦃ _ : HasNegation A ⦄ ⦃ _ : BeFormula A ⦄ → HasNegation $ Sequent A -- -- -- -- HasNegation.~ HasNegationSequent ( φᵗ ╱ φˢs ) = ~ φᵗ ╱ φˢs -- -- -- -- instance -- -- -- -- HasSatisfactionList : {A : Set} ⦃ _ : HasSatisfaction A ⦄ → HasSatisfaction $ List A -- -- -- -- HasSatisfaction._⊨_ HasSatisfactionList I [] = ⊤ -- -- -- -- HasSatisfaction._⊨_ HasSatisfactionList I (x ∷ xs) = I ⊨ x × I ⊨ xs -- -- -- -- HasSatisfactionBeFormula : {A : Set} → ⦃ _ : BeFormula A ⦄ → HasSatisfaction A -- -- -- -- HasSatisfaction._⊨_ (HasSatisfactionBeFormula ⦃ beFormula ⦄) = λ I φ → I ⊨φ formula beFormula φ -- -- -- -- where -- -- -- -- _⊨φ_ : Interpretation → Formula → Set -- -- -- -- I ⊨φ (atomic 𝑃 τs) = 𝑃⟦ I ⟧ 𝑃 ⟨ τ⟦ I ⟧ <$> terms τs ⟩ ≡ true -- -- -- -- I ⊨φ (logical φ₁ φ₂) = ¬ I ⊨φ φ₁ × ¬ I ⊨φ φ₂ -- -- -- -- I ⊨φ (quantified 𝑥 φ) = (𝓘 : Interpretation) → 𝓘 ≞ I / 𝑥 → 𝓘 ⊨φ φ -- -- -- -- HasSatisfactionSequent : {A : Set} ⦃ _ : BeFormula A ⦄ → HasSatisfaction $ Sequent A -- -- -- -- HasSatisfaction._⊨_ HasSatisfactionSequent I (φᵗ ╱ φˢs) = I ⊨ φˢs → I ⊨ φᵗ -- -- -- -- instance -- -- -- -- postulate -- -- -- -- HasDecidableSatisfactionFormula : HasDecidableSatisfaction Formula -- -- -- -- instance -- -- -- -- HasValidationBeFormula : {A : Set} ⦃ _ : BeFormula A ⦄ → HasValidation A -- -- -- -- HasValidation.⊨_ HasValidationBeFormula φ = (I : Interpretation) → I ⊨ φ -- -- -- -- HasValidationSequent : {A : Set} ⦃ _ : BeFormula A ⦄ → HasValidation $ Sequent A -- -- -- -- HasValidation.⊨_ HasValidationSequent Φ = (I : Interpretation) → I ⊨ Φ -- -- -- -- HasValidationProblem : {A : Set} ⦃ _ : BeFormula A ⦄ → HasValidation $ Problem A -- -- -- -- HasValidation.⊨_ HasValidationProblem (χs ¶ ι) = (I : Interpretation) → I ⊨ χs → I ⊨ ι -- -- -- -- instance -- -- -- -- HasSubstantiveDischargeBeFormulaBeFormula : {A : Set} ⦃ _ : BeFormula A ⦄ → HasSubstantiveDischarge A A -- -- -- -- HasSubstantiveDischarge._≽_ (HasSubstantiveDischargeBeFormulaBeFormula ⦃ ⟨ beFormula ⟩ ⦄) = _≡_ on beFormula -- _≡_ on (formula beFormula) -- _≡_ -- -- -- -- HasSubstantiveDischargeListBeFormulaBeFormula : {A : Set} ⦃ _ : BeFormula A ⦄ → HasSubstantiveDischarge (List A) A -- -- -- -- HasSubstantiveDischarge._≽_ (HasSubstantiveDischargeListBeFormulaBeFormula ⦃ ⟨ beFormula ⟩ ⦄) +s - = beFormula - ∈ (beFormula <$> +s) -- flip _∈_ -- -- -- -- HasSubstantiveDischargeListFormulaListFormula : {A : Set} ⦃ _ : BeFormula A ⦄ → HasSubstantiveDischarge (List A) (List A) -- -- -- -- HasSubstantiveDischarge._≽_ (HasSubstantiveDischargeListFormulaListFormula ⦃ ⟨ beFormula ⟩ ⦄) = flip $ _⊆_ on fmap beFormula -- flip _⊆_ -- -- -- -- HasSubstantiveDischargeSequentSequent : ∀ {A : Set} ⦃ _ : BeFormula A ⦄ → HasSubstantiveDischarge (Sequent A) (Sequent A) -- -- -- -- HasSubstantiveDischarge._≽_ HasSubstantiveDischargeSequentSequent (+ᵗ ╱ +ᵖs) (-ᵗ ╱ -ᵖs) = +ᵗ ≽ -ᵗ × +ᵖs ≽ -ᵖs -- -- -- -- HasSubstantiveDischargeListSequentSequent : ∀ {A : Set} ⦃ _ : BeFormula A ⦄ → HasSubstantiveDischarge (List $ Sequent A) (Sequent A) -- -- -- -- HasSubstantiveDischarge._≽_ HasSubstantiveDischargeListSequentSequent χs ι = ∃ λ c → (c ∈ χs) × c ≽ ι -- -- -- -- instance -- -- -- -- HasVacuousDischargeList : {A : Set} ⦃ _ : HasSubstantiveDischarge (List A) A ⦄ ⦃ _ : HasNegation A ⦄ → HasVacuousDischarge (List A) -- -- -- -- HasVacuousDischarge.◁_ (HasVacuousDischargeList {A}) xs = ∃ λ (x : A) → xs ≽ x × xs ≽ ~ x -- -- -- -- HasVacuousDischargeSequent : {A : Set} ⦃ _ : BeFormula A ⦄ ⦃ _ : HasNegation A ⦄ → HasVacuousDischarge (Sequent A) -- -- -- -- HasVacuousDischarge.◁_ HasVacuousDischargeSequent (_ ╱ φˢs) = ∃ λ s → (s ∈ φˢs) × (φˢs ≽ s) × (φˢs ≽ ~ s) -- -- -- -- instance -- -- -- -- HasSalvationSequent : {A : Set} ⦃ _ : BeFormula A ⦄ ⦃ _ : HasNegation A ⦄ {-⦃ _ : HasVacuousDischarge $ List A ⦄-} → HasSalvation $ Sequent A -- -- -- -- HasSalvation.isVacuouslyDischargable (HasSalvationSequent {A}) = List A -- -- -- -- HasSalvation.hasVacuousDischarge HasSalvationSequent = HasVacuousDischargeList -- -- -- -- HasSalvation.▷_ HasSalvationSequent (φᵗ ╱ φᵖs) = (◁ φᵖs) ⊎ (φᵖs ≽ φᵗ) -- -- -- -- HasDecidableSalvationSequent : {A : Set} ⦃ bf : BeFormula A ⦄ ⦃ hs : HasNegation A ⦄ -- -- -- -- → HasDecidableSalvation $ Sequent A -- -- -- -- HasDecidableSalvation.hasSalvation HasDecidableSalvationSequent = HasSalvationSequent -- -- -- -- --(HasDecidableSalvation.▷? HasDecidableSalvationSequent) (statement₁ ╱ []) = no (foo2 statement₁) -- -- -- -- HasDecidableSalvation.▷? HasDecidableSalvationSequent = {!!} -- -- -- -- --(HasDecidableSalvation.▷? HasDecidableSalvationSequent) (statement₁ ╱ []) = no (λ {x → {!!}}) -- -- -- -- --(HasDecidableSalvation.▷? HasDecidableSalvationSequent) (statement₁ ╱ (x₂ ∷ suppositions₁)) = {!!} -- -- -- -- -- foo1 : ∀ {A} → ⦃ b : BeFormula A ⦄ ⦃ _ : HasNegation A ⦄ (statement₁ : A) → Σ A -- -- -- -- -- (λ x → -- -- -- -- -- Σ (BeFormula.formula b x ∈ []) -- -- -- -- -- (λ _ → BeFormula.formula b (~ x) ∈ [])) -- -- -- -- -- ⊎ (BeFormula.formula b statement₁ ∈ []) → -- -- -- -- -- ⊥ -- -- -- -- -- foo1 statement₁ (left (fst₁ , () , snd₁)) -- -- -- -- -- foo1 statement₁ (right ()) -- -- -- -- -- foo2 : ∀ {A} → ⦃ b : BeFormula A ⦄ ⦃ _ : HasNegation A ⦄ (statement₁ : A) → ▷ (statement₁ ╱ []) → -- -- -- -- -- ⊥ -- -- -- -- -- foo2 statement₁ (left (fst₁ , () , snd₁)) -- -- -- -- -- foo2 statement₁ (right ())
38.440767
173
0.455495
10868e3465224b5920429036b2d54fa1b4a83b27
370
agda
Agda
test/fail/Issue1015OnlyRecord.agda
larrytheliquid/agda
477c8c37f948e6038b773409358fd8f38395f827
[ "MIT" ]
1
2018-10-10T17:08:44.000Z
2018-10-10T17:08:44.000Z
test/fail/Issue1015OnlyRecord.agda
masondesu/agda
70c8a575c46f6a568c7518150a1a64fcd03aa437
[ "MIT" ]
null
null
null
test/fail/Issue1015OnlyRecord.agda
masondesu/agda
70c8a575c46f6a568c7518150a1a64fcd03aa437
[ "MIT" ]
1
2022-03-12T11:35:18.000Z
2022-03-12T11:35:18.000Z
{-# OPTIONS --copatterns #-} open import Common.Size record R (i : Size) : Set where -- Note: not coinductive constructor delay field force : (j : Size< i) → R j open R inh : (i : Size) → R i force (inh i) j = inh j -- Should give termination error data ⊥ : Set where elim : R ∞ → ⊥ elim (delay f) = elim (f ∞) -- Gives termination error, as expected.
15.416667
40
0.613514
128600e3f8e0d5ef252223b50f42d97f7ae9b4d0
99
agda
Agda
test/Fail/Issue2420.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue2420.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue2420.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module _ where module M where record S : Set₁ where open M field F1 : Set F2 : {!!}
9
21
0.575758
1cc03d57e379e5bd060dc538a5f846b7e4546496
4,508
agda
Agda
Cubical/Foundations/Pointed/Base.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
1
2022-03-05T00:29:41.000Z
2022-03-05T00:29:41.000Z
Cubical/Foundations/Pointed/Base.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
Cubical/Foundations/Pointed/Base.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
{-# OPTIONS --safe #-} module Cubical.Foundations.Pointed.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Structure open import Cubical.Foundations.Structure using (typ) public open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Foundations.Function Pointed : (ℓ : Level) → Type (ℓ-suc ℓ) Pointed ℓ = TypeWithStr ℓ (λ x → x) pt : ∀ {ℓ} (A∙ : Pointed ℓ) → typ A∙ pt = str Pointed₀ = Pointed ℓ-zero {- Pointed functions -} _→∙_ : ∀{ℓ ℓ'} → (A : Pointed ℓ) (B : Pointed ℓ') → Type (ℓ-max ℓ ℓ') (A , a) →∙ (B , b) = Σ[ f ∈ (A → B) ] f a ≡ b _→∙_∙ : ∀{ℓ ℓ'} → (A : Pointed ℓ) (B : Pointed ℓ') → Pointed (ℓ-max ℓ ℓ') (A →∙ B ∙) .fst = A →∙ B (A →∙ B ∙) .snd .fst x = pt B (A →∙ B ∙) .snd .snd = refl idfun∙ : ∀ {ℓ} (A : Pointed ℓ) → A →∙ A idfun∙ A .fst x = x idfun∙ A .snd = refl {-Pointed equivalences -} _≃∙_ : ∀ {ℓ ℓ'} (A : Pointed ℓ) (B : Pointed ℓ') → Type (ℓ-max ℓ ℓ') A ≃∙ B = Σ[ e ∈ fst A ≃ fst B ] fst e (pt A) ≡ pt B {- Underlying pointed map of an equivalence -} ≃∙map : ∀ {ℓ ℓ'} {A : Pointed ℓ} {B : Pointed ℓ'} → A ≃∙ B → A →∙ B fst (≃∙map e) = fst (fst e) snd (≃∙map e) = snd e invEquiv∙ : ∀ {ℓ ℓ'} {A : Pointed ℓ} {B : Pointed ℓ'} → A ≃∙ B → B ≃∙ A fst (invEquiv∙ x) = invEquiv (fst x) snd (invEquiv∙ {A = A} x) = sym (cong (fst (invEquiv (fst x))) (snd x)) ∙ retEq (fst x) (pt A) compEquiv∙ : ∀ {ℓ ℓ' ℓ''} {A : Pointed ℓ} {B : Pointed ℓ'} {C : Pointed ℓ''} → A ≃∙ B → B ≃∙ C → A ≃∙ C fst (compEquiv∙ e1 e2) = compEquiv (fst e1) (fst e2) snd (compEquiv∙ e1 e2) = cong (fst (fst e2)) (snd e1) ∙ snd e2 Equiv∙J : ∀ {ℓ ℓ'} {B : Pointed ℓ} (C : (A : Pointed ℓ) → A ≃∙ B → Type ℓ') → C B (idEquiv (fst B) , refl) → {A : _} (e : A ≃∙ B) → C A e Equiv∙J {ℓ} {ℓ'} {B = B} C ind {A = A} = uncurry λ e p → help e (pt A) (pt B) p C ind where help : ∀ {A : Type ℓ} (e : A ≃ typ B) (a : A) (b : typ B) → (p : fst e a ≡ b) → (C : (A : Pointed ℓ) → A ≃∙ (fst B , b) → Type ℓ') → C (fst B , b) (idEquiv (fst B) , refl) → C (A , a) (e , p) help = EquivJ (λ A e → (a : A) (b : typ B) → (p : fst e a ≡ b) → (C : (A : Pointed ℓ) → A ≃∙ (fst B , b) → Type ℓ') → C (fst B , b) (idEquiv (fst B) , refl) → C (A , a) (e , p)) λ a b → J (λ b p → (C : (A : Pointed ℓ) → A ≃∙ (fst B , b) → Type ℓ') → C (fst B , b) (idEquiv (fst B) , refl) → C (typ B , a) (idEquiv (typ B) , p)) λ _ p → p ua∙ : ∀ {ℓ} {A B : Pointed ℓ} (e : fst A ≃ fst B) → fst e (snd A) ≡ snd B → A ≡ B fst (ua∙ e p i) = ua e i snd (ua∙ {A = A} e p i) = ua-gluePath e p i {- J for pointed function types -} →∙J : ∀ {ℓ ℓ' ℓ''} {A : Pointed ℓ} {B : Type ℓ'} → (P : (b₀ : B) (f : A →∙ (B , b₀)) → Type ℓ'') → ((f : fst A → B) → P (f (pt A)) (f , refl)) → {b₀ : B} (f : A →∙ (B , b₀)) → P b₀ f →∙J {A = A} P ind = uncurry λ f → J (λ b₀ y → P b₀ (f , y)) (ind f) {- HIT allowing for pattern matching on pointed types -} data Pointer {ℓ} (A : Pointed ℓ) : Type ℓ where pt₀ : Pointer A ⌊_⌋ : typ A → Pointer A id : ⌊ pt A ⌋ ≡ pt₀ IsoPointedPointer : ∀ {ℓ} {A : Pointed ℓ} → Iso (typ A) (Pointer A) Iso.fun IsoPointedPointer = ⌊_⌋ Iso.inv (IsoPointedPointer {A = A}) pt₀ = pt A Iso.inv IsoPointedPointer ⌊ x ⌋ = x Iso.inv (IsoPointedPointer {A = A}) (id i) = pt A Iso.rightInv IsoPointedPointer pt₀ = id Iso.rightInv IsoPointedPointer ⌊ x ⌋ = refl Iso.rightInv IsoPointedPointer (id i) j = id (i ∧ j) Iso.leftInv IsoPointedPointer x = refl Pointed≡Pointer : ∀ {ℓ} {A : Pointed ℓ} → typ A ≡ Pointer A Pointed≡Pointer = isoToPath IsoPointedPointer Pointer∙ : ∀ {ℓ} (A : Pointed ℓ) → Pointed ℓ Pointer∙ A .fst = Pointer A Pointer∙ A .snd = pt₀ Pointed≡∙Pointer : ∀ {ℓ} {A : Pointed ℓ} → A ≡ (Pointer A , pt₀) Pointed≡∙Pointer {A = A} i = (Pointed≡Pointer {A = A} i) , helper i where helper : PathP (λ i → Pointed≡Pointer {A = A} i) (pt A) pt₀ helper = ua-gluePath (isoToEquiv (IsoPointedPointer {A = A})) id pointerFun : ∀ {ℓ ℓ'} {A : Pointed ℓ} {B : Pointed ℓ'} (f : A →∙ B) → Pointer A → Pointer B pointerFun f pt₀ = pt₀ pointerFun f ⌊ x ⌋ = ⌊ fst f x ⌋ pointerFun f (id i) = (cong ⌊_⌋ (snd f) ∙ id) i pointerFun∙ : ∀ {ℓ ℓ'} {A : Pointed ℓ} {B : Pointed ℓ'} (f : A →∙ B) → Pointer∙ A →∙ Pointer∙ B pointerFun∙ f .fst = pointerFun f pointerFun∙ f .snd = refl
34.945736
76
0.533496
4ab5a541e6bb8825a3cea85a9398212a5a02346b
415
agda
Agda
agda/HLevels.agda
oisdk/combinatorics-paper
3c176d4690566d81611080e9378f5a178b39b851
[ "MIT" ]
null
null
null
agda/HLevels.agda
oisdk/combinatorics-paper
3c176d4690566d81611080e9378f5a178b39b851
[ "MIT" ]
null
null
null
agda/HLevels.agda
oisdk/combinatorics-paper
3c176d4690566d81611080e9378f5a178b39b851
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --safe #-} module HLevels where open import Path open import Cubical.Foundations.Everything using (isProp ;isSet ;isContr ;isPropIsContr ;isProp→isSet ;isOfHLevel→isOfHLevelDep ;hProp ;isSetHProp ;isPropIsProp ) public open import Level open import Data.Sigma hSet : ∀ ℓ → Type (ℓsuc ℓ) hSet ℓ = Σ (Type ℓ) isSet
17.291667
42
0.614458
1c186540eede2928925622247536273631451904
24,950
agda
Agda
GauInt/Properties.agda
onestruggler/EucDomain
7e268e8354065fde734c9c2d9998d2cfd4a21f71
[ "CC0-1.0" ]
null
null
null
GauInt/Properties.agda
onestruggler/EucDomain
7e268e8354065fde734c9c2d9998d2cfd4a21f71
[ "CC0-1.0" ]
null
null
null
GauInt/Properties.agda
onestruggler/EucDomain
7e268e8354065fde734c9c2d9998d2cfd4a21f71
[ "CC0-1.0" ]
null
null
null
-- This file gives the definition of Gaussian Integers, the addition -- and multiplication on them, and shows that they form a commutative -- ring, and other properties. All the proofs are straightforward. {-# OPTIONS --without-K --safe #-} module GauInt.Properties where -- imports from local. open import GauInt.Instances open import Instances open import GauInt.Base using (𝔾 ; _+_i ; _ᶜ ; Re ; Im ; _+0i ; _+0i' ; 0𝔾) open import Integer.Properties -- imports from stdlib and Agda. open import Level using (0ℓ) open import Relation.Nullary using (yes; no; ¬_) open import Relation.Binary using (DecidableEquality ; Setoid ; DecSetoid ; tri< ; tri≈ ; tri>) open import Relation.Binary.PropositionalEquality open ≡-Reasoning open import Data.Product using (proj₁; proj₂; _,_ ; _×_) open import Data.Sum using (_⊎_ ; inj₁ ; inj₂) renaming ([_,_]′ to ⊎-elim) open import Data.Nat as Nat using (ℕ; suc; zero) import Data.Nat.Properties as NatP open import Data.Integer.Properties as IntP using (+-assoc ; +-identityˡ ; +-identityʳ ; *-identityˡ ; +-inverseˡ ; +-inverseʳ ; +-comm ; 0≤i⇒+∣i∣≡i ; +-mono-≤ ; +-mono-<-≤ ; +-mono-≤-<) open import Data.Integer as Int using (ℤ ; +_ ; NonNegative ; -[1+_] ; +[1+_] ; +≤+ ; +<+ ; ∣_∣ ; 0ℤ ; +0) import Data.Integer.Solver as IS open IS.+-*-Solver open import Algebra.Bundles as B import Algebra.Morphism as Morphism open import Algebra.Structures {A = 𝔾} _≡_ open import Function.Base using (_$_) module 𝔾toℕ = Morphism.Definitions 𝔾 ℕ _≡_ module ℕto𝔾 = Morphism.Definitions ℕ 𝔾 _≡_ open import Algebra.Definitions (_≡_ {A = 𝔾}) using (AlmostLeftCancellative) -- ---------------------------------------------------------------------- -- Equality -- Injections are injective. +0i'-injective : ∀ {a b} -> a +0i' ≡ b +0i' → a ≡ b +0i'-injective refl = refl +0i-injective : ∀ {m n} -> m +0i ≡ n +0i → m ≡ n +0i-injective refl = refl -- Decidable equality on 𝔾. infix 4 _≟_ _≟_ : DecidableEquality 𝔾 _≟_ x@(a + b i) y@(c + d i) with a Int.≟ c | b Int.≟ d ... | yes p | yes q = yes (cong₂ _+_i p q) ... | yes p | no ¬q = no (λ { refl → ¬q refl}) ... | no ¬p | hyp = no (λ { refl → ¬p refl}) ≡-setoid : Setoid 0ℓ 0ℓ ≡-setoid = setoid 𝔾 ≡-decSetoid : DecSetoid 0ℓ 0ℓ ≡-decSetoid = decSetoid _≟_ -- ---------------------------------------------------------------------- -- Properties of _+_ -- Associativity of addition. assoc-+ : ∀ (x y z : 𝔾) -> ((x + y) + z) ≡ (x + (y + z)) assoc-+ x@(a + b i) y@(c + d i) z@(e + f i) = begin (((a + b i) + (c + d i)) + (e + f i)) ≡⟨ refl ⟩ ((a + c + e) + (b + d + f) i) ≡⟨ cong₂ _+_i (+-assoc a c e) (+-assoc b d f) ⟩ ((a + (c + e)) + (b + (d + f)) i) ≡⟨ refl ⟩ (x + (y + z)) ∎ -- Left additive identity. leftId-+ : ∀ (x : 𝔾) -> 0# + x ≡ x leftId-+ x@(a + b i) = begin (0# + 0# i) + (a + b i) ≡⟨ refl ⟩ -- cannot parse if remove the outer layer parenthese. ((0# + a) + (0# + b) i) ≡⟨ cong₂ _+_i (+-identityˡ a) (+-identityˡ b) ⟩ (a + b i) ∎ -- Right additive identity. rightId-+ : ∀ (x : 𝔾) -> (x + 0#) ≡ x rightId-+ x@(a + b i) = begin (a + b i) + (0# + 0# i) ≡⟨ refl ⟩ ((a + 0#) + (b + 0#) i) ≡⟨ cong₂ _+_i (+-identityʳ a) (+-identityʳ b) ⟩ (a + b i) ∎ -- Left additive inverse. leftInv-+ : ∀ (x : 𝔾) -> (- x) + x ≡ 0# leftInv-+ x@(a + b i) = cong₂ _+_i (+-inverseˡ a) (+-inverseˡ b) -- Right additive inverse. rightInv-+ : ∀ (x : 𝔾) -> x + (- x) ≡ 0# rightInv-+ x@(a + b i) = cong₂ _+_i (+-inverseʳ a) (+-inverseʳ b) -- Addition is commutative. comm-+ : (x y : 𝔾) → (x + y) ≡ (y + x) comm-+ x@(a + b i) y@(c + d i) = cong₂ _+_i (+-comm a c) (+-comm b d) -- ---------------------------------------------------------------------- -- Structures for addition +-isMagma : IsMagma _+_ +-isMagma = record { isEquivalence = isEquivalence ; ∙-cong = cong₂ _+_ } +-isSemigroup : IsSemigroup _+_ +-isSemigroup = record { isMagma = +-isMagma ; assoc = assoc-+ } +-isCommutativeSemigroup : IsCommutativeSemigroup _+_ +-isCommutativeSemigroup = record { isSemigroup = +-isSemigroup ; comm = comm-+ } +-0-isMonoid : IsMonoid _+_ 0# +-0-isMonoid = record { isSemigroup = +-isSemigroup ; identity = leftId-+ , rightId-+ } +-0-isCommutativeMonoid : IsCommutativeMonoid _+_ 0# +-0-isCommutativeMonoid = record { isMonoid = +-0-isMonoid ; comm = comm-+ } +-0-isGroup : IsGroup _+_ 0# (-_) +-0-isGroup = record { isMonoid = +-0-isMonoid ; inverse = leftInv-+ , rightInv-+ ; ⁻¹-cong = cong (-_) } +-isAbelianGroup : IsAbelianGroup _+_ 0# (-_) +-isAbelianGroup = record { isGroup = +-0-isGroup ; comm = comm-+ } -- ---------------------------------------------------------------------- -- Bundles for addition +-magma : Magma 0ℓ 0ℓ +-magma = record { isMagma = +-isMagma } +-semigroup : Semigroup 0ℓ 0ℓ +-semigroup = record { isSemigroup = +-isSemigroup } +-commutativeSemigroup : CommutativeSemigroup 0ℓ 0ℓ +-commutativeSemigroup = record { isCommutativeSemigroup = +-isCommutativeSemigroup } +-0-monoid : Monoid 0ℓ 0ℓ +-0-monoid = record { isMonoid = +-0-isMonoid } +-0-commutativeMonoid : CommutativeMonoid 0ℓ 0ℓ +-0-commutativeMonoid = record { isCommutativeMonoid = +-0-isCommutativeMonoid } +-0-abelianGroup : AbelianGroup 0ℓ 0ℓ +-0-abelianGroup = record { isAbelianGroup = +-isAbelianGroup } -- ---------------------------------------------------------------------- -- Properties of multiplication -- Associativity of multiplication. assoc-* : ∀ (x y z : 𝔾) -> ((x * y) * z) ≡ (x * (y * z)) assoc-* x@(a + b i) y@(c + d i) z@(e + f i) = begin (((a + b i) * (c + d i)) * (e + f i)) ≡⟨ refl ⟩ ((a * c - b * d) + (a * d + b * c) i) * (e + f i) ≡⟨ refl ⟩ ((a * c - b * d) * e - (a * d + b * c) * f) + ((a * c - b * d) * f + (a * d + b * c) * e) i ≡⟨ cong₂ _+_i (let _*_ = _:*_ in let _+_ = _:+_ in let _-_ = _:-_ in (solve 6 (\ a b c d e f -> (((a * c) - (b * d)) * e) - (((a * d) + (b * c)) * f) := (a * ((c * e) - (d * f))) - (b * ((c * f) + (d * e)))) refl a b c d e f)) ((let _*_ = _:*_ in let _+_ = _:+_ in let _-_ = _:-_ in (solve 6 (\ a b c d e f -> (((a * c) - (b * d)) * f) + (((a * d) + (b * c)) * e) := (a * ((c * f) + (d * e))) + (b * ((c * e) - (d * f)))) refl a b c d e f))) ⟩ ((a * (c * e - d * f) - b * (c * f + d * e) ) + (a * (c * f + d * e) + b * (c * e - d * f)) i ) ≡⟨ refl ⟩ ((a + b i) * ((c * e - d * f) + (c * f + d * e) i) ) ≡⟨ refl ⟩ (x * (y * z)) ∎ -- Left multiplicative identity. leftId-* : ∀ (x : 𝔾) -> (1# * x) ≡ x leftId-* x@(a + b i) = begin (1# + 0# i) * (a + b i) ≡⟨ refl ⟩ ((1# * a - 0# * b) + (1# * b + 0# * a) i) ≡⟨ cong₂ _+_i (let _*_ = _:*_ in let _-_ = _:-_ in (solve 2 (\ a b -> (con 1# * a) - (con 0# * b) := con 1# * a) refl a b)) ( (let _*_ = _:*_ in let _+_ = _:+_ in (solve 2 (\ a b -> (con 1# * b) + (con 0# * a) := con 1# * b) refl a b))) ⟩ ((1# * a) + (1# * b) i) ≡⟨ cong₂ _+_i (*-identityˡ a) (*-identityˡ b) ⟩ (a + b i) ∎ -- Right multiplicative identity. rightId-* : ∀ (x : 𝔾) -> (x * 1#) ≡ x rightId-* x@(a + b i) = begin (a + b i) * (1# + 0# i) ≡⟨ refl ⟩ (( a * 1# - b * 0#) + ( a * 0# + b * 1# ) i) ≡⟨ cong₂ _+_i ((let _*_ = _:*_ in let _-_ = _:-_ in (solve 2 (\ a b -> (a * con 1# ) - (b * con 0# ) := con 1# * a) refl a b))) ((let _*_ = _:*_ in let _+_ = _:+_ in (solve 2 (\ a b -> (a * con 0#) + (b * con 1# ) := con 1# * b) refl a b))) ⟩ ((1# * a) + (1# * b) i) ≡⟨ cong₂ _+_i (*-identityˡ a) (*-identityˡ b) ⟩ (a + b i) ∎ -- Zero leftly times any number is zero. leftZero : ∀ x -> (0# + 0# i) * x ≡ (0# + 0# i) leftZero x@(a + b i) = begin (0# + 0# i) * (a + b i) ≡⟨ refl ⟩ (0# * a - 0# * b) + (0# * a - 0# * b) i ≡⟨ refl ⟩ 0# + 0# i ∎ -- Zero rightly times any number is zero. rightZero : ∀ x -> x * (0# + 0# i) ≡ (0# + 0# i) rightZero x@(a + b i) = begin (a + b i) * (0# + 0# i) ≡⟨ refl ⟩ (a * 0# - b * 0# ) + (a * 0# + b * 0# ) i ≡⟨ cong₂ _+_i ((let _*_ = _:*_ in let _+_ = _:+_ in let _-_ = _:-_ in (solve 2 (\ a b -> (a * con 0#) - (b * con 0# ) := con 0#) refl a b))) ((let _*_ = _:*_ in let _+_ = _:+_ in let _-_ = _:-_ in (solve 2 (\ a b -> (a * con 0#) + (b * con 0# ) := con 0#) refl a b))) ⟩ 0# + 0# i ∎ -- Left multiplication is distributive over addition. *-DistributesOver-+ˡ : ∀ (x y z : 𝔾) -> (x * (y + z)) ≡ ((x * y) + (x * z)) *-DistributesOver-+ˡ x@(a + b i) y@(c + d i) z@(e + f i) = begin x * (y + z) ≡⟨ refl ⟩ (a * (c + e) - b * (d + f) + (a * (d + f) + b * (c + e)) i) ≡⟨ cong₂ _+_i ((let _*_ = _:*_ in let _+_ = _:+_ in let _-_ = _:-_ in (solve 6 (\ a b c d e f -> (a * (c + e)) - (b * (d + f) ) := ((a * c) - (b * d)) + ((a * e) - (b * f)) ) refl a b c d e f))) ((let _*_ = _:*_ in let _+_ = _:+_ in let _-_ = _:-_ in (solve 6 (\ a b c d e f -> (a * (d + f)) + (b * (c + e) ) := ((a * d) + (b * c)) + ((a * f) + (b * e)) ) refl a b c d e f))) ⟩ ((a * c - b * d) + (a * e - b * f)) + ((a * d + b * c) + (a * f + b * e)) i ≡⟨ refl ⟩ ((x * y) + (x * z)) ∎ -- Right multiplication is distributive over addition. *-DistributesOver-+ʳ : ∀ (x y z : 𝔾) -> ((y + z) * x) ≡ (y * x) + (z * x) *-DistributesOver-+ʳ x@(a + b i) y@(c + d i) z@(e + f i) = begin (y + z) * x ≡⟨ refl ⟩ ((c + e) * a - (d + f) * b + ( (c + e) * b + (d + f) * a ) i) ≡⟨ cong₂ _+_i ((let _*_ = _:*_ in let _+_ = _:+_ in let _-_ = _:-_ in (solve 6 (\ a b c d e f -> ((c + e) * a) - ((d + f) * b ) := ((c * a ) - (d * b)) + ((e * a) - (f * b )) ) refl a b c d e f))) ((let _*_ = _:*_ in let _+_ = _:+_ in let _-_ = _:-_ in (solve 6 (\ a b c d e f -> ((c + e) * b) + ((d + f) * a ) := ((c * b ) + (d * a)) + ((e * b) + (f * a )) ) refl a b c d e f))) ⟩ ((c * a - d * b) + (e * a - f * b)) + ((c * b + d * a ) + (e * b + f * a )) i ≡⟨ refl ⟩ ((y * x) + (z * x)) ∎ -- Multiplicaton is commutative. comm-* : ∀ (x y : 𝔾) -> x * y ≡ y * x comm-* x@(a + b i) y@(c + d i) = begin x * y ≡⟨ refl ⟩ (a * c - b * d) + (a * d + b * c) i ≡⟨ cong₂ _+_i ((let _*_ = _:*_ in let _+_ = _:+_ in let _-_ = _:-_ in (solve 4 (\ a b c d -> (a * c) - (b * d) := (c * a ) - (d * b)) refl a b c d))) ((let _*_ = _:*_ in let _+_ = _:+_ in let _-_ = _:-_ in (solve 4 (\ a b c d -> (a * d) + (b * c) := (c * b) + (d * a)) refl a b c d))) ⟩ (c * a - d * b) + (c * b + d * a) i ≡⟨ refl ⟩ (y * x) ∎ -- ---------------------------------------------------------------------- -- Structures for multiplication *-isMagma : IsMagma _*_ *-isMagma = record { isEquivalence = isEquivalence ; ∙-cong = cong₂ _*_ } *-isSemigroup : IsSemigroup _*_ *-isSemigroup = record { isMagma = *-isMagma ; assoc = assoc-* } *-isCommutativeSemigroup : IsCommutativeSemigroup _*_ *-isCommutativeSemigroup = record { isSemigroup = *-isSemigroup ; comm = comm-* } *-1-isMonoid : IsMonoid _*_ 1# *-1-isMonoid = record { isSemigroup = *-isSemigroup ; identity = leftId-* , rightId-* } *-1-isCommutativeMonoid : IsCommutativeMonoid _*_ 1# *-1-isCommutativeMonoid = record { isMonoid = *-1-isMonoid ; comm = comm-* } -- ---------------------------------------------------------------------- -- Structures for multiplication and addition +-*-isSemiring : IsSemiring _+_ _*_ 0# 1# +-*-isSemiring = record { isSemiringWithoutAnnihilatingZero = record { +-isCommutativeMonoid = +-0-isCommutativeMonoid ; *-isMonoid = *-1-isMonoid ; distrib = *-DistributesOver-+ˡ , *-DistributesOver-+ʳ } ; zero = leftZero , rightZero } +-*-isCommutativeSemiring : IsCommutativeSemiring _+_ _*_ 0# 1# +-*-isCommutativeSemiring = record { isSemiring = +-*-isSemiring ; *-comm = comm-* } +-*-isRing : IsRing _+_ _*_ -_ 0# 1# +-*-isRing = record { +-isAbelianGroup = +-isAbelianGroup ; *-isMonoid = *-1-isMonoid ; distrib = *-DistributesOver-+ˡ , *-DistributesOver-+ʳ ; zero = leftZero , rightZero } +-*-isCommutativeRing : IsCommutativeRing _+_ _*_ -_ 0# 1# +-*-isCommutativeRing = record { isRing = +-*-isRing ; *-comm = comm-* } ------------------------------------------------------------------------ -- Bundles for multiplication *-magma : Magma 0ℓ 0ℓ *-magma = record { isMagma = *-isMagma } *-semigroup : Semigroup 0ℓ 0ℓ *-semigroup = record { isSemigroup = *-isSemigroup } *-commutativeSemigroup : CommutativeSemigroup 0ℓ 0ℓ *-commutativeSemigroup = record { isCommutativeSemigroup = *-isCommutativeSemigroup } *-1-monoid : Monoid 0ℓ 0ℓ *-1-monoid = record { isMonoid = *-1-isMonoid } *-1-commutativeMonoid : CommutativeMonoid 0ℓ 0ℓ *-1-commutativeMonoid = record { isCommutativeMonoid = *-1-isCommutativeMonoid } ------------------------------------------------------------------------ -- Bundles for multiplication and addition +-*-semiring : Semiring 0ℓ 0ℓ +-*-semiring = record { isSemiring = +-*-isSemiring } +-*-commutativeSemiring : CommutativeSemiring 0ℓ 0ℓ +-*-commutativeSemiring = record { isCommutativeSemiring = +-*-isCommutativeSemiring } +-*-ring : B.Ring 0ℓ 0ℓ +-*-ring = record { isRing = +-*-isRing } +-*-commutativeRing : CommutativeRing 0ℓ 0ℓ +-*-commutativeRing = record { isCommutativeRing = +-*-isCommutativeRing } -- ---------------------------------------------------------------------- -- Properties of Re and Im -- Re x + Im x i = x Re+Im*i : ∀ {x} -> Re x + Im x i ≡ x Re+Im*i {x + x₁ i} = refl -- Re (y * y ᶜ) ≡ + rank y Re[yyᶜ]=rank : ∀ {y : 𝔾} -> Re (y * y ᶜ) ≡ + rank y Re[yyᶜ]=rank {y@(a + b i)} = sym $ begin + (rank y) ≡⟨ refl ⟩ + (rank (a + b i)) ≡⟨ refl ⟩ + ∣ a * a + b * b ∣ ≡⟨ cong +_ (tri-eq' a b) ⟩ + (∣ a * a ∣ + ∣ b * b ∣) ≡⟨ refl ⟩ + ∣ a * a ∣ + + ∣ b * b ∣ ≡⟨ cong₂ _+_ (+∣a*a∣=a*a a) (+∣a*a∣=a*a b) ⟩ a * a + b * b ≡⟨ solve 2 (\ a b -> a :* a :+ b :* b := a :* a :- b :* (:- b)) refl a b ⟩ a * a - b * (- b) ≡⟨ refl ⟩ Re ((a * a - b * (- b)) + 0ℤ i) ≡⟨ refl ⟩ Re ((a * a - b * (- b)) + (a * (- b) + b * a) i) ≡⟨ refl ⟩ Re (y * y ᶜ) ∎ -- Im y * y ᶜ = 0 Im[yyᶜ]=0 : ∀ {y : 𝔾} -> Im (y * y ᶜ) ≡ 0# Im[yyᶜ]=0 {y@(a + b i)} = begin Im (y * y ᶜ) ≡⟨ refl ⟩ Im ((a * a - b * (- b)) + (a * (- b) + b * a) i) ≡⟨ refl ⟩ a * (- b) + b * a ≡⟨ solve 2 (\ a b -> a :* (:- b) :+ b :* a := con 0#) refl a b ⟩ 0# ∎ -- ---------------------------------------------------------------------- -- Properties of conjugation -- Conjugation is injective. ᶜ-injective : ∀ {x} -> x ᶜ ≡ 0# -> x ≡ 0# ᶜ-injective {+ 0 + + 0 i} eq = refl -- y * y ᶜ = rank y y*yᶜ=rank : ∀ {y : 𝔾} -> y * y ᶜ ≡ rank y +0i y*yᶜ=rank {y@(a + b i)} = begin y * y ᶜ ≡⟨ sym $ Re+Im*i ⟩ Re (y * y ᶜ) + Im (y * y ᶜ) i ≡⟨ cong₂ _+_i (Re[yyᶜ]=rank {y}) (Im[yyᶜ]=0 {y}) ⟩ + rank y + 0# i ∎ -- ---------------------------------------------------------------------- -- Properties of rank -- rank on 𝔾 is homomorphic in multiplication. rank-*-commute : 𝔾toℕ.Homomorphic₂ rank _*_ Nat._*_ rank-*-commute x@(a + b i) y@(c + d i) = claim where claim : rank (x * y) ≡ rank x * rank y claim = begin rank (x * y) ≡⟨ refl ⟩ rank ((a * c - b * d) + (a * d + b * c) i) ≡⟨ refl ⟩ ∣ (a * c - b * d)^2 + (a * d + b * c)^2 ∣ ≡⟨ cong ∣_∣ (solve 4 (λ a b c d → (a :* c :- b :* d) :* (a :* c :- b :* d) :+ (a :* d :+ b :* c) :* (a :* d :+ b :* c) := (a :* a :+ b :* b) :* (c :* c :+ d :* d)) refl a b c d) ⟩ ∣ (a ^2 + b ^2) * (c ^2 + d ^2) ∣ ≡⟨ IntP.abs-*-commute ((a ^2 + b ^2)) ((c ^2 + d ^2)) ⟩ ∣ a ^2 + b ^2 ∣ * ∣ c ^2 + d ^2 ∣ ≡⟨ refl ⟩ rank x * rank y ∎ rank=∣Re[y*yᶜ]∣ : ∀ (x : 𝔾) -> rank x ≡ ∣ Re (x * x ᶜ) ∣ rank=∣Re[y*yᶜ]∣ x@(a + b i) = begin rank (a + b i) ≡⟨ refl ⟩ ∣ a * a + b * b ∣ ≡⟨ cong ∣_∣ (solve 2 (λ a b → a :* a :+ b :* b := a :* a :- b :* (:- b)) refl a b) ⟩ ∣ a * a - b * (- b) ∣ ≡⟨ refl ⟩ ∣ Re ((a * a - b * (- b)) + 0ℤ i) ∣ ≡⟨ refl ⟩ ∣ Re ((a * a - b * (- b)) + (a * (- b) + b * a) i) ∣ ≡⟨ refl ⟩ ∣ Re (x * x ᶜ) ∣ ∎ -- rank y + 0 i = y * y ᶜ rank+0i=y*yᶜ : ∀ {y : 𝔾} -> (rank y) +0i ≡ y * y ᶜ rank+0i=y*yᶜ {y} = sym $ begin y * y ᶜ ≡⟨ sym $ Re+Im*i ⟩ Re (y * y ᶜ) + Im (y * y ᶜ) i ≡⟨ cong₂ _+_i (Re[yyᶜ]=rank {y}) (Im[yyᶜ]=0 {y}) ⟩ + rank y + 0# i ∎ -- ---------------------------------------------------------------------- -- Injection preserves SemiRing Structure +0i-+-commute : ℕto𝔾.Homomorphic₂ _+0i Nat._+_ _+_ +0i-+-commute a b = refl +0i-*-commute : ℕto𝔾.Homomorphic₂ _+0i Nat._*_ _*_ +0i-*-commute a b rewrite NatP.*-zeroˡ a | NatP.*-zeroˡ b | NatP.*-zeroʳ a | NatP.*-zeroʳ b | sym (IntP.pos-distrib-* a b) | IntP.+-identityʳ (+ a * + b) = refl 0+0i=0 : 0 +0i ≡ 0# 0+0i=0 = refl 1+0i=1 : 1 +0i ≡ 1# 1+0i=1 = refl -- ---------------------------------------------------------------------- -- Domain Structrue on 𝔾 -- Some auxillaries. -- Zero is unique. unique0 : ∀ {a b} -> (a + b i) ≡ 0# -> a ≡ 0ℤ × b ≡ 0ℤ unique0 {.+0} {.+0} refl = refl , refl -- Conversely, if a + bi ≠ 0 then at least one of a and b is not zero. unique0' : ∀ {a b} -> ¬ (a + b i) ≡ 0# -> ¬ a ≡ 0ℤ ⊎ ¬ b ≡ 0ℤ unique0' {a@(+_ zero)} {b@(+_ zero)} neq with neq refl ... | () unique0' {+_ zero} {+[1+ n ]} neq = inj₂ (λ ()) unique0' {+_ zero} { -[1+_] n} neq = inj₂ (λ ()) unique0' {+[1+ n ]} {b} neq = inj₁ (λ ()) unique0' { -[1+_] n} {b} neq = inj₁ (λ ()) -- Make an equation onesided. oneside : ∀ {a b : 𝔾} -> a ≡ b -> a - b ≡ 0# oneside {a} {b} eq rewrite eq = rightInv-+ b -- Make an equation twosided. twoside : ∀ {a b : 𝔾} -> a - b ≡ 0# -> a ≡ b twoside {a} {b} eq = sym $ -‿injective $ +-inverseʳ-unique a (- b) eq where open import Algebra.Properties.Ring +-*-ring -- Make an equation twosided, ℤ version. twosideℤ : ∀ {a b : ℤ} -> a - b ≡ 0# -> a ≡ b twosideℤ {a} {b} eq = sym (PRI.-‿injective (PRI.+-inverseʳ-unique a (- b) eq )) where import Algebra.Properties.Ring IntP.+-*-ring as PRI -- We show zero divisor is necessary zero (equivalent to left or right -- cancellation in a commutative ring), which makes 𝔾 an integral -- domain. zero-divisor-is-zero : ∀ {x y : 𝔾} -> x * y ≡ 0# -> ¬ x ≡ 0# -> y ≡ 0# zero-divisor-is-zero {x@(a + b i)} {y@(c + d i)} eq neq = cong₂ _+_i (proj₁ step6) (proj₂ step6) where open ≡-Reasoning open IS.+-*-Solver -- 0 = x * y = (a * c - b * d) + (a * d + b * c) i, together with -- c + d i ≠ 0, we can derive a = 0 and b = 0, contradicting x ≠ -- 0. The proof idea is: -- -- step0 : a * c - b * d = 0 and a * d + b * c = 0 -- step1 : a * c * c - b * d * c = 0 -- step2 : a * d * d + b * c * d = 0 -- s1,s2 ⇒ step1&2 : a * (c * c + d * d) = 0 -- step3 : a * c * d - b * d * d = 0 -- step4 : a * d * c + b * c * c = 0 -- s3,s4 ⇒ step3&4 : b * (c * c + d * d) = 0 -- one of a b nonzero ⇒ step5 : (c * c + d * d) = 0 -- step5 ⇒ step6 : c = 0 and d = 0 -- step0 : a * c - b * d = 0 and a * d + b * c = 0 step0 : a * c - b * d ≡ 0# × a * d + b * c ≡ 0# step0 = unique0 eq -- step1 : a * c * c - b * d * c = 0 step1 : a * c * c - b * d * c ≡ 0# step1 = begin a * c * c - b * d * c ≡⟨ solve 4 (\ a b c d -> a :* c :* c :- b :* d :* c := (a :* c :- b :* d) :* c) refl a b c d ⟩ (a * c - b * d) * c ≡⟨ cong (_* c) (proj₁ step0) ⟩ 0ℤ * c ≡⟨ refl ⟩ 0ℤ ∎ -- step2 : a * d * d + b * c * d = 0 step2 : a * d * d + b * c * d ≡ 0# step2 = begin a * d * d + b * c * d ≡⟨ solve 4 (\ a b c d -> a :* d :* d :+ b :* c :* d := (a :* d :+ b :* c) :* d) refl a b c d ⟩ (a * d + (b * c)) * d ≡⟨ cong (_* d) (proj₂ step0) ⟩ 0ℤ * d ≡⟨ refl ⟩ 0ℤ ∎ -- c1,c2 ⇒ step1&2 : a * (c * c + d * d) = 0 step1&2 : a * (c * c + d * d) ≡ 0# step1&2 = begin a * (c * c + d * d) ≡⟨ solve 4 (\ a b c d -> a :* (c :* c :+ d :* d) := (a :* c :* c :- b :* d :* c) :+ (a :* d :* d :+ b :* c :* d) ) refl a b c d ⟩ (a * c * c - b * d * c) + (a * d * d + b * c * d) ≡⟨ cong₂ _+_ step1 step2 ⟩ 0# ∎ -- step3 : a * c * d - b * d * d = 0 step3 : a * c * d - b * d * d ≡ 0# step3 = begin a * c * d - b * d * d ≡⟨ solve 4 (\ a b c d -> a :* c :* d :- b :* d :* d := (a :* c :- b :* d) :* d) refl a b c d ⟩ (a * c - b * d) * d ≡⟨ cong (_* d) (proj₁ step0) ⟩ 0ℤ * d ≡⟨ refl ⟩ 0ℤ ∎ -- step4 : a * d * c + b * c * c = 0 step4 : a * d * c + b * c * c ≡ 0# step4 = begin a * d * c + b * c * c ≡⟨ solve 4 (\ a b c d -> a :* d :* c :+ b :* c :* c := (a :* d :+ b :* c) :* c) refl a b c d ⟩ (a * d + (b * c)) * c ≡⟨ cong (_* c) (proj₂ step0) ⟩ 0ℤ * c ≡⟨ refl ⟩ 0ℤ ∎ -- s3,s4 ⇒ step3&4 : b * (c * c + d * d) = 0 step3&4 : b * (c * c + d * d) ≡ 0# step3&4 = begin b * (c * c + d * d) ≡⟨ solve 4 (\ a b c d -> b :* (c :* c :+ d :* d) := :- (a :* c :* d :- b :* d :* d) :+ (a :* d :* c :+ b :* c :* c) ) refl a b c d ⟩ - (a * c * d - b * d * d) + (a * d * c + b * c * c) ≡⟨ cong₂ (\x y -> (- x) + y) step3 step4 ⟩ 0# ∎ -- one of a b nonzero ⇒ step5 : (c * c + d * d) = 0 -- some auxillary lemma. aux : ∀ {a : ℤ} -> a * 0# ≡ 0# aux {a} rewrite IntP.*-comm a 0# = refl step1&2' : a * (c * c + d * d) ≡ a * 0# step1&2' rewrite aux {a} = step1&2 step3&4' : b * (c * c + d * d) ≡ b * 0# step3&4' rewrite aux {b} = step3&4 step5 : c * c + d * d ≡ 0# step5 = ⊎-elim (λ x₁ → IntP.*-cancelˡ-≡ a (c * c + d * d) 0# {{myins2 {a} {x₁}}} step1&2') (λ x₁ → IntP.*-cancelˡ-≡ b (c * c + d * d) 0# {{myins2 {b} {x₁}}} step3&4') (unique0' neq) where -- We need a translation from non-equality to NonZero predicate. open import Agda.Builtin.Unit myins2 : ∀ {x : ℤ} -> {n0 : ¬ x ≡ 0ℤ} -> NonZero x myins2 {+_ zero} {n0} with n0 refl ... | () myins2 {+[1+ n ]} {n0} = record { nonZero = tt } myins2 { -[1+_] n} {n0} = record { nonZero = tt } -- step5 ⇒ step6 : c = 0 and d = 0 step6 : c ≡ 0# × d ≡ 0# step6 = aa+bb=0⇒a=0×b=0 step5 -- Almost left cancellative. *-alc-𝔾 : AlmostLeftCancellative 0𝔾 _*_ *-alc-𝔾 {x@(a + b i)} y@(c + d i) z@(e + f i) neq eq = y=z where onesided-eq : x * (y + (- z)) ≡ 0# onesided-eq = begin x * (y + (- z)) ≡⟨ *-DistributesOver-+ˡ x y (- z) ⟩ x * y + x * (- z) ≡⟨ refl ⟩ x * y + (a + b i) * (- e + - f i) ≡⟨ cong (λ t → x * y + t) refl ⟩ x * y + ((a * - e - b * - f ) + (a * - f + b * - e) i) ≡⟨ cong (λ t → x * y + t) (cong₂ _+_i (solve 4 (\a e b f -> a :* :- e :- b :* :- f := :- (a :* e :- b :* f)) refl a e b f) (solve 4 (\a e b f -> a :* :- f :+ b :* :- e := :- (a :* f :+ b :* e)) refl a e b f)) ⟩ x * y + (- (a * e - b * f) + - (a * f + b * e) i) ≡⟨ cong (λ t → x * y + t) refl ⟩ x * y + (- (x * z)) ≡⟨ oneside eq ⟩ 0# ∎ where open ≡-Reasoning open IS.+-*-Solver y-z=0 : (y + (- z)) ≡ 0# y-z=0 = zero-divisor-is-zero onesided-eq neq y=z : y ≡ z y=z = twoside y-z=0 -- Multiplication commutativity plus left cancellative implies 𝔾 is an -- commutative Domain. Knowing this, we can show e.g. y≠0⇒y*yᶜ≠0 : ∀ {y} -> ¬ y ≡ 0# -> ¬ y * y ᶜ ≡ 0# y≠0⇒y*yᶜ≠0 {y} n0 eq = ⊥-elim (n0' e0) where open import Data.Empty n0' : ¬ y ᶜ ≡ 0# n0' x with n0 (ᶜ-injective {y} x) ... | () eq' : y * y ᶜ ≡ y * 0# eq' = begin y * y ᶜ ≡⟨ eq ⟩ 0# ≡⟨ sym $ rightZero y ⟩ y * 0# ∎ where open IS.+-*-Solver open ≡-Reasoning e0 : y ᶜ ≡ 0# e0 = *-alc-𝔾 {y} (y ᶜ) 0# n0 eq' y≠0#⇒rank≠0 : ∀ {y : 𝔾} -> ¬ y ≡ 0# -> ¬ rank y ≡ 0# y≠0#⇒rank≠0 {y} n0 = rank≠0 where open import Data.Empty y*yᶜ≠0 : ¬ y * y ᶜ ≡ 0# y*yᶜ≠0 = y≠0⇒y*yᶜ≠0 n0 rank≠0 : ¬ rank y ≡ 0# rank≠0 e = ⊥-elim (y*yᶜ≠0 y*yᶜ=0) where y*yᶜ=0 : y * y ᶜ ≡ 0# y*yᶜ=0 = begin y * y ᶜ ≡⟨ sym $ Re+Im*i ⟩ Re (y * y ᶜ) + Im (y * y ᶜ) i ≡⟨ cong₂ _+_i (Re[yyᶜ]=rank {y}) refl ⟩ + rank y + Im (y * y ᶜ) i ≡⟨ cong₂ _+_i (cong +_ e) (Im[yyᶜ]=0 {y}) ⟩ 0# ∎ where open IS.+-*-Solver open ≡-Reasoning rank=0⇒y=0 : ∀ {y : 𝔾} -> rank y ≡ 0# -> y ≡ 0# rank=0⇒y=0 {y@(a + b i)} eq0 = y=0 where eq0' : a * a + b * b ≡ 0# eq0' = IntP.∣i∣≡0⇒i≡0 eq0 s1 : a ≡ 0ℤ × b ≡ 0ℤ s1 = aa+bb=0⇒a=0×b=0 eq0' y=0 : y ≡ 0# y=0 with s1 ... | fst , snd rewrite fst | snd = refl rank≥1 : ∀ {y : 𝔾} -> ¬ y ≡ 0# -> 1# ≤ rank y rank≥1 {y} n0 = aux (rank y) (y≠0#⇒rank≠0 {y} n0) where aux : ∀ (n : ℕ) -> ¬ n ≡ 0 -> 1 ≤ n aux zero n0' with n0' refl ... | () aux (suc n) n0' = Nat.s≤s Nat.z≤n ranky<1⇒y=0 : ∀ (y : 𝔾) -> rank y < 1# -> y ≡ 0# ranky<1⇒y=0 y r = rank=0⇒y=0 {y} ranky=0 where aux : ∀ (n : ℕ) -> n < 1 -> n ≡ 0 aux .zero (Nat.s≤s Nat.z≤n) = refl ranky=0 : rank y ≡ 0 ranky=0 = aux (rank y) r -- ---------------------------------------------------------------------- -- Properties of NonZero
35.140845
446
0.448257
cba94de9123442f3966656771a9ec295eaf6d359
746
agda
Agda
test/Succeed/Issue2484-6.agda
cagix/agda
cc026a6a97a3e517bb94bafa9d49233b067c7559
[ "BSD-2-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue2484-6.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue2484-6.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --sized-types #-} module _ (_ : Set) where open import Agda.Builtin.Size postulate I : Set record ∃ (B : I → Set) : Set where constructor _,_ field proj₁ : I proj₂ : B proj₁ module M (_ : Set₁) where mutual data P (i : Size) (x y : I) : Set where ⟨_⟩ : ∃ (Q i x) → P i x y record Q (i : Size) (x y : I) : Set where coinductive field force : {j : Size< i} → P j x y open M Set postulate map : (B : I → Set) → (∀ x → B x → B x) → ∃ B → ∃ B lemma : ∀ x y i → Q i x y → Q i x y p : ∀ x i → P i x x q′ : ∀ x i → ∃ λ y → Q i x y q : ∀ x i → Q i x x p x i = ⟨ map _ (λ y → lemma x y _) (q′ x _) ⟩ q′ x i = x , q x i Q.force (q x i) {j} = p _ _
18.195122
60
0.458445
c5d3f6d008b8d44e74c85ea6d1e2d8948635f273
2,337
agda
Agda
test/Succeed/Issue1833.agda
sseefried/agda
6b13364d36eeb60d8ec15eaf8effe23c73401900
[ "BSD-2-Clause" ]
1
2022-02-05T01:20:23.000Z
2022-02-05T01:20:23.000Z
