hexsha
stringlengths
40
40
size
int64
3
1.05M
ext
stringclasses
163 values
lang
stringclasses
53 values
max_stars_repo_path
stringlengths
3
945
max_stars_repo_name
stringlengths
4
112
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
float64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
945
max_issues_repo_name
stringlengths
4
113
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
float64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
945
max_forks_repo_name
stringlengths
4
113
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
float64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.05M
avg_line_length
float64
1
966k
max_line_length
int64
1
977k
alphanum_fraction
float64
0
1
0b72621fba214cef5eed336f6837ec83ad1b40f0
14,893
agda
Agda
Cubical/HITs/Hopf.agda
hyleIndex/cubical
ce5c2820ecb2e0fd8dce74fb0247856cdbf034c4
[ "MIT" ]
301
2018-10-17T18:00:24.000Z
2022-03-24T02:10:47.000Z
Cubical/HITs/Hopf.agda
hyleIndex/cubical
ce5c2820ecb2e0fd8dce74fb0247856cdbf034c4
[ "MIT" ]
584
2018-10-15T09:49:02.000Z
2022-03-30T12:09:17.000Z
Cubical/HITs/Hopf.agda
hyleIndex/cubical
ce5c2820ecb2e0fd8dce74fb0247856cdbf034c4
[ "MIT" ]
134
2018-11-16T06:11:03.000Z
2022-03-23T16:22:13.000Z
{-# OPTIONS --safe #-} module Cubical.HITs.Hopf where open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Data.Int hiding (_·_) open import Cubical.Data.Sigma open import Cubical.Foundations.Function open import Cubical.HITs.S1 open import Cubical.HITs.S2 open import Cubical.HITs.S3 open import Cubical.HITs.Sn open import Cubical.HITs.Susp open import Cubical.HITs.Join open import Cubical.HITs.Interval renaming ( zero to I0 ; one to I1 ) Border : (x : S¹) → (j : I) → Partial (j ∨ ~ j) (Σ Type₀ (λ T → T ≃ S¹)) Border x j (j = i0) = S¹ , (x ·_) , rotIsEquiv x Border x j (j = i1) = S¹ , idEquiv S¹ -- Hopf fibration using SuspS¹ HopfSuspS¹ : SuspS¹ → Type₀ HopfSuspS¹ north = S¹ HopfSuspS¹ south = S¹ HopfSuspS¹ (merid x j) = Glue S¹ (Border x j) -- Hopf fibration using S² -- TODO : prove that it is equivalent to HopfSuspS¹ HopfS² : S² → Type₀ HopfS² base = S¹ HopfS² (surf i j) = Glue S¹ (λ { (i = i0) → _ , idEquiv S¹ ; (i = i1) → _ , idEquiv S¹ ; (j = i0) → _ , idEquiv S¹ ; (j = i1) → _ , _ , rotIsEquiv (loop i) } ) -- Hopf fibration using more direct definition of the rot equivalence -- TODO : prove that it is equivalent to HopfSuspS¹ HopfS²' : S² → Type₀ HopfS²' base = S¹ HopfS²' (surf i j) = Glue S¹ (λ { (i = i0) → _ , rotLoopEquiv i0 ; (i = i1) → _ , rotLoopEquiv i0 ; (j = i0) → _ , rotLoopEquiv i0 ; (j = i1) → _ , rotLoopEquiv i } ) -- Total space of the fibration TotalHopf : Type₀ TotalHopf = Σ SuspS¹ HopfSuspS¹ -- Forward direction filler-1 : I → (j : I) → (y : S¹) → Glue S¹ (Border y j) → join S¹ S¹ filler-1 i j y x = hfill (λ t → λ { (j = i0) → inl (rotInv-1 x y t) ; (j = i1) → inr x }) (inS (push ((unglue (j ∨ ~ j) x) · invLooper y) (unglue (j ∨ ~ j) x) j)) i TotalHopf→JoinS¹S¹ : TotalHopf → join S¹ S¹ TotalHopf→JoinS¹S¹ (north , x) = inl x TotalHopf→JoinS¹S¹ (south , x) = inr x TotalHopf→JoinS¹S¹ (merid y j , x) = filler-1 i1 j y x -- Backward direction JoinS¹S¹→TotalHopf : join S¹ S¹ → TotalHopf JoinS¹S¹→TotalHopf (inl x) = (north , x) JoinS¹S¹→TotalHopf (inr x) = (south , x) JoinS¹S¹→TotalHopf (push y x j) = (merid (invLooper y · x) j , glue (λ { (j = i0) → y ; (j = i1) → x }) (rotInv-2 x y j)) -- Now for the homotopies, we will need to fill squares indexed by x y : S¹ with value in S¹ -- Some will be extremeley tough, but happen to be easy when x = y = base -- therefore, we fill them for x = y = base and then use the connectedness of S¹ × S¹ and -- the discreteness of ΩS¹ to get general fillers. -- To proceed with that strategy, we first need a lemma : -- the sections of the trivial fibration λ (_ : S¹) (_ : S¹) → Int are constant -- this should be generalized to a constant fibration over a connected space with -- discrete fiber fibℤ : S¹ → S¹ → Type₀ fibℤ _ _ = ℤ S¹→HSet : (A : Type₀) (p : isSet A) (F : S¹ → A) (x : S¹) → F base ≡ F x S¹→HSet A p F base = refl {x = F base} S¹→HSet A p F (loop i) = f' i where f : PathP (λ i → F base ≡ F (loop i)) refl (cong F loop) f i = λ j → F (loop (i ∧ j)) L : cong F loop ≡ refl L = p (F base) (F base) (f i1) refl f' : PathP (λ i → F base ≡ F (loop i)) (refl {x = F base}) (refl {x = F base}) f' = transport (λ i → PathP (λ j → F base ≡ F (loop j)) refl (L i)) f constant-loop : (F : S¹ → S¹ → ℤ) → (x y : S¹) → F base base ≡ F x y constant-loop F x y = L0 ∙ L1 where p : isSet (S¹ → ℤ) p = isSetΠ (λ _ → isSetℤ) L : F base ≡ F x L = S¹→HSet (S¹ → ℤ) p F x L0 : F base base ≡ F x base L0 i = L i base L1 : F x base ≡ F x y L1 = S¹→HSet ℤ isSetℤ (F x) y discretefib : (F : S¹ → S¹ → Type₀) → Type₀ discretefib F = (a : (x y : S¹) → F x y) → (b : (x y : S¹) → F x y) → (a base base ≡ b base base) → (x y : S¹) → a x y ≡ b x y discretefib-fibℤ : discretefib fibℤ discretefib-fibℤ a b h x y i = hcomp (λ t → λ { (i = i0) → constant-loop a x y t ; (i = i1) → constant-loop b x y t }) (h i) -- first homotopy assocFiller-3-aux : I → I → I → I → S¹ assocFiller-3-aux x y j i = hfill (λ t → λ { (i = i0) → rotInv-1 (loop y) (loop (~ y) · loop x) t ; (i = i1) → rotInv-3 (loop y) (loop x) t ; (x = i0) (y = i0) → base ; (x = i0) (y = i1) → base ; (x = i1) (y = i0) → base ; (x = i1) (y = i1) → base }) (inS ((rotInv-2 (loop x) (loop y) i) · (invLooper (loop (~ y) · loop x)))) j -- assocFiller-3-endpoint is used only in the type of the next function, to specify the -- second endpoint. -- However, I only need the first endpoint, but I cannot specify only one of them as is. -- TODO : use cubical extension types when available to remove assocFiller-3-endpoint assocFiller-3-endpoint : (x : S¹) → (y : S¹) → y ≡ y assocFiller-3-endpoint base base i = base assocFiller-3-endpoint (loop x) base i = assocFiller-3-aux x i0 i1 i assocFiller-3-endpoint base (loop y) i = assocFiller-3-aux i0 y i1 i assocFiller-3-endpoint (loop x) (loop y) i = assocFiller-3-aux x y i1 i assocFiller-3 : (x : S¹) → (y : S¹) → PathP (λ j → rotInv-1 y (invLooper y · x) j ≡ rotInv-3 y x j) (λ i → ((rotInv-2 x y i) · (invLooper (invLooper y · x)))) (assocFiller-3-endpoint x y) assocFiller-3 base base j i = base assocFiller-3 (loop x) base j i = assocFiller-3-aux x i0 j i assocFiller-3 base (loop y) j i = assocFiller-3-aux i0 y j i assocFiller-3 (loop x) (loop y) j i = assocFiller-3-aux x y j i assoc-3 : (_ y : S¹) → basedΩS¹ y assoc-3 x y i = assocFiller-3 x y i1 i fibℤ≡fibAssoc-3 : fibℤ ≡ (λ _ y → basedΩS¹ y) fibℤ≡fibAssoc-3 i = λ x y → basedΩS¹≡ℤ y (~ i) discretefib-fibAssoc-3 : discretefib (λ _ y → basedΩS¹ y) discretefib-fibAssoc-3 = transp (λ i → discretefib (fibℤ≡fibAssoc-3 i)) i0 discretefib-fibℤ assocConst-3 : (x y : S¹) → assoc-3 x y ≡ refl assocConst-3 x y = discretefib-fibAssoc-3 assoc-3 (λ _ _ → refl) refl x y assocSquare-3 : I → I → S¹ → S¹ → S¹ assocSquare-3 i j x y = hcomp (λ t → λ { (i = i0) → assocFiller-3 x y j i0 ; (i = i1) → assocFiller-3 x y j i1 ; (j = i0) → assocFiller-3 x y i0 i ; (j = i1) → assocConst-3 x y t i }) (assocFiller-3 x y j i) filler-3 : I → I → S¹ → S¹ → join S¹ S¹ filler-3 i j y x = hcomp (λ t → λ { (i = i0) → filler-1 t j (invLooper y · x) (glue (λ { (j = i0) → y ; (j = i1) → x }) (rotInv-2 x y j)) ; (i = i1) → push (rotInv-3 y x t) x j ; (j = i0) → inl (assocSquare-3 i t x y) ; (j = i1) → inr x }) (push ((rotInv-2 x y (i ∨ j)) · (invLooper (invLooper y · x))) (rotInv-2 x y (i ∨ j)) j) JoinS¹S¹→TotalHopf→JoinS¹S¹ : ∀ x → TotalHopf→JoinS¹S¹ (JoinS¹S¹→TotalHopf x) ≡ x JoinS¹S¹→TotalHopf→JoinS¹S¹ (inl x) i = inl x JoinS¹S¹→TotalHopf→JoinS¹S¹ (inr x) i = inr x JoinS¹S¹→TotalHopf→JoinS¹S¹ (push y x j) i = filler-3 i j y x -- Second homotopy -- This HIT is the total space of the Hopf fibration but the ends of SuspS¹ have not been -- glued together yet — which makes it into a cylinder. -- This allows to write compositions that do not properly match at the endpoints. However, -- I suspect it is unnecessary. TODO : do without PseudoHopf PseudoHopf : Type₀ PseudoHopf = (S¹ × Interval) × S¹ PseudoHopf-π1 : PseudoHopf → S¹ PseudoHopf-π1 ((y , _) , _) = y PseudoHopf-π2 : PseudoHopf → S¹ PseudoHopf-π2 (_ , x) = x assocFiller-4-aux : I → I → I → I → S¹ assocFiller-4-aux x y j i = hfill (λ t → λ { (i = i0) → ((invLooper (loop y · loop x · loop (~ y))) · (loop y · loop x)) · (rotInv-1 (loop x) (loop y) t) ; (i = i1) → (rotInv-4 (loop y) (loop y · loop x) (~ t)) · loop x ; (x = i0) (y = i0) → base ; (x = i0) (y = i1) → base ; (x = i1) (y = i0) → base ; (x = i1) (y = i1) → base }) (inS (rotInv-2 (loop y · loop x) (loop y · loop x · loop (~ y)) i)) j -- See assocFiller-3-endpoint -- TODO : use cubical extension types when available to remove assocFiller-4-endpoint assocFiller-4-endpoint : (x y : S¹) → basedΩS¹ (((invLooper (y · x · invLooper y)) · (y · x)) · x) assocFiller-4-endpoint base base i = base assocFiller-4-endpoint (loop x) base i = assocFiller-4-aux x i0 i1 i assocFiller-4-endpoint base (loop y) i = assocFiller-4-aux i0 y i1 i assocFiller-4-endpoint (loop x) (loop y) i = assocFiller-4-aux x y i1 i assocFiller-4 : (x y : S¹) → PathP (λ j → ((invLooper (y · x · invLooper y)) · (y · x)) · (rotInv-1 x y j) ≡ (rotInv-4 y (y · x) (~ j)) · x) (λ i → (rotInv-2 (y · x) (y · x · invLooper y) i)) (assocFiller-4-endpoint x y) assocFiller-4 base base j i = base assocFiller-4 (loop x) base j i = assocFiller-4-aux x i0 j i assocFiller-4 base (loop y) j i = assocFiller-4-aux i0 y j i assocFiller-4 (loop x) (loop y) j i = assocFiller-4-aux x y j i assoc-4 : (x y : S¹) → basedΩS¹ (((invLooper (y · x · invLooper y)) · (y · x)) · x) assoc-4 x y i = assocFiller-4 x y i1 i fibℤ≡fibAssoc-4 : fibℤ ≡ (λ x y → basedΩS¹ (((invLooper (y · x · invLooper y)) · (y · x)) · x)) fibℤ≡fibAssoc-4 i = λ x y → basedΩS¹≡ℤ (((invLooper (y · x · invLooper y)) · (y · x)) · x) (~ i) discretefib-fibAssoc-4 : discretefib (λ x y → basedΩS¹ (((invLooper (y · x · invLooper y)) · (y · x)) · x)) discretefib-fibAssoc-4 = transp (λ i → discretefib (fibℤ≡fibAssoc-4 i)) i0 discretefib-fibℤ assocConst-4 : (x y : S¹) → assoc-4 x y ≡ refl assocConst-4 x y = discretefib-fibAssoc-4 assoc-4 (λ _ _ → refl) refl x y assocSquare-4 : I → I → S¹ → S¹ → S¹ assocSquare-4 i j x y = hcomp (λ t → λ { (i = i0) → assocFiller-4 x y j i0 ; (i = i1) → assocFiller-4 x y j i1 ; (j = i0) → assocFiller-4 x y i0 i ; (j = i1) → assocConst-4 x y t i }) (assocFiller-4 x y j i) filler-4-0 : (_ j : I) → (y : S¹) → Glue S¹ (Border y j) → PseudoHopf filler-4-0 i j y x = let x' = unglue (j ∨ ~ j) x in hfill (λ t → λ { (j = i0) → ((invLooper (y · x · invLooper y) · (y · x) , I0) , invLooper (y · x · invLooper y) · (y · x) · (rotInv-1 x y t)) ; (j = i1) → ((invLooper (x · invLooper y) · x , I1) , x) }) (inS ((invLooper (x' · invLooper y) · x' , seg j) , rotInv-2 x' (x' · invLooper y) j)) i filler-4-1 : (_ j : I) → (y : S¹) → Glue S¹ (Border y j) → PseudoHopf filler-4-1 i j y x = let x' = unglue (j ∨ ~ j) x in hfill (λ t → λ { (j = i0) → ((invLooper (y · x · invLooper y) · (y · x) , I0) , (rotInv-4 y (y · x) (~ t)) · x) ; (j = i1) → ((invLooper (x · invLooper y) · x , I1) , x) }) (inS ((invLooper (x' · invLooper y) · x' , seg j) , unglue (j ∨ ~ j) x)) i filler-4-2 : (_ j : I) → (y : S¹) → Glue S¹ (Border y j) → TotalHopf filler-4-2 i j y x = let x' = unglue (j ∨ ~ j) x in hcomp (λ t → λ { (i = i0) → JoinS¹S¹→TotalHopf (filler-1 t j y x) ; (i = i1) → (merid (PseudoHopf-π1 (filler-4-0 t j y x)) j , glue (λ { (j = i0) → rotInv-1 x y t ; (j = i1) → x }) (PseudoHopf-π2 (filler-4-0 t j y x))) ; (j = i0) → (north , rotInv-1 x y t) ; (j = i1) → (south , x) }) (merid (invLooper (x' · invLooper y) · x') j , glue (λ { (j = i0) → y · x · invLooper y ; (j = i1) → x }) (rotInv-2 x' (x' · invLooper y) j)) filler-4-3 : (_ j : I) → (y : S¹) → Glue S¹ (Border y j) → PseudoHopf filler-4-3 i j y x = let x' = unglue (j ∨ ~ j) x in hcomp (λ t → λ { (i = i0) → filler-4-0 t j y x ; (i = i1) → filler-4-1 t j y x ; (j = i0) → ((invLooper (y · x · invLooper y) · (y · x) , I0) , assocSquare-4 i t x y) ; (j = i1) → ((invLooper (x · invLooper y) · x , I1) , x) }) ((invLooper (x' · invLooper y) · x' , seg j) , rotInv-2 x' (x' · invLooper y) (i ∨ j)) filler-4-4 : (_ j : I) → (y : S¹) → Glue S¹ (Border y j) → PseudoHopf filler-4-4 i j y x = let x' = unglue (j ∨ ~ j) x in hcomp (λ t → λ { (i = i0) → filler-4-1 t j y x ; (i = i1) → ((y , seg j) , unglue (j ∨ ~ j) x) ; (j = i0) → ((rotInv-4 y (y · x) i , I0) , (rotInv-4 y (y · x) (i ∨ ~ t)) · x) ; (j = i1) → ((rotInv-4 y x i , I1) , x) }) ((rotInv-4 y x' i , seg j) , x') filler-4-5 : (_ j : I) → (y : S¹) → Glue S¹ (Border y j) → TotalHopf filler-4-5 i j y x = hcomp (λ t → λ { (i = i0) → filler-4-2 (~ t) j y x ; (i = i1) → (merid (PseudoHopf-π1 (filler-4-4 t j y x)) j , glue (λ { (j = i0) → x ; (j = i1) → x }) (PseudoHopf-π2 (filler-4-4 t j y x))) ; (j = i0) → (north , x) ; (j = i1) → (south , x) }) (merid (PseudoHopf-π1 (filler-4-3 i j y x)) j , glue (λ { (j = i0) → x ; (j = i1) → x }) (PseudoHopf-π2 (filler-4-3 i j y x))) TotalHopf→JoinS¹S¹→TotalHopf : ∀ x → JoinS¹S¹→TotalHopf (TotalHopf→JoinS¹S¹ x) ≡ x TotalHopf→JoinS¹S¹→TotalHopf (north , x) i = (north , x) TotalHopf→JoinS¹S¹→TotalHopf (south , x) i = (south , x) TotalHopf→JoinS¹S¹→TotalHopf (merid y j , x) i = filler-4-5 i j y x JoinS¹S¹≡TotalHopf : join S¹ S¹ ≡ TotalHopf JoinS¹S¹≡TotalHopf = isoToPath (iso JoinS¹S¹→TotalHopf TotalHopf→JoinS¹S¹ TotalHopf→JoinS¹S¹→TotalHopf JoinS¹S¹→TotalHopf→JoinS¹S¹) S³≡TotalHopf : S³ ≡ TotalHopf S³≡TotalHopf = S³≡joinS¹S¹ ∙ JoinS¹S¹≡TotalHopf open Iso IsoS³TotalHopf : Iso (S₊ 3) TotalHopf fun IsoS³TotalHopf x = JoinS¹S¹→TotalHopf (S³→joinS¹S¹ (inv IsoS³S3 x)) inv IsoS³TotalHopf x = fun IsoS³S3 (joinS¹S¹→S³ (TotalHopf→JoinS¹S¹ x)) rightInv IsoS³TotalHopf x = cong (JoinS¹S¹→TotalHopf ∘ S³→joinS¹S¹) (leftInv IsoS³S3 (joinS¹S¹→S³ (TotalHopf→JoinS¹S¹ x))) ∙∙ cong JoinS¹S¹→TotalHopf (joinS¹S¹→S³→joinS¹S¹ (TotalHopf→JoinS¹S¹ x)) ∙∙ TotalHopf→JoinS¹S¹→TotalHopf x leftInv IsoS³TotalHopf x = cong (fun IsoS³S3 ∘ joinS¹S¹→S³) (JoinS¹S¹→TotalHopf→JoinS¹S¹ (S³→joinS¹S¹ (inv IsoS³S3 x))) ∙∙ cong (fun IsoS³S3) (S³→joinS¹S¹→S³ (inv IsoS³S3 x)) ∙∙ Iso.rightInv IsoS³S3 x
43.674487
127
0.540992
fbc24df8882f29570016b331441d6dacb85441ce
1,599
agda
Agda
Cubical/Structures/Transfer.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/Structures/Transfer.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
1
2022-01-27T02:07:48.000Z
2022-01-27T02:07:48.000Z
Cubical/Structures/Transfer.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
{- Transferring properties of terms between equivalent structures -} {-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Structures.Transfer where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.SIP open import Cubical.Foundations.Transport open import Cubical.Structures.Product private variable ℓ ℓ₀ ℓ₁ ℓ₂ ℓ₂' : Level transfer : {ℓ₂' ℓ₀ : Level} {S : Type ℓ → Type ℓ₁} {H : Type ℓ → Type ℓ₂} (P : ∀ X → S X → H X → Type ℓ₀) (α : EquivAction H) (τ : TransportStr α) (ι : StrEquiv S ℓ₂') (θ : UnivalentStr S ι) {X Y : Type ℓ} {s : S X} {t : S Y} (e : (X , s) ≃[ ι ] (Y , t)) → (h : H Y) → P X s (invEq (α (e .fst)) h) → P Y t h transfer P α τ ι θ {X} {Y} {s} {t} e h = subst (λ {(Z , u , h) → P Z u h}) (sip (productUnivalentStr ι θ (EquivAction→StrEquiv α) (TransportStr→UnivalentStr α τ)) (X , s , invEq (α (e .fst)) h) (Y , t , h) (e .fst , e .snd , retEq (α (e .fst)) h)) transfer⁻ : {ℓ₂' ℓ₀ : Level} {S : Type ℓ → Type ℓ₁} {H : Type ℓ → Type ℓ₂} (P : ∀ X → S X → H X → Type ℓ₀) (α : EquivAction H) (τ : TransportStr α) (ι : StrEquiv S ℓ₂') (θ : UnivalentStr S ι) {X Y : Type ℓ} {s : S X} {t : S Y} (e : (X , s) ≃[ ι ] (Y , t)) → (h : H X) → P Y t (equivFun (α (e .fst)) h) → P X s h transfer⁻ P α τ ι θ {X} {Y} {s} {t} e h = subst⁻ (λ {(Z , u , h) → P Z u h}) (sip (productUnivalentStr ι θ (EquivAction→StrEquiv α) (TransportStr→UnivalentStr α τ)) (X , s , h) (Y , t , equivFun (α (e .fst)) h) (e .fst , e .snd , refl))
33.3125
89
0.555972
313615c0c4915d4a4f774b3bca9232b022c84c86
1,882
agda
Agda
src/Data/Real/Properties.agda
cspollard/reals
a193aeebf1326f960975b19d3e31b46fddbbfaa2
[ "CC0-1.0" ]
null
null
null
src/Data/Real/Properties.agda
cspollard/reals
a193aeebf1326f960975b19d3e31b46fddbbfaa2
[ "CC0-1.0" ]
null
null
null
src/Data/Real/Properties.agda
cspollard/reals
a193aeebf1326f960975b19d3e31b46fddbbfaa2
[ "CC0-1.0" ]
null
null
null
module Data.Real.Properties where open import Data.Real.Base as ℝ open import Data.Real.Order open import Data.Real.Abstract.Structures using (IsOrderedHeytingField; IsArchimedanHeytingField) open import Assume open import Algebra using (IsCommutativeRing; CommutativeRing) open import Algebra.Module using (Module) open import Algebra.Module.Construct.TensorUnit using (⟨module⟩) open import Algebra.Module.Normed using (IsNormedModule; NormedModule) open import Algebra.Apartness using (IsHeytingField; HeytingField) open import Level using (0ℓ) open import Data.Product using (_,_) +-*-isCommutativeRing : IsCommutativeRing _≈_ _+_ _*_ -_ 0.0 1.0 +-*-isCommutativeRing = assume +-*-commutativeRing : CommutativeRing 0ℓ 0ℓ +-*-commutativeRing = record { isCommutativeRing = +-*-isCommutativeRing } +-*-module : Module +-*-commutativeRing 0ℓ 0ℓ +-*-module = ⟨module⟩ +-*-isHeytingField : IsHeytingField _≈_ _≉_ _+_ _*_ -_ 0.0 1.0 +-*-isHeytingField = assume +-*-heytingField : HeytingField 0ℓ 0ℓ 0ℓ +-*-heytingField = record { isHeytingField = +-*-isHeytingField } +-*-isOrderedHeytingField : IsOrderedHeytingField +-*-heytingField _<_ +-*-isOrderedHeytingField = record { isStrictTotalOrder = <-isStrictTotalOrder ; ordered = assume } +-*-isArchimedanHeytingField : IsArchimedanHeytingField +-*-heytingField _<_ +-*-isArchimedanHeytingField = record { dense = λ a b a<b → ((a + b) ÷ 2.0) , assume ; archimedan = λ a b a<0 b<0 → ∣ unsafeM ⌈ b ÷ a ⌉ ∣ , assume } where open import Data.Integer using (∣_∣) open import Data.Maybe unsafeM : ∀ {a} {A : Set a} → Maybe A → A unsafeM (just x) = x unsafeM nothing = assume abs-isNormedModule : IsNormedModule +-*-module _≤_ abs abs-isNormedModule = assume abs-normedModule : NormedModule +-*-commutativeRing _≤_ 0ℓ 0ℓ abs-normedModule = record { isNormedModule = abs-isNormedModule }
32.448276
76
0.727418
4dba1b778b155dca3d1ffb370adc9d4780dc60c2
2,002
agda
Agda
examples/AIM6/HelloAgda/Datatypes.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
1
2018-10-10T17:08:44.000Z
2018-10-10T17:08:44.000Z
examples/AIM6/HelloAgda/Datatypes.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
examples/AIM6/HelloAgda/Datatypes.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
{- Agda Implementors' Meeting VI Göteborg May 24 - 30, 2007 Hello Agda! Ulf Norell -} -- This is where the fun begins. -- Unleashing datatypes, pattern matching and recursion. module Datatypes where {- Simple datatypes. -} -- Now which datatype should we start with...? data Nat : Set where zero : Nat suc : Nat -> Nat -- Let's start simple. pred : Nat -> Nat pred zero = zero pred (suc n) = n -- Now let's do recursion. _+_ : Nat -> Nat -> Nat zero + m = m suc n + m = suc (n + m) -- An aside on infix operators: -- Any name containing _ can be used as a mixfix operator. -- The arguments simply go in place of the _. For instance: data Bool : Set where true : Bool false : Bool if_then_else_ : {A : Set} -> Bool -> A -> A -> A if true then x else y = x if false then x else y = y -- To declare the associativity and precedence of an operator -- we write. In this case we need parenthesis around the else branch -- if its precedence is lower than 10. For the condition and the then -- branch we only need parenthesis for things like λs. infix 10 if_then_else_ {- Parameterised datatypes -} data List (A : Set) : Set where [] : List A _::_ : A -> List A -> List A infixr 50 _::_ -- The parameters are implicit arguments to the constructors. nil : (A : Set) -> List A nil A = [] {A} map : {A B : Set} -> (A -> B) -> List A -> List B map f [] = [] map f (x :: xs) = f x :: map f xs {- Empty datatypes -} -- A very useful guy is the empty datatype. data False : Set where -- When pattern matching on an element of an empty type, something -- interesting happens: elim-False : {A : Set} -> False -> A elim-False () -- Look Ma, no right hand side! -- The pattern () is called an absurd pattern and matches elements -- of an empty type. {- What's next? -} -- Fun as they are, eventually you'll get bored with -- inductive datatypes. -- Move on to: Families.agda
18.537037
69
0.624376
4a966495072dadfb6318540ee3912379ca515496
11,358
agda
Agda
04-cubical-type-theory/material/Part4.agda
HoTT/EPIT-2020
0502db788d6d2b3950e44f362cdb7d4da3ebce82
[ "MIT" ]
97
2021-03-19T14:13:37.000Z
2022-03-15T13:58:25.000Z
04-cubical-type-theory/material/Part4.agda
HoTT/EPIT-2020
0502db788d6d2b3950e44f362cdb7d4da3ebce82
[ "MIT" ]
2
2021-03-31T18:27:23.000Z
2021-04-13T09:03:56.000Z
04-cubical-type-theory/material/Part4.agda
HoTT/EPIT-2020
0502db788d6d2b3950e44f362cdb7d4da3ebce82
[ "MIT" ]
14
2021-03-19T12:36:53.000Z
2022-03-22T19:37:21.000Z
{- Part 4: Higher inductive types • Set quotients via HITs • Propositional truncation • A little synthetic homotopy theory -} {-# OPTIONS --cubical #-} module Part4 where open import Cubical.Foundations.Isomorphism open import Cubical.Data.Int hiding (_+_) open import Cubical.Data.Nat hiding (elim) open import Cubical.Data.Prod hiding (map) open import Part1 open import Part2 open import Part3 -- Another thing that Cubical Agda adds is the possibility to define -- higher inductive types. These are just like normal Agda datatypes, -- but they have also "higher" constructors specifying non-trivial -- paths, square, cubes, etc. in the type. These give a nice way of -- defining set quotiented types as well as higher dimensional types -- quotiented by some arbitrary relation. -- Let's start by looking at some set quotient examples. The following -- definition of finite multisets is due to Vikraman Choudhury and -- Marcelo Fiore. infixr 5 _∷_ data FMSet (A : Type ℓ) : Type ℓ where [] : FMSet A _∷_ : (x : A) → (xs : FMSet A) → FMSet A comm : (x y : A) (xs : FMSet A) → x ∷ y ∷ xs ≡ y ∷ x ∷ xs trunc : (xs ys : FMSet A) (p q : xs ≡ ys) → p ≡ q infixr 30 _++_ _++_ : ∀ (xs ys : FMSet A) → FMSet A [] ++ ys = ys (x ∷ xs) ++ ys = x ∷ xs ++ ys comm x y xs i ++ ys = comm x y (xs ++ ys) i trunc xs zs p q i j ++ ys = trunc (xs ++ ys) (zs ++ ys) (λ k → p k ++ ys) (λ k → q k ++ ys) i j unitl-++ : (xs : FMSet A) → [] ++ xs ≡ xs unitl-++ xs = refl unitr-++ : (xs : FMSet A) → xs ++ [] ≡ xs unitr-++ [] = refl unitr-++ (x ∷ xs) = cong (x ∷_) (unitr-++ xs) unitr-++ (comm x y xs i) j = comm x y (unitr-++ xs j) i unitr-++ (trunc xs ys p q i k) j = trunc (unitr-++ xs j) (unitr-++ ys j) (λ k → unitr-++ (p k) j) (λ k → unitr-++ (q k) j) i k -- Filling the goals for comm and trunc quickly gets tiresome and -- useful lemmas about eliminating into propositions are proved in -- Cubical.HITs.FiniteMultiset. As we're proving an equality of a set -- truncated type we can prove the trunc and comm cases once and for -- all so that we only have to give cases for [] and _∷_ when -- constructing a family of propositions. This is a very common -- pattern when working with set truncated HITs: first define the HIT, -- then prove special purpose recursors and eliminators for -- eliminating into types of different h-levels. All definitions are -- then written using these recursors and eliminators and one get very -- short proofs. -- A more efficient version of finite multisets based on association -- lists can be found in Cubical.HITs.AssocList.Base. It looks like -- this: data AssocList (A : Type ℓ) : Type ℓ where ⟨⟩ : AssocList A ⟨_,_⟩∷_ : (a : A) (n : ℕ) (xs : AssocList A) → AssocList A per : (a b : A) (m n : ℕ) (xs : AssocList A) → ⟨ a , m ⟩∷ ⟨ b , n ⟩∷ xs ≡ ⟨ b , n ⟩∷ ⟨ a , m ⟩∷ xs agg : (a : A) (m n : ℕ) (xs : AssocList A) → ⟨ a , m ⟩∷ ⟨ a , n ⟩∷ xs ≡ ⟨ a , m + n ⟩∷ xs del : (a : A) (xs : AssocList A) → ⟨ a , 0 ⟩∷ xs ≡ xs trunc : (xs ys : AssocList A) (p q : xs ≡ ys) → p ≡ q -- Programming and proving is more complicated with AssocList compared -- to FMSet. This kind of example occurs everywhere in programming and -- mathematics: one representation is easier to work with, but not -- efficient, while another is efficient but difficult to work with. -- Using the SIP we can get the best of both worlds (see -- https://arxiv.org/abs/2009.05547 for details). -- Another nice CS example of a HIT can be found in Cubical.Data.Queue -- where we define a queue datastructure based on two lists. These -- examples are all special cases of set quotients and are very useful -- for programming and set level mathematics. We can define the -- general form as: data _/_ (A : Type ℓ) (R : A → A → Type ℓ') : Type (ℓ-max ℓ ℓ') where [_] : A → A / R eq/ : (a b : A) → R a b → [ a ] ≡ [ b ] trunc : (a b : A / R) (p q : a ≡ b) → p ≡ q -- It's sometimes easier to work directly with _/_ instead of defining -- special HITs as one can reuse lemmas for _/_ instead of reproving -- things. For example, general lemmas about eliminating into -- propositions have already been proved for _/_. -- Proving that _/_ is "effective" (for prop-valued relation), i.e. that -- -- ((a b : A) → [ a ] ≡ [ b ] → R a b) -- -- requires univalence for propositions (hPropExt). -- Set quotients let us define things like in normal math: ℤ' : Type₀ ℤ' = (ℕ × ℕ) / rel where rel : (ℕ × ℕ) → (ℕ × ℕ) → Type₀ rel (x₀ , y₀) (x₁ , y₁) = x₀ + y₁ ≡ x₁ + y₀ -- Another useful class of HITs are truncations, especially -- propositional truncation: data ∥_∥ (A : Type ℓ) : Type ℓ where ∣_∣ : A → ∥ A ∥ squash : ∀ (x y : ∥ A ∥) → x ≡ y -- This lets us define mere existence: ∃ : ∀ {ℓ ℓ'} (A : Type ℓ) (B : A → Type ℓ') → Type (ℓ-max ℓ ℓ') ∃ A B = ∥ Σ A B ∥ -- This is very useful to specify things where existence is weaker -- than Σ. This lets us define things like surjective functions or the -- image of a map which we cannot define properly in pre-HoTT type -- theory. -- We can define the recursor by pattern-matching rec : {P : Type ℓ} → isProp P → (A → P) → ∥ A ∥ → P rec Pprop f ∣ x ∣ = f x rec Pprop f (squash x y i) = Pprop (rec Pprop f x) (rec Pprop f y) i -- And the eliminator then follows easily: elim : {P : ∥ A ∥ → Type ℓ} → ((a : ∥ A ∥) → isProp (P a)) → ((x : A) → P ∣ x ∣) → (a : ∥ A ∥) → P a elim {P = P} Pprop f a = rec (Pprop a) (λ x → transport (λ i → P (squash ∣ x ∣ a i)) (f x)) a -- A very important point is that propositional truncation is proof -- relevant, so even though the elements are all equal one can still -- extract interesting information from them. A fun example is the -- "cost monad" which can be found in Cubical.HITs.Cost. There we pair -- A with ∥ ℕ ∥ and use the truncated number to count the number of -- recursive calls in various functions. As the number is truncated it -- doesn't affect any properties of the functions, but by running -- concrete computations we can extract the number of calls. ------------------------------------------------------------------------- -- Another source of HITs are inspired by topology -- We can define the circle as the following simple data declaration: data S¹ : Type₀ where base : S¹ loop : base ≡ base -- We can write functions on S¹ using pattern-matching: double : S¹ → S¹ double base = base double (loop i) = (loop ∙ loop) i -- Note that loop takes an i : I argument. This is not very surprising -- as it's a path base ≡ base, but it's an important difference to -- HoTT. Having the native notion of equality be heterogeneous makes -- it possible to quite directly define a general schema for a large -- class of HITs (more or less all in the HoTT book, with the -- exception for the Cauchy reals (I think?)). -- Let's use univalence to compute some winding numbers on the -- circle. We first define a family of types over the circle whos -- fibers are the integers. helix : S¹ → Type₀ helix base = ℤ helix (loop i) = sucPath i -- The loopspace of the circle ΩS¹ : Type₀ ΩS¹ = base ≡ base -- We can then define a function computing how many times we've looped -- around the circle by: winding : ΩS¹ → ℤ winding p = subst helix p (pos 0) -- This reduces just fine: _ : winding (λ i → double ((loop ∙ loop) i)) ≡ pos 4 _ = refl -- This would not reduce in HoTT as univalence is an axiom. Having -- things compute makes it possible to substantially simplify many -- proofs from HoTT in Cubical Agda, more about this later. -- We can in fact prove that winding is an equivalence, this relies on -- the encode-decode method and Egbert will go through the proof in -- detail. For details about how this proof looks in Cubical Agda see: -- -- Cubical.HITs.S1.Base -- Complex multiplication on S¹, used in the Hopf fibration _⋆_ : S¹ → S¹ → S¹ base ⋆ x = x loop i ⋆ base = loop i loop i ⋆ loop j = hcomp (λ k → λ { (i = i0) → loop (j ∨ ~ k) ; (i = i1) → loop (j ∧ k) ; (j = i0) → loop (i ∨ ~ k) ; (j = i1) → loop (i ∧ k) }) base -- We can define the Torus as: data Torus : Type₀ where point : Torus line1 : point ≡ point line2 : point ≡ point square : PathP (λ i → line1 i ≡ line1 i) line2 line2 -- The square corresponds to the usual folding diagram from topology: -- -- line1 -- p ----------> p -- ^ ^ -- ¦ ¦ -- line2 ¦ ¦ line2 -- ¦ ¦ -- p ----------> p -- line1 -- Proving that it is equivalent to two circles is pretty much trivial: t2c : Torus → S¹ × S¹ t2c point = (base , base) t2c (line1 i) = (loop i , base) t2c (line2 j) = (base , loop j) t2c (square i j) = (loop i , loop j) c2t : S¹ × S¹ → Torus c2t (base , base) = point c2t (loop i , base) = line1 i c2t (base , loop j) = line2 j c2t (loop i , loop j) = square i j c2t-t2c : (t : Torus) → c2t (t2c t) ≡ t c2t-t2c point = refl c2t-t2c (line1 _) = refl c2t-t2c (line2 _) = refl c2t-t2c (square _ _) = refl t2c-c2t : (p : S¹ × S¹) → t2c (c2t p) ≡ p t2c-c2t (base , base) = refl t2c-c2t (base , loop _) = refl t2c-c2t (loop _ , base) = refl t2c-c2t (loop _ , loop _) = refl -- Using univalence we get the following equality: Torus≡S¹×S¹ : Torus ≡ S¹ × S¹ Torus≡S¹×S¹ = isoToPath (iso t2c c2t t2c-c2t c2t-t2c) -- We can also directly compute winding numbers on the torus windingTorus : point ≡ point → ℤ × ℤ windingTorus l = ( winding (λ i → proj₁ (t2c (l i))) , winding (λ i → proj₂ (t2c (l i)))) _ : windingTorus (line1 ∙ sym line2) ≡ (pos 1 , negsuc 0) _ = refl -- This proof turned out to be much more complicated in HoTT as -- eliminators out of HITs don't compute definitionally for higher -- constructors. In Cubical Agda this is not a problem as all cases -- reduce definitionally. -- We have many more topological examples in the library, including -- Klein bottle, RP^n, higher spheres, suspensions, join, wedges, -- smash product: -- open import Cubical.HITs.KleinBottle -- open import Cubical.HITs.RPn -- open import Cubical.HITs.S2 -- open import Cubical.HITs.S3 -- open import Cubical.HITs.Susp -- open import Cubical.HITs.Join -- open import Cubical.HITs.Wedge -- open import Cubical.HITs.SmashProduct -- There's also a proof of the "3x3 lemma" for pushouts in less than -- 200LOC. In HoTT-Agda this took about 3000LOC. For details see: -- https://github.com/HoTT/HoTT-Agda/tree/master/theorems/homotopy/3x3 -- open import Cubical.HITs.Pushout -- We also defined the Hopf fibration and proved that its total space -- is S³ in about 300LOC: -- open import Cubical.HITs.Hopf -- There is also some integer cohomology: -- open import Cubical.ZCohomology.Everything -- To compute cohomology groups of various spaces we need a bunch of -- interesting theorems: Freudenthal suspension theorem, -- Mayer-Vietoris sequence... -- For further references about doing synthetic algebraic topology in -- Cubical Agda see: -- Cubical Synthetic Homotopy Theory -- Anders Mörtberg, Loïc Pujet -- https://staff.math.su.se/anders.mortberg/papers/cubicalsynthetic.pdf -- Synthetic Cohomology Theory in Cubical Agda -- Guillaume Brunerie, Anders Mörtberg, Axel Ljungström. -- https://staff.math.su.se/anders.mortberg/papers/zcohomology.pdf --- The end! ---
34.840491
73
0.647913
fbb4c9e8cba9d4a3c1e71cff9c756bfc823e5c51
2,228
agda
Agda
test/asset/agda-stdlib-1.0/Function/Injection.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
test/asset/agda-stdlib-1.0/Function/Injection.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Function/Injection.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- Injections ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Function.Injection where open import Function as Fun using () renaming (_∘_ to _⟨∘⟩_) open import Level open import Relation.Binary open import Function.Equality as F using (_⟶_; _⟨$⟩_ ; Π) renaming (_∘_ to _⟪∘⟫_) open import Relation.Binary.PropositionalEquality as P using (_≡_) ------------------------------------------------------------------------ -- Injective functions Injective : ∀ {a₁ a₂ b₁ b₂} {A : Setoid a₁ a₂} {B : Setoid b₁ b₂} → A ⟶ B → Set _ Injective {A = A} {B} f = ∀ {x y} → f ⟨$⟩ x ≈₂ f ⟨$⟩ y → x ≈₁ y where open Setoid A renaming (_≈_ to _≈₁_) open Setoid B renaming (_≈_ to _≈₂_) ------------------------------------------------------------------------ -- The set of all injections between two setoids record Injection {f₁ f₂ t₁ t₂} (From : Setoid f₁ f₂) (To : Setoid t₁ t₂) : Set (f₁ ⊔ f₂ ⊔ t₁ ⊔ t₂) where field to : From ⟶ To injective : Injective to open Π to public ------------------------------------------------------------------------ -- The set of all injections from one set to another (i.e. injections -- with propositional equality) infix 3 _↣_ _↣_ : ∀ {f t} → Set f → Set t → Set _ From ↣ To = Injection (P.setoid From) (P.setoid To) injection : ∀ {f t} {From : Set f} {To : Set t} → (to : From → To) → (∀ {x y} → to x ≡ to y → x ≡ y) → From ↣ To injection to injective = record { to = P.→-to-⟶ to ; injective = injective } ------------------------------------------------------------------------ -- Identity and composition. infixr 9 _∘_ id : ∀ {s₁ s₂} {S : Setoid s₁ s₂} → Injection S S id = record { to = F.id ; injective = Fun.id } _∘_ : ∀ {f₁ f₂ m₁ m₂ t₁ t₂} {F : Setoid f₁ f₂} {M : Setoid m₁ m₂} {T : Setoid t₁ t₂} → Injection M T → Injection F M → Injection F T f ∘ g = record { to = to f ⟪∘⟫ to g ; injective = (λ {_} → injective g) ⟨∘⟩ injective f } where open Injection
30.108108
72
0.460952
a1a865a7319f6a4f09f4cbf6bfc1de75dce829b0
1,244
agda
Agda
src/Categories/Examples/Functor/Sets.agda
bond15/categories-examples
adfa1dee4f27286a2943863d7a0302e6ba26fffd
[ "MIT" ]
null
null
null
src/Categories/Examples/Functor/Sets.agda
bond15/categories-examples
adfa1dee4f27286a2943863d7a0302e6ba26fffd
[ "MIT" ]
null
null
null
src/Categories/Examples/Functor/Sets.agda
bond15/categories-examples
adfa1dee4f27286a2943863d7a0302e6ba26fffd
[ "MIT" ]
null
null
null
{-# OPTIONS --safe --without-K #-} module Categories.Examples.Functor.Sets where import Data.List as List import Data.List.Properties open import Data.Nat using (ℕ) import Data.Product as Product import Data.Vec as Vec import Data.Vec.Properties open import Function using (id; λ-; _$-) open import Relation.Binary.PropositionalEquality using (refl) open import Categories.Category.Discrete using (Discrete) open import Categories.Category.Instance.Sets open import Categories.Functor using (Endofunctor) open import Categories.Functor.Bifunctor using (Bifunctor; appʳ) List : ∀ {o} → Endofunctor (Sets o) List = record { F₀ = List.List ; F₁ = List.map ; identity = map-id $- ; homomorphism = map-compose $- ; F-resp-≈ = λ f≈g → map-cong (λ- f≈g) $- } where open Data.List.Properties Vec′ : ∀ {o} → Bifunctor (Sets o) (Discrete ℕ) (Sets o) Vec′ = record { F₀ = Product.uncurry Vec.Vec ; F₁ = λ { (f , refl) → Vec.map f } ; identity = map-id $- ; homomorphism = λ { {_} {_} {_} {f , refl} {g , refl} → map-∘ g f _} ; F-resp-≈ = λ { {_} {_} {_} {_ , refl} (g , refl) → map-cong (λ- g) _} } where open Product using (_,_) open Data.Vec.Properties Vec : ∀ {o} → ℕ → Endofunctor (Sets o) Vec = appʳ Vec′
28.930233
73
0.656752
5033e93236024db121737029deab4ae6eb93ef3b
85
agda
Agda
test/Fail/Sections-15.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Sections-15.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Sections-15.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
open import Common.Prelude test : Bool → Nat test = if_then 4 Common.Prelude.else 5
17
38
0.752941
cb7b1e8b90a7b2dd7ab0cbe9420322a6ddb0166d
3,913
agda
Agda
test/succeed/builtin.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
1
2019-11-27T04:41:05.000Z
2019-11-27T04:41:05.000Z
test/succeed/builtin.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
test/succeed/builtin.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
module builtin where data Bool : Set where false : Bool true : Bool not : Bool -> Bool not true = false not false = true _||_ : Bool -> Bool -> Bool true || _ = true false || x = x _&&_ : Bool -> Bool -> Bool true && x = x false && _ = false {-# BUILTIN BOOL Bool #-} {-# BUILTIN TRUE true #-} {-# BUILTIN FALSE false #-} data Nat : Set where zero : Nat suc : Nat -> Nat {-# BUILTIN NATURAL Nat #-} {-# BUILTIN SUC suc #-} {-# BUILTIN ZERO zero #-} postulate Int : Set String : Set Float : Set Char : Set {-# BUILTIN INTEGER Int #-} {-# BUILTIN STRING String #-} {-# BUILTIN FLOAT Float #-} {-# BUILTIN CHAR Char #-} infixr 10 _::_ data List (A : Set) : Set where nil : List A _::_ : A -> List A -> List A {-# BUILTIN LIST List #-} {-# BUILTIN NIL nil #-} {-# BUILTIN CONS _::_ #-} primitive -- Integer functions primIntegerPlus : Int -> Int -> Int primIntegerMinus : Int -> Int -> Int primIntegerTimes : Int -> Int -> Int primIntegerDiv : Int -> Int -> Int primIntegerMod : Int -> Int -> Int primIntegerEquality : Int -> Int -> Bool primIntegerLess : Int -> Int -> Bool primNatToInteger : Nat -> Int primShowInteger : Int -> String -- Floating point functions primIntegerToFloat : Int -> Float primFloatPlus : Float -> Float -> Float primFloatMinus : Float -> Float -> Float primFloatTimes : Float -> Float -> Float primFloatDiv : Float -> Float -> Float primFloatLess : Float -> Float -> Bool primRound : Float -> Int primFloor : Float -> Int primCeiling : Float -> Int primExp : Float -> Float primLog : Float -> Float primSin : Float -> Float primShowFloat : Float -> String -- Character functions primCharEquality : Char -> Char -> Bool primIsLower : Char -> Bool primIsDigit : Char -> Bool primIsAlpha : Char -> Bool primIsSpace : Char -> Bool primIsAscii : Char -> Bool primIsLatin1 : Char -> Bool primIsPrint : Char -> Bool primIsHexDigit : Char -> Bool primToUpper : Char -> Char primToLower : Char -> Char primCharToNat : Char -> Nat primNatToChar : Nat -> Char -- partial primShowChar : Char -> String -- String functions primStringToList : String -> List Char primStringFromList : List Char -> String primStringAppend : String -> String -> String primStringEquality : String -> String -> Bool primShowString : String -> String isLower : Char -> Bool isLower = primIsLower isAlpha : Char -> Bool isAlpha = primIsAlpha isUpper : Char -> Bool isUpper c = isAlpha c && not (isLower c) infixl 14 _*_ _/_ infix 12 -_ infixl 12 _+_ _-_ infixl 8 _==_ nat0 = primCharToNat '\0' int0 = primNatToInteger nat0 _+_ = primIntegerPlus _*_ = primIntegerTimes _-_ = primIntegerMinus -_ = \(x : Int) -> int0 - x _==_ = primIntegerEquality _/_ = primFloatDiv pi = 3.141592653589793 sin = primSin cos : Float -> Float cos x = sin (primFloatMinus (pi / 2.0) x) tan : Float -> Float tan x = sin x / cos x reverse : {A : Set} -> List A -> List A reverse xs = rev xs nil where rev : {A : Set} -> List A -> List A -> List A rev nil ys = ys rev (x :: xs) ys = rev xs (x :: ys) infixr 20 _∘_ _∘_ : {A B C : Set} -> (B -> C) -> (A -> B) -> A -> C f ∘ g = \x -> f (g x) map : {A B : Set} -> (A -> B) -> List A -> List B map f nil = nil map f (x :: xs) = f x :: map f xs stringAsList : (List Char -> List Char) -> String -> String stringAsList f = primStringFromList ∘ f ∘ primStringToList revStr : String -> String revStr = stringAsList reverse mapStr : (Char -> Char) -> String -> String mapStr f = stringAsList (map f) -- Testing unicode literals uString = "åäö⊢ξ∀" uChar = '∀'
23.859756
59
0.581395
1c22c798621cd2a0da031aad2e8ba3d770fb73cd
6,107
agda
Agda
fracGC/BackwardsEval.agda
JacquesCarette/pi-dual
003835484facfde0b770bc2b3d781b42b76184c1
[ "BSD-2-Clause" ]
14
2015-08-18T21:40:15.000Z
2021-05-05T01:07:57.000Z
fracGC/BackwardsEval.agda
JacquesCarette/pi-dual
003835484facfde0b770bc2b3d781b42b76184c1
[ "BSD-2-Clause" ]
4
2018-06-07T16:27:41.000Z
2021-10-29T20:41:23.000Z
fracGC/BackwardsEval.agda
JacquesCarette/pi-dual
003835484facfde0b770bc2b3d781b42b76184c1
[ "BSD-2-Clause" ]
3
2016-05-29T01:56:33.000Z
2019-09-10T09:47:13.000Z
{-# OPTIONS --without-K --safe #-} -- Backwards evaluator and the fact that with eval, forms a reversible evaluator module BackwardsEval where open import Data.Unit using (tt) open import Data.Sum using (inj₁; inj₂) open import Data.Product using (_,_; proj₁; proj₂) open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans; cong; cong₂; subst) open import Singleton open import PiFrac bwd : {A B : 𝕌} → (A ⟷ B) → ⟦ B ⟧ → ⟦ A ⟧ bwd-eval : {A B : 𝕌} → (c : A ⟷ B) → (v : ⟦ A ⟧) → bwd c (eval c v) ≡ v bwd unite₊l v = inj₂ v bwd uniti₊l (inj₂ v) = v bwd unite₊r v = inj₁ v bwd uniti₊r (inj₁ v) = v bwd swap₊ (inj₁ v) = inj₂ v bwd swap₊ (inj₂ v) = inj₁ v bwd assocl₊ (inj₁ (inj₁ v)) = inj₁ v bwd assocl₊ (inj₁ (inj₂ v)) = inj₂ (inj₁ v) bwd assocl₊ (inj₂ v) = inj₂ (inj₂ v) bwd assocr₊ (inj₁ v) = inj₁ (inj₁ v) bwd assocr₊ (inj₂ (inj₁ v)) = inj₁ (inj₂ v) bwd assocr₊ (inj₂ (inj₂ v)) = inj₂ v bwd unite⋆l v = (tt , v) bwd uniti⋆l (tt , v) = v bwd unite⋆r v = (v , tt) bwd uniti⋆r (v , tt) = v bwd swap⋆ (v₁ , v₂) = (v₂ , v₁) bwd assocl⋆ ((v₁ , v₂) , v₃) = (v₁ , (v₂ , v₃)) bwd assocr⋆ (v₁ , (v₂ , v₃)) = ((v₁ , v₂) , v₃) bwd dist (inj₁ (v₁ , v₂)) = (inj₁ v₁ , v₂) bwd dist (inj₂ (v₂ , v₃)) = (inj₂ v₂ , v₃) bwd factor (inj₁ v₁ , v₃) = inj₁ (v₁ , v₃) bwd factor (inj₂ v₂ , v₃) = inj₂ (v₂ , v₃) bwd distl (inj₁ (v₁ , v₂)) = (v₁ , inj₁ v₂) bwd distl (inj₂ (v₁ , v₃)) = (v₁ , inj₂ v₃) bwd factorl (v₁ , inj₁ v₂) = inj₁ (v₁ , v₂) bwd factorl (v₁ , inj₂ v₃) = inj₂ (v₁ , v₃) bwd id⟷ v = v bwd (c₁ ⊚ c₂) v = bwd c₁ (bwd c₂ v) bwd (c₁ ⊕ c₂) (inj₁ v) = inj₁ (bwd c₁ v) bwd (c₁ ⊕ c₂) (inj₂ v) = inj₂ (bwd c₂ v) bwd (c₁ ⊗ c₂) (v₁ , v₂) = (bwd c₁ v₁ , bwd c₂ v₂) bwd (lift {_} {_} {v₁} c) (●₁ , v≡●₁) = (bwd c ●₁) , (trans (sym (bwd-eval c v₁)) (cong (bwd c) v≡●₁)) bwd tensorl ((w₁ , p₁) , (w₂ , p₂)) = (w₁ , w₂) , (cong₂ _,_ p₁ p₂) bwd tensorr ((v₁ , v₂) , p) = (v₁ , cong proj₁ p) , (v₂ , cong proj₂ p) bwd plusll (w , p) = (inj₁ w) , (cong inj₁ p) bwd pluslr (inj₁ w₁ , refl) = w₁ , refl bwd plusrl (w , p) = (inj₂ w) , (cong inj₂ p) bwd plusrr (inj₂ w₂ , refl) = w₂ , refl bwd fracl (f₁ , f₂) ((w₁ , w₂) , refl) = let _ = f₁ (w₁ , refl) ; _ = f₂ (w₂ , refl) in tt bwd (fracr {v₁ = v₁} {v₂ = v₂}) f = (λ _ → f ((v₁ , v₂) , refl)) , (λ _ → f ((v₁ , v₂) , refl)) bwd (η v) p = tt bwd (ε v) tt = (v , refl) , λ _ → tt bwd (ll {t} {v} {w}) (v , refl) = w , refl bwd (== c eq) v = bwd c (subst (Singleton ⟦ _ ⟧) (sym eq) v) bwd-eval unite₊l (inj₂ v) = refl bwd-eval uniti₊l v = refl bwd-eval unite₊r (inj₁ v) = refl bwd-eval uniti₊r v = refl bwd-eval swap₊ (inj₁ v) = refl bwd-eval swap₊ (inj₂ v) = refl bwd-eval assocl₊ (inj₁ v) = refl bwd-eval assocl₊ (inj₂ (inj₁ v)) = refl bwd-eval assocl₊ (inj₂ (inj₂ v)) = refl bwd-eval assocr₊ (inj₁ (inj₁ v)) = refl bwd-eval assocr₊ (inj₁ (inj₂ v)) = refl bwd-eval assocr₊ (inj₂ v) = refl bwd-eval unite⋆l (tt , v) = refl bwd-eval uniti⋆l v = refl bwd-eval unite⋆r (v , tt) = refl bwd-eval uniti⋆r v = refl bwd-eval swap⋆ (v₁ , v₂) = refl bwd-eval assocl⋆ (v₁ , (v₂ , v₃)) = refl bwd-eval assocr⋆ ((v₁ , v₂) , v₃) = refl bwd-eval dist (inj₁ v₁ , v₃) = refl bwd-eval dist (inj₂ v₂ , v₃) = refl bwd-eval factor (inj₁ (v₁ , v₃)) = refl bwd-eval factor (inj₂ (v₂ , v₃)) = refl bwd-eval distl (v₁ , inj₁ v₂) = refl bwd-eval distl (v₁ , inj₂ v₃) = refl bwd-eval factorl (inj₁ (v₁ , v₂)) = refl bwd-eval factorl (inj₂ (v₁ , v₃)) = refl bwd-eval id⟷ v = refl bwd-eval (c₁ ⊚ c₂) v = trans (cong (bwd c₁) (bwd-eval c₂ (eval c₁ v))) (bwd-eval c₁ v) bwd-eval (c₁ ⊕ c₂) (inj₁ v₁) = cong inj₁ (bwd-eval c₁ v₁) bwd-eval (c₁ ⊕ c₂) (inj₂ v₂) = cong inj₂ (bwd-eval c₂ v₂) bwd-eval (c₁ ⊗ c₂) (v₁ , v₂) = cong₂ _,_ (bwd-eval c₁ v₁) (bwd-eval c₂ v₂) bwd-eval (lift c) v = pointed-all-paths bwd-eval tensorl p = pointed-all-paths bwd-eval tensorr (p₁ , p₂) = cong₂ _,_ pointed-all-paths pointed-all-paths bwd-eval plusll p = pointed-all-paths bwd-eval pluslr p = pointed-all-paths bwd-eval plusrl p = pointed-all-paths bwd-eval plusrr p = pointed-all-paths bwd-eval fracl f = {!!} -- needs recip-all-paths bwd-eval fracr (f₁ , f₂) = {!!} bwd-eval (η v) tt = refl bwd-eval (ε v) (p , r) = cong₂ _,_ pointed-all-paths refl bwd-eval (ll {t} {v} {.w}) (w , refl) = refl bwd-eval (== c eq) p = pointed-all-paths eval-bwd : {A B : 𝕌} → (c : A ⟷ B) → (v : ⟦ B ⟧) → eval c (bwd c v) ≡ v eval-bwd unite₊l v = refl eval-bwd uniti₊l (inj₂ v) = refl eval-bwd unite₊r v = refl eval-bwd uniti₊r (inj₁ v) = refl eval-bwd swap₊ (inj₁ v) = refl eval-bwd swap₊ (inj₂ v) = refl eval-bwd assocl₊ (inj₁ (inj₁ v)) = refl eval-bwd assocl₊ (inj₁ (inj₂ v)) = refl eval-bwd assocl₊ (inj₂ v) = refl eval-bwd assocr₊ (inj₁ v) = refl eval-bwd assocr₊ (inj₂ (inj₁ v)) = refl eval-bwd assocr₊ (inj₂ (inj₂ v)) = refl eval-bwd unite⋆l v = refl eval-bwd uniti⋆l (tt , v) = refl eval-bwd unite⋆r v = refl eval-bwd uniti⋆r (v , tt) = refl eval-bwd swap⋆ (v₂ , v₁) = refl eval-bwd assocl⋆ ((v₁ , v₂) , v₃) = refl eval-bwd assocr⋆ (v₁ , (v₂ , v₃)) = refl eval-bwd dist (inj₁ (v₁ , v₂)) = refl eval-bwd dist (inj₂ (v₂ , v₃)) = refl eval-bwd factor (inj₁ v₁ , v₃) = refl eval-bwd factor (inj₂ v₂ , v₃) = refl eval-bwd distl (inj₁ (v₁ , v₂)) = refl eval-bwd distl (inj₂ (v₁ , v₃)) = refl eval-bwd factorl (v₁ , inj₁ v₂) = refl eval-bwd factorl (v₁ , inj₂ v₃) = refl eval-bwd id⟷ v = refl eval-bwd (c₁ ⊚ c₂) v = trans (cong (eval c₂) (eval-bwd c₁ (bwd c₂ v))) (eval-bwd c₂ v) eval-bwd (c₁ ⊕ c₂) (inj₁ v) = cong inj₁ (eval-bwd c₁ v) eval-bwd (c₁ ⊕ c₂) (inj₂ v) = cong inj₂ (eval-bwd c₂ v) eval-bwd (c₁ ⊗ c₂) (v₃ , v₄) = cong₂ _,_ (eval-bwd c₁ v₃) (eval-bwd c₂ v₄) eval-bwd (lift c) x = pointed-all-paths eval-bwd tensorl p = cong₂ _,_ pointed-all-paths pointed-all-paths eval-bwd tensorr p = pointed-all-paths eval-bwd plusll p = pointed-all-paths eval-bwd pluslr p = pointed-all-paths eval-bwd plusrl p = pointed-all-paths eval-bwd plusrr p = pointed-all-paths eval-bwd fracl (f₁ , f₂) = {!!} -- needs recip-all-paths eval-bwd fracr f = {!!} eval-bwd (η v) (p , r) = cong₂ _,_ pointed-all-paths refl eval-bwd (ε v) tt = refl eval-bwd (ll {t} {.v} {w}) (v , refl) = refl eval-bwd (== c eq) p = pointed-all-paths
38.898089
102
0.607663
dcdc65115ed4906e693a1f5eb431addbede43340
5,452
agda
Agda
test/Succeed/Issue473-1606.agda
pthariensflame/agda
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/Succeed/Issue473-1606.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
null
null
null
test/Succeed/Issue473-1606.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
null
null
null
-- Andreas, 2015-07-07 continuation of issue 665 -- Jesper, 2015-12-18 some of these don't work anymore with the new unifier, -- but a few others that weren't accepted are now. {-# OPTIONS --show-implicit #-} -- {-# OPTIONS -v tc.with.strip:10 #-} -- {-# OPTIONS -v tc.with.strip:60 -v tc.lhs:20 -v tc.lhs.unify:20 #-} postulate C : Set anything : C record I : Set where constructor c field {f} : C data Wrap : (i : I) → Set where wrap : ∀ {i} → Wrap i -- Test 0: first argument not given test0 : ∀ {j} → Wrap j → C test0 wrap with anything test0 wrap | z = z test0a : ∀ {j} → Wrap j → C test0a (wrap {c {x}}) with anything test0a wrap | z = z test0b : ∀ {j} → Wrap j → C test0b (wrap {c {_}}) with anything test0b wrap | z = z test0c : ∀ {j} → Wrap j → C test0c (wrap {c}) with anything test0c wrap | z = z test0d : ∀ {j} → Wrap j → C test0d (wrap {c {._}}) with anything test0d wrap | z = z test0e : ∀ {j} → Wrap j → C test0e (wrap .{c}) with anything test0e wrap | z = z test0f : ∀ {j} → Wrap j → C test0f (wrap .{c {_}}) with anything test0f wrap | z = z --test00 : ∀ {j} → Wrap j → C --test00 wrap with anything --test00 {.c} wrap | z = z -- test00a : ∀ {j} → Wrap j → C -- test00a (wrap {c {x}}) with anything -- test00a {.c} wrap | z = z --test00b : ∀ {j} → Wrap j → C --test00b (wrap {c {_}}) with anything --test00b {.c} wrap | z = z --test00c : ∀ {j} → Wrap j → C --test00c (wrap {c}) with anything --test00c {.c} wrap | z = z --test00d : ∀ {j} → Wrap j → C --test00d (wrap {c {._}}) with anything --test00d {.c} wrap | z = z --test00e : ∀ {j} → Wrap j → C --test00e (wrap .{c}) with anything --test00e {.c} wrap | z = z --test00f : ∀ {j} → Wrap j → C --test00f (wrap .{c {_}}) with anything --test00f {.c} wrap | z = z --test000 : ∀ {j} → Wrap j → C --test000 wrap with anything --test000 .{c {_}} wrap | z = z -- test000a : ∀ {j} → Wrap j → C -- test000a (wrap {c {x}}) with anything -- test000a .{c {_}} wrap | z = z --test000b : ∀ {j} → Wrap j → C --test000b (wrap {c {_}}) with anything --test000b .{c {_}} wrap | z = z --test000c : ∀ {j} → Wrap j → C --test000c (wrap {c}) with anything --test000c .{c {_}} wrap | z = z --test000d : ∀ {j} → Wrap j → C --test000d (wrap {c {._}}) with anything --test000d .{c {_}} wrap | z = z --test000e : ∀ {j} → Wrap j → C --test000e (wrap .{c}) with anything --test000e .{c {_}} wrap | z = z --test000f : ∀ {j} → Wrap j → C --test000f (wrap .{c {_}}) with anything --test000f .{c {_}} wrap | z = z -- Test 1: first argument is dot pattern test1a : ∀ {j} → Wrap j → C test1a .{c} (wrap {c {x}}) with anything test1a .{c} wrap | z = z test1b : ∀ {j} → Wrap j → C test1b .{c} (wrap {c {_}}) with anything test1b .{c} wrap | z = z test1c : ∀ {j} → Wrap j → C test1c .{c} (wrap {c}) with anything test1c .{c} wrap | z = z test11a : ∀ {j} → Wrap j → C test11a .{c} (wrap {c {x}}) with anything test11a wrap | z = z test11b : ∀ {j} → Wrap j → C test11b .{c} (wrap {c {_}}) with anything test11b wrap | z = z test11c : ∀ {j} → Wrap j → C test11c .{c} (wrap {c}) with anything test11c wrap | z = z -- test111a : ∀ {j} → Wrap j → C -- test111a (wrap {c {x}}) with anything -- test111a .{c} wrap | z = z --test111b : ∀ {j} → Wrap j → C --test111b (wrap {c {_}}) with anything --test111b .{c} wrap | z = z --test111c : ∀ {j} → Wrap j → C --test111c (wrap {c}) with anything --test111c .{c} wrap | z = z -- Test 2: First argument is record pattern test2a : ∀ {j} → Wrap j → C test2a {c} wrap with anything test2a {c} wrap | z = z test2b : ∀ {j} → Wrap j → C test2b {c} wrap with anything test2b wrap | z = z test2c : ∀ {j} → Wrap j → C test2c {c} (wrap {c}) with anything test2c {c} wrap | z = z test2d : ∀ {j} → Wrap j → C test2d {c} (wrap {c}) with anything test2d wrap | z = z test2e : ∀ {j} → Wrap j → C test2e {c} (wrap {c {._}}) with anything test2e {c} wrap | z = z test2f : ∀ {j} → Wrap j → C test2f {c} (wrap {c {._}}) with anything test2f wrap | z = z test2g : ∀ {j} → Wrap j → C test2g {c} (wrap {c {x}}) with anything test2g {c} wrap | z = z test2h : ∀ {j} → Wrap j → C test2h {c} (wrap {c {x}}) with anything test2h wrap | z = z test2i : ∀ {j} → Wrap j → C test2i {c} (wrap {c {_}}) with anything test2i {c} wrap | z = z test2j : ∀ {j} → Wrap j → C test2j {c} (wrap {c {_}}) with anything test2j wrap | z = z -- Test 3: First argument is record of dot pattern, second is record pattern -- The commented-out ones fail due to issue 1608 -- test3a : ∀ {j} → Wrap j → C -- test3a {c {._}} wrap with anything -- test3a {c {._}} wrap | z = z test3b : ∀ {j} → Wrap j → C test3b {c {._}} wrap with anything test3b wrap | z = z -- test3c : ∀ {j} → Wrap j → C -- test3c {c {._}} (wrap {c}) with anything -- test3c {c {._}} wrap | z = z test3d : ∀ {j} → Wrap j → C test3d {c {._}} (wrap {c}) with anything test3d wrap | z = z -- test3e : ∀ {j} → Wrap j → C -- test3e {c {._}} (wrap {c {._}}) with anything -- test3e {c {._}} wrap | z = z -- test3f : ∀ {j} → Wrap j → C -- test3f {c {._}} (wrap {c {._}}) with anything -- test3f wrap | z = z test3g : ∀ {j} → Wrap j → C test3g {c {_}} (wrap {c {x}}) with anything test3g {c {_}} wrap | z = z test3h : ∀ {j} → Wrap j → C test3h {c {_}} (wrap {c {x}}) with anything test3h wrap | z = z -- test3i : ∀ {j} → Wrap j → C -- test3i {c {_}} (wrap {c {_}}) with anything -- test3i {c {_}} wrap | z = z test3j : ∀ {j} → Wrap j → C test3j {c {_}} (wrap {c {_}}) with anything test3j wrap | z = z
