hexsha
stringlengths 40
40
| size
int64 3
1.05M
| ext
stringclasses 163
values | lang
stringclasses 53
values | max_stars_repo_path
stringlengths 3
945
| max_stars_repo_name
stringlengths 4
112
| max_stars_repo_head_hexsha
stringlengths 40
78
| max_stars_repo_licenses
listlengths 1
10
| max_stars_count
float64 1
191k
⌀ | max_stars_repo_stars_event_min_datetime
stringlengths 24
24
⌀ | max_stars_repo_stars_event_max_datetime
stringlengths 24
24
⌀ | max_issues_repo_path
stringlengths 3
945
| max_issues_repo_name
stringlengths 4
113
| max_issues_repo_head_hexsha
stringlengths 40
78
| max_issues_repo_licenses
listlengths 1
10
| max_issues_count
float64 1
116k
⌀ | max_issues_repo_issues_event_min_datetime
stringlengths 24
24
⌀ | max_issues_repo_issues_event_max_datetime
stringlengths 24
24
⌀ | max_forks_repo_path
stringlengths 3
945
| max_forks_repo_name
stringlengths 4
113
| max_forks_repo_head_hexsha
stringlengths 40
78
| max_forks_repo_licenses
listlengths 1
10
| max_forks_count
float64 1
105k
⌀ | max_forks_repo_forks_event_min_datetime
stringlengths 24
24
⌀ | max_forks_repo_forks_event_max_datetime
stringlengths 24
24
⌀ | content
stringlengths 3
1.05M
| avg_line_length
float64 1
966k
| max_line_length
int64 1
977k
| alphanum_fraction
float64 0
1
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1c63aa1489bf037972fb4ad77ef350639fce94f1
| 14,931
|
agda
|
Agda
|
extra/extra/Value.agda
|
krzygorz/plfa.github.io
|
10a3203624f2ea937b3892176db5de825d0c46b4
|
[
"CC-BY-4.0"
] | 1,003
|
2018-07-05T18:15:14.000Z
|
2022-03-27T07:03:28.000Z
|
extra/extra/Value.agda
|
krzygorz/plfa.github.io
|
10a3203624f2ea937b3892176db5de825d0c46b4
|
[
"CC-BY-4.0"
] | 323
|
2018-07-05T22:34:34.000Z
|
2022-03-30T07:42:57.000Z
|
extra/extra/Value.agda
|
krzygorz/plfa.github.io
|
10a3203624f2ea937b3892176db5de825d0c46b4
|
[
"CC-BY-4.0"
] | 304
|
2018-07-16T18:24:59.000Z
|
2022-03-28T11:35:02.000Z
|
open import Data.Nat using (ℕ; suc ; zero; _+_; _≤′_; _<′_; _<_; _≤_;
z≤n; s≤s; ≤′-refl; ≤′-step; _≟_) renaming (_⊔_ to max)
open import Data.Nat.Properties
using (n≤0⇒n≡0; ≤-refl; ≤-trans; m≤m⊔n; n≤m⊔n; ≤-step; ⊔-mono-≤;
+-mono-≤; +-mono-≤-<; +-mono-<-≤; +-comm; +-assoc; n≤1+n;
≤-pred; m≤m+n; n≤m+n; ≤-reflexive; ≤′⇒≤; ≤⇒≤′; +-suc)
open Data.Nat.Properties.≤-Reasoning using (begin_; _≤⟨_⟩_; _∎)
open import Data.Bool using (Bool) renaming (_≟_ to _=?_)
open import Data.Product using (_×_; Σ; Σ-syntax; ∃; ∃-syntax; proj₁; proj₂)
renaming (_,_ to ⟨_,_⟩)
open import Data.Sum using (_⊎_; inj₁; inj₂)
open import Data.Empty using (⊥-elim) renaming (⊥ to Bot)
open import Data.Unit using (⊤; tt)
open import Data.Maybe
open import Data.List using (List ; _∷_ ; []; _++_)
open import Relation.Nullary using (¬_)
open import Relation.Nullary using (Dec; yes; no)
open import Relation.Nullary.Negation using (contradiction)
open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; cong)
open Relation.Binary.PropositionalEquality.≡-Reasoning renaming (begin_ to start_; _∎ to _□)
module extra.Value where
data Base : Set where
Nat : Base
𝔹 : Base
data Prim : Set where
base : Base → Prim
_⇒_ : Base → Prim → Prim
base-rep : Base → Set
base-rep Nat = ℕ
base-rep 𝔹 = Bool
rep : Prim → Set
rep (base b) = base-rep b
rep (b ⇒ p) = base-rep b → rep p
base-eq? : (B : Base) → (B' : Base) → Dec (B ≡ B')
base-eq? Nat Nat = yes refl
base-eq? Nat 𝔹 = no (λ ())
base-eq? 𝔹 Nat = no (λ ())
base-eq? 𝔹 𝔹 = yes refl
base-rep-eq? : ∀{B} → (k : base-rep B) (k′ : base-rep B) → Dec (k ≡ k′)
base-rep-eq? {Nat} k k′ = k ≟ k′
base-rep-eq? {𝔹} k k′ = k =? k′
infixr 7 _↦_
infixl 6 _⊔_
data Value : Set
data Value where
⊥ : Value
const : {b : Base} → base-rep b → Value
_↦_ : Value → Value → Value
_⊔_ : (u : Value) → (v : Value) → Value
infix 5 _∈_
_∈_ : Value → Value → Set
u ∈ ⊥ = u ≡ ⊥
u ∈ const {B} k = u ≡ const {B} k
u ∈ v ↦ w = u ≡ v ↦ w
u ∈ (v ⊔ w) = u ∈ v ⊎ u ∈ w
infix 5 _⊆_
_⊆_ : Value → Value → Set
v ⊆ w = ∀{u} → u ∈ v → u ∈ w
AllFun : (u : Value) → Set
AllFun ⊥ = Bot
AllFun (const x) = Bot
AllFun (v ↦ w) = ⊤
AllFun (u ⊔ v) = AllFun u × AllFun v
dom : (u : Value) → Value
dom ⊥ = ⊥
dom (const k) = ⊥
dom (v ↦ w) = v
dom (u ⊔ v) = dom u ⊔ dom v
cod : (u : Value) → Value
cod ⊥ = ⊥
cod (const k) = ⊥
cod (v ↦ w) = w
cod (u ⊔ v) = cod u ⊔ cod v
infix 4 _⊑_
data _⊑_ : Value → Value → Set where
⊑-⊥ : ∀ {v} → ⊥ ⊑ v
⊑-const : ∀ {B}{k} → const {B} k ⊑ const {B} k
⊑-conj-L : ∀ {u v w}
→ v ⊑ u
→ w ⊑ u
-----------
→ v ⊔ w ⊑ u
⊑-conj-R1 : ∀ {u v w}
→ u ⊑ v
------------------
→ u ⊑ v ⊔ w
⊑-conj-R2 : ∀ {u v w}
→ u ⊑ w
-----------
→ u ⊑ v ⊔ w
⊑-fun : ∀ {u u′ v w}
→ u′ ⊆ u
→ AllFun u′
→ dom u′ ⊑ v
→ w ⊑ cod u′
-------------------
→ v ↦ w ⊑ u
⊑-refl : ∀{v} → v ⊑ v
⊑-refl {⊥} = ⊑-⊥
⊑-refl {const k} = ⊑-const
⊑-refl {v ↦ w} = ⊑-fun{v ↦ w}{v ↦ w} (λ {u} z → z) tt (⊑-refl{v}) ⊑-refl
⊑-refl {v₁ ⊔ v₂} = ⊑-conj-L (⊑-conj-R1 ⊑-refl) (⊑-conj-R2 ⊑-refl)
factor : (u : Value) → (u′ : Value) → (v : Value) → (w : Value) → Set
factor u u′ v w = AllFun u′ × u′ ⊆ u × dom u′ ⊑ v × w ⊑ cod u′
⊑-fun-inv : ∀{u₁ u₂ v w}
→ u₁ ⊑ u₂
→ v ↦ w ∈ u₁
→ Σ[ u₃ ∈ Value ] factor u₂ u₃ v w
⊑-fun-inv {.⊥} {u₂} {v} {w} ⊑-⊥ ()
⊑-fun-inv {.(const _)} {.(const _)} {v} {w} ⊑-const ()
⊑-fun-inv {u11 ⊔ u12} {u₂} {v} {w} (⊑-conj-L u₁⊑u₂ u₁⊑u₃) (inj₁ x) =
⊑-fun-inv u₁⊑u₂ x
⊑-fun-inv {u11 ⊔ u12} {u₂} {v} {w} (⊑-conj-L u₁⊑u₂ u₁⊑u₃) (inj₂ y) =
⊑-fun-inv u₁⊑u₃ y
⊑-fun-inv {u₁} {u21 ⊔ u22} {v} {w} (⊑-conj-R1 u₁⊑u₂) v↦w∈u₁
with ⊑-fun-inv {u₁} {u21} {v} {w} u₁⊑u₂ v↦w∈u₁
... | ⟨ u₃ , ⟨ afu₃ , ⟨ u3⊆u₁ , ⟨ du₃⊑v , w⊑codu₃ ⟩ ⟩ ⟩ ⟩ =
⟨ u₃ , ⟨ afu₃ , ⟨ (λ {x} x₁ → inj₁ (u3⊆u₁ x₁)) , ⟨ du₃⊑v , w⊑codu₃ ⟩ ⟩ ⟩ ⟩
⊑-fun-inv {u₁} {u21 ⊔ u22} {v} {w} (⊑-conj-R2 u₁⊑u₂) v↦w∈u₁
with ⊑-fun-inv {u₁} {u22} {v} {w} u₁⊑u₂ v↦w∈u₁
... | ⟨ u₃ , ⟨ afu₃ , ⟨ u3⊆u₁ , ⟨ du₃⊑v , w⊑codu₃ ⟩ ⟩ ⟩ ⟩ =
⟨ u₃ , ⟨ afu₃ , ⟨ (λ {x} x₁ → inj₂ (u3⊆u₁ x₁)) , ⟨ du₃⊑v , w⊑codu₃ ⟩ ⟩ ⟩ ⟩
⊑-fun-inv {u11 ↦ u21} {u₂} {v} {w} (⊑-fun{u′ = u′} u′⊆u₂ afu′ du′⊑u11 u21⊑cu′)
refl =
⟨ u′ , ⟨ afu′ , ⟨ u′⊆u₂ , ⟨ du′⊑u11 , u21⊑cu′ ⟩ ⟩ ⟩ ⟩
sub-inv-trans : ∀{u′ u₂ u : Value}
→ AllFun u′ → u′ ⊆ u
→ (∀{v′ w′} → v′ ↦ w′ ∈ u′ → Σ[ u₃ ∈ Value ] factor u₂ u₃ v′ w′)
---------------------------------------------------------------
→ Σ[ u₃ ∈ Value ] factor u₂ u₃ (dom u′) (cod u′)
sub-inv-trans {⊥} {u₂} {u} () u′⊆u IH
sub-inv-trans {const k} {u₂} {u} () u′⊆u IH
sub-inv-trans {u₁′ ↦ u₂′} {u₂} {u} fu′ u′⊆u IH = IH refl
sub-inv-trans {u₁′ ⊔ u₂′} {u₂} {u} ⟨ afu₁′ , afu₂′ ⟩ u′⊆u IH
with sub-inv-trans {u₁′} {u₂} {u} afu₁′
(λ {u₁} z → u′⊆u (inj₁ z)) (λ {v′} {w′} z → IH (inj₁ z))
| sub-inv-trans {u₂′} {u₂} {u} afu₂′
(λ {u₁} z → u′⊆u (inj₂ z)) (λ {v′} {w′} z → IH (inj₂ z))
... | ⟨ u₃ , ⟨ afu₃ , ⟨ u₃⊆ , ⟨ du₃⊑ , ⊑cu₃ ⟩ ⟩ ⟩ ⟩
| ⟨ u₄ , ⟨ afu₄ , ⟨ u₄⊆ , ⟨ du₄⊑ , ⊑cu₄ ⟩ ⟩ ⟩ ⟩ =
⟨ (u₃ ⊔ u₄) , ⟨ ⟨ afu₃ , afu₄ ⟩ , ⟨ G , ⟨ H , I ⟩ ⟩ ⟩ ⟩
where
G : ∀ {u₁} → u₁ ∈ u₃ ⊎ u₁ ∈ u₄ → u₁ ∈ u₂
G {u₁} (inj₁ x) = u₃⊆ x
G {u₁} (inj₂ y) = u₄⊆ y
H : dom u₃ ⊔ dom u₄ ⊑ dom u₁′ ⊔ dom u₂′
H = ⊑-conj-L (⊑-conj-R1 du₃⊑) (⊑-conj-R2 du₄⊑)
I : cod u₁′ ⊔ cod u₂′ ⊑ cod u₃ ⊔ cod u₄
I = ⊑-conj-L (⊑-conj-R1 ⊑cu₃) (⊑-conj-R2 ⊑cu₄)
⊔⊑R : ∀{B C A}
→ B ⊔ C ⊑ A
→ B ⊑ A
⊔⊑R (⊑-conj-L B⊔C⊑A B⊔C⊑A₁) = B⊔C⊑A
⊔⊑R (⊑-conj-R1 B⊔C⊑A) = ⊑-conj-R1 (⊔⊑R B⊔C⊑A)
⊔⊑R (⊑-conj-R2 B⊔C⊑A) = ⊑-conj-R2 (⊔⊑R B⊔C⊑A)
⊔⊑L : ∀{B C A}
→ B ⊔ C ⊑ A
→ C ⊑ A
⊔⊑L (⊑-conj-L B⊔C⊑A B⊔C⊑A₁) = B⊔C⊑A₁
⊔⊑L (⊑-conj-R1 B⊔C⊑A) = ⊑-conj-R1 (⊔⊑L B⊔C⊑A)
⊔⊑L (⊑-conj-R2 B⊔C⊑A) = ⊑-conj-R2 (⊔⊑L B⊔C⊑A)
u∈v⊑w→u⊑w : ∀{B A C} → C ∈ B → B ⊑ A → C ⊑ A
u∈v⊑w→u⊑w {⊥} C∈B B⊑A rewrite C∈B = B⊑A
u∈v⊑w→u⊑w {const k} C∈B B⊑A rewrite C∈B = B⊑A
u∈v⊑w→u⊑w {B₁ ↦ B₂} C∈B B⊑A rewrite C∈B = B⊑A
u∈v⊑w→u⊑w {B₁ ⊔ B₂}{A}{C} (inj₁ C∈B₁) B⊑A = u∈v⊑w→u⊑w {B₁}{A}{C} C∈B₁ (⊔⊑R B⊑A)
u∈v⊑w→u⊑w {B₁ ⊔ B₂}{A}{C} (inj₂ C∈B₂) B⊑A = u∈v⊑w→u⊑w {B₂}{A}{C} C∈B₂ (⊔⊑L B⊑A)
u⊆v⊑w→u⊑w : ∀{u v w} → u ⊆ v → v ⊑ w → u ⊑ w
u⊆v⊑w→u⊑w {⊥} {v} {w} u⊆v v⊑w = ⊑-⊥
u⊆v⊑w→u⊑w {const k} {v} {w} u⊆v v⊑w
with u⊆v refl
... | k∈v = u∈v⊑w→u⊑w k∈v v⊑w
u⊆v⊑w→u⊑w {u₁ ↦ u₂} {v} {w} u⊆v v⊑w
with u⊆v refl
... | u₁↦u₂∈v = u∈v⊑w→u⊑w u₁↦u₂∈v v⊑w
u⊆v⊑w→u⊑w {u₁ ⊔ u₂} {v} {w} u⊆v v⊑w =
⊑-conj-L (u⊆v⊑w→u⊑w u₁⊆v v⊑w) (u⊆v⊑w→u⊑w u₂⊆v v⊑w)
where
u₁⊆v : u₁ ⊆ v
u₁⊆v {u′} u′∈u₁ = u⊆v (inj₁ u′∈u₁)
u₂⊆v : u₂ ⊆ v
u₂⊆v {u′} u′∈u₂ = u⊆v (inj₂ u′∈u₂)
depth : (v : Value) → ℕ
depth ⊥ = zero
depth (const k) = zero
depth (v ↦ w) = suc (max (depth v) (depth w))
depth (v₁ ⊔ v₂) = max (depth v₁) (depth v₂)
size : (v : Value) → ℕ
size ⊥ = zero
size (const k) = zero
size (v ↦ w) = suc (size v + size w)
size (v₁ ⊔ v₂) = suc (size v₁ + size v₂)
∈→depth≤ : ∀{v u : Value} → u ∈ v → depth u ≤ depth v
∈→depth≤ {⊥} {u} u∈v rewrite u∈v = _≤_.z≤n
∈→depth≤ {const x} {u} u∈v rewrite u∈v = _≤_.z≤n
∈→depth≤ {v ↦ w} {u} u∈v rewrite u∈v = ≤-refl
∈→depth≤ {v₁ ⊔ v₂} {u} (inj₁ x) =
≤-trans (∈→depth≤ {v₁} {u} x) (m≤m⊔n (depth v₁) (depth v₂))
∈→depth≤ {v₁ ⊔ v₂} {u} (inj₂ y) =
≤-trans (∈→depth≤ {v₂} {u} y) (n≤m⊔n (depth v₁) (depth v₂))
max-lub : ∀{x y z : ℕ} → x ≤ z → y ≤ z → max x y ≤ z
max-lub {.0} {y} {z} _≤_.z≤n y≤z = y≤z
max-lub {suc x} {.0} {suc z} (_≤_.s≤s x≤z) _≤_.z≤n = _≤_.s≤s x≤z
max-lub {suc x} {suc y} {suc z} (_≤_.s≤s x≤z) (_≤_.s≤s y≤z) =
let max-xy≤z = max-lub {x}{y}{z} x≤z y≤z in
_≤_.s≤s max-xy≤z
⊔⊆-inv : ∀{u v w : Value}
→ (u ⊔ v) ⊆ w
---------------
→ u ⊆ w × v ⊆ w
⊔⊆-inv uvw = ⟨ (λ x → uvw (inj₁ x)) , (λ x → uvw (inj₂ x)) ⟩
⊆→depth≤ : ∀{u v : Value} → u ⊆ v → depth u ≤ depth v
⊆→depth≤ {⊥} {v} u⊆v = _≤_.z≤n
⊆→depth≤ {const x} {v} u⊆v = _≤_.z≤n
⊆→depth≤ {u₁ ↦ u₂} {v} u⊆v = ∈→depth≤ (u⊆v refl)
⊆→depth≤ {u₁ ⊔ u₂} {v} u⊆v
with ⊔⊆-inv u⊆v
... | ⟨ u₁⊆v , u₂⊆v ⟩ =
let u₁≤v = ⊆→depth≤ u₁⊆v in
let u₂≤v = ⊆→depth≤ u₂⊆v in
max-lub u₁≤v u₂≤v
dom-depth-≤ : ∀{u : Value} → depth (dom u) ≤ depth u
dom-depth-≤ {⊥} = _≤_.z≤n
dom-depth-≤ {const k} = _≤_.z≤n
dom-depth-≤ {v ↦ w} = ≤-step (m≤m⊔n (depth v) (depth w))
dom-depth-≤ {u ⊔ v} =
let ih1 = dom-depth-≤ {u} in
let ih2 = dom-depth-≤ {v} in
⊔-mono-≤ ih1 ih2
cod-depth-≤ : ∀{u : Value} → depth (cod u) ≤ depth u
cod-depth-≤ {⊥} = _≤_.z≤n
cod-depth-≤ {const k} = _≤_.z≤n
cod-depth-≤ {v ↦ w} = ≤-step (n≤m⊔n (depth v) (depth w))
cod-depth-≤ {u ⊔ v} =
let ih1 = cod-depth-≤ {u} in
let ih2 = cod-depth-≤ {v} in
⊔-mono-≤ ih1 ih2
≤′-trans : ∀{x y z} → x ≤′ y → y ≤′ z → x ≤′ z
≤′-trans x≤′y y≤′z = ≤⇒≤′ (≤-trans (≤′⇒≤ x≤′y) (≤′⇒≤ y≤′z))
data _<<_ : ℕ × ℕ → ℕ × ℕ → Set where
fst : ∀{x x' y y'} → x <′ x' → ⟨ x , y ⟩ << ⟨ x' , y' ⟩
snd : ∀{x x' y y'} → x ≤′ x' → y <′ y' → ⟨ x , y ⟩ << ⟨ x' , y' ⟩
<<-nat-wf : (P : ℕ → ℕ → Set) →
(∀ x y → (∀ {x' y'} → ⟨ x' , y' ⟩ << ⟨ x , y ⟩ → P x' y') → P x y) →
∀ x y → P x y
<<-nat-wf P ih x y = ih x y (help x y)
where help : (x y : ℕ) → ∀{ x' y'} → ⟨ x' , y' ⟩ << ⟨ x , y ⟩ → P x' y'
help .(suc x') y {x'}{y'} (fst ≤′-refl) =
ih x' y' (help x' y')
help .(suc x) y {x'}{y'} (fst (≤′-step {x} q)) =
help x y {x'}{y'} (fst q)
help x .(suc y) {x'}{y} (snd x'≤x ≤′-refl) =
let h : ∀ {x₁} {x₂} → (⟨ x₁ , x₂ ⟩ << ⟨ x , y ⟩) → P x₁ x₂
h = help x y in
ih x' y G
where
G : ∀ {x'' y'} → ⟨ x'' , y' ⟩ << ⟨ x' , y ⟩ → P x'' y'
G {x''} {y'} (fst x''<x') =
help x y (fst {y = y'}{y' = y} (≤′-trans x''<x' x'≤x))
G {x''} {y'} (snd x''≤x' y'<y) =
help x y {x''}{y'} (snd (≤′-trans x''≤x' x'≤x) y'<y)
help x .(suc y) {x'}{y'} (snd x′≤x (≤′-step {y} q)) =
help x y {x'}{y'} (snd x′≤x q)
⊑-trans-P : ℕ → ℕ → Set
⊑-trans-P d s = ∀{u v w} → d ≡ depth u + depth w → s ≡ size u + size v
→ u ⊑ v → v ⊑ w → u ⊑ w
⊑-trans-rec : ∀ d s → ⊑-trans-P d s
⊑-trans-rec = <<-nat-wf ⊑-trans-P helper
where
helper : ∀ x y
→ (∀ {x' y'} → ⟨ x' , y' ⟩ << ⟨ x , y ⟩ → ⊑-trans-P x' y')
→ ⊑-trans-P x y
helper d s IH {.⊥} {v} {w} d≡ s≡ ⊑-⊥ v⊑w = ⊑-⊥
helper d s IH {.(const _)} {.(const _)} {w} d≡ s≡ ⊑-const v⊑w = v⊑w
helper d s IH {u₁ ⊔ u₂} {v} {w} d≡ s≡ (⊑-conj-L u₁⊑v u₂⊑v) v⊑w
rewrite d≡ | s≡ =
let u₁⊑w = IH M1 {u₁}{v}{w} refl refl u₁⊑v v⊑w in
let u₂⊑w = IH M2 {u₂}{v}{w} refl refl u₂⊑v v⊑w in
⊑-conj-L u₁⊑w u₂⊑w
where
M1a = begin
depth u₁ + depth w
≤⟨ +-mono-≤ (m≤m⊔n (depth u₁) (depth u₂)) ≤-refl ⟩
max (depth u₁) (depth u₂) + depth w
∎
M1b = begin
suc (size u₁ + size v)
≤⟨ s≤s (+-mono-≤ ≤-refl (n≤m+n (size u₂) (size v))) ⟩
suc (size u₁ + (size u₂ + size v))
≤⟨ s≤s (≤-reflexive (sym (+-assoc (size u₁) (size u₂) (size v)))) ⟩
suc (size u₁ + size u₂ + size v)
∎
M1 : ⟨ depth u₁ + depth w , size u₁ + size v ⟩ <<
⟨ max (depth u₁) (depth u₂) + depth w ,
suc (size u₁ + size u₂ + size v) ⟩
M1 = snd (≤⇒≤′ M1a) (≤⇒≤′ M1b)
M2a = begin
depth u₂ + depth w
≤⟨ +-mono-≤ (n≤m⊔n (depth u₁) (depth u₂)) ≤-refl ⟩
max (depth u₁) (depth u₂) + depth w
∎
M2b = begin
suc (size u₂ + size v)
≤⟨ s≤s (+-mono-≤ (n≤m+n (size u₁) (size u₂)) ≤-refl) ⟩
suc ((size u₁ + size u₂) + size v)
∎
M2 : ⟨ depth u₂ + depth w , size u₂ + size v ⟩ <<
⟨ max (depth u₁) (depth u₂) + depth w ,
suc (size u₁ + size u₂ + size v) ⟩
M2 = snd (≤⇒≤′ M2a) (≤⇒≤′ M2b)
helper d s IH {u} {v₁ ⊔ v₂} {w} d≡ s≡ (⊑-conj-R1 u⊑v₁) v₁⊔v₂⊑w
rewrite d≡ | s≡ =
let v₁⊑w = ⊔⊑R v₁⊔v₂⊑w in
IH M {u}{v₁}{w} refl refl u⊑v₁ v₁⊑w
where
Ma = begin
suc (size u + size v₁)
≤⟨ ≤-reflexive (sym (+-suc (size u) (size v₁))) ⟩
size u + suc (size v₁)
≤⟨ +-mono-≤ ≤-refl (s≤s (m≤m+n (size v₁) (size v₂))) ⟩
size u + suc (size v₁ + size v₂)
∎
M : ⟨ depth u + depth w , size u + size v₁ ⟩ <<
⟨ depth u + depth w , size u + suc (size v₁ + size v₂) ⟩
M = snd (≤⇒≤′ ≤-refl) (≤⇒≤′ Ma)
helper d s IH {u} {v₁ ⊔ v₂} {w} d≡ s≡ (⊑-conj-R2 u⊑v₂) v₁⊔v₂⊑w
rewrite d≡ | s≡ =
let v₂⊑w = ⊔⊑L v₁⊔v₂⊑w in
IH M {u}{v₂}{w} refl refl u⊑v₂ v₂⊑w
where
Ma = begin
suc (size u + size v₂)
≤⟨ ≤-reflexive (sym (+-suc (size u) (size v₂))) ⟩
size u + suc (size v₂)
≤⟨ +-mono-≤ ≤-refl (s≤s (n≤m+n (size v₁) (size v₂))) ⟩
size u + suc (size v₁ + size v₂)
∎
M : ⟨ depth u + depth w , size u + size v₂ ⟩ <<
⟨ depth u + depth w , size u + suc (size v₁ + size v₂) ⟩
M = snd (≤⇒≤′ ≤-refl) (≤⇒≤′ Ma)
helper d s IH {u₁ ↦ u₂}{v}{w}d≡ s≡ (⊑-fun{u′ = v′}v′⊆v afv′ dv′⊑u₁ u₂⊑cv′) v⊑w
rewrite d≡ | s≡
with sub-inv-trans afv′ v′⊆v
(λ {v₁}{v₂} v₁↦v₂∈v′ → ⊑-fun-inv {v′} {w} (u⊆v⊑w→u⊑w v′⊆v v⊑w)
v₁↦v₂∈v′)
... | ⟨ w′ , ⟨ afw′ , ⟨ w′⊆w , ⟨ dw′⊑dv′ , cv′⊑cw′ ⟩ ⟩ ⟩ ⟩ =
let dw′⊑u₁ = IH M1 {dom w′}{dom v′}{u₁} refl refl dw′⊑dv′ dv′⊑u₁ in
let u₂⊑cw′ = IH M2 {u₂}{cod v′}{cod w′} refl refl u₂⊑cv′ cv′⊑cw′ in
⊑-fun{u′ = w′} w′⊆w afw′ dw′⊑u₁ u₂⊑cw′
where
dw′≤w : depth (dom w′) ≤ depth w
dw′≤w = ≤-trans (dom-depth-≤{w′}) (⊆→depth≤ w′⊆w)
cw′≤w : depth (cod w′) ≤ depth w
cw′≤w = ≤-trans (cod-depth-≤{w′}) (⊆→depth≤ w′⊆w)
M1a = begin
suc (depth (dom w′) + depth u₁)
≤⟨ s≤s (≤-reflexive (+-comm (depth (dom w′)) (depth u₁))) ⟩
suc (depth u₁ + depth (dom w′))
≤⟨ s≤s (+-mono-≤ (m≤m⊔n (depth u₁) (depth u₂)) dw′≤w) ⟩
suc (max (depth u₁) (depth u₂) + depth w)
∎
M1 : ⟨ depth (dom w′) + depth u₁ , size (dom w′) + size (dom v′) ⟩
<< ⟨ suc (max (depth u₁) (depth u₂) + depth w) ,
suc (size u₁ + size u₂ + size v) ⟩
M1 = fst (≤⇒≤′ M1a)
M2a = begin
suc (depth u₂ + depth (cod w′))
≤⟨ s≤s (+-mono-≤ (n≤m⊔n (depth u₁) (depth u₂)) cw′≤w) ⟩
suc (max (depth u₁) (depth u₂) + depth w)
∎
M2 : ⟨ depth u₂ + depth (cod w′) ,
size u₂ + size (cod v′) ⟩
<< ⟨ suc (max (depth u₁) (depth u₂) + depth w) ,
suc (size u₁ + size u₂ + size v) ⟩
M2 = fst (≤⇒≤′ M2a)
⊑-trans : ∀{u v w} → u ⊑ v → v ⊑ w → u ⊑ w
⊑-trans {u} {v} {w} u⊑v v⊑w =
⊑-trans-rec (depth u + depth w) (size u + size v) refl refl u⊑v v⊑w
| 34.01139
| 92
| 0.428705
|
0bfba2fba888a23b282ecce7f8e107b78509390d
| 2,448
|
agda
|
Agda
|
test/Succeed/AbstractCoinduction.agda
|
alex-mckenna/agda
|
78b62cd24bbd570271a7153e44ad280e52ef3e29
|
[
"BSD-3-Clause"
] | 1
|
2021-07-07T10:49:57.000Z
|
2021-07-07T10:49:57.000Z
|
test/Succeed/AbstractCoinduction.agda
|
andersk/agda
|
56928ff709dcb931cb9a48c4790e5ed3739e3032
|
[
"BSD-3-Clause"
] | null | null | null |
test/Succeed/AbstractCoinduction.agda
|
andersk/agda
|
56928ff709dcb931cb9a48c4790e5ed3739e3032
|
[
"BSD-3-Clause"
] | null | null | null |
-- Andreas, 2016-10-03, re issue #2231
-- Testing whether the musical coinduction works fine in abstract blocks
module AbstractCoinduction where
{-# BUILTIN INFINITY ∞_ #-}
{-# BUILTIN SHARP ♯_ #-}
{-# BUILTIN FLAT ♭ #-}
infixr 5 _≺_
abstract
------------------------------------------------------------------------
-- Streams
data Stream (A : Set) : Set where
_≺_ : (x : A) (xs : ∞ (Stream A)) -> Stream A
head : ∀ {A} -> Stream A -> A
head (x ≺ xs) = x
tail : ∀ {A} -> Stream A -> Stream A
tail (x ≺ xs) = ♭ xs
------------------------------------------------------------------------
-- Stream programs
infix 8 _∞
infixr 5 _⋎_
infix 4 ↓_
mutual
data Stream′ (A : Set) : Set1 where
_≺_ : (x : A) (xs : ∞ (StreamProg A)) -> Stream′ A
data StreamProg (A : Set) : Set1 where
↓_ : (xs : Stream′ A) -> StreamProg A
_∞' : (x : A) -> StreamProg A
_⋎'_ : (xs ys : StreamProg A) -> StreamProg A
_∞ : ∀ {A : Set} (x : A) -> StreamProg A
_∞ = _∞'
_⋎_ : ∀ {A : Set} (xs ys : StreamProg A) -> StreamProg A
_⋎_ = _⋎'_
head′ : ∀ {A} → Stream′ A → A
head′ (x ≺ xs) = x
tail′ : ∀ {A} → Stream′ A → StreamProg A
tail′ (x ≺ xs) = ♭ xs
P⇒′ : ∀ {A} -> StreamProg A -> Stream′ A
P⇒′ (↓ xs) = xs
P⇒′ (x ∞') = x ≺ ♯ (x ∞)
P⇒′ (xs ⋎' ys) with P⇒′ xs
P⇒′ (xs ⋎' ys) | xs′ = head′ xs′ ≺ ♯ (ys ⋎ tail′ xs′)
mutual
′⇒ : ∀ {A} -> Stream′ A -> Stream A
′⇒ (x ≺ xs) = x ≺ ♯ P⇒ (♭ xs)
P⇒ : ∀ {A} -> StreamProg A -> Stream A
P⇒ xs = ′⇒ (P⇒′ xs)
------------------------------------------------------------------------
-- Stream equality
infix 4 _≡_ _≈_ _≊_
data _≡_ {a : Set} (x : a) : a -> Set where
≡-refl : x ≡ x
data _≈_ {A} (xs ys : Stream A) : Set where
_≺_ : (x≡ : head xs ≡ head ys) (xs≈ : ∞ (tail xs ≈ tail ys)) ->
xs ≈ ys
_≊_ : ∀ {A} (xs ys : StreamProg A) -> Set
xs ≊ ys = P⇒ xs ≈ P⇒ ys
foo : ∀ {A : Set} (x : A) -> x ∞ ⋎ x ∞ ≊ x ∞
foo x = ≡-refl ≺ ♯ foo x
-- The first goal has goal type
-- head (′⇒ (x ≺ x ∞ ⋎ x ∞)) ≡ head (′⇒ (x ≺ x ∞)).
-- The normal form of the left-hand side is x, and the normal form of
-- the right-hand side is x (both according to Agda), but ≡-refl is
-- not accepted by the type checker:
-- x != head (′⇒ (P⇒′ (x ∞))) of type .A
-- when checking that the expression ≡-refl has type
-- (head (P⇒ (x ∞ ⋎ x ∞)) ≡ head (P⇒ (x ∞)))
| 25.5
| 74
| 0.4375
|
4dafe24d626379cda66d4c38bd7f8897416ce5da
| 1,653
|
agda
|
Agda
|
BasicIPC/Metatheory/Gentzen-BasicTarski.agda
|
mietek/hilbert-gentzen
|
fcd187db70f0a39b894fe44fad0107f61849405c
|
[
"X11"
] | 29
|
2016-07-03T18:51:56.000Z
|
2022-01-01T10:29:18.000Z
|
BasicIPC/Metatheory/Gentzen-BasicTarski.agda
|
mietek/hilbert-gentzen
|
fcd187db70f0a39b894fe44fad0107f61849405c
|
[
"X11"
] | 1
|
2018-06-10T09:11:22.000Z
|
2018-06-10T09:11:22.000Z
|
BasicIPC/Metatheory/Gentzen-BasicTarski.agda
|
mietek/hilbert-gentzen
|
fcd187db70f0a39b894fe44fad0107f61849405c
|
[
"X11"
] | null | null | null |
module BasicIPC.Metatheory.Gentzen-BasicTarski where
open import BasicIPC.Syntax.Gentzen public
open import BasicIPC.Semantics.BasicTarski public
-- Soundness with respect to all models, or evaluation.
eval : ∀ {A Γ} → Γ ⊢ A → Γ ⊨ A
eval (var i) γ = lookup i γ
eval (lam t) γ = λ a → eval t (γ , a)
eval (app t u) γ = eval t γ $ eval u γ
eval (pair t u) γ = eval t γ , eval u γ
eval (fst t) γ = π₁ (eval t γ)
eval (snd t) γ = π₂ (eval t γ)
eval unit γ = ∙
-- Correctness of evaluation with respect to conversion.
-- FIXME: How to show this?
postulate
oops₁ : ∀ {{_ : Model}} {A B Γ} {t : Γ , A ⊢ B} {u : Γ ⊢ A}
→ eval ([ top ≔ u ] t) ≡ (λ γ → eval t (γ , eval u γ))
oops₂ : ∀ {{_ : Model}} {A B Γ} {t : Γ ⊢ A ▻ B}
→ eval t ≡ (λ γ a → eval (mono⊢ (weak⊆ {A = A}) t) (γ , a) a)
eval✓ : ∀ {{_ : Model}} {A Γ} {t t′ : Γ ⊢ A} → t ⋙ t′ → eval t ≡ eval t′
eval✓ refl⋙ = refl
eval✓ (trans⋙ p q) = trans (eval✓ p) (eval✓ q)
eval✓ (sym⋙ p) = sym (eval✓ p)
eval✓ (conglam⋙ {A} {B} p) = cong (⟦λ⟧ {A} {B}) (eval✓ p)
eval✓ (congapp⋙ {A} {B} p q) = cong² (_⟦$⟧_ {A} {B}) (eval✓ p) (eval✓ q)
eval✓ (congpair⋙ {A} {B} p q) = cong² (_⟦,⟧_ {A} {B}) (eval✓ p) (eval✓ q)
eval✓ (congfst⋙ {A} {B} p) = cong (⟦π₁⟧ {A} {B}) (eval✓ p)
eval✓ (congsnd⋙ {A} {B} p) = cong (⟦π₂⟧ {A} {B}) (eval✓ p)
eval✓ (beta▻⋙ {A} {B} {t} {u}) = sym (oops₁ {A} {B} {_} {t} {u})
eval✓ (eta▻⋙ {A} {B} {t}) = oops₂ {A} {B} {_} {t}
eval✓ beta∧₁⋙ = refl
eval✓ beta∧₂⋙ = refl
eval✓ eta∧⋙ = refl
eval✓ eta⊤⋙ = refl
| 38.44186
| 74
| 0.476709
|
230e88b314c32d4d85b4f98f7fb1bdb80597591a
| 13,051
|
agda
|
Agda
|
Cubical/Foundations/Univalence.agda
|
jorge-jbs/cubical
|
ebbe824fda41ab6524b62a42959665be4e67b847
|
[
"MIT"
] | null | null | null |
Cubical/Foundations/Univalence.agda
|
jorge-jbs/cubical
|
ebbe824fda41ab6524b62a42959665be4e67b847
|
[
"MIT"
] | null | null | null |
Cubical/Foundations/Univalence.agda
|
jorge-jbs/cubical
|
ebbe824fda41ab6524b62a42959665be4e67b847
|
[
"MIT"
] | null | null | null |
{-
Proof of the standard formulation of the univalence theorem and
various consequences of univalence
- Re-exports Glue types from Cubical.Core.Glue
- The ua constant and its computation rule (up to a path)
- Proof of univalence using that unglue is an equivalence ([EquivContr])
- Equivalence induction ([EquivJ], [elimEquiv])
- Univalence theorem ([univalence])
- The computation rule for ua ([uaβ])
- Isomorphism induction ([elimIso])
-}
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Foundations.Univalence where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.GroupoidLaws
open import Cubical.Data.Sigma.Base
open import Cubical.Core.Glue public
using ( Glue ; glue ; unglue ; lineToEquiv )
private
variable
ℓ ℓ' : Level
-- The ua constant
ua : ∀ {A B : Type ℓ} → A ≃ B → A ≡ B
ua {A = A} {B = B} e i = Glue B (λ { (i = i0) → (A , e)
; (i = i1) → (B , idEquiv B) })
uaIdEquiv : {A : Type ℓ} → ua (idEquiv A) ≡ refl
uaIdEquiv {A = A} i j = Glue A {φ = i ∨ ~ j ∨ j} (λ _ → A , idEquiv A)
-- Propositional extensionality
hPropExt : {A B : Type ℓ} → isProp A → isProp B → (A → B) → (B → A) → A ≡ B
hPropExt Aprop Bprop f g = ua (isPropEquiv→Equiv Aprop Bprop f g)
-- the unglue and glue primitives specialized to the case of ua
ua-unglue : ∀ {A B : Type ℓ} (e : A ≃ B) (i : I) (x : ua e i)
→ B {- [ _ ↦ (λ { (i = i0) → e .fst x ; (i = i1) → x }) ] -}
ua-unglue e i x = unglue (i ∨ ~ i) x
ua-glue : ∀ {A B : Type ℓ} (e : A ≃ B) (i : I) (x : Partial (~ i) A)
(y : B [ _ ↦ (λ { (i = i0) → e .fst (x 1=1) }) ])
→ ua e i {- [ _ ↦ (λ { (i = i0) → x 1=1 ; (i = i1) → outS y }) ] -}
ua-glue e i x y = glue {φ = i ∨ ~ i} (λ { (i = i0) → x 1=1 ; (i = i1) → outS y }) (outS y)
-- sometimes more useful are versions of these functions with the (i : I) factored in
ua-ungluePath : ∀ {A B : Type ℓ} (e : A ≃ B) {x : A} {y : B}
→ PathP (λ i → ua e i) x y
→ e .fst x ≡ y
ua-ungluePath e p i = ua-unglue e i (p i)
ua-gluePath : ∀ {A B : Type ℓ} (e : A ≃ B) {x : A} {y : B}
→ e .fst x ≡ y
→ PathP (λ i → ua e i) x y
ua-gluePath e {x} p i = ua-glue e i (λ { (i = i0) → x }) (inS (p i))
-- ua-ungluePath and ua-gluePath are definitional inverses
ua-ungluePath-Equiv : ∀ {A B : Type ℓ} (e : A ≃ B) {x : A} {y : B}
→ (PathP (λ i → ua e i) x y) ≃ (e .fst x ≡ y)
ua-ungluePath-Equiv e = isoToEquiv (iso (ua-ungluePath e) (ua-gluePath e) (λ _ → refl) (λ _ → refl))
-- ua-unglue and ua-glue are also definitional inverses, in a way
-- strengthening the types of ua-unglue and ua-glue gives a nicer formulation of this, see below
ua-unglue-glue : ∀ {A B : Type ℓ} (e : A ≃ B) (i : I) (x : Partial (~ i) A) (y : B [ _ ↦ _ ])
→ ua-unglue e i (ua-glue e i x y) ≡ outS y
ua-unglue-glue _ _ _ _ = refl
ua-glue-unglue : ∀ {A B : Type ℓ} (e : A ≃ B) (i : I) (x : ua e i)
→ ua-glue e i (λ { (i = i0) → x }) (inS (ua-unglue e i x)) ≡ x
ua-glue-unglue _ _ _ = refl
-- mainly for documentation purposes, ua-unglue and ua-glue wrapped in cubical subtypes
ua-unglueS : ∀ {A B : Type ℓ} (e : A ≃ B) (i : I) (x : A) (y : B)
→ ua e i [ _ ↦ (λ { (i = i0) → x ; (i = i1) → y }) ]
→ B [ _ ↦ (λ { (i = i0) → e .fst x ; (i = i1) → y }) ]
ua-unglueS e i x y s = inS (ua-unglue e i (outS s))
ua-glueS : ∀ {A B : Type ℓ} (e : A ≃ B) (i : I) (x : A) (y : B)
→ B [ _ ↦ (λ { (i = i0) → e .fst x ; (i = i1) → y }) ]
→ ua e i [ _ ↦ (λ { (i = i0) → x ; (i = i1) → y }) ]
ua-glueS e i x y s = inS (ua-glue e i (λ { (i = i0) → x }) (inS (outS s)))
ua-unglueS-glueS : ∀ {A B : Type ℓ} (e : A ≃ B) (i : I) (x : A) (y : B)
(s : B [ _ ↦ (λ { (i = i0) → e .fst x ; (i = i1) → y }) ])
→ outS (ua-unglueS e i x y (ua-glueS e i x y s)) ≡ outS s
ua-unglueS-glueS _ _ _ _ _ = refl
ua-glueS-unglueS : ∀ {A B : Type ℓ} (e : A ≃ B) (i : I) (x : A) (y : B)
(s : ua e i [ _ ↦ (λ { (i = i0) → x ; (i = i1) → y }) ])
→ outS (ua-glueS e i x y (ua-unglueS e i x y s)) ≡ outS s
ua-glueS-unglueS _ _ _ _ _ = refl
-- a version of ua-glue with a single endpoint, identical to `ua-gluePath e {x} refl i`
ua-gluePt : ∀ {A B : Type ℓ} (e : A ≃ B) (i : I) (x : A)
→ ua e i {- [ _ ↦ (λ { (i = i0) → x ; (i = i1) → e .fst x }) ] -}
ua-gluePt e i x = ua-glue e i (λ { (i = i0) → x }) (inS (e .fst x))
-- Proof of univalence using that unglue is an equivalence:
-- unglue is an equivalence
unglueIsEquiv : ∀ (A : Type ℓ) (φ : I)
(f : PartialP φ (λ o → Σ[ T ∈ Type ℓ ] T ≃ A)) →
isEquiv {A = Glue A f} (unglue φ)
equiv-proof (unglueIsEquiv A φ f) = λ (b : A) →
let u : I → Partial φ A
u i = λ{ (φ = i1) → equivCtr (f 1=1 .snd) b .snd (~ i) }
ctr : fiber (unglue φ) b
ctr = ( glue (λ { (φ = i1) → equivCtr (f 1=1 .snd) b .fst }) (hcomp u b)
, λ j → hfill u (inS b) (~ j))
in ( ctr
, λ (v : fiber (unglue φ) b) i →
let u' : I → Partial (φ ∨ ~ i ∨ i) A
u' j = λ { (φ = i1) → equivCtrPath (f 1=1 .snd) b v i .snd (~ j)
; (i = i0) → hfill u (inS b) j
; (i = i1) → v .snd (~ j) }
in ( glue (λ { (φ = i1) → equivCtrPath (f 1=1 .snd) b v i .fst }) (hcomp u' b)
, λ j → hfill u' (inS b) (~ j)))
-- Any partial family of equivalences can be extended to a total one
-- from Glue [ φ ↦ (T,f) ] A to A
unglueEquiv : ∀ (A : Type ℓ) (φ : I)
(f : PartialP φ (λ o → Σ[ T ∈ Type ℓ ] T ≃ A)) →
(Glue A f) ≃ A
unglueEquiv A φ f = ( unglue φ , unglueIsEquiv A φ f )
-- The following is a formulation of univalence proposed by Martín Escardó:
-- https://groups.google.com/forum/#!msg/homotopytypetheory/HfCB_b-PNEU/Ibb48LvUMeUJ
-- See also Theorem 5.8.4 of the HoTT Book.
--
-- The reason we have this formulation in the core library and not the
-- standard one is that this one is more direct to prove using that
-- unglue is an equivalence. The standard formulation can be found in
-- Cubical/Basics/Univalence.
--
EquivContr : ∀ (A : Type ℓ) → ∃![ T ∈ Type ℓ ] (T ≃ A)
EquivContr {ℓ = ℓ} A =
( (A , idEquiv A)
, idEquiv≡ )
where
idEquiv≡ : (y : Σ (Type ℓ) (λ T → T ≃ A)) → (A , idEquiv A) ≡ y
idEquiv≡ w = \ { i .fst → Glue A (f i)
; i .snd .fst → unglueEquiv _ _ (f i) .fst
; i .snd .snd .equiv-proof → unglueEquiv _ _ (f i) .snd .equiv-proof
}
where
f : ∀ i → PartialP (~ i ∨ i) (λ x → Σ[ T ∈ Type ℓ ] T ≃ A)
f i = λ { (i = i0) → A , idEquiv A ; (i = i1) → w }
contrSinglEquiv : {A B : Type ℓ} (e : A ≃ B) → (B , idEquiv B) ≡ (A , e)
contrSinglEquiv {A = A} {B = B} e =
isContr→isProp (EquivContr B) (B , idEquiv B) (A , e)
-- Equivalence induction
EquivJ : {A B : Type ℓ} (P : (A : Type ℓ) → (e : A ≃ B) → Type ℓ')
→ (r : P B (idEquiv B)) → (e : A ≃ B) → P A e
EquivJ P r e = subst (λ x → P (x .fst) (x .snd)) (contrSinglEquiv e) r
-- Assuming that we have an inverse to ua we can easily prove univalence
module Univalence (au : ∀ {ℓ} {A B : Type ℓ} → A ≡ B → A ≃ B)
(aurefl : ∀ {ℓ} {A B : Type ℓ} → au refl ≡ idEquiv A) where
ua-au : {A B : Type ℓ} (p : A ≡ B) → ua (au p) ≡ p
ua-au {B = B} = J (λ _ p → ua (au p) ≡ p)
(cong ua (aurefl {B = B}) ∙ uaIdEquiv)
au-ua : {A B : Type ℓ} (e : A ≃ B) → au (ua e) ≡ e
au-ua {B = B} = EquivJ (λ _ f → au (ua f) ≡ f)
(subst (λ r → au r ≡ idEquiv _) (sym uaIdEquiv) (aurefl {B = B}))
isoThm : ∀ {ℓ} {A B : Type ℓ} → Iso (A ≡ B) (A ≃ B)
isoThm .Iso.fun = au
isoThm .Iso.inv = ua
isoThm .Iso.rightInv = au-ua
isoThm .Iso.leftInv = ua-au
thm : ∀ {ℓ} {A B : Type ℓ} → isEquiv au
thm {A = A} {B = B} = isoToIsEquiv {B = A ≃ B} isoThm
pathToEquiv : {A B : Type ℓ} → A ≡ B → A ≃ B
pathToEquiv p = lineToEquiv (λ i → p i)
pathToEquivRefl : {A : Type ℓ} → pathToEquiv refl ≡ idEquiv A
pathToEquivRefl {A = A} = equivEq (λ i x → transp (λ _ → A) i x)
pathToEquiv-ua : {A B : Type ℓ} (e : A ≃ B) → pathToEquiv (ua e) ≡ e
pathToEquiv-ua = Univalence.au-ua pathToEquiv pathToEquivRefl
ua-pathToEquiv : {A B : Type ℓ} (p : A ≡ B) → ua (pathToEquiv p) ≡ p
ua-pathToEquiv = Univalence.ua-au pathToEquiv pathToEquivRefl
-- Univalence
univalenceIso : {A B : Type ℓ} → Iso (A ≡ B) (A ≃ B)
univalenceIso = Univalence.isoThm pathToEquiv pathToEquivRefl
univalence : {A B : Type ℓ} → (A ≡ B) ≃ (A ≃ B)
univalence = ( pathToEquiv , Univalence.thm pathToEquiv pathToEquivRefl )
-- The original map from UniMath/Foundations
eqweqmap : {A B : Type ℓ} → A ≡ B → A ≃ B
eqweqmap {A = A} e = J (λ X _ → A ≃ X) (idEquiv A) e
eqweqmapid : {A : Type ℓ} → eqweqmap refl ≡ idEquiv A
eqweqmapid {A = A} = JRefl (λ X _ → A ≃ X) (idEquiv A)
univalenceStatement : {A B : Type ℓ} → isEquiv (eqweqmap {ℓ} {A} {B})
univalenceStatement = Univalence.thm eqweqmap eqweqmapid
univalenceUAH : {A B : Type ℓ} → (A ≡ B) ≃ (A ≃ B)
univalenceUAH = ( _ , univalenceStatement )
univalencePath : {A B : Type ℓ} → (A ≡ B) ≡ Lift (A ≃ B)
univalencePath = ua (compEquiv univalence LiftEquiv)
-- The computation rule for ua. Because of "ghcomp" it is now very
-- simple compared to cubicaltt:
-- https://github.com/mortberg/cubicaltt/blob/master/examples/univalence.ctt#L202
uaβ : {A B : Type ℓ} (e : A ≃ B) (x : A) → transport (ua e) x ≡ equivFun e x
uaβ e x = transportRefl (equivFun e x)
uaη : ∀ {A B : Type ℓ} → (P : A ≡ B) → ua (pathToEquiv P) ≡ P
uaη = J (λ _ q → ua (pathToEquiv q) ≡ q) (cong ua pathToEquivRefl ∙ uaIdEquiv)
-- Lemmas for constructing and destructing dependent paths in a function type where the domain is ua.
ua→ : ∀ {ℓ ℓ'} {A₀ A₁ : Type ℓ} {e : A₀ ≃ A₁} {B : (i : I) → Type ℓ'}
{f₀ : A₀ → B i0} {f₁ : A₁ → B i1}
→ ((a : A₀) → PathP B (f₀ a) (f₁ (e .fst a)))
→ PathP (λ i → ua e i → B i) f₀ f₁
ua→ {e = e} {f₀ = f₀} {f₁} h i a =
hcomp
(λ j → λ
{ (i = i0) → f₀ a
; (i = i1) → f₁ (lem a j)
})
(h (transp (λ j → ua e (~ j ∧ i)) (~ i) a) i)
where
lem : ∀ a₁ → e .fst (transport (sym (ua e)) a₁) ≡ a₁
lem a₁ = retEq e _ ∙ transportRefl _
ua→⁻ : ∀ {ℓ ℓ'} {A₀ A₁ : Type ℓ} {e : A₀ ≃ A₁} {B : (i : I) → Type ℓ'}
{f₀ : A₀ → B i0} {f₁ : A₁ → B i1}
→ PathP (λ i → ua e i → B i) f₀ f₁
→ ((a : A₀) → PathP B (f₀ a) (f₁ (e .fst a)))
ua→⁻ {e = e} {f₀ = f₀} {f₁} p a i =
hcomp
(λ k → λ
{ (i = i0) → f₀ a
; (i = i1) → f₁ (uaβ e a k)
})
(p i (transp (λ j → ua e (j ∧ i)) (~ i) a))
-- Useful lemma for unfolding a transported function over ua
-- If we would have regularity this would be refl
transportUAop₁ : ∀ {A B : Type ℓ} → (e : A ≃ B) (f : A → A) (x : B)
→ transport (λ i → ua e i → ua e i) f x ≡ equivFun e (f (invEq e x))
transportUAop₁ e f x i = transportRefl (equivFun e (f (invEq e (transportRefl x i)))) i
-- Binary version
transportUAop₂ : ∀ {ℓ} {A B : Type ℓ} → (e : A ≃ B) (f : A → A → A) (x y : B)
→ transport (λ i → ua e i → ua e i → ua e i) f x y ≡
equivFun e (f (invEq e x) (invEq e y))
transportUAop₂ e f x y i =
transportRefl (equivFun e (f (invEq e (transportRefl x i))
(invEq e (transportRefl y i)))) i
-- Alternative version of EquivJ that only requires a predicate on functions
elimEquivFun : {A B : Type ℓ} (P : (A : Type ℓ) → (A → B) → Type ℓ')
→ (r : P B (idfun B)) → (e : A ≃ B) → P A (e .fst)
elimEquivFun P r e = subst (λ x → P (x .fst) (x .snd .fst)) (contrSinglEquiv e) r
-- Isomorphism induction
elimIso : {B : Type ℓ} → (Q : {A : Type ℓ} → (A → B) → (B → A) → Type ℓ') →
(h : Q (idfun B) (idfun B)) → {A : Type ℓ} →
(f : A → B) → (g : B → A) → section f g → retract f g → Q f g
elimIso {ℓ} {ℓ'} {B} Q h {A} f g sfg rfg = rem1 f g sfg rfg
where
P : (A : Type ℓ) → (f : A → B) → Type (ℓ-max ℓ' ℓ)
P A f = (g : B → A) → section f g → retract f g → Q f g
rem : P B (idfun B)
rem g sfg rfg = subst (Q (idfun B)) (λ i b → (sfg b) (~ i)) h
rem1 : {A : Type ℓ} → (f : A → B) → P A f
rem1 f g sfg rfg = elimEquivFun P rem (f , isoToIsEquiv (iso f g sfg rfg)) g sfg rfg
uaInvEquiv : ∀ {A B : Type ℓ} → (e : A ≃ B) → ua (invEquiv e) ≡ sym (ua e)
uaInvEquiv {B = B} = EquivJ (λ _ e → ua (invEquiv e) ≡ sym (ua e))
(cong ua (invEquivIdEquiv B))
uaCompEquiv : ∀ {A B C : Type ℓ} → (e : A ≃ B) (f : B ≃ C) → ua (compEquiv e f) ≡ ua e ∙ ua f
uaCompEquiv {B = B} {C} = EquivJ (λ _ e → (f : B ≃ C) → ua (compEquiv e f) ≡ ua e ∙ ua f)
(λ f → cong ua (compEquivIdEquiv f)
∙ sym (cong (λ x → x ∙ ua f) uaIdEquiv
∙ sym (lUnit (ua f))))
| 41.96463
| 101
| 0.517968
|
4d4a582aaa8ba1d1e9bf9e4b44b6305cd2b69ce8
| 551
|
agda
|
Agda
|
Cats/End.agda
|
alessio-b-zak/cats
|
a3b69911c4c6ec380ddf6a0f4510d3a755734b86
|
[
"MIT"
] | null | null | null |
Cats/End.agda
|
alessio-b-zak/cats
|
a3b69911c4c6ec380ddf6a0f4510d3a755734b86
|
[
"MIT"
] | null | null | null |
Cats/End.agda
|
alessio-b-zak/cats
|
a3b69911c4c6ec380ddf6a0f4510d3a755734b86
|
[
"MIT"
] | null | null | null |
module Cats.End where
open import Level using (_⊔_)
open import Cats.Category
open import Cats.Category.Wedges using (Wedge ; Wedges)
open import Cats.Profunctor
module _ {lo la l≈ lo′ la′ l≈′}
{C : Category lo la l≈} {D : Category lo′ la′ l≈′}
where
IsEnd : {F : Profunctor C C D} → Wedge F → Set (lo ⊔ la ⊔ lo′ ⊔ la′ ⊔ l≈′)
IsEnd {F} = Wdg.IsTerminal
where
module Wdg = Category (Wedges F)
record End (F : Profunctor C C D) : Set (lo ⊔ la ⊔ lo′ ⊔ la′ ⊔ l≈′) where
field
wedge : Wedge F
isEnd : IsEnd wedge
| 22.958333
| 76
| 0.6098
|
0e36c66f7be1245dba73d51adc91f3ed56c2098e
| 458
|
agda
|
Agda
|
Numbers/Modulo/Definition.agda
|
Smaug123/agdaproofs
|
0f4230011039092f58f673abcad8fb0652e6b562
|
[
"MIT"
] | 4
|
2019-08-08T12:44:19.000Z
|
2022-01-28T06:04:15.000Z
|
Numbers/Modulo/Definition.agda
|
Smaug123/agdaproofs
|
0f4230011039092f58f673abcad8fb0652e6b562
|
[
"MIT"
] | 14
|
2019-01-06T21:11:59.000Z
|
2020-04-11T11:03:39.000Z
|
Numbers/Modulo/Definition.agda
|
Smaug123/agdaproofs
|
0f4230011039092f58f673abcad8fb0652e6b562
|
[
"MIT"
] | 1
|
2021-11-29T13:23:07.000Z
|
2021-11-29T13:23:07.000Z
|
{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Numbers.Naturals.Semiring
open import Numbers.Naturals.Order
module Numbers.Modulo.Definition where
record ℤn (n : ℕ) .(pr : 0 <N n) : Set where
field
x : ℕ
.xLess : x <N n
equalityZn : {n : ℕ} .{pr : 0 <N n} → {a b : ℤn n pr} → (ℤn.x a ≡ ℤn.x b) → a ≡ b
equalityZn {a = record { x = a ; xLess = aLess }} {record { x = .a ; xLess = bLess }} refl = refl
| 28.625
| 97
| 0.611354
|
fb29ad119fb915c1ed8587646d3834897111c9cc
| 23,024
|
agda
|
Agda
|
Definition/LogicalRelation/ShapeView.agda
|
CoqHott/logrel-mltt
|
e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04
|
[
"MIT"
] | 2
|
2018-06-21T08:39:01.000Z
|
2022-01-17T16:13:53.000Z
|
Definition/LogicalRelation/ShapeView.agda
|
CoqHott/logrel-mltt
|
e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04
|
[
"MIT"
] | null | null | null |
Definition/LogicalRelation/ShapeView.agda
|
CoqHott/logrel-mltt
|
e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04
|
[
"MIT"
] | 2
|
2022-01-26T14:55:51.000Z
|
2022-02-15T19:42:19.000Z
|
{-# OPTIONS --safe #-}
open import Definition.Typed.EqualityRelation
module Definition.LogicalRelation.ShapeView {{eqrel : EqRelSet}} where
open EqRelSet {{...}}
open import Definition.Untyped as U
open import Definition.Typed
open import Definition.Typed.Weakening
open import Definition.Typed.Properties
open import Definition.LogicalRelation
open import Definition.LogicalRelation.Properties.Escape
open import Definition.LogicalRelation.Properties.Reflexivity
open import Tools.Product
open import Tools.Empty using (⊥; ⊥-elim)
import Tools.PropositionalEquality as PE
import Data.Fin as Fin
import Data.Nat as Nat
-- Type for maybe embeddings of reducible types
data MaybeEmb (l : TypeLevel) (⊩⟨_⟩ : TypeLevel → Set) : Set where
noemb : ⊩⟨ l ⟩ → MaybeEmb l ⊩⟨_⟩
emb : ∀ {l′} → l′ <∞ l → MaybeEmb l′ ⊩⟨_⟩ → MaybeEmb l ⊩⟨_⟩
-- Specific reducible types with possible embedding
_⊩⟨_⟩U_^_ : (Γ : Con Term) (l : TypeLevel) (A : Term) (ll : TypeLevel) → Set
Γ ⊩⟨ l ⟩U A ^ ll = MaybeEmb l (λ l′ → Γ ⊩′⟨ l′ ⟩U A ^ ll)
_⊩⟨_⟩ℕ_ : (Γ : Con Term) (l : TypeLevel) (A : Term) → Set
Γ ⊩⟨ l ⟩ℕ A = MaybeEmb l (λ l′ → Γ ⊩ℕ A)
_⊩⟨_⟩Empty_^_ : (Γ : Con Term) (l : TypeLevel) (A : Term) (ll : Level) → Set
Γ ⊩⟨ l ⟩Empty A ^ ll = MaybeEmb l (λ l′ → Γ ⊩Empty A ^ ll)
_⊩⟨_⟩ne_^[_,_] : (Γ : Con Term) (l : TypeLevel) (A : Term) (r : Relevance) (ll : Level) → Set
Γ ⊩⟨ l ⟩ne A ^[ r , ll ] = MaybeEmb l (λ l′ → Γ ⊩ne A ^[ r , ll ])
_⊩⟨_⟩Π_^[_,_] : (Γ : Con Term) (l : TypeLevel) (A : Term) → Relevance → Level → Set
Γ ⊩⟨ l ⟩Π A ^[ r , lΠ ] = MaybeEmb l (λ l′ → Γ ⊩′⟨ l′ ⟩Π A ^[ r , lΠ ])
_⊩⟨_⟩∃_^_ : (Γ : Con Term) (l : TypeLevel) (A : Term) (ll : Level) → Set
Γ ⊩⟨ l ⟩∃ A ^ ll = MaybeEmb l (λ l′ → Γ ⊩′⟨ l′ ⟩∃ A ^ ll)
-- Construct a general reducible type from a specific
U-intr : ∀ {l Γ A ll } → (UA : Γ ⊩⟨ l ⟩U A ^ ll) → Γ ⊩⟨ l ⟩ A ^ [ ! , ll ]
U-intr (noemb UA) = Uᵣ UA
U-intr {l = ι ¹} (emb emb< x) = emb emb< (U-intr x)
U-intr {l = ∞} (emb ∞< x) = emb ∞< (U-intr x)
ℕ-intr : ∀ {l A Γ} → Γ ⊩⟨ l ⟩ℕ A → Γ ⊩⟨ l ⟩ A ^ [ ! , ι ⁰ ]
ℕ-intr (noemb x) = ℕᵣ x
ℕ-intr {l = ι ¹} (emb emb< x) = emb emb< (ℕ-intr x)
ℕ-intr {l = ∞} (emb ∞< x) = emb ∞< (ℕ-intr x)
Empty-intr : ∀ {l A Γ ll} → Γ ⊩⟨ l ⟩Empty A ^ ll → Γ ⊩⟨ l ⟩ A ^ [ % , ι ll ]
Empty-intr (noemb x) = Emptyᵣ x
Empty-intr {l = ι ¹} (emb emb< x) = emb emb< (Empty-intr x)
Empty-intr {l = ∞} (emb ∞< x) = emb ∞< (Empty-intr x)
ne-intr : ∀ {l A Γ r ll} → Γ ⊩⟨ l ⟩ne A ^[ r , ll ] → Γ ⊩⟨ l ⟩ A ^ [ r , ι ll ]
ne-intr (noemb x) = ne x
ne-intr {l = ι ¹} (emb emb< x) = emb emb< (ne-intr x)
ne-intr {l = ∞} (emb ∞< x) = emb ∞< (ne-intr x)
Π-intr : ∀ {l A Γ r ll} → Γ ⊩⟨ l ⟩Π A ^[ r , ll ] → Γ ⊩⟨ l ⟩ A ^ [ r , ι ll ]
Π-intr (noemb x) = Πᵣ x
Π-intr {l = ι ¹} (emb emb< x) = emb emb< (Π-intr x)
Π-intr {l = ∞} (emb ∞< x) = emb ∞< (Π-intr x)
∃-intr : ∀ {l A Γ ll} → Γ ⊩⟨ l ⟩∃ A ^ ll → Γ ⊩⟨ l ⟩ A ^ [ % , ι ll ]
∃-intr (noemb x) = ∃ᵣ x
∃-intr {l = ι ¹} (emb emb< x) = emb emb< (∃-intr x)
∃-intr {l = ∞} (emb ∞< x) = emb ∞< (∃-intr x)
-- Construct a specific reducible type from a general with some criterion
U-elim′ : ∀ {l Γ A r l′ ll} → Γ ⊢ A ⇒* Univ r l′ ^ [ ! , ll ] → Γ ⊩⟨ l ⟩ A ^ [ ! , ll ] → Γ ⊩⟨ l ⟩U A ^ ll
U-elim′ D (Uᵣ′ A ll r l l< e D') = noemb (Uᵣ r l l< e D')
U-elim′ D (ℕᵣ D') = ⊥-elim (U≢ℕ (whrDet* (D , Uₙ) (red D' , ℕₙ)))
U-elim′ D (ne′ K D' neK K≡K) = ⊥-elim (U≢ne neK (whrDet* (D , Uₙ) (red D' , ne neK)))
U-elim′ D (Πᵣ′ rF lF lG _ _ F G D' ⊢F ⊢G A≡A [F] [G] G-ext) = ⊥-elim (U≢Π (whrDet* (D , Uₙ) (red D' , Πₙ)))
U-elim′ {ι ¹} D (emb emb< x) with U-elim′ D x
U-elim′ {ι ¹} D (emb emb< x) | noemb x₁ = emb emb< (noemb x₁)
U-elim′ {ι ¹} D (emb emb< x) | emb () x₁
U-elim′ {∞} D (emb ∞< x) with U-elim′ D x
U-elim′ {∞} D (emb ∞< x) | noemb x₁ = emb ∞< (noemb x₁)
U-elim′ {∞} D (emb ∞< x) | emb <l x₁ = emb {l′ = ι ¹} ∞< (emb <l x₁)
U-elim : ∀ {l Γ r l′ ll′} → Γ ⊩⟨ l ⟩ Univ r l′ ^ [ ! , ll′ ] → Γ ⊩⟨ l ⟩U Univ r l′ ^ ll′
U-elim [U] = U-elim′ (id (escape [U])) [U]
ℕ-elim′ : ∀ {l A Γ ll} → Γ ⊢ A ⇒* ℕ ^ [ ! , ll ] → Γ ⊩⟨ l ⟩ A ^ [ ! , ll ] → Γ ⊩⟨ l ⟩ℕ A
ℕ-elim′ D (Uᵣ′ _ _ _ _ l< PE.refl [[ _ , _ , d ]]) = ⊥-elim (U≢ℕ (whrDet* (d , Uₙ) (D , ℕₙ)))
ℕ-elim′ D (ℕᵣ D′) = noemb D′
ℕ-elim′ D (ne′ K D′ neK K≡K) =
⊥-elim (ℕ≢ne neK (whrDet* (D , ℕₙ) (red D′ , ne neK)))
ℕ-elim′ D (Πᵣ′ rF lF lG _ _ F G D′ ⊢F ⊢G A≡A [F] [G] G-ext) =
⊥-elim (ℕ≢Π (whrDet* (D , ℕₙ) (red D′ , Πₙ)))
ℕ-elim′ {ι ¹} D (emb emb< x) with ℕ-elim′ D x
ℕ-elim′ {ι ¹} D (emb emb< x) | noemb x₁ = emb emb< (noemb x₁)
ℕ-elim′ {ι ¹} D (emb emb< x) | emb () x₁
ℕ-elim′ {∞} D (emb ∞< x) with ℕ-elim′ D x
ℕ-elim′ {∞} D (emb ∞< x) | noemb x₁ = emb ∞< (noemb x₁)
ℕ-elim′ {∞} D (emb ∞< x) | emb <l x₁ = emb {l′ = ι ¹} ∞< (emb <l x₁)
ℕ-elim : ∀ {Γ l ll } → Γ ⊩⟨ l ⟩ ℕ ^ [ ! , ll ] → Γ ⊩⟨ l ⟩ℕ ℕ
ℕ-elim [ℕ] = ℕ-elim′ (id (escape [ℕ])) [ℕ]
Empty-elim′ : ∀ {l A ll Γ} → Γ ⊢ A ⇒* Empty ll ^ [ % , ι ll ] → Γ ⊩⟨ l ⟩ A ^ [ % , ι ll ] → Γ ⊩⟨ l ⟩Empty A ^ ll
Empty-elim′ D (Emptyᵣ D′) = noemb D′
Empty-elim′ D (ne′ K D′ neK K≡K) =
⊥-elim (Empty≢ne neK (whrDet* (D , Emptyₙ) (red D′ , ne neK)))
Empty-elim′ D (Πᵣ′ rF lF lG _ _ F G D′ ⊢F ⊢G A≡A [F] [G] G-ext) =
⊥-elim (Empty≢Π (whrDet* (D , Emptyₙ) (red D′ , Πₙ)))
Empty-elim′ D (∃ᵣ′ F G D′ ⊢F ⊢G A≡A [F] [G] G-ext) =
⊥-elim (Empty≢∃ (whrDet* (D , Emptyₙ) (red D′ , ∃ₙ)))
Empty-elim′ {ι ¹} D (emb emb< x) with Empty-elim′ D x
Empty-elim′ {ι ¹} D (emb emb< x) | noemb x₁ = emb emb< (noemb x₁)
Empty-elim′ {ι ¹} D (emb emb< x) | emb () x₁
Empty-elim′ {∞} D (emb ∞< x) with Empty-elim′ D x
Empty-elim′ {∞} D (emb ∞< x) | noemb x₁ = emb ∞< (noemb x₁)
Empty-elim′ {∞} D (emb ∞< x) | emb <l x₁ = emb {l′ = ι ¹} ∞< (emb <l x₁)
Empty-elim : ∀ {Γ l ll } → Γ ⊩⟨ l ⟩ Empty ll ^ [ % , ι ll ] → Γ ⊩⟨ l ⟩Empty Empty ll ^ ll
Empty-elim [Empty] = Empty-elim′ (id (escape [Empty])) [Empty]
ne-elim′ : ∀ {l A Γ K r ll ll'} → Γ ⊢ A ⇒* K ^ [ r , ι ll ] → Neutral K → Γ ⊩⟨ l ⟩ A ^ [ r , ll' ] → ι ll PE.≡ ll' → Γ ⊩⟨ l ⟩ne A ^[ r , ll ]
ne-elim′ D neK (Uᵣ′ _ _ _ _ l< PE.refl [[ _ , _ , d ]]) e = ⊥-elim (U≢ne neK (whrDet* (d , Uₙ) (D , ne neK)))
ne-elim′ D neK (ℕᵣ D′) e = ⊥-elim (ℕ≢ne neK (whrDet* (red D′ , ℕₙ) (D , ne neK)))
ne-elim′ D neK (ne (ne K D′ neK′ K≡K)) PE.refl = noemb (ne K D′ neK′ K≡K)
ne-elim′ D neK (Πᵣ′ rF lF lG _ _ F G D′ ⊢F ⊢G A≡A [F] [G] G-ext) e =
⊥-elim (Π≢ne neK (whrDet* (red D′ , Πₙ) (D , ne neK)))
ne-elim′ D neK (∃ᵣ′ F G D′ ⊢F ⊢G A≡A [F] [G] G-ext) e =
⊥-elim (∃≢ne neK (whrDet* (red D′ , ∃ₙ) (D , ne neK)))
ne-elim′ D neK (Emptyᵣ D′) e = ⊥-elim (Empty≢ne neK (whrDet* (red D′ , Emptyₙ) (D , ne neK)))
ne-elim′ {ι ¹} D neK (emb emb< x) e with ne-elim′ D neK x e
ne-elim′ {ι ¹} D neK (emb emb< x) e | noemb x₁ = emb emb< (noemb x₁)
ne-elim′ {ι ¹} D neK (emb emb< x) e | emb () x₁
ne-elim′ {∞} D neK (emb ∞< x) e with ne-elim′ D neK x e
ne-elim′ {∞} D _ (emb ∞< x) e | noemb x₁ = emb ∞< (noemb x₁)
ne-elim′ {∞} D _ (emb ∞< x) e | emb <l x₁ = emb {l′ = ι ¹} ∞< (emb <l x₁)
ne-elim : ∀ {Γ l K r ll} → Neutral K → Γ ⊩⟨ l ⟩ K ^ [ r , ι ll ] → Γ ⊩⟨ l ⟩ne K ^[ r , ll ]
ne-elim neK [K] = ne-elim′ (id (escape [K])) neK [K] PE.refl
Π-elim′ : ∀ {l A Γ F G rF lF lG r lΠ} → Γ ⊢ A ⇒* Π F ^ rF ° lF ▹ G ° lG ° lΠ ^ [ r , ι lΠ ] → Γ ⊩⟨ l ⟩ A ^ [ r , ι lΠ ] → Γ ⊩⟨ l ⟩Π A ^[ r , lΠ ]
Π-elim′ D (Uᵣ′ _ _ _ _ l< X [[ _ , _ , d ]]) = ⊥-elim (U≢Π (whrDet* (d , Uₙ) (D , Πₙ)))
Π-elim′ D (ℕᵣ D′) = ⊥-elim (ℕ≢Π (whrDet* (red D′ , ℕₙ) (D , Πₙ)))
Π-elim′ D (Emptyᵣ D′) = ⊥-elim (Empty≢Π (whrDet* (red D′ , Emptyₙ) (D , Πₙ)))
Π-elim′ D (ne′ K D′ neK K≡K) =
⊥-elim (Π≢ne neK (whrDet* (D , Πₙ) (red D′ , ne neK)))
Π-elim′ D (Πᵣ′ rF lF lG lF≤ lG≤ F G D′ ⊢F ⊢G A≡A [F] [G] G-ext) =
noemb (Πᵣ rF lF lG lF≤ lG≤ F G D′ ⊢F ⊢G A≡A [F] [G] G-ext)
Π-elim′ D (∃ᵣ′ F G D′ ⊢F ⊢G A≡A [F] [G] G-ext) =
⊥-elim (Π≢∃ (whrDet* (D , Πₙ) (red D′ , ∃ₙ)))
Π-elim′ {ι ¹} D (emb emb< x) with Π-elim′ D x
Π-elim′ {ι ¹} D (emb emb< x) | noemb x₁ = emb emb< (noemb x₁)
Π-elim′ {ι ¹} D (emb emb< x) | emb () x₁
Π-elim′ {∞} D (emb ∞< x) with Π-elim′ D x
Π-elim′ {∞} D (emb ∞< x) | noemb x₁ = emb ∞< (noemb x₁)
Π-elim′ {∞} D (emb ∞< x) | emb <l x₁ = emb {l′ = ι ¹} ∞< (emb <l x₁)
Π-elim : ∀ {Γ F G rF lF lG r lΠ l} → Γ ⊩⟨ l ⟩ Π F ^ rF ° lF ▹ G ° lG ° lΠ ^ [ r , ι lΠ ] → Γ ⊩⟨ l ⟩Π Π F ^ rF ° lF ▹ G ° lG ° lΠ ^[ r , lΠ ]
Π-elim [Π] = Π-elim′ (id (escape [Π])) [Π]
∃-elim′ : ∀ {l A Γ F G ll} → Γ ⊢ A ⇒* ∃ F ▹ G ^ [ % , ι ll ] → Γ ⊩⟨ l ⟩ A ^ [ % , ι ll ] → Γ ⊩⟨ l ⟩∃ A ^ ll
∃-elim′ D (Emptyᵣ D′) = ⊥-elim (Empty≢∃ (whrDet* (red D′ , Emptyₙ) (D , ∃ₙ)))
∃-elim′ D (ne′ K D′ neK K≡K) =
⊥-elim (∃≢ne neK (whrDet* (D , ∃ₙ) (red D′ , ne neK)))
∃-elim′ D (Πᵣ′ rF lF lG _ _ F G D′ ⊢F ⊢G A≡A [F] [G] G-ext) =
⊥-elim (Π≢∃ (whrDet* (red D′ , Πₙ) (D , ∃ₙ)))
∃-elim′ D (∃ᵣ′ F G D′ ⊢F ⊢G A≡A [F] [G] G-ext) =
noemb (∃ᵣ F G D′ ⊢F ⊢G A≡A [F] [G] G-ext)
∃-elim′ {ι ¹} D (emb emb< x) with ∃-elim′ D x
∃-elim′ {ι ¹} D (emb emb< x) | noemb x₁ = emb emb< (noemb x₁)
∃-elim′ {ι ¹} D (emb emb< x) | emb () x₁
∃-elim′ {∞} D (emb ∞< x) with ∃-elim′ D x
∃-elim′ {∞} D (emb ∞< x) | noemb x₁ = emb ∞< (noemb x₁)
∃-elim′ {∞} D (emb ∞< x) | emb <l x₁ = emb {l′ = ι ¹} ∞< (emb <l x₁)
∃-elim : ∀ {Γ F G l ll} → Γ ⊩⟨ l ⟩ ∃ F ▹ G ^ [ % , ι ll ] → Γ ⊩⟨ l ⟩∃ (∃ F ▹ G) ^ ll
∃-elim [∃] = ∃-elim′ (id (escape [∃])) [∃]
-- Extract a type and a level from a maybe embedding
extractMaybeEmb : ∀ {l ⊩⟨_⟩} → MaybeEmb l ⊩⟨_⟩ → ∃ λ l′ → ⊩⟨ l′ ⟩
extractMaybeEmb (noemb x) = _ , x
extractMaybeEmb (emb <l x) = extractMaybeEmb x
-- A view for constructor equality of types where embeddings are ignored
data ShapeView Γ : ∀ l l′ A B r r' (p : Γ ⊩⟨ l ⟩ A ^ r) (q : Γ ⊩⟨ l′ ⟩ B ^ r') → Set where
Uᵥ : ∀ {A B l l′ ll ll′} UA UB → ShapeView Γ l l′ A B [ ! , ll ] [ ! , ll′ ] (Uᵣ UA) (Uᵣ UB)
ℕᵥ : ∀ {A B l l′} ℕA ℕB → ShapeView Γ l l′ A B [ ! , ι ⁰ ] [ ! , ι ⁰ ] (ℕᵣ ℕA) (ℕᵣ ℕB)
Emptyᵥ : ∀ {A B l l′ ll ll'} EmptyA EmptyB → ShapeView Γ l l′ A B [ % , ι ll ] [ % , ι ll' ] (Emptyᵣ EmptyA) (Emptyᵣ EmptyB)
ne : ∀ {A B l l′ r lr r' lr'} neA neB
→ ShapeView Γ l l′ A B [ r , ι lr ] [ r' , ι lr' ] (ne neA) (ne neB)
Πᵥ : ∀ {A B l l′ r r' lΠ lΠ' } ΠA ΠB
→ ShapeView Γ l l′ A B [ r , ι lΠ ] [ r' , ι lΠ' ] (Πᵣ ΠA) (Πᵣ ΠB)
∃ᵥ : ∀ {A B l l′ ll ll'} ∃A ∃B
→ ShapeView Γ l l′ A B [ % , ι ll ] [ % , ι ll' ] (∃ᵣ ∃A) (∃ᵣ ∃B)
emb⁰¹ : ∀ {A B r r' l p q}
→ ShapeView Γ (ι ⁰) l A B r r' p q
→ ShapeView Γ (ι ¹) l A B r r' (emb emb< p) q
emb¹⁰ : ∀ {A B r r' l p q}
→ ShapeView Γ l (ι ⁰) A B r r' p q
→ ShapeView Γ l (ι ¹) A B r r' p (emb emb< q)
emb¹∞ : ∀ {A B r r' l p q}
→ ShapeView Γ (ι ¹) l A B r r' p q
→ ShapeView Γ ∞ l A B r r' (emb ∞< p) q
emb∞¹ : ∀ {A B r r' l p q}
→ ShapeView Γ l (ι ¹) A B r r' p q
→ ShapeView Γ l ∞ A B r r' p (emb ∞< q)
-- Construct a shape view from an equality
goodCases : ∀ {l l′ Γ A B r r'} ([A] : Γ ⊩⟨ l ⟩ A ^ r) ([B] : Γ ⊩⟨ l′ ⟩ B ^ r')
→ Γ ⊩⟨ l ⟩ A ≡ B ^ r / [A] → ShapeView Γ l l′ A B r r' [A] [B]
goodCases (Uᵣ UA) (Uᵣ UB) A≡B = Uᵥ UA UB
goodCases (Uᵣ′ _ _ _ _ _ _ ⊢Γ) (ℕᵣ D) D' = ⊥-elim (U≢ℕ (whrDet* (D' , Uₙ) (red D , ℕₙ)))
goodCases (Uᵣ′ _ _ _ _ _ _ ⊢Γ) (Emptyᵣ D) D' = ⊥-elim (U≢Empty (whrDet* (D' , Uₙ) (red D , Emptyₙ)))
goodCases (Uᵣ′ _ _ _ _ _ _ ⊢Γ) (ne′ K D neK K≡K) D' = ⊥-elim (U≢ne neK (whrDet* (D' , Uₙ) (red D , ne neK)))
goodCases (Uᵣ′ _ _ _ _ _ _ ⊢Γ) (Πᵣ′ rF lF lG _ _ F G D ⊢F ⊢G A≡A [F] [G] G-ext) D' =
⊥-elim (U≢Π (whrDet* (D' , Uₙ) (red D , Πₙ)))
goodCases (Uᵣ′ _ _ _ _ _ _ ⊢Γ) (∃ᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext) D' =
⊥-elim (U≢∃ (whrDet* (D' , Uₙ) (red D , ∃ₙ)))
goodCases (ℕᵣ D) (Uᵣ′ _ _ _ _ _ _ D') A≡B = ⊥-elim (U≢ℕ (whrDet* (red D' , Uₙ) (A≡B , ℕₙ)))
goodCases (ℕᵣ _) (Emptyᵣ D') D =
⊥-elim (ℕ≢Empty (whrDet* (D , ℕₙ) (red D' , Emptyₙ)))
goodCases (ℕᵣ ℕA) (ℕᵣ ℕB) A≡B = ℕᵥ ℕA ℕB
goodCases (ℕᵣ D) (ne′ K D₁ neK K≡K) A≡B =
⊥-elim (ℕ≢ne neK (whrDet* (A≡B , ℕₙ) (red D₁ , ne neK)))
goodCases (ℕᵣ D) (Πᵣ′ rF lF lG _ _ F G D₁ ⊢F ⊢G A≡A [F] [G] G-ext) A≡B =
⊥-elim (ℕ≢Π (whrDet* (A≡B , ℕₙ) (red D₁ , Πₙ)))
goodCases (ℕᵣ D) (∃ᵣ′ F G D₁ ⊢F ⊢G A≡A [F] [G] G-ext) A≡B =
⊥-elim (ℕ≢∃ (whrDet* (A≡B , ℕₙ) (red D₁ , ∃ₙ)))
goodCases (Emptyᵣ D) (Uᵣ′ _ _ _ _ _ _ D') A≡B = ⊥-elim (U≢Empty (whrDet* (red D' , Uₙ) (A≡B , Emptyₙ)))
goodCases (Emptyᵣ _) (ℕᵣ D') D =
⊥-elim (ℕ≢Empty (whrDet* (red D' , ℕₙ) (D , Emptyₙ)))
goodCases (Emptyᵣ EmptyA) (Emptyᵣ EmptyB) A≡B = Emptyᵥ EmptyA EmptyB
goodCases (Emptyᵣ D) (ne′ K D₁ neK K≡K) A≡B =
⊥-elim (Empty≢ne neK (whrDet* (A≡B , Emptyₙ) (red D₁ , ne neK)))
goodCases (Emptyᵣ D) (Πᵣ′ rF lF lG _ _ F G D₁ ⊢F ⊢G A≡A [F] [G] G-ext) A≡B =
⊥-elim (Empty≢Π (whrDet* (A≡B , Emptyₙ) (red D₁ , Πₙ)))
goodCases (Emptyᵣ D) (∃ᵣ′ F G D₁ ⊢F ⊢G A≡A [F] [G] G-ext) A≡B =
⊥-elim (Empty≢∃ (whrDet* (A≡B , Emptyₙ) (red D₁ , ∃ₙ)))
goodCases (ne′ K D neK K≡K) (Uᵣ′ _ _ _ _ _ _ D') (ne₌ M D'' neM K≡M) =
⊥-elim (U≢ne neM (whrDet* (red D' , Uₙ) (red D'' , ne neM)))
goodCases (ne′ K D neK K≡K) (ℕᵣ D₁) (ne₌ M D′ neM K≡M) =
⊥-elim (ℕ≢ne neM (whrDet* (red D₁ , ℕₙ) (red D′ , ne neM)))
goodCases (ne′ K D neK K≡K) (Emptyᵣ D₁) (ne₌ M D′ neM K≡M) =
⊥-elim (Empty≢ne neM (whrDet* (red D₁ , Emptyₙ) (red D′ , ne neM)))
goodCases (ne neA) (ne neB) A≡B = ne neA neB
goodCases (ne′ K D neK K≡K) (Πᵣ′ rF lF lG _ _ F G D₁ ⊢F ⊢G A≡A [F] [G] G-ext) (ne₌ M D′ neM K≡M) =
⊥-elim (Π≢ne neM (whrDet* (red D₁ , Πₙ) (red D′ , ne neM)))
goodCases (ne′ K D neK K≡K) (∃ᵣ′ F G D₁ ⊢F ⊢G A≡A [F] [G] G-ext) (ne₌ M D′ neM K≡M) =
⊥-elim (∃≢ne neM (whrDet* (red D₁ , ∃ₙ) (red D′ , ne neM)))
goodCases (Πᵣ′ rF lF lG _ _ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (Uᵣ′ _ _ _ _ _ _ D')
(Π₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) =
⊥-elim (U≢Π (whrDet* (red D' , Uₙ) (D′ , Πₙ)))
goodCases (Πᵣ′ rF lF lG _ _ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (ℕᵣ D₁)
(Π₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) =
⊥-elim (ℕ≢Π (whrDet* (red D₁ , ℕₙ) (D′ , Πₙ)))
goodCases (Πᵣ′ rF lF lG _ _ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (Emptyᵣ D₁)
(Π₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) =
⊥-elim (Empty≢Π (whrDet* (red D₁ , Emptyₙ) (D′ , Πₙ)))
goodCases (Πᵣ′ rF lF lG _ _ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (ne′ K D₁ neK K≡K)
(Π₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) =
⊥-elim (Π≢ne neK (whrDet* (D′ , Πₙ) (red D₁ , ne neK)))
goodCases (Πᵣ ΠA) (Πᵣ ΠB) A≡B = Πᵥ ΠA ΠB
goodCases (Πᵣ′ rF lF lG _ _ F G D ⊢F ⊢G A≡A [F] [G] G-ext)
(∃ᵣ′ F₁ G₁ D₁ ⊢F₁ ⊢G₁ A≡A₁ [F]₁ [G]₁ G-ext₁)
(Π₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) =
⊥-elim (Π≢∃ (whrDet* (D′ , Πₙ) (red D₁ , ∃ₙ)))
goodCases (∃ᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (Uᵣ′ _ _ _ _ _ _ D')
(∃₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) =
⊥-elim (U≢∃ (whrDet* (red D' , Uₙ) (D′ , ∃ₙ)))
goodCases (∃ᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (ℕᵣ D₁)
(∃₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) =
⊥-elim (ℕ≢∃ (whrDet* (red D₁ , ℕₙ) (D′ , ∃ₙ)))
goodCases (∃ᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (Emptyᵣ D₁)
(∃₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) =
⊥-elim (Empty≢∃ (whrDet* (red D₁ , Emptyₙ) (D′ , ∃ₙ)))
goodCases (∃ᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (ne′ K D₁ neK K≡K)
(∃₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) =
⊥-elim (∃≢ne neK (whrDet* (D′ , ∃ₙ) (red D₁ , ne neK)))
goodCases (∃ᵣ′ F₁ G₁ D₁ ⊢F₁ ⊢G₁ A≡A₁ [F]₁ [G]₁ G-ext₁)
(Πᵣ′ rF lF lG _ _ F G D ⊢F ⊢G A≡A [F] [G] G-ext)
(∃₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) =
⊥-elim (Π≢∃ (whrDet* (red D , Πₙ) (D′ , ∃ₙ)))
goodCases (∃ᵣ ∃A) (∃ᵣ ∃B) A≡B = ∃ᵥ ∃A ∃B
goodCases {l} {ι ¹} [A] (emb emb< x) A≡B = emb¹⁰ (goodCases {l} {ι ⁰} [A] x A≡B)
goodCases {l} {∞} [A] (emb ∞< x) A≡B = emb∞¹ (goodCases {l} {ι ¹} [A] x A≡B)
goodCases {ι ¹} {l} (emb emb< x) [B] A≡B = emb⁰¹ (goodCases {ι ⁰} {l} x [B] A≡B)
goodCases {∞} {l} (emb ∞< x) [B] A≡B = emb¹∞ (goodCases {ι ¹} {l} x [B] A≡B)
-- Construct an shape view between two derivations of the same type
goodCasesRefl : ∀ {l l′ Γ A r r'} ([A] : Γ ⊩⟨ l ⟩ A ^ r) ([A′] : Γ ⊩⟨ l′ ⟩ A ^ r')
→ ShapeView Γ l l′ A A r r' [A] [A′]
goodCasesRefl [A] [A′] = goodCases [A] [A′] (reflEq [A])
-- A view for constructor equality between three types
data ShapeView₃ Γ : ∀ l l′ l″ A B C r1 r2 r3
(p : Γ ⊩⟨ l ⟩ A ^ r1)
(q : Γ ⊩⟨ l′ ⟩ B ^ r2)
(r : Γ ⊩⟨ l″ ⟩ C ^ r3) → Set where
Uᵥ : ∀ {A B C l l′ l″ ll ll′ ll″ } UA UB UC → ShapeView₃ Γ l l′ l″ A B C [ ! , ll ] [ ! , ll′ ] [ ! , ll″ ]
(Uᵣ UA) (Uᵣ UB) (Uᵣ UC)
ℕᵥ : ∀ {A B C l l′ l″} ℕA ℕB ℕC
→ ShapeView₃ Γ l l′ l″ A B C [ ! , ι ⁰ ] [ ! , ι ⁰ ] [ ! , ι ⁰ ] (ℕᵣ ℕA) (ℕᵣ ℕB) (ℕᵣ ℕC)
Emptyᵥ : ∀ {A B C l l′ l″ ll ll′ ll″} EmptyA EmptyB EmptyC
→ ShapeView₃ Γ l l′ l″ A B C [ % , ι ll ] [ % , ι ll′ ] [ % , ι ll″ ] (Emptyᵣ EmptyA) (Emptyᵣ EmptyB) (Emptyᵣ EmptyC)
ne : ∀ {A B C r1 r2 r3 l1 l2 l3 l l′ l″} neA neB neC
→ ShapeView₃ Γ l l′ l″ A B C [ r1 , ι l1 ] [ r2 , ι l2 ] [ r3 , ι l3 ] (ne neA) (ne neB) (ne neC)
Πᵥ : ∀ {A B C r1 r2 r3 lΠ1 lΠ2 lΠ3 l l′ l″} ΠA ΠB ΠC
→ ShapeView₃ Γ l l′ l″ A B C [ r1 , ι lΠ1 ] [ r2 , ι lΠ2 ] [ r3 , ι lΠ3 ] (Πᵣ ΠA) (Πᵣ ΠB) (Πᵣ ΠC)
∃ᵥ : ∀ {A B C l l′ l″ ll ll' ll''} ΠA ΠB ΠC
→ ShapeView₃ Γ l l′ l″ A B C [ % , ι ll ] [ % , ι ll' ] [ % , ι ll'' ] (∃ᵣ ΠA) (∃ᵣ ΠB) (∃ᵣ ΠC)
emb⁰¹¹ : ∀ {A B C l l′ r1 r2 r3 p q r}
→ ShapeView₃ Γ (ι ⁰) l l′ A B C r1 r2 r3 p q r
→ ShapeView₃ Γ (ι ¹) l l′ A B C r1 r2 r3 (emb emb< p) q r
emb¹⁰¹ : ∀ {A B C l l′ r1 r2 r3 p q r}
→ ShapeView₃ Γ l (ι ⁰) l′ A B C r1 r2 r3 p q r
→ ShapeView₃ Γ l (ι ¹) l′ A B C r1 r2 r3 p (emb emb< q) r
emb¹¹⁰ : ∀ {A B C l l′ r1 r2 r3 p q r}
→ ShapeView₃ Γ l l′ (ι ⁰) A B C r1 r2 r3 p q r
→ ShapeView₃ Γ l l′ (ι ¹) A B C r1 r2 r3 p q (emb emb< r)
emb¹∞∞ : ∀ {A B C l l′ r1 r2 r3 p q r}
→ ShapeView₃ Γ (ι ¹) l l′ A B C r1 r2 r3 p q r
→ ShapeView₃ Γ ∞ l l′ A B C r1 r2 r3 (emb ∞< p) q r
emb∞¹∞ : ∀ {A B C l l′ r1 r2 r3 p q r}
→ ShapeView₃ Γ l (ι ¹) l′ A B C r1 r2 r3 p q r
→ ShapeView₃ Γ l ∞ l′ A B C r1 r2 r3 p (emb ∞< q) r
emb∞∞¹ : ∀ {A B C l l′ r1 r2 r3 p q r}
→ ShapeView₃ Γ l l′ (ι ¹) A B C r1 r2 r3 p q r
→ ShapeView₃ Γ l l′ ∞ A B C r1 r2 r3 p q (emb ∞< r)
-- Combines two two-way views into a three-way view
combine : ∀ {Γ l l′ l″ l‴ A B C r1 r2 r2' r3 [A] [B] [B]′ [C]}
→ ShapeView Γ l l′ A B r1 r2 [A] [B]
→ ShapeView Γ l″ l‴ B C r2' r3 [B]′ [C]
→ ShapeView₃ Γ l l′ l‴ A B C r1 r2 r3 [A] [B] [C]
combine (Uᵥ UA UB) (Uᵥ UB' UC) = Uᵥ UA UB UC
combine (Uᵥ UA (Uᵣ r l′ l< PE.refl D)) (ℕᵥ ℕA ℕB) =
⊥-elim (U≢ℕ (whrDet* (red D , Uₙ) (red ℕA , ℕₙ)))
combine (Uᵥ UA (Uᵣ r l′ l< PE.refl D)) (Emptyᵥ EmptyA EmptyB) =
⊥-elim (U≢Empty (whrDet* (red D , Uₙ) (red EmptyA , Emptyₙ)))
combine (Uᵥ UA (Uᵣ r l′ l< PE.refl D)) (ne (ne K D' neK K≡K) neB) =
⊥-elim (U≢ne neK (whrDet* (red D , Uₙ) (red D' , ne neK)))
combine (Uᵥ UA (Uᵣ r l′ l< PE.refl D)) (Πᵥ (Πᵣ rF lF lG _ _ F G D' ⊢F ⊢G A≡A [F] [G] G-ext) ΠB) =
⊥-elim (U≢Π (whrDet* (red D , Uₙ) (red D' , Πₙ)))
combine (Uᵥ UA (Uᵣ r l′ l< PE.refl D)) (∃ᵥ (∃ᵣ F G D' ⊢F ⊢G A≡A [F] [G] G-ext) ∃B) =
⊥-elim (U≢∃ (whrDet* (red D , Uₙ) (red D' , ∃ₙ)))
combine (ℕᵥ ℕA ℕB) (Uᵥ (Uᵣ r l′ l< PE.refl D) UB) =
⊥-elim (U≢ℕ (whrDet* (red D , Uₙ) (red ℕB , ℕₙ)))
combine (ℕᵥ ℕA ℕB) (Emptyᵥ EmptyA EmptyB) =
⊥-elim (ℕ≢Empty (whrDet* (red ℕB , ℕₙ) (red EmptyA , Emptyₙ)))
combine (ℕᵥ ℕA₁ ℕB₁) (ℕᵥ ℕA ℕB) = ℕᵥ ℕA₁ ℕB₁ ℕB
combine (ℕᵥ ℕA ℕB) (ne (ne K D neK K≡K) neB) =
⊥-elim (ℕ≢ne neK (whrDet* (red ℕB , ℕₙ) (red D , ne neK)))
combine (ℕᵥ ℕA ℕB) (Πᵥ (Πᵣ rF lF lG _ _ F G D ⊢F ⊢G A≡A [F] [G] G-ext) ΠB) =
⊥-elim (ℕ≢Π (whrDet* (red ℕB , ℕₙ) (red D , Πₙ)))
combine (ℕᵥ ℕA ℕB) (∃ᵥ (∃ᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext) ∃B) =
⊥-elim (ℕ≢∃ (whrDet* (red ℕB , ℕₙ) (red D , ∃ₙ)))
combine (Emptyᵥ EmptyA EmptyB) (Uᵥ (Uᵣ r l′ l< PE.refl D) UB) =
⊥-elim (U≢Empty (whrDet* (red D , Uₙ) (red EmptyB , Emptyₙ)))
combine (Emptyᵥ EmptyA EmptyB) (ℕᵥ ℕA ℕB) =
⊥-elim (Empty≢ℕ (whrDet* (red EmptyB , Emptyₙ) (red ℕA , ℕₙ)))
combine (Emptyᵥ EmptyA₁ EmptyB₁) (Emptyᵥ EmptyA EmptyB) = Emptyᵥ EmptyA₁ EmptyB₁ EmptyB
combine (Emptyᵥ EmptyA EmptyB) (ne (ne K D neK K≡K) neB) =
⊥-elim (Empty≢ne neK (whrDet* (red EmptyB , Emptyₙ) (red D , ne neK)))
combine (Emptyᵥ EmptyA EmptyB) (Πᵥ (Πᵣ rF lF lG _ _ F G D ⊢F ⊢G A≡A [F] [G] G-ext) ΠB) =
⊥-elim (Empty≢Π (whrDet* (red EmptyB , Emptyₙ) (red D , Πₙ)))
combine (Emptyᵥ EmptyA EmptyB) (∃ᵥ (∃ᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext) ∃B) =
⊥-elim (Empty≢∃ (whrDet* (red EmptyB , Emptyₙ) (red D , ∃ₙ)))
combine (ne neA (ne K D' neK K≡K)) (Uᵥ (Uᵣ r l′ l< PE.refl D) UB) =
⊥-elim (U≢ne neK (whrDet* (red D , Uₙ) (red D' , ne neK)))
combine (ne neA (ne K D neK K≡K)) (ℕᵥ ℕA ℕB) =
⊥-elim (ℕ≢ne neK (whrDet* (red ℕA , ℕₙ) (red D , ne neK)))
combine (ne neA (ne K D neK K≡K)) (Emptyᵥ EmptyA EmptyB) =
⊥-elim (Empty≢ne neK (whrDet* (red EmptyA , Emptyₙ) (red D , ne neK)))
combine (ne neA₁ neB₁) (ne neA neB) = ne neA₁ neB₁ neB
combine (ne neA (ne K D₁ neK K≡K)) (Πᵥ (Πᵣ rF lF lG _ _ F G D ⊢F ⊢G A≡A [F] [G] G-ext) ΠB) =
⊥-elim (Π≢ne neK (whrDet* (red D , Πₙ) (red D₁ , ne neK)))
combine (ne neA (ne K D₁ neK K≡K)) (∃ᵥ (∃ᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext) ∃B) =
⊥-elim (∃≢ne neK (whrDet* (red D , ∃ₙ) (red D₁ , ne neK)))
combine (Πᵥ ΠA (Πᵣ rF lF lG _ _ F G D' ⊢F ⊢G A≡A [F] [G] G-ext)) (Uᵥ (Uᵣ r l′ l< PE.refl D) UB) =
⊥-elim (U≢Π (whrDet* (red D , Uₙ) (red D' , Πₙ)))
combine (Πᵥ ΠA (Πᵣ rF lF lG _ _ F G D ⊢F ⊢G A≡A [F] [G] G-ext)) (ℕᵥ ℕA ℕB) =
⊥-elim (ℕ≢Π (whrDet* (red ℕA , ℕₙ) (red D , Πₙ)))
combine (Πᵥ ΠA (Πᵣ rF lF lG _ _ F G D ⊢F ⊢G A≡A [F] [G] G-ext)) (Emptyᵥ EmptyA EmptyB) =
⊥-elim (Empty≢Π (whrDet* (red EmptyA , Emptyₙ) (red D , Πₙ)))
combine (Πᵥ ΠA (Πᵣ rF lF lG _ _ F G D₁ ⊢F ⊢G A≡A [F] [G] G-ext)) (ne (ne K D neK K≡K) neB) =
⊥-elim (Π≢ne neK (whrDet* (red D₁ , Πₙ) (red D , ne neK)))
combine (Πᵥ ΠA₁ ΠB₁) (Πᵥ ΠA ΠB) = Πᵥ ΠA₁ ΠB₁ ΠB
combine (Πᵥ ΠA (Πᵣ rF lF lG _ _ F G D ⊢F ⊢G A≡A [F] [G] G-ext))
(∃ᵥ (∃ᵣ F₁ G₁ D₁ ⊢F₁ ⊢G₁ A≡A₁ [F]₁ [G]₁ G-ext₁) ∃B) =
⊥-elim (Π≢∃ (whrDet* (red D , Πₙ) (red D₁ , ∃ₙ)))
combine (∃ᵥ ∃A (∃ᵣ F G D' ⊢F ⊢G A≡A [F] [G] G-ext)) (Uᵥ (Uᵣ r l′ l< PE.refl D) UB) =
⊥-elim (U≢∃ (whrDet* (red D , Uₙ) (red D' , ∃ₙ)))
combine (∃ᵥ ∃A (∃ᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext)) (ℕᵥ ℕA ℕB) =
⊥-elim (ℕ≢∃ (whrDet* (red ℕA , ℕₙ) (red D , ∃ₙ)))
combine (∃ᵥ ∃A (∃ᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext)) (Emptyᵥ EmptyA EmptyB) =
⊥-elim (Empty≢∃ (whrDet* (red EmptyA , Emptyₙ) (red D , ∃ₙ)))
combine (∃ᵥ ∃A (∃ᵣ F G D₁ ⊢F ⊢G A≡A [F] [G] G-ext)) (ne (ne K D neK K≡K) neB) =
⊥-elim (∃≢ne neK (whrDet* (red D₁ , ∃ₙ) (red D , ne neK)))
combine (∃ᵥ ΠA (∃ᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext))
(Πᵥ (Πᵣ rF₁ lF₁ lG₁ _ _ F₁ G₁ D₁ ⊢F₁ ⊢G₁ A≡A₁ [F]₁ [G]₁ G-ext₁) ∃B) =
⊥-elim (Π≢∃ (whrDet* (red D₁ , Πₙ) (red D , ∃ₙ)))
combine (∃ᵥ ∃A ∃B) (∃ᵥ ∃A₁ ∃B₁) = ∃ᵥ ∃A ∃B ∃B₁
combine (emb⁰¹ [AB]) [BC] = emb⁰¹¹ (combine [AB] [BC])
combine (emb¹⁰ [AB]) [BC] = emb¹⁰¹ (combine [AB] [BC])
combine [AB] (emb⁰¹ [BC]) = combine [AB] [BC]
combine [AB] (emb¹⁰ [BC]) = emb¹¹⁰ (combine [AB] [BC])
combine (emb¹∞ [AB]) [BC] = emb¹∞∞ (combine [AB] [BC])
combine (emb∞¹ [AB]) [BC] = emb∞¹∞ (combine [AB] [BC])
combine [AB] (emb¹∞ [BC]) = combine [AB] [BC]
combine [AB] (emb∞¹ [BC]) = emb∞∞¹ (combine [AB] [BC])
| 53.544186
| 146
| 0.493007
|
c5739c3a79b770e5a4046ffc1c28cf6c354c8a90
| 802
|
agda
|
Agda
|
Cubical/Data/InfNat/Base.agda
|
kiana-S/univalent-foundations
|
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
|
[
"MIT"
] | null | null | null |
Cubical/Data/InfNat/Base.agda
|
kiana-S/univalent-foundations
|
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
|
[
"MIT"
] | null | null | null |
Cubical/Data/InfNat/Base.agda
|
kiana-S/univalent-foundations
|
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
|
[
"MIT"
] | 1
|
2021-11-22T02:02:01.000Z
|
2021-11-22T02:02:01.000Z
|
{-# OPTIONS --cubical --no-import-sorts --no-exact-split --safe #-}
module Cubical.Data.InfNat.Base where
open import Cubical.Data.Nat as ℕ using (ℕ)
open import Cubical.Core.Primitives
data ℕ+∞ : Type₀ where
∞ : ℕ+∞
fin : ℕ → ℕ+∞
suc : ℕ+∞ → ℕ+∞
suc ∞ = ∞
suc (fin n) = fin (ℕ.suc n)
zero : ℕ+∞
zero = fin ℕ.zero
caseInfNat : ∀ {ℓ} → {A : Type ℓ} → (aF aI : A) → ℕ+∞ → A
caseInfNat aF aI (fin n) = aF
caseInfNat aF aI ∞ = aI
infixl 6 _+_
_+_ : ℕ+∞ → ℕ+∞ → ℕ+∞
∞ + m = ∞
fin n + ∞ = ∞
fin n + fin m = fin (n ℕ.+ m)
infixl 7 _*_
_*_ : ℕ+∞ → ℕ+∞ → ℕ+∞
fin m * fin n = fin (m ℕ.* n)
∞ * fin ℕ.zero = zero
fin ℕ.zero * ∞ = zero
∞ * ∞ = ∞
∞ * fin (ℕ.suc _) = ∞
fin (ℕ.suc _) * ∞ = ∞
| 21.675676
| 67
| 0.450125
|
c5746e01e318061c86143675460246c4881d6d4f
| 18,695
|
agda
|
Agda
|
agda/course/2017-conor_mcbride_cs410/CS410-17-master/exercises/Ex1-HC.agda
|
haroldcarr/learn-haskell-coq-ml-etc
|
3dc7abca7ad868316bb08f31c77fbba0d3910225
|
[
"Unlicense"
] | 36
|
2015-01-29T14:37:15.000Z
|
2021-07-30T06:55:03.000Z
|
agda/course/2017-conor_mcbride_cs410/CS410-17-master/exercises/Ex1-HC.agda
|
haroldcarr/learn-haskell-coq-ml-etc
|
3dc7abca7ad868316bb08f31c77fbba0d3910225
|
[
"Unlicense"
] | null | null | null |
agda/course/2017-conor_mcbride_cs410/CS410-17-master/exercises/Ex1-HC.agda
|
haroldcarr/learn-haskell-coq-ml-etc
|
3dc7abca7ad868316bb08f31c77fbba0d3910225
|
[
"Unlicense"
] | 8
|
2015-04-13T21:40:15.000Z
|
2021-09-21T15:58:10.000Z
|
{-# OPTIONS --allow-unsolved-metas #-}
------------------------------------------------------------------------------
------------------------------------------------------------------------------
-- CS410 2017/18 Exercise 1 VECTORS AND FRIENDS (worth 25%)
------------------------------------------------------------------------------
------------------------------------------------------------------------------
-- NOTE (19/9/17) This file is currently incomplete: more will arrive on
-- GitHub.
