hexsha
stringlengths
40
40
size
int64
3
1.05M
ext
stringclasses
163 values
lang
stringclasses
53 values
max_stars_repo_path
stringlengths
3
945
max_stars_repo_name
stringlengths
4
112
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
float64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
945
max_issues_repo_name
stringlengths
4
113
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
float64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
945
max_forks_repo_name
stringlengths
4
113
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
float64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.05M
avg_line_length
float64
1
966k
max_line_length
int64
1
977k
alphanum_fraction
float64
0
1
1800372abcfb45f42dfad6634f50b46407ab05e1
1,207
agda
Agda
test/Succeed/Issue3176.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue3176.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue3176.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2018-08-14, issue #3176, reported by identicalsnowflake -- -- Absurd lambdas should be equal. -- In this case, they were only considered equal during give, but not upon reload. -- {-# OPTIONS -v tc.meta.occurs:35 #-} open import Agda.Builtin.Nat renaming (Nat to ℕ) open import Agda.Builtin.Equality record Σ (A : Set) (B : A → Set) : Set where constructor _,_ field proj₁ : A proj₂ : B proj₁ open Σ public ∃ : ∀ {A : Set} → (A → Set) → Set ∃ = Σ _ _×_ : ∀ _ _ → _ _×_ a b = ∃ λ (_ : a) → b record Fin (n : ℕ) : Set where field m : ℕ .p : ∃ λ k → (ℕ.suc k + m) ≡ n module _ (n : ℕ) where data S : Set where V : S K : Fin n → S _X_ : S → S → S [_] : ∀ {n} → S n → (Fin n → Set) → Set → Set [ V ] k A = A [ K i ] k _ = k i [ s₁ X s₂ ] k A = [ s₁ ] k A × [ s₂ ] k A postulate ANY : ∀ {A : Set} → A _<*>_ : ∀ {s : S 0} {A₁ A₂} → [ s ] (λ ()) (A₁ → A₂) → [ s ] (λ ()) A₁ → [ s ] (λ ()) A₂ _<*>_ {s₁ X s₂} {A₁} {A₂} (f , _) (x , _) = let v : [ s₁ ] (λ ()) A₂ v = _<*>_ {s = s₁} {A₁ = A₁} {A₂ = A₂} f x in ANY -- {A = [ s₁ ] (λ ()) A₂ × [ s₂ ] (λ ()) A₂} _<*>_ {s = s} f x = ANY -- {A = [ s ] (λ ()) _ } -- Should succeed.
21.175439
82
0.46976
d0ef874b65a37ec73bb7395508fbed4762b9c004
609
agda
Agda
agda-stdlib/src/Data/List/Relation/Subset/Setoid/Properties.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Data/List/Relation/Subset/Setoid/Properties.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Data/List/Relation/Subset/Setoid/Properties.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- This module is DEPRECATED. Please use -- Data.List.Relation.Binary.Subset.Setoid.Properties directly. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.List.Relation.Subset.Setoid.Properties where open import Data.List.Relation.Binary.Subset.Setoid.Properties public {-# WARNING_ON_IMPORT "Data.List.Relation.Subset.Setoid.Properties was deprecated in v1.0. Use Data.List.Relation.Binary.Subset.Setoid.Properties instead." #-}
33.833333
72
0.591133
cbc568e0dc48a1a4c67220165c6e4b77e5d5ceab
38,750
agda
Agda
archive/agda-1/MGU.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
archive/agda-1/MGU.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
1
2019-04-29T00:35:04.000Z
2019-05-11T23:33:04.000Z
archive/agda-1/MGU.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
module MGU where --open import Agda.Builtin.Nat using () renaming (Nat to ℕ) open import Agda.Primitive open import Agda.Builtin.Equality open import Prelude.Product using (Σ; _,_; fst; snd; _×_; curry; uncurry) open import Prelude.Equality using (_≡_; eqReasoningStep; _∎; sym; trans; cong) open import Prelude.Function using (_∘_) open import Prelude.Empty using (⊥) open import Prelude.Sum using () renaming (Either to _⊎_) open import Prelude.Maybe using (Maybe; just; nothing) ∃ : ∀ {a b} {A : Set a} (B : A → Set b) → Set (a ⊔ b) ∃ = Σ _ open import Prelude using (_$_) open import Relation.Binary open import Algebra open import Category.Applicative.Predicate open import Prolegomenon --record IsTermSubstitution {ℓᵗ} {ℓ⁼ᵗ} {ℓˢ} {ℓ⁼ˢ} record IsSetoid {c} {ℓ} {Carrier : Set c} (_≈_ : Rel Carrier ℓ) : Set (c ⊔ ℓ) where field isEquivalence : IsEquivalence _≈_ setoid : Setoid c ℓ setoid = record { Carrier = Carrier ; _≈_ = _≈_ ; isEquivalence = isEquivalence } open Setoid setoid public open IsSetoid ⦃ … ⦄ open import Algebra.Structures --open IsMonoid ⦃ … ⦄ record IsTermSubstitution {ℓᵗ} {ℓ⁼ᵗ} {ℓˢ} {ℓ⁼ˢ} (Term : Setoid ℓᵗ ℓ⁼ᵗ) (Substitution : Monoid ℓˢ ℓ⁼ˢ) : Set (ℓᵗ ⊔ ℓ⁼ᵗ ⊔ ℓˢ ⊔ ℓ⁼ˢ) where open Setoid Term public using () renaming (Carrier to T ;_≈_ to _=ᵗ_) open Monoid Substitution public using () renaming (Carrier to S ;_≈_ to _=ˢ_ ;_∙_ to _∙_ ;ε to ∅) infixl 6 _▹_ field _▹_ : T → S → T ▹-=ˢ-to-ᵗ : ∀ {s s′} → s =ˢ s′ → (t : T) → (t ▹ s) =ᵗ (t ▹ s′) ▹-=ᵗ-to-=ˢ : ∀ {s s′} → ((t : T) → t ▹ s =ᵗ t ▹ s′) → s =ˢ s′ ▹-extracts-∙ : (t : T) (s₁ s₂ : S) → t ▹ s₁ ∙ s₂ =ᵗ t ▹ s₁ ▹ s₂ open IsTermSubstitution ⦃ … ⦄ record TermSubstitution ℓᵗ ℓ⁼ᵗ ℓˢ ℓ⁼ˢ : Set (lsuc (ℓᵗ ⊔ ℓ⁼ᵗ ⊔ ℓˢ ⊔ ℓ⁼ˢ)) where field Term : Setoid ℓᵗ ℓ⁼ᵗ Substitution : Monoid ℓˢ ℓ⁼ˢ isTermSubstitution : IsTermSubstitution Term Substitution open IsTermSubstitution isTermSubstitution public open import Relation.Unary import Relation.Binary.Indexed as I open import Relation.Nullary record 𝓩ero (A : Set) : Set where field 𝓩 : A open 𝓩ero ⦃ … ⦄ instance 𝓩eroLevel : 𝓩ero Level 𝓩ero.𝓩 𝓩eroLevel = lzero open import Agda.Builtin.Nat instance 𝓩eroNat : 𝓩ero Nat 𝓩ero.𝓩 𝓩eroNat = zero record IsSeparableInto {sx s x} (SX : Set sx) (S : Set s) (X : Set x) : Set (s ⊔ x ⊔ sx) where field break : SX → S × X combine : S → X → SX iso : ∀ sx → uncurry combine (break sx) ≡ sx record Separableoid sx s x : Set (lsuc (sx ⊔ s ⊔ x)) where field SX : Set sx S : Set s X : Set x separable : IsSeparableInto SX S X _AND_ = _×_ NOT_ = ¬_ _NAND_ : ∀ {a b} (A : Set a) (B : Set b) → Set ((a ⊔ b)) _NAND_ A B = (NOT A) × (NOT B) _OR_ : ∀ {a b} (A : Set a) (B : Set b) → Set ((a ⊔ b)) _OR_ A B = NOT (A NAND B) _XOR_ : ∀ {a b} (A : Set a) (B : Set b) → Set ((a ⊔ b)) _XOR_ A B = (A OR B) AND (NOT (A AND B)) asdf : (A B : Set) → Dec A → A XOR B → Prelude.Either A (¬ ¬ B) asdf A B x (¬[¬A׬B] , ¬[A×B]) with x asdf A B x (¬[¬A׬B] , ¬[A×B]) | yes p = _⊎_.left p asdf A B x (¬[¬A׬B] , ¬[A×B]) | no ¬p = _⊎_.right (λ {x₁ → ¬[¬A׬B] (¬p , x₁)}) import Data.Empty frf : Dec Data.Empty.⊥ frf = no (λ x → x) {- record LAW (A : Set) (B : Set) (E : EITHER A B) : Set where open import Data.Empty open EITHER E ¬A→B : ¬ A → ¬ ¬ B ¬A→B ¬a ¬b with e ... | ei = ei (λ {(a , ¬b) → ¬a a}) -} record FiniteMembership : Set where open import Data.List module _ {ℓ} {A : Set ℓ} where listMembers : List A → Pred A ℓ listMembers [] x₁ = Prelude.⊥′ listMembers (x ∷ xs) y = (y ≡ x) OR (listMembers xs y) _∈L_ : A → List A → Set ℓ x ∈L xs = x ∈ listMembers xs data _inL_ (y : A) : List A → Set where [] : ∀ {xs} → y inL (y ∷ xs) _∷_ : ∀ {x xs} → (ys : y inL xs) → y inL (x ∷ xs) ListMembers : List A → Pred A lzero ListMembers xs = _inL xs _∈LL_ : A → List A → Set x ∈LL xs = x ∈ ListMembers xs toLL : (y : A) (xs : List A) → y ∈L xs → y ∈LL xs toLL y [] x = Prelude.⊥′-elim x toLL y (x ∷ xs) y∈Lxxs = {!!} -- toLL y xs x₁ record Boolean (True : Set) (False : Set) : Set where field bool : True XOR False {- record L {ℓ} (A : Set ℓ) : Set ℓ where inductive field EMPTY : Set empty : L A head : A XOR ⊥ tail : {!!} -} {- head : A XOR Prelude.⊥ tail : empty : Prelude.⊥′ list : EITHER Prelude.⊥′ (L A) -} record FreeVariableoid ℓᵛ∈ᵗ ℓᵛ∈ˢ⁺ ℓᵛ∈ˢ⁻ ℓᵛ ℓ⁼ᵛ ℓᵗ ℓ⁼ᵗ ℓˢ ℓ⁼ˢ ⦃ termSubstitution : TermSubstitution ℓᵗ ℓ⁼ᵗ ℓˢ ℓ⁼ˢ ⦄ : Set (lsuc (ℓᵛ∈ᵗ ⊔ ℓᵛ∈ˢ⁺ ⊔ ℓᵛ∈ˢ⁻ ⊔ ℓᵛ ⊔ ℓ⁼ᵛ ⊔ ℓᵗ ⊔ ℓ⁼ᵗ ⊔ ℓˢ ⊔ ℓ⁼ˢ)) where -- open TermSubstitution termSubstitution field Variable : Setoid ℓᵛ ℓ⁼ᵛ TermStructure : Set open Setoid Variable public using () renaming (Carrier to V ;_≈_ to _=ᵛ_) field termVariables : T → Pred V ℓᵛ∈ᵗ termStructure : T → Set substitutionSourceVariables : S → Pred V ℓᵛ∈ˢ⁺ substitutionTargetVariables : S → Pred V ℓᵛ∈ˢ⁻ _ᵛ∈ᵗ_ : V → T → Set ℓᵛ∈ᵗ _ᵛ∈ᵗ_ v t = v ∈ termVariables t field termNumberOfVariables : (t : T) → ∃ λ (vs : List V) → (∀ v → (v ∈L vs → v ᵛ∈ᵗ t) × (v ᵛ∈ᵗ t → v ∈L vs)) elementsDefineVariables : (t : T) → V _ᵛ∈ˢ⁺_ : V → S → Set ℓᵛ∈ˢ⁺ _ᵛ∈ˢ⁺_ v s = v ∈ substitutionSourceVariables s _ᵛ∈ˢ⁻_ : V → S → Set ℓᵛ∈ˢ⁻ _ᵛ∈ˢ⁻_ v s = v ∈ substitutionTargetVariables s field foo : ∀ {v t s} → v ᵛ∈ᵗ t → ¬ v ᵛ∈ˢ⁺ s → v ᵛ∈ᵗ (t ▹ s) isSep : IsSeparableInto T TermStructure V record CorrectTermSubstitution ℓᵛ∈ᵗ ℓᵛ∈ˢ⁺ ℓᵛ∈ˢ⁻ ℓᵛ ℓ⁼ᵛ ℓᵗ ℓ⁼ᵗ ℓˢ ℓ⁼ˢ ⦃ termSubstitution : TermSubstitution ℓᵗ ℓ⁼ᵗ ℓˢ ℓ⁼ˢ ⦄ : Set (lsuc (ℓᵛ∈ᵗ ⊔ ℓᵛ∈ˢ⁺ ⊔ ℓᵛ∈ˢ⁻ ⊔ ℓᵛ ⊔ ℓ⁼ᵛ ⊔ ℓᵗ ⊔ ℓ⁼ᵗ ⊔ ℓˢ ⊔ ℓ⁼ˢ)) where -- open TermSubstitution termSubstitution field Variable : Setoid ℓᵛ ℓ⁼ᵛ open Setoid Variable public using () renaming (Carrier to V ;_≈_ to _=ᵛ_) field termVariables : T → Pred V ℓᵛ∈ᵗ substitutionSourceVariables : S → Pred V ℓᵛ∈ˢ⁺ substitutionTargetVariables : S → Pred V ℓᵛ∈ˢ⁻ _ᵛ∈ᵗ_ : V → T → Set ℓᵛ∈ᵗ _ᵛ∈ᵗ_ v t = v ∈ termVariables t _ᵛ∈ˢ⁺_ : V → S → Set ℓᵛ∈ˢ⁺ _ᵛ∈ˢ⁺_ v s = v ∈ substitutionSourceVariables s _ᵛ∈ˢ⁻_ : V → S → Set ℓᵛ∈ˢ⁻ _ᵛ∈ˢ⁻_ v s = v ∈ substitutionTargetVariables s field foo : ∀ {v t s} → v ᵛ∈ᵗ t → ¬ v ᵛ∈ˢ⁺ s → v ᵛ∈ᵗ (t ▹ s) data D : Set where data IsRight {a b} {A : Set a} {B : Set b} (e : _⊎_ A B) : Set (a ⊔ b) where right : B → IsRight e module MostGeneralMGU where record Unificationoid {ℓᵗ} {ℓ⁼ᵗ} {ℓˢ} {ℓ⁼ˢ} ⦃ termSubstitution : TermSubstitution ℓᵗ ℓ⁼ᵗ ℓˢ ℓ⁼ˢ ⦄ : Set (lsuc (ℓᵗ ⊔ ℓ⁼ᵗ ⊔ ℓˢ ⊔ ℓ⁼ˢ)) where -- open TermSubstitution termSubstitution Property : ∀ {ℓ} → Set (ℓˢ ⊔ lsuc ℓ) Property {ℓ} = S → Set ℓ Nothing : ∀ {ℓ} → (P : Property {ℓ}) → Set (ℓ ⊔ ℓˢ) Nothing P = ∀ s → P s → ⊥ IsUnifier : (t₁ t₂ : T) → Property IsUnifier t₁ t₂ s = t₁ ▹ s =ᵗ t₂ ▹ s field unify : (t₁ t₂ : T) → Nothing (IsUnifier t₁ t₂) ⊎ ∃ (IsUnifier t₁ t₂) unifier : (t₁ t₂ : T) → Maybe S unifier t₁ t₂ with unify t₁ t₂ unifier t₁ t₂ | _⊎_.left x = nothing unifier t₁ t₂ | _⊎_.right (x , _) = just x unifier-is-correct : (t₁ t₂ : T) → Nothing (IsUnifier t₁ t₂) → unifier t₁ t₂ ≡ nothing unifier-is-correct = {!!} record IsMostGeneralUnification ℓᵗ ℓ⁼ᵗ ℓˢ ℓ⁼ˢ ⦃ termSubstitution : TermSubstitution ℓᵗ ℓ⁼ᵗ ℓˢ ℓ⁼ˢ ⦄ (unificationoid : Unificationoid ⦃ termSubstitution ⦄) : Set (lsuc (ℓᵗ ⊔ ℓ⁼ᵗ ⊔ ℓˢ ⊔ ℓ⁼ˢ)) where --open TermSubstitution termSubstitution open Unificationoid unificationoid _≤_ : (s₋ : S) (s₊ : S) → Set (ℓˢ ⊔ ℓ⁼ˢ) _≤_ s₋ s₊ = ∃ λ s → s ∙ s₊ =ˢ s₋ MostGenerally : ∀ {ℓ} (P : Property {ℓ}) → Property MostGenerally P s₊ = ∀ s₋ → P s₋ → s₋ ≤ s₊ field isMguIfUnifier : (t₁ t₂ : T) → (ru : IsRight (unify t₁ t₂)) → Prelude.case ru of λ {((right (u , _))) → MostGenerally (IsUnifier t₁ t₂) u} --mgu : (t₁ t₂ : T) → Nothing (IsUnifier t₁ t₂) ⊎ ∃ (MostGenerally $ IsUnifier t₁ t₂) mgu : (t₁ t₂ : T) → Maybe S mgu = unifier record MostGeneralUnificationoid ℓᵗ ℓ⁼ᵗ ℓˢ ℓ⁼ˢ ⦃ termSubstitution : TermSubstitution ℓᵗ ℓ⁼ᵗ ℓˢ ℓ⁼ˢ ⦄ : Set (lsuc (ℓᵗ ⊔ ℓ⁼ᵗ ⊔ ℓˢ ⊔ ℓ⁼ˢ)) where -- open TermSubstitution termSubstitution Property : ∀ {ℓ} → Set (ℓˢ ⊔ lsuc ℓ) Property {ℓ} = S → Set ℓ Nothing : ∀ {ℓ} → (P : Property {ℓ}) → Set (ℓ ⊔ ℓˢ) Nothing P = ∀ s → P s → ⊥ IsUnifier : (t₁ t₂ : T) → Property IsUnifier t₁ t₂ s = t₁ ▹ s =ᵗ t₂ ▹ s _≤_ : (s₋ : S) (s₊ : S) → Set (ℓˢ ⊔ ℓ⁼ˢ) _≤_ s₋ s₊ = ∃ λ s → s ∙ s₊ =ˢ s₋ MostGenerally : ∀ {ℓ} (P : Property {ℓ}) → Property MostGenerally P s₊ = P s₊ × ∀ s₋ → P s₋ → s₋ ≤ s₊ field mgu : (t₁ t₂ : T) → Nothing (IsUnifier t₁ t₂) ⊎ ∃ (MostGenerally $ IsUnifier t₁ t₂) -- record PairUnification ℓᵗ ℓ⁼ᵗ ℓˢ ℓ⁼ˢ -- ⦃ termSubstitution : TermSubstitution ℓᵗ ℓ⁼ᵗ ℓˢ ℓ⁼ˢ ⦄ -- : Set (lsuc (ℓᵗ ⊔ ℓ⁼ᵗ ⊔ ℓˢ ⊔ ℓ⁼ˢ)) where -- --open TermSubstitution termSubstitution -- Property : ∀ {ℓ} → Set (ℓˢ ⊔ lsuc ℓ) -- Property {ℓ} = S × S → Set ℓ -- Nothing : ∀ {ℓ} → (P : Property {ℓ}) → Set (ℓ ⊔ ℓˢ) -- Nothing P = ∀ u → P u → ⊥ -- IsUnifier : (t₁ t₂ : T) → Property -- IsUnifier t₁ t₂ u = let (s₁ , s₂) = u in t₁ ▹ s₁ =ᵗ t₂ ▹ s₂ -- infix 4 _≤_ -- _≤_ : (s₋ : S × S) (s₊ : S × S) → Set (ℓˢ ⊔ ℓ⁼ˢ) -- _≤_ u₋ u₊ = -- let s₋₁ , s₋₂ = u₋ -- s₊₁ , s₊₂ = u₊ in -- ∃ λ s → s ∙ s₊₁ =ˢ s₋₁ × s ∙ s₊₂ =ˢ s₋₂ -- MostGenerally : ∀ {ℓ} (P : Property {ℓ}) → Property -- MostGenerally P u₊ = P u₊ × ∀ u₋ → P u₋ → u₋ ≤ u₊ -- {- -- mgu f(x,y) f(y,x) -- x → w , y → z || x → z , y → w -- mgu f(x,y) f(g(y),x) -- x → g(z) || y → z , x → y -- mgu f(x,y) f(y,z) -- x → y , y → z || ∅ ≥₂ -- x → w , y → z || y → w ≥₂ -- x → w , y → v || y → w , z → v ≥₂ -- y → v || y → x , z → v ≥₂ -- ∅ || y → x , z → y -- x → w , y → v , z → v || y → w , z → v -- x → y , y → f(z) || z → f(z) -- f(x , g(x,y) ,w) -- x → g(z) -- w →? v -- f(g(z), g(g(z),y) ,v) -- v →? w -- possible unifers: -- x → g(z) , w → v || -- x → g(h(a)) , w → v || z → h(a) -- x → g(z) || z → h(y) , v → w -- -} -- field -- mgu : (t₁ t₂ : T) -- → Nothing (IsUnifier t₁ t₂) ⊎ ∃ (MostGenerally (IsUnifier t₁ t₂)) -- -- record Something ℓᵗ ℓ⁼ᵗ ℓˢ ℓ⁼ˢ : Set (lsuc (ℓᵗ ⊔ ℓ⁼ᵗ ⊔ ℓˢ ⊔ ℓ⁼ˢ)) where -- -- field -- -- Terminus : Setoid ℓᵗ ℓ⁼ᵗ -- -- Simplex : Monoid ℓˢ ℓ⁼ˢ -- -- open Setoid Terminus public using () renaming -- -- (Carrier to T -- -- ;_≈_ to _=T=_) -- -- open Monoid Simplex public using () renaming -- -- (Carrier to S -- -- ;_≈_ to _=S=_ -- -- ;_∙_ to _∙_ -- -- ;ε to ∅) -- -- infixl 6 _▹_ -- -- field -- -- _▹_ : T → S → T -- -- -- equivalence of S implies substitutivity in (T,▹) -- -- ▹-=S=-to-=T= : ∀ {s s′} → s =S= s′ → (t : T) → t ▹ s =T= t ▹ s′ -- -- -- applications of simplexi are equivalent across all termini only when the simplexi are equivalent -- -- -- that is, equivalence of S is as compact is it can be while still respecting equivalence in (T,▹) -- -- ▹-=T=-to-=S= : ∀ {s s′} → ((t : T) → t ▹ s =T= t ▹ s′) → s =S= s′ -- -- -- S extracts to ▹ in (T,∙) -- -- ▹-∙-compositional : (t : T) (s₁ s₂ : S) → t ▹ s₁ ∙ s₂ =T= t ▹ s₁ ▹ s₂ -- -- -- module NotIndexed where -- -- -- record MGU ℓᵗ ℓ⁼ᵗ ℓˢ ℓ⁼ˢ : Set (lsuc (ℓᵗ ⊔ ℓ⁼ᵗ ⊔ ℓˢ ⊔ ℓ⁼ˢ)) where -- -- -- infixr 8 _◃_ -- -- -- --infixr 9 _◇_ -- -- -- field -- -- -- 𝓣erm : Setoid ℓᵗ ℓ⁼ᵗ -- -- -- open Setoid 𝓣erm public using () renaming (Carrier to 𝓣; _≈_ to _=ᵗ_) -- -- -- field -- -- -- 𝓢ubstition : Semigroup ℓˢ ℓ⁼ˢ -- TODO Monoid? -- -- -- open Semigroup 𝓢ubstition public using () renaming -- -- -- (Carrier to 𝓢 -- -- -- ;_≈_ to _=ˢ_ -- -- -- ; _∙_ to _◇_) -- -- -- --field -- -- -- -- 𝓼ubstitute : RawPApplicative (λ x x₁ → {!!}) -- -- -- _◃'_ : 𝓢 → 𝓣 → 𝓣 -- -- -- _◃'_ = {!!} -- -- -- field -- -- -- _◃_ : 𝓢 → 𝓣 → 𝓣 -- -- -- ◃-=ˢ-to-=ᵗ : ∀ {𝒮 𝒮′} → 𝒮 =ˢ 𝒮′ → (𝒯 : 𝓣) → 𝒮 ◃ 𝒯 =ᵗ 𝒮′ ◃ 𝒯 -- -- -- ◃-=ᵗ-to-=ˢ : ∀ {𝒮 𝒮′} → ((𝒯 : 𝓣) → 𝒮 ◃ 𝒯 =ᵗ 𝒮′ ◃ 𝒯) → 𝒮 =ˢ 𝒮′ -- -- -- field -- -- -- --_◇_ : 𝓢 → 𝓢 → 𝓢 -- -- -- ◇-compositional : (𝒯 : 𝓣) (𝒮₁ 𝒮₂ : 𝓢) → (𝒮₂ ◇ 𝒮₁) ◃ 𝒯 =ᵗ 𝒮₂ ◃ 𝒮₁ ◃ 𝒯 -- -- -- ◇-associative : (𝒮₁ 𝒮₂ 𝒮₃ : 𝓢) → 𝒮₃ ◇ (𝒮₂ ◇ 𝒮₁) =ˢ (𝒮₃ ◇ 𝒮₂) ◇ 𝒮₁ -- -- -- ◇-associative 𝒮₁ 𝒮₂ 𝒮₃ = {!!} -- -- -- Property : ∀ {ℓ} → Set (ℓˢ ⊔ lsuc ℓ) -- -- -- Property {ℓ} = 𝓢 → Set ℓ -- -- -- Nothing : ∀ {ℓ} → (P : Property {ℓ}) → Set (ℓ ⊔ ℓˢ) -- -- -- Nothing P = ∀ 𝒮 → P 𝒮 → ⊥ -- -- -- Unifies : (𝒯₁ 𝒯₂ : 𝓣) → Property -- -- -- Unifies 𝒯₁ 𝒯₂ 𝒮 = 𝒮 ◃ 𝒯₁ ≡ 𝒮 ◃ 𝒯₂ -- -- -- _≤_ : (σ₋ : 𝓢) (σ₊ : 𝓢) → Set (ℓˢ ⊔ ℓ⁼ˢ) -- -- -- _≤_ σ₋ σ₊ = ∃ λ σ → σ ◇ σ₊ =ˢ σ₋ -- -- -- Max : ∀ {ℓ} (P : Property {ℓ}) → Property -- -- -- Max P σ₊ = P σ₊ × ∀ σ₋ → P σ₋ → σ₋ ≤ σ₊ -- -- -- field -- -- -- mgu : (𝒯₁ 𝒯₂ : 𝓣) → Nothing (Unifies 𝒯₁ 𝒯₂) ⊎ ∃ λ (σ : 𝓢) → Max (Unifies 𝒯₁ 𝒯₂) σ -- -- -- -- module Indexed where -- -- -- -- record MGU ℓⁱ ℓᵛ ℓᵗ ℓˢ : Set (lsuc (ℓⁱ ⊔ ℓᵛ ⊔ ℓᵗ ⊔ ℓˢ)) where -- -- -- -- field -- -- -- -- 𝓲 : Set ℓⁱ -- -- -- -- 𝓥 : 𝓲 → Set ℓᵛ -- -- -- -- 𝓣 : 𝓲 → Set ℓᵗ -- -- -- -- _↦_ : (s t : 𝓲) → Set (ℓᵛ ⊔ ℓᵗ) -- -- -- -- _↦_ s t = 𝓥 s → 𝓣 t -- -- -- -- infix 14 _≐_ -- -- -- -- _≐_ : {s t : 𝓲} → s ↦ t → s ↦ t → Set (ℓᵛ ⊔ ℓᵗ) -- -- -- -- _≐_ σ σ′ = ∀ x → σ x ≡ σ′ x -- -- -- -- field -- -- -- -- _◃_ : ∀ {s t} → s ↦ t → 𝓣 s → 𝓣 t -- -- -- -- ≐-◃-identity : {!!} -- -- -- -- _◇_ : ∀ {r s t : 𝓲} → (σ₂ : s ↦ t) (σ₁ : r ↦ s) → r ↦ t -- -- -- -- _◇_ σ₂ σ₁ = (σ₂ ◃_) ∘ σ₁ -- -- -- -- field -- -- -- -- 𝓢 : 𝓲 → 𝓲 → Set ℓˢ -- -- -- -- sub : ∀ {s t} → 𝓢 s t → s ↦ t -- -- -- -- -- Property : ∀ {ℓ} → 𝓲 → Set (lsuc ℓ ⊔ ℓⁱ ⊔ ℓⱽ ⊔ ℓᵀ) -- -- -- -- -- Property {ℓ} s = ∀ {t} → s ↦ t → Set ℓ -- -- -- -- -- Nothing : ∀ {ℓ m} → (P : Property {ℓ} m) → Set (ℓ ⊔ ℓⁱ ⊔ ℓⱽ ⊔ ℓᵀ) -- -- -- -- -- Nothing P = ∀ {n} f → P {n} f → ⊥ -- -- -- -- -- Unifies : ∀ {i} (t₁ t₂ : 𝓣 i) → Property i -- -- -- -- -- Unifies t₁ t₂ f = f ◃ t₁ ≡ f ◃ t₂ -- -- -- -- -- _≤_ : ∀ {m n n'} (f : m ↦ n) (g : m ↦ n') → Set (ℓⱽ ⊔ ℓᵀ) -- -- -- -- -- _≤_ f g = ∃ λ f' → f ≐ (f' ◇ g) -- -- -- -- -- Max : ∀ {ℓ m} (P : Property {ℓ} m) → Property m -- -- -- -- -- Max P = (λ f → P f × (∀ {n} f' → P {n} f' → f' ≤ f)) -- -- -- -- -- field -- -- -- -- -- mgu : ∀ {m} (t₁ t₂ : 𝓣 m) → -- -- -- -- -- Nothing (Unifies t₁ t₂) ⊎ (∃ λ n → ∃ λ (σ : 𝓢 m n) → (Max (Unifies t₁ t₂)) (sub σ)) -- -- -- -- -- -- -- -- open import Prelude.Function -- -- -- -- -- -- -- -- open import Relation.Binary.HeterogeneousEquality.Core as H using (_≅_ ; ≅-to-≡) -- -- -- -- -- -- -- -- open import Prelude.Equality -- -- -- -- -- -- -- -- record MGU-addIndex-to-noIndex* {ℓⁱ ℓⱽ ℓᵀ ℓˢ} -- -- -- -- -- -- -- -- (m : MGU-addIndex ℓⁱ ℓⱽ ℓᵀ ℓˢ) : Set (lsuc (ℓⁱ ⊔ ℓⱽ ⊔ ℓᵀ)) where -- -- -- -- -- -- -- -- open MGU-addIndex m -- -- -- -- -- -- -- -- field -- -- -- -- -- -- -- -- 𝓥ᵢ : Set (ℓⁱ ⊔ ℓⱽ) -- -- -- -- -- -- -- -- 𝓣ᵢ : Set (ℓⁱ ⊔ ℓᵀ) -- -- -- -- -- -- -- -- 𝓼ᵢ : Set (ℓⁱ ⊔ ℓⱽ ⊔ ℓᵀ) -- -- -- -- -- -- -- -- to∃𝓥 : 𝓥ᵢ → ∃ 𝓥 -- -- -- -- -- -- -- -- to∃𝓣 : 𝓣ᵢ → ∃ 𝓣 -- -- -- -- -- -- -- -- to𝓥ᵢ : ∃ 𝓥 → 𝓥ᵢ -- -- -- -- -- -- -- -- to𝓣ᵢ : ∃ 𝓣 → 𝓣ᵢ -- -- -- -- -- -- -- -- iso∃𝓥 : (∃𝒱 : ∃ 𝓥) → to∃𝓥 (to𝓥ᵢ ∃𝒱) ≡ ∃𝒱 -- -- -- -- -- -- -- -- iso𝓥ᵢ : (𝒱ᵢ : 𝓥ᵢ) → to𝓥ᵢ (to∃𝓥 𝒱ᵢ) ≡ 𝒱ᵢ -- -- -- -- -- -- -- -- iso∃𝓣 : (∃𝒯 : ∃ 𝓣) → to∃𝓣 (to𝓣ᵢ ∃𝒯) ≡ ∃𝒯 -- -- -- -- -- -- -- -- iso𝓣ᵢ : (𝒯ᵢ : 𝓣ᵢ) → to𝓣ᵢ (to∃𝓣 𝒯ᵢ) ≡ 𝒯ᵢ -- -- -- -- -- -- -- -- inj𝓥 : ∀ {a b} → 𝓥 a ≡ 𝓥 b → a ≡ b -- -- -- -- -- -- -- -- inj𝓣 : ∀ {a b} → 𝓣 a ≡ 𝓣 b → a ≡ b -- -- -- -- -- -- -- -- mag : (𝓥ᵢ → 𝓣ᵢ) → ∀ {s} t → 𝓥 s → 𝓣 t -- -- -- -- -- -- -- -- to∃𝓣𝓣 : 𝓣ᵢ → 𝓣ᵢ → ∃ λ i → 𝓣 i × 𝓣 i -- -- -- -- -- -- -- -- max𝓣ᵢ : ∀ {m} n → (tm : 𝓣 m) → (((𝓣 n → 𝓣 m) × (𝓥 n → 𝓥 m)) ⊎ 𝓣 n) -- -- -- -- -- -- -- -- max𝓲 : ∀ m n → ((𝓣 n → 𝓣 m) × (𝓥 n → 𝓥 m)) ⊎ ((𝓣 m → 𝓣 n) × (𝓥 m → 𝓥 n)) -- -- -- -- -- -- -- -- apply𝓼 : 𝓣ᵢ → (𝓥ᵢ → 𝓣ᵢ) → ∃ λ s → ∃ λ t → (𝓥 s → 𝓣 t) × 𝓣 s -- -- -- -- -- -- -- -- to𝓼 : 𝓼ᵢ → ∃ λ s → ∃ λ t → 𝓥 s → 𝓣 t -- -- -- -- -- -- -- -- to𝓼' : 𝓼ᵢ → 𝓣ᵢ → ∃ λ s → ∃ λ t → (𝓥 s → 𝓣 t) × 𝓣 s -- -- -- -- -- -- -- -- to◇ : 𝓼ᵢ → 𝓼ᵢ → ∃ λ r → ∃ λ s → ∃ λ t → (𝓥 s → 𝓣 t) × (𝓥 r → 𝓣 s) -- -- -- -- -- -- -- -- to= : 𝓼ᵢ → 𝓼ᵢ → ∃ λ s → ∃ λ t → (𝓥 s → 𝓣 t) × (𝓥 s → 𝓣 t) -- -- -- -- -- -- -- -- to𝓼ᵢ : ∀ {r t} → (𝓥 r → 𝓣 t) → 𝓼ᵢ -- -- -- -- -- -- -- -- {{ eqi }} : Eq 𝓲 -- -- -- -- -- -- -- -- to-noIndex : MGU-noIndex* (ℓⁱ ⊔ ℓⱽ) (ℓⁱ ⊔ ℓᵀ) (ℓⁱ ⊔ ℓˢ) -- -- -- -- -- -- -- -- to-noIndex = go where -- -- -- -- -- -- -- -- go : MGU-noIndex* _ _ _ -- -- -- -- -- -- -- -- MGU-noIndex*.𝓥 go = 𝓥ᵢ -- -- -- -- -- -- -- -- MGU-noIndex*.𝓣 go = 𝓣ᵢ -- -- -- -- -- -- -- -- MGU-noIndex*.𝓼 go = 𝓼ᵢ -- ∃ λ s → ∃ λ t → s ↦ t -- -- -- -- -- -- -- -- MGU-noIndex*._≐_ go s1 s2 with to= s1 s2 -- -- -- -- -- -- -- -- ... | (s , t , vstt1 , vstt2) = {!_≐_ vstt1 vstt2!} -- -- -- -- -- -- -- -- MGU-noIndex*._◃_ go f x with to𝓼' f x -- -- -- -- -- -- -- -- MGU-noIndex*._◃_ go _ _ | (s , t , f , term) = to𝓣ᵢ $ _ , f ◃ term -- -- -- -- -- -- -- -- MGU-noIndex*._◇_ go s1 s2 with to◇ s1 s2 -- -- -- -- -- -- -- -- ... | (r , s , t , vstt , vrts) = to𝓼ᵢ $ vstt ◇ vrts -- -- -- -- -- -- -- -- MGU-noIndex*.mgu go = {!!} -- -- -- -- -- -- -- -- -- MGU-noIndex*.𝓥 go = {!𝓥ᵢ!} -- -- -- -- -- -- -- -- -- MGU-noIndex*.𝓣 go = 𝓣ᵢ -- -- -- -- -- -- -- -- -- MGU-noIndex*.𝓼 go = {!!} -- ∃ λ s → ∃ λ t → s ↦ t -- ∃ λ s → ∃ λ t → 𝓥 s → 𝓣 t -- -- -- -- -- -- -- -- -- MGU-noIndex*._≐_ go (s₁ , t₁ , f₁) (s₂ , t₂ , f₂) = {!!} -- ∃ λ (s-refl : s₁ ≡ s₂) → ∃ λ (t-refl : t₁ ≡ t₂) → (∀ x → f₁ x ≡ (Prelude.transport (λ i → 𝓥 s₂ → 𝓣 i) (sym t-refl) f₂) (Prelude.transport _ s-refl x)) -- -- -- -- -- -- -- -- -- {- -- -- -- -- -- -- -- -- -- MGU-noIndex*._◃_ go (s , t , f) 𝒯 = {!_◃_ f!} -- -- -- -- -- -- -- -- -- ∀ s t → 𝓣ᵢ → (𝓣 s → 𝓣 t) → 𝓣 s -- -- -- -- -- -- -- -- -- ∀ s t → 𝓣ᵢ → (𝓣 s → 𝓣 t) → 𝓣ᵢ -- -- -- -- -- -- -- -- -- 𝓣 s -- -- -- -- -- -- -- -- -- -} -- -- -- -- -- -- -- -- -- MGU-noIndex*._◃_ go (s , t , f) 𝒯 with to∃𝓣 𝒯 -- -- -- -- -- -- -- -- -- MGU-noIndex*._◃_ go (s , t , f) 𝒯 | (s2 , ttt) with s == s2 -- -- -- -- -- -- -- -- -- (go MGU-noIndex*.◃ (.s , t , f)) 𝒯 | s , 𝒯s | (Prelude.yes refl) = to𝓣ᵢ (_ , _◃_ {s} {t} f 𝒯s) -- -- -- -- -- -- -- -- -- (go MGU-noIndex*.◃ (s , t , f)) 𝒯 | s2 , ttt | (Prelude.no x) = 𝒯 -- -- -- -- -- -- -- -- -- MGU-noIndex*._◇_ go (s , t , f) (p , r , g) with max𝓲 r s -- -- -- -- -- -- -- -- -- MGU-noIndex*._◇_ go (s , t , f) (p , r , g) | _⊎_.left (T , V) = {!!} -- -- -- -- -- -- -- -- -- MGU-noIndex*._◇_ go (s , t , f) (p , r , g) | _⊎_.right (T , V) = _ , _ , f ◇ (T ∘ g) -- f ◃_ ∘ (T ∘ g) -- -- -- -- -- -- -- -- -- {- -- -- -- -- -- -- -- -- -- = _ , _ , f ◃_ ∘ (λ x → {!max𝓣ᵢ s₁ (g x)!}) -- _ , _ , f ◃_ ∘ (λ x → {!g x!}) -- -- -- -- -- -- -- -- -- -} -- -- -- -- -- -- -- -- -- {- -- -- -- -- -- -- -- -- -- MGU-noIndex*._◇_ go (s₁ , t₁ , f) (s₂ , t₂ , g) with t₂ == s₁ -- -- -- -- -- -- -- -- -- MGU-noIndex*._◇_ go (s₁ , t₁ , f) (s₂ , t₂ , g) | (Prelude.yes refl) = s₂ , t₁ , f ◃_ ∘ g -- -- -- -- -- -- -- -- -- MGU-noIndex*._◇_ go (s₁ , t₁ , f) (s₂ , t₂ , g) | (Prelude.no x) = s₂ , t₂ , g -- -- -- -- -- -- -- -- -- -} -- -- -- -- -- -- -- -- -- -- = s₂ , t₁ , {!(f ◃_)!} -- -- -- -- -- -- -- -- -- MGU-noIndex*.mgu go t₁ t₂ with to∃𝓣𝓣 t₁ t₂ -- -- -- -- -- -- -- -- -- … | i , tt₁ , tt₂ with mgu tt₁ tt₂ -- -- -- -- -- -- -- -- -- MGU-noIndex*.mgu go t₁ t₂ | i , tt₁ , tt₂ | (_⊎_.left x) = {!!} -- -- -- -- -- -- -- -- -- MGU-noIndex*.mgu go t₁ t₂ | i , tt₁ , tt₂ | (_⊎_.right (i₂ , σ , subσ-refl , ff)) with to∃𝓣 t₁ | to∃𝓣 t₂ -- -- -- -- -- -- -- -- -- MGU-noIndex*.mgu go t₁ t₂ | i , tt₁ , tt₂ | (_⊎_.right (i₂ , σ , subσ-refl , ff)) | (fst₁ , snd₁) | (fst₂ , snd₂) = _⊎_.right ((_ , _ , sub σ) , {!!} , {!!}) -- _⊎_.right ((i , i₂ , sub σ) , {!subσ-refl!} , {!!}) -- -- -- -- -- -- -- -- -- record MGU-noIndex-to-addIndex {ℓⁱ ℓⱽ ℓᵀ ℓˢ} -- -- -- -- -- -- -- -- -- (m : MGU-noIndex ℓⱽ ℓᵀ ℓˢ) : Set (lsuc (ℓⁱ ⊔ ℓⱽ ⊔ ℓᵀ)) where -- -- -- -- -- -- -- -- -- open MGU-noIndex m -- -- -- -- -- -- -- -- -- field -- -- -- -- -- -- -- -- -- 𝓲 : Set ℓⁱ -- -- -- -- -- -- -- -- -- 𝓥ᵢ : 𝓲 → Set ℓⱽ -- -- -- -- -- -- -- -- -- 𝓣ᵢ : 𝓲 → Set ℓᵀ -- -- -- -- -- -- -- -- -- to𝓥 : ∃ 𝓥ᵢ → 𝓥 -- -- -- -- -- -- -- -- -- to𝓣 : ∃ 𝓣ᵢ → 𝓣 -- -- -- -- -- -- -- -- -- to∃𝓥ᵢ : 𝓥 → ∃ 𝓥ᵢ -- -- -- -- -- -- -- -- -- to∃𝓣ᵢ : 𝓣 → ∃ 𝓣ᵢ -- -- -- -- -- -- -- -- -- inj𝓥 : ∀ {a b} → 𝓥ᵢ a ≡ 𝓥ᵢ b → a ≡ b -- -- -- -- -- -- -- -- -- inj𝓣 : ∀ {a b} → 𝓣ᵢ a ≡ 𝓣ᵢ b → a ≡ b -- -- -- -- -- -- -- -- -- mag : ∀ {s t} → (𝓥ᵢ s → 𝓣ᵢ t) → 𝓥 → 𝓣 -- -- -- -- -- -- -- -- -- {- -- -- -- -- -- -- -- -- -- iso∃𝓥 : (∃𝒱 : ∃ 𝓥) → to∃𝓥 (to𝓥ᵢ ∃𝒱) ≡ ∃𝒱 -- -- -- -- -- -- -- -- -- iso𝓥ᵢ : (𝒱ᵢ : 𝓥ᵢ) → to𝓥ᵢ (to∃𝓥 𝒱ᵢ) ≡ 𝒱ᵢ -- -- -- -- -- -- -- -- -- iso∃𝓣 : (∃𝒯 : ∃ 𝓣) → to∃𝓣 (to𝓣ᵢ ∃𝒯) ≡ ∃𝒯 -- -- -- -- -- -- -- -- -- iso𝓣ᵢ : (𝒯ᵢ : 𝓣ᵢ) → to𝓣ᵢ (to∃𝓣 𝒯ᵢ) ≡ 𝒯ᵢ -- -- -- -- -- -- -- -- -- mag : (𝓥ᵢ → 𝓣ᵢ) → ∀ {s} t → 𝓥 s → 𝓣 t -- -- -- -- -- -- -- -- -- -} -- -- -- -- -- -- -- -- -- to-addIndex : MGU-addIndex ℓⁱ ℓⱽ ℓᵀ ℓˢ -- -- -- -- -- -- -- -- -- to-addIndex = go where -- -- -- -- -- -- -- -- -- go : MGU-addIndex ℓⁱ ℓⱽ ℓᵀ ℓˢ -- -- -- -- -- -- -- -- -- MGU-addIndex.𝓲 go = 𝓲 -- -- -- -- -- -- -- -- -- MGU-addIndex.𝓥 go = 𝓥ᵢ -- -- -- -- -- -- -- -- -- MGU-addIndex.𝓣 go = 𝓣ᵢ -- -- -- -- -- -- -- -- -- MGU-addIndex._◃_ go {s} {t} f x = Prelude.transport 𝓣ᵢ {!!} $ snd ∘ to∃𝓣ᵢ $ _◃_ (λ v → to𝓣 (t , f (Prelude.transport 𝓥ᵢ (inj𝓥 {_} {_} {!!}) (snd $ to∃𝓥ᵢ v)))) (to𝓣 (s , x)) -- let Ti , Tit = to∃𝓣ᵢ $ _◃_ (λ v → to𝓣 (t , f {!!})) (to𝓣 (s , x)) in {!!} -- -- -- -- -- -- -- -- -- MGU-addIndex.𝓢 go = {!!} -- -- -- -- -- -- -- -- -- MGU-addIndex.sub go = {!!} -- -- -- -- -- -- -- -- -- MGU-addIndex.mgu go = {!!} -- -- -- -- -- -- -- -- -- record MGU-addIndex-to-noIndex {ℓⁱ ℓⱽ ℓᵀ ℓˢ} -- -- -- -- -- -- -- -- -- (m : MGU-addIndex ℓⁱ ℓⱽ ℓᵀ ℓˢ) : Set (lsuc (ℓⁱ ⊔ ℓⱽ ⊔ ℓᵀ)) where -- -- -- -- -- -- -- -- -- open MGU-addIndex m -- -- -- -- -- -- -- -- -- field -- -- -- -- -- -- -- -- -- 𝓥ᵢ : Set (ℓⁱ ⊔ ℓⱽ) -- -- -- -- -- -- -- -- -- 𝓣ᵢ : Set (ℓⁱ ⊔ ℓᵀ) -- -- -- -- -- -- -- -- -- to∃𝓥 : 𝓥ᵢ → ∃ 𝓥 -- -- -- -- -- -- -- -- -- to∃𝓣 : 𝓣ᵢ → ∃ 𝓣 -- -- -- -- -- -- -- -- -- to𝓥ᵢ : ∃ 𝓥 → 𝓥ᵢ -- -- -- -- -- -- -- -- -- to𝓣ᵢ : ∃ 𝓣 → 𝓣ᵢ -- -- -- -- -- -- -- -- -- iso∃𝓥 : (∃𝒱 : ∃ 𝓥) → to∃𝓥 (to𝓥ᵢ ∃𝒱) ≡ ∃𝒱 -- -- -- -- -- -- -- -- -- iso𝓥ᵢ : (𝒱ᵢ : 𝓥ᵢ) → to𝓥ᵢ (to∃𝓥 𝒱ᵢ) ≡ 𝒱ᵢ -- -- -- -- -- -- -- -- -- iso∃𝓣 : (∃𝒯 : ∃ 𝓣) → to∃𝓣 (to𝓣ᵢ ∃𝒯) ≡ ∃𝒯 -- -- -- -- -- -- -- -- -- iso𝓣ᵢ : (𝒯ᵢ : 𝓣ᵢ) → to𝓣ᵢ (to∃𝓣 𝒯ᵢ) ≡ 𝒯ᵢ -- -- -- -- -- -- -- -- -- inj𝓥 : ∀ {a b} → 𝓥 a ≡ 𝓥 b → a ≡ b -- -- -- -- -- -- -- -- -- inj𝓣 : ∀ {a b} → 𝓣 a ≡ 𝓣 b → a ≡ b -- -- -- -- -- -- -- -- -- mag : (𝓥ᵢ → 𝓣ᵢ) → ∀ {s} t → 𝓥 s → 𝓣 t -- -- -- -- -- -- -- -- -- to-noIndex : MGU-noIndex (ℓⁱ ⊔ ℓⱽ) (ℓⁱ ⊔ ℓᵀ) ℓˢ -- -- -- -- -- -- -- -- -- to-noIndex = go where -- -- -- -- -- -- -- -- -- go : MGU-noIndex _ _ _ -- -- -- -- -- -- -- -- -- MGU-noIndex.𝓥 go = 𝓥ᵢ -- -- -- -- -- -- -- -- -- MGU-noIndex.𝓣 go = 𝓣ᵢ -- -- -- -- -- -- -- -- -- MGU-noIndex._◃_ go 𝓈 𝒯ᵢ with to∃𝓣 𝒯ᵢ | Prelude.graphAt to∃𝓣 𝒯ᵢ | (Prelude.curry $ snd ∘ to∃𝓣 ∘ 𝓈 ∘ to𝓥ᵢ) (fst $ to∃𝓣 𝒯ᵢ) | Prelude.graphAt (Prelude.curry $ snd ∘ to∃𝓣 ∘ 𝓈 ∘ to𝓥ᵢ) (fst $ to∃𝓣 𝒯ᵢ) -- -- -- -- -- -- -- -- -- … | s , 𝒯s | Prelude.ingraph eq | 𝓈' | Prelude.ingraph refl with cong fst eq -- -- -- -- -- -- -- -- -- (go MGU-noIndex.◃ 𝓈) 𝒯ᵢ | .(fst (to∃𝓣 𝒯ᵢ)) , 𝒯s | (Prelude.ingraph eq) | _ | (Prelude.ingraph refl) | refl with cong fst eq -- -- -- -- -- -- -- -- -- (go MGU-noIndex.◃ 𝓈) 𝒯ᵢ | .(fst (to∃𝓣 _ 𝒯ᵢ)) , 𝒯s | (Prelude.ingraph eq) | 𝓈' | (Prelude.ingraph refl) | refl | refl rewrite Prelude.sym eq with _◃_ {_} {{!!}} (λ v → 𝓈' (Prelude.transport 𝓥 (cong fst (sym eq)) {!!})) (snd ∘ to∃𝓣 $ 𝒯ᵢ) -- -- -- -- -- -- -- -- -- … | dfsf = to𝓣ᵢ (_ , dfsf) -- -- -- -- -- -- -- -- -- {- -- -- -- -- -- -- -- -- -- … | s , 𝒯s | Prelude.ingraph eq | 𝓈' | Prelude.ingraph refl with _◃_ {fst (to∃𝓣 𝒯ᵢ)} {s} (λ v → Prelude.transport 𝓣 {!!} (𝓈' (Prelude.transport 𝓥 (cong fst eq) v))) (snd ∘ to∃𝓣 $ 𝒯ᵢ) -- -- -- -- -- -- -- -- -- … | dd = to𝓣ᵢ (_ , dd) -- -- -- -- -- -- -- -- -- -} -- -- -- -- -- -- -- -- -- MGU-noIndex.𝓢 go = {!!} -- -- -- -- -- -- -- -- -- MGU-noIndex.sub go = {!!} -- -- -- -- -- -- -- -- -- MGU-noIndex.mgu go = {!!} -- -- -- -- -- -- -- -- -- -- MGU-addIndex-to-noIndex : ∀ {ℓⁱ ℓⱽ ℓᵀ ℓˢ} → -- -- -- -- -- -- -- -- -- -- (m : MGU-addIndex ℓⁱ ℓⱽ ℓᵀ ℓˢ) -- -- -- -- -- -- -- -- -- -- (open MGU-addIndex m) -- -- -- -- -- -- -- -- -- -- (𝓥ᵢ : Set (ℓⁱ ⊔ ℓⱽ)) -- -- -- -- -- -- -- -- -- -- (𝓣ᵢ : Set (ℓⁱ ⊔ ℓᵀ)) -- -- -- -- -- -- -- -- -- -- (to∃𝓥 : 𝓥ᵢ → ∃ 𝓥) -- -- -- -- -- -- -- -- -- -- (to∃𝓣 : 𝓣ᵢ → ∃ 𝓣) -- -- -- -- -- -- -- -- -- -- (to𝓥ᵢ : ∃ 𝓥 → 𝓥ᵢ) -- -- -- -- -- -- -- -- -- -- (to𝓣ᵢ : ∃ 𝓣 → 𝓣ᵢ) -- -- -- -- -- -- -- -- -- -- (iso∃𝓥 : (∃𝒱 : ∃ 𝓥) → to∃𝓥 (to𝓥ᵢ ∃𝒱) ≡ ∃𝒱) -- -- -- -- -- -- -- -- -- -- (iso𝓥ᵢ : (𝒱ᵢ : 𝓥ᵢ) → to𝓥ᵢ (to∃𝓥 𝒱ᵢ) ≡ 𝒱ᵢ) -- -- -- -- -- -- -- -- -- -- (iso∃𝓣 : (∃𝒯 : ∃ 𝓣) → to∃𝓣 (to𝓣ᵢ ∃𝒯) ≡ ∃𝒯) -- -- -- -- -- -- -- -- -- -- (iso𝓣ᵢ : (𝒯ᵢ : 𝓣ᵢ) → to𝓣ᵢ (to∃𝓣 𝒯ᵢ) ≡ 𝒯ᵢ) -- -- -- -- -- -- -- -- -- -- → MGU-noIndex (ℓⁱ ⊔ ℓⱽ) (ℓⁱ ⊔ ℓᵀ) ℓˢ -- -- -- -- -- -- -- -- -- -- MGU-addIndex-to-noIndex {ℓⁱ} {ℓⱽ} {ℓᵀ} {ℓˢ} m = go where -- -- -- -- -- -- -- -- -- -- open MGU-addIndex m -- -- -- -- -- -- -- -- -- -- go : MGU-noIndex _ _ _ -- -- -- -- -- -- -- -- -- -- go = {!!} -- -- -- -- -- -- -- -- -- -- -- open import Relation.Binary.HeterogeneousEquality.Core as H using (_≅_ ; ≅-to-≡) -- -- -- -- -- -- -- -- -- -- {- -- -- -- -- -- -- -- -- -- -- 𝓼 = ∃ 𝓥 → ∃ 𝓣 -- -- -- -- -- -- -- -- -- -- _∶_↦_ : 𝓼 → 𝓲 → 𝓲 → Set (ℓⁱ ⊔ ℓⱽ ⊔ ℓᵀ) -- -- -- -- -- -- -- -- -- -- _∶_↦_ 𝓈 s t = ((𝒱ₛ : 𝓥 s) → ∃ λ (𝒯ₜ : 𝓣 t) → 𝓈 (s , 𝒱ₛ) ≡ (t , 𝒯ₜ)) -- -- -- -- -- -- -- -- -- -- -} -- -- -- -- -- -- -- -- -- -- -- go : MGU-noIndex _ _ _ -- -- -- -- -- -- -- -- -- -- -- MGU-noIndex.𝓥 go = ∃ 𝓥 -- -- -- -- -- -- -- -- -- -- -- MGU-noIndex.𝓣 go = ∃ 𝓣 -- -- -- -- -- -- -- -- -- -- -- MGU-noIndex._≐_ go f g = (𝒾 : 𝓲) (𝒱 : 𝓥 𝒾) → f (𝒾 , 𝒱) ≡ g (𝒾 , 𝒱) -- -- -- -- -- -- -- -- -- -- -- MGU-noIndex._◃_ go 𝓈 (𝒾 , 𝒯) = 𝒾 , _◃_ {𝒾} {𝒾} (λ v → (Prelude.transport _ (≅-to-≡ $ snd (mag (fst (𝓈 (𝒾 , v))) (( (𝒾 ))) (snd (𝓈 (𝒾 , v))))) $ -- -- -- -- -- -- -- -- -- -- -- snd (𝓈 (𝒾 , v))) -- -- -- -- -- -- -- -- -- -- -- {!!}) {!!} -- -- -- -- -- -- -- -- -- -- -- -- (snd ∘ (λ (𝒱 : 𝓥 𝒾) → 𝓈 (𝒾 , 𝒱))) -- -- -- -- -- -- -- -- -- -- -- -- fst (𝓈 (s , {!!})) , _◃_ {s} {fst (𝓈 (s , _))} (λ v → {!𝓈 (s , v)!}) {!𝒯ₛ!} -- -- -- -- -- -- -- -- -- -- -- -- Have: {s t : 𝓲} → (𝓥 s → 𝓣 t) → 𝓣 s → 𝓣 t -- -- -- -- -- -- -- -- -- -- -- -- λ (𝒱 : 𝓥 𝒾) → 𝓈 (𝒾 , 𝒱) -- -- -- -- -- -- -- -- -- -- -- MGU-noIndex.𝓢 go = {!!} -- -- -- -- -- -- -- -- -- -- -- MGU-noIndex.sub go = {!sub {s} {t}!} -- -- -- -- -- -- -- -- -- -- -- MGU-noIndex.mgu go = {!!} -- -- -- -- -- -- -- -- -- -- -- {- -- -- -- -- -- -- -- -- -- -- -- MGU-noIndex.𝓥 (MGU-addIndex-to-noIndex m) = let open MGU-addIndex m in ∃ 𝓥 -- -- -- -- -- -- -- -- -- -- -- MGU-noIndex.𝓣 (MGU-addIndex-to-noIndex m) = let open MGU-addIndex m in ∃ 𝓣 -- -- -- -- -- -- -- -- -- -- -- MGU-noIndex._≐_ (MGU-addIndex-to-noIndex m) f g = {!let open MGU-addIndex m in ∀ (s t : 𝓲) → (𝒯ₜ : 𝓣 fst (f (s , 𝓥 s)) ≡ t → ≡ g → Set !} -- ∀ {s t} → (f g : s ↦ t) → f ≐ g -- -- -- -- -- -- -- -- -- -- -- MGU-noIndex._◃_ (MGU-addIndex-to-noIndex m) = {!let open MGU-addIndex m in _◃_!} -- -- -- -- -- -- -- -- -- -- -- MGU-noIndex.𝓢 (MGU-addIndex-to-noIndex m) = {!!} -- -- -- -- -- -- -- -- -- -- -- MGU-noIndex.sub (MGU-addIndex-to-noIndex m) = {!!} -- -- -- -- -- -- -- -- -- -- -- MGU-noIndex.mgu (MGU-addIndex-to-noIndex m) = {!!} -- -- -- -- -- -- -- -- -- -- -- -} -- -- -- -- -- -- -- -- -- -- -- {- -- -- -- -- -- -- -- -- -- -- -- MGU-noIndex.𝓥 (MGU-addIndex-to-noIndex record { 𝓲 = 𝓲 ; 𝓥 = 𝓥 ; 𝓣 = 𝓣 ; _◃_ = _◃_ ; ◃ext = ◃ext ; 𝓢 = 𝓢 ; sub = sub ; mgu = mgu }) = ∃ 𝓥 -- -- -- -- -- -- -- -- -- -- -- MGU-noIndex.𝓣 (MGU-addIndex-to-noIndex record { 𝓲 = 𝓲 ; 𝓥 = 𝓥 ; 𝓣 = 𝓣 ; _◃_ = _◃_ ; ◃ext = ◃ext ; 𝓢 = 𝓢 ; sub = sub ; mgu = mgu }) = ∃ 𝓣 -- -- -- -- -- -- -- -- -- -- -- MGU-noIndex._≐_ (MGU-addIndex-to-noIndex m@(record { 𝓲 = 𝓲 ; 𝓥 = 𝓥 ; 𝓣 = 𝓣 ; _◃_ = _◃_ ; ◃ext = ◃ext ; 𝓢 = 𝓢 ; sub = sub ; mgu = mgu })) f g = {!!} -- (i : 𝓲) → MGU-addIndex._≐_ m (λ v → {!snd $ f (i , v)!}) (λ v → {!!}) -- -- -- -- -- -- -- -- -- -- -- MGU-noIndex._◃_ (MGU-addIndex-to-noIndex record { 𝓲 = 𝓲 ; 𝓥 = 𝓥 ; 𝓣 = 𝓣 ; _◃_ = _◃_ ; ◃ext = ◃ext ; 𝓢 = 𝓢 ; sub = sub ; mgu = mgu }) = {!!} -- -- -- -- -- -- -- -- -- -- -- MGU-noIndex.𝓢 (MGU-addIndex-to-noIndex record { 𝓲 = 𝓲 ; 𝓥 = 𝓥 ; 𝓣 = 𝓣 ; _◃_ = _◃_ ; ◃ext = ◃ext ; 𝓢 = 𝓢 ; sub = sub ; mgu = mgu }) = {!!} -- -- -- -- -- -- -- -- -- -- -- MGU-noIndex.sub (MGU-addIndex-to-noIndex record { 𝓲 = 𝓲 ; 𝓥 = 𝓥 ; 𝓣 = 𝓣 ; _◃_ = _◃_ ; ◃ext = ◃ext ; 𝓢 = 𝓢 ; sub = sub ; mgu = mgu }) = {!!} -- -- -- -- -- -- -- -- -- -- -- MGU-noIndex.mgu (MGU-addIndex-to-noIndex record { 𝓲 = 𝓲 ; 𝓥 = 𝓥 ; 𝓣 = 𝓣 ; _◃_ = _◃_ ; ◃ext = ◃ext ; 𝓢 = 𝓢 ; sub = sub ; mgu = mgu }) = {!!} -- -- -- -- -- -- -- -- -- -- -- -} -- -- -- -- -- -- -- -- -- -- -- record MGU⋆ ℓⁱ ℓⱽ ℓᵀ ℓˢ : Set (lsuc (ℓⁱ ⊔ ℓⱽ ⊔ ℓᵀ ⊔ ℓˢ)) where -- -- -- -- -- -- -- -- -- -- -- field -- -- -- -- -- -- -- -- -- -- -- 𝓲 -- -- -- -- -- -- -- -- -- -- -- : Set ℓⁱ -- -- -- -- -- -- -- -- -- -- -- 𝓥 -- variables -- -- -- -- -- -- -- -- -- -- -- : 𝓲 → Set ℓⱽ -- -- -- -- -- -- -- -- -- -- -- 𝓣 -- terms -- -- -- -- -- -- -- -- -- -- -- : 𝓲 → Set ℓᵀ -- -- -- -- -- -- -- -- -- -- -- -- substitution -- -- -- -- -- -- -- -- -- -- -- _↦_ : (s t : 𝓲) → Set (ℓⱽ ⊔ ℓᵀ) -- -- -- -- -- -- -- -- -- -- -- _↦_ s t = 𝓥 s → 𝓣 t -- -- -- -- -- -- -- -- -- -- -- infix 14 _≐_ -- -- -- -- -- -- -- -- -- -- -- _≐_ : {s t : 𝓲} → s ↦ t → s ↦ t → Set (ℓⱽ ⊔ ℓᵀ) -- -- -- -- -- -- -- -- -- -- -- _≐_ f g = ∀ x → f x ≡ g x -- -- -- -- -- -- -- -- -- -- -- field -- -- -- -- -- -- -- -- -- -- -- -- substitution applied to a term -- -- -- -- -- -- -- -- -- -- -- _◃_ : ∀ {s t} → s ↦ t → 𝓣 s → 𝓣 t -- -- -- -- -- -- -- -- -- -- -- -- applying extentionally-equal subsitutions preserves equality of terms -- -- -- -- -- -- -- -- -- -- -- ◃ext : ∀ {s t} {f g : s ↦ t} → f ≐ g → ∀ t → f ◃ t ≡ g ◃ t -- -- -- -- -- -- -- -- -- -- -- _◇_ : ∀ {r s t : 𝓲} → (f : s ↦ t) (g : r ↦ s) → r ↦ t -- -- -- -- -- -- -- -- -- -- -- _◇_ f g = (f ◃_) ∘ g -- -- -- -- -- -- -- -- -- -- -- field -- -- -- -- -- -- -- -- -- -- -- 𝓢 : 𝓲 → 𝓲 → Set ℓˢ -- -- -- -- -- -- -- -- -- -- -- sub : ∀ {s t} → 𝓢 s t → s ↦ t -- -- -- -- -- -- -- -- -- -- -- Property : ∀ {ℓ} → 𝓲 → Set (lsuc ℓ ⊔ ℓⁱ ⊔ ℓⱽ ⊔ ℓᵀ) -- -- -- -- -- -- -- -- -- -- -- Property {ℓ} s = ∀ {t} → s ↦ t → Set ℓ -- -- -- -- -- -- -- -- -- -- -- Nothing : ∀ {ℓ m} → (P : Property {ℓ} m) → Set (ℓ ⊔ ℓⁱ ⊔ ℓⱽ ⊔ ℓᵀ) -- -- -- -- -- -- -- -- -- -- -- Nothing P = ∀ {n} f → P {n} f → ⊥ -- -- -- -- -- -- -- -- -- -- -- Unifies : ∀ {i} (t₁ t₂ : 𝓣 i) → Property i -- -- -- -- -- -- -- -- -- -- -- Unifies t₁ t₂ f = f ◃ t₁ ≡ f ◃ t₂ -- -- -- -- -- -- -- -- -- -- -- _≤_ : ∀ {m n n'} (f : m ↦ n) (g : m ↦ n') → Set (ℓⱽ ⊔ ℓᵀ) -- -- -- -- -- -- -- -- -- -- -- _≤_ f g = ∃ λ f' → f ≐ (f' ◇ g) -- -- -- -- -- -- -- -- -- -- -- Max : ∀ {ℓ m} (P : Property {ℓ} m) → Property m -- -- -- -- -- -- -- -- -- -- -- Max P = (λ f → P f × (∀ {n} f' → P {n} f' → f' ≤ f)) -- -- -- -- -- -- -- -- -- -- -- field -- -- -- -- -- -- -- -- -- -- -- mgu : ∀ {m} (t₁ t₂ : 𝓣 m) → -- -- -- -- -- -- -- -- -- -- -- Nothing (Unifies t₁ t₂) ⊎ (∃ λ n → ∃ λ (σ : 𝓢 m n) → (Max (Unifies t₁ t₂)) (sub σ)) -- -- -- -- -- -- -- -- -- -- -- record MGU ℓⁱ ℓⱽ ℓᵀ ℓˢ : Set (lsuc (ℓⁱ ⊔ ℓⱽ ⊔ ℓᵀ ⊔ ℓˢ)) where -- -- -- -- -- -- -- -- -- -- -- field -- -- -- -- -- -- -- -- -- -- -- 𝓲 -- -- -- -- -- -- -- -- -- -- -- : Set ℓⁱ -- -- -- -- -- -- -- -- -- -- -- 𝓥 -- variables -- -- -- -- -- -- -- -- -- -- -- : 𝓲 → Set ℓⱽ -- -- -- -- -- -- -- -- -- -- -- 𝓣 -- terms -- -- -- -- -- -- -- -- -- -- -- : 𝓲 → Set ℓᵀ -- -- -- -- -- -- -- -- -- -- -- -- substitution -- -- -- -- -- -- -- -- -- -- -- _↦_ : (s t : 𝓲) → Set (ℓⱽ ⊔ ℓᵀ) -- -- -- -- -- -- -- -- -- -- -- _↦_ s t = 𝓥 s → 𝓣 t -- -- -- -- -- -- -- -- -- -- -- infix 14 _≐_ -- -- -- -- -- -- -- -- -- -- -- _≐_ : {s t : 𝓲} → s ↦ t → s ↦ t → Set (ℓⱽ ⊔ ℓᵀ) -- -- -- -- -- -- -- -- -- -- -- _≐_ f g = ∀ x → f x ≡ g x -- -- -- -- -- -- -- -- -- -- -- field -- -- -- -- -- -- -- -- -- -- -- -- substitution applied to a term -- -- -- -- -- -- -- -- -- -- -- _◃_ : ∀ {s t} → s ↦ t → 𝓣 s → 𝓣 t -- -- -- -- -- -- -- -- -- -- -- -- applying extentionally-equal subsitutions preserves equality of terms -- -- -- -- -- -- -- -- -- -- -- ◃ext : ∀ {s t} {f g : s ↦ t} → f ≐ g → ∀ t → f ◃ t ≡ g ◃ t -- -- -- -- -- -- -- -- -- -- -- _◇_ : ∀ {r s t : 𝓲} → (f : s ↦ t) (g : r ↦ s) → r ↦ t -- -- -- -- -- -- -- -- -- -- -- _◇_ f g = (f ◃_) ∘ g -- -- -- -- -- -- -- -- -- -- -- field -- -- -- -- -- -- -- -- -- -- -- 𝓢 : 𝓲 → 𝓲 → Set ℓˢ -- -- -- -- -- -- -- -- -- -- -- sub : ∀ {s t} → 𝓢 s t → s ↦ t -- -- -- -- -- -- -- -- -- -- -- mgu : ∀ {m} → (s t : 𝓣 m) → Maybe (∃ (𝓢 m)) -- -- -- -- -- -- -- -- -- -- -- Property⋆ : ∀ {ℓ} → 𝓲 → Set (lsuc ℓ ⊔ ℓⁱ ⊔ ℓⱽ ⊔ ℓᵀ) -- -- -- -- -- -- -- -- -- -- -- Property⋆ {ℓ} s = ∀ {t} → s ↦ t → Set ℓ -- -- -- -- -- -- -- -- -- -- -- Property : ∀ {ℓ} → 𝓲 → Set (lsuc ℓ ⊔ ℓⁱ ⊔ ℓⱽ ⊔ ℓᵀ) -- -- -- -- -- -- -- -- -- -- -- Property {ℓ} s = Σ (Property⋆ {ℓ} s) λ P → ∀ {s f g} → f ≐ g → P {s} f → P g -- -- -- -- -- -- -- -- -- -- -- Nothing : ∀ {ℓ m} → (P : Property {ℓ} m) → Set (ℓ ⊔ ℓⁱ ⊔ ℓⱽ ⊔ ℓᵀ) -- -- -- -- -- -- -- -- -- -- -- Nothing P = ∀ {n} f → fst P {n} f → ⊥ -- -- -- -- -- -- -- -- -- -- -- Unifies : ∀ {i} (t₁ t₂ : 𝓣 i) → Property i -- -- -- -- -- -- -- -- -- -- -- Unifies t₁ t₂ = (λ {_} f → f ◃ t₁ ≡ f ◃ t₂) , λ {_} {f} {g} f≐g f◃t₁=f◃t₂ → -- -- -- -- -- -- -- -- -- -- -- g ◃ t₁ -- -- -- -- -- -- -- -- -- -- -- ≡⟨ sym (◃ext f≐g t₁) ⟩ -- -- -- -- -- -- -- -- -- -- -- f ◃ t₁ -- -- -- -- -- -- -- -- -- -- -- ≡⟨ f◃t₁=f◃t₂ ⟩ -- -- -- -- -- -- -- -- -- -- -- f ◃ t₂ -- -- -- -- -- -- -- -- -- -- -- ≡⟨ ◃ext f≐g t₂ ⟩ -- -- -- -- -- -- -- -- -- -- -- g ◃ t₂ -- -- -- -- -- -- -- -- -- -- -- ∎ -- -- -- -- -- -- -- -- -- -- -- _≤_ : ∀ {m n n'} (f : m ↦ n) (g : m ↦ n') → Set (ℓⱽ ⊔ ℓᵀ) -- -- -- -- -- -- -- -- -- -- -- _≤_ f g = ∃ λ f' → f ≐ (f' ◇ g) -- -- -- -- -- -- -- -- -- -- -- {- -- -- -- -- -- -- -- -- -- -- -- Max : ∀ {ℓ m} (P : Property {ℓ} m) → Property m -- -- -- -- -- -- -- -- -- -- -- Max P' = -- -- -- -- -- -- -- -- -- -- -- let open Σ P' using () renaming (fst to P; snd to Peq) in -- -- -- -- -- -- -- -- -- -- -- let lemma1 : {m : 𝓲} {f : _ ↦ m} {g : _ ↦ m} → -- -- -- -- -- -- -- -- -- -- -- f ≐ g → -- -- -- -- -- -- -- -- -- -- -- P f × ({n : 𝓲} (f' : _ ↦ n) → P f' → f' ≤ f) → -- -- -- -- -- -- -- -- -- -- -- P g × ({n : 𝓲} (f' : _ ↦ n) → P f' → f' ≤ g) -- -- -- -- -- -- -- -- -- -- -- lemma1 {_} {_} {g} f≐g = λ { (Pf , MaxPf) → -- -- -- -- -- -- -- -- -- -- -- Peq f≐g Pf , λ {_} → -- -- -- -- -- -- -- -- -- -- -- let lemma2 : ∀ {n} f' → P {n} f' → ∃ λ f0 → f' ≐ (f0 ◇ g) -- -- -- -- -- -- -- -- -- -- -- lemma2 f' Pf' = -- -- -- -- -- -- -- -- -- -- -- let f0 = fst (MaxPf f' Pf') -- -- -- -- -- -- -- -- -- -- -- f'≐f0◇f = snd (MaxPf f' Pf') in -- -- -- -- -- -- -- -- -- -- -- f0 , λ x → trans (f'≐f0◇f x) (cong (f0 ◃_) (f≐g x)) in -- -- -- -- -- -- -- -- -- -- -- lemma2 } in -- -- -- -- -- -- -- -- -- -- -- --(λ {_} f → P f × (∀ {n} f' → P {n} f' → f' ≤ f)) , λ {_} {_} {_} → lemma1 -- -- -- -- -- -- -- -- -- -- -- (λ f → P f × (∀ {n} f' → P {n} f' → f' ≤ f)) , lemma1 -- -- -- -- -- -- -- -- -- -- -- -} -- -- -- -- -- -- -- -- -- -- -- Max : ∀ {ℓ m} (P : Property {ℓ} m) → Property⋆ m -- -- -- -- -- -- -- -- -- -- -- Max P' = -- -- -- -- -- -- -- -- -- -- -- let open Σ P' using () renaming (fst to P) in -- -- -- -- -- -- -- -- -- -- -- (λ f → P f × (∀ {n} f' → P {n} f' → f' ≤ f)) -- -- -- -- -- -- -- -- -- -- -- field -- -- -- -- -- -- -- -- -- -- -- {- -- -- -- -- -- -- -- -- -- -- -- mgu-c : ∀ {m} (t₁ t₂ : 𝓣 m) → -- -- -- -- -- -- -- -- -- -- -- (∃ λ n → ∃ λ σ → fst (Max (Unifies t₁ t₂)) (sub σ) × mgu t₁ t₂ ≡ just (n , σ)) -- -- -- -- -- -- -- -- -- -- -- ⊎ (Nothing (Unifies t₁ t₂) × mgu t₁ t₂ ≡ nothing) -- -- -- -- -- -- -- -- -- -- -- -} -- -- -- -- -- -- -- -- -- -- -- mgu-c : ∀ {m} (t₁ t₂ : 𝓣 m) → -- -- -- -- -- -- -- -- -- -- -- (∃ λ n → ∃ λ σ → (Max (Unifies t₁ t₂)) (sub σ) × mgu t₁ t₂ ≡ just (n , σ)) -- -- -- -- -- -- -- -- -- -- -- ⊎ (Nothing (Unifies t₁ t₂) × mgu t₁ t₂ ≡ nothing) -- -- -- -- -- -- -- -- -- -- -- {- -- -- -- -- -- -- -- -- -- -- -- -- trivial substitution -- -- -- -- -- -- -- -- -- -- -- -- ▹ : ∀ {s t} → (𝓥 s → 𝓥 t) → s ↦ t -- -- -- -- -- -- -- -- -- -- -- ≐-cong : ∀ {m n o} {f : m ↦ n} {g} (h : _ ↦ o) → f ≐ g → (h ◇ f) ≐ (h ◇ g) -- -- -- -- -- -- -- -- -- -- -- ≐-cong h f≐g t = cong (h ◃_) (f≐g t) -- -- -- -- -- -- -- -- -- -- -- ≐-sym : ∀ {m n} {f : m ↦ n} {g} → f ≐ g → g ≐ f -- -- -- -- -- -- -- -- -- -- -- ≐-sym f≐g = sym ∘ f≐g -- -- -- -- -- -- -- -- -- -- -- -}
44.134396
280
0.347329
105594610232acfb4f78bdbab5b1842643bcf146
421
agda
Agda
test/fail/Issue334.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
1
2019-11-27T07:26:06.000Z
2019-11-27T07:26:06.000Z
test/fail/Issue334.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
test/fail/Issue334.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
1
2022-03-12T11:35:18.000Z
2022-03-12T11:35:18.000Z
-- 2010-10-04 -- termination checker no longer counts stripping off a record constructor -- as decrease module Issue334 where data Unit : Set where unit : Unit record E : Set where constructor mkE field fromE : E spam : Unit f : E -> Set f (mkE e unit) = f e -- the record pattern translation does not apply to f -- still, should not termination check, because -- f (mkE e u) = f e -- also does not!
