hexsha
stringlengths 40
40
| size
int64 3
1.05M
| ext
stringclasses 163
values | lang
stringclasses 53
values | max_stars_repo_path
stringlengths 3
945
| max_stars_repo_name
stringlengths 4
112
| max_stars_repo_head_hexsha
stringlengths 40
78
| max_stars_repo_licenses
listlengths 1
10
| max_stars_count
float64 1
191k
⌀ | max_stars_repo_stars_event_min_datetime
stringlengths 24
24
⌀ | max_stars_repo_stars_event_max_datetime
stringlengths 24
24
⌀ | max_issues_repo_path
stringlengths 3
945
| max_issues_repo_name
stringlengths 4
113
| max_issues_repo_head_hexsha
stringlengths 40
78
| max_issues_repo_licenses
listlengths 1
10
| max_issues_count
float64 1
116k
⌀ | max_issues_repo_issues_event_min_datetime
stringlengths 24
24
⌀ | max_issues_repo_issues_event_max_datetime
stringlengths 24
24
⌀ | max_forks_repo_path
stringlengths 3
945
| max_forks_repo_name
stringlengths 4
113
| max_forks_repo_head_hexsha
stringlengths 40
78
| max_forks_repo_licenses
listlengths 1
10
| max_forks_count
float64 1
105k
⌀ | max_forks_repo_forks_event_min_datetime
stringlengths 24
24
⌀ | max_forks_repo_forks_event_max_datetime
stringlengths 24
24
⌀ | content
stringlengths 3
1.05M
| avg_line_length
float64 1
966k
| max_line_length
int64 1
977k
| alphanum_fraction
float64 0
1
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
503c037a69320f46bb7a6fe4af6df50b2bb16e67
| 1,540
|
agda
|
Agda
|
test/Succeed/WithoutKRestrictiveNoUniPoly.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Succeed/WithoutKRestrictiveNoUniPoly.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Succeed/WithoutKRestrictiveNoUniPoly.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
{-# OPTIONS --without-K --show-implicit #-}
-- {-# OPTIONS -v tc.lhs.split.well-formed:100 #-}
-- Andreas, adapted from Andres Sicard, 2013-05-29
module WithoutKRestrictiveNoUniPoly where
data ℕ : Set where
zero : ℕ
suc : ℕ → ℕ
data _≤_ : ℕ → ℕ → Set where
z≤n : ∀ {n} → zero ≤ n
s≤s : ∀ {n m} → n ≤ m → suc n ≤ suc m
_<_ : ℕ → ℕ → Set
n < m = suc n ≤ m
refl≤ : ∀ (n : ℕ) → n ≤ n
refl≤ zero = z≤n
refl≤ (suc n) = s≤s (refl≤ n)
data List (A : Set) : Set where
[] : List A
_∷_ : (x : A) (xs : List A) → List A
length : {A : Set} → List A → ℕ
length [] = zero
length (x ∷ xs) = suc (length xs)
record Σ (A : Set) (B : A → Set) : Set where
constructor _,_
field
proj₁ : A
proj₂ : B proj₁
data _≡_ {A : Set}(a : A) : A → Set where
refl : a ≡ a
subst : {A : Set}(P : A → Set){a b : A} → a ≡ b → P a → P b
subst P refl x = x
sym : {A : Set}{a b : A} → a ≡ b → b ≡ a
sym refl = refl
P : {A : Set} → List A → List A → Set
P xs ys = Σ _ (λ x → ys ≡ (x ∷ xs))
Q : {A : Set} → List A → List A → Set
Q xs ys = (length xs) < (length ys)
helper : {A : Set}(y : A)(xs : List A) → (length xs) < (length (y ∷ xs))
helper y [] = s≤s z≤n
helper y (x ∷ xs) = s≤s (refl≤ _)
-- Why the --without-K option rejects the following proof
foo : {A : Set}(xs ys : List A) → P xs ys → Q xs ys
foo xs .(x ∷ xs) (x , refl) = helper x xs
-- if I can prove foo using only subst
foo' : {A : Set}(xs ys : List A) → P xs ys → Q xs ys
foo' xs ys (x , h) =
subst (λ ys' → length xs < length ys') (sym h) (helper x xs)
| 24.0625
| 72
| 0.521429
|
0b761bec74b265ace8e7d65ea2bb3e5790f9163a
| 70
|
agda
|
Agda
|
tests/covered/Dot.agda
|
andrejtokarcik/agda-semantics
|
dc333ed142584cf52cc885644eed34b356967d8b
|
[
"MIT"
] | 3
|
2015-08-10T15:33:56.000Z
|
2018-12-06T17:24:25.000Z
|
tests/covered/Dot.agda
|
andrejtokarcik/agda-semantics
|
dc333ed142584cf52cc885644eed34b356967d8b
|
[
"MIT"
] | null | null | null |
tests/covered/Dot.agda
|
andrejtokarcik/agda-semantics
|
dc333ed142584cf52cc885644eed34b356967d8b
|
[
"MIT"
] | null | null | null |
module Dot where
postulate h : Set
f : Set -> Set -> Set
f .n n = h
| 10
| 21
| 0.585714
|
fbc592774280b81a74f677b925eae4f5074aaa09
| 1,257
|
agda
|
Agda
|
src/Polynomial/NormalForm.agda
|
mckeankylej/agda-ring-solver
|
f18d9c6bdfae5b4c3ead9a83e06f16a0b7204500
|
[
"MIT"
] | 36
|
2019-01-25T16:40:52.000Z
|
2022-02-15T00:57:55.000Z
|
src/Polynomial/NormalForm.agda
|
oisdk/agda-algebra
|
7e4ee048dab68ccb0a8673a6a663a37c1d1f4080
|
[
"MIT"
] | 5
|
2019-04-17T20:48:48.000Z
|
2022-03-12T01:55:42.000Z
|
src/Polynomial/NormalForm.agda
|
oisdk/agda-algebra
|
7e4ee048dab68ccb0a8673a6a663a37c1d1f4080
|
[
"MIT"
] | 4
|
2019-04-16T02:23:16.000Z
|
2022-01-20T07:07:11.000Z
|
{-# OPTIONS --without-K --safe #-}
-- Polynomials over a commutative ring in sparse Horner normal form.
--
-- Much of the implementation is inspired by:
--
-- B. Grégoire and A. Mahboubi, ‘Proving Equalities in a Commutative
-- Ring Done Right in Coq’, in Theorem Proving in Higher Order
-- Logics, Berlin, Heidelberg, 2005, vol. 3603, pp. 98–113.
--
-- The main sources of efficience come from:
--
-- * Careful arrangement of operators to maintain *syntactic equality*.
--
-- * Avoiding of identities (like *1 or +0) with specialised data
-- structures.
open import Polynomial.Parameters
module Polynomial.NormalForm
{c r₁ r₂ r₃}
(homo : Homomorphism c r₁ r₂ r₃)
where
open Homomorphism homo
-- The "injection index" is what allows us to store the nested
-- polynomials sparsely.
open import Polynomial.NormalForm.InjectionIndex public
-- The definition and types for the polynomial.
open import Polynomial.NormalForm.Definition coeffs public
-- Normalizing constructors.
open import Polynomial.NormalForm.Construction coeffs public
-- Definition of arithmetic operations etc.
open import Polynomial.NormalForm.Operations coeffs public
-- "Running" the polynomial on some input.
open import Polynomial.NormalForm.Semantics homo public
| 30.658537
| 71
| 0.759745
|
2904e8515aaacb415227f6aea515cb86db24066c
| 7,731
|
agda
|
Agda
|
Cubical/Algebra/Lattice/Base.agda
|
barrettj12/cubical
|
7b41b9171f90473efc98487cb2ea7a4d02320cb2
|
[
"MIT"
] | null | null | null |
Cubical/Algebra/Lattice/Base.agda
|
barrettj12/cubical
|
7b41b9171f90473efc98487cb2ea7a4d02320cb2
|
[
"MIT"
] | null | null | null |
Cubical/Algebra/Lattice/Base.agda
|
barrettj12/cubical
|
7b41b9171f90473efc98487cb2ea7a4d02320cb2
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --safe #-}
module Cubical.Algebra.Lattice.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Equiv.HalfAdjoint
open import Cubical.Foundations.Function
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.Transport
open import Cubical.Foundations.SIP
open import Cubical.Data.Sigma
open import Cubical.Algebra.Semigroup
open import Cubical.Algebra.Monoid
open import Cubical.Algebra.CommMonoid
open import Cubical.Algebra.Semilattice
open import Cubical.Displayed.Base
open import Cubical.Displayed.Auto
open import Cubical.Displayed.Record
open import Cubical.Displayed.Universe
open import Cubical.Reflection.RecordEquiv
open Iso
private
variable
ℓ ℓ' : Level
record IsLattice {L : Type ℓ}
(0l 1l : L) (_∨l_ _∧l_ : L → L → L) : Type ℓ where
constructor islattice
field
joinSemilattice : IsSemilattice 0l _∨l_
meetSemilattice : IsSemilattice 1l _∧l_
absorb : (x y : L) → (x ∨l (x ∧l y) ≡ x)
× (x ∧l (x ∨l y) ≡ x)
open IsSemilattice joinSemilattice public
renaming
( assoc to ∨lAssoc
; identity to ∨lIdentity
; lid to ∨lLid
; rid to ∨lRid
; comm to ∨lComm
; idem to ∨lIdem
; isCommMonoid to ∨lIsCommMonoid
; isMonoid to ∨lIsMonoid
; isSemigroup to ∨lIsSemigroup )
open IsSemilattice meetSemilattice public
renaming
( assoc to ∧lAssoc
; identity to ∧lIdentity
; lid to ∧lLid
; rid to ∧lRid
; comm to ∧lComm
; idem to ∧lIdem
; isCommMonoid to ∧lIsCommMonoid
; isMonoid to ∧lIsMonoid
; isSemigroup to ∧lIsSemigroup )
hiding
( is-set )
∨lAbsorb∧l : (x y : L) → x ∨l (x ∧l y) ≡ x
∨lAbsorb∧l x y = absorb x y .fst
∧lAbsorb∨l : (x y : L) → x ∧l (x ∨l y) ≡ x
∧lAbsorb∨l x y = absorb x y .snd
record LatticeStr (A : Type ℓ) : Type (ℓ-suc ℓ) where
constructor latticestr
field
0l : A
1l : A
_∨l_ : A → A → A
_∧l_ : A → A → A
isLattice : IsLattice 0l 1l _∨l_ _∧l_
infix 7 _∨l_
infix 6 _∧l_
open IsLattice isLattice public
Lattice : ∀ ℓ → Type (ℓ-suc ℓ)
Lattice ℓ = TypeWithStr ℓ LatticeStr
isSetLattice : (L : Lattice ℓ) → isSet ⟨ L ⟩
isSetLattice L = L .snd .LatticeStr.is-set
makeIsLattice : {L : Type ℓ} {0l 1l : L} {_∨l_ _∧l_ : L → L → L}
(is-setL : isSet L)
(∨l-assoc : (x y z : L) → x ∨l (y ∨l z) ≡ (x ∨l y) ∨l z)
(∨l-rid : (x : L) → x ∨l 0l ≡ x)
(∨l-lid : (x : L) → 0l ∨l x ≡ x)
(∨l-comm : (x y : L) → x ∨l y ≡ y ∨l x)
(∧l-assoc : (x y z : L) → x ∧l (y ∧l z) ≡ (x ∧l y) ∧l z)
(∧l-rid : (x : L) → x ∧l 1l ≡ x)
(∧l-lid : (x : L) → 1l ∧l x ≡ x)
(∧l-comm : (x y : L) → x ∧l y ≡ y ∧l x)
(∨l-absorb-∧l : (x y : L) → x ∨l (x ∧l y) ≡ x)
(∧l-absorb-∨l : (x y : L) → x ∧l (x ∨l y) ≡ x)
→ IsLattice 0l 1l _∨l_ _∧l_
makeIsLattice {0l = 0l} {1l = 1l} {_∨l_ = _∨l_} {_∧l_ = _∧l_}
is-setL ∨l-assoc ∨l-rid ∨l-lid ∨l-comm
∧l-assoc ∧l-rid ∧l-lid ∧l-comm ∨l-absorb-∧l ∧l-absorb-∨l =
islattice (makeIsSemilattice is-setL ∨l-assoc ∨l-rid ∨l-lid ∨l-comm ∨l-idem)
(makeIsSemilattice is-setL ∧l-assoc ∧l-rid ∧l-lid ∧l-comm ∧l-idem)
λ x y → ∨l-absorb-∧l x y , ∧l-absorb-∨l x y
where
∨l-idem : ∀ x → x ∨l x ≡ x
∨l-idem x = cong (x ∨l_) (sym (∧l-rid _)) ∙ ∨l-absorb-∧l _ _
∧l-idem : ∀ x → x ∧l x ≡ x
∧l-idem x = cong (x ∧l_) (sym (∨l-rid _)) ∙ ∧l-absorb-∨l _ _
makeLattice : {L : Type ℓ} (0l 1l : L) (_∨l_ _∧l_ : L → L → L)
(is-setL : isSet L)
(∨l-assoc : (x y z : L) → x ∨l (y ∨l z) ≡ (x ∨l y) ∨l z)
(∨l-rid : (x : L) → x ∨l 0l ≡ x)
(∨l-lid : (x : L) → 0l ∨l x ≡ x)
(∨l-comm : (x y : L) → x ∨l y ≡ y ∨l x)
(∨l-idem : (x : L) → x ∨l x ≡ x)
(∧l-assoc : (x y z : L) → x ∧l (y ∧l z) ≡ (x ∧l y) ∧l z)
(∧l-rid : (x : L) → x ∧l 1l ≡ x)
(∧l-lid : (x : L) → 1l ∧l x ≡ x)
(∧l-comm : (x y : L) → x ∧l y ≡ y ∧l x)
(∧l-idem : (x : L) → x ∧l x ≡ x)
(∨l-absorb-∧l : (x y : L) → x ∨l (x ∧l y) ≡ x)
(∧l-absorb-∨l : (x y : L) → x ∧l (x ∨l y) ≡ x)
→ Lattice ℓ
makeLattice 0l 1l _∨l_ _∧l_ is-setL ∨l-assoc ∨l-rid ∨l-lid ∨l-comm ∨l-idem
∧l-assoc ∧l-rid ∧l-lid ∧l-comm ∧l-idem ∨l-absorb-∧l ∧l-absorb-∨l =
_ , latticestr 0l 1l _∨l_ _∧l_
(makeIsLattice is-setL ∨l-assoc ∨l-rid ∨l-lid ∨l-comm
∧l-assoc ∧l-rid ∧l-lid ∧l-comm ∨l-absorb-∧l ∧l-absorb-∨l)
record IsLatticeHom {A : Type ℓ} {B : Type ℓ'} (L : LatticeStr A) (f : A → B) (M : LatticeStr B)
: Type (ℓ-max ℓ ℓ')
where
-- Shorter qualified names
private
module L = LatticeStr L
module M = LatticeStr M
field
pres0 : f L.0l ≡ M.0l
pres1 : f L.1l ≡ M.1l
pres∨l : (x y : A) → f (x L.∨l y) ≡ f x M.∨l f y
pres∧l : (x y : A) → f (x L.∧l y) ≡ f x M.∧l f y
unquoteDecl IsLatticeHomIsoΣ = declareRecordIsoΣ IsLatticeHomIsoΣ (quote IsLatticeHom)
LatticeHom : (L : Lattice ℓ) (M : Lattice ℓ') → Type (ℓ-max ℓ ℓ')
LatticeHom L M = Σ[ f ∈ (⟨ L ⟩ → ⟨ M ⟩) ] IsLatticeHom (L .snd) f (M .snd)
IsLatticeEquiv : {A : Type ℓ} {B : Type ℓ'} (M : LatticeStr A) (e : A ≃ B) (N : LatticeStr B)
→ Type (ℓ-max ℓ ℓ')
IsLatticeEquiv M e N = IsLatticeHom M (e .fst) N
LatticeEquiv : (L : Lattice ℓ) (M : Lattice ℓ') → Type (ℓ-max ℓ ℓ')
LatticeEquiv L M = Σ[ e ∈ (⟨ L ⟩ ≃ ⟨ M ⟩) ] IsLatticeEquiv (L .snd) e (M .snd)
isPropIsLattice : {L : Type ℓ} (0l 1l : L) (_∨l_ _∧l_ : L → L → L)
→ isProp (IsLattice 0l 1l _∨l_ _∧l_)
isPropIsLattice 0l 1l _∨l_ _∧l_ (islattice LJ LM LA) (islattice MJ MM MA) =
λ i → islattice (isPropIsSemilattice _ _ LJ MJ i)
(isPropIsSemilattice _ _ LM MM i)
(isPropAbsorb LA MA i)
where
isSetL : isSet _
isSetL = LJ .IsSemilattice.isCommMonoid .IsCommMonoid.isMonoid
.IsMonoid.isSemigroup .IsSemigroup.is-set
isPropAbsorb : isProp ((x y : _) → (x ∨l (x ∧l y) ≡ x) × (x ∧l (x ∨l y) ≡ x))
isPropAbsorb = isPropΠ2 λ _ _ → isProp× (isSetL _ _) (isSetL _ _)
isPropIsLatticeHom : {A : Type ℓ} {B : Type ℓ'} (R : LatticeStr A) (f : A → B) (S : LatticeStr B)
→ isProp (IsLatticeHom R f S)
isPropIsLatticeHom R f S = isOfHLevelRetractFromIso 1 IsLatticeHomIsoΣ
(isProp×3 (isSetLattice (_ , S) _ _)
(isSetLattice (_ , S) _ _)
(isPropΠ2 λ _ _ → isSetLattice (_ , S) _ _)
(isPropΠ2 λ _ _ → isSetLattice (_ , S) _ _))
𝒮ᴰ-Lattice : DUARel (𝒮-Univ ℓ) LatticeStr ℓ
𝒮ᴰ-Lattice =
𝒮ᴰ-Record (𝒮-Univ _) IsLatticeEquiv
(fields:
data[ 0l ∣ null ∣ pres0 ]
data[ 1l ∣ null ∣ pres1 ]
data[ _∨l_ ∣ bin ∣ pres∨l ]
data[ _∧l_ ∣ bin ∣ pres∧l ]
prop[ isLattice ∣ (λ _ _ → isPropIsLattice _ _ _ _) ])
where
open LatticeStr
open IsLatticeHom
-- faster with some sharing
null = autoDUARel (𝒮-Univ _) (λ A → A)
bin = autoDUARel (𝒮-Univ _) (λ A → A → A → A)
LatticePath : (L M : Lattice ℓ) → LatticeEquiv L M ≃ (L ≡ M)
LatticePath = ∫ 𝒮ᴰ-Lattice .UARel.ua
Lattice→JoinSemilattice : Lattice ℓ → Semilattice ℓ
Lattice→JoinSemilattice (A , latticestr _ _ _ _ L) = semilattice _ _ _ (L .IsLattice.joinSemilattice )
Lattice→MeetSemilattice : Lattice ℓ → Semilattice ℓ
Lattice→MeetSemilattice (A , latticestr _ _ _ _ L) = semilattice _ _ _ (L .IsLattice.meetSemilattice )
| 34.36
| 102
| 0.549476
|
298ca5291b7db02ec06a5ca2884dcb72f54238ae
| 5,255
|
agda
|
Agda
|
PiFrac/Opsem.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | 5
|
2020-10-07T12:07:53.000Z
|
2020-10-10T21:41:32.000Z
|
PiFrac/Opsem.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | null | null | null |
PiFrac/Opsem.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | 1
|
2021-11-04T06:54:45.000Z
|
2021-11-04T06:54:45.000Z
|
module PiFrac.Opsem where
open import Data.Empty
open import Data.Unit hiding (_≟_)
open import Data.Sum
open import Data.Product
open import Relation.Binary.Core
open import Relation.Binary
open import Relation.Nullary
open import Relation.Binary.PropositionalEquality
open import Function using (_∘_)
open import Base
open import PiFrac.Syntax
infix 1 _↦_
-- Base combinators
base : ∀ {A B} (c : A ↔ B) → Set
base uniti₊l = ⊤
base unite₊l = ⊤
base swap₊ = ⊤
base assocl₊ = ⊤
base assocr₊ = ⊤
base unite⋆l = ⊤
base uniti⋆l = ⊤
base swap⋆ = ⊤
base assocl⋆ = ⊤
base assocr⋆ = ⊤
base dist = ⊤
base factor = ⊤
base _ = ⊥
-- Dual combinators
dual : ∀ {A B} (c : A ↔ B) → Set
dual (ηₓ v) = ⊤
dual (εₓ v) = ⊤
dual _ = ⊥
base-is-prop : ∀ {A B} (c : A ↔ B) → is-prop (base c)
base-is-prop uniti₊l tt tt = refl
base-is-prop unite₊l tt tt = refl
base-is-prop swap₊ tt tt = refl
base-is-prop assocl₊ tt tt = refl
base-is-prop assocr₊ tt tt = refl
base-is-prop unite⋆l tt tt = refl
base-is-prop uniti⋆l tt tt = refl
base-is-prop swap⋆ tt tt = refl
base-is-prop assocl⋆ tt tt = refl
base-is-prop assocr⋆ tt tt = refl
base-is-prop dist tt tt = refl
base-is-prop factor tt tt = refl
-- Evaluator for base combinators
δ : ∀ {A B} (c : A ↔ B) {_ : base c} → ⟦ A ⟧ → ⟦ B ⟧
δ uniti₊l v = inj₂ v
δ unite₊l (inj₂ y) = y
δ swap₊ (inj₁ x) = inj₂ x
δ swap₊ (inj₂ y) = inj₁ y
δ assocl₊ (inj₁ v) = inj₁ (inj₁ v)
δ assocl₊ (inj₂ (inj₁ v)) = inj₁ (inj₂ v)
δ assocl₊ (inj₂ (inj₂ v)) = inj₂ v
δ assocr₊ (inj₁ (inj₁ v)) = inj₁ v
δ assocr₊ (inj₁ (inj₂ v)) = inj₂ (inj₁ v)
δ assocr₊ (inj₂ v) = inj₂ (inj₂ v)
δ unite⋆l (tt , v) = v
δ uniti⋆l v = (tt , v)
δ swap⋆ (x , y) = (y , x)
δ assocl⋆ (v₁ , (v₂ , v₃)) = ((v₁ , v₂) , v₃)
δ assocr⋆ ((v₁ , v₂) , v₃) = (v₁ , (v₂ , v₃))
δ dist (inj₁ v₁ , v₃) = inj₁ (v₁ , v₃)
δ dist (inj₂ v₂ , v₃) = inj₂ (v₂ , v₃)
δ factor (inj₁ (v₁ , v₃)) = (inj₁ v₁ , v₃)
δ factor (inj₂ (v₂ , v₃)) = (inj₂ v₂ , v₃)
-- Decidable equality of PiFrac values
_≟_ : {t : 𝕌} → Decidable (_≡_ {A = ⟦ t ⟧})
_≟_ {𝟙} tt tt = yes refl
_≟_ {t₁ +ᵤ t₂} (inj₁ x) (inj₁ y) with x ≟ y
... | yes refl = yes refl
... | no x≠y = no (x≠y ∘ λ {refl → refl})
_≟_ {t₁ +ᵤ t₂} (inj₁ x) (inj₂ y) = no (λ ())
_≟_ {t₁ +ᵤ t₂} (inj₂ x) (inj₁ y) = no (λ ())
_≟_ {t₁ +ᵤ t₂} (inj₂ x) (inj₂ y) with x ≟ y
... | yes refl = yes refl
... | no x≠y = no (x≠y ∘ λ {refl → refl})
_≟_ {t₁ ×ᵤ t₂} (x₁ , x₂) (y₁ , y₂) with x₁ ≟ y₁ | x₂ ≟ y₂
... | yes refl | yes refl = yes refl
... | yes refl | no x₂≠y₂ = no (x₂≠y₂ ∘ cong proj₂)
... | no x₁≠y₁ | yes refl = no (x₁≠y₁ ∘ cong proj₁)
... | no x₁≠y₁ | no x₂≠y₂ = no (x₁≠y₁ ∘ cong proj₁)
_≟_ {𝟙/ v} ↻ ↻ = yes refl
-- Context
data Context : {A B : 𝕌} → Set where
☐ : ∀ {A B} → Context {A} {B}
☐⨾_•_ : ∀ {A B C} → (c₂ : B ↔ C) → Context {A} {C} → Context {A} {B}
_⨾☐•_ : ∀ {A B C} → (c₁ : A ↔ B) → Context {A} {C} → Context {B} {C}
☐⊕_•_ : ∀ {A B C D} → (c₂ : C ↔ D) → Context {A +ᵤ C} {B +ᵤ D} → Context {A} {B}
_⊕☐•_ : ∀ {A B C D} → (c₁ : A ↔ B) → Context {A +ᵤ C} {B +ᵤ D} → Context {C} {D}
☐⊗[_,_]•_ : ∀ {A B C D} → (c₂ : C ↔ D) → ⟦ C ⟧ → Context {A ×ᵤ C} {B ×ᵤ D} → Context {A} {B}
[_,_]⊗☐•_ : ∀ {A B C D} → (c₁ : A ↔ B) → ⟦ B ⟧ → Context {A ×ᵤ C} {B ×ᵤ D} → Context {C} {D}
-- Machine state
data State : Set where
⟨_∣_∣_⟩ : ∀ {A B} → (c : A ↔ B) → ⟦ A ⟧ → Context {A} {B} → State
[_∣_∣_] : ∀ {A B} → (c : A ↔ B) → ⟦ B ⟧ → Context {A} {B} → State
⊠ : State
-- Reduction relation
data _↦_ : State → State → Set where
↦₁ : ∀ {A B} {c : A ↔ B} {b : base c} {v : ⟦ A ⟧} {κ : Context}
→ ⟨ c ∣ v ∣ κ ⟩ ↦ [ c ∣ δ c {b} v ∣ κ ]
↦₂ : ∀ {A} {v : ⟦ A ⟧} {κ : Context} → ⟨ id↔ ∣ v ∣ κ ⟩ ↦ [ id↔ ∣ v ∣ κ ]
↦₃ : ∀ {A B C} {c₁ : A ↔ B} {c₂ : B ↔ C} {v : ⟦ A ⟧} {κ : Context}
→ ⟨ c₁ ⨾ c₂ ∣ v ∣ κ ⟩ ↦ ⟨ c₁ ∣ v ∣ ☐⨾ c₂ • κ ⟩
↦₄ : ∀ {A B C D} {c₁ : A ↔ B} {c₂ : C ↔ D} {x : ⟦ A ⟧} {κ : Context}
→ ⟨ c₁ ⊕ c₂ ∣ inj₁ x ∣ κ ⟩ ↦ ⟨ c₁ ∣ x ∣ ☐⊕ c₂ • κ ⟩
↦₅ : ∀ {A B C D} {c₁ : A ↔ B} {c₂ : C ↔ D} {y : ⟦ C ⟧} {κ : Context}
→ ⟨ c₁ ⊕ c₂ ∣ inj₂ y ∣ κ ⟩ ↦ ⟨ c₂ ∣ y ∣ c₁ ⊕☐• κ ⟩
↦₆ : ∀ {A B C D} {c₁ : A ↔ B} {c₂ : C ↔ D} {x : ⟦ A ⟧} {y : ⟦ C ⟧} {κ : Context}
→ ⟨ c₁ ⊗ c₂ ∣ (x , y) ∣ κ ⟩ ↦ ⟨ c₁ ∣ x ∣ ☐⊗[ c₂ , y ]• κ ⟩
↦₇ : ∀ {A B C} {c₁ : A ↔ B} {c₂ : B ↔ C} {v : ⟦ B ⟧} {κ : Context}
→ [ c₁ ∣ v ∣ ☐⨾ c₂ • κ ] ↦ ⟨ c₂ ∣ v ∣ (c₁ ⨾☐• κ) ⟩
↦₈ : ∀ {A B C D} {c₁ : A ↔ B} {c₂ : C ↔ D} {x : ⟦ B ⟧} {y : ⟦ C ⟧} {κ : Context}
→ [ c₁ ∣ x ∣ ☐⊗[ c₂ , y ]• κ ] ↦ ⟨ c₂ ∣ y ∣ [ c₁ , x ]⊗☐• κ ⟩
↦₉ : ∀ {A B C D} {c₁ : A ↔ B} {c₂ : C ↔ D} {x : ⟦ B ⟧} {y : ⟦ D ⟧} {κ : Context}
→ [ c₂ ∣ y ∣ [ c₁ , x ]⊗☐• κ ] ↦ [ c₁ ⊗ c₂ ∣ (x , y) ∣ κ ]
↦₁₀ : ∀ {A B C} {c₁ : A ↔ B} {c₂ : B ↔ C} {v : ⟦ C ⟧} {κ : Context}
→ [ c₂ ∣ v ∣ (c₁ ⨾☐• κ) ] ↦ [ c₁ ⨾ c₂ ∣ v ∣ κ ]
↦₁₁ : ∀ {A B C D} {c₁ : A ↔ B} {c₂ : C ↔ D} {x : ⟦ B ⟧} {κ : Context}
→ [ c₁ ∣ x ∣ ☐⊕ c₂ • κ ] ↦ [ c₁ ⊕ c₂ ∣ inj₁ x ∣ κ ]
↦₁₂ : ∀ {A B C D} {c₁ : A ↔ B} {c₂ : C ↔ D} {y : ⟦ D ⟧} {κ : Context}
→ [ c₂ ∣ y ∣ c₁ ⊕☐• κ ] ↦ [ c₁ ⊕ c₂ ∣ inj₂ y ∣ κ ]
↦η : ∀ {A} {v : ⟦ A ⟧} {κ : Context} → ⟨ ηₓ v ∣ tt ∣ κ ⟩ ↦ [ ηₓ v ∣ (v , ↻) ∣ κ ]
↦ε₁ : ∀ {A} {v v' : ⟦ A ⟧} {κ : Context} {eq : v ≡ v'} → ⟨ εₓ v ∣ (v' , ↻) ∣ κ ⟩ ↦ [ εₓ v ∣ tt ∣ κ ]
↦ε₂ : ∀ {A} {v v' : ⟦ A ⟧} {κ : Context} {neq : v ≢ v'} → ⟨ εₓ v ∣ (v' , ↻) ∣ κ ⟩ ↦ ⊠
| 38.639706
| 103
| 0.454424
|
41588a5bffde149ad0542e727c9d969d97746c5c
| 652
|
agda
|
Agda
|
agda/SList.agda
|
bgbianchi/sorting
|
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
|
[
"MIT"
] | 6
|
2015-05-21T12:50:35.000Z
|
2021-08-24T22:11:15.000Z
|
agda/SList.agda
|
bgbianchi/sorting
|
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
|
[
"MIT"
] | null | null | null |
agda/SList.agda
|
bgbianchi/sorting
|
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --sized-types #-}
module SList (A : Set) where
open import Data.List
open import Data.Product
open import Size
data SList : {ι : Size} → Set where
snil : {ι : Size}
→ SList {↑ ι}
_∙_ : {ι : Size}(x : A)
→ SList {ι}
→ SList {↑ ι}
size : List A → SList
size [] = snil
size (x ∷ xs) = x ∙ (size xs)
unsize : {ι : Size} → SList {ι} → List A
unsize snil = []
unsize (x ∙ xs) = x ∷ unsize xs
unsize× : {ι : Size} → SList {ι} × SList {ι} → List A × List A
unsize× (xs , ys) = unsize xs , unsize ys
_⊕_ : SList → SList → SList
snil ⊕ ys = ys
(x ∙ xs) ⊕ ys = x ∙ (xs ⊕ ys)
| 19.176471
| 62
| 0.503067
|
1cf5da60ec79cb9546aaed682e02ca0cdd7e1490
| 4,075
|
agda
|
Agda
|
Cubical/Algebra/Polynomials/UnivariateHIT/Polyn-nPoly.agda
|
thomas-lamiaux/cubical
|
58c0b83bb0fed0dc683f3d29b1709effe51c1689
|
[
"MIT"
] | null | null | null |
Cubical/Algebra/Polynomials/UnivariateHIT/Polyn-nPoly.agda
|
thomas-lamiaux/cubical
|
58c0b83bb0fed0dc683f3d29b1709effe51c1689
|
[
"MIT"
] | null | null | null |
Cubical/Algebra/Polynomials/UnivariateHIT/Polyn-nPoly.agda
|
thomas-lamiaux/cubical
|
58c0b83bb0fed0dc683f3d29b1709effe51c1689
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --safe --experimental-lossy-unification #-}
module Cubical.Algebra.Polynomials.UnivariateHIT.Polyn-nPoly where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.HLevels
open import Cubical.Data.Nat renaming (_+_ to _+n_; _·_ to _·n_)
open import Cubical.Data.Vec
open import Cubical.Data.Sigma
open import Cubical.Algebra.DirectSum.DirectSumHIT.Base
open import Cubical.Algebra.Ring
open import Cubical.Algebra.GradedRing.DirectSumFun
open import Cubical.Algebra.CommRing
open import Cubical.Algebra.CommRing.Instances.Polynomials.UnivariatePolyHIT
open import Cubical.Algebra.CommRing.Instances.Polynomials.MultivariatePoly
open import Cubical.Algebra.Polynomials.Multivariate.EquivCarac.Poly0-A
open import Cubical.Algebra.Polynomials.Multivariate.EquivCarac.An[Am[X]]-Anm[X]
open import Cubical.Algebra.Polynomials.Multivariate.EquivCarac.AB-An[X]Bn[X]
open CommRingEquivs renaming (compCommRingEquiv to _∘-ecr_ ; invCommRingEquiv to inv-ecr)
private variable
ℓ : Level
-----------------------------------------------------------------------------
-- Definition
module equiv1 (A'@(A , Astr) : CommRing ℓ)
where
private
PA = PolyCommRing A' 1
PAstr = snd PA
PA' = nUnivariatePolyHIT A' 1
PA'str = snd PA'
open CommRingStr
directSense : fst (PolyCommRing A' 1) → fst (nUnivariatePolyHIT A' 1)
directSense = DS-Rec-Set.f _ _ _ _
(is-set PA'str)
(0r PA'str)
(λ { (n ∷ []) a → base n a})
(_+_ PA'str)
(+Assoc PA'str)
(+IdR PA'str)
(+Comm PA'str)
(λ { (n ∷ []) → base-neutral _ })
λ { (n ∷ []) a b → base-add _ _ _}
convSense : fst (nUnivariatePolyHIT A' 1) → fst (PolyCommRing A' 1)
convSense = DS-Rec-Set.f _ _ _ _
(is-set PAstr)
(0r PAstr)
(λ n a → base (n ∷ []) a)
(_+_ PAstr)
(+Assoc PAstr)
(+IdR PAstr)
(+Comm PAstr)
(λ n → base-neutral _)
λ _ _ _ → base-add _ _ _
retr : (x : fst (PolyCommRing A' 1)) → convSense (directSense x) ≡ x
retr = DS-Ind-Prop.f _ _ _ _ (λ _ → is-set PAstr _ _)
refl
(λ { (n ∷ []) a → refl})
(λ {U V} ind-U ind-V → cong₂ (_+_ PAstr) ind-U ind-V)
sect : (x : fst (nUnivariatePolyHIT A' 1)) → (directSense (convSense x) ≡ x)
sect = DS-Ind-Prop.f _ _ _ _ (λ _ → is-set PA'str _ _)
refl
(λ n a → refl)
(λ {U V} ind-U ind-V → cong₂ (_+_ PA'str) ind-U ind-V)
converseSense-pres· : (x y : fst (PolyCommRing A' 1)) →
directSense (_·_ PAstr x y) ≡ _·_ PA'str (directSense x) (directSense y)
converseSense-pres· = DS-Ind-Prop.f _ _ _ _
(λ _ → isPropΠ λ _ → is-set PA'str _ _)
(λ _ → refl)
(λ { (n ∷ []) a → DS-Ind-Prop.f _ _ _ _ (λ _ → is-set PA'str _ _)
refl
(λ { (m ∷ []) b → refl})
λ {U V} ind-U ind-V → cong₂ (_+_ PA'str) ind-U ind-V})
λ {U V} ind-U ind-V y → cong₂ (_+_ PA'str) (ind-U y) (ind-V y)
open Iso
equivR : CommRingEquiv PA PA'
fst equivR = isoToEquiv is
where
is : Iso (PA .fst) (PA' .fst)
fun is = directSense
inv is = convSense
rightInv is = sect
leftInv is = retr
snd equivR = makeIsRingHom refl (λ _ _ → refl) converseSense-pres·
open equiv1
Equiv-Polyn-nPolyHIT : (A' : CommRing ℓ) → (n : ℕ) → CommRingEquiv (PolyCommRing A' n) (nUnivariatePolyHIT A' n)
Equiv-Polyn-nPolyHIT A' zero = CRE-Poly0-A A'
Equiv-Polyn-nPolyHIT A' (suc n) = inv-ecr _ _ (CRE-PolyN∘M-PolyN+M A' 1 n)
∘-ecr (lift-equiv-poly _ _ 1 (Equiv-Polyn-nPolyHIT A' n)
∘-ecr equivR (nUnivariatePolyHIT A' n))
| 36.711712
| 112
| 0.557546
|
5799a543cf46e76735430b44711ea1c2c210b7cf
| 4,960
|
agda
|
Agda
|
examples/instance-arguments/07-subclasses.agda
|
np/agda-git-experiment
|
20596e9dd9867166a64470dd24ea68925ff380ce
|
[
"MIT"
] | 1
|
2019-11-27T04:41:05.000Z
|
2019-11-27T04:41:05.000Z
|
examples/instance-arguments/07-subclasses.agda
|
np/agda-git-experiment
|
20596e9dd9867166a64470dd24ea68925ff380ce
|
[
"MIT"
] | null | null | null |
examples/instance-arguments/07-subclasses.agda
|
np/agda-git-experiment
|
20596e9dd9867166a64470dd24ea68925ff380ce
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --universe-polymorphism #-}
-- {-# OPTIONS --verbose tc.records.ifs:15 #-}
-- {-# OPTIONS --verbose tc.constr.findInScope:15 #-}
-- {-# OPTIONS --verbose tc.term.args.ifs:15 #-}
-- {-# OPTIONS --verbose cta.record.ifs:15 #-}
-- {-# OPTIONS --verbose tc.section.apply:25 #-}
-- {-# OPTIONS --verbose tc.mod.apply:100 #-}
-- {-# OPTIONS --verbose scope.rec:15 #-}
-- {-# OPTIONS --verbose tc.rec.def:15 #-}
module 07-subclasses where
module Imports where
module L where
postulate
Level : Set
zero : Level
suc : Level → Level
_⊔_ : Level → Level → Level
{-# BUILTIN LEVEL Level #-}
{-# BUILTIN LEVELZERO zero #-}
{-# BUILTIN LEVELSUC suc #-}
{-# BUILTIN LEVELMAX _⊔_ #-}
-- extract from Function
id : ∀ {a} {A : Set a} → A → A
id x = x
_$_ : ∀ {a b} {A : Set a} {B : A → Set b} →
((x : A) → B x) → ((x : A) → B x)
f $ x = f x
_∘_ : ∀ {a b c}
{A : Set a} {B : A → Set b} {C : {x : A} → B x → Set c} →
(∀ {x} (y : B x) → C y) → (g : (x : A) → B x) →
((x : A) → C (g x))
f ∘ g = λ x → f (g x)
-- extract from Data.Bool
infixr 5 _∨_
data Bool : Set where
true : Bool
false : Bool
not : Bool → Bool
not true = false
not false = true
_∨_ : Bool → Bool → Bool
true ∨ b = true
false ∨ b = b
-- extract from Relation.Nullary.Decidable and friends
infix 3 ¬_
data ⊥ : Set where
¬_ : ∀ {ℓ} → Set ℓ → Set ℓ
¬ P = P → ⊥
data Dec {p} (P : Set p) : Set p where
yes : ( p : P) → Dec P
no : (¬p : ¬ P) → Dec P
⌊_⌋ : ∀ {p} {P : Set p} → Dec P → Bool
⌊ yes _ ⌋ = true
⌊ no _ ⌋ = false
-- extract from Relation.Binary.PropositionalEquality
data _≡_ {a} {A : Set a} (x : A) : A → Set a where
refl : x ≡ x
cong : ∀ {a b} {A : Set a} {B : Set b}
(f : A → B) {x y} → x ≡ y → f x ≡ f y
cong f refl = refl
-- extract from Data.Nat
data ℕ : Set where
zero : ℕ
suc : (n : ℕ) → ℕ
{-# BUILTIN NATURAL ℕ #-}
{-# BUILTIN ZERO zero #-}
{-# BUILTIN SUC suc #-}
pred : ℕ → ℕ
pred zero = zero
pred (suc n) = n
_≟_ : (x y : ℕ) → Dec (x ≡ y)
zero ≟ zero = yes refl
suc m ≟ suc n with m ≟ n
suc m ≟ suc .m | yes refl = yes refl
suc m ≟ suc n | no prf = no (prf ∘ cong pred)
zero ≟ suc n = no λ()
suc m ≟ zero = no λ()
open Imports
-- Begin of actual example!
record Eq (A : Set) : Set where
field eq : A → A → Bool
primEqBool : Bool → Bool → Bool
primEqBool true = id
primEqBool false = not
eqBool : Eq Bool
eqBool = record { eq = primEqBool }
primEqNat : ℕ → ℕ → Bool
primEqNat a b = ⌊ a ≟ b ⌋
primLtNat : ℕ → ℕ → Bool
primLtNat 0 _ = true
primLtNat (suc a) (suc b) = primLtNat a b
primLtNat _ _ = false
neq : {t : Set} → {{eqT : Eq t}} → t → t → Bool
neq a b = not $ eq a b
where open Eq {{...}}
record Ord₁ (A : Set) : Set where
field _<_ : A → A → Bool
eqA : Eq A
ord₁Nat : Ord₁ ℕ
ord₁Nat = record { _<_ = primLtNat; eqA = eqNat }
where eqNat : Eq ℕ
eqNat = record { eq = primEqNat }
record Ord₂ {A : Set} (eqA : Eq A) : Set where
field _<_ : A → A → Bool
ord₂Nat : Ord₂ (record { eq = primEqNat })
ord₂Nat = record { _<_ = primLtNat }
record Ord₃ (A : Set) : Set where
field _<_ : A → A → Bool
eqA : Eq A
open Eq eqA public
ord₃Nat : Ord₃ ℕ
ord₃Nat = record { _<_ = primLtNat; eqA = eqNat }
where eqNat : Eq ℕ
eqNat = record { eq = primEqNat }
record Ord₄ {A : Set} (eqA : Eq A) : Set where
field _<_ : A → A → Bool
open Eq eqA public
ord₄Nat : Ord₄ (record { eq = primEqNat })
ord₄Nat = record { _<_ = primLtNat }
module test₁ where
open Ord₁ {{...}}
open Eq {{...}}
eqNat : Eq _
eqNat = eqA
test₁ = 5 < 3
test₂ = eq 5 3
test₃ = eq true false
test₄ : {A : Set} → {{ ordA : Ord₁ A }} → A → A → Bool
test₄ a b = a < b ∨ eq a b
where
eqA' : Eq _
eqA' = eqA
module test₂ where
open Ord₂ {{...}}
open Eq {{...}}
eqNat : Eq ℕ
eqNat = record { eq = primEqNat }
test₁ = 5 < 3
test₂ = eq 5 3
test₃ = eq true false
test₄ : {A : Set} → {eqA : Eq A} → {{ ordA : Ord₂ eqA }} → A → A → Bool
test₄ {eqA = _} a b = a < b ∨ eq a b
module test₃ where
open Ord₃ {{...}}
open Eq {{...}} renaming (eq to eq')
test₁ = 5 < 3
test₂ = eq 5 3
test₃ = eq' true false
test₄ : {A : Set} → {{ ordA : Ord₃ A }} → A → A → Bool
test₄ a b = a < b ∨ eq a b
module test₄ where
open Ord₄ {{...}}
open Eq {{...}} renaming (eq to eq')
test₁ = 5 < 3
test₂ = eq 5 3
test₃ = eq' true false
test₄ : {A : Set} → {eqA : Eq A} → {{ ordA : Ord₄ eqA }} → A → A → Bool
test₄ a b = a < b ∨ eq a b
module test₄′ where
open Ord₄ {{...}} hiding (eq)
open Eq {{...}}
eqNat : Eq ℕ
eqNat = record { eq = primEqNat }
test₁ = 5 < 3
test₂ = eq 5 3
test₃ = eq true false
test₄ : {A : Set} → {eqA : Eq A} → {{ ordA : Ord₄ eqA }} → A → A → Bool
test₄ {eqA = _} a b = a < b ∨ eq a b
| 22.242152
| 73
| 0.516532
|
59fd394fc1bdfed7bb06c2e9662f449f9f87351f
| 4,268
|
agda
|
Agda
|
src/Util/Relation/Binary/PropositionalEquality.agda
|
JLimperg/msc-thesis-code
|
104cddc6b65386c7e121c13db417aebfd4b7a863
|
[
"MIT"
] | 5
|
2021-04-13T21:31:17.000Z
|
2021-06-26T06:37:31.000Z
|
src/Util/Relation/Binary/PropositionalEquality.agda
|
JLimperg/msc-thesis-code
|
104cddc6b65386c7e121c13db417aebfd4b7a863
|
[
"MIT"
] | null | null | null |
src/Util/Relation/Binary/PropositionalEquality.agda
|
JLimperg/msc-thesis-code
|
104cddc6b65386c7e121c13db417aebfd4b7a863
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --without-K --safe #-}
module Util.Relation.Binary.PropositionalEquality where
open import Relation.Binary.PropositionalEquality public
open import Data.Product using (uncurry)
open import Util.Prelude
private
variable
α β γ γ′ δ : Level
A B C A′ B′ C′ : Set α
trans-unassoc : {a b c d : A} (p : a ≡ b) {q : b ≡ c} {r : c ≡ d}
→ trans p (trans q r) ≡ trans (trans p q) r
trans-unassoc p = sym (trans-assoc p)
Σ-≡⁻ : {A : Set α} {B : A → Set β} {x y : Σ A B}
→ x ≡ y
→ Σ[ p ∈ (proj₁ x ≡ proj₁ y) ] subst B p (proj₂ x) ≡ proj₂ y
Σ-≡⁻ refl = refl , refl
Σ-≡⁺ : {A : Set α} {B : A → Set β} {x y : Σ A B}
→ Σ[ p ∈ (proj₁ x ≡ proj₁ y) ] subst B p (proj₂ x) ≡ proj₂ y
→ x ≡ y
Σ-≡⁺ (refl , refl) = refl
Σ-≡⁺∘Σ-≡⁻ : {A : Set α} {B : A → Set β} {x y : Σ A B}
→ (p : x ≡ y)
→ Σ-≡⁺ (Σ-≡⁻ p) ≡ p
Σ-≡⁺∘Σ-≡⁻ refl = refl
Σ-≡⁻∘Σ-≡⁺ : {A : Set α} {B : A → Set β} {x y : Σ A B}
→ (p : Σ[ p ∈ (proj₁ x ≡ proj₁ y) ] subst B p (proj₂ x) ≡ proj₂ y)
→ Σ-≡⁻ (Σ-≡⁺ p) ≡ p
Σ-≡⁻∘Σ-≡⁺ (refl , refl) = refl
×-≡⁺ : {x y : A × B}
→ (proj₁ x ≡ proj₁ y) × (proj₂ x ≡ proj₂ y)
→ x ≡ y
×-≡⁺ (refl , refl) = refl
×-≡⁻ : {x y : A × B}
→ x ≡ y
→ (proj₁ x ≡ proj₁ y) × (proj₂ x ≡ proj₂ y)
×-≡⁻ refl = refl , refl
×-≡⁺∘×-≡⁻ : {x y : A × B} (p : x ≡ y)
→ ×-≡⁺ (×-≡⁻ p) ≡ p
×-≡⁺∘×-≡⁻ refl = refl
×-≡⁻∘×-≡⁺ : {x y : A × B} (p : (proj₁ x ≡ proj₁ y) × (proj₂ x ≡ proj₂ y))
→ ×-≡⁻ (×-≡⁺ p) ≡ p
×-≡⁻∘×-≡⁺ (refl , refl) = refl
cast : A ≡ B → A → B
cast = subst (λ x → x)
cast-refl : {x : A} → cast refl x ≡ x
cast-refl = refl
cast-trans : (B≡C : B ≡ C) (A≡B : A ≡ B) {x : A}
→ cast B≡C (cast A≡B x) ≡ cast (trans A≡B B≡C) x
cast-trans refl refl = refl
subst-trans : ∀ {P : A → Set β} {x y z : A} {p : P x}
→ (x≡y : x ≡ y) (y≡z : y ≡ z)
→ subst P y≡z (subst P x≡y p) ≡ subst P (trans x≡y y≡z) p
subst-trans refl refl = refl
subst₂-trans : (C : A → B → Set γ)
→ {a₀ a₁ a₂ : A} (p : a₀ ≡ a₁) (p′ : a₁ ≡ a₂)
→ {b₀ b₁ b₂ : B} (q : b₀ ≡ b₁) (q′ : b₁ ≡ b₂)
→ {x : C a₀ b₀}
→ subst₂ C p′ q′ (subst₂ C p q x) ≡ subst₂ C (trans p p′) (trans q q′) x
subst₂-trans C refl refl refl refl = refl
subst₂-subst₂-sym : (C : A → B → Set γ)
→ {a a′ : A} (p : a ≡ a′)
→ {b b′ : B} (q : b ≡ b′)
→ {x : C a′ b′}
→ subst₂ C p q (subst₂ C (sym p) (sym q) x) ≡ x
subst₂-subst₂-sym C refl refl = refl
subst₂-sym-subst₂ : (C : A → B → Set γ)
→ {a a′ : A} (p : a ≡ a′)
→ {b b′ : B} (q : b ≡ b′)
→ {x : C a b}
→ subst₂ C (sym p) (sym q) (subst₂ C p q x) ≡ x
subst₂-sym-subst₂ C refl refl = refl
subst₂-cong : (C : A′ → B′ → Set γ)
→ (f : A → A′) (g : B → B′)
→ {a a′ : A} (p : a ≡ a′)
→ {b b′ : B} (q : b ≡ b′)
→ {x : C (f a) (g b)}
→ subst₂ C (cong f p) (cong g q) x ≡ subst₂ (λ a b → C (f a) (g b)) p q x
subst₂-cong C f g refl refl = refl
subst₂≡subst : ∀ {la} {A : Set la} {lb} {B : Set lb} {lc} (C : A → B → Set lc)
→ ∀ {a a′} (p : a ≡ a′) {b b′} (q : b ≡ b′) {x : C a b}
→ subst₂ C p q x ≡ subst (uncurry C) (cong₂ _,_ p q) x
subst₂≡subst C refl refl = refl
subst₂-application : (C : A → B → Set γ) {C′ : A′ → B′ → Set γ′}
→ {fa : A′ → A} {fb : B′ → B}
→ {a a′ : A′} {b b′ : B′} {c : C (fa a) (fb b)}
→ (g : ∀ a b → C (fa a) (fb b) → C′ a b)
→ (eqa : a ≡ a′)
→ (eqb : b ≡ b′)
→ subst₂ C′ eqa eqb (g a b c)
≡ g a′ b′ (subst₂ C (cong fa eqa) (cong fb eqb) c)
subst₂-application _ _ refl refl = refl
subst₂-application′ : {C : A → B → Set γ} (C′ : A′ → B′ → Set γ′)
→ {fa : A → A′} {fb : B → B′}
→ {a a′ : A} {b b′ : B} {c : C a b}
→ (g : ∀ a b → C a b → C′ (fa a) (fb b))
→ (eqa : a ≡ a′)
→ (eqb : b ≡ b′)
→ subst₂ C′ (cong fa eqa) (cong fb eqb) (g a b c)
≡ g a′ b′ (subst₂ C eqa eqb c)
subst₂-application′ _ _ refl refl = refl
cong₂-dep : {A : Set α} {B : A → Set β} {C : Set γ}
→ (f : (a : A) → B a → C)
→ {x y : A} (p : x ≡ y)
→ {u : B x} {v : B y} (q : subst B p u ≡ v)
→ f x u ≡ f y v
cong₂-dep f refl refl = refl
cong₃-dep : {A : Set α} {B : A → Set β} {C : (a : A) → B a → Set γ}
→ {D : Set δ}
→ (f : (a : A) (b : B a) → C a b → D)
→ {x y : A} (p : x ≡ y)
→ {u : B x} {v : B y} (q : subst B p u ≡ v)
→ {w : C x u} {z : C y v} (r : subst (λ i → C (proj₁ i) (proj₂ i)) (Σ-≡⁺ (p , q)) w ≡ z)
→ f x u w ≡ f y v z
cong₃-dep f refl refl refl = refl
| 26.02439
| 90
| 0.447751
|
4131eadba26c7a758ad5239ae4cc8047f7e3248d
| 11,056
|
agda
|
Agda
|
Cubical/Papers/RepresentationIndependence.agda
|
LuuBluum/cubical
|
ce8fe04f9c5d2c9faf8690885c1b702434626621
|
[
"MIT"
] | null | null | null |
Cubical/Papers/RepresentationIndependence.agda
|
LuuBluum/cubical
|
ce8fe04f9c5d2c9faf8690885c1b702434626621
|
[
"MIT"
] | null | null | null |
Cubical/Papers/RepresentationIndependence.agda
|
LuuBluum/cubical
|
ce8fe04f9c5d2c9faf8690885c1b702434626621
|
[
"MIT"
] | 1
|
2021-03-12T20:08:45.000Z
|
2021-03-12T20:08:45.000Z
|
{-
Please do not move this file. Changes should only be made if necessary.
This file contains pointers to the code examples and main results from the paper:
Internalizing Representation Independence with Univalence
Carlo Angiuli, Evan Cavallo, Anders Mörtberg, Max Zeuner
Preprint: https://arxiv.org/abs/2009.05547
-}
{-# OPTIONS --safe #-}
module Cubical.Papers.RepresentationIndependence where
-- 2.1
import Agda.Builtin.Cubical.Path as Path
import Cubical.Foundations.Prelude as Prelude
-- 2.2
import Cubical.Foundations.Univalence as Univalence
import Cubical.Foundations.HLevels as HLevels
import Cubical.Foundations.Equiv as Equivalences
import Cubical.Data.Sigma.Properties as Sigma
-- 2.3
import Cubical.HITs.PropositionalTruncation as PropositionalTruncation
import Cubical.HITs.Cost.Base as CostMonad
import Cubical.HITs.SetQuotients as SetQuotients
import Cubical.HITs.Rationals.QuoQ as SetQuoQ
import Cubical.HITs.Rationals.SigmaQ as SigmaQ
-- 3.1
import Cubical.Foundations.SIP as SIP
import Cubical.Structures.Axioms as Axioms
import Cubical.Algebra.Semigroup.Base as Semigroup
open import Cubical.Data.Sigma.Base
-- 3.2
import Cubical.Structures.Pointed as PointedStr
import Cubical.Structures.Constant as ConstantStr
import Cubical.Structures.Product as ProductStr
import Cubical.Structures.Function as FunctionStr
import Cubical.Structures.Maybe as MaybeStr
import Cubical.Foundations.Structure as Structure
import Cubical.Structures.Auto as Auto
open import Cubical.Data.Maybe.Base
-- 4.1
import Cubical.Data.Vec.Base as Vector
import Cubical.Algebra.Matrix as Matrices
import Cubical.Data.FinData.Base as Finite
open import Cubical.Algebra.AbGroup.Base
open import Cubical.Data.Bool.Base
-- 4.2
import Cubical.Structures.Queue as Queues
import Cubical.Data.Queue.Truncated2List as BatchedQueues
-- 5.1
import Cubical.Relation.Binary.Base as BinRel
import Cubical.Relation.ZigZag.Base as QER
import Cubical.Relation.ZigZag.Applications.MultiSet
as MultiSets
-- 5.2
import Cubical.Foundations.RelationalStructure as RelStructure
import Cubical.Structures.Relational.Function as RelFunction
-------------------------------------------------------------------------
-- 2. Programming in Cubical Type Theory
-- 2.1 Equalities as Paths
-- 2.2 Univalence
-- 2.3 Higher Inductive Types
-------------------------------------------------------------------------
-- 2.1 Equalities as Paths
open Path using (PathP) public
open Prelude using (_≡_ ; refl ; cong ; funExt
; transport ; subst ; J) public
-- 2.2 Univalence
open Univalence using (ua ; uaβ) public
-- Sets and Propositions
open Prelude using (isProp ; isSet) public
open HLevels using (isPropΠ) public
open Prelude using (isContr) public
-- Equivalences and Isomorphisms
open Equivalences using (isEquiv ; _≃_) public
open Equivalences renaming (fiber to preim) public
open Sigma using (ΣPath≃PathΣ) public
open Equivalences renaming (propBiimpl→Equiv to prop≃) public
-- 2.3 Higher Inductive Types
-- Propositional Truncation
open PropositionalTruncation using (∥_∥ ; map) public
open CostMonad using (Cost ; Cost≡ ; _>>=_ ; return
; fib ; fibTail) public
-- Computation
_ : fib 20 ≡ (6765 , PropositionalTruncation.∣ 21890 ∣)
_ = refl
_ : fibTail 20 ≡ (6765 , PropositionalTruncation.∣ 19 ∣)
_ = refl
-- Set Quotients
open SetQuotients using (_/_ ; setQuotUniversal) public
-- Rational Numbers
open SetQuoQ using (_∼_ ; ℚ) public
open SigmaQ renaming (ℚ to ℚ') public
-------------------------------------------------------------------------
-- 3. The Structure Identity Principle
-- 3.1 Structures
-- 3.2 Building Strucutres
-------------------------------------------------------------------------
-- 3.1 Structures
open SIP using (TypeWithStr ; StrEquiv ; _≃[_]_
; UnivalentStr ; SIP ; sip) public
-- the last two terms above correspond to lemma 3.3
-- and corollary 3.4 respectively
open Axioms using ( AxiomsStructure ; AxiomsEquivStr
; axiomsUnivalentStr ; transferAxioms) public
-- Monoids are defined using records and Σ-types in the library
RawMonoidStructure : Type → Type
RawMonoidStructure X = X × (X → X → X)
MonoidAxioms : (M : Type) → RawMonoidStructure M → Type
MonoidAxioms M (e , _·_) = Semigroup.IsSemigroup _·_
× ((x : M) → (x · e ≡ x) × (e · x ≡ x))
MonoidStructure : Type → Type
MonoidStructure = AxiomsStructure RawMonoidStructure MonoidAxioms
Monoid : Type₁
Monoid = TypeWithStr ℓ-zero MonoidStructure
MonoidEquiv : (M N : Monoid) → fst M ≃ fst N → Type
MonoidEquiv (_ , (εᴹ , _·_) , _) (_ , (εᴺ , _∗_) , _) (φ , _) =
(φ εᴹ ≡ εᴺ) × (∀ x y → φ (x · y) ≡ (φ x) ∗ (φ y))
-- 3.2 Building Structures
-- Constant and Pointed Structures
open PointedStr using (PointedStructure ; PointedEquivStr
; pointedUnivalentStr) public
open ConstantStr using (ConstantStructure ; ConstantEquivStr
; constantUnivalentStr) public
-- Product Structures
open ProductStr using (ProductStructure ; ProductEquivStr
; productUnivalentStr) public
-- Function Structures
open FunctionStr using (FunctionEquivStr) public
-- Maybe Structures
open MaybeStr using (MaybeEquivStr) public
-- Transport Structures
open Structure using (EquivAction) public
open SIP using (TransportStr ; TransportStr→UnivalentStr
; UnivalentStr→TransportStr) public
open Structure using (EquivAction→StrEquiv) public
open FunctionStr using (FunctionEquivStr+) public
-- Monoids Revisited
RawMonoid : Type₁
RawMonoid = TypeWithStr _ RawMonoidStructure
Monoid→RawMonoid : Monoid → RawMonoid
Monoid→RawMonoid (A , r , _) = (A , r)
RawMonoidEquivStr = Auto.AutoEquivStr RawMonoidStructure
rawMonoidUnivalentStr : UnivalentStr _ RawMonoidEquivStr
rawMonoidUnivalentStr = Auto.autoUnivalentStr RawMonoidStructure
isPropMonoidAxioms : (M : Type) (s : RawMonoidStructure M) → isProp (MonoidAxioms M s)
isPropMonoidAxioms M (e , _·_) =
HLevels.isPropΣ
(Semigroup.isPropIsSemigroup _·_)
(λ α → isPropΠ λ _ →
HLevels.isProp×
(Semigroup.IsSemigroup.is-set α _ _)
(Semigroup.IsSemigroup.is-set α _ _))
MonoidEquivStr : StrEquiv MonoidStructure ℓ-zero
MonoidEquivStr = AxiomsEquivStr RawMonoidEquivStr MonoidAxioms
monoidUnivalentStr : UnivalentStr MonoidStructure MonoidEquivStr
monoidUnivalentStr = axiomsUnivalentStr _ isPropMonoidAxioms rawMonoidUnivalentStr
MonoidΣPath : (M N : Monoid) → (M ≃[ MonoidEquivStr ] N) ≃ (M ≡ N)
MonoidΣPath = SIP monoidUnivalentStr
InducedMonoid : (M : Monoid) (N : RawMonoid) (e : M .fst ≃ N .fst)
→ RawMonoidEquivStr (Monoid→RawMonoid M) N e → Monoid
InducedMonoid M N e r =
Axioms.inducedStructure rawMonoidUnivalentStr M N (e , r)
InducedMonoidPath : (M : Monoid) (N : RawMonoid) (e : M .fst ≃ N .fst)
(E : RawMonoidEquivStr (Monoid→RawMonoid M) N e)
→ M ≡ InducedMonoid M N e E
InducedMonoidPath M N e E =
MonoidΣPath M (InducedMonoid M N e E) .fst (e , E)
-- Automation
open Auto using (Transp[_] ; AutoEquivStr ; autoUnivalentStr) public
module _ (A : Type) (Aset : isSet A) where
RawQueueEquivStr =
AutoEquivStr (λ (X : Type) → X × (A → X → X) × (X → Transp[ Maybe (X × A) ]))
-------------------------------------------------------------------------
-- 4. Representation Independence through the SIP
-- 4.1 Matrices
-- 4.2 Queues
-------------------------------------------------------------------------
-- 4.1 Matrices
open Vector using (Vec) public
open Finite using (Fin ; _==_) public
open Matrices using (VecMatrix ; FinMatrix ; FinMatrix≡VecMatrix
; FinMatrix≃VecMatrix) public
open Matrices.FinMatrixAbGroup using (addFinMatrix ; addFinMatrixComm) public
-- example (not in the library)
open import Cubical.Data.Int renaming (Int to ℤ ; isSetInt to isSetℤ) hiding (-_)
ℤ-AbGroup : AbGroup ℓ-zero
ℤ-AbGroup = makeAbGroup {G = ℤ} 0 _+_ -_ isSetℤ +-assoc (λ x _ → x) rem +-comm
where
-_ : ℤ → ℤ
- x = 0 - x
rem : (x : ℤ) → x + (- x) ≡ 0
rem x = +-comm x (pos 0 - x) Prelude.∙ minusPlus x 0
module experiment where
open Prelude
M : FinMatrix ℤ 2 2
M i j = if i == j then 1 else 0
N : FinMatrix ℤ 2 2
N i j = if i == j then 0 else 1
replaceGoal : {A B : Type} {x y : A} → (e : A ≃ B)
(h : invEq e (equivFun e x) ≡ invEq e (equivFun e y)) → x ≡ y
replaceGoal e h = sym (retEq e _) ∙∙ h ∙∙ retEq e _
_ : addFinMatrix ℤ-AbGroup M N ≡ (λ _ _ → 1)
_ = replaceGoal (FinMatrix≃VecMatrix) refl
-- 4.2 Queues
open Queues.Queues-on using (RawQueueStructure ; QueueAxioms) public
open BatchedQueues.Truncated2List renaming (Q to BatchedQueueHIT)
using (Raw-1≡2 ; WithLaws) public
-------------------------------------------------------------------------
-- 5. Structured Equivalences from Structured Relations
-- 5.1 Quasi-Equivalence Relations
-- 5.2 Structured Relations
-------------------------------------------------------------------------
-- 5.1 Quasi-Equivalence Relations
--Lemma (5.1)
open BinRel using (idPropRel ; invPropRel
; compPropRel ; graphRel) public
-- Definitions (5.2) and (5.3)
open QER using (isZigZagComplete ; isQuasiEquivRel) public
-- Lemma (5.4)
open QER.QER→Equiv using (Thm ; bwd≡ToRel) public
-- Multisets
open MultiSets renaming (AList to AssocList) public
open MultiSets.Lists&ALists using (addIfEq ; R ; φ ; ψ
; List/Rᴸ≃AList/Rᴬᴸ) public
open MultiSets.Lists&ALists.L using (insert ; union ; count)
open MultiSets.Lists&ALists.AL using (insert ; union ; count)
-- 5.2 Structured Relations
open RelStructure using (StrRel) public
-- Definition (5.6)
open RelStructure using (SuitableStrRel) public
-- Theorem (5.7)
open RelStructure using (structuredQER→structuredEquiv) public
-- Definition (5.9)
open RelStructure using (StrRelAction) public
-- Lemma (5.10)
open RelStructure using (strRelQuotientComparison) public
-- Definition (5.11)
open RelStructure using (PositiveStrRel) public
-- Theorem (5.12)
open RelFunction using (functionSuitableRel) public
-- Multisets
-- (main is applying 5.7 to the example)
open MultiSets.Lists&ALists using (multisetShape ; isStructuredR ; main ; List/Rᴸ≡AList/Rᴬᴸ)
renaming ( hasAssociativeUnion to unionAssocAxiom
; LQassoc to LUnionAssoc
; ALQassoc to ALUnionAssoc) public
| 35.098413
| 92
| 0.642004
|
59777234898c6af8830dc56651fa8649fac45a8d
| 15,978
|
agda
|
Agda
|
src/data/lib/prim/Agda/Builtin/Reflection.agda
|
sseefried/agda
|
6b13364d36eeb60d8ec15eaf8effe23c73401900
|
[
"BSD-2-Clause"
] | 1
|
2022-03-05T00:25:14.000Z
|
2022-03-05T00:25:14.000Z
|
src/data/lib/prim/Agda/Builtin/Reflection.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 6
|
2021-10-18T08:12:24.000Z
|
2021-11-24T08:31:10.000Z
|
src/data/lib/prim/Agda/Builtin/Reflection.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | null | null | null |
{-# OPTIONS --without-K --safe --no-sized-types --no-guardedness #-}
module Agda.Builtin.Reflection where
open import Agda.Builtin.Unit
open import Agda.Builtin.Bool
open import Agda.Builtin.Nat
open import Agda.Builtin.Word
open import Agda.Builtin.List
open import Agda.Builtin.String
open import Agda.Builtin.Char
open import Agda.Builtin.Float
open import Agda.Builtin.Int
open import Agda.Builtin.Sigma
open import Agda.Primitive
-- Names --
postulate Name : Set
{-# BUILTIN QNAME Name #-}
primitive
primQNameEquality : Name → Name → Bool
primQNameLess : Name → Name → Bool
primShowQName : Name → String
-- Fixity --
data Associativity : Set where
left-assoc : Associativity
right-assoc : Associativity
non-assoc : Associativity
data Precedence : Set where
related : Float → Precedence
unrelated : Precedence
data Fixity : Set where
fixity : Associativity → Precedence → Fixity
{-# BUILTIN ASSOC Associativity #-}
{-# BUILTIN ASSOCLEFT left-assoc #-}
{-# BUILTIN ASSOCRIGHT right-assoc #-}
{-# BUILTIN ASSOCNON non-assoc #-}
{-# BUILTIN PRECEDENCE Precedence #-}
{-# BUILTIN PRECRELATED related #-}
{-# BUILTIN PRECUNRELATED unrelated #-}
{-# BUILTIN FIXITY Fixity #-}
{-# BUILTIN FIXITYFIXITY fixity #-}
{-# COMPILE GHC Associativity = data MAlonzo.RTE.Assoc (MAlonzo.RTE.LeftAssoc | MAlonzo.RTE.RightAssoc | MAlonzo.RTE.NonAssoc) #-}
{-# COMPILE GHC Precedence = data MAlonzo.RTE.Precedence (MAlonzo.RTE.Related | MAlonzo.RTE.Unrelated) #-}
{-# COMPILE GHC Fixity = data MAlonzo.RTE.Fixity (MAlonzo.RTE.Fixity) #-}
{-# COMPILE JS Associativity = function (x,v) { return v[x](); } #-}
{-# COMPILE JS left-assoc = "left-assoc" #-}
{-# COMPILE JS right-assoc = "right-assoc" #-}
{-# COMPILE JS non-assoc = "non-assoc" #-}
{-# COMPILE JS Precedence =
function (x,v) {
if (x === "unrelated") { return v[x](); } else { return v["related"](x); }} #-}
{-# COMPILE JS related = function(x) { return x; } #-}
{-# COMPILE JS unrelated = "unrelated" #-}
{-# COMPILE JS Fixity = function (x,v) { return v["fixity"](x["assoc"], x["prec"]); } #-}
{-# COMPILE JS fixity = function (x) { return function (y) { return { "assoc": x, "prec": y}; }; } #-}
primitive
primQNameFixity : Name → Fixity
primQNameToWord64s : Name → Σ Word64 (λ _ → Word64)
-- Metavariables --
postulate Meta : Set
{-# BUILTIN AGDAMETA Meta #-}
primitive
primMetaEquality : Meta → Meta → Bool
primMetaLess : Meta → Meta → Bool
primShowMeta : Meta → String
primMetaToNat : Meta → Nat
-- Arguments --
-- Arguments can be (visible), {hidden}, or {{instance}}.
data Visibility : Set where
visible hidden instance′ : Visibility
{-# BUILTIN HIDING Visibility #-}
{-# BUILTIN VISIBLE visible #-}
{-# BUILTIN HIDDEN hidden #-}
{-# BUILTIN INSTANCE instance′ #-}
-- Arguments can be relevant or irrelevant.
data Relevance : Set where
relevant irrelevant : Relevance
{-# BUILTIN RELEVANCE Relevance #-}
{-# BUILTIN RELEVANT relevant #-}
{-# BUILTIN IRRELEVANT irrelevant #-}
-- Arguments also have a quantity.
data Quantity : Set where
quantity-0 quantity-ω : Quantity
{-# BUILTIN QUANTITY Quantity #-}
{-# BUILTIN QUANTITY-0 quantity-0 #-}
{-# BUILTIN QUANTITY-ω quantity-ω #-}
-- Relevance and quantity are combined into a modality.
data Modality : Set where
modality : (r : Relevance) (q : Quantity) → Modality
{-# BUILTIN MODALITY Modality #-}
{-# BUILTIN MODALITY-CONSTRUCTOR modality #-}
data ArgInfo : Set where
arg-info : (v : Visibility) (m : Modality) → ArgInfo
data Arg {a} (A : Set a) : Set a where
arg : (i : ArgInfo) (x : A) → Arg A
{-# BUILTIN ARGINFO ArgInfo #-}
{-# BUILTIN ARGARGINFO arg-info #-}
{-# BUILTIN ARG Arg #-}
{-# BUILTIN ARGARG arg #-}
-- Name abstraction --
data Abs {a} (A : Set a) : Set a where
abs : (s : String) (x : A) → Abs A
{-# BUILTIN ABS Abs #-}
{-# BUILTIN ABSABS abs #-}
-- Literals --
data Literal : Set where
nat : (n : Nat) → Literal
word64 : (n : Word64) → Literal
float : (x : Float) → Literal
char : (c : Char) → Literal
string : (s : String) → Literal
name : (x : Name) → Literal
meta : (x : Meta) → Literal
{-# BUILTIN AGDALITERAL Literal #-}
{-# BUILTIN AGDALITNAT nat #-}
{-# BUILTIN AGDALITWORD64 word64 #-}
{-# BUILTIN AGDALITFLOAT float #-}
{-# BUILTIN AGDALITCHAR char #-}
{-# BUILTIN AGDALITSTRING string #-}
{-# BUILTIN AGDALITQNAME name #-}
{-# BUILTIN AGDALITMETA meta #-}
-- Terms and patterns --
data Term : Set
data Sort : Set
data Pattern : Set
data Clause : Set
Type = Term
Telescope = List (Σ String λ _ → Arg Type)
data Term where
var : (x : Nat) (args : List (Arg Term)) → Term
con : (c : Name) (args : List (Arg Term)) → Term
def : (f : Name) (args : List (Arg Term)) → Term
lam : (v : Visibility) (t : Abs Term) → Term
pat-lam : (cs : List Clause) (args : List (Arg Term)) → Term
pi : (a : Arg Type) (b : Abs Type) → Term
agda-sort : (s : Sort) → Term
lit : (l : Literal) → Term
meta : (x : Meta) → List (Arg Term) → Term
unknown : Term
data Sort where
set : (t : Term) → Sort
lit : (n : Nat) → Sort
prop : (t : Term) → Sort
propLit : (n : Nat) → Sort
inf : (n : Nat) → Sort
unknown : Sort
data Pattern where
con : (c : Name) (ps : List (Arg Pattern)) → Pattern
dot : (t : Term) → Pattern
var : (x : Nat) → Pattern
lit : (l : Literal) → Pattern
proj : (f : Name) → Pattern
absurd : (x : Nat) → Pattern -- absurd patterns counts as variables
data Clause where
clause : (tel : Telescope) (ps : List (Arg Pattern)) (t : Term) → Clause
absurd-clause : (tel : Telescope) (ps : List (Arg Pattern)) → Clause
{-# BUILTIN AGDATERM Term #-}
{-# BUILTIN AGDASORT Sort #-}
{-# BUILTIN AGDAPATTERN Pattern #-}
{-# BUILTIN AGDACLAUSE Clause #-}
{-# BUILTIN AGDATERMVAR var #-}
{-# BUILTIN AGDATERMCON con #-}
{-# BUILTIN AGDATERMDEF def #-}
{-# BUILTIN AGDATERMMETA meta #-}
{-# BUILTIN AGDATERMLAM lam #-}
{-# BUILTIN AGDATERMEXTLAM pat-lam #-}
{-# BUILTIN AGDATERMPI pi #-}
{-# BUILTIN AGDATERMSORT agda-sort #-}
{-# BUILTIN AGDATERMLIT lit #-}
{-# BUILTIN AGDATERMUNSUPPORTED unknown #-}
{-# BUILTIN AGDASORTSET set #-}
{-# BUILTIN AGDASORTLIT lit #-}
{-# BUILTIN AGDASORTPROP prop #-}
{-# BUILTIN AGDASORTPROPLIT propLit #-}
{-# BUILTIN AGDASORTINF inf #-}
{-# BUILTIN AGDASORTUNSUPPORTED unknown #-}
{-# BUILTIN AGDAPATCON con #-}
{-# BUILTIN AGDAPATDOT dot #-}
{-# BUILTIN AGDAPATVAR var #-}
{-# BUILTIN AGDAPATLIT lit #-}
{-# BUILTIN AGDAPATPROJ proj #-}
{-# BUILTIN AGDAPATABSURD absurd #-}
{-# BUILTIN AGDACLAUSECLAUSE clause #-}
{-# BUILTIN AGDACLAUSEABSURD absurd-clause #-}
-- Definitions --
data Definition : Set where
function : (cs : List Clause) → Definition
data-type : (pars : Nat) (cs : List Name) → Definition
record-type : (c : Name) (fs : List (Arg Name)) → Definition
data-cons : (d : Name) → Definition
axiom : Definition
prim-fun : Definition
{-# BUILTIN AGDADEFINITION Definition #-}
{-# BUILTIN AGDADEFINITIONFUNDEF function #-}
{-# BUILTIN AGDADEFINITIONDATADEF data-type #-}
{-# BUILTIN AGDADEFINITIONRECORDDEF record-type #-}
{-# BUILTIN AGDADEFINITIONDATACONSTRUCTOR data-cons #-}
{-# BUILTIN AGDADEFINITIONPOSTULATE axiom #-}
{-# BUILTIN AGDADEFINITIONPRIMITIVE prim-fun #-}
-- Errors --
data ErrorPart : Set where
strErr : String → ErrorPart
termErr : Term → ErrorPart
pattErr : Pattern → ErrorPart
nameErr : Name → ErrorPart
{-# BUILTIN AGDAERRORPART ErrorPart #-}
{-# BUILTIN AGDAERRORPARTSTRING strErr #-}
{-# BUILTIN AGDAERRORPARTTERM termErr #-}
{-# BUILTIN AGDAERRORPARTPATT pattErr #-}
{-# BUILTIN AGDAERRORPARTNAME nameErr #-}
-- TC monad --
postulate
TC : ∀ {a} → Set a → Set a
returnTC : ∀ {a} {A : Set a} → A → TC A
bindTC : ∀ {a b} {A : Set a} {B : Set b} → TC A → (A → TC B) → TC B
unify : Term → Term → TC ⊤
typeError : ∀ {a} {A : Set a} → List ErrorPart → TC A
inferType : Term → TC Type
checkType : Term → Type → TC Term
normalise : Term → TC Term
reduce : Term → TC Term
catchTC : ∀ {a} {A : Set a} → TC A → TC A → TC A
quoteTC : ∀ {a} {A : Set a} → A → TC Term
unquoteTC : ∀ {a} {A : Set a} → Term → TC A
quoteωTC : ∀ {A : Setω} → A → TC Term
getContext : TC Telescope
extendContext : ∀ {a} {A : Set a} → String → Arg Type → TC A → TC A
inContext : ∀ {a} {A : Set a} → Telescope → TC A → TC A
freshName : String → TC Name
declareDef : Arg Name → Type → TC ⊤
declarePostulate : Arg Name → Type → TC ⊤
defineFun : Name → List Clause → TC ⊤
getType : Name → TC Type
getDefinition : Name → TC Definition
blockOnMeta : ∀ {a} {A : Set a} → Meta → TC A
commitTC : TC ⊤
isMacro : Name → TC Bool
-- If the argument is 'true' makes the following primitives also normalise
-- their results: inferType, checkType, quoteTC, getType, and getContext
withNormalisation : ∀ {a} {A : Set a} → Bool → TC A → TC A
-- Makes the following primitives to reconstruct hidden arguments
-- getDefinition, normalise, reduce, inferType, checkType and getContext
withReconstructed : ∀ {a} {A : Set a} → TC A → TC A
formatErrorParts : List ErrorPart → TC String
-- Prints the third argument if the corresponding verbosity level is turned
-- on (with the -v flag to Agda).
debugPrint : String → Nat → List ErrorPart → TC ⊤
-- Only allow reduction of specific definitions while executing the TC computation
onlyReduceDefs : ∀ {a} {A : Set a} → List Name → TC A → TC A
-- Don't allow reduction of specific definitions while executing the TC computation
dontReduceDefs : ∀ {a} {A : Set a} → List Name → TC A → TC A
-- Fail if the given computation gives rise to new, unsolved
-- "blocking" constraints.
noConstraints : ∀ {a} {A : Set a} → TC A → TC A
-- Run the given TC action and return the first component. Resets to
-- the old TC state if the second component is 'false', or keep the
-- new TC state if it is 'true'.
runSpeculative : ∀ {a} {A : Set a} → TC (Σ A λ _ → Bool) → TC A
-- Get a list of all possible instance candidates for the given meta
-- variable (it does not have to be an instance meta).
getInstances : Meta → TC (List Term)
{-# BUILTIN AGDATCM TC #-}
{-# BUILTIN AGDATCMRETURN returnTC #-}
{-# BUILTIN AGDATCMBIND bindTC #-}
{-# BUILTIN AGDATCMUNIFY unify #-}
{-# BUILTIN AGDATCMTYPEERROR typeError #-}
{-# BUILTIN AGDATCMINFERTYPE inferType #-}
{-# BUILTIN AGDATCMCHECKTYPE checkType #-}
{-# BUILTIN AGDATCMNORMALISE normalise #-}
{-# BUILTIN AGDATCMREDUCE reduce #-}
{-# BUILTIN AGDATCMCATCHERROR catchTC #-}
{-# BUILTIN AGDATCMQUOTETERM quoteTC #-}
{-# BUILTIN AGDATCMUNQUOTETERM unquoteTC #-}
{-# BUILTIN AGDATCMQUOTEOMEGATERM quoteωTC #-}
{-# BUILTIN AGDATCMGETCONTEXT getContext #-}
{-# BUILTIN AGDATCMEXTENDCONTEXT extendContext #-}
{-# BUILTIN AGDATCMINCONTEXT inContext #-}
{-# BUILTIN AGDATCMFRESHNAME freshName #-}
{-# BUILTIN AGDATCMDECLAREDEF declareDef #-}
{-# BUILTIN AGDATCMDECLAREPOSTULATE declarePostulate #-}
{-# BUILTIN AGDATCMDEFINEFUN defineFun #-}
{-# BUILTIN AGDATCMGETTYPE getType #-}
{-# BUILTIN AGDATCMGETDEFINITION getDefinition #-}
{-# BUILTIN AGDATCMBLOCKONMETA blockOnMeta #-}
{-# BUILTIN AGDATCMCOMMIT commitTC #-}
{-# BUILTIN AGDATCMISMACRO isMacro #-}
{-# BUILTIN AGDATCMWITHNORMALISATION withNormalisation #-}
{-# BUILTIN AGDATCMFORMATERRORPARTS formatErrorParts #-}
{-# BUILTIN AGDATCMDEBUGPRINT debugPrint #-}
{-# BUILTIN AGDATCMONLYREDUCEDEFS onlyReduceDefs #-}
{-# BUILTIN AGDATCMDONTREDUCEDEFS dontReduceDefs #-}
{-# BUILTIN AGDATCMWITHRECONSPARAMS withReconstructed #-}
{-# BUILTIN AGDATCMNOCONSTRAINTS noConstraints #-}
{-# BUILTIN AGDATCMRUNSPECULATIVE runSpeculative #-}
{-# BUILTIN AGDATCMGETINSTANCES getInstances #-}
-- All the TC primitives are compiled to functions that return
-- undefined, rather than just undefined, in an attempt to make sure
-- that code will run properly.