-- MARK SCHEME (transcribed from paper): the (m) numbers add up to slightly
-- more than 25, so should be taken as the maximum number of marks losable on
-- the exercise. In fact, I did mark it negatively, but mostly because it was
-- done so well (with Agda's help) that it was easier to find the errors.
------------------------------------------------------------------------------
-- Dependencies
------------------------------------------------------------------------------
open import CS410-Prelude
------------------------------------------------------------------------------
-- Vectors
------------------------------------------------------------------------------
data Vec (X : Set) : Nat -> Set where -- like lists, but length-indexed
[] : Vec X zero
_,-_ : {n : Nat} -> X -> Vec X n -> Vec X (suc n)
infixr 4 _,-_ -- the "cons" operator associates to the right
-- I like to use the asymmetric ,- to remind myself that the element is to
-- the left and the rest of the list is to the right.
-- Vectors are useful when there are important length-related safety
-- properties.
------------------------------------------------------------------------------
-- Heads and Tails
------------------------------------------------------------------------------
-- We can rule out nasty head and tail errors by insisting on nonemptiness!
--??--1.1-(2)-----------------------------------------------------------------
vHead : {X : Set}{n : Nat} -> Vec X (suc n) -> X
vHead (x ,- _) = x
vTail : {X : Set}{n : Nat} -> Vec X (suc n) -> Vec X n
vTail (_ ,- xs) = xs
vHeadTailFact : {X : Set}{n : Nat}(xs : Vec X (suc n)) ->
(vHead xs ,- vTail xs) == xs
vHeadTailFact (x ,- xs) = refl (x ,- xs)
--??--------------------------------------------------------------------------
------------------------------------------------------------------------------
-- Concatenation and its Inverse
------------------------------------------------------------------------------
--??--1.2-(2)-----------------------------------------------------------------
_+V_ : {X : Set}{m n : Nat} -> Vec X m -> Vec X n -> Vec X (m +N n)
[] +V ys = ys
(x ,- xs) +V ys = x ,- xs +V ys
infixr 4 _+V_
vChop : {X : Set}(m : Nat){n : Nat} -> Vec X (m +N n) -> Vec X m * Vec X n
vChop zero xs = [] , xs
vChop (suc m) (x ,- xs)
with vChop m xs
... | vm , vn
= (x ,- vm) , vn
vChopAppendFact : {X : Set}{m n : Nat}(xs : Vec X m)(ys : Vec X n) ->
vChop m (xs +V ys) == (xs , ys)
vChopAppendFact [] ys = refl ([] , ys)
vChopAppendFact (x ,- xs) ys rewrite vChopAppendFact xs ys = refl ((x ,- xs) , ys)
--??--------------------------------------------------------------------------
------------------------------------------------------------------------------
-- Map, take I
------------------------------------------------------------------------------
-- Implement the higher-order function that takes an operation on
-- elements and does it to each element of a vector. Use recursion
-- on the vector.
-- Note that the type tells you the size remains the same.
-- Show that if the elementwise function "does nothing", neither does
-- its vMap. "map of identity is identity"
-- Show that two vMaps in a row can be collapsed to just one, or
-- "composition of maps is map of compositions"
--??--1.3-(2)-----------------------------------------------------------------
vMap : {X Y : Set} -> (X -> Y) -> {n : Nat} -> Vec X n -> Vec Y n
vMap f [] = []
vMap f (x ,- xs) = f x ,- vMap f xs
vMapIdFact : {X : Set}{f : X -> X}(feq : (x : X) -> f x == x) ->
{n : Nat}(xs : Vec X n) -> vMap f xs == xs
vMapIdFact feq [] = refl []
vMapIdFact feq (x ,- xs)
rewrite vMapIdFact feq xs
| feq x
= refl (x ,- xs)
vMapCpFact : {X Y Z : Set}{f : Y -> Z}{g : X -> Y}{h : X -> Z}
(heq : (x : X) -> f (g x) == h x) ->
{n : Nat}(xs : Vec X n) ->
vMap f (vMap g xs) == vMap h xs
vMapCpFact heq [] = refl []
vMapCpFact {_}{_}{_}{f} {g} {h} heq (x ,- xs)
rewrite heq x
| vMapCpFact {_}{_}{_}{f} {g} {h} heq xs
= refl (h x ,- vMap h xs)
--??--------------------------------------------------------------------------
------------------------------------------------------------------------------
-- vMap and +V
------------------------------------------------------------------------------
-- Show that if you've got two vectors of Xs and a function from X to Y,
-- and you want to concatenate and map, it doesn't matter which you do
-- first.
--??--1.4-(1)-----------------------------------------------------------------
vMap+VFact : {X Y : Set}(f : X -> Y) ->
{m n : Nat}(xs : Vec X m)(xs' : Vec X n) ->
vMap f (xs +V xs') == (vMap f xs +V vMap f xs')
vMap+VFact f [] xs' = refl (vMap f xs')
vMap+VFact f (x ,- xs) xs'
rewrite vMap+VFact f xs xs'
= refl (f x ,- vMap f xs +V vMap f xs')
--??--------------------------------------------------------------------------
-- Think about what you could prove, relating vMap with vHead, vTail, vChop...
-- Now google "Philip Wadler" "Theorems for Free"
-- TODO
------------------------------------------------------------------------------
-- Applicative Structure (giving mapping and zipping cheaply)
------------------------------------------------------------------------------
--??--1.5-(2)-----------------------------------------------------------------
-- HINT: you will need to override the default invisibility of n to do this.
-- HC : replicate
vPure : {X : Set} -> X -> {n : Nat} -> Vec X n
vPure x {zero} = []
vPure x {suc n} = x ,- vPure x {n}
_$V_ : {X Y : Set}{n : Nat} -> Vec (X -> Y) n -> Vec X n -> Vec Y n
[] $V [] = []
f ,- fs $V x ,- xs = f x ,- (fs $V xs)
infixl 3 _$V_ -- "Application associates to the left,
-- rather as we all did in the sixties." (Roger Hindley)
-- Pattern matching and recursion are forbidden for the next two tasks.
-- implement vMap again, but as a one-liner
vec : {X Y : Set} -> (X -> Y) -> {n : Nat} -> Vec X n -> Vec Y n
vec f xs = vPure f $V xs
-- implement the operation which pairs up corresponding elements
vZip : {X Y : Set}{n : Nat} -> Vec X n -> Vec Y n -> Vec (X * Y) n
vZip xs ys = vec (_,_) xs $V ys
--??--------------------------------------------------------------------------
------------------------------------------------------------------------------
-- Applicative Laws
------------------------------------------------------------------------------
-- According to "Applicative programming with effects" by
-- Conor McBride and Ross Paterson
-- some laws should hold for applicative functors.
-- Check that this is the case.
--??--1.6-(2)-----------------------------------------------------------------
vIdentity : {X : Set}{f : X -> X}(feq : (x : X) -> f x == x) ->
{n : Nat}(xs : Vec X n) -> (vPure f $V xs) == xs
vIdentity feq [] = refl []
vIdentity feq (x ,- xs) rewrite vIdentity feq xs | feq x = refl (x ,- xs)
vHomomorphism : {X Y : Set}(f : X -> Y)(x : X) ->
{n : Nat} -> (vPure f $V vPure x) == vPure (f x) {n}
vHomomorphism f x {zero} = refl []
vHomomorphism f x {suc n} rewrite vHomomorphism f x {n} = refl (f x ,- vPure (f x))
vInterchange : {X Y : Set}{n : Nat}(fs : Vec (X -> Y) n)(x : X) ->
(fs $V vPure x) == (vPure (_$ x) $V fs)
vInterchange [] x = refl []
vInterchange (f ,- fs) x rewrite vInterchange fs x = refl (f x ,- (vPure (λ x→y → x→y x) $V fs))
vComposition : {X Y Z : Set}{n : Nat}
(fs : Vec (Y -> Z) n)(gs : Vec (X -> Y) n)(xs : Vec X n) ->
(vPure _<<_ $V fs $V gs $V xs) == (fs $V (gs $V xs))
vComposition [] [] [] = refl []
vComposition (f ,- fs) (g ,- gs) (x ,- xs)
rewrite vComposition fs gs xs
= refl (f (g x) ,- (fs $V (gs $V xs)))
--??--------------------------------------------------------------------------
------------------------------------------------------------------------------
-- Order-Preserving Embeddings (also known in the business as "thinnings")
------------------------------------------------------------------------------
-- What have these to do with Pascal's Triangle?
-- how to choose N things from M things
data _<=_ : Nat -> Nat -> Set where
oz : zero <= zero -- stop
os : {n m : Nat} -> n <= m -> suc n <= suc m -- take this one and keep going
o' : {n m : Nat} -> n <= m -> n <= suc m -- skip this one and keep going
refl-<= : (n : Nat) -> n <= n
refl-<= zero = oz
refl-<= (suc n) = os (refl-<= n)
trans-<= : {n m p : Nat} -> n <= m -> m <= p -> n <= p
trans-<= oz zero<=p = zero<=p
trans-<= (os n<=m) (os sucm<=p) = os (trans-<= n<=m sucm<=p)
trans-<= (os n<=m) (o' sucm<=p) = os (trans-<= (o' n<=m) sucm<=p)
trans-<= (o' n<=m) (os m<=p) = o' (trans-<= n<=m m<=p)
trans-<= (o' n<=m) (o' m<=p) = o' (trans-<= (o' n<=m) m<=p)
<=-suc : (x : Nat) -> x <= suc x
<=-suc zero = o' oz
<=-suc (suc x) = os (<=-suc x)
n<=m→sucn<=sucm : {n m : Nat} → n <= m -> suc n <= suc m
n<=m→sucn<=sucm oz = os oz
n<=m→sucn<=sucm (os n<=m) = os (n<=m→sucn<=sucm n<=m)
n<=m→sucn<=sucm (o' n<=m) = o' (n<=m→sucn<=sucm n<=m)
-- Find all the values in each of the following <= types.
-- This is a good opportunity to learn to use C-c C-a with the -l option
-- (a.k.a. "google the type" without "I feel lucky")
-- The -s n option also helps.
--??--1.7-(1)-----------------------------------------------------------------
all0<=4 : Vec (0 <= 4) 1
all0<=4 = o' (o' (o' (o' oz))) ,- []
all1<=4 : Vec (1 <= 4) 1
all1<=4 = os (o' (o' (o' oz))) ,- []
all2<=4 : Vec (2 <= 4) 1
all2<=4 = os (os (o' (o' oz))) ,- []
all3<=4 : Vec (3 <= 4) 1
all3<=4 = os (os (os (o' oz))) ,- []
all4<=4 : Vec (4 <= 4) 1
all4<=4 = os (os (os (os oz))) ,- []
-- Prove the following. A massive case analysis "rant" is fine.
no5<=4 : 5 <= 4 -> Zero
no5<=4 (os (os (os (os ()))))
no5<=4 (os (os (os (o' ()))))
no5<=4 (os (os (o' (os ()))))
no5<=4 (os (os (o' (o' ()))))
no5<=4 (os (o' (os (os ()))))
no5<=4 (os (o' (os (o' ()))))
no5<=4 (os (o' (o' (os ()))))
no5<=4 (os (o' (o' (o' ()))))
no5<=4 (o' (os (os (os ()))))
no5<=4 (o' (os (os (o' ()))))
no5<=4 (o' (os (o' (os ()))))
no5<=4 (o' (os (o' (o' ()))))
no5<=4 (o' (o' (os (os ()))))
no5<=4 (o' (o' (os (o' ()))))
no5<=4 (o' (o' (o' (os ()))))
no5<=4 (o' (o' (o' (o' ()))))
--??--------------------------------------------------------------------------
------------------------------------------------------------------------------
-- Order-Preserving Embeddings Select From Vectors
------------------------------------------------------------------------------
-- Use n <= m to encode the choice of n elements from an m-Vector.
-- The os constructor tells you to take the next element of the vector;
-- the o' constructor tells you to omit the next element of the vector.
--??--1.8-(2)-----------------------------------------------------------------
_<?=_ : {X : Set}{n m : Nat} -> n <= m -> Vec X m
-> Vec X n
oz <?= [] = []
os th <?= (x ,- xs) = x ,- th <?= xs
o' th <?= (x ,- xs) = th <?= xs
vn4 : Vec Nat 4
vn4 = os (os (os (os oz))) <?= (1 ,- 2 ,- 3 ,- 4 ,- [])
_ : vn4 == (1 ,- 2 ,- 3 ,- 4 ,- [])
_ = refl (1 ,- 2 ,- 3 ,- 4 ,- [])
vn3 : Vec Nat 3
vn3 = o' (os (o' (os (o' (os oz))))) <?= (1 ,- 2 ,- 3 ,- 4 ,- 5 ,- 6 ,- [])
_ : vn3 == (2 ,- 4 ,- 6 ,- [])
_ = refl (2 ,- 4 ,- 6 ,- [])
vn2 : Vec Nat 2
vn2 = o' (os (o' (os oz))) <?= (1 ,- 2 ,- 3 ,- 4 ,- [])
_ : vn2 == (2 ,- 4 ,- [])
_ = refl (2 ,- 4 ,- [])
-- it shouldn't matter whether you map then select or select then map
vMap<?=Fact : {X Y : Set}(f : X -> Y)
{n m : Nat}(th : n <= m)(xs : Vec X m) ->
vMap f (th <?= xs) == (th <?= vMap f xs)
vMap<?=Fact f oz [] = refl []
vMap<?=Fact f (os th) (x ,- xs) rewrite vMap<?=Fact f th xs = refl (f x ,- (th <?= vMap f xs))
vMap<?=Fact f (o' th) (x ,- xs) rewrite vMap<?=Fact f th xs = refl (th <?= vMap f xs)
--??--------------------------------------------------------------------------
------------------------------------------------------------------------------
-- Our Favourite Thinnings
------------------------------------------------------------------------------
-- Construct the identity thinning and the empty thinning.
--??--1.9-(1)-----------------------------------------------------------------
oi : {n : Nat} -> n <= n
oi {zero} = oz
oi {suc n} = os oi
oe : {n : Nat} -> 0 <= n
oe {zero} = oz
oe {suc n} = o' oe
vnoi : Vec Nat 4
vnoi = oi <?= (1 ,- 2 ,- 3 ,- 4 ,- [])
_ : vnoi == (1 ,- 2 ,- 3 ,- 4 ,- [])
_ = refl (1 ,- 2 ,- 3 ,- 4 ,- [])
vnoe : Vec Nat 0
vnoe = oe <?= (1 ,- 2 ,- 3 ,- 4 ,- [])
_ : vnoe == []
_ = refl []
--??--------------------------------------------------------------------------
-- Show that all empty thinnings are equal to yours.
--??--1.10-(1)----------------------------------------------------------------
oeUnique : {n : Nat}(th : 0 <= n) -> th == oe
oeUnique oz = refl oz
oeUnique (o' i) rewrite oeUnique i = refl (o' oe)
--??--------------------------------------------------------------------------
-- Show that there are no thinnings of form big <= small (TRICKY)
-- Then show that all the identity thinnings are equal to yours.
-- Note that you can try the second even if you haven't finished the first.
-- HINT: you WILL need to expose the invisible numbers.
-- HINT: check CS410-Prelude for a reminder of >=
--??--1.11-(3)----------------------------------------------------------------
oTooBig : {n m : Nat} -> n >= m -> suc n <= m -> Zero
oTooBig {n} {m} n>=m th = {!!}
oiUnique : {n : Nat}(n<=n : n <= n) -> n<=n == oi
oiUnique {zero} oz = refl oz
oiUnique {suc n} (os n<=n) rewrite oiUnique n<=n = refl (os oi)
oiUnique {suc n} (o' sucn<=n) = {!!}
--??--------------------------------------------------------------------------
-- Show that the identity thinning selects the whole vector
--??--1.12-(1)----------------------------------------------------------------
id-<?= : {X : Set}{n : Nat}(xs : Vec X n) -> (oi <?= xs) == xs
id-<?= [] = refl []
id-<?= (x ,- xs) rewrite id-<?= xs = refl (x ,- xs)
--??--------------------------------------------------------------------------
------------------------------------------------------------------------------
-- Composition of Thinnings
------------------------------------------------------------------------------
-- Define the composition of thinnings and show that selecting by a
-- composite thinning is like selecting then selecting again.
-- A small bonus applies to minimizing the length of the proof.
-- To collect the bonus, you will need to think carefully about
-- how to make the composition as *lazy* as possible.
--??--1.13-(3)----------------------------------------------------------------
_o>>_ : {p n m : Nat} -> p <= n -> n <= m -> p <= m
p<=zero o>> oz = p<=zero
p<=sucn o>> os n<=m = trans-<= p<=sucn (n<=m→sucn<=sucm n<=m)
p<=n o>> o' n<=m = trans-<= p<=n (o' n<=m)
-- empty thinning returns an empty vector
oe-<?= : {X : Set}{n : Nat}(xs : Vec X n) -> (oe <?= xs) == []
oe-<?= [] = refl []
oe-<?= (x ,- xs) rewrite oe-<?= xs = refl []
cp-<?= : {p n m : Nat}(p<=n : p <= n)(n<=m : n <= m) ->
{X : Set}(xs : Vec X m) ->
((p<=n o>> n<=m) <?= xs) == (p<=n <?= (n<=m <?= xs))
cp-<?= oz oz [] = refl []
cp-<?= oz (o' zero<=m) (x ,- xs)
rewrite
oeUnique zero<=m
| oe-<?= xs
= refl []
cp-<?= (os p<=n) (os n<=m) (x ,- xs)
= {!!}
cp-<?= (os p<=n) (o' n<=m) xs = {!!}
cp-<?= (o' p<=n) (os n<=m) xs = {!!}
cp-<?= (o' p<=n) (o' n<=m) xs = {!!}
zero<=4 : zero <= 4
zero<=4 = o' (o' (o' (o' oz)))
1<=4 : 1 <= 4
1<=4 = os (o' (o' (o' oz)))
v04 : Vec Nat zero
v04 = zero<=4 <?= (1 ,- 2 ,- 3 ,- 4 ,- [])
v14 : Vec Nat 1
v14 = 1<=4 <?= (1 ,- 2 ,- 3 ,- 4 ,- [])
--??--------------------------------------------------------------------------
------------------------------------------------------------------------------
-- Thinning Dominoes
------------------------------------------------------------------------------
--??--1.14-(3)----------------------------------------------------------------
idThen-o>> : {n m : Nat}(n<=m : n <= m) -> (oi o>> n<=m) == n<=m
idThen-o>> oz = refl oz
idThen-o>> (os n<=m) = {!!}
idThen-o>> (o' n<=m) = {!!}
idAfter-o>> : {n m : Nat}(n<=m : n <= m) -> (n<=m o>> oi) == n<=m
idAfter-o>> n<=m = {!!}
assoc-o>> : {q p n m : Nat}(th0 : q <= p)(th1 : p <= n)(th2 : n <= m) ->
((th0 o>> th1) o>> th2) == (th0 o>> (th1 o>> th2))
assoc-o>> th0 th1 th2 = {!!}
--??--------------------------------------------------------------------------
------------------------------------------------------------------------------
-- Vectors as Arrays
------------------------------------------------------------------------------
-- We can use 1 <= n as the type of bounded indices into a vector and do
-- a kind of "array projection". First we select a 1-element vector from
-- the n-element vector, then we take its head to get the element out.
vProject : {n : Nat}{X : Set} -> Vec X n -> 1 <= n -> X
vProject xs i = vHead (i <?= xs)
-- Your (TRICKY) mission is to reverse the process, tabulating a function
-- from indices as a vector. Then show that these operations are inverses.
--??--1.15-(3)----------------------------------------------------------------
-- HINT: composition of functions
vTabulate : {n : Nat}{X : Set} -> (1 <= n -> X) -> Vec X n
vTabulate {n} f = {!!}
-- This should be easy if vTabulate is correct.
vTabulateProjections : {n : Nat}{X : Set}(xs : Vec X n) ->
vTabulate (vProject xs) == xs
vTabulateProjections xs = {!!}
-- HINT: oeUnique
vProjectFromTable : {n : Nat}{X : Set}(f : 1 <= n -> X)(i : 1 <= n) ->
vProject (vTabulate f) i == f i
vProjectFromTable f i = {!!}
--??--------------------------------------------------------------------------
| 36.021195
| 96
| 0.383365
|
18271ec96129fb954a4206fe709dd02717173474
| 245
|
agda
|
Agda
|
src/Algebra/Linear.agda
|
felko/linear-algebra
|
d87c5a1eb5dd0569238272e67bce1899616b789a
|
[
"MIT"
] | 15
|
2019-11-02T14:11:00.000Z
|
2020-12-30T06:18:08.000Z
|
src/Algebra/Linear.agda
|
felko/linear-algebra
|
d87c5a1eb5dd0569238272e67bce1899616b789a
|
[
"MIT"
] | null | null | null |
src/Algebra/Linear.agda
|
felko/linear-algebra
|
d87c5a1eb5dd0569238272e67bce1899616b789a
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --without-K --safe #-}
module Algebra.Linear where
open import Algebra.Linear.Core public
open import Algebra.Linear.Construct public
open import Algebra.Linear.Morphism public
open import Algebra.Linear.Structures public
| 27.222222
| 44
| 0.77551
|
4d34edb6a126710dc87a9296ac1f19786fd2aa5f
| 7,966
|
agda
|
Agda
|
Cubical/Algebra/Group/Instances/IntMod.agda
|
guilhermehas/cubical
|
ce3120d3f8d692847b2744162bcd7a01f0b687eb
|
[
"MIT"
] | 1
|
2021-10-31T17:32:49.000Z
|
2021-10-31T17:32:49.000Z
|
Cubical/Algebra/Group/Instances/IntMod.agda
|
guilhermehas/cubical
|
ce3120d3f8d692847b2744162bcd7a01f0b687eb
|
[
"MIT"
] | null | null | null |
Cubical/Algebra/Group/Instances/IntMod.agda
|
guilhermehas/cubical
|
ce3120d3f8d692847b2744162bcd7a01f0b687eb
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --safe #-}
module Cubical.Algebra.Group.Instances.IntMod where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.HLevels
open import Cubical.Data.Empty as ⊥
open import Cubical.Data.Unit
open import Cubical.Data.Bool hiding (isProp≤)
open import Cubical.Data.Nat renaming (_+_ to _+ℕ_)
open import Cubical.Data.Nat.Mod
open import Cubical.Data.Nat.Order
open import Cubical.Data.Int renaming (_+_ to _+ℤ_)
open import Cubical.Data.Fin
open import Cubical.Data.Fin.Arithmetic
open import Cubical.Data.Sigma
open import Cubical.Algebra.Monoid.Base
open import Cubical.Algebra.Semigroup.Base
open import Cubical.Algebra.Group.Base
open import Cubical.Algebra.Group.MorphismProperties
open import Cubical.Algebra.Group.Morphisms
open import Cubical.Algebra.Group.Properties
open import Cubical.Algebra.Group.Instances.Unit
open import Cubical.Algebra.Group.Instances.Bool
open import Cubical.Algebra.Group.Instances.Int
open GroupStr
open IsGroup
open IsMonoid
ℤGroup/_ : ℕ → Group₀
ℤGroup/ zero = ℤGroup
fst (ℤGroup/ suc n) = Fin (suc n)
1g (snd (ℤGroup/ suc n)) = 0
GroupStr._·_ (snd (ℤGroup/ suc n)) = _+ₘ_
inv (snd (ℤGroup/ suc n)) = -ₘ_
IsSemigroup.is-set (isSemigroup (isMonoid (isGroup (snd (ℤGroup/ suc n))))) =
isSetFin
IsSemigroup.assoc (isSemigroup (isMonoid (isGroup (snd (ℤGroup/ suc n))))) =
λ x y z → sym (+ₘ-assoc x y z)
fst (identity (isMonoid (isGroup (snd (ℤGroup/ suc n)))) x) = +ₘ-rUnit x
snd (identity (isMonoid (isGroup (snd (ℤGroup/ suc n)))) x) = +ₘ-lUnit x
fst (inverse (isGroup (snd (ℤGroup/ suc n))) x) = +ₘ-rCancel x
snd (inverse (isGroup (snd (ℤGroup/ suc n))) x) = +ₘ-lCancel x
ℤGroup/1≅Unit : GroupIso (ℤGroup/ 1) UnitGroup₀
ℤGroup/1≅Unit = contrGroupIsoUnit isContrFin1
Bool≅ℤGroup/2 : GroupIso BoolGroup (ℤGroup/ 2)
Iso.fun (fst Bool≅ℤGroup/2) false = 1
Iso.fun (fst Bool≅ℤGroup/2) true = 0
Iso.inv (fst Bool≅ℤGroup/2) (zero , p) = true
Iso.inv (fst Bool≅ℤGroup/2) (suc zero , p) = false
Iso.inv (fst Bool≅ℤGroup/2) (suc (suc x) , p) =
⊥.rec (¬-<-zero (predℕ-≤-predℕ (predℕ-≤-predℕ p)))
Iso.rightInv (fst Bool≅ℤGroup/2) (zero , p) =
Σ≡Prop (λ _ → isProp≤) refl
Iso.rightInv (fst Bool≅ℤGroup/2) (suc zero , p) =
Σ≡Prop (λ _ → isProp≤) refl
Iso.rightInv (fst Bool≅ℤGroup/2) (suc (suc x) , p) =
⊥.rec (¬-<-zero (predℕ-≤-predℕ (predℕ-≤-predℕ p)))
Iso.leftInv (fst Bool≅ℤGroup/2) false = refl
Iso.leftInv (fst Bool≅ℤGroup/2) true = refl
snd Bool≅ℤGroup/2 =
makeIsGroupHom λ { false false → refl
; false true → refl
; true false → refl
; true true → refl}
ℤGroup/2≅Bool : GroupIso (ℤGroup/ 2) BoolGroup
ℤGroup/2≅Bool = invGroupIso Bool≅ℤGroup/2
-- Definition of the quotient map homomorphism ℤ → ℤGroup/ (suc n)
-- as a group homomorphism.
ℤ→Fin : (n : ℕ) → ℤ → Fin (suc n)
ℤ→Fin n (pos x) = x mod (suc n) , mod< n x
ℤ→Fin n (negsuc x) = -ₘ (suc x mod suc n , mod< n (suc x))
ℤ→Fin-presinv : (n : ℕ) (x : ℤ) → ℤ→Fin n (- x) ≡ -ₘ ℤ→Fin n x
ℤ→Fin-presinv n (pos zero) =
Σ≡Prop (λ _ → isProp≤) ((λ _ → zero) ∙ sym (cong fst help))
where
help : (-ₘ_ {n = n} 0) ≡ 0
help = GroupTheory.inv1g (ℤGroup/ (suc n))
ℤ→Fin-presinv n (pos (suc x)) = Σ≡Prop (λ _ → isProp≤) refl
ℤ→Fin-presinv n (negsuc x) =
sym (GroupTheory.invInv (ℤGroup/ (suc n)) _)
-ₘ1-id : (n : ℕ)
→ Path (Fin (suc n)) (-ₘ (1 mod (suc n) , mod< n 1))
(n mod (suc n) , mod< n n)
-ₘ1-id zero = refl
-ₘ1-id (suc n) =
cong -ₘ_ (FinPathℕ ((1 mod suc (suc n)) , mod< (suc n) 1) 1
(modIndBase (suc n) 1 (n , +-comm n 2)) .snd)
∙ Σ≡Prop (λ _ → isProp≤)
((+inductionBase (suc n) _
(λ x _ → ((suc (suc n)) ∸ x) mod (suc (suc n))) λ _ x → x) 1
(n , (+-comm n 2)))
suc-ₘ1 : (n y : ℕ)
→ ((suc y mod suc n) , mod< n (suc y)) -ₘ (1 mod (suc n) , mod< n 1)
≡ (y mod suc n , mod< n y)
suc-ₘ1 zero y =
isContr→isProp
(isOfHLevelRetractFromIso 0 (fst ℤGroup/1≅Unit) isContrUnit) _ _
suc-ₘ1 (suc n) y =
(λ i → ((suc y mod suc (suc n)) , mod< (suc n) (suc y))
+ₘ (-ₘ1-id (suc n) i))
∙ Σ≡Prop (λ _ → isProp≤)
(cong (_mod (2 +ℕ n))
(cong (_+ℕ (suc n) mod (2 +ℕ n))
(mod+mod≡mod (suc (suc n)) 1 y))
∙∙ sym (mod+mod≡mod (suc (suc n))
((1 mod suc (suc n))
+ℕ (y mod suc (suc n))) (suc n))
∙∙ (mod-rCancel (suc (suc n)) ((1 mod suc (suc n))
+ℕ (y mod suc (suc n))) (suc n)
∙ cong (_mod (suc (suc n)))
(cong (_+ℕ (suc n mod suc (suc n)))
(+-comm (1 mod suc (suc n)) (y mod suc (suc n)))
∙ sym (+-assoc (y mod suc (suc n))
(1 mod suc (suc n)) (suc n mod suc (suc n))))
∙∙ mod-rCancel (suc (suc n)) (y mod suc (suc n))
((1 mod suc (suc n)) +ℕ (suc n mod suc (suc n)))
∙∙ (cong (_mod (2 +ℕ n))
(cong ((y mod suc (suc n)) +ℕ_)
(sym (mod+mod≡mod (suc (suc n)) 1 (suc n))
∙ zero-charac (suc (suc n)))
∙ +-comm _ 0)
∙ mod-idempotent y)))
1-ₘsuc : (n y : ℕ)
→ ((1 mod (suc n) , mod< n 1)
+ₘ (-ₘ (((suc y mod suc n) , mod< n (suc y)))))
≡ -ₘ ((y mod suc n) , mod< n y)
1-ₘsuc n y =
sym (GroupTheory.invInv (ℤGroup/ (suc n)) _)
∙ cong -ₘ_
(GroupTheory.invDistr (ℤGroup/ (suc n))
(modInd n 1 , mod< n 1) (-ₘ (modInd n (suc y) , mod< n (suc y)))
∙ cong (_-ₘ (modInd n 1 , mod< n 1))
(GroupTheory.invInv (ℤGroup/ (suc n)) (modInd n (suc y) , mod< n (suc y)))
∙ suc-ₘ1 n y)
isHomℤ→Fin : (n : ℕ) → IsGroupHom (snd ℤGroup) (ℤ→Fin n) (snd (ℤGroup/ (suc n)))
isHomℤ→Fin n =
makeIsGroupHom
λ { (pos x) y → pos+case x y
; (negsuc x) (pos y) →
cong (ℤ→Fin n) (+Comm (negsuc x) (pos y))
∙∙ pos+case y (negsuc x)
∙∙ +ₘ-comm (ℤ→Fin n (pos y)) (ℤ→Fin n (negsuc x))
; (negsuc x) (negsuc y) →
sym (cong (ℤ→Fin n) (-Dist+ (pos (suc x)) (pos (suc y))))
∙∙ ℤ→Fin-presinv n (pos (suc x) +ℤ (pos (suc y)))
∙∙ cong -ₘ_ (pos+case (suc x) (pos (suc y)))
∙∙ GroupTheory.invDistr (ℤGroup/ (suc n))
(modInd n (suc x)
, mod< n (suc x)) (modInd n (suc y) , mod< n (suc y))
∙∙ +ₘ-comm (ℤ→Fin n (negsuc y)) (ℤ→Fin n (negsuc x))}
where
+1case : (y : ℤ) → ℤ→Fin n (1 +ℤ y) ≡ ℤ→Fin n 1 +ₘ ℤ→Fin n y
+1case (pos zero) = sym (GroupStr.rid (snd (ℤGroup/ (suc n))) _)
+1case (pos (suc y)) =
cong (ℤ→Fin n) (+Comm 1 (pos (suc y)))
∙ Σ≡Prop (λ _ → isProp≤) (mod+mod≡mod (suc n) 1 (suc y))
+1case (negsuc zero) =
Σ≡Prop (λ _ → isProp≤) refl
∙ sym (GroupStr.invr (snd (ℤGroup/ (suc n))) (modInd n 1 , mod< n 1))
+1case (negsuc (suc y)) =
Σ≡Prop (λ _ → isProp≤)
(cong fst (cong (ℤ→Fin n) (+Comm 1 (negsuc (suc y))))
∙∙ cong fst (cong -ₘ_ (refl {x = suc y mod suc n , mod< n (suc y)}))
∙∙ cong fst (sym (1-ₘsuc n (suc y)))
∙ λ i → fst ((1 mod (suc n) , mod< n 1)
+ₘ (-ₘ (((suc (suc y) mod suc n) , mod< n (suc (suc y)))))))
pos+case : (x : ℕ) (y : ℤ)
→ ℤ→Fin n (pos x +ℤ y) ≡ ℤ→Fin n (pos x) +ₘ ℤ→Fin n y
pos+case zero y =
cong (ℤ→Fin n) (+Comm 0 y)
∙ sym (GroupStr.lid (snd (ℤGroup/ (suc n))) (ℤ→Fin n y))
pos+case (suc zero) y = +1case y
pos+case (suc (suc x)) y =
cong (ℤ→Fin n) (cong (_+ℤ y) (+Comm (pos (suc x)) 1)
∙ sym (+Assoc 1 (pos (suc x)) y))
∙∙ +1case (pos (suc x) +ℤ y)
∙∙ (cong ((modInd n 1 , mod< n 1) +ₘ_) (pos+case (suc x) y)
∙∙ sym (+ₘ-assoc (modInd n 1 , mod< n 1)
(modInd n (suc x) , mod< n (suc x)) (ℤ→Fin n y))
∙∙ cong (_+ₘ ℤ→Fin n y) (lem x))
where
lem : (x : ℕ)
→ (modInd n 1 , mod< n 1) +ₘ (modInd n (suc x) , mod< n (suc x))
≡ ℤ→Fin n (pos (suc (suc x)))
lem x =
Σ≡Prop (λ _ → isProp≤) (sym (mod+mod≡mod (suc n) 1 (suc x)))
| 39.241379
| 81
| 0.549711
|
1813f877030cd6c9392d57e9d8f48bacd0c24969
| 559
|
agda
|
Agda
|
test/Succeed/Issue2998.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Succeed/Issue2998.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Succeed/Issue2998.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
-- Reported by Nisse on 2018-03-13
-- The `x` in the parent pattern was eta-expanded to `record{}`,
-- but with-abstraction didn't like this.
open import Agda.Builtin.Equality
record R : Set where
postulate
easy : (A : Set) → A
F : (x : R) → Set₁
F x with easy (x ≡ x)
F x | refl with Set
F x | refl | _ = Set
-- OLD ERROR:
-- With clause pattern x is not an instance of its parent pattern
-- record {}
-- Fixed by allowing parent patterns to be replaced by variables
-- in the with clause (but checking that their instantiation is
-- type-correct).
| 22.36
| 65
| 0.683363
|
d0baa68274de613113fe0338b93de9849331c8a6
| 3,413
|
agda
|
Agda
|
Cubical/HITs/Ints/DiffInt/Base.agda
|
Edlyr/cubical
|
5de11df25b79ee49d5c084fbbe6dfc66e4147a2e
|
[
"MIT"
] | null | null | null |
Cubical/HITs/Ints/DiffInt/Base.agda
|
Edlyr/cubical
|
5de11df25b79ee49d5c084fbbe6dfc66e4147a2e
|
[
"MIT"
] | null | null | null |
Cubical/HITs/Ints/DiffInt/Base.agda
|
Edlyr/cubical
|
5de11df25b79ee49d5c084fbbe6dfc66e4147a2e
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.HITs.Ints.DiffInt.Base where
open import Cubical.Foundations.Prelude
open import Cubical.HITs.SetQuotients
open import Cubical.Foundations.Isomorphism
open import Cubical.Data.Sigma
open import Cubical.Data.Nat hiding (+-comm ; +-assoc) renaming (_+_ to _+ℕ_)
open import Cubical.Data.Int
rel : (ℕ × ℕ) → (ℕ × ℕ) → Type₀
rel (a₀ , b₀) (a₁ , b₁) = x ≡ y
where
x = a₀ +ℕ b₁
y = a₁ +ℕ b₀
ℤ = (ℕ × ℕ) / rel
-- Proof of equivalence between Int and DiffInt
private
-- Prove all the identities for ℕ×ℕ first and use that to build to ℤ
Int→ℕ×ℕ : Int → (ℕ × ℕ)
Int→ℕ×ℕ (pos n) = ( n , zero )
Int→ℕ×ℕ (negsuc n) = ( zero , suc n )
ℕ×ℕ→Int : (ℕ × ℕ) → Int
ℕ×ℕ→Int(n , m) = n ℕ- m
relInt→ℕ×ℕ : ∀ m n → rel (Int→ℕ×ℕ (m ℕ- n)) (m , n)
relInt→ℕ×ℕ zero zero = refl
relInt→ℕ×ℕ zero (suc n) = refl
relInt→ℕ×ℕ (suc m) zero = refl
relInt→ℕ×ℕ (suc m) (suc n) =
fst (Int→ℕ×ℕ (m ℕ- n)) +ℕ suc n ≡⟨ +-suc (fst (Int→ℕ×ℕ (m ℕ- n))) n ⟩
suc (fst (Int→ℕ×ℕ (m ℕ- n)) +ℕ n) ≡⟨ cong suc (relInt→ℕ×ℕ m n) ⟩
suc (m +ℕ snd (Int→ℕ×ℕ (m ℕ- n))) ∎
Int→ℕ×ℕ→Int : ∀ n → ℕ×ℕ→Int (Int→ℕ×ℕ n) ≡ n
Int→ℕ×ℕ→Int (pos n) = refl
Int→ℕ×ℕ→Int (negsuc n) = refl
ℕ×ℕ→Int→ℕ×ℕ : ∀ p → rel (Int→ℕ×ℕ (ℕ×ℕ→Int p)) p
ℕ×ℕ→Int→ℕ×ℕ (p₀ , p₁) = relInt→ℕ×ℕ p₀ p₁
-- Now build to ℤ using the above
Int→ℤ : Int → ℤ
Int→ℤ n = [ Int→ℕ×ℕ n ]
ℤ→Int : ℤ → Int
ℤ→Int [ z ] = ℕ×ℕ→Int z
ℤ→Int(eq/ a b r i) = lemℤeq a b r i
where lemℤeq : (a b : (ℕ × ℕ)) → rel a b → ℕ×ℕ→Int(a) ≡ ℕ×ℕ→Int(b)
lemℤeq (a₀ , a₁) (b₀ , b₁) r = a₀ ℕ- a₁ ≡⟨ pos- a₀ a₁ ⟩
pos a₀ - pos a₁ ≡[ i ]⟨ ((pos a₀ - pos a₁) + -Cancel (pos b₁) (~ i)) ⟩
(pos a₀ - pos a₁) + (pos b₁ - pos b₁) ≡⟨ +-assoc (pos a₀ + (- pos a₁)) (pos b₁) (- pos b₁) ⟩
((pos a₀ - pos a₁) + pos b₁) - pos b₁ ≡[ i ]⟨ +-assoc (pos a₀) (- pos a₁) (pos b₁) (~ i) + (- pos b₁) ⟩
(pos a₀ + ((- pos a₁) + pos b₁)) - pos b₁ ≡[ i ]⟨ (pos a₀ + +-comm (- pos a₁) (pos b₁) i) - pos b₁ ⟩
(pos a₀ + (pos b₁ - pos a₁)) - pos b₁ ≡[ i ]⟨ +-assoc (pos a₀) (pos b₁) (- pos a₁) i + (- pos b₁) ⟩
((pos a₀ + pos b₁) - pos a₁) - pos b₁ ≡[ i ]⟨ (pos+ a₀ b₁ (~ i) - pos a₁) - pos b₁ ⟩
(pos (a₀ +ℕ b₁) - pos a₁) - pos b₁ ≡[ i ]⟨ (pos (r i) - pos a₁) - pos b₁ ⟩
(pos (b₀ +ℕ a₁) - pos a₁) - pos b₁ ≡[ i ]⟨ (pos+ b₀ a₁ i - pos a₁) - pos b₁ ⟩
((pos b₀ + pos a₁) - pos a₁) - pos b₁ ≡[ i ]⟨ +-assoc (pos b₀) (pos a₁) (- pos a₁) (~ i) + (- pos b₁) ⟩
(pos b₀ + (pos a₁ - pos a₁)) - pos b₁ ≡[ i ]⟨ (pos b₀ + (-Cancel (pos a₁) i)) - pos b₁ ⟩
pos b₀ - pos b₁ ≡[ i ]⟨ pos- b₀ b₁ (~ i) ⟩
b₀ ℕ- b₁ ∎
ℤ→Int(squash/ x x₀ p q i j) = isSetInt (ℤ→Int x) (ℤ→Int x₀) (cong ℤ→Int p) (cong ℤ→Int q) i j
Int→ℤ→Int : ∀ z → ℤ→Int (Int→ℤ z) ≡ z
Int→ℤ→Int (pos n) = refl
Int→ℤ→Int (negsuc n) = refl
ℤ→Int→ℤ : ∀ z → Int→ℤ (ℤ→Int z) ≡ z
ℤ→Int→ℤ = elimProp (λ z → squash/ (Int→ℤ (ℤ→Int z)) z) ℕ×ℕprf
where ℕ×ℕprf : (a : ℕ × ℕ) → Int→ℤ (ℤ→Int [ a ]) ≡ [ a ]
ℕ×ℕprf (a , b) = eq/ (Int→ℕ×ℕ (ℕ×ℕ→Int (a , b))) (a , b) (ℕ×ℕ→Int→ℕ×ℕ (a , b))
Int≡DiffInt : Int ≡ ℤ
Int≡DiffInt = isoToPath (iso Int→ℤ ℤ→Int ℤ→Int→ℤ Int→ℤ→Int)
| 40.152941
| 122
| 0.474949
|
df1114e11e271e0265439a20afa30477173d3311
| 4,418
|
agda
|
Agda
|
Structure/Operator/Vector.agda
|
Lolirofle/stuff-in-agda
|
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
|
[
"MIT"
] | 6
|
2020-04-07T17:58:13.000Z
|
2022-02-05T06:53:22.000Z
|
Structure/Operator/Vector.agda
|
Lolirofle/stuff-in-agda
|
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
|
[
"MIT"
] | null | null | null |
Structure/Operator/Vector.agda
|
Lolirofle/stuff-in-agda
|
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
|
[
"MIT"
] | null | null | null |
module Structure.Operator.Vector where
open import Functional using (swap)
import Lvl
open import Logic
open import Logic.Propositional
open import Structure.Setoid
open import Structure.Operator.Field
open import Structure.Operator.Group
open import Structure.Operator.Monoid
import Structure.Operator.Names as Names
open import Structure.Operator.Properties
open import Structure.Operator
open import Type
record VectorSpace {ℓᵥ ℓₛ ℓᵥₑ ℓₛₑ}
{V : Type{ℓᵥ}} ⦃ _ : Equiv{ℓᵥₑ}(V) ⦄
{S : Type{ℓₛ}} ⦃ _ : Equiv{ℓₛₑ}(S) ⦄
(_+ᵥ_ : V → V → V)
(_⋅ₛᵥ_ : S → V → V)
(_+ₛ_ : S → S → S)
(_⋅ₛ_ : S → S → S)
: Stmt{ℓₛₑ Lvl.⊔ ℓₛ Lvl.⊔ ℓᵥₑ Lvl.⊔ ℓᵥ} where
constructor intro
field
⦃ scalarField ⦄ : Field(_+ₛ_)(_⋅ₛ_)
⦃ vectorCommutativeGroup ⦄ : CommutativeGroup(_+ᵥ_)
open Field(scalarField)
renaming (
𝟎 to 𝟎ₛ ;
𝟏 to 𝟏ₛ ;
_−_ to _−ₛ_ ;
_/_ to _/ₛ_ ;
−_ to −ₛ_ ;
⅟ to ⅟ₛ ;
[+]-group to [+ₛ]-group ;
[+]-commutativity to [+ₛ]-commutativity ;
[+]-monoid to [+ₛ]-monoid ;
[+]-binary-operator to [+ₛ]-binary-operator ;
[+]-associativity to [+ₛ]-associativity ;
[+]-identity-existence to [+ₛ]-identity-existence ;
[+]-identity to [+ₛ]-identity ;
[+]-identityₗ to [+ₛ]-identityₗ ;
[+]-identityᵣ to [+ₛ]-identityᵣ ;
[+]-inverse-existence to [+ₛ]-inverse-existence ;
[+]-inverse to [+ₛ]-inverse ;
[+]-inverseₗ to [+ₛ]-inverseₗ ;
[+]-inverseᵣ to [+ₛ]-inverseᵣ ;
[−]-function to [−ₛ]-function ;
[⋅]-binary-operator to [⋅ₛ]-binary-operator ;
[⋅]-associativity to [⋅ₛ]-associativity ;
[⋅]-identity-existence to [⋅ₛ]-identity-existence ;
[⋅]-identity to [⋅ₛ]-identity ;
[⋅]-identityₗ to [⋅ₛ]-identityₗ ;
[⋅]-identityᵣ to [⋅ₛ]-identityᵣ ;
[⋅]-inverseₗ to [⋅ₛ]-inverseₗ ;
[⋅]-inverseᵣ to [⋅ₛ]-inverseᵣ ;
distinct-identities to distinct-identitiesₛ
) public
open CommutativeGroup(vectorCommutativeGroup)
renaming (
id to 𝟎ᵥ ;
inv to −ᵥ_ ;
inv-op to _−ᵥ_ ;
group to [+ᵥ]-group;
commutativity to [+ᵥ]-commutativity;
monoid to [+ᵥ]-monoid ;
binary-operator to [+ᵥ]-binary-operator ;
associativity to [+ᵥ]-associativity ;
identity-existence to [+ᵥ]-identity-existence ;
identity to [+ᵥ]-identity ;
identityₗ to [+ᵥ]-identityₗ ;
identityᵣ to [+ᵥ]-identityᵣ ;
inverse-existence to [+ᵥ]-inverse-existence ;
inverse to [+ᵥ]-inverse ;
inverseₗ to [+ᵥ]-inverseₗ ;
inverseᵣ to [+ᵥ]-inverseᵣ ;
inv-function to [−ᵥ]-function
) public
field
⦃ [⋅ₛᵥ]-binaryOperator ⦄ : BinaryOperator(_⋅ₛᵥ_)
[⋅ₛ][⋅ₛᵥ]-compatibility : Names.Compatibility(_⋅ₛ_)(_⋅ₛᵥ_) -- TODO: This is semigroup action
⦃ [⋅ₛᵥ]-identity ⦄ : Identityₗ(_⋅ₛᵥ_)(𝟏ₛ)
⦃ [⋅ₛᵥ][+ᵥ]-distributivityₗ ⦄ : Distributivityₗ(_⋅ₛᵥ_)(_+ᵥ_)
[⋅ₛᵥ][+ₛ][+ᵥ]-distributivityᵣ : Names.DistributivityPatternᵣ(_⋅ₛᵥ_)(_+ₛ_)(_+ᵥ_) -- TODO: This is ∀? → Preserving₂
_⋅ᵥₛ_ = swap(_⋅ₛᵥ_)
record VectorSpaceVObject {ℓᵥ ℓₛ ℓᵥₑ ℓₛₑ}
{S : Type{ℓₛ}} ⦃ equiv-S : Equiv{ℓₛₑ}(S) ⦄
(_+ₛ_ : S → S → S)
(_⋅ₛ_ : S → S → S)
: Stmt{ℓₛₑ Lvl.⊔ ℓₛ Lvl.⊔ Lvl.𝐒(ℓᵥₑ Lvl.⊔ ℓᵥ)}
where
constructor intro
field
{Vector} : Type{ℓᵥ}
⦃ Vector-equiv ⦄ : Equiv{ℓᵥₑ}(Vector)
_+ᵥ_ : Vector → Vector → Vector
_⋅ₛᵥ_ : S → Vector → Vector
⦃ vectorSpace ⦄ : VectorSpace(_+ᵥ_)(_⋅ₛᵥ_)(_+ₛ_)(_⋅ₛ_)
open VectorSpace(vectorSpace) public
record VectorSpaceObject {ℓᵥ ℓₛ ℓᵥₑ ℓₛₑ} : Stmt{Lvl.𝐒(ℓₛₑ Lvl.⊔ ℓₛ Lvl.⊔ ℓᵥₑ Lvl.⊔ ℓᵥ)} where
constructor intro
field
{Vector} : Type{ℓᵥ}
⦃ equiv-Vector ⦄ : Equiv{ℓᵥₑ}(Vector)
{Scalar} : Type{ℓₛ}
⦃ equiv-Scalar ⦄ : Equiv{ℓₛₑ}(Scalar)
_+ᵥ_ : Vector → Vector → Vector
_⋅ₛᵥ_ : Scalar → Vector → Vector
_+ₛ_ : Scalar → Scalar → Scalar
_⋅ₛ_ : Scalar → Scalar → Scalar
⦃ vectorSpace ⦄ : VectorSpace(_+ᵥ_)(_⋅ₛᵥ_)(_+ₛ_)(_⋅ₛ_)
open VectorSpace(vectorSpace) public
| 36.816667
| 117
| 0.546627
|
12a247a950219a1c574c869f366e3240987e6c4a
| 956
|
agda
|
Agda
|
test/Succeed/Issue3246.agda
|
cagix/agda
|
cc026a6a97a3e517bb94bafa9d49233b067c7559
|
[
"BSD-2-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Succeed/Issue3246.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Succeed/Issue3246.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
-- Andreas, 2018-10-29, issue #3246
-- More things are now allowed in mutual blocks.
-- @mutual@ just pushes the definition parts to the bottom.
-- Definitions exist for data, record, functions, and pattern synonyms.
{-# OPTIONS --guardedness #-}
postulate Float : Set
{-# BUILTIN FLOAT Float #-} -- not (yet) allowed in mutual block
mutual
import Agda.Builtin.Bool
open Agda.Builtin.Bool
f : Bool
f = g -- pushed to bottom
-- module M where -- not (yet) allowed in mutual block
module B = Agda.Builtin.Bool
primitive
primFloatEquality : Float → Float → Bool
{-# INJECTIVE primFloatEquality #-} -- certainly a lie
open import Agda.Builtin.Equality
{-# DISPLAY primFloatEquality x y = x ≡ y #-}
postulate A : Set
{-# COMPILE GHC A = type Integer #-}
variable x : Bool
g : Bool
g = true -- pushed to bottom
{-# STATIC g #-}
record R : Set where
coinductive
field foo : R
{-# ETA R #-}
| 19.510204
| 71
| 0.649582
|
c592d46ed874a6842987632ef070e1bb8f1d54d6
| 12,586
|
agda
|
Agda
|
Cubical/Foundations/HLevels.agda
|
Rotsor/cubical
|
d55cd4834ca1f171f58b4a0c46b804ea6d18191f
|
[
"MIT"
] | null | null | null |
Cubical/Foundations/HLevels.agda
|
Rotsor/cubical
|
d55cd4834ca1f171f58b4a0c46b804ea6d18191f
|
[
"MIT"
] | null | null | null |
Cubical/Foundations/HLevels.agda
|
Rotsor/cubical
|
d55cd4834ca1f171f58b4a0c46b804ea6d18191f
|
[
"MIT"
] | null | null | null |
{-
Basic theory about h-levels/n-types:
- Basic properties of isContr, isProp and isSet (definitions are in Prelude)
- Hedberg's theorem can be found in Cubical/Relation/Nullary/DecidableEq
-}
{-# OPTIONS --cubical --safe #-}
module Cubical.Foundations.HLevels where
open import Cubical.Core.Everything
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.FunExtEquiv
open import Cubical.Foundations.GroupoidLaws
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Transport
open import Cubical.Foundations.HAEquiv using (congEquiv)
open import Cubical.Foundations.Equiv using (isoToEquiv; isPropIsEquiv; retEq; invEquiv)
open import Cubical.Foundations.Univalence using (ua; univalence)
open import Cubical.Data.Sigma using (ΣPathP; sigmaPath→pathSigma; pathSigma≡sigmaPath; _Σ≡T_)
open import Cubical.Data.Nat using (ℕ; zero; suc; _+_; +-comm)
private
variable
ℓ ℓ' : Level
A : Type ℓ
B : A → Type ℓ
x y : A
n : ℕ
hProp : Type (ℓ-suc ℓ)
hProp {ℓ} = Σ (Type ℓ) isProp
isOfHLevel : ℕ → Type ℓ → Type ℓ
isOfHLevel 0 A = isContr A
isOfHLevel 1 A = isProp A
isOfHLevel (suc (suc n)) A = (x y : A) → isOfHLevel (suc n) (x ≡ y)
isOfHLevelDep : ℕ → {A : Type ℓ} (B : A → Type ℓ') → Type (ℓ-max ℓ ℓ')
isOfHLevelDep 0 {A = A} B = {a : A} → B a
isOfHLevelDep 1 {A = A} B = {a0 a1 : A} (b0 : B a0) (b1 : B a1) (p : a0 ≡ a1) → PathP (λ i → B (p i)) b0 b1
isOfHLevelDep (suc (suc n)) {A = A} B = {a0 a1 : A} (b0 : B a0) (b1 : B a1) → isOfHLevelDep (suc n) {A = a0 ≡ a1} (λ p → PathP (λ i → B (p i)) b0 b1)
isOfHLevel→isOfHLevelDep : {n : ℕ} → {A : Type ℓ} {B : A → Type ℓ'} (h : (a : A) → isOfHLevel n (B a)) → isOfHLevelDep n {A = A} B
isOfHLevel→isOfHLevelDep {n = 0} {A = A} {B} h {a} = h a .fst
isOfHLevel→isOfHLevelDep {n = 1} {A = A} {B} h = λ b0 b1 p → isProp→PathP h p b0 b1
isOfHLevel→isOfHLevelDep {n = suc (suc n)} {A = A} {B} h {a0} {a1} b0 b1 =
isOfHLevel→isOfHLevelDep {n = suc n}
{B = λ p → PathP (λ i → B (p i)) b0 b1} λ p → helper a1 p b1
where
helper : (a1 : A) (p : a0 ≡ a1) (b1 : B a1) →
isOfHLevel (suc n) (PathP (λ i → B (p i)) b0 b1)
helper a1 p b1 = J
(λ a1 p → ∀ b1 → isOfHLevel (suc n) (PathP (λ i → B (p i)) b0 b1))
(λ _ → h _ _ _) p b1
HLevel : ℕ → Type (ℓ-suc ℓ)
HLevel {ℓ} n = Σ[ A ∈ Type ℓ ] (isOfHLevel n A)
inhProp→isContr : A → isProp A → isContr A
inhProp→isContr x h = x , h x
isPropIsProp : isProp (isProp A)
isPropIsProp f g i a b = isProp→isSet f a b (f a b) (g a b) i
-- A retract of a contractible type is contractible
retractIsContr
: ∀ {B : Type ℓ}
→ (f : A → B) (g : B → A)
→ (h : (x : A) → g (f x) ≡ x)
→ (v : isContr B) → isContr A
retractIsContr f g h (b , p) = (g b , λ x → (cong g (p (f x))) ∙ (h x))
retractIsProp
: {B : Type ℓ}
(f : A → B) (g : B → A)
(h : (x : A) → g (f x) ≡ x)
→ isProp B → isProp A
retractIsProp f g h p x y i =
hcomp
(λ j → λ
{ (i = i0) → h x j
; (i = i1) → h y j})
(g (p (f x) (f y) i))
retractIsOfHLevel
: (n : ℕ) {B : Type ℓ}
(f : A → B) (g : B → A)
(h : (x : A) → g (f x) ≡ x)
→ isOfHLevel n B → isOfHLevel n A
retractIsOfHLevel 0 = retractIsContr
retractIsOfHLevel 1 = retractIsProp
retractIsOfHLevel (suc (suc n)) f g h ofLevel x y =
retractIsOfHLevel (suc n)
(cong f)
(λ q i →
hcomp
(λ j → λ
{ (i = i0) → h x j
; (i = i1) → h y j})
(g (q i)))
(λ p k i →
hcomp
(λ j → λ
{ (i = i0) → h x (j ∨ k)
; (i = i1) → h y (j ∨ k)
; (k = i1) → p i})
(h (p i) k))
(ofLevel (f x) (f y))
isContrSigma
: isContr A
→ ((x : A) → isContr (B x))
→ isContr (Σ[ x ∈ A ] B x)
isContrSigma {A = A} {B = B} (a , p) q =
let h : (x : A) (y : B x) → (q x) .fst ≡ y
h x y = (q x) .snd y
in (( a , q a .fst)
, ( λ x i → p (x .fst) i
, h (p (x .fst) i) (transp (λ j → B (p (x .fst) (i ∨ ~ j))) i (x .snd)) i))
isProp→isPropPathP : (∀ a → isProp (B a))
→ (m : x ≡ y) (g : B x) (h : B y)
→ isProp (PathP (λ i → B (m i)) g h)
isProp→isPropPathP {B = B} {x = x} isPropB m = J P d m where
P : ∀ σc → x ≡ σc → _
P _ m = ∀ g h → isProp (PathP (λ i → B (m i)) g h)
d : P x refl
d = isProp→isSet (isPropB x)
isProp→isContrPathP : (∀ a → isProp (B a))
→ (m : x ≡ y) (g : B x) (h : B y)
→ isContr (PathP (λ i → B (m i)) g h)
isProp→isContrPathP isPropB m g h =
inhProp→isContr (isProp→PathP isPropB m g h) (isProp→isPropPathP isPropB m g h)
isProp→isContr≡ : isProp A → (x y : A) → isContr (x ≡ y)
isProp→isContr≡ isPropA x y = inhProp→isContr (isPropA x y) (isProp→isSet isPropA x y)
isContrPath : isContr A → (x y : A) → isContr (x ≡ y)
isContrPath cA = isProp→isContr≡ (isContr→isProp cA)
-- Π preserves propositionality in the following sense:
propPi : (h : (x : A) → isProp (B x)) → isProp ((x : A) → B x)
propPi h f0 f1 i x = h x (f0 x) (f1 x) i
ΣProp≡
: ((x : A) → isProp (B x)) → {u v : Σ[ a ∈ A ] B a}
→ (p : u .fst ≡ v .fst) → u ≡ v
ΣProp≡ pB {u} {v} p i = (p i) , isProp→PathP pB p (u .snd) (v .snd) i
isPropSigma : isProp A → ((x : A) → isProp (B x)) → isProp (Σ[ x ∈ A ] B x)
isPropSigma pA pB t u = ΣProp≡ pB (pA (t .fst) (u .fst))
hLevelPi
: ∀ n
→ ((x : A) → isOfHLevel n (B x))
→ isOfHLevel n ((x : A) → B x)
hLevelPi 0 h = (λ x → fst (h x)) , λ f i y → snd (h y) (f y) i
hLevelPi {B = B} 1 h f g i x = (h x) (f x) (g x) i
hLevelPi (suc (suc n)) h f g =
subst (isOfHLevel (suc n)) funExtPath (hLevelPi (suc n) λ x → h x (f x) (g x))
isSetPi : ((x : A) → isSet (B x)) → isSet ((x : A) → B x)
isSetPi Bset = hLevelPi 2 (λ a → Bset a)
isSet→isSet' : isSet A → isSet' A
isSet→isSet' {A = A} Aset {x} {y} {z} {w} p q r s
= transport (squeezeSq≡ r p q s) (Aset _ _ p (r ∙∙ q ∙∙ sym s))
isSet'→isSet : isSet' A → isSet A
isSet'→isSet {A = A} Aset' x y p q = Aset' p q refl refl
squeezeCu≡
: ∀{w x y z w' x' y' z' : A}
→ {p : w ≡ y} {q : w ≡ x} {r : y ≡ z} {s : x ≡ z}
→ {p' : w' ≡ y'} {q' : w' ≡ x'} {r' : y' ≡ z'} {s' : x' ≡ z'}
→ {a : w ≡ w'} {b : x ≡ x'} {c : y ≡ y'} {d : z ≡ z'}
→ (ps : Square a p p' c) (qs : Square a q q' b)
→ (rs : Square c r r' d) (ss : Square b s s' d)
→ (f0 : Square p q r s) (f1 : Square p' q' r' s')
→ (f0 ≡ transport⁻ (λ k → Square (ps k) (qs k) (rs k) (ss k)) f1)
≡ Cube ps qs rs ss f0 f1
squeezeCu≡ ps qs rs ss f0 f1 τ
= Cube
(λ j → ps (j ∧ τ))
(λ j → qs (j ∧ τ))
(λ j → rs (j ∧ τ))
(λ j → ss (j ∧ τ))
f0
(toPathP {A = λ k → Square (ps k) (qs k) (rs k) (ss k)}
(transportTransport⁻ (λ k → Square (ps k) (qs k) (rs k) (ss k)) f1) τ)
isGroupoid→isGroupoid' : isGroupoid A → isGroupoid' A
isGroupoid→isGroupoid' Agpd ps qs rs ss f0 f1
= transport
( squeezeCu≡ (λ _ → refl) f0 f1' (λ _ → refl) (λ _ → f0 i0) (λ _ → f1' i1)
∙ transpose≡
∙ squeezeCu≡ ps qs rs ss f0 f1
) (Agpd (ps i0 i0) (ss i0 i0) (f0 i0) (f1' i0) refl rs')
where
Sq = λ k → Square (ps k) (qs k) (rs k) (ss k)
f1' = transport⁻ Sq f1
rs' = transport⁻ (λ k → Square refl (f0 k) (f1' k) refl) (λ _ → f1' i1)
transpose≡
: Cube (λ i _ → ps i0 i) f0 f1' (λ i _ → ss i0 i) refl refl
≡ Cube refl refl refl refl f0 f1'
transpose≡
= ua ((λ cu i j → cu j i)
, λ where
.equiv-proof cu
→ ((λ i j → cu j i) , refl)
, (λ{ (cu' , p) → λ k → (λ j i → p (~ k) i j) , λ τ → p (~ k ∨ τ) }))
isGroupoid'→isGroupoid : isGroupoid' A → isGroupoid A
isGroupoid'→isGroupoid Agpd' w x p q r s
= Agpd' {q = p} {r = q} {q' = p} {r' = q} refl refl refl refl r s
hLevelSuc : (n : ℕ) (A : Type ℓ) → isOfHLevel n A → isOfHLevel (suc n) A
hLevelSuc 0 A = isContr→isProp
hLevelSuc 1 A = isProp→isSet
hLevelSuc (suc (suc n)) A h a b = hLevelSuc (suc n) (a ≡ b) (h a b)
hLevelLift : (m : ℕ) (hA : isOfHLevel n A) → isOfHLevel (m + n) A
hLevelLift zero hA = hA
hLevelLift {A = A} (suc m) hA = hLevelSuc _ A (hLevelLift m hA)
isPropIsOfHLevel : (n : ℕ) (A : Type ℓ) → isProp (isOfHLevel n A)
isPropIsOfHLevel 0 A = isPropIsContr
isPropIsOfHLevel 1 A = isPropIsProp
isPropIsOfHLevel (suc (suc n)) A f g i a b =
isPropIsOfHLevel (suc n) (a ≡ b) (f a b) (g a b) i
isPropIsSet : isProp (isSet A)
isPropIsSet {A = A} = isPropIsOfHLevel 2 A
HLevel≡ : ∀ {A B : Type ℓ} {hA : isOfHLevel n A} {hB : isOfHLevel n B} →
(A ≡ B) ≡ ((A , hA) ≡ (B , hB))
HLevel≡ {n = n} {A = A} {B = B} {hA} {hB} =
isoToPath (iso intro elim intro-elim elim-intro)
where
intro : A ≡ B → (A , hA) ≡ (B , hB)
intro eq = ΣProp≡ (λ A → isPropIsOfHLevel n _) eq
elim : (A , hA) ≡ (B , hB) → A ≡ B
elim = cong fst
intro-elim : ∀ x → intro (elim x) ≡ x
intro-elim eq = cong ΣPathP (ΣProp≡ (λ e →
J (λ B e →
∀ k → (x y : PathP (λ i → isOfHLevel n (e i)) hA k) → x ≡ y)
(λ k → isProp→isSet (isPropIsOfHLevel n _) _ _) e hB) refl)
elim-intro : ∀ x → elim (intro x) ≡ x
elim-intro eq = refl
-- H-level for Σ-types
isOfHLevelΣ : ∀ n → isOfHLevel n A → ((x : A) → isOfHLevel n (B x))
→ isOfHLevel n (Σ A B)
isOfHLevelΣ zero h1 h2 =
let center = (fst h1 , fst (h2 (fst h1))) in
let p : ∀ x → center ≡ x
p = λ x → sym (sigmaPath→pathSigma _ _ (sym (snd h1 (fst x)) , sym (snd (h2 (fst h1)) _)))
in (center , p)
isOfHLevelΣ 1 h1 h2 x y = sigmaPath→pathSigma x y ((h1 _ _) , (h2 _ _ _))
isOfHLevelΣ {B = B} (suc (suc n)) h1 h2 x y =
let h3 : isOfHLevel (suc n) (x Σ≡T y)
h3 = isOfHLevelΣ (suc n) (h1 (fst x) (fst y)) λ p → h2 (p i1)
(subst B p (snd x)) (snd y)
in transport (λ i → isOfHLevel (suc n) (pathSigma≡sigmaPath x y (~ i))) h3
hLevel≃ : ∀ n → {A B : Type ℓ} (hA : isOfHLevel n A) (hB : isOfHLevel n B) → isOfHLevel n (A ≃ B)
hLevel≃ zero {A = A} {B = B} hA hB = A≃B , contr
where
A≃B : A ≃ B
A≃B = isoToEquiv (iso (λ _ → fst hB) (λ _ → fst hA) (snd hB ) (snd hA))
contr : (y : A ≃ B) → A≃B ≡ y
contr y = ΣProp≡ isPropIsEquiv (funExt (λ a → snd hB (fst y a)))
hLevel≃ (suc n) hA hB =
isOfHLevelΣ (suc n) (hLevelPi (suc n) (λ _ → hB))
(λ a → subst (λ n → isOfHLevel n (isEquiv a)) (+-comm n 1) (hLevelLift n (isPropIsEquiv a)))
hLevelRespectEquiv : {A : Type ℓ} {B : Type ℓ'} → (n : ℕ) → A ≃ B → isOfHLevel n A → isOfHLevel n B
hLevelRespectEquiv 0 eq hA =
( fst eq (fst hA)
, λ b → cong (fst eq) (snd hA (eq .snd .equiv-proof b .fst .fst)) ∙ eq .snd .equiv-proof b .fst .snd)
hLevelRespectEquiv 1 eq hA x y i =
hcomp (λ j → λ { (i = i0) → retEq eq x j ; (i = i1) → retEq eq y j })
(cong (eq .fst) (hA (invEquiv eq .fst x) (invEquiv eq .fst y)) i)
hLevelRespectEquiv {A = A} {B = B} (suc (suc n)) eq hA x y =
hLevelRespectEquiv (suc n) (invEquiv (congEquiv (invEquiv eq))) (hA _ _)
hLevel≡ : ∀ n → {A B : Type ℓ} (hA : isOfHLevel n A) (hB : isOfHLevel n B) →
isOfHLevel n (A ≡ B)
hLevel≡ n hA hB = hLevelRespectEquiv n (invEquiv univalence) (hLevel≃ n hA hB)
hLevelHLevel1 : isProp (HLevel {ℓ = ℓ} 0)
hLevelHLevel1 x y = ΣProp≡ (λ _ → isPropIsContr) ((hLevel≡ 0 (x .snd) (y .snd) .fst))
hLevelHLevelSuc : ∀ n → isOfHLevel (suc (suc n)) (HLevel {ℓ = ℓ} (suc n))
hLevelHLevelSuc n x y = subst (λ e → isOfHLevel (suc n) e) HLevel≡ (hLevel≡ (suc n) (snd x) (snd y))
hProp≡HLevel1 : hProp {ℓ} ≡ HLevel {ℓ} 1
hProp≡HLevel1 {ℓ} = isoToPath (iso intro elim intro-elim elim-intro)
where
intro : hProp {ℓ} → HLevel {ℓ} 1
intro h = fst h , snd h
elim : HLevel 1 → hProp
elim h = (fst h) , (snd h)
intro-elim : ∀ h → intro (elim h) ≡ h
intro-elim h = ΣProp≡ (λ _ → isPropIsOfHLevel 1 _) refl
elim-intro : ∀ h → elim (intro h) ≡ h
elim-intro h = ΣProp≡ (λ _ → isPropIsProp) refl
isSetHProp : isSet (hProp {ℓ = ℓ})
isSetHProp = subst (λ X → isOfHLevel 2 X) (sym hProp≡HLevel1) (hLevelHLevelSuc 0)
isContrPartial→isContr : ∀ {ℓ} {A : Type ℓ}
→ (extend : ∀ φ → Partial φ A → A)
→ (∀ u → u ≡ (extend i1 λ { _ → u}))
→ isContr A
isContrPartial→isContr {A = A} extend law
= ex , λ y → law ex ∙ (λ i → Aux.v y i) ∙ sym (law y)
where ex = extend i0 empty
module Aux (y : A) (i : I) where
φ = ~ i ∨ i
u : Partial φ A
u = λ { (i = i0) → ex ; (i = i1) → y }
v = extend φ u
isOfHLevelLift : ∀ {ℓ ℓ'} (n : ℕ) {A : Type ℓ} → isOfHLevel n A → isOfHLevel n (Lift {j = ℓ'} A)
isOfHLevelLift n = retractIsOfHLevel n lower lift λ _ → refl
| 36.481159
| 150
| 0.540521
|
fbbd3661af2f81c0eb741eed8b428d82b2e5c8cc
| 2,142
|
agda
|
Agda
|
Globular-TT/Eqdec-syntax.agda
|
ThiBen/catt-formalization
|
ed45935b38d6a86fa662f561866140122ee3dcef
|
[
"MIT"
] | 2
|
2020-05-01T08:26:53.000Z
|
2020-05-20T00:41:09.000Z
|
Globular-TT/Eqdec-syntax.agda
|
ThiBen/catt-formalization
|
ed45935b38d6a86fa662f561866140122ee3dcef
|
[
"MIT"
] | null | null | null |
Globular-TT/Eqdec-syntax.agda
|
ThiBen/catt-formalization
|
ed45935b38d6a86fa662f561866140122ee3dcef
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --without-K #-}
open import Agda.Primitive
open import Prelude
import GSeTT.Typed-Syntax
import Globular-TT.Syntax
{- Type theory for globular sets -}
module Globular-TT.Eqdec-syntax {l}
(index : Set l) (eqdec-index : eqdec index) where
open import Globular-TT.Syntax index
eqdec-Ty : eqdec Pre-Ty
eqdec-Tm : eqdec Pre-Tm
eqdec-Sub : eqdec Pre-Sub
eqdec-Ty ∗ ∗ = inl idp
eqdec-Ty ∗ (_ ⇒[ _ ] _) = inr λ{()}
eqdec-Ty (_ ⇒[ _ ] _) ∗ = inr λ{()}
eqdec-Ty (t ⇒[ A ] u) (t' ⇒[ B ] u') with eqdec-Ty A B | eqdec-Tm t t' | eqdec-Tm u u'
... | inl idp | inl idp | inl idp = inl idp
... | inr A≠B | _ | _ = inr λ{idp → A≠B idp}
... | inl idp | inr t≠t' | _ = inr λ eq → t≠t' (snd (fst (=⇒ eq)))
... | inl idp | inl idp | inr u≠u' = inr λ eq → u≠u' (snd (=⇒ eq))
eqdec-Tm (Var x) (Var y) with eqdecℕ x y
... | inl idp = inl idp
... | inr x≠y = inr λ {idp → x≠y idp}
eqdec-Tm (Var _) (Tm-constructor _ _) = inr λ{()}
eqdec-Tm (Tm-constructor _ _) (Var _) = inr λ{()}
eqdec-Tm (Tm-constructor i γ) (Tm-constructor i' γ') with eqdec-index i i' | eqdec-Sub γ γ'
... | inl idp | inl idp = inl idp
... | inr i≠i' | _ = inr λ{idp → i≠i' idp}
... | inl idp | inr γ≠γ' = inr λ eq → γ≠γ' (snd (=Tm-constructor eq))
eqdec-Sub <> <> = inl idp
eqdec-Sub < _ , _ ↦ _ > <> = inr λ{()}
eqdec-Sub <> < _ , _ ↦ _ > = inr λ{()}
eqdec-Sub < γ , x ↦ t > < γ' , y ↦ t' > with eqdec-Sub γ γ' | eqdecℕ x y | eqdec-Tm t t'
... | inl idp | inl idp | inl idp = inl idp
... | inr γ≠γ' | _ | _ = inr λ{idp → γ≠γ' idp}
... | inl idp | inr x≠y | _ = inr λ eq → x≠y (snd (fst (=<,> eq)))
... | inl idp | inl idp | inr t≠t' = inr λ eq → t≠t' (snd (=<,> eq))
| 47.6
| 121
| 0.419234
|
fb0651903caa0db4f8c81582593324d595354821
| 5,611
|
agda
|
Agda
|
Structure/Relator.agda
|
Lolirofle/stuff-in-agda
|
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
|
[
"MIT"
] | 6
|
2020-04-07T17:58:13.000Z
|
2022-02-05T06:53:22.000Z
|
Structure/Relator.agda
|
Lolirofle/stuff-in-agda
|
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
|
[
"MIT"
] | null | null | null |
Structure/Relator.agda
|
Lolirofle/stuff-in-agda
|
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
|
[
"MIT"
] | null | null | null |
module Structure.Relator where
import Lvl
open import Functional using (_∘₂_)
open import Functional.Dependent
open import Lang.Instance
open import Logic
open import Logic.Propositional
open import Structure.Setoid
open import Structure.Relator.Names
open import Structure.Relator.Properties
open import Syntax.Function
open import Type
-- TODO: It seems possible to define UnaryRelator as a special case of Function, so let's do that
private variable ℓₒ ℓₒ₁ ℓₒ₂ ℓₒ₃ ℓₗ ℓₗ₁ ℓₗ₂ ℓₗ₃ ℓₗ₄ : Lvl.Level
module Names where
module _ {A : Type{ℓₒ}} ⦃ _ : Equiv{ℓₗ₁}(A) ⦄ (P : A → Stmt{ℓₗ₂}) where
Substitution₁ = ∀{x y : A} → (x ≡ y) → P(x) → P(y)
module _ {A : Type{ℓₒ₁}} ⦃ _ : Equiv{ℓₗ₁}(A) ⦄ {B : Type{ℓₒ₂}} ⦃ _ : Equiv{ℓₗ₂}(B) ⦄ (_▫_ : A → B → Stmt{ℓₗ₃}) where
Substitution₂ = ∀{x₁ y₁ : A}{x₂ y₂ : B} → (x₁ ≡ y₁) → (x₂ ≡ y₂) → (x₁ ▫ x₂) → (y₁ ▫ y₂)
module _ {A : Type{ℓₒ₁}} ⦃ _ : Equiv{ℓₗ₁}(A) ⦄ {B : Type{ℓₒ₂}} ⦃ _ : Equiv{ℓₗ₂}(B) ⦄ {C : Type{ℓₒ₃}} ⦃ _ : Equiv{ℓₗ₃}(C) ⦄ (_▫_▫_ : A → B → C → Stmt{ℓₗ₄}) where
Substitution₃ = ∀{x₁ y₁ : A}{x₂ y₂ : B}{x₃ y₃ : C} → (x₁ ≡ y₁) → (x₂ ≡ y₂) → (x₃ ≡ y₃) → (x₁ ▫ x₂ ▫ x₃) → (y₁ ▫ y₂ ▫ y₃)
-- The unary relator `P` "(behaves like)/is a relator" in the context of `_≡_` from the Equiv instance.
module _ {A : Type{ℓₒ}} ⦃ _ : Equiv{ℓₗ₁}(A) ⦄ (P : A → Stmt{ℓₗ₂}) where
record UnaryRelator : Stmt{ℓₒ Lvl.⊔ ℓₗ₁ Lvl.⊔ ℓₗ₂} where
constructor intro
field
substitution : Names.Substitution₁(P)
substitution-sym : ∀{x y : A} → (x ≡ y) → P(x) ← P(y)
substitution-sym = substitution ∘ Structure.Relator.Properties.symmetry(_≡_)
substitution-equivalence : ∀{x y : A} → (x ≡ y) → (P(x) ↔ P(y))
substitution-equivalence xy = [↔]-intro (substitution-sym xy) (substitution xy)
substitute₁ₗ = inst-fn UnaryRelator.substitution-sym
substitute₁ᵣ = inst-fn UnaryRelator.substitution
substitute₁ₗᵣ = inst-fn UnaryRelator.substitution-equivalence
substitute₁ = substitute₁ᵣ
unaryRelator = resolve UnaryRelator
-- The binary relator `_▫_` "(behaves like)/is a relator" in the context of `_≡_` from the Equiv instance.
module _ {A : Type{ℓₒ₁}} ⦃ _ : Equiv{ℓₗ₁}(A) ⦄ {B : Type{ℓₒ₂}} ⦃ _ : Equiv{ℓₗ₂}(B) ⦄ (_▫_ : A → B → Stmt{ℓₗ₃}) where
open Structure.Relator.Properties
record BinaryRelator : Stmt{ℓₒ₁ Lvl.⊔ ℓₒ₂ Lvl.⊔ ℓₗ₁ Lvl.⊔ ℓₗ₂ Lvl.⊔ ℓₗ₃} where
constructor intro
field
substitution : Names.Substitution₂(_▫_)
left : ∀{x} → UnaryRelator(_▫ x)
left = intro(\p → substitution p (reflexivity(_≡_)))
right : ∀{x} → UnaryRelator(x ▫_)
right = intro(\p → substitution (reflexivity(_≡_)) p)
substitutionₗ = \{a x y} → UnaryRelator.substitution(left {a}) {x}{y}
substitutionᵣ = \{a x y} → UnaryRelator.substitution(right{a}) {x}{y}
substitution-sym : ∀{x₁ y₁ : A}{x₂ y₂ : B} → (x₁ ≡ y₁) → (x₂ ≡ y₂) → ((x₁ ▫ x₂) ← (y₁ ▫ y₂))
substitution-sym xy1 xy2 = substitution (Structure.Relator.Properties.symmetry(_≡_) xy1) (Structure.Relator.Properties.symmetry(_≡_) xy2)
substitution-equivalence : ∀{x₁ y₁ : A}{x₂ y₂ : B} → (x₁ ≡ y₁) → (x₂ ≡ y₂) → ((x₁ ▫ x₂) ↔ (y₁ ▫ y₂))
substitution-equivalence xy1 xy2 = [↔]-intro (substitution-sym xy1 xy2) (substitution xy1 xy2)
substitute₂ = inst-fn BinaryRelator.substitution
substitute₂ₗ = inst-fn BinaryRelator.substitutionₗ
substitute₂ᵣ = inst-fn BinaryRelator.substitutionᵣ
substitute₂ₗᵣ = inst-fn BinaryRelator.substitution-equivalence
binaryRelator = resolve BinaryRelator
module _ {A : Type{ℓₒ₁}} ⦃ _ : Equiv{ℓₗ₁}(A) ⦄ {B : Type{ℓₒ₂}} ⦃ _ : Equiv{ℓₗ₂}(B) ⦄ {C : Type{ℓₒ₃}} ⦃ _ : Equiv{ℓₗ₃}(C) ⦄ (_▫_▫_ : A → B → C → Stmt{ℓₗ₄}) where
open Structure.Relator.Properties
record TrinaryRelator : Stmt{ℓₒ₁ Lvl.⊔ ℓₒ₂ Lvl.⊔ ℓₒ₃ Lvl.⊔ ℓₗ₁ Lvl.⊔ ℓₗ₂ Lvl.⊔ ℓₗ₃ Lvl.⊔ ℓₗ₄} where
constructor intro
field
substitution : Names.Substitution₃(_▫_▫_)
unary₁ : ∀{y z} → UnaryRelator(_▫ y ▫ z)
unary₁ = intro(\p → substitution p (reflexivity(_≡_)) (reflexivity(_≡_)))
unary₂ : ∀{x z} → UnaryRelator(x ▫_▫ z)
unary₂ = intro(\p → substitution (reflexivity(_≡_)) p (reflexivity(_≡_)))
unary₃ : ∀{x y} → UnaryRelator(x ▫ y ▫_)
unary₃ = intro(\p → substitution (reflexivity(_≡_)) (reflexivity(_≡_)) p)
binary₁₂ : ∀{z} → BinaryRelator(_▫_▫ z)
binary₁₂ = intro(\p q → substitution p q (reflexivity(_≡_)))
binary₁₃ : ∀{y} → BinaryRelator(_▫ y ▫_)
binary₁₃ = intro(\p q → substitution p (reflexivity(_≡_)) q)
binary₂₃ : ∀{x} → BinaryRelator(x ▫_▫_)
binary₂₃ = intro(\p q → substitution (reflexivity(_≡_)) p q)
substitution-unary₁ = \{a b x y} → UnaryRelator.substitution(unary₁ {a}{b}) {x}{y}
substitution-unary₂ = \{a b x y} → UnaryRelator.substitution(unary₂ {a}{b}) {x}{y}
substitution-unary₃ = \{a b x y} → UnaryRelator.substitution(unary₃ {a}{b}) {x}{y}
substitution-binary₁₂ = \{a x₁ x₂ y₁ y₂} → BinaryRelator.substitution(binary₁₂ {a}) {x₁}{x₂}{y₁}{y₂}
substitution-binary₁₃ = \{a x₁ x₂ y₁ y₂} → BinaryRelator.substitution(binary₁₃ {a}) {x₁}{x₂}{y₁}{y₂}
substitution-binary₂₃ = \{a x₁ x₂ y₁ y₂} → BinaryRelator.substitution(binary₂₃ {a}) {x₁}{x₂}{y₁}{y₂}
substitute₃ = inst-fn TrinaryRelator.substitution
substitute₃-unary₁ = inst-fn TrinaryRelator.substitution-unary₁
substitute₃-unary₂ = inst-fn TrinaryRelator.substitution-unary₂
substitute₃-unary₃ = inst-fn TrinaryRelator.substitution-unary₃
substitute₃-binary₁₂ = inst-fn TrinaryRelator.substitution-binary₁₂
substitute₃-binary₁₃ = inst-fn TrinaryRelator.substitution-binary₁₃
substitute₃-binary₂₃ = inst-fn TrinaryRelator.substitution-binary₂₃
trinaryRelator = resolve TrinaryRelator
| 55.009804
| 162
| 0.663162
|
5065f13c75df4ba68fcfb4f294e4bf9ab7d2a742
| 531
|
agda
|
Agda
|
Data/Boolean.agda
|
Lolirofle/stuff-in-agda
|
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
|
[
"MIT"
] | 6
|
2020-04-07T17:58:13.000Z
|
2022-02-05T06:53:22.000Z
|
Data/Boolean.agda
|
Lolirofle/stuff-in-agda
|
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
|
[
"MIT"
] | null | null | null |
Data/Boolean.agda
|
Lolirofle/stuff-in-agda
|
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
|
[
"MIT"
] | null | null | null |
module Data.Boolean where
import Lvl
open import Type
-- Boolean type
data Bool : Type{Lvl.𝟎} where
𝑇 : Bool -- Represents truth
𝐹 : Bool -- Represents falsity
{-# BUILTIN BOOL Bool #-}
{-# BUILTIN TRUE 𝑇 #-}
{-# BUILTIN FALSE 𝐹 #-}
elim : ∀{ℓ}{T : Bool → Type{ℓ}} → T(𝑇) → T(𝐹) → ((b : Bool) → T(b))
elim t _ 𝑇 = t
elim _ f 𝐹 = f
not : Bool → Bool
not 𝑇 = 𝐹
not 𝐹 = 𝑇
{-# COMPILE GHC not = not #-}
-- Control-flow if-else expression
if_then_else_ : ∀{ℓ}{T : Type{ℓ}} → Bool → T → T → T
if b then t else f = elim t f b
| 19.666667
| 67
| 0.587571
|
10ba03a5545ee26c676b3ee95a49fada4c6e021f
| 1,855
|
agda
|
Agda
|
test/Fail/Issue1946-4.agda
|
caryoscelus/agda
|
98d6f195fe672e54ef0389b4deb62e04e3e98327
|
[
"BSD-3-Clause"
] | null | null | null |
test/Fail/Issue1946-4.agda
|
caryoscelus/agda
|
98d6f195fe672e54ef0389b4deb62e04e3e98327
|
[
"BSD-3-Clause"
] | null | null | null |
test/Fail/Issue1946-4.agda
|
caryoscelus/agda
|
98d6f195fe672e54ef0389b4deb62e04e3e98327
|
[
"BSD-3-Clause"
] | null | null | null |
-- A minor variant of code reported by Andreas Abel.
-- Andreas, 2011-10-04
--
-- Agda's coinduction is incompatible with initial algebras
--
-- Sized types are needed to formulate initial algebras in general:
--
{-# OPTIONS --sized-types #-}
--
-- We need to skip the positivity check since we cannot communicate
-- to Agda that we only want strictly positive F's in the definition of Mu
--
{-# OPTIONS --no-positivity-check #-}
--
module _ where
open import Agda.Builtin.Coinduction renaming (∞ to co)
open import Agda.Builtin.Size
-- initial algebras
data Mu (F : Set → Set) : Size → Set where
inn : ∀ {i} → F (Mu F i) → Mu F (↑ i)
iter : ∀ {F : Set → Set}
(map : ∀ {A B} → (A → B) → F A → F B)
{A} → (F A → A) → ∀ {i} → Mu F i → A
iter map s (inn t) = s (map (iter map s) t)
-- the co functor (aka Lift functor)
F : Set → Set
F A = co A
map : ∀ {A B : Set} → (A → B) → co A → co B
map f a = ♯ f (♭ a)
-- the least fixed-point of co is inhabited
bla : Mu F ∞
bla = inn (♯ bla)
-- and goal!
data ⊥ : Set where
false : ⊥
false = iter map ♭ bla
-- note that co is indeed strictly positive, as the following
-- direct definition of Mu F ∞ is accepted
data Bla : Set where
c : co Bla → Bla
{- -- if we inline ♭ map into iter, the termination checker detects the cheat
iter' : Bla → ⊥
iter' (c t) = ♭ (♯ iter' (♭ t))
-- iter' (c t) = ♭ (map iter' t)
-}
-- Again, I want to emphasize that the problem is not with sized types.
-- I have only used sized types to communicate to Agda that initial algebras
-- (F, iter) are ok. Once we have initial algebras, we can form the
-- initial algebra of the co functor and abuse the guardedness checker
-- to construct an inhabitant in this empty initial algebra.
--
-- Agda's coinduction mechanism confuses constructor and coconstructors.
-- Convenient, but, as you have seen...
| 26.126761
| 77
| 0.644205
|
23f1df1b3343c69b46cb95f054bc1cee4742c385
| 12,234
|
agda
|
Agda
|
Definition/Typed/Consequences/Inequality.agda
|
fhlkfy/logrel-mltt
|
ea83fc4f618d1527d64ecac82d7d17e2f18ac391
|
[
"MIT"
] | 30
|
2017-05-20T03:05:21.000Z
|
2022-03-30T18:01:07.000Z
|
Definition/Typed/Consequences/Inequality.agda
|
fhlkfy/logrel-mltt
|
ea83fc4f618d1527d64ecac82d7d17e2f18ac391
|
[
"MIT"
] | 4
|
2017-06-22T12:49:23.000Z
|
2021-02-22T10:37:24.000Z
|
Definition/Typed/Consequences/Inequality.agda
|
fhlkfy/logrel-mltt
|
ea83fc4f618d1527d64ecac82d7d17e2f18ac391
|
[
"MIT"
] | 8
|
2017-10-18T14:18:20.000Z
|
2021-11-27T15:58:33.000Z
|
{-# OPTIONS --without-K --safe #-}
module Definition.Typed.Consequences.Inequality where
open import Definition.Untyped hiding (U≢ne; ℕ≢ne; B≢ne; U≢B; ℕ≢B)
open import Definition.Typed
open import Definition.Typed.EqRelInstance
open import Definition.LogicalRelation
open import Definition.LogicalRelation.Irrelevance
open import Definition.LogicalRelation.ShapeView
open import Definition.LogicalRelation.Fundamental.Reducibility
open import Definition.Typed.Consequences.Syntactic
open import Tools.Nat
open import Tools.Product
open import Tools.Empty
private
variable
n : Nat
Γ : Con Term n
A≢B : ∀ {A B Γ} (_⊩′⟨_⟩A_ _⊩′⟨_⟩B_ : Con Term n → TypeLevel → Term n → Set)
(A-intr : ∀ {l} → Γ ⊩′⟨ l ⟩A A → Γ ⊩⟨ l ⟩ A)
(B-intr : ∀ {l} → Γ ⊩′⟨ l ⟩B B → Γ ⊩⟨ l ⟩ B)
(A-elim : ∀ {l} → Γ ⊩⟨ l ⟩ A → ∃ λ l′ → Γ ⊩′⟨ l′ ⟩A A)
(B-elim : ∀ {l} → Γ ⊩⟨ l ⟩ B → ∃ λ l′ → Γ ⊩′⟨ l′ ⟩B B)
(A≢B′ : ∀ {l l′} ([A] : Γ ⊩′⟨ l ⟩A A) ([B] : Γ ⊩′⟨ l′ ⟩B B)
→ ShapeView Γ l l′ A B (A-intr [A]) (B-intr [B]) → ⊥)
→ Γ ⊢ A ≡ B → ⊥
A≢B {A} {B} _ _ A-intr B-intr A-elim B-elim A≢B′ A≡B with reducibleEq A≡B
A≢B {A} {B} _ _ A-intr B-intr A-elim B-elim A≢B′ A≡B | [A] , [B] , [A≡B] =
let _ , [A]′ = A-elim ([A])
_ , [B]′ = B-elim ([B])
[A≡B]′ = irrelevanceEq [A] (A-intr [A]′) [A≡B]
in A≢B′ [A]′ [B]′ (goodCases (A-intr [A]′) (B-intr [B]′) [A≡B]′)
U≢ℕ′ : ∀ {B l l′}
([U] : Γ ⊩′⟨ l ⟩U)
([ℕ] : Γ ⊩ℕ B)
→ ShapeView Γ l l′ _ _ (Uᵣ [U]) (ℕᵣ [ℕ]) → ⊥
U≢ℕ′ a b ()
U≢ℕ-red : ∀ {B} → Γ ⊢ B ⇒* ℕ → Γ ⊢ U ≡ B → ⊥
U≢ℕ-red D = A≢B (λ Γ l A → Γ ⊩′⟨ l ⟩U) (λ Γ l B → Γ ⊩ℕ B) Uᵣ ℕᵣ
(λ x → extractMaybeEmb (U-elim x))
(λ x → extractMaybeEmb (ℕ-elim′ D x))
U≢ℕ′
-- U and ℕ cannot be judgmentally equal.
U≢ℕ : Γ ⊢ U ≡ ℕ → ⊥
U≢ℕ U≡ℕ =
let _ , ⊢ℕ = syntacticEq U≡ℕ
in U≢ℕ-red (id ⊢ℕ) U≡ℕ
-- U and Empty
U≢Empty′ : ∀ {B l l′}
([U] : Γ ⊩′⟨ l ⟩U)
([Empty] : Γ ⊩Empty B)
→ ShapeView Γ l l′ _ _ (Uᵣ [U]) (Emptyᵣ [Empty]) → ⊥
U≢Empty′ a b ()
U≢Empty-red : ∀ {B} → Γ ⊢ B ⇒* Empty → Γ ⊢ U ≡ B → ⊥
U≢Empty-red D = A≢B (λ Γ l A → Γ ⊩′⟨ l ⟩U) (λ Γ l B → Γ ⊩Empty B) Uᵣ Emptyᵣ
(λ x → extractMaybeEmb (U-elim x))
(λ x → extractMaybeEmb (Empty-elim′ D x))
U≢Empty′
U≢Emptyⱼ : Γ ⊢ U ≡ Empty → ⊥
U≢Emptyⱼ U≡Empty =
let _ , ⊢Empty = syntacticEq U≡Empty
in U≢Empty-red (id ⊢Empty) U≡Empty
-- U and Unit
U≢Unit′ : ∀ {B l l′}
([U] : Γ ⊩′⟨ l ⟩U)
([Unit] : Γ ⊩Unit B)
→ ShapeView Γ l l′ _ _ (Uᵣ [U]) (Unitᵣ [Unit]) → ⊥
U≢Unit′ a b ()
U≢Unit-red : ∀ {B} → Γ ⊢ B ⇒* Unit → Γ ⊢ U ≡ B → ⊥
U≢Unit-red D = A≢B (λ Γ l A → Γ ⊩′⟨ l ⟩U) (λ Γ l B → Γ ⊩Unit B) Uᵣ Unitᵣ
(λ x → extractMaybeEmb (U-elim x))
(λ x → extractMaybeEmb (Unit-elim′ D x))
U≢Unit′
U≢Unitⱼ : Γ ⊢ U ≡ Unit → ⊥
U≢Unitⱼ U≡Unit =
let _ , ⊢Unit = syntacticEq U≡Unit
in U≢Unit-red (id ⊢Unit) U≡Unit
-- ℕ and Empty
ℕ≢Empty′ : ∀ {B l l'}
([ℕ] : Γ ⊩ℕ ℕ)
([Empty] : Γ ⊩Empty B)
→ ShapeView Γ l l' _ _ (ℕᵣ [ℕ]) (Emptyᵣ [Empty]) → ⊥
ℕ≢Empty′ a b ()
ℕ≢Empty-red : ∀ {B} → Γ ⊢ B ⇒* Empty → Γ ⊢ ℕ ≡ B → ⊥
ℕ≢Empty-red D = A≢B (λ Γ l A → Γ ⊩ℕ A) (λ Γ l B → Γ ⊩Empty B) ℕᵣ Emptyᵣ
(λ x → extractMaybeEmb (ℕ-elim x))
(λ x → extractMaybeEmb (Empty-elim′ D x))
ℕ≢Empty′
ℕ≢Emptyⱼ : Γ ⊢ ℕ ≡ Empty → ⊥
ℕ≢Emptyⱼ ℕ≡Empty =
let _ , ⊢Empty = syntacticEq ℕ≡Empty
in ℕ≢Empty-red (id ⊢Empty) ℕ≡Empty
-- ℕ and Unit
ℕ≢Unit′ : ∀ {B l l'}
([ℕ] : Γ ⊩ℕ ℕ)
([Unit] : Γ ⊩Unit B)
→ ShapeView Γ l l' _ _ (ℕᵣ [ℕ]) (Unitᵣ [Unit]) → ⊥
ℕ≢Unit′ a b ()
ℕ≢Unit-red : ∀ {B} → Γ ⊢ B ⇒* Unit → Γ ⊢ ℕ ≡ B → ⊥
ℕ≢Unit-red D = A≢B (λ Γ l A → Γ ⊩ℕ A) (λ Γ l B → Γ ⊩Unit B) ℕᵣ Unitᵣ
(λ x → extractMaybeEmb (ℕ-elim x))
(λ x → extractMaybeEmb (Unit-elim′ D x))
ℕ≢Unit′
ℕ≢Unitⱼ : Γ ⊢ ℕ ≡ Unit → ⊥
ℕ≢Unitⱼ ℕ≡Unit =
let _ , ⊢Unit = syntacticEq ℕ≡Unit
in ℕ≢Unit-red (id ⊢Unit) ℕ≡Unit
-- Empty and Unit
Empty≢Unit′ : ∀ {B l l'}
([Empty] : Γ ⊩Empty Empty)
([Unit] : Γ ⊩Unit B)
→ ShapeView Γ l l' _ _ (Emptyᵣ [Empty]) (Unitᵣ [Unit]) → ⊥
Empty≢Unit′ a b ()
Empty≢Unit-red : ∀ {B} → Γ ⊢ B ⇒* Unit → Γ ⊢ Empty ≡ B → ⊥
Empty≢Unit-red D = A≢B (λ Γ l A → Γ ⊩Empty A) (λ Γ l B → Γ ⊩Unit B) Emptyᵣ Unitᵣ
(λ x → extractMaybeEmb (Empty-elim x))
(λ x → extractMaybeEmb (Unit-elim′ D x))
Empty≢Unit′
Empty≢Unitⱼ : Γ ⊢ Empty ≡ Unit → ⊥
Empty≢Unitⱼ Empty≡Unit =
let _ , ⊢Unit = syntacticEq Empty≡Unit
in Empty≢Unit-red (id ⊢Unit) Empty≡Unit
-- Universe and binding types
U≢B′ : ∀ {B l l′} W
([U] : Γ ⊩′⟨ l ⟩U)
([W] : Γ ⊩′⟨ l′ ⟩B⟨ W ⟩ B)
→ ShapeView Γ l l′ _ _ (Uᵣ [U]) (Bᵣ W [W]) → ⊥
U≢B′ W a b ()
U≢B-red : ∀ {B F G} W → Γ ⊢ B ⇒* ⟦ W ⟧ F ▹ G → Γ ⊢ U ≡ B → ⊥
U≢B-red W D = A≢B (λ Γ l A → Γ ⊩′⟨ l ⟩U)
(λ Γ l A → Γ ⊩′⟨ l ⟩B⟨ W ⟩ A) Uᵣ (Bᵣ W)
(λ x → extractMaybeEmb (U-elim x))
(λ x → extractMaybeEmb (B-elim′ W D x))
(U≢B′ W)
-- U and Π F ▹ G for any F and G cannot be judgmentally equal.
U≢B : ∀ {F G} W → Γ ⊢ U ≡ ⟦ W ⟧ F ▹ G → ⊥
U≢B W U≡W =
let _ , ⊢W = syntacticEq U≡W
in U≢B-red W (id ⊢W) U≡W
U≢Π : ∀ {Γ : Con Term n} {F G} → _
U≢Π {Γ = Γ} {F} {G} = U≢B {Γ = Γ} {F} {G} BΠ
U≢Σ : ∀ {Γ : Con Term n} {F G} → _
U≢Σ {Γ = Γ} {F} {G} = U≢B {Γ = Γ} {F} {G} BΣ
U≢ne′ : ∀ {K l l′}
([U] : Γ ⊩′⟨ l ⟩U)
([K] : Γ ⊩ne K)
→ ShapeView Γ l l′ _ _ (Uᵣ [U]) (ne [K]) → ⊥
U≢ne′ a b ()
U≢ne-red : ∀ {B K} → Γ ⊢ B ⇒* K → Neutral K → Γ ⊢ U ≡ B → ⊥
U≢ne-red D neK = A≢B (λ Γ l A → Γ ⊩′⟨ l ⟩U) (λ Γ l B → Γ ⊩ne B) Uᵣ ne
(λ x → extractMaybeEmb (U-elim x))
(λ x → extractMaybeEmb (ne-elim′ D neK x))
U≢ne′
-- U and K for any neutral K cannot be judgmentally equal.
U≢ne : ∀ {K} → Neutral K → Γ ⊢ U ≡ K → ⊥
U≢ne neK U≡K =
let _ , ⊢K = syntacticEq U≡K
in U≢ne-red (id ⊢K) neK U≡K
ℕ≢B′ : ∀ {A B l l′} W
([ℕ] : Γ ⊩ℕ A)
([W] : Γ ⊩′⟨ l′ ⟩B⟨ W ⟩ B)
→ ShapeView Γ l l′ _ _ (ℕᵣ [ℕ]) (Bᵣ W [W]) → ⊥
ℕ≢B′ W a b ()
ℕ≢B-red : ∀ {A B F G} W → Γ ⊢ A ⇒* ℕ → Γ ⊢ B ⇒* ⟦ W ⟧ F ▹ G → Γ ⊢ A ≡ B → ⊥
ℕ≢B-red W D D′ = A≢B (λ Γ l A → Γ ⊩ℕ A)
(λ Γ l A → Γ ⊩′⟨ l ⟩B⟨ W ⟩ A) ℕᵣ (Bᵣ W)
(λ x → extractMaybeEmb (ℕ-elim′ D x))
(λ x → extractMaybeEmb (B-elim′ W D′ x))
(ℕ≢B′ W)
-- ℕ and B F ▹ G for any F and G cannot be judgmentally equal.
ℕ≢B : ∀ {F G} W → Γ ⊢ ℕ ≡ ⟦ W ⟧ F ▹ G → ⊥
ℕ≢B W ℕ≡W =
let ⊢ℕ , ⊢W = syntacticEq ℕ≡W
in ℕ≢B-red W (id ⊢ℕ) (id ⊢W) ℕ≡W
ℕ≢Π : ∀ {Γ : Con Term n} {F G} → _
ℕ≢Π {Γ = Γ} {F} {G} = ℕ≢B {Γ = Γ} {F} {G} BΠ
ℕ≢Σ : ∀ {Γ : Con Term n} {F G} → _
ℕ≢Σ {Γ = Γ} {F} {G} = ℕ≢B {Γ = Γ} {F} {G} BΣ
-- Empty and Π
Empty≢B′ : ∀ {A B l l′} W
([Empty] : Γ ⊩Empty A)
([W] : Γ ⊩′⟨ l′ ⟩B⟨ W ⟩ B)
→ ShapeView Γ l l′ _ _ (Emptyᵣ [Empty]) (Bᵣ W [W]) → ⊥
Empty≢B′ W a b ()
Empty≢B-red : ∀ {A B F G} W → Γ ⊢ A ⇒* Empty → Γ ⊢ B ⇒* ⟦ W ⟧ F ▹ G → Γ ⊢ A ≡ B → ⊥
Empty≢B-red W D D′ = A≢B (λ Γ l A → Γ ⊩Empty A)
(λ Γ l A → Γ ⊩′⟨ l ⟩B⟨ W ⟩ A) Emptyᵣ (Bᵣ W)
(λ x → extractMaybeEmb (Empty-elim′ D x))
(λ x → extractMaybeEmb (B-elim′ W D′ x))
(Empty≢B′ W)
Empty≢Bⱼ : ∀ {F G} W → Γ ⊢ Empty ≡ ⟦ W ⟧ F ▹ G → ⊥
Empty≢Bⱼ W Empty≡W =
let ⊢Empty , ⊢W = syntacticEq Empty≡W
in Empty≢B-red W (id ⊢Empty) (id ⊢W) Empty≡W
Empty≢Πⱼ : ∀ {Γ : Con Term n} {F G} → _
Empty≢Πⱼ {Γ = Γ} {F} {G} = Empty≢Bⱼ {Γ = Γ} {F} {G} BΠ
Empty≢Σⱼ : ∀ {Γ : Con Term n} {F G} → _
Empty≢Σⱼ {Γ = Γ} {F} {G} = Empty≢Bⱼ {Γ = Γ} {F} {G} BΣ
-- Unit and Π
Unit≢B′ : ∀ {A B l l′} W
([Unit] : Γ ⊩Unit A)
([W] : Γ ⊩′⟨ l′ ⟩B⟨ W ⟩ B)
→ ShapeView Γ l l′ _ _ (Unitᵣ [Unit]) (Bᵣ W [W]) → ⊥
Unit≢B′ W a b ()
Unit≢B-red : ∀ {A B F G} W → Γ ⊢ A ⇒* Unit → Γ ⊢ B ⇒* ⟦ W ⟧ F ▹ G → Γ ⊢ A ≡ B → ⊥
Unit≢B-red W D D′ = A≢B (λ Γ l A → Γ ⊩Unit A)
(λ Γ l A → Γ ⊩′⟨ l ⟩B⟨ W ⟩ A) Unitᵣ (Bᵣ W)
(λ x → extractMaybeEmb (Unit-elim′ D x))
(λ x → extractMaybeEmb (B-elim′ W D′ x))
(Unit≢B′ W)
Unit≢Bⱼ : ∀ {F G} W → Γ ⊢ Unit ≡ ⟦ W ⟧ F ▹ G → ⊥
Unit≢Bⱼ W Unit≡W =
let ⊢Unit , ⊢W = syntacticEq Unit≡W
in Unit≢B-red W (id ⊢Unit) (id ⊢W) Unit≡W
Unit≢Πⱼ : ∀ {Γ : Con Term n} {F G} → _
Unit≢Πⱼ {Γ = Γ} {F} {G} = Unit≢Bⱼ {Γ = Γ} {F} {G} BΠ
Unit≢Σⱼ : ∀ {Γ : Con Term n} {F G} → _
Unit≢Σⱼ {Γ = Γ} {F} {G} = Unit≢Bⱼ {Γ = Γ} {F} {G} BΣ
ℕ≢ne′ : ∀ {A K l l′}
([ℕ] : Γ ⊩ℕ A)
([K] : Γ ⊩ne K)
→ ShapeView Γ l l′ _ _ (ℕᵣ [ℕ]) (ne [K]) → ⊥
ℕ≢ne′ a b ()
ℕ≢ne-red : ∀ {A B K} → Γ ⊢ A ⇒* ℕ → Γ ⊢ B ⇒* K → Neutral K → Γ ⊢ A ≡ B → ⊥
ℕ≢ne-red D D′ neK = A≢B (λ Γ l A → Γ ⊩ℕ A) (λ Γ l B → Γ ⊩ne B) ℕᵣ ne
(λ x → extractMaybeEmb (ℕ-elim′ D x))
(λ x → extractMaybeEmb (ne-elim′ D′ neK x))
ℕ≢ne′
-- ℕ and K for any neutral K cannot be judgmentally equal.