19.136364
74
0.67696
39dc0ce27cad3f60eb441c1dc187d82f27a55275
1,218
agda
Agda
src/NTypes/Id.agda
vituscze/HoTT-lectures
7730385adfdbdda38ee8b124be3cdeebb7312c65
[ "BSD-3-Clause" ]
null
null
null
src/NTypes/Id.agda
vituscze/HoTT-lectures
7730385adfdbdda38ee8b124be3cdeebb7312c65
[ "BSD-3-Clause" ]
null
null
null
src/NTypes/Id.agda
vituscze/HoTT-lectures
7730385adfdbdda38ee8b124be3cdeebb7312c65
[ "BSD-3-Clause" ]
null
null
null
{-# OPTIONS --without-K #-} module NTypes.Id where open import GroupoidStructure open import NTypes open import PathOperations open import Transport open import Types -- This should also be derivable from hLevel-suc from -- HomotopyTypes.HLevel module. Id-isSet : ∀ {a} {A : Set a} {x y : A} → isSet A → isSet (x ≡ y) Id-isSet {x = x} {y = y} A-set _ _ pp qq = path pp ⁻¹ · path qq where split-path : {p q : x ≡ y} (pp : p ≡ q) → A-set _ _ p q ≡ pp · A-set _ _ q q split-path pp = J (λ p q pp → A-set _ _ p q ≡ pp · A-set _ _ q q) (λ _ → refl) _ _ pp path : {p q : x ≡ y} (pp : p ≡ q) → A-set _ _ p q ≡ pp path pp = J (λ p q pp → A-set _ _ p q ≡ pp) (λ p → split-path (A-set _ _ p p ⁻¹) · p⁻¹·p (A-set _ _ p p)) _ _ pp -- From the lectures. Id-isSet-alt : ∀ {a} {A : Set a} {u v : A} → isSet A → isSet (u ≡ v) Id-isSet-alt {u = u} {v = v} H r s α β = id·p α ⁻¹ · ap (λ z → z · α) (p⁻¹·p (H′ r)) ⁻¹ · p·q·r (H′ r ⁻¹) (H′ r) α ⁻¹ · ap (λ z → H′ r ⁻¹ · z) ( tr-post r α (H′ r) ⁻¹ · apd H′ α · apd H′ β ⁻¹ · tr-post r β (H′ r) ) · p·q·r (H′ r ⁻¹) (H′ r) β · ap (λ z → z · β) (p⁻¹·p (H′ r)) · id·p β where H′ = λ q → H u v r q
24.36
65
0.49179
a11265ecda977d52e778f2e5299321a35daa7fc6
17,897
agda
Agda
agda/DsubDef.agda
HuStmpHrrr/popl20-artifact
48214a55ebb484fd06307df4320813d4a002535b
[ "MIT" ]
1
2021-09-23T08:40:28.000Z
2021-09-23T08:40:28.000Z
agda/DsubDef.agda
HuStmpHrrr/popl20-artifact
48214a55ebb484fd06307df4320813d4a002535b
[ "MIT" ]
null
null
null
agda/DsubDef.agda
HuStmpHrrr/popl20-artifact
48214a55ebb484fd06307df4320813d4a002535b
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} -- In this module, we define the syntax of D<: module DsubDef where open import Data.List as List open import Data.List.All open import Data.Nat as ℕ open import Data.Maybe as Maybe open import Data.Product open import Data.Sum open import Data.Empty renaming (⊥ to False) open import Function open import Data.Nat.Properties as ℕₚ open import Data.Maybe.Properties as Maybeₚ open import Relation.Nullary open import Relation.Binary.PropositionalEquality open import Utils infix 8 _∙A infix 6 Π_∙_ ⟨A:_⋯_⟩ -- Types -- -- Notations in Agda should be more readable than in Coq. -- * ⊤ is a supertype of all types. -- * ⊥ is a subtype of all types. -- * (x ∙A) represents a path dependent type (x.A). -- * (Π S ∙ U) represents a dependent function type (∀(x : S)U). -- * (⟨A: S ⋯ U ⟩) represents a type declaration ({A : S .. U}). data Typ : Set where ⊤ : Typ ⊥ : Typ _∙A : (n : ℕ) → Typ Π_∙_ : (S U : Typ) → Typ ⟨A:_⋯_⟩ : (S U : Typ) → Typ -- typing context Env : Set Env = List Typ -- shifting operation of de Bruijn indices infixl 7 _↑_ _↑_ : Typ → ℕ → Typ ⊤ ↑ n = ⊤ ⊥ ↑ n = ⊥ (x ∙A) ↑ n with n ≤? x ... | yes n≤x = suc x ∙A ... | no n>x = x ∙A (Π S ∙ U) ↑ n = Π S ↑ n ∙ U ↑ suc n ⟨A: S ⋯ U ⟩ ↑ n = ⟨A: S ↑ n ⋯ U ↑ n ⟩ -- The remaining are technical setup. infix 4 _↦_∈_ data _↦_∈_ : ℕ → Typ → Env → Set where hd : ∀ {T Γ} → 0 ↦ T ↑ 0 ∈ T ∷ Γ tl : ∀ {n T T′ Γ} → n ↦ T ∈ Γ → suc n ↦ T ↑ 0 ∈ T′ ∷ Γ env-lookup : Env → ℕ → Maybe Typ env-lookup Γ n = Maybe.map (repeat (suc n) (_↑ 0)) (lookupOpt Γ n) ↦∈⇒lookup : ∀ {x T Γ} → x ↦ T ∈ Γ → env-lookup Γ x ≡ just T ↦∈⇒lookup hd = refl ↦∈⇒lookup {x} {_} {Γ} (tl T∈Γ) with lookupOpt Γ x | ↦∈⇒lookup T∈Γ ... | just T′ | eq = cong (just ∘ (_↑ zero)) (just-injective eq) ... | nothing | () lookup⇒↦∈ : ∀ {x T Γ} → env-lookup Γ x ≡ just T → x ↦ T ∈ Γ lookup⇒↦∈ {x} {_} {[]} () lookup⇒↦∈ {zero} {_} {T ∷ Γ} refl = hd lookup⇒↦∈ {suc x} {_} {T ∷ Γ} eq with lookupOpt Γ x | λ {T} → lookup⇒↦∈ {x} {T} {Γ} lookup⇒↦∈ refl | just T′ | rec = tl $ rec refl lookup⇒↦∈ () | nothing | _ ⟨A:⟩-injective : ∀ {S U S′ U′} → ⟨A: S ⋯ U ⟩ ≡ ⟨A: S′ ⋯ U′ ⟩ → S ≡ S′ × U ≡ U′ ⟨A:⟩-injective refl = refl , refl ↑-idx : ℕ → ℕ → ℕ ↑-idx x n with n ≤? x ... | yes p = suc x ... | no ¬p = x ↑-var : ∀ x n → x ∙A ↑ n ≡ ↑-idx x n ∙A ↑-var x n with n ≤? x ... | yes p = refl ... | no ¬p = refl ↑-↑-comm : ∀ T m n → m ≤ n → T ↑ m ↑ suc n ≡ T ↑ n ↑ m ↑-↑-comm ⊤ m n m≤n = refl ↑-↑-comm ⊥ m n m≤n = refl ↑-↑-comm (x ∙A) m n m≤n with n ≤? x ... | yes n≤x rewrite ≤?-yes (≤-trans m≤n n≤x) | ≤?-yes n≤x | ≤?-yes (≤-step (≤-trans m≤n n≤x)) = refl ... | no n>x with m ≤? x ... | yes m≤x rewrite proj₂ $ ≤?-no n>x = refl ... | no m>x with suc n ≤? x ... | yes 1+n≤x = ⊥-elim (m>x (≤-trans (≤-step m≤n) 1+n≤x)) ... | no 1+n>x = refl ↑-↑-comm (Π S ∙ U) m n m≤n rewrite ↑-↑-comm S m n m≤n | ↑-↑-comm U (suc m) (suc n) (s≤s m≤n) = refl ↑-↑-comm ⟨A: S ⋯ U ⟩ m n m≤n rewrite ↑-↑-comm S m n m≤n | ↑-↑-comm U m n m≤n = refl -- These two judgments are about to capture the characteristics of the image of -- interpretation functions from F<:⁻ to D<:. -- -- Covar quantifies the types in D<: which appears in the covariant positions in the -- image of the interpretation function. data Covar : Typ → Set where cv⊤ : Covar ⊤ cv∙A : ∀ n → Covar (n ∙A) cvΠ : ∀ {S U} → Covar S → Covar U → Covar (Π ⟨A: ⊥ ⋯ S ⟩ ∙ U) -- Contra quantifies the types in D<: which appears in the contravariant positions in -- the image of the interpretation function. data Contra : Typ → Set where ctt : ∀ {T} → Covar T → Contra ⟨A: ⊥ ⋯ T ⟩ ContraEnv : Env → Set ContraEnv = All Contra ↑-Covar : ∀ {T} n → Covar T → Covar (T ↑ n) ↑-Covar n cv⊤ = cv⊤ ↑-Covar n (cv∙A x) rewrite ↑-var x n = cv∙A _ ↑-Covar n (cvΠ S U) = cvΠ (↑-Covar n S) (↑-Covar (suc n) U) ↑-Contra : ∀ {T} n → Contra T → Contra (T ↑ n) ↑-Contra n (ctt T) = ctt (↑-Covar n T) ↑-injective : ∀ {S U n} → S ↑ n ≡ U ↑ n → S ≡ U ↑-injective {⊤} {⊤} {n} eq = refl ↑-injective {⊤} {⊥} {n} () ↑-injective {⊤} {x ∙A} {n} eq rewrite ↑-var x n = case eq of λ () ↑-injective {⊤} {Π S ∙ U} {n} () ↑-injective {⊤} {⟨A: S ⋯ U ⟩} {n} () ↑-injective {⊥} {⊤} {n} () ↑-injective {⊥} {⊥} {n} eq = refl ↑-injective {⊥} {x ∙A} {n} eq rewrite ↑-var x n = case eq of λ () ↑-injective {⊥} {Π S ∙ U} {n} () ↑-injective {⊥} {⟨A: S ⋯ U ⟩} {n} () ↑-injective {x ∙A} {⊤} {n} eq rewrite ↑-var x n = case eq of λ () ↑-injective {x ∙A} {⊥} {n} eq rewrite ↑-var x n = case eq of λ () ↑-injective {x ∙A} {y ∙A} {n} eq with n ≤? x | n ≤? y ↑-injective {x ∙A} {y ∙A} {n} refl | yes n≤x | yes n≤y = refl ↑-injective {x ∙A} {y ∙A} {n} refl | yes n≤x | no n>y = ⊥-elim (n>y (≤-step n≤x)) ↑-injective {x ∙A} {y ∙A} {n} refl | no n>x | yes n≤y = ⊥-elim (n>x (≤-step n≤y)) ↑-injective {x ∙A} {y ∙A} {n} refl | no n>x | no n>y = refl ↑-injective {x ∙A} {Π S ∙ U} {n} eq rewrite ↑-var x n = case eq of λ () ↑-injective {x ∙A} {⟨A: S ⋯ U ⟩} {n} eq rewrite ↑-var x n = case eq of λ () ↑-injective {Π S ∙ U} {⊤} {n} () ↑-injective {Π S ∙ U} {⊥} {n} () ↑-injective {Π S ∙ U} {x ∙A} {n} eq rewrite ↑-var x n = case eq of λ () ↑-injective {Π S ∙ U} {Π S′ ∙ U′} {n} eq with S ↑ n | U ↑ suc n | S′ ↑ n | U′ ↑ suc n | ↑-injective {S} {S′} {n} | ↑-injective {U} {U′} {suc n} ... | _ | _ | _ | _ | rec₁ | rec₂ with eq ... | refl = cong₂ Π_∙_ (rec₁ refl) (rec₂ refl) ↑-injective {Π S ∙ U} {⟨A: _ ⋯ _ ⟩} {n} () ↑-injective {⟨A: S ⋯ U ⟩} {⊤} {n} () ↑-injective {⟨A: S ⋯ U ⟩} {⊥} {n} () ↑-injective {⟨A: S ⋯ U ⟩} {x ∙A} {n} eq rewrite ↑-var x n = case eq of λ () ↑-injective {⟨A: S ⋯ U ⟩} {Π _ ∙ _} {n} () ↑-injective {⟨A: S ⋯ U ⟩} {⟨A: S′ ⋯ U′ ⟩} {n} eq with S ↑ n | U ↑ n | S′ ↑ n | U′ ↑ n | ↑-injective {S} {S′} {n} | ↑-injective {U} {U′} {n} ... | _ | _ | _ | _ | rec₁ | rec₂ with eq ... | refl = cong₂ ⟨A:_⋯_⟩ (rec₁ refl) (rec₂ refl) ↑-⊥-inv : ∀ {S n} → S ↑ n ≡ ⊥ → S ≡ ⊥ ↑-⊥-inv {⊤} {n} () ↑-⊥-inv {⊥} {n} refl = refl ↑-⊥-inv {x ∙A} {n} eq rewrite ↑-var x n = case eq of λ () ↑-⊥-inv {Π _ ∙ _} {n} () ↑-⊥-inv {⟨A: _ ⋯ _ ⟩} {n} () ⟨A:⟩-↑-inv : ∀ {T n S U} → ⟨A: S ⋯ U ⟩ ≡ T ↑ n → ∃₂ λ S′ U′ → T ≡ ⟨A: S′ ⋯ U′ ⟩ × S ≡ S′ ↑ n × U ≡ U′ ↑ n ⟨A:⟩-↑-inv {⊤} () ⟨A:⟩-↑-inv {⊥} () ⟨A:⟩-↑-inv {x ∙A} {n} eq rewrite ↑-var x n = case eq of λ () ⟨A:⟩-↑-inv {Π _ ∙ _} () ⟨A:⟩-↑-inv {⟨A: S′ ⋯ U′ ⟩} refl = S′ , U′ , refl , refl , refl ↦∈ContraEnv : ∀ {Γ n T} → n ↦ T ∈ Γ → ContraEnv Γ → Contra T ↦∈ContraEnv hd (T ∷ cT) = ↑-Contra 0 T ↦∈ContraEnv (tl T∈Γ) (_ ∷ cT) = ↑-Contra 0 (↦∈ContraEnv T∈Γ cT) lookupContraEnv : ∀ {Γ n T} → env-lookup Γ n ≡ just T → ContraEnv Γ → Contra T lookupContraEnv lk cT = ↦∈ContraEnv (lookup⇒↦∈ lk) cT lookupContraBot : ∀ {Γ n} → ContraEnv Γ → ¬ env-lookup Γ n ≡ just ⊥ lookupContraBot all eq with lookupContraEnv eq all ... | () lookupContraBndBot : ∀ {Γ n S} → ContraEnv Γ → ¬ env-lookup Γ n ≡ just ⟨A: S ⋯ ⊥ ⟩ lookupContraBndBot all eq with lookupContraEnv eq all ... | ctt () lookupContraBndBnd : ∀ {Γ n T S U} → ContraEnv Γ → ¬ env-lookup Γ n ≡ just ⟨A: T ⋯ ⟨A: S ⋯ U ⟩ ⟩ lookupContraBndBnd all eq with lookupContraEnv eq all ... | ctt () lookupContra⊥Lb : ∀ {Γ n S U} → ContraEnv Γ → env-lookup Γ n ≡ just ⟨A: S ⋯ U ⟩ → S ≡ ⊥ lookupContra⊥Lb all eq with lookupContraEnv eq all ... | ctt _ = refl Typ-measure : Typ → ℕ Typ-measure ⊤ = 1 Typ-measure ⊥ = 1 Typ-measure (_ ∙A) = 2 Typ-measure (Π S ∙ U) = 1 + Typ-measure S + Typ-measure U Typ-measure ⟨A: S ⋯ U ⟩ = 1 + Typ-measure S + Typ-measure U Typ-measure-↑ : ∀ T n → Typ-measure (T ↑ n) ≡ Typ-measure T Typ-measure-↑ ⊤ n = refl Typ-measure-↑ ⊥ n = refl Typ-measure-↑ (x ∙A) n rewrite ↑-var x n = refl Typ-measure-↑ (Π S ∙ U) n rewrite Typ-measure-↑ S n | Typ-measure-↑ U (suc n) = refl Typ-measure-↑ ⟨A: S ⋯ U ⟩ n rewrite Typ-measure-↑ S n | Typ-measure-↑ U n = refl -- Definition of Invertible Contexts -- -- As per Definition 9, we define a predicate for invertible contexts. record InvertibleEnv (P : Env → Set) : Set where field no-⊥ : ∀ {Γ n} → P Γ → ¬ env-lookup Γ n ≡ just ⊥ no-bnd-⊥ : ∀ {Γ n S} → P Γ → ¬ env-lookup Γ n ≡ just ⟨A: S ⋯ ⊥ ⟩ no-bnd-bnd : ∀ {Γ n T S U} → P Γ → ¬ env-lookup Γ n ≡ just ⟨A: T ⋯ ⟨A: S ⋯ U ⟩ ⟩ ⊥-lb : ∀ {Γ n S U} → P Γ → env-lookup Γ n ≡ just ⟨A: S ⋯ U ⟩ → S ≡ ⊥ contraInvertible : InvertibleEnv ContraEnv contraInvertible = record { no-⊥ = lookupContraBot ; no-bnd-⊥ = lookupContraBndBot ; no-bnd-bnd = lookupContraBndBnd ; ⊥-lb = lookupContra⊥Lb } -- Properties of Invertible Contexts -- -- Just by knowing the contexts being invertible, we can already derive many -- properties of D<:. In the following module, we show that in invertible contexts, -- inversion properties are recovered. For technical reasons, we leave the subtyping -- judgment open in order to accomodate multiple definition of subtyping in D<:. -- -- These properties are discussed in Section 4.4. module InvertibleProperties {P : Env → Set} (invertible : InvertibleEnv P) (_⊢_<:_ : Env → Typ → Typ → Set) where open InvertibleEnv invertible public -- We define <:ᵢ to describe a fragment of <: under the restriction of invertible contexts. infix 4 _⊢ᵢ_<:_ data _⊢ᵢ_<:_ : Env → Typ → Typ → Set where ditop : ∀ {Γ T} → Γ ⊢ᵢ T <: ⊤ dibot : ∀ {Γ T} → Γ ⊢ᵢ ⊥ <: T direfl : ∀ {Γ T} → Γ ⊢ᵢ T <: T ditrans : ∀ {Γ S U} T → (S<:T : Γ ⊢ᵢ S <: T) → (T<:U : Γ ⊢ᵢ T <: U) → Γ ⊢ᵢ S <: U dibnd : ∀ {Γ S U S′ U′} → (S′<:S : Γ ⊢ᵢ S′ <: S) → (U<:U′ : Γ ⊢ᵢ U <: U′) → Γ ⊢ᵢ ⟨A: S ⋯ U ⟩ <: ⟨A: S′ ⋯ U′ ⟩ diall : ∀ {Γ S U S′ U′} → (S′<:S : Γ ⊢ᵢ S′ <: S) → (U<:U′ : (Γ ‣ S′ !) ⊢ U <: U′) → Γ ⊢ᵢ Π S ∙ U <: Π S′ ∙ U′ disel : ∀ {Γ n U} → (T∈Γ : env-lookup Γ n ≡ just ⟨A: ⊥ ⋯ U ⟩) → Γ ⊢ᵢ n ∙A <: U module _ where ⊤<: : ∀ {Γ T} → Γ ⊢ᵢ ⊤ <: T → T ≡ ⊤ ⊤<: ditop = refl ⊤<: direfl = refl ⊤<: (ditrans T S<:T T<:U) with ⊤<: S<:T ... | refl = ⊤<: T<:U <:⊥ : ∀ {Γ T} → Γ ⊢ᵢ T <: ⊥ → P Γ → T ≡ ⊥ <:⊥ dibot pΓ = refl <:⊥ direfl pΓ = refl <:⊥ (ditrans T S<:T T<:U) pΓ with <:⊥ T<:U pΓ ... | refl = <:⊥ S<:T pΓ <:⊥ (disel T∈Γ) pΓ = ⊥-elim (no-bnd-⊥ pΓ T∈Γ) ⟨A:⟩<: : ∀ {Γ T S U} → Γ ⊢ᵢ ⟨A: S ⋯ U ⟩ <: T → T ≡ ⊤ ⊎ ∃₂ (λ S′ U′ → T ≡ ⟨A: S′ ⋯ U′ ⟩) ⟨A:⟩<: ditop = inj₁ refl ⟨A:⟩<: direfl = inj₂ (-, -, refl) ⟨A:⟩<: (ditrans T S<:T T<:U) with ⟨A:⟩<: S<:T ... | inj₁ refl = inj₁ (⊤<: T<:U) ... | inj₂ (_ , _ , refl) with ⟨A:⟩<: T<:U ... | inj₁ eq = inj₁ eq ... | inj₂ (_ , _ , eq) = inj₂ (-, -, eq) ⟨A:⟩<: (dibnd D₁ D₂) = inj₂ (-, -, refl) <:⟨A:⟩ : ∀ {Γ T S U} → Γ ⊢ᵢ T <: ⟨A: S ⋯ U ⟩ → P Γ → T ≡ ⊥ ⊎ ∃₂ (λ S′ U′ → T ≡ ⟨A: S′ ⋯ U′ ⟩) <:⟨A:⟩ dibot pΓ = inj₁ refl <:⟨A:⟩ direfl pΓ = inj₂ (-, -, refl) <:⟨A:⟩ (ditrans T S<:T T<:U) pΓ with <:⟨A:⟩ T<:U pΓ ... | inj₁ refl = inj₁ (<:⊥ S<:T pΓ) ... | inj₂ (S′ , U′ , refl) with <:⟨A:⟩ S<:T pΓ ... | inj₁ eq = inj₁ eq ... | inj₂ (S″ , U″ , eq) = inj₂ (S″ , U″ , eq) <:⟨A:⟩ (dibnd D₁ D₂) pΓ = inj₂ (-, -, refl) <:⟨A:⟩ (disel T∈Γ) pΓ = ⊥-elim (no-bnd-bnd pΓ T∈Γ) ⟨A:⟩<:⟨A:⟩ : ∀ {Γ S S′ U U′} → Γ ⊢ᵢ ⟨A: S ⋯ U ⟩ <: ⟨A: S′ ⋯ U′ ⟩ → P Γ → Γ ⊢ᵢ S′ <: S × Γ ⊢ᵢ U <: U′ ⟨A:⟩<:⟨A:⟩ direfl pΓ = direfl , direfl ⟨A:⟩<:⟨A:⟩ (ditrans T S<:T T<:U) pΓ with ⟨A:⟩<: S<:T ... | inj₁ refl with ⊤<: T<:U ... | () ⟨A:⟩<:⟨A:⟩ (ditrans T S<:T T<:U) pΓ | inj₂ (_ , _ , refl) with ⟨A:⟩<:⟨A:⟩ S<:T pΓ | ⟨A:⟩<:⟨A:⟩ T<:U pΓ ... | S″<:S , U<:U″ | S′<:S″ , U″<:U′ = ditrans _ S′<:S″ S″<:S , ditrans _ U<:U″ U″<:U′ ⟨A:⟩<:⟨A:⟩ (dibnd D₁ D₂) pΓ = D₁ , D₂ infix 4 _reach_from_ data _reach_from_ : Env → Typ → ℕ → Set where /_/ : ∀ {Γ n T} → env-lookup Γ n ≡ just ⟨A: ⊥ ⋯ T ⟩ → Γ reach T from n _∷_ : ∀ {Γ n m T} → env-lookup Γ n ≡ just ⟨A: ⊥ ⋯ m ∙A ⟩ → Γ reach T from m → Γ reach T from n rf-concat : ∀ {Γ T m n} → Γ reach T from m → Γ reach m ∙A from n → Γ reach T from n rf-concat m↝T / B∈Γ / = B∈Γ ∷ m↝T rf-concat m↝T (B∈Γ ∷ n↝m∙A) = B∈Γ ∷ rf-concat m↝T n↝m∙A ∙A<: : ∀ {Γ n T} → Γ ⊢ᵢ n ∙A <: T → T ≡ ⊤ ⊎ T ≡ n ∙A ⊎ ∃ λ T′ → Γ reach T′ from n × Γ ⊢ᵢ T′ <: T ∙A<: ditop = inj₁ refl ∙A<: direfl = inj₂ (inj₁ refl) ∙A<: (ditrans T S<:T T<:U) with ∙A<: S<:T ... | inj₁ refl = inj₁ (⊤<: T<:U) ... | inj₂ (inj₁ refl) = ∙A<: T<:U ... | inj₂ (inj₂ (T′ , n↝T′ , T′<:T)) = inj₂ (inj₂ (T′ , n↝T′ , ditrans _ T′<:T T<:U)) ∙A<: (disel T∈Γ) = inj₂ (inj₂ (-, / T∈Γ / , direfl)) <:∙A : ∀ {Γ n T} → Γ ⊢ᵢ T <: n ∙A → P Γ → T ≡ ⊥ ⊎ T ≡ n ∙A ⊎ ∃ (λ m → T ≡ m ∙A × Γ reach n ∙A from m) <:∙A dibot pΓ = inj₁ refl <:∙A direfl pΓ = inj₂ (inj₁ refl) <:∙A (ditrans T S<:T T<:U) pΓ with <:∙A T<:U pΓ ... | inj₁ refl = inj₁ (<:⊥ S<:T pΓ) ... | inj₂ (inj₁ refl) = <:∙A S<:T pΓ ... | inj₂ (inj₂ (m , refl , m↝n∙A)) with <:∙A S<:T pΓ ... | inj₁ refl = inj₁ refl ... | inj₂ (inj₁ refl) = inj₂ (inj₂ (-, refl , m↝n∙A)) ... | inj₂ (inj₂ (m′ , refl , m′↝m∙A)) = inj₂ (inj₂ (-, refl , rf-concat m↝n∙A m′↝m∙A)) <:∙A (disel T∈Γ) pΓ = inj₂ (inj₂ (-, refl , / T∈Γ /)) Π<: : ∀ {Γ S U T} → Γ ⊢ᵢ Π S ∙ U <: T → T ≡ ⊤ ⊎ ∃₂ (λ S′ U′ → T ≡ Π S′ ∙ U′) Π<: ditop = inj₁ refl Π<: direfl = inj₂ (-, -, refl) Π<: (ditrans T S<:T T<:U) with Π<: S<:T ... | inj₁ refl = inj₁ (⊤<: T<:U) ... | inj₂ (_ , _ , refl) = Π<: T<:U Π<: (diall D₁ D₂) = inj₂ (-, -, refl) <:Π : ∀ {Γ S U T} → Γ ⊢ᵢ T <: Π S ∙ U → P Γ → T ≡ ⊥ ⊎ ∃ (λ n → T ≡ n ∙A) ⊎ ∃₂ (λ S′ U′ → T ≡ Π S′ ∙ U′) <:Π dibot pΓ = inj₁ refl <:Π direfl pΓ = inj₂ (inj₂ (-, -, refl)) <:Π (ditrans T S<:T T<:U) pΓ with <:Π T<:U pΓ ... | inj₁ refl = inj₁ (<:⊥ S<:T pΓ) ... | inj₂ (inj₁ (_ , refl)) with <:∙A S<:T pΓ ... | inj₁ eq = inj₁ eq ... | inj₂ (inj₁ eq) = inj₂ (inj₁ (-, eq)) ... | inj₂ (inj₂ (_ , eq , _)) = inj₂ (inj₁ (-, eq)) <:Π (ditrans T S<:T T<:U) pΓ | inj₂ (inj₂ (_ , _ , refl)) = <:Π S<:T pΓ <:Π (diall D₁ D₂) pΓ = inj₂ (inj₂ (-, -, refl)) <:Π (disel T∈Γ) pΓ = inj₂ (inj₁ (-, refl)) -- Terms and Values infix 6 var_ val_ infix 6 ⟨A=_⟩ _$$_ infixr 7 lt_inn_ infixr 6 Λ_∙_ mutual -- Values -- -- * (⟨A= T ⟩) represents a type tag ({A = T}). -- * (Λ T ∙ t) represents a lambda expression (λ(x : T)t) data Val : Set where ⟨A=_⟩ : (T : Typ) → Val Λ_∙_ : (T : Typ) → (t : Trm) → Val -- Terms -- -- * (var x) represents a variable. -- * (val v) represents a value as a term. -- * (x $$ y) is an application of two variables. -- * (lt t inn u) represents let binding (let x = t in u). data Trm : Set where var_ : ℕ → Trm val_ : (v : Val) → Trm _$$_ : (x y : ℕ) → Trm lt_inn_ : Trm → Trm → Trm -- substitution operation record Subst (T : Set) : Set where infixl 5 _[_/_] field _[_/_] : T → ℕ → ℕ → T open Subst {{...}} public infixl 5 _[_/_]ᵥ _[_/_]ₜ _[_/_]T ℕsubst : ℕ → ℕ → ℕ → ℕ ℕsubst x n m with x ≟ m ... | yes x≡m = n ... | no x≢m = x instance substℕ : Subst ℕ substℕ = record { _[_/_] = ℕsubst } _[_/_]T : Typ → ℕ → ℕ → Typ ⊤ [ n / m ]T = ⊤ ⊥ [ n / m ]T = ⊥ x ∙A [ n / m ]T = (x [ n / m ]) ∙A Π S ∙ U [ n / m ]T = Π S [ n / m ]T ∙ (U [ suc n / suc m ]T) ⟨A: S ⋯ U ⟩ [ n / m ]T = ⟨A: S [ n / m ]T ⋯ U [ n / m ]T ⟩ instance substTyp : Subst Typ substTyp = record { _[_/_] = _[_/_]T } mutual _[_/_]ᵥ : Val → ℕ → ℕ → Val ⟨A= T ⟩ [ n / m ]ᵥ = ⟨A= T [ n / m ] ⟩ Λ T ∙ t [ n / m ]ᵥ = Λ T [ n / m ] ∙ (t [ suc n / suc m ]ₜ) _[_/_]ₜ : Trm → ℕ → ℕ → Trm var x [ n / m ]ₜ = var (x [ n / m ]) val v [ n / m ]ₜ = val (v [ n / m ]ᵥ) x $$ y [ n / m ]ₜ = (x [ n / m ]) $$ (y [ n / m ]) lt t inn u [ n / m ]ₜ = lt (t [ n / m ]ₜ) inn (u [ suc n / suc m ]ₜ) instance substVal : Subst Val substVal = record { _[_/_] = _[_/_]ᵥ } substTrm : Subst Trm substTrm = record { _[_/_] = _[_/_]ₜ } data Closed : ℕ → Typ → Set where cl-⊤ : ∀ {n} → Closed n ⊤ cl-⊥ : ∀ {n} → Closed n ⊥ cl-∙A : ∀ {n m} (m≥n : m ≥ n) → Closed n (m ∙A) cl-Π : ∀ {n S U} → Closed n S → Closed (suc n) U → Closed n (Π S ∙ U) cl-⟨A⟩ : ∀ {n S U} → Closed n S → Closed n U → Closed n ⟨A: S ⋯ U ⟩ infix 7 _↓ _↓ : ∀ {n T} → Closed (suc n) T → Typ cl-⊤ ↓ = ⊤ cl-⊥ ↓ = ⊥ cl-∙A {_} {m} m≥n ↓ = pred m ∙A cl-Π S U ↓ = Π S ↓ ∙ (U ↓) cl-⟨A⟩ S U ↓ = ⟨A: S ↓ ⋯ U ↓ ⟩
35.369565
105
0.43823
1c0144b77602d34e5ebaae47bd7a1cb2abb2312f
738
agda
Agda
test/asset/agda-stdlib-1.0/Data/Vec/Relation/Binary/Equality/Propositional/WithK.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Data/Vec/Relation/Binary/Equality/Propositional/WithK.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Data/Vec/Relation/Binary/Equality/Propositional/WithK.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- The Agda standard library -- -- Code related to vector equality over propositional equality that -- makes use of heterogeneous equality ------------------------------------------------------------------------ {-# OPTIONS --with-K --safe #-} module Data.Vec.Relation.Binary.Equality.Propositional.WithK {a} {A : Set a} where open import Data.Vec open import Data.Vec.Relation.Binary.Equality.Propositional {A = A} open import Relation.Binary.PropositionalEquality open import Relation.Binary.HeterogeneousEquality as H using (_≅_) ≋⇒≅ : ∀ {m n} {xs : Vec A m} {ys : Vec A n} → xs ≋ ys → xs ≅ ys ≋⇒≅ p with length-equal p ... | refl = H.≡-to-≅ (≋⇒≡ p)
33.545455
72
0.554201
4a5f1ae1cf52e292b1920f6c8db6249724fdfb13
902
agda
Agda
src/Categories/Category/Construction/Wedges.agda
jaykru/agda-categories
a4053cf700bcefdf73b857c3352f1eae29382a60
[ "MIT" ]
279
2019-06-01T14:36:40.000Z
2022-03-22T00:40:14.000Z
src/Categories/Category/Construction/Wedges.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
236
2019-06-01T14:53:54.000Z
2022-03-28T14:31:43.000Z
src/Categories/Category/Construction/Wedges.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
64
2019-06-02T16:58:15.000Z
2022-03-14T02:00:59.000Z
{-# OPTIONS --without-K --safe #-} open import Categories.Category.Core using (Category) open import Categories.Functor.Bifunctor using (Bifunctor) module Categories.Category.Construction.Wedges {o ℓ e o′ ℓ′ e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} (F : Bifunctor (Category.op C) C D) where open import Level open import Categories.Category.Core using (Category) open import Categories.Diagram.Wedge F Wedges : Category (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′) (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′) e′ Wedges = record { Obj = Wedge ; _⇒_ = Wedge-Morphism ; _≈_ = λ M N → u M ≈ u N ; id = Wedge-id ; _∘_ = Wedge-Morphism-∘ ; assoc = assoc ; sym-assoc = sym-assoc ; identityˡ = identityˡ ; identityʳ = identityʳ ; identity² = identity² ; equiv = record { refl = Equiv.refl ; sym = Equiv.sym ; trans = Equiv.trans } ; ∘-resp-≈ = ∘-resp-≈ } where open Wedge-Morphism open Category D
28.1875
108
0.637472
12dfae697ed40200283864f7df443ce14b65e156
323
agda
Agda
test/interaction/Issue5700.agda
thiagofelicissimo/agda
a0b3eea0c19c47ffbe2be525316311f5795d760d
[ "BSD-2-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/interaction/Issue5700.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/interaction/Issue5700.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
open import Agda.Builtin.List open import Agda.Builtin.Nat open import Agda.Builtin.Unit open import Agda.Builtin.Reflection pattern vArg x = arg (arg-info visible (modality relevant quantity-ω)) x macro macaroo : Term → TC ⊤ macaroo hole = unify hole (con (quote suc) (vArg unknown ∷ [])) test : Nat test = macaroo
23.071429
72
0.736842
4db555d4c26d6033f3e007608576d6660cc52f5d
57
agda
Agda
test/Fail/Unsolved-meta-in-postulate.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Unsolved-meta-in-postulate.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Unsolved-meta-in-postulate.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Unsolved-meta-in-postulate where postulate P : _
14.25
39
0.789474
12acfb527cbd86c9aa451e0dc5cc4f51aa52347e
947
agda
Agda
src/fot/LTC-PCF/Data/Nat.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
11
2015-09-03T20:53:42.000Z
2021-09-12T16:09:54.000Z
src/fot/LTC-PCF/Data/Nat.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
2
2016-10-12T17:28:16.000Z
2017-01-01T14:34:26.000Z
src/fot/LTC-PCF/Data/Nat.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
3
2016-09-19T14:18:30.000Z
2018-03-14T08:50:00.000Z
------------------------------------------------------------------------------ -- Natural numbers (PCF version) ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module LTC-PCF.Data.Nat where open import LTC-PCF.Base open import LTC-PCF.Data.Nat.Rec open import LTC-PCF.Data.Nat.Type public infixl 7 _*_ infixl 6 _+_ _∸_ ------------------------------------------------------------------------------ -- Addition with recursion on the first argument. _+_ : D → D → D m + n = rec m n (lam (λ _ → lam succ₁)) -- Subtraction with recursion on the second argument. _∸_ : D → D → D m ∸ n = rec n m (lam (λ _ → lam pred₁)) -- Multiplication with recursion on the first argument. _*_ : D → D → D m * n = rec m zero (lam (λ _ → lam (λ x → n + x)))
30.548387
78
0.455121
dc76b1d957c5e12daeaf369056f7bebebbae288c
3,477
agda
Agda
test/Succeed/ReflectTC.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
null
null
null
test/Succeed/ReflectTC.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
null
null
null
test/Succeed/ReflectTC.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
null
null
null
-- Building some simple tactics using the reflected type checking monad. module _ where open import Common.Reflection open import Common.Prelude hiding (_>>=_) open import Common.Equality open import Agda.Builtin.Sigma -- Some helpers -- quotegoal : (Type → Tactic) → Tactic quotegoal tac hole = inferType hole >>= λ goal → reduce goal >>= λ goal → tac goal hole case_of_ : ∀ {a b} {A : Set a} {B : Set b} → A → (A → B) → B case x of f = f x replicateTC : {A : Set} → Nat → TC A → TC (List A) replicateTC zero m = returnTC [] replicateTC (suc n) m = m >>= λ x → replicateTC n m >>= λ xs → returnTC (x ∷ xs) mapTC! : ∀ {A : Set} → (A → TC ⊤) → List A → TC ⊤ mapTC! f [] = returnTC _ mapTC! f (x ∷ xs) = f x >>= λ _ → mapTC! f xs mapTC!r : ∀ {A} → (A → TC ⊤) → List A → TC ⊤ mapTC!r f [] = returnTC _ mapTC!r f (x ∷ xs) = mapTC! f xs >>= λ _ → f x visibleArity : QName → TC Nat visibleArity q = getType q >>= λ t → returnTC (typeArity t) where typeArity : Type → Nat typeArity (pi (arg (argInfo visible _) _) (abs _ b)) = suc (typeArity b) typeArity (pi _ (abs _ b)) = typeArity b typeArity _ = 0 newMeta! : TC Term newMeta! = newMeta unknown absurdLam : Term absurdLam = extLam (absurdClause (("()" , arg (argInfo visible relevant) unknown) ∷ []) (arg (argInfo visible relevant) absurd ∷ []) ∷ []) [] -- Simple assumption tactic -- assumption-tac : Nat → Nat → Tactic assumption-tac x 0 _ = typeError (strErr "No assumption matched" ∷ []) assumption-tac x (suc n) hole = catchTC (unify hole (var x [])) (assumption-tac (suc x) n hole) macro assumption : Tactic assumption hole = getContext >>= λ Γ → assumption-tac 0 (length Γ) hole test-assumption : ∀ {A B : Set} → A → B → A test-assumption x y = assumption test-assumption₂ : ∀ {A B : Set} → A → B → _ test-assumption₂ x y = assumption -- will pick y -- Solving a goal using only constructors -- tryConstructors : Nat → List QName → Tactic constructors-tac : Nat → Type → Tactic constructors-tac zero _ _ = typeError (strErr "Search depth exhausted" ∷ []) constructors-tac (suc n) (def d vs) hole = getDefinition d >>= λ def → case def of λ { (dataDef _ cs) → tryConstructors n cs hole ; _ → returnTC _ } constructors-tac _ (pi a b) hole = give absurdLam hole constructors-tac _ _ hole = returnTC _ tryConstructors n [] hole = typeError (strErr "No matching constructor term" ∷ []) tryConstructors n (c ∷ cs) hole = visibleArity c >>= λ ar → catchTC (replicateTC ar newMeta! >>= λ vs → unify hole (con c (map (arg (argInfo visible relevant)) vs)) >>= λ _ → mapTC!r (quotegoal (constructors-tac n)) vs) (tryConstructors n cs hole) macro constructors : Tactic constructors = quotegoal (constructors-tac 10) data Any {A : Set} (P : A → Set) : List A → Set where zero : ∀ {x xs} → P x → Any P (x ∷ xs) suc : ∀ {x xs} → Any P xs → Any P (x ∷ xs) infix 1 _∈_ _∈_ : ∀ {A : Set} → A → List A → Set x ∈ xs = Any (x ≡_) xs data Dec (A : Set) : Set where yes : A → Dec A no : (A → ⊥) → Dec A test₁ : 3 ∈ 1 ∷ 2 ∷ 3 ∷ [] test₁ = constructors test₂ : Dec (2 + 3 ≡ 5) test₂ = constructors test₃ : Dec (2 + 2 ≡ 5) test₃ = constructors data Singleton (n : Nat) : Set where it : (m : Nat) → m ≡ n → Singleton n test₄ : Singleton 5 test₄ = constructors -- this works because we solve goals right to left (picking refl before m)
29.218487
95
0.609146
4a3061ba8d64e1a1795e270532392032405d5bf6
2,650
agda
Agda
prototyping/Luau/Syntax/ToString.agda
Tr4shh/Roblox-Luau
cd18adc20ecb805b8eeb770a9e5ef8e0cd123734
[ "MIT" ]
null
null
null
prototyping/Luau/Syntax/ToString.agda
Tr4shh/Roblox-Luau
cd18adc20ecb805b8eeb770a9e5ef8e0cd123734
[ "MIT" ]
null
null
null
prototyping/Luau/Syntax/ToString.agda
Tr4shh/Roblox-Luau
cd18adc20ecb805b8eeb770a9e5ef8e0cd123734
[ "MIT" ]
null
null
null
module Luau.Syntax.ToString where open import Agda.Builtin.Float using (primShowFloat) open import Luau.Syntax using (Block; Stat; Expr; VarDec; FunDec; nil; var; var_∈_; addr; _$_; function_is_end; return; local_←_; _∙_; done; block_is_end; _⟨_⟩; _⟨_⟩∈_; number; BinaryOperator; +; -; *; /; binexp) open import FFI.Data.String using (String; _++_) open import Luau.Addr.ToString using (addrToString) open import Luau.Type.ToString using (typeToString) open import Luau.Var.ToString using (varToString) varDecToString : ∀ {a} → VarDec a → String varDecToString (var x) = varToString x varDecToString (var x ∈ T) = varToString x ++ " : " ++ typeToString T funDecToString : ∀ {a} → FunDec a → String funDecToString ("" ⟨ x ⟩∈ T) = "function(" ++ varDecToString x ++ "): " ++ typeToString T funDecToString ("" ⟨ x ⟩) = "function(" ++ varDecToString x ++ ")" funDecToString (f ⟨ x ⟩∈ T) = "function " ++ varToString f ++ "(" ++ varDecToString x ++ "): " ++ typeToString T funDecToString (f ⟨ x ⟩) = "function " ++ varToString f ++ "(" ++ varDecToString x ++ ")" binOpToString : BinaryOperator → String binOpToString + = "+" binOpToString - = "-" binOpToString * = "*" binOpToString / = "/" exprToString′ : ∀ {a} → String → Expr a → String statToString′ : ∀ {a} → String → Stat a → String blockToString′ : ∀ {a} → String → Block a → String exprToString′ lb nil = "nil" exprToString′ lb (addr a) = addrToString(a) exprToString′ lb (var x) = varToString(x) exprToString′ lb (M $ N) = (exprToString′ lb M) ++ "(" ++ (exprToString′ lb N) ++ ")" exprToString′ lb (function F is B end) = funDecToString F ++ lb ++ " " ++ (blockToString′ (lb ++ " ") B) ++ lb ++ "end" exprToString′ lb (block b is B end) = "(" ++ b ++ "()" ++ lb ++ " " ++ (blockToString′ (lb ++ " ") B) ++ lb ++ "end)()" exprToString′ lb (number x) = primShowFloat x exprToString′ lb (binexp x op y) = exprToString′ lb x ++ " " ++ binOpToString op ++ " " ++ exprToString′ lb y statToString′ lb (function F is B end) = "local " ++ funDecToString F ++ lb ++ " " ++ (blockToString′ (lb ++ " ") B) ++ lb ++ "end" statToString′ lb (local x ← M) = "local " ++ varDecToString x ++ " = " ++ (exprToString′ lb M) statToString′ lb (return M) = "return " ++ (exprToString′ lb M) blockToString′ lb (S ∙ done) = statToString′ lb S blockToString′ lb (S ∙ B) = statToString′ lb S ++ lb ++ blockToString′ lb B blockToString′ lb (done) = "" exprToString : ∀ {a} → Expr a → String exprToString = exprToString′ "\n" statToString : ∀ {a} → Stat a → String statToString = statToString′ "\n" blockToString : ∀ {a} → Block a → String blockToString = blockToString′ "\n"
37.857143
212
0.629057
50c327ac52fdef87e03cb1ac027f1b4bea1963bb
276
agda
Agda
cruft/int-tests.agda
rfindler/ial
f3f0261904577e930bd7646934f756679a6cbba6
[ "MIT" ]
29
2019-02-06T13:09:31.000Z
2022-03-04T15:05:12.000Z
cruft/int-tests.agda
rfindler/ial
f3f0261904577e930bd7646934f756679a6cbba6
[ "MIT" ]
8
2018-07-09T22:53:38.000Z
2022-03-22T03:43:34.000Z
cruft/int-tests.agda
rfindler/ial
f3f0261904577e930bd7646934f756679a6cbba6
[ "MIT" ]
17
2018-12-03T22:38:15.000Z
2021-11-28T20:13:21.000Z
module int-tests where open import int open import eq open import product three : ℤ three = , next next unit{pos} -two : ℤ -two = , next unit{neg} one = -two +ℤ three one-lem : one ≡ ,_ { a = nonzero pos } unit one-lem = refl six = three +ℤ three -four = -two +ℤ -two
12.545455
43
0.641304
23eab2a3262d9a65b242eabef28b2b667eeea423
6,760
agda
Agda
src/Web/Semantic/DL/Category/Properties/Tensor/AssocNatural.agda
agda/agda-web-semantic
8ddbe83965a616bff6fc7a237191fa261fa78bab
[ "MIT" ]
9
2015-09-13T17:46:41.000Z
2020-03-14T14:21:08.000Z
src/Web/Semantic/DL/Category/Properties/Tensor/AssocNatural.agda
agda/agda-web-semantic
8ddbe83965a616bff6fc7a237191fa261fa78bab
[ "MIT" ]
4
2018-11-14T02:32:28.000Z
2021-01-04T20:57:19.000Z
src/Web/Semantic/DL/Category/Properties/Tensor/AssocNatural.agda
agda/agda-web-semantic
8ddbe83965a616bff6fc7a237191fa261fa78bab
[ "MIT" ]
3
2017-12-03T14:52:09.000Z
2022-03-12T11:40:03.000Z
open import Data.Product using ( proj₁ ; proj₂ ) open import Data.Sum using ( _⊎_ ; inj₁ ; inj₂ ) open import Relation.Binary.PropositionalEquality using ( refl ) open import Web.Semantic.DL.ABox.Interp using ( ⌊_⌋ ; ind ; _*_ ) open import Web.Semantic.DL.ABox.Interp.Morphism using ( _,_ ) open import Web.Semantic.DL.ABox.Model using ( _⊨a_ ; on-bnode ; bnodes ; _,_ ; ⊨a-resp-≲ ) open import Web.Semantic.DL.Category.Composition using ( _∙_ ) open import Web.Semantic.DL.Category.Properties.Composition.Lemmas using ( compose-left ; compose-right ; compose-resp-⊨a ) open import Web.Semantic.DL.Category.Properties.Tensor.Lemmas using ( tensor-up ; tensor-down ; tensor-resp-⊨a ) open import Web.Semantic.DL.Category.Object using ( Object ; IN ; fin ) open import Web.Semantic.DL.Category.Morphism using ( _⇒_ ; BN ; impl ; _⊑_ ; _≣_ ; _,_ ) open import Web.Semantic.DL.Category.Tensor using ( _⊗_ ; _⟨⊗⟩_ ) open import Web.Semantic.DL.Category.Unit using ( I ) open import Web.Semantic.DL.Category.Wiring using ( wires-≈ ; wires-≈⁻¹ ; assoc ) open import Web.Semantic.DL.Signature using ( Signature ) open import Web.Semantic.DL.TBox using ( TBox ) open import Web.Semantic.DL.TBox.Interp using ( Δ ; _⊨_≈_ ; ≈-refl ; ≈-refl′ ; ≈-sym ) open import Web.Semantic.DL.TBox.Interp.Morphism using ( ≲-refl ) open import Web.Semantic.Util using ( _∘_ ; False ; ⊎-assoc ; ⊎-assoc⁻¹ ; _⊕_⊕_ ; inode ; bnode ; enode ; left ; right ; up ; down ) module Web.Semantic.DL.Category.Properties.Tensor.AssocNatural {Σ : Signature} {S T : TBox Σ} where assoc-natural : ∀ {A₁ A₂ A₃ B₁ B₂ B₃ : Object S T} (F₁ : A₁ ⇒ B₁) (F₂ : A₂ ⇒ B₂) (F₃ : A₃ ⇒ B₃) → (((F₁ ⟨⊗⟩ F₂) ⟨⊗⟩ F₃) ∙ assoc B₁ B₂ B₃ ≣ assoc A₁ A₂ A₃ ∙ (F₁ ⟨⊗⟩ (F₂ ⟨⊗⟩ F₃))) assoc-natural {A₁} {A₂} {A₃} {B₁} {B₂} {B₃} F₁ F₂ F₃ = (LHS⊑RHS , RHS⊑LHS) where LHS⊑RHS : ((F₁ ⟨⊗⟩ F₂) ⟨⊗⟩ F₃) ∙ assoc B₁ B₂ B₃ ⊑ assoc A₁ A₂ A₃ ∙ (F₁ ⟨⊗⟩ (F₂ ⟨⊗⟩ F₃)) LHS⊑RHS J J⊨STA J⊨LHS = (f , J⊨RHS) where f : (False ⊕ (IN A₁ ⊎ (IN A₂ ⊎ IN A₃)) ⊕ (BN F₁ ⊎ (BN F₂ ⊎ BN F₃))) → Δ ⌊ J ⌋ f (inode ()) f (bnode x) = ind J (inode (⊎-assoc⁻¹ x)) f (enode v) = ind J (bnode (inode (⊎-assoc⁻¹ v))) lemma₁ : ∀ x → ⌊ J ⌋ ⊨ ind J (left (up (up x))) ≈ on-bnode f (ind J) (right (up x)) lemma₁ (inode x) = ≈-refl ⌊ J ⌋ lemma₁ (bnode v) = ≈-refl ⌊ J ⌋ lemma₁ (enode y) = wires-≈ ⊎-assoc⁻¹ (proj₂ (fin (B₁ ⊗ (B₂ ⊗ B₃))) (inj₁ y)) (compose-right ((F₁ ⟨⊗⟩ F₂) ⟨⊗⟩ F₃) (assoc B₁ B₂ B₃) J J⊨LHS) lemma₂ : ∀ x → ⌊ J ⌋ ⊨ ind J (left (up (down x))) ≈ on-bnode f (ind J) (right (down (up x))) lemma₂ (inode x) = ≈-refl ⌊ J ⌋ lemma₂ (bnode v) = ≈-refl ⌊ J ⌋ lemma₂ (enode y) = wires-≈ ⊎-assoc⁻¹ (proj₂ (fin (B₁ ⊗ (B₂ ⊗ B₃))) (inj₂ (inj₁ y))) (compose-right ((F₁ ⟨⊗⟩ F₂) ⟨⊗⟩ F₃) (assoc B₁ B₂ B₃) J J⊨LHS) lemma₃ : ∀ x → ⌊ J ⌋ ⊨ ind J (left (down x)) ≈ on-bnode f (ind J) (right (down (down x))) lemma₃ (inode x) = ≈-refl ⌊ J ⌋ lemma₃ (bnode v) = ≈-refl ⌊ J ⌋ lemma₃ (enode y) = wires-≈ ⊎-assoc⁻¹ (proj₂ (fin (B₁ ⊗ (B₂ ⊗ B₃))) (inj₂ (inj₂ y))) (compose-right ((F₁ ⟨⊗⟩ F₂) ⟨⊗⟩ F₃) (assoc B₁ B₂ B₃) J J⊨LHS) J⊨RHS : bnodes J f ⊨a impl (assoc A₁ A₂ A₃ ∙ (F₁ ⟨⊗⟩ (F₂ ⟨⊗⟩ F₃))) J⊨RHS = compose-resp-⊨a (assoc A₁ A₂ A₃) (F₁ ⟨⊗⟩ (F₂ ⟨⊗⟩ F₃)) (bnodes J f) (wires-≈⁻¹ ⊎-assoc⁻¹ (λ x → ≈-refl ⌊ J ⌋) (proj₁ (fin (A₁ ⊗ (A₂ ⊗ A₃))))) (tensor-resp-⊨a F₁ (F₂ ⟨⊗⟩ F₃) (right * bnodes J f) (⊨a-resp-≲ (≲-refl ⌊ J ⌋ , lemma₁) (impl F₁) (tensor-up F₁ F₂ (up * left * J) (tensor-up (F₁ ⟨⊗⟩ F₂) F₃ (left * J) (compose-left ((F₁ ⟨⊗⟩ F₂) ⟨⊗⟩ F₃) (assoc B₁ B₂ B₃) J J⊨LHS)))) (tensor-resp-⊨a F₂ F₃ (down * right * bnodes J f) (⊨a-resp-≲ (≲-refl ⌊ J ⌋ , lemma₂) (impl F₂) (tensor-down F₁ F₂ (up * left * J) (tensor-up (F₁ ⟨⊗⟩ F₂) F₃ (left * J) (compose-left ((F₁ ⟨⊗⟩ F₂) ⟨⊗⟩ F₃) (assoc B₁ B₂ B₃) J J⊨LHS)))) (⊨a-resp-≲ (≲-refl ⌊ J ⌋ , lemma₃) (impl F₃) (tensor-down (F₁ ⟨⊗⟩ F₂) F₃ (left * J) (compose-left ((F₁ ⟨⊗⟩ F₂) ⟨⊗⟩ F₃) (assoc B₁ B₂ B₃) J J⊨LHS))))) RHS⊑LHS : assoc A₁ A₂ A₃ ∙ (F₁ ⟨⊗⟩ (F₂ ⟨⊗⟩ F₃)) ⊑ ((F₁ ⟨⊗⟩ F₂) ⟨⊗⟩ F₃) ∙ assoc B₁ B₂ B₃ RHS⊑LHS J J⊨STA J⊨RHS = (f , J⊨LHS) where f : (((BN F₁ ⊎ BN F₂) ⊎ BN F₃) ⊕ ((IN B₁ ⊎ IN B₂) ⊎ IN B₃) ⊕ False) → Δ ⌊ J ⌋ f (inode v) = ind J (bnode (enode (⊎-assoc v))) f (bnode y) = ind J (enode (⊎-assoc y)) f (enode ()) lemma₀ : ∀ x → ⌊ J ⌋ ⊨ ind J (enode (⊎-assoc (⊎-assoc⁻¹ x))) ≈ ind J (enode x) lemma₀ (inj₁ x) = ≈-refl ⌊ J ⌋ lemma₀ (inj₂ (inj₁ x)) = ≈-refl ⌊ J ⌋ lemma₀ (inj₂ (inj₂ y)) = ≈-refl ⌊ J ⌋ lemma₁ : ∀ x → ⌊ J ⌋ ⊨ ind J (right (up x)) ≈ on-bnode f (ind J) (left (up (up x))) lemma₁ (inode x) = ≈-sym ⌊ J ⌋ (wires-≈ ⊎-assoc⁻¹ (proj₂ (fin (A₁ ⊗ (A₂ ⊗ A₃))) (inj₁ x)) (compose-left (assoc A₁ A₂ A₃) (F₁ ⟨⊗⟩ (F₂ ⟨⊗⟩ F₃)) J J⊨RHS)) lemma₁ (bnode v) = ≈-refl ⌊ J ⌋ lemma₁ (enode y) = ≈-refl ⌊ J ⌋ lemma₂ : ∀ x → ⌊ J ⌋ ⊨ ind J (right (down (up x))) ≈ on-bnode f (ind J) (left (up (down x))) lemma₂ (inode x) = ≈-sym ⌊ J ⌋ (wires-≈ ⊎-assoc⁻¹ (proj₂ (fin (A₁ ⊗ (A₂ ⊗ A₃))) (inj₂ (inj₁ x))) (compose-left (assoc A₁ A₂ A₃) (F₁ ⟨⊗⟩ (F₂ ⟨⊗⟩ F₃)) J J⊨RHS)) lemma₂ (bnode v) = ≈-refl ⌊ J ⌋ lemma₂ (enode y) = ≈-refl ⌊ J ⌋ lemma₃ : ∀ x → ⌊ J ⌋ ⊨ ind J (right (down (down x))) ≈ on-bnode f (ind J) (left (down x)) lemma₃ (inode x) = ≈-sym ⌊ J ⌋ (wires-≈ ⊎-assoc⁻¹ (proj₂ (fin (A₁ ⊗ (A₂ ⊗ A₃))) (inj₂ (inj₂ x))) (compose-left (assoc A₁ A₂ A₃) (F₁ ⟨⊗⟩ (F₂ ⟨⊗⟩ F₃)) J J⊨RHS)) lemma₃ (bnode v) = ≈-refl ⌊ J ⌋ lemma₃ (enode y) = ≈-refl ⌊ J ⌋ J⊨LHS : bnodes J f ⊨a impl (((F₁ ⟨⊗⟩ F₂) ⟨⊗⟩ F₃) ∙ assoc B₁ B₂ B₃) J⊨LHS = compose-resp-⊨a ((F₁ ⟨⊗⟩ F₂) ⟨⊗⟩ F₃) (assoc B₁ B₂ B₃) (bnodes J f) (tensor-resp-⊨a (F₁ ⟨⊗⟩ F₂) F₃ (left * bnodes J f) (tensor-resp-⊨a F₁ F₂ (up * left * bnodes J f) (⊨a-resp-≲ (≲-refl ⌊ J ⌋ , lemma₁) (impl F₁) (tensor-up F₁ (F₂ ⟨⊗⟩ F₃) (right * J) (compose-right (assoc A₁ A₂ A₃) (F₁ ⟨⊗⟩ (F₂ ⟨⊗⟩ F₃)) J J⊨RHS))) (⊨a-resp-≲ (≲-refl ⌊ J ⌋ , lemma₂) (impl F₂) (tensor-up F₂ F₃ (down * right * J) (tensor-down F₁ (F₂ ⟨⊗⟩ F₃) (right * J) (compose-right (assoc A₁ A₂ A₃) (F₁ ⟨⊗⟩ (F₂ ⟨⊗⟩ F₃)) J J⊨RHS))))) (⊨a-resp-≲ (≲-refl ⌊ J ⌋ , lemma₃) (impl F₃) (tensor-down F₂ F₃ (down * right * J) (tensor-down F₁ (F₂ ⟨⊗⟩ F₃) (right * J) (compose-right (assoc A₁ A₂ A₃) (F₁ ⟨⊗⟩ (F₂ ⟨⊗⟩ F₃)) J J⊨RHS))))) (wires-≈⁻¹ ⊎-assoc⁻¹ lemma₀ (proj₁ (fin (B₁ ⊗ (B₂ ⊗ B₃)))))
46.30137
82
0.513462
a1dc82bed38362aa973f43a5acc0ac4f71f44dab
2,183
agda
Agda
src/even.agda
shinji-kono/automaton-in-agda
eba0538f088f3d0c0fedb19c47c081954fbc69cb
[ "MIT" ]
null
null
null
src/even.agda
shinji-kono/automaton-in-agda
eba0538f088f3d0c0fedb19c47c081954fbc69cb
[ "MIT" ]
null
null
null
src/even.agda
shinji-kono/automaton-in-agda
eba0538f088f3d0c0fedb19c47c081954fbc69cb
[ "MIT" ]
null
null
null
module even where open import Data.Nat open import Data.Nat.Properties open import Data.Empty open import Data.Unit using (⊤ ; tt) open import Relation.Nullary open import Relation.Binary.PropositionalEquality open import Relation.Binary.Definitions open import nat open import logic even : (n : ℕ ) → Set even zero = ⊤ even (suc zero) = ⊥ even (suc (suc n)) = even n even? : (n : ℕ ) → Dec ( even n ) even? zero = yes tt even? (suc zero) = no (λ ()) even? (suc (suc n)) = even? n n+even : {n m : ℕ } → even n → even m → even ( n + m ) n+even {zero} {zero} tt tt = tt n+even {zero} {suc m} tt em = em n+even {suc (suc n)} {m} en em = n+even {n} {m} en em n*even : {m n : ℕ } → even n → even ( m * n ) n*even {zero} {n} en = tt n*even {suc m} {n} en = n+even {n} {m * n} en (n*even {m} {n} en) even*n : {n m : ℕ } → even n → even ( n * m ) even*n {n} {m} en = subst even (*-comm m n) (n*even {m} {n} en) record Even (i : ℕ) : Set where field j : ℕ is-twice : i ≡ 2 * j e2 : (i : ℕ) → even i → Even i e2 zero en = record { j = 0 ; is-twice = refl } e2 (suc (suc i)) en = record { j = suc (Even.j (e2 i en )) ; is-twice = e21 } where e21 : suc (suc i) ≡ 2 * suc (Even.j (e2 i en)) e21 = begin suc (suc i) ≡⟨ cong (λ k → suc (suc k)) (Even.is-twice (e2 i en)) ⟩ suc (suc (2 * Even.j (e2 i en))) ≡⟨ sym (*-distribˡ-+ 2 1 _) ⟩ 2 * suc (Even.j (e2 i en)) ∎ where open ≡-Reasoning record Odd (i : ℕ) : Set where field j : ℕ is-twice : i ≡ suc (2 * j ) odd2 : (i : ℕ) → ¬ even i → even (suc i) odd2 zero ne = ⊥-elim ( ne tt ) odd2 (suc zero) ne = tt odd2 (suc (suc i)) ne = odd2 i ne odd3 : (i : ℕ) → ¬ even i → Odd i odd3 zero ne = ⊥-elim ( ne tt ) odd3 (suc zero) ne = record { j = 0 ; is-twice = refl } odd3 (suc (suc i)) ne = record { j = Even.j (e2 (suc i) (odd2 i ne)) ; is-twice = odd31 } where odd31 : suc (suc i) ≡ suc (2 * Even.j (e2 (suc i) (odd2 i ne))) odd31 = begin suc (suc i) ≡⟨ cong suc (Even.is-twice (e2 (suc i) (odd2 i ne))) ⟩ suc (2 * (Even.j (e2 (suc i) (odd2 i ne)))) ∎ where open ≡-Reasoning odd4 : (i : ℕ) → even i → ¬ even ( suc i ) odd4 (suc (suc i)) en en1 = odd4 i en en1
30.319444
96
0.54787
dc97001b86c6b4f57f2db9216b285a9d91c5c66b
2,968
agda
Agda
proglangs-learning/Agda/sv20/exam1.agda
helq/old_code
a432faf1b340cb379190a2f2b11b997b02d1cd8d
[ "CC0-1.0" ]
null
null
null
proglangs-learning/Agda/sv20/exam1.agda
helq/old_code
a432faf1b340cb379190a2f2b11b997b02d1cd8d
[ "CC0-1.0" ]
4
2020-03-10T19:20:21.000Z
2021-06-07T15:39:48.000Z
proglangs-learning/Agda/sv20/exam1.agda
helq/old_code
a432faf1b340cb379190a2f2b11b997b02d1cd8d
[ "CC0-1.0" ]
null
null
null
module sv20.exam1 where open import Data.Product using (∃-syntax) renaming (_,_ to ⟨_,_⟩) open import Data.Sum using (_⊎_; inj₁; inj₂) open import Function.Base using (_∘_) record _⇔_ (A B : Set) : Set where field to : A → B from : B → A -- An idiom that makes things slightly more readable (sometimes) case_of_ : ∀ {a b} {A : Set a} {B : Set b} → A → (A → B) → B case x of f = f x -- Exam starts from here: -- 1. first : ∀ {Object : Set} {P Q : Object → Set} → (∃[ x ] (P x ⊎ Q x)) ⇔ (∃[ x ] (P x) ⊎ ∃[ x ] (Q x)) -- We prove each side separately of the bijection separately. If we are able to -- prove both ways, we will have proved the bijection first = record { to = to ; from = from } where -- First, we prove that (∃[ x ] (P x ⊎ Q x)) → (∃[ x ] (P x) ⊎ ∃[ x ] (Q x)) to : ∀ {Object : Set} {P Q : Object → Set} → (∃[ x ] (P x ⊎ Q x)) → (∃[ x ] (P x) ⊎ ∃[ x ] (Q x)) -- Proof --to ⟨ x , inj₁ px ⟩ = inj₁ ⟨ x , px ⟩ --to ⟨ x , inj₂ qx ⟩ = inj₂ ⟨ x , qx ⟩ -- -- Proof explained: to ∃x-px⊎qx = let ⟨ x , px⊎qx ⟩ = ∃x-px⊎qx -- From ∃[ x ] (P x ⊎ Q x) we find an element x that fullfills (P x ⊎ Q x) in case px⊎qx of -- P x ⊎ Q x indicates two possible cases, either λ { (inj₁ px) → inj₁ ⟨ x , px ⟩ -- P x is true, and so ∃[ x ] (P x) ; (inj₂ qx) → inj₂ ⟨ x , qx ⟩ -- or, Q x is true, and so ∃[ x ] (Q x) } -- Now, we prove the inverse (∃[ x ] (P x) ⊎ ∃[ x ] (Q x)) → (∃[ x ] (P x ⊎ Q x)) from : ∀ {Object : Set} {P Q : Object → Set} → (∃[ x ] (P x) ⊎ ∃[ x ] (Q x)) → (∃[ x ] (P x ⊎ Q x)) -- Proof --from (inj₁ ⟨ x , px ⟩) = ⟨ x , inj₁ px ⟩ --from (inj₂ ⟨ x , qx ⟩) = ⟨ x , inj₂ qx ⟩ -- -- Proof explained: -- There are two possible properties that get fulfilled, either from (inj₁ ⟨ x , px ⟩) = ⟨ x , inj₁ px ⟩ -- ∃[ x ] (P x) gets fulfilled from (inj₂ ⟨ x , qx ⟩) = ⟨ x , inj₂ qx ⟩ -- or, ∃[ x ] (Q x) gets fulfilled -- 2. second : ∀ {Object : Set} {P Q : Object → Set} {_R_ : Object → Object → Set} → ∃[ x ] (P x) → ∃[ x ] (Q x) → (∀ x → P x → ∀ y → Q y → x R y) --------------------------------- → ∃[ x ] ∃[ y ] (x R y) --Proof: --second ⟨ x₁ , px₁ ⟩ ⟨ x₂ , qx₂ ⟩ ∀x→px→∀y→qy→xry = ⟨ x₁ , ⟨ x₂ , ∀x→px→∀y→qy→xry x₁ px₁ x₂ qx₂ ⟩ ⟩ -- --Proof explained: second ∃x-px ∃x-qx ∀x→px→∀y→qy→xry = let ⟨ x₁ , px₁ ⟩ = ∃x-px -- If we have a value from ∃[ x ] (P x), we can get an x₁ that fulfills P ⟨ x₂ , qx₂ ⟩ = ∃x-qx -- and there is a value x₂ that fulfills Q px→∀y→qy→xry = ∀x→px→∀y→qy→xry x₁ -- For all x it is true that (P x → ∀ y → Q y → x R y), including x₁ ∀y→qy→xry = px→∀y→qy→xry px₁ -- P is fulfilled by x₁ xry = ∀y→qy→xry x₂ qx₂ -- In a similar way, x₂ is a value that fulfills Qy, so we can instanciate (∀ y → Q y → x₁ R y) into (x₁ R x₂) in ⟨ x₁ , ⟨ x₂ , xry ⟩ ⟩ -- So, we know there is an element x₁ and an element x₂ for which x₁ R x₂ is true
39.573333
150
0.488208
239c394f3c17122d99d2f8ffa68c72e3e36e3fd7
1,187
agda
Agda
LibraBFT/Impl/Consensus/Network/Properties.agda
oracle/bft-consensus-agda
49f8b1b70823be805d84ffc3157c3b880edb1e92
[ "UPL-1.0" ]
4
2020-12-16T19:43:41.000Z
2021-12-18T19:24:05.000Z
LibraBFT/Impl/Consensus/Network/Properties.agda
oracle/bft-consensus-agda
49f8b1b70823be805d84ffc3157c3b880edb1e92
[ "UPL-1.0" ]
72
2021-02-04T05:04:33.000Z
2022-03-25T05:36:11.000Z
LibraBFT/Impl/Consensus/Network/Properties.agda
oracle/bft-consensus-agda
49f8b1b70823be805d84ffc3157c3b880edb1e92
[ "UPL-1.0" ]
6
2020-12-16T19:43:52.000Z
2022-02-18T01:04:32.000Z
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Base.Types open import LibraBFT.Concrete.Records open import LibraBFT.ImplShared.Base.Types open import LibraBFT.ImplShared.Consensus.Types open import LibraBFT.ImplShared.NetworkMsg open import LibraBFT.ImplShared.Util.Util open import LibraBFT.Impl.Consensus.Network open import LibraBFT.Impl.Properties.Util open import LibraBFT.Prelude open import Optics.All module LibraBFT.Impl.Consensus.Network.Properties where open Invariants module processProposalSpec (proposal : ProposalMsg) (myEpoch : Epoch) (vv : ValidatorVerifier) where postulate -- TODO-2: Refine contract -- We also need to know that the the proposal message was successfully -- checked by `ProposalMsg.verify` contract : case (processProposal proposal myEpoch vv) of λ where (Left _) → Unit (Right _) → proposal ^∙ pmProposal ∙ bEpoch ≡ myEpoch × BlockId-correct (proposal ^∙ pmProposal)
37.09375
111
0.757372
a1f2716d64f2f68dbe698ccd3bb08d11010a6b5d
2,849
agda
Agda
Cubical/Functions/Surjection.agda
maxdore/cubical
ef62b84397396d48135d73ba7400b71c721ddc94
[ "MIT" ]
null
null
null
Cubical/Functions/Surjection.agda
maxdore/cubical
ef62b84397396d48135d73ba7400b71c721ddc94
[ "MIT" ]
null
null
null
Cubical/Functions/Surjection.agda
maxdore/cubical
ef62b84397396d48135d73ba7400b71c721ddc94
[ "MIT" ]
null
null
null
{-# OPTIONS --safe #-} module Cubical.Functions.Surjection where open import Cubical.Core.Everything open import Cubical.Data.Sigma open import Cubical.Data.Unit open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.Univalence open import Cubical.Functions.Embedding open import Cubical.HITs.PropositionalTruncation as PropTrunc private variable ℓ ℓ' : Level A : Type ℓ B : Type ℓ' f : A → B isSurjection : (A → B) → Type _ isSurjection f = ∀ b → ∥ fiber f b ∥ _↠_ : Type ℓ → Type ℓ' → Type (ℓ-max ℓ ℓ') A ↠ B = Σ[ f ∈ (A → B) ] isSurjection f section→isSurjection : {g : B → A} → section f g → isSurjection f section→isSurjection {g = g} s b = ∣ g b , s b ∣ isSurjectionIsProp : isProp (isSurjection f) isSurjectionIsProp = isPropΠ λ _ → squash isEquiv→isSurjection : isEquiv f → isSurjection f isEquiv→isSurjection e b = ∣ fst (equiv-proof e b) ∣ isEquiv→isEmbedding×isSurjection : isEquiv f → isEmbedding f × isSurjection f isEquiv→isEmbedding×isSurjection e = isEquiv→isEmbedding e , isEquiv→isSurjection e isEmbedding×isSurjection→isEquiv : isEmbedding f × isSurjection f → isEquiv f equiv-proof (isEmbedding×isSurjection→isEquiv {f = f} (emb , sur)) b = inhProp→isContr (PropTrunc.rec fib' (λ x → x) fib) fib' where hpf : hasPropFibers f hpf = isEmbedding→hasPropFibers emb fib : ∥ fiber f b ∥ fib = sur b fib' : isProp (fiber f b) fib' = hpf b isEquiv≃isEmbedding×isSurjection : isEquiv f ≃ isEmbedding f × isSurjection f isEquiv≃isEmbedding×isSurjection = isoToEquiv (iso isEquiv→isEmbedding×isSurjection isEmbedding×isSurjection→isEquiv (λ _ → isOfHLevelΣ 1 isEmbeddingIsProp (\ _ → isSurjectionIsProp) _ _) (λ _ → isPropIsEquiv _ _ _)) isPropIsSurjection : isProp (isSurjection f) isPropIsSurjection = isPropΠ λ _ → propTruncIsProp -- obs: for epi⇒surjective to go through we require a stronger -- hypothesis that one would expect: -- f must cancel functions from a higher universe. rightCancellable : (f : A → B) → Type _ rightCancellable {ℓ} {A} {ℓ'} {B} f = ∀ {C : Type (ℓ-suc (ℓ-max ℓ ℓ'))} → ∀ (g g' : B → C) → (∀ x → g (f x) ≡ g' (f x)) → ∀ y → g y ≡ g' y -- This statement is in Mac Lane & Moerdijk (page 143, corollary 5). epi⇒surjective : (f : A → B) → rightCancellable f → isSurjection f epi⇒surjective f rc y = transport (fact₂ y) tt* where hasPreimage : (A → B) → B → _ hasPreimage f y = ∥ fiber f y ∥ fact₁ : ∀ x → Unit* ≡ hasPreimage f (f x) fact₁ x = hPropExt isPropUnit* propTruncIsProp (λ _ → ∣ (x , refl) ∣) (λ _ → tt*) fact₂ : ∀ y → Unit* ≡ hasPreimage f y fact₂ = rc _ _ fact₁
33.916667
83
0.665497
df4660256a50e711c9f5de5f729a1b3f5b5f956e
11,095
agda
Agda
Fields/CauchyCompletion/Group.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
4
2019-08-08T12:44:19.000Z
2022-01-28T06:04:15.000Z
Fields/CauchyCompletion/Group.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
14
2019-01-06T21:11:59.000Z
2020-04-11T11:03:39.000Z
Fields/CauchyCompletion/Group.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
1
2021-11-29T13:23:07.000Z
2021-11-29T13:23:07.000Z
{-# OPTIONS --safe --warning=error --without-K --guardedness #-} open import Setoids.Setoids open import Rings.Definition open import Rings.Orders.Partial.Definition open import Rings.Orders.Total.Definition open import Groups.Definition open import Groups.Lemmas open import Groups.Homomorphisms.Definition open import Fields.Fields open import Sets.EquivalenceRelations open import Sequences open import Setoids.Orders.Partial.Definition open import Setoids.Orders.Total.Definition open import Functions.Definition open import LogicalFormulae open import Numbers.Naturals.Semiring open import Numbers.Naturals.Order module Fields.CauchyCompletion.Group {m n o : _} {A : Set m} {S : Setoid {m} {n} A} {_+_ : A → A → A} {_*_ : A → A → A} {_<_ : Rel {m} {o} A} {pOrder : SetoidPartialOrder S _<_} {R : Ring S _+_ _*_} {pRing : PartiallyOrderedRing R pOrder} (order : TotallyOrderedRing pRing) (F : Field R) where open Setoid S open SetoidTotalOrder (TotallyOrderedRing.total order) open SetoidPartialOrder pOrder open Equivalence eq open TotallyOrderedRing order open Field F open Group (Ring.additiveGroup R) open Ring R open import Rings.Orders.Total.Lemmas order open import Rings.Orders.Total.AbsoluteValue order open import Fields.CauchyCompletion.Definition order F open import Fields.CauchyCompletion.Addition order F open import Fields.CauchyCompletion.Setoid order F abstract +CCommutative : (a b : CauchyCompletion) → Setoid._∼_ cauchyCompletionSetoid (a +C b) (b +C a) +CCommutative a b ε 0<e = 0 , ans where foo : {x y : A} → (x + y) + inverse (y + x) ∼ 0G foo = Equivalence.transitive eq (+WellDefined (Equivalence.reflexive eq) (inverseWellDefined additiveGroup groupIsAbelian)) invRight ans : {m : ℕ} → 0 <N m → abs (index (apply _+_ (CauchyCompletion.elts (a +C b)) (map inverse (CauchyCompletion.elts (b +C a)))) m) < ε ans {m} 0<m rewrite indexAndApply (CauchyCompletion.elts (a +C b)) (map inverse (CauchyCompletion.elts (b +C a))) _+_ {m} | indexAndApply (CauchyCompletion.elts a) (CauchyCompletion.elts b) _+_ {m} | equalityCommutative (mapAndIndex (apply _+_ (CauchyCompletion.elts b) (CauchyCompletion.elts a)) inverse m) | indexAndApply (CauchyCompletion.elts b) (CauchyCompletion.elts a) _+_ {m} = <WellDefined (Equivalence.symmetric eq (Equivalence.transitive eq (absWellDefined _ _ foo) (identityOfIndiscernablesRight _∼_ (Equivalence.reflexive eq) absZero))) (Equivalence.reflexive eq) 0<e private abstract additionWellDefinedLeft : (a b c : CauchyCompletion) → Setoid._∼_ cauchyCompletionSetoid a b → Setoid._∼_ cauchyCompletionSetoid (a +C c) (b +C c) additionWellDefinedLeft record { elts = a ; converges = aConv } record { elts = b ; converges = bConv } record { elts = c ; converges = cConv } a=b ε 0<e with a=b ε 0<e ... | Na-b , prA-b = Na-b , ans where ans : {m : ℕ} → Na-b <N m → abs (index (apply _+_ (apply _+_ a c) (map inverse (apply _+_ b c))) m) < ε ans {m} mBig with prA-b {m} mBig ... | bl rewrite indexAndApply (apply _+_ a c) (map inverse (apply _+_ b c)) _+_ {m} | indexAndApply a c _+_ {m} | equalityCommutative (mapAndIndex (apply _+_ b c) inverse m) | indexAndApply b c _+_ {m} = <WellDefined (absWellDefined _ _ t) (Equivalence.reflexive eq) bl where t : index (apply _+_ a (map inverse b)) m ∼ ((index a m + index c m) + inverse (index b m + index c m)) t rewrite indexAndApply a (map inverse b) _+_ {m} | equalityCommutative (mapAndIndex b inverse m) = Equivalence.transitive eq (+WellDefined (Equivalence.reflexive eq) (Equivalence.transitive eq (Equivalence.transitive eq (Equivalence.transitive eq (Equivalence.symmetric eq identLeft) (+WellDefined (Equivalence.symmetric eq invRight) (Equivalence.reflexive eq))) (Equivalence.symmetric eq +Associative)) (+WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq (invContravariant additiveGroup))))) (+Associative {index a m}) additionPreservedLeft : {a b : A} {c : CauchyCompletion} → (a ∼ b) → Setoid._∼_ cauchyCompletionSetoid (injection a +C c) (injection b +C c) additionPreservedLeft {a} {b} {c} a=b = additionWellDefinedLeft (injection a) (injection b) c (injectionPreservesSetoid a b a=b) additionPreservedRight : {a b : A} {c : CauchyCompletion} → (a ∼ b) → Setoid._∼_ cauchyCompletionSetoid (c +C injection a) (c +C injection b) additionPreservedRight {a} {b} {c} a=b = Equivalence.transitive (Setoid.eq cauchyCompletionSetoid) {c +C injection a} {injection a +C c} {c +C injection b} (+CCommutative c (injection a)) (Equivalence.transitive (Setoid.eq cauchyCompletionSetoid) {injection a +C c} {injection b +C c} {c +C injection b} (additionPreservedLeft {a} {b} {c} a=b) (+CCommutative (injection b) c)) additionPreserved : {a b c d : A} → (a ∼ b) → (c ∼ d) → Setoid._∼_ cauchyCompletionSetoid (injection a +C injection c) (injection b +C injection d) additionPreserved {a} {b} {c} {d} a=b c=d = Equivalence.transitive (Setoid.eq cauchyCompletionSetoid) {injection a +C injection c} {injection a +C injection d} {injection b +C injection d} (additionPreservedRight {c} {d} {injection a} c=d) (additionPreservedLeft {a} {b} {injection d} a=b) additionWellDefinedRight : (a b c : CauchyCompletion) → Setoid._∼_ cauchyCompletionSetoid b c → Setoid._∼_ cauchyCompletionSetoid (a +C b) (a +C c) additionWellDefinedRight a b c b=c = Equivalence.transitive (Setoid.eq cauchyCompletionSetoid) {a +C b} {b +C a} {a +C c} (+CCommutative a b) (Equivalence.transitive (Setoid.eq cauchyCompletionSetoid) {b +C a} {c +C a} {a +C c} (additionWellDefinedLeft b c a b=c) (+CCommutative c a)) additionWellDefined : {a b c d : CauchyCompletion} → Setoid._∼_ cauchyCompletionSetoid a b → Setoid._∼_ cauchyCompletionSetoid c d → Setoid._∼_ cauchyCompletionSetoid (a +C c) (b +C d) additionWellDefined {a} {b} {c} {d} a=b c=d = Equivalence.transitive (Setoid.eq cauchyCompletionSetoid) {a +C c} {a +C d} {b +C d} (additionWellDefinedRight a c d c=d) (additionWellDefinedLeft a b d a=b) additionHom : (x y : A) → Setoid._∼_ cauchyCompletionSetoid (injection (x + y)) (injection x +C injection y) additionHom x y ε 0<e = 0 , ans where ans : {m : ℕ} → 0 <N m → abs (index (apply _+_ (CauchyCompletion.elts (injection (x + y))) (map inverse (CauchyCompletion.elts (injection x +C injection y)))) m) < ε ans {m} 0<m rewrite indexAndApply (CauchyCompletion.elts (injection (x + y))) (map inverse (CauchyCompletion.elts (injection x +C injection y))) _+_ {m} | equalityCommutative (mapAndIndex (apply _+_ (constSequence x) (constSequence y)) inverse m) | indexAndConst (x + y) m | indexAndApply (constSequence x) (constSequence y) _+_ {m} | indexAndConst x m | indexAndConst y m = <WellDefined (Equivalence.symmetric eq (Equivalence.transitive eq (absWellDefined _ _ invRight) (identityOfIndiscernablesRight _∼_ (Equivalence.reflexive eq) absZero))) (Equivalence.reflexive eq) 0<e Cassoc : {a b c : CauchyCompletion} → Setoid._∼_ cauchyCompletionSetoid (a +C (b +C c)) ((a +C b) +C c) Cassoc {a} {b} {c} ε 0<e = 0 , ans where ans : {m : ℕ} → 0 <N m → abs (index (CauchyCompletion.elts ((a +C (b +C c)) +C (-C ((a +C b) +C c)))) m) < ε ans {m} 0<m rewrite indexAndApply (CauchyCompletion.elts (a +C (b +C c))) (map inverse (CauchyCompletion.elts ((a +C b) +C c))) _+_ {m} | indexAndApply (CauchyCompletion.elts a) (apply _+_ (CauchyCompletion.elts b) (CauchyCompletion.elts c)) _+_ {m} | equalityCommutative (mapAndIndex (apply _+_ (apply _+_ (CauchyCompletion.elts a) (CauchyCompletion.elts b)) (CauchyCompletion.elts c)) inverse m) | indexAndApply (CauchyCompletion.elts b) (CauchyCompletion.elts c) _+_ {m} | indexAndApply (apply _+_ (CauchyCompletion.elts a) (CauchyCompletion.elts b)) (CauchyCompletion.elts c) _+_ {m} | indexAndApply (CauchyCompletion.elts a) (CauchyCompletion.elts b) _+_ {m} = <WellDefined (Equivalence.symmetric eq (Equivalence.transitive eq (absWellDefined _ _ (transferToRight'' (Ring.additiveGroup R) +Associative)) (identityOfIndiscernablesRight _∼_ (Equivalence.reflexive eq) absZero))) (Equivalence.reflexive eq) 0<e CidentRight : {a : CauchyCompletion} → Setoid._∼_ cauchyCompletionSetoid (a +C injection 0G) a CidentRight {a} ε 0<e = 0 , ans where ans : {m : ℕ} → 0 <N m → abs (index (apply _+_ (CauchyCompletion.elts (a +C injection 0G)) (map inverse (CauchyCompletion.elts a))) m) < ε ans {m} 0<m rewrite indexAndApply (CauchyCompletion.elts (a +C injection 0G)) (map inverse (CauchyCompletion.elts a)) _+_ {m} | indexAndApply (CauchyCompletion.elts a) (constSequence 0G) _+_ {m} | equalityCommutative (mapAndIndex (CauchyCompletion.elts a) inverse m) | indexAndConst 0G m = <WellDefined (Equivalence.symmetric eq (Equivalence.transitive eq (absWellDefined _ _ (Equivalence.transitive eq (+WellDefined (identRight) (Equivalence.reflexive eq)) (invRight))) (identityOfIndiscernablesRight _∼_ (Equivalence.reflexive eq) absZero))) (Equivalence.reflexive eq) 0<e CidentLeft : {a : CauchyCompletion} → Setoid._∼_ cauchyCompletionSetoid (injection 0G +C a) a CidentLeft {a} = Equivalence.transitive (Setoid.eq cauchyCompletionSetoid) {injection 0G +C a} {a +C injection 0G} {a} (+CCommutative (injection 0G) a) (CidentRight {a}) CinvRight : {a : CauchyCompletion} → Setoid._∼_ cauchyCompletionSetoid (a +C (-C a)) (injection 0G) CinvRight {a} ε 0<e = 0 , ans where ans : {m : ℕ} → (0 <N m) → abs (index (apply _+_ (CauchyCompletion.elts (a +C (-C a))) (map inverse (CauchyCompletion.elts (injection 0G)))) m) < ε ans {m} 0<m rewrite indexAndApply (CauchyCompletion.elts (a +C (-C a))) (map inverse (CauchyCompletion.elts (injection 0G))) _+_ {m} | indexAndApply (CauchyCompletion.elts a) (map inverse (CauchyCompletion.elts a)) _+_ {m} | equalityCommutative (mapAndIndex (CauchyCompletion.elts a) inverse m) | equalityCommutative (mapAndIndex (constSequence 0G) inverse m) | indexAndConst 0G m = <WellDefined (Equivalence.symmetric eq (Equivalence.transitive eq (absWellDefined _ _ (Equivalence.transitive eq (+WellDefined invRight (invIdent (Ring.additiveGroup R))) identRight)) (identityOfIndiscernablesRight _∼_ (Equivalence.reflexive eq) absZero))) (Equivalence.reflexive eq) 0<e CGroup : Group cauchyCompletionSetoid _+C_ Group.+WellDefined CGroup {a} {b} {c} {d} x y = additionWellDefined {a} {c} {b} {d} x y Group.0G CGroup = injection 0G Group.inverse CGroup = -C_ Group.+Associative CGroup {a} {b} {c} = Cassoc {a} {b} {c} Group.identRight CGroup {a} = CidentRight {a} Group.identLeft CGroup {a} = CidentLeft {a} Group.invLeft CGroup {a} = Equivalence.transitive (Setoid.eq cauchyCompletionSetoid) {(-C a) +C a} {a +C (-C a)} {injection 0G} (+CCommutative (-C a) a) (CinvRight {a}) Group.invRight CGroup {a} = CinvRight {a} CInjectionGroupHom : GroupHom (Ring.additiveGroup R) CGroup injection GroupHom.groupHom CInjectionGroupHom {x} {y} = additionHom x y GroupHom.wellDefined CInjectionGroupHom {x} {y} x=y = SetoidInjection.wellDefined CInjection {x} {y} x=y
97.324561
920
0.713925
50c5f5a44f651409534c15273aee3cfccaca6bef
10,612
agda
Agda
Cubical/Data/Nat/Order.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
1
2022-02-05T01:25:26.000Z
2022-02-05T01:25:26.000Z
Cubical/Data/Nat/Order.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
Cubical/Data/Nat/Order.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
{-# OPTIONS --no-exact-split --safe #-} module Cubical.Data.Nat.Order where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.HLevels open import Cubical.Data.Empty as ⊥ open import Cubical.Data.Sigma open import Cubical.Data.Sum as ⊎ open import Cubical.Data.Nat.Base open import Cubical.Data.Nat.Properties open import Cubical.Induction.WellFounded open import Cubical.Relation.Nullary infix 4 _≤_ _<_ _≤_ : ℕ → ℕ → Type₀ m ≤ n = Σ[ k ∈ ℕ ] k + m ≡ n _<_ : ℕ → ℕ → Type₀ m < n = suc m ≤ n data Trichotomy (m n : ℕ) : Type₀ where lt : m < n → Trichotomy m n eq : m ≡ n → Trichotomy m n gt : n < m → Trichotomy m n private variable k l m n : ℕ private witness-prop : ∀ j → isProp (j + m ≡ n) witness-prop {m} {n} j = isSetℕ (j + m) n m≤n-isProp : isProp (m ≤ n) m≤n-isProp {m} {n} (k , p) (l , q) = Σ≡Prop witness-prop lemma where lemma : k ≡ l lemma = inj-+m (p ∙ (sym q)) zero-≤ : 0 ≤ n zero-≤ {n} = n , +-zero n suc-≤-suc : m ≤ n → suc m ≤ suc n suc-≤-suc (k , p) = k , (+-suc k _) ∙ (cong suc p) ≤-+k : m ≤ n → m + k ≤ n + k ≤-+k {m} {k = k} (i , p) = i , +-assoc i m k ∙ cong (_+ k) p ≤-k+ : m ≤ n → k + m ≤ k + n ≤-k+ {m} {n} {k} = subst (_≤ k + n) (+-comm m k) ∘ subst (m + k ≤_) (+-comm n k) ∘ ≤-+k pred-≤-pred : suc m ≤ suc n → m ≤ n pred-≤-pred (k , p) = k , injSuc ((sym (+-suc k _)) ∙ p) ≤-refl : m ≤ m ≤-refl = 0 , refl ≤-suc : m ≤ n → m ≤ suc n ≤-suc (k , p) = suc k , cong suc p ≤-predℕ : predℕ n ≤ n ≤-predℕ {zero} = ≤-refl ≤-predℕ {suc n} = ≤-suc ≤-refl ≤-trans : k ≤ m → m ≤ n → k ≤ n ≤-trans {k} {m} {n} (i , p) (j , q) = i + j , l2 ∙ (l1 ∙ q) where l1 : j + i + k ≡ j + m l1 = (sym (+-assoc j i k)) ∙ (cong (j +_) p) l2 : i + j + k ≡ j + i + k l2 = cong (_+ k) (+-comm i j) ≤-antisym : m ≤ n → n ≤ m → m ≡ n ≤-antisym {m} (i , p) (j , q) = (cong (_+ m) l3) ∙ p where l1 : j + i + m ≡ m l1 = (sym (+-assoc j i m)) ∙ ((cong (j +_) p) ∙ q) l2 : j + i ≡ 0 l2 = m+n≡n→m≡0 l1 l3 : 0 ≡ i l3 = sym (snd (m+n≡0→m≡0×n≡0 l2)) ≤-k+-cancel : k + m ≤ k + n → m ≤ n ≤-k+-cancel {k} {m} (l , p) = l , inj-m+ (sub k m ∙ p) where sub : ∀ k m → k + (l + m) ≡ l + (k + m) sub k m = +-assoc k l m ∙ cong (_+ m) (+-comm k l) ∙ sym (+-assoc l k m) ≤-+k-cancel : m + k ≤ n + k → m ≤ n ≤-+k-cancel {m} {k} {n} (l , p) = l , cancelled where cancelled : l + m ≡ n cancelled = inj-+m (sym (+-assoc l m k) ∙ p) ≤-·k : m ≤ n → m · k ≤ n · k ≤-·k {m} {n} {k} (d , r) = d · k , reason where reason : d · k + m · k ≡ n · k reason = d · k + m · k ≡⟨ ·-distribʳ d m k ⟩ (d + m) · k ≡⟨ cong (_· k) r ⟩ n · k ∎ <-k+-cancel : k + m < k + n → m < n <-k+-cancel {k} {m} {n} = ≤-k+-cancel ∘ subst (_≤ k + n) (sym (+-suc k m)) ¬-<-zero : ¬ m < 0 ¬-<-zero (k , p) = snotz ((sym (+-suc k _)) ∙ p) ¬m<m : ¬ m < m ¬m<m {m} = ¬-<-zero ∘ ≤-+k-cancel {k = m} ≤0→≡0 : n ≤ 0 → n ≡ 0 ≤0→≡0 {zero} ineq = refl ≤0→≡0 {suc n} ineq = ⊥.rec (¬-<-zero ineq) predℕ-≤-predℕ : m ≤ n → (predℕ m) ≤ (predℕ n) predℕ-≤-predℕ {zero} {zero} ineq = ≤-refl predℕ-≤-predℕ {zero} {suc n} ineq = zero-≤ predℕ-≤-predℕ {suc m} {zero} ineq = ⊥.rec (¬-<-zero ineq) predℕ-≤-predℕ {suc m} {suc n} ineq = pred-≤-pred ineq ¬m+n<m : ¬ m + n < m ¬m+n<m {m} {n} = ¬-<-zero ∘ <-k+-cancel ∘ subst (m + n <_) (sym (+-zero m)) <-weaken : m < n → m ≤ n <-weaken (k , p) = suc k , sym (+-suc k _) ∙ p ≤<-trans : l ≤ m → m < n → l < n ≤<-trans p = ≤-trans (suc-≤-suc p) <≤-trans : l < m → m ≤ n → l < n <≤-trans = ≤-trans <-trans : l < m → m < n → l < n <-trans p = ≤<-trans (<-weaken p) <-asym : m < n → ¬ n ≤ m <-asym m<n = ¬m<m ∘ <≤-trans m<n <-+k : m < n → m + k < n + k <-+k p = ≤-+k p <-k+ : m < n → k + m < k + n <-k+ {m} {n} {k} p = subst (λ km → km ≤ k + n) (+-suc k m) (≤-k+ p) +-<-+ : m < n → k < l → m + k < n + l +-<-+ m<n k<l = <-trans (<-+k m<n) (<-k+ k<l) <-·sk : m < n → m · suc k < n · suc k <-·sk {m} {n} {k} (d , r) = (d · suc k + k) , reason where reason : (d · suc k + k) + suc (m · suc k) ≡ n · suc k reason = (d · suc k + k) + suc (m · suc k) ≡⟨ sym (+-assoc (d · suc k) k _) ⟩ d · suc k + (k + suc (m · suc k)) ≡[ i ]⟨ d · suc k + +-suc k (m · suc k) i ⟩ d · suc k + suc m · suc k ≡⟨ ·-distribʳ d (suc m) (suc k) ⟩ (d + suc m) · suc k ≡⟨ cong (_· suc k) r ⟩ n · suc k ∎ ∸-≤ : ∀ m n → m ∸ n ≤ m ∸-≤ m zero = ≤-refl ∸-≤ zero (suc n) = ≤-refl ∸-≤ (suc m) (suc n) = ≤-trans (∸-≤ m n) (1 , refl) ≤-∸-+-cancel : m ≤ n → (n ∸ m) + m ≡ n ≤-∸-+-cancel {zero} {n} _ = +-zero _ ≤-∸-+-cancel {suc m} {zero} m≤n = ⊥.rec (¬-<-zero m≤n) ≤-∸-+-cancel {suc m} {suc n} m+1≤n+1 = +-suc _ _ ∙ cong suc (≤-∸-+-cancel (pred-≤-pred m+1≤n+1)) ≤-∸-suc : m ≤ n → suc (n ∸ m) ≡ suc n ∸ m ≤-∸-suc {zero} {n} m≤n = refl ≤-∸-suc {suc m} {zero} m≤n = ⊥.rec (¬-<-zero m≤n) ≤-∸-suc {suc m} {suc n} m+1≤n+1 = ≤-∸-suc (pred-≤-pred m+1≤n+1) left-≤-max : m ≤ max m n left-≤-max {zero} {n} = zero-≤ left-≤-max {suc m} {zero} = ≤-refl left-≤-max {suc m} {suc n} = suc-≤-suc left-≤-max right-≤-max : n ≤ max m n right-≤-max {zero} {m} = zero-≤ right-≤-max {suc n} {zero} = ≤-refl right-≤-max {suc n} {suc m} = suc-≤-suc right-≤-max min-≤-left : min m n ≤ m min-≤-left {zero} {n} = ≤-refl min-≤-left {suc m} {zero} = zero-≤ min-≤-left {suc m} {suc n} = suc-≤-suc min-≤-left min-≤-right : min m n ≤ n min-≤-right {zero} {n} = zero-≤ min-≤-right {suc m} {zero} = ≤-refl min-≤-right {suc m} {suc n} = suc-≤-suc min-≤-right ≤Dec : ∀ m n → Dec (m ≤ n) ≤Dec zero n = yes (n , +-zero _) ≤Dec (suc m) zero = no ¬-<-zero ≤Dec (suc m) (suc n) with ≤Dec m n ... | yes m≤n = yes (suc-≤-suc m≤n) ... | no m≰n = no λ m+1≤n+1 → m≰n (pred-≤-pred m+1≤n+1 ) <Dec : ∀ m n → Dec (m < n) <Dec m n = ≤Dec (suc m) n Trichotomy-suc : Trichotomy m n → Trichotomy (suc m) (suc n) Trichotomy-suc (lt m<n) = lt (suc-≤-suc m<n) Trichotomy-suc (eq m=n) = eq (cong suc m=n) Trichotomy-suc (gt n<m) = gt (suc-≤-suc n<m) _≟_ : ∀ m n → Trichotomy m n zero ≟ zero = eq refl zero ≟ suc n = lt (n , +-comm n 1) suc m ≟ zero = gt (m , +-comm m 1) suc m ≟ suc n = Trichotomy-suc (m ≟ n) <-split : m < suc n → (m < n) ⊎ (m ≡ n) <-split {n = zero} = inr ∘ snd ∘ m+n≡0→m≡0×n≡0 ∘ snd ∘ pred-≤-pred <-split {zero} {suc n} = λ _ → inl (suc-≤-suc zero-≤) <-split {suc m} {suc n} = ⊎.map suc-≤-suc (cong suc) ∘ <-split ∘ pred-≤-pred ≤-+-split : ∀ n m k → k ≤ n + m → (n ≤ k) ⊎ (m ≤ (n + m) ∸ k) ≤-+-split n m k k≤n+m with n ≟ k ... | eq p = inl (0 , p) ... | lt n<k = inl (<-weaken n<k) ... | gt k<n with m ≟ ((n + m) ∸ k) ... | eq p = inr (0 , p) ... | lt m<n+m∸k = inr (<-weaken m<n+m∸k) ... | gt n+m∸k<m = ⊥.rec (¬m<m (transport (λ i → ≤-∸-+-cancel k≤n+m i < +-comm m n i) (+-<-+ n+m∸k<m k<n))) private acc-suc : Acc _<_ n → Acc _<_ (suc n) acc-suc a = acc λ y y<sn → case <-split y<sn of λ { (inl y<n) → access a y y<n ; (inr y≡n) → subst _ (sym y≡n) a } <-wellfounded : WellFounded _<_ <-wellfounded zero = acc λ _ → ⊥.rec ∘ ¬-<-zero <-wellfounded (suc n) = acc-suc (<-wellfounded n) <→≢ : n < m → ¬ n ≡ m <→≢ {n} {m} p q = ¬m<m (subst (_< m) q p) module _ (b₀ : ℕ) (P : ℕ → Type₀) (base : ∀ n → n < suc b₀ → P n) (step : ∀ n → P n → P (suc b₀ + n)) where open WFI (<-wellfounded) private dichotomy : ∀ b n → (n < b) ⊎ (Σ[ m ∈ ℕ ] n ≡ b + m) dichotomy b n = case n ≟ b return (λ _ → (n < b) ⊎ (Σ[ m ∈ ℕ ] n ≡ b + m)) of λ { (lt o) → inl o ; (eq p) → inr (0 , p ∙ sym (+-zero b)) ; (gt (m , p)) → inr (suc m , sym p ∙ +-suc m b ∙ +-comm (suc m) b) } dichotomy<≡ : ∀ b n → (n<b : n < b) → dichotomy b n ≡ inl n<b dichotomy<≡ b n n<b = case dichotomy b n return (λ d → d ≡ inl n<b) of λ { (inl x) → cong inl (m≤n-isProp x n<b) ; (inr (m , p)) → ⊥.rec (<-asym n<b (m , sym (p ∙ +-comm b m))) } dichotomy+≡ : ∀ b m n → (p : n ≡ b + m) → dichotomy b n ≡ inr (m , p) dichotomy+≡ b m n p = case dichotomy b n return (λ d → d ≡ inr (m , p)) of λ { (inl n<b) → ⊥.rec (<-asym n<b (m , +-comm m b ∙ sym p)) ; (inr (m' , q)) → cong inr (Σ≡Prop (λ x → isSetℕ n (b + x)) (inj-m+ {m = b} (sym q ∙ p))) } b = suc b₀ lemma₁ : ∀{x y z} → x ≡ suc z + y → y < x lemma₁ {y = y} {z} p = z , +-suc z y ∙ sym p subStep : (n : ℕ) → (∀ m → m < n → P m) → (n < b) ⊎ (Σ[ m ∈ ℕ ] n ≡ b + m) → P n subStep n _ (inl l) = base n l subStep n rec (inr (m , p)) = transport (cong P (sym p)) (step m (rec m (lemma₁ p))) wfStep : (n : ℕ) → (∀ m → m < n → P m) → P n wfStep n rec = subStep n rec (dichotomy b n) wfStepLemma₀ : ∀ n (n<b : n < b) rec → wfStep n rec ≡ base n n<b wfStepLemma₀ n n<b rec = cong (subStep n rec) (dichotomy<≡ b n n<b) wfStepLemma₁ : ∀ n rec → wfStep (b + n) rec ≡ step n (rec n (lemma₁ refl)) wfStepLemma₁ n rec = cong (subStep (b + n) rec) (dichotomy+≡ b n (b + n) refl) ∙ transportRefl _ +induction : ∀ n → P n +induction = induction wfStep +inductionBase : ∀ n → (l : n < b) → +induction n ≡ base n l +inductionBase n l = induction-compute wfStep n ∙ wfStepLemma₀ n l _ +inductionStep : ∀ n → +induction (b + n) ≡ step n (+induction n) +inductionStep n = induction-compute wfStep (b + n) ∙ wfStepLemma₁ n _ module <-Reasoning where -- TODO: would it be better to mirror the way it is done in the agda-stdlib? infixr 2 _<⟨_⟩_ _≤<⟨_⟩_ _≤⟨_⟩_ _<≤⟨_⟩_ _≡<⟨_⟩_ _≡≤⟨_⟩_ _<≡⟨_⟩_ _≤≡⟨_⟩_ _<⟨_⟩_ : ∀ k → k < n → n < m → k < m _ <⟨ p ⟩ q = <-trans p q _≤<⟨_⟩_ : ∀ k → k ≤ n → n < m → k < m _ ≤<⟨ p ⟩ q = ≤<-trans p q _≤⟨_⟩_ : ∀ k → k ≤ n → n ≤ m → k ≤ m _ ≤⟨ p ⟩ q = ≤-trans p q _<≤⟨_⟩_ : ∀ k → k < n → n ≤ m → k < m _ <≤⟨ p ⟩ q = <≤-trans p q _≡≤⟨_⟩_ : ∀ k → k ≡ l → l ≤ m → k ≤ m _ ≡≤⟨ p ⟩ q = subst (λ k → k ≤ _) (sym p) q _≡<⟨_⟩_ : ∀ k → k ≡ l → l < m → k < m _ ≡<⟨ p ⟩ q = _ ≡≤⟨ cong suc p ⟩ q _≤≡⟨_⟩_ : ∀ k → k ≤ l → l ≡ m → k ≤ m _ ≤≡⟨ p ⟩ q = subst (λ l → _ ≤ l) q p _<≡⟨_⟩_ : ∀ k → k < l → l ≡ m → k < m _ <≡⟨ p ⟩ q = _ ≤≡⟨ p ⟩ q -- Some lemmas about ∸ suc∸-fst : (n m : ℕ) → m < n → suc (n ∸ m) ≡ (suc n) ∸ m suc∸-fst zero zero p = refl suc∸-fst zero (suc m) p = ⊥.rec (¬-<-zero p) suc∸-fst (suc n) zero p = refl suc∸-fst (suc n) (suc m) p = (suc∸-fst n m (pred-≤-pred p)) n∸m≡0 : (n m : ℕ) → n < m → (n ∸ m) ≡ 0 n∸m≡0 zero zero p = refl n∸m≡0 (suc n) zero p = ⊥.rec (¬-<-zero p) n∸m≡0 zero (suc m) p = refl n∸m≡0 (suc n) (suc m) p = n∸m≡0 n m (pred-≤-pred p) n∸n≡0 : (n : ℕ) → n ∸ n ≡ 0 n∸n≡0 zero = refl n∸n≡0 (suc n) = n∸n≡0 n
29.23416
96
0.46127
394e2db5441f0949210c19f84c81268cdb42dfc1
366
agda
Agda
examples/SummerSchool07/Lecture/Nat.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
1
2019-11-27T07:26:06.000Z
2019-11-27T07:26:06.000Z
examples/SummerSchool07/Lecture/Nat.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