{-# COMPILE JS returnTC = _ => _ => _ => undefined #-}
{-# COMPILE JS bindTC = _ => _ => _ => _ =>
_ => _ => undefined #-}
{-# COMPILE JS unify = _ => _ => undefined #-}
{-# COMPILE JS typeError = _ => _ => _ => undefined #-}
{-# COMPILE JS inferType = _ => undefined #-}
{-# COMPILE JS checkType = _ => _ => undefined #-}
{-# COMPILE JS normalise = _ => undefined #-}
{-# COMPILE JS reduce = _ => undefined #-}
{-# COMPILE JS catchTC = _ => _ => _ => _ => undefined #-}
{-# COMPILE JS quoteTC = _ => _ => _ => undefined #-}
{-# COMPILE JS unquoteTC = _ => _ => _ => undefined #-}
{-# COMPILE JS quoteωTC = _ => _ => undefined #-}
{-# COMPILE JS getContext = undefined #-}
{-# COMPILE JS extendContext = _ => _ => _ => _ => _ => undefined #-}
{-# COMPILE JS inContext = _ => _ => _ => _ => undefined #-}
{-# COMPILE JS freshName = _ => undefined #-}
{-# COMPILE JS declareDef = _ => _ => undefined #-}
{-# COMPILE JS declarePostulate = _ => _ => undefined #-}
{-# COMPILE JS defineFun = _ => _ => undefined #-}
{-# COMPILE JS getType = _ => undefined #-}
{-# COMPILE JS getDefinition = _ => undefined #-}
{-# COMPILE JS blockOnMeta = _ => _ => _ => undefined #-}
{-# COMPILE JS commitTC = undefined #-}
{-# COMPILE JS isMacro = _ => undefined #-}
{-# COMPILE JS withNormalisation = _ => _ => _ => _ => undefined #-}
{-# COMPILE JS withReconstructed = _ => _ => _ => undefined #-}
{-# COMPILE JS debugPrint = _ => _ => _ => undefined #-}
{-# COMPILE JS onlyReduceDefs = _ => _ => _ => _ => undefined #-}
{-# COMPILE JS dontReduceDefs = _ => _ => _ => _ => undefined #-}
{-# COMPILE JS noConstraints = _ => _ => _ => undefined #-}
{-# COMPILE JS runSpeculative = _ => _ => _ => undefined #-}
{-# COMPILE JS getInstances = _ => undefined #-}
| 40.145729
| 130
| 0.554888
|
0b4e0a2244dc461a7ac8bb897f291eb3692f845a
| 3,546
|
agda
|
Agda
|
src/sigmatypes/TermsSized.agda
|
kcaliban/ldlc
|
a87fb6402639c3d2bb393cc5466426c28e7a0398
|
[
"BSD-3-Clause"
] | null | null | null |
src/sigmatypes/TermsSized.agda
|
kcaliban/ldlc
|
a87fb6402639c3d2bb393cc5466426c28e7a0398
|
[
"BSD-3-Clause"
] | null | null | null |
src/sigmatypes/TermsSized.agda
|
kcaliban/ldlc
|
a87fb6402639c3d2bb393cc5466426c28e7a0398
|
[
"BSD-3-Clause"
] | 1
|
2019-03-14T17:52:29.000Z
|
2019-03-14T17:52:29.000Z
|
-- Terms using Agdas Sized Types --
module TermsSized where
open import Data.Vec hiding (_++_)
open import Relation.Binary.PropositionalEquality
open import Data.Nat
open import Data.List
open import Data.List.Relation.Unary.All
open import Data.Fin.Base
open import Size
-- Ranked alphabet: Vector of natural numbers, where vec[i] denotes the arity of symbol i
RankedAlphabet : ℕ → Set
RankedAlphabet n = Vec ℕ n
-- Types
data Type : Set where
TTerm : ∀ {n} → RankedAlphabet n → Type
TFun : Type → Type → Type
-- Type environment
Env : Set
Env = List Type
-- Environment lookup
data _∈`_ : Type → Env → Set where
here : ∀ {φ A} → A ∈` (A ∷ φ)
there : ∀ {φ A A'} → A ∈` φ → A ∈` (A' ∷ φ)
-- Bind a type n times on top of an environment
bind : Env → (A : Type) → ℕ → Env
bind φ A zero = φ
bind φ A (suc n) = A ∷ (bind φ A n)
-- Zero & Successor, Variables, prim. recursion, Abstraction, Application
data Expr : {j : Size} → Env → Type → Set where
ETerm : ∀ {j : Size} {φ n} {vec : RankedAlphabet n} {sym : Fin n} → Vec (Expr {j} φ (TTerm vec)) (Data.Vec.lookup vec sym) → Expr {↑ j} φ (TTerm vec)
ETerm-Rec : ∀ {j : Size} {φ n} {vec : RankedAlphabet n} {A} → (∀ {sym : Fin n} → Expr {j} (bind φ A (Data.Vec.lookup vec sym)) A) → Expr {j} φ (TTerm vec) → Expr {↑ j} φ A
Var : ∀ {φ A} → A ∈` φ → Expr {∞} φ A
Abs : ∀ {φ A B} → Expr (A ∷ φ) B → Expr φ (TFun A B)
App : ∀ {φ A B} → Expr φ (TFun A B) → Expr φ A → Expr φ B
-- Terms
data Term {n} (ra : RankedAlphabet n) : {i : Size} → Set where
mk : ∀ {i} → (sym : Fin n) → Vec (Term ra {i}) (Data.Vec.lookup ra sym) → Term ra {↑ i}
-- Values
Value : Type → Set
Value (TTerm ra) = Term ra
Value (TFun A B) = Value A → Value B
-- Lookup in environment of all Values
access : ∀ {A φ} → A ∈` φ → All Value φ → Value A
access here (px ∷ p) = px
access (there x) (px ∷ p) = access x p
extend : ∀ {ϕ A} →
(m : ℕ) →
(ϱ₁ : Vec (Value A) m) →
(ϱ : All Value ϕ) →
All Value (bind ϕ A m)
extend 0F [] ϱ = ϱ
extend (suc m) (x ∷ ϱ₁) ϱ = x ∷ extend m ϱ₁ ϱ
trec : ∀ {j : Size} {a} {n} {VA : Set a} (ra : RankedAlphabet n) → ((sym : Fin n) → Vec VA (Data.Vec.lookup ra sym) → VA) → Term ra {j} → VA
trec ra g (mk sym₁ subterms) = g sym₁ (Data.Vec.map (trec ra g) subterms)
-- Evaluation
eval : ∀ {j : Size} {ϕ A} → Expr{j} ϕ A → All Value ϕ → Value A
eval (ETerm{sym = sym} x) ϱ = mk sym (Data.Vec.map (λ exp → eval exp ϱ) x)
eval {j} {ϕ} {A} (ETerm-Rec{n = n}{vec = ra} exprs body) ϱ with eval body ϱ
... | term = trec {VA = Value A} ra (λ sym₁ ϱ₁ → eval {A = A} (exprs {sym₁}) (extend (Data.Vec.lookup ra sym₁) ϱ₁ ϱ)) term
eval (Var x) ϱ = access x ϱ
eval (Abs expr) ϱ = λ x → eval expr (x ∷ ϱ)
eval (App expr expr₁) ϱ = (eval expr ϱ) (eval expr₁ ϱ)
-- Example: Very tiny subset of propositional logic
-- Σ = {¬, ⊤, ⊥}, α(¬) = 1, α(⊤) = 0, α(⊥) = 0
Σ : Vec ℕ 3
Σ = (1 ∷ 0 ∷ 0 ∷ [])
PropLog : Type
PropLog = TTerm Σ
1≤3 : 1 Data.Nat.< 3
1≤3 = s≤s (s≤s z≤n)
2≤3 : 2 Data.Nat.< 3
2≤3 = s≤s (s≤s (s≤s z≤n))
⊤ : Expr [] PropLog
⊤ = ETerm{n = 3} {sym = fromℕ< {1} {3} 1≤3} []
⊥ : Expr [] PropLog
⊥ = ETerm{n = 3} {sym = fromℕ< {2} {3} 2≤3} []
NegFunc : ∀ {sym : Fin 3} → Expr (bind [] PropLog (Data.Vec.lookup Σ sym)) PropLog
NegFunc {zero} = Var here
NegFunc {suc zero} = ⊥
NegFunc {suc (suc zero)} = ⊤
¬⊥ : Expr [] PropLog
¬⊥ = ETerm-Rec{vec = Σ} (λ {sym} → NegFunc {sym}) (ETerm{n = 3} {sym = fromℕ< {0} {3} (s≤s z≤n)} (⊥ ∷ []) )
_ : (eval ¬⊥ []) ≡ (eval ⊤ [])
_ = refl
| 31.380531
| 174
| 0.558094
|
1df392bffeeea716d5f3343cbeb06f3fc8b7da65
| 1,060
|
agda
|
Agda
|
agda/SList/Order/Properties.agda
|
bgbianchi/sorting
|
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
|
[
"MIT"
] | 6
|
2015-05-21T12:50:35.000Z
|
2021-08-24T22:11:15.000Z
|
agda/SList/Order/Properties.agda
|
bgbianchi/sorting
|
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
|
[
"MIT"
] | null | null | null |
agda/SList/Order/Properties.agda
|
bgbianchi/sorting
|
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --sized-types #-}
module SList.Order.Properties {A : Set}(_≤_ : A → A → Set) where
open import List.Sorted _≤_
open import Size
open import SList
open import SList.Order _≤_
lemma-slist-sorted : {ι : Size}{x : A}{xs : SList A {ι}} → x *≤ xs → Sorted (unsize A xs) → Sorted (unsize A (x ∙ xs))
lemma-slist-sorted {x = x} genx nils = singls x
lemma-slist-sorted (gecx x≤y genx) (singls y) = conss x≤y (singls y)
lemma-slist-sorted (gecx x≤y x*≤zys ) syzys = conss x≤y syzys
lemma-sorted⊕ : {ι : Size}{x : A}{xs : SList A {ι}} → xs ≤* x → Sorted (unsize A xs) → Sorted (unsize A (_⊕_ A xs (x ∙ snil)))
lemma-sorted⊕ {x = x} {xs = snil} _ nils = singls x
lemma-sorted⊕ {x = x} {xs = y ∙ snil} (lecx y≤x _) (singls .y) = conss y≤x (singls x)
lemma-sorted⊕ {xs = y ∙ (z ∙ ys)} (lecx y≤x zys≤*x) (conss y≤z szys) = conss y≤z (lemma-sorted⊕ zys≤*x szys)
lemma-⊕≤* : {ι : Size}{x t : A}{xs : SList A {ι}} → x ≤ t → xs ≤* t → (_⊕_ A xs (x ∙ snil)) ≤* t
lemma-⊕≤* x≤t lenx = lecx x≤t lenx
lemma-⊕≤* x≤t (lecx y≤t ys≤*t) = lecx y≤t (lemma-⊕≤* x≤t ys≤*t)
| 48.181818
| 126
| 0.587736
|
dfd2015c6de162ca8e66ea47bc12d8dbdabe4e07
| 293
|
agda
|
Agda
|
src/data/lib/prim/Agda/Builtin/Char/Properties.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1
|
2016-05-20T13:58:52.000Z
|
2016-05-20T13:58:52.000Z
|
src/data/lib/prim/Agda/Builtin/Char/Properties.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1
|
2015-09-15T15:49:15.000Z
|
2015-09-15T15:49:15.000Z
|
src/data/lib/prim/Agda/Builtin/Char/Properties.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1
|
2015-09-15T14:36:15.000Z
|
2015-09-15T14:36:15.000Z
|
{-# OPTIONS --without-K --safe --no-sized-types --no-guardedness
--no-subtyping #-}
module Agda.Builtin.Char.Properties where
open import Agda.Builtin.Char
open import Agda.Builtin.Equality
primitive
primCharToNatInjective : ∀ a b → primCharToNat a ≡ primCharToNat b → a ≡ b
| 24.416667
| 76
| 0.709898
|
2fe0ff2b4a1e0df9525bb09a4d102e9eb38ad292
| 1,893
|
agda
|
Agda
|
Cubical/Data/HomotopyGroup/Base.agda
|
borsiemir/cubical
|
cefeb3669ffdaea7b88ae0e9dd258378418819ca
|
[
"MIT"
] | null | null | null |
Cubical/Data/HomotopyGroup/Base.agda
|
borsiemir/cubical
|
cefeb3669ffdaea7b88ae0e9dd258378418819ca
|
[
"MIT"
] | null | null | null |
Cubical/Data/HomotopyGroup/Base.agda
|
borsiemir/cubical
|
cefeb3669ffdaea7b88ae0e9dd258378418819ca
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --cubical --safe #-}
module Cubical.Data.HomotopyGroup.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
import Cubical.Foundations.GroupoidLaws as GL
open import Cubical.Foundations.Pointed
open import Cubical.Data.Nat
open import Cubical.Data.Group.Base
open import Cubical.HITs.SetTruncation as SetTrunc
Ω : ∀ {ℓ} → Pointed ℓ → Pointed ℓ
Ω (A , a ) = ( (a ≡ a) , refl)
Ω^_ : ∀ {ℓ} → ℕ → Pointed ℓ → Pointed ℓ
(Ω^ 0) p = p
(Ω^ (suc n)) p = Ω ((Ω^ n) p)
π^_ : ∀ {ℓ} → ℕ → Pointed ℓ → Group ℓ
π^_ {ℓ} n p = group ∥ A ∥₀ squash₀ g
where
n' : ℕ
n' = suc n
A : Type ℓ
A = typ ((Ω^ n') p)
g : isGroup ∥ A ∥₀
g = group-struct e _⁻¹ _⊙_ lUnit rUnit assoc lCancel rCancel
where
e : ∥ A ∥₀
e = ∣ pt ((Ω^ n') p) ∣₀
_⁻¹ : ∥ A ∥₀ → ∥ A ∥₀
_⁻¹ = SetTrunc.elim {B = λ _ → ∥ A ∥₀} (λ x → squash₀) λ a → ∣ sym a ∣₀
_⊙_ : ∥ A ∥₀ → ∥ A ∥₀ → ∥ A ∥₀
_⊙_ = SetTrunc.elim2 (λ _ _ → squash₀) λ a₀ a₁ → ∣ a₀ ∙ a₁ ∣₀
lUnit : (a : ∥ A ∥₀) → (e ⊙ a) ≡ a
lUnit = SetTrunc.elim (λ _ → isProp→isSet (squash₀ _ _))
(λ a → cong ∣_∣₀ (sym (GL.lUnit a) ))
rUnit : (a : ∥ A ∥₀) → a ⊙ e ≡ a
rUnit = SetTrunc.elim (λ _ → isProp→isSet (squash₀ _ _))
(λ a → cong ∣_∣₀ (sym (GL.rUnit a) ))
assoc : (a b c : ∥ A ∥₀) → ((a ⊙ b) ⊙ c) ≡ (a ⊙ (b ⊙ c))
assoc = SetTrunc.elim3 (λ _ _ _ → isProp→isSet (squash₀ _ _))
(λ a b c → cong ∣_∣₀ (sym (GL.assoc _ _ _)))
lCancel : (a : ∥ A ∥₀) → ((a ⁻¹) ⊙ a) ≡ e
lCancel = SetTrunc.elim (λ _ → isProp→isSet (squash₀ _ _))
λ a → cong ∣_∣₀ (GL.lCancel _)
rCancel : (a : ∥ A ∥₀) → (a ⊙ (a ⁻¹)) ≡ e
rCancel = SetTrunc.elim (λ _ → isProp→isSet (squash₀ _ _))
λ a → cong ∣_∣₀ (GL.rCancel _)
| 31.032787
| 80
| 0.498679
|
4ac62a0f6e0418ab4f6297b33f7df6484a3727fb
| 2,534
|
agda
|
Agda
|
src/Construct/DirectProduct.agda
|
Akshobhya1234/agda-NonAssociativeAlgebra
|
443e831e536b756acbd1afd0d6bae7bc0d288048
|
[
"MIT"
] | 2
|
2021-08-15T06:16:13.000Z
|
2021-08-17T09:14:03.000Z
|
src/Construct/DirectProduct.agda
|
Akshobhya1234/agda-NonAssociativeAlgebra
|
443e831e536b756acbd1afd0d6bae7bc0d288048
|
[
"MIT"
] | 2
|
2021-10-04T05:30:30.000Z
|
2021-10-09T08:24:56.000Z
|
src/Construct/DirectProduct.agda
|
Akshobhya1234/agda-NonAssociativeAlgebra
|
443e831e536b756acbd1afd0d6bae7bc0d288048
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --without-K --safe #-}
open import Algebra.Construct.DirectProduct
module Construct.DirectProduct where
open import Algebra
import Algebra.Construct.DirectProduct as DirectProduct
open import Data.Product
open import Data.Product.Relation.Binary.Pointwise.NonDependent
open import Level using (Level; _⊔_)
private
variable
a b ℓ₁ ℓ₂ : Level
------------------------------------------------------------------------
-- Raw bundles
rawQuasigroup : RawQuasigroup a ℓ₁ → RawQuasigroup b ℓ₂ → RawQuasigroup (a ⊔ b) (ℓ₁ ⊔ ℓ₂)
rawQuasigroup M N = record
{ Carrier = M.Carrier × N.Carrier
; _≈_ = Pointwise M._≈_ N._≈_
; _∙_ = zip M._∙_ N._∙_
; _\\_ = zip M._\\_ N._\\_
; _//_ = zip M._//_ N._//_
} where module M = RawQuasigroup M; module N = RawQuasigroup N
rawLoop : RawLoop a ℓ₁ → RawLoop b ℓ₂ → RawLoop (a ⊔ b) (ℓ₁ ⊔ ℓ₂)
rawLoop M N = record
{ Carrier = M.Carrier × N.Carrier
; _≈_ = Pointwise M._≈_ N._≈_
; _∙_ = zip M._∙_ N._∙_
; _\\_ = zip M._\\_ N._\\_
; _//_ = zip M._//_ N._//_
; ε = M.ε , N.ε
} where module M = RawLoop M; module N = RawLoop N
------------------------------------------------------------------------
-- Bundles
unitalMagma : UnitalMagma a ℓ₁ → UnitalMagma b ℓ₂ → UnitalMagma (a ⊔ b) (ℓ₁ ⊔ ℓ₂)
unitalMagma M N = record
{ ε = M.ε , N.ε
; isUnitalMagma = record
{ isMagma = Magma.isMagma (magma M.magma N.magma)
; identity = (M.identityˡ , N.identityˡ <*>_)
, (M.identityʳ , N.identityʳ <*>_)
}
} where module M = UnitalMagma M; module N = UnitalMagma N
invertibleMagma : InvertibleMagma a ℓ₁ → InvertibleMagma b ℓ₂ → InvertibleMagma (a ⊔ b) (ℓ₁ ⊔ ℓ₂)
invertibleMagma M N = record
{ _⁻¹ = map M._⁻¹ N._⁻¹
; isInvertibleMagma = record
{ isMagma = Magma.isMagma (magma M.magma N.magma)
; inverse = (λ x → (M.inverseˡ , N.inverseˡ) <*> x)
, (λ x → (M.inverseʳ , N.inverseʳ) <*> x)
}
} where module M = InvertibleMagma M; module N = InvertibleMagma N
invertibleUnitalMagma : InvertibleUnitalMagma a ℓ₁ → InvertibleUnitalMagma b ℓ₂ → InvertibleUnitalMagma (a ⊔ b) (ℓ₁ ⊔ ℓ₂)
invertibleUnitalMagma M N = record
{ ε = M.ε , N.ε
; isInvertibleUnitalMagma = record
{ isInvertibleMagma = InvertibleMagma.isInvertibleMagma (invertibleMagma M.invertibleMagma N.invertibleMagma)
; identity = (M.identityˡ , N.identityˡ <*>_)
, (M.identityʳ , N.identityʳ <*>_)
}
} where module M = InvertibleUnitalMagma M; module N = InvertibleUnitalMagma N
| 35.194444
| 121
| 0.60734
|
122db3c30618378f18fefc77af3cea668f05528c
| 712
|
agda
|
Agda
|
test/Succeed/Issue870.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Succeed/Issue870.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Succeed/Issue870.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
-- {-# OPTIONS -v impossible:100 #-}
-- 2013-06-15 Andreas, reported by evancavallo
module Issue870 where
{- The following fails with
An internal error has occurred. Please report this as a bug.
Location of the error: src/full/Agda/TypeChecking/Rules/Term.hs:421
in Agda 2.3.3 on Ubuntu. Works fine using Set instead of Type or after tweaking the definition of test into a more sensible form. -}
Type = Set
data ⊤ : Type where
tt : ⊤
record R : Type
where
field
a : ⊤
test : ⊤ → R
test t = (λ a → record {a = a}) t
-- There was a possible __IMPOSSIBLE__ in the code for
-- guessing the record type of record{a = a}.
-- The problem was that a defined sort like Type, needs to be
-- reduced.
| 24.551724
| 132
| 0.69382
|
1d848ff41537a68a0c30fc42e08bad375583e2a3
| 3,064
|
agda
|
Agda
|
src/hott/truncation/core.agda
|
pcapriotti/agda-base
|
bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c
|
[
"BSD-3-Clause"
] | 20
|
2015-06-12T12:20:17.000Z
|
2022-02-01T11:25:54.000Z
|
src/hott/truncation/core.agda
|
pcapriotti/agda-base
|
bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c
|
[
"BSD-3-Clause"
] | 4
|
2015-02-02T14:32:16.000Z
|
2016-10-26T11:57:26.000Z
|
src/hott/truncation/core.agda
|
pcapriotti/agda-base
|
bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c
|
[
"BSD-3-Clause"
] | 4
|
2015-02-02T12:17:00.000Z
|
2019-05-04T19:31:00.000Z
|
{-# OPTIONS --without-K #-}
module hott.truncation.core where
open import sum
open import equality
open import function.core
open import function.fibration
open import function.extensionality
open import function.isomorphism
open import sets.nat.core
open import hott.equivalence
open import hott.level.core
open import hott.level.closure
module _ {i j i' j'}{A : Set i}{A' : Set i'}
{B : A → Set j}{B' : A' → Set j'}
(f : A → A')
(g : (a : A) → B a → B' (f a)) where
private
E E' : Set _
E = Σ A B
E' = Σ A' B'
p : E → A
p = proj₁
p' : E' → A'
p' = proj₁
t : E → E'
t (a , b) = (f a , g a b)
module _ (f-equiv : weak-equiv f)
(t-equiv : weak-equiv t) where
private
φ : A ≅ A'
φ = ≈⇒≅ (f , f-equiv)
τ : E ≅ E'
τ = ≈⇒≅ (t , t-equiv)
lem : (a : A)(e : E) → (p e ≡ a) ≅ (p' (t e) ≡ f a)
lem a e = iso≡ φ
fib-equiv : (a : A) → B a ≅ B' (f a)
fib-equiv a = sym≅ (fib-iso a) ·≅ Σ-ap-iso τ (lem a) ·≅ fib-iso (f a)
postulate
Trunc : ∀ {i} → ℕ → Set i → Set i
Trunc-level : ∀ {i} n {X : Set i} → h n (Trunc n X)
[_] : ∀ {i n} {X : Set i} → X → Trunc n X
Trunc-ext : ∀ {i j} n (X : Set i)(Y : Set j)
→ (Trunc n X → Y) → X → Y
Trunc-ext n X Y f x = f [ x ]
postulate
Trunc-univ : ∀ {i j} n (X : Set i)(Y : Set j) → h n Y
→ weak-equiv (Trunc-ext n X Y)
Trunc-elim-iso : ∀ {i j} n (X : Set i)(Y : Set j) → h n Y
→ (Trunc n X → Y) ≅ (X → Y)
Trunc-elim-iso n X Y hY = ≈⇒≅ (Trunc-ext n X Y , Trunc-univ n X Y hY)
Trunc-elim : ∀ {i j} n (X : Set i)(Y : Set j) → h n Y
→ (X → Y) → (Trunc n X → Y)
Trunc-elim n X Y hY = invert (Trunc-elim-iso n X Y hY)
Trunc-elim-β : ∀ {i j} n (X : Set i)(Y : Set j)(hY : h n Y)
→ (f : X → Y)(x : X)
→ Trunc-elim n X Y hY f [ x ] ≡ f x
Trunc-elim-β n X Y hY f x = funext-inv (_≅_.iso₂ (Trunc-elim-iso n X Y hY) f) x
module _ {i j} n {X : Set i} (Y : Trunc n X → Set j)
(hY : (x : Trunc n X) → h n (Y x)) where
private
Z : Set _
Z = Σ (Trunc n X) Y
hZ : h n Z
hZ = Σ-level (Trunc-level n) hY
Sec₂ : ∀ {k}{A : Set k} → (A → Trunc n X) → Set _
Sec₂ {A = A} r = (x : A) → Y (r x)
Sec : ∀ {k} → Set k → Set _
Sec A = Σ (A → Trunc n X) Sec₂
τ : Sec (Trunc n X) ≅ Sec X
τ = sym≅ ΠΣ-swap-iso ·≅ Trunc-elim-iso n X Z hZ ·≅ ΠΣ-swap-iso
ψ : (r : Trunc n X → Trunc n X)
→ (Sec₂ r) ≅ Sec₂ (r ∘ [_])
ψ = fib-equiv {A = Trunc n X → Trunc n X}{A' = X → Trunc n X}{B = Sec₂} {B' = Sec₂}
(Trunc-ext n X (Trunc n X)) (λ r g x → g [ x ])
(Trunc-univ n X (Trunc n X) (Trunc-level n))
(proj₂ (≅⇒≈ τ))
Trunc-dep-iso : Sec₂ (λ x → x) ≅ Sec₂ [_]
Trunc-dep-iso = ψ (λ x → x)
Trunc-dep-elim : ((x : X) → Y [ x ]) → (x : Trunc n X) → Y x
Trunc-dep-elim = invert Trunc-dep-iso
Trunc-dep-elim-β : (d : ((x : X) → Y [ x ]))
→ (x : X) → Trunc-dep-elim d [ x ] ≡ d x
Trunc-dep-elim-β d = funext-inv (_≅_.iso₂ Trunc-dep-iso d)
| 27.854545
| 87
| 0.475849
|
57c43e294ce34470bb3332fd678f5e7a3e3a358b
| 2,335
|
agda
|
Agda
|
Cubical/Data/Sum/Properties.agda
|
Rotsor/cubical
|
d55cd4834ca1f171f58b4a0c46b804ea6d18191f
|
[
"MIT"
] | null | null | null |
Cubical/Data/Sum/Properties.agda
|
Rotsor/cubical
|
d55cd4834ca1f171f58b4a0c46b804ea6d18191f
|
[
"MIT"
] | null | null | null |
Cubical/Data/Sum/Properties.agda
|
Rotsor/cubical
|
d55cd4834ca1f171f58b4a0c46b804ea6d18191f
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --cubical --safe #-}
module Cubical.Data.Sum.Properties where
open import Cubical.Core.Everything
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Data.Empty
open import Cubical.Data.Nat
open import Cubical.Data.Sum.Base
-- Path space of sum type
module SumPath {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} where
Cover : A ⊎ B → A ⊎ B → Type (ℓ-max ℓ ℓ')
Cover (inl a) (inl a') = Lift {j = ℓ-max ℓ ℓ'} (a ≡ a')
Cover (inl _) (inr _) = Lift ⊥
Cover (inr _) (inl _) = Lift ⊥
Cover (inr b) (inr b') = Lift {j = ℓ-max ℓ ℓ'} (b ≡ b')
reflCode : (c : A ⊎ B) → Cover c c
reflCode (inl a) = lift refl
reflCode (inr b) = lift refl
encode : ∀ c c' → c ≡ c' → Cover c c'
encode c _ = J (λ c' _ → Cover c c') (reflCode c)
encodeRefl : ∀ c → encode c c refl ≡ reflCode c
encodeRefl c = JRefl (λ c' _ → Cover c c') (reflCode c)
decode : ∀ c c' → Cover c c' → c ≡ c'
decode (inl a) (inl a') (lift p) = cong inl p
decode (inl a) (inr b') ()
decode (inr b) (inl a') ()
decode (inr b) (inr b') (lift q) = cong inr q
decodeRefl : ∀ c → decode c c (reflCode c) ≡ refl
decodeRefl (inl a) = refl
decodeRefl (inr b) = refl
decodeEncode : ∀ c c' → (p : c ≡ c') → decode c c' (encode c c' p) ≡ p
decodeEncode c _ =
J (λ c' p → decode c c' (encode c c' p) ≡ p)
(cong (decode c c) (encodeRefl c) ∙ decodeRefl c)
isOfHLevelCover : (n : ℕ)
→ isOfHLevel (suc (suc n)) A
→ isOfHLevel (suc (suc n)) B
→ ∀ c c' → isOfHLevel (suc n) (Cover c c')
isOfHLevelCover n p q (inl a) (inl a') = isOfHLevelLift (suc n) (p a a')
isOfHLevelCover n p q (inl a) (inr b') =
isOfHLevelLift (suc n)
(subst (λ m → isOfHLevel m ⊥) (+-comm n 1)
(hLevelLift n isProp⊥))
isOfHLevelCover n p q (inr b) (inl a') =
isOfHLevelLift (suc n)
(subst (λ m → isOfHLevel m ⊥) (+-comm n 1)
(hLevelLift n isProp⊥))
isOfHLevelCover n p q (inr b) (inr b') = isOfHLevelLift (suc n) (q b b')
isOfHLevelSum : ∀ {ℓ ℓ'} (n : ℕ) {A : Type ℓ} {B : Type ℓ'}
→ isOfHLevel (suc (suc n)) A
→ isOfHLevel (suc (suc n)) B
→ isOfHLevel (suc (suc n)) (A ⊎ B)
isOfHLevelSum n lA lB c c' =
retractIsOfHLevel (suc n)
(SumPath.encode c c')
(SumPath.decode c c')
(SumPath.decodeEncode c c')
(SumPath.isOfHLevelCover n lA lB c c')
| 32.887324
| 74
| 0.588437
|
29a95114a01d9bc91e2e77d2da4357d80dfa6a24
| 6,952
|
agda
|
Agda
|
homotopy/Pi2HSusp.agda
|
danbornside/HoTT-Agda
|
1695a7f3dc60177457855ae846bbd86fcd96983e
|
[
"MIT"
] | null | null | null |
homotopy/Pi2HSusp.agda
|
danbornside/HoTT-Agda
|
1695a7f3dc60177457855ae846bbd86fcd96983e
|
[
"MIT"
] | null | null | null |
homotopy/Pi2HSusp.agda
|
danbornside/HoTT-Agda
|
1695a7f3dc60177457855ae846bbd86fcd96983e
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --without-K #-}
open import HoTT
open import homotopy.HSpace renaming (HSpaceStructure to HSS)
open import homotopy.WedgeExtension
module homotopy.Pi2HSusp where
module Pi2HSusp {i} (A : Type i) (gA : has-level ⟨ 1 ⟩ A)
(cA : is-connected ⟨0⟩ A) (A-H : HSS A)
(μcoh : HSS.μe- A-H (HSS.e A-H) == HSS.μ-e A-H (HSS.e A-H))
where
{- TODO this belongs somewhere else, but where? -}
private
Type=-ext : ∀ {i} {A B : Type i} (p q : A == B)
→ ((x : A) → coe p x == coe q x) → p == q
Type=-ext p q α =
! (ua-η p)
∙ ap ua (pair= (λ= α) (prop-has-all-paths-↓ (is-equiv-is-prop (coe q))))
∙ ua-η q
open HSpaceStructure A-H
open ConnectedHSpace A cA A-H
P : Suspension A → Type i
P x = Trunc ⟨ 1 ⟩ (north A == x)
module Codes = SuspensionRec A A A (λ a → ua (μ-equiv a))
Codes : Suspension A → Type i
Codes = Codes.f
Codes-level : (x : Suspension A) → has-level ⟨ 1 ⟩ (Codes x)
Codes-level = Suspension-elim A gA gA
(λ _ → prop-has-all-paths-↓ has-level-is-prop)
encode₀ : {x : Suspension A} → (north A == x) → Codes x
encode₀ α = transport Codes α e
encode : {x : Suspension A} → P x → Codes x
encode {x} = Trunc-rec (Codes-level x) encode₀
decode' : A → P (north A)
decode' a = [ (merid A a ∙ ! (merid A e)) ]
abstract
transport-Codes-mer : (a a' : A)
→ transport Codes (merid A a) a' == μ a a'
transport-Codes-mer a a' =
coe (ap Codes (merid A a)) a'
=⟨ Codes.glue-β a |in-ctx (λ w → coe w a') ⟩
coe (ua (μ-equiv a)) a'
=⟨ coe-β (μ-equiv a) a' ⟩
μ a a' ∎
transport-Codes-mer-e-! : (a : A)
→ transport Codes (! (merid A e)) a == a
transport-Codes-mer-e-! a =
coe (ap Codes (! (merid A e))) a
=⟨ ap-! Codes (merid A e) |in-ctx (λ w → coe w a) ⟩
coe (! (ap Codes (merid A e))) a
=⟨ Codes.glue-β e |in-ctx (λ w → coe (! w) a) ⟩
coe (! (ua (μ-equiv e))) a
=⟨ Type=-ext (ua (μ-equiv e)) idp (λ x → coe-β _ x ∙ μe- x)
|in-ctx (λ w → coe (! w) a) ⟩
coe (! idp) a ∎
abstract
encode-decode' : (a : A) → encode (decode' a) == a
encode-decode' a =
transport Codes (merid A a ∙ ! (merid A e)) e
=⟨ trans-∙ {B = Codes} (merid A a) (! (merid A e)) e ⟩
transport Codes (! (merid A e)) (transport Codes (merid A a) e)
=⟨ transport-Codes-mer a e ∙ μ-e a
|in-ctx (λ w → transport Codes (! (merid A e)) w) ⟩
transport Codes (! (merid A e)) a
=⟨ transport-Codes-mer-e-! a ⟩
a ∎
abstract
homomorphism : (a a' : A)
→ Path {A = Trunc ⟨ 1 ⟩ (north A == south A)}
[ merid A (μ a a' ) ] [ merid A a' ∙ ! (merid A e) ∙ merid A a ]
homomorphism = WedgeExt.ext args
where
args : WedgeExt.args {a₀ = e} {b₀ = e}
args = record {m = ⟨-2⟩; n = ⟨-2⟩; cA = cA; cB = cA;
P = λ a a' → (_ , Trunc-level {n = ⟨ 1 ⟩} _ _);
f = λ a → ap [_] $
merid A (μ a e)
=⟨ ap (merid A) (μ-e a) ⟩
merid A a
=⟨ ap (λ w → w ∙ merid A a) (! (!-inv-r (merid A e)))
∙ ∙-assoc (merid A e) (! (merid A e)) (merid A a) ⟩
merid A e ∙ ! (merid A e) ∙ merid A a ∎;
g = λ a' → ap [_] $
merid A (μ e a')
=⟨ ap (merid A) (μe- a') ⟩
merid A a'
=⟨ ! (∙-unit-r (merid A a'))
∙ ap (λ w → merid A a' ∙ w) (! (!-inv-l (merid A e))) ⟩
merid A a' ∙ ! (merid A e) ∙ merid A e ∎ ;
p = ap (λ {(p₁ , p₂) → ap [_] $
merid A (μ e e) =⟨ p₁ ⟩
merid A e =⟨ p₂ ⟩
merid A e ∙ ! (merid A e) ∙ merid A e ∎})
(pair×= (ap (λ x → ap (merid A) x) (! μcoh)) (coh (merid A e)))}
where coh : {B : Type i} {b b' : B} (p : b == b')
→ ap (λ w → w ∙ p) (! (!-inv-r p)) ∙ ∙-assoc p (! p) p
== ! (∙-unit-r p) ∙ ap (λ w → p ∙ w) (! (!-inv-l p))
coh idp = idp
decode : {x : Suspension A} → Codes x → P x
decode {x} = Suspension-elim A {P = λ x → Codes x → P x}
decode'
(λ a → [ merid A a ])
(λ a → ↓-→-from-transp (λ= $ STS a))
x
where
abstract
STS : (a a' : A) → transport P (merid A a) (decode' a')
== [ merid A (transport Codes (merid A a) a') ]
STS a a' =
transport P (merid A a) [ merid A a' ∙ ! (merid A e) ]
=⟨ transport-Trunc (λ x → north A == x) (merid A a) _ ⟩
[ transport (λ x → north A == x) (merid A a) (merid A a' ∙ ! (merid A e)) ]
=⟨ ap [_] (trans-pathfrom {A = Suspension A} (merid A a) _) ⟩
[ (merid A a' ∙ ! (merid A e)) ∙ merid A a ]
=⟨ ap [_] (∙-assoc (merid A a') (! (merid A e)) (merid A a)) ⟩
[ merid A a' ∙ ! (merid A e) ∙ merid A a ]
=⟨ ! (homomorphism a a') ⟩
[ merid A (μ a a') ]
=⟨ ap ([_] ∘ merid A) (! (transport-Codes-mer a a')) ⟩
[ merid A (transport Codes (merid A a) a') ] ∎
abstract
decode-encode : {x : Suspension A} (tα : P x)
→ decode {x} (encode {x} tα) == tα
decode-encode {x} = Trunc-elim
{P = λ tα → decode {x} (encode {x} tα) == tα}
(λ _ → =-preserves-level ⟨ 1 ⟩ Trunc-level)
(J (λ y p → decode {y} (encode {y} [ p ]) == [ p ])
(ap [_] (!-inv-r (merid A e))))
main-lemma-eqv : Trunc ⟨ 1 ⟩ (north A == north A) ≃ A
main-lemma-eqv = equiv encode decode' encode-decode' decode-encode
⊙main-lemma : ⊙Trunc ⟨ 1 ⟩ (⊙Ω (⊙Susp (A , e))) == (A , e)
⊙main-lemma = ⊙ua main-lemma-eqv idp
abstract
main-lemma-iso : (t1 : 1 ≠ 0) →
Ω^-Group 1 t1 (⊙Trunc ⟨ 1 ⟩ (⊙Ω (⊙Susp (A , e)))) Trunc-level
≃ᴳ Ω^-Group 1 t1 (⊙Trunc ⟨ 1 ⟩ (A , e)) Trunc-level
main-lemma-iso _ = (record {f = f; pres-comp = pres-comp} , ie)
where
h : fst (⊙Trunc ⟨ 1 ⟩ (⊙Ω (⊙Susp (A , e)))
⊙→ ⊙Trunc ⟨ 1 ⟩ (A , e))
h = (λ x → [ encode x ]) , idp
f : Ω (⊙Trunc ⟨ 1 ⟩ (⊙Ω (⊙Susp (A , e)))) → Ω (⊙Trunc ⟨ 1 ⟩ (A , e))
f = fst (ap^ 1 h)
pres-comp : (p q : Ω^ 1 (⊙Trunc ⟨ 1 ⟩ (⊙Ω (⊙Susp (A , e)))))
→ f (conc^ 1 (ℕ-S≠O _) p q) == conc^ 1 (ℕ-S≠O _) (f p) (f q)
pres-comp = ap^-conc^ 1 (ℕ-S≠O _) h
ie : is-equiv f
ie = is-equiv-ap^ 1 h (snd $ ((unTrunc-equiv A gA)⁻¹ ∘e main-lemma-eqv))
abstract
π₂-Suspension : (t1 : 1 ≠ 0) (t2 : 2 ≠ 0)
→ π 2 t2 (⊙Susp (A , e)) == π 1 t1 (A , e)
π₂-Suspension t1 t2 =
π 2 t2 (⊙Susp (A , e))
=⟨ π-inner-iso 1 t1 t2 (⊙Susp (A , e)) ⟩
π 1 t1 (⊙Ω (⊙Susp (A , e)))
=⟨ ! (π-Trunc-shift-iso 1 t1 (⊙Ω (⊙Susp (A , e)))) ⟩
Ω^-Group 1 t1 (⊙Trunc ⟨ 1 ⟩ (⊙Ω (⊙Susp (A , e)))) Trunc-level
=⟨ group-ua (main-lemma-iso t1) ⟩
Ω^-Group 1 t1 (⊙Trunc ⟨ 1 ⟩ (A , e)) Trunc-level
=⟨ π-Trunc-shift-iso 1 t1 (A , e) ⟩
π 1 t1 (A , e) ∎
| 37.578378
| 83
| 0.454689
|
31187526362e6bcffd35e040811f484b3933c31b
| 5,208
|
agda
|
Agda
|
Cubical/Algebra/CommRing/Base.agda
|
barrettj12/cubical
|
7b41b9171f90473efc98487cb2ea7a4d02320cb2
|
[
"MIT"
] | 301
|
2018-10-17T18:00:24.000Z
|
2022-03-24T02:10:47.000Z
|
Cubical/Algebra/CommRing/Base.agda
|
barrettj12/cubical
|
7b41b9171f90473efc98487cb2ea7a4d02320cb2
|
[
"MIT"
] | 584
|
2018-10-15T09:49:02.000Z
|
2022-03-30T12:09:17.000Z
|
Cubical/Algebra/CommRing/Base.agda
|
barrettj12/cubical
|
7b41b9171f90473efc98487cb2ea7a4d02320cb2
|
[
"MIT"
] | 134
|
2018-11-16T06:11:03.000Z
|
2022-03-23T16:22:13.000Z
|
{-# OPTIONS --safe #-}
module Cubical.Algebra.CommRing.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Equiv.HalfAdjoint
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.Transport
open import Cubical.Foundations.SIP
open import Cubical.Data.Sigma
open import Cubical.Displayed.Base
open import Cubical.Displayed.Auto
open import Cubical.Displayed.Record
open import Cubical.Displayed.Universe
open import Cubical.Algebra.Semigroup
open import Cubical.Algebra.Monoid
open import Cubical.Algebra.AbGroup
open import Cubical.Algebra.Ring.Base
open Iso
private
variable
ℓ ℓ' : Level
record IsCommRing {R : Type ℓ}
(0r 1r : R) (_+_ _·_ : R → R → R) (-_ : R → R) : Type ℓ where
constructor iscommring
field
isRing : IsRing 0r 1r _+_ _·_ -_
·-comm : (x y : R) → x · y ≡ y · x
open IsRing isRing public
record CommRingStr (A : Type ℓ) : Type (ℓ-suc ℓ) where
constructor commringstr
field
0r : A
1r : A
_+_ : A → A → A
_·_ : A → A → A
-_ : A → A
isCommRing : IsCommRing 0r 1r _+_ _·_ -_
infix 8 -_
infixl 7 _·_
infixl 6 _+_
open IsCommRing isCommRing public
CommRing : ∀ ℓ → Type (ℓ-suc ℓ)
CommRing ℓ = TypeWithStr ℓ CommRingStr
makeIsCommRing : {R : Type ℓ} {0r 1r : R} {_+_ _·_ : R → R → R} { -_ : R → R}
(is-setR : isSet R)
(+-assoc : (x y z : R) → x + (y + z) ≡ (x + y) + z)
(+-rid : (x : R) → x + 0r ≡ x)
(+-rinv : (x : R) → x + (- x) ≡ 0r)
(+-comm : (x y : R) → x + y ≡ y + x)
(·-assoc : (x y z : R) → x · (y · z) ≡ (x · y) · z)
(·-rid : (x : R) → x · 1r ≡ x)
(·-rdist-+ : (x y z : R) → x · (y + z) ≡ (x · y) + (x · z))
(·-comm : (x y : R) → x · y ≡ y · x)
→ IsCommRing 0r 1r _+_ _·_ -_
makeIsCommRing {_+_ = _+_} is-setR +-assoc +-rid +-rinv +-comm ·-assoc ·-rid ·-rdist-+ ·-comm =
iscommring (makeIsRing is-setR +-assoc +-rid +-rinv +-comm ·-assoc ·-rid
(λ x → ·-comm _ _ ∙ ·-rid x) ·-rdist-+
(λ x y z → ·-comm _ _ ∙∙ ·-rdist-+ z x y ∙∙ λ i → (·-comm z x i) + (·-comm z y i))) ·-comm
makeCommRing : {R : Type ℓ} (0r 1r : R) (_+_ _·_ : R → R → R) (-_ : R → R)
(is-setR : isSet R)
(+-assoc : (x y z : R) → x + (y + z) ≡ (x + y) + z)
(+-rid : (x : R) → x + 0r ≡ x)
(+-rinv : (x : R) → x + (- x) ≡ 0r)
(+-comm : (x y : R) → x + y ≡ y + x)
(·-assoc : (x y z : R) → x · (y · z) ≡ (x · y) · z)
(·-rid : (x : R) → x · 1r ≡ x)
(·-rdist-+ : (x y z : R) → x · (y + z) ≡ (x · y) + (x · z))
(·-comm : (x y : R) → x · y ≡ y · x)
→ CommRing ℓ
makeCommRing 0r 1r _+_ _·_ -_ is-setR +-assoc +-rid +-rinv +-comm ·-assoc ·-rid ·-rdist-+ ·-comm =
_ , commringstr _ _ _ _ _ (makeIsCommRing is-setR +-assoc +-rid +-rinv +-comm ·-assoc ·-rid ·-rdist-+ ·-comm)
CommRingStr→RingStr : {A : Type ℓ} → CommRingStr A → RingStr A
CommRingStr→RingStr (commringstr _ _ _ _ _ H) = ringstr _ _ _ _ _ (IsCommRing.isRing H)
CommRing→Ring : CommRing ℓ → Ring ℓ
CommRing→Ring (_ , commringstr _ _ _ _ _ H) = _ , ringstr _ _ _ _ _ (IsCommRing.isRing H)
CommRingHom : (R : CommRing ℓ) (S : CommRing ℓ') → Type (ℓ-max ℓ ℓ')
CommRingHom R S = RingHom (CommRing→Ring R) (CommRing→Ring S)
IsCommRingEquiv : {A : Type ℓ} {B : Type ℓ'}
(R : CommRingStr A) (e : A ≃ B) (S : CommRingStr B) → Type (ℓ-max ℓ ℓ')
IsCommRingEquiv R e S = IsRingHom (CommRingStr→RingStr R) (e .fst) (CommRingStr→RingStr S)
CommRingEquiv : (R : CommRing ℓ) (S : CommRing ℓ') → Type (ℓ-max ℓ ℓ')
CommRingEquiv R S = Σ[ e ∈ (R .fst ≃ S .fst) ] IsCommRingEquiv (R .snd) e (S .snd)
isPropIsCommRing : {R : Type ℓ} (0r 1r : R) (_+_ _·_ : R → R → R) (-_ : R → R)
→ isProp (IsCommRing 0r 1r _+_ _·_ -_)
isPropIsCommRing 0r 1r _+_ _·_ -_ (iscommring RR RC) (iscommring SR SC) =
λ i → iscommring (isPropIsRing _ _ _ _ _ RR SR i)
(isPropComm RC SC i)
where
isSetR : isSet _
isSetR = RR .IsRing.·IsMonoid .IsMonoid.isSemigroup .IsSemigroup.is-set
isPropComm : isProp ((x y : _) → x · y ≡ y · x)
isPropComm = isPropΠ2 λ _ _ → isSetR _ _
𝒮ᴰ-CommRing : DUARel (𝒮-Univ ℓ) CommRingStr ℓ
𝒮ᴰ-CommRing =
𝒮ᴰ-Record (𝒮-Univ _) IsCommRingEquiv
(fields:
data[ 0r ∣ null ∣ pres0 ]
data[ 1r ∣ null ∣ pres1 ]
data[ _+_ ∣ bin ∣ pres+ ]
data[ _·_ ∣ bin ∣ pres· ]
data[ -_ ∣ autoDUARel _ _ ∣ pres- ]
prop[ isCommRing ∣ (λ _ _ → isPropIsCommRing _ _ _ _ _) ])
where
open CommRingStr
open IsRingHom
-- faster with some sharing
null = autoDUARel (𝒮-Univ _) (λ A → A)
bin = autoDUARel (𝒮-Univ _) (λ A → A → A → A)
CommRingPath : (R S : CommRing ℓ) → CommRingEquiv R S ≃ (R ≡ S)
CommRingPath = ∫ 𝒮ᴰ-CommRing .UARel.ua
isSetCommRing : ((R , str) : CommRing ℓ) → isSet R
isSetCommRing (R , str) = str .CommRingStr.is-set
| 35.917241
| 115
| 0.542435
|
31c11082d3ba568aa423aaa69bfc0bf47fd55122
| 13,759
|
agda
|
Agda
|
Cubical/HITs/SetTruncation/Properties.agda
|
guilhermehas/cubical
|
ce3120d3f8d692847b2744162bcd7a01f0b687eb
|
[
"MIT"
] | 1
|
2021-10-31T17:32:49.000Z
|
2021-10-31T17:32:49.000Z
|
Cubical/HITs/SetTruncation/Properties.agda
|
guilhermehas/cubical
|
ce3120d3f8d692847b2744162bcd7a01f0b687eb
|
[
"MIT"
] | null | null | null |
Cubical/HITs/SetTruncation/Properties.agda
|
guilhermehas/cubical
|
ce3120d3f8d692847b2744162bcd7a01f0b687eb
|
[
"MIT"
] | null | null | null |
{-
This file contains:
- Properties of set truncations
-}
{-# OPTIONS --safe #-}
module Cubical.HITs.SetTruncation.Properties where
open import Cubical.HITs.SetTruncation.Base
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.GroupoidLaws
open import Cubical.Foundations.Function
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.Pointed.Base
open import Cubical.Data.Sigma
open import Cubical.HITs.PropositionalTruncation
renaming (rec to pRec ; elim to pElim) hiding (elim2 ; elim3 ; rec2 ; map)
private
variable
ℓ ℓ' ℓ'' : Level
A B C D : Type ℓ
isSetPathImplicit : {x y : ∥ A ∥₂} → isSet (x ≡ y)
isSetPathImplicit = isOfHLevelPath 2 squash₂ _ _
rec : isSet B → (A → B) → ∥ A ∥₂ → B
rec Bset f ∣ x ∣₂ = f x
rec Bset f (squash₂ x y p q i j) =
Bset _ _ (cong (rec Bset f) p) (cong (rec Bset f) q) i j
rec2 : isSet C → (A → B → C) → ∥ A ∥₂ → ∥ B ∥₂ → C
rec2 Cset f ∣ x ∣₂ ∣ y ∣₂ = f x y
rec2 Cset f ∣ x ∣₂ (squash₂ y z p q i j) =
Cset _ _ (cong (rec2 Cset f ∣ x ∣₂) p) (cong (rec2 Cset f ∣ x ∣₂) q) i j
rec2 Cset f (squash₂ x y p q i j) z =
Cset _ _ (cong (λ a → rec2 Cset f a z) p) (cong (λ a → rec2 Cset f a z) q) i j
-- Old version:
-- rec2 Cset f = rec (isSetΠ λ _ → Cset) λ x → rec Cset (f x)
-- lemma 6.9.1 in HoTT book
elim : {B : ∥ A ∥₂ → Type ℓ}
(Bset : (x : ∥ A ∥₂) → isSet (B x))
(f : (a : A) → B (∣ a ∣₂))
(x : ∥ A ∥₂) → B x
elim Bset f ∣ a ∣₂ = f a
elim Bset f (squash₂ x y p q i j) =
isOfHLevel→isOfHLevelDep 2 Bset _ _
(cong (elim Bset f) p) (cong (elim Bset f) q) (squash₂ x y p q) i j
elim2 : {C : ∥ A ∥₂ → ∥ B ∥₂ → Type ℓ}
(Cset : ((x : ∥ A ∥₂) (y : ∥ B ∥₂) → isSet (C x y)))
(f : (a : A) (b : B) → C ∣ a ∣₂ ∣ b ∣₂)
(x : ∥ A ∥₂) (y : ∥ B ∥₂) → C x y
elim2 Cset f ∣ x ∣₂ ∣ y ∣₂ = f x y
elim2 Cset f ∣ x ∣₂ (squash₂ y z p q i j) =
isOfHLevel→isOfHLevelDep 2 (λ a → Cset ∣ x ∣₂ a) _ _
(cong (elim2 Cset f ∣ x ∣₂) p) (cong (elim2 Cset f ∣ x ∣₂) q) (squash₂ y z p q) i j
elim2 Cset f (squash₂ x y p q i j) z =
isOfHLevel→isOfHLevelDep 2 (λ a → Cset a z) _ _
(cong (λ a → elim2 Cset f a z) p) (cong (λ a → elim2 Cset f a z) q) (squash₂ x y p q) i j
-- Old version:
-- elim2 Cset f = elim (λ _ → isSetΠ (λ _ → Cset _ _))
-- (λ a → elim (λ _ → Cset _ _) (f a))
-- TODO: generalize
elim3 : {B : (x y z : ∥ A ∥₂) → Type ℓ}
(Bset : ((x y z : ∥ A ∥₂) → isSet (B x y z)))
(g : (a b c : A) → B ∣ a ∣₂ ∣ b ∣₂ ∣ c ∣₂)
(x y z : ∥ A ∥₂) → B x y z
elim3 Bset g = elim2 (λ _ _ → isSetΠ (λ _ → Bset _ _ _))
(λ a b → elim (λ _ → Bset _ _ _) (g a b))
-- the recursor for maps into groupoids following the "HIT proof" in:
-- https://arxiv.org/abs/1507.01150
-- i.e. for any type A and groupoid B we can construct a map ∥ A ∥₂ → B
-- from a map A → B satisfying the condition
-- ∀ (a b : A) (p q : a ≡ b) → cong f p ≡ cong f q
-- TODO: prove that this is an equivalence
module rec→Gpd {A : Type ℓ} {B : Type ℓ'} (Bgpd : isGroupoid B) (f : A → B)
(congFConst : ∀ (a b : A) (p q : a ≡ b) → cong f p ≡ cong f q) where
data H : Type ℓ where
η : A → H
ε : ∀ (a b : A) → ∥ a ≡ b ∥₁ → η a ≡ η b -- prop. trunc. of a≡b
δ : ∀ (a b : A) (p : a ≡ b) → ε a b ∣ p ∣₁ ≡ cong η p
gtrunc : isGroupoid H
-- write elimination principle for H
module Helim {P : H → Type ℓ''} (Pgpd : ∀ h → isGroupoid (P h))
(η* : (a : A) → P (η a))
(ε* : ∀ (a b : A) (∣p∣₁ : ∥ a ≡ b ∥₁)
→ PathP (λ i → P (ε a b ∣p∣₁ i)) (η* a) (η* b))
(δ* : ∀ (a b : A) (p : a ≡ b)
→ PathP (λ i → PathP (λ j → P (δ a b p i j)) (η* a) (η* b))
(ε* a b ∣ p ∣₁) (cong η* p)) where
fun : (h : H) → P h
fun (η a) = η* a
fun (ε a b ∣p∣₁ i) = ε* a b ∣p∣₁ i
fun (δ a b p i j) = δ* a b p i j
fun (gtrunc x y p q α β i j k) = isOfHLevel→isOfHLevelDep 3 Pgpd
(fun x) (fun y)
(cong fun p) (cong fun q)
(cong (cong fun) α) (cong (cong fun) β)
(gtrunc x y p q α β) i j k
module Hrec {C : Type ℓ''} (Cgpd : isGroupoid C)
(η* : A → C)
(ε* : ∀ (a b : A) → ∥ a ≡ b ∥₁ → η* a ≡ η* b)
(δ* : ∀ (a b : A) (p : a ≡ b) → ε* a b ∣ p ∣₁ ≡ cong η* p) where
fun : H → C
fun (η a) = η* a
fun (ε a b ∣p∣₁ i) = ε* a b ∣p∣₁ i
fun (δ a b p i j) = δ* a b p i j
fun (gtrunc x y p q α β i j k) = Cgpd (fun x) (fun y) (cong fun p) (cong fun q)
(cong (cong fun) α) (cong (cong fun) β) i j k
module HelimProp {P : H → Type ℓ''} (Pprop : ∀ h → isProp (P h))
(η* : (a : A) → P (η a)) where
fun : ∀ h → P h
fun = Helim.fun (λ _ → isSet→isGroupoid (isProp→isSet (Pprop _))) η*
(λ a b ∣p∣₁ → isOfHLevel→isOfHLevelDep 1 Pprop _ _ (ε a b ∣p∣₁))
λ a b p → isOfHLevel→isOfHLevelDep 1
{B = λ p → PathP (λ i → P (p i)) (η* a) (η* b)}
(λ _ → isOfHLevelPathP 1 (Pprop _) _ _) _ _ (δ a b p)
-- The main trick: eliminating into hsets is easy
-- i.e. H has the universal property of set truncation...
module HelimSet {P : H → Type ℓ''} (Pset : ∀ h → isSet (P h))
(η* : ∀ a → P (η a)) where
fun : (h : H) → P h
fun = Helim.fun (λ _ → isSet→isGroupoid (Pset _)) η* ε*
λ a b p → isOfHLevel→isOfHLevelDep 1
{B = λ p → PathP (λ i → P (p i)) (η* a) (η* b)}
(λ _ → isOfHLevelPathP' 1 (Pset _) _ _) _ _ (δ a b p)
where
ε* : (a b : A) (∣p∣₁ : ∥ a ≡ b ∥₁) → PathP (λ i → P (ε a b ∣p∣₁ i)) (η* a) (η* b)
ε* a b = pElim (λ _ → isOfHLevelPathP' 1 (Pset _) (η* a) (η* b))
λ p → subst (λ x → PathP (λ i → P (x i)) (η* a) (η* b))
(sym (δ a b p)) (cong η* p)
-- Now we need to prove that H is a set.