ℕ≢ne : ∀ {K} → Neutral K → Γ ⊢ ℕ ≡ K → ⊥
ℕ≢ne neK ℕ≡K =
let ⊢ℕ , ⊢K = syntacticEq ℕ≡K
in ℕ≢ne-red (id ⊢ℕ) (id ⊢K) neK ℕ≡K
-- Empty and neutral
Empty≢ne′ : ∀ {A K l l′}
([Empty] : Γ ⊩Empty A)
([K] : Γ ⊩ne K)
→ ShapeView Γ l l′ _ _ (Emptyᵣ [Empty]) (ne [K]) → ⊥
Empty≢ne′ a b ()
Empty≢ne-red : ∀ {A B K} → Γ ⊢ A ⇒* Empty → Γ ⊢ B ⇒* K → Neutral K → Γ ⊢ A ≡ B → ⊥
Empty≢ne-red D D′ neK = A≢B (λ Γ l A → Γ ⊩Empty A) (λ Γ l B → Γ ⊩ne B) Emptyᵣ ne
(λ x → extractMaybeEmb (Empty-elim′ D x))
(λ x → extractMaybeEmb (ne-elim′ D′ neK x))
Empty≢ne′
Empty≢neⱼ : ∀ {K} → Neutral K → Γ ⊢ Empty ≡ K → ⊥
Empty≢neⱼ neK Empty≡K =
let ⊢Empty , ⊢K = syntacticEq Empty≡K
in Empty≢ne-red (id ⊢Empty) (id ⊢K) neK Empty≡K
-- Unit and neutral
Unit≢ne′ : ∀ {A K l l′}
([Unit] : Γ ⊩Unit A)
([K] : Γ ⊩ne K)
→ ShapeView Γ l l′ _ _ (Unitᵣ [Unit]) (ne [K]) → ⊥
Unit≢ne′ a b ()
Unit≢ne-red : ∀ {A B K} → Γ ⊢ A ⇒* Unit → Γ ⊢ B ⇒* K → Neutral K → Γ ⊢ A ≡ B → ⊥
Unit≢ne-red D D′ neK = A≢B (λ Γ l A → Γ ⊩Unit A) (λ Γ l B → Γ ⊩ne B) Unitᵣ ne
(λ x → extractMaybeEmb (Unit-elim′ D x))
(λ x → extractMaybeEmb (ne-elim′ D′ neK x))
Unit≢ne′
Unit≢neⱼ : ∀ {K} → Neutral K → Γ ⊢ Unit ≡ K → ⊥
Unit≢neⱼ neK Unit≡K =
let ⊢Unit , ⊢K = syntacticEq Unit≡K
in Unit≢ne-red (id ⊢Unit) (id ⊢K) neK Unit≡K
B≢ne′ : ∀ {A K l l′} W
([W] : Γ ⊩′⟨ l ⟩B⟨ W ⟩ A)
([K] : Γ ⊩ne K)
→ ShapeView Γ l l′ _ _ (Bᵣ W [W]) (ne [K]) → ⊥
B≢ne′ W a b ()
B≢ne-red : ∀ {A B F G K} W → Γ ⊢ A ⇒* ⟦ W ⟧ F ▹ G → Γ ⊢ B ⇒* K → Neutral K
→ Γ ⊢ A ≡ B → ⊥
B≢ne-red W D D′ neK = A≢B (λ Γ l A → Γ ⊩′⟨ l ⟩B⟨ W ⟩ A)
(λ Γ l B → Γ ⊩ne B) (Bᵣ W) ne
(λ x → extractMaybeEmb (B-elim′ W D x))
(λ x → extractMaybeEmb (ne-elim′ D′ neK x))
(B≢ne′ W)
-- ⟦ W ⟧ F ▹ G and K for any W, F, G and neutral K cannot be judgmentally equal.
B≢ne : ∀ {F G K} W → Neutral K → Γ ⊢ ⟦ W ⟧ F ▹ G ≡ K → ⊥
B≢ne W neK W≡K =
let ⊢W , ⊢K = syntacticEq W≡K
in B≢ne-red W (id ⊢W) (id ⊢K) neK W≡K
Π≢ne : ∀ {Γ : Con Term n} {F G K} → _
Π≢ne {Γ = Γ} {F} {G} {K} = B≢ne {Γ = Γ} {F} {G} {K} BΠ
Σ≢ne : ∀ {Γ : Con Term n} {F G K} → _
Σ≢ne {Γ = Γ} {F} {G} {K} = B≢ne {Γ = Γ} {F} {G} {K} BΣ
-- Π and Σ
Π≢Σ′ : ∀ {A B l l′}
([A] : Γ ⊩′⟨ l ⟩B⟨ BΠ ⟩ A)
([B] : Γ ⊩′⟨ l′ ⟩B⟨ BΣ ⟩ B)
→ ShapeView Γ l l′ _ _ (Bᵣ BΠ [A]) (Bᵣ BΣ [B]) → ⊥
Π≢Σ′ a b ()
Π≢Σ-red : ∀ {A B F G H E} → Γ ⊢ A ⇒* Π F ▹ G → Γ ⊢ B ⇒* Σ H ▹ E → Γ ⊢ A ≡ B → ⊥
Π≢Σ-red D D′ = A≢B (λ Γ l A → Γ ⊩′⟨ l ⟩B⟨ BΠ ⟩ A)
(λ Γ l A → Γ ⊩′⟨ l ⟩B⟨ BΣ ⟩ A) (Bᵣ BΠ) (Bᵣ BΣ)
(λ x → extractMaybeEmb (B-elim′ BΠ D x))
(λ x → extractMaybeEmb (B-elim′ BΣ D′ x))
Π≢Σ′
Π≢Σ : ∀ {F G H E} → Γ ⊢ Π F ▹ G ≡ Σ H ▹ E → ⊥
Π≢Σ Π≡Σ =
let ⊢Π , ⊢Σ = syntacticEq Π≡Σ
in Π≢Σ-red (id ⊢Π) (id ⊢Σ) Π≡Σ
| 33.79558
| 83
| 0.436243
|
10cd915b64022e094dcfc20eb593685faae7d609
| 159
|
agda
|
Agda
|
prototyping/Luau/Var/ToString.agda
|
JohnnyMorganz/luau
|
f2191b9e4da6a4bb2d9d344ebd7941ec2f00844b
|
[
"MIT"
] | 1
|
2022-03-18T04:10:20.000Z
|
2022-03-18T04:10:20.000Z
|
prototyping/Luau/Var/ToString.agda
|
JohnnyMorganz/luau
|
f2191b9e4da6a4bb2d9d344ebd7941ec2f00844b
|
[
"MIT"
] | null | null | null |
prototyping/Luau/Var/ToString.agda
|
JohnnyMorganz/luau
|
f2191b9e4da6a4bb2d9d344ebd7941ec2f00844b
|
[
"MIT"
] | null | null | null |
module Luau.Var.ToString where
open import Agda.Builtin.String using (String)
open import Luau.Var using (Var)
varToString : Var → String
varToString x = x
| 17.666667
| 46
| 0.767296
|
d0aa5d3a1c8e276aa299609e1fdc7a075408468e
| 1,063
|
agda
|
Agda
|
src/Categories/Category/Construction/SetoidDiscrete.agda
|
yourboynico/agda-categories
|
6a087c592dbe58fc4bd9d02e1be9b94a9e138aca
|
[
"MIT"
] | 279
|
2019-06-01T14:36:40.000Z
|
2022-03-22T00:40:14.000Z
|
src/Categories/Category/Construction/SetoidDiscrete.agda
|
seanpm2001/agda-categories
|
d9e4f578b126313058d105c61707d8c8ae987fa8
|
[
"MIT"
] | 236
|
2019-06-01T14:53:54.000Z
|
2022-03-28T14:31:43.000Z
|
src/Categories/Category/Construction/SetoidDiscrete.agda
|
seanpm2001/agda-categories
|
d9e4f578b126313058d105c61707d8c8ae987fa8
|
[
"MIT"
] | 64
|
2019-06-02T16:58:15.000Z
|
2022-03-14T02:00:59.000Z
|
{-# OPTIONS --without-K --safe #-}
module Categories.Category.Construction.SetoidDiscrete where
open import Data.Unit using (⊤; tt)
open import Function using (flip)
open import Level using (Lift; lift)
open import Relation.Binary using (Setoid; IsEquivalence)
open import Categories.Category.Core using (Category)
open import Categories.Category.Discrete using (DiscreteCategory)
open import Categories.Morphism using (_≅_; ≅-isEquivalence)
{-
This is a better version of Discrete, which is more in line with
the rest of this library, and makes a Category out of a Setoid.
It is still 'wrong' as the equivalence is completely uninformative.
-}
Discrete : ∀ {o ℓ e} (A : Setoid o ℓ) → DiscreteCategory o ℓ e
Discrete {o} {ℓ} {e} A = record
{ category = C
; isDiscrete = record
{ isGroupoid = record { _⁻¹ = sym }
}
}
where
open Setoid A
C : Category o ℓ e
C = record
{ Obj = Carrier
; _⇒_ = _≈_
; _≈_ = λ _ _ → Lift e ⊤
; id = Setoid.refl A
; _∘_ = flip trans
}
| 30.371429
| 68
| 0.651929
|
390a0078c4784b5644517431d823e544f181632e
| 4,423
|
agda
|
Agda
|
src/SizedIO/coIOIOObject.agda
|
agda/ooAgda
|
7cc45e0148a4a508d20ed67e791544c30fecd795
|
[
"MIT"
] | 23
|
2016-06-19T12:57:55.000Z
|
2020-10-12T23:15:25.000Z
|
src/SizedIO/coIOIOObject.agda
|
agda/ooAgda
|
7cc45e0148a4a508d20ed67e791544c30fecd795
|
[
"MIT"
] | null | null | null |
src/SizedIO/coIOIOObject.agda
|
agda/ooAgda
|
7cc45e0148a4a508d20ed67e791544c30fecd795
|
[
"MIT"
] | 2
|
2018-09-01T15:02:37.000Z
|
2022-03-12T11:41:00.000Z
|
module SizedIO.coIOIOObject where
open import Data.Unit.Base
open import Data.Product
open import Data.String.Base
open import Size
open import SizedIO.Object
open import SizedIO.Base
open import SizedIO.Console
open import SizedIO.coIOIO
-- open import SizedIO.IOObject
record IOObject' (i : Size) (iface : Interface)(C : Set)(R : C → Set) : Set
where
coinductive
field
method : ∀{j : Size< i} (m : Method iface) →
IO j C R (Response iface m × IOObject' j iface C R)
open IOObject' public
-- An IO object is like a simple object,
-- but the method returns IO applied to the result type of a simple object
-- which means the method returns an IO program which when terminating
-- returns the result of the simple object
record coIO²Object (i : Size) (iface : Interface)
(Cin : Set)(Rin : Cin → Set)
(Cext : Set)(Rext : Cext → Set) : Set
where
coinductive
field
method' : ∀{j : Size< i} (m : Method iface) →
coIO²∞ ∞ Cin Rin Cext Rext
(Response iface m × coIO²Object j iface Cin Rin Cext Rext)
open coIO²Object public
selfrefIOObject : (i : Size) (iface : Interface)
(Cext : Set) (Rext : Cext → Set) → Set
selfrefIOObject i iface Cext Rext = coIO²Object i iface (Method iface)
(Response iface) Cext Rext
mutual
compileSelfRef : (i : Size) (iface : Interface)
(Cext : Set) (Rext : Cext → Set)
(obj : selfrefIOObject i iface Cext Rext) →
IOObject' i iface Cext Rext
IO.force (method (compileSelfRef i iface Cext Rext obj) {i'} m) {j} =
compileSelfRefaux i' j iface Cext Rext (Response iface m) (coIO²∞.force (method' obj {i'} m) j)
compileSelfRefaux :
(i : Size) (j : Size< i)
(iface : Interface) (let M = Method iface) (let R = Response iface)
(Cext : Set) (Rext : Cext → Set)
(A : Set)
(coObj : coIO² ∞ j M R Cext Rext (A × coIO²Object i iface M R Cext Rext))
→ IO' j Cext Rext (A × IOObject' i iface Cext Rext)
compileSelfRefaux i j iface Cext Rext A (coIO².return (r , obj)) = return' (r , compileSelfRef i iface Cext Rext obj)
compileSelfRefaux i j iface Cext Rext A (dof i' m f) = {! >>=!}
compileSelfRefaux i j iface Cext Rext A (do∞ c f) =
do' c (λ r → compileSelfRefaux'' i j iface Cext Rext A (f r))
compileSelfRefaux'' : (i : Size) (j : Size< i)
(iface : Interface) (let M = Method iface) (let R = Response iface)
(Cext : Set) (Rext : Cext → Set)
(A : Set)
(coObj : coIO²∞ j M R Cext Rext (A × coIO²Object i iface M R Cext Rext))
→ IO j Cext Rext (A × IOObject' i iface Cext Rext)
IO.force (compileSelfRefaux'' i j iface Cext Rext A coObj) {j''} = compileSelfRefaux i j'' iface Cext Rext A (coIO²∞.force coObj j'')
-- compileSelfRefaux'' i' j iface Cext Rext A coObj
-- = compileSelfRefaux' i' j iface Cext Rext A (coIO²∞.force coObj {!!})
{-
compileSelfRefaux' :
(i' : Size) (j : Size< i')
(iface : Interface) (let M = Methods iface) (let R = Responses iface)
(Cext : Set) (Rext : Cext → Set)
(A : Set)
(coObj : coIO² ∞ j M R Cext Rext (A × coIO²Object i' iface M R Cext Rext))
→ IO j Cext Rext (A × IOObject' i' iface Cext Rext)
IO.force (compileSelfRefaux' i' j iface Cext Rext A coObj) = compileSelfRefaux i' j iface Cext Rext A coObj
-}
{-
123;456hallo789
123;456hallo789
123;789hallo456
123;789hallo456
123;789456
123;789456
123;456789
123;456789
123;456789
123;456789
C-x r k -- kill rectangle
C-x r y -- yank rectangle
C-x r t -- text rectangle
-}
{-
M-x abbrev-mode
C-x ail
crosss
→
\
-}
-- method' obj {j'} m
{-
compileSelfRefaux : (j' : Size) (iface : Interface)
(Cext : Set) (Rext : Cext → Set)
(m : Methods iface)
( p : coIO²∞ ∞ (Methods iface)
(Responses iface) Cext Rext
(Responses iface m ×
coIO²Object j' iface (Methods iface)
(Responses iface) Cext Rext))
→ IO' j' Cext Rext
(Responses iface m ×
IOObject' j iface Cext Rext)IO' j' Cext Rext
(Responses iface m × IOObject' j iface Cext Rext)
-}
| 32.050725
| 135
| 0.582636
|
fb189a2ac0c648021e4bf61b3378c80a25582b0e
| 8,092
|
agda
|
Agda
|
src/Web/Semantic/DL/Category/Wiring.agda
|
agda/agda-web-semantic
|
8ddbe83965a616bff6fc7a237191fa261fa78bab
|
[
"MIT"
] | 9
|
2015-09-13T17:46:41.000Z
|
2020-03-14T14:21:08.000Z
|
src/Web/Semantic/DL/Category/Wiring.agda
|
agda/agda-web-semantic
|
8ddbe83965a616bff6fc7a237191fa261fa78bab
|
[
"MIT"
] | 4
|
2018-11-14T02:32:28.000Z
|
2021-01-04T20:57:19.000Z
|
src/Web/Semantic/DL/Category/Wiring.agda
|
agda/agda-web-semantic
|
8ddbe83965a616bff6fc7a237191fa261fa78bab
|
[
"MIT"
] | 3
|
2017-12-03T14:52:09.000Z
|
2022-03-12T11:40:03.000Z
|
open import Data.List using ( List ; [] ; _∷_ )
open import Data.List.Any using ( here ; there )
open import Data.Product using ( _,_ ; proj₁ ; proj₂ )
open import Data.Sum using ( inj₁ ; inj₂ )
open import Relation.Binary.PropositionalEquality using
( refl ; sym ; trans ; subst₂ )
open import Relation.Unary using ( _∈_ ; _⊆_ )
open import Web.Semantic.DL.ABox using
( ABox ; ε ; _,_ ; _∼_ ; ⟨ABox⟩ ; Assertions
; ⟨ABox⟩-resp-id ; ⟨ABox⟩-resp-∘ ; ⟨ABox⟩-resp-∘² )
open import Web.Semantic.DL.ABox.Interp using ( Interp ; _,_ ; ⌊_⌋ ; ind ; _*_ )
open import Web.Semantic.DL.ABox.Interp.Morphism using ( _,_ )
open import Web.Semantic.DL.ABox.Model using
( _⊨a_ ; *-resp-⟨ABox⟩ ; ⊨a-resp-⊇ )
open import Web.Semantic.DL.Category.Object using
( Object ; _,_ ; IN ; fin ; iface )
open import Web.Semantic.DL.Category.Morphism using
( _⇒_ ; _,_ ; BN ; impl )
open import Web.Semantic.DL.Category.Tensor using ( _⊗_ )
open import Web.Semantic.DL.Category.Unit using ( I )
open import Web.Semantic.DL.Integrity using
( Unique ; Mediator ; Initial ; _⊕_⊨_ ; _,_ )
open import Web.Semantic.DL.KB using ( _,_ )
open import Web.Semantic.DL.KB.Model using ( _⊨_ )
open import Web.Semantic.DL.Signature using ( Signature )
open import Web.Semantic.DL.TBox using ( TBox ; _,_ )
open import Web.Semantic.DL.TBox.Interp using
( _⊨_≈_ ; ≈-refl ; ≈-sym ; ≈-trans )
open import Web.Semantic.DL.TBox.Interp.Morphism using ( ≲-refl ; ≲-image )
open import Web.Semantic.DL.TBox.Model using ( _⊨t_ )
open import Web.Semantic.Util using
( id ; _∘_ ; False ; tt ; ⊎-swap ; ⊎-assoc ; ⊎-assoc⁻¹ ; ⊎-unit₁ ; ⊎-unit₂
; _∈ˡ_ ; _⊕_⊕_ ; inode ; bnode ; enode )
module Web.Semantic.DL.Category.Wiring {Σ : Signature} where
wires : ∀ {X Y} → (Y → X) → List Y → ABox Σ (X ⊕ False ⊕ Y)
wires f [] = ε
wires f (y ∷ ys) = (inode (f y) ∼ enode y , wires f ys)
wires-≈ : ∀ {X Y y ys I} (f : Y → X) → (y ∈ˡ ys) → (I ⊨a wires f ys) →
(⌊ I ⌋ ⊨ ind I (inode (f y)) ≈ ind I (enode y))
wires-≈ f (here refl) (x≈y , xs≈ys) = x≈y
wires-≈ f (there y∈ys) (x≈y , xs≈ys) = wires-≈ f y∈ys xs≈ys
wires-≈⁻¹ : ∀ {X Y I} (f : Y → X) →
(∀ y → ⌊ I ⌋ ⊨ ind I (inode (f y)) ≈ ind I (enode y)) →
∀ ys → (I ⊨a wires f ys)
wires-≈⁻¹ f ∀y∙x≈y [] = tt
wires-≈⁻¹ f ∀y∙x≈y (y ∷ ys) = (∀y∙x≈y y , wires-≈⁻¹ f ∀y∙x≈y ys)
wired : ∀ {X Y} → (Y → X) → (X ⊕ False ⊕ Y) → X
wired f (inode x) = x
wired f (bnode ())
wired f (enode y) = f y
wired-init : ∀ {X Y} (f : Y → X) ys → (∀ y → y ∈ˡ ys) →
(I : Interp Σ X) → (S : TBox Σ) → (⌊ I ⌋ ⊨t S) →
(wired f * I ∈ Initial I (S , wires f ys))
wired-init f ys ∀y∙y∈ys (I , i) S I⊨S =
( (≲-refl I , λ x → ≈-refl I)
, (I⊨S , wires-≈⁻¹ f (λ x → ≈-refl I) ys)
, mediator ) where
mediator : Mediator (I , i) (I , i ∘ wired f)
(≲-refl I , λ x → ≈-refl I) (S , wires f ys)
mediator (K , k) (I≲K , i≲k) (K⊨S , K⊨F) =
((I≲K , j≲k) , (λ x → ≈-refl K) , uniq ) where
j≲k : ∀ x → K ⊨ ≲-image I≲K (i (wired f x)) ≈ k x
j≲k (inode x) = i≲k x
j≲k (bnode ())
j≲k (enode y) = ≈-trans K (i≲k (f y)) (wires-≈ f (∀y∙y∈ys y) K⊨F)
uniq : Unique (I , i) (I , i ∘ wired f) (K , k)
(≲-refl I , λ x → ≈-refl I) (I≲K , i≲k)
uniq J≲₁K J≲₂K I≲K≋I≲J≲₁K I≲K≋I≲J≲₂K x =
≈-trans K (≈-sym K (I≲K≋I≲J≲₁K x)) (I≲K≋I≲J≲₂K x)
wires✓ : ∀ {X Y ys} (f : Y → X) → (∀ y → y ∈ˡ ys) →
(S T : TBox Σ) (A : ABox Σ X) (B : ABox Σ Y) →
(Assertions (⟨ABox⟩ f B) ⊆ Assertions A) →
(I : Interp Σ X) → (I ⊨ (S , T) , A) → (I ⊕ S , wires f ys ⊨ T , B)
wires✓ {X} {Y} {ys} f ∀y∙y∈ys S T A B B⊆A I I⊨STA =
(J , J-init , (J⊨T , J⊨B)) where
J : Interp Σ (X ⊕ False ⊕ Y)
J = wired f * I
J⊨T : ⌊ J ⌋ ⊨t T
J⊨T = proj₂ (proj₁ I⊨STA)
J⊨B : enode * J ⊨a B
J⊨B = *-resp-⟨ABox⟩ f I B (⊨a-resp-⊇ I (⟨ABox⟩ f B) A B⊆A (proj₂ I⊨STA))
J-init : J ∈ Initial I (S , wires f ys)
J-init = wired-init f ys ∀y∙y∈ys I S (proj₁ (proj₁ I⊨STA))
wiring-impl : ∀ {S T : TBox Σ} → (A B : Object S T) (f : IN B → IN A) →
ABox Σ (IN A ⊕ False ⊕ IN B)
wiring-impl A B f =
wires f (proj₁ (fin B))
wiring-impl✓ : ∀ {S T : TBox Σ} → (A B : Object S T) (f : IN B → IN A) →
(Assertions (⟨ABox⟩ f (iface B)) ⊆ Assertions (iface A)) →
∀ I → (I ⊨ (S , T) , iface A) → (I ⊕ (S , wiring-impl A B f) ⊨ (T , iface B))
wiring-impl✓ {S} {T} (X , X∈Fin , A) (Y , Y∈Fin , B) f B⊆A =
wires✓ f (proj₂ Y∈Fin) S T A B B⊆A
wiring : ∀ {S T : TBox Σ} → (A B : Object S T) (f : IN B → IN A) →
(Assertions (⟨ABox⟩ f (iface B)) ⊆ Assertions (iface A)) →
(A ⇒ B)
wiring A B f B⊆A =
( False , wiring-impl A B f , wiring-impl✓ A B f B⊆A )
id✓ : ∀ {S T : TBox Σ} → (A : Object S T) →
(Assertions (⟨ABox⟩ id (iface A)) ⊆ Assertions (iface A))
id✓ A = subst₂ Assertions (⟨ABox⟩-resp-id (iface A)) refl
identity : ∀ {S T : TBox Σ} → (A : Object S T) → (A ⇒ A)
identity A = wiring A A id (id✓ A)
⊎-swap✓ : ∀ {S T : TBox Σ} → (A B : Object S T) →
Assertions (⟨ABox⟩ ⊎-swap (iface (B ⊗ A))) ⊆ Assertions (iface (A ⊗ B))
⊎-swap✓ A B (inj₁ b∈B) =
inj₂ (subst₂ Assertions (⟨ABox⟩-resp-∘ ⊎-swap inj₁ (iface B)) refl b∈B)
⊎-swap✓ A B (inj₂ a∈A) =
inj₁ (subst₂ Assertions (⟨ABox⟩-resp-∘ ⊎-swap inj₂ (iface A)) refl a∈A)
symm : ∀ {S T : TBox Σ} → (A B : Object S T) → ((A ⊗ B) ⇒ (B ⊗ A))
symm A B = wiring (A ⊗ B) (B ⊗ A) ⊎-swap (⊎-swap✓ A B)
⊎-assoc⁻¹✓ : ∀ {S T : TBox Σ} → (A B C : Object S T) →
(Assertions (⟨ABox⟩ ⊎-assoc⁻¹ (iface (A ⊗ (B ⊗ C))))) ⊆
(Assertions (iface ((A ⊗ B) ⊗ C)))
⊎-assoc⁻¹✓ A B C (inj₁ a∈A) = inj₁ (inj₁ (subst₂ Assertions
(trans (⟨ABox⟩-resp-∘ ⊎-assoc⁻¹ inj₁ (iface A))
(sym (⟨ABox⟩-resp-∘ inj₁ inj₁ (iface A))))
refl a∈A))
⊎-assoc⁻¹✓ A B C (inj₂ (inj₁ b∈B)) = inj₁ (inj₂ (subst₂ Assertions
(trans (⟨ABox⟩-resp-∘² ⊎-assoc⁻¹ inj₂ inj₁ (iface B))
(sym (⟨ABox⟩-resp-∘ inj₁ inj₂ (iface B))))
refl b∈B))
⊎-assoc⁻¹✓ A B C (inj₂ (inj₂ c∈C)) = inj₂ (subst₂ Assertions
(⟨ABox⟩-resp-∘² ⊎-assoc⁻¹ inj₂ inj₂ (iface C))
refl c∈C)
assoc : ∀ {S T : TBox Σ} → (A B C : Object S T) →
(((A ⊗ B) ⊗ C) ⇒ (A ⊗ (B ⊗ C)))
assoc A B C = wiring ((A ⊗ B) ⊗ C) (A ⊗ (B ⊗ C)) ⊎-assoc⁻¹ (⊎-assoc⁻¹✓ A B C)
⊎-assoc✓ : ∀ {S T : TBox Σ} → (A B C : Object S T) →
(Assertions (⟨ABox⟩ ⊎-assoc (iface ((A ⊗ B) ⊗ C)))) ⊆
(Assertions (iface (A ⊗ (B ⊗ C))))
⊎-assoc✓ A B C (inj₁ (inj₁ a∈A)) = inj₁ (subst₂ Assertions
(⟨ABox⟩-resp-∘² ⊎-assoc inj₁ inj₁ (iface A))
refl a∈A)
⊎-assoc✓ A B C (inj₁ (inj₂ b∈B)) = inj₂ (inj₁ (subst₂ Assertions
(trans (⟨ABox⟩-resp-∘² ⊎-assoc inj₁ inj₂ (iface B))
(sym (⟨ABox⟩-resp-∘ inj₂ inj₁ (iface B))))
refl b∈B))
⊎-assoc✓ A B C (inj₂ c∈C) = inj₂ (inj₂ (subst₂ Assertions
(trans (⟨ABox⟩-resp-∘ ⊎-assoc inj₂ (iface C))
(sym (⟨ABox⟩-resp-∘ inj₂ inj₂ (iface C))))
refl c∈C))
assoc⁻¹ : ∀ {S T : TBox Σ} → (A B C : Object S T) →
((A ⊗ (B ⊗ C)) ⇒ ((A ⊗ B) ⊗ C))
assoc⁻¹ A B C = wiring (A ⊗ (B ⊗ C)) ((A ⊗ B) ⊗ C) ⊎-assoc (⊎-assoc✓ A B C)
inj₂✓ : ∀ {S T : TBox Σ} → (A : Object S T) →
(Assertions (⟨ABox⟩ inj₂ (iface A))) ⊆
(Assertions (iface (I ⊗ A)))
inj₂✓ A = inj₂
unit₁ : ∀ {S T : TBox Σ} (A : Object S T) → ((I ⊗ A) ⇒ A)
unit₁ A = wiring (I ⊗ A) A inj₂ (inj₂✓ A)
⊎-unit₁✓ : ∀ {S T : TBox Σ} → (A : Object S T) →
Assertions (⟨ABox⟩ ⊎-unit₁ (iface (I ⊗ A))) ⊆ Assertions (iface A)
⊎-unit₁✓ A (inj₁ ())
⊎-unit₁✓ A (inj₂ a∈A) = subst₂ Assertions
(trans (⟨ABox⟩-resp-∘ ⊎-unit₁ inj₂ (iface A)) (⟨ABox⟩-resp-id (iface A)))
refl a∈A
unit₁⁻¹ : ∀ {S T : TBox Σ} (A : Object S T) → (A ⇒ (I ⊗ A))
unit₁⁻¹ A = wiring A (I ⊗ A) ⊎-unit₁ (⊎-unit₁✓ A)
inj₁✓ : ∀ {S T : TBox Σ} → (A : Object S T) →
(Assertions (⟨ABox⟩ inj₁ (iface A))) ⊆
(Assertions (iface (A ⊗ I)))
inj₁✓ A = inj₁
unit₂ : ∀ {S T : TBox Σ} (A : Object S T) → ((A ⊗ I) ⇒ A)
unit₂ A = wiring (A ⊗ I) A inj₁ (inj₁✓ A)
⊎-unit₂✓ : ∀ {S T : TBox Σ} (A : Object S T) →
Assertions (⟨ABox⟩ ⊎-unit₂ (iface (A ⊗ I))) ⊆ Assertions (iface A)
⊎-unit₂✓ A (inj₁ a∈A) = subst₂ Assertions
(trans (⟨ABox⟩-resp-∘ ⊎-unit₂ inj₁ (iface A)) (⟨ABox⟩-resp-id (iface A)))
refl a∈A
⊎-unit₂✓ A (inj₂ ())
unit₂⁻¹ : ∀ {S T : TBox Σ} (A : Object S T) → (A ⇒ (A ⊗ I))
unit₂⁻¹ A = wiring A (A ⊗ I) ⊎-unit₂ (⊎-unit₂✓ A)
| 39.281553
| 81
| 0.532254
|
10e5b9d8c4234ce1c7445086e2e1066dc84c2e02
| 305
|
agda
|
Agda
|
src/data/lib/prim/Agda/Builtin/Word.agda
|
cagix/agda
|
cc026a6a97a3e517bb94bafa9d49233b067c7559
|
[
"BSD-2-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
src/data/lib/prim/Agda/Builtin/Word.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
src/data/lib/prim/Agda/Builtin/Word.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
{-# OPTIONS --without-K --safe --no-universe-polymorphism
--no-sized-types --no-guardedness #-}
module Agda.Builtin.Word where
open import Agda.Builtin.Nat
postulate Word64 : Set
{-# BUILTIN WORD64 Word64 #-}
primitive
primWord64ToNat : Word64 → Nat
primWord64FromNat : Nat → Word64
| 21.785714
| 57
| 0.695082
|
cbceeedbfd9d2a6315f30d3f9cbfe42bd0c3e187
| 3,439
|
agda
|
Agda
|
StructurallyRecursiveDescentParsing/Grammar.agda
|
nad/parser-combinators
|
76774f54f466cfe943debf2da731074fe0c33644
|
[
"MIT"
] | 1
|
2020-07-03T08:56:13.000Z
|
2020-07-03T08:56:13.000Z
|
StructurallyRecursiveDescentParsing/Grammar.agda
|
nad/parser-combinators
|
76774f54f466cfe943debf2da731074fe0c33644
|
[
"MIT"
] | null | null | null |
StructurallyRecursiveDescentParsing/Grammar.agda
|
nad/parser-combinators
|
76774f54f466cfe943debf2da731074fe0c33644
|
[
"MIT"
] | null | null | null |
------------------------------------------------------------------------
-- Parsers containing non-terminals, and grammars using such parsers
------------------------------------------------------------------------
module StructurallyRecursiveDescentParsing.Grammar where
open import Data.Bool
open import Data.Empty
open import Data.Product
open import Relation.Binary.PropositionalEquality
open import Codata.Musical.Notation
open import Level
open import StructurallyRecursiveDescentParsing.Index
import StructurallyRecursiveDescentParsing.Simplified as Simplified
open Simplified hiding (Parser; module Parser; ⟦_⟧)
infixl 10 _!>>=_ _?>>=_
infixl 5 _∣_
-- The parsers are parameterised on a type of nonterminals.
data Parser (NT : NonTerminalType) (Tok : Set) : NonTerminalType where
return : ∀ {R} (x : R) → Parser NT Tok (true ◇ ε) R
fail : ∀ {R} → Parser NT Tok (false ◇ ε) R
token : Parser NT Tok (false ◇ ε) Tok
_∣_ : ∀ {e₁ e₂ c₁ c₂ R}
(p₁ : Parser NT Tok (e₁ ◇ c₁ ) R)
(p₂ : Parser NT Tok ( e₂ ◇ c₂) R) →
Parser NT Tok (e₁ ∨ e₂ ◇ c₁ ∪ c₂) R
_?>>=_ : ∀ {e₂ c₁ c₂ R₁ R₂}
(p₁ : Parser NT Tok (true ◇ c₁ ) R₁)
(p₂ : R₁ → Parser NT Tok (e₂ ◇ c₂) R₂) →
Parser NT Tok (e₂ ◇ c₁ ∪ c₂) R₂
_!>>=_ : ∀ {c₁ R₁ R₂} {i₂ : R₁ → Index}
(p₁ : Parser NT Tok (false ◇ c₁) R₁)
(p₂ : (x : R₁) → ∞ (Parser NT Tok (i₂ x) R₂)) →
Parser NT Tok (false ◇ c₁) R₂
! : ∀ {e c R} (nt : NT (e ◇ c) R) → Parser NT Tok (e ◇ c ∪ ε) R
-- Grammars.
Grammar : NonTerminalType → Set → Set1
Grammar NT Tok = ∀ {i R} → NT i R → Parser NT Tok i R
-- An empty non-terminal type.
EmptyNT : NonTerminalType
EmptyNT _ _ = Lift _ ⊥
-- An empty grammar.
emptyGrammar : ∀ {Tok} → Grammar EmptyNT Tok
emptyGrammar (lift ())
-- The semantics of grammar-based parsers is defined in terms of their
-- translation into "plain" parsers. The translation instantiates all
-- non-terminals corecursively.
⟦_⟧ : ∀ {Tok NT e c R} →
Parser NT Tok (e ◇ c) R → Grammar NT Tok →
Simplified.Parser Tok e R
⟦ return x ⟧ g = return x
⟦ fail ⟧ g = fail
⟦ token ⟧ g = token
⟦ p₁ ∣ p₂ ⟧ g = ⟦ p₁ ⟧ g ∣ ⟦ p₂ ⟧ g
⟦ p₁ ?>>= p₂ ⟧ g = ⟦ p₁ ⟧ g ?>>= λ x → ⟦ p₂ x ⟧ g
⟦ p₁ !>>= p₂ ⟧ g = ⟦ p₁ ⟧ g !>>= λ x → ♯ ⟦ ♭ (p₂ x) ⟧ g
⟦ ! nt ⟧ g = ⟦ g nt ⟧ g
-- Note that some "plain" parsers cannot be directly rewritten using
-- the parser type in this module (although there may be /equivalent/
-- parsers):
private
only-plain : Simplified.Parser Bool false Bool
only-plain = return true ?>>= λ x →
if x then token else token ∣ token
-- The following code does not type-check.
-- doesnt-work : Parser EmptyNT Bool (false ◇ _) Bool
-- doesnt-work = return true ?>>= λ x →
-- if x then token else token ∣ token
-- A map function which can be useful when combining grammars.
mapNT : ∀ {NT₁ NT₂ Tok i R} →
(∀ {i R} → NT₁ i R → NT₂ i R) →
Parser NT₁ Tok i R → Parser NT₂ Tok i R
mapNT f (return x) = return x
mapNT f fail = fail
mapNT f token = token
mapNT f (p₁ ∣ p₂) = mapNT f p₁ ∣ mapNT f p₂
mapNT f (p₁ ?>>= p₂) = mapNT f p₁ ?>>= λ x → mapNT f (p₂ x)
mapNT f (p₁ !>>= p₂) = mapNT f p₁ !>>= λ x → ♯ mapNT f (♭ (p₂ x))
mapNT f (! nt) = ! (f nt)
| 32.752381
| 72
| 0.548124
|
1c7bba2f786e520482ebc777c00a34ad10d13b80
| 9,778
|
agda
|
Agda
|
Cubical/Algebra/Ring/Base.agda
|
howsiyu/cubical
|
1b9c97a2140fe96fe636f4c66beedfd7b8096e8f
|
[
"MIT"
] | null | null | null |
Cubical/Algebra/Ring/Base.agda
|
howsiyu/cubical
|
1b9c97a2140fe96fe636f4c66beedfd7b8096e8f
|
[
"MIT"
] | null | null | null |
Cubical/Algebra/Ring/Base.agda
|
howsiyu/cubical
|
1b9c97a2140fe96fe636f4c66beedfd7b8096e8f
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --safe #-}
module Cubical.Algebra.Ring.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Equiv.HalfAdjoint
open import Cubical.Foundations.Function
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.Transport
open import Cubical.Foundations.SIP
open import Cubical.Data.Sigma
open import Cubical.Algebra.Semigroup
open import Cubical.Algebra.Monoid
open import Cubical.Algebra.Group
open import Cubical.Algebra.AbGroup
open import Cubical.Displayed.Base
open import Cubical.Displayed.Auto
open import Cubical.Displayed.Record
open import Cubical.Displayed.Universe
open import Cubical.Reflection.RecordEquiv
open Iso
private
variable
ℓ ℓ' ℓ'' : Level
record IsRing {R : Type ℓ}
(0r 1r : R) (_+_ _·_ : R → R → R) (-_ : R → R) : Type ℓ where
constructor isring
field
+IsAbGroup : IsAbGroup 0r _+_ -_
·IsMonoid : IsMonoid 1r _·_
dist : (x y z : R) → (x · (y + z) ≡ (x · y) + (x · z))
× ((x + y) · z ≡ (x · z) + (y · z))
-- This is in the Agda stdlib, but it's redundant
-- zero : (x : R) → (x · 0r ≡ 0r) × (0r · x ≡ 0r)
open IsAbGroup +IsAbGroup public
renaming
( assoc to +Assoc
; identity to +Identity
; lid to +Lid
; rid to +Rid
; inverse to +Inv
; invl to +Linv
; invr to +Rinv
; comm to +Comm
; isSemigroup to +IsSemigroup
; isMonoid to +IsMonoid
; isGroup to +IsGroup )
open IsMonoid ·IsMonoid public
renaming
( assoc to ·Assoc
; identity to ·Identity
; lid to ·Lid
; rid to ·Rid
; isSemigroup to ·IsSemigroup )
hiding
( is-set ) -- We only want to export one proof of this
·Rdist+ : (x y z : R) → x · (y + z) ≡ (x · y) + (x · z)
·Rdist+ x y z = dist x y z .fst
·Ldist+ : (x y z : R) → (x + y) · z ≡ (x · z) + (y · z)
·Ldist+ x y z = dist x y z .snd
record RingStr (A : Type ℓ) : Type (ℓ-suc ℓ) where
constructor ringstr
field
0r : A
1r : A
_+_ : A → A → A
_·_ : A → A → A
-_ : A → A
isRing : IsRing 0r 1r _+_ _·_ -_
infix 8 -_
infixl 7 _·_
infixl 6 _+_
open IsRing isRing public
Ring : ∀ ℓ → Type (ℓ-suc ℓ)
Ring ℓ = TypeWithStr ℓ RingStr
isSetRing : (R : Ring ℓ) → isSet ⟨ R ⟩
isSetRing R = R .snd .RingStr.isRing .IsRing.·IsMonoid .IsMonoid.isSemigroup .IsSemigroup.is-set
makeIsRing : {R : Type ℓ} {0r 1r : R} {_+_ _·_ : R → R → R} { -_ : R → R}
(is-setR : isSet R)
(+-assoc : (x y z : R) → x + (y + z) ≡ (x + y) + z)
(+-rid : (x : R) → x + 0r ≡ x)
(+-rinv : (x : R) → x + (- x) ≡ 0r)
(+-comm : (x y : R) → x + y ≡ y + x)
(r+-assoc : (x y z : R) → x · (y · z) ≡ (x · y) · z)
(·-rid : (x : R) → x · 1r ≡ x)
(·-lid : (x : R) → 1r · x ≡ x)
(·-rdist-+ : (x y z : R) → x · (y + z) ≡ (x · y) + (x · z))
(·-ldist-+ : (x y z : R) → (x + y) · z ≡ (x · z) + (y · z))
→ IsRing 0r 1r _+_ _·_ -_
makeIsRing is-setR assoc +-rid +-rinv +-comm ·-assoc ·-rid ·-lid ·-rdist-+ ·-ldist-+ =
isring (makeIsAbGroup is-setR assoc +-rid +-rinv +-comm)
(makeIsMonoid is-setR ·-assoc ·-rid ·-lid)
λ x y z → ·-rdist-+ x y z , ·-ldist-+ x y z
makeRing : {R : Type ℓ} (0r 1r : R) (_+_ _·_ : R → R → R) (-_ : R → R)
(is-setR : isSet R)
(+-assoc : (x y z : R) → x + (y + z) ≡ (x + y) + z)
(+-rid : (x : R) → x + 0r ≡ x)
(+-rinv : (x : R) → x + (- x) ≡ 0r)
(+-comm : (x y : R) → x + y ≡ y + x)
(+-assoc : (x y z : R) → x · (y · z) ≡ (x · y) · z)
(·-rid : (x : R) → x · 1r ≡ x)
(·-lid : (x : R) → 1r · x ≡ x)
(·-rdist-+ : (x y z : R) → x · (y + z) ≡ (x · y) + (x · z))
(·-ldist-+ : (x y z : R) → (x + y) · z ≡ (x · z) + (y · z))
→ Ring ℓ
makeRing 0r 1r _+_ _·_ -_ is-setR assoc +-rid +-rinv +-comm ·-assoc ·-rid ·-lid ·-rdist-+ ·-ldist-+ =
_ , ringstr 0r 1r _+_ _·_ -_
(makeIsRing is-setR assoc +-rid +-rinv +-comm
·-assoc ·-rid ·-lid ·-rdist-+ ·-ldist-+ )
record IsRingHom {A : Type ℓ} {B : Type ℓ'} (R : RingStr A) (f : A → B) (S : RingStr B)
: Type (ℓ-max ℓ ℓ')
where
-- Shorter qualified names
private
module R = RingStr R
module S = RingStr S
field
pres0 : f R.0r ≡ S.0r
pres1 : f R.1r ≡ S.1r
pres+ : (x y : A) → f (x R.+ y) ≡ f x S.+ f y
pres· : (x y : A) → f (x R.· y) ≡ f x S.· f y
pres- : (x : A) → f (R.- x) ≡ S.- (f x)
unquoteDecl IsRingHomIsoΣ = declareRecordIsoΣ IsRingHomIsoΣ (quote IsRingHom)
RingHom : (R : Ring ℓ) (S : Ring ℓ') → Type (ℓ-max ℓ ℓ')
RingHom R S = Σ[ f ∈ (⟨ R ⟩ → ⟨ S ⟩) ] IsRingHom (R .snd) f (S .snd)
IsRingEquiv : {A : Type ℓ} {B : Type ℓ'} (M : RingStr A) (e : A ≃ B) (N : RingStr B)
→ Type (ℓ-max ℓ ℓ')
IsRingEquiv M e N = IsRingHom M (e .fst) N
RingEquiv : (R : Ring ℓ) (S : Ring ℓ') → Type (ℓ-max ℓ ℓ')
RingEquiv R S = Σ[ e ∈ (⟨ R ⟩ ≃ ⟨ S ⟩) ] IsRingEquiv (R .snd) e (S .snd)
_$_ : {R S : Ring ℓ} → (φ : RingHom R S) → (x : ⟨ R ⟩) → ⟨ S ⟩
φ $ x = φ .fst x
RingEquiv→RingHom : {A B : Ring ℓ} → RingEquiv A B → RingHom A B
RingEquiv→RingHom (e , eIsHom) = e .fst , eIsHom
RingHomIsEquiv→RingEquiv : {A B : Ring ℓ} (f : RingHom A B)
→ isEquiv (fst f) → RingEquiv A B
fst (fst (RingHomIsEquiv→RingEquiv f fIsEquiv)) = fst f
snd (fst (RingHomIsEquiv→RingEquiv f fIsEquiv)) = fIsEquiv
snd (RingHomIsEquiv→RingEquiv f fIsEquiv) = snd f
isPropIsRing : {R : Type ℓ} (0r 1r : R) (_+_ _·_ : R → R → R) (-_ : R → R)
→ isProp (IsRing 0r 1r _+_ _·_ -_)
isPropIsRing 0r 1r _+_ _·_ -_ (isring RG RM RD) (isring SG SM SD) =
λ i → isring (isPropIsAbGroup _ _ _ RG SG i)
(isPropIsMonoid _ _ RM SM i)
(isPropDistr RD SD i)
where
isSetR : isSet _
isSetR = RM .IsMonoid.isSemigroup .IsSemigroup.is-set
isPropDistr : isProp ((x y z : _) → ((x · (y + z)) ≡ ((x · y) + (x · z)))
× (((x + y) · z) ≡ ((x · z) + (y · z))))
isPropDistr = isPropΠ3 λ _ _ _ → isProp× (isSetR _ _) (isSetR _ _)
isPropIsRingHom : {A : Type ℓ} {B : Type ℓ'} (R : RingStr A) (f : A → B) (S : RingStr B)
→ isProp (IsRingHom R f S)
isPropIsRingHom R f S = isOfHLevelRetractFromIso 1 IsRingHomIsoΣ
(isProp×4 (isSetRing (_ , S) _ _)
(isSetRing (_ , S) _ _)
(isPropΠ2 λ _ _ → isSetRing (_ , S) _ _)
(isPropΠ2 λ _ _ → isSetRing (_ , S) _ _)
(isPropΠ λ _ → isSetRing (_ , S) _ _))
isSetRingHom : (R : Ring ℓ) (S : Ring ℓ') → isSet (RingHom R S)
isSetRingHom R S = isSetΣSndProp (isSetΠ (λ _ → isSetRing S)) (λ f → isPropIsRingHom (snd R) f (snd S))
isSetRingEquiv : (A : Ring ℓ) (B : Ring ℓ') → isSet (RingEquiv A B)
isSetRingEquiv A B = isSetΣSndProp (isOfHLevel≃ 2 (isSetRing A) (isSetRing B))
(λ e → isPropIsRingHom (snd A) (fst e) (snd B))
RingHomPathP : (R S T : Ring ℓ) (p : S ≡ T) (φ : RingHom R S) (ψ : RingHom R T)
→ PathP (λ i → R .fst → p i .fst) (φ .fst) (ψ .fst)
→ PathP (λ i → RingHom R (p i)) φ ψ
RingHomPathP R S T p φ ψ q = ΣPathP (q , isProp→PathP (λ _ → isPropIsRingHom _ _ _) _ _)
RingHom≡ : {R S : Ring ℓ} {φ ψ : RingHom R S} → fst φ ≡ fst ψ → φ ≡ ψ
RingHom≡ = Σ≡Prop λ f → isPropIsRingHom _ f _
𝒮ᴰ-Ring : DUARel (𝒮-Univ ℓ) RingStr ℓ
𝒮ᴰ-Ring =
𝒮ᴰ-Record (𝒮-Univ _) IsRingEquiv
(fields:
data[ 0r ∣ null ∣ pres0 ]
data[ 1r ∣ null ∣ pres1 ]
data[ _+_ ∣ bin ∣ pres+ ]
data[ _·_ ∣ bin ∣ pres· ]
data[ -_ ∣ un ∣ pres- ]
prop[ isRing ∣ (λ _ _ → isPropIsRing _ _ _ _ _) ])
where
open RingStr
open IsRingHom
-- faster with some sharing
null = autoDUARel (𝒮-Univ _) (λ A → A)
un = autoDUARel (𝒮-Univ _) (λ A → A → A)
bin = autoDUARel (𝒮-Univ _) (λ A → A → A → A)
RingPath : (R S : Ring ℓ) → RingEquiv R S ≃ (R ≡ S)
RingPath = ∫ 𝒮ᴰ-Ring .UARel.ua
uaRing : {A B : Ring ℓ} → RingEquiv A B → A ≡ B
uaRing {A = A} {B = B} = equivFun (RingPath A B)
isGroupoidRing : isGroupoid (Ring ℓ)
isGroupoidRing _ _ = isOfHLevelRespectEquiv 2 (RingPath _ _) (isSetRingEquiv _ _)
-- Rings have an abelian group and a monoid
Ring→AbGroup : Ring ℓ → AbGroup ℓ
Ring→AbGroup (A , ringstr _ _ _ _ _ R) = A , abgroupstr _ _ _ (IsRing.+IsAbGroup R)
Ring→Group : Ring ℓ → Group ℓ
Ring→Group = AbGroup→Group ∘ Ring→AbGroup
Ring→AddMonoid : Ring ℓ → Monoid ℓ
Ring→AddMonoid = Group→Monoid ∘ Ring→Group
Ring→MultMonoid : Ring ℓ → Monoid ℓ
Ring→MultMonoid (A , ringstr _ _ _ _ _ R) = monoid _ _ _ (IsRing.·IsMonoid R)
-- Smart constructor for ring homomorphisms
-- that infers the other equations from pres1, pres+, and pres·
module _ {R : Ring ℓ} {S : Ring ℓ'} {f : ⟨ R ⟩ → ⟨ S ⟩} where
private
module R = RingStr (R .snd)
module S = RingStr (S .snd)
module _
(p1 : f R.1r ≡ S.1r)
(p+ : (x y : ⟨ R ⟩) → f (x R.+ y) ≡ f x S.+ f y)
(p· : (x y : ⟨ R ⟩) → f (x R.· y) ≡ f x S.· f y)
where
open IsRingHom
private
isGHom : IsGroupHom (Ring→Group R .snd) f (Ring→Group S .snd)
isGHom = makeIsGroupHom p+
makeIsRingHom : IsRingHom (R .snd) f (S .snd)
makeIsRingHom .pres0 = isGHom .IsGroupHom.pres1
makeIsRingHom .pres1 = p1
makeIsRingHom .pres+ = p+
makeIsRingHom .pres· = p·
makeIsRingHom .pres- = isGHom .IsGroupHom.presinv
| 34.551237
| 103
| 0.526181
|
1ce72a68545ea0951345a24e1b8bd4db7661416b
| 120,837
|
agda
|
Agda
|
complexity/complexity-final/Interp-WithFlatrec.agda
|
benhuds/Agda
|
2404a6ef2688f879bda89860bb22f77664ad813e
|
[
"MIT"
] | 2
|
2016-04-26T20:22:22.000Z
|
2019-08-08T12:27:18.000Z
|
complexity/complexity-final/Interp-WithFlatrec.agda
|
benhuds/Agda
|
2404a6ef2688f879bda89860bb22f77664ad813e
|
[
"MIT"
] | 1
|
2020-03-23T08:39:04.000Z
|
2020-05-12T00:32:45.000Z
|
complexity/complexity-final/Interp-WithFlatrec.agda
|
benhuds/Agda
|
2404a6ef2688f879bda89860bb22f77664ad813e
|
[
"MIT"
] | null | null | null |
{- NEW INTERP WITH RREC -}
{-# OPTIONS --no-termination-check #-}
open import Preliminaries
open import Preorder
open import Pilot-WithFlatrec
module Interp-WithFlatrec where
-- interpret complexity types as preorders
[_]t : CTp → PREORDER
[ unit ]t = unit-p
[ nat ]t = Nat , ♭nat-p
[ τ ->c τ₁ ]t = [ τ ]t ->p [ τ₁ ]t
[ τ ×c τ₁ ]t = [ τ ]t ×p [ τ₁ ]t
[ list τ ]t = (List (fst [ τ ]t)) , list-p (snd [ τ ]t)
[ bool ]t = Bool , bool-p
[ C ]t = Nat , nat-p
[ rnat ]t = Nat , nat-p
[_]tm : ∀ {A} → CTpM A → Preorder-max-str (snd [ A ]t)
[ runit ]tm = unit-pM
[ rn ]tm = nat-pM
[ e ×cm e₁ ]tm = axb-pM [ e ]tm [ e₁ ]tm
[ _->cm_ {τ1} e ]tm = mono-pM [ e ]tm
-- interpret contexts as preorders
[_]c : Ctx → PREORDER
[ [] ]c = unit-p
[ τ :: Γ ]c = [ Γ ]c ×p [ τ ]t
lookup : ∀{Γ τ} → τ ∈ Γ → el ([ Γ ]c ->p [ τ ]t)
lookup (i0 {Γ} {τ}) = snd' id
lookup (iS {Γ} {τ} {τ1} x) = comp (fst' id) (lookup x)
interpE : ∀{Γ τ} → Γ |- τ → el ([ Γ ]c ->p [ τ ]t)
sound : ∀ {Γ τ} (e e' : Γ |- τ) → e ≤s e' → PREORDER≤ ([ Γ ]c ->p [ τ ]t) (interpE e) (interpE e')
interpE unit = monotone (λ x → <>) (λ x y x₁ → <>)
interpE 0C = monotone (λ x → Z) (λ x y x₁ → <>)
interpE 1C = monotone (λ x → S Z) (λ x y x₁ → <>)
interpE (plusC e e₁) =
monotone (λ x → Monotone.f (interpE e) x + Monotone.f (interpE e₁) x)
(λ x y x₁ → plus-lem (Monotone.f (interpE e) x) (Monotone.f (interpE e₁) x) (Monotone.f (interpE e) y) (Monotone.f (interpE e₁) y)
(Monotone.is-monotone (interpE e) x y x₁) (Monotone.is-monotone (interpE e₁) x y x₁))
interpE (var x) = lookup x
interpE z = monotone (λ x → Z) (λ x y x₁ → <>)
interpE (s e) = monotone (λ x → S (Monotone.f (interpE e) x)) (λ x y x₁ → Monotone.is-monotone (interpE e) x y x₁)
interpE {Γ} {τ} (rec e e₁ e₂) = comp (pair' id (interpE e)) (♭rec' (interpE e₁) (interpE e₂))
interpE (lam e) = lam' (interpE e)
interpE (app e e₁) = app' (interpE e) (interpE e₁)
interpE rz = z'
interpE (rsuc e) = suc' (interpE e)
interpE (rrec e e₁ e₂ P) = comp (pair' id (interpE e)) (rec' (interpE e₁) (unlam' (unlam' (interpE e₂))) (λ x → sound e₁ (app (app e₂ rz) e₁) P x))
interpE (prod e e₁) = pair' (interpE e) (interpE e₁)
interpE (l-proj e) = fst' (interpE e)
interpE (r-proj e) = snd' (interpE e)
interpE nil = nil'
interpE (e ::c e₁) = cons' (interpE e) (interpE e₁)
interpE (listrec e e₁ e₂) = comp (pair' id (interpE e)) (lrec' (interpE e₁) (interpE e₂))
interpE true = monotone (λ x → True) (λ x y x₁ → <>)
interpE false = monotone (λ x → False) (λ x y x₁ → <>)
interpE {Γ} {τ'} (max τ e1 e2) =
monotone (λ x → Preorder-max-str.max [ τ ]tm (Monotone.f (interpE e1) x) (Monotone.f (interpE e2) x))
(λ x y x₁ → Preorder-max-str.max-lub [ τ ]tm (Preorder-max-str.max [ τ ]tm (Monotone.f (interpE e1) y) (Monotone.f (interpE e2) y))
(Monotone.f (interpE e1) x) (Monotone.f (interpE e2) x)
(Preorder-str.trans (snd [ τ' ]t) (Monotone.f (interpE e1) x) (Monotone.f (interpE e1) y)
(Preorder-max-str.max [ τ ]tm (Monotone.f (interpE e1) y) (Monotone.f (interpE e2) y))
(Monotone.is-monotone (interpE e1) x y x₁) (Preorder-max-str.max-l [ τ ]tm (Monotone.f (interpE e1) y) (Monotone.f (interpE e2) y)))
(Preorder-str.trans (snd [ τ' ]t) (Monotone.f (interpE e2) x) (Monotone.f (interpE e2) y)
(Preorder-max-str.max [ τ ]tm (Monotone.f (interpE e1) y) (Monotone.f (interpE e2) y))
(Monotone.is-monotone (interpE e2) x y x₁) (Preorder-max-str.max-r [ τ ]tm (Monotone.f (interpE e1) y) (Monotone.f (interpE e2) y))))
throw-r : ∀ {Γ Γ' τ} → rctx Γ (τ :: Γ') → rctx Γ Γ'
throw-r d = λ x → d (iS x)
interpR : ∀ {Γ Γ'} → rctx Γ Γ' → MONOTONE [ Γ ]c [ Γ' ]c
interpR {Γ' = []} ρ = monotone (λ _ → <>) (λ x y x₁ → <>)
interpR {Γ' = τ :: Γ'} ρ = monotone (λ x → (Monotone.f (interpR (throw-r ρ)) x) , (Monotone.f (lookup (ρ i0)) x))
(λ x y x₁ → (Monotone.is-monotone (interpR (throw-r ρ)) x y x₁) , (Monotone.is-monotone (lookup (ρ i0)) x y x₁))
throw-s : ∀ {Γ Γ' τ} → sctx Γ (τ :: Γ') → sctx Γ Γ'
throw-s d = λ x → d (iS x)
interpS : ∀ {Γ Γ'} → sctx Γ Γ' → el ([ Γ ]c ->p [ Γ' ]c)
interpS {Γ' = []} Θ = monotone (λ _ → <>) (λ x y x₁ → <>)
interpS {Γ' = τ :: Γ'} Θ = monotone (λ x → Monotone.f (interpS (throw-s Θ)) x , Monotone.f (interpE (Θ i0)) x)
(λ x y x₁ → Monotone.is-monotone (interpS (throw-s Θ)) x y x₁ , (Monotone.is-monotone (interpE (Θ i0)) x y x₁))
ren-eq-l-lam : ∀ {Γ Γ' τ1} (ρ : rctx Γ Γ') (k : fst [ Γ ]c) (x : fst [ τ1 ]t)
→ Preorder-str.≤ (snd [ Γ' ]c) (Monotone.f (interpR (throw-r (r-extend {_} {_} {τ1} ρ))) (k , x)) (Monotone.f (interpR ρ) k)
ren-eq-l-lam {Γ' = []} ρ k x = <>
ren-eq-l-lam {Γ' = x :: Γ'} ρ k x₁ =
(ren-eq-l-lam (throw-r ρ) k x₁) ,
(Preorder-str.refl (snd [ x ]t) (Monotone.f (lookup (ρ i0)) k))
ren-eq-l : ∀ {Γ Γ' τ} → (ρ : rctx Γ Γ') → (e : Γ' |- τ) → (k : fst [ Γ ]c)
→ Preorder-str.≤ (snd [ τ ]t) (Monotone.f (interpE (ren e ρ)) k) (Monotone.f (interpE e) (Monotone.f (interpR ρ) k))
ren-eq-l ρ unit k = <>
ren-eq-l ρ 0C k = <>
ren-eq-l ρ 1C k = <>
ren-eq-l ρ (plusC e e₁) k =
plus-lem (Monotone.f (interpE (ren e ρ)) k) (Monotone.f (interpE (ren e₁ ρ)) k)
(Monotone.f (interpE e) (Monotone.f (interpR ρ) k)) (Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k))
(ren-eq-l ρ e k) (ren-eq-l ρ e₁ k)
ren-eq-l {τ = τ} ρ (var i0) k = Preorder-str.refl (snd [ τ ]t) (Monotone.f (lookup (ρ i0)) k)
ren-eq-l {τ = τ} ρ (var (iS x)) k = ren-eq-l (throw-r ρ) (var x) k
ren-eq-l ρ z k = <>
ren-eq-l ρ (s e) k = ren-eq-l ρ e k
ren-eq-l {Γ} {Γ'} {τ = τ} ρ (rec e e₁ e₂) k =
Preorder-str.trans (snd [ τ ]t)
(natrec (Monotone.f (interpE (ren e₁ ρ)) k)
(λ n x₂ → Monotone.f (interpE (ren e₂ (r-extend (r-extend ρ)))) ((k , x₂) , n))
(Monotone.f (interpE (ren e ρ)) k))
(natrec (Monotone.f (interpE (ren e₁ ρ)) k)
(λ n x₂ → Monotone.f (interpE (ren e₂ (r-extend (r-extend ρ)))) ((k , x₂) , n))
(Monotone.f (interpE e) (Monotone.f (interpR ρ) k)))
(natrec (Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k))
(λ n x₂ → Monotone.f (interpE e₂) ((Monotone.f (interpR ρ) k , x₂) , n))
(Monotone.f (interpE e) (Monotone.f (interpR ρ) k)))
(♭h-fix-args (interpE (ren e₁ ρ)) (interpE (ren e₂ (r-extend (r-extend ρ))))
(k , (Monotone.f (interpE (ren e ρ)) k))
(k , (Monotone.f (interpE e) (Monotone.f (interpR ρ) k)))
(ren-eq-l ρ e k))
(♭h-cong
(interpE (ren e₁ ρ))
(monotone (λ v → Monotone.f (interpE e₁) (Monotone.f (interpR ρ) v))
(λ x y x₁ →
Monotone.is-monotone (interpE e₁)
(Monotone.f (interpR ρ) x)
(Monotone.f (interpR ρ) y)
(Monotone.is-monotone (interpR ρ) x y x₁)))
(interpE (ren e₂ (r-extend (r-extend ρ))))
(monotone (λ v → Monotone.f (interpE e₂) ((Monotone.f (interpR ρ) (fst (fst v)) , snd (fst v)) , snd v))
(λ x y x₁ →
Monotone.is-monotone (interpE e₂)
((Monotone.f (interpR ρ) (fst (fst x)) , snd (fst x)) , snd x)
((Monotone.f (interpR ρ) (fst (fst y)) , snd (fst y)) , snd y)
(((Monotone.is-monotone (interpR ρ) (fst (fst x)) (fst (fst y)) (fst (fst x₁))) ,
(snd (fst x₁))) ,
(snd x₁))))
(k , (Monotone.f (interpE e) (Monotone.f (interpR ρ) k)))
(λ x → ren-eq-l ρ e₁ x)
(λ x →
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (ren e₂ (r-extend (r-extend ρ)))) x)
(Monotone.f (interpE e₂) (Monotone.f (interpR {nat :: τ :: Γ} {_ :: _ :: Γ'} (r-extend (r-extend ρ))) x))
(Monotone.f (interpE e₂) ((Monotone.f (interpR ρ) (fst (fst x)) , snd (fst x)) , snd x))
(ren-eq-l (r-extend (r-extend ρ)) e₂ x)
(Monotone.is-monotone (interpE e₂)
(Monotone.f (interpR {nat :: τ :: Γ} {_ :: _ :: Γ'} (r-extend (r-extend ρ))) x)
((Monotone.f (interpR ρ) (fst (fst x)) , snd (fst x)) , snd x)
((Preorder-str.trans (snd [ Γ' ]c)
(Monotone.f (interpR (λ x₁ → iS (iS (ρ x₁)))) x)
(Monotone.f (interpR {τ :: Γ} {Γ'} (throw-r (r-extend ρ))) (fst (fst x) , snd (fst x)))
(Monotone.f (interpR ρ) (fst (fst x)))
(ren-eq-l-lam {τ :: Γ} {Γ'} (throw-r (r-extend ρ)) (fst x) (snd x))
(ren-eq-l-lam ρ (fst (fst x)) (snd (fst x))) ,
(Preorder-str.refl (snd [ τ ]t) (snd (fst x)))) ,
(♭nat-refl (snd x))))))
ren-eq-l {Γ} {τ = τ1 ->c τ2} ρ (lam e) k x =
Preorder-str.trans (snd [ τ2 ]t)
(Monotone.f (Monotone.f (interpE (ren (lam e) ρ)) k) x)
(Monotone.f (interpE e) (Monotone.f (interpR (r-extend {_} {_} {τ1} ρ)) (k , x)))
(Monotone.f (interpE e) (Monotone.f (interpR ρ) k , x))
(ren-eq-l (r-extend ρ) e (k , x))
(Monotone.is-monotone (interpE e)
(Monotone.f (interpR (r-extend {_} {_} {τ1} ρ)) (k , x))
(Monotone.f (interpR ρ) k , x)
(ren-eq-l-lam ρ k x ,
(Preorder-str.refl (snd [ τ1 ]t) x)))
ren-eq-l {Γ} {τ = τ} ρ (app e e₁) k =
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (Monotone.f (interpE (ren e ρ)) k) (Monotone.f (interpE (ren e₁ ρ)) k))
(Monotone.f (Monotone.f (interpE (ren e ρ)) k) (Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k)))
(Monotone.f (Monotone.f (interpE e) (Monotone.f (interpR ρ) k)) (Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k)))
(Monotone.is-monotone (Monotone.f (interpE (ren e ρ)) k) (Monotone.f (interpE (ren e₁ ρ)) k) (Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k)) (ren-eq-l ρ e₁ k))
(ren-eq-l ρ e k (Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k)))
ren-eq-l ρ rz k = <>
ren-eq-l ρ (rsuc e) k = ren-eq-l ρ e k
ren-eq-l {Γ} {Γ'} {τ} ρ (rrec e e₁ e₂ P) k =
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (comp (pair' id (interpE (ren e ρ)))
(rec' (interpE (ren e₁ ρ)) (unlam' (unlam' (interpE (ren e₂ ρ))))
(sound (ren e₁ ρ) (app (app (ren e₂ ρ) rz) (ren e₁ ρ)) (ren-cong P)))) k)
(Monotone.f (rec' (interpE (ren e₁ ρ)) (unlam' (unlam' (interpE (ren e₂ ρ))))
(λ x₁ → sound (ren e₁ ρ) (app (app (ren e₂ ρ) rz) (ren e₁ ρ)) (ren-cong P) x₁))
(k , Monotone.f (interpE e) (Monotone.f (interpR ρ) k)))
(Monotone.f (comp (pair' id (interpE e))
(rec' (interpE e₁) (unlam' (unlam' (interpE e₂)))
(sound e₁ (app (app e₂ rz) e₁) P))) (Monotone.f (interpR ρ) k))
(h-lem2 (interpE (ren e₁ ρ)) (unlam' (unlam' (interpE (ren e₂ ρ))))
(k , Monotone.f (interpE (ren e ρ)) k)
(k , Monotone.f (interpE e) (Monotone.f (interpR ρ) k))
(λ x → sound (ren e₁ ρ) (app (app (ren e₂ ρ) rz) (ren e₁ ρ)) (ren-cong P) x)
(ren-eq-l ρ e k))
(h-cong2 (interpE (ren e₁ ρ))
(monotone
(λ z₁ → Monotone.f (interpE e₁) (Monotone.f (interpR ρ) z₁))
(λ x y x₁ →
Monotone.is-monotone (interpE e₁)
(Monotone.f (interpR ρ) x)
(Monotone.f (interpR ρ) y)
(Monotone.is-monotone (interpR ρ) x y x₁)))
(unlam' (unlam' (interpE (ren e₂ ρ))))
(monotone
(λ v → Monotone.f (Monotone.f (Monotone.f (interpE e₂) (Monotone.f (interpR ρ) (fst (fst v)))) (snd (fst v))) (snd v))
(λ x y x₁ →
Monotone.is-monotone (unlam' (unlam' (interpE e₂)))
((Monotone.f (interpR ρ) (fst (fst x)) , snd (fst x)) , snd x)
((Monotone.f (interpR ρ) (fst (fst y)) , snd (fst y)) , snd y)
((Monotone.is-monotone (interpR ρ) (fst (fst x)) (fst (fst y)) (fst (fst x₁)) , snd (fst x₁)) , snd x₁)))
(λ x → ren-eq-l ρ e₁ x)
(λ x → ren-eq-l ρ e₂ (fst (fst x)) (snd (fst x)) (snd x))
(λ x₁ → sound (ren e₁ ρ) (app (app (ren e₂ ρ) rz) (ren e₁ ρ)) (ren-cong P) x₁)
(λ x₁ → sound e₁ (app (app e₂ rz) e₁) P (Monotone.f (interpR ρ) x₁))
(k , Monotone.f (interpE e) (Monotone.f (interpR ρ) k)))
ren-eq-l ρ (prod e e₁) k = (ren-eq-l ρ e k) , (ren-eq-l ρ e₁ k)
ren-eq-l ρ (l-proj e) k = fst (ren-eq-l ρ e k)
ren-eq-l ρ (r-proj e) k = snd (ren-eq-l ρ e k)
ren-eq-l ρ nil k = <>
ren-eq-l ρ (e ::c e₁) k = (ren-eq-l ρ e k) , (ren-eq-l ρ e₁ k)
ren-eq-l {Γ} {Γ'} {τ = τ} ρ (listrec {.Γ'} {τ'} e e₁ e₂) k =
Preorder-str.trans (snd [ τ ]t)
(lrec (Monotone.f (interpE (ren e ρ)) k)
(Monotone.f (interpE (ren e₁ ρ)) k)
(λ x₁ x₂ x₃ → Monotone.f (interpE (ren e₂ (r-extend (r-extend (r-extend ρ))))) (((k , x₃) , x₂) , x₁)))
(lrec (Monotone.f (interpE e) (Monotone.f (interpR ρ) k))
(Monotone.f (interpE (ren e₁ ρ)) k)
(λ x₁ x₂ x₃ → Monotone.f (interpE (ren e₂ (r-extend (r-extend (r-extend ρ))))) (((k , x₃) , x₂) , x₁)))
(lrec (Monotone.f (interpE e) (Monotone.f (interpR ρ) k))
(Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k))
(λ x₁ x₂ x₃ → Monotone.f (interpE e₂) (((Monotone.f (interpR ρ) k , x₃) , x₂) , x₁)))
(listrec-fix-args (interpE (ren e₁ ρ)) (interpE (ren e₂ (r-extend (r-extend (r-extend ρ)))))
(k , (Monotone.f (interpE (ren e ρ)) k))
(k , (Monotone.f (interpE e) (Monotone.f (interpR ρ) k)))
((Preorder-str.refl (snd [ Γ ]c) k) , (ren-eq-l ρ e k)))
(lrec-cong
(interpE (ren e₁ ρ))
(monotone (λ k₁ → Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k₁))
(λ x y x₁ →
Monotone.is-monotone (interpE e₁)
(Monotone.f (interpR ρ) x) (Monotone.f (interpR ρ) y)
(Monotone.is-monotone (interpR ρ) x y x₁)))
(interpE (ren e₂ (r-extend (r-extend (r-extend ρ)))))
(monotone (λ x → Monotone.f (interpE e₂) ((((Monotone.f (interpR ρ) (fst (fst (fst x)))) , (snd (fst (fst x)))) , (snd (fst x))) , (snd x)))
(λ x y x₁ → Monotone.is-monotone (interpE e₂)
(((Monotone.f (interpR ρ) (fst (fst (fst x))) , snd (fst (fst x))) , snd (fst x)) , snd x)
(((Monotone.f (interpR ρ) (fst (fst (fst y))) , snd (fst (fst y))) , snd (fst y)) , snd y)
((((Monotone.is-monotone (interpR ρ) (fst (fst (fst x))) (fst (fst (fst y))) (fst (fst (fst x₁)))) ,
(snd (fst (fst x₁)))) ,
(snd (fst x₁))) ,
(snd x₁))))
(k , (Monotone.f (interpE e) (Monotone.f (interpR ρ) k)))
(λ x → ren-eq-l ρ e₁ x)
(λ x →
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (ren e₂ (r-extend (r-extend (r-extend ρ))))) x)
(Monotone.f (interpE e₂) (Monotone.f (interpR {τ' :: list τ' :: τ :: Γ} {_ :: _ :: _ :: Γ'} (r-extend (r-extend (r-extend ρ)))) x))
(Monotone.f (interpE e₂) (((Monotone.f (interpR ρ) (fst (fst (fst x))) , snd (fst (fst x))) , snd (fst x)) , snd x))
(ren-eq-l (r-extend (r-extend (r-extend ρ))) e₂ x)
(Monotone.is-monotone (interpE e₂)
(Monotone.f (interpR {τ' :: list τ' :: τ :: Γ} {_ :: _ :: _ :: Γ'} (r-extend (r-extend (r-extend ρ)))) x)
(((Monotone.f (interpR ρ) (fst (fst (fst x))) , snd (fst (fst x))) , snd (fst x)) , snd x)
(((Preorder-str.trans (snd [ Γ' ]c)
(Monotone.f (interpR (λ x₁ → iS (iS (iS (ρ x₁))))) x)
(Monotone.f (interpR {τ :: Γ} {Γ'} (throw-r (r-extend ρ))) (fst (fst (fst x)) , snd (fst (fst x))))
(Monotone.f (interpR ρ) (fst (fst (fst x))))
(Preorder-str.trans (snd [ Γ' ]c)
(Monotone.f (interpR (λ x₁ → iS (iS (iS (ρ x₁))))) x)
(Monotone.f (interpR (λ x₁ → iS (iS (ρ x₁)))) (fst x))
(Monotone.f (interpR {τ :: Γ} {Γ'} (throw-r (r-extend ρ))) (fst (fst (fst x)) , snd (fst (fst x))))
(ren-eq-l-lam (λ x₁ → iS (iS (ρ x₁))) (fst x) (snd x))
(ren-eq-l-lam (λ x₁ → iS (ρ x₁)) (fst (fst x)) (snd (fst x))))
(ren-eq-l-lam ρ (fst (fst (fst x))) (snd (fst (fst x)))) ,
Preorder-str.refl (snd [ τ ]t) (snd (fst (fst x)))) ,
l-refl (snd [ τ' ]t) (snd (fst x))) ,
Preorder-str.refl (snd [ τ' ]t) (snd x)))))
ren-eq-l ρ true k = <>
ren-eq-l ρ false k = <>
ren-eq-l {τ = τ} ρ (max x e e₁) k =
Preorder-max-str.max-lub [ x ]tm
(Monotone.f (interpE (max x e e₁)) (Monotone.f (interpR ρ) k))
(Monotone.f (interpE (ren e ρ)) k)
(Monotone.f (interpE (ren e₁ ρ)) k)
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (ren e ρ)) k)
(Monotone.f (interpE e) (Monotone.f (interpR ρ) k))
(Monotone.f (interpE (max x e e₁)) (Monotone.f (interpR ρ) k))
(ren-eq-l ρ e k)
(Preorder-max-str.max-l [ x ]tm (Monotone.f (interpE e) (Monotone.f (interpR ρ) k)) (Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k))))
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (ren e₁ ρ)) k)
(Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k))
(Monotone.f (interpE (max x e e₁)) (Monotone.f (interpR ρ) k))
(ren-eq-l ρ e₁ k)
(Preorder-max-str.max-r [ x ]tm (Monotone.f (interpE e) (Monotone.f (interpR ρ) k)) (Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k))))
ren-eq-r-lam : ∀ {Γ Γ' τ1} (ρ : rctx Γ Γ') (k : fst [ Γ ]c) (x : fst [ τ1 ]t)
→ Preorder-str.≤ (snd [ Γ' ]c) (Monotone.f (interpR ρ) k) (Monotone.f (interpR (throw-r (r-extend {_} {_} {τ1} ρ))) (k , x))
ren-eq-r-lam {Γ' = []} ρ k x = <>
ren-eq-r-lam {Γ' = x :: Γ'} ρ k x₁ =
(ren-eq-r-lam (throw-r ρ) k x₁) ,
(Preorder-str.refl (snd [ x ]t) (Monotone.f (lookup (ρ i0)) k))
ren-eq-r : ∀ {Γ Γ' τ} → (ρ : rctx Γ Γ') → (e : Γ' |- τ) → (k : fst [ Γ ]c)
→ Preorder-str.≤ (snd [ τ ]t) (Monotone.f (interpE e) (Monotone.f (interpR ρ) k)) (Monotone.f (interpE (ren e ρ)) k)
ren-eq-r ρ unit k = <>
ren-eq-r ρ 0C k = <>
ren-eq-r ρ 1C k = <>
ren-eq-r ρ (plusC e e₁) k =
plus-lem (Monotone.f (interpE e) (Monotone.f (interpR ρ) k)) (Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k))
(Monotone.f (interpE (ren e ρ)) k) (Monotone.f (interpE (ren e₁ ρ)) k)
(ren-eq-r ρ e k) (ren-eq-r ρ e₁ k)
ren-eq-r {τ = τ} ρ (var i0) k = Preorder-str.refl (snd [ τ ]t) (Monotone.f (lookup (ρ i0)) k)
ren-eq-r {τ = τ} ρ (var (iS x)) k = ren-eq-r (throw-r ρ) (var x) k
ren-eq-r ρ z k = <>
ren-eq-r ρ (s e) k = ren-eq-r ρ e k
ren-eq-r {Γ} {Γ'} {τ} ρ (rec e e₁ e₂) k =
Preorder-str.trans (snd [ τ ]t)
(natrec (Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k))
(λ n x₂ → Monotone.f (interpE e₂) ((Monotone.f (interpR ρ) k , x₂) , n))
(Monotone.f (interpE e) (Monotone.f (interpR ρ) k)))
(natrec (Monotone.f (interpE (ren e₁ ρ)) k)
(λ n x₂ → Monotone.f (interpE (ren e₂ (r-extend (r-extend ρ)))) ((k , x₂) , n))
(Monotone.f (interpE e) (Monotone.f (interpR ρ) k)))
(natrec (Monotone.f (interpE (ren e₁ ρ)) k)
(λ n x₂ → Monotone.f (interpE (ren e₂ (r-extend (r-extend ρ)))) ((k , x₂) , n))
(Monotone.f (interpE (ren e ρ)) k))
(♭h-cong
(monotone (λ v → Monotone.f (interpE e₁) (Monotone.f (interpR ρ) v))
(λ x y x₁ →
Monotone.is-monotone (interpE e₁) (Monotone.f (interpR ρ) x)
(Monotone.f (interpR ρ) y)
(Monotone.is-monotone (interpR ρ) x y x₁)))
(interpE (ren e₁ ρ))
(monotone (λ v → Monotone.f (interpE e₂) ((Monotone.f (interpR ρ) (fst (fst v)) , snd (fst v)) , snd v))
(λ x y x₁ →
Monotone.is-monotone (interpE e₂)
((Monotone.f (interpR ρ) (fst (fst x)) , snd (fst x)) , snd x)
((Monotone.f (interpR ρ) (fst (fst y)) , snd (fst y)) , snd y)
((Monotone.is-monotone (interpR ρ) (fst (fst x)) (fst (fst y)) (fst (fst x₁)) ,
snd (fst x₁)) ,
snd x₁)))
(interpE (ren e₂ (r-extend (r-extend ρ))))
(k , Monotone.f (interpE e) (Monotone.f (interpR ρ) k))
(λ x → ren-eq-r ρ e₁ x)
(λ x →
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE e₂) ((Monotone.f (interpR ρ) (fst (fst x)) , snd (fst x)) , snd x))
(Monotone.f (interpE e₂) (Monotone.f (interpR {nat :: τ :: Γ} {_ :: _ :: Γ'} (r-extend (r-extend ρ))) x))
(Monotone.f (interpE (ren e₂ (r-extend (r-extend ρ)))) x)
(Monotone.is-monotone (interpE e₂)
((Monotone.f (interpR ρ) (fst (fst x)) , snd (fst x)) , snd x)
(Monotone.f (interpR {nat :: τ :: Γ} {_ :: _ :: Γ'} (r-extend (r-extend ρ))) x)
(((Preorder-str.trans (snd [ Γ' ]c)
(Monotone.f (interpR ρ) (fst (fst x)))
(Monotone.f (interpR {τ :: Γ} {Γ'} (throw-r (r-extend ρ))) (fst (fst x) , snd (fst x)))
(Monotone.f (interpR (λ x₁ → iS (iS (ρ x₁)))) x)
(ren-eq-r-lam ρ (fst (fst x)) (snd (fst x)))
(ren-eq-r-lam {τ :: Γ} {Γ'} (throw-r (r-extend ρ)) (fst x) (snd x))) ,
(Preorder-str.refl (snd [ τ ]t) (snd (fst x)))) ,
(♭nat-refl (snd x))))
(ren-eq-r (r-extend (r-extend ρ)) e₂ x)))
(♭h-fix-args (interpE (ren e₁ ρ))
(interpE (ren e₂ (r-extend (r-extend ρ))))
(k , Monotone.f (interpE e) (Monotone.f (interpR ρ) k))
(k , Monotone.f (interpE (ren e ρ)) k) (ren-eq-r ρ e k))
ren-eq-r {Γ} {τ = τ1 ->c τ2} ρ (lam e) k x =
Preorder-str.trans (snd [ τ2 ]t)
(Monotone.f (interpE e) (Monotone.f (interpR ρ) k , x))
(Monotone.f (interpE e) (Monotone.f (interpR (r-extend {_} {_} {τ1} ρ)) (k , x)))
(Monotone.f (Monotone.f (interpE (ren (lam e) ρ)) k) x)
((Monotone.is-monotone (interpE e)
(Monotone.f (interpR ρ) k , x)
(Monotone.f (interpR (r-extend {_} {_} {τ1} ρ)) (k , x))
(ren-eq-r-lam ρ k x ,
(Preorder-str.refl (snd [ τ1 ]t) x))))
(ren-eq-r (r-extend ρ) e (k , x))
ren-eq-r {Γ} {τ = τ} ρ (app e e₁) k =
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (Monotone.f (interpE e) (Monotone.f (interpR ρ) k)) (Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k)))
(Monotone.f (Monotone.f (interpE (ren e ρ)) k) (Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k)))
(Monotone.f (Monotone.f (interpE (ren e ρ)) k) (Monotone.f (interpE (ren e₁ ρ)) k))
(ren-eq-r ρ e k (Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k)))
(Monotone.is-monotone (Monotone.f (interpE (ren e ρ)) k) (Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k)) (Monotone.f (interpE (ren e₁ ρ)) k) (ren-eq-r ρ e₁ k))
ren-eq-r ρ rz k = <>
ren-eq-r ρ (rsuc e) k = ren-eq-r ρ e k
ren-eq-r {Γ} {Γ'} {τ} ρ (rrec e e₁ e₂ P) k =
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (comp (pair' id (interpE e))
(rec' (interpE e₁) (unlam' (unlam' (interpE e₂)))
(sound e₁ (app (app e₂ rz) e₁) P))) (Monotone.f (interpR ρ) k))
(Monotone.f (rec' (interpE (ren e₁ ρ)) (unlam' (unlam' (interpE (ren e₂ ρ))))
(λ x₁ → sound (ren e₁ ρ) (app (app (ren e₂ ρ) rz) (ren e₁ ρ)) (ren-cong P) x₁))
(k , Monotone.f (interpE e) (Monotone.f (interpR ρ) k)))
(Monotone.f (comp (pair' id (interpE (ren e ρ)))
(rec' (interpE (ren e₁ ρ)) (unlam' (unlam' (interpE (ren e₂ ρ))))
(sound (ren e₁ ρ) (app (app (ren e₂ ρ) rz) (ren e₁ ρ)) (ren-cong P)))) k)
(h-cong2
(monotone (λ z₁ → Monotone.f (interpE e₁) (Monotone.f (interpR ρ) z₁))
(λ x y x₁ →
Monotone.is-monotone (interpE e₁)
(Monotone.f (interpR ρ) x)
(Monotone.f (interpR ρ) y)
(Monotone.is-monotone (interpR ρ) x y x₁)))
(interpE (ren e₁ ρ))
(monotone (λ v → Monotone.f (Monotone.f (Monotone.f (interpE e₂) (Monotone.f (interpR ρ) (fst (fst v)))) (snd (fst v))) (snd v))
(λ x y x₁ →
Monotone.is-monotone (unlam' (unlam' (interpE e₂)))
((Monotone.f (interpR ρ) (fst (fst x)) , snd (fst x)) , snd x)
((Monotone.f (interpR ρ) (fst (fst y)) , snd (fst y)) , snd y)
((Monotone.is-monotone (interpR ρ) (fst (fst x)) (fst (fst y)) (fst (fst x₁)) , snd (fst x₁)) , snd x₁)))
(unlam' (unlam' (interpE (ren e₂ ρ))))
(λ x → ren-eq-r ρ e₁ x)
(λ x → ren-eq-r ρ e₂ (fst (fst x)) (snd (fst x)) (snd x))
(λ x₁ → sound e₁ (app (app e₂ rz) e₁) P (Monotone.f (interpR ρ) x₁))
(λ x₁ → sound (ren e₁ ρ) (app (app (ren e₂ ρ) rz) (ren e₁ ρ)) (ren-cong P) x₁)
(k , (Monotone.f (interpE e) (Monotone.f (interpR ρ) k))))
(h-lem2 (interpE (ren e₁ ρ)) (unlam' (unlam' (interpE (ren e₂ ρ))))
(k , Monotone.f (interpE e) (Monotone.f (interpR ρ) k))
(k , Monotone.f (interpE (ren e ρ)) k)
(λ x → sound (ren e₁ ρ) (app (app (ren e₂ ρ) rz) (ren e₁ ρ)) (ren-cong P) x)
(ren-eq-r ρ e k))
ren-eq-r ρ (prod e e₁) k = (ren-eq-r ρ e k) , (ren-eq-r ρ e₁ k)
ren-eq-r ρ (l-proj e) k = fst (ren-eq-r ρ e k)
ren-eq-r ρ (r-proj e) k = snd (ren-eq-r ρ e k)
ren-eq-r ρ nil k = <>
ren-eq-r ρ (e ::c e₁) k = (ren-eq-r ρ e k) , (ren-eq-r ρ e₁ k)
ren-eq-r {Γ} {Γ'} {τ} ρ (listrec {.Γ'} {τ'} e e₁ e₂) k =
Preorder-str.trans (snd [ τ ]t)
(lrec (Monotone.f (interpE e) (Monotone.f (interpR ρ) k))
(Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k))
(λ x₁ x₂ x₃ → Monotone.f (interpE e₂) (((Monotone.f (interpR ρ) k , x₃) , x₂) , x₁)))
(lrec (Monotone.f (interpE e) (Monotone.f (interpR ρ) k))
(Monotone.f (interpE (ren e₁ ρ)) k)
(λ x₁ x₂ x₃ → Monotone.f (interpE (ren e₂ (r-extend (r-extend (r-extend ρ))))) (((k , x₃) , x₂) , x₁)))
(lrec (Monotone.f (interpE (ren e ρ)) k)
(Monotone.f (interpE (ren e₁ ρ)) k)
(λ x₁ x₂ x₃ → Monotone.f (interpE (ren e₂ (r-extend (r-extend (r-extend ρ))))) (((k , x₃) , x₂) , x₁)))
(lrec-cong
(monotone (λ k₁ → Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k₁))
(λ x y x₁ →
Monotone.is-monotone (interpE e₁)
(Monotone.f (interpR ρ) x)
(Monotone.f (interpR ρ) y)
(Monotone.is-monotone (interpR ρ) x y x₁)))
(interpE (ren e₁ ρ))
(monotone (λ x → Monotone.f (interpE e₂) (((Monotone.f (interpR ρ) (fst (fst (fst x))) , snd (fst (fst x))) , snd (fst x)) , snd x))
(λ x y x₁ →
Monotone.is-monotone (interpE e₂)
(((Monotone.f (interpR ρ) (fst (fst (fst x))) , snd (fst (fst x))) , snd (fst x)) , snd x)
(((Monotone.f (interpR ρ) (fst (fst (fst y))) , snd (fst (fst y))) , snd (fst y)) , snd y)
(((Monotone.is-monotone (interpR ρ)
(fst (fst (fst x))) (fst (fst (fst y))) (fst (fst (fst x₁))) ,
snd (fst (fst x₁))) ,
snd (fst x₁)) ,
snd x₁)))
(interpE (ren e₂ (r-extend (r-extend (r-extend ρ)))))
(k , (Monotone.f (interpE e) (Monotone.f (interpR ρ) k)))
(λ x → ren-eq-r ρ e₁ x)
(λ x →
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE e₂) (((Monotone.f (interpR ρ) (fst (fst (fst x))) , snd (fst (fst x))) , snd (fst x)) , snd x))
(Monotone.f (interpE e₂) (Monotone.f (interpR {τ' :: list τ' :: τ :: Γ} {_ :: _ :: _ :: Γ'} (r-extend (r-extend (r-extend ρ)))) x))
(Monotone.f (interpE (ren e₂ (r-extend (r-extend (r-extend ρ))))) x)
(Monotone.is-monotone (interpE e₂)
(((Monotone.f (interpR ρ) (fst (fst (fst x))) , snd (fst (fst x))) , snd (fst x)) , snd x)
(Monotone.f (interpR {τ' :: list τ' :: τ :: Γ} {_ :: _ :: _ :: Γ'} (r-extend (r-extend (r-extend ρ)))) x)
((((Preorder-str.trans (snd [ Γ' ]c)
(Monotone.f (interpR ρ) (fst (fst (fst x))))
(Monotone.f (interpR {τ :: Γ} {Γ'} (throw-r (r-extend ρ))) (fst (fst (fst x)) , snd (fst (fst x))))
(Monotone.f (interpR (λ x₁ → iS (iS (iS (ρ x₁))))) x)
(ren-eq-r-lam ρ (fst (fst (fst x))) (snd (fst (fst x))))
(Preorder-str.trans (snd [ Γ' ]c)
(Monotone.f (interpR {τ :: Γ} {Γ'} (throw-r (r-extend ρ))) (fst (fst (fst x)) , snd (fst (fst x))))
(Monotone.f (interpR (λ x₁ → iS (iS (ρ x₁)))) (fst x))
(Monotone.f (interpR (λ x₁ → iS (iS (iS (ρ x₁))))) x)
(ren-eq-r-lam (λ x₁ → iS (ρ x₁)) (fst (fst x)) (snd (fst x)))
(ren-eq-r-lam (λ x₁ → iS (iS (ρ x₁))) (fst x) (snd x)))) ,
(Preorder-str.refl (snd [ τ ]t) (snd (fst (fst x))))) ,
(l-refl (snd [ τ' ]t) (snd (fst x)))) ,
(Preorder-str.refl (snd [ τ' ]t) (snd x))))
(ren-eq-r (r-extend (r-extend (r-extend ρ))) e₂ x)))
(listrec-fix-args (interpE (ren e₁ ρ)) (interpE (ren e₂ (r-extend (r-extend (r-extend ρ)))))
(k , Monotone.f (interpE e) (Monotone.f (interpR ρ) k))
(k , Monotone.f (interpE (ren e ρ)) k)
(Preorder-str.refl (snd [ Γ ]c) k , ren-eq-r ρ e k))
ren-eq-r ρ true k = <>
ren-eq-r ρ false k = <>
ren-eq-r {τ = τ} ρ (max x e e₁) k =
Preorder-max-str.max-lub [ x ]tm
(Monotone.f (interpE (ren (max x e e₁) ρ)) k)
(Monotone.f (interpE e) (Monotone.f (interpR ρ) k))
(Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k))
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE e) (Monotone.f (interpR ρ) k))
(Monotone.f (interpE (ren e ρ)) k)
(Monotone.f (interpE (ren (max x e e₁) ρ)) k)
(ren-eq-r ρ e k)
(Preorder-max-str.max-l [ x ]tm (Monotone.f (interpE (ren e ρ)) k) (Monotone.f (interpE (ren e₁ ρ)) k)))
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k))
(Monotone.f (interpE (ren e₁ ρ)) k)
(Monotone.f (interpE (ren (max x e e₁) ρ)) k)
(ren-eq-r ρ e₁ k)
(Preorder-max-str.max-r [ x ]tm (Monotone.f (interpE (ren e ρ)) k) (Monotone.f (interpE (ren e₁ ρ)) k)))
ids-lem-l : ∀ {Γ} (k : fst [ Γ ]c) → Preorder-str.≤ (snd [ Γ ]c) (Monotone.f (interpR {Γ} {Γ} (λ x₂ → x₂)) k) k
ids-lem-l {[]} k = <>
ids-lem-l {x :: Γ} (k1 , k2) =
(Preorder-str.trans (snd [ Γ ]c)
(Monotone.f (interpR {x :: Γ} {Γ} (throw-r (λ x₂ → x₂))) (k1 , k2))
(Monotone.f (interpR {Γ} {Γ} (λ x₂ → x₂)) k1)
k1
(ren-eq-l-lam {Γ} {Γ} (λ x₂ → x₂) k1 k2)
(ids-lem-l {Γ} k1)) ,
(Preorder-str.refl (snd [ x ]t) k2)
subst-eq-l-lam : ∀ {Γ Γ' τ1} (Θ : sctx Γ Γ') (k : fst [ Γ ]c) (x : fst [ τ1 ]t)
→ Preorder-str.≤ (snd [ Γ' ]c) (Monotone.f (interpS (throw-s (s-extend {_} {_} {τ1} Θ))) (k , x)) (Monotone.f (interpS Θ) k)
subst-eq-l-lam {Γ' = []} Θ k x = <>
subst-eq-l-lam {Γ} {Γ' = x :: Γ'} {τ1} Θ k x₁ =
(subst-eq-l-lam (throw-s Θ) k x₁) ,
Preorder-str.trans (snd [ x ]t)
(Monotone.f (interpE (ren (Θ i0) iS)) (k , x₁))
(Monotone.f (interpE (Θ i0)) (Monotone.f (interpR {τ1 :: Γ} {Γ} iS) (k , x₁)))
(snd (Monotone.f (interpS Θ) k))
(ren-eq-l iS (Θ i0) (k , x₁))
(Monotone.is-monotone (interpE (Θ i0)) (Monotone.f (interpR {τ1 :: Γ} {Γ} iS) (k , x₁)) k
(Preorder-str.trans (snd [ Γ ]c)
(Monotone.f (interpR {τ1 :: Γ} {Γ} iS) (k , x₁))
(Monotone.f (interpR {Γ} {Γ} (λ x₂ → x₂)) k)
k
(ren-eq-l-lam {Γ} {Γ} (λ x₂ → x₂) k x₁)
(ids-lem-l {Γ} k)))
subst-eq-l : ∀ {Γ Γ' τ} → (Θ : sctx Γ Γ') → (e : Γ' |- τ) → (k : fst [ Γ ]c)
→ Preorder-str.≤ (snd [ τ ]t) (Monotone.f (interpE (subst e Θ)) k) (Monotone.f (interpE e) (Monotone.f (interpS Θ) k))
subst-eq-l Θ unit k = <>
subst-eq-l Θ 0C k = <>
subst-eq-l Θ 1C k = <>
subst-eq-l Θ (plusC e e₁) k =
plus-lem (Monotone.f (interpE (subst e Θ)) k) (Monotone.f (interpE (subst e₁ Θ)) k)
(Monotone.f (interpE e) (Monotone.f (interpS Θ) k)) (Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k))
(subst-eq-l Θ e k) (subst-eq-l Θ e₁ k)
subst-eq-l {τ = τ} Θ (var i0) k = Preorder-str.refl (snd [ τ ]t) (Monotone.f (interpE (Θ i0)) k)
subst-eq-l {τ = τ} Θ (var (iS x)) k = subst-eq-l (throw-s Θ) (var x) k
subst-eq-l Θ z k = <>
subst-eq-l Θ (s e) k = subst-eq-l Θ e k
subst-eq-l {Γ} {Γ'} {τ} Θ (rec e e₁ e₂) k =
Preorder-str.trans (snd [ τ ]t)
(natrec (Monotone.f (interpE (subst e₁ Θ)) k)
(λ n x₂ → Monotone.f (interpE (subst e₂ (s-extend (s-extend Θ)))) ((k , x₂) , n))
(Monotone.f (interpE (subst e Θ)) k))
(natrec (Monotone.f (interpE (subst e₁ Θ)) k)
(λ n x₂ → Monotone.f (interpE (subst e₂ (s-extend (s-extend Θ)))) ((k , x₂) , n))
(Monotone.f (interpE e) (Monotone.f (interpS Θ) k)))
(natrec (Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k))
(λ n x₂ → Monotone.f (interpE e₂) ((Monotone.f (interpS Θ) k , x₂) , n))
(Monotone.f (interpE e) (Monotone.f (interpS Θ) k)))
(♭h-fix-args (interpE (subst e₁ Θ)) (interpE (subst e₂ (s-extend (s-extend Θ))))
(k , Monotone.f (interpE (subst e Θ)) k)
(k , Monotone.f (interpE e) (Monotone.f (interpS Θ) k))
(subst-eq-l Θ e k))
(♭h-cong
(interpE (subst e₁ Θ))
(monotone (λ v → Monotone.f (interpE e₁) (Monotone.f (interpS Θ) v))
(λ x y x₁ →
Monotone.is-monotone (interpE e₁) (Monotone.f (interpS Θ) x) (Monotone.f (interpS Θ) y) (Monotone.is-monotone (interpS Θ) x y x₁)))
(interpE (subst e₂ (s-extend (s-extend Θ))))
(monotone (λ v → Monotone.f (interpE e₂) ((Monotone.f (interpS Θ) (fst (fst v)) , snd (fst v)) , snd v))
(λ x y x₁ →
Monotone.is-monotone (interpE e₂)
((Monotone.f (interpS Θ) (fst (fst x)) , snd (fst x)) , snd x)
((Monotone.f (interpS Θ) (fst (fst y)) , snd (fst y)) , snd y)
((Monotone.is-monotone (interpS Θ) (fst (fst x)) (fst (fst y)) (fst (fst x₁)) ,
snd (fst x₁)) ,
snd x₁)))
(k , Monotone.f (interpE e) (Monotone.f (interpS Θ) k))
(λ x → subst-eq-l Θ e₁ x)
(λ x →
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst e₂ (s-extend (s-extend Θ)))) x)
(Monotone.f (interpE e₂) (Monotone.f (interpS {nat :: τ :: Γ} {_ :: _ :: Γ'} (s-extend (s-extend Θ))) x))
(Monotone.f (interpE e₂) ((Monotone.f (interpS Θ) (fst (fst x)) , snd (fst x)) , snd x))
(subst-eq-l (s-extend (s-extend Θ)) e₂ x)
(Monotone.is-monotone (interpE e₂)
(Monotone.f (interpS {nat :: τ :: Γ} {_ :: _ :: Γ'} (s-extend (s-extend Θ))) x)
((Monotone.f (interpS Θ) (fst (fst x)) , snd (fst x)) , snd x)
(((Preorder-str.trans (snd [ Γ' ]c)
(Monotone.f (interpS (λ x₁ → ren (ren (Θ x₁) iS) iS)) x)
(Monotone.f (interpS (λ x₁ → ren (Θ x₁) iS)) (fst x))
(Monotone.f (interpS Θ) (fst (fst x)))
(subst-eq-l-lam {τ :: Γ} {Γ'} (λ x₁ → ren (Θ x₁) iS) (fst x) (snd x))
(subst-eq-l-lam Θ (fst (fst x)) (snd (fst x)))) ,
(Preorder-str.refl (snd [ τ ]t) (snd (fst x)))) ,
(♭nat-refl (snd x))))))
subst-eq-l {Γ} {τ = τ1 ->c τ2} Θ (lam e) k x =
Preorder-str.trans (snd [ τ2 ]t)
(Monotone.f (Monotone.f (interpE (subst (lam e) Θ)) k) x)
(Monotone.f (interpE e) (Monotone.f (interpS (s-extend {_} {_} {τ1} Θ)) (k , x)))
(Monotone.f (interpE e) (Monotone.f (interpS Θ) k , x))
(subst-eq-l (s-extend Θ) e (k , x))
(Monotone.is-monotone (interpE e)
(Monotone.f (interpS (s-extend {_} {_} {τ1} Θ)) (k , x))
(Monotone.f (interpS Θ) k , x)
(subst-eq-l-lam Θ k x ,
(Preorder-str.refl (snd [ τ1 ]t) x)))
subst-eq-l {Γ} {τ = τ} Θ (app e e₁) k =
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (Monotone.f (interpE (subst e Θ)) k) (Monotone.f (interpE (subst e₁ Θ)) k))
(Monotone.f (Monotone.f (interpE (subst e Θ)) k) (Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k)))
(Monotone.f (Monotone.f (interpE e) (Monotone.f (interpS Θ) k)) (Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k)))
(Monotone.is-monotone (Monotone.f (interpE (subst e Θ)) k)
(Monotone.f (interpE (subst e₁ Θ)) k) (Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k)) (subst-eq-l Θ e₁ k))
(subst-eq-l Θ e k (Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k)))
subst-eq-l Θ rz k = <>
subst-eq-l Θ (rsuc e) k = subst-eq-l Θ e k
subst-eq-l {Γ} {Γ'} {τ} Θ (rrec e e₁ e₂ P) k =
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (comp (pair' id (interpE (subst e Θ)))
(rec' (interpE (subst e₁ Θ)) (unlam' (unlam' (interpE (subst e₂ Θ))))
(sound (subst e₁ Θ) (app (app (subst e₂ Θ) rz) (subst e₁ Θ)) (subst-cong P)))) k)
(Monotone.f (rec' (interpE (subst e₁ Θ)) (unlam' (unlam' (interpE (subst e₂ Θ))))
(λ x₁ → sound (subst e₁ Θ) (app (app (subst e₂ Θ) rz) (subst e₁ Θ)) (subst-cong P) x₁))
(k , Monotone.f (interpE e) (Monotone.f (interpS Θ) k)))
(Monotone.f (comp (pair' id (interpE e))
(rec' (interpE e₁) (unlam' (unlam' (interpE e₂)))
(sound e₁ (app (app e₂ rz) e₁) P))) (Monotone.f (interpS Θ) k))
(h-lem2 (interpE (subst e₁ Θ)) (unlam' (unlam' (interpE (subst e₂ Θ))))
(k , Monotone.f (interpE (subst e Θ)) k)
(k , Monotone.f (interpE e) (Monotone.f (interpS Θ) k))
(λ x → sound (subst e₁ Θ) (app (app (subst e₂ Θ) rz) (subst e₁ Θ)) (subst-cong P) x)
(subst-eq-l Θ e k))
(h-cong2
(interpE (subst e₁ Θ))
(monotone (λ x → Monotone.f (interpE e₁) (Monotone.f (interpS Θ) x))
(λ x y x₁ →
Monotone.is-monotone (interpE e₁)
(Monotone.f (interpS Θ) x)
(Monotone.f (interpS Θ) y)
(Monotone.is-monotone (interpS Θ) x y x₁)))
(unlam' (unlam' (interpE (subst e₂ Θ))))
(monotone (λ x → Monotone.f (Monotone.f (Monotone.f (interpE e₂) (Monotone.f (interpS Θ) (fst (fst x)))) (snd (fst x))) (snd x))
(λ x y x₁ →
Monotone.is-monotone (unlam' (unlam' (interpE e₂)))
((Monotone.f (interpS Θ) (fst (fst x)) , snd (fst x)) , snd x)
((Monotone.f (interpS Θ) (fst (fst y)) , snd (fst y)) , snd y)
((Monotone.is-monotone (interpS Θ) (fst (fst x)) (fst (fst y)) (fst (fst x₁)) , snd (fst x₁)) , snd x₁)))
(λ x → subst-eq-l Θ e₁ x)
(λ x → subst-eq-l Θ e₂ (fst (fst x)) (snd (fst x)) (snd x))
(λ x₁ → sound (subst e₁ Θ) (app (app (subst e₂ Θ) rz) (subst e₁ Θ)) (subst-cong P) x₁)
(λ x₁ → sound e₁ (app (app e₂ rz) e₁) P (Monotone.f (interpS Θ) x₁))
(k , Monotone.f (interpE e) (Monotone.f (interpS Θ) k)))
subst-eq-l Θ (prod e e₁) k = (subst-eq-l Θ e k) , (subst-eq-l Θ e₁ k)
subst-eq-l Θ (l-proj e) k = fst (subst-eq-l Θ e k)
subst-eq-l Θ (r-proj e) k = snd (subst-eq-l Θ e k)
subst-eq-l Θ nil k = <>
subst-eq-l Θ (e ::c e₁) k = (subst-eq-l Θ e k) , (subst-eq-l Θ e₁ k)
subst-eq-l {Γ} {Γ'} {τ} Θ (listrec {.Γ'} {τ'} e e₁ e₂) k =
Preorder-str.trans (snd [ τ ]t)
(lrec (Monotone.f (interpE (subst e Θ)) k)
(Monotone.f (interpE (subst e₁ Θ)) k)
(λ x₁ x₂ x₃ → Monotone.f (interpE (subst e₂ (s-extend (s-extend (s-extend Θ))))) (((k , x₃) , x₂) , x₁)))
(lrec (Monotone.f (interpE e) (Monotone.f (interpS Θ) k))
(Monotone.f (interpE (subst e₁ Θ)) k)
(λ x₁ x₂ x₃ → Monotone.f (interpE (subst e₂ (s-extend (s-extend (s-extend Θ))))) (((k , x₃) , x₂) , x₁)))
(lrec (Monotone.f (interpE e) (Monotone.f (interpS Θ) k))
(Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k))
(λ x₁ x₂ x₃ → Monotone.f (interpE e₂) (((Monotone.f (interpS Θ) k , x₃) , x₂) , x₁)))
(listrec-fix-args (interpE (subst e₁ Θ)) (interpE (subst e₂ (s-extend (s-extend (s-extend Θ)))))
(k , Monotone.f (interpE (subst e Θ)) k)
(k , Monotone.f (interpE e) (Monotone.f (interpS Θ) k))
(Preorder-str.refl (snd [ Γ ]c) k , subst-eq-l Θ e k))
(lrec-cong
(interpE (subst e₁ Θ))
(monotone (λ k₁ → Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k₁))
(λ x y x₁ → Monotone.is-monotone (interpE e₁) (Monotone.f (interpS Θ) x) (Monotone.f (interpS Θ) y) (Monotone.is-monotone (interpS Θ) x y x₁)))
(interpE (subst e₂ (s-extend (s-extend (s-extend Θ)))))
(monotone (λ x → Monotone.f (interpE e₂) (((Monotone.f (interpS Θ) (fst (fst (fst x))) , snd (fst (fst x))) , snd (fst x)) , snd x))
(λ x y x₁ →
Monotone.is-monotone (interpE e₂)
(((Monotone.f (interpS Θ) (fst (fst (fst x))) , snd (fst (fst x))) , snd (fst x)) , snd x)
(((Monotone.f (interpS Θ) (fst (fst (fst y))) , snd (fst (fst y))) , snd (fst y)) , snd y)
(((Monotone.is-monotone (interpS Θ) (fst (fst (fst x))) (fst (fst (fst y))) (fst (fst (fst x₁))) ,
snd (fst (fst x₁))) ,
snd (fst x₁)) ,
snd x₁)))
(k , Monotone.f (interpE e) (Monotone.f (interpS Θ) k))
(λ x → subst-eq-l Θ e₁ x)
(λ x →
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst e₂ (s-extend (s-extend (s-extend Θ))))) x)
(Monotone.f (interpE e₂) (Monotone.f (interpS {τ' :: list τ' :: τ :: Γ} {_ :: _ :: _ :: Γ'} (s-extend (s-extend (s-extend Θ)))) x))
(Monotone.f (interpE e₂) (((Monotone.f (interpS Θ) (fst (fst (fst x))) , snd (fst (fst x))) , snd (fst x)) , snd x))
(subst-eq-l (s-extend (s-extend (s-extend Θ))) e₂ x)
(Monotone.is-monotone (interpE e₂)
(Monotone.f (interpS {τ' :: list τ' :: τ :: Γ} {_ :: _ :: _ :: Γ'} (s-extend (s-extend (s-extend Θ)))) x)
(((Monotone.f (interpS Θ) (fst (fst (fst x))) , snd (fst (fst x))) , snd (fst x)) , snd x)
((((Preorder-str.trans (snd [ Γ' ]c)
(Monotone.f (interpS (λ x₁ → ren (ren (ren (Θ x₁) iS) iS) iS)) x)
(Monotone.f (interpS {τ :: Γ} {Γ'} (throw-s (s-extend Θ))) (fst (fst x)))
(Monotone.f (interpS Θ) (fst (fst (fst x))))
(Preorder-str.trans (snd [ Γ' ]c)
(Monotone.f (interpS (λ x₁ → ren (ren (ren (Θ x₁) iS) iS) iS)) x)
(Monotone.f (interpS (λ x₁ → ren (ren (Θ x₁) iS) iS)) (fst x))
(Monotone.f (interpS {τ :: Γ} {Γ'} (throw-s (s-extend Θ))) (fst (fst x)))
(subst-eq-l-lam (λ x₁ → ren (ren (Θ x₁) iS) iS) (fst x) (snd x))
(subst-eq-l-lam (λ x₁ → ren (Θ x₁) iS) (fst (fst x)) (snd (fst x))))
(subst-eq-l-lam {Γ} {Γ'} Θ (fst (fst (fst x))) (snd (fst (fst x))))) ,
(Preorder-str.refl (snd [ τ ]t) (snd (fst (fst x))))) ,
(l-refl (snd [ τ' ]t) (snd (fst x)))) ,
(Preorder-str.refl (snd [ τ' ]t) (snd x))))))
subst-eq-l Θ true k = <>
subst-eq-l Θ false k = <>
subst-eq-l {τ = τ} Θ (max x e e₁) k =
Preorder-max-str.max-lub [ x ]tm
(Monotone.f (interpE (max x e e₁)) (Monotone.f (interpS Θ) k))
(Monotone.f (interpE (subst e Θ)) k)
(Monotone.f (interpE (subst e₁ Θ)) k)
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst e Θ)) k)
(Monotone.f (interpE e) (Monotone.f (interpS Θ) k))
(Monotone.f (interpE (max x e e₁)) (Monotone.f (interpS Θ) k))
(subst-eq-l Θ e k)
(Preorder-max-str.max-l [ x ]tm (Monotone.f (interpE e) (Monotone.f (interpS Θ) k)) (Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k))))
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst e₁ Θ)) k)
(Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k))
(Monotone.f (interpE (max x e e₁)) (Monotone.f (interpS Θ) k))
(subst-eq-l Θ e₁ k)
(Preorder-max-str.max-r [ x ]tm (Monotone.f (interpE e) (Monotone.f (interpS Θ) k)) (Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k))))
ids-lem-r : ∀ {Γ} (k : fst [ Γ ]c) → Preorder-str.≤ (snd [ Γ ]c) k (Monotone.f (interpR {Γ} {Γ} (λ x₂ → x₂)) k)
ids-lem-r {[]} k = <>
ids-lem-r {x :: Γ} (k1 , k2) =
(Preorder-str.trans (snd [ Γ ]c)
k1
(Monotone.f (interpR {Γ} {Γ} (λ x₂ → x₂)) k1)
(Monotone.f (interpR {x :: Γ} {Γ} (throw-r (λ x₂ → x₂))) (k1 , k2))
(ids-lem-r {Γ} k1)
(ren-eq-r-lam {Γ} {Γ} (λ x₂ → x₂) k1 k2)) ,
(Preorder-str.refl (snd [ x ]t) k2)
subst-eq-r-lam : ∀ {Γ Γ' τ1} (Θ : sctx Γ Γ') (k : fst [ Γ ]c) (x : fst [ τ1 ]t)
→ Preorder-str.≤ (snd [ Γ' ]c) (Monotone.f (interpS Θ) k) (Monotone.f (interpS (throw-s (s-extend {_} {_} {τ1} Θ))) (k , x))
subst-eq-r-lam {Γ' = []} Θ k x = <>
subst-eq-r-lam {Γ} {Γ' = x :: Γ'} {τ1} Θ k x₁ =
(subst-eq-r-lam (throw-s Θ) k x₁) ,
Preorder-str.trans (snd [ x ]t)
(snd (Monotone.f (interpS Θ) k))
(Monotone.f (interpE (Θ i0)) (Monotone.f (interpR {τ1 :: Γ} {Γ} iS) (k , x₁)))
(Monotone.f (interpE (ren (Θ i0) iS)) (k , x₁))
(Monotone.is-monotone (interpE (Θ i0))
k
(Monotone.f (interpR {τ1 :: Γ} {Γ} iS) (k , x₁))
(Preorder-str.trans (snd [ Γ ]c)
k
(Monotone.f (interpR {Γ} {Γ} (λ x₂ → x₂)) k)
(Monotone.f (interpR {τ1 :: Γ} {Γ} iS) (k , x₁))
(ids-lem-r {Γ} k)
(ren-eq-r-lam {Γ} {Γ} (λ x₂ → x₂) k x₁)))
(ren-eq-r iS (Θ i0) (k , x₁))
subst-eq-r : ∀ {Γ Γ' τ} → (Θ : sctx Γ Γ') → (e : Γ' |- τ) → (k : fst [ Γ ]c)
→ Preorder-str.≤ (snd [ τ ]t) (Monotone.f (interpE e) (Monotone.f (interpS Θ) k)) (Monotone.f (interpE (subst e Θ)) k)
subst-eq-r Θ unit k = <>
subst-eq-r Θ 0C k = <>
subst-eq-r Θ 1C k = <>
subst-eq-r Θ (plusC e e₁) k =
plus-lem (Monotone.f (interpE e) (Monotone.f (interpS Θ) k)) (Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k))
(Monotone.f (interpE (subst e Θ)) k) (Monotone.f (interpE (subst e₁ Θ)) k)
(subst-eq-r Θ e k) (subst-eq-r Θ e₁ k)
subst-eq-r {τ = τ} Θ (var i0) k = Preorder-str.refl (snd [ τ ]t) (Monotone.f (interpE (Θ i0)) k)
subst-eq-r {τ = τ} Θ (var (iS x)) k = subst-eq-r (throw-s Θ) (var x) k
subst-eq-r Θ z k = <>
subst-eq-r Θ (s e) k = subst-eq-r Θ e k
subst-eq-r {Γ} {Γ'} {τ} Θ (rec e e₁ e₂) k =
Preorder-str.trans (snd [ τ ]t)
(natrec (Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k))
(λ n x₂ → Monotone.f (interpE e₂) ((Monotone.f (interpS Θ) k , x₂) , n))
(Monotone.f (interpE e) (Monotone.f (interpS Θ) k)))
(natrec (Monotone.f (interpE (subst e₁ Θ)) k)
(λ n x₂ → Monotone.f (interpE (subst e₂ (s-extend (s-extend Θ)))) ((k , x₂) , n))
(Monotone.f (interpE e) (Monotone.f (interpS Θ) k)))
(natrec (Monotone.f (interpE (subst e₁ Θ)) k)
(λ n x₂ → Monotone.f (interpE (subst e₂ (s-extend (s-extend Θ)))) ((k , x₂) , n))
(Monotone.f (interpE (subst e Θ)) k))
(♭h-cong
(monotone (λ v → Monotone.f (interpE e₁) (Monotone.f (interpS Θ) v))
(λ x y x₁ → Monotone.is-monotone (interpE e₁) (Monotone.f (interpS Θ) x) (Monotone.f (interpS Θ) y) (Monotone.is-monotone (interpS Θ) x y x₁)))
(interpE (subst e₁ Θ))
(monotone (λ v → Monotone.f (interpE e₂) ((Monotone.f (interpS Θ) (fst (fst v)) , snd (fst v)) , snd v))
(λ x y x₁ →
Monotone.is-monotone (interpE e₂)
((Monotone.f (interpS Θ) (fst (fst x)) , snd (fst x)) , snd x)
((Monotone.f (interpS Θ) (fst (fst y)) , snd (fst y)) , snd y)
((Monotone.is-monotone (interpS Θ) (fst (fst x)) (fst (fst y)) (fst (fst x₁)) ,
snd (fst x₁)) ,
snd x₁)))
(interpE (subst e₂ (s-extend (s-extend Θ))))
(k , (Monotone.f (interpE e) (Monotone.f (interpS Θ) k)))
(λ x → subst-eq-r Θ e₁ x)
(λ x →
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE e₂) ((Monotone.f (interpS Θ) (fst (fst x)) , snd (fst x)) , snd x))
(Monotone.f (interpE e₂) (Monotone.f (interpS {nat :: τ :: Γ} {_ :: _ :: Γ'} (s-extend (s-extend Θ))) x))
(Monotone.f (interpE (subst e₂ (s-extend (s-extend Θ)))) x)
(Monotone.is-monotone (interpE e₂)
((Monotone.f (interpS Θ) (fst (fst x)) , snd (fst x)) , snd x)
(Monotone.f (interpS {nat :: τ :: Γ} {_ :: _ :: Γ'} (s-extend (s-extend Θ))) x)
(((Preorder-str.trans (snd [ Γ' ]c)
(Monotone.f (interpS Θ) (fst (fst x)))
(Monotone.f (interpS (λ x₁ → ren (Θ x₁) iS)) (fst x))
(Monotone.f (interpS (λ x₁ → ren (ren (Θ x₁) iS) iS)) x)
(subst-eq-r-lam Θ (fst (fst x)) (snd (fst x)))
(subst-eq-r-lam {τ :: Γ} {Γ'} (λ x₁ → ren (Θ x₁) iS) (fst x) (snd x))) ,
(Preorder-str.refl (snd [ τ ]t) (snd (fst x)))) ,
(♭nat-refl (snd x))))
(subst-eq-r (s-extend (s-extend Θ)) e₂ x)))
(♭h-fix-args (interpE (subst e₁ Θ))
(interpE (subst e₂ (s-extend (s-extend Θ))))
(k , Monotone.f (interpE e) (Monotone.f (interpS Θ) k))
(k , Monotone.f (interpE (subst e Θ)) k)
(subst-eq-r Θ e k))
subst-eq-r {Γ} {τ = τ1 ->c τ2} Θ (lam e) k x =
Preorder-str.trans (snd [ τ2 ]t)
(Monotone.f (interpE e) (Monotone.f (interpS Θ) k , x))
(Monotone.f (interpE e) (Monotone.f (interpS (s-extend {_} {_} {τ1} Θ)) (k , x)))
(Monotone.f (Monotone.f (interpE (subst (lam e) Θ)) k) x)
((Monotone.is-monotone (interpE e)
(Monotone.f (interpS Θ) k , x)
(Monotone.f (interpS (s-extend {_} {_} {τ1} Θ)) (k , x))
(subst-eq-r-lam Θ k x ,
(Preorder-str.refl (snd [ τ1 ]t) x))))
(subst-eq-r (s-extend Θ) e (k , x))
subst-eq-r {Γ} {τ = τ} Θ (app e e₁) k =
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (Monotone.f (interpE e) (Monotone.f (interpS Θ) k)) (Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k)))
(Monotone.f (Monotone.f (interpE (subst e Θ)) k) (Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k)))
(Monotone.f (Monotone.f (interpE (subst e Θ)) k) (Monotone.f (interpE (subst e₁ Θ)) k))
(subst-eq-r Θ e k (Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k)))
(Monotone.is-monotone (Monotone.f (interpE (subst e Θ)) k)
(Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k)) (Monotone.f (interpE (subst e₁ Θ)) k) (subst-eq-r Θ e₁ k))
subst-eq-r Θ rz k = <>
subst-eq-r Θ (rsuc e) k = subst-eq-r Θ e k
subst-eq-r {Γ} {Γ'} {τ} Θ (rrec e e₁ e₂ P) k =
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (comp (pair' id (interpE e))
(rec' (interpE e₁) (unlam' (unlam' (interpE e₂)))
(sound e₁ (app (app e₂ rz) e₁) P))) (Monotone.f (interpS Θ) k))
(Monotone.f (rec' (interpE (subst e₁ Θ)) (unlam' (unlam' (interpE (subst e₂ Θ))))
(λ x₁ → sound (subst e₁ Θ) (app (app (subst e₂ Θ) rz) (subst e₁ Θ)) (subst-cong P) x₁))
(k , Monotone.f (interpE e) (Monotone.f (interpS Θ) k)))
(Monotone.f (comp (pair' id (interpE (subst e Θ)))
(rec' (interpE (subst e₁ Θ)) (unlam' (unlam' (interpE (subst e₂ Θ))))
(sound (subst e₁ Θ) (app (app (subst e₂ Θ) rz) (subst e₁ Θ)) (subst-cong P)))) k)
(h-cong2
(monotone (λ z₁ → Monotone.f (interpE e₁) (Monotone.f (interpS Θ) z₁))
(λ x y x₁ →
Monotone.is-monotone (interpE e₁)
(Monotone.f (interpS Θ) x)
(Monotone.f (interpS Θ) y)
(Monotone.is-monotone (interpS Θ) x y x₁)))
(interpE (subst e₁ Θ))
(monotone (λ v → Monotone.f (Monotone.f (Monotone.f (interpE e₂) (Monotone.f (interpS Θ) (fst (fst v)))) (snd (fst v))) (snd v))
(λ x y x₁ →
Monotone.is-monotone (unlam' (unlam' (interpE e₂)))
((Monotone.f (interpS Θ) (fst (fst x)) , snd (fst x)) , snd x)
((Monotone.f (interpS Θ) (fst (fst y)) , snd (fst y)) , snd y)
((Monotone.is-monotone (interpS Θ) (fst (fst x)) (fst (fst y)) (fst (fst x₁)) , snd (fst x₁)) , snd x₁)))
(unlam' (unlam' (interpE (subst e₂ Θ))))
(λ x → subst-eq-r Θ e₁ x)
(λ x → subst-eq-r Θ e₂ (fst (fst x)) (snd (fst x)) (snd x))