examples/SummerSchool07/Lecture/Nat.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
module Nat where data Nat : Set where zero : Nat suc : Nat -> Nat infixl 60 _+_ infixl 70 _*_ _+_ : Nat -> Nat -> Nat n + zero = n n + suc m = suc (n + m) _*_ : Nat -> Nat -> Nat n * zero = zero n * suc m = n * m + n {-# BUILTIN NATURAL Nat #-} {-# BUILTIN ZERO zero #-} {-# BUILTIN SUC suc #-} {-# BUILTIN NATPLUS _+_ #-} {-# BUILTIN NATTIMES _*_ #-}
14.64
28
0.540984
12b1dc851cf3f92526bcb2c3f8f480f3818ca605
1,795
agda
Agda
Globular-TT/Typed-Syntax.agda
ThiBen/catt-formalization
ed45935b38d6a86fa662f561866140122ee3dcef
[ "MIT" ]
2
2020-05-01T08:26:53.000Z
2020-05-20T00:41:09.000Z
Globular-TT/Typed-Syntax.agda
ThiBen/catt-formalization
ed45935b38d6a86fa662f561866140122ee3dcef
[ "MIT" ]
null
null
null
Globular-TT/Typed-Syntax.agda
ThiBen/catt-formalization
ed45935b38d6a86fa662f561866140122ee3dcef
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} open import Agda.Primitive open import Prelude import GSeTT.Typed-Syntax import Globular-TT.Syntax {- Type theory for globular sets -} module Globular-TT.Typed-Syntax {l} (index : Set l) (rule : index → GSeTT.Typed-Syntax.Ctx × (Globular-TT.Syntax.Pre-Ty index)) (eqdec-index : eqdec index) where open import Globular-TT.Syntax index open import Globular-TT.Rules index rule open import Globular-TT.Eqdec-syntax index eqdec-index open import Globular-TT.Uniqueness-Derivations index rule eqdec-index Ctx : Set (lsuc l) Ctx = Σ Pre-Ctx (λ Γ → Γ ⊢C) Ty : Ctx → Set (lsuc l) Ty (Γ , _) = Σ Pre-Ty (λ A → Γ ⊢T A) Tm : ∀ (Γ : Ctx) → Ty Γ → Set (lsuc l) Tm (Γ , _) (A , _) = Σ Pre-Tm (λ t → Γ ⊢t t # A) Sub : ∀ (Δ : Ctx) (Γ : Ctx) → Set (lsuc l) Sub (Δ , _) (Γ , _) = Σ Pre-Sub (λ γ → Δ ⊢S γ > Γ) eqC : ∀ (Γ Δ : Ctx) → fst Γ == fst Δ → Γ == Δ eqC (Γ , Γ⊢) (.Γ , Γ⊢') idp = Σ= idp (has-all-paths-⊢C _ _) eqT : ∀ {Γ} (A B : Ty Γ) → fst A == fst B → A == B eqT (A , Γ⊢A) (.A , Γ⊢'A) idp = Σ= idp (has-all-paths-⊢T _ _) eqt : ∀ {Γ A} (t u : Tm Γ A) → fst t == fst u → t == u eqt (t , Γ⊢t:A) (.t , Γ⊢':A) idp = Σ= idp (has-all-paths-⊢t _ _) eqS : ∀ {Γ Δ} (γ δ : Sub Γ Δ) → fst γ == fst δ → γ == δ eqS (γ , Γ⊢γ:Δ) (.γ , Γ⊢'γ:Δ) idp = Σ= idp (has-all-paths-⊢S _ _) trS : ∀ {Γ Δ Θ : Ctx} → (p : Δ == Θ) → {γ : Sub Γ Δ} → {δ : Sub Γ Θ} → fst γ == fst δ → transport p γ == δ trS {Γ} {Δ} {Θ} idp {γ} {δ} x = eqS {Γ} {Θ} γ δ x private eqdec-typedTy : ∀ Γ → eqdec (Ty Γ) eqdec-typedTy Γ (A , Γ⊢A) (B , Γ⊢B) with eqdec-Ty A B ... | inl idp = inl (eqT {Γ} (A , Γ⊢A) (B , Γ⊢B) idp) ... | inr A≠B = inr λ p → A≠B (fst-is-inj p) is-set-Ty : ∀ Γ → is-set (Ty Γ) is-set-Ty Γ = eqdec-is-set (eqdec-typedTy Γ)
33.240741
128
0.530919
dcb88a8e20831786dd471aef0ee72dd2780ad75c
9,357
agda
Agda
Cubical/Experiments/EscardoSIP.agda
ryanorendorff/cubical
c67854d2e11aafa5677e25a09087e176fafd3e43
[ "MIT" ]
1
2020-03-23T23:52:11.000Z
2020-03-23T23:52:11.000Z
Cubical/Experiments/EscardoSIP.agda
ryanorendorff/cubical
c67854d2e11aafa5677e25a09087e176fafd3e43
[ "MIT" ]
null
null
null
Cubical/Experiments/EscardoSIP.agda
ryanorendorff/cubical
c67854d2e11aafa5677e25a09087e176fafd3e43
[ "MIT" ]
null
null
null
{- This is a rather literal translation of Martin Hötzel-Escardó's structure identity principle into cubical Agda. See https://www.cs.bham.ac.uk/~mhe/HoTT-UF-in-Agda-Lecture-Notes/HoTT-UF-Agda.html#sns All the needed preliminary results from the lecture notes are stated and proven in this file. It would be interesting to compare the proves with the one in Cubical.Foundations.SIP -} {-# OPTIONS --cubical --safe #-} module Cubical.Experiments.EscardoSIP where open import Cubical.Core.Everything open import Cubical.Foundations.Everything open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Data.Sigma.Properties private variable ℓ ℓ' ℓ'' : Level S : Type ℓ → Type ℓ' -- We prove several useful equalities and equivalences between Σ-types all the proofs are taken from -- Martin Hötzel-Escardó's lecture notes. -- The next result is just a reformulation of pathSigma≡sigmaPath from Sigma.Properties. Σ-≡-≃ : {X : Type ℓ} {A : X → Type ℓ'} → (σ τ : Σ X A) → ((σ ≡ τ) ≃ (Σ[ p ∈ (σ .fst) ≡ (τ .fst) ] (subst A p (σ .snd) ≡ (τ .snd)))) Σ-≡-≃ {A = A} σ τ = pathToEquiv (pathSigma≡sigmaPath σ τ) -- This cubical proof is much shorter than in HoTT but requires that A, B live in the same universe. Σ-cong : {X : Type ℓ} {A B : X → Type ℓ'} → ((x : X) → (A x ≡ B x)) → (Σ X A ≡ Σ X B) Σ-cong {X = X} p i = Σ[ x ∈ X ] (p x i) -- Two lemmas for the more general formulation using equivalences NatΣ : {X : Type ℓ} {A : X → Type ℓ'} {B : X → Type ℓ''} → ((x : X) → (A x) → (B x)) → (Σ X A) → (Σ X B) NatΣ τ (x , a) = (x , τ x a) Σ-to-PathP : {X : Type ℓ} {A : X → Type ℓ'} {x : X} {a b : A x} → (a ≡ b) → PathP (λ i → Σ X A) (x , a) (x , b) Σ-to-PathP {x = x} p i = (x , p i) Σ-cong-≃ : {X : Type ℓ} {A : X → Type ℓ'} {B : X → Type ℓ''} → ((x : X) → (A x ≃ B x)) → (Σ X A ≃ Σ X B) Σ-cong-≃ {X = X} {A = A} {B = B} φ = isoToEquiv (iso (NatΣ f) (NatΣ g) NatΣ-ε NatΣ-η) where f : (x : X) → (A x) → (B x) f x = equivFun (φ x) g : (x : X) → (B x) → (A x) g x = equivFun (invEquiv (φ x)) η : (x : X) → (a : A x) → (g x) ((f x) a) ≡ a η x = retEq (invEquiv (φ x)) ε : (x : X) → (b : B x) → f x (g x b) ≡ b ε x = secEq (invEquiv (φ x)) NatΣ-η : (w : Σ X A) → NatΣ g (NatΣ f w) ≡ w NatΣ-η (x , a) = (x , g x (f x a)) ≡⟨ Σ-to-PathP (η x a) ⟩ (x , a) ∎ NatΣ-ε : (u : Σ X B) → NatΣ f (NatΣ g u) ≡ u NatΣ-ε (x , b) = (x , f x (g x b)) ≡⟨ Σ-to-PathP (ε x b) ⟩ (x , b) ∎ -- The next result is stated a bit awkwardly but is rather straightforward to prove. Σ-change-of-variable-Iso : {X : Type ℓ} {Y : Type ℓ'} {A : Y → Type ℓ''} (f : X → Y) → (isHAEquiv f) → (Iso (Σ X (A ∘ f)) (Σ Y A)) Σ-change-of-variable-Iso {ℓ = ℓ} {ℓ' = ℓ'} {X = X} {Y = Y} {A = A} f isHAEquivf = iso φ ψ φψ ψφ where g : Y → X g = isHAEquiv.g isHAEquivf ε : (x : X) → (g (f x)) ≡ x ε = isHAEquiv.sec isHAEquivf η : (y : Y) → f (g y) ≡ y η = isHAEquiv.ret isHAEquivf τ : (x : X) → cong f (ε x) ≡ η (f x) τ = isHAEquiv.com isHAEquivf φ : (Σ X (A ∘ f)) → (Σ Y A) φ (x , a) = (f x , a) ψ : (Σ Y A) → (Σ X (A ∘ f)) ψ (y , a) = (g y , subst A (sym (η y)) a) φψ : (z : (Σ Y A)) → φ (ψ z) ≡ z φψ (y , a) = sigmaPath→pathSigma (φ (ψ (y , a))) (y , a) (η y , transportTransport⁻ (λ i → A (η y i)) a) -- last term proves transp (λ i → A (η y i)) i0 (transp (λ i → A (η y (~ i))) i0 a) ≡ a ψφ : (z : (Σ X (A ∘ f))) → ψ (φ z) ≡ z ψφ (x , a) = sigmaPath→pathSigma (ψ (φ (x , a))) (x , a) (ε x , q) where b : A (f (g (f x))) b = (transp (λ i → A (η (f x) (~ i))) i0 a) q : transp (λ i → A (f (ε x i))) i0 (transp (λ i → A (η (f x) (~ i))) i0 a) ≡ a q = transp (λ i → A (f (ε x i))) i0 b ≡⟨ i ⟩ transp (λ i → A (η (f x) i)) i0 b ≡⟨ transportTransport⁻ (λ i → A (η (f x) i)) a ⟩ a ∎ where i : (transp (λ i → A (f (ε x i))) i0 b) ≡ (transp (λ i → A (η (f x) i)) i0 b) i = subst (λ p → (transp (λ i → A (f (ε x i))) i0 b) ≡ (transp (λ i → A (p i)) i0 b)) (τ x) refl -- Using the result above we can prove the following quite useful result. Σ-change-of-variable-≃ : {X : Type ℓ} {Y : Type ℓ'} {A : Y → Type ℓ''} (f : X → Y) → (isEquiv f) → ((Σ X (A ∘ f)) ≃ (Σ Y A)) Σ-change-of-variable-≃ f isEquivf = isoToEquiv (Σ-change-of-variable-Iso f (equiv→HAEquiv (f , isEquivf) .snd)) Σ-assoc-Iso : (X : Type ℓ) (A : X → Type ℓ') (P : Σ X A → Type ℓ'') → (Iso (Σ (Σ X A) P) (Σ[ x ∈ X ] (Σ[ a ∈ A x ] P (x , a)))) Σ-assoc-Iso X A P = iso f g ε η where f : (Σ (Σ X A) P) → (Σ[ x ∈ X ] (Σ[ a ∈ A x ] P (x , a))) f ((x , a) , p) = (x , (a , p)) g : (Σ[ x ∈ X ] (Σ[ a ∈ A x ] P (x , a))) → (Σ (Σ X A) P) g (x , (a , p)) = ((x , a) , p) ε : section f g ε n = refl η : retract f g η m = refl Σ-assoc-≃ : (X : Type ℓ) (A : X → Type ℓ') (P : Σ X A → Type ℓ'') → (Σ (Σ X A) P) ≃ (Σ[ x ∈ X ] (Σ[ a ∈ A x ] P (x , a))) Σ-assoc-≃ X A P = isoToEquiv (Σ-assoc-Iso X A P) -- A structure is a type-family S : Type ℓ → Type ℓ', i.e. for X : Type ℓ and s : S X, the pair (X , s) -- means that X is equipped with a S-structure, which is witnessed by s. -- An S-structure should have a notion of S-homomorphism, or rather S-isomorphism. -- This will be implemented by a function ι -- that gives us for any two types with S-structure (X , s) and (Y , t) a family: -- ι (X , s) (Y , t) : (X ≃ Y) → Type ℓ'' -- Note that for any equivalence (f , e) : X ≃ Y the type ι (X , s) (Y , t) (f , e) need not to be -- a proposition. Indeed this type should correspond to the ways s and t can be identified -- as S-structures. This we call a standard notion of structure. SNS : (S : Type ℓ → Type ℓ') (ι : StrIso S ℓ'') → Type (ℓ-max (ℓ-max (ℓ-suc ℓ) ℓ') ℓ'') SNS {ℓ = ℓ} S ι = ∀ {X : (Type ℓ)} (s t : S X) → ((s ≡ t) ≃ ι (X , s) (X , t) (idEquiv X)) -- Escardo's ρ can actually be defined from this: ρ : {ι : StrIso S ℓ''} (θ : SNS S ι) (A : TypeWithStr ℓ S) → (ι A A (idEquiv (typ A))) ρ θ A = equivFun (θ (str A) (str A)) refl -- We introduce the notation a bit differently: _≃[_]_ : (A : TypeWithStr ℓ S) (ι : StrIso S ℓ'') (B : TypeWithStr ℓ S) → (Type (ℓ-max ℓ ℓ'')) A ≃[ ι ] B = Σ[ f ∈ ((typ A) ≃ (typ B)) ] (ι A B f) Id→homEq : (S : Type ℓ → Type ℓ') (ι : StrIso S ℓ'') → (ρ : (A : TypeWithStr ℓ S) → ι A A (idEquiv (typ A))) → (A B : TypeWithStr ℓ S) → A ≡ B → (A ≃[ ι ] B) Id→homEq S ι ρ A B p = J (λ y x → A ≃[ ι ] y) (idEquiv (typ A) , ρ A) p -- Use a PathP version of Escardó's homomorphism-lemma hom-lemma-dep : (S : Type ℓ → Type ℓ') (ι : StrIso S ℓ'') (θ : SNS S ι) → (A B : TypeWithStr ℓ S) → (p : (typ A) ≡ (typ B)) → (PathP (λ i → S (p i)) (str A) (str B)) ≃ (ι A B (pathToEquiv p)) hom-lemma-dep S ι θ A B p = (J P (λ s → γ s) p) (str B) where P = (λ y x → (s : S y) → PathP (λ i → S (x i)) (str A) s ≃ ι A (y , s) (pathToEquiv x)) γ : (s : S (typ A)) → ((str A) ≡ s) ≃ ι A ((typ A) , s) (pathToEquiv refl) γ s = subst (λ f → ((str A) ≡ s) ≃ ι A ((typ A) , s) f) (sym pathToEquivRefl) (θ (str A) s) -- Define the inverse of Id→homEq directly. ua-lemma : (A B : Type ℓ) (e : A ≃ B) → (pathToEquiv (ua e)) ≡ e ua-lemma A B e = EquivJ (λ A f → (pathToEquiv (ua f)) ≡ f) (subst (λ r → pathToEquiv r ≡ idEquiv B) (sym uaIdEquiv) pathToEquivRefl) e homEq→Id : (S : Type ℓ → Type ℓ') (ι : StrIso S ℓ'') (θ : SNS S ι) → (A B : TypeWithStr ℓ S) → (A ≃[ ι ] B) → A ≡ B homEq→Id S ι θ A B (f , φ) = ΣPathP (p , q) where p = ua f ψ : ι A B (pathToEquiv p) ψ = subst (λ g → ι A B g) (sym (ua-lemma (typ A) (typ B) f)) φ q : PathP (λ i → S (p i)) (str A) (str B) q = equivFun (invEquiv (hom-lemma-dep S ι θ A B p)) ψ -- Proof of the SIP: SIP : (S : Type ℓ → Type ℓ') (ι : StrIso S ℓ'') (θ : SNS S ι) → (A B : TypeWithStr ℓ S) → ((A ≡ B) ≃ (A ≃[ ι ] B)) SIP S ι θ A B = (A ≡ B) ≃⟨ i ⟩ (Σ[ p ∈ (typ A) ≡ (typ B) ] PathP (λ i → S (p i)) (str A) (str B)) ≃⟨ ii ⟩ (Σ[ p ∈ (typ A) ≡ (typ B) ] (ι A B (pathToEquiv p))) ≃⟨ iii ⟩ (A ≃[ ι ] B) ■ where i = invEquiv Σ≃ ii = Σ-cong-≃ (hom-lemma-dep S ι θ A B) iii = Σ-change-of-variable-≃ pathToEquiv (equivIsEquiv univalence) -- A simple example: pointed types pointed-structure : Type ℓ → Type ℓ pointed-structure X = X Pointed-Type : Type (ℓ-suc ℓ) Pointed-Type {ℓ = ℓ} = Σ (Type ℓ) pointed-structure pointed-ι : (A B : Pointed-Type) → (A .fst) ≃ (B. fst) → Type ℓ pointed-ι (X , x) (Y , y) f = (equivFun f) x ≡ y pointed-is-sns : SNS {ℓ = ℓ} pointed-structure pointed-ι pointed-is-sns s t = idEquiv (s ≡ t) pointed-type-sip : (X Y : Type ℓ) (x : X) (y : Y) → (Σ[ f ∈ X ≃ Y ] (f .fst) x ≡ y) ≃ ((X , x) ≡ (Y , y)) pointed-type-sip X Y x y = invEquiv (SIP pointed-structure pointed-ι pointed-is-sns (X , x) (Y , y))
38.036585
115
0.48616
4da100a2c1cb52c8182746aaee47bf68df89ff72
1,998
agda
Agda
test/asset/agda-stdlib-1.0/Codata/Thunk.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
test/asset/agda-stdlib-1.0/Codata/Thunk.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Codata/Thunk.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- The Thunk wrappers for sized codata, copredicates and corelations ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe --sized-types #-} module Codata.Thunk where open import Size open import Relation.Unary ------------------------------------------------------------------------ -- Basic types. record Thunk {ℓ} (F : Size → Set ℓ) (i : Size) : Set ℓ where coinductive field force : {j : Size< i} → F j open Thunk public Thunk^P : ∀ {f p} {F : Size → Set f} (P : Size → F ∞ → Set p) (i : Size) (tf : Thunk F ∞) → Set p Thunk^P P i tf = Thunk (λ i → P i (tf .force)) i Thunk^R : ∀ {f g r} {F : Size → Set f} {G : Size → Set g} (R : Size → F ∞ → G ∞ → Set r) (i : Size) (tf : Thunk F ∞) (tg : Thunk G ∞) → Set r Thunk^R R i tf tg = Thunk (λ i → R i (tf .force) (tg .force)) i ------------------------------------------------------------------------ -- Syntax Thunk-syntax : ∀ {ℓ} → (Size → Set ℓ) → Size → Set ℓ Thunk-syntax = Thunk syntax Thunk-syntax (λ j → e) i = Thunk[ j < i ] e ------------------------------------------------------------------------ -- Basic functions. -- Thunk is a functor module _ {p q} {P : Size → Set p} {Q : Size → Set q} where map : ∀[ P ⇒ Q ] → ∀[ Thunk P ⇒ Thunk Q ] map f p .force = f (p .force) -- Thunk is a comonad module _ {p} {P : Size → Set p} where extract : ∀[ Thunk P ] → P ∞ extract p = p .force duplicate : ∀[ Thunk P ⇒ Thunk (Thunk P) ] duplicate p .force .force = p .force module _ {p q} {P : Size → Set p} {Q : Size → Set q} where infixl 1 _<*>_ _<*>_ : ∀[ Thunk (P ⇒ Q) ⇒ Thunk P ⇒ Thunk Q ] (f <*> p) .force = f .force (p .force) -- We can take cofixpoints of functions only making Thunk'd recursive calls module _ {p} (P : Size → Set p) where cofix : ∀[ Thunk P ⇒ P ] → ∀[ P ] cofix f = f λ where .force → cofix f
29.382353
75
0.458959
10a0e487478f5585726e742ecd35dc3bcfc667f8
113,985
agda
Agda
Agda/15-pullbacks.agda
tadejpetric/HoTT-Intro
f4228d6ecfc6cdb119c6e8b0e711fea05b98b2d5
[ "CC-BY-4.0" ]
null
null
null
Agda/15-pullbacks.agda
tadejpetric/HoTT-Intro
f4228d6ecfc6cdb119c6e8b0e711fea05b98b2d5
[ "CC-BY-4.0" ]
null
null
null
Agda/15-pullbacks.agda
tadejpetric/HoTT-Intro
f4228d6ecfc6cdb119c6e8b0e711fea05b98b2d5
[ "CC-BY-4.0" ]
null
null
null
{-# OPTIONS --without-K --exact-split #-} module 15-pullbacks where import 14-fundamental-cover open 14-fundamental-cover public -- Section 13.1 Cartesian squares {- We introduce the basic concepts of this chapter: commuting squares, cospans, cones, and pullback squares. Pullback squares are also called cartesian squares. -} {- Commutativity of squares is expressed with a homotopy. -} coherence-square : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} (top : C → B) (left : C → A) (right : B → X) (bottom : A → X) → UU (l3 ⊔ l4) coherence-square top left right bottom = (bottom ∘ left) ~ (right ∘ top) {- A cospan is a pair of functions with a common codomain. -} cospan : {l1 l2 : Level} (l : Level) (A : UU l1) (B : UU l2) → UU (l1 ⊔ (l2 ⊔ (lsuc l))) cospan l A B = Σ (UU l) (λ X → (A → X) × (B → X)) {- A cone on a cospan with a vertex C is a pair of functions from C into the domains of the maps in the cospan, equipped with a homotopy witnessing that the resulting square commutes. -} cone : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) → UU l4 → UU (l1 ⊔ (l2 ⊔ (l3 ⊔ l4))) cone {A = A} {B = B} f g C = Σ (C → A) (λ p → Σ (C → B) (λ q → coherence-square q p g f)) {- A map into the vertex of a cone induces a new cone. -} cone-map : {l1 l2 l3 l4 l5 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) {C : UU l4} {C' : UU l5} → cone f g C → (C' → C) → cone f g C' cone-map f g c h = pair ( (pr1 c) ∘ h) ( pair ( (pr1 (pr2 c)) ∘ h) ( (pr2 (pr2 c)) ·r h)) {- We introduce the universal property of pullbacks. -} universal-property-pullback : {l1 l2 l3 l4 : Level} (l : Level) {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) {C : UU l4} → cone f g C → UU (l1 ⊔ (l2 ⊔ (l3 ⊔ (l4 ⊔ (lsuc l))))) universal-property-pullback l f g c = (C' : UU l) → is-equiv (cone-map f g {C' = C'} c) map-universal-property-pullback : {l1 l2 l3 l4 l5 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) {C : UU l4} (c : cone f g C) → ({l : Level} → universal-property-pullback l f g c) → {C' : UU l5} (c' : cone f g C') → C' → C map-universal-property-pullback f g c up-c {C'} c' = inv-is-equiv (up-c C') c' eq-map-universal-property-pullback : {l1 l2 l3 l4 l5 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) {C : UU l4} (c : cone f g C) → (up-c : {l : Level} → universal-property-pullback l f g c) → {C' : UU l5} (c' : cone f g C') → Id (cone-map f g c (map-universal-property-pullback f g c up-c c')) c' eq-map-universal-property-pullback f g c up-c {C'} c' = issec-inv-is-equiv (up-c C') c' {- Next we characterize the identity type of the type of cones with a given vertex C. Note that in the definition of htpy-cone we do not use pattern matching on the cones c and c'. This is to ensure that the type htpy-cone f g c c' is a Σ-type for any c and c', not just for c and c' of the form (pair p (pair q H)) and (pair p' (pair q' H')) respectively. -} coherence-htpy-cone : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) {C : UU l4} (c c' : cone f g C) → (K : (pr1 c) ~ (pr1 c')) (L : (pr1 (pr2 c)) ~ (pr1 (pr2 c'))) → UU (l4 ⊔ l3) coherence-htpy-cone f g c c' K L = ( (pr2 (pr2 c)) ∙h (htpy-left-whisk g L)) ~ ( (htpy-left-whisk f K) ∙h (pr2 (pr2 c'))) htpy-cone : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) {C : UU l4} → cone f g C → cone f g C → UU (l1 ⊔ (l2 ⊔ (l3 ⊔ l4))) htpy-cone f g c c' = Σ ( (pr1 c) ~ (pr1 c')) ( λ K → Σ ((pr1 (pr2 c)) ~ (pr1 (pr2 c'))) ( λ L → coherence-htpy-cone f g c c' K L)) reflexive-htpy-cone : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) {C : UU l4} (c : cone f g C) → htpy-cone f g c c reflexive-htpy-cone f g c = pair htpy-refl (pair htpy-refl htpy-right-unit) htpy-cone-eq : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) {C : UU l4} (c c' : cone f g C) → Id c c' → htpy-cone f g c c' htpy-cone-eq f g c .c refl = reflexive-htpy-cone f g c abstract is-contr-total-htpy-cone : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) {C : UU l4} (c : cone f g C) → is-contr (Σ (cone f g C) (htpy-cone f g c)) is-contr-total-htpy-cone {A = A} {B} f g {C} (pair p (pair q H)) = is-contr-total-Eq-structure ( λ p' qH' K → Σ ( q ~ (pr1 qH')) ( coherence-htpy-cone f g (pair p (pair q H)) (pair p' qH') K)) ( is-contr-total-htpy p) ( pair p htpy-refl) ( is-contr-total-Eq-structure ( λ q' H' → coherence-htpy-cone f g ( pair p (pair q H)) ( pair p (pair q' H')) ( htpy-refl)) ( is-contr-total-htpy q) ( pair q htpy-refl) ( is-contr-equiv' ( Σ ((f ∘ p) ~ (g ∘ q)) (λ H' → H ~ H')) ( equiv-tot ( λ H' → equiv-htpy-concat htpy-right-unit H')) ( is-contr-total-htpy H))) abstract is-fiberwise-equiv-htpy-cone-eq : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) {C : UU l4} (c : cone f g C) → is-fiberwise-equiv (htpy-cone-eq f g c) is-fiberwise-equiv-htpy-cone-eq f g {C = C} c = fundamental-theorem-id c ( htpy-cone-eq f g c c refl) ( is-contr-total-htpy-cone f g c) ( htpy-cone-eq f g c) equiv-htpy-cone : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) {C : UU l4} (c c' : cone f g C) → Id c c' ≃ htpy-cone f g c c' equiv-htpy-cone f g c c' = pair (htpy-cone-eq f g c c') (is-fiberwise-equiv-htpy-cone-eq f g c c') {- The inverse of htpy-cone-eq is the map eq-htpy-cone. -} eq-htpy-cone : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {f : A → X} {g : B → X} {C : UU l4} (c c' : cone f g C) → htpy-cone f g c c' → Id c c' eq-htpy-cone {f = f} {g = g} c c' = inv-is-equiv (is-fiberwise-equiv-htpy-cone-eq f g c c') {- This completes our characterization of the identity type of the type of cones with a fixed vertex C. -} {- We now conclude the universal property of pullbacks as the following statement of contractibility. -} abstract is-contr-universal-property-pullback : {l1 l2 l3 l4 l5 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} (f : A → X) (g : B → X) (c : cone f g C) → universal-property-pullback l5 f g c → (C' : UU l5) (c' : cone f g C') → is-contr (Σ (C' → C) (λ h → htpy-cone f g (cone-map f g c h) c')) is-contr-universal-property-pullback {C = C} f g c up C' c' = is-contr-equiv' ( Σ (C' → C) (λ h → Id (cone-map f g c h) c')) ( equiv-tot (λ h → equiv-htpy-cone f g (cone-map f g c h) c')) ( is-contr-map-is-equiv (up C') c') -- Section 13.2 {- The canonical pullback is a type which can be equipped with a cone that satisfies the universal property of a pullback. -} canonical-pullback : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) → UU ((l1 ⊔ l2) ⊔ l3) canonical-pullback {A = A} {B = B} f g = Σ A (λ x → Σ B (λ y → Id (f x) (g y))) {- We construct the maps and homotopies that are part of the cone structure of the canonical pullback. -} π₁ : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {f : A → X} {g : B → X} → canonical-pullback f g → A π₁ = pr1 π₂ : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {f : A → X} {g : B → X} → canonical-pullback f g → B π₂ t = pr1 (pr2 t) π₃ : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {f : A → X} {g : B → X} → (f ∘ (π₁ {f = f} {g = g})) ~ (g ∘ (π₂ {f = f} {g = g})) π₃ t = pr2 (pr2 t) cone-canonical-pullback : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) → cone f g (canonical-pullback f g) cone-canonical-pullback f g = pair π₁ (pair π₂ π₃) {- We show now that the canonical pullback satisfies the universal property of a pullback. -} abstract universal-property-pullback-canonical-pullback : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) → universal-property-pullback l4 f g (cone-canonical-pullback f g) universal-property-pullback-canonical-pullback f g C = is-equiv-comp ( cone-map f g (cone-canonical-pullback f g)) ( tot (λ p → choice-∞)) ( mapping-into-Σ) ( htpy-refl) ( is-equiv-mapping-into-Σ) ( is-equiv-tot-is-fiberwise-equiv ( λ p → is-equiv-choice-∞)) {- Next we establish a '3-for-2' property for pullbacks. -} triangle-cone-cone : {l1 l2 l3 l4 l5 l6 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} {C' : UU l5} {f : A → X} {g : B → X} (c : cone f g C) (c' : cone f g C') (h : C' → C) (KLM : htpy-cone f g (cone-map f g c h) c') (D : UU l6) → (cone-map f g {C' = D} c') ~ ((cone-map f g c) ∘ (λ (k : D → C') → h ∘ k)) triangle-cone-cone {C' = C'} {f = f} {g = g} c c' h KLM D k = inv (ap ( λ t → cone-map f g {C' = D} t k) { x = (cone-map f g c h)} { y = c'} ( eq-htpy-cone (cone-map f g c h) c' KLM)) abstract is-equiv-up-pullback-up-pullback : {l1 l2 l3 l4 l5 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} {C' : UU l5} (f : A → X) (g : B → X) (c : cone f g C) (c' : cone f g C') (h : C' → C) (KLM : htpy-cone f g (cone-map f g c h) c') → ({l : Level} → universal-property-pullback l f g c) → ({l : Level} → universal-property-pullback l f g c') → is-equiv h is-equiv-up-pullback-up-pullback {C = C} {C' = C'} f g c c' h KLM up up' = is-equiv-is-equiv-postcomp h ( λ D → is-equiv-right-factor ( cone-map f g {C' = D} c') ( cone-map f g c) ( λ (k : D → C') → h ∘ k) ( triangle-cone-cone {C = C} {C' = C'} {f = f} {g = g} c c' h KLM D) ( up D) (up' D)) abstract up-pullback-up-pullback-is-equiv : {l1 l2 l3 l4 l5 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} {C' : UU l5} (f : A → X) (g : B → X) (c : cone f g C) (c' : cone f g C') (h : C' → C) (KLM : htpy-cone f g (cone-map f g c h) c') → is-equiv h → ({l : Level} → universal-property-pullback l f g c) → ({l : Level} → universal-property-pullback l f g c') up-pullback-up-pullback-is-equiv f g c c' h KLM is-equiv-h up D = is-equiv-comp ( cone-map f g c') ( cone-map f g c) ( λ k → h ∘ k) ( triangle-cone-cone {f = f} {g = g} c c' h KLM D) ( is-equiv-postcomp-is-equiv h is-equiv-h D) ( up D) abstract up-pullback-is-equiv-up-pullback : {l1 l2 l3 l4 l5 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} {C' : UU l5} (f : A → X) (g : B → X) (c : cone f g C) (c' : cone f g C') (h : C' → C) (KLM : htpy-cone f g (cone-map f g c h) c') → ({l : Level} → universal-property-pullback l f g c') → is-equiv h → ({l : Level} → universal-property-pullback l f g c) up-pullback-is-equiv-up-pullback f g c c' h KLM up' is-equiv-h D = is-equiv-left-factor ( cone-map f g c') ( cone-map f g c) ( λ k → h ∘ k) ( triangle-cone-cone {f = f} {g = g} c c' h KLM D) ( up' D) ( is-equiv-postcomp-is-equiv h is-equiv-h D) {- This concludes the '3-for-2-property' of pullbacks. -} {- We characterize the identity type of the canonical pullback. -} Eq-canonical-pullback : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) (t t' : canonical-pullback f g) → UU (l1 ⊔ (l2 ⊔ l3)) Eq-canonical-pullback f g (pair a bp) t' = let b = pr1 bp p = pr2 bp a' = pr1 t' b' = pr1 (pr2 t') p' = pr2 (pr2 t') in Σ (Id a a') (λ α → Σ (Id b b') (λ β → Id ((ap f α) ∙ p') (p ∙ (ap g β)))) reflexive-Eq-canonical-pullback : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) (t : canonical-pullback f g) → Eq-canonical-pullback f g t t reflexive-Eq-canonical-pullback f g (pair a (pair b p)) = pair refl (pair refl (inv right-unit)) Eq-canonical-pullback-eq : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) (t t' : canonical-pullback f g) → Id t t' → Eq-canonical-pullback f g t t' Eq-canonical-pullback-eq f g t .t refl = reflexive-Eq-canonical-pullback f g t abstract is-contr-total-Eq-canonical-pullback : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) (t : canonical-pullback f g) → is-contr (Σ (canonical-pullback f g) (Eq-canonical-pullback f g t)) is-contr-total-Eq-canonical-pullback f g (pair a (pair b p)) = is-contr-total-Eq-structure ( λ a' bp' α → Σ (Id b (pr1 bp')) (λ β → Id ((ap f α) ∙ (pr2 bp')) (p ∙ (ap g β)))) ( is-contr-total-path a) ( pair a refl) ( is-contr-total-Eq-structure ( λ b' p' β → Id ((ap f refl) ∙ p') (p ∙ (ap g β))) ( is-contr-total-path b) ( pair b refl) ( is-contr-equiv' ( Σ (Id (f a) (g b)) (λ p' → Id p p')) ( equiv-tot ( λ p' → (equiv-concat' p' (inv right-unit)) ∘e (equiv-inv p p'))) ( is-contr-total-path p))) abstract is-equiv-Eq-canonical-pullback-eq : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) (t t' : canonical-pullback f g) → is-equiv (Eq-canonical-pullback-eq f g t t') is-equiv-Eq-canonical-pullback-eq f g t = fundamental-theorem-id t ( reflexive-Eq-canonical-pullback f g t) ( is-contr-total-Eq-canonical-pullback f g t) ( Eq-canonical-pullback-eq f g t) eq-Eq-canonical-pullback : { l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} ( f : A → X) (g : B → X) {t t' : canonical-pullback f g} → ( α : Id (pr1 t) (pr1 t')) (β : Id (pr1 (pr2 t)) (pr1 (pr2 t'))) → ( Id ((ap f α) ∙ (pr2 (pr2 t'))) ((pr2 (pr2 t)) ∙ (ap g β))) → Id t t' eq-Eq-canonical-pullback f g {pair a (pair b p)} {pair a' (pair b' p')} α β γ = inv-is-equiv ( is-equiv-Eq-canonical-pullback-eq f g ( pair a (pair b p)) ( pair a' (pair b' p'))) ( pair α (pair β γ)) {- We establish the uniquely uniqueness of pullbacks. -} htpy-cone-map-universal-property-pullback : {l1 l2 l3 l4 l5 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) {C : UU l4} (c : cone f g C) → (up-c : {l : Level} → universal-property-pullback l f g c) → {C' : UU l5} (c' : cone f g C') → htpy-cone f g ( cone-map f g c (map-universal-property-pullback f g c up-c c')) ( c') htpy-cone-map-universal-property-pullback f g c up-c c' = htpy-cone-eq f g ( cone-map f g c (map-universal-property-pullback f g c up-c c')) ( c') ( eq-map-universal-property-pullback f g c up-c c') abstract uniquely-unique-pullback : { l1 l2 l3 l4 l5 : Level} { A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} {C' : UU l5} ( f : A → X) (g : B → X) (c : cone f g C) (c' : cone f g C') → ( {l : Level} → universal-property-pullback l f g c') → ( {l : Level} → universal-property-pullback l f g c) → is-contr ( Σ (C' ≃ C) (λ h → htpy-cone f g (cone-map f g c (map-equiv h)) c')) uniquely-unique-pullback {C = C} {C' = C'} f g c c' up-c' up-c = is-contr-total-Eq-substructure ( is-contr-universal-property-pullback f g c up-c C' c') ( is-subtype-is-equiv) ( map-universal-property-pullback f g c up-c c') ( htpy-cone-map-universal-property-pullback f g c up-c c') ( is-equiv-up-pullback-up-pullback f g c c' ( map-universal-property-pullback f g c up-c c') ( htpy-cone-map-universal-property-pullback f g c up-c c') up-c up-c') {- The gap map of a square is the map fron the vertex of the cone into the canonical pullback. -} gap : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} (f : A → X) (g : B → X) → cone f g C → C → canonical-pullback f g gap f g c z = pair ((pr1 c) z) (pair ((pr1 (pr2 c)) z) ((pr2 (pr2 c)) z)) {- The proposition is-pullback is the assertion that the gap map is an equivalence. Note that this proposition is small, whereas the universal property is a large proposition. Of course, we will show below that the proposition is-pullback is equivalent to the universal property of pullbacks. -} is-pullback : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} (f : A → X) (g : B → X) → cone f g C → UU (l1 ⊔ (l2 ⊔ (l3 ⊔ l4))) is-pullback f g c = is-equiv (gap f g c) {- We first establish that a cone is equal to the value of cone-map at its own gap map. -} htpy-cone-up-pullback-canonical-pullback : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} (f : A → X) (g : B → X) (c : cone f g C) → htpy-cone f g (cone-map f g (cone-canonical-pullback f g) (gap f g c)) c htpy-cone-up-pullback-canonical-pullback f g c = pair htpy-refl ( pair htpy-refl htpy-right-unit) {- We show that the universal property of the pullback implies that the gap map is an equivalence. -} abstract is-pullback-up-pullback : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} (f : A → X) (g : B → X) (c : cone f g C) → ({l : Level} → universal-property-pullback l f g c) → is-pullback f g c is-pullback-up-pullback f g c up = is-equiv-up-pullback-up-pullback f g ( cone-canonical-pullback f g) ( c) ( gap f g c) ( htpy-cone-up-pullback-canonical-pullback f g c) ( universal-property-pullback-canonical-pullback f g) ( up) {- We show that the universal property follows from the assumption that the the gap map is an equivalence. -} abstract up-pullback-is-pullback : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} (f : A → X) (g : B → X) (c : cone f g C) → is-pullback f g c → ({l : Level} → universal-property-pullback l f g c) up-pullback-is-pullback f g c is-pullback-c = up-pullback-up-pullback-is-equiv f g ( cone-canonical-pullback f g) ( c) ( gap f g c) ( htpy-cone-up-pullback-canonical-pullback f g c) ( is-pullback-c) ( universal-property-pullback-canonical-pullback f g) -- Section 13.3 Fiber products {- We construct the cone for two maps into the unit type. -} cone-prod : {i j : Level} (A : UU i) (B : UU j) → cone (const A unit star) (const B unit star) (A × B) cone-prod A B = pair pr1 (pair pr2 htpy-refl) {- Cartesian products are a special case of pullbacks. -} inv-gap-prod : {i j : Level} (A : UU i) (B : UU j) → canonical-pullback (const A unit star) (const B unit star) → A × B inv-gap-prod A B (pair a (pair b p)) = pair a b issec-inv-gap-prod : {i j : Level} (A : UU i) (B : UU j) → ( ( gap (const A unit star) (const B unit star) (cone-prod A B)) ∘ ( inv-gap-prod A B)) ~ id issec-inv-gap-prod A B (pair a (pair b p)) = eq-Eq-canonical-pullback ( const A unit star) ( const B unit star) refl refl ( is-prop-is-contr' (is-prop-is-contr is-contr-unit star star) p refl) isretr-inv-gap-prod : {i j : Level} (A : UU i) (B : UU j) → ( ( inv-gap-prod A B) ∘ ( gap (const A unit star) (const B unit star) (cone-prod A B))) ~ id isretr-inv-gap-prod A B (pair a b) = eq-pair refl refl abstract is-pullback-prod : {i j : Level} (A : UU i) (B : UU j) → is-pullback (const A unit star) (const B unit star) (cone-prod A B) is-pullback-prod A B = is-equiv-has-inverse ( inv-gap-prod A B) ( issec-inv-gap-prod A B) ( isretr-inv-gap-prod A B) {- We conclude that cartesian products satisfy the universal property of pullbacks. -} abstract universal-property-pullback-prod : {i j : Level} (A : UU i) (B : UU j) → {l : Level} → universal-property-pullback l ( const A unit star) ( const B unit star) ( cone-prod A B) universal-property-pullback-prod A B = up-pullback-is-pullback ( const A unit star) ( const B unit star) ( cone-prod A B) ( is-pullback-prod A B) {- Similar as the above, but now for families of products. -} cone-fiberwise-prod : {l1 l2 l3 : Level} {X : UU l1} (P : X → UU l2) (Q : X → UU l3) → cone (pr1 {A = X} {B = P}) (pr1 {A = X} {B = Q}) (Σ X (λ x → (P x) × (Q x))) cone-fiberwise-prod P Q = pair ( tot (λ x → pr1)) ( pair ( tot (λ x → pr2)) ( htpy-refl)) {- We will show that the fiberwise product is a pullback by showing that the gap map is an equivalence. We do this by directly construct an inverse to the gap map. -} inv-gap-fiberwise-prod : {l1 l2 l3 : Level} {X : UU l1} (P : X → UU l2) (Q : X → UU l3) → canonical-pullback (pr1 {B = P}) (pr1 {B = Q}) → Σ X (λ x → (P x) × (Q x)) inv-gap-fiberwise-prod P Q (pair (pair x p) (pair (pair .x q) refl)) = pair x (pair p q) issec-inv-gap-fiberwise-prod : {l1 l2 l3 : Level} {X : UU l1} (P : X → UU l2) (Q : X → UU l3) → ((gap (pr1 {B = P}) (pr1 {B = Q}) (cone-fiberwise-prod P Q)) ∘ (inv-gap-fiberwise-prod P Q)) ~ id issec-inv-gap-fiberwise-prod P Q (pair (pair x p) (pair (pair .x q) refl)) = eq-pair refl (eq-pair refl refl) isretr-inv-gap-fiberwise-prod : {l1 l2 l3 : Level} {X : UU l1} (P : X → UU l2) (Q : X → UU l3) → ( ( inv-gap-fiberwise-prod P Q) ∘ ( gap (pr1 {B = P}) (pr1 {B = Q}) (cone-fiberwise-prod P Q))) ~ id isretr-inv-gap-fiberwise-prod P Q (pair x (pair p q)) = refl {- With all the pieces in place we conclude that the fiberwise product is a pullback. -} abstract is-pullback-fiberwise-prod : {l1 l2 l3 : Level} {X : UU l1} (P : X → UU l2) (Q : X → UU l3) → is-pullback (pr1 {A = X} {B = P}) (pr1 {A = X} {B = Q}) (cone-fiberwise-prod P Q) is-pullback-fiberwise-prod P Q = is-equiv-has-inverse ( inv-gap-fiberwise-prod P Q) ( issec-inv-gap-fiberwise-prod P Q) ( isretr-inv-gap-fiberwise-prod P Q) {- Furthermore we conclude that the fiberwise product satisfies the universal property of pullbacks. -} abstract universal-property-pullback-fiberwise-prod : {l1 l2 l3 l4 : Level} {X : UU l1} (P : X → UU l2) (Q : X → UU l3) → universal-property-pullback l4 (pr1 {B = P}) (pr1 {B = Q}) (cone-fiberwise-prod P Q) universal-property-pullback-fiberwise-prod P Q = up-pullback-is-pullback pr1 pr1 ( cone-fiberwise-prod P Q) ( is-pullback-fiberwise-prod P Q) {- We now generalize the above to arbitrary maps and their fibers. -} cone-total-prod-fibers : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) → cone f g (Σ X (λ x → (fib f x) × (fib g x))) cone-total-prod-fibers f g = pair ( λ t → pr1 (pr1 (pr2 t))) ( pair ( λ t → pr1 (pr2 (pr2 t))) ( λ t → (pr2 (pr1 (pr2 t))) ∙ (inv (pr2 (pr2 (pr2 t)))))) cone-span : {l1 l2 l3 l4 l5 l6 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) {A' : UU l4} {B' : UU l5} {C : A' → B' → UU l6} (i : A' → A) (j : B' → B) (k : (x : A') (y : B') → C x y → Id (f (i x)) (g (j y))) → cone f g (Σ A' (λ x → Σ B' (C x))) cone-span f g i j k = pair ( λ t → i (pr1 t)) ( pair ( λ t → j (pr1 (pr2 t))) ( λ t → k (pr1 t) (pr1 (pr2 t)) (pr2 (pr2 t)))) abstract is-pullback-cone-span-is-equiv : {l1 l2 l3 l4 l5 l6 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) {A' : UU l4} {B' : UU l5} {C : A' → B' → UU l6} (i : A' → A) (j : B' → B) (k : (x' : A') (y' : B') → C x' y' → Id (f (i x')) (g (j y'))) → is-equiv i → is-equiv j → ((x : A') (y : B') → is-equiv (k x y)) → is-pullback f g (cone-span f g i j k) is-pullback-cone-span-is-equiv {B = B} f g i j k is-equiv-i is-equiv-j is-equiv-k = is-equiv-toto-is-fiberwise-equiv-is-equiv-base-map ( λ x → Σ B (λ y → Id (f x) (g y))) ( i) ( λ x' → toto (λ y → Id (f (i x')) (g y)) j (k x')) ( is-equiv-i) ( λ x' → is-equiv-toto-is-fiberwise-equiv-is-equiv-base-map ( λ y → Id (f (i x')) (g y)) ( j) ( k x') ( is-equiv-j) ( is-equiv-k x')) abstract is-pullback-total-prod-fibers : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) → is-pullback f g (cone-total-prod-fibers f g) is-pullback-total-prod-fibers f g = is-equiv-comp ( gap f g (cone-total-prod-fibers f g)) ( gap f g (cone-span f g ( Σ-fib-to-domain f) ( Σ-fib-to-domain g) ( λ s t α → (pr2 (pr2 s)) ∙ (α ∙ (inv (pr2 (pr2 t))))))) ( gap ( pr1 {B = fib f}) ( pr1 {B = fib g}) ( cone-fiberwise-prod (fib f) (fib g))) ( λ t → refl) ( is-pullback-fiberwise-prod (fib f) (fib g)) ( is-pullback-cone-span-is-equiv f g ( Σ-fib-to-domain f) ( Σ-fib-to-domain g) ( λ s t α → (pr2 (pr2 s)) ∙ (α ∙ (inv (pr2 (pr2 t))))) ( is-equiv-Σ-fib-to-domain f) ( is-equiv-Σ-fib-to-domain g) ( λ s t → is-equiv-comp _ ( concat (pr2 (pr2 s)) (g (pr1 (pr2 t)))) ( concat' (pr1 s) (inv (pr2 (pr2 t)))) ( htpy-refl) ( is-equiv-concat' (pr1 s) (inv (pr2 (pr2 t)))) ( is-equiv-concat (pr2 (pr2 s)) (g (pr1 (pr2 t)))))) -- Section 13.4 Fibers as pullbacks square-fiber : {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) (b : B) → ( f ∘ (pr1 {B = λ x → Id (f x) b})) ~ ( (const unit B b) ∘ (const (fib f b) unit star)) square-fiber f b = pr2 cone-fiber : {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) (b : B) → cone f (const unit B b) (fib f b) cone-fiber f b = pair pr1 (pair (const (fib f b) unit star) (square-fiber f b)) abstract is-pullback-cone-fiber : {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) → (b : B) → is-pullback f (const unit B b) (cone-fiber f b) is-pullback-cone-fiber f b = is-equiv-tot-is-fiberwise-equiv ( λ a → is-equiv-left-unit-law-Σ-map-gen (λ t → Id (f a) b) is-contr-unit star) abstract universal-property-pullback-cone-fiber : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (f : A → B) (b : B) → universal-property-pullback l3 f (const unit B b) (cone-fiber f b) universal-property-pullback-cone-fiber {B = B} f b = up-pullback-is-pullback f (const unit B b) ( cone-fiber f b) ( is-pullback-cone-fiber f b) cone-fiber-fam : {l1 l2 : Level} {A : UU l1} (B : A → UU l2) (a : A) → cone (pr1 {B = B}) (const unit A a) (B a) cone-fiber-fam B a = pair (λ b → pair a b) (pair (const (B a) unit star) (λ b → refl)) abstract is-pullback-cone-fiber-fam : {l1 l2 : Level} {A : UU l1} (B : A → UU l2) → (a : A) → is-pullback (pr1 {B = B}) (const unit A a) (cone-fiber-fam B a) is-pullback-cone-fiber-fam {A = A} B a = is-equiv-comp ( gap (pr1 {B = B}) (const unit A a) (cone-fiber-fam B a)) ( gap (pr1 {B = B}) (const unit A a) (cone-fiber (pr1 {B = B}) a)) ( fib-pr1-fib-fam B a) ( λ y → refl) ( is-equiv-fib-pr1-fib-fam B a) ( is-pullback-cone-fiber pr1 a) -- Section 13.5 Fiberwise equivalences cone-subst : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (f : A → B) (Q : B → UU l3) → cone f (pr1 {B = Q}) (Σ A (λ x → Q (f x))) cone-subst f Q = pair pr1 (pair (Σ-map-base-map f Q) (λ t → refl)) inv-gap-cone-subst : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (f : A → B) (Q : B → UU l3) → canonical-pullback f (pr1 {B = Q}) → Σ A (λ x → Q (f x)) inv-gap-cone-subst f Q (pair x (pair (pair .(f x) q) refl)) = pair x q issec-inv-gap-cone-subst : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (f : A → B) (Q : B → UU l3) → ((gap f (pr1 {B = Q}) (cone-subst f Q)) ∘ (inv-gap-cone-subst f Q)) ~ id issec-inv-gap-cone-subst f Q (pair x (pair (pair .(f x) q) refl)) = refl isretr-inv-gap-cone-subst : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (f : A → B) (Q : B → UU l3) → ((inv-gap-cone-subst f Q) ∘ (gap f (pr1 {B = Q}) (cone-subst f Q))) ~ id isretr-inv-gap-cone-subst f Q (pair x q) = refl abstract is-pullback-cone-subst : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (f : A → B) (Q : B → UU l3) → is-pullback f (pr1 {B = Q}) (cone-subst f Q) is-pullback-cone-subst f Q = is-equiv-has-inverse ( inv-gap-cone-subst f Q) ( issec-inv-gap-cone-subst f Q) ( isretr-inv-gap-cone-subst f Q) cone-toto : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {P : A → UU l3} (Q : B → UU l4) (f : A → B) (g : (x : A) → (P x) → (Q (f x))) → cone f (pr1 {B = Q}) (Σ A P) cone-toto Q f g = pair pr1 (pair (toto Q f g) (λ t → refl)) abstract is-pullback-is-fiberwise-equiv : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {P : A → UU l3} (Q : B → UU l4) (f : A → B) (g : (x : A) → (P x) → (Q (f x))) → is-fiberwise-equiv g → is-pullback f (pr1 {B = Q}) (cone-toto Q f g) is-pullback-is-fiberwise-equiv Q f g is-equiv-g = is-equiv-comp ( gap f pr1 (cone-toto Q f g)) ( gap f pr1 (cone-subst f Q)) ( tot g) ( λ t → refl) ( is-equiv-tot-is-fiberwise-equiv is-equiv-g) ( is-pullback-cone-subst f Q) abstract universal-property-pullback-is-fiberwise-equiv : {l1 l2 l3 l4 l5 : Level} {A : UU l1} {B : UU l2} {P : A → UU l3} (Q : B → UU l4) (f : A → B) (g : (x : A) → (P x) → (Q (f x))) → is-fiberwise-equiv g → universal-property-pullback l5 f (pr1 {B = Q}) (cone-toto Q f g) universal-property-pullback-is-fiberwise-equiv Q f g is-equiv-g = up-pullback-is-pullback f pr1 (cone-toto Q f g) ( is-pullback-is-fiberwise-equiv Q f g is-equiv-g) abstract is-fiberwise-equiv-is-pullback : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {P : A → UU l3} (Q : B → UU l4) (f : A → B) (g : (x : A) → (P x) → (Q (f x))) → is-pullback f (pr1 {B = Q}) (cone-toto Q f g) → is-fiberwise-equiv g is-fiberwise-equiv-is-pullback Q f g is-pullback-cone-toto = is-fiberwise-equiv-is-equiv-tot g ( is-equiv-right-factor ( gap f pr1 (cone-toto Q f g)) ( gap f pr1 (cone-subst f Q)) ( tot g) ( λ t → refl) ( is-pullback-cone-subst f Q) ( is-pullback-cone-toto)) abstract is-fiberwise-equiv-universal-property-pullback : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {P : A → UU l3} (Q : B → UU l4) (f : A → B) (g : (x : A) → (P x) → (Q (f x))) → ( {l : Level} → universal-property-pullback l f (pr1 {B = Q}) (cone-toto Q f g)) → is-fiberwise-equiv g is-fiberwise-equiv-universal-property-pullback Q f g up = is-fiberwise-equiv-is-pullback Q f g ( is-pullback-up-pullback f pr1 (cone-toto Q f g) up) fib-square : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} (f : A → X) (g : B → X) (c : cone f g C) → (x : A) → fib (pr1 c) x → fib g (f x) fib-square f g c x t = let p = pr1 c q = pr1 (pr2 c) H = pr2 (pr2 c) in pair (q (pr1 t) ) ((inv (H (pr1 t))) ∙ (ap f (pr2 t))) fib-square-id : {l1 l2 : Level} {B : UU l1} {X : UU l2} (g : B → X) (x : X) → fib-square id g (pair g (pair id htpy-refl)) x ~ id fib-square-id g .(g b) (pair b refl) = refl square-tot-fib-square : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} (f : A → X) (g : B → X) (c : cone f g C) → ( (gap f g c) ∘ (Σ-fib-to-domain (pr1 c))) ~ ( (tot (λ a → tot (λ b → inv))) ∘ (tot (fib-square f g c))) square-tot-fib-square f g c (pair .((pr1 c) x) (pair x refl)) = let p = pr1 c q = pr1 (pr2 c) H = pr2 (pr2 c) in eq-pair refl ( eq-pair refl ( inv ((ap inv right-unit) ∙ (inv-inv (H x))))) abstract is-fiberwise-equiv-fib-square-is-pullback : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} (f : A → X) (g : B → X) (c : cone f g C) → is-pullback f g c → is-fiberwise-equiv (fib-square f g c) is-fiberwise-equiv-fib-square-is-pullback f g c pb = let p = pr1 c q = pr1 (pr2 c) H = pr2 (pr2 c) in is-fiberwise-equiv-is-equiv-tot ( fib-square f g c) ( is-equiv-top-is-equiv-bottom-square ( Σ-fib-to-domain p) ( tot (λ x → tot (λ y → inv))) ( tot (fib-square f g c)) ( gap f g c) ( square-tot-fib-square f g c) ( is-equiv-Σ-fib-to-domain p) ( is-equiv-tot-is-fiberwise-equiv ( λ x → is-equiv-tot-is-fiberwise-equiv ( λ y → is-equiv-inv (g y) (f x)))) ( pb)) abstract is-pullback-is-fiberwise-equiv-fib-square : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} (f : A → X) (g : B → X) (c : cone f g C) → is-fiberwise-equiv (fib-square f g c) → is-pullback f g c is-pullback-is-fiberwise-equiv-fib-square f g c is-equiv-fsq = let p = pr1 c q = pr1 (pr2 c) H = pr2 (pr2 c) in is-equiv-bottom-is-equiv-top-square ( Σ-fib-to-domain p) ( tot (λ x → tot (λ y → inv))) ( tot (fib-square f g c)) ( gap f g c) ( square-tot-fib-square f g c) ( is-equiv-Σ-fib-to-domain p) ( is-equiv-tot-is-fiberwise-equiv ( λ x → is-equiv-tot-is-fiberwise-equiv ( λ y → is-equiv-inv (g y) (f x)))) ( is-equiv-tot-is-fiberwise-equiv is-equiv-fsq) abstract is-trunc-is-pullback : {l1 l2 l3 l4 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} (f : A → X) (g : B → X) (c : cone f g C) → is-pullback f g c → is-trunc-map k g → is-trunc-map k (pr1 c) is-trunc-is-pullback k f g c pb is-trunc-g a = is-trunc-is-equiv k ( fib g (f a)) ( fib-square f g c a) ( is-fiberwise-equiv-fib-square-is-pullback f g c pb a) (is-trunc-g (f a)) abstract is-emb-is-pullback : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} (f : A → X) (g : B → X) (c : cone f g C) → is-pullback f g c → is-emb g → is-emb (pr1 c) is-emb-is-pullback f g c pb is-emb-g = is-emb-is-prop-map ( pr1 c) ( is-trunc-is-pullback neg-one-𝕋 f g c pb (is-prop-map-is-emb g is-emb-g)) abstract is-equiv-is-pullback : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} (f : A → X) (g : B → X) (c : cone f g C) → is-equiv g → is-pullback f g c → is-equiv (pr1 c) is-equiv-is-pullback f g c is-equiv-g pb = is-equiv-is-contr-map ( is-trunc-is-pullback neg-two-𝕋 f g c pb ( is-contr-map-is-equiv is-equiv-g)) abstract is-pullback-is-equiv : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} (f : A → X) (g : B → X) (c : cone f g C) → is-equiv g → is-equiv (pr1 c) → is-pullback f g c is-pullback-is-equiv f g c is-equiv-g is-equiv-p = is-pullback-is-fiberwise-equiv-fib-square f g c ( λ a → is-equiv-is-contr ( fib-square f g c a) ( is-contr-map-is-equiv is-equiv-p a) ( is-contr-map-is-equiv is-equiv-g (f a))) -- Section 13.6 The pullback pasting property coherence-square-comp-horizontal : {l1 l2 l3 l4 l5 l6 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} {Y : UU l5} {Z : UU l6} (top-left : A → B) (top-right : B → C) (left : A → X) (mid : B → Y) (right : C → Z) (bottom-left : X → Y) (bottom-right : Y → Z) → coherence-square top-left left mid bottom-left → coherence-square top-right mid right bottom-right → coherence-square (top-right ∘ top-left) left right (bottom-right ∘ bottom-left) coherence-square-comp-horizontal top-left top-right left mid right bottom-left bottom-right sq-left sq-right = (bottom-right ·l sq-left) ∙h (sq-right ·r top-left) coherence-square-comp-vertical : {l1 l2 l3 l4 l5 l6 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} {Y : UU l5} {Z : UU l6} (top : A → X) (left-top : A → B) (right-top : X → Y) (mid : B → Y) (left-bottom : B → C) (right-bottom : Y → Z) (bottom : C → Z) → coherence-square top left-top right-top mid → coherence-square mid left-bottom right-bottom bottom → coherence-square top (left-bottom ∘ left-top) (right-bottom ∘ right-top) bottom coherence-square-comp-vertical top left-top right-top mid left-bottom right-bottom bottom sq-top sq-bottom = (sq-bottom ·r left-top) ∙h (right-bottom ·l sq-top) cone-comp-horizontal : {l1 l2 l3 l4 l5 l6 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} {Y : UU l5} {Z : UU l6} (i : X → Y) (j : Y → Z) (h : C → Z) → (c : cone j h B) → (cone i (pr1 c) A) → cone (j ∘ i) h A cone-comp-horizontal i j h c d = pair ( pr1 d) ( pair ( (pr1 (pr2 c)) ∘ (pr1 (pr2 d))) ( coherence-square-comp-horizontal (pr1 (pr2 d)) (pr1 (pr2 c)) (pr1 d) (pr1 c) h i j (pr2 (pr2 d)) (pr2 (pr2 c)))) cone-comp-vertical : {l1 l2 l3 l4 l5 l6 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} {Y : UU l5} {Z : UU l6} (f : C → Z) (g : Y → Z) (h : X → Y) → (c : cone f g B) → cone (pr1 (pr2 c)) h A → cone f (g ∘ h) A cone-comp-vertical f g h c d = pair ( (pr1 c) ∘ (pr1 d)) ( pair ( pr1 (pr2 d)) ( coherence-square-comp-vertical ( pr1 (pr2 d)) (pr1 d) h (pr1 (pr2 c)) (pr1 c) g f ( pr2 (pr2 d)) (pr2 (pr2 c)))) fib-square-comp-horizontal : {l1 l2 l3 l4 l5 l6 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} {Y : UU l5} {Z : UU l6} (i : X → Y) (j : Y → Z) (h : C → Z) → (c : cone j h B) (d : cone i (pr1 c) A) → (x : X) → ( fib-square (j ∘ i) h (cone-comp-horizontal i j h c d) x) ~ ( (fib-square j h c (i x)) ∘ (fib-square i (pr1 c) d x)) fib-square-comp-horizontal i j h c d .(pr1 d a) (pair a refl) = let f = pr1 d k = pr1 (pr2 d) H = pr2 (pr2 d) g = pr1 c l = pr1 (pr2 c) K = pr2 (pr2 c) in eq-pair refl ( ( ap ( concat' (h (l (k a))) refl) ( distributive-inv-concat (ap j (H a)) (K (k a)))) ∙ ( ( assoc (inv (K (k a))) (inv (ap j (H a))) refl) ∙ ( ap ( concat (inv (K (k a))) (j (i (f a)))) ( ( ap (concat' (j (g (k a))) refl) (inv (ap-inv j (H a)))) ∙ ( inv (ap-concat j (inv (H a)) refl)))))) fib-square-comp-vertical : {l1 l2 l3 l4 l5 l6 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} {Y : UU l5} {Z : UU l6} (f : C → Z) (g : Y → Z) (h : X → Y) → (c : cone f g B) (d : cone (pr1 (pr2 c)) h A) (x : C) → ( ( fib-square f (g ∘ h) (cone-comp-vertical f g h c d) x) ∘ ( inv-map-fib-comp (pr1 c) (pr1 d) x)) ~ ( ( inv-map-fib-comp g h (f x)) ∘ ( toto ( λ t → fib h (pr1 t)) ( fib-square f g c x) ( λ t → fib-square (pr1 (pr2 c)) h d (pr1 t)))) fib-square-comp-vertical f g h (pair p (pair q H)) (pair p' (pair q' H')) .(p (p' a)) (pair (pair .(p' a) refl) (pair a refl)) = eq-pair refl ( ( right-unit) ∙ ( ( distributive-inv-concat (H (p' a)) (ap g (H' a))) ∙ ( ( ap ( concat (inv (ap g (H' a))) (f (p (p' a)))) ( inv right-unit)) ∙ ( ap ( concat' (g (h (q' a))) ( pr2 ( fib-square f g ( pair p (pair q H)) ( p (p' a)) ( pair (p' a) refl)))) ( ( inv (ap-inv g (H' a))) ∙ ( ap (ap g) (inv right-unit))))))) abstract is-pullback-rectangle-is-pullback-left-square : {l1 l2 l3 l4 l5 l6 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} {Y : UU l5} {Z : UU l6} (i : X → Y) (j : Y → Z) (h : C → Z) (c : cone j h B) (d : cone i (pr1 c) A) → is-pullback j h c → is-pullback i (pr1 c) d → is-pullback (j ∘ i) h (cone-comp-horizontal i j h c d) is-pullback-rectangle-is-pullback-left-square i j h c d is-pb-c is-pb-d = is-pullback-is-fiberwise-equiv-fib-square (j ∘ i) h ( cone-comp-horizontal i j h c d) ( λ x → is-equiv-comp ( fib-square (j ∘ i) h (cone-comp-horizontal i j h c d) x) ( fib-square j h c (i x)) ( fib-square i (pr1 c) d x) ( fib-square-comp-horizontal i j h c d x) ( is-fiberwise-equiv-fib-square-is-pullback i (pr1 c) d is-pb-d x) ( is-fiberwise-equiv-fib-square-is-pullback j h c is-pb-c (i x))) abstract is-pullback-left-square-is-pullback-rectangle : {l1 l2 l3 l4 l5 l6 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} {Y : UU l5} {Z : UU l6} (i : X → Y) (j : Y → Z) (h : C → Z) (c : cone j h B) (d : cone i (pr1 c) A) → is-pullback j h c → is-pullback (j ∘ i) h (cone-comp-horizontal i j h c d) → is-pullback i (pr1 c) d is-pullback-left-square-is-pullback-rectangle i j h c d is-pb-c is-pb-rect = is-pullback-is-fiberwise-equiv-fib-square i (pr1 c) d ( λ x → is-equiv-right-factor ( fib-square (j ∘ i) h (cone-comp-horizontal i j h c d) x) ( fib-square j h c (i x)) ( fib-square i (pr1 c) d x) ( fib-square-comp-horizontal i j h c d x) ( is-fiberwise-equiv-fib-square-is-pullback j h c is-pb-c (i x)) ( is-fiberwise-equiv-fib-square-is-pullback (j ∘ i) h ( cone-comp-horizontal i j h c d) is-pb-rect x)) abstract is-pullback-top-is-pullback-rectangle : {l1 l2 l3 l4 l5 l6 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} {Y : UU l5} {Z : UU l6} (f : C → Z) (g : Y → Z) (h : X → Y) → (c : cone f g B) (d : cone (pr1 (pr2 c)) h A) → is-pullback f g c → is-pullback f (g ∘ h) (cone-comp-vertical f g h c d) → is-pullback (pr1 (pr2 c)) h d is-pullback-top-is-pullback-rectangle f g h c d is-pb-c is-pb-dc = is-pullback-is-fiberwise-equiv-fib-square (pr1 (pr2 c)) h d ( λ x → is-fiberwise-equiv-is-equiv-toto-is-equiv-base-map ( λ t → fib h (pr1 t)) ( fib-square f g c ((pr1 c) x)) ( λ t → fib-square (pr1 (pr2 c)) h d (pr1 t)) ( is-fiberwise-equiv-fib-square-is-pullback f g c is-pb-c ((pr1 c) x)) ( is-equiv-top-is-equiv-bottom-square ( inv-map-fib-comp (pr1 c) (pr1 d) ((pr1 c) x)) ( inv-map-fib-comp g h (f ((pr1 c) x))) ( toto ( λ t → fib h (pr1 t)) ( fib-square f g c ((pr1 c) x)) ( λ t → fib-square (pr1 (pr2 c)) h d (pr1 t))) ( fib-square f (g ∘ h) (cone-comp-vertical f g h c d) ((pr1 c) x)) ( fib-square-comp-vertical f g h c d ((pr1 c) x)) ( is-equiv-inv-map-fib-comp (pr1 c) (pr1 d) ((pr1 c) x)) ( is-equiv-inv-map-fib-comp g h (f ((pr1 c) x))) ( is-fiberwise-equiv-fib-square-is-pullback f (g ∘ h) ( cone-comp-vertical f g h c d) is-pb-dc ((pr1 c) x))) ( pair x refl)) abstract is-pullback-rectangle-is-pullback-top : {l1 l2 l3 l4 l5 l6 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} {Y : UU l5} {Z : UU l6} (f : C → Z) (g : Y → Z) (h : X → Y) → (c : cone f g B) (d : cone (pr1 (pr2 c)) h A) → is-pullback f g c → is-pullback (pr1 (pr2 c)) h d → is-pullback f (g ∘ h) (cone-comp-vertical f g h c d) is-pullback-rectangle-is-pullback-top f g h c d is-pb-c is-pb-d = is-pullback-is-fiberwise-equiv-fib-square f (g ∘ h) ( cone-comp-vertical f g h c d) ( λ x → is-equiv-bottom-is-equiv-top-square ( inv-map-fib-comp (pr1 c) (pr1 d) x) ( inv-map-fib-comp g h (f x)) ( toto ( λ t → fib h (pr1 t)) ( fib-square f g c x) ( λ t → fib-square (pr1 (pr2 c)) h d (pr1 t))) ( fib-square f (g ∘ h) (cone-comp-vertical f g h c d) x) ( fib-square-comp-vertical f g h c d x) ( is-equiv-inv-map-fib-comp (pr1 c) (pr1 d) x) ( is-equiv-inv-map-fib-comp g h (f x)) ( is-equiv-toto-is-fiberwise-equiv-is-equiv-base-map ( λ t → fib h (pr1 t)) ( fib-square f g c x) ( λ t → fib-square (pr1 (pr2 c)) h d (pr1 t)) ( is-fiberwise-equiv-fib-square-is-pullback f g c is-pb-c x) ( λ t → is-fiberwise-equiv-fib-square-is-pullback (pr1 (pr2 c)) h d is-pb-d (pr1 t)))) -- Section 13.7 Descent for coproducts and Σ-types fib-functor-coprod-inl-fib : {l1 l2 l1' l2' : Level} {A : UU l1} {B : UU l2} {A' : UU l1'} {B' : UU l2'} (f : A' → A) (g : B' → B) (x : A) → fib f x → fib (functor-coprod f g) (inl x) fib-functor-coprod-inl-fib f g x (pair a' p) = pair (inl a') (ap inl p) fib-fib-functor-coprod-inl : {l1 l2 l1' l2' : Level} {A : UU l1} {B : UU l2} {A' : UU l1'} {B' : UU l2'} (f : A' → A) (g : B' → B) (x : A) → fib (functor-coprod f g) (inl x) → fib f x fib-fib-functor-coprod-inl f g x (pair (inl a') p) = pair a' (map-compute-eq-coprod-inl-inl (f a') x p) fib-fib-functor-coprod-inl f g x (pair (inr b') p) = ind-empty {P = λ t → fib f x} ( map-compute-eq-coprod-inr-inl (g b') x p) issec-fib-fib-functor-coprod-inl : {l1 l2 l1' l2' : Level} {A : UU l1} {B : UU l2} {A' : UU l1'} {B' : UU l2'} (f : A' → A) (g : B' → B) (x : A) → ( (fib-functor-coprod-inl-fib f g x) ∘ ( fib-fib-functor-coprod-inl f g x)) ~ id issec-fib-fib-functor-coprod-inl f g .(f a') (pair (inl a') refl) = eq-pair refl ( ap (ap inl) ( isretr-inv-is-equiv ( is-equiv-map-raise _ (Id (f a') (f a'))) refl)) issec-fib-fib-functor-coprod-inl f g x (pair (inr b') p) = ind-empty { P = λ t → Id ( fib-functor-coprod-inl-fib f g x ( fib-fib-functor-coprod-inl f g x (pair (inr b') p))) ( pair (inr b') p)} ( map-compute-eq-coprod-inr-inl (g b') x p) isretr-fib-fib-functor-coprod-inl : {l1 l2 l1' l2' : Level} {A : UU l1} {B : UU l2} {A' : UU l1'} {B' : UU l2'} (f : A' → A) (g : B' → B) (x : A) → ( (fib-fib-functor-coprod-inl f g x) ∘ ( fib-functor-coprod-inl-fib f g x)) ~ id isretr-fib-fib-functor-coprod-inl f g .(f a') (pair a' refl) = eq-pair refl ( isretr-inv-is-equiv (is-equiv-map-raise _ (Id (f a') (f a'))) refl) abstract is-equiv-fib-functor-coprod-inl-fib : {l1 l2 l1' l2' : Level} {A : UU l1} {B : UU l2} {A' : UU l1'} {B' : UU l2'} (f : A' → A) (g : B' → B) (x : A) → is-equiv (fib-functor-coprod-inl-fib f g x) is-equiv-fib-functor-coprod-inl-fib f g x = is-equiv-has-inverse ( fib-fib-functor-coprod-inl f g x) ( issec-fib-fib-functor-coprod-inl f g x) ( isretr-fib-fib-functor-coprod-inl f g x) fib-functor-coprod-inr-fib : {l1 l2 l1' l2' : Level} {A : UU l1} {B : UU l2} {A' : UU l1'} {B' : UU l2'} (f : A' → A) (g : B' → B) (y : B) → fib g y → fib (functor-coprod f g) (inr y) fib-functor-coprod-inr-fib f g y (pair b' p) = pair (inr b') (ap inr p) fib-fib-functor-coprod-inr : {l1 l2 l1' l2' : Level} {A : UU l1} {B : UU l2} {A' : UU l1'} {B' : UU l2'} (f : A' → A) (g : B' → B) (y : B) → fib (functor-coprod f g) (inr y) → fib g y fib-fib-functor-coprod-inr f g y (pair (inl a') p) = ind-empty {P = λ t → fib g y} ( map-compute-eq-coprod-inl-inr (f a') y p) fib-fib-functor-coprod-inr f g y (pair (inr b') p) = pair b' (map-compute-eq-coprod-inr-inr (g b') y p) issec-fib-fib-functor-coprod-inr : {l1 l2 l1' l2' : Level} {A : UU l1} {B : UU l2} {A' : UU l1'} {B' : UU l2'} (f : A' → A) (g : B' → B) (y : B) → ( (fib-functor-coprod-inr-fib f g y) ∘ ( fib-fib-functor-coprod-inr f g y)) ~ id issec-fib-fib-functor-coprod-inr f g .(g b') (pair (inr b') refl) = eq-pair refl ( ap (ap inr) ( isretr-inv-is-equiv ( is-equiv-map-raise _ (Id (g b') (g b'))) refl)) issec-fib-fib-functor-coprod-inr f g y (pair (inl a') p) = ind-empty { P = λ t → Id ( fib-functor-coprod-inr-fib f g y ( fib-fib-functor-coprod-inr f g y (pair (inl a') p))) ( pair (inl a') p)} ( map-compute-eq-coprod-inl-inr (f a') y p) isretr-fib-fib-functor-coprod-inr : {l1 l2 l1' l2' : Level} {A : UU l1} {B : UU l2} {A' : UU l1'} {B' : UU l2'} (f : A' → A) (g : B' → B) (y : B) → ( (fib-fib-functor-coprod-inr f g y) ∘ ( fib-functor-coprod-inr-fib f g y)) ~ id isretr-fib-fib-functor-coprod-inr f g .(g b') (pair b' refl) = eq-pair refl ( isretr-inv-is-equiv (is-equiv-map-raise _ (Id (g b') (g b'))) refl) abstract is-equiv-fib-functor-coprod-inr-fib : {l1 l2 l1' l2' : Level} {A : UU l1} {B : UU l2} {A' : UU l1'} {B' : UU l2'} (f : A' → A) (g : B' → B) (y : B) → is-equiv (fib-functor-coprod-inr-fib f g y) is-equiv-fib-functor-coprod-inr-fib f g y = is-equiv-has-inverse ( fib-fib-functor-coprod-inr f g y) ( issec-fib-fib-functor-coprod-inr f g y) ( isretr-fib-fib-functor-coprod-inr f g y) cone-descent-coprod : {l1 l2 l3 l1' l2' l3' : Level} {A : UU l1} {B : UU l2} {X : UU l3} {A' : UU l1'} {B' : UU l2'} {X' : UU l3'} (f : A → X) (g : B → X) (i : X' → X) (cone-A' : cone f i A') (cone-B' : cone g i B') → cone (ind-coprod _ f g) i (coprod A' B') cone-descent-coprod f g i (pair h (pair f' H)) (pair k (pair g' K)) = pair ( functor-coprod h k) ( pair ( ind-coprod _ f' g') ( ind-coprod _ H K)) triangle-descent-square-fib-functor-coprod-inl-fib : {l1 l2 l3 l1' l2' l3' : Level} {A : UU l1} {B : UU l2} {X : UU l3} {A' : UU l1'} {B' : UU l2'} {X' : UU l3'} (f : A' → A) (g : B' → B) (h : X' → X) (αA : A → X) (αB : B → X) (αA' : A' → X') (αB' : B' → X') (HA : (αA ∘ f) ~ (h ∘ αA')) (HB : (αB ∘ g) ~ (h ∘ αB')) (x : A) → (fib-square αA h (pair f (pair αA' HA)) x) ~ ( (fib-square (ind-coprod _ αA αB) h ( pair ( functor-coprod f g) ( pair (ind-coprod _ αA' αB') (ind-coprod _ HA HB))) (inl x)) ∘ ( fib-functor-coprod-inl-fib f g x)) triangle-descent-square-fib-functor-coprod-inl-fib {X = X} {X' = X'} f g h αA αB αA' αB' HA HB x (pair a' p) = eq-pair refl ( ap (concat (inv (HA a')) (αA x)) ( ap-comp (ind-coprod _ αA αB) inl p)) triangle-descent-square-fib-functor-coprod-inr-fib : {l1 l2 l3 l1' l2' l3' : Level} {A : UU l1} {B : UU l2} {X : UU l3} {A' : UU l1'} {B' : UU l2'} {X' : UU l3'} (f : A' → A) (g : B' → B) (h : X' → X) (αA : A → X) (αB : B → X) (αA' : A' → X') (αB' : B' → X') (HA : (αA ∘ f) ~ (h ∘ αA')) (HB : (αB ∘ g) ~ (h ∘ αB')) (y : B) → (fib-square αB h (pair g (pair αB' HB)) y) ~ ( (fib-square (ind-coprod _ αA αB) h ( pair ( functor-coprod f g) ( pair (ind-coprod _ αA' αB') (ind-coprod _ HA HB))) (inr y)) ∘ ( fib-functor-coprod-inr-fib f g y)) triangle-descent-square-fib-functor-coprod-inr-fib {X = X} {X' = X'} f g h αA αB αA' αB' HA HB y ( pair b' p) = eq-pair refl ( ap (concat (inv (HB b')) (αB y)) ( ap-comp (ind-coprod _ αA αB) inr p)) abstract descent-coprod : {l1 l2 l3 l1' l2' l3' : Level} {A : UU l1} {B : UU l2} {X : UU l3} {A' : UU l1'} {B' : UU l2'} {X' : UU l3'} (f : A → X) (g : B → X) (i : X' → X) (cone-A' : cone f i A') (cone-B' : cone g i B') → is-pullback f i cone-A' → is-pullback g i cone-B' → is-pullback (ind-coprod _ f g) i (cone-descent-coprod f g i cone-A' cone-B') descent-coprod f g i (pair h (pair f' H)) (pair k (pair g' K)) is-pb-cone-A' is-pb-cone-B' = is-pullback-is-fiberwise-equiv-fib-square ( ind-coprod _ f g) ( i) ( cone-descent-coprod f g i (pair h (pair f' H)) (pair k (pair g' K))) ( ind-coprod _ ( λ x → is-equiv-left-factor ( fib-square f i (pair h (pair f' H)) x) ( fib-square (ind-coprod _ f g) i ( pair (functor-coprod h k) ( pair (ind-coprod _ f' g') (ind-coprod _ H K))) ( inl x)) ( fib-functor-coprod-inl-fib h k x) ( triangle-descent-square-fib-functor-coprod-inl-fib h k i f g f' g' H K x) ( is-fiberwise-equiv-fib-square-is-pullback f i ( pair h (pair f' H)) is-pb-cone-A' x) ( is-equiv-fib-functor-coprod-inl-fib h k x)) ( λ y → is-equiv-left-factor ( fib-square g i (pair k (pair g' K)) y) ( fib-square ( ind-coprod _ f g) i ( pair ( functor-coprod h k) ( pair (ind-coprod _ f' g') (ind-coprod _ H K))) (inr y)) ( fib-functor-coprod-inr-fib h k y) ( triangle-descent-square-fib-functor-coprod-inr-fib h k i f g f' g' H K y) ( is-fiberwise-equiv-fib-square-is-pullback g i ( pair k (pair g' K)) is-pb-cone-B' y) ( is-equiv-fib-functor-coprod-inr-fib h k y))) abstract descent-coprod-inl : {l1 l2 l3 l1' l2' l3' : Level} {A : UU l1} {B : UU l2} {X : UU l3} {A' : UU l1'} {B' : UU l2'} {X' : UU l3'} (f : A → X) (g : B → X) (i : X' → X) (cone-A' : cone f i A') (cone-B' : cone g i B') → is-pullback ( ind-coprod _ f g) ( i) ( cone-descent-coprod f g i cone-A' cone-B') → is-pullback f i cone-A' descent-coprod-inl f g i (pair h (pair f' H)) (pair k (pair g' K)) is-pb-dsq = is-pullback-is-fiberwise-equiv-fib-square f i (pair h (pair f' H)) ( λ a → is-equiv-comp ( fib-square f i (pair h (pair f' H)) a) ( fib-square (ind-coprod _ f g) i ( cone-descent-coprod f g i ( pair h (pair f' H)) (pair k (pair g' K))) (inl a)) ( fib-functor-coprod-inl-fib h k a) ( triangle-descent-square-fib-functor-coprod-inl-fib h k i f g f' g' H K a) ( is-equiv-fib-functor-coprod-inl-fib h k a) ( is-fiberwise-equiv-fib-square-is-pullback (ind-coprod _ f g) i ( cone-descent-coprod f g i ( pair h (pair f' H)) (pair k (pair g' K))) is-pb-dsq (inl a))) abstract descent-coprod-inr : {l1 l2 l3 l1' l2' l3' : Level} {A : UU l1} {B : UU l2} {X : UU l3} {A' : UU l1'} {B' : UU l2'} {X' : UU l3'} (f : A → X) (g : B → X) (i : X' → X) (cone-A' : cone f i A') (cone-B' : cone g i B') → is-pullback ( ind-coprod _ f g) ( i) ( cone-descent-coprod f g i cone-A' cone-B') → is-pullback g i cone-B' descent-coprod-inr f g i (pair h (pair f' H)) (pair k (pair g' K)) is-pb-dsq = is-pullback-is-fiberwise-equiv-fib-square g i (pair k (pair g' K)) ( λ b → is-equiv-comp ( fib-square g i (pair k (pair g' K)) b) ( fib-square (ind-coprod _ f g) i ( cone-descent-coprod f g i ( pair h (pair f' H)) (pair k (pair g' K))) (inr b)) ( fib-functor-coprod-inr-fib h k b) ( triangle-descent-square-fib-functor-coprod-inr-fib h k i f g f' g' H K b) ( is-equiv-fib-functor-coprod-inr-fib h k b) ( is-fiberwise-equiv-fib-square-is-pullback (ind-coprod _ f g) i ( cone-descent-coprod f g i ( pair h (pair f' H)) (pair k (pair g' K))) is-pb-dsq (inr b))) -- Descent for Σ-types cone-descent-Σ : {l1 l2 l3 l4 l5 : Level} {I : UU l1} {A : I → UU l2} {A' : I → UU l3} {X : UU l4} {X' : UU l5} (f : (i : I) → A i → X) (h : X' → X) (c : (i : I) → cone (f i) h (A' i)) → cone (ind-Σ f) h (Σ I A') cone-descent-Σ f h c = pair ( tot (λ i → (pr1 (c i)))) ( pair ( ind-Σ (λ i → (pr1 (pr2 (c i))))) ( ind-Σ (λ i → (pr2 (pr2 (c i)))))) triangle-descent-Σ : {l1 l2 l3 l4 l5 : Level} {I : UU l1} {A : I → UU l2} {A' : I → UU l3} {X : UU l4} {X' : UU l5} (f : (i : I) → A i → X) (h : X' → X) (c : (i : I) → cone (f i) h (A' i)) → (i : I) (a : A i) → ( fib-square (f i) h (c i) a) ~ ((fib-square (ind-Σ f) h (cone-descent-Σ f h c) (pair i a)) ∘ (fib-tot-fib-ftr (λ i → (pr1 (c i))) (pair i a))) triangle-descent-Σ f h c i .