23.704348
76
0.561996
a103ec1b80fab591c16915223676ba6de16f46c8
925
agda
Agda
Cubical/Codata/Everything.agda
ryanorendorff/cubical
c67854d2e11aafa5677e25a09087e176fafd3e43
[ "MIT" ]
1
2020-03-23T23:52:11.000Z
2020-03-23T23:52:11.000Z
Cubical/Codata/Everything.agda
ryanorendorff/cubical
c67854d2e11aafa5677e25a09087e176fafd3e43
[ "MIT" ]
null
null
null
Cubical/Codata/Everything.agda
ryanorendorff/cubical
c67854d2e11aafa5677e25a09087e176fafd3e43
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical #-} module Cubical.Codata.Everything where open import Cubical.Codata.EverythingSafe public --- Modules making assumptions that might be incompatible with other -- flags or make use of potentially unsafe features. -- Assumes --guardedness open import Cubical.Codata.Stream public open import Cubical.Codata.Conat public open import Cubical.Codata.M public -- Also uses {-# TERMINATING #-}. open import Cubical.Codata.M.Bisimilarity public {- -- Alternative M type implemetation, based on -- https://arxiv.org/pdf/1504.02949.pdf -- "Non-wellfounded trees in Homotopy Type Theory" -- Benedikt Ahrens, Paolo Capriotti, Régis Spadotti -} open import Cubical.Codata.M.AsLimit.M open import Cubical.Codata.M.AsLimit.Coalg open import Cubical.Codata.M.AsLimit.helper open import Cubical.Codata.M.AsLimit.Container open import Cubical.Codata.M.AsLimit.itree open import Cubical.Codata.M.AsLimit.stream
28.90625
68
0.787027
310141321a2fd5a9dc6d1f5b94bb175a3836e9de
12,135
agda
Agda
src/data/lib/prim/Agda/Builtin/Reflection.agda
shlevy/agda
ed8ac6f4062ea8a20fa0f62d5db82d4e68278338
[ "BSD-3-Clause" ]
null
null
null
src/data/lib/prim/Agda/Builtin/Reflection.agda
shlevy/agda
ed8ac6f4062ea8a20fa0f62d5db82d4e68278338
[ "BSD-3-Clause" ]
null
null
null
src/data/lib/prim/Agda/Builtin/Reflection.agda
shlevy/agda
ed8ac6f4062ea8a20fa0f62d5db82d4e68278338
[ "BSD-3-Clause" ]
null
null
null
{-# OPTIONS --without-K --safe --no-sized-types --no-guardedness --no-subtyping #-} module Agda.Builtin.Reflection where open import Agda.Builtin.Unit open import Agda.Builtin.Bool open import Agda.Builtin.Nat open import Agda.Builtin.Word open import Agda.Builtin.List open import Agda.Builtin.String open import Agda.Builtin.Char open import Agda.Builtin.Float open import Agda.Builtin.Int open import Agda.Builtin.Sigma open import Agda.Primitive -- Names -- postulate Name : Set {-# BUILTIN QNAME Name #-} primitive primQNameEquality : Name → Name → Bool primQNameLess : Name → Name → Bool primShowQName : Name → String -- Fixity -- data Associativity : Set where left-assoc : Associativity right-assoc : Associativity non-assoc : Associativity data Precedence : Set where related : Float → Precedence unrelated : Precedence data Fixity : Set where fixity : Associativity → Precedence → Fixity {-# BUILTIN ASSOC Associativity #-} {-# BUILTIN ASSOCLEFT left-assoc #-} {-# BUILTIN ASSOCRIGHT right-assoc #-} {-# BUILTIN ASSOCNON non-assoc #-} {-# BUILTIN PRECEDENCE Precedence #-} {-# BUILTIN PRECRELATED related #-} {-# BUILTIN PRECUNRELATED unrelated #-} {-# BUILTIN FIXITY Fixity #-} {-# BUILTIN FIXITYFIXITY fixity #-} {-# COMPILE GHC Associativity = data MAlonzo.RTE.Assoc (MAlonzo.RTE.LeftAssoc | MAlonzo.RTE.RightAssoc | MAlonzo.RTE.NonAssoc) #-} {-# COMPILE GHC Precedence = data MAlonzo.RTE.Precedence (MAlonzo.RTE.Related | MAlonzo.RTE.Unrelated) #-} {-# COMPILE GHC Fixity = data MAlonzo.RTE.Fixity (MAlonzo.RTE.Fixity) #-} {-# COMPILE JS Associativity = function (x,v) { return v[x](); } #-} {-# COMPILE JS left-assoc = "left-assoc" #-} {-# COMPILE JS right-assoc = "right-assoc" #-} {-# COMPILE JS non-assoc = "non-assoc" #-} {-# COMPILE JS Precedence = function (x,v) { if (x === "unrelated") { return v[x](); } else { return v["related"](x); }} #-} {-# COMPILE JS related = function(x) { return x; } #-} {-# COMPILE JS unrelated = "unrelated" #-} {-# COMPILE JS Fixity = function (x,v) { return v["fixity"](x["assoc"], x["prec"]); } #-} {-# COMPILE JS fixity = function (x) { return function (y) { return { "assoc": x, "prec": y}; }; } #-} primitive primQNameFixity : Name → Fixity primQNameToWord64s : Name → Σ Word64 (λ _ → Word64) -- Metavariables -- postulate Meta : Set {-# BUILTIN AGDAMETA Meta #-} primitive primMetaEquality : Meta → Meta → Bool primMetaLess : Meta → Meta → Bool primShowMeta : Meta → String primMetaToNat : Meta → Nat -- Arguments -- -- Arguments can be (visible), {hidden}, or {{instance}}. data Visibility : Set where visible hidden instance′ : Visibility {-# BUILTIN HIDING Visibility #-} {-# BUILTIN VISIBLE visible #-} {-# BUILTIN HIDDEN hidden #-} {-# BUILTIN INSTANCE instance′ #-} -- Arguments can be relevant or irrelevant. data Relevance : Set where relevant irrelevant : Relevance {-# BUILTIN RELEVANCE Relevance #-} {-# BUILTIN RELEVANT relevant #-} {-# BUILTIN IRRELEVANT irrelevant #-} data ArgInfo : Set where arg-info : (v : Visibility) (r : Relevance) → ArgInfo data Arg {a} (A : Set a) : Set a where arg : (i : ArgInfo) (x : A) → Arg A {-# BUILTIN ARGINFO ArgInfo #-} {-# BUILTIN ARGARGINFO arg-info #-} {-# BUILTIN ARG Arg #-} {-# BUILTIN ARGARG arg #-} -- Name abstraction -- data Abs {a} (A : Set a) : Set a where abs : (s : String) (x : A) → Abs A {-# BUILTIN ABS Abs #-} {-# BUILTIN ABSABS abs #-} -- Literals -- data Literal : Set where nat : (n : Nat) → Literal word64 : (n : Word64) → Literal float : (x : Float) → Literal char : (c : Char) → Literal string : (s : String) → Literal name : (x : Name) → Literal meta : (x : Meta) → Literal {-# BUILTIN AGDALITERAL Literal #-} {-# BUILTIN AGDALITNAT nat #-} {-# BUILTIN AGDALITWORD64 word64 #-} {-# BUILTIN AGDALITFLOAT float #-} {-# BUILTIN AGDALITCHAR char #-} {-# BUILTIN AGDALITSTRING string #-} {-# BUILTIN AGDALITQNAME name #-} {-# BUILTIN AGDALITMETA meta #-} -- Terms and patterns -- data Term : Set data Sort : Set data Pattern : Set data Clause : Set Type = Term data Term where var : (x : Nat) (args : List (Arg Term)) → Term con : (c : Name) (args : List (Arg Term)) → Term def : (f : Name) (args : List (Arg Term)) → Term lam : (v : Visibility) (t : Abs Term) → Term pat-lam : (cs : List Clause) (args : List (Arg Term)) → Term pi : (a : Arg Type) (b : Abs Type) → Term agda-sort : (s : Sort) → Term lit : (l : Literal) → Term meta : (x : Meta) → List (Arg Term) → Term unknown : Term data Sort where set : (t : Term) → Sort lit : (n : Nat) → Sort unknown : Sort data Pattern where con : (c : Name) (ps : List (Arg Pattern)) → Pattern dot : (t : Term) → Pattern var : (x : Nat) → Pattern lit : (l : Literal) → Pattern proj : (f : Name) → Pattern absurd : Pattern data Clause where clause : (tel : List (Σ String λ _ → Arg Type)) (ps : List (Arg Pattern)) (t : Term) → Clause absurd-clause : (tel : List (Σ String λ _ → Arg Type)) (ps : List (Arg Pattern)) → Clause {-# BUILTIN AGDATERM Term #-} {-# BUILTIN AGDASORT Sort #-} {-# BUILTIN AGDAPATTERN Pattern #-} {-# BUILTIN AGDACLAUSE Clause #-} {-# BUILTIN AGDATERMVAR var #-} {-# BUILTIN AGDATERMCON con #-} {-# BUILTIN AGDATERMDEF def #-} {-# BUILTIN AGDATERMMETA meta #-} {-# BUILTIN AGDATERMLAM lam #-} {-# BUILTIN AGDATERMEXTLAM pat-lam #-} {-# BUILTIN AGDATERMPI pi #-} {-# BUILTIN AGDATERMSORT agda-sort #-} {-# BUILTIN AGDATERMLIT lit #-} {-# BUILTIN AGDATERMUNSUPPORTED unknown #-} {-# BUILTIN AGDASORTSET set #-} {-# BUILTIN AGDASORTLIT lit #-} {-# BUILTIN AGDASORTUNSUPPORTED unknown #-} {-# BUILTIN AGDAPATCON con #-} {-# BUILTIN AGDAPATDOT dot #-} {-# BUILTIN AGDAPATVAR var #-} {-# BUILTIN AGDAPATLIT lit #-} {-# BUILTIN AGDAPATPROJ proj #-} {-# BUILTIN AGDAPATABSURD absurd #-} {-# BUILTIN AGDACLAUSECLAUSE clause #-} {-# BUILTIN AGDACLAUSEABSURD absurd-clause #-} -- Definitions -- data Definition : Set where function : (cs : List Clause) → Definition data-type : (pars : Nat) (cs : List Name) → Definition record-type : (c : Name) (fs : List (Arg Name)) → Definition data-cons : (d : Name) → Definition axiom : Definition prim-fun : Definition {-# BUILTIN AGDADEFINITION Definition #-} {-# BUILTIN AGDADEFINITIONFUNDEF function #-} {-# BUILTIN AGDADEFINITIONDATADEF data-type #-} {-# BUILTIN AGDADEFINITIONRECORDDEF record-type #-} {-# BUILTIN AGDADEFINITIONDATACONSTRUCTOR data-cons #-} {-# BUILTIN AGDADEFINITIONPOSTULATE axiom #-} {-# BUILTIN AGDADEFINITIONPRIMITIVE prim-fun #-} -- Errors -- data ErrorPart : Set where strErr : String → ErrorPart termErr : Term → ErrorPart nameErr : Name → ErrorPart {-# BUILTIN AGDAERRORPART ErrorPart #-} {-# BUILTIN AGDAERRORPARTSTRING strErr #-} {-# BUILTIN AGDAERRORPARTTERM termErr #-} {-# BUILTIN AGDAERRORPARTNAME nameErr #-} -- TC monad -- postulate TC : ∀ {a} → Set a → Set a returnTC : ∀ {a} {A : Set a} → A → TC A bindTC : ∀ {a b} {A : Set a} {B : Set b} → TC A → (A → TC B) → TC B unify : Term → Term → TC ⊤ typeError : ∀ {a} {A : Set a} → List ErrorPart → TC A inferType : Term → TC Type checkType : Term → Type → TC Term normalise : Term → TC Term reduce : Term → TC Term catchTC : ∀ {a} {A : Set a} → TC A → TC A → TC A quoteTC : ∀ {a} {A : Set a} → A → TC Term unquoteTC : ∀ {a} {A : Set a} → Term → TC A quoteωTC : ∀ {A : Setω} → A → TC Term getContext : TC (List (Arg Type)) extendContext : ∀ {a} {A : Set a} → Arg Type → TC A → TC A inContext : ∀ {a} {A : Set a} → List (Arg Type) → TC A → TC A freshName : String → TC Name declareDef : Arg Name → Type → TC ⊤ declarePostulate : Arg Name → Type → TC ⊤ defineFun : Name → List Clause → TC ⊤ getType : Name → TC Type getDefinition : Name → TC Definition blockOnMeta : ∀ {a} {A : Set a} → Meta → TC A commitTC : TC ⊤ isMacro : Name → TC Bool -- If the argument is 'true' makes the following primitives also normalise -- their results: inferType, checkType, quoteTC, getType, and getContext withNormalisation : ∀ {a} {A : Set a} → Bool → TC A → TC A -- Prints the third argument if the corresponding verbosity level is turned -- on (with the -v flag to Agda). debugPrint : String → Nat → List ErrorPart → TC ⊤ -- Only allow reduction of specific definitions while executing the TC computation onlyReduceDefs : ∀ {a} {A : Set a} → List Name → TC A → TC A -- Don't allow reduction of specific definitions while executing the TC computation dontReduceDefs : ∀ {a} {A : Set a} → List Name → TC A → TC A -- Fail if the given computation gives rise to new, unsolved -- "blocking" constraints. noConstraints : ∀ {a} {A : Set a} → TC A → TC A -- Run the given TC action and return the first component. Resets to -- the old TC state if the second component is 'false', or keep the -- new TC state if it is 'true'. runSpeculative : ∀ {a} {A : Set a} → TC (Σ A λ _ → Bool) → TC A {-# BUILTIN AGDATCM TC #-} {-# BUILTIN AGDATCMRETURN returnTC #-} {-# BUILTIN AGDATCMBIND bindTC #-} {-# BUILTIN AGDATCMUNIFY unify #-} {-# BUILTIN AGDATCMTYPEERROR typeError #-} {-# BUILTIN AGDATCMINFERTYPE inferType #-} {-# BUILTIN AGDATCMCHECKTYPE checkType #-} {-# BUILTIN AGDATCMNORMALISE normalise #-} {-# BUILTIN AGDATCMREDUCE reduce #-} {-# BUILTIN AGDATCMCATCHERROR catchTC #-} {-# BUILTIN AGDATCMQUOTETERM quoteTC #-} {-# BUILTIN AGDATCMUNQUOTETERM unquoteTC #-} {-# BUILTIN AGDATCMQUOTEOMEGATERM quoteωTC #-} {-# BUILTIN AGDATCMGETCONTEXT getContext #-} {-# BUILTIN AGDATCMEXTENDCONTEXT extendContext #-} {-# BUILTIN AGDATCMINCONTEXT inContext #-} {-# BUILTIN AGDATCMFRESHNAME freshName #-} {-# BUILTIN AGDATCMDECLAREDEF declareDef #-} {-# BUILTIN AGDATCMDECLAREPOSTULATE declarePostulate #-} {-# BUILTIN AGDATCMDEFINEFUN defineFun #-} {-# BUILTIN AGDATCMGETTYPE getType #-} {-# BUILTIN AGDATCMGETDEFINITION getDefinition #-} {-# BUILTIN AGDATCMBLOCKONMETA blockOnMeta #-} {-# BUILTIN AGDATCMCOMMIT commitTC #-} {-# BUILTIN AGDATCMISMACRO isMacro #-} {-# BUILTIN AGDATCMWITHNORMALISATION withNormalisation #-} {-# BUILTIN AGDATCMDEBUGPRINT debugPrint #-} {-# BUILTIN AGDATCMONLYREDUCEDEFS onlyReduceDefs #-} {-# BUILTIN AGDATCMDONTREDUCEDEFS dontReduceDefs #-} {-# BUILTIN AGDATCMNOCONSTRAINTS noConstraints #-} {-# BUILTIN AGDATCMRUNSPECULATIVE runSpeculative #-}
37.223926
130
0.563
4d4b7d3db539bf2aba1f58d63df9aa3d9a1e2bea
12,819
agda
Agda
Cubical/HITs/Ints/BiInvInt/Base.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
null
null
null
Cubical/HITs/Ints/BiInvInt/Base.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
null
null
null
Cubical/HITs/Ints/BiInvInt/Base.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
null
null
null
{- Definition of the integers as a HIT ported from the redtt library: https://github.com/RedPRL/redtt/blob/master/library/cool/biinv-int.red For the naive, but incorrect, way to define the integers as a HIT, see HITs.IsoInt This file contains: - definition of BiInvInt - proof that Int ≡ BiInvInt - [discreteBiInvInt] and [isSetBiInvInt] - versions of the point constructors of BiInvInt which satisfy the path constructors judgmentally -} {-# OPTIONS --cubical --safe #-} module Cubical.HITs.Ints.BiInvInt.Base where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Data.Nat open import Cubical.Data.Int open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.BiInvEquiv open import Cubical.Foundations.HAEquiv open import Cubical.Foundations.Equiv open import Cubical.Foundations.Equiv.Properties open import Cubical.Relation.Nullary data BiInvInt : Type₀ where zero : BiInvInt suc : BiInvInt -> BiInvInt -- suc is a bi-invertible equivalence: predr : BiInvInt -> BiInvInt suc-predr : ∀ z -> suc (predr z) ≡ z predl : BiInvInt -> BiInvInt predl-suc : ∀ z -> predl (suc z) ≡ z suc-biinvequiv : BiInvEquiv BiInvInt BiInvInt suc-biinvequiv = record { fun = suc ; invr = predr ; invr-rightInv = suc-predr ; invl = predl ; invl-leftInv = predl-suc } predr-suc : ∀ z -> predr (suc z) ≡ z predr-suc = BiInvEquiv.invr-leftInv suc-biinvequiv -- since we want to use suc-adj and pred-adj (defined below) later on, we will need the -- definition of suc-predl taken from HAEquiv instead of from BiInvEquiv suc-haequiv : HAEquiv BiInvInt BiInvInt suc-haequiv = biInvEquiv→HAEquiv suc-biinvequiv suc-predl : ∀ z -> suc (predl z) ≡ z suc-predl = isHAEquiv.ret (snd suc-haequiv) -- predr and predl (as well as suc-predr and suc-predl - up to a path) are indistinguishable, -- so we can safely define 'pred' to just be predl predl≡predr : ∀ z -> predl z ≡ predr z predl≡predr z i = cong fst (isContr→isProp (isContr-section (biInvEquiv→Equiv-left suc-biinvequiv)) (predl , suc-predl) (predr , suc-predr)) i z suc-predl≡predr : ∀ z -> PathP (λ j → suc (predl≡predr z j) ≡ z) (suc-predl z) (suc-predr z) suc-predl≡predr z i = cong snd (isContr→isProp (isContr-section (biInvEquiv→Equiv-left suc-biinvequiv)) (predl , suc-predl) (predr , suc-predr)) i z pred : BiInvInt -> BiInvInt pred = predl suc-pred = suc-predl pred-suc = predl-suc -- these paths from HAEquiv will be useful later suc-adj : ∀ z → (λ i → suc (pred-suc z i)) ≡ suc-pred (suc z) pred-adj : ∀ z → (λ i → pred (suc-pred z i)) ≡ pred-suc (pred z) suc-adj z = isHAEquiv.com (snd suc-haequiv) z pred-adj z = isHAEquiv.com-op (snd suc-haequiv) z -- Int ≡ BiInvInt fwd : Int -> BiInvInt fwd (pos zero) = zero fwd (pos (suc n)) = suc (fwd (pos n)) fwd (negsuc zero) = pred zero fwd (negsuc (suc n)) = pred (fwd (negsuc n)) bwd : BiInvInt -> Int bwd zero = pos zero bwd (suc z) = sucInt (bwd z) bwd (predr z) = predInt (bwd z) bwd (suc-predr z i) = sucPred (bwd z) i bwd (predl z) = predInt (bwd z) bwd (predl-suc z i) = predSuc (bwd z) i bwd-fwd : ∀ (x : Int) -> bwd (fwd x) ≡ x bwd-fwd (pos zero) = refl bwd-fwd (pos (suc n)) = cong sucInt (bwd-fwd (pos n)) bwd-fwd (negsuc zero) = refl bwd-fwd (negsuc (suc n)) = cong predInt (bwd-fwd (negsuc n)) fwd-sucInt : ∀ (x : Int) → fwd (sucInt x) ≡ suc (fwd x) fwd-sucInt (pos n) = refl fwd-sucInt (negsuc zero) = sym (suc-pred (fwd (pos zero))) fwd-sucInt (negsuc (suc n)) = sym (suc-pred (fwd (negsuc n))) fwd-predInt : ∀ (x : Int) → fwd (predInt x) ≡ pred (fwd x) fwd-predInt (pos zero) = refl fwd-predInt (pos (suc n)) = sym (predl-suc (fwd (pos n))) fwd-predInt (negsuc n) = refl private sym-filler : ∀ {ℓ} {A : Type ℓ} {x y : A} (p : x ≡ y) → Square {- (i = i0) -} (sym p) {- (i = i1) -} refl {- (j = i0) -} refl {- (j = i1) -} p sym-filler {y = y} p i j = hcomp (λ k → λ { (j = i0) → y ; (i = i0) → p ((~ j) ∨ (~ k)) ; (i = i1) → y ; (j = i1) → p (i ∨ (~ k)) }) y fwd-sucPred : ∀ (x : Int) → Square {- (i = i0) -} (fwd-sucInt (predInt x) ∙ (λ i → suc (fwd-predInt x i))) {- (i = i1) -} (λ _ → fwd x) {- (j = i0) -} (λ i → fwd (sucPred x i)) {- (j = i1) -} (suc-pred (fwd x)) fwd-sucPred (pos zero) i j = hcomp (λ k → λ { (j = i0) → fwd (pos zero) ; (i = i0) → rUnit (sym (suc-pred (fwd (pos zero)))) k j -- because fwd-sucInt (predInt (pos zero)) ≡ sym (suc-pred (fwd (pos zero))) ; (i = i1) → fwd (pos zero) ; (j = i1) → suc-pred (fwd (pos zero)) i }) (sym-filler (suc-pred (fwd (pos zero))) i j) fwd-sucPred (pos (suc n)) i j = hcomp (λ k → λ { (j = i0) → suc (fwd (pos n)) ; (i = i0) → lUnit (λ i → suc (sym (predl-suc (fwd (pos n))) i)) k j -- because fwd-predInt (pos (suc n)) ≡ sym (predl-suc (fwd (pos n))) ; (i = i1) → suc (fwd (pos n)) ; (j = i1) → suc-adj (fwd (pos n)) k i }) (suc (sym-filler (pred-suc (fwd (pos n))) i j)) fwd-sucPred (negsuc n) i j = hcomp (λ k → λ { (j = i0) → fwd (negsuc n) ; (i = i0) → rUnit (sym (suc-pred (fwd (negsuc n)))) k j -- because fwd-sucInt (predInt (negsuc n)) ≡ sym (suc-pred (fwd (negsuc n))) ; (i = i1) → fwd (negsuc n) ; (j = i1) → suc-pred (fwd (negsuc n)) i }) (sym-filler (suc-pred (fwd (negsuc n))) i j) fwd-predSuc : ∀ (x : Int) → Square {- (i = i0) -} (fwd-predInt (sucInt x) ∙ (λ i → pred (fwd-sucInt x i))) {- (i = i1) -} (λ _ → fwd x) {- (j = i0) -} (λ i → fwd (predSuc x i)) {- (j = i1) -} (pred-suc (fwd x)) fwd-predSuc (pos n) i j = hcomp (λ k → λ { (j = i0) → fwd (pos n) ; (i = i0) → rUnit (sym (pred-suc (fwd (pos n)))) k j -- because fwd-predInt (sucInt (pos n)) ≡ sym (pred-suc (fwd (pos n))) ; (i = i1) → fwd (pos n) ; (j = i1) → pred-suc (fwd (pos n)) i }) (sym-filler (pred-suc (fwd (pos n))) i j) fwd-predSuc (negsuc zero) i j = hcomp (λ k → λ { (j = i0) → fwd (negsuc zero) ; (i = i0) → lUnit (λ i → pred (sym (suc-pred (fwd (pos zero))) i)) k j -- because fwd-sucInt (negsuc zero) ≡ sym (suc-pred (fwd (pos zero))) ; (i = i1) → fwd (negsuc zero) ; (j = i1) → pred-adj (fwd (pos zero)) k i }) (pred (sym-filler (suc-pred (fwd (pos zero))) i j)) fwd-predSuc (negsuc (suc n)) i j = hcomp (λ k → λ { (j = i0) → fwd (negsuc (suc n)) ; (i = i0) → lUnit (λ i → pred (sym (suc-pred (fwd (negsuc n))) i)) k j -- because fwd-sucInt (negsuc (suc n)) ≡ sym (suc-pred (fwd (negsuc n))) ; (i = i1) → fwd (negsuc (suc n)) ; (j = i1) → pred-adj (fwd (negsuc n)) k i }) (pred (sym-filler (suc-pred (fwd (negsuc n))) i j)) fwd-bwd : ∀ (z : BiInvInt) -> fwd (bwd z) ≡ z fwd-bwd zero = refl fwd-bwd (suc z) = fwd-sucInt (bwd z) ∙ (λ i → suc (fwd-bwd z i)) fwd-bwd (predr z) = fwd-predInt (bwd z) ∙ (λ i → predl≡predr (fwd-bwd z i) i) fwd-bwd (predl z) = fwd-predInt (bwd z) ∙ (λ i → pred (fwd-bwd z i)) fwd-bwd (suc-predr z i) j = hcomp (λ k → λ { (j = i0) → fwd (sucPred (bwd z) i) ; (i = i0) → (fwd-sucInt (predInt (bwd z)) ∙ (λ i → suc (compPath-filler (fwd-predInt (bwd z)) (λ i' → predl≡predr (fwd-bwd z i') i') k i))) j ; (i = i1) → fwd-bwd z (j ∧ k) ; (j = i1) → suc-predl≡predr (fwd-bwd z k) k i }) (fwd-sucPred (bwd z) i j) fwd-bwd (predl-suc z i) j = hcomp (λ k → λ { (j = i0) → fwd (predSuc (bwd z) i) ; (i = i0) → (fwd-predInt (sucInt (bwd z)) ∙ (λ i → pred (compPath-filler (fwd-sucInt (bwd z)) (λ i' → suc (fwd-bwd z i')) k i))) j ; (i = i1) → fwd-bwd z (j ∧ k) ; (j = i1) → pred-suc (fwd-bwd z k) i }) (fwd-predSuc (bwd z) i j) Int≡BiInvInt : Int ≡ BiInvInt Int≡BiInvInt = isoToPath (iso fwd bwd fwd-bwd bwd-fwd) discreteBiInvInt : Discrete BiInvInt discreteBiInvInt = subst Discrete Int≡BiInvInt discreteInt isSetBiInvInt : isSet BiInvInt isSetBiInvInt = subst isSet Int≡BiInvInt isSetInt -- suc' is equal to suc (suc≡suc') but cancels pred *exactly* (see suc'-pred) suc'ᵖ : (z : BiInvInt) -> Σ BiInvInt (suc z ≡_) suc' = fst ∘ suc'ᵖ suc≡suc' = snd ∘ suc'ᵖ suc'ᵖ zero = suc zero , refl suc'ᵖ (suc z) = suc (suc z) , refl suc'ᵖ (predr z) = z , suc-predr z suc'ᵖ (suc-predr z i) = let filler : I → I → BiInvInt filler j i = hfill (λ j → λ { (i = i0) → suc (suc (predr z)) ; (i = i1) → suc≡suc' z j }) (inS (suc (suc-predr z i))) j in filler i1 i , λ j → filler j i suc'ᵖ (predl z) = z , suc-predl z suc'ᵖ (predl-suc z i) = let filler : I → I → BiInvInt filler j i = hfill (λ j → λ { (i = i0) → suc-predl (suc z) j ; (i = i1) → suc≡suc' z j }) (inS (suc (predl-suc z i))) j in filler i1 i , λ j → filler j i private suc'-pred : ∀ z → suc' (pred z) ≡ z suc'-pred z = refl -- pred' is equal to pred (pred≡pred') but cancels suc *exactly* (see pred'-suc) predr'ᵖ : (z : BiInvInt) -> Σ BiInvInt (predr z ≡_) predr' = fst ∘ predr'ᵖ predr≡predr' = snd ∘ predr'ᵖ predr'ᵖ zero = predr zero , refl predr'ᵖ (suc z) = z , predr-suc z predr'ᵖ (predr z) = predr (predr z) , refl predr'ᵖ (suc-predr z i) = let filler : I → I → BiInvInt filler j i = hfill (λ j → λ { (i = i0) → predr-suc (predr z) j ; (i = i1) → predr≡predr' z j }) (inS (predr (suc-predr z i))) j in filler i1 i , λ j → filler j i predr'ᵖ (predl z) = predr (predl z) , refl predr'ᵖ (predl-suc z i) = let filler : I → I → BiInvInt filler j i = hfill (λ j → λ { (i = i0) → predr (predl (suc z)) ; (i = i1) → predr≡predr' z j }) (inS (predr (predl-suc z i))) j in filler i1 i , λ j → filler j i predl'ᵖ : (z : BiInvInt) -> Σ BiInvInt (predl z ≡_) predl' = fst ∘ predl'ᵖ predl≡predl' = snd ∘ predl'ᵖ predl'ᵖ zero = predl zero , refl predl'ᵖ (suc z) = z , predl-suc z predl'ᵖ (predr z) = predl (predr z) , refl predl'ᵖ (suc-predr z i) = let filler : I → I → BiInvInt filler j i = hfill (λ j → λ { (i = i0) → predl-suc (predr z) j ; (i = i1) → predl≡predl' z j }) (inS (predl (suc-predr z i))) j in filler i1 i , λ j → filler j i predl'ᵖ (predl z) = predl (predl z) , refl predl'ᵖ (predl-suc z i) = let filler : I → I → BiInvInt filler j i = hfill (λ j → λ { (i = i0) → predl (predl (suc z)) ; (i = i1) → predl≡predl' z j }) (inS (predl (predl-suc z i))) j in filler i1 i , λ j → filler j i private predr'-suc : ∀ z → predr' (suc z) ≡ z predr'-suc z = refl predl'-suc : ∀ z → predl' (suc z) ≡ z predl'-suc z = refl
41.21865
108
0.478196
129068ffb6b5086c5f9c5f495f642a3aa85a7944
3,966
agda
Agda
test/asset/agda-stdlib-1.0/Data/Rational/Base.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Data/Rational/Base.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Data/Rational/Base.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- The Agda standard library -- -- Rational numbers ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Rational.Base where open import Function using (id) open import Data.Integer as ℤ using (ℤ; ∣_∣; +_; -[1+_]) open import Data.Nat.GCD open import Data.Nat.Divisibility as ℕDiv using (divides; 0∣⇒≡0) open import Data.Nat.Coprimality as C using (Coprime; Bézout-coprime) open import Data.Nat as ℕ using (ℕ; zero; suc) open import Data.Product open import Level using (0ℓ) open import Relation.Nullary.Decidable using (False) open import Relation.Nullary.Negation using (contradiction) open import Relation.Binary using (Rel) open import Relation.Binary.PropositionalEquality using (_≡_; refl; subst; cong; cong₂; module ≡-Reasoning) open ≡-Reasoning ------------------------------------------------------------------------ -- Rational numbers in reduced form. Note that there is exactly one -- way to represent every rational number. record ℚ : Set where constructor mkℚ field numerator : ℤ denominator-1 : ℕ .isCoprime : Coprime ∣ numerator ∣ (suc denominator-1) denominatorℕ : ℕ denominatorℕ = suc denominator-1 denominator : ℤ denominator = + denominatorℕ open ℚ public using () renaming ( numerator to ↥_ ; denominator to ↧_ ; denominatorℕ to ↧ₙ_ ) ------------------------------------------------------------------------ -- Equality of rational numbers (coincides with _≡_) infix 4 _≃_ _≃_ : Rel ℚ 0ℓ p ≃ q = (↥ p ℤ.* ↧ q) ≡ (↥ q ℤ.* ↧ p) ------------------------------------------------------------------------ -- Ordering of rationals infix 4 _≤_ data _≤_ : Rel ℚ 0ℓ where *≤* : ∀ {p q} → (↥ p ℤ.* ↧ q) ℤ.≤ (↥ q ℤ.* ↧ p) → p ≤ q ------------------------------------------------------------------------ -- Negation pattern +0 = + 0 pattern +[1+_] n = + suc n -_ : ℚ → ℚ - mkℚ -[1+ n ] d prf = mkℚ +[1+ n ] d prf - mkℚ +0 d prf = mkℚ +0 d prf - mkℚ +[1+ n ] d prf = mkℚ -[1+ n ] d prf ------------------------------------------------------------------------ -- Constructing rationals infix 4 _≢0 _≢0 : ℕ → Set n ≢0 = False (n ℕ.≟ 0) -- A constructor for ℚ that takes two natural numbers, say 6 and 21, -- and returns them in a normalized form, e.g. say 2 and 7 normalize : ∀ m n .{m≢0 : m ≢0} .{n≢0 : n ≢0} → ℚ normalize (suc m) (suc n) with gcd (suc m) (suc n) ... | zero , GCD.is (1+m∣0 , _) _ = contradiction (0∣⇒≡0 1+m∣0) λ() ... | suc g , G@(GCD.is (divides (suc p) refl , divides (suc q) refl) _) = mkℚ (+ suc p) q (Bézout-coprime (Bézout.identity G)) -- A constructor for ℚ that (unlike mkℚ) automatically normalises it's -- arguments. See the constants section below for how to use this operator. infixl 7 _/_ _/_ : (n : ℤ) (d : ℕ) → .{d≢0 : d ≢0} → ℚ _/_ +0 d {d≢0} = mkℚ +0 0 (C.sym (C.1-coprimeTo 0)) _/_ +[1+ n ] d {d≢0} = normalize (suc n) d {_} {d≢0} _/_ -[1+ n ] d {d≢0} = - normalize (suc n) d {_} {d≢0} ------------------------------------------------------------------------------ -- Some constants 0ℚ : ℚ 0ℚ = + 0 / 1 1ℚ : ℚ 1ℚ = + 1 / 1 ½ : ℚ ½ = + 1 / 2 -½ : ℚ -½ = - ½ ------------------------------------------------------------------------------ -- Operations on rationals infix 8 -_ 1/_ infixl 7 _*_ _÷_ infixl 6 _-_ _+_ -- addition _+_ : ℚ → ℚ → ℚ p + q = (↥ p ℤ.* ↧ q ℤ.+ ↥ q ℤ.* ↧ p) / (↧ₙ p ℕ.* ↧ₙ q) -- multiplication _*_ : ℚ → ℚ → ℚ p * q = (↥ p ℤ.* ↥ q) / (↧ₙ p ℕ.* ↧ₙ q) -- subtraction _-_ : ℚ → ℚ → ℚ p - q = p + (- q) -- reciprocal: requires a proof that the numerator is not zero 1/_ : (p : ℚ) → .{n≢0 : ∣ ↥ p ∣ ≢0} → ℚ 1/ mkℚ +[1+ n ] d prf = mkℚ +[1+ d ] n (C.sym prf) 1/ mkℚ -[1+ n ] d prf = mkℚ -[1+ d ] n (C.sym prf) -- division: requires a proof that the denominator is not zero _÷_ : (p q : ℚ) → .{n≢0 : ∣ ↥ q ∣ ≢0} → ℚ (p ÷ q) {n≢0} = p * (1/_ q {n≢0})
26.264901
78
0.489662
0618751cb8ce3ae092a085b160e5ea70622dce2f
245
agda
Agda
test/Fail/UselessAbstractField.agda
pthariensflame/agda
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/Fail/UselessAbstractField.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
null
null
null
test/Fail/UselessAbstractField.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
null
null
null
-- Andreas, 2016-07-17 record R : Set₁ where abstract field T : Set -- Expected error: -- -- Using abstract here has no effect. Abstract applies only -- definitions like data definitions, record type definitions and -- function clauses.
20.416667
65
0.722449
312b39f3ce807a901ffad003a0037c20e0c90cdf
126
agda
Agda
src/Magma/Properties.agda
Akshobhya1234/agda-NonAssociativeAlgebra
443e831e536b756acbd1afd0d6bae7bc0d288048
[ "MIT" ]
2
2021-08-15T06:16:13.000Z
2021-08-17T09:14:03.000Z
src/Magma/Properties.agda
Akshobhya1234/agda-NonAssociativeAlgebra
443e831e536b756acbd1afd0d6bae7bc0d288048
[ "MIT" ]
2
2021-10-04T05:30:30.000Z
2021-10-09T08:24:56.000Z
src/Magma/Properties.agda
Akshobhya1234/agda-NonAssociativeAlgebra
443e831e536b756acbd1afd0d6bae7bc0d288048
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} open import Algebra module Magma.Properties {a ℓ} (M : Magma a ℓ) where open Magma M
12.6
34
0.650794
5073339a3b30821e9fea28092bdfea3e2359aedd
3,548
agda
Agda
Cubical/Categories/Functor/Properties.agda
hyleIndex/cubical
ce5c2820ecb2e0fd8dce74fb0247856cdbf034c4
[ "MIT" ]
301
2018-10-17T18:00:24.000Z
2022-03-24T02:10:47.000Z
Cubical/Categories/Functor/Properties.agda
hyleIndex/cubical
ce5c2820ecb2e0fd8dce74fb0247856cdbf034c4
[ "MIT" ]
584
2018-10-15T09:49:02.000Z
2022-03-30T12:09:17.000Z
Cubical/Categories/Functor/Properties.agda
hyleIndex/cubical
ce5c2820ecb2e0fd8dce74fb0247856cdbf034c4
[ "MIT" ]
134
2018-11-16T06:11:03.000Z
2022-03-23T16:22:13.000Z
{-# OPTIONS --safe #-} module Cubical.Categories.Functor.Properties where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function renaming (_∘_ to _◍_) open import Cubical.Foundations.GroupoidLaws using (lUnit; rUnit; assoc; cong-∙) open import Cubical.Categories.Category open import Cubical.Categories.Functor.Base private variable ℓ ℓ' ℓ'' : Level B C D E : Precategory ℓ ℓ' open Precategory open Functor {- x ---p--- x' ⇓ᵍ g x' ---q--- y ⇓ʰ h y ---r--- z The path from `h (g x) ≡ z` obtained by 1. first applying cong to p and composing with q; then applying cong again and composing with r 2. first applying cong to q and composing with r; then applying a double cong to p and precomposing are path equal. -} congAssoc : ∀ {X : Type ℓ} {Y : Type ℓ'} {Z : Type ℓ''} (g : X → Y) (h : Y → Z) {x x' : X} {y : Y} {z : Z} → (p : x ≡ x') (q : g x' ≡ y) (r : h y ≡ z) → cong (h ◍ g) p ∙ (cong h q ∙ r) ≡ cong h (cong g p ∙ q) ∙ r congAssoc g h p q r = cong (h ◍ g) p ∙ (cong h q ∙ r) ≡⟨ assoc _ _ _ ⟩ ((cong (h ◍ g) p) ∙ (cong h q)) ∙ r ≡⟨ refl ⟩ (cong h (cong g p) ∙ (cong h q)) ∙ r ≡⟨ cong (_∙ r) (sym (cong-∙ h _ _)) ⟩ cong h (cong g p ∙ q) ∙ r ∎ -- composition is associative F-assoc : {F : Functor B C} {G : Functor C D} {H : Functor D E} → H ∘F (G ∘F F) ≡ (H ∘F G) ∘F F F-assoc {F = F} {G} {H} i .F-ob x = H ⟅ G ⟅ F ⟅ x ⟆ ⟆ ⟆ F-assoc {F = F} {G} {H} i .F-hom f = H ⟪ G ⟪ F ⟪ f ⟫ ⟫ ⟫ F-assoc {F = F} {G} {H} i .F-id {x} = congAssoc (G ⟪_⟫) (H ⟪_⟫) (F .F-id {x}) (G .F-id {F ⟅ x ⟆}) (H .F-id) (~ i) F-assoc {F = F} {G} {H} i .F-seq f g = congAssoc (G ⟪_⟫) (H ⟪_⟫) (F .F-seq f g) (G .F-seq _ _) (H .F-seq _ _) (~ i) -- Results about functors module _ {F : Functor C D} where -- the identity is the identity F-lUnit : F ∘F 𝟙⟨ C ⟩ ≡ F F-lUnit i .F-ob x = F ⟅ x ⟆ F-lUnit i .F-hom f = F ⟪ f ⟫ F-lUnit i .F-id {x} = lUnit (F .F-id) (~ i) F-lUnit i .F-seq f g = lUnit (F .F-seq f g) (~ i) F-rUnit : 𝟙⟨ D ⟩ ∘F F ≡ F F-rUnit i .F-ob x = F ⟅ x ⟆ F-rUnit i .F-hom f = F ⟪ f ⟫ F-rUnit i .F-id {x} = rUnit (F .F-id) (~ i) F-rUnit i .F-seq f g = rUnit (F .F-seq f g) (~ i) -- functors preserve commutative diagrams (specificallysqures here) preserveCommF : ∀ {x y z w} {f : C [ x , y ]} {g : C [ y , w ]} {h : C [ x , z ]} {k : C [ z , w ]} → f ⋆⟨ C ⟩ g ≡ h ⋆⟨ C ⟩ k → (F ⟪ f ⟫) ⋆⟨ D ⟩ (F ⟪ g ⟫) ≡ (F ⟪ h ⟫) ⋆⟨ D ⟩ (F ⟪ k ⟫) preserveCommF {f = f} {g = g} {h = h} {k = k} eq = (F ⟪ f ⟫) ⋆⟨ D ⟩ (F ⟪ g ⟫) ≡⟨ sym (F .F-seq _ _) ⟩ F ⟪ f ⋆⟨ C ⟩ g ⟫ ≡⟨ cong (F ⟪_⟫) eq ⟩ F ⟪ h ⋆⟨ C ⟩ k ⟫ ≡⟨ F .F-seq _ _ ⟩ (F ⟪ h ⟫) ⋆⟨ D ⟩ (F ⟪ k ⟫) ∎ -- functors preserve isomorphisms preserveIsosF : ∀ {x y} → CatIso {C = C} x y → CatIso {C = D} (F ⟅ x ⟆) (F ⟅ y ⟆) preserveIsosF {x} {y} (catiso f f⁻¹ sec' ret') = catiso g g⁻¹ -- sec ( (g⁻¹ ⋆⟨ D ⟩ g) ≡⟨ sym (F .F-seq f⁻¹ f) ⟩ F ⟪ f⁻¹ ⋆⟨ C ⟩ f ⟫ ≡⟨ cong (F .F-hom) sec' ⟩ F ⟪ C .id y ⟫ ≡⟨ F .F-id ⟩ D .id y' ∎ ) -- ret ( (g ⋆⟨ D ⟩ g⁻¹) ≡⟨ sym (F .F-seq f f⁻¹) ⟩ F ⟪ f ⋆⟨ C ⟩ f⁻¹ ⟫ ≡⟨ cong (F .F-hom) ret' ⟩ F ⟪ C .id x ⟫ ≡⟨ F .F-id ⟩ D .id x' ∎ ) where x' : D .ob x' = F ⟅ x ⟆ y' : D .ob y' = F ⟅ y ⟆ g : D [ x' , y' ] g = F ⟪ f ⟫ g⁻¹ : D [ y' , x' ] g⁻¹ = F ⟪ f⁻¹ ⟫
30.324786
116
0.444476
10c75a554c1efe786a6d1ad13c0734bb7a497375
372
agda
Agda
test/Succeed/Issue1701/ModParamsToLose.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue1701/ModParamsToLose.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue1701/ModParamsToLose.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Issue1701.ModParamsToLose where module Param (A : Set) where module R (B : Set) (G : A → B) where F = G private module Tmp (B : Set) (G : A → B) where module r = R B G open Tmp public module Works (A : Set) where module ParamA = Param A open ParamA works : (A → A) → A → A works G = S.F module works where module S = r A G
16.173913
41
0.586022
1d3254a1b1c7631e1c1d0de4294470d51e6f507d
4,590
agda
Agda
src/FRP/LTL/Time/Bound.agda
agda/agda-frp-ltl
e88107d7d192cbfefd0a94505e6a5793afe1a7a5
[ "MIT" ]
21
2015-07-02T20:25:05.000Z
2020-06-15T02:51:13.000Z
src/FRP/LTL/Time/Bound.agda
agda/agda-frp-ltl
e88107d7d192cbfefd0a94505e6a5793afe1a7a5
[ "MIT" ]
2
2015-03-01T07:01:31.000Z
2015-03-02T15:23:53.000Z
src/FRP/LTL/Time/Bound.agda
agda/agda-frp-ltl
e88107d7d192cbfefd0a94505e6a5793afe1a7a5
[ "MIT" ]
3
2015-03-01T07:33:00.000Z
2022-03-12T11:39:04.000Z
open import Data.Nat using ( ℕ ; zero ; suc ) open import Data.Product using ( ∃ ; _×_ ; _,_ ) open import Data.Sum using ( _⊎_ ; inj₁ ; inj₂ ) open import Relation.Binary.PropositionalEquality using ( _≡_ ; _≢_ ; refl ; cong ) open import Relation.Nullary using ( ¬_ ) open import FRP.LTL.Time using ( Time ; _<_ ; _≤_ ; _≥_ ; ≤-refl ; _≤-trans_ ; _≤-asym_ ; _≤-total_ ; ≤-proof-irrel ; ≡-impl-≥ ; _∸_ ; _+_ ; t≤u+t∸u ; +-unit ; +-assoc ; +-resp-≤ ; <-impl-+1≤ ; t<t+1 ; _≤-case_ ; lt ; eq ; gt ) open import FRP.LTL.Util using ( ⊥-elim ) module FRP.LTL.Time.Bound where infixr 2 _≼_ _≺_ _⋠_ infixr 4 _,_ infixr 5 _≼-trans_ _≼-asym_ _≼-total_ _≺-transˡ_ _≺-transʳ_ _≺-trans_ -- Time bounds, which extend Time with least and greatest elements data Time∞ : Set where +∞ : Time∞ fin : Time → Time∞ -- Order on time, generated by s ≺ t ≺ +∞ when s < t data _≼_ : Time∞ → Time∞ → Set where +∞-top : ∀ {t} → (t ≼ +∞) ≤-impl-≼ : ∀ {t u} → (t ≤ u) → (fin t ≼ fin u) _⋠_ : Time∞ → Time∞ → Set s ⋠ t = ¬(s ≼ t) _≺_ : Time∞ → Time∞ → Set s ≺ t = (s ≼ t) × (t ⋠ s) ≼-impl-≤ : ∀ {t u} → (fin t ≼ fin u) → (t ≤ u) ≼-impl-≤ (≤-impl-≼ t≤u) = t≤u -- Axioms for ≺ t≺+∞ : ∀ {t} → fin t ≺ +∞ t≺+∞ = (+∞-top , λ ()) <-impl-≺ : ∀ {t u} → (t < u) → (fin t ≺ fin u) <-impl-≺ (t≤u , u≰t) = (≤-impl-≼ t≤u , λ u≼t → u≰t (≼-impl-≤ u≼t)) ≺-impl-< : ∀ {t u} → (fin t ≺ fin u) → (t < u) ≺-impl-< (t≼u , u⋠t) = (≼-impl-≤ t≼u , λ u≤t → u⋠t (≤-impl-≼ u≤t)) t≺t+1 : ∀ {t} → (fin t ≺ fin (t + 1)) t≺t+1 = <-impl-≺ t<t+1 -- ≼ is a decidable total order ≼-refl : ∀ {t} → (t ≼ t) ≼-refl {+∞} = +∞-top ≼-refl {fin t} = ≤-impl-≼ ≤-refl _≼-trans_ : ∀ {s t u} → (s ≼ t) → (t ≼ u) → (s ≼ u) s≼t ≼-trans +∞-top = +∞-top ≤-impl-≼ s≤t ≼-trans ≤-impl-≼ t≤u = ≤-impl-≼ (s≤t ≤-trans t≤u) _≼-asym_ : ∀ {s t} → (s ≼ t) → (t ≼ s) → (s ≡ t) +∞-top ≼-asym +∞-top = refl ≤-impl-≼ s≤t ≼-asym ≤-impl-≼ t≤s = cong fin (s≤t ≤-asym t≤s) _≼-total_ : ∀ s t → (s ≼ t) ⊎ (t ≺ s) +∞ ≼-total +∞ = inj₁ +∞-top +∞ ≼-total fin t = inj₂ t≺+∞ fin s ≼-total +∞ = inj₁ +∞-top fin s ≼-total fin t with s ≤-total t ... | inj₁ s≤t = inj₁ (≤-impl-≼ s≤t) ... | inj₂ t<s = inj₂ (<-impl-≺ t<s) data _≼-Case_ (t u : Time∞) : Set where lt : .(t ≺ u) → (t ≼-Case u) eq : .(t ≡ u) → (t ≼-Case u) gt : .(u ≺ t) → (t ≼-Case u) _≼-case_ : ∀ t u → (t ≼-Case u) +∞ ≼-case +∞ = eq refl +∞ ≼-case fin u = gt t≺+∞ fin t ≼-case +∞ = lt t≺+∞ fin t ≼-case fin u with t ≤-case u fin t ≼-case fin u | lt t<u = lt (<-impl-≺ t<u) fin t ≼-case fin u | eq t≡u = eq (cong fin t≡u) fin t ≼-case fin u | gt t>u = gt (<-impl-≺ t>u) ≡-impl-≼ : ∀ {s t} → (s ≡ t) → (s ≼ t) ≡-impl-≼ refl = ≼-refl ≡-impl-≽ : ∀ {s t} → (s ≡ t) → (t ≼ s) ≡-impl-≽ refl = ≼-refl ≼-proof-irrel : ∀ {t u} → (p q : t ≼ u) → (p ≡ q) ≼-proof-irrel +∞-top +∞-top = refl ≼-proof-irrel (≤-impl-≼ t≤₁u) (≤-impl-≼ t≤₂u) = cong ≤-impl-≼ (≤-proof-irrel t≤₁u t≤₂u) ≺-impl-≼ : ∀ {t u} → (t ≺ u) → (t ≼ u) ≺-impl-≼ (t≼u , u⋠t) = t≼u ≺-impl-⋡ : ∀ {t u} → (t ≺ u) → (u ⋠ t) ≺-impl-⋡ (t≼u , u⋠t) = u⋠t ≺-impl-≢ : ∀ {t u} → (t ≺ u) → (t ≢ u) ≺-impl-≢ (t≼u , u⋠t) refl = u⋠t ≼-refl _≺-transˡ_ : ∀ {t u v} → (t ≺ u) → (u ≼ v) → (t ≺ v) (t≼u , u⋠t) ≺-transˡ u≼v = (t≼u ≼-trans u≼v , λ v≼t → u⋠t (u≼v ≼-trans v≼t)) _≺-transʳ_ : ∀ {t u v} → (t ≼ u) → (u ≺ v) → (t ≺ v) t≼u ≺-transʳ (u≼v , v⋠u) = (t≼u ≼-trans u≼v , λ v≼t → v⋠u (v≼t ≼-trans t≼u)) _≺-trans_ : ∀ {t u v} → (t ≺ u) → (u ≺ v) → (t ≺ v) (t≼u , u⋠t) ≺-trans (u≼v , v⋠u) = (t≼u ≼-trans u≼v , λ v≼t → v⋠u (v≼t ≼-trans t≼u)) ∞≼-impl-≡∞ : ∀ {t} → (+∞ ≼ t) → (t ≡ +∞) ∞≼-impl-≡∞ +∞-top = refl src : ∀ {s t} → .(s ≼ t) → Time∞ src {s} {t} s≼t = s tgt : ∀ {s t} → .(s ≼ t) → Time∞ tgt {s} {t} s≼t = t -- An induction scheme for time bounds _+_≻_ : Time∞ → ℕ → Time∞ → Set s + zero ≻ u = u ≺ s s + suc n ≻ u = ∀ {t} → (s ≺ t) → (t + n ≻ u) data ≺-Indn (s u : Time∞) : Set where _,_ : ∀ n → .(s + n ≻ u) → ≺-Indn s u ≺-indn : ∀ {s u} → .(u ≺ +∞) → ≺-Indn s u ≺-indn {s} {+∞} u≺∞ = ⊥-elim (≺-impl-≢ u≺∞ refl) ≺-indn {+∞} {fin u} u≺∞ = (zero , t≺+∞) ≺-indn {fin s} {fin u} u≺∞ = (suc (u ∸ s) , lemma s u (u ∸ s) t≤u+t∸u) where lemma : ∀ s u n → (s + n ≥ u) → (fin s + suc n ≻ fin u) lemma s u zero s+0≥u s≺t = (≤-impl-≼ s+0≥u ≼-trans ≡-impl-≼ (cong fin (+-unit s))) ≺-transʳ s≺t lemma s u (suc n) s+1+n≥u {fin t} s≺t = lemma t u n (s+1+n≥u ≤-trans ≡-impl-≥ (+-assoc s 1 n) ≤-trans +-resp-≤ (<-impl-+1≤ (≺-impl-< s≺t)) n) lemma s u (suc n) s+1+n≥u {+∞} s≺t = λ ∞≺v → ⊥-elim (≺-impl-⋡ ∞≺v +∞-top)
31.22449
97
0.439651
31938b3085d821d10682e974e9ce965293cc10a5
328
agda
Agda
src/plfa-code/Reasoning-legacy.agda
chirsz-ever/plfa-code
ec5b359a8c22bf5268cae3c36a97e6737c75d5f3
[ "MIT" ]
null
null
null
src/plfa-code/Reasoning-legacy.agda
chirsz-ever/plfa-code
ec5b359a8c22bf5268cae3c36a97e6737c75d5f3
[ "MIT" ]
null
null
null
src/plfa-code/Reasoning-legacy.agda
chirsz-ever/plfa-code
ec5b359a8c22bf5268cae3c36a97e6737c75d5f3
[ "MIT" ]
null
null
null
module plfa-code.Reasoning-legacy where import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl; trans) infixr 2 _≡⟨_⟩_ infix 3 _∎ _≡⟨_⟩_ : ∀ {A : Set} (x : A) {y z : A} → x ≡ y → y ≡ z ------- → x ≡ z x ≡⟨ x≡y ⟩ y≡z = trans x≡y y≡z _∎ : ∀ {A : Set} (x : A) ------ → x ≡ x x ∎ = refl
16.4
50
0.5
fb54d9a18d0347188e9c5fb2cf6dec1de0771c0f
1,248
agda
Agda
test/Succeed/Issue365.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue365.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue365.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS -v impossible:100 #-} -- {-# OPTIONS -v tc.cover.cover:10 -v tc.cover.splittree:100 -v tc.cover.strategy:100 -v tc.cc:100 #-} module Issue365 where import Common.Level {- Basic data types -} data Nat : Set where zero : Nat succ : Nat -> Nat data Fin : Nat -> Set where fzero : {n : Nat} -> Fin (succ n) fsucc : {n : Nat} -> Fin n -> Fin (succ n) data Vec (A : Set) : Nat -> Set where [] : Vec A zero _::_ : {n : Nat} -> A -> Vec A n -> Vec A (succ n) data _==_ {A : Set} (x : A) : A -> Set where refl : x == x {- Function composition -} _◦_ : {A : Set} {B : A -> Set} {C : (x : A) -> B x -> Set} (f : {x : A} (y : B x) -> C x y) (g : (x : A) -> B x) (x : A) -> C x (g x) (f ◦ g) x = f (g x) {- Indexing and tabulating -} _!_ : {n : Nat} {A : Set} -> Vec A n -> Fin n -> A [] ! () (x :: xs) ! fzero = x (x :: xs) ! (fsucc i) = xs ! i tabulate : {n : Nat} {A : Set} -> (Fin n -> A) -> Vec A n tabulate {zero} f = [] tabulate {succ n} f = f fzero :: tabulate (f ◦ fsucc) lem-tab-! : forall {A n} (xs : Vec A n) -> tabulate (_!_ xs) == xs lem-tab-! {A} {zero} [] = refl lem-tab-! {A} {succ n} (x :: xs) with tabulate (_!_ xs) | lem-tab-! xs lem-tab-! {A} {succ _} (x :: xs) | .xs | refl = refl
27.130435
103
0.495994
1d80e50517c60a72585d58151bfe9f3b345ee36c
292
agda
Agda
test/Succeed/Issue155.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue155.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue155.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- There was a bug with module application in a let in a -- parameterised module. module Issue155 (A : Set) where module M (Y : Set) where postulate F : Set → Set Foo : Set₁ Foo = let module M′ = M A in (B : Set) → M′.F B record R : Set₁ where open M A field B : Set C : F A
18.25
56
0.619863
2390016b7f8598620612b6776b01138ddcdad131
568
agda
Agda
src/Generic/Test/Data/Product.agda
iblech/Generic
380554b20e0991290d1864ddf81f0587ec1647ed
[ "MIT" ]
30
2016-07-19T21:10:54.000Z
2022-02-05T10:19:38.000Z
src/Generic/Test/Data/Product.agda
iblech/Generic
380554b20e0991290d1864ddf81f0587ec1647ed
[ "MIT" ]
9
2017-04-06T18:58:09.000Z
2022-01-04T15:43:14.000Z
src/Generic/Test/Data/Product.agda
iblech/Generic
380554b20e0991290d1864ddf81f0587ec1647ed
[ "MIT" ]
4
2017-07-17T07:23:39.000Z
2021-01-27T12:57:09.000Z
module Generic.Test.Data.Product where open import Generic.Main as Main hiding (Σ; proj₁; proj₂; _,′_) renaming (_,_ to _,′_) infixr 4 _,_ Σ : ∀ {α β} -> (A : Set α) -> (A -> Set β) -> Set (α ⊔ β) Σ = readData Main.Σ pattern _,_ x y = !#₀ (relv x ,′ relv y ,′ lrefl) proj₁ : ∀ {α β} {A : Set α} {B : A -> Set β} -> Σ A B -> A proj₁ (x , y) = x proj₂ : ∀ {α β} {A : Set α} {B : A -> Set β} -> (p : Σ A B) -> B (proj₁ {B = B} p) proj₂ (x , y) = y ηo : ∀ {α β} {A : Set α} {B : A -> Set β} -> (p : Σ A B) -> p ≡ proj₁ {B = B} p , proj₂ {B = B} p ηo (x , y) = refl
28.4
97
0.482394
4de291d84bf8863170d6ff044b4e7af5444955d4
5,517
agda
Agda
Data/List/Proofs/Length.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
Data/List/Proofs/Length.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
Data/List/Proofs/Length.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
module Data.List.Proofs.Length where import Lvl open import Functional open import Function.Names as Names using (_⊜_) open import Data.Boolean open import Data.List as List open import Data.List.Functions open import Logic open import Logic.Propositional open import Numeral.Finite open import Numeral.Natural open import Numeral.Natural.Oper open import Numeral.Natural.Oper.Proofs open import Relator.Equals open import Relator.Equals.Proofs open import Structure.Function.Multi open import Structure.Operator.Properties open import Structure.Operator open import Structure.Relator.Properties open import Syntax.Transitivity open import Type private variable ℓ ℓₑ : Lvl.Level private variable T A B : Type{ℓ} private variable l l₁ l₂ : List(T) private variable a b x : T private variable n : ℕ private variable f : A → B private variable P : List(T) → Stmt{ℓ} -- TODO: Almost all of these can use Preserving instead length-[∅] : (length(∅ {T = T}) ≡ 0) length-[∅] = [≡]-intro length-singleton : (length{T = T}(singleton(a)) ≡ 1) length-singleton = [≡]-intro instance length-preserves-prepend : Preserving₁(length)(a ⊰_)(𝐒) Preserving.proof (length-preserves-prepend {a = a}) {x} = [≡]-intro length-postpend : ((length ∘ postpend a) ⊜ (𝐒 ∘ length)) length-postpend {x = l} = List.elim [≡]-intro (\x l → [≡]-with(𝐒) {length(postpend _ l)}{𝐒(length l)}) l instance length-preserves-postpend : Preserving₁(length)(postpend a)(𝐒) Preserving.proof (length-preserves-postpend {a = a}) {x} = length-postpend {a = a}{x = x} length-[++] : (length{T = T}(l₁ ++ l₂) ≡ length(l₁) + length(l₂)) length-[++] {T = T} {l₁ = l₁} {l₂} = List.elim base next l₁ where base : length(∅ ++ l₂) ≡ length{T = T}(∅) + length(l₂) base = symmetry(_≡_) (identityₗ(_+_)(0)) next : ∀(x)(l) → (length(l ++ l₂) ≡ length(l) + length(l₂)) → (length((x ⊰ l) ++ l₂) ≡ length(x ⊰ l) + length(l₂)) next x l stmt = length((x ⊰ l) ++ l₂) 🝖[ _≡_ ]-[] length(x ⊰ (l ++ l₂)) 🝖[ _≡_ ]-[] 𝐒(length(l ++ l₂)) 🝖[ _≡_ ]-[ [≡]-with(𝐒) stmt ] 𝐒(length(l) + length(l₂)) 🝖[ _≡_ ]-[ [+]-stepₗ {length(l)} {length(l₂)} ] 𝐒(length(l)) + length(l₂) 🝖[ _≡_ ]-[] length(x ⊰ l) + length(l₂) 🝖-end instance length-preserves-[++] : Preserving₂(length{T = T})(_++_)(_+_) Preserving.proof length-preserves-[++] {l₁} {l₂} = length-[++] {l₁ = l₁} {l₂ = l₂} length-reverse : ((length{T = T} ∘ reverse) ⊜ length) length-reverse {x = ∅} = [≡]-intro length-reverse {x = x ⊰ l} = length-postpend{a = x}{x = reverse l} 🝖 [≡]-with(𝐒) (length-reverse {x = l}) instance length-preserves-reverse : Preserving₁(length{T = T})(reverse)(id) Preserving.proof length-preserves-reverse {l} = length-reverse {x = l} length-repeat : ((length{T = T} ∘ repeat(a)) ⊜ id) length-repeat{T = T}{x = 𝟎} = [≡]-intro length-repeat{T = T}{x = 𝐒(n)} = [≡]-with(𝐒) (length-repeat{T = T}{x = n}) length-tail : ((length{T = T} ∘ tail) ⊜ (𝐏 ∘ length)) length-tail{x = ∅} = [≡]-intro length-tail{x = _ ⊰ l} = [≡]-intro instance length-preserves-tail : Preserving₁(length{T = T})(tail)(𝐏) Preserving.proof length-preserves-tail {l} = length-tail {x = l} length-map : ∀{f : A → B} → ((length ∘ map f) ⊜ length) length-map {f = f}{x = ∅} = [≡]-intro length-map {f = f}{x = x ⊰ l} = [≡]-with(𝐒) (length-map {f = f}{x = l}) instance length-preserves-map : Preserving₁(length{T = T})(map f)(id) Preserving.proof (length-preserves-map {f = f}) {l} = length-map {f = f}{x = l} length-foldᵣ : ∀{init}{f}{g} → (∀{x}{l} → (length(f x l) ≡ g x (length l))) → (length{T = T}(foldᵣ f init l) ≡ foldᵣ g (length init) l) length-foldᵣ {l = ∅} _ = [≡]-intro length-foldᵣ {l = x ⊰ l} {init} {f} {g} p = length(foldᵣ f init (x ⊰ l)) 🝖[ _≡_ ]-[] length(f(x) (foldᵣ f init l)) 🝖[ _≡_ ]-[ p ] g(x) (length(foldᵣ f init l)) 🝖[ _≡_ ]-[ [≡]-with(g(x)) (length-foldᵣ {l = l} {init} {f} {g} p) ] g(x) (foldᵣ g (length init) l) 🝖[ _≡_ ]-[] foldᵣ g (length init) (x ⊰ l) 🝖-end length-concatMap : ∀{f} → (length{T = T}(concatMap f l) ≡ foldᵣ((_+_) ∘ length ∘ f) 𝟎 l) length-concatMap {l = l} {f} = length-foldᵣ{l = l}{init = ∅}{f = (_++_) ∘ f} \{x l} → length-[++] {l₁ = f(x)}{l₂ = l} length-accumulateIterate₀ : ∀{n}{f}{init : T} → (length(accumulateIterate₀ n f init) ≡ n) length-accumulateIterate₀ {n = 𝟎} = [≡]-intro length-accumulateIterate₀ {n = 𝐒 n}{f} = [≡]-with(𝐒) (length-accumulateIterate₀ {n = n}{f}) length-[++^] : (length(l ++^ n) ≡ length(l) ⋅ n) length-[++^] {l = l}{𝟎} = [≡]-intro length-[++^] {l = l}{𝐒(n)} = length-[++] {l₁ = l}{l ++^ n} 🝖 [≡]-with(expr ↦ length(l) + expr) (length-[++^] {l = l}{n}) length-isEmpty : (length(l) ≡ 0) ↔ (isEmpty(l) ≡ 𝑇) length-isEmpty {l = ∅} = [↔]-intro (const [≡]-intro) (const [≡]-intro) length-isEmpty {l = x ⊰ L} = [↔]-intro (\()) (\()) instance length-preserves-insert : Preserving₁(length)(insert n x)(𝐒) Preserving.proof (length-preserves-insert {n = n}) = proof{n = n} where proof : ∀{n} → (length(insert n x l) ≡ 𝐒(length l)) proof {l = _} {n = 𝟎} = [≡]-intro proof {l = ∅} {n = 𝐒 n} = [≡]-intro proof {x = x} {l = y ⊰ l} {n = 𝐒 n} rewrite proof {x = x} {l = l} {n = n} = [≡]-intro length-insertIn : ∀{n} → (length(insertIn x l n) ≡ 𝐒(length l)) length-insertIn {l = _} {n = 𝟎} = [≡]-intro length-insertIn {l = ∅} {n = 𝐒 n} = [≡]-intro length-insertIn {x = x} {l = y ⊰ l} {n = 𝐒 n} rewrite length-insertIn {x = x} {l = l} {n = n} = [≡]-intro
40.866667
135
0.580569
cba2af89148bc43f973f694b31fadf1b738def7e
1,305
agda
Agda
src/fot/FOTC/Program/SortList/CorrectnessProofATP.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
11
2015-09-03T20:53:42.000Z
2021-09-12T16:09:54.000Z
src/fot/FOTC/Program/SortList/CorrectnessProofATP.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
2
2016-10-12T17:28:16.000Z
2017-01-01T14:34:26.000Z
src/fot/FOTC/Program/SortList/CorrectnessProofATP.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
3
2016-09-19T14:18:30.000Z
2018-03-14T08:50:00.000Z
------------------------------------------------------------------------------ -- The program to sort a list is correct ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- This module proves the correctness of a program which sorts a list -- by converting it into an ordered tree and then back to a list -- (Burstall, 1969, p. 45). module FOTC.Program.SortList.CorrectnessProofATP where open import FOTC.Base open import FOTC.Data.Nat.List.Type open import FOTC.Program.SortList.PropertiesATP open import FOTC.Program.SortList.Properties.Totality.TreeATP open import FOTC.Program.SortList.SortList ------------------------------------------------------------------------------ -- Main theorem: The sort program generates an ordered list. postulate sortCorrect : ∀ {is} → ListN is → OrdList (sort is) {-# ATP prove sortCorrect flatten-OrdList makeTree-Tree makeTree-OrdTree #-} ------------------------------------------------------------------------------ -- References -- -- Burstall, R. M. (1969). Proving properties of programs by -- structural induction. The Computer Journal 12.1, pp. 41–48.