(λ x₁ → sound e₁ (app (app e₂ rz) e₁) P (Monotone.f (interpS Θ) x₁))
(λ x₁ → sound (subst e₁ Θ) (app (app (subst e₂ Θ) rz) (subst e₁ Θ)) (subst-cong P) x₁)
(k , (Monotone.f (interpE e) (Monotone.f (interpS Θ) k))))
(h-lem2 (interpE (subst e₁ Θ)) (unlam' (unlam' (interpE (subst e₂ Θ))))
(k , Monotone.f (interpE e) (Monotone.f (interpS Θ) k))
(k , Monotone.f (interpE (subst e Θ)) k)
(λ x → sound (subst e₁ Θ) (app (app (subst e₂ Θ) rz) (subst e₁ Θ)) (subst-cong P) x)
(subst-eq-r Θ e k))
subst-eq-r Θ (prod e e₁) k = (subst-eq-r Θ e k) , (subst-eq-r Θ e₁ k)
subst-eq-r Θ (l-proj e) k = fst (subst-eq-r Θ e k)
subst-eq-r Θ (r-proj e) k = snd (subst-eq-r Θ e k)
subst-eq-r Θ nil k = <>
subst-eq-r Θ (e ::c e₁) k = (subst-eq-r Θ e k) , (subst-eq-r Θ e₁ k)
subst-eq-r {Γ} {Γ'} {τ} Θ (listrec {.Γ'} {τ'} e e₁ e₂) k =
Preorder-str.trans (snd [ τ ]t)
(lrec (Monotone.f (interpE e) (Monotone.f (interpS Θ) k))
(Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k))
(λ x₁ x₂ x₃ → Monotone.f (interpE e₂) (((Monotone.f (interpS Θ) k , x₃) , x₂) , x₁)))
(lrec (Monotone.f (interpE e) (Monotone.f (interpS Θ) k))
(Monotone.f (interpE (subst e₁ Θ)) k)
(λ x₁ x₂ x₃ → Monotone.f (interpE (subst e₂ (s-extend (s-extend (s-extend Θ))))) (((k , x₃) , x₂) , x₁)))
(lrec (Monotone.f (interpE (subst e Θ)) k)
(Monotone.f (interpE (subst e₁ Θ)) k)
(λ x₁ x₂ x₃ → Monotone.f (interpE (subst e₂ (s-extend (s-extend (s-extend Θ))))) (((k , x₃) , x₂) , x₁)))
(lrec-cong
(monotone (λ k₁ → Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k₁))
(λ x y x₁ → Monotone.is-monotone (interpE e₁) (Monotone.f (interpS Θ) x) (Monotone.f (interpS Θ) y) (Monotone.is-monotone (interpS Θ) x y x₁)))
(interpE (subst e₁ Θ))
(monotone (λ x → Monotone.f (interpE e₂) (((Monotone.f (interpS Θ) (fst (fst (fst x))) , snd (fst (fst x))) , snd (fst x)) , snd x))
(λ x y x₁ →
Monotone.is-monotone (interpE e₂)
(((Monotone.f (interpS Θ) (fst (fst (fst x))) , snd (fst (fst x))) , snd (fst x)) , snd x)
(((Monotone.f (interpS Θ) (fst (fst (fst y))) , snd (fst (fst y))) , snd (fst y)) , snd y)
(((Monotone.is-monotone (interpS Θ)
(fst (fst (fst x))) (fst (fst (fst y))) (fst (fst (fst x₁))) , snd (fst (fst x₁))) , snd (fst x₁)) , snd x₁)))
(interpE (subst e₂ (s-extend (s-extend (s-extend Θ)))))
(k , (Monotone.f (interpE e) (Monotone.f (interpS Θ) k)))
(λ x → subst-eq-r Θ e₁ x)
(λ x →
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE e₂) (((Monotone.f (interpS Θ) (fst (fst (fst x))) , snd (fst (fst x))) , snd (fst x)) , snd x))
(Monotone.f (interpE e₂) (Monotone.f (interpS {τ' :: list τ' :: τ :: Γ} {_ :: _ :: _ :: Γ'} (s-extend (s-extend (s-extend Θ)))) x))
(Monotone.f (interpE (subst e₂ (s-extend (s-extend (s-extend Θ))))) x)
(Monotone.is-monotone (interpE e₂)
(((Monotone.f (interpS Θ) (fst (fst (fst x))) , snd (fst (fst x))) , snd (fst x)) , snd x)
(Monotone.f (interpS {τ' :: list τ' :: τ :: Γ} {_ :: _ :: _ :: Γ'} (s-extend (s-extend (s-extend Θ)))) x)
((((Preorder-str.trans (snd [ Γ' ]c)
(Monotone.f (interpS Θ) (fst (fst (fst x))))
(Monotone.f (interpS {τ :: Γ} {Γ'} (throw-s (s-extend Θ))) (fst (fst x)))
(Monotone.f (interpS (λ x₁ → ren (ren (ren (Θ x₁) iS) iS) iS)) x)
(subst-eq-r-lam {Γ} {Γ'} Θ (fst (fst (fst x))) (snd (fst (fst x))))
(Preorder-str.trans (snd [ Γ' ]c)
(Monotone.f (interpS {τ :: Γ} {Γ'} (throw-s (s-extend Θ))) (fst (fst x)))
(Monotone.f (interpS (λ x₁ → ren (ren (Θ x₁) iS) iS)) (fst x))
(Monotone.f (interpS (λ x₁ → ren (ren (ren (Θ x₁) iS) iS) iS)) x)
(subst-eq-r-lam (λ x₁ → ren (Θ x₁) iS) (fst (fst x)) (snd (fst x)))
(subst-eq-r-lam (λ x₁ → ren (ren (Θ x₁) iS) iS) (fst x) (snd x)))) ,
(Preorder-str.refl (snd [ τ ]t) (snd (fst (fst x))))) ,
(l-refl (snd [ τ' ]t) (snd (fst x)))) ,
(Preorder-str.refl (snd [ τ' ]t) (snd x))))
(subst-eq-r (s-extend (s-extend (s-extend Θ))) e₂ x)))
(listrec-fix-args (interpE (subst e₁ Θ)) (interpE (subst e₂ (s-extend (s-extend (s-extend Θ)))))
(k , Monotone.f (interpE e) (Monotone.f (interpS Θ) k))
(k , Monotone.f (interpE (subst e Θ)) k)
(Preorder-str.refl (snd [ Γ ]c) k , subst-eq-r Θ e k))
subst-eq-r Θ true k = <>
subst-eq-r Θ false k = <>
subst-eq-r {τ = τ} Θ (max x e e₁) k =
Preorder-max-str.max-lub [ x ]tm
(Monotone.f (interpE (subst (max x e e₁) Θ)) k)
(Monotone.f (interpE e) (Monotone.f (interpS Θ) k))
(Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k))
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE e) (Monotone.f (interpS Θ) k))
(Monotone.f (interpE (subst e Θ)) k)
(Monotone.f (interpE (subst (max x e e₁) Θ)) k)
(subst-eq-r Θ e k)
(Preorder-max-str.max-l [ x ]tm (Monotone.f (interpE (subst e Θ)) k) (Monotone.f (interpE (subst e₁ Θ)) k)))
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k))
(Monotone.f (interpE (subst e₁ Θ)) k)
(Monotone.f (interpE (subst (max x e e₁) Θ)) k)
(subst-eq-r Θ e₁ k)
(Preorder-max-str.max-r [ x ]tm (Monotone.f (interpE (subst e Θ)) k) (Monotone.f (interpE (subst e₁ Θ)) k)))
interp-rr-l : ∀ {Γ Γ' Γ''} (ρ1 : rctx Γ Γ') (ρ2 : rctx Γ' Γ'') (k : fst [ Γ ]c)
→ Preorder-str.≤ (snd [ Γ'' ]c)
(Monotone.f (interpR ρ2) (Monotone.f (interpR ρ1) k))
(Monotone.f (interpR (λ x → ρ1 (ρ2 x))) k)
interp-rr-l {Γ'' = []} ρ1 ρ2 k = <>
interp-rr-l {Γ'' = x :: Γ''} ρ1 ρ2 k = (interp-rr-l ρ1 (throw-r ρ2) k) , (ren-eq-r ρ1 (var (ρ2 i0)) k)
interp-rr-r : ∀ {Γ Γ' Γ''} (ρ1 : rctx Γ Γ') (ρ2 : rctx Γ' Γ'') (k : fst [ Γ ]c)
→ Preorder-str.≤ (snd [ Γ'' ]c)
(Monotone.f (interpR (λ x → ρ1 (ρ2 x))) k)
(Monotone.f (interpR ρ2) (Monotone.f (interpR ρ1) k))
interp-rr-r {Γ'' = []} ρ1 ρ2 k = <>
interp-rr-r {Γ'' = x :: Γ''} ρ1 ρ2 k = (interp-rr-r ρ1 (throw-r ρ2) k) , (ren-eq-l ρ1 (var (ρ2 i0)) k)
interp-rs-l : ∀ {Γ Γ' Γ''} (ρ : rctx Γ Γ') (Θ : sctx Γ' Γ'') (k : fst [ Γ ]c)
→ Preorder-str.≤ (snd [ Γ'' ]c)
(Monotone.f (interpS Θ) (Monotone.f (interpR ρ) k))
(Monotone.f (interpS (λ x → ren (Θ x) ρ)) k)
interp-rs-l {Γ'' = []} ρ Θ k = <>
interp-rs-l {Γ'' = x :: Γ''} ρ Θ k = (interp-rs-l ρ (throw-s Θ) k) , (ren-eq-r ρ (Θ i0) k)
interp-rs-r : ∀ {Γ Γ' Γ''} (ρ : rctx Γ Γ') (Θ : sctx Γ' Γ'') (k : fst [ Γ ]c)
→ Preorder-str.≤ (snd [ Γ'' ]c)
(Monotone.f (interpS (λ x → ren (Θ x) ρ)) k)
(Monotone.f (interpS Θ) (Monotone.f (interpR ρ) k))
interp-rs-r {Γ'' = []} ρ Θ k = <>
interp-rs-r {Γ'' = x :: Γ''} ρ Θ k = (interp-rs-r ρ (throw-s Θ) k) , (ren-eq-l ρ (Θ i0) k)
interp-sr-l : ∀ {Γ Γ' Γ''} (Θ : sctx Γ Γ') (ρ : rctx Γ' Γ'') (k : fst [ Γ ]c)
→ Preorder-str.≤ (snd [ Γ'' ]c)
(Monotone.f (interpR ρ) (Monotone.f (interpS Θ) k))
(Monotone.f (interpS (λ x → Θ (ρ x))) k)
interp-sr-l {Γ'' = []} Θ ρ k = <>
interp-sr-l {Γ'' = x :: Γ''} Θ ρ k = (interp-sr-l Θ (throw-r ρ) k) , (subst-eq-r Θ (var (ρ i0)) k)
interp-sr-r : ∀ {Γ Γ' Γ''} (Θ : sctx Γ Γ') (ρ : rctx Γ' Γ'') (k : fst [ Γ ]c)
→ Preorder-str.≤ (snd [ Γ'' ]c)
(Monotone.f (interpS (λ x → Θ (ρ x))) k)
(Monotone.f (interpR ρ) (Monotone.f (interpS Θ) k))
interp-sr-r {Γ'' = []} Θ ρ k = <>
interp-sr-r {Γ'' = x :: Γ''} Θ ρ k = (interp-sr-r Θ (throw-r ρ) k) , (subst-eq-l Θ (var (ρ i0)) k)
interp-ss-l : ∀ {Γ Γ' Γ''} (Θ1 : sctx Γ Γ') (Θ2 : sctx Γ' Γ'') (k : fst [ Γ ]c)
→ Preorder-str.≤ (snd [ Γ'' ]c)
(Monotone.f (interpS (λ x → subst (Θ2 x) Θ1)) k)
(Monotone.f (interpS Θ2) (Monotone.f (interpS Θ1) k))
interp-ss-l {Γ'' = []} Θ1 Θ2 k = <>
interp-ss-l {Γ'' = x :: Γ''} Θ1 Θ2 k = (interp-ss-l Θ1 (throw-s Θ2) k) , (subst-eq-l Θ1 (Θ2 i0) k)
interp-ss-r : ∀ {Γ Γ' Γ''} (Θ1 : sctx Γ Γ') (Θ2 : sctx Γ' Γ'') (k : fst [ Γ ]c)
→ Preorder-str.≤ (snd [ Γ'' ]c)
(Monotone.f (interpS Θ2) (Monotone.f (interpS Θ1) k))
(Monotone.f (interpS (λ x → subst (Θ2 x) Θ1)) k)
interp-ss-r {Γ'' = []} Θ1 Θ2 k = <>
interp-ss-r {Γ'' = x :: Γ''} Θ1 Θ2 k = (interp-ss-r Θ1 (throw-s Θ2) k) , (subst-eq-r Θ1 (Θ2 i0) k)
lam-s-lem : ∀ {Γ} (k : fst [ Γ ]c) → Preorder-str.≤ (snd [ Γ ]c) (Monotone.f (interpS {Γ} {Γ} ids) k) k
lam-s-lem {[]} k = <>
lam-s-lem {x :: Γ} (k1 , k2) =
(Preorder-str.trans (snd [ Γ ]c)
(Monotone.f (interpS {x :: Γ} {Γ} (throw-s ids)) (k1 , k2))
(Monotone.f (interpS {Γ} {Γ} ids) k1)
k1
(subst-eq-l-lam {Γ} {Γ} ids k1 (Monotone.f (interpE {x :: Γ} {x} (ids i0)) (k1 , k2)))
(lam-s-lem {Γ} k1)) ,
(Preorder-str.refl (snd [ x ]t) k2)
lam-s-lem-r : ∀ {Γ} (k : fst [ Γ ]c) → Preorder-str.≤ (snd [ Γ ]c) k (Monotone.f (interpS {Γ} {Γ} ids) k)
lam-s-lem-r {[]} k = <>
lam-s-lem-r {x :: Γ} (k1 , k2) =
(Preorder-str.trans (snd [ Γ ]c)
k1
(Monotone.f (interpS {Γ} {Γ} ids) k1)
(Monotone.f (interpS {x :: Γ} {Γ} (throw-s ids)) (k1 , k2))
(lam-s-lem-r {Γ} k1)
(subst-eq-r-lam {Γ} {Γ} ids k1 (Monotone.f (interpE {x :: Γ} {x} (ids i0)) (k1 , k2)))) ,
(Preorder-str.refl (snd [ x ]t) k2)
interp-subst-comp-l : ∀ {Γ Γ' τ'} (Θ : sctx Γ Γ') (v : Γ |- τ') (k : fst [ Γ ]c)
→ Preorder-str.≤ (snd [ Γ' ]c)
(Monotone.f (interpS (λ x → subst (ren (Θ x) iS) (lem3' ids v))) k)
(Monotone.f (interpS (λ x → Θ x)) k)
interp-subst-comp-l {Γ' = []} Θ v k = <>
interp-subst-comp-l {Γ} {Γ' = x :: Γ'} {τ'} Θ v k =
(interp-subst-comp-l (throw-s Θ) v k) ,
(Preorder-str.trans (snd [ x ]t)
(Monotone.f (interpE (subst (ren (Θ i0) iS) (lem3' ids v))) k)
(Monotone.f (interpE (ren (Θ i0) iS)) (Monotone.f (interpS (lem3' ids v)) k))
(Monotone.f (interpE (Θ i0)) k)
(subst-eq-l (lem3' ids v) (ren (Θ i0) iS) k)
(Preorder-str.trans (snd [ x ]t)
(Monotone.f (interpE (ren (Θ i0) iS)) (Monotone.f (interpS (lem3' ids v)) k))
(Monotone.f (interpE (Θ i0)) (Monotone.f (interpR {τ' :: Γ} {Γ} iS) (Monotone.f (interpS {Γ} {τ' :: Γ} (lem3' ids v)) k)))
(Monotone.f (interpE (Θ i0)) k)
(ren-eq-l iS (Θ i0) (Monotone.f (interpS (lem3' ids v)) k))
(Monotone.is-monotone (interpE (Θ i0))
(Monotone.f (interpR {τ' :: Γ} {Γ} iS) (Monotone.f (interpS {Γ} {τ' :: Γ} (lem3' ids v)) k))
k
(Preorder-str.trans (snd [ Γ ]c)
(Monotone.f (interpR {τ' :: Γ} {Γ} iS) (Monotone.f (interpS {Γ} {τ' :: Γ} (lem3' ids v)) k))
(Monotone.f (interpR {Γ} {Γ} (λ x₂ → x₂)) k)
k
(Preorder-str.trans (snd [ Γ ]c)
(Monotone.f (interpR {τ' :: Γ} {Γ} iS) (Monotone.f (interpS {Γ} {τ' :: Γ} (lem3' ids v)) k))
(Monotone.f (interpR {τ' :: Γ} {Γ} iS) (k , Monotone.f (interpE v) k))
(Monotone.f (interpR {Γ} {Γ} (λ x₂ → x₂)) k)
(Monotone.is-monotone (interpR {τ' :: Γ} {Γ} iS)
(Monotone.f (interpS {Γ} {τ' :: Γ} (lem3' ids v)) k)
(k , Monotone.f (interpE v) k)
(lam-s-lem {Γ} k , (Preorder-str.refl (snd [ τ' ]t) (Monotone.f (interpE v) k))))
(ren-eq-l-lam {Γ} {Γ} {τ'} (λ x₂ → x₂) k (Monotone.f (interpE v) k)))
(ids-lem-l {Γ} k)))))
interp-subst-comp-r : ∀ {Γ Γ' τ'} (Θ : sctx Γ Γ') (v : Γ |- τ') (k : fst [ Γ ]c)
→ Preorder-str.≤ (snd [ Γ' ]c)
(Monotone.f (interpS (λ x → Θ x)) k)
(Monotone.f (interpS (λ x → subst (ren (Θ x) iS) (lem3' ids v))) k)
interp-subst-comp-r {Γ' = []} Θ v k = <>
interp-subst-comp-r {Γ} {Γ' = x :: Γ'} {τ'} Θ v k =
(interp-subst-comp-r (throw-s Θ) v k) ,
Preorder-str.trans (snd [ x ]t)
(Monotone.f (interpE (Θ i0)) k)
(Monotone.f (interpE (ren (Θ i0) iS)) (Monotone.f (interpS (lem3' ids v)) k))
(Monotone.f (interpE (subst (ren (Θ i0) iS) (lem3' ids v))) k)
(Preorder-str.trans (snd [ x ]t)
(Monotone.f (interpE (Θ i0)) k)
(Monotone.f (interpE (Θ i0)) (Monotone.f (interpR {τ' :: Γ} {Γ} iS) (Monotone.f (interpS {Γ} {τ' :: Γ} (lem3' ids v)) k)))
(Monotone.f (interpE (ren (Θ i0) iS)) (Monotone.f (interpS (lem3' ids v)) k))
(Monotone.is-monotone (interpE (Θ i0))
k
(Monotone.f (interpR {τ' :: Γ} {Γ} iS) (Monotone.f (interpS {Γ} {τ' :: Γ} (lem3' ids v)) k))
(Preorder-str.trans (snd [ Γ ]c)
k
(Monotone.f (interpR {Γ} {Γ} (λ x₂ → x₂)) k)
(Monotone.f (interpR {τ' :: Γ} {Γ} iS) (Monotone.f (interpS {Γ} {τ' :: Γ} (lem3' ids v)) k))
(ids-lem-r {Γ} k)
(Preorder-str.trans (snd [ Γ ]c)
(Monotone.f (interpR {Γ} {Γ} (λ x₂ → x₂)) k)
(Monotone.f (interpR {τ' :: Γ} {Γ} iS) (k , Monotone.f (interpE v) k))
(Monotone.f (interpR {τ' :: Γ} {Γ} iS) (Monotone.f (interpS {Γ} {τ' :: Γ} (lem3' ids v)) k))
(ren-eq-r-lam {Γ} {Γ} {τ'} (λ x₂ → x₂) k (Monotone.f (interpE v) k))
(Monotone.is-monotone (interpR {τ' :: Γ} {Γ} iS)
(k , Monotone.f (interpE v) k)
(Monotone.f (interpS {Γ} {τ' :: Γ} (lem3' ids v)) k)
(lam-s-lem-r {Γ} k , Preorder-str.refl (snd [ τ' ]t) (Monotone.f (interpE v) k))))))
(ren-eq-r iS (Θ i0) (Monotone.f (interpS (lem3' ids v)) k)))
(subst-eq-r (lem3' ids v) (ren (Θ i0) iS) k)
interp-subst-comp2-l : ∀ {Γ Γ' τ' τ''} (Θ : sctx Γ Γ') (k : fst [ Γ ]c) (v1 : Γ |- τ') (v2 : Γ |- τ'')
→ Preorder-str.≤ (snd [ Γ' ]c)
(Monotone.f (interpS {τ' :: τ'' :: Γ} {Γ'} (λ x → ren (ren (Θ x) iS) iS))
((Monotone.f (interpS {Γ} {Γ} ids) k , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k))
(Monotone.f (interpS (λ x → subst (ren (Θ x) iS) (lem3' ids v2))) k)
interp-subst-comp2-l {Γ' = []} Θ k v1 v2 = <>
interp-subst-comp2-l {Γ} {Γ' = x :: Γ'} {τ'} {τ''} Θ k v1 v2 =
(interp-subst-comp2-l (throw-s Θ) k v1 v2) ,
Preorder-str.trans (snd [ x ]t)
(Monotone.f (interpE (ren (ren (Θ i0) iS) iS)) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k))
(Monotone.f (interpE (ren (Θ i0) iS))
(Monotone.f (interpR {τ' :: τ'' :: Γ} iS) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k)))
(Monotone.f (interpE (subst (ren (Θ i0) iS) (lem3' ids v2))) k)
(ren-eq-l iS (ren (Θ i0) iS) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k))
(Preorder-str.trans (snd [ x ]t)
(Monotone.f (interpE (ren (Θ i0) iS))
(Monotone.f (interpR {τ' :: τ'' :: Γ} iS) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k)))
(Monotone.f (interpE (ren (Θ i0) iS)) (Monotone.f (interpS (lem3' ids v2)) k))
(Monotone.f (interpE (subst (ren (Θ i0) iS) (lem3' ids v2))) k)
(Monotone.is-monotone (interpE (ren (Θ i0) iS))
(Monotone.f (interpR {τ' :: τ'' :: Γ} iS) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k))
(Monotone.f (interpS (lem3' ids v2)) k)
(Preorder-str.trans (snd [ Γ ]c)
(Monotone.f (interpR {τ' :: τ'' :: Γ} (λ x₁ → iS (iS x₁))) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k))
(Monotone.f (interpR {Γ} {Γ} (λ x₁ → x₁)) (Monotone.f (interpS {Γ} ids) k))
(Monotone.f (interpS {Γ} ids) k)
(Preorder-str.trans (snd [ Γ ]c)
(Monotone.f (interpR {τ' :: τ'' :: Γ} (λ x₁ → iS (iS x₁))) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k))
(Monotone.f (interpR {τ'' :: Γ} (throw-r (r-extend (λ x₁ → x₁)))) (Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k))
(Monotone.f (interpR {Γ} {Γ} (λ x₁ → x₁)) (Monotone.f (interpS {Γ} ids) k))
(ren-eq-l-lam {τ'' :: Γ} (λ x₁ → iS x₁) (Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k) (Monotone.f (interpE v1) k))
(ren-eq-l-lam {Γ} {Γ} {τ''} (λ x₁ → x₁) (Monotone.f (interpS {Γ} ids) k) (Monotone.f (interpE v2) k)))
(interp-sr-l {Γ} ids (λ x₁ → x₁) k) ,
Preorder-str.refl (snd [ τ'' ]t) (Monotone.f (interpE v2) k)))
(subst-eq-r (lem3' ids v2) (ren (Θ i0) iS) k))
interp-subst-comp2-r : ∀ {Γ Γ' τ' τ''} (Θ : sctx Γ Γ') (k : fst [ Γ ]c) (v1 : Γ |- τ') (v2 : Γ |- τ'')
→ Preorder-str.≤ (snd [ Γ' ]c)
(Monotone.f (interpS (λ x → subst (ren (Θ x) iS) (lem3' ids v2))) k)
(Monotone.f (interpS {τ' :: τ'' :: Γ} {Γ'} (λ x → ren (ren (Θ x) iS) iS))
((Monotone.f (interpS {Γ} {Γ} ids) k , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k))
interp-subst-comp2-r {Γ' = []} Θ k v1 v2 = <>
interp-subst-comp2-r {Γ} {Γ' = x :: Γ'} {τ'} {τ''} Θ k v1 v2 =
(interp-subst-comp2-r (throw-s Θ) k v1 v2) ,
(Preorder-str.trans (snd [ x ]t)
(Monotone.f (interpE (subst (ren (Θ i0) iS) (lem3' ids v2))) k)
(Monotone.f (interpE (ren (Θ i0) iS))
(Monotone.f (interpR {τ' :: τ'' :: Γ} iS) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k)))
(Monotone.f (interpE (ren (ren (Θ i0) iS) iS))
((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k))
(Preorder-str.trans (snd [ x ]t)
(Monotone.f (interpE (subst (ren (Θ i0) iS) (lem3' ids v2))) k)
(Monotone.f (interpE (ren (Θ i0) iS)) (Monotone.f (interpS (lem3' ids v2)) k))
(Monotone.f (interpE (ren (Θ i0) iS))
(Monotone.f (interpR {τ' :: τ'' :: Γ} iS) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k)))
(subst-eq-l (lem3' ids v2) (ren (Θ i0) iS) k)
(Monotone.is-monotone (interpE (ren (Θ i0) iS))
(Monotone.f (interpS (lem3' ids v2)) k)
(Monotone.f (interpR {τ' :: τ'' :: Γ} iS) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k))
((Preorder-str.trans (snd [ Γ ]c)
(Monotone.f (interpS {Γ} ids) k)
(Monotone.f (interpR {Γ} {Γ} (λ x₁ → x₁)) (Monotone.f (interpS {Γ} ids) k))
(Monotone.f (interpR {τ' :: τ'' :: Γ} (λ x₁ → iS (iS x₁))) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k))
(interp-sr-r {Γ} ids (λ x₁ → x₁) k)
(Preorder-str.trans (snd [ Γ ]c)
(Monotone.f (interpR {Γ} {Γ} (λ x₁ → x₁)) (Monotone.f (interpS {Γ} ids) k))
(Monotone.f (interpR {τ'' :: Γ} (throw-r (r-extend (λ x₁ → x₁)))) (Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k))
(Monotone.f (interpR {τ' :: τ'' :: Γ} (λ x₁ → iS (iS x₁))) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k))
(ren-eq-r-lam {Γ} {Γ} {τ''} (λ x₁ → x₁) (Monotone.f (interpS {Γ} ids) k) (Monotone.f (interpE v2) k))
(ren-eq-r-lam {τ'' :: Γ} (λ x₁ → iS x₁) (Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k) (Monotone.f (interpE v1) k)))) ,
(Preorder-str.refl (snd [ τ'' ]t) (Monotone.f (interpE v2) k)))))
(ren-eq-r iS (ren (Θ i0) iS) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k)))
interp-subst-comp3-l : ∀ {Γ Γ' τ1 τ2 τ3} (Θ : sctx Γ Γ') (k : fst [ Γ ]c) (v3 : Γ |- τ3) (v2 : Γ |- τ2) (v1 : Γ |- τ1)
→ Preorder-str.≤ (snd [ Γ' ]c)
(Monotone.f (interpS {τ1 :: τ2 :: τ3 :: Γ} {Γ'} (λ x → ren (ren (ren (Θ x) iS) iS) iS))
(((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k))
(Monotone.f (interpS {τ2 :: τ3 :: Γ} {Γ'} (λ x → ren (ren (Θ x) iS) iS))
((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k))
interp-subst-comp3-l {Γ' = []} Θ k v3 v2 v1 = <>
interp-subst-comp3-l {Γ} {Γ' = x :: Γ'} {τ1} {τ2} {τ3} Θ k v3 v2 v1 =
(interp-subst-comp3-l (throw-s Θ) k v3 v2 v1) ,
(Preorder-str.trans (snd [ x ]t)
(Monotone.f (interpE (ren (ren (ren (Θ i0) iS) iS) iS))
(((Monotone.f (interpS {Γ} {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k))
(Monotone.f (interpE (ren (ren (Θ i0) iS) iS))
(Monotone.f (interpR {τ1 :: τ2 :: τ3 :: Γ} {τ2 :: τ3 :: Γ} iS)
(((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k)))
(Monotone.f (interpE (ren (ren (Θ i0) iS) iS))
((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k))
(ren-eq-l iS (ren (ren (Θ i0) iS) iS) (((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k))
(Monotone.is-monotone (interpE (ren (ren (Θ i0) iS) iS))
(Monotone.f (interpR {τ1 :: τ2 :: τ3 :: Γ} {τ2 :: τ3 :: Γ} iS)
(((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k))
((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k)
((Preorder-str.trans (snd [ Γ ]c)
(Monotone.f (interpR {τ1 :: τ2 :: τ3 :: Γ} {Γ} (λ x₁ → iS (iS (iS x₁))))
(((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k))
(Monotone.f (interpR {Γ} (λ x₁ → x₁)) (Monotone.f (interpS {Γ} ids) k))
(Monotone.f (interpS {Γ} ids) k)
(Preorder-str.trans (snd [ Γ ]c)
(Monotone.f (interpR {τ1 :: τ2 :: τ3 :: Γ} {Γ} (λ x₁ → iS (iS (iS x₁))))
(((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k))
(Monotone.f (interpR {τ3 :: Γ} {Γ} (throw-r (r-extend (λ x₁ → x₁)))) (Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k))
(Monotone.f (interpR {Γ} (λ x₁ → x₁)) (Monotone.f (interpS {Γ} ids) k))
(Preorder-str.trans (snd [ Γ ]c)
(Monotone.f (interpR {τ1 :: τ2 :: τ3 :: Γ} {Γ} (λ x₁ → iS (iS (iS x₁))))
(((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k))
(Monotone.f (interpR {τ2 :: τ3 :: Γ} (throw-r (r-extend iS)))
((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k))
(Monotone.f (interpR {τ3 :: Γ} {Γ} (throw-r (r-extend (λ x₁ → x₁)))) (Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k))
(fst (ren-eq-l-lam {τ2 :: τ3 :: Γ} {τ3 :: Γ} {τ1} (λ x₁ → iS x₁)
((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) (Monotone.f (interpE v1) k)))
(ren-eq-l-lam {τ3 :: Γ} {Γ} {τ2} (λ x₁ → iS x₁) (Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) (Monotone.f (interpE v2) k)))
(ren-eq-l-lam {Γ} {Γ} {τ3} (λ x₁ → x₁) (Monotone.f (interpS {Γ} ids) k) (Monotone.f (interpE v3) k)))
(interp-sr-l {Γ} ids (λ x₁ → x₁) k) ,
Preorder-str.refl (snd [ τ3 ]t) (Monotone.f (interpE v3) k)) ,
Preorder-str.refl (snd [ τ2 ]t) (Monotone.f (interpE v2) k))))
interp-subst-comp3-r : ∀ {Γ Γ' τ1 τ2 τ3} (Θ : sctx Γ Γ') (k : fst [ Γ ]c) (v3 : Γ |- τ3) (v2 : Γ |- τ2) (v1 : Γ |- τ1)
→ Preorder-str.≤ (snd [ Γ' ]c)
(Monotone.f (interpS {τ2 :: τ3 :: Γ} {Γ'} (λ x → ren (ren (Θ x) iS) iS))
((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k))
(Monotone.f (interpS {τ1 :: τ2 :: τ3 :: Γ} {Γ'} (λ x → ren (ren (ren (Θ x) iS) iS) iS))
(((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k))
interp-subst-comp3-r {Γ' = []} Θ k v3 v2 v1 = <>
interp-subst-comp3-r {Γ} {Γ' = x :: Γ'} {τ1} {τ2} {τ3} Θ k v3 v2 v1 =
(interp-subst-comp3-r (throw-s Θ) k v3 v2 v1) ,
Preorder-str.trans (snd [ x ]t)
(Monotone.f (interpE (ren (ren (Θ i0) iS) iS))
((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k))
(Monotone.f (interpE (ren (ren (Θ i0) iS) iS))
(Monotone.f (interpR {τ1 :: τ2 :: τ3 :: Γ} {τ2 :: τ3 :: Γ} iS)
(((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k)))
(Monotone.f (interpE (ren (ren (ren (Θ i0) iS) iS) iS))
(((Monotone.f (interpS {Γ} {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k))
(Monotone.is-monotone (interpE (ren (ren (Θ i0) iS) iS))
((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k)
(Monotone.f (interpR {τ1 :: τ2 :: τ3 :: Γ} {τ2 :: τ3 :: Γ} iS)
(((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k))
(((Preorder-str.trans (snd [ Γ ]c)
(Monotone.f (interpS {Γ} ids) k)
(Monotone.f (interpR {Γ} (λ x₁ → x₁)) (Monotone.f (interpS {Γ} ids) k))
(Monotone.f (interpR {τ1 :: τ2 :: τ3 :: Γ} {Γ} (λ x₁ → iS (iS (iS x₁))))
(((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k))
(interp-sr-r {Γ} ids (λ x₁ → x₁) k)
(Preorder-str.trans (snd [ Γ ]c)
(Monotone.f (interpR {Γ} (λ x₁ → x₁)) (Monotone.f (interpS {Γ} ids) k))
(Monotone.f (interpR {τ3 :: Γ} {Γ} (throw-r (r-extend (λ x₁ → x₁)))) (Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k))
(Monotone.f (interpR {τ1 :: τ2 :: τ3 :: Γ} {Γ} (λ x₁ → iS (iS (iS x₁))))
(((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k))
(ren-eq-r-lam {Γ} {Γ} {τ3} (λ x₁ → x₁) (Monotone.f (interpS {Γ} ids) k) (Monotone.f (interpE v3) k))
(Preorder-str.trans (snd [ Γ ]c)
(Monotone.f (interpR {τ3 :: Γ} {Γ} (throw-r (r-extend (λ x₁ → x₁)))) (Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k))
(Monotone.f (interpR {τ2 :: τ3 :: Γ} (throw-r (r-extend iS)))
((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k))
(Monotone.f (interpR {τ1 :: τ2 :: τ3 :: Γ} {Γ} (λ x₁ → iS (iS (iS x₁))))
(((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k))
(ren-eq-r-lam {τ3 :: Γ} {Γ} {τ2} (λ x₁ → iS x₁) (Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) (Monotone.f (interpE v2) k))
(fst (ren-eq-r-lam {τ2 :: τ3 :: Γ} {τ3 :: Γ} {τ1} (λ x₁ → iS x₁)
((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) (Monotone.f (interpE v1) k)))))) ,
(Preorder-str.refl (snd [ τ3 ]t) (Monotone.f (interpE v3) k))) ,
(Preorder-str.refl (snd [ τ2 ]t) (Monotone.f (interpE v2) k))))
(ren-eq-r iS (ren (ren (Θ i0) iS) iS) (((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k))
s-cong2-lem : ∀ {Γ Γ'} (Θ Θ' : sctx Γ Γ') (x : (τ₁ : CTp) (x₁ : τ₁ ∈ Γ') → Θ x₁ ≤s Θ' x₁) (k : fst [ Γ ]c)
→ Preorder-str.≤ (snd [ Γ' ]c) (Monotone.f (interpS Θ) k) (Monotone.f (interpS Θ') k)
s-cong2-lem {Γ' = []} Θ Θ' x k = <>
s-cong2-lem {Γ' = x :: Γ'} Θ Θ' x₁ k =
s-cong2-lem (throw-s Θ) (throw-s Θ') (λ τ₁ x₂ → x₁ τ₁ (iS x₂)) k ,
sound (Θ i0) (Θ' i0) (x₁ x i0) k
sound {_} {τ} e .e refl-s k = Preorder-str.refl (snd [ τ ]t) (Monotone.f (interpE e) k)
sound {Γ} {τ} e e' (trans-s {.Γ} {.τ} {.e} {e''} {.e'} d d₁) k =
Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE e) k) (Monotone.f (interpE e'') k) (Monotone.f (interpE e') k) (sound e e'' d k) (sound e'' e' d₁ k)
sound {_} {τ} e .e (cong-refl Refl) k = Preorder-str.refl (snd [ τ ]t) (Monotone.f (interpE e) k)
sound .(plusC 0C e') e' +-unit-l k = Preorder-str.refl (snd [ rnat ]t) (Monotone.f (interpE e') k)
sound e .(plusC 0C e) +-unit-l' k = Preorder-str.refl (snd [ rnat ]t) (Monotone.f (interpE e) k)
sound {_} {.C} .(plusC e' 0C) e' +-unit-r k = +-unit (Monotone.f (interpE e') k)
sound e .(plusC e 0C) +-unit-r' k = plus-lem' (Monotone.f (interpE e) k) (Monotone.f (interpE e) k) Z (nat-refl (Monotone.f (interpE e) k))
sound {Γ} {.C} ._ ._ (+-assoc {.Γ} {e1} {e2} {e3}) k = plus-assoc (Monotone.f (interpE e1) k) (Monotone.f (interpE e2) k) (Monotone.f (interpE e3) k)
sound {Γ} {.C} ._ ._ (+-assoc' {.Γ} {e1} {e2} {e3}) k = plus-assoc' (Monotone.f (interpE e1) k) (Monotone.f (interpE e2) k) (Monotone.f (interpE e3) k)
sound {Γ} {.C} ._ ._ (refl-+ {.Γ} {e0} {e1}) k = +-comm (Monotone.f (interpE e0) k) (Monotone.f (interpE e1) k)
sound {Γ} {C} ._ ._ (cong-+ {.Γ} {e0} {e1} {e0'} {e1'} d d₁) k = --also called plus-s. should really delete this rule so we don't have duplicates
plus-lem (Monotone.f (interpE e0) k) (Monotone.f (interpE e1) k) (Monotone.f (interpE e0') k) (Monotone.f (interpE e1') k)
(sound e0 e0' d k) (sound e1 e1' d₁ k)
sound {Γ} {τ} ._ ._ (cong-lproj {.Γ} {.τ} {_} {e} {e'} d) k = fst (sound e e' d k)
sound {Γ} {τ} ._ ._ (cong-rproj {.Γ} {_} {.τ} {e} {e'} d) k = snd (sound e e' d k)
sound {Γ} {τ} ._ ._ (cong-app {.Γ} {τ'} {.τ} {e} {e'} {e1} d) k = sound e e' d k (Monotone.f (interpE e1) k)
sound {Γ} {τ} ._ ._ (ren-cong {.Γ} {Γ'} {.τ} {e1} {e2} {ρ} d) k =
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (ren e1 ρ)) k)
(Monotone.f (interpE e1) (Monotone.f (interpR ρ) k))
(Monotone.f (interpE (ren e2 ρ)) k)
(ren-eq-l ρ e1 k)
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE e1) (Monotone.f (interpR ρ) k))
(Monotone.f (interpE e2) (Monotone.f (interpR ρ) k))
(Monotone.f (interpE (ren e2 ρ)) k)
(sound e1 e2 d (Monotone.f (interpR ρ) k))
(ren-eq-r ρ e2 k))
sound {Γ} {τ} ._ ._ (subst-cong {.Γ} {Γ'} {.τ} {e1} {e2} {Θ} d) k =
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst e1 Θ)) k)
(Monotone.f (interpE e1) (Monotone.f (interpS Θ) k))
(Monotone.f (interpE (subst e2 Θ)) k)
(subst-eq-l Θ e1 k)
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE e1) (Monotone.f (interpS Θ) k))
(Monotone.f (interpE e2) (Monotone.f (interpS Θ) k))
(Monotone.f (interpE (subst e2 Θ)) k)
(sound e1 e2 d (Monotone.f (interpS Θ) k))
(subst-eq-r Θ e2 k))
sound {Γ} {τ} ._ ._ (subst-cong2 {.Γ} {Γ'} {.τ} {Θ} {Θ'} {e} x) k =
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst e Θ)) k)
(Monotone.f (interpE e) (Monotone.f (interpS Θ) k))
(Monotone.f (interpE (subst e Θ')) k) (subst-eq-l Θ e k)
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE e) (Monotone.f (interpS Θ) k))
(Monotone.f (interpE e) (Monotone.f (interpS Θ') k))
(Monotone.f (interpE (subst e Θ')) k)
(Monotone.is-monotone (interpE e) (Monotone.f (interpS Θ) k)
(Monotone.f (interpS Θ') k) (s-cong2-lem Θ Θ' x k))
(subst-eq-r Θ' e k))
sound {Γ} {τ} ._ ._ (cong-rec {.Γ} {.τ} {e} {e'} {e0} {e1} d) k =
♭h-fix-args (interpE e0) (interpE e1) (k , Monotone.f (interpE e) k) (k , Monotone.f (interpE e') k) (sound e e' d k)
sound {Γ} {τ} ._ ._ (cong-listrec {.Γ} {τ'} {.τ} {e} {e'} {e0} {e1} d) k =
listrec-fix-args (interpE e0) (interpE e1) (k , (Monotone.f (interpE e) k)) (k , Monotone.f (interpE e') k) ((Preorder-str.refl (snd [ Γ ]c) k) , (sound e e' d k))
sound {Γ} {τ} ._ ._ (lam-s {.Γ} {τ'} {.τ} {e} {e2}) k =
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst e (q e2))) k)
(Monotone.f (interpE e) (Monotone.f (interpS (q e2)) k))
(Monotone.f (interpE e) (k , Monotone.f (interpE e2) k))
(subst-eq-l (q e2) e k)
(Monotone.is-monotone (interpE e)
(Monotone.f (interpS (q e2)) k)
(k , Monotone.f (interpE e2) k)
(lam-s-lem {Γ} k , (Preorder-str.refl (snd [ τ' ]t) (Monotone.f (interpE e2) k))))
sound {Γ} {τ} e ._ (l-proj-s {.Γ}) k = Preorder-str.refl (snd [ τ ]t) (Monotone.f (interpE e) k)
sound {Γ} {τ} e ._ (r-proj-s {.Γ}) k = Preorder-str.refl (snd [ τ ]t) (Monotone.f (interpE e) k)
sound {_} {τ} e ._ rec-steps-z k = Preorder-str.refl (snd [ τ ]t) (Monotone.f (interpE e) k)
sound {Γ} {τ} ._ ._ (rec-steps-s {.Γ} {.τ} {e} {e0} {e1}) k =
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst e1 (lem3' (lem3' ids (rec e e0 e1)) e))) k)
(Monotone.f (interpE e1) (Monotone.f (interpS (lem3' (lem3' ids (rec e e0 e1)) e)) k))
(Monotone.f (interpE e1)
((k , natrec (Monotone.f (interpE e0) k) (λ n x₂ → Monotone.f (interpE e1) ((k , x₂) , n)) (Monotone.f (interpE e) k)) , Monotone.f (interpE e) k))
(subst-eq-l (lem3' (lem3' ids (rec e e0 e1)) e) e1 k)
(Monotone.is-monotone (interpE e1)
(Monotone.f (interpS (lem3' (lem3' ids (rec e e0 e1)) e)) k)
((k , natrec (Monotone.f (interpE e0) k)
(λ n x₂ → Monotone.f (interpE e1) ((k , x₂) , n)) (Monotone.f (interpE e) k)) , Monotone.f (interpE e) k)
((lam-s-lem {Γ} k ,
(Preorder-str.refl (snd [ τ ]t) (natrec (Monotone.f (interpE e0) k) (λ n x₂ → Monotone.f (interpE e1) ((k , x₂) , n)) (Monotone.f (interpE e) k)))) ,
(♭nat-refl (Monotone.f (interpE e) k))))
sound {Γ} {τ} e ._ listrec-steps-nil k = Preorder-str.refl (snd [ τ ]t) (Monotone.f (interpE e) k)
sound {Γ} {τ} ._ ._ (listrec-steps-cons {.Γ} {τ'} {.τ} {h} {t} {e0} {e1}) k =
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst e1 (lem3' (lem3' (lem3' ids (listrec t e0 e1)) t) h))) k)
(Monotone.f (interpE e1) (Monotone.f (interpS (lem3' (lem3' (lem3' ids (listrec t e0 e1)) t) h)) k))
(Monotone.f (interpE e1)
(((k ,
lrec (Monotone.f (interpE t) k) (Monotone.f (interpE e0) k) (λ x₁ x₂ x₃ → Monotone.f (interpE e1) (((k , x₃) , x₂) , x₁))) ,
Monotone.f (interpE t) k) ,
Monotone.f (interpE h) k))
(subst-eq-l (lem3' (lem3' (lem3' ids (listrec t e0 e1)) t) h) e1 k)
(Monotone.is-monotone (interpE e1)
(Monotone.f (interpS (lem3' (lem3' (lem3' ids (listrec t e0 e1)) t) h)) k)
(((k , lrec (Monotone.f (interpE t) k) (Monotone.f (interpE e0) k) (λ x₁ x₂ x₃ → Monotone.f (interpE e1) (((k , x₃) , x₂) , x₁))) ,
Monotone.f (interpE t) k) , Monotone.f (interpE h) k)
(((lam-s-lem {Γ} k ,
(Preorder-str.refl (snd [ τ ]t) (lrec (Monotone.f (interpE t) k) (Monotone.f (interpE e0) k) (λ x₁ x₂ x₃ → Monotone.f (interpE e1) (((k , x₃) , x₂) , x₁))))) ,
(l-refl (snd [ τ' ]t) (Monotone.f (interpE t) k))) ,
(Preorder-str.refl (snd [ τ' ]t) (Monotone.f (interpE h) k))))
sound {Γ} {τ} .(ren (ren e ρ2) ρ1) ._ (ren-comp-l ρ1 ρ2 e) k =
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (ren (ren e ρ2) ρ1)) k)
(Monotone.f (interpE (ren e ρ2)) (Monotone.f (interpR ρ1) k))
(Monotone.f (interpE (ren e (ρ1 ∙rr ρ2))) k)
(ren-eq-l ρ1 (ren e ρ2) k)
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (ren e ρ2)) (Monotone.f (interpR ρ1) k))
(Monotone.f (interpE e) (Monotone.f (interpR (ρ1 ∙rr ρ2)) k))
(Monotone.f (interpE (ren e (ρ1 ∙rr ρ2))) k)
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (ren e ρ2)) (Monotone.f (interpR ρ1) k))
(Monotone.f (interpE e) (Monotone.f (interpR ρ2) (Monotone.f (interpR ρ1) k)))
(Monotone.f (interpE e) (Monotone.f (interpR (ρ1 ∙rr ρ2)) k))
(ren-eq-l ρ2 e (Monotone.f (interpR ρ1) k))
(Monotone.is-monotone (interpE e)
(Monotone.f (interpR ρ2) (Monotone.f (interpR ρ1) k))
(Monotone.f (interpR (ρ1 ∙rr ρ2)) k)
(interp-rr-l ρ1 ρ2 k)))
(ren-eq-r (ρ1 ∙rr ρ2) e k))
sound {Γ} {τ} ._ .(ren (ren e ρ2) ρ1) (ren-comp-r ρ1 ρ2 e) k =
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (ren e (ρ1 ∙rr ρ2))) k)
(Monotone.f (interpE (ren e ρ2)) (Monotone.f (interpR ρ1) k))
(Monotone.f (interpE (ren (ren e ρ2) ρ1)) k)
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (ren e (ρ1 ∙rr ρ2))) k)
(Monotone.f (interpE e) (Monotone.f (interpR (ρ1 ∙rr ρ2)) k))
(Monotone.f (interpE (ren e ρ2)) (Monotone.f (interpR ρ1) k))
(ren-eq-l (ρ1 ∙rr ρ2) e k)
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE e) (Monotone.f (interpR (ρ1 ∙rr ρ2)) k))
(Monotone.f (interpE e) (Monotone.f (interpR ρ2) (Monotone.f (interpR ρ1) k)))
(Monotone.f (interpE (ren e ρ2)) (Monotone.f (interpR ρ1) k))
(Monotone.is-monotone (interpE e)
(Monotone.f (interpR (ρ1 ∙rr ρ2)) k)
(Monotone.f (interpR ρ2) (Monotone.f (interpR ρ1) k))
(interp-rr-r ρ1 ρ2 k))
(ren-eq-r ρ2 e (Monotone.f (interpR ρ1) k))))
(ren-eq-r ρ1 (ren e ρ2) k)
sound {Γ} {τ} e ._ (subst-id-l .e) k =
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE e) k)
(Monotone.f (interpE e) (Monotone.f (interpS {Γ} {Γ} ids) k))
(Monotone.f (interpE (subst e ids)) k)
(Monotone.is-monotone (interpE e) k (Monotone.f (interpS {Γ} {Γ} ids) k) (lam-s-lem-r {Γ} k))
(subst-eq-r ids e k)
sound {Γ} {τ} ._ e' (subst-id-r .e') k =
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst e' ids)) k)
(Monotone.f (interpE e') (Monotone.f (interpS {Γ} {Γ} ids) k))
(Monotone.f (interpE e') k)
(subst-eq-l ids e' k)
(Monotone.is-monotone (interpE e') (Monotone.f (interpS {Γ} {Γ} ids) k) k (lam-s-lem {Γ} k))
sound {Γ} {τ} .(ren (subst e Θ) ρ) ._ (subst-rs-l ρ Θ e) k =
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (ren (subst e Θ) ρ)) k)
(Monotone.f (interpE (subst e Θ)) (Monotone.f (interpR ρ) k))
(Monotone.f (interpE (subst e (ρ rs Θ))) k)
(ren-eq-l ρ (subst e Θ) k)
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst e Θ)) (Monotone.f (interpR ρ) k))
(Monotone.f (interpE e) (Monotone.f (interpS Θ) (Monotone.f (interpR ρ) k)))
(Monotone.f (interpE (subst e (ρ rs Θ))) k)
(subst-eq-l Θ e (Monotone.f (interpR ρ) k))
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE e) (Monotone.f (interpS Θ) (Monotone.f (interpR ρ) k)))
(Monotone.f (interpE e) (Monotone.f (interpS (ρ rs Θ)) k))
(Monotone.f (interpE (subst e (ρ rs Θ))) k)
(Monotone.is-monotone (interpE e)
(Monotone.f (interpS Θ) (Monotone.f (interpR ρ) k))
(Monotone.f (interpS (ρ rs Θ)) k)
(interp-rs-l ρ Θ k))
(subst-eq-r (ρ rs Θ) e k)))
sound {Γ} {τ} ._ .(ren (subst e Θ) ρ) (subst-rs-r ρ Θ e) k =
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst e (ρ rs Θ))) k)
(Monotone.f (interpE (subst e Θ)) (Monotone.f (interpR ρ) k))
(Monotone.f (interpE (ren (subst e Θ) ρ)) k)
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst e (ρ rs Θ))) k)
(Monotone.f (interpE e) (Monotone.f (interpS Θ) (Monotone.f (interpR ρ) k)))
(Monotone.f (interpE (subst e Θ)) (Monotone.f (interpR ρ) k))
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst e (ρ rs Θ))) k)
(Monotone.f (interpE e) (Monotone.f (interpS (ρ rs Θ)) k))
(Monotone.f (interpE e) (Monotone.f (interpS Θ) (Monotone.f (interpR ρ) k)))
(subst-eq-l (ρ rs Θ) e k)
(Monotone.is-monotone (interpE e)
(Monotone.f (interpS (ρ rs Θ)) k)
(Monotone.f (interpS Θ) (Monotone.f (interpR ρ) k))
(interp-rs-r ρ Θ k)))
(subst-eq-r Θ e (Monotone.f (interpR ρ) k)))
(ren-eq-r ρ (subst e Θ) k)
sound {Γ} {τ} .(subst (ren e ρ) Θ) ._ (subst-sr-l Θ ρ e) k =
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst (ren e ρ) Θ)) k)
(Monotone.f (interpE (ren e ρ)) (Monotone.f (interpS Θ) k))
(Monotone.f (interpE (subst e (Θ sr ρ))) k)
(subst-eq-l Θ (ren e ρ) k)
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (ren e ρ)) (Monotone.f (interpS Θ) k))
(Monotone.f (interpE e) (Monotone.f (interpS (Θ sr ρ)) k))
(Monotone.f (interpE (subst e (Θ sr ρ))) k)
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (ren e ρ)) (Monotone.f (interpS Θ) k))
(Monotone.f (interpE e) (Monotone.f (interpR ρ) (Monotone.f (interpS Θ) k)))
(Monotone.f (interpE e) (Monotone.f (interpS (Θ sr ρ)) k))
(ren-eq-l ρ e (Monotone.f (interpS Θ) k))
(Monotone.is-monotone (interpE e)
(Monotone.f (interpR ρ) (Monotone.f (interpS Θ) k))
(Monotone.f (interpS (Θ sr ρ)) k)
(interp-sr-l Θ ρ k)))
(subst-eq-r (Θ sr ρ) e k))
sound {Γ} {τ} ._ .(subst (ren e ρ) Θ) (subst-sr-r Θ ρ e) k =
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst e (Θ sr ρ))) k)
(Monotone.f (interpE (ren e ρ)) (Monotone.f (interpS Θ) k))
(Monotone.f (interpE (subst (ren e ρ) Θ)) k)
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst e (Θ sr ρ))) k)
(Monotone.f (interpE e) (Monotone.f (interpS (Θ sr ρ)) k))
(Monotone.f (interpE (ren e ρ)) (Monotone.f (interpS Θ) k))
(subst-eq-l (Θ sr ρ) e k)
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE e) (Monotone.f (interpS (Θ sr ρ)) k))
(Monotone.f (interpE e) (Monotone.f (interpR ρ) (Monotone.f (interpS Θ) k)))
(Monotone.f (interpE (ren e ρ)) (Monotone.f (interpS Θ) k))
(Monotone.is-monotone (interpE e)
(Monotone.f (interpS (Θ sr ρ)) k)
(Monotone.f (interpR ρ) (Monotone.f (interpS Θ) k))
(interp-sr-r Θ ρ k))
(ren-eq-r ρ e (Monotone.f (interpS Θ) k))))
(subst-eq-r Θ (ren e ρ) k)
sound {Γ} {τ} ._ .(subst (subst e Θ2) Θ1) (subst-ss-l Θ1 Θ2 e) k =
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst e (Θ1 ss Θ2))) k)
(Monotone.f (interpE e) (Monotone.f (interpS (Θ1 ss Θ2)) k))
(Monotone.f (interpE (subst (subst e Θ2) Θ1)) k)
(subst-eq-l (Θ1 ss Θ2) e k)
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE e) (Monotone.f (interpS (Θ1 ss Θ2)) k))
(Monotone.f (interpE (subst e Θ2)) (Monotone.f (interpS Θ1) k))
(Monotone.f (interpE (subst (subst e Θ2) Θ1)) k)
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE e) (Monotone.f (interpS (Θ1 ss Θ2)) k))
(Monotone.f (interpE e) (Monotone.f (interpS Θ2) (Monotone.f (interpS Θ1) k)))
(Monotone.f (interpE (subst e Θ2)) (Monotone.f (interpS Θ1) k))
(Monotone.is-monotone (interpE e)
(Monotone.f (interpS (Θ1 ss Θ2)) k)
(Monotone.f (interpS Θ2) (Monotone.f (interpS Θ1) k))
(interp-ss-l Θ1 Θ2 k))
(subst-eq-r Θ2 e (Monotone.f (interpS Θ1) k)))
(subst-eq-r Θ1 (subst e Θ2) k))
sound {Γ} {τ} .(subst (subst e Θ2) Θ1) ._ (subst-ss-r Θ1 Θ2 e) k =
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst (subst e Θ2) Θ1)) k)
(Monotone.f (interpE e) (Monotone.f (interpS (Θ1 ss Θ2)) k))
(Monotone.f (interpE (subst e (Θ1 ss Θ2))) k)
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst (subst e Θ2) Θ1)) k)
(Monotone.f (interpE (subst e Θ2)) (Monotone.f (interpS Θ1) k))
(Monotone.f (interpE e) (Monotone.f (interpS (Θ1 ss Θ2)) k))
(subst-eq-l Θ1 (subst e Θ2) k)
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst e Θ2)) (Monotone.f (interpS Θ1) k))
(Monotone.f (interpE e) (Monotone.f (interpS Θ2) (Monotone.f (interpS Θ1) k)))
(Monotone.f (interpE e) (Monotone.f (interpS (Θ1 ss Θ2)) k))
(subst-eq-l Θ2 e (Monotone.f (interpS Θ1) k))
(Monotone.is-monotone (interpE e)
(Monotone.f (interpS Θ2) (Monotone.f (interpS Θ1) k))
(Monotone.f (interpS (Θ1 ss Θ2)) k)
(interp-ss-r Θ1 Θ2 k))))
(subst-eq-r (Θ1 ss Θ2) e k)
sound {Γ} {τ} ._ .(subst e (lem3' Θ v)) (subst-compose-l {.Γ} {Γ'} {τ'} Θ v e) k =
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst (subst e (s-extend Θ)) (q v))) k)
(Monotone.f (interpE (subst e (s-extend Θ))) (Monotone.f (interpS (q v)) k))
(Monotone.f (interpE (subst e (lem3' Θ v))) k)
(subst-eq-l (q v) (subst e (s-extend Θ)) k)
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst e (s-extend Θ))) (Monotone.f (interpS (q v)) k))
(Monotone.f (interpE e) (Monotone.f (interpS (lem3' Θ v)) k))
(Monotone.f (interpE (subst e (lem3' Θ v))) k)
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst e (s-extend Θ))) (Monotone.f (interpS (q v)) k))
(Monotone.f (interpE e) (Monotone.f (interpS {τ' :: Γ} {τ' :: Γ'} (s-extend {Γ} {Γ'} Θ)) (Monotone.f (interpS {Γ} {τ' :: Γ} (q v)) k)))
(Monotone.f (interpE e) (Monotone.f (interpS (lem3' Θ v)) k))
(subst-eq-l (s-extend Θ) e (Monotone.f (interpS (q v)) k))
(Monotone.is-monotone (interpE e)
(Monotone.f (interpS {τ' :: Γ} {τ' :: Γ'} (s-extend {Γ} {Γ'} Θ)) (Monotone.f (interpS {Γ} {τ' :: Γ} (q v)) k))
(Monotone.f (interpS (lem3' Θ v)) k)
(Preorder-str.trans (snd [ Γ' ]c)
(fst (Monotone.f (interpS (s-extend Θ)) (Monotone.f (interpS (q v)) k)))
(Monotone.f (interpS (λ x → subst (ren (Θ x) iS) (lem3' ids v))) k)
(Monotone.f (interpS Θ) k)
(fst (interp-ss-r (q v) (s-extend Θ) k))
(interp-subst-comp-l Θ v k) ,
Preorder-str.refl (snd [ τ' ]t) (Monotone.f (interpE v) k))))
(subst-eq-r (lem3' Θ v) e k))
sound {Γ} {τ} .(subst e (lem3' Θ v)) ._ (subst-compose-r {.Γ} {Γ'} {τ'} Θ v e) k =
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst e (lem3' Θ v))) k)
(Monotone.f (interpE (subst e (s-extend Θ))) (Monotone.f (interpS (q v)) k))
(Monotone.f (interpE (subst (subst e (s-extend Θ)) (q v))) k)
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst e (lem3' Θ v))) k)
(Monotone.f (interpE e) (Monotone.f (interpS (lem3' Θ v)) k))
(Monotone.f (interpE (subst e (s-extend Θ))) (Monotone.f (interpS (q v)) k))
(subst-eq-l (lem3' Θ v) e k)
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE e) (Monotone.f (interpS (lem3' Θ v)) k))
(Monotone.f (interpE e) (Monotone.f (interpS {τ' :: Γ} {τ' :: Γ'} (s-extend {Γ} {Γ'} Θ)) (Monotone.f (interpS {Γ} {τ' :: Γ} (q v)) k)))
(Monotone.f (interpE (subst e (s-extend Θ))) (Monotone.f (interpS (q v)) k))
(Monotone.is-monotone (interpE e)
(Monotone.f (interpS (lem3' Θ v)) k)
(Monotone.f (interpS {τ' :: Γ} {τ' :: Γ'} (s-extend {Γ} {Γ'} Θ)) (Monotone.f (interpS {Γ} {τ' :: Γ} (q v)) k))
((Preorder-str.trans (snd [ Γ' ]c)
(Monotone.f (interpS Θ) k)
(Monotone.f (interpS (λ x → subst (ren (Θ x) iS) (lem3' ids v))) k)
(fst (Monotone.f (interpS (s-extend Θ)) (Monotone.f (interpS (q v)) k)))
(interp-subst-comp-r Θ v k)
(fst (interp-ss-l (q v) (s-extend Θ) k))) ,
(Preorder-str.refl (snd [ τ' ]t) (Monotone.f (interpE v) k))))
(subst-eq-r (s-extend Θ) e (Monotone.f (interpS (q v)) k))))
(subst-eq-r (q v) (subst e (s-extend Θ)) k)
sound {Γ} {τ} ._ .(subst e1 (lem3' (lem3' Θ v2) v1)) (subst-compose2-l {.Γ} {Γ'} {.τ} {τ'} {τ''} Θ e1 v1 v2) k =
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst (subst e1 (s-extend (s-extend Θ))) (lem4 v1 v2))) k)
(Monotone.f (interpE (subst e1 (s-extend (s-extend Θ)))) (Monotone.f (interpS (lem4 v1 v2)) k))
(Monotone.f (interpE (subst e1 (lem4' Θ v1 v2))) k)
(subst-eq-l (lem4 v1 v2) (subst e1 (s-extend (s-extend Θ))) k)
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst e1 (s-extend (s-extend Θ)))) (Monotone.f (interpS (lem4 v1 v2)) k))
(Monotone.f (interpE e1) (Monotone.f (interpS (lem4' Θ v1 v2)) k))
(Monotone.f (interpE (subst e1 (lem4' Θ v1 v2))) k)
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst e1 (s-extend (s-extend Θ)))) (Monotone.f (interpS (lem4 v1 v2)) k))
(Monotone.f (interpE e1) (Monotone.f (interpS {τ' :: τ'' :: Γ} {τ' :: τ'' :: Γ'} (s-extend (s-extend Θ))) (Monotone.f (interpS (lem4 v1 v2)) k)))
(Monotone.f (interpE e1) (Monotone.f (interpS (lem4' Θ v1 v2)) k))
(subst-eq-l (s-extend (s-extend Θ)) e1 (Monotone.f (interpS (lem4 v1 v2)) k))
(Monotone.is-monotone (interpE e1)
(Monotone.f (interpS {τ' :: τ'' :: Γ} {τ' :: τ'' :: Γ'} (s-extend (s-extend Θ))) (Monotone.f (interpS (lem4 v1 v2)) k))
(Monotone.f (interpS (lem4' Θ v1 v2)) k)
((Preorder-str.trans (snd [ Γ' ]c)
(Monotone.f (interpS (λ x → ren (ren (Θ x) iS) iS)) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k))
(Monotone.f (interpS (λ x → subst (ren (Θ x) iS) (lem3' ids v2))) k)
(Monotone.f (interpS Θ) k)
(interp-subst-comp2-l Θ k v1 v2)
(interp-subst-comp-l Θ v2 k) ,
Preorder-str.refl (snd [ τ'' ]t) (Monotone.f (interpE v2) k)) ,
Preorder-str.refl (snd [ τ' ]t) (Monotone.f (interpE v1) k))))
(subst-eq-r (lem4' Θ v1 v2) e1 k))
sound {Γ} {τ} .(subst e1 (lem3' (lem3' Θ v2) v1)) ._ (subst-compose2-r {.Γ} {Γ'} {.τ} {τ'} {τ''} Θ e1 v1 v2) k =
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst e1 (lem4' Θ v1 v2))) k)
(Monotone.f (interpE (subst e1 (s-extend (s-extend Θ)))) (Monotone.f (interpS (lem4 v1 v2)) k))
(Monotone.f (interpE (subst (subst e1 (s-extend (s-extend Θ))) (lem4 v1 v2))) k)
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst e1 (lem4' Θ v1 v2))) k)
(Monotone.f (interpE e1) (Monotone.f (interpS (lem4' Θ v1 v2)) k))
(Monotone.f (interpE (subst e1 (s-extend (s-extend Θ)))) (Monotone.f (interpS (lem4 v1 v2)) k))
(subst-eq-l (lem4' Θ v1 v2) e1 k)
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE e1) (Monotone.f (interpS (lem4' Θ v1 v2)) k))
(Monotone.f (interpE e1) (Monotone.f (interpS {τ' :: τ'' :: Γ} {τ' :: τ'' :: Γ'} (s-extend (s-extend Θ))) (Monotone.f (interpS (lem4 v1 v2)) k)))
(Monotone.f (interpE (subst e1 (s-extend (s-extend Θ)))) (Monotone.f (interpS (lem4 v1 v2)) k))
(Monotone.is-monotone (interpE e1)
(Monotone.f (interpS (lem4' Θ v1 v2)) k)
(Monotone.f (interpS {τ' :: τ'' :: Γ} {τ' :: τ'' :: Γ'} (s-extend (s-extend Θ))) (Monotone.f (interpS (lem4 v1 v2)) k))
(((Preorder-str.trans (snd [ Γ' ]c)
(Monotone.f (interpS Θ) k)
(Monotone.f (interpS (λ x → subst (ren (Θ x) iS) (lem3' ids v2))) k)
(Monotone.f (interpS (λ x → ren (ren (Θ x) iS) iS)) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k))
(interp-subst-comp-r Θ v2 k)
(interp-subst-comp2-r Θ k v1 v2)) ,
(Preorder-str.refl (snd [ τ'' ]t) (Monotone.f (interpE v2) k))) ,
(Preorder-str.refl (snd [ τ' ]t) (Monotone.f (interpE v1) k))))
(subst-eq-r (s-extend (s-extend Θ)) e1 (Monotone.f (interpS (lem4 v1 v2)) k))))
(subst-eq-r (lem4 v1 v2) (subst e1 (s-extend (s-extend Θ))) k)
sound {Γ} {τ} ._ .(subst e1 (lem3' (lem3' Θ (subst v2 Θ)) (subst v1 Θ))) (subst-compose3-l {.Γ} {Γ'} {.τ} {τ'} {τ''} Θ e1 v1 v2) k =
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst (subst e1 (lem3' (lem3' ids v2) v1)) Θ)) k)
(Monotone.f (interpE (subst e1 (lem3' (lem3' ids v2) v1))) (Monotone.f (interpS Θ) k))
(Monotone.f (interpE (subst e1 (lem3' (lem3' Θ (subst v2 Θ)) (subst v1 Θ)))) k)
(subst-eq-l Θ (subst e1 (lem3' (lem3' ids v2) v1)) k)
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst e1 (lem3' (lem3' ids v2) v1))) (Monotone.f (interpS Θ) k))
(Monotone.f (interpE e1) (Monotone.f (interpS (lem3' (lem3' Θ (subst v2 Θ)) (subst v1 Θ))) k))
(Monotone.f (interpE (subst e1 (lem3' (lem3' Θ (subst v2 Θ)) (subst v1 Θ)))) k)
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst e1 (lem3' (lem3' ids v2) v1))) (Monotone.f (interpS Θ) k))
(Monotone.f (interpE e1) (Monotone.f (interpS (lem3' (lem3' ids v2) v1)) (Monotone.f (interpS Θ) k)))
(Monotone.f (interpE e1) (Monotone.f (interpS (lem3' (lem3' Θ (subst v2 Θ)) (subst v1 Θ))) k))
(subst-eq-l (lem3' (lem3' ids v2) v1) e1 (Monotone.f (interpS Θ) k))
(Monotone.is-monotone (interpE e1)
(Monotone.f (interpS (lem3' (lem3' ids v2) v1)) (Monotone.f (interpS Θ) k))
(Monotone.f (interpS (lem3' (lem3' Θ (subst v2 Θ)) (subst v1 Θ))) k)
(((interp-ss-r Θ ids k) ,
(subst-eq-r Θ v2 k)) ,
(subst-eq-r Θ v1 k))))
(subst-eq-r (lem3' (lem3' Θ (subst v2 Θ)) (subst v1 Θ)) e1 k))
sound {Γ} {τ} .(subst e1 (lem3' (lem3' Θ (subst v2 Θ)) (subst v1 Θ))) ._ (subst-compose3-r {.Γ} {Γ'} {.τ} {τ'} {τ''} Θ e1 v1 v2) k =
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst e1 (lem3' (lem3' Θ (subst v2 Θ)) (subst v1 Θ)))) k)
(Monotone.f (interpE (subst e1 (lem3' (lem3' ids v2) v1))) (Monotone.f (interpS Θ) k))
(Monotone.f (interpE (subst (subst e1 (lem3' (lem3' ids v2) v1)) Θ)) k)
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst e1 (lem3' (lem3' Θ (subst v2 Θ)) (subst v1 Θ)))) k)
(Monotone.f (interpE e1) (Monotone.f (interpS (lem3' (lem3' Θ (subst v2 Θ)) (subst v1 Θ))) k))
(Monotone.f (interpE (subst e1 (lem3' (lem3' ids v2) v1))) (Monotone.f (interpS Θ) k))
(subst-eq-l (lem3' (lem3' Θ (subst v2 Θ)) (subst v1 Θ)) e1 k)
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE e1) (Monotone.f (interpS (lem3' (lem3' Θ (subst v2 Θ)) (subst v1 Θ))) k))
(Monotone.f (interpE e1) (Monotone.f (interpS (lem3' (lem3' ids v2) v1)) (Monotone.f (interpS Θ) k)))
(Monotone.f (interpE (subst e1 (lem3' (lem3' ids v2) v1))) (Monotone.f (interpS Θ) k))
(Monotone.is-monotone (interpE e1)
(Monotone.f (interpS (lem3' (lem3' Θ (subst v2 Θ)) (subst v1 Θ))) k)
(Monotone.f (interpS (lem3' (lem3' ids v2) v1)) (Monotone.f (interpS Θ) k))
(((interp-ss-l Θ ids k) ,
(subst-eq-l Θ v2 k)) ,
(subst-eq-l Θ v1 k)))
(subst-eq-r (lem3' (lem3' ids v2) v1) e1 (Monotone.f (interpS Θ) k))))
(subst-eq-r Θ (subst e1 (lem3' (lem3' ids v2) v1)) k)
sound {Γ} {τ} ._ .(subst e1 (lem3' (lem3' Θ v2) v1)) (subst-compose4-l {.Γ} {Γ'} Θ v1 v2 e1) k =
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst (subst e1 (s-extend (s-extend Θ))) (lem4 v1 v2))) k)
(Monotone.f (interpE (subst e1 (s-extend (s-extend Θ)))) (Monotone.f (interpS (lem4 v1 v2)) k))
(Monotone.f (interpE (subst e1 (lem4' Θ v1 v2))) k)
(subst-eq-l (lem4 v1 v2) (subst e1 (s-extend (s-extend Θ))) k)
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst e1 (s-extend (s-extend Θ)))) (Monotone.f (interpS (lem4 v1 v2)) k))
(Monotone.f (interpE e1) (Monotone.f (interpS (lem4' Θ v1 v2)) k))
(Monotone.f (interpE (subst e1 (lem4' Θ v1 v2))) k)
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst e1 (s-extend (s-extend Θ)))) (Monotone.f (interpS (lem4 v1 v2)) k))
(Monotone.f (interpE e1) (Monotone.f (interpS {nat :: τ :: Γ} {nat :: τ :: Γ'} (s-extend (s-extend Θ))) (Monotone.f (interpS (lem4 v1 v2)) k)))
(Monotone.f (interpE e1) (Monotone.f (interpS (lem4' Θ v1 v2)) k))
(subst-eq-l (s-extend (s-extend Θ)) e1 (Monotone.f (interpS (lem4 v1 v2)) k))
(Monotone.is-monotone (interpE e1)
(Monotone.f (interpS {nat :: τ :: Γ} {nat :: τ :: Γ'} (s-extend (s-extend Θ))) (Monotone.f (interpS (lem4 v1 v2)) k))
(Monotone.f (interpS (lem4' Θ v1 v2)) k)
((Preorder-str.trans (snd [ Γ' ]c)
(Monotone.f (interpS (λ x → ren (ren (Θ x) iS) iS)) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k))
(Monotone.f (interpS (λ x → subst (ren (Θ x) iS) (lem3' ids v2))) k)
(Monotone.f (interpS Θ) k)
(interp-subst-comp2-l Θ k v1 v2)
(interp-subst-comp-l Θ v2 k) ,
Preorder-str.refl (snd [ τ ]t) (Monotone.f (interpE v2) k)) ,
Preorder-str.refl (snd [ nat ]t) (Monotone.f (interpE v1) k))))
(subst-eq-r (lem4' Θ v1 v2) e1 k))
sound {Γ} {τ} .(subst e1 (lem3' (lem3' Θ v2) v1)) ._ (subst-compose4-r {.Γ} {Γ'} Θ v1 v2 e1) k =
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst e1 (lem4' Θ v1 v2))) k)
(Monotone.f (interpE (subst e1 (s-extend (s-extend Θ)))) (Monotone.f (interpS (lem4 v1 v2)) k))
(Monotone.f (interpE (subst (subst e1 (s-extend (s-extend Θ))) (lem4 v1 v2))) k)
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst e1 (lem4' Θ v1 v2))) k)
(Monotone.f (interpE e1) (Monotone.f (interpS (lem4' Θ v1 v2)) k))
(Monotone.f (interpE (subst e1 (s-extend (s-extend Θ)))) (Monotone.f (interpS (lem4 v1 v2)) k))
(subst-eq-l (lem4' Θ v1 v2) e1 k)
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE e1) (Monotone.f (interpS (lem4' Θ v1 v2)) k))
(Monotone.f (interpE e1) (Monotone.f (interpS {nat :: τ :: Γ} {nat :: τ :: Γ'} (s-extend (s-extend Θ))) (Monotone.f (interpS (lem4 v1 v2)) k)))
(Monotone.f (interpE (subst e1 (s-extend (s-extend Θ)))) (Monotone.f (interpS (lem4 v1 v2)) k))
(Monotone.is-monotone (interpE e1)
(Monotone.f (interpS (lem4' Θ v1 v2)) k)
(Monotone.f (interpS {nat :: τ :: Γ} {nat :: τ :: Γ'} (s-extend (s-extend Θ))) (Monotone.f (interpS (lem4 v1 v2)) k))
(((Preorder-str.trans (snd [ Γ' ]c)
(Monotone.f (interpS Θ) k)
(Monotone.f (interpS (λ x → subst (ren (Θ x) iS) (lem3' ids v2))) k)
(Monotone.f (interpS (λ x → ren (ren (Θ x) iS) iS)) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k))
(interp-subst-comp-r Θ v2 k)
(interp-subst-comp2-r Θ k v1 v2)) ,
(Preorder-str.refl (snd [ τ ]t) (Monotone.f (interpE v2) k))) ,
(Preorder-str.refl (snd [ nat ]t) (Monotone.f (interpE v1) k))))
(subst-eq-r (s-extend (s-extend Θ)) e1 (Monotone.f (interpS (lem4 v1 v2)) k))))
(subst-eq-r (lem4 v1 v2) (subst e1 (s-extend (s-extend Θ))) k)
sound {Γ} {τ} ._ .(subst e (lem3' (lem3' (lem3' Θ v3) v2) v1)) (subst-compose5-l {.Γ} {Γ'} {.τ} {τ1} {τ2} {τ3} Θ e v1 v2 v3) k =
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst (subst e (s-extend (s-extend (s-extend Θ)))) (lem3' (lem3' (lem3' ids v3) v2) v1))) k)
(Monotone.f (interpE (subst e (s-extend (s-extend (s-extend Θ))))) (Monotone.f (interpS (lem3' (lem3' (lem3' ids v3) v2) v1)) k))
(Monotone.f (interpE (subst e (lem3' (lem3' (lem3' Θ v3) v2) v1))) k)
(subst-eq-l (lem3' (lem3' (lem3' ids v3) v2) v1) (subst e (s-extend (s-extend (s-extend Θ)))) k)
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst e (s-extend (s-extend (s-extend Θ))))) (Monotone.f (interpS (lem3' (lem3' (lem3' ids v3) v2) v1)) k))
(Monotone.f (interpE e) (Monotone.f (interpS (lem3' (lem3' (lem3' Θ v3) v2) v1)) k))
(Monotone.f (interpE (subst e (lem3' (lem3' (lem3' Θ v3) v2) v1))) k)
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst e (s-extend (s-extend (s-extend Θ))))) (Monotone.f (interpS (lem3' (lem3' (lem3' ids v3) v2) v1)) k))
(Monotone.f (interpE e) (Monotone.f (interpS {τ1 :: τ2 :: τ3 :: Γ} {τ1 :: τ2 :: τ3 :: Γ'} (s-extend (s-extend (s-extend Θ))))
(Monotone.f (interpS {Γ} {τ1 :: τ2 :: τ3 :: Γ} (lem3' (lem3' (lem3' ids v3) v2) v1)) k)))
(Monotone.f (interpE e) (Monotone.f (interpS (lem3' (lem3' (lem3' Θ v3) v2) v1)) k))
(subst-eq-l (s-extend (s-extend (s-extend Θ))) e (Monotone.f (interpS (lem3' (lem3' (lem3' ids v3) v2) v1)) k))
(Monotone.is-monotone (interpE e)
(Monotone.f (interpS {τ1 :: τ2 :: τ3 :: Γ} {τ1 :: τ2 :: τ3 :: Γ'} (s-extend (s-extend (s-extend Θ))))
(Monotone.f (interpS {Γ} {τ1 :: τ2 :: τ3 :: Γ} (lem3' (lem3' (lem3' ids v3) v2) v1)) k))
(Monotone.f (interpS (lem3' (lem3' (lem3' Θ v3) v2) v1)) k)
((((Preorder-str.trans (snd [ Γ' ]c)
(Monotone.f (interpS (λ x → ren (ren (ren (Θ x) iS) iS) iS)) (((Monotone.f (interpS {Γ} ids) k ,
Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k))
(Monotone.f (interpS (λ x → subst (ren (Θ x) iS) (lem3' ids v3))) k)
(Monotone.f (interpS Θ) k)
(Preorder-str.trans (snd [ Γ' ]c)
(Monotone.f (interpS (λ x → ren (ren (ren (Θ x) iS) iS) iS)) (((Monotone.f (interpS {Γ} ids) k ,
Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k))
(Monotone.f (interpS (λ x → ren (ren (Θ x) iS) iS)) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k))
(Monotone.f (interpS (λ x → subst (ren (Θ x) iS) (lem3' ids v3))) k)
(interp-subst-comp3-l Θ k v3 v2 v1)
(interp-subst-comp2-l Θ k v2 v3))
(interp-subst-comp-l Θ v3 k)) ,
(Preorder-str.refl (snd [ τ3 ]t) (Monotone.f (interpE v3) k))) ,
(Preorder-str.refl (snd [ τ2 ]t) (Monotone.f (interpE v2) k))) ,
(Preorder-str.refl (snd [ τ1 ]t) (Monotone.f (interpE v1) k)))))
(subst-eq-r (lem3' (lem3' (lem3' Θ v3) v2) v1) e k))
sound {Γ} {τ} .(subst e (lem3' (lem3' (lem3' Θ v3) v2) v1)) ._ (subst-compose5-r {.Γ} {Γ'} {.τ} {τ1} {τ2} {τ3} Θ e v1 v2 v3) k =
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst e (lem3' (lem3' (lem3' Θ v3) v2) v1))) k)
(Monotone.f (interpE (subst e (s-extend (s-extend (s-extend Θ))))) (Monotone.f (interpS (lem3' (lem3' (lem3' ids v3) v2) v1)) k))
(Monotone.f (interpE (subst (subst e (s-extend (s-extend (s-extend Θ)))) (lem3' (lem3' (lem3' ids v3) v2) v1))) k)
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst e (lem3' (lem3' (lem3' Θ v3) v2) v1))) k)
(Monotone.f (interpE e) (Monotone.f (interpS (lem3' (lem3' (lem3' Θ v3) v2) v1)) k))
(Monotone.f (interpE (subst e (s-extend (s-extend (s-extend Θ))))) (Monotone.f (interpS (lem3' (lem3' (lem3' ids v3) v2) v1)) k))
(subst-eq-l (lem3' (lem3' (lem3' Θ v3) v2) v1) e k)
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE e) (Monotone.f (interpS (lem3' (lem3' (lem3' Θ v3) v2) v1)) k))
(Monotone.f (interpE e) (Monotone.f (interpS {τ1 :: τ2 :: τ3 :: Γ} {τ1 :: τ2 :: τ3 :: Γ'} (s-extend (s-extend (s-extend Θ))))
(Monotone.f (interpS {Γ} {τ1 :: τ2 :: τ3 :: Γ} (lem3' (lem3' (lem3' ids v3) v2) v1)) k)))
(Monotone.f (interpE (subst e (s-extend (s-extend (s-extend Θ))))) (Monotone.f (interpS (lem3' (lem3' (lem3' ids v3) v2) v1)) k))
(Monotone.is-monotone (interpE e)
(Monotone.f (interpS (lem3' (lem3' (lem3' Θ v3) v2) v1)) k)
(Monotone.f (interpS {τ1 :: τ2 :: τ3 :: Γ} {τ1 :: τ2 :: τ3 :: Γ'} (s-extend (s-extend (s-extend Θ))))
(Monotone.f (interpS {Γ} {τ1 :: τ2 :: τ3 :: Γ} (lem3' (lem3' (lem3' ids v3) v2) v1)) k))
((((Preorder-str.trans (snd [ Γ' ]c)
(Monotone.f (interpS Θ) k)
(Monotone.f (interpS (λ x → subst (ren (Θ x) iS) (lem3' ids v3))) k)
(Monotone.f (interpS (λ x → ren (ren (ren (Θ x) iS) iS) iS))
(((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k))
(interp-subst-comp-r Θ v3 k)
(Preorder-str.trans (snd [ Γ' ]c)
(Monotone.f (interpS (λ x → subst (ren (Θ x) iS) (lem3' ids v3))) k)
(Monotone.f (interpS (λ x → ren (ren (Θ x) iS) iS)) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k))
(Monotone.f (interpS (λ x → ren (ren (ren (Θ x) iS) iS) iS))
(((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k))
(interp-subst-comp2-r Θ k v2 v3)
(interp-subst-comp3-r Θ k v3 v2 v1))) ,
(Preorder-str.refl (snd [ τ3 ]t) (Monotone.f (interpE v3) k))) ,
(Preorder-str.refl (snd [ τ2 ]t) (Monotone.f (interpE v2) k))) ,
(Preorder-str.refl (snd [ τ1 ]t) (Monotone.f (interpE v1) k))))
(subst-eq-r (s-extend (s-extend (s-extend Θ))) e (Monotone.f (interpS (lem3' (lem3' (lem3' ids v3) v2) v1)) k))))
(subst-eq-r (lem3' (lem3' (lem3' ids v3) v2) v1) (subst e (s-extend (s-extend (s-extend Θ)))) k)
| 65.815359
| 172
| 0.509753
|
4d300b0c6b16567f044c75fc20d7e34bee09630b
| 698
|
agda
|
Agda
|
agda/HITs/PropositionalTruncation/Sugar.agda
|
oisdk/combinatorics-paper
|
3c176d4690566d81611080e9378f5a178b39b851
|
[
"MIT"
] | null | null | null |
agda/HITs/PropositionalTruncation/Sugar.agda
|
oisdk/combinatorics-paper
|
3c176d4690566d81611080e9378f5a178b39b851
|
[
"MIT"
] | null | null | null |
agda/HITs/PropositionalTruncation/Sugar.agda
|
oisdk/combinatorics-paper
|
3c176d4690566d81611080e9378f5a178b39b851
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --cubical --safe #-}
module HITs.PropositionalTruncation.Sugar where
open import Cubical.HITs.PropositionalTruncation
open import Level
_=<<_ : ∀ {a} {A : Type a} {b} {B : ∥ A ∥ → Type b}
→ ((x : A) → ∥ B ∣ x ∣ ∥) → (xs : ∥ A ∥) → ∥ B xs ∥
_=<<_ = elimPropTrunc (λ _ → squash)
_>>=_ : ∀ {a} {A : Type a} {b} {B : Type b}
→ (xs : ∥ A ∥) → (A → ∥ B ∥) → ∥ B ∥
_>>=_ {a} {A} {b} {B} xs f = elimPropTrunc (λ _ → squash) f xs
_>>_ : ∥ A ∥ → ∥ B ∥ → ∥ B ∥
_ >> ys = ys
pure : A → ∥ A ∥
pure = ∣_∣
_<*>_ : ∥ (A → B) ∥ → ∥ A ∥ → ∥ B ∥
fs <*> xs = do
f ← fs
x ← xs
∣ f x ∣
infixr 1 _∥$∥_
_∥$∥_ : (A → B)→ ∥ A ∥ → ∥ B ∥
f ∥$∥ xs = recPropTrunc squash (λ x → ∣ f x ∣) xs
| 22.516129
| 62
| 0.441261
|
123c1d97f0550cd82b2b9717c15b61a572ee93a9
| 4,964
|
agda
|
Agda
|
src/Bf/Mp.agda
|
mietek/formal-logic
|
2dd761bfa96ccda089888e8defa6814776fa2922
|
[
"X11"
] | 26
|
2015-08-31T09:49:52.000Z
|
2021-11-13T12:37:44.000Z
|
src/Bf/Mp.agda
|
mietek/formal-logic
|
2dd761bfa96ccda089888e8defa6814776fa2922
|
[
"X11"
] | null | null | null |
src/Bf/Mp.agda
|
mietek/formal-logic
|
2dd761bfa96ccda089888e8defa6814776fa2922
|
[
"X11"
] | null | null | null |
-- Minimal propositional logic, de Bruijn approach, final encoding
module Bf.Mp where
open import Lib using (List; _,_; LMem; lzero; lsuc)
-- Types
infixl 2 _&&_
infixl 1 _||_
infixr 0 _=>_
data Ty : Set where
UNIT : Ty
_=>_ : Ty -> Ty -> Ty
_&&_ : Ty -> Ty -> Ty
_||_ : Ty -> Ty -> Ty
FALSE : Ty
infixr 0 _<=>_
_<=>_ : Ty -> Ty -> Ty
a <=> b = (a => b) && (b => a)
NOT : Ty -> Ty
NOT a = a => FALSE
TRUE : Ty
TRUE = FALSE => FALSE
-- Context and truth judgement
Cx : Set
Cx = List Ty
isTrue : Ty -> Cx -> Set
isTrue a tc = LMem a tc
-- Terms
TmRepr : Set1
TmRepr = Cx -> Ty -> Set
module ArrMp where
record Tm (tr : TmRepr) : Set1 where
infixl 1 _$_
infixr 0 lam=>_
field
var : forall {tc a} -> isTrue a tc -> tr tc a
lam=>_ : forall {tc a b} -> tr (tc , a) b -> tr tc (a => b)
_$_ : forall {tc a b} -> tr tc (a => b) -> tr tc a -> tr tc b
v0 : forall {tc a} -> tr (tc , a) a
v0 = var lzero
v1 : forall {tc a b} -> tr (tc , a , b) a
v1 = var (lsuc lzero)
v2 : forall {tc a b c} -> tr (tc , a , b , c) a
v2 = var (lsuc (lsuc lzero))
open Tm {{...}} public
module Mp where
record Tm (tr : TmRepr) : Set1 where
field
pair' : forall {tc a b} -> tr tc a -> tr tc b -> tr tc (a && b)
fst : forall {tc a b} -> tr tc (a && b) -> tr tc a
snd : forall {tc a b} -> tr tc (a && b) -> tr tc b
left : forall {tc a b} -> tr tc a -> tr tc (a || b)
right : forall {tc a b} -> tr tc b -> tr tc (a || b)
case' : forall {tc a b c} -> tr tc (a || b) -> tr (tc , a) c -> tr (tc , b) c -> tr tc c
isArrMp : ArrMp.Tm tr
open ArrMp.Tm isArrMp public
syntax pair' x y = [ x , y ]
syntax case' xy x y = case xy => x => y
open Tm {{...}} public
Thm : Ty -> Set1
Thm a = forall {tr tc} {{_ : Tm tr}} -> tr tc a
open Mp public
-- Example theorems
c1 : forall {a b} -> Thm (a && b <=> b && a)
c1 =
[ lam=> [ snd v0 , fst v0 ]
, lam=> [ snd v0 , fst v0 ]
]
c2 : forall {a b} -> Thm (a || b <=> b || a)
c2 =
[ lam=>
(case v0
=> right v0
=> left v0)
, lam=>
(case v0
=> right v0
=> left v0)
]
i1 : forall {a} -> Thm (a && a <=> a)
i1 =
[ lam=> fst v0
, lam=> [ v0 , v0 ]
]
i2 : forall {a} -> Thm (a || a <=> a)
i2 =
[ lam=>
(case v0
=> v0
=> v0)
, lam=> left v0
]
l3 : forall {a} -> Thm ((a => a) <=> TRUE)
l3 =
[ lam=> lam=> v0
, lam=> lam=> v0
]
l1 : forall {a b c} -> Thm (a && (b && c) <=> (a && b) && c)
l1 =
[ lam=>
[ [ fst v0 , fst (snd v0) ]
, snd (snd v0)
]
, lam=>
[ fst (fst v0)
, [ snd (fst v0) , snd v0 ]
]
]
l2 : forall {a} -> Thm (a && TRUE <=> a)
l2 =
[ lam=> fst v0
, lam=> [ v0 , lam=> v0 ]
]
l4 : forall {a b c} -> Thm (a && (b || c) <=> (a && b) || (a && c))
l4 =
[ lam=>
(case snd v0
=> left [ fst v1 , v0 ]
=> right [ fst v1 , v0 ])
, lam=>
(case v0
=> [ fst v0 , left (snd v0) ]
=> [ fst v0 , right (snd v0) ])
]
l6 : forall {a b c} -> Thm (a || (b && c) <=> (a || b) && (a || c))
l6 =
[ lam=>
(case v0
=> [ left v0 , left v0 ]
=> [ right (fst v0) , right (snd v0) ])
, lam=>
(case fst v0
=> left v0
=>
case snd v1
=> left v0
=> right [ v1 , v0 ])
]
l7 : forall {a} -> Thm (a || TRUE <=> TRUE)
l7 =
[ lam=> lam=> v0
, lam=> right v0
]
l9 : forall {a b c} -> Thm (a || (b || c) <=> (a || b) || c)
l9 =
[ lam=>
(case v0
=> left (left v0)
=>
case v0
=> left (right v0)
=> right v0)
, lam=>
(case v0
=>
case v0
=> left v0
=> right (left v0)
=> right (right v0))
]
l11 : forall {a b c} -> Thm ((a => (b && c)) <=> (a => b) && (a => c))
l11 =
[ lam=>
[ lam=> fst (v1 $ v0)
, lam=> snd (v1 $ v0)
]
, lam=>
lam=> [ fst v1 $ v0 , snd v1 $ v0 ]
]
l12 : forall {a} -> Thm ((a => TRUE) <=> TRUE)
l12 =
[ lam=> lam=> v0
, lam=> lam=> v1
]
l13 : forall {a b c} -> Thm ((a => (b => c)) <=> ((a && b) => c))
l13 =
[ lam=>
lam=> v1 $ fst v0 $ snd v0
, lam=>
lam=>
lam=> v2 $ [ v1 , v0 ]
]
l16 : forall {a b c} -> Thm (((a && b) => c) <=> (a => (b => c)))
l16 =
[ lam=>
lam=>
lam=> v2 $ [ v1 , v0 ]
, lam=>
lam=> v1 $ fst v0 $ snd v0
]
l17 : forall {a} -> Thm ((TRUE => a) <=> a)
l17 =
[ lam=> v0 $ (lam=> v0)
, lam=> lam=> v1
]
l19 : forall {a b c} -> Thm (((a || b) => c) <=> (a => c) && (b => c))
l19 =
[ lam=>
[ lam=> v1 $ left v0
, lam=> v1 $ right v0
]
, lam=>
lam=>
(case v0
=> fst v2 $ v0
=> snd v2 $ v0)
]
| 20.016129
| 94
| 0.397462
|
0b23c146cc2c04909f07dd492cef030970354b0d
| 348
|
agda
|
Agda
|
test/Common/Bool.agda
|
favonia/agda
|
8d433b967567c08afe15d04a5cb63b6f6d8884ee
|
[
"BSD-2-Clause"
] | null | null | null |
test/Common/Bool.agda
|
favonia/agda
|
8d433b967567c08afe15d04a5cb63b6f6d8884ee
|
[
"BSD-2-Clause"
] | 6
|
2021-10-18T08:12:24.000Z
|
2021-11-24T08:31:10.000Z
|
test/Common/Bool.agda
|
antoinevanmuylder/agda
|
bd59d5b07ffe02a43b28d186d95e1747aac5bc8c
|
[
"BSD-2-Clause"
] | null | null | null |
{-# OPTIONS --cubical-compatible #-}
module Common.Bool where
open import Agda.Builtin.Bool public
not : Bool -> Bool
not true = false
not false = true
notnot : Bool -> Bool
notnot true = not (not true)
notnot false = not (not false)
if_then_else_ : ∀ {a} {A : Set a} → Bool → A → A → A
if true then t else f = t
if false then t else f = f
| 19.333333
| 52
| 0.655172
|
18aa41ad1c0c1e753c0165f90b199ec452966d35
| 87
|
agda
|
Agda
|
examples/NoSig.agda
|
JoeyEremondi/lambda-pi-constraint
|
64a1b4c6632153d75cba540f7c91f40b49375e2f
|
[
"BSD-3-Clause"
] | 16
|
2017-03-16T11:14:56.000Z
|
2021-02-05T20:21:46.000Z
|
examples/NoSig.agda
|
JoeyEremondi/lambda-pi-constraint
|
64a1b4c6632153d75cba540f7c91f40b49375e2f
|
[
"BSD-3-Clause"
] | null | null | null |
examples/NoSig.agda
|
JoeyEremondi/lambda-pi-constraint
|
64a1b4c6632153d75cba540f7c91f40b49375e2f
|
[
"BSD-3-Clause"
] | null | null | null |
module NoSig where
open import Data.Nat
myFun : ℕ
myFun = (\ x y -> y ) (\ x -> x) 0
| 12.428571
| 34
| 0.574713
|
1245ba860d8525eaba4fdd5751901e7339eb711b
| 4,839
|
agda
|
Agda
|
Cubical/Data/Queue/Truncated2List.agda
|
FernandoLarrain/cubical
|
9acdecfa6437ec455568be4e5ff04849cc2bc13b
|
[
"MIT"
] | 301
|
2018-10-17T18:00:24.000Z
|
2022-03-24T02:10:47.000Z
|
Cubical/Data/Queue/Truncated2List.agda
|
FernandoLarrain/cubical
|
9acdecfa6437ec455568be4e5ff04849cc2bc13b
|
[
"MIT"
] | 584
|
2018-10-15T09:49:02.000Z
|
2022-03-30T12:09:17.000Z
|
Cubical/Data/Queue/Truncated2List.agda
|
FernandoLarrain/cubical
|
9acdecfa6437ec455568be4e5ff04849cc2bc13b
|
[
"MIT"
] | 134
|
2018-11-16T06:11:03.000Z
|
2022-03-23T16:22:13.000Z
|
{-# OPTIONS --no-exact-split --safe #-}
module Cubical.Data.Queue.Truncated2List where
open import Cubical.Foundations.Everything
open import Cubical.Foundations.SIP
open import Cubical.Structures.Queue
open import Cubical.Data.Maybe
open import Cubical.Data.List
open import Cubical.Data.Sigma
open import Cubical.Data.Queue.1List
module Truncated2List {ℓ} (A : Type ℓ) (Aset : isSet A) where
open Queues-on A Aset
data Q : Type ℓ where
Q⟨_,_⟩ : (xs ys : List A) → Q
tilt : ∀ xs ys z → Q⟨ xs ++ [ z ] , ys ⟩ ≡ Q⟨ xs , ys ++ [ z ] ⟩
trunc : (q q' : Q) (α β : q ≡ q') → α ≡ β
multitilt : (xs ys zs : List A) → Q⟨ xs ++ rev zs , ys ⟩ ≡ Q⟨ xs , ys ++ zs ⟩
multitilt xs ys [] = cong₂ Q⟨_,_⟩ (++-unit-r xs) (sym (++-unit-r ys))
multitilt xs ys (z ∷ zs) =
cong (λ ws → Q⟨ ws , ys ⟩) (sym (++-assoc xs (rev zs) [ z ]))
∙ tilt (xs ++ rev zs) ys z
∙ multitilt xs (ys ++ [ z ]) zs
∙ cong (λ ws → Q⟨ xs , ws ⟩) (++-assoc ys [ z ] zs)
-- enq into the first list, deq from the second if possible
emp : Q
emp = Q⟨ [] , [] ⟩
enq : A → Q → Q
enq a Q⟨ xs , ys ⟩ = Q⟨ a ∷ xs , ys ⟩
enq a (tilt xs ys z i) = tilt (a ∷ xs) ys z i
enq a (trunc q q' α β i j) =
trunc _ _ (cong (enq a) α) (cong (enq a) β) i j
deqFlush : List A → Maybe (Q × A)
deqFlush [] = nothing
deqFlush (x ∷ xs) = just (Q⟨ [] , xs ⟩ , x)
deq : Q → Maybe (Q × A)
deq Q⟨ xs , [] ⟩ = deqFlush (rev xs)
deq Q⟨ xs , y ∷ ys ⟩ = just (Q⟨ xs , ys ⟩ , y)
deq (tilt xs [] z i) = path i
where
path : deqFlush (rev (xs ++ [ z ])) ≡ just (Q⟨ xs , [] ⟩ , z)
path =
cong deqFlush (rev-++ xs [ z ])
∙ cong (λ q → just (q , z)) (sym (multitilt [] [] (rev xs)))
∙ cong (λ ys → just (Q⟨ ys , [] ⟩ , z)) (rev-rev xs)
deq (tilt xs (y ∷ ys) z i) = just (tilt xs ys z i , y)
deq (trunc q q' α β i j) =
isOfHLevelMaybe 0
(isSetΣ trunc λ _ → Aset)
(deq q) (deq q') (cong deq α) (cong deq β)
i j
Raw : RawQueue
Raw = (Q , emp , enq , deq)
-- We construct an equivalence to 1Lists and prove this is an equivalence of queue structures
private
module One = 1List A Aset
open One renaming (Q to Q₁; emp to emp₁; enq to enq₁; deq to deq₁) using ()
quot : Q₁ → Q
quot xs = Q⟨ xs , [] ⟩
eval : Q → Q₁
eval Q⟨ xs , ys ⟩ = xs ++ rev ys
eval (tilt xs ys z i) = path i
where
path : (xs ++ [ z ]) ++ rev ys ≡ xs ++ rev (ys ++ [ z ])
path =
++-assoc xs [ z ] (rev ys)
∙ cong (_++_ xs) (sym (rev-++ ys [ z ]))
eval (trunc q q' α β i j) = -- truncated case
isOfHLevelList 0 Aset (eval q) (eval q') (cong eval α) (cong eval β) i j
quot∘eval : ∀ q → quot (eval q) ≡ q
quot∘eval Q⟨ xs , ys ⟩ = multitilt xs [] ys
quot∘eval (tilt xs ys z i) = -- truncated case
isOfHLevelPathP'
{A = λ i → quot (eval (tilt xs ys z i)) ≡ tilt xs ys z i}
0
(trunc _ _)
(multitilt (xs ++ [ z ]) [] ys) (multitilt xs [] (ys ++ [ z ]))
.fst i
quot∘eval (trunc q q' α β i j) = -- truncated case
isOfHLevelPathP'
{A = λ i →
PathP (λ j → quot (eval (trunc q q' α β i j)) ≡ trunc q q' α β i j)
(quot∘eval q) (quot∘eval q')}
0
(isOfHLevelPathP' 1 (isOfHLevelSuc 2 trunc _ _) _ _)
(cong quot∘eval α) (cong quot∘eval β)
.fst i j
eval∘quot : ∀ xs → eval (quot xs) ≡ xs
eval∘quot = ++-unit-r
-- We get our desired equivalence
quotEquiv : Q₁ ≃ Q
quotEquiv = isoToEquiv (iso quot eval quot∘eval eval∘quot)
-- Now it only remains to prove that this is an equivalence of queue structures
quot∘emp : quot emp₁ ≡ emp
quot∘emp = refl
quot∘enq : ∀ x xs → quot (enq₁ x xs) ≡ enq x (quot xs)
quot∘enq x xs = refl
quot∘deq : ∀ xs → deqMap quot (deq₁ xs) ≡ deq (quot xs)
quot∘deq [] = refl
quot∘deq (x ∷ []) = refl
quot∘deq (x ∷ x' ∷ xs) =
deqMap-∘ quot (enq₁ x) (deq₁ (x' ∷ xs))
∙ sym (deqMap-∘ (enq x) quot (deq₁ (x' ∷ xs)))
∙ cong (deqMap (enq x)) (quot∘deq (x' ∷ xs))
∙ lemma x x' (rev xs)
where
lemma : ∀ x x' ys
→ deqMap (enq x) (deqFlush (ys ++ [ x' ]))
≡ deqFlush ((ys ++ [ x' ]) ++ [ x ])
lemma x x' [] i = just (tilt [] [] x i , x')
lemma x x' (y ∷ ys) i = just (tilt [] (ys ++ [ x' ]) x i , y)
quotEquivHasQueueEquivStr : RawQueueEquivStr One.Raw Raw quotEquiv
quotEquivHasQueueEquivStr = quot∘emp , quot∘enq , quot∘deq
-- And we get a path between the raw 1Lists and 2Lists
Raw-1≡2 : One.Raw ≡ Raw
Raw-1≡2 = sip rawQueueUnivalentStr _ _ (quotEquiv , quotEquivHasQueueEquivStr)
-- We derive the axioms for 2List from those for 1List
WithLaws : Queue
WithLaws = Q , str Raw , subst (uncurry QueueAxioms) Raw-1≡2 (snd (str One.WithLaws))
WithLaws-1≡2 : One.WithLaws ≡ WithLaws
WithLaws-1≡2 = sip queueUnivalentStr _ _ (quotEquiv , quotEquivHasQueueEquivStr)
Finite : FiniteQueue
Finite = Q , str WithLaws , subst (uncurry FiniteQueueAxioms) WithLaws-1≡2 (snd (str One.Finite))
| 32.046358
| 98
| 0.570986
|
c5b7614296ff663244d2b46b89f388c23280c59a
| 5,372
|
agda
|
Agda
|
prototyping/Luau/Type.agda
|
morgoth990/luau
|
dbdf91f3cad8ea9e881b8cf99931f654faf65c2e
|
[
"MIT"
] | 1
|
2022-03-18T04:10:20.000Z
|
2022-03-18T04:10:20.000Z
|
prototyping/Luau/Type.agda
|
morgoth990/luau
|
dbdf91f3cad8ea9e881b8cf99931f654faf65c2e
|
[
"MIT"
] | null | null | null |
prototyping/Luau/Type.agda
|
morgoth990/luau
|
dbdf91f3cad8ea9e881b8cf99931f654faf65c2e
|
[
"MIT"
] | null | null | null |
module Luau.Type where
open import FFI.Data.Maybe using (Maybe; just; nothing; just-inv)
open import Agda.Builtin.Equality using (_≡_; refl)
open import Properties.Dec using (Dec; yes; no)
open import Properties.Equality using (cong)
open import FFI.Data.Maybe using (Maybe; just; nothing)
data Type : Set where
nil : Type
_⇒_ : Type → Type → Type
none : Type
any : Type
boolean : Type
number : Type
string : Type
_∪_ : Type → Type → Type
_∩_ : Type → Type → Type
lhs : Type → Type
lhs (T ⇒ _) = T
lhs (T ∪ _) = T
lhs (T ∩ _) = T
lhs nil = nil
lhs none = none
lhs any = any
lhs number = number
lhs boolean = boolean
lhs string = string
rhs : Type → Type
rhs (_ ⇒ T) = T
rhs (_ ∪ T) = T
rhs (_ ∩ T) = T
rhs nil = nil
rhs none = none
rhs any = any
rhs number = number
rhs boolean = boolean
rhs string = string
_≡ᵀ_ : ∀ (T U : Type) → Dec(T ≡ U)
nil ≡ᵀ nil = yes refl
nil ≡ᵀ (S ⇒ T) = no (λ ())
nil ≡ᵀ none = no (λ ())
nil ≡ᵀ any = no (λ ())
nil ≡ᵀ number = no (λ ())
nil ≡ᵀ boolean = no (λ ())
nil ≡ᵀ (S ∪ T) = no (λ ())
nil ≡ᵀ (S ∩ T) = no (λ ())
nil ≡ᵀ string = no (λ ())
(S ⇒ T) ≡ᵀ string = no (λ ())
none ≡ᵀ string = no (λ ())
any ≡ᵀ string = no (λ ())
boolean ≡ᵀ string = no (λ ())
number ≡ᵀ string = no (λ ())
(S ∪ T) ≡ᵀ string = no (λ ())
(S ∩ T) ≡ᵀ string = no (λ ())
(S ⇒ T) ≡ᵀ nil = no (λ ())
(S ⇒ T) ≡ᵀ (U ⇒ V) with (S ≡ᵀ U) | (T ≡ᵀ V)
(S ⇒ T) ≡ᵀ (S ⇒ T) | yes refl | yes refl = yes refl
(S ⇒ T) ≡ᵀ (U ⇒ V) | _ | no p = no (λ q → p (cong rhs q))
(S ⇒ T) ≡ᵀ (U ⇒ V) | no p | _ = no (λ q → p (cong lhs q))
(S ⇒ T) ≡ᵀ none = no (λ ())
(S ⇒ T) ≡ᵀ any = no (λ ())
(S ⇒ T) ≡ᵀ number = no (λ ())
(S ⇒ T) ≡ᵀ boolean = no (λ ())
(S ⇒ T) ≡ᵀ (U ∪ V) = no (λ ())
(S ⇒ T) ≡ᵀ (U ∩ V) = no (λ ())
none ≡ᵀ nil = no (λ ())
none ≡ᵀ (U ⇒ V) = no (λ ())
none ≡ᵀ none = yes refl
none ≡ᵀ any = no (λ ())
none ≡ᵀ number = no (λ ())
none ≡ᵀ boolean = no (λ ())
none ≡ᵀ (U ∪ V) = no (λ ())
none ≡ᵀ (U ∩ V) = no (λ ())
any ≡ᵀ nil = no (λ ())
any ≡ᵀ (U ⇒ V) = no (λ ())
any ≡ᵀ none = no (λ ())
any ≡ᵀ any = yes refl
any ≡ᵀ number = no (λ ())
any ≡ᵀ boolean = no (λ ())
any ≡ᵀ (U ∪ V) = no (λ ())
any ≡ᵀ (U ∩ V) = no (λ ())
number ≡ᵀ nil = no (λ ())
number ≡ᵀ (T ⇒ U) = no (λ ())
number ≡ᵀ none = no (λ ())
number ≡ᵀ any = no (λ ())
number ≡ᵀ number = yes refl
number ≡ᵀ boolean = no (λ ())
number ≡ᵀ (T ∪ U) = no (λ ())
number ≡ᵀ (T ∩ U) = no (λ ())
boolean ≡ᵀ nil = no (λ ())
boolean ≡ᵀ (T ⇒ U) = no (λ ())
boolean ≡ᵀ none = no (λ ())
boolean ≡ᵀ any = no (λ ())
boolean ≡ᵀ boolean = yes refl
boolean ≡ᵀ number = no (λ ())
boolean ≡ᵀ (T ∪ U) = no (λ ())
boolean ≡ᵀ (T ∩ U) = no (λ ())
string ≡ᵀ nil = no (λ ())
string ≡ᵀ (x ⇒ x₁) = no (λ ())
string ≡ᵀ none = no (λ ())
string ≡ᵀ any = no (λ ())
string ≡ᵀ boolean = no (λ ())
string ≡ᵀ number = no (λ ())
string ≡ᵀ string = yes refl
string ≡ᵀ (U ∪ V) = no (λ ())
string ≡ᵀ (U ∩ V) = no (λ ())
(S ∪ T) ≡ᵀ nil = no (λ ())
(S ∪ T) ≡ᵀ (U ⇒ V) = no (λ ())
(S ∪ T) ≡ᵀ none = no (λ ())
(S ∪ T) ≡ᵀ any = no (λ ())
(S ∪ T) ≡ᵀ number = no (λ ())
(S ∪ T) ≡ᵀ boolean = no (λ ())
(S ∪ T) ≡ᵀ (U ∪ V) with (S ≡ᵀ U) | (T ≡ᵀ V)
(S ∪ T) ≡ᵀ (S ∪ T) | yes refl | yes refl = yes refl
(S ∪ T) ≡ᵀ (U ∪ V) | _ | no p = no (λ q → p (cong rhs q))
(S ∪ T) ≡ᵀ (U ∪ V) | no p | _ = no (λ q → p (cong lhs q))
(S ∪ T) ≡ᵀ (U ∩ V) = no (λ ())
(S ∩ T) ≡ᵀ nil = no (λ ())
(S ∩ T) ≡ᵀ (U ⇒ V) = no (λ ())
(S ∩ T) ≡ᵀ none = no (λ ())
(S ∩ T) ≡ᵀ any = no (λ ())
(S ∩ T) ≡ᵀ number = no (λ ())
(S ∩ T) ≡ᵀ boolean = no (λ ())
(S ∩ T) ≡ᵀ (U ∪ V) = no (λ ())
(S ∩ T) ≡ᵀ (U ∩ V) with (S ≡ᵀ U) | (T ≡ᵀ V)
(S ∩ T) ≡ᵀ (U ∩ V) | yes refl | yes refl = yes refl
(S ∩ T) ≡ᵀ (U ∩ V) | _ | no p = no (λ q → p (cong rhs q))
(S ∩ T) ≡ᵀ (U ∩ V) | no p | _ = no (λ q → p (cong lhs q))
_≡ᴹᵀ_ : ∀ (T U : Maybe Type) → Dec(T ≡ U)
nothing ≡ᴹᵀ nothing = yes refl
nothing ≡ᴹᵀ just U = no (λ ())
just T ≡ᴹᵀ nothing = no (λ ())
just T ≡ᴹᵀ just U with T ≡ᵀ U
(just T ≡ᴹᵀ just T) | yes refl = yes refl
(just T ≡ᴹᵀ just U) | no p = no (λ q → p (just-inv q))
data Mode : Set where
strict : Mode
nonstrict : Mode
src : Mode → Type → Type
src m nil = none
src m number = none
src m boolean = none
src m string = none
src m (S ⇒ T) = S
-- In nonstrict mode, functions are covaraiant, in strict mode they're contravariant
src strict (S ∪ T) = (src strict S) ∩ (src strict T)
src nonstrict (S ∪ T) = (src nonstrict S) ∪ (src nonstrict T)
src strict (S ∩ T) = (src strict S) ∪ (src strict T)
src nonstrict (S ∩ T) = (src nonstrict S) ∩ (src nonstrict T)
src strict none = any
src nonstrict none = none
src strict any = none
src nonstrict any = any
tgt : Type → Type
tgt nil = none
tgt (S ⇒ T) = T
tgt none = none
tgt any = any
tgt number = none
tgt boolean = none
tgt string = none
tgt (S ∪ T) = (tgt S) ∪ (tgt T)
tgt (S ∩ T) = (tgt S) ∩ (tgt T)
optional : Type → Type
optional nil = nil
optional (T ∪ nil) = (T ∪ nil)
optional T = (T ∪ nil)
normalizeOptional : Type → Type
normalizeOptional (S ∪ T) with normalizeOptional S | normalizeOptional T
normalizeOptional (S ∪ T) | (S′ ∪ nil) | (T′ ∪ nil) = (S′ ∪ T′) ∪ nil
normalizeOptional (S ∪ T) | S′ | (T′ ∪ nil) = (S′ ∪ T′) ∪ nil
normalizeOptional (S ∪ T) | (S′ ∪ nil) | T′ = (S′ ∪ T′) ∪ nil
normalizeOptional (S ∪ T) | S′ | nil = optional S′
normalizeOptional (S ∪ T) | nil | T′ = optional T′
normalizeOptional (S ∪ T) | S′ | T′ = S′ ∪ T′
normalizeOptional T = T
| 28.727273
| 84
| 0.515078
|
50fa96831a26b26807355f2caa8c6a95644fc654
| 1,444
|
agda
|
Agda
|
Groups/Actions/Stabiliser.agda
|
Smaug123/agdaproofs
|
0f4230011039092f58f673abcad8fb0652e6b562
|
[
"MIT"
] | 4
|
2019-08-08T12:44:19.000Z
|
2022-01-28T06:04:15.000Z
|
Groups/Actions/Stabiliser.agda
|
Smaug123/agdaproofs
|
0f4230011039092f58f673abcad8fb0652e6b562
|
[
"MIT"
] | 14
|
2019-01-06T21:11:59.000Z
|
2020-04-11T11:03:39.000Z
|
Groups/Actions/Stabiliser.agda
|
Smaug123/agdaproofs
|
0f4230011039092f58f673abcad8fb0652e6b562
|
[
"MIT"
] | 1
|
2021-11-29T13:23:07.000Z
|
2021-11-29T13:23:07.000Z
|
{-# OPTIONS --safe --warning=error --without-K #-}
open import Setoids.Setoids
open import Groups.Definition
open import Groups.Subgroups.Definition
open import Groups.Actions.Definition
open import Sets.EquivalenceRelations
open import Groups.Actions.Definition
module Groups.Actions.Stabiliser {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A → A → A} {G : Group S _+_} (act : GroupAction G T) where
open GroupAction act
open Setoid T
stabiliserPred : (x : B) → (g : A) → Set d
stabiliserPred x g = (action g x) ∼ x
stabiliserWellDefined : (x : B) → {g h : A} → Setoid._∼_ S g h → (stabiliserPred x g) → stabiliserPred x h
stabiliserWellDefined x {g} {h} g=h gx=x = transitive (actionWellDefined1 (Equivalence.symmetric (Setoid.eq S) g=h)) gx=x
where
open Equivalence eq
open Setoid T
open Equivalence (Setoid.eq T)
stabiliserSubgroup : (x : B) → Subgroup G (stabiliserPred x)
Subgroup.isSubset (stabiliserSubgroup x) = stabiliserWellDefined x
Subgroup.closedUnderPlus (stabiliserSubgroup x) gx=x hx=x = transitive associativeAction (transitive (actionWellDefined2 hx=x) gx=x)
Subgroup.containsIdentity (stabiliserSubgroup x) = identityAction
Subgroup.closedUnderInverse (stabiliserSubgroup x) {g} gx=x = transitive (transitive (transitive (actionWellDefined2 (symmetric gx=x)) (symmetric associativeAction)) (actionWellDefined1 (invLeft {g}))) identityAction
where
open Group G
| 43.757576
| 216
| 0.737535
|
a12daa5a7304f5dd19802870f6672f4b3f4332e0
| 385
|
agda
|
Agda
|
test/interaction/PragmasRespected.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/interaction/PragmasRespected.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/interaction/PragmasRespected.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
{-# OPTIONS --show-implicit #-}
module PragmasRespected where
postulate
Foo : {A : Set₁} → Set
Bar : Foo {A = Set}
-- Andreas, 2014-10-20, AIM XX:
-- This test used to check that the --show-implicit option
-- is turned on even if the module is just reloaded from
-- an interface file.