(pr1 (c i) a') (pair a' refl) = refl abstract descent-Σ : {l1 l2 l3 l4 l5 : Level} {I : UU l1} {A : I → UU l2} {A' : I → UU l3} {X : UU l4} {X' : UU l5} (f : (i : I) → A i → X) (h : X' → X) (c : (i : I) → cone (f i) h (A' i)) → ((i : I) → is-pullback (f i) h (c i)) → is-pullback (ind-Σ f) h (cone-descent-Σ f h c) descent-Σ f h c is-pb-c = is-pullback-is-fiberwise-equiv-fib-square ( ind-Σ f) ( h) ( cone-descent-Σ f h c) ( ind-Σ ( λ i a → is-equiv-left-factor ( fib-square (f i) h (c i) a) ( fib-square (ind-Σ f) h (cone-descent-Σ f h c) (pair i a)) ( fib-tot-fib-ftr (λ i → pr1 (c i)) (pair i a)) ( triangle-descent-Σ f h c i a) ( is-fiberwise-equiv-fib-square-is-pullback (f i) h (c i) (is-pb-c i) a) ( is-equiv-fib-tot-fib-ftr (λ i → pr1 (c i)) (pair i a)))) abstract descent-Σ' : {l1 l2 l3 l4 l5 : Level} {I : UU l1} {A : I → UU l2} {A' : I → UU l3} {X : UU l4} {X' : UU l5} (f : (i : I) → A i → X) (h : X' → X) (c : (i : I) → cone (f i) h (A' i)) → is-pullback (ind-Σ f) h (cone-descent-Σ f h c) → ((i : I) → is-pullback (f i) h (c i)) descent-Σ' f h c is-pb-dsq i = is-pullback-is-fiberwise-equiv-fib-square (f i) h (c i) ( λ a → is-equiv-comp ( fib-square (f i) h (c i) a) ( fib-square (ind-Σ f) h (cone-descent-Σ f h c) (pair i a)) ( fib-tot-fib-ftr (λ i → pr1 (c i)) (pair i a)) ( triangle-descent-Σ f h c i a) ( is-equiv-fib-tot-fib-ftr (λ i → pr1 (c i)) (pair i a)) ( is-fiberwise-equiv-fib-square-is-pullback (ind-Σ f) h ( cone-descent-Σ f h c) is-pb-dsq (pair i a))) -- Extra material -- Homotopical squares {- We consider the situation where we have two 'parallel squares', i.e. a diagram of the form ---------> C ---------> B | | | | | | | | V V V V A ---------> X. ---------> Suppose that between each parallel pair of maps there is a homotopy, and that there is a homotopy between the homotopies that fill the two squares, as expessed by the type coherence-htpy-square below. Our goal is to show that if one of the squares is a pullback square, then so is the other. We do so without using function extensionality. -} coherence-htpy-square : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} {f f' : A → X} (Hf : f ~ f') {g g' : B → X} (Hg : g ~ g') → (c : cone f g C) (c' : cone f' g' C) (Hp : pr1 c ~ pr1 c') (Hq : pr1 (pr2 c) ~ pr1 (pr2 c')) → UU _ coherence-htpy-square {f = f} {f'} Hf {g} {g'} Hg c c' Hp Hq = let p = pr1 c q = pr1 (pr2 c) H = pr2 (pr2 c) p' = pr1 c' q' = pr1 (pr2 c') H' = pr2 (pr2 c') in ( H ∙h ((g ·l Hq) ∙h (Hg ·r q'))) ~ (((f ·l Hp) ∙h (Hf ·r p')) ∙h H') fam-htpy-square : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} {f f' : A → X} (Hf : f ~ f') {g g' : B → X} (Hg : g ~ g') → (c : cone f g C) → (c' : cone f' g' C) → (pr1 c ~ pr1 c') → UU _ fam-htpy-square {f = f} {f'} Hf {g} {g'} Hg c c' Hp = Σ ((pr1 (pr2 c)) ~ (pr1 (pr2 c'))) (coherence-htpy-square Hf Hg c c' Hp) htpy-square : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} {f f' : A → X} (Hf : f ~ f') {g g' : B → X} (Hg : g ~ g') → cone f g C → cone f' g' C → UU (l1 ⊔ (l2 ⊔ (l3 ⊔ l4))) htpy-square {f = f} {f'} Hf {g} {g'} Hg c c' = Σ ((pr1 c) ~ (pr1 c')) (fam-htpy-square Hf Hg c c') map-is-pullback-htpy : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {f : A → X} {f' : A → X} (Hf : f ~ f') {g : B → X} {g' : B → X} (Hg : g ~ g') → canonical-pullback f' g' → canonical-pullback f g map-is-pullback-htpy {f = f} {f'} Hf {g} {g'} Hg = tot (λ a → tot (λ b → ( concat' (f a) (inv (Hg b))) ∘ (concat (Hf a) (g' b)))) abstract is-equiv-map-is-pullback-htpy : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {f : A → X} {f' : A → X} (Hf : f ~ f') {g : B → X} {g' : B → X} (Hg : g ~ g') → is-equiv (map-is-pullback-htpy Hf Hg) is-equiv-map-is-pullback-htpy {f = f} {f'} Hf {g} {g'} Hg = is-equiv-tot-is-fiberwise-equiv (λ a → is-equiv-tot-is-fiberwise-equiv (λ b → is-equiv-comp ( (concat' (f a) (inv (Hg b))) ∘ (concat (Hf a) (g' b))) ( concat' (f a) (inv (Hg b))) ( concat (Hf a) (g' b)) ( htpy-refl) ( is-equiv-concat (Hf a) (g' b)) ( is-equiv-concat' (f a) (inv (Hg b))))) tot-pullback-rel : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) (x : A) → UU _ tot-pullback-rel {B = B} f g x = Σ B (λ y → Id (f x) (g y)) triangle-is-pullback-htpy : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} {f : A → X} {f' : A → X} (Hf : f ~ f') {g : B → X} {g' : B → X} (Hg : g ~ g') {c : cone f g C} {c' : cone f' g' C} (Hc : htpy-square Hf Hg c c') → (gap f g c) ~ ((map-is-pullback-htpy Hf Hg) ∘ (gap f' g' c')) triangle-is-pullback-htpy {A = A} {B} {X} {C} {f = f} {f'} Hf {g} {g'} Hg {pair p (pair q H)} {pair p' (pair q' H')} (pair Hp (pair Hq HH)) z = eq-Eq-canonical-pullback f g ( Hp z) ( Hq z) ( ( inv ( assoc (ap f (Hp z)) ((Hf (p' z)) ∙ (H' z)) (inv (Hg (q' z))))) ∙ ( inv ( con-inv ( (H z) ∙ (ap g (Hq z))) ( Hg (q' z)) ( ( ap f (Hp z)) ∙ ((Hf (p' z)) ∙ (H' z))) ( ( assoc (H z) (ap g (Hq z)) (Hg (q' z))) ∙ ( ( HH z) ∙ ( assoc (ap f (Hp z)) (Hf (p' z)) (H' z))))))) abstract is-pullback-htpy : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} {f : A → X} (f' : A → X) (Hf : f ~ f') {g : B → X} (g' : B → X) (Hg : g ~ g') {c : cone f g C} (c' : cone f' g' C) (Hc : htpy-square Hf Hg c c') → is-pullback f' g' c' → is-pullback f g c is-pullback-htpy {f = f} f' Hf {g} g' Hg {c = pair p (pair q H)} (pair p' (pair q' H')) (pair Hp (pair Hq HH)) is-pb-c' = is-equiv-comp ( gap f g (pair p (pair q H))) ( map-is-pullback-htpy Hf Hg) ( gap f' g' (pair p' (pair q' H'))) ( triangle-is-pullback-htpy Hf Hg {pair p (pair q H)} {pair p' (pair q' H')} (pair Hp (pair Hq HH))) ( is-pb-c') ( is-equiv-map-is-pullback-htpy Hf Hg) abstract is-pullback-htpy' : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} (f : A → X) {f' : A → X} (Hf : f ~ f') (g : B → X) {g' : B → X} (Hg : g ~ g') → (c : cone f g C) {c' : cone f' g' C} (Hc : htpy-square Hf Hg c c') → is-pullback f g c → is-pullback f' g' c' is-pullback-htpy' f {f'} Hf g {g'} Hg (pair p (pair q H)) {pair p' (pair q' H')} (pair Hp (pair Hq HH)) is-pb-c = is-equiv-right-factor ( gap f g (pair p (pair q H))) ( map-is-pullback-htpy Hf Hg) ( gap f' g' (pair p' (pair q' H'))) ( triangle-is-pullback-htpy Hf Hg {pair p (pair q H)} {pair p' (pair q' H')} (pair Hp (pair Hq HH))) ( is-equiv-map-is-pullback-htpy Hf Hg) ( is-pb-c) {- In the following part we will relate the type htpy-square to the Identity type of cones. Here we will rely on function extensionality. -} reflexive-htpy-square : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} (f : A → X) (g : B → X) (c : cone f g C) → htpy-square (htpy-refl {f = f}) (htpy-refl {f = g}) c c reflexive-htpy-square f g c = pair htpy-refl (pair htpy-refl htpy-right-unit) htpy-square-eq-htpy-refl : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} (f : A → X) (g : B → X) (c c' : cone f g C) → Id c c' → htpy-square (htpy-refl {f = f}) (htpy-refl {f = g}) c c' htpy-square-eq-htpy-refl f g c .c refl = pair htpy-refl (pair htpy-refl htpy-right-unit) htpy-square-htpy-refl-htpy-cone : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} (f : A → X) (g : B → X) → (c c' : cone f g C) → htpy-cone f g c c' → htpy-square (htpy-refl {f = f}) (htpy-refl {f = g}) c c' htpy-square-htpy-refl-htpy-cone f g (pair p (pair q H)) (pair p' (pair q' H')) = tot ( λ K → tot ( λ L M → ( htpy-ap-concat H _ _ htpy-right-unit) ∙h ( M ∙h htpy-ap-concat' _ _ H' (htpy-inv htpy-right-unit)))) abstract is-equiv-htpy-square-htpy-refl-htpy-cone : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} (f : A → X) (g : B → X) → (c c' : cone f g C) → is-equiv (htpy-square-htpy-refl-htpy-cone f g c c') is-equiv-htpy-square-htpy-refl-htpy-cone f g (pair p (pair q H)) (pair p' (pair q' H')) = is-equiv-tot-is-fiberwise-equiv ( λ K → is-equiv-tot-is-fiberwise-equiv ( λ L → is-equiv-comp ( λ M → ( htpy-ap-concat H _ _ htpy-right-unit) ∙h ( M ∙h ( htpy-ap-concat' _ _ H' (htpy-inv htpy-right-unit)))) ( htpy-concat ( htpy-ap-concat H _ _ htpy-right-unit) ( ((f ·l K) ∙h htpy-refl) ∙h H')) ( htpy-concat' ( H ∙h (g ·l L)) ( htpy-ap-concat' _ _ H' (htpy-inv htpy-right-unit))) ( htpy-refl) ( is-equiv-htpy-concat' ( H ∙h (g ·l L)) ( λ x → ap (λ z → z ∙ H' x) (inv right-unit))) ( is-equiv-htpy-concat ( λ x → ap (_∙_ (H x)) right-unit) ( ((f ·l K) ∙h htpy-refl) ∙h H')))) abstract is-contr-total-htpy-square-htpy-refl-htpy-refl : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} (f : A → X) (g : B → X) → (c : cone f g C) → is-contr (Σ (cone f g C) (htpy-square (htpy-refl' f) (htpy-refl' g) c)) is-contr-total-htpy-square-htpy-refl-htpy-refl {A = A} {B} {X} {C} f g (pair p (pair q H)) = let c = pair p (pair q H) in is-contr-is-equiv' ( Σ (cone f g C) (htpy-cone f g c)) ( tot (htpy-square-htpy-refl-htpy-cone f g c)) ( is-equiv-tot-is-fiberwise-equiv ( is-equiv-htpy-square-htpy-refl-htpy-cone f g c)) ( is-contr-total-htpy-cone f g c) abstract is-contr-total-htpy-square-htpy-refl : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} (f : A → X) {g g' : B → X} (Hg : g ~ g') → (c : cone f g C) → is-contr (Σ (cone f g' C) (htpy-square (htpy-refl' f) Hg c)) is-contr-total-htpy-square-htpy-refl {C = C} f {g} = ind-htpy g ( λ g'' Hg' → ( c : cone f g C) → is-contr (Σ (cone f g'' C) (htpy-square (htpy-refl' f) Hg' c))) ( is-contr-total-htpy-square-htpy-refl-htpy-refl f g) abstract is-contr-total-htpy-square : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} {f f' : A → X} (Hf : f ~ f') {g g' : B → X} (Hg : g ~ g') → (c : cone f g C) → is-contr (Σ (cone f' g' C) (htpy-square Hf Hg c)) is-contr-total-htpy-square {A = A} {B} {X} {C} {f} {f'} Hf {g} {g'} Hg = ind-htpy { A = A} { B = λ t → X} ( f) ( λ f'' Hf' → (g g' : B → X) (Hg : g ~ g') (c : cone f g C) → is-contr (Σ (cone f'' g' C) (htpy-square Hf' Hg c))) ( λ g g' Hg → is-contr-total-htpy-square-htpy-refl f Hg) Hf g g' Hg tr-tr-htpy-refl-cone : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} (f : A → X) (g : B → X) (c : cone f g C) → let tr-c = tr (λ x → cone x g C) (eq-htpy (htpy-refl {f = f})) c tr-tr-c = tr (λ y → cone f y C) (eq-htpy (htpy-refl {f = g})) tr-c in Id tr-tr-c c tr-tr-htpy-refl-cone {C = C} f g c = let tr-c = tr (λ f''' → cone f''' g C) (eq-htpy htpy-refl) c tr-tr-c = tr (λ g'' → cone f g'' C) (eq-htpy htpy-refl) tr-c α : Id tr-tr-c tr-c α = ap (λ t → tr (λ g'' → cone f g'' C) t tr-c) (eq-htpy-htpy-refl g) β : Id tr-c c β = ap (λ t → tr (λ f''' → cone f''' g C) t c) (eq-htpy-htpy-refl f) in α ∙ β htpy-square-eq-htpy-refl-htpy-refl : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} (f : A → X) (g : B → X) (c c' : cone f g C) → let tr-c = tr (λ x → cone x g C) (eq-htpy (htpy-refl {f = f})) c tr-tr-c = tr (λ y → cone f y C) (eq-htpy (htpy-refl {f = g})) tr-c in Id tr-tr-c c' → htpy-square (htpy-refl' f) (htpy-refl' g) c c' htpy-square-eq-htpy-refl-htpy-refl f g c c' = ind-is-equiv ( λ p → htpy-square (htpy-refl' f) (htpy-refl' g) c c') ( λ (p : Id c c') → (tr-tr-htpy-refl-cone f g c) ∙ p) ( is-equiv-concat (tr-tr-htpy-refl-cone f g c) c') ( htpy-square-eq-htpy-refl f g c c') comp-htpy-square-eq-htpy-refl-htpy-refl : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} (f : A → X) (g : B → X) (c c' : cone f g C) → ( (htpy-square-eq-htpy-refl-htpy-refl f g c c') ∘ (concat (tr-tr-htpy-refl-cone f g c) c')) ~ ( htpy-square-eq-htpy-refl f g c c') comp-htpy-square-eq-htpy-refl-htpy-refl f g c c' = htpy-comp-is-equiv ( λ p → htpy-square (htpy-refl' f) (htpy-refl' g) c c') ( λ (p : Id c c') → (tr-tr-htpy-refl-cone f g c) ∙ p) ( is-equiv-concat (tr-tr-htpy-refl-cone f g c) c') ( htpy-square-eq-htpy-refl f g c c') abstract htpy-square-eq' : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} (f : A → X) {g g' : B → X} (Hg : g ~ g') → (c : cone f g C) (c' : cone f g' C) → let tr-c = tr (λ x → cone x g C) (eq-htpy (htpy-refl {f = f})) c tr-tr-c = tr (λ y → cone f y C) (eq-htpy Hg) tr-c in Id tr-tr-c c' → htpy-square (htpy-refl' f) Hg c c' htpy-square-eq' {C = C} f {g} = ind-htpy g ( λ g'' Hg' → ( c : cone f g C) (c' : cone f g'' C) → Id (tr (λ g'' → cone f g'' C) (eq-htpy Hg') ( tr (λ f''' → cone f''' g C) (eq-htpy (htpy-refl' f)) c)) c' → htpy-square htpy-refl Hg' c c') ( htpy-square-eq-htpy-refl-htpy-refl f g) comp-htpy-square-eq' : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} (f : A → X) (g : B → X) (c c' : cone f g C) → ( ( htpy-square-eq' f htpy-refl c c') ∘ ( concat (tr-tr-htpy-refl-cone f g c) c')) ~ ( htpy-square-eq-htpy-refl f g c c') comp-htpy-square-eq' {A = A} {B} {X} {C} f g c c' = htpy-right-whisk ( htpy-eq (htpy-eq (htpy-eq (comp-htpy g ( λ g'' Hg' → ( c : cone f g C) (c' : cone f g'' C) → Id (tr (λ g'' → cone f g'' C) (eq-htpy Hg') ( tr (λ f''' → cone f''' g C) (eq-htpy (htpy-refl' f)) c)) c' → htpy-square htpy-refl Hg' c c') ( htpy-square-eq-htpy-refl-htpy-refl f g)) c) c')) ( concat (tr-tr-htpy-refl-cone f g c) c') ∙h ( comp-htpy-square-eq-htpy-refl-htpy-refl f g c c') abstract htpy-square-eq : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} {f f' : A → X} (Hf : f ~ f') {g g' : B → X} (Hg : g ~ g') → (c : cone f g C) (c' : cone f' g' C) → let tr-c = tr (λ x → cone x g C) (eq-htpy Hf) c tr-tr-c = tr (λ y → cone f' y C) (eq-htpy Hg) tr-c in Id tr-tr-c c' → htpy-square Hf Hg c c' htpy-square-eq {A = A} {B} {X} {C} {f} {f'} Hf {g} {g'} Hg c c' p = ind-htpy f ( λ f'' Hf' → ( g g' : B → X) (Hg : g ~ g') (c : cone f g C) (c' : cone f'' g' C) → ( Id (tr (λ g'' → cone f'' g'' C) (eq-htpy Hg) ( tr (λ f''' → cone f''' g C) (eq-htpy Hf') c)) c') → htpy-square Hf' Hg c c') ( λ g g' → htpy-square-eq' f {g = g} {g' = g'}) Hf g g' Hg c c' p comp-htpy-square-eq : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} (f : A → X) (g : B → X) (c c' : cone f g C) → ( ( htpy-square-eq htpy-refl htpy-refl c c') ∘ ( concat (tr-tr-htpy-refl-cone f g c) c')) ~ ( htpy-square-eq-htpy-refl f g c c') comp-htpy-square-eq {A = A} {B} {X} {C} f g c c' = htpy-right-whisk ( htpy-eq (htpy-eq (htpy-eq (htpy-eq (htpy-eq (htpy-eq (comp-htpy f ( λ f'' Hf' → ( g g' : B → X) (Hg : g ~ g') (c : cone f g C) (c' : cone f'' g' C) → ( Id ( tr (λ g'' → cone f'' g'' C) (eq-htpy Hg) ( tr (λ f''' → cone f''' g C) (eq-htpy Hf') c)) c') → htpy-square Hf' Hg c c') ( λ g g' → htpy-square-eq' f {g = g} {g' = g'})) g) g) htpy-refl) c) c')) ( concat (tr-tr-htpy-refl-cone f g c) c') ∙h ( comp-htpy-square-eq' f g c c') abstract is-fiberwise-equiv-htpy-square-eq : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} {f f' : A → X} (Hf : f ~ f') {g g' : B → X} (Hg : g ~ g') → (c : cone f g C) (c' : cone f' g' C) → is-equiv (htpy-square-eq Hf Hg c c') is-fiberwise-equiv-htpy-square-eq {A = A} {B} {X} {C} {f} {f'} Hf {g} {g'} Hg c c' = ind-htpy f ( λ f' Hf → ( g g' : B → X) (Hg : g ~ g') (c : cone f g C) (c' : cone f' g' C) → is-equiv (htpy-square-eq Hf Hg c c')) ( λ g g' Hg c c' → ind-htpy g ( λ g' Hg → ( c : cone f g C) (c' : cone f g' C) → is-equiv (htpy-square-eq htpy-refl Hg c c')) ( λ c c' → is-equiv-left-factor ( htpy-square-eq-htpy-refl f g c c') ( htpy-square-eq htpy-refl htpy-refl c c') ( concat (tr-tr-htpy-refl-cone f g c) c') ( htpy-inv (comp-htpy-square-eq f g c c')) ( fundamental-theorem-id c ( reflexive-htpy-square f g c) ( is-contr-total-htpy-square (htpy-refl' f) (htpy-refl' g) c) ( htpy-square-eq-htpy-refl f g c) c') ( is-equiv-concat (tr-tr-htpy-refl-cone f g c) c')) Hg c c') Hf g g' Hg c c' eq-htpy-square : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} {f f' : A → X} (Hf : f ~ f') {g g' : B → X} (Hg : g ~ g') → (c : cone f g C) (c' : cone f' g' C) → let tr-c = tr (λ x → cone x g C) (eq-htpy Hf) c tr-tr-c = tr (λ y → cone f' y C) (eq-htpy Hg) tr-c in htpy-square Hf Hg c c' → Id tr-tr-c c' eq-htpy-square Hf Hg c c' = inv-is-equiv { f = htpy-square-eq Hf Hg c c'} ( is-fiberwise-equiv-htpy-square-eq Hf Hg c c') -- Exercises -- Exercise 10.1 cone-Id : {l : Level} {A : UU l} (x y : A) → cone (const unit A x) (const unit A y) (Id x y) cone-Id x y = pair ( const (Id x y) unit star) ( pair ( const (Id x y) unit star) ( id)) inv-gap-cone-Id : {l : Level} {A : UU l} (x y : A) → canonical-pullback (const unit A x) (const unit A y) → Id x y inv-gap-cone-Id x y (pair star (pair star p)) = p issec-inv-gap-cone-Id : {l : Level} {A : UU l} (x y : A) → ( ( gap (const unit A x) (const unit A y) (cone-Id x y)) ∘ ( inv-gap-cone-Id x y)) ~ id issec-inv-gap-cone-Id x y (pair star (pair star p)) = refl isretr-inv-gap-cone-Id : {l : Level} {A : UU l} (x y : A) → ( ( inv-gap-cone-Id x y) ∘ ( gap (const unit A x) (const unit A y) (cone-Id x y))) ~ id isretr-inv-gap-cone-Id x y p = refl abstract is-pullback-cone-Id : {l : Level} {A : UU l} (x y : A) → is-pullback (const unit A x) (const unit A y) (cone-Id x y) is-pullback-cone-Id x y = is-equiv-has-inverse ( inv-gap-cone-Id x y) ( issec-inv-gap-cone-Id x y) ( isretr-inv-gap-cone-Id x y) {- One way to solve this exercise is to show that Id (pr1 t) (pr2 t) is a pullback for every t : A × A. This allows one to use path induction to show that the inverse of the gap map is a section. -} cone-Id' : {l : Level} {A : UU l} (t : A × A) → cone (const unit (A × A) t) (diagonal A) (Id (pr1 t) (pr2 t)) cone-Id' {A = A} (pair x y) = pair ( const (Id x y) unit star) ( pair ( const (Id x y) A x) ( λ p → eq-pair refl (inv p))) inv-gap-cone-Id' : {l : Level} {A : UU l} (t : A × A) → canonical-pullback (const unit (A × A) t) (diagonal A) → Id (pr1 t) (pr2 t) inv-gap-cone-Id' t (pair star (pair z p)) = (ap pr1 p) ∙ (inv (ap pr2 p)) issec-inv-gap-cone-Id' : {l : Level} {A : UU l} (t : A × A) → ( ( gap (const unit (A × A) t) (diagonal A) (cone-Id' t)) ∘ ( inv-gap-cone-Id' t)) ~ id issec-inv-gap-cone-Id' .(pair z z) (pair star (pair z refl)) = refl isretr-inv-gap-cone-Id' : {l : Level} {A : UU l} (t : A × A) → ( ( inv-gap-cone-Id' t) ∘ ( gap (const unit (A × A) t) (diagonal A) (cone-Id' t))) ~ id isretr-inv-gap-cone-Id' (pair x .x) refl = refl abstract is-pullback-cone-Id' : {l : Level} {A : UU l} (t : A × A) → is-pullback (const unit (A × A) t) (diagonal A) (cone-Id' t) is-pullback-cone-Id' t = is-equiv-has-inverse ( inv-gap-cone-Id' t) ( issec-inv-gap-cone-Id' t) ( isretr-inv-gap-cone-Id' t) -- Exercise 10.2 diagonal-map : {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) → A → canonical-pullback f f diagonal-map f x = pair x (pair x refl) fib-ap-fib-diagonal-map : {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) (t : canonical-pullback f f) → (fib (diagonal-map f) t) → (fib (ap f) (pr2 (pr2 t))) fib-ap-fib-diagonal-map f .(pair z (pair z refl)) (pair z refl) = pair refl refl fib-diagonal-map-fib-ap : {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) (t : canonical-pullback f f) → (fib (ap f) (pr2 (pr2 t))) → (fib (diagonal-map f) t) fib-diagonal-map-fib-ap f (pair x (pair .x .refl)) (pair refl refl) = pair x refl issec-fib-diagonal-map-fib-ap : {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) (t : canonical-pullback f f) → ((fib-ap-fib-diagonal-map f t) ∘ (fib-diagonal-map-fib-ap f t)) ~ id issec-fib-diagonal-map-fib-ap f (pair x (pair .x .refl)) (pair refl refl) = refl isretr-fib-diagonal-map-fib-ap : {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) (t : canonical-pullback f f) → ((fib-diagonal-map-fib-ap f t) ∘ (fib-ap-fib-diagonal-map f t)) ~ id isretr-fib-diagonal-map-fib-ap f .(pair x (pair x refl)) (pair x refl) = refl abstract is-equiv-fib-ap-fib-diagonal-map : {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) (t : canonical-pullback f f) → is-equiv (fib-ap-fib-diagonal-map f t) is-equiv-fib-ap-fib-diagonal-map f t = is-equiv-has-inverse ( fib-diagonal-map-fib-ap f t) ( issec-fib-diagonal-map-fib-ap f t) ( isretr-fib-diagonal-map-fib-ap f t) abstract is-trunc-diagonal-map-is-trunc-map : {l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} (f : A → B) → is-trunc-map (succ-𝕋 k) f → is-trunc-map k (diagonal-map f) is-trunc-diagonal-map-is-trunc-map k f is-trunc-f (pair x (pair y p)) = is-trunc-is-equiv k (fib (ap f) p) ( fib-ap-fib-diagonal-map f (pair x (pair y p))) ( is-equiv-fib-ap-fib-diagonal-map f (pair x (pair y p))) ( is-trunc-ap-is-trunc-map k f is-trunc-f x y p) abstract is-trunc-map-is-trunc-diagonal-map : {l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} (f : A → B) → is-trunc-map k (diagonal-map f) → is-trunc-map (succ-𝕋 k) f is-trunc-map-is-trunc-diagonal-map k f is-trunc-δ b (pair x p) (pair x' p') = is-trunc-is-equiv k ( fib (ap f) (p ∙ (inv p'))) ( fib-ap-eq-fib f (pair x p) (pair x' p')) ( is-equiv-fib-ap-eq-fib f (pair x p) (pair x' p')) ( is-trunc-is-equiv' k ( fib (diagonal-map f) (pair x (pair x' (p ∙ (inv p'))))) ( fib-ap-fib-diagonal-map f (pair x (pair x' (p ∙ (inv p'))))) ( is-equiv-fib-ap-fib-diagonal-map f (pair x (pair x' (p ∙ (inv p'))))) ( is-trunc-δ (pair x (pair x' (p ∙ (inv p')))))) abstract is-equiv-diagonal-map-is-emb : {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) → is-emb f → is-equiv (diagonal-map f) is-equiv-diagonal-map-is-emb f is-emb-f = is-equiv-is-contr-map ( is-trunc-diagonal-map-is-trunc-map neg-two-𝕋 f ( is-prop-map-is-emb f is-emb-f)) abstract is-emb-is-equiv-diagonal-map : {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) → is-equiv (diagonal-map f) → is-emb f is-emb-is-equiv-diagonal-map f is-equiv-δ = is-emb-is-prop-map f ( is-trunc-map-is-trunc-diagonal-map neg-two-𝕋 f ( is-contr-map-is-equiv is-equiv-δ)) -- Exercise 10.3 cone-swap : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} (f : A → X) (g : B → X) → cone f g C → cone g f C cone-swap f g (pair p (pair q H)) = pair q (pair p (htpy-inv H)) map-canonical-pullback-swap : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) → canonical-pullback f g → canonical-pullback g f map-canonical-pullback-swap f g (pair a (pair b p)) = pair b (pair a (inv p)) inv-inv-map-canonical-pullback-swap : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) → (map-canonical-pullback-swap f g ∘ map-canonical-pullback-swap g f) ~ id inv-inv-map-canonical-pullback-swap f g (pair b (pair a q)) = eq-pair refl (eq-pair refl (inv-inv q)) abstract is-equiv-map-canonical-pullback-swap : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) → is-equiv (map-canonical-pullback-swap f g) is-equiv-map-canonical-pullback-swap f g = is-equiv-has-inverse ( map-canonical-pullback-swap g f) ( inv-inv-map-canonical-pullback-swap f g) ( inv-inv-map-canonical-pullback-swap g f) triangle-map-canonical-pullback-swap : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} (f : A → X) (g : B → X) (c : cone f g C) → ( gap g f (cone-swap f g c)) ~ ( ( map-canonical-pullback-swap f g) ∘ ( gap f g c)) triangle-map-canonical-pullback-swap f g (pair p (pair q H)) x = refl abstract is-pullback-cone-swap : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} (f : A → X) (g : B → X) (c : cone f g C) → is-pullback f g c → is-pullback g f (cone-swap f g c) is-pullback-cone-swap f g c is-pb-c = is-equiv-comp ( gap g f (cone-swap f g c)) ( map-canonical-pullback-swap f g) ( gap f g c) ( triangle-map-canonical-pullback-swap f g c) ( is-pb-c) ( is-equiv-map-canonical-pullback-swap f g) abstract is-pullback-cone-swap' : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} (f : A → X) (g : B → X) (c : cone f g C) → is-pullback g f (cone-swap f g c) → is-pullback f g c is-pullback-cone-swap' f g c is-pb-c' = is-equiv-right-factor ( gap g f (cone-swap f g c)) ( map-canonical-pullback-swap f g) ( gap f g c) ( triangle-map-canonical-pullback-swap f g c) ( is-equiv-map-canonical-pullback-swap f g) ( is-pb-c') {- We conclude the swapped versions of some properties derived above, for future convenience -} abstract is-trunc-is-pullback' : {l1 l2 l3 l4 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} (f : A → X) (g : B → X) (c : cone f g C) → is-pullback f g c → is-trunc-map k f → is-trunc-map k (pr1 (pr2 c)) is-trunc-is-pullback' k f g (pair p (pair q H)) pb is-trunc-f = is-trunc-is-pullback k g f ( cone-swap f g (pair p (pair q H))) ( is-pullback-cone-swap f g (pair p (pair q H)) pb) is-trunc-f abstract is-emb-is-pullback' : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} (f : A → X) (g : B → X) (c : cone f g C) → is-pullback f g c → is-emb f → is-emb (pr1 (pr2 c)) is-emb-is-pullback' f g c pb is-emb-f = is-emb-is-prop-map ( pr1 (pr2 c)) ( is-trunc-is-pullback' neg-one-𝕋 f g c pb ( is-prop-map-is-emb f is-emb-f)) abstract is-equiv-is-pullback' : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} (f : A → X) (g : B → X) (c : cone f g C) → is-equiv f → is-pullback f g c → is-equiv (pr1 (pr2 c)) is-equiv-is-pullback' f g c is-equiv-f pb = is-equiv-is-contr-map ( is-trunc-is-pullback' neg-two-𝕋 f g c pb ( is-contr-map-is-equiv is-equiv-f)) abstract is-pullback-is-equiv' : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} (f : A → X) (g : B → X) (c : cone f g C) → is-equiv f → is-equiv (pr1 (pr2 c)) → is-pullback f g c is-pullback-is-equiv' f g (pair p (pair q H)) is-equiv-f is-equiv-q = is-pullback-cone-swap' f g (pair p (pair q H)) ( is-pullback-is-equiv g f ( cone-swap f g (pair p (pair q H))) is-equiv-f is-equiv-q) -- Exercise 10.4 cone-empty : {l1 l2 l3 : Level} {B : UU l1} {X : UU l2} {C : UU l3} → (g : B → X) (p : C → empty) (q : C → B) → cone (ind-empty {P = λ t → X}) g C cone-empty g p q = pair p ( pair q ( λ c → ind-empty {P = λ t → Id (ind-empty (p c)) (g (q c))} (p c))) abstract descent-empty : {l1 l2 l3 : Level} {B : UU l1} {X : UU l2} {C : UU l3} → let f = ind-empty {P = λ t → X} in (g : B → X) (c : cone f g C) → is-pullback f g c descent-empty g c = is-pullback-is-fiberwise-equiv-fib-square _ g c ind-empty abstract descent-empty' : {l1 l2 l3 : Level} {B : UU l1} {X : UU l2} {C : UU l3} → (g : B → X) (p : C → empty) (q : C → B) → is-pullback (ind-empty {P = λ t → X}) g (cone-empty g p q) descent-empty' g p q = descent-empty g (cone-empty g p q) -- Exercise 10.5 {- We show that a square is a pullback square if and only if every exponent of it is a pullback square. -} cone-exponent : {l1 l2 l3 l4 l5 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} (T : UU l5) (f : A → X) (g : B → X) (c : cone f g C) → cone (λ (h : T → A) → f ∘ h) (λ (h : T → B) → g ∘ h) (T → C) cone-exponent T f g (pair p (pair q H)) = pair ( λ h → p ∘ h) ( pair ( λ h → q ∘ h) ( λ h → eq-htpy (H ·r h))) map-canonical-pullback-exponent : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) (T : UU l4) → canonical-pullback (λ (h : T → A) → f ∘ h) (λ (h : T → B) → g ∘ h) → cone f g T map-canonical-pullback-exponent f g T = tot (λ p → tot (λ q → htpy-eq)) abstract is-equiv-map-canonical-pullback-exponent : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) (T : UU l4) → is-equiv (map-canonical-pullback-exponent f g T) is-equiv-map-canonical-pullback-exponent f g T = is-equiv-tot-is-fiberwise-equiv ( λ p → is-equiv-tot-is-fiberwise-equiv ( λ q → funext (f ∘ p) (g ∘ q))) triangle-map-canonical-pullback-exponent : {l1 l2 l3 l4 l5 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} (T : UU l5) (f : A → X) (g : B → X) (c : cone f g C) → ( cone-map f g {C' = T} c) ~ ( ( map-canonical-pullback-exponent f g T) ∘ ( gap ( λ (h : T → A) → f ∘ h) ( λ (h : T → B) → g ∘ h) ( cone-exponent T f g c))) triangle-map-canonical-pullback-exponent {A = A} {B} T f g (pair p (pair q H)) h = eq-pair refl (eq-pair refl (inv (issec-eq-htpy (H ·r h)))) abstract is-pullback-exponent-is-pullback : {l1 l2 l3 l4 l5 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} (f : A → X) (g : B → X) (c : cone f g C) → is-pullback f g c → (T : UU l5) → is-pullback ( λ (h : T → A) → f ∘ h) ( λ (h : T → B) → g ∘ h) ( cone-exponent T f g c) is-pullback-exponent-is-pullback f g c is-pb-c T = is-equiv-right-factor ( cone-map f g c) ( map-canonical-pullback-exponent f g T) ( gap (_∘_ f) (_∘_ g) (cone-exponent T f g c)) ( triangle-map-canonical-pullback-exponent T f g c) ( is-equiv-map-canonical-pullback-exponent f g T) ( up-pullback-is-pullback f g c is-pb-c T) abstract is-pullback-is-pullback-exponent : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} (f : A → X) (g : B → X) (c : cone f g C) → ((l5 : Level) (T : UU l5) → is-pullback ( λ (h : T → A) → f ∘ h) ( λ (h : T → B) → g ∘ h) ( cone-exponent T f g c)) → is-pullback f g c is-pullback-is-pullback-exponent f g c is-pb-exp = is-pullback-up-pullback f g c ( λ T → is-equiv-comp ( cone-map f g c) ( map-canonical-pullback-exponent f g T) ( gap (_∘_ f) (_∘_ g) (cone-exponent T f g c)) ( triangle-map-canonical-pullback-exponent T f g c) ( is-pb-exp _ T) ( is-equiv-map-canonical-pullback-exponent f g T)) -- Exercise 10.6 {- We construct the functoriality of cartesian products. -} functor-prod : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → C) (g : B → D) → (A × B) → (C × D) functor-prod f g (pair a b) = pair (f a) (g b) functor-prod-pr1 : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → C) (g : B → D) → (pr1 ∘ (functor-prod f g)) ~ (f ∘ pr1) functor-prod-pr1 f g (pair a b) = refl functor-prod-pr2 : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → C) (g : B → D) → (pr2 ∘ (functor-prod f g)) ~ (g ∘ pr2) functor-prod-pr2 f g (pair a b) = refl {- For our convenience we show that the functorial action of cartesian products preserves identity maps, compositions, homotopies, and equivalences. -} functor-prod-id : {l1 l2 : Level} {A : UU l1} {B : UU l2} → (functor-prod (id {A = A}) (id {A = B})) ~ id functor-prod-id (pair a b) = refl functor-prod-comp : {l1 l2 l3 l4 l5 l6 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} {E : UU l5} {F : UU l6} (f : A → C) (g : B → D) (h : C → E) (k : D → F) → functor-prod (h ∘ f) (k ∘ g) ~ ((functor-prod h k) ∘ (functor-prod f g)) functor-prod-comp f g h k (pair a b) = refl functor-prod-htpy : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} {f f' : A → C} (H : f ~ f') {g g' : B → D} (K : g ~ g') → functor-prod f g ~ functor-prod f' g' functor-prod-htpy {f = f} {f'} H {g} {g'} K (pair a b) = eq-pair-triv (pair (H a) (K b)) abstract is-equiv-functor-prod : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → C) (g : B → D) → is-equiv f → is-equiv g → is-equiv (functor-prod f g) is-equiv-functor-prod f g ( pair (pair sf issec-sf) (pair rf isretr-rf)) ( pair (pair sg issec-sg) (pair rg isretr-rg)) = pair ( pair ( functor-prod sf sg) ( ( htpy-inv (functor-prod-comp sf sg f g)) ∙h ( (functor-prod-htpy issec-sf issec-sg) ∙h functor-prod-id))) ( pair ( functor-prod rf rg) ( ( htpy-inv (functor-prod-comp f g rf rg)) ∙h ( (functor-prod-htpy isretr-rf isretr-rg) ∙h functor-prod-id))) {- Now we return to the solution of the exercise. Note: the solution below involves a substantial amount of path algebra. It would be nice to find a simpler solution. -} cone-fold : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} (f : A → X) (g : B → X) → cone f g C → cone (functor-prod f g) (diagonal X) C cone-fold f g (pair p (pair q H)) = pair ( λ z → pair (p z) (q z)) ( pair ( g ∘ q) ( λ z → eq-pair-triv (pair (H z) refl))) map-cone-fold : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) → (g : B → X) → canonical-pullback f g → canonical-pullback (functor-prod f g) (diagonal X) map-cone-fold f g (pair a (pair b p)) = pair ( pair a b) ( pair ( g b) ( eq-pair-triv (pair p refl))) inv-map-cone-fold : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) → (g : B → X) → canonical-pullback (functor-prod f g) (diagonal X) → canonical-pullback f g inv-map-cone-fold f g (pair (pair a b) (pair x α)) = pair a (pair b ((ap pr1 α) ∙ (inv (ap pr2 α)))) ap-diagonal : {l : Level} {A : UU l} {x y : A} (p : Id x y) → Id (ap (diagonal A) p) (eq-pair-triv (pair p p)) ap-diagonal refl = refl eq-pair-triv-concat : {l1 l2 : Level} {A : UU l1} {B : UU l2} {x x' x'' : A} {y y' y'' : B} (p : Id x x') (p' : Id x' x'') (q : Id y y') (q' : Id y' y'') → Id ( eq-pair-triv {s = pair x y} {t = pair x'' y''} (pair (p ∙ p') (q ∙ q'))) ( ( eq-pair-triv {s = pair x y} {t = pair x' y'} (pair p q)) ∙ ( eq-pair-triv (pair p' q'))) eq-pair-triv-concat refl p' refl q' = refl issec-inv-map-cone-fold : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) → ((map-cone-fold f g) ∘ (inv-map-cone-fold f g)) ~ id issec-inv-map-cone-fold {A = A} {B} {X} f g (pair (pair a b) (pair x α)) = eq-Eq-canonical-pullback ( functor-prod f g) ( diagonal X) refl ( ap pr2 α) ( ( ( ( inv (issec-pair-eq-triv' (pair (f a) (g b)) (pair x x) α)) ∙ ( ap ( λ t → (eq-pair-triv ( pair t (ap pr2 α)))) ( ( ( inv right-unit) ∙ ( inv (ap (concat (ap pr1 α) x) (left-inv (ap pr2 α))))) ∙ ( inv (assoc (ap pr1 α) (inv (ap pr2 α)) (ap pr2 α)))))) ∙ ( eq-pair-triv-concat ( (ap pr1 α) ∙ (inv (ap pr2 α))) ( ap pr2 α) ( refl) ( ap pr2 α))) ∙ ( ap ( concat ( eq-pair-triv ( pair ((ap pr1 α) ∙ (inv (ap pr2 α))) refl)) ( pair x x)) ( inv (ap-diagonal (ap pr2 α))))) ap-pr1-eq-pair-triv : {l1 l2 : Level} {A : UU l1} {B : UU l2} {x x' : A} (p : Id x x') {y y' : B} (q : Id y y') → Id (ap pr1 (eq-pair-triv' (pair x y) (pair x' y') (pair p q))) p ap-pr1-eq-pair-triv refl refl = refl ap-pr2-eq-pair-triv : {l1 l2 : Level} {A : UU l1} {B : UU l2} {x x' : A} (p : Id x x') {y y' : B} (q : Id y y') → Id (ap pr2 (eq-pair-triv' (pair x y) (pair x' y') (pair p q))) q ap-pr2-eq-pair-triv refl refl = refl isretr-inv-map-cone-fold : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) → ((inv-map-cone-fold f g) ∘ (map-cone-fold f g)) ~ id isretr-inv-map-cone-fold { A = A} { B = B} { X = X} f g (pair a (pair b p)) = eq-Eq-canonical-pullback {A = A} {B = B} {X = X} f g refl refl ( inv ( ( ap ( concat' (f a) refl) ( ( ( ap ( λ t → t ∙ ( inv (ap pr2 (eq-pair-triv' ( pair (f a) (g b)) ( pair (g b) (g b)) ( pair p refl))))) ( ap-pr1-eq-pair-triv p refl)) ∙ ( ap (λ t → p ∙ (inv t)) (ap-pr2-eq-pair-triv p refl))) ∙ ( right-unit))) ∙ ( right-unit))) abstract is-equiv-map-cone-fold : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) → is-equiv (map-cone-fold f g) is-equiv-map-cone-fold f g = is-equiv-has-inverse ( inv-map-cone-fold f g) ( issec-inv-map-cone-fold f g) ( isretr-inv-map-cone-fold f g) triangle-map-cone-fold : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} (f : A → X) (g : B → X) (c : cone f g C) → ( gap (functor-prod f g) (diagonal X) (cone-fold f g c)) ~ ( (map-cone-fold f g) ∘ (gap f g c)) triangle-map-cone-fold f g (pair p (pair q H)) z = refl abstract is-pullback-cone-fold-is-pullback : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} (f : A → X) (g : B → X) (c : cone f g C) → is-pullback f g c → is-pullback (functor-prod f g) (diagonal X) (cone-fold f g c) is-pullback-cone-fold-is-pullback f g c is-pb-c = is-equiv-comp ( gap (functor-prod f g) (diagonal _) (cone-fold f g c)) ( map-cone-fold f g) ( gap f g c) ( triangle-map-cone-fold f g c) ( is-pb-c) ( is-equiv-map-cone-fold f g) abstract is-pullback-is-pullback-cone-fold : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} (f : A → X) (g : B → X) (c : cone f g C) → is-pullback (functor-prod f g) (diagonal X) (cone-fold f g c) → is-pullback f g c is-pullback-is-pullback-cone-fold f g c is-pb-fold = is-equiv-right-factor ( gap (functor-prod f g) (diagonal _) (cone-fold f g c)) ( map-cone-fold f g) ( gap f g c) ( triangle-map-cone-fold f g c) ( is-equiv-map-cone-fold f g) ( is-pb-fold) -- Exercise 10.7 cone-pair : {l1 l2 l3 l4 l1' l2' l3' l4' : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} {A' : UU l1'} {B' : UU l2'} {X' : UU l3'} {C' : UU l4'} (f : A → X) (g : B → X) (f' : A' → X') (g' : B' → X') → cone f g C → cone f' g' C' → cone (functor-prod f f') (functor-prod g g') (C × C') cone-pair f g f' g' (pair p (pair q H)) (pair p' (pair q' H')) = pair ( functor-prod p p') ( pair ( functor-prod q q') ( ( htpy-inv (functor-prod-comp p p' f f')) ∙h ( ( functor-prod-htpy H H') ∙h ( functor-prod-comp q q' g g')))) map-cone-pair' : {l1 l2 l3 l1' l2' l3' : Level} {A : UU l1} {B : UU l2} {X : UU l3} {A' : UU l1'} {B' : UU l2'} {X' : UU l3'} (f : A → X) (g : B → X) (f' : A' → X') (g' : B' → X') → (t : A × A') (s : B × B') → (Id (f (pr1 t)) (g (pr1 s))) × (Id (f' (pr2 t)) (g' (pr2 s))) → (Id (pr1 (functor-prod f f' t)) (pr1 (functor-prod g g' s))) × (Id (pr2 (functor-prod f f' t)) (pr2 (functor-prod g g' s))) map-cone-pair' f g f' g' (pair a a') (pair b b') = id abstract is-equiv-map-cone-pair' : {l1 l2 l3 l1' l2' l3' : Level} {A : UU l1} {B : UU l2} {X : UU l3} {A' : UU l1'} {B' : UU l2'} {X' : UU l3'} (f : A → X) (g : B → X) (f' : A' → X') (g' : B' → X') → (t : A × A') (s : B × B') → is-equiv (map-cone-pair' f g f' g' t s) is-equiv-map-cone-pair' f g f' g' (pair a a') (pair b b') = is-equiv-id _ map-cone-pair : {l1 l2 l3 l1' l2' l3' : Level} {A : UU l1} {B : UU l2} {X : UU l3} {A' : UU l1'} {B' : UU l2'} {X' : UU l3'} (f : A → X) (g : B → X) (f' : A' → X') (g' : B' → X') → (canonical-pullback f g) × (canonical-pullback f' g') → canonical-pullback (functor-prod f f') (functor-prod g g') map-cone-pair {A' = A'} {B'} f g f' g' = ( tot ( λ t → ( tot ( λ s → ( eq-pair-triv ∘ (map-cone-pair' f g f' g' t s)))) ∘ ( swap-total-Eq-structure ( λ y → Id (f (pr1 t)) (g y)) ( λ y → B') ( λ y p y' → Id (f' (pr2 t)) (g' y'))))) ∘ ( swap-total-Eq-structure ( λ x → Σ _ (λ y → Id (f x) (g y))) ( λ x → A') ( λ x t x' → Σ _ (λ y' → Id (f' x') (g' y')))) triangle-map-cone-pair : {l1 l2 l3 l4 l1' l2' l3' l4' : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} {A' : UU l1'} {B' : UU l2'} {X' : UU l3'} {C' : UU l4'} (f : A → X) (g : B → X) (c : cone f g C) (f' : A' → X') (g' : B' → X') (c' : cone f' g' C') → (gap (functor-prod f f') (functor-prod g g') (cone-pair f g f' g' c c')) ~ ((map-cone-pair f g f' g') ∘ (functor-prod (gap f g c) (gap f' g' c'))) triangle-map-cone-pair f g (pair p (pair q H)) f' g' (pair p' (pair q' H')) (pair z z') = eq-pair refl (eq-pair refl right-unit) abstract is-equiv-map-cone-pair : {l1 l2 l3 l1' l2' l3' : Level} {A : UU l1} {B : UU l2} {X : UU l3} {A' : UU l1'} {B' : UU l2'} {X' : UU l3'} (f : A → X) (g : B → X) (f' : A' → X') (g' : B' → X') → is-equiv (map-cone-pair f g f' g') is-equiv-map-cone-pair f g f' g' = is-equiv-comp ( map-cone-pair f g f' g') ( tot ( λ t → ( tot ( λ s → ( eq-pair-triv ∘ (map-cone-pair' f g f' g' t s)))) ∘ ( swap-total-Eq-structure _ _ _))) ( swap-total-Eq-structure _ _ _) ( htpy-refl) ( is-equiv-swap-total-Eq-structure _ _ _) ( is-equiv-tot-is-fiberwise-equiv ( λ t → is-equiv-comp ( ( tot ( λ s → ( eq-pair-triv ∘ (map-cone-pair' f g f' g' t s)))) ∘ ( swap-total-Eq-structure ( λ y → Id (f (pr1 t)) (g y)) ( λ y → _) ( λ y p y' → Id (f' (pr2 t)) (g' y')))) ( tot ( λ s → ( eq-pair-triv ∘ (map-cone-pair' f g f' g' t s)))) ( swap-total-Eq-structure ( λ y → Id (f (pr1 t)) (g y)) ( λ y → _) ( λ y p y' → Id (f' (pr2 t)) (g' y'))) ( htpy-refl) ( is-equiv-swap-total-Eq-structure _ _ _) ( is-equiv-tot-is-fiberwise-equiv ( λ s → is-equiv-comp ( eq-pair-triv ∘ (map-cone-pair' f g f' g' t s)) ( eq-pair-triv) ( map-cone-pair' f g f' g' t s) ( htpy-refl) ( is-equiv-map-cone-pair' f g f' g' t s) ( is-equiv-eq-pair-triv' ( functor-prod f f' t) ( functor-prod g g' s)))))) abstract is-pullback-prod-is-pullback-pair : {l1 l2 l3 l4 l1' l2' l3' l4' : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} {A' : UU l1'} {B' : UU l2'} {X' : UU l3'} {C' : UU l4'} (f : A → X) (g : B → X) (c : cone f g C) (f' : A' → X') (g' : B' → X') (c' : cone f' g' C') → is-pullback f g c → is-pullback f' g' c' → is-pullback ( functor-prod f f') (functor-prod g g') (cone-pair f g f' g' c c') is-pullback-prod-is-pullback-pair f g c f' g' c' is-pb-c is-pb-c' = is-equiv-comp ( gap (functor-prod f f') (functor-prod g g') (cone-pair f g f' g' c c')) ( map-cone-pair f g f' g') ( functor-prod (gap f g c) (gap f' g' c')) ( triangle-map-cone-pair f g c f' g' c') ( is-equiv-functor-prod _ _ is-pb-c is-pb-c') ( is-equiv-map-cone-pair f g f' g') map-fib-functor-prod : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → C) (g : B → D) (t : C × D) → fib (functor-prod f g) t → (fib f (pr1 t)) × (fib g (pr2 t)) map-fib-functor-prod f g .(functor-prod f g (pair a b)) (pair (pair a b) refl) = pair (pair a refl) (pair b refl) inv-map-fib-functor-prod : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → C) (g : B → D) (t : C × D) → (fib f (pr1 t)) × (fib g (pr2 t)) → fib (functor-prod f g) t inv-map-fib-functor-prod f g (pair .(f x) .(g y)) (pair (pair x refl) (pair y refl)) = pair (pair x y) refl issec-inv-map-fib-functor-prod : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → C) (g : B → D) (t : C × D) → ((map-fib-functor-prod f g t) ∘ (inv-map-fib-functor-prod f g t)) ~ id issec-inv-map-fib-functor-prod f g (pair .(f x) .(g y)) (pair (pair x refl) (pair y refl)) = refl isretr-inv-map-fib-functor-prod : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → C) (g : B → D) (t : C × D) → ((inv-map-fib-functor-prod f g t) ∘ (map-fib-functor-prod f g t)) ~ id isretr-inv-map-fib-functor-prod f g .(functor-prod f g (pair a b)) (pair (pair a b) refl) = refl abstract is-equiv-map-fib-functor-prod : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → C) (g : B → D) (t : C × D) → is-equiv (map-fib-functor-prod f g t) is-equiv-map-fib-functor-prod f g t = is-equiv-has-inverse ( inv-map-fib-functor-prod f g t) ( issec-inv-map-fib-functor-prod f g t) ( isretr-inv-map-fib-functor-prod f g t) abstract is-equiv-left-factor-is-equiv-functor-prod : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → C) (g : B → D) (d : D) → is-equiv (functor-prod f g) → is-equiv f is-equiv-left-factor-is-equiv-functor-prod f g d is-equiv-fg = is-equiv-is-contr-map ( λ x → is-contr-left-factor-prod ( fib f x) ( fib g d) ( is-contr-is-equiv' ( fib (functor-prod f g) (pair x d)) ( map-fib-functor-prod f g (pair x d)) ( is-equiv-map-fib-functor-prod f g (pair x d)) ( is-contr-map-is-equiv is-equiv-fg (pair x d)))) abstract is-equiv-right-factor-is-equiv-functor-prod : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → C) (g : B → D) (c : C) → is-equiv (functor-prod f g) → is-equiv g is-equiv-right-factor-is-equiv-functor-prod f g c is-equiv-fg = is-equiv-is-contr-map ( λ y → is-contr-right-factor-prod ( fib f c) ( fib g y) ( is-contr-is-equiv' ( fib (functor-prod f g) (pair c y)) ( map-fib-functor-prod f g (pair c y)) ( is-equiv-map-fib-functor-prod f g (pair c y)) ( is-contr-map-is-equiv is-equiv-fg (pair c y)))) abstract is-pullback-left-factor-is-pullback-prod : {l1 l2 l3 l4 l1' l2' l3' l4' : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} {A' : UU l1'} {B' : UU l2'} {X' : UU l3'} {C' : UU l4'} (f : A → X) (g : B → X) (c : cone f g C) (f' : A' → X') (g' : B' → X') (c' : cone f' g' C') → is-pullback ( functor-prod f f') ( functor-prod g g') ( cone-pair f g f' g' c c') → canonical-pullback f' g' → is-pullback f g c is-pullback-left-factor-is-pullback-prod f g c f' g' c' is-pb-cc' t = is-equiv-left-factor-is-equiv-functor-prod (gap f g c) (gap f' g' c') t ( is-equiv-right-factor ( gap ( functor-prod f f') ( functor-prod g g') ( cone-pair f g f' g' c c')) ( map-cone-pair f g f' g') ( functor-prod (gap f g c) (gap f' g' c')) ( triangle-map-cone-pair f g c f' g' c') ( is-equiv-map-cone-pair f g f' g') ( is-pb-cc')) abstract is-pullback-right-factor-is-pullback-prod : {l1 l2 l3 l4 l1' l2' l3' l4' : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} {A' : UU l1'} {B' : UU l2'} {X' : UU l3'} {C' : UU l4'} (f : A → X) (g : B → X) (c : cone f g C) (f' : A' → X') (g' : B' → X') (c' : cone f' g' C') → is-pullback ( functor-prod f f') ( functor-prod g g') ( cone-pair f g f' g' c c') → canonical-pullback f g → is-pullback f' g' c' is-pullback-right-factor-is-pullback-prod f g c f' g' c' is-pb-cc' t = is-equiv-right-factor-is-equiv-functor-prod (gap f g c) (gap f' g' c') t ( is-equiv-right-factor ( gap ( functor-prod f f') ( functor-prod g g') ( cone-pair f g f' g' c c')) ( map-cone-pair f g f' g') ( functor-prod (gap f g c) (gap f' g' c')) ( triangle-map-cone-pair f g c f' g' c') ( is-equiv-map-cone-pair f g f' g') ( is-pb-cc')) -- Exercise 10.8 cone-Π : {l1 l2 l3 l4 l5 : Level} {I : UU l1} {A : I → UU l2} {B : I → UU l3} {X : I → UU l4} {C : I → UU l5} (f : (i : I) → A i → X i) (g : (i : I) → B i → X i) (c : (i : I) → cone (f i) (g i) (C i)) → cone (postcomp-Π f) (postcomp-Π g) ((i : I) → C i) cone-Π f g c = pair ( postcomp-Π (λ i → pr1 (c i))) ( pair ( postcomp-Π (λ i → pr1 (pr2 (c i)))) ( htpy-postcomp-Π (λ i → pr2 (pr2 (c i))))) map-canonical-pullback-Π : {l1 l2 l3 l4 : Level} {I : UU l1} {A : I → UU l2} {B : I → UU l3} {X : I → UU l4} (f : (i : I) → A i → X i) (g : (i : I) → B i → X i) → canonical-pullback (postcomp-Π f) (postcomp-Π g) → (i : I) → canonical-pullback (f i) (g i) map-canonical-pullback-Π f g (pair α (pair β γ)) i = pair (α i) (pair (β i) (htpy-eq γ i)) inv-map-canonical-pullback-Π : {l1 l2 l3 l4 : Level} {I : UU l1} {A : I → UU l2} {B : I → UU l3} {X : I → UU l4} (f : (i : I) → A i → X i) (g : (i : I) → B i → X i) → ((i : I) → canonical-pullback (f i) (g i)) → canonical-pullback (postcomp-Π f) (postcomp-Π g) inv-map-canonical-pullback-Π f g h = pair ( λ i → (pr1 (h i))) ( pair ( λ i → (pr1 (pr2 (h i)))) ( eq-htpy (λ i → (pr2 (pr2 (h i)))))) issec-inv-map-canonical-pullback-Π : {l1 l2 l3 l4 : Level} {I : UU l1} {A : I → UU l2} {B : I → UU l3} {X : I → UU l4} (f : (i : I) → A i → X i) (g : (i : I) → B i → X i) → ((map-canonical-pullback-Π f g) ∘ (inv-map-canonical-pullback-Π f g)) ~ id issec-inv-map-canonical-pullback-Π f g h = eq-htpy ( λ i → eq-Eq-canonical-pullback (f i) (g i) refl refl ( inv ( ( right-unit) ∙ ( htpy-eq (issec-eq-htpy (λ i → (pr2 (pr2 (h i))))) i)))) isretr-inv-map-canonical-pullback-Π : {l1 l2 l3 l4 : Level} {I : UU l1} {A : I → UU l2} {B : I → UU l3} {X : I → UU l4} (f : (i : I) → A i → X i) (g : (i : I) → B i → X i) → ((inv-map-canonical-pullback-Π f g) ∘ (map-canonical-pullback-Π f g)) ~ id isretr-inv-map-canonical-pullback-Π f g (pair α (pair β γ)) = eq-Eq-canonical-pullback ( postcomp-Π f) ( postcomp-Π g) refl refl ( inv (right-unit ∙ (isretr-eq-htpy γ))) abstract is-equiv-map-canonical-pullback-Π : {l1 l2 l3 l4 : Level} {I : UU l1} {A : I → UU l2} {B : I → UU l3} {X : I → UU l4} (f : (i : I) → A i → X i) (g : (i : I) → B i → X i) → is-equiv (map-canonical-pullback-Π f g) is-equiv-map-canonical-pullback-Π f g = is-equiv-has-inverse ( inv-map-canonical-pullback-Π f g) ( issec-inv-map-canonical-pullback-Π f g) ( isretr-inv-map-canonical-pullback-Π f g) triangle-map-canonical-pullback-Π : {l1 l2 l3 l4 l5 : Level} {I : UU l1} {A : I → UU l2} {B : I → UU l3} {X : I → UU l4} {C : I → UU l5} (f : (i : I) → A i → X i) (g : (i : I) → B i → X i) (c : (i : I) → cone (f i) (g i) (C i)) → ( postcomp-Π (λ i → gap (f i) (g i) (c i))) ~ ( ( map-canonical-pullback-Π f g) ∘ ( gap (postcomp-Π f) (postcomp-Π g) (cone-Π f g c))) triangle-map-canonical-pullback-Π f g c h = eq-htpy (λ i → eq-Eq-canonical-pullback (f i) (g i) refl refl ( (htpy-eq (issec-eq-htpy _) i) ∙ (inv right-unit))) abstract is-pullback-cone-Π : {l1 l2 l3 l4 l5 : Level} {I : UU l1} {A : I → UU l2} {B : I → UU l3} {X : I → UU l4} {C : I → UU l5} (f : (i : I) → A i → X i) (g : (i : I) → B i → X i) (c : (i : I) → cone (f i) (g i) (C i)) → ((i : I) → is-pullback (f i) (g i) (c i)) → is-pullback (postcomp-Π f) (postcomp-Π g) (cone-Π f g c) is-pullback-cone-Π f g c is-pb-c = is-equiv-right-factor ( postcomp-Π (λ i → gap (f i) (g i) (c i))) ( map-canonical-pullback-Π f g) ( gap (postcomp-Π f) (postcomp-Π g) (cone-Π f g c)) ( triangle-map-canonical-pullback-Π f g c) ( is-equiv-map-canonical-pullback-Π f g) ( is-equiv-postcomp-Π _ is-pb-c) -- Exercise 10.9 hom-cospan : {l1 l2 l3 l1' l2' l3' : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) {A' : UU l1'} {B' : UU l2'} {X' : UU l3'} (f' : A' → X') (g' : B' → X') → UU (l1 ⊔ (l2 ⊔ (l3 ⊔ (l1' ⊔ (l2' ⊔ l3'))))) hom-cospan {A = A} {B} {X} f g {A'} {B'} {X'} f' g' = Σ (A → A') (λ hA → Σ (B → B') (λ hB → Σ (X → X') (λ hX → ((f' ∘ hA) ~ (hX ∘ f)) × ((g' ∘ hB) ~ (hX ∘ g))))) id-hom-cospan : {l1 l2 l3 l1' l2' l3' : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) → hom-cospan f g f g id-hom-cospan f g = pair id (pair id (pair id (pair htpy-refl htpy-refl))) functor-canonical-pullback : {l1 l2 l3 l1' l2' l3' : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) {A' : UU l1'} {B' : UU l2'} {X' : UU l3'} (f' : A' → X') (g' : B' → X') → hom-cospan f' g' f g → canonical-pullback f' g' → canonical-pullback f g functor-canonical-pullback f g f' g' (pair hA (pair hB (pair hX (pair HA HB)))) (pair a' (pair b' p')) = pair (hA a') (pair (hB b') ((HA a') ∙ ((ap hX p') ∙ (inv (HB b'))))) cospan-hom-cospan-rotate : {l1 l2 l3 l1' l2' l3' l1'' l2'' l3'' : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) {A' : UU l1'} {B' : UU l2'} {X' : UU l3'} (f' : A' → X') (g' : B' → X') {A'' : UU l1''} {B'' : UU l2''} {X'' : UU l3''} (f'' : A'' → X'') (g'' : B'' → X'') (h : hom-cospan f' g' f g) (h' : hom-cospan f'' g'' f g) → hom-cospan (pr1 h) (pr1 h') (pr1 (pr2 (pr2 h))) (pr1 (pr2 (pr2 h'))) cospan-hom-cospan-rotate f g f' g' f'' g'' (pair hA (pair hB (pair hX (pair HA HB)))) (pair hA' (pair hB' (pair hX' (pair HA' HB')))) = pair f' (pair f'' (pair f (pair (htpy-inv HA) (htpy-inv HA')))) cospan-hom-cospan-rotate' : {l1 l2 l3 l1' l2' l3' l1'' l2'' l3'' : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) {A' : UU l1'} {B' : UU l2'} {X' : UU l3'} (f' : A' → X') (g' : B' → X') {A'' : UU l1''} {B'' : UU l2''} {X'' : UU l3''} (f'' : A'' → X'') (g'' : B'' → X'') (h : hom-cospan f' g' f g) (h' : hom-cospan f'' g'' f g) → hom-cospan (pr1 (pr2 h)) (pr1 (pr2 h')) (pr1 (pr2 (pr2 h))) (pr1 (pr2 (pr2 h'))) cospan-hom-cospan-rotate' f g f' g' f'' g'' (pair hA (pair hB (pair hX (pair HA HB)))) (pair hA' (pair hB' (pair hX' (pair HA' HB')))) = pair g' (pair g'' (pair g (pair (htpy-inv HB) (htpy-inv HB')))) {- map-3-by-3-canonical-pullback' : {l1 l2 l3 l1' l2' l3' l1'' l2'' l3'' : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) {A' : UU l1'} {B' : UU l2'} {X' : UU l3'} (f' : A' → X') (g' : B' → X') {A'' : UU l1''} {B'' : UU l2''} {X'' : UU l3''} (f'' : A'' → X'') (g'' : B → X'') (h : hom-cospan f' g' f g) (h' : hom-cospan f'' g'' f g) → Σ ( canonical-pullback f' g') (λ t' → Σ ( canonical-pullback f'' g'') (λ t'' → Eq-canonical-pullback f g ( functor-canonical-pullback f g f' g' h t') ( functor-canonical-pullback f g f'' g'' h' t''))) → Σ ( canonical-pullback (pr1 h) (pr1 h')) (λ s → Σ ( canonical-pullback (pr1 (pr2 h)) (pr1 (pr2 h'))) (λ s' → Eq-canonical-pullback (pr1 (pr2 (pr2 h))) (pr1 (pr2 (pr2 h'))) ( functor-canonical-pullback ( pr1 (pr2 (pr2 h))) ( pr1 (pr2 (pr2 h'))) ( pr1 h) ( pr1 h') ( cospan-hom-cospan-rotate f g f' g' f'' g'' h h') ( s)) ( functor-canonical-pullback ( pr1 (pr2 (pr2 h))) ( pr1 (pr2 (pr2 h'))) ( pr1 (pr2 h)) ( pr1 (pr2 h')) ( cospan-hom-cospan-rotate' f g f' g' f'' g'' h h') ( s')))) map-3-by-3-canonical-pullback' f g f' g' f'' g'' ( pair hA (pair hB (pair hX (pair HA HB)))) ( pair hA' (pair hB' (pair hX' (pair HA' HB')))) ( pair ( pair a' (pair b' p')) ( pair (pair a'' (pair b'' p'')) (pair α (pair β γ)))) = pair (pair a' (pair a'' α)) (pair (pair b' (pair b'' β)) (pair p' (pair p'' {!!}))) map-3-by-3-canonical-pullback : {l1 l2 l3 l1' l2' l3' l1'' l2'' l3'' : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) {A' : UU l1'} {B' : UU l2'} {X' : UU l3'} (f' : A' → X') (g' : B' → X') {A'' : UU l1''} {B'' : UU l2''} {X'' : UU l3''} (f'' : A'' → X'') (g'' : B → X'') (h : hom-cospan f' g' f g) (h' : hom-cospan f'' g'' f g) → canonical-pullback ( functor-canonical-pullback f g f' g' h) ( functor-canonical-pullback f g f'' g'' h') → canonical-pullback ( functor-canonical-pullback ( pr1 (pr2 (pr2 h))) ( pr1 (pr2 (pr2 h'))) ( pr1 h) ( pr1 h') ( cospan-hom-cospan-rotate f g f' g' f'' g'' h h')) ( functor-canonical-pullback ( pr1 (pr2 (pr2 h))) ( pr1 (pr2 (pr2 h'))) ( pr1 (pr2 h)) ( pr1 (pr2 h')) ( cospan-hom-cospan-rotate' f g f' g' f'' g'' h h')) map-3-by-3-canonical-pullback = {!!} -}
38.18593
135
0.512357
cbf404f256b327fb8dc47e6827658e38262802ed
438
agda
Agda
neq.agda
rfindler/ial
f3f0261904577e930bd7646934f756679a6cbba6
[ "MIT" ]
29
2019-02-06T13:09:31.000Z
2022-03-04T15:05:12.000Z
neq.agda
rfindler/ial
f3f0261904577e930bd7646934f756679a6cbba6
[ "MIT" ]
8
2018-07-09T22:53:38.000Z
2022-03-22T03:43:34.000Z
neq.agda
rfindler/ial
f3f0261904577e930bd7646934f756679a6cbba6
[ "MIT" ]
17
2018-12-03T22:38:15.000Z
2021-11-28T20:13:21.000Z
module neq where open import eq open import negation ---------------------------------------------------------------------- -- syntax ---------------------------------------------------------------------- infix 4 _≢_ ---------------------------------------------------------------------- -- defined types ---------------------------------------------------------------------- _≢_ : ∀ {ℓ}{A : Set ℓ} → A → A → Set ℓ x ≢ y = ¬ (x ≡ y)
25.764706
70
0.200913
1cc20f5c1cbe629f0e4dac5a32b27de74d94f21f
1,030
agda
Agda
lib/Haskell/Prim/Real.agda
ioanasv/agda2hs
17cdbeb36af3d0b735c5db83bb811034c39a19cd
[ "MIT" ]
1
2021-05-25T09:41:34.000Z
2021-05-25T09:41:34.000Z
lib/Haskell/Prim/Real.agda
ioanasv/agda2hs
17cdbeb36af3d0b735c5db83bb811034c39a19cd
[ "MIT" ]
null
null
null
lib/Haskell/Prim/Real.agda
ioanasv/agda2hs
17cdbeb36af3d0b735c5db83bb811034c39a19cd
[ "MIT" ]
null
null
null
module Haskell.Prim.Real where open import Haskell.Prim open import Haskell.Prim.Ord open import Haskell.Prim.Enum open import Haskell.Prim.Num open import Haskell.Prim.Eq open import Haskell.Prim.Int open import Haskell.Prim.Integer -- infixr 8 _^_ _^^_ -- infixl 7 _/_ _`quot`_ _`rem`_ _`div`_ _`mod`_ -- infixl 7 _%_ data Ratio (a : Set) : Set where _:%_ : a -> a -> Ratio a record Integral (a : Set) : Set where field toInteger : a -> Integer open Integral ⦃ ... ⦄ public instance isIntegralInt : Integral Int isIntegralInt . toInteger n = intToInteger n infinity : Ratio Integer notANumber : Ratio Integer infinity = (toInteger 1) :% (toInteger 0) notANumber = (toInteger 0) :% (toInteger 0) -- _%_ : {{Integral a}} -> a -> a -> Ratio a numerator : Ratio a -> a denominator : Ratio a -> a -- reduce : {{Integral a}} -> a -> a -> Ratio a numerator (x :% _) = x denominator (_ :% y) = y -- record Real {Num a} (a : Set) : Set where -- field -- toRational : a -> Ratio Integer
20.6
49
0.646602
12012a76bb321269dad751cb3db5efe0eaa69529
559
agda
Agda
archive/agda-3/src/Oscar/Class/Transextensionality/Proposequality.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
archive/agda-3/src/Oscar/Class/Transextensionality/Proposequality.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
1
2019-04-29T00:35:04.000Z
2019-05-11T23:33:04.000Z
archive/agda-3/src/Oscar/Class/Transextensionality/Proposequality.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
open import Oscar.Prelude open import Oscar.Class open import Oscar.Class.Congruity open import Oscar.Class.Transextensionality open import Oscar.Class.Transitivity open import Oscar.Data.Proposequality import Oscar.Class.Congruity.Proposequality module Oscar.Class.Transextensionality.Proposequality where instance 𝓣ransextensionalityProposequality : ∀ {a} {A : Ø a} {m} {_⊸_ : A → A → Ø m} ⦃ _ : Transitivity.class _⊸_ ⦄ → Transextensionality.class _⊸_ Proposequality transitivity 𝓣ransextensionalityProposequality .⋆ = congruity₂ _
27.95
63
0.779964
4a45571df994e2e7caf9035597a303338adab58f
3,854
agda
Agda
agda-stdlib-0.9/src/Category/Monad/State.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
1
2016-10-20T15:52:05.000Z
2016-10-20T15:52:05.000Z
agda-stdlib-0.9/src/Category/Monad/State.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
null
null
null
agda-stdlib-0.9/src/Category/Monad/State.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
null
null
null
------------------------------------------------------------------------ -- The Agda standard library -- -- The state monad ------------------------------------------------------------------------ module Category.Monad.State where open import Category.Applicative.Indexed open import Category.Monad open import Category.Monad.Identity open import Category.Monad.Indexed open import Data.Product open import Data.Unit open import Function open import Level ------------------------------------------------------------------------ -- Indexed state monads IStateT : ∀ {i f} {I : Set i} → (I → Set f) → (Set f → Set f) → IFun I f IStateT S M i j A = S i → M (A × S j) StateTIMonad : ∀ {i f} {I : Set i} (S : I → Set f) {M} → RawMonad M → RawIMonad (IStateT S M) StateTIMonad S Mon = record { return = λ x s → return (x , s) ; _>>=_ = λ m f s → m s >>= uncurry f } where open RawMonad Mon StateTIMonadZero : ∀ {i f} {I : Set i} (S : I → Set f) {M} → RawMonadZero M → RawIMonadZero (IStateT S M) StateTIMonadZero S Mon = record { monad = StateTIMonad S (RawMonadZero.monad Mon) ; ∅ = const ∅ } where open RawMonadZero Mon StateTIMonadPlus : ∀ {i f} {I : Set i} (S : I → Set f) {M} → RawMonadPlus M → RawIMonadPlus (IStateT S M) StateTIMonadPlus S Mon = record { monadZero = StateTIMonadZero S (RawIMonadPlus.monadZero Mon) ; _∣_ = λ m₁ m₂ s → m₁ s ∣ m₂ s } where open RawMonadPlus Mon ------------------------------------------------------------------------ -- State monad operations record RawIMonadState {i f} {I : Set i} (S : I → Set f) (M : IFun I f) : Set (i ⊔ suc f) where field monad : RawIMonad M get : ∀ {i} → M i i (S i) put : ∀ {i j} → S j → M i j (Lift ⊤) open RawIMonad monad public modify : ∀ {i j} → (S i → S j) → M i j (Lift ⊤) modify f = get >>= put ∘ f StateTIMonadState : ∀ {i f} {I : Set i} (S : I → Set f) {M} → RawMonad M → RawIMonadState S (IStateT S M) StateTIMonadState S Mon = record { monad = StateTIMonad S Mon ; get = λ s → return (s , s) ; put = λ s _ → return (_ , s) } where open RawIMonad Mon ------------------------------------------------------------------------ -- Ordinary state monads RawMonadState : ∀ {f} → Set f → (Set f → Set f) → Set _ RawMonadState S M = RawIMonadState {I = ⊤} (λ _ → S) (λ _ _ → M) module RawMonadState {f} {S : Set f} {M : Set f → Set f} (Mon : RawMonadState S M) where open RawIMonadState Mon public StateT : ∀ {f} → Set f → (Set f → Set f) → Set f → Set f StateT S M = IStateT {I = ⊤} (λ _ → S) M _ _ StateTMonad : ∀ {f} (S : Set f) {M} → RawMonad M → RawMonad (StateT S M) StateTMonad S = StateTIMonad (λ _ → S) StateTMonadZero : ∀ {f} (S : Set f) {M} → RawMonadZero M → RawMonadZero (StateT S M) StateTMonadZero S = StateTIMonadZero (λ _ → S) StateTMonadPlus : ∀ {f} (S : Set f) {M} → RawMonadPlus M → RawMonadPlus (StateT S M) StateTMonadPlus S = StateTIMonadPlus (λ _ → S) StateTMonadState : ∀ {f} (S : Set f) {M} → RawMonad M → RawMonadState S (StateT S M) StateTMonadState S = StateTIMonadState (λ _ → S) State : ∀ {f} → Set f → Set f → Set f State S = StateT S Identity StateMonad : ∀ {f} (S : Set f) → RawMonad (State S) StateMonad S = StateTMonad S IdentityMonad StateMonadState : ∀ {f} (S : Set f) → RawMonadState S (State S) StateMonadState S = StateTMonadState S IdentityMonad LiftMonadState : ∀ {f S₁} (S₂ : Set f) {M} → RawMonadState S₁ M → RawMonadState S₁ (StateT S₂ M) LiftMonadState S₂ Mon = record { monad = StateTIMonad (λ _ → S₂) monad ; get = λ s → get >>= λ x → return (x , s) ; put = λ s′ s → put s′ >> return (_ , s) } where open RawIMonadState Mon
32.661017
72
0.532693
128b3243bbddd1c3146c51db5a17e2168438c784
890
agda
Agda
test/Succeed/Issue5809.agda
favonia/agda
8d433b967567c08afe15d04a5cb63b6f6d8884ee
[ "BSD-2-Clause" ]
null
null
null
test/Succeed/Issue5809.agda
favonia/agda
8d433b967567c08afe15d04a5cb63b6f6d8884ee
[ "BSD-2-Clause" ]
6
2021-10-18T08:12:24.000Z
2021-11-24T08:31:10.000Z
test/Succeed/Issue5809.agda
antoinevanmuylder/agda
bd59d5b07ffe02a43b28d186d95e1747aac5bc8c
[ "BSD-2-Clause" ]
null
null
null
-- Andreas, 2022-03-07, issue #5809 reported by jamestmartin -- Regression in Agda 2.6.1. -- Not reducing irrelevant projections lead to non-inferable elim-terms -- and consequently to internal errors. -- -- The fix is to treat irrelevant projections as just functions, -- retaining their parameters, so that they remain inferable -- even if not in normal form. {-# OPTIONS --irrelevant-projections #-} {-# OPTIONS --allow-unsolved-metas #-} -- {-# OPTIONS --no-double-check #-} -- {-# OPTIONS -v impossible:100 #-} -- {-# OPTIONS -v tc:40 #-} open import Agda.Builtin.Equality record Squash {ℓ} (A : Set ℓ) : Set ℓ where constructor squash field .unsquash : A open Squash .test : ∀ {ℓ} {A : Set ℓ} (x : A) (y : Squash A) → {!!} test x y = {!!} where help : unsquash (squash x) ≡ unsquash y help = refl -- WAS: internal error. -- Should succeed with unsolved metas.
26.969697
71
0.665169
12fa953fa68956c1848fa118718a248fbe036281
454
agda
Agda
test/Succeed/Issue1719.agda
zgrannan/agda
5953ce337eb6b77b29ace7180478f49c541aea1c
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/Succeed/Issue1719.agda
andersk/agda
56928ff709dcb931cb9a48c4790e5ed3739e3032
[ "BSD-3-Clause" ]
null
null
null
test/Succeed/Issue1719.agda
andersk/agda
56928ff709dcb931cb9a48c4790e5ed3739e3032
[ "BSD-3-Clause" ]
1
2019-03-05T20:02:38.000Z
2019-03-05T20:02:38.000Z
{-# OPTIONS --without-K --rewriting #-} open import Issue1719.Common open import Issue1719.Spans open import Issue1719.Pushouts module _ {d : Span} {l} {P : Pushout d → Set l} (left* : (a : Span.A d) → P (left a)) (right* : (b : Span.B d) → P (right b)) (glue* : (c : Span.C d) → left* (Span.f d c) == right* (Span.g d c) [ P ↓ glue c ]) where test : (a : Span.A d) → Pushout-elim {P = P} left* right* glue* (left a) ↦ left* a test a = idr
30.266667
91
0.577093
a1e2e612b5adc766d4a2f89f475492fe50b53b5a
193
agda
Agda
Computability/Enumeration/Univalence.agda
jesyspa/computability-in-agda
1b5cf338eb0adb90c1897383e05251ddd954efff
[ "MIT" ]
2
2020-09-19T15:51:22.000Z
2021-04-30T11:15:51.000Z
Computability/Enumeration/Univalence.agda
jesyspa/computability-in-agda
1b5cf338eb0adb90c1897383e05251ddd954efff
[ "MIT" ]
null
null
null
Computability/Enumeration/Univalence.agda
jesyspa/computability-in-agda
1b5cf338eb0adb90c1897383e05251ddd954efff
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical #-} module Computability.Enumeration.Univalence where open import Cubical.Core.Everything open import Computability.Prelude open import Computability.Enumeration.Base
19.3
49
0.818653
4d345e81c4b0a3e474f95e6212cb8d606de7cf66
3,834
agda
Agda
dom-eq.agda
hazelgrove/hazel-palette-agda
c3225acc3c94c56376c6842b82b8b5d76912df2a
[ "MIT" ]
16
2018-03-12T14:32:03.000Z
2021-12-19T02:50:23.000Z
dom-eq.agda
hazelgrove/hazel-palette-agda
c3225acc3c94c56376c6842b82b8b5d76912df2a
[ "MIT" ]
54
2017-06-29T20:53:34.000Z
2018-11-29T16:32:40.000Z
dom-eq.agda
hazelgrove/hazelnut-livelits-agda
c3225acc3c94c56376c6842b82b8b5d76912df2a
[ "MIT" ]
1
2019-09-13T18:20:02.000Z
2019-09-13T18:20:02.000Z
open import Prelude open import Nat open import core open import contexts open import lemmas-disjointness module dom-eq where -- main definition: two contexts are domain-equal when they produce (Some -- x) on the same indices. note that the context need not map indices to -- even the same type of contents; this is just a property about the -- domains. the proofs that follow establish that this property is -- respected in the appropriate ways by the context maniupulation -- operators we use in the other judgements. dom-eq : {A B : Set} → A ctx → B ctx → Set dom-eq {A} {B} C1 C2 = ((n : Nat) → Σ[ x ∈ A ]( C1 n == Some x) → (Σ[ y ∈ B ](C2 n == Some y)))× ((n : Nat) → Σ[ y ∈ B ]( C2 n == Some y) → (Σ[ x ∈ A ](C1 n == Some x))) -- the empty context has the same domain as itself dom-∅ : {A B : Set} → dom-eq (λ _ → None {A}) (λ _ → None {B}) dom-∅ {A} {B} = (λ n x → abort (somenotnone (! (π2 x)))) , (λ n x → abort (somenotnone (! (π2 x)))) -- the singleton contexts formed with any contents but the same index has -- the same domain dom-single : {A B : Set} (x : Nat) {a : A} {b : B} → dom-eq (■ (x , a)) (■ (x , b)) dom-single {A} {B} x {α} {β} = (λ n x₁ → β , (ap1 (λ qq → (■ (qq , β)) n) (! (lem-dom-eq x₁)) · x∈■ _ _)) , (λ n x₁ → α , (ap1 (λ qq → (■ (qq , α)) n) (! (lem-dom-eq x₁)) · x∈■ _ _)) -- if two disjoint contexts each share a domain with two others, those -- are also disjoint. dom-eq-disj : {A B : Set} {Δ1 Δ2 : A ctx} {H1 H2 : B ctx} → H1 ## H2 → dom-eq Δ1 H1 → dom-eq Δ2 H2 → Δ1 ## Δ2 dom-eq-disj {A} {B} {Δ1} {Δ2} {H1} {H2} (d1 , d2) (de1 , de2) (de3 , de4) = guts1 , guts2 where guts1 : (n : Nat) → dom Δ1 n → n # Δ2 guts1 n dom1 with ctxindirect H2 n guts1 n dom1 | Inl x = abort (somenotnone (! (π2 x) · d1 n (de1 n dom1))) guts1 n dom1 | Inr x with ctxindirect Δ2 n guts1 n dom1 | Inr x₁ | Inl x = abort (somenotnone (! (π2 (de3 n x)) · x₁)) guts1 n dom1 | Inr x₁ | Inr x = x guts2 : (n : Nat) → dom Δ2 n → n # Δ1 guts2 n dom2 with ctxindirect H1 n guts2 n dom2 | Inl x = abort (somenotnone (! (π2 x) · d2 n (de3 n dom2))) guts2 n dom2 | Inr x with ctxindirect Δ1 n guts2 n dom2 | Inr x₁ | Inl x = abort (somenotnone (! (π2 (de1 n x)) · x₁)) guts2 n dom2 | Inr x₁ | Inr x = x -- if two sets share a domain with disjoint sets, then their union shares -- a domain with the union dom-union : {A B : Set} {Δ1 Δ2 : A ctx} {H1 H2 : B ctx} → H1 ## H2 → dom-eq Δ1 H1 → dom-eq Δ2 H2 → dom-eq (Δ1 ∪ Δ2) (H1 ∪ H2) dom-union {A} {B} {Δ1} {Δ2} {H1} {H2} disj (p1 , p2) (p3 , p4) = guts1 , guts2 where guts1 : (n : Nat) → Σ[ x ∈ A ] ((Δ1 ∪ Δ2) n == Some x) → Σ[ y ∈ B ] ((H1 ∪ H2) n == Some y) guts1 n (x , eq) with ctxindirect Δ1 n guts1 n (x₁ , eq) | Inl x with p1 n x ... | q1 , q2 = q1 , x∈∪l H1 H2 n q1 q2 guts1 n (x₁ , eq) | Inr x with p3 n (_ , lem-dom-union-apt1 {Δ1 = Δ1} {Δ2 = Δ2} x eq) ... | q1 , q2 = q1 , x∈∪r H1 H2 n q1 q2 (##-comm disj) guts2 : (n : Nat) → Σ[ y ∈ B ] ((H1 ∪ H2) n == Some y) → Σ[ x ∈ A ] ((Δ1 ∪ Δ2) n == Some x) guts2 n (x , eq) with ctxindirect H1 n guts2 n (x₁ , eq) | Inl x with p2 n x ... | q1 , q2 = q1 , x∈∪l Δ1 Δ2 n q1 q2 guts2 n (x₁ , eq) | Inr x with p4 n (_ , lem-dom-union-apt2 {Δ1 = H2} {Δ2 = H1} x (tr (λ qq → qq n == Some x₁) (∪comm H1 H2 disj) eq)) ... | q1 , q2 = q1 , x∈∪r Δ1 Δ2 n q1 q2 (##-comm (dom-eq-disj disj (p1 , p2) (p3 , p4)))
49.153846
140
0.497392
cbe8e9581d4927d06fb7bf5313651a33734f2e82
746
agda
Agda
test/Succeed/Issue2321.agda
cagix/agda
cc026a6a97a3e517bb94bafa9d49233b067c7559
[ "BSD-2-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue2321.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue2321.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --guardedness #-} open import Agda.Builtin.Coinduction open import Agda.Builtin.Equality open import Agda.Builtin.List open import Agda.Builtin.Nat infixr 5 _∷_ data Stream (A : Set) : Set where _∷_ : (x : A) (xs : ∞ (Stream A)) → Stream A head : ∀ {A} → Stream A → A head (x ∷ xs) = x tail : ∀ {A} → Stream A → Stream A tail (x ∷ xs) = ♭ xs take : ∀ {A} (n : Nat) → Stream A → List A take zero xs = [] take (suc n) (x ∷ xs) = x ∷ take n (♭ xs) accepted : ∀ {A} {n} (xs : Stream A) → take (suc n) xs ≡ take (suc n) (head xs ∷ ♯ tail xs) accepted (x ∷ xs) = refl private rejected : ∀ {A} {n} (xs : Stream A) → take (suc n) xs ≡ take (suc n) (head xs ∷ ♯ tail xs) rejected (x ∷ xs) = refl
24.064516
65
0.553619
06a8cd208bc0b054acd8044550c29354fae619e3
7,102
agda
Agda
lambda/hw7.agda
Lapin0t/lambda
09a231d9b3057d57b864070188ed9fe14a07eda2
[ "Apache-2.0" ]
null
null
null
lambda/hw7.agda
Lapin0t/lambda
09a231d9b3057d57b864070188ed9fe14a07eda2
[ "Apache-2.0" ]
null
null
null
lambda/hw7.agda
Lapin0t/lambda
09a231d9b3057d57b864070188ed9fe14a07eda2
[ "Apache-2.0" ]
null
null
null
module lambda.hw7 where open import Data.Product open import Relation.Nullary open import Relation.Nullary.Negation open import Relation.Binary.PropositionalEquality hiding (subst) open import Data.Nat open import Data.Fin hiding (lift) open import lambda.untyped open import lambda.vec open import lambda.system-f renaming (⊢_∶_ to ⊢F_∶_; type to typeF) hiding (subst; ↑; lift; subst₁) open import lambda.system-d renaming (⊢_∶_ to ⊢D_∶_; type to typeD; _⊢_∶_ to _⊢D_∶_; context to contextD) -- Peio BORTHELLE -- Homework 7 -- Maybe it's a bit unusual to present things like this, we didn't do any Agda -- but it would really have been more hassle formalizing the homework in Coq. -- So here it is, there are some utilities in the other files and also some -- bonus simply-typed lambda calculus. It was a bit more fun for me than to -- write again some long derivation tree with no guarantee at all that there -- isn't a stupid mistake kicking in. I tried to get the notations close to -- what we had in the lesson, hope this doesn't look too alien. -- Utilities A B C : typeD A = base 0 B = base 1 C = base 1 V₀ : ∀ {n} → typeF (suc n) V₀ = var zero V₁ : ∀ {n} → typeF (suc (suc n)) V₁ = var (suc zero) module Q₁ where -- Source terms t₁ t₂ t₃ t₄ : term 0 t₁ = lam (app (var zero) (var zero)) t₂ = app t₁ (lam (var zero)) t₃ = app t₁ t₁ t₄ = lam (lam (app (var (suc zero)) (app (var zero) (var (suc zero))))) -- a) system F F₁ F₂ F₄ : typeF 0 F₁ = (∀' V₀ ⇒ V₀) ⇒ (∀' V₀ ⇒ V₀) F₂ = ∀' V₀ ⇒ V₀ F₄ = ∀' ∀' (V₀ ⇒ V₁) ⇒ ((V₀ ⇒ V₁) ⇒ V₀) ⇒ V₁ F₁-p : ⊢F t₁ ∶ F₁ F₁-p = lam (∀' V₀ ⇒ V₀) (app (sub (∀' V₀ ⇒ V₀) ax) ax) F₂-p : ⊢F t₂ ∶ F₂ F₂-p = app (lam (∀' V₀ ⇒ V₀) (app (sub (∀' V₀ ⇒ V₀) ax) ax)) (gen (lam V₀ ax)) -- t₃ is not normalizing: it has a non-trivial beta-reduction to itself. -- Because system F is strongly normalizing this prooves that it has no valid -- typing judgment. t₃-no-norm : t₃ β* t₃ t₃-no-norm = β-beta ← ε F₄-p : ⊢F t₄ ∶ F₄ F₄-p = gen (gen (lam (V₀ ⇒ V₁) (lam ((V₀ ⇒ V₁) ⇒ V₀) (app ax (app ax ax))))) -- b) system D σ₁ σ₂ σ₄ : typeD σ₁ = (A ∧ A ⇒ B) ⇒ B σ₂ = A ⇒ A σ₄ = (A ⇒ B) ⇒ ((A ⇒ B) ⇒ A) ⇒ B σ₁-p : ⊢D t₁ ∶ σ₁ σ₁-p = lam (app (∧ᵉʳ ax) (∧ᵉˡ ax)) σ₂-p : ⊢D t₂ ∶ σ₂ σ₂-p = app (lam (app (∧ᵉʳ ax) (∧ᵉˡ ax))) (∧ⁱ (lam ax) (lam ax)) -- Same as system F for t₃ because of the strongly normalizing property. σ₄-p : ⊢D t₄ ∶ σ₄ σ₄-p = lam (lam (app ax (app ax ax))) module Q₂ where -- σ₁ σ₂ σ₃ σ₄ : typeD σ₁ = ((A ∧ B) ⇒ C) ⇒ A ⇒ B ⇒ C σ₂ = (A ⇒ B ⇒ C) ⇒ (A ∧ B) ⇒ C σ₃ = (C ⇒ A ∧ C ⇒ B) ⇒ C ⇒ (A ∧ B) σ₄ = C ⇒ (A ∧ B) ⇒ (C ⇒ A ∧ C ⇒ B) σ₁-p : ∀ {t} → ¬ ⊢D t ∶ σ₁ σ₁-p p = {!!} σ₂-p : ⊢D lam (lam (app (app (var (suc zero)) (var zero)) (var zero))) ∶ σ₂ σ₂-p = lam (lam (app (app ax (∧ᵉˡ ax)) (∧ᵉʳ ax))) σ₃-p : ⊢D lam (lam (app (var (suc zero)) (var zero))) ∶ σ₃ σ₃-p = lam (lam (∧ⁱ (app (∧ᵉˡ ax) ax) (app (∧ᵉʳ ax) ax))) σ₄-p : ⊢D lam (lam (lam (var (suc zero)))) ∶ σ₄ σ₄-p = lam (lam (∧ⁱ (lam (∧ᵉˡ ax)) (lam (∧ᵉʳ ax)))) module Q₃ where -- I got stuck on applying the substitution lemma on function type that are -- not lambda abstractions but ∧ eliminations. I don't manage to get from -- a proof of that type to a proof with the argument type on the top of the -- context. Maybe the substitution lemma is not well choosen. subj-red : ∀ {n T} → {x y : term n} → {Γ : contextD n} → Γ ⊢D x ∶ T → x →β y → Γ ⊢D y ∶ T subj-red ax () subj-red (∧ⁱ x₁ x₂) p = ∧ⁱ (subj-red x₁ p) (subj-red x₂ p) subj-red (∧ᵉˡ x) p = ∧ᵉˡ (subj-red x p) subj-red (∧ᵉʳ x) p = ∧ᵉʳ (subj-red x p) subj-red (app (lam x) y) β-beta = subst-p x (λ { zero → y; (suc i) → ax }) subj-red (app (∧ᵉˡ x) y) β-beta = {! !} subj-red (app (∧ᵉʳ x) y) β-beta = {! !} subj-red (app x y) (β-app₁ p) = app (subj-red x p) y subj-red (app x y) (β-app₂ p) = app x (subj-red y p) subj-red (lam x) (β-lam p) = lam (subj-red x p) module Q₄ where -- The BNF grammar i use is: -- -- <NF> ::= "λ" <VAR> "." <NF> | <NE> -- <NE> ::= <NE> <NF> | <VAR> -- -- I implemented this grammar as a judgment on untyped lambda terms -- with the datatypes `lambda.untyped.norm` and `lambda.untyped.neut`. -- Proof that NF and NE don't allow further derivation -- This proof as well as the reciprocical were quite mechanized but still -- a bit cumbersome. nf-last : ∀ {n} → {x : term n} → norm x → ¬ ∃[ y ] (x →β y) ne-last : ∀ {n} → {x : term n} → neut x → ¬ ∃[ y ] (x →β y) nf-last (lam x) (lam y , β-lam p) = nf-last x (y , p) nf-last (gnd x) (lam y , p) = ne-last x (lam y , p) nf-last (gnd x) (var i , p) = ne-last x (var i , p) nf-last (gnd x) (app a b , p) = ne-last x (app a b , p) ne-last var (y , ()) ne-last (app () y) (_ , β-beta) ne-last (app x y) (app a b , β-app₁ p) = ne-last x (a , p) ne-last (app x y) (app a b , β-app₂ p) = nf-last y (b , p) -- Proof that terms with no further derivation are in NF last-nf : ∀ {n} → (x : term n) → ¬ ∃[ y ] (x →β y) → norm x last-ne : ∀ {n y} → (x : term n) → ¬ ∃[ z ] (app x y →β z) → neut x last-nf (lam x) p = lam (last-nf x λ { (y , p₂) → p (lam y , β-lam p₂) }) last-nf (var x) p = gnd var last-nf (app x y) p = gnd (app (last-ne x λ { (z , p₁) → p (z , p₁) }) (last-nf y λ { (a , b) → p (app x a , β-app₂ b) })) last-ne {y = y} (lam x) p with p (subst₁ x y , β-beta) ... | () last-ne (var x) p = var last-ne {y = y} (app x z) p = app (last-ne x λ { (a , b) → p (app a y , β-app₁ b) }) (last-nf z λ { (a , b) → p (app (app x a) y , (β-app₁ (β-app₂ b))) }) const : ∀ {n} → contextD n const {zero} = ε const {suc n} = const ▸ base 0 -- Again because i messed up the renaming/substitution on ⊢D terms, i -- did not get to formalize the typing properly here. type-n : ∀ {n} → {x : term n} → norm x → ∃ (λ Γ → ∃ (λ T → Γ ⊢D x ∶ T)) type-e : ∀ {n} → {x : term n} → neut x → ∃ (λ Γ → ∃ (λ T → Γ ⊢D x ∶ T)) -- Here we compute inductively on the subterm, then "unload" the top of -- the context A and the result type B into the type A ⇒ B. type-n (lam x) = {! !} type-n (gnd x) = type-e x -- Here we create a context with fresh base types, assigning the matching -- one to the term. type-e (var {i}) = {! !} -- Here we compute inductively on both subterms: -- Γx ⊢D x ∶ Tx Γy ⊢D y ∶ Ty -- x is a neutral term so it has a type looking like -- T ⇒ A₁ ∧ T ⇒ A₁ ⇒ A₂ ∧ … -- We then simply extend it with An = Ty. This requires some proof -- rewriting with ∧ᵉ*. type-e (app x y) = {! !} -- Question 5 -- a) The definition of the conjunction in system F is: -- conjⁱ : Γ ⊢F x ∶ A → Γ ⊢F y ∶ B → Γ ⊢F (x , y) ∶ A ∧F B -- conjᵉʳ : Γ ⊢F x ∶ A ∧F B → Γ ⊢F π₀ x ∶ A -- conjᵉˡ : Γ ⊢F x : A ∧F B → Γ ⊢F π₁ x ∶ B -- The difference is that in system D, the conjunction is more of -- an intersection: if a single term has 2 type judgements, then -- it has a judgment for the intersection, whereas for system F -- it is a couple of 2 different terms.