40.78125
78
0.540996
398be791f0e705877464bf352e83caf8fc168743
67
agda
Agda
test/Fail/UnknownNameInFixityDecl.agda
pthariensflame/agda
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/fail/UnknownNameInFixityDecl.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
test/fail/UnknownNameInFixityDecl.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
1
2022-03-12T11:35:18.000Z
2022-03-12T11:35:18.000Z
module UnknownNameInFixityDecl where infix 40 _+_ infixr 60 _*_
9.571429
36
0.791045
1c07c86a8cf521a3443549b005f3728f98836e00
1,424
agda
Agda
theorems/homotopy/PropJoinProp.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
null
null
null
theorems/homotopy/PropJoinProp.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
null
null
null
theorems/homotopy/PropJoinProp.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
1
2018-12-26T21:31:57.000Z
2018-12-26T21:31:57.000Z
{-# OPTIONS --without-K --rewriting #-} open import HoTT {- Proof that if [A] and [B] are two propositions, then so is [A * B]. -} module homotopy.PropJoinProp {i} {A : Type i} (pA : is-prop A) {j} {B : Type j} (pB : is-prop B) where contr-left : (a : A) → is-contr (A * B) contr-left a = left a , Pushout-elim (λ a' → ap left (prop-has-all-paths pA a a')) (λ b' → glue (a , b')) (λ {(a' , b') → ↓-cst=idf-in' $ ! $ ↓-app=cst-out (apd (λ a → glue (a , b')) (prop-has-all-paths pA a a'))}) contr-right : (b : B) → is-contr (A * B) contr-right b = right b , Pushout-elim (λ a' → ! (glue (a' , b))) (λ b' → ap right (prop-has-all-paths pB b b')) (λ {(a' , b') → ↓-cst=idf-in' $ ! (glue (a' , b)) ∙ glue (a' , b') =⟨ ! (↓-cst=app-out' $ apd (λ b → glue (a' , b)) (prop-has-all-paths pB b b')) |in-ctx ! (glue (a' , b)) ∙_ ⟩ ! (glue (a' , b)) ∙ glue (a' , b) ∙ ap right (prop-has-all-paths pB b b') =⟨ ! $ ∙-assoc (! (glue (a' , b))) (glue (a' , b)) (ap right (prop-has-all-paths pB b b')) ⟩ (! (glue (a' , b)) ∙ glue (a' , b)) ∙ ap right (prop-has-all-paths pB b b') =⟨ !-inv-l (glue (a' , b)) |in-ctx _∙ ap right (prop-has-all-paths pB b b') ⟩ ap right (prop-has-all-paths pB b b') =∎}) prop*prop-is-prop : is-prop (A * B) prop*prop-is-prop = inhab-to-contr-is-prop $ Pushout-rec contr-left contr-right (λ _ → prop-has-all-paths is-contr-is-prop _ _)
39.555556
98
0.517556
1c91cdf988fe14c50e4e57426fcc5160fbedae3d
1,030
agda
Agda
src/Dodo/Binary/Flip.agda
sourcedennis/agda-dodo
376f0ccee1e1aa31470890e494bcb534324f598a
[ "BSD-3-Clause" ]
null
null
null
src/Dodo/Binary/Flip.agda
sourcedennis/agda-dodo
376f0ccee1e1aa31470890e494bcb534324f598a
[ "BSD-3-Clause" ]
null
null
null
src/Dodo/Binary/Flip.agda
sourcedennis/agda-dodo
376f0ccee1e1aa31470890e494bcb534324f598a
[ "BSD-3-Clause" ]
null
null
null
{-# OPTIONS --without-K --safe #-} module Dodo.Binary.Flip where -- Stdlib imports open import Level using (Level; _⊔_) open import Function.Base using (flip) open import Relation.Binary using (Rel; REL) open import Relation.Binary using (Symmetric) -- Local imports open import Dodo.Binary.Equality -- # Operations -- ## Operations: ⊆₂ module _ {a b ℓ₁ ℓ₂ : Level} {A : Set a} {B : Set b} {P : REL A B ℓ₁} {Q : REL A B ℓ₂} where flip-⊆₂ : P ⊆₂ Q → flip P ⊆₂ flip Q flip-⊆₂ (⊆: P⊆Q) = ⊆: (flip P⊆Q) module _ {a ℓ₁ : Level} {A : Set a} {P : Rel A ℓ₁} where flip-sym-⊆₂ : Symmetric P → P ⊆₂ flip P flip-sym-⊆₂ symP = ⊆: (λ _ _ → symP) -- ## Operations: ⇔₂ module _ {a b ℓ₁ ℓ₂ : Level} {A : Set a} {B : Set b} {P : REL A B ℓ₁} {Q : REL A B ℓ₂} where flip-⇔₂ : P ⇔₂ Q → flip P ⇔₂ flip Q flip-⇔₂ = ⇔₂-compose flip-⊆₂ flip-⊆₂ module _ {a ℓ₁ : Level} {A : Set a} {P : Rel A ℓ₁} where flip-sym-⇔₂ : Symmetric P → P ⇔₂ flip P flip-sym-⇔₂ symP = ⇔₂-intro (flip-sym-⊆₂ symP) (flip-sym-⊆₂ symP)
23.409091
67
0.58932
cb3f8ef4cb8b33eda4dbd94d1319bf90dbd7d504
493
agda
Agda
test/Succeed/Issue2727-1.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue2727-1.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue2727-1.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
open import Agda.Builtin.Equality using (_≡_; refl) record ⊤ : Set where no-eta-equality constructor tt data Box (A : Set) : Set where [_] : A → Box A Unit : Set Unit = Box ⊤ F : Unit → Set → Set F [ _ ] x = x G : {P : Unit → Set} → ((x : ⊤) → P [ x ]) → ((x : Unit) → P x) G f [ x ] = f x record R : Set₁ where no-eta-equality field f : (x : Unit) → Box (F x ⊤) data ⊥ : Set where r : R r = record { f = G [_] } open R r H : ⊥ → Set₁ H _ rewrite refl {x = tt} = Set
14.939394
63
0.521298
df90d73942af7797d1fc66d2d4786c8a5fcd1687
294
agda
Agda
test/Succeed/IgnoreWarnings.agda
zgrannan/agda
5953ce337eb6b77b29ace7180478f49c541aea1c
[ "BSD-3-Clause" ]
null
null
null
test/Succeed/IgnoreWarnings.agda
zgrannan/agda
5953ce337eb6b77b29ace7180478f49c541aea1c
[ "BSD-3-Clause" ]
null
null
null
test/Succeed/IgnoreWarnings.agda
zgrannan/agda
5953ce337eb6b77b29ace7180478f49c541aea1c
[ "BSD-3-Clause" ]
null
null
null
module IgnoreWarnings where -- all of the following files have warnings, which should be ignored -- because of the command-line flag import Issue2243 import Issue708quote import OldCompilerPragmas import RewritingEmptyPragma import Unreachable -- this should also be ignored {-# REWRITE #-}
21
68
0.806122
d0e168068c0be7f0c3803fabc2ef853d5517ddf7
228
agda
Agda
test/Succeed/Issue3779.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue3779.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue3779.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
open import Agda.Builtin.Equality variable A B : Set f g : A postulate F : Set → Set map : (A → B) → F A → F B lemma : (x : F A) → map (λ x → f (g x)) x ≡ map f (map g x) → F A lemma {A = A} {f = f} {g = g} x _ = x
17.538462
65
0.491228
128fe84107a14d9e75be69bf0356938e0b1a91fb
407
agda
Agda
test/Succeed/Issue253.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue253.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue253.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --universe-polymorphism --allow-unsolved-metas #-} module Issue253 where open import Common.Level data Id l (X : Set l)(x : X) : X → Set where refl : Id l X x x resp : (A B : Set _) → Id _ (Set _) A B → Set resp _ _ eq with eq resp ._ _ eq | refl = Level {- An internal error has occurred. Please report this as a bug. Location of the error: src/full/Agda/TypeChecking/Telescope.hs:51 -}
23.941176
65
0.670762
dcd474bf834f389f776539f848f3a78ff5a73950
2,450
agda
Agda
prototyping/Luau/OpSem.agda
FreakingBarbarians/luau
5187e64f88953f34785ffe58acd0610ee5041f5f
[ "MIT" ]
1
2022-02-11T21:30:17.000Z
2022-02-11T21:30:17.000Z
prototyping/Luau/OpSem.agda
FreakingBarbarians/luau
5187e64f88953f34785ffe58acd0610ee5041f5f
[ "MIT" ]
null
null
null
prototyping/Luau/OpSem.agda
FreakingBarbarians/luau
5187e64f88953f34785ffe58acd0610ee5041f5f
[ "MIT" ]
null
null
null
module Luau.OpSem where open import Agda.Builtin.Equality using (_≡_) open import FFI.Data.Maybe using (just) open import Luau.Heap using (Heap; _≡_⊕_↦_; lookup; function_⟨_⟩_end) open import Luau.Substitution using (_[_/_]ᴮ) open import Luau.Syntax using (Expr; Stat; Block; nil; addr; var; function⟨_⟩_end; _$_; block_is_end; local_←_; _∙_; done; function_⟨_⟩_end; return) open import Luau.Value using (addr; val) data _⊢_⟶ᴮ_⊣_ : Heap → Block → Block → Heap → Set data _⊢_⟶ᴱ_⊣_ : Heap → Expr → Expr → Heap → Set data _⊢_⟶ᴱ_⊣_ where nil : ∀ {H} → ------------------- H ⊢ nil ⟶ᴱ nil ⊣ H function : ∀ {H H′ a x B} → H′ ≡ H ⊕ a ↦ (function "anon" ⟨ x ⟩ B end) → ------------------------------------------- H ⊢ (function⟨ x ⟩ B end) ⟶ᴱ (addr a) ⊣ H′ app : ∀ {H H′ M M′ N} → H ⊢ M ⟶ᴱ M′ ⊣ H′ → ----------------------------- H ⊢ (M $ N) ⟶ᴱ (M′ $ N) ⊣ H′ beta : ∀ {H M a f x B} → (lookup H a) ≡ just(function f ⟨ x ⟩ B end) → ----------------------------------------------------- H ⊢ (addr a $ M) ⟶ᴱ (block f is local x ← M ∙ B end) ⊣ H block : ∀ {H H′ B B′ b} → H ⊢ B ⟶ᴮ B′ ⊣ H′ → ---------------------------------------------------- H ⊢ (block b is B end) ⟶ᴱ (block b is B′ end) ⊣ H′ return : ∀ {H V B b} → -------------------------------------------------------- H ⊢ (block b is return (val V) ∙ B end) ⟶ᴱ (val V) ⊣ H done : ∀ {H b} → --------------------------------- H ⊢ (block b is done end) ⟶ᴱ nil ⊣ H data _⊢_⟶ᴮ_⊣_ where local : ∀ {H H′ x M M′ B} → H ⊢ M ⟶ᴱ M′ ⊣ H′ → ------------------------------------------------- H ⊢ (local x ← M ∙ B) ⟶ᴮ (local x ← M′ ∙ B) ⊣ H′ subst : ∀ {H x v B} → ------------------------------------------------- H ⊢ (local x ← val v ∙ B) ⟶ᴮ (B [ v / x ]ᴮ) ⊣ H function : ∀ {H H′ a f x B C} → H′ ≡ H ⊕ a ↦ (function f ⟨ x ⟩ C end) → -------------------------------------------------------------- H ⊢ (function f ⟨ x ⟩ C end ∙ B) ⟶ᴮ (B [ addr a / f ]ᴮ) ⊣ H′ return : ∀ {H H′ M M′ B} → H ⊢ M ⟶ᴱ M′ ⊣ H′ → -------------------------------------------- H ⊢ (return M ∙ B) ⟶ᴮ (return M′ ∙ B) ⊣ H′ data _⊢_⟶*_⊣_ : Heap → Block → Block → Heap → Set where refl : ∀ {H B} → ---------------- H ⊢ B ⟶* B ⊣ H step : ∀ {H H′ H″ B B′ B″} → H ⊢ B ⟶ᴮ B′ ⊣ H′ → H′ ⊢ B′ ⟶* B″ ⊣ H″ → ------------------ H ⊢ B ⟶* B″ ⊣ H″
26.344086
148
0.358776
06281ff4a3b24df6b720b8c6673f9ed66ec9906f
4,473
agda
Agda
archive/agda-3/src/Oscar/Class/Thickandthin.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
archive/agda-3/src/Oscar/Class/Thickandthin.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
1
2019-04-29T00:35:04.000Z
2019-05-11T23:33:04.000Z
archive/agda-3/src/Oscar/Class/Thickandthin.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
open import Oscar.Prelude open import Oscar.Class.Successor₀ open import Oscar.Class.Successor₁ open import Oscar.Class.Injectivity open import Oscar.Class.Pure module Oscar.Class.Thickandthin where module _ {x} {X : Ø x} {a} (A : X → Ø a) {b} (B : X → Ø b) where record [𝓣hin] : Ø₀ where no-eta-equality constructor ∁ module _ ⦃ _ : 𝓢uccessor₀ X ⦄ where 𝔱hin : ∀ (m : X) → A (⇑₀ m) → B m → Ø b 𝔱hin m = λ _ _ → B (⇑₀ m) 𝓽hin = ∀ {m : X} → A (⇑₀ m) → B m → B (⇑₀ m) record 𝓣hin ⦃ _ : [𝓣hin] ⦄ : Ø x ∙̂ a ∙̂ b where field thin : 𝓽hin instance `𝓘njection₂ : ∀ {m} → 𝓘njection₂ (𝔱hin m) `𝓘njection₂ = ∁ thin open 𝓣hin ⦃ … ⦄ public module _ {x} {X : Ø x} {a} (A : X → Ø a) {b} (B : X → Ø b) where record [𝓣hick] : Ø₀ where no-eta-equality constructor ∁ module _ ⦃ _ : 𝓢uccessor₀ X ⦄ where 𝓽hick = ∀ {m} → A m → B (⇑₀ m) → B m record 𝓣hick ⦃ _ : [𝓣hick] ⦄ : Ø x ∙̂ a ∙̂ b where field thick : 𝓽hick open 𝓣hick ⦃ … ⦄ public module _ {x} {X : Ø x} {a} (A : X → Ø a) {b} (B : X → Ø b) {ℓ} (_≈_ : ∀ {x} → B x → B x → Ø ℓ) where record [𝓣hick/thin=1] : Ø₀ where no-eta-equality constructor ∁ module _ ⦃ _ : 𝓢uccessor₀ X ⦄ ⦃ _ : [𝓢uccessor₁] A ⦄ ⦃ _ : 𝓢uccessor₁ A ⦄ ⦃ _ : [𝓣hin] A B ⦄ ⦃ _ : 𝓣hin A B ⦄ ⦃ _ : [𝓣hick] A B ⦄ ⦃ _ : 𝓣hick A B ⦄ where 𝓽hick/thin=1 = ∀ {m} (x : A m) (y : B m) → thick x (thin (⇑₁ x) y) ≈ y record 𝓣hick/thin=1 : Ø x ∙̂ a ∙̂ b ∙̂ ℓ where field thick/thin=1 : 𝓽hick/thin=1 open 𝓣hick/thin=1 ⦃ … ⦄ public module _ {x} {X : Ø x} {a} (A : X → Ø a) {b} (B : X → Ø b) {c} (C : Ø b → Ø c) where record [𝓒heck] : Ø₀ where no-eta-equality constructor ∁ module _ ⦃ _ : 𝓢uccessor₀ X ⦄ where 𝓬heck = ∀ {m} → A (⇑₀ m) → B (⇑₀ m) → C (B m) record 𝓒heck ⦃ _ : [𝓒heck] ⦄ : Ø x ∙̂ a ∙̂ b ∙̂ c where field check : 𝓬heck open 𝓒heck ⦃ … ⦄ public check[_] : ∀ {x} {X : Ø x} {a} {A : X → Ø a} {b} {B : X → Ø b} {c} (C : Ø b → Ø c) ⦃ _ : [𝓒heck] A B C ⦄ ⦃ _ : 𝓢uccessor₀ X ⦄ ⦃ _ : 𝓒heck A B C ⦄ → 𝓬heck A B C check[ _ ] = check module _ {x} {X : Ø x} {a} (A : X → Ø a) {b} (B : X → Ø b) {c} (C : Ø b → Ø c) {ℓ} (_≈_ : ∀ {x} → C (B x) → C (B x) → Ø ℓ) where record [𝓒heck/thin=1] : Ø₀ where no-eta-equality constructor ∁ module _ ⦃ _ : 𝓢uccessor₀ X ⦄ ⦃ _ : [𝓣hin] A B ⦄ ⦃ _ : 𝓣hin A B ⦄ ⦃ _ : [𝓒heck] A B C ⦄ ⦃ _ : 𝓒heck A B C ⦄ ⦃ _ : 𝓟ure C ⦄ where 𝓬heck/thin=1 = ∀ {n} (x : A (⇑₀ n)) (y : B n) → check x (thin x y) ≈ pure y record 𝓒heck/thin=1 ⦃ _ : [𝓒heck/thin=1] ⦄ : Ø x ∙̂ a ∙̂ b ∙̂ c ∙̂ ℓ where field check/thin=1 : 𝓬heck/thin=1 open 𝓒heck/thin=1 ⦃ … ⦄ public check/thin=1[_] : ∀ {x} {X : Ø x} {a} {A : X → Ø a} {b} {B : X → Ø b} {c} {C : Ø b → Ø c} {ℓ} (_≈_ : ∀ {x} → C (B x) → C (B x) → Ø ℓ) ⦃ _ : 𝓢uccessor₀ X ⦄ ⦃ _ : [𝓣hin] A B ⦄ ⦃ _ : 𝓣hin A B ⦄ ⦃ _ : [𝓒heck] A B C ⦄ ⦃ _ : 𝓒heck A B C ⦄ ⦃ _ : 𝓟ure C ⦄ ⦃ _ : [𝓒heck/thin=1] A B C _≈_ ⦄ ⦃ _ : 𝓒heck/thin=1 A B C _≈_ ⦄ → 𝓬heck/thin=1 A B C _≈_ check/thin=1[ _ ] = check/thin=1 record IsThickandthin {x a b c ℓb ℓc} {X : Ø x} (A : X → Ø a) (B : X → Ø b) (_≈B_ : ∀ {x} → B x → B x → Ø ℓb) (C : Ø b → Ø c) (_≈C_ : ∀ {x} → C (B x) → C (B x) → Ø ℓc) : Ø x ∙̂ a ∙̂ ↑̂ b ∙̂ ℓb ∙̂ c ∙̂ ℓc where constructor ∁ field overlap ⦃ `𝓢uccessor₀ ⦄ : 𝓢uccessor₀ X overlap ⦃ `[𝓢uccessor₁] ⦄ : [𝓢uccessor₁] A overlap ⦃ `𝓢uccessor₁ ⦄ : 𝓢uccessor₁ A overlap ⦃ `[𝓣hick] ⦄ : [𝓣hick] A B overlap ⦃ `𝓣hick ⦄ : 𝓣hick A B overlap ⦃ `[𝓣hin] ⦄ : [𝓣hin] A B overlap ⦃ `𝓣hin ⦄ : 𝓣hin A B overlap ⦃ `[𝓘njectivity₂,₁] ⦄ : ∀ {m} → [𝓘njectivity₂,₁] (𝔱hin A B m) _≈B_ _≈B_ overlap ⦃ `𝓘njectivity₂,₁ ⦄ : ∀ {m} → 𝓘njectivity₂,₁ (𝔱hin A B m) _≈B_ _≈B_ overlap ⦃ `[𝓒heck] ⦄ : [𝓒heck] A B C overlap ⦃ `𝓒heck ⦄ : 𝓒heck A B C overlap ⦃ `[𝓣hick/thin=1] ⦄ : [𝓣hick/thin=1] A B _≈B_ overlap ⦃ `𝓣hick/thin=1 ⦄ : 𝓣hick/thin=1 A B _≈B_ overlap ⦃ `[𝓒heck/thin=1] ⦄ : [𝓒heck/thin=1] A B C _≈C_ overlap ⦃ `𝓟ure ⦄ : 𝓟ure C overlap ⦃ `𝓒heck/thin=1 ⦄ : 𝓒heck/thin=1 A B C _≈C_ record Thickandthin x a b ℓb c ℓc : Ø ↑̂ (x ∙̂ a ∙̂ b ∙̂ ℓb ∙̂ c ∙̂ ℓc) where constructor ∁ field {X} : Ø x A : X → Ø a B : X → Ø b _≈B_ : ∀ {x} → B x → B x → Ø ℓb C : Ø b → Ø c _≈C_ : ∀ {x} → C (B x) → C (B x) → Ø ℓc ⦃ `IsThickandthin ⦄ : IsThickandthin A B _≈B_ C _≈C_
26.625
112
0.484239
cb9a12dafe1220a44931aa8fda459e474b29705f
11,400
agda
Agda
agda/Syntax.agda
agda/agda-spec
7ef5f2fd8057b27fd3bc9d171283ccaeceec9c79
[ "Unlicense" ]
24
2017-05-09T12:25:36.000Z
2021-08-15T09:09:08.000Z
agda/Syntax.agda
agda/agda-spec
7ef5f2fd8057b27fd3bc9d171283ccaeceec9c79
[ "Unlicense" ]
4
2017-05-12T12:33:48.000Z
2019-01-13T13:00:20.000Z
agda/Syntax.agda
agda/agda-spec
7ef5f2fd8057b27fd3bc9d171283ccaeceec9c79
[ "Unlicense" ]
3
2017-05-11T10:44:08.000Z
2022-03-12T11:40:50.000Z
-- TODO: use StrictTotalOrder for QName representation module Syntax (QName : Set) where open import Data.Nat.Base open import Data.Nat.Properties using (+-suc; +-identityʳ) open import Data.List.Base hiding (_∷ʳ_) open import Relation.Binary.PropositionalEquality using (_≡_; refl; cong; sym; trans) -- Well-scoped de Bruijn indices -- n is the length of the context data Var : ℕ → Set where vzero : ∀{n} → Var (suc n) vsuc : ∀{n} (x : Var n) → Var (suc n) -- Example: in context x,y,z (so n = 3) -- x is vsuc (vsuc vzero) : Var 3 -- y is vsuc vzero : Var 3 -- z is vzero : Var 3 -- Qualified names DRName = QName -- datatype / record name FuncName = QName -- function name ProjName = QName -- projection name (overloaded) ConsName = QName -- datatype / record constructor name (overloaded) -- Data or record constructors data ConHead : Set where dataCon : DRName → ConHead recCon : DRName → (fs : List ProjName) → ConHead -- Sorts are Set₀, Set₁, ... data Sort : Set where uni : (ℓ : ℕ) → Sort -- In the following definition of well-scoped syntax, -- n is always the length of the context. mutual data Term (n : ℕ) : Set where var : (x : Var n) (es : Elims n) → Term n def : (f : FuncName) (es : Elims n) → Term n con : (c : ConHead) (vs : Args n) → Term n -- Fully applied lam : (v : Term (suc n)) → Term n -- Types dat : (d : DRName) (vs : Args n) → Term n -- Fully applied sort : (s : Sort) → Term n pi : (u : Term n) (v : Term (suc n)) → Term n data Elim (n : ℕ) : Set where apply : (u : Term n) → Elim n proj : (π : ProjName) → Elim n Elims : (n : ℕ) → Set Elims n = List (Elim n) Args : (n : ℕ) → Set Args n = List (Term n) -- Example: (A : Set) (x : A) → A -- is represented by exTyId : Term 0 exTyId = pi (sort (uni 0)) (pi (var vzero []) (var (vsuc vzero) [])) -- Looking up a field in a field-value collection -- TODO: Do we want to ensure |fs| = |vs| ? data LookupField {a} {A : Set a} : (fs : List ProjName) (vs : List A) (f : ProjName) (v : A) → Set where here : ∀{f fs v vs} → LookupField (f ∷ fs) (v ∷ vs) f v there : ∀{f f' fs v v' vs} → LookupField fs vs f v → LookupField (f' ∷ fs) (v' ∷ vs) f v -- Renamings represented as functions Renaming : (Γ Δ : ℕ) → Set Renaming Γ Δ = Var Δ → Var Γ weak : ∀{Γ} → Renaming (suc Γ) Γ weak x = vsuc x -- If Γ ⊢ ρ : Δ -- then Γ,x ⊢ liftRen ρ : Δ,x. liftRen : ∀{Γ Δ} → Renaming Γ Δ → Renaming (suc Γ) (suc Δ) liftRen ρ vzero = vzero liftRen ρ (vsuc x) = vsuc (ρ x) -- We need sized types to show termination of rename. {-# TERMINATING #-} mutual rename : ∀{Γ Δ} (ρ : Renaming Γ Δ) (t : Term Δ) → Term Γ rename ρ (var x es) = var (ρ x) (map (renameElim ρ) es) rename ρ (def f es) = def f (map (renameElim ρ) es) rename ρ (con c vs) = con c (map (rename ρ) vs) rename ρ (lam t) = lam (rename (liftRen ρ) t) rename ρ (dat d vs) = dat d (map (rename ρ) vs) rename ρ (sort s) = sort s rename ρ (pi u v) = pi (rename ρ u) (rename (liftRen ρ) v) renameElim : ∀{Γ Δ} (ρ : Renaming Γ Δ) (e : Elim Δ) → Elim Γ renameElim ρ (apply u) = apply (rename ρ u) renameElim ρ (proj π) = proj π -- Substitutions represented as functions -- σ : Subst Γ Δ applies to a term living in context Δ -- and turns it into a term living in context Γ Substitution : (Γ Δ : ℕ) → Set Substitution Γ Δ = Var Δ → Term Γ liftSub : ∀{Γ Δ} (σ : Substitution Γ Δ) → Substitution (suc Γ) (suc Δ) liftSub σ vzero = var vzero [] liftSub σ (vsuc x) = rename weak (σ x) -- Substitute for the last variable (vzero) sg : ∀{Γ} (u : Term Γ) → Substitution Γ (suc Γ) sg {Γ} u vzero = u sg {Γ} u (vsuc x) = var x [] data All₂ {A B : Set} (R : A → B → Set) : List A → List B → Set where nil : All₂ R [] [] cons : ∀{x y xs ys} → R x y → All₂ R xs ys → All₂ R (x ∷ xs) (y ∷ ys) mutual data Apply {Γ} : (t : Term Γ) (es : Elims Γ) (v : Term Γ) → Set where empty : ∀{t} → Apply t [] t var : ∀{x es es'} → Apply (var x es) es' (var x (es ++ es')) def : ∀{f es es'} → Apply (def f es) es' (def f (es ++ es')) proj : ∀{ c πs vs π es u v} → LookupField πs vs π u → Apply u es v → Apply (con (recCon c πs) vs) (proj π ∷ es) v lam : ∀{t t' u v es} → SubstTerm (sg u) t t' → Apply t' es v → Apply (lam t) (apply u ∷ es) v data SubstTerm {Γ Δ} (σ : Substitution Γ Δ) : Term Δ → Term Γ → Set where var : ∀{x : Var Δ} {es : Elims Δ} {v : Term Γ} {es' : Elims Γ} → All₂ (SubstElim σ) es es' → Apply (σ x) es' v → SubstTerm σ (var x es) v def : ∀{f : FuncName} {es : Elims Δ} {es' : Elims Γ} → All₂ (SubstElim σ) es es' → SubstTerm σ (def f es) (def f es') con : ∀{c : ConHead} {vs : Args Δ} {vs' : Args Γ} → All₂ (SubstTerm σ) vs vs' → SubstTerm σ (con c vs) (con c vs') lam : ∀{v : Term (suc Δ)} {v'} → SubstTerm (liftSub σ) v v' → SubstTerm σ (lam v) (lam v') dat : ∀{d : DRName} {vs : Args Δ} {vs' : Args Γ} → All₂ (SubstTerm σ) vs vs' → SubstTerm σ (dat d vs) (dat d vs') pi : ∀{U V U' V'} → SubstTerm σ U U' → SubstTerm (liftSub σ) V V' → SubstTerm σ (pi U V) (pi U' V') sort : ∀{s : Sort} → SubstTerm σ (sort s) (sort s) data SubstElim {Γ Δ} (σ : Substitution Γ Δ) : Elim Δ → Elim Γ → Set where apply : ∀{u u'} → SubstTerm σ u u' → SubstElim σ (apply u) (apply u') proj : ∀{π} → SubstElim σ (proj π) (proj π) data FunctionApply {Γ} : (T : Term Γ) (us : Args Γ) (U : Term Γ) → Set where empty : ∀{T} → FunctionApply T [] T pi : ∀{u us T U V V'} → SubstTerm (sg u) V V' → FunctionApply V' us T → FunctionApply (pi U V) (u ∷ us) T -- n is the length of the context data Context : (n : ℕ) → Set where [] : Context zero _∷ʳ_ : ∀{n} → Context n → Term n → Context (suc n) -- n is the size of the outer context; m is the size of the telescope data Telescope (n : ℕ) : (m : ℕ) → Set where [] : Telescope n zero _∷_ : ∀{m} → Term n → Telescope (suc n) m → Telescope n (suc m) telescopeSize : ∀{n m} → Telescope n m → ℕ telescopeSize {m = m} _ = m suc-move : (m n : ℕ) → m + suc n ≡ suc m + n suc-move zero n = refl suc-move (suc m) n = cong suc (+-suc m n) -- Add a telescope to a compatible outer context. addToContext : ∀{n m} → Context n → Telescope n m → Context (n + m) addToContext {n} Γ [] rewrite +-identityʳ n = Γ addToContext {n} {.(suc m)} Γ (_∷_ {m = m} x t) rewrite suc-move n m = addToContext (Γ ∷ʳ x) t expandTelescope : ∀ {n m} → Telescope n m → Term (n + m) → Term n expandTelescope {n} [] T rewrite +-identityʳ n = T expandTelescope {n} {suc m} (U ∷ Δ) T rewrite suc-move n m = pi U (expandTelescope Δ T) data Pattern (n : ℕ) : Set where pvariable : Var n → Pattern n pconstructor : ConsName → List (Pattern n) → Pattern n pinaccesssible : Term n → Pattern n data Copattern (n : ℕ) : Set where capply : Pattern n → Copattern n cproj : ProjName → Copattern n record ConsDeclaration (n : ℕ) : Set where constructor mkConsDeclaration field consName : ConsName consType : Term n record ProjDeclaration (n : ℕ) : Set where constructor mkProjDeclaration field projName : ProjName projType : Term n record DataSignature : Set where constructor mkDataSignature field name : DRName {numParams} : ℕ {numIndices} : ℕ params : Telescope zero numParams indices : Telescope numParams numIndices dsort : Sort record DataDefinition : Set where field name : DRName {numParams} : ℕ params : Telescope zero numParams constructors : List (ConsDeclaration numParams) record RecordSignature : Set where constructor mkRecordSignature field name : DRName {numParams} : ℕ params : Telescope zero numParams dsort : Sort record RecordDefinition : Set where field name : DRName {numParams} : ℕ params : Telescope zero numParams fconstructor : ConsName fields : List (ProjDeclaration numParams) -- TODO: Update spec record FuncClause : Set where field ctxSize : ℕ ctx : Context ctxSize name : FuncName spine : List (Copattern ctxSize) rhs : Term ctxSize -- TODO: How to represent pattern variables? data Declaration : Set where typeSignature : FuncName → Term zero → Declaration functionClause : FuncClause → Declaration dataSignature : DataSignature → Declaration dataDefinition : DataDefinition → Declaration recordSignature : RecordSignature → Declaration recordDefinition : RecordDefinition → Declaration -- TODO: Update signature declarations data SignatureDeclaration : Set where dataSig : (D : DataSignature) → List (ConsDeclaration (DataSignature.numParams D)) → SignatureDeclaration recordSig : (R : RecordSignature) → ConsDeclaration (RecordSignature.numParams R) → List (ProjDeclaration (RecordSignature.numParams R)) → SignatureDeclaration functionSig : FuncName → Term zero → List FuncClause → SignatureDeclaration Signature : Set Signature = List SignatureDeclaration data LookupSig : Signature → SignatureDeclaration → Set where here : ∀{sd sds} → LookupSig (sd ∷ sds) sd there : ∀{sd sd' sds} → LookupSig sds sd → LookupSig (sd' ∷ sds) sd data LookupCons : ∀{m} → List (ConsDeclaration m) → ConsName → Term m → Set where here : ∀{c m} {T : Term m} {cs : List (ConsDeclaration m)} → LookupCons {m} (mkConsDeclaration c T ∷ cs) c T there : ∀{c c' m} {T : Term m} {T' : Term m} {cs : List (ConsDeclaration m)} → LookupCons cs c T → LookupCons (mkConsDeclaration c' T' ∷ cs) c T data LookupProj : ∀{m} → List (ProjDeclaration m) → ProjName → Term m → Set where here : ∀{π m} {T : Term m} {πs : List (ProjDeclaration m)} → LookupProj (mkProjDeclaration π T ∷ πs) π T there : ∀ {π π' m} {πs : List (ProjDeclaration m)} {T : Term m} {T' : Term m} → LookupProj πs π T → LookupProj (mkProjDeclaration π' T' ∷ πs) π T data SigLookup : ∀{m} → Signature → QName → Term m → Set where func : ∀{Σ f T cls} → LookupSig Σ (functionSig f T cls) → SigLookup Σ f T dat : ∀{Σ D m m' s cs} {Δ : Telescope zero m} {Δ' : Telescope m m'} → LookupSig Σ (dataSig (mkDataSignature D {m} {m'} Δ Δ' s) cs) → SigLookup Σ D (expandTelescope Δ (expandTelescope Δ' (sort s))) con : ∀{Σ D m m' s cs c T} {Δ : Telescope zero m} {Δ' : Telescope m m'} → LookupSig Σ (dataSig (mkDataSignature D {m} {m'} Δ Δ' s) cs) → LookupCons cs c T → SigLookup Σ c (expandTelescope Δ T) rec : ∀{Σ R m s c ps} {Δ : Telescope zero m} → LookupSig Σ (recordSig (mkRecordSignature R Δ s) c ps) → SigLookup Σ R (expandTelescope Δ (sort s)) rcon : ∀{Σ R m s c T πs} {Δ : Telescope zero m} → LookupSig Σ (recordSig (mkRecordSignature R Δ s) (mkConsDeclaration c T) πs) → SigLookup Σ c (expandTelescope Δ T) rproj : ∀{Σ R m s c π T πs} {Δ : Telescope zero m} → LookupSig Σ (recordSig (mkRecordSignature R Δ s) (mkConsDeclaration c T) πs) → LookupProj πs π T → SigLookup Σ π (expandTelescope Δ T)
30.894309
104
0.593333
cb5a3be9fb4d595ad18327e46cb885b084cf6247
2,943
agda
Agda
Perm.agda
pigworker/InteriorDesign
454cdd18f56db0b0d1643a1fcf36951b5ece395c
[ "BSD-3-Clause" ]
6
2018-06-18T15:25:39.000Z
2018-07-31T02:00:13.000Z
Perm.agda
pigworker/InteriorDesign
454cdd18f56db0b0d1643a1fcf36951b5ece395c
[ "BSD-3-Clause" ]
null
null
null
Perm.agda
pigworker/InteriorDesign
454cdd18f56db0b0d1643a1fcf36951b5ece395c
[ "BSD-3-Clause" ]
null
null
null
module Perm where open import Basics open import All open import Splitting data _~_ {X : Set} : List X -> List X -> Set where [] : [] ~ [] _,-_ : forall {x xs ys zs} -> (x ,- []) <[ ys ]> zs -> xs ~ zs -> (x ,- xs) ~ ys permute : {X : Set}{xs ys : List X} -> xs ~ ys -> {P : X -> Set} -> All P xs -> All P ys permute [] <> = <> permute (i ,- is) (p , ps) = riffle i (p , <>) (permute is ps) reflP : {X : Set}(xs : List X) -> xs ~ xs reflP [] = [] reflP (x ,- xs) = sl (srs xs) ,- reflP xs insP : forall {X : Set}{x : X}{xs xs' ys ys'} -> (x ,- []) <[ xs' ]> xs -> (x ,- []) <[ ys' ]> ys -> xs ~ ys -> xs' ~ ys' insP (sl i) j p with isSRS i insP (sl .(srs _)) j p | mkSRS = j ,- p insP (sr i) j (k ,- p) = let _ , k' , j' = llswap (_ , j , k) in k' ,- insP i j' p l2r : forall {X : Set}{x : X}{xs xs' ys'}(i : (x ,- []) <[ xs' ]> xs)(p' : xs' ~ ys') -> Sg (List X) \ ys -> Sg ((x ,- []) <[ ys' ]> ys) \ j -> xs ~ ys l2r (sl i) (j ,- p) with isSRS i l2r (sl .(srs _)) (j ,- p) | mkSRS = _ , j , p l2r (sr i) (k' ,- p') with l2r i p' ... | _ , j' , p with llswap (_ , k' , j') ... | _ , j , k = _ , j , (k ,- p) transP : {X : Set}{xs ys zs : List X} -> xs ~ ys -> ys ~ zs -> xs ~ zs transP [] [] = [] transP (i ,- p) q' with l2r i q' ... | _ , j , q = j ,- transP p q symP : {X : Set}{xs ys : List X} -> xs ~ ys -> ys ~ xs symP [] = [] symP (i ,- p) = insP i (sl (srs _)) (symP p) swapP : {X : Set}(xs ys : List X) -> (xs +L ys) ~ (ys +L xs) swapP [] ys rewrite ys +L[] = reflP ys swapP (x ,- xs) ys = insS ys x xs ,- swapP xs ys catP : forall {X : Set}{as bs cs ds : List X} -> as ~ cs -> bs ~ ds -> (as +L bs) ~ (cs +L ds) catP [] q = q catP (x ,- p) q = catS x (srs _) ,- catP p q permap : forall {X Y}(f : X -> Y){xs xs' : List X} -> xs ~ xs' -> list f xs ~ list f xs' permap f [] = [] permap f (x ,- p) = splimap f x ,- permap f p cartNil : forall {I}(is : List I){J} -> cart {J = J} is [] == [] cartNil [] = refl [] cartNil (i ,- is) = cartNil is cartCons : forall {I J}(is : List I)(j : J)(js : List J) -> cart is (j ,- js) ~ (list (_, j) is +L cart is js) cartCons [] j js = [] cartCons (i ,- is) j js with catP (swapP (list (i ,_) js) (list (_, j) is)) (reflP (cart is js)) ... | z rewrite assoc+L (list (i ,_) js) (list (_, j) is) (cart is js) | assoc+L (list (_, j) is) (list (i ,_) js) (cart is js) = (sl (srs (list (_, j) is +L cart (i ,- is) js))) ,- transP (catP (reflP (list (i ,_) js)) (cartCons is j js)) z cartLemma : forall {I J}(is : List I)(js : List J) -> cart is js ~ list swap (cart js is) cartLemma {I}{J} [] js rewrite cartNil js {I} = [] cartLemma {I}{J} (i ,- is) js with catP (reflP (list (i ,_) js)) (cartLemma is js) ... | z rewrite sym (listlist swap (_, i) (i ,_) (\ j -> refl (i , j)) js) | catNatural swap (list (_, i) js) (cart js is) = transP z (symP (permap (\ ji -> snd ji , fst ji) (cartCons js i is)))
36.333333
97
0.475025
20a8a69b21353c71663d8e3e00ef2e7db10a4920
6,164
agda
Agda
bool-thms2.agda
rfindler/ial
f3f0261904577e930bd7646934f756679a6cbba6
[ "MIT" ]
29
2019-02-06T13:09:31.000Z
2022-03-04T15:05:12.000Z
bool-thms2.agda
rfindler/ial
f3f0261904577e930bd7646934f756679a6cbba6
[ "MIT" ]
8
2018-07-09T22:53:38.000Z
2022-03-22T03:43:34.000Z
bool-thms2.agda
rfindler/ial
f3f0261904577e930bd7646934f756679a6cbba6
[ "MIT" ]
17
2018-12-03T22:38:15.000Z
2021-11-28T20:13:21.000Z
module bool-thms2 where open import bool open import eq open import product open import sum ff-imp : ∀ (b : 𝔹) → ff imp b ≡ tt ff-imp ff = refl ff-imp tt = refl imp-tt : ∀ (b : 𝔹) → b imp tt ≡ tt imp-tt ff = refl imp-tt tt = refl imp-ff : ∀ (b : 𝔹) → b imp ff ≡ ~ b imp-ff tt = refl imp-ff ff = refl tt-imp : ∀ (b : 𝔹) → tt imp b ≡ b tt-imp tt = refl tt-imp ff = refl &&-tt : ∀ (b : 𝔹) → b && tt ≡ b &&-tt tt = refl &&-tt ff = refl ||-ff : ∀ (b : 𝔹) → b || ff ≡ b ||-ff tt = refl ||-ff ff = refl &&-contra : ∀ (b : 𝔹) → b && ~ b ≡ ff &&-contra ff = refl &&-contra tt = refl &&-comm : ∀ (b1 b2 : 𝔹) → b1 && b2 ≡ b2 && b1 &&-comm ff ff = refl &&-comm ff tt = refl &&-comm tt ff = refl &&-comm tt tt = refl ||-comm : ∀ (b1 b2 : 𝔹) → b1 || b2 ≡ b2 || b1 ||-comm ff ff = refl ||-comm ff tt = refl ||-comm tt ff = refl ||-comm tt tt = refl &&-assoc : ∀ (b1 b2 b3 : 𝔹) → b1 && (b2 && b3) ≡ (b1 && b2) && b3 &&-assoc ff _ _ = refl &&-assoc tt _ _ = refl ||-assoc : ∀ (b1 b2 b3 : 𝔹) → b1 || (b2 || b3) ≡ (b1 || b2) || b3 ||-assoc tt _ _ = refl ||-assoc ff _ _ = refl ~-over-&& : ∀ (b1 b2 : 𝔹) → ~ ( b1 && b2 ) ≡ (~ b1 || ~ b2) ~-over-&& tt _ = refl ~-over-&& ff _ = refl ~-over-|| : ∀ (b1 b2 : 𝔹) → ~ ( b1 || b2 ) ≡ (~ b1 && ~ b2) ~-over-|| tt _ = refl ~-over-|| ff _ = refl &&-over-||-l : ∀ (a b c : 𝔹) → a && (b || c) ≡ (a && b) || (a && c) &&-over-||-l tt _ _ = refl &&-over-||-l ff _ _ = refl &&-over-||-r : ∀ (a b c : 𝔹) → (a || b) && c ≡ (a && c) || (b && c) &&-over-||-r tt tt tt = refl &&-over-||-r tt tt ff = refl &&-over-||-r tt ff tt = refl &&-over-||-r tt ff ff = refl &&-over-||-r ff tt tt = refl &&-over-||-r ff tt ff = refl &&-over-||-r ff ff tt = refl &&-over-||-r ff ff ff = refl ||-over-&&-l : ∀ (a b c : 𝔹) → a || (b && c) ≡ (a || b) && (a || c) ||-over-&&-l tt _ _ = refl ||-over-&&-l ff _ _ = refl ||-over-&&-r : ∀ (a b c : 𝔹) → (a && b) || c ≡ (a || c) && (b || c) ||-over-&&-r tt _ _ = refl ||-over-&&-r ff _ ff = refl ||-over-&&-r ff tt tt = refl ||-over-&&-r ff ff tt = refl &&-cong₁ : ∀ {b1 b1' b2 : 𝔹} → b1 ≡ b1' → b1 && b2 ≡ b1' && b2 &&-cong₁ refl = refl &&-cong₂ : ∀ {b1 b2 b2' : 𝔹} → b2 ≡ b2' → b1 && b2 ≡ b1 && b2' &&-cong₂ refl = refl &&-intro : ∀ {b1 b2 : 𝔹} → b1 ≡ tt → b2 ≡ tt → b1 && b2 ≡ tt &&-intro{tt}{tt} _ _ = refl &&-intro{tt}{ff} _ () &&-intro{ff}{tt} () _ &&-intro{ff}{ff} () _ ||-intro1 : ∀ {b1 b2 : 𝔹} → b1 ≡ tt → b1 || b2 ≡ tt ||-intro1 {tt} p = refl ||-intro1 {ff} () &&-elim : ∀ {b1 b2 : 𝔹} → b1 && b2 ≡ tt → b1 ≡ tt ∧ b2 ≡ tt &&-elim{tt}{tt} _ = refl , refl &&-elim{ff}{_} () &&-elim{tt}{ff} () &&-elim1 : ∀ {b1 b2 : 𝔹} → b1 && b2 ≡ tt → b1 ≡ tt &&-elim1 p with &&-elim p &&-elim1 _ | p , _ = p &&-elim2 : ∀ {b1 b2 : 𝔹} → b1 && b2 ≡ tt → b2 ≡ tt &&-elim2{b1} p with &&-elim{b1} p &&-elim2 _ | _ , p = p ||-elim : ∀ {b1 b2 : 𝔹} → b1 || b2 ≡ tt → b1 ≡ tt ∨ b2 ≡ tt ||-elim {tt} refl = inj₁ refl ||-elim {ff} refl = inj₂ refl ~-cong : ∀ {b b' : 𝔹} → b ≡ b' → ~ b ≡ ~ b' ~-cong refl = refl ite-cong₁ : ∀{ℓ}{A : Set ℓ} {b b' : 𝔹}(x y : A) → b ≡ b' → (if b then x else y) ≡ (if b' then x else y) ite-cong₁ x y refl = refl ite-cong₂ : ∀{ℓ}{A : Set ℓ} (b : 𝔹){x x' : A}(y : A) → x ≡ x' → (if b then x else y) ≡ (if b then x' else y) ite-cong₂ b y refl = refl ite-cong₃ : ∀{ℓ}{A : Set ℓ} (b : 𝔹)(x : A){y y' : A} → y ≡ y' → (if b then x else y) ≡ (if b then x else y') ite-cong₃ b x refl = refl &&-split : ∀ {b b' : 𝔹} → b || b' ≡ ff → b ≡ ff ⊎ b' ≡ ff &&-split {tt} () &&-split {ff}{tt} () &&-split {ff}{ff} p = inj₁ refl ----------------------------------- -- Theorems about imp ----------------------------------- imp-same : ∀ (b : 𝔹) → b imp b ≡ tt imp-same ff = refl imp-same tt = refl imp-to-|| : ∀ (b1 b2 : 𝔹) → (b1 imp b2) ≡ (~ b1 || b2) imp-to-|| ff _ = refl imp-to-|| tt _ = refl imp-mp : ∀ {b b' : 𝔹} → b imp b' ≡ tt → b ≡ tt → b' ≡ tt imp-mp {tt} {tt} p refl = refl imp-mp {ff} {ff} p q = q imp-mp {tt} {ff} p q = p imp-mp {ff} {tt} p q = refl imp-antisymm : ∀ {b1 b2 : 𝔹} → b1 imp b2 ≡ tt → b2 imp b1 ≡ tt → b1 ≡ b2 imp-antisymm{tt}{tt} p q = refl imp-antisymm{tt}{ff} () q imp-antisymm{ff}{tt} p () imp-antisymm{ff}{ff} p q = refl ----------------------------------- -- Theorems about xor ----------------------------------- ff-xor : ∀ (b : 𝔹) → ff xor b ≡ b ff-xor tt = refl ff-xor ff = refl tt-xor : ∀ (b : 𝔹) → tt xor b ≡ ~ b tt-xor tt = refl tt-xor ff = refl ~-xor-distrb : ∀ (a b : 𝔹) → ~ (a xor b) ≡ ~ a xor b ~-xor-distrb tt tt = refl ~-xor-distrb tt ff = refl ~-xor-distrb ff tt = refl ~-xor-distrb ff ff = refl xor-distrib-&& : ∀ (x y : 𝔹) → x xor (y && x) ≡ ~ y && x xor-distrib-&& tt tt = refl xor-distrib-&& tt ff = refl xor-distrib-&& ff tt = refl xor-distrib-&& ff ff = refl xor~hop : ∀ (a b : 𝔹) → ~ a xor b ≡ a xor ~ b xor~hop tt tt = refl xor~hop tt ff = refl xor~hop ff tt = refl xor~hop ff ff = refl xor-comm : ∀ (b1 b2 : 𝔹) → b1 xor b2 ≡ b2 xor b1 xor-comm tt tt = refl xor-comm tt ff = refl xor-comm ff tt = refl xor-comm ff ff = refl xor-assoc : (b1 b2 b3 : 𝔹) → b1 xor (b2 xor b3) ≡ (b1 xor b2) xor b3 xor-assoc tt tt tt = refl xor-assoc tt tt ff = refl xor-assoc tt ff tt = refl xor-assoc tt ff ff = refl xor-assoc ff tt tt = refl xor-assoc ff tt ff = refl xor-assoc ff ff tt = refl xor-assoc ff ff ff = refl xor-anti-idem : (b : 𝔹) → b xor b ≡ ff xor-anti-idem tt = refl xor-anti-idem ff = refl xor-≡ : {b1 b2 : 𝔹} → b1 xor b2 ≡ ff → b1 ≡ b2 xor-≡ {tt} {tt} p = refl xor-≡ {tt} {ff} () xor-≡ {ff} {tt} () xor-≡ {ff} {ff} p = refl ----------------------------------- -- Theorems about nor, nand ----------------------------------- nor-not : ∀ (b : 𝔹) → b nor b ≡ ~ b nor-not tt = refl nor-not ff = refl nor-or : ∀ (b1 b2 : 𝔹) → (b1 nor b2) nor (b1 nor b2) ≡ b1 || b2 nor-or tt b2 = refl nor-or ff tt = refl nor-or ff ff = refl nor-and : ∀ (b1 b2 : 𝔹) → (b1 nor b1) nor (b2 nor b2) ≡ b1 && b2 nor-and tt tt = refl nor-and tt ff = refl nor-and ff b2 = refl nor-comm : ∀ (b1 b2 : 𝔹) → b1 nor b2 ≡ b2 nor b1 nor-comm tt tt = refl nor-comm tt ff = refl nor-comm ff tt = refl nor-comm ff ff = refl nand-comm : ∀ (b1 b2 : 𝔹) → b1 nand b2 ≡ b2 nand b1 nand-comm tt tt = refl nand-comm tt ff = refl nand-comm ff tt = refl nand-comm ff ff = refl
25.056911
108
0.482641
4a3ea03d92ba84874d98a5ac2169f34552095cd8
2,510
agda
Agda
test/Succeed/Issue2211.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue2211.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue2211.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2016-11-03, issue #2211 -- The occurs check did not take variables labeled as `UnusedArg` -- on the left hand side into consideration. -- {-# OPTIONS -v tc.check.term:40 #-} -- {-# OPTIONS -v tc.meta:45 #-} -- {-# OPTIONS -v tc.polarity:20 #-} open import Agda.Builtin.Equality open import Common.Nat cong : ∀{A B : Set}(f : A → B) (x y : A) → x ≡ y → f x ≡ f y cong _ _ _ refl = refl data ⊥ : Set where ⊥-elim : ∀{A : Set} → ⊥ {- unused arg -} → A ⊥-elim () data Fin : Nat → Set where zero : {n : Nat} → Fin (suc n) suc : {n : Nat} (i : Fin n) → Fin (suc n) toNat : ∀ {n} → Fin n → Nat toNat zero = 0 toNat (suc i) = suc (toNat i) tighten : ∀ n (x : Fin (suc n)) (neq : (toNat x ≡ n → ⊥) {- unused arg x-}) → Fin n tighten zero zero neq = ⊥-elim (neq refl) tighten (suc n) zero neq = zero tighten zero (suc ()) tighten (suc n) (suc x) neq = suc (tighten n x (λ p → neq (cong suc _ _ p))) tighten-correct : ∀ n (x : Fin (suc n)) (neq : toNat x ≡ n → ⊥) → toNat (tighten n x neq) ≡ toNat x tighten-correct zero zero neq = ⊥-elim (neq refl) tighten-correct (suc n) zero neq = refl tighten-correct zero (suc ()) tighten-correct (suc n) (suc x) neq = cong suc _ _ (tighten-correct n x (λ p → neq (cong Nat.suc _ _ p))) -- ERROR WAS: -- Cannot instantiate ... because it contains the variable neg ... -- Should succeed. {- term _62 n x neq (toNat (tighten n x (λ p → neq (cong suc p)))) := suc (toNat (tighten n x (λ p → neq (cong suc p)))) term _62 n x neq (toNat x) := toNat (suc x) after kill analysis metavar = _62 kills = [False,False,True,False] kills' = [ru(False),ru(False),ru(True),ru(False)] oldType = (n₁ : Nat) (x₁ : Fin (suc n₁)) (neq₁ : toNat (suc x₁) ≡ suc n₁ → ⊥) → Nat → Nat newType = (n₁ : Nat) → Fin (suc n₁) → Nat → Nat actual killing new meta: _69 kills : [ru(False),ru(False),ru(True),ru(False)] inst : _62 := _69 @3 n neq term _69 n x (toNat (tighten n x (λ p → neq (cong suc p)))) := suc (toNat (tighten n x (λ p → neq (cong suc p)))) Here, the variable neq on the lhs was not considered eligible for occurrence on the rhs since it is contained in an unused arg only. -}
33.466667
95
0.517928
1010e6175276654524de33021b215d27e60f4ee3
632
agda
Agda
test/Succeed/Issue1466.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue1466.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue1466.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