-- We start with a little lemma:
localHedbergLemma : {X : Type ℓ''} (P : X → Type ℓ'')
→ (∀ x → isProp (P x))
→ ((x : X) → P x → (y : X) → P y → x ≡ y)
--------------------------------------------------
→ (x : X) → P x → (y : X) → isProp (x ≡ y)
localHedbergLemma {X = X} P Pprop P→≡ x px y = isPropRetract
(λ p → subst P p px) (λ py → sym (P→≡ x px x px) ∙ P→≡ x px y py)
isRetract (Pprop y)
where
isRetract : (p : x ≡ y) → (sym (P→≡ x px x px)) ∙ P→≡ x px y (subst P p px) ≡ p
isRetract = J (λ y' p' → (sym (P→≡ x px x px)) ∙ P→≡ x px y' (subst P p' px) ≡ p')
(subst (λ px' → sym (P→≡ x px x px) ∙ P→≡ x px x px' ≡ refl)
(sym (substRefl {B = P} px)) (lCancel (P→≡ x px x px)))
Hset : isSet H
Hset = HelimProp.fun (λ _ → isPropΠ λ _ → isPropIsProp) baseCaseLeft
where
baseCaseLeft : (a₀ : A) (y : H) → isProp (η a₀ ≡ y)
baseCaseLeft a₀ = localHedbergLemma (λ x → Q x .fst) (λ x → Q x .snd) Q→≡ _ ∣ refl ∣₁
where
Q : H → hProp ℓ
Q = HelimSet.fun (λ _ → isSetHProp) λ b → ∥ a₀ ≡ b ∥₁ , isPropPropTrunc
-- Q (η b) = ∥ a ≡ b ∥₁
Q→≡ : (x : H) → Q x .fst → (y : H) → Q y .fst → x ≡ y
Q→≡ = HelimSet.fun (λ _ → isSetΠ3 λ _ _ _ → gtrunc _ _)
λ a p → HelimSet.fun (λ _ → isSetΠ λ _ → gtrunc _ _)
λ b q → sym (ε a₀ a p) ∙ ε a₀ b q
-- our desired function will split through H,
-- i.e. we get a function ∥ A ∥₂ → H → B
fun : ∥ A ∥₂ → B
fun = f₁ ∘ f₂
where
f₁ : H → B
f₁ = Hrec.fun Bgpd f εᶠ λ _ _ _ → refl
where
εᶠ : (a b : A) → ∥ a ≡ b ∥₁ → f a ≡ f b
εᶠ a b = rec→Set (Bgpd _ _) (cong f) λ p q → congFConst a b p q
-- this is the inductive step,
-- we use that maps ∥ A ∥₁ → B for an hset B
-- correspond to 2-Constant maps A → B (which cong f is by assumption)
f₂ : ∥ A ∥₂ → H
f₂ = rec Hset η
map : (A → B) → ∥ A ∥₂ → ∥ B ∥₂
map f = rec squash₂ λ x → ∣ f x ∣₂
map∙ : {ℓ ℓ' : Level} {A : Pointed ℓ} {B : Pointed ℓ'}
(f : A →∙ B) → ∥ A ∥₂∙ →∙ ∥ B ∥₂∙
fst (map∙ f) = map (fst f)
snd (map∙ f) = cong ∣_∣₂ (snd f)
setTruncUniversal : isSet B → (∥ A ∥₂ → B) ≃ (A → B)
setTruncUniversal {B = B} Bset =
isoToEquiv (iso (λ h x → h ∣ x ∣₂) (rec Bset) (λ _ → refl) rinv)
where
rinv : (f : ∥ A ∥₂ → B) → rec Bset (λ x → f ∣ x ∣₂) ≡ f
rinv f i x =
elim (λ x → isProp→isSet (Bset (rec Bset (λ x → f ∣ x ∣₂) x) (f x)))
(λ _ → refl) x i
isSetSetTrunc : isSet ∥ A ∥₂
isSetSetTrunc a b p q = squash₂ a b p q
setTruncIdempotentIso : isSet A → Iso ∥ A ∥₂ A
Iso.fun (setTruncIdempotentIso hA) = rec hA (idfun _)
Iso.inv (setTruncIdempotentIso hA) x = ∣ x ∣₂
Iso.rightInv (setTruncIdempotentIso hA) _ = refl
Iso.leftInv (setTruncIdempotentIso hA) = elim (λ _ → isSet→isGroupoid isSetSetTrunc _ _) (λ _ → refl)
setTruncIdempotent≃ : isSet A → ∥ A ∥₂ ≃ A
setTruncIdempotent≃ {A = A} hA = isoToEquiv (setTruncIdempotentIso hA)
setTruncIdempotent : isSet A → ∥ A ∥₂ ≡ A
setTruncIdempotent hA = ua (setTruncIdempotent≃ hA)
isContr→isContrSetTrunc : isContr A → isContr (∥ A ∥₂)
isContr→isContrSetTrunc contr = ∣ fst contr ∣₂
, elim (λ _ → isOfHLevelPath 2 (isSetSetTrunc) _ _)
λ a → cong ∣_∣₂ (snd contr a)
setTruncIso : Iso A B → Iso ∥ A ∥₂ ∥ B ∥₂
Iso.fun (setTruncIso is) = rec isSetSetTrunc (λ x → ∣ Iso.fun is x ∣₂)
Iso.inv (setTruncIso is) = rec isSetSetTrunc (λ x → ∣ Iso.inv is x ∣₂)
Iso.rightInv (setTruncIso is) =
elim (λ _ → isOfHLevelPath 2 isSetSetTrunc _ _)
λ a → cong ∣_∣₂ (Iso.rightInv is a)
Iso.leftInv (setTruncIso is) =
elim (λ _ → isOfHLevelPath 2 isSetSetTrunc _ _)
λ a → cong ∣_∣₂ (Iso.leftInv is a)
setSigmaIso : {B : A → Type ℓ} → Iso ∥ Σ A B ∥₂ ∥ Σ A (λ x → ∥ B x ∥₂) ∥₂
setSigmaIso {A = A} {B = B} = iso fun funinv sect retr
where
{- writing it out explicitly to avoid yellow highlighting -}
fun : ∥ Σ A B ∥₂ → ∥ Σ A (λ x → ∥ B x ∥₂) ∥₂
fun = rec isSetSetTrunc λ {(a , p) → ∣ a , ∣ p ∣₂ ∣₂}
funinv : ∥ Σ A (λ x → ∥ B x ∥₂) ∥₂ → ∥ Σ A B ∥₂
funinv = rec isSetSetTrunc (λ {(a , p) → rec isSetSetTrunc (λ p → ∣ a , p ∣₂) p})
sect : section fun funinv
sect = elim (λ _ → isOfHLevelPath 2 isSetSetTrunc _ _)
λ { (a , p) → elim {B = λ p → fun (funinv ∣ a , p ∣₂) ≡ ∣ a , p ∣₂}
(λ p → isOfHLevelPath 2 isSetSetTrunc _ _) (λ _ → refl) p }
retr : retract fun funinv
retr = elim (λ _ → isOfHLevelPath 2 isSetSetTrunc _ _)
λ { _ → refl }
sigmaElim : {B : ∥ A ∥₂ → Type ℓ} {C : Σ ∥ A ∥₂ B → Type ℓ'}
(Bset : (x : Σ ∥ A ∥₂ B) → isSet (C x))
(g : (a : A) (b : B ∣ a ∣₂) → C (∣ a ∣₂ , b))
(x : Σ ∥ A ∥₂ B) → C x
sigmaElim {B = B} {C = C} set g (x , y) =
elim {B = λ x → (y : B x) → C (x , y)} (λ _ → isSetΠ λ _ → set _) g x y
sigmaProdElim : {C : ∥ A ∥₂ × ∥ B ∥₂ → Type ℓ} {D : Σ (∥ A ∥₂ × ∥ B ∥₂) C → Type ℓ'}
(Bset : (x : Σ (∥ A ∥₂ × ∥ B ∥₂) C) → isSet (D x))
(g : (a : A) (b : B) (c : C (∣ a ∣₂ , ∣ b ∣₂)) → D ((∣ a ∣₂ , ∣ b ∣₂) , c))
(x : Σ (∥ A ∥₂ × ∥ B ∥₂) C) → D x
sigmaProdElim {B = B} {C = C} {D = D} set g ((x , y) , c) =
elim {B = λ x → (y : ∥ B ∥₂) (c : C (x , y)) → D ((x , y) , c)}
(λ _ → isSetΠ λ _ → isSetΠ λ _ → set _)
(λ x → elim (λ _ → isSetΠ λ _ → set _) (g x))
x y c
prodElim : {C : ∥ A ∥₂ × ∥ B ∥₂ → Type ℓ}
→ ((x : ∥ A ∥₂ × ∥ B ∥₂) → isSet (C x))
→ ((a : A) (b : B) → C (∣ a ∣₂ , ∣ b ∣₂))
→ (x : ∥ A ∥₂ × ∥ B ∥₂) → C x
prodElim setC f (a , b) = elim2 (λ x y → setC (x , y)) f a b
prodRec : {C : Type ℓ} → isSet C → (A → B → C) → ∥ A ∥₂ × ∥ B ∥₂ → C
prodRec setC f (a , b) = rec2 setC f a b
prodElim2 : {E : (∥ A ∥₂ × ∥ B ∥₂) → (∥ C ∥₂ × ∥ D ∥₂) → Type ℓ}
→ ((x : ∥ A ∥₂ × ∥ B ∥₂) (y : ∥ C ∥₂ × ∥ D ∥₂) → isSet (E x y))
→ ((a : A) (b : B) (c : C) (d : D) → E (∣ a ∣₂ , ∣ b ∣₂) (∣ c ∣₂ , ∣ d ∣₂))
→ ((x : ∥ A ∥₂ × ∥ B ∥₂) (y : ∥ C ∥₂ × ∥ D ∥₂) → (E x y))
prodElim2 isset f = prodElim (λ _ → isSetΠ λ _ → isset _ _)
λ a b → prodElim (λ _ → isset _ _)
λ c d → f a b c d
setTruncOfProdIso : Iso ∥ A × B ∥₂ (∥ A ∥₂ × ∥ B ∥₂)
Iso.fun setTruncOfProdIso = rec (isSet× isSetSetTrunc isSetSetTrunc) λ { (a , b) → ∣ a ∣₂ , ∣ b ∣₂ }
Iso.inv setTruncOfProdIso = prodRec isSetSetTrunc λ a b → ∣ a , b ∣₂
Iso.rightInv setTruncOfProdIso =
prodElim (λ _ → isOfHLevelPath 2 (isSet× isSetSetTrunc isSetSetTrunc) _ _) λ _ _ → refl
Iso.leftInv setTruncOfProdIso =
elim (λ _ → isOfHLevelPath 2 isSetSetTrunc _ _) λ {(a , b) → refl}
IsoSetTruncateSndΣ : {A : Type ℓ} {B : A → Type ℓ'} → Iso ∥ Σ A B ∥₂ ∥ Σ A (λ x → ∥ B x ∥₂) ∥₂
Iso.fun IsoSetTruncateSndΣ = map λ a → (fst a) , ∣ snd a ∣₂
Iso.inv IsoSetTruncateSndΣ = rec isSetSetTrunc (uncurry λ x → map λ b → x , b)
Iso.rightInv IsoSetTruncateSndΣ =
elim (λ _ → isOfHLevelPath 2 isSetSetTrunc _ _)
(uncurry λ a → elim (λ _ → isOfHLevelPath 2 isSetSetTrunc _ _)
λ _ → refl)
Iso.leftInv IsoSetTruncateSndΣ =
elim (λ _ → isOfHLevelPath 2 isSetSetTrunc _ _)
λ _ → refl
PathIdTrunc₀Iso : {a b : A} → Iso (∣ a ∣₂ ≡ ∣ b ∣₂) ∥ a ≡ b ∥₁
Iso.fun (PathIdTrunc₀Iso {b = b}) p =
transport (λ i → rec {B = TypeOfHLevel _ 1} (isOfHLevelTypeOfHLevel 1)
(λ a → ∥ a ≡ b ∥₁ , squash₁) (p (~ i)) .fst)
∣ refl ∣₁
Iso.inv PathIdTrunc₀Iso = pRec (squash₂ _ _) (cong ∣_∣₂)
Iso.rightInv PathIdTrunc₀Iso _ = squash₁ _ _
Iso.leftInv PathIdTrunc₀Iso _ = squash₂ _ _ _ _
| 41.820669
| 101
| 0.494367
|
59cb9f34e7e10aac67ff77cffd26bbe070da660f
| 6,333
|
agda
|
Agda
|
proglangs-learning/Agda/plfa-exercises/part1/Decidable.agda
|
helq/old_code
|
a432faf1b340cb379190a2f2b11b997b02d1cd8d
|
[
"CC0-1.0"
] | null | null | null |
proglangs-learning/Agda/plfa-exercises/part1/Decidable.agda
|
helq/old_code
|
a432faf1b340cb379190a2f2b11b997b02d1cd8d
|
[
"CC0-1.0"
] | 4
|
2020-03-10T19:20:21.000Z
|
2021-06-07T15:39:48.000Z
|
proglangs-learning/Agda/plfa-exercises/part1/Decidable.agda
|
helq/old_code
|
a432faf1b340cb379190a2f2b11b997b02d1cd8d
|
[
"CC0-1.0"
] | null | null | null |
module plfa-exercises.part1.Decidable where
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl; sym; cong)
open Eq.≡-Reasoning
open import Data.Nat using (ℕ; zero; suc; pred)
open import Data.Product using (_×_) renaming (_,_ to ⟨_,_⟩)
open import Data.Sum using (_⊎_; inj₁; inj₂)
open import Relation.Nullary using (¬_)
open import Relation.Nullary.Negation using ()
renaming (contradiction to ¬¬-intro)
open import Data.Unit using (⊤; tt)
open import Data.Empty using (⊥; ⊥-elim)
open import plfa.part1.Relations using (_<_; z<s; s<s)
open import plfa.part1.Isomorphism using (_⇔_)
open import Function.Base using (_∘_)
infix 4 _≤_
data _≤_ : ℕ → ℕ → Set where
z≤n : ∀ {n : ℕ}
--------
→ zero ≤ n
s≤s : ∀ {m n : ℕ}
→ m ≤ n
-------------
→ suc m ≤ suc n
_ : 2 ≤ 4
_ = s≤s (s≤s z≤n)
¬4≤2 : ¬ (4 ≤ 2)
--¬4≤2 (s≤s (s≤s ())) = ? -- This causes Agda to die! TODO: Report
¬4≤2 (s≤s (s≤s ()))
data Bool : Set where
true : Bool
false : Bool
infix 4 _≤ᵇ_
_≤ᵇ_ : ℕ → ℕ → Bool
zero ≤ᵇ n = true
suc m ≤ᵇ zero = false
suc m ≤ᵇ suc n = m ≤ᵇ n
_ : (2 ≤ᵇ 4) ≡ true
_ = refl
_ : (5 ≤ᵇ 4) ≡ false
_ = refl
T : Bool → Set
T true = ⊤
T false = ⊥
≤→≤ᵇ : ∀ {m n} → (m ≤ n) → T (m ≤ᵇ n)
≤→≤ᵇ z≤n = tt
≤→≤ᵇ (s≤s m≤n) = ≤→≤ᵇ m≤n
≤ᵇ→≤ : ∀ {m n} → T (m ≤ᵇ n) → (m ≤ n)
≤ᵇ→≤ {zero} {_} tt = z≤n
-- What is going on in here? Left `t` has type `T (suc m ≤ᵇ suc n)` and the right `t` has type `T (m ≤ᵇ n)`
-- λ m n → T (suc m ≤ᵇ suc n) => reduces to: λ m n → T (m ≤ᵇ n)
-- Ohh! Ok. It is because the third rule of `≤ᵇ` reduces `suc m ≤ᵇ suc n` to `m ≤ᵇ n`
≤ᵇ→≤ {suc m} {suc n} t = s≤s (≤ᵇ→≤ {m} {n} t)
-- λ m → T (suc m ≤ᵇ zero) => reduces to: λ m → ⊥
-- which means that there are no rules for `fromᵇ {suc m} {zero}`
≤ᵇ→≤ {suc m} {zero} ()
proof≡computation : ∀ {m n} → (m ≤ n) ⇔ T (m ≤ᵇ n)
proof≡computation {m} {n} =
record
{ from = ≤ᵇ→≤
; to = ≤→≤ᵇ
}
T→≡ : ∀ (b : Bool) → T b → b ≡ true
T→≡ true tt = refl
T→≡ false ()
--postulate
-- lie : false ≡ true
≡→T : ∀ {b : Bool} → b ≡ true → T b
--≡→T {false} refl = ? -- This is impossible because of refl's definition. Unification forces `b` to be `true`
--≡→T {false} rewrite lie = λ refl → ? -- Even postulating a lie, it is impossible to create a bottom value
≡→T refl = tt
_ : 2 ≤ 4
_ = ≤ᵇ→≤ tt
¬4≤2₂ : ¬ (4 ≤ 2)
--¬4≤2₂ 4≤2 = ≤→≤ᵇ 4≤2
--¬4≤2₂ = ≤→≤ᵇ {4} {2}
-- The type of `T (4 ≤ᵇ 2)` which reduces to `T false` and then `⊥`
¬4≤2₂ = ≤→≤ᵇ
-- Notice how defining ≤ᵇ lifts from us the demand of computing the correct
-- `evidence` (implementation) for the `proof` (function type)
data Dec (A : Set) : Set where
yes : A → Dec A
no : ¬ A → Dec A
¬s≤z : {m : ℕ} → ¬ (suc m) ≤ zero
--¬s≤z = ≤→≤ᵇ
¬s≤z ()
¬s≤s : {m n : ℕ} → ¬ m ≤ n → ¬ suc m ≤ suc n
¬s≤s ¬m≤n = λ { (s≤s m≤n) → ¬m≤n m≤n }
_≤?_ : (m n : ℕ) → Dec (m ≤ n)
zero ≤? n = yes z≤n
(suc m) ≤? zero = no ¬s≤z
(suc m) ≤? (suc n) with m ≤? n
... | yes m≤n = yes (s≤s m≤n)
... | no ¬m≤n = no (¬s≤s ¬m≤n)
-- `2 ≤? 4` reduces to `yes (s≤s (s≤s z≤n))`
_ : Dec (2 ≤ 4)
_ = 2 ≤? 4
_ = yes (s≤s (s≤s (z≤n {2})))
⌊_⌋ : ∀ {A : Set} → Dec A → Bool
⌊ yes x ⌋ = true
⌊ no ¬x ⌋ = false
_ : Bool
_ = true
_ = ⌊ 3 ≤? 4 ⌋
_ : ⌊ 3 ≤? 4 ⌋ ≡ true
_ = refl
_ : ⌊ 3 ≤? 2 ⌋ ≡ false
_ = refl
toWitness : ∀ {A : Set} {D : Dec A} → T ⌊ D ⌋ → A
toWitness {_} {yes v} tt = v
--toWitness {_} {no _} = ? -- `T ⌊ no x ⌋ → A` reduces to `⊥ → A`
toWitness {_} {no _} () -- Empty because there is no value for `⊥`
fromWitness : ∀ {A : Set} {D : Dec A} → A → T ⌊ D ⌋
fromWitness {_} {yes _} _ = tt
fromWitness {_} {no ¬a} a = ¬a a -- with type ⊥
_ : 2 ≤ 4
--_ = toWitness {D = 2 ≤? 4} tt
_ = toWitness {_} {2 ≤? 4} tt
¬4≤2₃ : ¬ (4 ≤ 2)
--¬4≤2₃ = fromWitness {D = 4 ≤? 2}
¬4≤2₃ = fromWitness {_} {4 ≤? 2}
¬z<z : ¬ (zero < zero)
¬z<z ()
¬s<z : ∀ {m : ℕ} → ¬ (suc m < zero)
¬s<z ()
_<?_ : ∀ (m n : ℕ) → Dec (m < n)
zero <? zero = no ¬z<z
zero <? suc n = yes z<s
suc m <? zero = no ¬s<z
suc m <? suc n with m <? n
... | yes m<n = yes (s<s m<n)
... | no ¬m<n = no λ{(s<s m<n) → ¬m<n m<n}
_ : ⌊ 2 <? 4 ⌋ ≡ true
_ = refl
¬z≡sn : ∀ {n : ℕ} → ¬ zero ≡ suc n
¬z≡sn ()
_≡ℕ?_ : ∀ (m n : ℕ) → Dec (m ≡ n)
zero ≡ℕ? zero = yes refl
zero ≡ℕ? (suc n) = no ¬z≡sn
--(suc m) ≡ℕ? zero = no (λ{sn≡z → ¬z≡sn (sym sn≡z)})
--(suc m) ≡ℕ? zero = no (¬z≡sn ∘ sym)
(suc m) ≡ℕ? zero = no ((λ()) ∘ sym)
--The following doesn't work though
--(suc m) ≡ℕ? zero with zero ≡ℕ? (suc m)
--... | yes z≡sm = yes (sym z≡sm)
--... | no ¬z≡sm = no (¬z≡sm ∘ sym)
(suc m) ≡ℕ? (suc n) with m ≡ℕ? n
... | yes m≡n = yes (cong suc m≡n)
... | no ¬m≡n = no (¬m≡n ∘ (cong pred))
infixr 6 _×-dec_
_×-dec_ : ∀ {A B : Set} → Dec A → Dec B → Dec (A × B)
yes x ×-dec yes y = yes ⟨ x , y ⟩
no ¬x ×-dec _ = no λ{ ⟨ x , y ⟩ → ¬x x }
_ ×-dec no ¬y = no λ{ ⟨ x , y ⟩ → ¬y y }
infixr 6 _⊎-dec_
_⊎-dec_ : ∀ {A B : Set} → Dec A → Dec B → Dec (A ⊎ B)
yes x ⊎-dec _ = yes (inj₁ x)
_ ⊎-dec yes y = yes (inj₂ y)
no ¬x ⊎-dec no ¬y = no λ{(inj₁ x) → ¬x x; (inj₂ y) → ¬y y}
¬? : ∀ {A : Set} → Dec A → Dec (¬ A)
¬? (yes x) = no (¬¬-intro x)
¬? (no ¬x) = yes ¬x
_→-dec_ : ∀ {A B : Set} → Dec A → Dec B → Dec (A → B)
_ →-dec yes y = yes (λ _ → y)
--no ¬x →-dec _ = yes ((λ()) ∘ ¬x)
no ¬x →-dec _ = yes (⊥-elim ∘ ¬x)
yes x →-dec no ¬y = no (λ{x→y → ¬y (x→y x)})
infixr 6 _∧_
_∧_ : Bool → Bool → Bool
true ∧ true = true
false ∧ _ = false
_ ∧ false = false
∧-× : ∀ {A B : Set} (x : Dec A) (y : Dec B) → ⌊ x ⌋ ∧ ⌊ y ⌋ ≡ ⌊ x ×-dec y ⌋
∧-× (yes x) (yes y) = refl
∧-× (no ¬x) _ = refl
∧-× (yes x) (no ¬y) = refl
_iff_ : Bool → Bool → Bool
true iff true = true
false iff false = true
_ iff _ = false
_⇔-dec_ : ∀ {A B : Set} → Dec A → Dec B → Dec (A ⇔ B)
yes x ⇔-dec yes y = yes (record { from = λ{_ → x} ; to = λ{_ → y} })
no ¬x ⇔-dec no ¬y = yes (record { from = (λ()) ∘ ¬y ; to = (λ()) ∘ ¬x })
yes x ⇔-dec no ¬y = no (λ x⇔y → ¬y (_⇔_.to x⇔y x))
no ¬x ⇔-dec yes y = no (λ x⇔y → ¬x (_⇔_.from x⇔y y))
iff-⇔ : ∀ {A B : Set} (x : Dec A) (y : Dec B) → ⌊ x ⌋ iff ⌊ y ⌋ ≡ ⌊ x ⇔-dec y ⌋
iff-⇔ (yes x) (yes y) = refl
iff-⇔ (no ¬x) (no ¬y) = refl
iff-⇔ (no ¬x) (yes y) = refl
iff-⇔ (yes x) (no ¬y) = refl
| 25.743902
| 110
| 0.471972
|
31c4f536a7093cc01cd0e73f12f4f1cef3e46e2d
| 22,858
|
agda
|
Agda
|
agda-stdlib-0.9/src/Data/List/Any/Properties.agda
|
qwe2/try-agda
|
9d4c43b1609d3f085636376fdca73093481ab882
|
[
"Apache-2.0"
] | 1
|
2016-10-20T15:52:05.000Z
|
2016-10-20T15:52:05.000Z
|
agda-stdlib-0.9/src/Data/List/Any/Properties.agda
|
qwe2/try-agda
|
9d4c43b1609d3f085636376fdca73093481ab882
|
[
"Apache-2.0"
] | null | null | null |
agda-stdlib-0.9/src/Data/List/Any/Properties.agda
|
qwe2/try-agda
|
9d4c43b1609d3f085636376fdca73093481ab882
|
[
"Apache-2.0"
] | null | null | null |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Properties related to Any
------------------------------------------------------------------------
-- The other modules under Data.List.Any also contain properties
-- related to Any.
module Data.List.Any.Properties where
open import Algebra
import Algebra.FunctionProperties as FP
open import Category.Monad
open import Data.Bool
open import Data.Bool.Properties
open import Data.Empty
open import Data.List as List
open import Data.List.Any as Any using (Any; here; there)
open import Data.Product as Prod hiding (swap)
open import Data.Sum as Sum using (_⊎_; inj₁; inj₂; [_,_]′)
open import Function
open import Function.Equality using (_⟨$⟩_)
open import Function.Equivalence as Eq using (_⇔_; module Equivalence)
open import Function.Inverse as Inv using (_↔_; module Inverse)
open import Function.Related as Related using (Related)
open import Function.Related.TypeIsomorphisms
open import Level
open import Relation.Binary
import Relation.Binary.HeterogeneousEquality as H
open import Relation.Binary.Product.Pointwise
open import Relation.Binary.PropositionalEquality as P
using (_≡_; refl; inspect) renaming ([_] to P[_])
open import Relation.Unary using (_⟨×⟩_; _⟨→⟩_) renaming (_⊆_ to _⋐_)
import Relation.Binary.Sigma.Pointwise as Σ
open import Relation.Binary.Sum
open Any.Membership-≡
open Related.EquationalReasoning
private
module ×⊎ {k ℓ} = CommutativeSemiring (×⊎-CommutativeSemiring k ℓ)
open module ListMonad {ℓ} = RawMonad (List.monad {ℓ = ℓ})
------------------------------------------------------------------------
-- Some lemmas related to map, find and lose
-- Any.map is functorial.
map-id : ∀ {a p} {A : Set a} {P : A → Set p} (f : P ⋐ P) {xs} →
(∀ {x} (p : P x) → f p ≡ p) →
(p : Any P xs) → Any.map f p ≡ p
map-id f hyp (here p) = P.cong here (hyp p)
map-id f hyp (there p) = P.cong there $ map-id f hyp p
map-∘ : ∀ {a p q r}
{A : Set a} {P : A → Set p} {Q : A → Set q} {R : A → Set r}
(f : Q ⋐ R) (g : P ⋐ Q)
{xs} (p : Any P xs) →
Any.map (f ∘ g) p ≡ Any.map f (Any.map g p)
map-∘ f g (here p) = refl
map-∘ f g (there p) = P.cong there $ map-∘ f g p
-- Lemmas relating map and find.
map∘find : ∀ {a p} {A : Set a} {P : A → Set p} {xs}
(p : Any P xs) → let p′ = find p in
{f : _≡_ (proj₁ p′) ⋐ P} →
f refl ≡ proj₂ (proj₂ p′) →
Any.map f (proj₁ (proj₂ p′)) ≡ p
map∘find (here p) hyp = P.cong here hyp
map∘find (there p) hyp = P.cong there (map∘find p hyp)
find∘map : ∀ {a p q} {A : Set a} {P : A → Set p} {Q : A → Set q}
{xs : List A} (p : Any P xs) (f : P ⋐ Q) →
find (Any.map f p) ≡ Prod.map id (Prod.map id f) (find p)
find∘map (here p) f = refl
find∘map (there p) f rewrite find∘map p f = refl
-- find satisfies a simple equality when the predicate is a
-- propositional equality.
find-∈ : ∀ {a} {A : Set a} {x : A} {xs : List A} (x∈xs : x ∈ xs) →
find x∈xs ≡ (x , x∈xs , refl)
find-∈ (here refl) = refl
find-∈ (there x∈xs) rewrite find-∈ x∈xs = refl
private
-- find and lose are inverses (more or less).
lose∘find : ∀ {a p} {A : Set a} {P : A → Set p} {xs : List A}
(p : Any P xs) →
uncurry′ lose (proj₂ (find p)) ≡ p
lose∘find p = map∘find p P.refl
find∘lose : ∀ {a p} {A : Set a} (P : A → Set p) {x xs}
(x∈xs : x ∈ xs) (pp : P x) →
find {P = P} (lose x∈xs pp) ≡ (x , x∈xs , pp)
find∘lose P x∈xs p
rewrite find∘map x∈xs (flip (P.subst P) p)
| find-∈ x∈xs
= refl
-- Any can be expressed using _∈_.
Any↔ : ∀ {a p} {A : Set a} {P : A → Set p} {xs} →
(∃ λ x → x ∈ xs × P x) ↔ Any P xs
Any↔ {P = P} {xs} = record
{ to = P.→-to-⟶ to
; from = P.→-to-⟶ (find {P = P})
; inverse-of = record
{ left-inverse-of = λ p →
find∘lose P (proj₁ (proj₂ p)) (proj₂ (proj₂ p))
; right-inverse-of = lose∘find
}
}
where
to : (∃ λ x → x ∈ xs × P x) → Any P xs
to = uncurry′ lose ∘ proj₂
------------------------------------------------------------------------
-- Any is a congruence
Any-cong : ∀ {k ℓ} {A : Set ℓ} {P₁ P₂ : A → Set ℓ} {xs₁ xs₂ : List A} →
(∀ x → Related k (P₁ x) (P₂ x)) → xs₁ ∼[ k ] xs₂ →
Related k (Any P₁ xs₁) (Any P₂ xs₂)
Any-cong {P₁ = P₁} {P₂} {xs₁} {xs₂} P₁↔P₂ xs₁≈xs₂ =
Any P₁ xs₁ ↔⟨ sym $ Any↔ {P = P₁} ⟩
(∃ λ x → x ∈ xs₁ × P₁ x) ∼⟨ Σ.cong Inv.id (xs₁≈xs₂ ×-cong P₁↔P₂ _) ⟩
(∃ λ x → x ∈ xs₂ × P₂ x) ↔⟨ Any↔ {P = P₂} ⟩
Any P₂ xs₂ ∎
------------------------------------------------------------------------
-- Swapping
-- Nested occurrences of Any can sometimes be swapped. See also ×↔.
swap : ∀ {ℓ} {A B : Set ℓ} {P : A → B → Set ℓ} {xs ys} →
Any (λ x → Any (P x) ys) xs ↔ Any (λ y → Any (flip P y) xs) ys
swap {ℓ} {P = P} {xs} {ys} =
Any (λ x → Any (P x) ys) xs ↔⟨ sym $ Any↔ {a = ℓ} {p = ℓ} ⟩
(∃ λ x → x ∈ xs × Any (P x) ys) ↔⟨ sym $ Σ.cong Inv.id (λ {x} → (x ∈ xs ∎) ⟨ ×⊎.*-cong {ℓ = ℓ} ⟩ Any↔ {a = ℓ} {p = ℓ}) ⟩
(∃ λ x → x ∈ xs × ∃ λ y → y ∈ ys × P x y) ↔⟨ Σ.cong {a₁ = ℓ} Inv.id (∃∃↔∃∃ {a = ℓ} {b = ℓ} {p = ℓ} _) ⟩
(∃₂ λ x y → x ∈ xs × y ∈ ys × P x y) ↔⟨ ∃∃↔∃∃ {a = ℓ} {b = ℓ} {p = ℓ} _ ⟩
(∃₂ λ y x → x ∈ xs × y ∈ ys × P x y) ↔⟨ Σ.cong Inv.id (λ {y} → Σ.cong Inv.id (λ {x} →
(x ∈ xs × y ∈ ys × P x y) ↔⟨ sym $ ×⊎.*-assoc _ _ _ ⟩
((x ∈ xs × y ∈ ys) × P x y) ↔⟨ ×⊎.*-comm (x ∈ xs) (y ∈ ys) ⟨ ×⊎.*-cong ⟩ (P x y ∎) ⟩
((y ∈ ys × x ∈ xs) × P x y) ↔⟨ ×⊎.*-assoc _ _ _ ⟩
(y ∈ ys × x ∈ xs × P x y) ∎)) ⟩
(∃₂ λ y x → y ∈ ys × x ∈ xs × P x y) ↔⟨ Σ.cong {a₁ = ℓ} Inv.id (∃∃↔∃∃ {a = ℓ} {b = ℓ} {p = ℓ} _) ⟩
(∃ λ y → y ∈ ys × ∃ λ x → x ∈ xs × P x y) ↔⟨ Σ.cong Inv.id (λ {y} → (y ∈ ys ∎) ⟨ ×⊎.*-cong {ℓ = ℓ} ⟩ Any↔ {a = ℓ} {p = ℓ}) ⟩
(∃ λ y → y ∈ ys × Any (flip P y) xs) ↔⟨ Any↔ {a = ℓ} {p = ℓ} ⟩
Any (λ y → Any (flip P y) xs) ys ∎
------------------------------------------------------------------------
-- Lemmas relating Any to ⊥
⊥↔Any⊥ : ∀ {a} {A : Set a} {xs : List A} → ⊥ ↔ Any (const ⊥) xs
⊥↔Any⊥ {A = A} = record
{ to = P.→-to-⟶ (λ ())
; from = P.→-to-⟶ (λ p → from p)
; inverse-of = record
{ left-inverse-of = λ ()
; right-inverse-of = λ p → from p
}
}
where
from : {xs : List A} → Any (const ⊥) xs → ∀ {b} {B : Set b} → B
from (here ())
from (there p) = from p
⊥↔Any[] : ∀ {a} {A : Set a} {P : A → Set} → ⊥ ↔ Any P []
⊥↔Any[] = record
{ to = P.→-to-⟶ (λ ())
; from = P.→-to-⟶ (λ ())
; inverse-of = record
{ left-inverse-of = λ ()
; right-inverse-of = λ ()
}
}
------------------------------------------------------------------------
-- Lemmas relating Any to sums and products
-- Sums commute with Any (for a fixed list).
⊎↔ : ∀ {a p q} {A : Set a} {P : A → Set p} {Q : A → Set q} {xs} →
(Any P xs ⊎ Any Q xs) ↔ Any (λ x → P x ⊎ Q x) xs
⊎↔ {P = P} {Q} = record
{ to = P.→-to-⟶ to
; from = P.→-to-⟶ from
; inverse-of = record
{ left-inverse-of = from∘to
; right-inverse-of = to∘from
}
}
where
to : ∀ {xs} → Any P xs ⊎ Any Q xs → Any (λ x → P x ⊎ Q x) xs
to = [ Any.map inj₁ , Any.map inj₂ ]′
from : ∀ {xs} → Any (λ x → P x ⊎ Q x) xs → Any P xs ⊎ Any Q xs
from (here (inj₁ p)) = inj₁ (here p)
from (here (inj₂ q)) = inj₂ (here q)
from (there p) = Sum.map there there (from p)
from∘to : ∀ {xs} (p : Any P xs ⊎ Any Q xs) → from (to p) ≡ p
from∘to (inj₁ (here p)) = P.refl
from∘to (inj₁ (there p)) rewrite from∘to (inj₁ p) = P.refl
from∘to (inj₂ (here q)) = P.refl
from∘to (inj₂ (there q)) rewrite from∘to (inj₂ q) = P.refl
to∘from : ∀ {xs} (p : Any (λ x → P x ⊎ Q x) xs) →
to (from p) ≡ p
to∘from (here (inj₁ p)) = P.refl
to∘from (here (inj₂ q)) = P.refl
to∘from (there p) with from p | to∘from p
to∘from (there .(Any.map inj₁ p)) | inj₁ p | P.refl = P.refl
to∘from (there .(Any.map inj₂ q)) | inj₂ q | P.refl = P.refl
-- Products "commute" with Any.
×↔ : {A B : Set} {P : A → Set} {Q : B → Set}
{xs : List A} {ys : List B} →
(Any P xs × Any Q ys) ↔ Any (λ x → Any (λ y → P x × Q y) ys) xs
×↔ {P = P} {Q} {xs} {ys} = record
{ to = P.→-to-⟶ to
; from = P.→-to-⟶ from
; inverse-of = record
{ left-inverse-of = from∘to
; right-inverse-of = to∘from
}
}
where
to : Any P xs × Any Q ys → Any (λ x → Any (λ y → P x × Q y) ys) xs
to (p , q) = Any.map (λ p → Any.map (λ q → (p , q)) q) p
from : Any (λ x → Any (λ y → P x × Q y) ys) xs → Any P xs × Any Q ys
from pq with Prod.map id (Prod.map id find) (find pq)
... | (x , x∈xs , y , y∈ys , p , q) = (lose x∈xs p , lose y∈ys q)
from∘to : ∀ pq → from (to pq) ≡ pq
from∘to (p , q)
rewrite find∘map {Q = λ x → Any (λ y → P x × Q y) ys}
p (λ p → Any.map (λ q → (p , q)) q)
| find∘map {Q = λ y → P (proj₁ (find p)) × Q y}
q (λ q → proj₂ (proj₂ (find p)) , q)
| lose∘find p
| lose∘find q
= refl
to∘from : ∀ pq → to (from pq) ≡ pq
to∘from pq
with find pq
| (λ (f : _≡_ (proj₁ (find pq)) ⋐ _) → map∘find pq {f})
... | (x , x∈xs , pq′) | lem₁
with find pq′
| (λ (f : _≡_ (proj₁ (find pq′)) ⋐ _) → map∘find pq′ {f})
... | (y , y∈ys , p , q) | lem₂
rewrite P.sym $ map-∘ {R = λ x → Any (λ y → P x × Q y) ys}
(λ p → Any.map (λ q → p , q) (lose y∈ys q))
(λ y → P.subst P y p)
x∈xs
= lem₁ _ helper
where
helper : Any.map (λ q → p , q) (lose y∈ys q) ≡ pq′
helper rewrite P.sym $ map-∘ {R = λ y → P x × Q y}
(λ q → p , q)
(λ y → P.subst Q y q)
y∈ys
= lem₂ _ refl
------------------------------------------------------------------------
-- Invertible introduction (⁺) and elimination (⁻) rules for various
-- list functions
-- map.
private
map⁺ : ∀ {a b p} {A : Set a} {B : Set b} {P : B → Set p}
{f : A → B} {xs} →
Any (P ∘ f) xs → Any P (List.map f xs)
map⁺ (here p) = here p
map⁺ (there p) = there $ map⁺ p
map⁻ : ∀ {a b p} {A : Set a} {B : Set b} {P : B → Set p}
{f : A → B} {xs} →
Any P (List.map f xs) → Any (P ∘ f) xs
map⁻ {xs = []} ()
map⁻ {xs = x ∷ xs} (here p) = here p
map⁻ {xs = x ∷ xs} (there p) = there $ map⁻ p
map⁺∘map⁻ : ∀ {a b p} {A : Set a} {B : Set b} {P : B → Set p}
{f : A → B} {xs} →
(p : Any P (List.map f xs)) →
map⁺ (map⁻ p) ≡ p
map⁺∘map⁻ {xs = []} ()
map⁺∘map⁻ {xs = x ∷ xs} (here p) = refl
map⁺∘map⁻ {xs = x ∷ xs} (there p) = P.cong there (map⁺∘map⁻ p)
map⁻∘map⁺ : ∀ {a b p} {A : Set a} {B : Set b} (P : B → Set p)
{f : A → B} {xs} →
(p : Any (P ∘ f) xs) →
map⁻ {P = P} (map⁺ p) ≡ p
map⁻∘map⁺ P (here p) = refl
map⁻∘map⁺ P (there p) = P.cong there (map⁻∘map⁺ P p)
map↔ : ∀ {a b p} {A : Set a} {B : Set b} {P : B → Set p}
{f : A → B} {xs} →
Any (P ∘ f) xs ↔ Any P (List.map f xs)
map↔ {P = P} {f = f} = record
{ to = P.→-to-⟶ $ map⁺ {P = P} {f = f}
; from = P.→-to-⟶ $ map⁻ {P = P} {f = f}
; inverse-of = record
{ left-inverse-of = map⁻∘map⁺ P
; right-inverse-of = map⁺∘map⁻
}
}
-- _++_.
private
++⁺ˡ : ∀ {a p} {A : Set a} {P : A → Set p} {xs ys} →
Any P xs → Any P (xs ++ ys)
++⁺ˡ (here p) = here p
++⁺ˡ (there p) = there (++⁺ˡ p)
++⁺ʳ : ∀ {a p} {A : Set a} {P : A → Set p} xs {ys} →
Any P ys → Any P (xs ++ ys)
++⁺ʳ [] p = p
++⁺ʳ (x ∷ xs) p = there (++⁺ʳ xs p)
++⁻ : ∀ {a p} {A : Set a} {P : A → Set p} xs {ys} →
Any P (xs ++ ys) → Any P xs ⊎ Any P ys
++⁻ [] p = inj₂ p
++⁻ (x ∷ xs) (here p) = inj₁ (here p)
++⁻ (x ∷ xs) (there p) = Sum.map there id (++⁻ xs p)
++⁺∘++⁻ : ∀ {a p} {A : Set a} {P : A → Set p} xs {ys}
(p : Any P (xs ++ ys)) →
[ ++⁺ˡ , ++⁺ʳ xs ]′ (++⁻ xs p) ≡ p
++⁺∘++⁻ [] p = refl
++⁺∘++⁻ (x ∷ xs) (here p) = refl
++⁺∘++⁻ (x ∷ xs) (there p) with ++⁻ xs p | ++⁺∘++⁻ xs p
++⁺∘++⁻ (x ∷ xs) (there p) | inj₁ p′ | ih = P.cong there ih
++⁺∘++⁻ (x ∷ xs) (there p) | inj₂ p′ | ih = P.cong there ih
++⁻∘++⁺ : ∀ {a p} {A : Set a} {P : A → Set p} xs {ys}
(p : Any P xs ⊎ Any P ys) →
++⁻ xs ([ ++⁺ˡ , ++⁺ʳ xs ]′ p) ≡ p
++⁻∘++⁺ [] (inj₁ ())
++⁻∘++⁺ [] (inj₂ p) = refl
++⁻∘++⁺ (x ∷ xs) (inj₁ (here p)) = refl
++⁻∘++⁺ (x ∷ xs) {ys} (inj₁ (there p)) rewrite ++⁻∘++⁺ xs {ys} (inj₁ p) = refl
++⁻∘++⁺ (x ∷ xs) (inj₂ p) rewrite ++⁻∘++⁺ xs (inj₂ p) = refl
++ˡ = ++⁺ˡ
++ʳ = ++⁺ʳ
++↔ : ∀ {a p} {A : Set a} {P : A → Set p} {xs ys} →
(Any P xs ⊎ Any P ys) ↔ Any P (xs ++ ys)
++↔ {P = P} {xs = xs} = record
{ to = P.→-to-⟶ [ ++⁺ˡ {P = P}, ++⁺ʳ {P = P} xs ]′
; from = P.→-to-⟶ $ ++⁻ {P = P} xs
; inverse-of = record
{ left-inverse-of = ++⁻∘++⁺ xs
; right-inverse-of = ++⁺∘++⁻ xs
}
}
-- return.
private
return⁺ : ∀ {a p} {A : Set a} {P : A → Set p} {x} →
P x → Any P (return x)
return⁺ = here
return⁻ : ∀ {a p} {A : Set a} {P : A → Set p} {x} →
Any P (return x) → P x
return⁻ (here p) = p
return⁻ (there ())
return⁺∘return⁻ : ∀ {a p} {A : Set a} {P : A → Set p} {x}
(p : Any P (return x)) →
return⁺ (return⁻ p) ≡ p
return⁺∘return⁻ (here p) = refl
return⁺∘return⁻ (there ())
return⁻∘return⁺ : ∀ {a p} {A : Set a} (P : A → Set p) {x} (p : P x) →
return⁻ {P = P} (return⁺ p) ≡ p
return⁻∘return⁺ P p = refl
return↔ : ∀ {a p} {A : Set a} {P : A → Set p} {x} →
P x ↔ Any P (return x)
return↔ {P = P} = record
{ to = P.→-to-⟶ $ return⁺ {P = P}
; from = P.→-to-⟶ $ return⁻ {P = P}
; inverse-of = record
{ left-inverse-of = return⁻∘return⁺ P
; right-inverse-of = return⁺∘return⁻
}
}
-- _∷_.
∷↔ : ∀ {a p} {A : Set a} (P : A → Set p) {x xs} →
(P x ⊎ Any P xs) ↔ Any P (x ∷ xs)
∷↔ P {x} {xs} =
(P x ⊎ Any P xs) ↔⟨ return↔ {P = P} ⊎-cong (Any P xs ∎) ⟩
(Any P [ x ] ⊎ Any P xs) ↔⟨ ++↔ {P = P} {xs = [ x ]} ⟩
Any P (x ∷ xs) ∎
-- concat.
private
concat⁺ : ∀ {a p} {A : Set a} {P : A → Set p} {xss} →
Any (Any P) xss → Any P (concat xss)
concat⁺ (here p) = ++⁺ˡ p
concat⁺ (there {x = xs} p) = ++⁺ʳ xs (concat⁺ p)
concat⁻ : ∀ {a p} {A : Set a} {P : A → Set p} xss →
Any P (concat xss) → Any (Any P) xss
concat⁻ [] ()
concat⁻ ([] ∷ xss) p = there $ concat⁻ xss p
concat⁻ ((x ∷ xs) ∷ xss) (here p) = here (here p)
concat⁻ ((x ∷ xs) ∷ xss) (there p)
with concat⁻ (xs ∷ xss) p
... | here p′ = here (there p′)
... | there p′ = there p′
concat⁻∘++⁺ˡ : ∀ {a p} {A : Set a} {P : A → Set p} {xs} xss (p : Any P xs) →
concat⁻ (xs ∷ xss) (++⁺ˡ p) ≡ here p
concat⁻∘++⁺ˡ xss (here p) = refl
concat⁻∘++⁺ˡ xss (there p) rewrite concat⁻∘++⁺ˡ xss p = refl
concat⁻∘++⁺ʳ : ∀ {a p} {A : Set a} {P : A → Set p} xs xss (p : Any P (concat xss)) →
concat⁻ (xs ∷ xss) (++⁺ʳ xs p) ≡ there (concat⁻ xss p)
concat⁻∘++⁺ʳ [] xss p = refl
concat⁻∘++⁺ʳ (x ∷ xs) xss p rewrite concat⁻∘++⁺ʳ xs xss p = refl
concat⁺∘concat⁻ : ∀ {a p} {A : Set a} {P : A → Set p} xss (p : Any P (concat xss)) →
concat⁺ (concat⁻ xss p) ≡ p
concat⁺∘concat⁻ [] ()
concat⁺∘concat⁻ ([] ∷ xss) p = concat⁺∘concat⁻ xss p
concat⁺∘concat⁻ ((x ∷ xs) ∷ xss) (here p) = refl
concat⁺∘concat⁻ ((x ∷ xs) ∷ xss) (there p)
with concat⁻ (xs ∷ xss) p | concat⁺∘concat⁻ (xs ∷ xss) p
concat⁺∘concat⁻ ((x ∷ xs) ∷ xss) (there .(++⁺ˡ p′)) | here p′ | refl = refl
concat⁺∘concat⁻ ((x ∷ xs) ∷ xss) (there .(++⁺ʳ xs (concat⁺ p′))) | there p′ | refl = refl
concat⁻∘concat⁺ : ∀ {a p} {A : Set a} {P : A → Set p} {xss} (p : Any (Any P) xss) →
concat⁻ xss (concat⁺ p) ≡ p
concat⁻∘concat⁺ (here p) = concat⁻∘++⁺ˡ _ p
concat⁻∘concat⁺ (there {x = xs} {xs = xss} p)
rewrite concat⁻∘++⁺ʳ xs xss (concat⁺ p) =
P.cong there $ concat⁻∘concat⁺ p
concat↔ : ∀ {a p} {A : Set a} {P : A → Set p} {xss} →
Any (Any P) xss ↔ Any P (concat xss)
concat↔ {P = P} {xss = xss} = record
{ to = P.→-to-⟶ $ concat⁺ {P = P}
; from = P.→-to-⟶ $ concat⁻ {P = P} xss
; inverse-of = record
{ left-inverse-of = concat⁻∘concat⁺
; right-inverse-of = concat⁺∘concat⁻ xss
}
}
-- _>>=_.
>>=↔ : ∀ {ℓ p} {A B : Set ℓ} {P : B → Set p} {xs} {f : A → List B} →
Any (Any P ∘ f) xs ↔ Any P (xs >>= f)
>>=↔ {P = P} {xs} {f} =
Any (Any P ∘ f) xs ↔⟨ map↔ {P = Any P} {f = f} ⟩
Any (Any P) (List.map f xs) ↔⟨ concat↔ {P = P} ⟩
Any P (xs >>= f) ∎
-- _⊛_.
⊛↔ : ∀ {ℓ} {A B : Set ℓ} {P : B → Set ℓ}
{fs : List (A → B)} {xs : List A} →
Any (λ f → Any (P ∘ f) xs) fs ↔ Any P (fs ⊛ xs)
⊛↔ {ℓ} {P = P} {fs} {xs} =
Any (λ f → Any (P ∘ f) xs) fs ↔⟨ Any-cong (λ _ → Any-cong (λ _ → return↔ {a = ℓ} {p = ℓ}) (_ ∎)) (_ ∎) ⟩
Any (λ f → Any (Any P ∘ return ∘ f) xs) fs ↔⟨ Any-cong (λ _ → >>=↔ {ℓ = ℓ} {p = ℓ}) (_ ∎) ⟩
Any (λ f → Any P (xs >>= return ∘ f)) fs ↔⟨ >>=↔ {ℓ = ℓ} {p = ℓ} ⟩
Any P (fs ⊛ xs) ∎
-- An alternative introduction rule for _⊛_.
⊛⁺′ : ∀ {ℓ} {A B : Set ℓ} {P : A → Set ℓ} {Q : B → Set ℓ}
{fs : List (A → B)} {xs} →
Any (P ⟨→⟩ Q) fs → Any P xs → Any Q (fs ⊛ xs)
⊛⁺′ {ℓ} pq p =
Inverse.to (⊛↔ {ℓ = ℓ}) ⟨$⟩
Any.map (λ pq → Any.map (λ {x} → pq {x}) p) pq
-- _⊗_.
⊗↔ : ∀ {ℓ} {A B : Set ℓ} {P : A × B → Set ℓ}
{xs : List A} {ys : List B} →
Any (λ x → Any (λ y → P (x , y)) ys) xs ↔ Any P (xs ⊗ ys)
⊗↔ {ℓ} {P = P} {xs} {ys} =
Any (λ x → Any (λ y → P (x , y)) ys) xs ↔⟨ return↔ {a = ℓ} {p = ℓ} ⟩
Any (λ _,_ → Any (λ x → Any (λ y → P (x , y)) ys) xs) (return _,_) ↔⟨ ⊛↔ ⟩
Any (λ x, → Any (P ∘ x,) ys) (_,_ <$> xs) ↔⟨ ⊛↔ ⟩
Any P (xs ⊗ ys) ∎
⊗↔′ : {A B : Set} {P : A → Set} {Q : B → Set}
{xs : List A} {ys : List B} →
(Any P xs × Any Q ys) ↔ Any (P ⟨×⟩ Q) (xs ⊗ ys)
⊗↔′ {P = P} {Q} {xs} {ys} =
(Any P xs × Any Q ys) ↔⟨ ×↔ ⟩
Any (λ x → Any (λ y → P x × Q y) ys) xs ↔⟨ ⊗↔ ⟩
Any (P ⟨×⟩ Q) (xs ⊗ ys) ∎
-- map-with-∈.
map-with-∈↔ :
∀ {a b p} {A : Set a} {B : Set b} {P : B → Set p} {xs : List A}
{f : ∀ {x} → x ∈ xs → B} →
(∃₂ λ x (x∈xs : x ∈ xs) → P (f x∈xs)) ↔ Any P (map-with-∈ xs f)
map-with-∈↔ {A = A} {B} {P} = record
{ to = P.→-to-⟶ (map-with-∈⁺ _)
; from = P.→-to-⟶ (map-with-∈⁻ _ _)
; inverse-of = record
{ left-inverse-of = from∘to _
; right-inverse-of = to∘from _ _
}
}
where
map-with-∈⁺ : ∀ {xs : List A}
(f : ∀ {x} → x ∈ xs → B) →
(∃₂ λ x (x∈xs : x ∈ xs) → P (f x∈xs)) →
Any P (map-with-∈ xs f)
map-with-∈⁺ f (_ , here refl , p) = here p
map-with-∈⁺ f (_ , there x∈xs , p) =
there $ map-with-∈⁺ (f ∘ there) (_ , x∈xs , p)
map-with-∈⁻ : ∀ (xs : List A)
(f : ∀ {x} → x ∈ xs → B) →
Any P (map-with-∈ xs f) →
∃₂ λ x (x∈xs : x ∈ xs) → P (f x∈xs)
map-with-∈⁻ [] f ()
map-with-∈⁻ (y ∷ xs) f (here p) = (y , here refl , p)
map-with-∈⁻ (y ∷ xs) f (there p) =
Prod.map id (Prod.map there id) $ map-with-∈⁻ xs (f ∘ there) p
from∘to : ∀ {xs : List A} (f : ∀ {x} → x ∈ xs → B)
(p : ∃₂ λ x (x∈xs : x ∈ xs) → P (f x∈xs)) →
map-with-∈⁻ xs f (map-with-∈⁺ f p) ≡ p
from∘to f (_ , here refl , p) = refl
from∘to f (_ , there x∈xs , p)
rewrite from∘to (f ∘ there) (_ , x∈xs , p) = refl
to∘from : ∀ (xs : List A) (f : ∀ {x} → x ∈ xs → B)
(p : Any P (map-with-∈ xs f)) →
map-with-∈⁺ f (map-with-∈⁻ xs f p) ≡ p
to∘from [] f ()
to∘from (y ∷ xs) f (here p) = refl
to∘from (y ∷ xs) f (there p) =
P.cong there $ to∘from xs (f ∘ there) p
------------------------------------------------------------------------
-- Any and any are related via T
-- These introduction and elimination rules are not inverses, though.
private
any⁺ : ∀ {a} {A : Set a} (p : A → Bool) {xs} →
Any (T ∘ p) xs → T (any p xs)
any⁺ p (here px) = Equivalence.from T-∨ ⟨$⟩ inj₁ px
any⁺ p (there {x = x} pxs) with p x
... | true = _
... | false = any⁺ p pxs
any⁻ : ∀ {a} {A : Set a} (p : A → Bool) xs →
T (any p xs) → Any (T ∘ p) xs
any⁻ p [] ()
any⁻ p (x ∷ xs) px∷xs with p x | inspect p x
any⁻ p (x ∷ xs) px∷xs | true | P[ eq ] = here (Equivalence.from T-≡ ⟨$⟩ eq)
any⁻ p (x ∷ xs) px∷xs | false | _ = there (any⁻ p xs px∷xs)
any⇔ : ∀ {a} {A : Set a} {p : A → Bool} {xs} →
Any (T ∘ p) xs ⇔ T (any p xs)
any⇔ = Eq.equivalence (any⁺ _) (any⁻ _ _)
------------------------------------------------------------------------
-- _++_ is commutative
private
++-comm : ∀ {a p} {A : Set a} {P : A → Set p} xs ys →
Any P (xs ++ ys) → Any P (ys ++ xs)
++-comm xs ys = [ ++⁺ʳ ys , ++⁺ˡ ]′ ∘ ++⁻ xs
++-comm∘++-comm : ∀ {a p} {A : Set a} {P : A → Set p}
xs {ys} (p : Any P (xs ++ ys)) →
++-comm ys xs (++-comm xs ys p) ≡ p
++-comm∘++-comm [] {ys} p
rewrite ++⁻∘++⁺ ys {ys = []} (inj₁ p) = P.refl
++-comm∘++-comm {P = P} (x ∷ xs) {ys} (here p)
rewrite ++⁻∘++⁺ {P = P} ys {ys = x ∷ xs} (inj₂ (here p)) = P.refl
++-comm∘++-comm (x ∷ xs) (there p) with ++⁻ xs p | ++-comm∘++-comm xs p
++-comm∘++-comm (x ∷ xs) {ys} (there .([ ++⁺ʳ xs , ++⁺ˡ ]′ (++⁻ ys (++⁺ʳ ys p))))
| inj₁ p | P.refl
rewrite ++⁻∘++⁺ ys (inj₂ p)
| ++⁻∘++⁺ ys (inj₂ $ there {x = x} p) = P.refl
++-comm∘++-comm (x ∷ xs) {ys} (there .([ ++⁺ʳ xs , ++⁺ˡ ]′ (++⁻ ys (++⁺ˡ p))))
| inj₂ p | P.refl
rewrite ++⁻∘++⁺ ys {ys = xs} (inj₁ p)
| ++⁻∘++⁺ ys {ys = x ∷ xs} (inj₁ p) = P.refl
++↔++ : ∀ {a p} {A : Set a} {P : A → Set p} xs ys →
Any P (xs ++ ys) ↔ Any P (ys ++ xs)
++↔++ {P = P} xs ys = record
{ to = P.→-to-⟶ $ ++-comm {P = P} xs ys
; from = P.→-to-⟶ $ ++-comm {P = P} ys xs
; inverse-of = record
{ left-inverse-of = ++-comm∘++-comm xs
; right-inverse-of = ++-comm∘++-comm ys
}
}
| 36.398089
| 133
| 0.418716
|
4103cfc550f0703916f84ab6a78c4944908fc40a
| 72
|
agda
|
Agda
|
test/Fail/Issue2075.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Fail/Issue2075.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Fail/Issue2075.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
data Unit : Set where
unit : Unit
F : Unit → Set₁
F {x = unit} = Set
| 12
| 21
| 0.583333
|
506853d6b7d6a6bfd9d31f561dc8aeda41ab6103
| 80
|
agda
|
Agda
|
Hello-Worlds/helloworld.agda
|
LumaLiana/Hello-World
|
bb1e3f58ee30ae147518d9d0aa4cd77ff4a3f7a4
|
[
"Apache-2.0"
] | 32
|
2019-04-29T03:16:15.000Z
|
2022-02-19T19:52:37.000Z
|
Hello-Worlds/helloworld.agda
|
LumaLiana/Hello-World
|
bb1e3f58ee30ae147518d9d0aa4cd77ff4a3f7a4
|
[
"Apache-2.0"
] | 14
|
2020-01-10T18:43:49.000Z
|
2021-10-23T01:44:52.000Z
|
Hello-Worlds/helloworld.agda
|
LumaLiana/Hello-World
|
bb1e3f58ee30ae147518d9d0aa4cd77ff4a3f7a4
|
[
"Apache-2.0"
] | 7
|
2020-01-10T18:16:16.000Z
|
2021-03-05T01:59:10.000Z
|
module hello-world where
open import IO
main = run (putStrLn "Hello, World!")
| 13.333333
| 37
| 0.725
|
57ebb05caff2cbe4e4e5b51b41507368458f5d7b
| 5,274
|
agda
|
Agda
|
Definition/LogicalRelation/Substitution/Introductions/Application.agda
|
CoqHott/logrel-mltt
|
e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04
|
[
"MIT"
] | 2
|
2018-06-21T08:39:01.000Z
|
2022-01-17T16:13:53.000Z
|
Definition/LogicalRelation/Substitution/Introductions/Application.agda
|
CoqHott/logrel-mltt
|
e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04
|
[
"MIT"
] | null | null | null |
Definition/LogicalRelation/Substitution/Introductions/Application.agda
|
CoqHott/logrel-mltt
|
e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04
|
[
"MIT"
] | 2
|
2022-01-26T14:55:51.000Z
|
2022-02-15T19:42:19.000Z
|
{-# OPTIONS --safe #-}
open import Definition.Typed.EqualityRelation
module Definition.LogicalRelation.Substitution.Introductions.Application {{eqrel : EqRelSet}} where
open EqRelSet {{...}}
open import Definition.Untyped
open import Definition.Untyped.Properties
open import Definition.Typed
open import Definition.LogicalRelation
open import Definition.LogicalRelation.Irrelevance
open import Definition.LogicalRelation.Properties
open import Definition.LogicalRelation.Application
open import Definition.LogicalRelation.Substitution
open import Definition.LogicalRelation.Substitution.Introductions.SingleSubst
open import Definition.LogicalRelation.Substitution.Introductions.Pi
open import Definition.LogicalRelation.Substitution.Weakening
import Definition.LogicalRelation.Substitution.Irrelevance as S
open import Tools.Product
import Tools.PropositionalEquality as PE
import Data.Nat as Nat
-- Application of valid terms.
appᵛ : ∀ {F G rF lF lG rΠ lΠ t u Γ l}
([Γ] : ⊩ᵛ Γ)
([F] : Γ ⊩ᵛ⟨ l ⟩ F ^ [ rF , ι lF ] / [Γ])
([ΠFG] : Γ ⊩ᵛ⟨ l ⟩ Π F ^ rF ° lF ▹ G ° lG ° lΠ ^ [ rΠ , ι lΠ ] / [Γ])
([t] : Γ ⊩ᵛ⟨ l ⟩ t ∷ Π F ^ rF ° lF ▹ G ° lG ° lΠ ^ [ rΠ , ι lΠ ] / [Γ] / [ΠFG])
([u] : Γ ⊩ᵛ⟨ l ⟩ u ∷ F ^ [ rF , ι lF ] / [Γ] / [F])
→ Γ ⊩ᵛ⟨ l ⟩ t ∘ u ^ lΠ ∷ G [ u ] ^ [ rΠ , ι lG ] / [Γ] / substSΠ {F} {G} {u} [Γ] [F] [ΠFG] [u]
appᵛ {F} {G} {rF} {lF} {lG} {rΠ} {lΠ} {t} {u} [Γ] [F] [ΠFG] [t] [u] {σ = σ} ⊢Δ [σ] =
let [G[u]] = substSΠ {F} {G} {u} [Γ] [F] [ΠFG] [u]
[σF] = proj₁ ([F] ⊢Δ [σ])
[σΠFG] = proj₁ ([ΠFG] ⊢Δ [σ])
[σt] = proj₁ ([t] ⊢Δ [σ])
[σu] = proj₁ ([u] ⊢Δ [σ])
[σG[u]] = proj₁ ([G[u]] ⊢Δ [σ])
[σG[u]]′ = irrelevance′ (singleSubstLift G u) [σG[u]]
in irrelevanceTerm′ (PE.sym (singleSubstLift G u)) PE.refl PE.refl
[σG[u]]′ [σG[u]]
(appTerm PE.refl [σF] [σG[u]]′ [σΠFG] [σt] [σu])
, (λ [σ′] [σ≡σ′] →
let [σu′] = convTerm₂ [σF] (proj₁ ([F] ⊢Δ [σ′]))
(proj₂ ([F] ⊢Δ [σ]) [σ′] [σ≡σ′])
(proj₁ ([u] ⊢Δ [σ′]))
in irrelevanceEqTerm′ (PE.sym (singleSubstLift G u)) PE.refl PE.refl
[σG[u]]′ [σG[u]]
(app-congTerm [σF] [σG[u]]′ [σΠFG]
(proj₂ ([t] ⊢Δ [σ]) [σ′] [σ≡σ′])
[σu] [σu′]
(proj₂ ([u] ⊢Δ [σ]) [σ′] [σ≡σ′])))
-- Application congurence of valid terms.
app-congᵛ : ∀ {F G rF lF lG rΠ lΠ t u a b Γ l}
([Γ] : ⊩ᵛ Γ)
([F] : Γ ⊩ᵛ⟨ l ⟩ F ^ [ rF , ι lF ] / [Γ])
([ΠFG] : Γ ⊩ᵛ⟨ l ⟩ Π F ^ rF ° lF ▹ G ° lG ° lΠ ^ [ rΠ , ι lΠ ] / [Γ])
([t≡u] : Γ ⊩ᵛ⟨ l ⟩ t ≡ u ∷ Π F ^ rF ° lF ▹ G ° lG ° lΠ ^ [ rΠ , ι lΠ ] / [Γ] / [ΠFG])
([a] : Γ ⊩ᵛ⟨ l ⟩ a ∷ F ^ [ rF , ι lF ] / [Γ] / [F])
([b] : Γ ⊩ᵛ⟨ l ⟩ b ∷ F ^ [ rF , ι lF ] / [Γ] / [F])
([a≡b] : Γ ⊩ᵛ⟨ l ⟩ a ≡ b ∷ F ^ [ rF , ι lF ] / [Γ] / [F])
→ Γ ⊩ᵛ⟨ l ⟩ t ∘ a ^ lΠ ≡ u ∘ b ^ lΠ ∷ G [ a ] ^ [ rΠ , ι lG ] / [Γ]
/ substSΠ {F} {G} {a} [Γ] [F] [ΠFG] [a]
app-congᵛ {F} {G} {rF} {lF} {lG} {rΠ} {a = a} [Γ] [F] [ΠFG] [t≡u] [a] [b] [a≡b] ⊢Δ [σ] =
let [σF] = proj₁ ([F] ⊢Δ [σ])
[G[a]] = proj₁ (substSΠ {F} {G} {a} [Γ] [F] [ΠFG] [a] ⊢Δ [σ])
[G[a]]′ = irrelevance′ (singleSubstLift G a) [G[a]]
[σΠFG] = proj₁ ([ΠFG] ⊢Δ [σ])
[σa] = proj₁ ([a] ⊢Δ [σ])
[σb] = proj₁ ([b] ⊢Δ [σ])
in irrelevanceEqTerm′ (PE.sym (singleSubstLift G a)) PE.refl PE.refl [G[a]]′ [G[a]]
(app-congTerm [σF] [G[a]]′ [σΠFG] ([t≡u] ⊢Δ [σ])
[σa] [σb] ([a≡b] ⊢Δ [σ]))
appᵛ↑ : ∀ {F F' G rF rF' lF lF' lG rΠ lΠ t u Γ l}
(lF≤ : lF ≤ lΠ)
(lG≤ : lG ≤ lΠ)
([Γ] : ⊩ᵛ Γ)
([F] : Γ ⊩ᵛ⟨ l ⟩ F ^ [ rF , ι lF ] / [Γ])
([F'] : Γ ⊩ᵛ⟨ l ⟩ F' ^ [ rF' , ι lF' ] / [Γ])
([G] : Γ ∙ F ^ [ rF , ι lF ] ⊩ᵛ⟨ l ⟩ G ^ [ rΠ , ι lG ] / [Γ] ∙ [F])
([ΠFG] : Γ ⊩ᵛ⟨ l ⟩ Π F ^ rF ° lF ▹ G ° lG ° lΠ ^ [ rΠ , ι lΠ ] / [Γ])
([t] : Γ ∙ F' ^ [ rF' , ι lF' ] ⊩ᵛ⟨ l ⟩ t ∷ wk1 (Π F ^ rF ° lF ▹ G ° lG ° lΠ) ^ [ rΠ , ι lΠ ] / [Γ] ∙ [F'] / wk1ᵛ {A = Π F ^ rF ° lF ▹ G ° lG ° lΠ} {F = F'} [Γ] [F'] [ΠFG])
([u] : Γ ∙ F' ^ [ rF' , ι lF' ] ⊩ᵛ⟨ l ⟩ u ∷ wk1 F ^ [ rF , ι lF ] / [Γ] ∙ [F'] / wk1ᵛ {A = F} {F = F'} [Γ] [F'] [F])
→ Γ ∙ F' ^ [ rF' , ι lF' ] ⊩ᵛ⟨ l ⟩ t ∘ u ^ lΠ ∷ G [ u ]↑ ^ [ rΠ , ι lG ] / [Γ] ∙ [F'] / subst↑S {F'} {G} {u} {F' = F} [Γ] [F'] [F] [G] [u]
appᵛ↑ {F} {F'} {G} {rF} {rF'} {lF} {lF'} {lG} {rΠ} {lΠ} {t} {u} lF≤ lG≤ [Γ] [F] [F'] [G] [ΠFG] [t] [u] =
let [G[u]] = subst↑S {F'} {G} {u} {F' = F} [Γ] [F'] [F] [G] [u]
[wF] = wk1ᵛ {A = F} {F = F'} [Γ] [F'] [F]
[wΠFG] = wk1ᵛ {A = Π F ^ rF ° lF ▹ G ° lG ° lΠ} {F = F'} [Γ] [F'] [ΠFG]
[app] = appᵛ {F = wk1 F} {G = wk1d G} {t = t} {u = u} (_∙_ {A = F'} [Γ] [F']) [wF] [wΠFG] [t] [u]
in S.irrelevanceTerm′ {A = wk1d G [ u ]} {A′ = G [ u ]↑} {t = t ∘ u ^ lΠ} (PE.sym (wk1d[]-[]↑ G u)) PE.refl (_∙_ {A = F'} [Γ] [F']) (_∙_ {A = F'} [Γ] [F'])
(substSΠ {wk1 F} {wk1d G} {u} (_∙_ {A = F'} [Γ] [F']) [wF] [wΠFG] [u]) [G[u]] [app]
| 54.9375
| 179
| 0.414486
|
418f5c9ed79395ce06d7905369056014fc059717
| 153
|
agda
|
Agda
|
test/interaction/Issue1339.agda
|
cagix/agda
|
cc026a6a97a3e517bb94bafa9d49233b067c7559
|
[
"BSD-2-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/interaction/Issue1339.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/interaction/Issue1339.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
-- Andreas, 2014-11-02
{-# OPTIONS --guardedness #-}
record U : Set where
coinductive
constructor inn
field out : U
f : U → U
f u = {!u!}
| 12.75
| 29
| 0.575163
|
57874f7bc60146dd635b24ba0a4ea8f7d198aaf1
| 707
|
agda
|
Agda
|
Cubical/Data/NatPlusOne/Base.agda
|
guilhermehas/cubical
|
ce3120d3f8d692847b2744162bcd7a01f0b687eb
|
[
"MIT"
] | 1
|
2021-10-31T17:32:49.000Z
|
2021-10-31T17:32:49.000Z
|
Cubical/Data/NatPlusOne/Base.agda
|
guilhermehas/cubical
|
ce3120d3f8d692847b2744162bcd7a01f0b687eb
|
[
"MIT"
] | null | null | null |
Cubical/Data/NatPlusOne/Base.agda
|
guilhermehas/cubical
|
ce3120d3f8d692847b2744162bcd7a01f0b687eb
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --no-exact-split --safe #-}
module Cubical.Data.NatPlusOne.Base where
open import Cubical.Core.Primitives
open import Cubical.Data.Nat
open import Cubical.Data.Empty
record ℕ₊₁ : Type₀ where
constructor 1+_
field
n : ℕ
pattern one = 1+ zero
pattern 2+_ n = 1+ (suc n)
-1+_ : ℕ₊₁ → ℕ
-1+ (1+ n) = n
ℕ₊₁→ℕ : ℕ₊₁ → ℕ
ℕ₊₁→ℕ (1+ n) = suc n
suc₊₁ : ℕ₊₁ → ℕ₊₁
suc₊₁ (1+ n) = 1+ (suc n)
_+₁_ : ℕ₊₁ → ℕ₊₁ → ℕ₊₁
(1+ m) +₁ (1+ n) = 1+ (suc (m + n))
-- Natural number literals for ℕ₊₁
open import Cubical.Data.Nat.Literals public
instance
fromNatℕ₊₁ : HasFromNat ℕ₊₁
fromNatℕ₊₁ = record { Constraint = λ { zero → ⊥ ; _ → Unit }
; fromNat = λ { (suc n) → 1+ n } }
| 19.638889
| 62
| 0.584158
|
1d9c2a4fe0d8365eb72cd4266c37579f134ac780
| 243
|
agda
|
Agda
|
test/Fail/InferRecordTypes-3.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Fail/InferRecordTypes-3.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Fail/InferRecordTypes-3.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
-- Sometimes we can't infer a record type
module InferRecordTypes-3 where
postulate A : Set
record R : Set₁ where
field
x₁ : Set
x₂ : Set
record R′ : Set₁ where
field
x₁ : Set
x₃ : Set
bad = record { x₂ = A; x₃ = A }
| 13.5
| 41
| 0.613169
|
2fd513ab257d4717418ccd1a42b40c298fdce162
| 7,222
|
agda
|
Agda
|
lib/Haskell/RangedSetsProp/library.agda
|
ioanasv/agda2hs
|
17cdbeb36af3d0b735c5db83bb811034c39a19cd
|
[
"MIT"
] | 1
|
2021-05-25T09:41:34.000Z
|
2021-05-25T09:41:34.000Z
|
lib/Haskell/RangedSetsProp/library.agda
|
ioanasv/agda2hs
|
17cdbeb36af3d0b735c5db83bb811034c39a19cd
|
[
"MIT"
] | null | null | null |
lib/Haskell/RangedSetsProp/library.agda
|
ioanasv/agda2hs
|
17cdbeb36af3d0b735c5db83bb811034c39a19cd
|
[
"MIT"
] | null | null | null |
module Haskell.RangedSetsProp.library where
open import Agda.Builtin.Equality
open import Agda.Builtin.Bool
open import Haskell.Prim
open import Haskell.Prim.Ord
open import Haskell.Prim.Bool
open import Haskell.Prim.Eq
open import Haskell.Prim.Int
open import Haskell.Prim.List
open import Haskell.RangedSets.Boundaries
open import Haskell.RangedSets.Ranges
-- symmetry of equality
sym : {A : Set} {x y : A} → x ≡ y → y ≡ x
sym refl = refl
-- transitivity of equality
trans : {A : Set} {x y z : A} → x ≡ y → y ≡ z → x ≡ z
trans refl refl = refl
-- congruence of equality
cong : {A B : Set} {x y : A} → (f : A → B) → x ≡ y → f x ≡ f y
cong f refl = refl
begin_ : {A : Set} → {x y : A} → x ≡ y → x ≡ y
begin p = p
_end : {A : Set} → (x : A) → x ≡ x
x end = refl
_=⟨_⟩_ : {A : Set} → (x : A) → {y z : A}
→ x ≡ y → y ≡ z → x ≡ z
x =⟨ p ⟩ q = trans p q
_=⟨⟩_ : {A : Set} → (x : A) → {y : A} → x ≡ y → x ≡ y
x =⟨⟩ q = x =⟨ refl ⟩ q
infix 1 begin_
infix 3 _end
infixr 2 _=⟨_⟩_
infixr 2 _=⟨⟩_
subst : {A : Set} {x y : A} → (P : A → Set) → x ≡ y → P x → P y
subst P refl p = p
isTrue&&₁ : {x y : Bool} → IsTrue (x && y) → IsTrue x
isTrue&&₂ : {x y : Bool} → IsTrue (x && y) → IsTrue y
isTrue&&₁ {true} _ = IsTrue.itsTrue
isTrue&&₁ {false} ()
isTrue&&₂ {true} p = p
isTrue&&₂ {false} ()
ifThenElseHelper : {a : Set ℓ} → a → a → Bool → a
ifThenElseHelper b c d = if_then_else_ d b c
propIf : {a b : Set} → {x y : a} (f : a → b) (c : Bool) → f (if c then x else y) ≡ (if c then f x else f y)
propIf f false = refl
propIf f true = refl
propIf2 : ⦃ Ord a ⦄ → {x y : a} (c : Bool) → IsTrue c → (if c then x else y) ≡ x
propIf2 true f = refl
propIf3 : ⦃ Ord a ⦄ → {x y : a} (c : Bool) → IsFalse c → (if c then x else y) ≡ y
propIf3 false f = refl
propIf2' : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → {x y : List (Range a)} (c : Bool) → IsTrue c → (if c then x else y) ≡ x
propIf2' true f = refl
propIf3' : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → {x y : List (Range a)} (c : Bool) → IsFalse c → (if c then x else y) ≡ y
propIf3' false f = refl
propIsFalse : (x : Bool) → IsFalse x → x ≡ false
propIsFalse false f = refl
propIsTrue : (x : Bool) → IsTrue x → x ≡ true
propIsTrue true f = refl
prop_or_and_eqiv_true : (x y : Bool) -> IsTrue x -> IsTrue y -> (x || y) ≡ (x && y)
prop_or_and_eqiv_true true true _ _ = refl
prop_or_and_eqiv_false : (x y : Bool) -> IsFalse x -> IsFalse y -> (x || y) ≡ (x && y)
prop_or_and_eqiv_false false false _ _ = refl
postulate
isTrueAndIsFalse1 : {b : Bool} -> IsTrue b -> IsFalse (not b)
isTrueAndIsFalse2 : {b : Bool} -> IsTrue (not b) -> IsFalse b
isTrueAndIsFalse3 : {b : Bool} -> IsFalse (not b) -> IsTrue b
isTrueAndIsFalse4 : {b : Bool} -> IsFalse b -> IsTrue (not b)
gteq : ⦃ o : Ord a ⦄ → ∀ {x y : a} → (x ≡ y) → (_>=_ ⦃ o ⦄ x y) ≡ true
lt : ⦃ o : Ord a ⦄ → (x y : a) → (x ≡ y) → IsFalse (_>_ ⦃ o ⦄ x y)
lteq : ⦃ o : Ord a ⦄ → (x y : a) → (_<_ ⦃ o ⦄ x y) ≡ (_<=_ ⦃ o ⦄ x y)
gt : ⦃ o : Ord a ⦄ → ∀ {x y : a} → (x ≡ y) → not (_>_ ⦃ o ⦄ x y) ≡ true
eq0 : ⦃ o : Ord a ⦄ → ∀ {x y : a} → (x ≡ y) → IsTrue (x == y)
eq1 : ⦃ o : Ord a ⦄ → (x y : a) → ((_>=_ ⦃ o ⦄ x y) && (not (_>_ ⦃ o ⦄ x y))) ≡ (y == x)
eq2 : ⦃ o : Ord a ⦄ → (x y : a) → not (_<=_ ⦃ o ⦄ x y) ≡ (_<_ ⦃ o ⦄ y x)
eq3 : ⦃ o : Ord a ⦄ → (x y i j : a) → ⦃ IsTrue ((_<_ ⦃ o ⦄ i x) && (_<_ ⦃ o ⦄ j y)) ⦄ → ((min ⦃ o ⦄ x y) <= (max ⦃ o ⦄ i j)) ≡ ((_<=_ ⦃ o ⦄ x j) || (_<=_ ⦃ o ⦄ y i))
eq4 : ⦃ o : Ord a ⦄ → ∀ {x y : a} → (x ≡ y) → ((compare x y) == EQ) ≡ true
boundaries0 : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (x : a) → (b c : Boundary a) → ((x />/ b) && (x />/ c)) ≡ (x />/ (max b c))
boundaries1 : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (x : a) → (b c : Boundary a) → ((x />/ b) || (x />/ c)) ≡ (x />/ (min b c))
prop_and_assoc : (a b c : Bool) → ((a && b) && c) ≡ (a && (b && c))
prop_and_assoc true b c =
begin
((true && b) && c)
=⟨⟩
(b && c)
=⟨⟩
(true && (b && c))
end
prop_and_assoc false b c =
begin
((false && b) && c)
=⟨⟩
(false && c)
=⟨⟩
false
=⟨⟩
(false && (b && c))
end
prop_and_cancel : (a : Bool) {b : Bool} → (a && a && b) ≡ (a && b)
prop_and_cancel true = refl
prop_and_cancel false = refl
prop_or_assoc : (a b c : Bool) → ((a || b) || c) ≡ (a || (b || c))
prop_or_assoc true b c = refl
prop_or_assoc false b c = refl
prop_or_sym : (a b : Bool) → (a || b) ≡ (b || a)
prop_or_sym true true = refl
prop_or_sym true false = refl
prop_or_sym false true = refl
prop_or_sym false false = refl
prop_or_same_value : (a : Bool) → (a || a) ≡ a
prop_or_same_value true = refl
prop_or_same_value false = refl
prop_and_false : (a : Bool) → (a && false) ≡ false
prop_and_false true = refl
prop_and_false false = refl
prop_and_true : (a : Bool) → (a && true) ≡ a
prop_and_true true = refl
prop_and_true false = refl
prop_or_false : (a : Bool) → (false || a) ≡ a
prop_or_false true = refl
prop_or_false false = refl
prop_or_false2 : (a : Bool) → (a || false) ≡ a
prop_or_false2 true = refl
prop_or_false2 false = refl
prop_or_false3 : (a : Bool) → (a || true) ≡ true
prop_or_false3 true = refl
prop_or_false3 false = refl
prop_or_true : (a : Bool) → (true || a) ≡ true
prop_or_true true = refl
prop_or_true false = refl
prop_and_comm : (a b : Bool) → (a && b) ≡ (b && a)
prop_and_comm false b =
begin
(false && b)
=⟨⟩
false
=⟨ sym (prop_and_false b) ⟩
(b && false)
end
prop_and_comm true b =
begin
(true && b)
=⟨⟩
b
=⟨ sym (prop_and_true b) ⟩
(b && true)
end
prop_distr : (a b c : Bool) → ((a || b) && c) ≡ ((a && c) || (b && c))
prop_distr true b true = refl
prop_distr true true false = refl
prop_distr true false false = refl
prop_distr false true true = refl
prop_distr false true false = refl
prop_distr false false false = refl
prop_distr false false true = refl
prop_dnf : (a b c d : Bool) → ((a || b) && (c || d)) ≡ ((a && c) || (b && d) || (b && c) || (a && d))
prop_dnf true b true d = refl
prop_dnf true true false true = refl
prop_dnf true false false true = refl
prop_dnf true true false false = refl
prop_dnf true false false false = refl
prop_dnf false true true true = refl
prop_dnf false true false true = refl
prop_dnf false false true true = refl
prop_dnf false false true false = refl
prop_dnf false false false true = refl
prop_dnf false false false false = refl
prop_dnf false true true false = refl
prop_dnf false true false false = refl
prop_demorgan2 : (a b : Bool) → ((not a) && (not b)) ≡ (not (a || b))
prop_demorgan2 false b = refl
prop_demorgan2 true b = refl
prop_demorgan : (a b : Bool) → (not (a && b)) ≡ ((not a) || (not b))
prop_demorgan false b = refl
prop_demorgan true b = refl
not-not : (b : Bool) → b ≡ not (not b)
not-not false = refl
not-not true =
begin
not (not true)
=⟨⟩
not false
=⟨⟩
true
end
demorgan3 : (a b c d : Bool) → (not (a || b || c || d)) ≡ ((not a) && (not b) && (not c) && (not d))
demorgan3 true b c d = refl
demorgan3 false true c d = refl
demorgan3 false false true d = refl
demorgan3 false false false true = refl
demorgan3 false false false false = refl
| 30.601695
| 168
| 0.558709
|
5923bb70ee56aeaf446ba484c16f40e3026e35d9
| 97,327
|
agda
|
Agda
|
src/Lens/Non-dependent/Traditional/Combinators.agda
|
nad/dependent-lenses
|
f2da6f7e95b87ca525e8ea43929c6d6163a74811
|
[
"MIT"
] | 3
|
2020-04-16T12:10:46.000Z
|
2020-07-03T08:55:52.000Z
|
src/Lens/Non-dependent/Traditional/Combinators.agda
|
nad/dependent-lenses
|
f2da6f7e95b87ca525e8ea43929c6d6163a74811
|
[
"MIT"
] | null | null | null |
src/Lens/Non-dependent/Traditional/Combinators.agda
|
nad/dependent-lenses
|
f2da6f7e95b87ca525e8ea43929c6d6163a74811
|
[
"MIT"
] | 1
|
2020-07-01T14:33:26.000Z
|
2020-07-01T14:33:26.000Z
|
------------------------------------------------------------------------
-- Identity and composition for traditional non-dependent lenses
------------------------------------------------------------------------
{-# OPTIONS --cubical #-}
import Equality.Path as P
module Lens.Non-dependent.Traditional.Combinators
{e⁺} (eq : ∀ {a p} → P.Equality-with-paths a p e⁺) where
open P.Derived-definitions-and-properties eq
open import Logical-equivalence using (module _⇔_)
open import Prelude as P hiding (id) renaming (_∘_ to _⊚_)
import Bi-invertibility
open import Bijection equality-with-J as Bijection using (_↔_)
open import Category equality-with-J as C using (Category; Precategory)
open import Circle eq as Circle using (𝕊¹)
open import Equality.Path.Isomorphisms eq
open import Equivalence equality-with-J as Eq
using (_≃_; Is-equivalence)
open import Erased.Cubical eq as E using (Erased; [_])
open import Function-universe equality-with-J as F hiding (id; _∘_)
open import H-level equality-with-J as H-level
open import H-level.Closure equality-with-J
open import H-level.Truncation.Propositional eq as T using (∥_∥)
import Integer equality-with-J as Int
open import Preimage equality-with-J using (_⁻¹_)
open import Surjection equality-with-J as Surjection using (_↠_)
open import Univalence-axiom equality-with-J
open import Lens.Non-dependent.Traditional eq
private
variable
a b h o : Level
A B C D : Type a
l₁ l₂ : Lens A B
------------------------------------------------------------------------
-- Lens combinators
-- If two types are isomorphic, then there is a lens between them.