34.813725
91
0.559279
185cd6517d16c95343a080b3b4818b9a86429c7d
168
agda
Agda
Cubical/Data/Universe.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
null
null
null
Cubical/Data/Universe.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
null
null
null
Cubical/Data/Universe.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --safe #-} module Cubical.Data.Universe where open import Cubical.Data.Universe.Base public open import Cubical.Data.Universe.Properties public
24
51
0.785714
315a1c1c6f7105c302271def83d0a8d8858534d6
210
agda
Agda
test/Compiler/simple/Issue1486.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Compiler/simple/Issue1486.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Compiler/simple/Issue1486.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Issue1486 where open import Common.Prelude postulate QName : Set {-# BUILTIN QNAME QName #-} primitive primShowQName : QName -> String main : IO Unit main = putStrLn (primShowQName (quote main))
15
44
0.733333
18fa83405304de1aec2fed4dd27ebe2744fe210c
7,088
agda
Agda
agda-stdlib/src/Data/Nat/GCD/Lemmas.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Data/Nat/GCD/Lemmas.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Data/Nat/GCD/Lemmas.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- Boring lemmas used in Data.Nat.GCD and Data.Nat.Coprimality ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Nat.GCD.Lemmas where open import Data.Nat.Base open import Data.Nat.Properties open import Data.Nat.Solver open import Function open import Relation.Binary.PropositionalEquality open +-*-Solver open ≡-Reasoning private distrib-comm : ∀ x k n → x * k + x * n ≡ x * (n + k) distrib-comm = solve 3 (λ x k n → x :* k :+ x :* n := x :* (n :+ k)) refl distrib-comm₂ : ∀ d x k n → d + x * (n + k) ≡ d + x * k + x * n distrib-comm₂ = solve 4 (λ d x k n → d :+ x :* (n :+ k) := d :+ x :* k :+ x :* n) refl -- Other properties -- TODO: Can this proof be simplified? An automatic solver which can -- handle ∸ would be nice... lem₀ : ∀ i j m n → i * m ≡ j * m + n → (i ∸ j) * m ≡ n lem₀ i j m n eq = begin (i ∸ j) * m ≡⟨ *-distribʳ-∸ m i j ⟩ (i * m) ∸ (j * m) ≡⟨ cong (_∸ j * m) eq ⟩ (j * m + n) ∸ (j * m) ≡⟨ cong (_∸ j * m) (+-comm (j * m) n) ⟩ (n + j * m) ∸ (j * m) ≡⟨ m+n∸n≡m n (j * m) ⟩ n ∎ lem₁ : ∀ i j → 2 + i ≤′ 2 + j + i lem₁ i j = ≤⇒≤′ $ s≤s $ s≤s $ m≤n+m i j lem₂ : ∀ d x {k n} → d + x * k ≡ x * n → d + x * (n + k) ≡ 2 * x * n lem₂ d x {k} {n} eq = begin d + x * (n + k) ≡⟨ distrib-comm₂ d x k n ⟩ d + x * k + x * n ≡⟨ cong₂ _+_ eq refl ⟩ x * n + x * n ≡⟨ solve 3 (λ x n k → x :* n :+ x :* n := con 2 :* x :* n) refl x n k ⟩ 2 * x * n ∎ lem₃ : ∀ d x {i k n} → d + (1 + x + i) * k ≡ x * n → d + (1 + x + i) * (n + k) ≡ (1 + 2 * x + i) * n lem₃ d x {i} {k} {n} eq = begin d + y * (n + k) ≡⟨ distrib-comm₂ d y k n ⟩ d + y * k + y * n ≡⟨ cong₂ _+_ eq refl ⟩ x * n + y * n ≡⟨ solve 3 (λ x n i → x :* n :+ (con 1 :+ x :+ i) :* n := (con 1 :+ con 2 :* x :+ i) :* n) refl x n i ⟩ (1 + 2 * x + i) * n ∎ where y = 1 + x + i lem₄ : ∀ d y {k i} n → d + y * k ≡ (1 + y + i) * n → d + y * (n + k) ≡ (1 + 2 * y + i) * n lem₄ d y {k} {i} n eq = begin d + y * (n + k) ≡⟨ distrib-comm₂ d y k n ⟩ d + y * k + y * n ≡⟨ cong₂ _+_ eq refl ⟩ (1 + y + i) * n + y * n ≡⟨ solve 3 (λ y i n → (con 1 :+ y :+ i) :* n :+ y :* n := (con 1 :+ con 2 :* y :+ i) :* n) refl y i n ⟩ (1 + 2 * y + i) * n ∎ lem₅ : ∀ d x {n k} → d + x * n ≡ x * k → d + 2 * x * n ≡ x * (n + k) lem₅ d x {n} {k} eq = begin d + 2 * x * n ≡⟨ solve 3 (λ d x n → d :+ con 2 :* x :* n := d :+ x :* n :+ x :* n) refl d x n ⟩ d + x * n + x * n ≡⟨ cong₂ _+_ eq refl ⟩ x * k + x * n ≡⟨ distrib-comm x k n ⟩ x * (n + k) ∎ lem₆ : ∀ d x {n i k} → d + x * n ≡ (1 + x + i) * k → d + (1 + 2 * x + i) * n ≡ (1 + x + i) * (n + k) lem₆ d x {n} {i} {k} eq = begin d + (1 + 2 * x + i) * n ≡⟨ solve 4 (λ d x i n → d :+ (con 1 :+ con 2 :* x :+ i) :* n := d :+ x :* n :+ (con 1 :+ x :+ i) :* n) refl d x i n ⟩ d + x * n + y * n ≡⟨ cong₂ _+_ eq refl ⟩ y * k + y * n ≡⟨ distrib-comm y k n ⟩ y * (n + k) ∎ where y = 1 + x + i lem₇ : ∀ d y {i} n {k} → d + (1 + y + i) * n ≡ y * k → d + (1 + 2 * y + i) * n ≡ y * (n + k) lem₇ d y {i} n {k} eq = begin d + (1 + 2 * y + i) * n ≡⟨ solve 4 (λ d y i n → d :+ (con 1 :+ con 2 :* y :+ i) :* n := d :+ (con 1 :+ y :+ i) :* n :+ y :* n) refl d y i n ⟩ d + (1 + y + i) * n + y * n ≡⟨ cong₂ _+_ eq refl ⟩ y * k + y * n ≡⟨ distrib-comm y k n ⟩ y * (n + k) ∎ lem₈ : ∀ {i j k q} x y → 1 + y * j ≡ x * i → j * k ≡ q * i → k ≡ (x * k ∸ y * q) * i lem₈ {i} {j} {k} {q} x y eq eq′ = sym (lem₀ (x * k) (y * q) i k lemma) where lemma = begin x * k * i ≡⟨ solve 3 (λ x k i → x :* k :* i := x :* i :* k) refl x k i ⟩ x * i * k ≡⟨ cong (_* k) (sym eq) ⟩ (1 + y * j) * k ≡⟨ solve 3 (λ y j k → (con 1 :+ y :* j) :* k := y :* (j :* k) :+ k) refl y j k ⟩ y * (j * k) + k ≡⟨ cong (λ n → y * n + k) eq′ ⟩ y * (q * i) + k ≡⟨ solve 4 (λ y q i k → y :* (q :* i) :+ k := y :* q :* i :+ k) refl y q i k ⟩ y * q * i + k ∎ lem₉ : ∀ {i j k q} x y → 1 + x * i ≡ y * j → j * k ≡ q * i → k ≡ (y * q ∸ x * k) * i lem₉ {i} {j} {k} {q} x y eq eq′ = sym (lem₀ (y * q) (x * k) i k lemma) where lem = solve 3 (λ a b c → a :* b :* c := b :* c :* a) refl lemma = begin y * q * i ≡⟨ lem y q i ⟩ q * i * y ≡⟨ cong (λ n → n * y) (sym eq′) ⟩ j * k * y ≡⟨ sym (lem y j k) ⟩ y * j * k ≡⟨ cong (λ n → n * k) (sym eq) ⟩ (1 + x * i) * k ≡⟨ solve 3 (λ x i k → (con 1 :+ x :* i) :* k := x :* k :* i :+ k) refl x i k ⟩ x * k * i + k ∎ lem₁₀ : ∀ {a′} b c {d} e f → let a = suc a′ in a + b * (c * d * a) ≡ e * (f * d * a) → d ≡ 1 lem₁₀ {a′} b c {d} e f eq = m*n≡1⇒n≡1 (e * f ∸ b * c) d (lem₀ (e * f) (b * c) d 1 (*-cancelʳ-≡ (e * f * d) (b * c * d + 1) (begin e * f * d * a ≡⟨ solve 4 (λ e f d a → e :* f :* d :* a := e :* (f :* d :* a)) refl e f d a ⟩ e * (f * d * a) ≡⟨ sym eq ⟩ a + b * (c * d * a) ≡⟨ solve 4 (λ a b c d → a :+ b :* (c :* d :* a) := (b :* c :* d :+ con 1) :* a) refl a b c d ⟩ (b * c * d + 1) * a ∎))) where a = suc a′ lem₁₁ : ∀ {i j m n k d} x y → 1 + y * j ≡ x * i → i * k ≡ m * d → j * k ≡ n * d → k ≡ (x * m ∸ y * n) * d lem₁₁ {i} {j} {m} {n} {k} {d} x y eq eq₁ eq₂ = sym (lem₀ (x * m) (y * n) d k (begin x * m * d ≡⟨ *-assoc x m d ⟩ x * (m * d) ≡⟨ cong (x *_) (sym eq₁) ⟩ x * (i * k) ≡⟨ sym (*-assoc x i k) ⟩ x * i * k ≡⟨ cong₂ _*_ (sym eq) refl ⟩ (1 + y * j) * k ≡⟨ solve 3 (λ y j k → (con 1 :+ y :* j) :* k := y :* (j :* k) :+ k) refl y j k ⟩ y * (j * k) + k ≡⟨ cong (λ p → y * p + k) eq₂ ⟩ y * (n * d) + k ≡⟨ cong₂ _+_ (sym $ *-assoc y n d) refl ⟩ y * n * d + k ∎))
39.597765
93
0.296699
39e851d58e1a39196dc9b9b5fc49244dccc82910
14,652
agda
Agda
Cubical/Algebra/CommRing/Ideal.agda
antoinevanmuylder/cubical
5b40df813434aa11631ac240409ca2c4d849453c
[ "MIT" ]
null
null
null
Cubical/Algebra/CommRing/Ideal.agda
antoinevanmuylder/cubical
5b40df813434aa11631ac240409ca2c4d849453c
[ "MIT" ]
null
null
null
Cubical/Algebra/CommRing/Ideal.agda
antoinevanmuylder/cubical
5b40df813434aa11631ac240409ca2c4d849453c
[ "MIT" ]
null
null
null
{- This is mostly for convenience, when working with ideals (which are defined for general rings) in a commutative ring. -} {-# OPTIONS --safe #-} module Cubical.Algebra.CommRing.Ideal where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.HLevels open import Cubical.Foundations.Powerset renaming ( _∈_ to _∈p_ ; _⊆_ to _⊆p_ ; subst-∈ to subst-∈p ) open import Cubical.Functions.Logic open import Cubical.Data.Nat using (ℕ ; zero ; suc ; tt) renaming ( --zero to ℕzero ; suc to ℕsuc _+_ to _+ℕ_ ; _·_ to _·ℕ_ ; +-assoc to +ℕ-assoc ; +-comm to +ℕ-comm ; ·-assoc to ·ℕ-assoc ; ·-comm to ·ℕ-comm) open import Cubical.Data.FinData hiding (rec ; elim) open import Cubical.Data.Sigma open import Cubical.HITs.PropositionalTruncation open import Cubical.Algebra.CommRing open import Cubical.Algebra.Ring open import Cubical.Algebra.Ring.Ideal renaming (IdealsIn to IdealsInRing) open import Cubical.Algebra.Ring.BigOps open import Cubical.Algebra.RingSolver.Reflection private variable ℓ : Level IdealsIn : (R : CommRing ℓ) → Type _ IdealsIn R = IdealsInRing (CommRing→Ring R) module _ (Ring@(R , str) : CommRing ℓ) where open CommRingStr str makeIdeal : (I : R → hProp ℓ) → (+-closed : {x y : R} → x ∈p I → y ∈p I → (x + y) ∈p I) → (0r-closed : 0r ∈p I) → (·-closedLeft : {x : R} → (r : R) → x ∈p I → r · x ∈p I) → IdealsIn (R , str) makeIdeal I +-closed 0r-closed ·-closedLeft = I , (record { +-closed = +-closed ; -closed = λ x∈pI → subst-∈p I (useSolver _) (·-closedLeft (- 1r) x∈pI) ; 0r-closed = 0r-closed ; ·-closedLeft = ·-closedLeft ; ·-closedRight = λ r x∈pI → subst-∈p I (·Comm r _) (·-closedLeft r x∈pI) }) where useSolver : (x : R) → - 1r · x ≡ - x useSolver = solve Ring -- better? module CommIdeal (R' : CommRing ℓ) where private R = fst R' open CommRingStr (snd R') open Sum (CommRing→Ring R') open CommRingTheory R' open RingTheory (CommRing→Ring R') record isCommIdeal (I : ℙ R) : Type ℓ where constructor makeIsCommIdeal field +Closed : ∀ {x y : R} → x ∈p I → y ∈p I → (x + y) ∈p I contains0 : 0r ∈p I ·Closed : ∀ {x : R} (r : R) → x ∈p I → r · x ∈p I ·RClosed : ∀ {x : R} (r : R) → x ∈p I → x · r ∈p I ·RClosed r x∈pI = subst-∈p I (·Comm _ _) (·Closed r x∈pI) open isCommIdeal isPropIsCommIdeal : (I : ℙ R) → isProp (isCommIdeal I) +Closed (isPropIsCommIdeal I ici₁ ici₂ i) x∈pI y∈pI = I _ .snd (ici₁ .+Closed x∈pI y∈pI) (ici₂ .+Closed x∈pI y∈pI) i contains0 (isPropIsCommIdeal I ici₁ ici₂ i) = I 0r .snd (ici₁ .contains0) (ici₂ .contains0) i ·Closed (isPropIsCommIdeal I ici₁ ici₂ i) r x∈pI = I _ .snd (ici₁ .·Closed r x∈pI) (ici₂ .·Closed r x∈pI) i CommIdeal : Type (ℓ-suc ℓ) CommIdeal = Σ[ I ∈ ℙ R ] isCommIdeal I --inclusion and containment of ideals _⊆_ : CommIdeal → CommIdeal → Type ℓ I ⊆ J = I .fst ⊆p J .fst infix 5 _∈_ _∈_ : R → CommIdeal → Type ℓ x ∈ I = x ∈p I .fst subst-∈ : (I : CommIdeal) {x y : R} → x ≡ y → x ∈ I → y ∈ I subst-∈ I = subst-∈p (I .fst) CommIdeal≡Char : {I J : CommIdeal} → I ⊆ J → J ⊆ I → I ≡ J CommIdeal≡Char I⊆J J⊆I = Σ≡Prop isPropIsCommIdeal (⊆-extensionality _ _ (I⊆J , J⊆I)) ∑Closed : (I : CommIdeal) {n : ℕ} (V : FinVec R n) → (∀ i → V i ∈ I) → ∑ V ∈ I ∑Closed I {n = zero} _ _ = I .snd .contains0 ∑Closed I {n = suc n} V h = I .snd .+Closed (h zero) (∑Closed I (V ∘ suc) (h ∘ suc)) 0Ideal : CommIdeal fst 0Ideal x = (x ≡ 0r) , is-set _ _ +Closed (snd 0Ideal) x≡0 y≡0 = cong₂ (_+_) x≡0 y≡0 ∙ +Rid _ contains0 (snd 0Ideal) = refl ·Closed (snd 0Ideal) r x≡0 = cong (r ·_) x≡0 ∙ 0RightAnnihilates _ 1Ideal : CommIdeal fst 1Ideal x = ⊤ +Closed (snd 1Ideal) _ _ = lift tt contains0 (snd 1Ideal) = lift tt ·Closed (snd 1Ideal) _ _ = lift tt contains1Is1 : (I : CommIdeal) → 1r ∈ I → I ≡ 1Ideal contains1Is1 I 1∈I = CommIdeal≡Char (λ _ _ → lift tt) λ x _ → subst-∈ I (·Rid _) (I .snd .·Closed x 1∈I) -- x≡x·1 ∈ I _+i_ : CommIdeal → CommIdeal → CommIdeal fst (I +i J) x = (∃[ (y , z) ∈ (R × R) ] ((y ∈ I) × (z ∈ J) × (x ≡ y + z))) --have a record for this? , isPropPropTrunc +Closed (snd (I +i J)) {x = x₁} {y = x₂} = map2 +ClosedΣ where +ClosedΣ : Σ[ (y₁ , z₁) ∈ (R × R) ] ((y₁ ∈ I) × (z₁ ∈ J) × (x₁ ≡ y₁ + z₁)) → Σ[ (y₂ , z₂) ∈ (R × R) ] ((y₂ ∈ I) × (z₂ ∈ J) × (x₂ ≡ y₂ + z₂)) → Σ[ (y₃ , z₃) ∈ (R × R) ] ((y₃ ∈ I) × (z₃ ∈ J) × (x₁ + x₂ ≡ y₃ + z₃)) +ClosedΣ ((y₁ , z₁) , y₁∈I , z₁∈J , x₁≡y₁+z₁) ((y₂ , z₂) , y₂∈I , z₂∈J , x₂≡y₂+z₂) = (y₁ + y₂ , z₁ + z₂) , +Closed (snd I) y₁∈I y₂∈I , +Closed (snd J) z₁∈J z₂∈J , cong₂ (_+_) x₁≡y₁+z₁ x₂≡y₂+z₂ ∙ +ShufflePairs _ _ _ _ contains0 (snd (I +i J)) = ∣ (0r , 0r) , contains0 (snd I) , contains0 (snd J) , sym (+Rid _) ∣ ·Closed (snd (I +i J)) {x = x} r = map ·ClosedΣ where ·ClosedΣ : Σ[ (y₁ , z₁) ∈ (R × R) ] ((y₁ ∈ I) × (z₁ ∈ J) × (x ≡ y₁ + z₁)) → Σ[ (y₂ , z₂) ∈ (R × R) ] ((y₂ ∈ I) × (z₂ ∈ J) × (r · x ≡ y₂ + z₂)) ·ClosedΣ ((y₁ , z₁) , y₁∈I , z₁∈J , x≡y₁+z₁) = (r · y₁ , r · z₁) , ·Closed (snd I) r y₁∈I , ·Closed (snd J) r z₁∈J , cong (r ·_) x≡y₁+z₁ ∙ ·Rdist+ _ _ _ infixl 6 _+i_ +iComm⊆ : ∀ (I J : CommIdeal) → (I +i J) ⊆ (J +i I) +iComm⊆ I J x = map λ ((y , z) , y∈I , z∈J , x≡y+z) → (z , y) , z∈J , y∈I , x≡y+z ∙ +Comm _ _ +iComm : ∀ (I J : CommIdeal) → I +i J ≡ J +i I +iComm I J = CommIdeal≡Char (+iComm⊆ I J) (+iComm⊆ J I) +iLidLIncl : ∀ (I : CommIdeal) → (0Ideal +i I) ⊆ I +iLidLIncl I x = rec (I .fst x .snd) λ ((y , z) , y≡0 , z∈I , x≡y+z) → subst-∈ I (sym (x≡y+z ∙∙ cong (_+ z) y≡0 ∙∙ +Lid z)) z∈I +iLidRIncl : ∀ (I : CommIdeal) → I ⊆ (0Ideal +i I) +iLidRIncl I x x∈I = ∣ (0r , x) , refl , x∈I , sym (+Lid _) ∣ +iLid : ∀ (I : CommIdeal) → 0Ideal +i I ≡ I +iLid I = CommIdeal≡Char (+iLidLIncl I) (+iLidRIncl I) +iLincl : ∀ (I J : CommIdeal) → I ⊆ (I +i J) +iLincl I J x x∈I = ∣ (x , 0r) , x∈I , J .snd .contains0 , sym (+Rid x) ∣ +iRincl : ∀ (I J : CommIdeal) → J ⊆ (I +i J) +iRincl I J x x∈J = ∣ (0r , x) , I .snd .contains0 , x∈J , sym (+Lid x) ∣ +iRespLincl : ∀ (I J K : CommIdeal) → I ⊆ J → (I +i K) ⊆ (J +i K) +iRespLincl I J K I⊆J x = map λ ((y , z) , y∈I , z∈K , x≡y+z) → ((y , z) , I⊆J y y∈I , z∈K , x≡y+z) +iAssocLIncl : ∀ (I J K : CommIdeal) → (I +i (J +i K)) ⊆ ((I +i J) +i K) +iAssocLIncl I J K x = elim (λ _ → ((I +i J) +i K) .fst x .snd) (uncurry3 λ (y , z) y∈I → elim (λ _ → isPropΠ λ _ → ((I +i J) +i K) .fst x .snd) λ ((u , v) , u∈J , v∈K , z≡u+v) x≡y+z → ∣ (y + u , v) , ∣ _ , y∈I , u∈J , refl ∣ , v∈K , x≡y+z ∙∙ cong (y +_) z≡u+v ∙∙ +Assoc _ _ _ ∣) +iAssocRIncl : ∀ (I J K : CommIdeal) → ((I +i J) +i K) ⊆ (I +i (J +i K)) +iAssocRIncl I J K x = elim (λ _ → (I +i (J +i K)) .fst x .snd) (uncurry3 λ (y , z) → elim (λ _ → isPropΠ2 λ _ _ → (I +i (J +i K)) .fst x .snd) λ ((u , v) , u∈I , v∈J , y≡u+v) z∈K x≡y+z → ∣ (u , v + z) , u∈I , ∣ _ , v∈J , z∈K , refl ∣ , x≡y+z ∙∙ cong (_+ z) y≡u+v ∙∙ sym (+Assoc _ _ _) ∣) +iAssoc : ∀ (I J K : CommIdeal) → I +i (J +i K) ≡ (I +i J) +i K +iAssoc I J K = CommIdeal≡Char (+iAssocLIncl I J K) (+iAssocRIncl I J K) +iIdemLIncl : ∀ (I : CommIdeal) → (I +i I) ⊆ I +iIdemLIncl I x = rec (I .fst x .snd) λ ((y , z) , y∈I , z∈I , x≡y+z) → subst-∈ I (sym x≡y+z) (I .snd .+Closed y∈I z∈I) +iIdemRIncl : ∀ (I : CommIdeal) → I ⊆ (I +i I) +iIdemRIncl I x x∈I = ∣ (0r , x) , I .snd .contains0 , x∈I , sym (+Lid _) ∣ +iIdem : ∀ (I : CommIdeal) → I +i I ≡ I +iIdem I = CommIdeal≡Char (+iIdemLIncl I) (+iIdemRIncl I) -- where to put this? mul++dist : ∀ {n m : ℕ} (α U : FinVec R n) (β V : FinVec R m) (j : Fin (n +ℕ m)) → ((λ i → α i · U i) ++Fin (λ i → β i · V i)) j ≡ (α ++Fin β) j · (U ++Fin V) j mul++dist {n = zero} α U β V j = refl mul++dist {n = suc n} α U β V zero = refl mul++dist {n = suc n} α U β V (suc j) = mul++dist (α ∘ suc) (U ∘ suc) β V j -- define multiplication of ideals _·i_ : CommIdeal → CommIdeal → CommIdeal fst (I ·i J) x = (∃[ n ∈ ℕ ] Σ[ (α , β) ∈ (FinVec R n × FinVec R n) ] (∀ i → α i ∈ I) × (∀ i → β i ∈ J) × (x ≡ ∑ λ i → α i · β i)) , isPropPropTrunc +Closed (snd (I ·i J)) = map2 λ (n , (α , β) , ∀αi∈I , ∀βi∈J , x≡∑αβ) (m , (γ , δ) , ∀γi∈I , ∀δi∈J , y≡∑γδ) → n +ℕ m , (α ++Fin γ , β ++Fin δ) , ++FinPres∈ (I .fst) ∀αi∈I ∀γi∈I , ++FinPres∈ (J .fst) ∀βi∈J ∀δi∈J , cong₂ (_+_) x≡∑αβ y≡∑γδ ∙∙ sym (∑Split++ (λ i → α i · β i) (λ i → γ i · δ i)) ∙∙ ∑Ext (mul++dist α β γ δ) contains0 (snd (I ·i J)) = ∣ 0 , ((λ ()) , (λ ())) , (λ ()) , (λ ()) , refl ∣ ·Closed (snd (I ·i J)) r = map λ (n , (α , β) , ∀αi∈I , ∀βi∈J , x≡∑αβ) → n , ((λ i → r · α i) , β) , (λ i → I .snd .·Closed r (∀αi∈I i)) , ∀βi∈J , cong (r ·_) x≡∑αβ ∙ ∑Mulrdist r (λ i → α i · β i) ∙ ∑Ext λ i → ·Assoc r (α i) (β i) infixl 7 _·i_ prodInProd : ∀ (I J : CommIdeal) (x y : R) → x ∈ I → y ∈ J → (x · y) ∈ (I ·i J) prodInProd _ _ x y x∈I y∈J = ∣ 1 , ((λ _ → x) , λ _ → y) , (λ _ → x∈I) , (λ _ → y∈J) , sym (+Rid _) ∣ ·iLincl : ∀ (I J : CommIdeal) → (I ·i J) ⊆ I ·iLincl I J x = elim (λ _ → I .fst x .snd) λ (_ , (α , β) , α∈I , _ , x≡∑αβ) → subst-∈ I (sym x≡∑αβ) (∑Closed I (λ i → α i · β i) λ i → ·RClosed (I .snd) _ (α∈I i)) ·iComm⊆ : ∀ (I J : CommIdeal) → (I ·i J) ⊆ (J ·i I) ·iComm⊆ I J x = map λ (n , (α , β) , ∀αi∈I , ∀βi∈J , x≡∑αβ) → (n , (β , α) , ∀βi∈J , ∀αi∈I , x≡∑αβ ∙ ∑Ext (λ i → ·Comm (α i) (β i))) ·iComm : ∀ (I J : CommIdeal) → I ·i J ≡ J ·i I ·iComm I J = CommIdeal≡Char (·iComm⊆ I J) (·iComm⊆ J I) I⊆I1 : ∀ (I : CommIdeal) → I ⊆ (I ·i 1Ideal) I⊆I1 I x x∈I = ∣ 1 , ((λ _ → x) , λ _ → 1r) , (λ _ → x∈I) , (λ _ → lift tt) , useSolver x ∣ where useSolver : ∀ x → x ≡ x · 1r + 0r useSolver = solve R' ·iRid : ∀ (I : CommIdeal) → I ·i 1Ideal ≡ I ·iRid I = CommIdeal≡Char (·iLincl I 1Ideal) (I⊆I1 I) -- a useful corollary ·iRContains1id : ∀ (I J : CommIdeal) → 1r ∈ J → I ·i J ≡ I ·iRContains1id I J 1∈J = cong (I ·i_) (contains1Is1 J 1∈J) ∙ ·iRid I ·iAssocLIncl : ∀ (I J K : CommIdeal) → (I ·i (J ·i K)) ⊆ ((I ·i J) ·i K) ·iAssocLIncl I J K x = rec isPropPropTrunc λ (_ , (α , β) , α∈I , β∈JK , x≡∑αβ) → subst-∈ ((I ·i J) ·i K) (sym x≡∑αβ) (∑Closed ((I ·i J) ·i K) (λ i → α i · β i) λ i → rec isPropPropTrunc (λ (_ , (γ , δ) , γ∈J , δ∈K , βi≡∑γδ) → subst-∈ ((I ·i J) ·i K) -- each αᵢβᵢ ≡...≡ ∑αᵢγⱼδⱼ ∈IJK (sym (cong (α i ·_) βi≡∑γδ ∙∙ ∑Mulrdist (α i) (λ j → γ j · δ j) ∙∙ ∑Ext (λ j → ·Assoc (α i) (γ j) (δ j)))) (∑Closed ((I ·i J) ·i K) (λ j → α i · γ j · δ j) -- each αᵢγⱼδⱼ∈IJK λ j → prodInProd (I ·i J) K _ _ (prodInProd I J _ _ (α∈I i) (γ∈J j)) (δ∈K j))) (β∈JK i)) ·iAssocRIncl : ∀ (I J K : CommIdeal) → ((I ·i J) ·i K) ⊆ (I ·i (J ·i K)) ·iAssocRIncl I J K x = rec isPropPropTrunc λ (_ , (α , β) , α∈IJ , β∈K , x≡∑αβ) → subst-∈ (I ·i (J ·i K)) (sym x≡∑αβ) (∑Closed (I ·i (J ·i K)) (λ i → α i · β i) λ i → rec isPropPropTrunc (λ (_ , (γ , δ) , γ∈I , δ∈J , αi≡∑γδ) → subst-∈ (I ·i (J ·i K)) (sym (cong (_· β i) αi≡∑γδ ∙∙ ∑Mulldist (β i) (λ j → γ j · δ j) ∙∙ ∑Ext (λ j → sym (·Assoc (γ j) (δ j) (β i))))) (∑Closed (I ·i (J ·i K)) (λ j → γ j · (δ j · β i)) λ j → prodInProd I (J ·i K) _ _ (γ∈I j) (prodInProd J K _ _ (δ∈J j) (β∈K i)))) (α∈IJ i)) ·iAssoc : ∀ (I J K : CommIdeal) → I ·i (J ·i K) ≡ (I ·i J) ·i K ·iAssoc I J K = CommIdeal≡Char (·iAssocLIncl I J K) (·iAssocRIncl I J K) ·iRdist+iLIncl : ∀ (I J K : CommIdeal) → (I ·i (J +i K)) ⊆ (I ·i J +i I ·i K) ·iRdist+iLIncl I J K x = rec isPropPropTrunc λ (n , (α , β) , α∈I , β∈J+K , x≡∑αβ) → subst-∈ ((I ·i J) +i (I ·i K)) (sym x≡∑αβ) (∑Closed ((I ·i J) +i (I ·i K)) (λ i → α i · β i) -- each αi·βi ∈ IJ+IK λ i → rec isPropPropTrunc (λ ((γi , δi) , γi∈J , δi∈K , βi≡γi+δi) → ∣ (α i · γi , α i · δi) , prodInProd I J _ _ (α∈I i) γi∈J , prodInProd I K _ _ (α∈I i) δi∈K , cong (α i ·_) βi≡γi+δi ∙ ·Rdist+ _ _ _ ∣) (β∈J+K i)) ·iRdist+iRIncl : ∀ (I J K : CommIdeal) → ((I ·i J) +i (I ·i K)) ⊆ (I ·i (J +i K)) ·iRdist+iRIncl I J K x = rec isPropPropTrunc λ ((y , z) , y∈IJ , z∈IK , x≡y+z) → subst-∈ (I ·i (J +i K)) (sym x≡y+z) ((I ·i (J +i K)) .snd .+Closed (inclHelperLeft _ y∈IJ) (inclHelperRight _ z∈IK)) where inclHelperLeft : (I ·i J) ⊆ (I ·i (J +i K)) inclHelperLeft x' = map (λ (n , (α , β) , α∈I , β∈J , x'≡∑αβ) → n , (α , β) , α∈I , (λ i → +iLincl J K _ (β∈J i)) , x'≡∑αβ) inclHelperRight : (I ·i K) ⊆ (I ·i (J +i K)) inclHelperRight x' = map (λ (n , (α , β) , α∈I , β∈K , x'≡∑αβ) → n , (α , β) , α∈I , (λ i → +iRincl J K _ (β∈K i)) , x'≡∑αβ) ·iRdist+i : ∀ (I J K : CommIdeal) → I ·i (J +i K) ≡ I ·i J +i I ·i K ·iRdist+i I J K = CommIdeal≡Char (·iRdist+iLIncl I J K) (·iRdist+iRIncl I J K) -- only one absorption law, i.e. CommIdeal , +i , ·i does not form a dist. lattice ·iAbsorb+iLIncl : ∀ (I J : CommIdeal) → (I +i (I ·i J)) ⊆ I ·iAbsorb+iLIncl I J x = rec (I .fst x .snd) λ ((y , z) , y∈I , z∈IJ , x≡y+z) → subst-∈ I (sym x≡y+z) (I .snd .+Closed y∈I (·iLincl I J _ z∈IJ)) ·iAbsorb+iRIncl : ∀ (I J : CommIdeal) → I ⊆ (I +i (I ·i J)) ·iAbsorb+iRIncl I J = +iLincl I (I ·i J) ·iAbsorb+i : ∀ (I J : CommIdeal) → I +i (I ·i J) ≡ I ·iAbsorb+i I J = CommIdeal≡Char (·iAbsorb+iLIncl I J) (·iAbsorb+iRIncl I J)
44.534954
100
0.458913
0b9732b5c3c78cdf5b13bb5ff4b9bebd7a989e4d
150
agda
Agda
test/Fail/Issue278.agda
pthariensflame/agda
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/fail/Issue278.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
test/fail/Issue278.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
1
2022-03-12T11:35:18.000Z
2022-03-12T11:35:18.000Z
module Issue278 where abstract module A where Foo : Set₁ Foo = Set module B where open A Foo≡Set : Foo ≡ Set Foo≡Set = refl
12.5
23
0.606667
127ba4fc7736066f4b1a1911313312d610e0a9fe
669
agda
Agda
test/Fail/Issue1963DisplayWithPostfixCopattern.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue1963DisplayWithPostfixCopattern.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue1963DisplayWithPostfixCopattern.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS -v tc.with.display:30 #-} -- {-# OPTIONS -v tc.with.strip:30 #-} open import Common.Product open import Common.Prelude open import Common.Equality postulate p : Nat → Nat -- g : Nat → Nat × Nat -- g x .proj₁ with p x -- g x .proj₁ | 0 = 1 -- g x .proj₁ | suc y = 0 -- g x .proj₂ = suc x -- h : Nat → Nat × Nat -- h x .proj₁ with p x -- h x .proj₁ | 0 = 1 -- proj₁ (h x) | suc y = 0 -- h x .proj₂ = suc x f : Nat → Nat × Nat f x .proj₁ with p x ... | 0 = 1 ... | suc y = 0 f x .proj₂ = suc x test : f 0 ≡ (0 , 1) test = refl -- EXPECTED ERROR: -- f 0 .proj₁ | p 0 != zero of type Nat -- when checking that the expression refl has type f 0 ≡ (0 , 1)
19.114286
64
0.562033
dc662c1ac226a01ddbce3dec2373b4e61ac23e90
763
agda
Agda
Path/Reasoning.agda
oisdk/agda-playground
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
[ "MIT" ]
6
2020-09-11T17:45:41.000Z
2021-11-16T08:11:34.000Z
Path/Reasoning.agda
oisdk/agda-playground
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
[ "MIT" ]
null
null
null
Path/Reasoning.agda
oisdk/agda-playground
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
[ "MIT" ]
1
2021-11-11T12:30:21.000Z
2021-11-11T12:30:21.000Z
{-# OPTIONS --cubical --safe #-} module Path.Reasoning where open import Prelude infixr 2 ≡˘⟨⟩-syntax _≡⟨⟩_ ≡⟨∙⟩-syntax ≡⟨∙⟩[∙]-syntax ≡˘⟨⟩-syntax : ∀ (x : A) {y z} → y ≡ z → y ≡ x → x ≡ z ≡˘⟨⟩-syntax _ y≡z y≡x = sym y≡x ; y≡z syntax ≡˘⟨⟩-syntax x y≡z y≡x = x ≡˘⟨ y≡x ⟩ y≡z ≡⟨∙⟩-syntax : ∀ (x : A) {y z} → y ≡ z → x ≡ y → x ≡ z ≡⟨∙⟩-syntax _ y≡z x≡y = x≡y ; y≡z syntax ≡⟨∙⟩-syntax x y≡z x≡y = x ≡⟨ x≡y ⟩ y≡z _≡⟨⟩_ : ∀ (x : A) {y} → x ≡ y → x ≡ y _ ≡⟨⟩ x≡y = x≡y infix 2.5 _∎ _∎ : ∀ {A : Type a} (x : A) → x ≡ x _∎ x = refl ≡⟨∙⟩[∙]-syntax : ∀ (x : A) {x′ y′ : B} {y z} → y ≡ z → x′ ≡ y′ → (x′ ≡ y′ → x ≡ y) → x ≡ z ≡⟨∙⟩[∙]-syntax _ y≡z x′≡y′ x′≡y′⇒x≡y = x′≡y′⇒x≡y x′≡y′ ; y≡z syntax ≡⟨∙⟩[∙]-syntax x y≡z x′≡y′ x′≡y′⇒x≡y = x ≡⟨ x′≡y′⇒x≡y ⟩[ x′≡y′ ] y≡z
24.612903
90
0.406291
a13a145722c500eacf2916b2867ecd89004cff0b
3,436
agda
Agda
Cubical/Structures/Maybe.agda
RobertHarper/cubical
d13941587a58895b65f714f1ccc9c1f5986b109c
[ "MIT" ]
null
null
null
Cubical/Structures/Maybe.agda
RobertHarper/cubical
d13941587a58895b65f714f1ccc9c1f5986b109c
[ "MIT" ]
null
null
null
Cubical/Structures/Maybe.agda
RobertHarper/cubical
d13941587a58895b65f714f1ccc9c1f5986b109c
[ "MIT" ]
1
2021-11-22T02:02:01.000Z
2021-11-22T02:02:01.000Z
{- Maybe structure: X ↦ Maybe (S X) -} {-# OPTIONS --cubical --no-import-sorts --no-exact-split --safe #-} module Cubical.Structures.Maybe where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Function open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.HLevels open import Cubical.Foundations.SIP open import Cubical.Functions.FunExtEquiv open import Cubical.Data.Unit open import Cubical.Data.Empty open import Cubical.Data.Maybe private variable ℓ ℓ₁ ℓ₁' : Level MaybeRel : {A B : Type ℓ} (R : A → B → Type ℓ₁) → Maybe A → Maybe B → Type ℓ₁ MaybeRel R nothing nothing = Lift Unit MaybeRel R nothing (just _) = Lift ⊥ MaybeRel R (just _) nothing = Lift ⊥ MaybeRel R (just x) (just y) = R x y congMaybeRel : {A B : Type ℓ} {R : A → B → Type ℓ₁} {S : A → B → Type ℓ₁'} → (∀ x y → R x y ≃ S x y) → ∀ ox oy → MaybeRel R ox oy ≃ MaybeRel S ox oy congMaybeRel e nothing nothing = Lift≃Lift (idEquiv _) congMaybeRel e nothing (just _) = Lift≃Lift (idEquiv _) congMaybeRel e (just _) nothing = Lift≃Lift (idEquiv _) congMaybeRel e (just x) (just y) = e x y module MaybePathP where Code : (A : I → Type ℓ) → Maybe (A i0) → Maybe (A i1) → Type ℓ Code A = MaybeRel (PathP A) encodeRefl : {A : Type ℓ} → ∀ ox → Code (λ _ → A) ox ox encodeRefl nothing = lift tt encodeRefl (just _) = refl encode : (A : I → Type ℓ) → ∀ ox oy → PathP (λ i → Maybe (A i)) ox oy → Code A ox oy encode A ox oy p = transport (λ j → Code (λ i → A (i ∧ j)) ox (p j)) (encodeRefl ox) decode : {A : I → Type ℓ} → ∀ ox oy → Code A ox oy → PathP (λ i → Maybe (A i)) ox oy decode nothing nothing p i = nothing decode (just _) (just _) p i = just (p i) decodeEncodeRefl : {A : Type ℓ} (ox : Maybe A) → decode ox ox (encodeRefl ox) ≡ refl decodeEncodeRefl nothing = refl decodeEncodeRefl (just _) = refl decodeEncode : {A : I → Type ℓ} → ∀ ox oy p → decode ox oy (encode A ox oy p) ≡ p decodeEncode {A = A} ox oy p = transport (λ k → decode _ _ (transp (λ j → Code (λ i → A (i ∧ j ∧ k)) ox (p (j ∧ k))) (~ k) (encodeRefl ox)) ≡ (λ i → p (i ∧ k))) (decodeEncodeRefl ox) encodeDecode : (A : I → Type ℓ) → ∀ ox oy c → encode A ox oy (decode ox oy c) ≡ c encodeDecode A nothing nothing c = refl encodeDecode A (just x) (just y) c = transport (λ k → encode (λ i → A (i ∧ k)) _ _ (decode (just x) (just (c k)) (λ i → c (i ∧ k))) ≡ (λ i → c (i ∧ k))) (transportRefl _) Code≃PathP : {A : I → Type ℓ} → ∀ ox oy → Code A ox oy ≃ PathP (λ i → Maybe (A i)) ox oy Code≃PathP {A = A} ox oy = isoToEquiv isom where isom : Iso _ _ isom .Iso.fun = decode ox oy isom .Iso.inv = encode _ ox oy isom .Iso.rightInv = decodeEncode ox oy isom .Iso.leftInv = encodeDecode A ox oy -- Structured isomorphisms MaybeStructure : (S : Type ℓ → Type ℓ₁) → Type ℓ → Type ℓ₁ MaybeStructure S X = Maybe (S X) MaybeEquivStr : {S : Type ℓ → Type ℓ₁} → StrEquiv S ℓ₁' → StrEquiv (MaybeStructure S) ℓ₁' MaybeEquivStr ι (X , ox) (Y , oy) e = MaybeRel (λ x y → ι (X , x) (Y , y) e) ox oy maybeUnivalentStr : {S : Type ℓ → Type ℓ₁} (ι : StrEquiv S ℓ₁') → UnivalentStr S ι → UnivalentStr (MaybeStructure S) (MaybeEquivStr ι) maybeUnivalentStr ι θ {X , ox} {Y , oy} e = compEquiv (congMaybeRel (λ x y → θ {X , x} {Y , y} e) ox oy) (MaybePathP.Code≃PathP ox oy)
34.36
99
0.618743
a1d8a0834c1c9b8df1e0d7b9660a44fb75d1f0ce
1,074
agda
Agda
test/Succeed/UnquoteDecl.agda
vlopezj/agda
ff4d89e75970cf27599fb9f572bd43c9455cbb56
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/Succeed/UnquoteDecl.agda
vikfret/agda
49ad0b3f0d39c01bc35123478b857e702b29fb9d
[ "BSD-3-Clause" ]
3
2018-11-14T15:31:44.000Z
2019-04-01T19:39:26.000Z
test/Succeed/UnquoteDecl.agda
vikfret/agda
49ad0b3f0d39c01bc35123478b857e702b29fb9d
[ "BSD-3-Clause" ]
1
2015-09-15T14:36:15.000Z
2015-09-15T14:36:15.000Z
module UnquoteDecl where open import Common.Prelude open import Common.Reflection open import Common.Equality infixr 3 _`⇒_ pattern _`⇒_ a b = pi (vArg a) (abs "_" b) pattern `Nat = def (quote Nat) [] unquoteDecl x = define (vArg x) (funDef `Nat (clause [] (quoteTerm 15) ∷ [])) y = x + 4 -- unquoteDecl loop = define loop (funDef `Nat (clause [] (def (quote loop) []) ∷ [])) pattern `zero = con (quote zero) [] pattern `suc n = con (quote suc) (vArg n ∷ []) -- Note that in the body of the unquote, 'plus' really means 'quote plus'. unquoteDecl plus = define (vArg plus) ( funDef (`Nat `⇒ `Nat `⇒ `Nat) ( clause (vArg (con (quote zero) []) ∷ vArg (var "y") ∷ []) (var 0 []) ∷ clause (vArg (con (quote suc) (vArg (var "x") ∷ [])) ∷ vArg (var "y") ∷ []) (`suc (def plus (vArg (var 1 []) ∷ vArg (var 0 []) ∷ []))) ∷ [])) prf : plus 1 1 ≡ 2 prf = refl magicDef : FunDef magicDef = funDef (def (quote ⊥) [] `⇒ `Nat) (absurdClause (vArg absurd ∷ []) ∷ []) unquoteDecl magic = define (vArg magic) magicDef
26.85
86
0.570764
cb73f68544d248bf985f88687cf4cd5684272c6d
426
agda
Agda
Cubical/HITs/Bouquet/Base.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
1
2021-10-31T17:32:49.000Z
2021-10-31T17:32:49.000Z
Cubical/HITs/Bouquet/Base.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
Cubical/HITs/Bouquet/Base.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
{- This file contains: - Definition of the Bouquet of circles of a type aka wedge of A circles -} {-# OPTIONS --safe #-} module Cubical.HITs.Bouquet.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Pointed private variable ℓ : Level data Bouquet (A : Type ℓ) : Type ℓ where base : Bouquet A loop : A → base ≡ base Bouquet∙ : Type ℓ → Pointed ℓ Bouquet∙ A = Bouquet A , base
17.04
71
0.701878
391a33f09618a9e542db5384f8a243f4a98933e8
14,573
agda
Agda
Everything.agda
bolt12/agda-categories
b813fa3e685eb4713bace6204b8084a343d549a3
[ "MIT" ]
null
null
null
Everything.agda
bolt12/agda-categories
b813fa3e685eb4713bace6204b8084a343d549a3
[ "MIT" ]
null
null
null
Everything.agda
bolt12/agda-categories
b813fa3e685eb4713bace6204b8084a343d549a3
[ "MIT" ]
null
null
null
import Categories.2-Category import Categories.2-Functor import Categories.Adjoint import Categories.Adjoint.AFT import Categories.Adjoint.AFT.SolutionSet import Categories.Adjoint.Alternatives import Categories.Adjoint.Compose import Categories.Adjoint.Construction.EilenbergMoore import Categories.Adjoint.Construction.Kleisli import Categories.Adjoint.Equivalence import Categories.Adjoint.Equivalence.Properties import Categories.Adjoint.Equivalents import Categories.Adjoint.Instance.0-Truncation import Categories.Adjoint.Instance.01-Truncation import Categories.Adjoint.Instance.Core import Categories.Adjoint.Instance.Discrete import Categories.Adjoint.Instance.PosetCore import Categories.Adjoint.Instance.StrictCore import Categories.Adjoint.Mate import Categories.Adjoint.Properties import Categories.Adjoint.RAPL import Categories.Adjoint.Relative import Categories.Adjoint.TwoSided import Categories.Adjoint.TwoSided.Compose import Categories.Bicategory import Categories.Bicategory.Bigroupoid import Categories.Bicategory.Construction.1-Category import Categories.Bicategory.Extras import Categories.Bicategory.Instance.Cats import Categories.Bicategory.Instance.EnrichedCats import Categories.Bicategory.Opposite import Categories.Category import Categories.Category.BicartesianClosed import Categories.Category.CMonoidEnriched import Categories.Category.Cartesian import Categories.Category.Cartesian.Properties import Categories.Category.Cartesian.Structure import Categories.Category.CartesianClosed import Categories.Category.CartesianClosed.Canonical import Categories.Category.CartesianClosed.Locally import Categories.Category.CartesianClosed.Locally.Properties import Categories.Category.CartesianClosed.Properties import Categories.Category.Closed import Categories.Category.Cocartesian import Categories.Category.Cocomplete import Categories.Category.Cocomplete.Finitely import Categories.Category.Cocomplete.Finitely.Properties import Categories.Category.Cocomplete.Properties import Categories.Category.Complete import Categories.Category.Complete.Finitely import Categories.Category.Complete.Finitely.Properties import Categories.Category.Complete.Properties import Categories.Category.Complete.Properties.Construction import Categories.Category.Complete.Properties.SolutionSet import Categories.Category.Concrete import Categories.Category.Concrete.Properties import Categories.Category.Construction.0-Groupoid import Categories.Category.Construction.Adjoints import Categories.Category.Construction.Arrow import Categories.Category.Construction.Cocones import Categories.Category.Construction.Comma import Categories.Category.Construction.Cones import Categories.Category.Construction.Coproduct import Categories.Category.Construction.Core import Categories.Category.Construction.EilenbergMoore import Categories.Category.Construction.Elements import Categories.Category.Construction.EnrichedFunctors import Categories.Category.Construction.F-Algebras import Categories.Category.Construction.Fin import Categories.Category.Construction.Functors import Categories.Category.Construction.Graphs import Categories.Category.Construction.Grothendieck import Categories.Category.Construction.GroupAsCategory import Categories.Category.Construction.Kleisli import Categories.Category.Construction.MonoidAsCategory import Categories.Category.Construction.Monoids import Categories.Category.Construction.ObjectRestriction import Categories.Category.Construction.Path import Categories.Category.Construction.Presheaves import Categories.Category.Construction.Properties.Comma import Categories.Category.Construction.Properties.EilenbergMoore import Categories.Category.Construction.Properties.Functors import Categories.Category.Construction.Properties.Kleisli import Categories.Category.Construction.Properties.Presheaves import Categories.Category.Construction.Properties.Presheaves.Cartesian import Categories.Category.Construction.Properties.Presheaves.CartesianClosed import Categories.Category.Construction.Properties.Presheaves.Complete import Categories.Category.Construction.Properties.Presheaves.FromCartesianCCC import Categories.Category.Construction.Pullbacks import Categories.Category.Construction.Thin import Categories.Category.Core import Categories.Category.Dagger import Categories.Category.Dagger.Construction.Discrete import Categories.Category.Dagger.Instance.Rels import Categories.Category.Discrete import Categories.Category.Duality import Categories.Category.Equivalence import Categories.Category.Equivalence.Properties import Categories.Category.Finite import Categories.Category.Finite.Fin import Categories.Category.Finite.Fin.Construction.Discrete import Categories.Category.Finite.Fin.Construction.Poset import Categories.Category.Finite.Fin.Instance.Parallel import Categories.Category.Finite.Fin.Instance.Span import Categories.Category.Finite.Fin.Instance.Triangle import Categories.Category.Groupoid import Categories.Category.Groupoid.Properties import Categories.Category.Helper import Categories.Category.Indiscrete import Categories.Category.Instance.Cartesians import Categories.Category.Instance.Cats import Categories.Category.Instance.EmptySet import Categories.Category.Instance.FamilyOfSetoids import Categories.Category.Instance.FamilyOfSets import Categories.Category.Instance.FinCatShapes import Categories.Category.Instance.FinSetoids import Categories.Category.Instance.Globe import Categories.Category.Instance.Groupoids import Categories.Category.Instance.LawvereTheories import Categories.Category.Instance.Monoidals import Categories.Category.Instance.One import Categories.Category.Instance.PointedSets import Categories.Category.Instance.Posets import Categories.Category.Instance.Properties.Cats import Categories.Category.Instance.Properties.Posets import Categories.Category.Instance.Properties.Setoids import Categories.Category.Instance.Properties.Setoids.CCC import Categories.Category.Instance.Properties.Setoids.Cocomplete import Categories.Category.Instance.Properties.Setoids.Complete import Categories.Category.Instance.Properties.Setoids.LCCC import Categories.Category.Instance.Rels import Categories.Category.Instance.Setoids import Categories.Category.Instance.Sets import Categories.Category.Instance.Simplex import Categories.Category.Instance.SimplicialSet import Categories.Category.Instance.SingletonSet import Categories.Category.Instance.Span import Categories.Category.Instance.StrictCats import Categories.Category.Instance.StrictGroupoids import Categories.Category.Instance.Zero import Categories.Category.Inverse import Categories.Category.Lift import Categories.Category.Monoidal import Categories.Category.Monoidal.Braided import Categories.Category.Monoidal.Braided.Properties import Categories.Category.Monoidal.Closed import Categories.Category.Monoidal.Closed.IsClosed import Categories.Category.Monoidal.Closed.IsClosed.Diagonal import Categories.Category.Monoidal.Closed.IsClosed.Dinatural import Categories.Category.Monoidal.Closed.IsClosed.Identity import Categories.Category.Monoidal.Closed.IsClosed.L import Categories.Category.Monoidal.Closed.IsClosed.Pentagon import Categories.Category.Monoidal.CompactClosed import Categories.Category.Monoidal.Construction.Minus2 import Categories.Category.Monoidal.Core import Categories.Category.Monoidal.Instance.Cats import Categories.Category.Monoidal.Instance.One import Categories.Category.Monoidal.Instance.Setoids import Categories.Category.Monoidal.Instance.Sets import Categories.Category.Monoidal.Instance.StrictCats import Categories.Category.Monoidal.Properties import Categories.Category.Monoidal.Reasoning import Categories.Category.Monoidal.Rigid import Categories.Category.Monoidal.Star-Autonomous import Categories.Category.Monoidal.Structure import Categories.Category.Monoidal.Symmetric import Categories.Category.Monoidal.Traced import Categories.Category.Monoidal.Utilities import Categories.Category.Product import Categories.Category.Product.Properties import Categories.Category.RigCategory import Categories.Category.SetoidDiscrete import Categories.Category.Site import Categories.Category.Slice import Categories.Category.Slice.Properties import Categories.Category.Species import Categories.Category.Species.Constructions import Categories.Category.SubCategory import Categories.Category.Topos import Categories.Category.WithFamilies import Categories.CoYoneda import Categories.Comonad import Categories.Comonad.Relative import Categories.Diagram.Cocone import Categories.Diagram.Cocone.Properties import Categories.Diagram.Coend import Categories.Diagram.Coequalizer import Categories.Diagram.Coequalizer.Properties import Categories.Diagram.Colimit import Categories.Diagram.Colimit.DualProperties import Categories.Diagram.Colimit.Lan import Categories.Diagram.Colimit.Properties import Categories.Diagram.Cone import Categories.Diagram.Cone.Properties import Categories.Diagram.Duality import Categories.Diagram.End import Categories.Diagram.End.Properties import Categories.Diagram.Equalizer import Categories.Diagram.Equalizer.Indexed import Categories.Diagram.Equalizer.Limit import Categories.Diagram.Equalizer.Properties import Categories.Diagram.Finite import Categories.Diagram.Limit import Categories.Diagram.Limit.Properties import Categories.Diagram.Limit.Ran import Categories.Diagram.Pullback import Categories.Diagram.Pullback.Limit import Categories.Diagram.Pullback.Properties import Categories.Diagram.Pushout import Categories.Diagram.Pushout.Properties import Categories.Diagram.SubobjectClassifier import Categories.Enriched.Category import Categories.Enriched.Category.Opposite import Categories.Enriched.Category.Underlying import Categories.Enriched.Functor import Categories.Enriched.NaturalTransformation import Categories.Enriched.NaturalTransformation.NaturalIsomorphism import Categories.Enriched.Over.One import Categories.Enriched.Over.Setoids import Categories.Functor import Categories.Functor.Algebra import Categories.Functor.Bifunctor import Categories.Functor.Bifunctor.Properties import Categories.Functor.Cartesian import Categories.Functor.Cartesian.Properties import Categories.Functor.Coalgebra import Categories.Functor.Construction.Constant import Categories.Functor.Construction.Diagonal import Categories.Functor.Construction.FromDiscrete import Categories.Functor.Construction.LiftSetoids import Categories.Functor.Construction.Limit import Categories.Functor.Construction.ObjectRestriction import Categories.Functor.Construction.SubCategory import Categories.Functor.Construction.SubCategory.Properties import Categories.Functor.Construction.Zero import Categories.Functor.Core import Categories.Functor.Duality import Categories.Functor.Equivalence import Categories.Functor.Fibration import Categories.Functor.Groupoid import Categories.Functor.Hom import Categories.Functor.Hom.Properties import Categories.Functor.Hom.Properties.Contra import Categories.Functor.Hom.Properties.Covariant import Categories.Functor.Instance.0-Truncation import Categories.Functor.Instance.01-Truncation import Categories.Functor.Instance.Core import Categories.Functor.Instance.Discrete import Categories.Functor.Instance.SetoidDiscrete import Categories.Functor.Instance.StrictCore import Categories.Functor.Limits import Categories.Functor.Monoidal import Categories.Functor.Monoidal.Properties import Categories.Functor.Monoidal.Symmetric import Categories.Functor.Power import Categories.Functor.Power.Functorial import Categories.Functor.Power.NaturalTransformation import Categories.Functor.Presheaf import Categories.Functor.Profunctor import Categories.Functor.Properties import Categories.Functor.Representable import Categories.Functor.Slice import Categories.GlobularSet import Categories.Kan import Categories.Kan.Duality import Categories.Minus2-Category import Categories.Minus2-Category.Construction.Indiscrete import Categories.Minus2-Category.Instance.One import Categories.Minus2-Category.Properties import Categories.Monad import Categories.Monad.Duality import Categories.Monad.Idempotent import Categories.Monad.Relative import Categories.Monad.Strong import Categories.Morphism import Categories.Morphism.Cartesian import Categories.Morphism.Duality import Categories.Morphism.HeterogeneousIdentity import Categories.Morphism.HeterogeneousIdentity.Properties import Categories.Morphism.IsoEquiv import Categories.Morphism.Isomorphism import Categories.Morphism.Notation import Categories.Morphism.Properties import Categories.Morphism.Reasoning import Categories.Morphism.Reasoning.Core import Categories.Morphism.Reasoning.Iso import Categories.Morphism.Universal import Categories.Multi.Category.Indexed import Categories.NaturalTransformation import Categories.NaturalTransformation.Core import Categories.NaturalTransformation.Dinatural import Categories.NaturalTransformation.Equivalence import Categories.NaturalTransformation.Hom import Categories.NaturalTransformation.Monoidal import Categories.NaturalTransformation.NaturalIsomorphism import Categories.NaturalTransformation.NaturalIsomorphism.Equivalence import Categories.NaturalTransformation.NaturalIsomorphism.Functors import Categories.NaturalTransformation.NaturalIsomorphism.Monoidal import Categories.NaturalTransformation.NaturalIsomorphism.Properties import Categories.NaturalTransformation.Properties import Categories.Object.Coproduct import Categories.Object.Duality import Categories.Object.Exponential import Categories.Object.Initial import Categories.Object.Monoid import Categories.Object.NaturalNumber import Categories.Object.NaturalNumber.Properties.F-Algebras import Categories.Object.Product import Categories.Object.Product.Construction import Categories.Object.Product.Core import Categories.Object.Product.Indexed import Categories.Object.Product.Indexed.Properties import Categories.Object.Product.Limit import Categories.Object.Product.Morphisms import Categories.Object.Subobject import Categories.Object.Subobject.Properties import Categories.Object.Terminal import Categories.Object.Terminal.Limit import Categories.Object.Zero import Categories.Pseudofunctor import Categories.Pseudofunctor.Composition import Categories.Pseudofunctor.Hom import Categories.Pseudofunctor.Identity import Categories.Pseudofunctor.Instance.EnrichedUnderlying import Categories.Theory.Lawvere import Categories.Utils.EqReasoning import Categories.Utils.Product import Categories.Yoneda import Categories.Yoneda.Continuous import Categories.Yoneda.Properties
44.02719
78
0.891649
d02d565eb3b9234b9d7c63193db7e3c809d6627a
6,416
agda
Agda
TotalParserCombinators/Parser.agda
yurrriq/parser-combinators
b396d35cc2cb7e8aea50b982429ee385f001aa88
[ "MIT" ]
7
2016-12-13T05:23:14.000Z
2021-06-22T05:35:31.000Z
TotalParserCombinators/Parser.agda
yurrriq/parser-combinators
b396d35cc2cb7e8aea50b982429ee385f001aa88
[ "MIT" ]
1
2018-01-22T22:21:41.000Z
2018-01-24T16:39:37.000Z
TotalParserCombinators/Parser.agda
yurrriq/parser-combinators
b396d35cc2cb7e8aea50b982429ee385f001aa88
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- The parser type ------------------------------------------------------------------------ module TotalParserCombinators.Parser where open import Algebra open import Category.Monad open import Coinduction open import Data.List open import Data.Maybe using (Maybe; nothing; just) open import Data.List.Any.Membership.Propositional open import Data.List.Categorical as ListMonad using () renaming (module MonadProperties to ListMonadProp) open import Data.Product using (proj₂) open import Function open import Level open import Relation.Binary.PropositionalEquality open RawMonadPlus {f = zero} ListMonad.monadPlus using () renaming ( return to return′ ; ∅ to fail′ ; _∣_ to _∣′_ ; _⊛_ to _⊛′_ ; _>>=_ to _>>=′_ ) ------------------------------------------------------------------------ -- Helper functions -- Flattening for potential lists. flatten : {A : Set} → Maybe (List A) → List A flatten nothing = [] flatten (just xs) = xs -- fs ⊛flatten mxs is a variant of fs ⊛′ flatten mxs, with the -- property that fs ⊛flatten nothing evaluates to []. _⊛flatten_ : {A B : Set} → List (A → B) → Maybe (List A) → List B fs ⊛flatten nothing = [] fs ⊛flatten just xs = fs ⊛′ xs -- Applies the function to the value, returning the empty list if -- there is no function. apply : {A B : Set} → Maybe (A → List B) → A → List B apply nothing x = [] apply (just f) x = f x -- bind mxs mf is a variant of flatten mxs >>=′ apply mf, with the -- property that bind mxs nothing evaluates to []. bind : {A B : Set} → Maybe (List A) → Maybe (A → List B) → List B bind mxs nothing = [] bind mxs (just f) = flatten mxs >>=′ f -- Verification of some claims made above. module Claims where ⊛flatten-⊛-flatten : ∀ {A B : Set} (fs : List (A → B)) mxs → fs ⊛flatten mxs ≡ (fs ⊛′ flatten mxs) ⊛flatten-⊛-flatten fs nothing = sym $ ListMonadProp.right-zero fs ⊛flatten-⊛-flatten fs (just xs) = refl ⊛flatten-nothing : {A B : Set} (fs : List (A → B)) → fs ⊛flatten nothing ≡ [] ⊛flatten-nothing fs = refl bind-flatten->>=-apply : ∀ {A B : Set} mxs (mf : Maybe (A → List B)) → bind mxs mf ≡ (flatten mxs >>=′ apply mf) bind-flatten->>=-apply mxs (just f) = refl bind-flatten->>=-apply mxs nothing = sym $ ListMonadProp.right-zero (flatten mxs) bind-nothing : {A B : Set} (mxs : Maybe (List A)) → bind mxs nothing ≡ [] {A = B} bind-nothing mxs = refl ------------------------------------------------------------------------ -- Parsers infixl 50 _⊛_ _<$>_ _⊛flatten_ infixl 10 _>>=_ infixl 5 _∣_ -- The list index is the "initial bag"; it contains the results which -- can be emitted without consuming any input. For -- p : Parser Tok R xs -- we have -- x ∈ xs iff x ∈ p · [] -- (see TotalParserCombinators.InitialBag). mutual data Parser (Tok : Set) : (R : Set) → List R → Set₁ where return : ∀ {R} (x : R) → Parser Tok R (return′ x) fail : ∀ {R} → Parser Tok R fail′ token : Parser Tok Tok fail′ _∣_ : ∀ {R xs₁ xs₂} (p₁ : Parser Tok R xs₁ ) (p₂ : Parser Tok R xs₂) → Parser Tok R (xs₁ ∣′ xs₂) _<$>_ : ∀ {R₁ R₂ xs} (f : R₁ → R₂) (p : Parser Tok R₁ xs) → Parser Tok R₂ (map f xs) _⊛_ : ∀ {R₁ R₂ fs xs} (p₁ : ∞⟨ xs ⟩Parser Tok (R₁ → R₂) (flatten fs) ) (p₂ : ∞⟨ fs ⟩Parser Tok R₁ (flatten xs)) → Parser Tok R₂ (flatten fs ⊛flatten xs) _>>=_ : ∀ {R₁ R₂ xs} {f : Maybe (R₁ → List R₂)} (p₁ : ∞⟨ f ⟩Parser Tok R₁ (flatten xs)) (p₂ : (x : R₁) → ∞⟨ xs ⟩Parser Tok R₂ (apply f x)) → Parser Tok R₂ (bind xs f) nonempty : ∀ {R xs} (p : Parser Tok R xs) → Parser Tok R [] cast : ∀ {R xs₁ xs₂} (xs₁≈xs₂ : xs₁ ∼[ bag ] xs₂) (p : Parser Tok R xs₁) → Parser Tok R xs₂ ∞⟨_⟩Parser : {A : Set} → Maybe A → Set → (R : Set) → List R → Set₁ ∞⟨ nothing ⟩Parser Tok R₁ xs = ∞ (Parser Tok R₁ xs) ∞⟨ just _ ⟩Parser Tok R₁ xs = Parser Tok R₁ xs -- Note that, with the definition above, a sequenced parser is -- /allowed/ to be delayed if the "other" parser is not nullable, but -- it does not have to be. -- Note also that it would be safe to make the first argument of _>>=_ -- coinductive if apply f x ≡_[] for all x in xs. I suspect that this -- criterion would be awkward to work with, though. Instead I only -- allow the argument to be coinductive if f ≡ nothing. -- Finally note that some of the combinators above are not included in -- the paper "Total Parser Combinators". ------------------------------------------------------------------------ -- Examples private -- Note that these parsers can be both left and right recursive: leftRight : ∀ {R Tok} → Parser Tok R _ leftRight {R} = ♯ (const <$> leftRight) ⊛ ♯ leftRight {R} leftRight′ : ∀ {R Tok} → Parser Tok R _ leftRight′ {R} = ♯ leftRight′ {R} >>= λ _ → ♯ leftRight′ -- More examples, included to ensure that all implicit arguments are -- inferred automatically. p : {Tok R : Set} → Parser Tok R _ p = token >>= λ _ → ♯ p p′ : {Tok : Set} → Parser Tok Tok _ p′ = ♯ p′ >>= λ _ → token ------------------------------------------------------------------------ -- Helper functions -- Returns the initial bag. initial-bag : ∀ {Tok R xs} → Parser Tok R xs → List R initial-bag {xs = xs} _ = xs -- Forces if necessary. ♭? : ∀ {Tok R₁ R₂} {m : Maybe R₂} {xs} → ∞⟨ m ⟩Parser Tok R₁ xs → Parser Tok R₁ xs ♭? {m = nothing} = ♭ ♭? {m = just _} = id -- Is the argument parser forced? If the result is just something, -- then it is. forced? : ∀ {Tok A R xs} {m : Maybe A} → ∞⟨ m ⟩Parser Tok R xs → Maybe A forced? {m = m} _ = m forced?′ : {Tok R₁ R₂ A : Set} {m : Maybe A} {f : R₁ → List R₂} → ((x : R₁) → ∞⟨ m ⟩Parser Tok R₂ (f x)) → Maybe A forced?′ {m = m} _ = m -- Short synonyms for just and nothing. ◌ stands for "delayed" (think -- "not here") and ○ for "not delayed". ◌ : {R : Set} → Maybe R ◌ = nothing ○ : {R : Set} {x : R} → Maybe R ○ {x = x} = just x
33.072165
76
0.529925
1871cab6d693ae7f7be9db117b7d0e8abae540a8
13,410
agda
Agda
Numeral/Matrix/Proofs.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
Numeral/Matrix/Proofs.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
Numeral/Matrix/Proofs.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
module Numeral.Matrix.Proofs where import Lvl open import Syntax.Number open import Data open import Data.Boolean open import Data.Boolean.Stmt open import Data.Boolean.Stmt.Proofs open import Data.Tuple as Tuple using (_⨯_ ; _,_) import Functional as Fn open import Function.Equals open import Lang.Inspect open import Logic.Predicate open import Logic.Propositional open import Logic.Propositional.Theorems open import Numeral.Finite open import Numeral.Finite.Bound open import Numeral.Finite.Oper open import Numeral.Finite.Oper.Comparisons open import Numeral.Finite.Oper.Comparisons.Proofs open import Numeral.Finite.Proofs open import Numeral.Matrix as Matrix using (Matrix ; SquareMatrix) open import Numeral.Natural open import Numeral.CoordinateVector as Vector using (Vector) import Numeral.CoordinateVector.Proofs as Vector open import Relator.Equals using ([≡]-intro) renaming (_≡_ to _≡ₑ_ ; _≢_ to _≢ₑ_) open import Relator.Equals.Proofs.Equivalence open import Structure.Function open import Structure.Operator.Group open import Structure.Operator.Monoid open import Structure.Operator.Properties open import Structure.Operator open import Structure.Relator.Equivalence open import Structure.Relator.Properties open import Structure.Setoid open import Syntax.Function open import Syntax.Implication open import Syntax.Transitivity open import Type private variable ℓ ℓₑ : Lvl.Level private variable T A B : Type{ℓ} module _ ⦃ equiv : Equiv{ℓₑ}(T) ⦄ where private variable s : ℕ ⨯ ℕ private variable w h n : ℕ private variable x y z : 𝕟(n) private variable id id₁ id₂ zero elem 𝟎ₛ 𝟏ₛ : T private variable f g inv : T → T private variable _▫_ _▫₁_ _▫₂_ _+ₛ_ _⋅ₛ_ : T → T → T private variable v v₁ v₂ : Vector(n)(T) private variable M : Matrix(s)(T) instance matrix-equiv : Equiv(Matrix(s)(T)) Equiv._≡_ matrix-equiv (Matrix.mat proj₁) (Matrix.mat proj₂) = proj₁ ⊜ proj₂ Reflexivity.proof (Equivalence.reflexivity (Equiv.equivalence matrix-equiv)) = reflexivity(_⊜_) Symmetry.proof (Equivalence.symmetry (Equiv.equivalence matrix-equiv)) = symmetry(_⊜_) Transitivity.proof (Equivalence.transitivity (Equiv.equivalence matrix-equiv)) = transitivity(_⊜_) instance matrix-map₂-binaryOperator : ⦃ oper : BinaryOperator(_▫_) ⦄ → BinaryOperator(Matrix.map₂{s = s}(_▫_)) BinaryOperator.congruence (matrix-map₂-binaryOperator {_▫_ = _▫_} ⦃ oper ⦄) (intro p) (intro q) = intro (congruence₂(_▫_) ⦃ oper ⦄ p q) instance matrix-map₂-identityₗ : ⦃ ident : Identityₗ(_▫_)(id) ⦄ → Identityₗ(Matrix.map₂{s = s}(_▫_)) (Matrix.fill(id)) Identityₗ.proof (matrix-map₂-identityₗ {_▫_ = _▫_} {id = id}) = intro(identityₗ(_▫_)(id)) instance matrix-map₂-identityᵣ : ⦃ ident : Identityᵣ(_▫_)(id) ⦄ → Identityᵣ(Matrix.map₂{s = s}(_▫_)) (Matrix.fill(id)) Identityᵣ.proof (matrix-map₂-identityᵣ {_▫_ = _▫_} {id = id}) = intro(identityᵣ(_▫_)(id)) instance matrix-map₂-identity : ⦃ ident : Identity(_▫_)(id) ⦄ → Identity(Matrix.map₂{s = s}(_▫_)) (Matrix.fill(id)) matrix-map₂-identity = intro instance matrix-map₂-absorberₗ : ⦃ absorb : Absorberₗ(_▫_)(id) ⦄ → Absorberₗ(Matrix.map₂{s = s}(_▫_)) (Matrix.fill(id)) Absorberₗ.proof (matrix-map₂-absorberₗ {_▫_ = _▫_} {id = id}) = intro(absorberₗ(_▫_)(id)) instance matrix-map₂-absorberᵣ : ⦃ absorb : Absorberᵣ(_▫_)(id) ⦄ → Absorberᵣ(Matrix.map₂{s = s}(_▫_)) (Matrix.fill(id)) Absorberᵣ.proof (matrix-map₂-absorberᵣ {_▫_ = _▫_} {id = id}) = intro(absorberᵣ(_▫_)(id)) instance matrix-map₂-absorber : ⦃ absorb : Absorber(_▫_)(id) ⦄ → Absorber(Matrix.map₂{s = s}(_▫_)) (Matrix.fill(id)) matrix-map₂-absorber = intro instance matrix-map₂-commutativity : ⦃ comm : Commutativity(_▫_) ⦄ → Commutativity(Matrix.map₂{s = s}(_▫_)) Commutativity.proof (matrix-map₂-commutativity {_▫_ = _▫_}) = intro(commutativity(_▫_)) instance matrix-map₂-associativity : ⦃ assoc : Associativity(_▫_) ⦄ → Associativity(Matrix.map₂{s = s}(_▫_)) Associativity.proof (matrix-map₂-associativity {_▫_ = _▫_}) = intro(associativity(_▫_)) instance matrix-map₂-map-inverseFunctionₗ : ⦃ ident : Identityₗ(_▫_)(id) ⦄ ⦃ inver : InverseFunctionₗ(_▫_) ⦃ [∃]-intro _ ⦄ (inv) ⦄ → InverseFunctionₗ(Matrix.map₂{s = s}(_▫_)) ⦃ [∃]-intro _ ⦄ (Matrix.map inv) InverseFunctionₗ.proof (matrix-map₂-map-inverseFunctionₗ {_▫_ = _▫_} {inv = inv}) = intro (inverseFunctionₗ(_▫_) ⦃ [∃]-intro _ ⦄ (inv)) instance matrix-map₂-map-inverseFunctionᵣ : ⦃ ident : Identityᵣ(_▫_)(id) ⦄ ⦃ inver : InverseFunctionᵣ(_▫_) ⦃ [∃]-intro _ ⦄ (inv) ⦄ → InverseFunctionᵣ(Matrix.map₂{s = s}(_▫_)) ⦃ [∃]-intro _ ⦄ (Matrix.map inv) InverseFunctionᵣ.proof (matrix-map₂-map-inverseFunctionᵣ {_▫_ = _▫_} {inv = inv}) = intro (inverseFunctionᵣ(_▫_) ⦃ [∃]-intro _ ⦄ (inv)) instance matrix-map₂-map-inverseFunction : ⦃ ident : Identity(_▫_)(id) ⦄ ⦃ inver : InverseFunction(_▫_) ⦃ [∃]-intro _ ⦄ (inv) ⦄ → InverseFunction(Matrix.map₂{s = s}(_▫_)) ⦃ [∃]-intro _ ⦄ (Matrix.map inv) matrix-map₂-map-inverseFunction = intro instance matrix-map-function : ⦃ func : Function(f) ⦄ → Function(Matrix.map{s = s} (f)) Function.congruence matrix-map-function (intro p) = intro(congruence₁ _ p) instance matrix-map₂-monoid : ⦃ monoid : Monoid(_▫_) ⦄ → Monoid(Matrix.map₂{s = s}(_▫_)) Monoid.identity-existence matrix-map₂-monoid = [∃]-intro(Matrix.fill(_)) instance matrix-map₂-group : ⦃ group : Group(_▫_) ⦄ → Group(Matrix.map₂{s = s}(_▫_)) Group.monoid matrix-map₂-group = matrix-map₂-monoid Group.inverse-existence matrix-map₂-group = [∃]-intro _ diagMat-element-zero : (Matrix.proj (SquareMatrix.diagMat zero v) (x , y) ≡ zero) ↔ ((x ≢ₑ y) ∨ (Vector.proj v(x) ≡ zero)) diagMat-element-zero {zero = zero}{𝐒 n}{v = v}{x = x}{y = y} = [↔]-intro ([↔]-to-[←] [→ₗ][∨][∧]-preserving ([∧]-intro l₁ l₂)) r ⦗ [↔]-transitivity ⦘ᵣ [∨]-mapₗ-[↔] ([↔]-transitivity false-true-opposites ([↔]-symmetry([¬]-unaryOperator [≡][≡?]-equivalence))) where l₁ : (Matrix.proj (SquareMatrix.diagMat zero v) (x , y) ≡ zero) ← IsFalse(x ≡? y) l₁ p with 𝐹 ← (x ≡? y) = reflexivity(_≡_) l₂ : (Matrix.proj (SquareMatrix.diagMat zero v) (x , y) ≡ zero) ← (Vector.proj v(x) ≡ zero) l₂ p with (x ≡? y) ... | 𝑇 = p ... | 𝐹 = reflexivity(_≡_) r : (Matrix.proj (SquareMatrix.diagMat zero v) (x , y) ≡ zero) → (IsFalse(x ≡? y) ∨ (Vector.proj v(x) ≡ zero)) r p with (x ≡? y) ... | 𝑇 = [∨]-introᵣ p ... | 𝐹 = [∨]-introₗ [⊤]-intro diagMat-element-vector : (Matrix.proj (SquareMatrix.diagMat zero v) (x , y) ≡ Vector.proj v(x)) ↔ ((x ≡ₑ y) ∨ (Vector.proj v(x) ≡ zero)) diagMat-element-vector {zero = zero}{𝐒 n}{v = v}{x = x}{y = y} = [↔]-intro ([↔]-to-[←] [→ₗ][∨][∧]-preserving ([∧]-intro l₁ l₂)) r ⦗ [↔]-transitivity ⦘ᵣ [∨]-mapₗ-[↔] ([↔]-symmetry [≡][≡?]-equivalence) where l₁ : (Matrix.proj (SquareMatrix.diagMat zero v) (x , y) ≡ Vector.proj v(x)) ← IsTrue(x ≡? y) l₁ p with 𝑇 ← (x ≡? y) = reflexivity(_≡_) l₂ : (Matrix.proj (SquareMatrix.diagMat zero v) (x , y) ≡ Vector.proj v(x)) ← (Vector.proj v(x) ≡ zero) l₂ p with (x ≡? y) ... | 𝑇 = reflexivity(_≡_) ... | 𝐹 = symmetry(_≡_) p r : (Matrix.proj (SquareMatrix.diagMat zero v) (x , y) ≡ Vector.proj v(x)) → (IsTrue(x ≡? y) ∨ (Vector.proj v(x) ≡ zero)) r p with (x ≡? y) ... | 𝑇 = [∨]-introₗ [⊤]-intro ... | 𝐹 = [∨]-introᵣ (symmetry(_≡_) p) scalarMat-element-zero : (Matrix.proj (SquareMatrix.scalarMat zero elem) (x , y) ≡ zero) ↔ ((x ≢ₑ y) ∨ (elem ≡ zero)) scalarMat-element-zero {zero = zero}{elem = elem}{x = x}{y = y} = Matrix.proj (SquareMatrix.scalarMat zero elem) (x , y) ≡ zero ⇔-[] Matrix.proj (SquareMatrix.diagMat zero (Vector.fill elem)) (x , y) ≡ zero ⇔-[ diagMat-element-zero ] (x ≢ₑ y) ∨ (Vector.proj (Vector.fill elem)(x) ≡ zero) ⇔-[] (x ≢ₑ y) ∨ (elem ≡ zero) ⇔-end scalarMat-element-scalar : (Matrix.proj (SquareMatrix.scalarMat zero elem) (x , y) ≡ elem) ↔ ((x ≡ₑ y) ∨ (elem ≡ zero)) scalarMat-element-scalar {zero = zero}{elem = elem}{x = x}{y = y} = Matrix.proj (SquareMatrix.scalarMat zero elem) (x , y) ≡ elem ⇔-[] Matrix.proj (SquareMatrix.diagMat zero (Vector.fill elem)) (x , y) ≡ Vector.fill elem(x) ⇔-[ diagMat-element-vector ] (x ≡ₑ y) ∨ (Vector.proj (Vector.fill elem)(x) ≡ zero) ⇔-[] (x ≡ₑ y) ∨ (elem ≡ zero) ⇔-end map₂-tail : Vector.tail(Vector.map₂(_▫_) v₁ v₂) ≡ Vector.map₂(_▫_) (Vector.tail v₁) (Vector.tail v₂) _⊜_.proof (map₂-tail {d = 𝐒(d)}) = reflexivity(_≡_) -- TODO: Probably not neccessary : row-tail : ∀{M : Matrix(𝐒(w) , 𝐒(h))(T)}{i} → Vector.tail(Matrix.row {s = (𝐒(w) , 𝐒(h))} M (𝐒(i))) ≡ Matrix.row {s = (w , h)}(Matrix.minor M(𝟎 , 𝟎))(i) col-scalarMat-is-indexProject : ∀{false true : T}{i : 𝕟(n)} → (Matrix.col(SquareMatrix.scalarMat {d = n} false true)(i) ≡ Vector.indexProject i true false) _⊜_.proof (col-scalarMat-is-indexProject {i = i}) {x} with (i ≡? x) ... | 𝑇 = reflexivity(_≡_) ... | 𝐹 = reflexivity(_≡_) row-scalarMat-is-indexProject : ∀{false true : T}{i : 𝕟(n)} → (Matrix.row(SquareMatrix.scalarMat {d = n} false true)(i) ≡ Vector.indexProject i true false) _⊜_.proof (row-scalarMat-is-indexProject {i = i}) {x} with (i ≡? x) | (x ≡? i) | commutativity ⦃ [≡]-equiv ⦄ (_≡?_) {i}{x} ... | 𝑇 | 𝑇 | [≡]-intro = reflexivity(_≡_) ... | 𝑇 | 𝐹 | () ... | 𝐹 | 𝑇 | () ... | 𝐹 | 𝐹 | [≡]-intro = reflexivity(_≡_) module _ ⦃ oper₁ : BinaryOperator(_+ₛ_) ⦄ ⦃ oper₂ : BinaryOperator(_⋅ₛ_) ⦄ ⦃ ident₁ : Identityᵣ(_+ₛ_)(𝟎ₛ) ⦄ ⦃ ident₂ : Identityᵣ(_⋅ₛ_)(𝟏ₛ) ⦄ ⦃ absor₂ : Absorberᵣ(_⋅ₛ_)(𝟎ₛ) ⦄ where instance postulate matrix-multPattern-identityᵣ : Identityᵣ{T₁ = Matrix(s) T}(Matrix.multPattern(_+ₛ_)(_⋅ₛ_) 𝟎ₛ) (SquareMatrix.scalarMat 𝟎ₛ 𝟏ₛ) {-_⊜_.proof (Identityᵣ.proof (matrix-multPattern-identityᵣ ) {M}) {x , y} = Matrix.proj (Matrix.multPattern(_+ₛ_)(_⋅ₛ_) 𝟎ₛ M (SquareMatrix.scalarMat 𝟎ₛ 𝟏ₛ)) (x , y) 🝖[ _≡_ ]-[] Vector.foldᵣ(_+ₛ_) 𝟎ₛ (Vector.map₂(_⋅ₛ_) (Matrix.row(M)(y)) (Matrix.col(SquareMatrix.scalarMat 𝟎ₛ 𝟏ₛ)(x))) 🝖[ _≡_ ]-[ congruence₁(Vector.foldᵣ(_+ₛ_) 𝟎ₛ) (congruence₂ᵣ(Vector.map₂(_⋅ₛ_))(Matrix.row M(y)) (col-scalarMat-is-indexProject {false = 𝟎ₛ}{true = 𝟏ₛ}{i = x})) ] Vector.foldᵣ(_+ₛ_) 𝟎ₛ (Vector.map₂(_⋅ₛ_) (Matrix.row(M)(y)) (Vector.indexProject x 𝟏ₛ 𝟎ₛ)) 🝖[ _≡_ ]-[ congruence₁(Vector.foldᵣ(_+ₛ_) 𝟎ₛ) (Vector.map₂-indexProject-identityᵣ {v = Matrix.row(M)(y)}{i = x}) ] Vector.foldᵣ(_+ₛ_) 𝟎ₛ (Vector.indexProject x (Vector.proj(Matrix.row(M)(y))(x)) 𝟎ₛ) 🝖[ _≡_ ]-[] Vector.foldᵣ(_+ₛ_) 𝟎ₛ (Vector.indexProject x (Matrix.proj M(x , y)) 𝟎ₛ) 🝖[ _≡_ ]-[ {!!} ] Matrix.proj M(x , y) ⋅ₛ (Vector.foldᵣ(_+ₛ_) 𝟎ₛ (Vector.indexProject x 𝟏ₛ 𝟎ₛ)) 🝖[ _≡_ ]-[ congruence₂ᵣ(_⋅ₛ_)(_) {!!} ] Matrix.proj M(x , y) ⋅ₛ 𝟏ₛ 🝖[ _≡_ ]-[ identityᵣ(_⋅ₛ_)(𝟏ₛ) ] Matrix.proj M(x , y) 🝖-end -} module _ ⦃ oper₁ : BinaryOperator(_+ₛ_) ⦄ ⦃ oper₂ : BinaryOperator(_⋅ₛ_) ⦄ ⦃ ident₁ : Identityₗ(_▫₁_)(id₁) ⦄ ⦃ ident₂ : Identityₗ(_▫₂_)(id₂) ⦄ ⦃ absor₂ : Absorberₗ(_⋅ₛ_)(𝟎ₛ) ⦄ where instance postulate matrix-multPattern-identityₗ : Identityₗ{T₂ = Matrix(n , n) T}(Matrix.multPattern(_▫₂_)(_▫₁_) id₁) (SquareMatrix.scalarMat id₂ id₁) module _ ⦃ oper₁ : BinaryOperator(_+ₛ_) ⦄ ⦃ oper₂ : BinaryOperator(_⋅ₛ_) ⦄ ⦃ ident₁ : Identity(_▫₁_)(id₁) ⦄ ⦃ ident₂ : Identity(_▫₂_)(id₂) ⦄ ⦃ absor₂ : Absorber(_⋅ₛ_)(𝟎ₛ) ⦄ where instance postulate matrix-multPattern-identity : Identity{T = Matrix(n , n) T}(Matrix.multPattern(_▫₂_)(_▫₁_) id₁) (SquareMatrix.scalarMat id₂ id₁) {- instance matrix-map₂-distributivityᵣ : ⦃ dist : Distributivityᵣ(_▫₁_)(_▫₂_) ⦄ → Distributivityᵣ(Matrix.multPattern(_▫₂_)(_▫₁_) id) (Matrix.map₂{s = s}(_▫₂_)) _⊜_.proof (Distributivityᵣ.proof (matrix-map₂-distributivityᵣ {_▫₁_} {_▫₂_} {id = id}) {a} {b} {c}) {x , y} = Matrix.proj(Matrix.multPattern(_▫₂_) (_▫₁_) id (Matrix.map₂(_▫₂_) a b) c) (x , y) 🝖[ _≡_ ]-[] Vector.foldᵣ(_▫₂_) id (Vector.map₂ (_▫₁_) (Matrix.row(Matrix.map₂(_▫₂_) a b)(y)) (Matrix.col(c)(x))) 🝖[ _≡_ ]-[] Vector.foldᵣ(_▫₂_) id (Vector.map₂(_▫₁_) (λ x₁ → (Matrix.proj a (x₁ , y)) ▫₂ (Matrix.proj b (x₁ , y))) (λ y₁ → Matrix.proj c (x , y₁))) 🝖[ _≡_ ]-[ {!!} ] (Vector.foldᵣ(_▫₂_) id (Vector.map₂ _▫₁_ (λ x₁ → Matrix.proj a (x₁ , y)) (λ y₁ → Matrix.proj c (x , y₁)))) ▫₂ (Vector.foldᵣ(_▫₂_) id (Vector.map₂(_▫₁_) (λ x₁ → Matrix.proj b (x₁ , y)) (λ y₁ → Matrix.proj c (x , y₁)))) 🝖[ _≡_ ]-[] (Vector.foldᵣ(_▫₂_) id (Vector.map₂ (_▫₁_) (Matrix.row(a)(y)) (Matrix.col(c)(x)))) ▫₂ (Vector.foldᵣ(_▫₂_) id (Vector.map₂ (_▫₁_) (Matrix.row(b)(y)) (Matrix.col(c)(x)))) 🝖[ _≡_ ]-[] Matrix.proj(Matrix.map₂(_▫₂_) (Matrix.multPattern(_▫₂_)(_▫₁_) id a c) (Matrix.multPattern(_▫₂_)(_▫₁_) id b c)) (x , y) 🝖-end -}