test/Succeed/Issue1833.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
6
2021-10-18T08:12:24.000Z
2021-11-24T08:31:10.000Z
test/Succeed/Issue1833.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
null
null
null
module _ where open import Common.Prelude hiding (_>>=_) open import Common.Reflection open import Agda.Builtin.Sigma infix -100 This:_ this:_ data This:_ {a} {A : Set a} : A → Set where this:_ : ∀ x → This: x macro runT : Tactic → Tactic runT m = m evalT : ∀ {a} {A : Set a} → TC A → Tactic evalT m hole = m >>= quoteTC >>= unify hole -- The context on the rhs of each of the two functions below is the same, a single String Γ : Telescope Γ = ("s" , vArg (def (quote String) [])) ∷ [] context-Γ₀ : String → This: Γ context-Γ₀ s = this: evalT getContext module _ (S : String) where Γ' : Telescope Γ' = ("S" , vArg (def (quote String) [])) ∷ [] context-Γ₁ : This: Γ' context-Γ₁ = this: evalT getContext downMap : {A : Set} → (Nat → A) → Nat → List A downMap f zero = [] downMap f (suc n) = f n ∷ downMap f n f-type : Term f-type = def (quote String) [] f-tel : Nat → List (Σ String λ _ → Arg Type) f-tel n = downMap (λ _ → "_" , vArg unknown) n f-pats : Nat → List (Arg Pattern) f-pats n = downMap (λ x → vArg (var x)) n f-term : Nat → Term f-term n = var n [] defineFresh : Nat → Nat → TC QName defineFresh #pats #term = freshName "f" >>= λ f → define (vArg f) (funDef f-type (clause (f-tel #pats) (f-pats #pats) (f-term #term) ∷ [])) >>= λ _ → returnTC f freshFun : Nat → Nat → TC Bool freshFun #pats #term = catchTC (defineFresh #pats #term >>= λ _ → returnTC true) (returnTC false) -- Check that the pattern list must be of length 0 -- and the context features 1 available variable. define-Γ₀-0-0 : String → This: true define-Γ₀-0-0 s = this: evalT (freshFun 0 0) define-Γ₀-1-0 : String → This: false define-Γ₀-1-0 s = this: evalT (freshFun 1 0) define-Γ₀-1-1 : String → This: false define-Γ₀-1-1 s = this: evalT (freshFun 0 1) module _ (S : String) where define-Γ₁-0-0 : This: true define-Γ₁-0-0 = this: evalT (freshFun 0 0) define-Γ₁-0-1 : This: false define-Γ₁-0-1 = this: evalT (freshFun 0 1) define-Γ₁-1-0 : This: false define-Γ₁-1-0 = this: evalT (freshFun 1 0) f₀ : String → String f₀ s = runT λ hole → defineFresh 0 0 >>= λ f → unify hole (def f []) f₁ : String → String f₁ = λ s → runT λ hole → defineFresh 0 0 >>= λ f → unify hole (def f []) f₂ : String → String f₂ s = runT λ hole → defineFresh 0 0 >>= λ f → unify hole (def f []) where x = 0
25.402174
101
0.620454
4d15c24836a8d463282233f4558a3aaafa040acd
192
agda
Agda
src/data/lib/prim/Agda/Builtin/IO.agda
redfish64/autonomic-agda
c0ae7d20728b15d7da4efff6ffadae6fe4590016
[ "BSD-3-Clause" ]
null
null
null
src/data/lib/prim/Agda/Builtin/IO.agda
redfish64/autonomic-agda
c0ae7d20728b15d7da4efff6ffadae6fe4590016
[ "BSD-3-Clause" ]
null
null
null
src/data/lib/prim/Agda/Builtin/IO.agda
redfish64/autonomic-agda
c0ae7d20728b15d7da4efff6ffadae6fe4590016
[ "BSD-3-Clause" ]
null
null
null
module Agda.Builtin.IO where postulate IO : ∀ {a} → Set a → Set a {-# BUILTIN IO IO #-} {-# HASKELL type AgdaIO a b = IO b #-} {-# COMPILED_TYPE IO MAlonzo.Code.Agda.Builtin.IO.AgdaIO #-}
19.2
60
0.635417
39ef2e4f22ddf9daaedfea9d46bdd27b74d280ba
6,995
agda
Agda
Cubical/Algebra/Group/Base.agda
mchristianl/cubical
cc6ad25d5ffbe4f20ea7020474f266d24b97caa0
[ "MIT" ]
null
null
null
Cubical/Algebra/Group/Base.agda
mchristianl/cubical
cc6ad25d5ffbe4f20ea7020474f266d24b97caa0
[ "MIT" ]
null
null
null
Cubical/Algebra/Group/Base.agda
mchristianl/cubical
cc6ad25d5ffbe4f20ea7020474f266d24b97caa0
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Algebra.Group.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.SIP open import Cubical.Data.Sigma open import Cubical.Data.Int hiding (-_) renaming (_+_ to _+Int_ ; _-_ to _-Int_) open import Cubical.Data.Unit open import Cubical.Algebra.Monoid open import Cubical.Algebra.Semigroup open import Cubical.Foundations.HLevels private variable ℓ : Level record IsGroup {G : Type ℓ} (0g : G) (_+_ : G → G → G) (-_ : G → G) : Type ℓ where constructor isgroup field isMonoid : IsMonoid 0g _+_ inverse : (x : G) → (x + (- x) ≡ 0g) × ((- x) + x ≡ 0g) open IsMonoid isMonoid public infixl 6 _-_ _-_ : G → G → G x - y = x + (- y) invl : (x : G) → (- x) + x ≡ 0g invl x = inverse x .snd invr : (x : G) → x + (- x) ≡ 0g invr x = inverse x .fst record GroupStr (G : Type ℓ) : Type (ℓ-suc ℓ) where constructor groupstr field 0g : G _+_ : G → G → G -_ : G → G isGroup : IsGroup 0g _+_ -_ infix 8 -_ infixr 7 _+_ open IsGroup isGroup public Group : Type (ℓ-suc ℓ) Group = TypeWithStr _ GroupStr Group₀ : Type₁ Group₀ = Group {ℓ-zero} group : (G : Type ℓ) (0g : G) (_+_ : G → G → G) (-_ : G → G) (h : IsGroup 0g _+_ -_) → Group group G 0g _+_ -_ h = G , groupstr 0g _+_ -_ h isSetGroup : (G : Group {ℓ}) → isSet ⟨ G ⟩ isSetGroup G = GroupStr.isGroup (snd G) .IsGroup.isMonoid .IsMonoid.isSemigroup .IsSemigroup.is-set makeIsGroup : {G : Type ℓ} {0g : G} {_+_ : G → G → G} { -_ : G → G} (is-setG : isSet G) (assoc : (x y z : G) → x + (y + z) ≡ (x + y) + z) (rid : (x : G) → x + 0g ≡ x) (lid : (x : G) → 0g + x ≡ x) (rinv : (x : G) → x + (- x) ≡ 0g) (linv : (x : G) → (- x) + x ≡ 0g) → IsGroup 0g _+_ -_ IsGroup.isMonoid (makeIsGroup is-setG assoc rid lid rinv linv) = makeIsMonoid is-setG assoc rid lid IsGroup.inverse (makeIsGroup is-setG assoc rid lid rinv linv) = λ x → rinv x , linv x makeGroup : {G : Type ℓ} (0g : G) (_+_ : G → G → G) (-_ : G → G) (is-setG : isSet G) (assoc : (x y z : G) → x + (y + z) ≡ (x + y) + z) (rid : (x : G) → x + 0g ≡ x) (lid : (x : G) → 0g + x ≡ x) (rinv : (x : G) → x + (- x) ≡ 0g) (linv : (x : G) → (- x) + x ≡ 0g) → Group makeGroup 0g _+_ -_ is-setG assoc rid lid rinv linv = _ , helper where helper : GroupStr _ GroupStr.0g helper = 0g GroupStr._+_ helper = _+_ GroupStr.- helper = -_ GroupStr.isGroup helper = makeIsGroup is-setG assoc rid lid rinv linv makeGroup-right : ∀ {ℓ} {A : Type ℓ} → (id : A) → (comp : A → A → A) → (inv : A → A) → (set : isSet A) → (assoc : ∀ a b c → comp a (comp b c) ≡ comp (comp a b) c) → (rUnit : ∀ a → comp a id ≡ a) → (rCancel : ∀ a → comp a (inv a) ≡ id) → Group makeGroup-right id comp inv set assoc rUnit rCancel = makeGroup id comp inv set assoc rUnit lUnit rCancel lCancel where _⨀_ = comp abstract lCancel : ∀ a → comp (inv a) a ≡ id lCancel a = inv a ⨀ a ≡⟨ sym (rUnit (comp (inv a) a)) ⟩ (inv a ⨀ a) ⨀ id ≡⟨ cong (comp (comp (inv a) a)) (sym (rCancel (inv a))) ⟩ (inv a ⨀ a) ⨀ (inv a ⨀ (inv (inv a))) ≡⟨ assoc _ _ _ ⟩ ((inv a ⨀ a) ⨀ (inv a)) ⨀ (inv (inv a)) ≡⟨ cong (λ □ → □ ⨀ _) (sym (assoc _ _ _)) ⟩ (inv a ⨀ (a ⨀ inv a)) ⨀ (inv (inv a)) ≡⟨ cong (λ □ → (inv a ⨀ □) ⨀ (inv (inv a))) (rCancel a) ⟩ (inv a ⨀ id) ⨀ (inv (inv a)) ≡⟨ cong (λ □ → □ ⨀ (inv (inv a))) (rUnit (inv a)) ⟩ inv a ⨀ (inv (inv a)) ≡⟨ rCancel (inv a) ⟩ id ∎ lUnit : ∀ a → comp id a ≡ a lUnit a = id ⨀ a ≡⟨ cong (λ b → comp b a) (sym (rCancel a)) ⟩ (a ⨀ inv a) ⨀ a ≡⟨ sym (assoc _ _ _) ⟩ a ⨀ (inv a ⨀ a) ≡⟨ cong (comp a) (lCancel a) ⟩ a ⨀ id ≡⟨ rUnit a ⟩ a ∎ makeGroup-left : ∀ {ℓ} {A : Type ℓ} → (id : A) → (comp : A → A → A) → (inv : A → A) → (set : isSet A) → (assoc : ∀ a b c → comp a (comp b c) ≡ comp (comp a b) c) → (lUnit : ∀ a → comp id a ≡ a) → (lCancel : ∀ a → comp (inv a) a ≡ id) → Group makeGroup-left id comp inv set assoc lUnit lCancel = makeGroup id comp inv set assoc rUnit lUnit rCancel lCancel where abstract rCancel : ∀ a → comp a (inv a) ≡ id rCancel a = comp a (inv a) ≡⟨ sym (lUnit (comp a (inv a))) ⟩ comp id (comp a (inv a)) ≡⟨ cong (λ b → comp b (comp a (inv a))) (sym (lCancel (inv a))) ⟩ comp (comp (inv (inv a)) (inv a)) (comp a (inv a)) ≡⟨ sym (assoc (inv (inv a)) (inv a) (comp a (inv a))) ⟩ comp (inv (inv a)) (comp (inv a) (comp a (inv a))) ≡⟨ cong (comp (inv (inv a))) (assoc (inv a) a (inv a)) ⟩ comp (inv (inv a)) (comp (comp (inv a) a) (inv a)) ≡⟨ cong (λ b → comp (inv (inv a)) (comp b (inv a))) (lCancel a) ⟩ comp (inv (inv a)) (comp id (inv a)) ≡⟨ cong (comp (inv (inv a))) (lUnit (inv a)) ⟩ comp (inv (inv a)) (inv a) ≡⟨ lCancel (inv a) ⟩ id ∎ rUnit : ∀ a → comp a id ≡ a rUnit a = comp a id ≡⟨ cong (comp a) (sym (lCancel a)) ⟩ comp a (comp (inv a) a) ≡⟨ assoc a (inv a) a ⟩ comp (comp a (inv a)) a ≡⟨ cong (λ b → comp b a) (rCancel a) ⟩ comp id a ≡⟨ lUnit a ⟩ a ∎ open GroupStr hiding (0g ; _+_ ; -_) isSetCarrier : ∀ {ℓ} → (G : Group {ℓ}) → isSet ⟨ G ⟩ isSetCarrier G = IsSemigroup.is-set (IsMonoid.isSemigroup (GroupStr.isMonoid (snd G))) open GroupStr dirProd : ∀ {ℓ ℓ'} → Group {ℓ} → Group {ℓ'} → Group dirProd (GC , G) (HC , H) = makeGroup (0g G , 0g H) (λ { (x1 , x2) (y1 , y2) → _+_ G x1 y1 , _+_ H x2 y2 }) (λ { (x1 , x2) → -_ G x1 , -_ H x2 }) (isSet× (isSetCarrier (GC , G)) (isSetCarrier (HC , H))) (λ { (x1 , x2) (y1 , y2) (z1 , z2) i → assoc G x1 y1 z1 i , assoc H x2 y2 z2 i }) (λ { (x1 , x2) i → GroupStr.rid G x1 i , GroupStr.rid H x2 i }) (λ { (x1 , x2) i → GroupStr.lid G x1 i , GroupStr.lid H x2 i }) (λ { (x1 , x2) i → GroupStr.invr G x1 i , GroupStr.invr H x2 i }) (λ { (x1 , x2) i → GroupStr.invl G x1 i , GroupStr.invl H x2 i }) trivialGroup : Group₀ trivialGroup = Unit , groupstr tt (λ _ _ → tt) (λ _ → tt) (makeIsGroup isSetUnit (λ _ _ _ → refl) (λ _ → refl) (λ _ → refl) (λ _ → refl) (λ _ → refl)) intGroup : Group₀ intGroup = Int , groupstr 0 _+Int_ (0 -Int_) (makeIsGroup isSetInt +-assoc (λ x → refl) (λ x → +-comm 0 x) (λ x → +-comm x (pos 0 -Int x) ∙ minusPlus x 0) (λ x → minusPlus x 0))
32.686916
100
0.479342
0eed521de058d3aaa6504c72a5bbf91b07cbea1b
15,972
agda
Agda
Cubical/Algebra/Group/EilenbergMacLane/GroupStructure.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
1
2021-10-31T17:32:49.000Z
2021-10-31T17:32:49.000Z
Cubical/Algebra/Group/EilenbergMacLane/GroupStructure.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
Cubical/Algebra/Group/EilenbergMacLane/GroupStructure.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
{-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.Algebra.Group.EilenbergMacLane.GroupStructure where open import Cubical.Algebra.Group.EilenbergMacLane.Base open import Cubical.Algebra.Group.EilenbergMacLane.WedgeConnectivity open import Cubical.Algebra.Group.Base open import Cubical.Algebra.Group.Properties open import Cubical.Algebra.AbGroup.Base open import Cubical.Data.Nat open import Cubical.Foundations.Prelude open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.GroupoidLaws renaming (assoc to ∙assoc) open import Cubical.Foundations.HLevels open import Cubical.Foundations.Pointed open import Cubical.Foundations.Path open import Cubical.Homotopy.Loopspace open import Cubical.HITs.EilenbergMacLane1 open import Cubical.HITs.Truncation renaming (elim to trElim ; rec to trRec ; rec2 to trRec2) open import Cubical.HITs.Susp open import Cubical.Functions.Morphism private variable ℓ : Level module _ {G : AbGroup ℓ} where infixr 34 _+ₖ_ infixr 34 _-ₖ_ open AbGroupStr (snd G) renaming (_+_ to _+G_ ; -_ to -G_ ; assoc to assocG) private help : (n : ℕ) → n + (4 + n) ≡ (2 + n) + (2 + n) help n = +-suc n (3 + n) ∙ cong suc (+-suc n (suc (suc n))) hLevHelp : (n : ℕ) → isOfHLevel ((2 + n) + (2 + n)) (EM G (2 + n)) hLevHelp n = transport (λ i → isOfHLevel (help n i) (EM G (2 + n))) (isOfHLevelPlus {n = 4 + n} n (isOfHLevelTrunc (4 + n))) helper : (g h : fst G) → PathP (λ i → Path (EM₁ (AbGroup→Group G)) (emloop h i) (emloop h i)) (emloop g) (emloop g) helper g h = comm→PathP ((sym (emloop-comp _ h g) ∙∙ cong emloop (comm h g) ∙∙ emloop-comp _ g h)) _+ₖ_ : {n : ℕ} → EM G n → EM G n → EM G n _+ₖ_ {n = zero} = _+G_ _+ₖ_ {n = suc zero} = rec _ (isGroupoidΠ (λ _ → emsquash)) (λ x → x) (λ x → funExt (looper x)) λ g h i j x → el g h x i j where looper : fst G → (x : _) → x ≡ x looper g = (elimSet _ (λ _ → emsquash _ _) (emloop g) (helper g)) el : (g h : fst G) (x : EM₁ (AbGroup→Group G)) → Square (looper g x) (looper (g +G h) x) refl (looper h x) el g h = elimProp _ (λ _ → isOfHLevelPathP' 1 (emsquash _ _) _ _) (emcomp g h) _+ₖ_ {n = suc (suc n)} = trRec2 (isOfHLevelTrunc (4 + n)) (wedgeConEM.fun G G (suc n) (suc n) (λ _ _ → hLevHelp n) ∣_∣ ∣_∣ refl) σ-EM : (n : ℕ) → EM-raw G (suc n) → Path (EM-raw G (2 + n)) ptEM-raw ptEM-raw σ-EM n x = merid x ∙ sym (merid ptEM-raw) -ₖ_ : {n : ℕ} → EM G n → EM G n -ₖ_ {n = zero} x = -G x -ₖ_ {n = suc zero} = rec _ emsquash embase (λ g → sym (emloop g)) λ g h → sym (emloop-sym _ g) ◁ (flipSquare (flipSquare (emcomp (-G g) (-G h)) ▷ emloop-sym _ h) ▷ (cong emloop (comm (-G g) (-G h) ∙ sym (GroupTheory.invDistr (AbGroup→Group G) g h)) ∙ emloop-sym _ (g +G h))) -ₖ_ {n = suc (suc n)} = map λ { north → north ; south → north ; (merid a i) → σ-EM n a (~ i)} _-ₖ_ : {n : ℕ} → EM G n → EM G n → EM G n _-ₖ_ {n = n} x y = _+ₖ_ {n = n} x (-ₖ_ {n = n} y) +ₖ-syntax : (n : ℕ) → EM G n → EM G n → EM G n +ₖ-syntax n = _+ₖ_ {n = n} -ₖ-syntax : (n : ℕ) → EM G n → EM G n -ₖ-syntax n = -ₖ_ {n = n} -'ₖ-syntax : (n : ℕ) → EM G n → EM G n → EM G n -'ₖ-syntax n = _-ₖ_ {n = n} syntax +ₖ-syntax n x y = x +[ n ]ₖ y syntax -ₖ-syntax n x = -[ n ]ₖ x syntax -'ₖ-syntax n x y = x -[ n ]ₖ y lUnitₖ : (n : ℕ) (x : EM G n) → 0ₖ n +[ n ]ₖ x ≡ x lUnitₖ zero x = lid x lUnitₖ (suc zero) _ = refl lUnitₖ (suc (suc n)) = trElim (λ _ → isOfHLevelTruncPath {n = 4 + n}) λ _ → refl rUnitₖ : (n : ℕ) (x : EM G n) → x +[ n ]ₖ 0ₖ n ≡ x rUnitₖ zero x = rid x rUnitₖ (suc zero) = elimSet _ (λ _ → emsquash _ _) refl λ _ _ → refl rUnitₖ (suc (suc n)) = trElim (λ _ → isOfHLevelTruncPath {n = 4 + n}) (wedgeConEM.right G G (suc n) (suc n) (λ _ _ → hLevHelp n) ∣_∣ ∣_∣ refl) commₖ : (n : ℕ) (x y : EM G n) → x +[ n ]ₖ y ≡ y +[ n ]ₖ x commₖ zero = comm commₖ (suc zero) = wedgeConEM.fun G G 0 0 (λ _ _ → emsquash _ _) (λ x → sym (rUnitₖ 1 x)) (rUnitₖ 1) refl commₖ (suc (suc n)) = elim2 (λ _ _ → isOfHLevelTruncPath {n = 4 + n}) (wedgeConEM.fun G G _ _ (λ _ _ → isOfHLevelPath ((2 + n) + (2 + n)) (hLevHelp n) _ _) (λ x → sym (rUnitₖ (2 + n) ∣ x ∣)) (λ x → rUnitₖ (2 + n) ∣ x ∣) refl) cong₂+₁ : (p q : typ (Ω (EM∙ G 1))) → cong₂ (λ x y → x +[ 1 ]ₖ y) p q ≡ p ∙ q cong₂+₁ p q = (cong₂Funct (λ x y → x +[ 1 ]ₖ y) p q) ∙ (λ i → (cong (λ x → rUnitₖ 1 x i) p) ∙ (cong (λ x → lUnitₖ 1 x i) q)) cong₂+₂ : (n : ℕ) (p q : typ (Ω (EM∙ G (suc (suc n))))) → cong₂ (λ x y → x +[ (2 + n) ]ₖ y) p q ≡ p ∙ q cong₂+₂ n p q = (cong₂Funct (λ x y → x +[ (2 + n) ]ₖ y) p q) ∙ (λ i → (cong (λ x → rUnitₖ (2 + n) x i) p) ∙ (cong (λ x → lUnitₖ (2 + n) x i) q)) isCommΩEM : (n : ℕ) (p q : typ (Ω (EM∙ G (suc n)))) → p ∙ q ≡ q ∙ p isCommΩEM zero p q = sym (cong₂+₁ p q) ∙∙ (λ i j → commₖ 1 (p j) (q j) i) ∙∙ cong₂+₁ q p isCommΩEM (suc n) p q = (sym (cong₂+₂ n p q) ∙∙ (λ i j → commₖ (suc (suc n)) (p j) (q j) i) ∙∙ cong₂+₂ n q p) cong-₁ : (p : typ (Ω (EM∙ G 1))) → cong (λ x → -[ 1 ]ₖ x) p ≡ sym p cong-₁ p = main embase p where decoder : (x : EM G 1) → embase ≡ x → x ≡ embase decoder = elimSet _ (λ _ → isSetΠ λ _ → emsquash _ _) (λ p i → -[ 1 ]ₖ (p i)) λ g → toPathP (funExt λ x → (λ i → transport (λ i → Path (EM G 1) (emloop g i) embase) (cong (-ₖ_ {n = 1}) (transp (λ j → Path (EM G 1) embase (emloop g (~ j ∧ ~ i))) i (compPath-filler x (sym (emloop g)) i) ))) ∙∙ (λ i → transp (λ j → Path (EM G 1) (emloop g (i ∨ j)) embase) i (compPath-filler' (sym (emloop g)) (cong-∙ (-ₖ_ {n = 1}) x (sym (emloop g)) i) i)) ∙∙ (cong (sym (emloop g) ∙_) (isCommΩEM 0 (cong (-ₖ_ {n = 1}) x) (emloop g))) ∙∙ ∙assoc _ _ _ ∙∙ cong (_∙ (cong (-ₖ_ {n = 1}) x)) (lCancel (emloop g)) ∙ sym (lUnit _)) main : (x : EM G 1) (p : embase ≡ x) → decoder x p ≡ sym p main x = J (λ x p → decoder x p ≡ sym p) refl cong-₂ : (n : ℕ) (p : typ (Ω (EM∙ G (2 + n)))) → cong (λ x → -[ 2 + n ]ₖ x) p ≡ sym p cong-₂ n p = main _ p where pp : (a : _) → PathP (λ i → 0ₖ (suc (suc n)) ≡ ∣ merid a i ∣ₕ → ∣ merid a i ∣ₕ ≡ 0ₖ (2 + n)) (cong (λ x → -[ 2 + n ]ₖ x)) λ p → cong ∣_∣ₕ (sym (merid ptEM-raw)) ∙ cong (λ x → -[ 2 + n ]ₖ x) p pp a = toPathP (funExt λ x → (λ k → transp (λ i → Path (EM G (2 + n)) ∣ merid a (i ∨ k) ∣ ∣ ptEM-raw ∣) k (compPath-filler' (cong ∣_∣ₕ (sym (merid a))) (cong (-ₖ-syntax (suc (suc n))) (transp (λ j → Path (EM G (2 + n)) ∣ ptEM-raw ∣ ∣ merid a (~ j ∧ ~ k) ∣) k (compPath-filler x (sym (cong ∣_∣ₕ (merid a))) k))) k)) ∙∙ cong (cong ∣_∣ₕ (sym (merid a)) ∙_) (cong-∙ (λ x → -[ 2 + n ]ₖ x) x (sym (cong ∣_∣ₕ (merid a))) ∙ isCommΩEM (suc n) (cong (λ x → -[ 2 + n ]ₖ x) x) (cong ∣_∣ₕ (σ-EM n a))) ∙∙ (λ k → (λ i → ∣ merid a (~ i ∨ k) ∣) ∙ (λ i → ∣ compPath-filler' (merid a) (sym (merid ptEM-raw)) (~ k) i ∣) ∙ cong (λ x → -ₖ-syntax (suc (suc n)) x) x) ∙ sym (lUnit _)) decoder : (x : EM G (2 + n)) → 0ₖ (2 + n) ≡ x → x ≡ 0ₖ (2 + n) decoder = trElim (λ _ → isOfHLevelΠ (4 + n) λ _ → isOfHLevelTruncPath {n = 4 + n}) λ { north → pp ptEM-raw i0 ; south → pp ptEM-raw i1 ; (merid a i) → pp a i} main : (x : EM G (2 + n)) (p : 0ₖ (2 + n) ≡ x) → decoder x p ≡ sym p main x = J (λ x p → decoder x p ≡ sym p) refl rCancelₖ : (n : ℕ) (x : EM G n) → x +[ n ]ₖ (-[ n ]ₖ x) ≡ 0ₖ n rCancelₖ zero x = invr x rCancelₖ (suc zero) = elimSet _ (λ _ → emsquash _ _) refl λ g → flipSquare (cong₂+₁ (emloop g) (λ i → -ₖ-syntax 1 (emloop g i)) ∙ rCancel (emloop g)) rCancelₖ (suc (suc n)) = trElim (λ _ → isOfHLevelTruncPath {n = 4 + n}) λ { north → refl ; south i → +ₖ-syntax (suc (suc n)) ∣ merid ptEM-raw (~ i) ∣ (-ₖ-syntax (suc (suc n)) ∣ merid ptEM-raw (~ i) ∣) ; (merid a i) j → hcomp (λ r → λ { (i = i0) → 0ₖ (2 + n) ; (i = i1) → ∣ merid ptEM-raw (~ j ∧ r) ∣ₕ -[ 2 + n ]ₖ ∣ merid ptEM-raw (~ j ∧ r) ∣ ; (j = i0) → ∣ compPath-filler (merid a) (sym (merid ptEM-raw)) (~ r) i ∣ -[ 2 + n ]ₖ ∣ compPath-filler (merid a) (sym (merid ptEM-raw)) (~ r) i ∣ ; (j = i1) → 0ₖ (2 + n)}) (help' a j i) } where help' : (a : _) → cong₂ (λ x y → ∣ x ∣ -[ suc (suc n) ]ₖ ∣ y ∣) (σ-EM n a) (σ-EM n a) ≡ refl help' a = cong₂+₂ n (cong ∣_∣ₕ (σ-EM n a)) (cong (λ x → -[ 2 + n ]ₖ ∣ x ∣) (σ-EM n a)) ∙∙ cong (cong ∣_∣ₕ (σ-EM n a) ∙_) (cong-₂ n (cong ∣_∣ₕ (σ-EM n a))) ∙∙ rCancel _ lCancelₖ : (n : ℕ) (x : EM G n) → (-[ n ]ₖ x) +[ n ]ₖ x ≡ 0ₖ n lCancelₖ n x = commₖ n (-[ n ]ₖ x) x ∙ rCancelₖ n x assocₖ : (n : ℕ) (x y z : EM G n) → (x +[ n ]ₖ (y +[ n ]ₖ z) ≡ (x +[ n ]ₖ y) +[ n ]ₖ z) assocₖ zero = assocG assocₖ (suc zero) = elimSet _ (λ _ → isSetΠ2 λ _ _ → emsquash _ _) (λ _ _ → refl) λ g i y z k → lem g y z k i where lem : (g : fst G) (y z : _) → cong (λ x → x +[ suc zero ]ₖ (y +[ suc zero ]ₖ z)) (emloop g) ≡ cong (λ x → (x +[ suc zero ]ₖ y) +[ suc zero ]ₖ z) (emloop g) lem g = elimProp _ (λ _ → isPropΠ λ _ → emsquash _ _ _ _) (elimProp _ (λ _ → emsquash _ _ _ _) refl) assocₖ (suc (suc n)) = elim2 (λ _ _ → isOfHLevelΠ (4 + n) λ _ → isOfHLevelTruncPath {n = 4 + n}) λ a b → trElim (λ _ → isOfHLevelTruncPath {n = 4 + n}) (λ c → main c a b) where lem : (c : _) (a b : _) → PathP (λ i → (∣ a ∣ₕ +[ suc (suc n) ]ₖ (∣ b ∣ₕ +[ suc (suc n) ]ₖ ∣ merid c i ∣ₕ) ≡ (∣ a ∣ₕ +[ suc (suc n) ]ₖ ∣ b ∣ₕ) +[ suc (suc n) ]ₖ ∣ merid c i ∣ₕ)) (cong (λ x → ∣ a ∣ₕ +[ suc (suc n) ]ₖ x) (rUnitₖ (suc (suc n)) ∣ b ∣) ∙ sym (rUnitₖ (suc (suc n)) (∣ a ∣ₕ +[ suc (suc n) ]ₖ ∣ b ∣ₕ))) ((λ i → ∣ a ∣ₕ +[ suc (suc n) ]ₖ (∣ b ∣ₕ +[ suc (suc n) ]ₖ ∣ merid ptEM-raw (~ i) ∣ₕ)) ∙∙ cong (λ x → ∣ a ∣ₕ +[ suc (suc n) ]ₖ x) (rUnitₖ (suc (suc n)) ∣ b ∣) ∙ sym (rUnitₖ (suc (suc n)) (∣ a ∣ₕ +[ suc (suc n) ]ₖ ∣ b ∣ₕ)) ∙∙ λ i → (∣ a ∣ₕ +[ suc (suc n) ]ₖ ∣ b ∣ₕ) +[ suc (suc n) ]ₖ ∣ merid ptEM-raw i ∣ₕ) lem c = raw-elim G (suc n) (λ _ → isOfHLevelΠ (2 + n) (λ _ → isOfHLevelPathP' (2 + n) (isOfHLevelTrunc (4 + n) _ _) _ _)) (raw-elim G (suc n) (λ _ → isOfHLevelPathP' (2 + n) (isOfHLevelTrunc (4 + n) _ _) _ _) ((sym (rUnit refl) ◁ λ _ → refl) ▷ (sym (lCancel (cong ∣_∣ₕ (merid ptEM-raw))) ∙ λ i → (λ j → ∣ merid ptEM-raw (~ j ∨ ~ i) ∣ₕ) ∙∙ lUnit (λ j → ∣ merid ptEM-raw (~ j ∧ ~ i) ∣ₕ) i ∙∙ cong ∣_∣ₕ (merid ptEM-raw)))) main : (c a b : _) → (∣ a ∣ₕ +[ suc (suc n) ]ₖ (∣ b ∣ₕ +[ suc (suc n) ]ₖ ∣ c ∣ₕ) ≡ (∣ a ∣ₕ +[ suc (suc n) ]ₖ ∣ b ∣ₕ) +[ suc (suc n) ]ₖ ∣ c ∣ₕ) main north a b = lem ptEM-raw a b i0 main south a b = lem ptEM-raw a b i1 main (merid c i) a b = lem c a b i σ-EM' : (n : ℕ) (x : EM G (suc n)) → Path (EM G (suc (suc n))) (0ₖ (suc (suc n))) (0ₖ (suc (suc n))) σ-EM' zero x = cong ∣_∣ₕ (σ-EM zero x) σ-EM' (suc n) = trElim (λ _ → isOfHLevelTrunc (5 + n) _ _) λ x → cong ∣_∣ₕ (σ-EM (suc n) x) σ-EM'-0ₖ : (n : ℕ) → σ-EM' n (0ₖ (suc n)) ≡ refl σ-EM'-0ₖ zero = cong (cong ∣_∣ₕ) (rCancel (merid ptEM-raw)) σ-EM'-0ₖ (suc n) = cong (cong ∣_∣ₕ) (rCancel (merid ptEM-raw)) private lUnit-rUnit-coh : ∀ {ℓ} {A : Type ℓ} {x : A} (p : x ≡ x) (r : refl ≡ p) → lUnit p ∙ cong (_∙ p) r ≡ rUnit p ∙ cong (p ∙_) r lUnit-rUnit-coh p = J (λ p r → lUnit p ∙ cong (_∙ p) r ≡ rUnit p ∙ cong (p ∙_) r) refl σ-EM'-hom : (n : ℕ) → (a b : _) → σ-EM' n (a +ₖ b) ≡ σ-EM' n a ∙ σ-EM' n b σ-EM'-hom zero = wedgeConEM.fun G G 0 0 (λ _ _ → isOfHLevelTrunc 4 _ _ _ _) l r p where l : _ l x = cong (σ-EM' zero) (lUnitₖ 1 x) ∙∙ lUnit (σ-EM' zero x) ∙∙ cong (_∙ σ-EM' zero x) (sym (σ-EM'-0ₖ zero)) r : _ r x = cong (σ-EM' zero) (rUnitₖ 1 x) ∙∙ rUnit (σ-EM' zero x) ∙∙ cong (σ-EM' zero x ∙_) (sym (σ-EM'-0ₖ zero)) p : _ p = lUnit-rUnit-coh (σ-EM' zero embase) (sym (σ-EM'-0ₖ zero)) σ-EM'-hom (suc n) = elim2 (λ _ _ → isOfHLevelPath (4 + n) (isOfHLevelTrunc (5 + n) _ _) _ _) (wedgeConEM.fun G G _ _ (λ x y → transport (λ i → isOfHLevel (help n i) ((σ-EM' (suc n) (∣ x ∣ₕ +ₖ ∣ y ∣ₕ) ≡ σ-EM' (suc n) ∣ x ∣ₕ ∙ σ-EM' (suc n) ∣ y ∣ₕ))) (isOfHLevelPlus {n = 4 + n} n (isOfHLevelPath (4 + n) (isOfHLevelTrunc (5 + n) _ _) _ _))) (λ x → cong (σ-EM' (suc n)) (lUnitₖ (suc (suc n)) ∣ x ∣) ∙∙ lUnit (σ-EM' (suc n) ∣ x ∣) ∙∙ cong (_∙ σ-EM' (suc n) ∣ x ∣) (sym (σ-EM'-0ₖ (suc n)))) (λ x → cong (σ-EM' (suc n)) (rUnitₖ (2 + n) ∣ x ∣) ∙∙ rUnit (σ-EM' (suc n) ∣ x ∣) ∙∙ cong (σ-EM' (suc n) ∣ x ∣ ∙_) (sym (σ-EM'-0ₖ (suc n)))) (lUnit-rUnit-coh (σ-EM' (suc n) (0ₖ (2 + n))) (sym (σ-EM'-0ₖ (suc n))))) σ-EM'-ₖ : (n : ℕ) → (a : _) → σ-EM' n (-ₖ a) ≡ sym (σ-EM' n a) σ-EM'-ₖ n = morphLemmas.distrMinus (λ x y → x +[ suc n ]ₖ y) (_∙_) (σ-EM' n) (σ-EM'-hom n) (0ₖ (suc n)) refl (λ x → -ₖ x) sym (λ x → sym (lUnit x)) (λ x → sym (rUnit x)) (lCancelₖ (suc n)) rCancel ∙assoc (σ-EM'-0ₖ n) -Dist : (n : ℕ) (x y : EM G n) → -[ n ]ₖ (x +[ n ]ₖ y) ≡ (-[ n ]ₖ x) +[ n ]ₖ (-[ n ]ₖ y) -Dist zero x y = (GroupTheory.invDistr (AbGroup→Group G) x y) ∙ commₖ zero _ _ -Dist (suc zero) = k where -- useless where clause. Needed for fast type checking for some reason. l : _ l x = refl r : _ r x = cong (λ z → -[ 1 ]ₖ z) (rUnitₖ 1 x) ∙ sym (rUnitₖ 1 (-[ 1 ]ₖ x)) p : r ptEM-raw ≡ l ptEM-raw p = sym (rUnit refl) k = wedgeConEM.fun G G 0 0 (λ _ _ → emsquash _ _) l r (sym p) -Dist (suc (suc n)) = elim2 (λ _ _ → isOfHLevelTruncPath {n = 4 + n}) (wedgeConEM.fun G G (suc n) (suc n) (λ _ _ → isOfHLevelPath ((2 + n) + (2 + n)) (hLevHelp n) _ _) (λ x → refl) (λ x → cong (λ z → -[ (suc (suc n)) ]ₖ z) (rUnitₖ (suc (suc n)) ∣ x ∣ₕ) ∙ sym (rUnitₖ (suc (suc n)) (-[ (suc (suc n)) ]ₖ ∣ x ∣ₕ))) (rUnit refl)) addIso : (n : ℕ) (x : EM G n) → Iso (EM G n) (EM G n) Iso.fun (addIso n x) y = y +[ n ]ₖ x Iso.inv (addIso n x) y = y -[ n ]ₖ x Iso.rightInv (addIso n x) y = sym (assocₖ n y (-[ n ]ₖ x) x) ∙∙ cong (λ x → y +[ n ]ₖ x) (lCancelₖ n x) ∙∙ rUnitₖ n y Iso.leftInv (addIso n x) y = sym (assocₖ n y x (-[ n ]ₖ x)) ∙∙ cong (λ x → y +[ n ]ₖ x) (rCancelₖ n x) ∙∙ rUnitₖ n y
38.394231
112
0.450225
0e7129441a89d792baf8d2cf3bf1d1449501c188
2,295
agda
Agda
test/asset/agda-stdlib-1.0/Data/Product/Categorical/Right.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Data/Product/Categorical/Right.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Data/Product/Categorical/Right.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- The Agda standard library -- -- Right-biased universe-sensitive functor and monad instances for the -- Product type. -- -- To minimize the universe level of the RawFunctor, we require that -- elements of B are "lifted" to a copy of B at a higher universe level -- (a ⊔ b). See the Data.Product.Categorical.Examples for how this is -- done. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Algebra open import Level module Data.Product.Categorical.Right (a : Level) {b e} (B : RawMonoid b e) where open import Data.Product import Data.Product.Categorical.Right.Base as Base open import Category.Applicative using (RawApplicative) open import Category.Monad using (RawMonad; RawMonadT) open import Function using (id; flip; _∘_; _∘′_) import Function.Identity.Categorical as Id open RawMonoid B ------------------------------------------------------------------------ -- Re-export the base contents publically open Base Carrier a public ------------------------------------------------------------------------ -- Basic records applicative : RawApplicative Productᵣ applicative = record { pure = _, ε ; _⊛_ = zip id _∙_ } monadT : RawMonadT (_∘′ Productᵣ) monadT M = record { return = pure ∘′ (_, ε) ; _>>=_ = λ ma f → ma >>= uncurry λ x b → map₂ (b ∙_) <$> f x } where open RawMonad M monad : RawMonad Productᵣ monad = monadT Id.monad ------------------------------------------------------------------------ -- Get access to other monadic functions module _ {F} (App : RawApplicative {a ⊔ b} F) where open RawApplicative App sequenceA : ∀ {A} → Productᵣ (F A) → F (Productᵣ A) sequenceA (fa , y) = (_, y) <$> fa mapA : ∀ {A B} → (A → F B) → Productᵣ A → F (Productᵣ B) mapA f = sequenceA ∘ map₁ f forA : ∀ {A B} → Productᵣ A → (A → F B) → F (Productᵣ B) forA = flip mapA module _ {M} (Mon : RawMonad {a ⊔ b} M) where private App = RawMonad.rawIApplicative Mon sequenceM : ∀ {A} → Productᵣ (M A) → M (Productᵣ A) sequenceM = sequenceA App mapM : ∀ {A B} → (A → M B) → Productᵣ A → M (Productᵣ B) mapM = mapA App forM : ∀ {A B} → Productᵣ A → (A → M B) → M (Productᵣ B) forM = forA App
28.333333
72
0.555991
4ae8c4c37f722608110d621384f8130f94efb44e
1,502
agda
Agda
simpleAgda.agda
hjorthjort/IdrisToAgda
a5f65e28cc9fdfefde49e7d8cf84486601b9e7b1
[ "MIT" ]
2
2020-02-16T23:22:50.000Z
2020-06-29T20:42:43.000Z
simpleAgda.agda
hjorthjort/IdrisToAgda
a5f65e28cc9fdfefde49e7d8cf84486601b9e7b1
[ "MIT" ]
1
2019-11-28T17:52:42.000Z
2019-11-28T17:52:42.000Z
simpleAgda.agda
hjorthjort/IdrisToAgda
a5f65e28cc9fdfefde49e7d8cf84486601b9e7b1
[ "MIT" ]
1
2019-11-27T16:25:18.000Z
2019-11-27T16:25:18.000Z
module simpleAgda where -- main : IO () -- main = putStrLn "Testing simple Idris" -- -- Some simple equivalent Idris and Agda code. -- -- data N = Z | Suc N data N : Set where Z : N suc : N -> N -- one : N -- one = Suc Z one : N one = suc Z -- addOne : N -> N -- addOne Z = Suc Z -- addOne (Suc n) = Suc (Suc n) addOne : N -> N addOne Z = suc Z addOne (suc a) = suc (suc a) -- add : N -> N -> N -- add Z s = s -- add (Suc a) b = add a (Suc b) add : N -> N -> N add Z s = s add (suc a) b = add a (suc b) -- data Vec : Type -> N -> Type where -- Nil : Vec a Z -- (::) : a -> Vec a n -> Vec a (Suc n) data Vec (A : Set) : N -> Set where Nil : Vec A Z cons : {n : N} -> A -> Vec A n -> Vec A (suc n) -- empt : Vec N Z -- empt = Nil empt : Vec N Z empt = Nil open import Agda.Builtin.Nat -- test : Vec Nat (Suc Main.one) -- test = 1 :: 2 :: Nil test : Vec Nat (suc (suc Z)) test = cons 1 (cons 2 Nil) -- test2 : Vec Nat (Suc (Suc Main.one)) -- test2 = 3 :: 4 :: 5 :: Nil test2 : Vec Nat (suc (suc (suc Z))) test2 = cons 3 (cons 4 (cons 5 Nil)) -- concat : Vec g a -> Vec g b -> Vec g (add a b) -- concat Nil rest = rest -- concat (a :: rest) b = concat rest (a :: b) concat : {a b : N} {g : Set} -> (Vec g a) -> (Vec g b) -> (Vec g (add a b)) concat Nil rest = rest concat (cons a rest) b = concat rest (cons a b) -- t3 : Vec (addOne $ addOne $ addOne $ addOne Main.one) Nat -- t3 = concat test test2 t3 : Vec Nat (addOne (addOne (addOne (addOne one)))) t3 = concat test test2
21.768116
75
0.543941
4d70ffeb98506dd7c37f86eb0c1f622ce312f79c
386
agda
Agda
Cats/Category/Constructions/Epi.agda
JLimperg/cats
1ad7b243acb622d46731e9ae7029408db6e561f1
[ "MIT" ]
24
2017-11-03T15:18:57.000Z
2021-08-06T05:00:46.000Z
Cats/Category/Constructions/Epi.agda
JLimperg/cats
1ad7b243acb622d46731e9ae7029408db6e561f1
[ "MIT" ]
null
null
null
Cats/Category/Constructions/Epi.agda
JLimperg/cats
1ad7b243acb622d46731e9ae7029408db6e561f1
[ "MIT" ]
1
2019-03-18T15:35:07.000Z
2019-03-18T15:35:07.000Z
{-# OPTIONS --without-K --safe #-} module Cats.Category.Constructions.Epi where open import Level open import Cats.Category.Base module Build {lo la l≈} (Cat : Category lo la l≈) where private open module Cat = Category Cat open Cat.≈-Reasoning IsEpi : ∀ {A B} → A ⇒ B → Set (lo ⊔ la ⊔ l≈) IsEpi {A} {B} f = ∀ {C} {g h : B ⇒ C} → g ∘ f ≈ h ∘ f → g ≈ h open Build public
20.315789
63
0.606218
1c5060d4a968c380e555e5314e5b8dbeb315e6d2
33,630
agda
Agda
test/LibSucceed/Issue784/Values.agda
ayberkt/agda
376c2fcafef775847e336244ecf8020575b07d96
[ "BSD-3-Clause" ]
null
null
null
test/LibSucceed/Issue784/Values.agda
ayberkt/agda
376c2fcafef775847e336244ecf8020575b07d96
[ "BSD-3-Clause" ]
null
null
null
test/LibSucceed/Issue784/Values.agda
ayberkt/agda
376c2fcafef775847e336244ecf8020575b07d96
[ "BSD-3-Clause" ]
null
null
null
module Issue784.Values where open import Data.Bool using (Bool; true; false; not) open import Data.String public using (String) open import Data.String.Properties public using (_≟_) open import Function public open import Data.List using (List; []; _∷_; _++_; [_]; boolFilter) renaming (map to mapL) open import Data.List.Any public using (Any; here; there) renaming (map to mapA; any to anyA) open import Data.Product public using (Σ; Σ-syntax; proj₁; proj₂; _,_; _×_) renaming (map to mapΣ) open import Data.Unit public using (⊤) open import Data.Unit.NonEta public using (Unit; unit) open import Data.Empty public using (⊥; ⊥-elim) open import Relation.Binary.Core public open import Relation.Nullary public import Level open import Relation.Binary.PropositionalEquality public hiding ([_]) renaming (cong to ≡-cong; cong₂ to ≡-cong₂) open import Relation.Binary.PropositionalEquality.Core public renaming (sym to ≡-sym; trans to ≡-trans) ≢-sym : ∀ {ℓ} {A : Set ℓ} {x y : A} → x ≢ y → y ≢ x ≢-sym x≢y = x≢y ∘ ≡-sym ≡-elim : ∀ {ℓ} {X Y : Set ℓ} → X ≡ Y → X → Y ≡-elim refl p = p ≡-elim′ : ∀ {a ℓ} {A : Set a} {x y : A} → (P : A → Set ℓ) → x ≡ y → P x → P y ≡-elim′ P = ≡-elim ∘ (≡-cong P) Named : ∀ {ℓ} (A : Set ℓ) → Set ℓ Named A = String × A NamedType : ∀ ℓ → Set (Level.suc ℓ) NamedType ℓ = Named (Set ℓ) NamedValue : ∀ ℓ → Set (Level.suc ℓ) NamedValue ℓ = Named (Σ[ A ∈ Set ℓ ] A) Names : Set Names = List String Types : ∀ ℓ → Set (Level.suc ℓ) Types ℓ = List (NamedType ℓ) Values : ∀ ℓ → Set (Level.suc ℓ) Values ℓ = List (NamedValue ℓ) names : ∀ {ℓ} {A : Set ℓ} → List (Named A) → Names names = mapL proj₁ types : ∀ {ℓ} → Values ℓ → Types ℓ types = mapL (mapΣ id proj₁) infix 4 _∈_ _∉_ _∈_ : ∀ {ℓ} {A : Set ℓ} → A → List A → Set ℓ x ∈ xs = Any (_≡_ x) xs _∉_ : ∀ {ℓ} {A : Set ℓ} → A → List A → Set ℓ x ∉ xs = ¬ x ∈ xs x∉y∷l⇒x≢y : ∀ {ℓ} {A : Set ℓ} {x y : A} {l : List A} → x ∉ y ∷ l → x ≢ y x∉y∷l⇒x≢y x∉y∷l x≡y = x∉y∷l $ here x≡y x∉y∷l⇒x∉l : ∀ {ℓ} {A : Set ℓ} {x y : A} {l : List A} → x ∉ y ∷ l → x ∉ l x∉y∷l⇒x∉l x∉y∷l x∈l = x∉y∷l $ there x∈l x≢y⇒x∉l⇒x∉y∷l : ∀ {ℓ} {A : Set ℓ} {x y : A} {l : List A} → x ≢ y → x ∉ l → x ∉ y ∷ l x≢y⇒x∉l⇒x∉y∷l x≢y x∉l (here x≡y) = x≢y x≡y x≢y⇒x∉l⇒x∉y∷l x≢y x∉l (there x∈l) = x∉l x∈l infix 5 _∋!_ _∈?_ _∈?_ : (s : String) (n : Names) → Dec (s ∈ n) s ∈? [] = no λ() s ∈? (h ∷ t) with s ≟ h ... | yes s≡h = yes $ here s≡h ... | no s≢h with s ∈? t ... | yes s∈t = yes $ there s∈t ... | no s∉t = no $ x≢y⇒x∉l⇒x∉y∷l s≢h s∉t _∋!_ : Names → String → Bool l ∋! e with e ∈? l ... | yes _ = true ... | no _ = false infix 4 _⊆_ _⊈_ _⊆_ : ∀ {ℓ} {A : Set ℓ} → List A → List A → Set ℓ xs ⊆ ys = ∀ {x} → x ∈ xs → x ∈ ys _⊈_ : ∀ {ℓ} {A : Set ℓ} → List A → List A → Set ℓ xs ⊈ ys = ¬ xs ⊆ ys infixl 5 _∪_ _∪_ : ∀ {ℓ} {A : Set ℓ} → List A → List A → List A _∪_ = _++_ infixl 6 _∩_ _∩_ : Names → Names → Names x ∩ y = boolFilter (_∋!_ y) x infixl 6 _∖_ _∖∖_ _∖_ : Names → Names → Names _∖_ x y = boolFilter (not ∘ _∋!_ y) x _∖∖_ : ∀ {ℓ} {A : Set ℓ} → List (Named A) → Names → List (Named A) _∖∖_ l n = boolFilter (not ∘ _∋!_ n ∘ proj₁) l filter-∈ : ∀ {ℓ} {A : Set ℓ} → List (Named A) → Names → List (Named A) filter-∈ l n = boolFilter (_∋!_ n ∘ proj₁) l infixr 5 _∷_ data NonRepetitive {ℓ} {A : Set ℓ} : List A → Set ℓ where [] : NonRepetitive [] _∷_ : ∀ {x xs} → x ∉ xs → NonRepetitive xs → NonRepetitive (x ∷ xs) infix 4 _≋_ data _≋_ {ℓ} {A : Set ℓ} : List A → List A → Set ℓ where refl : ∀ {l} → l ≋ l perm : ∀ {l} l₁ x₁ x₂ l₂ → l ≋ l₁ ++ x₂ ∷ x₁ ∷ l₂ → l ≋ l₁ ++ x₁ ∷ x₂ ∷ l₂ NonRepetitiveNames : ∀ {ℓ} {A : Set ℓ} → List (Named A) → Set NonRepetitiveNames = NonRepetitive ∘ names NonRepetitiveTypes : ∀ ℓ → Set (Level.suc ℓ) NonRepetitiveTypes ℓ = Σ[ t ∈ Types ℓ ] NonRepetitiveNames t -- lemmas ∪-assoc : ∀ {l} {A : Set l} (x y z : List A) → (x ∪ y) ∪ z ≡ x ∪ (y ∪ z) ∪-assoc [] y z = refl ∪-assoc (x ∷ xs) y z = ≡-elim′ (λ e → x ∷ e ≡ (x ∷ xs) ∪ (y ∪ z)) (≡-sym $ ∪-assoc xs y z) refl ≡⇒≋ : ∀ {ℓ} {A : Set ℓ} {x y : List A} → x ≡ y → x ≋ y ≡⇒≋ refl = refl private ∈-perm : ∀ {ℓ} {A : Set ℓ} {x : A} (l₁ : List A) (e₁ : A) (e₂ : A) (l₂ : List A) → x ∈ l₁ ++ e₁ ∷ e₂ ∷ l₂ → x ∈ l₁ ++ e₂ ∷ e₁ ∷ l₂ ∈-perm [] e₁ e₂ l₂ (here .{e₁} .{e₂ ∷ l₂} px) = there $ here px ∈-perm [] e₁ e₂ l₂ (there .{e₁} .{e₂ ∷ l₂} (here .{e₂} .{l₂} px)) = here px ∈-perm [] e₁ e₂ l₂ (there .{e₁} .{e₂ ∷ l₂} (there .{e₂} .{l₂} pxs)) = there $ there pxs ∈-perm (h₁ ∷ t₁) e₁ e₂ l₂ (here .{h₁} .{t₁ ++ e₁ ∷ e₂ ∷ l₂} px) = here px ∈-perm (h₁ ∷ t₁) e₁ e₂ l₂ (there .{h₁} .{t₁ ++ e₁ ∷ e₂ ∷ l₂} pxs) = there $ ∈-perm t₁ e₁ e₂ l₂ pxs ≋⇒⊆ : ∀ {ℓ} {A : Set ℓ} {x y : List A} → x ≋ y → x ⊆ y ≋⇒⊆ refl p = p ≋⇒⊆ {x = x} {y = .(l₁ ++ x₁ ∷ x₂ ∷ l₂)} (perm l₁ x₁ x₂ l₂ p) {e} e∈x = ∈-perm l₁ x₂ x₁ l₂ $ ≋⇒⊆ p e∈x ≋-trans : ∀ {l} {A : Set l} {x y z : List A} → x ≋ y → y ≋ z → x ≋ z ≋-trans p refl = p ≋-trans p₁ (perm l₁ x₁ x₂ l₂ p₂) = perm l₁ x₁ x₂ l₂ $ ≋-trans p₁ p₂ ≋-sym : ∀ {l} {A : Set l} {x y : List A} → x ≋ y → y ≋ x ≋-sym refl = refl ≋-sym (perm l₁ x₁ x₂ l₂ p) = ≋-trans (perm l₁ x₂ x₁ l₂ refl) (≋-sym p) ≋-del-ins-r : ∀ {l} {A : Set l} (l₁ : List A) (x : A) (l₂ l₃ : List A) → (l₁ ++ x ∷ l₂ ++ l₃) ≋ (l₁ ++ l₂ ++ x ∷ l₃) ≋-del-ins-r l₁ x [] l₃ = refl ≋-del-ins-r l₁ x (h ∷ t) l₃ = ≋-trans p₀ p₅ where p₀ : (l₁ ++ x ∷ h ∷ t ++ l₃) ≋ (l₁ ++ h ∷ x ∷ t ++ l₃) p₀ = perm l₁ h x (t ++ l₃) refl p₁ : ((l₁ ++ [ h ]) ++ x ∷ t ++ l₃) ≋ ((l₁ ++ [ h ]) ++ t ++ x ∷ l₃) p₁ = ≋-del-ins-r (l₁ ++ [ h ]) x t l₃ p₂ : (l₁ ++ [ h ]) ++ t ++ x ∷ l₃ ≡ l₁ ++ h ∷ t ++ x ∷ l₃ p₂ = ∪-assoc l₁ [ h ] (t ++ x ∷ l₃) p₃ : (l₁ ++ [ h ]) ++ x ∷ t ++ l₃ ≡ l₁ ++ h ∷ x ∷ t ++ l₃ p₃ = ∪-assoc l₁ [ h ] (x ∷ t ++ l₃) p₄ : ((l₁ ++ [ h ]) ++ x ∷ t ++ l₃) ≋ (l₁ ++ h ∷ t ++ x ∷ l₃) p₄ = ≡-elim′ (λ y → ((l₁ ++ [ h ]) ++ x ∷ t ++ l₃) ≋ y) p₂ p₁ p₅ : (l₁ ++ h ∷ x ∷ t ++ l₃) ≋ (l₁ ++ h ∷ t ++ x ∷ l₃) p₅ = ≡-elim′ (λ y → y ≋ (l₁ ++ h ∷ t ++ x ∷ l₃)) p₃ p₄ ≋-del-ins-l : ∀ {l} {A : Set l} (l₁ l₂ : List A) (x : A) (l₃ : List A) → (l₁ ++ l₂ ++ x ∷ l₃) ≋ (l₁ ++ x ∷ l₂ ++ l₃) ≋-del-ins-l l₁ l₂ x l₃ = ≋-sym $ ≋-del-ins-r l₁ x l₂ l₃ x∪[]≡x : ∀ {ℓ} {A : Set ℓ} (x : List A) → x ∪ [] ≡ x x∪[]≡x [] = refl x∪[]≡x (h ∷ t) = ≡-trans p₀ p₁ where p₀ : (h ∷ t) ++ [] ≡ h ∷ t ++ [] p₀ = ∪-assoc [ h ] t [] p₁ : h ∷ t ++ [] ≡ h ∷ t p₁ = ≡-cong (λ x → h ∷ x) (x∪[]≡x t) x∖[]≡x : (x : Names) → x ∖ [] ≡ x x∖[]≡x [] = refl x∖[]≡x (h ∷ t) = ≡-cong (_∷_ h) (x∖[]≡x t) t∖[]≡t : ∀ {ℓ} {A : Set ℓ} (t : List (Named A)) → t ∖∖ [] ≡ t t∖[]≡t [] = refl t∖[]≡t (h ∷ t) = ≡-cong (_∷_ h) (t∖[]≡t t) e∷x≋e∷y : ∀ {ℓ} {A : Set ℓ} (e : A) {x y : List A} → x ≋ y → e ∷ x ≋ e ∷ y e∷x≋e∷y _ refl = refl e∷x≋e∷y x (perm l₁ e₁ e₂ l₂ p) = perm (x ∷ l₁) e₁ e₂ l₂ (e∷x≋e∷y x p) ∪-sym : ∀ {ℓ} {A : Set ℓ} (x y : List A) → x ∪ y ≋ y ∪ x ∪-sym [] y = ≡-elim′ (λ z → y ≋ z) (≡-sym $ x∪[]≡x y) refl ∪-sym x [] = ≡-elim′ (λ z → z ≋ x) (≡-sym $ x∪[]≡x x) refl ∪-sym x (y ∷ ys) = ≡-elim′ (λ z → x ++ (y ∷ ys) ≋ z) p₃ (≋-trans p₁ p₂) where p₁ : x ++ (y ∷ ys) ≋ y ∷ (x ++ ys) p₁ = ≋-del-ins-l [] x y ys p₂ : y ∷ (x ++ ys) ≋ y ∷ (ys ++ x) p₂ = e∷x≋e∷y y $ ∪-sym x ys p₃ : y ∷ (ys ++ x) ≡ (y ∷ ys) ++ x p₃ = ∪-assoc [ y ] ys x y≋ỳ⇒x∪y≋x∪ỳ : ∀ {ℓ} {A : Set ℓ} (x : List A) {y ỳ : List A} → y ≋ ỳ → x ∪ y ≋ x ∪ ỳ y≋ỳ⇒x∪y≋x∪ỳ [] p = p y≋ỳ⇒x∪y≋x∪ỳ (h ∷ t) p = e∷x≋e∷y h (y≋ỳ⇒x∪y≋x∪ỳ t p) x≋x̀⇒x∪y≋x̀∪y : ∀ {ℓ} {A : Set ℓ} {x x̀ : List A} → x ≋ x̀ → (y : List A) → x ∪ y ≋ x̀ ∪ y x≋x̀⇒x∪y≋x̀∪y {x = x} {x̀ = x̀} p y = ≋-trans (∪-sym x y) $ ≋-trans (y≋ỳ⇒x∪y≋x∪ỳ y p) (∪-sym y x̀) x⊆y≋z : ∀ {ℓ} {A : Set ℓ} {x y z : List A} → x ⊆ y → y ≋ z → x ⊆ z x⊆y≋z x⊆y refl = x⊆y x⊆y≋z {x = x} {y = y} {z = .(l₁ ++ x₁ ∷ x₂ ∷ l₂)} x⊆y (perm l₁ x₁ x₂ l₂ p) = ∈-perm l₁ x₂ x₁ l₂ ∘ x⊆y≋z x⊆y p x≋y⊆z : ∀ {ℓ} {A : Set ℓ} {x y z : List A} → x ≋ y → x ⊆ z → y ⊆ z x≋y⊆z refl x⊆z = x⊆z x≋y⊆z {y = .(l₁ ++ x₁ ∷ x₂ ∷ l₂)} {z = z} (perm l₁ x₁ x₂ l₂ p) x⊆z = x≋y⊆z p x⊆z ∘ ∈-perm l₁ x₁ x₂ l₂ x⊆x∪y : ∀ {ℓ} {A : Set ℓ} (x y : List A) → x ⊆ x ∪ y x⊆x∪y .(x ∷ xs) y (here {x} {xs} px) = here px x⊆x∪y .