↔→lens :
{A : Type a} {B : Type b} →
A ↔ B → Lens A B
↔→lens A↔B = record
{ get = to
; set = const from
; get-set = const right-inverse-of
; set-get = left-inverse-of
; set-set = λ _ _ _ → refl _
}
where
open _↔_ A↔B
-- If two types are equivalent, then there is a lens between them.
≃→lens :
{A : Type a} {B : Type b} →
A ≃ B → Lens A B
≃→lens = ↔→lens ⊚ _≃_.bijection
-- Identity lens.
id : Lens A A
id = ↔→lens F.id
-- Composition of lenses.
infixr 9 _∘_
_∘_ : Lens B C → Lens A B → Lens A C
l₁ ∘ l₂ = record
{ get = λ a → get l₁ (get l₂ a)
; set = λ a c → set l₂ a (set l₁ (get l₂ a) c)
; get-set = λ a c →
get l₁ (get l₂ (set l₂ a (set l₁ (get l₂ a) c))) ≡⟨ cong (get l₁) $ get-set l₂ _ _ ⟩
get l₁ (set l₁ (get l₂ a) c) ≡⟨ get-set l₁ _ _ ⟩∎
c ∎
; set-get = λ a →
set l₂ a (set l₁ (get l₂ a) (get l₁ (get l₂ a))) ≡⟨ cong (set l₂ _) $ set-get l₁ _ ⟩
set l₂ a (get l₂ a) ≡⟨ set-get l₂ _ ⟩∎
a ∎
; set-set = λ a c₁ c₂ →
set l₂ (set l₂ a (set l₁ (get l₂ a) c₁)) (set l₁ (get l₂ (set l₂ a (set l₁ (get l₂ a) c₁))) c₂) ≡⟨ set-set l₂ _ _ _ ⟩
set l₂ a (set l₁ (get l₂ (set l₂ a (set l₁ (get l₂ a) c₁))) c₂) ≡⟨ cong (λ b → set l₂ _ (set l₁ b _)) $
get-set l₂ _ _ ⟩
set l₂ a (set l₁ (set l₁ (get l₂ a) c₁) c₂) ≡⟨ cong (set l₂ _) $ set-set l₁ _ _ _ ⟩∎
set l₂ a (set l₁ (get l₂ a) c₂) ∎
}
where
open Lens
-- Note that composition can be defined in several different ways.
-- Here are two alternative implementations.
infixr 9 _∘′_ _∘″_
_∘′_ : Lens B C → Lens A B → Lens A C
l₁ ∘′ l₂ = record (l₁ ∘ l₂)
{ set-set = λ a c₁ c₂ →
set l₂ (set l₂ a (set l₁ (get l₂ a) c₁)) (set l₁ (get l₂ (set l₂ a (set l₁ (get l₂ a) c₁))) c₂) ≡⟨ cong
(λ b → set l₂ (set l₂ _ (set l₁ _ _))
(set l₁ b _)) $
get-set l₂ _ _ ⟩
set l₂ (set l₂ a (set l₁ (get l₂ a) c₁)) (set l₁ (set l₁ (get l₂ a) c₁) c₂) ≡⟨ set-set l₂ _ _ _ ⟩
set l₂ a (set l₁ (set l₁ (get l₂ a) c₁) c₂) ≡⟨ cong (set l₂ _) $ set-set l₁ _ _ _ ⟩∎
set l₂ a (set l₁ (get l₂ a) c₂) ∎
}
where
open Lens
_∘″_ : Lens B C → Lens A B → Lens A C
l₁ ∘″ l₂ = record (l₁ ∘ l₂)
{ set-set = λ a c₁ c₂ →
set l₂ (set l₂ a (set l₁ (get l₂ a) c₁)) (set l₁ (get l₂ (set l₂ a (set l₁ (get l₂ a) c₁))) c₂) ≡⟨ cong
(λ b → set l₂ (set l₂ _ (set l₁ _ _))
(set l₁ b _)) $
get-set l₂ _ _ ⟩
set l₂ (set l₂ a (set l₁ (get l₂ a) c₁)) (set l₁ (set l₁ (get l₂ a) c₁) c₂) ≡⟨ cong (set l₂ _) $ set-set l₁ _ _ _ ⟩
set l₂ (set l₂ a (set l₁ (get l₂ a) c₁)) (set l₁ (get l₂ a) c₂) ≡⟨ set-set l₂ _ _ _ ⟩∎
set l₂ a (set l₁ (get l₂ a) c₂) ∎
}
where
open Lens
-- These two implementations are pointwise equal to the other one.
-- However, I don't know if there is some other definition that is
-- distinct from these two (if we require that the definitions are
-- polymorphic, that get and set are implemented in the same way as
-- for _∘_, and that the three composition laws below hold).
∘≡∘′ : l₁ ∘ l₂ ≡ l₁ ∘′ l₂
∘≡∘′ {l₁ = l₁} {l₂ = l₂} = equal-laws→≡
(λ _ _ → refl _)
(λ _ → refl _)
(λ a c₁ c₂ →
let b₁ = set l₁ (get l₂ a) c₁
b₂ = set l₁ b₁ c₂
a′ = set l₂ a b₁
b′ = set l₁ (get l₂ a′) c₂
in
set-set (l₁ ∘ l₂) a c₁ c₂ ≡⟨⟩
trans (set-set l₂ a b₁ b′)
(trans (cong (λ b → set l₂ a (set l₁ b c₂)) (get-set l₂ a b₁))
(cong (set l₂ a) (set-set l₁ (get l₂ a) c₁ c₂))) ≡⟨ sym $ trans-assoc _ _ _ ⟩
trans (trans (set-set l₂ a b₁ b′)
(cong (λ b → set l₂ a (set l₁ b c₂)) (get-set l₂ a b₁)))
(cong (set l₂ a) (set-set l₁ (get l₂ a) c₁ c₂)) ≡⟨ cong (flip trans _) $
elim₁
(λ eq →
trans (set-set l₂ _ b₁ _)
(cong (λ b → set l₂ _ (set l₁ b _)) eq) ≡
trans (cong (λ b → set l₂ _ (set l₁ b _)) eq)
(set-set l₂ _ _ _))
(
trans (set-set l₂ a b₁ b₂)
(cong (λ b → set l₂ a (set l₁ b c₂)) (refl _)) ≡⟨ trans (cong (trans _) $ cong-refl _) $
trans-reflʳ _ ⟩
set-set l₂ a b₁ b₂ ≡⟨ sym $
trans (cong (flip trans _) $ cong-refl _) $
trans-reflˡ _ ⟩∎
trans (cong (λ b → set l₂ a′ (set l₁ b c₂)) (refl _))
(set-set l₂ a b₁ b₂) ∎)
(get-set l₂ a b₁) ⟩
trans (trans (cong (λ b → set l₂ a′ (set l₁ b c₂))
(get-set l₂ a b₁))
(set-set l₂ a b₁ b₂))
(cong (set l₂ a) (set-set l₁ (get l₂ a) c₁ c₂)) ≡⟨ trans-assoc _ _ _ ⟩
trans (cong (λ b → set l₂ a′ (set l₁ b c₂)) (get-set l₂ a b₁))
(trans (set-set l₂ a b₁ b₂)
(cong (set l₂ a) (set-set l₁ (get l₂ a) c₁ c₂))) ≡⟨⟩
set-set (l₁ ∘′ l₂) a c₁ c₂ ∎)
where
open Lens
∘≡∘″ : l₁ ∘ l₂ ≡ l₁ ∘″ l₂
∘≡∘″ {l₁ = l₁} {l₂ = l₂} = equal-laws→≡
(λ _ _ → refl _)
(λ _ → refl _)
(λ a c₁ c₂ →
let b₁ = set l₁ (get l₂ a) c₁
b₂ = set l₁ (get l₂ a) c₂
a′ = set l₂ a b₁
b′ = set l₁ (get l₂ a′) c₂
eq : b′ ≡ b₂
eq = trans (cong (λ b → set l₁ b c₂) (get-set l₂ a b₁))
(set-set l₁ (get l₂ a) c₁ c₂)
in
set-set (l₁ ∘ l₂) a c₁ c₂ ≡⟨⟩
trans (set-set l₂ a b₁ b′)
(trans (cong (λ b → set l₂ a (set l₁ b c₂)) (get-set l₂ a b₁))
(cong (set l₂ a) (set-set l₁ (get l₂ a) c₁ c₂))) ≡⟨ cong (trans (set-set l₂ a b₁ b′)) $
trans (cong (flip trans _) $ sym $ cong-∘ _ _ _) $
sym $ cong-trans _ _ _ ⟩
trans (set-set l₂ a b₁ b′) (cong (set l₂ a) eq) ≡⟨ elim¹
(λ {b₂} eq → trans (set-set l₂ a b₁ b′) (cong (set l₂ a) eq) ≡
trans (cong (set l₂ a′) eq) (set-set l₂ a b₁ b₂))
(
trans (set-set l₂ a b₁ b′) (cong (set l₂ a) (refl _)) ≡⟨ cong (trans _) $ cong-refl _ ⟩
trans (set-set l₂ a b₁ b′) (refl _) ≡⟨ trans-reflʳ _ ⟩
set-set l₂ a b₁ b′ ≡⟨ sym $ trans-reflˡ _ ⟩
trans (refl _) (set-set l₂ a b₁ b′) ≡⟨ cong (flip trans _) $ sym $ cong-refl _ ⟩∎
trans (cong (set l₂ a′) (refl _)) (set-set l₂ a b₁ b′) ∎)
eq ⟩
trans (cong (set l₂ a′) eq) (set-set l₂ a b₁ b₂) ≡⟨ trans (cong (flip trans _) $
trans (cong-trans _ _ _) $
cong (flip trans _) $ cong-∘ _ _ _) $
trans-assoc _ _ _ ⟩
trans (cong (λ b → set l₂ a′ (set l₁ b c₂)) (get-set l₂ a b₁))
(trans (cong (set l₂ a′) (set-set l₁ (get l₂ a) c₁ c₂))
(set-set l₂ a b₁ b₂)) ≡⟨⟩
set-set (l₁ ∘″ l₂) a c₁ c₂ ∎)
where
open Lens
-- id is a left identity of _∘_.
left-identity : (l : Lens A B) → id ∘ l ≡ l
left-identity l = equal-laws→≡
(λ a b →
trans (cong P.id (get-set a b)) (refl _) ≡⟨ trans-reflʳ _ ⟩
cong P.id (get-set a b) ≡⟨ sym $ cong-id _ ⟩∎
get-set a b ∎)
(λ a →
trans (cong (set a) (refl _)) (set-get a) ≡⟨ cong (flip trans _) $ cong-refl _ ⟩
trans (refl _) (set-get a) ≡⟨ trans-reflˡ _ ⟩∎
set-get a ∎)
(λ a b₁ b₂ →
trans (set-set a b₁ b₂)
(trans (cong (λ _ → set a b₂) (get-set a b₁))
(cong (set a) (refl _))) ≡⟨ cong₂ (λ p q → trans _ (trans p q))
(cong-const _)
(cong-refl _) ⟩
trans (set-set a b₁ b₂) (trans (refl _) (refl _)) ≡⟨ trans (cong (trans _) trans-refl-refl) $
trans-reflʳ _ ⟩∎
set-set a b₁ b₂ ∎)
where
open Lens l
-- id is a right identity of _∘_.
right-identity : (l : Lens A B) → l ∘ id ≡ l
right-identity l = equal-laws→≡
(λ a b →
trans (cong get (refl _)) (get-set a b) ≡⟨ cong (flip trans _) $ cong-refl _ ⟩
trans (refl _) (get-set a b) ≡⟨ trans-reflˡ _ ⟩∎
get-set a b ∎)
(λ a →
trans (cong P.id (set-get a)) (refl _) ≡⟨ trans-reflʳ _ ⟩
cong P.id (set-get a) ≡⟨ sym $ cong-id _ ⟩∎
set-get a ∎)
(λ a b₁ b₂ →
trans (refl _)
(trans (cong (λ b → set b b₂) (refl _))
(cong P.id (set-set a b₁ b₂))) ≡⟨ trans-reflˡ _ ⟩
trans (cong (λ b → set b b₂) (refl _))
(cong P.id (set-set a b₁ b₂)) ≡⟨ cong₂ trans (cong-refl _) (sym $ cong-id _) ⟩
trans (refl _) (set-set a b₁ b₂) ≡⟨ trans-reflˡ _ ⟩∎
set-set a b₁ b₂ ∎)
where
open Lens l
-- _∘_ is associative.
associativity :
(l₁ : Lens C D) (l₂ : Lens B C) (l₃ : Lens A B) →
l₁ ∘ (l₂ ∘ l₃) ≡ (l₁ ∘ l₂) ∘ l₃
associativity l₁ l₂ l₃ = equal-laws→≡ lemma₁ lemma₂ lemma₃
where
open Lens
lemma₁ = λ a d →
let
f = get l₁
g = get l₂
b = get l₃ a
c = g b
c′ = set l₁ c d
x = get-set l₃ a (set l₂ b c′)
y = get-set l₂ b c′
z = get-set l₁ c d
in
trans (cong f $ trans (cong g x) y) z ≡⟨ cong (λ x → trans x z) (cong-trans f _ y) ⟩
trans (trans (cong f $ cong g x) (cong f y)) z ≡⟨ trans-assoc _ _ z ⟩
trans (cong f $ cong g x) (trans (cong f y) z) ≡⟨ cong (λ x → trans x (trans (cong f y) z)) (cong-∘ f g x) ⟩∎
trans (cong (f ⊚ g) x) (trans (cong f y) z) ∎
lemma₂ = λ a →
let
b = get l₃ a
f = set l₃ a
g = set l₂ b
x = set-get l₁ (get l₂ b)
y = set-get l₂ b
z = set-get l₃ a
in
trans (cong (f ⊚ g) x) (trans (cong f y) z) ≡⟨ sym $ trans-assoc _ _ z ⟩
trans (trans (cong (f ⊚ g) x) (cong f y)) z ≡⟨ cong (λ x → trans (trans x (cong f y)) z) (sym $ cong-∘ f g x) ⟩
trans (trans (cong f (cong g x)) (cong f y)) z ≡⟨ cong (λ x → trans x z) (sym $ cong-trans f _ y) ⟩∎
trans (cong f $ trans (cong g x) y) z ∎
lemma₃ = λ a d₁ d₂ →
let
f = set l₃ a
g = set l₂ (get l₃ a)
h = λ x → set l₁ x d₂
i = get l₂
c₁ = set l₁ (get (l₂ ∘ l₃) a) d₁
c₂ = h (i (get l₃ a))
c₂′ = h (i (get l₃ (set (l₂ ∘ l₃) a c₁)))
c₂″ = h (i (set l₂ (get l₃ a) c₁))
b₁ = g c₁
b₁′ = get l₃ (f b₁)
x = set-set l₃ a b₁ (set l₂ b₁′ c₂′)
y = get-set l₃ a b₁
z = set-set l₂ (get l₃ a) c₁
u = get-set l₂ (get l₃ a) c₁
v = set-set l₁ (get (l₂ ∘ l₃) a) d₁ d₂
c₂′≡c₂″ =
c₂′ ≡⟨ cong (h ⊚ i) y ⟩∎
c₂″ ∎
lemma₁₀ =
trans (sym (cong (h ⊚ i) y)) (cong h (cong i y)) ≡⟨ cong (trans _) (cong-∘ h i y) ⟩
trans (sym (cong (h ⊚ i) y)) (cong (h ⊚ i) y) ≡⟨ trans-symˡ (cong (h ⊚ i) y) ⟩∎
refl _ ∎
lemma₉ =
trans (cong (λ x → set l₂ x c₂′) y) (cong (set l₂ b₁) c₂′≡c₂″) ≡⟨ cong (trans (cong (λ x → set l₂ x c₂′) y))
(cong-∘ (set l₂ b₁) (h ⊚ i) y) ⟩
trans (cong (λ x → set l₂ x (h (i b₁′))) y)
(cong (λ x → set l₂ b₁ (h (i x ))) y) ≡⟨ trans-cong-cong (λ x y → set l₂ x (h (i y))) y ⟩∎
cong (λ x → set l₂ x (h (i x))) y ∎
lemma₈ =
sym (cong (set l₂ b₁) (sym c₂′≡c₂″)) ≡⟨ sym $ cong-sym (set l₂ b₁) (sym c₂′≡c₂″) ⟩
cong (set l₂ b₁) (sym (sym c₂′≡c₂″)) ≡⟨ cong (cong (set l₂ b₁)) (sym-sym c₂′≡c₂″) ⟩∎
cong (set l₂ b₁) c₂′≡c₂″ ∎
lemma₇ =
trans (cong g (sym c₂′≡c₂″)) (cong g (cong h (cong i y))) ≡⟨ sym $ cong-trans g _ (cong h (cong i y)) ⟩
cong g (trans (sym c₂′≡c₂″) (cong h (cong i y))) ≡⟨ cong (cong g) lemma₁₀ ⟩
cong g (refl _) ≡⟨ cong-refl _ ⟩∎
refl _ ∎
lemma₆ =
trans (cong (λ x → set l₂ x c₂′) y)
(trans (cong (set l₂ b₁) c₂′≡c₂″)
(trans (z c₂″) (cong g (sym c₂′≡c₂″)))) ≡⟨ sym $ trans-assoc _ _ (trans _ (cong g (sym c₂′≡c₂″))) ⟩
trans (trans (cong (λ x → set l₂ x c₂′) y)
(cong (set l₂ b₁) c₂′≡c₂″))
(trans (z c₂″) (cong g (sym c₂′≡c₂″))) ≡⟨ cong (λ e → trans e (trans (z c₂″) (cong g (sym c₂′≡c₂″)))) lemma₉ ⟩
trans (cong (λ x → set l₂ x (h (i x))) y)
(trans (z c₂″) (cong g (sym c₂′≡c₂″))) ≡⟨ sym $ trans-assoc _ _ (cong g (sym c₂′≡c₂″)) ⟩∎
trans (trans (cong (λ x → set l₂ x (h (i x))) y) (z c₂″))
(cong g (sym c₂′≡c₂″)) ∎
lemma₅ =
z c₂′ ≡⟨ sym $ dcong z (sym c₂′≡c₂″) ⟩
subst (λ x → set l₂ b₁ x ≡ g x) (sym c₂′≡c₂″) (z c₂″) ≡⟨ subst-in-terms-of-trans-and-cong {f = set l₂ b₁} {g = g} {x≡y = sym c₂′≡c₂″} ⟩
trans (sym (cong (set l₂ b₁) (sym c₂′≡c₂″)))
(trans (z c₂″) (cong g (sym c₂′≡c₂″))) ≡⟨ cong (λ e → trans e (trans (z c₂″) (cong g (sym c₂′≡c₂″)))) lemma₈ ⟩∎
trans (cong (set l₂ b₁) c₂′≡c₂″)
(trans (z c₂″) (cong g (sym c₂′≡c₂″))) ∎
lemma₄ =
trans (trans (cong (λ x → set l₂ x c₂′) y) (z c₂′))
(cong g (cong h (cong i y))) ≡⟨ cong (λ e → trans (trans (cong (λ x → set l₂ x c₂′) y) e)
(cong g (cong h (cong i y))))
lemma₅ ⟩
trans (trans (cong (λ x → set l₂ x c₂′) y)
(trans (cong (set l₂ b₁) c₂′≡c₂″)
(trans (z c₂″) (cong g (sym c₂′≡c₂″)))))
(cong g (cong h (cong i y))) ≡⟨ cong (λ e → trans e (cong g (cong h (cong i y)))) lemma₆ ⟩
trans (trans (trans (cong (λ x → set l₂ x (h (i x))) y)
(z c₂″))
(cong g (sym c₂′≡c₂″)))
(cong g (cong h (cong i y))) ≡⟨ trans-assoc _ _ (cong g (cong h (cong i y))) ⟩
trans (trans (cong (λ x → set l₂ x (h (i x))) y) (z c₂″))
(trans (cong g (sym c₂′≡c₂″))
(cong g (cong h (cong i y)))) ≡⟨ cong (trans (trans _ (z c₂″))) lemma₇ ⟩
trans (trans (cong (λ x → set l₂ x (h (i x))) y) (z c₂″))
(refl _) ≡⟨ trans-reflʳ _ ⟩∎
trans (cong (λ x → set l₂ x (h (i x))) y) (z c₂″) ∎
lemma₃ =
cong g (trans (cong h (trans (cong i y) u)) v) ≡⟨ cong (λ e → cong g (trans e v)) (cong-trans h _ u) ⟩
cong g (trans (trans (cong h (cong i y)) (cong h u)) v) ≡⟨ cong (cong g) (trans-assoc _ _ v) ⟩
cong g (trans (cong h (cong i y)) (trans (cong h u) v)) ≡⟨ cong-trans g _ (trans _ v) ⟩∎
trans (cong g (cong h (cong i y)))
(cong g (trans (cong h u) v)) ∎
lemma₂ =
trans (trans (cong (λ x → set l₂ x c₂′) y) (z c₂′))
(cong g (trans (cong h (trans (cong i y) u)) v)) ≡⟨ cong (trans (trans _ (z c₂′))) lemma₃ ⟩
trans (trans (cong (λ x → set l₂ x c₂′) y) (z c₂′))
(trans (cong g (cong h (cong i y)))
(cong g (trans (cong h u) v))) ≡⟨ sym $ trans-assoc _ _ (cong g (trans _ v)) ⟩
trans (trans (trans (cong (λ x → set l₂ x c₂′) y) (z c₂′))
(cong g (cong h (cong i y))))
(cong g (trans (cong h u) v)) ≡⟨ cong (λ e → trans e (cong g (trans (cong h u) v))) lemma₄ ⟩
trans (trans (cong (λ x → set l₂ x (h (i x))) y) (z c₂″))
(cong g (trans (cong h u) v)) ≡⟨ trans-assoc _ _ (cong g (trans _ v)) ⟩∎
trans (cong (λ x → set l₂ x (h (i x))) y)
(trans (z c₂″) (cong g (trans (cong h u) v))) ∎
lemma₁ =
trans (cong f (trans (cong (λ x → set l₂ x c₂′) y) (z c₂′)))
(cong (f ⊚ g) (trans (cong h (trans (cong i y) u)) v)) ≡⟨ cong (λ e → trans
(cong f (trans (cong (λ x → set l₂ x c₂′) y) (z c₂′))) e)
(sym $ cong-∘ f g (trans _ v)) ⟩
trans (cong f (trans (cong (λ x → set l₂ x c₂′) y) (z c₂′)))
(cong f (cong g (trans (cong h (trans (cong i y) u))
v))) ≡⟨ sym $ cong-trans f (trans _ (z c₂′)) (cong g (trans _ v)) ⟩
cong f (trans (trans (cong (λ x → set l₂ x c₂′) y) (z c₂′))
(cong g (trans (cong h (trans (cong i y) u))
v))) ≡⟨ cong (cong f) lemma₂ ⟩
cong f (trans (cong (λ x → set l₂ x (h (i x))) y)
(trans (z c₂″) (cong g (trans (cong h u) v)))) ≡⟨ cong-trans _ _ _ ⟩
trans (cong f (cong (λ x → set l₂ x (h (i x))) y))
(cong f (trans (z c₂″) (cong g (trans (cong h u) v)))) ≡⟨ cong₂ (λ p q → trans p (cong f (trans (z c₂″) q)))
(cong-∘ _ _ _)
(trans (cong-trans _ _ _) $
cong (flip trans _) $
cong-∘ _ _ _) ⟩∎
trans (cong (λ x → f (set l₂ x (h (i x)))) y)
(cong f (trans (z c₂″) (trans (cong (g ⊚ h) u) (cong g v)))) ∎
in
trans (trans x (trans (cong (λ x → f (set l₂ x c₂′)) y)
(cong f (z c₂′))))
(trans (cong (f ⊚ g ⊚ h) (trans (cong i y) u))
(cong (f ⊚ g) v)) ≡⟨ cong₂ (λ p q → trans (trans x p) q)
(trans (cong (flip trans _) $ sym $ cong-∘ _ _ _) $
sym $ cong-trans _ _ _)
(trans (cong (flip trans _) $ sym $ cong-∘ _ _ _) $
sym $ cong-trans _ _ _) ⟩
trans (trans x (cong f (trans (cong (λ x → set l₂ x c₂′) y)
(z c₂′))))
(cong (f ⊚ g) (trans (cong h (trans (cong i y) u)) v)) ≡⟨ trans-assoc _ _ _ ⟩
trans x (trans (cong f (trans (cong (λ x → set l₂ x c₂′) y)
(z c₂′)))
(cong (f ⊚ g)
(trans (cong h (trans (cong i y) u)) v))) ≡⟨ cong (trans x) lemma₁ ⟩∎
trans x (trans (cong (λ x → f (set l₂ x (h (i x)))) y)
(cong f (trans (z c₂″) (trans (cong (g ⊚ h) u)
(cong g v))))) ∎
-- Every lens of type Lens A A that satisfies a certain right
-- identity law is equal to the identity lens.
id-unique :
(id′ : Lens A A) →
((l : Lens A A) → l ∘ id′ ≡ l) →
id′ ≡ id
id-unique id′ right-identity =
id′ ≡⟨ sym $ left-identity _ ⟩
id ∘ id′ ≡⟨ right-identity _ ⟩∎
id ∎
-- An equality characterisation lemma that can be used when one of
-- the lenses is the identity.
equality-characterisation-id :
{l : Lens A A} → let open Lens l in
l ≡ id
↔
∃ λ (g : ∀ a → get a ≡ a) →
∃ λ (s : ∀ a b → set a b ≡ b) →
(∀ a b → get-set a b ≡ trans (cong get (s a b)) (g b)) ×
(∀ a → set-get a ≡ trans (s a (get a)) (g a)) ×
(∀ a b₁ b₂ →
trans (set-set a b₁ b₂) (s a b₂) ≡
cong (λ set → set (set a b₁) b₂) (⟨ext⟩ (⟨ext⟩ ⊚ s)))
equality-characterisation-id {l = l} =
l ≡ id ↝⟨ equality-characterisation₄ ⟩
(∃ λ (g : ∀ a → get a ≡ a) →
∃ λ (s : ∀ a b → set a b ≡ b) →
(∀ a b →
trans (sym (trans (cong get (s a b)) (g b))) (get-set a b) ≡
refl _) ×
(∀ a →
trans (sym (trans (s a (get a)) (cong P.id (g a))))
(set-get a) ≡
refl _) ×
(∀ a b₁ b₂ →
trans (set-set a b₁ b₂) (s a b₂) ≡
trans (cong (λ set → set (set a b₁) b₂) (⟨ext⟩ (⟨ext⟩ ⊚ s)))
(refl _))) ↝⟨ (∃-cong λ g → ∃-cong λ _ → ∃-cong λ _ →
(∀-cong ext λ _ →
≡⇒↝ _ $ cong (λ eq → trans (sym (trans _ eq)) (set-get _) ≡ _) $ sym $
cong-id (g _))
×-cong
∀-cong ext λ _ → ∀-cong ext λ _ → ∀-cong ext λ _ →
≡⇒↝ _ $ cong (_ ≡_) $ trans-reflʳ _) ⟩
(∃ λ (g : ∀ a → get a ≡ a) →
∃ λ (s : ∀ a b → set a b ≡ b) →
(∀ a b →
trans (sym (trans (cong get (s a b)) (g b))) (get-set a b) ≡
refl _) ×
(∀ a →
trans (sym (trans (s a (get a)) (g a))) (set-get a) ≡
refl _) ×
(∀ a b₁ b₂ →
trans (set-set a b₁ b₂) (s a b₂) ≡
cong (λ set → set (set a b₁) b₂) (⟨ext⟩ (⟨ext⟩ ⊚ s)))) ↝⟨ (∃-cong λ g → ∃-cong λ s →
(∀-cong ext λ _ → ∀-cong ext λ _ →
≡-comm F.∘ ≡⇒↝ _ (cong (_≡ _) $ trans-reflʳ _) F.∘
≡⇒↝ _ (sym $ [trans≡]≡[≡trans-symˡ] _ _ _) F.∘ ≡-comm)
×-cong
(∀-cong ext λ _ →
≡-comm F.∘ ≡⇒↝ _ (cong (_≡ _) $ trans-reflʳ _) F.∘
≡⇒↝ _ (sym $ [trans≡]≡[≡trans-symˡ] _ _ _) F.∘ ≡-comm)
×-cong
F.id) ⟩□
(∃ λ (g : ∀ a → get a ≡ a) →
∃ λ (s : ∀ a b → set a b ≡ b) →
(∀ a b → get-set a b ≡ trans (cong get (s a b)) (g b)) ×
(∀ a → set-get a ≡ trans (s a (get a)) (g a)) ×
(∀ a b₁ b₂ →
trans (set-set a b₁ b₂) (s a b₂) ≡
cong (λ set → set (set a b₁) b₂) (⟨ext⟩ (⟨ext⟩ ⊚ s)))) □
where
open Lens l
-- A lemma that can be used to show that a lens with a constant
-- setter (such as the ones produced by getter-equivalence→lens
-- below) is equal to the identity lens.
constant-setter→≡id :
{l′ : ∃ λ (get : A → A) →
∃ λ (set : A → A) →
(A → ∀ a → get (set a) ≡ a) ×
(∀ a → set (get a) ≡ a) ×
(A → A → ∀ a → set a ≡ set a)} →
let l = _↔_.from Lens-as-Σ (Σ-map P.id (Σ-map const P.id) l′)
set = proj₁ (proj₂ l′)
open Lens l hiding (set)
in
(∃ λ (g : ∀ a → get a ≡ a) →
∃ λ (s : ∀ a → set a ≡ a) →
(∀ a₁ a₂ → get-set a₁ a₂ ≡ trans (cong get (s a₂)) (g a₂)) ×
(∀ a → set-get a ≡ trans (s (get a)) (g a)) ×
(∀ a a₁ a₂ → set-set a a₁ a₂ ≡ refl _)) →
l ≡ id
constant-setter→≡id {A = A} {l′ = l′} =
(∃ λ (g : ∀ a → get a ≡ a) →
∃ λ (s : ∀ a → set a ≡ a) →
(∀ a₁ a₂ → get-set a₁ a₂ ≡ trans (cong get (s a₂)) (g a₂)) ×
(∀ a → set-get a ≡ trans (s (get a)) (g a)) ×
(∀ a a₁ a₂ → set-set a a₁ a₂ ≡ refl _)) ↝⟨ (Σ-map P.id $ Σ-map P.id λ {s} → Σ-map P.id $ Σ-map P.id λ hyp a a₁ a₂ →
trans (set-set a a₁ a₂) (s a₂) ≡⟨ cong (λ eq → trans eq (s a₂)) $ hyp _ _ _ ⟩
trans (refl _) (s a₂) ≡⟨ trans-reflˡ (s _) ⟩∎
s a₂ ∎) ⟩
(∃ λ (g : ∀ a → get a ≡ a) →
∃ λ (s : ∀ a → set a ≡ a) →
(∀ a₁ a₂ → get-set a₁ a₂ ≡ trans (cong get (s a₂)) (g a₂)) ×
(∀ a → set-get a ≡ trans (s (get a)) (g a)) ×
(∀ a a₁ a₂ → trans (set-set a a₁ a₂) (s a₂) ≡ s a₂)) ↔⟨ (∃-cong λ _ → ∃-cong λ s → ∃-cong λ _ → ∃-cong λ _ →
∀-cong ext λ a → ∀-cong ext λ a₁ → ∀-cong ext λ a₂ →
≡⇒↝ equivalence $ cong (trans _ (s _) ≡_) (
s a₂ ≡⟨ sym $ cong-ext s ⟩
cong (λ set → set a₂) (⟨ext⟩ s) ≡⟨ sym $ cong-∘ _ _ (⟨ext⟩ s) ⟩
cong (λ set → set (set a a₁) a₂) (cong const (⟨ext⟩ s)) ≡⟨ cong (cong (λ set → set (set a a₁) a₂)) $ sym $
ext-const (⟨ext⟩ s) ⟩∎
cong (λ set → set (set a a₁) a₂) (⟨ext⟩ λ _ → ⟨ext⟩ s) ∎)) ⟩
(∃ λ (g : ∀ a → get a ≡ a) →
∃ λ (s : ∀ a → set a ≡ a) →
(∀ a₁ a₂ → get-set a₁ a₂ ≡ trans (cong get (s a₂)) (g a₂)) ×
(∀ a → set-get a ≡ trans (s (get a)) (g a)) ×
(∀ a a₁ a₂ →
trans (set-set a a₁ a₂) (s a₂) ≡
cong (λ set → set (set a a₁) a₂) (⟨ext⟩ λ _ → ⟨ext⟩ s))) ↝⟨ Σ-map P.id (Σ-map const P.id) ⟩
(∃ λ (g : ∀ a → get a ≡ a) →
∃ λ (s : A → ∀ a → set a ≡ a) →
(∀ a₁ a₂ → get-set a₁ a₂ ≡ trans (cong get (s a₁ a₂)) (g a₂)) ×
(∀ a → set-get a ≡ trans (s a (get a)) (g a)) ×
(∀ a a₁ a₂ →
trans (set-set a a₁ a₂) (s a a₂) ≡
cong (λ set → set (set a a₁) a₂) (⟨ext⟩ (⟨ext⟩ ⊚ s)))) ↔⟨ inverse equality-characterisation-id ⟩□
l″ ≡ id □
where
l″ = _↔_.from Lens-as-Σ (Σ-map P.id (Σ-map const P.id) l′)
set = proj₁ (proj₂ l′)
open Lens l″ hiding (set)
-- An identity function for lenses for which the forward direction
-- is an equivalence.
--
-- Note that the setter of the resulting lens is definitionally
-- equal to a constant function returning the right-to-left
-- direction of the equivalence.
--
-- Note also that two proofs, set-get and set-set, have been
-- "obfuscated". They could have been shorter, but then it might not
-- have been possible to prove getter-equivalence→lens≡.
getter-equivalence→lens :
(l : Lens A B) →
Is-equivalence (Lens.get l) →
Lens A B
getter-equivalence→lens l is-equiv = record
{ get = to
; set = const from
; get-set = const right-inverse-of
; set-get = λ a →
from (to a) ≡⟨ cong from (sym (get-set a (to a))) ⟩
from (get (set a (to a))) ≡⟨⟩
from (to (set a (get a))) ≡⟨ cong (from ⊚ to) (set-get a) ⟩
from (to a) ≡⟨ left-inverse-of _ ⟩∎
a ∎
; set-set = λ a b₁ b₂ →
let s = from≡set l is-equiv in
from b₂ ≡⟨ cong (λ set → set (set a b₁) b₂) (⟨ext⟩ (⟨ext⟩ ⊚ s)) ⟩
set (set a b₁) b₂ ≡⟨ set-set a b₁ b₂ ⟩
set a b₂ ≡⟨ sym (s a b₂) ⟩∎
from b₂ ∎
}
where
A≃B = Eq.⟨ _ , is-equiv ⟩
open _≃_ A≃B
open Lens l
-- The function getter-equivalence→lens returns its input.
getter-equivalence→lens≡ :
∀ (l : Lens A B) is-equiv →
getter-equivalence→lens l is-equiv ≡ l
getter-equivalence→lens≡ l is-equiv =
_↔_.from equality-characterisation₄
( g
, s
, lemma₁
, lemma₂
, lemma₃
)
where
open Lens
A≃B = Eq.⟨ get l , is-equiv ⟩
open _≃_ A≃B
l′ = getter-equivalence→lens l is-equiv
g = λ _ → refl _
s = from≡set l is-equiv
lemma₁ = λ a b →
let lem =
cong (get l) (s a b) ≡⟨⟩
cong (get l)
(trans (cong from (sym (get-set l a b)))
(left-inverse-of _)) ≡⟨ cong-trans _ _ (left-inverse-of _) ⟩
trans (cong (get l)
(cong from (sym (get-set l a b))))
(cong (get l) (left-inverse-of _)) ≡⟨ cong₂ trans
(cong-∘ _ _ (sym (get-set l a b)))
(left-right-lemma _) ⟩∎
trans (cong (get l ⊚ from) (sym (get-set l a b)))
(right-inverse-of _) ∎
in
trans (sym (trans (cong (get l) (s a b))
(g (set l a b))))
(get-set l′ a b) ≡⟨⟩
trans (sym (trans (cong (get l) (s a b)) (refl _)))
(right-inverse-of _) ≡⟨ cong (λ eq → trans (sym eq) (right-inverse-of _)) $
trans-reflʳ _ ⟩
trans (sym (cong (get l) (s a b)))
(right-inverse-of _) ≡⟨ cong (λ eq → trans (sym eq) (right-inverse-of _)) lem ⟩
trans (sym (trans (cong (get l ⊚ from)
(sym (get-set l a b)))
(right-inverse-of _)))
(right-inverse-of _) ≡⟨ elim¹
(λ eq → trans (sym (trans (cong (get l ⊚ from) (sym eq))
(right-inverse-of _)))
(right-inverse-of _) ≡ eq) (
trans (sym (trans (cong (get l ⊚ from) (sym (refl _)))
(right-inverse-of _)))
(right-inverse-of _) ≡⟨ cong (λ eq → trans (sym (trans (cong (get l ⊚ from) eq) _)) _)
sym-refl ⟩
trans (sym (trans (cong (get l ⊚ from) (refl _))
(right-inverse-of _)))
(right-inverse-of _) ≡⟨ cong (λ eq → trans (sym (trans eq _)) _) $
cong-refl _ ⟩
trans (sym (trans (refl _) (right-inverse-of _)))
(right-inverse-of _) ≡⟨ cong (λ eq → trans (sym eq) (right-inverse-of _)) $
trans-reflˡ (right-inverse-of _) ⟩
trans (sym (right-inverse-of _))
(right-inverse-of _) ≡⟨ trans-symˡ (right-inverse-of _) ⟩∎
refl _ ∎)
_ ⟩∎
get-set l a b ∎
lemma₂ = λ a →
trans (sym (trans (s a (get l a)) (cong (set l a) (g a))))
(set-get l′ a) ≡⟨⟩
trans (sym (trans (s a (get l a)) (cong (set l a) (refl _))))
(set-get l′ a) ≡⟨ cong (λ eq → trans (sym (trans (s a (get l a)) eq)) (set-get l′ a)) $
cong-refl _ ⟩
trans (sym (trans (s a (get l a)) (refl _))) (set-get l′ a) ≡⟨ cong (λ eq → trans (sym eq) (set-get l′ a)) $
trans-reflʳ _ ⟩
trans (sym (s a (get l a))) (set-get l′ a) ≡⟨⟩
trans (sym (trans (cong from (sym (get-set l a (get l a))))
(left-inverse-of _)))
(trans (cong from (sym (get-set l a (get l a))))
(trans (cong (from ⊚ get l) (set-get l a))
(left-inverse-of _))) ≡⟨ cong (λ eq → trans (sym (trans
(cong from (sym (get-set l a (get l a))))
(left-inverse-of _)))
(trans (cong from (sym (get-set l a (get l a)))) eq)) $
elim¹
(λ eq → trans (cong (from ⊚ get l) eq) (left-inverse-of _) ≡
trans (left-inverse-of _) eq)
(
trans (cong (from ⊚ get l) (refl _))
(left-inverse-of (set l a (get l a))) ≡⟨ cong (flip trans _) $ cong-refl _ ⟩
trans (refl _) (left-inverse-of (set l a (get l a))) ≡⟨ trans-reflˡ _ ⟩
left-inverse-of (set l a (get l a)) ≡⟨ sym $ trans-reflʳ _ ⟩∎
trans (left-inverse-of (set l a (get l a))) (refl _) ∎)
(set-get l a) ⟩
trans (sym (trans (cong from
(sym (get-set l a (get l a))))
(left-inverse-of _)))
(trans (cong from (sym (get-set l a (get l a))))
(trans (left-inverse-of _) (set-get l a))) ≡⟨ cong (trans _) $ sym $
trans-assoc _ _ (set-get l a) ⟩
trans (sym (trans (cong from
(sym (get-set l a (get l a))))
(left-inverse-of _)))
(trans (trans (cong from (sym (get-set l a (get l a))))
(left-inverse-of _))
(set-get l a)) ≡⟨ trans-sym-[trans] _ _ ⟩∎
set-get l a ∎
lemma₃ = λ a b₁ b₂ →
trans (set-set l′ a b₁ b₂) (s a b₂) ≡⟨⟩
trans (trans (cong (λ set → set (set a b₁) b₂)
(⟨ext⟩ (⟨ext⟩ ⊚ s)))
(trans (set-set l a b₁ b₂)
(sym (s a b₂))))
(s a b₂) ≡⟨ cong (λ eq → trans eq (s a b₂)) $ sym $
trans-assoc _ _ (sym (s a b₂)) ⟩
trans (trans (trans (cong (λ set → set (set a b₁) b₂)
(⟨ext⟩ (⟨ext⟩ ⊚ s)))
(set-set l a b₁ b₂))
(sym (s a b₂)))
(s a b₂) ≡⟨ trans-[trans-sym]- _ (s a b₂) ⟩∎
trans (cong (λ set → set (set a b₁) b₂) (⟨ext⟩ (⟨ext⟩ ⊚ s)))
(set-set l a b₁ b₂) ∎
------------------------------------------------------------------------
-- Some existence results
-- The lenses bad a and id {A = ↑ a 𝕊¹} have equal setters, and their
-- getters are equivalences, but they are not equal (assuming
-- univalence).
equal-setters-and-equivalences-as-getters-but-not-equal :
Univalence lzero →
let l₁ = bad a
l₂ = id {A = ↑ a 𝕊¹}
in
Is-equivalence (Lens.get l₁) ×
Is-equivalence (Lens.get l₂) ×
Lens.set l₁ ≡ Lens.set l₂ ×
l₁ ≢ l₂
equal-setters-and-equivalences-as-getters-but-not-equal {a = ℓa} univ =
let is-equiv , not-coherent , _ =
getter-equivalence-but-not-coherent univ
in
is-equiv
, _≃_.is-equivalence F.id
, refl _
, (bad ℓa ≡ id ↝⟨ (λ eq → subst (λ l → ∀ a → cong (get l) (set-get l a) ≡
get-set l a (get l a))
(sym eq)
(λ _ → cong-refl _)) ⟩
(∀ a → cong (get (bad ℓa)) (set-get (bad ℓa) a) ≡
get-set (bad ℓa) a (get (bad ℓa) a)) ↝⟨ not-coherent ⟩□
⊥ □)
where
open Lens
-- There is in general no split surjection from equivalences to lenses
-- with getters that are equivalences, if the right-to-left direction
-- of the split surjection is required to return the lens's getter
-- plus some proof (assuming univalence).
¬-≃-↠-Σ-Lens-Is-equivalence-get :
Univalence lzero →
¬ ∃ λ (f : (↑ a 𝕊¹ ≃ ↑ a 𝕊¹) ↠
(∃ λ (l : Lens (↑ a 𝕊¹) (↑ a 𝕊¹)) →
Is-equivalence (Lens.get l))) →
∀ p → _≃_.to (_↠_.from f p) ≡ Lens.get (proj₁ p)
¬-≃-↠-Σ-Lens-Is-equivalence-get {a = a} univ =
let is-equiv₁ , is-equiv₂ , _ , bad≢id =
equal-setters-and-equivalences-as-getters-but-not-equal univ
in
λ (f , hyp) → $⟨ refl _ ⟩
Lens.get (bad a) ≡ Lens.get id ↝⟨ (λ eq → trans (hyp _) (trans eq (sym (hyp _)))) ⟩
_≃_.to (_↠_.from f (bad a , is-equiv₁)) ≡
_≃_.to (_↠_.from f (id , is-equiv₂)) ↝⟨ Eq.lift-equality ext ⟩
_↠_.from f (bad a , is-equiv₁) ≡
_↠_.from f (id , is-equiv₂) ↝⟨ _↠_.to (Surjection.↠-≡ f) ⟩
(bad a , is-equiv₁) ≡ (id , is-equiv₂) ↝⟨ cong proj₁ ⟩
bad a ≡ id ↝⟨ bad≢id ⟩□
⊥ □
-- There is in general no equivalence from equivalences to lenses with
-- getters that are equivalences, if the right-to-left direction of
-- the equivalence is required to return the lens's getter plus some
-- proof (assuming univalence).
¬-≃-≃-Σ-Lens-Is-equivalence-get :
Univalence lzero →
¬ ∃ λ (f : (↑ a 𝕊¹ ≃ ↑ a 𝕊¹) ≃
(∃ λ (l : Lens (↑ a 𝕊¹) (↑ a 𝕊¹)) → Is-equivalence (Lens.get l))) →
∀ p → _≃_.to (_≃_.from f p) ≡ Lens.get (proj₁ p)
¬-≃-≃-Σ-Lens-Is-equivalence-get {a = a} univ =
(∃ λ (f : (↑ a 𝕊¹ ≃ ↑ a 𝕊¹) ≃
(∃ λ (l : Lens (↑ a 𝕊¹) (↑ a 𝕊¹)) →
Is-equivalence (Lens.get l))) →
∀ p → _≃_.to (_≃_.from f p) ≡ Lens.get (proj₁ p)) ↝⟨ Σ-map _≃_.surjection P.id ⟩
(∃ λ (f : (↑ a 𝕊¹ ≃ ↑ a 𝕊¹) ↠
(∃ λ (l : Lens (↑ a 𝕊¹) (↑ a 𝕊¹)) →
Is-equivalence (Lens.get l))) →
∀ p → _≃_.to (_↠_.from f p) ≡ Lens.get (proj₁ p)) ↝⟨ ¬-≃-↠-Σ-Lens-Is-equivalence-get univ ⟩□
⊥ □
-- The lemma ≃Σ∥set⁻¹∥× does not hold in general if the requirement
-- that A is a set is dropped (assuming univalence).
--
-- I proved this together with Paolo Capriotti.
--
-- (The lemma does not actually use the univalence argument, but
-- univalence is used by Circle.𝕊¹≄𝕊¹×𝕊¹.)
≄Σ∥set⁻¹∥× :
Univalence lzero →
¬ ({A B : Type a} (l : Lens A B) →
A ≃ ((∃ λ (f : B → A) → ∥ Lens.set l ⁻¹ f ∥) × B))
≄Σ∥set⁻¹∥× {a = a} _ =
({A B : Type a} (l : Lens A B) →
A ≃ ((∃ λ (f : B → A) → ∥ Lens.set l ⁻¹ f ∥) × B)) ↝⟨ (λ hyp → hyp) ⟩
((l : Lens (↑ a 𝕊¹) (↑ a 𝕊¹)) →
↑ a 𝕊¹ ≃ ((∃ λ (f : ↑ a 𝕊¹ → ↑ a 𝕊¹) → ∥ Lens.set l ⁻¹ f ∥) × ↑ a 𝕊¹)) ↝⟨ _$ id ⟩
↑ a 𝕊¹ ≃ ((∃ λ (f : ↑ a 𝕊¹ → ↑ a 𝕊¹) → ∥ const P.id ⁻¹ f ∥) × ↑ a 𝕊¹) ↝⟨ lemma ⟩
𝕊¹ ≃ (𝕊¹ × 𝕊¹) ↝⟨ 𝕊¹≄𝕊¹×𝕊¹ ⟩□
⊥ □
where
open Circle
open Int
lemma = λ hyp →
𝕊¹ ↔⟨ inverse Bijection.↑↔ ⟩
↑ a 𝕊¹ ↝⟨ hyp ⟩
(∃ λ (f : ↑ a 𝕊¹ → ↑ a 𝕊¹) → ∥ const P.id ⁻¹ f ∥) × ↑ a 𝕊¹ ↔⟨⟩
(∃ λ (f : ↑ a 𝕊¹ → ↑ a 𝕊¹) → ∥ ↑ a 𝕊¹ × P.id ≡ f ∥) × ↑ a 𝕊¹ ↝⟨ (×-cong₁ λ _ → ∃-cong λ _ → T.∥∥-cong-⇔ $
record { to = proj₂; from = λ eq → lift base , eq }) ⟩
(∃ λ (f : ↑ a 𝕊¹ → ↑ a 𝕊¹) → ∥ P.id ≡ f ∥) × ↑ a 𝕊¹ ↝⟨ (Σ-cong (→-cong ext Bijection.↑↔ Bijection.↑↔) λ _ → T.∥∥-cong $
inverse $ Eq.≃-≡ (Eq.↔⇒≃ $ →-cong ext Bijection.↑↔ Bijection.↑↔))
×-cong
Eq.↔⇒≃ Bijection.↑↔ ⟩
(∃ λ (f : 𝕊¹ → 𝕊¹) → ∥ P.id ≡ f ∥) × 𝕊¹ ↝⟨ (×-cong₁ λ _ →
Σ-cong 𝕊¹→𝕊¹≃𝕊¹×ℤ λ f →
T.∥∥-cong (
P.id ≡ f ↝⟨ inverse $ Eq.≃-≡ 𝕊¹→𝕊¹≃𝕊¹×ℤ ⟩
_≃_.to 𝕊¹→𝕊¹≃𝕊¹×ℤ P.id ≡ _≃_.to 𝕊¹→𝕊¹≃𝕊¹×ℤ f ↝⟨ ≡⇒≃ $ cong (_≡ _≃_.to 𝕊¹→𝕊¹≃𝕊¹×ℤ f) 𝕊¹→𝕊¹≃𝕊¹×ℤ-id ⟩
(base , + 1) ≡ _≃_.to 𝕊¹→𝕊¹≃𝕊¹×ℤ f ↔⟨ ≡-comm ⟩□
_≃_.to 𝕊¹→𝕊¹≃𝕊¹×ℤ f ≡ (base , + 1) □)) ⟩
(∃ λ (p : 𝕊¹ × ℤ) → ∥ p ≡ (base , + 1) ∥) × 𝕊¹ ↔⟨ (×-cong₁ λ _ → ∃-cong λ _ → inverse $
T.∥∥-cong ≡×≡↔≡ F.∘ T.∥∥×∥∥↔∥×∥) ⟩
(∃ λ ((x , i) : 𝕊¹ × ℤ) → ∥ x ≡ base ∥ × ∥ i ≡ + 1 ∥) × 𝕊¹ ↔⟨ (×-cong₁ λ _ →
Σ-assoc F.∘
(∃-cong λ _ → ∃-comm) F.∘
inverse Σ-assoc) ⟩
((∃ λ x → ∥ x ≡ base ∥) × (∃ λ i → ∥ i ≡ + 1 ∥)) × 𝕊¹ ↔⟨ (×-cong₁ λ _ →
(drop-⊤-right λ _ →
T.inhabited⇒∥∥↔⊤ $ all-points-on-the-circle-are-merely-equal _)
×-cong
∃-cong λ _ → T.∥∥↔ ℤ-set) ⟩
(𝕊¹ × (∃ λ i → i ≡ + 1)) × 𝕊¹ ↔⟨ (×-cong₁ λ _ → drop-⊤-right λ _ → _⇔_.to contractible⇔↔⊤ $
singleton-contractible _) ⟩□
𝕊¹ × 𝕊¹ □
------------------------------------------------------------------------
-- Isomorphisms expressed using lens quasi-inverses
private
module B {a} =
Bi-invertibility
equality-with-J (Type a) Lens id _∘_
module BM {a} =
B.More {a = a} left-identity right-identity associativity
-- A form of isomorphism between types, expressed using lenses.
open B public
using ()
renaming (_≅_ to _≅_; Has-quasi-inverse to Has-quasi-inverse)
-- An equality characterisation lemma for A ≅ B that applies when A is
-- a set.
equality-characterisation-for-sets-≅ :
let open Lens in
{f₁@(l₁₁ , _) f₂@(l₁₂ , _) : A ≅ B} →
Is-set A →
f₁ ≡ f₂ ↔ set l₁₁ ≡ set l₁₂
equality-characterisation-for-sets-≅
{f₁ = f₁@(l₁₁ , _)} {f₂ = f₂@(l₁₂ , _)} A-set =
f₁ ≡ f₂ ↔⟨ BM.equality-characterisation-≅-domain (lens-preserves-h-level-of-domain 1 A-set) _ _ ⟩
l₁₁ ≡ l₁₂ ↝⟨ equality-characterisation-for-sets A-set ⟩□
set l₁₁ ≡ set l₁₂ □
where
open Lens
-- There is a split surjection from A ≅ B to A ≃ B.
≅↠≃ : (A ≅ B) ↠ (A ≃ B)
≅↠≃ {A = A} {B = B} = record
{ logical-equivalence = record
{ to = λ (l₁ , l₂ , eq₁ , eq₂) → Eq.↔⇒≃ (record
{ surjection = record
{ logical-equivalence = record
{ to = get l₁
; from = get l₂
}
; right-inverse-of = ext⁻¹ $
getters-equal-if-setters-equal (l₁ ∘ l₂) id
(cong set eq₁)
}
; left-inverse-of = ext⁻¹ $
getters-equal-if-setters-equal (l₂ ∘ l₁) id
(cong set eq₂)
})
; from = λ A≃B → ≃→lens A≃B
, ≃→lens (inverse A≃B)
, lemma A≃B
, (≃→lens (inverse A≃B) ∘ ≃→lens A≃B ≡⟨ cong (λ A≃B′ → ≃→lens (inverse A≃B) ∘ ≃→lens A≃B′) $
sym $ Eq.inverse-involutive ext A≃B ⟩
≃→lens (inverse A≃B) ∘
≃→lens (inverse $ inverse A≃B) ≡⟨ lemma (inverse A≃B) ⟩∎
id ∎)
}
; right-inverse-of = λ _ → Eq.lift-equality ext (refl _)
}
where
open Lens
lemma :
(C≃D : C ≃ D) → ≃→lens C≃D ∘ ≃→lens (inverse C≃D) ≡ id
lemma C≃D = _↔_.from equality-characterisation₂
( ⟨ext⟩ (_≃_.right-inverse-of C≃D)
, (⟨ext⟩ λ _ → ⟨ext⟩ $ _≃_.right-inverse-of C≃D)
, lemma₁
, lemma₂
, lemma₃
)
where
lemma₁ = λ d₁ d₂ →
let lemma =
cong (λ set → _≃_.to C≃D (_≃_.from C≃D (set d₁ d₂)))
(⟨ext⟩ λ _ → ⟨ext⟩ $ _≃_.right-inverse-of C≃D) ≡⟨ cong (cong (λ set → _≃_.to C≃D (_≃_.from C≃D (set d₁ d₂)))) $
ext-const (⟨ext⟩ $ _≃_.right-inverse-of C≃D) ⟩
cong (λ set → _≃_.to C≃D (_≃_.from C≃D (set d₁ d₂)))
(cong const $ ⟨ext⟩ $ _≃_.right-inverse-of C≃D) ≡⟨ cong-∘ _ _ (⟨ext⟩ $ _≃_.right-inverse-of C≃D) ⟩
cong (λ set → _≃_.to C≃D (_≃_.from C≃D (set d₂)))
(⟨ext⟩ $ _≃_.right-inverse-of C≃D) ≡⟨ sym $ cong-∘ _ _ (⟨ext⟩ $ _≃_.right-inverse-of C≃D) ⟩
cong (_≃_.to C≃D ⊚ _≃_.from C≃D)
(cong (λ set → set d₂)
(⟨ext⟩ $ _≃_.right-inverse-of C≃D)) ≡⟨ cong (cong (_≃_.to C≃D ⊚ _≃_.from C≃D)) $ cong-ext _ ⟩
cong (_≃_.to C≃D ⊚ _≃_.from C≃D)
(_≃_.right-inverse-of C≃D _) ≡⟨ sym $ cong-∘ _ _ (_≃_.right-inverse-of C≃D _) ⟩
cong (_≃_.to C≃D)
(cong (_≃_.from C≃D) (_≃_.right-inverse-of C≃D _)) ≡⟨ cong (cong (_≃_.to C≃D)) $ _≃_.right-left-lemma C≃D _ ⟩∎
cong (_≃_.to C≃D) (_≃_.left-inverse-of C≃D _) ∎
in
trans (sym
(trans (cong (λ set → _≃_.to C≃D (_≃_.from C≃D (set d₁ d₂)))
(⟨ext⟩ λ _ → ⟨ext⟩ $ _≃_.right-inverse-of C≃D))
(cong (λ get → get d₂)
(⟨ext⟩ $ _≃_.right-inverse-of C≃D))))
(trans (cong (_≃_.to C≃D) (_≃_.left-inverse-of C≃D _))
(_≃_.right-inverse-of C≃D _)) ≡⟨ cong₂ (λ p q → trans (sym (trans p q))
(trans (cong (_≃_.to C≃D) (_≃_.left-inverse-of C≃D _))
(_≃_.right-inverse-of C≃D _)))
lemma
(cong-ext _) ⟩
trans (sym
(trans (cong (_≃_.to C≃D) (_≃_.left-inverse-of C≃D _))
(_≃_.right-inverse-of C≃D _)))
(trans (cong (_≃_.to C≃D) (_≃_.left-inverse-of C≃D _))
(_≃_.right-inverse-of C≃D _)) ≡⟨ trans-symˡ (trans _ (_≃_.right-inverse-of C≃D _)) ⟩∎
refl _ ∎
lemma₂ = λ d →
let lemma =
cong (λ set → set d (_≃_.to C≃D (_≃_.from C≃D d)))
(⟨ext⟩ λ _ → ⟨ext⟩ $ _≃_.right-inverse-of C≃D) ≡⟨ cong (cong (λ set → set d (_≃_.to C≃D (_≃_.from C≃D d)))) $
ext-const (⟨ext⟩ $ _≃_.right-inverse-of C≃D) ⟩
cong (λ set → set d (_≃_.to C≃D (_≃_.from C≃D d)))
(cong const $ ⟨ext⟩ $ _≃_.right-inverse-of C≃D) ≡⟨ cong-∘ _ _ (⟨ext⟩ $ _≃_.right-inverse-of C≃D) ⟩
cong (λ set → set (_≃_.to C≃D (_≃_.from C≃D d)))
(⟨ext⟩ $ _≃_.right-inverse-of C≃D) ≡⟨ cong-ext _ ⟩∎
_≃_.right-inverse-of C≃D _ ∎
in
trans (sym
(trans (cong (λ set → set d (_≃_.to C≃D (_≃_.from C≃D d)))
(⟨ext⟩ λ _ → ⟨ext⟩ $ _≃_.right-inverse-of C≃D))
(cong (λ get → get d)
(⟨ext⟩ $ _≃_.right-inverse-of C≃D))))
(trans
(cong (_≃_.to C≃D) (_≃_.left-inverse-of C≃D _))
(_≃_.left-inverse-of (inverse C≃D) _)) ≡⟨ cong₂ (λ p q → trans (sym p) q)
(cong₂ trans lemma (cong-ext _))
(cong₂ trans
(_≃_.left-right-lemma C≃D _)
(Eq.left-inverse-of∘inverse C≃D)) ⟩
trans (sym (trans (_≃_.right-inverse-of C≃D _)
(_≃_.right-inverse-of C≃D _)))
(trans (_≃_.right-inverse-of C≃D _)
(_≃_.right-inverse-of C≃D _)) ≡⟨ trans-symˡ (trans _ (_≃_.right-inverse-of C≃D _)) ⟩∎
refl _ ∎
lemma₃ = λ d d₁ d₂ →
subst (λ set → set (set d d₁) d₂ ≡ set d d₂)
(⟨ext⟩ λ _ → ⟨ext⟩ $ _≃_.right-inverse-of C≃D)
(trans (refl _)
(trans
(cong (λ _ → _≃_.to C≃D (_≃_.from C≃D d₂))
(_≃_.right-inverse-of (inverse C≃D)
(_≃_.from C≃D d₁)))
(cong (_≃_.to C≃D) (refl _)))) ≡⟨ cong (subst (λ set → set (set d d₁) d₂ ≡ set d d₂)
(⟨ext⟩ λ _ → ⟨ext⟩ $ _≃_.right-inverse-of C≃D)) $
trans (trans-reflˡ _) $
trans (cong (flip trans _) $ cong-const _) $
trans (trans-reflˡ _) $
cong-refl _ ⟩
subst (λ set → set (set d d₁) d₂ ≡ set d d₂)
(⟨ext⟩ λ _ → ⟨ext⟩ $ _≃_.right-inverse-of C≃D)
(refl _) ≡⟨ cong (flip (subst (λ set → set (set d d₁) d₂ ≡ set d d₂)) _) $
ext-const (⟨ext⟩ $ _≃_.right-inverse-of C≃D) ⟩
subst (λ set → set (set d d₁) d₂ ≡ set d d₂)
(cong const $ ⟨ext⟩ $ _≃_.right-inverse-of C≃D)
(refl _) ≡⟨ sym $ subst-∘ _ _ _ ⟩
subst (λ set → set d₂ ≡ set d₂)
(⟨ext⟩ $ _≃_.right-inverse-of C≃D)
(refl _) ≡⟨ subst-ext _ _ ⟩
subst (λ set → set ≡ set)
(_≃_.right-inverse-of C≃D d₂)
(refl _) ≡⟨ ≡⇒↝ _ (sym [subst≡]≡[trans≡trans]) (
trans (refl _) (_≃_.right-inverse-of C≃D d₂) ≡⟨ trans-reflˡ _ ⟩
_≃_.right-inverse-of C≃D d₂ ≡⟨ sym $ trans-reflʳ _ ⟩
trans (_≃_.right-inverse-of C≃D d₂) (refl _) ∎) ⟩
refl _ ∎
-- The right-to-left direction of ≅↠≃ maps identity to an isomorphism
-- for which the first projection is the identity.
≅↠≃-id≡id : proj₁ (_↠_.from ≅↠≃ F.id) ≡ id {A = A}
≅↠≃-id≡id = equal-laws→≡
(λ _ _ → refl _)
(λ a →
_≃_.left-inverse-of F.id a ≡⟨ sym $ _≃_.right-left-lemma F.id _ ⟩
cong P.id (_≃_.right-inverse-of F.id a) ≡⟨⟩
cong P.id (refl _) ≡⟨ sym $ cong-id _ ⟩∎
refl _ ∎)
(λ _ _ _ → refl _)
-- If A is a set, then there is an equivalence between A ≃ B and A ≅ B.
≃≃≅ :
Is-set A →
(A ≃ B) ≃ (A ≅ B)
≃≃≅ {A = A} {B = B} A-set = Eq.↔⇒≃ $ inverse (record
{ surjection = ≅↠≃
; left-inverse-of = λ (l₁ , l₂ , eq₁ , eq₂) →
_↔_.from (equality-characterisation-for-sets-≅ A-set) $
⟨ext⟩ λ a → ⟨ext⟩ λ b →
get l₂ b ≡⟨ sym $ ext⁻¹ (ext⁻¹ (cong set eq₂) _) _ ⟩
set l₁ (set l₁ a b)
(set l₂ (get l₁ (set l₁ a b)) (get l₂ b)) ≡⟨ set-set l₁ _ _ _ ⟩
set l₁ a (set l₂ (get l₁ (set l₁ a b)) (get l₂ b)) ≡⟨ cong (λ b′ → set l₁ a (set l₂ b′ (get l₂ b))) $ get-set l₁ _ _ ⟩
set l₁ a (set l₂ b (get l₂ b)) ≡⟨ cong (set l₁ a) $ set-get l₂ _ ⟩∎
set l₁ a b ∎
})
where
open Lens
-- The equivalence maps identity to an isomorphism for which the first
-- projection is the identity.
≃≃≅-id≡id :
(A-set : Is-set A) →
proj₁ (_≃_.to (≃≃≅ A-set) F.id) ≡ id
≃≃≅-id≡id _ = ≅↠≃-id≡id
-- The type Has-quasi-inverse id is not necessarily a proposition
-- (assuming univalence).
--
-- (The lemma does not actually use the univalence argument, but
-- univalence is used by Circle.¬-type-of-refl-propositional.)
Has-quasi-inverse-id-not-proposition :
Univalence lzero →
∃ λ (A : Type a) →
¬ Is-proposition (Has-quasi-inverse (id {A = A}))
Has-quasi-inverse-id-not-proposition _ =
X
, (Is-proposition (Has-quasi-inverse id) ↝⟨ flip propositional⇒inhabited⇒contractible q ⟩
Contractible (Has-quasi-inverse id) ↝⟨ H-level-cong _ 0 lemma₁ ⟩
Contractible (∃ λ (g : (x : X) → x ≡ x) → _) ↝⟨ flip proj₁-closure 0
(λ g → (λ _ x → sym (g x)) , lemma₂ g , lemma₃ g , lemma₄ g) ⟩
Contractible ((x : X) → x ≡ x) ↝⟨ mono₁ 0 ⟩
Is-proposition ((x : X) → x ≡ x) ↝⟨ ¬-prop ⟩□
⊥ □)
where
X = Erased (proj₁ Circle.¬-type-of-refl-propositional)
¬-prop =
E.Stable-¬
[ Is-proposition ((x : X) → x ≡ x) ↝⟨ H-level-cong _ 1 (Π-cong ext (E.erased E.Erased↔) λ _ → inverse E.≡≃[]≡[]) ⟩
Is-proposition ((x : ↑ _ 𝕊¹) → x ≡ x) ↝⟨ proj₂ Circle.¬-type-of-refl-propositional ⟩□
⊥ □
]
q = id , left-identity _ , right-identity _
lemma₁ =
Has-quasi-inverse id ↝⟨ BM.Has-quasi-inverse≃id≡id-domain q ⟩
id ≡ id ↔⟨ equality-characterisation₄ ⟩□
(∃ λ (g : ∀ x → x ≡ x) →
∃ λ (s : X → ∀ x → x ≡ x) →
(∀ x y →
trans (sym (trans (cong P.id (s x y)) (g y))) (refl _) ≡
refl _) ×
(∀ x →
trans (sym (trans (s x x) (cong P.id (g x)))) (refl _) ≡
refl _) ×
(∀ x y z →
trans (refl _) (s x z) ≡
trans (cong (λ set → set (set x y) z) (⟨ext⟩ (⟨ext⟩ ⊚ s)))
(refl _))) □
lemma₂ : (g : ∀ x → x ≡ x) (x y : X) → _
lemma₂ g x y =
trans (sym (trans (cong P.id (sym (g y))) (g y))) (refl _) ≡⟨ trans-reflʳ _ ⟩
sym (trans (cong P.id (sym (g y))) (g y)) ≡⟨ cong (λ eq → sym (trans eq (g y))) $ sym $ cong-id _ ⟩
sym (trans (sym (g y)) (g y)) ≡⟨ cong sym $ trans-symˡ (g y) ⟩
sym (refl _) ≡⟨ sym-refl ⟩∎
refl _ ∎
lemma₃ : (g : ∀ x → x ≡ x) (x : X) → _
lemma₃ g x =
trans (sym (trans (sym (g x)) (cong P.id (g x)))) (refl _) ≡⟨ trans-reflʳ _ ⟩
sym (trans (sym (g x)) (cong P.id (g x))) ≡⟨ cong (λ eq → sym (trans (sym (g x)) eq)) $ sym $ cong-id (g x) ⟩
sym (trans (sym (g x)) (g x)) ≡⟨ cong sym $ trans-symˡ (g x) ⟩
sym (refl _) ≡⟨ sym-refl ⟩∎
refl _ ∎
lemma₄ : (g : ∀ x → x ≡ x) (x y z : X) → _
lemma₄ g x y z =
trans (refl _) (sym (g z)) ≡⟨ trans-reflˡ (sym (g z)) ⟩
sym (g z) ≡⟨ sym $ cong-ext (sym ⊚ g) ⟩
cong (_$ z) (⟨ext⟩ (sym ⊚ g)) ≡⟨ sym $ cong-∘ _ _ (⟨ext⟩ (sym ⊚ g)) ⟩
cong (λ set → set (set x y) z) (cong const (⟨ext⟩ (sym ⊚ g))) ≡⟨ cong (cong (λ set → set (set x y) z)) $ sym $ ext-const (⟨ext⟩ (sym ⊚ g)) ⟩
cong (λ set → set (set x y) z) (⟨ext⟩ λ _ → ⟨ext⟩ (sym ⊚ g)) ≡⟨ sym $ trans-reflʳ _ ⟩∎
trans (cong (λ set → set (set x y) z) (⟨ext⟩ λ _ → ⟨ext⟩ (sym ⊚ g)))
(refl _) ∎
-- There is not necessarily a split surjection from
-- Is-equivalence (Lens.get l) to Has-quasi-inverse l, if l is a lens
-- between types in the same universe (assuming univalence).
¬Is-equivalence↠Has-quasi-inverse :
Univalence lzero →
¬ ({A B : Type a}
(l : Lens A B) →
Is-equivalence (Lens.get l) ↠ Has-quasi-inverse l)
¬Is-equivalence↠Has-quasi-inverse univ surj =
$⟨ mono₁ 0 ⊤-contractible ⟩
Is-proposition ⊤ ↝⟨ H-level.respects-surjection lemma 1 ⟩
Is-proposition (Has-quasi-inverse id) ↝⟨ proj₂ $ Has-quasi-inverse-id-not-proposition univ ⟩□
⊥ □
where
lemma =
⊤ ↔⟨ inverse $ _⇔_.to contractible⇔↔⊤ $
propositional⇒inhabited⇒contractible
(Eq.propositional ext _)
(_≃_.is-equivalence Eq.id) ⟩
Is-equivalence P.id ↝⟨ surj id ⟩□
Has-quasi-inverse id □
------------------------------------------------------------------------
-- Isomorphisms expressed using bi-invertibility for lenses
-- A form of isomorphism between types, expressed using lenses.
open B public
using ()
renaming (_≊_ to _≊_;
Has-left-inverse to Has-left-inverse;
Has-right-inverse to Has-right-inverse;
Is-bi-invertible to Is-bi-invertible)
open BM public
using ()
renaming (Is-bi-invertible-propositional to
Is-bi-invertible-propositional)
-- An equality characterisation lemma for A ≊ B that applies when A is
-- a set.
equality-characterisation-for-sets-≊ :
let open Lens in
{f₁@(l₁₁ , _) f₂@(l₁₂ , _) : A ≊ B} →
Is-set A →
f₁ ≡ f₂ ↔ set l₁₁ ≡ set l₁₂
equality-characterisation-for-sets-≊
{f₁ = f₁@(l₁₁ , _)} {f₂ = f₂@(l₁₂ , _)} A-set =
f₁ ≡ f₂ ↔⟨ BM.equality-characterisation-≊ _ _ ⟩
l₁₁ ≡ l₁₂ ↝⟨ equality-characterisation-for-sets A-set ⟩□
set l₁₁ ≡ set l₁₂ □
where
open Lens
-- There is a split surjection from A ≊ B to A ≃ B.
≊↠≃ : (A ≊ B) ↠ (A ≃ B)
≊↠≃ = record
{ logical-equivalence = record
{ to = _↠_.to ≅↠≃ ⊚ _↠_.from BM.≅↠≊
; from = _↠_.to BM.≅↠≊ ⊚ _↠_.from ≅↠≃
}
; right-inverse-of = λ _ → Eq.lift-equality ext (refl _)
}
-- The right-to-left direction maps identity to an isomorphism for
-- which the first projection is the identity.
≊↠≃-id≡id :
proj₁ (_↠_.from ≊↠≃ F.id) ≡ id {A = A}
≊↠≃-id≡id = equal-laws→≡
(λ _ _ → refl _)
(λ a →
_≃_.left-inverse-of F.id a ≡⟨ sym $ _≃_.right-left-lemma F.id _ ⟩
cong P.id (_≃_.right-inverse-of F.id a) ≡⟨⟩
cong P.id (refl _) ≡⟨ sym $ cong-id _ ⟩∎
refl _ ∎)
(λ _ _ _ → refl _)
-- If A is a set, then there is an equivalence between A ≊ B and
-- A ≃ B.
≃≃≊ : Is-set A → (A ≃ B) ≃ (A ≊ B)
≃≃≊ {A = A} {B = B} A-set =
A ≃ B ↝⟨ ≃≃≅ A-set ⟩
A ≅ B ↝⟨ inverse $ BM.≊≃≅-domain (lens-preserves-h-level-of-domain 1 A-set) ⟩□
A ≊ B □
-- The equivalence ≃≃≊ maps identity to an isomorphism for which the
-- first projection is the identity.