56.344538
276
0.605369
dc07affd2ce5a2a5562a1597212d1b1e9968c81d
5,338
agda
Agda
Categories/Object/BinaryCoproducts.agda
copumpkin/categories
36f4181d751e2ecb54db219911d8c69afe8ba892
[ "BSD-3-Clause" ]
98
2015-04-15T14:57:33.000Z
2022-03-08T05:20:36.000Z
Categories/Object/BinaryCoproducts.agda
p-pavel/categories
e41aef56324a9f1f8cf3cd30b2db2f73e01066f2
[ "BSD-3-Clause" ]
19
2015-05-23T06:47:10.000Z
2019-08-09T16:31:40.000Z
Categories/Object/BinaryCoproducts.agda
p-pavel/categories
e41aef56324a9f1f8cf3cd30b2db2f73e01066f2
[ "BSD-3-Clause" ]
23
2015-02-05T13:03:09.000Z
2021-11-11T13:50:56.000Z
{-# OPTIONS --universe-polymorphism #-} open import Categories.Category module Categories.Object.BinaryCoproducts {o ℓ e} (C : Category o ℓ e) where open Category C open Equiv open import Level import Categories.Object.Coproduct as Coproduct open import Categories.Morphisms C open module CP = Coproduct C hiding (module BinCoproducts) open CP public using (BinCoproducts) record BinaryCoproducts : Set (o ⊔ ℓ ⊔ e) where infix 10 _⧻_ field coproduct : ∀ {A B} → Coproduct A B _∐_ : Obj → Obj → Obj A ∐ B = Coproduct.A+B (coproduct {A} {B}) ∐-comm : ∀ {A B} → _≅_ (A ∐ B) (B ∐ A) ∐-comm = Commutative coproduct coproduct ∐-assoc : ∀ {X Y Z} → _≅_ (X ∐ (Y ∐ Z)) ((X ∐ Y) ∐ Z) ∐-assoc = Associative coproduct coproduct coproduct coproduct -- Convenience! i₁ : {A B : Obj} → (A ⇒ (A ∐ B)) i₁ = Coproduct.i₁ coproduct i₂ : {A B : Obj} → (B ⇒ (A ∐ B)) i₂ = Coproduct.i₂ coproduct [_,_] : ∀ {A B Q} → (A ⇒ Q) → (B ⇒ Q) → ((A ∐ B) ⇒ Q) [_,_] = Coproduct.[_,_] coproduct .commute₁ : ∀ {A B C} {f : A ⇒ C} {g : B ⇒ C} → [ f , g ] ∘ i₁ ≡ f commute₁ = Coproduct.commute₁ coproduct .commute₂ : ∀ {A B C} {f : A ⇒ C} {g : B ⇒ C} → [ f , g ] ∘ i₂ ≡ g commute₂ = Coproduct.commute₂ coproduct .universal : ∀ {A B C} {f : A ⇒ C} {g : B ⇒ C} {i : (A ∐ B) ⇒ C} → i ∘ i₁ ≡ f → i ∘ i₂ ≡ g → [ f , g ] ≡ i universal = Coproduct.universal coproduct assocˡ : ∀ {A B C} → (((A ∐ B) ∐ C) ⇒ (A ∐ (B ∐ C))) assocˡ = _≅_.g ∐-assoc assocʳ : ∀ {A B C} → ((A ∐ (B ∐ C)) ⇒ ((A ∐ B) ∐ C)) assocʳ = _≅_.f ∐-assoc .g-η : ∀ {A B C} {f : (A ∐ B) ⇒ C} → [ f ∘ i₁ , f ∘ i₂ ] ≡ f g-η = Coproduct.g-η coproduct .η : ∀ {A B} → [ i₁ , i₂ ] ≡ id {A ∐ B} η = Coproduct.η coproduct .[]-cong₂ : ∀ {A B C} → {f f′ : A ⇒ C} {g g′ : B ⇒ C} → f ≡ f′ → g ≡ g′ → [ f , g ] ≡ [ f′ , g′ ] []-cong₂ = Coproduct.[]-cong₂ coproduct -- If I _really_ wanted to, I could do this for a specific pair of coproducts like the rest above, but I'll write that one -- when I need it. _⧻_ : ∀ {A B C D} → (A ⇒ B) → (C ⇒ D) → ((A ∐ C) ⇒ (B ∐ D)) f ⧻ g = [ i₁ ∘ f , i₂ ∘ g ] -- TODO: this is probably harder to use than necessary because of this definition. Maybe make a version -- that doesn't have an explicit id in it, too? left : ∀ {A B C} → (A ⇒ B) → ((A ∐ C) ⇒ (B ∐ C)) left f = f ⧻ id right : ∀ {A C D} → (C ⇒ D) → ((A ∐ C) ⇒ (A ∐ D)) right g = id ⧻ g -- Just to make this more obvious .⧻∘i₁ : ∀ {A B C D} → {f : A ⇒ B} → {g : C ⇒ D} → (f ⧻ g) ∘ i₁ ≡ i₁ ∘ f ⧻∘i₁ {f = f} {g} = commute₁ .⧻∘i₂ : ∀ {A B C D} → {f : A ⇒ B} → {g : C ⇒ D} → (f ⧻ g) ∘ i₂ ≡ i₂ ∘ g ⧻∘i₂ {f = f} {g} = commute₂ .[]∘⧻ : ∀ {A B C D E} → {f : B ⇒ E} {f′ : A ⇒ B} {g : D ⇒ E} {g′ : C ⇒ D} → [ f , g ] ∘ ( f′ ⧻ g′ ) ≡ [ f ∘ f′ , g ∘ g′ ] []∘⧻ {f = f} {f′} {g} {g′} = sym (universal helper₁ helper₂) where helper₁ : ([ f , g ] ∘ (f′ ⧻ g′)) ∘ i₁ ≡ f ∘ f′ helper₁ = begin ([ f , g ] ∘ (f′ ⧻ g′)) ∘ i₁ ↓⟨ assoc ⟩ [ f , g ] ∘ ((f′ ⧻ g′) ∘ i₁) ↓⟨ ∘-resp-≡ʳ ⧻∘i₁ ⟩ [ f , g ] ∘ (i₁ ∘ f′) ↑⟨ assoc ⟩ ([ f , g ] ∘ i₁) ∘ f′ ↓⟨ ∘-resp-≡ˡ commute₁ ⟩ f ∘ f′ ∎ where open HomReasoning helper₂ : ([ f , g ] ∘ (f′ ⧻ g′)) ∘ i₂ ≡ g ∘ g′ helper₂ = begin ([ f , g ] ∘ (f′ ⧻ g′)) ∘ i₂ ↓⟨ assoc ⟩ [ f , g ] ∘ ((f′ ⧻ g′) ∘ i₂) ↓⟨ ∘-resp-≡ʳ ⧻∘i₂ ⟩ [ f , g ] ∘ (i₂ ∘ g′) ↑⟨ assoc ⟩ ([ f , g ] ∘ i₂) ∘ g′ ↓⟨ ∘-resp-≡ˡ commute₂ ⟩ g ∘ g′ ∎ where open HomReasoning .[]∘left : ∀ {A B C D} → {f : C ⇒ B} {f′ : B ⇒ A} {g′ : D ⇒ A} → [ f′ , g′ ] ∘ left f ≡ [ f′ ∘ f , g′ ] []∘left {f = f} {f′} {g′} = begin [ f′ , g′ ] ∘ left f ↓⟨ []∘⧻ ⟩ [ f′ ∘ f , g′ ∘ id ] ↓⟨ []-cong₂ refl identityʳ ⟩ [ f′ ∘ f , g′ ] ∎ where open HomReasoning .[]∘right : ∀ {A B D E} → {f′ : B ⇒ A} {g : E ⇒ D} {g′ : D ⇒ A} → [ f′ , g′ ] ∘ right g ≡ [ f′ , g′ ∘ g ] []∘right {f′ = f′} {g} {g′} = begin [ f′ , g′ ] ∘ right g ↓⟨ []∘⧻ ⟩ [ f′ ∘ id , g′ ∘ g ] ↓⟨ []-cong₂ identityʳ refl ⟩ [ f′ , g′ ∘ g ] ∎ where open HomReasoning .⧻∘⧻ : ∀ {A B C D E F} → {f : B ⇒ C} → {f′ : A ⇒ B} {g : E ⇒ F} {g′ : D ⇒ E} → (f ⧻ g) ∘ (f′ ⧻ g′) ≡ (f ∘ f′) ⧻ (g ∘ g′) ⧻∘⧻ {B = B} {E = E} {f = f} {f′} {g} {g′} = begin (f ⧻ g) ∘ (f′ ⧻ g′) ↓⟨ []∘⧻ ⟩ [ (i₁ ∘ f) ∘ f′ , (i₂ ∘ g) ∘ g′ ] ↓⟨ []-cong₂ assoc assoc ⟩ (f ∘ f′) ⧻ (g ∘ g′) ∎ where open HomReasoning .∘[] : ∀ {A B C D} {f : B ⇒ A} {g : C ⇒ A} {q : A ⇒ D} → q ∘ [ f , g ] ≡ [ q ∘ f , q ∘ g ] ∘[] = sym (universal (trans assoc (∘-resp-≡ʳ commute₁)) (trans assoc (∘-resp-≡ʳ commute₂))) Bin→Binary : BinCoproducts -> BinaryCoproducts Bin→Binary bc = record { coproduct = λ {A} {B} → record { A+B = A + B; i₁ = i₁; i₂ = i₂; [_,_] = [_,_]; commute₁ = commute₁; commute₂ = commute₂; universal = universal } } where open CP.BinCoproducts bc
30.678161
124
0.40296
10add8eac244c4eef91a0357b6dbe42835911fa5
5,043
agda
Agda
core/lib/types/PushoutFlattening.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
294
2015-01-09T16:23:23.000Z
2022-03-20T13:54:45.000Z
core/lib/types/PushoutFlattening.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
31
2015-03-05T20:09:00.000Z
2021-10-03T19:15:25.000Z
core/lib/types/PushoutFlattening.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
50
2015-01-10T01:48:08.000Z
2022-02-14T03:03:25.000Z
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics open import lib.types.Pi open import lib.types.Sigma open import lib.types.Span open import lib.types.Paths import lib.types.Generic1HIT as Generic1HIT open import lib.types.Pushout module lib.types.PushoutFlattening {i} {j} {k} {d : Span {i} {j} {k}} where open Span d renaming (f to g; g to h) module PushoutRecType {l} (left* : A → Type l) (right* : B → Type l) (glue* : (c : C) → left* (g c) ≃ right* (h c)) where open PushoutRec left* right* (ua ∘ glue*) public abstract coe-glue-β : (c : C) (a : left* (g c)) → coe (ap f (glue c)) a == –> (glue* c) a coe-glue-β c a = coe (ap f (glue c)) a =⟨ glue-β c |in-ctx (λ u → coe u a) ⟩ coe (ua (glue* c)) a =⟨ coe-β (glue* c) a ⟩ –> (glue* c) a =∎ coe!-glue-β : (c : C) (b : right* (h c)) → coe! (ap f (glue c)) b == <– (glue* c) b coe!-glue-β c b = coe! (ap f (glue c)) b =⟨ glue-β c |in-ctx (λ u → coe! u b) ⟩ coe! (ua (glue* c)) b =⟨ coe!-β (glue* c) b ⟩ <– (glue* c) b =∎ ↓-glue-out : (c : C) {a : left* (g c)} {b : right* (h c)} → a == b [ f ↓ glue c ] → –> (glue* c) a == b ↓-glue-out c {a} {b} p = –> (glue* c) a =⟨ ! (coe-glue-β c a) ⟩ coe (ap f (glue c)) a =⟨ to-transp p ⟩ b =∎ ↓-glue-in : (c : C) {a : left* (g c)} {b : right* (h c)} → –> (glue* c) a == b → a == b [ f ↓ glue c ] ↓-glue-in c {a} {b} p = from-transp f (glue c) (coe-glue-β c a ∙ p) private module _ where fA : Type _ fA = Σ A left* fB : Type _ fB = Σ B right* fC : Type _ fC = Σ C (left* ∘ g) fg : fC → fA fg (c , c') = (g c , c') fh : fC → fB fh (c , c') = (h c , –> (glue* c) c') f-d : Span f-d = span fA fB fC fg fh flattening : Σ (Pushout d) f == Pushout f-d flattening = Σ= p p' ∙ q ∙ r ∙ s where module G = PushoutGeneric {d = d} P-cc : Coprod A B → Type _ P-cc (inl a) = left* a P-cc (inr b) = right* b module P = G.RecType P-cc glue* import lib.types.Flattening as Flattening module FlatteningPushout = Flattening (Coprod A B) C (inl ∘ g) (inr ∘ h) P-cc glue* open FlatteningPushout public hiding (flattening-equiv; module P) p-equiv : Pushout d ≃ G.T p-equiv = G.generic-pushout p : Pushout d == G.T p = ua p-equiv p' : f == P.f [ (λ X → (X → Type _)) ↓ p ] p' = ↓-app→cst-in (λ {t} {t'} q → Pushout-elim {P = λ t → f t == P.f (–> p-equiv t)} (λ a → idp) (λ b → idp) (λ c → ↓-='-in' (ap (P.f ∘ (–> p-equiv)) (glue c) =⟨ ap-∘ P.f (–> p-equiv) (glue c) ⟩ ap P.f (ap (–> p-equiv) (glue c)) =⟨ G.To.glue-β c |in-ctx ap P.f ⟩ ap P.f (pp c) =⟨ P.pp-β c ⟩ ua (glue* c) =⟨ ! (glue-β c) ⟩ ap f (glue c) =∎)) t ∙ ap P.f (↓-idf-ua-out _ q)) -- module fG' = Generic1HIT At Bt ft gt q : Σ G.T P.f == fG'.T q = ua FlatteningPushout.flattening-equiv -- {- This part is basically [Generic1HIT=] applied to the flattening lemma for coproducts. Maybe it would make sense to refactor it that way. -} module fG = PushoutGeneric {d = f-d} r : fG'.T == fG.T r = ua (equiv to from to-from from-to) where to-cc : At → fG.T to-cc (inl a , a') = fG.cc (inl (a , a')) to-cc (inr b , b') = fG.cc (inr (b , b')) module To = fG'.Rec to-cc fG.pp to : fG'.T → fG.T to = To.f from-cc : Coprod fA fB → fG'.T from-cc (inl (a , a')) = fG'.cc (inl a , a') from-cc (inr (b , b')) = fG'.cc (inr b , b') module From = fG.Rec from-cc fG'.pp from : fG.T → fG'.T from = From.f abstract to-from : (x : fG.T) → to (from x) == x to-from = fG.elim to-from-cc to-from-pp where to-from-cc : (x : Coprod fA fB) → to (from (fG.cc x)) == fG.cc x to-from-cc (inl _) = idp to-from-cc (inr _) = idp to-from-pp : (c : fC) → idp == idp [ (λ x → to (from x) == x) ↓ fG.pp c ] to-from-pp c = ↓-∘=idf-in' to from (ap to (ap from (fG.pp c)) =⟨ From.pp-β c |in-ctx ap to ⟩ ap to (fG'.pp c) =⟨ To.pp-β c ⟩ fG.pp c =∎) from-to : (x : fG'.T) → from (to x) == x from-to = fG'.elim from-to-cc from-to-pp where from-to-cc : (a : At) → from (to (fG'.cc a)) == fG'.cc a from-to-cc (inl _ , _) = idp from-to-cc (inr _ , _) = idp from-to-pp : (b : Bt) → idp == idp [ (λ x → from (to x) == x) ↓ fG'.pp b ] from-to-pp b = ↓-∘=idf-in' from to (ap from (ap to (fG'.pp b)) =⟨ To.pp-β b |in-ctx ap from ⟩ ap from (fG.pp b) =⟨ From.pp-β b ⟩ fG'.pp b =∎) -- s : fG.T == Pushout f-d s = ! (ua fG.generic-pushout)
29.491228
87
0.453103
202061a000e2d8bd18515ad3c90553ba88242793
1,080
agda
Agda
Cubical/HITs/Localization/Properties.agda
ryanorendorff/cubical
c67854d2e11aafa5677e25a09087e176fafd3e43
[ "MIT" ]
1
2020-03-23T23:52:11.000Z
2020-03-23T23:52:11.000Z
Cubical/HITs/Localization/Properties.agda
ryanorendorff/cubical
c67854d2e11aafa5677e25a09087e176fafd3e43
[ "MIT" ]
null
null
null
Cubical/HITs/Localization/Properties.agda
ryanorendorff/cubical
c67854d2e11aafa5677e25a09087e176fafd3e43
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --safe #-} module Cubical.HITs.Localization.Properties where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv.PathSplit open isPathSplitEquiv open import Cubical.HITs.Localization.Base module _ {ℓα ℓs ℓt} {A : Type ℓα} {S : A → Type ℓs} {T : A → Type ℓt} where rec : ∀ {F : ∀ α → S α → T α} {ℓ ℓ'} {X : Type ℓ} {Y : Type ℓ'} → (lY : isLocal F Y) → (X → Y) → Localize F X → Y rec lY g ∣ x ∣ = g x rec lY g (ext α f t) = fst (sec (lY α)) (λ s → rec lY g (f s)) t rec lY g (isExt α f s i) = snd (sec (lY α)) (λ s → rec lY g (f s)) i s rec lY f (≡ext α g h p t i) = fst (secCong (lY α) (λ t → rec lY f (g t)) (λ t → rec lY f (h t))) (λ i s → rec lY f (p s i)) i t rec lY f (≡isExt α g h p t i j) = snd (secCong (lY α) (λ t → rec lY f (g t)) (λ t → rec lY f (h t))) (λ i s → rec lY f (p s i)) i j t
45
102
0.552778
39b8b50c3c1e4760ed880f06057f823d99fae931
8,479
agda
Agda
src/FOmegaInt/Kinding/Declarative/Equivalence.agda
Blaisorblade/f-omega-int-agda
ae20dac2a5e0c18dff2afda4c19954e24d73a24f
[ "MIT" ]
12
2017-06-13T16:05:35.000Z
2021-09-27T05:53:06.000Z
src/FOmegaInt/Kinding/Declarative/Equivalence.agda
Blaisorblade/f-omega-int-agda
ae20dac2a5e0c18dff2afda4c19954e24d73a24f
[ "MIT" ]
1
2021-05-14T08:09:40.000Z
2021-05-14T08:54:39.000Z
src/FOmegaInt/Kinding/Declarative/Equivalence.agda
Blaisorblade/f-omega-int-agda
ae20dac2a5e0c18dff2afda4c19954e24d73a24f
[ "MIT" ]
2
2021-05-13T22:29:48.000Z
2021-05-14T10:25:05.000Z
------------------------------------------------------------------------ -- Equivalence of the two variants of declarative kinding of Fω with -- interval kinds ------------------------------------------------------------------------ {-# OPTIONS --safe --without-K #-} module FOmegaInt.Kinding.Declarative.Equivalence where open import Data.Product using (proj₁) open import FOmegaInt.Syntax import FOmegaInt.Typing as Original open import FOmegaInt.Kinding.Declarative as Extended open import FOmegaInt.Kinding.Declarative.Validity private module O where open Original public open Typing public module E where open Extended public open Kinding public open Syntax open TermCtx open Kinding open KindedSubstitution open Original.Typing hiding (_ctx; _⊢_wf; _⊢_kd; _⊢Tp_∈_; _⊢_<∷_; _⊢_<:_∈_; _⊢_≅_; _⊢_≃_∈_) -- Soundness of extended declarative (sub)kinding w.r.t. original -- declarative (sub)kinding. -- -- This soundness proof simply forgets about all the validity -- conditions in the extended rules. mutual sound-wf : ∀ {n} {Γ : Ctx n} {a} → Γ ⊢ a wf → Γ O.⊢ a wf sound-wf (wf-kd k-kd) = wf-kd (sound-kd k-kd) sound-wf (wf-tp a∈*) = wf-tp (sound-Tp∈ a∈*) sound-ctx : ∀ {n} {Γ : Ctx n} → Γ ctx → Γ O.ctx sound-ctx E.[] = O.[] sound-ctx (a-wf E.∷ Γ-ctx) = sound-wf a-wf O.∷ sound-ctx Γ-ctx sound-kd : ∀ {n} {Γ : Ctx n} {k} → Γ ⊢ k kd → Γ O.⊢ k kd sound-kd (kd-⋯ a∈* b∈*) = kd-⋯ (sound-Tp∈ a∈*) (sound-Tp∈ b∈*) sound-kd (kd-Π j-kd k-kd) = kd-Π (sound-kd j-kd) (sound-kd k-kd) sound-Tp∈ : ∀ {n} {Γ : Ctx n} {a k} → Γ ⊢Tp a ∈ k → Γ O.⊢Tp a ∈ k sound-Tp∈ (∈-var x Γ-ctx Γ[x]≡kd-k) = ∈-var x (sound-ctx Γ-ctx) Γ[x]≡kd-k sound-Tp∈ (∈-⊥-f Γ-ctx) = ∈-⊥-f (sound-ctx Γ-ctx) sound-Tp∈ (∈-⊤-f Γ-ctx) = ∈-⊤-f (sound-ctx Γ-ctx) sound-Tp∈ (∈-∀-f k-kd a∈*) = ∈-∀-f (sound-kd k-kd) (sound-Tp∈ a∈*) sound-Tp∈ (∈-→-f a∈* b∈*) = ∈-→-f (sound-Tp∈ a∈*) (sound-Tp∈ b∈*) sound-Tp∈ (∈-Π-i j-kd a∈k k-kd) = ∈-Π-i (sound-kd j-kd) (sound-Tp∈ a∈k) sound-Tp∈ (∈-Π-e a∈Πjk b∈j k-kd k[b]-kd) = ∈-Π-e (sound-Tp∈ a∈Πjk) (sound-Tp∈ b∈j) sound-Tp∈ (∈-s-i a∈b⋯c) = ∈-s-i (sound-Tp∈ a∈b⋯c) sound-Tp∈ (∈-⇑ a∈j j<∷k) = ∈-⇑ (sound-Tp∈ a∈j) (sound-<∷ j<∷k) sound-<∷ : ∀ {n} {Γ : Ctx n} {j k} → Γ ⊢ j <∷ k → Γ O.⊢ j <∷ k sound-<∷ (<∷-⋯ a₂<:a₁∈* b₁<:b₂∈*) = <∷-⋯ (sound-<: a₂<:a₁∈*) (sound-<: b₁<:b₂∈*) sound-<∷ (<∷-Π j₂<∷j₁ k₁<∷k₂ Πj₁k₁-kd) = <∷-Π (sound-<∷ j₂<∷j₁) (sound-<∷ k₁<∷k₂) (sound-kd Πj₁k₁-kd) sound-<: : ∀ {n} {Γ : Ctx n} {a b k} → Γ ⊢ a <: b ∈ k → Γ O.⊢ a <: b ∈ k sound-<: (<:-refl a∈k) = <:-refl (sound-Tp∈ a∈k) sound-<: (<:-trans a<:b∈k b<:c∈k) = <:-trans (sound-<: a<:b∈k) (sound-<: b<:c∈k) sound-<: (<:-β₁ a∈k b∈j a[b]∈k[b] k-kd k[b]-kd) = <:-β₁ (sound-Tp∈ a∈k) (sound-Tp∈ b∈j) sound-<: (<:-β₂ a∈k b∈j a[b]∈k[b] k-kd k[b]-kd) = <:-β₂ (sound-Tp∈ a∈k) (sound-Tp∈ b∈j) sound-<: (<:-η₁ a∈Πjk) = <:-η₁ (sound-Tp∈ a∈Πjk) sound-<: (<:-η₂ a∈Πjk) = <:-η₂ (sound-Tp∈ a∈Πjk) sound-<: (<:-⊥ a∈b⋯c) = <:-⊥ (sound-Tp∈ a∈b⋯c) sound-<: (<:-⊤ a∈b⋯c) = <:-⊤ (sound-Tp∈ a∈b⋯c) sound-<: (<:-∀ k₂<∷k₁ a₁<:a₂∈* ∀k₁a₁∈*) = <:-∀ (sound-<∷ k₂<∷k₁) (sound-<: a₁<:a₂∈*) (sound-Tp∈ ∀k₁a₁∈*) sound-<: (<:-→ a₂<:a₁∈* b₁<:b₂∈*) = <:-→ (sound-<: a₂<:a₁∈*) (sound-<: b₁<:b₂∈*) sound-<: (<:-λ a₁<:a₂∈Πjk Λj₁a₁∈Πjk Λj₂a₂∈Πjk) = <:-λ (sound-<: a₁<:a₂∈Πjk) (sound-Tp∈ Λj₁a₁∈Πjk) (sound-Tp∈ Λj₂a₂∈Πjk) sound-<: (<:-· a₁<:a₂∈Πjk b₁≃b₁∈j b₁∈j k-kd k[b₁]-kd) = <:-· (sound-<: a₁<:a₂∈Πjk) (sound-≃ b₁≃b₁∈j) sound-<: (<:-⟨| a∈b⋯c) = <:-⟨| (sound-Tp∈ a∈b⋯c) sound-<: (<:-|⟩ a∈b⋯c) = <:-|⟩ (sound-Tp∈ a∈b⋯c) sound-<: (<:-⋯-i a₁<:a₂∈b⋯c) = <:-⋯-i (sound-<: a₁<:a₂∈b⋯c) sound-<: (<:-⇑ a₁<:a₂∈j j<∷k) = <:-⇑ (sound-<: a₁<:a₂∈j) (sound-<∷ j<∷k) sound-≃ : ∀ {n} {Γ : Ctx n} {a b k} → Γ ⊢ a ≃ b ∈ k → Γ O.⊢ a ≃ b ∈ k sound-≃ (<:-antisym a<:b∈k b<:a∈k) = <:-antisym (sound-<: a<:b∈k) (sound-<: b<:a∈k) sound-≅ : ∀ {n} {Γ : Ctx n} {j k} → Γ ⊢ j ≅ k → Γ O.⊢ j ≅ k sound-≅ (<∷-antisym j<∷k k<∷j) = <∷-antisym (sound-<∷ j<∷k) (sound-<∷ k<∷j) -- Completeness of extended declarative (sub)kinding w.r.t. original -- declarative (sub)kinding. -- -- This proves that the validity conditions in the extended rules are -- in fact redundant, i.e. they follow from validity properties of the -- remaining premises (of the rules in question) mutual complete-wf : ∀ {n} {Γ : Ctx n} {a} → Γ O.⊢ a wf → Γ ⊢ a wf complete-wf (wf-kd k-kd) = wf-kd (complete-kd k-kd) complete-wf (wf-tp a∈*) = wf-tp (complete-Tp∈ a∈*) complete-ctx : ∀ {n} {Γ : Ctx n} → Γ O.ctx → Γ ctx complete-ctx O.[] = E.[] complete-ctx (a-wf O.∷ Γ-ctx) = complete-wf a-wf E.∷ complete-ctx Γ-ctx complete-kd : ∀ {n} {Γ : Ctx n} {k} → Γ O.⊢ k kd → Γ ⊢ k kd complete-kd (kd-⋯ a∈* b∈*) = kd-⋯ (complete-Tp∈ a∈*) (complete-Tp∈ b∈*) complete-kd (kd-Π j-kd k-kd) = kd-Π (complete-kd j-kd) (complete-kd k-kd) complete-Tp∈ : ∀ {n} {Γ : Ctx n} {a k} → Γ O.⊢Tp a ∈ k → Γ ⊢Tp a ∈ k complete-Tp∈ (∈-var x Γ-ctx Γ[x]≡kd-k) = ∈-var x (complete-ctx Γ-ctx) Γ[x]≡kd-k complete-Tp∈ (∈-⊥-f Γ-ctx) = ∈-⊥-f (complete-ctx Γ-ctx) complete-Tp∈ (∈-⊤-f Γ-ctx) = ∈-⊤-f (complete-ctx Γ-ctx) complete-Tp∈ (∈-∀-f k-kd a∈*) = ∈-∀-f (complete-kd k-kd) (complete-Tp∈ a∈*) complete-Tp∈ (∈-→-f a∈* b∈*) = ∈-→-f (complete-Tp∈ a∈*) (complete-Tp∈ b∈*) complete-Tp∈ (∈-Π-i j-kd a∈k) = ∈-Π-i (complete-kd j-kd) a∈k′ k-kd where a∈k′ = complete-Tp∈ a∈k k-kd = Tp∈-valid a∈k′ complete-Tp∈ (∈-Π-e a∈Πjk b∈j) with Tp∈-valid (complete-Tp∈ a∈Πjk) ... | (kd-Π j-kd k-kd) = ∈-Π-e (complete-Tp∈ a∈Πjk) b∈j′ k-kd k[b]-kd where b∈j′ = complete-Tp∈ b∈j k[b]-kd = kd-[] k-kd (∈-tp b∈j′) complete-Tp∈ (∈-s-i a∈b⋯c) = ∈-s-i (complete-Tp∈ a∈b⋯c) complete-Tp∈ (∈-⇑ a∈j j<∷k) = ∈-⇑ (complete-Tp∈ a∈j) (complete-<∷ j<∷k) complete-<∷ : ∀ {n} {Γ : Ctx n} {j k} → Γ O.⊢ j <∷ k → Γ ⊢ j <∷ k complete-<∷ (<∷-⋯ a₂<:a₁∈* b₁<:b₂∈*) = <∷-⋯ (complete-<: a₂<:a₁∈*) (complete-<: b₁<:b₂∈*) complete-<∷ (<∷-Π j₂<∷j₁ k₁<∷k₂ Πj₁k₁-kd) = <∷-Π (complete-<∷ j₂<∷j₁) (complete-<∷ k₁<∷k₂) (complete-kd Πj₁k₁-kd) complete-<: : ∀ {n} {Γ : Ctx n} {a b k} → Γ O.⊢ a <: b ∈ k → Γ ⊢ a <: b ∈ k complete-<: (<:-refl a∈k) = <:-refl (complete-Tp∈ a∈k) complete-<: (<:-trans a<:b∈k b<:c∈k) = <:-trans (complete-<: a<:b∈k) (complete-<: b<:c∈k) complete-<: (<:-β₁ a∈k b∈j) = <:-β₁ a∈k′ b∈j′ a[b]∈k[b] k-kd k[b]-kd where a∈k′ = complete-Tp∈ a∈k b∈j′ = complete-Tp∈ b∈j k-kd = Tp∈-valid a∈k′ a[b]∈k[b] = Tp∈-[] a∈k′ (∈-tp b∈j′) k[b]-kd = kd-[] k-kd (∈-tp b∈j′) complete-<: (<:-β₂ a∈k b∈j) = <:-β₂ a∈k′ b∈j′ a[b]∈k[b] k-kd k[b]-kd where a∈k′ = complete-Tp∈ a∈k b∈j′ = complete-Tp∈ b∈j k-kd = Tp∈-valid a∈k′ a[b]∈k[b] = Tp∈-[] a∈k′ (∈-tp b∈j′) k[b]-kd = kd-[] k-kd (∈-tp b∈j′) complete-<: (<:-η₁ a∈Πjk) = <:-η₁ (complete-Tp∈ a∈Πjk) complete-<: (<:-η₂ a∈Πjk) = <:-η₂ (complete-Tp∈ a∈Πjk) complete-<: (<:-⊥ a∈b⋯c) = <:-⊥ (complete-Tp∈ a∈b⋯c) complete-<: (<:-⊤ a∈b⋯c) = <:-⊤ (complete-Tp∈ a∈b⋯c) complete-<: (<:-∀ k₂<∷k₁ a₁<:a₂∈* ∀k₁a₁∈*) = <:-∀ (complete-<∷ k₂<∷k₁) (complete-<: a₁<:a₂∈*) (complete-Tp∈ ∀k₁a₁∈*) complete-<: (<:-→ a₂<:a₁∈* b₁<:b₂∈*) = <:-→ (complete-<: a₂<:a₁∈*) (complete-<: b₁<:b₂∈*) complete-<: (<:-λ a₁<:a₂∈Πjk Λj₁a₁∈Πjk Λj₂a₂∈Πjk) = <:-λ (complete-<: a₁<:a₂∈Πjk) (complete-Tp∈ Λj₁a₁∈Πjk) (complete-Tp∈ Λj₂a₂∈Πjk) complete-<: (<:-· a₁<:a₂∈Πjk b₁≃b₁∈j) with <:-valid-kd (complete-<: a₁<:a₂∈Πjk) ... | (kd-Π j-kd k-kd) = <:-· (complete-<: a₁<:a₂∈Πjk) b₁≃b₂∈j′ b₁∈j k-kd k[b₁]-kd where b₁≃b₂∈j′ = complete-≃ b₁≃b₁∈j b₁∈j = proj₁ (≃-valid b₁≃b₂∈j′) k[b₁]-kd = kd-[] k-kd (∈-tp b₁∈j) complete-<: (<:-⟨| a∈b⋯c) = <:-⟨| (complete-Tp∈ a∈b⋯c) complete-<: (<:-|⟩ a∈b⋯c) = <:-|⟩ (complete-Tp∈ a∈b⋯c) complete-<: (<:-⋯-i a₁<:a₂∈b⋯c) = <:-⋯-i (complete-<: a₁<:a₂∈b⋯c) complete-<: (<:-⇑ a₁<:a₂∈j j<∷k) = <:-⇑ (complete-<: a₁<:a₂∈j) (complete-<∷ j<∷k) complete-≃ : ∀ {n} {Γ : Ctx n} {a b k} → Γ O.⊢ a ≃ b ∈ k → Γ ⊢ a ≃ b ∈ k complete-≃ (<:-antisym a<:b∈k b<:a∈k) = <:-antisym (complete-<: a<:b∈k) (complete-<: b<:a∈k) complete-≅ : ∀ {n} {Γ : Ctx n} {j k} → Γ O.⊢ j ≅ k → Γ ⊢ j ≅ k complete-≅ (<∷-antisym j<∷k k<∷j) = <∷-antisym (complete-<∷ j<∷k) (complete-<∷ k<∷j)
40.764423
78
0.482604
a1a6703d414d7d40f2f571b8780bbba737a2d0f8
813
agda
Agda
SOAS/Context.agda
JoeyEremondi/agda-soas
ff1a985a6be9b780d3ba2beff68e902394f0a9d8
[ "MIT" ]
39
2021-11-09T20:39:55.000Z
2022-03-19T17:33:12.000Z
SOAS/Context.agda
JoeyEremondi/agda-soas
ff1a985a6be9b780d3ba2beff68e902394f0a9d8
[ "MIT" ]
1
2021-11-21T12:19:32.000Z
2021-11-21T12:19:32.000Z
SOAS/Context.agda
JoeyEremondi/agda-soas
ff1a985a6be9b780d3ba2beff68e902394f0a9d8
[ "MIT" ]
4
2021-11-09T20:39:59.000Z
2022-01-24T12:49:17.000Z
-- Concrete definition of contexts over a sort T module SOAS.Context {T : Set} where open import SOAS.Common open import Data.List using (List; []; _∷_; _++_) -- Context: a list of types data Ctx : Set where ∅ : Ctx _∙_ : (α : T) → (Γ : Ctx) → Ctx infixr 50 _∙_ -- Singleton context pattern _⌋ τ = τ ∙ ∅ pattern ⌈_⌋ α = α ∙ ∅ pattern ⌊_ α = α infixr 60 _⌋ infix 70 ⌈_⌋ infix 70 ⌊_ -- Context concatenation _∔_ : Ctx → Ctx → Ctx ∅ ∔ Δ = Δ (α ∙ Γ) ∔ Δ = α ∙ (Γ ∔ Δ) infixl 20 _∔_ -- Context concatenation is associative ∔-assoc : (Γ Δ Θ : Ctx) → ((Γ ∔ Δ) ∔ Θ) ≡ (Γ ∔ (Δ ∔ Θ)) ∔-assoc ∅ Δ Θ = refl ∔-assoc (α ∙ Γ) Δ Θ = cong (α ∙_) (∔-assoc Γ Δ Θ) -- Empty context is right unit of context concatenation ∔-unitʳ : (Γ : Ctx) → Γ ∔ ∅ ≡ Γ ∔-unitʳ ∅ = refl ∔-unitʳ (α ∙ Γ) = cong (α ∙_) (∔-unitʳ Γ)
20.846154
55
0.567036
1c45bfc7ca5528c76a40b182c55d12aba50ea34b
549
agda
Agda
src/exercices/Equal.agda
d-plaindoux/colca
a81447af3ab2ba898bb7d57be71369abbba12d81
[ "MIT" ]
2
2021-03-12T18:31:14.000Z
2021-05-04T09:35:36.000Z
src/exercices/Equal.agda
d-plaindoux/colca
a81447af3ab2ba898bb7d57be71369abbba12d81
[ "MIT" ]
null
null
null
src/exercices/Equal.agda
d-plaindoux/colca
a81447af3ab2ba898bb7d57be71369abbba12d81
[ "MIT" ]
null
null
null
-- -- Created by Dependently-Typed Lambda Calculus on 2020-09-24 -- Equal -- Author: dplaindoux -- module Equal where open import Data.Nat using (ℕ; zero; suc) open import Data.Bool using (Bool; true; false) infix 30 _=?_ data Type : Set where nat : Type ▲_ : Type → Set ▲ nat = ℕ _=?_ : { a : Type } → ▲ a → ▲ a → Bool _=?_ {nat} zero zero = true _=?_ {nat} (suc m) (suc n) = m =? n _=?_ {nat} _ _ = false Nat : ∀self(P : Nat → Set) → ∀(zero : P(λz. λs. z)) → ∀(succ : ∀(n : Nat) → P (λz. λs. s n)) → P self
17.709677
61
0.540984
c50cb5a45ba8ed82b7884f0c17686cb25d6c85b6
634
agda
Agda
test/Succeed/GeneralizeWithPatternLambda.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/GeneralizeWithPatternLambda.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/GeneralizeWithPatternLambda.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
open import Agda.Primitive open import Agda.Builtin.Nat open import Agda.Builtin.Equality variable ℓ : Level A : Set ℓ n : Nat infixr 4 _∷_ data Vec (A : Set) : Nat → Set where [] : Vec A 0 _∷_ : A → Vec A n → Vec A (suc n) variable xs : Vec A n data T (n : Nat) (f : Nat → Nat) : Set where it : T n f appT : ∀ {f} → T n f → Nat appT {n = n} {f = f} it = f n length : Vec A n → Nat length {n = n} _ = n -- This should not break. bar : (xs : Vec Nat n) → T n λ { m → m + length xs } bar xs = it ys : Vec Nat 5 ys = 1 ∷ 2 ∷ 3 ∷ 4 ∷ 5 ∷ [] -- Check that it doesn't no-fail : appT (bar ys) ≡ 10 no-fail = refl
16.25641
52
0.555205
1c783bef7ce73c6f72fbd05357df936e9afe8e82
143
agda
Agda
Cubical/HITs/S2.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
301
2018-10-17T18:00:24.000Z
2022-03-24T02:10:47.000Z
Cubical/HITs/S2.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
584
2018-10-15T09:49:02.000Z
2022-03-30T12:09:17.000Z
Cubical/HITs/S2.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
134
2018-11-16T06:11:03.000Z
2022-03-23T16:22:13.000Z
{-# OPTIONS --safe #-} module Cubical.HITs.S2 where open import Cubical.HITs.S2.Base public -- open import Cubical.HITs.S2.Properties public
20.428571
48
0.748252
0e964b33bff4b8be15787e52b65d585fa5176b03
5,092
agda
Agda
Fields/Orders/LeastUpperBounds/Examples.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
4
2019-08-08T12:44:19.000Z
2022-01-28T06:04:15.000Z
Fields/Orders/LeastUpperBounds/Examples.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
14
2019-01-06T21:11:59.000Z
2020-04-11T11:03:39.000Z
Fields/Orders/LeastUpperBounds/Examples.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
1
2021-11-29T13:23:07.000Z
2021-11-29T13:23:07.000Z
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Setoids.Subset open import Setoids.Setoids open import Setoids.Orders.Partial.Definition open import Setoids.Orders.Total.Definition open import Sets.EquivalenceRelations open import Rings.Orders.Total.Definition open import Rings.Orders.Partial.Definition open import Rings.Definition open import Fields.Fields open import Groups.Definition open import Functions.Definition module Fields.Orders.LeastUpperBounds.Examples {a b c : _} {A : Set a} {S : Setoid {a} {b} A} {_<_ : Rel {_} {c} A} {_+_ _*_ : A → A → A} {R : Ring S _+_ _*_} {pOrder : SetoidPartialOrder S _<_} {pOrderedRing : PartiallyOrderedRing R pOrder} (orderedRing : TotallyOrderedRing pOrderedRing) (F : Field R) (isNontrivial : Setoid._∼_ S (Ring.0R R) (Ring.1R R) → False) where open PartiallyOrderedRing pOrderedRing open Setoid S open Equivalence eq open SetoidTotalOrder (TotallyOrderedRing.total orderedRing) open Field F open Ring R open SetoidPartialOrder pOrder open Group additiveGroup open import Rings.Orders.Partial.Lemmas pOrderedRing open import Rings.Orders.Total.Lemmas orderedRing open import Fields.Orders.LeastUpperBounds.Definition pOrder charNot2 : Setoid._∼_ S (Ring.1R R + Ring.1R R) (Ring.0R R) → False charNot2 = orderedImpliesCharNot2 nontrivial openIntervalPred : (a : A) → (b : A) → a < b → A → Set _ openIntervalPred a b a<b x = (a < x) && (x < b) openInterval : (a : A) → (b : A) → (a<b : a < b) → subset S (openIntervalPred a b a<b) openInterval a b a<b x=y (a<x ,, x<b) = SetoidPartialOrder.<WellDefined pOrder reflexive x=y a<x ,, SetoidPartialOrder.<WellDefined pOrder x=y reflexive x<b 1/2 : A 1/2 with allInvertible (1R + 1R) charNot2 ... | n , _ = n 1/2Is1/2 : 1/2 * (1R + 1R) ∼ 1R 1/2Is1/2 with allInvertible (1R + 1R) charNot2 ... | n , pr = pr 1/2Is1/2' : (1/2 + 1/2) ∼ 1R 1/2Is1/2' = transitive (+WellDefined (symmetric identIsIdent) (symmetric identIsIdent)) (transitive (transitive (symmetric *DistributesOver+') *Commutative) 1/2Is1/2) halfHalves : (a : A) → ((a + a) * 1/2) ∼ a halfHalves a = transitive *DistributesOver+' (transitive (transitive (transitive (symmetric *DistributesOver+) (*WellDefined reflexive 1/2Is1/2')) *Commutative) identIsIdent) 0<1/2 : 0R < 1/2 0<1/2 = halvePositive 1/2 (<WellDefined reflexive (symmetric (transitive (symmetric (transitive *DistributesOver+ (+WellDefined (transitive *Commutative identIsIdent) (transitive *Commutative identIsIdent)))) 1/2Is1/2)) (0<1 nontrivial)) min<mean : (a b : A) → a < b → a < ((a + b) * 1/2) min<mean a b a<b = <WellDefined (transitive *DistributesOver+' (transitive (+WellDefined *Commutative *Commutative) (transitive (symmetric *DistributesOver+') (transitive (*WellDefined 1/2Is1/2' reflexive) identIsIdent)))) reflexive a+a<a+b where a+a<a+b : ((a + a) * 1/2) < ((a + b) * 1/2) a+a<a+b = ringCanMultiplyByPositive 0<1/2 (<WellDefined reflexive groupIsAbelian (orderRespectsAddition a<b a)) mean<max : (a b : A) → a < b → ((a + b) * 1/2) < b mean<max a b a<b = <WellDefined reflexive (halfHalves b) a+b<b+b where a+b<b+b : ((a + b) * 1/2) < ((b + b) * 1/2) a+b<b+b = ringCanMultiplyByPositive 0<1/2 (orderRespectsAddition a<b b) example1 : (a b : A) (a<b : a < b) → LeastUpperBound (openInterval a b a<b) b LeastUpperBound.upperBound (example1 a b a<b) y (a<y ,, y<b) = inl y<b LeastUpperBound.leastUpperBound (example1 a b a<b) y isUpperBound with totality b y LeastUpperBound.leastUpperBound (example1 a b a<b) y isUpperBound | inl (inl x) = inl x LeastUpperBound.leastUpperBound (example1 a b a<b) y isUpperBound | inl (inr y<b) = exFalso false where betterBound : A betterBound = (y + b) * 1/2 p1 : ((y + b) * 1/2) < ((b + b) * 1/2) p1 = ringCanMultiplyByPositive 0<1/2 (orderRespectsAddition y<b b) p2 : betterBound < b p2 = <WellDefined reflexive (transitive (*WellDefined (transitive (symmetric (+WellDefined identIsIdent identIsIdent)) (transitive (+WellDefined *Commutative *Commutative) (symmetric *DistributesOver+))) reflexive) (transitive (symmetric *Associative) (transitive (transitive (*WellDefined reflexive (transitive *Commutative 1/2Is1/2)) *Commutative) identIsIdent))) p1 a<y : a < y a<y with isUpperBound ((a + b) * 1/2) (min<mean a b a<b ,, mean<max a b a<b) a<y | inl a+b/2<y = <Transitive (min<mean a b a<b) a+b/2<y a<y | inr a+b/2=y = <WellDefined reflexive a+b/2=y (min<mean a b a<b) p3 : ((a + a) * 1/2) < ((y + b) * 1/2) p3 = ringCanMultiplyByPositive 0<1/2 (ringAddInequalities a<y a<b) a<betterBound : a < betterBound a<betterBound = <WellDefined (halfHalves a) reflexive p3 bad : (betterBound < y) || (betterBound ∼ y) bad = isUpperBound betterBound (a<betterBound ,, p2) false : False false with bad false | inl mean<y with min<mean y b y<b ... | y<mean = irreflexive (<Transitive y<mean mean<y) false | inr x = irreflexive (<WellDefined (symmetric x) reflexive (min<mean y b y<b)) LeastUpperBound.leastUpperBound (example1 a b a<b) y isUpperBound | inr x = inr x
53.041667
372
0.694619
18c6f37c38d1da2d59f65215f76e720c82c087a7
1,471
agda
Agda
proofs/AKS/Nat/Base.agda
mckeankylej/thesis
ddad4c0d5f384a0219b2177461a68dae06952dde
[ "MIT" ]
1
2020-12-01T22:38:27.000Z
2020-12-01T22:38:27.000Z
proofs/AKS/Nat/Base.agda
mckeankylej/thesis
ddad4c0d5f384a0219b2177461a68dae06952dde
[ "MIT" ]
null
null
null
proofs/AKS/Nat/Base.agda
mckeankylej/thesis
ddad4c0d5f384a0219b2177461a68dae06952dde
[ "MIT" ]
null
null
null
open import Relation.Nullary using (¬_; Dec; yes; no) open import Relation.Binary using (Decidable) open import Relation.Binary.PropositionalEquality using (_≡_; refl) open import Relation.Nullary.Decidable using (False; map) open import Function.Equivalence as FE using () module AKS.Nat.Base where open import Agda.Builtin.FromNat using (Number) open import Data.Nat using (ℕ; _+_; _∸_; _*_; _≟_; _<ᵇ_; pred) public open ℕ public open import Data.Nat.Literals using (number) instance ℕ-number : Number ℕ ℕ-number = number data ℕ⁺ : Set where ℕ+ : ℕ → ℕ⁺ _+⁺_ : ℕ⁺ → ℕ⁺ → ℕ⁺ ℕ+ n +⁺ ℕ+ m = ℕ+ (suc (n + m)) _*⁺_ : ℕ⁺ → ℕ⁺ → ℕ⁺ ℕ+ n *⁺ ℕ+ m = ℕ+ (n + m * (suc n)) _≟⁺_ : Decidable {A = ℕ⁺} _≡_ ℕ+ n ≟⁺ ℕ+ m = map (FE.equivalence (λ { refl → refl }) (λ { refl → refl })) (n ≟ m) ⟅_⇑⟆ : ∀ n {≢0 : False (n ≟ zero)} → ℕ⁺ ⟅ suc n ⇑⟆ = ℕ+ n ⟅_⇓⟆ : ℕ⁺ → ℕ ⟅ ℕ+ n ⇓⟆ = suc n instance ℕ⁺-number : Number ℕ⁺ ℕ⁺-number = record { Constraint = λ n → False (n ≟ zero) ; fromNat = λ n {{≢0}} → ⟅ n ⇑⟆ {≢0} } infix 4 _≤_ record _≤_ (n : ℕ) (m : ℕ) : Set where constructor lte field k : ℕ ≤-proof : n + k ≡ m infix 4 _≥_ _≥_ : ℕ → ℕ → Set n ≥ m = m ≤ n infix 4 _≰_ _≰_ : ℕ → ℕ → Set n ≰ m = ¬ (n ≤ m) infix 4 _≱_ _≱_ : ℕ → ℕ → Set n ≱ m = ¬ (m ≤ n) infix 4 _<_ _<_ : ℕ → ℕ → Set n < m = suc n ≤ m infix 4 _≮_ _≮_ : ℕ → ℕ → Set n ≮ m = ¬ (n < m) infix 4 _>_ _>_ : ℕ → ℕ → Set n > m = m < n infix 4 _≯_ _≯_ : ℕ → ℕ → Set n ≯ m = m ≮ n
18.858974
83
0.541808
4d5798e866e33bb6dc1d1e36b932ae0389bbecce
1,038
agda
Agda
Definition/Conversion/Consequences/Completeness.agda
fhlkfy/logrel-mltt
ea83fc4f618d1527d64ecac82d7d17e2f18ac391
[ "MIT" ]
30
2017-05-20T03:05:21.000Z
2022-03-30T18:01:07.000Z
Definition/Conversion/Consequences/Completeness.agda
fhlkfy/logrel-mltt
ea83fc4f618d1527d64ecac82d7d17e2f18ac391
[ "MIT" ]
4
2017-06-22T12:49:23.000Z
2021-02-22T10:37:24.000Z
Definition/Conversion/Consequences/Completeness.agda
fhlkfy/logrel-mltt
ea83fc4f618d1527d64ecac82d7d17e2f18ac391
[ "MIT" ]
8
2017-10-18T14:18:20.000Z
2021-11-27T15:58:33.000Z
{-# OPTIONS --without-K --safe #-} module Definition.Conversion.Consequences.Completeness where open import Definition.Untyped hiding (_∷_) open import Definition.Typed open import Definition.Conversion open import Definition.Conversion.EqRelInstance open import Definition.LogicalRelation open import Definition.LogicalRelation.Substitution open import Definition.LogicalRelation.Substitution.Escape open import Definition.LogicalRelation.Fundamental open import Tools.Nat open import Tools.Product private variable n : Nat Γ : Con Term n -- Algorithmic equality is derivable from judgemental equality of types. completeEq : ∀ {A B} → Γ ⊢ A ≡ B → Γ ⊢ A [conv↑] B completeEq A≡B = let [Γ] , [A] , [B] , [A≡B] = fundamentalEq A≡B in escapeEqᵛ [Γ] [A] [A≡B] -- Algorithmic equality is derivable from judgemental equality of terms. completeEqTerm : ∀ {t u A} → Γ ⊢ t ≡ u ∷ A → Γ ⊢ t [conv↑] u ∷ A completeEqTerm t≡u = let [Γ] , modelsTermEq [A] [t] [u] [t≡u] = fundamentalTermEq t≡u in escapeEqTermᵛ [Γ] [A] [t≡u]
30.529412
72
0.72447
4a4a7b7af19dbe28e19be9416da15caa1ed26920
849
agda
Agda
test/asset/agda-stdlib-1.0/Data/Bool.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Data/Bool.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Data/Bool.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- The Agda standard library -- -- Booleans ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Bool where open import Relation.Nullary open import Relation.Binary open import Relation.Binary.PropositionalEquality as PropEq using (_≡_; refl) ------------------------------------------------------------------------ -- The boolean type and some operations open import Data.Bool.Base public ------------------------------------------------------------------------ -- Publicly re-export queries open import Data.Bool.Properties public using (_≟_) ------------------------------------------------------------------------ -- Some properties decSetoid : DecSetoid _ _ decSetoid = PropEq.decSetoid _≟_
26.53125
72
0.42874
dfb384c7c5c00683e724b58d5f4114727818be4d
52
agda
Agda
agda.agda
Andaraz/hello-world
5434416e6b0468a4c06ff7575540f186c38fc58d
[ "MIT" ]
3
2021-03-23T13:03:38.000Z
2021-06-24T03:20:51.000Z
agda.agda
Andaraz/hello-world
5434416e6b0468a4c06ff7575540f186c38fc58d
[ "MIT" ]
1
2021-03-28T09:19:07.000Z
2021-03-28T09:19:58.000Z
agda.agda
Andaraz/hello-world
5434416e6b0468a4c06ff7575540f186c38fc58d
[ "MIT" ]
1
2021-05-10T13:28:32.000Z
2021-05-10T13:28:32.000Z
open import IO main = run (putStr "Hello, World!")
13
35
0.673077
0ba222165823f2d8c10f51b2c77908b03df20a66
587
agda
Agda
test/interaction/Issue3650.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/interaction/Issue3650.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/interaction/Issue3650.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
data Tm : Set where tzero : Tm tsucc : Tm → Tm tdiff : Tm → Tm → Tm variable m n n' : Tm data NotZero : Tm → Set where nzsucc : NotZero (tsucc n) nzdiff : NotZero (tdiff m n) data Equal : Tm → Tm → Set where esucc : NotZero n → Equal (tsucc (tdiff tzero n)) n ediff : Equal n n' → Equal (tdiff m n) (tdiff m n') data Foo : Tm → Set where fleft : Foo m → Foo (tdiff m n) frght : Foo n → Foo (tdiff m (tsucc n)) foo : Foo n → Equal n n' → Foo n' foo (fleft f) e = {!!} foo (frght (frght f)) (ediff (esucc nz)) = {!nz!} -- case-split on nz replaces nz with nzsucc
23.48
93
0.596252
a11a3706d070ea4ba09aff7d99aa90ea6543dc58
131
agda
Agda
proofs/AKS/Modular/Quotient.agda
mckeankylej/thesis
ddad4c0d5f384a0219b2177461a68dae06952dde
[ "MIT" ]
1
2020-12-01T22:38:27.000Z
2020-12-01T22:38:27.000Z
proofs/AKS/Modular/Quotient.agda
mckeankylej/thesis
ddad4c0d5f384a0219b2177461a68dae06952dde
[ "MIT" ]
null
null
null
proofs/AKS/Modular/Quotient.agda
mckeankylej/thesis
ddad4c0d5f384a0219b2177461a68dae06952dde
[ "MIT" ]
null
null
null
module AKS.Modular.Quotient where open import AKS.Modular.Quotient.Base public open import AKS.Modular.Quotient.Properties public
26.2
50
0.847328
4ab11587a268587da464b724ee5662fce3dc05ec
3,341
agda
Agda
Streams/SizedStreams.agda
hbasold/Sandbox
8fc7a6cd878f37f9595124ee8dea62258da28aa4
[ "MIT" ]
null
null
null
Streams/SizedStreams.agda
hbasold/Sandbox
8fc7a6cd878f37f9595124ee8dea62258da28aa4
[ "MIT" ]
null
null
null
Streams/SizedStreams.agda
hbasold/Sandbox
8fc7a6cd878f37f9595124ee8dea62258da28aa4
[ "MIT" ]
null
null
null
open import Function open import Relation.Binary open import Relation.Binary.PropositionalEquality as P open ≡-Reasoning open import Data.Empty open import Data.Unit open import Data.Sum as Sum open import Data.Product as Prod record ℕ∞ : Set where coinductive field pred : ⊤ ⊎ ℕ∞ open ℕ∞ public data-~ℕ∞~ : ⊤ ⊎ ℕ∞ → ⊤ ⊎ ℕ∞ → Set record _~ℕ∞~_ (n m : ℕ∞) : Set where coinductive field pred~ : data-~ℕ∞~ (pred n) (pred m) open _~ℕ∞~_ public data-~ℕ∞~ (inj₁ tt) (inj₁ tt) = ⊤ data-~ℕ∞~ (inj₁ tt) (inj₂ m') = ⊥ data-~ℕ∞~ (inj₂ n') (inj₁ tt) = ⊥ data-~ℕ∞~ (inj₂ n') (inj₂ m') = n' ~ℕ∞~ m' refl-ℕ∞ : {n : ℕ∞} → n ~ℕ∞~ n pred~ (refl-ℕ∞ {n}) with pred n pred~ refl-ℕ∞ | inj₁ tt = tt pred~ refl-ℕ∞ | inj₂ n' = refl-ℕ∞ ∞ : ℕ∞ pred ∞ = inj₂ ∞ succ : ℕ∞ → ℕ∞ pred (succ n) = inj₂ n _+∞_ : ℕ∞ → ℕ∞ → ℕ∞ pred (n +∞ m) with pred n | pred m pred (n +∞ m) | inj₁ tt | inj₁ tt = inj₁ tt pred (n +∞ m) | inj₁ tt | inj₂ m' = inj₂ m' pred (n +∞ m) | inj₂ n' | inj₁ tt = inj₂ n' pred (n +∞ m) | inj₂ n' | inj₂ m' = inj₂ (record { pred = inj₂ (n' +∞ m') }) +∞-comm : (n m : ℕ∞) → (n +∞ m) ~ℕ∞~ (m +∞ n) pred~ (+∞-comm n m) with pred n | pred m pred~ (+∞-comm n m) | inj₁ tt | inj₁ tt = tt pred~ (+∞-comm n m) | inj₁ tt | inj₂ m' = refl-ℕ∞ pred~ (+∞-comm n m) | inj₂ n' | inj₁ tt = refl-ℕ∞ pred~ (+∞-comm n m) | inj₂ n' | inj₂ m' = record { pred~ = +∞-comm n' m' } 2×_ : ℕ∞ → ℕ∞ pred (2× n) with pred n pred (2× n) | inj₁ tt = inj₁ tt pred (2× n) | inj₂ n' = inj₂ (record { pred = inj₂ (2× n') }) StrData : Set → (ℕ∞ → Set) → ⊤ ⊎ ℕ∞ → Set StrData A F (inj₁ tt) = ⊤ StrData A F (inj₂ d') = A × F d' record Str (A : Set) (d : ℕ∞) : Set where coinductive field str-out : StrData A (Str A) (pred d) open Str public reidx-Str : ∀{n m A} → n ~ℕ∞~ m → Str A n → Str A m str-out (reidx-Str {n} {m} p s) with pred n | pred m | pred~ p | str-out s str-out (reidx-Str p s) | inj₁ tt | inj₁ tt | _ | _ = tt str-out (reidx-Str p s) | inj₁ tt | inj₂ m' | () | _ str-out (reidx-Str p s) | inj₂ n' | inj₁ tt | () | _ str-out (reidx-Str p s) | inj₂ n' | inj₂ m' | q | (a , s') = (a , reidx-Str q s') tl : ∀{d A} → Str A (succ d) → Str A d tl {d} s = proj₂ (str-out s) tl₂ : ∀{d A} → Str A (succ (succ d)) → Str A d tl₂ {d} s = proj₂ (str-out (proj₂ (str-out s))) even : ∀{d A} → Str A (2× d) → Str A d str-out (even {d} s) with pred d | str-out s str-out (even s) | inj₁ tt | tt = tt str-out (even s) | inj₂ d' | (a , s') with str-out s' str-out (even s) | inj₂ d' | (a , s') | (_ , s'') = (a , even s'') zip₂ : ∀{m n A} → Str A m → Str A n → Str A (m +∞ n) str-out (zip₂ {m} {n} s t) with pred m | pred n | str-out s | str-out t str-out (zip₂ s t) | inj₁ tt | inj₁ tt | tt | _ = tt str-out (zip₂ s t) | inj₁ tt | inj₂ n' | tt | u = u str-out (zip₂ s t) | inj₂ m' | inj₁ tt | (a , s') | tt = (a , s') str-out (zip₂ s t) | inj₂ m' | inj₂ n' | (a , s') | (b , t') = (a , record { str-out = (b , zip₂ s' t') }) 𝔹 : Set 𝔹 = ⊤ ⊎ ⊤ l r : 𝔹 l = inj₁ tt r = inj₂ tt L R : Str 𝔹 ∞ str-out L = (l , L) str-out R = (r , R) restr : ∀{A} → Str A ∞ → (d : ℕ∞) → Str A d str-out (restr s d) with pred d | str-out s str-out (restr s d) | inj₁ tt | _ = tt str-out (restr s d) | inj₂ d' | (a , s') = (a , restr s' d') foo : ∀{d} → Str 𝔹 d str-out (foo {d}) with pred d str-out foo | inj₁ tt = tt str-out foo | inj₂ d' = (l , even {!!})
28.313559
76
0.523496
a108f0c85174309b4c6156f0d09844008a1448b6
6,521
agda
Agda
archive/agda-2/Oscar/Data/Term/internal/SubstituteAndSubstitution.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
archive/agda-2/Oscar/Data/Term/internal/SubstituteAndSubstitution.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
1
2019-04-29T00:35:04.000Z
2019-05-11T23:33:04.000Z
archive/agda-2/Oscar/Data/Term/internal/SubstituteAndSubstitution.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
module Oscar.Data.Term.internal.SubstituteAndSubstitution {𝔣} (FunctionName : Set 𝔣) where open import Oscar.Category.Action open import Oscar.Category.Category open import Oscar.Category.CategoryAction open import Oscar.Category.Functor open import Oscar.Category.Morphism open import Oscar.Category.Semifunctor open import Oscar.Category.Semigroupoid open import Oscar.Category.Setoid open import Oscar.Category.SemigroupoidAction open import Oscar.Data.Equality open import Oscar.Data.Equality.properties open import Oscar.Data.Fin open import Oscar.Data.Nat open import Oscar.Data.Term FunctionName open import Oscar.Data.Vec open import Oscar.Function open import Oscar.Level open import Oscar.Relation 𝕞₁ : Morphism _ _ _ 𝕞₁ = Fin ⇨ Term 𝕞₂ : Morphism _ _ _ 𝕞₂ = Term ⇨ Term 𝕞₂ₛ : Nat → Morphism _ _ _ 𝕞₂ₛ N = Terms N ⇨ Terms N module 𝔐₁ = Morphism 𝕞₁ module 𝔐₂ = Morphism 𝕞₂ module 𝔐₂ₛ (N : Nat) where open Morphism (𝕞₂ₛ N) public using () renaming (_↦_ to _[_↦_]) private infix 19 _◂_ _◂s_ mutual _◂_ : ∀ {m n} → m 𝔐₁.↦ n → m 𝔐₂.↦ n σ̇ ◂ i 𝑥 = σ̇ 𝑥 _ ◂ leaf = leaf σ̇ ◂ (τl fork τr) = (σ̇ ◂ τl) fork (σ̇ ◂ τr) σ̇ ◂ (function fn τs) = function fn (σ̇ ◂s τs) where _◂s_ : ∀ {m n} → m ⊸ n → ∀ {N} → N 𝔐₂ₛ.[ m ↦ n ] -- Vec (Term m) N → Vec (Term n) N f ◂s [] = [] f ◂s (t ∷ ts) = f ◂ t ∷ f ◂s ts _∙_ : ∀ {m n} → m ⊸ n → ∀ {l} → l ⊸ m → l ⊸ n _∙_ f g = (f ◂_) ∘ g mutual ◂-extensionality : ∀ {m n} {f g : m ⊸ n} → f ≡̇ g → f ◂_ ≡̇ g ◂_ ◂-extensionality p (i x) = p x ◂-extensionality p leaf = refl ◂-extensionality p (s fork t) = cong₂ _fork_ (◂-extensionality p s) (◂-extensionality p t) ◂-extensionality p (function fn ts) = cong (function fn) (◂s-extensionality p ts) ◂s-extensionality : ∀ {m n} {f g : m ⊸ n} → f ≡̇ g → ∀ {N} → _◂s_ f {N} ≡̇ _◂s_ g ◂s-extensionality p [] = refl ◂s-extensionality p (t ∷ ts) = cong₂ _∷_ (◂-extensionality p t) (◂s-extensionality p ts) mutual ◂-associativity : ∀ {l m} (f : l ⊸ m) {n} (g : m ⊸ n) → (g ∙ f) ◂_ ≡̇ (g ◂_) ∘ (f ◂_) ◂-associativity _ _ (i _) = refl ◂-associativity _ _ leaf = refl ◂-associativity _ _ (τ₁ fork τ₂) = cong₂ _fork_ (◂-associativity _ _ τ₁) (◂-associativity _ _ τ₂) ◂-associativity f g (function fn ts) = cong (function fn) (◂s-associativity f g ts) ◂s-associativity : ∀ {l m n} (f : l ⊸ m) (g : m ⊸ n) → ∀ {N} → (_◂s_ (g ∙ f) {N}) ≡̇ (g ◂s_) ∘ (f ◂s_) ◂s-associativity _ _ [] = refl ◂s-associativity _ _ (τ ∷ τs) = cong₂ _∷_ (◂-associativity _ _ τ) (◂s-associativity _ _ τs) ∙-associativity : ∀ {k l} (f : k ⊸ l) {m} (g : l ⊸ m) {n} (h : m ⊸ n) → (h ∙ g) ∙ f ≡̇ h ∙ (g ∙ f) ∙-associativity f g h x rewrite ◂-associativity g h (f x) = refl ∙-extensionality : ∀ {l m} {f₁ f₂ : l ⊸ m} → f₁ ≡̇ f₂ → ∀ {n} {g₁ g₂ : m ⊸ n} → g₁ ≡̇ g₂ → g₁ ∙ f₁ ≡̇ g₂ ∙ f₂ ∙-extensionality {f₂ = f₂} f₁≡̇f₂ g₁≡̇g₂ x rewrite f₁≡̇f₂ x = ◂-extensionality g₁≡̇g₂ (f₂ x) instance IsSemigroupoid𝕞₁∙ : IsSemigroupoid 𝕞₁ _∙_ IsSemigroupoid.extensionality IsSemigroupoid𝕞₁∙ = ∙-extensionality IsSemigroupoid.associativity IsSemigroupoid𝕞₁∙ = ∙-associativity 𝕘₁ : Semigroupoid _ _ _ 𝕘₁ = 𝕞₁ , _∙_ 𝕘₂ : Semigroupoid _ _ _ 𝕘₂ = 𝕞₂ , (λ ‵ → _∘_ ‵) 𝕘₂ₛ : Nat → Semigroupoid _ _ _ 𝕘₂ₛ N = 𝕞₂ₛ N , (λ ‵ → _∘_ ‵) 𝕘₁,₂ : Semigroupoids _ _ _ _ _ _ 𝕘₁,₂ = 𝕘₁ , 𝕘₂ instance IsSemifunctor𝕘₁₂◂ : IsSemifunctor 𝕘₁,₂ _◂_ IsSemifunctor.extensionality IsSemifunctor𝕘₁₂◂ = ◂-extensionality IsSemifunctor.distributivity IsSemifunctor𝕘₁₂◂ = ◂-associativity 𝕗◂ : Semifunctor _ _ _ _ _ _ 𝕗◂ = 𝕘₁,₂ , _◂_ 𝕘₁,₂ₛ : Nat → Semigroupoids _ _ _ _ _ _ 𝕘₁,₂ₛ N = 𝕘₁ , 𝕘₂ₛ N instance IsSemifunctor𝕘₁,₂ₛ◂s : ∀ {N} → IsSemifunctor (𝕘₁,₂ₛ N) (λ ‵ → _◂s_ ‵) IsSemifunctor.extensionality IsSemifunctor𝕘₁,₂ₛ◂s f≡̇g τs = ◂s-extensionality f≡̇g τs IsSemifunctor.distributivity IsSemifunctor𝕘₁,₂ₛ◂s f g x = ◂s-associativity f g x 𝕗◂s : Nat → Semifunctor _ _ _ _ _ _ 𝕗◂s N = 𝕘₁,₂ₛ N , (λ ‵ → _◂s_ ‵) 𝕒₂ : Action _ _ _ 𝕒₂ = actionΣ Term 𝕒₂ₛ : Nat → Action _ _ _ 𝕒₂ₛ N = actionΣ (Terms N) instance IsSemigroupoidAction𝕘₁𝕒₂◂ : IsSemigroupoidAction 𝕘₁ 𝕒₂ _◂_ IsSemigroupoidAction.extensionality IsSemigroupoidAction𝕘₁𝕒₂◂ {s₁ = s₁} refl f₁≡̇f₂ = ◂-extensionality f₁≡̇f₂ s₁ IsSemigroupoidAction.associativity IsSemigroupoidAction𝕘₁𝕒₂◂ s f g = ◂-associativity f g s IsSemigroupoidAction𝕘₁𝕒₂ₛ◂s : ∀ {N} → IsSemigroupoidAction 𝕘₁ (𝕒₂ₛ N) (λ ‵ → _◂s_ ‵) IsSemigroupoidAction.extensionality IsSemigroupoidAction𝕘₁𝕒₂ₛ◂s {s₁ = s₁} refl f₁≡̇f₂ = ◂s-extensionality f₁≡̇f₂ s₁ IsSemigroupoidAction.associativity IsSemigroupoidAction𝕘₁𝕒₂ₛ◂s s f g = ◂s-associativity f g s 𝕟◂ : SemigroupoidAction _ _ _ _ _ 𝕟◂ = [ 𝕘₁ / 𝕒₂ ] _◂_ 𝕟◂s : Nat → SemigroupoidAction _ _ _ _ _ 𝕟◂s N = [ 𝕘₁ / 𝕒₂ₛ N ] (λ ‵ → _◂s_ ‵) private ε : ∀ {m} → m ⊸ m ε = i mutual ◂-identity : ∀ {m} (t : Term m) → ε ◂ t ≡ t ◂-identity (i x) = refl ◂-identity leaf = refl ◂-identity (s fork t) = cong₂ _fork_ (◂-identity s) (◂-identity t) ◂-identity (function fn ts) = cong (function fn) (◂s-identity ts) ◂s-identity : ∀ {N m} (t : Vec (Term m) N) → ε ◂s t ≡ t ◂s-identity [] = refl ◂s-identity (t ∷ ts) = cong₂ _∷_ (◂-identity t) (◂s-identity ts) ∙-left-identity : ∀ {m n} (f : m ⊸ n) → ε ∙ f ≡̇ f ∙-left-identity f = ◂-identity ∘ f ∙-right-identity : ∀ {m n} (f : m ⊸ n) → f ∙ ε ≡̇ f ∙-right-identity _ _ = refl instance IsCategory𝕘₁ε : IsCategory 𝕘₁ ε IsCategory.left-identity IsCategory𝕘₁ε = ∙-left-identity IsCategory.right-identity IsCategory𝕘₁ε = ∙-right-identity 𝔾₁ : Category _ _ _ 𝔾₁ = 𝕘₁ , ε 𝔾₂ : Category _ _ _ 𝔾₂ = 𝕘₂ , id 𝔾₂ₛ : Nat → Category _ _ _ 𝔾₂ₛ N = 𝕘₂ₛ N , id 𝔾₁,₂ : Categories _ _ _ _ _ _ 𝔾₁,₂ = 𝔾₁ , 𝔾₂ 𝔾₁,₂ₛ : Nat → Categories _ _ _ _ _ _ 𝔾₁,₂ₛ N = 𝔾₁ , 𝔾₂ₛ N instance IsFunctor𝔾₁,₂◂ : IsFunctor 𝔾₁,₂ _◂_ IsFunctor.identity IsFunctor𝔾₁,₂◂ _ = ◂-identity 𝔽◂ : Functor _ _ _ _ _ _ 𝔽◂ = 𝔾₁,₂ , _◂_ instance IsFunctor𝔾₁,₂ₛ◂ : ∀ {N} → IsFunctor (𝔾₁,₂ₛ N) (λ ‵ → _◂s_ ‵) IsFunctor.identity IsFunctor𝔾₁,₂ₛ◂ _ = ◂s-identity -- ◂-identity 𝔽s : Nat → Functor _ _ _ _ _ _ 𝔽s N = 𝔾₁,₂ₛ N , (λ ‵ → _◂s_ ‵) instance IsCategoryAction𝔾₁𝕒₂◂ : IsCategoryAction 𝔾₁ 𝕒₂ _◂_ IsCategoryAction.identity IsCategoryAction𝔾₁𝕒₂◂ = ◂-identity IsCategoryAction𝔾₁𝕒₂ₛ◂s : ∀ {N} → IsCategoryAction 𝔾₁ (𝕒₂ₛ N) (λ ‵ → _◂s_ ‵) IsCategoryAction.identity IsCategoryAction𝔾₁𝕒₂ₛ◂s = ◂s-identity ℕ◂ : CategoryAction _ _ _ _ _ ℕ◂ = [ 𝔾₁ / 𝕒₂ ] _◂_ ℕ◂s : Nat → CategoryAction _ _ _ _ _ ℕ◂s N = [ 𝔾₁ / 𝕒₂ₛ N ] (λ ‵ → _◂s_ ‵)
29.776256
117
0.625671
50b1dbd0bd051d8be904aafb31c4d3eb08bf945c
473
agda
Agda
test/Succeed/Issue1719.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue1719.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue1719.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --without-K --rewriting --confluence-check #-} open import Issue1719.Common open import Issue1719.Spans open import Issue1719.Pushouts module _ {d : Span} {l} {P : Pushout d → Set l} (left* : (a : Span.A d) → P (left a)) (right* : (b : Span.B d) → P (right b)) (glue* : (c : Span.C d) → left* (Span.f d c) == right* (Span.g d c) [ P ↓ glue c ]) where test : (a : Span.A d) → Pushout-elim {P = P} left* right* glue* (left a) ↦ left* a test a = idr
31.533333
91
0.585624
4a5b428a85b4f35b4001459c4ae2c53eb170ddcb
144
agda
Agda
test/Succeed/Issue586.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue586.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue586.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Run this test case in safe mode -- {-# OPTIONS --safe #-} -- does not parse (2012-03-12 Andreas) module Issue586 where Foo : Set1 Foo = Set
20.571429
64
0.659722
06079f7a5fde6eb86489bde8b4d0ff0ed72de167
403
agda
Agda
archive/agda-3/src/Oscar/Data/ProperlyExtensionNothing.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
archive/agda-3/src/Oscar/Data/ProperlyExtensionNothing.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
1
2019-04-29T00:35:04.000Z
2019-05-11T23:33:04.000Z
archive/agda-3/src/Oscar/Data/ProperlyExtensionNothing.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
open import Oscar.Prelude open import Oscar.Data.𝟘 module Oscar.Data.ProperlyExtensionNothing where module _ {𝔵} {𝔛 : Ø 𝔵} {𝔬} {𝔒 : 𝔛 → Ø 𝔬} {ℓ} {ℓ̇} {_↦_ : ∀ {x} → 𝔒 x → 𝔒 x → Ø ℓ̇} where record ProperlyExtensionNothing (P : ExtensionṖroperty ℓ 𝔒 _↦_) : Ø 𝔵 ∙̂ 𝔬 ∙̂ ℓ where constructor ∁ field π₀ : ∀ {n} {f : 𝔒 n} → π₀ (π₀ P) f → 𝟘 open ProperlyExtensionNothing public
20.15
88
0.600496
4de670d81f9a72f2403e25e6e06a4f1a6ec3563a
2,958
agda
Agda
agda-stdlib/src/Data/List/Membership/Propositional/Properties/Core.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Data/List/Membership/Propositional/Properties/Core.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Data/List/Membership/Propositional/Properties/Core.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- Core properties related to propositional list membership. ------------------------------------------------------------------------ -- This file is needed to break the cyclic dependency with the proof -- `Any-cong` in `Data.Any.Properties` which relies on `Any↔` in this -- file. {-# OPTIONS --without-K --safe #-} module Data.List.Membership.Propositional.Properties.Core where open import Function.Base using (flip; id; _∘_) open import Function.Inverse using (_↔_; inverse) open import Data.List.Base using (List) open import Data.List.Relation.Unary.Any as Any using (Any; here; there) open import Data.List.Membership.Propositional open import Data.Product as Prod using (_,_; proj₁; proj₂; uncurry′; ∃; _×_) open import Level using (Level) open import Relation.Binary.PropositionalEquality as P using (_≡_; refl) open import Relation.Unary using (Pred; _⊆_) private variable a p q : Level A : Set a ------------------------------------------------------------------------ -- Lemmas relating map and find. map∘find : ∀ {P : Pred A p} {xs} (p : Any P xs) → let p′ = find p in {f : _≡_ (proj₁ p′) ⊆ P} → f refl ≡ proj₂ (proj₂ p′) → Any.map f (proj₁ (proj₂ p′)) ≡ p map∘find (here p) hyp = P.cong here hyp map∘find (there p) hyp = P.cong there (map∘find p hyp) find∘map : ∀ {P : Pred A p} {Q : Pred A q} {xs : List A} (p : Any P xs) (f : P ⊆ Q) → find (Any.map f p) ≡ Prod.map id (Prod.map id f) (find p) find∘map (here p) f = refl find∘map (there p) f rewrite find∘map p f = refl ------------------------------------------------------------------------ -- find satisfies a simple equality when the predicate is a -- propositional equality. find-∈ : ∀ {x : A} {xs : List A} (x∈xs : x ∈ xs) → find x∈xs ≡ (x , x∈xs , refl) find-∈ (here refl) = refl find-∈ (there x∈xs) rewrite find-∈ x∈xs = refl ------------------------------------------------------------------------ -- find and lose are inverses (more or less). lose∘find : ∀ {P : Pred A p} {xs : List A} (p : Any P xs) → uncurry′ lose (proj₂ (find p)) ≡ p lose∘find p = map∘find p P.refl find∘lose : ∀ (P : Pred A p) {x xs} (x∈xs : x ∈ xs) (pp : P x) → find {P = P} (lose x∈xs pp) ≡ (x , x∈xs , pp) find∘lose P x∈xs p rewrite find∘map x∈xs (flip (P.subst P) p) | find-∈ x∈xs = refl ------------------------------------------------------------------------ -- Any can be expressed using _∈_ module _ {P : Pred A p} where ∃∈-Any : ∀ {xs} → (∃ λ x → x ∈ xs × P x) → Any P xs ∃∈-Any = uncurry′ lose ∘ proj₂ Any↔ : ∀ {xs} → (∃ λ x → x ∈ xs × P x) ↔ Any P xs Any↔ = inverse ∃∈-Any find from∘to lose∘find where from∘to : ∀ v → find (∃∈-Any v) ≡ v from∘to p = find∘lose _ (proj₁ (proj₂ p)) (proj₂ (proj₂ p))
34
72
0.503381
1241eeb7ac79c1cc1772efb834b23c3af04095d9
503
agda
Agda
test/Succeed/Issue1456.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue1456.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue1456.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
data Nat : Set where record Ord (A : Set) : Set where field f : A → A instance OrdNat : Ord Nat OrdNat = record { f = λ x → x } postulate T : Nat → Set R : ∀ {A} {{_ : Ord A}} → A → Set -- Before solving the type of m, instance search considers it to -- be a potential candidate for Ord Nat. It then proceeds to check -- uniqueness by comparing m and OrdNat. The problem was that this -- left a constraint m == OrdNat that leaked into the state. foo : Set foo = ∀ (n : Nat) m → R n → T m
23.952381
66
0.640159
4d8824685a5bd83a2547f19d78a0620c10f8d129
1,582
agda
Agda
src/Haskell/Modules/Eq.agda
LaudateCorpus1/bft-consensus-agda
a4674fc473f2457fd3fe5123af48253cfb2404ef
[ "UPL-1.0" ]
null
null
null
src/Haskell/Modules/Eq.agda
LaudateCorpus1/bft-consensus-agda
a4674fc473f2457fd3fe5123af48253cfb2404ef
[ "UPL-1.0" ]
null
null
null
src/Haskell/Modules/Eq.agda
LaudateCorpus1/bft-consensus-agda
a4674fc473f2457fd3fe5123af48253cfb2404ef
[ "UPL-1.0" ]
null
null
null
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020, 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} module Haskell.Modules.Eq where open import Haskell.Modules.ToBool ------------------------------------------------------------------------------ open import Data.Bool hiding (_≟_; not) open import Data.List as DL open import Data.Maybe using (Maybe; just; nothing) import Data.Nat as DN open import Function using (_$_; _∘_) import Relation.Binary.PropositionalEquality as PE using (_≡_; refl) import Relation.Nullary as RN record Eq {a} (A : Set a) : Set a where infix 4 _≟_ _==_ _/=_ field _≟_ : (a b : A) → RN.Dec (a PE.≡ b) _==_ : A → A → Bool a == b = toBool $ a ≟ b _/=_ : A → A → Bool a /= b = not (a == b) open Eq ⦃ ... ⦄ public import Data.List.Relation.Unary.Any as Any using (any) elem : ∀ {ℓ} {A : Set ℓ} ⦃ _ : Eq A ⦄ → A → DL.List A → Bool elem x = toBool ∘ Any.any (x ≟_) instance Eq-Nat : Eq DN.ℕ Eq._≟_ Eq-Nat = DN._≟_ Eq-Maybe : ∀ {a} {A : Set a} ⦃ _ : Eq A ⦄ → Eq (Maybe A) Eq._≟_ Eq-Maybe nothing nothing = RN.yes PE.refl Eq._≟_ Eq-Maybe (just _) nothing = RN.no λ () Eq._≟_ Eq-Maybe nothing (just _) = RN.no λ () Eq._≟_ Eq-Maybe (just a) (just b) with a ≟ b ... | RN.no proof = RN.no λ where PE.refl → proof PE.refl ... | RN.yes PE.refl = RN.yes PE.refl
32.285714
111
0.557522
4dc63128accbf3a15d9a8d69cb8822f6aee1d85b
280
agda
Agda
test/fail/IrrelevantLevelToSet.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
1
2019-11-27T04:41:05.000Z
2019-11-27T04:41:05.000Z
test/fail/IrrelevantLevelToSet.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
test/fail/IrrelevantLevelToSet.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
{-# OPTIONS --experimental-irrelevance #-} {-# OPTIONS --universe-polymorphism #-} module IrrelevantLevelToSet where open import Imports.Level -- should fail, because Set i /= Set j for i /= j, so i is not irrelevant in Set i MySet : .(i : Level) -> Set (suc i) MySet i = Set i
28
82
0.685714
dc072c78f0fa5072ca7c198acc3a1275acd55486
1,032
agda
Agda
test/Succeed/Issue4142.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue4142.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue4142.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2019-10-21, issue #4142, reported and test case by Jason Hu -- When the record-expression-to-copattern-translation is revisited -- after positivity checking, the defCopatternLHS flag needs to be -- updated as well! -- {-# OPTIONS -v tc.cc.record:20 #-} -- {-# OPTIONS -v tc.conv:30 #-} open import Agda.Builtin.Equality record WrapSet : Set1 where constructor wrap -- eta-equality -- WAS: needed for test field Wrapped : Set eta : WrapSet eta .Wrapped = Wrapped pack : WrapSet pack = record { Wrapped = Wrapped } -- The positivity check makes WrapSet an eta-record after the fact. -- Thus, the record-expression-to-copattern-translation is run again for pack. open WrapSet -- Make sure eta was inferred correctly for WrapSet hasEta : (w : WrapSet) → w ≡ record{ Wrapped = Wrapped w } hasEta w = refl -- When we have a definition by copattern matching it works. works : (w : WrapSet) → w ≡ eta w works w = refl -- Should also work for pack. test : (w : WrapSet) → w ≡ pack w test w = refl
24
78
0.695736
dc270a9e313fa0ed52243dfc90c68fd1f291f22e
315
agda
Agda
test/Fail/Issue1025.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue1025.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue1025.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --without-K #-} module Issue1025 where data _≡_ {A : Set} (x : A) : A → Set where refl : x ≡ x postulate mySpace : Set postulate myPoint : mySpace data Foo : myPoint ≡ myPoint → Set where foo : Foo refl test : {e : myPoint ≡ myPoint} → (a : Foo e) → (i : a ≡ a) → i ≡ refl test foo refl = {!!}
19.6875
69
0.590476
1247ef967e7f662e56abc06fb96ac885f21bc374
1,425
agda
Agda
cohomology/ExactPairIso.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
null
null
null
cohomology/ExactPairIso.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
null
null
null
cohomology/ExactPairIso.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} open import HoTT open import cohomology.Exactness module cohomology.ExactPairIso where {- An exact sequence 0 → G → H → 0 implies that G == H -} module _ {i} {G H K L : Group i} {φ : H →ᴳ K} (ex : ExactSeq (G ⟨ cst-hom ⟩→ H ⟨ φ ⟩→ K ⟨ cst-hom ⟩→ L ⊣|)) where private inj : (h₁ h₂ : Group.El H) → GroupHom.f φ h₁ == GroupHom.f φ h₂ → h₁ == h₂ inj = zero-kernel-injective φ (λ h p → Trunc-rec (Group.El-level H _ _) (λ s → ! (snd s)) (ktoi (exact-get ex 0) h p)) exact-pair-iso : H == K exact-pair-iso = surj-inj-= φ inj (λ k → ktoi (exact-get ex 1) k idp) module _ {i} {G H K J : Group i} {φ : G →ᴳ H} {ψ : H →ᴳ K} {χ : K →ᴳ J} (p : G == 0ᴳ) (q : J == 0ᴳ) (ex : ExactSeq (G ⟨ φ ⟩→ H ⟨ ψ ⟩→ K ⟨ χ ⟩→ J ⊣|)) where private ex₁ : ExactSeq (0ᴳ ⟨ cst-hom ⟩→ H ⟨ ψ ⟩→ K ⟨ χ ⟩→ J ⊣|) ex₁ = transport (λ {(G' , φ') → ExactSeq (G' ⟨ φ' ⟩→ H ⟨ ψ ⟩→ K ⟨ χ ⟩→ J ⊣|)}) (pair= p (prop-has-all-paths-↓ {B = λ L → L →ᴳ H} (raise-level ⟨-2⟩ 0ᴳ-hom-out-level))) ex ex₂ : ExactSeq (0ᴳ ⟨ cst-hom ⟩→ H ⟨ ψ ⟩→ K ⟨ cst-hom ⟩→ 0ᴳ ⊣|) ex₂ = transport (λ {(J' , χ') → ExactSeq (0ᴳ ⟨ cst-hom ⟩→ H ⟨ ψ ⟩→ K ⟨ χ' ⟩→ J' ⊣|)}) (pair= q (prop-has-all-paths-↓ {B = λ L → K →ᴳ L} (raise-level _ 0ᴳ-hom-in-level))) ex₁ exact-pair-path-iso : H == K exact-pair-path-iso = exact-pair-iso ex₂