(x ∷ xs) y (there {x} {xs} pxs) = there $ x⊆x∪y xs y pxs x∪y⊆z⇒x⊆z : ∀ {ℓ} {A : Set ℓ} (x y : List A) {z : List A} → x ∪ y ⊆ z → x ⊆ z x∪y⊆z⇒x⊆z x y x∪y⊆z = x∪y⊆z ∘ x⊆x∪y x y x∪y⊆z⇒y⊆z : ∀ {ℓ} {A : Set ℓ} (x y : List A) {z : List A} → x ∪ y ⊆ z → y ⊆ z x∪y⊆z⇒y⊆z x y = x∪y⊆z⇒x⊆z y x ∘ x≋y⊆z (∪-sym x y) n-x∪y : ∀ {ℓ} {A : Set ℓ} (x y : List (Named A)) → names (x ∪ y) ≡ names x ∪ names y n-x∪y [] _ = refl n-x∪y {ℓ} (x ∷ xs) y = ≡-trans p₁ p₂ where nx = [ proj₁ x ] nxs = names xs ny = names y p₁ : nx ∪ names (xs ∪ y) ≡ nx ∪ (nxs ∪ ny) p₁ = ≡-cong (λ z → nx ∪ z) (n-x∪y xs y) p₂ : nx ∪ (nxs ∪ ny) ≡ (nx ∪ nxs) ∪ ny p₂ = ≡-sym $ ∪-assoc nx nxs ny t-x∪y : ∀ {ℓ} (x y : Values ℓ) → types (x ∪ y) ≡ types x ∪ types y t-x∪y [] _ = refl t-x∪y (x ∷ xs) y = ≡-trans p₁ p₂ where nx = types [ x ] nxs = types xs ny = types y p₁ : nx ∪ types (xs ∪ y) ≡ nx ∪ (nxs ∪ ny) p₁ = ≡-cong (λ z → nx ∪ z) (t-x∪y xs y) p₂ : nx ∪ (nxs ∪ ny) ≡ (nx ∪ nxs) ∪ ny p₂ = ≡-sym $ ∪-assoc nx nxs ny n-x≋y : ∀ {ℓ} {A : Set ℓ} {x y : List (Named A)} → x ≋ y → names x ≋ names y n-x≋y refl = refl n-x≋y (perm {x} l₁ e₁ e₂ l₂ p) = p₃ where n-l₁e₁e₂l₂ : ∀ e₁ e₂ → names (l₁ ++ e₁ ∷ e₂ ∷ l₂) ≡ names l₁ ++ names [ e₁ ] ++ names [ e₂ ] ++ names l₂ n-l₁e₁e₂l₂ e₁ e₂ = ≡-trans p₁ $ ≡-trans p₂ p₃ where p₁ : names (l₁ ++ e₁ ∷ e₂ ∷ l₂) ≡ names l₁ ++ names (e₁ ∷ e₂ ∷ l₂) p₁ = n-x∪y l₁ (e₁ ∷ e₂ ∷ l₂) p₂ : names l₁ ++ names (e₁ ∷ e₂ ∷ l₂) ≡ names l₁ ++ names [ e₁ ] ++ names (e₂ ∷ l₂) p₂ = ≡-cong (λ z → names l₁ ++ z) (n-x∪y [ e₁ ] (e₂ ∷ l₂)) p₃ : names l₁ ++ names [ e₁ ] ++ names (e₂ ∷ l₂) ≡ names l₁ ++ names [ e₁ ] ++ names [ e₂ ] ++ names l₂ p₃ = ≡-cong (λ z → names l₁ ++ names [ e₁ ] ++ z) (n-x∪y [ e₂ ] l₂) p₁ : names x ≋ names l₁ ++ proj₁ e₂ ∷ proj₁ e₁ ∷ names l₂ p₁ = ≡-elim′ (λ z → names x ≋ z) (n-l₁e₁e₂l₂ e₂ e₁) (n-x≋y p) p₂ : names x ≋ names l₁ ++ proj₁ e₁ ∷ proj₁ e₂ ∷ names l₂ p₂ = perm (names l₁) (proj₁ e₁) (proj₁ e₂) (names l₂) p₁ p₃ : names x ≋ names (l₁ ++ e₁ ∷ e₂ ∷ l₂) p₃ = ≡-elim′ (λ z → names x ≋ z) (≡-sym $ n-l₁e₁e₂l₂ e₁ e₂) p₂ n-types : ∀ {ℓ} (x : Values ℓ) → names (types x) ≡ names x n-types [] = refl n-types (x ∷ xs) = ≡-cong (λ z → proj₁ x ∷ z) (n-types xs) nr-x≋y : ∀ {ℓ} {A : Set ℓ} {x y : List A} → x ≋ y → NonRepetitive x → NonRepetitive y nr-x≋y refl u = u nr-x≋y {y = .(l₁ ++ e₁ ∷ e₂ ∷ l₂)} (perm l₁ e₁ e₂ l₂ p) u = ≋-step l₁ e₂ e₁ l₂ (nr-x≋y p u) where ∉-step : ∀ {ℓ} {A : Set ℓ} {x : A} (l₁ : List A) (e₁ : A) (e₂ : A) (l₂ : List A) → x ∉ l₁ ++ e₁ ∷ e₂ ∷ l₂ → x ∉ l₁ ++ e₂ ∷ e₁ ∷ l₂ ∉-step l₁ e₁ e₂ l₂ x∉l x∈l = ⊥-elim $ x∉l $ ∈-perm l₁ e₂ e₁ l₂ x∈l ≋-step : ∀ {ℓ} {A : Set ℓ} (l₁ : List A) (e₁ : A) (e₂ : A) (l₂ : List A) → NonRepetitive (l₁ ++ e₁ ∷ e₂ ∷ l₂) → NonRepetitive (l₁ ++ e₂ ∷ e₁ ∷ l₂) ≋-step [] e₁ e₂ l₂ (_∷_ .{e₁} .{e₂ ∷ l₂} e₁∉e₂∷l₂ (_∷_ .{e₂} .{l₂} e₂∉l₂ pU)) = e₂∉e₁∷l₂ ∷ e₁∉l₂ ∷ pU where e₁∉l₂ = e₁ ∉ l₂ ∋ x∉y∷l⇒x∉l e₁∉e₂∷l₂ e₂∉e₁∷l₂ = e₂ ∉ e₁ ∷ l₂ ∋ x≢y⇒x∉l⇒x∉y∷l (≢-sym $ x∉y∷l⇒x≢y e₁∉e₂∷l₂) e₂∉l₂ ≋-step (h₁ ∷ t₁) e₁ e₂ l₂ (_∷_ .{h₁} .{t₁ ++ e₁ ∷ e₂ ∷ l₂} p∉ pU) = ∉-step t₁ e₁ e₂ l₂ p∉ ∷ ≋-step t₁ e₁ e₂ l₂ pU nr-x⇒nr-t-x : ∀ {ℓ} {x : Values ℓ} → NonRepetitiveNames x → NonRepetitiveNames (types x) nr-x⇒nr-t-x {x = x} = ≡-elim′ NonRepetitive (≡-sym $ n-types x) n-x∖y : ∀ {ℓ} {A : Set ℓ} (x : List (Named A)) (y : Names) → names (x ∖∖ y) ≡ names x ∖ y n-x∖y [] _ = refl n-x∖y (x ∷ xs) ny with not $ ny ∋! proj₁ x ... | false = n-x∖y xs ny ... | true = ≡-trans p₁ p₂ where p₁ : names (x ∷ (xs ∖∖ ny)) ≡ proj₁ x ∷ names (xs ∖∖ ny) p₁ = n-x∪y [ x ] (xs ∖∖ ny) p₂ : proj₁ x ∷ names (xs ∖∖ ny) ≡ proj₁ x ∷ (names xs ∖ ny) p₂ = ≡-cong (λ z → proj₁ x ∷ z) (n-x∖y xs ny) t-x∖y : ∀ {ℓ} (x : Values ℓ) (y : Names) → types (x ∖∖ y) ≡ types x ∖∖ y t-x∖y [] _ = refl t-x∖y (x ∷ xs) ny with not $ ny ∋! proj₁ x ... | false = t-x∖y xs ny ... | true = ≡-trans p₁ p₂ where x̀ = types [ x ] p₁ : types (x ∷ (xs ∖∖ ny)) ≡ x̀ ∪ types (xs ∖∖ ny) p₁ = t-x∪y [ x ] (xs ∖∖ ny) p₂ : x̀ ∪ types (xs ∖∖ ny) ≡ x̀ ∪ (types xs ∖∖ ny) p₂ = ≡-cong (λ z → x̀ ∪ z) (t-x∖y xs ny) n-filter-∈ : ∀ {ℓ} {A : Set ℓ} (x : List (Named A)) (y : Names) → names (filter-∈ x y) ≡ names x ∩ y n-filter-∈ [] _ = refl n-filter-∈ (x ∷ xs) ny with ny ∋! proj₁ x ... | false = n-filter-∈ xs ny ... | true = ≡-trans p₁ p₂ where p₁ : names (x ∷ (filter-∈ xs ny)) ≡ proj₁ x ∷ names (filter-∈ xs ny) p₁ = n-x∪y [ x ] (filter-∈ xs ny) p₂ : proj₁ x ∷ names (filter-∈ xs ny) ≡ proj₁ x ∷ (names xs ∩ ny) p₂ = ≡-cong (λ z → proj₁ x ∷ z) (n-filter-∈ xs ny) t-filter-∈ : ∀ {ℓ} (x : Values ℓ) (y : Names) → types (filter-∈ x y) ≡ filter-∈ (types x) y t-filter-∈ [] _ = refl t-filter-∈ (x ∷ xs) ny with ny ∋! proj₁ x ... | false = t-filter-∈ xs ny ... | true = ≡-trans p₁ p₂ where x̀ = types [ x ] p₁ : types (x ∷ filter-∈ xs ny) ≡ x̀ ∪ types (filter-∈ xs ny) p₁ = t-x∪y [ x ] (filter-∈ xs ny) p₂ : x̀ ∪ types (filter-∈ xs ny) ≡ x̀ ∪ filter-∈ (types xs) ny p₂ = ≡-cong (λ z → x̀ ∪ z) (t-filter-∈ xs ny) []⊆x : ∀ {ℓ} {A : Set ℓ} (x : List A) → [] ⊆ x []⊆x _ () ∀x∉[] : ∀ {ℓ} {A : Set ℓ} {x : A} → x ∉ [] ∀x∉[] () x⊆[]⇒x≡[] : ∀ {ℓ} {A : Set ℓ} {x : List A} → x ⊆ [] → x ≡ [] x⊆[]⇒x≡[] {x = []} _ = refl x⊆[]⇒x≡[] {x = _ ∷ _} x⊆[] = ⊥-elim $ ∀x∉[] $ x⊆[] (here refl) x∩y⊆x : ∀ {ℓ} {A : Set ℓ} (x : List (Named A)) (y : Names) → filter-∈ x y ⊆ x x∩y⊆x [] _ = λ() x∩y⊆x (h ∷ t) y with y ∋! proj₁ h ... | false = there ∘ x∩y⊆x t y ... | true = f where f : h ∷ filter-∈ t y ⊆ h ∷ t f (here {x = .h} p) = here p f (there {xs = .(filter-∈ t y)} p) = there $ x∩y⊆x t y p e∈x⇒e∈y∪x : ∀ {ℓ} {A : Set ℓ} {e : A} {x : List A} (y : List A) → e ∈ x → e ∈ y ∪ x e∈x⇒e∈y∪x [] = id e∈x⇒e∈y∪x (h ∷ t) = there ∘ e∈x⇒e∈y∪x t e∈x⇒e∈x∪y : ∀ {ℓ} {A : Set ℓ} {e : A} {x : List A} (y : List A) → e ∈ x → e ∈ x ∪ y e∈x⇒e∈x∪y {e = e} {x = x} y e∈x = x⊆y≋z f (∪-sym y x) (e ∈ [ e ] ∋ here refl) where f : [ e ] ⊆ y ∪ x f {è} (here {x = .e} p) = ≡-elim′ (λ z → z ∈ y ∪ x) (≡-sym p) (e∈x⇒e∈y∪x y e∈x) f (there ()) x∪y⊆x̀∪ỳ : ∀ {ℓ} {A : Set ℓ} {x x̀ y ỳ : List A} → x ⊆ x̀ → y ⊆ ỳ → x ∪ y ⊆ x̀ ∪ ỳ x∪y⊆x̀∪ỳ {x = []} {x̀ = []} _ y⊆ỳ = y⊆ỳ x∪y⊆x̀∪ỳ {x = []} {x̀ = _ ∷ t̀} _ y⊆ỳ = there ∘ x∪y⊆x̀∪ỳ ([]⊆x t̀) y⊆ỳ x∪y⊆x̀∪ỳ {x = h ∷ t} {x̀ = x̀} {y = y} {ỳ = ỳ} x⊆x̀ y⊆ỳ = f where f : (h ∷ t) ∪ y ⊆ x̀ ∪ ỳ f {e} (here {x = .h} e≡h) = e∈x⇒e∈x∪y ỳ (x⊆x̀ $ here e≡h) f {e} (there {xs = .(t ∪ y)} p) = x∪y⊆x̀∪ỳ (x∪y⊆z⇒y⊆z [ h ] t x⊆x̀) y⊆ỳ p x∖y⊆x : (x y : Names) → x ∖ y ⊆ x x∖y⊆x [] _ = λ() x∖y⊆x (h ∷ t) y with y ∋! h ... | true = there ∘ x∖y⊆x t y ... | false = x∪y⊆x̀∪ỳ (≋⇒⊆ $ ≡⇒≋ $ refl {x = [ h ]}) (x∖y⊆x t y) t≋t∖n∪t∩n : ∀ {ℓ} {A : Set ℓ} (t : List (Named A)) (n : Names) → t ≋ (t ∖∖ n) ∪ filter-∈ t n t≋t∖n∪t∩n [] _ = refl t≋t∖n∪t∩n (h ∷ t) n with n ∋! proj₁ h ... | false = e∷x≋e∷y h $ t≋t∖n∪t∩n t n ... | true = ≋-trans p₁ p₂ where p₁ : h ∷ t ≋ (h ∷ (t ∖∖ n)) ∪ filter-∈ t n p₁ = e∷x≋e∷y h $ t≋t∖n∪t∩n t n p₂ : (h ∷ (t ∖∖ n)) ∪ filter-∈ t n ≋ (t ∖∖ n) ∪ (h ∷ filter-∈ t n) p₂ = ≋-del-ins-r [] h (t ∖∖ n) (filter-∈ t n) e₁∈x⇒e₂∉x⇒e≢e₂ : ∀ {ℓ} {A : Set ℓ} {e₁ e₂ : A} {x : List A} → e₁ ∈ x → e₂ ∉ x → e₁ ≢ e₂ e₁∈x⇒e₂∉x⇒e≢e₂ e₁∈x e₂∉x refl = e₂∉x e₁∈x e₁∈e₂∷x⇒e₁≢e₂⇒e₁∈x : ∀ {ℓ} {A : Set ℓ} {e₁ e₂ : A} {x : List A} → e₁ ∈ e₂ ∷ x → e₁ ≢ e₂ → e₁ ∈ x e₁∈e₂∷x⇒e₁≢e₂⇒e₁∈x (here e₁≡e₂) e₁≢e₂ = ⊥-elim $ e₁≢e₂ e₁≡e₂ e₁∈e₂∷x⇒e₁≢e₂⇒e₁∈x (there e₁∈x) _ = e₁∈x x⊆e∷y⇒e∉x⇒x⊆y : ∀ {ℓ} {A : Set ℓ} {e : A} {x y : List A} → x ⊆ e ∷ y → e ∉ x → x ⊆ y x⊆e∷y⇒e∉x⇒x⊆y {e = e} {x = x} {y = y} x⊆e∷y e∉x {è} è∈x = e₁∈e₂∷x⇒e₁≢e₂⇒e₁∈x (x⊆e∷y è∈x) (e₁∈x⇒e₂∉x⇒e≢e₂ è∈x e∉x) n-e∉l⇒e∉l : ∀ {ℓ} {A : Set ℓ} {e : Named A} {l : List (Named A)} → proj₁ e ∉ names l → e ∉ l n-e∉l⇒e∉l {e = e} n-e∉l (here {x = è} p) = ⊥-elim $ n-e∉l $ here $ ≡-cong proj₁ p n-e∉l⇒e∉l n-e∉l (there p) = n-e∉l⇒e∉l (x∉y∷l⇒x∉l n-e∉l) p nr-names⇒nr : ∀ {ℓ} {A : Set ℓ} {l : List (Named A)} → NonRepetitiveNames l → NonRepetitive l nr-names⇒nr {l = []} [] = [] nr-names⇒nr {l = _ ∷ _} (nh∉nt ∷ nr-t) = n-e∉l⇒e∉l nh∉nt ∷ nr-names⇒nr nr-t e∉x⇒e∉y⇒e∉x∪y : ∀ {ℓ} {A : Set ℓ} {e : A} {x y : List A} → e ∉ x → e ∉ y → e ∉ x ∪ y e∉x⇒e∉y⇒e∉x∪y {x = []} _ e∉y e∈y = ⊥-elim $ e∉y e∈y e∉x⇒e∉y⇒e∉x∪y {x = h ∷ t} e∉x e∉y (here e≡h) = ⊥-elim $ e∉x $ here e≡h e∉x⇒e∉y⇒e∉x∪y {x = h ∷ t} e∉x e∉y (there e∈t∪y) = e∉x⇒e∉y⇒e∉x∪y (x∉y∷l⇒x∉l e∉x) e∉y e∈t∪y nr-x∖y∪y : {x y : Names} → NonRepetitive x → NonRepetitive y → NonRepetitive (x ∖ y ∪ y) nr-x∖y∪y {x = []} _ nr-y = nr-y nr-x∖y∪y {x = x ∷ xs} {y = y} (x∉xs ∷ nr-xs) nr-y with x ∈? y ... | yes x∈y = nr-x∖y∪y nr-xs nr-y ... | no x∉y = e∉x⇒e∉y⇒e∉x∪y (⊥-elim ∘ x∉xs ∘ x∖y⊆x xs y) x∉y ∷ nr-x∖y∪y nr-xs nr-y e∉l∖[e] : (e : String) (l : Names) → e ∉ l ∖ [ e ] e∉l∖[e] _ [] = λ() e∉l∖[e] e (h ∷ t) with h ≟ e ... | yes _ = e∉l∖[e] e t ... | no h≢e = x≢y⇒x∉l⇒x∉y∷l (≢-sym h≢e) (e∉l∖[e] e t) e∉l⇒l∖e≡l : {e : String} {l : Names} → e ∉ l → l ∖ [ e ] ≡ l e∉l⇒l∖e≡l {e = e} {l = []} _ = refl e∉l⇒l∖e≡l {e = e} {l = h ∷ t} e∉l with h ∈? [ e ] ... | yes h∈e = ⊥-elim $ x≢y⇒x∉l⇒x∉y∷l (≢-sym $ x∉y∷l⇒x≢y e∉l) (λ()) h∈e ... | no h∉e = ≡-cong (_∷_ h) (e∉l⇒l∖e≡l $ x∉y∷l⇒x∉l e∉l) e∈l⇒nr-l⇒l∖e∪e≋l : {e : String} {l : Names} → e ∈ l → NonRepetitive l → l ∖ [ e ] ∪ [ e ] ≋ l e∈l⇒nr-l⇒l∖e∪e≋l {l = []} () _ e∈l⇒nr-l⇒l∖e∪e≋l {e = e} {l = h ∷ t} e∈h∷t (h∉t ∷ nr-t) with h ∈? [ e ] ... | yes (here h≡e) = ≋-trans (≡⇒≋ $ ≡-trans p₁ p₂) (∪-sym t [ h ]) where p₁ : t ∖ [ e ] ∪ [ e ] ≡ t ∖ [ h ] ∪ [ h ] p₁ = ≡-cong (λ x → t ∖ [ x ] ∪ [ x ]) (≡-sym h≡e) p₂ : t ∖ [ h ] ∪ [ h ] ≡ t ∪ [ h ] p₂ = ≡-cong (λ x → x ∪ [ h ]) (e∉l⇒l∖e≡l h∉t) ... | yes (there ()) ... | no h∉e with e∈h∷t ... | here e≡h = ⊥-elim ∘ h∉e ∘ here ∘ ≡-sym $ e≡h ... | there e∈t = e∷x≋e∷y _ $ e∈l⇒nr-l⇒l∖e∪e≋l e∈t nr-t nr-x∖y : {x : Names} → NonRepetitive x → (y : Names) → NonRepetitive (x ∖ y) nr-x∖y {x = []} _ _ = [] nr-x∖y {x = x ∷ xs} (x∉xs ∷ nr-xs) y with x ∈? y ... | yes x∈y = nr-x∖y nr-xs y ... | no x∉y = ⊥-elim ∘ x∉xs ∘ x∖y⊆x xs y ∷ nr-x∖y nr-xs y x⊆y⇒e∉y⇒e∉x : ∀ {ℓ} {A : Set ℓ} {e : A} {x y : List A} → x ⊆ y → e ∉ y → e ∉ x x⊆y⇒e∉y⇒e∉x x⊆y e∉y e∈x = e∉y $ x⊆y e∈x e∈n-l⇒∃è,n-è≡e×è∈l : ∀ {ℓ} {A : Set ℓ} {e : String} {l : List (Named A)} → e ∈ names l → Σ[ è ∈ Named A ] (e ≡ proj₁ è × è ∈ l) e∈n-l⇒∃è,n-è≡e×è∈l {l = []} () e∈n-l⇒∃è,n-è≡e×è∈l {l = h ∷ t} (here e≡n-h) = h , e≡n-h , here refl e∈n-l⇒∃è,n-è≡e×è∈l {l = h ∷ t} (there e∈n-t) with e∈n-l⇒∃è,n-è≡e×è∈l e∈n-t ... | è , n-è≡e , è∈l = è , n-è≡e , there è∈l x⊆y⇒nx⊆ny : ∀ {ℓ} {A : Set ℓ} {x y : List (Named A)} → x ⊆ y → names x ⊆ names y x⊆y⇒nx⊆ny {x = x} {y = y} x⊆y {e} e∈n-x with e ∈? names y ... | yes e∈n-y = e∈n-y ... | no e∉n-y with e∈n-l⇒∃è,n-è≡e×è∈l e∈n-x ... | è , e≡n-è , è∈x = ⊥-elim $ x⊆y⇒e∉y⇒e∉x x⊆y (n-e∉l⇒e∉l $ ≡-elim′ (λ z → z ∉ names y) e≡n-è e∉n-y) è∈x nr-x⇒nr-x∩y : ∀ {ℓ} {A : Set ℓ} {x : List (Named A)} → NonRepetitiveNames x → (y : Names) → NonRepetitiveNames (filter-∈ x y) nr-x⇒nr-x∩y {x = []} _ _ = [] nr-x⇒nr-x∩y {x = h ∷ t} (h∉t ∷ nr-t) y with y ∋! proj₁ h ... | false = nr-x⇒nr-x∩y nr-t y ... | true = x⊆y⇒e∉y⇒e∉x (x⊆y⇒nx⊆ny $ x∩y⊆x t y) h∉t ∷ nr-x⇒nr-x∩y nr-t y e∈l⇒[e]⊆l : ∀ {ℓ} {A : Set ℓ} {e : A} {l : List A} → e ∈ l → [ e ] ⊆ l e∈l⇒[e]⊆l e∈l (here è≡e) = ≡-elim′ (λ x → x ∈ _) (≡-sym è≡e) e∈l e∈l⇒[e]⊆l e∈l (there ()) a∈x⇒x≋y⇒a∈y : ∀ {ℓ} {A : Set ℓ} {x y : List A} {a : A} → a ∈ x → x ≋ y → a ∈ y a∈x⇒x≋y⇒a∈y a∈x x≋y = x⊆y≋z (e∈l⇒[e]⊆l a∈x) x≋y (here refl) x⊆z⇒y⊆z⇒x∪y⊆z : ∀ {ℓ} {A : Set ℓ} {x y z : List A} → x ⊆ z → y ⊆ z → x ∪ y ⊆ z x⊆z⇒y⊆z⇒x∪y⊆z {x = []} _ y⊆z = y⊆z x⊆z⇒y⊆z⇒x∪y⊆z {x = h ∷ t} {y = y} {z = z} x⊆z y⊆z = f where f : (h ∷ t) ∪ y ⊆ z f {e} (here e≡h) = x⊆z $ here e≡h f {e} (there e∈t∪y) = x⊆z⇒y⊆z⇒x∪y⊆z (x∪y⊆z⇒y⊆z [ h ] t x⊆z) y⊆z e∈t∪y x⊆x∖y∪y : (x y : Names) → x ⊆ x ∖ y ∪ y x⊆x∖y∪y [] _ = []⊆x _ x⊆x∖y∪y (h ∷ t) y with h ∈? y x⊆x∖y∪y (h ∷ t) y | yes h∈y = x⊆z⇒y⊆z⇒x∪y⊆z (e∈l⇒[e]⊆l $ e∈x⇒e∈y∪x (t ∖ y) h∈y) (x⊆x∖y∪y t y) x⊆x∖y∪y (h ∷ t) y | no _ = x∪y⊆x̀∪ỳ ([ h ] ⊆ [ h ] ∋ ≋⇒⊆ refl) (x⊆x∖y∪y t y) e₁∈l⇒e₁∉l∖e₂⇒e₁≡e₂ : {e₁ e₂ : String} {l : Names} → e₁ ∈ l → e₁ ∉ l ∖ [ e₂ ] → e₁ ≡ e₂ e₁∈l⇒e₁∉l∖e₂⇒e₁≡e₂ {e₁ = e₁} {e₂ = e₂} {l = l} e₁∈l e₁∉l∖e₂ with e₁ ≟ e₂ ... | yes e₁≡e₂ = e₁≡e₂ ... | no e₁≢e₂ = ⊥-elim $ p₄ e₁∈l where p₁ : e₁ ∉ [ e₂ ] ∪ (l ∖ [ e₂ ]) p₁ = x≢y⇒x∉l⇒x∉y∷l e₁≢e₂ e₁∉l∖e₂ p₂ : [ e₂ ] ∪ (l ∖ [ e₂ ]) ≋ (l ∖ [ e₂ ]) ∪ [ e₂ ] p₂ = ∪-sym [ e₂ ] (l ∖ [ e₂ ]) p₃ : e₁ ∉ (l ∖ [ e₂ ]) ∪ [ e₂ ] p₃ = p₁ ∘ ≋⇒⊆ (∪-sym (l ∖ [ e₂ ]) [ e₂ ]) p₄ : e₁ ∉ l p₄ = x⊆y⇒e∉y⇒e∉x (x⊆x∖y∪y l [ e₂ ]) p₃ e∉x⇒x∩y≋x∩y∖e : {e : String} {x : Names} (y : Names) → e ∉ x → x ∩ y ≡ x ∩ (y ∖ [ e ]) e∉x⇒x∩y≋x∩y∖e {x = []} _ _ = refl e∉x⇒x∩y≋x∩y∖e {e = e} {x = h ∷ t} y e∉x with h ∈? y | h ∈? (y ∖ [ e ]) ... | yes h∈y | yes h∈y∖e = ≡-cong (_∷_ h) $ e∉x⇒x∩y≋x∩y∖e y $ x∉y∷l⇒x∉l e∉x ... | yes h∈y | no h∉y∖e = ⊥-elim $ e∉x e∈x where e∈x : e ∈ h ∷ t e∈x = here $ ≡-sym $ e₁∈l⇒e₁∉l∖e₂⇒e₁≡e₂ h∈y h∉y∖e ... | no h∉y | yes h∈y∖e = ⊥-elim $ h∉y $ x∖y⊆x y [ e ] h∈y∖e ... | no h∉y | no h∉y∖e = e∉x⇒x∩y≋x∩y∖e y $ x∉y∷l⇒x∉l e∉x y⊆x⇒x∩y≋y : {x y : Names} → NonRepetitive y → NonRepetitive x → y ⊆ x → x ∩ y ≋ y y⊆x⇒x∩y≋y {x = []} _ _ y⊆[] = ≡⇒≋ $ ≡-elim′ (λ y → [] ∩ y ≡ y) (≡-sym $ x⊆[]⇒x≡[] y⊆[]) refl y⊆x⇒x∩y≋y {x = h ∷ t} {y = y} nr-y (h∉t ∷ nr-t) y⊆h∷t with h ∈? y ... | yes h∈y = ≋-trans (∪-sym [ h ] (t ∩ y)) p₄ where p₁ : t ∩ y ≋ t ∩ (y ∖ [ h ]) p₁ = ≡⇒≋ $ e∉x⇒x∩y≋x∩y∖e y h∉t p₂ : t ∩ (y ∖ [ h ]) ≋ y ∖ [ h ] p₂ = y⊆x⇒x∩y≋y (nr-x∖y nr-y [ h ]) nr-t $ x⊆e∷y⇒e∉x⇒x⊆y (y⊆h∷t ∘ x∖y⊆x y [ h ]) (e∉l∖[e] h y) p₃ : y ∖ [ h ] ∪ [ h ] ≋ y p₃ = e∈l⇒nr-l⇒l∖e∪e≋l h∈y nr-y p₄ : t ∩ y ∪ [ h ] ≋ y p₄ = ≋-trans (x≋x̀⇒x∪y≋x̀∪y (≋-trans p₁ p₂) [ h ]) p₃ ... | no h∉y = y⊆x⇒x∩y≋y nr-y nr-t $ x⊆e∷y⇒e∉x⇒x⊆y y⊆h∷t h∉y x∪y∖n≡x∖n∪y∖n : ∀ {ℓ} {A : Set ℓ} (x y : List (Named A)) (n : Names) → (x ∪ y) ∖∖ n ≡ (x ∖∖ n) ∪ (y ∖∖ n) x∪y∖n≡x∖n∪y∖n [] _ _ = refl x∪y∖n≡x∖n∪y∖n (h ∷ t) y n with proj₁ h ∈? n ... | yes _ = x∪y∖n≡x∖n∪y∖n t y n ... | no _ = ≡-cong (_∷_ h) (x∪y∖n≡x∖n∪y∖n t y n) n-x⊆n⇒x∖n≡[] : ∀ {ℓ} {A : Set ℓ} (x : List (Named A)) (n : Names) → names x ⊆ n → x ∖∖ n ≡ [] n-x⊆n⇒x∖n≡[] [] _ _ = refl n-x⊆n⇒x∖n≡[] (h ∷ t) n n-x⊆n with proj₁ h ∈? n ... | yes _ = n-x⊆n⇒x∖n≡[] t n $ x∪y⊆z⇒y⊆z [ proj₁ h ] (names t) (x≋y⊆z (≡⇒≋ $ n-x∪y [ h ] t) n-x⊆n) ... | no h∉n = ⊥-elim $ h∉n $ n-x⊆n (proj₁ h ∈ proj₁ h ∷ names t ∋ here refl) x∖x≡[] : ∀ {ℓ} {A : Set ℓ} (x : List (Named A)) → x ∖∖ names x ≡ [] x∖x≡[] x = n-x⊆n⇒x∖n≡[] x (names x) (≋⇒⊆ refl) nr-[a] : ∀ {ℓ} {A : Set ℓ} {a : A} → NonRepetitive [ a ] nr-[a] = (λ()) ∷ [] x≋y⇒x∖n≋y∖n : ∀ {ℓ} {A : Set ℓ} {x y : List (Named A)} → x ≋ y → (n : Names) → x ∖∖ n ≋ y ∖∖ n x≋y⇒x∖n≋y∖n refl _ = refl x≋y⇒x∖n≋y∖n {x = x} (perm l₁ x₁ x₂ l₂ p) n = ≋-trans p₀ $ ≋-trans (≡⇒≋ p₅) $ ≋-trans pg (≡⇒≋ $ ≡-sym g₅) where p₀ : x ∖∖ n ≋ (l₁ ++ x₂ ∷ x₁ ∷ l₂) ∖∖ n p₀ = x≋y⇒x∖n≋y∖n p n p₁ : (l₁ ++ [ x₂ ] ++ [ x₁ ] ++ l₂) ∖∖ n ≡ l₁ ∖∖ n ++ ([ x₂ ] ++ [ x₁ ] ++ l₂) ∖∖ n p₁ = x∪y∖n≡x∖n∪y∖n l₁ ([ x₂ ] ++ [ x₁ ] ++ l₂) n p₂ : l₁ ∖∖ n ++ ([ x₂ ] ++ [ x₁ ] ++ l₂) ∖∖ n ≡ l₁ ∖∖ n ++ [ x₂ ] ∖∖ n ++ ([ x₁ ] ++ l₂) ∖∖ n p₂ = ≡-cong (λ z → l₁ ∖∖ n ++ z) (x∪y∖n≡x∖n∪y∖n [ x₂ ] ([ x₁ ] ++ l₂) n) p₃ : l₁ ∖∖ n ++ [ x₂ ] ∖∖ n ++ ([ x₁ ] ++ l₂) ∖∖ n ≡ l₁ ∖∖ n ++ [ x₂ ] ∖∖ n ++ [ x₁ ] ∖∖ n ++ l₂ ∖∖ n p₃ = ≡-cong (λ z → l₁ ∖∖ n ++ [ x₂ ] ∖∖ n ++ z) (x∪y∖n≡x∖n∪y∖n [ x₁ ] l₂ n) p₄ : l₁ ∖∖ n ++ [ x₂ ] ∖∖ n ++ [ x₁ ] ∖∖ n ++ l₂ ∖∖ n ≡ l₁ ∖∖ n ++ ([ x₂ ] ∖∖ n ++ [ x₁ ] ∖∖ n) ++ l₂ ∖∖ n p₄ = ≡-cong (λ z → l₁ ∖∖ n ++ z) (≡-sym $ ∪-assoc ([ x₂ ] ∖∖ n) ([ x₁ ] ∖∖ n) (l₂ ∖∖ n)) p₅ : (l₁ ++ [ x₂ ] ++ [ x₁ ] ++ l₂) ∖∖ n ≡ l₁ ∖∖ n ++ ([ x₂ ] ∖∖ n ++ [ x₁ ] ∖∖ n) ++ l₂ ∖∖ n p₅ = ≡-trans p₁ $ ≡-trans p₂ $ ≡-trans p₃ p₄ pg : l₁ ∖∖ n ++ ([ x₂ ] ∖∖ n ++ [ x₁ ] ∖∖ n) ++ l₂ ∖∖ n ≋ l₁ ∖∖ n ++ ([ x₁ ] ∖∖ n ++ [ x₂ ] ∖∖ n) ++ l₂ ∖∖ n pg = y≋ỳ⇒x∪y≋x∪ỳ (l₁ ∖∖ n) $ x≋x̀⇒x∪y≋x̀∪y (∪-sym ([ x₂ ] ∖∖ n) ([ x₁ ] ∖∖ n)) (l₂ ∖∖ n) g₁ : (l₁ ++ [ x₁ ] ++ [ x₂ ] ++ l₂) ∖∖ n ≡ l₁ ∖∖ n ++ ([ x₁ ] ++ [ x₂ ] ++ l₂) ∖∖ n g₁ = x∪y∖n≡x∖n∪y∖n l₁ ([ x₁ ] ++ [ x₂ ] ++ l₂) n g₂ : l₁ ∖∖ n ++ ([ x₁ ] ++ [ x₂ ] ++ l₂) ∖∖ n ≡ l₁ ∖∖ n ++ [ x₁ ] ∖∖ n ++ ([ x₂ ] ++ l₂) ∖∖ n g₂ = ≡-cong (λ z → l₁ ∖∖ n ++ z) (x∪y∖n≡x∖n∪y∖n [ x₁ ] ([ x₂ ] ++ l₂) n) g₃ : l₁ ∖∖ n ++ [ x₁ ] ∖∖ n ++ ([ x₂ ] ++ l₂) ∖∖ n ≡ l₁ ∖∖ n ++ [ x₁ ] ∖∖ n ++ [ x₂ ] ∖∖ n ++ l₂ ∖∖ n g₃ = ≡-cong (λ z → l₁ ∖∖ n ++ [ x₁ ] ∖∖ n ++ z) (x∪y∖n≡x∖n∪y∖n [ x₂ ] l₂ n) g₄ : l₁ ∖∖ n ++ [ x₁ ] ∖∖ n ++ [ x₂ ] ∖∖ n ++ l₂ ∖∖ n ≡ l₁ ∖∖ n ++ ([ x₁ ] ∖∖ n ++ [ x₂ ] ∖∖ n) ++ l₂ ∖∖ n g₄ = ≡-cong (λ z → l₁ ∖∖ n ++ z) (≡-sym $ ∪-assoc ([ x₁ ] ∖∖ n) ([ x₂ ] ∖∖ n) (l₂ ∖∖ n)) g₅ : (l₁ ++ [ x₁ ] ++ [ x₂ ] ++ l₂) ∖∖ n ≡ l₁ ∖∖ n ++ ([ x₁ ] ∖∖ n ++ [ x₂ ] ∖∖ n) ++ l₂ ∖∖ n g₅ = ≡-trans g₁ $ ≡-trans g₂ $ ≡-trans g₃ g₄ nr-x∪y⇒e∈x⇒e∈y⇒⊥ : ∀ {ℓ} {A : Set ℓ} {e : A} {x y : List A} → NonRepetitive (x ∪ y) → e ∈ x → e ∈ y → ⊥ nr-x∪y⇒e∈x⇒e∈y⇒⊥ {x = []} _ () nr-x∪y⇒e∈x⇒e∈y⇒⊥ {x = h ∷ t} (h∉t∪y ∷ nr-t∪y) (here e≡h) = h∉t∪y ∘ e∈x⇒e∈y∪x t ∘ ≡-elim′ (λ x → x ∈ _) e≡h nr-x∪y⇒e∈x⇒e∈y⇒⊥ {x = h ∷ t} (h∉t∪y ∷ nr-t∪y) (there e∈t) = nr-x∪y⇒e∈x⇒e∈y⇒⊥ nr-t∪y e∈t nr-x∪y⇒x∖y≡x : ∀ {ℓ} {A : Set ℓ} (x y : List (Named A)) → NonRepetitiveNames (x ∪ y) → y ∖∖ names x ≡ y nr-x∪y⇒x∖y≡x x y nr-x∪y = f₀ y (≋⇒⊆ refl) where f₀ : ∀ t → t ⊆ y → t ∖∖ names x ≡ t f₀ [] _ = refl f₀ (h ∷ t) h∷t⊆y with proj₁ h ∈? names x ... | yes h∈x = ⊥-elim $ nr-x∪y⇒e∈x⇒e∈y⇒⊥ (≡-elim′ NonRepetitive (n-x∪y x y) nr-x∪y) h∈x (x⊆y⇒nx⊆ny h∷t⊆y $ here refl) ... | no _ = ≡-cong (_∷_ h) (f₀ t $ x∪y⊆z⇒y⊆z [ h ] t h∷t⊆y) t≋t₁∪t₂⇒t∖t₁≋t₂ : ∀ {ℓ} {A : Set ℓ} {t : List (Named A)} → NonRepetitiveNames t → (t₁ t₂ : List (Named A)) → t ≋ t₁ ∪ t₂ → t ∖∖ names t₁ ≋ t₂ t≋t₁∪t₂⇒t∖t₁≋t₂ {t = t} nr-t t₁ t₂ t≋t₁∪t₂ = ≋-trans p₂ (≡⇒≋ $ nr-x∪y⇒x∖y≡x t₁ t₂ $ nr-x≋y (n-x≋y t≋t₁∪t₂) nr-t) where n-t₁ = names t₁ p₁ : t ∖∖ n-t₁ ≋ (t₁ ∖∖ n-t₁) ∪ (t₂ ∖∖ n-t₁) p₁ = ≋-trans (x≋y⇒x∖n≋y∖n t≋t₁∪t₂ n-t₁) (≡⇒≋ $ x∪y∖n≡x∖n∪y∖n t₁ t₂ n-t₁) p₂ : t ∖∖ n-t₁ ≋ t₂ ∖∖ n-t₁ p₂ = ≡-elim′ (λ x → t ∖∖ n-t₁ ≋ x ∪ (t₂ ∖∖ n-t₁)) (x∖x≡[] t₁) p₁ x≋x̀⇒y≋ỳ⇒x∪y≋x̀∪ỳ : ∀ {ℓ} {A : Set ℓ} {x x̀ y ỳ : List A} → x ≋ x̀ → y ≋ ỳ → x ∪ y ≋ x̀ ∪ ỳ x≋x̀⇒y≋ỳ⇒x∪y≋x̀∪ỳ x≋x̀ (refl {y}) = x≋x̀⇒x∪y≋x̀∪y x≋x̀ y x≋x̀⇒y≋ỳ⇒x∪y≋x̀∪ỳ {x = x} {x̀ = x̀} {y = y} {ỳ = ._} x≋x̀ (perm l₁ x₁ x₂ l₂ y≋l₁x₂x₁l₂) = ≋-trans p₁ $ ≋-trans p₂ $ ≋-trans p₃ p₄ where p₁ : x ∪ y ≋ x̀ ∪ (l₁ ++ x₂ ∷ x₁ ∷ l₂) p₁ = x≋x̀⇒y≋ỳ⇒x∪y≋x̀∪ỳ x≋x̀ y≋l₁x₂x₁l₂ p₂ : x̀ ∪ (l₁ ++ x₂ ∷ x₁ ∷ l₂) ≋ (x̀ ∪ l₁) ++ x₂ ∷ x₁ ∷ l₂ p₂ = ≡⇒≋ $ ≡-sym $ ∪-assoc x̀ l₁ (x₂ ∷ x₁ ∷ l₂) p₃ : (x̀ ∪ l₁) ++ x₂ ∷ x₁ ∷ l₂ ≋ (x̀ ∪ l₁) ++ x₁ ∷ x₂ ∷ l₂ p₃ = perm (x̀ ∪ l₁) x₁ x₂ l₂ refl p₄ : (x̀ ∪ l₁) ++ x₁ ∷ x₂ ∷ l₂ ≋ x̀ ∪ (l₁ ++ x₁ ∷ x₂ ∷ l₂) p₄ = ≡⇒≋ $ ∪-assoc x̀ l₁ (x₁ ∷ x₂ ∷ l₂) x∖y∪y≋y∖x∪x : ∀ {ℓ} {A : Set ℓ} (x y : List (Named A)) → let nx = names x ny = names y in filter-∈ x ny ≋ filter-∈ y nx → x ∖∖ ny ∪ y ≋ y ∖∖ nx ∪ x x∖y∪y≋y∖x∪x x y p₀ = ≋-trans p₁ $ ≋-trans p₂ p₃ where nx = names x ny = names y p₁ : x ∖∖ ny ∪ y ≋ x ∖∖ ny ∪ y ∖∖ nx ∪ filter-∈ y nx p₁ = ≋-trans (y≋ỳ⇒x∪y≋x∪ỳ (x ∖∖ ny) (t≋t∖n∪t∩n y nx)) (≡⇒≋ $ ≡-sym $ ∪-assoc (x ∖∖ ny) (y ∖∖ nx) (filter-∈ y nx)) p₂ : (x ∖∖ ny ∪ y ∖∖ nx) ∪ filter-∈ y nx ≋ (y ∖∖ nx ∪ x ∖∖ ny) ∪ filter-∈ x ny p₂ = x≋x̀⇒y≋ỳ⇒x∪y≋x̀∪ỳ (∪-sym (x ∖∖ ny) (y ∖∖ nx)) (≋-sym p₀) p₃ : y ∖∖ nx ∪ x ∖∖ ny ∪ filter-∈ x ny ≋ y ∖∖ nx ∪ x p₃ = ≋-trans (≡⇒≋ $ ∪-assoc (y ∖∖ nx) (x ∖∖ ny) (filter-∈ x ny)) (≋-sym $ y≋ỳ⇒x∪y≋x∪ỳ (y ∖∖ nx) (t≋t∖n∪t∩n x ny)) names⇒named : Names → List (Named Unit) names⇒named = mapL (λ x → x , unit) nn-x∪y≡nn-x∪nn-y : ∀ x y → names⇒named (x ∪ y) ≡ names⇒named x ∪ names⇒named y nn-x∪y≡nn-x∪nn-y [] y = refl nn-x∪y≡nn-x∪nn-y (h ∷ t) y = ≡-cong (_∷_ _) (nn-x∪y≡nn-x∪nn-y t y) nn-x≡x : ∀ x → names (names⇒named x) ≡ x nn-x≡x [] = refl nn-x≡x (h ∷ t) = ≡-cong (_∷_ h) (nn-x≡x t) x≋y⇒nn-x≋nn-y : ∀ {x y} → x ≋ y → names⇒named x ≋ names⇒named y x≋y⇒nn-x≋nn-y refl = refl x≋y⇒nn-x≋nn-y {x = x} {y = ._} (perm l₁ x₁ x₂ l₂ x≋l₁x₂x₁l₂) = ≋-trans p₁ p₂ where p₁ : names⇒named x ≋ names⇒named l₁ ++ (x₂ , unit) ∷ (x₁ , unit) ∷ names⇒named l₂ p₁ = ≋-trans (x≋y⇒nn-x≋nn-y x≋l₁x₂x₁l₂) (≡⇒≋ $ nn-x∪y≡nn-x∪nn-y l₁ (x₂ ∷ x₁ ∷ l₂)) p₂ : names⇒named l₁ ++ (x₂ , unit) ∷ (x₁ , unit) ∷ names⇒named l₂ ≋ names⇒named (l₁ ++ x₁ ∷ x₂ ∷ l₂) p₂ = ≋-trans (perm (names⇒named l₁) (x₁ , unit) (x₂ , unit) (names⇒named l₂) refl) (≡⇒≋ $ ≡-sym $ nn-x∪y≡nn-x∪nn-y l₁ (x₁ ∷ x₂ ∷ l₂)) x≋y∪z⇒x∖y≋z : {x : Names} → NonRepetitive x → (y z : Names) → x ≋ y ∪ z → x ∖ y ≋ z x≋y∪z⇒x∖y≋z {x} nr-x y z x≋y∪z = ≋-trans (≡⇒≋ $ ≡-sym $ ≡-trans p₂ p₃) (≋-trans p₁ $ ≡⇒≋ $ nn-x≡x z) where ux = names⇒named x uy = names⇒named y uz = names⇒named z ux≋uy∪uz : ux ≋ uy ∪ uz ux≋uy∪uz = ≋-trans (x≋y⇒nn-x≋nn-y x≋y∪z) (≡⇒≋ $ nn-x∪y≡nn-x∪nn-y y z) p₁ : names (ux ∖∖ names uy) ≋ names uz p₁ = n-x≋y $ t≋t₁∪t₂⇒t∖t₁≋t₂ (≡-elim′ NonRepetitive (≡-sym $ nn-x≡x x) nr-x) uy uz ux≋uy∪uz p₂ : names (ux ∖∖ names uy) ≡ names ux ∖ names uy p₂ = n-x∖y ux (names uy) p₃ : names ux ∖ names uy ≡ x ∖ y p₃ = ≡-cong₂ _∖_ (nn-x≡x x) (nn-x≡x y) h∈x⇒∃t,x≋h∷t : ∀ {ℓ} {A : Set ℓ} {h : A} {x : List A} → h ∈ x → NonRepetitive x → Σ[ t ∈ List A ] x ≋ h ∷ t h∈x⇒∃t,x≋h∷t {h = h} .{x = x ∷ xs} (here {x = x} {xs = xs} h≡x) (x∉xs ∷ nr-xs) = xs , ≡⇒≋ (≡-cong (λ z → z ∷ xs) (≡-sym h≡x)) h∈x⇒∃t,x≋h∷t {h = h} .{x = x ∷ xs} (there {x = x} {xs = xs} h∈xs) (x∉xs ∷ nr-xs) = let t , xs≋h∷t = ((Σ[ t ∈ List _ ] xs ≋ h ∷ t) ∋ h∈x⇒∃t,x≋h∷t h∈xs nr-xs) p₁ : x ∷ xs ≋ x ∷ h ∷ t p₁ = y≋ỳ⇒x∪y≋x∪ỳ [ x ] xs≋h∷t p₂ : x ∷ h ∷ t ≋ h ∷ x ∷ t p₂ = ≋-del-ins-l [] [ x ] h t in x ∷ t , ≋-trans p₁ p₂ nr-x∪y⇒nr-y : ∀ {ℓ} {A : Set ℓ} (x y : List A) → NonRepetitive (x ∪ y) → NonRepetitive y nr-x∪y⇒nr-y [] _ nr-y = nr-y nr-x∪y⇒nr-y (h ∷ t) y (_ ∷ nr-t∪y) = nr-x∪y⇒nr-y t y nr-t∪y x⊆y⇒∃x̀,y≋x∪x̀ : ∀ {ℓ} {A : Set ℓ} {x y : List A} → NonRepetitive x → NonRepetitive y → x ⊆ y → Σ[ x̀ ∈ List A ] y ≋ x ∪ x̀ x⊆y⇒∃x̀,y≋x∪x̀ {x = []} {y = y} _ _ _ = y , refl x⊆y⇒∃x̀,y≋x∪x̀ {x = h ∷ t} {y = y} (h∉t ∷ nr-t) nr-y h∷t⊆y = let ỳ , y≋h∷ỳ = h∈x⇒∃t,x≋h∷t (h∷t⊆y (h ∈ h ∷ t ∋ here refl)) nr-y p₁ : t ⊆ ỳ p₁ = x⊆e∷y⇒e∉x⇒x⊆y (x⊆y≋z (x∪y⊆z⇒y⊆z [ h ] t h∷t⊆y) y≋h∷ỳ) h∉t nr-ỳ = nr-x∪y⇒nr-y [ h ] ỳ $ nr-x≋y y≋h∷ỳ nr-y t̀ , ỳ≋t∪t̀ = x⊆y⇒∃x̀,y≋x∪x̀ nr-t nr-ỳ p₁ p₂ : h ∷ ỳ ≋ (h ∷ t) ∪ t̀ p₂ = y≋ỳ⇒x∪y≋x∪ỳ [ h ] ỳ≋t∪t̀ in t̀ , ≋-trans y≋h∷ỳ p₂ t₁⊆t₂⇒t₂≋t₁∪t₂∖nt₁ : ∀ {ℓ} {A : Set ℓ} {t₁ t₂ : List (Named A)} → NonRepetitiveNames t₁ → NonRepetitiveNames t₂ → t₁ ⊆ t₂ → t₂ ≋ t₁ ∪ t₂ ∖∖ names t₁ t₁⊆t₂⇒t₂≋t₁∪t₂∖nt₁ {t₁ = t₁} {t₂ = t₂} nr-nt₁ nr-nt₂ t₁⊆t₂ = ≋-trans p₁ $ y≋ỳ⇒x∪y≋x∪ỳ t₁ p₆ where n-t₁ = names t₁ nr-t₁ = nr-names⇒nr nr-nt₁ nr-t₂ = nr-names⇒nr nr-nt₂ t̀₁,t₁∪t̀₁≋t₂ = x⊆y⇒∃x̀,y≋x∪x̀ nr-t₁ nr-t₂ t₁⊆t₂ t̀₁ = proj₁ t̀₁,t₁∪t̀₁≋t₂ p₁ : t₂ ≋ t₁ ∪ t̀₁ p₁ = proj₂ t̀₁,t₁∪t̀₁≋t₂ p₂ : t₂ ∖∖ n-t₁ ≋ (t₁ ∪ t̀₁) ∖∖ n-t₁ p₂ = x≋y⇒x∖n≋y∖n p₁ n-t₁ p₃ : (t₁ ∪ t̀₁) ∖∖ n-t₁ ≡ t₁ ∖∖ n-t₁ ∪ t̀₁ ∖∖ n-t₁ p₃ = x∪y∖n≡x∖n∪y∖n t₁ t̀₁ n-t₁ p₄ : t₁ ∖∖ n-t₁ ∪ t̀₁ ∖∖ n-t₁ ≡ t̀₁ ∖∖ n-t₁ p₄ = ≡-cong (λ x → x ∪ t̀₁ ∖∖ n-t₁) (x∖x≡[] t₁) p₅ : t̀₁ ∖∖ n-t₁ ≡ t̀₁ p₅ = nr-x∪y⇒x∖y≡x t₁ t̀₁ $ nr-x≋y (n-x≋y p₁) nr-nt₂ p₆ : t̀₁ ≋ t₂ ∖∖ n-t₁ p₆ = ≋-sym $ ≋-trans p₂ $ ≡⇒≋ $ ≡-trans p₃ $ ≡-trans p₄ p₅ t₁⊆t₂⇒t₁≋f∈-t₂-nt₁ : ∀ {ℓ} {A : Set ℓ} {t₁ t₂ : List (Named A)} → NonRepetitiveNames t₁ → NonRepetitiveNames t₂ → t₁ ⊆ t₂ → t₁ ≋ filter-∈ t₂ (names t₁) t₁⊆t₂⇒t₁≋f∈-t₂-nt₁ {t₁ = t₁} {t₂ = t₂} nr-t₁ nr-t₂ t₁⊆t₂ = ≋-trans (≋-sym p₃) p₄ where nt₁ = names t₁ p₁ : t₂ ≋ t₂ ∖∖ nt₁ ∪ t₁ p₁ = ≋-trans (t₁⊆t₂⇒t₂≋t₁∪t₂∖nt₁ nr-t₁ nr-t₂ t₁⊆t₂) (∪-sym t₁ (t₂ ∖∖ nt₁)) p₂ : t₂ ≋ t₂ ∖∖ nt₁ ∪ filter-∈ t₂ nt₁ p₂ = t≋t∖n∪t∩n t₂ nt₁ p₃ : t₂ ∖∖ names (t₂ ∖∖ nt₁) ≋ t₁ p₃ = t≋t₁∪t₂⇒t∖t₁≋t₂ nr-t₂ (t₂ ∖∖ nt₁) t₁ p₁ p₄ : t₂ ∖∖ names (t₂ ∖∖ nt₁) ≋ filter-∈ t₂ nt₁ p₄ = t≋t₁∪t₂⇒t∖t₁≋t₂ nr-t₂ (t₂ ∖∖ nt₁) (filter-∈ t₂ nt₁) p₂ -- /lemmas -- assertions infix 4 _s-≢!_ _s-≢!_ : String → String → Set x s-≢! y with x ≟ y ... | yes _ = ⊥ ... | no _ = ⊤ s-≢!⇒≢? : ∀ {x y} → x s-≢! y → x ≢ y s-≢!⇒≢? {x} {y} x≢!y with x ≟ y s-≢!⇒≢? () | yes _ s-≢!⇒≢? _ | no p = p s-NonRepetitive? : (n : Names) → Dec (NonRepetitive n) s-NonRepetitive? [] = yes [] s-NonRepetitive? (h ∷ t) with h ∈? t | s-NonRepetitive? t ... | no h∉t | yes nr-t = yes (h∉t ∷ nr-t) ... | yes h∈t | _ = no f where f : NonRepetitive (_ ∷ _) → _ f (h∉t ∷ _) = h∉t h∈t ... | _ | no ¬nr-t = no f where f : NonRepetitive (_ ∷ _) → _ f (_ ∷ nr-t) = ¬nr-t nr-t s-NonRepetitive! : Names → Set s-NonRepetitive! n with s-NonRepetitive? n ... | yes _ = ⊤ ... | no _ = ⊥ NonRepetitiveNames! : ∀ {ℓ} {A : Set ℓ} → List (Named A) → Set NonRepetitiveNames! = s-NonRepetitive! ∘ names s-nr!⇒nr : {n : Names} → s-NonRepetitive! n → NonRepetitive n s-nr!⇒nr {n = n} _ with s-NonRepetitive? n s-nr!⇒nr _ | yes p = p s-nr!⇒nr () | no _ -- /assertions
43.562176
151
0.43149
39e81b9cbc22ca8bee876244b1bfab9f9f1cc67a
399
agda
Agda
test/interaction/Issue1640.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/interaction/Issue1640.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/interaction/Issue1640.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module _ where module M (X : Set) where postulate F : Set G : Set data ⊥ : Set where open M ⊥ hiding (F) easy : M.G ⊥ easy = {!!} -- G hard : M.F ⊥ hard = {!!} -- M.F ⊥ (and not .Issue1640._.F) data ⊤ : Set where tt : ⊤ module With where private F : ⊤ → Set F x with x F _ | tt = ⊥ T = F tricky : ∀ t → With.T t tricky t = {!!} -- .Issue1640.With.F t | t
12.46875
48
0.496241
10a7fc8e03e7e7eba9859720dcc89b90e3ba5ca8
5,564
agda
Agda
agda-stdlib/src/Data/Vec/N-ary.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Data/Vec/N-ary.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Data/Vec/N-ary.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- Code for converting Vec A n → B to and from n-ary functions ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Vec.N-ary where open import Data.Nat.Base hiding (_⊔_) open import Data.Product as Prod open import Data.Vec.Base open import Function.Base open import Function.Equivalence using (_⇔_; equivalence) open import Level using (Level; _⊔_) open import Relation.Binary open import Relation.Binary.PropositionalEquality open import Relation.Nullary.Decidable private variable a b c ℓ ℓ₁ ℓ₂ : Level A : Set a B : Set b C : Set c ------------------------------------------------------------------------ -- N-ary functions N-ary-level : Level → Level → ℕ → Level N-ary-level ℓ₁ ℓ₂ zero = ℓ₂ N-ary-level ℓ₁ ℓ₂ (suc n) = ℓ₁ ⊔ N-ary-level ℓ₁ ℓ₂ n N-ary : ∀ (n : ℕ) → Set ℓ₁ → Set ℓ₂ → Set (N-ary-level ℓ₁ ℓ₂ n) N-ary zero A B = B N-ary (suc n) A B = A → N-ary n A B ------------------------------------------------------------------------ -- Conversion curryⁿ : ∀ {n} → (Vec A n → B) → N-ary n A B curryⁿ {n = zero} f = f [] curryⁿ {n = suc n} f = λ x → curryⁿ (f ∘ _∷_ x) _$ⁿ_ : ∀ {n} → N-ary n A B → (Vec A n → B) f $ⁿ [] = f f $ⁿ (x ∷ xs) = f x $ⁿ xs ------------------------------------------------------------------------ -- Quantifiers module _ {A : Set a} where -- Universal quantifier. ∀ⁿ : ∀ n → N-ary n A (Set ℓ) → Set (N-ary-level a ℓ n) ∀ⁿ zero P = P ∀ⁿ (suc n) P = ∀ x → ∀ⁿ n (P x) -- Universal quantifier with implicit (hidden) arguments. ∀ⁿʰ : ∀ n → N-ary n A (Set ℓ) → Set (N-ary-level a ℓ n) ∀ⁿʰ zero P = P ∀ⁿʰ (suc n) P = ∀ {x} → ∀ⁿʰ n (P x) -- Existential quantifier. ∃ⁿ : ∀ n → N-ary n A (Set ℓ) → Set (N-ary-level a ℓ n) ∃ⁿ zero P = P ∃ⁿ (suc n) P = ∃ λ x → ∃ⁿ n (P x) ------------------------------------------------------------------------ -- N-ary function equality Eq : ∀ {A : Set a} {B : Set b} {C : Set c} n → REL B C ℓ → REL (N-ary n A B) (N-ary n A C) (N-ary-level a ℓ n) Eq n _∼_ f g = ∀ⁿ n (curryⁿ {n = n} λ xs → (f $ⁿ xs) ∼ (g $ⁿ xs)) -- A variant where all the arguments are implicit (hidden). Eqʰ : ∀ {A : Set a} {B : Set b} {C : Set c} n → REL B C ℓ → REL (N-ary n A B) (N-ary n A C) (N-ary-level a ℓ n) Eqʰ n _∼_ f g = ∀ⁿʰ n (curryⁿ {n = n} λ xs → (f $ⁿ xs) ∼ (g $ⁿ xs)) ------------------------------------------------------------------------ -- Some lemmas -- The functions curryⁿ and _$ⁿ_ are inverses. left-inverse : ∀ {n} (f : Vec A n → B) → ∀ xs → (curryⁿ f $ⁿ xs) ≡ f xs left-inverse f [] = refl left-inverse f (x ∷ xs) = left-inverse (f ∘ _∷_ x) xs right-inverse : ∀ n (f : N-ary n A B) → Eq n _≡_ (curryⁿ (_$ⁿ_ {n = n} f)) f right-inverse zero f = refl right-inverse (suc n) f = λ x → right-inverse n (f x) -- ∀ⁿ can be expressed in an "uncurried" way. uncurry-∀ⁿ : ∀ n {P : N-ary n A (Set ℓ)} → ∀ⁿ n P ⇔ (∀ (xs : Vec A n) → P $ⁿ xs) uncurry-∀ⁿ {a} {A} {ℓ} n = equivalence (⇒ n) (⇐ n) where ⇒ : ∀ n {P : N-ary n A (Set ℓ)} → ∀ⁿ n P → (∀ (xs : Vec A n) → P $ⁿ xs) ⇒ zero p [] = p ⇒ (suc n) p (x ∷ xs) = ⇒ n (p x) xs ⇐ : ∀ n {P : N-ary n A (Set ℓ)} → (∀ (xs : Vec A n) → P $ⁿ xs) → ∀ⁿ n P ⇐ zero p = p [] ⇐ (suc n) p = λ x → ⇐ n (p ∘ _∷_ x) -- ∃ⁿ can be expressed in an "uncurried" way. uncurry-∃ⁿ : ∀ n {P : N-ary n A (Set ℓ)} → ∃ⁿ n P ⇔ (∃ λ (xs : Vec A n) → P $ⁿ xs) uncurry-∃ⁿ {a} {A} {ℓ} n = equivalence (⇒ n) (⇐ n) where ⇒ : ∀ n {P : N-ary n A (Set ℓ)} → ∃ⁿ n P → (∃ λ (xs : Vec A n) → P $ⁿ xs) ⇒ zero p = ([] , p) ⇒ (suc n) (x , p) = Prod.map (_∷_ x) id (⇒ n p) ⇐ : ∀ n {P : N-ary n A (Set ℓ)} → (∃ λ (xs : Vec A n) → P $ⁿ xs) → ∃ⁿ n P ⇐ zero ([] , p) = p ⇐ (suc n) (x ∷ xs , p) = (x , ⇐ n (xs , p)) -- Conversion preserves equality. module _ (_∼_ : REL B C ℓ) where curryⁿ-cong : ∀ {n} (f : Vec A n → B) (g : Vec A n → C) → (∀ xs → f xs ∼ g xs) → Eq n _∼_ (curryⁿ f) (curryⁿ g) curryⁿ-cong {n = zero} f g hyp = hyp [] curryⁿ-cong {n = suc n} f g hyp = λ x → curryⁿ-cong (f ∘ _∷_ x) (g ∘ _∷_ x) (λ xs → hyp (x ∷ xs)) curryⁿ-cong⁻¹ : ∀ {n} (f : Vec A n → B) (g : Vec A n → C) → Eq n _∼_ (curryⁿ f) (curryⁿ g) → ∀ xs → f xs ∼ g xs curryⁿ-cong⁻¹ f g hyp [] = hyp curryⁿ-cong⁻¹ f g hyp (x ∷ xs) = curryⁿ-cong⁻¹ (f ∘ _∷_ x) (g ∘ _∷_ x) (hyp x) xs appⁿ-cong : ∀ {n} (f : N-ary n A B) (g : N-ary n A C) → Eq n _∼_ f g → (xs : Vec A n) → (f $ⁿ xs) ∼ (g $ⁿ xs) appⁿ-cong f g hyp [] = hyp appⁿ-cong f g hyp (x ∷ xs) = appⁿ-cong (f x) (g x) (hyp x) xs appⁿ-cong⁻¹ : ∀ {n} (f : N-ary n A B) (g : N-ary n A C) → ((xs : Vec A n) → (f $ⁿ xs) ∼ (g $ⁿ xs)) → Eq n _∼_ f g appⁿ-cong⁻¹ {n = zero} f g hyp = hyp [] appⁿ-cong⁻¹ {n = suc n} f g hyp = λ x → appⁿ-cong⁻¹ (f x) (g x) (λ xs → hyp (x ∷ xs)) -- Eq and Eqʰ are equivalent. Eq-to-Eqʰ : ∀ n (_∼_ : REL B C ℓ) {f : N-ary n A B} {g : N-ary n A C} → Eq n _∼_ f g → Eqʰ n _∼_ f g Eq-to-Eqʰ zero _∼_ eq = eq Eq-to-Eqʰ (suc n) _∼_ eq = Eq-to-Eqʰ n _∼_ (eq _) Eqʰ-to-Eq : ∀ n (_∼_ : REL B C ℓ) {f : N-ary n A B} {g : N-ary n A C} → Eqʰ n _∼_ f g → Eq n _∼_ f g Eqʰ-to-Eq zero _∼_ eq = eq Eqʰ-to-Eq (suc n) _∼_ eq = λ _ → Eqʰ-to-Eq n _∼_ eq
31.794286
72
0.442667
dcc08f82babe35d7db4bc271bba9f98cfc41a31d
938
agda
Agda
test/interaction/Issue3687.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/interaction/Issue3687.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/interaction/Issue3687.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2019-04-10, issue #3687, name mayhem when printing module contents (C-c C-o) -- {-# OPTIONS -v interaction.contents.record:20 #-} record Cat : Set₁ where field Obj : Set Hom : (A B : Obj) → Set Eq : ∀{A B} (f g : Hom A B) → Set id : (A : Obj) → Hom A A comp : ∀{A B C} (f : Hom B C) (g : Hom A B) → Hom A C record Functor (C1 C2 : Cat) : Set where record FunEq {C D : Cat} (F G : Functor C D) : Set₁ where field eqMap : ∀{c d} (f g : Cat.Hom C c d) (eq : Cat.Eq C f g) → Set test : ∀ C D (F G : Functor C D) → FunEq F G FunEq.eqMap (test C D F G) f g f=g = {!D!} -- C-c C-o -- In the output, the names are completely garbled: -- Names -- Obj : Set -- Hom : f=g → f=g → Set -- Eq : {A B : g} → f=g A B → f=g A B → Set -- id : (A : f) → g A A -- comp : {A B : d} {C = C₁ : d} → f B C₁ → f A B → f A C₁ -- test/interaction$ make AGDA_BIN=agda-2.5.1.1 Issue3687.cmp
29.3125
88
0.523454
183e8c3791a8f12458e4a0a003ea28dccd84914e
3,817
agda
Agda
src/System/IO/Transducers/Properties/TwoCategory.agda
ilya-fiveisky/agda-system-io
d06c219c7b7afc85aae3b1d4d66951b889aa7371
[ "MIT" ]
10
2015-01-04T13:45:16.000Z
2021-09-15T04:35:41.000Z
src/System/IO/Transducers/Properties/TwoCategory.agda
ilya-fiveisky/agda-system-io
d06c219c7b7afc85aae3b1d4d66951b889aa7371
[ "MIT" ]
null
null
null
src/System/IO/Transducers/Properties/TwoCategory.agda
ilya-fiveisky/agda-system-io
d06c219c7b7afc85aae3b1d4d66951b889aa7371
[ "MIT" ]
2
2017-08-10T06:12:54.000Z
2022-03-12T11:40:23.000Z
open import Coinduction using ( ♭ ) open import Data.Product using ( _,_ ) open import Relation.Binary using ( Poset ) open import Relation.Binary.PropositionalEquality using ( _≡_ ; refl ; sym ; trans ; cong ; subst₂ ) renaming ( setoid to ≡-setoid ) open import System.IO.Transducers using ( _⇒_ ; inp ; out ; done ; ⟦_⟧ ; _≃_ ; _≲_ ; _⟫_ ) open import System.IO.Transducers.Session using ( Session ) open import System.IO.Transducers.Trace using ( Trace ; [] ; _∷_ ; _⊑_ ) open import System.IO.Transducers.Properties.Category using ( ⟫-semantics ) import Relation.Binary.PartialOrderReasoning module System.IO.Transducers.Properties.TwoCategory where -- The category is poset-enriched, with order inherited from prefix order on traces. -- Reflexivity ⊑-refl : ∀ {S} (as : Trace S) → (as ⊑ as) ⊑-refl [] = [] ⊑-refl (a ∷ as) = (a ∷ ⊑-refl as) ≡-impl-⊑ : ∀ {S} {as bs : Trace S} → (as ≡ bs) → (as ⊑ bs) ≡-impl-⊑ refl = ⊑-refl _ ≲-refl : ∀ {S T} (f : Trace S → Trace T) → (f ≲ f) ≲-refl f as = ⊑-refl (f as) ≃-impl-≲ : ∀ {S T} {f g : Trace S → Trace T} → (f ≃ g) → (f ≲ g) ≃-impl-≲ f≃g as = ≡-impl-⊑ (f≃g as) -- Transitivity ⊑-trans : ∀ {S} {as bs cs : Trace S} → (as ⊑ bs) → (bs ⊑ cs) → (as ⊑ cs) ⊑-trans [] bs = [] ⊑-trans (a ∷ as) (.a ∷ bs) = (a ∷ ⊑-trans as bs) ≲-trans : ∀ {S T} {f g h : Trace S → Trace T} → (f ≲ g) → (g ≲ h) → (f ≲ h) ≲-trans f≲g g≲h as = ⊑-trans (f≲g as) (g≲h as) -- Antisymmetry ⊑-antisym : ∀ {S} {as bs : Trace S} → (as ⊑ bs) → (bs ⊑ as) → (as ≡ bs) ⊑-antisym [] [] = refl ⊑-antisym (a ∷ as) (.a ∷ bs) = cong (_∷_ a) (⊑-antisym as bs) ≲-antisym : ∀ {S T} {f g : Trace S → Trace T} → (f ≲ g) → (g ≲ f) → (f ≃ g) ≲-antisym f≲g g≲f as = ⊑-antisym (f≲g as) (g≲f as) -- ⊑ and ≲ form posets ⊑-poset : Session → Poset _ _ _ ⊑-poset S = record { Carrier = Trace S ; _≈_ = _≡_ ; _≤_ = _⊑_ ; isPartialOrder = record { antisym = ⊑-antisym ; isPreorder = record { reflexive = ≡-impl-⊑ ; trans = ⊑-trans ; ∼-resp-≈ = ((λ bs≡cs → subst₂ _⊑_ refl bs≡cs) , (λ as≡bs → subst₂ _⊑_ as≡bs refl)) ; isEquivalence = Relation.Binary.Setoid.isEquivalence (≡-setoid (Trace S)) } } } ≲-poset : Session → Session → Poset _ _ _ ≲-poset S T = record { Carrier = (Trace S → Trace T) ; _≈_ = _≃_ ; _≤_ = _≲_ ; isPartialOrder = record { antisym = ≲-antisym ; isPreorder = record { reflexive = ≃-impl-≲ ; trans = ≲-trans ; ∼-resp-≈ = (λ P≃Q P≲R as → subst₂ _⊑_ refl (P≃Q as) (P≲R as)) , λ Q≃R Q≲P as → subst₂ _⊑_ (Q≃R as) refl (Q≲P as) ; isEquivalence = record { refl = λ as → refl ; sym = λ P≃Q as → sym (P≃Q as) ; trans = λ P≃Q Q≃R as → trans (P≃Q as) (Q≃R as) } } } } -- Inequational reasoning module ⊑-Reasoning {S} where open Relation.Binary.PartialOrderReasoning (⊑-poset S) public renaming ( _≤⟨_⟩_ to _⊑⟨_⟩_ ; _≈⟨_⟩_ to _≡⟨_⟩_ ) module ≲-Reasoning {S T} where open Relation.Binary.PartialOrderReasoning (≲-poset S T) public renaming ( _≤⟨_⟩_ to _≲⟨_⟩_ ; _≈⟨_⟩_ to _≃⟨_⟩_ ) open ⊑-Reasoning -- Processes are ⊑-monotone P-monotone : ∀ {S T as bs} → (P : S ⇒ T) → (as ⊑ bs) → (⟦ P ⟧ as ⊑ ⟦ P ⟧ bs) P-monotone (inp F) [] = [] P-monotone (inp F) (a ∷ as⊑bs) = P-monotone (♭ F a) as⊑bs P-monotone (out b P) as⊑bs = b ∷ P-monotone P as⊑bs P-monotone done as⊑bs = as⊑bs -- Composition is ≲-monotone ⟫-monotone : ∀ {S T U} (P₁ P₂ : S ⇒ T) (Q₁ Q₂ : T ⇒ U) → (⟦ P₁ ⟧ ≲ ⟦ P₂ ⟧) → (⟦ Q₁ ⟧ ≲ ⟦ Q₂ ⟧) → (⟦ P₁ ⟫ Q₁ ⟧ ≲ ⟦ P₂ ⟫ Q₂ ⟧) ⟫-monotone P₁ P₂ Q₁ Q₂ P₁≲P₂ Q₁≲Q₂ as = begin ⟦ P₁ ⟫ Q₁ ⟧ as ≡⟨ ⟫-semantics P₁ Q₁ as ⟩ ⟦ Q₁ ⟧ (⟦ P₁ ⟧ as) ⊑⟨ P-monotone Q₁ (P₁≲P₂ as) ⟩ ⟦ Q₁ ⟧ (⟦ P₂ ⟧ as) ⊑⟨ Q₁≲Q₂ (⟦ P₂ ⟧ as) ⟩ ⟦ Q₂ ⟧ (⟦ P₂ ⟧ as) ≡⟨ sym (⟫-semantics P₂ Q₂ as) ⟩ ⟦ P₂ ⟫ Q₂ ⟧ as ∎
31.545455
132
0.534189
dc4c3f7a184311438eb95be91d6882ac3f40592c
256
agda
Agda
Cubical/Foundations/Pointed.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/Foundations/Pointed.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/Foundations/Pointed.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
1
2021-11-22T02:02:01.000Z
2021-11-22T02:02:01.000Z
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Foundations.Pointed where open import Cubical.Foundations.Pointed.Base public open import Cubical.Foundations.Pointed.Properties public open import Cubical.Foundations.Pointed.Homogeneous
32
57
0.816406
187dd8a19dd8a274457a5e1198e4efa77ba4939d
646
agda
Agda
test/interaction/Issue1083.agda
pthariensflame/agda
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/interaction/Issue1083.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
null
null
null
test/interaction/Issue1083.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
1
2022-03-12T11:35:18.000Z
2022-03-12T11:35:18.000Z
-- Andreas, 2013-04-06 -- Interaction point buried in postponed type checking problem module Issue1083 where data Bool : Set where true false : Bool T : Bool → Set T true = Bool → Bool T false = Bool postulate f : {x : Bool} → T x test : (x : Bool) → T x test true = f {!!} test false = {!!} -- Constraints show: _10 := (_ : T _x_9) ? : Bool -- So there is a question mark which has never been seen by the type checker. -- It is buried in a postponed type-checking problem. -- Interaction points should probably be created by the scope checker, -- and then hooked up to meta variables by the type checker. -- This is how it works now.