-- However, as we now always recheck when reload,
-- this test should now trivially succeed.
| 25.666667
| 58
| 0.696104
|
dc9f62b9b6332c460a849770f5ace82345194cf6
| 956
|
agda
|
Agda
|
src/EqBool.agda
|
mckeankylej/agda-ring-solver
|
f18d9c6bdfae5b4c3ead9a83e06f16a0b7204500
|
[
"MIT"
] | 36
|
2019-01-25T16:40:52.000Z
|
2022-02-15T00:57:55.000Z
|
src/EqBool.agda
|
oisdk/agda-algebra
|
7e4ee048dab68ccb0a8673a6a663a37c1d1f4080
|
[
"MIT"
] | 5
|
2019-04-17T20:48:48.000Z
|
2022-03-12T01:55:42.000Z
|
src/EqBool.agda
|
oisdk/agda-algebra
|
7e4ee048dab68ccb0a8673a6a663a37c1d1f4080
|
[
"MIT"
] | 4
|
2019-04-16T02:23:16.000Z
|
2022-01-20T07:07:11.000Z
|
{-# OPTIONS --without-K --safe #-}
module EqBool where
open import Data.Bool
record HasEqBool {a} (A : Set a) : Set a where
field _==_ : A → A → Bool
open HasEqBool ⦃ ... ⦄ public
open import Data.List as List using (List; _∷_; [])
==[] : ∀ {a} {A : Set a} → ⦃ _ : HasEqBool A ⦄ → List A → List A → Bool
==[] [] [] = true
==[] [] (x ∷ ys) = false
==[] (x ∷ xs) [] = false
==[] (x ∷ xs) (y ∷ ys) = x == y ∧ ==[] xs ys
instance
eqList : ∀ {a} {A : Set a} → ⦃ _ : HasEqBool A ⦄ → HasEqBool (List A)
_==_ ⦃ eqList ⦄ = ==[]
open import Data.Nat using (ℕ)
instance
eqNat : HasEqBool ℕ
_==_ ⦃ eqNat ⦄ = Agda.Builtin.Nat._==_
where import Agda.Builtin.Nat
instance
eqBool : HasEqBool Bool
_==_ ⦃ eqBool ⦄ false false = true
_==_ ⦃ eqBool ⦄ false true = false
_==_ ⦃ eqBool ⦄ true y = y
open import Data.String using (String)
instance
eqString : HasEqBool String
_==_ ⦃ eqString ⦄ = Data.String._==_
where import Data.String
| 23.317073
| 71
| 0.57636
|
39dc1583ee45c3c8dc6b98c05e095e2cb0fec708
| 5,317
|
agda
|
Agda
|
agda-stdlib-0.9/src/Data/Maybe.agda
|
qwe2/try-agda
|
9d4c43b1609d3f085636376fdca73093481ab882
|
[
"Apache-2.0"
] | 1
|
2016-10-20T15:52:05.000Z
|
2016-10-20T15:52:05.000Z
|
agda-stdlib-0.9/src/Data/Maybe.agda
|
qwe2/try-agda
|
9d4c43b1609d3f085636376fdca73093481ab882
|
[
"Apache-2.0"
] | null | null | null |
agda-stdlib-0.9/src/Data/Maybe.agda
|
qwe2/try-agda
|
9d4c43b1609d3f085636376fdca73093481ab882
|
[
"Apache-2.0"
] | null | null | null |
------------------------------------------------------------------------
-- The Agda standard library
--
-- The Maybe type
------------------------------------------------------------------------
module Data.Maybe where
open import Level
------------------------------------------------------------------------
-- The type
open import Data.Maybe.Core public
------------------------------------------------------------------------
-- Some operations
open import Data.Bool using (Bool; true; false; not)
open import Data.Unit using (⊤)
open import Function
open import Relation.Nullary
boolToMaybe : Bool → Maybe ⊤
boolToMaybe true = just _
boolToMaybe false = nothing
is-just : ∀ {a} {A : Set a} → Maybe A → Bool
is-just (just _) = true
is-just nothing = false
is-nothing : ∀ {a} {A : Set a} → Maybe A → Bool
is-nothing = not ∘ is-just
decToMaybe : ∀ {a} {A : Set a} → Dec A → Maybe A
decToMaybe (yes x) = just x
decToMaybe (no _) = nothing
-- A dependent eliminator.
maybe : ∀ {a b} {A : Set a} {B : Maybe A → Set b} →
((x : A) → B (just x)) → B nothing → (x : Maybe A) → B x
maybe j n (just x) = j x
maybe j n nothing = n
-- A non-dependent eliminator.
maybe′ : ∀ {a b} {A : Set a} {B : Set b} → (A → B) → B → Maybe A → B
maybe′ = maybe
-- A safe variant of "fromJust". If the value is nothing, then the
-- return type is the unit type.
From-just : ∀ {a} (A : Set a) → Maybe A → Set a
From-just A (just _) = A
From-just A nothing = Lift ⊤
from-just : ∀ {a} {A : Set a} (x : Maybe A) → From-just A x
from-just (just x) = x
from-just nothing = _
------------------------------------------------------------------------
-- Maybe monad
open import Category.Functor
open import Category.Monad
open import Category.Monad.Identity
map : ∀ {a b} {A : Set a} {B : Set b} → (A → B) → Maybe A → Maybe B
map f = maybe (just ∘ f) nothing
functor : ∀ {f} → RawFunctor (Maybe {a = f})
functor = record
{ _<$>_ = map
}
monadT : ∀ {f} {M : Set f → Set f} →
RawMonad M → RawMonad (λ A → M (Maybe A))
monadT M = record
{ return = M.return ∘ just
; _>>=_ = λ m f → M._>>=_ m (maybe f (M.return nothing))
}
where module M = RawMonad M
monad : ∀ {f} → RawMonad (Maybe {a = f})
monad = monadT IdentityMonad
monadZero : ∀ {f} → RawMonadZero (Maybe {a = f})
monadZero = record
{ monad = monad
; ∅ = nothing
}
monadPlus : ∀ {f} → RawMonadPlus (Maybe {a = f})
monadPlus {f} = record
{ monadZero = monadZero
; _∣_ = _∣_
}
where
_∣_ : {A : Set f} → Maybe A → Maybe A → Maybe A
nothing ∣ y = y
just x ∣ y = just x
------------------------------------------------------------------------
-- Equality
open import Relation.Binary as B
data Eq {a ℓ} {A : Set a} (_≈_ : Rel A ℓ) : Rel (Maybe A) (a ⊔ ℓ) where
just : ∀ {x y} (x≈y : x ≈ y) → Eq _≈_ (just x) (just y)
nothing : Eq _≈_ nothing nothing
drop-just : ∀ {a ℓ} {A : Set a} {_≈_ : Rel A ℓ} {x y : A} →
just x ⟨ Eq _≈_ ⟩ just y → x ≈ y
drop-just (just x≈y) = x≈y
setoid : ∀ {ℓ₁ ℓ₂} → Setoid ℓ₁ ℓ₂ → Setoid _ _
setoid S = record
{ Carrier = Maybe S.Carrier
; _≈_ = _≈_
; isEquivalence = record
{ refl = refl
; sym = sym
; trans = trans
}
}
where
module S = Setoid S
_≈_ = Eq S._≈_
refl : ∀ {x} → x ≈ x
refl {just x} = just S.refl
refl {nothing} = nothing
sym : ∀ {x y} → x ≈ y → y ≈ x
sym (just x≈y) = just (S.sym x≈y)
sym nothing = nothing
trans : ∀ {x y z} → x ≈ y → y ≈ z → x ≈ z
trans (just x≈y) (just y≈z) = just (S.trans x≈y y≈z)
trans nothing nothing = nothing
decSetoid : ∀ {ℓ₁ ℓ₂} → DecSetoid ℓ₁ ℓ₂ → DecSetoid _ _
decSetoid D = record
{ isDecEquivalence = record
{ isEquivalence = Setoid.isEquivalence (setoid (DecSetoid.setoid D))
; _≟_ = _≟_
}
}
where
_≟_ : B.Decidable (Eq (DecSetoid._≈_ D))
just x ≟ just y with DecSetoid._≟_ D x y
just x ≟ just y | yes x≈y = yes (just x≈y)
just x ≟ just y | no x≉y = no (x≉y ∘ drop-just)
just x ≟ nothing = no λ()
nothing ≟ just y = no λ()
nothing ≟ nothing = yes nothing
------------------------------------------------------------------------
-- Any and All
open Data.Bool using (T)
open import Data.Empty using (⊥)
import Relation.Nullary.Decidable as Dec
open import Relation.Unary as U
data Any {a p} {A : Set a} (P : A → Set p) : Maybe A → Set (a ⊔ p) where
just : ∀ {x} (px : P x) → Any P (just x)
data All {a p} {A : Set a} (P : A → Set p) : Maybe A → Set (a ⊔ p) where
just : ∀ {x} (px : P x) → All P (just x)
nothing : All P nothing
Is-just : ∀ {a} {A : Set a} → Maybe A → Set a
Is-just = Any (λ _ → ⊤)
Is-nothing : ∀ {a} {A : Set a} → Maybe A → Set a
Is-nothing = All (λ _ → ⊥)
to-witness : ∀ {p} {P : Set p} {m : Maybe P} → Is-just m → P
to-witness (just {x = p} _) = p
to-witness-T : ∀ {p} {P : Set p} (m : Maybe P) → T (is-just m) → P
to-witness-T (just p) _ = p
to-witness-T nothing ()
anyDec : ∀ {a p} {A : Set a} {P : A → Set p} →
U.Decidable P → U.Decidable (Any P)
anyDec p nothing = no λ()
anyDec p (just x) = Dec.map′ just (λ { (Any.just px) → px }) (p x)
allDec : ∀ {a p} {A : Set a} {P : A → Set p} →
U.Decidable P → U.Decidable (All P)
allDec p nothing = yes nothing
allDec p (just x) = Dec.map′ just (λ { (All.just px) → px }) (p x)
| 27.127551
| 72
| 0.510626
|
dfeb2eeaea3f135cb012a9d8b685283306437906
| 272
|
agda
|
Agda
|
test/Fail/Issue1718.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Fail/Issue1718.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Fail/Issue1718.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
-- Andreas, 2015-11-17, issue reported by Martin Stone Davis
module _ where
module Sub (let open import oops) where
-- WAS: internal error
-- EXPECTED: Not a valid let-declaration
-- when scope checking the declaration
-- module Sub (let open import oops) where
| 22.666667
| 60
| 0.727941
|
0ee04806b467405f87b2333693554cc7d4a61062
| 12,029
|
agda
|
Agda
|
Cubical/Data/Nat/Algebra.agda
|
FernandoLarrain/cubical
|
9acdecfa6437ec455568be4e5ff04849cc2bc13b
|
[
"MIT"
] | 301
|
2018-10-17T18:00:24.000Z
|
2022-03-24T02:10:47.000Z
|
Cubical/Data/Nat/Algebra.agda
|
FernandoLarrain/cubical
|
9acdecfa6437ec455568be4e5ff04849cc2bc13b
|
[
"MIT"
] | 584
|
2018-10-15T09:49:02.000Z
|
2022-03-30T12:09:17.000Z
|
Cubical/Data/Nat/Algebra.agda
|
FernandoLarrain/cubical
|
9acdecfa6437ec455568be4e5ff04849cc2bc13b
|
[
"MIT"
] | 134
|
2018-11-16T06:11:03.000Z
|
2022-03-23T16:22:13.000Z
|
{-# OPTIONS --no-exact-split --safe #-}
{-
This file shows that the property of the natural numbers being a homotopy-initial algebra of
the functor (1 + _) is equivalent to fulfilling a closely related inductive elimination principle.
Proofing the latter is trivial, since the typechecker does the work for us.
For details see the paper [Homotopy-initial algebras in type theory](https://arxiv.org/abs/1504.05531)
by Steve Awodey, Nicola Gambino and Kristina Sojakova.
-}
module Cubical.Data.Nat.Algebra where
open import Cubical.Core.Everything
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.GroupoidLaws
open import Cubical.Foundations.Path
open import Cubical.Foundations.Isomorphism
hiding (section)
open import Cubical.Foundations.Transport
open import Cubical.Foundations.Univalence
open import Cubical.Reflection.StrictEquiv
open import Cubical.Data.Nat.Base
private
variable
ℓ ℓ' : Level
record NatAlgebra ℓ : Type (ℓ-suc ℓ) where
field
Carrier : Type ℓ
alg-zero : Carrier
alg-suc : Carrier → Carrier
record NatMorphism (A : NatAlgebra ℓ) (B : NatAlgebra ℓ') : Type (ℓ-max ℓ ℓ') where
open NatAlgebra
field
morph : A .Carrier → B .Carrier
comm-zero : morph (A .alg-zero) ≡ B .alg-zero
comm-suc : morph ∘ A .alg-suc ≡ B .alg-suc ∘ morph
record NatFiber (N : NatAlgebra ℓ') ℓ : Type (ℓ-max ℓ' (ℓ-suc ℓ)) where
open NatAlgebra N
field
Fiber : Carrier → Type ℓ
fib-zero : Fiber alg-zero
fib-suc : ∀ {n} → Fiber n → Fiber (alg-suc n)
record NatSection {N : NatAlgebra ℓ'} (F : NatFiber N ℓ) : Type (ℓ-max ℓ' ℓ) where
open NatAlgebra N
open NatFiber F
field
section : ∀ n → Fiber n
sec-comm-zero : section alg-zero ≡ fib-zero
sec-comm-suc : ∀ n → section (alg-suc n) ≡ fib-suc (section n)
isNatHInitial : NatAlgebra ℓ' → (ℓ : Level) → Type (ℓ-max ℓ' (ℓ-suc ℓ))
isNatHInitial N ℓ = (M : NatAlgebra ℓ) → isContr (NatMorphism N M)
isNatInductive : NatAlgebra ℓ' → (ℓ : Level) → Type (ℓ-max ℓ' (ℓ-suc ℓ))
isNatInductive N ℓ = (S : NatFiber N ℓ) → NatSection S
module AlgebraPropositionality {N : NatAlgebra ℓ'} where
open NatAlgebra N
isPropIsNatHInitial : isProp (isNatHInitial N ℓ)
isPropIsNatHInitial = isPropΠ (λ _ → isPropIsContr)
-- under the assumption that some shape is nat-inductive, the type of sections over any fiber
-- is propositional
module SectionProp (ind : isNatInductive N ℓ) {F : NatFiber N ℓ} (S T : NatSection F) where
open NatFiber
open NatSection
ConnectingFiber : NatFiber N ℓ
Fiber ConnectingFiber n = S .section n ≡ T .section n
fib-zero ConnectingFiber = S .sec-comm-zero ∙∙ refl ∙∙ sym (T .sec-comm-zero)
fib-suc ConnectingFiber {n} sntn = S .sec-comm-suc n ∙∙ (λ i → F .fib-suc (sntn i)) ∙∙ sym (T .sec-comm-suc n)
open NatSection (ind ConnectingFiber)
renaming (section to α ; sec-comm-zero to ζ ; sec-comm-suc to σ)
squeezeSquare : ∀{a}{A : Type a}{w x y z : A} (p : w ≡ x) {q : x ≡ y} (r : z ≡ y)
→ (P : w ≡ z) → (sq : P ≡ p ∙∙ q ∙∙ sym r) → I → I → A
squeezeSquare p {q} r P sq i j = transport (sym (PathP≡doubleCompPathʳ p P q r)) sq i j
S≡T : S ≡ T
section (S≡T i) n = α n i
sec-comm-zero (S≡T i) j = squeezeSquare (S .sec-comm-zero) (T .sec-comm-zero) (α alg-zero) ζ j i
sec-comm-suc (S≡T i) n j = squeezeSquare (S .sec-comm-suc n) (T .sec-comm-suc n) (α (alg-suc n)) (σ n) j i
isPropIsNatInductive : isProp (isNatInductive N ℓ)
isPropIsNatInductive a b i F = SectionProp.S≡T a (a F) (b F) i
module AlgebraHInd→HInit {N : NatAlgebra ℓ'} (ind : isNatInductive N ℓ) (M : NatAlgebra ℓ) where
open NatAlgebra
open NatFiber
ConstFiberM : NatFiber N ℓ
Fiber ConstFiberM _ = M .Carrier
fib-zero ConstFiberM = M .alg-zero
fib-suc ConstFiberM = M .alg-suc
morph→section : NatMorphism N M → NatSection ConstFiberM
morph→section x = record { section = morph ; sec-comm-zero = comm-zero ; sec-comm-suc = λ i n → comm-suc n i }
where open NatMorphism x
section→morph : NatSection ConstFiberM → NatMorphism N M
section→morph x = record { morph = section ; comm-zero = sec-comm-zero ; comm-suc = λ n i → sec-comm-suc i n }
where open NatSection x
Morph≡Section : NatSection ConstFiberM ≡ NatMorphism N M
Morph≡Section = ua e
where
unquoteDecl e = declStrictEquiv e section→morph morph→section
isContrMorph : isContr (NatMorphism N M)
isContrMorph = subst isContr Morph≡Section (inhProp→isContr (ind ConstFiberM) (AlgebraPropositionality.SectionProp.S≡T ind))
open NatAlgebra
open NatFiber
open NatSection
open NatMorphism
module AlgebraHInit→Ind (N : NatAlgebra ℓ') ℓ (hinit : isNatHInitial N (ℓ-max ℓ' ℓ)) (F : NatFiber N (ℓ-max ℓ' ℓ)) where
ΣAlgebra : NatAlgebra (ℓ-max ℓ' ℓ)
Carrier ΣAlgebra = Σ (N .Carrier) (F .Fiber)
alg-zero ΣAlgebra = N .alg-zero , F .fib-zero
alg-suc ΣAlgebra (n , fn) = N .alg-suc n , F .fib-suc fn
-- the fact that we have to lift the Carrier obstructs readability a bit
-- this is the same algebra as N, but lifted into the correct universe
LiftN : NatAlgebra (ℓ-max ℓ' ℓ)
Carrier LiftN = Lift {_} {ℓ} (N .Carrier)
alg-zero LiftN = lift (N .alg-zero)
alg-suc LiftN = lift ∘ N .alg-suc ∘ lower
_!_ : ∀ {x y} → x ≡ y → F .Fiber x → F .Fiber y
_!_ = subst (F .Fiber)
-- from homotopy initiality of N we get
-- 1) an algebra morphism μ from N → Σ N F together with proofs of commutativity with the algebras
-- 2) projecting out the first component after μ, called α, will turn out to be the identity function
-- 3) witnesses that μ respects the definitions given in ΣAlgebra
-- a) at zero the witnesses are ζ and ζ-h
-- b) at suc the witnesses are σ and σ-h
open NatMorphism (hinit ΣAlgebra .fst) renaming (morph to μ ; comm-zero to μ-zc ; comm-suc to μ-sc)
module _ n where open Σ (μ n) public renaming (fst to α ; snd to α-h)
-- module _ i where open Σ (μ-zc i) public renaming (fst to ζ ; snd to ζ-h)
ζ : α (N .alg-zero) ≡ N .alg-zero
ζ i = μ-zc i .fst
ζ-h : PathP (λ i → F .Fiber (ζ i)) (α-h (N .alg-zero)) (F .fib-zero)
ζ-h i = μ-zc i .snd
-- module _ n i where open Σ (μ-sc i n) public renaming (fst to σ ; snd to σ-h)
σ : ∀ n → α (N .alg-suc n) ≡ N .alg-suc (α n)
σ n i = μ-sc i n .fst
σ-h : ∀ n → PathP (λ i → F .Fiber (σ n i)) (α-h (N .alg-suc n)) (F .fib-suc (α-h n))
σ-h n i = μ-sc i n .snd
-- liftMorph would be the identity morphism if it weren't for size issues
liftMorph : NatMorphism N LiftN
liftMorph = record { morph = lift ; comm-zero = refl ; comm-suc = refl }
-- instead of abstractly defining morphism composition and a projection algebra morphism
-- from Σ N F → N, define the composite directly. comm-zero and comm-suc thus are
-- defined without path composition
fst∘μ : NatMorphism N LiftN
morph fst∘μ = lift ∘ α
comm-zero fst∘μ i = lift (ζ i)
comm-suc fst∘μ i n = lift (σ n i)
fst∘μ≡id : fst∘μ ≡ liftMorph
fst∘μ≡id = isContr→isProp (hinit LiftN) _ _
-- we get a proof that the index is preserved uniformly
P : ∀ n → α n ≡ n
P n i = lower (fst∘μ≡id i .morph n)
-- we also have proofs that α cancels after the algebra of N
Q-zero : α (N .alg-zero) ≡ N .alg-zero
Q-zero = ζ
Q-suc : ∀ n → α (N .alg-suc n) ≡ N .alg-suc n
Q-suc n = σ n ∙ cong (N .alg-suc) (P n)
-- but P and Q are the same up to homotopy
P-zero : P (N .alg-zero) ≡ Q-zero
P-zero i j = hcomp (λ k → λ where
(i = i0) → lower (fst∘μ≡id j .comm-zero (~ k))
(i = i1) → ζ (j ∨ ~ k)
(j = i0) → ζ (~ k)
(j = i1) → N .alg-zero
) (N .alg-zero)
P-suc : ∀ n → P (N .alg-suc n) ≡ Q-suc n
P-suc n i j = hcomp (λ k → λ where
(i = i0) → lower (fst∘μ≡id j .comm-suc (~ k) n)
(i = i1) → compPath-filler' (σ n) (cong (N .alg-suc) (P n)) k j
(j = i0) → σ n (~ k)
(j = i1) → N .alg-suc n
) (N .alg-suc (P n j))
Fsection : NatSection F
section Fsection n = P n ! α-h n
sec-comm-zero Fsection =
P (N .alg-zero) ! α-h (N .alg-zero)
≡[ i ]⟨ P-zero i ! α-h _ ⟩
Q-zero ! α-h (N .alg-zero)
≡⟨ fromPathP ζ-h ⟩
F .fib-zero
∎
sec-comm-suc Fsection n =
P (N .alg-suc n) ! α-h (N .alg-suc n)
≡[ i ]⟨ P-suc n i ! α-h _ ⟩
Q-suc n ! α-h (N .alg-suc n)
≡⟨ substComposite (F .Fiber) (σ n) (cong (N .alg-suc) (P n)) _ ⟩
cong (N .alg-suc) (P n) ! (σ n ! α-h (N .alg-suc n))
≡[ i ]⟨ cong (N .alg-suc) (P n) ! fromPathP (σ-h n) i ⟩
cong (N .alg-suc) (P n) ! (F .fib-suc (α-h n))
≡⟨ substCommSlice (F .Fiber) (F .Fiber ∘ N .alg-suc) (λ _ → F .fib-suc) (P n) (α-h n) ⟩
F .fib-suc (P n ! α-h n)
∎
isNatInductive≡isNatHInitial : {N : NatAlgebra ℓ'} (ℓ : Level)
→ isNatInductive N (ℓ-max ℓ' ℓ) ≡ isNatHInitial N (ℓ-max ℓ' ℓ)
isNatInductive≡isNatHInitial {_} {N} ℓ = hPropExt isPropIsNatInductive isPropIsNatHInitial ind→init init→ind where
open AlgebraPropositionality
open AlgebraHInit→Ind N ℓ renaming (Fsection to init→ind)
open AlgebraHInd→HInit renaming (isContrMorph to ind→init)
-- given two homotopy initial algebras there is a path between the algebras
-- this implies moreover that the carrier types are isomorphic
-- according to 5.16 in the paper this could be strengthened to isContr (N ≡ M)
isNatHInitial→algebraPath : {N M : NatAlgebra ℓ}
→ (hinitN : isNatHInitial N ℓ) (hinitM : isNatHInitial M ℓ)
→ N ≡ M
isNatHInitial→algebraPath {N = N} {M} hinitN hinitM = N≡M where
open Σ (hinitN M) renaming (fst to N→M)
open Σ (hinitM N) renaming (fst to M→N)
idN : NatMorphism N N
idN = record { morph = λ x → x ; comm-zero = refl ; comm-suc = refl }
idM : NatMorphism M M
idM = record { morph = λ x → x ; comm-zero = refl ; comm-suc = refl }
N→M→N : NatMorphism N N
morph N→M→N = morph M→N ∘ morph N→M
comm-zero N→M→N = (λ i → morph M→N (comm-zero N→M i)) ∙ comm-zero M→N
comm-suc N→M→N = (λ i → morph M→N ∘ comm-suc N→M i) ∙ (λ i → comm-suc M→N i ∘ morph N→M)
nmn≡idn : N→M→N ≡ idN
nmn≡idn = isContr→isProp (hinitN N) _ _
M→N→M : NatMorphism M M
morph M→N→M = morph N→M ∘ morph M→N
comm-zero M→N→M = (λ i → morph N→M (comm-zero M→N i)) ∙ comm-zero N→M
comm-suc M→N→M = (λ i → morph N→M ∘ comm-suc M→N i) ∙ (λ i → comm-suc N→M i ∘ morph M→N)
mnm≡idm : M→N→M ≡ idM
mnm≡idm = isContr→isProp (hinitM M) _ _
carrier≡ : N .Carrier ≡ M .Carrier
carrier≡ = isoToPath (iso (N→M .morph) (M→N .morph) (λ x i → mnm≡idm i .morph x) (λ x i → nmn≡idn i .morph x))
zero≡ : PathP (λ i → carrier≡ i) (N .alg-zero) (M .alg-zero)
zero≡ = toPathP λ i → transportRefl (N→M .comm-zero i) i
suc≡ : PathP (λ i → carrier≡ i → carrier≡ i) (N .alg-suc) (M .alg-suc)
suc≡ = toPathP (
transport refl ∘ N→M .morph ∘ N .alg-suc ∘ M→N .morph ∘ transport refl
≡[ i ]⟨ transportReflF i ∘ N→M .morph ∘ N .alg-suc ∘ M→N .morph ∘ transportReflF i ⟩
N→M .morph ∘ N .alg-suc ∘ M→N .morph
≡[ i ]⟨ N→M .comm-suc i ∘ M→N .morph ⟩
M .alg-suc ∘ N→M .morph ∘ M→N .morph
≡[ i ]⟨ M .alg-suc ∘ mnm≡idm i .morph ⟩
M .alg-suc
∎) where
transportReflF : transport refl ≡ (λ x → x)
transportReflF = funExt transportRefl
N≡M : N ≡ M
Carrier (N≡M i) = carrier≡ i
alg-zero (N≡M i) = zero≡ i
alg-suc (N≡M i) = suc≡ i
-- the payoff, it is straight forward to define the algebra and show inductiveness of ℕ
NatAlgebraℕ : NatAlgebra ℓ-zero
Carrier NatAlgebraℕ = ℕ
alg-zero NatAlgebraℕ = zero
alg-suc NatAlgebraℕ = suc
isNatInductiveℕ : isNatInductive NatAlgebraℕ ℓ
section (isNatInductiveℕ F) = nat-sec where
nat-sec : ∀ n → F .Fiber n
nat-sec zero = F .fib-zero
nat-sec (suc n) = F .fib-suc (nat-sec n)
sec-comm-zero (isNatInductiveℕ F) = refl
sec-comm-suc (isNatInductiveℕ F) n = refl
isNatHInitialℕ : isNatHInitial NatAlgebraℕ ℓ
isNatHInitialℕ = transport (isNatInductive≡isNatHInitial _) isNatInductiveℕ
| 40.096667
| 126
| 0.632887
|
cbf9f17568abf9ad62bf139eb32a156a00e43c79
| 3,457
|
agda
|
Agda
|
Globular-TT/Syntax.agda
|
thibautbenjamin/catt-formalization
|
3a02010a869697f4833c9bc6047d66ca27b87cf2
|
[
"MIT"
] | null | null | null |
Globular-TT/Syntax.agda
|
thibautbenjamin/catt-formalization
|
3a02010a869697f4833c9bc6047d66ca27b87cf2
|
[
"MIT"
] | null | null | null |
Globular-TT/Syntax.agda
|
thibautbenjamin/catt-formalization
|
3a02010a869697f4833c9bc6047d66ca27b87cf2
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --rewriting --without-K #-}
open import Agda.Primitive
open import Prelude
import GSeTT.Syntax
{- Syntax for a globular type theory, with arbitrary term constructors -}
module Globular-TT.Syntax {l} (index : Set l) where
data Pre-Ty : Set (lsuc l)
data Pre-Tm : Set (lsuc l)
data Pre-Sub : Set (lsuc l)
data Pre-Ctx : Set (lsuc l)
data Pre-Ty where
∗ : Pre-Ty
⇒ : Pre-Ty → Pre-Tm → Pre-Tm → Pre-Ty
data Pre-Tm where
Var : ℕ → Pre-Tm
Tm-constructor : ∀ (i : index) → Pre-Sub → Pre-Tm
data Pre-Sub where
<> : Pre-Sub
<_,_↦_> : Pre-Sub → ℕ → Pre-Tm → Pre-Sub
data Pre-Ctx where
⊘ : Pre-Ctx
_∙_#_ : Pre-Ctx → ℕ → Pre-Ty → Pre-Ctx
C-length : Pre-Ctx → ℕ
C-length ⊘ = O
C-length (Γ ∙ _ # _) = S (C-length Γ)
-- Equality elimination
⇒= : ∀ {A B t t' u u'} → A == B → t == t' → u == u' → ⇒ A t u == ⇒ B t' u'
⇒= idp idp idp = idp
=⇒ : ∀ {A B t t' u u'} → ⇒ A t u == ⇒ B t' u' → ((A == B) × (t == t')) × (u == u')
=⇒ idp = (idp , idp) , idp
Var= : ∀ {v w} → v == w → Var v == Var w
Var= idp = idp
Tm-constructor= : ∀ {i j γ δ} → i == j → γ == δ → (Tm-constructor i γ) == (Tm-constructor j δ)
Tm-constructor= idp idp = idp
=Tm-constructor : ∀ {i j γ δ} → (Tm-constructor i γ) == (Tm-constructor j δ) → i == j × γ == δ
=Tm-constructor idp = idp , idp
<,>= : ∀ {γ δ x y t u} → γ == δ → x == y → t == u → < γ , x ↦ t > == < δ , y ↦ u >
<,>= idp idp idp = idp
=<,> : ∀ {γ δ x y t u} → < γ , x ↦ t > == < δ , y ↦ u > → ((γ == δ) × (x == y)) × (t == u)
=<,> idp = (idp , idp) , idp
∙= : ∀ {Γ Δ x y A B} → Γ == Δ → x == y → A == B → (Γ ∙ x # A) == (Δ ∙ y # B)
∙= idp idp idp = idp
{- Action of substitutions on types and terms and substitutions on a syntactical level -}
_[_]Pre-Ty : Pre-Ty → Pre-Sub → Pre-Ty
_[_]Pre-Tm : Pre-Tm → Pre-Sub → Pre-Tm
_∘_ : Pre-Sub → Pre-Sub → Pre-Sub
∗ [ σ ]Pre-Ty = ∗
⇒ A t u [ σ ]Pre-Ty = ⇒ (A [ σ ]Pre-Ty) (t [ σ ]Pre-Tm) (u [ σ ]Pre-Tm)
Var x [ <> ]Pre-Tm = Var x
Var x [ < σ , v ↦ t > ]Pre-Tm = if x ≡ v then t else ((Var x) [ σ ]Pre-Tm)
Tm-constructor i γ [ σ ]Pre-Tm = Tm-constructor i (γ ∘ σ)
<> ∘ γ = <>
< γ , x ↦ t > ∘ δ = < γ ∘ δ , x ↦ t [ δ ]Pre-Tm >
_#_∈_ : ℕ → Pre-Ty → Pre-Ctx → Set (lsuc l)
_ # _ ∈ ⊘ = ⊥
x # A ∈ (Γ ∙ y # B) = (x # A ∈ Γ) + ((x == y) × (A == B))
{- dimension of types -}
dim : Pre-Ty → ℕ
dim ∗ = O
dim (⇒ A t u) = S (dim A)
dim[] : ∀ (A : Pre-Ty) (γ : Pre-Sub) → dim (A [ γ ]Pre-Ty) == dim A
dim[] ∗ γ = idp
dim[] (⇒ A x x₁) γ = S= (dim[] A γ)
dimC : Pre-Ctx → ℕ
dimC ⊘ = O
dimC (Γ ∙ x # A) = max (dimC Γ) (dim A)
{- Identity and canonical projection -}
Pre-id : ∀ (Γ : Pre-Ctx) → Pre-Sub
Pre-id ⊘ = <>
Pre-id (Γ ∙ x # A) = < Pre-id Γ , x ↦ Var x >
Pre-π : ∀ (Γ : Pre-Ctx) (x : ℕ) (A : Pre-Ty) → Pre-Sub
Pre-π Γ x A = Pre-id Γ
{- Translation of GSeTT to a globular-TT -}
GPre-Ctx : GSeTT.Syntax.Pre-Ctx → Pre-Ctx
GPre-Ty : GSeTT.Syntax.Pre-Ty → Pre-Ty
GPre-Tm : GSeTT.Syntax.Pre-Tm → Pre-Tm
GPre-Ctx nil = ⊘
GPre-Ctx (Γ :: (x , A)) = (GPre-Ctx Γ) ∙ x # (GPre-Ty A)
GPre-Ty GSeTT.Syntax.∗ = ∗
GPre-Ty (GSeTT.Syntax.⇒ A t u) = ⇒ (GPre-Ty A) (GPre-Tm t) (GPre-Tm u)
GPre-Tm (GSeTT.Syntax.Var x) = Var x
{- Depth of a term -}
depth : Pre-Tm → ℕ
depthS : Pre-Sub → ℕ
depth (Var x) = O
depth (Tm-constructor i γ) = S (depthS γ)
depthS <> = O
depthS < γ , x ↦ t > = max (depthS γ) (depth t)
| 28.336066
| 96
| 0.487995
|
c536995136e55b62b3428a0a2fc68d7aa81849fc
| 19,124
|
agda
|
Agda
|
Cubical/Homotopy/Connected.agda
|
guilhermehas/cubical
|
ce3120d3f8d692847b2744162bcd7a01f0b687eb
|
[
"MIT"
] | 1
|
2021-10-31T17:32:49.000Z
|
2021-10-31T17:32:49.000Z
|
Cubical/Homotopy/Connected.agda
|
guilhermehas/cubical
|
ce3120d3f8d692847b2744162bcd7a01f0b687eb
|
[
"MIT"
] | null | null | null |
Cubical/Homotopy/Connected.agda
|
guilhermehas/cubical
|
ce3120d3f8d692847b2744162bcd7a01f0b687eb
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --safe #-}
module Cubical.Homotopy.Connected where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Equiv.Properties
open import Cubical.Foundations.Pointed
open import Cubical.Foundations.Transport
open import Cubical.Foundations.GroupoidLaws
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Path
open import Cubical.Foundations.Univalence
open import Cubical.Functions.Fibration
open import Cubical.Data.Unit
open import Cubical.Data.Bool
open import Cubical.Data.Nat
open import Cubical.Data.Sigma
open import Cubical.HITs.Nullification
open import Cubical.HITs.Susp
open import Cubical.HITs.SmashProduct
open import Cubical.HITs.Pushout
open import Cubical.HITs.Sn.Base
open import Cubical.HITs.S1
open import Cubical.HITs.Truncation as Trunc renaming (rec to trRec)
open import Cubical.Homotopy.Loopspace
-- Note that relative to most sources, this notation is off by +2
isConnected : ∀ {ℓ} (n : HLevel) (A : Type ℓ) → Type ℓ
isConnected n A = isContr (hLevelTrunc n A)
isConnectedFun : ∀ {ℓ ℓ'} (n : HLevel) {A : Type ℓ} {B : Type ℓ'} (f : A → B) → Type (ℓ-max ℓ ℓ')
isConnectedFun n f = ∀ b → isConnected n (fiber f b)
isTruncatedFun : ∀ {ℓ ℓ'} (n : HLevel) {A : Type ℓ} {B : Type ℓ'} (f : A → B) → Type (ℓ-max ℓ ℓ')
isTruncatedFun n f = ∀ b → isOfHLevel n (fiber f b)
isConnectedSubtr : ∀ {ℓ} {A : Type ℓ} (n m : HLevel)
→ isConnected (m + n) A
→ isConnected n A
isConnectedSubtr {A = A} n m iscon =
isOfHLevelRetractFromIso 0 (truncOfTruncIso n m) (helper n iscon)
where
helper : (n : ℕ) → isConnected (m + n) A → isContr (hLevelTrunc n (hLevelTrunc (m + n) A))
helper zero iscon = isContrUnit*
helper (suc n) iscon = ∣ iscon .fst ∣ , (Trunc.elim (λ _ → isOfHLevelPath (suc n) (isOfHLevelTrunc (suc n)) _ _) λ a → cong ∣_∣ (iscon .snd a))
isConnectedFunSubtr : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} (n m : HLevel) (f : A → B)
→ isConnectedFun (m + n) f
→ isConnectedFun n f
isConnectedFunSubtr n m f iscon b = isConnectedSubtr n m (iscon b)
private
typeToFiberIso : ∀ {ℓ} (A : Type ℓ) → Iso A (fiber (λ (x : A) → tt) tt)
Iso.fun (typeToFiberIso A) x = x , refl
Iso.inv (typeToFiberIso A) = fst
Iso.rightInv (typeToFiberIso A) b i = fst b , (isOfHLevelSuc 1 (isPropUnit) tt tt (snd b) refl) i
Iso.leftInv (typeToFiberIso A) a = refl
typeToFiber : ∀ {ℓ} (A : Type ℓ) → A ≡ fiber (λ (x : A) → tt) tt
typeToFiber A = isoToPath (typeToFiberIso A)
isOfHLevelIsConnectedStable : ∀ {ℓ} {A : Type ℓ} (n : ℕ)
→ isOfHLevel n (isConnected n A)
isOfHLevelIsConnectedStable {A = A} zero =
(tt* , (λ _ → refl)) , λ _ → refl
isOfHLevelIsConnectedStable {A = A} (suc n) =
isProp→isOfHLevelSuc n isPropIsContr
module elim {ℓ ℓ' : Level} {A : Type ℓ} {B : Type ℓ'} (f : A → B) where
private
inv : ∀ {ℓ'''} (n : HLevel) (P : B → TypeOfHLevel ℓ''' (suc n))
→ ((a : A) → P (f a) .fst)
→ (b : B)
→ hLevelTrunc (suc n) (fiber f b) → P b .fst
inv n P t b =
Trunc.rec
(P b .snd)
(λ {(a , p) → subst (fst ∘ P) p (t a)})
isIsoPrecompose : ∀ {ℓ'''} (n : ℕ) (P : B → TypeOfHLevel ℓ''' n)
→ isConnectedFun n f
→ Iso ((b : B) → P b .fst) ((a : A) → P (f a) .fst)
Iso.fun (isIsoPrecompose _ P fConn) = _∘ f
Iso.inv (isIsoPrecompose zero P fConn) =
Iso.inv (isContr→Iso' (isOfHLevelΠ _ (λ b → P b .snd)) (isOfHLevelΠ _ λ a → P (f a) .snd) (_∘ f))
Iso.rightInv (isIsoPrecompose zero P fConn) =
Iso.rightInv (isContr→Iso' (isOfHLevelΠ _ (λ b → P b .snd)) (isOfHLevelΠ _ λ a → P (f a) .snd) (_∘ f))
Iso.leftInv (isIsoPrecompose zero P fConn) =
Iso.leftInv (isContr→Iso' (isOfHLevelΠ _ (λ b → P b .snd)) (isOfHLevelΠ _ λ a → P (f a) .snd) (_∘ f))
Iso.inv (isIsoPrecompose (suc n) P fConn) t b = inv n P t b (fConn b .fst)
Iso.rightInv (isIsoPrecompose (suc n) P fConn) t =
funExt λ a → cong (inv n P t (f a)) (fConn (f a) .snd ∣ a , refl ∣)
∙ substRefl {B = fst ∘ P} (t a)
Iso.leftInv (isIsoPrecompose (suc n) P fConn) s =
funExt λ b →
Trunc.elim
{B = λ d → inv n P (s ∘ f) b d ≡ s b}
(λ _ → isOfHLevelPath (suc n) (P b .snd) _ _)
(λ {(a , p) i → transp (λ j → P (p (j ∨ i)) .fst) i (s (p i))})
(fConn b .fst)
isEquivPrecompose : ∀ {ℓ'''} (n : ℕ) (P : B → TypeOfHLevel ℓ''' n)
→ isConnectedFun n f
→ isEquiv (λ(s : (b : B) → P b .fst) → s ∘ f)
isEquivPrecompose zero P fConn = isoToIsEquiv theIso
where
theIso : Iso ((b : B) → P b .fst) ((a : A) → P (f a) .fst)
Iso.fun theIso = λ(s : (b : B) → P b .fst) → s ∘ f
Iso.inv theIso = λ _ b → P b .snd .fst
Iso.rightInv theIso g = funExt λ x → P (f x) .snd .snd (g x)
Iso.leftInv theIso g = funExt λ x → P x .snd .snd (g x)
isEquivPrecompose (suc n) P fConn = isoToIsEquiv (isIsoPrecompose (suc n) P fConn)
isConnectedPrecompose : (n : ℕ) → ((P : B → TypeOfHLevel (ℓ-max ℓ ℓ') n)
→ hasSection (λ(s : (b : B) → P b .fst) → s ∘ f))
→ isConnectedFun n f
isConnectedPrecompose zero P→sect b = isContrUnit*
isConnectedPrecompose (suc n) P→sect b = c n P→sect b , λ y → sym (fun n P→sect b y)
where
P : (n : HLevel) → ((P : B → TypeOfHLevel ℓ (suc n))
→ hasSection (λ(s : (b : B) → P b .fst) → s ∘ f))
→ B → Type _
P n s b = hLevelTrunc (suc n) (fiber f b)
c : (n : HLevel) → ((P : B → TypeOfHLevel (ℓ-max ℓ ℓ') (suc n))
→ hasSection (λ(s : (b : B) → P b .fst) → s ∘ f)) → (b : B)
→ hLevelTrunc (suc n) (fiber f b)
c n s = (s λ b → (hLevelTrunc (suc n) (fiber f b) , isOfHLevelTrunc _)) .fst
λ a → ∣ a , refl ∣
fun : (n : HLevel) (P→sect : ((P : B → TypeOfHLevel (ℓ-max ℓ ℓ') (suc n))
→ hasSection λ(s : (b : B) → P b .fst) → s ∘ f))
→ (b : B) (w : (hLevelTrunc (suc n) (fiber f b)))
→ w ≡ c n P→sect b
fun n P→sect b = Trunc.elim (λ x → isOfHLevelPath (suc n) (isOfHLevelTrunc _) _ _)
λ a → J (λ b p → ∣ (fst a) , p ∣ ≡ c n P→sect b)
(c* (fst a))
(snd a)
where
c* : ((a : A) → ∣ (a , refl {x = f a}) ∣ ≡ c n P→sect (f a))
c* a = sym (cong (λ x → x a) (P→sect (λ b → hLevelTrunc (suc n) (fiber f b) , isOfHLevelTrunc _) .snd λ a → ∣ a , refl ∣))
isOfHLevelPrecomposeConnected : ∀ {ℓ ℓ' ℓ''} (k : HLevel) (n : HLevel)
{A : Type ℓ} {B : Type ℓ'} (P : B → TypeOfHLevel ℓ'' (k + n)) (f : A → B)
→ isConnectedFun n f
→ isOfHLevelFun k (λ(s : (b : B) → P b .fst) → s ∘ f)
isOfHLevelPrecomposeConnected zero n P f fConn =
elim.isEquivPrecompose f n P fConn .equiv-proof
isOfHLevelPrecomposeConnected (suc k) n P f fConn t =
isOfHLevelPath'⁻ k
λ {(s₀ , p₀) (s₁ , p₁) →
isOfHLevelRetractFromIso k (invIso ΣPathIsoPathΣ)
(subst (isOfHLevel k)
(sym (fiberPath (s₀ , p₀) (s₁ , p₁)))
(isOfHLevelRetract k
(λ {(q , α) → (funExt⁻ q) , (cong funExt⁻ α)})
(λ {(h , β) → (funExt h) , (cong funExt β)})
(λ _ → refl)
(isOfHLevelPrecomposeConnected k n
(λ b → (s₀ b ≡ s₁ b) , isOfHLevelPath' (k + n) (P b .snd) _ _)
f fConn
(funExt⁻ (p₀ ∙∙ refl ∙∙ sym p₁)))))}
indMapEquiv→conType : ∀ {ℓ} {A : Type ℓ} (n : HLevel)
→ ((B : TypeOfHLevel ℓ n)
→ isEquiv (λ (b : (fst B)) → λ (a : A) → b))
→ isConnected n A
indMapEquiv→conType {A = A} zero BEq = isContrUnit*
indMapEquiv→conType {A = A} (suc n) BEq =
isOfHLevelRetractFromIso 0 (mapCompIso {n = (suc n)} (typeToFiberIso A))
(elim.isConnectedPrecompose (λ _ → tt) (suc n)
(λ P → ((λ a _ → a) ∘ invIsEq (BEq (P tt)))
, λ a → equiv-proof (BEq (P tt)) a .fst .snd)
tt)
isConnectedComp : ∀ {ℓ ℓ' ℓ''} {A : Type ℓ} {B : Type ℓ'} {C : Type ℓ''}
(f : B → C) (g : A → B) (n : ℕ)
→ isConnectedFun n f
→ isConnectedFun n g
→ isConnectedFun n (f ∘ g)
isConnectedComp {C = C} f g n con-f con-g =
elim.isConnectedPrecompose (f ∘ g) n
λ P →
isEquiv→hasSection
(compEquiv
(_ , elim.isEquivPrecompose f n P con-f)
(_ , elim.isEquivPrecompose g n (λ b → P (f b)) con-g) .snd)
isEquiv→isConnected : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'}
(f : A → B)
→ isEquiv f
→ (n : ℕ) → isConnectedFun n f
isEquiv→isConnected f iseq n b =
isContr→isContr∥ n (equiv-proof iseq b)
isConnectedPath : ∀ {ℓ} (n : HLevel) {A : Type ℓ}
→ isConnected (suc n) A
→ (a₀ a₁ : A) → isConnected n (a₀ ≡ a₁)
isConnectedPath zero connA a₀ a₁ = isContrUnit*
isConnectedPath (suc n) {A = A} connA a₀ a₁ =
isOfHLevelRetractFromIso 0 (invIso (PathIdTruncIso (suc n))) (isContr→isContrPath connA _ _)
isConnectedPathP : ∀ {ℓ} (n : HLevel) {A : I → Type ℓ}
→ isConnected (suc n) (A i1)
→ (a₀ : A i0) (a₁ : A i1) → isConnected n (PathP A a₀ a₁)
isConnectedPathP n con a₀ a₁ =
subst (isConnected n) (sym (PathP≡Path _ _ _))
(isConnectedPath n con _ _)
isConnectedCong : ∀ {ℓ ℓ'} (n : HLevel) {A : Type ℓ} {B : Type ℓ'} (f : A → B)
→ isConnectedFun (suc n) f
→ ∀ {a₀ a₁} → isConnectedFun n {A = a₀ ≡ a₁} (cong f)
isConnectedCong n f cf {a₀} {a₁} q =
subst (isConnected n)
(sym (fiberCong f q))
(isConnectedPath n (cf (f a₁)) (a₀ , q) (a₁ , refl))
isConnectedCong' : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} {x : A} {y : B}
(n : ℕ) (f : A → B)
→ isConnectedFun (suc n) f
→ (p : f x ≡ y)
→ isConnectedFun n
λ (q : x ≡ x) → sym p ∙∙ cong f q ∙∙ p
isConnectedCong' {x = x} n f conf p =
transport (λ i → (isConnectedFun n
λ (q : x ≡ x)
→ doubleCompPath-filler (sym p) (cong f q) p i))
(isConnectedCong n f conf)
isConnectedΩ→ : ∀ {ℓ ℓ'} {A : Pointed ℓ} {B : Pointed ℓ'} (n : ℕ)
→ (f : A →∙ B)
→ isConnectedFun (suc n) (fst f)
→ isConnectedFun n (fst (Ω→ f))
isConnectedΩ→ n f g =
transport (λ i → isConnectedFun n λ b
→ doubleCompPath-filler (sym (snd f)) (cong (fst f) b) (snd f) i)
(isConnectedCong n _ g)
isConnectedΩ^→ : ∀ {ℓ ℓ'} {A : Pointed ℓ} {B : Pointed ℓ'} (n m : ℕ)
→ (f : A →∙ B)
→ isConnectedFun (suc n) (fst f)
→ isConnectedFun ((suc n) ∸ m) (fst (Ω^→ m f))
isConnectedΩ^→ n zero f conf = conf
isConnectedΩ^→ n (suc zero) f conf = isConnectedΩ→ n f conf
isConnectedΩ^→ {A = A} {B = B} n (suc (suc m)) f conf =
transport (λ i → isConnectedFun (suc n ∸ suc (suc m))
λ q → doubleCompPath-filler
(sym (snd (Ω^→ (suc m) f)))
(cong (fst (Ω^→ (suc m) f)) q)
(snd (Ω^→ (suc m) f)) i)
(main n m (isConnectedΩ^→ n (suc m) f conf))
where
open import Cubical.Data.Sum
lem : (n m : ℕ) → ((suc n ∸ m ≡ suc (n ∸ m))) ⊎ (suc n ∸ suc m ≡ 0)
lem n zero = inl refl
lem zero (suc m) = inr refl
lem (suc n) (suc m) = lem n m
main : (n m : ℕ)
→ isConnectedFun (suc n ∸ suc m) (fst (Ω^→ (suc m) f))
→ isConnectedFun (suc n ∸ suc (suc m))
{A = Path ((Ω^ (suc m)) (_ , pt A) .fst)
refl refl}
(cong (fst (Ω^→ (suc m) f)))
main n m conf with (lem n (suc m))
... | (inl x) =
isConnectedCong (n ∸ suc m) (fst (Ω^→ (suc m) f))
(subst (λ x → isConnectedFun x (fst (Ω^→ (suc m) f))) x conf)
... | (inr x) =
subst (λ x → isConnectedFun x (cong {x = refl} {y = refl}
(fst (Ω^→ (suc m) f))))
(sym x)
λ b → tt* , λ _ → refl
isConnectedRetract : ∀ {ℓ ℓ'} (n : HLevel)
{A : Type ℓ} {B : Type ℓ'}
(f : A → B) (g : B → A)
(h : (x : A) → g (f x) ≡ x)
→ isConnected n B → isConnected n A
isConnectedRetract zero _ _ _ _ = isContrUnit*
isConnectedRetract (suc n) f g h =
isContrRetract
(Trunc.map f)
(Trunc.map g)
(Trunc.elim
(λ _ → isOfHLevelPath (suc n) (isOfHLevelTrunc (suc n)) _ _)
(λ a → cong ∣_∣ (h a)))
isConnectedRetractFromIso : ∀ {ℓ ℓ'} (n : HLevel)
{A : Type ℓ} {B : Type ℓ'}
→ Iso A B
→ isConnected n B → isConnected n A
isConnectedRetractFromIso n e =
isConnectedRetract n
(Iso.fun e)
(Iso.inv e)
(Iso.leftInv e)
isConnectedPoint : ∀ {ℓ} (n : HLevel) {A : Type ℓ}
→ isConnected (suc n) A
→ (a : A) → isConnectedFun n (λ(_ : Unit) → a)
isConnectedPoint n connA a₀ a =
isConnectedRetract n
snd (_ ,_) (λ _ → refl)
(isConnectedPath n connA a₀ a)
isConnectedPoint2 : ∀ {ℓ} (n : HLevel) {A : Type ℓ} (a : A)
→ isConnectedFun n (λ(_ : Unit) → a)
→ isConnected (suc n) A
isConnectedPoint2 n {A = A} a connMap = indMapEquiv→conType _ λ B → isoToIsEquiv (theIso B)
where
module _ {ℓ' : Level} (B : TypeOfHLevel ℓ' (suc n))
where
helper : (f : A → fst B) → (a2 : A) → f a2 ≡ f a
helper f = equiv-proof (elim.isEquivPrecompose (λ _ → a) n (λ a2 → (f a2 ≡ f a) ,
isOfHLevelPath' n (snd B) (f a2) (f a)) connMap) (λ _ → refl) .fst .fst
theIso : Iso (fst B) (A → fst B)
Iso.fun theIso b a = b
Iso.inv theIso f = f a
Iso.rightInv theIso f = funExt λ y → sym (helper f y)
Iso.leftInv theIso _ = refl
connectedTruncIso : ∀ {ℓ} {A B : Type ℓ} (n : HLevel) (f : A → B)
→ isConnectedFun n f
→ Iso (hLevelTrunc n A) (hLevelTrunc n B)
connectedTruncIso {A = A} {B = B} zero f con = isContr→Iso isContrUnit* isContrUnit*
connectedTruncIso {A = A} {B = B} (suc n) f con = g
where
back : B → hLevelTrunc (suc n) A
back y = map fst ((con y) .fst)
backSection : (b : B) → Path (hLevelTrunc (suc n) B)
(Trunc.rec (isOfHLevelTrunc (suc n))
(λ a → ∣ f a ∣)
(Trunc.rec (isOfHLevelTrunc (suc n))
back ∣ b ∣))
∣ b ∣
backSection b = helper (λ p → map f p ≡ ∣ b ∣)
(λ x → (isOfHLevelSuc (suc n) (isOfHLevelTrunc (suc n)))
(map f (map fst x)) ∣ b ∣)
(λ a p → cong ∣_∣ p)
(fst (con b))
where
helper : ∀ {ℓ ℓ' ℓ''} {A : Type ℓ} {B : A → Type ℓ'} (P : hLevelTrunc (suc n) A → Type ℓ'')
→ ((x : hLevelTrunc (suc n) (Σ A B)) → isOfHLevel (suc n) (P (map fst x)))
→ ((a : A) (b : B a) → P ∣ a ∣)
→ (p : hLevelTrunc (suc n) (Σ A B))
→ P (map fst p)
helper P hlev pf = Trunc.elim hlev λ pair → pf (fst pair) (snd pair)
g : Iso (hLevelTrunc (suc n) A) (hLevelTrunc (suc n) B)
Iso.fun g = map f
Iso.inv g = Trunc.rec (isOfHLevelTrunc _) back
Iso.leftInv g = Trunc.elim (λ x → isOfHLevelPath (suc n) (isOfHLevelTrunc _) _ _)
λ a → cong (map fst) (con (f a) .snd ∣ a , refl ∣)
Iso.rightInv g = Trunc.elim (λ x → isOfHLevelPath (suc n) (isOfHLevelTrunc _) _ _)
backSection
connectedTruncIso2 : ∀ {ℓ} {A B : Type ℓ} (n m : HLevel) (f : A → B)
→ Σ[ x ∈ ℕ ] x + n ≡ m
→ isConnectedFun m f
→ Iso (hLevelTrunc n A) (hLevelTrunc n B)
connectedTruncIso2 {A = A} {B = B} n m f (x , pf) con =
connectedTruncIso n f (isConnectedFunSubtr n x f (transport (λ i → isConnectedFun (pf (~ i)) f) con))
connectedTruncEquiv : ∀ {ℓ} {A B : Type ℓ} (n : HLevel) (f : A → B)
→ isConnectedFun n f
→ hLevelTrunc n A ≃ hLevelTrunc n B
connectedTruncEquiv {A = A} {B = B} n f con = isoToEquiv (connectedTruncIso n f con)
-- TODO : Reorganise the following proofs.
inrConnected : ∀ {ℓ ℓ' ℓ''} {A : Type ℓ} {B : Type ℓ'} {C : Type ℓ''} (n : HLevel)
→ (f : C → A) (g : C → B)
→ isConnectedFun n f
→ isConnectedFun n {A = B} {B = Pushout f g} inr
inrConnected {A = A} {B = B} {C = C} n f g iscon =
elim.isConnectedPrecompose inr n λ P → (k P) , λ b → refl
where
module _ {ℓ : Level} (P : (Pushout f g) → TypeOfHLevel ℓ n)
(h : (b : B) → typ (P (inr b)))
where
Q : A → TypeOfHLevel _ n
Q a = (P (inl a))
fun : (c : C) → typ (Q (f c))
fun c = transport (λ i → typ (P (push c (~ i)))) (h (g c))
k : (d : Pushout f g) → typ (P d)
k (inl x) = equiv-proof (elim.isEquivPrecompose f n Q iscon) fun .fst .fst x
k (inr x) = h x
k (push a i) =
hcomp (λ k → λ { (i = i0) → equiv-proof (elim.isEquivPrecompose f n Q iscon) fun .fst .snd i0 a
; (i = i1) → transportTransport⁻ (λ j → typ (P (push a j))) (h (g a)) k })
(transp (λ j → typ (P (push a (i ∧ j))))
(~ i)
(equiv-proof (elim.isEquivPrecompose f n Q iscon)
fun .fst .snd i a))
{- Given two fibration B , C : A → Type and a family of maps on fibres
f : (a : A) → B a → C a, we have that f a is n-connected for all (a : A)
iff the induced map on totalspaces Σ A B → Σ A C is n-connected -}
module _ {ℓ ℓ' ℓ'' : Level} {A : Type ℓ} {B : A → Type ℓ'} {C : A → Type ℓ''}
(f : ((a : A) → B a → C a))
where
open Iso
TotalFun : Σ A B → Σ A C
TotalFun (a , b) = a , f a b
fibTotalFun→fibFun : (x : Σ A C)
→ Σ[ y ∈ Σ A B ] TotalFun y ≡ x
→ Σ[ y ∈ B (fst x) ] f (fst x) y ≡ snd x
fibTotalFun→fibFun x =
uncurry
λ r → J (λ x _ → Σ[ y ∈ B (fst x) ] f (fst x) y ≡ snd x)
((snd r) , refl)
fibFun→fibTotalFun : (x : Σ A C)
→ Σ[ y ∈ B (fst x) ] f (fst x) y ≡ snd x
→ Σ[ y ∈ Σ A B ] TotalFun y ≡ x
fibFun→fibTotalFun x (b , p) = (_ , b) , ΣPathP (refl , p)
Iso-fibTotalFun-fibFun : (x : Σ A C)
→ Iso (Σ[ y ∈ Σ A B ] TotalFun y ≡ x)
(Σ[ y ∈ B (fst x) ] f (fst x) y ≡ snd x)
fun (Iso-fibTotalFun-fibFun x) = fibTotalFun→fibFun x
inv (Iso-fibTotalFun-fibFun x) = fibFun→fibTotalFun x
rightInv (Iso-fibTotalFun-fibFun x) (r , y) j =
transp (λ i → Σ[ b ∈ B (fst x) ] (f (fst x) b ≡ y (i ∨ j))) j
(r , λ i → y (i ∧ j))
leftInv (Iso-fibTotalFun-fibFun x) =
uncurry λ r
→ J (λ x y → inv (Iso-fibTotalFun-fibFun x)
(fun (Iso-fibTotalFun-fibFun x) (r , y))
≡ (r , y))
(cong (fibFun→fibTotalFun (TotalFun r))
(transportRefl (snd r , refl)))
TotalFunConnected→FunConnected : (n : ℕ)
→ isConnectedFun n TotalFun
→ ((a : A) → isConnectedFun n (f a))
TotalFunConnected→FunConnected n con a r =
isConnectedRetractFromIso n
(invIso (Iso-fibTotalFun-fibFun (a , r))) (con (a , r))
FunConnected→TotalFunConnected : (n : ℕ)
→ ((a : A) → isConnectedFun n (f a))
→ isConnectedFun n TotalFun
FunConnected→TotalFunConnected n con r =
isConnectedRetractFromIso n
(Iso-fibTotalFun-fibFun r) (con (fst r) (snd r))
| 41.215517
| 145
| 0.534041
|
dfbeb944bc5d024a81e45893eeb7087b03e2acdf
| 8,750
|
agda
|
Agda
|
src/generic-filter.agda
|
shinji-kono/zf-in-agda
|
031f1ea3a3037cd51eb022dbfb5c75b037bf8aa0
|
[
"MIT"
] | 5
|
2019-10-02T13:46:23.000Z
|
2021-01-10T13:27:48.000Z
|
src/generic-filter.agda
|
shinji-kono/zf-in-agda
|
031f1ea3a3037cd51eb022dbfb5c75b037bf8aa0
|
[
"MIT"
] | null | null | null |
src/generic-filter.agda
|
shinji-kono/zf-in-agda
|
031f1ea3a3037cd51eb022dbfb5c75b037bf8aa0
|
[
"MIT"
] | null | null | null |
open import Level
open import Ordinals
module generic-filter {n : Level } (O : Ordinals {n}) where
import filter
open import zf
open import logic
-- open import partfunc {n} O
import OD
open import Relation.Nullary
open import Relation.Binary
open import Data.Empty
open import Relation.Binary
open import Relation.Binary.Core
open import Relation.Binary.PropositionalEquality
open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ )
import BAlgbra
open BAlgbra O
open inOrdinal O
open OD O
open OD.OD
open ODAxiom odAxiom
import OrdUtil
import ODUtil
open Ordinals.Ordinals O
open Ordinals.IsOrdinals isOrdinal
open Ordinals.IsNext isNext
open OrdUtil O
open ODUtil O
import ODC
open filter O
open _∧_
open _∨_
open Bool
open HOD
-------
-- the set of finite partial functions from ω to 2
--
--
open import Data.List hiding (filter)
open import Data.Maybe
import OPair
open OPair O
ODSuc : (y : HOD) → infinite ∋ y → HOD
ODSuc y lt = Union (y , (y , y))
data Hω2 : (i : Nat) ( x : Ordinal ) → Set n where
hφ : Hω2 0 o∅
h0 : {i : Nat} {x : Ordinal } → Hω2 i x →
Hω2 (Suc i) (& (Union ((< nat→ω i , nat→ω 0 >) , * x )))
h1 : {i : Nat} {x : Ordinal } → Hω2 i x →
Hω2 (Suc i) (& (Union ((< nat→ω i , nat→ω 1 >) , * x )))
he : {i : Nat} {x : Ordinal } → Hω2 i x →
Hω2 (Suc i) x
record Hω2r (x : Ordinal) : Set n where
field
count : Nat
hω2 : Hω2 count x
open Hω2r
HODω2 : HOD
HODω2 = record { od = record { def = λ x → Hω2r x } ; odmax = next o∅ ; <odmax = odmax0 } where
P : (i j : Nat) (x : Ordinal ) → HOD
P i j x = ((nat→ω i , nat→ω i) , (nat→ω i , nat→ω j)) , * x
nat1 : (i : Nat) (x : Ordinal) → & (nat→ω i) o< next x
nat1 i x = next< nexto∅ ( <odmax infinite (ω∋nat→ω {i}))
lemma1 : (i j : Nat) (x : Ordinal ) → osuc (& (P i j x)) o< next x
lemma1 i j x = osuc<nx (pair-<xy (pair-<xy (pair-<xy (nat1 i x) (nat1 i x) ) (pair-<xy (nat1 i x) (nat1 j x) ) )
(subst (λ k → k o< next x) (sym &iso) x<nx ))
lemma : (i j : Nat) (x : Ordinal ) → & (Union (P i j x)) o< next x
lemma i j x = next< (lemma1 i j x ) ho<
odmax0 : {y : Ordinal} → Hω2r y → y o< next o∅
odmax0 {y} r with hω2 r
... | hφ = x<nx
... | h0 {i} {x} t = next< (odmax0 record { count = i ; hω2 = t }) (lemma i 0 x)
... | h1 {i} {x} t = next< (odmax0 record { count = i ; hω2 = t }) (lemma i 1 x)
... | he {i} {x} t = next< (odmax0 record { count = i ; hω2 = t }) x<nx
3→Hω2 : List (Maybe Two) → HOD
3→Hω2 t = list→hod t 0 where
list→hod : List (Maybe Two) → Nat → HOD
list→hod [] _ = od∅
list→hod (just i0 ∷ t) i = Union (< nat→ω i , nat→ω 0 > , ( list→hod t (Suc i) ))
list→hod (just i1 ∷ t) i = Union (< nat→ω i , nat→ω 1 > , ( list→hod t (Suc i) ))
list→hod (nothing ∷ t) i = list→hod t (Suc i )
Hω2→3 : (x : HOD) → HODω2 ∋ x → List (Maybe Two)
Hω2→3 x = lemma where
lemma : { y : Ordinal } → Hω2r y → List (Maybe Two)
lemma record { count = 0 ; hω2 = hφ } = []
lemma record { count = (Suc i) ; hω2 = (h0 hω3) } = just i0 ∷ lemma record { count = i ; hω2 = hω3 }
lemma record { count = (Suc i) ; hω2 = (h1 hω3) } = just i1 ∷ lemma record { count = i ; hω2 = hω3 }
lemma record { count = (Suc i) ; hω2 = (he hω3) } = nothing ∷ lemma record { count = i ; hω2 = hω3 }
ω→2 : HOD
ω→2 = Power infinite
ω→2f : (x : HOD) → ω→2 ∋ x → Nat → Two
ω→2f x lt n with ODC.∋-p O x (nat→ω n)
ω→2f x lt n | yes p = i1
ω→2f x lt n | no ¬p = i0
fω→2-sel : ( f : Nat → Two ) (x : HOD) → Set n
fω→2-sel f x = (infinite ∋ x) ∧ ( (lt : odef infinite (& x) ) → f (ω→nat x lt) ≡ i1 )
fω→2 : (Nat → Two) → HOD
fω→2 f = Select infinite (fω→2-sel f)
open _==_
import Axiom.Extensionality.Propositional
postulate f-extensionality : { n m : Level} → Axiom.Extensionality.Propositional.Extensionality n m
ω2∋f : (f : Nat → Two) → ω→2 ∋ fω→2 f
ω2∋f f = power← infinite (fω→2 f) (λ {x} lt → proj1 ((proj2 (selection {fω→2-sel f} {infinite} )) lt))
ω→2f≡i1 : (X i : HOD) → (iω : infinite ∋ i) → (lt : ω→2 ∋ X ) → ω→2f X lt (ω→nat i iω) ≡ i1 → X ∋ i
ω→2f≡i1 X i iω lt eq with ODC.∋-p O X (nat→ω (ω→nat i iω))
ω→2f≡i1 X i iω lt eq | yes p = subst (λ k → X ∋ k ) (nat→ω-iso iω) p
open _⊆_
-- someday ...
-- postulate
-- ω→2f-iso : (X : HOD) → ( lt : ω→2 ∋ X ) → fω→2 ( ω→2f X lt ) =h= X
-- fω→2-iso : (f : Nat → Two) → ω→2f ( fω→2 f ) (ω2∋f f) ≡ f
record CountableOrdinal : Set (suc (suc n)) where
field
ctl→ : Nat → Ordinal
ctl← : Ordinal → Nat
ctl-iso→ : { x : Ordinal } → ctl→ (ctl← x ) ≡ x
ctl-iso← : { x : Nat } → ctl← (ctl→ x ) ≡ x
record CountableHOD : Set (suc (suc n)) where
field
mhod : HOD
mtl→ : Nat → Ordinal
mtl→∈P : (i : Nat) → odef mhod (mtl→ i)
mtl← : (x : Ordinal) → odef mhod x → Nat
mtl-iso→ : { x : Ordinal } → (lt : odef mhod x ) → mtl→ (mtl← x lt ) ≡ x
mtl-iso← : { x : Nat } → mtl← (mtl→ x ) (mtl→∈P x) ≡ x
open CountableOrdinal
open CountableHOD
----
-- a(n) ∈ M
-- ∃ q ∈ Power P → q ∈ a(n) ∧ p(n) ⊆ q
--
PGHOD : (i : Nat) → (C : CountableOrdinal) → (P : HOD) → (p : Ordinal) → HOD
PGHOD i C P p = record { od = record { def = λ x →
odef (Power P) x ∧ odef (* (ctl→ C i)) x ∧ ( (y : Ordinal ) → odef (* p) y → odef (* x) y ) }
; odmax = odmax (Power P) ; <odmax = λ {y} lt → <odmax (Power P) (proj1 lt) }
---
-- p(n+1) = if PGHOD n qn otherwise p(n)
--
next-p : (C : CountableOrdinal) (P : HOD ) (i : Nat) → (p : Ordinal) → Ordinal
next-p C P i p with is-o∅ ( & (PGHOD i C P p))
next-p C P i p | yes y = p
next-p C P i p | no not = & (ODC.minimal O (PGHOD i C P p ) (λ eq → not (=od∅→≡o∅ eq))) -- axiom of choice
---
-- ascendant search on p(n)
--
find-p : (C : CountableOrdinal) (P : HOD ) (i : Nat) → (x : Ordinal) → Ordinal
find-p C P Zero x = x
find-p C P (Suc i) x = find-p C P i ( next-p C P i x )
---
-- G = { r ∈ Power P | ∃ n → r ⊆ p(n) }
--
record PDN (C : CountableOrdinal) (P : HOD ) (x : Ordinal) : Set n where
field
gr : Nat
pn<gr : (y : Ordinal) → odef (* x) y → odef (* (find-p C P gr o∅)) y
x∈PP : odef (Power P) x
open PDN
---
-- G as a HOD
--
PDHOD : (C : CountableOrdinal) → (P : HOD ) → HOD
PDHOD C P = record { od = record { def = λ x → PDN C P x }
; odmax = odmax (Power P) ; <odmax = λ {y} lt → <odmax (Power P) {y} (PDN.x∈PP lt) }
open PDN
----
-- Generic Filter on Power P for HOD's Countable Ordinal (G ⊆ Power P ≡ G i.e. Nat → P → Set )
--
-- p 0 ≡ ∅
-- p (suc n) = if ∃ q ∈ * ( ctl→ n ) ∧ p n ⊆ q → q (axiom of choice)
--- else p n
P∅ : {P : HOD} → odef (Power P) o∅
P∅ {P} = subst (λ k → odef (Power P) k ) ord-od∅ (lemma o∅ o∅≡od∅) where
lemma : (x : Ordinal ) → * x ≡ od∅ → odef (Power P) (& od∅)
lemma x eq = power← P od∅ (λ {x} lt → ⊥-elim (¬x<0 lt ))
x<y→∋ : {x y : Ordinal} → odef (* x) y → * x ∋ * y
x<y→∋ {x} {y} lt = subst (λ k → odef (* x) k ) (sym &iso) lt
P-GenericFilter : (C : CountableOrdinal) → (P : HOD ) → GenericFilter P
P-GenericFilter C P = record {
genf = record { filter = PDHOD C P ; f⊆PL = f⊆PL ; filter1 = {!!} ; filter2 = {!!} }
; generic = λ D → {!!}
} where
find-p-⊆P : (C : CountableOrdinal) (P : HOD ) (i : Nat) → (x y : Ordinal) → odef (Power P) x → odef (* (find-p C P i x)) y → odef P y
find-p-⊆P C P Zero x y Px Py = subst (λ k → odef P k ) &iso
( incl (ODC.power→⊆ O P (* x) (d→∋ (Power P) Px)) (x<y→∋ Py))
find-p-⊆P C P (Suc i) x y Px Py = find-p-⊆P C P i (next-p C P i x) y {!!} {!!}
f⊆PL : PDHOD C P ⊆ Power P
f⊆PL = record { incl = λ {x} lt → power← P x (λ {y} y<x →
find-p-⊆P C P (gr lt) o∅ (& y) P∅ (pn<gr lt (& y) (subst (λ k → odef k (& y)) (sym *iso) y<x))) }
open GenericFilter
open Filter
record Incompatible (P : HOD ) : Set (suc (suc n)) where
field
except : HOD → ( HOD ∧ HOD )
incompatible : { p : HOD } → Power P ∋ p → Power P ∋ proj1 (except p ) → Power P ∋ proj2 (except p )
→ ( p ⊆ proj1 (except p) ) ∧ ( p ⊆ proj2 (except p) )
→ ∀ ( r : HOD ) → Power P ∋ r → ¬ (( proj1 (except p) ⊆ r ) ∧ ( proj2 (except p) ⊆ r ))
lemma725 : (M : CountableHOD ) (C : CountableOrdinal) (P : HOD ) → mhod M ∋ Power P
→ Incompatible P → ¬ ( mhod M ∋ filter ( genf ( P-GenericFilter C P )))
lemma725 = {!!}
lemma725-1 : Incompatible HODω2
lemma725-1 = {!!}
lemma726 : (C : CountableOrdinal) (P : HOD )
→ Union ( filter ( genf ( P-GenericFilter C HODω2 ))) =h= ω→2
lemma726 = {!!}
--
-- val x G = { val y G | ∃ p → G ∋ p → x ∋ < y , p > }
--
-- W (ω , H ( ω , 2 )) = { p ∈ ( Nat → H (ω , 2) ) | { i ∈ Nat → p i ≠ i1 } is finite }
--
| 33.143939
| 143
| 0.521829
|
12d28ebf93e1652d4e8cc01df6c3534bacf69fda
| 2,404
|
agda
|
Agda
|
src/fot/FOTC/Program/Collatz/PropertiesI.agda
|
asr/fotc
|
2fc9f2b81052a2e0822669f02036c5750371b72d
|
[
"MIT"
] | 11
|
2015-09-03T20:53:42.000Z
|
2021-09-12T16:09:54.000Z
|
src/fot/FOTC/Program/Collatz/PropertiesI.agda
|
asr/fotc
|
2fc9f2b81052a2e0822669f02036c5750371b72d
|
[
"MIT"
] | 2
|
2016-10-12T17:28:16.000Z
|
2017-01-01T14:34:26.000Z
|
src/fot/FOTC/Program/Collatz/PropertiesI.agda
|
asr/fotc
|
2fc9f2b81052a2e0822669f02036c5750371b72d
|
[
"MIT"
] | 3
|
2016-09-19T14:18:30.000Z
|
2018-03-14T08:50:00.000Z
|
------------------------------------------------------------------------------
-- Properties of the Collatz function
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOTC.Program.Collatz.PropertiesI where
open import Common.FOL.Relation.Binary.EqReasoning
open import FOTC.Base
open import FOTC.Base.PropertiesI
open import FOTC.Data.Nat
open import FOTC.Data.Nat.PropertiesI
open import FOTC.Data.Nat.UnaryNumbers
open import FOTC.Data.Nat.UnaryNumbers.TotalityI
open import FOTC.Program.Collatz.Collatz
open import FOTC.Program.Collatz.Data.Nat
open import FOTC.Program.Collatz.Data.Nat.PropertiesI
------------------------------------------------------------------------------
collatzCong : ∀ {m n} → m ≡ n → collatz m ≡ collatz n
collatzCong refl = refl
helper : ∀ {n} → N n → collatz (2' ^ succ₁ n) ≡ collatz (2' ^ n)
helper nzero =
collatz (2' ^ 1') ≡⟨ collatzCong (x^1≡x 2-N) ⟩
collatz 2' ≡⟨ collatz-even 2-Even ⟩
collatz (div 2' 2') ≡⟨ collatzCong (div-x-x≡1 2-N S≢0) ⟩
collatz (1') ≡⟨ collatzCong (sym (^-0 2')) ⟩
collatz (2' ^ 0') ∎
helper (nsucc {n} Nn) =
collatz (2' ^ succ₁ (succ₁ n))
≡⟨ collatzCong prf ⟩
collatz (succ₁ (succ₁ (2' ^ succ₁ (succ₁ n) ∸ 2')))
≡⟨ collatz-even (x-Even→SSx-Even
(∸-N (^-N 2-N (nsucc (nsucc Nn))) 2-N)
(∸-Even (^-N 2-N (nsucc (nsucc Nn))) 2-N
(2^[x+1]-Even (nsucc Nn)) 2-Even)) ⟩
collatz (div (succ₁ (succ₁ ((2' ^ succ₁ (succ₁ n)) ∸ 2'))) 2')
≡⟨ collatzCong (divLeftCong (sym prf)) ⟩
collatz (div (2' ^ succ₁ (succ₁ n)) 2')
≡⟨ collatzCong (div-2^[x+1]-2≡2^x (nsucc Nn)) ⟩
collatz (2' ^ succ₁ n) ∎
where
prf : 2' ^ succ₁ (succ₁ n) ≡ succ₁ (succ₁ (2' ^ succ₁ (succ₁ n) ∸ 2'))
prf = (+∸2 (^-N 2-N (nsucc (nsucc Nn)))
(2^x≢0 (nsucc (nsucc Nn)))
(2^[x+1]≢1 (nsucc Nn)))
collatz-2^x : ∀ {n} → N n → collatz (2' ^ n) ≡ 1'
collatz-2^x nzero =
collatz (2' ^ 0') ≡⟨ collatzCong (^-0 2') ⟩
collatz 1' ≡⟨ collatz-1 ⟩
1' ∎
collatz-2^x (nsucc {n} Nn) =
collatz (2' ^ succ₁ n) ≡⟨ helper Nn ⟩
collatz (2' ^ n) ≡⟨ collatz-2^x Nn ⟩
1' ∎
| 36.424242
| 78
| 0.499168
|
dcfaac7d15921f3446b3004f77a25b2e9d518847
| 5,105
|
agda
|
Agda
|
src/Ch2-3.agda
|
banacorn/hott
|
75eea99a879e100304bd48c538c9d2db0b4a4ff3
|
[
"MIT"
] | null | null | null |
src/Ch2-3.agda
|
banacorn/hott
|
75eea99a879e100304bd48c538c9d2db0b4a4ff3
|
[
"MIT"
] | null | null | null |
src/Ch2-3.agda
|
banacorn/hott
|
75eea99a879e100304bd48c538c9d2db0b4a4ff3
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --without-K #-}
module Ch2-3 where
open import Level hiding (lift)
open import Ch2-1
open import Ch2-2
-- p
-- x ~~~~~~~~~ y
--
--
-- P x --------> P y
--
-- Lemma 2.3.1 (transport)
transport : ∀ {a b} {A : Set a} {x y : A}
→ (P : A → Set b)
→ (p : x ≡ y)
→ P x → P y
transport {a} {b} {A} {x} {y} P p = J A D d x y p P
-- J A D d x y p P
where
-- the predicate
D : (x y : A) (p : x ≡ y) → Set (a ⊔ suc b)
D x y p = (P : A → Set b) → P x → P y
-- base case
d : (x : A) → D x x refl
d x P y = y
open import Data.Product
-- proof
-- +-----+ p +-----+
-- | x ~~~~~~~~~~~~~~~~ y |
-- | | | |
-- | P x |~~~~~~~~~~~~| P y |
-- +-----+ * +-----+
--
-- Lemma 2.3.2 (path lifting property)
lift : ∀ {a b} {A : Set a}
→ (P : A → Set b)
→ (proof : Σ[ x ∈ A ] P x)
→ (y : A)
→ (p : proj₁ proof ≡ y)
→ proof ≡ (y , transport P p (proj₂ proof))
lift {a} {b} {A} P proof y p = J A D d (proj₁ proof) y p (proj₂ proof)
where
-- the predicate
D : (x y : A) (p : x ≡ y) → Set (a ⊔ b)
D x y p = (u : P x) → (x , u) ≡ (y , transport P p u)
-- base case
d : (x : A) → D x x refl
d x u = refl
-- A
-- +----------------------------------------------+
-- | p |
-- | x ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ y |
-- | + + |
-- +----------------------------------------------+
-- | |
-- P x | P y |
-- +-------+ +----------------------------------+
-- | v | | * v |
-- | f x +-------> transport P p (f x) ~~~~~ f y |
-- | | | |
-- +-------+ +----------------------------------+
--
-- Lemma 2.3.4 (dependent map)
apd : ∀ {a b} {A : Set a} {x y : A}
→ {P : A → Set b}
→ (f : (z : A) → P z)
→ (p : x ≡ y)
→ transport P p (f x) ≡ f y
apd {a} {b} {A} {x} {y} {P} f p = J A D d x y p P f
where
-- the predicate
D : (x y : A) (p : x ≡ y) → _
D x y p = (P : A → Set b) (f : (z : A) → P z) → transport P p (f x) ≡ f y
-- base case
d : (x : A) → D x x refl
d x P f = refl
open import Function using (const; _∘_)
-- Lemma 2.3.5
transportconst : ∀ {a ℓ} {A : Set a} {x y : A}
→ {B : Set ℓ}
→ (p : x ≡ y)
→ (b : B)
→ transport (const B) p b ≡ b
transportconst {a} {ℓ} {A} {x} {y} {B} p b = J A D d x y p B b
where
-- the predicate
D : (x y : A) (p : x ≡ y) → _
D x y p = (B : Set ℓ) (b : B) → transport (const B) p b ≡ b
-- base case
d : (x : A) → D x x refl
d x B b = refl
open import Ch2-2
-- Lemma 2.3.8
lemma-2-3-8 : ∀ {a ℓ} {A : Set a} {B : Set ℓ} {x y : A}
→ (f : A → B)
→ (p : x ≡ y)
→ apd f p ≡ transportconst p (f x) ∙ ap f p
lemma-2-3-8 {a} {ℓ} {A} {B} {x} {y} f p = J {a} {a ⊔ ℓ} A D d x y p f
where
-- the predicate
D : (x y : A) (p : x ≡ y) → _
D x y p = (f : A → B) → apd f p ≡ transportconst p (f x) ∙ ap f p
-- base case
d : (x : A) → D x x refl
d x f = refl
-- Lemma 2.3.9
lemma-2-3-9 : ∀ {a b} {A : Set a} {x y z : A}
→ (P : A → Set b)
→ (p : x ≡ y)
→ (q : y ≡ z)
→ (u : P x)
→ transport P q (transport P p u) ≡ transport P (p ∙ q) u
lemma-2-3-9 {a} {b} {A} {x} {y} {z} P p q u = J A D d x y p P z q u
where
-- the predicate
D : (x y : A) (p : x ≡ y) → Set _
D x y p = (P : A → Set b) (z : A) (q : y ≡ z) (u : P x)
→ transport P q (transport P p u) ≡ transport P (p ∙ q) u
-- base case
d : (x : A) → D x x refl
d x P z q u = J A E e x z q P u
where
-- the predicate
E : (x z : A) (q : x ≡ z) → Set _
E x z q = (P : A → Set b) (u : P x)
→ transport P q (transport P refl u) ≡ transport P (refl ∙ q) u
-- base case
e : (x : A) → E x x refl
e x P u = refl
-- Lemma 2.3.10
lemma-2-3-10 : ∀ {a b c} {A : Set a} {B : Set b} {x y : A}
→ (P : B → Set c)
→ (f : A → B)
→ (p : x ≡ y)
→ (u : P (f x))
→ transport (P ∘ f) p u ≡ transport P (ap f p) u
lemma-2-3-10 {a} {b} {c} {A} {B} {x} {y} P f p u = J A D d x y p P f u
where
-- the predicate
D : (x y : A) (p : x ≡ y) → Set _
D x y p = (P : B → Set c) (f : A → B) (u : P (f x))
→ transport (P ∘ f) p u ≡ transport P (ap f p) u
-- base case
d : (x : A) → D x x refl
d x P f u = refl
-- Lemma 2.3.11
lemma-2-3-11 : {a b c : Level} {A : Set a} {x y : A}
→ (P : A → Set b) (Q : A → Set c)
→ (f : (z : A) → P z → Q z)
→ (p : x ≡ y)
→ (u : P x)
→ transport Q p (f x u) ≡ f y (transport P p u)
lemma-2-3-11 {a} {b} {c} {A} {x} {y} P Q f p u = J A D d x y p P Q f u
-- J A D d x y p {! !} {! !} {! !} {! !}
where
-- the predicate
D : (x y : A) (p : x ≡ y) → Set _
D x y p = (P : A → Set b) (Q : A → Set c) (f : (z : A) → P z → Q z) (u : P x)
→ transport Q p (f x u) ≡ f y (transport P p u)
-- base case
d : (x : A) → D x x refl
d x P Q f u = refl
| 27.299465
| 81
| 0.359843
|
10d8d84513a2be6635f62e164ceab248cfd3b03e
| 717
|
agda
|
Agda
|
test/fail/Issue543.agda
|
asr/agda-kanso
|
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
|
[
"MIT"
] | 1
|
2019-11-27T07:26:06.000Z
|
2019-11-27T07:26:06.000Z
|
test/fail/Issue543.agda
|
np/agda-git-experiment
|
20596e9dd9867166a64470dd24ea68925ff380ce
|
[
"MIT"
] | null | null | null |
test/fail/Issue543.agda
|
np/agda-git-experiment
|
20596e9dd9867166a64470dd24ea68925ff380ce
|
[
"MIT"
] | null | null | null |
-- Andreas, bug found 2011-12-31
module Issue543 where
import Common.Level
import Common.Irrelevance
open import Common.Equality
data ⊥ : Set where
record ⊤ : Set where
constructor tt
data Bool : Set where
true false : Bool
T : Bool → Set
T true = ⊤
T false = ⊥
record Squash {ℓ}(A : Set ℓ) : Set ℓ where
constructor squash
field
.unsquash : A
open Squash
-- ok:
sqT≡sqF : squash true ≡ squash false
sqT≡sqF = refl
-- this should not be provable!!