postulate P : {A : Set} → A → A → Set p : {A : Set} {x : A} → P x x q : {A : Set} (x : A) {y : A} → P x y → P x y A : Set record R (F : Set → Set) : Set₁ where field f₁ : (A → A) → F A → F A f₂ : P (f₁ (λ x → x)) (λ (x : F A) → x) open R ⦃ … ⦄ public instance r : R (λ O → O → O) r = record { f₁ = λ f g x → f (g x) ; f₂ = p } postulate F : Set → Set instance rF : R F Foo : P (f₁ (λ x → x)) (λ (x : F A) → x) Foo = q (f₁ (λ x → x)) f₂ -- An internal error has occurred. Please report this as a bug. -- Location of the error: -- src/full/Agda/TypeChecking/InstanceArguments.hs:224
18.057143
63
0.482595
069cfd5e0c3344db44a5b6f8356b35b06be2859c
139
agda
Agda
Cubical/HITs/Sn.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
301
2018-10-17T18:00:24.000Z
2022-03-24T02:10:47.000Z
Cubical/HITs/Sn.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
584
2018-10-15T09:49:02.000Z
2022-03-30T12:09:17.000Z
Cubical/HITs/Sn.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
134
2018-11-16T06:11:03.000Z
2022-03-23T16:22:13.000Z
{-# OPTIONS --safe #-} module Cubical.HITs.Sn where open import Cubical.HITs.Sn.Base public open import Cubical.HITs.Sn.Properties public
23.166667
45
0.769784
c57d92a875d6b3161416206d91b6a25b6289fbfc
795
agda
Agda
Definition/LogicalRelation/Substitution/Reflexivity.agda
Vtec234/logrel-mltt
4746894adb5b8edbddc8463904ee45c2e9b29b69
[ "MIT" ]
null
null
null
Definition/LogicalRelation/Substitution/Reflexivity.agda
Vtec234/logrel-mltt
4746894adb5b8edbddc8463904ee45c2e9b29b69
[ "MIT" ]
null
null
null
Definition/LogicalRelation/Substitution/Reflexivity.agda
Vtec234/logrel-mltt
4746894adb5b8edbddc8463904ee45c2e9b29b69
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} open import Definition.Typed.EqualityRelation module Definition.LogicalRelation.Substitution.Reflexivity {{eqrel : EqRelSet}} where open EqRelSet {{...}} open import Definition.LogicalRelation.Properties open import Definition.LogicalRelation.Substitution open import Tools.Product -- Reflexivity of valid types. reflᵛ : ∀ {A Γ l} ([Γ] : ⊩ᵛ Γ) ([A] : Γ ⊩ᵛ⟨ l ⟩ A / [Γ]) → Γ ⊩ᵛ⟨ l ⟩ A ≡ A / [Γ] / [A] reflᵛ [Γ] [A] ⊢Δ [σ] = reflEq (proj₁ ([A] ⊢Δ [σ])) -- Reflexivity of valid terms. reflᵗᵛ : ∀ {A t Γ l} ([Γ] : ⊩ᵛ Γ) ([A] : Γ ⊩ᵛ⟨ l ⟩ A / [Γ]) ([t] : Γ ⊩ᵛ⟨ l ⟩ t ∷ A / [Γ] / [A]) → Γ ⊩ᵛ⟨ l ⟩ t ≡ t ∷ A / [Γ] / [A] reflᵗᵛ [Γ] [A] [t] ⊢Δ [σ] = reflEqTerm (proj₁ ([A] ⊢Δ [σ])) (proj₁ ([t] ⊢Δ [σ]))
26.5
85
0.532075
a13d4c6036ac96de759b6ca99e68ecbbe14f853d
5,488
agda
Agda
GSeTT/Dec-Type-Checking.agda
ThiBen/catt-formalization
ed45935b38d6a86fa662f561866140122ee3dcef
[ "MIT" ]
2
2020-05-01T08:26:53.000Z
2020-05-20T00:41:09.000Z
GSeTT/Dec-Type-Checking.agda
ThiBen/catt-formalization
ed45935b38d6a86fa662f561866140122ee3dcef
[ "MIT" ]
null
null
null
GSeTT/Dec-Type-Checking.agda
ThiBen/catt-formalization
ed45935b38d6a86fa662f561866140122ee3dcef
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} open import Agda.Primitive open import Prelude open import GSeTT.Syntax open import GSeTT.Rules {- Decidability of type cheking for the type theory for globular sets -} module GSeTT.Dec-Type-Checking where dec-⊢C : ∀ Γ → dec (Γ ⊢C) dec-⊢T : ∀ Γ A → dec (Γ ⊢T A) dec-⊢t : ∀ Γ A t → dec (Γ ⊢t t # A) dec-⊢S : ∀ Δ Γ γ → dec (Δ ⊢S γ > Γ) private Γ+⊢→Γ⊢ : ∀ {Γ x A} → (Γ :: (x , A)) ⊢C → Γ ⊢C Γ+⊢→Γ⊢ (cc Γ⊢ _ idp) = Γ⊢ Γ+⊢→x=l : ∀ {Γ x A} → (Γ :: (x , A)) ⊢C → x == length Γ Γ+⊢→x=l (cc _ _ idp) = idp Γ+⊢→Γ⊢A : ∀ {Γ x A} → (Γ :: (x , A)) ⊢C → Γ ⊢T A Γ+⊢→Γ⊢A (cc _ Γ⊢A _) = Γ⊢A Γ⊢x:A→x∈Γ : ∀ {Γ x A} → Γ ⊢t Var x # A → x # A ∈ Γ Γ⊢x:A→x∈Γ (var _ x∈Γ) = x∈Γ Δ⊢<>:Γ→Γ=nil : ∀ {Δ Γ} → Δ ⊢S nil > Γ → Γ == nil Δ⊢<>:Γ→Γ=nil (es _) = idp Δ⊢γ:⊘→γ=nil : ∀ {Δ γ} → Δ ⊢S γ > nil → γ == nil Δ⊢γ:⊘→γ=nil (es _) = idp Δ⊢γ+:Γ+→x=y : ∀ {Δ Γ x A γ y t} → Δ ⊢S (γ :: (y , t)) > (Γ :: (x , A)) → x == y Δ⊢γ+:Γ+→x=y (sc _ _ _ idp) = idp Δ⊢γ+:Γ+→Δ⊢t : ∀ {Δ Γ x A γ y t} → Δ ⊢S (γ :: (y , t)) > (Γ :: (x , A)) → Δ ⊢t t # (A [ γ ]Pre-Ty) Δ⊢γ+:Γ+→Δ⊢t (sc _ _ Δ⊢t idp) = Δ⊢t Δ⊢γ+:Γ+→Δ⊢γ : ∀ {Δ Γ x A γ y t} → Δ ⊢S (γ :: (y , t)) > (Γ :: (x , A)) → Δ ⊢S γ > Γ Δ⊢γ+:Γ+→Δ⊢γ (sc Δ⊢γ:Γ _ _ idp) = Δ⊢γ:Γ eqdec-Ty : eqdec Pre-Ty eqdec-Tm : eqdec Pre-Tm eqdec-Ty ∗ ∗ = inl idp eqdec-Ty ∗ (_ ⇒[ _ ] _) = inr λ{()} eqdec-Ty (_ ⇒[ _ ] _) ∗ = inr λ{()} eqdec-Ty (t ⇒[ A ] u) (t' ⇒[ B ] u') with eqdec-Ty A B | eqdec-Tm t t' | eqdec-Tm u u' ... | inl idp | inl idp | inl idp = inl idp ... | inl idp | inl idp | inr u≠u' = inr λ p → u≠u' (snd (=⇒ p)) ... | inl idp | inr t≠t' | _ = inr λ p → t≠t' (snd (fst (=⇒ p))) ... | inr A≠B | _ | _ = inr λ p → A≠B (fst (fst (=⇒ p))) eqdec-Tm (Var x) (Var y) with eqdecℕ x y ... | inl idp = inl idp ... | inr x≠y = inr λ p → x≠y (=Var p) dec-∈ : ∀ Γ x A → dec (x # A ∈ Γ) dec-∈ nil x A = inr λ x → x dec-∈ (Γ :: (y , B)) x A with (eqdecℕ y x) | (eqdec-Ty B A) ... | inl idp | inl idp = inl (inr (idp , idp)) ... | inl idp | inr B≠A with dec-∈ Γ x A ... | inl x∈Γ = inl (inl x∈Γ) ... | inr x∉Γ = inr λ {(inl x∈Γ) → x∉Γ x∈Γ ; (inr (_ , A=B)) → B≠A (A=B ^)} dec-∈ (Γ :: (y , B)) x A | inr y≠x | _ with dec-∈ Γ x A ... | inl x∈Γ = inl (inl x∈Γ) ... | inr x∉Γ = inr λ{ (inl x∈Γ) → x∉Γ x∈Γ ; (inr (x=y , _)) → y≠x (x=y ^)} dec-⊢C nil = inl ec dec-⊢C (Γ :: (x , A)) with dec-⊢C Γ | eqdecℕ x (length Γ) | dec-⊢T Γ A ... | inl Γ⊢ | inl idp | inl Γ⊢A = inl (cc Γ⊢ Γ⊢A idp) ... | inl _ | inl idp | inr Γ⊬A = inr λ Γ+⊢ → Γ⊬A (Γ+⊢→Γ⊢A Γ+⊢) ... | inl Γ⊢ | inr n≠l | _ = inr λ Γ+⊢ → n≠l (Γ+⊢→x=l Γ+⊢) ... | inr Γ⊬ | _ | _ = inr λ Γ+⊢ → Γ⊬ (Γ+⊢→Γ⊢ Γ+⊢) dec-⊢T Γ ∗ with dec-⊢C Γ ... | inl Γ⊢ = inl (ob Γ⊢) ... | inr Γ⊬ = inr λ Γ⊢* → Γ⊬ (Γ⊢A→Γ⊢ Γ⊢*) dec-⊢T Γ (t ⇒[ A ] u) with dec-⊢t Γ A t | dec-⊢t Γ A u ... | inl Γ⊢t:A | inl Γ⊢u:A = inl (ar (Γ⊢t:A→Γ⊢A Γ⊢t:A) Γ⊢t:A Γ⊢u:A) ... | inl _ | inr Γ⊬u:A = inr λ Γ⊢t⇒u → Γ⊬u:A (Γ⊢tgt Γ⊢t⇒u) ... | inr Γ⊬t:A | _ = inr λ Γ⊢t⇒u → Γ⊬t:A (Γ⊢src Γ⊢t⇒u) dec-⊢t Γ A (Var x) with dec-⊢C Γ | dec-∈ Γ x A ... | inl Γ⊢ | inl x∈Γ = inl (var Γ⊢ x∈Γ) ... | inl _ | inr x∉Γ = inr λ Γ⊢x:A → x∉Γ (Γ⊢x:A→x∈Γ Γ⊢x:A) ... | inr Γ⊬ | _ = inr λ Γ⊢x:A → Γ⊬ (Γ⊢t:A→Γ⊢ Γ⊢x:A) dec-⊢S Δ nil nil with dec-⊢C Δ ... | inl Δ⊢ = inl (es Δ⊢) ... | inr Δ⊬ = inr λ Δ⊢<>:⊘ → Δ⊬ (Δ⊢γ:Γ→Δ⊢ Δ⊢<>:⊘) dec-⊢S Δ (Γ :: _) nil = inr λ Δ⊢<>:Γ → cons≠nil (Δ⊢<>:Γ→Γ=nil Δ⊢<>:Γ) dec-⊢S Δ nil (γ :: a) = inr λ Δ⊢γ:⊘ → cons≠nil (Δ⊢γ:⊘→γ=nil Δ⊢γ:⊘) dec-⊢S Δ (Γ :: (x , A)) (γ :: (y , t)) with dec-⊢S Δ Γ γ | dec-⊢C (Γ :: (x , A)) | dec-⊢t Δ (A [ γ ]Pre-Ty) t | eqdecℕ x y ... | inl Δ⊢γ:Γ | inl Γ+⊢ | inl Δ⊢t | inl idp = inl (sc Δ⊢γ:Γ Γ+⊢ Δ⊢t idp) ... | inl _ | inl _ | inl _ | inr x≠y = inr λ Δ⊢γ+:Γ+ → x≠y (Δ⊢γ+:Γ+→x=y Δ⊢γ+:Γ+) ... | inl _ | inl _ | inr Δ⊬t | _ = inr λ Δ⊢γ+:Γ+ → Δ⊬t (Δ⊢γ+:Γ+→Δ⊢t Δ⊢γ+:Γ+) ... | inl _ | inr Γ+⊬ | _ | _ = inr λ Δ⊢γ+:Γ+ → Γ+⊬ (Δ⊢γ:Γ→Γ⊢ Δ⊢γ+:Γ+) ... | inr Δ⊬γ | _ | _ | _ = inr λ Δ⊢γ+:Γ+ → Δ⊬γ (Δ⊢γ+:Γ+→Δ⊢γ Δ⊢γ+:Γ+)
54.336634
168
0.307945
dc61078c247d82e863749eca1c842d0244acb52a
2,683
agda
Agda
Cats/Util/SetoidMorphism.agda
JLimperg/cats
1ad7b243acb622d46731e9ae7029408db6e561f1
[ "MIT" ]
24
2017-11-03T15:18:57.000Z
2021-08-06T05:00:46.000Z
Cats/Util/SetoidMorphism.agda
JLimperg/cats
1ad7b243acb622d46731e9ae7029408db6e561f1
[ "MIT" ]
null
null
null
Cats/Util/SetoidMorphism.agda
JLimperg/cats
1ad7b243acb622d46731e9ae7029408db6e561f1
[ "MIT" ]
1
2019-03-18T15:35:07.000Z
2019-03-18T15:35:07.000Z
{-# OPTIONS --without-K --safe #-} module Cats.Util.SetoidMorphism where open import Data.Product using (∃-syntax ; _,_ ; proj₁ ; proj₂) open import Level using (_⊔_ ; suc) open import Relation.Binary using (Rel ; Setoid ; IsEquivalence ; _Preserves_⟶_) open import Relation.Binary.Reasoning.MultiSetoid open import Cats.Util.Function using () renaming (_∘_ to _⊚_) open Setoid renaming (_≈_ to eq) infixr 9 _∘_ record _⇒_ {l l≈} (A : Setoid l l≈) {l′ l≈′} (B : Setoid l′ l≈′) : Set (l ⊔ l′ ⊔ l≈ ⊔ l≈′) where field arr : Carrier A → Carrier B resp : arr Preserves eq A ⟶ eq B open _⇒_ public using (arr ; resp) module _ {l l≈} {A : Setoid l l≈} {l′ l≈′} {B : Setoid l′ l≈′} where infixr 4 _≈_ record _≈_ (f g : A ⇒ B) : Set (l ⊔ l≈ ⊔ l≈′) where constructor ≈-intro field ≈-elim : ∀ {x y} → eq A x y → eq B (arr f x) (arr g y) ≈-elim′ : ∀ {x} → eq B (arr f x) (arr g x) ≈-elim′ = ≈-elim (refl A) open _≈_ public equiv : IsEquivalence _≈_ equiv = record { refl = λ {f} → ≈-intro (resp f) ; sym = λ eq → ≈-intro λ x≈y → sym B (≈-elim eq (sym A x≈y)) ; trans = λ eq₁ eq₂ → ≈-intro (λ x≈y → trans B (≈-elim eq₁ x≈y) (≈-elim′ eq₂)) } setoid : Setoid (l ⊔ l≈ ⊔ l′ ⊔ l≈′) (l ⊔ l≈ ⊔ l≈′) setoid = record { Carrier = A ⇒ B ; _≈_ = _≈_ ; isEquivalence = equiv } id : ∀ {l l≈} {A : Setoid l l≈} → A ⇒ A id = record { arr = λ x → x ; resp = λ x → x } _∘_ : ∀ {l l≈} {A : Setoid l l≈} {l′ l≈′} {B : Setoid l′ l≈′} → ∀ {l″ l≈″} {C : Setoid l″ l≈″} → B ⇒ C → A ⇒ B → A ⇒ C _∘_ f g = record { arr = arr f ⊚ arr g ; resp = resp f ⊚ resp g } ∘-resp : ∀ {l l≈} {A : Setoid l l≈} {l′ l≈′} {B : Setoid l′ l≈′} → ∀ {l″ l≈″} {C : Setoid l″ l≈″} → {f f′ : B ⇒ C} {g g′ : A ⇒ B} → f ≈ f′ → g ≈ g′ → f ∘ g ≈ f′ ∘ g′ ∘-resp f≈f′ g≈g′ = ≈-intro (≈-elim f≈f′ ⊚ ≈-elim g≈g′) id-l : ∀ {l l≈} {A : Setoid l l≈} {l′ l≈′} {B : Setoid l′ l≈′} → {f : A ⇒ B} → id ∘ f ≈ f id-l {f = f} = ≈-intro (resp f) id-r : ∀ {l l≈} {A : Setoid l l≈} {l′ l≈′} {B : Setoid l′ l≈′} → {f : A ⇒ B} → f ∘ id ≈ f id-r {f = f} = ≈-intro (resp f) assoc : ∀ {l l≈} {A : Setoid l l≈} {l′ l≈′} {B : Setoid l′ l≈′} → ∀ {l″ l≈″} {C : Setoid l″ l≈″} {l‴ l≈‴} {D : Setoid l‴ l≈‴} → {f : C ⇒ D} {g : B ⇒ C} {h : A ⇒ B} → (f ∘ g) ∘ h ≈ f ∘ (g ∘ h) assoc {f = f} {g} {h} = ≈-intro (resp f ⊚ resp g ⊚ resp h) module _ {l l≈} {A : Setoid l l≈} {l′ l≈′} {B : Setoid l′ l≈′} where IsInjective : A ⇒ B → Set (l ⊔ l≈ ⊔ l≈′) IsInjective f = ∀ {a b} → eq B (arr f a) (arr f b) → eq A a b IsSurjective : A ⇒ B → Set (l ⊔ l′ ⊔ l≈′) IsSurjective f = ∀ b → ∃[ a ] (eq B b (arr f a))
25.311321
84
0.469251
50e4eccb1bbe32d4822f42a7c144f1e976f96b0a
4,466
agda
Agda
agda-stdlib/src/Data/Vec/Recursive.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Data/Vec/Recursive.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Data/Vec/Recursive.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- Vectors defined by recursion ------------------------------------------------------------------------ -- What is the point of this module? The n-ary products below are intended -- to be used with a fixed n, in which case the nil constructor can be -- avoided: pairs are represented as pairs (x , y), not as triples -- (x , y , unit). -- Additionally, vectors defined by recursion enjoy η-rules. That is to say -- that two vectors of known length are definitionally equal whenever their -- elements are. {-# OPTIONS --without-K --safe #-} module Data.Vec.Recursive where open import Level using (Level; Lift; lift) open import Data.Nat.Base as Nat using (ℕ; zero; suc) open import Data.Empty open import Data.Fin.Base as Fin using (Fin; zero; suc) open import Data.Product as Prod using (_×_; _,_; proj₁; proj₂) open import Data.Sum.Base as Sum using (_⊎_) open import Data.Unit.Base open import Data.Vec.Base as Vec using (Vec; _∷_) open import Function open import Relation.Unary open import Agda.Builtin.Equality using (_≡_) private variable a b c p : Level A : Set a B : Set b C : Set c -- Types and patterns ------------------------------------------------------------------------ pattern 2+_ n = suc (suc n) infix 8 _^_ _^_ : Set a → ℕ → Set a A ^ 0 = Lift _ ⊤ A ^ 1 = A A ^ 2+ n = A × A ^ suc n pattern [] = lift tt infix 3 _∈[_]_ _∈[_]_ : {A : Set a} → A → ∀ n → A ^ n → Set a a ∈[ 0 ] as = Lift _ ⊥ a ∈[ 1 ] a′ = a ≡ a′ a ∈[ 2+ n ] a′ , as = a ≡ a′ ⊎ a ∈[ suc n ] as -- Basic operations ------------------------------------------------------------------------ cons : ∀ n → A → A ^ n → A ^ suc n cons 0 a _ = a cons (suc n) a as = a , as uncons : ∀ n → A ^ suc n → A × A ^ n uncons 0 a = a , lift tt uncons (suc n) (a , as) = a , as head : ∀ n → A ^ suc n → A head n as = proj₁ (uncons n as) tail : ∀ n → A ^ suc n → A ^ n tail n as = proj₂ (uncons n as) fromVec : ∀[ Vec A ⇒ (A ^_) ] fromVec = Vec.foldr (_ ^_) (cons _) _ toVec : Π[ (A ^_) ⇒ Vec A ] toVec 0 as = Vec.[] toVec (suc n) as = head n as ∷ toVec n (tail n as) lookup : ∀ {n} (k : Fin n) → A ^ n → A lookup zero = head _ lookup (suc {n} k) = lookup k ∘′ tail n replicate : ∀ n → A → A ^ n replicate n a = fromVec (Vec.replicate a) tabulate : ∀ n → (Fin n → A) → A ^ n tabulate n f = fromVec (Vec.tabulate f) append : ∀ m n → A ^ m → A ^ n → A ^ (m Nat.+ n) append 0 n xs ys = ys append 1 n x ys = cons n x ys append (2+ m) n (x , xs) ys = x , append (suc m) n xs ys splitAt : ∀ m n → A ^ (m Nat.+ n) → A ^ m × A ^ n splitAt 0 n xs = [] , xs splitAt (suc m) n xs = let (ys , zs) = splitAt m n (tail (m Nat.+ n) xs) in cons m (head (m Nat.+ n) xs) ys , zs -- Manipulating N-ary products ------------------------------------------------------------------------ map : (A → B) → ∀ n → A ^ n → B ^ n map f 0 as = lift tt map f 1 a = f a map f (2+ n) (a , as) = f a , map f (suc n) as ap : ∀ n → (A → B) ^ n → A ^ n → B ^ n ap 0 fs ts = [] ap 1 f t = f t ap (2+ n) (f , fs) (t , ts) = f t , ap (suc n) fs ts module _ {P : ℕ → Set p} where foldr : P 0 → (A → P 1) → (∀ n → A → P (suc n) → P (2+ n)) → ∀ n → A ^ n → P n foldr p0 p1 p2+ 0 as = p0 foldr p0 p1 p2+ 1 a = p1 a foldr p0 p1 p2+ (2+ n) (a , as) = p2+ n a (foldr p0 p1 p2+ (suc n) as) foldl : (P : ℕ → Set p) → P 0 → (A → P 1) → (∀ n → A → P (suc n) → P (2+ n)) → ∀ n → A ^ n → P n foldl P p0 p1 p2+ 0 as = p0 foldl P p0 p1 p2+ 1 a = p1 a foldl P p0 p1 p2+ (2+ n) (a , as) = let p1′ = p1 a in foldl (P ∘′ suc) p1′ (λ a → p2+ 0 a p1′) (p2+ ∘ suc) (suc n) as reverse : ∀ n → A ^ n → A ^ n reverse = foldl (_ ^_) [] id (λ n → _,_) zipWith : (A → B → C) → ∀ n → A ^ n → B ^ n → C ^ n zipWith f 0 as bs = [] zipWith f 1 a b = f a b zipWith f (2+ n) (a , as) (b , bs) = f a b , zipWith f (suc n) as bs unzipWith : (A → B × C) → ∀ n → A ^ n → B ^ n × C ^ n unzipWith f 0 as = [] , [] unzipWith f 1 a = f a unzipWith f (2+ n) (a , as) = Prod.zip _,_ _,_ (f a) (unzipWith f (suc n) as) zip : ∀ n → A ^ n → B ^ n → (A × B) ^ n zip = zipWith _,_ unzip : ∀ n → (A × B) ^ n → A ^ n × B ^ n unzip = unzipWith id
29.773333
77
0.467532
3106d0ba190c48ddf107f64dfc5e09269a823266
2,529
agda
Agda
Cubical/Foundations/Equiv/Fiberwise.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/Foundations/Equiv/Fiberwise.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
1
2022-01-27T02:07:48.000Z
2022-01-27T02:07:48.000Z
Cubical/Foundations/Equiv/Fiberwise.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
1
2021-11-22T02:02:01.000Z
2021-11-22T02:02:01.000Z
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Foundations.Equiv.Fiberwise where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.HLevels open import Cubical.Data.Sigma module _ {a p q} {A : Type a} (P : A → Type p) (Q : A → Type q) (f : ∀ x → P x → Q x) where private total : (Σ A P) → (Σ A Q) total = (\ p → p .fst , f (p .fst) (p .snd)) -- Thm 4.7.6 fibers-total : ∀ {xv} → Iso (fiber total (xv)) (fiber (f (xv .fst)) (xv .snd)) fibers-total {xv} = iso h g h-g g-h where h : ∀ {xv} → fiber total xv → fiber (f (xv .fst)) (xv .snd) h {xv} (p , eq) = J (\ xv eq → fiber (f (xv .fst)) (xv .snd)) ((p .snd) , refl) eq g : ∀ {xv} → fiber (f (xv .fst)) (xv .snd) → fiber total xv g {xv} (p , eq) = (xv .fst , p) , (\ i → _ , eq i) h-g : ∀ {xv} y → h {xv} (g {xv} y) ≡ y h-g {x , v} (p , eq) = J (λ _ eq₁ → h (g (p , eq₁)) ≡ (p , eq₁)) (JRefl (λ xv₁ eq₁ → fiber (f (xv₁ .fst)) (xv₁ .snd)) ((p , refl))) (eq) g-h : ∀ {xv} y → g {xv} (h {xv} y) ≡ y g-h {xv} ((a , p) , eq) = J (λ _ eq₁ → g (h ((a , p) , eq₁)) ≡ ((a , p) , eq₁)) (cong g (JRefl (λ xv₁ eq₁ → fiber (f (xv₁ .fst)) (xv₁ .snd)) (p , refl))) eq -- Thm 4.7.7 (fiberwise equivalences) fiberEquiv : ([tf] : isEquiv total) → ∀ x → isEquiv (f x) fiberEquiv [tf] x .equiv-proof y = isContrRetract (fibers-total .Iso.inv) (fibers-total .Iso.fun) (fibers-total .Iso.rightInv) ([tf] .equiv-proof (x , y)) totalEquiv : (fx-equiv : ∀ x → isEquiv (f x)) → isEquiv total totalEquiv fx-equiv .equiv-proof (x , v) = isContrRetract (fibers-total .Iso.fun) (fibers-total .Iso.inv) (fibers-total .Iso.leftInv) (fx-equiv x .equiv-proof v) module _ {ℓ : Level} {U : Type ℓ} {ℓr} (_~_ : U → U → Type ℓr) (idTo~ : ∀ {A B} → A ≡ B → A ~ B) (c : ∀ A → ∃![ X ∈ U ] (A ~ X)) where isContrToUniv : ∀ {A B} → isEquiv (idTo~ {A} {B}) isContrToUniv {A} {B} = fiberEquiv (λ z → A ≡ z) (λ z → A ~ z) (\ B → idTo~ {A} {B}) (λ { .equiv-proof y → isContrΣ (isContrSingl _) \ a → isContr→isContrPath (c A) _ _ }) B
43.603448
140
0.474496
1cfb8075577fbb8441d11a5b6cb78096beec8e2c
1,106
agda
Agda
test/Succeed/NoTerminationCheck.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/NoTerminationCheck.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/NoTerminationCheck.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- 2012-03-08 Andreas -- 2014-09-09 Andreas, use NON_TERMINATING or TERMINATING instead postulate A : Set -- Skipping a single definition: before type signature {-# NON_TERMINATING #-} a : A a = a -- Skipping a single definition: before first clause b : A {-# NON_TERMINATING #-} b = b -- Skipping an old-style mutual block (placed before) {-# NON_TERMINATING #-} mutual c : A c = d d : A d = c -- Skipping an old-style mutual block (placed within) mutual {-# TERMINATING #-} -- It's a lie!! c1 : A c1 = d1 d1 : A d1 = c1 mutual c2 : A {-# NON_TERMINATING #-} c2 = d2 d2 : A d2 = c2 mutual c3 : A c3 = d3 {-# NON_TERMINATING #-} d3 : A d3 = c3 -- Skipping a new-style mutual block {-# NON_TERMINATING #-} e : A f : A e = f f = e -- Skipping a new-style mutual block, variant 2 g : A {-# TERMINATING #-} -- Beware of lies!! h : A g = h h = g -- Skipping a new-style mutual block, variant 4 i : A j : A i = j {-# NON_TERMINATING #-} j = i private {-# NON_TERMINATING #-} k : A k = k abstract {-# NON_TERMINATING #-} l : A l = l
12.021739
65
0.59132
06cf8fb070139a08c022b9939e1a66d673ed3a3e
109
agda
Agda
examples/outdated-and-incorrect/Alonzo/RTN.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
examples/outdated-and-incorrect/Alonzo/RTN.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
examples/outdated-and-incorrect/Alonzo/RTN.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module RTN where data Nat : Set where zero : Nat suc : Nat -> Nat {-# BUILTIN NATURAL Nat #-}
13.625
29
0.568807
31243912f68f5da76375f7f0822db4f69e8367b0
329
agda
Agda
RefactorAgdaEngine/Test/Tests/output/ImportTests/ExtractDependent.agda
omega12345/RefactorAgda
52d1034aed14c578c9e077fb60c3db1d0791416b
[ "BSD-3-Clause" ]
5
2019-01-31T14:10:18.000Z
2019-05-03T10:03:36.000Z
RefactorAgdaEngine/Test/Tests/output/ImportTests/ExtractDependent.agda
omega12345/RefactorAgda
52d1034aed14c578c9e077fb60c3db1d0791416b
[ "BSD-3-Clause" ]
3
2019-01-31T08:03:07.000Z
2019-02-05T12:53:36.000Z
RefactorAgdaEngine/Test/Tests/output/ImportTests/ExtractDependent.agda
omega12345/RefactorAgda
52d1034aed14c578c9e077fb60c3db1d0791416b
[ "BSD-3-Clause" ]
1
2019-01-31T08:40:41.000Z
2019-01-31T08:40:41.000Z
module ImportTests.ExtractDependent where open import Data.Bool open import Data.Nat open import ExtractDependent f : ℕ -> Bool f 0 = false f _ = true testApply : Bool testApply = apply _ _ f 5 testApplyImp : Bool testApplyImp = applyImp f 6 testApplyImpSameName : Bool testApplyImpSameName = applyImpSameName {ℕ} Bool f 3
16.45
52
0.772036
4daf49118700d03a4a444d9972030d1970d95eac
674
agda
Agda
Lvl/Decidable.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
Lvl/Decidable.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
Lvl/Decidable.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
module Lvl.Decidable where open import Data.Boolean.Stmt open import Logic.Propositional open import Logic.Propositional.Theorems import Lvl open import Type.Properties.Decidable open import Type.Properties.Decidable.Proofs open import Type private variable ℓ ℓ₁ : Lvl.Level -- Changing classical propositions' universe levels by using their boolean representation. module _ (P : Type{ℓ}) ⦃ dec : Decidable(0)(P) ⦄ where Convert : Type{ℓ₁} Convert = Lvl.Up(IsTrue(decide(0)(P))) -- LvlConvert is satisfied whenever its proposition is. Convert-correctness : P ↔ Convert{ℓ₁} Convert-correctness = [↔]-transitivity decider-true ([↔]-intro Lvl.Up.obj Lvl.up)
32.095238
90
0.759644
06ab8a8a37baeb942095a2ba130ac23ad4341791
388
agda
Agda
test/Fail/Issue1615.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/Fail/Issue1615.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
3
2018-11-14T15:31:44.000Z
2019-04-01T19:39:26.000Z
test/Fail/Issue1615.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1
2019-03-05T20:02:38.000Z
2019-03-05T20:02:38.000Z
-- Andreas, 2015-07-22 -- {-# OPTIONS -v tc.term:20 -v tc.meta.assign:10 -v tc.conv.coerce:10 #-} open import Common.Size data Nat (i : Size) : Set where suc : (j : Size< i) → Nat j → Nat i min : ∀ i → Nat i → Nat i → Nat i min i (suc j n) (suc k m) = suc i' (min i' n m) where i' = _ -- Size consistency check should not be circumvented -- by putting the meta in a definition.
24.25
74
0.610825
396f75c2824c15c09bc45cef7a4bf21a88530976
2,038
agda
Agda
agda-stdlib-0.9/src/Category/Monad/Continuation.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
1
2016-10-20T15:52:05.000Z
2016-10-20T15:52:05.000Z
agda-stdlib-0.9/src/Category/Monad/Continuation.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
null
null
null
agda-stdlib-0.9/src/Category/Monad/Continuation.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
null
null
null
------------------------------------------------------------------------ -- The Agda standard library -- -- A delimited continuation monad ------------------------------------------------------------------------ module Category.Monad.Continuation where open import Category.Applicative open import Category.Applicative.Indexed open import Category.Monad open import Category.Monad.Identity open import Category.Monad.Indexed open import Function open import Level ------------------------------------------------------------------------ -- Delimited continuation monads DContT : ∀ {i f} {I : Set i} → (I → Set f) → (Set f → Set f) → IFun I f DContT K M r₂ r₁ a = (a → M (K r₁)) → M (K r₂) DCont : ∀ {i f} {I : Set i} → (I → Set f) → IFun I f DCont K = DContT K Identity DContTIMonad : ∀ {i f} {I : Set i} (K : I → Set f) {M} → RawMonad M → RawIMonad (DContT K M) DContTIMonad K Mon = record { return = λ a k → k a ; _>>=_ = λ c f k → c (flip f k) } where open RawMonad Mon DContIMonad : ∀ {i f} {I : Set i} (K : I → Set f) → RawIMonad (DCont K) DContIMonad K = DContTIMonad K IdentityMonad ------------------------------------------------------------------------ -- Delimited continuation operations record RawIMonadDCont {i f} {I : Set i} (K : I → Set f) (M : IFun I f) : Set (i ⊔ suc f) where field monad : RawIMonad M reset : ∀ {r₁ r₂ r₃} → M r₁ r₂ (K r₂) → M r₃ r₃ (K r₁) shift : ∀ {a r₁ r₂ r₃ r₄} → ((a → M r₁ r₁ (K r₂)) → M r₃ r₄ (K r₄)) → M r₃ r₂ a open RawIMonad monad public DContTIMonadDCont : ∀ {i f} {I : Set i} (K : I → Set f) {M} → RawMonad M → RawIMonadDCont K (DContT K M) DContTIMonadDCont K Mon = record { monad = DContTIMonad K Mon ; reset = λ e k → e return >>= k ; shift = λ e k → e (λ a k' → (k a) >>= k') return } where open RawIMonad Mon DContIMonadDCont : ∀ {i f} {I : Set i} (K : I → Set f) → RawIMonadDCont K (DCont K) DContIMonadDCont K = DContTIMonadDCont K IdentityMonad
32.349206
72
0.513248
dc1037f8af33f940d9bb721a224ab9caa073d193
79
agda
Agda
test/Fail/Issue2442-postulate.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue2442-postulate.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue2442-postulate.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --safe #-} module Issue2442-postulate where postulate A : Set
9.875
32
0.670886
31580d2c0771090906e797c1d5b353bebdf0d44a
311
agda
Agda
tree-test.agda
rfindler/ial
f3f0261904577e930bd7646934f756679a6cbba6
[ "MIT" ]
29
2019-02-06T13:09:31.000Z
2022-03-04T15:05:12.000Z
tree-test.agda
rfindler/ial
f3f0261904577e930bd7646934f756679a6cbba6
[ "MIT" ]
8
2018-07-09T22:53:38.000Z
2022-03-22T03:43:34.000Z
tree-test.agda
rfindler/ial
f3f0261904577e930bd7646934f756679a6cbba6
[ "MIT" ]
17
2018-12-03T22:38:15.000Z
2021-11-28T20:13:21.000Z
module tree-test where open import tree open import nat open import bool open import bool-to-string open import list test-tree = node 2 ( (leaf 3) :: (node 4 ( (leaf 5) :: (leaf 7) :: [] )) :: (leaf 6) :: (leaf 7) :: []) perfect3 = perfect-binary-tree 3 tt perfect3-string = 𝕋-to-string 𝔹-to-string perfect3
23.923077
103
0.665595
4d0fc4f3a9e57ec24290c80a972bad445367cc28
1,394
agda
Agda
test/asset/agda-stdlib-1.0/Data/Table.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Data/Table.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Data/Table.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- The Agda standard library -- -- Fixed-size tables of values, implemented as functions from 'Fin n'. -- Similar to 'Data.Vec', but focusing on ease of retrieval instead of -- ease of adding and removing elements. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Table where open import Data.Table.Base public open import Data.Bool using (true; false) open import Data.Fin using (Fin; _≟_) open import Function.Equality using (_⟨$⟩_) open import Function.Inverse using (Inverse; _↔_) open import Relation.Nullary using (yes; no) open import Relation.Nullary.Decidable using (⌊_⌋) -------------------------------------------------------------------------------- -- Combinators -------------------------------------------------------------------------------- -- Changes the order of elements in the table according to a permutation (i.e. -- an 'Inverse' object on the indices). permute : ∀ {m n a} {A : Set a} → Fin m ↔ Fin n → Table A n → Table A m permute π = rearrange (Inverse.to π ⟨$⟩_) -- The result of 'select z i t' takes the value of 'lookup t i' at index 'i', -- and 'z' everywhere else. select : ∀ {n} {a} {A : Set a} → A → Fin n → Table A n → Table A n lookup (select z i t) j with j ≟ i ... | yes _ = lookup t i ... | no _ = z
35.74359
80
0.52726
4db4704446bb53544eaa4cb7d6e75a9124425b2c
6,309
agda
Agda
examples/DTP08/conor/Talk.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
examples/DTP08/conor/Talk.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
examples/DTP08/conor/Talk.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{- Data, Deliberately Conor McBride Workshop in Dependently Typed Programming Nottingham, 2008 (Agda rendering by Ulf Norell) -} module Talk where open import SomeBasicStuff -- Codes for (first order) inductive families. data Code (I : Set) : Set1 where arg : (A : Set) -> (A -> Code I) -> Code I rec : I -> Code I -> Code I out : I -> Code I -- The semantics of a code is a functor. ⟦_⟧ : {I : Set} -> Code I -> (I -> Set) -> I -> Set ⟦ out i ⟧ X j = i == j ⟦ arg A B ⟧ X j = Σ A \a -> ⟦ B a ⟧ X j ⟦ rec i C ⟧ X j = X i × ⟦ C ⟧ X j map : {I : Set}{X Y : I -> Set}(C : Code I) -> ({i : I} -> X i -> Y i) -> {i : I} -> ⟦ C ⟧ X i -> ⟦ C ⟧ Y i map (out i) f x = x map (arg A B) f (a , b) = a , map (B a) f b map (rec i C) f (a , b) = f a , map C f b -- Tying the recursive knot. The positivity checker won't spot that -- ⟦ C ⟧ X i is strictly positive i X, so we've switched it off. -- ASR (08 August 2014): It's not necessary disable the strictly -- positive checher. data μ {I : Set}(C : Code I) : I -> Set where <_> : forall {i} -> ⟦ C ⟧ (μ C) i -> μ C i -- Who needs a primitive case-construct anyway? infix 0 case_of_ case_of_ : {A : Set1}{ts : Enumeration} -> Enum ts -> Table A ts -> A case t of tbl = lookup tbl t -- The code for lists `List` : Set -> Code True `List` X = arg _ \t -> case t of "nil" ↦ out _ ∣ "cons" ↦ arg X (\_ -> rec _ (out _)) ∣ [] -- The actual list type List : Set -> Set List A = μ (`List` A) _ -- We can define the code for vectors directly. However, the point is -- that we won't have to. `VecD` : Set -> Code Nat `VecD` X = arg _ \t -> case t of "nil" ↦ out zero ∣ "cons" ↦ ( arg Nat \n -> arg X \_ -> rec n (out (suc n)) ) ∣ [] -- An ornamentation of a datatype adds some new indexing. data Orn {I : Set}(J : I -> Set) : Code I -> Set1 where arg : forall {A B} -> ((a : A) -> Orn J (B a)) -> Orn J (arg A B) rec : forall {i C} -> J i -> Orn J C -> Orn J (rec i C) out : forall {i} -> J i -> Orn J (out i) new : forall {C} -> (A : Set) -> (A -> Orn J C) -> Orn J C -- An ornamented datatype is indexed by pairs of the old and the new index. orn : {I : Set}{J : I -> Set}{C : Code I} -> Orn J C -> Code (Σ I J) orn (out j) = out (_ , j) orn (arg B) = arg _ \a -> orn (B a) orn (new A B) = arg A \a -> orn (B a) orn (rec j C) = rec (_ , j) (orn C) -- We can forget the ornamentation and recover an element of the original type. forget' : {I : Set}{J : I -> Set}{C : Code I}{i : I}{j : J i} {X : Σ I J -> Set}{Y : I -> Set} -> ({i : I}{j : J i} -> X (i , j) -> Y i) -> (ΔC : Orn J C) -> ⟦ orn ΔC ⟧ X (i , j) -> ⟦ C ⟧ Y i forget' φ (out j) refl = refl forget' φ (arg B) (a , b) = a , forget' φ (B a) b forget' φ (new A B) (a , b) = forget' φ (B a) b forget' φ (rec j C) (a , b) = φ a , forget' φ C b -- The termination checker runs into the same problem as the positivity -- checker--it can't tell that forget' φ C x is only applying φ to -- things smaller than x. -- ASR (08 August 2014): Added the {-# TERMINATING #-} pragma. {-# TERMINATING #-} forget : {I : Set}{J : I -> Set}{C : Code I}{i : I}{j : J i} (ΔC : Orn J C) -> μ (orn ΔC) (i , j) -> μ C i forget ΔC < x > = < forget' (forget ΔC) ΔC x > -- A C-algebra over X takes us from ⟦ C ⟧ X i to X i. Alg : {I : Set} -> Code I -> (I -> Set) -> Set Alg C X = forall i -> ⟦ C ⟧ X i -> X i -- We can fold by an algebra. -- ASR (08 August 2014): Added the {-# TERMINATING #-} pragma. {-# TERMINATING #-} fold : {I : Set}{X : I -> Set}{C : Code I} -> Alg C X -> {i : I} -> μ C i -> X i fold {C = C} φ < x > = φ _ (map C (fold φ) x) -- A type can be ornamented an arbitrary algebra over its functor. decorate : {I : Set}{X : I -> Set}(C : Code I) (φ : Alg C X) -> Orn X C decorate (out i) φ = out (φ i refl) decorate (arg A B) φ = arg \a -> decorate (B a) (\i b -> φ i (a , b)) decorate {X = X} (rec i C) φ = new (X i) \x -> rec x (decorate C \i b -> φ i (x , b)) -- Main theorem: If you have an element in a type decorated by φ, you -- can recover forgotten decorations by folding with φ. Specialised to -- lists and vectors we get -- ∀ xs : Vec A n. length (forget xs) == n. -- Two-level definition as usual. thm' : {I : Set}{X J : I -> Set}{Y : Σ I J -> Set} (C : Code I){i : I}{j : J i}(φ : Alg C J) (F : {i : I} -> X i -> J i) (ψ : {i : I}{j : J i} -> Y (i , j) -> X i) -> ({i : I}{j : J i}(z : Y (i , j)) -> F (ψ z) == j) -> let ΔC = decorate C φ in (x : ⟦ orn ΔC ⟧ Y (i , j)) -> φ i (map C F (forget' ψ ΔC x)) == j thm' (out i) φ F ψ ih refl = refl thm' (arg A B) φ F ψ ih (a , b) = thm' (B a) (\i b -> φ i (a , b)) F ψ ih b thm' (rec i C) {i = i0}{j = j0} φ F ψ ih (j , x , c) with F (ψ x) | ih x | thm' C (\i b -> φ i (j , b)) F ψ ih c ... | .j | refl | rest = rest -- ASR (08 August 2014): Added the {-# TERMINATING #-} -- pragma. {-# TERMINATING #-} thm : {I : Set}{J : I -> Set}(C : Code I){i : I}{j : J i}(φ : Alg C J) -> (x : μ (orn (decorate C φ)) (i , j)) -> fold φ (forget (decorate C φ) x) == j thm C φ < x > = thm' C φ (fold φ) (forget (decorate C φ)) (thm C φ) x -- Vectors as decorated lists. lengthAlg : {A : Set} -> Alg (`List` A) (\_ -> Nat) lengthAlg _ (enum ."nil" zero , _) = zero lengthAlg _ (enum ."cons" (suc zero) , x , n , _) = suc n lengthAlg _ (enum _ (suc (suc ())) , _) length : {A : Set} -> List A -> Nat length = fold lengthAlg -- Now vectors are really lists decorated by their length. `Vec` : (A : Set) -> Orn (\_ -> Nat) (`List` A) `Vec` A = decorate (`List` A) lengthAlg Vec : Set -> Nat -> Set Vec A n = μ (orn (`Vec` A)) (_ , n) nil : {A : Set} -> Vec A zero nil = < enum "nil" zero , refl > cons : {A : Set}{n : Nat} -> A -> Vec A n -> Vec A (suc n) cons {n = n} x xs = < enum "cons" (suc zero) , x , n , xs , refl > -- The proof that the index of the vector is really the length follows directly -- from our main theorem. corollary : {A : Set}{n : Nat}(xs : Vec A n) -> length (forget (`Vec` _) xs) == n corollary = thm (`List` _) lengthAlg
33.919355
85
0.507529
06e9924320ecb29c1f64a5e28f66532d71f9679e
127
agda
Agda
test/interaction/Issue620.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/interaction/Issue620.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/interaction/Issue620.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Issue620 where module A where postulate _+_*_ : Set → Set → Set → Set postulate X : Set 2X : Set 2X = X A.+ X * X
11.545455
41
0.622047
c590af0fad3bdb605cbfb3fdec8ae8a5dafa9578
271
agda
Agda
test/interaction/Issue1325.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/interaction/Issue1325.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/interaction/Issue1325.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Reported by stevan.andjelkovic, 2014-10-23 -- Case splitting on n in the goal g produces the wrong output, it -- seems like {n} in f is the problem... data ℕ : Set where zero : ℕ suc : ℕ → ℕ f : {_ : ℕ} → Set₁ f {n} = Set where g : ℕ → Set g n = {!n!}
16.9375
66
0.583026
1dc02a9ff5e1f8632e5d03e50e920e86fb78af4f
152
agda
Agda
test/Succeed/Issue4088.agda
cagix/agda
cc026a6a97a3e517bb94bafa9d49233b067c7559
[ "BSD-2-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue4088.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue4088.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
open import Agda.Builtin.Bool works : Bool → Bool works b with b | true ... | b′ | _ = b′ fails : Bool → Bool fails b with b′ ← b | true ... | _ = b′
15.2
29
0.572368
a121546e099b4d0ad86d20fc5de2c6eb2788274f
670
agda
Agda
vendor/stdlib/src/Relation/Binary/EqReasoning.agda
isabella232/Lemmachine
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
[ "MIT" ]
56
2015-01-20T02:11:42.000Z
2021-12-21T17:02:19.000Z
vendor/stdlib/src/Relation/Binary/EqReasoning.agda
larrytheliquid/Lemmachine
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
[ "MIT" ]
1
2022-03-12T12:17:51.000Z
2022-03-12T12:17:51.000Z
vendor/stdlib/src/Relation/Binary/EqReasoning.agda
isabella232/Lemmachine
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
[ "MIT" ]
3
2015-07-21T16:37:58.000Z
2022-03-12T11:54:10.000Z
------------------------------------------------------------------------ -- Convenient syntax for equational reasoning ------------------------------------------------------------------------ -- Example use: -- n*0≡0 : ∀ n → n * 0 ≡ 0 -- n*0≡0 zero = refl -- n*0≡0 (suc n) = -- begin -- suc n * 0 -- ≈⟨ byDef ⟩ -- n * 0 + 0 -- ≈⟨ n+0≡n _ ⟩ -- n * 0 -- ≈⟨ n*0≡0 n ⟩ -- 0 -- ∎ open import Relation.Binary module Relation.Binary.EqReasoning (s : Setoid) where open Setoid s import Relation.Binary.PreorderReasoning as PreR open PreR preorder public renaming ( _∼⟨_⟩_ to _≈⟨_⟩_ ; _≈⟨_⟩_ to _≡⟨_⟩_ )
22.333333
72
0.401493
0bfefcf221636760d53f4e2dc4cdf59fd3f295db
13,664
agda
Agda
04-cubical-type-theory/material/Part1.agda
bafain/EPIT-2020
34742c0409818f8fe581ffc92992d1b5f29f6b47
[ "MIT" ]
97
2021-03-19T14:13:37.000Z
2022-03-15T13:58:25.000Z
04-cubical-type-theory/material/Part1.agda
bafain/EPIT-2020
34742c0409818f8fe581ffc92992d1b5f29f6b47
[ "MIT" ]
2
2021-03-31T18:27:23.000Z
2021-04-13T09:03:56.000Z
04-cubical-type-theory/material/Part1.agda
bafain/EPIT-2020
34742c0409818f8fe581ffc92992d1b5f29f6b47
[ "MIT" ]
14
2021-03-19T12:36:53.000Z
2022-03-22T19:37:21.000Z