≃≃≊-id≡id :
(A-set : Is-set A) →
proj₁ (_≃_.to (≃≃≊ A-set) F.id) ≡ id
≃≃≊-id≡id _ = ≊↠≃-id≡id
-- The right-to-left direction of ≃≃≊ maps bi-invertible lenses to
-- their getter functions.
to-from-≃≃≊≡get :
(A-set : Is-set A) (A≊B@(l , _) : A ≊ B) →
_≃_.to (_≃_.from (≃≃≊ A-set) A≊B) ≡ Lens.get l
to-from-≃≃≊≡get _ _ = refl _
-- The getter function of a bi-invertible lens is an equivalence.
Is-bi-invertible→Is-equivalence-get :
(l : Lens A B) →
Is-bi-invertible l → Is-equivalence (Lens.get l)
Is-bi-invertible→Is-equivalence-get l is-bi-inv =
_≃_.is-equivalence (_↠_.to ≊↠≃ (l , is-bi-inv))
-- If the getter function is an equivalence, then the lens is
-- bi-invertible.
Is-equivalence-get→Is-bi-invertible :
(l : Lens A B) →
Is-equivalence (Lens.get l) → Is-bi-invertible l
Is-equivalence-get→Is-bi-invertible {A = A} {B = B} l′ is-equiv =
block λ b →
$⟨ l⁻¹′ b , l∘l⁻¹≡id b , l⁻¹∘l≡id b ⟩
Has-quasi-inverse l ↝⟨ B.Has-quasi-inverse→Is-bi-invertible l ⟩
Is-bi-invertible l ↝⟨ subst Is-bi-invertible (getter-equivalence→lens≡ l′ is-equiv) ⟩□
Is-bi-invertible l′ □
where
open Lens
-- A lens that is equal to l′.
l : Lens A B
l = getter-equivalence→lens l′ is-equiv
A≃B = Eq.⟨ get l , is-equiv ⟩
open _≃_ A≃B
-- An inverse of l.
--
-- Note that the set-get and set-set proofs have been "obfuscated".
-- They could have been shorter, but then it might not have been
-- possible to prove l∘l⁻¹≡id and l⁻¹∘l≡id.
l⁻¹ : Lens B A
l⁻¹ = record
{ get = from
; set = λ _ → get l
; get-set = λ _ a →
from (get l a) ≡⟨ left-inverse-of a ⟩∎
a ∎
; set-get = λ b →
get l (from b) ≡⟨ sym $ cong (get l) $ set-get l (from b) ⟩
get l (from (get l (from b))) ≡⟨ right-inverse-of (get l (from b)) ⟩
get l (from b) ≡⟨ right-inverse-of b ⟩∎
b ∎
; set-set = λ b a₁ a₂ →
get l a₂ ≡⟨ sym $ right-inverse-of _ ⟩
get l (from (get l a₂)) ≡⟨ sym $ cong (get l) (set-set l (from b) (get l a₁) (get l a₂)) ⟩
get l (from (get l a₂)) ≡⟨ right-inverse-of _ ⟩∎
get l a₂ ∎
}
-- A blocked variant of l⁻¹.
l⁻¹′ : Block "l⁻¹" → Lens B A
l⁻¹′ ⊠ = l⁻¹
-- The lens l⁻¹ is a right inverse of l.
l∘l⁻¹≡id : ∀ b → l ∘ l⁻¹′ b ≡ id
l∘l⁻¹≡id ⊠ = constant-setter→≡id
( right-inverse-of
, right-inverse-of
, (λ b₁ b₂ →
get-set (l ∘ l⁻¹) b₁ b₂ ≡⟨⟩
trans (cong (get l) (get-set l⁻¹ b₁ (from b₂)))
(get-set l (from b₁) b₂) ≡⟨⟩
trans (cong (get l) (left-inverse-of (from b₂)))
(right-inverse-of b₂) ≡⟨ cong (λ eq → trans (cong (get l) eq) (right-inverse-of b₂)) $ sym $
right-left-lemma _ ⟩
trans (cong (get l) (cong from (right-inverse-of b₂)))
(right-inverse-of b₂) ≡⟨ cong (λ eq → trans eq (right-inverse-of b₂)) $
cong-∘ _ _ (right-inverse-of b₂) ⟩
trans (cong (get l ⊚ from) (right-inverse-of b₂))
(right-inverse-of b₂) ≡⟨⟩
trans (cong (get (l ∘ l⁻¹)) (right-inverse-of b₂))
(right-inverse-of b₂) ∎)
, (λ b →
set-get (l ∘ l⁻¹) b ≡⟨⟩
trans (cong (get l) (set-get l (from b)))
(set-get l⁻¹ b) ≡⟨⟩
trans (cong (get l) (set-get l (from b)))
(trans (sym (cong (get l) (set-get l (from b))))
(trans (right-inverse-of (get l (from b)))
(right-inverse-of b))) ≡⟨ trans--[trans-sym] _ _ ⟩
trans (right-inverse-of (get l (from b)))
(right-inverse-of b) ≡⟨⟩
trans (right-inverse-of (get (l ∘ l⁻¹) b))
(right-inverse-of b) ∎)
, (λ b b₁ b₂ →
set-set (l ∘ l⁻¹) b b₁ b₂ ≡⟨⟩
trans (set-set l⁻¹ b (from b₁) (from b₂))
(trans (cong (λ _ → get l (from b₂))
(get-set l⁻¹ b (from b₁)))
(cong (get l) (set-set l (from b) b₁ b₂))) ≡⟨ cong (trans _) $
trans (cong (flip trans _) $ cong-const _) $
trans-reflˡ _ ⟩
trans (set-set l⁻¹ b (from b₁) (from b₂))
(cong (get l) (set-set l (from b) b₁ b₂)) ≡⟨⟩
trans (trans (sym (right-inverse-of _))
(trans (sym (cong (get l)
(set-set l (from b) (get l (from b₁))
(get l (from b₂)))))
(right-inverse-of _)))
(cong (get l) (set-set l (from b) b₁ b₂)) ≡⟨ cong (λ b′ → trans (trans (sym (right-inverse-of _))
(trans (sym (cong (get l)
(set-set l (from b) b′
(get l (from b₂)))))
(right-inverse-of _)))
(cong (get l) (set-set l (from b) b₁ b₂))) $
right-inverse-of _ ⟩
trans (trans (sym (right-inverse-of _))
(trans (sym (cong (get l)
(set-set l (from b) b₁
(get l (from b₂)))))
(right-inverse-of _)))
(cong (get l) (set-set l (from b) b₁ b₂)) ≡⟨ cong (λ f → trans (trans (sym (f _))
(trans (sym (cong (get l)
(set-set l (from b) b₁
(get l (from b₂)))))
(f _)))
(cong (get l) (set-set l (from b) b₁ b₂))) $ sym $
_≃_.left-inverse-of (Eq.extensionality-isomorphism bad-ext)
right-inverse-of ⟩
trans (trans (sym (ext⁻¹ (⟨ext⟩ right-inverse-of) _))
(trans (sym (cong (get l)
(set-set l (from b) b₁
(get l (from b₂)))))
(ext⁻¹ (⟨ext⟩ right-inverse-of) _)))
(cong (get l) (set-set l (from b) b₁ b₂)) ≡⟨ elim₁
(λ {f} (p : f ≡ P.id) →
(q : ∀ b → f b ≡ f b) →
trans (trans (sym (ext⁻¹ p (f b₂)))
(trans (sym (q (f b₂))) (ext⁻¹ p (f b₂))))
(q b₂) ≡
refl _)
(λ q →
trans (trans (sym (ext⁻¹ (refl P.id) _))
(trans (sym (q _)) (ext⁻¹ (refl P.id) _)))
(q _) ≡⟨ cong (λ eq → trans (trans (sym eq) (trans (sym (q _)) eq))
(q _)) $
ext⁻¹-refl _ ⟩
trans (trans (sym (refl _))
(trans (sym (q _)) (refl _)))
(q _) ≡⟨ cong₂ (λ p r → trans (trans p r) (q _))
sym-refl
(trans-reflʳ _) ⟩
trans (trans (refl _) (sym (q _))) (q _) ≡⟨ cong (λ eq → trans eq (q _)) $ trans-reflˡ (sym (q _)) ⟩
trans (sym (q _)) (q _) ≡⟨ trans-symˡ (q _) ⟩∎
refl _ ∎)
(⟨ext⟩ right-inverse-of)
(cong (get l) ⊚ set-set l (from b) b₁) ⟩
refl _ ∎)
)
-- The lens l⁻¹ is a left inverse of l.
l⁻¹∘l≡id : ∀ b → l⁻¹′ b ∘ l ≡ id
l⁻¹∘l≡id ⊠ = constant-setter→≡id
( left-inverse-of
, left-inverse-of
, (λ a₁ a₂ →
get-set (l⁻¹ ∘ l) a₁ a₂ ≡⟨⟩
trans (cong from (get-set l a₁ (to a₂)))
(get-set l⁻¹ (get l a₁) a₂) ≡⟨⟩
trans (cong from (right-inverse-of (to a₂)))
(left-inverse-of a₂) ≡⟨ cong (λ eq → trans (cong from eq) (left-inverse-of _)) $ sym $
left-right-lemma _ ⟩
trans (cong from (cong (get l) (left-inverse-of a₂)))
(left-inverse-of a₂) ≡⟨ cong (λ eq → trans eq (left-inverse-of _)) $
cong-∘ _ _ (left-inverse-of _) ⟩
trans (cong (from ⊚ get l) (left-inverse-of a₂))
(left-inverse-of a₂) ≡⟨⟩
trans (cong (get (l⁻¹ ∘ l)) (left-inverse-of a₂))
(left-inverse-of a₂) ∎)
, (λ a →
let lemma₁ =
cong from
(trans (sym (cong (get l)
(set-get l (from (get l a)))))
(trans (right-inverse-of _)
(right-inverse-of _))) ≡⟨ cong-trans _ _ (trans _ (right-inverse-of _)) ⟩
trans (cong from (sym (cong (get l)
(set-get l (from (get l a))))))
(cong from (trans (right-inverse-of _)
(right-inverse-of _))) ≡⟨ cong (λ eq → trans (cong from eq)
(cong from (trans (right-inverse-of _)
(right-inverse-of _)))) $ sym $
cong-sym _ (set-get l (from (get l a))) ⟩
trans (cong from (cong (get l)
(sym (set-get l (from (get l a))))))
(cong from (trans (right-inverse-of _)
(right-inverse-of _))) ≡⟨ cong₂ trans
(cong-∘ _ _ (sym (set-get l (from (get l a)))))
(cong-trans _ _ (right-inverse-of _)) ⟩
trans (cong (from ⊚ get l)
(sym (set-get l (from (get l a)))))
(trans (cong from (right-inverse-of _))
(cong from (right-inverse-of _))) ≡⟨ cong₂ (λ p q → trans (cong (from ⊚ get l)
(sym (set-get l (from (get l a)))))
(trans p q))
(right-left-lemma _)
(right-left-lemma _) ⟩∎
trans (cong (from ⊚ get l)
(sym (set-get l (from (get l a)))))
(trans (left-inverse-of _)
(left-inverse-of _)) ∎
f = from ⊚ get l
lemma₂ : ∀ _ → _
lemma₂ = λ a →
trans (left-inverse-of (f a))
(left-inverse-of a) ≡⟨ cong (λ g → trans (g (f a)) (g a)) $ sym $
_≃_.left-inverse-of (Eq.extensionality-isomorphism bad-ext)
left-inverse-of ⟩∎
trans (ext⁻¹ (⟨ext⟩ left-inverse-of) (f a))
(ext⁻¹ (⟨ext⟩ left-inverse-of) a) ∎
lemma₃ =
trans (ext⁻¹ (refl P.id) a) (ext⁻¹ (refl P.id) a) ≡⟨ cong₂ trans (ext⁻¹-refl _) (ext⁻¹-refl _) ⟩
trans (refl _) (refl _) ≡⟨ trans-refl-refl ⟩∎
refl _ ∎
in
trans (cong from (set-get l⁻¹ (get l a)))
(set-get l a) ≡⟨⟩
trans (cong from
(trans (sym (cong (get l)
(set-get l (from (get l a)))))
(trans (right-inverse-of _)
(right-inverse-of _))))
(set-get l a) ≡⟨ cong (λ eq → trans eq (set-get l a)) lemma₁ ⟩
trans (trans (cong f (sym (set-get l (f a))))
(trans (left-inverse-of (f (f a)))
(left-inverse-of (f a))))
(set-get l a) ≡⟨ cong (λ eq → trans (trans (cong f (sym (set-get l (f a)))) eq)
(set-get l a)) $
lemma₂ _ ⟩
trans (trans (cong f (sym (set-get l (f a))))
(trans (ext⁻¹ (⟨ext⟩ left-inverse-of) (f (f a)))
(ext⁻¹ (⟨ext⟩ left-inverse-of) (f a))))
(set-get l a) ≡⟨ elim₁
(λ {f} (p : f ≡ P.id) →
(q : ∀ a → f a ≡ a) →
trans (trans (cong f (sym (q (f a))))
(trans (ext⁻¹ p (f (f a))) (ext⁻¹ p (f a))))
(q a) ≡
trans (ext⁻¹ p (f a)) (ext⁻¹ p a))
(λ q →
trans (trans (cong P.id (sym (q a)))
(trans (ext⁻¹ (refl P.id) a)
(ext⁻¹ (refl P.id) a)))
(q a) ≡⟨ cong₂ (λ p r → trans (trans p r) (q a))
(sym $ cong-id _)
lemma₃ ⟩
trans (trans (sym (q a)) (refl _)) (q a) ≡⟨ cong (flip trans _) $ trans-reflʳ _ ⟩
trans (sym (q a)) (q a) ≡⟨ trans-symˡ (q a) ⟩
refl _ ≡⟨ sym lemma₃ ⟩∎
trans (ext⁻¹ (refl P.id) a) (ext⁻¹ (refl P.id) a) ∎)
(⟨ext⟩ left-inverse-of)
(set-get l) ⟩
trans (ext⁻¹ (⟨ext⟩ left-inverse-of) (f a))
(ext⁻¹ (⟨ext⟩ left-inverse-of) a) ≡⟨ sym $ lemma₂ _ ⟩
trans (left-inverse-of (f a))
(left-inverse-of a) ≡⟨⟩
trans (left-inverse-of (get (l⁻¹ ∘ l) a))
(left-inverse-of a) ∎)
, (λ a a₁ a₂ →
let q = set-set l a (get l a₁) (get l a₂)
lemma =
cong from
(trans (sym (right-inverse-of _))
(trans (sym (cong (get l) q))
(right-inverse-of _))) ≡⟨ cong-trans _ _ (trans (sym (cong (get l) q)) (right-inverse-of _)) ⟩
trans (cong from (sym (right-inverse-of _)))
(cong from (trans (sym (cong (get l) q))
(right-inverse-of _))) ≡⟨ cong₂ trans
(cong-sym _ (right-inverse-of _))
(cong-trans _ _ (right-inverse-of _)) ⟩
trans (sym (cong from (right-inverse-of _)))
(trans (cong from (sym (cong (get l) q)))
(cong from (right-inverse-of _))) ≡⟨ cong₂ (λ p r → trans (sym p) (trans (cong from (sym (cong (get l) q))) r))
(right-left-lemma _)
(right-left-lemma _) ⟩
trans (sym (left-inverse-of _))
(trans (cong from (sym (cong (get l) q)))
(left-inverse-of _)) ≡⟨ cong (λ eq → trans (sym (left-inverse-of _))
(trans eq (left-inverse-of _))) $
cong-sym _ (cong (get l) q) ⟩
trans (sym (left-inverse-of _))
(trans (sym (cong from (cong (get l) q)))
(left-inverse-of _)) ≡⟨ cong (λ eq → trans (sym (left-inverse-of _))
(trans (sym eq) (left-inverse-of _))) $
cong-∘ _ _ q ⟩
trans (sym (left-inverse-of _))
(trans (sym (cong (from ⊚ get l) q))
(left-inverse-of _)) ≡⟨ cong (λ g → trans (sym (g _))
(trans (sym (cong (from ⊚ get l) q)) (g _))) $ sym $
_≃_.left-inverse-of (Eq.extensionality-isomorphism bad-ext)
left-inverse-of ⟩∎
trans (sym (ext⁻¹ (⟨ext⟩ left-inverse-of) _))
(trans (sym (cong (from ⊚ get l) q))
(ext⁻¹ (⟨ext⟩ left-inverse-of) _)) ∎
f = from ⊚ get l
in
set-set (l⁻¹ ∘ l) a a₁ a₂ ≡⟨⟩
trans (set-set l a (get l a₁) (get l a₂))
(trans (cong (λ _ → from (get l a₂))
(right-inverse-of (get l a₁)))
(cong from (set-set l⁻¹ (get l a) a₁ a₂))) ≡⟨ cong (trans _) $
trans (cong (flip trans _) $ cong-const _) $
trans-reflˡ _ ⟩
trans (set-set l a (get l a₁) (get l a₂))
(cong from (set-set l⁻¹ (get l a) a₁ a₂)) ≡⟨⟩
trans (set-set l a (get l a₁) (get l a₂))
(cong from
(trans (sym (right-inverse-of _))
(trans (sym (cong (get l)
(set-set l (from (get l a))
(get l a₁) (get l a₂))))
(right-inverse-of _)))) ≡⟨ cong (λ a′ → trans q
(cong from
(trans (sym (right-inverse-of _))
(trans (sym (cong (get l)
(set-set l a′ (get l a₁) (get l a₂))))
(right-inverse-of _))))) $
left-inverse-of _ ⟩
trans q
(cong from
(trans (sym (right-inverse-of _))
(trans (sym (cong (get l) q))
(right-inverse-of _)))) ≡⟨ cong (trans q) lemma ⟩
trans q
(trans (sym (ext⁻¹ (⟨ext⟩ left-inverse-of) (f a₂)))
(trans (sym (cong f q))
(ext⁻¹ (⟨ext⟩ left-inverse-of) (f a₂)))) ≡⟨ elim₁
(λ {f} (p : f ≡ P.id) →
(q : f a₂ ≡ f a₂) →
trans q
(trans (sym (ext⁻¹ p (f a₂)))
(trans (sym (cong f q))
(ext⁻¹ p (f a₂)))) ≡
refl _)
(λ q →
trans q
(trans (sym (ext⁻¹ (refl P.id) a₂))
(trans (sym (cong P.id q))
(ext⁻¹ (refl P.id) a₂))) ≡⟨ cong (λ eq → trans q (trans (sym eq)
(trans (sym (cong P.id q)) eq))) $
ext⁻¹-refl _ ⟩
trans q (trans (sym (refl _))
(trans (sym (cong P.id q)) (refl _))) ≡⟨ cong₂ (λ p r → trans q (trans p r))
sym-refl
(trans-reflʳ _) ⟩
trans q (trans (refl _) (sym (cong P.id q))) ≡⟨ cong (trans q) $ trans-reflˡ (sym (cong P.id q)) ⟩
trans q (sym (cong P.id q)) ≡⟨ cong (λ eq → trans q (sym eq)) $ sym $ cong-id q ⟩
trans q (sym q) ≡⟨ trans-symʳ q ⟩∎
refl _ ∎)
(⟨ext⟩ left-inverse-of)
q ⟩
refl _ ∎)
)
-- There is an equivalence between "l is bi-invertible" and "the
-- getter of l is an equivalence".
Is-bi-invertible≃Is-equivalence-get :
(l : Lens A B) →
Is-bi-invertible l ≃ Is-equivalence (Lens.get l)
Is-bi-invertible≃Is-equivalence-get l = Eq.⇔→≃
(BM.Is-bi-invertible-propositional l)
(Eq.propositional ext _)
(Is-bi-invertible→Is-equivalence-get l)
(Is-equivalence-get→Is-bi-invertible l)
-- There is in general no split surjection from equivalences to
-- bi-invertible lenses, if the right-to-left direction of the split
-- surjection is required to map bi-invertible lenses to their getter
-- functions (assuming univalence).
¬≃↠≊ :
Univalence lzero →
¬ ∃ λ (≃↠≊ : (↑ a 𝕊¹ ≃ ↑ a 𝕊¹) ↠ (↑ a 𝕊¹ ≊ ↑ a 𝕊¹)) →
(x@(l , _) : ↑ a 𝕊¹ ≊ ↑ a 𝕊¹) →
_≃_.to (_↠_.from ≃↠≊ x) ≡ Lens.get l
¬≃↠≊ {a = a} univ =
(∃ λ (f : (↑ a 𝕊¹ ≃ ↑ a 𝕊¹) ↠ (↑ a 𝕊¹ ≊ ↑ a 𝕊¹)) →
∀ p → _≃_.to (_↠_.from f p) ≡ Lens.get (proj₁ p)) ↝⟨ Σ-map
((∃-cong λ l → _≃_.surjection $ Is-bi-invertible≃Is-equivalence-get l) F.∘_)
(λ hyp _ → hyp _) ⟩
(∃ λ (f : (↑ a 𝕊¹ ≃ ↑ a 𝕊¹) ↠
(∃ λ (l : Lens (↑ a 𝕊¹) (↑ a 𝕊¹)) →
Is-equivalence (Lens.get l))) →
∀ p → _≃_.to (_↠_.from f p) ≡ Lens.get (proj₁ p)) ↝⟨ ¬-≃-↠-Σ-Lens-Is-equivalence-get univ ⟩□
⊥ □
-- There is in general no equivalence between equivalences and
-- bi-invertible lenses, if the right-to-left direction of the
-- equivalence is required to map bi-invertible lenses to their getter
-- functions (assuming univalence).
¬≃≃≊ :
Univalence lzero →
¬ ∃ λ (≃≃≊ : (↑ a 𝕊¹ ≃ ↑ a 𝕊¹) ≃ (↑ a 𝕊¹ ≊ ↑ a 𝕊¹)) →
(x@(l , _) : ↑ a 𝕊¹ ≊ ↑ a 𝕊¹) →
_≃_.to (_≃_.from ≃≃≊ x) ≡ Lens.get l
¬≃≃≊ {a = a} univ =
(∃ λ (≃≃≊ : (↑ a 𝕊¹ ≃ ↑ a 𝕊¹) ≃ (↑ a 𝕊¹ ≊ ↑ a 𝕊¹)) →
(x@(l , _) : ↑ a 𝕊¹ ≊ ↑ a 𝕊¹) →
_≃_.to (_≃_.from ≃≃≊ x) ≡ Lens.get l) ↝⟨ Σ-map _≃_.surjection P.id ⟩
(∃ λ (≃↠≊ : (↑ a 𝕊¹ ≃ ↑ a 𝕊¹) ↠ (↑ a 𝕊¹ ≊ ↑ a 𝕊¹)) →
(x@(l , _) : ↑ a 𝕊¹ ≊ ↑ a 𝕊¹) →
_≃_.to (_↠_.from ≃↠≊ x) ≡ Lens.get l) ↝⟨ ¬≃↠≊ univ ⟩□
⊥ □
------------------------------------------------------------------------
-- A category
-- Lenses between sets with the same universe level form a
-- precategory.
precategory : Precategory (lsuc a) a
precategory {a = a} = record
{ precategory =
Set a
, (λ (A , A-set) (B , _) →
Lens A B
, lens-preserves-h-level-of-domain 1 A-set)
, id
, _∘_
, left-identity _
, right-identity _
, (λ {_ _ _ _ l₁ l₂ l₃} → associativity l₃ l₂ l₁)
}
-- Lenses between sets with the same universe level form a
-- category (assuming univalence).
category :
Univalence a →
Category (lsuc a) a
category {a = a} univ =
C.precategory-with-Set-to-category
ext
(λ _ _ → univ)
(proj₂ Pre.precategory)
(λ (_ , A-set) _ → ≃≃≅ A-set)
(λ (_ , A-set) → ≃≃≅-id≡id A-set)
where
module Pre = C.Precategory precategory
-- The following four results (up to and including ¬-univalent) are
-- based on a suggestion by Paolo Capriotti, in response to a question
-- from an anonymous reviewer.
-- A "naive" notion of category.
--
-- Note that the hom-sets are not required to be sets.
Naive-category : (o h : Level) → Type (lsuc (o ⊔ h))
Naive-category o h =
∃ λ (Obj : Type o) →
∃ λ (Hom : Obj → Obj → Type h) →
∃ λ (id : {A : Obj} → Hom A A) →
∃ λ (_∘_ : {A B C : Obj} → Hom B C → Hom A B → Hom A C) →
({A B : Obj} (h : Hom A B) → id ∘ h ≡ h) ×
({A B : Obj} (h : Hom A B) → h ∘ id ≡ h) ×
({A B C D : Obj} (h₁ : Hom C D) (h₂ : Hom B C) (h₃ : Hom A B) →
(h₁ ∘ (h₂ ∘ h₃)) ≡ ((h₁ ∘ h₂) ∘ h₃))
-- A notion of univalence for naive categories.
Univalent : Naive-category o h → Type (o ⊔ h)
Univalent (Obj , Hom , id , _∘_ , id-∘ , ∘-id , assoc) =
Bi-invertibility.More.Univalence-≊
equality-with-J Obj Hom id _∘_ id-∘ ∘-id assoc
-- Types in a fixed universe and traditional lenses between them form
-- a naive category.
naive-category : ∀ a → Naive-category (lsuc a) a
naive-category a =
Type a
, Lens
, id
, _∘_
, left-identity
, right-identity
, associativity
-- However, this category is not univalent (assuming univalence).
¬-univalent :
Univalence lzero →
Univalence a →
¬ Univalent (naive-category a)
¬-univalent {a = a} univ₀ univ u = ¬≃≃≊ univ₀ (equiv , lemma₂)
where
equiv : {A B : Type a} → (A ≃ B) ≃ (A ≊ B)
equiv {A = A} {B = B} =
(A ≃ B) ↝⟨ inverse $ ≡≃≃ univ ⟩
(A ≡ B) ↝⟨ Eq.⟨ _ , u ⟩ ⟩□
(A ≊ B) □
lemma₁ :
(eq : ↑ a 𝕊¹ ≃ ↑ a 𝕊¹) →
_≃_.to eq ≡ Lens.get (proj₁ (_≃_.to equiv eq))
lemma₁ =
≃-elim₁
univ
(λ eq → _≃_.to eq ≡ Lens.get (proj₁ (_≃_.to equiv eq)))
(P.id ≡⟨ cong (Lens.get ⊚ proj₁) $ sym $ elim-refl _ _ ⟩
Lens.get (proj₁ (BM.≡→≊ (refl _))) ≡⟨ cong (Lens.get ⊚ proj₁ ⊚ BM.≡→≊) $ sym $ ≃⇒≡-id univ ⟩
Lens.get (proj₁ (BM.≡→≊ (≃⇒≡ univ Eq.id))) ≡⟨⟩
Lens.get (proj₁ (_≃_.to equiv Eq.id)) ∎)
lemma₂ :
(x@(l , _) : ↑ a 𝕊¹ ≊ ↑ a 𝕊¹) →
_≃_.to (_≃_.from equiv x) ≡ Lens.get l
lemma₂ x@(l , _) =
_≃_.to (_≃_.from equiv x) ≡⟨ lemma₁ (_≃_.from equiv x) ⟩
Lens.get (proj₁ (_≃_.to equiv (_≃_.from equiv x))) ≡⟨ cong (Lens.get ⊚ proj₁) $ _≃_.right-inverse-of equiv _ ⟩
Lens.get (proj₁ x) ≡⟨⟩
Lens.get l ∎
-- There is in general no pointwise equivalence between equivalences
-- and bi-invertible lenses (assuming univalence).
¬Π≃≃≊ :
Univalence lzero →
Univalence a →
¬ ({A B : Type a} → (A ≃ B) ≃ (A ≊ B))
¬Π≃≃≊ {a = a} univ₀ univ =
({A B : Type a} → (A ≃ B) ≃ (A ≊ B)) ↝⟨ F._∘ ≡≃≃ univ ⟩
({A B : Type a} → (A ≡ B) ≃ (A ≊ B)) ↝⟨ BM.≡≃≊→Univalence-≊ ⟩
Univalent (naive-category a) ↝⟨ ¬-univalent univ₀ univ ⟩□
⊥ □
-- There is in general no pointwise equivalence between equivalences
-- (between types in the same universe) and lenses with getters that
-- are equivalences (assuming univalence).
¬Π≃-≃-Σ-Lens-Is-equivalence-get :
Univalence lzero →
Univalence a →
¬ ({A B : Type a} →
(A ≃ B) ≃ ∃ λ (l : Lens A B) → Is-equivalence (Lens.get l))
¬Π≃-≃-Σ-Lens-Is-equivalence-get {a = a} univ₀ univ =
({A B : Type a} →
(A ≃ B) ≃ ∃ λ (l : Lens A B) → Is-equivalence (Lens.get l)) ↝⟨ inverse (∃-cong Is-bi-invertible≃Is-equivalence-get) F.∘_ ⟩
({A B : Type a} → (A ≃ B) ≃ (A ≊ B)) ↝⟨ ¬Π≃≃≊ univ₀ univ ⟩□
⊥ □
| 48.83442
| 152
| 0.363989
|
41b789887feee6fbad928da4d01c205857d5a291
| 681
|
agda
|
Agda
|
Cubical/Relation/Binary/Extensionality.agda
|
guilhermehas/cubical
|
ce3120d3f8d692847b2744162bcd7a01f0b687eb
|
[
"MIT"
] | 1
|
2021-10-31T17:32:49.000Z
|
2021-10-31T17:32:49.000Z
|
Cubical/Relation/Binary/Extensionality.agda
|
guilhermehas/cubical
|
ce3120d3f8d692847b2744162bcd7a01f0b687eb
|
[
"MIT"
] | null | null | null |
Cubical/Relation/Binary/Extensionality.agda
|
guilhermehas/cubical
|
ce3120d3f8d692847b2744162bcd7a01f0b687eb
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --safe #-}
module Cubical.Relation.Binary.Extensionality where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Transport
open import Cubical.Data.Sigma
open import Cubical.Relation.Binary.Base
module _ {ℓ ℓ'} {A : Type ℓ} (_≺_ : Rel A A ℓ') where
≡→≺Equiv : (x y : A) → x ≡ y → ∀ z → (z ≺ x) ≃ (z ≺ y)
≡→≺Equiv _ _ p z = substEquiv (z ≺_) p
isWeaklyExtensional : Type _
isWeaklyExtensional = ∀ {x y} → isEquiv (≡→≺Equiv x y)
isPropIsWeaklyExtensional : isProp isWeaklyExtensional
isPropIsWeaklyExtensional = isPropImplicitΠ2 λ _ _ → isPropIsEquiv _
| 30.954545
| 70
| 0.71953
|
3d32f6bab19db8eec9a46596bca0241e299fd7b2
| 710
|
agda
|
Agda
|
notes/k-axiom/UIP.agda
|
asr/fotc
|
2fc9f2b81052a2e0822669f02036c5750371b72d
|
[
"MIT"
] | 11
|
2015-09-03T20:53:42.000Z
|
2021-09-12T16:09:54.000Z
|
notes/k-axiom/UIP.agda
|
asr/fotc
|
2fc9f2b81052a2e0822669f02036c5750371b72d
|
[
"MIT"
] | 2
|
2016-10-12T17:28:16.000Z
|
2017-01-01T14:34:26.000Z
|
notes/k-axiom/UIP.agda
|
asr/fotc
|
2fc9f2b81052a2e0822669f02036c5750371b72d
|
[
"MIT"
] | 3
|
2016-09-19T14:18:30.000Z
|
2018-03-14T08:50:00.000Z
|
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
-- {-# OPTIONS --without-K #-}
-- [1] Hofmann, Martin and Thomas Streicher (1998). “The groupoid
-- interpretation on type theory”. In: Twenty-five Years of
-- Constructive Type Theory. Ed. by Giovanni Sambin and Jan
-- M. Smith. Oxford University Press. Chap. 6.
module UIP where
data Id (A : Set)(x : A) : A → Set where
refl : Id A x x
K : (A : Set)(x : A)(P : Id A x x → Set) → P refl → (p : Id A x x ) → P p
K A x P pr refl = pr
-- From [1, p. 88].
UIP : (A : Set)(a a' : A)(p p' : Id A a a') → Id (Id A a a') p p'
UIP A a .a refl refl = refl
| 32.272727
| 73
| 0.54507
|
125616389d0efe9140fc75016201338bb6e0efa0
| 806
|
agda
|
Agda
|
examples/Introduction/Data/Vec.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
examples/Introduction/Data/Vec.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
examples/Introduction/Data/Vec.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
-- When defining types by recursion it is sometimes difficult to infer implicit
-- arguments. This module illustrates the problem and shows how to get around
-- it.
module Introduction.Data.Vec where
data Nat : Set where
zero : Nat
suc : Nat -> Nat
data Nil : Set where
nil' : Nil
data Cons (A As : Set) : Set where
_::'_ : A -> As -> Cons A As
mutual
Vec' : Set -> Nat -> Set
Vec' A zero = Nil
Vec' A (suc n) = Cons A (Vec A n)
data Vec (A : Set)(n : Nat) : Set where
vec : Vec' A n -> Vec A n
nil : {A : Set} -> Vec A zero
nil = vec nil'
_::_ : {A : Set}{n : Nat} -> A -> Vec A n -> Vec A (suc n)
x :: xs = vec (x ::' xs)
map : {n : Nat}{A B : Set} -> (A -> B) -> Vec A n -> Vec B n
map {zero} f (vec nil') = nil
map {suc n} f (vec (x ::' xs)) = f x :: map f xs
| 22.388889
| 79
| 0.555831
|
0e86adec58c711bd388f4c219b10027f5f09b721
| 5,122
|
agda
|
Agda
|
lemmas-complete.agda
|
hazelgrove/hazelnut-agda
|
a3640d7b0f76cdac193afd382694197729ed6d57
|
[
"MIT"
] | null | null | null |
lemmas-complete.agda
|
hazelgrove/hazelnut-agda
|
a3640d7b0f76cdac193afd382694197729ed6d57
|
[
"MIT"
] | null | null | null |
lemmas-complete.agda
|
hazelgrove/hazelnut-agda
|
a3640d7b0f76cdac193afd382694197729ed6d57
|
[
"MIT"
] | null | null | null |
open import Nat
open import Prelude
open import dynamics-core
open import lemmas-gcomplete
module lemmas-complete where
-- no term is both complete and indeterminate
lem-ind-comp : ∀{d} → d dcomplete → d indet → ⊥
lem-ind-comp DCNum ()
lem-ind-comp (DCPlus comp comp₁) (IPlus1 ind fin) = lem-ind-comp comp ind
lem-ind-comp (DCPlus comp comp₁) (IPlus2 fin ind) = lem-ind-comp comp₁ ind
lem-ind-comp DCVar ()
lem-ind-comp (DCLam comp x₁) ()
lem-ind-comp (DCAp comp comp₁) (IAp x ind x₁) = lem-ind-comp comp ind
lem-ind-comp (DCCast comp x x₁) (ICastArr x₂ ind) = lem-ind-comp comp ind
lem-ind-comp (DCCast comp x x₁) (ICastGroundHole x₂ ind) = lem-ind-comp comp ind
lem-ind-comp (DCCast comp x x₁) (ICastHoleGround x₂ ind x₃) = lem-ind-comp comp ind
lem-ind-comp (DCInl x comp) (IInl ind) = lem-ind-comp comp ind
lem-ind-comp (DCInr x comp) (IInr ind) = lem-ind-comp comp ind
lem-ind-comp (DCCase comp comp₁ comp₂) (ICase x x₁ x₂ ind) = lem-ind-comp comp ind
lem-ind-comp (DCCast comp x x₁) (ICastSum x₂ ind) = lem-ind-comp comp ind
lem-ind-comp (DCPair comp comp₁) (IPair1 ind x) = lem-ind-comp comp ind
lem-ind-comp (DCPair comp comp₁) (IPair2 x ind) = lem-ind-comp comp₁ ind
lem-ind-comp (DCFst comp) (IFst x x₁ ind) = lem-ind-comp comp ind
lem-ind-comp (DCSnd comp) (ISnd x x₁ ind) = lem-ind-comp comp ind
lem-ind-comp (DCCast comp x x₁) (ICastProd x₂ ind) = lem-ind-comp comp ind
-- complete types that are consistent are equal
complete-consistency : ∀{τ1 τ2} → τ1 ~ τ2 → τ1 tcomplete → τ2 tcomplete → τ1 == τ2
complete-consistency TCRefl TCNum comp2 = refl
complete-consistency TCRefl (TCArr comp1 comp2) comp3 = refl
complete-consistency TCRefl (TCSum tc1 tc3) comp2 = refl
complete-consistency TCHole1 comp1 ()
complete-consistency (TCArr consis consis₁) (TCArr comp1 comp2) (TCArr comp3 comp4)
with complete-consistency consis comp1 comp3 | complete-consistency consis₁ comp2 comp4
... | refl | refl = refl
complete-consistency (TCSum consis consis₁) (TCSum comp1 comp2) (TCSum comp3 comp4)
with complete-consistency consis comp1 comp3 | complete-consistency consis₁ comp2 comp4
... | refl | refl = refl
complete-consistency TCRefl (TCProd comp comp₁) comp2 = refl
complete-consistency TCHole2 () comp2
complete-consistency (TCProd consis consis₁) (TCProd comp1 comp2) (TCProd comp3 comp4)
with complete-consistency consis comp1 comp3 | complete-consistency consis₁ comp2 comp4
... | refl | refl = refl
-- a well typed complete term is assigned a complete type
complete-ta : ∀{Γ Δ d τ} → (Γ gcomplete) →
(Δ , Γ ⊢ d :: τ) →
d dcomplete →
τ tcomplete
complete-ta gc TANum comp = TCNum
complete-ta gc (TAPlus wt wt₁) comp = TCNum
complete-ta gc (TAVar x₁) DCVar = gc _ _ x₁
complete-ta gc (TALam a wt) (DCLam comp x₁) = TCArr x₁ (complete-ta (gcomp-extend gc x₁ a ) wt comp)
complete-ta gc (TAAp wt wt₁) (DCAp comp comp₁)
with complete-ta gc wt comp
... | TCArr qq qq₁ = qq₁
complete-ta gc (TAEHole x x₁) ()
complete-ta gc (TANEHole x wt x₁) ()
complete-ta gc (TACast wt x) (DCCast comp x₁ x₂) = x₂
complete-ta gc (TAFailedCast wt x x₁ x₂) ()
complete-ta gc (TAInl wt) (DCInl x comp) = TCSum (complete-ta gc wt comp) x
complete-ta gc (TAInr wt) (DCInr x comp) = TCSum x (complete-ta gc wt comp)
complete-ta gc (TACase wt apt₁ wt₁ apt₂ wt₂) (DCCase comp comp₁ comp₂)
with complete-ta gc wt comp
... | TCSum τc1 τc2 = complete-ta (gcomp-extend gc τc1 apt₁) wt₁ comp₁
complete-ta gc (TAPair wt wt₁) (DCPair comp comp₁) = TCProd (complete-ta gc wt comp) (complete-ta gc wt₁ comp₁)
complete-ta gc (TAFst wt) (DCFst comp)
with complete-ta gc wt comp
... | TCProd τc1 τc2 = τc1
complete-ta gc (TASnd wt) (DCSnd comp)
with complete-ta gc wt comp
... | TCProd τc1 τc2 = τc2
-- a well typed term synthesizes a complete type
comp-synth : ∀{Γ e τ} →
Γ gcomplete →
e ecomplete →
Γ ⊢ e => τ →
τ tcomplete
comp-synth gc ec SNum = TCNum
comp-synth gc ec (SPlus x x₁) = TCNum
comp-synth gc (ECAsc x ec) (SAsc x₁) = x
comp-synth gc ec (SVar x) = gc _ _ x
comp-synth gc (ECAp ec ec₁) (SAp wt MAHole x₁) with comp-synth gc ec wt
... | ()
comp-synth gc (ECAp ec ec₁) (SAp wt MAArr x₁) with comp-synth gc ec wt
comp-synth gc (ECAp ec ec₁) (SAp wt MAArr x₁) | TCArr qq qq₁ = qq₁
comp-synth gc () SEHole
comp-synth gc () (SNEHole wt)
comp-synth gc (ECLam2 ec x₁) (SLam x₂ wt) = TCArr x₁ (comp-synth (gcomp-extend gc x₁ x₂) ec wt)
comp-synth gc (ECPair ec ec₁) (SPair wt wt₁)
with comp-synth gc ec wt | comp-synth gc ec₁ wt₁
... | τc1 | τc2 = TCProd τc1 τc2
comp-synth gc (ECFst ec) (SFst wt MPHole) with comp-synth gc ec wt
... | ()
comp-synth gc (ECFst ec) (SFst wt MPProd) with comp-synth gc ec wt
... | TCProd τc1 τc2 = τc1
comp-synth gc (ECSnd ec) (SSnd wt MPHole) with comp-synth gc ec wt
... | ()
comp-synth gc (ECSnd ec) (SSnd wt MPProd) with comp-synth gc ec wt
... | TCProd τc1 τc2 = τc2
| 49.25
| 113
| 0.668098
|
23b18efc92701267e3a8c3ab2642e3c06b276fee
| 385
|
agda
|
Agda
|
Cats/Category/Constructions/Mono.agda
|
JLimperg/cats
|
1ad7b243acb622d46731e9ae7029408db6e561f1
|
[
"MIT"
] | 24
|
2017-11-03T15:18:57.000Z
|
2021-08-06T05:00:46.000Z
|
Cats/Category/Constructions/Mono.agda
|
JLimperg/cats
|
1ad7b243acb622d46731e9ae7029408db6e561f1
|
[
"MIT"
] | null | null | null |
Cats/Category/Constructions/Mono.agda
|
JLimperg/cats
|
1ad7b243acb622d46731e9ae7029408db6e561f1
|
[
"MIT"
] | 1
|
2019-03-18T15:35:07.000Z
|
2019-03-18T15:35:07.000Z
|
{-# OPTIONS --without-K --safe #-}
module Cats.Category.Constructions.Mono where
open import Level
open import Cats.Category.Base
module Build {lo la l≈} (Cat : Category lo la l≈) where
private open module Cat = Category Cat
open Cat.≈-Reasoning
IsMono : ∀ {A B} → A ⇒ B → Set (lo ⊔ la ⊔ l≈)
IsMono {A} f = ∀ {C} {g h : C ⇒ A} → f ∘ g ≈ f ∘ h → g ≈ h
open Build public
| 20.263158
| 60
| 0.612987
|
595d0fc8cbcf7e9ed71095728141c09291fef171
| 234
|
agda
|
Agda
|
test/Compiler/simple/Issue326.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Compiler/simple/Issue326.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Compiler/simple/Issue326.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
module Issue326 where
open import Common.Prelude
postulate
QName : Set
{-# BUILTIN QNAME QName #-}
primitive primQNameEquality : QName → QName → Bool
main : IO Unit
main = printBool (primQNameEquality (quote Unit) (quote IO))
| 15.6
| 60
| 0.735043
|
59850d6559e7539eea9852732172275af6c80e10
| 6,011
|
agda
|
Agda
|
agda-stdlib-0.9/src/Data/Nat/Divisibility.agda
|
qwe2/try-agda
|
9d4c43b1609d3f085636376fdca73093481ab882
|
[
"Apache-2.0"
] | 1
|
2016-10-20T15:52:05.000Z
|
2016-10-20T15:52:05.000Z
|
agda-stdlib-0.9/src/Data/Nat/Divisibility.agda
|
qwe2/try-agda
|
9d4c43b1609d3f085636376fdca73093481ab882
|
[
"Apache-2.0"
] | null | null | null |
agda-stdlib-0.9/src/Data/Nat/Divisibility.agda
|
qwe2/try-agda
|
9d4c43b1609d3f085636376fdca73093481ab882
|
[
"Apache-2.0"
] | null | null | null |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Divisibility
------------------------------------------------------------------------
module Data.Nat.Divisibility where
open import Data.Nat as Nat
open import Data.Nat.DivMod
import Data.Nat.Properties as NatProp
open import Data.Fin as Fin using (Fin; zero; suc)
import Data.Fin.Properties as FP
open NatProp.SemiringSolver
open import Algebra
private
module CS = CommutativeSemiring NatProp.commutativeSemiring
open import Data.Product
open import Relation.Nullary
open import Relation.Binary
import Relation.Binary.PartialOrderReasoning as PartialOrderReasoning
open import Relation.Binary.PropositionalEquality as PropEq
using (_≡_; _≢_; refl; sym; cong; subst)
open import Function
-- m ∣ n is inhabited iff m divides n. Some sources, like Hardy and
-- Wright's "An Introduction to the Theory of Numbers", require m to
-- be non-zero. However, some things become a bit nicer if m is
-- allowed to be zero. For instance, _∣_ becomes a partial order, and
-- the gcd of 0 and 0 becomes defined.
infix 4 _∣_
data _∣_ : ℕ → ℕ → Set where
divides : {m n : ℕ} (q : ℕ) (eq : n ≡ q * m) → m ∣ n
-- Extracts the quotient.
quotient : ∀ {m n} → m ∣ n → ℕ
quotient (divides q _) = q
-- If m divides n, and n is positive, then m ≤ n.
∣⇒≤ : ∀ {m n} → m ∣ suc n → m ≤ suc n
∣⇒≤ (divides zero ())
∣⇒≤ {m} {n} (divides (suc q) eq) = begin
m ≤⟨ NatProp.m≤m+n m (q * m) ⟩
suc q * m ≡⟨ sym eq ⟩
suc n ∎
where open ≤-Reasoning
-- _∣_ is a partial order.
poset : Poset _ _ _
poset = record
{ Carrier = ℕ
; _≈_ = _≡_
; _≤_ = _∣_
; isPartialOrder = record
{ isPreorder = record
{ isEquivalence = PropEq.isEquivalence
; reflexive = reflexive
; trans = trans
}
; antisym = antisym
}
}
where
module DTO = DecTotalOrder Nat.decTotalOrder
open PropEq.≡-Reasoning
reflexive : _≡_ ⇒ _∣_
reflexive {n} refl = divides 1 (sym $ proj₁ CS.*-identity n)
antisym : Antisymmetric _≡_ _∣_
antisym (divides {n = zero} q₁ eq₁) (divides {n = n₂} q₂ eq₂) = begin
n₂ ≡⟨ eq₂ ⟩
q₂ * 0 ≡⟨ CS.*-comm q₂ 0 ⟩
0 ∎
antisym (divides {n = n₁} q₁ eq₁) (divides {n = zero} q₂ eq₂) = begin
0 ≡⟨ CS.*-comm 0 q₁ ⟩
q₁ * 0 ≡⟨ sym eq₁ ⟩
n₁ ∎
antisym (divides {n = suc n₁} q₁ eq₁) (divides {n = suc n₂} q₂ eq₂) =
DTO.antisym (∣⇒≤ (divides q₁ eq₁)) (∣⇒≤ (divides q₂ eq₂))
trans : Transitive _∣_
trans (divides q₁ refl) (divides q₂ refl) =
divides (q₂ * q₁) (sym (CS.*-assoc q₂ q₁ _))
module ∣-Reasoning = PartialOrderReasoning poset
renaming (_≤⟨_⟩_ to _∣⟨_⟩_; _≈⟨_⟩_ to _≡⟨_⟩_)
private module P = Poset poset
-- 1 divides everything.
1∣_ : ∀ n → 1 ∣ n
1∣ n = divides n (sym $ proj₂ CS.*-identity n)
-- Everything divides 0.
_∣0 : ∀ n → n ∣ 0
n ∣0 = divides 0 refl
-- 0 only divides 0.
0∣⇒≡0 : ∀ {n} → 0 ∣ n → n ≡ 0
0∣⇒≡0 {n} 0∣n = P.antisym (n ∣0) 0∣n
-- Only 1 divides 1.
∣1⇒≡1 : ∀ {n} → n ∣ 1 → n ≡ 1
∣1⇒≡1 {n} n∣1 = P.antisym n∣1 (1∣ n)
-- If i divides m and n, then i divides their sum.
∣-+ : ∀ {i m n} → i ∣ m → i ∣ n → i ∣ m + n
∣-+ (divides {m = i} q refl) (divides q' refl) =
divides (q + q') (sym $ proj₂ CS.distrib i q q')
-- If i divides m and n, then i divides their difference.
∣-∸ : ∀ {i m n} → i ∣ m + n → i ∣ m → i ∣ n
∣-∸ (divides {m = i} q' eq) (divides q refl) =
divides (q' ∸ q)
(sym $ NatProp.im≡jm+n⇒[i∸j]m≡n q' q i _ $ sym eq)
-- A simple lemma: n divides kn.
∣-* : ∀ k {n} → n ∣ k * n
∣-* k = divides k refl
-- If i divides j, then ki divides kj.
*-cong : ∀ {i j} k → i ∣ j → k * i ∣ k * j
*-cong {i} {j} k (divides q eq) = divides q lemma
where
open PropEq.≡-Reasoning
lemma = begin
k * j ≡⟨ cong (_*_ k) eq ⟩
k * (q * i) ≡⟨ solve 3 (λ k q i → k :* (q :* i)
:= q :* (k :* i))
refl k q i ⟩
q * (k * i) ∎
-- If ki divides kj, and k is positive, then i divides j.
/-cong : ∀ {i j} k → suc k * i ∣ suc k * j → i ∣ j
/-cong {i} {j} k (divides q eq) = divides q lemma
where
open PropEq.≡-Reasoning
k′ = suc k
lemma = NatProp.cancel-*-right j (q * i) (begin
j * k′ ≡⟨ CS.*-comm j k′ ⟩
k′ * j ≡⟨ eq ⟩
q * (k′ * i) ≡⟨ solve 3 (λ q k i → q :* (k :* i)
:= q :* i :* k)
refl q k′ i ⟩
q * i * k′ ∎)
-- If the remainder after division is non-zero, then the divisor does
-- not divide the dividend.
nonZeroDivisor-lemma
: ∀ m q (r : Fin (1 + m)) → Fin.toℕ r ≢ 0 →
¬ (1 + m) ∣ (Fin.toℕ r + q * (1 + m))
nonZeroDivisor-lemma m zero r r≢zero (divides zero eq) = r≢zero $ begin
Fin.toℕ r
≡⟨ sym $ proj₁ CS.*-identity (Fin.toℕ r) ⟩
1 * Fin.toℕ r
≡⟨ eq ⟩
0
∎
where open PropEq.≡-Reasoning
nonZeroDivisor-lemma m zero r r≢zero (divides (suc q) eq) =
NatProp.¬i+1+j≤i m $ begin
m + suc (q * suc m)
≡⟨ solve 2 (λ m q → m :+ (con 1 :+ q) := con 1 :+ m :+ q)
refl m (q * suc m) ⟩
suc (m + q * suc m)
≡⟨ sym eq ⟩
1 * Fin.toℕ r
≡⟨ proj₁ CS.*-identity (Fin.toℕ r) ⟩
Fin.toℕ r
≤⟨ ≤-pred $ FP.bounded r ⟩
m
∎
where open ≤-Reasoning
nonZeroDivisor-lemma m (suc q) r r≢zero d =
nonZeroDivisor-lemma m q r r≢zero (∣-∸ d' P.refl)
where
lem = solve 3 (λ m r q → r :+ (m :+ q) := m :+ (r :+ q))
refl (suc m) (Fin.toℕ r) (q * suc m)
d' = subst (λ x → (1 + m) ∣ x) lem d
-- Divisibility is decidable.
_∣?_ : Decidable _∣_
zero ∣? zero = yes (0 ∣0)
zero ∣? suc n = no ((λ ()) ∘′ 0∣⇒≡0)
suc m ∣? n with n divMod suc m
suc m ∣? .(q * suc m) | result q zero refl =
yes $ divides q refl
suc m ∣? .(1 + Fin.toℕ r + q * suc m) | result q (suc r) refl =
no $ nonZeroDivisor-lemma m q (suc r) (λ())
| 29.038647
| 72
| 0.520213
|
1dcf737765b94986b7daab4dddcf4349d1a81817
| 1,522
|
agda
|
Agda
|
Function/Names.agda
|
Lolirofle/stuff-in-agda
|
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
|
[
"MIT"
] | 6
|
2020-04-07T17:58:13.000Z
|
2022-02-05T06:53:22.000Z
|
Function/Names.agda
|
Lolirofle/stuff-in-agda
|
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
|
[
"MIT"
] | null | null | null |
Function/Names.agda
|
Lolirofle/stuff-in-agda
|
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
|
[
"MIT"
] | null | null | null |
import Lvl
module Function.Names where
open import Functional.Dependent
open import Logic.Predicate
open import Structure.Setoid
open import Type
private variable ℓ ℓₒ ℓₒ₁ ℓₒ₂ ℓₒ₃ ℓₗ ℓₗ₁ ℓₗ₂ ℓₗ₃ : Lvl.Level
module _ {A : Type{ℓₒ₁}} {B : A → Type{ℓₒ₂}} ⦃ _ : ∀{a} → Equiv{ℓₗ₃}(B(a)) ⦄ where
-- Extensional equality on functions.
-- Alternative definition: f ⊜ g = (∀{x} → (f(x) ≡ g(x)))
_⊜_ : ((a : A) → B(a)) → ((a : A) → B(a)) → Type
_⊜_ = ∀¹ ∘₂ pointwise₂,₁(_≡_)
_⊜₁_ = _⊜_
module _ {A : Type{ℓₒ₁}} {B : A → Type{ℓₒ₂}} ⦃ _ : ∀{a} → Equiv{ℓₗ₃}(B(a)) ⦄ where
_⊜ᵢ_ : ({a : A} → B(a)) → ({a : A} → B(a)) → Type
_⊜ᵢ_ f g = (∀{x} → (f{x} ≡ g{x}))
module _ {A : Type{ℓₒ₁}} {B : A → Type{ℓₒ₂}} ⦃ _ : ∀{a} → Equiv{ℓₗ₃}(B(a)) ⦄ where
_⦃⊜⦄_ : (⦃ a : A ⦄ → B(a)) → (⦃ a : A ⦄ → B(a)) → Type
_⦃⊜⦄_ f g = (∀{x} → (f ⦃ x ⦄ ≡ g ⦃ x ⦄))
module _ {A₁ : Type{ℓₒ₁}} {A₂ : A₁ → Type{ℓₒ₂}} {B : (a₁ : A₁) → A₂(a₁) → Type{ℓₒ₂}} ⦃ _ : ∀{a₁}{a₂} → Equiv{ℓₗ₃}(B(a₁)(a₂)) ⦄ where
-- Alternative definition: f ⊜ g = (∀{x}{y} → (f(x)(y) ≡ g(x)(y)))
_⊜₂_ : (f g : ∀(a₁)(a₂) → B(a₁)(a₂)) → Type
_⊜₂_ = ∀¹ ∘₂ (∀¹ ∘₃ pointwise₂,₂(_≡_))
module _ {A₁ : Type{ℓₒ₁}} {A₂ : A₁ → Type{ℓₒ₂}} {A₃ : (a₁ : A₁) → A₂(a₁) → Type{ℓₒ₂}} {B : (a₁ : A₁) → (a₂ : A₂(a₁)) → A₃(a₁)(a₂) → Type{ℓₒ₂}} ⦃ _ : ∀{a₁}{a₂}{a₃} → Equiv{ℓₗ₃}(B(a₁)(a₂)(a₃)) ⦄ where
-- Alternative definition: f ⊜ g = (∀{x}{y}{z} → (f(x)(y)(z) ≡ g(x)(y)(z)))
_⊜₃_ : (f g : ∀(a₁)(a₂)(a₃) → B(a₁)(a₂)(a₃)) → Type
_⊜₃_ = ∀¹ ∘₂ (∀¹ ∘₃ (∀¹ ∘₄ pointwise₂,₃(_≡_)))
| 42.277778
| 198
| 0.48883
|
12edc19b9a3b4ebdf84606d66810806116989f5d
| 6,875
|
agda
|
Agda
|
agda-stdlib/src/Reflection.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | 5
|
2020-10-07T12:07:53.000Z
|
2020-10-10T21:41:32.000Z
|
agda-stdlib/src/Reflection.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | null | null | null |
agda-stdlib/src/Reflection.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | 1
|
2021-11-04T06:54:45.000Z
|
2021-11-04T06:54:45.000Z
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Support for reflection
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Reflection where
import Agda.Builtin.Reflection as Builtin
------------------------------------------------------------------------
-- Names, Metas, and Literals re-exported publicly
open import Reflection.Abstraction as Abstraction public
using (Abs; abs)
open import Reflection.Argument as Argument public
using (Arg; arg; Args; vArg; hArg; iArg)
open import Reflection.Definition as Definition public
using (Definition)
open import Reflection.Meta as Meta public
using (Meta)
open import Reflection.Name as Name public
using (Name; Names)
open import Reflection.Literal as Literal public
using (Literal)
open import Reflection.Pattern as Pattern public
using (Pattern)
open import Reflection.Term as Term public
using (Term; Type; Clause; Clauses; Sort)
import Reflection.Argument.Relevance as Relevance
import Reflection.Argument.Visibility as Visibility
import Reflection.Argument.Information as Information
open Definition.Definition public
open Information.ArgInfo public
open Literal.Literal public
open Relevance.Relevance public
open Term.Term public
open Visibility.Visibility public
------------------------------------------------------------------------
-- Fixity
open Builtin public
using (non-assoc; related; unrelated; fixity)
renaming
( left-assoc to assocˡ
; right-assoc to assocʳ
; primQNameFixity to getFixity
)
------------------------------------------------------------------------
-- Type checking monad
-- Type errors
open Builtin public using (ErrorPart; strErr; termErr; nameErr)
-- The monad
open Builtin public
using ( TC; bindTC; unify; typeError; inferType; checkType
; normalise; reduce
; catchTC; quoteTC; unquoteTC
; getContext; extendContext; inContext; freshName
; declareDef; declarePostulate; defineFun; getType; getDefinition
; blockOnMeta; commitTC; isMacro; withNormalisation
; debugPrint; noConstraints; runSpeculative)
renaming (returnTC to return)
-- Standard monad operators
open import Reflection.TypeChecking.MonadSyntax public
using (_>>=_; _>>_)
newMeta : Type → TC Term
newMeta = checkType unknown
------------------------------------------------------------------------
-- Show
open import Reflection.Show public
------------------------------------------------------------------------
-- DEPRECATED NAMES
------------------------------------------------------------------------
-- Please use the new names as continuing support for the old names is
-- not guaranteed.
-- Version 1.1
returnTC = return
{-# WARNING_ON_USAGE returnTC
"Warning: returnTC was deprecated in v1.1.
Please use return instead."
#-}
-- Version 1.3
Arg-info = Information.ArgInfo
{-# WARNING_ON_USAGE Arg-info
"Warning: Arg-info was deprecated in v1.3.
Please use Reflection.Argument.Information's ArgInfo instead."
#-}
infix 4 _≟-Lit_ _≟-Name_ _≟-Meta_ _≟-Visibility_ _≟-Relevance_ _≟-Arg-info_
_≟-Pattern_ _≟-ArgPatterns_
_≟-Lit_ = Literal._≟_
{-# WARNING_ON_USAGE _≟-Lit_
"Warning: _≟-Lit_ was deprecated in v1.3.
Please use Reflection.Literal's _≟_ instead."
#-}
_≟-Name_ = Name._≟_
{-# WARNING_ON_USAGE _≟-Name_
"Warning: _≟-Name_ was deprecated in v1.3.
Please use Reflection.Name's _≟_ instead."
#-}
_≟-Meta_ = Meta._≟_
{-# WARNING_ON_USAGE _≟-Meta_
"Warning: _≟-Meta_ was deprecated in v1.3.
Please use Reflection.Meta's _≟_ instead."
#-}
_≟-Visibility_ = Visibility._≟_
{-# WARNING_ON_USAGE _≟-Visibility_
"Warning: _≟-Visibility_ was deprecated in v1.3.
Please use Reflection.Argument.Visibility's _≟_ instead."
#-}
_≟-Relevance_ = Relevance._≟_
{-# WARNING_ON_USAGE _≟-Relevance_
"Warning: _≟-Relevance_ was deprecated in v1.3.
Please use Reflection.Argument.Relevance's _≟_ instead."
#-}
_≟-Arg-info_ = Information._≟_
{-# WARNING_ON_USAGE _≟-Arg-info_
"Warning: _≟-Arg-info_ was deprecated in v1.3.
Please use Reflection.Argument.Information's _≟_ instead."
#-}
_≟-Pattern_ = Pattern._≟_
{-# WARNING_ON_USAGE _≟-Pattern_
"Warning: _≟-Pattern_ was deprecated in v1.3.
Please use Reflection.Pattern's _≟_ instead."
#-}
_≟-ArgPatterns_ = Pattern._≟s_
{-# WARNING_ON_USAGE _≟-ArgPatterns_
"Warning: _≟-ArgPatterns_ was deprecated in v1.3.
Please use Reflection.Pattern's _≟s_ instead."
#-}
map-Abs = Abstraction.map
{-# WARNING_ON_USAGE map-Abs
"Warning: map-Abs was deprecated in v1.3.
Please use Reflection.Abstraction's map instead."
#-}
map-Arg = Argument.map
{-# WARNING_ON_USAGE map-Arg
"Warning: map-Arg was deprecated in v1.3.
Please use Reflection.Argument's map instead."
#-}
map-Args = Argument.map-Args
{-# WARNING_ON_USAGE map-Args
"Warning: map-Args was deprecated in v1.3.
Please use Reflection.Argument's map-Args instead."
#-}
visibility = Information.visibility
{-# WARNING_ON_USAGE visibility
"Warning: visibility was deprecated in v1.3.
Please use Reflection.Argument.Information's visibility instead."
#-}
relevance = Information.relevance
{-# WARNING_ON_USAGE relevance
"Warning: relevance was deprecated in v1.3.
Please use Reflection.Argument.Information's relevance instead."
#-}
infix 4 _≟-AbsTerm_ _≟-AbsType_ _≟-ArgTerm_ _≟-ArgType_ _≟-Args_
_≟-Clause_ _≟-Clauses_ _≟_
_≟-Sort_
_≟-AbsTerm_ = Term._≟-AbsTerm_
{-# WARNING_ON_USAGE _≟-AbsTerm_
"Warning: _≟-AbsTerm_ was deprecated in v1.3.
Please use Reflection.Term's _≟-AbsTerm_ instead."
#-}
_≟-AbsType_ = Term._≟-AbsType_
{-# WARNING_ON_USAGE _≟-AbsType_
"Warning: _≟-AbsType_ was deprecated in v1.3.
Please use Reflection.Term's _≟-AbsType_ instead."
#-}
_≟-ArgTerm_ = Term._≟-ArgTerm_
{-# WARNING_ON_USAGE _≟-ArgTerm_
"Warning: _≟-ArgTerm_ was deprecated in v1.3.
Please use Reflection.Term's _≟-ArgTerm_ instead."
#-}
_≟-ArgType_ = Term._≟-ArgType_
{-# WARNING_ON_USAGE _≟-ArgType_
"Warning: _≟-ArgType_ was deprecated in v1.3.
Please use Reflection.Term's _≟-ArgType_ instead."
#-}
_≟-Args_ = Term._≟-Args_
{-# WARNING_ON_USAGE _≟-Args_
"Warning: _≟-Args_ was deprecated in v1.3.
Please use Reflection.Term's _≟-Args_ instead."
#-}
_≟-Clause_ = Term._≟-Clause_
{-# WARNING_ON_USAGE _≟-Clause_
"Warning: _≟-Clause_ was deprecated in v1.3.
Please use Reflection.Term's _≟-Clause_ instead."
#-}
_≟-Clauses_ = Term._≟-Clauses_
{-# WARNING_ON_USAGE _≟-Clauses_
"Warning: _≟-Clauses_ was deprecated in v1.3.
Please use Reflection.Term's _≟-Clauses_ instead."
#-}
_≟_ = Term._≟_
{-# WARNING_ON_USAGE _≟_
"Warning: _≟_ was deprecated in v1.3.
Please use Reflection.Term's _≟_ instead."
#-}
_≟-Sort_ = Term._≟-Sort_
{-# WARNING_ON_USAGE _≟-Sort_
"Warning: _≟-Sort_ was deprecated in v1.3.
Please use Reflection.Term's _≟-Sort_ instead."