23.925926
77
0.685759
0bdb33a245e87c059b1d20d535bc900079280c90
694
agda
Agda
_assets/agda/Girard.agda
ionathanch/ionathanch.github.io
d54cdaf24391b2726e491a18cba2d2d8ae3ac20b
[ "MIT" ]
null
null
null
_assets/agda/Girard.agda
ionathanch/ionathanch.github.io
d54cdaf24391b2726e491a18cba2d2d8ae3ac20b
[ "MIT" ]
null
null
null
_assets/agda/Girard.agda
ionathanch/ionathanch.github.io
d54cdaf24391b2726e491a18cba2d2d8ae3ac20b
[ "MIT" ]
null
null
null
{-# OPTIONS --type-in-type #-} data ⊥ : Set where ℘ : ∀ {ℓ} → Set ℓ → Set _ ℘ {ℓ} S = S → Set U : Set U = ∀ (X : Set) → (℘ (℘ X) → X) → ℘ (℘ X) {- If using two impredicative universe layers instead of type-in-type: U : Set₁ U = ∀ (X : Set₁) → (℘ (℘ X) → X) → ℘ (℘ X) -} τ : ℘ (℘ U) → U τ t = λ X f p → t (λ x → p (f (x X f))) σ : U → ℘ (℘ U) σ s = s U τ Δ : ℘ U Δ y = (∀ p → σ y p → p (τ (σ y))) → ⊥ Ω : U Ω = τ (λ p → (∀ x → σ x p → p x)) R : ∀ p → (∀ x → σ x p → p x) → p Ω R _ 𝟙 = 𝟙 Ω (λ x → 𝟙 (τ (σ x))) M : ∀ x → σ x Δ → Δ x M _ 𝟚 𝟛 = 𝟛 Δ 𝟚 (λ p → 𝟛 (λ y → p (τ (σ y)))) L : (∀ p → (∀ x → σ x p → p x) → p Ω) → ⊥ L 𝟘 = 𝟘 Δ M (λ p → 𝟘 (λ y → p (τ (σ y)))) false : ⊥ false = L R
18.263158
70
0.367435
dc4724086c959be7572e860d727b9b61c2336ebf
164,645
agda
Agda
src/Lens/Non-dependent/Traditional/Erased.agda
nad/dependent-lenses
f2da6f7e95b87ca525e8ea43929c6d6163a74811
[ "MIT" ]
3
2020-04-16T12:10:46.000Z
2020-07-03T08:55:52.000Z
src/Lens/Non-dependent/Traditional/Erased.agda
nad/dependent-lenses
f2da6f7e95b87ca525e8ea43929c6d6163a74811
[ "MIT" ]
null
null
null
src/Lens/Non-dependent/Traditional/Erased.agda
nad/dependent-lenses
f2da6f7e95b87ca525e8ea43929c6d6163a74811
[ "MIT" ]
1
2020-07-01T14:33:26.000Z
2020-07-01T14:33:26.000Z
------------------------------------------------------------------------ -- Traditional non-dependent lenses with erased lens laws ------------------------------------------------------------------------ import Equality.Path as P module Lens.Non-dependent.Traditional.Erased {e⁺} (eq : ∀ {a p} → P.Equality-with-paths a p e⁺) where open P.Derived-definitions-and-properties eq open import Logical-equivalence using (_⇔_) open import Prelude as P hiding (id; [_,_]) renaming (_∘_ to _⊚_) import Bi-invertibility.Erased open import Bijection equality-with-J as Bij using (_↔_) open import Circle eq using (𝕊¹) open import Circle.Erased eq as CE using (𝕊¹ᴱ) open import Equality.Path.Isomorphisms eq open import Equivalence equality-with-J as Eq using (_≃_; Is-equivalence) open import Equivalence.Erased.Cubical eq as EEq using (_≃ᴱ_; Is-equivalenceᴱ) open import Equivalence.Erased.Contractible-preimages equality-with-J as ECP using (Contractibleᴱ; _⁻¹ᴱ_) open import Erased.Cubical eq open import Function-universe equality-with-J as F hiding (id; _∘_) open import H-level equality-with-J as H-level open import H-level.Closure equality-with-J open import H-level.Truncation.Propositional eq as PT using (∥_∥) open import H-level.Truncation.Propositional.Erased eq as TE using (∥_∥ᴱ; ∣_∣) open import Preimage equality-with-J using (_⁻¹_) open import Surjection equality-with-J as Surjection using (_↠_) open import Univalence-axiom equality-with-J open import Lens.Non-dependent eq as Non-dependent hiding (no-first-projection-lens) import Lens.Non-dependent.Traditional eq as T import Lens.Non-dependent.Traditional.Combinators eq as TC private variable a b c p : Level A A₁ A₂ B B₁ B₂ C D : Type a u v x₁ x₂ y₁ y₂ : A ------------------------------------------------------------------------ -- Traditional lenses -- Lenses with erased lens laws. record Lens (A : Type a) (B : Type b) : Type (a ⊔ b) where field -- Getter and setter. get : A → B set : A → B → A -- Lens laws. @0 get-set : ∀ a b → get (set a b) ≡ b @0 set-get : ∀ a → set a (get a) ≡ a @0 set-set : ∀ a b₁ b₂ → set (set a b₁) b₂ ≡ set a b₂ -- A combination of get and set. modify : (B → B) → A → A modify f x = set x (f (get x)) instance -- Traditional lenses with erased laws have getters and setters. has-getter-and-setter : Has-getter-and-setter (Lens {a = a} {b = b}) has-getter-and-setter = record { get = Lens.get ; set = Lens.set } -- Lens A B is isomorphic to a nested Σ-type. Lens-as-Σ : Lens A B ↔ ∃ λ (get : A → B) → ∃ λ (set : A → B → A) → Erased ((∀ a b → get (set a b) ≡ b) × (∀ a → set a (get a) ≡ a) × (∀ a b₁ b₂ → set (set a b₁) b₂ ≡ set a b₂)) Lens-as-Σ = record { surjection = record { logical-equivalence = record { to = λ l → get l , set l , [ get-set l , set-get l , set-set l ] ; from = λ { (get , set , [ get-set , set-get , set-set ]) → record { get = get ; set = set ; get-set = get-set ; set-get = set-get ; set-set = set-set } } } ; right-inverse-of = refl } ; left-inverse-of = refl } where open Lens -- In erased contexts Lens A B is equivalent to T.Lens A B. @0 Lens≃Traditional-lens : Lens A B ≃ T.Lens A B Lens≃Traditional-lens {A = A} {B = B} = Lens A B ↔⟨ Lens-as-Σ ⟩ (∃ λ (get : A → B) → ∃ λ (set : A → B → A) → Erased ((∀ a b → get (set a b) ≡ b) × (∀ a → set a (get a) ≡ a) × (∀ a b₁ b₂ → set (set a b₁) b₂ ≡ set a b₂))) ↔⟨ (∃-cong λ _ → ∃-cong λ _ → erased Erased↔) ⟩ (∃ λ (get : A → B) → ∃ λ (set : A → B → A) → (∀ a b → get (set a b) ≡ b) × (∀ a → set a (get a) ≡ a) × (∀ a b₁ b₂ → set (set a b₁) b₂ ≡ set a b₂)) ↔⟨ inverse T.Lens-as-Σ ⟩□ T.Lens A B □ -- Lenses without erased proofs can be turned into lenses with erased -- proofs (in erased contexts). @0 Traditional-lens→Lens : T.Lens A B → Lens A B Traditional-lens→Lens = _≃_.from Lens≃Traditional-lens private -- The forward direction of Lens≃Traditional-lens. @0 trad : Lens A B → T.Lens A B trad = _≃_.to Lens≃Traditional-lens private variable l₁ l₂ : Lens A B ------------------------------------------------------------------------ -- Somewhat coherent lenses -- Traditional lenses with erased lens laws that satisfy some extra -- coherence properties (that are also erased). record Coherent-lens (A : Type a) (B : Type b) : Type (a ⊔ b) where field lens : Lens A B open Lens lens public field @0 get-set-get : ∀ a → cong get (set-get a) ≡ get-set a (get a) @0 get-set-set : ∀ a b₁ b₂ → cong get (set-set a b₁ b₂) ≡ trans (get-set (set a b₁) b₂) (sym (get-set a b₂)) instance -- Somewhat coherent lenses have getters and setters. coherent-has-getter-and-setter : Has-getter-and-setter (Coherent-lens {a = a} {b = b}) coherent-has-getter-and-setter = record { get = Coherent-lens.get ; set = Coherent-lens.set } -- Coherent-lens A B is equivalent to a nested Σ-type. Coherent-lens-as-Σ : Coherent-lens A B ≃ ∃ λ (l : Lens A B) → let open Lens l in Erased ((∀ a → cong get (set-get a) ≡ get-set a (get a)) × (∀ a b₁ b₂ → cong get (set-set a b₁ b₂) ≡ trans (get-set (set a b₁) b₂) (sym (get-set a b₂)))) Coherent-lens-as-Σ = Eq.↔→≃ (λ l → lens l , [ get-set-get l , get-set-set l ]) (λ (l , [ get-set-get , get-set-set ]) → record { lens = l ; get-set-get = get-set-get ; get-set-set = get-set-set }) refl refl where open Coherent-lens -- In erased contexts Coherent-lens A B is equivalent to -- T.Coherent-lens A B. @0 Coherent-lens≃Traditional-coherent-lens : Coherent-lens A B ≃ T.Coherent-lens A B Coherent-lens≃Traditional-coherent-lens {A = A} {B = B} = Coherent-lens A B ↔⟨ Coherent-lens-as-Σ ⟩ (∃ λ (l : Lens A B) → let open Lens l in Erased ((∀ a → cong get (set-get a) ≡ get-set a (get a)) × (∀ a b₁ b₂ → cong get (set-set a b₁ b₂) ≡ trans (get-set (set a b₁) b₂) (sym (get-set a b₂))))) ↔⟨ (Σ-cong Lens≃Traditional-lens λ _ → erased Erased↔) ⟩ (∃ λ (l : T.Lens A B) → let open T.Lens l in (∀ a → cong get (set-get a) ≡ get-set a (get a)) × (∀ a b₁ b₂ → cong get (set-set a b₁ b₂) ≡ trans (get-set (set a b₁) b₂) (sym (get-set a b₂)))) ↔⟨ inverse T.Coherent-lens-as-Σ ⟩ T.Coherent-lens A B □ ------------------------------------------------------------------------ -- Some lemmas -- If two lenses have equal setters, then they also have equal -- getters (in erased contexts). @0 getters-equal-if-setters-equal : let open Lens in (l₁ l₂ : Lens A B) → set l₁ ≡ set l₂ → get l₁ ≡ get l₂ getters-equal-if-setters-equal l₁ l₂ = Lens.set l₁ ≡ Lens.set l₂ ↔⟨⟩ T.Lens.set (trad l₁) ≡ T.Lens.set (trad l₂) ↝⟨ T.getters-equal-if-setters-equal (trad l₁) (trad l₂) ⟩ T.Lens.get (trad l₁) ≡ T.Lens.get (trad l₂) ↔⟨⟩ Lens.get l₁ ≡ Lens.get l₂ □ -- If the forward direction of an equivalence with erased proofs is -- Lens.get l, then the setter of l can be expressed using the other -- direction of the equivalence (in erased contexts). @0 from≡set : ∀ (l : Lens A B) is-equiv → let open Lens A≃B = EEq.⟨ get l , is-equiv ⟩ in ∀ a b → _≃ᴱ_.from A≃B b ≡ set l a b from≡set l is-equiv = T.from≡set (trad l) (EEq.Is-equivalenceᴱ→Is-equivalence is-equiv) -- If A and B are "very stable n levels up" (given certain -- assumptions), then Lens A B is "very stable n levels up". Very-stable-Lensⁿ : ∀ n → (A → B → For-iterated-equality n Very-stable A) → (A → For-iterated-equality n Very-stable B) → For-iterated-equality n Very-stable (Lens A B) Very-stable-Lensⁿ {A = A} {B = B} n A-s B-s = Very-stable-congⁿ _ n (inverse Lens-as-Σ) $ Very-stable-Σⁿ n (Very-stable-Πⁿ ext n λ a → B-s a) λ _ → Very-stable-Σⁿ n (Very-stable-Πⁿ ext n λ a → Very-stable-Πⁿ ext n λ b → A-s a b) λ _ → Very-stable→Very-stableⁿ n Very-stable-Erased ------------------------------------------------------------------------ -- Some lens isomorphisms -- Lens preserves equivalences. Lens-cong : A₁ ≃ A₂ → B₁ ≃ B₂ → Lens A₁ B₁ ≃ Lens A₂ B₂ Lens-cong {A₁ = A₁} {A₂ = A₂} {B₁ = B₁} {B₂ = B₂} A₁≃A₂ B₁≃B₂ = Lens A₁ B₁ ↔⟨ Lens-as-Σ ⟩ (∃ λ (get : A₁ → B₁) → ∃ λ (set : A₁ → B₁ → A₁) → Erased ((∀ a b → get (set a b) ≡ b) × (∀ a → set a (get a) ≡ a) × (∀ a b₁ b₂ → set (set a b₁) b₂ ≡ set a b₂))) ↝⟨ (Σ-cong (→-cong ext A₁≃A₂ B₁≃B₂) λ get → Σ-cong (→-cong ext A₁≃A₂ $ →-cong ext B₁≃B₂ A₁≃A₂) λ set → Erased-cong ( (Π-cong ext A₁≃A₂ λ a → Π-cong ext B₁≃B₂ λ b → inverse (Eq.≃-≡ B₁≃B₂) F.∘ (≡⇒≃ $ cong (_≡ _) (get (set a b) ≡⟨ sym $ cong₂ (λ a b → get (set a b)) (_≃_.left-inverse-of A₁≃A₂ _) (_≃_.left-inverse-of B₁≃B₂ _) ⟩ get (set (_≃_.from A₁≃A₂ (_≃_.to A₁≃A₂ a)) (_≃_.from B₁≃B₂ (_≃_.to B₁≃B₂ b))) ≡⟨ cong get $ sym $ _≃_.left-inverse-of A₁≃A₂ _ ⟩∎ get (_≃_.from A₁≃A₂ (_≃_.to A₁≃A₂ (set (_≃_.from A₁≃A₂ (_≃_.to A₁≃A₂ a)) (_≃_.from B₁≃B₂ (_≃_.to B₁≃B₂ b))))) ∎))) ×-cong (Π-cong ext A₁≃A₂ λ a → inverse (Eq.≃-≡ A₁≃A₂) F.∘ (≡⇒≃ $ cong (_≡ _) (set a (get a) ≡⟨ cong (set a) $ sym $ _≃_.left-inverse-of B₁≃B₂ _ ⟩ set a (_≃_.from B₁≃B₂ (_≃_.to B₁≃B₂ (get a))) ≡⟨ cong (λ a → set a (_≃_.from B₁≃B₂ (_≃_.to B₁≃B₂ (get a)))) $ sym $ _≃_.left-inverse-of A₁≃A₂ _ ⟩∎ set (_≃_.from A₁≃A₂ (_≃_.to A₁≃A₂ a)) (_≃_.from B₁≃B₂ (_≃_.to B₁≃B₂ (get (_≃_.from A₁≃A₂ (_≃_.to A₁≃A₂ a))))) ∎))) ×-cong (inverse $ Π-cong ext (inverse A₁≃A₂) λ a → inverse $ Π-cong ext B₁≃B₂ λ b₁ → inverse $ Π-cong ext (inverse B₁≃B₂) λ b₂ → (≡⇒≃ $ cong (λ a′ → set a′ (_≃_.from B₁≃B₂ b₂) ≡ set (_≃_.from A₁≃A₂ a) (_≃_.from B₁≃B₂ b₂)) (_≃_.from A₁≃A₂ (_≃_.to A₁≃A₂ (set (_≃_.from A₁≃A₂ a) (_≃_.from B₁≃B₂ (_≃_.to B₁≃B₂ b₁)))) ≡⟨ _≃_.left-inverse-of A₁≃A₂ _ ⟩ set (_≃_.from A₁≃A₂ a) (_≃_.from B₁≃B₂ (_≃_.to B₁≃B₂ b₁)) ≡⟨ cong (set (_≃_.from A₁≃A₂ a)) $ _≃_.left-inverse-of B₁≃B₂ _ ⟩∎ set (_≃_.from A₁≃A₂ a) b₁ ∎)) F.∘ Eq.≃-≡ A₁≃A₂))) ⟩ (∃ λ (get : A₂ → B₂) → ∃ λ (set : A₂ → B₂ → A₂) → Erased ((∀ a b → get (set a b) ≡ b) × (∀ a → set a (get a) ≡ a) × (∀ a b₁ b₂ → set (set a b₁) b₂ ≡ set a b₂))) ↔⟨ inverse Lens-as-Σ ⟩□ Lens A₂ B₂ □ -- If B is a proposition (when A is inhabited), then Lens A B is -- equivalent (with erased proofs) to -- (A → B) × Erased ((a : A) → a ≡ a). lens-to-proposition≃ᴱ : @0 (A → Is-proposition B) → Lens A B ≃ᴱ ((A → B) × Erased ((a : A) → a ≡ a)) lens-to-proposition≃ᴱ {A = A} {B = B} B-prop = Lens A B ↔⟨ Lens-as-Σ ⟩ (∃ λ (get : A → B) → ∃ λ (set : A → B → A) → Erased ((∀ a b → get (set a b) ≡ b) × (∀ a → set a (get a) ≡ a) × (∀ a b₁ b₂ → set (set a b₁) b₂ ≡ set a b₂))) ↔⟨ (∃-cong λ _ → ∃-cong λ _ → Erased-cong ( drop-⊤-left-× λ _ → _⇔_.to contractible⇔↔⊤ $ Π-closure ext 0 λ a → Π-closure ext 0 λ _ → +⇒≡ (B-prop a))) ⟩ (∃ λ (get : A → B) → ∃ λ (set : A → B → A) → Erased ((∀ a → set a (get a) ≡ a) × (∀ a b₁ b₂ → set (set a b₁) b₂ ≡ set a b₂))) ↔⟨ (∃-cong λ get → ∃-cong λ set → Erased-cong (∃-cong λ _ → ∀-cong ext λ a → ∀-cong ext λ b₁ → ∀-cong ext λ b₂ → ≡⇒≃ ( (set (set a b₁) b₂ ≡ set a b₂) ≡⟨ cong (λ b → set (set a b) b₂ ≡ _) (B-prop a _ _) ⟩ (set (set a (get a)) b₂ ≡ set a b₂) ≡⟨ cong (λ b → set (set a (get a)) b ≡ _) (B-prop a _ _) ⟩ (set (set a (get a)) (get (set a (get a))) ≡ set a b₂) ≡⟨ cong (λ b → _ ≡ set a b) (B-prop a _ _) ⟩∎ (set (set a (get a)) (get (set a (get a))) ≡ set a (get a)) ∎))) ⟩ (∃ λ (get : A → B) → ∃ λ (set : A → B → A) → Erased ((∀ a → set a (get a) ≡ a) × (∀ a → B → B → set (set a (get a)) (get (set a (get a))) ≡ set a (get a)))) ↝⟨ (∃-cong λ get → EEq.Σ-cong-≃ᴱ-Erased (A→B→A≃ᴱA→A get) λ _ → F.id) ⟩ ((A → B) × ∃ λ (f : A → A) → Erased ((∀ a → f a ≡ a) × (∀ a → B → B → f (f a) ≡ f a))) ↝⟨ (∃-cong λ get → ∃-cong λ _ → Erased-cong (∃-cong λ _ → ∀-cong ext λ a → EEq.drop-⊤-left-Π-≃ᴱ-Erased ext (B≃ᴱ⊤ get a) F.∘ EEq.drop-⊤-left-Π-≃ᴱ-Erased ext (B≃ᴱ⊤ get a))) ⟩ ((A → B) × ∃ λ (f : A → A) → Erased ((∀ a → f a ≡ a) × (∀ a → f (f a) ≡ f a))) ↔⟨ (∃-cong λ _ → ∃-cong λ f → Erased-cong ( Σ-cong (Eq.extensionality-isomorphism ext) λ f≡id → ∀-cong ext λ a → ≡⇒≃ (cong₂ _≡_ (trans (f≡id (f a)) (f≡id a)) (f≡id a)))) ⟩ ((A → B) × ∃ λ (f : A → A) → Erased (f ≡ P.id × ((a : A) → a ≡ a))) ↔⟨ (∃-cong λ _ → ∃-cong λ _ → Erased-Σ↔Σ) ⟩ ((A → B) × ∃ λ (f : A → A) → Erased (f ≡ P.id) × Erased ((a : A) → a ≡ a)) ↔⟨ (∃-cong λ _ → Σ-assoc) ⟩ (A → B) × (∃ λ (f : A → A) → Erased (f ≡ P.id)) × Erased ((a : A) → a ≡ a) ↝⟨ (∃-cong λ _ → EEq.drop-⊤-left-Σ-≃ᴱ-Erased $ _⇔_.to EEq.Contractibleᴱ⇔≃ᴱ⊤ Contractibleᴱ-Erased-singleton) ⟩□ (A → B) × Erased ((a : A) → a ≡ a) □ where B≃ᴱ⊤ : (A → B) → A → B ≃ᴱ ⊤ B≃ᴱ⊤ get a = EEq.inhabited→Is-proposition→≃ᴱ⊤ (get a) (B-prop a) A→B→A≃ᴱA→A : (A → B) → (A → B → A) ≃ᴱ (A → A) A→B→A≃ᴱA→A get = (A → B → A) ↝⟨ ∀-cong ext (λ a → EEq.drop-⊤-left-Π-≃ᴱ-Erased ext $ B≃ᴱ⊤ get a) ⟩□ (A → A) □ -- If equality is very stable for A (when B is inhabited) and B is a -- proposition (when A is inhabited), then Lens A B is equivalent to -- (A → B) × Erased ((a : A) → a ≡ a). Very-stable-≡→lens-to-proposition≃ : (B → Very-stable-≡ A) → (A → Is-proposition B) → Lens A B ≃ ((A → B) × Erased ((a : A) → a ≡ a)) Very-stable-≡→lens-to-proposition≃ {B = B} {A = A} A-s B-prop = Stable-≡→≃ᴱ→≃ stable₁ stable₂ (lens-to-proposition≃ᴱ B-prop) where stable₁ : Stable-≡ (Lens A B) stable₁ = Very-stable→Stable 1 $ Very-stable-Lensⁿ 1 (λ _ → A-s) (H-level→Very-stable 1 ⊚ B-prop) stable₂ : Stable-≡ ((A → B) × Erased ((a : A) → a ≡ a)) stable₂ = Very-stable→Stable 1 $ Very-stable-×ⁿ 1 (Very-stable-Πⁿ ext 1 λ a → H-level→Very-stable 1 (B-prop a)) (Very-stable→Very-stable-≡ 0 Very-stable-Erased) -- Lens A ⊤ is equivalent (with erased proofs) to -- Erased ((a : A) → a ≡ a). lens-to-⊤≃ᴱ : Lens A ⊤ ≃ᴱ Erased ((a : A) → a ≡ a) lens-to-⊤≃ᴱ {A = A} = Lens A ⊤ ↝⟨ lens-to-proposition≃ᴱ (λ _ → mono₁ 0 ⊤-contractible) ⟩ (A → ⊤) × Erased ((a : A) → a ≡ a) ↔⟨ drop-⊤-left-× (λ _ → →-right-zero) ⟩□ Erased ((a : A) → a ≡ a) □ -- Lens A ⊥ is equivalent to ¬ A. lens-to-⊥≃ : Lens A (⊥ {ℓ = b}) ≃ (¬ A) lens-to-⊥≃ {A = A} = Lens A ⊥ ↝⟨ Very-stable-≡→lens-to-proposition≃ (λ ()) (λ _ → ⊥-propositional) ⟩ (A → ⊥) × Erased ((a : A) → a ≡ a) ↔⟨ (×-cong₁ λ _ → →-cong ext F.id (Bij.⊥↔uninhabited ⊥-elim)) ⟩ ¬ A × Erased ((a : A) → a ≡ a) ↔⟨ (drop-⊤-right λ ¬a → _⇔_.to contractible⇔↔⊤ $ propositional⇒inhabited⇒contractible (H-level-Erased 1 ( Π-closure ext 1 λ a → ⊥-elim (¬a a))) [ refl ]) ⟩□ ¬ A □ -- See also lens-from-⊥≃⊤ and lens-from-⊤≃codomain-contractible below. ------------------------------------------------------------------------ -- Some lens results related to h-levels -- If the domain of a lens is inhabited and has h-level n, then the -- codomain also has h-level n (in erased contexts). @0 h-level-respects-lens-from-inhabited : ∀ n → Lens A B → A → H-level n A → H-level n B h-level-respects-lens-from-inhabited n l = T.h-level-respects-lens-from-inhabited n (trad l) -- Lenses with contractible domains have contractible codomains (in -- erased contexts). @0 contractible-to-contractible : Lens A B → Contractible A → Contractible B contractible-to-contractible l = T.contractible-to-contractible (trad l) -- A variant for Contractibleᴱ. Contractibleᴱ→Contractibleᴱ : Lens A B → Contractibleᴱ A → Contractibleᴱ B Contractibleᴱ→Contractibleᴱ l c@(a , _) = ECP.Contractibleᴱ-respects-surjection (Lens.get l) (λ b → Lens.set l a b , (Lens.get l (Lens.set l a b) ≡⟨ Lens.get-set l _ _ ⟩∎ b ∎)) c -- If A and B have h-level n given the assumption that A is inhabited, -- then Lens A B also has h-level n. lens-preserves-h-level : ∀ n → (A → H-level n A) → (A → H-level n B) → H-level n (Lens A B) lens-preserves-h-level n hA hB = H-level.respects-surjection (_↔_.surjection (inverse Lens-as-Σ)) n $ Σ-closure n (Π-closure ext n λ a → hB a) λ _ → Σ-closure n (Π-closure ext n λ a → Π-closure ext n λ _ → hA a) λ _ → H-level-Erased n (×-closure n (Π-closure ext n λ a → Π-closure ext n λ _ → +⇒≡ $ mono₁ n (hB a)) $ ×-closure n (Π-closure ext n λ a → +⇒≡ $ mono₁ n (hA a)) (Π-closure ext n λ a → Π-closure ext n λ _ → Π-closure ext n λ _ → +⇒≡ $ mono₁ n (hA a))) -- If A has positive h-level n, then Lens A B also has h-level n (in -- erased contexts). @0 lens-preserves-h-level-of-domain : ∀ n → H-level (1 + n) A → H-level (1 + n) (Lens A B) lens-preserves-h-level-of-domain {A = A} {B = B} n = H-level (1 + n) A ↝⟨ T.lens-preserves-h-level-of-domain n ⟩ H-level (1 + n) (T.Lens A B) ↝⟨ H-level-cong _ (1 + n) (inverse Lens≃Traditional-lens) ⟩□ H-level (1 + n) (Lens A B) □ -- Lens 𝕊¹ᴱ ⊤ is not propositional (assuming univalence). ¬-lens-to-⊤-propositional : @0 Univalence (# 0) → ¬ Is-proposition (Lens 𝕊¹ᴱ ⊤) ¬-lens-to-⊤-propositional univ = Stable-¬ [ Is-proposition (Lens 𝕊¹ᴱ ⊤) ↝⟨ H-level-cong _ 1 (Lens-cong (inverse CE.𝕊¹≃𝕊¹ᴱ) Eq.id) ⟩ Is-proposition (Lens 𝕊¹ ⊤) ↝⟨ H-level-cong _ 1 Lens≃Traditional-lens ⟩ Is-proposition (T.Lens 𝕊¹ ⊤) ↝⟨ T.¬-lens-to-⊤-propositional univ ⟩□ ⊥₀ □ ] ------------------------------------------------------------------------ -- Some equality characterisation lemmas abstract -- An equality characterisation lemma. equality-characterisation₁ : let open Lens in l₁ ≡ l₂ ↔ ∃ λ (g : get l₁ ≡ get l₂) → ∃ λ (s : set l₁ ≡ set l₂) → Erased ((∀ a b → subst (λ get → get (set l₂ a b) ≡ b) g (subst (λ set → get l₁ (set a b) ≡ b) s (get-set l₁ a b)) ≡ get-set l₂ a b) × (∀ a → subst (λ get → set l₂ a (get a) ≡ a) g (subst (λ set → set a (get l₁ a) ≡ a) s (set-get l₁ a)) ≡ set-get l₂ a) × (∀ a b₁ b₂ → subst (λ set → set (set a b₁) b₂ ≡ set a b₂) s (set-set l₁ a b₁ b₂) ≡ set-set l₂ a b₁ b₂)) equality-characterisation₁ {l₁ = l₁} {l₂ = l₂} = let l₁′ = _↔_.to Lens-as-Σ l₁ l₂′ = _↔_.to Lens-as-Σ l₂ in l₁ ≡ l₂ ↔⟨ Eq.≃-≡ (Eq.↔⇒≃ (inverse Lens-as-Σ)) ⟩ l₁′ ≡ l₂′ ↔⟨ Eq.≃-≡ (Eq.↔⇒≃ (inverse Σ-assoc)) ⟩ ((get l₁ , set l₁) , proj₂ (proj₂ l₁′)) ≡ ((get l₂ , set l₂) , proj₂ (proj₂ l₂′)) ↝⟨ inverse Bij.Σ-≡,≡↔≡ ⟩ (∃ λ (gs : (get l₁ , set l₁) ≡ (get l₂ , set l₂)) → subst (λ (get , set) → Erased ((∀ a b → get (set a b) ≡ b) × (∀ a → set a (get a) ≡ a) × (∀ a b₁ b₂ → set (set a b₁) b₂ ≡ set a b₂))) gs (proj₂ (proj₂ l₁′)) ≡ proj₂ (proj₂ l₂′)) ↝⟨ Σ-cong (inverse ≡×≡↔≡) (λ gs → ≡⇒↝ _ $ cong (λ (gs : (get l₁ , set l₁) ≡ (get l₂ , set l₂)) → subst (λ (get , set) → Erased ((∀ a b → get (set a b) ≡ b) × (∀ a → set a (get a) ≡ a) × (∀ a b₁ b₂ → set (set a b₁) b₂ ≡ set a b₂))) gs (proj₂ (proj₂ l₁′)) ≡ proj₂ (proj₂ l₂′)) (sym $ _↔_.right-inverse-of ≡×≡↔≡ gs)) ⟩ (∃ λ (gs : get l₁ ≡ get l₂ × set l₁ ≡ set l₂) → subst (λ (get , set) → Erased ((∀ a b → get (set a b) ≡ b) × (∀ a → set a (get a) ≡ a) × (∀ a b₁ b₂ → set (set a b₁) b₂ ≡ set a b₂))) (_↔_.to ≡×≡↔≡ gs) (proj₂ (proj₂ l₁′)) ≡ proj₂ (proj₂ l₂′)) ↝⟨ inverse Σ-assoc ⟩ (∃ λ (g : get l₁ ≡ get l₂) → ∃ λ (s : set l₁ ≡ set l₂) → subst (λ (get , set) → Erased ((∀ a b → get (set a b) ≡ b) × (∀ a → set a (get a) ≡ a) × (∀ a b₁ b₂ → set (set a b₁) b₂ ≡ set a b₂))) (_↔_.to ≡×≡↔≡ (g , s)) (proj₂ (proj₂ l₁′)) ≡ proj₂ (proj₂ l₂′)) ↝⟨ (∃-cong λ g → ∃-cong λ s → ≡⇒↝ _ $ cong (_≡ proj₂ (proj₂ l₂′)) push-subst-[]) ⟩ (∃ λ (g : get l₁ ≡ get l₂) → ∃ λ (s : set l₁ ≡ set l₂) → [ subst (λ (get , set) → (∀ a b → get (set a b) ≡ b) × (∀ a → set a (get a) ≡ a) × (∀ a b₁ b₂ → set (set a b₁) b₂ ≡ set a b₂)) (_↔_.to ≡×≡↔≡ (g , s)) (erased (proj₂ (proj₂ l₁′))) ] ≡ [ erased (proj₂ (proj₂ l₂′)) ]) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → inverse Erased-≡↔[]≡[]) ⟩ (∃ λ (g : get l₁ ≡ get l₂) → ∃ λ (s : set l₁ ≡ set l₂) → Erased (subst (λ (get , set) → (∀ a b → get (set a b) ≡ b) × (∀ a → set a (get a) ≡ a) × (∀ a b₁ b₂ → set (set a b₁) b₂ ≡ set a b₂)) (_↔_.to ≡×≡↔≡ (g , s)) (erased (proj₂ (proj₂ l₁′))) ≡ erased (proj₂ (proj₂ l₂′)))) ↝⟨ (∃-cong λ g → ∃-cong λ s → Erased-cong (≡⇒↝ _ $ cong (λ x → x ≡ erased (proj₂ (proj₂ l₂′))) (push-subst-, {y≡z = _↔_.to ≡×≡↔≡ (g , s)} _ _))) ⟩ (∃ λ (g : get l₁ ≡ get l₂) → ∃ λ (s : set l₁ ≡ set l₂) → Erased (( subst (λ { (get , set) → ∀ a b → get (set a b) ≡ b }) (_↔_.to ≡×≡↔≡ (g , s)) (get-set l₁) , subst (λ { (get , set) → (∀ a → set a (get a) ≡ a) × (∀ a b₁ b₂ → set (set a b₁) b₂ ≡ set a b₂) }) (_↔_.to ≡×≡↔≡ (g , s)) (proj₂ (erased (proj₂ (proj₂ l₁′)))) ) ≡ erased (proj₂ (proj₂ l₂′)))) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → Erased-cong (inverse ≡×≡↔≡)) ⟩ (∃ λ (g : get l₁ ≡ get l₂) → ∃ λ (s : set l₁ ≡ set l₂) → Erased (subst (λ { (get , set) → ∀ a b → get (set a b) ≡ b }) (_↔_.to ≡×≡↔≡ (g , s)) (get-set l₁) ≡ get-set l₂ × subst (λ { (get , set) → (∀ a → set a (get a) ≡ a) × (∀ a b₁ b₂ → set (set a b₁) b₂ ≡ set a b₂) }) (_↔_.to ≡×≡↔≡ (g , s)) (proj₂ (erased (proj₂ (proj₂ l₁′)))) ≡ proj₂ (erased (proj₂ (proj₂ l₂′))))) ↝⟨ (∃-cong λ g → ∃-cong λ s → Erased-cong (∃-cong λ _ → ≡⇒↝ _ $ cong (λ x → x ≡ proj₂ (erased (proj₂ (proj₂ l₂′)))) (push-subst-, {y≡z = _↔_.to ≡×≡↔≡ (g , s)} _ _))) ⟩ (∃ λ (g : get l₁ ≡ get l₂) → ∃ λ (s : set l₁ ≡ set l₂) → Erased (subst (λ { (get , set) → ∀ a b → get (set a b) ≡ b }) (_↔_.to ≡×≡↔≡ (g , s)) (get-set l₁) ≡ get-set l₂ × ( subst (λ { (get , set) → ∀ a → set a (get a) ≡ a }) (_↔_.to ≡×≡↔≡ (g , s)) (set-get l₁) , subst (λ { (get , set) → ∀ a b₁ b₂ → set (set a b₁) b₂ ≡ set a b₂ }) (_↔_.to ≡×≡↔≡ (g , s)) (set-set l₁) ) ≡ proj₂ (erased (proj₂ (proj₂ l₂′))))) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → Erased-cong (∃-cong λ _ → inverse ≡×≡↔≡)) ⟩ (∃ λ (g : get l₁ ≡ get l₂) → ∃ λ (s : set l₁ ≡ set l₂) → Erased (subst (λ { (get , set) → ∀ a b → get (set a b) ≡ b }) (_↔_.to ≡×≡↔≡ (g , s)) (get-set l₁) ≡ get-set l₂ × subst (λ { (get , set) → ∀ a → set a (get a) ≡ a }) (_↔_.to ≡×≡↔≡ (g , s)) (set-get l₁) ≡ set-get l₂ × subst (λ { (get , set) → ∀ a b₁ b₂ → set (set a b₁) b₂ ≡ set a b₂ }) (_↔_.to ≡×≡↔≡ (g , s)) (set-set l₁) ≡ set-set l₂)) ↝⟨ (∃-cong λ g → ∃-cong λ s → Erased-cong ( lemma₁ (λ { (get , set) a → ∀ b → get (set a b) ≡ b }) (_↔_.to ≡×≡↔≡ (g , s)) ×-cong lemma₁ (λ { (get , set) a → set a (get a) ≡ a }) (_↔_.to ≡×≡↔≡ (g , s)) ×-cong lemma₁ (λ { (get , set) a → ∀ b₁ b₂ → set (set a b₁) b₂ ≡ set a b₂ }) (_↔_.to ≡×≡↔≡ (g , s)))) ⟩ (∃ λ (g : get l₁ ≡ get l₂) → ∃ λ (s : set l₁ ≡ set l₂) → Erased ((∀ a → subst (λ { (get , set) → ∀ b → get (set a b) ≡ b }) (_↔_.to ≡×≡↔≡ (g , s)) (get-set l₁ a) ≡ get-set l₂ a) × (∀ a → subst (λ { (get , set) → set a (get a) ≡ a }) (_↔_.to ≡×≡↔≡ (g , s)) (set-get l₁ a) ≡ set-get l₂ a) × (∀ a → subst (λ { (get , set) → ∀ b₁ b₂ → set (set a b₁) b₂ ≡ set a b₂ }) (_↔_.to ≡×≡↔≡ (g , s)) (set-set l₁ a) ≡ set-set l₂ a))) ↝⟨ (∃-cong λ g → ∃-cong λ s → Erased-cong ( (∀-cong ext λ a → lemma₁ (λ { (get , set) b → get (set a b) ≡ b }) (_↔_.to ≡×≡↔≡ (g , s))) ×-cong F.id ×-cong (∀-cong ext λ a → lemma₁ (λ { (get , set) b₁ → ∀ b₂ → set (set a b₁) b₂ ≡ set a b₂ }) (_↔_.to ≡×≡↔≡ (g , s))))) ⟩ (∃ λ (g : get l₁ ≡ get l₂) → ∃ λ (s : set l₁ ≡ set l₂) → Erased ((∀ a b → subst (λ { (get , set) → get (set a b) ≡ b }) (_↔_.to ≡×≡↔≡ (g , s)) (get-set l₁ a b) ≡ get-set l₂ a b) × (∀ a → subst (λ { (get , set) → set a (get a) ≡ a }) (_↔_.to ≡×≡↔≡ (g , s)) (set-get l₁ a) ≡ set-get l₂ a) × (∀ a b₁ → subst (λ { (get , set) → ∀ b₂ → set (set a b₁) b₂ ≡ set a b₂ }) (_↔_.to ≡×≡↔≡ (g , s)) (set-set l₁ a b₁) ≡ set-set l₂ a b₁))) ↝⟨ (∃-cong λ g → ∃-cong λ s → Erased-cong (∃-cong λ _ → ∃-cong λ _ → ∀-cong ext λ a → ∀-cong ext λ b₁ → lemma₁ (λ { (get , set) b₂ → set (set a b₁) b₂ ≡ set a b₂ }) (_↔_.to ≡×≡↔≡ (g , s)))) ⟩ (∃ λ (g : get l₁ ≡ get l₂) → ∃ λ (s : set l₁ ≡ set l₂) → Erased ((∀ a b → subst (λ { (get , set) → get (set a b) ≡ b }) (_↔_.to ≡×≡↔≡ (g , s)) (get-set l₁ a b) ≡ get-set l₂ a b) × (∀ a → subst (λ { (get , set) → set a (get a) ≡ a }) (_↔_.to ≡×≡↔≡ (g , s)) (set-get l₁ a) ≡ set-get l₂ a) × (∀ a b₁ b₂ → subst (λ { (get , set) → set (set a b₁) b₂ ≡ set a b₂ }) (_↔_.to ≡×≡↔≡ (g , s)) (set-set l₁ a b₁ b₂) ≡ set-set l₂ a b₁ b₂))) ↝⟨ (∃-cong λ g → ∃-cong λ s → Erased-cong ( (∀-cong ext λ a → ∀-cong ext λ b → lemma₂ (λ { (get , set) → get (set a b) ≡ b }) g s) ×-cong (∀-cong ext λ a → lemma₂ (λ { (get , set) → set a (get a) ≡ a }) g s) ×-cong (∀-cong ext λ a → ∀-cong ext λ b₁ → ∀-cong ext λ b₂ → lemma₂ (λ { (get , set) → set (set a b₁) b₂ ≡ set a b₂ }) g s))) ⟩ (∃ λ (g : get l₁ ≡ get l₂) → ∃ λ (s : set l₁ ≡ set l₂) → Erased ((∀ a b → subst (λ get → get (set l₂ a b) ≡ b) g (subst (λ set → get l₁ (set a b) ≡ b) s (get-set l₁ a b)) ≡ get-set l₂ a b) × (∀ a → subst (λ get → set l₂ a (get a) ≡ a) g (subst (λ set → set a (get l₁ a) ≡ a) s (set-get l₁ a)) ≡ set-get l₂ a) × (∀ a b₁ b₂ → subst (λ get → set l₂ (set l₂ a b₁) b₂ ≡ set l₂ a b₂) g (subst (λ set → set (set a b₁) b₂ ≡ set a b₂) s (set-set l₁ a b₁ b₂)) ≡ set-set l₂ a b₁ b₂))) ↝⟨ (∃-cong λ g → ∃-cong λ _ → Erased-cong (∃-cong λ _ → ∃-cong λ _ → ∀-cong ext λ _ → ∀-cong ext λ _ → ∀-cong ext λ _ → ≡⇒↝ _ $ cong (λ x → x ≡ _) $ subst-const g)) ⟩□ (∃ λ (g : get l₁ ≡ get l₂) → ∃ λ (s : set l₁ ≡ set l₂) → Erased ((∀ a b → subst (λ get → get (set l₂ a b) ≡ b) g (subst (λ set → get l₁ (set a b) ≡ b) s (get-set l₁ a b)) ≡ get-set l₂ a b) × (∀ a → subst (λ get → set l₂ a (get a) ≡ a) g (subst (λ set → set a (get l₁ a) ≡ a) s (set-get l₁ a)) ≡ set-get l₂ a) × (∀ a b₁ b₂ → subst (λ set → set (set a b₁) b₂ ≡ set a b₂) s (set-set l₁ a b₁ b₂) ≡ set-set l₂ a b₁ b₂))) □ where open Lens abstract lemma₁ : ∀ (C : A → B → Type c) (eq : u ≡ v) {f g} → (subst (λ x → ∀ y → C x y) eq f ≡ g) ↔ (∀ y → subst (λ x → C x y) eq (f y) ≡ g y) lemma₁ C eq {f} {g} = subst (λ x → ∀ y → C x y) eq f ≡ g ↔⟨ inverse $ Eq.extensionality-isomorphism ext ⟩ (∀ y → subst (λ x → ∀ y → C x y) eq f y ≡ g y) ↝⟨ (∀-cong ext λ y → ≡⇒↝ _ $ cong (λ x → x ≡ _) (sym $ push-subst-application eq _)) ⟩□ (∀ y → subst (λ x → C x y) eq (f y) ≡ g y) □ lemma₂ : (P : A × B → Type p) (x₁≡x₂ : x₁ ≡ x₂) (y₁≡y₂ : y₁ ≡ y₂) → ∀ {p p′} → (subst P (_↔_.to ≡×≡↔≡ (x₁≡x₂ , y₁≡y₂)) p ≡ p′) ↔ (subst (λ x → P (x , y₂)) x₁≡x₂ (subst (λ y → P (x₁ , y)) y₁≡y₂ p) ≡ p′) lemma₂ P x₁≡x₂ y₁≡y₂ {p = p} = ≡⇒↝ _ $ cong (_≡ _) $ elim¹ (λ y₁≡y₂ → subst P (_↔_.to ≡×≡↔≡ (x₁≡x₂ , y₁≡y₂)) p ≡ subst (λ x → P (x , _)) x₁≡x₂ (subst (λ y → P (_ , y)) y₁≡y₂ p)) (subst P (_↔_.to ≡×≡↔≡ (x₁≡x₂ , refl _)) p ≡⟨⟩ subst P (cong₂ _,_ x₁≡x₂ (refl _)) p ≡⟨⟩ subst P (trans (cong (_, _) x₁≡x₂) (cong (_ ,_) (refl _))) p ≡⟨ cong (λ eq → subst P (trans (cong (_, _) x₁≡x₂) eq) p) $ cong-refl _ ⟩ subst P (trans (cong (_, _) x₁≡x₂) (refl _)) p ≡⟨ cong (λ eq → subst P eq p) $ trans-reflʳ _ ⟩ subst P (cong (_, _) x₁≡x₂) p ≡⟨ sym $ subst-∘ _ _ _ ⟩ subst (λ x → P (x , _)) x₁≡x₂ p ≡⟨ cong (subst (λ x → P (x , _)) x₁≡x₂) $ sym $ subst-refl _ _ ⟩∎ subst (λ x → P (x , _)) x₁≡x₂ (subst (λ y → P (_ , y)) (refl _) p) ∎) _ -- Another equality characterisation lemma. equality-characterisation₂ : let open Lens in l₁ ≡ l₂ ↔ ∃ λ (g : get l₁ ≡ get l₂) → ∃ λ (s : set l₁ ≡ set l₂) → Erased ((∀ a b → trans (sym (cong₂ (λ set get → get (set a b)) s g)) (get-set l₁ a b) ≡ get-set l₂ a b) × (∀ a → trans (sym (cong₂ (λ set get → set a (get a)) s g)) (set-get l₁ a) ≡ set-get l₂ a) × (∀ a b₁ b₂ → subst (λ set → set (set a b₁) b₂ ≡ set a b₂) s (set-set l₁ a b₁ b₂) ≡ set-set l₂ a b₁ b₂)) equality-characterisation₂ {l₁ = l₁} {l₂ = l₂} = l₁ ≡ l₂ ↝⟨ equality-characterisation₁ ⟩ (∃ λ (g : get l₁ ≡ get l₂) → ∃ λ (s : set l₁ ≡ set l₂) → Erased ((∀ a b → subst (λ get → get (set l₂ a b) ≡ b) g (subst (λ set → get l₁ (set a b) ≡ b) s (get-set l₁ a b)) ≡ get-set l₂ a b) × (∀ a → subst (λ get → set l₂ a (get a) ≡ a) g (subst (λ set → set a (get l₁ a) ≡ a) s (set-get l₁ a)) ≡ set-get l₂ a) × (∀ a b₁ b₂ → subst (λ set → set (set a b₁) b₂ ≡ set a b₂) s (set-set l₁ a b₁ b₂) ≡ set-set l₂ a b₁ b₂))) ↝⟨ (∃-cong λ g → ∃-cong λ s → Erased-cong ( (∀-cong ext λ a → ∀-cong ext λ b → ≡⇒↝ _ $ cong (_≡ _) $ lemma₁ g s a b) ×-cong (∀-cong ext λ a → ≡⇒↝ _ $ cong (_≡ _) $ lemma₂ g s a) ×-cong F.id)) ⟩□ (∃ λ (g : get l₁ ≡ get l₂) → ∃ λ (s : set l₁ ≡ set l₂) → Erased ((∀ a b → trans (sym (cong₂ (λ set get → get (set a b)) s g)) (get-set l₁ a b) ≡ get-set l₂ a b) × (∀ a → trans (sym (cong₂ (λ set get → set a (get a)) s g)) (set-get l₁ a) ≡ set-get l₂ a) × (∀ a b₁ b₂ → subst (λ set → set (set a b₁) b₂ ≡ set a b₂) s (set-set l₁ a b₁ b₂) ≡ set-set l₂ a b₁ b₂))) □ where open Lens @0 lemma₁ : (g : get l₁ ≡ get l₂) (s : set l₁ ≡ set l₂) → ∀ a b → subst (λ get → get (set l₂ a b) ≡ b) g (subst (λ set → get l₁ (set a b) ≡ b) s (get-set l₁ a b)) ≡ trans (sym (cong₂ (λ set get → get (set a b)) s g)) (get-set l₁ a b) lemma₁ g s a b = subst (λ get → get (set l₂ a b) ≡ b) g (subst (λ set → get l₁ (set a b) ≡ b) s (get-set l₁ a b)) ≡⟨ cong (λ eq → subst (λ get → get (set l₂ a b) ≡ b) g eq) $ subst-in-terms-of-trans-and-cong {f = λ set → get l₁ (set a b)} {g = λ _ → b} {x≡y = s} {fx≡gx = (get-set l₁ a b)} ⟩ subst (λ get → get (set l₂ a b) ≡ b) g (trans (sym (cong (λ set → get l₁ (set a b)) s)) (trans (get-set l₁ a b) (cong (const b) s))) ≡⟨ cong (λ eq → subst (λ get → get (set l₂ a b) ≡ b) g (trans (sym (cong (λ set → get l₁ (set a b)) s)) (trans _ eq))) $ cong-const s ⟩ subst (λ get → get (set l₂ a b) ≡ b) g (trans (sym (cong (λ set → get l₁ (set a b)) s)) (trans (get-set l₁ a b) (refl _))) ≡⟨ cong (λ eq → subst (λ get → get (set l₂ a b) ≡ b) g (trans (sym (cong (λ set → get l₁ (set a b)) s)) eq)) $ trans-reflʳ _ ⟩ subst (λ get → get (set l₂ a b) ≡ b) g (trans (sym (cong (λ set → get l₁ (set a b)) s)) (get-set l₁ a b)) ≡⟨ subst-in-terms-of-trans-and-cong {x≡y = g} {fx≡gx = trans _ (get-set l₁ a b)} ⟩ trans (sym (cong (λ get → get (set l₂ a b)) g)) (trans (trans (sym (cong (λ set → get l₁ (set a b)) s)) (get-set l₁ a b)) (cong (const b) g)) ≡⟨ cong (λ eq → trans (sym (cong (λ get → get (set l₂ a b)) g)) (trans (trans (sym (cong (λ set → get l₁ (set a b)) s)) (get-set l₁ a b)) eq)) $ cong-const g ⟩ trans (sym (cong (λ get → get (set l₂ a b)) g)) (trans (trans (sym (cong (λ set → get l₁ (set a b)) s)) (get-set l₁ a b)) (refl _)) ≡⟨ cong (trans _) $ trans-reflʳ _ ⟩ trans (sym (cong (λ get → get (set l₂ a b)) g)) (trans (sym (cong (λ set → get l₁ (set a b)) s)) (get-set l₁ a b)) ≡⟨ sym $ trans-assoc _ _ (get-set l₁ a b) ⟩ trans (trans (sym (cong (λ get → get (set l₂ a b)) g)) (sym (cong (λ set → get l₁ (set a b)) s))) (get-set l₁ a b) ≡⟨ cong (λ eq → trans eq (get-set l₁ a b)) $ sym $ sym-trans _ (cong (λ get → get (set l₂ a b)) g) ⟩ trans (sym (trans (cong (λ set → get l₁ (set a b)) s) (cong (λ get → get (set l₂ a b)) g))) (get-set l₁ a b) ≡⟨⟩ trans (sym (cong₂ (λ set get → get (set a b)) s g)) (get-set l₁ a b) ∎ @0 lemma₂ : (g : get l₁ ≡ get l₂) (s : set l₁ ≡ set l₂) → ∀ a → subst (λ get → set l₂ a (get a) ≡ a) g (subst (λ set → set a (get l₁ a) ≡ a) s (set-get l₁ a)) ≡ trans (sym (cong₂ (λ set get → set a (get a)) s g)) (set-get l₁ a) lemma₂ g s a = subst (λ get → set l₂ a (get a) ≡ a) g (subst (λ set → set a (get l₁ a) ≡ a) s (set-get l₁ a)) ≡⟨⟩ subst (λ get → set l₂ a (get a) ≡ a) g (subst (λ set → set a (get l₁ a) ≡ a) s (set-get l₁ a)) ≡⟨ cong (subst (λ get → set l₂ a (get a) ≡ a) g) $ subst-in-terms-of-trans-and-cong {x≡y = s} {fx≡gx = set-get l₁ a} ⟩ subst (λ get → set l₂ a (get a) ≡ a) g (trans (sym (cong (λ set → set a (get l₁ a)) s)) (trans (set-get l₁ a) (cong (const a) s))) ≡⟨ cong (λ eq → subst (λ get → set l₂ a (get a) ≡ a) g (trans (sym (cong (λ set → set a (get l₁ a)) s)) (trans _ eq))) $ cong-const s ⟩ subst (λ get → set l₂ a (get a) ≡ a) g (trans (sym (cong (λ set → set a (get l₁ a)) s)) (trans (set-get l₁ a) (refl _))) ≡⟨ cong (λ eq → subst (λ get → set l₂ a (get a) ≡ a) g (trans (sym (cong (λ set → set a (get l₁ a)) s)) eq)) $ trans-reflʳ _ ⟩ subst (λ get → set l₂ a (get a) ≡ a) g (trans (sym (cong (λ set → set a (get l₁ a)) s)) (set-get l₁ a)) ≡⟨ subst-in-terms-of-trans-and-cong {x≡y = g} {fx≡gx = trans (sym (cong (λ set → set a (get l₁ a)) s)) (set-get l₁ a)} ⟩ trans (sym (cong (λ get → set l₂ a (get a)) g)) (trans (trans (sym (cong (λ set → set a (get l₁ a)) s)) (set-get l₁ a)) (cong (const a) g)) ≡⟨ cong (λ eq → trans (sym (cong (λ get → set l₂ a (get a)) g)) (trans (trans (sym (cong (λ set → set a (get l₁ a)) s)) (set-get l₁ a)) eq)) $ cong-const g ⟩ trans (sym (cong (λ get → set l₂ a (get a)) g)) (trans (trans (sym (cong (λ set → set a (get l₁ a)) s)) (set-get l₁ a)) (refl _)) ≡⟨ cong (trans _) $ trans-reflʳ _ ⟩ trans (sym (cong (λ get → set l₂ a (get a)) g)) (trans (sym (cong (λ set → set a (get l₁ a)) s)) (set-get l₁ a)) ≡⟨ sym $ trans-assoc _ _ (set-get l₁ a) ⟩ trans (trans (sym (cong (λ get → set l₂ a (get a)) g)) (sym (cong (λ set → set a (get l₁ a)) s))) (set-get l₁ a) ≡⟨ cong (λ eq → trans eq (set-get l₁ a)) $ sym $ sym-trans _ (cong (λ get → set l₂ a (get a)) g) ⟩ trans (sym (trans (cong (λ set → set a (get l₁ a)) s) (cong (λ get → set l₂ a (get a)) g))) (set-get l₁ a) ≡⟨⟩ trans (sym (cong₂ (λ set get → set a (get a)) s g)) (set-get l₁ a) ∎ -- And another one. equality-characterisation₃ : let open Lens in l₁ ≡ l₂ ↔ ∃ λ (g : get l₁ ≡ get l₂) → ∃ λ (s : set l₁ ≡ set l₂) → Erased ((∀ a b → trans (sym (cong₂ (λ set get → get (set a b)) s g)) (get-set l₁ a b) ≡ get-set l₂ a b) × (∀ a → trans (sym (cong₂ (λ set get → set a (get a)) s g)) (set-get l₁ a) ≡ set-get l₂ a) × (∀ a b₁ b₂ → trans (set-set l₁ a b₁ b₂) (cong (λ set → set a b₂) s) ≡ trans (cong (λ set → set (set a b₁) b₂) s) (set-set l₂ a b₁ b₂))) equality-characterisation₃ {l₁ = l₁} {l₂ = l₂} = l₁ ≡ l₂ ↝⟨ equality-characterisation₂ ⟩ (∃ λ (g : get l₁ ≡ get l₂) → ∃ λ (s : set l₁ ≡ set l₂) → Erased ((∀ a b → trans (sym (cong₂ (λ set get → get (set a b)) s g)) (get-set l₁ a b) ≡ get-set l₂ a b) × (∀ a → trans (sym (cong₂ (λ set get → set a (get a)) s g)) (set-get l₁ a) ≡ set-get l₂ a) × (∀ a b₁ b₂ → subst (λ set → set (set a b₁) b₂ ≡ set a b₂) s (set-set l₁ a b₁ b₂) ≡ set-set l₂ a b₁ b₂))) ↝⟨ (∃-cong λ g → ∃-cong λ s → Erased-cong (∃-cong λ _ → ∃-cong λ _ → ∀-cong ext λ a → ∀-cong ext λ b₁ → ∀-cong ext λ b₂ → ≡⇒↝ _ $ lemma g s a b₁ b₂)) ⟩□ (∃ λ (g : get l₁ ≡ get l₂) → ∃ λ (s : set l₁ ≡ set l₂) → Erased ((∀ a b → trans (sym (cong₂ (λ set get → get (set a b)) s g)) (get-set l₁ a b) ≡ get-set l₂ a b) × (∀ a → trans (sym (cong₂ (λ set get → set a (get a)) s g)) (set-get l₁ a) ≡ set-get l₂ a) × (∀ a b₁ b₂ → trans (set-set l₁ a b₁ b₂) (cong (λ set → set a b₂) s) ≡ trans (cong (λ set → set (set a b₁) b₂) s) (set-set l₂ a b₁ b₂)))) □ where open Lens @0 lemma : (g : get l₁ ≡ get l₂) (s : set l₁ ≡ set l₂) → ∀ a b₁ b₂ → (subst (λ set → set (set a b₁) b₂ ≡ set a b₂) s (set-set l₁ a b₁ b₂) ≡ set-set l₂ a b₁ b₂) ≡ (trans (set-set l₁ a b₁ b₂) (cong (λ set → set a b₂) s) ≡ trans (cong (λ set → set (set a b₁) b₂) s) (set-set l₂ a b₁ b₂)) lemma g s a b₁ b₂ = subst (λ set → set (set a b₁) b₂ ≡ set a b₂) s (set-set l₁ a b₁ b₂) ≡ set-set l₂ a b₁ b₂ ≡⟨ cong (_≡ _) $ subst-in-terms-of-trans-and-cong {x≡y = s} {fx≡gx = set-set l₁ a b₁ b₂} ⟩ trans (sym (cong (λ set → set (set a b₁) b₂) s)) (trans (set-set l₁ a b₁ b₂) (cong (λ set → set a b₂) s)) ≡ set-set l₂ a b₁ b₂ ≡⟨ [trans≡]≡[≡trans-symˡ] _ _ _ ⟩ trans (set-set l₁ a b₁ b₂) (cong (λ set → set a b₂) s) ≡ trans (sym (sym (cong (λ set → set (set a b₁) b₂) s))) (set-set l₂ a b₁ b₂) ≡⟨ cong (λ eq → trans _ (cong (λ set → set a b₂) s) ≡ trans eq (set-set l₂ a b₁ b₂)) $ sym-sym (cong (λ set → set (set a b₁) b₂) s) ⟩ trans (set-set l₁ a b₁ b₂) (cong (λ set → set a b₂) s) ≡ trans (cong (λ set → set (set a b₁) b₂) s) (set-set l₂ a b₁ b₂) ∎ -- And yet another one. equality-characterisation₄ : let open Lens in l₁ ≡ l₂ ↔ ∃ λ (g : ∀ a → get l₁ a ≡ get l₂ a) → ∃ λ (s : ∀ a b → set l₁ a b ≡ set l₂ a b) → Erased ((∀ a b → trans (sym (trans (cong (get l₁) (s a b)) (g (set l₂ a b)))) (get-set l₁ a b) ≡ get-set l₂ a b) × (∀ a → trans (sym (trans (s a (get l₁ a)) (cong (set l₂ a) (g a)))) (set-get l₁ a) ≡ set-get l₂ a) × (∀ a b₁ b₂ → trans (set-set l₁ a b₁ b₂) (s a b₂) ≡ trans (cong (λ set → set (set a b₁) b₂) (⟨ext⟩ (⟨ext⟩ ⊚ s))) (set-set l₂ a b₁ b₂))) equality-characterisation₄ {l₁ = l₁} {l₂ = l₂} = l₁ ≡ l₂ ↝⟨ equality-characterisation₃ ⟩ (∃ λ (g : get l₁ ≡ get l₂) → ∃ λ (s : set l₁ ≡ set l₂) → Erased ((∀ a b → trans (sym (cong₂ (λ set get → get (set a b)) s g)) (get-set l₁ a b) ≡ get-set l₂ a b) × (∀ a → trans (sym (cong₂ (λ set get → set a (get a)) s g)) (set-get l₁ a) ≡ set-get l₂ a) × (∀ a b₁ b₂ → trans (set-set l₁ a b₁ b₂) (cong (λ set → set a b₂) s) ≡ trans (cong (λ set → set (set a b₁) b₂) s) (set-set l₂ a b₁ b₂)))) ↝⟨ (Σ-cong (inverse $ Eq.extensionality-isomorphism ext) λ g → Σ-cong (inverse $ Eq.extensionality-isomorphism ext F.