{- Part 1: The interval and path types • The interval in Cubical Agda • Path and PathP types • Function extensionality • Equality in Σ-types -} -- To make Agda cubical add the following option {-# OPTIONS --cubical #-} module Part1 where -- To load an Agda file type "C-c C-l" in emacs (the notation "C-c" -- means that one should hold "CTRL" and press "c", for general -- documentation about emacs keybindings see: -- https://www.gnu.org/software/emacs/manual/html_node/efaq/Basic-keys.html) -- The "Core" package of the agda/cubical library sets things for us open import Cubical.Core.Primitives public -- The "Foundations" package of agda/cubical contains a lot of -- important results (in particular the univalence theorem). As we -- will develop many things from scratch we don't import it here, but -- a typical file in the library would import various files from -- Foundations. To get everything in Foundations write: -- -- open import Cubical.Foundations.Everything -- To search for something among the imported files press C-s C-z and -- then write what you want to search for. -- Documentation of the Cubical Agda mode can be found at: -- https://agda.readthedocs.io/en/v2.6.1.3/language/cubical.html ------------------------------------------------------------------------------ -- Agda Basics -- ------------------------------------------------------------------------------ -- We parametrize everything by some universe levels (as opposed to -- Coq we always have to give these explicitly unless we work with the -- lowest universe) variable ℓ ℓ' ℓ'' : Level -- Universes in Agda are called "Set", but in order to avoid confusion -- with h-sets we rename them to "Type" in agda/cubical. -- Functions in Agda are written using equations: id : {A : Type ℓ} → A → A id x = x -- The {A : Type ℓ} notation says that A is an implicit argument of Type ℓ. -- The notation (x : A) → B and {x : A} → B denotes dependent -- functions (so B might mention x : A), in other words, Π-types -- We could also write this using λ-abstraction: id' : {A : Type ℓ} → A → A id' = λ x → x -- To write the nice symbol for the lambda type in "\lambda". To write -- "ℓ" type in "\ell" -- Agda supports Unicode symbols natively: -- https://agda.readthedocs.io/en/latest/tools/emacs-mode.html#unicode-input -- Agda has no tactics (as opposed to Coq), but we can build Agda -- terms interactively in emacs by writing a ? as RHS: -- -- id'' : {A : Type ℓ} → A → A -- id'' = ? -- -- Try uncommenting this and pressing "C-c C-l". This will give us a -- hole and by entering it with the cursor we can get information -- about what Agda expects us to provide and get help from Agda in -- providing this. -- -- By pressing "C-c C-," while having the cursor in the goal Agda -- shows us the current context and goal. As we're trying to write a -- function we can press "C-c C-r" (for refine) to have Agda write the -- λ-abstraction "λ x → ?" automatically for us. If one presses "C-c C-," -- in the hole again "x : A" will now be in the context. If we type -- "x" in the hole and press "C-c C-." Agda will show us that we have -- an A, which is exactly what we want to provide to fill the goal. By -- pressing "C-c C-SPACE" Agda will then fill the hole with "x" for us. -- -- Agda has lots of handy commands like this for manipulating goals: -- -- https://agda.readthedocs.io/en/latest/tools/emacs-mode.html#commands-in-context-of-a-goal -- A good resource to get start with Agda is the documentation: -- -- https://agda.readthedocs.io/en/latest/getting-started/index.html ------------------------------------------------------------------------------ -- The interval and path types -- ------------------------------------------------------------------------------ -- The interval in Cubical Agda is written I and the endpoints are -- -- i0 : I -- i1 : I -- -- These stand for "interval 0" and "interval 1". -- We can apply a function out of the interval to an endpoint just -- like we would apply any Agda function: apply0 : (A : Type ℓ) (p : I → A) → A apply0 A p = p i0 -- The equality type _≡_ is not inductively defined in Cubical Agda, -- instead it's a builtin primitive. An element of x ≡ y consists of a -- function p : I → A such that p i0 is definitionally x and p i1 is -- definitionally y. The check that the endpoints are correct when we -- provide a p : I → A is automatically performed by Agda during -- typechecking, so introducing an element of x ≡ y is done just like -- how we introduce elements of I → A but Agda will check the side -- conditions. -- -- We can hence write paths using λ-abstraction: path1 : {A : Type ℓ} (x : A) → x ≡ x path1 x = λ i → x -- As explained above Agda checks that whatever we write as definition -- matches the path that we have written (so the endpoints have to be -- correct). In this case everything is fine and path1 can be thought -- of as a proof reflexivity. Let's give it a nicer name and more -- implicit arguments: refl : {A : Type ℓ} {x : A} → x ≡ x refl {x = x} = λ i → x -- The notation {x = x} lets us access the implicit argument x (the x -- in the LHS of x = x) and rename it to x (the x in the RHS x = x) in -- the body of refl. We could just as well have written: -- -- refl : {A : Type ℓ} {x : A} → x ≡ x -- refl {x = y} = λ i → y -- Note that we cannot pattern-match on interval variables as I is not -- inductively defined: -- -- foo : {A : Type} → I → A -- foo r = {!r!} -- Try typing C-c C-c -- It often gets tiring to write {A : Type ℓ} everywhere, so let's -- assume that we have some types: variable A B : Type ℓ -- This will make A and B elements of different universes (all -- arguments is maximally generalized) and all definitions that use -- them will have them as implicit arguments. -- We can now implement some basic operations on _≡_. Let's start with -- cong (called "ap" in the HoTT book): cong : (f : A → B) {x y : A} → x ≡ y → f x ≡ f y cong f p i = f (p i) -- Note that the definition differs from the HoTT definition in that -- it is not defined by J or pattern-matching on p, but rather it's -- just a direct definition as a composition of functions. Agda treats -- p : x ≡ y like any function, so we can apply it to i to get an -- element of A which at i0 is x and at i1 is y. By applying f to this -- element we hence get an element of B which at i0 is f x and at i1 -- is f y. -- As this is just function composition it satisfies lots of nice -- definitional equalities, see the Warmup.agda file. Some of these -- are not satisfied by the HoTT definition of cong/ap. -- In HoTT function extensionality is proved as a consequence of -- univalence using a rather ingenious proof due to Voevodsky, but in -- cubical systems it has a much more direct proof. As paths are just -- functions we can get it by swapping the arguments to p: funExt : {f g : A → B} (p : (x : A) → f x ≡ g x) → f ≡ g funExt p i x = p x i -- To see that this has the correct type, note that when i is i0 we -- have "p x i0 = f x" and when i is i1 we have "p x i1 = g x", so by -- η for function types we have a path f ≡ g as desired. -- The interval has additional operations: -- -- Minimum: _∧_ : I → I → I (corresponds to min(i,j)) -- Maximum: _∨_ : I → I → I (corresponds to max(i,j)) -- Symmetry: ~_ : I → I (corresponds to 1 - i) -- -- Agda remark: the _ in the operator names indicates where arguments -- should go. -- -- These satisfy the equations of a De Morgan algebra (i.e. a -- distributive lattice (_∧_ , _∨_ , i0 , i1) with an "De Morgan" -- involution ~). This just means that we have the following kinds of -- equations definitionally: -- -- i0 ∨ i = i -- i ∨ i1 = i1 -- i ∨ j = j ∨ i -- i0 ∧ i = i0 -- i1 ∧ i = i -- i ∧ j = j ∧ i -- ~ (~ i) = i -- i0 = ~ i1 -- ~ (i ∨ j) = ~ i ∧ ~ j -- ~ (i ∧ j) = ~ i ∨ ~ j -- -- However, we do not have i ∨ ~ i = i1 and i ∧ ~ i = i0. The reason -- is that I represents an abstract interval, so we if we think of it -- as the real interval [0,1] ⊂ ℝ we clearly don't always have -- "max(i,1-i) = 1" or "min(i,1-i) = 0)" for all i ∈ [0,1]. -- These operations on I are very useful as they let us define even -- more things directly. For example symmetry of paths is easily -- defined using ~_ sym : {x y : A} → x ≡ y → y ≡ x sym p i = p (~ i) -- The operations _∧_ and _∨_ are called "connections" and let us -- build higher dimensional cubes from lower dimensional ones, for -- example if we have a path p : x ≡ y then -- -- sq i j = p (i ∧ j) -- -- is a square (as we've parametrized by i and j) with the following -- boundary: -- -- sq i0 j = p (i0 ∧ j) = p i0 = x -- sq i1 j = p (i1 ∧ j) = p j -- sq i i0 = p (i ∧ i0) = p i0 = x -- sq i i1 = p (i ∧ i1) = p i -- -- If we draw this we get: -- -- p -- x --------> y -- ^ ^ -- ¦ ¦ -- refl ¦ sq ¦ p -- ¦ ¦ -- ¦ ¦ -- x --------> x -- refl -- -- Being able to make this square directly is very useful. It for -- example let's prove that singletons are contractible (aka based -- path induction). -- -- We first need the notion of contractible types. For this we need -- to use a Σ-type: isContr : Type ℓ → Type ℓ isContr A = Σ[ x ∈ A ] ((y : A) → x ≡ y) -- Σ-types are introduced in the file Agda.Builtin.Sigma as the record -- -- record Σ {ℓ ℓ'} (A : Type ℓ) (B : A → Type ℓ') : Type (ℓ-max ℓ ℓ') where -- constructor _,_ -- field -- fst : A -- snd : B fst -- -- So the projections are fst/snd and the constructor is _,_. We -- also define non-dependent product as a special case of Σ-types in -- Cubical.Data.Sigma.Base as: -- -- _×_ : ∀ {ℓ ℓ'} (A : Type ℓ) (B : Type ℓ') → Type (ℓ-max ℓ ℓ') -- A × B = Σ A (λ _ → B) -- -- The notation ∀ {ℓ ℓ'} lets us omit the type of ℓ and ℓ' in the -- definition. -- We define the type of singletons as follows singl : {A : Type ℓ} (a : A) → Type ℓ singl {A = A} a = Σ[ x ∈ A ] a ≡ x -- To show that this type is contractible we need to provide a center -- of contraction and the fact that any element of it is path-equal to -- the center isContrSingl : (x : A) → isContr (singl x) isContrSingl x = ctr , prf where -- The center is just a pair with x and refl ctr : singl x ctr = x , refl -- We then need to prove that ctr is equal to any element s : singl x. -- This is an equality in a Σ-type, so the first component is a path -- and the second is a path over the path we pick as first argument, -- i.e. the second component is a square. In fact, we need a square -- relating refl and pax over a path between refl and pax, so we can -- use an _∧_ connection. prf : (s : singl x) → ctr ≡ s prf (y , pax) i = (pax i) , λ j → pax (i ∧ j) -- Agda tip: in order to automatically destruct an argument x -- (like (y , pax) in prf) write x in the hole and type -- C-c C-c. Agda might pick silly names, but it's still very -- convenient. -- As we saw in the second component of prf we often need squares when -- proving things. In fact, pax (i ∧ j) is a path relating refl to pax -- *over* another path "λ j → x ≡ pax j". This notion of path over a -- path is very useful when working in HoTT as well as cubically. In -- HoTT these are called path-overs and are defined using transport, -- but in Cubical Agda they are a primitive notion called PathP ("Path -- over a Path"). In general PathP A x y has -- -- A : I → Type ℓ -- x : A i0 -- y : A i1 -- -- So PathP lets us natively define heteorgeneous paths, i.e. paths -- where the endpoints are in different types. This allows us to -- specify the type of the second component of prf: prf' : (x : A) (s : singl x) → (x , refl) ≡ s prf' x (y , pax) i = (pax i) , λ j → goal i j where goal : PathP (λ j → x ≡ pax j) refl pax goal i j = pax (i ∧ j) -- Just like _×_ is a special case of Σ-types we have that _≡_ is a -- special case of PathP. In fact, x ≡ y is just short for PathP (λ _ → A) x y: reflP : {x : A} → PathP (λ _ → A) x x reflP = refl -- Having the primitive notion of equality be heterogeneous is an -- easily overlooked, but very important, strength of cubical type -- theory. This allows us to work directly with equality in Σ-types -- without using transport: module _ {A : Type ℓ} {B : A → Type ℓ'} {x y : Σ A B} where ΣPathP : Σ[ p ∈ fst x ≡ fst y ] PathP (λ i → B (p i)) (snd x) (snd y) → x ≡ y ΣPathP eq i = fst eq i , snd eq i PathPΣ : x ≡ y → Σ[ p ∈ fst x ≡ fst y ] PathP (λ i → B (p i)) (snd x) (snd y) PathPΣ eq = (λ i → fst (eq i)) , (λ i → snd (eq i)) -- The fact that these cancel is proved by refl -- If one looks carefully the proof of prf uses ΣPathP inlined, in -- fact this is used all over the place when working cubically and -- simplifies many proofs which in HoTT requires long complicated -- reasoning about transport. isContrΠ : {B : A → Type ℓ'} (h : (x : A) → isContr (B x)) → isContr ((x : A) → B x) isContrΠ h = (λ x → fst (h x)) , (λ f i x → snd (h x) (f x) i) -- Let us end this session with defining propositions and sets isProp : Type ℓ → Type ℓ isProp A = (x y : A) → x ≡ y isSet : Type ℓ → Type ℓ isSet A = (x y : A) → isProp (x ≡ y) -- In the agda/cubical library we call these h-levels following -- Voevodsky instead of n-types and index by natural numbers instead -- of ℕ₋₂. So isContr is isOfHLevel 0, isProp is isOfHLevel 1, isSet -- is isOfHLevel 2, etc. For details see Cubical/Foundations/HLevels.agda
36.731183
92
0.625585
0e141fea7a1792714762e3c127daed21cf34e9ca
1,404
agda
Agda
Cubical/HITs/GroupoidQuotients/Base.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
301
2018-10-17T18:00:24.000Z
2022-03-24T02:10:47.000Z
Cubical/HITs/GroupoidQuotients/Base.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
584
2018-10-15T09:49:02.000Z
2022-03-30T12:09:17.000Z
Cubical/HITs/GroupoidQuotients/Base.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
134
2018-11-16T06:11:03.000Z
2022-03-23T16:22:13.000Z
{- This file contains: - Definition of groupoid quotients -} {-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.GroupoidQuotients.Base where open import Cubical.Foundations.Prelude open import Cubical.Relation.Binary.Base -- Groupoid quotients as a higher inductive type: -- For the definition, only transitivity is needed data _//_ {ℓ ℓ'} (A : Type ℓ) {R : A → A → Type ℓ'} (Rt : BinaryRelation.isTrans R) : Type (ℓ-max ℓ ℓ') where [_] : (a : A) → A // Rt eq// : {a b : A} → (r : R a b) → [ a ] ≡ [ b ] comp// : {a b c : A} → (r : R a b) → (s : R b c) → PathP (λ j → [ a ] ≡ eq// s j) (eq// r) (eq// (Rt a b c r s)) squash// : ∀ (x y : A // Rt) (p q : x ≡ y) (r s : p ≡ q) → r ≡ s {- The comp// constructor fills the square: eq// (Rt a b c r s) [a]— — — >[c] ‖ ^ ‖ | eq// s ^ ‖ | j | [a]— — — >[b] ∙ — > eq// r i We use this to give another constructor-like construction: -} comp'// : {ℓ ℓ' : Level} (A : Type ℓ) {R : A → A → Type ℓ'} (Rt : BinaryRelation.isTrans R) {a b c : A} → (r : R a b) → (s : R b c) → eq// {Rt = Rt} (Rt a b c r s) ≡ eq// r ∙ eq// s comp'// A Rt r s i = compPath-unique refl (eq// r) (eq// s) (eq// {Rt = Rt} (Rt _ _ _ r s) , comp// r s) (eq// r ∙ eq// s , compPath-filler (eq// r) (eq// s)) i .fst
31.909091
73
0.478632
204aca68e92a50a869b23ed561d2c359e9c7e7d7
4,074
agda
Agda
Formalization/ClassicalPropositionalLogic/NaturalDeduction.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
Formalization/ClassicalPropositionalLogic/NaturalDeduction.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
Formalization/ClassicalPropositionalLogic/NaturalDeduction.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
module Formalization.ClassicalPropositionalLogic.NaturalDeduction where open import Data.Either as Either using (Left ; Right) open import Formalization.ClassicalPropositionalLogic.Syntax open import Functional import Lvl import Logic.Propositional as Meta open import Logic open import Relator.Equals open import Relator.Equals.Proofs.Equiv open import Sets.PredicateSet using (PredSet ; _∈_ ; _∉_ ; _∪_ ; _∪•_ ; _∖_ ; _⊆_ ; _⊇_ ; ∅ ; [≡]-to-[⊆] ; [≡]-to-[⊇]) renaming (•_ to singleton ; _≡_ to _≡ₛ_) open import Type private variable ℓₚ ℓ ℓ₁ ℓ₂ : Lvl.Level data _⊢_ {ℓ ℓₚ} {P : Type{ℓₚ}} : Formulas(P){ℓ} → Formula(P) → Stmt{Lvl.𝐒(ℓₚ Lvl.⊔ ℓ)} where direct : ∀{Γ} → (Γ ⊆ (Γ ⊢_)) [⊤]-intro : ∀{Γ} → (Γ ⊢ ⊤) [⊥]-intro : ∀{Γ}{φ} → (Γ ⊢ φ) → (Γ ⊢ (¬ φ)) → (Γ ⊢ ⊥) [⊥]-elim : ∀{Γ}{φ} → (Γ ⊢ ⊥) → (Γ ⊢ φ) [¬]-intro : ∀{Γ}{φ} → ((Γ ∪ singleton(φ)) ⊢ ⊥) → (Γ ⊢ (¬ φ)) [¬]-elim : ∀{Γ}{φ} → ((Γ ∪ singleton(¬ φ)) ⊢ ⊥) → (Γ ⊢ φ) [∧]-intro : ∀{Γ}{φ ψ} → (Γ ⊢ φ) → (Γ ⊢ ψ) → (Γ ⊢ (φ ∧ ψ)) [∧]-elimₗ : ∀{Γ}{φ ψ} → (Γ ⊢ (φ ∧ ψ)) → (Γ ⊢ φ) [∧]-elimᵣ : ∀{Γ}{φ ψ} → (Γ ⊢ (φ ∧ ψ)) → (Γ ⊢ ψ) [∨]-introₗ : ∀{Γ}{φ ψ} → (Γ ⊢ φ) → (Γ ⊢ (φ ∨ ψ)) [∨]-introᵣ : ∀{Γ}{φ ψ} → (Γ ⊢ ψ) → (Γ ⊢ (φ ∨ ψ)) [∨]-elim : ∀{Γ}{φ ψ χ} → ((Γ ∪ singleton(φ)) ⊢ χ) → ((Γ ∪ singleton(ψ)) ⊢ χ) → (Γ ⊢ (φ ∨ ψ)) → (Γ ⊢ χ) [⟶]-intro : ∀{Γ}{φ ψ} → ((Γ ∪ singleton(φ)) ⊢ ψ) → (Γ ⊢ (φ ⟶ ψ)) [⟶]-elim : ∀{Γ}{φ ψ} → (Γ ⊢ φ) → (Γ ⊢ (φ ⟶ ψ)) → (Γ ⊢ ψ) [⟷]-intro : ∀{Γ}{φ ψ} → ((Γ ∪ singleton(ψ)) ⊢ φ) → ((Γ ∪ singleton(φ)) ⊢ ψ) → (Γ ⊢ (φ ⟷ ψ)) [⟷]-elimₗ : ∀{Γ}{φ ψ} → (Γ ⊢ ψ) → (Γ ⊢ (φ ⟷ ψ)) → (Γ ⊢ φ) [⟷]-elimᵣ : ∀{Γ}{φ ψ} → (Γ ⊢ φ) → (Γ ⊢ (φ ⟷ ψ)) → (Γ ⊢ ψ) module _ where private variable P : Type{ℓₚ} private variable Γ Γ₁ Γ₂ : Formulas(P){ℓ} private variable φ ψ : Formula(P) _⊬_ : Formulas(P){ℓ} → Formula(P) → Stmt _⊬_ = Meta.¬_ ∘₂ (_⊢_) weaken-union-singleton : (Γ₁ ⊆ Γ₂) → (((Γ₁ ∪ singleton(φ)) ⊢_) ⊆ ((Γ₂ ∪ singleton(φ)) ⊢_)) weaken : (Γ₁ ⊆ Γ₂) → ((Γ₁ ⊢_) ⊆ (Γ₂ ⊢_)) weaken Γ₁Γ₂ {φ} (direct p) = direct (Γ₁Γ₂ p) weaken Γ₁Γ₂ {.⊤} [⊤]-intro = [⊤]-intro weaken Γ₁Γ₂ {.⊥} ([⊥]-intro p q) = [⊥]-intro (weaken Γ₁Γ₂ p) (weaken Γ₁Γ₂ q) weaken Γ₁Γ₂ {φ} ([⊥]-elim p) = [⊥]-elim (weaken Γ₁Γ₂ p) weaken Γ₁Γ₂ {.(¬ _)} ([¬]-intro p) = [¬]-intro (weaken-union-singleton Γ₁Γ₂ p) weaken Γ₁Γ₂ {φ} ([¬]-elim p) = [¬]-elim (weaken-union-singleton Γ₁Γ₂ p) weaken Γ₁Γ₂ {.(_ ∧ _)} ([∧]-intro p q) = [∧]-intro (weaken Γ₁Γ₂ p) (weaken Γ₁Γ₂ q) weaken Γ₁Γ₂ {φ} ([∧]-elimₗ p) = [∧]-elimₗ (weaken Γ₁Γ₂ p) weaken Γ₁Γ₂ {φ} ([∧]-elimᵣ p) = [∧]-elimᵣ (weaken Γ₁Γ₂ p) weaken Γ₁Γ₂ {.(_ ∨ _)} ([∨]-introₗ p) = [∨]-introₗ (weaken Γ₁Γ₂ p) weaken Γ₁Γ₂ {.(_ ∨ _)} ([∨]-introᵣ p) = [∨]-introᵣ (weaken Γ₁Γ₂ p) weaken Γ₁Γ₂ {φ} ([∨]-elim p q r) = [∨]-elim (weaken-union-singleton Γ₁Γ₂ p) (weaken-union-singleton Γ₁Γ₂ q) (weaken Γ₁Γ₂ r) weaken Γ₁Γ₂ {.(_ ⟶ _)} ([⟶]-intro p) = [⟶]-intro (weaken-union-singleton Γ₁Γ₂ p) weaken Γ₁Γ₂ {φ} ([⟶]-elim p q) = [⟶]-elim (weaken Γ₁Γ₂ p) (weaken Γ₁Γ₂ q) weaken Γ₁Γ₂ {.(_ ⟷ _)} ([⟷]-intro p q) = [⟷]-intro (weaken-union-singleton Γ₁Γ₂ p) (weaken-union-singleton Γ₁Γ₂ q) weaken Γ₁Γ₂ {φ} ([⟷]-elimₗ p q) = [⟷]-elimₗ (weaken Γ₁Γ₂ p) (weaken Γ₁Γ₂ q) weaken Γ₁Γ₂ {φ} ([⟷]-elimᵣ p q) = [⟷]-elimᵣ (weaken Γ₁Γ₂ p) (weaken Γ₁Γ₂ q) weaken-union-singleton Γ₁Γ₂ p = weaken (Either.mapLeft Γ₁Γ₂) p weaken-union : (Γ₁ ⊢_) ⊆ ((Γ₁ ∪ Γ₂) ⊢_) weaken-union = weaken Either.Left [⟵]-intro : ((Γ ∪ singleton(φ)) ⊢ ψ) → (Γ ⊢ (ψ ⟵ φ)) [⟵]-intro = [⟶]-intro [⟵]-elim : (Γ ⊢ φ) → (Γ ⊢ (ψ ⟵ φ)) → (Γ ⊢ ψ) [⟵]-elim = [⟶]-elim [¬¬]-elim : (Γ ⊢ ¬(¬ φ)) → (Γ ⊢ φ) [¬¬]-elim nnφ = ([¬]-elim ([⊥]-intro (direct(Right [≡]-intro)) (weaken-union nnφ) ) ) [¬¬]-intro : (Γ ⊢ φ) → (Γ ⊢ ¬(¬ φ)) [¬¬]-intro Γφ = ([¬]-intro ([⊥]-intro (weaken-union Γφ) (direct (Right [≡]-intro)) ) )
40.74
159
0.476436
0e0b30442d3498a0d2177ebb8aa17e203e178a2e
612
agda
Agda
agda-stdlib/src/Algebra/FunctionProperties.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Algebra/FunctionProperties.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Algebra/FunctionProperties.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- This module is DEPRECATED. Please use `Algebra` or -- `Algebra.Definitions` instead. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary.Core using (Rel) module Algebra.FunctionProperties {a ℓ} {A : Set a} (_≈_ : Rel A ℓ) where {-# WARNING_ON_IMPORT "Algebra.FunctionProperties was deprecated in v1.2. Use Algebra.Definitions instead." #-} open import Algebra.Core public open import Algebra.Definitions _≈_ public
29.142857
73
0.560458
1dc00c0e89b3d9eb33593835750b2a2981210699
427
agda
Agda
Cats/Util/Function.agda
alessio-b-zak/cats
a3b69911c4c6ec380ddf6a0f4510d3a755734b86
[ "MIT" ]
null
null
null
Cats/Util/Function.agda
alessio-b-zak/cats
a3b69911c4c6ec380ddf6a0f4510d3a755734b86
[ "MIT" ]
null
null
null
Cats/Util/Function.agda
alessio-b-zak/cats
a3b69911c4c6ec380ddf6a0f4510d3a755734b86
[ "MIT" ]
null
null
null
module Cats.Util.Function where open import Relation.Binary using (Rel ; IsEquivalence ; _Preserves₂_⟶_⟶_) open import Relation.Binary.PropositionalEquality as ≡ open import Function as Fun public using (id ; _on_) open import Relation.Binary.Construct.On public renaming (isEquivalence to on-isEquivalence) infixr 9 _∘_ _∘_ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} → (B → C) → (A → B) → A → C f ∘ g = f Fun.∘ g
26.6875
79
0.688525
50e8b091cc4666b4fb34c02034c931a032d8a1d5
6,405
agda
Agda
RW/RW.agda
VictorCMiraldo/agda-rw
2856afd12b7dbbcc908482975638d99220f38bf2
[ "MIT" ]
16
2015-02-09T15:43:38.000Z
2019-10-24T17:38:20.000Z
RW/RW.agda
VictorCMiraldo/agda-rw
2856afd12b7dbbcc908482975638d99220f38bf2
[ "MIT" ]
4
2015-02-06T15:03:33.000Z
2015-05-28T14:48:03.000Z
RW/RW.agda
VictorCMiraldo/agda-rw
2856afd12b7dbbcc908482975638d99220f38bf2
[ "MIT" ]
null
null
null
open import Prelude open import Reflection renaming (Term to AgTerm; Type to AgType) open import Data.String using (String) open import RW.Language.RTerm open import RW.Language.RTermUtils open import RW.Language.FinTerm open import RW.Language.GoalGuesser 1 open import RW.Strategy module RW.RW (db : TStratDB) where open import RW.Utils.Monads open import RW.Utils.Error open Monad {{...}} open IsError {{...}} ------------------ -- Housekeeping -- ------------------ -- We need to bring our instances into scope explicitely, -- to make Agda happy. private instance ErrErr = IsError-StratErr ErrMonad = MonadError unarg : {A : Set} → Arg A → A unarg (arg _ x) = x -- We need to translate types to FinTerms, so we know how many variables -- we're expecting to guess from instantiation. Ag2RTypeFin : AgType → ∃ FinTerm Ag2RTypeFin = R2FinType ∘ lift-ivar ∘ η ∘ Ag2RType -- TODO: fix the duality: "number of ivar's lifted to ovar's vs. parameters we need to guess" make-RWData : Name → AgTerm → List (Arg AgType) → Err StratErr RWData make-RWData act goal ctx with η (Ag2RTerm goal) | Ag2RTypeFin (type act) | map (Ag2RType ∘ unarg) ctx ...| g' | tyℕ , ty | ctx' with forceBinary g' | forceBinary (typeResult ty) ...| just g | just a = return (rw-data g tyℕ a ctx') ...| just _ | nothing = throwError (Custom "Something strange happened with the action") ...| nothing | just _ = throwError (Custom "Something strange happened with the goal") ...| nothing | nothing = throwError (Custom "My brain just exploded.") -- Given a goal and a list of actions to apply to such goal, return -- a list l₁ ⋯ lₙ such that ∀ 0 < i ≤ n . tyᵢ : p1 lᵢ → p1 lᵢ₊₁ Ag2RTypeFin* : RTerm ⊥ → List AgType → Maybe (List (RBinApp ⊥ × ∃ (RBinApp ∘ Fin))) Ag2RTypeFin* (rapp n (g₁ ∷ g₂ ∷ [])) tys = mapM (return ∘ Ag2RTypeFin) tys >>= mapM (λ v → forceBinary (typeResult (p2 v)) >>= (return ∘ (_,_ $ p1 v))) >>= λ tys' → (divideGoal (n , g₁ , g₂) tys' >>= assemble) >>= λ gs → return (zip gs tys') where assemble : {A : Set} → List (RTerm A) → Maybe (List (RBinApp A)) assemble (x1 ∷ x2 ∷ []) = just ((n , x1 , x2) ∷ []) assemble (x1 ∷ x2 ∷ l) = assemble (x2 ∷ l) >>= return ∘ (_∷_ (n , x1 , x2)) assemble _ = nothing Ag2RTypeFin* _ _ = nothing -- Produces a list of RWData, one for each 'guessed' step. make-RWData* : List Name → AgTerm → List (Arg AgType) → Err StratErr (List RWData) make-RWData* acts goal ctx with Ag2RTerm goal | map type acts | map (Ag2RType ∘ unarg) ctx ...| g' | tys | ctx' with Ag2RTypeFin* g' tys ...| nothing = throwError (Custom "Are you sure you can apply those steps?") ...| just r = i2 (map (λ x → rw-data (p1 x) (p1 (p2 x)) (p2 (p2 x)) ctx') r) postulate RW-error : ∀{a}{A : Set a} → String → A RWerr : Name → RWData → Err StratErr (RWData × UData × RTerm ⊥) RWerr act d = runUStrats d >>= λ u → runTStrats db d act u >>= λ v → return (d , u , v) -- A variant with less information, more suitable to be map'ed. RWerr-less : Name → RWData → Err StratErr (RTerm ⊥) RWerr-less act d = RWerr act d >>= return ∘ p2 ∘ p2 ---------------- -- By Tactics -- ---------------- -- Standard debugging version. by' : Name → List (Arg AgType) → AgTerm → (RWData × UData × RTerm ⊥) by' act ctx goal with runErr (make-RWData act goal ctx >>= RWerr act) ...| i1 err = RW-error err ...| i2 term = term -- This function is only beeing used to pass the context -- given by the 'tactic' keyword around. by : Name → List (Arg AgType) → AgTerm → AgTerm by act ctx goal = R2AgTerm ∘ p2 ∘ p2 $ (by' act ctx goal) -- Handling multiple actions, naive way. -- by+ is pretty much foldM (<|>) error (by ⋯), -- where (<|>) is the usual alternative from Error Monad. by+ : List Name → List (Arg AgType) → AgTerm → AgTerm by+ [] _ _ = RW-error "No suitable action" by+ (a ∷ as) ctx goal with runErr (make-RWData a goal ctx >>= RWerr a) ...| i1 _ = by+ as ctx goal ...| i2 t = R2AgTerm ∘ p2 ∘ p2 $ t join-tr : Name → List (RTerm ⊥) → RTerm ⊥ join-tr _ [] = ivar 0 join-tr tr (x ∷ l) = foldr (λ h r → rapp (rdef tr) (r ∷ h ∷ [])) x l -- Handling multiple goals. by*-err : Name → List Name → List (Arg AgType) → AgTerm → Err StratErr AgTerm by*-err tr acts ctx goal = make-RWData* acts goal ctx >>= λ l → mapM (uncurry RWerr-less) (zip acts l) >>= return ∘ R2AgTerm ∘ join-tr tr where unzip : {A B : Set} → List (A × B) → List A × List B unzip [] = [] , [] unzip ((a , b) ∷ l) with unzip l ...| la , lb = a ∷ la , b ∷ lb by*-tactic : Set by*-tactic = List Name → List (Arg AgType) → AgTerm → AgTerm by* : Name → by*-tactic by* tr acts ctx goal with runErr (by*-err tr acts ctx goal) ...| i1 err = RW-error err ...| i2 res = res ------------------------------ -- Adding Tries to the cake -- ------------------------------ -- The proper way to handle multiple actions. open import RW.Data.RTrie module Auto (bt : RTrie) -- which trie to use, (newHd : RTermName → RTermName) -- given the goal head, how to build the head for the action. where open import RW.Language.RTermTrie our-strategy : RTermName → Name → UData → Err StratErr (RTerm ⊥) our-strategy goal = maybe TStrat.how (const $ const $ i1 no-strat) $ filter-db db where no-strat : StratErr no-strat = NoTStrat goal (newHd goal) filter-db : TStratDB → Maybe TStrat filter-db [] = nothing filter-db (s ∷ ss) with TStrat.when s goal (newHd goal) ...| false = filter-db ss ...| true = just s auto-internal : List (Arg AgType) → AgTerm → Err StratErr AgTerm auto-internal _ goal with forceBinary $ Ag2RTerm goal ...| nothing = i1 $ Custom "non-binary goal" ...| just (hd , g₁ , g₂) = let options = search-action (newHd hd) (hd , g₁ , g₂) bt strat = uncurry $ our-strategy hd err = Custom "No option was succesful" in try-all strat err options >>= return ∘ R2AgTerm auto : List (Arg AgType) → AgTerm → AgTerm auto ctx goal with runErr (auto-internal ctx goal) ...| i1 err = RW-error err ...| i2 r = r
36.392045
103
0.587822
0b2f9926d1b82b7faa7b727f9e66c1757b0b90f7
9,090
agda
Agda
Cubical/Algebra/Group/Algebra.agda
knrafto/cubical
f6771617374bfe65a7043d00731fed5a673aa729
[ "MIT" ]
null
null
null
Cubical/Algebra/Group/Algebra.agda
knrafto/cubical
f6771617374bfe65a7043d00731fed5a673aa729
[ "MIT" ]
null
null
null
Cubical/Algebra/Group/Algebra.agda
knrafto/cubical
f6771617374bfe65a7043d00731fed5a673aa729
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Algebra.Group.Algebra where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.HLevels open import Cubical.Foundations.Function using (_∘_) open import Cubical.Foundations.GroupoidLaws open import Cubical.Data.Sigma open import Cubical.Data.Unit open import Cubical.Algebra.Group.Base open import Cubical.Algebra.Group.Properties open import Cubical.Algebra.Group.Morphism open import Cubical.Algebra.Group.MorphismProperties open import Cubical.HITs.PropositionalTruncation hiding (map) -- open import Cubical.Data.Group.Base open Iso open Group open GroupHom private variable ℓ ℓ₁ ℓ₂ ℓ₃ : Level ------- elementary properties of morphisms -------- -- (- 0) = 0 -0≡0 : ∀ {ℓ} {G : Group {ℓ}} → (- G) (0g G) ≡ (0g G) -- - 0 ≡ 0 -0≡0 {G = G} = sym (IsGroup.lid (isGroup G) _) ∙ fst (IsGroup.inverse (isGroup G) _) -- ϕ(0) ≡ 0 morph0→0 : ∀ {ℓ ℓ'} (G : Group {ℓ}) (H : Group {ℓ'}) (f : GroupHom G H) → fun f (0g G) ≡ 0g H morph0→0 G H f = (fun f) (0g G) ≡⟨ sym (IsGroup.rid (isGroup H) _) ⟩ (f' (0g G) H.+ 0g H) ≡⟨ (λ i → f' (0g G) H.+ invr H (f' (0g G)) (~ i)) ⟩ (f' (0g G) H.+ (f' (0g G) H.+ (H.- f' (0g G)))) ≡⟨ (Group.assoc H (f' (0g G)) (f' (0g G)) (H.- (f' (0g G)))) ⟩ ((f' (0g G) H.+ f' (0g G)) H.+ (H.- f' (0g G))) ≡⟨ sym (cong (λ x → x H.+ (H.- f' (0g G))) (sym (cong f' (IsGroup.lid (isGroup G) _)) ∙ isHom f (0g G) (0g G))) ⟩ (f' (0g G)) H.+ (H.- (f' (0g G))) ≡⟨ invr H (f' (0g G)) ⟩ 0g H ∎ where module G = Group G module H = Group H f' = fun f -- ϕ(- x) = - ϕ(x) morphMinus : ∀ {ℓ ℓ'} (G : Group {ℓ}) (H : Group {ℓ'}) → (ϕ : GroupHom G H) → (g : ⟨ G ⟩) → fun ϕ ((- G) g) ≡ (- H) (fun ϕ g) morphMinus G H ϕ g = f (G.- g) ≡⟨ sym (IsGroup.rid (isGroup H) (f (G.- g))) ⟩ (f (G.- g) H.+ 0g H) ≡⟨ cong (f (G.- g) H.+_) (sym (invr H (f g))) ⟩ (f (G.- g) H.+ (f g H.+ (H.- f g))) ≡⟨ Group.assoc H (f (G.- g)) (f g) (H.- f g) ⟩ ((f (G.- g) H.+ f g) H.+ (H.- f g)) ≡⟨ cong (H._+ (H.- f g)) helper ⟩ (0g H H.+ (H.- f g)) ≡⟨ IsGroup.lid (isGroup H) (H.- (f g))⟩ H.- (f g) ∎ where module G = Group G module H = Group H f = fun ϕ helper : (f (G.- g) H.+ f g) ≡ 0g H helper = sym (isHom ϕ (G.- g) g) ∙∙ cong f (invl G g) ∙∙ morph0→0 G H ϕ -- ----------- Alternative notions of isomorphisms -------------- record GroupIso {ℓ ℓ'} (G : Group {ℓ}) (H : Group {ℓ'}) : Type (ℓ-max ℓ ℓ') where no-eta-equality constructor iso field map : GroupHom G H inv : ⟨ H ⟩ → ⟨ G ⟩ rightInv : section (GroupHom.fun map) inv leftInv : retract (GroupHom.fun map) inv record BijectionIso {ℓ ℓ'} (A : Group {ℓ}) (B : Group {ℓ'}) : Type (ℓ-max ℓ ℓ') where constructor bij-iso field map' : GroupHom A B inj : isInjective A B map' surj : isSurjective A B map' -- "Very" short exact sequences -- i.e. an exact sequence A → B → C → D where A and D are trivial record vSES {ℓ ℓ' ℓ'' ℓ'''} (A : Group {ℓ}) (B : Group {ℓ'}) (leftGr : Group {ℓ''}) (rightGr : Group {ℓ'''}) : Type (ℓ-suc (ℓ-max ℓ (ℓ-max ℓ' (ℓ-max ℓ'' ℓ''')))) where constructor ses field isTrivialLeft : isProp ⟨ leftGr ⟩ isTrivialRight : isProp ⟨ rightGr ⟩ left : GroupHom leftGr A right : GroupHom B rightGr ϕ : GroupHom A B Ker-ϕ⊂Im-left : (x : ⟨ A ⟩) → isInKer A B ϕ x → isInIm leftGr A left x Ker-right⊂Im-ϕ : (x : ⟨ B ⟩) → isInKer B rightGr right x → isInIm A B ϕ x open BijectionIso open GroupIso open vSES compGroupIso : {G : Group {ℓ}} {H : Group {ℓ₁}} {A : Group {ℓ₂}} → GroupIso G H → GroupIso H A → GroupIso G A map (compGroupIso iso1 iso2) = compGroupHom (map iso1) (map iso2) inv (compGroupIso iso1 iso2) = inv iso1 ∘ inv iso2 rightInv (compGroupIso iso1 iso2) a = cong (fun (map iso2)) (rightInv iso1 _) ∙ rightInv iso2 a leftInv (compGroupIso iso1 iso2) a = cong (inv iso1) (leftInv iso2 _) ∙ leftInv iso1 a isGroupHomInv' : {G : Group {ℓ}} {H : Group {ℓ₁}} (f : GroupIso G H) → isGroupHom H G (inv f) isGroupHomInv' {G = G} {H = H} f h h' = isInj-f _ _ ( f' (g (h ⋆² h')) ≡⟨ (rightInv f) _ ⟩ (h ⋆² h') ≡⟨ sym (cong₂ _⋆²_ (rightInv f h) (rightInv f h')) ⟩ (f' (g h) ⋆² f' (g h')) ≡⟨ sym (isHom (map f) _ _) ⟩ -- sym (isHom (hom f) _ _) ⟩ f' (g h ⋆¹ g h') ∎) where f' = fun (map f) _⋆¹_ = Group._+_ G _⋆²_ = Group._+_ H g = inv f -- invEq (eq f) isInj-f : (x y : ⟨ G ⟩) → f' x ≡ f' y → x ≡ y isInj-f x y p = sym (leftInv f _) ∙∙ cong g p ∙∙ leftInv f _ invGroupIso : {G : Group {ℓ}} {H : Group {ℓ₁}} → GroupIso G H → GroupIso H G fun (map (invGroupIso iso1)) = inv iso1 isHom (map (invGroupIso iso1)) = isGroupHomInv' iso1 inv (invGroupIso iso1) = fun (map iso1) rightInv (invGroupIso iso1) = leftInv iso1 leftInv (invGroupIso iso1) = rightInv iso1 dirProdGroupIso : {G : Group {ℓ}} {H : Group {ℓ₁}} {A : Group {ℓ₂}} {B : Group {ℓ₃}} → GroupIso G H → GroupIso A B → GroupIso (dirProd G A) (dirProd H B) fun (map (dirProdGroupIso iso1 iso2)) prod = fun (map iso1) (fst prod) , fun (map iso2) (snd prod) isHom (map (dirProdGroupIso iso1 iso2)) a b = ΣPathP (isHom (map iso1) (fst a) (fst b) , isHom (map iso2) (snd a) (snd b)) inv (dirProdGroupIso iso1 iso2) prod = (inv iso1) (fst prod) , (inv iso2) (snd prod) rightInv (dirProdGroupIso iso1 iso2) a = ΣPathP (rightInv iso1 (fst a) , (rightInv iso2 (snd a))) leftInv (dirProdGroupIso iso1 iso2) a = ΣPathP (leftInv iso1 (fst a) , (leftInv iso2 (snd a))) GrIsoToGrEquiv : {G : Group {ℓ}} {H : Group {ℓ₂}} → GroupIso G H → GroupEquiv G H GroupEquiv.eq (GrIsoToGrEquiv i) = isoToEquiv (iso (fun (map i)) (inv i) (rightInv i) (leftInv i)) GroupEquiv.isHom (GrIsoToGrEquiv i) = isHom (map i) --- Proofs that BijectionIso and vSES both induce isomorphisms --- BijectionIsoToGroupIso : {A : Group {ℓ}} {B : Group {ℓ₂}} → BijectionIso A B → GroupIso A B BijectionIsoToGroupIso {A = A} {B = B} i = grIso where module A = Group A module B = Group B f = fun (map' i) helper : (b : _) → isProp (Σ[ a ∈ ⟨ A ⟩ ] f a ≡ b) helper _ a b = Σ≡Prop (λ _ → isSetCarrier B _ _) (fst a ≡⟨ sym (IsGroup.rid (isGroup A) (fst a)) ⟩ ((fst a) A.+ 0g A) ≡⟨ cong ((fst a) A.+_) (sym (invl A (fst b))) ⟩ ((fst a) A.+ ((A.- fst b) A.+ fst b)) ≡⟨ Group.assoc A _ _ _ ⟩ (((fst a) A.+ (A.- fst b)) A.+ fst b) ≡⟨ cong (A._+ fst b) idHelper ⟩ (0g A A.+ fst b) ≡⟨ IsGroup.lid (isGroup A) (fst b) ⟩ fst b ∎) where idHelper : fst a A.+ (A.- fst b) ≡ 0g A idHelper = inj i _ (isHom (map' i) (fst a) (A.- (fst b)) ∙ (cong (f (fst a) B.+_) (morphMinus A B (map' i) (fst b)) ∙∙ cong (B._+ (B.- f (fst b))) (snd a ∙ sym (snd b)) ∙∙ invr B (f (fst b)))) grIso : GroupIso A B map grIso = map' i inv grIso b = (rec (helper b) (λ a → a) (surj i b)) .fst rightInv grIso b = (rec (helper b) (λ a → a) (surj i b)) .snd leftInv grIso b j = rec (helper (f b)) (λ a → a) (propTruncIsProp (surj i (f b)) ∣ b , refl ∣ j) .fst BijectionIsoToGroupEquiv : {A : Group {ℓ}} {B : Group {ℓ₂}} → BijectionIso A B → GroupEquiv A B BijectionIsoToGroupEquiv i = GrIsoToGrEquiv (BijectionIsoToGroupIso i) vSES→GroupIso : ∀ {ℓ ℓ' ℓ'' ℓ'''} {A : Group {ℓ}} {B : Group {ℓ'}} (leftGr : Group {ℓ''}) (rightGr : Group {ℓ'''}) → vSES A B leftGr rightGr → GroupIso A B vSES→GroupIso {A = A} lGr rGr vses = BijectionIsoToGroupIso theIso where theIso : BijectionIso _ _ map' theIso = vSES.ϕ vses inj theIso a inker = rec (isSetCarrier A _ _) (λ (a , p) → sym p ∙∙ cong (fun (left vses)) (isTrivialLeft vses a _) ∙∙ morph0→0 lGr A (left vses)) (Ker-ϕ⊂Im-left vses a inker) surj theIso a = Ker-right⊂Im-ϕ vses a (isTrivialRight vses _ _) vSES→GroupEquiv : {A : Group {ℓ}} {B : Group {ℓ₁}} (leftGr : Group {ℓ₂}) (rightGr : Group {ℓ₃}) → vSES A B leftGr rightGr → GroupEquiv A B vSES→GroupEquiv {A = A} lGr rGr vses = GrIsoToGrEquiv (vSES→GroupIso lGr rGr vses) -- The trivial group is a unit. lUnitGroupIso : ∀ {ℓ} {G : Group {ℓ}} → GroupEquiv (dirProd trivialGroup G) G lUnitGroupIso = GrIsoToGrEquiv (iso (grouphom snd (λ a b → refl)) (λ g → tt , g) (λ _ → refl) λ _ → refl) rUnitGroupIso : ∀ {ℓ} {G : Group {ℓ}} → GroupEquiv (dirProd G trivialGroup) G rUnitGroupIso = GrIsoToGrEquiv (iso (grouphom fst λ _ _ → refl) (λ g → g , tt) (λ _ → refl) λ _ → refl) contrGroup≅trivialGroup : {G : Group {ℓ}} → isContr ⟨ G ⟩ → GroupEquiv G trivialGroup GroupEquiv.eq (contrGroup≅trivialGroup contr) = isContr→≃Unit contr GroupEquiv.isHom (contrGroup≅trivialGroup contr) _ _ = refl
40.4
169
0.554455
a1b3b41ff17c811c4f843efb74a7b79346d70bf1
133
agda
Agda
test/interaction/Issue5392.agda
cagix/agda
cc026a6a97a3e517bb94bafa9d49233b067c7559
[ "BSD-2-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/interaction/Issue5392.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/interaction/Issue5392.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
open import Agda.Primitive record R (a : Level) : Set (lsuc a) where field A : Set a _ : ∀ a → R {!a!} → Set a _ = λ _ → R.A
14.777778
41
0.541353
23d20c03380a2c2a3b35dab4612ecc1a007b0de9
2,554
agda
Agda
BasicIPC/Metatheory/Gentzen-TarskiConcreteGluedGentzen.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
29
2016-07-03T18:51:56.000Z
2022-01-01T10:29:18.000Z
BasicIPC/Metatheory/Gentzen-TarskiConcreteGluedGentzen.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
1
2018-06-10T09:11:22.000Z
2018-06-10T09:11:22.000Z
BasicIPC/Metatheory/Gentzen-TarskiConcreteGluedGentzen.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
null
null
null
module BasicIPC.Metatheory.Gentzen-TarskiConcreteGluedGentzen where open import BasicIPC.Syntax.Gentzen public open import BasicIPC.Semantics.TarskiConcreteGluedGentzen public -- Internalisation of syntax as syntax representation in a particular model. module _ {{_ : Model}} where [_] : ∀ {A Γ} → Γ ⊢ A → Γ [⊢] A [ var i ] = [var] i [ lam t ] = [lam] [ t ] [ app t u ] = [app] [ t ] [ u ] [ pair t u ] = [pair] [ t ] [ u ] [ fst t ] = [fst] [ t ] [ snd t ] = [snd] [ t ] [ unit ] = [unit] -- Soundness with respect to all models, or evaluation. eval : ∀ {A Γ} → Γ ⊢ A → Γ ⊨ A eval (var i) γ = lookup i γ eval (lam t) γ = [multicut] (reifyʳ⋆ γ) [ lam t ] ⅋ λ a → eval t (γ , a) eval (app t u) γ = eval t γ ⟪$⟫ eval u γ eval (pair t u) γ = eval t γ , eval u γ eval (fst t) γ = π₁ (eval t γ) eval (snd t) γ = π₂ (eval t γ) eval unit γ = ∙ -- TODO: Correctness of evaluation with respect to conversion. -- The canonical model. private instance canon : Model canon = record { _⊩ᵅ_ = λ w P → unwrap w ⊢ α P ; _[⊢]_ = _⊢_ ; mono[⊢] = mono⊢ ; [var] = var ; [lam] = lam ; [app] = app ; [pair] = pair ; [fst] = fst ; [snd] = snd ; [unit] = unit } -- Soundness and completeness with respect to the canonical model. mutual reflectᶜ : ∀ {A w} → unwrap w ⊢ A → w ⊩ A reflectᶜ {α P} t = t ⅋ t reflectᶜ {A ▻ B} t = t ⅋ λ a → reflectᶜ (app t (reifyᶜ a)) reflectᶜ {A ∧ B} t = reflectᶜ (fst t) , reflectᶜ (snd t) reflectᶜ {⊤} t = ∙ reifyᶜ : ∀ {A w} → w ⊩ A → unwrap w ⊢ A reifyᶜ {α P} s = syn s reifyᶜ {A ▻ B} s = syn s reifyᶜ {A ∧ B} s = pair (reifyᶜ (π₁ s)) (reifyᶜ (π₂ s)) reifyᶜ {⊤} s = unit reflectᶜ⋆ : ∀ {Ξ w} → unwrap w ⊢⋆ Ξ → w ⊩⋆ Ξ reflectᶜ⋆ {∅} ∙ = ∙ reflectᶜ⋆ {Ξ , A} (ts , t) = reflectᶜ⋆ ts , reflectᶜ t reifyᶜ⋆ : ∀ {Ξ w} → w ⊩⋆ Ξ → unwrap w ⊢⋆ Ξ reifyᶜ⋆ {∅} ∙ = ∙ reifyᶜ⋆ {Ξ , A} (ts , t) = reifyᶜ⋆ ts , reifyᶜ t -- Reflexivity and transitivity. refl⊩⋆ : ∀ {w} → w ⊩⋆ unwrap w refl⊩⋆ = reflectᶜ⋆ refl⊢⋆ trans⊩⋆ : ∀ {w w′ w″} → w ⊩⋆ unwrap w′ → w′ ⊩⋆ unwrap w″ → w ⊩⋆ unwrap w″ trans⊩⋆ ts us = reflectᶜ⋆ (trans⊢⋆ (reifyᶜ⋆ ts) (reifyᶜ⋆ us)) -- Completeness with respect to all models, or quotation. quot : ∀ {A Γ} → Γ ⊨ A → Γ ⊢ A quot s = reifyᶜ (s refl⊩⋆) -- Normalisation by evaluation. norm : ∀ {A Γ} → Γ ⊢ A → Γ ⊢ A norm = quot ∘ eval -- TODO: Correctness of normalisation with respect to conversion.