#-}
| 27.834008
| 75
| 0.675636
|
a18a90536af0171cc7e14e8cf0a574c1be7e24d8
| 9,738
|
agda
|
Agda
|
src/Categories/Bicategory/Construction/LaxSlice.agda
|
maxsnew/agda-categories
|
8f3c844d929508040dfa21f681fa260056214b73
|
[
"MIT"
] | null | null | null |
src/Categories/Bicategory/Construction/LaxSlice.agda
|
maxsnew/agda-categories
|
8f3c844d929508040dfa21f681fa260056214b73
|
[
"MIT"
] | null | null | null |
src/Categories/Bicategory/Construction/LaxSlice.agda
|
maxsnew/agda-categories
|
8f3c844d929508040dfa21f681fa260056214b73
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --without-K --safe #-}
-- Mentioned in passing here:
-- https://ncatlab.org/nlab/show/slice+2-category
open import Categories.Bicategory using (Bicategory)
module Categories.Bicategory.Construction.LaxSlice
{o ℓ e t}
(𝒞 : Bicategory o ℓ e t)
where
open import Data.Product using (_,_)
open import Function using (_$_)
open import Level using (_⊔_)
open import Categories.Bicategory.Extras 𝒞
open Shorthands
open import Categories.Category using () renaming (Category to 1Category)
open import Categories.Functor using (Functor)
open Functor using (F₀)
open import Categories.Functor.Bifunctor using (Bifunctor)
open import Categories.Functor.Construction.Constant using (const)
import Categories.Morphism.Reasoning as MR
open import Categories.NaturalTransformation.NaturalIsomorphism using (NaturalIsomorphism; niHelper)
record SliceObj (X : Obj) : Set (t ⊔ o) where
constructor sliceobj
field
{Y} : Obj
arr : Y ⇒₁ X
module SliceHom (A : Obj) where
record Slice⇒₁ (X Y : SliceObj A) : Set (o ⊔ ℓ) where
constructor slicearr₁
private
module X = SliceObj X
module Y = SliceObj Y
field
{h} : X.Y ⇒₁ Y.Y
Δ : X.arr ⇒₂ (Y.arr ∘₁ h)
record Slice⇒₂ {X Y : SliceObj A} (J K : Slice⇒₁ X Y) : Set (ℓ ⊔ e) where
constructor slicearr₂
private
module Y = SliceObj Y
module J = Slice⇒₁ J
module K = Slice⇒₁ K
field
{ϕ} : J.h ⇒₂ K.h
E : K.Δ ≈ (Y.arr ▷ ϕ ∘ᵥ J.Δ)
_∘ᵥ/_ : ∀ {X Y : SliceObj A}{J K L : Slice⇒₁ X Y} → Slice⇒₂ K L → Slice⇒₂ J K → Slice⇒₂ J L
_∘ᵥ/_ {X}{Y}{J}{K}{L} (slicearr₂ {ϕ = ϕ} E) (slicearr₂ {ϕ = ψ} F) = slicearr₂ {ϕ = ϕ ∘ᵥ ψ} $ begin
L.Δ ≈⟨ E ⟩
(Y.arr ▷ ϕ ∘ᵥ K.Δ) ≈⟨ refl⟩∘⟨ F ⟩
Y.arr ▷ ϕ ∘ᵥ (Y.arr ▷ ψ ∘ᵥ J.Δ) ≈⟨ pullˡ ∘ᵥ-distr-▷ ⟩
Y.arr ▷ (ϕ ∘ᵥ ψ) ∘ᵥ J.Δ ∎
where module X = SliceObj X
module Y = SliceObj Y
module J = Slice⇒₁ J
module K = Slice⇒₁ K
module L = Slice⇒₁ L
open 1Category (hom X.Y A)
open HomReasoning
open Equiv
open MR (hom X.Y A)
SliceHomCat : SliceObj A → SliceObj A → 1Category (o ⊔ ℓ) (ℓ ⊔ e) e
SliceHomCat X Y = record
{ Obj = Slice⇒₁ X Y
; _⇒_ = Slice⇒₂
; _≈_ = λ (slicearr₂ {ϕ} _) (slicearr₂ {ψ} _) → ϕ ≈ ψ
; id = slice-id _
; _∘_ = _∘ᵥ/_
; assoc = hom.assoc
; sym-assoc = hom.sym-assoc
; identityˡ = hom.identityˡ
; identityʳ = hom.identityʳ
; identity² = hom.identity²
; equiv = record { refl = refl ; sym = sym ; trans = trans }
; ∘-resp-≈ = hom.∘-resp-≈
}
where
open hom.Equiv
module X = SliceObj X
module Y = SliceObj Y
slice-id : ∀ (J : Slice⇒₁ X Y) → Slice⇒₂ J J
slice-id J = slicearr₂ $ begin
J.Δ ≈˘⟨ identity₂ˡ ⟩
id₂ ∘ᵥ J.Δ ≈˘⟨ ▷id₂ ⟩∘⟨refl ⟩
(Y.arr ▷ id₂) ∘ J.Δ ∎
where module J = Slice⇒₁ J
open 1Category (hom X.Y A)
open HomReasoning
_⊚₀/_ : ∀ {X Y Z : SliceObj A} → Slice⇒₁ Y Z → Slice⇒₁ X Y → Slice⇒₁ X Z
_⊚₀/_ {X}{Y}{Z} J K = slicearr₁ ((α⇒ ∘ᵥ J.Δ ◁ K.h) ∘ᵥ K.Δ)
where module K = Slice⇒₁ K
module J = Slice⇒₁ J
_⊚₁/_ : ∀ {X Y Z : SliceObj A} → {J J' : Slice⇒₁ Y Z} → {K K' : Slice⇒₁ X Y} → Slice⇒₂ J J' → Slice⇒₂ K K' → Slice⇒₂ (J ⊚₀/ K) (J' ⊚₀/ K')
_⊚₁/_ {X}{Y}{Z}{J'}{J}{K'}{K} δ γ = slicearr₂ $ begin
(α⇒ ∘ᵥ J.Δ ◁ K.h) ∘ᵥ K.Δ ≈⟨ (refl⟩∘⟨ γ.E) ⟩
(α⇒ ∘ᵥ J.Δ ◁ K.h) ∘ᵥ (Y.arr ▷ γ.ϕ ∘ᵥ K'.Δ) ≈⟨ ((refl⟩∘⟨ δ.E ⟩⊚⟨refl) ⟩∘⟨refl) ⟩
(α⇒ ∘ᵥ (Z.arr ▷ δ.ϕ ∘ᵥ J'.Δ) ◁ K.h) ∘ᵥ (Y.arr ▷ γ.ϕ ∘ᵥ K'.Δ) ≈˘⟨ (((refl⟩∘⟨ ∘ᵥ-distr-◁ ) ⟩∘⟨refl)) ⟩
(α⇒ ∘ᵥ ((Z.arr ▷ δ.ϕ) ◁ K.h ∘ᵥ J'.Δ ◁ K.h)) ∘ᵥ (Y.arr ▷ γ.ϕ ∘ᵥ K'.Δ) ≈⟨ pullʳ (center (sym ◁-▷-exchg)) ⟩
α⇒ ∘ᵥ (Z.arr ▷ δ.ϕ) ◁ K.h ∘ᵥ (Z.arr ⊚₀ J'.h ▷ γ.ϕ ∘ᵥ J'.Δ ◁ K'.h) ∘ᵥ K'.Δ ≈⟨ pushʳ ( pullˡ (pullˡ (sym ⊚.homomorphism)) ) ⟩
(α⇒ ∘ᵥ (Z.arr ▷ δ.ϕ ∘ᵥ id₂) ⊚₁ (id₂ ∘ᵥ γ.ϕ) ∘ᵥ J'.Δ ◁ K'.h) ∘ᵥ K'.Δ ≈⟨ ((refl⟩∘⟨ (identity₂ʳ ⟩⊚⟨ identity₂ˡ ⟩∘⟨refl)) ⟩∘⟨refl) ⟩
(α⇒ ∘ᵥ ((Z.arr ▷ δ.ϕ) ⊚₁ γ.ϕ) ∘ᵥ J'.Δ ◁ K'.h) ∘ᵥ K'.Δ ≈⟨ pushˡ (pullˡ (⊚-assoc.⇒.commute ((id₂ , δ.ϕ) , γ.ϕ))) ⟩
(Z.arr ▷ δ.ϕ ⊚₁ γ.ϕ ∘ᵥ α⇒) ∘ᵥ J'.Δ ◁ K'.h ∘ᵥ K'.Δ ≈⟨ pullʳ (sym assoc) ⟩
(Z.arr ▷ δ.ϕ ⊚₁ γ.ϕ) ∘ᵥ ((α⇒ ∘ᵥ J'.Δ ◁ K'.h) ∘ᵥ K'.Δ) ∎
where module X = SliceObj X
module Y = SliceObj Y
module Z = SliceObj Z
module J = Slice⇒₁ J
module J' = Slice⇒₁ J'
module K = Slice⇒₁ K
module K' = Slice⇒₁ K'
module γ = Slice⇒₂ γ
module δ = Slice⇒₂ δ
open 1Category (hom X.Y A)
open HomReasoning
open MR (hom X.Y A)
open Equiv
id/ : ∀ {X : SliceObj A} → Slice⇒₁ X X
id/ = slicearr₁ ρ⇐
_⊚/_ : ∀ {X Y Z : SliceObj A} → Bifunctor (SliceHomCat Y Z) (SliceHomCat X Y) (SliceHomCat X Z)
_⊚/_ {X}{Y}{Z} = record
{ F₀ = λ (J , K) → J ⊚₀/ K
; F₁ = λ (δ , γ) → δ ⊚₁/ γ
; identity = ⊚.identity
; homomorphism = ⊚.homomorphism
; F-resp-≈ = ⊚.F-resp-≈
}
where module X = SliceObj X
module Y = SliceObj Y
module Z = SliceObj Z
α⇒/ : ∀ {W X Y Z}(J : Slice⇒₁ Y Z) (K : Slice⇒₁ X Y) (L : Slice⇒₁ W X) → Slice⇒₂ ((J ⊚₀/ K) ⊚₀/ L) (J ⊚₀/ (K ⊚₀/ L))
α⇒/ {W}{X}{Y}{Z} J K L = slicearr₂ $ begin
(α⇒ ∘ᵥ J.Δ ◁ K.h ⊚₀ L.h) ∘ᵥ ((α⇒ ∘ᵥ K.Δ ◁ L.h) ∘ᵥ L.Δ ) ≈⟨ pullʳ (center⁻¹ (sym α⇒-◁-∘₁) refl) ⟩
α⇒ ∘ᵥ (α⇒ ∘ᵥ J.Δ ◁ K.h ◁ L.h) ∘ᵥ K.Δ ◁ L.h ∘ᵥ L.Δ ≈⟨ pullˡ (pullˡ (sym pentagon)) ⟩
((Z.arr ▷ α⇒ ∘ᵥ α⇒ ∘ᵥ α⇒ ◁ L.h) ∘ᵥ J.Δ ◁ K.h ◁ L.h) ∘ᵥ (K.Δ ◁ L.h ∘ᵥ L.Δ) ≈⟨ pullˡ (pushˡ (pull-last ∘ᵥ-distr-◁ )) ⟩
(Z.arr ▷ α⇒ ∘ᵥ (α⇒ ∘ᵥ ((α⇒ ∘ᵥ J.Δ ◁ K.h) ◁ L.h)) ∘ᵥ K.Δ ◁ L.h) ∘ᵥ L.Δ ≈⟨ pushˡ (pushʳ (pullʳ ∘ᵥ-distr-◁)) ⟩
((Z.arr ▷ α⇒ ∘ᵥ α⇒)) ∘ᵥ (((α⇒ ∘ᵥ J.Δ ◁ K.h) ∘ᵥ K.Δ) ◁ L.h) ∘ᵥ L.Δ ≈⟨ pullʳ (pushʳ refl) ⟩
Z.arr ▷ α⇒ ∘ᵥ ((α⇒ ∘ᵥ (((α⇒ ∘ᵥ J.Δ ◁ K.h)) ∘ᵥ K.Δ) ◁ L.h) ∘ᵥ L.Δ) ∎
where module W = SliceObj W
module X = SliceObj X
module Y = SliceObj Y
module Z = SliceObj Z
module J = Slice⇒₁ J
module K = Slice⇒₁ K
module L = Slice⇒₁ L
open 1Category (hom W.Y A)
open HomReasoning
open MR (hom W.Y A)
open hom.Equiv
λ⇒/ : ∀ {X Y} (J : Slice⇒₁ X Y) → Slice⇒₂ (id/ ⊚₀/ J) J
λ⇒/ {X}{Y} J = slicearr₂ $ begin
J.Δ ≈⟨ introˡ id₂◁ ⟩
(id₂ ◁ J.h) ∘ᵥ J.Δ ≈˘⟨ (unitʳ.iso.isoʳ (Y.arr , _) ⟩⊚⟨refl ⟩∘⟨refl) ⟩
((ρ⇒ ∘ᵥ ρ⇐) ◁ J.h) ∘ᵥ J.Δ ≈˘⟨ (∘ᵥ-distr-◁ ⟩∘⟨refl) ⟩
(ρ⇒ ◁ J.h ∘ᵥ ρ⇐ ◁ J.h) ∘ᵥ J.Δ ≈⟨ pushˡ (sym triangle ⟩∘⟨ refl) ⟩
(Y.arr ▷ λ⇒ ∘ᵥ α⇒) ∘ᵥ ρ⇐ ◁ J.h ∘ᵥ J.Δ ≈⟨ pullʳ (sym assoc) ⟩
Y.arr ▷ λ⇒ ∘ᵥ (α⇒ ∘ᵥ ρ⇐ ◁ J.h) ∘ᵥ J.Δ ∎
where module X = SliceObj X
module Y = SliceObj Y
module J = Slice⇒₁ J
open 1Category (hom X.Y A)
open HomReasoning
open MR (hom X.Y A)
open hom.Equiv
ρ⇒/ : ∀{X}{Y} (J : Slice⇒₁ X Y) → Slice⇒₂ (J ⊚₀/ id/) J
ρ⇒/ {X}{Y} J = slicearr₂ $ begin
J.Δ ≈⟨ introʳ (unitʳ.iso.isoʳ _) ⟩
J.Δ ∘ᵥ ρ⇒ ∘ᵥ ρ⇐ ≈⟨ pullˡ (sym ρ⇒-∘ᵥ-◁) ⟩
(ρ⇒ ∘ᵥ J.Δ ◁ id₁) ∘ᵥ ρ⇐ ≈⟨ unitorʳ-coherence ⟩∘⟨refl ⟩∘⟨refl ⟩
((Y.arr ▷ ρ⇒ ∘ᵥ α⇒) ∘ᵥ J.Δ ◁ id₁) ∘ᵥ ρ⇐ ≈⟨ pushˡ assoc ⟩
Y.arr ▷ ρ⇒ ∘ᵥ (α⇒ ∘ᵥ J.Δ ◁ id₁) ∘ᵥ ρ⇐ ∎
where module X = SliceObj X
module Y = SliceObj Y
module J = Slice⇒₁ J
open 1Category (hom X.Y A)
open HomReasoning
open MR (hom X.Y A)
open hom.Equiv
slice-inv : ∀ {X}{Y}{J : Slice⇒₁ X Y}{K} (α : Slice⇒₂ J K) → (f : Slice⇒₁.h K ⇒₂ Slice⇒₁.h J) → (f ∘ᵥ (Slice⇒₂.ϕ α) ≈ id₂) → Slice⇒₂ K J
slice-inv {X}{Y}{J}{K} α f p = slicearr₂ $ begin
J.Δ ≈⟨ introˡ ▷id₂ ⟩
(Y.arr ▷ id₂) ∘ᵥ J.Δ ≈˘⟨ (refl⟩⊚⟨ p ⟩∘⟨refl) ⟩
(Y.arr ▷ (f ∘ᵥ α.ϕ)) ∘ᵥ J.Δ ≈˘⟨ (∘ᵥ-distr-▷ ⟩∘⟨refl) ⟩
(Y.arr ▷ f ∘ᵥ Y.arr ▷ α.ϕ) ∘ᵥ J.Δ ≈⟨ pullʳ (sym α.E) ⟩
Y.arr ▷ f ∘ᵥ K.Δ ∎
where module X = SliceObj X
module Y = SliceObj Y
module J = Slice⇒₁ J
module K = Slice⇒₁ K
module α = Slice⇒₂ α
open 1Category (hom X.Y A)
open HomReasoning
open MR (hom X.Y A)
open hom.Equiv
LaxSlice : Obj → Bicategory (o ⊔ ℓ) (ℓ ⊔ e) e (o ⊔ t)
LaxSlice A = record
{ enriched = record
{ Obj = SliceObj A
; hom = SliceHomCat
; id = const id/
; ⊚ = _⊚/_
; ⊚-assoc = niHelper (record
{ η = λ ((J , K) , L) → α⇒/ J K L
; η⁻¹ = λ ((J , K) , L) → slice-inv (α⇒/ J K L) α⇐ (⊚-assoc.iso.isoˡ _)
; commute = λ f → ⊚-assoc.⇒.commute _
; iso = λ _ → record { isoˡ = ⊚-assoc.iso.isoˡ _ ; isoʳ = ⊚-assoc.iso.isoʳ _ }
})
; unitˡ = niHelper (record
{ η = λ (_ , J) → λ⇒/ J
; η⁻¹ = λ (_ , J) → slice-inv (λ⇒/ J) λ⇐ (unitˡ.iso.isoˡ _)
; commute = λ _ → λ⇒-∘ᵥ-▷
; iso = λ _ → record { isoˡ = unitˡ.iso.isoˡ _ ; isoʳ = unitˡ.iso.isoʳ _ }
})
; unitʳ = niHelper (record
{ η = λ (J , _) → ρ⇒/ J
; η⁻¹ = λ (J , _) → slice-inv (ρ⇒/ J) ρ⇐ (unitʳ.iso.isoˡ _)
; commute = λ _ → ρ⇒-∘ᵥ-◁
; iso = λ _ → record { isoˡ = unitʳ.iso.isoˡ _ ; isoʳ = unitʳ.iso.isoʳ _ } })
}
; triangle = triangle
; pentagon = pentagon
}
where open SliceHom A
| 40.074074
| 140
| 0.463237
|
c54027ed98195706bee262dcca64d930393d7ba5
| 23,242
|
agda
|
Agda
|
setoid_rr.agda
|
CoqHott/logrel-mltt
|
e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04
|
[
"MIT"
] | 2
|
2018-06-21T08:39:01.000Z
|
2022-01-17T16:13:53.000Z
|
setoid_rr.agda
|
CoqHott/logrel-mltt
|
e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04
|
[
"MIT"
] | null | null | null |
setoid_rr.agda
|
CoqHott/logrel-mltt
|
e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04
|
[
"MIT"
] | 2
|
2022-01-26T14:55:51.000Z
|
2022-02-15T19:42:19.000Z
|
{-# OPTIONS --rewriting --prop --confluence-check #-}
open import Agda.Primitive
open import Agda.Builtin.Bool
open import Agda.Builtin.Nat
open import Agda.Builtin.List
open import Agda.Builtin.Equality
open import Agda.Builtin.Equality.Rewrite
open import Agda.Builtin.Sigma
open import Agda.Builtin.Unit
open import Data.Vec.Base
open import Data.Bool
open import Data.Sum
-- sigma type in Prop used to handle telescopes.
record Tel {a b} (A : Prop a) (B : A → Prop b) : Prop (a ⊔ b) where
constructor _,_
field
fstC : A
sndC : B fstC
open Tel public
infixr 4 _,_
record ΣCov {a b} (A : Set a) (B : A → Set b) : Set (a ⊔ b) where
constructor _,_
field
fstCov : A
sndCov : B fstCov
open ΣCov public
record prod {a b} (A : Set a) (B : Set b) : Set (a ⊔ b) where
constructor _,_
field
fstprod : A
sndprod : B
open prod public
variable ℓ ℓ₁ ℓ₂ ℓ₃ ℓ₄ : Level
-- a bit of boilerplate to deal with Prop
data ⊥ : Prop where
record ⊤P : Prop ℓ where
constructor ttP
record Box (A : Prop ℓ) : Set ℓ where
constructor box
field
unbox : A
open Box public
_×_ : ∀ (A : Prop ℓ) (B : Prop ℓ₁) → Prop (ℓ ⊔ ℓ₁)
A × B = Tel A (λ _ → B)
-- we need this for cumulativity
record i (A : Prop ℓ) : Prop (ℓ ⊔ ℓ₁) where
constructor inj
field
uninj : A
open i public
record iS (A : Set ℓ) : Set (ℓ ⊔ ℓ₁) where
constructor inj
field
uninj : A
open iS public
{-
Axiomatisation of Id, Id-refl, transport (for proposition), cast
Note that Id-refl, transport are axioms in Prop,
so we don't need to give them a computation content.
Also transport-refl is useless for transport on Prop
-}
postulate Id : (A : Set ℓ) → A → A → Prop ℓ
postulate cast : (A B : Set ℓ) (e : Id (Set ℓ) A B) → A → B
postulate Id-refl : {A : Set ℓ} (x : A) → Id A x x
postulate cast-refl : {A : Set ℓ} (e : Id _ A A) (a : A) → Id A (cast A A e a) a
postulate transport : {A : Set ℓ} (P : A → Prop ℓ₁) (x : A) (t : P x) (y : A) (e : Id A x y) → P y
-- cast-refl' : {A : Set ℓ} (e : Id (Set ℓ) A A) (a : A) → Id A (cast A A e a) a
-- cast-refl' {A = A} e a = transport (λ z → Id A z a) {!!} (Id-refl a) {!!} {!!}
-- direct derived functions
ap : {A : Set ℓ} {B : Set ℓ₁} {x y : A} (f : A → B) (e : Id A x y) →
Id B (f x) (f y)
ap {ℓ} {ℓ₁} {A} {B} {x} {y} f e = transport (λ z → Id B (f x) (f z)) x (Id-refl _) y e
transport-Id : {A : Set ℓ} (P : A → Set ℓ₁) (x : A) (t : P x) (y : A) (e : Id A x y) → P y
transport-Id P x t y e = cast (P x) (P y) (ap P e) t
transport-refl : {A : Set ℓ} (P : A → Set ℓ₁) (x : A) (t : P x) (e : Id A x x) → Id _ (transport-Id P x t x e) t
transport-refl P x t e = cast-refl (ap P e) t
inverse : (A : Set ℓ) {x y : A} (p : Id {ℓ} A x y) → Id A y x
inverse A {x} {y} p = transport (λ z → Id A z x) x (Id-refl x) y p
concatId : (A : Set ℓ) {x y z : A} (p : Id {ℓ} A x y)
(q : Id {ℓ} A y z) → Id A x z
concatId A {x} {y} {z} p q = transport (λ t → Id A x t) y p z q
-- we now state rewrite rules for the identity type
postulate Id-Pi : (A : Set ℓ) (B : A → Set ℓ₁) (f g : (a : A) → B a) →
Id ((a : A) → B a) f g ≡ ((a : A) → Id (B a) (f a) (g a))
{-# REWRITE Id-Pi #-}
-- rewrite rules on Id-refl are not needed because it is in Prop
refl-Pi : (A : Set ℓ) (B : A → Set ℓ₁) (f : (a : A) → B a) →
box (Id-refl f) ≡ box (λ a → Id-refl (f a))
refl-Pi A B f = refl
-- sanity check for funext
funext : (A : Set ℓ) (B : A → Set ℓ₁) (f g : (a : A) → B a) →
((a : A) → Id (B a) (f a) (g a)) → Id ((a : A) → B a) f g
funext A B f g e = e
postulate Id-Sigma : (A : Set ℓ) (B : A → Set ℓ₁) (a a' : A)
(b : B a) (b' : B a') →
Id (Σ A B) (a , b) (a' , b') ≡
Tel (Id A a a')
(λ e → Id (B a') (transport-Id B a b a' e) b')
{-# REWRITE Id-Sigma #-}
postulate Id-SigmaCov : (A : Set ℓ) (B : A → Set ℓ₁) (a a' : A)
(b : B a) (b' : B a') →
Id (ΣCov A B) (a , b) (a' , b') ≡
Tel (Id A a a')
(λ e → Id (B a) b (transport-Id B a' b' a (inverse A e)))
{-# REWRITE Id-SigmaCov #-}
postulate Id-prod : (A : Set ℓ) (B : Set ℓ₁) (a a' : A)
(b b' : B) →
Id (prod A B) (a , b) (a' , b') ≡
(Id A a a') × (Id B b b')
{-# REWRITE Id-prod #-}
postulate Id-Box : (A : Prop ℓ) (p q : A) → Id (Box A) (box p) (box q) ≡ ⊤P
{-# REWRITE Id-Box #-}
postulate Id-Unit : (p q : ⊤) → Id ⊤ p q ≡ ⊤P
{-# REWRITE Id-Unit #-}
postulate Id-list-nil-nil : (A : Set ℓ) →
Id (List A) [] [] ≡ ⊤P
-- postulate Id-list-nil-cons : (A : Set ℓ) (a' : A) (l' : List A) →
-- Id (List A) [] (a' ∷ l') ≡ i ⊥
-- postulate Id-list-cons-nil : (A : Set ℓ) (a : A) (l : List A) →
-- Id (List A) (a ∷ l) [] ≡ i ⊥
postulate Id-list-cons-cons : (A : Set ℓ) (a a' : A) (l l' : List A) →
Id (List A) (a ∷ l) (a' ∷ l') ≡
Id A a a' × Id (List A) l l'
{-# REWRITE Id-list-nil-nil #-}
{-# REWRITE Id-list-cons-cons #-}
postulate Id-nat-zero-zero : Id Nat 0 0 ≡ ⊤P
-- postulate Id-nat-zero-suc : (n : Nat) →
-- Id Nat 0 (suc n) ≡ i ⊥
-- postulate Id-nat-suc-zero : (n : Nat) →
-- Id Nat (suc n) zero ≡ i ⊥
postulate Id-nat-suc-suc : (n n' : Nat) →
Id Nat (suc n) (suc n') ≡
Id Nat n n'
{-# REWRITE Id-nat-zero-zero #-}
{-# REWRITE Id-nat-suc-suc #-}
postulate Id-bool-true-true : Id Bool true true ≡ ⊤P
postulate Id-bool-false-false : Id Bool false false ≡ ⊤P
{-# REWRITE Id-bool-true-true #-}
{-# REWRITE Id-bool-false-false #-}
postulate Id-sum-inj₁-inj₁ : (A : Set ℓ) (B : Set ℓ₁) (a a' : A) →
Id (A ⊎ B) (inj₁ a) (inj₁ a') ≡
i {ℓ = ℓ} {ℓ₁ = ℓ₁} (Id A a a')
postulate Id-sum-inj₂-inj₂ : (A : Set ℓ) (B : Set ℓ₁) (b b' : B) →
Id (A ⊎ B) (inj₂ b) (inj₂ b') ≡
i {ℓ = ℓ₁} {ℓ₁ = ℓ} (Id B b b')
{-# REWRITE Id-sum-inj₁-inj₁ #-}
{-# REWRITE Id-sum-inj₂-inj₂ #-}
-- rewrite rules for the identity type on the universe
telescope-Sigma : Set (lsuc (ℓ ⊔ ℓ₁))
telescope-Sigma {ℓ} {ℓ₁} = ΣCov (Set ℓ) (λ A → A → Set ℓ₁)
postulate Id-Type-Sigma : (A A' : Set ℓ) (B : A → Set ℓ₁) (B' : A' → Set ℓ₁) →
Id (Set (ℓ ⊔ ℓ₁)) (Σ A B) (Σ A' B') ≡
Id telescope-Sigma (A , B) (A' , B')
{-# REWRITE Id-Type-Sigma #-}
telescope-Forall : Set (lsuc (ℓ ⊔ ℓ₁))
telescope-Forall {ℓ} {ℓ₁} = Σ (Set ℓ) (λ A → A → Set ℓ₁)
postulate Id-Type-Pi : (A A' : Set ℓ) (B : A → Set ℓ₁) (B' : A' → Set ℓ₁) →
Id (Set (ℓ ⊔ ℓ₁)) ((a : A) → B a) ((a' : A') → B' a') ≡
Id telescope-Forall (A , B) (A' , B')
{-# REWRITE Id-Type-Pi #-}
telescope-Sum : Set (lsuc (ℓ ⊔ ℓ₁))
telescope-Sum {ℓ} {ℓ₁} = Σ (Set ℓ) (λ _ → Set ℓ₁)
postulate Id-Type-Sum : (A A' : Set ℓ) (B B' : Set ℓ₁) →
Id (Set (ℓ ⊔ ℓ₁)) (A ⊎ B) (A' ⊎ B') ≡
Id telescope-Sum (A , B) (A' , B')
{-# REWRITE Id-Type-Sum #-}
postulate Id-Type-prod : (A A' : Set ℓ) (B B' : Set ℓ₁) →
Id (Set (ℓ ⊔ ℓ₁)) (prod A B) (prod A' B') ≡
Id telescope-Sum (A , B) (A' , B')
{-# REWRITE Id-Type-prod #-}
telescope-List : Set (lsuc ℓ)
telescope-List {ℓ} = Set ℓ
postulate Id-Type-List : (A A' : Set ℓ) →
Id (Set ℓ) (List A) (List A') ≡
Id telescope-List A A'
{-# REWRITE Id-Type-List #-}
postulate Id-Type-Unit : Id Set ⊤ ⊤ ≡ ⊤P
{-# REWRITE Id-Type-Unit #-}
postulate Id-Type-Nat : Id Set Nat Nat ≡ Id Set ⊤ ⊤
{-# REWRITE Id-Type-Nat #-}
postulate Id-Type-Bool : Id Set Bool Bool ≡ Id Set ⊤ ⊤
{-# REWRITE Id-Type-Bool #-}
telescope-Box : Set (lsuc ℓ)
telescope-Box {ℓ} = Prop ℓ
postulate Id-Type-Box : (P P' : Prop ℓ) → Id (Set ℓ) (Box P) (Box P') ≡ Id telescope-Box P P'
{-# REWRITE Id-Type-Box #-}
-- rewrite rules for the identity type on Prop : Prop ext modulo cumul
postulate Id-prop : (P Q : Prop ℓ) → Id (Prop ℓ) P Q ≡ i (P → Q) × (Q → P)
{-# REWRITE Id-prop #-}
postulate Id-set : Id (Set (lsuc ℓ₁)) (Set ℓ₁) (Set ℓ₁) ≡ ⊤P
{-# REWRITE Id-set #-}
-- non-diagonal cases
{- There are n^2 cases, that's a pain, this is not exhaustive for the moment -}
postulate Id-set-nat : Id _ (Set ℓ) (iS Nat) ≡ i ⊥
postulate Id-nat-set : Id (Set (lsuc ℓ)) (iS Nat) (Set ℓ) ≡ i ⊥
postulate Id-set-bool : Id _ (Set ℓ) (iS Bool) ≡ i ⊥
postulate Id-bool-set : Id (Set (lsuc ℓ)) (iS Bool) (Set ℓ) ≡ i ⊥
postulate Id-bool-nat : Id _ Bool Nat ≡ i ⊥
postulate Id-nat-bool : Id _ Nat Bool ≡ i ⊥
postulate Id-set-pi : (A : Set ℓ₁) (B : A → Set ℓ₂) → Id (Set (lsuc ℓ ⊔ ℓ₁ ⊔ ℓ₂)) (iS {lsuc ℓ} {lsuc ℓ ⊔ ℓ₁ ⊔ ℓ₂} (Set ℓ))
(iS {ℓ₁ ⊔ ℓ₂} {lsuc ℓ ⊔ ℓ₁ ⊔ ℓ₂} ((a : A) → B a)) ≡ i ⊥
postulate Id-pi-set : (A : Set ℓ₁) (B : A → Set ℓ₂) → Id (Set (lsuc ℓ ⊔ ℓ₁ ⊔ ℓ₂)) (iS {ℓ₁ ⊔ ℓ₂} {lsuc ℓ ⊔ ℓ₁ ⊔ ℓ₂} ((a : A) → B a))
(iS {lsuc ℓ} {lsuc ℓ ⊔ ℓ₁ ⊔ ℓ₂} (Set ℓ)) ≡ i ⊥
postulate Id-set-sigma : (A : Set ℓ₁) (B : A → Set ℓ₂) → Id (Set (lsuc ℓ ⊔ ℓ₁ ⊔ ℓ₂)) (iS {lsuc ℓ} {lsuc ℓ ⊔ ℓ₁ ⊔ ℓ₂} (Set ℓ))
(iS {ℓ₁ ⊔ ℓ₂} {lsuc ℓ ⊔ ℓ₁ ⊔ ℓ₂} (Σ A B)) ≡ i ⊥
postulate Id-sigma-set : (A : Set ℓ₁) (B : A → Set ℓ₂) → Id (Set (lsuc ℓ ⊔ ℓ₁ ⊔ ℓ₂)) (iS {ℓ₁ ⊔ ℓ₂} {lsuc ℓ ⊔ ℓ₁ ⊔ ℓ₂} (Σ A B))
(iS {lsuc ℓ} {lsuc ℓ ⊔ ℓ₁ ⊔ ℓ₂} (Set ℓ)) ≡ i ⊥
{-# REWRITE Id-set-nat Id-nat-set Id-set-bool Id-bool-set Id-bool-nat Id-nat-bool Id-set-pi Id-pi-set Id-set-sigma Id-sigma-set #-}
--- Contractibility of singletons and J can be defined
contr-sing : (A : Set ℓ) {x y : A} (p : Id {ℓ} A x y) →
Id (Σ A (λ y → Box (Id A x y))) (x , box (Id-refl x)) (y , box p)
contr-sing A {x} {y} p = p , ttP
J : (A : Set ℓ) (x : A) (P : (y : A) → Id A x y → Prop ℓ₁)
(t : P x (Id-refl x)) (y : A) (e : Id A x y) → P y e
J A x P t y e = transport (λ z → P (fst z) (unbox (snd z))) (x , box (Id-refl x)) t (y , box e) (contr-sing A e)
-- tranporting back and forth is the identity
-- cast-inv : (A B : Set ℓ) (e : Id _ A B) (a : A) →
-- Id A (cast B A (inverse (Set ℓ) {x = A} {y = B} e) (cast A B e a)) a
-- cast-inv {ℓ} A B e a = let e-refl = cast-refl (Id-refl A) a in
-- let e-refl-cast = cast-refl (Id-refl A) (cast A A (Id-refl A) a) in
-- J (Set ℓ) A (λ B e → Id A (cast B A (inverse (Set ℓ) {x = A} {y = B} e) (cast A B e a)) a)
-- (concatId A e-refl-cast e-refl) B e
postulate cast-set : (A : Set ℓ) (e : _) → cast (Set ℓ) (Set ℓ) e A ≡ A
{-# REWRITE cast-set #-}
postulate cast-prop : (A : Prop ℓ) (e : _) → cast (Prop ℓ) (Prop ℓ) e A ≡ A
{-# REWRITE cast-prop #-}
postulate cast-type-family : (A A' : Set ℓ) (f : (a : A) → Set ℓ₁) (e : _) →
cast ((a : A) → Set ℓ₁) ((a' : A') → Set ℓ₁) e f ≡
λ (a' : A') → let a = cast A' A (inverse (Set ℓ) {x = A} {y = A'} (fstC e)) a' in f a
{-# REWRITE cast-type-family #-}
postulate cast-Pi : (A A' : Set ℓ) (B : A → Set ℓ₁) (B' : A' → Set ℓ₁) (f : (a : A) → B a) (e : Id _ ((a : A) → B a) ((a' : A') → B' a')) →
cast ((a : A) → B a) ((a' : A') → B' a') e f ≡
λ (a' : A') → let a = cast A' A (inverse (Set ℓ) {x = A} {y = A'} (fstC e)) a' in
cast _ _ (sndC e a') (f a)
{-# REWRITE cast-Pi #-}
postulate cast-Sigma : (A A' : Set ℓ) (B : A → Set ℓ₁) (B' : A' → Set ℓ₁) (x : A) (y : B x) (e : _) →
let eA = fstC e in
let x' = cast A A' eA x in
let eB = sndC e x in
cast (Σ A B) (Σ A' B') e (x , y) ≡
(cast A A' eA x , cast (B x) (B' x') eB y)
{-# REWRITE cast-Sigma #-}
postulate cast-prod : (A A' : Set ℓ) (B B' : Set ℓ₁) (x : A) (y : B) (e : _) →
let eA = fstC e in
let eB = sndC e in
cast (prod A B) (prod A' B') e (x , y) ≡
(cast A A' eA x , cast B B' eB y)
{-# REWRITE cast-prod #-}
postulate cast-Sum-inj₁ : (A A' : Set ℓ) (B B' : Set ℓ₁) (a : A) (e : _) →
let eA = fstC e in
let eB = sndC e in
cast (A ⊎ B) (A' ⊎ B') e (inj₁ a) ≡
inj₁ (cast A A' eA a)
postulate cast-Sum-inj₂ : (A A' : Set ℓ) (B B' : Set ℓ₁) (b : B) (e : _) →
let eA = fstC e in
let eB = sndC e in
cast (A ⊎ B) (A' ⊎ B') e (inj₂ b) ≡
inj₂ (cast B B' eB b)
{-# REWRITE cast-Sum-inj₁ #-}
{-# REWRITE cast-Sum-inj₂ #-}
postulate cast-List-nil : (A A' : Set ℓ) (e : _) →
cast (List A) (List A') e [] ≡ []
postulate cast-List-cons : (A A' : Set ℓ) (e : _) (a : A) (l : List A) →
cast (List A) (List A') e (a ∷ l) ≡
cast A A' e a ∷ cast _ _ e l
{-# REWRITE cast-List-nil #-}
{-# REWRITE cast-List-cons #-}
postulate cast-Nat : (e : _) (n : Nat) → cast Nat Nat e n ≡ n
{-# REWRITE cast-Nat #-}
postulate cast-Bool : (e : _) (b : Bool) → cast Bool Bool e b ≡ b
{-# REWRITE cast-Bool #-}
postulate cast-Unit : (e : _) (t : ⊤) → cast ⊤ ⊤ e t ≡ t
{-# REWRITE cast-Unit #-}
postulate cast-Box : (A A' : Prop ℓ) (a : A) (f : _) (g : _) →
cast (Box A) (Box A') (f , g) (box a) ≡ box (uninj f a)
{-# REWRITE cast-Box #-}
-- sanity check on closed terms
foo : transport-Id (λ (T : Σ Set (λ A → Σ A (λ _ → A → Set))) → ((snd (snd T)) (fst (snd T))))
(Nat , (0 , λ _ → Nat))
3
(Nat , (0 , λ _ → Nat))
(Id-refl {A = Σ Set (λ A → Σ A (λ _ → A → Set))} (Nat , (0 , λ _ → Nat)))
≡ 3
foo = refl
test-J-refl-on-closed-term : (X : Set ℓ) (x : X) →
transport-Id (λ z → Σ ⊤ (λ z → ⊤)) x (tt , tt) x (Id-refl x) ≡ (tt , tt)
test-J-refl-on-closed-term X x = refl
-- Quotient types
{-
Note that r s and t are not used in the definitions, they are just here
to make sure the theory stays consistent, because postulating the quotient,
we can derive them. In particular, with R = λ - - → ⊥, we would get
a direct inconsistency using Id-refl
-}
record quotient-data ℓ : Set (lsuc ℓ) where
constructor q-data
field
carrier : Set ℓ
rel : carrier → carrier → Prop ℓ
rel-refl : (x : carrier) → rel x x
rel-sym : (x y : carrier) → rel x y → rel y x
rel-trans : (x y z : carrier) → rel x y → rel y z → rel x z
open quotient-data public
postulate Quotient : (Q : quotient-data ℓ) →
Set ℓ
postulate pi : {Q : quotient-data ℓ} →
carrier Q → Quotient Q
telescope-Quotient : Set (lsuc ℓ)
telescope-Quotient {ℓ} = Σ (Set ℓ) (λ A → A → A → Prop ℓ)
postulate Id-Quotient : (Q : quotient-data ℓ)
(a a' : carrier Q) →
Id (Quotient Q)
(pi a) (pi a') ≡ rel Q a a'
{-# REWRITE Id-Quotient #-}
postulate Quotient-elim : (Q : quotient-data ℓ)
(P : Quotient Q → Set ℓ₁)
(p : (x : carrier Q) → P (pi x))
(e : (x y : carrier Q) → (r : rel Q x y) →
Id _ (transport-Id P (pi x) (p x) (pi y) r) (p y))
(w : Quotient Q) → P w
postulate Quotient-elim-red : (Q : quotient-data ℓ)
(P : Quotient Q → Set ℓ₁)
(p : (x : carrier Q) → P (pi x))
(e : (x y : carrier Q) → (r : rel Q x y) →
Id _ (transport-Id P (pi x) (p x) (pi y) r) (p y))
(a : carrier Q) →
Quotient-elim Q P p e (pi a)
≡ p a
{-# REWRITE Quotient-elim-red #-}
postulate Quotient-elim-prop : (Q : quotient-data ℓ)
(P : Quotient Q → Prop ℓ₁)
(p : (x : carrier Q) → P (pi x))
(w : Quotient Q) → P w
postulate Id-Type-Quotient : (Q Q' : quotient-data ℓ) →
Id (Set ℓ) (Quotient Q) (Quotient Q')
≡
Id telescope-Quotient (carrier Q , rel Q) (carrier Q' , rel Q')
{-# REWRITE Id-Type-Quotient #-}
postulate cast-Quotient : (Q Q' : quotient-data ℓ)
(a : carrier Q) (e : _) →
cast (Quotient Q) (Quotient Q') e (pi a) ≡
pi (cast (carrier Q) (carrier Q') (fstC e) a)
{-# REWRITE cast-Quotient #-}
-- double induction principle
Quotient-elim2-aux : (Q : quotient-data ℓ)
(P : Quotient Q → Quotient Q → Set ℓ₁)
(p : (x y : carrier Q) → P (pi x) (pi y))
(e : (x x' y y' : carrier Q) → (Q-rel1 : rel Q x x') → (Q-rel2 : rel Q y y') →
Id _ (transport-Id (P (pi x')) (pi y) (transport-Id (λ x → P x (pi y)) (pi x) (p x y) (pi x') Q-rel1) (pi y') Q-rel2) (p x' y')) (x : carrier Q) (w : Quotient Q) → P w (pi x)
Quotient-elim2-aux Q P p e x = Quotient-elim Q (λ w → P w (pi x)) (λ y → p y x) (λ y y' r → let e-cst = e y y' x x r (rel-refl Q x) in transport (λ e → Id (P (pi y') (pi x))
(e
(cast (P (pi y) (pi x)) (P (pi y') (pi x)) (ap (λ y → P y (pi x)) r) (p y x)))
(p y' x)) (cast (P (pi y') (pi x)) (P (pi y') (pi x)) (ap (P (pi y')) (rel-refl Q x)))
e-cst (λ w → w) λ a → cast-refl {A = P (pi y') (pi x)} (Id-refl (P (pi y') (pi x))) a )
Quotient-elim2 : (Q : quotient-data ℓ)
(P : Quotient Q → Quotient Q → Set ℓ₁)
(p : (x y : carrier Q) → P (pi x) (pi y))
(e : (x x' y y' : carrier Q) → (Q-rel1 : rel Q x x') → (Q-rel2 : rel Q y y') →
Id _ (transport-Id (P (pi x')) (pi y) (transport-Id (λ x → P x (pi y)) (pi x) (p x y) (pi x') Q-rel1) (pi y') Q-rel2) (p x' y'))
(w w' : Quotient Q) → P w w'
Quotient-elim2 Q P p e w =
Quotient-elim Q (P w) (λ x → Quotient-elim2-aux Q P p e x w)
(λ x x' r → Quotient-elim-prop Q (λ w → Id (P w (pi x'))
(transport-Id (P w) (pi x) (Quotient-elim2-aux Q P p e x w) (pi x') r)
(Quotient-elim2-aux Q P p e x' w)) (λ y → let e-cst = e y y x x' (rel-refl Q y) r in
transport (λ e → Id (P (pi y) (pi x'))
(cast (P (pi y) (pi x)) (P (pi y) (pi x')) (ap (P (pi y)) r) (e (p y x)))
(p y x')) (cast (P (pi y) (pi x)) (P (pi y) (pi x)) (ap (P (pi y)) (rel-refl Q x)))
e-cst (λ w → w) λ a → cast-refl {A = P (pi y) (pi x)} (Id-refl (P (pi y) (pi x))) a ) w)
{-
-- Sanity Check: transport-refl on quotient type
transport-refl-Quotient : (X : Set ℓ)
(carrier Q : X -> Set ℓ₁)
(R : (x : X) → carrier Q x → carrier Q x → Prop ℓ₁)
(r : (z : X) (x : carrier Q z) → R z x x)
(s : (z : X) (x y : carrier Q z) → R z x y → R z y x)
(t : (zz : X) (x y z : carrier Q zz) → R zz x y → R zz y z → R zz x z)
(x : X) (q : Quotient (carrier Q x) (R x) (r x) (s x) (t x))
(e : Id X x x) →
Id _
(transport-Id (λ x → Quotient (carrier Q x) (R x) (r x) (s x) (t x))
x q x e)
q
transport-refl-Quotient X carrier Q R r s t x q e =
Quotient-elim-prop (carrier Q x) (R x) (r x) (s x) (t x)
((λ a → Id _ (transport-Id (λ (x : X) → Quotient (carrier Q x) (R x) (r x) (s x) (t x)) x a x e) a))
(λ a → transport (λ a' → R x a' a) a (r x a) (cast (carrier Q x) (carrier Q x) _ a) (inverse (carrier Q x) (transport-refl carrier Q x a e)))
q
-}
-- Now for Path
telescope-Path : Set (lsuc ℓ)
telescope-Path {ℓ} = Σ (Set ℓ) (λ A → prod A A)
postulate Id-Path : (A : Set ℓ) (x : A) (y : A) (e e' : _)→
Id (x ≡ y) e e' ≡ ⊤P
{-# REWRITE Id-Path #-}
postulate Id-Type-Path : (A A' : Set ℓ) (x y : A) (x' y' : A') →
Id (Set ℓ) (x ≡ y) (x' ≡ y') ≡
Id telescope-Path
(A , (x , y))
(A' , (x' , y' ))
{-# REWRITE Id-Type-Path #-}
-- not enough to get canonicity
-- postulate cast-Path : (A A' : Set ℓ) (x : A) (x' : A') (e : _) →
-- cast (x ≡ x) (x' ≡ x') e refl ≡ refl
-- {-# REWRITE cast-Path #-}
transport-Path : {A : Set ℓ} (x : A) (P : (y : A) → Set ℓ₁) (t : P x) (y : A) (e : x ≡ y) → P y
transport-Path P x t y refl = t
transport-Path-refl : {A : Set ℓ} (P : A → Prop ℓ₁) (x : A) (t : P x) (y : A) (e : x ≡ y) → P y
transport-Path-refl P x t .x refl = t
path-to-Id : {A : Set ℓ} {x y : A} → x ≡ y → Id A x y
path-to-Id {ℓ} {A} {x} {y} = transport-Path-refl (Id A x) x (Id-refl x) y
-- we treat cast X (a ≡ b) e x as a new constructor of equality
postulate IdPath : {A : Set ℓ} {x y : A} → Id A x y → x ≡ y
postulate transport-Path-cast-refl : {A B : Set ℓ} (a : A) (b b' : B) (e : Id (Set ℓ) (a ≡ a) (b ≡ b')) →
cast (a ≡ a) (b ≡ b') e refl ≡
IdPath ( let X = fstC (sndC e) in let Y = sndC (sndC e) in concatId B (inverse B X) Y)
{-# REWRITE transport-Path-cast-refl #-}
postulate transport-Path-IdPath : {A : Set ℓ} (x : A) (P : (y : A) → Set ℓ₁) (t : P x) (y : A) (e : Id A x y) →
transport-Path x P t y (IdPath e) ≡ transport-Id P x t y e
{-# REWRITE transport-Path-IdPath #-}
postulate transport-Path-cast-IdPath : {A B : Set ℓ} (a a' : A) (b b' : B) (ea : Id A a a') (e : Id (Set ℓ) (a ≡ a') (b ≡ b')) →
cast (a ≡ a') (b ≡ b') e (IdPath ea) ≡
IdPath (concatId B (inverse B (fstC (sndC e)))
(concatId B (ap (cast A B (fstC e)) ea) (sndC (sndC e))))
{-# REWRITE transport-Path-cast-IdPath #-}
transport-refl-Path : {A : Set ℓ} (P : A → Set ℓ₁) (x : A) (t : P x) → transport-Path x P t x refl ≡ t
transport-refl-Path P x t = refl
funext-Path : (A : Set ℓ) (B : A → Set ℓ₁) (f g : (a : A) → B a) →
((a : A) → f a ≡ g a) → f ≡ g
funext-Path A B f g e = IdPath (λ a → path-to-Id (e a))
etaBool : (a : Bool) → a ≡ (if a then true else false)
etaBool true = refl
etaBool false = refl
eq_fun : (λ (b : Bool) → b) ≡ (λ (b : Bool) → if b then true else false)
eq_fun = funext-Path Bool (λ - → Bool) _ _ λ a → etaBool a
-- standard boolean using equality
std-bool : Bool
std-bool = transport-Path (λ (b : Bool) → b) (λ f → Bool) true (λ (b : Bool) → if b then true else false) eq_fun
sanity-check : std-bool ≡ true
sanity-check = refl
| 35.978328
| 202
| 0.459169
|
1c58da252d9a77f4466f73dd7e267d381f423a76
| 1,056
|
agda
|
Agda
|
archive/agda-1/UnifyWith.agda
|
m0davis/oscar
|
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
|
[
"RSA-MD"
] | null | null | null |
archive/agda-1/UnifyWith.agda
|
m0davis/oscar
|
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
|
[
"RSA-MD"
] | 1
|
2019-04-29T00:35:04.000Z
|
2019-05-11T23:33:04.000Z
|
archive/agda-1/UnifyWith.agda
|
m0davis/oscar
|
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
|
[
"RSA-MD"
] | null | null | null |
open import Relation.Binary using (IsDecEquivalence)
open import Agda.Builtin.Equality
module UnifyWith (FunctionName : Set) ⦃ isDecEquivalenceA : IsDecEquivalence (_≡_ {A = FunctionName}) ⦄ where
open import UnifyTermF FunctionName
open import UnifyMguF FunctionName
open import UnifyMguCorrectF FunctionName
open import Data.Fin using (Fin; suc; zero)
open import Data.Nat hiding (_≤_)
open import Relation.Binary.PropositionalEquality renaming ([_] to [[_]])
open import Function using (_∘_; id; case_of_; _$_; flip)
open import Relation.Nullary
open import Data.Product renaming (map to _***_)
open import Data.Empty
open import Data.Maybe
open import Category.Functor
open import Category.Monad
import Level
open RawMonad (Data.Maybe.monad {Level.zero})
open import Data.Sum
open import Data.Maybe using (maybe; maybe′; nothing; just; monad; Maybe)
open import Data.List renaming (_++_ to _++L_)
open ≡-Reasoning
open import Data.Vec using (Vec; []; _∷_) renaming (_++_ to _++V_; map to mapV)
open import Data.Unit
-- moved to UnifyMguCorrectF
| 32
| 109
| 0.772727
|
41adc3b4847509483128f96c44f6dae7cb55252e
| 410
|
agda
|
Agda
|
agda/Algebra/Construct/Free/Semilattice.agda
|
oisdk/combinatorics-paper
|
3c176d4690566d81611080e9378f5a178b39b851
|
[
"MIT"
] | 6
|
2020-09-11T17:45:41.000Z
|
2021-11-16T08:11:34.000Z
|
agda/Algebra/Construct/Free/Semilattice.agda
|
oisdk/combinatorics-paper
|
3c176d4690566d81611080e9378f5a178b39b851
|
[
"MIT"
] | null | null | null |
agda/Algebra/Construct/Free/Semilattice.agda
|
oisdk/combinatorics-paper
|
3c176d4690566d81611080e9378f5a178b39b851
|
[
"MIT"
] | 1
|
2021-11-11T12:30:21.000Z
|
2021-11-11T12:30:21.000Z
|
{-# OPTIONS --cubical --safe #-}
-- Free join semilattice
module Algebra.Construct.Free.Semilattice where
open import Algebra.Construct.Free.Semilattice.Definition public
open import Algebra.Construct.Free.Semilattice.Eliminators public
open import Algebra.Construct.Free.Semilattice.Union public using (_∪_; 𝒦-semilattice)
open import Algebra.Construct.Free.Semilattice.Homomorphism public using (μ; ∙-hom)
| 41
| 86
| 0.812195
|
59cf68aa8ce468bc2fff05d40b5bdc0ab2da8071
| 513
|
agda
|
Agda
|
Cubical/Structures/LeftAction.agda
|
FernandoLarrain/cubical
|
9acdecfa6437ec455568be4e5ff04849cc2bc13b
|
[
"MIT"
] | 301
|
2018-10-17T18:00:24.000Z
|
2022-03-24T02:10:47.000Z
|
Cubical/Structures/LeftAction.agda
|
FernandoLarrain/cubical
|
9acdecfa6437ec455568be4e5ff04849cc2bc13b
|
[
"MIT"
] | 584
|
2018-10-15T09:49:02.000Z
|
2022-03-30T12:09:17.000Z
|
Cubical/Structures/LeftAction.agda
|
FernandoLarrain/cubical
|
9acdecfa6437ec455568be4e5ff04849cc2bc13b
|
[
"MIT"
] | 134
|
2018-11-16T06:11:03.000Z
|
2022-03-23T16:22:13.000Z
|
{-# OPTIONS --no-exact-split --safe #-}
module Cubical.Structures.LeftAction where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.SIP
open import Cubical.Structures.Auto
module _ {ℓ ℓ' : Level} (A : Type ℓ') where
LeftActionStructure : Type ℓ → Type (ℓ-max ℓ ℓ')
LeftActionStructure X = A → X → X
LeftActionEquivStr = AutoEquivStr LeftActionStructure
leftActionUnivalentStr : UnivalentStr _ LeftActionEquivStr
leftActionUnivalentStr = autoUnivalentStr LeftActionStructure
| 28.5
| 63
| 0.777778
|
0e3da75ebb42085c1aeb88ebec4456bac1c3be26
| 9,823
|
agda
|
Agda
|
nicolai/thesis/Trunc/Basics.agda
|
nicolaikraus/HoTT-Agda
|
939a2d83e090fcc924f69f7dfa5b65b3b79fe633
|
[
"MIT"
] | 1
|
2021-06-30T00:17:55.000Z
|
2021-06-30T00:17:55.000Z
|
nicolai/thesis/Trunc/Basics.agda
|
nicolaikraus/HoTT-Agda
|
939a2d83e090fcc924f69f7dfa5b65b3b79fe633
|
[
"MIT"
] | null | null | null |
nicolai/thesis/Trunc/Basics.agda
|
nicolaikraus/HoTT-Agda
|
939a2d83e090fcc924f69f7dfa5b65b3b79fe633
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --without-K #-}
{- Here, truncations with propositional computational behaviour are defined.
This lack of a definitional β-rule enabled us to talk about this notion
inside type theory without truncations, albeit complicating setup and proofs.
After definition and basic accessories concerning universal properties,
recursion and elimination, we prove that truncation is functorial.
With this, we turn our attention to the problem of uniqueness of truncation,
i.e. the type of truncations of a given type being propositional. -}
module Trunc.Basics where
open import lib.Basics hiding (_⊔_)
open import lib.NType2
open import lib.Equivalences2
open import lib.types.Unit
open import lib.types.Nat hiding (_+_)
open import lib.types.Pi
open import lib.types.Sigma
open import lib.types.Paths
open import Preliminaries
open import Pointed
open import UniverseOfNTypes
open import Trunc.Universal
-- Definition 7.6.4
record trunc-ty {i} (n : ℕ₋₂) (A : Type i)
(j : ULevel) : Type (lsucc (i ⊔ j)) where
constructor ty-cons
field
type : n -Type i
cons : A → ⟦ type ⟧
univ : univ-Type type cons j
module _ {i} {n : ℕ₋₂} {A : Type i} where
trunc-ty-lower : ∀ {j₀} (j₁ : ULevel) → trunc-ty n A (j₀ ⊔ j₁) → trunc-ty n A j₀
trunc-ty-lower {j₀} j₁ (ty-cons t c u) = ty-cons t c (univ-lower t c (j₀ ⊔ j₁) u)
{- Since Agda does not support specifying ordering relations on universe levels,
we encounter an awkward dependency inversion: the index k needs to be
specified in the module arguments, since the truncation type depends on it,
even though we would rather have it at each individual definition.
This shortcoming will be the source of many explicitely specified levels. -}
module trunc-props {i} {n : ℕ₋₂} {A : Type i} {j k} (tr : trunc-ty n A (i ⊔ j ⊔ k)) where
open trunc-ty tr
up : (U : n -Type k) → (⟦ type ⟧ → ⟦ U ⟧) ≃ (A → ⟦ U ⟧)
up U = ((λ f → f ∘ cons) , univ-lower type cons (i ⊔ j ⊔ k) univ U)
dup : (U : ⟦ type ⟧ → n -Type k) → ((ta : ⟦ type ⟧) → ⟦ U ta ⟧) ≃ ((a : A) → ⟦ U (cons a) ⟧)
dup U = ((λ f → f ∘ cons) , with-univ.duniv type cons (univ-lower type cons (i ⊔ j ⊔ k) univ) U)
abstract
rec : (U : n -Type k) → (A → ⟦ U ⟧) → ⟦ type ⟧ → ⟦ U ⟧
rec U = <– (up U)
elim : (U : ⟦ type ⟧ → n -Type k) → ((a : A) → ⟦ U (cons a) ⟧) → (ta : ⟦ type ⟧) → ⟦ U ta ⟧
elim U = <– (dup U)
rec-β : {U : n -Type k} {f : A → ⟦ U ⟧} (a : A) → rec U f (cons a) == f a
rec-β {U} {f} a = app= (<–-inv-r (up U) f) a
elim-β : {U : ⟦ type ⟧ → n -Type k} {f : (a : A) → ⟦ U (cons a) ⟧} (a : A) → elim U f (cons a) == f a
elim-β {U} {f} a = app= (<–-inv-r (dup U) f) a
{- Truncation acts as a functor.
While tedious, we state all lemmata in their most general form.
Instead of assuming an n-truncation operator, we individually assume
a truncation for each type we need. While seeming overly convoluted
at first, this generality will actually pay off with an unconventional
use of fmap-equiv in showing that trunc-ty is propositional. -}
module trunc-functor {n : ℕ₋₂} where
open trunc-ty
open trunc-props
-- The functorial action of truncation (truncation preserves maps).
module _ {ia ib j} where
module fmap {A : Type ia} {B : Type ib}
(TrA : trunc-ty n A (ia ⊔ ib ⊔ j))
(TrB : trunc-ty n B (ia ⊔ ib ⊔ j))
(f : A → B) where
map : ⟦ type TrA ⟧ → ⟦ type TrB ⟧
map = rec {j = ia ⊔ ib ⊔ j} TrA (type TrB) (cons TrB ∘ f)
β : (a : A) → map (cons TrA a) == cons TrB (f a)
β = rec-β TrA {type TrB}
-- The functorial action preserves the identity.
module _ {i j} {A : Type i} (TrA : trunc-ty n A (i ⊔ j)) where
private
module I = fmap {j = i ⊔ j} TrA TrA (idf _)
fmap-fuse-id : (ta : ⟦ type TrA ⟧) → I.map ta == ta
fmap-fuse-id = elim {j = i ⊔ j} TrA (λ ta → Path-≤ (type TrA) (I.map ta) ta) I.β
-- The functorial action preserves composition.
module _ {ia ib ic j} where
private
l : ULevel
l = ia ⊔ ib ⊔ ic ⊔ j
module _ {A : Type ia} {B : Type ib} {C : Type ic}
(TrA : trunc-ty n A l)
(TrB : trunc-ty n B l)
(TrC : trunc-ty n C l)
(f : A → B) (g : B → C) where
private
module F = fmap {j = l} TrA TrB f
module G = fmap {j = l} TrB TrC g
module GF = fmap {j = l} TrA TrC (g ∘ f)
open trunc-props
fmap-fuse-∘ : (ta : ⟦ type TrA ⟧) → GF.map ta == G.map (F.map ta)
fmap-fuse-∘ = elim {j = l} TrA (λ ta →
Path-≤ (type TrC) (GF.map ta) (G.map (F.map ta))) $ λ a →
GF.map (cons TrA a) =⟨ GF.β a ⟩
cons TrC (g (f a)) =⟨ ! (G.β (f a)) ⟩
G.map (cons TrB (f a)) =⟨ ap G.map (! (F.β a)) ⟩
G.map (F.map (cons TrA a)) ∎
{- Corollary: truncation preserves equivalences.
The below general form produces a unexpected benefit: the underlying
type of a truncation is unique up to constructor-preserving equivalence. -}
module _ where
private
module _ {ia ib j} where
private
l : ULevel
l = ia ⊔ ib ⊔ j
module half {A : Type ia} {B : Type ib}
(TrA : trunc-ty n A l)
(TrB : trunc-ty n B l)
(e : A ≃ B) where
module F = fmap {j = l} TrA TrB (–> e)
module G = fmap {j = l} TrB TrA (<– e)
module BB = fmap {j = l} TrB TrB
f-g : (tb : ⟦ type TrB ⟧) → F.map (G.map tb) == tb
f-g tb =
F.map (G.map tb)
=⟨ ! (fmap-fuse-∘ {j = l} TrB TrA TrB (<– e) (–> e) tb) ⟩
BB.map (–> e ∘ <– e) tb
=⟨ app= (ap BB.map (λ= (<–-inv-r e))) tb ⟩
BB.map (idf _) tb
=⟨ fmap-fuse-id {j = l} TrB tb ⟩
tb
∎
module _ {ia ib j} where
module _ {A : Type ia} {B : Type ib}
(TrA : trunc-ty n A (ia ⊔ ib ⊔ j))
(TrB : trunc-ty n B (ia ⊔ ib ⊔ j))
(e : A ≃ B) where
private
module H = half {j = j} TrA TrB e
module K = half {j = j} TrB TrA (e ⁻¹)
fmap-equiv : ⟦ type TrA ≃-≤ type TrB ⟧
fmap-equiv = equiv H.F.map K.F.map H.f-g K.f-g
{- The type of n-truncations of A is propositional:
truncations are unique if existent. -}
module _ {i} {n : ℕ₋₂} {A : Type i} where
open trunc-ty
open trunc-functor
{- For the purpose of this module, it will be easier
for us to regard trunc-ty as a left-associatived Σ-type.
In this way, we may examine the equality on the first component
while disregarding the second one, which is a proposition. -}
private
e : ∀ {j} → trunc-ty n A j ≃ Σ (Σ _ _) _
e = equiv (λ {(ty-cons t c u) → ((t , c) , u)})
(λ {((t , c) , u) → ty-cons t c u})
(λ _ → idp) (λ _ → idp)
{- First, let us structurally decompose the combined equality
over the type and cons record fields of trunc-ty.
Note that this kind of lemma would be superfluous in
a proof assistant fully supporting univalent foundations. -}
path : (U V : Σ (n -Type i) (λ ty → A → ⟦ ty ⟧))
→ (U == V) ≃ Σ (⟦ fst U ⟧ ≃ ⟦ fst V ⟧) (λ e → –> e ∘ snd U == snd V)
path ((X , u) , f) ((Y , v) , g) = equiv-Σ eq₁ (_⁻¹ ∘ eq₂)
∘e =Σ-eqv _ _ ⁻¹ where
eq₁ : ((X , u) == (Y , v)) ≃ (X ≃ Y)
eq₁ =
(X , u) == (Y , v) ≃⟨ =Σ-eqv _ _ ⁻¹ ⟩
Σ (X == Y) (λ p → u == v [ _ ↓ p ]) ≃⟨ Σ₂-contr h ⟩
X == Y ≃⟨ ua-equiv ⁻¹ ⟩
X ≃ Y ≃∎ where
h : (p : X == Y) → is-contr (u == v [ _ ↓ p ])
h _ = ↓-level (λ _ → has-level-is-prop)
eq₂ : (e : X ≃ Y) → (–> e ∘ f == g) ≃ (f == g [ _ ↓ <– eq₁ e ])
eq₂ = λ e →
–> e ∘ f == g ≃⟨ app=-equiv ⟩
(∀ a → –> e (f a) == g a) ≃⟨ equiv-Π-r (λ a → ↓-idf-ua-equiv e) ⟩
(∀ a → f a == g a [ _ ↓ ua e ]) ≃⟨ ↓-cst→app-equiv ⟩
(f == g [ _ ↓ ua e ]) ≃⟨ ↓-cst2-equiv _ _ ⟩
(f == g [ _ ↓ <– eq₁ e ]) ≃∎
module _ {j} where
{- Important special case of the general form of fmap-equiv:
the underlying type of a truncation is unique
up to constructor-preserving equivalence. -}
module unique (Tr₁ : trunc-ty n A (i ⊔ j))
(Tr₂ : trunc-ty n A (i ⊔ j)) where
type-equiv : ⟦ type Tr₁ ≃-≤ type Tr₂ ⟧
type-equiv = fmap-equiv {j = j} Tr₁ Tr₂ (ide _)
cons-path : –> type-equiv ∘ cons Tr₁ == cons Tr₂
cons-path = λ= (fmap.β {j = j} Tr₁ Tr₂ (idf _))
type-cons-path : Path {A = Σ (n -Type i) (λ ty → A → ⟦ ty ⟧)}
(fst (–> e Tr₁)) (fst (–> e Tr₂))
type-cons-path = <– (path _ _) (type-equiv , cons-path)
-- Lemma 7.6.7
-- We are now ready to prove propositionality of trunc-ty.
trunc-ty-prop : is-prop (trunc-ty n A _)
trunc-ty-prop = all-paths-is-prop $ λ Tr₀ Tr₁ → <– (equiv-ap e _ _) (pair=
(unique.type-cons-path Tr₀ Tr₁)
(prop-has-all-paths-↓ (Π-level (λ _ → is-equiv-is-prop _))))
trunc-inhab-contr : trunc-ty n A _ → is-contr (trunc-ty n A _)
trunc-inhab-contr Tr = (Tr , prop-has-all-paths trunc-ty-prop _)
-- Corollary 7.6.8 (for completeness;
-- not used later in this formalisation)
trunc-ty-gen-prop : (i j : ULevel) → is-prop ((nA : ℕ₋₂ × Type i) → trunc-ty (fst nA) (snd nA) (i ⊔ j))
trunc-ty-gen-prop i j = Π-level {A = ℕ₋₂ × Type i}
{B = λ nA → trunc-ty (fst nA) (snd nA) (i ⊔ j)}
{n = ⟨-1⟩}
(λ nA → trunc-ty-prop {n = fst nA} {A = snd nA} {j = j})
| 40.929167
| 105
| 0.518172
|
4d98409ccc23451bec507cc7a4bddbdad2113873
| 14,733
|
agda
|
Agda
|
deBruijn/Substitution/Data/Simple.agda
|
nad/dependently-typed-syntax
|
498f8aefc570f7815fd1d6616508eeb92c52abce
|
[
"MIT"
] | 5
|
2020-04-16T12:14:44.000Z
|
2020-07-08T22:51:36.000Z
|
deBruijn/Substitution/Data/Simple.agda
|
nad/dependently-typed-syntax
|
498f8aefc570f7815fd1d6616508eeb92c52abce
|
[
"MIT"
] | null | null | null |
deBruijn/Substitution/Data/Simple.agda
|
nad/dependently-typed-syntax
|
498f8aefc570f7815fd1d6616508eeb92c52abce
|
[
"MIT"
] | null | null | null |
------------------------------------------------------------------------
-- Some simple substitution combinators
------------------------------------------------------------------------
-- Given a term type which supports weakening and transformation of
-- variables to terms various substitutions are defined and various
-- lemmas proved.
open import Data.Universe.Indexed
module deBruijn.Substitution.Data.Simple
{i u e} {Uni : IndexedUniverse i u e} where
import deBruijn.Context; open deBruijn.Context Uni
open import deBruijn.Substitution.Data.Basics
open import deBruijn.Substitution.Data.Map
open import Function as F using (_$_)
open import Level using (_⊔_)
open import Relation.Binary.PropositionalEquality as P using (_≡_)
open P.≡-Reasoning
-- Simple substitutions.
record Simple {t} (T : Term-like t) : Set (i ⊔ u ⊔ e ⊔ t) where
open Term-like T
field
-- Weakens terms.
weaken : ∀ {Γ} {σ : Type Γ} → [ T ⟶ T ] ŵk[ σ ]
-- A synonym.
weaken[_] : ∀ {Γ} (σ : Type Γ) → [ T ⟶ T ] ŵk[ σ ]
weaken[_] _ = weaken
field
-- Takes variables to terms.
var : [ Var ⟶⁼ T ]
-- A property relating weaken and var.
weaken-var : ∀ {Γ σ τ} (x : Γ ∋ τ) →
weaken[ σ ] · (var · x) ≅-⊢ var · suc[ σ ] x
-- Weakens substitutions.
wk-subst : ∀ {Γ Δ σ} {ρ̂ : Γ ⇨̂ Δ} → Sub T ρ̂ → Sub T (ρ̂ ∘̂ ŵk[ σ ])
wk-subst ρ = map weaken ρ
wk-subst[_] : ∀ {Γ Δ} σ {ρ̂ : Γ ⇨̂ Δ} → Sub T ρ̂ → Sub T (ρ̂ ∘̂ ŵk[ σ ])
wk-subst[ _ ] = wk-subst
-- N-ary weakening of substitutions.
wk-subst⁺ : ∀ {Γ Δ} Δ⁺ {ρ̂ : Γ ⇨̂ Δ} → Sub T ρ̂ → Sub T (ρ̂ ∘̂ ŵk⁺ Δ⁺)
wk-subst⁺ ε ρ = ρ
wk-subst⁺ (Δ⁺ ▻ σ) ρ = wk-subst (wk-subst⁺ Δ⁺ ρ)
wk-subst₊ : ∀ {Γ Δ} Δ₊ {ρ̂ : Γ ⇨̂ Δ} → Sub T ρ̂ → Sub T (ρ̂ ∘̂ ŵk₊ Δ₊)
wk-subst₊ ε ρ = ρ
wk-subst₊ (σ ◅ Δ₊) ρ = wk-subst₊ Δ₊ (wk-subst ρ)
-- Lifting.
infixl 10 _↑_ _↑⋆_
infix 10 _↑ _↑⋆
_↑_ : ∀ {Γ Δ} {ρ̂ : Γ ⇨̂ Δ} → Sub T ρ̂ → ∀ σ → Sub T (ρ̂ ↑̂ σ)
ρ ↑ _ =
P.subst (Sub T)
(≅-⇨̂-⇒-≡ $ ▻̂-cong P.refl P.refl
(P.sym $ corresponds var zero))
(wk-subst ρ ▻ var · zero)
_↑ : ∀ {Γ Δ σ} {ρ̂ : Γ ⇨̂ Δ} → Sub T ρ̂ → Sub T (ρ̂ ↑̂ σ)
ρ ↑ = ρ ↑ _
_↑⋆ : ∀ {Γ Δ σ} {ρ̂ : Γ ⇨̂ Δ} → Subs T ρ̂ → Subs T (ρ̂ ↑̂ σ)
ε ↑⋆ = ε
(ρs ▻ ρ) ↑⋆ = ρs ↑⋆ ▻ ρ ↑
_↑⋆_ : ∀ {Γ Δ} {ρ̂ : Γ ⇨̂ Δ} → Subs T ρ̂ → ∀ σ → Subs T (ρ̂ ↑̂ σ)
ρs ↑⋆ _ = ρs ↑⋆
-- N-ary lifting.
infixl 10 _↑⁺_ _↑⁺⋆_ _↑₊_ _↑₊⋆_
_↑⁺_ : ∀ {Γ Δ} {ρ̂ : Γ ⇨̂ Δ} → Sub T ρ̂ → ∀ Γ⁺ → Sub T (ρ̂ ↑̂⁺ Γ⁺)
ρ ↑⁺ ε = ρ
ρ ↑⁺ (Γ⁺ ▻ σ) = (ρ ↑⁺ Γ⁺) ↑
_↑⁺⋆_ : ∀ {Γ Δ} {ρ̂ : Γ ⇨̂ Δ} → Subs T ρ̂ → ∀ Γ⁺ → Subs T (ρ̂ ↑̂⁺ Γ⁺)
ρs ↑⁺⋆ ε = ρs
ρs ↑⁺⋆ (Γ⁺ ▻ σ) = (ρs ↑⁺⋆ Γ⁺) ↑⋆
_↑₊_ : ∀ {Γ Δ} {ρ̂ : Γ ⇨̂ Δ} → Sub T ρ̂ → ∀ Γ₊ → Sub T (ρ̂ ↑̂₊ Γ₊)
ρ ↑₊ ε = ρ
ρ ↑₊ (σ ◅ Γ₊) = ρ ↑ ↑₊ Γ₊
_↑₊⋆_ : ∀ {Γ Δ} {ρ̂ : Γ ⇨̂ Δ} → Subs T ρ̂ → ∀ Γ₊ → Subs T (ρ̂ ↑̂₊ Γ₊)
ρs ↑₊⋆ ε = ρs
ρs ↑₊⋆ (σ ◅ Γ₊) = ρs ↑⋆ ↑₊⋆ Γ₊
-- The identity substitution.
id[_] : ∀ Γ → Sub T îd[ Γ ]
id[ ε ] = ε
id[ Γ ▻ σ ] = id[ Γ ] ↑
id : ∀ {Γ} → Sub T îd[ Γ ]
id = id[ _ ]
-- N-ary weakening.
wk⁺ : ∀ {Γ} (Γ⁺ : Ctxt⁺ Γ) → Sub T (ŵk⁺ Γ⁺)
wk⁺ ε = id
wk⁺ (Γ⁺ ▻ σ) = wk-subst (wk⁺ Γ⁺)
wk₊ : ∀ {Γ} (Γ₊ : Ctxt₊ Γ) → Sub T (ŵk₊ Γ₊)
wk₊ Γ₊ = wk-subst₊ Γ₊ id
-- Weakening.
wk[_] : ∀ {Γ} (σ : Type Γ) → Sub T ŵk[ σ ]
wk[ σ ] = wk⁺ (ε ▻ σ)
wk : ∀ {Γ} {σ : Type Γ} → Sub T ŵk[ σ ]
wk = wk[ _ ]
private
-- Three possible definitions of wk coincide definitionally.
coincide₁ : ∀ {Γ} {σ : Type Γ} → wk⁺ (ε ▻ σ) ≡ wk₊ (σ ◅ ε)
coincide₁ = P.refl
coincide₂ : ∀ {Γ} {σ : Type Γ} → wk⁺ (ε ▻ σ) ≡ wk-subst id
coincide₂ = P.refl
-- A substitution which only replaces the first variable.
sub : ∀ {Γ σ} (t : Γ ⊢ σ) → Sub T (ŝub ⟦ t ⟧)
sub t = id ▻ t
-- Some congruence lemmas.
weaken-cong : ∀ {Γ₁ σ₁ τ₁} {t₁ : Γ₁ ⊢ τ₁}
{Γ₂ σ₂ τ₂} {t₂ : Γ₂ ⊢ τ₂} →
σ₁ ≅-Type σ₂ → t₁ ≅-⊢ t₂ →
weaken[ σ₁ ] · t₁ ≅-⊢ weaken[ σ₂ ] · t₂
weaken-cong P.refl P.refl = P.refl
var-cong : ∀ {Γ₁ σ₁} {x₁ : Γ₁ ∋ σ₁}
{Γ₂ σ₂} {x₂ : Γ₂ ∋ σ₂} →
x₁ ≅-∋ x₂ → var · x₁ ≅-⊢ var · x₂
var-cong P.refl = P.refl
wk-subst-cong : ∀ {Γ₁ Δ₁ σ₁} {ρ̂₁ : Γ₁ ⇨̂ Δ₁} {ρ₁ : Sub T ρ̂₁}
{Γ₂ Δ₂ σ₂} {ρ̂₂ : Γ₂ ⇨̂ Δ₂} {ρ₂ : Sub T ρ̂₂} →
σ₁ ≅-Type σ₂ → ρ₁ ≅-⇨ ρ₂ →
wk-subst[ σ₁ ] ρ₁ ≅-⇨ wk-subst[ σ₂ ] ρ₂
wk-subst-cong P.refl P.refl = P.refl
wk-subst⁺-cong : ∀ {Γ₁ Δ₁ Γ⁺₁} {ρ̂₁ : Γ₁ ⇨̂ Δ₁} {ρ₁ : Sub T ρ̂₁}
{Γ₂ Δ₂ Γ⁺₂} {ρ̂₂ : Γ₂ ⇨̂ Δ₂} {ρ₂ : Sub T ρ̂₂} →
Γ⁺₁ ≅-Ctxt⁺ Γ⁺₂ → ρ₁ ≅-⇨ ρ₂ →
wk-subst⁺ Γ⁺₁ ρ₁ ≅-⇨ wk-subst⁺ Γ⁺₂ ρ₂
wk-subst⁺-cong P.refl P.refl = P.refl
wk-subst₊-cong : ∀ {Γ₁ Δ₁ Γ₊₁} {ρ̂₁ : Γ₁ ⇨̂ Δ₁} {ρ₁ : Sub T ρ̂₁}
{Γ₂ Δ₂ Γ₊₂} {ρ̂₂ : Γ₂ ⇨̂ Δ₂} {ρ₂ : Sub T ρ̂₂} →
Γ₊₁ ≅-Ctxt₊ Γ₊₂ → ρ₁ ≅-⇨ ρ₂ →
wk-subst₊ Γ₊₁ ρ₁ ≅-⇨ wk-subst₊ Γ₊₂ ρ₂
wk-subst₊-cong P.refl P.refl = P.refl
↑-cong : ∀ {Γ₁ Δ₁} {ρ̂₁ : Γ₁ ⇨̂ Δ₁} {ρ₁ : Sub T ρ̂₁} {σ₁}
{Γ₂ Δ₂} {ρ̂₂ : Γ₂ ⇨̂ Δ₂} {ρ₂ : Sub T ρ̂₂} {σ₂} →
ρ₁ ≅-⇨ ρ₂ → σ₁ ≅-Type σ₂ → ρ₁ ↑ σ₁ ≅-⇨ ρ₂ ↑ σ₂
↑-cong P.refl P.refl = P.refl
↑⋆-cong : ∀ {Γ₁ Δ₁} {ρ̂₁ : Γ₁ ⇨̂ Δ₁} {ρs₁ : Subs T ρ̂₁} {σ₁}
{Γ₂ Δ₂} {ρ̂₂ : Γ₂ ⇨̂ Δ₂} {ρs₂ : Subs T ρ̂₂} {σ₂} →
ρs₁ ≅-⇨⋆ ρs₂ → σ₁ ≅-Type σ₂ → ρs₁ ↑⋆ σ₁ ≅-⇨⋆ ρs₂ ↑⋆ σ₂
↑⋆-cong P.refl P.refl = P.refl
↑⁺-cong : ∀ {Γ₁ Δ₁} {ρ̂₁ : Γ₁ ⇨̂ Δ₁} {ρ₁ : Sub T ρ̂₁} {Γ⁺₁}
{Γ₂ Δ₂} {ρ̂₂ : Γ₂ ⇨̂ Δ₂} {ρ₂ : Sub T ρ̂₂} {Γ⁺₂} →
ρ₁ ≅-⇨ ρ₂ → Γ⁺₁ ≅-Ctxt⁺ Γ⁺₂ → ρ₁ ↑⁺ Γ⁺₁ ≅-⇨ ρ₂ ↑⁺ Γ⁺₂
↑⁺-cong P.refl P.refl = P.refl
↑⁺⋆-cong : ∀ {Γ₁ Δ₁} {ρ̂₁ : Γ₁ ⇨̂ Δ₁} {ρs₁ : Subs T ρ̂₁} {Γ⁺₁}
{Γ₂ Δ₂} {ρ̂₂ : Γ₂ ⇨̂ Δ₂} {ρs₂ : Subs T ρ̂₂} {Γ⁺₂} →
ρs₁ ≅-⇨⋆ ρs₂ → Γ⁺₁ ≅-Ctxt⁺ Γ⁺₂ →
ρs₁ ↑⁺⋆ Γ⁺₁ ≅-⇨⋆ ρs₂ ↑⁺⋆ Γ⁺₂
↑⁺⋆-cong P.refl P.refl = P.refl
↑₊-cong : ∀ {Γ₁ Δ₁} {ρ̂₁ : Γ₁ ⇨̂ Δ₁} {ρ₁ : Sub T ρ̂₁} {Γ₊₁}
{Γ₂ Δ₂} {ρ̂₂ : Γ₂ ⇨̂ Δ₂} {ρ₂ : Sub T ρ̂₂} {Γ₊₂} →
ρ₁ ≅-⇨ ρ₂ → Γ₊₁ ≅-Ctxt₊ Γ₊₂ → ρ₁ ↑₊ Γ₊₁ ≅-⇨ ρ₂ ↑₊ Γ₊₂
↑₊-cong P.refl P.refl = P.refl
↑₊⋆-cong : ∀ {Γ₁ Δ₁} {ρ̂₁ : Γ₁ ⇨̂ Δ₁} {ρs₁ : Subs T ρ̂₁} {Γ₊₁}
{Γ₂ Δ₂} {ρ̂₂ : Γ₂ ⇨̂ Δ₂} {ρs₂ : Subs T ρ̂₂} {Γ₊₂} →
ρs₁ ≅-⇨⋆ ρs₂ → Γ₊₁ ≅-Ctxt₊ Γ₊₂ →
ρs₁ ↑₊⋆ Γ₊₁ ≅-⇨⋆ ρs₂ ↑₊⋆ Γ₊₂
↑₊⋆-cong P.refl P.refl = P.refl
id-cong : ∀ {Γ₁ Γ₂} → Γ₁ ≅-Ctxt Γ₂ → id[ Γ₁ ] ≅-⇨ id[ Γ₂ ]
id-cong P.refl = P.refl
wk⁺-cong : ∀ {Γ₁} {Γ⁺₁ : Ctxt⁺ Γ₁} {Γ₂} {Γ⁺₂ : Ctxt⁺ Γ₂} →
Γ⁺₁ ≅-Ctxt⁺ Γ⁺₂ → wk⁺ Γ⁺₁ ≅-⇨ wk⁺ Γ⁺₂
wk⁺-cong P.refl = P.refl
wk₊-cong : ∀ {Γ₁} {Γ₊₁ : Ctxt₊ Γ₁} {Γ₂} {Γ₊₂ : Ctxt₊ Γ₂} →
Γ₊₁ ≅-Ctxt₊ Γ₊₂ → wk₊ Γ₊₁ ≅-⇨ wk₊ Γ₊₂
wk₊-cong P.refl = P.refl
wk-cong : ∀ {Γ₁} {σ₁ : Type Γ₁} {Γ₂} {σ₂ : Type Γ₂} →
σ₁ ≅-Type σ₂ → wk[ σ₁ ] ≅-⇨ wk[ σ₂ ]
wk-cong P.refl = P.refl
sub-cong : ∀ {Γ₁ σ₁} {t₁ : Γ₁ ⊢ σ₁} {Γ₂ σ₂} {t₂ : Γ₂ ⊢ σ₂} →
t₁ ≅-⊢ t₂ → sub t₁ ≅-⇨ sub t₂
sub-cong P.refl = P.refl
abstract
-- Unfolding lemma for _↑.
unfold-↑ : ∀ {Γ Δ σ} {ρ̂ : Γ ⇨̂ Δ} (ρ : Sub T ρ̂) →
ρ ↑ σ ≅-⇨ wk-subst[ σ / ρ ] ρ ▻⇨[ σ ] var · zero
unfold-↑ _ =
drop-subst-Sub F.id
(≅-⇨̂-⇒-≡ $ ▻̂-cong P.refl P.refl (P.sym $ corresponds var zero))
-- Some lemmas relating variables to lifting.