∘ ∀-cong ext λ _ → Eq.extensionality-isomorphism ext) λ s → Erased-cong ( (∀-cong ext λ a → ∀-cong ext λ b → ≡⇒↝ _ $ cong (λ eq → trans (sym eq) (get-set l₁ a b) ≡ _) ( cong₂ (λ set get → get (set a b)) s g ≡⟨⟩ trans (cong (λ set → get l₁ (set a b)) s) (cong (λ get → get (set l₂ a b)) g) ≡⟨ cong (λ eq → trans eq (ext⁻¹ g (set l₂ a b))) $ sym $ cong-∘ _ _ s ⟩ trans (cong (get l₁ ⊚ (_$ b)) (ext⁻¹ s a)) (ext⁻¹ g (set l₂ a b)) ≡⟨ cong (λ eq → trans eq (ext⁻¹ g (set l₂ a b))) $ sym $ cong-∘ _ _ (ext⁻¹ s a) ⟩∎ trans (cong (get l₁) (ext⁻¹ (ext⁻¹ s a) b)) (ext⁻¹ g (set l₂ a b)) ∎)) ×-cong (∀-cong ext λ a → ≡⇒↝ _ $ cong (λ eq → trans (sym eq) (set-get l₁ a) ≡ _) ( cong₂ (λ set get → set a (get a)) s g ≡⟨⟩ trans (cong (λ set → set a (get l₁ a)) s) (cong (λ get → set l₂ a (get a)) g) ≡⟨ sym $ cong₂ trans (cong-∘ _ _ s) (cong-∘ _ _ g) ⟩ trans (ext⁻¹ (ext⁻¹ s a) (get l₁ a)) (cong (set l₂ a) (ext⁻¹ g a)) ∎)) ×-cong ∀-cong ext λ a → ∀-cong ext λ b₁ → ∀-cong ext λ b₂ → ≡⇒↝ _ $ cong₂ (λ p q → trans _ p ≡ trans (cong (λ set → set (set a b₁) b₂) q) (set-set l₂ a b₁ b₂)) ( cong (λ set → set a b₂) s ≡⟨ sym $ cong-∘ _ _ s ⟩∎ ext⁻¹ (ext⁻¹ s a) b₂ ∎) ( s ≡⟨ sym $ _≃_.right-inverse-of (Eq.extensionality-isomorphism bad-ext) _ ⟩ ⟨ext⟩ (ext⁻¹ s) ≡⟨ (cong ⟨ext⟩ $ ⟨ext⟩ λ _ → sym $ _≃_.right-inverse-of (Eq.extensionality-isomorphism bad-ext) _) ⟩∎ ⟨ext⟩ (⟨ext⟩ ⊚ ext⁻¹ ⊚ ext⁻¹ s) ∎))) ⟩□ (∃ λ (g : ∀ a → get l₁ a ≡ get l₂ a) → ∃ λ (s : ∀ a b → set l₁ a b ≡ set l₂ a b) → Erased ((∀ a b → trans (sym (trans (cong (get l₁) (s a b)) (g (set l₂ a b)))) (get-set l₁ a b) ≡ get-set l₂ a b) × (∀ a → trans (sym (trans (s a (get l₁ a)) (cong (set l₂ a) (g a)))) (set-get l₁ a) ≡ set-get l₂ a) × (∀ a b₁ b₂ → trans (set-set l₁ a b₁ b₂) (s a b₂) ≡ trans (cong (λ set → set (set a b₁) b₂) (⟨ext⟩ (⟨ext⟩ ⊚ s))) (set-set l₂ a b₁ b₂)))) □ where open Lens -- A lemma that can be used to prove that two lenses with -- definitionally equal getters and setters are equal. equal-laws→≡ : {get : A → B} {set : A → B → A} {l₁′ l₂′ : Erased ((∀ a b → get (set a b) ≡ b) × (∀ a → set a (get a) ≡ a) × (∀ a b₁ b₂ → set (set a b₁) b₂ ≡ set a b₂))} → let l₁ = _↔_.from Lens-as-Σ (get , set , l₁′) l₂ = _↔_.from Lens-as-Σ (get , set , l₂′) open Lens in @0 (∀ a b → get-set l₁ a b ≡ get-set l₂ a b) → @0 (∀ a → set-get l₁ a ≡ set-get l₂ a) → @0 (∀ a b₁ b₂ → set-set l₁ a b₁ b₂ ≡ set-set l₂ a b₁ b₂) → l₁ ≡ l₂ equal-laws→≡ {l₁′ = l₁′} {l₂′ = l₂′} hyp₁ hyp₂ hyp₃ = let l₁″ = _↔_.from Lens-as-Σ (_ , _ , l₁′) l₂″ = _↔_.from Lens-as-Σ (_ , _ , l₂′) in _↔_.from equality-characterisation₂ ( refl _ , refl _ , [ (λ a b → trans (sym (cong₂ (λ set get → get (set a b)) (refl _) (refl _))) (get-set l₁″ a b) ≡⟨ cong (λ eq → trans (sym eq) _) $ cong₂-refl _ ⟩ trans (sym (refl _)) (get-set l₁″ a b) ≡⟨ cong (flip trans _) sym-refl ⟩ trans (refl _) (get-set l₁″ a b) ≡⟨ trans-reflˡ _ ⟩ get-set l₁″ a b ≡⟨ hyp₁ _ _ ⟩∎ get-set l₂″ a b ∎) , (λ a → trans (sym (cong₂ (λ set get → set a (get a)) (refl _) (refl _))) (set-get l₁″ a) ≡⟨ cong (λ eq → trans (sym eq) _) $ cong₂-refl _ ⟩ trans (sym (refl _)) (set-get l₁″ a) ≡⟨ cong (flip trans _) sym-refl ⟩ trans (refl _) (set-get l₁″ a) ≡⟨ trans-reflˡ _ ⟩ set-get l₁″ a ≡⟨ hyp₂ _ ⟩∎ set-get l₂″ a ∎) , (λ a b₁ b₂ → subst (λ set → set (set a b₁) b₂ ≡ set a b₂) (refl _) (set-set l₁″ a b₁ b₂) ≡⟨ subst-refl _ _ ⟩ set-set l₁″ a b₁ b₂ ≡⟨ hyp₃ _ _ _ ⟩∎ set-set l₂″ a b₁ b₂ ∎) ] ) where open Lens -- An equality characterisation lemma for lenses from sets. @0 equality-characterisation-for-sets : let open Lens in {l₁ l₂ : Lens A B} → Is-set A → l₁ ≡ l₂ ↔ set l₁ ≡ set l₂ equality-characterisation-for-sets {A = A} {B = B} {l₁ = l₁} {l₂ = l₂} A-set = l₁ ≡ l₂ ↔⟨ inverse $ Eq.≃-≡ Lens≃Traditional-lens ⟩ trad l₁ ≡ trad l₂ ↝⟨ T.equality-characterisation-for-sets A-set ⟩□ set l₁ ≡ set l₂ □ where open Lens ------------------------------------------------------------------------ -- More isomorphisms/equivalences related to lenses -- Lens ⊤ B is equivalent (with erased proofs) to Contractibleᴱ B. lens-from-⊤≃codomain-contractible : Lens ⊤ B ≃ᴱ Contractibleᴱ B lens-from-⊤≃codomain-contractible = EEq.⇔→≃ᴱ (lens-preserves-h-level-of-domain 0 (mono₁ 0 ⊤-contractible)) (ECP.Contractibleᴱ-propositional ext) (λ l → Contractibleᴱ→Contractibleᴱ l (ECP.Contractible→Contractibleᴱ ⊤-contractible)) (λ (b , irrB) → record { get = λ _ → b ; get-set = λ _ → erased irrB ; set-get = refl ; set-set = λ _ _ _ → refl _ }) -- Lens ⊥ B is equivalent to the unit type. lens-from-⊥≃⊤ : Lens (⊥ {ℓ = a}) B ≃ ⊤ lens-from-⊥≃⊤ = Eq.↔⇒≃ $ _⇔_.to contractible⇔↔⊤ $ record { get = ⊥-elim ; set = ⊥-elim ; get-set = λ a → ⊥-elim a ; set-get = λ a → ⊥-elim a ; set-set = λ a → ⊥-elim a } , λ l → _↔_.from equality-characterisation₁ ( ⟨ext⟩ (λ a → ⊥-elim a) , ⟨ext⟩ (λ a → ⊥-elim a) , [ (λ a → ⊥-elim a) , (λ a → ⊥-elim a) , (λ a → ⊥-elim a) ] ) -- If A is a set and there is a lens from A to B, then A is equivalent -- (with erased proofs) to the cartesian product of some type (that -- can be expressed using the setter of l) and B. -- -- This result is based on Theorem 2.3.9 from "Lenses and View Update -- Translation" by Pierce and Schmitt. ≃ᴱΣ∥set⁻¹ᴱ∥ᴱ× : @0 Is-set A → (l : Lens A B) → A ≃ᴱ ((∃ λ (f : B → A) → ∥ Lens.set l ⁻¹ᴱ f ∥ᴱ) × B) ≃ᴱΣ∥set⁻¹ᴱ∥ᴱ× {A = A} {B = B} A-set l = EEq.↔→≃ᴱ (λ a → (set a , ∣ a , [ refl _ ] ∣) , get a) (λ ((f , _) , b) → f b) to-from (λ a → set a (get a) ≡⟨ set-get a ⟩∎ a ∎) where open Lens l @0 B-set : A → Is-set B B-set a = h-level-respects-lens-from-inhabited 2 l a A-set @0 to-from : ∀ _ → _ to-from ((f , p) , b) = flip TE.rec p λ @0 where .TE.truncation-is-propositionʳ → ×-closure 2 (Σ-closure 2 (Π-closure ext 2 λ _ → A-set) λ _ → mono₁ 1 TE.truncation-is-proposition) (B-set (f b)) .TE.∣∣ʳ (a , [ q ]) → let lemma₁ = set (f b) ≡⟨ cong (λ f → set (f b)) $ sym q ⟩ set (set a b) ≡⟨ ⟨ext⟩ $ set-set a b ⟩ set a ≡⟨ q ⟩∎ f ∎ lemma₂ = get (f b) ≡⟨ cong (λ f → get (f b)) $ sym q ⟩ get (set a b) ≡⟨ get-set _ _ ⟩∎ b ∎ in (set (f b) , ∣ f b , [ refl _ ] ∣) , get (f b) ≡⟨ cong₂ _,_ (Σ-≡,≡→≡ lemma₁ (TE.truncation-is-proposition _ _)) lemma₂ ⟩∎ (f , p) , b ∎ -- If B is an inhabited set and there is a lens from A to B, then A is -- equivalent (with erased proofs) to the cartesian product of some -- type (that can be expressed using the getter of l) and B. -- -- This result is based on Corollary 13 from "Algebras and Update -- Strategies" by Johnson, Rosebrugh and Wood. ≃ᴱget⁻¹ᴱ× : @0 Is-set B → (b : B) (l : Lens A B) → A ≃ᴱ (Lens.get l ⁻¹ᴱ b × B) ≃ᴱget⁻¹ᴱ× {B = B} {A = A} B-set b₀ l = EEq.↔→≃ᴱ (λ a → (set a b₀ , [ get-set a b₀ ]) , get a) (λ ((a , _) , b) → set a b) (λ ((a , [ h ]) , b) → let lemma = set (set a b) b₀ ≡⟨ set-set a b b₀ ⟩ set a b₀ ≡⟨ cong (set a) (sym h) ⟩ set a (get a) ≡⟨ set-get a ⟩∎ a ∎ in (set (set a b) b₀ , [ get-set (set a b) b₀ ]) , get (set a b) ≡⟨ cong₂ _,_ (Σ-≡,≡→≡ lemma ([]-cong [ B-set _ _ ])) (get-set a b) ⟩∎ (a , [ h ]) , b ∎) (λ a → set (set a b₀) (get a) ≡⟨ set-set a b₀ (get a) ⟩ set a (get a) ≡⟨ set-get a ⟩∎ a ∎) where open Lens l -- For somewhat coherent lenses the previous result can be proved -- without the assumption that the codomain is a set. ≃ᴱget⁻¹ᴱ×-coherent : (b : B) (l : Coherent-lens A B) → A ≃ᴱ (Coherent-lens.get l ⁻¹ᴱ b × B) ≃ᴱget⁻¹ᴱ×-coherent {B = B} {A = A} b₀ l = EEq.↔→≃ᴱ (λ a → (set a b₀ , [ get-set a b₀ ]) , get a) (λ ((a , _) , b) → set a b) (λ ((a , [ h ]) , b) → let lemma₁ = set (set a b) b₀ ≡⟨ set-set a b b₀ ⟩ set a b₀ ≡⟨ cong (set a) (sym h) ⟩ set a (get a) ≡⟨ set-get a ⟩∎ a ∎ lemma₂₁ = cong get (trans (set-set a b b₀) (trans (cong (set a) (sym h)) (set-get a))) ≡⟨ trans (cong-trans _ _ _) $ cong (trans _) $ trans (cong-trans _ _ _) $ cong (flip trans _) $ cong-∘ _ _ _ ⟩ trans (cong get (set-set a b b₀)) (trans (cong (get ⊚ set a) (sym h)) (cong get (set-get a))) ≡⟨ cong₂ (λ p q → trans p (trans (cong (get ⊚ set a) (sym h)) q)) (get-set-set _ _ _) (get-set-get _) ⟩∎ trans (trans (get-set (set a b) b₀) (sym (get-set a b₀))) (trans (cong (get ⊚ set a) (sym h)) (get-set a (get a))) ∎ lemma₂₂ = sym (trans (trans (get-set (set a b) b₀) (sym (get-set a b₀))) (trans (cong (get ⊚ set a) (sym h)) (get-set a (get a)))) ≡⟨ trans (sym-trans _ _) $ cong₂ trans (sym-trans _ _) (sym-trans _ _) ⟩ trans (trans (sym (get-set a (get a))) (sym (cong (get ⊚ set a) (sym h)))) (trans (sym (sym (get-set a b₀))) (sym (get-set (set a b) b₀))) ≡⟨ cong₂ (λ p q → trans (trans (sym (get-set a (get a))) p) (trans q (sym (get-set (set a b) b₀)))) (trans (cong sym $ cong-sym _ _) $ sym-sym _) (sym-sym _) ⟩ trans (trans (sym (get-set a (get a))) (cong (get ⊚ set a) h)) (trans (get-set a b₀) (sym (get-set (set a b) b₀))) ≡⟨ trans (sym $ trans-assoc _ _ _) $ cong (flip trans _) $ trans-assoc _ _ _ ⟩∎ trans (trans (sym (get-set a (get a))) (trans (cong (get ⊚ set a) h) (get-set a b₀))) (sym (get-set (set a b) b₀)) ∎ lemma₂′ = subst (λ a → get a ≡ b₀) (trans (set-set a b b₀) (trans (cong (set a) (sym h)) (set-get a))) (get-set (set a b) b₀) ≡⟨ subst-∘ _ _ _ ⟩ subst (_≡ b₀) (cong get (trans (set-set a b b₀) (trans (cong (set a) (sym h)) (set-get a)))) (get-set (set a b) b₀) ≡⟨ subst-trans-sym ⟩ trans (sym (cong get (trans (set-set a b b₀) (trans (cong (set a) (sym h)) (set-get a))))) (get-set (set a b) b₀) ≡⟨ cong (flip (trans ⊚ sym) _) lemma₂₁ ⟩ trans (sym (trans (trans (get-set (set a b) b₀) (sym (get-set a b₀))) (trans (cong (get ⊚ set a) (sym h)) (get-set a (get a))))) (get-set (set a b) b₀) ≡⟨ cong (flip trans _) lemma₂₂ ⟩ trans (trans (trans (sym (get-set a (get a))) (trans (cong (get ⊚ set a) h) (get-set a b₀))) (sym (get-set (set a b) b₀))) (get-set (set a b) b₀) ≡⟨ trans-[trans-sym]- _ _ ⟩ trans (sym (get-set a (get a))) (trans (cong (get ⊚ set a) h) (get-set a b₀)) ≡⟨ cong (λ f → trans (sym (f (get a))) (trans (cong (get ⊚ set a) h) (f b₀))) $ sym $ _≃_.left-inverse-of (Eq.extensionality-isomorphism bad-ext) (get-set a) ⟩ trans (sym (ext⁻¹ (⟨ext⟩ (get-set a)) (get a))) (trans (cong (get ⊚ set a) h) (ext⁻¹ (⟨ext⟩ (get-set a)) b₀)) ≡⟨ elim₁ (λ {f} eq → trans (sym (ext⁻¹ eq (get a))) (trans (cong f h) (ext⁻¹ eq b₀)) ≡ h) ( trans (sym (ext⁻¹ (refl P.id) (get a))) (trans (cong P.id h) (ext⁻¹ (refl P.id) b₀)) ≡⟨ cong₂ (λ p q → trans p (trans (cong P.id h) q)) (trans (cong sym (ext⁻¹-refl _)) sym-refl) (ext⁻¹-refl _) ⟩ trans (refl _) (trans (cong P.id h) (refl _)) ≡⟨ trans-reflˡ _ ⟩ trans (cong P.id h) (refl _) ≡⟨ trans-reflʳ _ ⟩ cong P.id h ≡⟨ sym $ cong-id _ ⟩∎ h ∎) _ ⟩∎ h ∎ lemma₂ = subst (λ a → Erased (get a ≡ b₀)) (trans (set-set a b b₀) (trans (cong (set a) (sym h)) (set-get a))) [ get-set (set a b) b₀ ] ≡⟨ push-subst-[] ⟩ [ subst (λ a → get a ≡ b₀) (trans (set-set a b b₀) (trans (cong (set a) (sym h)) (set-get a))) (get-set (set a b) b₀) ] ≡⟨ []-cong [ lemma₂′ ] ⟩∎ [ h ] ∎ in ((set (set a b) b₀ , [ get-set (set a b) b₀ ]) , get (set a b)) ≡⟨ cong₂ _,_ (Σ-≡,≡→≡ lemma₁ lemma₂) (get-set a b) ⟩∎ ((a , [ h ]) , b ) ∎) (λ a → set (set a b₀) (get a) ≡⟨ set-set a b₀ (get a) ⟩ set a (get a) ≡⟨ set-get a ⟩∎ a ∎) where open Coherent-lens l ------------------------------------------------------------------------ -- A conversion function -- If A is a set, then Lens A B is equivalent to Coherent-lens A B. ≃coherent : @0 Is-set A → Lens A B ≃ Coherent-lens A B ≃coherent {A = A} {B = B} A-set = Eq.↔→≃ to Coherent-lens.lens (λ l → let l′ = Coherent-lens.lens l in $⟨ H-level-Erased 1 (×-closure 1 (Π-closure ext 1 λ a → mono₁ 2 (B-set l′ a)) (Π-closure ext 1 λ a → Π-closure ext 1 λ _ → Π-closure ext 1 λ _ → mono₁ 2 (B-set l′ a))) ⟩ Is-proposition _ ↝⟨ (λ p → cong (l′ ,_) (p _ _)) ⦂ (_ → _) ⟩ (l′ , _) ≡ (l′ , _) ↔⟨ Eq.≃-≡ Coherent-lens-as-Σ ⟩□ to l′ ≡ l □) refl where @0 B-set : Lens A B → A → Is-set B B-set l a = h-level-respects-lens-from-inhabited 2 l a A-set to : Lens A B → Coherent-lens A B to l = record { lens = l ; get-set-get = λ a → B-set l a _ _ ; get-set-set = λ a _ _ → B-set l a _ _ } -- The conversion preserves getters and setters. ≃coherent-preserves-getters-and-setters : {A : Type a} (@0 s : Is-set A) → Preserves-getters-and-setters-⇔ A B (_≃_.logical-equivalence (≃coherent s)) ≃coherent-preserves-getters-and-setters _ = (λ _ → refl _ , refl _) , (λ _ → refl _ , refl _) ------------------------------------------------------------------------ -- Lens combinators module Lens-combinators where -- If two types are isomorphic, then there is a lens between them. ↔→lens : A ↔ B → Lens A B ↔→lens A↔B = record { get = to ; set = const from ; get-set = const right-inverse-of ; set-get = left-inverse-of ; set-set = λ _ _ _ → refl _ } where open _↔_ A↔B -- If there is an equivalence with erased proofs between two types, -- then there is a lens between them. ≃ᴱ→lens : A ≃ᴱ B → Lens A B ≃ᴱ→lens A≃B = record { get = to ; set = const from ; get-set = const right-inverse-of ; set-get = left-inverse-of ; set-set = λ _ _ _ → refl _ } where open _≃ᴱ_ A≃B -- Identity lens. id : Lens A A id = ≃ᴱ→lens F.id -- The identity lens is equal to the one obtained from the -- traditional identity lens without erased proofs. Traditional-lens-id≡id : Traditional-lens→Lens TC.id ≡ id {A = A} Traditional-lens-id≡id = refl _ -- Composition of lenses. infixr 9 _∘_ _∘_ : Lens B C → Lens A B → Lens A C l₁ ∘ l₂ = record { get = λ a → get l₁ (get l₂ a) ; set = λ a c → let b = set l₁ (get l₂ a) c in set l₂ a b ; get-set = T.Lens.get-set l₁∘l₂ ; set-get = T.Lens.set-get l₁∘l₂ ; set-set = T.Lens.set-set l₁∘l₂ } where open Lens @0 l₁∘l₂ : _ l₁∘l₂ = trad l₁ TC.∘ trad l₂ -- Traditional-lens→Lens commutes with composition. @0 Traditional-lens-∘≡∘ : {l₁ : T.Lens B C} {l₂ : T.Lens A B} → Traditional-lens→Lens (l₁ TC.∘ l₂) ≡ Traditional-lens→Lens l₁ ∘ Traditional-lens→Lens l₂ Traditional-lens-∘≡∘ = refl _ -- Note that composition can be defined in several different ways. -- Here are two alternative implementations. infixr 9 _∘′_ _∘″_ _∘′_ : Lens B C → Lens A B → Lens A C l₁ ∘′ l₂ = record (l₁ ∘ l₂) { set-set = T.Lens.set-set l₁∘′l₂ } where @0 l₁∘′l₂ : _ l₁∘′l₂ = trad l₁ TC.∘′ trad l₂ _∘″_ : Lens B C → Lens A B → Lens A C l₁ ∘″ l₂ = record (l₁ ∘ l₂) { set-set = T.Lens.set-set l₁∘″l₂ } where @0 l₁∘″l₂ : _ l₁∘″l₂ = trad l₁ TC.∘″ trad l₂ -- These two implementations are pointwise equal to the other one. -- However, I don't know if there is some other definition that is -- distinct from these two (if we require that the definitions are -- polymorphic, that get and set are implemented in the same way as -- for _∘_, and that the three composition laws below hold). ∘≡∘′ : l₁ ∘ l₂ ≡ l₁ ∘′ l₂ ∘≡∘′ {l₁ = l₁} {l₂ = l₂} = equal-laws→≡ (λ _ _ → refl _) (λ _ → refl _) (λ a c₁ c₂ → let b₁ = set l₁ (get l₂ a) c₁ b₂ = set l₁ b₁ c₂ a′ = set l₂ a b₁ b′ = set l₁ (get l₂ a′) c₂ in set-set (l₁ ∘ l₂) a c₁ c₂ ≡⟨⟩ trans (set-set l₂ a b₁ b′) (trans (cong (λ b → set l₂ a (set l₁ b c₂)) (get-set l₂ a b₁)) (cong (set l₂ a) (set-set l₁ (get l₂ a) c₁ c₂))) ≡⟨ sym $ trans-assoc _ _ _ ⟩ trans (trans (set-set l₂ a b₁ b′) (cong (λ b → set l₂ a (set l₁ b c₂)) (get-set l₂ a b₁))) (cong (set l₂ a) (set-set l₁ (get l₂ a) c₁ c₂)) ≡⟨ cong (flip trans _) $ elim₁ (λ eq → trans (set-set l₂ _ b₁ _) (cong (λ b → set l₂ a (set l₁ b c₂)) eq) ≡ trans (cong (λ b → set l₂ _ (set l₁ b _)) eq) (set-set l₂ _ _ _)) ( trans (set-set l₂ a b₁ b₂) (cong (λ b → set l₂ a (set l₁ b c₂)) (refl _)) ≡⟨ trans (cong (trans _) $ cong-refl _) $ trans-reflʳ _ ⟩ set-set l₂ a b₁ b₂ ≡⟨ sym $ trans (cong (flip trans _) $ cong-refl _) $ trans-reflˡ _ ⟩∎ trans (cong (λ b → set l₂ a′ (set l₁ b c₂)) (refl _)) (set-set l₂ a b₁ b₂) ∎) (get-set l₂ a b₁) ⟩ trans (trans (cong (λ b → set l₂ a′ (set l₁ b c₂)) (get-set l₂ a b₁)) (set-set l₂ a b₁ b₂)) (cong (set l₂ a) (set-set l₁ (get l₂ a) c₁ c₂)) ≡⟨ trans-assoc _ _ _ ⟩ trans (cong (λ b → set l₂ a′ (set l₁ b c₂)) (get-set l₂ a b₁)) (trans (set-set l₂ a b₁ b₂) (cong (set l₂ a) (set-set l₁ (get l₂ a) c₁ c₂))) ≡⟨⟩ set-set (l₁ ∘′ l₂) a c₁ c₂ ∎) where open Lens ∘≡∘″ : l₁ ∘ l₂ ≡ l₁ ∘″ l₂ ∘≡∘″ {l₁ = l₁} {l₂ = l₂} = equal-laws→≡ (λ _ _ → refl _) (λ _ → refl _) (λ a c₁ c₂ → let b₁ = set l₁ (get l₂ a) c₁ b₂ = set l₁ (get l₂ a) c₂ a′ = set l₂ a b₁ b′ = set l₁ (get l₂ a′) c₂ eq : b′ ≡ b₂ eq = trans (cong (λ b → set l₁ b c₂) (get-set l₂ a b₁)) (set-set l₁ (get l₂ a) c₁ c₂) in set-set (l₁ ∘ l₂) a c₁ c₂ ≡⟨⟩ trans (set-set l₂ a b₁ b′) (trans (cong (λ b → set l₂ a (set l₁ b c₂)) (get-set l₂ a b₁)) (cong (set l₂ a) (set-set l₁ (get l₂ a) c₁ c₂))) ≡⟨ cong (trans (set-set l₂ a b₁ b′)) $ trans (cong (flip trans _) $ sym $ cong-∘ _ _ _) $ sym $ cong-trans _ _ _ ⟩ trans (set-set l₂ a b₁ b′) (cong (set l₂ a) eq) ≡⟨ elim¹ (λ {b₂} eq → trans (set-set l₂ a b₁ b′) (cong (set l₂ a) eq) ≡ trans (cong (set l₂ a′) eq) (set-set l₂ a b₁ b₂)) ( trans (set-set l₂ a b₁ b′) (cong (set l₂ a) (refl _)) ≡⟨ cong (trans _) $ cong-refl _ ⟩ trans (set-set l₂ a b₁ b′) (refl _) ≡⟨ trans-reflʳ _ ⟩ set-set l₂ a b₁ b′ ≡⟨ sym $ trans-reflˡ _ ⟩ trans (refl _) (set-set l₂ a b₁ b′) ≡⟨ cong (flip trans _) $ sym $ cong-refl _ ⟩∎ trans (cong (set l₂ a′) (refl _)) (set-set l₂ a b₁ b′) ∎) eq ⟩ trans (cong (set l₂ a′) eq) (set-set l₂ a b₁ b₂) ≡⟨ trans (cong (flip trans _) $ trans (cong-trans _ _ _) $ cong (flip trans _) $ cong-∘ _ _ _) $ trans-assoc _ _ _ ⟩ trans (cong (λ b → set l₂ a′ (set l₁ b c₂)) (get-set l₂ a b₁)) (trans (cong (set l₂ a′) (set-set l₁ (get l₂ a) c₁ c₂)) (set-set l₂ a b₁ b₂)) ≡⟨⟩ set-set (l₁ ∘″ l₂) a c₁ c₂ ∎) where open Lens -- id is a left identity of _∘_. left-identity : (l : Lens A B) → id ∘ l ≡ l left-identity l = equal-laws→≡ (λ a b → trans (cong P.id (get-set a b)) (refl _) ≡⟨ trans-reflʳ _ ⟩ cong P.id (get-set a b) ≡⟨ sym $ cong-id _ ⟩∎ get-set a b ∎) (λ a → trans (cong (set a) (refl _)) (set-get a) ≡⟨ cong (flip trans _) $ cong-refl _ ⟩ trans (refl _) (set-get a) ≡⟨ trans-reflˡ _ ⟩∎ set-get a ∎) (λ a b₁ b₂ → trans (set-set a b₁ b₂) (trans (cong (λ _ → set a b₂) (get-set a b₁)) (cong (set a) (refl _))) ≡⟨ cong₂ (λ p q → trans _ (trans p q)) (cong-const _) (cong-refl _) ⟩ trans (set-set a b₁ b₂) (trans (refl _) (refl _)) ≡⟨ trans (cong (trans _) trans-refl-refl) $ trans-reflʳ _ ⟩∎ set-set a b₁ b₂ ∎) where open Lens l -- id is a right identity of _∘_. right-identity : (l : Lens A B) → l ∘ id ≡ l right-identity l = equal-laws→≡ (λ a b → trans (cong get (refl _)) (get-set a b) ≡⟨ cong (flip trans _) $ cong-refl _ ⟩ trans (refl _) (get-set a b) ≡⟨ trans-reflˡ _ ⟩∎ get-set a b ∎) (λ a → trans (cong P.id (set-get a)) (refl _) ≡⟨ trans-reflʳ _ ⟩ cong P.id (set-get a) ≡⟨ sym $ cong-id _ ⟩∎ set-get a ∎) (λ a b₁ b₂ → trans (refl _) (trans (cong (λ b → set b b₂) (refl _)) (cong P.id (set-set a b₁ b₂))) ≡⟨ trans-reflˡ _ ⟩ trans (cong (λ b → set b b₂) (refl _)) (cong P.id (set-set a b₁ b₂)) ≡⟨ cong₂ trans (cong-refl _) (sym $ cong-id _) ⟩ trans (refl _) (set-set a b₁ b₂) ≡⟨ trans-reflˡ _ ⟩∎ set-set a b₁ b₂ ∎) where open Lens l -- _∘_ is associative. associativity : (l₁ : Lens C D) (l₂ : Lens B C) (l₃ : Lens A B) → l₁ ∘ (l₂ ∘ l₃) ≡ (l₁ ∘ l₂) ∘ l₃ associativity l₁ l₂ l₃ = equal-laws→≡ lemma₁ lemma₂ lemma₃ where open Lens @0 lemma₁ : _ lemma₁ = λ a d → let f = get l₁ g = get l₂ b = get l₃ a c = g b c′ = set l₁ c d x = get-set l₃ a (set l₂ b c′) y = get-set l₂ b c′ z = get-set l₁ c d in trans (cong f $ trans (cong g x) y) z ≡⟨ cong (λ x → trans x z) (cong-trans f _ y) ⟩ trans (trans (cong f $ cong g x) (cong f y)) z ≡⟨ trans-assoc _ _ z ⟩ trans (cong f $ cong g x) (trans (cong f y) z) ≡⟨ cong (λ x → trans x (trans (cong f y) z)) (cong-∘ f g x) ⟩∎ trans (cong (f ⊚ g) x) (trans (cong f y) z) ∎ @0 lemma₂ : _ lemma₂ = λ a → let b = get l₃ a f = set l₃ a g = set l₂ b x = set-get l₁ (get l₂ b) y = set-get l₂ b z = set-get l₃ a in trans (cong (f ⊚ g) x) (trans (cong f y) z) ≡⟨ sym $ trans-assoc _ _ z ⟩ trans (trans (cong (f ⊚ g) x) (cong f y)) z ≡⟨ cong (λ x → trans (trans x (cong f y)) z) (sym $ cong-∘ f g x) ⟩ trans (trans (cong f (cong g x)) (cong f y)) z ≡⟨ cong (λ x → trans x z) (sym $ cong-trans f _ y) ⟩∎ trans (cong f $ trans (cong g x) y) z ∎ @0 lemma₃ : _ lemma₃ = λ a d₁ d₂ → let f = set l₃ a g = set l₂ (get l₃ a) h = λ x → set l₁ x d₂ i = get l₂ c₁ = set l₁ (get (l₂ ∘ l₃) a) d₁ c₂ = h (i (get l₃ a)) c₂′ = h (i (get l₃ (set (l₂ ∘ l₃) a c₁))) c₂″ = h (i (set l₂ (get l₃ a) c₁)) b₁ = g c₁ b₁′ = get l₃ (f b₁) x = set-set l₃ a b₁ (set l₂ b₁′ c₂′) y = get-set l₃ a b₁ z = set-set l₂ (get l₃ a) c₁ u = get-set l₂ (get l₃ a) c₁ v = set-set l₁ (get (l₂ ∘ l₃) a) d₁ d₂ c₂′≡c₂″ = c₂′ ≡⟨ cong (h ⊚ i) y ⟩∎ c₂″ ∎ lemma₁₀ = trans (sym (cong (h ⊚ i) y)) (cong h (cong i y)) ≡⟨ cong (trans _) (cong-∘ h i y) ⟩ trans (sym (cong (h ⊚ i) y)) (cong (h ⊚ i) y) ≡⟨ trans-symˡ (cong (h ⊚ i) y) ⟩∎ refl _ ∎ lemma₉ = trans (cong (λ x → set l₂ x c₂′) y) (cong (set l₂ b₁) c₂′≡c₂″) ≡⟨ cong (trans (cong (λ x → set l₂ x c₂′) y)) (cong-∘ (set l₂ b₁) (h ⊚ i) y) ⟩ trans (cong (λ x → set l₂ x (h (i b₁′))) y) (cong (λ x → set l₂ b₁ (h (i x ))) y) ≡⟨ trans-cong-cong (λ x y → set l₂ x (h (i y))) y ⟩∎ cong (λ x → set l₂ x (h (i x))) y ∎ lemma₈ = sym (cong (set l₂ b₁) (sym c₂′≡c₂″)) ≡⟨ sym $ cong-sym (set l₂ b₁) (sym c₂′≡c₂″) ⟩ cong (set l₂ b₁) (sym (sym c₂′≡c₂″)) ≡⟨ cong (cong (set l₂ b₁)) (sym-sym c₂′≡c₂″) ⟩∎ cong (set l₂ b₁) c₂′≡c₂″ ∎ lemma₇ = trans (cong g (sym c₂′≡c₂″)) (cong g (cong h (cong i y))) ≡⟨ sym $ cong-trans g _ (cong h (cong i y)) ⟩ cong g (trans (sym c₂′≡c₂″) (cong h (cong i y))) ≡⟨ cong (cong g) lemma₁₀ ⟩ cong g (refl _) ≡⟨ cong-refl _ ⟩∎ refl _ ∎ lemma₆ = trans (cong (λ x → set l₂ x c₂′) y) (trans (cong (set l₂ b₁) c₂′≡c₂″) (trans (z c₂″) (cong g (sym c₂′≡c₂″)))) ≡⟨ sym $ trans-assoc _ _ (trans _ (cong g (sym c₂′≡c₂″))) ⟩ trans (trans (cong (λ x → set l₂ x c₂′) y) (cong (set l₂ b₁) c₂′≡c₂″)) (trans (z c₂″) (cong g (sym c₂′≡c₂″))) ≡⟨ cong (λ e → trans e (trans (z c₂″) (cong g (sym c₂′≡c₂″)))) lemma₉ ⟩ trans (cong (λ x → set l₂ x (h (i x))) y) (trans (z c₂″) (cong g (sym c₂′≡c₂″))) ≡⟨ sym $ trans-assoc _ _ (cong g (sym c₂′≡c₂″)) ⟩∎ trans (trans (cong (λ x → set l₂ x (h (i x))) y) (z c₂″)) (cong g (sym c₂′≡c₂″)) ∎ lemma₅ = z c₂′ ≡⟨ sym $ dcong z (sym c₂′≡c₂″) ⟩ subst (λ x → set l₂ b₁ x ≡ g x) (sym c₂′≡c₂″) (z c₂″) ≡⟨ subst-in-terms-of-trans-and-cong {f = set l₂ b₁} {g = g} {x≡y = sym c₂′≡c₂″} ⟩ trans (sym (cong (set l₂ b₁) (sym c₂′≡c₂″))) (trans (z c₂″) (cong g (sym c₂′≡c₂″))) ≡⟨ cong (λ e → trans e (trans (z c₂″) (cong g (sym c₂′≡c₂″)))) lemma₈ ⟩∎ trans (cong (set l₂ b₁) c₂′≡c₂″) (trans (z c₂″) (cong g (sym c₂′≡c₂″))) ∎ lemma₄ = trans (trans (cong (λ x → set l₂ x c₂′) y) (z c₂′)) (cong g (cong h (cong i y))) ≡⟨ cong (λ e → trans (trans (cong (λ x → set l₂ x c₂′) y) e) (cong g (cong h (cong i y)))) lemma₅ ⟩ trans (trans (cong (λ x → set l₂ x c₂′) y) (trans (cong (set l₂ b₁) c₂′≡c₂″) (trans (z c₂″) (cong g (sym c₂′≡c₂″))))) (cong g (cong h (cong i y))) ≡⟨ cong (λ e → trans e (cong g (cong h (cong i y)))) lemma₆ ⟩ trans (trans (trans (cong (λ x → set l₂ x (h (i x))) y) (z c₂″)) (cong g (sym c₂′≡c₂″))) (cong g (cong h (cong i y))) ≡⟨ trans-assoc _ _ (cong g (cong h (cong i y))) ⟩ trans (trans (cong (λ x → set l₂ x (h (i x))) y) (z c₂″)) (trans (cong g (sym c₂′≡c₂″)) (cong g (cong h (cong i y)))) ≡⟨ cong (trans (trans _ (z c₂″))) lemma₇ ⟩ trans (trans (cong (λ x → set l₂ x (h (i x))) y) (z c₂″)) (refl _) ≡⟨ trans-reflʳ _ ⟩∎ trans (cong (λ x → set l₂ x (h (i x))) y) (z c₂″) ∎ lemma₃ = cong g (trans (cong h (trans (cong i y) u)) v) ≡⟨ cong (λ e → cong g (trans e v)) (cong-trans h _ u) ⟩ cong g (trans (trans (cong h (cong i y)) (cong h u)) v) ≡⟨ cong (cong g) (trans-assoc _ _ v) ⟩ cong g (trans (cong h (cong i y)) (trans (cong h u) v)) ≡⟨ cong-trans g _ (trans _ v) ⟩∎ trans (cong g (cong h (cong i y))) (cong g (trans (cong h u) v)) ∎ lemma₂ = trans (trans (cong (λ x → set l₂ x c₂′) y) (z c₂′)) (cong g (trans (cong h (trans (cong i y) u)) v)) ≡⟨ cong (trans (trans _ (z c₂′))) lemma₃ ⟩ trans (trans (cong (λ x → set l₂ x c₂′) y) (z c₂′)) (trans (cong g (cong h (cong i y))) (cong g (trans (cong h u) v))) ≡⟨ sym $ trans-assoc _ _ (cong g (trans _ v)) ⟩ trans (trans (trans (cong (λ x → set l₂ x c₂′) y) (z c₂′)) (cong g (cong h (cong i y)))) (cong g (trans (cong h u) v)) ≡⟨ cong (λ e → trans e (cong g (trans (cong h u) v))) lemma₄ ⟩ trans (trans (cong (λ x → set l₂ x (h (i x))) y) (z c₂″)) (cong g (trans (cong h u) v)) ≡⟨ trans-assoc _ _ (cong g (trans _ v)) ⟩∎ trans (cong (λ x → set l₂ x (h (i x))) y) (trans (z c₂″) (cong g (trans (cong h u) v))) ∎ lemma₁ = trans (cong f (trans (cong (λ x → set l₂ x c₂′) y) (z c₂′))) (cong (f ⊚ g) (trans (cong h (trans (cong i y) u)) v)) ≡⟨ cong (λ e → trans (cong f (trans (cong (λ x → set l₂ x c₂′) y) (z c₂′))) e) (sym $ cong-∘ f g (trans _ v)) ⟩ trans (cong f (trans (cong (λ x → set l₂ x c₂′) y) (z c₂′))) (cong f (cong g (trans (cong h (trans (cong i y) u)) v))) ≡⟨ sym $ cong-trans f (trans _ (z c₂′)) (cong g (trans _ v)) ⟩ cong f (trans (trans (cong (λ x → set l₂ x c₂′) y) (z c₂′)) (cong g (trans (cong h (trans (cong i y) u)) v))) ≡⟨ cong (cong f) lemma₂ ⟩ cong f (trans (cong (λ x → set l₂ x (h (i x))) y) (trans (z c₂″) (cong g (trans (cong h u) v)))) ≡⟨ cong-trans _ _ _ ⟩ trans (cong f (cong (λ x → set l₂ x (h (i x))) y)) (cong f (trans (z c₂″) (cong g (trans (cong h u) v)))) ≡⟨ cong₂ (λ p q → trans p (cong f (trans (z c₂″) q))) (cong-∘ _ _ _) (trans (cong-trans _ _ _) $ cong (flip trans _) $ cong-∘ _ _ _) ⟩∎ trans (cong (λ x → f (set l₂ x (h (i x)))) y) (cong f (trans (z c₂″) (trans (cong (g ⊚ h) u) (cong g v)))) ∎ in trans (trans x (trans (cong (λ x → f (set l₂ x c₂′)) y) (cong f (z c₂′)))) (trans (cong (f ⊚ g ⊚ h) (trans (cong i y) u)) (cong (f ⊚ g) v)) ≡⟨ cong₂ (λ p q → trans (trans x p) q) (trans (cong (flip trans _) $ sym $ cong-∘ _ _ _) $ sym $ cong-trans _ _ _) (trans (cong (flip trans _) $ sym $ cong-∘ _ _ _) $ sym $ cong-trans _ _ _) ⟩ trans (trans x (cong f (trans (cong (λ x → set l₂ x c₂′) y) (z c₂′)))) (cong (f ⊚ g) (trans (cong h (trans (cong i y) u)) v)) ≡⟨ trans-assoc _ _ _ ⟩ trans x (trans (cong f (trans (cong (λ x → set l₂ x c₂′) y) (z c₂′))) (cong (f ⊚ g) (trans (cong h (trans (cong i y) u)) v))) ≡⟨ cong (trans x) lemma₁ ⟩∎ trans x (trans (cong (λ x → f (set l₂ x (h (i x)))) y) (cong f (trans (z c₂″) (trans (cong (g ⊚ h) u) (cong g v))))) ∎ -- Every lens of type Lens A A that satisfies a certain right -- identity law is equal to the identity lens. id-unique : (id′ : Lens A A) → ((l : Lens A A) → l ∘ id′ ≡ l) → id′ ≡ id id-unique id′ right-identity = id′ ≡⟨ sym $ left-identity _ ⟩ id ∘ id′ ≡⟨ right-identity _ ⟩∎ id ∎ -- An equality characterisation lemma that can be used when one of -- the lenses is the identity. equality-characterisation-id : {l : Lens A A} → let open Lens l in l ≡ id ↔ ∃ λ (g : ∀ a → get a ≡ a) → ∃ λ (s : ∀ a b → set a b ≡ b) → Erased ((∀ a b → get-set a b ≡ trans (cong get (s a b)) (g b)) × (∀ a → set-get a ≡ trans (s a (get a)) (g a)) × (∀ a b₁ b₂ → trans (set-set a b₁ b₂) (s a b₂) ≡ cong (λ set → set (set a b₁) b₂) (⟨ext⟩ (⟨ext⟩ ⊚ s)))) equality-characterisation-id {l = l} = l ≡ id ↝⟨ equality-characterisation₄ ⟩ (∃ λ (g : ∀ a → get a ≡ a) → ∃ λ (s : ∀ a b → set a b ≡ b) → Erased ((∀ a b → trans (sym (trans (cong get (s a b)) (g b))) (get-set a b) ≡ refl _) × (∀ a → trans (sym (trans (s a (get a)) (cong P.id (g a)))) (set-get a) ≡ refl _) × (∀ a b₁ b₂ → trans (set-set a b₁ b₂) (s a b₂) ≡ trans (cong (λ set → set (set a b₁) b₂) (⟨ext⟩ (⟨ext⟩ ⊚ s))) (refl _)))) ↝⟨ (∃-cong λ g → ∃-cong λ _ → Erased-cong (∃-cong λ _ → (∀-cong ext λ _ → ≡⇒↝ _ $ cong (λ eq → trans (sym (trans _ eq)) (set-get _) ≡ _) $ sym $ cong-id (g _)) ×-cong ∀-cong ext λ _ → ∀-cong ext λ _ → ∀-cong ext λ _ → ≡⇒↝ _ $ cong (_ ≡_) $ trans-reflʳ _)) ⟩ (∃ λ (g : ∀ a → get a ≡ a) → ∃ λ (s : ∀ a b → set a b ≡ b) → Erased ((∀ a b → trans (sym (trans (cong get (s a b)) (g b))) (get-set a b) ≡ refl _) × (∀ a → trans (sym (trans (s a (get a)) (g a))) (set-get a) ≡ refl _) × (∀ a b₁ b₂ → trans (set-set a b₁ b₂) (s a b₂) ≡ cong (λ set → set (set a b₁) b₂) (⟨ext⟩ (⟨ext⟩ ⊚ s))))) ↝⟨ (∃-cong λ g → ∃-cong λ s → Erased-cong ( (∀-cong ext λ _ → ∀-cong ext λ _ → ≡-comm F.∘ ≡⇒↝ _ (cong (_≡ _) $ trans-reflʳ _) F.∘ ≡⇒↝ _ (sym $ [trans≡]≡[≡trans-symˡ] _ _ _) F.∘ ≡-comm) ×-cong (∀-cong ext λ _ → ≡-comm F.∘ ≡⇒↝ _ (cong (_≡ _) $ trans-reflʳ _) F.∘ ≡⇒↝ _ (sym $ [trans≡]≡[≡trans-symˡ] _ _ _) F.∘ ≡-comm) ×-cong F.id)) ⟩□ (∃ λ (g : ∀ a → get a ≡ a) → ∃ λ (s : ∀ a b → set a b ≡ b) → Erased ((∀ a b → get-set a b ≡ trans (cong get (s a b)) (g b)) × (∀ a → set-get a ≡ trans (s a (get a)) (g a)) × (∀ a b₁ b₂ → trans (set-set a b₁ b₂) (s a b₂) ≡ cong (λ set → set (set a b₁) b₂) (⟨ext⟩ (⟨ext⟩ ⊚ s))))) □ where open Lens l -- A lemma that can be used to show that a lens with a constant -- setter (such as the ones produced by getter-equivalence→lens -- below) is equal to the identity lens. constant-setter→≡id : {l′ : ∃ λ (get : A → A) → ∃ λ (set : A → A) → Erased ((A → ∀ a → get (set a) ≡ a) × (∀ a → set (get a) ≡ a) × (A → A → ∀ a → set a ≡ set a))} → let l = _↔_.from Lens-as-Σ (Σ-map P.id (Σ-map const P.id) l′) set = proj₁ (proj₂ l′) open Lens l hiding (set) in (∃ λ (g : ∀ a → get a ≡ a) → ∃ λ (s : ∀ a → set a ≡ a) → Erased ((∀ a₁ a₂ → get-set a₁ a₂ ≡ trans (cong get (s a₂)) (g a₂)) × (∀ a → set-get a ≡ trans (s (get a)) (g a)) × (∀ a a₁ a₂ → set-set a a₁ a₂ ≡ refl _))) → l ≡ id constant-setter→≡id {A = A} {l′ = l′} = (∃ λ (g : ∀ a → get a ≡ a) → ∃ λ (s : ∀ a → set a ≡ a) → Erased ((∀ a₁ a₂ → get-set a₁ a₂ ≡ trans (cong get (s a₂)) (g a₂)) × (∀ a → set-get a ≡ trans (s (get a)) (g a)) × (∀ a a₁ a₂ → set-set a a₁ a₂ ≡ refl _))) ↝⟨ (Σ-map P.id $ Σ-map P.id λ {s} → Erased-cong ( Σ-map P.id $ Σ-map P.id λ hyp a a₁ a₂ → trans (set-set a a₁ a₂) (s a₂) ≡⟨ cong (λ eq → trans eq (s a₂)) $ hyp _ _ _ ⟩ trans (refl _) (s a₂) ≡⟨ trans-reflˡ (s _) ⟩∎ s a₂ ∎)) ⟩ (∃ λ (g : ∀ a → get a ≡ a) → ∃ λ (s : ∀ a → set a ≡ a) → Erased ((∀ a₁ a₂ → get-set a₁ a₂ ≡ trans (cong get (s a₂)) (g a₂)) × (∀ a → set-get a ≡ trans (s (get a)) (g a)) × (∀ a a₁ a₂ → trans (set-set a a₁ a₂) (s a₂) ≡ s a₂))) ↔⟨ (∃-cong λ _ → ∃-cong λ s → Erased-cong (∃-cong λ _ → ∃-cong λ _ → ∀-cong ext λ a → ∀-cong ext λ a₁ → ∀-cong ext λ a₂ → ≡⇒↝ F.equivalence $ cong (trans _ (s _) ≡_) ( s a₂ ≡⟨ sym $ cong-ext s ⟩ cong (λ set → set a₂) (⟨ext⟩ s) ≡⟨ sym $ cong-∘ _ _ (⟨ext⟩ s) ⟩ cong (λ set → set (set a a₁) a₂) (cong const (⟨ext⟩ s)) ≡⟨ cong (cong (λ set → set (set a a₁) a₂)) $ sym $ ext-const (⟨ext⟩ s) ⟩∎ cong (λ set → set (set a a₁) a₂) (⟨ext⟩ λ _ → ⟨ext⟩ s) ∎))) ⟩ (∃ λ (g : ∀ a → get a ≡ a) → ∃ λ (s : ∀ a → set a ≡ a) → Erased ((∀ a₁ a₂ → get-set a₁ a₂ ≡ trans (cong get (s a₂)) (g a₂)) × (∀ a → set-get a ≡ trans (s (get a)) (g a)) × (∀ a a₁ a₂ → trans (set-set a a₁ a₂) (s a₂) ≡ cong (λ set → set (set a a₁) a₂) (⟨ext⟩ λ _ → ⟨ext⟩ s)))) ↝⟨ Σ-map P.id (Σ-map const P.id) ⟩ (∃ λ (g : ∀ a → get a ≡ a) → ∃ λ (s : A → ∀ a → set a ≡ a) → Erased ((∀ a₁ a₂ → get-set a₁ a₂ ≡ trans (cong get (s a₁ a₂)) (g a₂)) × (∀ a → set-get a ≡ trans (s a (get a)) (g a)) × (∀ a a₁ a₂ → trans (set-set a a₁ a₂) (s a a₂) ≡ cong (λ set → set (set a a₁) a₂) (⟨ext⟩ (⟨ext⟩ ⊚ s))))) ↔⟨ inverse equality-characterisation-id ⟩□ l″ ≡ id □ where l″ = _↔_.from Lens-as-Σ (Σ-map P.id (Σ-map const P.id) l′) set = proj₁ (proj₂ l′) open Lens l″ hiding (set) -- An identity function for lenses for which the forward direction -- is an equivalence (with erased proofs). -- -- Note that the setter of the resulting lens is definitionally -- equal to a constant function returning the right-to-left -- direction of the equivalence. -- -- Note also that two proofs, set-get and set-set, have been -- "obfuscated". They could have been shorter, but then it might not -- have been possible to prove getter-equivalence→lens≡. getter-equivalence→lens : (l : Lens A B) → Is-equivalenceᴱ (Lens.get l) → Lens A B getter-equivalence→lens l is-equiv = record { get = to ; set = const from ; get-set = const right-inverse-of ; set-get = λ a → from (to a) ≡⟨ cong from (sym (get-set a (to a))) ⟩ from (get (set a (to a))) ≡⟨⟩ from (to (set a (get a))) ≡⟨ cong (from ⊚ to) (set-get a) ⟩ from (to a) ≡⟨ left-inverse-of _ ⟩∎ a ∎ ; set-set = λ a b₁ b₂ → let s = from≡set l is-equiv in from b₂ ≡⟨ cong (λ set → set (set a b₁) b₂) (⟨ext⟩ (⟨ext⟩ ⊚ s)) ⟩ set (set a b₁) b₂ ≡⟨ set-set a b₁ b₂ ⟩ set a b₂ ≡⟨ sym (s a b₂) ⟩∎ from b₂ ∎ } where A≃B = EEq.