25.287129
76
0.525059
0ed9f1b419b0843ce6afa499ffa5bc2fb1797756
1,356
agda
Agda
agda-stdlib/src/Data/These.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Data/These.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Data/These.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- An either-or-both data type ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.These where open import Level open import Data.Maybe.Base using (Maybe; just; nothing; maybe′) open import Data.Sum.Base using (_⊎_; [_,_]′) open import Function ------------------------------------------------------------------------ -- Re-exporting the datatype and its operations open import Data.These.Base public private variable a b : Level A : Set a B : Set b ------------------------------------------------------------------------ -- Additional operations -- projections fromThis : These A B → Maybe A fromThis = fold just (const nothing) (const ∘′ just) fromThat : These A B → Maybe B fromThat = fold (const nothing) just (const just) leftMost : These A A → A leftMost = fold id id const rightMost : These A A → A rightMost = fold id id (flip const) mergeThese : (A → A → A) → These A A → A mergeThese = fold id id -- deletions deleteThis : These A B → Maybe (These A B) deleteThis = fold (const nothing) (just ∘′ that) (const (just ∘′ that)) deleteThat : These A B → Maybe (These A B) deleteThat = fold (just ∘′ this) (const nothing) (const ∘′ just ∘′ this)
24.654545
72
0.531711
a1f9004cfcbb9c8e569aadf52935f6f0fc870dda
98
agda
Agda
test/Fail/Issue2788b.agda
caryoscelus/agda
98d6f195fe672e54ef0389b4deb62e04e3e98327
[ "BSD-3-Clause" ]
null
null
null
test/Fail/Issue2788b.agda
caryoscelus/agda
98d6f195fe672e54ef0389b4deb62e04e3e98327
[ "BSD-3-Clause" ]
null
null
null
test/Fail/Issue2788b.agda
caryoscelus/agda
98d6f195fe672e54ef0389b4deb62e04e3e98327
[ "BSD-3-Clause" ]
null
null
null
module _ where open import Agda.Builtin.Cubical.Glue hiding (primGlue) primitive primGlue : _
14
55
0.77551
2087b73b991e29a01718384eddf7a8b384a4ebda
1,882
agda
Agda
lib/Haskell/Prim/Eq.agda
flupe/agda2hs
4cb28f1b5032948b19b977b390fa260be292abf6
[ "MIT" ]
null
null
null
lib/Haskell/Prim/Eq.agda
flupe/agda2hs
4cb28f1b5032948b19b977b390fa260be292abf6
[ "MIT" ]
null
null
null
lib/Haskell/Prim/Eq.agda
flupe/agda2hs
4cb28f1b5032948b19b977b390fa260be292abf6
[ "MIT" ]
null
null
null
module Haskell.Prim.Eq where open import Agda.Builtin.Nat as Nat hiding (_==_) open import Agda.Builtin.Char open import Agda.Builtin.Unit open import Agda.Builtin.List open import Haskell.Prim open import Haskell.Prim.Bool open import Haskell.Prim.Integer open import Haskell.Prim.Int open import Haskell.Prim.Word open import Haskell.Prim.Double open import Haskell.Prim.Tuple open import Haskell.Prim.Maybe open import Haskell.Prim.Either -------------------------------------------------- -- Eq record Eq (a : Set) : Set where infix 4 _==_ _/=_ field _==_ : a → a → Bool _/=_ : a → a → Bool x /= y = not (x == y) open Eq ⦃ ... ⦄ public instance iEqNat : Eq Nat iEqNat ._==_ = Nat._==_ iEqInteger : Eq Integer iEqInteger ._==_ = eqInteger iEqInt : Eq Int iEqInt ._==_ = eqInt iEqWord : Eq Word iEqWord ._==_ = eqWord iEqDouble : Eq Double iEqDouble ._==_ = primFloatNumericalEquality iEqBool : Eq Bool iEqBool ._==_ false false = true iEqBool ._==_ true true = true iEqBool ._==_ _ _ = false iEqChar : Eq Char iEqChar ._==_ = primCharEquality iEqUnit : Eq ⊤ iEqUnit ._==_ _ _ = true iEqTuple₀ : Eq (Tuple []) iEqTuple₀ ._==_ _ _ = true iEqTuple : ∀ {as} → ⦃ Eq a ⦄ → ⦃ Eq (Tuple as) ⦄ → Eq (Tuple (a ∷ as)) iEqTuple ._==_ (x ∷ xs) (y ∷ ys) = x == y && xs == ys iEqList : ⦃ Eq a ⦄ → Eq (List a) iEqList ._==_ [] [] = false iEqList ._==_ (x ∷ xs) (y ∷ ys) = x == y && xs == ys iEqList ._==_ _ _ = false iEqMaybe : ⦃ Eq a ⦄ → Eq (Maybe a) iEqMaybe ._==_ Nothing Nothing = true iEqMaybe ._==_ (Just x) (Just y) = x == y iEqMaybe ._==_ _ _ = false iEqEither : ⦃ Eq a ⦄ → ⦃ Eq b ⦄ → Eq (Either a b) iEqEither ._==_ (Left x) (Left y) = x == y iEqEither ._==_ (Right x) (Right y) = x == y iEqEither ._==_ _ _ = false
23.822785
72
0.57492
50de09183049f52ea7140dd0a8fe00ea5efb98c4
16,780
agda
Agda
Cubical/Algebra/CommRing/Localisation/UniversalProperty.agda
thomas-lamiaux/cubical
58c0b83bb0fed0dc683f3d29b1709effe51c1689
[ "MIT" ]
null
null
null
Cubical/Algebra/CommRing/Localisation/UniversalProperty.agda
thomas-lamiaux/cubical
58c0b83bb0fed0dc683f3d29b1709effe51c1689
[ "MIT" ]
null
null
null
Cubical/Algebra/CommRing/Localisation/UniversalProperty.agda
thomas-lamiaux/cubical
58c0b83bb0fed0dc683f3d29b1709effe51c1689
[ "MIT" ]
null
null
null
-- We define what it means to satisfy the universal property -- of localisation and show that the localisation in Base satisfies -- it. We will also show that the localisation is uniquely determined -- by the universal property, and give sufficient criteria for -- satisfying the universal property. {-# OPTIONS --safe #-} module Cubical.Algebra.CommRing.Localisation.UniversalProperty where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Foundations.HLevels open import Cubical.Foundations.Powerset open import Cubical.Foundations.Transport open import Cubical.Functions.FunExtEquiv open import Cubical.Functions.Surjection open import Cubical.Functions.Embedding import Cubical.Data.Empty as ⊥ open import Cubical.Data.Bool open import Cubical.Data.Nat renaming ( _+_ to _+ℕ_ ; _·_ to _·ℕ_ ; _^_ to _^ℕ_ ; +-comm to +ℕ-comm ; +-assoc to +ℕ-assoc ; ·-assoc to ·ℕ-assoc ; ·-comm to ·ℕ-comm) open import Cubical.Data.Vec open import Cubical.Data.Sigma.Base open import Cubical.Data.Sigma.Properties open import Cubical.Data.FinData open import Cubical.Relation.Nullary open import Cubical.Relation.Binary open import Cubical.Algebra.Ring open import Cubical.Algebra.CommRingSolver.Reflection open import Cubical.Algebra.CommRing open import Cubical.Algebra.CommRing.Localisation.Base open import Cubical.HITs.SetQuotients as SQ open import Cubical.HITs.PropositionalTruncation as PT open Iso private variable ℓ ℓ' : Level module _ (R' : CommRing ℓ) (S' : ℙ (fst R')) (SMultClosedSubset : isMultClosedSubset R' S') where open isMultClosedSubset private R = fst R' open CommRingStr (snd R') hiding (is-set) open RingTheory (CommRing→Ring R') open IsRingHom hasLocUniversalProp : (A : CommRing ℓ) (φ : CommRingHom R' A) → (∀ s → s ∈ S' → fst φ s ∈ A ˣ) → Type (ℓ-suc ℓ) hasLocUniversalProp A φ _ = (B : CommRing ℓ) (ψ : CommRingHom R' B) → (∀ s → s ∈ S' → fst ψ s ∈ B ˣ) → ∃![ χ ∈ CommRingHom A B ] (fst χ) ∘ (fst φ) ≡ (fst ψ) isPropUniversalProp : (A : CommRing ℓ) (φ : CommRingHom R' A) → (φS⊆Aˣ : ∀ s → s ∈ S' → fst φ s ∈ A ˣ) → isProp (hasLocUniversalProp A φ φS⊆Aˣ) isPropUniversalProp A φ φS⊆Aˣ = isPropΠ3 (λ _ _ _ → isPropIsContr) -- S⁻¹R has the universal property module S⁻¹RUniversalProp where open Loc R' S' SMultClosedSubset _/1 : R → S⁻¹R r /1 = [ r , 1r , SMultClosedSubset .containsOne ] /1AsCommRingHom : CommRingHom R' S⁻¹RAsCommRing fst /1AsCommRingHom = _/1 snd /1AsCommRingHom = makeIsRingHom refl (λ r r' → cong [_] (≡-× (cong₂ (_+_) (sym (·IdR r)) (sym (·IdR r'))) (Σ≡Prop (λ x → S' x .snd) (sym (·IdL 1r))))) (λ _ _ → cong [_] (≡-× refl (Σ≡Prop (λ x → S' x .snd) (sym (·IdL 1r))))) S⁻¹Rˣ = S⁻¹RAsCommRing ˣ S/1⊆S⁻¹Rˣ : ∀ s → s ∈ S' → (s /1) ∈ S⁻¹Rˣ S/1⊆S⁻¹Rˣ s s∈S' = [ 1r , s , s∈S' ] , eq/ _ _ ((1r , SMultClosedSubset .containsOne) , path s) where path : ∀ s → 1r · (s · 1r) · 1r ≡ 1r · 1r · (1r · s) path = solve R' S⁻¹RHasUniversalProp : hasLocUniversalProp S⁻¹RAsCommRing /1AsCommRingHom S/1⊆S⁻¹Rˣ S⁻¹RHasUniversalProp B' ψ ψS⊆Bˣ = (χ , funExt χcomp) , χunique where B = fst B' open CommRingStr (snd B') renaming ( is-set to Bset ; _·_ to _·B_ ; 1r to 1b ; _+_ to _+B_ ; ·Assoc to ·B-assoc ; ·Comm to ·B-comm ; ·IdL to ·B-lid ; ·IdR to ·B-rid ; ·DistL+ to ·B-ldist-+) open Units B' renaming (Rˣ to Bˣ ; RˣMultClosed to BˣMultClosed ; RˣContainsOne to BˣContainsOne) open RingTheory (CommRing→Ring B') renaming (·-assoc2 to ·B-assoc2) open CommRingTheory B' renaming (·CommAssocl to ·B-commAssocl ; ·CommAssocSwap to ·B-commAssocSwap) ψ₀ = fst ψ module ψ = IsRingHom (snd ψ) χ : CommRingHom S⁻¹RAsCommRing B' fst χ = SQ.rec Bset fχ fχcoh where fχ : R × S → B fχ (r , s , s∈S') = (fst ψ r) ·B ((fst ψ s) ⁻¹) ⦃ ψS⊆Bˣ s s∈S' ⦄ fχcoh : (a b : R × S) → a ≈ b → fχ a ≡ fχ b fχcoh (r , s , s∈S') (r' , s' , s'∈S') ((u , u∈S') , p) = instancepath ⦃ ψS⊆Bˣ s s∈S' ⦄ ⦃ ψS⊆Bˣ s' s'∈S' ⦄ ⦃ ψS⊆Bˣ (u · s · s') (SMultClosedSubset .multClosed (SMultClosedSubset .multClosed u∈S' s∈S') s'∈S') ⦄ ⦃ BˣMultClosed _ _ ⦃ ψS⊆Bˣ (u · s) (SMultClosedSubset .multClosed u∈S' s∈S') ⦄ ⦃ ψS⊆Bˣ s' s'∈S' ⦄ ⦄ ⦃ ψS⊆Bˣ (u · s) (SMultClosedSubset .multClosed u∈S' s∈S') ⦄ where -- only a few individual steps can be solved by the ring solver yet instancepath : ⦃ _ : ψ₀ s ∈ Bˣ ⦄ ⦃ _ : ψ₀ s' ∈ Bˣ ⦄ ⦃ _ : ψ₀ (u · s · s') ∈ Bˣ ⦄ ⦃ _ : ψ₀ (u · s) ·B ψ₀ s' ∈ Bˣ ⦄ ⦃ _ : ψ₀ (u · s) ∈ Bˣ ⦄ → ψ₀ r ·B ψ₀ s ⁻¹ ≡ ψ₀ r' ·B ψ₀ s' ⁻¹ instancepath = ψ₀ r ·B ψ₀ s ⁻¹ ≡⟨ sym (·B-rid _) ⟩ ψ₀ r ·B ψ₀ s ⁻¹ ·B 1b ≡⟨ cong (ψ₀ r ·B ψ₀ s ⁻¹ ·B_) (sym (·-rinv _)) ⟩ ψ₀ r ·B ψ₀ s ⁻¹ ·B (ψ₀ (u · s · s') ·B ψ₀ (u · s · s') ⁻¹) ≡⟨ ·B-assoc _ _ _ ⟩ ψ₀ r ·B ψ₀ s ⁻¹ ·B ψ₀ (u · s · s') ·B ψ₀ (u · s · s') ⁻¹ ≡⟨ cong (λ x → ψ₀ r ·B ψ₀ s ⁻¹ ·B x ·B ψ₀ (u · s · s') ⁻¹) (ψ.pres· _ _) ⟩ ψ₀ r ·B ψ₀ s ⁻¹ ·B (ψ₀ (u · s) ·B ψ₀ s') ·B ψ₀ (u · s · s') ⁻¹ ≡⟨ cong (_·B ψ₀ (u · s · s') ⁻¹) (·B-assoc _ _ _) ⟩ ψ₀ r ·B ψ₀ s ⁻¹ ·B ψ₀ (u · s) ·B ψ₀ s' ·B ψ₀ (u · s · s') ⁻¹ ≡⟨ cong (λ x → ψ₀ r ·B ψ₀ s ⁻¹ ·B x ·B ψ₀ s' ·B ψ₀ (u · s · s') ⁻¹) (ψ.pres· _ _) ⟩ ψ₀ r ·B ψ₀ s ⁻¹ ·B (ψ₀ u ·B ψ₀ s) ·B ψ₀ s' ·B ψ₀ (u · s · s') ⁻¹ ≡⟨ cong (λ x → x ·B ψ₀ s' ·B ψ₀ (u · s · s') ⁻¹) (·B-commAssocSwap _ _ _ _) ⟩ ψ₀ r ·B ψ₀ u ·B (ψ₀ s ⁻¹ ·B ψ₀ s) ·B ψ₀ s' ·B ψ₀ (u · s · s') ⁻¹ ≡⟨ (λ i → ·B-comm (ψ₀ r) (ψ₀ u) i ·B (·-linv (ψ₀ s) i) ·B ψ₀ s' ·B ψ₀ (u · s · s') ⁻¹) ⟩ ψ₀ u ·B ψ₀ r ·B 1b ·B ψ₀ s' ·B ψ₀ (u · s · s') ⁻¹ ≡⟨ (λ i → (·B-rid (sym (ψ.pres· u r) i) i) ·B ψ₀ s' ·B ψ₀ (u · s · s') ⁻¹) ⟩ ψ₀ (u · r) ·B ψ₀ s' ·B ψ₀ (u · s · s') ⁻¹ ≡⟨ cong (_·B ψ₀ (u · s · s') ⁻¹) (sym (ψ.pres· _ _)) ⟩ ψ₀ (u · r · s') ·B ψ₀ (u · s · s') ⁻¹ ≡⟨ cong (λ x → ψ₀ x ·B ψ₀ (u · s · s') ⁻¹) p ⟩ ψ₀ (u · r' · s) ·B ψ₀ (u · s · s') ⁻¹ ≡⟨ cong (_·B ψ₀ (u · s · s') ⁻¹) (ψ.pres· _ _) ⟩ ψ₀ (u · r') ·B ψ₀ s ·B ψ₀ (u · s · s') ⁻¹ ≡⟨ cong (λ x → x ·B ψ₀ s ·B ψ₀ (u · s · s') ⁻¹) (ψ.pres· _ _) ⟩ ψ₀ u ·B ψ₀ r' ·B ψ₀ s ·B ψ₀ (u · s · s') ⁻¹ ≡⟨ cong (_·B ψ₀ (u · s · s') ⁻¹) (sym (·B-assoc _ _ _)) ⟩ ψ₀ u ·B (ψ₀ r' ·B ψ₀ s) ·B ψ₀ (u · s · s') ⁻¹ ≡⟨ cong (_·B ψ₀ (u · s · s') ⁻¹) (·B-commAssocl _ _ _) ⟩ ψ₀ r' ·B (ψ₀ u ·B ψ₀ s) ·B ψ₀ (u · s · s') ⁻¹ ≡⟨ cong (λ x → ψ₀ r' ·B x ·B ψ₀ (u · s · s') ⁻¹) (sym (ψ.pres· _ _)) ⟩ ψ₀ r' ·B ψ₀ (u · s) ·B ψ₀ (u · s · s') ⁻¹ ≡⟨ cong (ψ₀ r' ·B ψ₀ (u · s) ·B_) (unitCong (ψ.pres· _ _)) ⟩ ψ₀ r' ·B ψ₀ (u · s) ·B (ψ₀ (u · s) ·B ψ₀ s') ⁻¹ ≡⟨ cong (ψ₀ r' ·B ψ₀ (u · s) ·B_) (⁻¹-dist-· _ _) ⟩ ψ₀ r' ·B ψ₀ (u · s) ·B (ψ₀ (u · s) ⁻¹ ·B ψ₀ s' ⁻¹) ≡⟨ ·B-assoc2 _ _ _ _ ⟩ ψ₀ r' ·B (ψ₀ (u · s) ·B ψ₀ (u · s) ⁻¹) ·B ψ₀ s' ⁻¹ ≡⟨ cong (λ x → ψ₀ r' ·B x ·B ψ₀ s' ⁻¹) (·-rinv _) ⟩ ψ₀ r' ·B 1b ·B ψ₀ s' ⁻¹ ≡⟨ cong (_·B ψ₀ s' ⁻¹) (·B-rid _) ⟩ ψ₀ r' ·B ψ₀ s' ⁻¹ ∎ snd χ = makeIsRingHom (instancepres1χ ⦃ ψS⊆Bˣ 1r (SMultClosedSubset .containsOne) ⦄ ⦃ BˣContainsOne ⦄) (elimProp2 (λ _ _ _ _ → Bset _ _ _ _) pres+[]) (elimProp2 (λ _ _ _ _ → Bset _ _ _ _) pres·[]) where instancepres1χ : ⦃ _ : ψ₀ 1r ∈ Bˣ ⦄ ⦃ _ : 1b ∈ Bˣ ⦄ → ψ₀ 1r ·B (ψ₀ 1r) ⁻¹ ≡ 1b instancepres1χ = (λ i → (ψ.pres1 i) ·B (unitCong (ψ.pres1) i)) ∙ (λ i → ·B-lid (1⁻¹≡1 i) i) pres+[] : (a b : R × S) → fst χ ([ a ] +ₗ [ b ]) ≡ (fst χ [ a ]) +B (fst χ [ b ]) pres+[] (r , s , s∈S') (r' , s' , s'∈S') = instancepath ⦃ ψS⊆Bˣ s s∈S' ⦄ ⦃ ψS⊆Bˣ s' s'∈S' ⦄ ⦃ ψS⊆Bˣ (s · s') (SMultClosedSubset .multClosed s∈S' s'∈S') ⦄ ⦃ BˣMultClosed _ _ ⦃ ψS⊆Bˣ s s∈S' ⦄ ⦃ ψS⊆Bˣ s' s'∈S' ⦄ ⦄ where -- only a few individual steps can be solved by the ring solver yet instancepath : ⦃ _ : ψ₀ s ∈ Bˣ ⦄ ⦃ _ : ψ₀ s' ∈ Bˣ ⦄ ⦃ _ : ψ₀ (s · s') ∈ Bˣ ⦄ ⦃ _ : ψ₀ s ·B ψ₀ s' ∈ Bˣ ⦄ → ψ₀ (r · s' + r' · s) ·B ψ₀ (s · s') ⁻¹ ≡ ψ₀ r ·B ψ₀ s ⁻¹ +B ψ₀ r' ·B ψ₀ s' ⁻¹ instancepath = ψ₀ (r · s' + r' · s) ·B ψ₀ (s · s') ⁻¹ ≡⟨ (λ i → ψ.pres+ (r · s') (r' · s) i ·B unitCong (ψ.pres· s s') i) ⟩ (ψ₀ (r · s') +B ψ₀ (r' · s)) ·B (ψ₀ s ·B ψ₀ s') ⁻¹ ≡⟨ (λ i → (ψ.pres· r s' i +B ψ.pres· r' s i) ·B ⁻¹-dist-· (ψ₀ s) (ψ₀ s') i) ⟩ (ψ₀ r ·B ψ₀ s' +B ψ₀ r' ·B ψ₀ s) ·B (ψ₀ s ⁻¹ ·B ψ₀ s' ⁻¹) ≡⟨ ·B-ldist-+ _ _ _ ⟩ ψ₀ r ·B ψ₀ s' ·B (ψ₀ s ⁻¹ ·B ψ₀ s' ⁻¹) +B ψ₀ r' ·B ψ₀ s ·B (ψ₀ s ⁻¹ ·B ψ₀ s' ⁻¹) ≡⟨ (λ i → ·B-commAssocSwap (ψ₀ r) (ψ₀ s') (ψ₀ s ⁻¹) (ψ₀ s' ⁻¹) i +B ·B-assoc2 (ψ₀ r') (ψ₀ s) (ψ₀ s ⁻¹) (ψ₀ s' ⁻¹) i) ⟩ ψ₀ r ·B ψ₀ s ⁻¹ ·B (ψ₀ s' ·B ψ₀ s' ⁻¹) +B ψ₀ r' ·B (ψ₀ s ·B ψ₀ s ⁻¹) ·B ψ₀ s' ⁻¹ ≡⟨ (λ i → ψ₀ r ·B ψ₀ s ⁻¹ ·B (·-rinv (ψ₀ s') i) +B ψ₀ r' ·B (·-rinv (ψ₀ s) i) ·B ψ₀ s' ⁻¹) ⟩ ψ₀ r ·B ψ₀ s ⁻¹ ·B 1b +B ψ₀ r' ·B 1b ·B ψ₀ s' ⁻¹ ≡⟨ (λ i → ·B-rid (ψ₀ r ·B ψ₀ s ⁻¹) i +B ·B-rid (ψ₀ r') i ·B ψ₀ s' ⁻¹) ⟩ ψ₀ r ·B ψ₀ s ⁻¹ +B ψ₀ r' ·B ψ₀ s' ⁻¹ ∎ pres·[] : (a b : R × S) → fst χ ([ a ] ·ₗ [ b ]) ≡ (fst χ [ a ]) ·B (fst χ [ b ]) pres·[] (r , s , s∈S') (r' , s' , s'∈S') = instancepath ⦃ ψS⊆Bˣ s s∈S' ⦄ ⦃ ψS⊆Bˣ s' s'∈S' ⦄ ⦃ ψS⊆Bˣ (s · s') (SMultClosedSubset .multClosed s∈S' s'∈S') ⦄ ⦃ BˣMultClosed _ _ ⦃ ψS⊆Bˣ s s∈S' ⦄ ⦃ ψS⊆Bˣ s' s'∈S' ⦄ ⦄ where -- only a few individual steps can be solved by the ring solver yet instancepath : ⦃ _ : ψ₀ s ∈ Bˣ ⦄ ⦃ _ : ψ₀ s' ∈ Bˣ ⦄ ⦃ _ : ψ₀ (s · s') ∈ Bˣ ⦄ ⦃ _ : ψ₀ s ·B ψ₀ s' ∈ Bˣ ⦄ → ψ₀ (r · r') ·B ψ₀ (s · s') ⁻¹ ≡ (ψ₀ r ·B ψ₀ s ⁻¹) ·B (ψ₀ r' ·B ψ₀ s' ⁻¹) instancepath = ψ₀ (r · r') ·B ψ₀ (s · s') ⁻¹ ≡⟨ (λ i → ψ.pres· r r' i ·B unitCong (ψ.pres· s s') i) ⟩ ψ₀ r ·B ψ₀ r' ·B (ψ₀ s ·B ψ₀ s') ⁻¹ ≡⟨ cong (ψ₀ r ·B ψ₀ r' ·B_) (⁻¹-dist-· _ _) ⟩ ψ₀ r ·B ψ₀ r' ·B (ψ₀ s ⁻¹ ·B ψ₀ s' ⁻¹) ≡⟨ ·B-commAssocSwap _ _ _ _ ⟩ ψ₀ r ·B ψ₀ s ⁻¹ ·B (ψ₀ r' ·B ψ₀ s' ⁻¹) ∎ χcomp : (r : R) → fst χ (r /1) ≡ ψ₀ r χcomp = instanceχcomp ⦃ ψS⊆Bˣ 1r (SMultClosedSubset .containsOne) ⦄ ⦃ Units.RˣContainsOne B' ⦄ where instanceχcomp : ⦃ _ : ψ₀ 1r ∈ Bˣ ⦄ ⦃ _ : 1b ∈ Bˣ ⦄ (r : R) → ψ₀ r ·B (ψ₀ 1r) ⁻¹ ≡ ψ₀ r instanceχcomp r = ψ₀ r ·B (ψ₀ 1r) ⁻¹ ≡⟨ cong (ψ₀ r ·B_) (unitCong (ψ.pres1)) ⟩ ψ₀ r ·B 1b ⁻¹ ≡⟨ cong (ψ₀ r ·B_) 1⁻¹≡1 ⟩ ψ₀ r ·B 1b ≡⟨ ·B-rid _ ⟩ ψ₀ r ∎ χunique : (y : Σ[ χ' ∈ CommRingHom S⁻¹RAsCommRing B' ] fst χ' ∘ _/1 ≡ ψ₀) → (χ , funExt χcomp) ≡ y χunique (χ' , χ'/1≡ψ) = Σ≡Prop (λ x → isSetΠ (λ _ → Bset) _ _) (RingHom≡ fχ≡fχ') where open CommRingHomTheory {A' = S⁻¹RAsCommRing} {B' = B'} χ' renaming (φ[x⁻¹]≡φ[x]⁻¹ to χ'[x⁻¹]≡χ'[x]⁻¹) module χ' = IsRingHom (χ' .snd) []-path : (a : R × S) → fst χ [ a ] ≡ fst χ' [ a ] []-path (r , s , s∈S') = instancepath ⦃ ψS⊆Bˣ s s∈S' ⦄ ⦃ S/1⊆S⁻¹Rˣ s s∈S' ⦄ ⦃ RingHomRespInv _ ⦃ S/1⊆S⁻¹Rˣ s s∈S' ⦄ ⦄ where open Units S⁻¹RAsCommRing renaming (_⁻¹ to _⁻¹ˡ ; inverseUniqueness to S⁻¹RInverseUniqueness) hiding (unitCong) s-inv : ⦃ s/1∈S⁻¹Rˣ : s /1 ∈ S⁻¹Rˣ ⦄ → s /1 ⁻¹ˡ ≡ [ 1r , s , s∈S' ] s-inv ⦃ s/1∈S⁻¹Rˣ ⦄ = PathPΣ (S⁻¹RInverseUniqueness (s /1) s/1∈S⁻¹Rˣ (_ , eq/ _ _ ((1r , SMultClosedSubset .containsOne) , path s))) .fst where path : ∀ s → 1r · (s · 1r) · 1r ≡ 1r · 1r · (1r · s) path = solve R' ·ₗ-path : [ r , s , s∈S' ] ≡ [ r , 1r , SMultClosedSubset .containsOne ] ·ₗ [ 1r , s , s∈S' ] ·ₗ-path = cong [_] (≡-× (sym (·IdR r)) (Σ≡Prop (λ x → S' x .snd) (sym (·IdL s)))) instancepath : ⦃ _ : ψ₀ s ∈ Bˣ ⦄ ⦃ _ : s /1 ∈ S⁻¹Rˣ ⦄ ⦃ _ : fst χ' (s /1) ∈ Bˣ ⦄ → ψ₀ r ·B ψ₀ s ⁻¹ ≡ fst χ' [ r , s , s∈S' ] instancepath = ψ₀ r ·B ψ₀ s ⁻¹ ≡⟨ cong (ψ₀ r ·B_) (unitCong (cong (λ φ → φ s) (sym χ'/1≡ψ))) ⟩ ψ₀ r ·B fst χ' (s /1) ⁻¹ ≡⟨ cong (ψ₀ r ·B_) (sym (χ'[x⁻¹]≡χ'[x]⁻¹ _)) ⟩ ψ₀ r ·B fst χ' (s /1 ⁻¹ˡ) ≡⟨ cong (λ x → ψ₀ r ·B fst χ' x) s-inv ⟩ ψ₀ r ·B fst χ' [ 1r , s , s∈S' ] ≡⟨ cong (_·B fst χ' [ 1r , s , s∈S' ]) (cong (λ φ → φ r) (sym χ'/1≡ψ)) ⟩ fst χ' [ r , 1r , SMultClosedSubset .containsOne ] ·B fst χ' [ 1r , s , s∈S' ] ≡⟨ sym (χ'.pres· _ _) ⟩ fst χ' ([ r , 1r , SMultClosedSubset .containsOne ] ·ₗ [ 1r , s , s∈S' ]) ≡⟨ cong (fst χ') (sym ·ₗ-path) ⟩ fst χ' [ r , s , s∈S' ] ∎ fχ≡fχ' : fst χ ≡ fst χ' fχ≡fχ' = funExt (SQ.elimProp (λ _ → Bset _ _) []-path) -- sufficient conditions for having the universal property -- used as API in the leanprover-community/mathlib -- Corollary 3.2 in Atiyah-McDonald open S⁻¹RUniversalProp open Loc R' S' SMultClosedSubset record PathToS⁻¹R (A' : CommRing ℓ) (φ : CommRingHom R' A') : Type ℓ where constructor pathtoS⁻¹R open Units A' renaming (Rˣ to Aˣ) open CommRingStr (snd A') renaming (is-set to Aset ; 0r to 0a ; _·_ to _·A_) field φS⊆Aˣ : ∀ s → s ∈ S' → fst φ s ∈ Aˣ kerφ⊆annS : ∀ r → fst φ r ≡ 0a → ∃[ s ∈ S ] (s .fst) · r ≡ 0r surχ : ∀ a → ∃[ x ∈ R × S ] fst φ (x .fst) ·A (fst φ (x .snd .fst) ⁻¹) ⦃ φS⊆Aˣ _ (x .snd .snd) ⦄ ≡ a S⁻¹RCharEquiv : (A' : CommRing ℓ) (φ : CommRingHom R' A') → PathToS⁻¹R A' φ → CommRingEquiv S⁻¹RAsCommRing A' S⁻¹RCharEquiv A' φ cond = S⁻¹R≃A , χ .snd where open CommRingStr (snd A') renaming ( is-set to Aset ; 0r to 0a ; _·_ to _·A_ ; 1r to 1a ; ·IdR to ·A-rid) open Units A' renaming (Rˣ to Aˣ ; RˣInvClosed to AˣInvClosed) open PathToS⁻¹R ⦃...⦄ private A = fst A' instance _ = cond χ = (S⁻¹RHasUniversalProp A' φ φS⊆Aˣ .fst .fst) open RingHomTheory χ S⁻¹R≃A : S⁻¹R ≃ A S⁻¹R≃A = fst χ , isEmbedding×isSurjection→isEquiv (Embχ , Surχ) where Embχ : isEmbedding (fst χ) Embχ = injEmbedding squash/ Aset (ker≡0→inj λ {x} → kerχ≡0 x) where kerχ≡0 : (r/s : S⁻¹R) → fst χ r/s ≡ 0a → r/s ≡ 0ₗ kerχ≡0 = SQ.elimProp (λ _ → isPropΠ λ _ → squash/ _ _) kerχ≡[] where kerχ≡[] : (a : R × S) → fst χ [ a ] ≡ 0a → [ a ] ≡ 0ₗ kerχ≡[] (r , s , s∈S') p = PT.rec (squash/ _ _) Σhelper (kerφ⊆annS r (UnitsAreNotZeroDivisors _ _ p)) where instance _ : fst φ s ∈ Aˣ _ = φS⊆Aˣ s s∈S' _ : fst φ s ⁻¹ ∈ Aˣ _ = AˣInvClosed (fst φ s) Σhelper : Σ[ s ∈ S ] (s .fst) · r ≡ 0r → [ r , s , s∈S' ] ≡ 0ₗ Σhelper ((u , u∈S') , q) = eq/ _ _ ((u , u∈S') , path) where path : u · r · 1r ≡ u · 0r · s path = (λ i → ·IdR (q i) i) ∙∙ sym (0LeftAnnihilates _) ∙∙ cong (_· s) (sym (0RightAnnihilates _)) Surχ : isSurjection (fst χ) Surχ a = PT.rec isPropPropTrunc (λ x → PT.∣ [ x .fst ] , x .snd ∣₁) (surχ a) S⁻¹RChar : (A' : CommRing ℓ) (φ : CommRingHom R' A') → PathToS⁻¹R A' φ → S⁻¹RAsCommRing ≡ A' S⁻¹RChar A' φ cond = uaCommRing (S⁻¹RCharEquiv A' φ cond)
39.669031
103
0.455721
062577b2443231d4c09f56a3c7077796ce4df15e
5,953
agda
Agda
agda/course/2017-conor_mcbride_cs410/CS410-17-master/exercises/CS410-Prelude.agda
haroldcarr/learn-haskell-coq-ml-etc
3dc7abca7ad868316bb08f31c77fbba0d3910225
[ "Unlicense" ]
36
2015-01-29T14:37:15.000Z
2021-07-30T06:55:03.000Z
agda/course/2017-conor_mcbride_cs410/CS410-17-master/exercises/CS410-Prelude.agda
haroldcarr/learn-haskell-coq-ml-etc
3dc7abca7ad868316bb08f31c77fbba0d3910225
[ "Unlicense" ]
null
null
null
agda/course/2017-conor_mcbride_cs410/CS410-17-master/exercises/CS410-Prelude.agda
haroldcarr/learn-haskell-coq-ml-etc
3dc7abca7ad868316bb08f31c77fbba0d3910225
[ "Unlicense" ]
8
2015-04-13T21:40:15.000Z
2021-09-21T15:58:10.000Z
module CS410-Prelude where ------------------------------------------------------------------------------ ------------------------------------------------------------------------------ -- Standard Equipment for use in Exercises ------------------------------------------------------------------------------ ------------------------------------------------------------------------------ ------------------------------------------------------------------------------ -- functional equipment (types may be generalized later) ------------------------------------------------------------------------------ -- the polymorphic identity function id : {X : Set} -> X -> X id x = x -- standard composition: f << g is "f after g" _<<_ : {X Y Z : Set} -> (Y -> Z) -> (X -> Y) -> (X -> Z) (f << g) x = f (g x) -- diagrammatic composition: f >> g is "f then g" _>>_ : {X Y Z : Set} -> (X -> Y) -> (Y -> Z) -> (X -> Z) -- ^^^^^^^^ dominoes! (f >> g) x = g (f x) infixr 5 _>>_ -- infix application _$_ : {S : Set}{T : S -> Set}(f : (x : S) -> T x)(s : S) -> T s f $ s = f s infixl 2 _$_ ------------------------------------------------------------------------------ -- some basic "logical" types ------------------------------------------------------------------------------ data Zero : Set where -- to give a value in a data, choose one constructor -- there are no constructors -- so that's impossible record One : Set where -- to give a value in a record type, fill all its fields -- there are no fields -- so that's trivial -- (can we have a constructor, for convenience?) constructor <> data _+_ (S : Set)(T : Set) : Set where -- "where" wants an indented block -- to offer a choice of constructors, list them with their types inl : S -> S + T -- constructors can pack up stuff inr : T -> S + T -- in Haskell, this was called "Either S T" record Sg (S : Set)(T : S -> Set) : Set where -- Sg is short for "Sigma" constructor _,_ field -- introduces a bunch of fields, listed with their types fst : S snd : T fst -- make _*_ from Sg ? open Sg public _*_ : Set -> Set -> Set S * T = Sg S \ _ -> T infixr 4 _,_ _*_ ------------------------------------------------------------------------------ -- natural numbers and addition ------------------------------------------------------------------------------ data Nat : Set where zero : Nat suc : Nat -> Nat -- recursive data type {-# BUILTIN NATURAL Nat #-} -- ^^^^^^^^^^^^^^^^^^^ this pragma lets us use decimal notation _+N_ : Nat -> Nat -> Nat zero +N y = y suc x +N y = suc (x +N y) -- there are other choices ------------------------------------------------------------------------------ -- equality ------------------------------------------------------------------------------ data _==_ {X : Set} : X -> X -> Set where refl : (x : X) -> x == x -- the relation that's "only reflexive" {-# BUILTIN EQUALITY _==_ #-} -- we'll see what that's for, later _=$=_ : {X Y : Set}{f f' : X -> Y}{x x' : X} -> f == f' -> x == x' -> f x == f' x' refl f =$= refl x = refl (f x) _=$_ : {S : Set}{T : S -> Set}{f g : (x : S) -> T x} -> (f == g) -> (x : S) -> f x == g x refl f =$ x = refl (f x) infixl 2 _=$=_ _=$_ sym : {X : Set}{x y : X} -> x == y -> y == x sym (refl x) = refl x _[QED] : {X : Set}(x : X) -> x == x x [QED] = refl x _=[_>=_ : {X : Set}(x : X){y z : X} -> x == y -> y == z -> x == z x =[ refl .x >= q = q _=<_]=_ : {X : Set}(x : X){y z : X} -> y == x -> y == z -> x == z x =< refl .x ]= q = q infixr 1 _=[_>=_ _=<_]=_ infixr 2 _[QED] ------------------------------------------------------------------------------ -- greater-than-or-equals ------------------------------------------------------------------------------ _>=_ : Nat -> Nat -> Set x >= zero = One zero >= suc y = Zero suc x >= suc y = x >= y refl->= : (n : Nat) -> n >= n refl->= zero = record {} refl->= (suc n) = refl->= n trans->= : (x y z : Nat) -> x >= y -> y >= z -> x >= z trans->= x y zero x>=y y>=z = record {} trans->= x zero (suc z) x>=y () trans->= zero (suc y) (suc z) () y>=z trans->= (suc x) (suc y) (suc z) x>=y y>=z = trans->= x y z x>=y y>=z suc->= : (x : Nat) -> suc x >= x suc->= zero = <> suc->= (suc x) = suc->= x ---------------------------------------------------------------------------- -- Two -- the type of Boolean values ---------------------------------------------------------------------------- data Two : Set where tt ff : Two {-# BUILTIN BOOL Two #-} {-# BUILTIN TRUE tt #-} {-# BUILTIN FALSE ff #-} -- nondependent conditional with traditional syntax if_then_else_ : forall {l}{X : Set l} -> Two -> X -> X -> X if tt then t else e = t if ff then t else e = e -- dependent conditional cooked for partial application caseTwo : forall {l}{P : Two -> Set l} -> P tt -> P ff -> (b : Two) -> P b caseTwo t f tt = t caseTwo t f ff = f ---------------------------------------------------------------------------- -- lists ---------------------------------------------------------------------------- data List (X : Set) : Set where [] : List X _,-_ : (x : X)(xs : List X) -> List X infixr 4 _,-_ {-# COMPILE GHC List = data [] ([] | (:)) #-} {-# BUILTIN LIST List #-} --{-# BUILTIN NIL [] #-} --{-# BUILTIN CONS _,-_ #-} ---------------------------------------------------------------------------- -- chars and strings ---------------------------------------------------------------------------- postulate -- this means that we just suppose the following things exist... Char : Set String : Set {-# BUILTIN CHAR Char #-} {-# BUILTIN STRING String #-} primitive -- these are baked in; they even work! primCharEquality : Char -> Char -> Two primStringAppend : String -> String -> String primStringToList : String -> List Char primStringFromList : List Char -> String
30.84456
89
0.38804
232dec506d65e172b0332e4f020b67b2d4833d37
259
agda
Agda
test/Succeed/Issue327.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue327.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue327.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Issue327 where open import Common.Prelude open import Common.Reflection _==_ : QName → QName → Bool _==_ = primQNameEquality postulate Dec : Bool → Set _≟_ : (x y : QName) → Dec (x == y) Foo : Set₁ Foo with quote Foo ≟ quote Foo ... | _ = Set
15.235294
36
0.656371
cb4d744b482df06a13228608fedc24ae4b2e425e
543
agda
Agda
archive/agda-1/Foreword.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
archive/agda-1/Foreword.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
1
2019-04-29T00:35:04.000Z
2019-05-11T23:33:04.000Z
archive/agda-1/Foreword.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
module Foreword where open import Relation.Binary --open Setoid ⦃ … ⦄ --open IsEquivalence ⦃ … ⦄ open import Level record HasEquivalence (A : Set) ℓ : Set (suc ℓ) where field _≈_ : Rel A ℓ ⦃ isEquivalence ⦄ : IsEquivalence _≈_ setoid : Setoid _ _ Setoid.Carrier setoid = A Setoid._≈_ setoid = _≈_ Setoid.isEquivalence setoid = isEquivalence open HasEquivalence ⦃ … ⦄ module TestEquivalence (A : Set) (B : Set) ⦃ _ : HasEquivalence A zero ⦄ ⦃ _ : HasEquivalence B zero ⦄ where testA : (x : A) → x ≈ x testA = {!!}
20.884615
108
0.655617
dc8cd2fb2f65dab5377307fbe9196079bc72d32d
2,832
agda
Agda
Cats/Category/Setoids/Facts/Products.agda
alessio-b-zak/cats
a3b69911c4c6ec380ddf6a0f4510d3a755734b86
[ "MIT" ]
null
null
null
Cats/Category/Setoids/Facts/Products.agda
alessio-b-zak/cats
a3b69911c4c6ec380ddf6a0f4510d3a755734b86
[ "MIT" ]
null
null
null
Cats/Category/Setoids/Facts/Products.agda
alessio-b-zak/cats
a3b69911c4c6ec380ddf6a0f4510d3a755734b86
[ "MIT" ]
null
null
null
module Cats.Category.Setoids.Facts.Products where open import Data.Product as P using (_,_ ; <_,_>) open import Relation.Binary using (Setoid) open import Relation.Binary.Product.Pointwise using (×-setoid) open import Cats.Category open import Cats.Category.Setoids as Setoids using (Setoids ; ≈-intro ; ≈-elim) open import Cats.Util.Conv open Setoid using (Carrier ; refl ; sym ; trans) renaming (_≈_ to _≣_) -- The existence of binary products, proven below, already follows from the -- existence of general products, proven further below. We still construct them -- explicitly because the definitions in this module are much easier to work -- with. module BuildBinary l l≈ where infixr 2 _×_ open Category (Setoids l l≈) open Setoids._⇒_ using (resp) _×_ : Obj → Obj → Obj _×_ = ×-setoid projl : ∀ {A B} → A × B ⇒ A projl {A} {B} = record { arr = P.proj₁ ; resp = λ { (eq₁ , eq₂) → eq₁ } } projr : ∀ {A B} → A × B ⇒ B projr {A} {B} = record { arr = P.proj₂ ; resp = λ { (eq₁ , eq₂) → eq₂ } } ⟨_,_⟩ : ∀ {X A B} → X ⇒ A → X ⇒ B → X ⇒ A × B ⟨_,_⟩ {A = A} {B} xl xr = record { arr = < xl ⃗ , xr ⃗ > ; resp = λ eq → resp xl eq , resp xr eq } isBinaryProduct : ∀ {A B} → IsBinaryProduct (A × B) projl projr isBinaryProduct xl xr = record { arr = ⟨ xl , xr ⟩ ; prop = (≈-intro λ eq → resp xl eq) , (≈-intro λ eq → resp xr eq) ; unique = λ { (eq₁ , eq₂) → ≈-intro λ x≈y → ≈-elim eq₁ x≈y , ≈-elim eq₂ x≈y } } _×′_ : ∀ A B → BinaryProduct A B A ×′ B = mkBinaryProduct projl projr isBinaryProduct instance hasBinaryProducts : ∀ l l≈ → HasBinaryProducts (Setoids l l≈) hasBinaryProducts l l≈ .HasBinaryProducts._×′_ = BuildBinary._×′_ l l≈ module Build l {I : Set l} where open Category (Setoids l l) open Setoids._⇒_ using (resp) Π : (O : I → Obj) → Obj Π O = record { Carrier = ∀ i → Carrier (O i) ; _≈_ = λ f g → ∀ i → _≣_ (O i) (f i) (g i) ; isEquivalence = record { refl = λ i → refl (O i) ; sym = λ eq i → sym (O i) (eq i) ; trans = λ eq₁ eq₂ i → trans (O i) (eq₁ i) (eq₂ i) } } proj : ∀ {O : I → Obj} i → Π O ⇒ O i proj i = record { arr = λ f → f i ; resp = λ eq → eq i } isProduct : ∀ {O : I → Obj} → IsProduct O (Π O) proj isProduct x = record { arr = record { arr = λ a i → (x i ⃗) a ; resp = λ eq i → resp (x i) eq } ; prop = λ i → ≈-intro λ eq → resp (x i) eq ; unique = λ x-candidate → ≈-intro λ eq i → ≈-elim (x-candidate i) eq } Π′ : (O : I → Obj) → Product O Π′ O = record { prod = Π O ; proj = proj ; isProduct = isProduct } instance hasProducts : ∀ l → HasProducts l (Setoids l l) hasProducts l = record { Π′ = Build.Π′ l }
25.285714
82
0.550847
d0f31e6b1aef204686363a5b778e1c3d2f86f445
13,436
agda
Agda
src/STLC/Coquand/Soundness.agda
mietek/coquand-kovacs
bd626509948fbf8503ec2e31c1852e1ac6edcc79
[ "X11" ]
null
null
null
src/STLC/Coquand/Soundness.agda
mietek/coquand-kovacs
bd626509948fbf8503ec2e31c1852e1ac6edcc79
[ "X11" ]
null
null
null
src/STLC/Coquand/Soundness.agda
mietek/coquand-kovacs
bd626509948fbf8503ec2e31c1852e1ac6edcc79
[ "X11" ]
null
null
null
module STLC.Coquand.Soundness where open import STLC.Coquand.Completeness public -------------------------------------------------------------------------------- -- Un⟦_⟧ postulate ⟦_⟧Un : ∀ {Γ Ξ A} → {ρ : Γ ⊩⋆ Ξ} → (M : Ξ ⊢ A) → Un⋆ ρ → Un (⟦ M ⟧ ρ) -- 𝒰⋆⟦_⟧ₛ postulate ⟦_⟧Un⋆ : ∀ {Γ Ξ Φ} → {ρ : Γ ⊩⋆ Ξ} → (σ : Ξ ⊢⋆ Φ) → Un⋆ ρ → Un⋆ (⟦ σ ⟧⋆ ρ) postulate ⟦_⟧Eq : ∀ {Γ Ξ A} → {ρ₁ ρ₂ : Γ ⊩⋆ Ξ} → (M : Ξ ⊢ A) → Eq⋆ ρ₁ ρ₂ → Un⋆ ρ₁ → Un⋆ ρ₂ → Eq (⟦ M ⟧ ρ₁) (⟦ M ⟧ ρ₂) -- Eq⋆⟦_⟧ₛ postulate ⟦_⟧Eq⋆ : ∀ {Γ Ξ Φ} → {ρ₁ ρ₂ : Γ ⊩⋆ Ξ} → (σ : Ξ ⊢⋆ Φ) → Eq⋆ ρ₁ ρ₂ → Un⋆ ρ₁ → Un⋆ ρ₂ → Eq⋆ (⟦ σ ⟧⋆ ρ₁) (⟦ σ ⟧⋆ ρ₂) -------------------------------------------------------------------------------- -- ⟦_⟧⬗Eq = symEq ∘ ↑⟨_⟩Eq⟦_⟧ ⟦_⟧⬗Eq : ∀ {Γ Γ′ Ξ A} → {ρ : Γ ⊩⋆ Ξ} → (M : Ξ ⊢ A) (η : Γ′ ∋⋆ Γ) → Un⋆ ρ → Eq (⟦ M ⟧ (η ⬗ ρ)) (acc η (⟦ M ⟧ ρ)) ⟦_⟧⬗Eq (𝓋 i) η υ = get⬗Eq η i υ ⟦_⟧⬗Eq (ƛ M) η υ = eq⊃ (λ η′ u → ⟦ M ⟧Eq (comp⬗◇Eq⋆ η′ η υ , reflEq u) (cong⬗Un⋆ η′ (cong⬗Un⋆ η υ) , u) (cong⬗Un⋆ (η′ ○ η) υ , u)) ⟦_⟧⬗Eq (M ∙ N) η υ = cong⟦∙⟧Eq idᵣ (⟦ M ⟧⬗Eq η υ) (⟦ M ⟧Un (cong⬗Un⋆ η υ)) (congaccUn η (⟦ M ⟧Un υ)) (⟦ N ⟧⬗Eq η υ) (⟦ N ⟧Un (cong⬗Un⋆ η υ)) (congaccUn η (⟦ N ⟧Un υ)) ⦙ acc⟦∙⟧idEq η (⟦ M ⟧Un υ) (congaccUn η (⟦ N ⟧Un υ)) ⦙ (cong⟦∙⟧Eq η ((lidaccEq (⟦ M ⟧Un υ)) ⁻¹) (⟦ M ⟧Un υ) (congaccUn idᵣ (⟦ M ⟧Un υ)) (reflEq (congaccUn η (⟦ N ⟧Un υ))) (congaccUn η (⟦ N ⟧Un υ)) (congaccUn η (⟦ N ⟧Un υ)) ⦙ acc⟦∙⟧Eq idᵣ η (⟦ M ⟧Un υ) (⟦ N ⟧Un υ)) -- ⟦_⟧⬗Eq⋆ = symEq ∘ ↑⟨_⟩Eq⋆⟦_⟧ₛ ⟦_⟧⬗Eq⋆ : ∀ {Γ Γ′ Ξ Φ} → {ρ : Γ ⊩⋆ Ξ} → (σ : Ξ ⊢⋆ Φ) (η : Γ′ ∋⋆ Γ) → Un⋆ ρ → Eq⋆ (⟦ σ ⟧⋆ (η ⬗ ρ)) (η ⬗ ⟦ σ ⟧⋆ ρ) ⟦_⟧⬗Eq⋆ ∅ η υ = ∅ ⟦_⟧⬗Eq⋆ (σ , M) η υ = ⟦ σ ⟧⬗Eq⋆ η υ , ⟦ M ⟧⬗Eq η υ -------------------------------------------------------------------------------- -- TODO: Generalise to zap⬖ postulate aux₄₈₁ : ∀ {Γ Ξ A} → {ρ : Γ ⊩⋆ Ξ} {a : Γ ⊩ A} → Un⋆ ρ → Eq⋆ ((ρ , a) ⬖ wkᵣ idᵣ) ρ -- TODO -- Basic properties of _◇_ -- Advanced properties of _◇_ -- Basic properties of _⬗_ -- Basic properties of _◆_ -- Advanced properties of _⬗_ -- Advanced properties of _◆_ -- TODO: Fix the instance argument problem; abstract over models; rename η to ξ… -------------------------------------------------------------------------------- renlift⟦_⟧Eq : ∀ {Γ Γ′ A B w w′} → {ρ : w ⊩⋆ Γ′} {a : w′ ⊩ A} → (M : Γ , A ⊢ B) (η₁ : Γ′ ∋⋆ Γ) (η₂ : w′ ∋⋆ w) → Un⋆ ρ → Un a → Eq (⟦ ren (liftᵣ {A} η₁) M ⟧ (η₂ ⬗ ρ , a)) (⟦ M ⟧ (η₂ ⬗ (ρ ⬖ η₁) , a)) renlift⟦_⟧Eq (𝓋 zero) η₁ η₂ υ u = reflEq u renlift⟦_⟧Eq {ρ = ρ} {a} (𝓋 (suc i)) η₁ η₂ υ u = ≡→Eq ((getᵥ (η₂ ⬗ ρ , a)) & natgetᵣ η₁ i) (conggetUn (getᵣ (wkᵣ η₁) i) (cong⬗Un⋆ η₂ υ , u)) ⦙ get⬖Eq η₁ (getᵣ η₁ i) i (cong⬗Un⋆ η₂ υ) ⁻¹ ⦙ conggetEq i (comp⬗⬖Eq⋆ η₂ η₁ υ ⁻¹) renlift⟦_⟧Eq (ƛ M) η₁ η₂ υ u = eq⊃ (λ η′ u′ → renlift⟦ M ⟧Eq (liftᵣ η₁) η′ (cong⬗Un⋆ η₂ υ , u) u′ ⦙ ⟦ M ⟧Eq ( ( cong⬗Eq⋆ η′ (( comp⬗⬖Eq⋆ η₂ η₁ υ ⦙ zap⬖Eq⋆ (wkᵣ η₁) η₁ (cong⬗Un⋆ η₂ υ) ⁻¹ ) ⁻¹) , reflEq (congaccUn η′ u) ) , reflEq u′ ) ((cong⬗Un⋆ η′ (cong⬖Un⋆ (wkᵣ η₁) (cong⬗Un⋆ η₂ υ , u)) , congaccUn η′ u) , u′) ((cong⬗Un⋆ η′ (cong⬗Un⋆ η₂ (cong⬖Un⋆ η₁ υ)) , congaccUn η′ u) , u′)) renlift⟦_⟧Eq (M ∙ N) η₁ η₂ υ u = cong⟦∙⟧Eq idᵣ (renlift⟦ M ⟧Eq η₁ η₂ υ u) (⟦ ren (liftᵣ η₁) M ⟧Un (cong⬗Un⋆ η₂ υ , u)) (⟦ M ⟧Un (cong⬗Un⋆ η₂ (cong⬖Un⋆ η₁ υ) , u)) (renlift⟦ N ⟧Eq η₁ η₂ υ u) (⟦ ren (liftᵣ η₁) N ⟧Un (cong⬗Un⋆ η₂ υ , u)) (⟦ N ⟧Un (cong⬗Un⋆ η₂ (cong⬖Un⋆ η₁ υ) , u)) -------------------------------------------------------------------------------- renwk⟦_⟧Eq : ∀ {Γ Γ′ A C w} → {ρ : w ⊩⋆ Γ′} {a : w ⊩ A} → (M : Γ ⊢ C) (η : Γ′ ∋⋆ Γ) → Un⋆ ρ → Un a → Eq (⟦ ren (wkᵣ {A} η) M ⟧ (ρ , a)) (⟦ M ⟧ (ρ ⬖ η)) renwk⟦_⟧Eq (𝓋 i) η υ u = get⬖Eq (wkᵣ η) (getᵣ (wkᵣ η) i) i (υ , u) ⁻¹ ⦙ conggetEq i (zap⬖Eq⋆ (wkᵣ η) η υ) renwk⟦_⟧Eq (ƛ M) η υ u = eq⊃ (λ η′ u′ → renlift⟦ M ⟧Eq (wkᵣ η) η′ (υ , u) u′ ⦙ ⟦ M ⟧Eq (cong⬗Eq⋆ η′ (zap⬖Eq⋆ (wkᵣ η) η υ) , reflEq u′) (cong⬗Un⋆ η′ (cong⬖Un⋆ (wkᵣ η) (υ , u)) , u′) (cong⬗Un⋆ η′ (cong⬖Un⋆ η υ) , u′)) renwk⟦_⟧Eq (M ∙ N) η υ u = cong⟦∙⟧Eq idᵣ (renwk⟦ M ⟧Eq η υ u) (⟦ ren (wkᵣ η) M ⟧Un (υ , u)) (⟦ M ⟧Un (cong⬖Un⋆ η υ)) (renwk⟦ N ⟧Eq η υ u) (⟦ ren (wkᵣ η) N ⟧Un (υ , u)) (⟦ N ⟧Un (cong⬖Un⋆ η υ)) -------------------------------------------------------------------------------- wk⟦_⟧Eq : ∀ {Γ A C w} → {ρ : w ⊩⋆ Γ} {a : w ⊩ A} → (M : Γ ⊢ C) → Un⋆ ρ → Un a → Eq (⟦ wk {A} M ⟧ (ρ , a)) (⟦ M ⟧ ρ) wk⟦_⟧Eq M υ u = renwk⟦ M ⟧Eq idᵣ υ u ⦙ ⟦ M ⟧Eq (rid⬖Eq⋆ υ) (cong⬖Un⋆ idᵣ υ) υ wk⟦_⟧Eq⋆ : ∀ {Γ Ξ A w} → {ρ : w ⊩⋆ Γ} {a : w ⊩ A} → (σ : Γ ⊢⋆ Ξ) → Un⋆ ρ → Un a → Eq⋆ (⟦ wkₛ {A} σ ⟧⋆ (ρ , a)) (⟦ σ ⟧⋆ ρ) wk⟦_⟧Eq⋆ ∅ υ u = ∅ wk⟦_⟧Eq⋆ (σ , M) υ u = wk⟦ σ ⟧Eq⋆ υ u , wk⟦ M ⟧Eq υ u -------------------------------------------------------------------------------- get⟦_⟧Eq : ∀ {Γ Ξ A w} → {ρ : w ⊩⋆ Γ} → (σ : Γ ⊢⋆ Ξ) (i : Ξ ∋ A) → Un⋆ ρ → Eq (⟦ getₛ σ i ⟧ ρ) (getᵥ (⟦ σ ⟧⋆ ρ) i) get⟦_⟧Eq (σ , M) zero υ = reflEq (⟦ M ⟧Un υ) get⟦_⟧Eq (σ , M) (suc i) υ = get⟦ σ ⟧Eq i υ -------------------------------------------------------------------------------- sublift⟦_⟧Eq : ∀ {Γ Ξ A B w} → {ρ : w ⊩⋆ Γ} {a : w ⊩ A} → (M : Ξ , A ⊢ B) (σ : Γ ⊢⋆ Ξ) → Un⋆ ρ → Un a → Eq (⟦ sub (liftₛ {A} σ) M ⟧ (ρ , a)) (⟦ M ⟧ (⟦ σ ⟧⋆ ρ , a)) sublift⟦_⟧Eq (𝓋 zero) σ υ u = reflEq u sublift⟦_⟧Eq {ρ = ρ} {a} (𝓋 (suc i)) σ υ u = ≡→Eq ((λ M′ → ⟦ M′ ⟧ (ρ , a)) & natgetₛ σ i) (⟦ getₛ (wkₛ σ) i ⟧Un (υ , u)) ⦙ wk⟦ getₛ σ i ⟧Eq υ u ⦙ get⟦ σ ⟧Eq i υ sublift⟦_⟧Eq (ƛ M) σ υ u = eq⊃ (λ η′ u′ → sublift⟦ M ⟧Eq (liftₛ σ) (cong⬗Un⋆ η′ υ , congaccUn η′ u) u′ ⦙ ⟦ M ⟧Eq ((⟦ wkₛ σ ⟧⬗Eq⋆ η′ (υ , u) , reflEq (congaccUn η′ u)) , reflEq u′) ((⟦ wkₛ σ ⟧Un⋆ (cong⬗Un⋆ η′ υ , congaccUn η′ u) , congaccUn η′ u) , u′) ((cong⬗Un⋆ η′ (⟦ wkₛ σ ⟧Un⋆ (υ , u)) , congaccUn η′ u) , u′) ⦙ ⟦ M ⟧Eq ((cong⬗Eq⋆ η′ (wk⟦ σ ⟧Eq⋆ υ u) , reflEq (congaccUn η′ u)) , reflEq u′) ((cong⬗Un⋆ η′ (⟦ wkₛ σ ⟧Un⋆ (υ , u)) , congaccUn η′ u) , u′) ((cong⬗Un⋆ η′ (⟦ σ ⟧Un⋆ υ) , congaccUn η′ u) , u′)) sublift⟦_⟧Eq (M ∙ N) σ υ u = cong⟦∙⟧Eq idᵣ (sublift⟦ M ⟧Eq σ υ u) (⟦ sub (liftₛ σ) M ⟧Un (υ , u)) (⟦ M ⟧Un (⟦ σ ⟧Un⋆ υ , u)) (sublift⟦ N ⟧Eq σ υ u) (⟦ sub (liftₛ σ) N ⟧Un (υ , u)) (⟦ N ⟧Un (⟦ σ ⟧Un⋆ υ , u)) -------------------------------------------------------------------------------- subliftwk⟦_⟧Eq : ∀ {Γ Ξ A A′ B w w′} → {ρ : w ⊩⋆ Γ} {a : w ⊩ A} {a′ : w′ ⊩ A′} → (M : Ξ , A′ ⊢ B) (σ : Γ ⊢⋆ Ξ) (η : w′ ∋⋆ w) → Un⋆ ρ → Un a → Un a′ → Eq (⟦ sub (liftₛ (wkₛ σ)) M ⟧ (η ⬗ ρ , acc η a , a′)) (⟦ sub (liftₛ σ) M ⟧ (η ⬗ ρ , a′)) subliftwk⟦_⟧Eq M σ η υ u u′ = sublift⟦ M ⟧Eq (wkₛ σ) (cong⬗Un⋆ η υ , congaccUn η u) u′ ⦙ ⟦ M ⟧Eq (wk⟦ σ ⟧Eq⋆ (cong⬗Un⋆ η υ) (congaccUn η u) , reflEq u′) (⟦ wkₛ σ ⟧Un⋆ (cong⬗Un⋆ η υ , congaccUn η u) , u′) (⟦ σ ⟧Un⋆ (cong⬗Un⋆ η υ) , u′) ⦙ sublift⟦ M ⟧Eq σ (cong⬗Un⋆ η υ) u′ ⁻¹ -------------------------------------------------------------------------------- subwk⟦_⟧Eq : ∀ {Γ Ξ A C w} → {ρ : w ⊩⋆ Γ} {a : w ⊩ A} → (M : Ξ ⊢ C) (σ : Γ ⊢⋆ Ξ) → Un⋆ ρ → Un a → Eq (⟦ sub (wkₛ {A} σ) M ⟧ (ρ , a)) (⟦ sub σ M ⟧ ρ) subwk⟦_⟧Eq {ρ = ρ} {a} (𝓋 i) σ υ u = ≡→Eq ((λ M′ → ⟦ M′ ⟧ (ρ , a)) & (natgetₛ σ i)) (⟦ getₛ (wkₛ σ) i ⟧Un (υ , u)) ⦙ wk⟦ getₛ σ i ⟧Eq υ u subwk⟦_⟧Eq (ƛ {A = A′} M) σ υ u = eq⊃ (λ η u′ → subliftwk⟦ M ⟧Eq σ η υ u u′) subwk⟦_⟧Eq (M ∙ N) σ υ u = cong⟦∙⟧Eq idᵣ (subwk⟦ M ⟧Eq σ υ u) (⟦ sub (wkₛ σ) M ⟧Un (υ , u)) (⟦ sub σ M ⟧Un υ) (subwk⟦ N ⟧Eq σ υ u) (⟦ sub (wkₛ σ) N ⟧Un (υ , u)) (⟦ sub σ N ⟧Un υ) -------------------------------------------------------------------------------- sub⟦_⟧Eq : ∀ {Γ Ξ A w} → {ρ : w ⊩⋆ Γ} → (M : Ξ ⊢ A) (σ : Γ ⊢⋆ Ξ) → Un⋆ ρ → Eq (⟦ sub σ M ⟧ ρ) (⟦ M ⟧ (⟦ σ ⟧⋆ ρ)) sub⟦_⟧Eq (𝓋 i) σ υ = get⟦ σ ⟧Eq i υ sub⟦_⟧Eq (ƛ M) σ υ = eq⊃ (λ η u → sublift⟦ M ⟧Eq σ (cong⬗Un⋆ η υ) u ⦙ ⟦ M ⟧Eq (⟦ σ ⟧⬗Eq⋆ η υ , reflEq u) (⟦ σ ⟧Un⋆ (cong⬗Un⋆ η υ) , u) (cong⬗Un⋆ η (⟦ σ ⟧Un⋆ υ) , u)) sub⟦_⟧Eq (M ∙ N) σ υ = cong⟦∙⟧Eq idᵣ (sub⟦ M ⟧Eq σ υ) (⟦ sub σ M ⟧Un υ) (⟦ M ⟧Un (⟦ σ ⟧Un⋆ υ)) (sub⟦ N ⟧Eq σ υ) (⟦ sub σ N ⟧Un υ) (⟦ N ⟧Un (⟦ σ ⟧Un⋆ υ)) -------------------------------------------------------------------------------- -- TODO: Rename this sublift⟦⟧Eq⁈ : ∀ {Γ Ξ A B w} → {ρ : w ⊩⋆ Γ} → (σ : Γ ⊢⋆ Ξ) (M : Ξ , A ⊢ B) (N : Γ ⊢ A) → Un⋆ ρ → Eq (⟦ sub (liftₛ {A} σ) M ⟧ (ρ , ⟦ N ⟧ ρ)) (⟦ sub (σ , N) M ⟧ ρ) sublift⟦⟧Eq⁈ {ρ = ρ} σ M N υ = sublift⟦ M ⟧Eq σ υ (⟦ N ⟧Un υ) ⦙ sub⟦ M ⟧Eq (σ , N) υ ⁻¹ -------------------------------------------------------------------------------- -- TODO: Generalise theorem 4 over models module _ where open 𝔐 canon mutual lemƛ : ∀ {Γ A B w} → {ρ : w ⊩⋆ Γ} {M M′ : Γ , A ⊢ B} → M ∼ M′ → Un⋆ ρ → Eq (⟦ ƛ M ⟧ ρ) (⟦ ƛ M′ ⟧ ρ) lemƛ p υ = eq⊃ (λ xs u → cong⟦ p ⟧Eq (cong⬗Un⋆ xs υ , u)) lem∙ : ∀ {Γ A B w} → {ρ : w ⊩⋆ Γ} {M M′ : Γ ⊢ A ⇒ B} {N N′ : Γ ⊢ A} → M ∼ M′ → N ∼ N′ → Un⋆ ρ → Eq (⟦ M ∙ N ⟧ ρ) (⟦ M′ ∙ N′ ⟧ ρ) lem∙ {M = M} {M′} {N} {N′} p q υ = cong⟦∙⟧Eq idᵣ (cong⟦ p ⟧Eq υ) (⟦ M ⟧Un υ) (⟦ M′ ⟧Un υ) (cong⟦ q ⟧Eq υ) (⟦ N ⟧Un υ) (⟦ N′ ⟧Un υ) lemred⇒ : ∀ {Γ Ξ A B w} → {ρ : w ⊩⋆ Γ} → (σ : Γ ⊢⋆ Ξ) (M : Ξ , A ⊢ B) (N : Γ ⊢ A) → Un⋆ ρ → Eq (⟦ sub σ (ƛ M) ∙ N ⟧ ρ) (⟦ sub (σ , N) M ⟧ ρ) lemred⇒ {ρ = ρ} σ M N υ = ⟦ sub (liftₛ σ) M ⟧Eq (lid⬗Eq⋆ υ , reflEq (⟦ N ⟧Un υ)) (cong⬗Un⋆ idᵣ υ , ⟦ N ⟧Un υ) (υ , ⟦ N ⟧Un υ) ⦙ sublift⟦⟧Eq⁈ σ M N υ lemexp⇒ : ∀ {Γ A B w} → {ρ : w ⊩⋆ Γ} → (M : Γ ⊢ A ⇒ B) → Un⋆ ρ → Eq (⟦ M ⟧ ρ) (⟦ ƛ (wk M ∙ 0) ⟧ ρ) lemexp⇒ {ρ = ρ} M υ = eq⊃ (λ η {a} u → acc⟦∙⟧idEq η (⟦ M ⟧Un υ) u ⁻¹ ⦙ cong⟦∙⟧Eq idᵣ (⟦ M ⟧⬗Eq η υ ⁻¹) (congaccUn η (⟦ M ⟧Un υ)) (⟦ M ⟧Un (cong⬗Un⋆ η υ)) (reflEq u) u u ⦙ cong⟦∙⟧Eq idᵣ (wk⟦ M ⟧Eq (cong⬗Un⋆ η υ) u ⁻¹) (⟦ M ⟧Un (cong⬗Un⋆ η υ)) (⟦ wk M ⟧Un (cong⬗Un⋆ η υ , u)) (reflEq u) u u) -- Theorem 4. cong⟦_⟧Eq : ∀ {Γ A w} → {M M′ : Γ ⊢ A} {ρ : w ⊩⋆ Γ} → M ∼ M′ → Un⋆ ρ → Eq (⟦ M ⟧ ρ) (⟦ M′ ⟧ ρ) cong⟦ refl∼ {M = M} ⟧Eq υ = reflEq (⟦ M ⟧Un υ) cong⟦ p ⁻¹∼ ⟧Eq υ = cong⟦ p ⟧Eq υ ⁻¹ cong⟦ p ⦙∼ q ⟧Eq υ = cong⟦ p ⟧Eq υ ⦙ cong⟦ q ⟧Eq υ cong⟦ ƛ∼ p ⟧Eq υ = lemƛ p υ cong⟦ p ∙∼ q ⟧Eq υ = lem∙ p q υ cong⟦ red⇒ σ M N ⟧Eq υ = lemred⇒ σ M N υ cong⟦ exp⇒ M ⟧Eq υ = lemexp⇒ M υ -------------------------------------------------------------------------------- -- Theorem 5. thm₅ : ∀ {Γ A} → (M M′ : Γ ⊢ A) → nf M ≡ nf M′ → M ∼ M′ thm₅ M M′ p = thm₂ M ⦙ ≡→∼ p ⦙ (thm₂ M′ ⁻¹) -------------------------------------------------------------------------------- -- proj⟨_⟩𝒰⋆ ⌊_⌋ᵤ : ∀ {Γ Γ′} → (η : Γ′ ∋⋆ Γ) → Un⋆ ⌊ η ⌋ᵥ ⌊ ∅ ⌋ᵤ = ∅ ⌊ η , i ⌋ᵤ = ⌊ η ⌋ᵤ , ⟪𝓋 i ⟫ᵤ -- refl𝒰⋆ idᵤ : ∀ {Γ} → Un⋆ (idᵥ {Γ}) idᵤ = ⌊ idᵣ ⌋ᵤ -- Theorem 6. thm₆ : ∀ {Γ A} → (M M′ : Γ ⊢ A) → M ∼ M′ → nf M ≡ nf M′ thm₆ M M′ p = cor₁ M M′ (cong⟦ p ⟧Eq idᵤ) --------------------------------------------------------------------------------
37.847887
131
0.295698
06a08ba9862731a9ae77d15a9df058acf412901b
400
agda
Agda
test/Succeed/ForallForParameters.agda
pthariensflame/agda
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/succeed/ForallForParameters.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
test/succeed/ForallForParameters.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
1
2019-03-05T20:02:38.000Z
2019-03-05T20:02:38.000Z
module ForallForParameters (F : Set -> Set -> Set) X {Y} (Z : F X Y) where data List A : Set where [] : List A _::_ : A -> List A -> List A module M A {B} (C : F A B) where data D : Set -> Set where d : A -> D A data P A : D A -> Set where data Q {A} X : P A X -> Set where module N I J K = M I {J} K open module O I J K = N I J K record R {I J} (K : F I J) : Set where
19.047619
56
0.515
4d4fe49170379f518f51cadcef8b16be267ecdbc
5,663
agda
Agda
Cubical/Foundations/Isomorphism.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
Cubical/Foundations/Isomorphism.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
1
2022-01-27T02:07:48.000Z
2022-01-27T02:07:48.000Z
Cubical/Foundations/Isomorphism.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