/∋-↑ : ∀ {Γ Δ σ τ} {ρ̂ : Γ ⇨̂ Δ} (x : Γ ▻ σ ∋ τ) (ρ : Sub T ρ̂) →
x /∋ ρ ↑ ≅-⊢ x /∋ (wk-subst[ σ / ρ ] ρ ▻ var · zero)
/∋-↑ x ρ = /∋-cong (P.refl {x = [ x ]}) (unfold-↑ ρ)
zero-/∋-↑ : ∀ {Γ Δ} σ {ρ̂ : Γ ⇨̂ Δ} (ρ : Sub T ρ̂) →
zero[ σ ] /∋ ρ ↑ ≅-⊢ var · zero[ σ / ρ ]
zero-/∋-↑ σ ρ = begin
[ zero[ σ ] /∋ ρ ↑ ] ≡⟨ /∋-↑ zero[ σ ] ρ ⟩
[ zero[ σ ] /∋ (wk-subst ρ ▻ var · zero) ] ≡⟨ P.refl ⟩
[ var · zero ] ∎
suc-/∋-↑ : ∀ {Γ Δ τ} σ {ρ̂ : Γ ⇨̂ Δ} (x : Γ ∋ τ) (ρ : Sub T ρ̂) →
suc[ σ ] x /∋ ρ ↑ ≅-⊢ x /∋ wk-subst[ σ / ρ ] ρ
suc-/∋-↑ σ x ρ = begin
[ suc[ σ ] x /∋ ρ ↑ ] ≡⟨ /∋-↑ (suc[ σ ] x) ρ ⟩
[ suc[ σ ] x /∋ (wk-subst ρ ▻ var · zero) ] ≡⟨ P.refl ⟩
[ x /∋ wk-subst ρ ] ∎
-- One can weaken either before or after looking up a variable.
/∋-wk-subst : ∀ {Γ Δ σ τ} {ρ̂ : Γ ⇨̂ Δ} (x : Γ ∋ τ) (ρ : Sub T ρ̂) →
x /∋ wk-subst[ σ ] ρ ≅-⊢ weaken[ σ ] · (x /∋ ρ)
/∋-wk-subst x ρ = /∋-map x weaken ρ
-- A corollary.
/∋-wk-subst-var :
∀ {Γ Δ σ τ} {ρ̂ : Γ ⇨̂ Δ}
(ρ : Sub T ρ̂) (x : Γ ∋ τ) (y : Δ ∋ τ / ρ) →
x /∋ ρ ≅-⊢ var · y →
x /∋ wk-subst[ σ ] ρ ≅-⊢ var · suc[ σ ] y
/∋-wk-subst-var ρ x y hyp = begin
[ x /∋ wk-subst ρ ] ≡⟨ /∋-wk-subst x ρ ⟩
[ weaken · (x /∋ ρ) ] ≡⟨ weaken-cong P.refl hyp ⟩
[ weaken · (var · y) ] ≡⟨ weaken-var y ⟩
[ var · suc y ] ∎
-- The identity substitution has no effect.
/-id : ∀ {Γ} (σ : Type Γ) → σ / id ≅-Type σ
/-id σ = P.refl
/⁺-id : ∀ {Γ} (Γ⁺ : Ctxt⁺ Γ) → Γ⁺ /⁺ id ≅-Ctxt⁺ Γ⁺
/⁺-id Γ⁺ = begin
[ Γ⁺ /⁺ id ] ≡⟨ P.refl ⟩
[ Γ⁺ /̂⁺ îd ] ≡⟨ /̂⁺-îd Γ⁺ ⟩
[ Γ⁺ ] ∎
/₊-id : ∀ {Γ} (Γ₊ : Ctxt₊ Γ) → Γ₊ /₊ id ≅-Ctxt₊ Γ₊
/₊-id Γ₊ = begin
[ Γ₊ /₊ id ] ≡⟨ P.refl ⟩
[ Γ₊ /̂₊ îd ] ≡⟨ /̂₊-îd Γ₊ ⟩
[ Γ₊ ] ∎
mutual
/∋-id : ∀ {Γ σ} (x : Γ ∋ σ) → x /∋ id ≅-⊢ var · x
/∋-id {Γ = ε} ()
/∋-id {Γ = Γ ▻ σ} x = begin
[ x /∋ id ↑ ] ≡⟨ /∋-↑ x id ⟩
[ x /∋ (wk ▻ var · zero) ] ≡⟨ lemma x ⟩
[ var · x ] ∎
where
lemma : ∀ {τ} (x : Γ ▻ σ ∋ τ) →
x /∋ (wk[ σ ] ▻ var · zero) ≅-⊢ var · x
lemma zero = P.refl
lemma (suc x) = /∋-wk x
-- Weakening a variable is equivalent to incrementing it.
/∋-wk : ∀ {Γ σ τ} (x : Γ ∋ τ) →
x /∋ wk[ σ ] ≅-⊢ var · suc[ σ ] x
/∋-wk x = /∋-wk-subst-var id x x (/∋-id x)
-- The n-ary lifting of the identity substitution is the identity
-- substitution.
id-↑⁺ : ∀ {Γ} (Γ⁺ : Ctxt⁺ Γ) → id ↑⁺ Γ⁺ ≅-⇨ id[ Γ ++⁺ Γ⁺ ]
id-↑⁺ ε = P.refl
id-↑⁺ (Γ⁺ ▻ σ) = begin
[ (id ↑⁺ Γ⁺) ↑ ] ≡⟨ ↑-cong (id-↑⁺ Γ⁺) P.refl ⟩
[ id ↑ ] ∎
ε-↑⁺⋆ : ∀ {Γ} (Γ⁺ : Ctxt⁺ Γ) → ε ↑⁺⋆ Γ⁺ ≅-⇨⋆ ε⇨⋆[ Γ ++⁺ Γ⁺ ]
ε-↑⁺⋆ ε = P.refl
ε-↑⁺⋆ (Γ⁺ ▻ σ) = begin
[ (ε ↑⁺⋆ Γ⁺) ↑⋆ ] ≡⟨ ↑⋆-cong (ε-↑⁺⋆ Γ⁺) P.refl ⟩
[ ε ↑⋆ ] ≡⟨ P.refl ⟩
[ ε ] ∎
id-↑₊ : ∀ {Γ} (Γ₊ : Ctxt₊ Γ) → id ↑₊ Γ₊ ≅-⇨ id[ Γ ++₊ Γ₊ ]
id-↑₊ ε = P.refl
id-↑₊ (σ ◅ Γ₊) = begin
[ id ↑ ↑₊ Γ₊ ] ≡⟨ P.refl ⟩
[ id ↑₊ Γ₊ ] ≡⟨ id-↑₊ Γ₊ ⟩
[ id ] ∎
ε-↑₊⋆ : ∀ {Γ} (Γ₊ : Ctxt₊ Γ) → ε ↑₊⋆ Γ₊ ≅-⇨⋆ ε⇨⋆[ Γ ++₊ Γ₊ ]
ε-↑₊⋆ ε = P.refl
ε-↑₊⋆ (σ ◅ Γ₊) = begin
[ ε ↑⋆ ↑₊⋆ Γ₊ ] ≡⟨ P.refl ⟩
[ ε ↑₊⋆ Γ₊ ] ≡⟨ ε-↑₊⋆ Γ₊ ⟩
[ ε ] ∎
-- The identity substitution has no effect even if lifted.
/∋-id-↑⁺ : ∀ {Γ} Γ⁺ {σ} (x : Γ ++⁺ Γ⁺ ∋ σ) →
x /∋ id ↑⁺ Γ⁺ ≅-⊢ var · x
/∋-id-↑⁺ Γ⁺ x = begin
[ x /∋ id ↑⁺ Γ⁺ ] ≡⟨ /∋-cong (P.refl {x = [ x ]}) (id-↑⁺ Γ⁺) ⟩
[ x /∋ id ] ≡⟨ /∋-id x ⟩
[ var · x ] ∎
/∋-id-↑₊ : ∀ {Γ} Γ₊ {σ} (x : Γ ++₊ Γ₊ ∋ σ) →
x /∋ id ↑₊ Γ₊ ≅-⊢ var · x
/∋-id-↑₊ Γ₊ x = begin
[ x /∋ id ↑₊ Γ₊ ] ≡⟨ /∋-cong (P.refl {x = [ x ]}) (id-↑₊ Γ₊) ⟩
[ x /∋ id ] ≡⟨ /∋-id x ⟩
[ var · x ] ∎
-- N-ary lifting distributes over composition.
▻-↑⁺⋆ : ∀ {Γ Δ Ε} {ρ̂₁ : Γ ⇨̂ Δ} {ρ̂₂ : Δ ⇨̂ Ε}
(ρs : Subs T ρ̂₁) (ρ : Sub T ρ̂₂) Γ⁺ →
(ρs ▻ ρ) ↑⁺⋆ Γ⁺ ≅-⇨⋆ ρs ↑⁺⋆ Γ⁺ ▻ ρ ↑⁺ (Γ⁺ /⁺⋆ ρs)
▻-↑⁺⋆ ρs ρ ε = P.refl
▻-↑⁺⋆ ρs ρ (Γ⁺ ▻ σ) = begin
[ ((ρs ▻ ρ) ↑⁺⋆ Γ⁺) ↑⋆ ] ≡⟨ ↑⋆-cong (▻-↑⁺⋆ ρs ρ Γ⁺) P.refl ⟩
[ (ρs ↑⁺⋆ Γ⁺ ▻ ρ ↑⁺ (Γ⁺ /⁺⋆ ρs)) ↑⋆ ] ≡⟨ P.refl ⟩
[ (ρs ↑⁺⋆ Γ⁺) ↑⋆ ▻ (ρ ↑⁺ (Γ⁺ /⁺⋆ ρs)) ↑ ] ∎
▻-↑₊⋆ : ∀ {Γ Δ Ε} {ρ̂₁ : Γ ⇨̂ Δ} {ρ̂₂ : Δ ⇨̂ Ε}
(ρs : Subs T ρ̂₁) (ρ : Sub T ρ̂₂) Γ₊ →
(ρs ▻ ρ) ↑₊⋆ Γ₊ ≅-⇨⋆ ρs ↑₊⋆ Γ₊ ▻ ρ ↑₊ (Γ₊ /₊⋆ ρs)
▻-↑₊⋆ ρs ρ ε = P.refl
▻-↑₊⋆ ρs ρ (σ ◅ Γ₊) = begin
[ (ρs ▻ ρ) ↑⋆ ↑₊⋆ Γ₊ ] ≡⟨ P.refl ⟩
[ (ρs ↑⋆ ▻ ρ ↑) ↑₊⋆ Γ₊ ] ≡⟨ ▻-↑₊⋆ (ρs ↑⋆) (ρ ↑) Γ₊ ⟩
[ ρs ↑₊⋆ (σ ◅ Γ₊) ▻ ρ ↑₊ ((σ ◅ Γ₊) /₊⋆ ρs) ] ∎
-- If ρ is morally a renaming, then "deep application" of ρ to a
-- variable is still a variable.
/∋-↑⁺ : ∀ {Γ Δ} {ρ̂ : Γ ⇨̂ Δ}
(ρ : Sub T ρ̂) (f : [ Var ⟶ Var ] ρ̂) →
(∀ {σ} (x : Γ ∋ σ) → x /∋ ρ ≅-⊢ var · (f · x)) →
∀ Γ⁺ {σ} (x : Γ ++⁺ Γ⁺ ∋ σ) →
x /∋ ρ ↑⁺ Γ⁺ ≅-⊢ var · (lift f Γ⁺ · x)
/∋-↑⁺ ρ f hyp ε x = hyp x
/∋-↑⁺ ρ f hyp (Γ⁺ ▻ σ) zero = begin
[ zero[ σ ] /∋ (ρ ↑⁺ Γ⁺) ↑ ] ≡⟨ zero-/∋-↑ σ (ρ ↑⁺ Γ⁺) ⟩
[ var · zero ] ∎
/∋-↑⁺ ρ f hyp (Γ⁺ ▻ σ) (suc x) = begin
[ suc[ σ ] x /∋ (ρ ↑⁺ Γ⁺) ↑ ] ≡⟨ suc-/∋-↑ σ x (ρ ↑⁺ Γ⁺) ⟩
[ x /∋ wk-subst (ρ ↑⁺ Γ⁺) ] ≡⟨ /∋-wk-subst x (ρ ↑⁺ Γ⁺) ⟩
[ weaken · (x /∋ ρ ↑⁺ Γ⁺) ] ≡⟨ weaken-cong P.refl (/∋-↑⁺ ρ f hyp Γ⁺ x) ⟩
[ weaken · (var · (lift f Γ⁺ · x)) ] ≡⟨ weaken-var (lift f Γ⁺ · x) ⟩
[ var · suc (lift f Γ⁺ · x) ] ∎
-- "Deep weakening" of a variable can be expressed without
-- reference to the weaken function.
/∋-wk-↑⁺ : ∀ {Γ σ} Γ⁺ {τ} (x : Γ ++⁺ Γ⁺ ∋ τ) →
x /∋ wk[ σ ] ↑⁺ Γ⁺ ≅-⊢
var · (lift weaken∋[ σ ] Γ⁺ · x)
/∋-wk-↑⁺ = /∋-↑⁺ wk weaken∋ /∋-wk
/∋-wk-↑⁺-↑⁺ : ∀ {Γ σ} Γ⁺ Γ⁺⁺ {τ} (x : Γ ++⁺ Γ⁺ ++⁺ Γ⁺⁺ ∋ τ) →
x /∋ wk[ σ ] ↑⁺ Γ⁺ ↑⁺ Γ⁺⁺ ≅-⊢
var · (lift (lift weaken∋[ σ ] Γ⁺) Γ⁺⁺ · x)
/∋-wk-↑⁺-↑⁺ Γ⁺ = /∋-↑⁺ (wk ↑⁺ Γ⁺) (lift weaken∋ Γ⁺) (/∋-wk-↑⁺ Γ⁺)
-- Two n-ary liftings can be merged into one.
↑⁺-⁺++⁺ : ∀ {Γ Δ} {ρ̂ : Γ ⇨̂ Δ} (ρ : Sub T ρ̂) Γ⁺ Γ⁺⁺ →
ρ ↑⁺ (Γ⁺ ⁺++⁺ Γ⁺⁺) ≅-⇨ ρ ↑⁺ Γ⁺ ↑⁺ Γ⁺⁺
↑⁺-⁺++⁺ ρ Γ⁺ ε = P.refl
↑⁺-⁺++⁺ ρ Γ⁺ (Γ⁺⁺ ▻ σ) = begin
[ (ρ ↑⁺ (Γ⁺ ⁺++⁺ Γ⁺⁺)) ↑ ] ≡⟨ ↑-cong (↑⁺-⁺++⁺ ρ Γ⁺ Γ⁺⁺)
(drop-subst-Type F.id (++⁺-++⁺ Γ⁺ Γ⁺⁺)) ⟩
[ (ρ ↑⁺ Γ⁺ ↑⁺ Γ⁺⁺) ↑ ] ∎
↑₊-₊++₊ : ∀ {Γ Δ} {ρ̂ : Γ ⇨̂ Δ} (ρ : Sub T ρ̂) Γ₊ Γ₊₊ →
ρ ↑₊ (Γ₊ ₊++₊ Γ₊₊) ≅-⇨ ρ ↑₊ Γ₊ ↑₊ Γ₊₊
↑₊-₊++₊ ρ ε Γ₊₊ = P.refl
↑₊-₊++₊ ρ (σ ◅ Γ₊) Γ₊₊ = begin
[ ρ ↑ ↑₊ (Γ₊ ₊++₊ Γ₊₊) ] ≡⟨ ↑₊-₊++₊ (ρ ↑) Γ₊ Γ₊₊ ⟩
[ ρ ↑ ↑₊ Γ₊ ↑₊ Γ₊₊ ] ∎
| 34.183295
| 88
| 0.356343
|
3d5137f11f01faff50ce243d2f225ff5713979a8
| 4,138
|
agda
|
Agda
|
agda-stdlib/src/Data/Product.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | 5
|
2020-10-07T12:07:53.000Z
|
2020-10-10T21:41:32.000Z
|
agda-stdlib/src/Data/Product.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | null | null | null |
agda-stdlib/src/Data/Product.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | 1
|
2021-11-04T06:54:45.000Z
|
2021-11-04T06:54:45.000Z
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Products
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Product where
open import Function.Base
open import Level
open import Relation.Nullary
open import Agda.Builtin.Equality
private
variable
a b c d e f ℓ p q r : Level
A : Set a
B : Set b
C : Set c
D : Set d
E : Set e
F : Set f
------------------------------------------------------------------------
-- Definition of dependent products
open import Agda.Builtin.Sigma public
renaming (fst to proj₁; snd to proj₂)
hiding (module Σ)
module Σ = Agda.Builtin.Sigma.Σ
renaming (fst to proj₁; snd to proj₂)
-- The syntax declaration below is attached to Σ-syntax, to make it
-- easy to import Σ without the special syntax.
infix 2 Σ-syntax
Σ-syntax : (A : Set a) → (A → Set b) → Set (a ⊔ b)
Σ-syntax = Σ
syntax Σ-syntax A (λ x → B) = Σ[ x ∈ A ] B
------------------------------------------------------------------------
-- Definition of non-dependent products
infixr 4 _,′_
infixr 2 _×_
_×_ : ∀ (A : Set a) (B : Set b) → Set (a ⊔ b)
A × B = Σ[ x ∈ A ] B
_,′_ : A → B → A × B
_,′_ = _,_
------------------------------------------------------------------------
-- Existential quantifiers
∃ : ∀ {A : Set a} → (A → Set b) → Set (a ⊔ b)
∃ = Σ _
∄ : ∀ {A : Set a} → (A → Set b) → Set (a ⊔ b)
∄ P = ¬ ∃ P
∃₂ : ∀ {A : Set a} {B : A → Set b}
(C : (x : A) → B x → Set c) → Set (a ⊔ b ⊔ c)
∃₂ C = ∃ λ a → ∃ λ b → C a b
-- Unique existence (parametrised by an underlying equality).
∃! : {A : Set a} → (A → A → Set ℓ) → (A → Set b) → Set (a ⊔ b ⊔ ℓ)
∃! _≈_ B = ∃ λ x → B x × (∀ {y} → B y → x ≈ y)
-- Syntax
∃-syntax : ∀ {A : Set a} → (A → Set b) → Set (a ⊔ b)
∃-syntax = ∃
syntax ∃-syntax (λ x → B) = ∃[ x ] B
∄-syntax : ∀ {A : Set a} → (A → Set b) → Set (a ⊔ b)
∄-syntax = ∄
syntax ∄-syntax (λ x → B) = ∄[ x ] B
------------------------------------------------------------------------
-- Operations over dependent products
infix 4 -,_
infixr 2 _-×-_ _-,-_
-- Sometimes the first component can be inferred.
-,_ : ∀ {A : Set a} {B : A → Set b} {x} → B x → ∃ B
-, y = _ , y
<_,_> : ∀ {A : Set a} {B : A → Set b} {C : ∀ {x} → B x → Set c}
(f : (x : A) → B x) → ((x : A) → C (f x)) →
((x : A) → Σ (B x) C)
< f , g > x = (f x , g x)
map : ∀ {P : A → Set p} {Q : B → Set q} →
(f : A → B) → (∀ {x} → P x → Q (f x)) →
Σ A P → Σ B Q
map f g (x , y) = (f x , g y)
map₁ : (A → B) → A × C → B × C
map₁ f = map f id
map₂ : ∀ {A : Set a} {B : A → Set b} {C : A → Set c} →
(∀ {x} → B x → C x) → Σ A B → Σ A C
map₂ f = map id f
zip : ∀ {P : A → Set p} {Q : B → Set q} {R : C → Set r} →
(_∙_ : A → B → C) →
(∀ {x y} → P x → Q y → R (x ∙ y)) →
Σ A P → Σ B Q → Σ C R
zip _∙_ _∘_ (a , p) (b , q) = ((a ∙ b) , (p ∘ q))
curry : ∀ {A : Set a} {B : A → Set b} {C : Σ A B → Set c} →
((p : Σ A B) → C p) →
((x : A) → (y : B x) → C (x , y))
curry f x y = f (x , y)
uncurry : ∀ {A : Set a} {B : A → Set b} {C : Σ A B → Set c} →
((x : A) → (y : B x) → C (x , y)) →
((p : Σ A B) → C p)
uncurry f (x , y) = f x y
------------------------------------------------------------------------
-- Operations for non-dependent products
-- Any of the above operations for dependent products will also work for
-- non-dependent products but sometimes Agda has difficulty inferring
-- the non-dependency. Primed (′ = \prime) versions of the operations
-- are therefore provided below that sometimes have better inference
-- properties.
zip′ : (A → B → C) → (D → E → F) → A × D → B × E → C × F
zip′ f g = zip f g
curry′ : (A × B → C) → (A → B → C)
curry′ = curry
uncurry′ : (A → B → C) → (A × B → C)
uncurry′ = uncurry
-- Operations that can only be defined for non-dependent products
swap : A × B → B × A
swap (x , y) = (y , x)
_-×-_ : (A → B → Set p) → (A → B → Set q) → (A → B → Set _)
f -×- g = f -[ _×_ ]- g
_-,-_ : (A → B → C) → (A → B → D) → (A → B → C × D)
f -,- g = f -[ _,_ ]- g
| 25.8625
| 72
| 0.422668
|
0e0aeaa8372529803c9c5a53a87f6133cce3229b
| 2,807
|
agda
|
Agda
|
Structure/Operator.agda
|
Lolirofle/stuff-in-agda
|
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
|
[
"MIT"
] | 6
|
2020-04-07T17:58:13.000Z
|
2022-02-05T06:53:22.000Z
|
Structure/Operator.agda
|
Lolirofle/stuff-in-agda
|
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
|
[
"MIT"
] | null | null | null |
Structure/Operator.agda
|
Lolirofle/stuff-in-agda
|
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
|
[
"MIT"
] | null | null | null |
module Structure.Operator where
import Lvl
open import Functional using (_$_)
open import Lang.Instance
open import Logic.Predicate
open import Logic
open import Structure.Setoid
open import Structure.Function.Names
open import Structure.Function
open import Structure.Relator.Properties
open import Syntax.Function
open import Syntax.Transitivity
open import Type
private variable ℓ ℓₒ ℓₒ₁ ℓₒ₂ ℓₒ₃ ℓₒ₄ ℓₗ ℓₗ₁ ℓₗ₂ ℓₗ₃ ℓₗ₄ : Lvl.Level
private variable A₁ A₂ A₃ B : Type{ℓ}
module _
⦃ equiv-A₁ : Equiv{ℓₗ₁}(A₁) ⦄
⦃ equiv-A₂ : Equiv{ℓₗ₂}(A₂) ⦄
⦃ equiv-B : Equiv{ℓₗ₃}(B) ⦄
(_▫_ : A₁ → A₂ → B)
where
-- The operator `_▫_` "(behaves like)/is a function" in the context of `_≡_` from the Equiv instance.
-- `congruence` is the defining property of a binary operation.
record BinaryOperator : Type{Lvl.of(A₁) Lvl.⊔ Lvl.of(A₂) Lvl.⊔ ℓₗ₁ Lvl.⊔ ℓₗ₂ Lvl.⊔ ℓₗ₃} where
constructor intro
field congruence : Congruence₂(_▫_)
instance
left : ∀{x} → Function(_▫ x)
left = intro(proof ↦ congruence proof (reflexivity(_≡_)))
instance
right : ∀{x} → Function(x ▫_)
right = intro(proof ↦ congruence (reflexivity(_≡_)) proof)
congruenceₗ : ∀{x₁ x₂}{y} → (x₁ ≡ x₂) → (x₁ ▫ y ≡ x₂ ▫ y)
congruenceₗ = Function.congruence(left)
congruenceᵣ : ∀{x}{y₁ y₂} → (y₁ ≡ y₂) → (x ▫ y₁ ≡ x ▫ y₂)
congruenceᵣ = Function.congruence(right)
[≡]-congruence2-left : ⦃ inst : BinaryOperator ⦄ → (x : _) → Function(_▫ x)
[≡]-congruence2-left = x ↦ inst-fn(BinaryOperator.left) {x}
[≡]-congruence2-right : ⦃ inst : BinaryOperator ⦄ → (x : _) → Function(x ▫_)
[≡]-congruence2-right = x ↦ inst-fn(BinaryOperator.right) {x}
congruence₂ = inst-fn BinaryOperator.congruence
congruence₂ₗ : ⦃ inst : BinaryOperator ⦄ → (a : A₂) → ∀{x y : A₁} → (x ≡ y) → (x ▫ a ≡ y ▫ a)
congruence₂ₗ _ = inst-fn BinaryOperator.congruenceₗ -- (congruence₁(_▫ a) ⦃ [≡]-congruence2-left ⦃ inst ⦄ a ⦄)
congruence₂ᵣ : ⦃ inst : BinaryOperator ⦄ → (a : A₁) → ∀{x y : A₂} → (x ≡ y) → (a ▫ x ≡ a ▫ y)
congruence₂ᵣ _ = inst-fn BinaryOperator.congruenceᵣ
functions-to-binaryOperator : ⦃ l : ∀{y} → Function(_▫ y) ⦄ ⦃ r : ∀{x} → Function(x ▫_) ⦄ → BinaryOperator
BinaryOperator.congruence functions-to-binaryOperator {x₁} {y₁} {x₂} {y₂} leq req =
(x₁ ▫ x₂) 🝖[ _≡_ ]-[ congruence₁(_▫ x₂) leq ]
(y₁ ▫ x₂) 🝖[ _≡_ ]-[ congruence₁(y₁ ▫_) req ]
(y₁ ▫ y₂) 🝖-end
module _
⦃ equiv-A₁ : Equiv{ℓₗ₁}(A₁) ⦄
⦃ equiv-A₂ : Equiv{ℓₗ₂}(A₂) ⦄
⦃ equiv-A₃ : Equiv{ℓₗ₃}(A₃) ⦄
⦃ equiv-B : Equiv{ℓₗ₄}(B) ⦄
(_▫_▫_ : A₁ → A₂ → A₃ → B)
where
record TrinaryOperator : Type{Lvl.of(A₁) Lvl.⊔ Lvl.of(A₂) Lvl.⊔ Lvl.of(A₃) Lvl.⊔ ℓₗ₁ Lvl.⊔ ℓₗ₂ Lvl.⊔ ℓₗ₃ Lvl.⊔ ℓₗ₄} where
constructor intro
field congruence : Congruence₃(_▫_▫_)
congruence₃ = inst-fn TrinaryOperator.congruence
| 35.531646
| 123
| 0.639473
|
4141c6d76f09648c38b9447d6139daa716cdf2b3
| 465
|
agda
|
Agda
|
Cubical/Data/DescendingList/Strict.agda
|
FernandoLarrain/cubical
|
9acdecfa6437ec455568be4e5ff04849cc2bc13b
|
[
"MIT"
] | 301
|
2018-10-17T18:00:24.000Z
|
2022-03-24T02:10:47.000Z
|
Cubical/Data/DescendingList/Strict.agda
|
FernandoLarrain/cubical
|
9acdecfa6437ec455568be4e5ff04849cc2bc13b
|
[
"MIT"
] | 584
|
2018-10-15T09:49:02.000Z
|
2022-03-30T12:09:17.000Z
|
Cubical/Data/DescendingList/Strict.agda
|
FernandoLarrain/cubical
|
9acdecfa6437ec455568be4e5ff04849cc2bc13b
|
[
"MIT"
] | 134
|
2018-11-16T06:11:03.000Z
|
2022-03-23T16:22:13.000Z
|
------------------------------------------------------------------------
-- Strictly descending lists
------------------------------------------------------------------------
{-# OPTIONS --safe #-}
open import Cubical.Core.Everything
module Cubical.Data.DescendingList.Strict
(A : Type₀)
(_>_ : A → A → Type₀)
where
open import Cubical.Data.DescendingList.Base A _>_ renaming (_≥ᴴ_ to _>ᴴ_; ≥ᴴ[] to >ᴴ[]; ≥ᴴcons to >ᴴcons; DL to SDL) using ([]; cons) public
| 31
| 141
| 0.468817
|
1204be9268681716198cf4430218f1f2b914adc7
| 361
|
agda
|
Agda
|
test/Fail/Issue1194m.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Fail/Issue1194m.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Fail/Issue1194m.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
module _ where
postulate D : Set
module A where
infixr 5 _∷_
postulate
_∷_ : Set₁ → D → D
module B where
infix 5 _∷_
postulate
_∷_ : Set₁ → Set₁ → D
open A
open B
foo : D
foo = Set ∷ Set
-- Expected error:
--
-- <preciseErrorLocation>
-- Ambiguous name _∷_. It could refer to any one of
-- A._∷_ bound at ...
-- B._∷_ bound at ...
| 11.645161
| 51
| 0.598338
|
dff751554e1f92845c211b8e24d0d2cd0ace1449
| 337
|
agda
|
Agda
|
Cubical/HITs/SetTruncation/Base.agda
|
limemloh/cubical
|
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
|
[
"MIT"
] | 1
|
2020-03-23T23:52:11.000Z
|
2020-03-23T23:52:11.000Z
|
Cubical/HITs/SetTruncation/Base.agda
|
limemloh/cubical
|
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
|
[
"MIT"
] | null | null | null |
Cubical/HITs/SetTruncation/Base.agda
|
limemloh/cubical
|
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
|
[
"MIT"
] | null | null | null |
{-
This file contains:
- Definition of set truncations
-}
{-# OPTIONS --cubical --safe #-}
module Cubical.HITs.SetTruncation.Base where
open import Cubical.Core.Primitives
-- set truncation as a higher inductive type:
data ∥_∥₀ {ℓ} (A : Type ℓ) : Type ℓ where
∣_∣₀ : A → ∥ A ∥₀
squash₀ : ∀ (x y : ∥ A ∥₀) (p q : x ≡ y) → p ≡ q
| 18.722222
| 50
| 0.623145
|
063e88b955cf19b29101d024475a8e7bc2a7dd70
| 51
|
agda
|
Agda
|
test/Succeed/Issue3991FractionalPrecedence.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Succeed/Issue3991FractionalPrecedence.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Succeed/Issue3991FractionalPrecedence.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
infix -3.14 _+_
postulate
_+_ : Set → Set → Set
| 10.2
| 23
| 0.588235
|
57d48fda9d0aef6f692a88e6b96d13defe2f1a72
| 638
|
agda
|
Agda
|
test/asset/agda-stdlib-1.0/Data/Fin/Dec.agda
|
omega12345/agda-mode
|
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
|
[
"MIT"
] | null | null | null |
test/asset/agda-stdlib-1.0/Data/Fin/Dec.agda
|
omega12345/agda-mode
|
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
|
[
"MIT"
] | null | null | null |
test/asset/agda-stdlib-1.0/Data/Fin/Dec.agda
|
omega12345/agda-mode
|
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
|
[
"MIT"
] | null | null | null |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Decision procedures for finite sets and subsets of finite sets
--
-- This module is DEPRECATED. Please use the Data.Fin.Properties
-- and Data.Fin.Subset.Properties directly.
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Fin.Dec where
open import Data.Fin.Properties public
using (decFinSubset; any?; all?; ¬∀⟶∃¬-smallest; ¬∀⟶∃¬)
open import Data.Fin.Subset.Properties public
using (_∈?_; _⊆?_; nonempty?; anySubset?)
renaming (Lift? to decLift)
| 31.9
| 72
| 0.548589
|
1cafa22d9efc9d5fceec345738804c4d675e3df8
| 9,993
|
agda
|
Agda
|
src/Model/Size.agda
|
JLimperg/msc-thesis-code
|
104cddc6b65386c7e121c13db417aebfd4b7a863
|
[
"MIT"
] | 5
|
2021-04-13T21:31:17.000Z
|
2021-06-26T06:37:31.000Z
|
src/Model/Size.agda
|
JLimperg/msc-thesis-code
|
104cddc6b65386c7e121c13db417aebfd4b7a863
|
[
"MIT"
] | null | null | null |
src/Model/Size.agda
|
JLimperg/msc-thesis-code
|
104cddc6b65386c7e121c13db417aebfd4b7a863
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --without-K #-}
module Model.Size where
open import Relation.Binary using (Rel ; Preorder ; IsPreorder)
import Data.Nat as ℕ
import Data.Nat.Induction as ℕ
import Data.Nat.Properties as ℕ
import Relation.Binary.Construct.On as On
open import Model.RGraph as RG using (RGraph)
open import Source.Size as S using (Δ ; Ω)
open import Source.Size.Substitution.Universe using (⟨_⟩ ; Sub⊢ᵤ)
open import Util.HoTT.HLevel
open import Util.Induction.WellFounded as WFInd using (Acc ; acc ; WellFounded)
open import Util.Prelude
import Source.Size.Substitution.Canonical as SC
import Source.Size.Substitution.Universe as S
open S.Ctx
open S.Size
open S.Sub
open S.Sub⊢ᵤ
open S.Var
open S._<_ hiding (<-trans)
infix 4 _<_ _≤_
private
variable
i j k : ℕ
{-
This is an encoding of the set of ordinals
ℕ ∪ { ω + i | i ∈ ℕ }
i.e. of the ordinals below ω*2.
-}
data Size : Set where
zero+ : (i : ℕ) → Size
∞+ : (i : ℕ) → Size
variable
n m o : Size
nat : ℕ → Size
nat = zero+
abstract
zero+-inj : zero+ i ≡ zero+ j → i ≡ j
zero+-inj refl = refl
zero+-≡-canon : (p : zero+ i ≡ zero+ j) → p ≡ cong zero+ (zero+-inj p)
zero+-≡-canon refl = refl
∞+-inj : ∞+ i ≡ ∞+ j → i ≡ j
∞+-inj refl = refl
∞+-≡-canon : (p : ∞+ i ≡ ∞+ j) → p ≡ cong ∞+ (∞+-inj p)
∞+-≡-canon refl = refl
Size-IsSet : IsSet Size
Size-IsSet {zero+ i} {zero+ j} p refl
= trans (zero+-≡-canon p) (cong (cong zero+) (ℕ.≡-irrelevant _ _))
Size-IsSet {∞+ i} {∞+ j} p refl
= trans (∞+-≡-canon p) (cong (cong ∞+) (ℕ.≡-irrelevant _ _))
data _<_ : (n m : Size) → Set where
zero+ : (i<j : i ℕ.< j) → zero+ i < zero+ j
∞+ : (i<j : i ℕ.< j) → ∞+ i < ∞+ j
zero<∞ : zero+ i < ∞+ j
data _≤_ (n m : Size) : Set where
reflexive : n ≡ m → n ≤ m
<→≤ : n < m → n ≤ m
pattern ≤-refl = reflexive refl
abstract
<-trans : n < m → m < o → n < o
<-trans (zero+ i<j) (zero+ j<k) = zero+ (ℕ.<-trans i<j j<k)
<-trans (zero+ i<j) zero<∞ = zero<∞
<-trans (∞+ i<j) (∞+ j<k) = ∞+ (ℕ.<-trans i<j j<k)
<-trans zero<∞ (∞+ i<j) = zero<∞
≤→<→< : n ≤ m → m < o → n < o
≤→<→< ≤-refl m<o = m<o
≤→<→< (<→≤ n<m) m<o = <-trans n<m m<o
<→≤→< : n < m → m ≤ o → n < o
<→≤→< n<m ≤-refl = n<m
<→≤→< n<m (<→≤ m<o) = <-trans n<m m<o
≤-trans : n ≤ m → m ≤ o → n ≤ o
≤-trans n≤m ≤-refl = n≤m
≤-trans n≤m (<→≤ m<o) = <→≤ (≤→<→< n≤m m<o)
⟦zero⟧ ⟦∞⟧ : Size
⟦zero⟧ = zero+ 0
⟦∞⟧ = ∞+ 0
⟦suc⟧ : Size → Size
⟦suc⟧ (zero+ i) = zero+ (suc i)
⟦suc⟧ (∞+ i) = ∞+ (suc i)
abstract
⟦zero⟧<⟦suc⟧ : ⟦zero⟧ < ⟦suc⟧ n
⟦zero⟧<⟦suc⟧ {zero+ i} = zero+ (ℕ.s≤s ℕ.z≤n)
⟦zero⟧<⟦suc⟧ {∞+ i} = zero<∞
⟦zero⟧<⟦∞⟧ : ⟦zero⟧ < ⟦∞⟧
⟦zero⟧<⟦∞⟧ = zero<∞
⟦suc⟧<⟦suc⟧ : n < m → ⟦suc⟧ n < ⟦suc⟧ m
⟦suc⟧<⟦suc⟧ (zero+ i<j) = zero+ (ℕ.s≤s i<j)
⟦suc⟧<⟦suc⟧ (∞+ i<j) = ∞+ (ℕ.s≤s i<j)
⟦suc⟧<⟦suc⟧ zero<∞ = zero<∞
⟦suc⟧<⟦∞⟧ : n < ⟦∞⟧ → ⟦suc⟧ n < ⟦∞⟧
⟦suc⟧<⟦∞⟧ zero<∞ = zero<∞
<⟦suc⟧ : n < ⟦suc⟧ n
<⟦suc⟧ {zero+ i} = zero+ (ℕ.s≤s ℕ.≤-refl)
<⟦suc⟧ {∞+ i} = ∞+ (ℕ.s≤s ℕ.≤-refl)
Size< : Size → Set
Size< n = ∃[ m ] (m < n)
mutual
⟦_⟧Δ′ : S.Ctx → Set
⟦ [] ⟧Δ′ = ⊤
⟦ Δ ∙ n ⟧Δ′ = Σ[ δ ∈ ⟦ Δ ⟧Δ′ ] (Size< (⟦ n ⟧n′ δ))
⟦_⟧x′ : S.Var Δ → ⟦ Δ ⟧Δ′ → Size
⟦ zero ⟧x′ (δ , n , _) = n
⟦ suc x ⟧x′ (δ , _ , _) = ⟦ x ⟧x′ δ
⟦_⟧n′ : S.Size Δ → ⟦ Δ ⟧Δ′ → Size
⟦ var x ⟧n′ = ⟦ x ⟧x′
⟦ ∞ ⟧n′ _ = ⟦∞⟧
⟦ zero ⟧n′ _ = ⟦zero⟧
⟦ suc n ⟧n′ = ⟦suc⟧ ∘ ⟦ n ⟧n′
abstract
⟦wk⟧ : ∀ (n m : S.Size Δ) {δ} → ⟦ S.wk {n = n} m ⟧n′ δ ≡ ⟦ m ⟧n′ (proj₁ δ)
⟦wk⟧ n (var x) = refl
⟦wk⟧ n ∞ = refl
⟦wk⟧ n zero = refl
⟦wk⟧ n (suc m) = cong ⟦suc⟧ (⟦wk⟧ n m)
⟦<⟧ₓ : ∀ (x : S.Var Δ) {δ}
→ ⟦ x ⟧x′ δ < ⟦ S.bound x ⟧n′ δ
⟦<⟧ₓ {Δ ∙ n} zero {δ , m , m<n} = subst (m <_) (sym (⟦wk⟧ n n)) m<n
⟦<⟧ₓ {Δ ∙ n} (suc x) {δ , m , m<n}
= subst (⟦ x ⟧x′ δ <_) (sym (⟦wk⟧ n (S.bound x))) (⟦<⟧ₓ x)
⟦<⟧ : ∀ {n m : S.Size Δ} {δ}
→ n S.< m
→ ⟦ n ⟧n′ δ < ⟦ m ⟧n′ δ
⟦<⟧ (var {x = x} refl) = ⟦<⟧ₓ x
⟦<⟧ zero<suc = ⟦zero⟧<⟦suc⟧
⟦<⟧ zero<∞ = ⟦zero⟧<⟦∞⟧
⟦<⟧ (suc<suc n<m) = ⟦suc⟧<⟦suc⟧ (⟦<⟧ n<m)
⟦<⟧ (suc<∞ n<m) = ⟦suc⟧<⟦∞⟧ (⟦<⟧ n<m)
⟦<⟧ (S.<-trans n<m m<o) = <-trans (⟦<⟧ n<m) (⟦<⟧ m<o)
⟦<⟧ <suc = <⟦suc⟧
<-irrefl : ¬ n < n
<-irrefl {zero+ i} (zero+ i<i) = ℕ.<⇒≢ i<i refl
<-irrefl {∞+ i} (∞+ i<i) = ℕ.<⇒≢ i<i refl
≤-antisym : n ≤ m → m ≤ n → n ≡ m
≤-antisym ≤-refl m≤n = refl
≤-antisym (<→≤ n<m) m≤n = ⊥-elim (<-irrefl (<→≤→< n<m m≤n))
<-IsProp : IsProp (n < m)
<-IsProp (zero+ i<j) (zero+ i<j₁) = cong zero+ (ℕ.<-irrelevant _ _)
<-IsProp (∞+ i<j) (∞+ i<j₁) = cong ∞+ (ℕ.<-irrelevant _ _)
<-IsProp zero<∞ zero<∞ = refl
≤-IsProp : IsProp (n ≤ m)
≤-IsProp (reflexive p) (reflexive q) = cong reflexive (Size-IsSet _ _)
≤-IsProp ≤-refl (<→≤ q) = ⊥-elim (<-irrefl q)
≤-IsProp (<→≤ p) ≤-refl = ⊥-elim (<-irrefl p)
≤-IsProp (<→≤ p) (<→≤ q) = cong <→≤ (<-IsProp p q)
Size<-≡⁺ : (m k : Size< n) → proj₁ m ≡ proj₁ k → m ≡ k
Size<-≡⁺ (m , _) (k , _) refl = cong (m ,_) (<-IsProp _ _)
Size<-IsSet : ∀ {n} → IsSet (Size< n)
Size<-IsSet = Σ-IsSet Size-IsSet λ _ → IsOfHLevel-suc 1 <-IsProp
⟦Δ⟧-IsSet : ∀ Δ → IsSet ⟦ Δ ⟧Δ′
⟦Δ⟧-IsSet [] = ⊤-IsSet
⟦Δ⟧-IsSet (Δ ∙ n) = Σ-IsSet (⟦Δ⟧-IsSet Δ) λ _ → Size<-IsSet
⟦Δ⟧-HSet : S.Ctx → HSet 0ℓ
⟦Δ⟧-HSet Δ = HLevel⁺ _ (⟦Δ⟧-IsSet Δ)
abstract
⟦Δ∙n⟧-≡⁺ : ∀ Δ (n : S.Size Δ) {δ δ′ : ⟦ Δ ⟧Δ′} {m m′ : Size}
→ (m<n : m < ⟦ n ⟧n′ δ)
→ (m′<n : m′ < ⟦ n ⟧n′ δ′)
→ δ ≡ δ′
→ m ≡ m′
→ (δ , m , m<n) ≡ (δ′ , m′ , m′<n)
⟦Δ∙n⟧-≡⁺ Δ n {δ} _ _ refl eq₂
= cong (δ ,_) (Size<-≡⁺ _ _ eq₂)
zero+-<ℕ-acc→<-acc : Acc ℕ._<_ i → Acc _<_ (zero+ i)
zero+-<ℕ-acc→<-acc (acc rs) = acc λ where
(zero+ i) (zero+ i<j) → zero+-<ℕ-acc→<-acc (rs i i<j)
zero+-acc : Acc _<_ (zero+ i)
zero+-acc = zero+-<ℕ-acc→<-acc (ℕ.<-wellFounded _)
∞+-<ℕ-acc→<-acc : Acc ℕ._<_ i → Acc _<_ (∞+ i)
∞+-<ℕ-acc→<-acc (acc rs) = acc λ where
(∞+ i) (∞+ i<j) → ∞+-<ℕ-acc→<-acc (rs i i<j)
(zero+ i) zero<∞ → zero+-acc
∞+-acc : Acc _<_ (∞+ i)
∞+-acc = ∞+-<ℕ-acc→<-acc (ℕ.<-wellFounded _)
<-wf : WellFounded _<_
<-wf m = acc λ where
_ (zero+ i<j) → zero+-acc
_ (∞+ i<j) → ∞+-acc
_ zero<∞ → zero+-acc
open WFInd.Build <-wf public using () renaming
( wfInd to <-ind
; wfRec to <-rec
; wfInd-unfold to <-ind-unfold
; wfRec-unfold to <-rec-unfold
; wfInd-ind to <-ind-ind
; wfIndΣ to <-indΣ
; wfIndΣ-unfold to <-indΣ-unfold
; wfIndΣ′ to <-indΣ′
)
<-ind-ind₂ = WFInd.wfInd-ind₂ <-wf
mutual
⟦_⟧σ′ : ∀ {σ} → σ ∶ Δ ⇒ᵤ Ω → ⟦ Δ ⟧Δ′ → ⟦ Ω ⟧Δ′
⟦ Id ⟧σ′ δ = δ
⟦ comp σ τ ⟧σ′ δ = ⟦ τ ⟧σ′ (⟦ σ ⟧σ′ δ)
⟦ Wk ⟧σ′ (δ , m) = δ
⟦ Lift {n = n} σ refl ⟧σ′ (δ , m , m<n)
= ⟦ σ ⟧σ′ δ , m , subst (m <_) (⟦sub⟧ σ n) m<n
⟦ Sing {n = n} n<m ⟧σ′ δ = δ , ⟦ n ⟧n′ δ , ⟦<⟧ n<m
⟦ Skip ⟧σ′ ((δ , m , m<n) , k , k<m) = δ , k , <-trans k<m m<n
abstract
⟦subV′⟧ : ∀ {σ} (⊢σ : σ ∶ Δ ⇒ᵤ Ω) (x : S.Var Ω) {δ}
→ ⟦ S.subV′ σ x ⟧n′ δ ≡ ⟦ x ⟧x′ (⟦ ⊢σ ⟧σ′ δ)
⟦subV′⟧ Id x = refl
⟦subV′⟧ (comp {σ = σ} {τ = τ} ⊢σ ⊢τ) x
= trans (⟦sub′⟧ ⊢σ (S.subV′ τ x)) (⟦subV′⟧ ⊢τ x)
⟦subV′⟧ Wk x = refl
⟦subV′⟧ (Lift ⊢σ refl) zero {δ , m} = refl
⟦subV′⟧ (Lift {σ = σ} {n = n} ⊢σ refl) (suc x) {δ , m}
rewrite ⟦wk⟧ (S.sub σ n) (S.subV′ σ x) {δ , m}
= ⟦subV′⟧ ⊢σ x
⟦subV′⟧ (Sing n<m) zero = refl
⟦subV′⟧ (Sing n<m) (suc x) = refl
⟦subV′⟧ Skip zero = refl
⟦subV′⟧ Skip (suc x) = refl
⟦sub′⟧ : ∀ {σ} (⊢σ : σ ∶ Δ ⇒ᵤ Ω) (n : S.Size Ω) {δ}
→ ⟦ S.sub′ σ n ⟧n′ δ ≡ ⟦ n ⟧n′ (⟦ ⊢σ ⟧σ′ δ)
⟦sub′⟧ σ (var x) = ⟦subV′⟧ σ x
⟦sub′⟧ σ ∞ = refl
⟦sub′⟧ σ zero = refl
⟦sub′⟧ σ (suc n) = cong ⟦suc⟧ (⟦sub′⟧ σ n)
⟦sub⟧ : ∀ {σ} (⊢σ : σ ∶ Δ ⇒ᵤ Ω) (n : S.Size Ω) {δ}
→ ⟦ S.sub σ n ⟧n′ δ ≡ ⟦ n ⟧n′ (⟦ ⊢σ ⟧σ′ δ)
⟦sub⟧ {σ = σ} ⊢σ n {δ}
= trans (cong (λ k → ⟦ k ⟧n′ δ) (sym (S.sub′≡sub σ n))) (⟦sub′⟧ ⊢σ n)
abstract
⟦subV⟧ : ∀ {σ} (⊢σ : σ ∶ Δ ⇒ᵤ Ω) (x : S.Var Ω) {δ}
→ ⟦ S.subV σ x ⟧n′ δ ≡ ⟦ x ⟧x′ (⟦ ⊢σ ⟧σ′ δ)
⟦subV⟧ {σ = σ} ⊢σ x {δ}
= trans (cong (λ k → ⟦ k ⟧n′ δ) (sym (S.subV′≡subV σ x))) (⟦subV′⟧ ⊢σ x)
⟦⟧σ-param : ∀ {σ} (p q : σ ∶ Δ ⇒ᵤ Ω) {δ}
→ ⟦ p ⟧σ′ δ ≡ ⟦ q ⟧σ′ δ
⟦⟧σ-param Id Id = refl
⟦⟧σ-param (comp p p′) (comp q q′)
= trans (⟦⟧σ-param p′ q′) (cong (⟦ q′ ⟧σ′) (⟦⟧σ-param p q))
⟦⟧σ-param Wk Wk = refl
⟦⟧σ-param {Ω = Ω ∙ m} (Lift p refl) (Lift q m≡n[σ]₁)
rewrite S.Size-IsSet m≡n[σ]₁ refl
= ⟦Δ∙n⟧-≡⁺ Ω m _ _ (⟦⟧σ-param p q) refl
⟦⟧σ-param {Δ = Δ} {σ = Sing {m = m} n} (Sing n<m) (Sing n<m₁)
= ⟦Δ∙n⟧-≡⁺ Δ m (⟦<⟧ n<m) (⟦<⟧ n<m₁) refl refl
⟦⟧σ-param Skip Skip = refl
⟦_⟧Δ : S.Ctx → RGraph
⟦ Δ ⟧Δ = record
{ ObjHSet = ⟦Δ⟧-HSet Δ
; eqHProp = λ _ _ → ⊤-HProp
}
Sizes : RGraph
Sizes = record
{ ObjHSet = HLevel⁺ Size Size-IsSet
; eqHProp = λ _ _ → ⊤-HProp
}
⟦_⟧n : ∀ {Δ} (n : S.Size Δ) → ⟦ Δ ⟧Δ RG.⇒ Sizes
⟦ n ⟧n = record
{ fobj = ⟦ n ⟧n′
}
⟦_⟧σ : ∀ {Δ Ω σ} → σ ∶ Δ ⇒ᵤ Ω → ⟦ Δ ⟧Δ RG.⇒ ⟦ Ω ⟧Δ
⟦ σ ⟧σ = record
{ fobj = ⟦ σ ⟧σ′
}
data _≤′_ : (n m : Size) → Set where
zero+ : (i≤j : i ℕ.≤ j) → zero+ i ≤′ zero+ j
∞+ : (i≤j : i ℕ.≤ j) → ∞+ i ≤′ ∞+ j
zero<∞ : zero+ i ≤′ ∞+ j
abstract
≤→≤′ : n ≤ m → n ≤′ m
≤→≤′ {zero+ i} ≤-refl = zero+ ℕ.≤-refl
≤→≤′ {∞+ i} ≤-refl = ∞+ ℕ.≤-refl
≤→≤′ (<→≤ (zero+ i<j)) = zero+ (ℕ.<⇒≤ i<j)
≤→≤′ (<→≤ (∞+ i<j)) = ∞+ (ℕ.<⇒≤ i<j)
≤→≤′ (<→≤ zero<∞) = zero<∞
≤′→≤ : n ≤′ m → n ≤ m
≤′→≤ (zero+ i≤j) with ℕ.≤⇒≤′ i≤j
... | ℕ.≤′-refl = ≤-refl
... | ℕ.≤′-step i≤′j = <→≤ (zero+ (ℕ.s≤s (ℕ.≤′⇒≤ i≤′j)))
≤′→≤ (∞+ i≤j) with ℕ.≤⇒≤′ i≤j
... | ℕ.≤′-refl = ≤-refl
... | ℕ.≤′-step i≤′j = <→≤ (∞+ (ℕ.s≤s (ℕ.≤′⇒≤ i≤′j)))
≤′→≤ zero<∞ = <→≤ zero<∞
0≤n : ⟦zero⟧ ≤ n
0≤n {zero+ zero} = ≤-refl
0≤n {zero+ (suc i)} = <→≤ (zero+ (ℕ.s≤s ℕ.z≤n))
0≤n {∞+ i} = <→≤ zero<∞
n<m→Sn≤m : n < m → ⟦suc⟧ n ≤ m
n<m→Sn≤m (zero+ (ℕ.s≤s i≤j)) = ≤′→≤ (zero+ (ℕ.s≤s i≤j))
n<m→Sn≤m (∞+ (ℕ.s≤s i≤j)) = ≤′→≤ (∞+ (ℕ.s≤s i≤j))
n<m→Sn≤m zero<∞ = <→≤ zero<∞
Sn≤m→n<m : ⟦suc⟧ n ≤ m → n < m
Sn≤m→n<m ≤-refl = <⟦suc⟧
Sn≤m→n<m (<→≤ Sn<m) = <-trans <⟦suc⟧ Sn<m
| 23.624113
| 79
| 0.437806
|
fb0386356025361e7dbd82d2231c0cc6de643c82
| 674
|
agda
|
Agda
|
test/Compiler/simple/Issue1126.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Compiler/simple/Issue1126.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Compiler/simple/Issue1126.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
-- Andreas, 2017-07-28, issue #1126 reported by Saizan is fixed
data ℕ : Set where
zero : ℕ
suc : (n : ℕ) → ℕ
{-# BUILTIN NATURAL ℕ #-}
data Unit : Set where
unit : Unit
slow : ℕ → Unit
slow zero = unit
slow (suc n) = slow n
postulate
IO : Set → Set
{-# COMPILE GHC IO = type IO #-}
{-# BUILTIN IO IO #-}
postulate
return : ∀ {A} → A → IO A
{-# COMPILE GHC return = (\ _ -> return) #-}
{-# COMPILE JS return =
function(u0) { return function(u1) { return function(x) { return function(cb) { cb(x); }; }; }; } #-}
force : Unit → IO Unit
force unit = return unit
n = 3000000000
main : IO Unit
main = force (slow n)
-- Should terminate instantaneously.
| 19.257143
| 105
| 0.603858
|
41718b3fbf52c79534f4fcef2287040285ce0761
| 13,097
|
agda
|
Agda
|
theorems/homotopy/PtdAdjoint.agda
|
cmknapp/HoTT-Agda
|
bc849346a17b33e2679a5b3f2b8efbe7835dc4b6
|
[
"MIT"
] | null | null | null |
theorems/homotopy/PtdAdjoint.agda
|
cmknapp/HoTT-Agda
|
bc849346a17b33e2679a5b3f2b8efbe7835dc4b6
|
[
"MIT"
] | null | null | null |
theorems/homotopy/PtdAdjoint.agda
|
cmknapp/HoTT-Agda
|
bc849346a17b33e2679a5b3f2b8efbe7835dc4b6
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --without-K #-}
open import HoTT
{- The pseudo-adjoint functors F,G : Ptd → Ptd
- It stops at composition and ignores
- all the higher associahedrons.