.irrT≡F : true ≡ false
irrT≡F = subst (λ s → unsquash (squash true) ≡ unsquash s) sqT≡sqF refl
-- the rest is easy
T≠F : true ≡ false → ⊥
T≠F p = subst T p tt
.irr⊥ : ⊥
irr⊥ = T≠F irrT≡F
rel⊥ : .⊥ → ⊥
rel⊥ ()
absurd : ⊥
absurd = rel⊥ irr⊥
| 16.295455
| 71
| 0.640167
|
066ab062e455925fbb055f08de215d5ca1e309c7
| 12,984
|
agda
|
Agda
|
BTA3_polybta-simplify-aenv.agda
|
luminousfennell/polybta
|
ef878f7fa5afa51fb7a14cd8f7f75da0af1b9deb
|
[
"BSD-3-Clause"
] | 1
|
2019-10-15T04:35:29.000Z
|
2019-10-15T04:35:29.000Z
|
BTA3_polybta-simplify-aenv.agda
|
luminousfennell/polybta
|
ef878f7fa5afa51fb7a14cd8f7f75da0af1b9deb
|
[
"BSD-3-Clause"
] | null | null | null |
BTA3_polybta-simplify-aenv.agda
|
luminousfennell/polybta
|
ef878f7fa5afa51fb7a14cd8f7f75da0af1b9deb
|
[
"BSD-3-Clause"
] | 1
|
2019-10-15T09:01:37.000Z
|
2019-10-15T09:01:37.000Z
|
module BTA3 where
open import Data.Nat
open import Data.Bool
open import Data.List
-- Binding times
data BT : Set where
S : BT
D : BT
-- defining a data type [BT],where two members are
-- [S] standing for "static" and [D] standing for dynamic.
-- ``subsumption'' binding times; static can be treated as dynamic,
-- but not vice versa
_≼_ : BT → BT → Bool
_≼_ D S = false
_≼_ _ _ = true
-- note that the above function can also be specified as follows,
-- _≼_ : BT → BT → Bool
-- D ≼ S = false
-- _ ≼ _ = true
-- note that the function [≼] specifies that a "static",S, can be treated
-- as a "dynamic",D, and not the other way round
-- since in Agda, pattern matching is conducted in a sequencial fashion,
-- the above specification makes sure that it returns [false] when the
-- first argument is [D] and the second [S] and returns [true] in all
-- the other three cases.
-- BEGIN: stuff that is also in the standard library
-- Standard propositional equality, see also Relation.Binary.PropositionalEquality
data _==_ {A : Set} (x : A) : A → Set where
refl : x == x
-- [_==_] defines an equality proposition
-- it takes two identical elements of one type as arguments and gives one
-- evidence,[refl],for the proposition
-- subst lemma
subst : {A B : Set}{x x' : A} {C : A → B} → x == x' → C x == C x'
subst{A}{B}{x}{.x} refl = refl
-- or being defined in the following manner...
-- my_subst : {A B : Set}{x x' : A}{C : A → B} → x == x' → C x == C x'
-- my_subst refl = refl
-- the above function further helps to construct evidence for equality
-- proposition
-- it says that if two elements are identical then two new elements obtained
-- by applying the former to a function should also be identical
record True : Set where
data False : Set where
-- note that the above is regarding two simple proposition [True] and [False]
-- regarding [True],
-- it is defined as empty record with a single element of type [True],[record{}]
-- the trick here is that the type checker knows this and fills in any implicit
-- arguments of [True] with this element
-- another way of defining [True] as follows,
-- record True : Set where
-- trivial : True
-- trivial = _
-- regarding [False],
-- it is defined as a proposition without any evidence corresponding well to
-- what a [False] proposition really means
isTrue : Bool → Set
isTrue true = True
isTrue false = False
-- note the isTrue b,given b as boolean, is the type of proof that b is equal to
-- true since if it is the case, [isTrue b] returns type [True] where its
-- evidence is automatically filled in by the type checker while if it is not
-- the case there is no way to supply for the evidence due to the way how
-- [false] is constructed
-- END standard library
----------------------
-- Sublists
----------------------
data _cx-≤_ {A : Set} : List A → List A → Set where
cxle-eq : (l : List A) → l cx-≤ l
cxle-lt : ∀ {l₁ l₂} x → l₁ cx-≤ l₂ → l₁ cx-≤ (x ∷ l₂)
lem-cx-≤-trans : {A : Set} → {l₁ : List A} {l₂ : List A} {l₃ : List A} →
l₁ cx-≤ l₂ → l₂ cx-≤ l₃ → l₁ cx-≤ l₃
lem-cx-≤-trans le1 (cxle-eq l) = le1
lem-cx-≤-trans (cxle-eq l) (cxle-lt x e) = cxle-lt x e
lem-cx-≤-trans (cxle-lt x e) (cxle-lt x' e') = cxle-lt x' (lem-cx-≤-trans (cxle-lt x e) e')
_cxle-∷_ : {A : Set} (x : A) (l : List A) → l cx-≤ (x ∷ l)
x cxle-∷ l = cxle-lt x (cxle-eq l)
data _⊆_ {A : Set} : List A → List A → Set where
refl-⊆ : ∀ {l} → l ⊆ l
step-⊆ : ∀ {l} x l₁ l₂ → l ⊆ (l₁ ++ l₂) → l ⊆ (l₁ ++ (x ∷ l₂))
lem-⊆-trans : {A : Set} → {l₁ : List A} {l₂ : List A} {l₃ : List A} →
l₁ ⊆ l₂ → l₂ ⊆ l₃ → l₁ ⊆ l₃
lem-⊆-trans e (refl-⊆ {l}) = e
lem-⊆-trans (refl-⊆ {l}) (step-⊆ x l₁ l₂ e) = step-⊆ x l₁ l₂ e
lem-⊆-trans (step-⊆ x l₁ l₂ e) (step-⊆ x' l₁' l₂' e') = step-⊆ x' l₁' l₂' (lem-⊆-trans (step-⊆ x l₁ l₂ e) e')
-- data _≤1_ {A : Set} : List A → List A → Set where
-- cxle1-eq : (l : List A) → l ≤1 l
-- cxle1-lt : ∀ x (l : List A) → l ≤1 (x ∷ l)
-- data _?∷_ {A : Set} (x : A): List A → Set where
-- yes∷ : (l : List A) → x ?∷ (x ∷ l)
-- no∷ : (l : List A) → x ?∷ l
-- getList : ∀ {A} {x : A} {l : List A} → x ?∷ l → List A
-- getList {x = x} (yes∷ l) = x ∷ l
-- getList {_} {_} {l} (no∷ .l) = l
-- end sublists
-- some lemmas about BT subsumption
lem-bt≼S : {bt : BT} → isTrue (bt ≼ S) → bt == S
lem-bt≼S {S} bt≼S = refl
lem-bt≼S {D} ()
-- which can also be defined as follows,
-- my_lem-bt≼S : {bt : BT} → isTrue (bt ≼ S) → bt == S
-- my_lem-bt≼S {S} _ = refl
-- my_lem-bt≼S {D} ()
lem-D≼bt : {bt : BT} → isTrue (D ≼ bt) → bt == D
lem-D≼bt {S} ()
lem-D≼bt {D} D≼bt = refl
-- Types of the calculus
mutual
-- s ^ BT
data AType : Set where
Ann : BT → SType → AType
-- int | t -> t
data SType : Set where
SInt : SType
SFun : AType → AType → SType
-- aux definitions
ATInt : BT → AType
ATInt bt = Ann bt SInt
ATFun : BT → AType → AType → AType
ATFun bt at1 at2 = Ann bt (SFun at1 at2)
-- note that the above function labels a ground type with annotations [S] or
-- [D],sort of a labelling function
-- projection: get the BT from a type
btof : AType → BT
btof (Ann bt _) = bt
-- a related function which takes an annotated type as argument and returns
-- the annotation of that type
-- "constraint on types: functions have to be at least as dynamic as their component" should be corrected as follows,
-- arguments of function should be as dynamic as the function
data wft : AType → Set where
wf-int : ∀ {bt} → wft (Ann bt SInt)
wf-fun : ∀ {bt at1 at2} → wft at1 → wft at2
→ isTrue (bt ≼ btof at1) → isTrue (bt ≼ btof at2) → wft (Ann bt (SFun at1 at2))
-- the above proposition specifies a set of well-formed [AType]s,
-- any annotated [SInt]s are well-formed, wft (Ann bt SInt) forall bt ∈ BT
-- in case of functional type with annotation, the following two criteria have
-- to be satisfied to be a well form,
-- a. each of its arguments is well-formed
-- b. the annotation of the function and the annotations of its arguments must
-- satisfy [_≼_] relation
-- for instance, the functional type defined above is well-formed while
-- the following is not,
-- Ann D (
-- SFun (Ann S SInt) (Ann D SInt)
-- )
-- in conclusion,for functional type with annotation to be well-formed,
-- each of its arguments annotations has to be [D] when that of the function
-- is [D] while there is no constraint upon the annotations of its arguments
-- when that of the function is [S]
lem-force-bt : ∀ {bt at} → isTrue (bt ≼ btof at) → D == bt → D == btof at
lem-force-bt {S} bt≼at ()
lem-force-bt {D} {Ann S y'} () D=bt
lem-force-bt {D} {Ann D y'} bt≼at D=bt = refl
-- note the above function takes an element[bt] of type [BT] and a type with
-- annotation,
-- if both
-- a. the type is at least as dynamic as [bt]
-- b. [bt == D]
-- then we know that the annotation of the type must be [D] as well
-- and the function in that case returns evidence for that
-- Low-level types; types wihtout binding information
data Type : Set where
TInt : Type
TFun : Type → Type → Type
-- translation from ATypes to low-level types
mutual
strip : AType → Type
strip (Ann _ σ) = strip' σ
strip' : SType → Type
strip' SInt = TInt
strip' (SFun y y') = TFun (strip y) (strip y')
-- note that the above function [strip] converts a type with annotation [AType]
-- to a low-level type [Type],
-- for instance,
-- strip (Ann D SInt)
-- = strip' SInt
-- = TInt
-- strip (Ann S
-- SFun (Ann S SInt) (Ann D SInt)
-- )
-- = strip' (SFun (Ann S SInt) (Ann D SInt))
-- = TFun (strip (Ann S SInt)) (strip (Ann D SInt))
-- = TFun (strip' SInt) (strip' SInt)
-- = TFun TInt TInt^
-- More general purpose definitions (should also be in standard library)
-- list membership
infix 4 _∈_
data _∈_ {A : Set} : A → List A → Set where
hd : ∀ {x xs} → x ∈ (x ∷ xs)
tl : ∀ {x y xs} → x ∈ xs → x ∈ (y ∷ xs)
-- note the above proposition gives us two constructors for getting
-- evidences for an element being a member of one list
-- end general purpose definitions
-- Typing context
Ctx = List Type
--data Exp' (Γ Γ' : Ctx) : Type → Set where
-- EVar' :
-- Typed expression
data Exp (Γ : Ctx) : Type → Set where
-- [EVar] corresponds to the bounded variables in [AExp]
EVar : ∀ {τ} → τ ∈ Γ → Exp Γ τ
EInt : ℕ → Exp Γ TInt
EFun : ∀ {τ₁ τ₂} → Exp (τ₂ ∷ Γ) τ₁ → Exp Γ (TFun τ₂ τ₁)
EApp : ∀ {τ₁ τ₂} → Exp Γ (TFun τ₂ τ₁) → Exp Γ τ₂ → Exp Γ τ₁
-- one additional term,
count_tl : ∀ {A Γ Γ'} {τ : A} → τ ∈ Γ → Γ cx-≤ Γ' → τ ∈ Γ'
count_tl x (cxle-eq Γ) = x
count_tl x (cxle-lt T e) = tl (count_tl x e)
data _cx=≤_ {A : Set} : List A → List A → Set where
cxle-peq : ∀ {l₁ l₂} { x } → l₁ cx-≤ l₂ → (x ∷ l₁) cx=≤ (x ∷ l₂)
cxle-plt : ∀ {l₁ l₂} { x } → l₁ cx=≤ l₂ → (x ∷ l₁) cx=≤ (x ∷ l₂)
count_tl' : ∀ {A Γ Γ'} {τ : A } → τ ∈ Γ → Γ cx=≤ Γ' → τ ∈ Γ'
count_tl' hd (cxle-plt e) = hd
count_tl' hd (cxle-peq e) = hd
count_tl' (tl xid) (cxle-plt e) = tl (count_tl' xid e)
count_tl' (tl xid) (cxle-peq e) = tl (count_tl xid e)
lem-Exp-weakening' : ∀ {τ₂ τ₁ Γ Γ'} → Exp (τ₂ ∷ Γ) τ₁ → (τ₂ ∷ Γ) cx=≤ (τ₂ ∷ Γ') → Exp (τ₂ ∷ Γ') τ₁
lem-Exp-weakening' (EVar x) e = EVar (count_tl' x e)
lem-Exp-weakening' (EInt n) e = EInt n
lem-Exp-weakening' (EFun t) e = EFun (lem-Exp-weakening' t (cxle-plt e))
lem-Exp-weakening' (EApp t1 t2) e = EApp (lem-Exp-weakening' t1 e) (lem-Exp-weakening' t2 e)
lem-Exp-weakening : ∀ {τ Γ Γ'} → Exp Γ τ → Γ cx-≤ Γ' → Exp Γ' τ
lem-Exp-weakening t (cxle-eq Γ) = t
lem-Exp-weakening (EInt n) e = EInt n
lem-Exp-weakening (EVar x) e = EVar (count_tl x e)
lem-Exp-weakening (EFun t) (cxle-lt T e) = EFun (lem-Exp-weakening' t (cxle-peq (cxle-lt T e)))
lem-Exp-weakening (EApp t1 t2) e = EApp (lem-Exp-weakening t1 e) (lem-Exp-weakening t2 e)
-- typed annotated expressions
ACtx = List AType
data AExp (Δ : ACtx) : AType → Set where
AVar : ∀ {α} → α ∈ Δ → AExp Δ α
AInt : (bt : BT) → ℕ → AExp Δ (ATInt bt)
AFun : ∀ {α₁ α₂} (bt : BT) → wft (ATFun bt α₂ α₁) → AExp (α₂ ∷ Δ) α₁ → AExp Δ (ATFun bt α₂ α₁)
AApp : ∀ {α₁ α₂} (bt : BT) → wft (ATFun bt α₂ α₁) → AExp Δ (ATFun bt α₂ α₁) → AExp Δ α₂ → AExp Δ α₁
-- stripping of contexts
residual : ACtx → Ctx
residual [] = []
residual (Ann S _ ∷ xs) = residual xs
residual (Ann D σ ∷ xs) = strip' σ ∷ residual xs
-- ``semantic domain'' for partially evaluated AExp-terms:
-- - AExp-terms of dynamic type evaluate to Exp-terms
-- - AExp-terms of static type evaluate to agda terms, where SFun
-- are functions and SInt are natural numbers
mutual
impTA : Ctx → AType → Set
impTA Γ (Ann S σ) = impTA' Γ σ
impTA Γ (Ann D σ) = Exp Γ (strip' σ)
impTA' : Ctx → SType → Set
impTA' Γ SInt = ℕ
impTA' Γ (SFun y y') = ∀ {Γ'} → Γ cx-≤ Γ' → impTA Γ' y → impTA Γ' y'
lem-impTA-weakening : ∀ {α Γ Γ'} →
impTA Γ α →
Γ cx-≤ Γ' →
impTA Γ' α
lem-impTA-weakening {Ann S SInt} v _ = v
lem-impTA-weakening {Ann S (SFun x x₁)} f prf = λ prf' → f (lem-cx-≤-trans prf prf')
lem-impTA-weakening {Ann D x₁} v prf = lem-Exp-weakening v prf
data AEnv : Ctx → ACtx → Set where
env[] : ∀ {Γ} → AEnv Γ []
env:: : ∀ {Γ Δ} {α} →
impTA Γ α →
AEnv Γ Δ →
AEnv Γ (α ∷ Δ)
lem-AEnv-weakening : ∀ {Γ Γ' Δ} → AEnv Γ Δ → Γ cx-≤ Γ' → AEnv Γ' Δ
lem-AEnv-weakening env[] prf = env[]
lem-AEnv-weakening (env:: {α = α} x env) prf = env:: (lem-impTA-weakening {α} x prf) (lem-AEnv-weakening env prf)
lookup : ∀ {Γ Δ α} → AEnv Γ Δ → (o : α ∈ Δ ) → impTA Γ α
lookup env[] ()
lookup (env:: x env) hd = x
lookup (env:: x env) (tl idx) = lookup env idx
data IsDynamic : AType → Set where
is-dyn : ∀ σ → IsDynamic (Ann D σ)
lem-IsDynamic-by-wf : ∀ α → isTrue (D ≼ btof α) → IsDynamic α
lem-IsDynamic-by-wf (Ann S σ) ()
lem-IsDynamic-by-wf (Ann D σ) _ = is-dyn σ
-- -- TODO: Do we need additional assurance in the type signature (or as
-- -- an aux. lemma) that Γ is the residue of Δ?
-- -- Note: It seems that in the light of [AEnv] defined above,
-- -- there is no correspondence bewteen Γ and Δ
pe : ∀ {Δ Γ α} → AEnv Γ Δ → AExp Δ α → impTA Γ α
pe env (AVar idx) = lookup env idx
pe env (AInt S i) = i
pe env (AInt D i) = EInt i
pe {Γ = Γ} env (AFun {α₁} {α₂} S prf exp) =
λ {Γ'} (prf₁ : Γ cx-≤ Γ') (v : impTA Γ' α₂) → pe (env:: v (lem-AEnv-weakening env prf₁)) exp
pe env (AFun {α₁} {α₂} D (wf-fun _ _ prf-2 prf-1) e)
with lem-IsDynamic-by-wf α₁ prf-1 | lem-IsDynamic-by-wf α₂ prf-2
pe {Γ = Γ} env (AFun {.(Ann D σ₁)} {.(Ann D σ₂)} D (wf-fun _ _ prf-1 prf-2) e)
| is-dyn σ₁ | is-dyn σ₂ =
EFun (pe (env:: (EVar hd) (lem-AEnv-weakening env ((strip' σ₂) cxle-∷ Γ))) e)
pe {Γ = Γ} env (AApp S _ f e) = (pe env f (cxle-eq Γ)) (pe env e)
pe env (AApp {α₁} {α₂} D (wf-fun _ _ prf₂ prf₁) f e)
with lem-IsDynamic-by-wf α₁ prf₁ | lem-IsDynamic-by-wf α₂ prf₂
pe env (AApp {.(Ann D σ₁)} {.(Ann D σ₂)} D (wf-fun _ _ prf₂ prf₁) f e) | is-dyn σ₁ | is-dyn σ₂ = EApp (pe env f) (pe env e)
| 33.900783
| 123
| 0.603512
|
0602fac044275ce23571ccccf19bbc234b906970
| 1,158
|
agda
|
Agda
|
src/algebra/group/core.agda
|
pcapriotti/agda-base
|
bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c
|
[
"BSD-3-Clause"
] | 20
|
2015-06-12T12:20:17.000Z
|
2022-02-01T11:25:54.000Z
|
src/algebra/group/core.agda
|
pcapriotti/agda-base
|
bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c
|
[
"BSD-3-Clause"
] | 4
|
2015-02-02T14:32:16.000Z
|
2016-10-26T11:57:26.000Z
|
src/algebra/group/core.agda
|
pcapriotti/agda-base
|
bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c
|
[
"BSD-3-Clause"
] | 4
|
2015-02-02T12:17:00.000Z
|
2019-05-04T19:31:00.000Z
|
{-# OPTIONS --without-K #-}
module algebra.group.core where
open import level
open import algebra.monoid.core
open import equality.core
open import function.isomorphism
open import sum
record IsGroup {i} (G : Set i) : Set i where
field instance mon : IsMonoid G
open IsMonoid mon public
field
inv : G → G
linv : (x : G) → inv x * x ≡ e
rinv : (x : G) → x * inv x ≡ e
Group : ∀ i → Set (lsuc i)
Group i = Σ (Set i) IsGroup
module _ {i} {G : Set i} ⦃ grp : IsGroup G ⦄ where
open IsGroup ⦃ ... ⦄
left-translation-iso : (g : G) → G ≅ G
left-translation-iso g = record
{ to = λ x → g * x
; from = λ x → inv g * x
; iso₁ = λ x → sym (assoc _ _ _)
· ap (λ u → u * x) (linv g)
· lunit x
; iso₂ = λ x → sym (assoc _ _ _)
· ap (λ u → u * x) (rinv g)
· lunit x }
right-translation-iso : (g : G) → G ≅ G
right-translation-iso g = record
{ to = λ x → x * g
; from = λ x → x * inv g
; iso₁ = λ x → assoc _ _ _
· ap (λ u → x * u) (rinv g)
· runit x
; iso₂ = λ x → assoc _ _ _
· ap (λ u → x * u) (linv g)
· runit x }
| 25.173913
| 50
| 0.507772
|
4de5abd870303d8925534445ff520d312fa0873d
| 4,388
|
agda
|
Agda
|
Cubical/HITs/Susp/Base.agda
|
Rotsor/cubical
|
d55cd4834ca1f171f58b4a0c46b804ea6d18191f
|
[
"MIT"
] | null | null | null |
Cubical/HITs/Susp/Base.agda
|
Rotsor/cubical
|
d55cd4834ca1f171f58b4a0c46b804ea6d18191f
|
[
"MIT"
] | null | null | null |
Cubical/HITs/Susp/Base.agda
|
Rotsor/cubical
|
d55cd4834ca1f171f58b4a0c46b804ea6d18191f
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --cubical --safe #-}
module Cubical.HITs.Susp.Base where
open import Cubical.Core.Glue
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Isomorphism
open import Cubical.Data.Bool
open import Cubical.HITs.S1
open import Cubical.HITs.S2
open import Cubical.HITs.S3
data Susp {ℓ} (A : Type ℓ) : Type ℓ where
north : Susp A
south : Susp A
merid : (a : A) → north ≡ south
SuspBool : Type₀
SuspBool = Susp Bool
SuspBool→S¹ : SuspBool → S¹
SuspBool→S¹ north = base
SuspBool→S¹ south = base
SuspBool→S¹ (merid false i) = loop i
SuspBool→S¹ (merid true i) = base
S¹→SuspBool : S¹ → SuspBool
S¹→SuspBool base = north
S¹→SuspBool (loop i) = (merid false ∙ (sym (merid true))) i
SuspBool→S¹→SuspBool : (x : SuspBool) → Path _ (S¹→SuspBool (SuspBool→S¹ x)) x
SuspBool→S¹→SuspBool north = refl
SuspBool→S¹→SuspBool south = merid true
SuspBool→S¹→SuspBool (merid false i) = λ j → hcomp (λ k → (λ { (j = i1) → merid false i
; (i = i0) → north
; (i = i1) → merid true (j ∨ ~ k)}))
(merid false i)
SuspBool→S¹→SuspBool (merid true i) = λ j → merid true (i ∧ j)
S¹→SuspBool→S¹ : (x : S¹) → SuspBool→S¹ (S¹→SuspBool x) ≡ x
S¹→SuspBool→S¹ base = refl
S¹→SuspBool→S¹ (loop i) = λ j →
hfill (λ k → λ { (i = i0) → base
; (i = i1) → base })
(inS (loop i)) (~ j)
S¹≃SuspBool : S¹ ≃ SuspBool
S¹≃SuspBool = isoToEquiv (iso S¹→SuspBool SuspBool→S¹ SuspBool→S¹→SuspBool S¹→SuspBool→S¹)
S¹≡SuspBool : S¹ ≡ SuspBool
S¹≡SuspBool = isoToPath (iso S¹→SuspBool SuspBool→S¹ SuspBool→S¹→SuspBool S¹→SuspBool→S¹)
-- Now the sphere
SuspS¹ : Type₀
SuspS¹ = Susp S¹
SuspS¹→S² : SuspS¹ → S²
SuspS¹→S² north = base
SuspS¹→S² south = base
SuspS¹→S² (merid base i) = base
SuspS¹→S² (merid (loop j) i) = surf i j
meridian-contraction : I → I → I → SuspS¹
meridian-contraction i j l = hfill (λ k → λ { (i = i0) → north
; (i = i1) → merid base (~ k)
; (j = i0) → merid base (~ k ∧ i)
; (j = i1) → merid base (~ k ∧ i) })
(inS (merid (loop j) i)) l
S²→SuspS¹ : S² → SuspS¹
S²→SuspS¹ base = north
S²→SuspS¹ (surf i j) = meridian-contraction i j i1
S²→SuspS¹→S² : ∀ x → SuspS¹→S² (S²→SuspS¹ x) ≡ x
S²→SuspS¹→S² base k = base
S²→SuspS¹→S² (surf i j) k = SuspS¹→S² (meridian-contraction i j (~ k))
SuspS¹→S²→SuspS¹ : ∀ x → S²→SuspS¹ (SuspS¹→S² x) ≡ x
SuspS¹→S²→SuspS¹ north k = north
SuspS¹→S²→SuspS¹ south k = merid base k
SuspS¹→S²→SuspS¹ (merid base j) k = merid base (k ∧ j)
SuspS¹→S²→SuspS¹ (merid (loop j) i) k = meridian-contraction i j (~ k)
S²≡SuspS¹ : S² ≡ SuspS¹
S²≡SuspS¹ = isoToPath (iso S²→SuspS¹ SuspS¹→S² SuspS¹→S²→SuspS¹ S²→SuspS¹→S²)
-- And the 3-sphere
SuspS² : Type₀
SuspS² = Susp S²
SuspS²→S³ : SuspS² → S³
SuspS²→S³ north = base
SuspS²→S³ south = base
SuspS²→S³ (merid base i) = base
SuspS²→S³ (merid (surf j k) i) = surf i j k
meridian-contraction-2 : I → I → I → I → SuspS²
meridian-contraction-2 i j k l = hfill (λ m → λ { (i = i0) → north
; (i = i1) → merid base (~ m)
; (j = i0) → merid base (~ m ∧ i)
; (j = i1) → merid base (~ m ∧ i)
; (k = i0) → merid base (~ m ∧ i)
; (k = i1) → merid base (~ m ∧ i) })
(inS (merid (surf j k) i)) l
S³→SuspS² : S³ → SuspS²
S³→SuspS² base = north
S³→SuspS² (surf i j k) = meridian-contraction-2 i j k i1
S³→SuspS²→S³ : ∀ x → SuspS²→S³ (S³→SuspS² x) ≡ x
S³→SuspS²→S³ base l = base
S³→SuspS²→S³ (surf i j k) l = SuspS²→S³ (meridian-contraction-2 i j k (~ l))
SuspS²→S³→SuspS² : ∀ x → S³→SuspS² (SuspS²→S³ x) ≡ x
SuspS²→S³→SuspS² north l = north
SuspS²→S³→SuspS² south l = merid base l
SuspS²→S³→SuspS² (merid base j) l = merid base (l ∧ j)
SuspS²→S³→SuspS² (merid (surf j k) i) l = meridian-contraction-2 i j k (~ l)
S³≡SuspS² : S³ ≡ SuspS²
S³≡SuspS² = isoToPath (iso S³→SuspS² SuspS²→S³ SuspS²→S³→SuspS² S³→SuspS²→S³)
| 34.551181
| 97
| 0.560848
|
4dc17ee2e630edb7f4e361ddea55a87a09d339c9
| 16,813
|
agda
|
Agda
|
Cubical/HITs/Sn/Properties.agda
|
hyleIndex/cubical
|
ce5c2820ecb2e0fd8dce74fb0247856cdbf034c4
|
[
"MIT"
] | 301
|
2018-10-17T18:00:24.000Z
|
2022-03-24T02:10:47.000Z
|
Cubical/HITs/Sn/Properties.agda
|
hyleIndex/cubical
|
ce5c2820ecb2e0fd8dce74fb0247856cdbf034c4
|
[
"MIT"
] | 584
|
2018-10-15T09:49:02.000Z
|
2022-03-30T12:09:17.000Z
|
Cubical/HITs/Sn/Properties.agda
|
hyleIndex/cubical
|
ce5c2820ecb2e0fd8dce74fb0247856cdbf034c4
|
[
"MIT"
] | 134
|
2018-11-16T06:11:03.000Z
|
2022-03-23T16:22:13.000Z
|
{-# OPTIONS --safe #-}
module Cubical.HITs.Sn.Properties where
open import Cubical.Foundations.Pointed
open import Cubical.Foundations.Path
open import Cubical.Foundations.Function
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Transport
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.GroupoidLaws
open import Cubical.Foundations.Univalence
open import Cubical.HITs.S1
open import Cubical.Data.Nat hiding (elim)
open import Cubical.Data.Sigma
open import Cubical.HITs.Sn.Base
open import Cubical.HITs.Susp
open import Cubical.HITs.Truncation
open import Cubical.Homotopy.Loopspace
open import Cubical.Homotopy.Connected
private
variable
ℓ : Level
-- Elimination principles for spheres
sphereElim : (n : ℕ) {A : (S₊ (suc n)) → Type ℓ} → ((x : S₊ (suc n)) → isOfHLevel (suc n) (A x))
→ A (ptSn (suc n))
→ (x : S₊ (suc n)) → A x
sphereElim zero hlev pt = toPropElim hlev pt
sphereElim (suc n) hlev pt north = pt
sphereElim (suc n) {A = A} hlev pt south = subst A (merid (ptSn (suc n))) pt
sphereElim (suc n) {A = A} hlev pt (merid a i) =
sphereElim n {A = λ a → PathP (λ i → A (merid a i)) pt (subst A (merid (ptSn (suc n))) pt)}
(λ a → isOfHLevelPathP' (suc n) (hlev south) _ _)
(λ i → transp (λ j → A (merid (ptSn (suc n)) (i ∧ j))) (~ i) pt)
a i
sphereElim2 : ∀ {ℓ} (n : ℕ) {A : (S₊ (suc n)) → (S₊ (suc n)) → Type ℓ}
→ ((x y : S₊ (suc n)) → isOfHLevel (suc n) (A x y))
→ A (ptSn (suc n)) (ptSn (suc n))
→ (x y : S₊ (suc n)) → A x y
sphereElim2 n hlev pt = sphereElim n (λ _ → isOfHLevelΠ (suc n) λ _ → hlev _ _)
(sphereElim n (hlev _ ) pt)
private
compPath-lem : ∀ {ℓ} {A : Type ℓ} {x y z : A} (p : x ≡ y) (q : z ≡ y)
→ PathP (λ i → (p ∙ sym q) i ≡ y) p q
compPath-lem {y = y} p q i j =
hcomp (λ k → λ { (i = i0) → p j
; (i = i1) → q (~ k ∨ j)
; (j = i1) → y })
(p (j ∨ i))
sphereToPropElim : (n : ℕ) {A : (S₊ (suc n)) → Type ℓ} → ((x : S₊ (suc n)) → isProp (A x))
→ A (ptSn (suc n))
→ (x : S₊ (suc n)) → A x
sphereToPropElim zero = toPropElim
sphereToPropElim (suc n) hlev pt north = pt
sphereToPropElim (suc n) {A = A} hlev pt south = subst A (merid (ptSn (suc n))) pt
sphereToPropElim (suc n) {A = A} hlev pt (merid a i) =
isProp→PathP {B = λ i → A (merid a i)} (λ _ → hlev _) pt (subst A (merid (ptSn (suc n))) pt) i
-- Elimination rule for fibrations (x : Sⁿ) → (y : Sᵐ) → A x y of h-Level (n + m).
-- The following principle is just the special case of the "Wedge Connectivity Lemma"
-- for spheres (See Cubical.Homotopy.WedgeConnectivity or chapter 8.6 in the HoTT book).
-- We prove it directly here for three reasons:
-- (i) it should perform better
-- (ii) we get a slightly stronger statement for spheres: one of the homotopies will, by design, be refl
-- (iii) the fact that the two homotopies only differ by (composition with) the homotopy leftFunction(base) ≡ rightFunction(base)
-- is close to trivial
wedgeconFun : (n m : ℕ) {A : (S₊ (suc n)) → (S₊ (suc m)) → Type ℓ}
→ ((x : S₊ (suc n)) (y : S₊ (suc m)) → isOfHLevel ((suc n) + (suc m)) (A x y))
→ (f : (x : _) → A (ptSn (suc n)) x)
→ (g : (x : _) → A x (ptSn (suc m)))
→ (g (ptSn (suc n)) ≡ f (ptSn (suc m)))
→ (x : S₊ (suc n)) (y : S₊ (suc m)) → A x y
wedgeconLeft : (n m : ℕ) {A : (S₊ (suc n)) → (S₊ (suc m)) → Type ℓ}
→ (hLev : ((x : S₊ (suc n)) (y : S₊ (suc m)) → isOfHLevel ((suc n) + (suc m)) (A x y)))
→ (f : (x : _) → A (ptSn (suc n)) x)
→ (g : (x : _) → A x (ptSn (suc m)))
→ (hom : g (ptSn (suc n)) ≡ f (ptSn (suc m)))
→ (x : _) → wedgeconFun n m hLev f g hom (ptSn (suc n)) x ≡ f x
wedgeconRight : (n m : ℕ) {A : (S₊ (suc n)) → (S₊ (suc m)) → Type ℓ}
→ (hLev : ((x : S₊ (suc n)) (y : S₊ (suc m)) → isOfHLevel ((suc n) + (suc m)) (A x y)))
→ (f : (x : _) → A (ptSn (suc n)) x)
→ (g : (x : _) → A x (ptSn (suc m)))
→ (hom : g (ptSn (suc n)) ≡ f (ptSn (suc m)))
→ (x : _) → wedgeconFun n m hLev f g hom x (ptSn (suc m)) ≡ g x
wedgeconFun zero zero {A = A} hlev f g hom = F
where
helper : SquareP (λ i j → A (loop i) (loop j)) (cong f loop) (cong f loop)
(λ i → hcomp (λ k → λ { (i = i0) → hom k
; (i = i1) → hom k })
(g (loop i)))
λ i → hcomp (λ k → λ { (i = i0) → hom k
; (i = i1) → hom k })
(g (loop i))
helper = toPathP (isOfHLevelPathP' 1 (hlev _ _) _ _ _ _)
F : (x y : S¹) → A x y
F base y = f y
F (loop i) base = hcomp (λ k → λ { (i = i0) → hom k
; (i = i1) → hom k })
(g (loop i))
F (loop i) (loop j) = helper i j
wedgeconFun zero (suc m) {A = A} hlev f g hom = F₀
module _ where
transpLemma₀ : (x : S₊ (suc m)) → transport (λ i₁ → A base (merid x i₁)) (g base) ≡ f south
transpLemma₀ x = cong (transport (λ i₁ → A base (merid x i₁)))
hom
∙ (λ i → transp (λ j → A base (merid x (i ∨ j))) i
(f (merid x i)))
pathOverMerid₀ : (x : S₊ (suc m)) → PathP (λ i₁ → A base (merid x i₁))
(g base)
(transport (λ i₁ → A base (merid (ptSn (suc m)) i₁))
(g base))
pathOverMerid₀ x i = hcomp (λ k → λ { (i = i0) → g base
; (i = i1) → (transpLemma₀ x ∙ sym (transpLemma₀ (ptSn (suc m)))) k})
(transp (λ i₁ → A base (merid x (i₁ ∧ i))) (~ i)
(g base))
pathOverMeridId₀ : pathOverMerid₀ (ptSn (suc m)) ≡ λ i → transp (λ i₁ → A base (merid (ptSn (suc m)) (i₁ ∧ i))) (~ i)
(g base)
pathOverMeridId₀ =
(λ j i → hcomp (λ k → λ {(i = i0) → g base
; (i = i1) → rCancel (transpLemma₀ (ptSn (suc m))) j k})
(transp (λ i₁ → A base (merid (ptSn (suc m)) (i₁ ∧ i))) (~ i)
(g base)))
∙ λ j i → hfill (λ k → λ { (i = i0) → g base
; (i = i1) → transport (λ i₁ → A base (merid (ptSn (suc m)) i₁))
(g base)})
(inS (transp (λ i₁ → A base (merid (ptSn (suc m)) (i₁ ∧ i))) (~ i)
(g base))) (~ j)
indStep₀ : (x : _) (a : _) → PathP (λ i → A x (merid a i))
(g x)
(subst (λ y → A x y) (merid (ptSn (suc m)))
(g x))
indStep₀ = wedgeconFun zero m (λ _ _ → isOfHLevelPathP' (2 + m) (hlev _ _) _ _)
pathOverMerid₀
(λ a i → transp (λ i₁ → A a (merid (ptSn (suc m)) (i₁ ∧ i))) (~ i)
(g a))
(sym pathOverMeridId₀)
F₀ : (x : S¹) (y : Susp (S₊ (suc m))) → A x y
F₀ x north = g x
F₀ x south = subst (λ y → A x y) (merid (ptSn (suc m))) (g x)
F₀ x (merid a i) = indStep₀ x a i
wedgeconFun (suc n) m {A = A} hlev f g hom = F₁
module _ where
transpLemma₁ : (x : S₊ (suc n)) → transport (λ i₁ → A (merid x i₁) (ptSn (suc m))) (f (ptSn (suc m))) ≡ g south
transpLemma₁ x = cong (transport (λ i₁ → A (merid x i₁) (ptSn (suc m))))
(sym hom)
∙ (λ i → transp (λ j → A (merid x (i ∨ j)) (ptSn (suc m))) i
(g (merid x i)))
pathOverMerid₁ : (x : S₊ (suc n)) → PathP (λ i₁ → A (merid x i₁) (ptSn (suc m)))
(f (ptSn (suc m)))
(transport (λ i₁ → A (merid (ptSn (suc n)) i₁) (ptSn (suc m)))
(f (ptSn (suc m))))
pathOverMerid₁ x i = hcomp (λ k → λ { (i = i0) → f (ptSn (suc m))
; (i = i1) → (transpLemma₁ x ∙ sym (transpLemma₁ (ptSn (suc n)))) k })
(transp (λ i₁ → A (merid x (i₁ ∧ i)) (ptSn (suc m))) (~ i)
(f (ptSn (suc m))))
pathOverMeridId₁ : pathOverMerid₁ (ptSn (suc n)) ≡ λ i → transp (λ i₁ → A (merid (ptSn (suc n)) (i₁ ∧ i)) (ptSn (suc m))) (~ i)
(f (ptSn (suc m)))
pathOverMeridId₁ =
(λ j i → hcomp (λ k → λ { (i = i0) → f (ptSn (suc m))
; (i = i1) → rCancel (transpLemma₁ (ptSn (suc n))) j k })
(transp (λ i₁ → A (merid (ptSn (suc n)) (i₁ ∧ i)) (ptSn (suc m))) (~ i)
(f (ptSn (suc m)))))
∙ λ j i → hfill (λ k → λ { (i = i0) → f (ptSn (suc m))
; (i = i1) → transport (λ i₁ → A (merid (ptSn (suc n)) i₁) (ptSn (suc m)))
(f (ptSn (suc m))) })
(inS (transp (λ i₁ → A (merid (ptSn (suc n)) (i₁ ∧ i)) (ptSn (suc m))) (~ i)
(f (ptSn (suc m))))) (~ j)
indStep₁ : (a : _) (y : _) → PathP (λ i → A (merid a i) y)
(f y)
(subst (λ x → A x y) (merid (ptSn (suc n)))
(f y))
indStep₁ = wedgeconFun n m (λ _ _ → isOfHLevelPathP' (suc (n + suc m)) (hlev _ _) _ _)
(λ a i → transp (λ i₁ → A (merid (ptSn (suc n)) (i₁ ∧ i)) a) (~ i)
(f a))
pathOverMerid₁
pathOverMeridId₁
F₁ : (x : Susp (S₊ (suc n))) (y : S₊ (suc m)) → A x y
F₁ north y = f y
F₁ south y = subst (λ x → A x y) (merid (ptSn (suc n))) (f y)
F₁ (merid a i) y = indStep₁ a y i
wedgeconRight zero zero {A = A} hlev f g hom = right
where
right : (x : S¹) → _
right base = sym hom
right (loop i) j = hcomp (λ k → λ { (i = i0) → hom (~ j ∧ k)
; (i = i1) → hom (~ j ∧ k)
; (j = i1) → g (loop i) })
(g (loop i))
wedgeconRight zero (suc m) {A = A} hlev f g hom x = refl
wedgeconRight (suc n) m {A = A} hlev f g hom = right
where
lem : (x : _) → indStep₁ n m hlev f g hom x (ptSn (suc m)) ≡ _
lem = wedgeconRight n m (λ _ _ → isOfHLevelPathP' (suc (n + suc m)) (hlev _ _) _ _)
(λ a i → transp (λ i₁ → A (merid (ptSn (suc n)) (i₁ ∧ i)) a) (~ i)
(f a))
(pathOverMerid₁ n m hlev f g hom)
(pathOverMeridId₁ n m hlev f g hom)
right : (x : Susp (S₊ (suc n))) → _ ≡ g x
right north = sym hom
right south = cong (subst (λ x → A x (ptSn (suc m)))
(merid (ptSn (suc n))))
(sym hom)
∙ λ i → transp (λ j → A (merid (ptSn (suc n)) (i ∨ j)) (ptSn (suc m))) i
(g (merid (ptSn (suc n)) i))
right (merid a i) j =
hcomp (λ k → λ { (i = i0) → hom (~ j)
; (i = i1) → transpLemma₁ n m hlev f g hom (ptSn (suc n)) j
; (j = i0) → lem a (~ k) i
; (j = i1) → g (merid a i)})
(hcomp (λ k → λ { (i = i0) → hom (~ j)
; (i = i1) → compPath-lem (transpLemma₁ n m hlev f g hom a) (transpLemma₁ n m hlev f g hom (ptSn (suc n))) k j
; (j = i1) → g (merid a i)})
(hcomp (λ k → λ { (i = i0) → hom (~ j)
; (j = i0) → transp (λ i₂ → A (merid a (i₂ ∧ i)) (ptSn (suc m))) (~ i)
(f (ptSn (suc m)))
; (j = i1) → transp (λ j → A (merid a (i ∧ (j ∨ k))) (ptSn (suc m))) (k ∨ ~ i)
(g (merid a (i ∧ k))) })
(transp (λ i₂ → A (merid a (i₂ ∧ i)) (ptSn (suc m))) (~ i)
(hom (~ j)))))
wedgeconLeft zero zero {A = A} hlev f g hom x = refl
wedgeconLeft zero (suc m) {A = A} hlev f g hom = help
where
left₁ : (x : _) → indStep₀ m hlev f g hom base x ≡ _
left₁ = wedgeconLeft zero m (λ _ _ → isOfHLevelPathP' (2 + m) (hlev _ _) _ _)
(pathOverMerid₀ m hlev f g hom)
(λ a i → transp (λ i₁ → A a (merid (ptSn (suc m)) (i₁ ∧ i))) (~ i)
(g a))
(sym (pathOverMeridId₀ m hlev f g hom))
help : (x : S₊ (suc (suc m))) → _
help north = hom
help south = cong (subst (A base) (merid (ptSn (suc m)))) hom
∙ λ i → transp (λ j → A base (merid (ptSn (suc m)) (i ∨ j))) i
(f (merid (ptSn (suc m)) i))
help (merid a i) j =
hcomp (λ k → λ { (i = i0) → hom j
; (i = i1) → transpLemma₀ m hlev f g hom (ptSn (suc m)) j
; (j = i0) → left₁ a (~ k) i
; (j = i1) → f (merid a i)})
(hcomp (λ k → λ { (i = i0) → hom j
; (i = i1) → compPath-lem (transpLemma₀ m hlev f g hom a)
(transpLemma₀ m hlev f g hom (ptSn (suc m))) k j
; (j = i1) → f (merid a i)})
(hcomp (λ k → λ { (i = i0) → hom j
; (j = i0) → transp (λ i₂ → A base (merid a (i₂ ∧ i))) (~ i)
(g base)
; (j = i1) → transp (λ j → A base (merid a (i ∧ (j ∨ k)))) (k ∨ ~ i)
(f (merid a (i ∧ k)))})
(transp (λ i₂ → A base (merid a (i₂ ∧ i))) (~ i)
(hom j))))
wedgeconLeft (suc n) m {A = A} hlev f g hom _ = refl
---------- Connectedness -----------
sphereConnected : (n : HLevel) → isConnected (suc n) (S₊ n)
sphereConnected n = ∣ ptSn n ∣ , elim (λ _ → isOfHLevelPath (suc n) (isOfHLevelTrunc (suc n)) _ _)
(λ a → sym (spoke ∣_∣ (ptSn n)) ∙ spoke ∣_∣ a)
-- The fact that path spaces of Sn are connected can be proved directly for Sⁿ.
-- (Unfortunately, this does not work for higher paths)
pathIdTruncSⁿ : (n : ℕ) (x y : S₊ (suc n))
→ Path (hLevelTrunc (2 + n) (S₊ (suc n))) ∣ x ∣ ∣ y ∣
→ hLevelTrunc (suc n) (x ≡ y)
pathIdTruncSⁿ n = sphereElim n (λ _ → isOfHLevelΠ (suc n) λ _ → isOfHLevelΠ (suc n) λ _ → isOfHLevelTrunc (suc n))
(sphereElim n (λ _ → isOfHLevelΠ (suc n) λ _ → isOfHLevelTrunc (suc n))
λ _ → ∣ refl ∣)
pathIdTruncSⁿ⁻ : (n : ℕ) (x y : S₊ (suc n))
→ hLevelTrunc (suc n) (x ≡ y)
→ Path (hLevelTrunc (2 + n) (S₊ (suc n))) ∣ x ∣ ∣ y ∣
pathIdTruncSⁿ⁻ n x y = rec (isOfHLevelTrunc (2 + n) _ _)
(J (λ y _ → Path (hLevelTrunc (2 + n) (S₊ (suc n))) ∣ x ∣ ∣ y ∣) refl)
pathIdTruncSⁿretract : (n : ℕ) (x y : S₊ (suc n)) → (p : hLevelTrunc (suc n) (x ≡ y)) → pathIdTruncSⁿ n x y (pathIdTruncSⁿ⁻ n x y p) ≡ p
pathIdTruncSⁿretract n =
sphereElim n (λ _ → isOfHLevelΠ (suc n) λ _ → isOfHLevelΠ (suc n) λ _ → isOfHLevelPath (suc n) (isOfHLevelTrunc (suc n)) _ _)
λ y → elim (λ _ → isOfHLevelPath (suc n) (isOfHLevelTrunc (suc n)) _ _)
(J (λ y p → pathIdTruncSⁿ n (ptSn (suc n)) y (pathIdTruncSⁿ⁻ n (ptSn (suc n)) y ∣ p ∣) ≡ ∣ p ∣)
(cong (pathIdTruncSⁿ n (ptSn (suc n)) (ptSn (suc n))) (transportRefl refl) ∙ pm-help n))
where
pm-help : (n : ℕ) → pathIdTruncSⁿ n (ptSn (suc n)) (ptSn (suc n)) refl ≡ ∣ refl ∣
pm-help zero = refl
pm-help (suc n) = refl
isConnectedPathSⁿ : (n : ℕ) (x y : S₊ (suc n)) → isConnected (suc n) (x ≡ y)
isConnectedPathSⁿ n x y =
isContrRetract
(pathIdTruncSⁿ⁻ n x y)
(pathIdTruncSⁿ n x y)
(pathIdTruncSⁿretract n x y)
((isContr→isProp (sphereConnected (suc n)) ∣ x ∣ ∣ y ∣)
, isProp→isSet (isContr→isProp (sphereConnected (suc n))) _ _ _)
| 54.061093
| 138
| 0.428002
|
203583786b520bb9c613036013f4cc05853b4056
| 151
|
agda
|
Agda
|
setoid-cats/Category/Fibration.agda
|
heades/AUGL
|
b33c6a59d664aed46cac8ef77d34313e148fecc2
|
[
"MIT"
] | null | null | null |
setoid-cats/Category/Fibration.agda
|
heades/AUGL
|
b33c6a59d664aed46cac8ef77d34313e148fecc2
|
[
"MIT"
] | null | null | null |
setoid-cats/Category/Fibration.agda
|
heades/AUGL
|
b33c6a59d664aed46cac8ef77d34313e148fecc2
|
[
"MIT"
] | null | null | null |
module Category.Fibration where
open import Data.Product
open import Category.Category
open import Category.Subcategory
open import Category.Funct
| 15.1
| 32
| 0.84106
|
502073185fcdeb926a8bfb1eb9e7a9d96335d438
| 192
|
agda
|
Agda
|
Cubical/Relation/Binary.agda
|
L-TChen/cubical
|
60226aacd7b386aef95d43a0c29c4eec996348a8
|
[
"MIT"
] | null | null | null |
Cubical/Relation/Binary.agda
|
L-TChen/cubical
|
60226aacd7b386aef95d43a0c29c4eec996348a8
|
[
"MIT"
] | 1
|
2022-01-27T02:07:48.000Z
|
2022-01-27T02:07:48.000Z
|
Cubical/Relation/Binary.agda
|
L-TChen/cubical
|
60226aacd7b386aef95d43a0c29c4eec996348a8
|
[
"MIT"
] | 1
|
2021-11-22T02:02:01.000Z
|
2021-11-22T02:02:01.000Z
|
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Relation.Binary where
open import Cubical.Relation.Binary.Base public
open import Cubical.Relation.Binary.Properties public
| 27.428571
| 53
| 0.786458
|
1216901a0f97074f6668169363b1b78a13fa4488
| 1,844
|
agda
|
Agda
|
homotopy/OneSkeleton.agda
|
danbornside/HoTT-Agda
|
1695a7f3dc60177457855ae846bbd86fcd96983e
|
[
"MIT"
] | null | null | null |
homotopy/OneSkeleton.agda
|
danbornside/HoTT-Agda
|
1695a7f3dc60177457855ae846bbd86fcd96983e
|
[
"MIT"
] | null | null | null |
homotopy/OneSkeleton.agda
|
danbornside/HoTT-Agda
|
1695a7f3dc60177457855ae846bbd86fcd96983e
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --without-K #-}
open import HoTT
module homotopy.OneSkeleton {i} {A : Type i} {j} {B : Type j} where
private
module _ (map : A → B) where
data #OneSkeleton-aux : Type i where
#point : A → #OneSkeleton-aux
data #OneSkeleton : Type i where
#one-skeleton : #OneSkeleton-aux → (Unit → Unit) → #OneSkeleton
OneSkeleton : (A → B) → Type i
OneSkeleton = #OneSkeleton
module _ {map : A → B} where
point : A → OneSkeleton map
point a = #one-skeleton (#point a) _
postulate -- HIT
link : ∀ a₁ a₂ → map a₁ == map a₂ → point a₁ == point a₂
module OneSkeletonElim
{l} {P : OneSkeleton map → Type l}
(point* : ∀ a → P (point a))
(link* : ∀ a₁ a₂ p → point* a₁ == point* a₂ [ P ↓ link a₁ a₂ p ]) where
f : Π (OneSkeleton map) P
f = f-aux phantom where
f-aux : Phantom link* → Π (OneSkeleton map) P
f-aux phantom (#one-skeleton (#point a) _) = point* a
postulate
link-β : ∀ a₁ a₂ p → apd f (link a₁ a₂ p) == link* a₁ a₂ p
open OneSkeletonElim public using () renaming (f to OneSkeleton-elim)
module OneSkeletonRec
{l} {P : Type l}
(point* : ∀ a → P)
(link* : ∀ a₁ a₂ p → point* a₁ == point* a₂) where
private
module M = OneSkeletonElim point*
(λ a₁ a₂ p → ↓-cst-in (link* a₁ a₂ p))
f : OneSkeleton map → P
f = M.f
link-β : ∀ a₁ a₂ p → ap f (link a₁ a₂ p) == link* a₁ a₂ p
link-β a₁ a₂ p = apd=cst-in {f = f} (M.link-β a₁ a₂ p)
open OneSkeletonRec public using () renaming (f to OneSkeleton-rec)
OneSkeleton-lift : OneSkeleton map → B
OneSkeleton-lift = OneSkeleton-rec map (λ _ _ p → p)
{-
module _ {i} {A B : Set i} where
skeleton₁ : (A → B) → Set i
skeleton₁ f = Graveyard.skeleton₁ {i} {A} {B} {f}
-}
| 27.117647
| 77
| 0.560195
|
a1ae07b6a3c0815898015891eeac50585cad6120
| 5,605
|
agda
|
Agda
|
Cubical/Algebra/RingSolver/NatExamples.agda
|
barrettj12/cubical
|
7b41b9171f90473efc98487cb2ea7a4d02320cb2
|
[
"MIT"
] | 301
|
2018-10-17T18:00:24.000Z
|
2022-03-24T02:10:47.000Z
|
Cubical/Algebra/RingSolver/NatExamples.agda
|
barrettj12/cubical
|
7b41b9171f90473efc98487cb2ea7a4d02320cb2
|
[
"MIT"
] | 584
|
2018-10-15T09:49:02.000Z
|
2022-03-30T12:09:17.000Z
|
Cubical/Algebra/RingSolver/NatExamples.agda
|
barrettj12/cubical
|
7b41b9171f90473efc98487cb2ea7a4d02320cb2
|
[
"MIT"
] | 134
|
2018-11-16T06:11:03.000Z
|
2022-03-23T16:22:13.000Z
|
{-# OPTIONS --safe #-}
module Cubical.Algebra.RingSolver.NatExamples where
open import Cubical.Foundations.Prelude
open import Cubical.Data.FinData
open import Cubical.Data.Nat using (ℕ)
open import Cubical.Data.Vec.Base
open import Cubical.Algebra.RingSolver.AlmostRing
open import Cubical.Algebra.RingSolver.NatAsAlmostRing
open import Cubical.Algebra.RingSolver.RingExpression
open import Cubical.Algebra.RingSolver.RawRing renaming (⟨_⟩ to ⟨_⟩ᵣ)
open import Cubical.Algebra.RingSolver.HornerForms
open import Cubical.Algebra.RingSolver.Solver
private
variable
ℓ : Level
module MultivariateSolving where
open AlmostRing ℕAsAlmostRing
ℕAsRawRing = AlmostRing→RawRing ℕAsAlmostRing
open EqualityToNormalform ℕAsAlmostRing
ℕ[X₀,X₁] = IteratedHornerOperations.asRawRing ℕAsRawRing 2
X₀ : ⟨ ℕ[X₀,X₁] ⟩ᵣ
X₀ = Variable 2 ℕAsRawRing (Fin.zero)
X₁ : ⟨ ℕ[X₀,X₁] ⟩ᵣ
X₁ = Variable 2 ℕAsRawRing (suc Fin.zero)
Two : ⟨ ℕ[X₀,X₁] ⟩ᵣ
Two = Constant 2 ℕAsRawRing 2
_ : eval 2 X₀ (1 ∷ 0 ∷ []) ≡ 1
_ = refl
_ : eval 2 X₁ (0 ∷ 1 ∷ []) ≡ 1
_ = refl
X : Expr ℕ 3
X = ∣ Fin.zero
Y : Expr ℕ 3
Y = ∣ (suc Fin.zero)
Z : Expr ℕ 3
Z = ∣ (suc (suc Fin.zero))
{-
'normalize' maps an expression to its Horner Normalform.
Two expressions evaluating to the same ring element
have the same Horner Normal form.
This means equality of the represented ring elements
can be checked by agda's unification (so refl is a proof)
-}
_ : normalize 3 ((K 2) ⊗ X) ≡
normalize 3 (X ⊕ X)
_ = refl
_ : normalize 3 ((K 2) ⊗ X) ≡ normalize 3 (X ⊕ X)
_ = refl
_ : normalize 3 (((K 2) ⊗ X) ⊗ Y) ≡ normalize 3 (Y ⊗ (X ⊕ X))
_ = refl
_ : normalize 3 (Z ⊗ (((K 2) ⊗ X) ⊗ Y)) ≡ normalize 3 (Z ⊗ (Y ⊗ (X ⊕ X)))
_ = refl
{-
The solver needs to produce an equality between
actual ring elements. So we need a proof that
those actual ring elements are equal to a normal form:
-}
_ : (x y z : ℕ) →
eval 3 (normalize 3 ((K 2) ⊗ X ⊗ Y)) (x ∷ y ∷ z ∷ [])
≡ 2 · x · y
_ = λ x y z → isEqualToNormalform 3 ((K 2) ⊗ X ⊗ Y) (x ∷ y ∷ z ∷ [])
{-
Now two of these proofs can be plugged together
to solve an equation:
-}
open Eval ℕAsRawRing
_ : (x y z : ℕ) → 3 + x + y · y ≡ y · y + x + 1 + 2
_ = let
lhs = (K 3) ⊕ X ⊕ (Y ⊗ Y)
rhs = Y ⊗ Y ⊕ X ⊕ (K 1) ⊕ (K 2)
in (λ x y z →
⟦ lhs ⟧ (x ∷ y ∷ z ∷ [])
≡⟨ sym (isEqualToNormalform 3 lhs (x ∷ y ∷ z ∷ [])) ⟩
eval 3 (normalize 3 lhs) (x ∷ y ∷ z ∷ [])
≡⟨ refl ⟩
eval 3 (normalize 3 rhs) (x ∷ y ∷ z ∷ [])
≡⟨ isEqualToNormalform 3 rhs (x ∷ y ∷ z ∷ []) ⟩
⟦ rhs ⟧ (x ∷ y ∷ z ∷ []) ∎)
{-
Parts of that can be automated easily:
-}
_ : (x y z : ℕ) → (x + y) · (x + y) ≡ x · x + 2 · x · y + y · y
_ = λ x y z → let
lhs = (X ⊕ Y) ⊗ (X ⊕ Y)
rhs = X ⊗ X ⊕ (K 2) ⊗ X ⊗ Y ⊕ Y ⊗ Y
in solve lhs rhs (x ∷ y ∷ z ∷ []) refl
{-
A bigger example
-}
_ : (x y z : ℕ) → (x + y) · (x + y) · (x + y) · (x + y)
≡ x · x · x · x + 4 · x · x · x · y + 6 · x · x · y · y
+ 4 · x · y · y · y + y · y · y · y
_ = λ x y z → let
lhs = (X ⊕ Y) ⊗ (X ⊕ Y) ⊗ (X ⊕ Y) ⊗ (X ⊕ Y)
rhs = X ⊗ X ⊗ X ⊗ X
⊕ (K 4) ⊗ X ⊗ X ⊗ X ⊗ Y
⊕ (K 6) ⊗ X ⊗ X ⊗ Y ⊗ Y
⊕ (K 4) ⊗ X ⊗ Y ⊗ Y ⊗ Y
⊕ Y ⊗ Y ⊗ Y ⊗ Y
in solve lhs rhs (x ∷ y ∷ z ∷ []) refl
{-
this one cannot work so far:
_ : (x y z : ℕ) → (x + y) · (x - y) ≡ (x · x - (y · y))
_ = λ x y z → let
lhs = (X ⊕ Y) ⊗ (X ⊕ (⊝ Y))
rhs = (X ⊗ X) ⊕ (⊝ (Y ⊗ Y))
in solve lhs rhs (x ∷ y ∷ z ∷ []) {!!}
-}
module ExamplesForArbitraryRings (R : AlmostRing ℓ) where
open AlmostRing R
open EqualityToNormalform R
X : Expr ⟨ R ⟩ 4
X = ∣ Fin.zero
Y : Expr ⟨ R ⟩ 4
Y = ∣ (suc Fin.zero)
A : Expr ⟨ R ⟩ 4
A = ∣ (suc (suc Fin.zero))
B : Expr ⟨ R ⟩ 4
B = ∣ (suc (suc (suc Fin.zero)))
_ : (x y a b : ⟨ R ⟩) → (x + y) + (a + b) ≡ (y + b) + (x + a)
_ = λ x y a b → let
lhs = (X ⊕ Y) ⊕ (A ⊕ B)
rhs = (Y ⊕ B) ⊕ (X ⊕ A)
in solve lhs rhs (x ∷ y ∷ a ∷ b ∷ []) refl
_ : (x y a b : ⟨ R ⟩) → (x + y) · (x + y) ≡ x · x + x · y + x · y + y · y
_ = λ x y a b →
let
lhs = (X ⊕ Y) ⊗ (X ⊕ Y)
rhs = (X ⊗ X) ⊕ (X ⊗ Y) ⊕ (X ⊗ Y) ⊕ (Y ⊗ Y)
in solve lhs rhs (x ∷ y ∷ a ∷ b ∷ []) refl
_ : (x y a b : ⟨ R ⟩) → x · a ≡ a · x
_ = λ x y a b →
let
lhs = X ⊗ A
rhs = A ⊗ X
in solve lhs rhs (x ∷ y ∷ a ∷ b ∷ []) refl
{-
this one should work, but doesn't:
_ : (x y a b : ⟨ R ⟩) → x · (a + b) ≡ a · x + b · x
_ = λ x y a b →
let
lhs = X ⊗ (A ⊕ B)
rhs = (A ⊗ X) ⊕ (B ⊗ X)
in solve lhs rhs (x ∷ y ∷ a ∷ b ∷ []) refl
the reason ist, that lhs and rhs evaluate to definitionally different things:
(0r · x +
(0r · y +
((0r · a + (0r · b + 1r · 1r)) · a +
((0r · b + 1r · 1r) · b + 1r · 0r))))
· x
+ 0r
(0r · x +
(0r · y +
((0r · a + (0r · b + 1r · 1r)) · a +
((0r · b + 1r · 1r) · b + (0r + 0r · 1r)))))
· x
+ 0r
-}
{-
'-' is problematic...
_ : (x y a b : ⟨ R ⟩) → (x + y) · (x - y) ≡ (x · x - (y · y))
_ = λ x y a b → let
lhs = (X ⊕ Y) ⊗ (X ⊕ (⊝ Y))
rhs = (X ⊗ X) ⊕ (⊝ (Y ⊗ Y))
in solve lhs rhs (x ∷ y ∷ a ∷ b ∷ []) {!!}
-}
| 27.208738
| 79
| 0.446922
|
c5a990787903226158e3bd418c5c6bbf3ed1e544
| 395
|
agda
|
Agda
|
src/UnSizedIO/Object.agda
|
agda/ooAgda
|
7cc45e0148a4a508d20ed67e791544c30fecd795
|
[
"MIT"
] | 23
|
2016-06-19T12:57:55.000Z
|
2020-10-12T23:15:25.000Z
|
src/UnSizedIO/Object.agda
|
agda/ooAgda
|
7cc45e0148a4a508d20ed67e791544c30fecd795
|
[
"MIT"
] | null | null | null |
src/UnSizedIO/Object.agda
|
agda/ooAgda
|
7cc45e0148a4a508d20ed67e791544c30fecd795
|
[
"MIT"
] | 2
|
2018-09-01T15:02:37.000Z
|
2022-03-12T11:41:00.000Z
|
module UnSizedIO.Object where
open import Data.Product
record Interface : Set₁ where
field
Method : Set
Result : (m : Method) → Set
open Interface public
-- A simple object just returns for a method the response
-- and the object itself
record Object (i : Interface) : Set where
coinductive
field
objectMethod : (m : Method i) → Result i m × Object i
open Object public
| 19.75
| 57
| 0.708861
|
dc2abed092b5dd7539b56c2b13ff339fd1f34d73
| 2,548
|
agda
|
Agda
|
prototyping/Luau/Subtyping.agda
|
Libertus-Lab/luau
|
f1b46f4b967f11fabe666da1de0e71b225368260
|
[
"MIT"
] | 1
|
2021-11-06T08:03:00.000Z
|
2021-11-06T08:03:00.000Z
|
prototyping/Luau/Subtyping.agda
|
sthagen/Roblox-luau
|
39fbd2146a379fb0878369b48764cd7e8772c0fb
|
[
"MIT"
] | null | null | null |
prototyping/Luau/Subtyping.agda
|
sthagen/Roblox-luau
|
39fbd2146a379fb0878369b48764cd7e8772c0fb
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --rewriting #-}
open import Luau.Type using (Type; Scalar; nil; number; string; boolean; never; unknown; _⇒_; _∪_; _∩_)
open import Properties.Equality using (_≢_)
module Luau.Subtyping where
-- An implementation of semantic subtyping
-- We think of types as languages of trees
data Tree : Set where
scalar : ∀ {T} → Scalar T → Tree
function : Tree
function-ok : Tree → Tree → Tree
function-err : Tree → Tree
function-tgt : Tree → Tree
data Language : Type → Tree → Set
data ¬Language : Type → Tree → Set
data Language where
scalar : ∀ {T} → (s : Scalar T) → Language T (scalar s)
function : ∀ {T U} → Language (T ⇒ U) function
function-ok₁ : ∀ {T U t u} → (¬Language T t) → Language (T ⇒ U) (function-ok t u)
function-ok₂ : ∀ {T U t u} → (Language U u) → Language (T ⇒ U) (function-ok t u)
function-err : ∀ {T U t} → (¬Language T t) → Language (T ⇒ U) (function-err t)
function-tgt : ∀ {T U t} → (Language U t) → Language (T ⇒ U) (function-tgt t)
left : ∀ {T U t} → Language T t → Language (T ∪ U) t
right : ∀ {T U u} → Language U u → Language (T ∪ U) u
_,_ : ∀ {T U t} → Language T t → Language U t → Language (T ∩ U) t
unknown : ∀ {t} → Language unknown t
data ¬Language where
scalar-scalar : ∀ {S T} → (s : Scalar S) → (Scalar T) → (S ≢ T) → ¬Language T (scalar s)
scalar-function : ∀ {S} → (Scalar S) → ¬Language S function
scalar-function-ok : ∀ {S t u} → (Scalar S) → ¬Language S (function-ok t u)
scalar-function-err : ∀ {S t} → (Scalar S) → ¬Language S (function-err t)
scalar-function-tgt : ∀ {S t} → (Scalar S) → ¬Language S (function-tgt t)
function-scalar : ∀ {S T U} (s : Scalar S) → ¬Language (T ⇒ U) (scalar s)
function-ok : ∀ {T U t u} → (Language T t) → (¬Language U u) → ¬Language (T ⇒ U) (function-ok t u)
function-err : ∀ {T U t} → (Language T t) → ¬Language (T ⇒ U) (function-err t)
function-tgt : ∀ {T U t} → (¬Language U t) → ¬Language (T ⇒ U) (function-tgt t)
_,_ : ∀ {T U t} → ¬Language T t → ¬Language U t → ¬Language (T ∪ U) t
left : ∀ {T U t} → ¬Language T t → ¬Language (T ∩ U) t
right : ∀ {T U u} → ¬Language U u → ¬Language (T ∩ U) u
never : ∀ {t} → ¬Language never t
-- Subtyping as language inclusion
_<:_ : Type → Type → Set
(T <: U) = ∀ t → (Language T t) → (Language U t)
-- For warnings, we are interested in failures of subtyping,
-- which is whrn there is a tree in T's language that isn't in U's.
data _≮:_ (T U : Type) : Set where
witness : ∀ t →
Language T t →
¬Language U t →
-----------------
T ≮: U
| 37.470588
| 103
| 0.589089
|
a1e59b957649dc72a3eca7cd7d6ed68c26be4d01
| 2,313
|
agda
|
Agda
|
Algebra/Category/Semigroupoid.agda
|
esoeylemez/agda-simple
|
d9245e5a8b2e902781736de09bd17e81022f6f13
|
[
"BSD-3-Clause"
] | 1
|
2019-10-07T17:36:42.000Z
|
2019-10-07T17:36:42.000Z
|
Algebra/Category/Semigroupoid.agda
|
esoeylemez/agda-simple
|
d9245e5a8b2e902781736de09bd17e81022f6f13
|
[
"BSD-3-Clause"
] | null | null | null |
Algebra/Category/Semigroupoid.agda
|
esoeylemez/agda-simple
|
d9245e5a8b2e902781736de09bd17e81022f6f13
|
[
"BSD-3-Clause"
] | null | null | null |
-- Copyright: (c) 2016 Ertugrul Söylemez
-- License: BSD3
-- Maintainer: Ertugrul Söylemez <esz@posteo.de>
module Algebra.Category.Semigroupoid where
open import Core
-- A semigroupoid is a set of objects and morphisms between objects
-- together with an associative binary function that combines morphisms.
record Semigroupoid {c h r} : Set (lsuc (c ⊔ h ⊔ r)) where
field
Ob : Set c
Hom : Ob → Ob → Set h
Eq : ∀ {A B} → Equiv {r = r} (Hom A B)
_∘_ : ∀ {A B C} → Hom B C → Hom A B → Hom A C
infixl 6 _∘_
open module MyEquiv {A} {B} = Equiv (Eq {A} {B}) public
field
∘-cong :
∀ {A B C}
{f1 f2 : Hom B C} {g1 g2 : Hom A B}
→ f1 ≈ f2 → g1 ≈ g2 → f1 ∘ g1 ≈ f2 ∘ g2
assoc :
∀ {A B C D}
(f : Hom C D) (g : Hom B C) (h : Hom A B)
→ (f ∘ g) ∘ h ≈ f ∘ (g ∘ h)
Epic : ∀ {A B} → (f : Hom A B) → Set _
Epic f = ∀ {C} {g1 g2 : Hom _ C} → g1 ∘ f ≈ g2 ∘ f → g1 ≈ g2
Monic : ∀ {B C} → (f : Hom B C) → Set _
Monic f = ∀ {A} {g1 g2 : Hom A _} → f ∘ g1 ≈ f ∘ g2 → g1 ≈ g2
Unique : ∀ {A B} → (f : Hom A B) → Set _
Unique f = ∀ g → f ≈ g
IsProduct : ∀ A B AB → (fst : Hom AB A) (snd : Hom AB B) → Set _
IsProduct A B AB fst snd =
∀ AB' (fst' : Hom AB' A) (snd' : Hom AB' B) →
∃ (λ (u : Hom AB' AB) → Unique u × (fst ∘ u ≈ fst') × (snd ∘ u ≈ snd'))
record Product A B : Set (c ⊔ h ⊔ r) where
field
A×B : Ob
cfst : Hom A×B A
csnd : Hom A×B B
isProduct : IsProduct A B A×B cfst csnd
record _bimonic_ A B : Set (c ⊔ h ⊔ r) where
field
to : Hom A B
from : Hom B A
to-monic : Monic to
from-monic : Monic from
-- A semifunctor is a composition-preserving mapping from a semigroupoid
-- to another.
record Semifunctor
{cc ch cr dc dh dr}
(C : Semigroupoid {cc} {ch} {cr})
(D : Semigroupoid {dc} {dh} {dr})
: Set (cc ⊔ ch ⊔ cr ⊔ dc ⊔ dh ⊔ dr)
where
private
module C = Semigroupoid C
module D = Semigroupoid D
field
F : C.Ob → D.Ob
map : ∀ {A B} → C.Hom A B → D.Hom (F A) (F B)
map-cong :
∀ {A B} {f g : C.Hom A B}
→ f C.≈ g
→ map f D.≈ map g
∘-preserving :
∀ {A B C}
(f : C.Hom B C) (g : C.Hom A B)
→ map (f C.∘ g) D.≈ map f D.∘ map g
| 25.417582
| 75
| 0.496325
|
a1683638be767ed9c73d9fc90c7fc417e81492e9
| 1,764
|
agda
|
Agda
|
vendor/stdlib/src/Data/Unit.agda
|
isabella232/Lemmachine
|
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
|
[
"MIT"
] | 56
|
2015-01-20T02:11:42.000Z
|
2021-12-21T17:02:19.000Z
|
vendor/stdlib/src/Data/Unit.agda
|
larrytheliquid/Lemmachine
|
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
|
[
"MIT"
] | 1
|
2022-03-12T12:17:51.000Z
|
2022-03-12T12:17:51.000Z
|
vendor/stdlib/src/Data/Unit.agda
|
isabella232/Lemmachine
|
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
|
[
"MIT"
] | 3
|
2015-07-21T16:37:58.000Z
|
2022-03-12T11:54:10.000Z
|
------------------------------------------------------------------------
-- The unit type
------------------------------------------------------------------------
module Data.Unit where
open import Data.Sum
open import Relation.Nullary
open import Relation.Binary
open import Relation.Binary.PropositionalEquality as PropEq
using (_≡_; refl)
------------------------------------------------------------------------
-- Types
-- Note that the name of this type is "\top", not T.
record ⊤ : Set where
tt : ⊤
tt = record {}
record _≤_ (x y : ⊤) : Set where
------------------------------------------------------------------------
-- Operations
_≟_ : Decidable {⊤} _≡_
_ ≟ _ = yes refl
_≤?_ : Decidable _≤_
_ ≤? _ = yes _
total : Total _≤_
total _ _ = inj₁ _
------------------------------------------------------------------------
-- Properties
preorder : Preorder
preorder = PropEq.preorder ⊤
setoid : Setoid
setoid = PropEq.setoid ⊤
decTotalOrder : DecTotalOrder
decTotalOrder = record
{ carrier = ⊤
; _≈_ = _≡_
; _≤_ = _≤_
; isDecTotalOrder = record
{ isTotalOrder = record
{ isPartialOrder = record
{ isPreorder = record
{ isEquivalence = PropEq.isEquivalence
; reflexive = λ _ → _
; trans = λ _ _ → _
; ∼-resp-≈ = PropEq.resp₂ _≤_
}
; antisym = antisym
}
; total = total
}
; _≟_ = _≟_
; _≤?_ = _≤?_
}
}
where
antisym : Antisymmetric _≡_ _≤_
antisym _ _ = refl
decSetoid : DecSetoid
decSetoid = DecTotalOrder.Eq.decSetoid decTotalOrder
poset : Poset
poset = DecTotalOrder.poset decTotalOrder
| 22.909091
| 72
| 0.443878
|
a141406e92c7cb9c2800d4bfb9fdb67f21dcefe8
| 4,026
|
agda
|
Agda
|
src/SystemF/Substitutions.agda
|
metaborg/ts.agda
|
7fe638b87de26df47b6437f5ab0a8b955384958d
|
[
"MIT"
] | 4
|
2019-04-05T17:57:11.000Z
|
2021-05-07T04:08:41.000Z
|
src/SystemF/Substitutions.agda
|
metaborg/ts.agda
|
7fe638b87de26df47b6437f5ab0a8b955384958d
|
[
"MIT"
] | null | null | null |
src/SystemF/Substitutions.agda
|
metaborg/ts.agda
|
7fe638b87de26df47b6437f5ab0a8b955384958d
|
[
"MIT"
] | null | null | null |
module SystemF.Substitutions where
open import Prelude hiding (subst)
open import SystemF.Syntax
open import Data.Fin.Substitution
open import Data.Star hiding (map)
open import Data.Vec hiding ([_])
open import SystemF.Substitutions.Types public
module TermTypeSubst where
module TermTypeApp {T} (l : Lift T Type) where
open Lift l hiding (var)
open TypeSubst.TypeApp l renaming (_/_ to _tp/_)
infixl 8 _/_
-- Apply a type substitution to a term
_/_ : ∀ {ν μ n} → Term ν n → Sub T ν μ → Term μ n
var x / σ = var x
Λ t / σ = Λ (t / σ ↑)
λ' a t / σ = λ' (a tp/ σ) (t / σ)
t [ a ] / σ = (t / σ) [ a tp/ σ ]
s · t / σ = (s / σ) · (t / σ)
open TypeSubst using (varLift; termLift; sub)
module Lifted {T} (lift : Lift T Type) {n} where
application : Application (λ ν → Term ν n) T
application = record { _/_ = TermTypeApp._/_ lift {n = n} }
open Application application public
open Lifted termLift public
-- apply a type variable substitution (renaming) to a term
_/Var_ : ∀ {ν μ n} → Term ν n → Sub Fin ν μ → Term μ n
_/Var_ = TermTypeApp._/_ varLift
-- weaken a term with an additional type variable
weaken : ∀ {ν n} → Term ν n → Term (suc ν) n
weaken t = t /Var VarSubst.wk
infix 8 _[/_]
-- shorthand for single-variable type substitutions in terms
_[/_] : ∀ {ν n} → Term (suc ν) n → Type ν → Term ν n
t [/ b ] = t / sub b
module CtxSubst where
_/_ : ∀ {ν μ n} → Ctx ν n → Sub Type ν μ → Ctx μ n
Γ / σ = Γ TypeSubst.⊙ σ
weaken : ∀ {ν n} → Ctx ν n → Ctx (suc ν) n
weaken Γ = Γ / TypeSubst.wk
-- Variable substitution (renaming) lifted to typing contexts
_/Var_ : ∀ {ν m k} → Sub Fin k m → Ctx ν m → Ctx ν k
σ /Var Γ = map (λ x → lookup x Γ) σ
module TermTermSubst where
-- Substitutions of terms in terms
TermSub : (ℕ → ℕ → Set) → ℕ → ℕ → ℕ → Set
TermSub T ν m n = Sub (T ν) m n
record TermLift (T : ℕ → ℕ → Set) : Set where
infix 10 _↑tm _↑tp
field
lift : ∀ {ν n} → T ν n → Term ν n
_↑tm : ∀ {ν m n} → TermSub T ν m n → TermSub T ν (suc m) (suc n)
_↑tp : ∀ {ν m n} → TermSub T ν m n → TermSub T (suc ν) m n
module TermTermApp {T} (l : TermLift T) where
open TermLift l
infixl 8 _/_
-- Apply a term substitution to a term
_/_ : ∀ {ν m n} → Term ν m → TermSub T ν m n → Term ν n
var x / σ = lift (lookup x σ)
Λ t / σ = Λ (t / (σ ↑tp))
λ' a t / σ = λ' a (t / σ ↑tm)
t [ a ] / σ = (t / σ) [ a ]
s · t / σ = (s / σ) · (t / σ)
Fin′ : ℕ → ℕ → Set
Fin′ _ m = Fin m
varLift : TermLift Fin′
varLift = record { lift = var; _↑tm = VarSubst._↑; _↑tp = id }
infixl 8 _/Var_
_/Var_ : ∀ {ν m n} → Term ν m → Sub Fin m n → Term ν n
_/Var_ = TermTermApp._/_ varLift
private
module ExpandSimple {n : ℕ} where
simple : Simple (Term n)
simple = record { var = var; weaken = λ t → t /Var VarSubst.wk }
open Simple simple public
open ExpandSimple using (_↑; simple)
open TermTypeSubst using () renaming (weaken to weakenTp)
termLift : TermLift Term
termLift = record
{ lift = id; _↑tm = _↑ ; _↑tp = λ ρ → map weakenTp ρ }
private
module ExpandSubst {ν : ℕ} where
app : Application (Term ν) (Term ν)
app = record { _/_ = TermTermApp._/_ termLift {ν = ν} }
subst : Subst (Term ν)
subst = record
{ simple = simple
; application = app
}
open Subst subst public
open ExpandSubst public hiding (var; simple)
infix 8 _[/_]
-- Shorthand for single-variable term substitutions in terms
_[/_] : ∀ {ν n} → Term ν (suc n) → Term ν n → Term ν n
s [/ t ] = s / sub t
open TermTermSubst public using ()
renaming (_/_ to _tm/tm_; _[/_] to _tm[/tm_]; weaken to tmtm-weaken)
open TermTypeSubst public using ()
renaming (_/_ to _tm/tp_; _[/_] to _tm[/tp_]; weaken to tm-weaken)
open CtxSubst public using ()
renaming (_/_ to _ctx/_; weaken to ctx-weaken; _/Var_ to _ctx/Var_)
| 28.352113
| 70
| 0.579483
|
0ea6ffe55196230d4ca832575f7bbc308561ea25
| 494
|
agda
|
Agda
|
extra/extra/ModuleInfix.agda
|
crisoagf/plfa.github.io
|
195fe74e903dbb9db50ab57a1d76bf9fe20b0133
|
[
"CC-BY-4.0"
] | 1,003
|
2018-07-05T18:15:14.000Z
|
2022-03-27T07:03:28.000Z
|
extra/extra/ModuleInfix.agda
|
crisoagf/plfa.github.io
|
195fe74e903dbb9db50ab57a1d76bf9fe20b0133
|
[
"CC-BY-4.0"
] | 323
|
2018-07-05T22:34:34.000Z
|
2022-03-30T07:42:57.000Z
|
extra/extra/ModuleInfix.agda
|
crisoagf/plfa.github.io
|
195fe74e903dbb9db50ab57a1d76bf9fe20b0133
|
[
"CC-BY-4.0"
] | 304
|
2018-07-16T18:24:59.000Z
|
2022-03-28T11:35:02.000Z
|
module ModuleInfix where
open import Data.List using (List; _∷_; [])
open import Data.Bool using (Bool; true; false)
module Sort(A : Set)(_≤_ : A → A → Bool)(_⊝_ : A → A → A)(zero : A) where
infix 1 _≤_
infix 2 _⊝_
insert : A → List A → List A
insert x [] = x ∷ []
insert x (y ∷ ys) with zero ≤ (y ⊝ x)
insert x (y ∷ ys) | true = x ∷ y ∷ ys
insert x (y ∷ ys) | false = y ∷ insert x ys
sort : List A → List A
sort [] = []
sort (x ∷ xs) = insert x (sort xs)
| 24.7
| 73
| 0.538462
|
39a83afcba2dcdff06467b325c8b02fd87f4f6f7
| 805
|
agda
|
Agda
|
Cubical/Algebra/Group/Construct/Opposite.agda
|
kiana-S/univalent-foundations
|
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
|
[
"MIT"
] | null | null | null |
Cubical/Algebra/Group/Construct/Opposite.agda
|
kiana-S/univalent-foundations
|
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
|
[
"MIT"
] | null | null | null |
Cubical/Algebra/Group/Construct/Opposite.agda
|
kiana-S/univalent-foundations
|
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
open import Cubical.Core.Everything
open import Cubical.Algebra.Group
module Cubical.Algebra.Group.Construct.Opposite {ℓ} (G : Group ℓ) where
open import Cubical.Foundations.Prelude
open import Cubical.Data.Prod using (_,_)
open Group G
import Cubical.Algebra.Monoid.Construct.Opposite monoid as OpMonoid
open OpMonoid public hiding (Op-isMonoid; Mᵒᵖ)
•ᵒᵖ-inverseˡ : LeftInverse ε _⁻¹ _•ᵒᵖ_
•ᵒᵖ-inverseˡ _ = inverseʳ _
•ᵒᵖ-inverseʳ : RightInverse ε _⁻¹ _•ᵒᵖ_
•ᵒᵖ-inverseʳ _ = inverseˡ _
•ᵒᵖ-inverse : Inverse ε _⁻¹ _•ᵒᵖ_
•ᵒᵖ-inverse = •ᵒᵖ-inverseˡ , •ᵒᵖ-inverseʳ
Op-isGroup : IsGroup Carrier _•ᵒᵖ_ ε _⁻¹
Op-isGroup = record
{ isMonoid = OpMonoid.Op-isMonoid
; inverse = •ᵒᵖ-inverse
}
Gᵒᵖ : Group ℓ
Gᵒᵖ = record { isGroup = Op-isGroup }
| 23.676471
| 71
| 0.731677
|
fb58454c15d9717fb84a3c839a2feea72ac8c9a5
| 723
|
agda
|
Agda
|
issues/Issue4.agda
|
asr/apia
|
a66c5ddca2ab470539fd68c42c4fbd45f720d682
|
[
"MIT"
] | 10
|
2015-09-03T20:54:16.000Z
|
2019-12-03T13:44:25.000Z
|
issues/Issue4.agda
|
asr/apia
|
a66c5ddca2ab470539fd68c42c4fbd45f720d682
|
[
"MIT"
] | 121
|
2015-01-25T13:22:12.000Z
|
2018-04-22T06:01:44.000Z
|
issues/Issue4.agda
|
asr/apia
|
a66c5ddca2ab470539fd68c42c4fbd45f720d682
|
[
"MIT"
] | 4
|
2016-05-10T23:06:19.000Z
|
2016-08-03T03:54:55.000Z
|
------------------------------------------------------------------------------
-- Testing the translation of definitions
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module Issue4 where
postulate
D : Set
_≡_ : D → D → Set
refl : ∀ {a} → a ≡ a
P : D → Set
-- We test the translation of a definition where we need to erase proof terms.
foo : ∀ {a} → P a → ∀ {b} → P b → a ≡ a
foo {a} Pa {b} Pb = bar
where
c : D
c = a
{-# ATP definition c #-}
postulate bar : c ≡ a
{-# ATP prove bar #-}
| 25.821429
| 78
| 0.408022
|
18292a25e75ea67dc06ee6bd4f88251132ab9b26
| 7,896
|
agda
|
Agda
|
BasicIS4/Semantics/TarskiOvergluedGentzen.agda
|
mietek/hilbert-gentzen
|
fcd187db70f0a39b894fe44fad0107f61849405c
|
[
"X11"
] | 29
|
2016-07-03T18:51:56.000Z
|
2022-01-01T10:29:18.000Z
|
BasicIS4/Semantics/TarskiOvergluedGentzen.agda
|
mietek/hilbert-gentzen
|
fcd187db70f0a39b894fe44fad0107f61849405c
|
[
"X11"
] | 1
|
2018-06-10T09:11:22.000Z
|
2018-06-10T09:11:22.000Z
|
BasicIS4/Semantics/TarskiOvergluedGentzen.agda
|
mietek/hilbert-gentzen
|
fcd187db70f0a39b894fe44fad0107f61849405c
|
[
"X11"
] | null | null | null |
-- Basic intuitionistic modal logic S4, without ∨, ⊥, or ◇.
-- Tarski-style semantics with contexts as concrete worlds, and glueing for α, ▻, and □.
-- Gentzen-style syntax.
module BasicIS4.Semantics.TarskiOvergluedGentzen where
open import BasicIS4.Syntax.Common public
open import Common.Semantics public
-- Intuitionistic Tarski models.
record Model : Set₁ where
infix 3 _⊩ᵅ_ _[⊢]_ _[⊢⋆]_
field
-- Forcing for atomic propositions; monotonic.
_⊩ᵅ_ : Cx Ty → Atom → Set
mono⊩ᵅ : ∀ {P Γ Γ′} → Γ ⊆ Γ′ → Γ ⊩ᵅ P → Γ′ ⊩ᵅ P
-- Gentzen-style syntax representation; monotonic.
_[⊢]_ : Cx Ty → Ty → Set
_[⊢⋆]_ : Cx Ty → Cx Ty → Set
mono[⊢] : ∀ {A Γ Γ′} → Γ ⊆ Γ′ → Γ [⊢] A → Γ′ [⊢] A
[var] : ∀ {A Γ} → A ∈ Γ → Γ [⊢] A
[lam] : ∀ {A B Γ} → Γ , A [⊢] B → Γ [⊢] A ▻ B
[app] : ∀ {A B Γ} → Γ [⊢] A ▻ B → Γ [⊢] A → Γ [⊢] B
[multibox] : ∀ {A Δ Γ} → Γ [⊢⋆] □⋆ Δ → □⋆ Δ [⊢] A → Γ [⊢] □ A
[down] : ∀ {A Γ} → Γ [⊢] □ A → Γ [⊢] A
[pair] : ∀ {A B Γ} → Γ [⊢] A → Γ [⊢] B → Γ [⊢] A ∧ B
[fst] : ∀ {A B Γ} → Γ [⊢] A ∧ B → Γ [⊢] A
[snd] : ∀ {A B Γ} → Γ [⊢] A ∧ B → Γ [⊢] B
[unit] : ∀ {Γ} → Γ [⊢] ⊤
-- TODO: Workarounds for Agda bug #2143.
top[⊢⋆] : ∀ {Γ} → (Γ [⊢⋆] ∅) ≡ 𝟙
pop[⊢⋆] : ∀ {Ξ A Γ} → (Γ [⊢⋆] Ξ , A) ≡ (Γ [⊢⋆] Ξ × Γ [⊢] A)
infix 3 _[⊢]⋆_
_[⊢]⋆_ : Cx Ty → Cx Ty → Set
Γ [⊢]⋆ ∅ = 𝟙
Γ [⊢]⋆ Ξ , A = Γ [⊢]⋆ Ξ × Γ [⊢] A
[⊢⋆]→[⊢]⋆ : ∀ {Ξ Γ} → Γ [⊢⋆] Ξ → Γ [⊢]⋆ Ξ
[⊢⋆]→[⊢]⋆ {∅} {Γ} ts = ∙
[⊢⋆]→[⊢]⋆ {Ξ , A} {Γ} ts rewrite pop[⊢⋆] {Ξ} {A} {Γ} = [⊢⋆]→[⊢]⋆ (π₁ ts) , π₂ ts
[⊢]⋆→[⊢⋆] : ∀ {Ξ Γ} → Γ [⊢]⋆ Ξ → Γ [⊢⋆] Ξ
[⊢]⋆→[⊢⋆] {∅} {Γ} ∙ rewrite top[⊢⋆] {Γ} = ∙
[⊢]⋆→[⊢⋆] {Ξ , A} {Γ} (ts , t) rewrite pop[⊢⋆] {Ξ} {A} {Γ} = [⊢]⋆→[⊢⋆] ts , t
open Model {{…}} public
-- Forcing in a particular model.
module _ {{_ : Model}} where
infix 3 _⊩_
_⊩_ : Cx Ty → Ty → Set
Γ ⊩ α P = Glue (Γ [⊢] α P) (Γ ⊩ᵅ P)
Γ ⊩ A ▻ B = ∀ {Γ′} → Γ ⊆ Γ′ → Glue (Γ′ [⊢] A ▻ B) (Γ′ ⊩ A → Γ′ ⊩ B)
Γ ⊩ □ A = ∀ {Γ′} → Γ ⊆ Γ′ → Glue (Γ′ [⊢] □ A) (Γ′ ⊩ A)
Γ ⊩ A ∧ B = Γ ⊩ A × Γ ⊩ B
Γ ⊩ ⊤ = 𝟙
infix 3 _⊩⋆_
_⊩⋆_ : Cx Ty → Cx Ty → Set
Γ ⊩⋆ ∅ = 𝟙
Γ ⊩⋆ Ξ , A = Γ ⊩⋆ Ξ × Γ ⊩ A
-- Monotonicity with respect to context inclusion.
module _ {{_ : Model}} where
mono⊩ : ∀ {A Γ Γ′} → Γ ⊆ Γ′ → Γ ⊩ A → Γ′ ⊩ A
mono⊩ {α P} η s = mono[⊢] η (syn s) ⅋ mono⊩ᵅ η (sem s)
mono⊩ {A ▻ B} η s = λ η′ → s (trans⊆ η η′)
mono⊩ {□ A} η s = λ η′ → s (trans⊆ η η′)
mono⊩ {A ∧ B} η s = mono⊩ {A} η (π₁ s) , mono⊩ {B} η (π₂ s)
mono⊩ {⊤} η s = ∙
mono⊩⋆ : ∀ {Ξ Γ Γ′} → Γ ⊆ Γ′ → Γ ⊩⋆ Ξ → Γ′ ⊩⋆ Ξ
mono⊩⋆ {∅} η ∙ = ∙
mono⊩⋆ {Ξ , A} η (ts , t) = mono⊩⋆ {Ξ} η ts , mono⊩ {A} η t
-- Extraction of syntax representation in a particular model.
module _ {{_ : Model}} where
reifyʳ : ∀ {A Γ} → Γ ⊩ A → Γ [⊢] A
reifyʳ {α P} s = syn s
reifyʳ {A ▻ B} s = syn (s refl⊆)
reifyʳ {□ A} s = syn (s refl⊆)
reifyʳ {A ∧ B} s = [pair] (reifyʳ {A} (π₁ s)) (reifyʳ {B} (π₂ s))
reifyʳ {⊤} s = [unit]
reifyʳ⋆ : ∀ {Ξ Γ} → Γ ⊩⋆ Ξ → Γ [⊢]⋆ Ξ
reifyʳ⋆ {∅} ∙ = ∙
reifyʳ⋆ {Ξ , A} (ts , t) = reifyʳ⋆ ts , reifyʳ t
-- Shorthand for variables.
module _ {{_ : Model}} where
[v₀] : ∀ {A Γ} → Γ , A [⊢] A
[v₀] = [var] i₀
[v₁] : ∀ {A B Γ} → Γ , A , B [⊢] A
[v₁] = [var] i₁
[v₂] : ∀ {A B C Γ} → Γ , A , B , C [⊢] A
[v₂] = [var] i₂
-- Useful theorems in functional form.
module _ {{_ : Model}} where
[multicut] : ∀ {Ξ A Γ} → Γ [⊢]⋆ Ξ → Ξ [⊢] A → Γ [⊢] A
[multicut] {∅} ∙ u = mono[⊢] bot⊆ u
[multicut] {Ξ , B} (ts , t) u = [app] ([multicut] ts ([lam] u)) t
[dist] : ∀ {A B Γ} → Γ [⊢] □ (A ▻ B) → Γ [⊢] □ A → Γ [⊢] □ B
[dist] t u = [multibox] ([⊢]⋆→[⊢⋆] ((∙ , t) , u)) ([app] ([down] [v₁]) ([down] [v₀]))
[up] : ∀ {A Γ} → Γ [⊢] □ A → Γ [⊢] □ □ A
[up] t = [multibox] ([⊢]⋆→[⊢⋆] ((∙ , t))) [v₀]
-- Useful theorems in combinatory form.
module _ {{_ : Model}} where
[ci] : ∀ {A Γ} → Γ [⊢] A ▻ A
[ci] = [lam] [v₀]
[ck] : ∀ {A B Γ} → Γ [⊢] A ▻ B ▻ A
[ck] = [lam] ([lam] [v₁])
[cs] : ∀ {A B C Γ} → Γ [⊢] (A ▻ B ▻ C) ▻ (A ▻ B) ▻ A ▻ C
[cs] = [lam] ([lam] ([lam] ([app] ([app] [v₂] [v₀]) ([app] [v₁] [v₀]))))
[cdist] : ∀ {A B Γ} → Γ [⊢] □ (A ▻ B) ▻ □ A ▻ □ B
[cdist] = [lam] ([lam] ([dist] [v₁] [v₀]))
[cup] : ∀ {A Γ} → Γ [⊢] □ A ▻ □ □ A
[cup] = [lam] ([up] [v₀])
[cdown] : ∀ {A Γ} → Γ [⊢] □ A ▻ A
[cdown] = [lam] ([down] [v₀])
[box] : ∀ {A Γ} → ∅ [⊢] A → Γ [⊢] □ A
[box] t = [multibox] ([⊢]⋆→[⊢⋆] ∙) t
[cpair] : ∀ {A B Γ} → Γ [⊢] A ▻ B ▻ A ∧ B
[cpair] = [lam] ([lam] ([pair] [v₁] [v₀]))
[cfst] : ∀ {A B Γ} → Γ [⊢] A ∧ B ▻ A
[cfst] = [lam] ([fst] [v₀])
[csnd] : ∀ {A B Γ} → Γ [⊢] A ∧ B ▻ B
[csnd] = [lam] ([snd] [v₀])
-- Additional useful equipment.
module _ {{_ : Model}} where
_⟪$⟫_ : ∀ {A B Γ} → Γ ⊩ A ▻ B → Γ ⊩ A → Γ ⊩ B
s ⟪$⟫ a = sem (s refl⊆) a
⟪K⟫ : ∀ {A B Γ} → Γ ⊩ A → Γ ⊩ B ▻ A
⟪K⟫ {A} a η = let a′ = mono⊩ {A} η a
in [app] [ck] (reifyʳ a′) ⅋ K a′
⟪S⟫ : ∀ {A B C Γ} → Γ ⊩ A ▻ B ▻ C → Γ ⊩ A ▻ B → Γ ⊩ A → Γ ⊩ C
⟪S⟫ s₁ s₂ a = (s₁ ⟪$⟫ a) ⟪$⟫ (s₂ ⟪$⟫ a)
⟪S⟫′ : ∀ {A B C Γ} → Γ ⊩ A ▻ B ▻ C → Γ ⊩ (A ▻ B) ▻ A ▻ C
⟪S⟫′ {A} {B} {C} s₁ η = let s₁′ = mono⊩ {A ▻ B ▻ C} η s₁
t = syn (s₁′ refl⊆)
in [app] [cs] t ⅋ λ s₂ η′ →
let s₁″ = mono⊩ {A ▻ B ▻ C} (trans⊆ η η′) s₁
s₂′ = mono⊩ {A ▻ B} η′ s₂
t′ = syn (s₁″ refl⊆)
u = syn (s₂′ refl⊆)
in [app] ([app] [cs] t′) u ⅋ ⟪S⟫ s₁″ s₂′
_⟪D⟫_ : ∀ {A B Γ} → Γ ⊩ □ (A ▻ B) → Γ ⊩ □ A → Γ ⊩ □ B
(s₁ ⟪D⟫ s₂) η = let t ⅋ s₁′ = s₁ η
u ⅋ a = s₂ η
in [app] ([app] [cdist] t) u ⅋ s₁′ ⟪$⟫ a
_⟪D⟫′_ : ∀ {A B Γ} → Γ ⊩ □ (A ▻ B) → Γ ⊩ □ A ▻ □ B
_⟪D⟫′_ {A} {B} s₁ η = let s₁′ = mono⊩ {□ (A ▻ B)} η s₁
in [app] [cdist] (reifyʳ (λ {_} η′ → s₁′ η′ )) ⅋ _⟪D⟫_ s₁′
⟪↑⟫ : ∀ {A Γ} → Γ ⊩ □ A → Γ ⊩ □ □ A
⟪↑⟫ s η = [app] [cup] (syn (s η)) ⅋ λ η′ → s (trans⊆ η η′)
⟪↓⟫ : ∀ {A Γ} → Γ ⊩ □ A → Γ ⊩ A
⟪↓⟫ s = sem (s refl⊆)
_⟪,⟫′_ : ∀ {A B Γ} → Γ ⊩ A → Γ ⊩ B ▻ A ∧ B
_⟪,⟫′_ {A} a η = let a′ = mono⊩ {A} η a
in [app] [cpair] (reifyʳ a′) ⅋ _,_ a′
-- Forcing in a particular world of a particular model, for sequents.
module _ {{_ : Model}} where
infix 3 _⊩_⇒_
_⊩_⇒_ : Cx Ty → Cx Ty → Ty → Set
w ⊩ Γ ⇒ A = w ⊩⋆ Γ → w ⊩ A
infix 3 _⊩_⇒⋆_
_⊩_⇒⋆_ : Cx Ty → Cx Ty → Cx Ty → Set
w ⊩ Γ ⇒⋆ Ξ = w ⊩⋆ Γ → w ⊩⋆ Ξ
-- Entailment, or forcing in all worlds of all models, for sequents.
infix 3 _⊨_
_⊨_ : Cx Ty → Ty → Set₁
Γ ⊨ A = ∀ {{_ : Model}} {w : Cx Ty} → w ⊩ Γ ⇒ A
infix 3 _⊨⋆_
_⊨⋆_ : Cx Ty → Cx Ty → Set₁
Γ ⊨⋆ Ξ = ∀ {{_ : Model}} {w : Cx Ty} → w ⊩ Γ ⇒⋆ Ξ
-- Additional useful equipment, for sequents.
module _ {{_ : Model}} where
lookup : ∀ {A Γ w} → A ∈ Γ → w ⊩ Γ ⇒ A
lookup top (γ , a) = a
lookup (pop i) (γ , b) = lookup i γ
_⟦$⟧_ : ∀ {A B Γ w} → w ⊩ Γ ⇒ A ▻ B → w ⊩ Γ ⇒ A → w ⊩ Γ ⇒ B
(s₁ ⟦$⟧ s₂) γ = s₁ γ ⟪$⟫ s₂ γ
⟦K⟧ : ∀ {A B Γ w} → w ⊩ Γ ⇒ A → w ⊩ Γ ⇒ B ▻ A
⟦K⟧ {A} {B} a γ = ⟪K⟫ {A} {B} (a γ)
⟦S⟧ : ∀ {A B C Γ w} → w ⊩ Γ ⇒ A ▻ B ▻ C → w ⊩ Γ ⇒ A ▻ B → w ⊩ Γ ⇒ A → w ⊩ Γ ⇒ C
⟦S⟧ s₁ s₂ a γ = ⟪S⟫ (s₁ γ) (s₂ γ) (a γ)
_⟦D⟧_ : ∀ {A B Γ w} → w ⊩ Γ ⇒ □ (A ▻ B) → w ⊩ Γ ⇒ □ A → w ⊩ Γ ⇒ □ B
(s₁ ⟦D⟧ s₂) γ = (s₁ γ) ⟪D⟫ (s₂ γ)
⟦↑⟧ : ∀ {A Γ w} → w ⊩ Γ ⇒ □ A → w ⊩ Γ ⇒ □ □ A
⟦↑⟧ s γ = ⟪↑⟫ (s γ)
⟦↓⟧ : ∀ {A Γ w} → w ⊩ Γ ⇒ □ A → w ⊩ Γ ⇒ A
⟦↓⟧ s γ = ⟪↓⟫ (s γ)
_⟦,⟧_ : ∀ {A B Γ w} → w ⊩ Γ ⇒ A → w ⊩ Γ ⇒ B → w ⊩ Γ ⇒ A ∧ B
(a ⟦,⟧ b) γ = a γ , b γ
⟦π₁⟧ : ∀ {A B Γ w} → w ⊩ Γ ⇒ A ∧ B → w ⊩ Γ ⇒ A
⟦π₁⟧ s γ = π₁ (s γ)
⟦π₂⟧ : ∀ {A B Γ w} → w ⊩ Γ ⇒ A ∧ B → w ⊩ Γ ⇒ B
⟦π₂⟧ s γ = π₂ (s γ)
| 30.252874
| 88
| 0.365628
|
0e16450e67f2e95dd13bb1a98f0f43dc5016ddd3
| 50
|
agda
|
Agda
|
test/interaction/Issue2447.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/interaction/Issue2447.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/interaction/Issue2447.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
import Issue2447.M
Rejected : Set
Rejected = Set
| 10
| 18
| 0.76
|
dcc9ffee72b6e33fce411b14f177f834ab26b5c9
| 4,703
|
agda
|
Agda
|
TypeTheory/SimpleOTT/Terms.agda
|
hbasold/Sandbox
|
8fc7a6cd878f37f9595124ee8dea62258da28aa4
|
[
"MIT"
] | null | null | null |
TypeTheory/SimpleOTT/Terms.agda
|
hbasold/Sandbox
|
8fc7a6cd878f37f9595124ee8dea62258da28aa4
|
[
"MIT"
] | null | null | null |
TypeTheory/SimpleOTT/Terms.agda
|
hbasold/Sandbox
|
8fc7a6cd878f37f9595124ee8dea62258da28aa4
|
[
"MIT"
] | null | null | null |
module Terms where
import Level
open import Data.Unit as Unit
open import Data.List as List
open import Data.Product as Product
open import Categories.Category using (Category)
open import Types
open import Common.Context GType
using (Ctx; Var; zero; ctx-cat; ctx-bin-coproducts)
renaming (succ to succ′)
open Categories.Category.Category ctx-cat
renaming ( _⇒_ to _▹_
; _≡_ to _≈_
; _∘_ to _●_
; id to ctx-id
)
open import Categories.Object.BinaryCoproducts ctx-cat
open BinaryCoproducts ctx-bin-coproducts
-- | Signatures over which we can define terms
Sig = Ctx
-- | Typed patterns
data Pat : (a : GType) → Set where
var′ : ∀{a : GType} (x : Var [ a ] a) → Pat a
κ₁′ : ∀{a₁ a₂ : GType} (p : Pat a₁) → Pat (a₁ ⊕ a₂)
κ₂′ : ∀{a₁ a₂ : GType} (p : Pat a₂) → Pat (a₁ ⊕ a₂)
α′ : ∀{a : Type [ tt ]} (p : Pat (unfold-μ a)) → Pat (μ a)
-- | Context defined by a pattern (this is either empty or contains a single
-- variable).
pat-ctx : ∀ {a} → Pat a → Ctx
pat-ctx {a} (var′ x) = [ a ]
pat-ctx (κ₁′ x) = pat-ctx x
pat-ctx (κ₂′ x) = pat-ctx x
pat-ctx (α′ x) = pat-ctx x
-- | Typed copatterns
data Copat : (a b : GType) → Set where
· : ∀{a} → Copat a a
app′ : ∀{a b c : GType} (q : Copat (b ⇒ c) a)
(p : Pat c) → Copat c a
π₁′ : ∀{a₁ a₂ a : GType} (q : Copat (a₁ ⊗ a₂) a) → Copat a₁ a
π₂′ : ∀{a₁ a₂ a : GType} (q : Copat (a₁ ⊗ a₂) a) → Copat a₂ a
ξ′ : ∀{b : Type [ tt ]} {a : GType} (q : Copat (ν b) a) → Copat (unfold-ν b) a
-- | Context defined by a copattern
copat-ctx : ∀ { a b} → Copat a b → Ctx
copat-ctx · = []
copat-ctx (app′ q p) = (copat-ctx q) ∐ (pat-ctx p)
copat-ctx (π₁′ q) = copat-ctx q
copat-ctx (π₂′ q) = copat-ctx q
copat-ctx (ξ′ q) = copat-ctx q
mutual
-- | A clause { q₁ ↦ t₁ ; ... ; qₙ ↦ tₙ } defines the body of a λ-abstraction
-- of the definition of a symbol in a signature.
record Clause {Δ : Sig} {Γ : Ctx} {a : GType} : Set where
inductive
field
body : List (
Σ GType (λ b →
Σ (Copat a b) (λ q →
(Term {Δ} ((copat-ctx q) ∐ Γ) b)))
)
-- | Terms typed in a context
data Term {Δ : Sig} (Γ : Ctx) : GType → Set where
var : ∀{a : GType} (x : Var Γ a) → Term Γ a
κ₁ : ∀{a₁ a₂ : GType} (t : Term {Δ} Γ a₁) → Term Γ (a₁ ⊕ a₂)
κ₂ : ∀{a₁ a₂ : GType} (t : Term {Δ} Γ a₂) → Term Γ (a₁ ⊕ a₂)
α : ∀{a : Type [ tt ]} (t : Term {Δ} Γ (unfold-μ a)) → Term Γ (μ a)
app : ∀{a b : GType} (t : Term {Δ} Γ (a ⇒ b))
(s : Term {Δ} Γ a) → Term Γ b
π₁ : ∀{a₁ a₂ : GType} (t : Term {Δ} Γ (a₁ ⊗ a₂)) → Term Γ a₁
π₂ : ∀{a₁ a₂ : GType} (t : Term {Δ} Γ (a₁ ⊗ a₂)) → Term Γ a₂
ξ : ∀{a : Type [ tt ]} (t : Term {Δ} Γ (ν a)) → Term Γ (unfold-ν a)
svar : ∀{a : GType} (f : Var Δ a) → Term Γ a
abs : ∀{a : GType} (D : Clause {Δ} {Γ} {a}) → Term Γ a
rlet : ∀{a : GType} {Δ' : Sig} →
(Ω : Definition Δ') → Term {Δ ∐ Δ'} Γ a → Term {Δ} Γ a
-- | A definition consists of a signature and its definition
data DeclBlock : Sig → Set where
empty : DeclBlock []
record Definition (Δ : Sig) : Set where
inductive
field
defs : List (Σ GType (λ a → (Var Δ a) × Clause {Δ} {[]} {a}))
open Definition
TermWDef : GType → Set
TermWDef a = Σ Sig (λ Δ → (Definition Δ) × (Term {Δ} [] a))
---------- Convenience
_↦_ : ∀{Δ : Sig} {Γ : Ctx} {a b : GType}
(q : Copat a b) (t : Term {Δ} ((copat-ctx q) ∐ Γ) b) →
(Σ GType (λ b →
Σ (Copat a b) (λ q →
(Term {Δ} ((copat-ctx q) ∐ Γ) b))))
_↦_ {b = b} q t = b , q , t
_≝_ : ∀{Δ : Sig} {a : GType}
(f : Var Δ a) (c : Clause {Δ} {[]} {a}) →
Σ GType (λ a → (Var Δ a) × Clause {Δ} {[]} {a})
_≝_ {a = a} f c = a , (f , c)
--------------------------------
------ Examples
-- 〈〉 : Term [] unit
-- 〈〉 = ?