⟨ _ , is-equiv ⟩ open _≃ᴱ_ A≃B open Lens l -- In erased contexts it can be proved that the function -- getter-equivalence→lens returns its input. @0 getter-equivalence→lens≡ : ∀ (l : Lens A B) is-equiv → getter-equivalence→lens l is-equiv ≡ l getter-equivalence→lens≡ l is-equiv = $⟨ TC.getter-equivalence→lens≡ (trad l) is-equiv′ ⟩ TC.getter-equivalence→lens (trad l) is-equiv′ ≡ trad l ↝⟨ cong Traditional-lens→Lens ⟩□ getter-equivalence→lens l is-equiv ≡ l □ where is-equiv′ = EEq.Is-equivalenceᴱ→Is-equivalence is-equiv ------------------------------------------------------------------------ -- Some existence results -- There is, in general, no lens for the first projection from a -- Σ-type. no-first-projection-lens : ¬ Lens (∃ λ (b : Bool) → b ≡ true) Bool no-first-projection-lens = Non-dependent.no-first-projection-lens Lens contractible-to-contractible -- There are two lenses with equal setters that are not equal -- (assuming univalence). -- -- (The lemma does not actually use the univalence argument, but -- univalence is used by CE.not-refl≢refl, which is only used in an -- erased context.) equal-setters-but-not-equal : @0 Univalence lzero → ∃ λ (A : Type) → ∃ λ (B : Type) → ∃ λ (l₁ : Lens A B) → ∃ λ (l₂ : Lens A B) → Lens.set l₁ ≡ Lens.set l₂ × l₁ ≢ l₂ equal-setters-but-not-equal _ = block λ b → 𝕊¹ᴱ , ⊤ , l₁′ b , l₂′ , refl _ , l₁′≢l₂′ b where open Lens @0 not-refl : Block "not-refl" → (x : 𝕊¹ᴱ) → x ≡ x not-refl ⊠ = CE.not-refl @0 not-refl≢refl : ∀ b → not-refl b ≢ refl not-refl≢refl ⊠ = CE.not-refl≢refl l₁′ : Block "not-refl" → Lens 𝕊¹ᴱ ⊤ l₁′ b = _≃ᴱ_.from lens-to-⊤≃ᴱ [ not-refl b ] l₂′ : Lens 𝕊¹ᴱ ⊤ l₂′ = _≃ᴱ_.from lens-to-⊤≃ᴱ [ refl ] l₁′≢l₂′ : ∀ b → l₁′ b ≢ l₂′ l₁′≢l₂′ b = Stable-¬ [ l₁′ b ≡ l₂′ ↔⟨ Eq.≃-≡ (EEq.≃ᴱ→≃ $ inverse lens-to-⊤≃ᴱ) {x = [ not-refl b ]} {y = [ refl ]} ⟩ [ not-refl b ] ≡ [ refl ] ↝⟨ cong erased ⟩ not-refl b ≡ refl ↝⟨ not-refl≢refl b ⟩□ ⊥ □ ] -- A lens which is used in some counterexamples below. bad : (a : Level) → Lens (↑ a 𝕊¹ᴱ) (↑ a 𝕊¹ᴱ) bad a = record { get = P.id ; set = const P.id ; get-set = λ _ → cong lift ⊚ CE.not-refl ⊚ lower ; set-get = refl ; set-set = λ _ _ → cong lift ⊚ CE.not-refl ⊚ lower } -- The lens bad a has a getter which is an equivalence, but it does -- not satisfy either of the coherence laws that Coherent-lens lenses -- must satisfy (assuming univalence). -- -- (The lemma does not actually use the univalence argument, but -- univalence is used by CE.not-refl≢refl, which is only used in -- erased contexts.) getter-equivalence-but-not-coherent : @0 Univalence lzero → let open Lens (bad a) in Is-equivalence get × ¬ (∀ a → cong get (set-get a) ≡ get-set a (get a)) × ¬ (∀ a₁ a₂ a₃ → cong get (set-set a₁ a₂ a₃) ≡ trans (get-set (set a₁ a₂) a₃) (sym (get-set a₁ a₃))) getter-equivalence-but-not-coherent {a = a} univ = _≃_.is-equivalence F.id , Stable-¬ [ ((x : ↑ a 𝕊¹ᴱ) → cong get (set-get x) ≡ get-set x (get x)) ↔⟨⟩ ((x : ↑ a 𝕊¹ᴱ) → cong P.id (refl _) ≡ cong lift (CE.not-refl (lower x))) ↔⟨ (Π-cong ext Bij.↑↔ λ _ → Eq.id) ⟩ ((x : 𝕊¹ᴱ) → cong P.id (refl _) ≡ cong lift (CE.not-refl x)) ↝⟨ trans (trans (cong-refl _) (cong-id _)) ⊚_ ⟩ ((x : 𝕊¹ᴱ) → cong lift (refl x) ≡ cong lift (CE.not-refl x)) ↔⟨ (∀-cong ext λ _ → Eq.≃-≡ $ inverse $ Eq.≃-≡ $ Eq.↔⇒≃ $ inverse Bij.↑↔) ⟩ ((x : 𝕊¹ᴱ) → refl x ≡ CE.not-refl x) ↔⟨ Eq.extensionality-isomorphism ext ⟩ refl ≡ CE.not-refl ↝⟨ CE.not-refl≢refl ⊚ sym ⟩□ ⊥ □ ] , Stable-¬ [ ((x y z : ↑ a 𝕊¹ᴱ) → cong get (set-set x y z) ≡ trans (get-set (set x y) z) (sym (get-set x z))) ↔⟨⟩ ((x y z : ↑ a 𝕊¹ᴱ) → cong P.id (cong lift (CE.not-refl (lower z))) ≡ trans (cong lift (CE.not-refl (lower z))) (sym (cong lift (CE.not-refl (lower z))))) ↔⟨ (Π-cong ext Bij.↑↔ λ _ → Π-cong ext Bij.↑↔ λ _ → Π-cong ext Bij.↑↔ λ _ → Eq.id) ⟩ ((x y z : 𝕊¹ᴱ) → cong P.id (cong lift (CE.not-refl z)) ≡ trans (cong lift (CE.not-refl z)) (sym (cong lift (CE.not-refl z)))) ↝⟨ (λ hyp → hyp CE.base CE.base) ⟩ ((x : 𝕊¹ᴱ) → cong P.id (cong lift (CE.not-refl x)) ≡ trans (cong lift (CE.not-refl x)) (sym (cong lift (CE.not-refl x)))) ↔⟨ (∀-cong ext λ _ → ≡⇒≃ $ cong₂ _≡_ (sym $ cong-id _) (trans (trans-symʳ _) $ sym $ cong-refl _)) ⟩ ((x : 𝕊¹ᴱ) → cong lift (CE.not-refl x) ≡ cong lift (refl x)) ↔⟨ (∀-cong ext λ _ → Eq.≃-≡ $ inverse $ Eq.≃-≡ $ Eq.↔⇒≃ $ inverse Bij.↑↔) ⟩ ((x : 𝕊¹ᴱ) → CE.not-refl x ≡ refl x) ↔⟨ Eq.extensionality-isomorphism ext ⟩ CE.not-refl ≡ refl ↝⟨ CE.not-refl≢refl ⟩□ ⊥ □ ] where open Lens (bad a) -- The lenses bad a and Lens-combinators.id {A = ↑ a 𝕊¹ᴱ} have equal -- setters, and their getters are equivalences, but they are not equal -- (assuming univalence). equal-setters-and-equivalences-as-getters-but-not-equal : @0 Univalence lzero → let l₁ = bad a l₂ = Lens-combinators.id {A = ↑ a 𝕊¹ᴱ} in Is-equivalence (Lens.get l₁) × Is-equivalence (Lens.get l₂) × Lens.set l₁ ≡ Lens.set l₂ × l₁ ≢ l₂ equal-setters-and-equivalences-as-getters-but-not-equal {a = ℓa} univ = let is-equiv , not-coherent , _ = getter-equivalence-but-not-coherent univ in is-equiv , _≃_.is-equivalence F.id , refl _ , Stable-¬ [ bad ℓa ≡ id ↝⟨ (λ eq → subst (λ l → ∀ a → cong (get l) (set-get l a) ≡ get-set l a (get l a)) (sym eq) (λ _ → cong-refl _)) ⟩ (∀ a → cong (get (bad ℓa)) (set-get (bad ℓa) a) ≡ get-set (bad ℓa) a (get (bad ℓa) a)) ↝⟨ not-coherent ⟩□ ⊥ □ ] where open Lens open Lens-combinators -- There is in general no split surjection from equivalences with -- erased proofs to lenses with getters that are equivalences with -- erased proofs, if the right-to-left direction of the split -- surjection is required to return the lens's getter plus some proof -- (assuming univalence). ¬-≃ᴱ-↠-Σ-Lens-Is-equivalenceᴱ-get : @0 Univalence lzero → ¬ ∃ λ (f : (↑ a 𝕊¹ᴱ ≃ᴱ ↑ a 𝕊¹ᴱ) ↠ (∃ λ (l : Lens (↑ a 𝕊¹ᴱ) (↑ a 𝕊¹ᴱ)) → Is-equivalenceᴱ (Lens.get l))) → ∀ p → _≃ᴱ_.to (_↠_.from f p) ≡ Lens.get (proj₁ p) ¬-≃ᴱ-↠-Σ-Lens-Is-equivalenceᴱ-get {a = a} univ = Stable-¬ [ (let is-equiv₁′ , is-equiv₂′ , setters-equal , bad≢id = equal-setters-and-equivalences-as-getters-but-not-equal univ is-equiv₁ = EEq.Is-equivalence→Is-equivalenceᴱ is-equiv₁′ is-equiv₂ = EEq.Is-equivalence→Is-equivalenceᴱ is-equiv₂′ in λ (f , hyp) → $⟨ setters-equal ⟩ Lens.set (bad a) ≡ Lens.set id ↝⟨ getters-equal-if-setters-equal (bad a) id ⟩ Lens.get (bad a) ≡ Lens.get id ↝⟨ (λ eq → trans (hyp _) (trans eq (sym (hyp _)))) ⟩ _≃ᴱ_.to (_↠_.from f (bad a , is-equiv₁)) ≡ _≃ᴱ_.to (_↠_.from f (id , is-equiv₂)) ↝⟨ EEq.to≡to→≡ ext ⟩ _↠_.from f (bad a , is-equiv₁) ≡ _↠_.from f (id , is-equiv₂) ↝⟨ _↠_.to (Surjection.↠-≡ f) ⟩ (bad a , is-equiv₁) ≡ (id , is-equiv₂) ↝⟨ cong proj₁ ⟩ bad a ≡ id ↝⟨ bad≢id ⟩□ ⊥ □) ] where open Lens-combinators -- There is in general no equivalence with erased proofs from -- equivalences with erased proofs to lenses with getters that are -- equivalences with erased proofs, if the right-to-left direction of -- the equivalence is required to return the lens's getter plus some -- proof (assuming univalence). ¬-≃ᴱ-≃ᴱ-Σ-Lens-Is-equivalence-get : @0 Univalence lzero → ¬ ∃ λ (f : (↑ a 𝕊¹ᴱ ≃ᴱ ↑ a 𝕊¹ᴱ) ≃ᴱ (∃ λ (l : Lens (↑ a 𝕊¹ᴱ) (↑ a 𝕊¹ᴱ)) → Is-equivalenceᴱ (Lens.get l))) → ∀ p → _≃ᴱ_.to (_≃ᴱ_.from f p) ≡ Lens.get (proj₁ p) ¬-≃ᴱ-≃ᴱ-Σ-Lens-Is-equivalence-get {a = a} univ = Stable-¬ [ (∃ λ (f : (↑ a 𝕊¹ᴱ ≃ᴱ ↑ a 𝕊¹ᴱ) ≃ᴱ (∃ λ (l : Lens (↑ a 𝕊¹ᴱ) (↑ a 𝕊¹ᴱ)) → Is-equivalenceᴱ (Lens.get l))) → ∀ p → _≃ᴱ_.to (_≃ᴱ_.from f p) ≡ Lens.get (proj₁ p)) ↝⟨ Σ-map (_≃_.surjection ⊚ EEq.≃ᴱ→≃) P.id ⟩ (∃ λ (f : (↑ a 𝕊¹ᴱ ≃ᴱ ↑ a 𝕊¹ᴱ) ↠ (∃ λ (l : Lens (↑ a 𝕊¹ᴱ) (↑ a 𝕊¹ᴱ)) → Is-equivalenceᴱ (Lens.get l))) → ∀ p → _≃ᴱ_.to (_↠_.from f p) ≡ Lens.get (proj₁ p)) ↝⟨ ¬-≃ᴱ-↠-Σ-Lens-Is-equivalenceᴱ-get univ ⟩□ ⊥ □ ] ------------------------------------------------------------------------ -- Isomorphisms expressed using lens quasi-inverses private module B {a} = Bi-invertibility.Erased equality-with-J (Type a) Lens Lens-combinators.id Lens-combinators._∘_ module BM {a} = B.More {a = a} Lens-combinators.left-identity Lens-combinators.right-identity Lens-combinators.associativity -- A form of isomorphism between types, expressed using lenses. open B public using () renaming (_≅ᴱ_ to _≅ᴱ_; Has-quasi-inverseᴱ to Has-quasi-inverseᴱ) -- In erased contexts Has-quasi-inverseᴱ (Traditional-lens→Lens l) is -- equivalent to TC.Has-quasi-inverse l. @0 Has-quasi-inverseᴱ≃Has-quasi-inverse : (l : T.Lens A B) → Has-quasi-inverseᴱ (Traditional-lens→Lens l) ≃ TC.Has-quasi-inverse l Has-quasi-inverseᴱ≃Has-quasi-inverse l = (∃ λ l⁻¹ → Erased (l′ LC.∘ l⁻¹ ≡ LC.id × l⁻¹ LC.∘ l′ ≡ LC.id)) ↔⟨ (∃-cong λ _ → erased Erased↔) ⟩ (∃ λ l⁻¹ → l′ LC.∘ l⁻¹ ≡ LC.id × l⁻¹ LC.∘ l′ ≡ LC.id ) ↝⟨ (Σ-cong Lens≃Traditional-lens λ _ → inverse (Eq.≃-≡ Lens≃Traditional-lens) ×-cong inverse (Eq.≃-≡ Lens≃Traditional-lens)) ⟩□ (∃ λ l⁻¹ → l TC.∘ l⁻¹ ≡ TC.id × l⁻¹ TC.∘ l ≡ TC.id ) □ where module LC = Lens-combinators l′ = Traditional-lens→Lens l -- In erased contexts A ≅ᴱ B is equivalent to A TC.≅ B. @0 ≅ᴱ≃≅ : (A ≅ᴱ B) ≃ (A TC.≅ B) ≅ᴱ≃≅ {A = A} {B = B} = (∃ λ (l : Lens A B) → Has-quasi-inverseᴱ l) ↝⟨ Σ-cong-contra (inverse Lens≃Traditional-lens) Has-quasi-inverseᴱ≃Has-quasi-inverse ⟩□ (∃ λ (l : T.Lens A B) → TC.Has-quasi-inverse l) □ -- An equality characterisation lemma for A ≅ B that applies when A is -- a set. @0 equality-characterisation-for-sets-≅ᴱ : let open Lens in {f₁@(l₁₁ , _) f₂@(l₁₂ , _) : A ≅ᴱ B} → Is-set A → f₁ ≡ f₂ ↔ set l₁₁ ≡ set l₁₂ equality-characterisation-for-sets-≅ᴱ {f₁ = f₁@(l₁₁ , _)} {f₂ = f₂@(l₁₂ , _)} A-set = f₁ ≡ f₂ ↔⟨ inverse $ Eq.≃-≡ ≅ᴱ≃≅ ⟩ _≃_.to ≅ᴱ≃≅ f₁ ≡ _≃_.to ≅ᴱ≃≅ f₂ ↝⟨ TC.equality-characterisation-for-sets-≅ A-set ⟩□ set l₁₁ ≡ set l₁₂ □ where open Lens -- There is a logical equivalence between A ≃ᴱ B and A ≅ᴱ B. ≃ᴱ⇔≅ᴱ : (A ≃ᴱ B) ⇔ (A ≅ᴱ B) ≃ᴱ⇔≅ᴱ {A = A} {B = B} = record { to = λ A≃B → ≃ᴱ→lens A≃B , ≃ᴱ→lens (inverse A≃B) , [ lemma A≃B , (≃ᴱ→lens (inverse A≃B) ∘ ≃ᴱ→lens A≃B ≡⟨ cong {x = A≃B} {y = inverse $ inverse A≃B} (λ A≃B′ → ≃ᴱ→lens (inverse A≃B) ∘ ≃ᴱ→lens A≃B′) $ sym $ EEq.to≡to→≡ ext (refl _) ⟩ ≃ᴱ→lens (inverse A≃B) ∘ ≃ᴱ→lens (inverse $ inverse A≃B) ≡⟨ lemma (inverse A≃B) ⟩∎ id ∎) ] ; from = λ (l₁ , l₂ , [ eq₁ , eq₂ ]) → EEq.↔→≃ᴱ (get l₁) (get l₂) (ext⁻¹ $ getters-equal-if-setters-equal (l₁ ∘ l₂) id (cong set eq₁)) (ext⁻¹ $ getters-equal-if-setters-equal (l₂ ∘ l₁) id (cong set eq₂)) } where open Lens open Lens-combinators @0 lemma : (C≃D : C ≃ᴱ D) → ≃ᴱ→lens C≃D ∘ ≃ᴱ→lens (inverse C≃D) ≡ id lemma C≃D = _↔_.from equality-characterisation₂ ( ⟨ext⟩ (_≃ᴱ_.right-inverse-of C≃D) , (⟨ext⟩ λ _ → ⟨ext⟩ $ _≃ᴱ_.right-inverse-of C≃D) , [ lemma₁ , lemma₂ , lemma₃ ] ) where @0 lemma₁ : _ lemma₁ = λ d₁ d₂ → let lemma = cong (λ set → _≃ᴱ_.to C≃D (_≃ᴱ_.from C≃D (set d₁ d₂))) (⟨ext⟩ λ _ → ⟨ext⟩ $ _≃ᴱ_.right-inverse-of C≃D) ≡⟨ cong (cong (λ set → _≃ᴱ_.to C≃D (_≃ᴱ_.from C≃D (set d₁ d₂)))) $ ext-const (⟨ext⟩ $ _≃ᴱ_.right-inverse-of C≃D) ⟩ cong (λ set → _≃ᴱ_.to C≃D (_≃ᴱ_.from C≃D (set d₁ d₂))) (cong const $ ⟨ext⟩ $ _≃ᴱ_.right-inverse-of C≃D) ≡⟨ cong-∘ _ _ (⟨ext⟩ $ _≃ᴱ_.right-inverse-of C≃D) ⟩ cong (λ set → _≃ᴱ_.to C≃D (_≃ᴱ_.from C≃D (set d₂))) (⟨ext⟩ $ _≃ᴱ_.right-inverse-of C≃D) ≡⟨ sym $ cong-∘ _ _ (⟨ext⟩ $ _≃ᴱ_.right-inverse-of C≃D) ⟩ cong (_≃ᴱ_.to C≃D ⊚ _≃ᴱ_.from C≃D) (cong (λ set → set d₂) (⟨ext⟩ $ _≃ᴱ_.right-inverse-of C≃D)) ≡⟨ cong (cong (_≃ᴱ_.to C≃D ⊚ _≃ᴱ_.from C≃D)) $ cong-ext _ ⟩ cong (_≃ᴱ_.to C≃D ⊚ _≃ᴱ_.from C≃D) (_≃ᴱ_.right-inverse-of C≃D _) ≡⟨ sym $ cong-∘ _ _ (_≃ᴱ_.right-inverse-of C≃D _) ⟩ cong (_≃ᴱ_.to C≃D) (cong (_≃ᴱ_.from C≃D) (_≃ᴱ_.right-inverse-of C≃D _)) ≡⟨ cong (cong (_≃ᴱ_.to C≃D)) $ _≃ᴱ_.right-left-lemma C≃D _ ⟩∎ cong (_≃ᴱ_.to C≃D) (_≃ᴱ_.left-inverse-of C≃D _) ∎ in trans (sym (trans (cong (λ set → _≃ᴱ_.to C≃D (_≃ᴱ_.from C≃D (set d₁ d₂))) (⟨ext⟩ λ _ → ⟨ext⟩ $ _≃ᴱ_.right-inverse-of C≃D)) (cong (λ get → get d₂) (⟨ext⟩ $ _≃ᴱ_.right-inverse-of C≃D)))) (trans (cong (_≃ᴱ_.to C≃D) (_≃ᴱ_.left-inverse-of C≃D _)) (_≃ᴱ_.right-inverse-of C≃D _)) ≡⟨ cong₂ (λ p q → trans (sym (trans p q)) (trans (cong (_≃ᴱ_.to C≃D) (_≃ᴱ_.left-inverse-of C≃D _)) (_≃ᴱ_.right-inverse-of C≃D _))) lemma (cong-ext _) ⟩ trans (sym (trans (cong (_≃ᴱ_.to C≃D) (_≃ᴱ_.left-inverse-of C≃D _)) (_≃ᴱ_.right-inverse-of C≃D _))) (trans (cong (_≃ᴱ_.to C≃D) (_≃ᴱ_.left-inverse-of C≃D _)) (_≃ᴱ_.right-inverse-of C≃D _)) ≡⟨ trans-symˡ (trans _ (_≃ᴱ_.right-inverse-of C≃D _)) ⟩∎ refl _ ∎ @0 lemma₂ : _ lemma₂ = λ d → let lemma = cong (λ set → set d (_≃ᴱ_.to C≃D (_≃ᴱ_.from C≃D d))) (⟨ext⟩ λ _ → ⟨ext⟩ $ _≃ᴱ_.right-inverse-of C≃D) ≡⟨ cong (cong (λ set → set d (_≃ᴱ_.to C≃D (_≃ᴱ_.from C≃D d)))) $ ext-const (⟨ext⟩ $ _≃ᴱ_.right-inverse-of C≃D) ⟩ cong (λ set → set d (_≃ᴱ_.to C≃D (_≃ᴱ_.from C≃D d))) (cong const $ ⟨ext⟩ $ _≃ᴱ_.right-inverse-of C≃D) ≡⟨ cong-∘ _ _ (⟨ext⟩ $ _≃ᴱ_.right-inverse-of C≃D) ⟩ cong (λ set → set (_≃ᴱ_.to C≃D (_≃ᴱ_.from C≃D d))) (⟨ext⟩ $ _≃ᴱ_.right-inverse-of C≃D) ≡⟨ cong-ext _ ⟩∎ _≃ᴱ_.right-inverse-of C≃D _ ∎ in trans (sym (trans (cong (λ set → set d (_≃ᴱ_.to C≃D (_≃ᴱ_.from C≃D d))) (⟨ext⟩ λ _ → ⟨ext⟩ $ _≃ᴱ_.right-inverse-of C≃D)) (cong (λ get → get d) (⟨ext⟩ $ _≃ᴱ_.right-inverse-of C≃D)))) (trans (cong (_≃ᴱ_.to C≃D) (_≃ᴱ_.left-inverse-of C≃D _)) (_≃ᴱ_.left-inverse-of (inverse C≃D) _)) ≡⟨ cong₂ (λ p q → trans (sym p) q) (cong₂ trans lemma (cong-ext _)) (cong₂ trans (_≃ᴱ_.left-right-lemma C≃D _) (EEq.left-inverse-of∘inverse C≃D)) ⟩ trans (sym (trans (_≃ᴱ_.right-inverse-of C≃D _) (_≃ᴱ_.right-inverse-of C≃D _))) (trans (_≃ᴱ_.right-inverse-of C≃D _) (_≃ᴱ_.right-inverse-of C≃D _)) ≡⟨ trans-symˡ (trans _ (_≃ᴱ_.right-inverse-of C≃D _)) ⟩∎ refl _ ∎ @0 lemma₃ : _ lemma₃ = λ d d₁ d₂ → subst (λ set → set (set d d₁) d₂ ≡ set d d₂) (⟨ext⟩ λ _ → ⟨ext⟩ $ _≃ᴱ_.right-inverse-of C≃D) (trans (refl _) (trans (cong (λ _ → _≃ᴱ_.to C≃D (_≃ᴱ_.from C≃D d₂)) (_≃ᴱ_.right-inverse-of (inverse C≃D) (_≃ᴱ_.from C≃D d₁))) (cong (_≃ᴱ_.to C≃D) (refl _)))) ≡⟨ cong (subst (λ set → set (set d d₁) d₂ ≡ set d d₂) (⟨ext⟩ λ _ → ⟨ext⟩ $ _≃ᴱ_.right-inverse-of C≃D)) $ trans (trans-reflˡ _) $ trans (cong (flip trans _) $ cong-const _) $ trans (trans-reflˡ _) $ cong-refl _ ⟩ subst (λ set → set (set d d₁) d₂ ≡ set d d₂) (⟨ext⟩ λ _ → ⟨ext⟩ $ _≃ᴱ_.right-inverse-of C≃D) (refl _) ≡⟨ cong (flip (subst (λ set → set (set d d₁) d₂ ≡ set d d₂)) _) $ ext-const (⟨ext⟩ $ _≃ᴱ_.right-inverse-of C≃D) ⟩ subst (λ set → set (set d d₁) d₂ ≡ set d d₂) (cong const $ ⟨ext⟩ $ _≃ᴱ_.right-inverse-of C≃D) (refl _) ≡⟨ sym $ subst-∘ _ _ _ ⟩ subst (λ set → set d₂ ≡ set d₂) (⟨ext⟩ $ _≃ᴱ_.right-inverse-of C≃D) (refl _) ≡⟨ subst-ext _ _ ⟩ subst (λ set → set ≡ set) (_≃ᴱ_.right-inverse-of C≃D d₂) (refl _) ≡⟨ ≡⇒↝ _ (sym [subst≡]≡[trans≡trans]) ( trans (refl _) (_≃ᴱ_.right-inverse-of C≃D d₂) ≡⟨ trans-reflˡ _ ⟩ _≃ᴱ_.right-inverse-of C≃D d₂ ≡⟨ sym $ trans-reflʳ _ ⟩ trans (_≃ᴱ_.right-inverse-of C≃D d₂) (refl _) ∎) ⟩ refl _ ∎ -- In erased contexts the left-to-right direction of ≃ᴱ⇔≅ᴱ is a right -- inverse of the right-to-left direction. @0 ≃ᴱ⇔≅ᴱ∘≃ᴱ⇔≅ᴱ : (A≃B : A ≃ᴱ B) → _⇔_.from ≃ᴱ⇔≅ᴱ (_⇔_.to ≃ᴱ⇔≅ᴱ A≃B) ≡ A≃B ≃ᴱ⇔≅ᴱ∘≃ᴱ⇔≅ᴱ _ = EEq.to≡to→≡ ext (refl _) -- The forward direction of ≃ᴱ⇔≅ᴱ maps identity to an isomorphism for -- which the first projection is the identity. ≃ᴱ⇔≅ᴱ-id≡id : let open Lens-combinators in proj₁ (_⇔_.to ≃ᴱ⇔≅ᴱ F.id) ≡ id {A = A} ≃ᴱ⇔≅ᴱ-id≡id = equal-laws→≡ (λ _ _ → refl _) (λ a → _≃ᴱ_.left-inverse-of F.id a ≡⟨ sym $ _≃ᴱ_.right-left-lemma F.id _ ⟩ cong P.id (_≃ᴱ_.right-inverse-of F.id a) ≡⟨⟩ cong P.id (refl _) ≡⟨ sym $ cong-id _ ⟩∎ refl _ ∎) (λ _ _ _ → refl _) where open Lens-combinators -- If A is a set, then there is an equivalence with erased proofs -- between A ≃ᴱ B and A ≅ᴱ B. ≃ᴱ≃ᴱ≅ᴱ : @0 Is-set A → (A ≃ᴱ B) ≃ᴱ (A ≅ᴱ B) ≃ᴱ≃ᴱ≅ᴱ A-set = EEq.↔→≃ᴱ (_⇔_.to ≃ᴱ⇔≅ᴱ) (_⇔_.from ≃ᴱ⇔≅ᴱ) (λ (l₁ , l₂ , [ eq₁ , eq₂ ]) → _↔_.from (equality-characterisation-for-sets-≅ᴱ A-set) $ ⟨ext⟩ λ a → ⟨ext⟩ λ b → get l₂ b ≡⟨ sym $ ext⁻¹ (ext⁻¹ (cong set eq₂) _) _ ⟩ set l₁ (set l₁ a b) (set l₂ (get l₁ (set l₁ a b)) (get l₂ b)) ≡⟨ set-set l₁ _ _ _ ⟩ set l₁ a (set l₂ (get l₁ (set l₁ a b)) (get l₂ b)) ≡⟨ cong (λ b′ → set l₁ a (set l₂ b′ (get l₂ b))) $ get-set l₁ _ _ ⟩ set l₁ a (set l₂ b (get l₂ b)) ≡⟨ cong (set l₁ a) $ set-get l₂ _ ⟩∎ set l₁ a b ∎) ≃ᴱ⇔≅ᴱ∘≃ᴱ⇔≅ᴱ where open Lens open Lens-combinators -- The equivalence maps identity to an isomorphism for which the first -- projection is the identity. ≃ᴱ≃ᴱ≅ᴱ-id≡id : let open Lens-combinators in (@0 A-set : Is-set A) → proj₁ (_≃ᴱ_.to (≃ᴱ≃ᴱ≅ᴱ A-set) F.id) ≡ id ≃ᴱ≃ᴱ≅ᴱ-id≡id _ = ≃ᴱ⇔≅ᴱ-id≡id -- The type Has-quasi-inverseᴱ id is not necessarily a proposition -- (assuming univalence). Has-quasi-inverseᴱ-id-not-proposition : @0 Univalence lzero → let open Lens-combinators in ∃ λ (A : Type a) → ¬ Is-proposition (Has-quasi-inverseᴱ (id {A = A})) Has-quasi-inverseᴱ-id-not-proposition univ = _ , Stable-¬ [ Is-proposition (Has-quasi-inverseᴱ Lens-combinators.id) ↝⟨ H-level-cong _ 1 $ Has-quasi-inverseᴱ≃Has-quasi-inverse TC.id ⟩ Is-proposition (TC.Has-quasi-inverse TC.id) ↝⟨ proj₂ $ TC.Has-quasi-inverse-id-not-proposition univ ⟩□ ⊥ □ ] -- There is not necessarily a split surjection from -- Is-equivalenceᴱ (Lens.get l) to Has-quasi-inverseᴱ l, if l is a -- lens between types in the same universe (assuming univalence). ¬Is-equivalenceᴱ↠Has-quasi-inverseᴱ : @0 Univalence lzero → ¬ ({A B : Type a} (l : Lens A B) → Is-equivalenceᴱ (Lens.get l) ↠ Has-quasi-inverseᴱ l) ¬Is-equivalenceᴱ↠Has-quasi-inverseᴱ {a = a} univ = Stable-¬ [ ({A B : Type a} (l : Lens A B) → Is-equivalenceᴱ (Lens.get l) ↠ Has-quasi-inverseᴱ l) ↝⟨ (λ hyp l → from-equivalence (Has-quasi-inverseᴱ≃Has-quasi-inverse l) F.∘ hyp (Traditional-lens→Lens l) F.∘ from-equivalence EEq.Is-equivalence≃Is-equivalenceᴱ) ⟩ ({A B : Type a} (l : T.Lens A B) → Is-equivalence (T.Lens.get l) ↠ TC.Has-quasi-inverse l) ↝⟨ TC.¬Is-equivalence↠Has-quasi-inverse univ ⟩□ ⊥ □ ] -- There is not necessarily an equivalence with erased proofs from -- Is-equivalenceᴱ (Lens.get l) to Has-quasi-inverseᴱ l, if l is a -- lens between types in the same universe (assuming univalence). ¬Is-equivalenceᴱ≃Has-quasi-inverseᴱ : @0 Univalence lzero → ¬ ({A B : Type a} (l : Lens A B) → Is-equivalenceᴱ (Lens.get l) ≃ᴱ Has-quasi-inverseᴱ l) ¬Is-equivalenceᴱ≃Has-quasi-inverseᴱ {a = a} univ = Stable-¬ [ ({A B : Type a} (l : Lens A B) → Is-equivalenceᴱ (Lens.get l) ≃ᴱ Has-quasi-inverseᴱ l) ↝⟨ (λ hyp → _≃_.surjection ⊚ EEq.≃ᴱ→≃ ⊚ hyp) ⟩ ({A B : Type a} (l : Lens A B) → Is-equivalenceᴱ (Lens.get l) ↠ Has-quasi-inverseᴱ l) ↝⟨ ¬Is-equivalenceᴱ↠Has-quasi-inverseᴱ univ ⟩□ ⊥ □ ] ------------------------------------------------------------------------ -- Isomorphisms expressed using bi-invertibility for lenses -- A form of isomorphism between types, expressed using lenses. open B public using () renaming (_≊ᴱ_ to _≊ᴱ_; Has-left-inverseᴱ to Has-left-inverseᴱ; Has-right-inverseᴱ to Has-right-inverseᴱ; Is-bi-invertibleᴱ to Is-bi-invertibleᴱ) open BM public using () renaming (Is-bi-invertibleᴱ-propositional to Is-bi-invertibleᴱ-propositional) -- In erased contexts Has-left-inverseᴱ (Traditional-lens→Lens l) is -- equivalent to TC.Has-left-inverse l. @0 Has-left-inverseᴱ≃Has-left-inverse : (l : T.Lens A B) → Has-left-inverseᴱ (Traditional-lens→Lens l) ≃ TC.Has-left-inverse l Has-left-inverseᴱ≃Has-left-inverse l = (∃ λ l⁻¹ → Erased (l⁻¹ LC.∘ l′ ≡ LC.id)) ↔⟨ (∃-cong λ _ → erased Erased↔) ⟩ (∃ λ l⁻¹ → l⁻¹ LC.∘ l′ ≡ LC.id ) ↝⟨ (Σ-cong Lens≃Traditional-lens λ _ → inverse $ Eq.≃-≡ Lens≃Traditional-lens) ⟩□ (∃ λ l⁻¹ → l⁻¹ TC.∘ l ≡ TC.id ) □ where module LC = Lens-combinators l′ = Traditional-lens→Lens l -- In erased contexts Has-right-inverseᴱ (Traditional-lens→Lens l) is -- equivalent to TC.Has-right-inverse l. @0 Has-right-inverseᴱ≃Has-right-inverse : (l : T.Lens A B) → Has-right-inverseᴱ (Traditional-lens→Lens l) ≃ TC.Has-right-inverse l Has-right-inverseᴱ≃Has-right-inverse l = (∃ λ l⁻¹ → Erased (l′ LC.∘ l⁻¹ ≡ LC.id)) ↔⟨ (∃-cong λ _ → erased Erased↔) ⟩ (∃ λ l⁻¹ → l′ LC.∘ l⁻¹ ≡ LC.id ) ↝⟨ (Σ-cong Lens≃Traditional-lens λ _ → inverse $ Eq.≃-≡ Lens≃Traditional-lens) ⟩□ (∃ λ l⁻¹ → l TC.∘ l⁻¹ ≡ TC.id ) □ where module LC = Lens-combinators l′ = Traditional-lens→Lens l -- In erased contexts Is-bi-invertibleᴱ (Traditional-lens→Lens l) is -- equivalent to TC.Is-bi-invertible l. @0 Is-bi-invertibleᴱ≃Is-bi-invertible : (l : T.Lens A B) → Is-bi-invertibleᴱ (Traditional-lens→Lens l) ≃ TC.Is-bi-invertible l Is-bi-invertibleᴱ≃Is-bi-invertible l = Is-bi-invertibleᴱ l′ ↔⟨⟩ Has-left-inverseᴱ l′ × Has-right-inverseᴱ l′ ↝⟨ Has-left-inverseᴱ≃Has-left-inverse l ×-cong Has-right-inverseᴱ≃Has-right-inverse l ⟩ TC.Has-left-inverse l × TC.Has-right-inverse l ↔⟨⟩ TC.Is-bi-invertible l □ where l′ = Traditional-lens→Lens l -- In erased contexts A ≊ᴱ B is equivalent to A TC.≊ B. @0 ≊ᴱ≃≊ : (A ≊ᴱ B) ≃ (A TC.≊ B) ≊ᴱ≃≊ {A = A} {B = B} = (∃ λ (l : Lens A B) → Is-bi-invertibleᴱ l) ↝⟨ (inverse $ Σ-cong (inverse Lens≃Traditional-lens) λ l → inverse $ Is-bi-invertibleᴱ≃Is-bi-invertible l) ⟩□ (∃ λ (l : T.Lens A B) → TC.Is-bi-invertible l) □ -- An equality characterisation lemma for A ≊ᴱ B that applies when A -- is a set. @0 equality-characterisation-for-sets-≊ᴱ : let open Lens in {f₁@(l₁₁ , _) f₂@(l₁₂ , _) : A ≊ᴱ B} → Is-set A → f₁ ≡ f₂ ↔ set l₁₁ ≡ set l₁₂ equality-characterisation-for-sets-≊ᴱ {f₁ = f₁@(l₁₁ , _)} {f₂ = f₂@(l₁₂ , _)} A-set = f₁ ≡ f₂ ↔⟨ inverse $ Eq.≃-≡ ≊ᴱ≃≊ ⟩ _≃_.to ≊ᴱ≃≊ f₁ ≡ _≃_.to ≊ᴱ≃≊ f₂ ↝⟨ TC.equality-characterisation-for-sets-≊ A-set ⟩□ set l₁₁ ≡ set l₁₂ □ where open Lens -- There is a logical equivalence between A ≃ᴱ B and A ≊ᴱ B. ≃ᴱ⇔≊ᴱ : (A ≃ᴱ B) ⇔ (A ≊ᴱ B) ≃ᴱ⇔≊ᴱ = record { to = _⇔_.to BM.≅ᴱ⇔≊ᴱ ⊚ _⇔_.to ≃ᴱ⇔≅ᴱ ; from = _⇔_.from ≃ᴱ⇔≅ᴱ ⊚ _⇔_.from BM.≅ᴱ⇔≊ᴱ } -- In erased contexts the left-to-right direction of ≃ᴱ⇔≊ᴱ is a right -- inverse of the right-to-left direction. @0 ≃ᴱ⇔≊ᴱ∘≃ᴱ⇔≊ᴱ : (A≃B : A ≃ᴱ B) → _⇔_.from ≃ᴱ⇔≊ᴱ (_⇔_.to ≃ᴱ⇔≊ᴱ A≃B) ≡ A≃B ≃ᴱ⇔≊ᴱ∘≃ᴱ⇔≊ᴱ _ = EEq.to≡to→≡ ext (refl _) -- The forward direction of ≃ᴱ⇔≊ᴱ maps identity to an isomorphism for -- which the first projection is the identity. ≃ᴱ⇔≊ᴱ-id≡id : let open Lens-combinators in proj₁ (_⇔_.to ≃ᴱ⇔≊ᴱ F.id) ≡ id {A = A} ≃ᴱ⇔≊ᴱ-id≡id = equal-laws→≡ (λ _ _ → refl _) (λ a → _≃ᴱ_.left-inverse-of F.id a ≡⟨ sym $ _≃ᴱ_.right-left-lemma F.id _ ⟩ cong P.id (_≃ᴱ_.right-inverse-of F.id a) ≡⟨⟩ cong P.id (refl _) ≡⟨ sym $ cong-id _ ⟩∎ refl _ ∎) (λ _ _ _ → refl _) where open Lens-combinators -- If A is a set, then there is an equivalence between A ≃ᴱ B and -- A ≊ᴱ B. ≃ᴱ≃ᴱ≊ᴱ : @0 Is-set A → (A ≃ᴱ B) ≃ᴱ (A ≊ᴱ B) ≃ᴱ≃ᴱ≊ᴱ {A = A} {B = B} A-set = A ≃ᴱ B ↝⟨ ≃ᴱ≃ᴱ≅ᴱ A-set ⟩ A ≅ᴱ B ↝⟨ inverse $ BM.≊ᴱ≃ᴱ≅ᴱ-domain (lens-preserves-h-level-of-domain 1 A-set) ⟩□ A ≊ᴱ B □ -- The equivalence ≃ᴱ≃ᴱ≊ᴱ maps identity to an isomorphism for which the -- first projection is the identity. ≃ᴱ≃ᴱ≊ᴱ-id≡id : let open Lens-combinators in (@0 A-set : Is-set A) → proj₁ (_≃ᴱ_.to (≃ᴱ≃ᴱ≊ᴱ A-set) F.id) ≡ id ≃ᴱ≃ᴱ≊ᴱ-id≡id _ = ≃ᴱ⇔≊ᴱ-id≡id where open Lens-combinators -- The right-to-left direction of ≃ᴱ≃ᴱ≊ᴱ maps bi-invertible lenses to -- their getter functions. to-from-≃ᴱ≃ᴱ≊ᴱ≡get : (@0 A-set : Is-set A) (A≊B@(l , _) : A ≊ᴱ B) → _≃ᴱ_.to (_≃ᴱ_.from (≃ᴱ≃ᴱ≊ᴱ A-set) A≊B) ≡ Lens.get l to-from-≃ᴱ≃ᴱ≊ᴱ≡get _ _ = refl _ -- The getter function of a bi-invertible lens is an equivalence (with -- erased proofs). Is-bi-invertibleᴱ→Is-equivalenceᴱ-get : (l : Lens A B) → Is-bi-invertibleᴱ l → Is-equivalenceᴱ (Lens.get l) Is-bi-invertibleᴱ→Is-equivalenceᴱ-get l is-bi-inv = _≃ᴱ_.is-equivalence (_⇔_.from ≃ᴱ⇔≊ᴱ (l , is-bi-inv)) -- If the getter function is an equivalence (with erased proofs), then -- the lens is bi-invertible (with erased proofs). Is-equivalenceᴱ-get→Is-bi-invertibleᴱ : (l : Lens A B) → Is-equivalenceᴱ (Lens.get l) → Is-bi-invertibleᴱ l Is-equivalenceᴱ-get→Is-bi-invertibleᴱ {A = A} {B = B} l′ is-equiv = block λ b → $⟨ l⁻¹′ b , [ l∘l⁻¹≡id b , l⁻¹∘l≡id b ] ⟩ Has-quasi-inverseᴱ l ↝⟨ B.Has-quasi-inverseᴱ→Is-bi-invertibleᴱ l ⟩ Is-bi-invertibleᴱ l ↝⟨ subst (λ l → Is-bi-invertibleᴱ (erased l)) ([]-cong [ getter-equivalence→lens≡ l′ is-equiv ]) ⟩□ Is-bi-invertibleᴱ l′ □ where open Lens open Lens-combinators -- A lens that is equal to l′. l : Lens A B l = getter-equivalence→lens l′ is-equiv A≃B = EEq.⟨ get l , is-equiv ⟩ open _≃ᴱ_ A≃B -- An inverse of l. -- -- Note that the set-get and set-set proofs have been "obfuscated". -- They could have been shorter, but then it might not have been -- possible to prove l∘l⁻¹≡id and l⁻¹∘l≡id. l⁻¹ : Lens B A l⁻¹ = record { get = from ; set = λ _ → get l ; get-set = λ _ a → from (get l a) ≡⟨ left-inverse-of a ⟩∎ a ∎ ; set-get = λ b → get l (from b) ≡⟨ sym $ cong (get l) $ set-get l (from b) ⟩ get l (from (get l (from b))) ≡⟨ right-inverse-of (get l (from b)) ⟩ get l (from b) ≡⟨ right-inverse-of b ⟩∎ b ∎ ; set-set = λ b a₁ a₂ → get l a₂ ≡⟨ sym $ right-inverse-of _ ⟩ get l (from (get l a₂)) ≡⟨ sym $ cong (get l) (set-set l (from b) (get l a₁) (get l a₂)) ⟩ get l (from (get l a₂)) ≡⟨ right-inverse-of _ ⟩∎ get l a₂ ∎ } -- A blocked variant of l⁻¹. l⁻¹′ : Block "l⁻¹" → Lens B A l⁻¹′ ⊠ = l⁻¹ -- The lens l⁻¹ is a right inverse of l. @0 l∘l⁻¹≡id : ∀ b → l ∘ l⁻¹′ b ≡ id l∘l⁻¹≡id ⊠ = constant-setter→≡id ( right-inverse-of , right-inverse-of , [ (λ b₁ b₂ → get-set (l ∘ l⁻¹) b₁ b₂ ≡⟨⟩ trans (cong (get l) (get-set l⁻¹ b₁ (from b₂))) (get-set l (from b₁) b₂) ≡⟨⟩ trans (cong (get l) (left-inverse-of (from b₂))) (right-inverse-of b₂) ≡⟨ cong (λ eq → trans (cong (get l) eq) (right-inverse-of b₂)) $ sym $ right-left-lemma _ ⟩ trans (cong (get l) (cong from (right-inverse-of b₂))) (right-inverse-of b₂) ≡⟨ cong (λ eq → trans eq (right-inverse-of b₂)) $ cong-∘ _ _ (right-inverse-of b₂) ⟩ trans (cong (get l ⊚ from) (right-inverse-of b₂)) (right-inverse-of b₂) ≡⟨⟩ trans (cong (get (l ∘ l⁻¹)) (right-inverse-of b₂)) (right-inverse-of b₂) ∎) , (λ b → set-get (l ∘ l⁻¹) b ≡⟨⟩ trans (cong (get l) (set-get l (from b))) (set-get l⁻¹ b) ≡⟨⟩ trans (cong (get l) (set-get l (from b))) (trans (sym (cong (get l) (set-get l (from b)))) (trans (right-inverse-of (get l (from b))) (right-inverse-of b))) ≡⟨ trans--[trans-sym] _ _ ⟩ trans (right-inverse-of (get l (from b))) (right-inverse-of b) ≡⟨⟩ trans (right-inverse-of (get (l ∘ l⁻¹) b)) (right-inverse-of b) ∎) , (λ b b₁ b₂ → set-set (l ∘ l⁻¹) b b₁ b₂ ≡⟨⟩ trans (set-set l⁻¹ b (from b₁) (from b₂)) (trans (cong (λ _ → get l (from b₂)) (get-set l⁻¹ b (from b₁))) (cong (get l) (set-set l (from b) b₁ b₂))) ≡⟨ cong (trans _) $ trans (cong (flip trans _) $ cong-const _) $ trans-reflˡ _ ⟩ trans (set-set l⁻¹ b (from b₁) (from b₂)) (cong (get l) (set-set l (from b) b₁ b₂)) ≡⟨⟩ trans (trans (sym (right-inverse-of _)) (trans (sym (cong (get l) (set-set l (from b) (get l (from b₁)) (get l (from b₂))))) (right-inverse-of _))) (cong (get l) (set-set l (from b) b₁ b₂)) ≡⟨ cong (λ b′ → trans (trans (sym (right-inverse-of _)) (trans (sym (cong (get l) (set-set l (from b) b′ (get l (from b₂))))) (right-inverse-of _))) (cong (get l) (set-set l (from b) b₁ b₂))) $ right-inverse-of _ ⟩ trans (trans (sym (right-inverse-of _)) (trans (sym (cong (get l) (set-set l (from b) b₁ (get l (from b₂))))) (right-inverse-of _))) (cong (get l) (set-set l (from b) b₁ b₂)) ≡⟨ cong (λ f → trans (trans (sym (f _)) (trans (sym (cong (get l) (set-set l (from b) b₁ (get l (from b₂))))) (f _))) (cong (get l) (set-set l (from b) b₁ b₂))) $ sym $ _≃_.left-inverse-of (Eq.extensionality-isomorphism bad-ext) right-inverse-of ⟩ trans (trans (sym (ext⁻¹ (⟨ext⟩ right-inverse-of) _)) (trans (sym (cong (get l) (set-set l (from b) b₁ (get l (from b₂))))) (ext⁻¹ (⟨ext⟩ right-inverse-of) _))) (cong (get l) (set-set l (from b) b₁ b₂)) ≡⟨ elim₁ (λ {f} (p : f ≡ P.id) → (q : ∀ b → f b ≡ f b) → trans (trans (sym (ext⁻¹ p (f b₂))) (trans (sym (q (f b₂))) (ext⁻¹ p (f b₂)))) (q b₂) ≡ refl _) (λ q → trans (trans (sym (ext⁻¹ (refl P.id) _)) (trans (sym (q _)) (ext⁻¹ (refl P.id) _))) (q _) ≡⟨ cong (λ eq → trans (trans (sym eq) (trans (sym (q _)) eq)) (q _)) $ ext⁻¹-refl _ ⟩ trans (trans (sym (refl _)) (trans (sym (q _)) (refl _))) (q _) ≡⟨ cong₂ (λ p r → trans (trans p r) (q _)) sym-refl (trans-reflʳ _) ⟩ trans (trans (refl _) (sym (q _))) (q _) ≡⟨ cong (λ eq → trans eq (q _)) $ trans-reflˡ (sym (q _)) ⟩ trans (sym (q _)) (q _) ≡⟨ trans-symˡ (q _) ⟩∎ refl _ ∎) (⟨ext⟩ right-inverse-of) (cong (get l) ⊚ set-set l (from b) b₁) ⟩ refl _ ∎) ] ) -- The lens l⁻¹ is a left inverse of l. @0 l⁻¹∘l≡id : ∀ b → l⁻¹′ b ∘ l ≡ id l⁻¹∘l≡id ⊠ = constant-setter→≡id ( left-inverse-of , left-inverse-of , [ (λ a₁ a₂ → get-set (l⁻¹ ∘ l) a₁ a₂ ≡⟨⟩ trans (cong from (get-set l a₁ (to a₂))) (get-set l⁻¹ (get l a₁) a₂) ≡⟨⟩ trans (cong from (right-inverse-of (to a₂))) (left-inverse-of a₂) ≡⟨ cong (λ eq → trans (cong from eq) (left-inverse-of _)) $ sym $ left-right-lemma _ ⟩ trans (cong from (cong (get l) (left-inverse-of a₂))) (left-inverse-of a₂) ≡⟨ cong (λ eq → trans eq (left-inverse-of _)) $ cong-∘ _ _ (left-inverse-of _) ⟩ trans (cong (from ⊚ get l) (left-inverse-of a₂)) (left-inverse-of a₂) ≡⟨⟩ trans (cong (get (l⁻¹ ∘ l)) (left-inverse-of a₂)) (left-inverse-of a₂) ∎) , (λ a → let lemma₁ = cong from (trans (sym (cong (get l) (set-get l (from (get l a))))) (trans (right-inverse-of _) (right-inverse-of _))) ≡⟨ cong-trans _ _ (trans _ (right-inverse-of _)) ⟩ trans (cong from (sym (cong (get l) (set-get l (from (get l a)))))) (cong from (trans (right-inverse-of _) (right-inverse-of _))) ≡⟨ cong (λ eq → trans (cong from eq) (cong from (trans (right-inverse-of _) (right-inverse-of _)))) $ sym $ cong-sym _ (set-get l (from (get l a))) ⟩ trans (cong from (cong (get l) (sym (set-get l (from (get l a)))))) (cong from (trans (right-inverse-of _) (right-inverse-of _))) ≡⟨ cong₂ trans (cong-∘ _ _ (sym (set-get l (from (get l a))))) (cong-trans _ _ (right-inverse-of _)) ⟩ trans (cong (from ⊚ get l) (sym (set-get l (from (get l a))))) (trans (cong from (right-inverse-of _)) (cong from (right-inverse-of _))) ≡⟨ cong₂ (λ p q → trans (cong (from ⊚ get l) (sym (set-get l (from (get l a))))) (trans p q)) (right-left-lemma _) (right-left-lemma _) ⟩∎ trans (cong (from ⊚ get l) (sym (set-get l (from (get l a))))) (trans (left-inverse-of _) (left-inverse-of _)) ∎ f = from ⊚ get l lemma₂ : ∀ _ → _ lemma₂ = λ a → trans (left-inverse-of (f a)) (left-inverse-of a) ≡⟨ cong (λ g → trans (g (f a)) (g a)) $ sym $ _≃_.left-inverse-of (Eq.extensionality-isomorphism bad-ext) left-inverse-of ⟩∎ trans (ext⁻¹ (⟨ext⟩ left-inverse-of) (f a)) (ext⁻¹ (⟨ext⟩ left-inverse-of) a) ∎ lemma₃ = trans (ext⁻¹ (refl P.id) a) (ext⁻¹ (refl P.id) a) ≡⟨ cong₂ trans (ext⁻¹-refl _) (ext⁻¹-refl _) ⟩ trans (refl _) (refl _) ≡⟨ trans-refl-refl ⟩∎ refl _ ∎ in trans (cong from (set-get l⁻¹ (get l a))) (set-get l a) ≡⟨⟩ trans (cong from (trans (sym (cong (get l) (set-get l (from (get l a))))) (trans (right-inverse-of _) (right-inverse-of _)))) (set-get l a) ≡⟨ cong (λ eq → trans eq (set-get l a)) lemma₁ ⟩ trans (trans (cong f (sym (set-get l (f a)))) (trans (left-inverse-of (f (f a))) (left-inverse-of (f a)))) (set-get l a) ≡⟨ cong (λ eq → trans (trans (cong f (sym (set-get l (f a)))) eq) (set-get l a)) $ lemma₂ _ ⟩ trans (trans (cong f (sym (set-get l (f a)))) (trans (ext⁻¹ (⟨ext⟩ left-inverse-of) (f (f a))) (ext⁻¹ (⟨ext⟩ left-inverse-of) (f a)))) (set-get l a) ≡⟨ elim₁ (λ {f} (p : f ≡ P.id) → (q : ∀ a → f a ≡ a) → trans (trans (cong f (sym (q (f a)))) (trans (ext⁻¹ p (f (f a))) (ext⁻¹ p (f a)))) (q a) ≡ trans (ext⁻¹ p (f a)) (ext⁻¹ p a)) (λ q → trans (trans (cong P.id (sym (q a))) (trans (ext⁻¹ (refl P.id) a) (ext⁻¹ (refl P.id) a))) (q a) ≡⟨ cong₂ (λ p r → trans (trans p r) (q a)) (sym $ cong-id _) lemma₃ ⟩ trans (trans (sym (q a)) (refl _)) (q a) ≡⟨ cong (flip trans _) $ trans-reflʳ _ ⟩ trans (sym (q a)) (q a) ≡⟨ trans-symˡ (q a) ⟩ refl _ ≡⟨ sym lemma₃ ⟩∎ trans (ext⁻¹ (refl P.id) a) (ext⁻¹ (refl P.id) a) ∎) (⟨ext⟩ left-inverse-of) (set-get l) ⟩ trans (ext⁻¹ (⟨ext⟩ left-inverse-of) (f a)) (ext⁻¹ (⟨ext⟩ left-inverse-of) a) ≡⟨ sym $ lemma₂ _ ⟩ trans (left-inverse-of (f a)) (left-inverse-of a) ≡⟨⟩ trans (left-inverse-of (get (l⁻¹ ∘ l) a)) (left-inverse-of a) ∎) , (λ a a₁ a₂ → let q = set-set l a (get l a₁) (get l a₂) lemma = cong from (trans (sym (right-inverse-of _)) (trans (sym (cong (get l) q)) (right-inverse-of _))) ≡⟨ cong-trans _ _ (trans (sym (cong (get l) q)) (right-inverse-of _)) ⟩ trans (cong from (sym (right-inverse-of _))) (cong from (trans (sym (cong (get l) q)) (right-inverse-of _))) ≡⟨ cong₂ trans (cong-sym _ (right-inverse-of _)) (cong-trans _ _ (right-inverse-of _)) ⟩ trans (sym (cong from (right-inverse-of _))) (trans (cong from (sym (cong (get l) q))) (cong from (right-inverse-of _))) ≡⟨ cong₂ (λ p r → trans (sym p) (trans (cong from (sym (cong (get l) q))) r)) (right-left-lemma _) (right-left-lemma _) ⟩ trans (sym (left-inverse-of _)) (trans (cong from (sym (cong (get l) q))) (left-inverse-of _)) ≡⟨ cong (λ eq → trans (sym (left-inverse-of _)) (trans eq (left-inverse-of _))) $ cong-sym _ (cong (get l) q) ⟩ trans (sym (left-inverse-of _)) (trans (sym (cong from (cong (get l) q))) (left-inverse-of _)) ≡⟨ cong (λ eq → trans (sym (left-inverse-of _)) (trans (sym eq) (left-inverse-of _))) $ cong-∘ _ _ q ⟩ trans (sym (left-inverse-of _)) (trans (sym (cong (from ⊚ get l) q)) (left-inverse-of _)) ≡⟨ cong (λ g → trans (sym (g _)) (trans (sym (cong (from ⊚ get l) q)) (g _))) $ sym $ _≃_.left-inverse-of (Eq.extensionality-isomorphism bad-ext) left-inverse-of ⟩∎ trans (sym (ext⁻¹ (⟨ext⟩ left-inverse-of) _)) (trans (sym (cong (from ⊚ get l) q)) (ext⁻¹ (⟨ext⟩ left-inverse-of) _)) ∎ f = from ⊚ get l in set-set (l⁻¹ ∘ l) a a₁ a₂ ≡⟨⟩ trans (set-set l a (get l a₁) (get l a₂)) (trans (cong (λ _ → from (get l a₂)) (right-inverse-of (get l a₁))) (cong from (set-set l⁻¹ (get l a) a₁ a₂))) ≡⟨ cong (trans _) $ trans (cong (flip trans _) $ cong-const _) $ trans-reflˡ _ ⟩ trans (set-set l a (get l a₁) (get l a₂)) (cong from (set-set l⁻¹ (get l a) a₁ a₂)) ≡⟨⟩ trans (set-set l a (get l a₁) (get l a₂)) (cong from (trans (sym (right-inverse-of _)) (trans (sym (cong (get l) (set-set l (from (get l a)) (get l a₁) (get l a₂)))) (right-inverse-of _)))) ≡⟨ cong (λ a′ → trans q (cong from (trans (sym (right-inverse-of _)) (trans (sym (cong (get l) (set-set l a′ (get l a₁) (get l a₂)))) (right-inverse-of _))))) $ left-inverse-of _ ⟩ trans q (cong from (trans (sym (right-inverse-of _)) (trans (sym (cong (get l) q)) (right-inverse-of _)))) ≡⟨ cong (trans q) lemma ⟩ trans q (trans (sym (ext⁻¹ (⟨ext⟩ left-inverse-of) (f a₂))) (trans (sym (cong f q)) (ext⁻¹ (⟨ext⟩ left-inverse-of) (f a₂)))) ≡⟨ elim₁ (λ {f} (p : f ≡ P.id) → (q : f a₂ ≡ f a₂) → trans q (trans (sym (ext⁻¹ p (f a₂))) (trans (sym (cong f q)) (ext⁻¹ p (f a₂)))) ≡ refl _) (λ q → trans q (trans (sym (ext⁻¹ (refl P.id) a₂)) (trans (sym (cong P.id q)) (ext⁻¹ (refl P.id) a₂))) ≡⟨ cong (λ eq → trans q (trans (sym eq) (trans (sym (cong P.id q)) eq))) $ ext⁻¹-refl _ ⟩ trans q (trans (sym (refl _)) (trans (sym (cong P.id q)) (refl _))) ≡⟨ cong₂ (λ p r → trans q (trans p r)) sym-refl (trans-reflʳ _) ⟩ trans q (trans (refl _) (sym (cong P.id q))) ≡⟨ cong (trans q) $ trans-reflˡ (sym (cong P.id q)) ⟩ trans q (sym (cong P.id q)) ≡⟨ cong (λ eq → trans q (sym eq)) $ sym $ cong-id q ⟩ trans q (sym q) ≡⟨ trans-symʳ q ⟩∎ refl _ ∎) (⟨ext⟩ left-inverse-of) q ⟩ refl _ ∎) ] ) -- There is an equivalence with erased proofs between "l is -- bi-invertible (with erased proofs) " and "the getter of l is an -- equivalence (with erased proofs)". Is-bi-invertibleᴱ≃ᴱIs-equivalenceᴱ-get : (l : Lens A B) → Is-bi-invertibleᴱ l ≃ᴱ Is-equivalenceᴱ (Lens.get l) Is-bi-invertibleᴱ≃ᴱIs-equivalenceᴱ-get l = EEq.⇔→≃ᴱ (BM.Is-bi-invertibleᴱ-propositional l) (EEq.Is-equivalenceᴱ-propositional ext _) (Is-bi-invertibleᴱ→Is-equivalenceᴱ-get l) (Is-equivalenceᴱ-get→Is-bi-invertibleᴱ l) -- There is in general no split surjection from equivalences (with -- erased proofs) to lenses that are bi-invertible (with erased -- proofs), if the right-to-left direction of the split surjection is -- required to map bi-invertible lenses to their getter functions -- (assuming univalence). ¬≃ᴱ↠≊ᴱ : @0 Univalence lzero → ¬ ∃ λ (≃ᴱ↠≊ᴱ : (↑ a 𝕊¹ᴱ ≃ᴱ ↑ a 𝕊¹ᴱ) ↠ (↑ a 𝕊¹ᴱ ≊ᴱ ↑ a 𝕊¹ᴱ)) → (x@(l , _) : ↑ a 𝕊¹ᴱ ≊ᴱ ↑ a 𝕊¹ᴱ) → _≃ᴱ_.to (_↠_.from ≃ᴱ↠≊ᴱ x) ≡ Lens.get l ¬≃ᴱ↠≊ᴱ {a = a} univ = Stable-¬ [ (∃ λ (≃ᴱ↠≊ᴱ : (↑ a 𝕊¹ᴱ ≃ᴱ ↑ a 𝕊¹ᴱ) ↠ (↑ a 𝕊¹ᴱ ≊ᴱ ↑ a 𝕊¹ᴱ)) → (x@(l , _) : ↑ a 𝕊¹ᴱ ≊ᴱ ↑ a 𝕊¹ᴱ) → _≃ᴱ_.to (_↠_.from ≃ᴱ↠≊ᴱ x) ≡ Lens.get l) ↝⟨ Σ-map ((∃-cong λ l → _≃_.surjection $ EEq.≃ᴱ→≃ $ Is-bi-invertibleᴱ≃ᴱIs-equivalenceᴱ-get l) F.∘_) (λ hyp _ → hyp _) ⟩ (∃ λ (f : (↑ a 𝕊¹ᴱ ≃ᴱ ↑ a 𝕊¹ᴱ) ↠ (∃ λ (l : Lens (↑ a 𝕊¹ᴱ) (↑ a 𝕊¹ᴱ)) → Is-equivalenceᴱ (Lens.get l))) → ∀ p → _≃ᴱ_.to (_↠_.from f p) ≡ Lens.get (proj₁ p)) ↝⟨ ¬-≃ᴱ-↠-Σ-Lens-Is-equivalenceᴱ-get univ ⟩□ ⊥ □ ] -- There is in general no equivalence with erased proofs between -- equivalences (with erased proofs) and lenses that are bi-invertible -- (with erased proofs), if the right-to-left direction of the -- equivalence is required to map bi-invertible lenses to their getter -- functions (assuming univalence). ¬≃ᴱ≃ᴱ≊ᴱ : @0 Univalence lzero → ¬ ∃ λ (≃ᴱ≃ᴱ≊ᴱ : (↑ a 𝕊¹ᴱ ≃ᴱ ↑ a 𝕊¹ᴱ) ≃ᴱ (↑ a 𝕊¹ᴱ ≊ᴱ ↑ a 𝕊¹ᴱ)) → (x@(l , _) : ↑ a 𝕊¹ᴱ ≊ᴱ ↑ a 𝕊¹ᴱ) → _≃ᴱ_.to (_≃ᴱ_.from ≃ᴱ≃ᴱ≊ᴱ x) ≡ Lens.get l ¬≃ᴱ≃ᴱ≊ᴱ {a = a} univ = Stable-¬ [ (∃ λ (≃ᴱ≃ᴱ≊ᴱ : (↑ a 𝕊¹ᴱ ≃ᴱ ↑ a 𝕊¹ᴱ) ≃ᴱ (↑ a 𝕊¹ᴱ ≊ᴱ ↑ a 𝕊¹ᴱ)) → (x@(l , _) : ↑ a 𝕊¹ᴱ ≊ᴱ ↑ a 𝕊¹ᴱ) → _≃ᴱ_.to (_≃ᴱ_.from ≃ᴱ≃ᴱ≊ᴱ x) ≡ Lens.get l) ↝⟨ Σ-map (_≃_.surjection ⊚ EEq.≃ᴱ→≃) P.id ⟩ (∃ λ (≃ᴱ↠≊ᴱ : (↑ a 𝕊¹ᴱ ≃ᴱ ↑ a 𝕊¹ᴱ) ↠ (↑ a 𝕊¹ᴱ ≊ᴱ ↑ a 𝕊¹ᴱ)) → (x@(l , _) : ↑ a 𝕊¹ᴱ ≊ᴱ ↑ a 𝕊¹ᴱ) → _≃ᴱ_.to (_↠_.from ≃ᴱ↠≊ᴱ x) ≡ Lens.get l) ↝⟨ ¬≃ᴱ↠≊ᴱ univ ⟩□ ⊥ □ ] -- The lemma ≃ᴱΣ∥set⁻¹ᴱ∥ᴱ× does not hold in general if the requirement -- that A is a set is dropped (assuming univalence). ≄ᴱΣ∥set⁻¹ᴱ∥ᴱ× : @0 Univalence lzero → ¬ ({A B : Type a} (l : Lens A B) → A ≃ᴱ ((∃ λ (f : B → A) → ∥ Lens.set l ⁻¹ᴱ f ∥ᴱ) × B)) ≄ᴱΣ∥set⁻¹ᴱ∥ᴱ× {a = a} univ = Stable-¬ [ ({A B : Type a} (l : Lens A B) → A ≃ᴱ ((∃ λ (f : B → A) → ∥ Lens.set l ⁻¹ᴱ f ∥ᴱ) × B)) ↝⟨ EEq.≃ᴱ→≃ ⊚_ ⟩ ({A B : Type a} (l : Lens A B) → A ≃ ((∃ λ (f : B → A) → ∥ Lens.set l ⁻¹ᴱ f ∥ᴱ) × B)) ↝⟨ ((×-cong₁ λ _ → ∃-cong λ _ → PT.∥∥ᴱ≃∥∥) F.∘_) ⊚_ ⟩ ({A B : Type a} (l : Lens A B) → A ≃ ((∃ λ (f : B → A) → ∥ Lens.set l ⁻¹ᴱ f ∥) × B)) ↝⟨ ((×-cong₁ λ _ → ∃-cong λ _ → PT.∥∥-cong $ inverse ECP.⁻¹≃⁻¹ᴱ) F.∘_) ⊚_ ⟩ ({A B : Type a} (l : Lens A B) → A ≃ ((∃ λ (f : B → A) → ∥ Lens.set l ⁻¹ f ∥) × B)) ↝⟨ _⊚ Traditional-lens→Lens ⟩ ({A B : Type a} (l : T.Lens A B) → A ≃ ((∃ λ (f : B → A) → ∥ T.Lens.set l ⁻¹ f ∥) × B)) ↝⟨ TC.≄Σ∥set⁻¹∥× univ ⟩□ ⊥ □ ]