33.139535
78
0.489123
0b0308d0906ac54dbf147665b7b7ebcd73a28867
1,061
agda
Agda
Lambda/Substitution/TwoSemantics.agda
nad/codata
1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e
[ "MIT" ]
1
2021-02-13T14:48:45.000Z
2021-02-13T14:48:45.000Z
Lambda/Substitution/TwoSemantics.agda
nad/codata
1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e
[ "MIT" ]
null
null
null
Lambda/Substitution/TwoSemantics.agda
nad/codata
1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- The two big-step semantics given by Leroy and Grall in "Coinductive -- big-step operational semantics" ------------------------------------------------------------------------ module Lambda.Substitution.TwoSemantics where open import Codata.Musical.Notation open import Lambda.Syntax open WHNF open import Lambda.Substitution -- Big-step semantics for terminating computations. infix 4 _⇓_ data _⇓_ {n} : Tm n → Value n → Set where val : ∀ {v} → ⌜ v ⌝ ⇓ v app : ∀ {t₁ t₂ t v v′} (t₁⇓ : t₁ ⇓ ƛ t) (t₂⇓ : t₂ ⇓ v) (t₁t₂⇓ : t / sub ⌜ v ⌝ ⇓ v′) → t₁ · t₂ ⇓ v′ -- Big-step semantics for non-terminating computations. infix 4 _⇑ data _⇑ {n} : Tm n → Set where ·ˡ : ∀ {t₁ t₂} (t₁⇑ : ∞ (t₁ ⇑)) → t₁ · t₂ ⇑ ·ʳ : ∀ {t₁ t₂ v} (t₁⇓ : t₁ ⇓ v) (t₂⇑ : ∞ (t₂ ⇑)) → t₁ · t₂ ⇑ app : ∀ {t₁ t₂ t v} (t₁⇓ : t₁ ⇓ ƛ t) (t₂⇓ : t₂ ⇓ v) (t₁t₂⇓ : ∞ (t / sub ⌜ v ⌝ ⇑)) → t₁ · t₂ ⇑
24.674419
72
0.435438
1291a8a82bd28abc62c612941f3a2d3ca1488ed5
329
agda
Agda
examples/Termination/TerminationTwoConstructors.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
examples/Termination/TerminationTwoConstructors.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
examples/Termination/TerminationTwoConstructors.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --termination-depth=2 #-} module TerminationTwoConstructors where data Nat : Set where zero : Nat suc : Nat -> Nat f : Nat -> Nat f zero = zero f (suc zero) = zero f (suc (suc n)) with zero ... | m = f (suc n) {- this type checks with --termination-depth >= 2 calls: f -> f_with (-2) f_with -> f (+1) -}
14.954545
49
0.601824
12785d891f556a28ce085d62366f34593898b359
1,521
agda
Agda
agda-stdlib/src/Data/DifferenceVec.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Data/DifferenceVec.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Data/DifferenceVec.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- Vectors with fast append ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.DifferenceVec where open import Data.DifferenceNat open import Data.Vec.Base as V using (Vec) open import Function import Data.Nat.Base as N infixr 5 _∷_ _++_ DiffVec : ∀ {ℓ} → Set ℓ → Diffℕ → Set ℓ DiffVec A m = ∀ {n} → Vec A n → Vec A (m n) [] : ∀ {a} {A : Set a} → DiffVec A 0# [] = λ k → k _∷_ : ∀ {a} {A : Set a} {n} → A → DiffVec A n → DiffVec A (suc n) x ∷ xs = λ k → V._∷_ x (xs k) [_] : ∀ {a} {A : Set a} → A → DiffVec A 1# [ x ] = x ∷ [] _++_ : ∀ {a} {A : Set a} {m n} → DiffVec A m → DiffVec A n → DiffVec A (m + n) xs ++ ys = λ k → xs (ys k) toVec : ∀ {a} {A : Set a} {n} → DiffVec A n → Vec A (toℕ n) toVec xs = xs V.[] -- fromVec xs is linear in the length of xs. fromVec : ∀ {a} {A : Set a} {n} → Vec A n → DiffVec A (fromℕ n) fromVec xs = λ k → xs ⟨ V._++_ ⟩ k head : ∀ {a} {A : Set a} {n} → DiffVec A (suc n) → A head xs = V.head (toVec xs) tail : ∀ {a} {A : Set a} {n} → DiffVec A (suc n) → DiffVec A n tail xs = λ k → V.tail (xs k) take : ∀ {a} {A : Set a} m {n} → DiffVec A (fromℕ m + n) → DiffVec A (fromℕ m) take N.zero xs = [] take (N.suc m) xs = head xs ∷ take m (tail xs) drop : ∀ {a} {A : Set a} m {n} → DiffVec A (fromℕ m + n) → DiffVec A n drop N.zero xs = xs drop (N.suc m) xs = drop m (tail xs)
26.684211
72
0.480605
a1f4b66a57714e88541851488a3f6b1d460a82f5
503
agda
Agda
LibraBFT/Impl/OBM/Prelude.agda
oracle/bft-consensus-agda
49f8b1b70823be805d84ffc3157c3b880edb1e92
[ "UPL-1.0" ]
4
2020-12-16T19:43:41.000Z
2021-12-18T19:24:05.000Z
LibraBFT/Impl/OBM/Prelude.agda
oracle/bft-consensus-agda
49f8b1b70823be805d84ffc3157c3b880edb1e92
[ "UPL-1.0" ]
72
2021-02-04T05:04:33.000Z
2022-03-25T05:36:11.000Z
LibraBFT/Impl/OBM/Prelude.agda
oracle/bft-consensus-agda
49f8b1b70823be805d84ffc3157c3b880edb1e92
[ "UPL-1.0" ]
6
2020-12-16T19:43:52.000Z
2022-02-18T01:04:32.000Z
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Base.KVMap as Map open import LibraBFT.Prelude module LibraBFT.Impl.OBM.Prelude where lookupOrInsert : ∀ {K V : Set} → K → V → Map.KVMap K V → Map.KVMap K V lookupOrInsert k v m = if Map.kvm-member k m then m else Map.insert k v m
29.588235
111
0.735586
392fa60e7c95956e61144a43ab79c261e8437dfa
261
agda
Agda
src/cpnd1/Data/Nat/FromNat.agda
wenkokke/nodcap
fb5e78d6182276e4d93c4c0e0d563b6b027bc5c2
[ "MIT" ]
4
2018-09-05T08:58:11.000Z
2019-09-24T20:16:35.000Z
src/cpnd1/Data/Nat/FromNat.agda
pepijnkokke/nodcap
fb5e78d6182276e4d93c4c0e0d563b6b027bc5c2
[ "MIT" ]
null
null
null
src/cpnd1/Data/Nat/FromNat.agda
pepijnkokke/nodcap
fb5e78d6182276e4d93c4c0e0d563b6b027bc5c2
[ "MIT" ]
1
2018-09-05T08:58:13.000Z
2018-09-05T08:58:13.000Z
open import Agda.Builtin.Nat open import Agda.Builtin.FromNat open import Data.Unit using (⊤) open import Function using (const) module Data.Nat.FromNat where instance NumberNat : Number Nat NumberNat = record { Constraint = const ⊤ ; fromNat = λ n → n }
23.727273
65
0.743295
5060e93c2fc3eba349b83f5433ef299093820dca
6,279
agda
Agda
theorems/cw/cohomology/cellular/ChainComplex.agda
timjb/HoTT-Agda
66f800adef943afdf08c17b8ecfba67340fead5e
[ "MIT" ]
null
null
null
theorems/cw/cohomology/cellular/ChainComplex.agda
timjb/HoTT-Agda
66f800adef943afdf08c17b8ecfba67340fead5e
[ "MIT" ]
null
null
null
theorems/cw/cohomology/cellular/ChainComplex.agda
timjb/HoTT-Agda
66f800adef943afdf08c17b8ecfba67340fead5e
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import cw.CW open import cw.DegreeByProjection open import cohomology.ChainComplex module cw.cohomology.cellular.ChainComplex {i : ULevel} where chain-template : ∀ {n} (skel : Skeleton {i} n) {m} → Dec (m ≤ n) → AbGroup i chain-template skel (inl m≤n) = FreeAbGroup (cells-nth m≤n skel) chain-template skel (inr _) = Lift-abgroup {j = i} Unit-abgroup abstract boundary-nth-template : ∀ {n} (skel : Skeleton {i} n) dec → has-degrees-with-finite-support skel dec → {m : ℕ} (m≤n : m ≤ n) (Sm≤n : S m ≤ n) → cw-init (cw-take Sm≤n skel) == cw-take (≤-trans lteS Sm≤n) skel → cw-take (≤-trans lteS Sm≤n) skel == cw-take m≤n skel → FreeAbGroup.grp (cells-nth Sm≤n skel) →ᴳ FreeAbGroup.grp (cells-nth m≤n skel) boundary-nth-template skel dec fin-sup m≤n Sm≤n path₀ path₁ = transportᴳ (λ lower-skel → FreeAbGroup.grp (cells-last lower-skel)) (path₀ ∙ path₁) ∘ᴳ boundary-nth Sm≤n skel dec fin-sup boundary-template : ∀ {n} (skel : Skeleton {i} n) dec → has-degrees-with-finite-support skel dec → {m : ℕ} (m≤n? : Dec (m ≤ n)) (Sm≤n? : Dec (S m ≤ n)) → AbGroup.grp (chain-template skel Sm≤n?) →ᴳ AbGroup.grp (chain-template skel m≤n?) boundary-template skel dec fin-sup _ (inr _) = cst-hom boundary-template skel dec fin-sup (inr m≰n) (inl Sm≤n) = ⊥-rec $ m≰n (≤-trans lteS Sm≤n) boundary-template skel dec fin-sup (inl m≤n) (inl Sm≤n) = boundary-nth-template skel dec fin-sup m≤n Sm≤n (cw-init-take Sm≤n skel) (ap (λ m≤n → cw-take m≤n skel) (≤-has-all-paths (≤-trans lteS Sm≤n) m≤n)) chain-complex : ∀ {n} (skel : Skeleton {i} n) dec → has-degrees-with-finite-support skel dec → ChainComplex i chain-complex {n} skel dec fin-sup = record {M} where module M where head : AbGroup i head = Lift-abgroup {j = i} ℤ-abgroup chain : ℕ → AbGroup i chain m = chain-template skel (≤-dec m n) augment : AbGroup.grp (chain 0) →ᴳ AbGroup.grp head augment = FreeAbGroup-extend head λ _ → lift 1 boundary : ∀ m → (AbGroup.grp (chain (S m)) →ᴳ AbGroup.grp (chain m)) boundary m = boundary-template skel dec fin-sup (≤-dec m n) (≤-dec (S m) n) cochain-complex : ∀ {j} {n} (skel : Skeleton {i} n) dec → has-degrees-with-finite-support skel dec → AbGroup j → CochainComplex (lmax i j) cochain-complex skel dec fin-sup G = complex-dualize (chain-complex skel dec fin-sup) G {- properties of coboundaries -} abstract private path-lemma₀ : ∀ {n} (skel : Skeleton {i} (S n)) {m} (m<n : m < n) (Sm<n : S m < n) → ap (λ m≤Sn → cw-take m≤Sn skel) (≤-has-all-paths (≤-trans lteS (lteSR (inr Sm<n))) (lteSR (inr m<n))) == ap (λ m≤n → cw-take m≤n (cw-init skel)) (≤-has-all-paths (≤-trans lteS (inr Sm<n)) (inr m<n)) path-lemma₀ skel m<n Sm<n = ap (λ m≤Sn → cw-take m≤Sn skel) (≤-has-all-paths (≤-trans lteS (lteSR (inr Sm<n))) (lteSR (inr m<n))) =⟨ ap (ap (λ m≤Sn → cw-take m≤Sn skel)) (contr-has-all-paths _ _) ⟩ ap (λ m≤Sn → cw-take m≤Sn skel) (ap (lteSR ∘ inr) (<-has-all-paths (<-trans ltS Sm<n) m<n)) =⟨ ∘-ap (λ m≤Sn → cw-take m≤Sn skel) (lteSR ∘ inr) _ ⟩ ap (λ Sm<n → cw-take (lteSR (inr Sm<n)) skel) (<-has-all-paths (<-trans ltS Sm<n) m<n) =⟨ ap-∘ (λ m≤n → cw-take m≤n (cw-init skel)) inr _ ⟩ ap (λ m≤n → cw-take m≤n (cw-init skel)) (ap inr (<-has-all-paths (<-trans ltS Sm<n) m<n)) =⟨ ap (ap (λ m≤n → cw-take m≤n (cw-init skel))) (contr-has-all-paths _ _) ⟩ ap (λ m≤n → cw-take m≤n (cw-init skel)) (≤-has-all-paths (≤-trans lteS (inr Sm<n)) (inr m<n)) =∎ path-lemma₁ : ∀ {n} (skel : Skeleton {i} (S (S n))) → ap (λ n≤SSn → cw-take n≤SSn skel) (≤-has-all-paths (lteSR lteS) (lteSR lteS)) == ap (λ n≤Sn → cw-take n≤Sn (cw-init skel)) (≤-has-all-paths lteS lteS) path-lemma₁ skel = ap (λ n≤SSn → cw-take n≤SSn skel) (≤-has-all-paths (lteSR lteS) (lteSR lteS)) =⟨ ap (ap (λ n≤SSn → cw-take n≤SSn skel)) (contr-has-all-paths _ _) ⟩ idp =⟨ ap (ap (λ n≤Sn → cw-take n≤Sn (cw-init skel))) (contr-has-all-paths _ _) ⟩ ap (λ n≤Sn → cw-take n≤Sn (cw-init skel)) (≤-has-all-paths lteS lteS) =∎ path-lemma₂ : ∀ {n} (skel : Skeleton {i} (S n)) → ap (λ n≤Sn → cw-take n≤Sn skel) (≤-has-all-paths lteS lteS) == idp path-lemma₂ skel = ap (λ n≤Sn → cw-take n≤Sn skel) (≤-has-all-paths lteS lteS) =⟨ ap (ap (λ n≤Sn → cw-take n≤Sn skel)) (contr-has-all-paths _ _) ⟩ idp =∎ abstract boundary-template-descend-from-far : ∀ {n} (skel : Skeleton {i} (S n)) dec fin-sup {m} m<n Sm<n → boundary-template {n = S n} skel dec fin-sup {m} (inl (lteSR (inr m<n))) (inl (lteSR (inr Sm<n))) == boundary-template {n = n} (cw-init skel) (init-has-cells-with-dec-eq skel dec) (init-has-degrees-with-finite-support skel dec fin-sup) (inl (inr m<n)) (inl (inr Sm<n)) boundary-template-descend-from-far skel dec fin-sup m<n Sm<n = ap (boundary-nth-template skel dec fin-sup (lteSR (inr m<n)) (lteSR (inr Sm<n)) (cw-init-take (lteSR (inr Sm<n)) skel)) (path-lemma₀ skel m<n Sm<n) boundary-template-descend-from-two-above : ∀ {n} (skel : Skeleton {i} (S (S n))) dec fin-sup → boundary-template {n = S (S n)} skel dec fin-sup (inl (lteSR lteS)) (inl lteS) == boundary-template {n = (S n)} (cw-init skel) (init-has-cells-with-dec-eq skel dec) (init-has-degrees-with-finite-support skel dec fin-sup) (inl lteS) (inl lteE) boundary-template-descend-from-two-above skel dec fin-sup = ap (boundary-nth-template skel dec fin-sup (lteSR lteS) lteS idp) (path-lemma₁ skel) boundary-template-β : ∀ {n} (skel : Skeleton {i} (S n)) dec fin-sup → boundary-template {n = S n} skel dec fin-sup (inl lteS) (inl lteE) == FreeAbGroup-extend (FreeAbGroup (cells-last (cw-init skel))) (boundary'-last skel dec fin-sup) boundary-template-β skel dec fin-sup = group-hom= $ ap (GroupHom.f ∘ boundary-nth-template skel dec fin-sup lteS lteE idp) (path-lemma₂ skel)
49.833333
125
0.583851
3179ed6b777838d8d217a9e7974f92c49ac21a55
10,688
agda
Agda
lib/types/LoopSpace.agda
UlrikBuchholtz/HoTT-Agda
f8fa68bf753d64d7f45556ca09d0da7976709afa
[ "MIT" ]
1
2021-06-30T00:17:55.000Z
2021-06-30T00:17:55.000Z
lib/types/LoopSpace.agda
UlrikBuchholtz/HoTT-Agda
f8fa68bf753d64d7f45556ca09d0da7976709afa
[ "MIT" ]
null
null
null
lib/types/LoopSpace.agda
UlrikBuchholtz/HoTT-Agda
f8fa68bf753d64d7f45556ca09d0da7976709afa
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} open import lib.Basics open import lib.NConnected open import lib.types.Nat open import lib.types.TLevel open import lib.types.Empty open import lib.types.Group open import lib.types.Pi open import lib.types.Pointed open import lib.types.Paths open import lib.types.Sigma open import lib.types.Truncation open import lib.cubical.Square module lib.types.LoopSpace where module _ {i} where ⊙Ω : Ptd i → Ptd i ⊙Ω (A , a) = ⊙[ (a == a) , idp ] Ω : Ptd i → Type i Ω = fst ∘ ⊙Ω ⊙Ω^ : (n : ℕ) → Ptd i → Ptd i ⊙Ω^ O X = X ⊙Ω^ (S n) X = ⊙Ω (⊙Ω^ n X) Ω^ : (n : ℕ) → Ptd i → Type i Ω^ n X = fst (⊙Ω^ n X) idp^ : ∀ {i} (n : ℕ) {X : Ptd i} → Ω^ n X idp^ n {X} = snd (⊙Ω^ n X) {- for n ≥ 1, we have a group structure on the loop space -} module _ {i} where !^ : (n : ℕ) (t : n ≠ O) {X : Ptd i} → Ω^ n X → Ω^ n X !^ O t = ⊥-rec (t idp) !^ (S n) _ = ! conc^ : (n : ℕ) (t : n ≠ O) {X : Ptd i} → Ω^ n X → Ω^ n X → Ω^ n X conc^ O t = ⊥-rec (t idp) conc^ (S n) _ = _∙_ {- pointed versions of functions on paths -} private pt-lemma : ∀ {i} {A : Type i} {x y : A} (p : x == y) → ! p ∙ (idp ∙' p) == idp pt-lemma idp = idp ⊙conc : ∀ {i} {X : Ptd i} → fst (⊙Ω X ⊙× ⊙Ω X ⊙→ ⊙Ω X) ⊙conc = (uncurry _∙_ , idp) ⊙ap : ∀ {i j} {X : Ptd i} {Y : Ptd j} → fst (X ⊙→ Y) → fst (⊙Ω X ⊙→ ⊙Ω Y) ⊙ap (f , fpt) = ((λ p → ! fpt ∙ ap f p ∙' fpt) , pt-lemma fpt) ⊙ap2 : ∀ {i j k} {X : Ptd i} {Y : Ptd j} {Z : Ptd k} → fst (X ⊙× Y ⊙→ Z) → fst (⊙Ω X ⊙× ⊙Ω Y ⊙→ ⊙Ω Z) ⊙ap2 (f , fpt) = ((λ {(p , q) → ! fpt ∙ ap2 (curry f) p q ∙' fpt}) , pt-lemma fpt) ⊙ap-∘ : ∀ {i j k} {X : Ptd i} {Y : Ptd j} {Z : Ptd k} (g : fst (Y ⊙→ Z)) (f : fst (X ⊙→ Y)) → ⊙ap (g ⊙∘ f) == ⊙ap g ⊙∘ ⊙ap f ⊙ap-∘ (g , idp) (f , idp) = ⊙λ= (λ p → ap-∘ g f p) idp ⊙ap-idf : ∀ {i} {X : Ptd i} → ⊙ap (⊙idf X) == ⊙idf _ ⊙ap-idf = ⊙λ= ap-idf idp ⊙ap2-fst : ∀ {i j} {X : Ptd i} {Y : Ptd j} → ⊙ap2 {X = X} {Y = Y} ⊙fst == ⊙fst ⊙ap2-fst = ⊙λ= (uncurry ap2-fst) idp ⊙ap2-snd : ∀ {i j} {X : Ptd i} {Y : Ptd j} → ⊙ap2 {X = X} {Y = Y} ⊙snd == ⊙snd ⊙ap2-snd = ⊙λ= (uncurry ap2-snd) idp ⊙ap-ap2 : ∀ {i j k l} {X : Ptd i} {Y : Ptd j} {Z : Ptd k} {W : Ptd l} (G : fst (Z ⊙→ W)) (F : fst (X ⊙× Y ⊙→ Z)) → ⊙ap G ⊙∘ ⊙ap2 F == ⊙ap2 (G ⊙∘ F) ⊙ap-ap2 (g , idp) (f , idp) = ⊙λ= (uncurry (ap-ap2 g (curry f))) idp ⊙ap2-ap : ∀ {i j k l m} {X : Ptd i} {Y : Ptd j} {U : Ptd k} {V : Ptd l} {Z : Ptd m} (G : fst ((U ⊙× V) ⊙→ Z)) (F₁ : fst (X ⊙→ U)) (F₂ : fst (Y ⊙→ V)) → ⊙ap2 G ⊙∘ pair⊙→ (⊙ap F₁) (⊙ap F₂) == ⊙ap2 (G ⊙∘ pair⊙→ F₁ F₂) ⊙ap2-ap (g , idp) (f₁ , idp) (f₂ , idp) = ⊙λ= (λ {(p , q) → ap2-ap-l (curry g) f₁ p (ap f₂ q) ∙ ap2-ap-r (λ x v → g (f₁ x , v)) f₂ p q}) idp ⊙ap2-diag : ∀ {i j} {X : Ptd i} {Y : Ptd j} (F : fst (X ⊙× X ⊙→ Y)) → ⊙ap2 F ⊙∘ ⊙diag == ⊙ap (F ⊙∘ ⊙diag) ⊙ap2-diag (f , idp) = ⊙λ= (ap2-diag (curry f)) idp {- ap and ap2 for higher loop spaces -} ap^ : ∀ {i j} (n : ℕ) {X : Ptd i} {Y : Ptd j} → fst (X ⊙→ Y) → fst (⊙Ω^ n X ⊙→ ⊙Ω^ n Y) ap^ O F = F ap^ (S n) F = ⊙ap (ap^ n F) ap2^ : ∀ {i j k} (n : ℕ) {X : Ptd i} {Y : Ptd j} {Z : Ptd k} → fst ((X ⊙× Y) ⊙→ Z) → fst ((⊙Ω^ n X ⊙× ⊙Ω^ n Y) ⊙→ ⊙Ω^ n Z) ap2^ O F = F ap2^ (S n) F = ⊙ap2 (ap2^ n F) ap^-idf : ∀ {i} (n : ℕ) {X : Ptd i} → ap^ n (⊙idf X) == ⊙idf _ ap^-idf O = idp ap^-idf (S n) = ap ⊙ap (ap^-idf n) ∙ ⊙ap-idf ap^-ap2^ : ∀ {i j k l} (n : ℕ) {X : Ptd i} {Y : Ptd j} {Z : Ptd k} {W : Ptd l} (G : fst (Z ⊙→ W)) (F : fst ((X ⊙× Y) ⊙→ Z)) → ap^ n G ⊙∘ ap2^ n F == ap2^ n (G ⊙∘ F) ap^-ap2^ O G F = idp ap^-ap2^ (S n) G F = ⊙ap-ap2 (ap^ n G) (ap2^ n F) ∙ ap ⊙ap2 (ap^-ap2^ n G F) ap2^-fst : ∀ {i j} (n : ℕ) {X : Ptd i} {Y : Ptd j} → ap2^ n {X} {Y} ⊙fst == ⊙fst ap2^-fst O = idp ap2^-fst (S n) = ap ⊙ap2 (ap2^-fst n) ∙ ⊙ap2-fst ap2^-snd : ∀ {i j} (n : ℕ) {X : Ptd i} {Y : Ptd j} → ap2^ n {X} {Y} ⊙snd == ⊙snd ap2^-snd O = idp ap2^-snd (S n) = ap ⊙ap2 (ap2^-snd n) ∙ ⊙ap2-snd ap2^-ap^ : ∀ {i j k l m} (n : ℕ) {X : Ptd i} {Y : Ptd j} {U : Ptd k} {V : Ptd l} {Z : Ptd m} (G : fst ((U ⊙× V) ⊙→ Z)) (F₁ : fst (X ⊙→ U)) (F₂ : fst (Y ⊙→ V)) → ap2^ n G ⊙∘ pair⊙→ (ap^ n F₁) (ap^ n F₂) == ap2^ n (G ⊙∘ pair⊙→ F₁ F₂) ap2^-ap^ O G F₁ F₂ = idp ap2^-ap^ (S n) G F₁ F₂ = ⊙ap2-ap (ap2^ n G) (ap^ n F₁) (ap^ n F₂) ∙ ap ⊙ap2 (ap2^-ap^ n G F₁ F₂) ap2^-diag : ∀ {i j} (n : ℕ) {X : Ptd i} {Y : Ptd j} (F : fst (X ⊙× X ⊙→ Y)) → ap2^ n F ⊙∘ ⊙diag == ap^ n (F ⊙∘ ⊙diag) ap2^-diag O F = idp ap2^-diag (S n) F = ⊙ap2-diag (ap2^ n F) ∙ ap ⊙ap (ap2^-diag n F) module _ {i} {X : Ptd i} where {- Prove these as lemmas now - so we don't have to deal with the n = O case later -} conc^-unit-l : (n : ℕ) (t : n ≠ O) (q : Ω^ n X) → (conc^ n t (idp^ n) q) == q conc^-unit-l O t _ = ⊥-rec (t idp) conc^-unit-l (S n) _ _ = idp conc^-unit-r : (n : ℕ) (t : n ≠ O) (q : Ω^ n X) → (conc^ n t q (idp^ n)) == q conc^-unit-r O t = ⊥-rec (t idp) conc^-unit-r (S n) _ = ∙-unit-r conc^-assoc : (n : ℕ) (t : n ≠ O) (p q r : Ω^ n X) → conc^ n t (conc^ n t p q) r == conc^ n t p (conc^ n t q r) conc^-assoc O t = ⊥-rec (t idp) conc^-assoc (S n) _ = ∙-assoc !^-inv-l : (n : ℕ) (t : n ≠ O) (p : Ω^ n X) → conc^ n t (!^ n t p) p == idp^ n !^-inv-l O t = ⊥-rec (t idp) !^-inv-l (S n) _ = !-inv-l !^-inv-r : (n : ℕ) (t : n ≠ O) (p : Ω^ n X) → conc^ n t p (!^ n t p) == idp^ n !^-inv-r O t = ⊥-rec (t idp) !^-inv-r (S n) _ = !-inv-r abstract ap^-conc^ : ∀ {i j} (n : ℕ) (t : n ≠ O) {X : Ptd i} {Y : Ptd j} (F : fst (X ⊙→ Y)) (p q : Ω^ n X) → fst (ap^ n F) (conc^ n t p q) == conc^ n t (fst (ap^ n F) p) (fst (ap^ n F) q) ap^-conc^ O t _ _ _ = ⊥-rec (t idp) ap^-conc^ (S n) _ {X = X} {Y = Y} F p q = ! gpt ∙ ap g (p ∙ q) ∙' gpt =⟨ ap-∙ g p q |in-ctx (λ w → ! gpt ∙ w ∙' gpt) ⟩ ! gpt ∙ (ap g p ∙ ap g q) ∙' gpt =⟨ lemma (ap g p) (ap g q) gpt ⟩ (! gpt ∙ ap g p ∙' gpt) ∙ (! gpt ∙ ap g q ∙' gpt) ∎ where g : Ω^ n X → Ω^ n Y g = fst (ap^ n F) gpt : g (idp^ n) == idp^ n gpt = snd (ap^ n F) lemma : ∀ {i} {A : Type i} {x y : A} → (p q : x == x) (r : x == y) → ! r ∙ (p ∙ q) ∙' r == (! r ∙ p ∙' r) ∙ (! r ∙ q ∙' r) lemma p q idp = idp {- ap^ preserves (pointed) equivalences -} module _ {i j} {X : Ptd i} {Y : Ptd j} where is-equiv-ap^ : (n : ℕ) (F : fst (X ⊙→ Y)) (e : is-equiv (fst F)) → is-equiv (fst (ap^ n F)) is-equiv-ap^ O F e = e is-equiv-ap^ (S n) F e = pre∙-is-equiv (! (snd (ap^ n F))) ∘ise post∙'-is-equiv (snd (ap^ n F)) ∘ise snd (equiv-ap (_ , is-equiv-ap^ n F e) _ _) equiv-ap^ : (n : ℕ) (F : fst (X ⊙→ Y)) (e : is-equiv (fst F)) → Ω^ n X ≃ Ω^ n Y equiv-ap^ n F e = (fst (ap^ n F) , is-equiv-ap^ n F e) Ω^-level-in : ∀ {i} (m : ℕ₋₂) (n : ℕ) (X : Ptd i) → (has-level ((n -2) +2+ m) (fst X) → has-level m (Ω^ n X)) Ω^-level-in m O X pX = pX Ω^-level-in m (S n) X pX = Ω^-level-in (S m) n X (transport (λ k → has-level k (fst X)) (! (+2+-βr (n -2) m)) pX) (idp^ n) (idp^ n) Ω^-conn-in : ∀ {i} (m : ℕ₋₂) (n : ℕ) (X : Ptd i) → (is-connected ((n -2) +2+ m) (fst X)) → is-connected m (Ω^ n X) Ω^-conn-in m O X pX = pX Ω^-conn-in m (S n) X pX = path-conn $ Ω^-conn-in (S m) n X $ transport (λ k → is-connected k (fst X)) (! (+2+-βr (n -2) m)) pX {- Eckmann-Hilton argument -} module _ {i} {X : Ptd i} where ap2-conc-is-conc : (α β : Ω^ 2 X) → ap2 _∙_ α β == conc^ 2 (ℕ-S≠O _) α β ap2-conc-is-conc α β = ap2-out _∙_ α β ∙ ap2 _∙_ (lemma α) (ap-idf β) where lemma : ∀ {i} {A : Type i} {x y : A} {p q : x == y} (α : p == q) → ap (λ r → r ∙ idp) α == ∙-unit-r p ∙ α ∙' ! (∙-unit-r q) lemma {p = idp} idp = idp ⊙ap2-conc-is-conc : ⊙ap2 (⊙conc {X = X}) == ⊙conc ⊙ap2-conc-is-conc = ⊙λ= (uncurry ap2-conc-is-conc) idp conc^2-comm : (α β : Ω^ 2 X) → conc^ 2 (ℕ-S≠O _) α β == conc^ 2 (ℕ-S≠O _) β α conc^2-comm α β = ! (⋆2=conc^ α β) ∙ ⋆2=⋆'2 α β ∙ ⋆'2=conc^ α β where ⋆2=conc^ : (α β : Ω^ 2 X) → α ⋆2 β == conc^ 2 (ℕ-S≠O _) α β ⋆2=conc^ α β = ap (λ π → π ∙ β) (∙-unit-r α) ⋆'2=conc^ : (α β : Ω^ 2 X) → α ⋆'2 β == conc^ 2 (ℕ-S≠O _) β α ⋆'2=conc^ α β = ap (λ π → β ∙ π) (∙-unit-r α) {- Pushing truncation through loop space -} module _ {i} where Trunc-Ω^ : (m : ℕ₋₂) (n : ℕ) (X : Ptd i) → ⊙Trunc m (⊙Ω^ n X) == ⊙Ω^ n (⊙Trunc ((n -2) +2+ m) X) Trunc-Ω^ m O X = idp Trunc-Ω^ m (S n) X = ⊙Trunc m (⊙Ω^ (S n) X) =⟨ ! (pair= (Trunc=-path [ _ ] [ _ ]) (↓-idf-ua-in _ idp)) ⟩ ⊙Ω (⊙Trunc (S m) (⊙Ω^ n X)) =⟨ ap ⊙Ω (Trunc-Ω^ (S m) n X) ⟩ ⊙Ω^ (S n) (⊙Trunc ((n -2) +2+ S m) X) =⟨ +2+-βr (n -2) m |in-ctx (λ k → ⊙Ω^ (S n) (⊙Trunc k X)) ⟩ ⊙Ω^ (S n) (⊙Trunc (S (n -2) +2+ m) X) ∎ Ω-Trunc-equiv : (m : ℕ₋₂) (X : Ptd i) → Ω (⊙Trunc (S m) X) ≃ Trunc m (Ω X) Ω-Trunc-equiv m X = Trunc=-equiv [ snd X ] [ snd X ] {- A loop space is a pregroup, and a group if it has the right level -} module _ {i} (n : ℕ) (t : n ≠ O) (X : Ptd i) where Ω^-group-structure : GroupStructure (Ω^ n X) Ω^-group-structure = record { ident = idp^ n; inv = !^ n t; comp = conc^ n t; unitl = conc^-unit-l n t; unitr = conc^-unit-r n t; assoc = conc^-assoc n t; invr = !^-inv-r n t; invl = !^-inv-l n t } Ω^-Group : has-level ⟨ n ⟩ (fst X) → Group i Ω^-Group pX = group (Ω^ n X) (Ω^-level-in ⟨0⟩ n X $ transport (λ t → has-level t (fst X)) (+2+-comm ⟨0⟩ (n -2)) pX) Ω^-group-structure {- Our definition of Ω^ builds up loops on the outside, - but this is equivalent to building up on the inside -} module _ {i} where ⊙Ω^-inner-path : (n : ℕ) (X : Ptd i) → ⊙Ω^ (S n) X == ⊙Ω^ n (⊙Ω X) ⊙Ω^-inner-path O X = idp ⊙Ω^-inner-path (S n) X = ap ⊙Ω (⊙Ω^-inner-path n X) ⊙Ω^-inner-out : (n : ℕ) (X : Ptd i) → fst (⊙Ω^ (S n) X ⊙→ ⊙Ω^ n (⊙Ω X)) ⊙Ω^-inner-out O _ = (idf _ , idp) ⊙Ω^-inner-out (S n) X = ap^ 1 (⊙Ω^-inner-out n X) Ω^-inner-out : (n : ℕ) (X : Ptd i) → (Ω^ (S n) X → Ω^ n (⊙Ω X)) Ω^-inner-out n X = fst (⊙Ω^-inner-out n X) Ω^-inner-out-conc^ : (n : ℕ) (t : n ≠ O) (X : Ptd i) (p q : Ω^ (S n) X) → Ω^-inner-out n X (conc^ (S n) (ℕ-S≠O _) p q) == conc^ n t (Ω^-inner-out n X p) (Ω^-inner-out n X q) Ω^-inner-out-conc^ O t X _ _ = ⊥-rec (t idp) Ω^-inner-out-conc^ (S n) t X p q = ap^-conc^ 1 (ℕ-S≠O _) (⊙Ω^-inner-out n X) p q Ω^-inner-is-equiv : (n : ℕ) (X : Ptd i) → is-equiv (fst (⊙Ω^-inner-out n X)) Ω^-inner-is-equiv O X = is-eq (idf _) (idf _) (λ _ → idp) (λ _ → idp) Ω^-inner-is-equiv (S n) X = is-equiv-ap^ 1 (⊙Ω^-inner-out n X) (Ω^-inner-is-equiv n X) Ω^-inner-equiv : (n : ℕ) (X : Ptd i) → Ω^ (S n) X ≃ Ω^ n (⊙Ω X) Ω^-inner-equiv n X = _ , Ω^-inner-is-equiv n X
32.685015
79
0.448821
10abd42e1b9a5e13c6cad07fdedf912952c1a4cb
3,423
agda
Agda
Structures.agda
jvoigtlaender/bidiragda
a5abbd177f032523d1d9d3fa4b9137aefe88dee0
[ "MIT" ]
null
null
null
Structures.agda
jvoigtlaender/bidiragda
a5abbd177f032523d1d9d3fa4b9137aefe88dee0
[ "MIT" ]
null
null
null
Structures.agda
jvoigtlaender/bidiragda
a5abbd177f032523d1d9d3fa4b9137aefe88dee0
[ "MIT" ]
null
null
null
module Structures where open import Category.Functor using (RawFunctor ; module RawFunctor) open import Category.Monad using (module RawMonad) open import Data.Maybe using (Maybe) renaming (monad to MaybeMonad) open import Data.Nat using (ℕ) open import Data.Vec as V using (Vec) import Data.Vec.Properties as VP open import Function using (_∘_ ; flip ; id) open import Function.Equality using (_⟶_ ; _⇨_ ; _⟨$⟩_) open import Relation.Binary using (_Preserves_⟶_) open import Relation.Binary.PropositionalEquality as P using (_≗_ ; _≡_ ; refl ; module ≡-Reasoning) open import Generic using (sequenceV) record IsFunctor (F : Set → Set) (f : {α β : Set} → (α → β) → F α → F β) : Set₁ where field cong : {α β : Set} → f {α} {β} Preserves _≗_ ⟶ _≗_ identity : {α : Set} → f {α} id ≗ id composition : {α β γ : Set} → (g : β → γ) → (h : α → β) → f (g ∘ h) ≗ f g ∘ f h isCongruence : {α β : Set} → (P.setoid α ⇨ P.setoid β) ⟶ P.setoid (F α) ⇨ P.setoid (F β) isCongruence {α} {β} = record { _⟨$⟩_ = λ g → record { _⟨$⟩_ = f (_⟨$⟩_ g) ; cong = P.cong (f (_⟨$⟩_ g)) } ; cong = λ {g} {h} g≗h {x} x≡y → P.subst (λ z → f (_⟨$⟩_ g) x ≡ f (_⟨$⟩_ h) z) x≡y (cong (λ _ → g≗h refl) x) } record Functor (f : Set → Set) : Set₁ where field rawfunctor : RawFunctor f isFunctor : IsFunctor f (RawFunctor._<$>_ rawfunctor) open RawFunctor rawfunctor public open IsFunctor isFunctor public record IsShaped (S : Set) (C : Set → S → Set) (arity : S → ℕ) (content : {α : Set} {s : S} → C α s → Vec α (arity s)) (fill : {α : Set} → (s : S) → Vec α (arity s) → C α s) : Set₁ where field content-fill : {α : Set} {s : S} → (c : C α s) → fill s (content c) ≡ c fill-content : {α : Set} → (s : S) → (v : Vec α (arity s)) → content (fill s v) ≡ v fmap : {α β : Set} → (f : α → β) → {s : S} → C α s → C β s fmap f {s} c = fill s (V.map f (content c)) isFunctor : (s : S) → IsFunctor (flip C s) (λ f → fmap f) isFunctor s = record { cong = λ g≗h c → P.cong (fill s) (VP.map-cong g≗h (content c)) ; identity = λ c → begin fill s (V.map id (content c)) ≡⟨ P.cong (fill s) (VP.map-id (content c)) ⟩ fill s (content c) ≡⟨ content-fill c ⟩ c ∎ ; composition = λ g h c → P.cong (fill s) (begin V.map (g ∘ h) (content c) ≡⟨ VP.map-∘ g h (content c) ⟩ V.map g (V.map h (content c)) ≡⟨ P.cong (V.map g) (P.sym (fill-content s (V.map h (content c)))) ⟩ V.map g (content (fill s (V.map h (content c)))) ∎) } where open ≡-Reasoning fmap-content : {α β : Set} → (f : α → β) → {s : S} → content {β} {s} ∘ fmap f ≗ V.map f ∘ content fmap-content f c = fill-content _ (V.map f (content c)) fill-fmap : {α β : Set} → (f : α → β) → (s : S) → fmap f ∘ fill s ≗ fill s ∘ V.map f fill-fmap f s v = P.cong (fill s ∘ V.map f) (fill-content s v) sequence : {α : Set} {s : S} → C (Maybe α) s → Maybe (C α s) sequence {s = s} c = fill s <$> sequenceV (content c) where open RawMonad MaybeMonad record Shaped (S : Set) (C : Set → S → Set) : Set₁ where field arity : S → ℕ content : {α : Set} {s : S} → C α s → Vec α (arity s) fill : {α : Set} → (s : S) → Vec α (arity s) → C α s isShaped : IsShaped S C arity content fill open IsShaped isShaped public
38.897727
112
0.539293
10c613e4a738fdda72fcc94872f874d0dccbd5f9
2,184
agda
Agda
Cubical/HITs/2GroupoidTruncation/Properties.agda
ryanorendorff/cubical
c67854d2e11aafa5677e25a09087e176fafd3e43
[ "MIT" ]
1
2020-03-23T23:52:11.000Z
2020-03-23T23:52:11.000Z
Cubical/HITs/2GroupoidTruncation/Properties.agda
ryanorendorff/cubical
c67854d2e11aafa5677e25a09087e176fafd3e43
[ "MIT" ]
null
null
null
Cubical/HITs/2GroupoidTruncation/Properties.agda
ryanorendorff/cubical
c67854d2e11aafa5677e25a09087e176fafd3e43
[ "MIT" ]
null
null
null
{- This file contains: - Properties of 2-groupoid truncations -} {-# OPTIONS --cubical --safe #-} module Cubical.HITs.2GroupoidTruncation.Properties where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.Univalence open import Cubical.HITs.2GroupoidTruncation.Base private variable ℓ : Level A : Type ℓ rec : ∀ {B : Type ℓ} → is2Groupoid B → (A → B) → ∥ A ∥₂ → B rec gB f ∣ x ∣₂ = f x rec gB f (squash₂ _ _ _ _ _ _ t u i j k l) = gB _ _ _ _ _ _ (λ m n o → rec gB f (t m n o)) (λ m n o → rec gB f (u m n o)) i j k l elim : {B : ∥ A ∥₂ → Type ℓ} (bG : (x : ∥ A ∥₂) → is2Groupoid (B x)) (f : (x : A) → B ∣ x ∣₂) (x : ∥ A ∥₂) → B x elim bG f ∣ x ∣₂ = f x elim bG f (squash₂ x y p q r s u v i j k l) = isOfHLevel→isOfHLevelDep 4 bG _ _ _ _ _ _ (λ j k l → elim bG f (u j k l)) (λ j k l → elim bG f (v j k l)) (squash₂ x y p q r s u v) i j k l elim2 : {B : ∥ A ∥₂ → ∥ A ∥₂ → Type ℓ} (gB : ((x y : ∥ A ∥₂) → is2Groupoid (B x y))) (g : (a b : A) → B ∣ a ∣₂ ∣ b ∣₂) (x y : ∥ A ∥₂) → B x y elim2 gB g = elim (λ _ → is2GroupoidΠ (λ _ → gB _ _)) (λ a → elim (λ _ → gB _ _) (g a)) elim3 : {B : (x y z : ∥ A ∥₂) → Type ℓ} (gB : ((x y z : ∥ A ∥₂) → is2Groupoid (B x y z))) (g : (a b c : A) → B ∣ a ∣₂ ∣ b ∣₂ ∣ c ∣₂) (x y z : ∥ A ∥₂) → B x y z elim3 gB g = elim2 (λ _ _ → is2GroupoidΠ (λ _ → gB _ _ _)) (λ a b → elim (λ _ → gB _ _ _) (g a b)) 2GroupoidTruncIs2Groupoid : is2Groupoid ∥ A ∥₂ 2GroupoidTruncIs2Groupoid a b p q r s = squash₂ a b p q r s 2GroupoidTruncIdempotent≃ : is2Groupoid A → ∥ A ∥₂ ≃ A 2GroupoidTruncIdempotent≃ {A = A} hA = isoToEquiv f where f : Iso ∥ A ∥₂ A Iso.fun f = rec hA (idfun A) Iso.inv f x = ∣ x ∣₂ Iso.rightInv f _ = refl Iso.leftInv f = elim (λ _ → isOfHLevelSuc 4 2GroupoidTruncIs2Groupoid _ _) (λ _ → refl) 2GroupoidTruncIdempotent : is2Groupoid A → ∥ A ∥₂ ≡ A 2GroupoidTruncIdempotent hA = ua (2GroupoidTruncIdempotent≃ hA)
31.652174
89
0.570513
50eb04987f2f1cf33592c9a1b5f8e49cd3e45300
4,184
agda
Agda
OldBasicILP/UntypedSyntax/ClosedHilbertSequential.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
29
2016-07-03T18:51:56.000Z
2022-01-01T10:29:18.000Z
OldBasicILP/UntypedSyntax/ClosedHilbertSequential.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
1
2018-06-10T09:11:22.000Z
2018-06-10T09:11:22.000Z
OldBasicILP/UntypedSyntax/ClosedHilbertSequential.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
null
null
null
-- Hilbert-style formalisation of closed syntax. -- Sequences of terms. module OldBasicILP.UntypedSyntax.ClosedHilbertSequential where open import OldBasicILP.UntypedSyntax.Common public -- Closed, untyped representations. data Rep : ℕ → Set where NIL : Rep zero MP : ∀ {n} → Fin n → Fin n → Rep n → Rep (suc n) CI : ∀ {n} → Rep n → Rep (suc n) CK : ∀ {n} → Rep n → Rep (suc n) CS : ∀ {n} → Rep n → Rep (suc n) NEC : ∀ {n} → ∀ {`n} → Rep (suc `n) → Rep n → Rep (suc n) CDIST : ∀ {n} → Rep n → Rep (suc n) CUP : ∀ {n} → Rep n → Rep (suc n) CDOWN : ∀ {n} → Rep n → Rep (suc n) CPAIR : ∀ {n} → Rep n → Rep (suc n) CFST : ∀ {n} → Rep n → Rep (suc n) CSND : ∀ {n} → Rep n → Rep (suc n) UNIT : ∀ {n} → Rep n → Rep (suc n) -- Anti-bug wrappers. record Proof : Set where constructor [_] field {len} : ℕ rep : Rep (suc len) open ClosedSyntax (Proof) public -- Concatenation of representations. _⧺ᴿ_ : ∀ {n₁ n₂} → Rep n₁ → Rep n₂ → Rep (n₁ + n₂) r₁ ⧺ᴿ NIL = r₁ r₁ ⧺ᴿ MP i j r₂ = MP (monoFin weak≤+₂ i) (monoFin weak≤+₂ j) (r₁ ⧺ᴿ r₂) r₁ ⧺ᴿ CI r₂ = CI (r₁ ⧺ᴿ r₂) r₁ ⧺ᴿ CK r₂ = CK (r₁ ⧺ᴿ r₂) r₁ ⧺ᴿ CS r₂ = CS (r₁ ⧺ᴿ r₂) r₁ ⧺ᴿ NEC `r r₂ = NEC `r (r₁ ⧺ᴿ r₂) r₁ ⧺ᴿ CDIST r₂ = CDIST (r₁ ⧺ᴿ r₂) r₁ ⧺ᴿ CUP r₂ = CUP (r₁ ⧺ᴿ r₂) r₁ ⧺ᴿ CDOWN r₂ = CDOWN (r₁ ⧺ᴿ r₂) r₁ ⧺ᴿ CPAIR r₂ = CPAIR (r₁ ⧺ᴿ r₂) r₁ ⧺ᴿ CFST r₂ = CFST (r₁ ⧺ᴿ r₂) r₁ ⧺ᴿ CSND r₂ = CSND (r₁ ⧺ᴿ r₂) r₁ ⧺ᴿ UNIT r₂ = UNIT (r₁ ⧺ᴿ r₂) -- Modus ponens and necessitation in nested form. APP : ∀ {n₁ n₂} → Rep (suc n₁) → Rep (suc n₂) → Rep (suc (suc n₂ + suc n₁)) APP {n₁} {n₂} r₁ r₂ = MP zero (monoFin (weak≤+₁ (suc n₁)) zero) (r₂ ⧺ᴿ r₁) BOX : ∀ {n} → Rep (suc n) → Rep (suc zero) BOX {n} r = NEC r NIL -- Derivations. mutual infix 3 ⊢ᴰ_ data ⊢ᴰ_ : Cx Ty → Set where nil : ⊢ᴰ ∅ mp : ∀ {Ξ A B} → A ▻ B ∈ Ξ → A ∈ Ξ → ⊢ᴰ Ξ → ⊢ᴰ Ξ , B ci : ∀ {Ξ A} → ⊢ᴰ Ξ → ⊢ᴰ Ξ , A ▻ A ck : ∀ {Ξ A B} → ⊢ᴰ Ξ → ⊢ᴰ Ξ , A ▻ B ▻ A cs : ∀ {Ξ A B C} → ⊢ᴰ Ξ → ⊢ᴰ Ξ , (A ▻ B ▻ C) ▻ (A ▻ B) ▻ A ▻ C nec : ∀ {Ξ A} → ∀ {`Ξ} → (d : ⊢ᴰ `Ξ , A) → ⊢ᴰ Ξ → ⊢ᴰ Ξ , [ ᴿ⌊ d ⌋ ] ⦂ A cdist : ∀ {Ξ A B} → ∀ {n₁ n₂} → {r₁ : Rep (suc n₁)} → {r₂ : Rep (suc n₂)} → ⊢ᴰ Ξ → ⊢ᴰ Ξ , [ r₁ ] ⦂ (A ▻ B) ▻ [ r₂ ] ⦂ A ▻ [ APP r₁ r₂ ] ⦂ B cup : ∀ {Ξ A} → ∀ {n} → {r : Rep (suc n)} → ⊢ᴰ Ξ → ⊢ᴰ Ξ , [ r ] ⦂ A ▻ [ BOX r ] ⦂ [ r ] ⦂ A cdown : ∀ {Ξ A} → ∀ {n} → {r : Rep (suc n)} → ⊢ᴰ Ξ → ⊢ᴰ Ξ , [ r ] ⦂ A ▻ A cpair : ∀ {Ξ A B} → ⊢ᴰ Ξ → ⊢ᴰ Ξ , A ▻ B ▻ A ∧ B cfst : ∀ {Ξ A B} → ⊢ᴰ Ξ → ⊢ᴰ Ξ , A ∧ B ▻ A csnd : ∀ {Ξ A B} → ⊢ᴰ Ξ → ⊢ᴰ Ξ , A ∧ B ▻ B unit : ∀ {Ξ} → ⊢ᴰ Ξ → ⊢ᴰ Ξ , ⊤ -- Projection from derivations to representations. ᴿ⌊_⌋ : ∀ {Ξ} → ⊢ᴰ Ξ → Rep ᴺ⌊ Ξ ⌋ ᴿ⌊ nil ⌋ = NIL ᴿ⌊ mp i j d ⌋ = MP ⁱ⌊ i ⌋ ⁱ⌊ j ⌋ ᴿ⌊ d ⌋ ᴿ⌊ ci d ⌋ = CI ᴿ⌊ d ⌋ ᴿ⌊ ck d ⌋ = CK ᴿ⌊ d ⌋ ᴿ⌊ cs d ⌋ = CS ᴿ⌊ d ⌋ ᴿ⌊ nec `d d ⌋ = NEC ᴿ⌊ `d ⌋ ᴿ⌊ d ⌋ ᴿ⌊ cdist d ⌋ = CDIST ᴿ⌊ d ⌋ ᴿ⌊ cup d ⌋ = CUP ᴿ⌊ d ⌋ ᴿ⌊ cdown d ⌋ = CDOWN ᴿ⌊ d ⌋ ᴿ⌊ cpair d ⌋ = CPAIR ᴿ⌊ d ⌋ ᴿ⌊ cfst d ⌋ = CFST ᴿ⌊ d ⌋ ᴿ⌊ csnd d ⌋ = CSND ᴿ⌊ d ⌋ ᴿ⌊ unit d ⌋ = UNIT ᴿ⌊ d ⌋ -- Anti-bug wrappers. infix 3 ⊢_ ⊢_ : Ty → Set ⊢ A = ∃ (λ Ξ → ⊢ᴰ Ξ , A) -- Concatenation of derivations. _⧺ᴰ_ : ∀ {Ξ₁ Ξ₂} → ⊢ᴰ Ξ₁ → ⊢ᴰ Ξ₂ → ⊢ᴰ Ξ₁ ⧺ Ξ₂ d₁ ⧺ᴰ nil = d₁ d₁ ⧺ᴰ mp i j d₂ = mp (mono∈ weak⊆⧺₂ i) (mono∈ weak⊆⧺₂ j) (d₁ ⧺ᴰ d₂) d₁ ⧺ᴰ ci d₂ = ci (d₁ ⧺ᴰ d₂) d₁ ⧺ᴰ ck d₂ = ck (d₁ ⧺ᴰ d₂) d₁ ⧺ᴰ cs d₂ = cs (d₁ ⧺ᴰ d₂) d₁ ⧺ᴰ nec `d d₂ = nec `d (d₁ ⧺ᴰ d₂) d₁ ⧺ᴰ cdist d₂ = cdist (d₁ ⧺ᴰ d₂) d₁ ⧺ᴰ cup d₂ = cup (d₁ ⧺ᴰ d₂) d₁ ⧺ᴰ cdown d₂ = cdown (d₁ ⧺ᴰ d₂) d₁ ⧺ᴰ cpair d₂ = cpair (d₁ ⧺ᴰ d₂) d₁ ⧺ᴰ cfst d₂ = cfst (d₁ ⧺ᴰ d₂) d₁ ⧺ᴰ csnd d₂ = csnd (d₁ ⧺ᴰ d₂) d₁ ⧺ᴰ unit d₂ = unit (d₁ ⧺ᴰ d₂) -- Modus ponens and necessitation in nested form. app : ∀ {A B} → ⊢ A ▻ B → ⊢ A → ⊢ B app {A} {B} (Ξ₁ , d₁) (Ξ₂ , d₂) = Ξ₃ , d₃ where Ξ₃ = (Ξ₂ , A) ⧺ (Ξ₁ , A ▻ B) d₃ = mp top (mono∈ (weak⊆⧺₁ (Ξ₁ , A ▻ B)) top) (d₂ ⧺ᴰ d₁) box : ∀ {A} → (t : ⊢ A) → ⊢ [ ᴿ⌊ π₂ t ⌋ ] ⦂ A box (Ξ , d) = ∅ , nec d nil
28.657534
89
0.446224
4d853c861c92576a4531ba65316fe9e900135785
32,142
agda
Agda
theorems/homotopy/3x3/Common.agda
cmknapp/HoTT-Agda
bc849346a17b33e2679a5b3f2b8efbe7835dc4b6
[ "MIT" ]
1
2021-06-30T00:17:55.000Z
2021-06-30T00:17:55.000Z
theorems/homotopy/3x3/Common.agda
cmknapp/HoTT-Agda
bc849346a17b33e2679a5b3f2b8efbe7835dc4b6
[ "MIT" ]
null
null
null
theorems/homotopy/3x3/Common.agda
cmknapp/HoTT-Agda
bc849346a17b33e2679a5b3f2b8efbe7835dc4b6
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} module homotopy.3x3.Common where open import HoTT public hiding (↓-='-in; ↓-='-out; ↓-=-in; ↓-=-out; ↓-∘=idf-in) !-∘-ap-inv : ∀ {i j k} {A : Type i} {B : Type j} {C : Type k} (f : B → C) (g : A → B) {a b : A} (p : a == b) → ap-∘ f g p == ! (∘-ap f g p) !-∘-ap-inv f g idp = idp !-ap-∘-inv : ∀ {i j k} {A : Type i} {B : Type j} {C : Type k} (f : B → C) (g : A → B) {a b : A} (p : a == b) → ∘-ap f g p == ! (ap-∘ f g p) !-ap-∘-inv f g idp = idp !-∘-ap : ∀ {i j k} {A : Type i} {B : Type j} {C : Type k} (f : B → C) (g : A → B) {a b : A} (p : a == b) → ! (∘-ap f g p) == ap-∘ f g p !-∘-ap f g idp = idp !-ap-∘ : ∀ {i j k} {A : Type i} {B : Type j} {C : Type k} (f : B → C) (g : A → B) {a b : A} (p : a == b) → ! (ap-∘ f g p) == ∘-ap f g p !-ap-∘ f g idp = idp module _ {i} {A : Type i} where _,_=□_,_ : {a b b' c : A} (p : a == b) (q : b == c) (r : a == b') (s : b' == c) → Type i (idp , q =□ r , idp) = (q == r) idp□ : {a b : A} {p : a == b} → idp , p =□ idp , p idp□ {p = idp} = idp idp□-i : {a b : A} {p : a == b} → p , idp =□ idp , p idp□-i {p = idp} = idp idp,=□idp,-in : {a b : A} {p q : a == b} → p == q → idp , p =□ idp , q idp,=□idp,-in {q = idp} α = α idp,=□idp,-out : {a b : A} {p q : a == b} → idp , p =□ idp , q → p == q idp,=□idp,-out {q = idp} α = α idp,=□idp,-β : {a b : A} {p q : a == b} (α : p == q) → idp,=□idp,-out (idp,=□idp,-in α) == α idp,=□idp,-β {q = idp} α = idp idp,=□idp,-η : {a b : A} {p q : a == b} (α : idp , p =□ idp , q) → idp,=□idp,-in (idp,=□idp,-out α) == α idp,=□idp,-η {q = idp} α = idp ,idp=□,idp-in : {a b : A} {p q : a == b} → p == q → p , idp =□ q , idp ,idp=□,idp-in {p = idp} α = α ,idp=□,idp-out : {a b : A} {p q : a == b} → p , idp =□ q , idp → p == q ,idp=□,idp-out {p = idp} α = α ,idp=□,idp-β : {a b : A} {p q : a == b} (α : p == q) → ,idp=□,idp-out (,idp=□,idp-in α) == α ,idp=□,idp-β {p = idp} α = idp ,idp=□,idp-η : {a b : A} {p q : a == b} (α : p , idp =□ q , idp) → ,idp=□,idp-in (,idp=□,idp-out α) == α ,idp=□,idp-η {p = idp} α = idp ,idp=□idp,-in : {a b : A} {p q : a == b} → p == q → p , idp =□ idp , q ,idp=□idp,-in {p = idp} = idp,=□idp,-in ,idp=□idp,-out : {a b : A} {p q : a == b} → p , idp =□ idp , q → p == q ,idp=□idp,-out {p = idp} {q} α = idp,=□idp,-out α ,idp=□idp,-β : {a b : A} {p q : a == b} (α : p == q) → ,idp=□idp,-out (,idp=□idp,-in α) == α ,idp=□idp,-β {p = idp} α = idp,=□idp,-β α ,idp=□idp,-η : {a b : A} {p q : a == b} (α : p , idp =□ idp , q) → ,idp=□idp,-in (,idp=□idp,-out α) == α ,idp=□idp,-η {p = idp} α = idp,=□idp,-η α infix 40 _∙□-i/_/_/ _∙□-o/_/_/ _∙□-i/_/_/ : {a b b' c : A} {p : a == b} {q q' : b == c} {r r' : a == b'} {s : b' == c} → (p , q =□ r , s) → (q' == q) → (r == r') → (p , q' =□ r' , s) α ∙□-i/ idp / idp / = α _∙□-o/_/_/ : {a b b' c : A} {p p' : a == b} {q : b == c} {r : a == b'} {s s' : b' == c} → (p , q =□ r , s) → (p' == p) → (s == s') → (p' , q =□ r , s') α ∙□-o/ idp / idp / = α infix 80 _∙□h_ _∙□h_ : {a b b' c c' d : A} {p : a == b} {q : b == c} {r : a == b'} {s : b' == c} {t : c == d} {u : b' == c'} {v : c' == d} → (p , q =□ r , s) → (s , t =□ u , v) → (p , q ∙ t =□ r ∙ u , v) _∙□h_ {p = idp} {s = idp} {v = idp} idp idp = idp module _ {i j} {A : Type i} {B : Type j} (f : A → B) where ap□ : {a b b' c : A} {p : a == b} {q : b == c} {r : a == b'} {s : b' == c} → (p , q =□ r , s) → (ap f p , ap f q =□ ap f r , ap f s) ap□ {p = idp} {s = idp} α = ap (ap f) α module _ {i j} {A : Type i} {B : Type j} (f : A → B) where ap□-,idp=□idp,-in : {a b : A} {p q : a == b} (α : p == q) → ap□ f (,idp=□idp,-in α) == ,idp=□idp,-in (ap (ap f) α) ap□-,idp=□idp,-in {p = idp} idp = idp module _ {i j} {A : Type i} {B : A → Type j} where _,_=□d-i_,_ : {a b : A} {p : a == b} {u v : B a} {w x : B b} → (u == v) → (v == w [ B ↓ p ]) → (u == x [ B ↓ p ]) → (x == w) → Type j _,_=□d-i_,_ idp α β idp = (α == β) -- _,_=□d-i_,_ {p = idp} = _,_=□_,_ idp,=□d-iidp,-out : {a : A} {u w : B a} {α β : u == w} → (idp , α =□d-i idp , β) → α == β idp,=□d-iidp,-out {β = idp} x = x ,idp=□d-iidp,-out : {a : A} {u w : B a} {α β : u == w} → (α , idp =□d-i idp , β) → α == β ,idp=□d-iidp,-out {α = idp} x = idp,=□d-iidp,-out x idp,=□d-iidp,-in : {a : A} {u w : B a} {α β : u == w} → α == β → (idp , α =□d-i idp , β) idp,=□d-iidp,-in {β = idp} x = x ,idp=□d-iidp,-in : {a : A} {u w : B a} {α β : u == w} → α == β → (α , idp =□d-i idp , β) ,idp=□d-iidp,-in {α = idp} x = idp,=□d-iidp,-in x infix 40 _◃/_/_/ _◃/_/_/ : {a b : A} {p : a == b} {u v : B a} {w x : B b} → (v == w [ B ↓ p ]) → (u == v) → (w == x) → (u == x [ B ↓ p ]) α ◃/ idp / idp / = α module _ {i} {A : Type i} where _,_,_=□□_,_,_ : {a0 b0 b'0 c0 a1 b1 b'1 c1 : A} {p0 : a0 == b0} {q0 : b0 == c0} {r0 : a0 == b'0} {s0 : b'0 == c0} {p1 : a1 == b1} {q1 : b1 == c1} {r1 : a1 == b'1} {s1 : b'1 == c1} {a* : a0 == a1} {b* : b0 == b1} {b'* : b'0 == b'1} {c* : c0 == c1} → (p0 , q0 =□ r0 , s0) → (s0 , c* =□ b'* , s1) → (r0 , b'* =□ a* , r1) → (q0 , c* =□ b* , q1) → (p0 , b* =□ a* , p1) → (p1 , q1 =□ r1 , s1) → Type i _,_,_=□□_,_,_ {p0 = idp} {s0 = idp} {p1 = idp} {s1 = idp} idp idp β γ idp idp = β == γ {- Nondependent identity type -} module _ {i j} {A : Type i} {B : Type j} {f g : A → B} where ↓-='-in : {x y : A} {p : x == y} {u : f x == g x} {v : f y == g y} → (u , ap g p =□ ap f p , v) → (u == v [ (λ x → f x == g x) ↓ p ]) ↓-='-in {p = idp} α = ,idp=□idp,-out α ↓-='-out : {x y : A} {p : x == y} {u : f x == g x} {v : f y == g y} → (u == v [ (λ x → f x == g x) ↓ p ]) → (u , ap g p =□ ap f p , v) ↓-='-out {p = idp} α = ,idp=□idp,-in α ↓-='-β : ∀ {i j} {A : Type i} {B : Type j} {f g : A → B} {x y : A} {p : x == y} {u : f x == g x} {v : f y == g y} (α : (u , ap g p =□ ap f p , v)) → ↓-='-out (↓-='-in α) == α ↓-='-β {p = idp} α = ,idp=□idp,-η α module _ {i j k} {A : Type i} {B : Type j} (C : Type k) {g h : B → C} (f : A → B) where lemma-a : {x y : A} (p : x == y) {u : g (f x) == h (f x)} {v : g (f y) == h (f y)} {q : f x == f y} (r : ap f p == q) (α : u == v [ (λ z → g z == h z) ↓ q ]) → ↓-='-out (↓-ap-out= (λ z → g z == h z) f p r α) == ↓-='-out α ∙□-i/ ap-∘ h f p ∙ ap (ap h) r / ! (ap (ap g) r) ∙ ∘-ap g f p / lemma-a idp idp idp = idp {- Dependent identity type -} ↓-=-in : ∀ {i j} {A : Type i} {B : A → Type j} {f g : Π A B} {x y : A} {p : x == y} {u : g x == f x} {v : g y == f y} → (u , apd f p =□d-i apd g p , v) → (u == v [ (λ x → g x == f x) ↓ p ]) ↓-=-in {B = B} {p = idp} {u} {v} α = ,idp=□d-iidp,-out α ↓-=-out : ∀ {i j} {A : Type i} {B : A → Type j} {f g : Π A B} {x y : A} {p : x == y} {u : g x == f x} {v : g y == f y} → (u == v [ (λ x → g x == f x) ↓ p ]) → (u , apd f p =□d-i apd g p , v) ↓-=-out {B = B} {p = idp} {u} {v} α = ,idp=□d-iidp,-in α ↓-=□-in : ∀ {i j} {A : Type i} {B : Type j} {f g g' h : A → B} {x y : A} {α : x == y} {p : (x : A) → f x == g x} {q : (x : A) → g x == h x} {r : (x : A) → f x == g' x} {s : (x : A) → g' x == h x} {u : (p x , q x =□ r x , s x)} {v : (p y , q y =□ r y , s y)} → (u , ↓-='-out (apd s α) , ↓-='-out (apd r α) =□□ ↓-='-out (apd q α) , ↓-='-out (apd p α) , v) → (u == v [ (λ x → (p x , q x =□ r x , s x)) ↓ α ]) ↓-=□-in {α = idp} = ch _ _ where ch : ∀ {j} {B : Type j} {f g g' h : B} {p : f == g} {q : g == h} {r : f == g'} {s : g' == h} (u v : p , q =□ r , s) → u , ,idp=□idp,-in idp , ,idp=□idp,-in idp =□□ ,idp=□idp,-in idp , ,idp=□idp,-in idp , v → u == v ch {p = idp} {s = idp} u v = ,idp=□idp,-out ∘ ch2 u idp idp v where ch2 : ∀ {i} {A : Type i} {a b : A} {q q' r r' : a == b} (p : q == r) (p' : r == r') (s' : q == q') (s : q' == r') → (p , idp , ,idp=□idp,-in p' =□□ ,idp=□idp,-in s' , idp , s) → (p , p' =□ s' , s) ch2 idp p' s' idp α = ! (,idp=□idp,-β p') ∙ ap ,idp=□idp,-out α ∙ ,idp=□idp,-β s' -- Dependent path in a type of the form [λ x → x ≡ g (f x)] module _ {i j} {A : Type i} {B : Type j} (g : B → A) (f : A → B) where ↓-idf=∘-in : {x y : A} {p : x == y} {u : x == g (f x)} {v : y == g (f y)} → (u , ap g (ap f p) =□ p , v) → (u == v [ (λ x → x == g (f x)) ↓ p ]) ↓-idf=∘-in {p = idp} q = ,idp=□idp,-out q ↓-∘=idf-in : {x y : A} {p : x == y} {u : g (f x) == x} {v : g (f y) == y} → (u , p =□ ap g (ap f p) , v) → (u == v [ (λ x → g (f x) == x) ↓ p ]) ↓-∘=idf-in {p = idp} q = ,idp=□idp,-out q module _ {i i' j k} {A : Type i} {A' : Type i'} {B : Type j} {C : Type k} (f : B → C) (g : A → B) (h : A' → B) where ap-∙∙`∘`∘ : {a b : A} {c d : A'} (p : a == b) (q : g b == h c) (r : c == d) → ap f (ap g p ∙ q ∙ ap h r) == ap (f ∘ g) p ∙ ap f q ∙ ap (f ∘ h) r ap-∙∙`∘`∘ idp q idp = ap-∙ f q idp ap-∙∙!`∘`∘ : {a b : A} {c d : A'} (p : a == b) (q : g b == h c) (r : d == c) → ap f (ap g p ∙ q ∙ ap h (! r)) == ap (f ∘ g) p ∙ ap f q ∙ ! (ap (f ∘ h) r) ap-∙∙!`∘`∘ idp q idp = ap-∙ f q idp ap-∙∙!'`∘`∘ : {a b : A} {c d : A'} (p : a == b) (q : g b == h c) (r : d == c) → ap f (ap g p ∙ q ∙ ! (ap h r)) == ap (f ∘ g) p ∙ ap f q ∙ ! (ap (f ∘ h) r) ap-∙∙!'`∘`∘ idp q idp = ap-∙ f q idp ap-!∙∙`∘`∘ : {a b : A} {c d : A'} (p : b == a) (q : g b == h c) (r : c == d) → ap f (ap g (! p) ∙ q ∙ ap h r) == ! (ap (f ∘ g) p) ∙ ap f q ∙ ap (f ∘ h) r ap-!∙∙`∘`∘ idp q idp = ap-∙ f q idp ap-!'∙∙`∘`∘ : {a b : A} {c d : A'} (p : b == a) (q : g b == h c) (r : c == d) → ap f (! (ap g p) ∙ q ∙ ap h r) == ! (ap (f ∘ g) p) ∙ ap f q ∙ ap (f ∘ h) r ap-!'∙∙`∘`∘ idp q idp = ap-∙ f q idp module _ {i i' j k} {A : Type i} {A' : Type i'} {B : Type j} {C : B → Type k} (f : Π B C) (g : A → B) (h : A' → B) where apd-∙∙`∘`∘ : {a b : A} {c d : A'} (p : a == b) (q : g b == h c) (r : c == d) → apd f (ap g p ∙ q ∙ ap h r) == ↓-ap-in _ _ (apd (f ∘ g) p) ∙ᵈ apd f q ∙ᵈ ↓-ap-in _ _ (apd (f ∘ h) r) apd-∙∙`∘`∘ idp q idp = ch q where ch : {a b : B} (q : a == b) → apd f (q ∙ idp) == idp ∙ᵈ apd f q ∙ᵈ idp ch idp = idp module _ {i i' j k} {A : Type i} {A' : Type i'} {B : Type j} {C : Type k} {f : A → B} {f' : A' → B} {g h : B → C} where lemma-b : {x y : A} {z t : A'} {p : x == y} {q : z == t} (r : f y == f' z) {a : g (f x) == h (f x)} {b : g (f y) == h (f y)} {c : g (f' z) == h (f' z)} {d : g (f' t) == h (f' t)} (u : a == b [ (λ x → g (f x) == h (f x)) ↓ p ]) (v : (b , ap h r =□ ap g r , c)) (w : c == d [ (λ x → g (f' x) == h (f' x)) ↓ q ]) → ↓-='-out (↓-ap-in _ f u ∙ᵈ ↓-='-in v ∙ᵈ ↓-ap-in _ f' w) == (↓-='-out u ∙□h (v ∙□h ↓-='-out w)) ∙□-i/ ap-∙∙`∘`∘ h f f' p r q / ! (ap-∙∙`∘`∘ g f f' p r q) / lemma-b {p = idp} {q = idp} r idp v idp = ch r v where ch : ∀ {a b : B} (r : a == b) {p : g a == h a} {q : g b == h b} (v : (p , ap h r =□ ap g r , q)) → ↓-='-out (idp ∙ᵈ ↓-='-in v ∙ᵈ idp) == (,idp=□idp,-in idp ∙□h (v ∙□h ,idp=□idp,-in idp)) ∙□-i/ ap-∙ h r idp / ! (ap-∙ g r idp) / ch idp v = ch2 (,idp=□idp,-out v) ∙ (,idp=□idp,-η v |in-ctx (λ u → ,idp=□idp,-in idp ∙□h (u ∙□h ,idp=□idp,-in idp))) where ch2 : ∀ {i} {A : Type i} {a b : A} {p q : a == b} (v' : p == q) → ,idp=□idp,-in (v' ∙ idp) == ,idp=□idp,-in idp ∙□h (,idp=□idp,-in v' ∙□h ,idp=□idp,-in idp) ch2 {p = idp} v' = ch3 v' where ch3 : ∀ {i} {A : Type i} {a : A} {q : a == a} (v' : idp == q) → idp,=□idp,-in (v' ∙ idp) == (,idp=□idp,-in idp ∙□h (idp,=□idp,-in v' ∙□h ,idp=□idp,-in idp)) ch3 idp = idp module _ {i} {A : Type i} where pp-coh : {a b b' c c' d d' e : A} {p : a == b} {q : b == c} {r : c == d} {s : e == d} {t : b' == a} {u : b' == c'} {v : c' == d'} {w : d' == e} → (p , (q ∙ r ∙ (! s)) =□ (! t ∙ u ∙ v) , w) → (u , (v ∙ w ∙ s) =□ (t ∙ p ∙ q) , r) pp-coh {p = idp} {q} {idp} {idp} {idp} {idp} {idp} {idp} α = (! α) ∙ (∙-unit-r q) pp-coh! : {a b b' c c' d d' e : A} {u : b' == c'} {v : c' == d'} {w : d' == e} {s : e == d} {t : b' == a} {p : a == b} {q : b == c} {r : c == d} → (u , (v ∙ w ∙ s) =□ (t ∙ p ∙ q) , r) → (p , (q ∙ r ∙ (! s)) =□ ((! t) ∙ u ∙ v) , w) pp-coh! {u = idp} {idp} {idp} {idp} {idp} {idp} {q} {idp} α = ∙-unit-r q ∙ (! α) pp-coh-β : {a b b' c c' d d' e : A} {u : b' == c'} {v : c' == d'} {w : d' == e} {s : e == d} {t : b' == a} {p : a == b} {q : b == c} {r : c == d} (α : (u , (v ∙ w ∙ s) =□ (t ∙ p ∙ q) , r)) → pp-coh {p = p} {q = q} {r = r} {s = s} {t = t} {u = u} {v = v} {w = w} (pp-coh! {u = u} {v = v} {w = w} {s = s} {t = t} {p = p} {q = q} {r = r} α) == α pp-coh-β {u = idp} {idp} {idp} {idp} {idp} {idp} {.idp} {idp} idp = idp pp-coh!-β : {a b b' c c' d d' e : A} {p : a == b} {q : b == c} {r : c == d} {s : e == d} {t : b' == a} {u : b' == c'} {v : c' == d'} {w : d' == e} (α : (p , (q ∙ r ∙ (! s)) =□ (! t ∙ u ∙ v) , w)) → pp-coh! {u = u} {v} {w} {s} {t} {p} {q} {r} (pp-coh {p = p} {q} {r} {s} {t} {u} {v} {w} α) == α pp-coh!-β {p = idp} {idp} {idp} {idp} {idp} {idp} {.idp} {idp} idp = idp module _ {i j} {A : Type i} {B : Type j} where ap-∙∙ : (f : A → B) {x y z t : A} (p : x == y) (q : y == z) (r : z == t) → ap f (p ∙ q ∙ r) == ap f p ∙ ap f q ∙ ap f r ap-∙∙ f idp q idp = ap-∙ f q idp ap-∙∙! : (f : A → B) {x y z t : A} (p : x == y) (q : y == z) (r : t == z) → ap f (p ∙ q ∙ ! r) == ap f p ∙ ap f q ∙ ! (ap f r) ap-∙∙! f idp q idp = ap-∙ f q idp ap-!∙∙ : (f : A → B) {x y z t : A} (p : y == x) (q : y == z) (r : z == t) → ap f (! p ∙ q ∙ r) == ! (ap f p) ∙ ap f q ∙ ap f r ap-!∙∙ f idp q idp = ap-∙ f q idp module _ {i j k} {A : Type i} {B : Type j} {C₁ C₂ C₃ C₄ : Type k} {g₁ : C₁ → A} {g₂ : C₂ → A} {g₃ : C₃ → A} {g₄ : C₄ → A} (f : A → B) where ap□-pp-coh : {a b b' c c' d d' e : A} {p : a == b} {q : b == c} {r : c == d} {s : e == d} {t : b' == a} {u : b' == c'} {v : c' == d'} {w : d' == e} (α : (p , (q ∙ r ∙ (! s)) =□ (! t ∙ u ∙ v) , w)) → ap□ f (pp-coh {p = p} {q} {r} {s} {t} {u} {v} {w} α) == pp-coh {p = ap f p} {ap f q} {ap f r} {ap f s} {ap f t} {ap f u} {ap f v} {ap f w} (ap□ f α ∙□-i/ ! (ap-∙∙! f q r s) / ap-!∙∙ f t u v /) ∙□-i/ ap-∙∙ f v w s / ! (ap-∙∙ f t p q) / ap□-pp-coh {p = idp} {q} {idp} {idp} {idp} {idp} {idp} {idp} α = c q idp α where c : {a b : A} (q q' : a == b) (α : q ∙ idp == q') → ap (ap f) (! α ∙ ∙-unit-r q) == (! (ap (ap f) α ∙□-i/ ! (ap-∙∙! f q idp idp) / idp /) ∙ ∙-unit-r (ap f q)) ∙□-i/ idp / ! (ap-∙∙ f idp idp q) / c idp q' α = d α where d : {a b : A} {q q' : a == b} (α : q == q') → ap (ap f) (! α ∙ idp) == ! (ap (ap f) α) ∙ idp d idp = idp ap□-coh : {a₁ b₁ : C₁} {a₂ b₂ : C₂} {a₃ b₃ : C₃} {a₄ b₄ : C₄} {p : g₃ b₃ == g₁ a₁} {q : a₁ == b₁} {r : g₁ b₁ == g₂ b₂} {s : a₂ == b₂} {t : a₃ == b₃} {u : g₃ a₃ == g₄ a₄} {v : a₄ == b₄} {w : g₄ b₄ == g₂ a₂} (α : (p , (ap g₁ q ∙ r ∙ (! (ap g₂ s))) =□ (! (ap g₃ t) ∙ u ∙ ap g₄ v) , w)) → ap□ f (pp-coh {p = p} {ap g₁ q} {r} {ap g₂ s} {ap g₃ t} {u} {ap g₄ v} {w} α) == pp-coh {p = ap f p} {ap (f ∘ g₁) q} {ap f r} {ap (f ∘ g₂) s} {ap (f ∘ g₃) t} {ap f u} {ap (f ∘ g₄) v} {ap f w} (ap□ f α ∙□-i/ ! (ap-∙∙!'`∘`∘ f g₁ g₂ q r s) / ap-!'∙∙`∘`∘ f g₃ g₄ t u v /) ∙□-i/ ap-∙∙`∘`∘ f g₄ g₂ v w s / ! (ap-∙∙`∘`∘ f g₃ g₁ t p q) / ap□-coh {p = p} {idp} {r} {idp} {idp} {u} {idp} {w} α = ap□-pp-coh {p = p} {idp} {r} {idp} {idp} {u} {idp} {w} α module _ {i j k} {A : Type i} {B : Type j} {C₁ C₂ C₃ C₄ : Type k} {g₁ : C₁ → A} {g₂ : C₂ → A} {g₃ : C₃ → A} {g₄ : C₄ → A} (f : A → B) where ap□-pp-coh! : {a b b' c c' d d' e : A} {u : b' == c'} {v : c' == d'} {w : d' == e} {s : e == d} {t : b' == a} {p : a == b} {q : b == c} {r : c == d} (α : (u , (v ∙ w ∙ s) =□ (t ∙ p ∙ q) , r)) → ap□ f (pp-coh! {u = u} {v} {w} {s} {t} {p} {q} {r} α) == pp-coh! {u = ap f u} {ap f v} {ap f w} {ap f s} {ap f t} {ap f p} {ap f q} {ap f r} (ap□ f α ∙□-i/ ! (ap-∙∙ f v w s) / ap-∙∙ f t p q /) ∙□-i/ ap-∙∙! f q r s / ! (ap-!∙∙ f t u v) / ap□-pp-coh! {u = idp} {idp} {idp} {idp} {idp} {idp} {.idp} {idp} idp = idp ap□-coh! : {a₁ b₁ : C₁} {a₂ b₂ : C₂} {a₃ b₃ : C₃} {a₄ b₄ : C₄} {u : g₃ a₃ == g₄ a₄} {v : a₄ == b₄} {w : g₄ b₄ == g₂ a₂} {s : a₂ == b₂} {t : a₃ == b₃} {p : g₃ b₃ == g₁ a₁} {q : a₁ == b₁} {r : g₁ b₁ == g₂ b₂} (α : (u , (ap g₄ v ∙ w ∙ ap g₂ s) =□ (ap g₃ t ∙ p ∙ ap g₁ q) , r)) → ap□ f (pp-coh! {u = u} {ap g₄ v} {w} {ap g₂ s} {ap g₃ t} {p} {ap g₁ q} {r} α) == pp-coh! {u = ap f u} {ap (f ∘ g₄) v} {ap f w} {ap (f ∘ g₂) s} {ap (f ∘ g₃) t} {ap f p} {ap (f ∘ g₁) q} {ap f r} (ap□ f α ∙□-i/ ! (ap-∙∙`∘`∘ f g₄ g₂ v w s) / ap-∙∙`∘`∘ f g₃ g₁ t p q /) ∙□-i/ ap-∙∙!'`∘`∘ f g₁ g₂ q r s / ! (ap-!'∙∙`∘`∘ f g₃ g₄ t u v) / ap□-coh! {u = u} {idp} {w} {idp} {idp} {p} {idp} {r} α = ap□-pp-coh! {u = u} {idp} {w} {idp} {idp} {p} {idp} {r} α module _ {i} {A : Type i} where lemma : {a b b' c c' d d' e : A} {u u' : b' == c'} {v : c' == d'} {w w' : d' == e} {s : e == d} {t : b' == a} {p p' : a == b} {q : b == c} {r r' : c == d} (β : u' == u) (γ : w' == w) (δ : p' == p) (ε : r' == r) (α : (u , (v ∙ w ∙ s) =□ (t ∙ p ∙ q) , r)) → pp-coh {p = p'} {q} {r'} {s} {t} {u'} {v} {w'} (pp-coh! {u = u} {v} {w} {s} {t} {p} {q} {r} α ∙□-o/ δ / ! γ / ∙□-i/ ε |in-ctx (λ x → q ∙ x ∙ ! s) / (! β) |in-ctx (λ x → ! t ∙ x ∙ v) /) == α ∙□-o/ β / ! ε / ∙□-i/ γ |in-ctx (λ x → v ∙ x ∙ s) / (! δ) |in-ctx (λ x → t ∙ x ∙ q) / lemma {u = u} {v = v} {w = w} {s = s} {t = t} {p = p} {q = q} {r = r} idp idp idp idp α = pp-coh-β {u = u} {v = v} {w = w} {s = s} {t = t} {p = p} {q = q} {r = r} α lemma! : {a b b' c c' d d' e : A} {p p' : a == b} {q : b == c} {r r' : c == d} {s : e == d} {t : b' == a} {u u' : b' == c'} {v : c' == d'} {w w' : d' == e} (β : p' == p) (γ : r' == r) (δ : u' == u) (ε : w' == w) (α : (p , (q ∙ r ∙ (! s)) =□ (! t ∙ u ∙ v) , w)) → pp-coh! {u = u'} {v} {w'} {s} {t} {p'} {q} {r'} (pp-coh {p = p} {q} {r} {s} {t} {u} {v} {w} α ∙□-o/ δ / ! γ / ∙□-i/ ε |in-ctx (λ w → v ∙ w ∙ s) / (! β) |in-ctx (λ p → t ∙ p ∙ q) /) == α ∙□-o/ β / ! ε / ∙□-i/ γ |in-ctx (λ r → q ∙ r ∙ ! s) / (! δ) |in-ctx (λ u → ! t ∙ u ∙ v) / lemma! {p = p} {q = q} {r = r} {s = s} {t = t} {u = u} {v = v} {w = w} idp idp idp idp α = pp-coh!-β {p = p} {q} {r} {s} {t} {u} {v} {w} α module _ {i j} {A : Type i} {B : A → Type j} where coh1 : {a b : A} {α : a == b} {u v : B a} {w x : B b} {p : u == w [ B ↓ α ]} {q : w == x} {r : u == v} {s : v == x [ B ↓ α ]} → (r , s =□d-i p , q) → p == s ◃/ r / ! q / coh1 {α = idp} {p = idp} {idp} {idp} {s} β = ! β module _ {i j k} {A : Type i} {B : Type j} {C : Type k} (f g : A → B) (h : B → C) where ap↓-↓-='-in-β : {x y : A} {p : x == y} {u : f x == g x} {v : f y == g y} (α : (u , ap g p =□ ap f p , v)) → ap↓ (ap h) {p = p} {u = u} {v = v} (↓-='-in {p = p} α) == ↓-='-in ((ap□ h α) ∙□-i/ (ap-∘ h g p) / (∘-ap h f p) /) ap↓-↓-='-in-β {p = idp} = t where t : {x y : B} {u v : x == y} (α : (u , idp =□ idp , v)) → ap (ap h) (,idp=□idp,-out α) == ,idp=□idp,-out (ap□ h α) t {u = idp} {v} = t' where t' : {x y : B} {u v : x == y} (α : (idp , u =□ idp , v)) → ap (ap h) (idp,=□idp,-out α) == idp,=□idp,-out (ap□ h α) t' {u} {v = idp} α = idp ap□-↓-='-out-β : {x y : A} {p : x == y} {u : f x == g x} {v : f y == g y} (α : u == v [ (λ x → f x == g x) ↓ p ]) → ap□ h (↓-='-out α) == ↓-='-out (ap↓ (ap h) α) ∙□-i/ ∘-ap h g p / ap-∘ h f p / ap□-↓-='-out-β {p = idp} idp = ap□-,idp=□idp,-in h idp thing : ∀ {i j} {A : Type i} {B : Type j} {f g : A → B} {x y : A} {p : x == y} {u u' : f x == g x} {v v' : f y == g y} (α : (u , ap g p =□ ap f p , v)) (r : u' == u) (s : v == v') → ↓-='-out (↓-='-in α ◃/ r / s /) == α ∙□-o/ r / s / thing α idp idp = ↓-='-β α ap↓-∘ : ∀ {i j k l} {A : Type i} {B : A → Type j} {C : A → Type k} {D : A → Type l} (f : {a : A} → C a → D a) (g : {a : A} → B a → C a) {x y : A} {p : x == y} {u : B x} {v : B y} (q : u == v [ B ↓ p ]) → ap↓ (f ∘ g) q == ap↓ f (ap↓ g q) ap↓-∘ f g {p = idp} idp = idp ap↓-◃/ : ∀ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k} (f : {a : A} → B a → C a) {x y : A} {p : x == y} {u u' : B x} {v v' : B y} (q : u == v [ B ↓ p ]) (r : u' == u) (s : v == v') → ap↓ f (q ◃/ r / s /) == ap↓ f q ◃/ ap f r / ap f s / ap↓-◃/ f {p = idp} idp idp idp = idp ap□-∙□-i/ : ∀ {i j} {A : Type i} {B : Type j} (f : A → B) {a b b' c : A} {p : a == b} {q q' : b == c} {r r' : a == b'} {s : b' == c} (α : (p , q =□ r , s)) (t : q' == q) (u : r == r') → ap□ f (α ∙□-i/ t / u /) == ap□ f α ∙□-i/ ap (ap f) t / ap (ap f) u / ap□-∙□-i/ f {p = idp} {s = idp} idp idp idp = idp ap-∘^3-coh : ∀ {i j k l} {A : Type i} {B : Type j} {C : Type k} {D : Type l} (h : C → D) (g : B → C) (f : A → B) {a b : A} (p : a == b) → ap (ap h) (∘-ap g f p) ∙ ∘-ap h (g ∘ f) p ∙ ap-∘ (h ∘ g) f p == ∘-ap h g (ap f p) ap-∘^3-coh h g f idp = idp ap-∘^3-coh' : ∀ {i j k l} {A : Type i} {B : Type j} {C : Type k} {D : Type l} (h : C → D) (g : B → C) (f : A → B) {a b : A} (p : a == b) → ∘-ap (h ∘ g) f p ∙ ap-∘ h (g ∘ f) p ∙ ap (ap h) (ap-∘ g f p) == ap-∘ h g (ap f p) ap-∘^3-coh' h g f idp = idp ap-∘-ap-coh : ∀ {i j k} {A : Type i} {B : Type j} {C : Type k} (g : B → C) (f : A → B) {a b : A} {p q : a == b} (α : p == q) → ap (ap g) (! α |in-ctx (ap f)) ∙ ∘-ap g f p ∙ (α |in-ctx (ap (g ∘ f))) == ∘-ap g f q ap-∘-ap-coh g f idp = ∙-unit-r _ ap-∘-ap-coh' : ∀ {i j k} {A : Type i} {B : Type j} {C : Type k} (g : B → C) (f : A → B) {a b : A} {p q : a == b} (α : p == q) → (! α |in-ctx (ap (g ∘ f))) ∙ ap-∘ g f p ∙ ap (ap g) (α |in-ctx (ap f)) == ap-∘ g f q ap-∘-ap-coh' g f idp = ∙-unit-r _ ap-∘-ap-coh'2 : ∀ {i j k} {A : Type i} {B : Type j} {C : Type k} (g : B → C) (f : A → B) {a b : A} {p q : a == b} (α : p == q) → (! (α |in-ctx (ap (g ∘ f)))) ∙ ap-∘ g f p ∙ ap (ap g) (α |in-ctx (ap f)) == ap-∘ g f q ap-∘-ap-coh'2 g f {p = idp} idp = idp module _ {i i' j k l} {A : Type i} {A' : Type i'} {B : Type j} {C : Type k} {D : Type l} (f2 : C → D) (f1 : B → C) (g : A → B) (h : A' → B) where ap-∘-ap-∙∙!`∘`∘-coh : {a b : A} {c d : A'} (p : a == b) (q : g b == h c) (r : d == c) → ! (ap-∙∙!'`∘`∘ f2 (f1 ∘ g) (f1 ∘ h) p (ap f1 q) r) ∙ ap (ap f2) (! (ap-∙∙!`∘`∘ f1 g h p q r)) ∙ ∘-ap f2 f1 (ap g p ∙ q ∙ ap h (! r)) ∙ ap-∙∙!`∘`∘ (f2 ∘ f1) g h p q r == ((∘-ap f2 f1 q) |in-ctx (λ u → ap (f2 ∘ f1 ∘ g) p ∙ u ∙ ! (ap (f2 ∘ f1 ∘ h) r))) ap-∘-ap-∙∙!`∘`∘-coh idp q idp = coh q where coh : {a b : B} (q : a == b) → ! (ap-∙ f2 (ap f1 q) idp) ∙ ap (ap f2) (! (ap-∙ f1 q idp)) ∙ ∘-ap f2 f1 (q ∙ idp) ∙ ap-∙ (f2 ∘ f1) q idp == ap (λ u → u ∙ idp) (∘-ap f2 f1 q) coh idp = idp ap-∘-ap-!∙∙`∘`∘-coh : {a b : A} {c d : A'} (p : a == b) (q : g a == h c) (r : c == d) → ! (ap-!∙∙`∘`∘ (f2 ∘ f1) g h p q r) ∙ ap-∘ f2 f1 (ap g (! p) ∙ q ∙ ap h r) ∙ ap (ap f2) (ap-!∙∙`∘`∘ f1 g h p q r) ∙ ap-!'∙∙`∘`∘ f2 (f1 ∘ g) (f1 ∘ h) p (ap f1 q) r == ((ap-∘ f2 f1 q) |in-ctx (λ u → ! (ap (f2 ∘ f1 ∘ g) p) ∙ u ∙ ap (f2 ∘ f1 ∘ h) r)) ap-∘-ap-!∙∙`∘`∘-coh idp q idp = coh q where coh : {a b : B} (q : a == b) → ! (ap-∙ (f2 ∘ f1) q idp) ∙ ap-∘ f2 f1 (q ∙ idp) ∙ ap (ap f2) (ap-∙ f1 q idp) ∙ ap-∙ f2 (ap f1 q) idp == ap (λ u → u ∙ idp) (ap-∘ f2 f1 q) coh idp = idp ap-∘-ap-∙∙2`∘`∘-coh : {a b : A} {c d : A'} (p : a == b) (q : g b == h c) (r : c == d) → ! (ap-∙∙`∘`∘ (f2 ∘ f1) g h p q r) ∙ ap-∘ f2 f1 (ap g p ∙ q ∙ ap h r) ∙ ap (ap f2) (ap-∙∙`∘`∘ f1 g h p q r) ∙ ap-∙∙`∘`∘ f2 (f1 ∘ g) (f1 ∘ h) p (ap f1 q) r == ((ap-∘ f2 f1 q) |in-ctx (λ u → ap (f2 ∘ f1 ∘ g) p ∙ u ∙ ap (f2 ∘ f1 ∘ h) r)) ap-∘-ap-∙∙2`∘`∘-coh idp q idp = coh q where coh : {a b : B} (q : a == b) → ! (ap-∙ (f2 ∘ f1) q idp) ∙ ap-∘ f2 f1 (q ∙ idp) ∙ ap (ap f2) (ap-∙ f1 q idp) ∙ ap-∙ f2 (ap f1 q) idp == ap (λ u → u ∙ idp) (ap-∘ f2 f1 q) coh idp = idp ap-∘-ap-∙∙3`∘`∘-coh : {a b : A} {c d : A'} (p : a == b) (q : g b == h c) (r : c == d) → ! (ap-∙∙`∘`∘ f2 (f1 ∘ g) (f1 ∘ h) p (ap f1 q) r) ∙ ap (ap f2) (! (ap-∙∙`∘`∘ f1 g h p q r)) ∙ ∘-ap f2 f1 (ap g p ∙ q ∙ ap h r) ∙ ap-∙∙`∘`∘ (f2 ∘ f1) g h p q r == ((∘-ap f2 f1 q) |in-ctx (λ u → ap (f2 ∘ f1 ∘ g) p ∙ u ∙ ap (f2 ∘ f1 ∘ h) r)) ap-∘-ap-∙∙3`∘`∘-coh idp q idp = coh q where coh : {a b : B} (q : a == b) → ! (ap-∙ f2 (ap f1 q) idp) ∙ ap (ap f2) (! (ap-∙ f1 q idp)) ∙ ∘-ap f2 f1 (q ∙ idp) ∙ ap-∙ (f2 ∘ f1) q idp == ap (λ u → u ∙ idp) (∘-ap f2 f1 q) coh idp = idp ap-∘-ap-∙∙4`∘`∘-coh : {a b : A} {c d : A'} (p : a == b) {q : g b == h c} {q' : f1 (g b) == f1 (h c)} (α : ap f1 q == q') (r : c == d) → ap-∘ f2 f1 (ap g p ∙ q ∙ ap h r) ∙ ap (ap f2) (ap-∙∙`∘`∘ f1 g h p q r) ∙ ap (ap f2) (α |in-ctx (λ u → ap (f1 ∘ g) p ∙ u ∙ ap (f1 ∘ h) r)) ∙ ap-∙∙`∘`∘ f2 (f1 ∘ g) (f1 ∘ h) p q' r == ap-∙∙`∘`∘ (f2 ∘ f1) g h p q r ∙ (ap-∘ f2 f1 q |in-ctx (λ u → ap (f2 ∘ f1 ∘ g) p ∙ u ∙ ap (f2 ∘ f1 ∘ h) r)) ∙ (ap (ap f2) α |in-ctx (λ u → ap (f2 ∘ f1 ∘ g) p ∙ u ∙ ap (f2 ∘ f1 ∘ h) r)) ap-∘-ap-∙∙4`∘`∘-coh idp {q = q} idp idp = coh q where coh : {a b : B} (q : a == b) → ap-∘ f2 f1 (q ∙ idp) ∙ ap (ap f2) (ap-∙ f1 q idp) ∙ ap-∙ f2 (ap f1 q) idp == ap-∙ (f2 ∘ f1) q idp ∙ ap (λ u → u ∙ idp) (ap-∘ f2 f1 q) ∙ idp coh idp = idp ap-∘-ap-∙∙5`∘`∘-coh : {a b : A} {c d : A'} (p : a == b) {q : g a == h c} {q' : f1 (g a) == f1 (h c)} (α : ap f1 q == q') (r : c == d) → ap-∘ f2 f1 (ap g (! p) ∙ q ∙ ap h r) ∙ ap (ap f2) (ap-!∙∙`∘`∘ f1 g h p q r) ∙ ap (ap f2) (α |in-ctx (λ u → ! (ap (f1 ∘ g) p) ∙ u ∙ ap (f1 ∘ h) r)) ∙ ap-!'∙∙`∘`∘ f2 (f1 ∘ g) (f1 ∘ h) p q' r == ap-∙∙`∘`∘ (f2 ∘ f1) g h (! p) q r ∙ (ap-∘ f2 f1 q |in-ctx (λ u → ap (f2 ∘ f1 ∘ g) (! p) ∙ u ∙ ap (f2 ∘ f1 ∘ h) r)) ∙ (ap (ap f2) α |in-ctx (λ u → ap (f2 ∘ f1 ∘ g) (! p) ∙ u ∙ ap (f2 ∘ f1 ∘ h) r)) ∙ (ap-! (f2 ∘ f1 ∘ g) p |in-ctx (λ u → u ∙ ap f2 q' ∙ ap (f2 ∘ f1 ∘ h) r)) ap-∘-ap-∙∙5`∘`∘-coh idp {q = q} idp idp = coh q where coh : {a b : B} (q : a == b) → ap-∘ f2 f1 (q ∙ idp) ∙ ap (ap f2) (ap-∙ f1 q idp) ∙ ap-∙ f2 (ap f1 q) idp == ap-∙ (f2 ∘ f1) q idp ∙ ap (λ u → u ∙ idp) (ap-∘ f2 f1 q) ∙ idp coh idp = idp ap-∘-ap-∙∙`∘`∘-coh : {a b : A} {c d : A'} (p : a == b) {q : g b == h c} {q' : f1 (g b) == f1 (h c)} (α : ap f1 q == q') (r : c == d) → ap (ap f2) (ap-∙∙`∘`∘ f1 g h p q r) ∙ ap (ap f2) (α |in-ctx (λ u → ap (f1 ∘ g) p ∙ u ∙ ap (f1 ∘ h) r)) ∙ ap-∙∙`∘`∘ f2 (f1 ∘ g) (f1 ∘ h) p q' r == ∘-ap f2 f1 (ap g p ∙ q ∙ ap h r) ∙ ap-∙∙`∘`∘ (f2 ∘ f1) g h p q r ∙ (ap-∘ f2 f1 q |in-ctx (λ u → ap (f2 ∘ f1 ∘ g) p ∙ u ∙ ap (f2 ∘ f1 ∘ h) r)) ∙ (ap (ap f2) α |in-ctx (λ u → ap (f2 ∘ f1 ∘ g) p ∙ u ∙ ap (f2 ∘ f1 ∘ h) r)) ap-∘-ap-∙∙`∘`∘-coh idp {q = q} idp idp = coh q where coh : {a b : B} (q : a == b) → ap (ap f2) (ap-∙ f1 q idp) ∙ ap-∙ f2 (ap f1 q) idp == ∘-ap f2 f1 (q ∙ idp) ∙ ap-∙ (f2 ∘ f1) q idp ∙ ap (λ u → u ∙ idp) (ap-∘ f2 f1 q) ∙ idp coh idp = idp ap-∘-ap-∙∙!'`∘`∘-coh : {a b : A} {c d : A'} (p : a == b) {q : g b == h c} {q' : f1 (g b) == f1 (h c)} (α : ap f1 q == q') (r : d == c) → ap (ap f2) (ap-∙∙!`∘`∘ f1 g h p q r) ∙ ap (ap f2) (α |in-ctx (λ u → ap (f1 ∘ g) p ∙ u ∙ ! (ap (f1 ∘ h) r))) ∙ ap-∙∙!'`∘`∘ f2 (f1 ∘ g) (f1 ∘ h) p q' r == ∘-ap f2 f1 (ap g p ∙ q ∙ ap h (! r)) ∙ ap-∙∙!`∘`∘ (f2 ∘ f1) g h p q r ∙ (ap-∘ f2 f1 q |in-ctx (λ u → ap (f2 ∘ f1 ∘ g) p ∙ u ∙ ! (ap (f2 ∘ f1 ∘ h) r))) ∙ (ap (ap f2) α |in-ctx (λ u → ap (f2 ∘ f1 ∘ g) p ∙ u ∙ ! (ap (f2 ∘ f1 ∘ h) r))) ap-∘-ap-∙∙!'`∘`∘-coh idp {q = q} idp idp = coh q where coh : {a b : B} (q : a == b) → ap (ap f2) (ap-∙ f1 q idp) ∙ ap-∙ f2 (ap f1 q) idp == ∘-ap f2 f1 (q ∙ idp) ∙ ap-∙ (f2 ∘ f1) q idp ∙ ap (λ u → u ∙ idp) (ap-∘ f2 f1 q) ∙ idp coh idp = idp ap-∘-ap-∙∙!'2`∘`∘-coh : {a b : A} {c d : A'} (p : a == b) {q : g b == h c} {q' : f1 (g b) == f1 (h c)} (α : ap f1 q == q') (r : d == c) → ap (ap f2) (ap-∙∙!`∘`∘ f1 g h p q r) ∙ ap (ap f2) (α |in-ctx (λ u → ap (f1 ∘ g) p ∙ u ∙ ! (ap (f1 ∘ h) r))) ∙ ap-∙∙!'`∘`∘ f2 (f1 ∘ g) (f1 ∘ h) p q' r == ap (ap f2) (ap-∙∙`∘`∘ f1 g h p q (! r)) ∙ ap (ap f2) (α |in-ctx (λ u → ap (f1 ∘ g) p ∙ u ∙ ap (f1 ∘ h) (! r))) ∙ ap-∙∙!`∘`∘ f2 (f1 ∘ g) (f1 ∘ h) p q' r ap-∘-ap-∙∙!'2`∘`∘-coh idp {q = q} idp idp = idp module _ {i i' j k} {A : Type i} {A' : Type i'} {B : Type j} {C : Type k} (f : B → C) (g : A → B) (h : A' → B) where ap-!∙∙`∘`∘-coh : {a b : A} {c d : A'} (p : b == a) {q : g b == h c} {q' : f (g b) == f (h c)} (α : ap f q == q') (r : c == d) → ap-!∙∙`∘`∘ f g h p q r ∙ ap (λ u → ! (ap (f ∘ g) p) ∙ u ∙ ap (f ∘ h) r) α ∙ ! (ap-! (f ∘ g) p |in-ctx (λ u → u ∙ q' ∙ ap (f ∘ h) r)) == ap-∙∙`∘`∘ f g h (! p) q r ∙' ap (λ u → ap (f ∘ g) (! p) ∙ u ∙ ap (f ∘ h) r) α ap-!∙∙`∘`∘-coh idp {q = q} idp idp = ∙-unit-r (ap-∙ f q idp) ap-∙∙!`∘`∘-coh1 : {a b : A} {c d : A'} (p : a == b) {q : g b == h c} {q' : f (g b) == f (h c)} (α : ap f q == q') (r : d == c) → ap-∙∙!`∘`∘ f g h p q r ∙ ap (λ u → ap (f ∘ g) p ∙ u ∙ ! (ap (f ∘ h) r)) α == ap-∙∙`∘`∘ f g h p q (! r) ∙ ap (λ u → ap (f ∘ g) p ∙ u ∙ ap (f ∘ h) (! r)) α ∙ (ap-! (f ∘ h) r |in-ctx (λ u → ap (f ∘ g) p ∙ q' ∙ u)) ap-∙∙!`∘`∘-coh1 idp {q = q} idp idp = idp ap-∙∙!`∘`∘-coh2 : {a b : A} {c d : A'} (p : a == b) {q : g b == h c} (r : d == c) → (ap-! (f ∘ h) r |in-ctx (λ u → ap (f ∘ g) p ∙ ap f q ∙ u)) ∙ ! (ap-∙∙!`∘`∘ f g h p q r) == ! (ap-∙∙`∘`∘ f g h p q (! r)) ap-∙∙!`∘`∘-coh2 idp {q} idp = idp ap-∘-coh : ∀ {i j k l} {A : Type i} {B : Type j} {C : Type k} {D : Type l} (f : C → D) (g : B → C) (h : A → B) {a b : A} (p : a == b) {p' : h a == h b} (α : ap h p == p') → ap-∘ f (g ∘ h) p ∙ ap (ap f) (ap-∘ g h p) ∙ ap (ap f) (α |in-ctx (ap g)) ∙ ∘-ap f g p' == ap-∘ (f ∘ g) h p ∙ ap (ap (f ∘ g)) α ap-∘-coh f g h idp idp = idp ap-∘-coh2 : ∀ {i j k l} {A : Type i} {B : Type j} {C : Type k} {D : Type l} (f : C → D) (g : B → C) (h : A → B) {a b : A} (p : a == b) {p' : h a == h b} (α : ap h p == p') → ap-∘ f (g ∘ h) p ∙ ap (ap f) (ap-∘ g h p) ∙ ap (ap f) (α |in-ctx (ap g)) == ap-∘ (f ∘ g) h p ∙ ap (ap (f ∘ g)) α ∙ ap-∘ f g p' ap-∘-coh2 f g h idp idp = idp ∙-|in-ctx : ∀ {i j} {A : Type i} {B : Type j} (f : A → B) {a b c : A} (p : a == b) (q : b == c) → (p |in-ctx f) ∙ (q |in-ctx f) == ((p ∙ q) |in-ctx f) ∙-|in-ctx f idp idp = idp ∙□-i/-rewrite : ∀ {i} {A : Type i} {a b b' c : A} {p : a == b} {q q' : b == c} {r r' : a == b'} {s : b' == c} (α : (p , q =□ r , s)) {β β' : q' == q} (eqβ : β == β') {γ γ' : r == r'} (eqγ : γ == γ') → (α ∙□-i/ β / γ / == α ∙□-i/ β' / γ' /) ∙□-i/-rewrite α idp idp = idp