{-
hd : ∀ {a : GType} → Term (Str a) → Term a
hd t = π₁ (ξ q)
hd′ : ∀ {a b : GType} → Copat (Str a) b → Copat a b
hd′ q = π₁′ (ξ′ q)
ones : TermWDef (Str Nat)
ones = Δ , def , (svar o)
where
Δ : Sig
Δ = [ Str Nat ]
o : Var [ Str Nat ] (Str Nat)
o = zero
o-def : Clause {[ Str Nat ]} {[]} {Str Nat}
o-def = record
{ body =
[ (· ↦ svar o) ]
}
def : Definition Δ
def = record
{ defs =
[ o ≝ o-def ]
}
-}
| 32.434483
| 86
| 0.458643
|
208db81eb61a5219f9772b36a0c6ee2035db9c9d
| 1,892
|
agda
|
Agda
|
Cubical/Algebra/OrderedCommMonoid/Properties.agda
|
thomas-lamiaux/cubical
|
58c0b83bb0fed0dc683f3d29b1709effe51c1689
|
[
"MIT"
] | null | null | null |
Cubical/Algebra/OrderedCommMonoid/Properties.agda
|
thomas-lamiaux/cubical
|
58c0b83bb0fed0dc683f3d29b1709effe51c1689
|
[
"MIT"
] | null | null | null |
Cubical/Algebra/OrderedCommMonoid/Properties.agda
|
thomas-lamiaux/cubical
|
58c0b83bb0fed0dc683f3d29b1709effe51c1689
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --safe #-}
module Cubical.Algebra.OrderedCommMonoid.Properties where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Structure
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.SIP using (TypeWithStr)
open import Cubical.Data.Sigma
open import Cubical.Algebra.CommMonoid
open import Cubical.Algebra.OrderedCommMonoid.Base
open import Cubical.Relation.Binary.Poset
private
variable
ℓ ℓ' ℓ'' : Level
module _
(M : OrderedCommMonoid ℓ ℓ')
(P : ⟨ M ⟩ → hProp ℓ'')
where
open OrderedCommMonoidStr (snd M)
module _
(·Closed : (x y : ⟨ M ⟩) → ⟨ P x ⟩ → ⟨ P y ⟩ → ⟨ P (x · y) ⟩)
(εContained : ⟨ P ε ⟩)
where
private
subtype = Σ[ x ∈ ⟨ M ⟩ ] ⟨ P x ⟩
submonoid = makeSubCommMonoid (OrderedCommMonoid→CommMonoid M) P ·Closed εContained
_≤ₛ_ : (x y : ⟨ submonoid ⟩) → Type ℓ'
x ≤ₛ y = (fst x) ≤ (fst y)
pres≤ : (x y : ⟨ submonoid ⟩) (x≤y : x ≤ₛ y) → (fst x) ≤ (fst y)
pres≤ x y x≤y = x≤y
makeOrderedSubmonoid : OrderedCommMonoid _ ℓ'
fst makeOrderedSubmonoid = subtype
OrderedCommMonoidStr._≤_ (snd makeOrderedSubmonoid) = _≤ₛ_
OrderedCommMonoidStr._·_ (snd makeOrderedSubmonoid) = CommMonoidStr._·_ (snd submonoid)
OrderedCommMonoidStr.ε (snd makeOrderedSubmonoid) = CommMonoidStr.ε (snd submonoid)
OrderedCommMonoidStr.isOrderedCommMonoid (snd makeOrderedSubmonoid) =
IsOrderedCommMonoidFromIsCommMonoid
(CommMonoidStr.isCommMonoid (snd submonoid))
(λ x y → is-prop-valued (fst x) (fst y))
(λ x → is-refl (fst x))
(λ x y z → is-trans (fst x) (fst y) (fst z))
(λ x y x≤y y≤x
→ Σ≡Prop (λ x → snd (P x))
(is-antisym (fst x) (fst y) (pres≤ x y x≤y) (pres≤ y x y≤x)))
(λ x y z x≤y → MonotoneR (pres≤ x y x≤y))
λ x y z x≤y → MonotoneL (pres≤ x y x≤y)
| 34.4
| 91
| 0.632135
|
c5545ac0a1859648165b86d057204f4757140df0
| 937
|
agda
|
Agda
|
test/Succeed/Issue3075b.agda
|
vlopezj/agda
|
ff4d89e75970cf27599fb9f572bd43c9455cbb56
|
[
"BSD-3-Clause"
] | 2
|
2019-10-29T09:40:30.000Z
|
2020-09-20T00:28:57.000Z
|
test/Succeed/Issue3075b.agda
|
vikfret/agda
|
49ad0b3f0d39c01bc35123478b857e702b29fb9d
|
[
"BSD-3-Clause"
] | 3
|
2018-11-14T15:31:44.000Z
|
2019-04-01T19:39:26.000Z
|
test/Succeed/Issue3075b.agda
|
vikfret/agda
|
49ad0b3f0d39c01bc35123478b857e702b29fb9d
|
[
"BSD-3-Clause"
] | 1
|
2015-09-15T14:36:15.000Z
|
2015-09-15T14:36:15.000Z
|
open import Agda.Builtin.Reflection renaming (bindTC to _>>=_)
open import Agda.Builtin.Nat
open import Agda.Builtin.Unit
open import Agda.Builtin.List
open import Agda.Builtin.Equality
_>>_ : {A B : Set} → TC A → TC B → TC B
m >> m' = m >>= λ _ → m'
-- Auto-inlined
id : {A : Set} → A → A
id x = x
id-noinline : {A : Set} → A → A
id-noinline x = x
{-# NOINLINE id-noinline #-}
f₁ : Nat → Nat
f₁ n = id-noinline n
f₂ : Nat → Nat
f₂ n = id n
macro
rhs : Name → Term → TC ⊤
rhs f hole = do
function (clause _ rhs ∷ _) ← getDefinition f
where _ → typeError (strErr "fail" ∷ [])
`rhs ← quoteTC rhs
unify hole `rhs
pattern vArg x = arg (arg-info visible relevant) x
pattern hArg x = arg (arg-info hidden relevant) x
-- Should not be inlined
check₁ : rhs f₁ ≡ def (quote id-noinline) (hArg (def (quote Nat) []) ∷ vArg (var 0 []) ∷ [])
check₁ = refl
-- Should be inlined
check₂ : rhs f₂ ≡ var 0 []
check₂ = refl
| 21.790698
| 92
| 0.624333
|
a1bae4e34fbe4c3ef5b48eb39e1a23ea0b4514a5
| 1,856
|
agda
|
Agda
|
Agda/Cat.agda
|
chrilves/big4-tutorial
|
277e034f7152623a17527c4ae55acc7aa8ce1f89
|
[
"MIT"
] | 3
|
2019-02-02T14:13:39.000Z
|
2021-08-22T18:44:11.000Z
|
Agda/Cat.agda
|
chrilves/big4-tutorial
|
277e034f7152623a17527c4ae55acc7aa8ce1f89
|
[
"MIT"
] | 1
|
2021-08-24T14:31:45.000Z
|
2021-08-24T14:31:45.000Z
|
Agda/Cat.agda
|
chrilves/big4-tutorial
|
277e034f7152623a17527c4ae55acc7aa8ce1f89
|
[
"MIT"
] | null | null | null |
module Cat where
open import Agda.Builtin.Equality
{- A category is very much like a graph. It has vertices
named objects and vertices named arrows. Each arrow goes
from an object to an object (possibly the same!). -}
record Cat (obj : Set) (arr : obj -> obj -> Set) : Set where
constructor MkCat
field
{- For each object, there is an arrow called `id` which
goes from the object to itself. -}
id : {o : obj} -> arr o o
{- Given an arrow `f` from object `a` to `b` and an arrow
`g` from `b` to `c`. We can compose these arrow. The
result is an arrow from `a` to `c`. -}
compose : {a b c : obj} -> arr a b -> arr b c -> arr a c
-- Here comes some properties of `id` and `compose`
{- For any arrow `f`, compose id f = f -}
neutralLeft : {a b : obj} -> (f : arr a b) -> compose id f ≡ f
{- For any arrow `f`, compose f id = f -}
neutralRight : {a b : obj} -> (f : arr a b) -> compose f id ≡ f
{- For any arrows `f`, `g` and `h`,
composing f with g, and then the result with h
gives exatctly the same result as
composing f with the result of the composition of g and h
Which means, like string concatenation than we can commpose
the way we preserve the order of each element in the sequence.
-}
associativity : {a b c d : obj} ->
(f : arr a b) -> (g : arr b c) -> (h : arr c d) ->
compose f (compose g h) ≡ compose (compose f g) h
open import Agda.Builtin.Nat
{- `LE n m` encode the property that `n ≤ m`
i.e. `n` is less or equal to `m` -}
data LE : Nat -> Nat -> Set where
LERefl : {n : Nat} -> LE n n
LENext : {n m : Nat} -> LE n m -> LE n (suc m)
{- Taking naturals as objects and `LE` as arrows,
this actually forms a category! -}
natPoset : Cat Nat LE
natPoset = ???
| 36.392157
| 70
| 0.584591
|
0beb066878dcd992b9f88a7778407d1cabd0f43c
| 12,810
|
agda
|
Agda
|
AAOSL/Abstract/EvoCR.agda
|
VictorCMiraldo/aaosl-agda
|
8032dd49b4a3803870a3c238abf948c598913f4c
|
[
"UPL-1.0"
] | 1
|
2021-01-13T17:55:08.000Z
|
2021-01-13T17:55:08.000Z
|
AAOSL/Abstract/EvoCR.agda
|
VictorCMiraldo/aaosl-agda
|
8032dd49b4a3803870a3c238abf948c598913f4c
|
[
"UPL-1.0"
] | null | null | null |
AAOSL/Abstract/EvoCR.agda
|
VictorCMiraldo/aaosl-agda
|
8032dd49b4a3803870a3c238abf948c598913f4c
|
[
"UPL-1.0"
] | null | null | null |
{- Formal verification of authenticated append-only skiplists in Agda, version 1.0.
Copyright (c) 2021 Victor C Miraldo.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import Data.Unit.NonEta
open import Data.Empty
open import Data.Sum
open import Data.Product
open import Data.Product.Properties
open import Data.Fin hiding (_<_; _≤_)
open import Data.Fin.Properties using () renaming (_≟_ to _≟Fin_)
open import Data.Nat renaming (_≟_ to _≟ℕ_; _≤?_ to _≤?ℕ_)
open import Data.Nat.Properties
open import Data.List renaming (map to List-map)
open import Data.List.Properties using (∷-injective; length-map)
open import Data.List.Relation.Unary.Any renaming (map to Any-map)
open import Data.List.Relation.Unary.All renaming (lookup to All-lookup; map to All-map)
open import Data.List.Relation.Unary.All.Properties hiding (All-map)
open import Data.List.Relation.Unary.Any.Properties renaming (map⁺ to Any-map⁺)
open import Data.List.Relation.Binary.Pointwise using (decidable-≡)
open import Data.Bool hiding (_<_; _≤_)
open import Data.Maybe renaming (map to Maybe-map)
open import Function
open import Relation.Binary.PropositionalEquality
open import Relation.Binary.Definitions
open import Relation.Nullary
open import AAOSL.Lemmas
open import AAOSL.Abstract.Hash
open import AAOSL.Abstract.DepRel
module AAOSL.Abstract.EvoCR
-- A Hash function maps a bytestring into a hash.
(hash : ByteString → Hash)
-- And is collision resistant
(hash-cr : ∀{x y} → hash x ≡ hash y → Collision hash x y ⊎ x ≡ y)
-- Indexes can be encoded in an injective way
(encodeI : ℕ → ByteString)
(encodeI-inj : (m n : ℕ) → encodeI m ≡ encodeI n → m ≡ n)
(dep : DepRel)
where
open WithCryptoHash hash hash-cr
open import AAOSL.Abstract.Advancement hash hash-cr encodeI encodeI-inj dep
open DepRel dep
-- Returns the last element on path a that is smaller than k
last-bef : ∀{j i k}(a : AdvPath j i)(i<k : i < k)(k≤j : k ≤′ j) → ℕ
last-bef {j} a i<k ≤′-refl = j
-- TODO-1 : The same or similar proof is repeated numerous times below; refactor for clarity
last-bef AdvDone i<k (≤′-step k≤j) = ⊥-elim (1+n≰n (≤-unstep (≤-trans i<k (≤′⇒≤ k≤j))))
last-bef {k = k} (AdvThere d h a) i<k (≤′-step k≤j)
with hop-tgt h ≤?ℕ k
...| yes th≤k = hop-tgt h
...| no th>k = last-bef a i<k (≤⇒≤′ (≰⇒≥ th>k))
last-bef-correct : ∀{j i k}(a : AdvPath j i)(i<k : i < k)(k≤j : k ≤′ j)
→ last-bef a i<k k≤j ∈AP a
last-bef-correct {j} a i<k ≤′-refl = ∈AP-src
last-bef-correct AdvDone i<k (≤′-step k≤j) = ⊥-elim (1+n≰n (≤-unstep (≤-trans i<k (≤′⇒≤ k≤j))))
last-bef-correct {k = k} (AdvThere d h a) i<k (≤′-step k≤j)
with hop-tgt h ≤?ℕ k
...| yes th≤k = step (<⇒≢ (hop-< h)) ∈AP-src
...| no th>k
with last-bef-correct a i<k (≤⇒≤′ (≰⇒≥ th>k))
...| ind = step (<⇒≢ (≤-trans (s≤s (∈AP-≤ ind)) (hop-< h))) ind
lemma5-hop : ∀{j i}(a : AdvPath j i)
→ ∀{k} → j < k
→ (h : HopFrom k) → hop-tgt h ≤ j → i ≤ hop-tgt h → hop-tgt h ∈AP a
lemma5-hop {j} a j<k h th≤j i≤th
with hop-tgt h ≟ℕ j
...| yes th≡j rewrite th≡j = ∈AP-src
...| no th≢j
with a
...| AdvDone rewrite ≤-antisym th≤j i≤th = hereTgtDone
...| (AdvThere x h' a')
with hop-tgt h' ≟ℕ hop-tgt h
...| yes th'≡th rewrite sym th'≡th = step (<⇒≢ (hop-< h')) ∈AP-src
...| no th'≢th
with hop-tgt h' ≤?ℕ hop-tgt h
...| yes th'≤th = ⊥-elim (1+n≰n (≤-trans j<k (hops-nested-or-nonoverlapping (≤∧≢⇒< th'≤th th'≢th) (≤∧≢⇒< th≤j th≢j))))
...| no th'>th = step th≢j (lemma5-hop a' (≤-trans (hop-< h') (≤-unstep j<k)) h (≰⇒≥ th'>th) i≤th)
lemma5 : ∀{j i k}(a : AdvPath j i)(i<k : i < k)(k≤j : k ≤′ j)
→ ∀{i₀}(b : AdvPath k i₀) → i₀ ≤ i
→ last-bef a i<k k≤j ∈AP b
lemma5 a i<k ≤′-refl b i₀≤i = ∈AP-src
lemma5 AdvDone i<k (≤′-step k≤j) b i₀≤i = ⊥-elim (1+n≰n (≤-unstep (≤-trans i<k (≤′⇒≤ k≤j))))
lemma5 {k = k} (AdvThere d h a) i<k (≤′-step k≤j) b i₀≤i
with hop-tgt h ≤?ℕ k
...| yes th≤k = lemma5-hop b (s≤s (≤′⇒≤ k≤j)) h th≤k (≤-trans i₀≤i (lemma1 a))
...| no th>k = lemma5 a i<k (≤⇒≤′ (≰⇒≥ th>k)) b i₀≤i
-- returns the first element on path a that is greather than k
first-aft : ∀{j i k}(a : AdvPath j i)(i≤k : i ≤′ k)(k<j : k < j) → ℕ
first-aft {i = i} a ≤′-refl k<j = i
first-aft AdvDone (≤′-step i≤k) k<j = ⊥-elim (1+n≰n (≤-unstep (≤-trans k<j (≤′⇒≤ i≤k))))
first-aft {j} {i} {k} (AdvThere d h a) (≤′-step i≤k) k<j
with hop-tgt h ≟ℕ k
...| yes _ = k
...| no th≢k
with hop-tgt h ≤?ℕ k
...| yes th≤k = j
...| no th≥k = first-aft a (≤′-step i≤k) (≰⇒> th≥k)
first-aft-correct : ∀{j i k}(a : AdvPath j i)(i≤k : i ≤′ k)(k<j : k < j)
→ first-aft a i≤k k<j ∈AP a
first-aft-correct a ≤′-refl k<j = ∈AP-tgt
first-aft-correct AdvDone (≤′-step i≤k) k<j = ⊥-elim (1+n≰n (≤-unstep (≤-trans k<j (≤′⇒≤ i≤k))))
first-aft-correct {j} {i} {k} (AdvThere d h a) (≤′-step i≤k) k<j
with hop-tgt h ≟ℕ k
...| yes th≡k rewrite sym th≡k = step (<⇒≢ k<j) ∈AP-src
...| no th≢k
with hop-tgt h ≤?ℕ k
...| yes th≤k = ∈AP-src
...| no th≥k
with first-aft-correct a (≤′-step i≤k) (≰⇒> th≥k)
...| ind = step (<⇒≢ (≤-trans (s≤s (∈AP-≤ ind)) (hop-< h))) ind
lemma5'-hop
: ∀{j j₁ k}(h : HopFrom j)
→ hop-tgt h < k → k < j → (b : AdvPath j₁ k) → j ≤ j₁ → j ∈AP b
lemma5'-hop {j} {j₁} h th<k k≤j b j≤j₁
with j ≟ℕ j₁
...| yes refl = ∈AP-src
...| no j≢j₁
with b
...| AdvDone = ⊥-elim (1+n≰n (≤-trans k≤j j≤j₁))
...| (AdvThere x hb b')
with hop-tgt hb ≟ℕ j
...| yes refl = step (<⇒≢ (hop-< hb)) ∈AP-src
...| no tb≢j
with hop-tgt hb ≤?ℕ j
...| no tb≰j = step j≢j₁ (lemma5'-hop h th<k k≤j b' (≰⇒≥ tb≰j))
...| yes tb≤j
with hops-nested-or-nonoverlapping (≤-trans th<k (lemma1 b')) (≤∧≢⇒< tb≤j tb≢j)
...| j₁≤j rewrite ≤-antisym j≤j₁ j₁≤j = ∈AP-src
lemma5' : ∀{j i k}(a : AdvPath j i)(i≤k : i ≤′ k)(k<j : k < j)
→ ∀{j₁}(b : AdvPath j₁ k) → j ≤ j₁
→ first-aft a i≤k k<j ∈AP b
lemma5' a ≤′-refl k<j b j≤j₁ = ∈AP-tgt
lemma5' AdvDone (≤′-step i≤k) k<j b j≤j₁ = ⊥-elim (1+n≰n (≤-unstep (≤-trans k<j (≤′⇒≤ i≤k))))
lemma5' {j} {i} {k} (AdvThere d h a) (≤′-step i≤k) k<j b j≤j₁
with hop-tgt h ≟ℕ k
...| yes _ = ∈AP-tgt
...| no th≢k
with hop-tgt h ≤?ℕ k
...| yes th≤k = lemma5'-hop h (≤∧≢⇒< th≤k th≢k) k<j b j≤j₁
...| no th≥k = lemma5' a (≤′-step i≤k) (≰⇒> th≥k) b (≤-unstep (≤-trans (hop-< h) j≤j₁))
∈AP-⊕-intro-l : ∀{j k i m}
→ {a₂ : AdvPath j k}{a₁ : AdvPath k i}
→ m ∈AP a₂
→ m ∈AP (a₂ ⊕ a₁)
∈AP-⊕-intro-l hereTgtThere = hereTgtThere
∈AP-⊕-intro-l (step prog m∈a) = step prog (∈AP-⊕-intro-l m∈a)
∈AP-⊕-intro-l {a₁ = AdvDone} hereTgtDone = hereTgtDone
∈AP-⊕-intro-l {a₁ = AdvThere d h a} hereTgtDone = hereTgtThere
∈AP-⊕-intro-r : ∀{j k i m}
→ {a₂ : AdvPath j k}{a₁ : AdvPath k i}
→ m ∈AP a₁
→ m ∈AP (a₂ ⊕ a₁)
∈AP-⊕-intro-r {a₂ = AdvDone} hyp = hyp
∈AP-⊕-intro-r {k = k} {a₂ = AdvThere d h a} hyp =
step (<⇒≢ (≤-trans (s≤s (∈AP-≤ hyp)) (≤-trans (s≤s (lemma1 a)) (hop-< h))))
(∈AP-⊕-intro-r {a₂ = a} hyp)
∈AP-⊕-≤-r : ∀{j k i m}{a₂ : AdvPath j k}{a₁ : AdvPath k i}
→ m ∈AP (a₂ ⊕ a₁)
→ m ≤ k
→ m ∈AP a₁
∈AP-⊕-≤-r {a₂ = AdvDone} m∈a12 m≤k = m∈a12
∈AP-⊕-≤-r {a₂ = AdvThere d h a₂} hereTgtThere m≤k = ⊥-elim (1+n≰n (≤-trans (≤-trans (s≤s (lemma1 a₂)) (hop-< h)) m≤k))
∈AP-⊕-≤-r {a₂ = AdvThere d h a₂} (step x m∈a12) m≤k
= ∈AP-⊕-≤-r m∈a12 m≤k
findM : ∀ {j i₂ s₁ s₂ tgt}
→ (a₁₁ : AdvPath j s₁)
→ (a₂₁ : AdvPath j s₂)
→ (a₂₂ : AdvPath s₂ i₂)
→ (m₂ : MembershipProof s₂ tgt)
→ i₂ ≤ s₁
→ tgt ≤ s₁
→ s₁ ≤ s₂
→ ∃[ M ] (M ∈AP a₂₂ × M ∈AP mbr-proof m₂ × M ∈AP a₁₁)
findM {s₁ = s₁} {s₂} a₁₁ a₂₁ a₂₂ m₂ i₂≤s₁ t≤s₁ s₁≤s₂
with <-cmp s₁ s₂
...| tri> _ _ s₂<s₁ = ⊥-elim (<⇒≢ s₂<s₁ (sym (≤-antisym s₁≤s₂ (≤-unstep s₂<s₁))))
...| tri≈ _ refl _ = s₁ , ∈AP-src , ∈AP-src , ∈AP-tgt
...| tri< s₁<s₂ _ _ = last-bef a₁₁ s₁<s₂ (≤⇒≤′ (lemma1 a₂₁))
, lemma5 a₁₁ s₁<s₂ (≤⇒≤′ (lemma1 a₂₁)) a₂₂ i₂≤s₁
, lemma5 a₁₁ s₁<s₂ (≤⇒≤′ (lemma1 a₂₁)) (mbr-proof m₂) t≤s₁
, last-bef-correct a₁₁ s₁<s₂ (≤⇒≤′ (lemma1 a₂₁))
findR : ∀{j i₁ s₁ s₂ tgt}
→ (a₁₁ : AdvPath j s₁)
→ (a₁₂ : AdvPath s₁ i₁)
→ (a₂₁ : AdvPath j s₂)
→ (m₁ : MembershipProof s₁ tgt)(m₂ : MembershipProof s₂ tgt)
→ i₁ ≤ tgt
→ tgt ≤ s₁
→ s₁ ≤ s₂ -- wlog
→ ∃[ R ] (R ∈AP mbr-proof m₁ × R ∈AP mbr-proof m₂ × R ∈AP a₁₂)
findR {s₁ = s₁} {tgt = tgt} a₁₁ a₁₂ a₂₁ m₁ m₂ i₁≤t t≤s₁ s₁≤s₂
with <-cmp tgt s₁
...| tri> _ _ s₁<t = ⊥-elim (<⇒≢ s₁<t (sym (≤-antisym t≤s₁ (≤-unstep s₁<t))))
...| tri≈ _ refl _ = s₁ , ∈AP-src , ∈AP-tgt , ∈AP-src
...| tri< t<s₁ _ _ = first-aft a₁₂ (≤⇒≤′ i₁≤t) t<s₁
, lemma5' a₁₂ (≤⇒≤′ i₁≤t) t<s₁ (mbr-proof m₁) ≤-refl
, lemma5' a₁₂ (≤⇒≤′ i₁≤t) t<s₁ (mbr-proof m₂) s₁≤s₂
, first-aft-correct a₁₂ (≤⇒≤′ i₁≤t) t<s₁
-- check Figure 4 (page 12) in: https://arxiv.org/pdf/cs/0302010.pdf
--
-- a₁ is dashed black line
-- a₂ is dashed gray line
-- m₁ is thick black line
-- m₂ is thick gray line
-- s₁ is j
-- s₂ is k
-- j is n
-- tgt is i
evo-cr : ∀{j i₁ i₂}{t₁ t₂ : View}
→ (a₁ : AdvPath j i₁)
→ (a₂ : AdvPath j i₂)
→ rebuild a₁ t₁ j ≡ rebuild a₂ t₂ j
→ ∀{s₁ s₂ tgt}{u₁ u₂ : View}
→ (m₁ : MembershipProof s₁ tgt)(m₂ : MembershipProof s₂ tgt)
→ s₁ ∈AP a₁ → s₂ ∈AP a₂
→ tgt ≢ 0 → tgt ≤ s₁ → s₁ ≤ s₂ -- wlog
→ i₁ ≤ tgt
→ i₂ ≤ tgt
→ rebuildMP m₁ u₁ s₁ ≡ rebuild a₁ t₁ s₁
→ rebuildMP m₂ u₂ s₂ ≡ rebuild a₂ t₂ s₂
→ HashBroke ⊎ (mbr-datum m₁ ≡ mbr-datum m₂)
evo-cr {t₁ = t₁} {t₂} a₁ a₂ hyp {s₁} {s₂} {tgt} {u₁} {u₂}
m₁ m₂ s₁∈a₁ s₂∈a₂ t≢0 t≤s₁ s₁≤s₂ i₁≤t i₂≤t c₁ c₂
with ∈AP-cut a₁ s₁∈a₁ | ∈AP-cut a₂ s₂∈a₂
...| ((a₁₁ , a₁₂) , refl) | ((a₂₁ , a₂₂) , refl)
-- The first part of the proof is find some points common to three
-- of the provided proofs. This is given in Figure 4 of Maniatis and Baker,
-- and they are called M and R too, to help make it at least a little clear.
-- First we find a point that belongs in a₂, m₁ and a₁.
with findM a₁₁ a₂₁ a₂₂ m₂ (≤-trans i₂≤t t≤s₁) t≤s₁ s₁≤s₂
...| M , M∈a₂₂ , M∈m₂ , M∈a₁₁
-- Next, we find a point that belongs in m₁, m₂ and a₁.
with findR a₁₁ a₁₂ a₂₁ m₁ m₂ i₁≤t t≤s₁ s₁≤s₂
...| R , R∈m₁ , R∈m₂ , R∈a₁₂
-- Now, since a₁ and a₂ rebuild to the same hash and M belongs
-- to both these proofs, the hash for M is the same.
with AgreeOnCommon a₁ a₂ hyp (∈AP-⊕-intro-l M∈a₁₁) (∈AP-⊕-intro-r M∈a₂₂)
...| inj₁ hb = inj₁ hb
...| inj₂ M-a1a2
-- Similarly, for a₂₂ and m₂
with AgreeOnCommon a₂₂ (mbr-proof m₂) (trans (sym (rebuild-⊕' a₂₁ a₂₂ ∈AP-src)) (sym c₂)) M∈a₂₂ M∈m₂
...| inj₁ hb = inj₁ hb
...| inj₂ M-a2m2
-- Which brings us to: rebuild a1 M == rebuild m2 M
with trans (trans M-a1a2 (rebuild-⊕' a₂₁ a₂₂ M∈a₂₂)) M-a2m2
...| M-a1m2
-- Well, if a1 and m2 agree on one point, they agree on all points. In particular, they
-- agree on R!
with ∈AP-cut (mbr-proof m₂) M∈m₂
...| ((m₂₁ , m₂₂) , refl)
with AgreeOnCommon-∈ a₁ m₂₂ (∈AP-⊕-intro-l M∈a₁₁)
(trans M-a1m2 (rebuild-⊕' m₂₁ m₂₂ ∈AP-src))
(∈AP-⊕-intro-r R∈a₁₂) (∈AP-⊕-≤-r R∈m₂ (≤-trans (∈AP-≤ R∈a₁₂) (∈AP-≥ M∈a₁₁)))
...| inj₁ hb = inj₁ hb
...| inj₂ R-a1m2
-- Which finally lets us argue that m1 and m2 also agree on R. Similarly, if they agree
-- on one point they agree on all points.
with AgreeOnCommon a₁₂ (mbr-proof m₁) (trans (sym (rebuild-⊕' a₁₁ a₁₂ ∈AP-src)) (sym c₁)) R∈a₁₂ R∈m₁
...| inj₁ hb = inj₁ hb
...| inj₂ R-a1m1
with trans (trans (sym R-a1m2) (rebuild-⊕' a₁₁ a₁₂ R∈a₁₂)) R-a1m1
...| R-m1m2
with ∈AP-cut (mbr-proof m₁) R∈m₁
...| ((m₁₁ , m₁₂) , refl)
with AgreeOnCommon-∈ m₂₂ m₁₂ (∈AP-⊕-≤-r R∈m₂ (≤-trans (∈AP-≤ R∈a₁₂) (∈AP-≥ M∈a₁₁)))
(trans R-m1m2 (rebuild-⊕' m₁₁ m₁₂ ∈AP-src)) ∈AP-tgt ∈AP-tgt
...| inj₁ hb = inj₁ hb
...| inj₂ res
with trans (rebuild-⊕' m₂₁ m₂₂ ∈AP-tgt) (trans res (sym (rebuild-⊕' m₁₁ m₁₂ ∈AP-tgt)))
...| half with rebuild-tgt-lemma (mbr-proof m₁)
{u₁ ∪₁ (tgt , auth tgt (mbr-datum m₁) u₁) }
| rebuild-tgt-lemma (mbr-proof m₂)
{u₂ ∪₁ (tgt , auth tgt (mbr-datum m₂) u₂) }
...| l1 | l2
rewrite ≟ℕ-refl tgt = auth-inj-1 {tgt} {mbr-datum m₁} {mbr-datum m₂} t≢0 (trans (sym l1) (trans (sym half) l2))
| 42.842809
| 120
| 0.538173
|
23483e43f042e0eacbb52a09434ed8f56af264f9
| 496
|
agda
|
Agda
|
OldBasicILP/UntypedSyntax/Common.agda
|
mietek/hilbert-gentzen
|
fcd187db70f0a39b894fe44fad0107f61849405c
|
[
"X11"
] | 29
|
2016-07-03T18:51:56.000Z
|
2022-01-01T10:29:18.000Z
|
OldBasicILP/UntypedSyntax/Common.agda
|
mietek/hilbert-gentzen
|
fcd187db70f0a39b894fe44fad0107f61849405c
|
[
"X11"
] | 1
|
2018-06-10T09:11:22.000Z
|
2018-06-10T09:11:22.000Z
|
OldBasicILP/UntypedSyntax/Common.agda
|
mietek/hilbert-gentzen
|
fcd187db70f0a39b894fe44fad0107f61849405c
|
[
"X11"
] | null | null | null |
module OldBasicILP.UntypedSyntax.Common where
open import Common.UntypedContext public
-- Types parametrised by closed, untyped representations.
module ClosedSyntax
(Proof : Set)
where
infixr 10 _⦂_
infixl 9 _∧_
infixr 7 _▻_
data Ty : Set where
α_ : Atom → Ty
_▻_ : Ty → Ty → Ty
_⦂_ : Proof → Ty → Ty
_∧_ : Ty → Ty → Ty
⊤ : Ty
-- Additional useful types.
infixr 7 _▻⋯▻_
_▻⋯▻_ : Cx Ty → Ty → Ty
∅ ▻⋯▻ B = B
(Ξ , A) ▻⋯▻ B = Ξ ▻⋯▻ (A ▻ B)
| 17.103448
| 57
| 0.568548
|
0e343ce91bc791b4124b14d5387bf9fa950ea7a1
| 98
|
agda
|
Agda
|
test/Succeed/Issue2487-2.agda
|
cagix/agda
|
cc026a6a97a3e517bb94bafa9d49233b067c7559
|
[
"BSD-2-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Succeed/Issue2487-2.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Succeed/Issue2487-2.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
{-# OPTIONS --cubical --prop --rewriting #-}
module Issue2487-2 where
import Issue2487.Infective
| 19.6
| 44
| 0.734694
|
18603056edff953c9d869f2dbcc7c5602f837935
| 2,239
|
agda
|
Agda
|
test/Common/IO.agda
|
pthariensflame/agda
|
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
|
[
"BSD-3-Clause"
] | null | null | null |
test/Common/IO.agda
|
pthariensflame/agda
|
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
|
[
"BSD-3-Clause"
] | null | null | null |
test/Common/IO.agda
|
pthariensflame/agda
|
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
|
[
"BSD-3-Clause"
] | null | null | null |
module Common.IO where
open import Agda.Builtin.IO public
open import Common.Bool
open import Common.Char
open import Common.Nat
open import Common.String
open import Common.Unit
open import Common.Float
infixl 1 _>>=_
postulate
return : ∀ {a} {A : Set a} → A → IO A
_>>=_ : ∀ {a b} {A : Set a} {B : Set b} → IO A → (A → IO B) → IO B
{-# COMPILED return (\_ _ -> return) #-}
{-# COMPILED _>>=_ (\_ _ _ _ -> (>>=)) #-}
{-# COMPILED_EPIC return (u1 : Unit, a : Any) -> Any = ioreturn(a) #-}
{-# COMPILED_EPIC _>>=_ (u1 : Unit, u2 : Unit, x : Any, f : Any) -> Any = iobind(x,f) #-}
{-# COMPILED_UHC return (\_ _ x -> UHC.Agda.Builtins.primReturn x) #-}
{-# COMPILED_UHC _>>=_ (\_ _ _ _ x y -> UHC.Agda.Builtins.primBind x y) #-}
{-# COMPILED_JS return
function(u0) { return function(u1) { return function(x) { return function(cb) { cb(x); }; }; }; } #-}
{-# COMPILED_JS _>>=_
function(u0) { return function(u1) { return function(u2) { return function(u3) {
return function(x) { return function(y) { return function(cb) {
x(function (xx) { y(xx)(cb); });
}; }; };
}; }; }; }
#-}
{-# IMPORT Data.Text.IO #-}
postulate
putStr : String -> IO Unit
{-# COMPILED putStr Data.Text.IO.putStr #-}
{-# COMPILED_EPIC putStr (a : String, u : Unit) -> Unit = foreign Int "wputStr" (a : String); primUnit #-}
{-# COMPILED_UHC putStr (UHC.Agda.Builtins.primPutStr) #-}
{-# COMPILED_JS putStr function (x) { return function(cb) { process.stdout.write(x); cb(0); }; } #-}
printChar : Char -> IO Unit
printChar c = putStr (charToStr c)
putStrLn : String -> IO Unit
putStrLn s = putStr s >>= \_ -> putStr "\n"
printNat : Nat -> IO Unit
printNat n = putStr (natToString n)
printBool : Bool -> IO Unit
printBool true = putStr "true"
printBool false = putStr "false"
printFloat : Float -> IO Unit
printFloat f = putStr (floatToString f)
infixr 2 _<$>_
_<$>_ : {A B : Set}(f : A -> B)(m : IO A) -> IO B
f <$> x = x >>= λ y -> return (f y)
infixr 0 bind
bind : ∀ {a b} {A : Set a} {B : Set b} → IO A → (A → IO B) → IO B
bind m f = m >>= f
infixr 0 then
then : ∀ {a b} {A : Set a} {B : Set b} -> IO A -> IO B -> IO B
then m f = m >>= λ _ -> f
syntax bind e (\ x -> f) = x <- e , f
syntax then e f = e ,, f
| 29.853333
| 106
| 0.585976
|
1808726baadc36c3ab84d5d3b9370d8208f6f27c
| 10,151
|
agda
|
Agda
|
agda-stdlib-0.9/src/Data/Bin.agda
|
qwe2/try-agda
|
9d4c43b1609d3f085636376fdca73093481ab882
|
[
"Apache-2.0"
] | 1
|
2016-10-20T15:52:05.000Z
|
2016-10-20T15:52:05.000Z
|
agda-stdlib-0.9/src/Data/Bin.agda
|
qwe2/try-agda
|
9d4c43b1609d3f085636376fdca73093481ab882
|
[
"Apache-2.0"
] | null | null | null |
agda-stdlib-0.9/src/Data/Bin.agda
|
qwe2/try-agda
|
9d4c43b1609d3f085636376fdca73093481ab882
|
[
"Apache-2.0"
] | null | null | null |
------------------------------------------------------------------------
-- The Agda standard library
--
-- A binary representation of natural numbers
------------------------------------------------------------------------
module Data.Bin where
open import Data.Nat as Nat
using (ℕ; zero; z≤n; s≤s) renaming (suc to 1+_)
open Nat.≤-Reasoning
import Data.Nat.Properties as NP
open import Data.Digit
open import Data.Fin as Fin using (Fin; zero) renaming (suc to 1+_)
open import Data.Fin.Properties as FP using (_+′_)
open import Data.List as List hiding (downFrom)
open import Function
open import Data.Product
open import Algebra
open import Relation.Binary
open import Relation.Binary.Consequences
open import Relation.Binary.PropositionalEquality as PropEq
using (_≡_; _≢_; refl; sym)
open import Relation.Nullary
private
module BitOrd = StrictTotalOrder (FP.strictTotalOrder 2)
------------------------------------------------------------------------
-- The type
-- A representation of binary natural numbers in which there is
-- exactly one representative for every number.
-- The function toℕ below defines the meaning of Bin.
infix 8 _1#
-- bs stands for the binary number 1<reverse bs>, which is positive.
Bin⁺ : Set
Bin⁺ = List Bit
data Bin : Set where
-- Zero.
0# : Bin
-- bs 1# stands for the binary number 1<reverse bs>.
_1# : (bs : Bin⁺) → Bin
------------------------------------------------------------------------
-- Conversion functions
-- Converting to a list of bits starting with the _least_ significant
-- one.
toBits : Bin → List Bit
toBits 0# = [ 0b ]
toBits (bs 1#) = bs ++ [ 1b ]
-- Converting to a natural number.
toℕ : Bin → ℕ
toℕ = fromDigits ∘ toBits
-- Converting from a list of bits, starting with the _least_
-- significant one.
fromBits : List Bit → Bin
fromBits [] = 0#
fromBits (b ∷ bs) with fromBits bs
fromBits (b ∷ bs) | bs′ 1# = (b ∷ bs′) 1#
fromBits (zero ∷ bs) | 0# = 0#
fromBits (1+ zero ∷ bs) | 0# = [] 1#
fromBits (1+ 1+ () ∷ bs) | _
-- Converting from a natural number.
fromℕ : ℕ → Bin
fromℕ n = fromBits $ proj₁ $ toDigits 2 n
------------------------------------------------------------------------
-- (Bin, _≡_, _<_) is a strict total order
infix 4 _<_
-- Order relation. Wrapped so that the parameters can be inferred.
data _<_ (b₁ b₂ : Bin) : Set where
less : (lt : (Nat._<_ on toℕ) b₁ b₂) → b₁ < b₂
private
<-trans : Transitive _<_
<-trans (less lt₁) (less lt₂) = less (NP.<-trans lt₁ lt₂)
asym : ∀ {b₁ b₂} → b₁ < b₂ → ¬ b₂ < b₁
asym {b₁} {b₂} (less lt) (less gt) = tri⟶asym cmp lt gt
where cmp = StrictTotalOrder.compare NP.strictTotalOrder
irr : ∀ {b₁ b₂} → b₁ < b₂ → b₁ ≢ b₂
irr lt eq = asym⟶irr (PropEq.resp₂ _<_) sym asym eq lt
irr′ : ∀ {b} → ¬ b < b
irr′ lt = irr lt refl
∷∙ : ∀ {b₁ b₂ bs₁ bs₂} →
bs₁ 1# < bs₂ 1# → (b₁ ∷ bs₁) 1# < (b₂ ∷ bs₂) 1#
∷∙ {b₁} {b₂} {bs₁} {bs₂} (less lt) = less (begin
1 + (m₁ + n₁ * 2) ≤⟨ ≤-refl {x = 1} +-mono
(≤-pred (FP.bounded b₁) +-mono ≤-refl) ⟩
1 + (1 + n₁ * 2) ≡⟨ refl ⟩
suc n₁ * 2 ≤⟨ lt *-mono ≤-refl ⟩
n₂ * 2 ≤⟨ n≤m+n m₂ (n₂ * 2) ⟩
m₂ + n₂ * 2 ∎
)
where
open Nat; open NP
open DecTotalOrder decTotalOrder renaming (refl to ≤-refl)
m₁ = Fin.toℕ b₁; m₂ = Fin.toℕ b₂
n₁ = toℕ (bs₁ 1#); n₂ = toℕ (bs₂ 1#)
∙∷ : ∀ {b₁ b₂ bs} →
Fin._<_ b₁ b₂ → (b₁ ∷ bs) 1# < (b₂ ∷ bs) 1#
∙∷ {b₁} {b₂} {bs} lt = less (begin
1 + (m₁ + n * 2) ≡⟨ sym (+-assoc 1 m₁ (n * 2)) ⟩
(1 + m₁) + n * 2 ≤⟨ lt +-mono ≤-refl ⟩
m₂ + n * 2 ∎)
where
open Nat; open NP
open DecTotalOrder decTotalOrder renaming (refl to ≤-refl)
open CommutativeSemiring commutativeSemiring using (+-assoc)
m₁ = Fin.toℕ b₁; m₂ = Fin.toℕ b₂; n = toℕ (bs 1#)
1<[23] : ∀ {b} → [] 1# < (b ∷ []) 1#
1<[23] {b} = less (NP.n≤m+n (Fin.toℕ b) 2)
1<2+ : ∀ {bs b} → [] 1# < (b ∷ bs) 1#
1<2+ {[]} = 1<[23]
1<2+ {b ∷ bs} = <-trans 1<[23] (∷∙ {b₁ = b} (1<2+ {bs}))
0<1 : 0# < [] 1#
0<1 = less (s≤s z≤n)
0<+ : ∀ {bs} → 0# < bs 1#
0<+ {[]} = 0<1
0<+ {b ∷ bs} = <-trans 0<1 1<2+
compare⁺ : Trichotomous (_≡_ on _1#) (_<_ on _1#)
compare⁺ [] [] = tri≈ irr′ refl irr′
compare⁺ [] (b ∷ bs) = tri< 1<2+ (irr 1<2+) (asym 1<2+)
compare⁺ (b ∷ bs) [] = tri> (asym 1<2+) (irr 1<2+ ∘ sym) 1<2+
compare⁺ (b₁ ∷ bs₁) (b₂ ∷ bs₂) with compare⁺ bs₁ bs₂
... | tri< lt ¬eq ¬gt = tri< (∷∙ lt) (irr (∷∙ lt)) (asym (∷∙ lt))
... | tri> ¬lt ¬eq gt = tri> (asym (∷∙ gt)) (irr (∷∙ gt) ∘ sym) (∷∙ gt)
compare⁺ (b₁ ∷ bs) (b₂ ∷ .bs) | tri≈ ¬lt refl ¬gt with BitOrd.compare b₁ b₂
compare⁺ (b ∷ bs) (.b ∷ .bs) | tri≈ ¬lt refl ¬gt | tri≈ ¬lt′ refl ¬gt′ =
tri≈ irr′ refl irr′
... | tri< lt′ ¬eq ¬gt′ = tri< (∙∷ lt′) (irr (∙∷ lt′)) (asym (∙∷ lt′))
... | tri> ¬lt′ ¬eq gt′ = tri> (asym (∙∷ gt′)) (irr (∙∷ gt′) ∘ sym) (∙∷ gt′)
compare : Trichotomous _≡_ _<_
compare 0# 0# = tri≈ irr′ refl irr′
compare 0# (bs₂ 1#) = tri< 0<+ (irr 0<+) (asym 0<+)
compare (bs₁ 1#) 0# = tri> (asym 0<+) (irr 0<+ ∘ sym) 0<+
compare (bs₁ 1#) (bs₂ 1#) = compare⁺ bs₁ bs₂
strictTotalOrder : StrictTotalOrder _ _ _
strictTotalOrder = record
{ Carrier = Bin
; _≈_ = _≡_
; _<_ = _<_
; isStrictTotalOrder = record
{ isEquivalence = PropEq.isEquivalence
; trans = <-trans
; compare = compare
; <-resp-≈ = PropEq.resp₂ _<_
}
}
------------------------------------------------------------------------
-- (Bin, _≡_) is a decidable setoid
decSetoid : DecSetoid _ _
decSetoid = StrictTotalOrder.decSetoid strictTotalOrder
infix 4 _≟_
_≟_ : Decidable {A = Bin} _≡_
_≟_ = DecSetoid._≟_ decSetoid
------------------------------------------------------------------------
-- Arithmetic
-- Power of two.
infixr 8 2^_
2^_ : ℕ → Bin⁺
2^ 0 = []
2^ 1+ n = 0b ∷ 2^ n
-- Base 2 logarithm (rounded downwards).
⌊log₂_⌋ : Bin⁺ → ℕ
⌊log₂ (b ∷ bs) ⌋ = 1+ ⌊log₂ bs ⌋
⌊log₂ [] ⌋ = 0
-- Multiplication by 2.
infix 7 _*2 _*2+1
_*2 : Bin → Bin
0# *2 = 0#
(bs 1#) *2 = (0b ∷ bs) 1#
_*2+1 : Bin → Bin
0# *2+1 = [] 1#
(bs 1#) *2+1 = (1b ∷ bs) 1#
-- Division by 2, rounded downwards.
⌊_/2⌋ : Bin → Bin
⌊ 0# /2⌋ = 0#
⌊ [] 1# /2⌋ = 0#
⌊ (b ∷ bs) 1# /2⌋ = bs 1#
-- Addition.
Carry : Set
Carry = Bit
addBits : Carry → Bit → Bit → Carry × Bit
addBits c b₁ b₂ with c +′ (b₁ +′ b₂)
... | zero = (0b , 0b)
... | 1+ zero = (0b , 1b)
... | 1+ 1+ zero = (1b , 0b)
... | 1+ 1+ 1+ zero = (1b , 1b)
... | 1+ 1+ 1+ 1+ ()
addCarryToBitList : Carry → List Bit → List Bit
addCarryToBitList zero bs = bs
addCarryToBitList (1+ zero) [] = 1b ∷ []
addCarryToBitList (1+ zero) (zero ∷ bs) = 1b ∷ bs
addCarryToBitList (1+ zero) (1+ zero ∷ bs) = 0b ∷ addCarryToBitList 1b bs
addCarryToBitList (1+ 1+ ()) _
addCarryToBitList _ ((1+ 1+ ()) ∷ _)
addBitLists : Carry → List Bit → List Bit → List Bit
addBitLists c [] bs₂ = addCarryToBitList c bs₂
addBitLists c bs₁ [] = addCarryToBitList c bs₁
addBitLists c (b₁ ∷ bs₁) (b₂ ∷ bs₂) with addBits c b₁ b₂
... | (c' , b') = b' ∷ addBitLists c' bs₁ bs₂
infixl 6 _+_
_+_ : Bin → Bin → Bin
m + n = fromBits (addBitLists 0b (toBits m) (toBits n))
-- Multiplication.
infixl 7 _*_
_*_ : Bin → Bin → Bin
0# * n = 0#
[] 1# * n = n
-- (b + 2 * bs 1#) * n = b * n + 2 * (bs 1# * n)
(b ∷ bs) 1# * n with bs 1# * n
(b ∷ bs) 1# * n | 0# = 0#
(zero ∷ bs) 1# * n | bs' 1# = (0b ∷ bs') 1#
(1+ zero ∷ bs) 1# * n | bs' 1# = n + (0b ∷ bs') 1#
((1+ 1+ ()) ∷ _) 1# * _ | _
-- Successor.
suc : Bin → Bin
suc n = [] 1# + n
-- Division by 2, rounded upwards.
⌈_/2⌉ : Bin → Bin
⌈ n /2⌉ = ⌊ suc n /2⌋
-- Predecessor.
pred : Bin⁺ → Bin
pred [] = 0#
pred (zero ∷ bs) = pred bs *2+1
pred (1+ zero ∷ bs) = (zero ∷ bs) 1#
pred (1+ 1+ () ∷ bs)
-- downFrom n enumerates all numbers from n - 1 to 0. This function is
-- linear in n. Analysis: fromℕ takes linear time, and the preds used
-- take amortised constant time (to see this, let the cost of a pred
-- be 2, and put 1 debit on every bit which is 1).
downFrom : ℕ → List Bin
downFrom n = helper n (fromℕ n)
where
helper : ℕ → Bin → List Bin
helper zero 0# = []
helper (1+ n) (bs 1#) = n′ ∷ helper n n′
where n′ = pred bs
-- Impossible cases:
helper zero (_ 1#) = []
helper (1+ _) 0# = []
------------------------------------------------------------------------
-- Tests
-- The tests below have been commented out since (at least one version
-- of) Agda is too slow or memory-hungry to type check them.
{-
-- The tests below are run when this module is type checked.
-- First some test helpers:
private
testLimit : ℕ
testLimit = 5
nats : List ℕ
nats = List.downFrom testLimit
nats⁺ : List ℕ
nats⁺ = filter (λ n → decToBool (Nat._≤?_ 1 n)) nats
natPairs : List (ℕ × ℕ)
natPairs = zip nats (reverse nats)
_=[_]_ : (ℕ → ℕ) → List ℕ → (Bin → Bin) → Set
f =[ ns ] g = map f ns ≡ map (toℕ ∘ g ∘ fromℕ) ns
_=[_]₂_ : (ℕ → ℕ → ℕ) → List (ℕ × ℕ) → (Bin → Bin → Bin) → Set
f =[ ps ]₂ g =
map (uncurry f) ps ≡ map (toℕ ∘ uncurry (g on fromℕ)) ps
-- And then the tests:
private
test-*2+1 : (λ n → Nat._+_ (Nat._*_ n 2) 1) =[ nats ] _*2+1
test-*2+1 = refl
test-*2 : (λ n → Nat._*_ n 2) =[ nats ] _*2
test-*2 = refl
test-⌊_/2⌋ : Nat.⌊_/2⌋ =[ nats ] ⌊_/2⌋
test-⌊_/2⌋ = refl
test-+ : Nat._+_ =[ natPairs ]₂ _+_
test-+ = refl
test-* : Nat._*_ =[ natPairs ]₂ _*_
test-* = refl
test-suc : 1+_ =[ nats ] suc
test-suc = refl
test-⌈_/2⌉ : Nat.⌈_/2⌉ =[ nats ] ⌈_/2⌉
test-⌈_/2⌉ = refl
drop-1# : Bin → Bin⁺
drop-1# 0# = []
drop-1# (bs 1#) = bs
test-pred : Nat.pred =[ nats⁺ ] (pred ∘ drop-1#)
test-pred = refl
test-downFrom : map toℕ (downFrom testLimit) ≡
List.downFrom testLimit
test-downFrom = refl
-}
| 27.214477
| 80
| 0.503103
|
d0a78cd19bbae1904734021270341ea54971243a
| 689
|
agda
|
Agda
|
Numbers/Integers/RingStructure/IntegralDomain.agda
|
Smaug123/agdaproofs
|
0f4230011039092f58f673abcad8fb0652e6b562
|
[
"MIT"
] | 4
|
2019-08-08T12:44:19.000Z
|
2022-01-28T06:04:15.000Z
|
Numbers/Integers/RingStructure/IntegralDomain.agda
|
Smaug123/agdaproofs
|
0f4230011039092f58f673abcad8fb0652e6b562
|
[
"MIT"
] | 14
|
2019-01-06T21:11:59.000Z
|
2020-04-11T11:03:39.000Z
|
Numbers/Integers/RingStructure/IntegralDomain.agda
|
Smaug123/agdaproofs
|
0f4230011039092f58f673abcad8fb0652e6b562
|
[
"MIT"
] | 1
|
2021-11-29T13:23:07.000Z
|
2021-11-29T13:23:07.000Z
|
{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Numbers.Naturals.Semiring
open import Numbers.Integers.RingStructure.Ring
open import Rings.IntegralDomains.Definition
module Numbers.Integers.RingStructure.IntegralDomain where
intDom : (a b : ℤ) → a *Z b ≡ nonneg 0 → (a ≡ nonneg 0 → False) → (b ≡ nonneg 0)
intDom (nonneg zero) (nonneg b) x a!=0 = exFalso (a!=0 x)
intDom (nonneg (succ a)) (nonneg zero) a!=0 _ = refl
intDom (nonneg zero) (negSucc b) pr a!=0 = exFalso (a!=0 pr)
intDom (negSucc a) (nonneg zero) _ _ = refl
ℤIntDom : IntegralDomain ℤRing
IntegralDomain.intDom ℤIntDom {a} {b} = intDom a b
IntegralDomain.nontrivial ℤIntDom ()
| 36.263158
| 80
| 0.721335
|
062d0984c607752277fb5691986ede0c5e0a9de3
| 6,197
|
agda
|
Agda
|
core/lib/types/Choice.agda
|
AntoineAllioux/HoTT-Agda
|
1037d82edcf29b620677a311dcfd4fc2ade2faa6
|
[
"MIT"
] | 294
|
2015-01-09T16:23:23.000Z
|
2022-03-20T13:54:45.000Z
|
core/lib/types/Choice.agda
|
AntoineAllioux/HoTT-Agda
|
1037d82edcf29b620677a311dcfd4fc2ade2faa6
|
[
"MIT"
] | 31
|
2015-03-05T20:09:00.000Z
|
2021-10-03T19:15:25.000Z
|
core/lib/types/Choice.agda
|
AntoineAllioux/HoTT-Agda
|
1037d82edcf29b620677a311dcfd4fc2ade2faa6
|
[
"MIT"
] | 50
|
2015-01-10T01:48:08.000Z
|
2022-02-14T03:03:25.000Z
|
{-# OPTIONS --without-K --rewriting #-}
open import lib.Basics
open import lib.types.Coproduct
open import lib.types.Fin
open import lib.types.Pi
open import lib.types.Truncation
module lib.types.Choice where
unchoose : ∀ {i j} {n : ℕ₋₂} {A : Type i} {B : A → Type j}
→ Trunc n (Π A B) → Π A (Trunc n ∘ B)
unchoose = Trunc-rec (λ f → [_] ∘ f)
has-choice : ∀ {i} (n : ℕ₋₂) (A : Type i) j → Type (lmax i (lsucc j))
has-choice {i} n A j = (B : A → Type j) → is-equiv (unchoose {n = n} {A} {B})
Empty-has-choice : ∀ {n} {j} → has-choice n Empty j
Empty-has-choice {n} B = is-eq to from to-from from-to where
to = unchoose {n = n} {Empty} {B}
from : Π Empty (Trunc n ∘ B) → Trunc n (Π Empty B)
from _ = [ (λ{()}) ]
abstract
to-from : ∀ f → to (from f) == f
to-from _ = λ= λ{()}
from-to : ∀ f → from (to f) == f
from-to = Trunc-elim (λ _ → ap [_] (λ= λ{()}))
Unit-has-choice : ∀ {n} {j} → has-choice n Unit j
Unit-has-choice {n} B = is-eq to from to-from from-to where
to = unchoose {n = n} {Unit} {B}
Unit-elim' : B unit → Π Unit B
Unit-elim' u unit = u
from : Π Unit (Trunc n ∘ B) → Trunc n (Π Unit B)
from f = Trunc-fmap Unit-elim' (f unit)
abstract
to-from : ∀ f → to (from f) == f
to-from f = λ= λ{unit →
Trunc-elim
{P = λ f-unit → to (Trunc-fmap Unit-elim' f-unit) unit == f-unit}
(λ _ → idp)
(f unit)}
from-to : ∀ f → from (to f) == f
from-to = Trunc-elim (λ f → ap [_] (λ= λ{unit → idp}))
Coprod-has-choice : ∀ {i j} {n} {A : Type i} {B : Type j} {k}
→ has-choice n A k → has-choice n B k
→ has-choice n (A ⊔ B) k
Coprod-has-choice {n = n} {A} {B} A-hc B-hc C = is-eq to from to-from from-to where
A-unchoose = unchoose {n = n} {A} {C ∘ inl}
B-unchoose = unchoose {n = n} {B} {C ∘ inr}
module A-unchoose = is-equiv (A-hc (C ∘ inl))
module B-unchoose = is-equiv (B-hc (C ∘ inr))
to = unchoose {n = n} {A ⊔ B} {C}
from : Π (A ⊔ B) (Trunc n ∘ C) → Trunc n (Π (A ⊔ B) C)
from f = Trunc-fmap2 Coprod-elim (A-unchoose.g (f ∘ inl)) (B-unchoose.g (f ∘ inr))
abstract
to-from-inl' : ∀ f a → to (from f) (inl a) == A-unchoose (A-unchoose.g (f ∘ inl)) a
to-from-inl' f a = Trunc-elim
{P = λ f-inl → to (Trunc-fmap2 Coprod-elim f-inl (B-unchoose.g (f ∘ inr))) (inl a) == A-unchoose f-inl a}
(λ f-inl → Trunc-elim
{P = λ f-inr → to (Trunc-fmap2 Coprod-elim [ f-inl ] f-inr) (inl a) == [ f-inl a ]}
(λ f-inr → idp)
(B-unchoose.g (f ∘ inr)))
(A-unchoose.g (f ∘ inl))
to-from-inl : ∀ f a → to (from f) (inl a) == f (inl a)
to-from-inl f a = to-from-inl' f a ∙ app= (A-unchoose.f-g (f ∘ inl)) a
to-from-inr' : ∀ f b → to (from f) (inr b) == B-unchoose (B-unchoose.g (f ∘ inr)) b
to-from-inr' f b = Trunc-elim
{P = λ f-inr → to (Trunc-fmap2 Coprod-elim (A-unchoose.g (f ∘ inl)) f-inr) (inr b) == B-unchoose f-inr b}
(λ f-inr → Trunc-elim
{P = λ f-inl → to (Trunc-fmap2 Coprod-elim f-inl [ f-inr ]) (inr b) == [ f-inr b ]}
(λ f-inl → idp)
(A-unchoose.g (f ∘ inl)))
(B-unchoose.g (f ∘ inr))
to-from-inr : ∀ f b → to (from f) (inr b) == f (inr b)
to-from-inr f b = to-from-inr' f b ∙ app= (B-unchoose.f-g (f ∘ inr)) b
to-from : ∀ f → to (from f) == f
to-from f = λ= λ{(inl a) → to-from-inl f a; (inr b) → to-from-inr f b}
from-to : ∀ f → from (to f) == f
from-to = Trunc-elim
(λ f →
Trunc-fmap2 Coprod-elim (A-unchoose.g (λ a → [ f (inl a)])) (B-unchoose.g (λ b → [ f (inr b)]))
=⟨ ap2 (Trunc-fmap2 Coprod-elim) (A-unchoose.g-f [ f ∘ inl ]) (B-unchoose.g-f [ f ∘ inr ]) ⟩
[ Coprod-elim (f ∘ inl) (f ∘ inr) ]
=⟨ ap [_] $ λ= (λ{(inl _) → idp; (inr _) → idp}) ⟩
[ f ]
=∎)
equiv-preserves-choice : ∀ {i j} {n} {A : Type i} {B : Type j} (e : A ≃ B) {k}
→ has-choice n A k → has-choice n B k
equiv-preserves-choice {n = n} {A} {B} (f , f-ise) A-hc C = is-eq to from to-from from-to where
module f = is-equiv f-ise
A-unchoose = unchoose {n = n} {A} {C ∘ f}
module A-unchoose = is-equiv (A-hc (C ∘ f))
to = unchoose {n = n} {B} {C}
from' : Trunc n (Π A (C ∘ f)) → Trunc n (Π B C)
from' = Trunc-fmap (λ g' b → transport C (f.f-g b) (g' (f.g b)))
from : Π B (Trunc n ∘ C) → Trunc n (Π B C)
from g = from' (A-unchoose.g (g ∘ f))
abstract
to-from''' : ∀ (g-f' : Π A (C ∘ f)) {a a'} (path : f.g (f a) == a')
→ transport C (ap f path) (g-f' (f.g (f a))) == g-f' a'
to-from''' g-f' idp = idp
to-from'' : ∀ (g-f' : Π A (C ∘ f)) a
→ transport C (f.f-g (f a)) (g-f' (f.g (f a))) == g-f' a
to-from'' g-f' a =
transport C (f.f-g (f a)) (g-f' (f.g (f a)))
=⟨ ! $ ap (λ p → transport C p (g-f' (f.g (f a)))) (f.adj a) ⟩
transport C (ap f (f.g-f a)) (g-f' (f.g (f a)))
=⟨ to-from''' g-f' (f.g-f a) ⟩
g-f' a
=∎
to-from' : ∀ g a → to (from g) (f a) == A-unchoose (A-unchoose.g (g ∘ f)) a
to-from' g a =
Trunc-elim
{P = λ g-f → to (from' g-f) (f a) == A-unchoose g-f a}
(λ g-f' → ap [_] $ to-from'' g-f' a)
(A-unchoose.g (g ∘ f))
to-from : ∀ g → to (from g) == g
to-from g = λ= λ b → transport
(λ b → to (from g) b == g b)
(f.f-g b)
( to (from g) (f (f.g b))
=⟨ to-from' g (f.g b) ⟩
A-unchoose (A-unchoose.g (g ∘ f)) (f.g b)
=⟨ app= (A-unchoose.f-g (g ∘ f)) (f.g b) ⟩
g (f (f.g b))
=∎)
from-to' : ∀ g {b b'} (path : f (f.g b) == b')
→ transport C path (g (f (f.g b))) == g b'
from-to' g idp = idp
from-to : ∀ g → from (to g) == g
from-to = Trunc-elim
{P = λ g → from (to g) == g}
(λ g →
from' (A-unchoose.g (λ a → [ g (f a) ]))
=⟨ ap from' (A-unchoose.g-f [ (g ∘ f) ]) ⟩
from' [ (g ∘ f) ]
=⟨ ap [_] $ λ= (λ b → from-to' g (f.f-g b)) ⟩
[ g ]
=∎)
Fin-has-choice : ∀ (n : ℕ₋₂) {m} l → has-choice n (Fin m) l
Fin-has-choice _ {O} _ = equiv-preserves-choice
(Fin-equiv-Empty ⁻¹) Empty-has-choice
Fin-has-choice n {S m} l = equiv-preserves-choice
(Fin-equiv-Coprod ⁻¹) (Coprod-has-choice (Fin-has-choice n l) Unit-has-choice)
| 35.614943
| 111
| 0.490399
|
4df9ae47093d4905aac8766f384f17833a9bf6cf
| 4,928
|
agda
|
Agda
|
agda/Pi-reasoning.agda
|
JacquesCarette/pi-dual
|
003835484facfde0b770bc2b3d781b42b76184c1
|
[
"BSD-2-Clause"
] | 14
|
2015-08-18T21:40:15.000Z
|
2021-05-05T01:07:57.000Z
|
agda/Pi-reasoning.agda
|
JacquesCarette/pi-dual
|
003835484facfde0b770bc2b3d781b42b76184c1
|
[
"BSD-2-Clause"
] | 4
|
2018-06-07T16:27:41.000Z
|
2021-10-29T20:41:23.000Z
|
agda/Pi-reasoning.agda
|
JacquesCarette/pi-dual
|
003835484facfde0b770bc2b3d781b42b76184c1
|
[
"BSD-2-Clause"
] | 3
|
2016-05-29T01:56:33.000Z
|
2019-09-10T09:47:13.000Z
|
{-# OPTIONS --no-termination-check #-}
module Pi-reasoning where
open import Data.Empty
open import Data.Unit hiding (_≟_)
open import Data.Bool hiding (_≟_)
open import Data.Nat
open import Data.List
open import Data.Sum hiding (map)
open import Data.Product hiding (map)
open import Level hiding (suc)
open import Relation.Nullary
open import Relation.Binary
open import Algebra
open import Relation.Binary.PropositionalEquality using (_≡_; refl)
open import Relation.Binary.PropositionalEquality as PropEq using(sym; trans)
import Algebra.FunctionProperties as FunctionProperties
-- open import Algebra.FunctionProperties
open import Algebra.Structures
open import Pi-abstract-machine
------------------------------------------------------------------------------
-- Decidable equality
-- normalize a type to a natural number
size : B → ℕ
size ZERO = 0
size ONE = 1
size (PLUS b₁ b₂) = size b₁ + size b₂
size (TIMES b₁ b₂) = size b₁ * size b₂
-- normalize a value to a number
normalize : {b : B} → VB b → ℕ
normalize {ZERO} ()
normalize {ONE} unitB = 0
normalize {PLUS b₁ b₂} (inlB v) = normalize {b₁} v
normalize {PLUS b₁ b₂} (inrB v) = size b₁ + normalize {b₂} v
normalize {TIMES b₁ b₂} (pairB v₁ v₂) = size b₂ * normalize {b₁} v₁ + normalize {b₂} v₂
-- decidable equality of our values: normalize and compare the
-- underlying natural numbers. This is justified by the fact that the
-- natural numbers are a model of commutative semirings.
-- Note that we can't compare at different types so easily, they have
-- to have the same size, something not worth dealing with right now
vb= : {b : B} → (v₁ : VB b) → (v₂ : VB b) → Set
vb= {b} v₁ v₂ = (normalize {b} v₁) ≡ (normalize {b} v₂)
vb-Equivalence : {b : B} → IsEquivalence (vb= {b})
vb-Equivalence = record
{ refl = refl
; sym = PropEq.sym
; trans = PropEq.trans }
vb== : {b : B} → Decidable {A = VB b} vb=
vb== {b} x y = (normalize {b} x) ≟ (normalize {b} y)
-- generate all values of a type
values : (b : B) → List (VB b)
values ZERO = []
values ONE = [ unitB ]
values (PLUS b₁ b₂) = map inlB (values b₁) ++ map inrB (values b₂)
values (TIMES b₁ b₂) = concatMap (λ v₁ → map (pairB v₁) (values b₂)) (values b₁)
-- B is a Setoid
VB-is-Setoid : {b : B} → Setoid Level.zero Level.zero
VB-is-Setoid {b} = record
{ Carrier = VB b
; _≈_ = vb=
; isEquivalence = vb-Equivalence
}
-- equality of combinators:
-- two combinators are equal if they map equal values to equal values
-- best do this via proving that vb= generates a decidable equivalence
{-
⟺=bool : {b₁ b₂ : B} → (b₁ ⟺ b₂) → (b₁ ⟺ b₂) → Bool
⟺=bool {b₁} {b₂} f g =
and (zipWith vb= (map (eval f) vs) (map (eval g) vs))
where vs = values b₁
data _⟺=_ : {b₁ b₂ : B} → (b₁ ⟺ b₂) → (b₁ ⟺ b₂) → Set where
id⟺= : {b₁ b₂ : B} → (f : b₁ ⟺ b₂) → (f ⟺= f)
sym⟺= : {b₁ b₂ : B} → (f : b₁ ⟺ b₂) → (g : b₁ ⟺ b₂) → ( f ⟺= g ) → (g ⟺= f)
-- verifies that the given combinators relates the given values
data _s⟷_ : B → B → Set where
sid⟷ : {b : B} {v₁ : VB b} {v₂ : VB b} {p : T (vb= (eval (iso id⟷) v₁) v₂)} → (b s⟷ b)
⟺=IsEquivalence : IsEquivalence _s⟷_
⟺=IsEquivalence = record {
refl = srefl ;
sym = {!!} ;
trans = {!!}
}
where srefl : {b : B} {v : VB b} → b s⟷ b
srefl {b} {v} = sid⟷ {b} {v} {v} {{!!}}
-- <-> : B -> B -> Set with constructors id : {b : B} -> (b <-> b)
-- IsEquivalence <->
-- refl = id
-- R= : B -> B -> Set with constructos
-}
------------------------------------------------------------------------------
{--
testT = PLUS ONE (PLUS ONE ONE)
test1 = normalize {testT} (inlB unitB)
test2 = normalize {testT} (inrB (inlB unitB))
test3 = normalize {testT} (inrB (inrB unitB))
testT = PLUS ZERO (PLUS ONE ONE)
test1 = normalize {testT} (inrB (inlB unitB))
test2 = normalize {testT} (inrB (inrB unitB))
testT = TIMES (PLUS ONE ONE) ZERO
test1 = size testT
testT = TIMES (PLUS ONE ONE) (PLUS ONE (PLUS ONE ONE))
test1 = normalize {testT} (pairB (inlB unitB) (inlB unitB))
test2 = normalize {testT} (pairB (inrB unitB) (inlB unitB))
test3 = normalize {testT} (pairB (inlB unitB) (inrB (inlB unitB)))
test4 = normalize {testT} (pairB (inrB unitB) (inrB (inlB unitB)))
test5 = normalize {testT} (pairB (inlB unitB) (inrB (inrB unitB)))
test6 = normalize {testT} (pairB (inrB unitB) (inrB (inrB unitB)))
BOOL = PLUS ONE ONE
test = ⟺= {BOOL} {BOOL} (iso swap₊ ◎ iso swap₊) (iso id⟷)
test1 : (iso swap₊) ⟺= (iso swap₊)
test1 = check
{PLUS ONE ONE} {PLUS ONE ONE}
(iso swap₊) (iso swap₊)
tt
The following does NOT typecheck which is good. Agda rejected my
nonsense claim that id is equivalent to swap+
test2 : (iso swap₊) ⟺= (iso id⟷)
test2 = check
{PLUS ONE ONE} {PLUS ONE ONE}
(iso swap₊) (iso id⟷)
tt
--}
| 31.793548
| 89
| 0.594156
|
10eeab109077a43d92186b88bde40d9a120b096a
| 401
|
agda
|
Agda
|
src/data/lib/prim/Agda/Builtin/Int.agda
|
alex-mckenna/agda
|
78b62cd24bbd570271a7153e44ad280e52ef3e29
|
[
"BSD-3-Clause"
] | 3
|
2015-03-28T14:51:03.000Z
|
2015-12-07T20:14:00.000Z
|
src/data/lib/prim/Agda/Builtin/Int.agda
|
andersk/agda
|
56928ff709dcb931cb9a48c4790e5ed3739e3032
|
[
"BSD-3-Clause"
] | null | null | null |
src/data/lib/prim/Agda/Builtin/Int.agda
|
andersk/agda
|
56928ff709dcb931cb9a48c4790e5ed3739e3032
|
[
"BSD-3-Clause"
] | 1
|
2019-03-05T20:02:38.000Z
|
2019-03-05T20:02:38.000Z
|
{-# OPTIONS --without-K #-}
module Agda.Builtin.Int where
open import Agda.Builtin.Nat
open import Agda.Builtin.String
infix 8 pos -- Standard library uses this as +_
data Int : Set where
pos : (n : Nat) → Int
negsuc : (n : Nat) → Int
{-# BUILTIN INTEGER Int #-}
{-# BUILTIN INTEGERPOS pos #-}
{-# BUILTIN INTEGERNEGSUC negsuc #-}
primitive primShowInteger : Int → String
| 21.105263
| 48
| 0.648379
|
500fdcdef7b5ace5354ce30c3b68a6b93a2c0469
| 2,229
|
agda
|
Agda
|
src/Data/Finitude/Properties.agda
|
tizmd/agda-finitary
|
abacd166f63582b7395d9cc10b6323c0f69649e5
|
[
"MIT"
] | null | null | null |
src/Data/Finitude/Properties.agda
|
tizmd/agda-finitary
|
abacd166f63582b7395d9cc10b6323c0f69649e5
|
[
"MIT"
] | null | null | null |
src/Data/Finitude/Properties.agda
|
tizmd/agda-finitary
|
abacd166f63582b7395d9cc10b6323c0f69649e5
|
[
"MIT"
] | null | null | null |
module Data.Finitude.Properties where
open import Data.Fin as Fin using (Fin; #_ )
open import Data.Fin.Properties hiding (decSetoid)
open import Relation.Nullary
open import Relation.Unary
open import Relation.Binary renaming (Decidable to Dec₂) hiding (Irrelevant)
open import Relation.Binary.PropositionalEquality as P hiding (decSetoid; isEquivalence)
open import Data.Finitude
open import Function.Equality as F using (_⟨$⟩_)
open import Function.Inverse as Inv using (Inverse)
open import Data.Nat as ℕ hiding (_≟_)
import Level
finitude→≡ : ∀ {n m} → Finitude (P.setoid (Fin n)) m → n ≡ m
finitude→≡ fin = ⇒Fin∼Fin fin
where
open import Data.Fin.PigeonHole
dec-≈ : ∀ {a ℓ n}{S : Setoid a ℓ} → Finitude S n → Dec₂ (Setoid._≈_ S)
dec-≈ {S = S} fin x y with (Inverse.to fin ⟨$⟩ x) ≟ (Inverse.to fin ⟨$⟩ y)
dec-≈ {S = S} fin x y | yes fx≡fy = yes (Inverse.injective fin fx≡fy)
dec-≈ {S = S} fin x y | no fx≢fy = no (λ x≈y → fx≢fy (F.cong (Inverse.to fin) x≈y))
decSetoid : ∀ {a ℓ n}{S : Setoid a ℓ} → Finitude S n → DecSetoid a ℓ
decSetoid {S = S} fin = record {
isDecEquivalence = record {
_≟_ = dec-≈ fin
; isEquivalence = isEquivalence
}
}
where open Setoid S
same-size↔ : ∀ {n a₁ a₂ ℓ₁ ℓ₂}{A₁ : Setoid a₁ ℓ₁}{A₂ : Setoid a₂ ℓ₂} → Finitude A₁ n → Finitude A₂ n → Inverse A₁ A₂
same-size↔ fin₁ fin₂ = Inv.sym fin₂ Inv.∘ fin₁
size-unique : ∀ {a ℓ} {A : Setoid a ℓ} {n m} → Finitude A n → Finitude A m → n ≡ m
size-unique finN finM = finitude→≡ (finM Inv.∘ Inv.sym finN)
{-
open import Data.Empty
open import Data.Unit
Irr : ∀ {a ℓ}(S : Setoid a ℓ) → Set (a Level.⊔ ℓ)
Irr S = ∀ x y → x ≈ y
where
open Setoid S
⊥-Irr : Irrelevant ⊥
⊥-Irr = λ ()
⊤-Irr : Irrelevant ⊤
⊤-Irr = λ _ _ → P.refl
Irr-finitude : ∀ {a ℓ n}{S : Set a} → Irrelevant S → Finitude (P.setoid S) n → n ℕ.≤ 1
Irr-finitude {n = ℕ.zero} irr fin = z≤n
Irr-finitude {n = ℕ.suc ℕ.zero} irr fin = s≤s z≤n
Irr-finitude {n = ℕ.suc (ℕ.suc n)}{S} irr fin = ⊥-elim contra
where
open Setoid S
x₀ = Inverse.from fin ⟨$⟩ # 0
x₁ = Inverse.from fin ⟨$⟩ # 1
contra : ⊥
contra with Inverse.injective (Inv.sym fin) (irr x₀ x₁)
... | ()
-}
| 32.779412
| 117
| 0.618214
|
0ba86bf0e345499cf3caf1883fb0485859edbb68
| 3,612
|
agda
|
Agda
|
Structure/Bag/Nehemiah.agda
|
inc-lc/ilc-agda
|
39bb081c6f192bdb87bd58b4a89291686d2d7d03
|
[
"MIT"
] | 10
|
2015-03-04T06:09:20.000Z
|
2019-07-19T07:06:59.000Z
|
Structure/Bag/Nehemiah.agda
|
inc-lc/ilc-agda
|
39bb081c6f192bdb87bd58b4a89291686d2d7d03
|
[
"MIT"
] | 6
|
2015-07-01T18:09:31.000Z
|
2017-05-04T13:53:59.000Z
|
Structure/Bag/Nehemiah.agda
|
inc-lc/ilc-agda
|
39bb081c6f192bdb87bd58b4a89291686d2d7d03
|
[
"MIT"
] | 1
|
2016-02-18T12:26:44.000Z
|
2016-02-18T12:26:44.000Z
|
------------------------------------------------------------------------
-- INCREMENTAL λ-CALCULUS
--
-- Bags of integers, for Nehemiah plugin.
--
-- This module imports postulates about bags of integers
-- with negative multiplicities as a group under additive union.
------------------------------------------------------------------------
module Structure.Bag.Nehemiah where
open import Postulate.Bag-Nehemiah public
open import Relation.Binary.PropositionalEquality
open import Algebra using (CommutativeRing)
open import Algebra.Structures
open import Data.Integer
open import Data.Integer.Properties
using ()
renaming (+-*-commutativeRing to ℤ-is-commutativeRing)
open import Data.Product
infixl 9 _\\_ -- same as Data.Map.(\\)
_\\_ : Bag → Bag → Bag
d \\ b = d ++ (negateBag b)
-- Useful properties of abelian groups
commutative : ∀ {A : Set} {f : A → A → A} {z} →
IsCommutativeMonoid _≡_ f z → (m n : A) → f m n ≡ f n m
commutative = IsCommutativeMonoid.comm
associative : ∀ {A : Set} {f : A → A → A} {z} →
IsCommutativeMonoid _≡_ f z → (k m n : A) → f (f k m) n ≡ f k (f m n)
associative abelian = IsCommutativeMonoid.assoc abelian
left-inverse : ∀ {A : Set} {f : A → A → A} {z neg} →
IsAbelianGroup _≡_ f z neg → (n : A) → f (neg n) n ≡ z
left-inverse abelian = proj₁ (IsAbelianGroup.inverse abelian)
right-inverse : ∀ {A : Set} {f : A → A → A} {z neg} →
IsAbelianGroup _≡_ f z neg → (n : A) → f n (neg n) ≡ z
right-inverse abelian = proj₂ (IsAbelianGroup.inverse abelian)
left-identity : ∀ {A : Set} {f : A → A → A} {z neg} →
IsAbelianGroup _≡_ f z neg → (n : A) → f z n ≡ n
left-identity abelian = proj₁ (IsMonoid.identity
(IsGroup.isMonoid (IsAbelianGroup.isGroup abelian)))
right-identity : ∀ {A : Set} {f : A → A → A} {z neg} →
IsAbelianGroup _≡_ f z neg → (n : A) → f n z ≡ n
right-identity abelian = proj₂ (IsMonoid.identity
(IsGroup.isMonoid (IsAbelianGroup.isGroup abelian)))
instance
abelian-int : IsAbelianGroup _≡_ _+_ (+ 0) (-_)
abelian-int =
CommutativeRing.+-isAbelianGroup ℤ-is-commutativeRing
abelian→comm-monoid :
∀ {A : Set} {f : A → A → A} {z neg} →
{{abel : IsAbelianGroup _≡_ f z neg}} → IsCommutativeMonoid _≡_ f z
abelian→comm-monoid {{abel}} = IsAbelianGroup.isCommutativeMonoid abel
comm-monoid-int : IsCommutativeMonoid _≡_ _+_ (+ 0)
comm-monoid-int = IsAbelianGroup.isCommutativeMonoid abelian-int
comm-monoid-bag : IsCommutativeMonoid _≡_ _++_ emptyBag
comm-monoid-bag = IsAbelianGroup.isCommutativeMonoid abelian-bag
import Data.Nat as N
import Data.Nat.Properties as NP
comm-monoid-nat : IsCommutativeMonoid _≡_ N._+_ 0
comm-monoid-nat = IsCommutativeSemiring.+-isCommutativeMonoid NP.isCommutativeSemiring
commutative-int : (m n : ℤ) → m + n ≡ n + m
commutative-int = commutative comm-monoid-int
associative-int : (k m n : ℤ) → (k + m) + n ≡ k + (m + n)
associative-int = associative comm-monoid-int
right-inv-int : (n : ℤ) → n - n ≡ + 0
right-inv-int = right-inverse abelian-int
left-id-int : (n : ℤ) → (+ 0) + n ≡ n
left-id-int = left-identity abelian-int
right-id-int : (n : ℤ) → n + (+ 0) ≡ n
right-id-int = right-identity abelian-int
commutative-bag : (a b : Bag) → a ++ b ≡ b ++ a
commutative-bag = commutative comm-monoid-bag
associative-bag : (a b c : Bag) → (a ++ b) ++ c ≡ a ++ (b ++ c)
associative-bag = associative comm-monoid-bag
right-inv-bag : (b : Bag) → b \\ b ≡ emptyBag
right-inv-bag = right-inverse abelian-bag
left-id-bag : (b : Bag) → emptyBag ++ b ≡ b
left-id-bag = left-identity abelian-bag
right-id-bag : (b : Bag) → b ++ emptyBag ≡ b
right-id-bag = right-identity abelian-bag
| 38.83871
| 88
| 0.645626
|
dc966c366aaf566bfaa5cda3fda99e0ec489a092
| 1,387
|
agda
|
Agda
|
UniDB/Basic.agda
|
skeuchel/unidb-agda
|
7ae52205db44ad4f463882ba7e5082120fb76349
|
[
"MIT"
] | null | null | null |
UniDB/Basic.agda
|
skeuchel/unidb-agda
|
7ae52205db44ad4f463882ba7e5082120fb76349
|
[
"MIT"
] | null | null | null |
UniDB/Basic.agda
|
skeuchel/unidb-agda
|
7ae52205db44ad4f463882ba7e5082120fb76349
|
[
"MIT"
] | null | null | null |
module UniDB.Basic where
open import UniDB.Spec
open import UniDB.Subst
open import Function
module _
{T : STX} {{vrT : Vr T}} {{wkT : Wk T}} {{apTT : Ap T T}} {{apVrT : ApVr T}} {{apWkTT : ApWk T T}}
{Ξ : MOR} {{upΞ : Up Ξ}} {{compΞ : Comp Ξ}} {{lkTΞ : Lk T Ξ}} {{lkUpTΞ : LkUp T Ξ}}
{{lkCompTΞ : LkCompAp T Ξ}} where
⊙-↑₁-pointwise : {γ₁ γ₂ γ₃ : Dom} (ξ₁ : Ξ γ₁ γ₂) (ξ₂ : Ξ γ₂ γ₃) →
[ T ] ((ξ₁ ⊙ ξ₂) ↑₁) ≃ (ξ₁ ↑₁ ⊙ ξ₂ ↑₁)
lk≃ (⊙-↑₁-pointwise ξ₁ ξ₂) zero = begin
lk {T} ((ξ₁ ⊙ ξ₂) ↑₁) zero ≡⟨ lk-↑₁-zero (ξ₁ ⊙ ξ₂) ⟩
vr zero ≡⟨ sym (lk-↑₁-zero ξ₂) ⟩
lk (ξ₂ ↑₁) zero ≡⟨ sym (ap-vr {T} (ξ₂ ↑₁) zero) ⟩
ap {T} (ξ₂ ↑₁) (vr zero) ≡⟨ cong (ap {T} (ξ₂ ↑₁)) (sym (lk-↑₁-zero ξ₁)) ⟩
ap {T} (ξ₂ ↑₁) (lk (ξ₁ ↑₁) zero) ≡⟨ sym (lk-⊙-ap {T} (ξ₁ ↑₁) (ξ₂ ↑₁) zero) ⟩
lk (ξ₁ ↑₁ ⊙ ξ₂ ↑₁) zero ∎
lk≃ (⊙-↑₁-pointwise ξ₁ ξ₂) (suc i) = begin
lk ((ξ₁ ⊙ ξ₂) ↑₁) (wk₁ i) ≡⟨ lk-↑₁-suc (ξ₁ ⊙ ξ₂) i ⟩
wk₁ (lk (ξ₁ ⊙ ξ₂) i) ≡⟨ cong wk₁ (lk-⊙-ap {T} ξ₁ ξ₂ i) ⟩
wk₁ (ap {T} ξ₂ (lk ξ₁ i)) ≡⟨ sym (ap-wk₁ {T} ξ₂ (lk ξ₁ i)) ⟩
ap {T} (ξ₂ ↑₁) (wk₁ (lk ξ₁ i)) ≡⟨ cong (ap {T} (ξ₂ ↑₁)) (sym (lk-↑₁-suc ξ₁ i)) ⟩
ap {T} (ξ₂ ↑₁) (lk (ξ₁ ↑₁) (wk₁ i)) ≡⟨ sym (lk-⊙-ap {T} (ξ₁ ↑₁) (ξ₂ ↑₁) (wk₁ i) ) ⟩
lk (ξ₁ ↑₁ ⊙ ξ₂ ↑₁) (wk₁ i) ∎
| 47.827586
| 100
| 0.42682
|
a14b8ec537cfcb1c5b2a76bae4d064bb2b166965
| 224
|
agda
|
Agda
|
Cubical/HITs/Truncation/FromNegTwo.agda
|
L-TChen/cubical
|
60226aacd7b386aef95d43a0c29c4eec996348a8
|
[
"MIT"
] | null | null | null |
Cubical/HITs/Truncation/FromNegTwo.agda
|
L-TChen/cubical
|
60226aacd7b386aef95d43a0c29c4eec996348a8
|
[
"MIT"
] | 1
|
2022-01-27T02:07:48.000Z
|
2022-01-27T02:07:48.000Z
|
Cubical/HITs/Truncation/FromNegTwo.agda
|
L-TChen/cubical
|
60226aacd7b386aef95d43a0c29c4eec996348a8
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.HITs.Truncation.FromNegTwo where
open import Cubical.HITs.Truncation.FromNegTwo.Base public
open import Cubical.HITs.Truncation.FromNegTwo.Properties public
| 37.333333
| 64
| 0.808036
|
508e38845d32c5b56d554073e7579509129b55df
| 152
|
agda
|
Agda
|
examples/AIM6/Path/Elem.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
examples/AIM6/Path/Elem.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
examples/AIM6/Path/Elem.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
module Elem where
open import Prelude
open import Star
Elem : {X : Set}(R : Rel X) -> Rel X
Elem R x y = Star (LeqBool [×] R) (false , x) (true , y)
| 16.888889
| 56
| 0.611842
|
127768b0636bcc437c4e61629c478ea663e7d53e
| 450
|
agda
|
Agda
|
eq-reasoning.agda
|
JimFixGroupResearch/imper-ial
|
80d9411b2869614cae488cd4a6272894146c9f3c
|
[
"MIT"
] | null | null | null |
eq-reasoning.agda
|
JimFixGroupResearch/imper-ial
|
80d9411b2869614cae488cd4a6272894146c9f3c
|
[
"MIT"
] | null | null | null |
eq-reasoning.agda
|
JimFixGroupResearch/imper-ial
|
80d9411b2869614cae488cd4a6272894146c9f3c
|
[
"MIT"
] | null | null | null |
module eq-reasoning {A : Set} where
open import eq
infix 1 begin_
infixr 2 _≡⟨⟩_ _≡⟨_⟩_
infix 3 _∎
begin_ : ∀ {x y : A}
→ x ≡ y
-----
→ x ≡ y
begin x≡y = x≡y
_≡⟨⟩_ : ∀ (x : A) {y : A}
→ x ≡ y
-----
→ x ≡ y
x ≡⟨⟩ x≡y = x≡y
_≡⟨_⟩_ : ∀ (x : A) {y z : A}
→ x ≡ y
→ y ≡ z
-----
→ x ≡ z
x ≡⟨ x≡y ⟩ y≡z = trans x≡y y≡z
_∎ : ∀ (x : A)
-----
→ x ≡ x
x ∎ = refl
| 14.0625
| 35
| 0.32
|
cbf6f55823aa454cd4a80e7c727f07197c041911
| 739
|
agda
|
Agda
|
core/lib/groups/Groups.agda
|
timjb/HoTT-Agda
|
66f800adef943afdf08c17b8ecfba67340fead5e
|
[
"MIT"
] | null | null | null |
core/lib/groups/Groups.agda
|
timjb/HoTT-Agda
|
66f800adef943afdf08c17b8ecfba67340fead5e
|
[
"MIT"
] | null | null | null |
core/lib/groups/Groups.agda
|
timjb/HoTT-Agda
|
66f800adef943afdf08c17b8ecfba67340fead5e
|
[
"MIT"
] | 1
|
2018-12-26T21:31:57.000Z
|
2018-12-26T21:31:57.000Z
|
{-# OPTIONS --without-K --rewriting #-}
module lib.groups.Groups where
open import lib.groups.CommutingSquare public
open import lib.groups.FreeAbelianGroup public
open import lib.groups.FreeGroup public
open import lib.groups.GroupProduct public
open import lib.groups.Homomorphism public
open import lib.groups.HomotopyGroup public
open import lib.groups.Int public
open import lib.groups.Isomorphism public
open import lib.groups.Lift public
open import lib.groups.LoopSpace public
open import lib.groups.QuotientGroup public
open import lib.groups.PullbackGroup public
open import lib.groups.Subgroup public
open import lib.groups.SubgroupProp public
open import lib.groups.TruncationGroup public
open import lib.groups.Unit public
| 33.590909
| 46
| 0.837618
|
dce9ea838545c9bdeb2c2babad094a40e9261a9b
| 15,142
|
agda
|
Agda
|
Cubical/ZCohomology/CohomologyRings/S1.agda
|
guilhermehas/cubical
|
ce3120d3f8d692847b2744162bcd7a01f0b687eb
|
[
"MIT"
] | 1
|
2021-10-31T17:32:49.000Z
|
2021-10-31T17:32:49.000Z
|
Cubical/ZCohomology/CohomologyRings/S1.agda
|
guilhermehas/cubical
|
ce3120d3f8d692847b2744162bcd7a01f0b687eb
|
[
"MIT"
] | null | null | null |
Cubical/ZCohomology/CohomologyRings/S1.agda
|
guilhermehas/cubical
|
ce3120d3f8d692847b2744162bcd7a01f0b687eb
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --safe --experimental-lossy-unification #-}
-- This file could be proven using the file Sn
-- However the proofs are easier than in Sn
-- And so kept for pedagologic reasons
module Cubical.ZCohomology.CohomologyRings.S1 where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Transport
open import Cubical.Foundations.HLevels
open import Cubical.Data.Unit
open import Cubical.Data.Nat renaming (_+_ to _+n_ ; _·_ to _·n_ ; snotz to nsnotz)
open import Cubical.Data.Int
open import Cubical.Data.Vec
open import Cubical.Data.FinData
open import Cubical.Algebra.Group
open import Cubical.Algebra.Group.Morphisms
open import Cubical.Algebra.Group.MorphismProperties
open import Cubical.Algebra.Group.Instances.Int renaming (ℤGroup to ℤG)
open import Cubical.Algebra.DirectSum.Base
open import Cubical.Algebra.Ring
open import Cubical.Algebra.CommRing
open import Cubical.Algebra.CommRing.FGIdeal
open import Cubical.Algebra.CommRing.QuotientRing
open import Cubical.Algebra.Polynomials.Multivariate.Base renaming (base to baseP)
open import Cubical.Algebra.CommRing.Instances.Int renaming (ℤCommRing to ℤCR)
open import Cubical.Algebra.CommRing.Instances.MultivariatePoly
open import Cubical.Algebra.CommRing.Instances.MultivariatePoly-Quotient
open import Cubical.Algebra.CommRing.Instances.MultivariatePoly-notationZ
open import Cubical.HITs.Truncation
open import Cubical.HITs.SetQuotients as SQ renaming (_/_ to _/sq_)
open import Cubical.HITs.PropositionalTruncation as PT
open import Cubical.HITs.Sn
open import Cubical.ZCohomology.Base
open import Cubical.ZCohomology.GroupStructure
open import Cubical.ZCohomology.RingStructure.CupProduct
open import Cubical.ZCohomology.RingStructure.CohomologyRing
open import Cubical.ZCohomology.Groups.Sn
open Iso
module Equiv-S1-Properties where
-----------------------------------------------------------------------------
-- Definitions
open CommRingStr (snd ℤCR) using ()
renaming
( 0r to 0ℤ
; 1r to 1ℤ
; _+_ to _+ℤ_
; -_ to -ℤ_
; _·_ to _·ℤ_
; +Assoc to +ℤAssoc
; +Identity to +ℤIdentity
; +Lid to +ℤLid
; +Rid to +ℤRid
; +Inv to +ℤInv
; +Linv to +ℤLinv
; +Rinv to +ℤRinv
; +Comm to +ℤComm
; ·Assoc to ·ℤAssoc
; ·Identity to ·ℤIdentity
; ·Lid to ·ℤLid
; ·Rid to ·ℤRid
; ·Rdist+ to ·ℤRdist+
; ·Ldist+ to ·ℤLdist+
; is-set to isSetℤ )
open RingStr (snd (H*R (S₊ 1))) using ()
renaming
( 0r to 0H*
; 1r to 1H*
; _+_ to _+H*_
; -_ to -H*_
; _·_ to _cup_
; +Assoc to +H*Assoc
; +Identity to +H*Identity
; +Lid to +H*Lid
; +Rid to +H*Rid
; +Inv to +H*Inv
; +Linv to +H*Linv
; +Rinv to +H*Rinv
; +Comm to +H*Comm
; ·Assoc to ·H*Assoc
; ·Identity to ·H*Identity
; ·Lid to ·H*Lid
; ·Rid to ·H*Rid
; ·Rdist+ to ·H*Rdist+
; ·Ldist+ to ·H*Ldist+
; is-set to isSetH* )
open CommRingStr (snd ℤ[X]) using ()
renaming
( 0r to 0Pℤ
; 1r to 1Pℤ
; _+_ to _+Pℤ_
; -_ to -Pℤ_
; _·_ to _·Pℤ_
; +Assoc to +PℤAssoc
; +Identity to +PℤIdentity
; +Lid to +PℤLid
; +Rid to +PℤRid
; +Inv to +PℤInv
; +Linv to +PℤLinv
; +Rinv to +PℤRinv
; +Comm to +PℤComm
; ·Assoc to ·PℤAssoc
; ·Identity to ·PℤIdentity
; ·Lid to ·PℤLid
; ·Rid to ·PℤRid
; ·Comm to ·PℤComm
; ·Rdist+ to ·PℤRdist+
; ·Ldist+ to ·PℤLdist+
; is-set to isSetPℤ )
open CommRingStr (snd ℤ[X]/X²) using ()
renaming
( 0r to 0PℤI
; 1r to 1PℤI
; _+_ to _+PℤI_
; -_ to -PℤI_
; _·_ to _·PℤI_
; +Assoc to +PℤIAssoc
; +Identity to +PℤIIdentity
; +Lid to +PℤILid
; +Rid to +PℤIRid
; +Inv to +PℤIInv
; +Linv to +PℤILinv
; +Rinv to +PℤIRinv
; +Comm to +PℤIComm
; ·Assoc to ·PℤIAssoc
; ·Identity to ·PℤIIdentity
; ·Lid to ·PℤILid
; ·Rid to ·PℤIRid
; ·Rdist+ to ·PℤIRdist+
; ·Ldist+ to ·PℤILdist+
; is-set to isSetPℤI )
-----------------------------------------------------------------------------
-- Direct Sens on ℤ[x]
ℤ[x]→H*-S¹ : ℤ[x] → H* (S₊ 1)
ℤ[x]→H*-S¹ = Poly-Rec-Set.f _ _ _ isSetH*
0H*
base-trad
_+H*_
+H*Assoc
+H*Rid
+H*Comm
base-neutral-eq
base-add-eq
where
e : _
e = Hᵐ-Sⁿ
base-trad : _
base-trad (zero ∷ []) a = base 0 (inv (fst (Hᵐ-Sⁿ 0 1)) a)
base-trad (one ∷ []) a = base 1 (inv (fst (Hᵐ-Sⁿ 1 1)) a)
base-trad (suc (suc n) ∷ []) a = 0H*
base-neutral-eq : _
base-neutral-eq (zero ∷ []) = cong (base 0) (IsGroupHom.pres1 (snd (invGroupIso (Hᵐ-Sⁿ 0 1)))) ∙ base-neutral _
base-neutral-eq (one ∷ []) = cong (base 1) (IsGroupHom.pres1 (snd (invGroupIso (Hᵐ-Sⁿ 1 1)))) ∙ base-neutral _
base-neutral-eq (suc (suc n) ∷ []) = refl
base-add-eq : _
base-add-eq (zero ∷ []) a b = (base-add _ _ _) ∙ (cong (base 0) (sym (IsGroupHom.pres· (snd (invGroupIso (Hᵐ-Sⁿ 0 1))) a b)))
base-add-eq (one ∷ []) a b = (base-add _ _ _) ∙ (cong (base 1) (sym (IsGroupHom.pres· (snd (invGroupIso (Hᵐ-Sⁿ 1 1))) a b)))
base-add-eq (suc (suc n) ∷ []) a b = +H*Rid _
-----------------------------------------------------------------------------
-- Morphism on ℤ[x]
ℤ[x]→H*-S¹-pres1Pℤ : ℤ[x]→H*-S¹ (1Pℤ) ≡ 1H*
ℤ[x]→H*-S¹-pres1Pℤ = refl
ℤ[x]→H*-S¹-pres+ : (x y : ℤ[x]) → ℤ[x]→H*-S¹ (x +Pℤ y) ≡ ℤ[x]→H*-S¹ x +H* ℤ[x]→H*-S¹ y
ℤ[x]→H*-S¹-pres+ x y = refl
-- cup product on H⁰ → H⁰ → H⁰
T0 : (z : ℤ) → coHom 0 (S₊ 1)
T0 = λ z → inv (fst (Hᵐ-Sⁿ 0 1)) z
T0g : IsGroupHom (ℤG .snd) (fst (invGroupIso (Hᵐ-Sⁿ 0 1)) .fun) (coHomGr 0 (S₊ (suc 0)) .snd)
T0g = snd (invGroupIso (Hᵐ-Sⁿ 0 1))
-- idea : control of the unfolding + simplification of T0 on the left
pres·-base-case-00 : (a : ℤ) → (b : ℤ) →
T0 (a ·ℤ b) ≡ (T0 a) ⌣ (T0 b)
pres·-base-case-00 (pos zero) b = (IsGroupHom.pres1 T0g)
pres·-base-case-00 (pos (suc n)) b = ((IsGroupHom.pres· T0g b (pos n ·ℤ b)))
∙ (cong (λ X → (T0 b) +ₕ X) (pres·-base-case-00 (pos n) b))
pres·-base-case-00 (negsuc zero) b = IsGroupHom.presinv T0g b
pres·-base-case-00 (negsuc (suc n)) b = cong T0 (+ℤComm (-ℤ b) (negsuc n ·ℤ b)) -- ·ℤ and ·₀ are defined asymetrically !
∙ IsGroupHom.pres· T0g (negsuc n ·ℤ b) (-ℤ b)
∙ cong₂ _+ₕ_ (pres·-base-case-00 (negsuc n) b)
(IsGroupHom.presinv T0g b)
-- cup product on H⁰ → H¹ → H¹
T1 : (z : ℤ) → coHom 1 (S₊ 1)
T1 = λ z → inv (fst (Hᵐ-Sⁿ 1 1)) z
-- idea : control of the unfolding + simplification of T0 on the left
T1g : IsGroupHom (ℤG .snd) (fst (invGroupIso (Hᵐ-Sⁿ 1 1)) .fun) (coHomGr 1 (S₊ 1) .snd)
T1g = snd (invGroupIso (Hᵐ-Sⁿ 1 1))
pres·-base-case-01 : (a : ℤ) → (b : ℤ) →
T1 (a ·ℤ b) ≡ (T0 a) ⌣ (T1 b)
pres·-base-case-01 (pos zero) b = (IsGroupHom.pres1 T1g)
pres·-base-case-01 (pos (suc n)) b = ((IsGroupHom.pres· T1g b (pos n ·ℤ b)))
∙ (cong (λ X → (T1 b) +ₕ X) (pres·-base-case-01 (pos n) b))
pres·-base-case-01 (negsuc zero) b = IsGroupHom.presinv T1g b
pres·-base-case-01 (negsuc (suc n)) b = cong T1 (+ℤComm (-ℤ b) (negsuc n ·ℤ b)) -- ·ℤ and ·₀ are defined asymetrically !