46.827361
162
0.367044
39b16c47487944411df07d9a9eb5cd8975c8cd84
1,512
agda
Agda
src/LibraBFT/Impl/Types/OnChainConfig/ValidatorSet.agda
LaudateCorpus1/bft-consensus-agda
a4674fc473f2457fd3fe5123af48253cfb2404ef
[ "UPL-1.0" ]
null
null
null
src/LibraBFT/Impl/Types/OnChainConfig/ValidatorSet.agda
LaudateCorpus1/bft-consensus-agda
a4674fc473f2457fd3fe5123af48253cfb2404ef
[ "UPL-1.0" ]
null
null
null
src/LibraBFT/Impl/Types/OnChainConfig/ValidatorSet.agda
LaudateCorpus1/bft-consensus-agda
a4674fc473f2457fd3fe5123af48253cfb2404ef
[ "UPL-1.0" ]
null
null
null
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.ImplShared.Consensus.Types open import Optics.All open import Util.KVMap as Map hiding (empty) open import Util.Prelude module LibraBFT.Impl.Types.OnChainConfig.ValidatorSet where new : List ValidatorInfo → ValidatorSet new = ValidatorSet∙new ConsensusScheme∙new empty : ValidatorSet empty = new [] obmFromVV : ValidatorVerifier → ValidatorSet obmFromVV vv0 = record -- ValidatorSet { _vsScheme = ConsensusScheme∙new -- TODO ; _vsPayload = fmap go (Map.toList (vv0 ^∙ vvAddressToValidatorInfo)) } where go : (Author × ValidatorConsensusInfo) → ValidatorInfo go (address , ValidatorConsensusInfo∙new pk vp) = record -- ValidatorInfo { _viAccountAddress = address ; _viConsensusVotingPower = vp ; _viConfig = record -- ValidatorConfig { _vcConsensusPublicKey = pk ; _vcValidatorNetworkAddress = address ^∙ aAuthorName } } obmGetValidatorInfo : AuthorName → ValidatorSet → Either ErrLog ValidatorInfo obmGetValidatorInfo name vs = case List-filter (λ vi → vi ^∙ viAccountAddress ∙ aAuthorName ≟ name) (vs ^∙ vsPayload) of λ where (vi ∷ []) → pure vi _ → Left fakeErr -- ["ValidatorSet", "obmGetValidatorInfo", "TODO better err msg"]
37.8
111
0.712302
1082ee82cdb41af2d144990b812cf3699696e64c
9,048
agda
Agda
homotopy/JoinAssoc2.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
1
2021-06-30T00:17:55.000Z
2021-06-30T00:17:55.000Z
homotopy/JoinAssoc2.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
null
null
null
homotopy/JoinAssoc2.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} open import HoTT -- Associativity of the join (work in progress) module homotopy.JoinAssoc2 where import homotopy.JoinAssoc as Assoc module Assoc2 {i j k} (A : Type i) (B : Type j) (C : Type k) where open Assoc A B C {- Here are the steps, without the junk around: apd (λ x → ap to (ap from (glue (a , x)))) (glue (b , c)) 1 (From.glue-β) apd (λ x → ap to (from-glue (a , x))) (glue (b , c)) 2 (unfuse) ap↓ (λ x → ap to {x = from-left a} {y = from-right x}) (apd (λ x → from-glue (a , x)) (glue (b , c))) 3 (FromGlue.glue-β) ap↓ (λ x → ap to {x = from-left a} {y = from-right x}) (apd (λ x → glue (x , c)) (glue (a , b))) 4 (fuse) apd (λ x → ap to (glue (x , c))) (glue (a , b)) 5 (To.glue-β) apd (λ x → to-glue (x , c)) (glue (a , b)) 6 (ToGlue.glue-β) apd (λ x → glue (a , x)) (glue (b , c)) -} to-from-glue-glue' : (a : A) (b : B) (c : C) → (↯ to-from-glue-left' a b) == (↯ to-from-glue-right' a c) [ (λ x → ap to (ap from (glue (a , x))) ∙' to-from-right x == glue (a , x)) ↓ glue (b , c) ] to-from-glue-glue' a b c = ↓-=-in (!( apd (λ x → ap to (ap from (glue (a , x))) ∙' to-from-right x) (glue (b , c)) ▹ (↯ to-from-glue-right' a c) =⟨ apd∙' (λ x → ap to (ap from (glue (a , x)))) to-from-right (glue (b , c)) |in-ctx (λ u → u ▹ (↯ to-from-glue-right' a c)) ⟩ ((apd (λ x → ap to (ap from (glue (a , x)))) (glue (b , c))) ∙'2ᵈ (apd to-from-right (glue (b , c)))) ▹ (↯ to-from-glue-right' a c) =⟨ ToFromRight.glue-β (b , c) |in-ctx (λ u → ((apd (λ x → ap to (ap from (glue (a , x)))) (glue (b , c))) ∙'2ᵈ u) ▹ (↯ to-from-glue-right' a c)) ⟩ ((apd (λ x → ap to (ap from (glue (a , x)))) (glue (b , c))) ∙'2ᵈ (to-from-right-glue (b , c))) ▹ (↯ to-from-glue-right' a c) =⟨ ▹-∙'2ᵈ (apd (λ x → ap to (ap from (glue (a , x)))) (glue (b , c))) (to-from-right-glue (b , c)) (↯ to-from-glue-right' a c) idp ⟩ (apd (λ x → ap to (ap from (glue (a , x)))) (glue (b , c)) ▹ (↯ to-from-glue-right' a c)) ∙'2ᵈ (to-from-right-glue (b , c) ▹ idp) =⟨ (▹idp (to-from-right-glue (b , c))) |in-ctx (λ u → (apd (λ x → ap to (ap from (glue (a , x)))) (glue (b , c)) ▹ (↯ to-from-glue-right' a c)) ∙'2ᵈ u) ⟩ (apd (λ x → ap to (ap from (glue (a , x)))) (glue (b , c)) ▹ (↯ to-from-glue-right' a c)) ∙'2ᵈ (to-from-right-glue (b , c)) =⟨ apd=-red (λ x → ap (ap to) (From.glue-β (a , x))) (glue (b , c)) (1! (to-from-glue-right' a c)) |in-ctx (λ u → u ∙'2ᵈ (to-from-right-glue (b , c))) ⟩ {- 1 -} ((↯ 1# (to-from-glue-left' a b)) ◃ (apd (λ x → ap to (from-glue (a , x))) (glue (b , c)) ▹ (↯ 1! (to-from-glue-right' a c)))) ∙'2ᵈ (to-from-right-glue (b , c)) =⟨ apd-∘' (ap to) (λ x → from-glue (a , x)) (glue (b , c)) |in-ctx (λ u → ((↯ 1# (to-from-glue-left' a b)) ◃ (u ▹ (↯ 1! (to-from-glue-right' a c)))) ∙'2ᵈ (to-from-right-glue (b , c))) ⟩ {- 2 -} ((↯ 1# (to-from-glue-left' a b)) ◃ (ap↓ (ap to) (apd (λ x → from-glue (a , x)) (glue (b , c))) ▹ (↯ 1! (to-from-glue-right' a c)))) ∙'2ᵈ (to-from-right-glue (b , c)) =⟨ FromGlue.glue-β a (b , c) |in-ctx (λ u → ((↯ 1# (to-from-glue-left' a b)) ◃ (ap↓ (ap to) u ▹ (↯ 1! (to-from-glue-right' a c)))) ∙'2ᵈ (to-from-right-glue (b , c))) ⟩ {- 3 -} ((↯ 1# (to-from-glue-left' a b)) ◃ (ap↓ (ap to) (from-glue-glue a (b , c)) ▹ (↯ 1! (to-from-glue-right' a c)))) ∙'2ᵈ (to-from-right-glue (b , c)) =⟨ idp ⟩ ((↯ 1# (to-from-glue-left' a b)) ◃ (ap↓ (ap to) (↓-swap! left from-right _ idp (apd (λ x → glue (x , c)) (glue (a , b)) ▹! (FromRight.glue-β (b , c)))) ▹ (↯ 1! (to-from-glue-right' a c)))) ∙'2ᵈ (to-from-right-glue (b , c)) =⟨ Ap↓-swap!.β to left from-right _ idp (apd (λ x → glue (x , c)) (glue (a , b)) ▹! (FromRight.glue-β (b , c))) |in-ctx (λ u → ((↯ 1# (to-from-glue-left' a b)) ◃ (u ▹ (↯ 1! (to-from-glue-right' a c)))) ∙'2ᵈ (to-from-right-glue (b , c))) ⟩ ((↯ 1# (to-from-glue-left' a b)) ◃ (((ap (λ u → u) (∘-ap to left (glue (a , b)))) ◃ ↓-swap! (to ∘ left) (to ∘ from-right) _ idp (ap↓ (ap to) (apd (λ x → glue (x , c)) (glue (a , b)) ▹! (FromRight.glue-β (b , c))) ▹ (ap (λ u → u) (∘-ap to from-right (glue (b , c)))))) ▹ (↯ 1! (to-from-glue-right' a c)))) ∙'2ᵈ (to-from-right-glue (b , c)) =⟨ ap-idf (∘-ap to left (glue (a , b))) |in-ctx (λ v → ((↯ 1# (to-from-glue-left' a b)) ◃ ((v ◃ ↓-swap! (to ∘ left) (to ∘ from-right) _ idp (ap↓ (ap to) (apd (λ x → glue (x , c)) (glue (a , b)) ▹! (FromRight.glue-β (b , c))) ▹ (ap (λ u → u) (∘-ap to from-right (glue (b , c)))))) ▹ (↯ 1! (to-from-glue-right' a c)))) ∙'2ᵈ (to-from-right-glue (b , c))) ⟩ ((↯ 1# (to-from-glue-left' a b)) ◃ (((∘-ap to left (glue (a , b))) ◃ ↓-swap! (to ∘ left) (to ∘ from-right) _ idp (ap↓ (ap to) (apd (λ x → glue (x , c)) (glue (a , b)) ▹! (FromRight.glue-β (b , c))) ▹ (ap (λ u → u) (∘-ap to from-right (glue (b , c)))))) ▹ (↯ 1! (to-from-glue-right' a c)))) ∙'2ᵈ (to-from-right-glue (b , c)) =⟨ {!!} ⟩ ((↯ 2# (to-from-glue-left' a b)) ◃ ((↓-swap! to-left (to ∘ from-right) _ idp (ap↓ (ap to) (apd (λ x → glue (x , c)) (glue (a , b)) ▹! (FromRight.glue-β (b , c))) ▹ (ap (λ u → u) (∘-ap to from-right (glue (b , c)))))) ▹ (↯ 1! (to-from-glue-right' a c)))) ∙'2ᵈ (to-from-right-glue (b , c)) =⟨ ap↓-▹! (ap to) (apd (λ x → glue (x , c)) (glue (a , b))) (FromRight.glue-β (b , c)) |in-ctx (λ v → ((↯ 2# (to-from-glue-left' a b)) ◃ ((↓-swap! to-left (to ∘ from-right) _ idp (v ▹ (ap (λ u → u) (∘-ap to from-right (glue (b , c)))))) ▹ (↯ 1! (to-from-glue-right' a c)))) ∙'2ᵈ (to-from-right-glue (b , c))) ⟩ ((↯ 2# (to-from-glue-left' a b)) ◃ ((↓-swap! to-left (to ∘ from-right) _ idp ((ap↓ (ap to) (apd (λ x → glue (x , c)) (glue (a , b))) ▹! ap (ap to) (FromRight.glue-β (b , c))) ▹ (ap (λ u → u) (∘-ap to from-right (glue (b , c)))))) ▹ (↯ 1! (to-from-glue-right' a c)))) ∙'2ᵈ (to-from-right-glue (b , c)) =⟨ ∘'-apd (ap to) (λ x → glue (x , c)) (glue (a , b)) |in-ctx (λ v → ((↯ 2# (to-from-glue-left' a b)) ◃ ((↓-swap! to-left (to ∘ from-right) _ idp ((v ▹! ap (ap to) (FromRight.glue-β (b , c))) ▹ (ap (λ u → u) (∘-ap to from-right (glue (b , c)))))) ▹ (↯ 1! (to-from-glue-right' a c)))) ∙'2ᵈ (to-from-right-glue (b , c))) ⟩ {- 4 -} ((↯ 2# (to-from-glue-left' a b)) ◃ ((↓-swap! to-left (to ∘ from-right) _ idp ((apd (λ x → ap to (glue (x , c))) (glue (a , b)) ▹! ap (ap to) (FromRight.glue-β (b , c))) ▹ (ap (λ u → u) (∘-ap to from-right (glue (b , c)))))) ▹ (↯ 1! (to-from-glue-right' a c)))) ∙'2ᵈ (to-from-right-glue (b , c)) =⟨ {!!} ⟩ {- 5 -} -- ((↯ 2# (to-from-glue-left' a b)) ◃ ((↓-swap! to-left (to ∘ from-right) _ idp ((apd (λ x → to-glue (x , c)) (glue (a , b)) ▹! ap (ap to) (FromRight.glue-β (b , c))) ▹ (ap (λ u → u) (∘-ap to from-right (glue (b , c)))))) -- ▹ (↯ 1! (to-from-glue-right' a c)))) ∙'2ᵈ (to-from-right-glue (b , c)) -- =⟨ {!!} ⟩ -- {- 5 -} -- (↯ 2# (to-from-glue-left' a b)) ◃ (↓-swap! to-left right _ idp (To.glue-β (left a , c) !◃ (apd (λ x → ap to (glue (x , c))) (glue (a , b)) ▹ To.glue-β (right b , c)))) -- =⟨ {!!} ⟩ (↯ 2# (to-from-glue-left' a b)) ◃ (↓-swap! to-left right _ idp (apd (λ x → to-glue (x , c)) (glue (a , b)))) =⟨ ToGlue.glue-β c (a , b) |in-ctx (λ v → (↯ 2# (to-from-glue-left' a b)) ◃ (↓-swap! to-left right _ idp v)) ⟩ {- 6 -} (↯ 2# (to-from-glue-left' a b)) ◃ (↓-swap! to-left right _ idp (to-glue-glue c (a , b))) =⟨ ↓-swap-β to-left right {p = glue (a , b)} (to-glue-left c a) idp (ToLeft.glue-β (a , b) ◃ apd (λ x → glue (a , x)) (glue (b , c))) |in-ctx (λ v → (↯ 2# (to-from-glue-left' a b)) ◃ v) ⟩ (↯ 2# (to-from-glue-left' a b)) ◃ (ToLeft.glue-β (a , b) ◃ apd (λ x → glue (a , x)) (glue (b , c))) =⟨ {!!} ⟩ -- associativity (↯ to-from-glue-left' a b) ◃ apd (λ x → glue (a , x)) (glue (b , c)) ∎)) -- ((↓-apd-out (λ a' _ → to (from (left a)) == to (from (right a'))) (λ x → glue (a , x)) (glue (b , c)) (apdd (ap to ∘ ap from) (glue (b , c)) (apd (λ x → (glue (a , x))) (glue (b , c))))) ∙'2ᵈ (to-from-right-glue (b , c))) ▹ to-from-glue-right' a c =⟨ {!!} ⟩ -- to-from-glue-glue : (a : A) (bc : B × C) -- → to-from-glue-left a (fst bc) == to-from-glue-right a (snd bc) [ (λ x → to-from-left a == to-from-right x [ (λ y → to (from y) == y) ↓ glue (a , x) ]) ↓ glue bc ] -- to-from-glue-glue a (b , c) = {!!} -- Should not be too hard -- to-from-glue : (x : A × (B * C)) → to-from-left (fst x) == to-from-right (snd x) [ (λ x → to (from x) == x) ↓ glue x ] -- to-from-glue (a , bc) = pushout-rec (to-from-glue-left a) (to-from-glue-right a) (to-from-glue-glue a) bc -- to-from : (x : A * (B * C)) → to (from x) == x -- to-from = pushout-rec to-from-left to-from-right to-from-glue -- *-assoc : (A * B) * C ≃ A * (B * C) -- *-assoc = equiv to from to-from from-to
74.77686
294
0.463859
4de95f093dd9c0fa96e1a300d30cec9c19e6309e
6,932
agda
Agda
Nested.agda
nad/codata
1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e
[ "MIT" ]
1
2021-02-13T14:48:45.000Z
2021-02-13T14:48:45.000Z
Nested.agda
nad/codata
1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e
[ "MIT" ]
null
null
null
Nested.agda
nad/codata
1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- Nested applications of the defined function can be handled ------------------------------------------------------------------------ module Nested where open import Codata.Musical.Notation open import Codata.Musical.Stream open import Function import Relation.Binary.PropositionalEquality as P ------------------------------------------------------------------------ -- A definition of φ (x ∷ xs) = x ∷ φ (φ xs) module φ where infixr 5 _∷_ data StreamP (A : Set) : Set where _∷_ : (x : A) (xs : ∞ (StreamP A)) → StreamP A φP : (xs : StreamP A) → StreamP A data StreamW (A : Set) : Set where _∷_ : (x : A) (xs : StreamP A) → StreamW A φW : {A : Set} → StreamW A → StreamW A φW (x ∷ xs) = x ∷ φP (φP xs) whnf : {A : Set} → StreamP A → StreamW A whnf (x ∷ xs) = x ∷ ♭ xs whnf (φP xs) = φW (whnf xs) mutual ⟦_⟧W : {A : Set} → StreamW A → Stream A ⟦ x ∷ xs ⟧W = x ∷ ♯ ⟦ xs ⟧P ⟦_⟧P : {A : Set} → StreamP A → Stream A ⟦ xs ⟧P = ⟦ whnf xs ⟧W ⌈_⌉ : {A : Set} → Stream A → StreamP A ⌈ x ∷ xs ⌉ = x ∷ ♯ ⌈ ♭ xs ⌉ φ : {A : Set} → Stream A → Stream A φ xs = ⟦ φP ⌈ xs ⌉ ⟧P open φ using (⟦_⟧P; ⟦_⟧W; φP; φW; φ; _∷_; ⌈_⌉) ------------------------------------------------------------------------ -- An equality proof language module Equality where φ-rhs : {A : Set} → (Stream A → Stream A) → Stream A → Stream A φ-rhs φ (x ∷ xs) = x ∷ ♯ φ (φ (♭ xs)) SatisfiesEquation : {A : Set} → (Stream A → Stream A) → Set SatisfiesEquation φ = ∀ xs → φ xs ≈ φ-rhs φ xs infixr 5 _∷_ infix 4 _≈P_ _≈W_ infix 3 _∎ infixr 2 _≈⟨_⟩_ data _≈P_ {A : Set} : Stream A → Stream A → Set where _∷_ : ∀ (x : A) {xs ys} (xs≈ys : ∞ (♭ xs ≈P ♭ ys)) → x ∷ xs ≈P x ∷ ys _≈⟨_⟩_ : ∀ (xs : Stream A) {ys zs} (xs≈ys : xs ≈P ys) (ys≈zs : ys ≈P zs) → xs ≈P zs _∎ : (xs : Stream A) → xs ≈P xs sym : ∀ {xs ys} (xs≈ys : xs ≈P ys) → ys ≈P xs φP-cong : (xs ys : φ.StreamP A) (xs≈ys : ⟦ xs ⟧P ≈P ⟦ ys ⟧P) → ⟦ φP xs ⟧P ≈P ⟦ φP ys ⟧P lemma : (φ₁ φ₂ : Stream A → Stream A) (s₁ : SatisfiesEquation φ₁) (s₂ : SatisfiesEquation φ₂) → ∀ {xs ys} (xs≈ys : xs ≈P ys) → φ-rhs φ₁ xs ≈P φ-rhs φ₂ ys -- Completeness. completeP : {A : Set} {xs ys : Stream A} → xs ≈ ys → xs ≈P ys completeP (P.refl ∷ xs≈ys) = _ ∷ ♯ completeP (♭ xs≈ys) -- Weak head normal forms. data _≈W_ {A : Set} : Stream A → Stream A → Set where _∷_ : ∀ x {xs ys} (xs≈ys : ♭ xs ≈P ♭ ys) → x ∷ xs ≈W x ∷ ys transW : {A : Set} {xs ys zs : Stream A} → xs ≈W ys → ys ≈W zs → xs ≈W zs transW (x ∷ xs≈ys) (.x ∷ ys≈zs) = x ∷ (_ ≈⟨ xs≈ys ⟩ ys≈zs) reflW : {A : Set} (xs : Stream A) → xs ≈W xs reflW (x ∷ xs) = x ∷ (♭ xs ∎) symW : {A : Set} {xs ys : Stream A} → xs ≈W ys → ys ≈W xs symW (x ∷ xs≈ys) = x ∷ sym xs≈ys φW-cong : {A : Set} (xs ys : φ.StreamW A) → ⟦ xs ⟧W ≈W ⟦ ys ⟧W → ⟦ φW xs ⟧W ≈W ⟦ φW ys ⟧W φW-cong (.x ∷ xs) (.x ∷ ys) (x ∷ xs≈ys) = x ∷ φP-cong (φP xs) (φP ys) (φP-cong xs ys xs≈ys) lemmaW : {A : Set} (φ₁ φ₂ : Stream A → Stream A) (s₁ : SatisfiesEquation φ₁) (s₂ : SatisfiesEquation φ₂) → ∀ {xs ys} → xs ≈W ys → φ-rhs φ₁ xs ≈W φ-rhs φ₂ ys lemmaW φ₁ φ₂ s₁ s₂ {.x ∷ xs} {.x ∷ ys} (x ∷ xs≈ys) = x ∷ ( φ₁ (φ₁ (♭ xs)) ≈⟨ completeP $ s₁ (φ₁ (♭ xs)) ⟩ φ-rhs φ₁ (φ₁ (♭ xs)) ≈⟨ lemma φ₁ φ₂ s₁ s₂ ( φ₁ (♭ xs) ≈⟨ completeP $ s₁ (♭ xs) ⟩ φ-rhs φ₁ (♭ xs) ≈⟨ lemma φ₁ φ₂ s₁ s₂ xs≈ys ⟩ φ-rhs φ₂ (♭ ys) ≈⟨ sym $ completeP $ s₂ (♭ ys) ⟩ φ₂ (♭ ys) ∎) ⟩ φ-rhs φ₂ (φ₂ (♭ ys)) ≈⟨ sym $ completeP $ s₂ (φ₂ (♭ ys)) ⟩ φ₂ (φ₂ (♭ ys)) ∎) whnf : {A : Set} {xs ys : Stream A} → xs ≈P ys → xs ≈W ys whnf (x ∷ xs≈ys) = x ∷ ♭ xs≈ys whnf (xs ≈⟨ xs≈ys ⟩ ys≈zs) = transW (whnf xs≈ys) (whnf ys≈zs) whnf (xs ∎) = reflW xs whnf (sym xs≈ys) = symW (whnf xs≈ys) whnf (lemma φ₁ φ₂ s₁ s₂ xs≈ys) = lemmaW φ₁ φ₂ s₁ s₂ (whnf xs≈ys) whnf (φP-cong xs ys xs≈ys) = φW-cong (φ.whnf xs) (φ.whnf ys) (whnf xs≈ys) -- Soundness. mutual soundW : {A : Set} {xs ys : Stream A} → xs ≈W ys → xs ≈ ys soundW (x ∷ xs≈ys) = P.refl ∷ ♯ soundP xs≈ys soundP : {A : Set} {xs ys : Stream A} → xs ≈P ys → xs ≈ ys soundP xs≈ys = soundW (whnf xs≈ys) open Equality using (_≈P_; _∷_; _≈⟨_⟩_; _∎; sym; φP-cong; φ-rhs; SatisfiesEquation) ------------------------------------------------------------------------ -- Correctness module Correctness where -- Uniqueness of solutions for φ's defining equation. φ-unique : {A : Set} (φ₁ φ₂ : Stream A → Stream A) → SatisfiesEquation φ₁ → SatisfiesEquation φ₂ → ∀ xs → φ₁ xs ≈P φ₂ xs φ-unique φ₁ φ₂ hyp₁ hyp₂ xs = φ₁ xs ≈⟨ Equality.completeP (hyp₁ xs) ⟩ φ-rhs φ₁ xs ≈⟨ Equality.lemma φ₁ φ₂ hyp₁ hyp₂ (xs ∎) ⟩ φ-rhs φ₂ xs ≈⟨ sym (Equality.completeP (hyp₂ xs)) ⟩ φ₂ xs ∎ -- The remainder of this module establishes the existence of a -- solution. ⟦⌈_⌉⟧P : {A : Set} (xs : Stream A) → ⟦ ⌈ xs ⌉ ⟧P ≈P xs ⟦⌈ x ∷ xs ⌉⟧P = x ∷ ♯ ⟦⌈ ♭ xs ⌉⟧P φ-cong : {A : Set} (xs ys : Stream A) → xs ≈P ys → φ xs ≈P φ ys φ-cong xs ys xs≈ys = φ xs ≈⟨ φ xs ∎ ⟩ ⟦ φP ⌈ xs ⌉ ⟧P ≈⟨ φP-cong ⌈ xs ⌉ ⌈ ys ⌉ lemma ⟩ ⟦ φP ⌈ ys ⌉ ⟧P ≈⟨ φ ys ∎ ⟩ φ ys ∎ where lemma = ⟦ ⌈ xs ⌉ ⟧P ≈⟨ ⟦⌈ xs ⌉⟧P ⟩ xs ≈⟨ xs≈ys ⟩ ys ≈⟨ sym ⟦⌈ ys ⌉⟧P ⟩ ⟦ ⌈ ys ⌉ ⟧P ∎ -- ♯′ provides a workaround for Agda's strange definitional -- equality. infix 10 ♯′_ ♯′_ : {A : Set} → A → ∞ A ♯′ x = ♯ x φW-hom : {A : Set} (xs : φ.StreamW A) → ⟦ φW xs ⟧W ≈P head ⟦ xs ⟧W ∷ ♯′ φ (φ (tail ⟦ xs ⟧W)) φW-hom (x ∷ xs) = x ∷ ♯ ( ⟦ φP (φP xs) ⟧P ≈⟨ φP-cong (φP xs) (φP ⌈ ⟦ xs ⟧P ⌉) $ φP-cong xs (⌈ ⟦ xs ⟧P ⌉) (sym ⟦⌈ ⟦ xs ⟧P ⌉⟧P) ⟩ ⟦ φP (φP ⌈ ⟦ xs ⟧P ⌉) ⟧P ≈⟨ φP-cong (φP ⌈ ⟦ xs ⟧P ⌉) ⌈ ⟦ φP ⌈ ⟦ xs ⟧P ⌉ ⟧P ⌉ (sym ⟦⌈ ⟦ φP ⌈ ⟦ xs ⟧P ⌉ ⟧P ⌉⟧P) ⟩ ⟦ φP ⌈ ⟦ φP ⌈ ⟦ xs ⟧P ⌉ ⟧P ⌉ ⟧P ∎) φ-hom : {A : Set} (xs : φ.StreamP A) → ⟦ φP xs ⟧P ≈P head ⟦ xs ⟧P ∷ ♯′ φ (φ (tail ⟦ xs ⟧P)) φ-hom xs = φW-hom (φ.whnf xs) φ-correct : {A : Set} (xs : Stream A) → φ xs ≈P φ-rhs φ xs φ-correct (x ∷ xs) = φ (x ∷ xs) ≈⟨ φ (x ∷ xs) ∎ ⟩ ⟦ φP ⌈ x ∷ xs ⌉ ⟧P ≈⟨ φ-hom ⌈ x ∷ xs ⌉ ⟩ x ∷ ♯′ φ (φ ⟦ ⌈ ♭ xs ⌉ ⟧P) ≈⟨ x ∷ ♯ φ-cong (φ ⟦ ⌈ ♭ xs ⌉ ⟧P) (φ (♭ xs)) (φ-cong (⟦ ⌈ ♭ xs ⌉ ⟧P) (♭ xs) ⟦⌈ ♭ xs ⌉⟧P) ⟩ φ-rhs φ (x ∷ xs) ∎
33.980392
93
0.420514
1cdb0390c7d2d10f8d31e0be658a01c90160aa15
7,485
agda
Agda
core/lib/types/Nat.agda
maxdore/hott-morse
01bbd8841f9b9b25666b91e65b196d8f472b9978
[ "MIT" ]
null
null
null
core/lib/types/Nat.agda
maxdore/hott-morse
01bbd8841f9b9b25666b91e65b196d8f472b9978
[ "MIT" ]
null
null
null
core/lib/types/Nat.agda
maxdore/hott-morse
01bbd8841f9b9b25666b91e65b196d8f472b9978
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --rewriting #-} open import lib.Base open import lib.Function open import lib.NType open import lib.PathGroupoid open import lib.Relation open import lib.types.Bool open import lib.types.Coproduct open import lib.types.Empty open import lib.types.Sigma module lib.types.Nat where infixl 80 _+_ _+_ : ℕ → ℕ → ℕ 0 + n = n (S m) + n = S (m + n) {-# BUILTIN NATPLUS _+_ #-} abstract +-unit-r : (m : ℕ) → m + 0 == m +-unit-r 0 = idp +-unit-r (S m) = ap S (+-unit-r m) +-βr : (m n : ℕ) → m + (S n) == S (m + n) +-βr 0 n = idp +-βr (S m) n = ap S (+-βr m n) +-comm : (m n : ℕ) → m + n == n + m +-comm m 0 = +-unit-r m +-comm m (S n) = +-βr m n ∙ ap S (+-comm m n) +-assoc : (k m n : ℕ) → (k + m) + n == k + (m + n) +-assoc 0 m n = idp +-assoc (S k) m n = ap S (+-assoc k m n) -- the [+] is like [ℕ-S^] ℕ-S^' : ℕ → ℕ → ℕ ℕ-S^' O n = n ℕ-S^' (S m) n = ℕ-S^' m (S n) ℕ-pred : ℕ → ℕ ℕ-pred 0 = 0 ℕ-pred (S n) = n abstract ℕ-S-is-inj : is-inj (S :> (ℕ → ℕ)) ℕ-S-is-inj n m p = ap ℕ-pred p ℕ-S-≠ : ∀ {n m : ℕ} (p : n ≠ m) → S n ≠ S m :> ℕ ℕ-S-≠ {n} {m} p = p ∘ ℕ-S-is-inj n m private ℕ-S≠O-type : ℕ → Type₀ ℕ-S≠O-type O = Empty ℕ-S≠O-type (S n) = Unit ℕ-S≠O : (n : ℕ) → S n ≠ O ℕ-S≠O n p = transport ℕ-S≠O-type p unit ℕ-O≠S : (n : ℕ) → (O ≠ S n) ℕ-O≠S n p = ℕ-S≠O n (! p) ℕ-has-dec-eq : has-dec-eq ℕ ℕ-has-dec-eq O O = inl idp ℕ-has-dec-eq O (S n) = inr (ℕ-O≠S n) ℕ-has-dec-eq (S n) O = inr (ℕ-S≠O n) ℕ-has-dec-eq (S n) (S m) with ℕ-has-dec-eq n m ℕ-has-dec-eq (S n) (S m) | inl p = inl (ap S p) ℕ-has-dec-eq (S n) (S m) | inr ¬p = inr (ℕ-S-≠ ¬p) ℕ-is-set : is-set ℕ ℕ-is-set = dec-eq-is-set ℕ-has-dec-eq instance ℕ-level : {n : ℕ₋₂} → has-level (S (S n)) ℕ ℕ-level {⟨-2⟩} = ℕ-is-set ℕ-level {n = S n} = raise-level (S (S n)) ℕ-level +-0 : ∀ (m n : ℕ) → m + n == 0 → (m == 0) × (n == 0) +-0 O O _ = idp , idp +-0 O (S n) h = ⊥-elim (ℕ-S≠O n h) +-0 (S m) n h = ⊥-elim (ℕ-S≠O (m + n) h) even : ℕ → Bool even O = true even (S n) = negate (even n) odd : ℕ → Bool odd = negate ∘ even {- Inequalities -} infix 40 _<_ _≤_ data _<_ : ℕ → ℕ → Type₀ where ltS : {m : ℕ} → m < (S m) ltSR : {m n : ℕ} → m < n → m < (S n) _≤_ : ℕ → ℕ → Type₀ m ≤ n = Coprod (m == n) (m < n) -- experimental: [lteE] [lteS] [lteSR] lteE : {m : ℕ} → m ≤ m lteE = inl idp lteS : {m : ℕ} → m ≤ S m lteS = inr ltS lteSR : {m n : ℕ} → m ≤ n → m ≤ (S n) lteSR (inl idp) = lteS lteSR (inr lt) = inr (ltSR lt) -- properties of [<] O<S : (m : ℕ) → O < S m O<S O = ltS O<S (S m) = ltSR (O<S m) O≤ : (m : ℕ) → O ≤ m O≤ O = inl idp O≤ (S m) = inr (O<S m) ≮O : ∀ n → ¬ (n < O) ≮O _ () S≰O : ∀ n → ¬ (S n ≤ O) S≰O _ (inl ()) S≰O _ (inr ()) <-trans : {m n k : ℕ} → m < n → n < k → m < k <-trans lt₁ ltS = ltSR lt₁ <-trans lt₁ (ltSR lt₂) = ltSR (<-trans lt₁ lt₂) ≤-refl : {m : ℕ} → m ≤ m ≤-refl = lteE ≤-trans : {m n k : ℕ} → m ≤ n → n ≤ k → m ≤ k ≤-trans (inl idp) lte₂ = lte₂ ≤-trans lte₁@(inr _) (inl idp) = lte₁ ≤-trans (inr lt₁) (inr lt₂) = inr (<-trans lt₁ lt₂) private test₀ : {m n : ℕ} (m≤n : m ≤ n) → lteSR m≤n == ≤-trans m≤n lteS test₀ (inl idp) = idp test₀ (inr lt) = idp <-ap-S : {m n : ℕ} → m < n → S m < S n <-ap-S ltS = ltS <-ap-S (ltSR lt) = ltSR (<-ap-S lt) ≤-ap-S : {m n : ℕ} → m ≤ n → S m ≤ S n ≤-ap-S (inl p) = inl (ap S p) ≤-ap-S (inr lt) = inr (<-ap-S lt) <-cancel-S : {m n : ℕ} → S m < S n → m < n <-cancel-S ltS = ltS <-cancel-S (ltSR lt) = <-trans ltS lt <-ap-S-right : {m n : ℕ} → m < n → m < S n <-ap-S-right x = ltSR x <-weaken-S : {m n : ℕ} → S m < n → m < n <-weaken-S ltS = ltSR ltS <-weaken-S (ltSR x) = ltSR (<-weaken-S x) <-cancel-S-left : {m n : ℕ} → S m < S n → m < S n <-cancel-S-left ltS = ltSR ltS <-cancel-S-left (ltSR p) = ltSR (<-weaken-S p) ≤-cancel-S : {m n : ℕ} → S m ≤ S n → m ≤ n ≤-cancel-S (inl p) = inl (ap ℕ-pred p) ≤-cancel-S (inr lt) = inr (<-cancel-S lt) <-dec : Decidable _<_ <-dec _ O = inr (≮O _) <-dec O (S m) = inl (O<S m) <-dec (S n) (S m) with <-dec n m <-dec (S n) (S m) | inl p = inl (<-ap-S p) <-dec (S n) (S m) | inr ¬p = inr (¬p ∘ <-cancel-S) ≤-dec : Decidable _≤_ ≤-dec O m = inl (O≤ m) -- important for the current cohomology development ≤-dec (S n) O = inr (S≰O n) ≤-dec (S n) (S m) with ≤-dec n m ≤-dec (S n) (S m) | inl p = inl (≤-ap-S p) ≤-dec (S n) (S m) | inr ¬p = inr (¬p ∘ ≤-cancel-S) abstract <-to-≠ : {m n : ℕ} → m < n → m ≠ n <-to-≠ {m = O} ltS = ℕ-O≠S _ <-to-≠ {m = O} (ltSR lt) = ℕ-O≠S _ <-to-≠ {m = S m} {n = O} () <-to-≠ {m = S m} {n = S n} lt = ℕ-S-≠ (<-to-≠ (<-cancel-S lt)) <-to-≱ : {m n : ℕ} → m < n → ¬ (n ≤ m) <-to-≱ m<n (inl idp) = <-to-≠ m<n idp <-to-≱ m<n (inr n<m) = <-to-≠ (<-trans m<n n<m) idp <-has-all-paths : {m n : ℕ} → has-all-paths (m < n) <-has-all-paths = <-has-all-paths' idp where <-has-all-paths' : {m n₁ n₂ : ℕ} (eqn : n₁ == n₂) (lt₁ : m < n₁) (lt₂ : m < n₂) → PathOver (λ n → m < n) eqn lt₁ lt₂ <-has-all-paths' eqn ltS ltS = transport (λ eqn₁ → PathOver (_<_ _) eqn₁ ltS ltS) (prop-has-all-paths idp eqn) idp <-has-all-paths' idp ltS (ltSR lt₂) = ⊥-rec (<-to-≠ lt₂ idp) <-has-all-paths' idp (ltSR lt₁) ltS = ⊥-rec (<-to-≠ lt₁ idp) <-has-all-paths' idp (ltSR lt₁) (ltSR lt₂) = ap ltSR (<-has-all-paths' idp lt₁ lt₂) instance <-is-prop : {m n : ℕ} → is-prop (m < n) <-is-prop = all-paths-is-prop <-has-all-paths ≤-has-all-paths : {m n : ℕ} → has-all-paths (m ≤ n) ≤-has-all-paths = λ{ (inl eq₁) (inl eq₂) → ap inl (prop-has-all-paths eq₁ eq₂); (inl eq) (inr lt) → ⊥-rec (<-to-≠ lt eq); (inr lt) (inl eq) → ⊥-rec (<-to-≠ lt eq); (inr lt₁) (inr lt₂) → ap inr (<-has-all-paths lt₁ lt₂)} instance ≤-is-prop : {m n : ℕ} → is-prop (m ≤ n) ≤-is-prop = all-paths-is-prop ≤-has-all-paths <-+-l : {m n : ℕ} (k : ℕ) → m < n → (k + m) < (k + n) <-+-l O lt = lt <-+-l (S k) lt = <-ap-S (<-+-l k lt) ≤-+-l : {m n : ℕ} (k : ℕ) → m ≤ n → (k + m) ≤ (k + n) ≤-+-l k (inl p) = inl (ap (λ t → k + t) p) ≤-+-l k (inr lt) = inr (<-+-l k lt) <-+-r : {m n : ℕ} (k : ℕ) → m < n → (m + k) < (n + k) <-+-r k ltS = ltS <-+-r k (ltSR lt) = ltSR (<-+-r k lt) ≤-+-r : {m n : ℕ} (k : ℕ) → m ≤ n → (m + k) ≤ (n + k) ≤-+-r k (inl p) = inl (ap (λ t → t + k) p) ≤-+-r k (inr lt) = inr (<-+-r k lt) <-witness : {m n : ℕ} → (m < n) → Σ ℕ (λ k → S k + m == n) <-witness ltS = (O , idp) <-witness (ltSR lt) = let w' = <-witness lt in (S (fst w') , ap S (snd w')) ≤-witness : {m n : ℕ} → (m ≤ n) → Σ ℕ (λ k → k + m == n) ≤-witness (inl p) = (O , p) ≤-witness (inr lt) = let w' = <-witness lt in (S (fst w') , snd w') -- Double infix 120 _*2 _*2 : ℕ → ℕ O *2 = O (S n) *2 = S (S (n *2)) *2-increasing : (m : ℕ) → (m ≤ m *2) *2-increasing O = inl idp *2-increasing (S m) = ≤-trans (≤-ap-S (*2-increasing m)) (inr ltS) *2-monotone-< : {m n : ℕ} → m < n → m *2 < n *2 *2-monotone-< ltS = ltSR ltS *2-monotone-< (ltSR lt) = ltSR (ltSR (*2-monotone-< lt)) *2-monotone-≤ : {m n : ℕ} → m ≤ n → m *2 ≤ n *2 *2-monotone-≤ (inl p) = inl (ap _*2 p) *2-monotone-≤ (inr lt) = inr (*2-monotone-< lt) -- Trichotomy ℕ-trichotomy : (m n : ℕ) → (m == n) ⊔ ((m < n) ⊔ (n < m)) ℕ-trichotomy O O = inl idp ℕ-trichotomy O (S n) = inr (inl (O<S n)) ℕ-trichotomy (S m) O = inr (inr (O<S m)) ℕ-trichotomy (S m) (S n) with ℕ-trichotomy m n ℕ-trichotomy (S m) (S n) | inl m=n = inl (ap S m=n) ℕ-trichotomy (S m) (S n) | inr (inl m<n) = inr (inl (<-ap-S m<n)) ℕ-trichotomy (S m) (S n) | inr (inr m>n) = inr (inr (<-ap-S m>n))
26.827957
87
0.476019
a1ccb9059f0c41de457aadd344d110c378062d53
3,841
agda
Agda
core/lib/types/Wedge.agda
cmknapp/HoTT-Agda
bc849346a17b33e2679a5b3f2b8efbe7835dc4b6
[ "MIT" ]
1
2021-06-30T00:17:55.000Z
2021-06-30T00:17:55.000Z
core/lib/types/Wedge.agda
cmknapp/HoTT-Agda
bc849346a17b33e2679a5b3f2b8efbe7835dc4b6
[ "MIT" ]
null
null
null
core/lib/types/Wedge.agda
cmknapp/HoTT-Agda
bc849346a17b33e2679a5b3f2b8efbe7835dc4b6
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} open import lib.Basics open import lib.types.Coproduct open import lib.types.Paths open import lib.types.Pointed open import lib.types.Pushout open import lib.types.PushoutFlattening open import lib.types.Span open import lib.types.Unit -- Wedge of two pointed types is defined as a particular case of pushout module lib.types.Wedge where module _ {i j} (X : Ptd i) (Y : Ptd j) where wedge-span : Span wedge-span = span (fst X) (fst Y) Unit (λ _ → snd X) (λ _ → snd Y) Wedge : Type (lmax i j) Wedge = Pushout wedge-span infix 80 _∨_ _∨_ = Wedge module _ {i j} {X : Ptd i} {Y : Ptd j} where winl : fst X → X ∨ Y winl x = left x winr : fst Y → X ∨ Y winr y = right y wglue : winl (snd X) == winr (snd Y) wglue = glue tt module _ {i j} (X : Ptd i) (Y : Ptd j) where ⊙Wedge : Ptd (lmax i j) ⊙Wedge = ⊙[ Wedge X Y , winl (snd X) ] infix 80 _⊙∨_ _⊙∨_ = ⊙Wedge module _ {i j} {X : Ptd i} {Y : Ptd j} where ⊙winl : fst (X ⊙→ X ⊙∨ Y) ⊙winl = (winl , idp) ⊙winr : fst (Y ⊙→ X ⊙∨ Y) ⊙winr = (winr , ! wglue) module _ {i j} {X : Ptd i} {Y : Ptd j} where module WedgeElim {k} {P : X ∨ Y → Type k} (winl* : (x : fst X) → P (winl x)) (winr* : (y : fst Y) → P (winr y)) (wglue* : winl* (snd X) == winr* (snd Y) [ P ↓ wglue ]) where private module M = PushoutElim winl* winr* (λ _ → wglue*) f = M.f glue-β = M.glue-β unit open WedgeElim public using () renaming (f to Wedge-elim) module WedgeRec {k} {C : Type k} (winl* : fst X → C) (winr* : fst Y → C) (wglue* : winl* (snd X) == winr* (snd Y)) where private module M = PushoutRec {d = wedge-span X Y} winl* winr* (λ _ → wglue*) f = M.f glue-β = M.glue-β unit add-wglue : ∀ {i j} {X : Ptd i} {Y : Ptd j} → fst (X ⊙⊔ Y) → X ∨ Y add-wglue (inl x) = winl x add-wglue (inr y) = winr y ⊙add-wglue : ∀ {i j} {X : Ptd i} {Y : Ptd j} → fst (X ⊙⊔ Y ⊙→ X ⊙∨ Y) ⊙add-wglue = (add-wglue , idp) module ⊙WedgeRec {i j k} {X : Ptd i} {Y : Ptd j} {Z : Ptd k} (g : fst (X ⊙→ Z)) (h : fst (Y ⊙→ Z)) where open WedgeRec (fst g) (fst h) (snd g ∙ ! (snd h)) public ⊙f : fst (X ⊙∨ Y ⊙→ Z) ⊙f = (f , snd g) ⊙winl-β : ⊙f ⊙∘ ⊙winl == g ⊙winl-β = idp ⊙winr-β : ⊙f ⊙∘ ⊙winr == h ⊙winr-β = ⊙λ= (λ _ → idp) $ ap (λ w → w ∙ snd g) (ap-! f wglue ∙ ap ! glue-β ∙ !-∙ (snd g) (! (snd h))) ∙ ∙-assoc (! (! (snd h))) (! (snd g)) (snd g) ∙ ap (λ w → ! (! (snd h)) ∙ w) (!-inv-l (snd g)) ∙ ∙-unit-r (! (! (snd h))) ∙ !-! (snd h) ⊙wedge-rec = ⊙WedgeRec.⊙f ⊙wedge-rec-post∘ : ∀ {i j k l} {X : Ptd i} {Y : Ptd j} {Z : Ptd k} {W : Ptd l} (k : fst (Z ⊙→ W)) (g : fst (X ⊙→ Z)) (h : fst (Y ⊙→ Z)) → k ⊙∘ ⊙wedge-rec g h == ⊙wedge-rec (k ⊙∘ g) (k ⊙∘ h) ⊙wedge-rec-post∘ k g h = ⊙λ= (Wedge-elim (λ _ → idp) (λ _ → idp) (↓-='-in $ ⊙WedgeRec.glue-β (k ⊙∘ g) (k ⊙∘ h) ∙ lemma (fst k) (snd g) (snd h) (snd k) ∙ ! (ap (ap (fst k)) (⊙WedgeRec.glue-β g h)) ∙ ∘-ap (fst k) (fst (⊙wedge-rec g h)) wglue)) idp where lemma : ∀ {i j} {A : Type i} {B : Type j} (f : A → B) {x y z : A} {w : B} (p : x == z) (q : y == z) (r : f z == w) → (ap f p ∙ r) ∙ ! (ap f q ∙ r) == ap f (p ∙ ! q) lemma f idp idp idp = idp ⊙wedge-rec-η : ∀ {i j} {X : Ptd i} {Y : Ptd j} → ⊙wedge-rec ⊙winl ⊙winr == ⊙idf (X ⊙∨ Y) ⊙wedge-rec-η = ⊙λ= (Wedge-elim (λ _ → idp) (λ _ → idp) (↓-='-in $ ap-idf wglue ∙ ! (!-! wglue) ∙ ! (⊙WedgeRec.glue-β ⊙winl ⊙winr))) idp module Fold {i} {X : Ptd i} = ⊙WedgeRec (⊙idf X) (⊙idf X) fold = Fold.f ⊙fold = Fold.⊙f module _ {i j} (X : Ptd i) (Y : Ptd j) where module Projl = ⊙WedgeRec (⊙idf X) (⊙cst {X = Y}) module Projr = ⊙WedgeRec (⊙cst {X = X}) (⊙idf Y) projl = Projl.f projr = Projr.f ⊙projl = Projl.⊙f ⊙projr = Projr.⊙f
25.952703
78
0.497006
a1a45e0544d858fae6ae0099a0790d107a610319
139
agda
Agda
test/Fail/Issue478b.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue478b.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue478b.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Issue478b where record Ko (Q : Set) : Set₁ where field T : Set foo : T foo = Set -- This previously said Set₁ !=< T r
11.583333
36
0.604317
fbe3d978b54d3fe508c888fc6d7d972b1cea4bc3
608
agda
Agda
test/Succeed/Issue1280.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue1280.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue1280.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Issue1280 where open import Common.Prelude open import Common.Reflection infixr 5 _∷_ data Vec (A : Set) : Nat → Set where [] : Vec A 0 _∷_ : ∀ {n} → A → Vec A n → Vec A (suc n) test : Vec _ _ test = 0 ∷ [] quoteTest : Term quoteTest = quoteTerm test unquoteTest = unquote (give quoteTest) data Foo (A : Set) : Set where foo : Foo A ok : Foo Nat ok = unquote (give (quoteTerm (foo {Nat}))) -- This shouldn't type-check. The term `bad` is type-checked because -- the implicit argument of `foo` is missing when using quoteTerm. bad : Foo Bool bad = unquote (give (quoteTerm (foo {Nat})))
20.266667
68
0.666118
a1082c38d7811c26233f82085b5450d8c530e90e
485
agda
Agda
test/interaction/Issue289.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/interaction/Issue289.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/interaction/Issue289.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Issue289 where data D : Set where d : D record ⊤ : Set where foo : (x y : D) → ⊤ foo d y = {!y!} -- WAS: -- Right hand side must be a single hole when making a case -- distinction. -- when checking that the expression ? has type ⊤ -- THEN: (Andreas, 2013-03-22) -- Since goal is solved, further case distinction is not supported; -- try `Solve constraints' instead -- when checking that the expression ? has type ⊤ -- NOW: (Andreas, 2016-06-08) -- Case splitting works!