{- Theory about isomorphisms - Definitions of [section] and [retract] - Definition of isomorphisms ([Iso]) - Any isomorphism is an equivalence ([isoToEquiv]) -} {-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Foundations.Isomorphism where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Equiv.Base open import Cubical.Foundations.Function private variable ℓ ℓ' : Level A B C : Type ℓ -- Section and retract module _ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} where section : (f : A → B) → (g : B → A) → Type ℓ' section f g = ∀ b → f (g b) ≡ b -- NB: `g` is the retraction! retract : (f : A → B) → (g : B → A) → Type ℓ retract f g = ∀ a → g (f a) ≡ a record Iso {ℓ ℓ'} (A : Type ℓ) (B : Type ℓ') : Type (ℓ-max ℓ ℓ') where no-eta-equality constructor iso field fun : A → B inv : B → A rightInv : section fun inv leftInv : retract fun inv isIso : (A → B) → Type _ isIso {A = A} {B = B} f = Σ[ g ∈ (B → A) ] Σ[ _ ∈ section f g ] retract f g isoFunInjective : (f : Iso A B) → (x y : A) → Iso.fun f x ≡ Iso.fun f y → x ≡ y isoFunInjective f x y h = sym (Iso.leftInv f x) ∙∙ cong (Iso.inv f) h ∙∙ Iso.leftInv f y isoInvInjective : (f : Iso A B) → (x y : B) → Iso.inv f x ≡ Iso.inv f y → x ≡ y isoInvInjective f x y h = sym (Iso.rightInv f x) ∙∙ cong (Iso.fun f) h ∙∙ Iso.rightInv f y -- Any iso is an equivalence module _ (i : Iso A B) where open Iso i renaming ( fun to f ; inv to g ; rightInv to s ; leftInv to t) private module _ (y : B) (x0 x1 : A) (p0 : f x0 ≡ y) (p1 : f x1 ≡ y) where fill0 : I → I → A fill0 i = hfill (λ k → λ { (i = i1) → t x0 k ; (i = i0) → g y }) (inS (g (p0 (~ i)))) fill1 : I → I → A fill1 i = hfill (λ k → λ { (i = i1) → t x1 k ; (i = i0) → g y }) (inS (g (p1 (~ i)))) fill2 : I → I → A fill2 i = hfill (λ k → λ { (i = i1) → fill1 k i1 ; (i = i0) → fill0 k i1 }) (inS (g y)) p : x0 ≡ x1 p i = fill2 i i1 sq : I → I → A sq i j = hcomp (λ k → λ { (i = i1) → fill1 j (~ k) ; (i = i0) → fill0 j (~ k) ; (j = i1) → t (fill2 i i1) (~ k) ; (j = i0) → g y }) (fill2 i j) sq1 : I → I → B sq1 i j = hcomp (λ k → λ { (i = i1) → s (p1 (~ j)) k ; (i = i0) → s (p0 (~ j)) k ; (j = i1) → s (f (p i)) k ; (j = i0) → s y k }) (f (sq i j)) lemIso : (x0 , p0) ≡ (x1 , p1) lemIso i .fst = p i lemIso i .snd = λ j → sq1 i (~ j) isoToIsEquiv : isEquiv f isoToIsEquiv .equiv-proof y .fst .fst = g y isoToIsEquiv .equiv-proof y .fst .snd = s y isoToIsEquiv .equiv-proof y .snd z = lemIso y (g y) (fst z) (s y) (snd z) isoToEquiv : Iso A B → A ≃ B isoToEquiv i .fst = _ isoToEquiv i .snd = isoToIsEquiv i isoToPath : Iso A B → A ≡ B isoToPath {A = A} {B = B} f i = Glue B (λ { (i = i0) → (A , isoToEquiv f) ; (i = i1) → (B , idEquiv B) }) open Iso invIso : Iso A B → Iso B A fun (invIso f) = inv f inv (invIso f) = fun f rightInv (invIso f) = leftInv f leftInv (invIso f) = rightInv f compIso : Iso A B → Iso B C → Iso A C fun (compIso i j) = fun j ∘ fun i inv (compIso i j) = inv i ∘ inv j rightInv (compIso i j) b = cong (fun j) (rightInv i (inv j b)) ∙ rightInv j b leftInv (compIso i j) a = cong (inv i) (leftInv j (fun i a)) ∙ leftInv i a composesToId→Iso : (G : Iso A B) (g : B → A) → G .fun ∘ g ≡ idfun B → Iso B A fun (composesToId→Iso _ g _) = g inv (composesToId→Iso j _ _) = fun j rightInv (composesToId→Iso i g path) b = sym (leftInv i (g (fun i b))) ∙∙ cong (λ g → inv i (g (fun i b))) path ∙∙ leftInv i b leftInv (composesToId→Iso _ _ path) b i = path i b idIso : Iso A A fun idIso = idfun _ inv idIso = idfun _ rightInv idIso _ = refl leftInv idIso _ = refl LiftIso : Iso A (Lift {i = ℓ} {j = ℓ'} A) fun LiftIso = lift inv LiftIso = lower rightInv LiftIso _ = refl leftInv LiftIso _ = refl isContr→Iso : isContr A → isContr B → Iso A B fun (isContr→Iso _ Bctr) _ = Bctr .fst inv (isContr→Iso Actr _) _ = Actr .fst rightInv (isContr→Iso _ Bctr) = Bctr .snd leftInv (isContr→Iso Actr _) = Actr .snd isProp→Iso : (Aprop : isProp A) (Bprop : isProp B) (f : A → B) (g : B → A) → Iso A B fun (isProp→Iso _ _ f _) = f inv (isProp→Iso _ _ _ g) = g rightInv (isProp→Iso _ Bprop f g) b = Bprop (f (g b)) b leftInv (isProp→Iso Aprop _ f g) a = Aprop (g (f a)) a domIso : ∀ {ℓ} {C : Type ℓ} → Iso A B → Iso (A → C) (B → C) fun (domIso e) f b = f (inv e b) inv (domIso e) f a = f (fun e a) rightInv (domIso e) f i x = f (rightInv e x i) leftInv (domIso e) f i x = f (leftInv e x i) -- Helpful notation _Iso⟨_⟩_ : ∀ {ℓ ℓ' ℓ''} {B : Type ℓ'} {C : Type ℓ''} (X : Type ℓ) → Iso X B → Iso B C → Iso X C _ Iso⟨ f ⟩ g = compIso f g _∎Iso : ∀ {ℓ} (A : Type ℓ) → Iso A A A ∎Iso = idIso {A = A} infixr 0 _Iso⟨_⟩_ infix 1 _∎Iso codomainIso : ∀ {ℓ ℓ' ℓ''} {A : Type ℓ} {B : Type ℓ'} {C : Type ℓ''} → Iso B C → Iso (A → B) (A → C) Iso.fun (codomainIso is) f a = Iso.fun is (f a) Iso.inv (codomainIso is) f a = Iso.inv is (f a) Iso.rightInv (codomainIso is) f = funExt λ a → Iso.rightInv is (f a) Iso.leftInv (codomainIso is) f = funExt λ a → Iso.leftInv is (f a)
31.287293
95
0.515098
1d8080ab44a38bbbfa32aab73e9e2ef4d74d52b0
9,104
agda
Agda
Definition/Conversion/Stability.agda
Vtec234/logrel-mltt
4746894adb5b8edbddc8463904ee45c2e9b29b69
[ "MIT" ]
null
null
null
Definition/Conversion/Stability.agda
Vtec234/logrel-mltt
4746894adb5b8edbddc8463904ee45c2e9b29b69
[ "MIT" ]
null
null
null
Definition/Conversion/Stability.agda
Vtec234/logrel-mltt
4746894adb5b8edbddc8463904ee45c2e9b29b69
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} module Definition.Conversion.Stability where open import Definition.Untyped open import Definition.Untyped.Properties open import Definition.Typed open import Definition.Typed.Weakening open import Definition.Conversion open import Definition.Conversion.Soundness open import Definition.Typed.Consequences.Syntactic open import Definition.Typed.Consequences.Substitution open import Tools.Product import Tools.PropositionalEquality as PE -- Equality of contexts. data ⊢_≡_ : (Γ Δ : Con Term) → Set where ε : ⊢ ε ≡ ε _∙_ : ∀ {Γ Δ A B} → ⊢ Γ ≡ Δ → Γ ⊢ A ≡ B → ⊢ Γ ∙ A ≡ Δ ∙ B mutual -- Syntactic validity and conversion substitution of a context equality. contextConvSubst : ∀ {Γ Δ} → ⊢ Γ ≡ Δ → ⊢ Γ × ⊢ Δ × Δ ⊢ˢ idSubst ∷ Γ contextConvSubst ε = ε , ε , id contextConvSubst (_∙_ {Γ} {Δ} {A} {B} Γ≡Δ A≡B) = let ⊢Γ , ⊢Δ , [σ] = contextConvSubst Γ≡Δ ⊢A , ⊢B = syntacticEq A≡B Δ⊢B = stability Γ≡Δ ⊢B in ⊢Γ ∙ ⊢A , ⊢Δ ∙ Δ⊢B , (wk1Subst′ ⊢Γ ⊢Δ Δ⊢B [σ] , conv (var (⊢Δ ∙ Δ⊢B) here) (PE.subst (λ x → _ ⊢ _ ≡ x) (wk1-tailId A) (wkEq (step id) (⊢Δ ∙ Δ⊢B) (stabilityEq Γ≡Δ (sym A≡B))))) -- Stability of types under equal contexts. stability : ∀ {A Γ Δ} → ⊢ Γ ≡ Δ → Γ ⊢ A → Δ ⊢ A stability Γ≡Δ A = let ⊢Γ , ⊢Δ , σ = contextConvSubst Γ≡Δ q = substitution A σ ⊢Δ in PE.subst (λ x → _ ⊢ x) (subst-id _) q -- Stability of type equality. stabilityEq : ∀ {A B Γ Δ} → ⊢ Γ ≡ Δ → Γ ⊢ A ≡ B → Δ ⊢ A ≡ B stabilityEq Γ≡Δ A≡B = let ⊢Γ , ⊢Δ , σ = contextConvSubst Γ≡Δ q = substitutionEq A≡B (substRefl σ) ⊢Δ in PE.subst₂ (λ x y → _ ⊢ x ≡ y) (subst-id _) (subst-id _) q -- Reflexivity of context equality. reflConEq : ∀ {Γ} → ⊢ Γ → ⊢ Γ ≡ Γ reflConEq ε = ε reflConEq (⊢Γ ∙ ⊢A) = reflConEq ⊢Γ ∙ refl ⊢A -- Symmetry of context equality. symConEq : ∀ {Γ Δ} → ⊢ Γ ≡ Δ → ⊢ Δ ≡ Γ symConEq ε = ε symConEq (Γ≡Δ ∙ A≡B) = symConEq Γ≡Δ ∙ stabilityEq Γ≡Δ (sym A≡B) -- Stability of terms. stabilityTerm : ∀ {t A Γ Δ} → ⊢ Γ ≡ Δ → Γ ⊢ t ∷ A → Δ ⊢ t ∷ A stabilityTerm Γ≡Δ t = let ⊢Γ , ⊢Δ , σ = contextConvSubst Γ≡Δ q = substitutionTerm t σ ⊢Δ in PE.subst₂ (λ x y → _ ⊢ x ∷ y) (subst-id _) (subst-id _) q -- Stability of term reduction. stabilityRedTerm : ∀ {t u A Γ Δ} → ⊢ Γ ≡ Δ → Γ ⊢ t ⇒ u ∷ A → Δ ⊢ t ⇒ u ∷ A stabilityRedTerm Γ≡Δ (conv d x) = conv (stabilityRedTerm Γ≡Δ d) (stabilityEq Γ≡Δ x) stabilityRedTerm Γ≡Δ (app-subst d x) = app-subst (stabilityRedTerm Γ≡Δ d) (stabilityTerm Γ≡Δ x) stabilityRedTerm Γ≡Δ (fst-subst ⊢F ⊢G t⇒) = fst-subst (stability Γ≡Δ ⊢F) (stability (Γ≡Δ ∙ refl ⊢F) ⊢G) (stabilityRedTerm Γ≡Δ t⇒) stabilityRedTerm Γ≡Δ (snd-subst ⊢F ⊢G t⇒) = snd-subst (stability Γ≡Δ ⊢F) (stability (Γ≡Δ ∙ refl ⊢F) ⊢G) (stabilityRedTerm Γ≡Δ t⇒) stabilityRedTerm Γ≡Δ (Σ-β₁ ⊢F ⊢G ⊢t ⊢u) = Σ-β₁ (stability Γ≡Δ ⊢F) (stability (Γ≡Δ ∙ refl ⊢F) ⊢G) (stabilityTerm Γ≡Δ ⊢t) (stabilityTerm Γ≡Δ ⊢u) stabilityRedTerm Γ≡Δ (Σ-β₂ ⊢F ⊢G ⊢t ⊢u) = Σ-β₂ (stability Γ≡Δ ⊢F) (stability (Γ≡Δ ∙ refl ⊢F) ⊢G) (stabilityTerm Γ≡Δ ⊢t) (stabilityTerm Γ≡Δ ⊢u) stabilityRedTerm Γ≡Δ (β-red x x₁ x₂) = β-red (stability Γ≡Δ x) (stabilityTerm (Γ≡Δ ∙ refl x) x₁) (stabilityTerm Γ≡Δ x₂) stabilityRedTerm Γ≡Δ (natrec-subst x x₁ x₂ d) = let ⊢Γ , _ , _ = contextConvSubst Γ≡Δ in natrec-subst (stability (Γ≡Δ ∙ refl (ℕⱼ ⊢Γ)) x) (stabilityTerm Γ≡Δ x₁) (stabilityTerm Γ≡Δ x₂) (stabilityRedTerm Γ≡Δ d) stabilityRedTerm Γ≡Δ (natrec-zero x x₁ x₂) = let ⊢Γ , _ , _ = contextConvSubst Γ≡Δ in natrec-zero (stability (Γ≡Δ ∙ refl (ℕⱼ ⊢Γ)) x) (stabilityTerm Γ≡Δ x₁) (stabilityTerm Γ≡Δ x₂) stabilityRedTerm Γ≡Δ (natrec-suc x x₁ x₂ x₃) = let ⊢Γ , _ , _ = contextConvSubst Γ≡Δ in natrec-suc (stabilityTerm Γ≡Δ x) (stability (Γ≡Δ ∙ refl (ℕⱼ ⊢Γ)) x₁) (stabilityTerm Γ≡Δ x₂) (stabilityTerm Γ≡Δ x₃) stabilityRedTerm Γ≡Δ (Emptyrec-subst x d) = Emptyrec-subst (stability Γ≡Δ x) (stabilityRedTerm Γ≡Δ d) -- Stability of type reductions. stabilityRed : ∀ {A B Γ Δ} → ⊢ Γ ≡ Δ → Γ ⊢ A ⇒ B → Δ ⊢ A ⇒ B stabilityRed Γ≡Δ (univ x) = univ (stabilityRedTerm Γ≡Δ x) -- Stability of type reduction closures. stabilityRed* : ∀ {A B Γ Δ} → ⊢ Γ ≡ Δ → Γ ⊢ A ⇒* B → Δ ⊢ A ⇒* B stabilityRed* Γ≡Δ (id x) = id (stability Γ≡Δ x) stabilityRed* Γ≡Δ (x ⇨ D) = stabilityRed Γ≡Δ x ⇨ stabilityRed* Γ≡Δ D -- Stability of term reduction closures. stabilityRed*Term : ∀ {t u A Γ Δ} → ⊢ Γ ≡ Δ → Γ ⊢ t ⇒* u ∷ A → Δ ⊢ t ⇒* u ∷ A stabilityRed*Term Γ≡Δ (id x) = id (stabilityTerm Γ≡Δ x) stabilityRed*Term Γ≡Δ (x ⇨ d) = stabilityRedTerm Γ≡Δ x ⇨ stabilityRed*Term Γ≡Δ d mutual -- Stability of algorithmic equality of neutrals. stability~↑ : ∀ {k l A Γ Δ} → ⊢ Γ ≡ Δ → Γ ⊢ k ~ l ↑ A → Δ ⊢ k ~ l ↑ A stability~↑ Γ≡Δ (var-refl x x≡y) = var-refl (stabilityTerm Γ≡Δ x) x≡y stability~↑ Γ≡Δ (app-cong k~l x) = app-cong (stability~↓ Γ≡Δ k~l) (stabilityConv↑Term Γ≡Δ x) stability~↑ Γ≡Δ (fst-cong p~r) = fst-cong (stability~↓ Γ≡Δ p~r) stability~↑ Γ≡Δ (snd-cong p~r) = snd-cong (stability~↓ Γ≡Δ p~r) stability~↑ Γ≡Δ (natrec-cong x₁ x₂ x₃ k~l) = let ⊢Γ , _ , _ = contextConvSubst Γ≡Δ in natrec-cong (stabilityConv↑ (Γ≡Δ ∙ (refl (ℕⱼ ⊢Γ))) x₁) (stabilityConv↑Term Γ≡Δ x₂) (stabilityConv↑Term Γ≡Δ x₃) (stability~↓ Γ≡Δ k~l) stability~↑ Γ≡Δ (Emptyrec-cong x₁ k~l) = Emptyrec-cong (stabilityConv↑ Γ≡Δ x₁) (stability~↓ Γ≡Δ k~l) -- Stability of algorithmic equality of neutrals of types in WHNF. stability~↓ : ∀ {k l A Γ Δ} → ⊢ Γ ≡ Δ → Γ ⊢ k ~ l ↓ A → Δ ⊢ k ~ l ↓ A stability~↓ Γ≡Δ ([~] A D whnfA k~l) = [~] A (stabilityRed* Γ≡Δ D) whnfA (stability~↑ Γ≡Δ k~l) -- Stability of algorithmic equality of types. stabilityConv↑ : ∀ {A B Γ Δ} → ⊢ Γ ≡ Δ → Γ ⊢ A [conv↑] B → Δ ⊢ A [conv↑] B stabilityConv↑ Γ≡Δ ([↑] A′ B′ D D′ whnfA′ whnfB′ A′<>B′) = [↑] A′ B′ (stabilityRed* Γ≡Δ D) (stabilityRed* Γ≡Δ D′) whnfA′ whnfB′ (stabilityConv↓ Γ≡Δ A′<>B′) -- Stability of algorithmic equality of types in WHNF. stabilityConv↓ : ∀ {A B Γ Δ} → ⊢ Γ ≡ Δ → Γ ⊢ A [conv↓] B → Δ ⊢ A [conv↓] B stabilityConv↓ Γ≡Δ (U-refl x) = let _ , ⊢Δ , _ = contextConvSubst Γ≡Δ in U-refl ⊢Δ stabilityConv↓ Γ≡Δ (ℕ-refl x) = let _ , ⊢Δ , _ = contextConvSubst Γ≡Δ in ℕ-refl ⊢Δ stabilityConv↓ Γ≡Δ (Empty-refl x) = let _ , ⊢Δ , _ = contextConvSubst Γ≡Δ in Empty-refl ⊢Δ stabilityConv↓ Γ≡Δ (Unit-refl x) = let _ , ⊢Δ , _ = contextConvSubst Γ≡Δ in Unit-refl ⊢Δ stabilityConv↓ Γ≡Δ (ne x) = ne (stability~↓ Γ≡Δ x) stabilityConv↓ Γ≡Δ (Π-cong F A<>B A<>B₁) = Π-cong (stability Γ≡Δ F) (stabilityConv↑ Γ≡Δ A<>B) (stabilityConv↑ (Γ≡Δ ∙ refl F) A<>B₁) stabilityConv↓ Γ≡Δ (Σ-cong F A<>B A<>B₁) = Σ-cong (stability Γ≡Δ F) (stabilityConv↑ Γ≡Δ A<>B) (stabilityConv↑ (Γ≡Δ ∙ refl F) A<>B₁) -- Stability of algorithmic equality of terms. stabilityConv↑Term : ∀ {t u A Γ Δ} → ⊢ Γ ≡ Δ → Γ ⊢ t [conv↑] u ∷ A → Δ ⊢ t [conv↑] u ∷ A stabilityConv↑Term Γ≡Δ ([↑]ₜ B t′ u′ D d d′ whnfB whnft′ whnfu′ t<>u) = [↑]ₜ B t′ u′ (stabilityRed* Γ≡Δ D) (stabilityRed*Term Γ≡Δ d) (stabilityRed*Term Γ≡Δ d′) whnfB whnft′ whnfu′ (stabilityConv↓Term Γ≡Δ t<>u) -- Stability of algorithmic equality of terms in WHNF. stabilityConv↓Term : ∀ {t u A Γ Δ} → ⊢ Γ ≡ Δ → Γ ⊢ t [conv↓] u ∷ A → Δ ⊢ t [conv↓] u ∷ A stabilityConv↓Term Γ≡Δ (ℕ-ins x) = ℕ-ins (stability~↓ Γ≡Δ x) stabilityConv↓Term Γ≡Δ (Empty-ins x) = Empty-ins (stability~↓ Γ≡Δ x) stabilityConv↓Term Γ≡Δ (Unit-ins x) = Unit-ins (stability~↓ Γ≡Δ x) stabilityConv↓Term Γ≡Δ (ne-ins t u neN x) = ne-ins (stabilityTerm Γ≡Δ t) (stabilityTerm Γ≡Δ u) neN (stability~↓ Γ≡Δ x) stabilityConv↓Term Γ≡Δ (univ x x₁ x₂) = univ (stabilityTerm Γ≡Δ x) (stabilityTerm Γ≡Δ x₁) (stabilityConv↓ Γ≡Δ x₂) stabilityConv↓Term Γ≡Δ (zero-refl x) = let _ , ⊢Δ , _ = contextConvSubst Γ≡Δ in zero-refl ⊢Δ stabilityConv↓Term Γ≡Δ (suc-cong t<>u) = suc-cong (stabilityConv↑Term Γ≡Δ t<>u) stabilityConv↓Term Γ≡Δ (η-eq x x₁ y y₁ t<>u) = let ⊢F , ⊢G = syntacticΠ (syntacticTerm x) in η-eq (stabilityTerm Γ≡Δ x) (stabilityTerm Γ≡Δ x₁) y y₁ (stabilityConv↑Term (Γ≡Δ ∙ refl ⊢F) t<>u) stabilityConv↓Term Γ≡Δ (Σ-η ⊢p ⊢r pProd rProd fstConv sndConv) = Σ-η (stabilityTerm Γ≡Δ ⊢p) (stabilityTerm Γ≡Δ ⊢r) pProd rProd (stabilityConv↑Term Γ≡Δ fstConv) (stabilityConv↑Term Γ≡Δ sndConv) stabilityConv↓Term Γ≡Δ (η-unit [t] [u] tUnit uUnit) = let [t] = stabilityTerm Γ≡Δ [t] [u] = stabilityTerm Γ≡Δ [u] in η-unit [t] [u] tUnit uUnit
39.072961
82
0.564477
39f267993556ab7f39f70882b16b61889cf6c3b8
5,137
agda
Agda
src/FairSubtyping.agda
boystrange/FairSubtypingAgda
c4b78e70c3caf68d509f4360b9171d9f80ecb825
[ "MIT" ]
4
2021-07-29T14:32:30.000Z
2022-01-24T14:38:47.000Z
src/FairSubtyping.agda
boystrange/FairSubtypingAgda
c4b78e70c3caf68d509f4360b9171d9f80ecb825
[ "MIT" ]
null
null
null
src/FairSubtyping.agda
boystrange/FairSubtypingAgda
c4b78e70c3caf68d509f4360b9171d9f80ecb825
[ "MIT" ]
null
null
null
-- MIT License -- Copyright (c) 2021 Luca Ciccone and Luca Padovani -- Permission is hereby granted, free of charge, to any person -- obtaining a copy of this software and associated documentation -- files (the "Software"), to deal in the Software without -- restriction, including without limitation the rights to use, -- copy, modify, merge, publish, distribute, sublicense, and/or sell -- copies of the Software, and to permit persons to whom the -- Software is furnished to do so, subject to the following -- conditions: -- The above copyright notice and this permission notice shall be -- included in all copies or substantial portions of the Software. -- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, -- EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES -- OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND -- NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT -- HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, -- WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING -- FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR -- OTHER DEALINGS IN THE SOFTWARE. {-# OPTIONS --guardedness --sized-types #-} open import Size open import Data.Empty open import Data.Product open import Data.Sum open import Data.List using ([]; _∷_; _∷ʳ_; _++_) open import Codata.Thunk open import Relation.Nullary open import Relation.Nullary.Negation using (contraposition) open import Relation.Unary using (_∈_; _⊆_) open import Relation.Binary.PropositionalEquality using (_≡_; _≢_; refl) open import Relation.Binary.Construct.Closure.ReflexiveTransitive using (Star; ε; _◅_; return) open import Function.Base using (case_of_) open import Common module FairSubtyping {ℙ : Set} (message : Message ℙ) where open import Trace message open import SessionType message open import Transitions message open import Session message open import Compliance message open import HasTrace message open import TraceInclusion message open import Convergence message open import FairCompliance message data FairSub : SessionType -> SessionType -> Size -> Set where nil<|any : ∀{T i} -> FairSub nil T i end<|def : ∀{T S i} (e : End T) (def : Defined S) -> FairSub T S i inp<|inp : ∀{f g i} (con : inp f ↓ inp g) (inc : dom f ⊆ dom g) (F : (x : ℙ) -> Thunk (FairSub (f x .force) (g x .force)) i) -> FairSub (inp f) (inp g) i out<|out : ∀{f g i} (con : out f ↓ out g) (W : Witness g) (inc : dom g ⊆ dom f) (F : ∀{x} (!x : x ∈ dom g) -> Thunk (FairSub (f x .force) (g x .force)) i) -> FairSub (out f) (out g) i _<|_ : SessionType -> SessionType -> Set _<|_ T S = FairSub T S ∞ -- sub-defined : ∀{T S} -> T <| S -> Defined T -> Defined S -- sub-defined (end<|def _ def) _ = def -- sub-defined (inp<|inp _ _) _ = inp -- sub-defined (out<|out _ _ _) _ = out fs->convergence : ∀{T S} -> T <| S -> T ↓ S fs->convergence nil<|any = inclusion->convergence nil<=any fs->convergence (end<|def e def) = inclusion->convergence (end<=def e def) fs->convergence (inp<|inp con inc F) = con fs->convergence (out<|out con W inc F) = con fc-not-transition+end : ∀{R R' T α} -> FairComplianceS (R # T) -> Transition R α R' -> End T -> ⊥ fc-not-transition+end comp inp (inp U) with comp ε ... | _ , ε , win#def () _ ... | _ , sync () inp ◅ _ , _ fc-not-transition+end comp inp (out U) with comp ε ... | _ , ε , win#def () _ ... | _ , sync _ (out fx) ◅ _ , _ = ⊥-elim (U _ fx) fc-not-transition+end comp (out fx) (inp V) with comp ε ... | _ , ε , win#def (out U) _ = ⊥-elim (U _ fx) ... | _ , sync (out _) inp ◅ reds , win#def w def = let _ , rr , tr = unzip-red* reds in ⊥-elim (V _ (transitions+defined->defined tr def)) fc-not-transition+end comp (out fx) (out _) with comp ε ... | _ , ε , win#def (out U) _ = ⊥-elim (U _ fx) ... | _ , sync () (out _) ◅ _ , _ sub-red : ∀{T S S' R R' α} -> FairComplianceS (R # T) -> T <| S -> Transition R (co-action α) R' -> Transition S α S' -> ∃[ T' ] (Transition T α T' × T' <| S') sub-red comp nil<|any _ _ with comp ε ... | _ , ε , win#def _ () ... | _ , sync _ () ◅ _ , _ sub-red comp (end<|def e _) r _ = ⊥-elim (fc-not-transition+end comp r e) sub-red comp (inp<|inp con inc F) (out {h} hx) (inp {f}) = _ , inp , F _ .force sub-red comp (out<|out con W inc F) inp (out fx) = _ , out (inc fx) , F fx .force sub-red* : ∀{T S S' R R' φ} -> FairComplianceS (R # T) -> T <| S -> Transitions R (co-trace φ) R' -> Transitions S φ S' -> ∃[ T' ] (Transitions T φ T' × T' <| S') sub-red* comp sub refl refl = _ , refl , sub sub-red* comp sub (step r rr) (step s sr) = let _ , t , sub' = sub-red comp sub r s in let comp' = fc-transitions (step r refl) (step t refl) comp in let _ , tr , sub'' = sub-red* comp' sub' rr sr in _ , step t tr , sub'' sub-sound : ∀{T S R} -> FairComplianceS (R # T) -> T <| S -> FairComplianceS (R # S) sub-sound comp sub {_ # _} reds = let _ , rr , sr = unzip-red* reds in let _ , tr , sub' = sub-red* comp sub rr sr in let comp' = fair-compliance-red* comp (zip-red* rr tr) in con-sound (fs->convergence sub') comp'
35.184932
94
0.640062
2f30f271df46533d1b5574e1c6bf8ac088408770
9,671
agda
Agda
Everything.agda
Taneb/agda-categories
6ebc1349ee79669c5c496dcadd551d5bbefd1972
[ "MIT" ]
null
null
null
Everything.agda
Taneb/agda-categories
6ebc1349ee79669c5c496dcadd551d5bbefd1972
[ "MIT" ]
null
null
null
Everything.agda
Taneb/agda-categories
6ebc1349ee79669c5c496dcadd551d5bbefd1972
[ "MIT" ]
null
null
null
import Categories.2-Category import Categories.2-Functor import Categories.Adjoint import Categories.Adjoint.Construction.EilenbergMoore import Categories.Adjoint.Construction.Kleisli import Categories.Adjoint.Equivalence import Categories.Adjoint.Instance.0-Truncation import Categories.Adjoint.Instance.01-Truncation import Categories.Adjoint.Instance.Core import Categories.Adjoint.Instance.Discrete import Categories.Adjoint.Instance.PosetCore import Categories.Adjoint.Instance.StrictCore import Categories.Adjoint.Mate import Categories.Adjoint.Properties import Categories.Adjoint.RAPL import Categories.Bicategory import Categories.Bicategory.Bigroupoid import Categories.Bicategory.Construction.1-Category import Categories.Bicategory.Instance.Cats import Categories.Bicategory.Instance.EnrichedCats import Categories.Category import Categories.Category.BicartesianClosed import Categories.Category.Cartesian import Categories.Category.Cartesian.Properties import Categories.Category.CartesianClosed import Categories.Category.CartesianClosed.Canonical import Categories.Category.CartesianClosed.Locally import Categories.Category.CartesianClosed.Locally.Properties import Categories.Category.Closed import Categories.Category.Cocartesian import Categories.Category.Cocomplete import Categories.Category.Cocomplete.Finitely import Categories.Category.Complete import Categories.Category.Complete.Finitely import Categories.Category.Construction.0-Groupoid import Categories.Category.Construction.Arrow import Categories.Category.Construction.Cocones import Categories.Category.Construction.Comma import Categories.Category.Construction.Cones import Categories.Category.Construction.Coproduct import Categories.Category.Construction.Core import Categories.Category.Construction.EilenbergMoore import Categories.Category.Construction.Elements import Categories.Category.Construction.EnrichedFunctors import Categories.Category.Construction.F-Algebras import Categories.Category.Construction.Fin import Categories.Category.Construction.Functors import Categories.Category.Construction.Graphs import Categories.Category.Construction.Grothendieck import Categories.Category.Construction.Kleisli import Categories.Category.Construction.Path import Categories.Category.Construction.Presheaves import Categories.Category.Construction.Properties.Comma import Categories.Category.Construction.Pullbacks import Categories.Category.Construction.Thin import Categories.Category.Core import Categories.Category.Discrete import Categories.Category.Equivalence import Categories.Category.Finite import Categories.Category.Groupoid import Categories.Category.Groupoid.Properties import Categories.Category.Indiscrete import Categories.Category.Instance.Cats import Categories.Category.Instance.EmptySet import Categories.Category.Instance.FamilyOfSets import Categories.Category.Instance.Globe import Categories.Category.Instance.Groupoids import Categories.Category.Instance.One import Categories.Category.Instance.PointedSets import Categories.Category.Instance.Posets import Categories.Category.Instance.Properties.Cats import Categories.Category.Instance.Properties.Posets import Categories.Category.Instance.Properties.Setoids import Categories.Category.Instance.Setoids import Categories.Category.Instance.Sets import Categories.Category.Instance.Simplex import Categories.Category.Instance.SimplicialSet import Categories.Category.Instance.SingletonSet import Categories.Category.Instance.Span import Categories.Category.Instance.StrictCats import Categories.Category.Instance.StrictGroupoids import Categories.Category.Instance.Zero import Categories.Category.Monoidal import Categories.Category.Monoidal.Braided import Categories.Category.Monoidal.Braided.Properties import Categories.Category.Monoidal.Closed import Categories.Category.Monoidal.Closed.IsClosed import Categories.Category.Monoidal.Closed.IsClosed.Diagonal import Categories.Category.Monoidal.Closed.IsClosed.Dinatural import Categories.Category.Monoidal.Closed.IsClosed.Identity import Categories.Category.Monoidal.Closed.IsClosed.L import Categories.Category.Monoidal.Closed.IsClosed.Pentagon import Categories.Category.Monoidal.Construction.Minus2 import Categories.Category.Monoidal.Core import Categories.Category.Monoidal.Instance.Cats import Categories.Category.Monoidal.Instance.One import Categories.Category.Monoidal.Instance.Setoids import Categories.Category.Monoidal.Instance.Sets import Categories.Category.Monoidal.Instance.StrictCats import Categories.Category.Monoidal.Properties import Categories.Category.Monoidal.Reasoning import Categories.Category.Monoidal.Symmetric import Categories.Category.Monoidal.Traced import Categories.Category.Monoidal.Utilities import Categories.Category.Product import Categories.Category.Product.Properties import Categories.Category.RigCategory import Categories.Category.SetoidDiscrete import Categories.Category.Site import Categories.Category.Slice import Categories.Category.Slice.Properties import Categories.Category.SubCategory import Categories.Category.Topos import Categories.Category.WithFamilies import Categories.Comonad import Categories.Diagram.Cocone import Categories.Diagram.Cocone.Properties import Categories.Diagram.Coend import Categories.Diagram.Coequalizer import Categories.Diagram.Coequalizer.Properties import Categories.Diagram.Colimit import Categories.Diagram.Colimit.DualProperties import Categories.Diagram.Colimit.Lan import Categories.Diagram.Colimit.Properties import Categories.Diagram.Cone import Categories.Diagram.Cone.Properties import Categories.Diagram.Duality import Categories.Diagram.End import Categories.Diagram.End.Properties import Categories.Diagram.Equalizer import Categories.Diagram.Finite import Categories.Diagram.Limit import Categories.Diagram.Limit.Properties import Categories.Diagram.Limit.Ran import Categories.Diagram.Pullback import Categories.Diagram.Pullback.Limit import Categories.Diagram.Pullback.Properties import Categories.Diagram.Pushout import Categories.Diagram.Pushout.Properties import Categories.Diagram.SubobjectClassifier import Categories.Enriched.Category import Categories.Enriched.Functor import Categories.Enriched.NaturalTransformation import Categories.Enriched.NaturalTransformation.NaturalIsomorphism import Categories.Enriched.Over.One import Categories.Functor import Categories.Functor.Algebra import Categories.Functor.Bifunctor import Categories.Functor.Bifunctor.Properties import Categories.Functor.Coalgebra import Categories.Functor.Cocontinuous import Categories.Functor.Construction.Constant import Categories.Functor.Construction.Diagonal import Categories.Functor.Construction.LiftSetoids import Categories.Functor.Construction.Limit import Categories.Functor.Construction.Zero import Categories.Functor.Continuous import Categories.Functor.Core import Categories.Functor.Equivalence import Categories.Functor.Fibration import Categories.Functor.Groupoid import Categories.Functor.Hom import Categories.Functor.Instance.0-Truncation import Categories.Functor.Instance.01-Truncation import Categories.Functor.Instance.Core import Categories.Functor.Instance.Discrete import Categories.Functor.Instance.SetoidDiscrete import Categories.Functor.Instance.StrictCore import Categories.Functor.Monoidal import Categories.Functor.Power import Categories.Functor.Power.Functorial import Categories.Functor.Power.NaturalTransformation import Categories.Functor.Presheaf import Categories.Functor.Profunctor import Categories.Functor.Properties import Categories.Functor.Representable import Categories.Functor.Slice import Categories.GlobularSet import Categories.Kan import Categories.Kan.Duality import Categories.Minus2-Category import Categories.Minus2-Category.Construction.Indiscrete import Categories.Minus2-Category.Instance.One import Categories.Minus2-Category.Properties import Categories.Monad import Categories.Monad.Duality import Categories.Monad.Idempotent import Categories.Monad.Strong import Categories.Morphism import Categories.Morphism.Cartesian import Categories.Morphism.Duality import Categories.Morphism.HeterogeneousIdentity import Categories.Morphism.HeterogeneousIdentity.Properties import Categories.Morphism.IsoEquiv import Categories.Morphism.Isomorphism import Categories.Morphism.Properties import Categories.Morphism.Reasoning import Categories.Morphism.Reasoning.Core import Categories.Morphism.Reasoning.Iso import Categories.Morphism.Universal import Categories.NaturalTransformation import Categories.NaturalTransformation.Core import Categories.NaturalTransformation.Dinatural import Categories.NaturalTransformation.Equivalence import Categories.NaturalTransformation.Hom import Categories.NaturalTransformation.NaturalIsomorphism import Categories.NaturalTransformation.NaturalIsomorphism.Equivalence import Categories.NaturalTransformation.NaturalIsomorphism.Functors import Categories.NaturalTransformation.NaturalIsomorphism.Properties import Categories.NaturalTransformation.Properties import Categories.Object.Coproduct import Categories.Object.Duality import Categories.Object.Exponential import Categories.Object.Initial import Categories.Object.Product import Categories.Object.Product.Construction import Categories.Object.Product.Core import Categories.Object.Product.Morphisms import Categories.Object.Terminal import Categories.Object.Zero import Categories.Pseudofunctor import Categories.Pseudofunctor.Instance.EnrichedUnderlying import Categories.Utils.EqReasoning import Categories.Utils.Product import Categories.Yoneda import Categories.Yoneda.Properties import Relation.Binary.Construct.Symmetrize
42.416667
70
0.891221
50351e5e07be3e3c974411ecb99e04981e23ad17
2,779
agda
Agda
test/Succeed/Issue3889.agda
favonia/agda
8d433b967567c08afe15d04a5cb63b6f6d8884ee
[ "BSD-2-Clause" ]
null
null
null
test/Succeed/Issue3889.agda
favonia/agda
8d433b967567c08afe15d04a5cb63b6f6d8884ee
[ "BSD-2-Clause" ]
6
2021-10-18T08:12:24.000Z
2021-11-24T08:31:10.000Z
test/Succeed/Issue3889.agda
antoinevanmuylder/agda
bd59d5b07ffe02a43b28d186d95e1747aac5bc8c
[ "BSD-2-Clause" ]
null
null
null
-- Andreas, 2019-07-05, during work on issue #3889 -- Test-case for with extracted from the standard library {-# OPTIONS --cubical-compatible #-} open import Agda.Primitive open import Agda.Builtin.Equality open import Agda.Builtin.List open import Common.Equality open import Common.Product data Any {a}{A : Set a} {p} (P : A → Set p) : List A → Set (a ⊔ p) where here : ∀ {x xs} (px : P x) → Any P (x ∷ xs) there : ∀ {x xs} (pxs : Any P xs) → Any P (x ∷ xs) _∈_ : ∀{a}{A : Set a} → A → List A → Set _ x ∈ xs = Any (x ≡_) xs map : ∀ {a} {A : Set a} {p q} {P : A → Set p} {Q : A → Set q} → (∀{x} → P x → Q x) → ∀{xs} → Any P xs → Any Q xs map g (here px) = here (g px) map g (there pxs) = there (map g pxs) map₁ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} → (A → B) → A × C → B × C map₁ f (x , y)= f x , y map₂ : ∀ {a b c} {A : Set a} {B : A → Set b} {C : A → Set c} → (∀ {x} → B x → C x) → Σ A B → Σ A C map₂ f (x , y) = (x , f y) find : ∀ {a} {p} {A : Set a} {P : A → Set p} {xs} → Any P xs → Σ _ λ x → x ∈ xs × P x find (here px) = (_ , here refl , px) find (there pxs) = map₂ (map₁ there) (find pxs) lose : ∀ {a} {p} {A : Set a} {P : A → Set p} {x xs} → x ∈ xs → P x → Any P xs lose x∈xs px = map (λ eq → subst _ eq px) x∈xs map∘find : ∀ {a p} {A : Set a} {P : A → Set p} {xs} (p : Any P xs) → let p′ = find p in {f : ∀{x} → proj₁ p′ ≡ x → P x} → f refl ≡ proj₂ (proj₂ p′) → map f (proj₁ (proj₂ p′)) ≡ p map∘find (here p) hyp = cong here hyp map∘find (there p) hyp = cong there (map∘find p hyp) find∘map : ∀ {a p q} {A : Set a} {P : A → Set p} {Q : A → Set q} {xs : List A} (p : Any P xs) (f : ∀{x} → P x → Q x) → find (map f p) ≡ map₂ (map₂ f) (find p) find∘map (here p) f = refl find∘map (there p) f rewrite find∘map p f = refl lose∘find : ∀ {a p} {A : Set a} {P : A → Set p} {xs : List A} (p : Any P xs) → (let (y , z) = proj₂ (find p)) → lose y z ≡ p lose∘find p = map∘find p refl postulate a b ℓ : Level A : Set a B : Set b P : A → Set ℓ Q : B → Set ℓ -- Level needed Any-×⁺ : ∀ {xs ys} → Any P xs × Any Q ys → Any (λ x → Any (λ y → P x × Q y) ys) xs Any-×⁺ (p , q) = map (λ p → map (λ q → (p , q)) q) p Any-×⁻ : ∀ {xs ys} → Any (λ x → Any (λ y → P x × Q y) ys) xs → Any P xs × Any Q ys Any-×⁻ pq with map₂ (map₂ find) (find pq) ... | (x , x∈xs , y , y∈ys , p , q) = (lose x∈xs p , lose y∈ys q) module _ where from∘to : ∀{xs ys} (pq : Any P xs × Any Q ys) → Any-×⁻ (Any-×⁺ pq) ≡ pq -- from∘to (p , q) = {!!} from∘to (p , q) rewrite find∘map p (λ p → map (λ q → (p , q)) q) | find∘map q (λ q → proj₂ (proj₂ (find p)) , q) | lose∘find p | lose∘find q = refl
33.083333
112
0.475711
39414f23c878d0735f114992c534ef0d74f5a1f4
3,917
agda
Agda
complete-elaboration.agda
hazelgrove/hazel-palette-agda
c3225acc3c94c56376c6842b82b8b5d76912df2a
[ "MIT" ]
4
2020-10-04T06:45:06.000Z
2021-12-19T15:38:31.000Z
complete-elaboration.agda
hazelgrove/hazel-palette-agda
c3225acc3c94c56376c6842b82b8b5d76912df2a
[ "MIT" ]
9
2020-09-30T20:27:56.000Z
2020-10-20T20:44:13.000Z
complete-elaboration.agda
hazelgrove/hazelnut-livelits-agda
c3225acc3c94c56376c6842b82b8b5d76912df2a
[ "MIT" ]
null
null
null
open import Nat open import Prelude open import core open import contexts open import typed-elaboration open import lemmas-gcomplete open import lemmas-complete module complete-elaboration where mutual complete-elaboration-synth : ∀{e τ Γ Δ d} → Γ gcomplete → e ecomplete → Γ ⊢ e ⇒ τ ~> d ⊣ Δ → (d dcomplete × τ tcomplete × Δ == ∅) complete-elaboration-synth gc ec ESConst = DCConst , TCBase , refl complete-elaboration-synth gc ec (ESVar x₁) = DCVar , gc _ _ x₁ , refl complete-elaboration-synth gc (ECLam2 ec x₁) (ESLam x₂ exp) with complete-elaboration-synth (gcomp-extend gc x₁ x₂) ec exp ... | ih1 , ih2 , ih3 = DCLam ih1 x₁ , TCArr x₁ ih2 , ih3 complete-elaboration-synth gc (ECAp ec ec₁) (ESAp _ _ x MAHole x₂ x₃) with comp-synth gc ec x ... | () complete-elaboration-synth gc (ECAp ec ec₁) (ESAp {Δ1 = Δ1} {Δ2 = Δ2} _ _ x MAArr x₂ x₃) with comp-synth gc ec x ... | TCArr t1 t2 with complete-elaboration-ana gc ec (TCArr t1 t2) x₂ | complete-elaboration-ana gc ec₁ t1 x₃ ... | ih1 , _ , ih4 | ih2 , _ , ih3 = DCAp (DCCast ih1 (comp-ana gc x₂ ih1) (TCArr t1 t2)) (DCCast ih2 (comp-ana gc x₃ ih2) t1) , t2 , tr (λ qq → (qq ∪ Δ2) == ∅) (! ih4) (tr (λ qq → (∅ ∪ qq) == ∅) (! ih3) refl) complete-elaboration-synth gc () ESEHole complete-elaboration-synth gc () (ESNEHole _ exp) complete-elaboration-synth gc (ECAsc x ec) (ESAsc x₁) with complete-elaboration-ana gc ec x x₁ ... | ih1 , _ , ih2 = DCCast ih1 (comp-ana gc x₁ ih1) x , x , ih2 complete-elaboration-synth gc (ECFst ec) (ESFst x x₁ x₂) with comp-synth gc ec x complete-elaboration-synth gc (ECFst ec) (ESFst x () x₂) | TCBase complete-elaboration-synth gc (ECFst ec) (ESFst x () x₂) | TCArr _ _ complete-elaboration-synth gc (ECFst ec) (ESFst x MPProd x₂) | tc with complete-elaboration-ana gc ec tc x₂ complete-elaboration-synth gc (ECFst ec) (ESFst x MPProd x₂) | tc | ih1 , ih2 , ih3 = DCFst (DCCast ih1 ih2 tc) , lem-comp-prod1 tc , ih3 complete-elaboration-synth gc (ECSnd ec) (ESSnd x x₁ x₂) with comp-synth gc ec x complete-elaboration-synth gc (ECSnd ec) (ESSnd x () x₂) | TCBase complete-elaboration-synth gc (ECSnd ec) (ESSnd x () x₂) | TCArr _ _ complete-elaboration-synth gc (ECSnd ec) (ESSnd x MPProd x₂) | tc with complete-elaboration-ana gc ec tc x₂ complete-elaboration-synth gc (ECSnd ec) (ESSnd x MPProd x₂) | tc | ih1 , ih2 , ih3 = DCSnd (DCCast ih1 ih2 tc) , lem-comp-prod2 tc , ih3 complete-elaboration-synth gc (ECPair ec1 ec2) (ESPair _ _ es1 es2) with complete-elaboration-synth gc ec1 es1 | complete-elaboration-synth gc ec2 es2 ... | dc1 , tc1 , refl | dc2 , tc2 , refl = DCPair dc1 dc2 , TCProd tc1 tc2 , refl complete-elaboration-ana : ∀{e τ τ' Γ Δ d} → Γ gcomplete → e ecomplete → τ tcomplete → Γ ⊢ e ⇐ τ ~> d :: τ' ⊣ Δ → (d dcomplete × τ' tcomplete × Δ == ∅) complete-elaboration-ana gc (ECLam1 ec) () (EALam x₁ MAHole exp) complete-elaboration-ana gc (ECLam1 ec) (TCArr t1 t2) (EALam x₁ MAArr exp) with complete-elaboration-ana (gcomp-extend gc t1 x₁) ec t2 exp ... | ih , ih3 , ih2 = DCLam ih t1 , TCArr t1 ih3 , ih2 complete-elaboration-ana gc ec tc (EASubsume x x₁ x₂ x₃) = complete-elaboration-synth gc ec x₂ -- this is just a convenience since it shows up a few times above comp-ana : ∀{Γ e τ d τ' Δ} → Γ gcomplete → Γ ⊢ e ⇐ τ ~> d :: τ' ⊣ Δ → d dcomplete → τ' tcomplete comp-ana gc ex dc = complete-ta gc (π2 (typed-elaboration-ana ex)) dc
55.169014
141
0.591014
1d85d66dfac15f9f6f4b08dae5a3c670b87e3868
971
agda
Agda
src/API/Theorems.agda
algebraic-graphs/alga-theory
0fdb96c0233d9be83eba637f0434d0fd22aefb1d
[ "MIT" ]
60
2017-12-27T14:57:04.000Z
2022-03-22T23:05:29.000Z
src/API/Theorems.agda
algebraic-graphs/alga-theory
0fdb96c0233d9be83eba637f0434d0fd22aefb1d
[ "MIT" ]
3
2018-04-12T16:25:13.000Z
2018-06-23T13:54:02.000Z
src/API/Theorems.agda
algebraic-graphs/alga-theory
0fdb96c0233d9be83eba637f0434d0fd22aefb1d
[ "MIT" ]
6
2017-12-17T20:48:20.000Z
2019-05-09T23:53:28.000Z
module API.Theorems where open import Algebra.Graph open import Algebra.Graph.Theorems open import Algebra.Graph.Reasoning open import API open import Prelude -- vertices [x] == vertex x vertices-vertex : ∀ {A} {x : A} -> vertices [ x ] ≡ vertex x vertices-vertex = +identity >> reflexivity -- edge x y == clique [x, y] edge-clique : ∀ {A} {x y : A} -> edge x y ≡ clique (x :: [ y ]) edge-clique = symmetry (R *right-identity) -- vertices xs ⊆ clique xs vertices-clique : ∀ {A} {xs : List A} -> vertices xs ⊆ clique xs vertices-clique {_} {[]} = ⊆reflexivity vertices-clique {a} {_ :: t} = ⊆transitivity (⊆right-monotony (vertices-clique {a} {t})) ⊆connect -- clique (xs ++ ys) == connect (clique xs) (clique ys) connect-clique : ∀ {A} {xs ys : List A} -> clique (xs ++ ys) ≡ connect (clique xs) (clique ys) connect-clique {_} {[]} = symmetry *left-identity connect-clique {a} {_ :: t} = R (connect-clique {a} {t}) >> *associativity
37.346154
98
0.626159
cb379832565deac837c97cf191402c20caeca16c
6,290
agda
Agda
src/Categories/Category/Equivalence/Properties.agda
jaykru/agda-categories
a4053cf700bcefdf73b857c3352f1eae29382a60
[ "MIT" ]
279
2019-06-01T14:36:40.000Z
2022-03-22T00:40:14.000Z
src/Categories/Category/Equivalence/Properties.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
236
2019-06-01T14:53:54.000Z
2022-03-28T14:31:43.000Z
src/Categories/Category/Equivalence/Properties.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
64
2019-06-02T16:58:15.000Z
2022-03-14T02:00:59.000Z
{-# OPTIONS --without-K --safe #-} -- A Categorical WeakInverse induces an Adjoint Equivalence module Categories.Category.Equivalence.Properties where open import Level open import Data.Product using (Σ-syntax; _,_; proj₁) open import Categories.Adjoint.Equivalence using (⊣Equivalence) open import Categories.Adjoint open import Categories.Adjoint.TwoSided using (_⊣⊢_; withZig) open import Categories.Category open import Categories.Category.Equivalence using (WeakInverse; StrongEquivalence) open import Categories.Morphism import Categories.Morphism.Reasoning as MR import Categories.Morphism.Properties as MP open import Categories.Functor renaming (id to idF) open import Categories.Functor.Properties using ([_]-resp-Iso) open import Categories.NaturalTransformation using (ntHelper; _∘ᵥ_; _∘ˡ_; _∘ʳ_) open import Categories.NaturalTransformation.NaturalIsomorphism as ≃ using (NaturalIsomorphism ; unitorˡ; unitorʳ; associator; _ⓘᵥ_; _ⓘˡ_; _ⓘʳ_) open import Categories.NaturalTransformation.NaturalIsomorphism.Properties using (pointwise-iso) private variable o ℓ e : Level C D E : Category o ℓ e module _ {F : Functor C D} {G : Functor D C} (W : WeakInverse F G) where open WeakInverse W private module C = Category C module D = Category D module F = Functor F module G = Functor G -- adjoint equivalence F⊣⊢G : F ⊣⊢ G F⊣⊢G = withZig record { unit = ≃.sym G∘F≈id ; counit = let open D open HomReasoning open MR D open MP D in record { F⇒G = ntHelper record { η = λ X → F∘G≈id.⇒.η X ∘ F.F₁ (G∘F≈id.⇒.η (G.F₀ X)) ∘ F∘G≈id.⇐.η (F.F₀ (G.F₀ X)) ; commute = λ {X Y} f → begin (F∘G≈id.⇒.η Y ∘ F.F₁ (G∘F≈id.⇒.η (G.F₀ Y)) ∘ F∘G≈id.⇐.η (F.F₀ (G.F₀ Y))) ∘ F.F₁ (G.F₁ f) ≈⟨ pull-last (F∘G≈id.⇐.commute (F.F₁ (G.F₁ f))) ⟩ F∘G≈id.⇒.η Y ∘ F.F₁ (G∘F≈id.⇒.η (G.F₀ Y)) ∘ (F.F₁ (G.F₁ (F.F₁ (G.F₁ f))) ∘ F∘G≈id.⇐.η (F.F₀ (G.F₀ X))) ≈˘⟨ refl⟩∘⟨ pushˡ F.homomorphism ⟩ F∘G≈id.⇒.η Y ∘ F.F₁ (G∘F≈id.⇒.η (G.F₀ Y) C.∘ G.F₁ (F.F₁ (G.F₁ f))) ∘ F∘G≈id.⇐.η (F.F₀ (G.F₀ X)) ≈⟨ refl⟩∘⟨ F.F-resp-≈ (G∘F≈id.⇒.commute (G.F₁ f)) ⟩∘⟨refl ⟩ F∘G≈id.⇒.η Y ∘ F.F₁ (G.F₁ f C.∘ G∘F≈id.⇒.η (G.F₀ X)) ∘ F∘G≈id.⇐.η (F.F₀ (G.F₀ X)) ≈⟨ refl⟩∘⟨ F.homomorphism ⟩∘⟨refl ⟩ F∘G≈id.⇒.η Y ∘ (F.F₁ (G.F₁ f) ∘ F.F₁ (G∘F≈id.⇒.η (G.F₀ X))) ∘ F∘G≈id.⇐.η (F.F₀ (G.F₀ X)) ≈⟨ center⁻¹ (F∘G≈id.⇒.commute f) Equiv.refl ⟩ (f ∘ F∘G≈id.⇒.η X) ∘ F.F₁ (G∘F≈id.⇒.η (G.F₀ X)) ∘ F∘G≈id.⇐.η (F.F₀ (G.F₀ X)) ≈⟨ assoc ⟩ f ∘ F∘G≈id.⇒.η X ∘ F.F₁ (G∘F≈id.⇒.η (G.F₀ X)) ∘ F∘G≈id.⇐.η (F.F₀ (G.F₀ X)) ∎ } ; F⇐G = ntHelper record { η = λ X → (F∘G≈id.⇒.η (F.F₀ (G.F₀ X)) ∘ F.F₁ (G∘F≈id.⇐.η (G.F₀ X))) ∘ F∘G≈id.⇐.η X ; commute = λ {X Y} f → begin ((F∘G≈id.⇒.η (F.F₀ (G.F₀ Y)) ∘ F.F₁ (G∘F≈id.⇐.η (G.F₀ Y))) ∘ F∘G≈id.⇐.η Y) ∘ f ≈⟨ pullʳ (F∘G≈id.⇐.commute f) ⟩ (F∘G≈id.⇒.η (F.F₀ (G.F₀ Y)) ∘ F.F₁ (G∘F≈id.⇐.η (G.F₀ Y))) ∘ F.F₁ (G.F₁ f) ∘ F∘G≈id.⇐.η X ≈⟨ center (⟺ F.homomorphism) ⟩ F∘G≈id.⇒.η (F.F₀ (G.F₀ Y)) ∘ F.F₁ (G∘F≈id.⇐.η (G.F₀ Y) C.∘ G.F₁ f) ∘ F∘G≈id.⇐.η X ≈⟨ refl⟩∘⟨ F.F-resp-≈ (G∘F≈id.⇐.commute (G.F₁ f)) ⟩∘⟨refl ⟩ F∘G≈id.⇒.η (F.F₀ (G.F₀ Y)) ∘ F.F₁ (G.F₁ (F.F₁ (G.F₁ f)) C.∘ G∘F≈id.⇐.η (G.F₀ X)) ∘ F∘G≈id.⇐.η X ≈⟨ refl⟩∘⟨ F.homomorphism ⟩∘⟨refl ⟩ F∘G≈id.⇒.η (F.F₀ (G.F₀ Y)) ∘ (F.F₁ (G.F₁ (F.F₁ (G.F₁ f))) ∘ F.F₁ (G∘F≈id.⇐.η (G.F₀ X))) ∘ F∘G≈id.⇐.η X ≈⟨ center⁻¹ (F∘G≈id.⇒.commute _) Equiv.refl ⟩ (F.F₁ (G.F₁ f) ∘ F∘G≈id.⇒.η (F.F₀ (G.F₀ X))) ∘ F.F₁ (G∘F≈id.⇐.η (G.F₀ X)) ∘ F∘G≈id.⇐.η X ≈⟨ center Equiv.refl ⟩ F.F₁ (G.F₁ f) ∘ (F∘G≈id.⇒.η (F.F₀ (G.F₀ X)) ∘ F.F₁ (G∘F≈id.⇐.η (G.F₀ X))) ∘ F∘G≈id.⇐.η X ∎ } ; iso = λ X → Iso-∘ (Iso-∘ (Iso-swap (F∘G≈id.iso _)) ([ F ]-resp-Iso (G∘F≈id.iso _))) (F∘G≈id.iso X) } ; zig = λ {A} → let open D open HomReasoning open MR D in begin (F∘G≈id.⇒.η (F.F₀ A) ∘ F.F₁ (G∘F≈id.⇒.η (G.F₀ (F.F₀ A))) ∘ F∘G≈id.⇐.η (F.F₀ (G.F₀ (F.F₀ A)))) ∘ F.F₁ (G∘F≈id.⇐.η A) ≈⟨ pull-last (F∘G≈id.⇐.commute (F.F₁ (G∘F≈id.⇐.η A))) ⟩ F∘G≈id.⇒.η (F.F₀ A) ∘ F.F₁ (G∘F≈id.⇒.η (G.F₀ (F.F₀ A))) ∘ F.F₁ (G.F₁ (F.F₁ (G∘F≈id.⇐.η A))) ∘ F∘G≈id.⇐.η (F.F₀ A) ≈˘⟨ refl⟩∘⟨ pushˡ F.homomorphism ⟩ F∘G≈id.⇒.η (F.F₀ A) ∘ F.F₁ (G∘F≈id.⇒.η (G.F₀ (F.F₀ A)) C.∘ G.F₁ (F.F₁ (G∘F≈id.⇐.η A))) ∘ F∘G≈id.⇐.η (F.F₀ A) ≈⟨ refl⟩∘⟨ F.F-resp-≈ (G∘F≈id.⇒.commute (G∘F≈id.⇐.η A)) ⟩∘⟨refl ⟩ F∘G≈id.⇒.η (F.F₀ A) ∘ F.F₁ (G∘F≈id.⇐.η A C.∘ G∘F≈id.⇒.η A) ∘ F∘G≈id.⇐.η (F.F₀ A) ≈⟨ refl⟩∘⟨ elimˡ ((F.F-resp-≈ (G∘F≈id.iso.isoˡ _)) ○ F.identity) ⟩ F∘G≈id.⇒.η (F.F₀ A) ∘ F∘G≈id.⇐.η (F.F₀ A) ≈⟨ F∘G≈id.iso.isoʳ _ ⟩ id ∎ } module F⊣⊢G = _⊣⊢_ F⊣⊢G module _ {o ℓ e o′ ℓ′ e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} (SE : StrongEquivalence C D) where open StrongEquivalence SE C≅D : ⊣Equivalence C D C≅D = record { L = F ; R = G ; L⊣⊢R = F⊣⊢G weak-inverse } module C≅D = ⊣Equivalence C≅D module _ {F : Functor C D} {G : Functor D C} (F⊣G : F ⊣ G) where private module C = Category C module D = Category D module F = Functor F module G = Functor G open Adjoint F⊣G -- If the unit and the counit of an adjuction are pointwise isomorphisms, then they form an equivalence of categories. pointwise-iso-equivalence : (∀ X → Σ[ f ∈ D [ X , F.F₀ (G.F₀ X) ] ] Iso D (counit.η X) f) → (∀ X → Σ[ f ∈ C [ G.F₀ (F.F₀ X) , X ] ] Iso C (unit.η X) f) → WeakInverse F G pointwise-iso-equivalence counit-iso unit-iso = record { F∘G≈id = let iso X = let (to , is-iso) = counit-iso X in record { from = counit.η X ; to = to ; iso = is-iso } in pointwise-iso iso counit.commute ; G∘F≈id = let iso X = let (to , is-iso) = unit-iso X in record { from = unit.η X ; to = to ; iso = is-iso } in ≃.sym (pointwise-iso iso unit.commute) }
42.789116
172
0.499682
a1c09b122b71b3dda7a04be6ded3b367e6ccb894
2,609
agda
Agda
src/Web/Semantic/DL/TBox/Model.agda
agda/agda-web-semantic
8ddbe83965a616bff6fc7a237191fa261fa78bab
[ "MIT" ]
9
2015-09-13T17:46:41.000Z
2020-03-14T14:21:08.000Z
src/Web/Semantic/DL/TBox/Model.agda
bblfish/agda-web-semantic
38fbc3af7062ba5c3d7d289b2b4bcfb995d99057
[ "MIT" ]
4
2018-11-14T02:32:28.000Z
2021-01-04T20:57:19.000Z
src/Web/Semantic/DL/TBox/Model.agda
bblfish/agda-web-semantic
38fbc3af7062ba5c3d7d289b2b4bcfb995d99057
[ "MIT" ]
3
2017-12-03T14:52:09.000Z
2022-03-12T11:40:03.000Z