∙ IsGroupHom.pres· T1g (negsuc n ·ℤ b) (-ℤ b)
∙ cong₂ _+ₕ_ (pres·-base-case-01 (negsuc n) b)
(IsGroupHom.presinv T1g b)
-- Nice packaging of the proof
pres·-base-case-int : (n : ℕ) → (a : ℤ) → (m : ℕ) → (b : ℤ) →
ℤ[x]→H*-S¹ (baseP (n ∷ []) a ·Pℤ baseP (m ∷ []) b)
≡ ℤ[x]→H*-S¹ (baseP (n ∷ []) a) cup ℤ[x]→H*-S¹ (baseP (m ∷ []) b)
pres·-base-case-int zero a zero b = cong (base 0) (pres·-base-case-00 a b)
pres·-base-case-int zero a one b = cong (base 1) (pres·-base-case-01 a b)
pres·-base-case-int zero a (suc (suc m)) b = refl
pres·-base-case-int one a zero b = cong ℤ[x]→H*-S¹ (·PℤComm (baseP (1 ∷ []) a) (baseP (zero ∷ []) b))
∙ pres·-base-case-int 0 b 1 a
∙ gradCommRing (S₊ 1) 0 1 (inv (fst (Hᵐ-Sⁿ 0 1)) b) (inv (fst (Hᵐ-Sⁿ 1 1)) a)
pres·-base-case-int one a one b = sym (base-neutral 2) ∙
cong (base 2) (isOfHLevelRetractFromIso 1 (fst (Hⁿ-Sᵐ≅0 1 0 nsnotz)) isPropUnit _ _)
pres·-base-case-int one a (suc (suc m)) b = refl
pres·-base-case-int (suc (suc n)) a m b = refl
pres·-base-case-vec : (v : Vec ℕ 1) → (a : ℤ) → (v' : Vec ℕ 1) → (b : ℤ) →
ℤ[x]→H*-S¹ (baseP v a ·Pℤ baseP v' b)
≡ ℤ[x]→H*-S¹ (baseP v a) cup ℤ[x]→H*-S¹ (baseP v' b)
pres·-base-case-vec (n ∷ []) a (m ∷ []) b = pres·-base-case-int n a m b
-- proof of the morphism
ℤ[x]→H*-S¹-pres· : (x y : ℤ[x]) → ℤ[x]→H*-S¹ (x ·Pℤ y) ≡ ℤ[x]→H*-S¹ x cup ℤ[x]→H*-S¹ y
ℤ[x]→H*-S¹-pres· = Poly-Ind-Prop.f _ _ _
(λ x p q i y j → isSetH* _ _ (p y) (q y) i j)
(λ y → refl)
base-case
λ {U V} ind-U ind-V y → cong₂ _+H*_ (ind-U y) (ind-V y)
where
base-case : _
base-case (n ∷ []) a = Poly-Ind-Prop.f _ _ _ (λ _ → isSetH* _ _)
(sym (RingTheory.0RightAnnihilates (H*R (S₊ 1)) _))
(λ v' b → pres·-base-case-vec (n ∷ []) a v' b)
λ {U V} ind-U ind-V → (cong₂ _+H*_ ind-U ind-V) ∙ sym (·H*Rdist+ _ _ _)
-----------------------------------------------------------------------------
-- Function on ℤ[x]/x + morphism
ℤ[x]→H*-S¹-cancelX : (k : Fin 1) → ℤ[x]→H*-S¹ (<X²> k) ≡ 0H*
ℤ[x]→H*-S¹-cancelX zero = refl
ℤ[X]→H*-S¹ : RingHom (CommRing→Ring ℤ[X]) (H*R (S₊ 1))
fst ℤ[X]→H*-S¹ = ℤ[x]→H*-S¹
snd ℤ[X]→H*-S¹ = makeIsRingHom ℤ[x]→H*-S¹-pres1Pℤ ℤ[x]→H*-S¹-pres+ ℤ[x]→H*-S¹-pres·
ℤ[X]/X²→H*R-S¹ : RingHom (CommRing→Ring ℤ[X]/X²) (H*R (S₊ 1))
ℤ[X]/X²→H*R-S¹ =
Quotient-FGideal-CommRing-Ring.inducedHom ℤ[X] (H*R (S₊ 1)) ℤ[X]→H*-S¹ <X²> ℤ[x]→H*-S¹-cancelX
ℤ[x]/x²→H*-S¹ : ℤ[x]/x² → H* (S₊ 1)
ℤ[x]/x²→H*-S¹ = fst ℤ[X]/X²→H*R-S¹
-----------------------------------------------------------------------------
-- Converse Sens on ℤ[X] + ℤ[x]/x
H*-S¹→ℤ[x] : H* (S₊ 1) → ℤ[x]
H*-S¹→ℤ[x] = DS-Rec-Set.f _ _ _ _ isSetPℤ
0Pℤ
base-trad
_+Pℤ_
+PℤAssoc
+PℤRid
+PℤComm
base-neutral-eq
base-add-eq
where
base-trad : _
base-trad zero a = baseP (0 ∷ []) (fun (fst (Hᵐ-Sⁿ 0 1)) a)
base-trad one a = baseP (1 ∷ []) (fun (fst (Hᵐ-Sⁿ 1 1)) a)
base-trad (suc (suc n)) a = 0Pℤ
base-neutral-eq : _
base-neutral-eq zero = cong (baseP (0 ∷ [])) (IsGroupHom.pres1 (snd (Hᵐ-Sⁿ 0 1))) ∙ base-0P _
base-neutral-eq one = cong (baseP (1 ∷ [])) (IsGroupHom.pres1 (snd (Hᵐ-Sⁿ 1 1))) ∙ base-0P _
base-neutral-eq (suc (suc n)) = refl
base-add-eq : _
base-add-eq zero a b = (base-poly+ _ _ _) ∙ (cong (baseP (0 ∷ [])) (sym (IsGroupHom.pres· (snd (Hᵐ-Sⁿ 0 1)) a b)))
base-add-eq one a b = (base-poly+ _ _ _) ∙ (cong (baseP (1 ∷ [])) (sym (IsGroupHom.pres· (snd (Hᵐ-Sⁿ 1 1)) a b)))
base-add-eq (suc (suc n)) a b = +PℤRid _
H*-S¹→ℤ[x]-pres+ : (x y : H* (S₊ 1)) → H*-S¹→ℤ[x] ( x +H* y) ≡ H*-S¹→ℤ[x] x +Pℤ H*-S¹→ℤ[x] y
H*-S¹→ℤ[x]-pres+ x y = refl
H*-S¹→ℤ[x]/x² : H* (S₊ 1) → ℤ[x]/x²
H*-S¹→ℤ[x]/x² = [_] ∘ H*-S¹→ℤ[x]
H*-S¹→ℤ[x]/x²-pres+ : (x y : H* (S₊ 1)) → H*-S¹→ℤ[x]/x² (x +H* y) ≡ (H*-S¹→ℤ[x]/x² x) +PℤI (H*-S¹→ℤ[x]/x² y)
H*-S¹→ℤ[x]/x²-pres+ x y = refl
-----------------------------------------------------------------------------
-- Section
e-sect : (x : H* (S₊ 1)) → ℤ[x]/x²→H*-S¹ (H*-S¹→ℤ[x]/x² x) ≡ x
e-sect = DS-Ind-Prop.f _ _ _ _ (λ _ → isSetH* _ _)
refl
base-case
λ {U V} ind-U ind-V → cong₂ _+H*_ ind-U ind-V
where
base-case : _
base-case zero a = cong (base 0) (leftInv (fst (Hᵐ-Sⁿ 0 1)) a)
base-case one a = cong (base 1) (leftInv (fst (Hᵐ-Sⁿ 1 1)) a)
base-case (suc (suc n)) a = (sym (base-neutral (suc (suc n))))
∙ cong (base (suc (suc n))) (isOfHLevelRetractFromIso 1 (fst (Hⁿ-Sᵐ≅0 (suc n) 0 nsnotz)) isPropUnit _ _)
-----------------------------------------------------------------------------
-- Retraction
e-retr : (x : ℤ[x]/x²) → H*-S¹→ℤ[x]/x² (ℤ[x]/x²→H*-S¹ x) ≡ x
e-retr = SQ.elimProp (λ _ → isSetPℤI _ _)
(Poly-Ind-Prop.f _ _ _ (λ _ → isSetPℤI _ _)
refl
base-case
λ {U V} ind-U ind-V → cong₂ _+PℤI_ ind-U ind-V)
where
base-case : _
base-case (zero ∷ []) a = cong [_] (cong (baseP (0 ∷ [])) (rightInv (fst (Hᵐ-Sⁿ 0 1)) a))
base-case (one ∷ []) a = cong [_] (cong (baseP (1 ∷ [])) (rightInv (fst (Hᵐ-Sⁿ 1 1)) a))
base-case (suc (suc n) ∷ []) a = eq/ 0Pℤ (baseP (suc (suc n) ∷ []) a) ∣ ((λ x → baseP (n ∷ []) (-ℤ a)) , helper) ∣₁
where
helper : _
helper = (+PℤLid _) ∙ cong₂ baseP (cong (λ X → X ∷ []) (sym (+-comm n 2))) (sym (·ℤRid _)) ∙ (sym (+PℤRid _))
-----------------------------------------------------------------------------
-- Computation of the Cohomology Ring
module _ where
open Equiv-S1-Properties
S¹-CohomologyRing : RingEquiv (CommRing→Ring ℤ[X]/X²) (H*R (S₊ 1))
fst S¹-CohomologyRing = isoToEquiv is
where
is : Iso ℤ[x]/x² (H* (S₊ 1))
fun is = ℤ[x]/x²→H*-S¹
inv is = H*-S¹→ℤ[x]/x²
rightInv is = e-sect
leftInv is = e-retr
snd S¹-CohomologyRing = snd ℤ[X]/X²→H*R-S¹
CohomologyRing-S¹ : RingEquiv (H*R (S₊ 1)) (CommRing→Ring ℤ[X]/X²)
CohomologyRing-S¹ = RingEquivs.invEquivRing S¹-CohomologyRing
| 40.271277
| 147
| 0.477876
|
50c04bf572495e68077782ba7124ec60a6676b95
| 478
|
agda
|
Agda
|
test/Compiler/simple/Issue5421.agda
|
cagix/agda
|
cc026a6a97a3e517bb94bafa9d49233b067c7559
|
[
"BSD-2-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Compiler/simple/Issue5421.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Compiler/simple/Issue5421.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
open import Agda.Builtin.IO
open import Agda.Builtin.Reflection
open import Agda.Builtin.Strict
open import Agda.Builtin.String
open import Agda.Builtin.Unit
postulate
putStr : String → IO ⊤
{-# FOREIGN GHC import qualified Data.Text.IO #-}
{-# COMPILE GHC putStr = Data.Text.IO.putStr #-}
{-# COMPILE JS putStr =
function (x) {
return function(cb) {
process.stdout.write(x); cb(0); }; } #-}
main : IO ⊤
main = primForce commitTC λ _ → putStr "Success\n"
| 25.157895
| 50
| 0.686192
|
06d20e778b12c5183fb1f16bfee4260217dfd950
| 2,103
|
agda
|
Agda
|
src/fot/FOTC/Data/Conat/PropertiesATP.agda
|
asr/fotc
|
2fc9f2b81052a2e0822669f02036c5750371b72d
|
[
"MIT"
] | 11
|
2015-09-03T20:53:42.000Z
|
2021-09-12T16:09:54.000Z
|
src/fot/FOTC/Data/Conat/PropertiesATP.agda
|
asr/fotc
|
2fc9f2b81052a2e0822669f02036c5750371b72d
|
[
"MIT"
] | 2
|
2016-10-12T17:28:16.000Z
|
2017-01-01T14:34:26.000Z
|
src/fot/FOTC/Data/Conat/PropertiesATP.agda
|
asr/fotc
|
2fc9f2b81052a2e0822669f02036c5750371b72d
|
[
"MIT"
] | 3
|
2016-09-19T14:18:30.000Z
|
2018-03-14T08:50:00.000Z
|
------------------------------------------------------------------------------
-- Conat properties
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOTC.Data.Conat.PropertiesATP where
open import FOTC.Base
open import FOTC.Data.Conat
open import FOTC.Data.Nat
------------------------------------------------------------------------------
-- Because a greatest post-fixed point is a fixed-point, then the
-- Conat predicate is also a pre-fixed point of the functional NatF,
-- i.e.
--
-- NatF Conat ≤ Conat (see FOTC.Data.Conat.Type).
-- See Issue https://github.com/asr/apia/issues/81 .
Conat-inA : D → Set
Conat-inA n = n ≡ zero ∨ (∃[ n' ] n ≡ succ₁ n' ∧ Conat n')
{-# ATP definition Conat-inA #-}
Conat-in : ∀ {n} →
n ≡ zero ∨ (∃[ n' ] n ≡ succ₁ n' ∧ Conat n') →
Conat n
Conat-in h = Conat-coind Conat-inA h' h
where
postulate h' : ∀ {n} → Conat-inA n →
n ≡ zero ∨ (∃[ n' ] n ≡ succ₁ n' ∧ Conat-inA n')
{-# ATP prove h' #-}
-- See Issue https://github.com/asr/apia/issues/81 .
0-ConatA : D → Set
0-ConatA n = n ≡ zero
{-# ATP definition 0-ConatA #-}
0-Conat : Conat zero
0-Conat = Conat-coind 0-ConatA h refl
where
postulate h : ∀ {n} → 0-ConatA n →
n ≡ zero ∨ (∃[ n' ] n ≡ succ₁ n' ∧ 0-ConatA n')
{-# ATP prove h #-}
∞-Conat : Conat ∞
∞-Conat = Conat-coind A h refl
where
A : D → Set
A n = n ≡ ∞
{-# ATP definition A #-}
postulate h : ∀ {n} → A n → n ≡ zero ∨ (∃[ n' ] n ≡ succ₁ n' ∧ A n')
{-# ATP prove h #-}
N→Conat : ∀ {n} → N n → Conat n
N→Conat Nn = Conat-coind N h Nn
where
h : ∀ {m} → N m → m ≡ zero ∨ (∃[ m' ] m ≡ succ₁ m' ∧ N m')
h nzero = prf
where postulate prf : zero ≡ zero ∨ (∃[ m' ] zero ≡ succ₁ m' ∧ N m')
{-# ATP prove prf #-}
h (nsucc {m} Nm) = prf
where postulate prf : succ₁ m ≡ zero ∨ (∃[ m' ] succ₁ m ≡ succ₁ m' ∧ N m')
{-# ATP prove prf #-}
| 30.478261
| 78
| 0.477889
|
188be59e39e17923ffc913050bce8d5aa0ca0b18
| 9,946
|
agda
|
Agda
|
src/Builtin/Reflection.agda
|
L-TChen/agda-prelude
|
158d299b1b365e186f00d8ef5b8c6844235ee267
|
[
"MIT"
] | null | null | null |
src/Builtin/Reflection.agda
|
L-TChen/agda-prelude
|
158d299b1b365e186f00d8ef5b8c6844235ee267
|
[
"MIT"
] | null | null | null |
src/Builtin/Reflection.agda
|
L-TChen/agda-prelude
|
158d299b1b365e186f00d8ef5b8c6844235ee267
|
[
"MIT"
] | null | null | null |
module Builtin.Reflection where
open import Prelude hiding (abs)
open import Prelude.Equality.Unsafe
open import Builtin.Float
open import Container.Traversable
open import Control.Monad.Zero
open import Prelude.Variables
open import Agda.Builtin.Reflection as Builtin
open Builtin public
hiding ( primQNameEquality
; primQNameLess
; primShowQName
; primMetaEquality
; primMetaLess
; primShowMeta )
--- Names ---
instance
ShowName : Show Name
showsPrec {{ShowName}} _ x = showString (primShowQName x)
instance
EqName : Eq Name
_==_ {{EqName}} x y with primQNameEquality x y
... | true = yes unsafeEqual
... | false = no unsafeNotEqual
data LessName (x y : Name) : Set where
less-name : primQNameLess x y ≡ true → LessName x y
private
cmpName : ∀ x y → Comparison LessName x y
cmpName x y with inspect (primQNameLess x y)
... | true with≡ eq = less (less-name eq)
... | false with≡ _ with inspect (primQNameLess y x)
... | true with≡ eq = greater (less-name eq)
... | false with≡ _ = equal unsafeEqual
instance
OrdName : Ord Name
OrdName = defaultOrd cmpName
OrdLawsName : Ord/Laws Name
Ord/Laws.super OrdLawsName = it
less-antirefl {{OrdLawsName}} (less-name eq) = unsafeNotEqual eq
less-trans {{OrdLawsName}} (less-name _) (less-name _) = less-name unsafeEqual
--- Meta variables ---
instance
ShowMeta : Show Meta
showsPrec {{ShowMeta}} _ x = showString (primShowMeta x)
instance
EqMeta : Eq Meta
_==_ {{EqMeta}} x y with primMetaEquality x y
... | true = yes unsafeEqual
... | false = no unsafeNotEqual
data LessMeta (x y : Meta) : Set where
less-meta : primMetaLess x y ≡ true → LessMeta x y
private
cmpMeta : ∀ x y → Comparison LessMeta x y
cmpMeta x y with inspect (primMetaLess x y)
... | true with≡ eq = less (less-meta eq)
... | false with≡ _ with inspect (primMetaLess y x)
... | true with≡ eq = greater (less-meta eq)
... | false with≡ _ = equal unsafeEqual
instance
OrdMeta : Ord Meta
OrdMeta = defaultOrd cmpMeta
OrdLawsMeta : Ord/Laws Meta
Ord/Laws.super OrdLawsMeta = it
less-antirefl {{OrdLawsMeta}} (less-meta eq) = unsafeNotEqual eq
less-trans {{OrdLawsMeta}} (less-meta _) (less-meta _) = less-meta unsafeEqual
--- Literals ---
instance
ShowLiteral : Show Literal
showsPrec {{ShowLiteral}} _ (nat n) = shows n
showsPrec {{ShowLiteral}} _ (word64 n) = shows n
showsPrec {{ShowLiteral}} _ (float x) = shows x
showsPrec {{ShowLiteral}} _ (char c) = shows c
showsPrec {{ShowLiteral}} _ (string s) = shows s
showsPrec {{ShowLiteral}} _ (name x) = shows x
showsPrec {{ShowLiteral}} _ (meta x) = shows x
--- Terms ---
pattern vArg x = arg (arg-info visible relevant) x
pattern hArg x = arg (arg-info hidden relevant) x
pattern iArg x = arg (arg-info instance′ relevant) x
unArg : Arg A → A
unArg (arg _ x) = x
getArgInfo : Arg A → ArgInfo
getArgInfo (arg i _) = i
getVisibility : Arg A → Visibility
getVisibility (arg (arg-info v _) _) = v
getRelevance : Arg A → Relevance
getRelevance (arg (arg-info _ r) _) = r
isVisible : Arg A → Bool
isVisible (arg (arg-info visible _) _) = true
isVisible _ = false
instance
FunctorArg : Functor {a = ℓ} Arg
fmap {{FunctorArg}} f (arg i x) = arg i (f x)
TraversableArg : Traversable {a = ℓ} Arg
traverse {{TraversableArg}} f (arg i x) = ⦇ (arg i) (f x) ⦈
unAbs : Abs A → A
unAbs (abs _ x) = x
instance
FunctorAbs : Functor {a = ℓ} Abs
fmap {{FunctorAbs}} f (abs s x) = abs s (f x)
TraversableAbs : Traversable {a = ℓ} Abs
traverse {{TraversableAbs}} f (abs s x) = ⦇ (abs s) (f x) ⦈
absurd-lam : Term
absurd-lam = pat-lam (absurd-clause (("()" , vArg unknown) ∷ []) (vArg (absurd 0) ∷ []) ∷ []) []
--- TC monad ---
mapTC : (A → B) → TC A → TC B
mapTC f m = bindTC m λ x → returnTC (f x)
instance
FunctorTC : Functor {ℓ} TC
fmap {{FunctorTC}} = mapTC
ApplicativeTC : Applicative {ℓ} TC
pure {{ApplicativeTC}} = returnTC
_<*>_ {{ApplicativeTC}} = monadAp bindTC
MonadTC : Monad {ℓ} TC
_>>=_ {{MonadTC}} = bindTC
FunctorTC′ : Functor′ {ℓ₁} {ℓ₂} TC
fmap′ {{FunctorTC′}} = mapTC
ApplicativeTC′ : Applicative′ {ℓ₁} {ℓ₂} TC
_<*>′_ {{ApplicativeTC′}} = monadAp′ bindTC
MonadTC′ : Monad′ {ℓ₁} {ℓ₂} TC
_>>=′_ {{MonadTC′}} = bindTC
FunctorZeroTC : FunctorZero {ℓ} TC
empty {{FunctorZeroTC}} = typeError []
AlternativeTC : Alternative {ℓ} TC
_<|>_ {{AlternativeTC}} = catchTC
Tactic = Term → TC ⊤
give : Term → Tactic
give v = λ hole → unify hole v
define : Arg Name → Type → List Clause → TC ⊤
define f a cs = declareDef f a >> defineFun (unArg f) cs
newMeta : Type → TC Term
newMeta = checkType unknown
newMeta! : TC Term
newMeta! = newMeta unknown
typeErrorS : ∀ {a} {A : Set a} → String → TC A
typeErrorS s = typeError (strErr s ∷ [])
blockOnMeta! : ∀ {a} {A : Set a} → Meta → TC A
blockOnMeta! x = commitTC >>=′ λ _ → blockOnMeta x
inferNormalisedType : Term → TC Type
inferNormalisedType t = withNormalisation true (inferType t)
--- Convenient wrappers ---
-- Zero for non-datatypes
getParameters : Name → TC Nat
getParameters d =
caseM getDefinition d of λ
{ (data-type n _) → pure n
; _ → pure 0 }
getConstructors : Name → TC (List Name)
getConstructors d =
caseM getDefinition d of λ
{ (data-type _ cs) → pure cs
; (record-type c _) → pure (c ∷ [])
; _ → typeError (strErr "Cannot get constructors of non-data or record type" ∷ nameErr d ∷ [])
}
getClauses : Name → TC (List Clause)
getClauses d =
caseM getDefinition d of λ
{ (function cs) → pure cs
; _ → typeError (strErr "Cannot get constructors of non-function type" ∷ nameErr d ∷ [])
}
-- Get the constructor of a record type (or single-constructor data type)
recordConstructor : Name → TC Name
recordConstructor r =
caseM getConstructors r of λ
{ (c ∷ []) → pure c
; _ → typeError $ strErr "Cannot get constructor of non-record type" ∷ nameErr r ∷ [] }
-- Injectivity of constructors
arg-inj₁ : ∀ {i i′} {x x′ : A} → arg i x ≡ arg i′ x′ → i ≡ i′
arg-inj₁ refl = refl
arg-inj₂ : ∀ {i i′} {x x′ : A} → arg i x ≡ arg i′ x′ → x ≡ x′
arg-inj₂ refl = refl
arg-info-inj₁ : ∀ {v v′ r r′} → arg-info v r ≡ arg-info v′ r′ → v ≡ v′
arg-info-inj₁ refl = refl
arg-info-inj₂ : ∀ {v v′ r r′} → arg-info v r ≡ arg-info v′ r′ → r ≡ r′
arg-info-inj₂ refl = refl
abs-inj₁ : ∀ {s s′} {x x′ : A} → abs s x ≡ abs s′ x′ → s ≡ s′
abs-inj₁ refl = refl
abs-inj₂ : ∀ {s s′} {x x′ : A} → abs s x ≡ abs s′ x′ → x ≡ x′
abs-inj₂ refl = refl
--- Terms ---
var-inj₁ : ∀ {x x′ args args′} → Term.var x args ≡ var x′ args′ → x ≡ x′
var-inj₁ refl = refl
var-inj₂ : ∀ {x x′ args args′} → Term.var x args ≡ var x′ args′ → args ≡ args′
var-inj₂ refl = refl
con-inj₁ : ∀ {c c′ args args′} → Term.con c args ≡ con c′ args′ → c ≡ c′
con-inj₁ refl = refl
con-inj₂ : ∀ {c c′ args args′} → Term.con c args ≡ con c′ args′ → args ≡ args′
con-inj₂ refl = refl
def-inj₁ : ∀ {f f′ args args′} → def f args ≡ def f′ args′ → f ≡ f′
def-inj₁ refl = refl
def-inj₂ : ∀ {f f′ args args′} → def f args ≡ def f′ args′ → args ≡ args′
def-inj₂ refl = refl
meta-inj₁ : ∀ {f f′ args args′} → Term.meta f args ≡ meta f′ args′ → f ≡ f′
meta-inj₁ refl = refl
meta-inj₂ : ∀ {f f′ args args′} → Term.meta f args ≡ meta f′ args′ → args ≡ args′
meta-inj₂ refl = refl
lam-inj₁ : ∀ {v v′ t t′} → lam v t ≡ lam v′ t′ → v ≡ v′
lam-inj₁ refl = refl
lam-inj₂ : ∀ {v v′ t t′} → lam v t ≡ lam v′ t′ → t ≡ t′
lam-inj₂ refl = refl
pat-lam-inj₁ : ∀ {v v′ t t′} → pat-lam v t ≡ pat-lam v′ t′ → v ≡ v′
pat-lam-inj₁ refl = refl
pat-lam-inj₂ : ∀ {v v′ t t′} → pat-lam v t ≡ pat-lam v′ t′ → t ≡ t′
pat-lam-inj₂ refl = refl
pi-inj₁ : ∀ {t₁ t₁′ t₂ t₂′} → pi t₁ t₂ ≡ pi t₁′ t₂′ → t₁ ≡ t₁′
pi-inj₁ refl = refl
pi-inj₂ : ∀ {t₁ t₁′ t₂ t₂′} → pi t₁ t₂ ≡ pi t₁′ t₂′ → t₂ ≡ t₂′
pi-inj₂ refl = refl
sort-inj : ∀ {x y} → agda-sort x ≡ agda-sort y → x ≡ y
sort-inj refl = refl
lit-inj : ∀ {x y} → Term.lit x ≡ lit y → x ≡ y
lit-inj refl = refl
--- Sorts ---
set-inj : ∀ {x y} → set x ≡ set y → x ≡ y
set-inj refl = refl
prop-inj : ∀ {x y} → prop x ≡ prop y → x ≡ y
prop-inj refl = refl
slit-inj : ∀ {x y} → Sort.lit x ≡ lit y → x ≡ y
slit-inj refl = refl
spropLit-inj : ∀ {x y} → Sort.propLit x ≡ propLit y → x ≡ y
spropLit-inj refl = refl
sinf-inj : ∀ {x y} → Sort.inf x ≡ inf y → x ≡ y
sinf-inj refl = refl
--- Patterns ---
pcon-inj₁ : ∀ {x y z w} → Pattern.con x y ≡ con z w → x ≡ z
pcon-inj₁ refl = refl
pcon-inj₂ : ∀ {x y z w} → Pattern.con x y ≡ con z w → y ≡ w
pcon-inj₂ refl = refl
pvar-inj : ∀ {x y} → Pattern.var x ≡ var y → x ≡ y
pvar-inj refl = refl
pdot-inj : ∀ {x y} → Pattern.dot x ≡ dot y → x ≡ y
pdot-inj refl = refl
plit-inj : ∀ {x y} → Pattern.lit x ≡ lit y → x ≡ y
plit-inj refl = refl
proj-inj : ∀ {x y} → Pattern.proj x ≡ proj y → x ≡ y
proj-inj refl = refl
absurd-inj : ∀ {x y} → absurd x ≡ absurd y → x ≡ y
absurd-inj refl = refl
--- Clauses ---
clause-inj₁ : ∀ {x y z u v w} → clause x y z ≡ clause u v w → x ≡ u
clause-inj₁ refl = refl
clause-inj₂ : ∀ {x y z u v w} → clause x y z ≡ clause u v w → y ≡ v
clause-inj₂ refl = refl
clause-inj₃ : ∀ {x y z u v w} → clause x y z ≡ clause u v w → z ≡ w
clause-inj₃ refl = refl
absurd-clause-inj₁ : ∀ {x y z w} → absurd-clause x y ≡ absurd-clause z w → x ≡ z
absurd-clause-inj₁ refl = refl
absurd-clause-inj₂ : ∀ {x y z w} → absurd-clause x y ≡ absurd-clause z w → y ≡ w
absurd-clause-inj₂ refl = refl
--- Literals ---
nat-inj : ∀ {x y} → nat x ≡ nat y → x ≡ y
nat-inj refl = refl
word64-inj : ∀ {x y} → word64 x ≡ word64 y → x ≡ y
word64-inj refl = refl
float-inj : ∀ {x y} → float x ≡ float y → x ≡ y
float-inj refl = refl
char-inj : ∀ {x y} → char x ≡ char y → x ≡ y
char-inj refl = refl
string-inj : ∀ {x y} → string x ≡ string y → x ≡ y
string-inj refl = refl
name-inj : ∀ {x y} → name x ≡ name y → x ≡ y
name-inj refl = refl
meta-inj : ∀ {x y} → Literal.meta x ≡ meta y → x ≡ y
meta-inj refl = refl
| 26.736559
| 96
| 0.615926
|
4dd97837612d5da8867e6fb11ceeddf60dc8fd12
| 2,075
|
agda
|
Agda
|
src/Int.agda
|
cruhland/agda-editor
|
c5ffd117f6d5a98f7c68a2a6b9be54a150c70945
|
[
"MIT"
] | null | null | null |
src/Int.agda
|
cruhland/agda-editor
|
c5ffd117f6d5a98f7c68a2a6b9be54a150c70945
|
[
"MIT"
] | null | null | null |
src/Int.agda
|
cruhland/agda-editor
|
c5ffd117f6d5a98f7c68a2a6b9be54a150c70945
|
[
"MIT"
] | null | null | null |
module Int where
open import Agda.Builtin.FromNat
open import Agda.Builtin.FromNeg
open import Data.Char hiding (fromNat)
open import Data.Integer hiding (_≤_; suc)
open import Data.Integer.Literals
open import Data.List
open import Data.Nat hiding (_≤_)
open import Data.String
open import Data.Unit hiding (_≤_)
open import Function
open import Show
postulate
Int : Set
primShow : Int → List Char
primFromInteger : ℤ → Int
primToInteger : Int → ℤ
primMinBound : Int
primMaxBound : Int
{-# COMPILE GHC Int = type Int #-}
{-# COMPILE GHC primShow = show #-}
{-# COMPILE GHC primFromInteger = fromInteger #-}
{-# COMPILE GHC primToInteger = toInteger #-}
{-# COMPILE GHC primMinBound = minBound #-}
{-# COMPILE GHC primMaxBound = maxBound #-}
instance ShowInt : Show Int
ShowInt = fromHaskell primShow
instance Numberℤ : Number ℤ
Numberℤ = number
-- Its values can be automatically derived as instance arguments, but
-- is otherwise identical to the standard library version
data _ℕ≤_ : ℕ → ℕ → Set where
instance z≤n : ∀ {n} → zero ℕ≤ n
instance s≤s : ∀ {m n} {{m≤n : m ℕ≤ n}} → suc m ℕ≤ suc n
-- Its values can be automatically derived as instance arguments, but
-- is otherwise identical to the standard library version
data _≤_ : ℤ → ℤ → Set where
instance -≤- : {m n : ℕ} → {{n≤m : n ℕ≤ m}} → -[1+ m ] ≤ -[1+ n ]
instance -≤+ : {m n : ℕ} → (-[1+ m ]) ≤ (+ n)
instance +≤+ : {m n : ℕ} → {{m≤n : m ℕ≤ n}} → (+ m) ≤ (+ n)
-- Use a literal for the bound so that Agda can automatically check
-- the constraints for fromNat and fromNeg. Value taken from
-- https://hackage.haskell.org/package/base-4.12.0.0/docs/Prelude.html#t:Int
maxBound : ℤ
maxBound = 536870911
-- Use the actual bound in compiled code
{-# COMPILE GHC maxBound = toInteger (maxBound :: Int) #-}
instance NumberInt : Number Int
NumberInt = record { Constraint = Constraint ; fromNat = fromNatInt }
where
Constraint : ℕ → Set
Constraint n = (+ n) ≤ maxBound
fromNatInt : ∀ n → {{_ : Constraint n}} → Int
fromNatInt n = primFromInteger (+ n)
| 31.439394
| 76
| 0.671325
|
50e162f21eaa93d6b997b583516dc52fdf3436ec
| 1,920
|
agda
|
Agda
|
string-format.agda
|
rfindler/ial
|
f3f0261904577e930bd7646934f756679a6cbba6
|
[
"MIT"
] | 29
|
2019-02-06T13:09:31.000Z
|
2022-03-04T15:05:12.000Z
|
string-format.agda
|
rfindler/ial
|
f3f0261904577e930bd7646934f756679a6cbba6
|
[
"MIT"
] | 8
|
2018-07-09T22:53:38.000Z
|
2022-03-22T03:43:34.000Z
|
string-format.agda
|
rfindler/ial
|
f3f0261904577e930bd7646934f756679a6cbba6
|
[
"MIT"
] | 17
|
2018-12-03T22:38:15.000Z
|
2021-11-28T20:13:21.000Z
|
{- formatted printing like printf, except type-safe (as proposed
in "Cayenne -- a language with dependent types" by Augustsson).
The types of the rest of the arguments are computed from the
format string. -}
module string-format where
open import char
open import eq
open import list
open import nat
open import nat-to-string
open import string
{- We will first convert the format string to the following type,
so we can avoid default cases in the definition of format-th
(cf. string-format-issue.agda). -}
data format-d : Set where
format-nat : format-d → format-d
format-string : format-d → format-d
not-format : (c : char) → format-d → format-d
empty-format : format-d
format-cover : 𝕃 char → format-d
format-cover ('%' :: 'n' :: s) = format-nat (format-cover s)
format-cover ('%' :: 's' :: s) = format-string (format-cover s)
format-cover (c :: s) = not-format c (format-cover s)
format-cover [] = empty-format
format-th : format-d → Set
format-th (format-nat v) = ℕ → format-th v
format-th (format-string v) = string → format-th v
format-th (not-format c v) = format-th v
format-th empty-format = string
format-t : string → Set
format-t s = format-th (format-cover (string-to-𝕃char s))
format-h : 𝕃 char → (d : format-d) → format-th d
format-h s (format-nat v) = λ n → format-h (s ++ (string-to-𝕃char (ℕ-to-string n))) v
format-h s (format-string v) = λ s' → format-h (s ++ (string-to-𝕃char s')) v
format-h s (not-format c v) = format-h (s ++ [ c ] ) v
format-h s empty-format = 𝕃char-to-string s
format : (f : string) → format-t f
format f = format-h [] (format-cover (string-to-𝕃char f))
format-type-test : Set
format-type-test = format-t "%n% of the %ss are in the %s %s"
format-test : string
format-test = format "%n% of the %ss are in the %s %s" 25 "dog" "toasty" "doghouse"
format-test-lem : format-test ≡ "25% of the dogs are in the toasty doghouse"
format-test-lem = refl
| 34.285714
| 85
| 0.677083
|
1292ca68b3d38cf9795bced0d4a570bdc7aeee2e
| 29,711
|
agda
|
Agda
|
Agda/rings.agda
|
UlrikBuchholtz/HoTT-Intro
|
1e1f8def50f9359928e52ebb2ee53ed1166487d9
|
[
"CC-BY-4.0"
] | 333
|
2018-09-26T08:33:30.000Z
|
2022-03-22T23:50:15.000Z
|
Agda/rings.agda
|
UlrikBuchholtz/HoTT-Intro
|
1e1f8def50f9359928e52ebb2ee53ed1166487d9
|
[
"CC-BY-4.0"
] | 8
|
2019-06-18T04:16:04.000Z
|
2020-10-16T15:27:01.000Z
|
Agda/rings.agda
|
UlrikBuchholtz/HoTT-Intro
|
1e1f8def50f9359928e52ebb2ee53ed1166487d9
|
[
"CC-BY-4.0"
] | 30
|
2018-09-26T09:08:57.000Z
|
2022-03-16T00:33:50.000Z
|
{-# OPTIONS --without-K --exact-split #-}
module rings where
import abelian-groups
open abelian-groups public
has-mul-Ab :
{ l1 : Level} (A : Ab l1) → UU l1
has-mul-Ab A =
Σ ( has-associative-bin-op (set-Ab A))
( λ μ →
( is-unital (pair (set-Ab A) μ)) ×
( ( (a b c : type-Ab A) →
Id (pr1 μ a (add-Ab A b c)) (add-Ab A (pr1 μ a b) (pr1 μ a c))) ×
( (a b c : type-Ab A) →
Id (pr1 μ (add-Ab A a b) c) (add-Ab A (pr1 μ a c) (pr1 μ b c)))))
Ring : (l1 : Level) → UU (lsuc l1)
Ring l1 = Σ (Ab l1) has-mul-Ab
{- Basic infrastructure of rings -}
ab-Ring : {l1 : Level} → Ring l1 → Ab l1
ab-Ring R = pr1 R
group-Ring :
{l : Level} (R : Ring l) → Group l
group-Ring R = group-Ab (ab-Ring R)
set-Ring :
{l : Level} (R : Ring l) → UU-Set l
set-Ring R = set-Ab (ab-Ring R)
type-Ring :
{l : Level} (R : Ring l) → UU l
type-Ring R = type-Ab (ab-Ring R)
is-set-type-Ring :
{l : Level} (R : Ring l) → is-set (type-Ring R)
is-set-type-Ring R = is-set-type-Ab (ab-Ring R)
associative-add-Ring :
{l : Level} (R : Ring l) → has-associative-bin-op (set-Ring R)
associative-add-Ring R = associative-add-Ab (ab-Ring R)
add-Ring :
{l : Level} (R : Ring l) → type-Ring R → type-Ring R → type-Ring R
add-Ring R = add-Ab (ab-Ring R)
is-associative-add-Ring :
{l : Level} (R : Ring l) (x y z : type-Ring R) →
Id (add-Ring R (add-Ring R x y) z) (add-Ring R x (add-Ring R y z))
is-associative-add-Ring R = is-associative-add-Ab (ab-Ring R)
additive-semi-group-Ring :
{l : Level} (R : Ring l) → Semi-Group l
additive-semi-group-Ring R = semi-group-Ab (ab-Ring R)
is-group-additive-semi-group-Ring :
{l : Level} (R : Ring l) → is-group (additive-semi-group-Ring R)
is-group-additive-semi-group-Ring R = is-group-Ab (ab-Ring R)
has-zero-Ring :
{l : Level} (R : Ring l) → is-unital (additive-semi-group-Ring R)
has-zero-Ring R = has-zero-Ab (ab-Ring R)
zero-Ring :
{l : Level} (R : Ring l) → type-Ring R
zero-Ring R = zero-Ab (ab-Ring R)
left-zero-law-add-Ring :
{l : Level} (R : Ring l) (x : type-Ring R) →
Id (add-Ring R (zero-Ring R) x) x
left-zero-law-add-Ring R = left-zero-law-Ab (ab-Ring R)
right-zero-law-add-Ring :
{l : Level} (R : Ring l) (x : type-Ring R) →
Id (add-Ring R x (zero-Ring R)) x
right-zero-law-add-Ring R = right-zero-law-Ab (ab-Ring R)
has-negatives-Ring :
{l : Level} (R : Ring l) →
is-group' (additive-semi-group-Ring R) (has-zero-Ring R)
has-negatives-Ring R = has-negatives-Ab (ab-Ring R)
neg-Ring :
{l : Level} (R : Ring l) → type-Ring R → type-Ring R
neg-Ring R = neg-Ab (ab-Ring R)
left-negative-law-Ring :
{l : Level} (R : Ring l) (x : type-Ring R) →
Id (add-Ring R (neg-Ring R x) x) (zero-Ring R)
left-negative-law-Ring R = left-negative-law-Ab (ab-Ring R)
right-negative-law-Ring :
{l : Level} (R : Ring l) (x : type-Ring R) →
Id (add-Ring R x (neg-Ring R x)) (zero-Ring R)
right-negative-law-Ring R = right-negative-law-Ab (ab-Ring R)
is-commutative-add-Ring :
{l : Level} (R : Ring l) (x y : type-Ring R) →
Id (add-Ring R x y) (add-Ring R y x)
is-commutative-add-Ring R = is-commutative-add-Ab (ab-Ring R)
has-associative-mul-Ring :
{l : Level} (R : Ring l) → has-associative-bin-op (set-Ring R)
has-associative-mul-Ring R = pr1 (pr2 R)
mul-Ring :
{l : Level} (R : Ring l) → type-Ring R → type-Ring R → type-Ring R
mul-Ring R = pr1 (has-associative-mul-Ring R)
is-associative-mul-Ring :
{l : Level} (R : Ring l) (x y z : type-Ring R) →
Id (mul-Ring R (mul-Ring R x y) z) (mul-Ring R x (mul-Ring R y z))
is-associative-mul-Ring R = pr2 (has-associative-mul-Ring R)
multiplicative-semi-group-Ring :
{l : Level} (R : Ring l) → Semi-Group l
multiplicative-semi-group-Ring R =
pair (set-Ring R) (has-associative-mul-Ring R)
is-unital-Ring :
{l : Level} (R : Ring l) → is-unital (multiplicative-semi-group-Ring R)
is-unital-Ring R = pr1 (pr2 (pr2 R))
multiplicative-monoid-Ring :
{l : Level} (R : Ring l) → Monoid l
multiplicative-monoid-Ring R =
pair (multiplicative-semi-group-Ring R) (is-unital-Ring R)
unit-Ring :
{l : Level} (R : Ring l) → type-Ring R
unit-Ring R = unit-Monoid (multiplicative-monoid-Ring R)
left-unit-law-mul-Ring :
{l : Level} (R : Ring l) (x : type-Ring R) →
Id (mul-Ring R (unit-Ring R) x) x
left-unit-law-mul-Ring R = left-unit-law-Monoid (multiplicative-monoid-Ring R)
right-unit-law-mul-Ring :
{l : Level} (R : Ring l) (x : type-Ring R) →
Id (mul-Ring R x (unit-Ring R)) x
right-unit-law-mul-Ring R = right-unit-law-Monoid (multiplicative-monoid-Ring R)
left-distributive-law-mul-add-Ring :
{l : Level} (R : Ring l) (x y z : type-Ring R) →
Id ( mul-Ring R x (add-Ring R y z))
( add-Ring R (mul-Ring R x y) (mul-Ring R x z))
left-distributive-law-mul-add-Ring R =
pr1 (pr2 (pr2 (pr2 R)))
right-distributive-law-mul-add-Ring :
{l : Level} (R : Ring l) (x y z : type-Ring R) →
Id ( mul-Ring R (add-Ring R x y) z)
( add-Ring R (mul-Ring R x z) (mul-Ring R y z))
right-distributive-law-mul-add-Ring R =
pr2 (pr2 (pr2 (pr2 R)))
{- Ring homomorphisms -}
preserves-mul-hom-Ab :
{l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) →
hom-Ab (ab-Ring R1) (ab-Ring R2) → UU (l1 ⊔ l2)
preserves-mul-hom-Ab R1 R2 f =
(x y : type-Ring R1) →
Id ( map-hom-Ab (ab-Ring R1) (ab-Ring R2) f (mul-Ring R1 x y))
( mul-Ring R2
( map-hom-Ab (ab-Ring R1) (ab-Ring R2) f x)
( map-hom-Ab (ab-Ring R1) (ab-Ring R2) f y))
is-prop-preserves-mul-hom-Ab :
{l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) →
( f : hom-Ab (ab-Ring R1) (ab-Ring R2)) →
is-prop (preserves-mul-hom-Ab R1 R2 f)
is-prop-preserves-mul-hom-Ab R1 R2 f =
is-prop-Π
( λ x →
is-prop-Π
( λ y →
is-set-type-Ring R2
( map-hom-Ab (ab-Ring R1) (ab-Ring R2) f (mul-Ring R1 x y))
( mul-Ring R2
( map-hom-Ab (ab-Ring R1) (ab-Ring R2) f x)
( map-hom-Ab (ab-Ring R1) (ab-Ring R2) f y))))
preserves-unit-hom-Ab :
{l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) →
hom-Ab (ab-Ring R1) (ab-Ring R2) → UU l2
preserves-unit-hom-Ab R1 R2 f =
Id (map-hom-Ab (ab-Ring R1) (ab-Ring R2) f (unit-Ring R1)) (unit-Ring R2)
is-prop-preserves-unit-hom-Ab :
{l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) →
( f : hom-Ab (ab-Ring R1) (ab-Ring R2)) →
is-prop (preserves-unit-hom-Ab R1 R2 f)
is-prop-preserves-unit-hom-Ab R1 R2 f =
is-set-type-Ring R2
( map-hom-Ab (ab-Ring R1) (ab-Ring R2) f (unit-Ring R1))
( unit-Ring R2)
is-ring-homomorphism-hom-Ab :
{l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) →
( f : hom-Ab (ab-Ring R1) (ab-Ring R2)) → UU (l1 ⊔ l2)
is-ring-homomorphism-hom-Ab R1 R2 f =
preserves-mul-hom-Ab R1 R2 f × preserves-unit-hom-Ab R1 R2 f
is-prop-is-ring-homomorphism-hom-Ab :
{l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) →
( f : hom-Ab (ab-Ring R1) (ab-Ring R2)) →
is-prop (is-ring-homomorphism-hom-Ab R1 R2 f)
is-prop-is-ring-homomorphism-hom-Ab R1 R2 f =
is-prop-prod
( is-prop-preserves-mul-hom-Ab R1 R2 f)
( is-prop-preserves-unit-hom-Ab R1 R2 f)
hom-Ring :
{l1 l2 : Level} (R1 : Ring l1) (R : Ring l2) → UU (l1 ⊔ l2)
hom-Ring R1 R2 =
Σ (hom-Ab (ab-Ring R1) (ab-Ring R2)) (is-ring-homomorphism-hom-Ab R1 R2)
{- Basic infrastructure for ring homomorphisms. -}
hom-Ab-hom-Ring :
{l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) →
hom-Ring R1 R2 → hom-Ab (ab-Ring R1) (ab-Ring R2)
hom-Ab-hom-Ring R1 R2 = pr1
map-hom-Ring :
{l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) →
hom-Ring R1 R2 → type-Ring R1 → type-Ring R2
map-hom-Ring R1 R2 f =
map-hom-Ab (ab-Ring R1) (ab-Ring R2) (hom-Ab-hom-Ring R1 R2 f)
preserves-add-hom-Ring :
{l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) →
(f : hom-Ring R1 R2) →
preserves-add (ab-Ring R1) (ab-Ring R2) (map-hom-Ring R1 R2 f)
preserves-add-hom-Ring R1 R2 f =
preserves-add-Ab (ab-Ring R1) (ab-Ring R2) (hom-Ab-hom-Ring R1 R2 f)
preserves-mul-hom-Ring :
{l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) →
(f : hom-Ring R1 R2) → preserves-mul-hom-Ab R1 R2 (hom-Ab-hom-Ring R1 R2 f)
preserves-mul-hom-Ring R1 R2 f = pr1 (pr2 f)
preserves-unit-hom-Ring :
{l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) →
(f : hom-Ring R1 R2) → preserves-unit-hom-Ab R1 R2 (hom-Ab-hom-Ring R1 R2 f)
preserves-unit-hom-Ring R1 R2 f = pr2 (pr2 f)
is-ring-homomorphism-hom-Ring :
{l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) →
(f : hom-Ring R1 R2) →
prod ( preserves-mul-hom-Ab R1 R2 (hom-Ab-hom-Ring R1 R2 f))
( preserves-unit-hom-Ab R1 R2 (hom-Ab-hom-Ring R1 R2 f))
is-ring-homomorphism-hom-Ring R1 R2 f =
pair ( preserves-mul-hom-Ring R1 R2 f)
( preserves-unit-hom-Ring R1 R2 f)
{- We characterize the identity type of ring homomorphisms -}
htpy-hom-Ring :
{l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) →
hom-Ring R1 R2 → hom-Ring R1 R2 → UU (l1 ⊔ l2)
htpy-hom-Ring R1 R2 f g = map-hom-Ring R1 R2 f ~ map-hom-Ring R1 R2 g
reflexive-htpy-hom-Ring :
{l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) →
(f : hom-Ring R1 R2) → htpy-hom-Ring R1 R2 f f
reflexive-htpy-hom-Ring R1 R2 f = refl-htpy
htpy-hom-Ring-eq :
{l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) →
(f g : hom-Ring R1 R2) → Id f g → htpy-hom-Ring R1 R2 f g
htpy-hom-Ring-eq R1 R2 f .f refl = reflexive-htpy-hom-Ring R1 R2 f
is-contr-total-htpy-hom-Ring :
{l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) (f : hom-Ring R1 R2) →
is-contr (Σ (hom-Ring R1 R2) (htpy-hom-Ring R1 R2 f))
is-contr-total-htpy-hom-Ring R1 R2 f =
is-contr-total-Eq-substructure
( is-contr-total-htpy-hom-Ab
( ab-Ring R1)
( ab-Ring R2)
( hom-Ab-hom-Ring R1 R2 f))
( is-prop-is-ring-homomorphism-hom-Ab R1 R2)
( hom-Ab-hom-Ring R1 R2 f)
( reflexive-htpy-hom-Ring R1 R2 f)
( is-ring-homomorphism-hom-Ring R1 R2 f)
is-equiv-htpy-hom-Ring-eq :
{l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) (f g : hom-Ring R1 R2) →
is-equiv (htpy-hom-Ring-eq R1 R2 f g)
is-equiv-htpy-hom-Ring-eq R1 R2 f =
fundamental-theorem-id f
( reflexive-htpy-hom-Ring R1 R2 f)
( is-contr-total-htpy-hom-Ring R1 R2 f)
( htpy-hom-Ring-eq R1 R2 f)
equiv-htpy-hom-Ring-eq :
{l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) (f g : hom-Ring R1 R2) →
Id f g ≃ htpy-hom-Ring R1 R2 f g
equiv-htpy-hom-Ring-eq R1 R2 f g =
pair
( htpy-hom-Ring-eq R1 R2 f g)
( is-equiv-htpy-hom-Ring-eq R1 R2 f g)
eq-htpy-hom-Ring :
{l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) (f g : hom-Ring R1 R2) →
htpy-hom-Ring R1 R2 f g → Id f g
eq-htpy-hom-Ring R1 R2 f g =
inv-is-equiv (is-equiv-htpy-hom-Ring-eq R1 R2 f g)
is-set-hom-Ring :
{l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) → is-set (hom-Ring R1 R2)
is-set-hom-Ring R1 R2 =
is-trunc-succ-subtype
( neg-one-𝕋)
( is-prop-is-ring-homomorphism-hom-Ab R1 R2)
( is-set-hom-Ab (ab-Ring R1) (ab-Ring R2))
{- We define the categorical structure of rings -}
preserves-mul-id-hom-Ring :
{l : Level} (R : Ring l) → preserves-mul-hom-Ab R R (id-hom-Ab (ab-Ring R))
preserves-mul-id-hom-Ring R x y = refl
preserves-unit-id-hom-Ring :
{l : Level} (R : Ring l) → preserves-unit-hom-Ab R R (id-hom-Ab (ab-Ring R))
preserves-unit-id-hom-Ring R = refl
is-ring-homomorphism-id-hom-Ring :
{l : Level} (R : Ring l) → is-ring-homomorphism-hom-Ab R R (id-hom-Ab (ab-Ring R))
is-ring-homomorphism-id-hom-Ring R =
pair (preserves-mul-id-hom-Ring R) (preserves-unit-id-hom-Ring R)
id-hom-Ring :
{l : Level} (R : Ring l) → hom-Ring R R
id-hom-Ring R = pair (id-hom-Ab (ab-Ring R)) (is-ring-homomorphism-id-hom-Ring R)
hom-Ab-comp-hom-Ring :
{ l1 l2 l3 : Level} (R1 : Ring l1) (R2 : Ring l2) (R3 : Ring l3) →
( g : hom-Ring R2 R3) (f : hom-Ring R1 R2) →
hom-Ab (ab-Ring R1) (ab-Ring R3)
hom-Ab-comp-hom-Ring R1 R2 R3 g f =
comp-hom-Ab
( ab-Ring R1)
( ab-Ring R2)
( ab-Ring R3)
( hom-Ab-hom-Ring R2 R3 g)
( hom-Ab-hom-Ring R1 R2 f)
preserves-mul-comp-hom-Ring :
{ l1 l2 l3 : Level} (R1 : Ring l1) (R2 : Ring l2) (R3 : Ring l3) →
( g : hom-Ring R2 R3) (f : hom-Ring R1 R2) →
preserves-mul-hom-Ab R1 R3 (hom-Ab-comp-hom-Ring R1 R2 R3 g f)
preserves-mul-comp-hom-Ring R1 R2 R3 g f x y =
( ap (map-hom-Ring R2 R3 g) (preserves-mul-hom-Ring R1 R2 f x y)) ∙
( preserves-mul-hom-Ring R2 R3 g
( map-hom-Ring R1 R2 f x)
( map-hom-Ring R1 R2 f y))
preserves-unit-comp-hom-Ring :
{ l1 l2 l3 : Level} (R1 : Ring l1) (R2 : Ring l2) (R3 : Ring l3) →
( g : hom-Ring R2 R3) (f : hom-Ring R1 R2) →
preserves-unit-hom-Ab R1 R3 (hom-Ab-comp-hom-Ring R1 R2 R3 g f)
preserves-unit-comp-hom-Ring R1 R2 R3 g f =
( ap (map-hom-Ring R2 R3 g) (preserves-unit-hom-Ring R1 R2 f)) ∙
( preserves-unit-hom-Ring R2 R3 g)
is-ring-homomorphism-comp-hom-Ring :
{ l1 l2 l3 : Level} (R1 : Ring l1) (R2 : Ring l2) (R3 : Ring l3) →
( g : hom-Ring R2 R3) (f : hom-Ring R1 R2) →
is-ring-homomorphism-hom-Ab R1 R3 (hom-Ab-comp-hom-Ring R1 R2 R3 g f)
is-ring-homomorphism-comp-hom-Ring R1 R2 R3 g f =
pair ( preserves-mul-comp-hom-Ring R1 R2 R3 g f)
( preserves-unit-comp-hom-Ring R1 R2 R3 g f)
comp-hom-Ring :
{ l1 l2 l3 : Level} (R1 : Ring l1) (R2 : Ring l2) (R3 : Ring l3) →
hom-Ring R2 R3 → hom-Ring R1 R2 → hom-Ring R1 R3
comp-hom-Ring R1 R2 R3 g f =
pair ( hom-Ab-comp-hom-Ring R1 R2 R3 g f)
( is-ring-homomorphism-comp-hom-Ring R1 R2 R3 g f)
{- We prove the laws of a category for Rings -}
is-associative-comp-hom-Ring :
{ l1 l2 l3 l4 : Level}
( R1 : Ring l1) (R2 : Ring l2) (R3 : Ring l3) (R4 : Ring l4) →
( h : hom-Ring R3 R4) (g : hom-Ring R2 R3) (f : hom-Ring R1 R2) →
Id (comp-hom-Ring R1 R2 R4 (comp-hom-Ring R2 R3 R4 h g) f)
(comp-hom-Ring R1 R3 R4 h (comp-hom-Ring R1 R2 R3 g f))
is-associative-comp-hom-Ring R1 R2 R3 R4 h g f =
eq-htpy-hom-Ring R1 R4
( comp-hom-Ring R1 R2 R4 (comp-hom-Ring R2 R3 R4 h g) f)
( comp-hom-Ring R1 R3 R4 h (comp-hom-Ring R1 R2 R3 g f))
( refl-htpy)
left-unit-law-comp-hom-Ring :
{ l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) (f : hom-Ring R1 R2) →
Id (comp-hom-Ring R1 R2 R2 (id-hom-Ring R2) f) f
left-unit-law-comp-hom-Ring R1 R2 f =
eq-htpy-hom-Ring R1 R2
( comp-hom-Ring R1 R2 R2 (id-hom-Ring R2) f)
( f)
( refl-htpy)
right-unit-law-comp-hom-Ring :
{ l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) (f : hom-Ring R1 R2) →
Id (comp-hom-Ring R1 R1 R2 f (id-hom-Ring R1)) f
right-unit-law-comp-hom-Ring R1 R2 f =
eq-htpy-hom-Ring R1 R2
( comp-hom-Ring R1 R1 R2 f (id-hom-Ring R1))
( f)
( refl-htpy)
{- We show that the forgetful map ab-Ring is a functor -}
id-law-ab-Ring :
{ l1 : Level} (R1 : Ring l1) →
Id (hom-Ab-hom-Ring R1 R1 (id-hom-Ring R1)) (id-hom-Ab (ab-Ring R1))
id-law-ab-Ring R1 =
eq-htpy-hom-Ab
( ab-Ring R1)
( ab-Ring R1)
( refl-htpy)
comp-law-ab-Ring :
{ l1 l2 l3 : Level} (R1 : Ring l1) (R2 : Ring l2) (R3 : Ring l3) →
( g : hom-Ring R2 R3) (f : hom-Ring R1 R2) →
Id ( hom-Ab-hom-Ring R1 R3 (comp-hom-Ring R1 R2 R3 g f))
( comp-hom-Ab
( ab-Ring R1)
( ab-Ring R2)
( ab-Ring R3)
( hom-Ab-hom-Ring R2 R3 g)
( hom-Ab-hom-Ring R1 R2 f))
comp-law-ab-Ring R1 R2 R3 g f =
eq-htpy-hom-Ab
( ab-Ring R1)
( ab-Ring R3)
( refl-htpy)
{- We introduce ring isomorphisms -}
is-iso-hom-Ring :
{ l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) →
hom-Ring R1 R2 → UU (l1 ⊔ l2)
is-iso-hom-Ring R1 R2 f =
Σ ( hom-Ring R2 R1)
( λ g →
( Id (comp-hom-Ring R2 R1 R2 f g) (id-hom-Ring R2)) ×
( Id (comp-hom-Ring R1 R2 R1 g f) (id-hom-Ring R1)))
{- Infrastructure for invertible ring homomorphisms -}
inv-is-iso-hom-Ring :
{ l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) (f : hom-Ring R1 R2) →
is-iso-hom-Ring R1 R2 f → hom-Ring R2 R1
inv-is-iso-hom-Ring R1 R2 f = pr1
is-sec-inv-is-iso-hom-Ring :
{ l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) (f : hom-Ring R1 R2) →
( is-iso-f : is-iso-hom-Ring R1 R2 f) →
Id (comp-hom-Ring R2 R1 R2 f (inv-is-iso-hom-Ring R1 R2 f is-iso-f))
(id-hom-Ring R2)
is-sec-inv-is-iso-hom-Ring R1 R2 f is-iso-f = pr1 (pr2 is-iso-f)
is-retr-inv-is-iso-hom-Ring :
{ l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) (f : hom-Ring R1 R2) →
( is-iso-f : is-iso-hom-Ring R1 R2 f) →
Id (comp-hom-Ring R1 R2 R1 (inv-is-iso-hom-Ring R1 R2 f is-iso-f) f)
(id-hom-Ring R1)
is-retr-inv-is-iso-hom-Ring R1 R2 f is-iso-f = pr2 (pr2 is-iso-f)
inv-map-is-iso-hom-Ring :
{ l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) (f : hom-Ring R1 R2) →
is-iso-hom-Ring R1 R2 f → type-Ring R2 → type-Ring R1
inv-map-is-iso-hom-Ring R1 R2 f is-iso-f =
map-hom-Ring R2 R1 (inv-is-iso-hom-Ring R1 R2 f is-iso-f)
is-sec-inv-map-is-iso-hom-Ring :
{ l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) (f : hom-Ring R1 R2) →
( is-iso-f : is-iso-hom-Ring R1 R2 f) →
( (map-hom-Ring R1 R2 f) ∘ (inv-map-is-iso-hom-Ring R1 R2 f is-iso-f)) ~ id
is-sec-inv-map-is-iso-hom-Ring R1 R2 f is-iso-f =
htpy-hom-Ring-eq R2 R2
( comp-hom-Ring R2 R1 R2 f (inv-is-iso-hom-Ring R1 R2 f is-iso-f))
( id-hom-Ring R2)
( is-sec-inv-is-iso-hom-Ring R1 R2 f is-iso-f)
is-retr-inv-map-is-iso-hom-Ring :
{ l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) (f : hom-Ring R1 R2) →
( is-iso-f : is-iso-hom-Ring R1 R2 f) →
( (inv-map-is-iso-hom-Ring R1 R2 f is-iso-f) ∘ (map-hom-Ring R1 R2 f)) ~ id
is-retr-inv-map-is-iso-hom-Ring R1 R2 f is-iso-f =
htpy-hom-Ring-eq R1 R1
( comp-hom-Ring R1 R2 R1 (inv-is-iso-hom-Ring R1 R2 f is-iso-f) f)
( id-hom-Ring R1)
( is-retr-inv-is-iso-hom-Ring R1 R2 f is-iso-f)
{- Being invertible is a property -}
is-prop-is-iso-hom-Ring' :
{ l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) (f : hom-Ring R1 R2) →
is-prop' (is-iso-hom-Ring R1 R2 f)
is-prop-is-iso-hom-Ring' R1 R2 f inv-f inv-f' =
eq-subtype
( λ g →
is-prop-prod
( is-set-hom-Ring R2 R2 (comp-hom-Ring R2 R1 R2 f g) (id-hom-Ring R2))
( is-set-hom-Ring R1 R1 (comp-hom-Ring R1 R2 R1 g f) (id-hom-Ring R1)))
( eq-htpy-hom-Ring R2 R1
( inv-is-iso-hom-Ring R1 R2 f inv-f)
( inv-is-iso-hom-Ring R1 R2 f inv-f')
( λ x →
( inv
( ap ( map-hom-Ring R2 R1 (pr1 inv-f))
( is-sec-inv-map-is-iso-hom-Ring R1 R2 f inv-f' x))) ∙
( is-retr-inv-map-is-iso-hom-Ring R1 R2 f inv-f
( map-hom-Ring R2 R1 (pr1 inv-f') x))))
is-prop-is-iso-hom-Ring :
{ l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) (f : hom-Ring R1 R2) →
is-prop (is-iso-hom-Ring R1 R2 f)
is-prop-is-iso-hom-Ring R1 R2 f =
is-prop-is-prop' (is-prop-is-iso-hom-Ring' R1 R2 f)
iso-Ring :
{ l1 l2 : Level} → Ring l1 → Ring l2 → UU (l1 ⊔ l2)
iso-Ring R1 R2 = Σ (hom-Ring R1 R2) (is-iso-hom-Ring R1 R2)
hom-iso-Ring :
{ l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) →
iso-Ring R1 R2 → hom-Ring R1 R2
hom-iso-Ring R1 R2 = pr1
is-iso-hom-iso-Ring :
{ l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) →
( f : iso-Ring R1 R2) → is-iso-hom-Ring R1 R2 (hom-iso-Ring R1 R2 f)
is-iso-hom-iso-Ring R1 R2 = pr2
inv-hom-iso-Ring :
{ l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) →
iso-Ring R1 R2 → hom-Ring R2 R1
inv-hom-iso-Ring R1 R2 f =
inv-is-iso-hom-Ring R1 R2
( hom-iso-Ring R1 R2 f)
( is-iso-hom-iso-Ring R1 R2 f)
is-iso-id-hom-Ring :
{ l1 : Level} (R1 : Ring l1) → is-iso-hom-Ring R1 R1 (id-hom-Ring R1)
is-iso-id-hom-Ring R1 =
pair ( id-hom-Ring R1)
( pair
( left-unit-law-comp-hom-Ring R1 R1 (id-hom-Ring R1))
( left-unit-law-comp-hom-Ring R1 R1 (id-hom-Ring R1)))
id-iso-Ring :
{ l1 : Level} (R1 : Ring l1) → iso-Ring R1 R1
id-iso-Ring R1 = pair (id-hom-Ring R1) (is-iso-id-hom-Ring R1)
iso-eq-Ring :
{ l : Level} (R1 R2 : Ring l) → Id R1 R2 → iso-Ring R1 R2
iso-eq-Ring R1 .R1 refl = id-iso-Ring R1
{- We first show that a ring homomorphism is an isomorphism if and only if
the underlying homomorphism of abelian groups is an isomorphism. -}
is-iso-hom-Ab-hom-Ring :
{ l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) →
hom-Ring R1 R2 → UU (l1 ⊔ l2)
is-iso-hom-Ab-hom-Ring R1 R2 f =
is-iso-hom-Ab (ab-Ring R1) (ab-Ring R2) (hom-Ab-hom-Ring R1 R2 f)
is-iso-hom-Ab-is-iso-hom-Ring :
{ l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) (f : hom-Ring R1 R2) →
is-iso-hom-Ring R1 R2 f →
is-iso-hom-Ab-hom-Ring R1 R2 f
is-iso-hom-Ab-is-iso-hom-Ring R1 R2 f is-iso-f =
pair ( hom-Ab-hom-Ring R2 R1 (inv-is-iso-hom-Ring R1 R2 f is-iso-f))
( pair
( ap ( hom-Ab-hom-Ring R2 R2)
( is-sec-inv-is-iso-hom-Ring R1 R2 f is-iso-f))
( ap ( hom-Ab-hom-Ring R1 R1)
( is-retr-inv-is-iso-hom-Ring R1 R2 f is-iso-f)))
abstract
preserves-mul-inv-is-iso-hom-Ab :
{ l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) →
( f : hom-Ab (ab-Ring R1) (ab-Ring R2)) →
( is-iso-f : is-iso-hom-Ab (ab-Ring R1) (ab-Ring R2) f) →
( pres-mul-f : preserves-mul-hom-Ab R1 R2 f) →
preserves-mul-hom-Ab R2 R1
( inv-is-iso-hom-Ab (ab-Ring R1) (ab-Ring R2) f is-iso-f)
preserves-mul-inv-is-iso-hom-Ab R1 R2 f is-iso-f pres-mul-f x y =
( inv
( ap
( map-inv-is-iso-hom-Ab (ab-Ring R1) (ab-Ring R2) f is-iso-f)
( ( pres-mul-f
( map-inv-is-iso-hom-Ab (ab-Ring R1) (ab-Ring R2) f is-iso-f x)
( map-inv-is-iso-hom-Ab (ab-Ring R1) (ab-Ring R2) f is-iso-f y)) ∙
( ( ap ( mul-Ring R2
( map-hom-Ab (ab-Ring R1) (ab-Ring R2) f
( map-inv-is-iso-hom-Ab
( ab-Ring R1)
( ab-Ring R2)
f is-iso-f x)))
( is-sec-map-inv-is-iso-hom-Ab
( ab-Ring R1)
( ab-Ring R2)
( f)
( is-iso-f)
( y))) ∙
( ap ( λ z → mul-Ring R2 z y)
( is-sec-map-inv-is-iso-hom-Ab
( ab-Ring R1)
( ab-Ring R2)
( f)
( is-iso-f)
( x))))))) ∙
( is-retr-map-inv-is-iso-hom-Ab (ab-Ring R1) (ab-Ring R2) f is-iso-f
( mul-Ring R1
( map-inv-is-iso-hom-Ab (ab-Ring R1) (ab-Ring R2) f is-iso-f x)
( map-inv-is-iso-hom-Ab (ab-Ring R1) (ab-Ring R2) f is-iso-f y)))
preserves-unit-inv-is-iso-hom-Ab :
{ l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2)
( f : hom-Ab (ab-Ring R1) (ab-Ring R2)) →
( is-iso-f : is-iso-hom-Ab (ab-Ring R1) (ab-Ring R2) f)
( pres-unit-f : preserves-unit-hom-Ab R1 R2 f) →
preserves-unit-hom-Ab R2 R1
( inv-is-iso-hom-Ab (ab-Ring R1) (ab-Ring R2) f is-iso-f)
preserves-unit-inv-is-iso-hom-Ab R1 R2 f is-iso-f pres-unit-f =
( inv
( ap
( map-inv-is-iso-hom-Ab (ab-Ring R1) (ab-Ring R2) f is-iso-f)
( pres-unit-f))) ∙
( is-retr-map-inv-is-iso-hom-Ab (ab-Ring R1) (ab-Ring R2) f is-iso-f
( unit-Ring R1))
is-ring-homomorphism-inv-is-iso-hom-Ab :
{ l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2)
( f : hom-Ab (ab-Ring R1) (ab-Ring R2)) →
( is-iso-f : is-iso-hom-Ab (ab-Ring R1) (ab-Ring R2) f) →
( is-ring-hom-f : is-ring-homomorphism-hom-Ab R1 R2 f) →
is-ring-homomorphism-hom-Ab R2 R1
( inv-is-iso-hom-Ab (ab-Ring R1) (ab-Ring R2) f is-iso-f)
is-ring-homomorphism-inv-is-iso-hom-Ab
R1 R2 f is-iso-f (pair pres-mul-f pres-unit-f) =
pair
( preserves-mul-inv-is-iso-hom-Ab R1 R2 f is-iso-f pres-mul-f)
( preserves-unit-inv-is-iso-hom-Ab R1 R2 f is-iso-f pres-unit-f)
inv-hom-Ring-is-iso-hom-Ab :
{ l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) (f : hom-Ring R1 R2) →
( is-iso-f : is-iso-hom-Ab
( ab-Ring R1)
( ab-Ring R2)
( hom-Ab-hom-Ring R1 R2 f)) →
hom-Ring R2 R1
inv-hom-Ring-is-iso-hom-Ab R1 R2 f is-iso-f =
pair
( inv-is-iso-hom-Ab
( ab-Ring R1)
( ab-Ring R2)
( hom-Ab-hom-Ring R1 R2 f)
( is-iso-f))
( is-ring-homomorphism-inv-is-iso-hom-Ab R1 R2
( hom-Ab-hom-Ring R1 R2 f)
( is-iso-f)
( is-ring-homomorphism-hom-Ring R1 R2 f))
abstract
is-iso-hom-Ring-is-iso-hom-Ab :
{ l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2)
( f : hom-Ring R1 R2) →
is-iso-hom-Ab (ab-Ring R1) (ab-Ring R2) (hom-Ab-hom-Ring R1 R2 f) →
is-iso-hom-Ring R1 R2 f
is-iso-hom-Ring-is-iso-hom-Ab R1 R2 f is-iso-f =
pair
( inv-hom-Ring-is-iso-hom-Ab R1 R2 f is-iso-f)
( pair
( eq-htpy-hom-Ring R2 R2
( comp-hom-Ring R2 R1 R2 f
( inv-hom-Ring-is-iso-hom-Ab R1 R2 f is-iso-f))
( id-hom-Ring R2)
( htpy-hom-Ab-eq (ab-Ring R2) (ab-Ring R2)
( hom-Ab-hom-Ring R2 R2
( comp-hom-Ring R2 R1 R2 f
( inv-hom-Ring-is-iso-hom-Ab R1 R2 f is-iso-f)))
( id-hom-Ab (ab-Ring R2))
( is-sec-inv-is-iso-hom-Ab
( ab-Ring R1)
( ab-Ring R2)
( hom-Ab-hom-Ring R1 R2 f)
( is-iso-f))))
( eq-htpy-hom-Ring R1 R1
( comp-hom-Ring R1 R2 R1
( inv-hom-Ring-is-iso-hom-Ab R1 R2 f is-iso-f)
( f))
( id-hom-Ring R1)
( htpy-hom-Ab-eq (ab-Ring R1) (ab-Ring R1)
( hom-Ab-hom-Ring R1 R1
( comp-hom-Ring R1 R2 R1
( inv-hom-Ring-is-iso-hom-Ab R1 R2 f is-iso-f)
( f)))
( id-hom-Ab (ab-Ring R1))
( is-retr-inv-is-iso-hom-Ab
( ab-Ring R1)
( ab-Ring R2)
( hom-Ab-hom-Ring R1 R2 f)
( is-iso-f)))))
iso-Ab-Ring :
{ l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) → UU (l1 ⊔ l2)
iso-Ab-Ring R1 R2 =
Σ ( iso-Ab (ab-Ring R1) (ab-Ring R2))
( λ f →
is-ring-homomorphism-hom-Ab R1 R2
( hom-iso-Ab (ab-Ring R1) (ab-Ring R2) f))
iso-Ab-iso-Ab-Ring :
{ l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) →
iso-Ab-Ring R1 R2 → iso-Ab (ab-Ring R1) (ab-Ring R2)
iso-Ab-iso-Ab-Ring R1 R2 = pr1
iso-Ab-iso-Ring :
{ l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) →
iso-Ring R1 R2 → iso-Ab (ab-Ring R1) (ab-Ring R2)
iso-Ab-iso-Ring R1 R2 f =
pair ( hom-Ab-hom-Ring R1 R2 (hom-iso-Ring R1 R2 f))
( is-iso-hom-Ab-is-iso-hom-Ring R1 R2
( hom-iso-Ring R1 R2 f)
( is-iso-hom-iso-Ring R1 R2 f))
equiv-iso-Ab-iso-Ring :
{ l1 : Level} (R1 : Ring l1) (R2 : Ring l1) →
(iso-Ring R1 R2) ≃ (iso-Ab-Ring R1 R2)
equiv-iso-Ab-iso-Ring R1 R2 =
( ( ( inv-equiv
( equiv-Σ-assoc
( hom-Ab (ab-Ring R1) (ab-Ring R2))
( is-iso-hom-Ab (ab-Ring R1) (ab-Ring R2))
( λ f → is-ring-homomorphism-hom-Ab R1 R2 (pr1 f)))) ∘e
( equiv-tot
( λ f →
equiv-swap-prod
( is-ring-homomorphism-hom-Ab R1 R2 f)
( is-iso-hom-Ab (ab-Ring R1) (ab-Ring R2) f)))) ∘e
( equiv-Σ-assoc
( hom-Ab (ab-Ring R1) (ab-Ring R2))
( is-ring-homomorphism-hom-Ab R1 R2)
( λ f → is-iso-hom-Ab (ab-Ring R1) (ab-Ring R2) (pr1 f)))) ∘e
( equiv-total-subtype
( is-prop-is-iso-hom-Ring R1 R2)
( λ f →
is-prop-is-iso-hom-Ab
( ab-Ring R1)
( ab-Ring R2)
( hom-Ab-hom-Ring R1 R2 f))
( is-iso-hom-Ab-is-iso-hom-Ring R1 R2)
( is-iso-hom-Ring-is-iso-hom-Ab R1 R2))
abstract
is-contr-total-iso-Ring :
{ l : Level} (R : Ring l) → is-contr (Σ (Ring l) (iso-Ring R))
is-contr-total-iso-Ring {l} R =
is-contr-equiv
( Σ (Ring l) (iso-Ab-Ring R))
( equiv-tot (equiv-iso-Ab-iso-Ring R))
( is-contr-total-Eq-structure
( λ A μ f →
is-ring-homomorphism-hom-Ab R (pair A μ) (hom-iso-Ab (ab-Ring R) A f))
( is-contr-total-iso-Ab (ab-Ring R))
( pair (ab-Ring R) (id-iso-Ab (ab-Ring R)))
( is-contr-total-Eq-structure
( λ μ H pres-mul → Id (unit-Ring R) (pr1 (pr1 H)))
( is-contr-total-Eq-substructure
( is-contr-total-Eq-Π
( λ x m → (y : type-Ring R) → Id (mul-Ring R x y) (m y))
( λ x → is-contr-total-htpy (mul-Ring R x))
( mul-Ring R))
( λ μ → is-prop-Π (λ x → is-prop-Π (λ y → is-prop-Π (λ z →
is-set-type-Ring R (μ (μ x y) z) (μ x (μ y z))))))
( mul-Ring R)
( λ x y → refl)
( is-associative-mul-Ring R))
( pair (pair (mul-Ring R) (is-associative-mul-Ring R)) (λ x y → refl))
( is-contr-total-Eq-substructure
( is-contr-total-Eq-substructure
( is-contr-total-path (unit-Ring R))
( λ x →
is-prop-prod
( is-prop-Π (λ y → is-set-type-Ring R (mul-Ring R x y) y))
( is-prop-Π (λ y → is-set-type-Ring R (mul-Ring R y x) y)))
( unit-Ring R)
( refl)
( pair (left-unit-law-mul-Ring R) (right-unit-law-mul-Ring R)))
( λ u →
is-prop-prod
( is-prop-Π (λ x → is-prop-Π (λ y → is-prop-Π (λ z →
is-set-type-Ring R
( mul-Ring R x (add-Ring R y z))
( add-Ring R (mul-Ring R x y) (mul-Ring R x z))))))
( is-prop-Π (λ x → is-prop-Π (λ y → is-prop-Π (λ z →
is-set-type-Ring R
( mul-Ring R (add-Ring R x y) z)
( add-Ring R (mul-Ring R x z) (mul-Ring R y z)))))))
( is-unital-Ring R)
( refl)
( pair
( left-distributive-law-mul-add-Ring R)
( right-distributive-law-mul-add-Ring R)))))
is-equiv-iso-eq-Ring :
{ l : Level} (R S : Ring l) → is-equiv (iso-eq-Ring R S)
is-equiv-iso-eq-Ring R =
fundamental-theorem-id R
( id-iso-Ring R)
( is-contr-total-iso-Ring R)
( iso-eq-Ring R)
eq-iso-Ring :
{ l : Level} (R S : Ring l) → iso-Ring R S → Id R S
eq-iso-Ring R S = inv-is-equiv (is-equiv-iso-eq-Ring R S)
| 35.796386
| 84
| 0.568813
|
0bd01c9eea94a2fa87cc7db884a1d2eba3349bcd
| 189
|
agda
|
Agda
|
agda/Text/Greek/Bible.agda
|
scott-fleischman/GreekGrammar
|
915c46c27c7f8aad5907474d8484f2685a4cd6a7
|
[
"MIT"
] | 44
|
2015-05-29T14:48:51.000Z
|
2022-03-06T15:41:57.000Z
|
agda/Text/Greek/Bible.agda
|
scott-fleischman/GreekGrammar
|
915c46c27c7f8aad5907474d8484f2685a4cd6a7
|
[
"MIT"
] | 13
|
2015-05-28T20:04:08.000Z
|
2020-09-07T11:58:38.000Z
|
agda/Text/Greek/Bible.agda
|
scott-fleischman/GreekGrammar
|
915c46c27c7f8aad5907474d8484f2685a4cd6a7
|
[
"MIT"
] | 5
|
2015-02-27T22:34:13.000Z
|
2017-06-11T11:25:09.000Z
|
module Text.Greek.Bible where
open import Data.Nat
open import Data.List
open import Data.String
open import Text.Greek.Script
data Word : Set where
word : (List Token) → String → Word
| 18.9
| 37
| 0.761905
|
18151dfc1725840d94ba9c955f3b948bc9c719f9
| 674
|
agda
|
Agda
|
examples/simple/quantifierIn/quantifierIn-output.agda
|
wenkokke/vehicle
|
41d8653d7e48a716f5085ec53171b29094669674
|
[
"BSD-3-Clause"
] | 11
|
2021-02-24T05:55:15.000Z
|
2022-02-01T01:35:39.000Z
|
examples/simple/quantifierIn/quantifierIn-output.agda
|
wenkokke/vehicle
|
41d8653d7e48a716f5085ec53171b29094669674
|
[
"BSD-3-Clause"
] | 53
|
2021-04-16T07:26:42.000Z
|
2021-12-15T22:42:01.000Z
|
examples/simple/quantifierIn/quantifierIn-output.agda
|
wenkokke/vehicle
|
41d8653d7e48a716f5085ec53171b29094669674
|
[
"BSD-3-Clause"
] | 4
|
2021-03-15T15:22:31.000Z
|
2021-11-16T14:30:47.000Z
|
-- WARNING: This file was generated automatically by Vehicle
-- and should not be modified manually!
-- Metadata
-- - Agda version: 2.6.2
-- - AISEC version: 0.1.0.1
-- - Time generated: ???
{-# OPTIONS --allow-exec #-}
open import Vehicle
open import Data.Unit
open import Data.Integer as ℤ using (ℤ)
open import Data.List
open import Data.List.Relation.Unary.All as List
module quantifierIn-output where
private
VEHICLE_PROJECT_FILE = "TODO_projectFile"
emptyList : List ℤ
emptyList = []
abstract
empty : List.All (λ (x : ℤ) → ⊤) emptyList
empty = checkProperty record
{ projectFile = VEHICLE_PROJECT_FILE
; propertyUUID = "TODO_propertyUUID"
}
| 23.241379
| 60
| 0.712166
|
06e26da8ad2b577ac8a4ea4fb3426133ee656c4b
| 102
|
agda
|
Agda
|
test/Fail/RecordConstructorOutOfScope.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Fail/RecordConstructorOutOfScope.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Fail/RecordConstructorOutOfScope.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
module RecordConstructorOutOfScope where
record R : Set where
constructor con
id : R
id = con
| 12.75
| 40
| 0.735294
|
506683638b448eaa7db2639625f20acdf257c007
| 4,757
|
agda
|
Agda
|
unused/Effect.agda
|
Zalastax/singly-typed-actors
|
ae541df13d069df4eb1464f29fbaa9804aad439f
|
[
"MIT"
] | 1
|
2019-10-29T09:30:26.000Z
|
2019-10-29T09:30:26.000Z
|
unused/Effect.agda
|
Zalastax/singly-typed-actors
|
ae541df13d069df4eb1464f29fbaa9804aad439f
|
[
"MIT"
] | null | null | null |
unused/Effect.agda
|
Zalastax/singly-typed-actors
|
ae541df13d069df4eb1464f29fbaa9804aad439f
|
[
"MIT"
] | null | null | null |
module Effect where
open import Data.List
open import Data.List.All
open import Data.List.Any
open import Level
open import Relation.Binary.PropositionalEquality hiding ([_])
open import Function
open import Category.Monad
open import Data.Product
open import EffectUtil
open import Membership-equality hiding (_⊆_; set)
Effect : ∀ f → Set (suc f)
Effect f = (result : Set f) (i : Set f) (o : result → Set f) → Set f
record EFFECT (f : Level) : Set (suc f) where
constructor mkEff
field S : Set f
E : Effect f
updateResTy : ∀ {f A E i o} → (val : A) →
(es : List (EFFECT f)) →
(prf : (mkEff i E) ∈ es) →
(eff : E A i o) →
List (EFFECT f)
updateResTy {o = o} val (mkEff i e ∷ es) (here px) eff = mkEff (o val) e ∷ es
updateResTy val (e ∷ es) (there prf) eff = e ∷ updateResTy val es prf eff
updateWith : ∀ {f ys} (ys' : List (EFFECT f)) → (xs : List (EFFECT f)) →
(ys ⊆ xs) → List (EFFECT f)
updateWith [] xs inc = xs
updateWith (y' ∷ ys') xs [] = xs
updateWith (y' ∷ ys') (_ ∷ xs) (keep inc) = y' ∷ updateWith ys' xs inc
updateWith (y' ∷ ys') (x ∷ xs) (skip inc) = x ∷ updateWith (y' ∷ ys') xs inc
Handler : ∀ {f} → (Set f → Set f) → Effect f → Set (suc f)
Handler M e = ∀ {A a o res} → (r : res) → (eff : e A res o) →
(k : ((x : A) → o x → M a)) → M a
-- @ A The return type of the result
-- @ es The list of allowed side-effects
-- @ ce The function to compute a new list of allowed side-effects
data EffM {f : Level} (m : Set f → Set f) : (A : Set f) →
(es : List (EFFECT f)) →
(ce : A → List (EFFECT f)) → Set (suc f) where
return : ∀ {A ce} (val : A) → EffM m A (ce val) ce
_>>=_ : ∀ {A B es ce₁ ce₂} → EffM m A es ce₁ → (∀ x → EffM m B (ce₁ x) ce₂) → EffM m B es ce₂
effect : ∀ {A E i es o} (prf : (mkEff i E) ∈ es) →
(eff : E A i o) →
EffM m A es (λ v → updateResTy v es prf eff)
-- use to invoke sub-programs that use some or all of the available effects
lift : ∀ {A ys ys' xs} → (inc : ys ⊆ xs) →
EffM m A ys ys' →
EffM m A xs (λ v → updateWith (ys' v) xs inc)
new : ∀ {A es} →
(e : EFFECT f) →
(val : EFFECT.S e) →
Handler m (EFFECT.E e) →
EffM {f} m A (e ∷ es) (λ v → e ∷ es) →
EffM m A es (λ v → es)
pure : ∀ {l m A es} → A → EffM {l} m A es (λ v → es)
pure = return
_<*>_ : ∀ {l m A B es} → EffM {l} m (A → B) es (λ v → es) →
EffM {l} m A es (λ v → es) →
EffM {l} m B es (λ v → es)
_<*>_ prog v = prog >>= λ fn →
v >>= λ arg →
pure (fn arg)
_<$>_ : ∀ {l m A B es} → (f : A → B) → EffM {l} m A es (λ v → es) → EffM {l} m B es (λ v → es)
_<$>_ f m = pure f <*> m
data Env {f : Level} : (m : Set f → Set f) → List (EFFECT f) → Set (suc f) where
[] : ∀ {m} → Env m []
_∷_ : ∀ {m eff es a} → (el : Handler m eff × a) → Env m es → Env m (mkEff a eff ∷ es)
execEff : ∀ {f m A es E i} {o : A → Set f} {B} →
Env {f} m es →
(prf : (mkEff i E) ∈ es) →
(eff : E A i o) →
((v : A) → Env {f} m (updateResTy v es prf eff) → m B) → m B
execEff {m = m} {A = A} {o = o} {B = B} ((handle , val) ∷ env) (here refl) eff k = handle val eff cont
where
cont : (v : A) → o v → m B
cont v res = k v ((handle , res) ∷ env)
execEff (e ∷ env) (there prf) eff k = execEff env prf eff λ v → λ env' → k v (e ∷ env')
dropEnv : ∀ {f m ys xs} → Env {f} m ys → xs ⊆ ys → Env m xs
dropEnv [] [] = []
dropEnv (el ∷ env) [] = []
dropEnv (el ∷ env) (keep sub) = el ∷ (dropEnv env sub)
dropEnv (el ∷ env) (skip sub) = dropEnv env sub
rebuildEnv : ∀ {f m ys' ys xs} → Env {f} m ys' → (prf : ys ⊆ xs) →
Env m xs → Env m (updateWith ys' xs prf)
rebuildEnv [] [] env = env
rebuildEnv (_ ∷ _) [] env = env
rebuildEnv [] (keep prf) env = env
rebuildEnv (el ∷ els) (keep prf) (_ ∷ env) = el ∷ rebuildEnv els prf env
rebuildEnv [] (skip prf) env = env
rebuildEnv (el ∷ els) (skip prf) (en ∷ env) = en ∷ rebuildEnv (el ∷ els) prf env
eff : ∀ {f m es A B ce} → Env {f} m es → EffM m A es ce → ((v : A) → Env m (ce v) → m B) → m B
eff env (return val) k = k val env
eff env (effM >>= c) k = eff env effM λ p' → λ env' → eff env' ((c p')) k
eff env (effect prf effP) k = execEff env prf effP k
eff env (lift inc effM) k = eff env' effM λ p' → λ envk → k p' (rebuildEnv envk inc env)
where
env' = dropEnv env inc
eff {f} {m} {es} {A} {B} env (new e val handler effM) k = eff ((handler , val) ∷ env) effM cont
where
cont : (v : A) → Env {f} m (e ∷ es) → m B
cont v (val ∷ envk) = k v envk
run : ∀ {f a xs xs'} → ∀ m → (mon : RawMonad m) → (prog : EffM {f} m a xs xs') → Env m xs → m a
run m mon prog env = eff env prog λ r → λ env' → RawMonad.return mon r
| 39.31405
| 102
| 0.52407
|
12d9e3eabc73044131214bae4cd0b8f34d53f4f0
| 416
|
agda
|
Agda
|
Cubical/Experiments/NatMinusTwo/Properties.agda
|
kiana-S/univalent-foundations
|
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
|
[
"MIT"
] | null | null | null |
Cubical/Experiments/NatMinusTwo/Properties.agda
|
kiana-S/univalent-foundations
|
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
|
[
"MIT"
] | 1
|
2022-01-27T02:07:48.000Z
|
2022-01-27T02:07:48.000Z
|
Cubical/Experiments/NatMinusTwo/Properties.agda
|
kiana-S/univalent-foundations
|
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
|
[
"MIT"
] | 1
|
2021-11-22T02:02:01.000Z
|
2021-11-22T02:02:01.000Z
|
{-# OPTIONS --cubical --no-import-sorts --no-exact-split --safe #-}
module Cubical.Experiments.NatMinusTwo.Properties where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Isomorphism
open import Cubical.Data.Nat
open import Cubical.Data.NatMinusOne using (ℕ₋₁)
open import Cubical.Experiments.NatMinusTwo.Base
-2+Path : ℕ ≡ ℕ₋₂
-2+Path = isoToPath (iso -2+_ 2+_ (λ _ → refl) (λ _ → refl))
| 34.666667
| 67
| 0.754808
|
0bcf3dd2e515293b0bbbfac93711b877c7b53c13
| 1,060
|
agda
|
Agda
|
examples/examplesPaperJFP/NativeIOSafe.agda
|
agda/ooAgda
|
7cc45e0148a4a508d20ed67e791544c30fecd795
|
[
"MIT"
] | 23
|
2016-06-19T12:57:55.000Z
|
2020-10-12T23:15:25.000Z
|
examples/examplesPaperJFP/NativeIOSafe.agda
|
agda/ooAgda
|
7cc45e0148a4a508d20ed67e791544c30fecd795
|
[
"MIT"
] | null | null | null |
examples/examplesPaperJFP/NativeIOSafe.agda
|
agda/ooAgda
|
7cc45e0148a4a508d20ed67e791544c30fecd795
|
[
"MIT"
] | 2
|
2018-09-01T15:02:37.000Z
|
2022-03-12T11:41:00.000Z
|
module examplesPaperJFP.NativeIOSafe where
open import Data.Maybe.Base using (Maybe; nothing; just) public
open import Data.String.Base using (String) public
record Unit : Set where
constructor unit
{-# COMPILE GHC Unit = () #-}
postulate
NativeIO : Set → Set
nativeReturn : {A : Set} → A → NativeIO A
_native>>=_ : {A B : Set} → NativeIO A → (A → NativeIO B) → NativeIO B
{-# BUILTIN IO NativeIO #-}
{-# COMPILE GHC NativeIO = IO #-} -- IO.FF-I.AgdaIO
{-# COMPILE GHC _native>>=_ = (\_ _ -> (>>=) :: IO a -> (a -> IO b) -> IO b) #-}
{-# COMPILE GHC nativeReturn = (\_ -> return :: a -> IO a) #-}
postulate
nativeGetLine : NativeIO (Maybe String)
nativePutStrLn : String → NativeIO Unit
{-# FOREIGN GHC import Data.Text #-}
{-# FOREIGN GHC import System.IO.Error #-}
{-# COMPILE GHC nativePutStrLn = (\ s -> putStrLn (Data.Text.unpack s)) #-}
{-# COMPILE GHC nativeGetLine = (fmap (Just . Data.Text.pack) getLine `System.IO.Error.catchIOError` \ err -> if System.IO.Error.isEOFError err then return Nothing else ioError err) #-}
| 34.193548
| 185
| 0.65
|
506065a875fa7725e9a1b849cedc654e443e0653
| 10,092
|
agda
|
Agda
|
Categories/Support/SetoidPi.agda
|
copumpkin/categories
|
36f4181d751e2ecb54db219911d8c69afe8ba892
|
[
"BSD-3-Clause"
] | 98
|
2015-04-15T14:57:33.000Z
|
2022-03-08T05:20:36.000Z
|
Categories/Support/SetoidPi.agda
|
p-pavel/categories
|
e41aef56324a9f1f8cf3cd30b2db2f73e01066f2
|
[
"BSD-3-Clause"
] | 19
|
2015-05-23T06:47:10.000Z
|
2019-08-09T16:31:40.000Z
|
Categories/Support/SetoidPi.agda
|
p-pavel/categories
|
e41aef56324a9f1f8cf3cd30b2db2f73e01066f2
|
[
"BSD-3-Clause"
] | 23
|
2015-02-05T13:03:09.000Z
|
2021-11-11T13:50:56.000Z
|
{-# OPTIONS --universe-polymorphism #-}
module Categories.Support.SetoidPi where
open import Level
open import Function as Fun using (_on_)
open import Relation.Binary as B using () renaming (_=[_]⇒_ to _=[_]⇒₀_; _⇒_ to _⊆_)
open import Relation.Binary.PropositionalEquality as PE using (_≡_)
open import Relation.Binary.HeterogeneousEquality using (_≅_) renaming (refl to ≅-refl)
open import Relation.Binary.Indexed.Heterogeneous as I using (_=[_]⇒_)
open import Categories.Support.Equivalence
open import Categories.Support.SetoidFunctions as SF using (_⟶_) renaming (_⟨$⟩_ to _⟨$⟩₀_; cong to cong₀)
open Setoid using () renaming (Carrier to Carrier₀; _≈_ to _[_≈_])
_⟶[_,_] : ∀ {cf ℓf} (From : Setoid cf ℓf) (ct ℓt : Level) → Set (cf ⊔ ℓf ⊔ suc (ct ⊔ ℓt))
From ⟶[ ct , ℓt ] = From ⟶ set→setoid (Setoid ct ℓt)
------------------------------------------------------------------------
-- Indexed binary relations
------------------------------------------------------------------------
record IndexedSetoid {i iℓ} (I : Set i) (_∼_ : B.Rel I iℓ) c ℓ : Set (suc (i ⊔ iℓ ⊔ c ⊔ ℓ)) where
infix 4 _≈_
field
Carrier : I → Set c
_≈_ : I.IRel Carrier ℓ
.isEquivalence : I.IsIndexedEquivalence Carrier _≈_
-- NOTE one more field, see resp below
-- no irrelevant opens ☹
-- .open I.IsEquivalence isEquivalence public
private
module E = I.IsIndexedEquivalence
.refl : I.Reflexive Carrier _≈_
refl = E.refl isEquivalence
.sym : I.Symmetric Carrier _≈_
sym = E.sym isEquivalence
.trans : I.Transitive Carrier _≈_
trans = E.trans isEquivalence
.reflexive : ∀ {i} → _≡_ ⊆ (_≈_ {i})
reflexive = E.reflexive isEquivalence
-- conversion to regular setoids by evaluating at an index
_at_ : I → Setoid c ℓ
_at_ i = record
{ Carrier = Carrier i
; _≈_ = _≈_
; isEquivalence = record
{ refl = E.refl isEquivalence
; sym = E.sym isEquivalence
; trans = E.trans isEquivalence
}
}
-- XXX ideally i should redo the resp stuff and promotion and everything
-- with the proper setoid of setoids under equivalence, but first i didn't
-- make it yet and second OH MY GOD ─xplat
Resp-Type = _∼_ =[ _at_ ]⇒₀ _≡_ {A = Setoid c ℓ}
field
.resp : Resp-Type
resp-per : ∀ {c ℓ} {C₁ C₂ : Set c} {_≈₁_ : B.Rel C₁ ℓ} {_≈₂_ : B.Rel C₂ ℓ} {equiv₁ : B.IsEquivalence _≈₁_} {equiv₂ : B.IsEquivalence _≈₂_} → C₁ ≡ C₂ → _≈₁_ ≅ _≈₂_ → _≡_ {A = Setoid c ℓ} record {Carrier = C₁; _≈_ = _≈₁_; isEquivalence = equiv₁} record {Carrier = C₂; _≈_ = _≈₂_; isEquivalence = equiv₂}
resp-per _≡_.refl ≅-refl = _≡_.refl
.resp-per′ : ∀ {c ℓ} (S T : Setoid c ℓ) → (Carrier₀ S ≡ Carrier₀ T) → (Setoid._≈_ S ≅ Setoid._≈_ T) → S ≡ T
resp-per′ S T = resp-per {equiv₁ = Setoid.isEquivalence S} {equiv₂ = Setoid.isEquivalence T}
open IndexedSetoid using (_at_)
weaken : ∀ {c ℓ} → Setoid c ℓ → ∀ {i iℓ} {I : Set i} {_∼_ : B.Rel I iℓ} → IndexedSetoid I _∼_ c ℓ
weaken S {I = I} {_∼_} = record
{ Carrier = Fun.const S.Carrier
; _≈_ = S._≈_
; isEquivalence = record { refl = S.refl; sym = S.sym; trans = S.trans }
; resp = Fun.const _≡_.refl
}
where module S = Setoid S
{-
-- this definition is unusable because agda spins in circles trying to infer
-- ct and ℓt before it will extract any information from f's type, but f's
-- type is the only thing it can infer them from... test is below ☹
_[$]_ : ∀ {cf ℓf ct ℓt} {From : Setoid cf ℓf} → (From ⟶[ ct , ℓt ]) → Carrier From → Set ct
f [$] x = Carrier (f ⟨$⟩₀ x)
.test : ∀ {cf ℓf ct ℓt} {From : Setoid cf ℓf} (To : From ⟶[ ct , ℓt ]) (x : Carrier From) → (_[$]_ {ct = ct}{ℓt = ℓt} To x) → Set ℓt
test = {!!}
-}
-- i think this approach would work beautifully with regular setoids, but
-- with irrelevant setoids the type of cong can't depend on localize
-- ─ xplat
-- .localize : ∀ {cf ℓf ct ℓt} {From : Setoid cf ℓf} (To : From ⟶[ ct , ℓt ]) {x y : Carrier₀ From} → From [ x ≈ y ] → B.REL (Carrier₀ (To ⟨$⟩₀ x)) (Carrier₀ (To ⟨$⟩₀ y)) ℓt
-- localize To {x} x≈y with To ⟨$⟩₀ x | cong₀ To x≈y
-- localize To x≈y | ._ | _≡_.refl = Setoid._≈_ (To ⟨$⟩₀ _)
-- ... so it's on to yet another annoying heterogeneous equality type
module SetoidHetero {cf ℓf} (From : Setoid cf ℓf) (ct ℓt : Level) (To : From ⟶[ ct , ℓt ]) where
I = Carrier₀ From
To$ = _⟨$⟩₀_ To
To$C = Fun._∘_ Carrier₀ (_⟨$⟩₀_ To)
localize′ : ∀ {S T : Setoid ct ℓt} → (S ≡ T) → B.REL (Carrier₀ S) (Carrier₀ T) ℓt
-- localize′ {S} {T} S≡T
localize′ {S} _≡_.refl = Setoid._≈_ S
localize : ∀ {x y : I} → (To$ x ≡ To$ y) → B.REL (To$C x) (To$C y) ℓt
localize {x} {y} To$x≡To$y with To$ y
localize {x} _≡_.refl | ._ = Setoid._≈_ (To$ x)
data _≈∗_ {S T : Setoid ct ℓt} (x : Carrier₀ S) : (y : Carrier₀ T) → Set (suc (ct ⊔ ℓt)) where
locally : (S≡T : S ≡ T)
{y : Carrier₀ T} (x≈y : localize′ S≡T x y) →
_≈∗_ {S} {T} x y
_≈⋆_ : {iˣ iʸ : I} → B.REL (To$C iˣ) (To$C iʸ) (suc (ct ⊔ ℓt))
_≈⋆_ {iˣ} {iʸ} = _≈∗_ {To$ iˣ} {To$ iʸ}
asIndexed : ∀ {cf ℓf} ct ℓt {From : Setoid cf ℓf} → (From ⟶[ ct , ℓt ]) → IndexedSetoid (Carrier₀ From) (Setoid._≈_ From) ct (suc (ct ⊔ ℓt))
asIndexed ct ℓt {From} To = record
{ Carrier = To$C
; _≈_ = _≈⋆_
; isEquivalence = record
{ refl = my-refl
; sym = my-sym
; trans = my-trans
}
; resp = λ {i j} i∼j → resp-per′ (fake-at i) (fake-at j) (resp-helper i∼j) (resp-helper₂ i∼j)
}
where
open SetoidHetero _ ct ℓt To
.my-refl : I.Reflexive To$C _≈⋆_
my-refl {i} {x} = locally {To$ i} _≡_.refl ((Setoid.refl (To$ i)))
.sym-helper : ∀ i j (To$i≡To$j : To$ i ≡ To$ j) (x : To$C i) (y : To$C j) (x≈y : localize′ To$i≡To$j x y) → localize′ (PE.sym To$i≡To$j) y x
sym-helper i j To$i≡To$j x y with To$ j
sym-helper i j _≡_.refl x y | ._ = Setoid.sym (To$ i)
.my-sym : I.Symmetric To$C _≈⋆_
my-sym {i} {j} {x} {y} (locally To$i≡To$j x≈y) = locally (PE.sym To$i≡To$j) (sym-helper i j To$i≡To$j x y x≈y)
.trans-helper : ∀ i j k (To$i≡To$j : To$ i ≡ To$ j) (To$j≡To$k : To$ j ≡ To$ k) (x : To$C i) (y : To$C j) (z : To$C k) (x≈y : localize′ To$i≡To$j x y) (y≈z : localize′ To$j≡To$k y z) → localize′ (PE.trans To$i≡To$j To$j≡To$k) x z
trans-helper i j k To$i≡To$j To$j≡To$k x y z with To$ j | To$ k
trans-helper i j k _≡_.refl _≡_.refl x y z | ._ | ._ = Setoid.trans (To$ i)
.my-trans : I.Transitive To$C _≈⋆_
my-trans (locally To$i≡To$j x≈y) (locally To$j≡To$k y≈z) = locally (PE.trans To$i≡To$j To$j≡To$k) (trans-helper _ _ _ To$i≡To$j To$j≡To$k _ _ _ x≈y y≈z)
.resp-helper : ∀ {i j} → From [ i ≈ j ] → To$C i ≡ To$C j
resp-helper i∼j = PE.cong Carrier₀ (cong₀ To i∼j)
.resp-helper₃ : (S T : Setoid ct ℓt) → S ≡ T → _≈∗_ {S} {S} ≅ _≈∗_ {T} {T}
resp-helper₃ S .S _≡_.refl = ≅-refl
.resp-helper₂ : ∀ {i j} → From [ i ≈ j ] → _≈⋆_ {i} {i} ≅ _≈⋆_ {j} {j}
resp-helper₂ {i} {j} i∼j = resp-helper₃ (To$ i) (To$ j) (cong₀ To i∼j)
fake-at : ∀ i → Setoid ct (suc (ct ⊔ ℓt))
fake-at i = record
{ Carrier = To$C i
; _≈_ = _≈⋆_ {i} {i}
; isEquivalence = record
{ refl = my-refl
; sym = my-sym
; trans = my-trans
}
}
------------------------------------------------------------------------
-- Functions which preserve equality
record Π {f₁ f₂ t₁ t₂}
(From : Setoid f₁ f₂)
(To : IndexedSetoid (Carrier₀ From) (Setoid._≈_ From) t₁ t₂) :
Set (f₁ ⊔ f₂ ⊔ t₁ ⊔ t₂) where
open I using (_=[_]⇒_)
infixl 5 _⟨$⟩_
field
_⟨$⟩_ : (x : Carrier₀ From) → IndexedSetoid.Carrier To x
.cong : Setoid._≈_ From =[ _⟨$⟩_ ]⇒ IndexedSetoid._≈_ To
open Π public
Π′ : ∀ {cf ℓf} (ct ℓt : Level) (From : Setoid cf ℓf) (To : From ⟶[ ct , ℓt ]) → Set (cf ⊔ ℓf ⊔ suc (ct ⊔ ℓt))
Π′ ct ℓt From To = Π From (asIndexed ct ℓt To)
-- Pis that 'just happen' to be independent, instead of being necessarily so.
infixr 0 _⟶Π_
_⟶Π_ : ∀ {f₁ f₂ t₁ t₂} → Setoid f₁ f₂ → Setoid t₁ t₂ → Set _
From ⟶Π To = Π From (weaken To)
-- Identity and composition.
id : ∀ {a₁ a₂} {A : Setoid a₁ a₂} → A ⟶Π A
id = record { _⟨$⟩_ = Fun.id; cong = Fun.id }
infixr 9 _∙′_
_∙′_ : ∀ {a₁ a₂} {A : Setoid a₁ a₂}
{b₁ b₂} {B : Setoid b₁ b₂}
{c₁ c₂} {C : Setoid c₁ c₂} →
B ⟶Π C → A ⟶Π B → A ⟶Π C
f ∙′ g = record
{ _⟨$⟩_ = Fun._∘_ (_⟨$⟩_ f) (_⟨$⟩_ g)
; cong = Fun._∘_ (cong f) (cong g)
}
infixr 9 _[_○_]
-- XXX this shouldn't need B, but it can't be inferred from f's type
_[_○_] : ∀ {a₁ a₂} {A : Setoid a₁ a₂}
{b₁ b₂} (B : Setoid b₁ b₂)
{c₁ c₂} (C : IndexedSetoid _ (Setoid._≈_ B) c₁ c₂) →
(A ⟶Π B) → IndexedSetoid _ _ c₁ c₂
B [ C ○ f ] = record
{ Carrier = Fun._∘_ C.Carrier (_⟨$⟩_ f)
; _≈_ = C._≈_
; isEquivalence = record { refl = C.refl; sym = C.sym; trans = C.trans }
; resp = Fun._∘_ C.resp (cong f)
}
where module C = IndexedSetoid C
-- PROPER. well, halfway.
infixr 9 _∙_
_∙_ : ∀ {a₁ a₂} {A : Setoid a₁ a₂}
{b₁ b₂} {B : Setoid b₁ b₂}
{c₁ c₂} {C : IndexedSetoid _ _ c₁ c₂} →
(f : Π B C) → (g : A ⟶Π B) → Π A (B [ C ○ g ])
f ∙ g = record
{ _⟨$⟩_ = Fun._∘_ (_⟨$⟩_ f) (_⟨$⟩_ g)
; cong = Fun._∘_ (cong f) (cong g)
}
-- Constant equality-preserving function.
const : ∀ {a₁ a₂} {A : Setoid a₁ a₂}
{b₁ b₂} {B : Setoid b₁ b₂} →
Carrier₀ B → A ⟶Π B
const {B = B} b = record
{ _⟨$⟩_ = Fun.const b
; cong = Fun.const (Setoid.refl B)
}
------------------------------------------------------------------------
-- Function setoids
-- Dependent.
setoid : ∀ {f₁ f₂ t₁ t₂}
(From : Setoid f₁ f₂) →
IndexedSetoid (Carrier₀ From) (Setoid._≈_ From) t₁ t₂ →
Setoid _ _
setoid From To = record
{ Carrier = Π From To
; _≈_ = λ f g → ∀ {x y} → x ≈₁ y → f ⟨$⟩ x ≈₂ g ⟨$⟩ y
; isEquivalence = record
{ refl = λ {f} → cong f
; sym = λ f∼g x∼y → To.sym (f∼g (From.sym x∼y))
; trans = λ f∼g g∼h x∼y → To.trans (f∼g From.refl) (g∼h x∼y)
}
}
where
open module From = Setoid From using () renaming (_≈_ to _≈₁_)
open module To = IndexedSetoid To using () renaming (_≈_ to _≈₂_)
| 37.102941
| 301
| 0.551922
|
0b75a9804314a50b3144eae1088be671e753b767
| 213
|
agda
|
Agda
|
test/Fail/Issue5365.agda
|
cagix/agda
|
cc026a6a97a3e517bb94bafa9d49233b067c7559
|
[
"BSD-2-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Fail/Issue5365.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Fail/Issue5365.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
-- Andreas, 2021-05-06, issue #5365
-- Error message for incomplete binding in do-block.
postulate _>>=_ : Set
test = do
x ←
-- Expected: proper error like
--
-- Incomplete binding x ←
-- <EOF><ERROR>
-- ...
| 15.214286
| 52
| 0.633803
|
Subsets and Splits
HTML Code Excluding Scripts
The query retrieves a limited set of HTML content entries that are longer than 8 characters and do not contain script tags, offering only basic filtering with minimal analytical value.