47.060029
181
0.330813
107eb0dd06a5b414c239cdf5538780011e1db0ce
427
agda
Agda
test/Fail/Issue2250.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue2250.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue2250.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2016-10-11, AIM XXIV, issue #2250 {-# OPTIONS --injective-type-constructors #-} open import Common.Prelude open import Common.Equality abstract f : Bool → Bool f x = true same : f true ≡ f false same = refl -- f should not be treated as injective here, -- even though f true and f false do not reduce. not-same : f true ≡ f false → ⊥ not-same () -- should be yellow absurd : ⊥ absurd = not-same same
18.565217
48
0.672131
c582334b1d4b3e093d040f58531505738296912c
9,032
agda
Agda
complexity/Idea.agda
benhuds/Agda
2404a6ef2688f879bda89860bb22f77664ad813e
[ "MIT" ]
2
2016-04-26T20:22:22.000Z
2019-08-08T12:27:18.000Z
complexity/Idea.agda
benhuds/Agda
2404a6ef2688f879bda89860bb22f77664ad813e
[ "MIT" ]
1
2020-03-23T08:39:04.000Z
2020-05-12T00:32:45.000Z
complexity/Idea.agda
benhuds/Agda
2404a6ef2688f879bda89860bb22f77664ad813e
[ "MIT" ]
null
null
null
open import Preliminaries module Idea where {- de Bruijn indices are representd as proofs that an element is in a list -} data _∈_ {A : Set} : (x : A) (l : List A) → Set where -- type \in i0 : {x : A} {xs : List A} → x ∈ x :: xs iS : {x y : A} {xs : List A} → x ∈ xs → x ∈ y :: xs {- types of the STLC -} data Tp : Set where b : Tp -- uninterpreted base type _⇒_ : Tp → Tp → Tp -- type \=> {- contexts are lists of Tp's -} Ctx = List Tp _,,_ : Ctx → Tp → Ctx Γ ,, τ = τ :: Γ infixr 10 _⇒_ infixr 9 _,,_ infixr 8 _⊢_ -- type \entails infix 9 _⊇_ data _⊢_ (Γ : Ctx) : Tp → Set data _≡_ {Γ : Ctx} : {τ : Tp} → Γ ⊢ τ → Γ ⊢ τ → Set _⊢c_ : Ctx → Ctx → Set _⊇_ : Ctx → Ctx → Set -- type \sup= ids : {Γ : Ctx} → Γ ⊢c Γ rename : {Γ Γ' : Ctx} {τ : Tp} → Γ' ⊇ Γ → Γ ⊢ τ → Γ' ⊢ τ subst : {Γ Γ' : Ctx}{τ : Tp} → Γ ⊢c Γ' → Γ' ⊢ τ → Γ ⊢ τ _·ss_ : {Γ1 Γ2 Γ3 : Ctx} → Γ1 ⊢c Γ2 → Γ2 ⊢c Γ3 → Γ1 ⊢c Γ3 subst1 : {Γ : Ctx} {τ τ0 : Tp} → Γ ⊢ τ0 → (Γ ,, τ0) ⊢ τ → Γ ⊢ τ {- Γ ⊢ τ represents a term of type τ in context Γ -} data _⊢_ (Γ : Ctx) where c : Γ ⊢ b -- some constant of the base type v : {τ : Tp} → τ ∈ Γ → Γ ⊢ τ lam : {τ1 τ2 : Tp} → Γ ,, τ1 ⊢ τ2 → Γ ⊢ τ1 ⇒ τ2 app : {τ1 τ2 : Tp} → Γ ⊢ τ1 ⇒ τ2 → Γ ⊢ τ1 → Γ ⊢ τ2 foo : {A : Tp} (e1 e2 : Γ ⊢ A) → e1 ≡ e2 → Γ ⊢ A {-foo : (e1 : ™ Gamma A) (e2 : ™ Gamma A) -> e1 \equiv e2 -> ™ Gamma A-} Γ' ⊇ [] = Unit Γ' ⊇ (τ :: Γ) = (Γ' ⊇ Γ) × (τ ∈ Γ') rename-var : {Γ Γ' : Ctx} {τ : Tp} → Γ' ⊇ Γ → τ ∈ Γ → τ ∈ Γ' rename-var (ρ , x') i0 = x' rename-var (ρ , _) (iS x) = rename-var ρ x p· : {Γ : Ctx} {Γ' : Ctx} → Γ ⊇ Γ' → {τ : Tp} → (Γ ,, τ) ⊇ Γ' p· {Γ' = []} ren = <> p· {Γ' = (τ :: Γ')} (ρ , x) = p· ρ , iS x idr : {Γ : Ctx} → Γ ⊇ Γ idr {[]} = <> idr {τ :: Γ} = p· idr , i0 -- category with families notation p : {Γ : Ctx} {τ : Tp} → (Γ ,, τ ⊇ Γ) p = p· idr addvar-ren : {Γ Γ' : Ctx} {τ : Tp} → Γ' ⊇ Γ → Γ' ,, τ ⊇ Γ ,, τ addvar-ren ρ = (p· ρ , i0) data _≡_ {Γ : Ctx} where CongApp : {τ1 τ2 : Tp} {e e' : Γ ⊢ τ1 ⇒ τ2} {e1 e1' : Γ ⊢ τ1} → e ≡ e' → e1 ≡ e1' → (app e e1) ≡ (app e' e1') CongLam : {τ1 τ2 : Tp} {e e' : (τ1 :: Γ) ⊢ τ2} → e ≡ e' → (lam e) ≡ (lam e') SubstId : ∀ {τ} {e : Γ ⊢ τ} → subst ids e ≡ e SubstComp : ∀ {Γ1 Γ2} {τ} {θ' : Γ ⊢c Γ2} {θ : Γ2 ⊢c Γ1} {e : Γ1 ⊢ τ} → subst θ' (subst θ e) ≡ subst (θ' ·ss θ) e Stepβ : {τ1 τ2 : Tp} {e : Γ ,, τ1 ⊢ τ2} {e1 : Γ ⊢ τ1} → (app (lam e) e1) ≡ subst1 e1 e Refl : {τ : Tp} {e : Γ ⊢ τ} → e ≡ e Trans : {τ : Tp} {e1 e2 e3 : Γ ⊢ τ} → e1 ≡ e2 → e2 ≡ e3 → e1 ≡ e3 SubstCong : ∀ {Γ2} {τ} {Θ : Γ ⊢c Γ2} {e1 e2 : Γ2 ⊢ τ} → e1 ≡ e2 → subst Θ e1 ≡ subst Θ e2 RenCong : ∀ {Γ2} {τ} {ρ : Γ ⊇ Γ2} {e1 e2 : Γ2 ⊢ τ} → e1 ≡ e2 → rename ρ e1 ≡ rename ρ e2 rename ρ c = c rename ρ (v x) = v (rename-var ρ x) rename ρ (lam e) = lam (rename (addvar-ren ρ) e) rename ρ (app e e') = app (rename ρ e) (rename ρ e') rename ρ (foo e1 e2 p) = foo (rename ρ e1) (rename ρ e2) (RenCong p) _·rr_ : {Γ1 Γ2 Γ3 : Ctx} → Γ1 ⊇ Γ2 → Γ2 ⊇ Γ3 → Γ1 ⊇ Γ3 _·rr_ {Γ1} {Γ2} {[]} ρ2 ρ3 = <> _·rr_ {Γ1} {Γ2} {x :: Γ3} ρ2 (ρ3 , x3) = (ρ2 ·rr ρ3) , rename-var ρ2 x3 Γ' ⊢c [] = Unit Γ' ⊢c (τ :: Γ) = (Γ' ⊢c Γ) × (Γ' ⊢ τ) _·rs_ : {Γ1 Γ2 Γ3 : Ctx} → Γ1 ⊇ Γ2 → Γ2 ⊢c Γ3 → Γ1 ⊢c Γ3 _·rs_ {Γ1} {Γ2} {[]} ρ θ = <> _·rs_ {Γ1} {Γ2} {τ3 :: Γ3} ρ (θ , e) = ρ ·rs θ , rename ρ e addvar : {Γ Γ' : Ctx} {τ : Tp} → Γ ⊢c Γ' → (Γ ,, τ) ⊢c (Γ' ,, τ) addvar θ = p ·rs θ , v i0 ids {[]} = <> ids {τ :: Γ} = p ·rs ids , v i0 subst-var : {Γ Γ' : Ctx}{τ : Tp} → Γ ⊢c Γ' → τ ∈ Γ' → Γ ⊢ τ subst-var (θ , e) i0 = e subst-var (θ , _) (iS x) = subst-var θ x subst1 e0 e = subst (ids , e0) e -- composition of renamings and substitutions _·sr_ : {Γ1 Γ2 Γ3 : Ctx} → Γ1 ⊢c Γ2 → Γ2 ⊇ Γ3 → Γ1 ⊢c Γ3 _·sr_ {Γ1} {Γ2} {[]} θ ρ = <> _·sr_ {Γ1} {Γ2} {τ3 :: Γ3} θ (ρ , x) = _·sr_ θ ρ , subst-var θ x _·ss_ {Γ3 = []} θ1 θ2 = <> _·ss_ {Γ1} {Γ2} {τ :: Γ3} θ1 (θ2 , e2) = θ1 ·ss θ2 , subst θ1 e2 subst θ c = c subst θ (v x) = subst-var θ x subst θ (lam e) = lam (subst (addvar θ) e) subst θ (app e e') = app (subst θ e) (subst θ e') subst {Γ} {Γ'} {τ} Θ (foo e1 e2 p) = foo (subst Θ e1) (subst Θ e2) (SubstCong p) postulate semfoo : (A : Set) (x y : A) -> x == y -> A module Semantics (B : Set) (elB : B) where ⟦_⟧t : Tp → Set ⟦_⟧c : Ctx → Set ⟦_⟧v : {Γ : Ctx} {τ : Tp} → τ ∈ Γ → ⟦ Γ ⟧c → ⟦ τ ⟧t ⟦_⟧ : {Γ : Ctx} {τ : Tp} → Γ ⊢ τ → ⟦ Γ ⟧c → ⟦ τ ⟧t sound : {Γ : Ctx} {τ : Tp} {e : Γ ⊢ τ} {e' : Γ ⊢ τ} → e ≡ e' → (γ : ⟦ Γ ⟧c) → ⟦ e ⟧ γ == ⟦ e' ⟧ γ ⟦ b ⟧t = B ⟦ τ1 ⇒ τ2 ⟧t = ⟦ τ1 ⟧t → ⟦ τ2 ⟧t ⟦ [] ⟧c = Unit ⟦ τ :: Γ ⟧c = ⟦ Γ ⟧c × ⟦ τ ⟧t ⟦_⟧v i0 γ = snd γ ⟦_⟧v (iS x) γ = ⟦ x ⟧v (fst γ) ⟦ c ⟧ γ = elB ⟦ v x ⟧ γ = ⟦ x ⟧v γ ⟦ lam e ⟧ γ = \ x → ⟦ e ⟧ (γ , x) ⟦ app e1 e2 ⟧ γ = ⟦ e1 ⟧ γ (⟦ e2 ⟧ γ) ⟦ (foo e1 e2 p) ⟧ γ = semfoo {!!} (⟦ e1 ⟧ γ) (⟦ e2 ⟧ γ) (sound {_} {_} {e1} {e2} p γ) ⟦_⟧s : {Γ Γ' : Ctx} → Γ ⊢c Γ' → ⟦ Γ ⟧c → ⟦ Γ' ⟧c ⟦_⟧s {Γ' = []} θ _ = <> ⟦_⟧s {Γ' = τ :: Γ'} (θ , e) γ = ⟦ θ ⟧s γ , ⟦ e ⟧ γ ⟦_⟧r : {Γ Γ' : Ctx} → Γ ⊇ Γ' → ⟦ Γ ⟧c → ⟦ Γ' ⟧c ⟦_⟧r {Γ' = []} θ _ = <> ⟦_⟧r {Γ' = τ :: Γ'} (θ , x) γ = ⟦ θ ⟧r γ , ⟦ x ⟧v γ interp-rename-var : {Γ' Γ : Ctx} {τ : Tp} (x : τ ∈ Γ) (θ : Γ' ⊇ Γ) → (γ' : ⟦ Γ' ⟧c) → ⟦ rename-var θ x ⟧v γ' == (⟦ x ⟧v (⟦ θ ⟧r γ')) interp-rename-var i0 θ γ' = Refl interp-rename-var (iS x) θ γ' = interp-rename-var x (fst θ) γ' interp-subst-var : {Γ' Γ : Ctx} {τ : Tp} (x : τ ∈ Γ) (θ : Γ' ⊢c Γ) → (γ' : ⟦ Γ' ⟧c) → ⟦ subst-var θ x ⟧ γ' == (⟦ x ⟧v (⟦ θ ⟧s γ')) interp-subst-var i0 θ γ' = Refl interp-subst-var (iS x) θ γ' = interp-subst-var x (fst θ) γ' interp-p· : {Γ : Ctx} {Γ' : Ctx} → (θ : Γ ⊇ Γ') → {τ : Tp} (γ' : _) → ⟦ p· θ {τ = τ} ⟧r γ' == ⟦ θ ⟧r (fst γ') interp-p· {Γ' = []} θ γ' = Refl interp-p· {Γ' = τ' :: Γ'} θ γ' = ap2 _,_ (interp-p· (fst θ) _) Refl interp-idr : {Γ : Ctx} (γ : _) → ⟦ idr {Γ} ⟧r γ == γ interp-idr {[]} γ = Refl interp-idr {x :: Γ} γ = ap (λ x₁ → x₁ , snd γ) (interp-idr (fst γ) ∘ interp-p· idr γ) interp-rename : {Γ' Γ : Ctx} {τ : Tp} (e : Γ ⊢ τ) (θ : Γ' ⊇ Γ) → (γ' : ⟦ Γ' ⟧c) → ⟦ rename θ e ⟧ γ' == (⟦ e ⟧ (⟦ θ ⟧r γ')) interp-rename c θ γ' = Refl interp-rename (v x) θ γ' = interp-rename-var x θ γ' interp-rename (lam e) θ γ' = λ= (λ x → ap ⟦ e ⟧ (ap2 _,_ (interp-p· θ (γ' , x)) Refl) ∘ interp-rename e (addvar-ren θ) (γ' , x)) interp-rename (app e e₁) θ γ' = ap2 (λ f x → f x) (interp-rename e θ γ') (interp-rename e₁ θ γ') interp-rename (foo e1 e2 p) Θ γ' = {!!} --interp-rename e1 Θ γ' interp-·rs : {Γ1 Γ2 Γ3 : Ctx} → (θ1 : Γ1 ⊇ Γ2) (θ2 : Γ2 ⊢c Γ3) (γ : _) → ⟦ θ1 ·rs θ2 ⟧s γ == ⟦ θ2 ⟧s (⟦ θ1 ⟧r γ) interp-·rs {Γ3 = []} θ1 θ2 γ = Refl interp-·rs {Γ3 = τ :: Γ3} θ1 (θ2 , e) γ = ap2 _,_ (interp-·rs θ1 θ2 γ) (interp-rename e θ1 γ) interp-subst : {Γ' Γ : Ctx} {τ : Tp} (e : Γ ⊢ τ) (θ : Γ' ⊢c Γ) → (γ' : ⟦ Γ' ⟧c) → ⟦ subst θ e ⟧ γ' == (⟦ e ⟧ (⟦ θ ⟧s γ')) interp-subst c θ γ' = Refl interp-subst (v x) θ γ' = interp-subst-var x θ γ' interp-subst (lam e) θ γ' = λ= (λ x → ap (λ h → ⟦ e ⟧ (h , x)) (ap ⟦ θ ⟧s (interp-idr γ' ∘ interp-p· idr (γ' , x)) ∘ interp-·rs (p· idr) θ _) ∘ interp-subst e (addvar θ) (γ' , x)) interp-subst (app e e₁) θ γ' = ap2 (λ f x → f x) (interp-subst e θ γ') (interp-subst e₁ θ γ') interp-subst (foo e1 e2 p) Θ γ' = {!!} --interp-subst e1 Θ γ' interp-·ss : {Γ1 Γ2 Γ3 : Ctx} → (θ1 : Γ1 ⊢c Γ2) (θ2 : Γ2 ⊢c Γ3) (γ : _) → ⟦ θ1 ·ss θ2 ⟧s γ == ⟦ θ2 ⟧s (⟦ θ1 ⟧s γ) interp-·ss {Γ3 = []} θ1 θ2 γ = Refl interp-·ss {Γ3 = τ :: Γ3} θ1 (θ2 , e) γ = ap2 _,_ (interp-·ss θ1 θ2 γ) (interp-subst e θ1 γ) interp-ids : ∀ {Γ} (γ : _) → ⟦ ids {Γ} ⟧s γ == γ interp-ids {[]} γ = Refl interp-ids {τ :: Γ} γ = ap (λ x → x , snd γ) (((interp-idr (fst γ) ∘ interp-p· idr γ) ∘ interp-ids (⟦ p ⟧r γ)) ∘ interp-·rs p ids γ) sound (CongApp D D') γ = ap2 (λ f x → f x) (sound D γ) (sound D' γ) sound (CongLam D) γ = λ= (λ x → sound D (γ , x)) sound {e' = e'} SubstId γ = ap ⟦ e' ⟧ (interp-ids γ) ∘ interp-subst e' ids γ sound (SubstComp {θ' = θ'}{θ}{e = e}) γ = ((! (interp-subst e _ γ) ∘ ap ⟦ e ⟧ (! (interp-·ss θ' θ γ))) ∘ interp-subst e θ (⟦ θ' ⟧s γ)) ∘ interp-subst (subst θ e) θ' γ sound (Stepβ {e = e} {e1 = e1}) γ = ! (interp-subst e (ids , e1) γ) ∘ ap (λ x → ⟦ e ⟧ (x , ⟦ e1 ⟧ γ)) (! (interp-ids γ)) sound Refl γ = Refl sound (Trans D D₁) γ = sound D₁ γ ∘ sound D γ sound {Γ'} (SubstCong {Γ} {τ} {Θ} {e1} {e2} D) γ = {!!} --(! (interp-subst e2 Θ γ) ∘ sound D (⟦ Θ ⟧s γ)) ∘ interp-subst e1 Θ γ sound {Γ'} (RenCong {Γ} {τ} {ρ} {e1} {e2} D) γ = {!!} --(! (interp-rename e2 ρ γ) ∘ sound D (⟦ ρ ⟧r γ)) ∘ interp-rename e1 ρ γ
39.614035
183
0.428587
0ea50eb6b8a72066b86a7ef6eef57811e94d5402
1,123
agda
Agda
test/asset/agda-stdlib-1.0/Relation/Binary/Properties/Preorder.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Relation/Binary/Properties/Preorder.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Relation/Binary/Properties/Preorder.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties satisfied by preorders ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary module Relation.Binary.Properties.Preorder {p₁ p₂ p₃} (P : Preorder p₁ p₂ p₃) where open import Function open import Data.Product as Prod open Relation.Binary.Preorder P -- The inverse relation is also a preorder. invIsPreorder : IsPreorder _≈_ (flip _∼_) invIsPreorder = record { isEquivalence = isEquivalence ; reflexive = reflexive ∘ Eq.sym ; trans = flip trans } invPreorder : Preorder p₁ p₂ p₃ invPreorder = record { isPreorder = invIsPreorder } ------------------------------------------------------------------------ -- For every preorder there is an induced equivalence InducedEquivalence : Setoid _ _ InducedEquivalence = record { _≈_ = λ x y → x ∼ y × y ∼ x ; isEquivalence = record { refl = (refl , refl) ; sym = swap ; trans = Prod.zip trans (flip trans) } }
26.116279
72
0.541407
dfa47df508347623f043c85e164179fa4cc5b51b
5,986
agda
Agda
examples/outdated-and-incorrect/DTP08/conor/Talk.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
1
2018-10-10T17:08:44.000Z
2018-10-10T17:08:44.000Z
examples/outdated-and-incorrect/DTP08/conor/Talk.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
examples/outdated-and-incorrect/DTP08/conor/Talk.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
1
2022-03-12T11:35:18.000Z
2022-03-12T11:35:18.000Z
{-# OPTIONS --no-positivity-check #-} {- Data, Deliberately Conor McBride Workshop in Dependently Typed Programming Nottingham, 2008 (Agda rendering by Ulf Norell) -} module Talk where open import SomeBasicStuff -- Codes for (first order) inductive families. data Code (I : Set) : Set1 where arg : (A : Set) -> (A -> Code I) -> Code I rec : I -> Code I -> Code I out : I -> Code I -- The semantics of a code is a functor. ⟦_⟧ : {I : Set} -> Code I -> (I -> Set) -> I -> Set ⟦ out i ⟧ X j = i == j ⟦ arg A B ⟧ X j = Σ A \a -> ⟦ B a ⟧ X j ⟦ rec i C ⟧ X j = X i × ⟦ C ⟧ X j map : {I : Set}{X Y : I -> Set}(C : Code I) -> ({i : I} -> X i -> Y i) -> {i : I} -> ⟦ C ⟧ X i -> ⟦ C ⟧ Y i map (out i) f x = x map (arg A B) f (a , b) = a , map (B a) f b map (rec i C) f (a , b) = f a , map C f b -- Tying the recursive knot. The positivity checker won't spot that -- ⟦ C ⟧ X i is strictly positive i X, so we've switched it off. data μ {I : Set}(C : Code I) : I -> Set where <_> : forall {i} -> ⟦ C ⟧ (μ C) i -> μ C i -- Who needs a primitive case-construct anyway? case_of_ : {A : Set1}{ts : Enumeration} -> Enum ts -> Table A ts -> A case t of tbl = lookup tbl t -- The code for lists `List` : Set -> Code True `List` X = arg _ \t -> case t of "nil" ↦ out _ ∣ "cons" ↦ arg X (\_ -> rec _ (out _)) ∣ [] -- The actual list type List : Set -> Set List A = μ (`List` A) _ -- We can define the code for vectors directly. However, the point is -- that we won't have to. `VecD` : Set -> Code Nat `VecD` X = arg _ \t -> case t of "nil" ↦ out zero ∣ "cons" ↦ ( arg Nat \n -> arg X \_ -> rec n (out (suc n)) ) ∣ [] -- An ornamentation of a datatype adds some new indexing. data Orn {I : Set}(J : I -> Set) : Code I -> Set1 where arg : forall {A B} -> ((a : A) -> Orn J (B a)) -> Orn J (arg A B) rec : forall {i C} -> J i -> Orn J C -> Orn J (rec i C) out : forall {i} -> J i -> Orn J (out i) new : forall {C} -> (A : Set) -> (A -> Orn J C) -> Orn J C -- An ornamented datatype is indexed by pairs of the old and the new index. orn : {I : Set}{J : I -> Set}{C : Code I} -> Orn J C -> Code (Σ I J) orn (out j) = out (_ , j) orn (arg B) = arg _ \a -> orn (B a) orn (new A B) = arg A \a -> orn (B a) orn (rec j C) = rec (_ , j) (orn C) -- We can forget the ornamentation and recover an element of the original type. forget' : {I : Set}{J : I -> Set}{C : Code I}{i : I}{j : J i} {X : Σ I J -> Set}{Y : I -> Set} -> ({i : I}{j : J i} -> X (i , j) -> Y i) -> (ΔC : Orn J C) -> ⟦ orn ΔC ⟧ X (i , j) -> ⟦ C ⟧ Y i forget' φ (out j) refl = refl forget' φ (arg B) (a , b) = a , forget' φ (B a) b forget' φ (new A B) (a , b) = forget' φ (B a) b forget' φ (rec j C) (a , b) = φ a , forget' φ C b -- The termination checker runs into the same problem as the positivity -- checker--it can't tell that forget' φ C x is only applying φ to -- things smaller than x. forget : {I : Set}{J : I -> Set}{C : Code I}{i : I}{j : J i} (ΔC : Orn J C) -> μ (orn ΔC) (i , j) -> μ C i forget ΔC < x > = < forget' (forget ΔC) ΔC x > -- A C-algebra over X takes us from ⟦ C ⟧ X i to X i. Alg : {I : Set} -> Code I -> (I -> Set) -> Set Alg C X = forall i -> ⟦ C ⟧ X i -> X i -- We can fold by an algebra. fold : {I : Set}{X : I -> Set}{C : Code I} -> Alg C X -> {i : I} -> μ C i -> X i fold {C = C} φ < x > = φ _ (map C (fold φ) x) -- A type can be ornamented an arbitrary algebra over its functor. decorate : {I : Set}{X : I -> Set}(C : Code I) (φ : Alg C X) -> Orn X C decorate (out i) φ = out (φ i refl) decorate (arg A B) φ = arg \a -> decorate (B a) (\i b -> φ i (a , b)) decorate {X = X} (rec i C) φ = new (X i) \x -> rec x (decorate C \i b -> φ i (x , b)) -- Main theorem: If you have an element in a type decorated by φ, you -- can recover forgotten decorations by folding with φ. Specialised to -- lists and vectors we get -- ∀ xs : Vec A n. length (forget xs) == n. -- Two-level definition as usual. thm' : {I : Set}{X J : I -> Set}{Y : Σ I J -> Set} (C : Code I){i : I}{j : J i}(φ : Alg C J) (F : {i : I} -> X i -> J i) (ψ : {i : I}{j : J i} -> Y (i , j) -> X i) -> ({i : I}{j : J i}(z : Y (i , j)) -> F (ψ z) == j) -> let ΔC = decorate C φ in (x : ⟦ orn ΔC ⟧ Y (i , j)) -> φ i (map C F (forget' ψ ΔC x)) == j thm' (out i) φ F ψ ih refl = refl thm' (arg A B) φ F ψ ih (a , b) = thm' (B a) (\i b -> φ i (a , b)) F ψ ih b thm' (rec i C) {i = i0}{j = j0} φ F ψ ih (j , x , c) with F (ψ x) | ih x | thm' C (\i b -> φ i (j , b)) F ψ ih c ... | .j | refl | rest = rest thm : {I : Set}{J : I -> Set}(C : Code I){i : I}{j : J i}(φ : Alg C J) -> (x : μ (orn (decorate C φ)) (i , j)) -> fold φ (forget (decorate C φ) x) == j thm C φ < x > = thm' C φ (fold φ) (forget (decorate C φ)) (thm C φ) x -- Vectors as decorated lists. lengthAlg : {A : Set} -> Alg (`List` A) (\_ -> Nat) lengthAlg _ (enum ."nil" zero , _) = zero lengthAlg _ (enum ."cons" (suc zero) , x , n , _) = suc n lengthAlg _ (enum _ (suc (suc ())) , _) length : {A : Set} -> List A -> Nat length = fold lengthAlg -- Now vectors are really lists decorated by their length. `Vec` : (A : Set) -> Orn (\_ -> Nat) (`List` A) `Vec` A = decorate (`List` A) lengthAlg Vec : Set -> Nat -> Set Vec A n = μ (orn (`Vec` A)) (_ , n) nil : {A : Set} -> Vec A zero nil = < enum "nil" zero , refl > cons : {A : Set}{n : Nat} -> A -> Vec A n -> Vec A (suc n) cons {n = n} x xs = < enum "cons" (suc zero) , x , n , xs , refl > -- The proof that the index of the vector is really the length follows directly -- from our main theorem. corollary : {A : Set}{n : Nat}(xs : Vec A n) -> length (forget (`Vec` _) xs) == n corollary = thm (`List` _) lengthAlg
35.211765
85
0.500501
cb7eb240a05495163dcfb40d799d4d1ab8d78fa2
6,597
agda
Agda
benchmark/monad/MonadPostulates.agda
alex-mckenna/agda
78b62cd24bbd570271a7153e44ad280e52ef3e29
[ "BSD-3-Clause" ]
1
2016-03-17T01:45:59.000Z
2016-03-17T01:45:59.000Z
benchmark/monad/MonadPostulates.agda
andersk/agda
56928ff709dcb931cb9a48c4790e5ed3739e3032
[ "BSD-3-Clause" ]
null
null
null
benchmark/monad/MonadPostulates.agda
andersk/agda
56928ff709dcb931cb9a48c4790e5ed3739e3032
[ "BSD-3-Clause" ]
1
2019-03-05T20:02:38.000Z
2019-03-05T20:02:38.000Z
------------------------------------------------------------------------ -- Parser monad ------------------------------------------------------------------------ open import Relation.Binary open import Relation.Binary.OrderMorphism open import Relation.Binary.PropositionalEquality import Relation.Binary.Properties.StrictTotalOrder as STOProps open import Data.Product open import Level module MonadPostulates where postulate -- Input string positions. Position : Set _<P_ : Rel Position zero posOrdered : IsStrictTotalOrder _≡_ _<P_ -- Input strings. Input : Position -> Set -- In order to be able to store results in a memo table (and avoid -- having to lift the table code to Set1) the result types have to -- come from the following universe: Result : Set ⟦_⟧ : Result -> Set -- Memoisation keys. These keys must uniquely identify the -- computation that they are associated with, when paired up with -- the current input string position. Key : let PosPoset = STOProps.poset (record { Carrier = _ ; _≈_ = _; _<_ = _ ; isStrictTotalOrder = posOrdered }) MonoFun = PosPoset ⇒-Poset PosPoset in MonoFun -> Result -> Set _≈'_ _<_ : Rel (∃₂ Key) zero keyOrdered : IsStrictTotalOrder _≈'_ _<_ -- Furthermore the underlying equality needs to be strong enough. funsEqual : _≈'_ =[ proj₁ ]⇒ _≡_ resultsEqual : _≈'_ =[ (\rfk -> proj₁ (proj₂ rfk)) ]⇒ _≡_ -- where open _⇒-Poset_ open STOProps (record { Carrier = _ ; _≈_ = _; _<_ = _ ; isStrictTotalOrder = posOrdered }) import IndexedMap as Map -- renaming (Map to MemoTable) open import Category.Monad open import Category.Monad.State import Data.List as List; open List using (List) open import Data.Unit hiding (poset; _≤_) open import Function open import Data.Maybe hiding (Eq) open import Data.Product.Relation.Lex.Strict open import Data.Product.Relation.Pointwise.NonDependent import Relation.Binary.On as On ------------------------------------------------------------------------ -- Monotone functions MonoFun : Set MonoFun = poset ⇒-Poset poset ------------------------------------------------------------------------ -- Memo tables -- Indices and keys used by the memo table. Index : Set Index = Position × MonoFun × Result data MemoTableKey : Index -> Set where key : forall {f r} (key : Key f r) pos -> MemoTableKey (pos , f , r) -- Input strings of a certain maximum length. Input≤ : Position -> Set Input≤ pos = ∃ \pos′ -> pos′ ≤ pos × Input pos′ -- Memo table values. Value : Index -> Set Value (pos , f , r) = List (⟦ r ⟧ × Input≤ (fun f pos)) -- Shuffles the elements to simplify defining equality and order -- relations for the keys. shuffle : ∃ MemoTableKey -> Position × ∃₂ Key shuffle ((pos , f , r) , key k .pos) = (pos , f , r , k) -- Equality and order. Eq : Rel (∃ MemoTableKey) _ Eq = Pointwise _≡_ _≈'_ on shuffle Lt : Rel (∃ MemoTableKey) _ Lt = ×-Lex _≡_ _<P_ _<_ on shuffle isOrdered : IsStrictTotalOrder Eq Lt isOrdered = On.isStrictTotalOrder shuffle (×-isStrictTotalOrder posOrdered keyOrdered) indicesEqual′ : Eq =[ proj₁ ]⇒ _≡_ indicesEqual′ {((_ , _ , _) , key _ ._)} {((_ , _ , _) , key _ ._)} (eq₁ , eq₂) = cong₂ _,_ eq₁ (cong₂ _,_ (funsEqual eq₂) (resultsEqual eq₂)) open Map isOrdered (\{k₁} {k₂} -> indicesEqual′ {k₁} {k₂}) Value {- ------------------------------------------------------------------------ -- Parser monad -- The parser monad is built upon a list monad, for backtracking, and -- two state monads. One of the state monads stores a memo table, and -- is unaffected by backtracking. The other state monad, which /is/ -- affected by backtracking, stores the remaining input string. -- The memo table state monad. module MemoState = RawMonadState (StateMonadState MemoTable) -- The list monad. module List = RawMonadPlus List.ListMonadPlus -- The inner monad (memo table plus list). module IM where Inner : Set -> Set Inner R = State MemoTable (List R) InnerMonadPlus : RawMonadPlus Inner InnerMonadPlus = record { monadZero = record { monad = record { return = \x -> return (List.return x) ; _>>=_ = \m f -> List.concat <$> (List.mapM monad f =<< m) } ; ∅ = return List.∅ } ; _∣_ = \m₁ m₂ -> List._∣_ <$> m₁ ⊛ m₂ } where open MemoState InnerMonadState : RawMonadState MemoTable Inner InnerMonadState = record { monad = RawMonadPlus.monad InnerMonadPlus ; get = List.return <$> get ; put = \s -> List.return <$> put s } where open MemoState open RawMonadPlus InnerMonadPlus public open RawMonadState InnerMonadState public using (get; put; modify) -- The complete parser monad. module PM where P : MonoFun -> Set -> Set P f A = forall {n} -> Input n -> IM.Inner (A × Input≤ (fun f n)) -- Memoises the computation, assuming that the key is sufficiently -- unique. memoise : forall {f r} -> Key f r -> P f ⟦ r ⟧ -> P f ⟦ r ⟧ memoise k p {pos} xs = let open IM in helper =<< lookup k′ <$> get where i = (pos , _) k′ : MemoTableKey i k′ = key k pos helper : Maybe (Value i) -> State MemoTable (Value i) helper (just ris) = return ris where open MemoState helper nothing = p xs >>= \ris -> modify (insert k′ ris) >> return ris where open MemoState -- Other monadic operations. return : forall {A} -> A -> P idM A return a = \xs -> IM.return (a , _ , refl , xs) _>>=_ : forall {A B f g} -> P f A -> (A -> P g B) -> P (g ∘M f) B _>>=_ {g = g} m₁ m₂ xs = m₁ xs ⟨ IM._>>=_ ⟩ \ays -> let a = proj₁ ays le = proj₁ $ proj₂ $ proj₂ ays ys = proj₂ $ proj₂ $ proj₂ ays in fix le ⟨ IM._<$>_ ⟩ m₂ a ys where lemma : forall {i j k} -> j ≤ k -> i ≤ fun g j -> i ≤ fun g k lemma j≤k i≤gj = trans i≤gj (monotone g j≤k) fix : forall {A i j} -> i ≤ j -> A × Input≤ (fun g i) -> A × Input≤ (fun g j) fix le = map-× id (map-Σ id (map-× (lemma le) id)) ∅ : forall {A} -> P idM A ∅ = const IM.∅ _∣_ : forall {A f} -> P f A -> P f A -> P f A m₁ ∣ m₂ = \xs -> IM._∣_ (m₁ xs) (m₂ xs) put : forall {n} -> Input n -> P (constM n) ⊤ put xs = \_ -> IM.return (_ , _ , refl , xs) modify : forall {A f} -> (forall {n} -> Input n -> A × Input (fun f n)) -> P f A modify g xs = IM.return (proj₁ gxs , _ , refl , proj₂ gxs) where gxs = g xs -}
28.682609
72
0.576929
39944a3437468127a76da36bdc6b24df553b4319
1,416
agda
Agda
src/Example.agda
notogawa/agda-haskell-example
9ad77d2aed8f950151e009135a9dfc02bc32ce65
[ "BSD-3-Clause" ]
5
2015-07-28T05:04:58.000Z
2017-11-07T01:35:46.000Z
src/Example.agda
notogawa/agda-haskell-example
9ad77d2aed8f950151e009135a9dfc02bc32ce65
[ "BSD-3-Clause" ]
null
null
null
src/Example.agda
notogawa/agda-haskell-example
9ad77d2aed8f950151e009135a9dfc02bc32ce65
[ "BSD-3-Clause" ]
null
null
null
module Example where open import Data.List -- reverse rev : ∀ {a} {A : Set a} → List A → List A rev [] = [] rev (x ∷ xs) = rev xs ++ [ x ] -- https://code.google.com/p/agda/issues/detail?id=1252 暫定対策 rev' = rev {-# COMPILED_EXPORT rev' rev' #-} private open import Relation.Binary.PropositionalEquality -- reverse2回で元に戻る証明 lemma : ∀ {a} {A : Set a} (x : A) (xs : List A) → rev (xs ∷ʳ x) ≡ x ∷ rev xs lemma x [] = refl lemma x (_ ∷ xs) rewrite lemma x xs = refl revrev-is-id : ∀ {a} {A : Set a} (xs : List A) → rev (rev xs) ≡ xs revrev-is-id [] = refl revrev-is-id (x ∷ xs) rewrite lemma x (rev xs) | revrev-is-id xs = refl open import Data.Empty head : ∀ {a} {A : Set a} (xs : List A) → {xs≢[] : xs ≢ []} → A head [] {xs≠[]} = ⊥-elim (xs≠[] refl) head (x ∷ xs) = x {- {-# COMPILED_EXPORT head safeHead' #-} -- エラーになる -- The type _≡_ cannot be translated to a Haskell type. -- when checking the pragma COMPILED_EXPORT head' safeHead -- -- つまり,証明オブジェクトを取るような関数は, -- そのままではCOMPILED_EXPORTできないことが多い -} open import Data.Maybe head' : ∀ {a} {A : Set a} (xs : List A) → Maybe A head' = go where go : ∀ {a} {A : Set a} (xs : List A) → Maybe A go [] = nothing go (x ∷ xs) = just (head (x ∷ xs) {λ ()}) {-# COMPILED_EXPORT head' safeHead' #-} -- つまり,安全なheadを使うには, -- 安全なものだけ渡せるようにしてjustで結果が得られ, -- それ以外についてはnothingになるように, -- 適切にラップしないとCOMPILED_EXPORTできない.
24.413793
78
0.591808
4d46e5f5ca856fb3e0792e1fb92a1f63bf57f377
5,463
agda
Agda
README/DependentlyTyped/NBE/Weakening.agda
nad/dependently-typed-syntax
498f8aefc570f7815fd1d6616508eeb92c52abce
[ "MIT" ]
5
2020-04-16T12:14:44.000Z
2020-07-08T22:51:36.000Z
README/DependentlyTyped/NBE/Weakening.agda
nad/dependently-typed-syntax
498f8aefc570f7815fd1d6616508eeb92c52abce
[ "MIT" ]
null
null
null
README/DependentlyTyped/NBE/Weakening.agda
nad/dependently-typed-syntax
498f8aefc570f7815fd1d6616508eeb92c52abce
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- Weakening for the NBE values ------------------------------------------------------------------------ import Axiom.Extensionality.Propositional as E import Level open import Data.Universe -- The code makes use of the assumption that propositional equality of -- functions is extensional. module README.DependentlyTyped.NBE.Weakening (Uni₀ : Universe Level.zero Level.zero) (ext : E.Extensionality Level.zero Level.zero) where open import Data.Product renaming (curry to c) open import deBruijn.Substitution.Data open import Function.Base hiding (_∋_) import README.DependentlyTyped.NBE.Value as Value open Value Uni₀ renaming ([_] to [̌_]) import README.DependentlyTyped.NormalForm as NF open NF Uni₀ renaming ([_] to [_]n) import README.DependentlyTyped.NormalForm.Substitution as NFS open NFS Uni₀ import README.DependentlyTyped.Term as Term; open Term Uni₀ import Relation.Binary.PropositionalEquality as P open P.≡-Reasoning mutual -- Weakening. w̌k[_] : ∀ {Γ} σ τ → V̌alue Γ τ → V̌alue (Γ ▻ σ) (τ /̂ ŵk) w̌k[ _ ] (⋆ , τ) t = t /⊢n Renaming.wk w̌k[ _ ] (el , τ) [ t ]el = [ t /⊢n Renaming.wk ]el w̌k[ σ ] (π _ _ , τ) f = (λ Γ₊ → proj₁ f (σ ◅ Γ₊)) , w̌k-π-well-behaved τ f w̌k : ∀ {Γ σ} τ → V̌alue Γ τ → V̌alue (Γ ▻ σ) (τ /̂ ŵk) w̌k τ v = w̌k[ _ ] τ v abstract -- The Π case of weakening is well-behaved. w̌k-π-well-behaved : ∀ {Γ σ sp₁ sp₂} τ (f : V̌alue Γ (π sp₁ sp₂ , τ)) → W̌ell-behaved sp₁ sp₂ (τ /̂I ŵk) (λ Γ₊ → proj₁ f (σ ◅ Γ₊)) w̌k-π-well-behaved {σ = σ} τ f Γ₊ v = let lemma = begin [ ⟦̌ τ /̂I ŵk ∣ (λ Γ₊ → proj₁ f (σ ◅ Γ₊)) ⟧-π /̂Val ŵk₊ Γ₊ ] ≡⟨ /̂Val-cong (P.sym $ w̌eaken-corresponds-π τ f) P.refl ⟩ [ ⟦̌_⟧ {σ = τ} f /̂Val ŵk[ σ ] /̂Val ŵk₊ Γ₊ ] ≡⟨ P.refl ⟩ [ ⟦̌ τ ∣ proj₁ f ⟧-π /̂Val ŵk₊ (σ ◅ Γ₊) ] ∎ in begin [ (⟦̌ τ /̂I ŵk ∣ (λ Γ₊ → proj₁ f (σ ◅ Γ₊)) ⟧-π /̂Val ŵk₊ Γ₊ ) ˢ ⟦̌ v ⟧ ] ≡⟨ ˢ-cong lemma P.refl ⟩ [ (⟦̌ τ ∣ proj₁ f ⟧-π /̂Val ŵk₊ (σ ◅ Γ₊)) ˢ ⟦̌ v ⟧ ] ≡⟨ proj₂ f (σ ◅ Γ₊) v ⟩ [ ⟦̌ proj₁ f (σ ◅ Γ₊) v ⟧ ] ∎ -- The Π case of weakening weakens. w̌eaken-corresponds-π : ∀ {Γ σ sp₁ sp₂} τ (f : V̌alue Γ (π sp₁ sp₂ , τ)) → ⟦̌_⟧ {σ = τ} f /̂Val ŵk[ σ ] ≅-Value ⟦̌ τ /̂I ŵk ∣ (λ Γ₊ → proj₁ f (σ ◅ Γ₊)) ⟧-π w̌eaken-corresponds-π {σ = σ} τ f = let f̌ = ⟦̌_⟧ {σ = τ} f in begin [ f̌ /̂Val ŵk[ σ ] ] ≡⟨ P.refl ⟩ [ c ((f̌ /̂Val ŵk₊ (σ ◅ fst τ /̂ ŵk ◅ ε)) ˢ lookup zero) ] ≡⟨ curry-cong $ ˢ-cong (P.refl {x = [ f̌ /̂Val ŵk₊ (σ ◅ fst τ /̂ ŵk ◅ ε) ]}) (P.sym $ ňeutral-to-normal-identity _ _) ⟩ [ c ((f̌ /̂Val ŵk₊ (σ ◅ fst τ /̂ ŵk ◅ ε)) ˢ ⟦ žero _ _ ⟧n) ] ≡⟨ curry-cong $ proj₂ f (σ ◅ fst τ /̂ ŵk ◅ ε) _ ⟩ [ c ⟦̌ proj₁ f (σ ◅ fst τ /̂ ŵk ◅ ε) (řeflect _ (var zero)) ⟧ ] ≡⟨ P.sym $ unfold-⟦̌∣⟧-π (τ /̂I ŵk) (λ Γ₊ → proj₁ f (σ ◅ Γ₊)) ⟩ [ ⟦̌ τ /̂I ŵk ∣ (λ Γ₊ → proj₁ f (σ ◅ Γ₊)) ⟧-π ] ∎ -- Weakening. w̌eaken : ∀ {Γ} {σ : Type Γ} → [ V̌al ⟶ V̌al ] ŵk[ σ ] w̌eaken = record { function = w̌k ; corresponds = corr } where abstract -- Weakening weakens. corr : ∀ {Γ σ} τ (v : V̌alue Γ τ) → ⟦̌ v ⟧ /̂Val ŵk[ σ ] ≅-Value ⟦̌ w̌k[ σ ] τ v ⟧ corr (⋆ , τ) t = t /⊢n-lemma Renaming.wk corr (el , τ) [ t ]el = t /⊢n-lemma Renaming.wk corr (π sp₁ sp₂ , τ) f = w̌eaken-corresponds-π τ f -- Variables can be turned into values. v̌ar : [ Var ⟶⁼ V̌al ] v̌ar = record { function = λ _ x → řeflect _ (var x) ; corresponds = λ _ x → P.sym $ ňeutral-to-normal-identity _ (var x) } -- Values can be turned into terms. -- -- This definition uses the assumption that propositional equality of -- functions is extensional. I don't know how much work is required to -- avoid this assumption, or if it is even possible to do so. V̌al↦Tm : V̌al ↦ Tm V̌al↦Tm = record { trans = record { function = λ _ v → ⌊ řeify _ v ⌋ ; corresponds = λ _ _ → P.refl } ; simple = record { weaken = w̌eaken ; var = v̌ar ; weaken-var = w̌eaken-v̌ar _ } } where open Renaming hiding (var) abstract w̌eaken-v̌ar : ∀ {Γ σ} τ (x : Γ ∋ τ) → w̌k[ σ ] τ (v̌ar ⊙ x) ≅-V̌alue v̌ar ⊙ suc[ σ ] x w̌eaken-v̌ar (⋆ , τ) x = begin [̌ var (x /∋ wk) ] ≡⟨ ≅-⊢n-⇒-≅-Value-⋆ $ var-n-cong $ ≅-⊢-⇒-≅-∋ $ /∋-wk x ⟩ [̌ var (suc x) ] ∎ w̌eaken-v̌ar (el , τ) x = begin [̌ [ var (x /∋ wk) ]el ] ≡⟨ ≅-⊢n-⇒-≅-Value-el $ var-n-cong $ ≅-⊢-⇒-≅-∋ $ /∋-wk x ⟩ [̌ [ var (suc x) ]el ] ∎ w̌eaken-v̌ar {σ = σ} (π _ _ , τ) x = ,-cong ext λ Γ₊ v → begin [̌ řeflect _ ((var x /⊢n wk₊ (σ ◅ Γ₊)) · řeify _ v) ] ≡⟨ řeflect-cong $ ·n-cong (var-n-cong $ ≅-⊢-⇒-≅-∋ $ /∋-wk₊-◅ x Γ₊) (P.refl {x = [ řeify _ v ]n}) ⟩ [̌ řeflect _ ((var (suc x) /⊢n wk₊ Γ₊) · řeify _ v) ] ∎ module V̌al-subst = _↦_ V̌al↦Tm
38.202797
137
0.448655
12eda935fc1b7836dcd7ad8cfec55e5f5353cfdd
5,981
agda
Agda
test/epic/RunTests.agda
pthariensflame/agda
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
[ "BSD-3-Clause" ]
null
null
null
test/epic/RunTests.agda
pthariensflame/agda
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
[ "BSD-3-Clause" ]
null
null
null
test/epic/RunTests.agda
pthariensflame/agda
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
[ "BSD-3-Clause" ]
null
null
null
{-# OPTIONS --no-termination-check #-} module RunTests where open import Prelude.Bool open import Prelude.Char open import Prelude.Exit open import Prelude.IO open import Prelude.List open import Prelude.Nat open import Prelude.Product open import Prelude.String open import Prelude.Unit postulate Stream : Set popen : String -> String -> IO Stream pclose : Stream -> IO Unit readChar : Stream -> IO Char strLen : String -> Nat charAt : (s : String) -> Nat -> Char {-# COMPILED_EPIC popen (s : String, m : String, u : Unit) -> Ptr = foreign Ptr "popen" (s : String, m : String) #-} {-# COMPILED_EPIC pclose (s : Ptr, u : Unit) -> Unit = foreign Int "pclose" (s : Ptr) ; u #-} {-# COMPILED_EPIC readChar (s : Ptr, u : Unit) -> Int = foreign Int "fgetc" (s : Ptr) #-} {-# COMPILED_EPIC strLen (s : Any) -> BigInt = foreign BigInt "intToBig" (foreign Int "strlen" (s : String) : Int) #-} {-# COMPILED_EPIC charAt (s : Any, n : BigInt) -> Int = foreign Int "charAtBig" (s : String, n : BigInt) #-} _`_`_ : {A B C : Set}(x : A)(f : A -> B -> C)(y : B) -> C x ` f ` y = f x y infixr 9 _∘_ _∘_ : {A : Set}{B : A -> Set}{C : (x : A) -> B x -> Set} (f : {a : A}(b : B a)-> C a b) (g : (a : A) -> B a)(x : A) -> C x (g x) f ∘ g = λ x -> f (g x) infixr 1 _$_ _$_ : {A : Set}{B : A -> Set}(f : (x : A) -> B x)(x : A) -> B x f $ x = f x readStream : Stream -> IO (List Char) readStream stream = c <- readChar stream , if' charEq eof c then pclose stream ,, return [] else ( cs <- readStream stream , return (c :: cs) ) system : String -> IO (List Char) system s = putStrLn $ "running " +S+ s ,, x <- popen s "r" , y <- readStream x , return y span : {A : Set} -> (p : A -> Bool) -> List A -> List A × List A span p [] = [] , [] span p (a :: as) with p a ... | false = [] , a :: as ... | true with span p as ... | xs , ys = (a :: xs) , ys groupBy : {A : Set} -> (A -> A -> Bool) -> List A -> List (List A) groupBy _ [] = [] groupBy eq (x :: xs) with span (eq x) xs ... | ys , zs = (x :: ys) :: groupBy eq zs comparing : {A B : Set} -> (A -> B) -> (B -> B -> Bool) -> A -> A -> Bool comparing f _==_ x y = f x == f y FilePath : Set FilePath = String and : List Bool -> Bool and [] = true and (true :: xs) = and xs and (false :: _) = false sequence : {A : Set} -> List (IO A) -> IO (List A) sequence [] = return [] sequence (x :: xs) = r <- x , rs <- sequence xs , return (r :: rs) mapM : {A B : Set} -> (A -> IO B) -> List A -> IO (List B) mapM f xs = sequence (map f xs) printList : List Char -> IO Unit printList xs = mapM printChar xs ,, printChar '\n' printResult : FilePath -> List Char -> List Char -> IO Unit printResult filename l1 l2 with l1 ` listEq charEq ` l2 ... | true = putStrLn (filename +S+ ": Success!") ... | false = putStrLn (filename +S+ ": Fail!") ,, putStrLn "Expected:" ,, printList l2 ,, putStrLn "Got:" ,, printList l1 -- The environment variable `AGDA_BIN` is defined in the Makefile. compile : FilePath -> FilePath -> IO Unit compile dir file = agda-bin <- getEnv "AGDA_BIN" , system $ agda-bin +S+ " --epic --compile-dir=" +S+ dir +S+ "bin/ " +S+ dir +S+ file ,, return unit readFile : FilePath -> IO (List Char) readFile file = system $ "cat " +S+ file -- This won't work because of a bug in Epic... {- validFile : List Char -> Bool validFile f with span (not ∘ charEq '.') f ... | _ , ('.' :: 'a' :: 'g' :: 'd' :: 'a' :: []) = true ... | _ , ('.' :: 'o' :: 'u' :: 't' :: []) = true ... | _ = false -} stripFileEnding : FilePath -> FilePath stripFileEnding fp = fromList $ fst $ span (not ∘ charEq '.') (fromString fp) testFile : FilePath -> FilePath -> FilePath -> IO Bool testFile outdir agdafile outfile = compile outdir agdafile ,, out <- system $ outdir +S+ "bin/" +S+ stripFileEnding agdafile , expected <- readFile (outdir +S+ outfile) , printResult agdafile out expected ,, return (out ` listEq charEq ` expected) testFile' : FilePath -> List (List Char) -> IO Bool testFile' outdir (agdafile :: outfile :: _) = testFile outdir (fromList agdafile) (fromList outfile) testFile' _ _ = return true isNewline : Char -> Bool isNewline '\n' = true isNewline _ = false lines : List Char -> List (List Char) lines list with span (not ∘ isNewline) list ... | l , [] = l :: [] ... | l , _ :: s' = l :: lines s' getFiles : FilePath -> IO (List (List Char)) getFiles dir = out <- system $ "ls " +S+ dir , putStrLn "getFiles after ls" ,, -- mapM (printList ∘ snd) $ map (span (not ∘ charEq '.')) $ lines out ,, return $ lines out -- filter validFile $ lines out isDot : Char -> Bool isDot '.' = true isDot _ = false testFiles : FilePath -> IO Bool testFiles dir = files <- getFiles dir , putStrLn "Found the following files in the tests directory:" ,, mapM printList files ,, res <- mapM (testFile' dir) (groupBy (comparing (fst ∘ span (not ∘ isDot)) (listEq charEq)) files) , return $ and res getCurrentDirectory : IO FilePath getCurrentDirectory = fromList <$> system "pwd" main : IO Unit main = dir' <- getCurrentDirectory , putStrLn (fromList (fromString dir')) ,, putStrLn "hello" ,, putStrLn (fromList (tail ('h' :: 'e' :: 'j' :: []))) ,, printList (fromString "hej igen") ,, putStrLn (fromList (tail (fromString "hello"))) ,, dir <- fromList ∘ init ∘ fromString <$> getCurrentDirectory , putStrLn dir ,, system ("rm " +S+ dir +S+ "/tests/*.agdai") ,, res <- testFiles (dir +S+ "/tests/") , if res then ( putStrLn "All tests succeeded!" ,, exit exitSuccess ) else ( putStrLn "Not all tests succeeded" ,, exit exitFailure )
29.17561
102
0.552583
0ec8ab2e9f3fa2f75b1672bfcfe6f8f07a66cb99
3,998
agda
Agda
Groups/SymmetricGroups/Definition.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
4
2019-08-08T12:44:19.000Z
2022-01-28T06:04:15.000Z
Groups/SymmetricGroups/Definition.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
14
2019-01-06T21:11:59.000Z
2020-04-11T11:03:39.000Z
Groups/SymmetricGroups/Definition.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
1
2021-11-29T13:23:07.000Z
2021-11-29T13:23:07.000Z
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Setoids.Setoids open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) open import Groups.Definition open import Sets.EquivalenceRelations open import Setoids.Functions.Extension module Groups.SymmetricGroups.Definition where data SymmetryGroupElements {a b : _} {A : Set a} (S : Setoid {a} {b} A) : Set (a ⊔ b) where sym : {f : A → A} → SetoidBijection S S f → SymmetryGroupElements S symmetricSetoid : {a b : _} {A : Set a} (S : Setoid {a} {b} A) → Setoid (SymmetryGroupElements S) Setoid._∼_ (symmetricSetoid S) (sym {f} bijF) (sym {g} bijG) = ExtensionallyEqual {S = S} {S} (SetoidBijection.wellDefined bijF) (SetoidBijection.wellDefined bijG) Equivalence.reflexive (Setoid.eq (symmetricSetoid S)) {sym {f} bijF} = extensionallyEqualReflexive S S f (SetoidBijection.wellDefined bijF) (SetoidBijection.wellDefined bijF) Equivalence.symmetric (Setoid.eq (symmetricSetoid S)) {sym {f} bijF} {sym {g} bijG} f~g = extensionallyEqualSymmetric S S f g (SetoidBijection.wellDefined bijF) (SetoidBijection.wellDefined bijG) f~g Equivalence.transitive (Setoid.eq (symmetricSetoid S)) {sym {f} bijF} {sym {g} bijG} {sym {h} bijH} f~g g~h = extensionallyEqualTransitive S S f g h (SetoidBijection.wellDefined bijF) (SetoidBijection.wellDefined bijG) (SetoidBijection.wellDefined bijH) f~g g~h symmetricGroupOp : {a b : _} {A : Set a} {S : Setoid {a} {b} A} (f g : SymmetryGroupElements S) → SymmetryGroupElements S symmetricGroupOp (sym {f} bijF) (sym {g} bijG) = sym (setoidBijComp bijG bijF) symmetricGroupInv : {a b : _} {A : Set a} (S : Setoid {a} {b} A) → SymmetryGroupElements S → SymmetryGroupElements S symmetricGroupInv S (sym {f} bijF) with setoidBijectiveImpliesInvertible bijF ... | record { inverse = inverse ; inverseWellDefined = iwd ; isLeft = isLeft ; isRight = isRight } = sym (setoidInvertibleImpliesBijective (record { fWellDefined = iwd ; inverse = f ; inverseWellDefined = SetoidInjection.wellDefined (SetoidBijection.inj bijF) ; isLeft = λ b → isRight b ; isRight = λ b → isLeft b })) symmetricGroupInvIsLeft : {a b : _} {A : Set a} (S : Setoid {a} {b} A) → {x : SymmetryGroupElements S} → Setoid._∼_ (symmetricSetoid S) (symmetricGroupOp (symmetricGroupInv S x) x) (sym setoidIdIsBijective) symmetricGroupInvIsLeft {A = A} S {sym {f = f} fBij} = ans where ans : {x : A} → Setoid._∼_ S (SetoidInvertible.inverse (setoidBijectiveImpliesInvertible fBij) (f x)) x ans {x} with SetoidSurjection.surjective (SetoidBijection.surj fBij) {f x} ans {x} | a , b = SetoidInjection.injective (SetoidBijection.inj fBij) b symmetricGroupInvIsRight : {a b : _} {A : Set a} (S : Setoid {a} {b} A) → {x : SymmetryGroupElements S} → Setoid._∼_ (symmetricSetoid S) (symmetricGroupOp x (symmetricGroupInv S x)) (sym setoidIdIsBijective) symmetricGroupInvIsRight {A = A} S {sym {f = f} fBij} = ans where ans : {x : A} → Setoid._∼_ S (f (SetoidInvertible.inverse (setoidBijectiveImpliesInvertible fBij) x)) x ans {x} with SetoidSurjection.surjective (SetoidBijection.surj fBij) {x} ans {x} | a , b = b symmetricGroup : {a b : _} {A : Set a} (S : Setoid {a} {b} A) → Group (symmetricSetoid S) (symmetricGroupOp {A = A}) Group.+WellDefined (symmetricGroup A) {sym {m} bijM} {sym {n} bijN} {sym {x} bijX} {sym {y} bijY} m~x n~y = transitive m~x (SetoidBijection.wellDefined bijX n~y) where open Equivalence (Setoid.eq A) Group.0G (symmetricGroup A) = sym setoidIdIsBijective Group.inverse (symmetricGroup S) = symmetricGroupInv S Group.+Associative (symmetricGroup A) {sym {f} bijF} {sym {g} bijG} {sym {h} bijH} = Equivalence.reflexive (Setoid.eq A) Group.identRight (symmetricGroup A) {sym {f} bijF} = Equivalence.reflexive (Setoid.eq A) Group.identLeft (symmetricGroup A) {sym {f} bijF} = Equivalence.reflexive (Setoid.eq A) Group.invLeft (symmetricGroup S) {x} = symmetricGroupInvIsLeft S {x} Group.invRight (symmetricGroup S) {x} = symmetricGroupInvIsRight S {x}
75.433962
318
0.721111
12744016e01bd9a8a2af7221dbdc1425cedd567a
11,411
agda
Agda
src/Fragment/Tactic/Fragment.agda
yallop/agda-fragment
f2a6b1cf4bc95214bd075a155012f84c593b9496
[ "MIT" ]
18
2021-06-15T15:45:39.000Z
2022-01-17T17:26:09.000Z
src/Fragment/Tactic/Fragment.agda
yallop/agda-fragment
f2a6b1cf4bc95214bd075a155012f84c593b9496
[ "MIT" ]
1
2021-06-16T09:44:31.000Z
2021-06-16T10:24:15.000Z
src/Fragment/Tactic/Fragment.agda
yallop/agda-fragment
f2a6b1cf4bc95214bd075a155012f84c593b9496
[ "MIT" ]
3
2021-06-15T15:34:50.000Z
2021-06-16T08:04:31.000Z
{-# OPTIONS --without-K --safe #-} module Fragment.Tactic.Fragment where open import Reflection hiding (name; Type; _≟_) open import Reflection.Term using (_≟_) open import Level using (_⊔_) open import Relation.Binary using (Setoid) open import Data.Bool using (Bool; _∨_; true; false; if_then_else_) open import Data.Nat using (ℕ) open import Data.List using (List; []; _∷_; map; sum; length) open import Data.Vec using (fromList) open import Data.Product using (_×_; _,_) open import Data.Unit using (⊤; tt) open import Data.String using (String; _++_) open import Data.Maybe using (Maybe; just; nothing) open import Fragment.Tactic.Utils open import Fragment.Equational.Theory open import Fragment.Equational.Model open import Fragment.Equational.FreeExtension hiding (reduce) open import Fragment.Algebra.Signature import Fragment.Algebra.Free as Free read-goal : List (Arg Term) → TC (Term × List (Arg Term)) read-goal (vArg x ∷ xs) = return (x , xs) read-goal (_ ∷ xs) = read-goal xs read-goal [] = typeError (strErr "failed to read goal" ∷ []) read-goals : List (Arg Term) → TC (Term × Term) read-goals xs = do (fst , xs) ← read-goal xs (snd , _) ← read-goal xs return (fst , snd) extract-goals : Term → TC (Term × Term) extract-goals (var _ args) = read-goals args extract-goals (con _ args) = read-goals args extract-goals (def _ args) = read-goals args extract-goals (meta _ args) = read-goals args extract-goals t = typeError (strErr "can't read goals from" ∷ termErr t ∷ []) record Operator : Set where constructor operator field name : Name normalised : Term arity : ℕ open Operator record CoreCtx : Set where field signature : Term theory : Term model : Term carrier : Term frex : Term record GlobalCtx : Set where field core : CoreCtx operators : List Operator telescope : List (Arg String) lhs : Term rhs : Term open CoreCtx core public pattern modelType Θ a ℓ = def (quote Model) (vArg Θ ∷ hArg a ∷ hArg ℓ ∷ []) ctx : Name → Term → Term → TC GlobalCtx ctx frex model goal = do τ ← inferType model γ ← inferType goal signature ← extract-Σ τ theory ← extract-Θ τ carrier ← normalise (def (quote ∥_∥) (vra theory ∷ vra model ∷ [])) let core = record { signature = signature ; theory = theory ; model = model ; carrier = carrier ; frex = def frex [] } operators ← extract-ops core (inner , telescope) ← strip-telescope γ (lhs , rhs) ← extract-goals inner return (record { core = core ; operators = operators ; telescope = telescope ; lhs = lhs ; rhs = rhs }) where modelErr : ∀ {a} {A : Set a} → Term → String → TC A modelErr t err = typeError ( termErr t ∷ strErr "isn't a" ∷ nameErr (quote Model) ∷ strErr ("(" ++ err ++ ")") ∷ [] ) extract-Σ : Term → TC Term extract-Σ (modelType Θ _ _) = normalise (def (quote Theory.Σ) (vra Θ ∷ [])) extract-Σ t = modelErr t "when extracting the signature" extract-Θ : Term → TC Term extract-Θ (modelType Θ _ _) = normalise Θ extract-Θ t = modelErr t "when extracting the theory" extract-arity : CoreCtx → Name → TC ℕ extract-arity ctx op = do τ ← inferType (def (quote _⟦_⟧_) ( vra (CoreCtx.theory ctx) ∷ vra (CoreCtx.model ctx) ∷ vra (con op []) ∷ [] )) α ← extract-type-arg τ vec-len α extract-interp : CoreCtx → Name → ℕ → TC Term extract-interp ctx op arity = do let t = def (quote _⟦_⟧_) ( vra (CoreCtx.theory ctx) ∷ vra (CoreCtx.model ctx) ∷ vra (con op []) ∷ [] ) normalise (n-ary arity (apply t (vra (vec (debrujin arity)) ∷ []))) extract-ops : CoreCtx → TC (List Operator) extract-ops ctx = do ops ← normalise (def (quote ops) (vra (CoreCtx.signature ctx) ∷ [])) symbols ← extract-constructors ops arities ← listTC (map (extract-arity ctx) symbols) interps ← listTC (mapList (map (extract-interp ctx) symbols) arities) return (mapList (mapList (map operator symbols) interps) arities) record FoldCtx {a b} (A : Set a) (B : Set b) : Set (a ⊔ b) where constructor foldCtx field global : GlobalCtx f : Term → B → A × B g : Operator → List A → A ε : B open GlobalCtx global public mutual map-fold : ∀ {a b} {A : Set a} {B : Set b} → FoldCtx A B → List (Arg Term) → B → TC (List A × B) map-fold ctx [] acc = return ([] , acc) map-fold ctx (vArg x ∷ xs) acc = do (x , acc) ← fold-acc ctx x acc (xs , acc) ← map-fold ctx xs acc return (x ∷ xs , acc) map-fold ctx (_ ∷ xs) acc = map-fold ctx xs acc fold-inner : ∀ {a b} {A : Set a} {B : Set b} → FoldCtx A B → Operator → Term → B → TC (List A × B) fold-inner ctx op (var _ args) acc = map-fold ctx (ekat (arity op) args) acc fold-inner ctx op (con _ args) acc = map-fold ctx (ekat (arity op) args) acc fold-inner ctx op (def _ args) acc = map-fold ctx (ekat (arity op) args) acc fold-inner ctx op (meta _ args) acc = map-fold ctx (ekat (arity op) args) acc fold-inner ctx op (pat-lam _ args) acc = map-fold ctx (ekat (arity op) args) acc fold-inner _ _ t _ = typeError (termErr t ∷ strErr "has no arguments" ∷ []) fold-acc : ∀ {a b} {A : Set a} {B : Set b} → FoldCtx A B → Term → B → TC (A × B) fold-acc ctx t acc = do op? ← find (λ x → prefix (arity x) (normalised x) t) (FoldCtx.operators ctx) resolve op? where resolve : Maybe Operator → TC _ resolve (just op) = do (args , acc) ← fold-inner ctx op t acc return ((FoldCtx.g ctx) op args , acc) resolve nothing = return ((FoldCtx.f ctx) t acc) fold : ∀ {a b} {A : Set a} {B : Set b} → FoldCtx A B → Term → TC (A × B) fold ctx t = fold-acc ctx t (FoldCtx.ε ctx) fold-⊤ : ∀ {a} {A : Set a} → GlobalCtx → (Term → A) → (Operator → List A → A) → Term → TC A fold-⊤ ctx f g t = do (x , _) ← fold (foldCtx ctx (λ x _ → (f x , tt)) g tt) t return x accumulate : ∀ {a} {A : Set a} → GlobalCtx → (Term → A → A) → A → Term → TC A accumulate ctx f ε t = do (_ , acc) ← fold (foldCtx ctx (λ x acc → (tt , f x acc)) (λ _ _ → tt) ε) t return acc leaves : GlobalCtx → Term → TC ℕ leaves ctx = fold-⊤ ctx (λ _ → 1) (λ _ → sum) mutual argsOpen : Term → List (Arg Term) → TC Bool argsOpen τ [] = return false argsOpen τ (vArg x ∷ xs) = do head ← isOpen τ x tail ← argsOpen τ xs return (head ∨ tail) argsOpen τ (_ ∷ xs) = argsOpen τ xs isOpen : Term → Term → TC Bool isOpen τ t@(var _ _) = hasType τ t isOpen τ t@(meta _ _) = hasType τ t isOpen τ (con c args) = argsOpen τ args isOpen τ (def f args) = argsOpen τ args isOpen τ unknown = return true isOpen τ _ = return false findOpen : GlobalCtx → List Term → Term → TC (List Term) findOpen ctx ε t = flatten (accumulate ctx binding (return ε) t) where binding : Term → TC (List Term) → TC (List Term) binding t env = do env ← env let τ = CoreCtx.carrier (GlobalCtx.core ctx) open? ← isOpen τ t if open? then return (insert env t) else return env buildSyntax : GlobalCtx → List Term → Term → TC Term buildSyntax ctx env t = fold-⊤ ctx buildInj buildTerm t where bt : Term bt = def (quote Free.BT) ( vra (GlobalCtx.signature ctx) ∷ vra (GlobalCtx.carrier ctx) ∷ vra (lit (nat (length env))) ∷ [] ) buildAtom : Term → Term buildAtom t = con (quote Free.Term.atom) ( hra (GlobalCtx.signature ctx) ∷ hra unknown ∷ hra bt ∷ vra t ∷ [] ) buildDyn : ℕ → Term buildDyn n = con (quote Free.BT.dyn) ( hra (GlobalCtx.signature ctx) ∷ hra unknown ∷ hra (GlobalCtx.carrier ctx) ∷ hra (lit (nat (length env))) ∷ vra (fin n) ∷ [] ) buildSta : Term → Term buildSta t = con (quote Free.BT.sta) ( hra (GlobalCtx.signature ctx) ∷ hra unknown ∷ hra (GlobalCtx.carrier ctx) ∷ hra (lit (nat (length env))) ∷ vra t ∷ [] ) buildInj : Term → Term buildInj t with indexOf env t ... | just n = buildAtom (buildDyn n) ... | nothing = buildAtom (buildSta t) buildTerm : Operator → List Term → Term buildTerm op xs = con (quote Free.Term.term) ( hra (GlobalCtx.signature ctx) ∷ hra unknown ∷ hra bt ∷ hra (lit (nat (arity op))) ∷ vra (con (name op) []) ∷ vra (vec (fromList xs)) ∷ [] ) environment : List Term → Term environment env = vec (fromList env) macro fragment : Name → Term → Term → TC ⊤ fragment frex model goal = do ctx ← ctx frex model goal env ← findOpen ctx [] (GlobalCtx.lhs ctx) env ← findOpen ctx env (GlobalCtx.rhs ctx) lhs ← buildSyntax ctx env (GlobalCtx.lhs ctx) rhs ← buildSyntax ctx env (GlobalCtx.rhs ctx) let n = length env let frex = def (quote FreeExtension._[_]) ( hra (GlobalCtx.theory ctx) ∷ vra (GlobalCtx.frex ctx) ∷ vra (GlobalCtx.model ctx) ∷ vra (lit (nat n)) ∷ [] ) let setoid = def (quote ∥_∥/≈) ( hra (GlobalCtx.theory ctx) ∷ vra frex ∷ [] ) let p = def (quote Setoid.refl) (vra setoid ∷ []) let frexify = def (quote frexify) ( vra (GlobalCtx.theory ctx) ∷ vra (GlobalCtx.frex ctx) ∷ vra (GlobalCtx.model ctx) ∷ vra (vec (fromList env)) ∷ hra lhs ∷ hra rhs ∷ vra p ∷ [] ) frexify ← restore-telescope (GlobalCtx.telescope ctx) frexify unify frexify goal
34.370482
85
0.502498
181a8dc0d8cea9bbf79aecac70cd1bbb50ba9499
3,031
agda
Agda
agda-stdlib-0.9/README/AVL.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
1
2016-10-20T15:52:05.000Z
2016-10-20T15:52:05.000Z
agda-stdlib-0.9/README/AVL.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
null
null
null
agda-stdlib-0.9/README/AVL.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
null
null
null
------------------------------------------------------------------------ -- The Agda standard library -- -- Some examples showing how the AVL tree module can be used ------------------------------------------------------------------------ module README.AVL where ------------------------------------------------------------------------ -- Setup -- AVL trees are defined in Data.AVL. import Data.AVL -- This module is parametrised by keys, which have to form a (strict) -- total order, and values, which are indexed by keys. Let us use -- natural numbers as keys and vectors of strings as values. import Data.Nat.Properties as ℕ open import Data.String using (String) open import Data.Vec using (Vec; _∷_; []) open import Relation.Binary using (module StrictTotalOrder) open Data.AVL (Vec String) (StrictTotalOrder.isStrictTotalOrder ℕ.strictTotalOrder) ------------------------------------------------------------------------ -- Construction of trees -- Some values. v₁ = "cepa" ∷ [] v₁′ = "depa" ∷ [] v₂ = "apa" ∷ "bepa" ∷ [] -- Empty and singleton trees. t₀ : Tree t₀ = empty t₁ : Tree t₁ = singleton 2 v₂ -- Insertion of a key-value pair into a tree. t₂ = insert 1 v₁ t₁ -- If you insert a key-value pair and the key already exists in the -- tree, then the old value is thrown away. t₂′ = insert 1 v₁′ t₂ -- Deletion of the mapping for a certain key. t₃ = delete 2 t₂ -- Conversion of a list of key-value mappings to a tree. open import Data.List using (_∷_; []) open import Data.Product as Prod using (_,_; _,′_) t₄ = fromList ((2 , v₂) ∷ (1 , v₁) ∷ []) ------------------------------------------------------------------------ -- Queries -- Let us formulate queries as unit tests. open import Relation.Binary.PropositionalEquality using (_≡_; refl) -- Searching for a key. open import Data.Bool using (true; false) open import Data.Maybe as Maybe using (just; nothing) q₀ : lookup 2 t₂ ≡ just v₂ q₀ = refl q₁ : lookup 2 t₃ ≡ nothing q₁ = refl q₂ : 3 ∈? t₂ ≡ false q₂ = refl q₃ : 1 ∈? t₄ ≡ true q₃ = refl -- Turning a tree into a sorted list of key-value pairs. q₄ : toList t₁ ≡ (2 , v₂) ∷ [] q₄ = refl q₅ : toList t₂ ≡ (1 , v₁) ∷ (2 , v₂) ∷ [] q₅ = refl q₅′ : toList t₂′ ≡ (1 , v₁′) ∷ (2 , v₂) ∷ [] q₅′ = refl ------------------------------------------------------------------------ -- Views -- Partitioning a tree into the smallest element plus the rest, or the -- largest element plus the rest. open import Function using (id) v₆ : headTail t₀ ≡ nothing v₆ = refl v₇ : Maybe.map (Prod.map id toList) (headTail t₂) ≡ just ((1 , v₁) , ((2 , v₂) ∷ [])) v₇ = refl v₈ : initLast t₀ ≡ nothing v₈ = refl v₉ : Maybe.map (Prod.map toList id) (initLast t₄) ≡ just (((1 , v₁) ∷ []) ,′ (2 , v₂)) v₉ = refl ------------------------------------------------------------------------ -- Further reading -- Variations of the AVL tree module are available: -- • Finite maps with indexed keys and values. import Data.AVL.IndexedMap -- • Finite sets. import Data.AVL.Sets
22.619403
72
0.549324
dfabfd03c73b2d77a281d52485cdaf0d09d961d7
1,417
agda
Agda
TotalRecognisers/Simple/Expression.agda
yurrriq/parser-combinators
b396d35cc2cb7e8aea50b982429ee385f001aa88
[ "MIT" ]
7
2016-12-13T05:23:14.000Z
2021-06-22T05:35:31.000Z
TotalRecognisers/Simple/Expression.agda
yurrriq/parser-combinators
b396d35cc2cb7e8aea50b982429ee385f001aa88
[ "MIT" ]
1
2018-01-22T22:21:41.000Z
2018-01-24T16:39:37.000Z
TotalRecognisers/Simple/Expression.agda
yurrriq/parser-combinators
b396d35cc2cb7e8aea50b982429ee385f001aa88
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- Example: Right recursive expression grammar ------------------------------------------------------------------------ module TotalRecognisers.Simple.Expression where open import Coinduction open import Data.Bool open import Data.Char as Char using (Char) open import Data.String as String using (String) open import Relation.Binary.PropositionalEquality open import Relation.Nullary.Decidable import TotalRecognisers.Simple as P private open module PC = P Char Char._≟_ hiding (_·_) open PC.P using (_·_) ------------------------------------------------------------------------ -- Recognisers for bits and binary numbers -- Bits. bit = tok '0' ∣ tok '1' -- Numbers. number = bit · ♯ (empty ∣ number) ------------------------------------------------------------------------ -- An expression grammar -- t ∷= f '+' t ∣ f -- f ∷= a '*' f ∣ a -- a ∷= '(' t ')' ∣ n mutual term = factor · ♯ (tok '+' · ♯ term) ∣ factor factor = atom · ♯ (tok '*' · ♯ factor) ∣ atom atom = tok '(' · ♯ term · ♯ tok ')' ∣ number ------------------------------------------------------------------------ -- Unit tests module Tests where test : ∀ {n} → P n → String → Bool test p s = ⌊ String.toList s ∈? p ⌋ ex₁ : test term "0*(0+0)" ≡ true ex₁ = refl ex₂ : test term "0*(0+0" ≡ false ex₂ = refl
22.854839
72
0.455187
239dcf7d73c8cf246072308325a5d39e97027195
2,009
agda
Agda
src/fot/FOTC/Program/ABP/Fair/Type.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
11
2015-09-03T20:53:42.000Z
2021-09-12T16:09:54.000Z
src/fot/FOTC/Program/ABP/Fair/Type.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
2
2016-10-12T17:28:16.000Z
2017-01-01T14:34:26.000Z
src/fot/FOTC/Program/ABP/Fair/Type.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
3
2016-09-19T14:18:30.000Z
2018-03-14T08:50:00.000Z
------------------------------------------------------------------------------ -- Fairness of the ABP channels ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Program.ABP.Fair.Type where open import FOTC.Base open import FOTC.Base.List open import FOTC.Data.List open import FOTC.Program.ABP.Terms ------------------------------------------------------------------------------ -- The Fair co-inductive predicate -- From (Dybjer and Sander 1989): al : F*T if al is a list of zero or -- more 0's followed by a final 1. data F*T : D → Set where f*tnil : F*T (T ∷ []) f*tcons : ∀ {ft} → F*T ft → F*T (F ∷ ft) -- Functor for the Fair type. -- FairF : (D → Set) → D → Set -- FairF A os = ∃[ ft ] ∃[ os' ] F*T ft ∧ os ≡ ft ++ os' ∧ A os' -- Fair is the greatest fixed of FairF (by Fair-out and Fair-coind). postulate Fair : D → Set -- Fair a is post-fixed point of FairF, i.e. -- -- Fair ≤ FairF Fair. postulate Fair-out : ∀ {os} → Fair os → ∃[ ft ] ∃[ os' ] F*T ft ∧ os ≡ ft ++ os' ∧ Fair os' {-# ATP axiom Fair-out #-} -- Fair is the greatest post-fixed point of FairF, i.e. -- -- ∀ A. A ≤ FairF A ⇒ A ≤ Fair. -- -- N.B. This is an axiom schema. Because in the automatic proofs we -- *must* use an instance, we do not add this postulate as an ATP -- axiom. postulate Fair-coind : (A : D → Set) → -- A is post-fixed point of FairF. (∀ {os} → A os → ∃[ ft ] ∃[ os' ] F*T ft ∧ os ≡ ft ++ os' ∧ A os') → -- Fair is greater than A. ∀ {os} → A os → Fair os ------------------------------------------------------------------------------ -- References -- -- Dybjer, Peter and Sander, Herbert P. (1989). A Functional -- Programming Approach to the Specification and Verification of -- Concurrent Systems. Formal Aspects of Computing 1, pp. 303–319.
32.403226
78
0.498756