open import Data.Product using ( _×_ ; _,_ ) open import Data.Sum using ( inj₁ ; inj₂ ) open import Relation.Binary.PropositionalEquality using ( refl ) open import Relation.Unary using ( _∈_ ; _∉_ ; _⊆_ ) open import Web.Semantic.DL.Concept.Model using ( _⟦_⟧₁ ; ⟦⟧₁-resp-≈ ; ⟦⟧₁-resp-≃; ⟦⟧₁-refl-≃ ) open import Web.Semantic.DL.Role.Model using ( _⟦_⟧₂ ; ⟦⟧₂-resp-≈ ; ⟦⟧₂-resp-≃ ; ⟦⟧₂-refl-≃ ) open import Web.Semantic.DL.Signature using ( Signature ) open import Web.Semantic.DL.TBox using ( TBox ; Axioms ; ε ; _,_ ;_⊑₁_ ; _⊑₂_ ; Dis ; Ref ; Irr ; Tra ) open import Web.Semantic.DL.TBox.Interp using ( Interp ) open import Web.Semantic.DL.TBox.Interp.Morphism using ( _≃_ ; ≃-sym ) open import Web.Semantic.Util using ( True ; tt ; _∘_ ) module Web.Semantic.DL.TBox.Model {Σ : Signature} where infixr 2 _⊨t_ _⊨t_ : Interp Σ → TBox Σ → Set I ⊨t ε = True I ⊨t (T , U) = (I ⊨t T) × (I ⊨t U) I ⊨t (C ⊑₁ D) = I ⟦ C ⟧₁ ⊆ I ⟦ D ⟧₁ I ⊨t (Q ⊑₂ R) = I ⟦ Q ⟧₂ ⊆ I ⟦ R ⟧₂ I ⊨t (Dis Q R) = ∀ {xy} → (xy ∈ I ⟦ Q ⟧₂) → (xy ∉ I ⟦ R ⟧₂) I ⊨t (Ref R) = ∀ x → ((x , x) ∈ I ⟦ R ⟧₂) I ⊨t (Irr R) = ∀ x → ((x , x) ∉ I ⟦ R ⟧₂) I ⊨t (Tra R) = ∀ {x y z} → ((x , y) ∈ I ⟦ R ⟧₂) → ((y , z) ∈ I ⟦ R ⟧₂) → ((x , z) ∈ I ⟦ R ⟧₂) Axioms✓ : ∀ I T {t} → (t ∈ Axioms T) → (I ⊨t T) → (I ⊨t t) Axioms✓ I ε () I⊨T Axioms✓ I (T , U) (inj₁ t∈T) (I⊨T , I⊨U) = Axioms✓ I T t∈T I⊨T Axioms✓ I (T , U) (inj₂ t∈U) (I⊨T , I⊨U) = Axioms✓ I U t∈U I⊨U Axioms✓ I (C ⊑₁ D) refl I⊨T = I⊨T Axioms✓ I (Q ⊑₂ R) refl I⊨T = I⊨T Axioms✓ I (Dis Q R) refl I⊨T = I⊨T Axioms✓ I (Ref R) refl I⊨T = I⊨T Axioms✓ I (Irr R) refl I⊨T = I⊨T Axioms✓ I (Tra R) refl I⊨T = I⊨T ⊨t-resp-≃ : ∀ {I J : Interp Σ} → (I ≃ J) → ∀ T → (I ⊨t T) → (J ⊨t T) ⊨t-resp-≃ {I} {J} I≃J ε _ = tt ⊨t-resp-≃ {I} {J} I≃J (T , U) (I⊨T , I⊨U) = (⊨t-resp-≃ I≃J T I⊨T , ⊨t-resp-≃ I≃J U I⊨U) ⊨t-resp-≃ {I} {J} I≃J (C ⊑₁ D) I⊨C⊑D = ⟦⟧₁-refl-≃ I≃J D ∘ I⊨C⊑D ∘ ⟦⟧₁-resp-≃ (≃-sym I≃J) C ⊨t-resp-≃ {I} {J} I≃J (Q ⊑₂ R) I⊨Q⊑R = ⟦⟧₂-refl-≃ I≃J R ∘ I⊨Q⊑R ∘ ⟦⟧₂-resp-≃ (≃-sym I≃J) Q ⊨t-resp-≃ {I} {J} I≃J (Dis Q R) I⊨DisQR = λ xy∈⟦Q⟧ xy∈⟦R⟧ → I⊨DisQR (⟦⟧₂-resp-≃ (≃-sym I≃J) Q xy∈⟦Q⟧) (⟦⟧₂-resp-≃ (≃-sym I≃J) R xy∈⟦R⟧) ⊨t-resp-≃ {I} {J} I≃J (Ref R) I⊨RefR = λ x → ⟦⟧₂-refl-≃ I≃J R (I⊨RefR _) ⊨t-resp-≃ {I} {J} I≃J (Irr R) I⊨IrrR = λ x xx∈⟦R⟧ → I⊨IrrR _ (⟦⟧₂-resp-≃ (≃-sym I≃J) R xx∈⟦R⟧) ⊨t-resp-≃ {I} {J} I≃J (Tra R) I⊨TraR = λ xy∈⟦R⟧ yz∈⟦R⟧ → ⟦⟧₂-refl-≃ I≃J R (I⊨TraR (⟦⟧₂-resp-≃ (≃-sym I≃J) R xy∈⟦R⟧) (⟦⟧₂-resp-≃ (≃-sym I≃J) R yz∈⟦R⟧))
43.483333
77
0.474128
0ba2690dcc8d6b793a16dc58b7c7f3b00d68a194
705
agda
Agda
test/succeed/Issue860.agda
larrytheliquid/agda
477c8c37f948e6038b773409358fd8f38395f827
[ "MIT" ]
1
2018-10-10T17:08:44.000Z
2018-10-10T17:08:44.000Z
test/succeed/Issue860.agda
masondesu/agda
70c8a575c46f6a568c7518150a1a64fcd03aa437
[ "MIT" ]
null
null
null
test/succeed/Issue860.agda
masondesu/agda
70c8a575c46f6a568c7518150a1a64fcd03aa437
[ "MIT" ]
1
2022-03-12T11:35:18.000Z
2022-03-12T11:35:18.000Z
open import Common.Prelude pattern [_] x = x ∷ [] pattern tail {x} xs = x ∷ xs length : ∀ {A} → List A → Nat length [] = 0 length [ _ ] = 1 length (tail [ _ ]) = 2 length (tail (tail xs)) = 2 + length xs data Vec (A : Set) : Nat → Set where nil : Vec A 0 cons : ∀ n → A → Vec A n → Vec A (suc n) pattern _∷v_ {n} x xs = cons n x xs map : ∀ {A B n} → (A → B) → Vec A n → Vec B n map f nil = nil map f (x ∷v xs) = f x ∷v map f xs data SomeVec (A : Set) : Set where someVec : ∀ n → Vec A n → SomeVec A pattern some {n} xs = someVec n xs null : ∀ {A} → SomeVec A → Bool null (some nil) = true null (some (_ ∷v _)) = false -- check that the hidden arg can be instantiated to a dot pattern
22.741935
95
0.567376
200bba6fb29fcf7952b65d5d4a03c459cbfaa718
17,802
agda
Agda
src/Categories/Adjoint/Properties.agda
yourboynico/agda-categories
6a087c592dbe58fc4bd9d02e1be9b94a9e138aca
[ "MIT" ]
279
2019-06-01T14:36:40.000Z
2022-03-22T00:40:14.000Z
src/Categories/Adjoint/Properties.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
236
2019-06-01T14:53:54.000Z
2022-03-28T14:31:43.000Z
src/Categories/Adjoint/Properties.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
64
2019-06-02T16:58:15.000Z
2022-03-14T02:00:59.000Z
{-# OPTIONS --without-K --safe #-} module Categories.Adjoint.Properties where open import Level open import Data.Product using (Σ; _,_; -,_; proj₂; uncurry) open import Function.Base using (_$_) open import Categories.Adjoint using (_⊣_; Adjoint) open import Categories.Adjoint.Equivalents using (Hom-NI′⇒Adjoint) open import Categories.Adjoint.RAPL using (rapl) open import Categories.Category using (Category; _[_,_]; _[_≈_]; _[_∘_]) open import Categories.Category.Product using (_⁂_; _⁂ⁿⁱ_) open import Categories.Category.Construction.Comma using (CommaObj; Comma⇒; _↙_) open import Categories.Diagram.Limit using (Limit) open import Categories.Diagram.Colimit using (Colimit) open import Categories.Functor using (Functor; _∘F_) renaming (id to idF) open import Categories.Functor.Hom using (Hom[_][-,-]) open import Categories.Functor.Construction.Constant using (const!) open import Categories.Functor.Construction.LiftSetoids using (LiftSetoids) open import Categories.Functor.Properties using ([_]-resp-square; [_]-resp-∘) open import Categories.Functor.Limits using (Continuous; Cocontinuous) open import Categories.Functor.Bifunctor using (Bifunctor; appʳ; appˡ) open import Categories.Functor.Bifunctor.Properties using ([_]-decompose₁; [_]-decompose₂; [_]-commute) open import Categories.NaturalTransformation using (NaturalTransformation; _∘ˡ_; _∘ʳ_; ntHelper) open import Categories.NaturalTransformation.NaturalIsomorphism using (NaturalIsomorphism; _≃_; _ⓘₕ_; _ⓘˡ_; module ≃) open import Categories.NaturalTransformation.NaturalIsomorphism.Properties using (unlift-≃) open import Categories.Monad using (Monad) open import Categories.Monad.Duality using (coMonad⇒Comonad) open import Categories.Comonad using (Comonad) open import Categories.Morphism.Universal using (UniversalMorphism) import Categories.Yoneda.Properties as YP using (yoneda-NI) import Categories.Diagram.Duality as Duality using (coLimit⇒Colimit; Colimit⇒coLimit) import Categories.Morphism.Reasoning as MR using (pushʳ; pullˡ; pushˡ; elimʳ; center; center⁻¹; elimˡ; cancelˡ; pullʳ; cancelʳ; id-comm-sym) private variable o ℓ e : Level C D E J : Category o ℓ e -- if the left adjoint functor is a partial application of bifunctor, then it uniquely -- determines a bifunctor compatible with the right adjoint functor. module _ {C : Category o ℓ e} (L : Bifunctor C E D) {R : ∀ (X : Category.Obj E) → Functor D C} (LR : ∀ (X : Category.Obj E) → appʳ L X ⊣ R X) where private module C = Category C using (id; _⇒_; _≈_; _∘_; assoc; sym-assoc; ∘-resp-≈ˡ; module HomReasoning) module D = Category D using (_∘_; id; _≈_; _⇒_; module HomReasoning; ∘-resp-≈ʳ; sym-assoc) module E = Category E using (_⇒_; id; module Equiv; _∘_; op) module L = Functor L using (F₁; F-resp-≈; identity) module R X = Functor (R X) using (F₀; F₁; identity; homomorphism; F-resp-≈) module LR X = Adjoint (LR X) using (Ladjunct; module unit; module counit; RLadjunct≈id; zag) open C using (assoc; sym-assoc; _⇒_; _∘_; _≈_; ∘-resp-≈ˡ) F′ : ∀ {A X B Y} f g → R.F₀ A X ⇒ R.F₀ B Y F′ {A} {X} {B} {Y} f g = LR.Ladjunct B (LR.counit.η A Y D.∘ L.F₁ (R.F₁ A g , f)) -- R.F₁ B (LR.counit.η A Y) ∘ R.F₁ B (L.F₁ (R.F₁ A g , f)) ∘ LR.unit.η B (R.F₀ A X) commute′ : ∀ {A B X} (f : A E.⇒ B) → LR.counit.η A X D.∘ L.F₁ (F′ f D.id , E.id) D.≈ LR.counit.η B X D.∘ L.F₁ (C.id , f) commute′ {A} {B} {X} f = begin LR.counit.η A X D.∘ L.F₁ (F′ f D.id , E.id) ≈⟨ LR.RLadjunct≈id A ⟩ LR.counit.η B X D.∘ L.F₁ (R.F₁ B D.id , f) ≈⟨ refl⟩∘⟨ L.F-resp-≈ (R.identity B , E.Equiv.refl) ⟩ LR.counit.η B X D.∘ L.F₁ (C.id , f) ∎ where open D.HomReasoning open C.HomReasoning decompose₁ : ∀ {A B X Y} {f : A E.⇒ B} {g : X D.⇒ Y} → F′ f g ≈ R.F₁ A g ∘ F′ f D.id decompose₁ {A} {B} {X} {Y} {f} {g} = begin F′ f g ≈⟨ R.F-resp-≈ A (D.∘-resp-≈ʳ [ L ]-decompose₁) ⟩∘⟨refl ⟩ R.F₁ A (LR.counit.η B Y D.∘ L.F₁ (R.F₁ B g , E.id) D.∘ L.F₁ (C.id , f)) ∘ LR.unit.η A (R.F₀ B X) ≈⟨ R.F-resp-≈ A (pullˡ (LR.counit.commute B g)) ⟩∘⟨refl ⟩ R.F₁ A ((g D.∘ LR.counit.η B X) D.∘ L.F₁ (C.id , f)) ∘ LR.unit.η A (R.F₀ B X) ≈˘⟨ R.F-resp-≈ A (pushʳ (D.∘-resp-≈ʳ (L.F-resp-≈ (R.identity B , E.Equiv.refl)))) ⟩∘⟨refl ⟩ R.F₁ A (g D.∘ LR.counit.η B X D.∘ L.F₁ (R.F₁ B D.id , f)) ∘ LR.unit.η A (R.F₀ B X) ≈⟨ R.homomorphism A ⟩∘⟨refl ⟩ (R.F₁ A g ∘ R.F₁ A (LR.counit.η B X D.∘ L.F₁ (R.F₁ B D.id , f))) ∘ LR.unit.η A (R.F₀ B X) ≈⟨ assoc ⟩ R.F₁ A g ∘ F′ f D.id ∎ where open MR D decompose₂ : ∀ {A B X Y} {f : A E.⇒ B} {g : X D.⇒ Y} → F′ f g ≈ F′ f D.id ∘ R.F₁ B g decompose₂ {A} {B} {X} {Y} {f} {g} = begin F′ f g ≈⟨ R.F-resp-≈ A (D.∘-resp-≈ʳ [ L ]-decompose₂) ⟩∘⟨refl ⟩ R.F₁ A (LR.counit.η B Y D.∘ L.F₁ (C.id , f) D.∘ L.F₁ (R.F₁ B g , E.id)) ∘ LR.unit.η A (R.F₀ B X) ≈˘⟨ R.F-resp-≈ A (pushˡ (D.∘-resp-≈ʳ (L.F-resp-≈ (R.identity B , E.Equiv.refl)))) ⟩∘⟨refl ⟩ R.F₁ A ((LR.counit.η B Y D.∘ L.F₁ (R.F₁ B D.id , f)) D.∘ L.F₁ (R.F₁ B g , E.id)) ∘ LR.unit.η A (R.F₀ B X) ≈⟨ R.homomorphism A ⟩∘⟨refl ⟩ (R.F₁ A (LR.counit.η B Y D.∘ L.F₁ (R.F₁ B D.id , f)) ∘ R.F₁ A (L.F₁ (R.F₁ B g , E.id))) ∘ LR.unit.η A (R.F₀ B X) ≈˘⟨ MR.pushʳ C (LR.unit.commute A (R.F₁ B g)) ⟩ R.F₁ A (LR.counit.η B Y D.∘ L.F₁ (R.F₁ B D.id , f)) ∘ LR.unit.η A (R.F₀ B Y) ∘ R.F₁ B g ≈⟨ sym-assoc ⟩ F′ f D.id ∘ R.F₁ B g ∎ where open MR D swap : ∀ {A B X Y} {f : A E.⇒ B} {g : X D.⇒ Y} → R.F₁ A g ∘ F′ f D.id ≈ F′ f D.id ∘ R.F₁ B g swap = ⟺ decompose₁ ○ decompose₂ commute″ : ∀ {X Y Z A} {f : Y E.⇒ Z} {g : X E.⇒ Y} → F′ (f E.∘ g) (D.id {A}) ≈ F′ g D.id ∘ F′ f D.id commute″ {X} {Y} {Z} {A} {f} {g} = begin F′ (f E.∘ g) D.id ≈⟨ R.F-resp-≈ X (D.∘-resp-≈ʳ (L.F-resp-≈ (R.identity Z , E.Equiv.refl))) ⟩∘⟨refl ⟩ R.F₁ X (LR.counit.η Z A D.∘ L.F₁ (C.id , f E.∘ g)) ∘ LR.unit.η X (R.F₀ Z A) ≈⟨ R.F-resp-≈ X (D.∘-resp-≈ʳ (Functor.homomorphism (appˡ L (R.F₀ Z A)))) ⟩∘⟨refl ⟩ R.F₁ X (LR.counit.η Z A D.∘ L.F₁ (C.id , f) D.∘ L.F₁ (C.id , g)) ∘ LR.unit.η X (R.F₀ Z A) ≈˘⟨ R.F-resp-≈ X (MR.pushˡ D (commute′ f)) ⟩∘⟨refl ⟩ R.F₁ X ((LR.counit.η Y A D.∘ L.F₁ (F′ f D.id , E.id)) D.∘ L.F₁ (C.id , g)) ∘ LR.unit.η X (R.F₀ Z A) ≈˘⟨ R.F-resp-≈ X (MR.pushʳ D [ L ]-commute) ⟩∘⟨refl ⟩ R.F₁ X (LR.counit.η Y A D.∘ L.F₁ (C.id , g) D.∘ L.F₁ (F′ f D.id , E.id)) ∘ LR.unit.η X (R.F₀ Z A) ≈⟨ R.F-resp-≈ X D.sym-assoc ⟩∘⟨refl ⟩ R.F₁ X ((LR.counit.η Y A D.∘ L.F₁ (C.id , g)) D.∘ L.F₁ (F′ f D.id , E.id)) ∘ LR.unit.η X (R.F₀ Z A) ≈⟨ R.homomorphism X ⟩∘⟨refl ⟩ (R.F₁ X (LR.counit.η Y A D.∘ L.F₁ (C.id , g)) ∘ R.F₁ X (L.F₁ (F′ f D.id , E.id))) ∘ LR.unit.η X (R.F₀ Z A) ≈˘⟨ MR.pushʳ C (LR.unit.commute X (F′ f D.id)) ⟩ R.F₁ X (LR.counit.η Y A D.∘ L.F₁ (C.id , g)) ∘ LR.unit.η X (R.F₀ Y A) ∘ F′ f D.id ≈˘⟨ R.F-resp-≈ X (D.∘-resp-≈ʳ (L.F-resp-≈ (R.identity Y , E.Equiv.refl))) ⟩∘⟨refl ⟩ R.F₁ X (LR.counit.η Y A D.∘ L.F₁ (R.F₁ Y D.id , g)) ∘ LR.unit.η X (R.F₀ Y A) ∘ F′ f D.id ≈⟨ sym-assoc ⟩ F′ g D.id ∘ F′ f D.id ∎ induced-bifunctorʳ : Bifunctor E.op D C induced-bifunctorʳ = record { F₀ = uncurry R.F₀ ; F₁ = uncurry F′ ; identity = λ where {e , d} → let open MR D in begin F′ E.id D.id ≈⟨ R.F-resp-≈ e (D.∘-resp-≈ʳ (L.F-resp-≈ (R.identity e , E.Equiv.refl))) ⟩∘⟨refl ⟩ R.F₁ e (LR.counit.η e d D.∘ L.F₁ (C.id , E.id)) ∘ LR.unit.η e (R.F₀ e d) ≈⟨ R.F-resp-≈ e (elimʳ L.identity) ⟩∘⟨refl ⟩ R.F₁ e (LR.counit.η e d) ∘ LR.unit.η e (R.F₀ e d) ≈⟨ LR.zag e ⟩ C.id ∎ ; homomorphism = λ where {A , X} {B , Y} {W , Z} {f , h} {g , i} → let open MR C in begin F′ (f E.∘ g) (i D.∘ h) ≈⟨ decompose₁ ⟩ R.F₁ W (i D.∘ h) ∘ F′ (f E.∘ g) D.id ≈˘⟨ center⁻¹ (⟺ (R.homomorphism W)) (⟺ commute″) ⟩ R.F₁ W i ∘ (R.F₁ W h ∘ F′ g D.id) ∘ F′ f D.id ≈˘⟨ center (⟺ swap) ⟩ (R.F₁ W i ∘ F′ g D.id) ∘ R.F₁ B h ∘ F′ f D.id ≈˘⟨ decompose₁ ⟩∘⟨ decompose₁ ⟩ F′ g i ∘ F′ f h ∎ ; F-resp-≈ = λ where {A , X} {B , Y} (eq , eq′) → ∘-resp-≈ˡ (R.F-resp-≈ B (D.∘-resp-≈ʳ (L.F-resp-≈ (R.F-resp-≈ A eq′ , eq)))) } -- LAPC: left adjoint preserves colimits. module _ {L : Functor C D} {R : Functor D C} (L⊣R : L ⊣ R) (F : Functor J C) where private module F = Functor F lapc : Colimit F → Colimit (L ∘F F) lapc col = Duality.coLimit⇒Colimit D (rapl (Adjoint.op L⊣R) F.op (Duality.Colimit⇒coLimit C col)) -- adjoint functors induce monads and comonads module _ {L : Functor C D} {R : Functor D C} (L⊣R : L ⊣ R) where private module C = Category C using (id; _∘_; module HomReasoning) module D = Category D using (id) module L = Functor L using (F₁) module R = Functor R using (F₁; identity) open Adjoint L⊣R using (unit; counit; zig; zag) rapl′ : ∀ {o ℓ e} → Continuous o ℓ e R rapl′ lim = terminal.⊤-is-terminal where open Limit (rapl L⊣R _ lim) using (module terminal) lapc′ : ∀ {o ℓ e} → Cocontinuous o ℓ e L lapc′ col = initial.⊥-is-initial where open Colimit (lapc L⊣R _ col) using (module initial) adjoint⇒monad : Monad C adjoint⇒monad = record { F = R ∘F L ; η = unit ; μ = record { η = μ′.η ; commute = μ′.commute ; sym-commute = μ′.sym-commute } ; assoc = [ R ]-resp-square (counit.commute _) ; sym-assoc = [ R ]-resp-square (counit.sym-commute _) ; identityˡ = λ {X} → begin μ′.η X C.∘ R.F₁ (L.F₁ (unit.η X)) ≈⟨ [ R ]-resp-∘ zig ⟩ R.F₁ D.id ≈⟨ R.identity ⟩ C.id ∎ ; identityʳ = zag } where open C.HomReasoning μ′ : NaturalTransformation (R ∘F (L ∘F R) ∘F L) (R ∘F Categories.Functor.id ∘F L) μ′ = R ∘ˡ counit ∘ʳ L module μ′ = NaturalTransformation μ′ using (η; commute; sym-commute) module _ {L : Functor C D} {R : Functor D C} (L⊣R : L ⊣ R) where adjoint⇒comonad : Comonad D adjoint⇒comonad = coMonad⇒Comonad D (adjoint⇒monad (Adjoint.op L⊣R)) -- adjoint functors are the same as universal morphisms module _ {R : Functor D C} where private module C = Category C -- all of the structure is needed module D = Category D using (Obj; _⇒_; _∘_; id; module HomReasoning) module R = Functor R using (F₀; F₁; identity; homomorphism) adjoint⇒universalMorphisms : ∀ {L : Functor C D} → L ⊣ R → ∀ (X : C.Obj) → UniversalMorphism X R adjoint⇒universalMorphisms {L} L⊣R X = record { initial = record { ⊥ = record { f = unit.η X } ; ⊥-is-initial = record { ! = let open C.HomReasoning in record { commute = LRadjunct≈id ○ ⟺ C.identityʳ } ; !-unique = λ {A} g → let open D.HomReasoning in -, (begin Radjunct (f A) ≈⟨ Radjunct-resp-≈ (C.Equiv.sym (C.Equiv.trans (commute g) (C.identityʳ {f = f A}))) ⟩ Radjunct (Ladjunct (h g)) ≈⟨ RLadjunct≈id ⟩ h g ∎) } } } where open Adjoint L⊣R using (Radjunct; Ladjunct; LRadjunct≈id; RLadjunct≈id; Radjunct-resp-≈; module unit) open Comma⇒ using (h; commute) open CommaObj using (f) universalMophisms⇒adjoint : (∀ (X : C.Obj) → UniversalMorphism X R) → Σ (Functor C D) (λ L → L ⊣ R) universalMophisms⇒adjoint umors = L , record { unit = ntHelper record { η = λ c → f (umors.⊥ c) ; commute = λ i → let open C.HomReasoning in ⟺ (commute (⊥X⇒⊥Y i) ○ C.identityʳ ) } ; counit = ntHelper record { η = ε ; commute = λ {X Y} i → let open C.HomReasoning open MR C using (pullʳ; cancelˡ; cancelʳ) in proj₂ $ umors.!-unique₂ (R.F₀ X) {record { f = R.F₁ i }} (record { h = ε Y D.∘ L₁ (R.F₁ i) ; commute = begin R.F₁ (ε Y D.∘ L₁ (R.F₁ i)) C.∘ f (⊥Rd X) ≈⟨ R.homomorphism ⟩∘⟨refl ⟩ (R.F₁ (ε Y) C.∘ R.F₁ (L₁ (R.F₁ i))) C.∘ f (⊥Rd X) ≈⟨ pullʳ (commute (⊥X⇒⊥Y (R.F₁ i)) ○ C.identityʳ) ⟩ R.F₁ (ε Y) C.∘ f (⊥Rd Y) C.∘ R.F₁ i ≈⟨ cancelˡ (commute (⊥Rd⇒id Y) ○ C.identityˡ) ⟩ R.F₁ i ≈˘⟨ C.identityʳ ⟩ R.F₁ i C.∘ C.id ∎ }) (record { h = i D.∘ ε X ; commute = begin R.F₁ (i D.∘ ε X) C.∘ f (⊥Rd X) ≈⟨ R.homomorphism ⟩∘⟨refl ⟩ (R.F₁ i C.∘ R.F₁ (ε X)) C.∘ f (⊥Rd X) ≈⟨ cancelʳ (commute (⊥Rd⇒id X) ○ C.identityˡ) ⟩ R.F₁ i ≈˘⟨ C.identityʳ ⟩ R.F₁ i C.∘ C.id ∎ }) } ; zig = λ {c} → let open C.HomReasoning open MR C using (pullʳ; cancelˡ; id-comm-sym) α = f (umors.⊥ c) in proj₂ $ umors.!-unique₂ c {record { f = α }} (record { h = ε (L₀ c) D.∘ L₁ α ; commute = begin R.F₁ (ε (L₀ c) D.∘ L₁ α) C.∘ α ≈⟨ R.homomorphism ⟩∘⟨refl ⟩ (R.F₁ (ε (L₀ c)) C.∘ R.F₁ (L₁ α)) C.∘ α ≈⟨ pullʳ (commute (⊥X⇒⊥Y α) ○ C.identityʳ) ⟩ R.F₁ (ε (L₀ c)) C.∘ f (⊥Rd (L₀ c)) C.∘ α ≈⟨ cancelˡ (commute (⊥Rd⇒id (L₀ c)) ○ C.identityˡ) ⟩ α ≈˘⟨ C.identityʳ ⟩ α C.∘ C.id ∎ }) (record { h = D.id ; commute = C.∘-resp-≈ˡ R.identity ○ id-comm-sym }) ; zag = λ {d} → C.Equiv.trans (commute (⊥Rd⇒id d)) C.identityˡ } where module umors X = UniversalMorphism (umors X) open CommaObj open Comma⇒ commaObj∘g : ∀ {X Y} → X C.⇒ Y → CommaObj (const! X) R commaObj∘g {X} {Y} g = record { f = f (umors.⊥ Y) C.∘ g } ⊥X⇒⊥Y : ∀ {X Y} (g : X C.⇒ Y) → (X ↙ R) [ umors.⊥ X , commaObj∘g g ] ⊥X⇒⊥Y {X} {Y} g = umors.! X {commaObj∘g g} L₀ : ∀ X → D.Obj L₀ X = β (umors.⊥ X) L₁ : ∀ {X Y} → X C.⇒ Y → β (umors.⊥ X) D.⇒ β (umors.⊥ Y) L₁ {X} {Y} g = h (⊥X⇒⊥Y g) L-Hom : ∀ {X Y Z} {i : X C.⇒ Y} {j : Y C.⇒ Z} → D [ L₁ (C [ j ∘ i ]) ≈ (D [ L₁ j ∘ L₁ i ]) ] L-Hom {X} {Y} {Z} {i} {j} = proj₂ $ umors.!-unique₂ X (umors.! X) $ record { commute = begin R.F₁ (h (umors.! Y) D.∘ h (umors.! X)) C.∘ f (umors.⊥ X) ≈⟨ (C.∘-resp-≈ˡ R.homomorphism) ○ C.assoc ⟩ R.F₁ (h (umors.! Y)) C.∘ R.F₁ (h (umors.! X)) C.∘ f (umors.⊥ X) ≈⟨ (C.∘-resp-≈ʳ (commute (⊥X⇒⊥Y i) ○ C.identityʳ)) ○ C.sym-assoc ⟩ (R.F₁ (h (umors.! Y)) C.∘ f (umors.⊥ Y)) C.∘ i ≈⟨ pushˡ (commute (⊥X⇒⊥Y j) ○ C.identityʳ) ⟩ f (umors.⊥ Z) C.∘ j C.∘ i ≈˘⟨ C.identityʳ ⟩ (f (umors.⊥ Z) C.∘ j C.∘ i) C.∘ C.id ∎ } where open C.HomReasoning open MR C using (pushˡ) L : Functor C D L = record { F₀ = L₀ ; F₁ = L₁ ; identity = λ {X} → proj₂ $ umors.!-unique X $ record { commute = elimˡ R.identity ○ ⟺ C.identityʳ ○ ⟺ C.identityʳ } ; homomorphism = L-Hom ; F-resp-≈ = λ {X} eq → proj₂ $ umors.!-unique₂ X (umors.! X) $ record { commute = commute (umors.! X) ○ C.∘-resp-≈ˡ (C.∘-resp-≈ʳ (⟺ eq)) } } where open C.HomReasoning using (_○_; ⟺) open MR C using (elimˡ) ⊥Rd : (d : D.Obj) → CommaObj (const! (R.F₀ d)) R ⊥Rd d = umors.⊥ (R.F₀ d) ⊥Rd⇒id : (d : D.Obj) → (R.F₀ d ↙ R) [ ⊥Rd d , record { f = C.id } ] ⊥Rd⇒id d = umors.! (R.F₀ d) {record { f = C.id }} ε : ∀ d → L₀ (R.F₀ d) D.⇒ d ε d = h (⊥Rd⇒id d) -- adjoint functors of a functor are isomorphic module _ (L : Functor C D) where R≃R′ : ∀ {R R′} → L ⊣ R → L ⊣ R′ → R ≃ R′ R≃R′ {R} {R′} L⊣R L⊣R′ = YP.yoneda-NI C R R′ (unlift-≃ Hom[-,R-]≃Hom[-,R′-]) where module ⊣₁ = Adjoint L⊣R using (Hom[-,R-]′; Hom-NI) module ⊣₂ = Adjoint L⊣R′ using (Hom[-,R-]′; Hom-NI) Hom[-,R-]≃Hom[-,R′-] : ⊣₁.Hom[-,R-]′ ≃ ⊣₂.Hom[-,R-]′ Hom[-,R-]≃Hom[-,R′-] = ≃.trans (≃.sym ⊣₁.Hom-NI) ⊣₂.Hom-NI module _ {R : Functor D C} where L≃L′ : ∀ {L L′} → L ⊣ R → L′ ⊣ R → L ≃ L′ L≃L′ L⊣R L′⊣R = NaturalIsomorphism.op (R≃R′ (Functor.op R) ⊣₂.op ⊣₁.op) where module ⊣₁ = Adjoint L⊣R using (op) module ⊣₂ = Adjoint L′⊣R using (op) -- adjoint functors are preserved by natural isomorphisms module _ {L L′ : Functor C D} {R R′ : Functor D C} where ⊣×≃⇒⊣ : L ⊣ R → L ≃ L′ → R ≃ R′ → L′ ⊣ R′ ⊣×≃⇒⊣ L⊣R L≃L′ R≃R′ = Hom-NI′⇒Adjoint (≃.trans (LiftSetoids _ _ ⓘˡ Hom[L′-,-]≃Hom[L-,-]) (≃.trans (Adjoint.Hom-NI L⊣R) (LiftSetoids _ _ ⓘˡ Hom[-,R-]≃Hom[-,R′-]))) where Hom[L′-,-]≃Hom[L-,-] : Hom[ D ][-,-] ∘F (Functor.op L′ ⁂ idF) ≃ Hom[ D ][-,-] ∘F (Functor.op L ⁂ idF) Hom[L′-,-]≃Hom[L-,-] = Hom[ D ][-,-] ⓘˡ (NaturalIsomorphism.op L≃L′ ⁂ⁿⁱ ≃.refl) Hom[-,R-]≃Hom[-,R′-] : Hom[ C ][-,-] ∘F (idF ⁂ R) ≃ Hom[ C ][-,-] ∘F (idF ⁂ R′) Hom[-,R-]≃Hom[-,R′-] = Hom[ C ][-,-] ⓘˡ (≃.refl ⁂ⁿⁱ R≃R′)
47.983827
124
0.49545
df9db6d4aa8d7194f181591437946aacad07c90a
3,116
agda
Agda
theorems/stash/NConnected.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
294
2015-01-09T16:23:23.000Z
2022-03-20T13:54:45.000Z
theorems/stash/NConnected.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
31
2015-03-05T20:09:00.000Z
2021-10-03T19:15:25.000Z
theorems/stash/NConnected.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
50
2015-01-10T01:48:08.000Z
2022-02-14T03:03:25.000Z
{-# OPTIONS --without-K --rewriting #-} open import HoTT module experimental.NConnected where lemma₁ : ∀ {i j} {A : Type i} {B : Type j} (f : A → B) {n : ℕ₋₂} → is-connected n A → is-connected (S n) B → has-conn-fibers n f lemma₁ f cA cB = λ b → Σ-conn cA (λ a → path-conn cB) lemma₂ : ∀ {i} {A B C : Type i} → (f : A → B) (g : B → C) {n : ℕ₋₂} → has-conn-fibers n (g ∘ f) → has-conn-fibers (S n) g → has-conn-fibers n f lemma₂ f g {n} cA cB b = equiv-preserves-conn (eqv b idp ⁻¹) (lemma₁-f′ (g b) (b , idp)) where f′ : ∀ c → hfiber (g ∘ f) c → hfiber g c f′ c (a , p) = (f a , p) -- We first show [∀ b → is-connected n (hfiber (f′ (g b) (b , idp))) ] lemma₁-f′ : ∀ c → has-conn-fibers n (f′ c) lemma₁-f′ c = lemma₁ (f′ c) (cA c) (cB c) -- The remaining shows [hfiber (f′ (g b) (b , idp))] -- is the same as [hfiber f b] to : ∀ b p → hfiber f b → hfiber (f′ (g b)) (b , p) to ._ p (a , idp) = ((a , p) , idp) from′ : ∀ b a → f a == b → hfiber f b from′ ._ a idp = (a , idp) from : ∀ b p → hfiber (f′ (g b)) (b , p) → hfiber f b from b p ((a , q) , r) = from′ b a (fst= r) from-to : ∀ b p x → from b p (to b p x) == x from-to ._ p (a , idp) = idp to-from : ∀ b p x → to b p (from b p x) == x to-from b p ((a , q) , r) = to b p (from b p ((a , q) , r)) =⟨ pair=-η r |in-ctx (λ r → to b p (from b p ((a , q) , r))) ⟩ to b p (from b p ((a , q) , pair= (fst= r) (snd= r))) =⟨ lemma b p a q (fst= r) (snd= r) ⟩ ((a , q) , pair= (fst= r) (snd= r)) =⟨ ! (pair=-η r) |in-ctx (λ r → ((a , q) , r)) ⟩ ((a , q) , r) ∎ where lemma : ∀ b p a (q : g (f a) == g b) → (r : f a == b) (s : q == p [ (λ b′ → g b′ == g b) ↓ r ]) → to b p (from b p ((a , q) , pair= r s)) == ((a , q) , pair= r s) lemma ._ ._ a q idp idp = idp eqv : ∀ b p → hfiber f b ≃ hfiber (f′ (g b)) (b , p) eqv b p = equiv (to b p) (from b p) (to-from b p) (from-to b p) lemma₃ : ∀ {i j} {A : Type i} {B : Type j} (f : A → B) → A ≃ Σ B (hfiber f) lemma₃ {A = A} {B} f = equiv to from to-from from-to where to : A → Σ B (hfiber f) to a = (f a , (a , idp)) from : Σ B (hfiber f) → A from (_ , (a , p)) = a to-from : ∀ s → to (from s) == s to-from (._ , (a , idp)) = idp from-to : ∀ a → from (to a) == a from-to a = idp {- ∘-conn : ∀ {i j k} {A : Type i} {B : Type j} {C : Type k} → (f : A → B) → (g : B → C) → {n : ℕ₋₂} → has-conn-fibers n f → has-conn-fibers n g → has-conn-fibers n (g ∘ f) ∘-conn f g {⟨-2⟩} cf cg c = -2-conn _ ∘-conn f g {S n } cf cg c = Trunc-rec {P = is-connected (hfiber (g ∘ f) c)} (prop-has-level-S n (is-connected-is-prop n A)) (λ c ) (cg c) -} {- lemma₃-path : ∀ {i j} {A : Type i} {B : Type j} (f : A → B) → A == Σ B (hfiber f) lemma₃-path = λ f → ua (lemma₃ f) -}
31.795918
80
0.413992
50fc40fbd27301798899163254b37bff654c6097
2,139
agda
Agda
src/MLib/Fin/Parts/Nat/Simple/Properties.agda
bch29/agda-matrices
e26ae2e0aa7721cb89865aae78625a2f3fd2b574
[ "MIT" ]
null
null
null
src/MLib/Fin/Parts/Nat/Simple/Properties.agda
bch29/agda-matrices
e26ae2e0aa7721cb89865aae78625a2f3fd2b574
[ "MIT" ]
null
null
null
src/MLib/Fin/Parts/Nat/Simple/Properties.agda
bch29/agda-matrices
e26ae2e0aa7721cb89865aae78625a2f3fd2b574
[ "MIT" ]
null
null
null
module MLib.Fin.Parts.Nat.Simple.Properties where open import MLib.Prelude open import MLib.Fin.Parts.Nat import MLib.Fin.Parts.Nat.Simple as S module P a b = Partsℕ (S.repl a b) open Nat using (_*_; _+_; _<_) open Fin using (toℕ; fromℕ≤) open List fromAny : ∀ a b → Any Fin (S.repl a b) → ℕ × ℕ fromAny zero b () fromAny (suc a) b (here j) = 0 , Fin.toℕ j fromAny (suc a) b (there js) = let i , j = fromAny a b js in suc i , j intoPart-prop : ∀ a b {ps : Any Fin (S.repl a b)} → P.intoPart a b ps ≡ S.intoPart a b (fromAny a b ps) intoPart-prop zero b {()} intoPart-prop (suc a) b {here px} = ≡.sym (Nat.+-identityʳ _) intoPart-prop (suc a) b {there ps} = let ind = intoPart-prop a b {ps} i , j = fromAny a b ps open ≡.Reasoning open Nat.SemiringSolver in begin b + Impl.intoPart ps ≡⟨ ≡.cong₂ _+_ ≡.refl ind ⟩ b + (j + i * b) ≡⟨ solve 3 (λ b j ib → b :+ (j :+ ib) := j :+ (b :+ ib)) ≡.refl b j (i * b) ⟩ j + (b + i * b) ∎ lem : ∀ a b {k} → k < a * b → k < sum (S.repl a b) lem a b p = Nat.≤-trans p (Nat.≤-reflexive (≡.sym (S.sum-replicate-* a b))) fromPart-prop : ∀ a b {k} → k < a * b → Maybe.map (fromAny a b) (Impl.fromPart (S.repl a b) k) ≡ just (S.fromPart a b k) fromPart-prop zero b () fromPart-prop (suc a) b {k} p with Impl.compare′ k b fromPart-prop (suc a) .(suc (m + k)) {.m} p | Impl.less m k = ≡.cong just (Σ.≡×≡⇒≡ (≡.refl , Fin.toℕ-fromℕ≤ _)) fromPart-prop (suc a) b {.(b + k)} p | Impl.gte .b k with Impl.fromPart (S.repl a b) k | fromPart-prop a b {k} (Nat.+-cancelˡ-< b p) fromPart-prop (suc a) b {.(b + k)} p | Impl.gte .b k | just x | ind = let e1 , e2 = Σ.≡⇒≡×≡ (Maybe.just-injective ind) in ≡.cong just (Σ.≡×≡⇒≡ (≡.cong suc e1 , e2)) fromPart-prop (suc a) b {.(b + k)} p | Impl.gte .b k | nothing | () fromPart′-prop : ∀ a b {k} (p : k < a * b) → fromAny a b (P.fromPart a b {k} (lem a b p)) ≡ S.fromPart a b k fromPart′-prop a b {k} p with Impl.fromPart (S.repl a b) k | Impl.fromPart-prop (S.repl a b) (lem a b p) | fromPart-prop a b p fromPart′-prop a b {k} p | just x | y | z = Maybe.just-injective z fromPart′-prop a b {k} p | nothing | () | z
41.941176
132
0.57597
dc3187c9ca4a90b97cedf2102015af2a03a5385f
749
agda
Agda
test/Fail/Issue4560NoPatternMatchingWithoutEta.agda
cagix/agda
cc026a6a97a3e517bb94bafa9d49233b067c7559
[ "BSD-2-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue4560NoPatternMatchingWithoutEta.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue4560NoPatternMatchingWithoutEta.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2020-04-19, issue #4560, raised by Andrea -- Having both matching on constructor and copattern matching -- for non-eta records leads to loss of subject reduction. open import Agda.Builtin.Equality postulate A : Set a : A record R : Set where constructor con no-eta-equality field X Y : A foo : R → A foo (con x y) = x -- Expected error here: -- -- Pattern matching on no-eta record type R -- (defined at ...) -- is not allowed -- (to activate, add declaration `pattern` to record definition) -- when checking that the pattern con x y has type R bar : R bar .R.X = a bar .R.Y = a test : foo bar ≡ a test = refl -- Problem was: -- foo bar != a of type A -- when checking that the expression refl has type foo bar ≡ a
19.710526
64
0.676903
0b1321cdee65f44fb01d233f67f2d769f008ea23
1,772
agda
Agda
test/Succeed/Issue2046.agda
cagix/agda
cc026a6a97a3e517bb94bafa9d49233b067c7559
[ "BSD-2-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue2046.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue2046.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2016-12-12, issue #2046, reported by Nad -- Parameter refinement broke the size solver. -- {-# OPTIONS -v tc.size.solve:100 #-} -- {-# OPTIONS -v tc.constr.cast:100 #-} -- -- {-# OPTIONS -v tc.sig.param:60 #-} -- -- {-# OPTIONS -v tc.check.internal:100 #-} -- -- {-# OPTIONS -v interaction.give:100 #-} {-# OPTIONS --sized-types #-} open import Agda.Builtin.Size using (Size; Size<_) data _×_ (A B : Set) : Set where _,_ : A → B → A × B record Always {A : Set} (P : A → Set) : Set where field always : ∀ x → P x postulate A : Set module M (P : A → Set) where record R₁ (i : Size) (x : A) : Set where coinductive field force : {j : Size< i} → R₁ j x record R₂ (i : Size) (x : A) : Set where inductive constructor ⟨_,_⟩ field f₁ : P x f₂ : P x → R₁ i x data P : A → Set where c : (y : A) → P y → P y postulate p : (x : A) → P x a : (i : Size) → Always (M.R₁ P i) module _ (Unused : Set) where open M P rejected : ∀ i z → R₂ i z rejected i z = ⟨ p z , (λ { (c y q) → Always.always (a _) z }) ⟩ -- Should succeed {- Solving constraints (DontDefaultToInfty) i =< _i_31 Unused i z : Size _i_31 Unused i z =< _i_35 z Unused i q : Size converting size constraint i =< _i_31 Unused i z : Size converting size constraint _i_31 Unused i z =< _i_35 z Unused i q : Size Solving constraint cluster [Unused, i, z] i ≤ _i_31 Unused i z [z, Unused, i, q] _i_31 Unused i z ≤ _i_35 z Unused i q Size hypotheses Canonicalized constraints [z, Unused, i, q] Unused ≤ _i_31 z Unused i [z, Unused, i, q] _i_31 Unused i z ≤ _i_35 z Unused i q solution _i_31 z Unused i := Unused xs = [3,2,1] u = Var 2 [] solution _i_35 z Unused i q := Unused xs = [3,2,1,0] u = Var 2 [] -}
22.717949
55
0.586907
4d08af6fce367c02c9be2b5e4f00810d9fcad85d
1,507
agda
Agda
src/Categories/Category/Instance/Zero.agda
glittershark/agda-categories
2128fab9e8d341364cbf784bb17c547bf73891de
[ "MIT" ]
null
null
null
src/Categories/Category/Instance/Zero.agda
glittershark/agda-categories
2128fab9e8d341364cbf784bb17c547bf73891de
[ "MIT" ]
null
null
null
src/Categories/Category/Instance/Zero.agda
glittershark/agda-categories
2128fab9e8d341364cbf784bb17c547bf73891de
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} open import Level -- ⊥ is Initial module Categories.Category.Instance.Zero where open import Data.Empty using (⊥; ⊥-elim) open import Function renaming (id to idf) open import Categories.Category open import Categories.Functor open import Categories.Category.Instance.Cats import Categories.Object.Initial as Init -- Unlike for ⊤ being Terminal, Agda can't deduce these, need to be explicit module _ {o ℓ e : Level} where open Init (Cats o ℓ e) Zero : Category o ℓ e Zero = record { Obj = Lift o ⊥ ; _⇒_ = λ _ _ → Lift ℓ ⊥ ; _≈_ = λ _ _ → Lift e ⊥ ; id = λ { { lift () } } ; _∘_ = λ a _ → a -- left-biased rather than strict ; assoc = λ { {lift () } } ; sym-assoc = λ { {lift () } } ; identityˡ = λ { {()} } ; identityʳ = λ { {()} } ; identity² = λ { {()} } ; ∘-resp-≈ = λ { () } ; equiv = record { refl = λ { {()} } ; sym = idf ; trans = λ a _ → a } } Zero-⊥ : Initial Zero-⊥ = record { ⊥ = Zero ; ! = record { F₀ = λ { (lift x) → ⊥-elim x } ; F₁ = λ { (lift ()) } ; identity = λ { {lift ()} } ; homomorphism = λ { {lift ()} } ; F-resp-≈ = λ { () } } ; !-unique = λ f → record { F⇒G = record { η = λ { () } ; commute = λ { () } ; sym-commute = λ { () } } ; F⇐G = record { η = λ { () } ; commute = λ { () } ; sym-commute = λ { () } } ; iso = λ { (lift ()) } } }
26.438596
83
0.474453
a1a8e42c3cd6a403004da25e0dd3bc4da2ddd289
2,513
agda
Agda
examples/outdated-and-incorrect/Alonzo/PrintFloat.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
1
2018-10-10T17:08:44.000Z
2018-10-10T17:08:44.000Z
examples/outdated-and-incorrect/Alonzo/PrintFloat.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
examples/outdated-and-incorrect/Alonzo/PrintFloat.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
module PrintFloat where import AlonzoPrelude import PreludeShow import PreludeList import PreludeString import PreludeNat open AlonzoPrelude open PreludeShow open PreludeList, hiding(_++_) open PreludeString open PreludeNat typeS : Char -> Set typeS 'f' = Float show : (c : Char) -> (typeS c) -> String show 'f' f = showFloat f data Unit : Set where unit : Unit data Format : Set where stringArg : Format natArg : Format intArg : Format floatArg : Format charArg : Format litChar : Char -> Format badFormat : Char -> Format data BadFormat (c:Char) : Set where format' : List Char -> List Format format' ('%' :: 's' :: fmt) = stringArg :: format' fmt format' ('%' :: 'n' :: fmt) = natArg :: format' fmt -- format' ('%' :: 'd' :: fmt) = intArg :: format' fmt format' ('%' :: 'f' :: fmt) = floatArg :: format' fmt format' ('%' :: 'c' :: fmt) = charArg :: format' fmt format' ('%' :: '%' :: fmt) = litChar '%' :: format' fmt format' ('%' :: c :: fmt) = badFormat c :: format' fmt format' (c :: fmt) = litChar c :: format' fmt format' [] = [] format : String -> List Format format s = format' (toList s) -- Printf1 : Format -> Set -- Printf1 floatArg = Float Printf' : List Format -> Set Printf' (stringArg :: fmt) = String × Printf' fmt Printf' (natArg :: fmt) = Nat × Printf' fmt Printf' (intArg :: fmt) = Int × Printf' fmt Printf' (floatArg :: fmt) = Float × Printf' fmt Printf' (charArg :: fmt) = Char × Printf' fmt Printf' (badFormat c :: fmt) = BadFormat c Printf' (litChar _ :: fmt) = Printf' fmt Printf' [] = Unit × Unit Printf : String -> Set Printf fmt = Printf' (format fmt) printf' : (fmt : List Format) -> Printf' fmt -> String printf' (stringArg :: fmt) < s | args > = s ++ printf' fmt args printf' (natArg :: fmt) < n | args > = showNat n ++ printf' fmt args printf' (intArg :: fmt) < n | args > = showInt n ++ printf' fmt args printf' (floatArg :: fmt) < x | args > = showFloat x ++ printf' fmt args printf' (charArg :: fmt) < c | args > = showChar c ++ printf' fmt args printf' (litChar c :: fmt) args = fromList (c :: []) ++ printf' fmt args printf' (badFormat _ :: fmt) () printf' [] < unit | unit > = "" printf : (fmt : String) -> Printf fmt -> String printf fmt = printf' (format fmt) -- mainS = show 'f' 3.14 -- mainS = printf' (format "%f") < 3.14 | < unit | unit > > mainS = printf "pi = %f" < 3.14159 | < unit | unit > > -- mainS = fromList ( 'p' :: [] )
31.024691
75
0.58655
cb9c1d567807cc2e3375051883aeec957dc7e49f
3,485
agda
Agda
archive/agda-2/Oscar/Property/Preservativity.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
archive/agda-2/Oscar/Property/Preservativity.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
1
2019-04-29T00:35:04.000Z
2019-05-11T23:33:04.000Z
archive/agda-2/Oscar/Property/Preservativity.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
module Oscar.Property.Preservativity where open import Oscar.Level open import Oscar.Relation record Preservativity {a} {A : Set a} {b} {B : A → Set b} {c} {C : (x : A) → B x → Set c} (_▻₁_ : (x : A) → (y : B x) → C x y) {d} {D : Set d} {e} {E : D → Set e} {f} {F : (x : D) → E x → Set f} (_▻₂_ : (x : D) → (y : E x) → F x y) {ℓ} (_≤_ : ∀ {x y} → F x y → F x y → Set ℓ) (◽ : A → D) (◻ : ∀ {x} → B x → E (◽ x)) (□ : ∀ {x y} → C x y → F (◽ x) (◻ y)) : Set (a ⊔ b ⊔ c ⊔ d ⊔ e ⊔ f ⊔ ℓ) where field preservativity : ∀ (x : A) (y : B x) → □ (x ▻₁ y) ≤ (◽ x ▻₂ ◻ y) open Preservativity ⦃ … ⦄ public -- -- record Preservativity -- -- {𝔞₁} {𝔄₁ : Set 𝔞₁} {𝔰₁} {_►₁_ : 𝔄₁ → 𝔄₁ → Set 𝔰₁} -- -- (_◅₁_ : ∀ {m n} → m ►₁ n → ∀ {l} → m ⟨ l ►₁_ ⟩→ n) -- -- {𝔞₂} {𝔄₂ : Set 𝔞₂} {𝔰₂} (_►₂_ : 𝔄₂ → 𝔄₂ → Set 𝔰₂) -- -- (_◅₂_ : ∀ {m n} → m ►₂ n → ∀ {l} → m ⟨ l ►₂_ ⟩→ n) -- -- {ℓ} -- -- (_≤_ : ∀ {m n} → m ►₂ n → m ►₂ n → Set ℓ) -- -- {μ : 𝔄₁ → 𝔄₂} -- -- (◽ : ∀ {m n} → m ►₁ n → μ m ►₂ μ n) -- -- : Set (𝔞₁ ⊔ 𝔰₁ ⊔ 𝔞₂ ⊔ 𝔰₂ ⊔ ℓ) where -- -- field -- -- preservativity : ∀ {l m} (f : l ►₁ m) {n} (g : m ►₁ n) → ◽ (g ◅₁ f) ≤ (◽ g ◅₂ ◽ f) -- -- open Preservativity ⦃ … ⦄ public -- -- -- record Preservativity -- -- -- {𝔞₁} {𝔄₁ : Set 𝔞₁} {𝔰₁} -- -- -- (_►₁_ : 𝔄₁ → 𝔄₁ → Set 𝔰₁) {𝔱₁} -- -- -- {▸₁ : 𝔄₁ → Set 𝔱₁} -- -- -- (_◃₁_ : ∀ {m n} → m ►₁ n → m ⟨ ▸₁ ⟩→ n) -- -- -- {𝔞₂} {𝔄₂ : Set 𝔞₂} {𝔰₂} -- -- -- (_►₂_ : 𝔄₂ → 𝔄₂ → Set 𝔰₂) {𝔱₂} -- -- -- {▸₂ : 𝔄₂ → Set 𝔱₂} -- -- -- (_◃₂_ : ∀ {m n} → m ►₂ n → m ⟨ ▸₂ ⟩→ n) -- -- -- {ℓ} -- -- -- (_≤_ : ∀ {n} → ▸₂ n → ▸₂ n → Set ℓ) -- -- -- {μ : 𝔄₁ → 𝔄₂} -- -- -- (◽ : ∀ {n} → ▸₁ n → ▸₂ (μ n)) -- -- -- (□ : ∀ {m n} → m ►₁ n → μ m ►₂ μ n) -- -- -- : Set (𝔞₁ ⊔ 𝔰₁ ⊔ 𝔱₁ ⊔ 𝔞₂ ⊔ 𝔰₂ ⊔ 𝔱₂ ⊔ ℓ) where -- -- -- field -- -- -- preservativity : ∀ {m n} (f : ▸₁ m) (g : m ►₁ n) → ◽ (g ◃₁ f) ≤ (□ g ◃₂ ◽ f) -- -- -- open Preservativity ⦃ … ⦄ public -- -- -- open import Oscar.Class.Associativity -- -- -- open import Oscar.Class.Symmetry -- -- -- open import Oscar.Function -- -- -- instance -- -- -- Preservativity⋆ : ∀ -- -- -- {𝔞} {𝔄 : Set 𝔞} {𝔰} {_►_ : 𝔄 → 𝔄 → Set 𝔰} -- -- -- {_◅_ : ∀ {m n} → m ► n → ∀ {l} → m ⟨ l ►_ ⟩→ n} -- -- -- {𝔱} {▸ : 𝔄 → Set 𝔱} -- -- -- {_◃_ : ∀ {m n} → m ► n → m ⟨ ▸ ⟩→ n} -- -- -- {ℓ} -- -- -- {_≤_ : ∀ {n} → ▸ n → ▸ n → Set ℓ} -- -- -- ⦃ _ : Associativity _◅_ _◃_ _≤_ ⦄ -- -- -- → ∀ {n} {x : ▸ n} -- -- -- → Preservativity _►_ (λ ⋆ → _◅_ ⋆) _►_ _◃_ (flip _≤_) (_◃ x) id -- -- -- Preservativity.preservativity (Preservativity⋆ {_◅_ = _◅_} {_◃_ = _◃_} {_≤_ = _≤_} ⦃ ′associativity ⦄ {x = x}) f = associativity {_◅_ = _◅_} {_◃_ = _◃_} {_≤_ = _≤_} ⦃ {-′associativity-}_ ⦄ x f -- -- -- preservation : ∀ -- -- -- {𝔞₁} {𝔄₁ : Set 𝔞₁} {𝔰₁} {_►₁_ : 𝔄₁ → 𝔄₁ → Set 𝔰₁} {𝔱₁} {▸₁ : 𝔄₁ → Set 𝔱₁} -- -- -- (_◃₁_ : ∀ {m n} → m ►₁ n → m ⟨ ▸₁ ⟩→ n) -- -- -- {𝔞₂} {𝔄₂ : Set 𝔞₂} {𝔰₂} {_►₂_ : 𝔄₂ → 𝔄₂ → Set 𝔰₂} {𝔱₂} {▸₂ : 𝔄₂ → Set 𝔱₂} -- -- -- (_◃₂_ : ∀ {m n} → m ►₂ n → m ⟨ ▸₂ ⟩→ n) -- -- -- {ℓ} -- -- -- (_≤_ : ∀ {n} → ▸₂ n → ▸₂ n → Set ℓ) -- -- -- {μ : 𝔄₁ → 𝔄₂} -- -- -- {◽ : ∀ {n} → ▸₁ n → ▸₂ (μ n)} -- -- -- {□ : ∀ {m n} → m ►₁ n → μ m ►₂ μ n} -- -- -- ⦃ _ : Preservativity _►₁_ _◃₁_ _►₂_ _◃₂_ _≤_ ◽ □ ⦄ -- -- -- {m n} (f : ▸₁ m) (g : m ►₁ n) → ◽ (g ◃₁ f) ≤ (□ g ◃₂ ◽ f) -- -- -- preservation _◃₁_ _◃₂_ _≤_ f g = preservativity {_◃₁_ = _◃₁_} {_◃₂_ = _◃₂_} {_≤_ = _≤_} f g
39.157303
203
0.356671
39af21e3b951dc7c7323e68f809d9a92ea480e53
396
agda
Agda
Cubical/Data/FinSet/Binary/Small/Base.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
301
2018-10-17T18:00:24.000Z
2022-03-24T02:10:47.000Z
Cubical/Data/FinSet/Binary/Small/Base.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
584
2018-10-15T09:49:02.000Z
2022-03-30T12:09:17.000Z
Cubical/Data/FinSet/Binary/Small/Base.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
134
2018-11-16T06:11:03.000Z
2022-03-23T16:22:13.000Z
{-# OPTIONS --safe #-} module Cubical.Data.FinSet.Binary.Small.Base where open import Cubical.Foundations.Equiv open import Cubical.Foundations.Prelude open import Cubical.Foundations.Univalence open import Cubical.Data.Bool hiding (isSetBool) data Binary : Type₀ El : Binary → Type₀ data Binary where ℕ₂ : Binary un : ∀ x y → El x ≃ El y → x ≡ y El ℕ₂ = Bool El (un _ _ e i) = ua e i
18.857143
50
0.714646
dc9f89657b1f8dfad1923912f3cb0cd0efe31749
665
agda
Agda
archive/agda-1/IsLiteralFormula.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
archive/agda-1/IsLiteralFormula.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
1
2019-04-29T00:35:04.000Z
2019-05-11T23:33:04.000Z
archive/agda-1/IsLiteralFormula.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
module IsLiteralFormula where open import OscarPrelude open import PredicateName open import Term open import Formula open import HasNegation data IsLiteralFormula : Formula → Set where atomic : (𝑃 : PredicateName) → (τs : Terms) → IsLiteralFormula $ 𝑃[ 𝑃 ♭ τs ] logical : (𝑃 : PredicateName) → (τs : Terms) → IsLiteralFormula ∘ ~ $ 𝑃[ 𝑃 ♭ τs ] eqIsLiteralFormula : ∀ {φ} → (lf₁ lf₂ : IsLiteralFormula φ) → lf₁ ≡ lf₂ eqIsLiteralFormula (atomic _ _) (atomic _ _) = refl eqIsLiteralFormula (logical _ _) (logical _ _) = refl instance EqIsLiteralFormula : ∀ {φ} → Eq (IsLiteralFormula φ) Eq._==_ EqIsLiteralFormula lf₁ lf₂ = yes $ eqIsLiteralFormula lf₁ lf₂
31.666667
83
0.723308
4a6b6f7977435f850e3fdcc0f63ee0ef18c27d40
6,243
agda
Agda
canonical-boxed-forms.agda
hazelgrove/hazel-palette-agda
c3225acc3c94c56376c6842b82b8b5d76912df2a
[ "MIT" ]
4
2020-10-04T06:45:06.000Z
2021-12-19T15:38:31.000Z
canonical-boxed-forms.agda
hazelgrove/hazel-palette-agda
c3225acc3c94c56376c6842b82b8b5d76912df2a
[ "MIT" ]
9
2020-09-30T20:27:56.000Z
2020-10-20T20:44:13.000Z
canonical-boxed-forms.agda
hazelgrove/hazelnut-livelits-agda
c3225acc3c94c56376c6842b82b8b5d76912df2a
[ "MIT" ]
null
null
null
open import Nat open import Prelude open import contexts open import core open import canonical-value-forms module canonical-boxed-forms where canonical-boxed-forms-b : ∀{Δ d} → Δ , ∅ ⊢ d :: b → d boxedval → d == c canonical-boxed-forms-b (TAVar _) (BVVal ()) canonical-boxed-forms-b wt (BVVal v) = canonical-value-forms-b wt v -- this type gives somewhat nicer syntax for the output of the canonical -- forms lemma for boxed values at arrow type data cbf-arr : (Δ : hctx) (d : iexp) (τ1 τ2 : typ) → Set where CBFLam : ∀{Δ d τ1 τ2} → (Σ[ x ∈ Nat ] Σ[ d' ∈ iexp ] (d == (·λ x [ τ1 ] d') × Δ , ■ (x , τ1) ⊢ d' :: τ2)) → cbf-arr Δ d τ1 τ2 CBFCastArr : ∀{Δ d τ1 τ2} → (Σ[ d' ∈ iexp ] Σ[ τ1' ∈ typ ] Σ[ τ2' ∈ typ ] (d == (d' ⟨ τ1' ==> τ2' ⇒ τ1 ==> τ2 ⟩) × (τ1' ==> τ2' ≠ τ1 ==> τ2) × (Δ , ∅ ⊢ d' :: τ1' ==> τ2'))) → cbf-arr Δ d τ1 τ2 data cbf-prod : (Δ : hctx) (d : iexp) (τ1 τ2 : typ) → Set where CBFPairVal : ∀{Δ d τ1 τ2} → (Σ[ d1 ∈ iexp ] Σ[ d2 ∈ iexp ] (d == ⟨ d1 , d2 ⟩ × Δ , ∅ ⊢ d1 :: τ1 × Δ , ∅ ⊢ d2 :: τ2 × d1 val × d2 val)) → cbf-prod Δ d τ1 τ2 CBFPairBV : ∀{Δ d τ1 τ2} → (Σ[ d1 ∈ iexp ] Σ[ d2 ∈ iexp ] (d == ⟨ d1 , d2 ⟩ × Δ , ∅ ⊢ d1 :: τ1 × Δ , ∅ ⊢ d2 :: τ2 × d1 boxedval × d2 boxedval )) → cbf-prod Δ d τ1 τ2 CBFCastProd : ∀{Δ d τ1 τ2} → (Σ[ d' ∈ iexp ] Σ[ τ1' ∈ typ ] Σ[ τ2' ∈ typ ] (d == (d' ⟨ τ1' ⊗ τ2' ⇒ τ1 ⊗ τ2 ⟩) × (τ1' ⊗ τ2' ≠ τ1 ⊗ τ2) × (τ1' ⊗ τ2' ~ τ1 ⊗ τ2) × (d' boxedval) × (Δ , ∅ ⊢ d' :: τ1' ⊗ τ2'))) → cbf-prod Δ d τ1 τ2 canonical-boxed-forms-arr : ∀{Δ d τ1 τ2 } → Δ , ∅ ⊢ d :: (τ1 ==> τ2) → d boxedval → cbf-arr Δ d τ1 τ2 canonical-boxed-forms-arr (TAVar x₁) (BVVal ()) canonical-boxed-forms-arr (TALam f wt) (BVVal v) = CBFLam (canonical-value-forms-arr (TALam f wt) v) canonical-boxed-forms-arr (TAAp wt wt₁) (BVVal ()) canonical-boxed-forms-arr (TAEHole x x₁) (BVVal ()) canonical-boxed-forms-arr (TANEHole x wt x₁) (BVVal ()) canonical-boxed-forms-arr (TACast wt x) (BVVal ()) canonical-boxed-forms-arr (TACast wt x) (BVArrCast x₁ bv) = CBFCastArr (_ , _ , _ , refl , x₁ , wt) canonical-boxed-forms-arr (TAFailedCast x x₁ x₂ x₃) (BVVal ()) canonical-boxed-forms-arr (TAFst wt) (BVVal ()) canonical-boxed-forms-arr (TASnd wt) (BVVal ()) canonical-boxed-forms-hole : ∀{Δ d} → Δ , ∅ ⊢ d :: ⦇·⦈ → d boxedval → Σ[ d' ∈ iexp ] Σ[ τ' ∈ typ ] ((d == d' ⟨ τ' ⇒ ⦇·⦈ ⟩) × (τ' ground) × (Δ , ∅ ⊢ d' :: τ')) canonical-boxed-forms-hole (TAVar x₁) (BVVal ()) canonical-boxed-forms-hole (TAAp wt wt₁) (BVVal ()) canonical-boxed-forms-hole (TAEHole x x₁) (BVVal ()) canonical-boxed-forms-hole (TANEHole x wt x₁) (BVVal ()) canonical-boxed-forms-hole (TACast wt x) (BVVal ()) canonical-boxed-forms-hole (TACast wt x) (BVHoleCast x₁ bv) = _ , _ , refl , x₁ , wt canonical-boxed-forms-hole (TAFailedCast x x₁ x₂ x₃) (BVVal ()) canonical-boxed-forms-hole (TAFst wt) (BVVal ()) canonical-boxed-forms-hole (TASnd wt) (BVVal ()) canonical-boxed-forms-prod : ∀{Δ d τ1 τ2 } → Δ , ∅ ⊢ d :: (τ1 ⊗ τ2) → d boxedval → cbf-prod Δ d τ1 τ2 canonical-boxed-forms-prod (TAVar x₁) (BVVal ()) canonical-boxed-forms-prod (TAAp wt wt₁) (BVVal ()) canonical-boxed-forms-prod (TAEHole x x₁) (BVVal ()) canonical-boxed-forms-prod (TANEHole x wt x₁) (BVVal ()) canonical-boxed-forms-prod (TACast wt x) (BVVal ()) canonical-boxed-forms-prod (TACast wt x) (BVProdCast x₁ bv) = CBFCastProd (_ , _ , _ , refl , x₁ , x , bv , wt) canonical-boxed-forms-prod (TAFailedCast wt x x₁ x₂) (BVVal ()) canonical-boxed-forms-prod (TAFst wt) (BVVal ()) canonical-boxed-forms-prod (TASnd wt) (BVVal ()) canonical-boxed-forms-prod (TAPair wt wt₁) (BVVal (VPair x x₁)) = CBFPairVal (_ , _ , refl , wt , wt₁ , x , x₁) canonical-boxed-forms-prod (TAPair wt wt₁) (BVPair bv bv₁) = CBFPairBV (_ , _ , refl , wt , wt₁ , bv , bv₁) canonical-boxed-forms-coverage : ∀{Δ d τ} → Δ , ∅ ⊢ d :: τ → d boxedval → τ ≠ b → ((τ1 : typ) (τ2 : typ) → τ ≠ (τ1 ==> τ2)) → τ ≠ ⦇·⦈ → ((τ1 : typ) (τ2 : typ) → τ ≠ (τ1 ⊗ τ2)) → ⊥ canonical-boxed-forms-coverage TAConst (BVVal x) nb na nh = λ _ → nb refl canonical-boxed-forms-coverage (TAVar x₁) (BVVal ()) nb na nh canonical-boxed-forms-coverage (TALam _ wt) (BVVal x₁) nb na nh = λ _ → na _ _ refl canonical-boxed-forms-coverage (TAAp wt wt₁) (BVVal ()) nb na nh canonical-boxed-forms-coverage (TAEHole x x₁) (BVVal ()) nb na nh canonical-boxed-forms-coverage (TANEHole x wt x₁) (BVVal ()) nb na nh canonical-boxed-forms-coverage (TACast wt x) (BVVal ()) nb na nh canonical-boxed-forms-coverage (TACast wt x) (BVArrCast x₁ bv) nb na nh = λ _ → na _ _ refl canonical-boxed-forms-coverage (TACast wt x) (BVHoleCast x₁ bv) nb na nh = λ _ → nh refl canonical-boxed-forms-coverage (TAFailedCast x x₁ x₂ x₃) (BVVal ()) canonical-boxed-forms-coverage (TACast wt x) (BVProdCast x₁ bv) nb na nh = λ z → z _ _ refl canonical-boxed-forms-coverage (TAFst wt) (BVVal ()) nb na nh canonical-boxed-forms-coverage (TASnd wt) (BVVal ()) nb na nh canonical-boxed-forms-coverage (TAPair wt wt₁) (BVVal x) nb na nh = λ z → z _ _ refl canonical-boxed-forms-coverage (TAPair wt wt₁) (BVPair bv bv₁) nb na nh = λ z → z _ _ refl
49.15748
113
0.50024