21.086957
67
0.670103
df6d50b49571f7807fd0312a442f7b29d23d96a9
432
agda
Agda
test/Fail/Issue202.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue202.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue202.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --no-universe-polymorphism #-} module Issue202 where open import Agda.Primitive public using (Level) open import Imports.Test module Test2 {ℓ : Level} (F : Foo ℓ) where -- Test2.agda:4,31-36 -- The metavariable _1 cannot depend on ℓ because it does not depend -- on any variables -- when checking that the expression Foo ℓ has type _1 -- The code is accepted if universe polymorphism is turned on in -- Test2.agda.
25.411765
68
0.738426
a17c36720307f71f9fae3718cdb5cfff7fca6137
11,972
agda
Agda
function/isomorphism/utils.agda
HoTT/M-types
beebe176981953ab48f37de5eb74557cfc5402f4
[ "BSD-3-Clause" ]
27
2015-04-14T15:47:03.000Z
2022-01-09T07:26:57.000Z
function/isomorphism/utils.agda
HoTT/M-types
beebe176981953ab48f37de5eb74557cfc5402f4
[ "BSD-3-Clause" ]
2
2015-02-11T11:14:59.000Z
2015-02-11T15:20:34.000Z
function/isomorphism/utils.agda
HoTT/M-types
beebe176981953ab48f37de5eb74557cfc5402f4
[ "BSD-3-Clause" ]
4
2015-04-11T17:19:12.000Z
2019-02-26T06:17:38.000Z
{-# OPTIONS --without-K #-} module function.isomorphism.utils where open import sum open import equality.core open import equality.calculus open import function.core open import function.overloading open import function.isomorphism.core open import function.isomorphism.coherent open import function.extensionality.proof open import sets.unit open import sets.empty open import sets.fin.core open import hott.level.core Σ-split-iso : ∀ {i j}{X : Set i}{Y : X → Set j} → {a a' : X}{b : Y a}{b' : Y a'} → (Σ (a ≡ a') λ q → subst Y q b ≡ b') ≅ ((a , b) ≡ (a' , b')) Σ-split-iso {Y = Y}{a}{a'}{b}{b'} = iso unapΣ apΣ H K where H : ∀ {a a'}{b : Y a}{b' : Y a'} → (p : Σ (a ≡ a') λ q → subst Y q b ≡ b') → apΣ (unapΣ {a = a}{a' = a'}{b = b}{b' = b'} p) ≡ p H (refl , refl) = refl K : (p : (a , b) ≡ (a' , b')) → unapΣ (apΣ p) ≡ p K = J (λ u v p → unapΣ (apΣ p) ≡ p) (λ {(a , b) → refl }) (a , b) (a' , b') ×-split-iso : ∀ {i j}{X : Set i}{Y : Set j} → {a a' : X}{b b' : Y} → ((a ≡ a') × (b ≡ b')) ≅ ((a , b) ≡ (a' , b')) ×-split-iso {X = X}{Y} = record { to = λ { (p , q) → ap₂ _,_ p q } ; from = λ { p → (ap proj₁ p , ap proj₂ p) } ; iso₁ = λ { (p , q) → H p q } ; iso₂ = K } where H : {a a' : X}{b b' : Y}(p : a ≡ a')(q : b ≡ b') → (ap proj₁ (ap₂ _,_ p q), ap proj₂ (ap₂ _,_ p q)) ≡ (p , q) H refl refl = refl K : {a a' : X}{b b' : Y}(p : (a , b) ≡ (a' , b')) → ap₂ _,_ (ap proj₁ p) (ap proj₂ p) ≡ p K refl = refl ×-ap-iso : ∀ {i i' j j'}{X : Set i}{X' : Set i'} {Y : Set j}{Y' : Set j'} → (isom : X ≅ X') → (isom' : Y ≅ Y') → (X × Y) ≅ (X' × Y') ×-ap-iso isom isom' = record { to = λ { (x , y) → (apply isom x , apply isom' y) } ; from = λ { (x' , y') → (invert isom x' , invert isom' y') } ; iso₁ = λ { (x , y) → pair≡ (_≅_.iso₁ isom x) (_≅_.iso₁ isom' y) } ; iso₂ = λ { (x' , y') → pair≡ (_≅_.iso₂ isom x') (_≅_.iso₂ isom' y') } } Σ-ap-iso₂ : ∀ {i j j'}{X : Set i} → {Y : X → Set j}{Y' : X → Set j'} → ((x : X) → Y x ≅ Y' x) → Σ X Y ≅ Σ X Y' Σ-ap-iso₂ {X = X}{Y}{Y'} isom = record { to = λ { (x , y) → (x , apply (isom x) y) } ; from = λ { (x , y') → (x , invert (isom x) y') } ; iso₁ = λ { (x , y) → unapΣ (refl , _≅_.iso₁ (isom x) y) } ; iso₂ = λ { (x , y') → unapΣ (refl , _≅_.iso₂ (isom x) y') } } Σ-ap-iso₁ : ∀ {i i' j}{X : Set i}{X' : Set i'}{Y : X' → Set j} → (isom : X ≅ X') → Σ X (Y ∘ apply isom) ≅ Σ X' Y Σ-ap-iso₁ {X = X}{X'}{Y} isom = record { to = λ { (x , y) → (f x , y) } ; from = λ { (x , y) → (g x , subst Y (sym (K x)) y) } ; iso₁ = λ { (x , y) → unapΣ (H x , subst-naturality Y f (H x) _ · (subst-hom Y (sym (K (f x))) (ap f (H x)) y · ap (λ p → subst Y p y) (lem x) ) ) } ; iso₂ = λ { (x , y) → unapΣ (K x , subst-hom Y (sym (K x)) (K x) y · ap (λ p → subst Y p y) (right-inverse (K x)) ) } } where isom-c = ≅⇒≅' isom γ = proj₂ isom-c open _≅_ (proj₁ isom-c) renaming ( to to f ; from to g ; iso₁ to H; iso₂ to K ) lem : (x : X) → sym (K (f x)) · ap f (H x) ≡ refl lem x = ap (λ z → sym (K (f x)) · z) (γ x) · right-inverse (K (f x)) Σ-ap-iso : ∀ {i i' j j'}{X : Set i}{X' : Set i'} {Y : X → Set j}{Y' : X' → Set j'} → (isom : X ≅ X') → ((x : X) → Y x ≅ Y' (apply isom x)) → Σ X Y ≅ Σ X' Y' Σ-ap-iso {X = X}{X'}{Y}{Y'} isom isom' = trans≅ (Σ-ap-iso₂ isom') (Σ-ap-iso₁ isom) Σ-ap-iso' : ∀ {i i' j j'}{X : Set i}{X' : Set i'} {Y : X → Set j}{Y' : X' → Set j'} → (isom : X ≅ X') → ((x : X') → Y (invert isom x) ≅ Y' x) → Σ X Y ≅ Σ X' Y' Σ-ap-iso' {X = X}{X'}{Y}{Y'} isom isom' = sym≅ (Σ-ap-iso (sym≅ isom) (λ x → sym≅ (isom' x))) Π-ap-iso : ∀ {i i' j j'}{X : Set i}{X' : Set i'} {Y : X → Set j}{Y' : X' → Set j'} → (isom : X ≅ X') → ((x' : X') → Y (invert isom x') ≅ Y' x') → ((x : X) → Y x) ≅ ((x' : X') → Y' x') Π-ap-iso {X = X}{X'}{Y}{Y'} isom isom' = trans≅ (Π-iso (≅⇒≅' isom)) (Π-iso' isom') where Π-iso : (isom : X ≅' X') → ((x : X) → Y x) ≅ ((x' : X') → Y (invert (proj₁ isom) x')) Π-iso (iso f g H K , γ) = record { to = λ h x' → h (g x') ; from = λ h' x → subst Y (H x) (h' (f x)) ; iso₁ = λ h → funext λ x → ap' h (H x) ; iso₂ = λ h' → funext λ x' → ap (λ p → subst Y p _) (sym (γ' x')) · sym (subst-naturality Y g (K x') _) · ap' h' (K x') } where γ' = co-coherence (iso f g H K) γ Π-iso' : ∀ {i j j'}{X : Set i} {Y : X → Set j}{Y' : X → Set j'} → ((x : X) → Y x ≅ Y' x) → ((x : X) → Y x) ≅ ((x : X) → Y' x) Π-iso' isom = record { to = λ h x → apply (isom x) (h x) ; from = λ h' x → invert (isom x) (h' x) ; iso₁ = λ h → funext λ x → _≅_.iso₁ (isom x) _ ; iso₂ = λ h' → funext λ x → _≅_.iso₂ (isom x) _ } ΠΣ-swap-iso : ∀ {i j k}{X : Set i}{Y : X → Set j} → {Z : (x : X) → Y x → Set k} → ((x : X) → Σ (Y x) λ y → Z x y) ≅ (Σ ((x : X) → Y x) λ f → ((x : X) → Z x (f x))) ΠΣ-swap-iso = record { to = λ f → (proj₁ ∘' f , proj₂ ∘' f) ; from = λ { (f , g) x → (f x , g x) } ; iso₁ = λ _ → refl ; iso₂ = λ _ → refl } curry-iso : ∀ {i j k}{X : Set i}{Y : X → Set j} (Z : (x : X) → Y x → Set k) → ((xy : Σ X Y) → Z (proj₁ xy) (proj₂ xy)) ≅ ((x : X) → (y : Y x) → Z x y) curry-iso _ = record { to = λ f x y → f (x , y) ; from = λ { f (x , y) → f x y } ; iso₁ = λ _ → refl ; iso₂ = λ _ → refl } Π-comm-iso : ∀ {i j k}{X : Set i}{Y : Set j}{Z : X → Y → Set k} → ((x : X)(y : Y) → Z x y) ≅ ((y : Y)(x : X) → Z x y) Π-comm-iso = record { to = λ f y x → f x y ; from = λ f x y → f y x ; iso₁ = λ _ → refl ; iso₂ = λ _ → refl } Σ-comm-iso : ∀ {i j k}{X : Set i}{Y : Set j}{Z : X → Y → Set k} → (Σ X λ x → Σ Y λ y → Z x y) ≅ (Σ Y λ y → Σ X λ x → Z x y) Σ-comm-iso = record { to = λ { (x , y , z) → (y , x , z) } ; from = λ { (y , x , z) → (x , y , z) } ; iso₁ = λ _ → refl ; iso₂ = λ _ → refl } impl-iso : ∀ {i j}{X : Set i}{Y : X → Set j} → ((x : X) → Y x) ≅ ({x : X} → Y x) impl-iso = record { to = λ f → f _ ; from = λ f _ → f ; iso₁ = λ _ → refl ; iso₂ = λ _ → refl } Σ-assoc-iso : ∀ {i j k} {X : Set i}{Y : X → Set j} {Z : (x : X) → Y x → Set k} → Σ (Σ X Y) (λ {(x , y) → Z x y}) ≅ Σ X λ x → Σ (Y x) (Z x) Σ-assoc-iso = record { to = λ {((x , y) , z) → (x , y , z) } ; from = λ {(x , y , z) → ((x , y) , z) } ; iso₁ = λ _ → refl ; iso₂ = λ _ → refl } ⊎-Σ-iso : ∀ {i}(X : Fin 2 → Set i) → (X zero ⊎ X (suc zero)) ≅ Σ (Fin 2) X ⊎-Σ-iso X = record { to = λ { (inj₁ x) → zero , x ; (inj₂ x) → suc zero , x } ; from = λ { (zero , x) → inj₁ x ; (suc zero , x) → inj₂ x ; (suc (suc ()) , _) } ; iso₁ = λ { (inj₁ x) → refl ; (inj₂ x) → refl } ; iso₂ = λ { (zero , x) → refl ; (suc zero , x) → refl ; (suc (suc ()) , _) } } ⊎-ap-iso : ∀ {i j i' j'} → {X : Set i}{X' : Set i'} → {Y : Set j}{Y' : Set j'} → X ≅ X' → Y ≅ Y' → (X ⊎ Y) ≅ (X' ⊎ Y') ⊎-ap-iso (iso f g α β) (iso f' g' α' β') = record { to = λ { (inj₁ x) → inj₁ (f x) ; (inj₂ y) → inj₂ (f' y) } ; from = λ { (inj₁ x) → inj₁ (g x) ; (inj₂ y) → inj₂ (g' y) } ; iso₁ = λ { (inj₁ x) → ap inj₁ (α x) ; (inj₂ y) → ap inj₂ (α' y) } ; iso₂ = λ { (inj₁ x) → ap inj₁ (β x) ; (inj₂ y) → ap inj₂ (β' y) } } ⊎-assoc-iso : ∀ {i j k} → {X : Set i}{Y : Set j}{Z : Set k} → ((X ⊎ Y) ⊎ Z) ≅ (X ⊎ (Y ⊎ Z)) ⊎-assoc-iso = record { to = λ { (inj₁ (inj₁ x)) → inj₁ x ; (inj₁ (inj₂ y)) → inj₂ (inj₁ y) ; (inj₂ z) → inj₂ (inj₂ z) } ; from = λ { (inj₁ x) → inj₁ (inj₁ x) ; (inj₂ (inj₁ y)) → inj₁ (inj₂ y) ; (inj₂ (inj₂ z)) → inj₂ z } ; iso₁ = λ { (inj₁ (inj₁ x)) → refl ; (inj₁ (inj₂ y)) → refl ; (inj₂ z) → refl } ; iso₂ = λ { (inj₁ x) → refl ; (inj₂ (inj₁ y)) → refl ; (inj₂ (inj₂ z)) → refl } } ⊎×-distr-iso : ∀ {i j k} → {X : Set i}{Y : Set j}{Z : Set k} → ((X ⊎ Y) × Z) ≅ ((X × Z) ⊎ (Y × Z)) ⊎×-distr-iso = record { to = λ { (inj₁ x , z) → inj₁ (x , z) ; (inj₂ y , z) → inj₂ (y , z) } ; from = λ { (inj₁ (x , z)) → inj₁ x , z ; (inj₂ (y , z)) → inj₂ y , z } ; iso₁ = λ { (inj₁ x , z) → refl ; (inj₂ y , z) → refl } ; iso₂ = λ { (inj₁ (x , z)) → refl ; (inj₂ (y , z)) → refl } } ⊎-universal : ∀ {i j k}{X : Set i}{Y : Set j} → {Z : X ⊎ Y → Set k} → ((u : X ⊎ Y) → Z u) ≅ (((x : X) → Z (inj₁ x)) × ((y : Y) → Z (inj₂ y))) ⊎-universal = record { to = λ f → (f ∘' inj₁ , f ∘' inj₂) ; from = λ { (g₁ , g₂) (inj₁ x) → g₁ x ; (g₁ , g₂) (inj₂ y) → g₂ y } ; iso₁ = λ f → funext λ { (inj₁ x) → refl ; (inj₂ x) → refl } ; iso₂ = λ { (g₁ , g₂) → refl } } ×-left-unit : ∀ {i}{X : Set i} → (⊤ × X) ≅ X ×-left-unit = record { to = λ {(tt , x) → x } ; from = λ x → tt , x ; iso₁ = λ _ → refl ; iso₂ = λ _ → refl } ×-right-unit : ∀ {i}{X : Set i} → (X × ⊤) ≅ X ×-right-unit = record { to = λ {(x , tt) → x } ; from = λ x → x , tt ; iso₁ = λ _ → refl ; iso₂ = λ _ → refl } contr-⊤-iso : ∀ {i}{X : Set i} → contr X → X ≅ ⊤ contr-⊤-iso hX = record { to = λ x → tt ; from = λ { tt → proj₁ hX } ; iso₁ = λ x → proj₂ hX x ; iso₂ = λ { tt → refl } } empty-⊥-iso : ∀ {i}{X : Set i} → (X → ⊥) → X ≅ ⊥ empty-⊥-iso u = record { to = u ; from = ⊥-elim ; iso₁ = λ x → ⊥-elim (u x) ; iso₂ = λ () } ×-comm : ∀ {i j}{X : Set i}{Y : Set j} → (X × Y) ≅ (Y × X) ×-comm = record { to = λ {(x , y) → (y , x)} ; from = λ {(y , x) → (x , y)} ; iso₁ = λ _ → refl ; iso₂ = λ _ → refl } Π-left-unit : ∀ {i}{X : Set i} → (⊤ → X) ≅ X Π-left-unit = record { to = λ f → f tt ; from = λ x _ → x ; iso₁ = λ _ → refl ; iso₂ = λ f → refl } -- rewriting lemmas for equations on equalities sym≡-iso : ∀ {i}{X : Set i}(x y : X) → (x ≡ y) ≅ (y ≡ x) sym≡-iso _ _ = iso sym sym double-inverse double-inverse trans≡-iso : ∀ {i}{X : Set i}{x y z : X} → (x ≡ y) → (y ≡ z) ≅ (x ≡ z) trans≡-iso p = record { to = λ q → p · q ; from = λ q → sym p · q ; iso₁ = λ q → sym (associativity (sym p) p q) · ap (λ z → z · q) (right-inverse p) ; iso₂ = λ q → sym (associativity p (sym p) q) · ap (λ z → z · q) (left-inverse p) } trans≡-iso' : ∀ {i}{X : Set i}{x y z : X} → (y ≡ z) → (x ≡ y) ≅ (x ≡ z) trans≡-iso' q = record { to = λ p → p · q ; from = λ p → p · sym q ; iso₁ = λ p → associativity p q (sym q) · ap (_·_ p) (left-inverse q) · left-unit p ; iso₂ = λ p → associativity p (sym q) q · (ap (_·_ p) (right-inverse q) · left-unit p) } move-≡-iso : ∀ {i}{X : Set i}{x y z : X} → (p : x ≡ y)(q : y ≡ z)(r : x ≡ z) → (p · q ≡ r) ≅ (sym p · r ≡ q) move-≡-iso refl = sym≡-iso J-iso : ∀ {i j}{X : Set i}{x : X} → {P : (y : X) → x ≡ y → Set j} → P x refl ≅ ((y : X)(p : x ≡ y) → P y p) J-iso {X = X}{x}{P} = record { to = J' P ; from = λ u → u x refl ; iso₁ = λ _ → refl ; iso₂ = λ u → funext λ y → funext λ p → β u y p } where β : (u : (y : X)(p : x ≡ y) → P y p) → (y : X)(p : x ≡ y) → J' P (u x refl) y p ≡ u y p β u .x refl = refl
32.269542
75
0.380638
a17d6d2dd828cbf6c750a30522a4ac6b3f844272
146
agda
Agda
test/epic/Prelude/Product.agda
pthariensflame/agda
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
[ "BSD-3-Clause" ]
null
null
null
test/epic/Prelude/Product.agda
pthariensflame/agda
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
[ "BSD-3-Clause" ]
null
null
null
test/epic/Prelude/Product.agda
pthariensflame/agda
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
[ "BSD-3-Clause" ]
null
null
null
module Prelude.Product where infixr 4 _,_ record _×_ (A B : Set) : Set where constructor _,_ field fst : A snd : B open _×_ public
12.166667
34
0.636986
a1935196ab1ce603a29d70b58576eaf8e29da5f9
167
agda
Agda
test/Fail/NoLetInRecordTele.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/NoLetInRecordTele.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/NoLetInRecordTele.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
open import Agda.Primitive open import Agda.Builtin.Sigma open import Agda.Builtin.Equality record R {A : Set} {B : A → Set} p@ab : Set where field prf : p ≡ p
20.875
49
0.688623
107369c48245284a2df888f218e9a191640e8ed7
4,270
agda
Agda
examples/StateSized/StackStateDependent.agda
agda/ooAgda
7cc45e0148a4a508d20ed67e791544c30fecd795
[ "MIT" ]
23
2016-06-19T12:57:55.000Z
2020-10-12T23:15:25.000Z
examples/StateSized/StackStateDependent.agda
agda/ooAgda
7cc45e0148a4a508d20ed67e791544c30fecd795
[ "MIT" ]
null
null
null
examples/StateSized/StackStateDependent.agda
agda/ooAgda
7cc45e0148a4a508d20ed67e791544c30fecd795
[ "MIT" ]
2
2018-09-01T15:02:37.000Z
2022-03-12T11:41:00.000Z
{-# OPTIONS --postfix-projections #-} module StateSized.StackStateDependent where open import Data.Product open import Function open import Data.String.Base as Str open import Data.Nat.Base as N open import Data.Vec as Vec using (Vec; []; _∷_; head; tail) open import Relation.Binary using (Rel) open import Relation.Binary.PropositionalEquality open import Relation.Binary.Product.Pointwise open import NativeIO open import SizedIO.Base open import SizedIO.Console hiding (main) open import StateSizedIO.GUI.BaseStateDependent open import StateSizedIO.Object open import StateSizedIO.IOObject open import Size StackStateˢ = ℕ data StackMethodˢ (A : Set) : StackStateˢ → Set where push : {n : StackStateˢ} → A → StackMethodˢ A n pop : {n : StackStateˢ} → StackMethodˢ A (suc n) StackResultˢ : (A : Set) → (s : StackStateˢ) → StackMethodˢ A s → Set StackResultˢ A .n (push { n } x₁) = Unit StackResultˢ A (suc .n) (pop {n} ) = A nˢ : (A : Set) → (s : StackStateˢ) → (m : StackMethodˢ A s) → (r : StackResultˢ A s m) → StackStateˢ nˢ A .n (push { n } x) r = suc n nˢ A (suc .n) (pop { n }) r = n StackInterfaceˢ : (A : Set) → Interfaceˢ StackInterfaceˢ A .Stateˢ = StackStateˢ StackInterfaceˢ A .Methodˢ = StackMethodˢ A StackInterfaceˢ A .Resultˢ = StackResultˢ A StackInterfaceˢ A .nextˢ = nˢ A stackP : ∀{n : ℕ} → (i : Size) → (v : Vec String n) → IOObjectˢ consoleI (StackInterfaceˢ String) i n method (stackP { n } i es) {j} (push e) = return (_ , stackP j (e ∷ es)) method (stackP {suc n} i (x ∷ xs)){j} pop = return (x , stackP j xs) -- UNSIZED Version, without IO stackP' : ∀{n : ℕ} → (v : Vec String n) → Objectˢ (StackInterfaceˢ String) n stackP' es .objectMethod (push e) = (_ , stackP' (e ∷ es)) stackP' (x ∷ xs) .objectMethod pop = x , stackP' xs stackO : ∀{E : Set} {n : ℕ} (v : Vec E n) → Objectˢ (StackInterfaceˢ E) n objectMethod (stackO es) (push e) = _ , stackO (e ∷ es) objectMethod (stackO (e ∷ es)) pop = e , stackO es stackF : ∀{E : Set} (n : ℕ) (f : ℕ → E) → Objectˢ (StackInterfaceˢ E) n objectMethod (stackF n f) (push x) = _ , stackF (suc n) \{ zero → x ; (suc m) → f m } objectMethod (stackF (suc n) f) pop = (f zero) , stackF n (f ∘ suc) tabulate : ∀{E : Set} (n : ℕ) (f : ℕ → E) → Vec E n tabulate zero f = [] tabulate (suc n) f = f zero ∷ tabulate n λ m → f (suc m) module _ {E : Set} where private I = StackInterfaceˢ E S = Stateˢ I O = Objectˢ I open Bisim I _≡×≅'_ : ∀{s} → (o o' : E × O s) → Set _≡×≅'_ = _≡_ ×-Rel _≅_ Eq×Bisim : ∀ (s : S) → (o o' : E × O s) → Set Eq×Bisim s = _≡_ ×-Rel _≅_ pop-after-push : ∀{n}{v : Vec E n} (e : E) (let stack = stackO v) → (objectMethod stack (push e) ▹ λ { (_ , stack₁) → objectMethod stack₁ pop ▹ λ { (e₁ , stack₂) → ( e₁ , stack₂ ) }}) ≡×≅' (e , stack) pop-after-push e = refl , refl≅ _ push-after-pop : ∀{n}{v : Vec E n} (e : E) (let stack = stackO (e ∷ v)) → (objectMethod stack pop ▹ λ { (e₁ , stack₁) → objectMethod stack₁ (push e₁) ▹ λ { (_ , stack₂) → stack₂ }}) ≅ stack push-after-pop e = refl≅ _ -- The implementations of stacks with either vectors or functions are bisimilar. impl-bisim : ∀{n : ℕ} {f : ℕ → E} (v : Vec E n) (p : tabulate n f ≡ v) → stackF n f ≅ stackO v bisimMethod (impl-bisim v p) (push e) = bisim (impl-bisim (e ∷ v) (cong (_∷_ e) p)) bisimMethod (impl-bisim (x ∷ v) p) pop rewrite cong head p = bisim (impl-bisim v (cong tail p)) program : IOConsole ∞ Unit program = exec getLine λ str₀ → method s₀ (push str₀) >>= λ{ (_ , s₁) → -- empty exec getLine λ str₁ → method s₁ (push str₁) >>= λ{ (_ , s₂) → -- full method s₂ pop >>= λ{ (str₂ , s₃) → exec (putStrLn ("first pop: " Str.++ str₂) ) λ _ → exec getLine λ str₃ → method s₃ (push str₃) >>= λ{ (_ , s₄) → method s₄ pop >>= λ{ (str₄ , s₅) → exec (putStrLn ("second pop: " Str.++ str₄) ) λ _ → method s₅ pop >>= λ{ (str₅ , s₅) → exec (putStrLn ("third pop: " Str.++ str₅) ) λ _ → return unit }}}}}} where s₀ = stackP ∞ [] main : NativeIO Unit main = translateIOConsole program
30.719424
101
0.586651
12e5a9c994a5707a62a7ef60229bfd843fd075df
713
agda
Agda
test/interaction/Issue1349.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/interaction/Issue1349.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/interaction/Issue1349.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, fixed #1349 on 2016-06-08 -- {-# OPTIONS -v tc.term.exlam:50 -v scope.extendedLambda:10 #-} module Issue1349 where open import Common.Prelude module Logic {s} (F : Set s) (arF : F → Nat) where data Term : Nat → Set s where var : ∀ n → Term (suc n) d : Unit → Nat d = \ {unit → zero} -- fails -- d unit = zero -- works module M = Logic Unit d -- (λ{unit -> zero}) test : Logic.Term Unit {!!} (suc zero) test = M.var zero -- WAS: -- Agda2> Ambiguous name: Issue1349._..extendedlambda0 -- (agda2-info-action "*Error*" "An internal error has occurred. Please report this as a bug. Location of the error: src/full/Agda/TypeChecking/Reduce/Monad.hs:172" nil) -- Gives proper error now.
25.464286
169
0.650771
1c159f3b42974f373c687e0c1e1eec0fc6eb32f2
2,489
agda
Agda
Categories/Functor/Lemmas.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
4
2019-08-08T12:44:19.000Z
2022-01-28T06:04:15.000Z
Categories/Functor/Lemmas.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
14
2019-01-06T21:11:59.000Z
2020-04-11T11:03:39.000Z
Categories/Functor/Lemmas.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
1
2021-11-29T13:23:07.000Z
2021-11-29T13:23:07.000Z
{-# OPTIONS --warning=error --without-K --safe #-} open import LogicalFormulae open import Categories.Definition open import Categories.Functor.Definition module Categories.Functor.Lemmas where functorCompose : {a b c d e f : _} {B : Category {a} {b}} {C : Category {c} {d}} {D : Category {e} {f}} → (Functor C D) → (Functor B C) → (Functor B D) functorCompose G F = record { onObj = λ x → Functor.onObj G (Functor.onObj F x) ; onArrow = λ f → Functor.onArrow G (Functor.onArrow F f) ; mapId = λ {T} → mapIdHelp G F T ; mapCompose = λ r s → mapComposeHelp G F r s } where mapIdHelp : {a b c d e f : _} {B : Category {a} {b}} {C : Category {c} {d}} {D : Category {e} {f}} → (G : Functor C D) → (F : Functor B C) → (T : Category.objects B) → Functor.onArrow G (Functor.onArrow F (Category.id B T)) ≡ Category.id D (Functor.onObj G (Functor.onObj F T)) mapIdHelp {B = B} {C} {D} record { onObj = onObjG ; onArrow = onArrowG ; mapId = mapIdG ; mapCompose = mapComposeG } record { onObj = onObj ; onArrow = onArrow ; mapId = mapId ; mapCompose = mapCompose } T rewrite mapId {T} = mapIdG {onObj T} mapComposeHelp : {a b c d e f : _} {B : Category {a} {b}} {C : Category {c} {d}} {D : Category {e} {f}} → (G : Functor C D) → (F : Functor B C) → {S T U : Category.objects B} → (r : Category.arrows B S T) → (s : Category.arrows B T U) → (Functor.onArrow G (Functor.onArrow F (Category._∘_ B s r))) ≡ (Category._∘_ D (Functor.onArrow G (Functor.onArrow F s)) (Functor.onArrow G (Functor.onArrow F r))) mapComposeHelp {B = record { objects = objectsB ; arrows = arrowsB ; id = idB ; _∘_ = _∘B_ ; rightId = rightIdB ; leftId = leftIdB ; compositionAssociative = associativeB }} {record { objects = objectsC ; arrows = arrowsC ; id = idC ; _∘_ = _∘C_ ; rightId = rightIdC ; leftId = leftIdC ; compositionAssociative = associativeC }} {record { objects = objectsD ; arrows = arrowsD ; id = idD ; _∘_ = _∘D_ ; rightId = rightIdD ; leftId = leftIdD ; compositionAssociative = associativeD }} record { onObj = onObjG ; onArrow = onArrowG ; mapId = mapIdG ; mapCompose = mapComposeG } record { onObj = onObjF ; onArrow = onArrowF ; mapId = mapIdF ; mapCompose = mapComposeF } {S} {T} {U} r s rewrite mapComposeF r s | mapComposeG (onArrowF r) (onArrowF s) = refl idFunctor : {a b : _} (C : Category {a} {b}) → Functor C C Functor.onObj (idFunctor C) = λ x → x Functor.onArrow (idFunctor C) = λ f → f Functor.mapId (idFunctor C) = refl Functor.mapCompose (idFunctor C) = λ f g → refl
113.136364
756
0.653274
23523f01e0fa10db1652b7a785ece79b28bd20d4
199
agda
Agda
examples/AIM6/HelloAgda/Bool.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
examples/AIM6/HelloAgda/Bool.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
examples/AIM6/HelloAgda/Bool.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Bool where data Bool : Set where true : Bool false : Bool infix 0 if_then_else_ if_then_else_ : {A : Set} -> Bool -> A -> A -> A if true then x else y = x if false then x else y = y
15.307692
48
0.633166
dc7d8982d7ba282219a9b44f6502362add1fa184
2,544
agda
Agda
src/fot/README.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
11
2015-09-03T20:53:42.000Z
2021-09-12T16:09:54.000Z
src/fot/README.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
2
2016-10-12T17:28:16.000Z
2017-01-01T14:34:26.000Z
src/fot/README.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
3
2016-09-19T14:18:30.000Z
2018-03-14T08:50:00.000Z
------------------------------------------------------------------------------ -- FOT (First-Order Theories) ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- Code accompanying the PhD thesis "Reasoning about Functional -- Programs by Combining Interactive and Automatic Proofs" by Andrés -- Sicard-Ramírez. -- The code presented here does not match the thesis exactly. module README where ------------------------------------------------------------------------------ -- Description -- Examples of the formalization of first-order theories showing the -- combination of interactive proofs with automatics proofs carried -- out by first-order automatic theorem provers (ATPs). ------------------------------------------------------------------------------ -- For the thesis, prerequisites, tested versions of the ATPs and use, -- see https://github.com/asr/fotc/. ------------------------------------------------------------------------------ -- Conventions -- If the module's name ends in 'I' the module contains interactive -- proofs, if it ends in 'ATP' the module contains combined proofs, -- otherwise the module contains definitions and/or interactive proofs -- that are used by the interactive and combined proofs. ------------------------------------------------------------------------------ -- First-order theories ------------------------------------------------------------------------------ -- • First-order logic with equality -- First-order logic (FOL) open import FOL.README -- Propositional equality open import Common.FOL.Relation.Binary.PropositionalEquality -- Equality reasoning open import Common.FOL.Relation.Binary.EqReasoning -- • Group theory open import GroupTheory.README -- • Distributive laws on a binary operation (Stanovský example) open import DistributiveLaws.README -- • First-order Peano arithmetic (PA) open import PA.README -- • First-Order Theory of Combinators (FOTC) open import FOTC.README -- • Logical Theory of Constructions for PCF (LTC-PCF) open import LTC-PCF.README ------------------------------------------------------------------------------ -- Agsy examples ------------------------------------------------------------------------------ -- We cannot import the Agsy examples because some modules contain -- unsolved metas, therefore see examples/Agsy/README.txt
32.615385
78
0.533019
12ab4aa290e65a88ed443c52be42e3f2877eec28
5,482
agda
Agda
agda-stdlib/src/Relation/Binary/Construct/NaturalOrder/Left.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Relation/Binary/Construct/NaturalOrder/Left.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Relation/Binary/Construct/NaturalOrder/Left.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- Conversion of binary operators to binary relations via the left -- natural order. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary open import Algebra.Core module Relation.Binary.Construct.NaturalOrder.Left {a ℓ} {A : Set a} (_≈_ : Rel A ℓ) (_∙_ : Op₂ A) where open import Algebra.Definitions _≈_ open import Algebra.Structures _≈_ open import Data.Product using (_,_; _×_) open import Data.Sum.Base using (inj₁; inj₂) open import Relation.Nullary using (¬_) import Relation.Binary.Reasoning.Setoid as EqReasoning open import Relation.Binary.Lattice using (Infimum) ------------------------------------------------------------------------ -- Definition infix 4 _≤_ _≤_ : Rel A ℓ x ≤ y = x ≈ (x ∙ y) ------------------------------------------------------------------------ -- Relational properties reflexive : IsMagma _∙_ → Idempotent _∙_ → _≈_ ⇒ _≤_ reflexive magma idem {x} {y} x≈y = begin x ≈⟨ sym (idem x) ⟩ x ∙ x ≈⟨ ∙-cong refl x≈y ⟩ x ∙ y ∎ where open IsMagma magma; open EqReasoning setoid refl : Symmetric _≈_ → Idempotent _∙_ → Reflexive _≤_ refl sym idem {x} = sym (idem x) antisym : IsEquivalence _≈_ → Commutative _∙_ → Antisymmetric _≈_ _≤_ antisym isEq comm {x} {y} x≤y y≤x = begin x ≈⟨ x≤y ⟩ x ∙ y ≈⟨ comm x y ⟩ y ∙ x ≈⟨ sym y≤x ⟩ y ∎ where open IsEquivalence isEq; open EqReasoning (record { isEquivalence = isEq }) total : Symmetric _≈_ → Transitive _≈_ → Selective _∙_ → Commutative _∙_ → Total _≤_ total sym trans sel comm x y with sel x y ... | inj₁ x∙y≈x = inj₁ (sym x∙y≈x) ... | inj₂ x∙y≈y = inj₂ (sym (trans (comm y x) x∙y≈y)) trans : IsSemigroup _∙_ → Transitive _≤_ trans semi {x} {y} {z} x≤y y≤z = begin x ≈⟨ x≤y ⟩ x ∙ y ≈⟨ ∙-cong S.refl y≤z ⟩ x ∙ (y ∙ z) ≈⟨ sym (assoc x y z) ⟩ (x ∙ y) ∙ z ≈⟨ ∙-cong (sym x≤y) S.refl ⟩ x ∙ z ∎ where open module S = IsSemigroup semi; open EqReasoning S.setoid respʳ : IsMagma _∙_ → _≤_ Respectsʳ _≈_ respʳ magma {x} {y} {z} y≈z x≤y = begin x ≈⟨ x≤y ⟩ x ∙ y ≈⟨ ∙-cong M.refl y≈z ⟩ x ∙ z ∎ where open module M = IsMagma magma; open EqReasoning M.setoid respˡ : IsMagma _∙_ → _≤_ Respectsˡ _≈_ respˡ magma {x} {y} {z} y≈z y≤x = begin z ≈⟨ sym y≈z ⟩ y ≈⟨ y≤x ⟩ y ∙ x ≈⟨ ∙-cong y≈z M.refl ⟩ z ∙ x ∎ where open module M = IsMagma magma; open EqReasoning M.setoid resp₂ : IsMagma _∙_ → _≤_ Respects₂ _≈_ resp₂ magma = respʳ magma , respˡ magma dec : Decidable _≈_ → Decidable _≤_ dec _≟_ x y = x ≟ (x ∙ y) module _ (semi : IsSemilattice _∙_) where private open module S = IsSemilattice semi open EqReasoning setoid x∙y≤x : ∀ x y → (x ∙ y) ≤ x x∙y≤x x y = begin x ∙ y ≈⟨ ∧-cong (sym (idem x)) S.refl ⟩ (x ∙ x) ∙ y ≈⟨ assoc x x y ⟩ x ∙ (x ∙ y) ≈⟨ comm x (x ∙ y) ⟩ (x ∙ y) ∙ x ∎ x∙y≤y : ∀ x y → (x ∙ y) ≤ y x∙y≤y x y = begin x ∙ y ≈⟨ ∧-cong S.refl (sym (idem y)) ⟩ x ∙ (y ∙ y) ≈⟨ sym (assoc x y y) ⟩ (x ∙ y) ∙ y ∎ ∙-presʳ-≤ : ∀ {x y} z → z ≤ x → z ≤ y → z ≤ (x ∙ y) ∙-presʳ-≤ {x} {y} z z≤x z≤y = begin z ≈⟨ z≤y ⟩ z ∙ y ≈⟨ ∧-cong z≤x S.refl ⟩ (z ∙ x) ∙ y ≈⟨ assoc z x y ⟩ z ∙ (x ∙ y) ∎ infimum : Infimum _≤_ _∙_ infimum x y = x∙y≤x x y , x∙y≤y x y , ∙-presʳ-≤ ------------------------------------------------------------------------ -- Structures isPreorder : IsBand _∙_ → IsPreorder _≈_ _≤_ isPreorder band = record { isEquivalence = isEquivalence ; reflexive = reflexive isMagma idem ; trans = trans isSemigroup } where open IsBand band hiding (reflexive; trans) isPartialOrder : IsSemilattice _∙_ → IsPartialOrder _≈_ _≤_ isPartialOrder semilattice = record { isPreorder = isPreorder isBand ; antisym = antisym isEquivalence comm } where open IsSemilattice semilattice isDecPartialOrder : IsSemilattice _∙_ → Decidable _≈_ → IsDecPartialOrder _≈_ _≤_ isDecPartialOrder semilattice _≟_ = record { isPartialOrder = isPartialOrder semilattice ; _≟_ = _≟_ ; _≤?_ = dec _≟_ } isTotalOrder : IsSemilattice _∙_ → Selective _∙_ → IsTotalOrder _≈_ _≤_ isTotalOrder latt sel = record { isPartialOrder = isPartialOrder latt ; total = total sym S.trans sel comm } where open module S = IsSemilattice latt isDecTotalOrder : IsSemilattice _∙_ → Selective _∙_ → Decidable _≈_ → IsDecTotalOrder _≈_ _≤_ isDecTotalOrder latt sel _≟_ = record { isTotalOrder = isTotalOrder latt sel ; _≟_ = _≟_ ; _≤?_ = dec _≟_ } ------------------------------------------------------------------------ -- Bundles preorder : IsBand _∙_ → Preorder a ℓ ℓ preorder band = record { isPreorder = isPreorder band } poset : IsSemilattice _∙_ → Poset a ℓ ℓ poset latt = record { isPartialOrder = isPartialOrder latt } decPoset : IsSemilattice _∙_ → Decidable _≈_ → DecPoset a ℓ ℓ decPoset latt dec = record { isDecPartialOrder = isDecPartialOrder latt dec } totalOrder : IsSemilattice _∙_ → Selective _∙_ → TotalOrder a ℓ ℓ totalOrder latt sel = record { isTotalOrder = isTotalOrder latt sel } decTotalOrder : IsSemilattice _∙_ → Selective _∙_ → Decidable _≈_ → DecTotalOrder a ℓ ℓ decTotalOrder latt sel dec = record { isDecTotalOrder = isDecTotalOrder latt sel dec }
29.632432
84
0.564028
dc636f2800d99b19e9a9198688b784e1704b2089
1,244
agda
Agda
test/Succeed/Issue836a.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue836a.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue836a.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2013-05-02 This ain't a bug, it is a feature. -- {-# OPTIONS -v scope.name:10 #-} -- {-# OPTIONS -v scope:10 #-} -- {-# OPTIONS -v scope.mod.inst:30 #-} module _ where module M (_ : Set₁) where record R : Set₁ where field X : Set open M Set using (R) X : R → Set X = R.X -- A glimpse at the scope (showing only concrete names, though) -- modules -- * scope Issue836a -- private names R --> [Issue836a._.R] -- public modules M --> [Issue836a.M] -- * scope Issue836a.M -- public names R --> [Issue836a.M.R] -- public modules R --> [Issue836a.M.R] -- * scope Issue836a.M.R -- public names X --> [Issue836a.M.R.X] -- * scope Issue836a._ -- public names R --> [Issue836a._.R] -- public modules R --> [Issue836a._.R] -- * scope Issue836a._.R -- public names X --> [Issue836a._.R.X] -- Nisse: -- The open directive did not mention the /module/ R, so (I think -- that) the code above should be rejected. -- Andreas -- NO, it is a feature that projections can also be accessed via -- the record /type/. -- The following directive is (and should be) rejected: -- open R -- Bug.agda:19,6-7 -- No such module R -- when scope checking the declaration -- open R
24.88
65
0.606109
0ec46e1680495b8a1afdb8f787da152b76630398
180
agda
Agda
test/Fail/Issue782.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue782.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue782.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2013-02-21, example by Andres Sicard Ramirez module Issue782 where open import Common.Prelude renaming (zero toz; suc tos; Nat toℕ) f : ℕ → ℕ f z = z f (s n) = z
20
64
0.677778
1cc204146f31103bb6c37ed650756c436d7ce32c
1,267
agda
Agda
test/Succeed/Issue723.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue723.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue723.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- {-# OPTIONS -v tc.constr.findInScope:15 -v tc.meta.new:50 #-} -- Andreas, 2012-10-20 issue raised by d.starosud -- solved by dropping UnBlock constraints during trial candidate assignment -- Jesper, 2018-11-28: Now fixed more properly module Succeed.Issue723 where import Common.Level open import Common.Prelude using (Bool; false; zero) renaming (Nat to ℕ) record Default {ℓ} (A : Set ℓ) : Set ℓ where constructor create field default : A open Default {{...}} using (default) instance defBool : Default Bool defBool = create false defSet : Default Set defSet = create Bool defNat : Default ℕ defNat = create zero defDef : Default (Default ℕ) defDef = create defNat defFunc : ∀ {ℓ} {A : Set ℓ} → Default (A → A) defFunc = create (λ x → x) -- these lines are compiled successfully id : ∀ {a} (A : Set a) → A → A id A x = x syntax id A x = x ∶ A n₁ = default ∶ ℕ f₁ = default ∶ (ℕ → ℕ) -- WAS: but this one hangs on "Checking" n₂ = default (5 ∶ ℕ) ∶ ℕ -- n₂ = id ℕ (default (id ℕ 5)) n : ℕ n = default 5 -- now we get unsolved metas -- that's kind of ok -- Jesper!2018: no more yellow! n₃ = (default ∶ (_ → _)) 5 -- this one works again (before: also unsolved metas (worked before switching of the occurs-error (Issue 795)))
23.462963
111
0.662194
4d3b7e8f78cbc5464053a30d33b5283c11cc343c
375
agda
Agda
test/Succeed/LevelLeqGeq.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/LevelLeqGeq.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/LevelLeqGeq.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2016-09-28 -- Level constraints X <= a and a <= X should solve X = a. -- {-# OPTIONS -v tc.constr.add:40 #-} open import Common.Level module _ (a : Level) where mutual X : Level X = _ data C : Set (lsuc X) where c : Set a → C -- constrains X by a <= X data D : Set (lsuc a) where c : Set X → D -- constrains X by X <= a -- should succeed
18.75
58
0.576
4d4cff1940892bd55677b7e4cd24606e6e76d057
902
agda
Agda
Rings/Homomorphisms/Kernel.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
4
2019-08-08T12:44:19.000Z
2022-01-28T06:04:15.000Z
Rings/Homomorphisms/Kernel.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
14
2019-01-06T21:11:59.000Z
2020-04-11T11:03:39.000Z
Rings/Homomorphisms/Kernel.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
1
2021-11-29T13:23:07.000Z
2021-11-29T13:23:07.000Z
{-# OPTIONS --safe --warning=error --without-K #-} open import Setoids.Setoids open import Sets.EquivalenceRelations open import Rings.Definition open import Rings.Homomorphisms.Definition open import Rings.Ideals.Definition module Rings.Homomorphisms.Kernel {a b c d : _} {A : Set a} {B : Set c} {S : Setoid {a} {b} A} {T : Setoid {c} {d} B} {_+1_ _*1_ : A → A → A} {_+2_ _*2_ : B → B → B} {R1 : Ring S _+1_ _*1_} {R2 : Ring T _+2_ _*2_} {f : A → B} (fHom : RingHom R1 R2 f) where open import Groups.Homomorphisms.Kernel (RingHom.groupHom fHom) ringKernelIsIdeal : Ideal R1 groupKernelPred Ideal.isSubgroup ringKernelIsIdeal = groupKernelIsSubgroup Ideal.accumulatesTimes ringKernelIsIdeal {x} {y} fx=0 = transitive (RingHom.ringHom fHom) (transitive (Ring.*WellDefined R2 fx=0 reflexive) (transitive (Ring.*Commutative R2) (Ring.timesZero R2))) where open Setoid T open Equivalence eq
45.1
256
0.717295