-}
module homotopy.PtdAdjoint where
record PtdFunctor i j : Type (lsucc (lmax i j)) where
field
obj : Ptd i → Ptd j
arr : {X Y : Ptd i} → fst (X ⊙→ Y) → fst (obj X ⊙→ obj Y)
id : (X : Ptd i) → arr (⊙idf X) == ⊙idf (obj X)
comp : {X Y Z : Ptd i} (g : fst (Y ⊙→ Z)) (f : fst (X ⊙→ Y))
→ arr (g ⊙∘ f) == arr g ⊙∘ arr f
{- counit-unit description of F ⊣ G -}
record CounitUnitAdjoint {i j} (F : PtdFunctor i j) (G : PtdFunctor j i)
: Type (lsucc (lmax i j)) where
private
module F = PtdFunctor F
module G = PtdFunctor G
field
η : (X : Ptd i) → fst (X ⊙→ G.obj (F.obj X))
ε : (U : Ptd j) → fst (F.obj (G.obj U) ⊙→ U)
η-natural : {X Y : Ptd i} (h : fst (X ⊙→ Y))
→ η Y ⊙∘ h == G.arr (F.arr h) ⊙∘ η X
ε-natural : {U V : Ptd j} (k : fst (U ⊙→ V))
→ ε V ⊙∘ F.arr (G.arr k) == k ⊙∘ ε U
εF-Fη : (X : Ptd i) → ε (F.obj X) ⊙∘ F.arr (η X) == ⊙idf (F.obj X)
Gε-ηG : (U : Ptd j) → G.arr (ε U) ⊙∘ η (G.obj U) == ⊙idf (G.obj U)
{- hom-set isomorphism description of F ⊣ G -}
record HomAdjoint {i j} (F : PtdFunctor i j) (G : PtdFunctor j i)
: Type (lsucc (lmax i j)) where
private
module F = PtdFunctor F
module G = PtdFunctor G
field
eq : (X : Ptd i) (U : Ptd j) → fst (F.obj X ⊙→ U) ≃ fst (X ⊙→ G.obj U)
nat-dom : {X Y : Ptd i} (h : fst (X ⊙→ Y)) (U : Ptd j)
(r : fst (F.obj Y ⊙→ U))
→ –> (eq Y U) r ⊙∘ h == –> (eq X U) (r ⊙∘ F.arr h)
nat-cod : (X : Ptd i) {U V : Ptd j} (k : fst (U ⊙→ V))
(r : fst (F.obj X ⊙→ U))
→ G.arr k ⊙∘ –> (eq X U) r == –> (eq X V) (k ⊙∘ r)
nat!-dom : {X Y : Ptd i} (h : fst (X ⊙→ Y)) (U : Ptd j)
(s : fst (Y ⊙→ G.obj U))
→ <– (eq Y U) s ⊙∘ F.arr h == <– (eq X U) (s ⊙∘ h)
nat!-dom {X} {Y} h U s =
! (<–-inv-l (eq X U) (<– (eq Y U) s ⊙∘ F.arr h))
∙ ap (<– (eq X U)) (! (nat-dom h U (<– (eq Y U) s)))
∙ ap (λ w → <– (eq X U) (w ⊙∘ h)) (<–-inv-r (eq Y U) s)
nat!-cod : (X : Ptd i) {U V : Ptd j} (k : fst (U ⊙→ V))
(s : fst (X ⊙→ G.obj U))
→ k ⊙∘ <– (eq X U) s == <– (eq X V) (G.arr k ⊙∘ s)
nat!-cod X {U} {V} k s =
! (<–-inv-l (eq X V) (k ⊙∘ <– (eq X U) s))
∙ ap (<– (eq X V)) (! (nat-cod X k (<– (eq X U) s)))
∙ ap (λ w → <– (eq X V) (G.arr k ⊙∘ w)) (<–-inv-r (eq X U) s)
counit-unit-to-hom : ∀ {i j} {F : PtdFunctor i j} {G : PtdFunctor j i}
→ CounitUnitAdjoint F G → HomAdjoint F G
counit-unit-to-hom {i} {j} {F} {G} adj = record {
eq = eq;
nat-dom = nat-dom;
nat-cod = nat-cod}
where
module F = PtdFunctor F
module G = PtdFunctor G
open CounitUnitAdjoint adj
module _ (X : Ptd i) (U : Ptd j) where
into : fst (F.obj X ⊙→ U) → fst (X ⊙→ G.obj U)
into r = G.arr r ⊙∘ η X
out : fst (X ⊙→ G.obj U) → fst (F.obj X ⊙→ U)
out s = ε U ⊙∘ F.arr s
into-out : (s : fst (X ⊙→ G.obj U)) → into (out s) == s
into-out s =
G.arr (ε U ⊙∘ F.arr s) ⊙∘ η X
=⟨ G.comp (ε U) (F.arr s) |in-ctx (λ w → w ⊙∘ η X) ⟩
(G.arr (ε U) ⊙∘ G.arr (F.arr s)) ⊙∘ η X
=⟨ ⊙∘-assoc (G.arr (ε U)) (G.arr (F.arr s)) (η X) ⟩
G.arr (ε U) ⊙∘ G.arr (F.arr s) ⊙∘ η X
=⟨ ! (η-natural s) |in-ctx (λ w → G.arr (ε U) ⊙∘ w) ⟩
G.arr (ε U) ⊙∘ η (G.obj U) ⊙∘ s
=⟨ ! (⊙∘-assoc (G.arr (ε U)) (η (G.obj U)) s) ⟩
(G.arr (ε U) ⊙∘ η (G.obj U)) ⊙∘ s
=⟨ Gε-ηG U |in-ctx (λ w → w ⊙∘ s) ⟩
⊙idf (G.obj U) ⊙∘ s
=⟨ ⊙∘-unit-l s ⟩
s ∎
out-into : (r : fst (F.obj X ⊙→ U)) → out (into r) == r
out-into r =
ε U ⊙∘ F.arr (G.arr r ⊙∘ η X)
=⟨ F.comp (G.arr r) (η X) |in-ctx (λ w → ε U ⊙∘ w) ⟩
ε U ⊙∘ F.arr (G.arr r) ⊙∘ F.arr (η X)
=⟨ ! (⊙∘-assoc (ε U) (F.arr (G.arr r)) (F.arr (η X))) ⟩
(ε U ⊙∘ F.arr (G.arr r)) ⊙∘ F.arr (η X)
=⟨ ε-natural r |in-ctx (λ w → w ⊙∘ F.arr (η X)) ⟩
(r ⊙∘ ε (F.obj X)) ⊙∘ F.arr (η X)
=⟨ ⊙∘-assoc r (ε (F.obj X)) (F.arr (η X)) ⟩
r ⊙∘ ε (F.obj X) ⊙∘ F.arr (η X)
=⟨ εF-Fη X |in-ctx (λ w → r ⊙∘ w) ⟩
r ∎
eq : fst (F.obj X ⊙→ U) ≃ fst (X ⊙→ G.obj U)
eq = equiv into out into-out out-into
nat-dom : {X Y : Ptd i} (h : fst (X ⊙→ Y)) (U : Ptd j)
(r : fst (F.obj Y ⊙→ U))
→ –> (eq Y U) r ⊙∘ h == –> (eq X U) (r ⊙∘ F.arr h)
nat-dom {X} {Y} h U r =
(G.arr r ⊙∘ η Y) ⊙∘ h
=⟨ ⊙∘-assoc (G.arr r) (η Y) h ⟩
G.arr r ⊙∘ η Y ⊙∘ h
=⟨ η-natural h |in-ctx (λ w → G.arr r ⊙∘ w) ⟩
G.arr r ⊙∘ G.arr (F.arr h) ⊙∘ η X
=⟨ ! (⊙∘-assoc (G.arr r) (G.arr (F.arr h)) (η X)) ⟩
(G.arr r ⊙∘ G.arr (F.arr h)) ⊙∘ η X
=⟨ ! (G.comp r (F.arr h)) |in-ctx (λ w → w ⊙∘ η X) ⟩
G.arr (r ⊙∘ F.arr h) ⊙∘ η X ∎
nat-cod : (X : Ptd i) {U V : Ptd j} (k : fst (U ⊙→ V))
(r : fst (F.obj X ⊙→ U))
→ G.arr k ⊙∘ –> (eq X U) r == –> (eq X V) (k ⊙∘ r)
nat-cod X k r =
G.arr k ⊙∘ (G.arr r ⊙∘ η X)
=⟨ ! (⊙∘-assoc (G.arr k) (G.arr r) (η X)) ⟩
(G.arr k ⊙∘ G.arr r) ⊙∘ η X
=⟨ ! (G.comp k r) |in-ctx (λ w → w ⊙∘ η X) ⟩
G.arr (k ⊙∘ r) ⊙∘ η X ∎
{- a right adjoint preserves products -}
module RightAdjoint× {i j} {F : PtdFunctor i j} {G : PtdFunctor j i}
(adj : HomAdjoint F G) (U V : Ptd j) where
private
module F = PtdFunctor F
module G = PtdFunctor G
module A = HomAdjoint adj
⊙into : fst (G.obj (U ⊙× V) ⊙→ G.obj U ⊙× G.obj V)
⊙into = ⊙×-in (G.arr ⊙fst) (G.arr ⊙snd)
⊙out : fst (G.obj U ⊙× G.obj V ⊙→ G.obj (U ⊙× V))
⊙out = –> (A.eq _ _) (⊙×-in (<– (A.eq _ _) ⊙fst)
(<– (A.eq _ _) ⊙snd))
⊙into-out : ⊙into ⊙∘ ⊙out == ⊙idf _
⊙into-out =
⊙×-in (G.arr ⊙fst) (G.arr ⊙snd) ⊙∘ ⊙out
=⟨ ⊙×-in-pre∘ (G.arr ⊙fst) (G.arr ⊙snd) ⊙out ⟩
⊙×-in (G.arr ⊙fst ⊙∘ ⊙out) (G.arr ⊙snd ⊙∘ ⊙out)
=⟨ ap2 ⊙×-in
(A.nat-cod _ ⊙fst (⊙×-in (<– (A.eq _ _) ⊙fst) (<– (A.eq _ _) ⊙snd))
∙ ap (–> (A.eq _ _))
(⊙fst-⊙×-in (<– (A.eq _ _) ⊙fst) (<– (A.eq _ _) ⊙snd))
∙ <–-inv-r (A.eq _ _) ⊙fst)
(A.nat-cod _ ⊙snd (⊙×-in (<– (A.eq _ _) ⊙fst) (<– (A.eq _ _) ⊙snd))
∙ ap (–> (A.eq _ _))
(⊙snd-⊙×-in (<– (A.eq _ _) ⊙fst) (<– (A.eq _ _) ⊙snd))
∙ <–-inv-r (A.eq _ _) ⊙snd) ⟩
⊙×-in ⊙fst ⊙snd ∎
⊙out-into : ⊙out ⊙∘ ⊙into == ⊙idf _
⊙out-into =
–> (A.eq _ _) (⊙×-in (<– (A.eq _ _) ⊙fst) (<– (A.eq _ _) ⊙snd))
⊙∘ ⊙×-in (G.arr ⊙fst) (G.arr ⊙snd)
=⟨ A.nat-dom (⊙×-in (G.arr ⊙fst) (G.arr ⊙snd)) _
(⊙×-in (<– (A.eq _ _) ⊙fst) (<– (A.eq _ _) ⊙snd)) ⟩
–> (A.eq _ _) (⊙×-in (<– (A.eq _ _) ⊙fst) (<– (A.eq _ _) ⊙snd)
⊙∘ F.arr (⊙×-in (G.arr ⊙fst) (G.arr ⊙snd)))
=⟨ ⊙×-in-pre∘ (<– (A.eq _ _) ⊙fst) (<– (A.eq _ _) ⊙snd)
(F.arr (⊙×-in (G.arr ⊙fst) (G.arr ⊙snd)))
|in-ctx –> (A.eq _ _) ⟩
–> (A.eq _ _) (⊙×-in
(<– (A.eq _ _) ⊙fst ⊙∘ F.arr (⊙×-in (G.arr ⊙fst) (G.arr ⊙snd)))
(<– (A.eq _ _) ⊙snd ⊙∘ F.arr (⊙×-in (G.arr ⊙fst) (G.arr ⊙snd))))
=⟨ ap2 (λ f g → –> (A.eq _ _) (⊙×-in f g))
(A.nat!-dom (⊙×-in (G.arr ⊙fst) (G.arr ⊙snd)) _ ⊙fst
∙ ap (<– (A.eq _ _)) (⊙fst-⊙×-in (G.arr ⊙fst) (G.arr ⊙snd))
∙ ! (A.nat!-cod _ ⊙fst (⊙idf _)))
(A.nat!-dom (⊙×-in (G.arr ⊙fst) (G.arr ⊙snd)) _ ⊙snd
∙ ap (<– (A.eq _ _)) (⊙snd-⊙×-in (G.arr ⊙fst) (G.arr ⊙snd))
∙ ! (A.nat!-cod _ ⊙snd (⊙idf _))) ⟩
–> (A.eq _ _) (⊙×-in (⊙fst ⊙∘ <– (A.eq _ _) (⊙idf _))
(⊙snd ⊙∘ <– (A.eq _ _) (⊙idf _)))
=⟨ ap (–> (A.eq _ _)) (! (⊙×-in-pre∘ ⊙fst ⊙snd (<– (A.eq _ _) (⊙idf _)))) ⟩
–> (A.eq _ _) (⊙×-in ⊙fst ⊙snd ⊙∘ <– (A.eq _ _) (⊙idf _))
=⟨ ⊙∘-unit-l _ |in-ctx –> (A.eq _ _) ⟩
–> (A.eq _ _) (<– (A.eq _ _) (⊙idf _))
=⟨ <–-inv-r (A.eq _ _) (⊙idf _) ⟩
⊙idf _ ∎
⊙eq : G.obj (U ⊙× V) ⊙≃ G.obj U ⊙× G.obj V
⊙eq = ⊙≃-in (equiv (fst ⊙into) (fst ⊙out)
(app= (ap fst ⊙into-out)) (app= (ap fst ⊙out-into)))
(snd ⊙into)
⊙path = ⊙ua ⊙eq
{- Using the equivalence in RightAdjoint× we get a binary
- "G.arr2" : (X × Y → Z) → (G X × G Y → G Z)
- and there is some kind of naturality wrt the (FX→Y)≃(X→GY) equivalence
- (use case: from ⊙ap we get ⊙ap2) -}
module RightAdjointBinary {i j} {F : PtdFunctor i j} {G : PtdFunctor j i}
(adj : HomAdjoint F G)
where
private
module F = PtdFunctor F
module G = PtdFunctor G
module A = HomAdjoint adj
module A× = RightAdjoint× adj
arr2 : {X Y Z : Ptd j}
→ fst (X ⊙× Y ⊙→ Z) → fst (G.obj X ⊙× G.obj Y ⊙→ G.obj Z)
arr2 {X} {Y} {Z} f = G.arr f ⊙∘ A×.⊙out X Y
nat-cod : {X : Ptd i} {Y Z W : Ptd j}
(r₁ : fst (F.obj X ⊙→ Y)) (r₂ : fst (F.obj X ⊙→ Z))
(o : fst (Y ⊙× Z ⊙→ W))
→ –> (A.eq X W) (o ⊙∘ ⊙×-in r₁ r₂)
== arr2 o ⊙∘ ⊙×-in (–> (A.eq X Y) r₁) (–> (A.eq X Z) r₂)
nat-cod {X} {Y} {Z} {W} r₁ r₂ o =
–> (A.eq X W) (o ⊙∘ ⊙×-in r₁ r₂)
=⟨ ! (A.nat-cod X o (⊙×-in r₁ r₂)) ⟩
G.arr o ⊙∘ –> (A.eq X (Y ⊙× Z)) (⊙×-in r₁ r₂)
=⟨ ! (A×.⊙out-into Y Z)
|in-ctx (λ w → (G.arr o ⊙∘ w) ⊙∘ –> (A.eq X (Y ⊙× Z)) (⊙×-in r₁ r₂)) ⟩
(G.arr o ⊙∘ (A×.⊙out Y Z ⊙∘ A×.⊙into Y Z))
⊙∘ –> (A.eq X (Y ⊙× Z)) (⊙×-in r₁ r₂)
=⟨ ⊙∘-assoc-lemma (G.arr o) (A×.⊙out Y Z) (A×.⊙into Y Z)
(–> (A.eq X (Y ⊙× Z)) (⊙×-in r₁ r₂)) ⟩
arr2 o ⊙∘ A×.⊙into Y Z ⊙∘ –> (A.eq X (Y ⊙× Z)) (⊙×-in r₁ r₂)
=⟨ ⊙×-in-pre∘ (G.arr ⊙fst) (G.arr ⊙snd) (–> (A.eq X (Y ⊙× Z)) (⊙×-in r₁ r₂))
|in-ctx (λ w → arr2 o ⊙∘ w) ⟩
arr2 o ⊙∘ ⊙×-in (G.arr ⊙fst ⊙∘ –> (A.eq X (Y ⊙× Z)) (⊙×-in r₁ r₂))
(G.arr ⊙snd ⊙∘ –> (A.eq X (Y ⊙× Z)) (⊙×-in r₁ r₂))
=⟨ ap2 (λ w₁ w₂ → arr2 o ⊙∘ ⊙×-in w₁ w₂)
(A.nat-cod X ⊙fst (⊙×-in r₁ r₂)
∙ ap (–> (A.eq X Y)) (⊙fst-⊙×-in r₁ r₂))
(A.nat-cod X ⊙snd (⊙×-in r₁ r₂)
∙ ap (–> (A.eq X Z)) (⊙snd-⊙×-in r₁ r₂)) ⟩
arr2 o ⊙∘ ⊙×-in (–> (A.eq X Y) r₁) (–> (A.eq X Z) r₂) ∎
where
⊙∘-assoc-lemma : ∀ {i j k l m}
{X : Ptd i} {Y : Ptd j} {Z : Ptd k} {U : Ptd l} {V : Ptd m}
(k : fst (U ⊙→ V)) (h : fst (Z ⊙→ U))
(g : fst (Y ⊙→ Z)) (f : fst (X ⊙→ Y))
→ (k ⊙∘ (h ⊙∘ g)) ⊙∘ f == (k ⊙∘ h) ⊙∘ g ⊙∘ f
⊙∘-assoc-lemma (k , idp) (h , idp) (g , idp) (f , idp) = idp
{- a left adjoint preserves wedges -}
module LeftAdjoint∨ {i j} {F : PtdFunctor i j} {G : PtdFunctor j i}
(adj : HomAdjoint F G) (U V : Ptd i) where
private
module F = PtdFunctor F
module G = PtdFunctor G
module A = HomAdjoint adj
module Into = ⊙WedgeRec (F.arr ⊙winl) (F.arr ⊙winr)
⊙into : fst (F.obj U ⊙∨ F.obj V ⊙→ F.obj (U ⊙∨ V))
⊙into = Into.⊙f
module OutHelp = ⊙WedgeRec (–> (A.eq _ _) ⊙winl) (–> (A.eq _ _) ⊙winr)
⊙out : fst (F.obj (U ⊙∨ V) ⊙→ F.obj U ⊙∨ F.obj V)
⊙out = <– (A.eq _ _) OutHelp.⊙f
⊙into-out : ⊙into ⊙∘ ⊙out == ⊙idf _
⊙into-out =
⊙into ⊙∘ ⊙out
=⟨ A.nat!-cod _ ⊙into (⊙wedge-rec (–> (A.eq _ _) ⊙winl)
(–> (A.eq _ _) ⊙winr)) ⟩
<– (A.eq _ _) (G.arr ⊙into ⊙∘ ⊙wedge-rec (–> (A.eq _ _) ⊙winl)
(–> (A.eq _ _) ⊙winr))
=⟨ ap (<– (A.eq _ _)) (⊙wedge-rec-post∘ (G.arr ⊙into)
(–> (A.eq _ _) ⊙winl) (–> (A.eq _ _) ⊙winr)) ⟩
<– (A.eq _ _) (⊙wedge-rec (G.arr ⊙into ⊙∘ –> (A.eq _ _) ⊙winl)
(G.arr ⊙into ⊙∘ –> (A.eq _ _) ⊙winr))
=⟨ ap2 (λ w₁ w₂ → <– (A.eq _ _) (⊙wedge-rec w₁ w₂))
(A.nat-cod _ ⊙into ⊙winl
∙ ap (–> (A.eq _ _)) (Into.⊙winl-β ∙ ! (⊙∘-unit-l _))
∙ ! (A.nat-dom ⊙winl _ (⊙idf _)))
(A.nat-cod _ ⊙into ⊙winr
∙ ap (–> (A.eq _ _)) (Into.⊙winr-β ∙ ! (⊙∘-unit-l _))
∙ ! (A.nat-dom ⊙winr _ (⊙idf _))) ⟩
<– (A.eq _ _) (⊙wedge-rec (–> (A.eq _ _) (⊙idf _) ⊙∘ ⊙winl)
(–> (A.eq _ _) (⊙idf _) ⊙∘ ⊙winr))
=⟨ ap (<– (A.eq _ _))
(! (⊙wedge-rec-post∘ (–> (A.eq _ _) (⊙idf _)) ⊙winl ⊙winr)) ⟩
<– (A.eq _ _) (–> (A.eq _ _) (⊙idf _) ⊙∘ ⊙wedge-rec ⊙winl ⊙winr)
=⟨ ap (λ w → <– (A.eq _ _) (–> (A.eq _ _) (⊙idf _) ⊙∘ w))
⊙wedge-rec-η ⟩
<– (A.eq _ _) (–> (A.eq _ _) (⊙idf _))
=⟨ <–-inv-l (A.eq _ _) (⊙idf _) ⟩
⊙idf _ ∎
⊙out-into : ⊙out ⊙∘ ⊙into == ⊙idf _
⊙out-into =
⊙out ⊙∘ ⊙wedge-rec (F.arr ⊙winl) (F.arr ⊙winr)
=⟨ ⊙wedge-rec-post∘ ⊙out (F.arr ⊙winl) (F.arr ⊙winr) ⟩
⊙wedge-rec (⊙out ⊙∘ F.arr ⊙winl) (⊙out ⊙∘ F.arr ⊙winr)
=⟨ ap2 ⊙wedge-rec
(A.nat!-dom ⊙winl _ (⊙wedge-rec _ _)
∙ ap (<– (A.eq _ _)) OutHelp.⊙winl-β
∙ <–-inv-l (A.eq _ _) ⊙winl)
(A.nat!-dom ⊙winr _ (⊙wedge-rec _ _)
∙ ap (<– (A.eq _ _)) OutHelp.⊙winr-β
∙ <–-inv-l (A.eq _ _) ⊙winr) ⟩
⊙wedge-rec ⊙winl ⊙winr
=⟨ ⊙wedge-rec-η ⟩
⊙idf _ ∎
⊙eq : F.obj U ⊙∨ F.obj V ⊙≃ F.obj (U ⊙∨ V)
⊙eq = ⊙≃-in (equiv (fst ⊙into) (fst ⊙out)
(app= (ap fst ⊙into-out)) (app= (ap fst ⊙out-into)))
(snd ⊙into)
⊙path = ⊙ua ⊙eq
| 38.295322
| 82
| 0.409025
|
1da84d002549e905f63b2d5bfeab67f3f266187f
| 3,329
|
agda
|
Agda
|
archive/agda-2/Oscar/Class/Substitute.agda
|
m0davis/oscar
|
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
|
[
"RSA-MD"
] | null | null | null |
archive/agda-2/Oscar/Class/Substitute.agda
|
m0davis/oscar
|
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
|
[
"RSA-MD"
] | 1
|
2019-04-29T00:35:04.000Z
|
2019-05-11T23:33:04.000Z
|
archive/agda-2/Oscar/Class/Substitute.agda
|
m0davis/oscar
|
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
|
[
"RSA-MD"
] | null | null | null |
module Oscar.Class.Substitute where
open import Oscar.Class.Substitution
open import Oscar.Data.Equality
open import Oscar.Function
open import Oscar.Relation
open import Oscar.Level
record Substitute {a} {A : Set a} {b} (B : A → Set b) {c} (C : A → Set c) {d} (D : A → Set d) : Set (a ⊔ b ⊔ c ⊔ d) where
field
⦃ substitution ⦄ : Substitution B C
_◃_ : ∀ {m n} → (B m → C n) → m ⟨ D ⟩→ n
◃-identity : ∀ {m} → (x : D m) → ε ◃ x ≡ x
◃-associativity : ∀ {l m n} (f : B l → C m) (g : B m → C n) (t : D l) → (g ◇ f) ◃ t ≡ g ◃ (f ◃ t)
◃-extensionality : ∀ {m n} {f g : B m → C n} → f ≡̇ g → f ◃_ ≡̇ g ◃_
open Substitute ⦃ … ⦄ public
{-# DISPLAY Substitute._◃_ _ = _◃_ #-}
instance Substitute-id : ∀ {a} {A : Set a} {bcd} {BCD : A → Set bcd} → Substitute BCD BCD BCD
Substitute.substitution Substitute-id = Substitution-id
Substitute._◃_ Substitute-id = id
Substitute.◃-identity Substitute-id _ = refl
Substitute.◃-associativity Substitute-id _ _ _ = refl
Substitute.◃-extensionality Substitute-id f≡̇g = f≡̇g
-- record Substitution {a} {A : Set a} {b} (B : A → Set b) {c} (C : A → Set c) {d} (D : A → Set d) : Set (a ⊔ b ⊔ c ⊔ d) where
-- field
-- _◃_ : ∀ {m n} → (B m → C n) → m ⟨ D ⟩→ n
-- ε : ∀ {m} → B m → C m
-- ◃-identity : ∀ {m} → (x : D m) → ε ◃ x ≡ x
-- _◇_ : ∀ {l m n} → (g : B m → C n) (f : B l → C m) → B l → C n
-- ◃-associativity : ∀ {l m n} → {f : B m → C n} {g : B l → C m} (t : D l) → (f ◇ g) ◃ t ≡ f ◃ (g ◃ t)
-- ◃-extensionality : ∀ {m n} {f g : B m → C n} → f ≡̇ g → f ◃_ ≡̇ g ◃_
-- {-
-- Unifies : ∀ {m} (s t : A m) → Property m
-- Unifies s t f = f ◃ s ≡ f ◃ t
-- -}
-- open Substitution ⦃ … ⦄ public
-- -- record Substitution {a} {A : Set a} {b} (S : A → A → Set b) {c} (C : A → Set c) : Set (a ⊔ b ⊔ c) where
-- -- field
-- -- _◃_ : ∀ {m n} → S m n → m ⟨ C ⟩→ n
-- -- ε : ∀ {m} → S m m
-- -- ◃-identity : ∀ {m} → (x : C m) → ε ◃ x ≡ x
-- -- _◇_ : ∀ {l m n} → S m n → S l m → S l n
-- -- field
-- -- ◃-associativity : ∀ {l m n} → {f : S m n} {g : S l m} (t : C l) → (f ◇ g) ◃ t ≡ f ◃ (g ◃ t)
-- -- ◃-extensionality : ∀ {m n} {f g : S m n} → f ≡ g → f ◃_ ≡̇ g ◃_
-- -- open Substitution ⦃ … ⦄ public
-- -- -- record Substitution {a} {A : Set a} {b} (B : A → Set b) {c} (C : A → Set c) : Set (a ⊔ b ⊔ c) where
-- -- -- field
-- -- -- _◃_ : ∀ {m n} → (B m → C n) → m ⟨ C ⟩→ n
-- -- -- ε : ∀ {m} → B m → C m
-- -- -- ◃-identity : ∀ {m} → (x : C m) → ε ◃ x ≡ x
-- -- -- _◇_ : ∀ {l m n} → (f : B m → C n) (g : B l → C m) → B l → C n
-- -- -- _◇_ f g = (f ◃_) ∘ g
-- -- -- field
-- -- -- ◃-associativity : ∀ {l m n} → {f : B m → C n} {g : B l → C m} (t : C l) → (f ◇ g) ◃ t ≡ f ◃ (g ◃ t)
-- -- -- ◃-extensionality : ∀ {m n} {f g : B m → C n} → f ≡̇ g → f ◃_ ≡̇ g ◃_
-- -- -- {-
-- -- -- Unifies : ∀ {m} (s t : A m) → Property m
-- -- -- Unifies s t f = f ◃ s ≡ f ◃ t
-- -- -- -}
-- -- -- open Substitution ⦃ … ⦄ public
-- -- -- instance Substitution⋆ : ∀ {a} {A : Set a} {bc} {BC : A → Set bc} → Substitution BC BC
-- -- -- Substitution._◃_ Substitution⋆ = id
-- -- -- Substitution.ε Substitution⋆ = id
-- -- -- Substitution.◃-identity Substitution⋆ _ = refl
-- -- -- Substitution.◃-associativity Substitution⋆ _ = refl
-- -- -- Substitution.◃-extensionality Substitution⋆ f≡̇g x = f≡̇g x
| 39.630952
| 126
| 0.452989
|
2fe5dcbc59aa5c9f8d403789232ea55e970620a6
| 8,173
|
agda
|
Agda
|
Cubical/Foundations/Logic.agda
|
limemloh/cubical
|
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
|
[
"MIT"
] | null | null | null |
Cubical/Foundations/Logic.agda
|
limemloh/cubical
|
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
|
[
"MIT"
] | null | null | null |
Cubical/Foundations/Logic.agda
|
limemloh/cubical
|
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --cubical --safe #-}
module Cubical.Foundations.Logic where
import Cubical.Data.Empty as D
import Cubical.Data.Prod as D
import Cubical.Data.Sum as D
import Cubical.Data.Unit as D
open import Cubical.Foundations.Prelude
open import Cubical.HITs.PropositionalTruncation
open import Cubical.Foundations.HLevels using (hProp; ΣProp≡; isPropIsProp; propPi) public
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Function
open import Cubical.Relation.Nullary hiding (¬_)
infix 10 ¬_
infixr 8 _⊔_
infixr 8 _⊔′_
infixr 8 _⊓_
infixr 8 _⊓′_
infixr 6 _⇒_
infixr 4 _⇔_
infix 30 _≡ₚ_
infix 30 _≢ₚ_
infix 2 ∃[]-syntax
infix 2 ∃[∶]-syntax
infix 2 ∀[∶]-syntax
infix 2 ∀[]-syntax
infix 2 ⇒∶_⇐∶_
infix 2 ⇐∶_⇒∶_
--------------------------------------------------------------------------------
-- The type hProp of mere propositions
-- the definition hProp is given in Foundations.HLevels
-- hProp {ℓ} = Σ (Type ℓ) isProp
private
variable
ℓ ℓ' ℓ'' : Level
P Q R : hProp ℓ
A B C : Type ℓ
[_] : hProp ℓ → Type ℓ
[_] = fst
∥_∥ₚ : Type ℓ → hProp ℓ
∥ A ∥ₚ = ∥ A ∥ , propTruncIsProp
_≡ₚ_ : (x y : A) → hProp _
x ≡ₚ y = ∥ x ≡ y ∥ₚ
hProp≡ : [ P ] ≡ [ Q ] → P ≡ Q
hProp≡ p = ΣProp≡ (\ _ → isPropIsProp) p
--------------------------------------------------------------------------------
-- Logical implication of mere propositions
_⇒_ : (A : hProp ℓ) → (B : hProp ℓ') → hProp _
A ⇒ B = ([ A ] → [ B ]) , propPi λ _ → B .snd
⇔toPath : [ P ⇒ Q ] → [ Q ⇒ P ] → P ≡ Q
⇔toPath {P = P} {Q = Q} P⇒Q Q⇒P = hProp≡ (isoToPath
(iso P⇒Q Q⇒P (λ b → Q .snd (P⇒Q (Q⇒P b)) b) λ a → P .snd (Q⇒P (P⇒Q a)) a))
pathTo⇒ : P ≡ Q → [ P ⇒ Q ]
pathTo⇒ p x = subst fst p x
pathTo⇐ : P ≡ Q → [ Q ⇒ P ]
pathTo⇐ p x = subst fst (sym p) x
substₚ : {x y : A} (B : A → hProp ℓ) → [ x ≡ₚ y ⇒ B x ⇒ B y ]
substₚ {x = x} {y = y} B = elimPropTrunc (λ _ → propPi λ _ → B y .snd) (subst (fst ∘ B))
--------------------------------------------------------------------------------
-- Mixfix notations for ⇔-toPath
-- see ⊔-identityˡ and ⊔-identityʳ for the difference
⇒∶_⇐∶_ : [ P ⇒ Q ] → [ Q ⇒ P ] → P ≡ Q
⇒∶_⇐∶_ = ⇔toPath
⇐∶_⇒∶_ : [ Q ⇒ P ] → [ P ⇒ Q ] → P ≡ Q
⇐∶ g ⇒∶ f = ⇔toPath f g
--------------------------------------------------------------------------------
-- False and True
⊥ : hProp _
⊥ = D.⊥ , λ ()
⊤ : hProp _
⊤ = D.Unit , (λ _ _ _ → D.tt)
--------------------------------------------------------------------------------
-- Pseudo-complement of mere propositions
¬_ : hProp ℓ → hProp _
¬ A = ([ A ] → D.⊥) , propPi λ _ → D.isProp⊥
_≢ₚ_ : (x y : A) → hProp _
x ≢ₚ y = ¬ x ≡ₚ y
--------------------------------------------------------------------------------
-- Disjunction of mere propositions
_⊔′_ : Type ℓ → Type ℓ' → Type _
A ⊔′ B = ∥ A D.⊎ B ∥
_⊔_ : hProp ℓ → hProp ℓ' → hProp _
P ⊔ Q = ∥ [ P ] D.⊎ [ Q ] ∥ₚ
inl : A → A ⊔′ B
inl x = ∣ D.inl x ∣
inr : B → A ⊔′ B
inr x = ∣ D.inr x ∣
⊔-elim : (P : hProp ℓ) (Q : hProp ℓ') (R : [ P ⊔ Q ] → hProp ℓ'')
→ (∀ x → [ R (inl x) ]) → (∀ y → [ R (inr y) ]) → (∀ z → [ R z ])
⊔-elim _ _ R P⇒R Q⇒R = elimPropTrunc (snd ∘ R) (D.elim-⊎ P⇒R Q⇒R)
--------------------------------------------------------------------------------
-- Conjunction of mere propositions
_⊓′_ : Type ℓ → Type ℓ' → Type _
A ⊓′ B = A D.× B
_⊓_ : hProp ℓ → hProp ℓ' → hProp _
A ⊓ B = [ A ] ⊓′ [ B ] , D.hLevelProd 1 (A .snd) (B .snd)
⊓-intro : (P : hProp ℓ) (Q : [ P ] → hProp ℓ') (R : [ P ] → hProp ℓ'')
→ (∀ a → [ Q a ]) → (∀ a → [ R a ]) → (∀ (a : [ P ]) → [ Q a ⊓ R a ] )
⊓-intro _ _ _ = D.intro-×
--------------------------------------------------------------------------------
-- Logical bi-implication of mere propositions
_⇔_ : hProp ℓ → hProp ℓ' → hProp _
A ⇔ B = (A ⇒ B) ⊓ (B ⇒ A)
--------------------------------------------------------------------------------
-- Universal Quantifier
∀[∶]-syntax : (A → hProp ℓ) → hProp _
∀[∶]-syntax {A = A} P = (∀ x → [ P x ]) , propPi (snd ∘ P)
∀[]-syntax : (A → hProp ℓ) → hProp _
∀[]-syntax {A = A} P = (∀ x → [ P x ]) , propPi (snd ∘ P)
syntax ∀[∶]-syntax {A = A} (λ a → P) = ∀[ a ∶ A ] P
syntax ∀[]-syntax (λ a → P) = ∀[ a ] P
--------------------------------------------------------------------------------
-- Existential Quantifier
∃[]-syntax : (A → hProp ℓ) → hProp _
∃[]-syntax {A = A} P = ∥ Σ A (fst ∘ P) ∥ₚ
∃[∶]-syntax : (A → hProp ℓ) → hProp _
∃[∶]-syntax {A = A} P = ∥ Σ A (fst ∘ P) ∥ₚ
syntax ∃[]-syntax {A = A} (λ x → P) = ∃[ x ∶ A ] P
syntax ∃[∶]-syntax (λ x → P) = ∃[ x ] P
--------------------------------------------------------------------------------
-- Decidable mere proposition
Decₚ : (P : hProp ℓ) → hProp ℓ
Decₚ P = Dec [ P ] , isPropDec (snd P)
--------------------------------------------------------------------------------
-- Negation commutes with truncation
∥¬A∥≡¬∥A∥ : (A : Type ℓ) → ∥ (A → D.⊥) ∥ₚ ≡ (¬ ∥ A ∥ₚ)
∥¬A∥≡¬∥A∥ _ =
⇒∶ (λ ¬A A → elimPropTrunc (λ _ → D.isProp⊥)
(elimPropTrunc (λ _ → propPi λ _ → D.isProp⊥) (λ ¬p p → ¬p p) ¬A) A)
⇐∶ λ ¬p → ∣ (λ p → ¬p ∣ p ∣) ∣
--------------------------------------------------------------------------------
-- (hProp, ⊔, ⊥) is a bounded ⊔-semilattice
⊔-assoc : (P : hProp ℓ) (Q : hProp ℓ') (R : hProp ℓ'')
→ P ⊔ (Q ⊔ R) ≡ (P ⊔ Q) ⊔ R
⊔-assoc P Q R =
⇒∶ ⊔-elim P (Q ⊔ R) (λ _ → (P ⊔ Q) ⊔ R)
(inl ∘ inl)
(⊔-elim Q R (λ _ → (P ⊔ Q) ⊔ R) (inl ∘ inr) inr)
⇐∶ assoc2
where
assoc2 : (A ⊔′ B) ⊔′ C → A ⊔′ (B ⊔′ C)
assoc2 ∣ D.inr a ∣ = ∣ D.inr ∣ D.inr a ∣ ∣
assoc2 ∣ D.inl ∣ D.inr b ∣ ∣ = ∣ D.inr ∣ D.inl b ∣ ∣
assoc2 ∣ D.inl ∣ D.inl c ∣ ∣ = ∣ D.inl c ∣
assoc2 ∣ D.inl (squash x y i) ∣ = propTruncIsProp (assoc2 ∣ D.inl x ∣) (assoc2 ∣ D.inl y ∣) i
assoc2 (squash x y i) = propTruncIsProp (assoc2 x) (assoc2 y) i
⊔-idem : (P : hProp ℓ) → P ⊔ P ≡ P
⊔-idem P =
⇒∶ (⊔-elim P P (\ _ → P) (\ x → x) (\ x → x))
⇐∶ inl
⊔-comm : (P : hProp ℓ) (Q : hProp ℓ') → P ⊔ Q ≡ Q ⊔ P
⊔-comm P Q =
⇒∶ (⊔-elim P Q (\ _ → (Q ⊔ P)) inr inl)
⇐∶ (⊔-elim Q P (\ _ → (P ⊔ Q)) inr inl)
⊔-identityˡ : (P : hProp ℓ) → ⊥ ⊔ P ≡ P
⊔-identityˡ P =
⇒∶ (⊔-elim ⊥ P (λ _ → P) (λ ()) (λ x → x))
⇐∶ inr
⊔-identityʳ : (P : hProp ℓ) → P ⊔ ⊥ ≡ P
⊔-identityʳ P = ⇔toPath (⊔-elim P ⊥ (λ _ → P) (λ x → x) λ ()) inl
--------------------------------------------------------------------------------
-- (hProp, ⊓, ⊤) is a bounded ⊓-lattice
⊓-assoc : (P : hProp ℓ) (Q : hProp ℓ') (R : hProp ℓ'')
→ P ⊓ Q ⊓ R ≡ (P ⊓ Q) ⊓ R
⊓-assoc _ _ _ =
⇒∶ (λ {(x D., (y D., z)) → (x D., y) D., z})
⇐∶ (λ {((x D., y) D., z) → x D., (y D., z) })
⊓-comm : (P : hProp ℓ) (Q : hProp ℓ') → P ⊓ Q ≡ Q ⊓ P
⊓-comm _ _ = ⇔toPath D.swap D.swap
⊓-idem : (P : hProp ℓ) → P ⊓ P ≡ P
⊓-idem _ = ⇔toPath D.proj₁ (λ x → x D., x)
⊓-identityˡ : (P : hProp ℓ) → ⊤ ⊓ P ≡ P
⊓-identityˡ _ = ⇔toPath D.proj₂ λ x → D.tt D., x
⊓-identityʳ : (P : hProp ℓ) → P ⊓ ⊤ ≡ P
⊓-identityʳ _ = ⇔toPath D.proj₁ λ x → x D., D.tt
--------------------------------------------------------------------------------
-- Distributive laws
⇒-⊓-distrib : (P : hProp ℓ) (Q : hProp ℓ')(R : hProp ℓ'')
→ P ⇒ (Q ⊓ R) ≡ (P ⇒ Q) ⊓ (P ⇒ R)
⇒-⊓-distrib _ _ _ =
⇒∶ (λ f → (D.proj₁ ∘ f) D., (D.proj₂ ∘ f))
⇐∶ (λ { (f D., g) x → f x D., g x})
⊓-⊔-distribˡ : (P : hProp ℓ) (Q : hProp ℓ')(R : hProp ℓ'')
→ P ⊓ (Q ⊔ R) ≡ (P ⊓ Q) ⊔ (P ⊓ R)
⊓-⊔-distribˡ P Q R =
⇒∶ (λ { (x D., a) → ⊔-elim Q R (λ _ → (P ⊓ Q) ⊔ (P ⊓ R))
(λ y → ∣ D.inl (x D., y) ∣ )
(λ z → ∣ D.inr (x D., z) ∣ ) a })
⇐∶ ⊔-elim (P ⊓ Q) (P ⊓ R) (λ _ → P ⊓ Q ⊔ R)
(λ y → D.proj₁ y D., inl (D.proj₂ y))
(λ z → D.proj₁ z D., inr (D.proj₂ z))
⊔-⊓-distribˡ : (P : hProp ℓ) (Q : hProp ℓ')(R : hProp ℓ'')
→ P ⊔ (Q ⊓ R) ≡ (P ⊔ Q) ⊓ (P ⊔ R)
⊔-⊓-distribˡ P Q R =
⇒∶ ⊔-elim P (Q ⊓ R) (λ _ → (P ⊔ Q) ⊓ (P ⊔ R) )
(D.intro-× inl inl) (D.map-× inr inr)
⇐∶ (λ { (x D., y) → ⊔-elim P R (λ _ → P ⊔ Q ⊓ R) inl
(λ z → ⊔-elim P Q (λ _ → P ⊔ Q ⊓ R) inl (λ y → inr (y D., z)) x) y })
⊓-∀-distrib : (P : A → hProp ℓ) (Q : A → hProp ℓ')
→ (∀[ a ∶ A ] P a) ⊓ (∀[ a ∶ A ] Q a) ≡ (∀[ a ∶ A ] (P a ⊓ Q a))
⊓-∀-distrib P Q =
⇒∶ (λ {(p D., q) a → p a D., q a})
⇐∶ λ pq → (D.proj₁ ∘ pq ) D., (D.proj₂ ∘ pq)
| 29.612319
| 97
| 0.402545
|
29eeb695ef9aaabc671715b96b5e98e6aed743db
| 521
|
agda
|
Agda
|
test/Succeed/Issue292-19.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Succeed/Issue292-19.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Succeed/Issue292-19.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
module Issue292-19 where
postulate
I : Set
i₁ i₂ : I
J : Set
j : I → J
data D : I → Set where
d₁ : D i₁
d₂ : D i₂
data P : ∀ i → D i → Set where
p₁ : P i₁ d₁
p₂ : P i₂ d₂
data P′ : ∀ i → D i → Set where
p₁ : P′ i₁ d₁
data E : J → Set where
e₁ : E (j i₁)
e₂ : E (j i₂)
data Q : ∀ i → E i → Set where
q₁ : Q (j i₁) e₁
q₂ : Q (j i₂) e₂
Ok : Q (j i₁) e₁ → Set₁
Ok q₁ = Set
AlsoOk : P i₁ d₁ → Set₁
AlsoOk p₁ = Set
Foo : ∀ {i} (d : D i) → P′ i d → Set₁
Foo d₁ _ = Set
Foo d₂ ()
| 13.710526
| 37
| 0.487524
|
41067bab67eb2963022886e02edb7af3d8b830d7
| 867
|
agda
|
Agda
|
test/succeed/InstanceGuessesMeta2.agda
|
asr/agda-kanso
|
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
|
[
"MIT"
] | 1
|
2018-10-10T17:08:44.000Z
|
2018-10-10T17:08:44.000Z
|
test/succeed/InstanceGuessesMeta2.agda
|
np/agda-git-experiment
|
20596e9dd9867166a64470dd24ea68925ff380ce
|
[
"MIT"
] | null | null | null |
test/succeed/InstanceGuessesMeta2.agda
|
np/agda-git-experiment
|
20596e9dd9867166a64470dd24ea68925ff380ce
|
[
"MIT"
] | null | null | null |
-- Andreas, 2012-01-10
-- {-# OPTIONS -v tc.constr.findInScope:50 #-}
module InstanceGuessesMeta2 where
open import Common.Level
data ℕ : Set where
zero : ℕ
suc : (n : ℕ) → ℕ
record takeClass {a}
(F : Set a → Set a)
(G : Set a → ℕ → Set a) : Set (lsuc a) where
field
take : {A : Set a} → (n : ℕ) → F A → G A n
take : ∀ {a} {A : Set a} {F : Set a → Set a} {G : Set a → ℕ → Set a}
{{takeA : takeClass F G}} →
(n : ℕ) → F A → G A n
take {{takeA}} = takeClass.take takeA
postulate
List : ∀ {a} → Set a → Set a
BVec : ∀ {a} → Set a → ℕ → Set a
toList : ∀ {a}{A : Set a}{n : ℕ} → BVec A n → List A
-- universe polymorphic instance
takeInstanceList : {a : Level} → takeClass (List {a = a}) BVec
take0 : {A : Set} → List A → BVec A zero
take0 l = take zero l
take1 : {A : Set} → List A → List A
take1 l = toList (take (suc zero) l)
| 25.5
| 68
| 0.551326
|
416a17bc3b54abca550f946407c1d970286d21c7
| 3,229
|
agda
|
Agda
|
agda-stdlib/src/Algebra/Morphism/MonoidMonomorphism.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | 5
|
2020-10-07T12:07:53.000Z
|
2020-10-10T21:41:32.000Z
|
agda-stdlib/src/Algebra/Morphism/MonoidMonomorphism.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | null | null | null |
agda-stdlib/src/Algebra/Morphism/MonoidMonomorphism.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | 1
|
2021-11-04T06:54:45.000Z
|
2021-11-04T06:54:45.000Z
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Consequences of a monomorphism between monoid-like structures
------------------------------------------------------------------------
-- See Data.Nat.Binary.Properties for examples of how this and similar
-- modules can be used to easily translate properties between types.
{-# OPTIONS --without-K --safe #-}
open import Algebra.Bundles
open import Algebra.Morphism.Structures
open import Relation.Binary.Core
module Algebra.Morphism.MonoidMonomorphism
{a b ℓ₁ ℓ₂} {M₁ : RawMonoid a ℓ₁} {M₂ : RawMonoid b ℓ₂} {⟦_⟧}
(isMonoidMonomorphism : IsMonoidMonomorphism M₁ M₂ ⟦_⟧)
where
open IsMonoidMonomorphism isMonoidMonomorphism
open RawMonoid M₁ renaming (Carrier to A; _≈_ to _≈₁_; _∙_ to _∙_; ε to ε₁)
open RawMonoid M₂ renaming (Carrier to B; _≈_ to _≈₂_; _∙_ to _◦_; ε to ε₂)
open import Algebra.Definitions
open import Algebra.Structures
open import Data.Product using (map)
import Relation.Binary.Reasoning.Setoid as SetoidReasoning
------------------------------------------------------------------------
-- Re-export all properties of magma monomorphisms
open import Algebra.Morphism.MagmaMonomorphism
isMagmaMonomorphism public
------------------------------------------------------------------------
-- Properties
module _ (◦-isMagma : IsMagma _≈₂_ _◦_) where
open IsMagma ◦-isMagma renaming (∙-cong to ◦-cong)
open SetoidReasoning setoid
identityˡ : LeftIdentity _≈₂_ ε₂ _◦_ → LeftIdentity _≈₁_ ε₁ _∙_
identityˡ idˡ x = injective (begin
⟦ ε₁ ∙ x ⟧ ≈⟨ homo ε₁ x ⟩
⟦ ε₁ ⟧ ◦ ⟦ x ⟧ ≈⟨ ◦-cong ε-homo refl ⟩
ε₂ ◦ ⟦ x ⟧ ≈⟨ idˡ ⟦ x ⟧ ⟩
⟦ x ⟧ ∎)
identityʳ : RightIdentity _≈₂_ ε₂ _◦_ → RightIdentity _≈₁_ ε₁ _∙_
identityʳ idʳ x = injective (begin
⟦ x ∙ ε₁ ⟧ ≈⟨ homo x ε₁ ⟩
⟦ x ⟧ ◦ ⟦ ε₁ ⟧ ≈⟨ ◦-cong refl ε-homo ⟩
⟦ x ⟧ ◦ ε₂ ≈⟨ idʳ ⟦ x ⟧ ⟩
⟦ x ⟧ ∎)
identity : Identity _≈₂_ ε₂ _◦_ → Identity _≈₁_ ε₁ _∙_
identity = map identityˡ identityʳ
zeroˡ : LeftZero _≈₂_ ε₂ _◦_ → LeftZero _≈₁_ ε₁ _∙_
zeroˡ zeˡ x = injective (begin
⟦ ε₁ ∙ x ⟧ ≈⟨ homo ε₁ x ⟩
⟦ ε₁ ⟧ ◦ ⟦ x ⟧ ≈⟨ ◦-cong ε-homo refl ⟩
ε₂ ◦ ⟦ x ⟧ ≈⟨ zeˡ ⟦ x ⟧ ⟩
ε₂ ≈˘⟨ ε-homo ⟩
⟦ ε₁ ⟧ ∎)
zeroʳ : RightZero _≈₂_ ε₂ _◦_ → RightZero _≈₁_ ε₁ _∙_
zeroʳ zeʳ x = injective (begin
⟦ x ∙ ε₁ ⟧ ≈⟨ homo x ε₁ ⟩
⟦ x ⟧ ◦ ⟦ ε₁ ⟧ ≈⟨ ◦-cong refl ε-homo ⟩
⟦ x ⟧ ◦ ε₂ ≈⟨ zeʳ ⟦ x ⟧ ⟩
ε₂ ≈˘⟨ ε-homo ⟩
⟦ ε₁ ⟧ ∎)
zero : Zero _≈₂_ ε₂ _◦_ → Zero _≈₁_ ε₁ _∙_
zero = map zeroˡ zeroʳ
------------------------------------------------------------------------
-- Structures
isMonoid : IsMonoid _≈₂_ _◦_ ε₂ → IsMonoid _≈₁_ _∙_ ε₁
isMonoid isMonoid = record
{ isSemigroup = isSemigroup M.isSemigroup
; identity = identity M.isMagma M.identity
} where module M = IsMonoid isMonoid
isCommutativeMonoid : IsCommutativeMonoid _≈₂_ _◦_ ε₂ →
IsCommutativeMonoid _≈₁_ _∙_ ε₁
isCommutativeMonoid isCommMonoid = record
{ isMonoid = isMonoid C.isMonoid
; comm = comm C.isMagma C.comm
} where module C = IsCommutativeMonoid isCommMonoid
| 33.989474
| 75
| 0.557758
|
06a9091556abe6834f1c2e4853df7126003420e7
| 2,006
|
agda
|
Agda
|
src/Data/Vec/Any/Membership/Properties.agda
|
tizmd/agda-vector-any
|
1a60f72b9ea1dd61845311ee97dc380aa542b874
|
[
"MIT"
] | null | null | null |
src/Data/Vec/Any/Membership/Properties.agda
|
tizmd/agda-vector-any
|
1a60f72b9ea1dd61845311ee97dc380aa542b874
|
[
"MIT"
] | null | null | null |
src/Data/Vec/Any/Membership/Properties.agda
|
tizmd/agda-vector-any
|
1a60f72b9ea1dd61845311ee97dc380aa542b874
|
[
"MIT"
] | null | null | null |
module Data.Vec.Any.Membership.Properties where
open import Relation.Binary
open import Data.Vec
module SingleSetoid {a ℓ} (S : Setoid a ℓ) where
open Setoid S renaming (Carrier to A)
open import Data.Vec.Any
open import Data.Vec.Any.Membership S
open import Function using (flip)
open import Data.Vec.Equality using (module Equality)
open Equality S renaming (_≈_ to _≋_; trans to ≋-trans)
⊆-reflexive : ∀ {n m} {xs : Vec A n} {ys : Vec A m} →
xs ≋ ys → xs ⊆ ys
⊆-reflexive []-cong ()
⊆-reflexive (x₁≈x₂ ∷-cong eq) (here x≈x₁) = here (trans x≈x₁ x₁≈x₂)
⊆-reflexive (_ ∷-cong eq) (there p) = there (⊆-reflexive eq p)
∈′-resp-≈ : ∀ {x} → (x ≈_) Respects _≈_
∈′-resp-≈ = flip trans
∈′-resp-≋ : ∀ {n₁ n₂ x}{xs₁ : Vec A n₁}{xs₂ : Vec A n₂} →
xs₁ ≋ xs₂ → x ∈′ xs₁ → x ∈′ xs₂
∈′-resp-≋ {xs₁ = .[]} {.[]} []-cong ()
∈′-resp-≋ {xs₁ = .(_ ∷ _)} {.(_ ∷ _)} (x¹≈x² ∷-cong eq) (here x≈x₁) = here (trans x≈x₁ x¹≈x²)
∈′-resp-≋ {xs₁ = .(_ ∷ _)} {.(_ ∷ _)} (x¹≈x² ∷-cong eq) (there p) =
there (∈′-resp-≋ eq p)
open SingleSetoid public
module DoubleSetoid {a₁ a₂ ℓ₁ ℓ₂}
(S₁ : Setoid a₁ ℓ₁) (S₂ : Setoid a₂ ℓ₂) where
open import Data.Vec.Any.Properties
import Data.Vec.Any as Any
open import Data.Product hiding (map)
open Setoid S₁ renaming (Carrier to A₁; _≈_ to _≈₁_; refl to refl₁)
open Setoid S₂ renaming (Carrier to A₂; _≈_ to _≈₂_)
open import Data.Vec.Any.Membership S₁ renaming (_∈′_ to _∈′₁_) using (find′)
open import Data.Vec.Any.Membership S₂ renaming (_∈′_ to _∈′₂_) using ()
∈′-map⁺ : ∀ {n x}{xs : Vec A₁ n} {f} →
f Preserves _≈₁_ ⟶ _≈₂_ →
x ∈′₁ xs → f x ∈′₂ map f xs
∈′-map⁺ pres x∈′xs = map⁺ (Any.map pres x∈′xs)
∈′-map⁻ : ∀ {n y}{xs : Vec A₁ n} {f} → y ∈′₂ map f xs →
∃ λ x → x ∈′₁ xs × y ≈₂ f x
∈′-map⁻ y∈′map with find′ (map⁻ y∈′map)
... | _ , x∈xs , px = , x∈xs , px
open DoubleSetoid public
| 37.849057
| 97
| 0.551844
|
4d7a8ced3625dd286048ef5fae1440ce1aa8c714
| 564
|
agda
|
Agda
|
examples/Termination/simplified-comb.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
examples/Termination/simplified-comb.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
examples/Termination/simplified-comb.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
module simplified-comb where
infixr 50 _⟶_
data Ty : Set where
ι : Ty
_⟶_ : Ty -> Ty -> Ty
data Tm : Ty -> Set where
_$_ : {σ τ : Ty} -> Tm (σ ⟶ τ) -> Tm σ -> Tm τ
data Nf : Ty -> Set where
data _↓_ : {σ : Ty} -> Tm σ -> Nf σ -> Set where
r$ : {σ τ : Ty} -> {t : Tm (σ ⟶ τ)} -> {f : Nf (σ ⟶ τ)} -> t ↓ f ->
{u : Tm σ} -> {a : Nf σ} -> u ↓ a -> {v : Nf τ} ->
(t $ u ) ↓ v
nf* : {σ : Ty} -> (t : Tm σ) -> {n : Nf σ} -> t ↓ n -> Set
nf* .{τ} (_$_ {σ} {τ} t u) {v} (r$ {f = f} p q) with nf* {σ ⟶ τ} t {f} p
nf* (t $ u) (r$ p q) | _ = Ty
| 25.636364
| 72
| 0.388298
|
0e4db7bc658d94b562b4637c43e8c90711b2cefe
| 1,559
|
agda
|
Agda
|
src/fot/PA/Inductive2Standard.agda
|
asr/fotc
|
2fc9f2b81052a2e0822669f02036c5750371b72d
|
[
"MIT"
] | 11
|
2015-09-03T20:53:42.000Z
|
2021-09-12T16:09:54.000Z
|
src/fot/PA/Inductive2Standard.agda
|
asr/fotc
|
2fc9f2b81052a2e0822669f02036c5750371b72d
|
[
"MIT"
] | 2
|
2016-10-12T17:28:16.000Z
|
2017-01-01T14:34:26.000Z
|
src/fot/PA/Inductive2Standard.agda
|
asr/fotc
|
2fc9f2b81052a2e0822669f02036c5750371b72d
|
[
"MIT"
] | 3
|
2016-09-19T14:18:30.000Z
|
2018-03-14T08:50:00.000Z
|
------------------------------------------------------------------------------
-- From inductive PA to standard axiomatic PA
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
-- From the definition of PA using Agda data types and primitive
-- recursive functions for addition and multiplication, we can prove
-- the following axioms (see (Machover 1996, p. 263) and (Hájek and
-- Pudlák 1998, p. 28)):
-- PA₁. 0 ≠ n'
-- PA₂. m' = n' → m = n
-- PA₃. 0 + n = n
-- PA₄. m' + n = (m + n)'
-- PA₅. 0 * n = 0
-- PA₆. m' * n = n + (m * n)
-- Axiom of induction:
-- φ(0) → (∀n.φ(n) → φ(succ n)) → ∀n.φ(n), for any formulae φ
module PA.Inductive2Standard where
open import PA.Inductive.Base
------------------------------------------------------------------------------
PA₁ : ∀ {n} → zero ≢ succ n
PA₁ ()
PA₂ : ∀ {m n} → succ m ≡ succ n → m ≡ n
PA₂ refl = refl
PA₃ : ∀ n → zero + n ≡ n
PA₃ n = refl
PA₄ : ∀ m n → succ m + n ≡ succ (m + n)
PA₄ m n = refl
PA₅ : ∀ n → zero * n ≡ zero
PA₅ n = refl
PA₆ : ∀ m n → succ m * n ≡ n + m * n
PA₆ m n = refl
------------------------------------------------------------------------------
-- References
--
-- Machover, Moshé (1996). Set theory, Logic and their
-- Limitations. Cambridge University Press.
-- Hájek, Petr and Pudlák, Pavel (1998). Metamathematics of
-- First-Order Arithmetic. 2nd printing. Springer.
| 27.839286
| 78
| 0.463759
|
29560794ce492e865b0e2fa733a16e398586cc59
| 4,622
|
agda
|
Agda
|
Data/List/Relation/Binary/Lexicographic.agda
|
oisdk/agda-playground
|
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
|
[
"MIT"
] | 6
|
2020-09-11T17:45:41.000Z
|
2021-11-16T08:11:34.000Z
|
Data/List/Relation/Binary/Lexicographic.agda
|
oisdk/agda-playground
|
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
|
[
"MIT"
] | null | null | null |
Data/List/Relation/Binary/Lexicographic.agda
|
oisdk/agda-playground
|
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
|
[
"MIT"
] | 1
|
2021-11-11T12:30:21.000Z
|
2021-11-11T12:30:21.000Z
|
{-# OPTIONS --cubical --safe #-}
open import Relation.Binary
open import Prelude hiding (Decidable)
module Data.List.Relation.Binary.Lexicographic {e ℓ₁ ℓ₂} {E : Type e} (ord : TotalOrder E ℓ₁ ℓ₂) where
open import Data.List
import Path as ≡
open TotalOrder ord renaming (refl to ≤-refl)
import Data.Empty.UniversePolymorphic as Poly
import Data.Unit.UniversePolymorphic as Poly
infix 4 _<′_
_<′_ : List E → List E → Type (e ℓ⊔ ℓ₁ ℓ⊔ ℓ₂)
xs <′ [] = Poly.⊥
[] <′ y ∷ ys = Poly.⊤
x ∷ xs <′ y ∷ ys = (x < y) ⊎ ((x ≡ y) × (xs <′ ys))
infix 4 _≤′_
_≤′_ : List E → List E → Type (e ℓ⊔ ℓ₁ ℓ⊔ ℓ₂)
[] ≤′ ys = Poly.⊤
x ∷ xs ≤′ [] = Poly.⊥
x ∷ xs ≤′ y ∷ ys = (x < y) ⊎ ((x ≡ y) × (xs ≤′ ys))
<′-trans : Transitive _<′_
<′-trans {[]} {y ∷ ys} {z ∷ zs} p q = Poly.tt
<′-trans {x ∷ xs} {y ∷ ys} {z ∷ zs} (inl p) (inl q) = inl (<-trans p q)
<′-trans {x ∷ xs} {y ∷ ys} {z ∷ zs} (inl p) (inr q) = inl (subst (_ <_) (fst q) p)
<′-trans {x ∷ xs} {y ∷ ys} {z ∷ zs} (inr p) (inl q) = inl (subst (_< _) (sym (fst p)) q)
<′-trans {x ∷ xs} {y ∷ ys} {z ∷ zs} (inr (p , ps)) (inr (q , qs)) = inr (p ; q , <′-trans ps qs)
≤′-trans : Transitive _≤′_
≤′-trans {[]} {ys} {zs} p q = Poly.tt
≤′-trans {x ∷ xs} {y ∷ ys} {z ∷ zs} (inl p) (inl q) = inl (<-trans p q)
≤′-trans {x ∷ xs} {y ∷ ys} {z ∷ zs} (inl p) (inr q) = inl (subst (_ <_) (fst q) p)
≤′-trans {x ∷ xs} {y ∷ ys} {z ∷ zs} (inr p) (inl q) = inl (subst (_< _) (sym (fst p)) q)
≤′-trans {x ∷ xs} {y ∷ ys} {z ∷ zs} (inr (p , ps)) (inr (q , qs)) = inr (p ; q , ≤′-trans ps qs)
≤′-antisym : Antisymmetric _≤′_
≤′-antisym {[]} {[]} p q = refl
≤′-antisym {x ∷ xs} {y ∷ ys} (inl p) (inl q) = ⊥-elim (asym p q)
≤′-antisym {x ∷ xs} {y ∷ ys} (inl p) (inr q) = ⊥-elim (irrefl (subst (_< _) (sym (fst q)) p))
≤′-antisym {x ∷ xs} {y ∷ ys} (inr p) (inl q) = ⊥-elim (irrefl (subst (_< _) (sym (fst p)) q))
≤′-antisym {x ∷ xs} {y ∷ ys} (inr (p , ps)) (inr (_ , qs)) = cong₂ _∷_ p (≤′-antisym ps qs)
≤′-refl : Reflexive _≤′_
≤′-refl {[]} = Poly.tt
≤′-refl {x ∷ xs} = inr (refl , ≤′-refl)
<′-asym : Asymmetric _<′_
<′-asym {x ∷ xs} {y ∷ ys} (inl p) (inl q) = asym p q
<′-asym {x ∷ xs} {y ∷ ys} (inl p) (inr q) = irrefl (subst (_< _) (sym (fst q)) p)
<′-asym {x ∷ xs} {y ∷ ys} (inr p) (inl q) = irrefl (subst (_< _) (sym (fst p)) q)
<′-asym {x ∷ xs} {y ∷ ys} (inr p) (inr q) = <′-asym (snd p) (snd q)
≮′⇒≥′ : ∀ {xs ys} → ¬ (xs <′ ys) → ys ≤′ xs
≮′⇒≥′ {xs} {[]} p = Poly.tt
≮′⇒≥′ {[]} {y ∷ ys} p = ⊥-elim (p _)
≮′⇒≥′ {x ∷ xs} {y ∷ ys} xs≮ys with compare x y
≮′⇒≥′ {x ∷ xs} {y ∷ ys} xs≮ys | lt x<y = ⊥-elim (xs≮ys (inl x<y))
≮′⇒≥′ {x ∷ xs} {y ∷ ys} xs≮ys | eq x≡y = inr (sym x≡y , ≮′⇒≥′ (xs≮ys ∘ inr ∘ _,_ x≡y))
≮′⇒≥′ {x ∷ xs} {y ∷ ys} xs≮ys | gt x>y = inl x>y
<′-conn : Connected _<′_
<′-conn xs≮ys ys≮xs = ≤′-antisym (≮′⇒≥′ ys≮xs) (≮′⇒≥′ xs≮ys)
<′-irrefl : Irreflexive _<′_
<′-irrefl {x ∷ xs} (inl x<x) = irrefl x<x
<′-irrefl {x ∷ xs} (inr xs<xs) = <′-irrefl (snd xs<xs)
≰′⇒>′ : ∀ {xs ys} → ¬ (xs ≤′ ys) → ys <′ xs
≰′⇒>′ {[]} xs≰ys = ⊥-elim (xs≰ys _)
≰′⇒>′ {x ∷ xs} {[]} xs≰ys = Poly.tt
≰′⇒>′ {x ∷ xs} {y ∷ ys} xs≰ys with compare x y
≰′⇒>′ {x ∷ xs} {y ∷ ys} xs≰ys | lt x<y = ⊥-elim (xs≰ys (inl x<y))
≰′⇒>′ {x ∷ xs} {y ∷ ys} xs≰ys | eq x≡y = inr (sym x≡y , ≰′⇒>′ (xs≰ys ∘ inr ∘ _,_ x≡y))
≰′⇒>′ {x ∷ xs} {y ∷ ys} xs≰ys | gt x>y = inl x>y
≮′-cons : ∀ {x y xs ys} → x ≡ y → ¬ (xs <′ ys) → ¬ (x ∷ xs <′ y ∷ ys)
≮′-cons x≡y xs≮ys (inl x<y) = irrefl (subst (_< _) x≡y x<y)
≮′-cons x≡y xs≮ys (inr (x≡y₁ , x∷xs<y∷ys)) = xs≮ys x∷xs<y∷ys
_<′?_ : Decidable _<′_
xs <′? [] = no (λ ())
[] <′? (y ∷ ys) = yes Poly.tt
(x ∷ xs) <′? (y ∷ ys) with compare x y
((x ∷ xs) <′? (y ∷ ys)) | lt x<y = yes (inl x<y)
((x ∷ xs) <′? (y ∷ ys)) | eq x≡y = map-dec (inr ∘ _,_ x≡y) (≮′-cons x≡y) (xs <′? ys)
((x ∷ xs) <′? (y ∷ ys)) | gt x>y = no (<′-asym (inl x>y))
listOrd : TotalOrder (List E) _ _
StrictPreorder._<_ (StrictPartialOrder.strictPreorder (TotalOrder.strictPartialOrder listOrd)) = _<′_
StrictPreorder.trans (StrictPartialOrder.strictPreorder (TotalOrder.strictPartialOrder listOrd)) = <′-trans
StrictPreorder.irrefl (StrictPartialOrder.strictPreorder (TotalOrder.strictPartialOrder listOrd)) = <′-irrefl
StrictPartialOrder.conn (TotalOrder.strictPartialOrder listOrd) = <′-conn
Preorder._≤_ (PartialOrder.preorder (TotalOrder.partialOrder listOrd)) = _≤′_
Preorder.refl (PartialOrder.preorder (TotalOrder.partialOrder listOrd)) = ≤′-refl
Preorder.trans (PartialOrder.preorder (TotalOrder.partialOrder listOrd)) = ≤′-trans
PartialOrder.antisym (TotalOrder.partialOrder listOrd) = ≤′-antisym
TotalOrder._<?_ listOrd = _<′?_
TotalOrder.≰⇒> listOrd = ≰′⇒>′
TotalOrder.≮⇒≥ listOrd = ≮′⇒≥′
| 42.796296
| 110
| 0.523367
|
230b4c5aefc1be2a34482c9dd9dc4abd1e418ca3
| 1,497
|
agda
|
Agda
|
Groups/Homomorphisms/Image.agda
|
Smaug123/agdaproofs
|
0f4230011039092f58f673abcad8fb0652e6b562
|
[
"MIT"
] | 4
|
2019-08-08T12:44:19.000Z
|
2022-01-28T06:04:15.000Z
|
Groups/Homomorphisms/Image.agda
|
Smaug123/agdaproofs
|
0f4230011039092f58f673abcad8fb0652e6b562
|
[
"MIT"
] | 14
|
2019-01-06T21:11:59.000Z
|
2020-04-11T11:03:39.000Z
|
Groups/Homomorphisms/Image.agda
|
Smaug123/agdaproofs
|
0f4230011039092f58f673abcad8fb0652e6b562
|
[
"MIT"
] | 1
|
2021-11-29T13:23:07.000Z
|
2021-11-29T13:23:07.000Z
|
{-# OPTIONS --safe --warning=error --without-K #-}
open import Groups.Definition
open import Setoids.Setoids
open import Setoids.Subset
open import LogicalFormulae
open import Sets.EquivalenceRelations
open import Groups.Homomorphisms.Definition
open import Groups.Homomorphisms.Lemmas
open import Groups.Subgroups.Definition
open import Groups.Lemmas
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
module Groups.Homomorphisms.Image {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+A_ : A → A → A} {_+B_ : B → B → B} {G : Group S _+A_} {H : Group T _+B_} {f : A → B} (fHom : GroupHom G H f) where
imageGroupPred : B → Set (a ⊔ d)
imageGroupPred b = Sg A (λ a → Setoid._∼_ T (f a) b)
imageGroupSubset : subset T imageGroupPred
imageGroupSubset {x} {y} x=y (a , fa=x) = a , transitive fa=x x=y
where
open Setoid T
open Equivalence eq
imageGroupSubgroup : Subgroup H imageGroupPred
Subgroup.isSubset imageGroupSubgroup = imageGroupSubset
Subgroup.closedUnderPlus imageGroupSubgroup {x} {y} (a , fa=x) (b , fb=y) = (a +A b) , transitive (GroupHom.groupHom fHom) (Group.+WellDefined H fa=x fb=y)
where
open Setoid T
open Equivalence eq
Subgroup.containsIdentity imageGroupSubgroup = Group.0G G , imageOfIdentityIsIdentity fHom
Subgroup.closedUnderInverse imageGroupSubgroup {x} (a , fa=x) = Group.inverse G a , transitive (homRespectsInverse fHom) (inverseWellDefined H fa=x)
where
open Setoid T
open Equivalence eq
| 40.459459
| 235
| 0.721443
|
3df64beea5a5a6f8a6baa96880476bba112fc292
| 2,458
|
agda
|
Agda
|
README/Correct-by-Construction-Pretty-Printing.agda
|
nad/pretty
|
b956803ba90b6c5f57bbbaab01bb18485d948492
|
[
"MIT"
] | null | null | null |
README/Correct-by-Construction-Pretty-Printing.agda
|
nad/pretty
|
b956803ba90b6c5f57bbbaab01bb18485d948492
|
[
"MIT"
] | null | null | null |
README/Correct-by-Construction-Pretty-Printing.agda
|
nad/pretty
|
b956803ba90b6c5f57bbbaab01bb18485d948492
|
[
"MIT"
] | null | null | null |
------------------------------------------------------------------------
-- A README directed towards readers of the paper
-- "Correct-by-Construction Pretty-Printing"
--
-- Nils Anders Danielsson
------------------------------------------------------------------------
{-# OPTIONS --guardedness #-}
module README.Correct-by-Construction-Pretty-Printing where
------------------------------------------------------------------------
-- 2: Grammars
-- The basic grammar data type, including its semantics. Only a small
-- number of derived combinators is defined directly for this data
-- type. It is proved that an inductive version of this type would be
-- quite restrictive.
import Grammar.Infinite.Basic
-- The extended grammar data type mentioned in Section 4.3, along with
-- a semantics and lots of derived combinators. This type is proved to
-- be no more expressive than the previous one; but it is also proved
-- that every language that can be recursively enumerated can be
-- represented by a (unit-valued) grammar.
import Grammar.Infinite
------------------------------------------------------------------------
-- 3: Pretty-Printers
import Pretty
------------------------------------------------------------------------
-- 4: Examples
-- Reusable document combinators introduced in this section.
import Pretty
-- The symbol combinator and the heuristic procedure
-- trailing-whitespace.
import Grammar.Infinite
-- 4.1: Boolean literals.
import Examples.Bool
-- 4.2: Expressions, and 4.3: Expressions, Take Two.
import Examples.Expression
-- 4.4: Identifiers.
import Examples.Identifier
-- 4.5: Other Examples.
-- Some of these examples are not mentioned in the paper.
-- Another expression example based on one in Matsuda and Wang's
-- "FliPpr: A Prettier Invertible Printing System".
import Examples.Expression
-- An example based on one in Swierstra and Chitil's "Linear, bounded,
-- functional pretty-printing".
import Examples.Identifier-list
-- Two examples, both based on examples in Wadler's "A prettier
-- printer".
import Examples.Tree
import Examples.XML
-- The fill combinator.
import Pretty
-- A general grammar and pretty-printer for binary operators of
-- various (not necessarily linearly ordered) precedences.
import Examples.Precedence
------------------------------------------------------------------------
-- 5: Renderers
import Renderer
-- Unambiguous and Parser.
import Grammar.Infinite
| 25.604167
| 72
| 0.626119
|
a16fc2cb11b1b30403cb97d9e1b8b326a63cd0f0
| 9,691
|
agda
|
Agda
|
agda-stdlib/src/Function/Bundles.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | 5
|
2020-10-07T12:07:53.000Z
|
2020-10-10T21:41:32.000Z
|
agda-stdlib/src/Function/Bundles.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | null | null | null |
agda-stdlib/src/Function/Bundles.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | 1
|
2021-11-04T06:54:45.000Z
|
2021-11-04T06:54:45.000Z
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Bundles for types of functions
------------------------------------------------------------------------
-- The contents of this file should usually be accessed from `Function`.
-- Note that these bundles differ from those found elsewhere in other
-- library hierarchies as they take Setoids as parameters. This is
-- because a function is of no use without knowing what its domain and
-- codomain is, as well which equalities are being considered over them.
-- One consequence of this is that they are not built from the
-- definitions found in `Function.Structures` as is usually the case in
-- other library hierarchies, as this would duplicate the equality
-- axioms.
{-# OPTIONS --without-K --safe #-}
module Function.Bundles where
import Function.Definitions as FunctionDefinitions
import Function.Structures as FunctionStructures
open import Level using (Level; _⊔_; suc)
open import Data.Product using (proj₁; proj₂)
open import Relation.Binary
open import Relation.Binary.PropositionalEquality as ≡
using (_≡_)
open Setoid using (isEquivalence)
private
variable
a b ℓ₁ ℓ₂ : Level
------------------------------------------------------------------------
-- Setoid bundles
module _ (From : Setoid a ℓ₁) (To : Setoid b ℓ₂) where
open Setoid From using () renaming (Carrier to A; _≈_ to _≈₁_)
open Setoid To using () renaming (Carrier to B; _≈_ to _≈₂_)
open FunctionDefinitions _≈₁_ _≈₂_
open FunctionStructures _≈₁_ _≈₂_
record Injection : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where
field
f : A → B
cong : f Preserves _≈₁_ ⟶ _≈₂_
injective : Injective f
isCongruent : IsCongruent f
isCongruent = record
{ cong = cong
; isEquivalence₁ = isEquivalence From
; isEquivalence₂ = isEquivalence To
}
open IsCongruent isCongruent public using (module Eq₁; module Eq₂)
isInjection : IsInjection f
isInjection = record
{ isCongruent = isCongruent
; injective = injective
}
record Surjection : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where
field
f : A → B
cong : f Preserves _≈₁_ ⟶ _≈₂_
surjective : Surjective f
isCongruent : IsCongruent f
isCongruent = record
{ cong = cong
; isEquivalence₁ = isEquivalence From
; isEquivalence₂ = isEquivalence To
}
open IsCongruent isCongruent public using (module Eq₁; module Eq₂)
isSurjection : IsSurjection f
isSurjection = record
{ isCongruent = isCongruent
; surjective = surjective
}
record Bijection : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where
field
f : A → B
cong : f Preserves _≈₁_ ⟶ _≈₂_
bijective : Bijective f
injective : Injective f
injective = proj₁ bijective
surjective : Surjective f
surjective = proj₂ bijective
injection : Injection
injection = record
{ cong = cong
; injective = injective
}
surjection : Surjection
surjection = record
{ cong = cong
; surjective = surjective
}
open Injection injection public using (isInjection)
open Surjection surjection public using (isSurjection)
isBijection : IsBijection f
isBijection = record
{ isInjection = isInjection
; surjective = surjective
}
open IsBijection isBijection public using (module Eq₁; module Eq₂)
record Equivalence : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where
field
f : A → B
g : B → A
cong₁ : f Preserves _≈₁_ ⟶ _≈₂_
cong₂ : g Preserves _≈₂_ ⟶ _≈₁_
record LeftInverse : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where
field
f : A → B
g : B → A
cong₁ : f Preserves _≈₁_ ⟶ _≈₂_
cong₂ : g Preserves _≈₂_ ⟶ _≈₁_
inverseˡ : Inverseˡ f g
isCongruent : IsCongruent f
isCongruent = record
{ cong = cong₁
; isEquivalence₁ = isEquivalence From
; isEquivalence₂ = isEquivalence To
}
open IsCongruent isCongruent public using (module Eq₁; module Eq₂)
isLeftInverse : IsLeftInverse f g
isLeftInverse = record
{ isCongruent = isCongruent
; cong₂ = cong₂
; inverseˡ = inverseˡ
}
equivalence : Equivalence
equivalence = record
{ cong₁ = cong₁
; cong₂ = cong₂
}
record RightInverse : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where
field
f : A → B
g : B → A
cong₁ : f Preserves _≈₁_ ⟶ _≈₂_
cong₂ : g Preserves _≈₂_ ⟶ _≈₁_
inverseʳ : Inverseʳ f g
isCongruent : IsCongruent f
isCongruent = record
{ cong = cong₁
; isEquivalence₁ = isEquivalence From
; isEquivalence₂ = isEquivalence To
}
isRightInverse : IsRightInverse f g
isRightInverse = record
{ isCongruent = isCongruent
; cong₂ = cong₂
; inverseʳ = inverseʳ
}
equivalence : Equivalence
equivalence = record
{ cong₁ = cong₁
; cong₂ = cong₂
}
record BiEquivalence : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where
field
f : A → B
g₁ : B → A
g₂ : B → A
cong₁ : f Preserves _≈₁_ ⟶ _≈₂_
cong₂ : g₁ Preserves _≈₂_ ⟶ _≈₁_
cong₃ : g₂ Preserves _≈₂_ ⟶ _≈₁_
record BiInverse : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where
field
f : A → B
g₁ : B → A
g₂ : B → A
cong₁ : f Preserves _≈₁_ ⟶ _≈₂_
cong₂ : g₁ Preserves _≈₂_ ⟶ _≈₁_
cong₃ : g₂ Preserves _≈₂_ ⟶ _≈₁_
inverseˡ : Inverseˡ f g₁
inverseʳ : Inverseʳ f g₂
f-isCongruent : IsCongruent f
f-isCongruent = record
{ cong = cong₁
; isEquivalence₁ = isEquivalence From
; isEquivalence₂ = isEquivalence To
}
isBiInverse : IsBiInverse f g₁ g₂
isBiInverse = record
{ f-isCongruent = f-isCongruent
; cong₂ = cong₂
; inverseˡ = inverseˡ
; cong₃ = cong₃
; inverseʳ = inverseʳ
}
biEquivalence : BiEquivalence
biEquivalence = record
{ cong₁ = cong₁
; cong₂ = cong₂
; cong₃ = cong₃
}
record Inverse : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where
field
f : A → B
f⁻¹ : B → A
cong₁ : f Preserves _≈₁_ ⟶ _≈₂_
cong₂ : f⁻¹ Preserves _≈₂_ ⟶ _≈₁_
inverse : Inverseᵇ f f⁻¹
inverseˡ : Inverseˡ f f⁻¹
inverseˡ = proj₁ inverse
inverseʳ : Inverseʳ f f⁻¹
inverseʳ = proj₂ inverse
leftInverse : LeftInverse
leftInverse = record
{ cong₁ = cong₁
; cong₂ = cong₂
; inverseˡ = inverseˡ
}
rightInverse : RightInverse
rightInverse = record
{ cong₁ = cong₁
; cong₂ = cong₂
; inverseʳ = inverseʳ
}
open LeftInverse leftInverse public using (isLeftInverse)
open RightInverse rightInverse public using (isRightInverse)
isInverse : IsInverse f f⁻¹
isInverse = record
{ isLeftInverse = isLeftInverse
; inverseʳ = inverseʳ
}
open IsInverse isInverse public using (module Eq₁; module Eq₂)
------------------------------------------------------------------------
-- Bundles specialised for propositional equality
infix 3 _↣_ _↠_ _⤖_ _⇔_ _↩_ _↪_ _↩↪_ _↔_
_↣_ : Set a → Set b → Set _
A ↣ B = Injection (≡.setoid A) (≡.setoid B)
_↠_ : Set a → Set b → Set _
A ↠ B = Surjection (≡.setoid A) (≡.setoid B)
_⤖_ : Set a → Set b → Set _
A ⤖ B = Bijection (≡.setoid A) (≡.setoid B)
_⇔_ : Set a → Set b → Set _
A ⇔ B = Equivalence (≡.setoid A) (≡.setoid B)
_↩_ : Set a → Set b → Set _
A ↩ B = LeftInverse (≡.setoid A) (≡.setoid B)
_↪_ : Set a → Set b → Set _
A ↪ B = RightInverse (≡.setoid A) (≡.setoid B)
_↩↪_ : Set a → Set b → Set _
A ↩↪ B = BiInverse (≡.setoid A) (≡.setoid B)
_↔_ : Set a → Set b → Set _
A ↔ B = Inverse (≡.setoid A) (≡.setoid B)
-- We now define some constructors for the above that
-- automatically provide the required congruency proofs.
module _ {A : Set a} {B : Set b} where
open FunctionDefinitions {A = A} {B} _≡_ _≡_
mk↣ : ∀ {f : A → B} → Injective f → A ↣ B
mk↣ {f} inj = record
{ f = f
; cong = ≡.cong f
; injective = inj
}
mk↠ : ∀ {f : A → B} → Surjective f → A ↠ B
mk↠ {f} surj = record
{ f = f
; cong = ≡.cong f
; surjective = surj
}
mk⤖ : ∀ {f : A → B} → Bijective f → A ⤖ B
mk⤖ {f} bij = record
{ f = f
; cong = ≡.cong f
; bijective = bij
}
mk⇔ : ∀ (f : A → B) (g : B → A) → A ⇔ B
mk⇔ f g = record
{ f = f
; g = g
; cong₁ = ≡.cong f
; cong₂ = ≡.cong g
}
mk↩ : ∀ {f : A → B} {g : B → A} → Inverseˡ f g → A ↩ B
mk↩ {f} {g} invˡ = record
{ f = f
; g = g
; cong₁ = ≡.cong f
; cong₂ = ≡.cong g
; inverseˡ = invˡ
}
mk↪ : ∀ {f : A → B} {g : B → A} → Inverseʳ f g → A ↪ B
mk↪ {f} {g} invʳ = record
{ f = f
; g = g
; cong₁ = ≡.cong f
; cong₂ = ≡.cong g
; inverseʳ = invʳ
}
mk↩↪ : ∀ {f : A → B} {g₁ : B → A} {g₂ : B → A}
→ Inverseˡ f g₁ → Inverseʳ f g₂ → A ↩↪ B
mk↩↪ {f} {g₁} {g₂} invˡ invʳ = record
{ f = f
; g₁ = g₁
; g₂ = g₂
; cong₁ = ≡.cong f
; cong₂ = ≡.cong g₁
; cong₃ = ≡.cong g₂
; inverseˡ = invˡ
; inverseʳ = invʳ
}
mk↔ : ∀ {f : A → B} {f⁻¹ : B → A} → Inverseᵇ f f⁻¹ → A ↔ B
mk↔ {f} {f⁻¹} inv = record
{ f = f
; f⁻¹ = f⁻¹
; cong₁ = ≡.cong f
; cong₂ = ≡.cong f⁻¹
; inverse = inv
}
| 25.502632
| 72
| 0.540914
|
4d7a429df5b12020b6dd12c0eaf37f44219004ca
| 18,433
|
agda
|
Agda
|
Everything.agda
|
tetrapharmakon/agda-categories
|
cfa6aefd3069d4db995191b458c886edcfba8294
|
[
"MIT"
] | 5
|
2019-05-21T17:07:19.000Z
|
2019-05-22T03:54:24.000Z
|
Everything.agda
|
seanpm2001/agda-categories
|
d9e4f578b126313058d105c61707d8c8ae987fa8
|
[
"MIT"
] | null | null | null |
Everything.agda
|
seanpm2001/agda-categories
|
d9e4f578b126313058d105c61707d8c8ae987fa8
|
[
"MIT"
] | null | null | null |
import Categories.2-Category
import Categories.2-Functor
import Categories.Adjoint
import Categories.Adjoint.AFT
import Categories.Adjoint.AFT.SolutionSet
import Categories.Adjoint.Alternatives
import Categories.Adjoint.Compose
import Categories.Adjoint.Construction.CoKleisli
import Categories.Adjoint.Construction.EilenbergMoore
import Categories.Adjoint.Construction.Kleisli
import Categories.Adjoint.Equivalence
import Categories.Adjoint.Equivalence.Properties
import Categories.Adjoint.Equivalents
import Categories.Adjoint.Instance.0-Truncation
import Categories.Adjoint.Instance.01-Truncation
import Categories.Adjoint.Instance.Core
import Categories.Adjoint.Instance.PathsOf
import Categories.Adjoint.Instance.PosetCore
import Categories.Adjoint.Instance.StrictCore
import Categories.Adjoint.Instance.StrictDiscrete
import Categories.Adjoint.Mate
import Categories.Adjoint.Monadic
import Categories.Adjoint.Monadic.Crude
import Categories.Adjoint.Monadic.Properties
import Categories.Adjoint.Properties
import Categories.Adjoint.RAPL
import Categories.Adjoint.Relative
import Categories.Adjoint.TwoSided
import Categories.Adjoint.TwoSided.Compose
import Categories.Bicategory
import Categories.Bicategory.Bigroupoid
import Categories.Bicategory.Construction.1-Category
import Categories.Bicategory.Construction.Spans
import Categories.Bicategory.Construction.Spans.Properties
import Categories.Bicategory.Extras
import Categories.Bicategory.Instance.Cats
import Categories.Bicategory.Instance.EnrichedCats
import Categories.Bicategory.Monad
import Categories.Bicategory.Monad.Properties
import Categories.Bicategory.Opposite
import Categories.Category
import Categories.Category.BicartesianClosed
import Categories.Category.BinaryProducts
import Categories.Category.CMonoidEnriched
import Categories.Category.Cartesian
import Categories.Category.Cartesian.Bundle
import Categories.Category.Cartesian.Monoidal
import Categories.Category.Cartesian.Properties
import Categories.Category.Cartesian.SymmetricMonoidal
import Categories.Category.CartesianClosed
import Categories.Category.CartesianClosed.Canonical
import Categories.Category.CartesianClosed.Locally
import Categories.Category.CartesianClosed.Locally.Properties
import Categories.Category.CartesianClosed.Properties
import Categories.Category.Closed
import Categories.Category.Cocartesian
import Categories.Category.Cocartesian.Bundle
import Categories.Category.Cocomplete
import Categories.Category.Cocomplete.Finitely
import Categories.Category.Cocomplete.Finitely.Properties
import Categories.Category.Cocomplete.Properties
import Categories.Category.Complete
import Categories.Category.Complete.Finitely
import Categories.Category.Complete.Finitely.Properties
import Categories.Category.Complete.Properties
import Categories.Category.Complete.Properties.Construction
import Categories.Category.Complete.Properties.SolutionSet
import Categories.Category.Concrete
import Categories.Category.Concrete.Properties
import Categories.Category.Construction.0-Groupoid
import Categories.Category.Construction.Adjoints
import Categories.Category.Construction.Arrow
import Categories.Category.Construction.CoKleisli
import Categories.Category.Construction.Cocones
import Categories.Category.Construction.Comma
import Categories.Category.Construction.Cones
import Categories.Category.Construction.Coproduct
import Categories.Category.Construction.Core
import Categories.Category.Construction.Cowedges
import Categories.Category.Construction.EilenbergMoore
import Categories.Category.Construction.Elements
import Categories.Category.Construction.EnrichedFunctors
import Categories.Category.Construction.F-Algebras
import Categories.Category.Construction.Fin
import Categories.Category.Construction.Functors
import Categories.Category.Construction.Grothendieck
import Categories.Category.Construction.GroupAsCategory
import Categories.Category.Construction.KanComplex
import Categories.Category.Construction.KaroubiEnvelope
import Categories.Category.Construction.KaroubiEnvelope.Properties
import Categories.Category.Construction.Kleisli
import Categories.Category.Construction.LT-Models
import Categories.Category.Construction.MonoidAsCategory
import Categories.Category.Construction.MonoidalFunctors
import Categories.Category.Construction.Monoids
import Categories.Category.Construction.ObjectRestriction
import Categories.Category.Construction.Path
import Categories.Category.Construction.PathCategory
import Categories.Category.Construction.Presheaves
import Categories.Category.Construction.Properties.CoKleisli
import Categories.Category.Construction.Properties.Comma
import Categories.Category.Construction.Properties.EilenbergMoore
import Categories.Category.Construction.Properties.Functors
import Categories.Category.Construction.Properties.Kleisli
import Categories.Category.Construction.Properties.Presheaves
import Categories.Category.Construction.Properties.Presheaves.Cartesian
import Categories.Category.Construction.Properties.Presheaves.CartesianClosed
import Categories.Category.Construction.Properties.Presheaves.Complete
import Categories.Category.Construction.Properties.Presheaves.FromCartesianCCC
import Categories.Category.Construction.Pullbacks
import Categories.Category.Construction.SetoidDiscrete
import Categories.Category.Construction.Spans
import Categories.Category.Construction.StrictDiscrete
import Categories.Category.Construction.SymmetricMonoidalFunctors
import Categories.Category.Construction.Thin
import Categories.Category.Construction.TwistedArrow
import Categories.Category.Construction.Wedges
import Categories.Category.Core
import Categories.Category.Dagger
import Categories.Category.Dagger.Construction.Discrete
import Categories.Category.Dagger.Instance.Rels
import Categories.Category.Diagram.Span
import Categories.Category.Discrete
import Categories.Category.Duality
import Categories.Category.Equivalence
import Categories.Category.Equivalence.Preserves
import Categories.Category.Equivalence.Properties
import Categories.Category.Finite
import Categories.Category.Finite.Fin
import Categories.Category.Finite.Fin.Construction.Discrete
import Categories.Category.Finite.Fin.Construction.Poset
import Categories.Category.Finite.Fin.Instance.Parallel
import Categories.Category.Finite.Fin.Instance.Span
import Categories.Category.Finite.Fin.Instance.Triangle
import Categories.Category.Groupoid
import Categories.Category.Groupoid.Properties
import Categories.Category.Helper
import Categories.Category.Indiscrete
import Categories.Category.Instance.Cartesians
import Categories.Category.Instance.Cats
import Categories.Category.Instance.EmptySet
import Categories.Category.Instance.FamilyOfSetoids
import Categories.Category.Instance.FinCatShapes
import Categories.Category.Instance.FinSetoids
import Categories.Category.Instance.Globe
import Categories.Category.Instance.Groupoids
import Categories.Category.Instance.KanComplexes
import Categories.Category.Instance.LawvereTheories
import Categories.Category.Instance.Monoidals
import Categories.Category.Instance.Nat
import Categories.Category.Instance.One
import Categories.Category.Instance.PartialFunctions
import Categories.Category.Instance.PointedSets
import Categories.Category.Instance.Posets
import Categories.Category.Instance.Properties.Cats
import Categories.Category.Instance.Properties.Posets
import Categories.Category.Instance.Properties.Setoids
import Categories.Category.Instance.Properties.Setoids.CCC
import Categories.Category.Instance.Properties.Setoids.Cocomplete
import Categories.Category.Instance.Properties.Setoids.Complete
import Categories.Category.Instance.Properties.Setoids.LCCC
import Categories.Category.Instance.Properties.Setoids.Limits.Canonical
import Categories.Category.Instance.Quivers
import Categories.Category.Instance.Rels
import Categories.Category.Instance.Setoids
import Categories.Category.Instance.Sets
import Categories.Category.Instance.Simplex
import Categories.Category.Instance.SimplicialSet
import Categories.Category.Instance.SimplicialSet.Properties
import Categories.Category.Instance.SingletonSet
import Categories.Category.Instance.Span
import Categories.Category.Instance.StrictCats
import Categories.Category.Instance.StrictGroupoids
import Categories.Category.Instance.Zero
import Categories.Category.Inverse
import Categories.Category.Lift
import Categories.Category.Monoidal
import Categories.Category.Monoidal.Braided
import Categories.Category.Monoidal.Braided.Properties
import Categories.Category.Monoidal.Bundle
import Categories.Category.Monoidal.Closed
import Categories.Category.Monoidal.Closed.IsClosed
import Categories.Category.Monoidal.Closed.IsClosed.Diagonal
import Categories.Category.Monoidal.Closed.IsClosed.Dinatural
import Categories.Category.Monoidal.Closed.IsClosed.Identity
import Categories.Category.Monoidal.Closed.IsClosed.L
import Categories.Category.Monoidal.Closed.IsClosed.Pentagon
import Categories.Category.Monoidal.CompactClosed
import Categories.Category.Monoidal.Construction.Minus2
import Categories.Category.Monoidal.Construction.Product
import Categories.Category.Monoidal.Core
import Categories.Category.Monoidal.Instance.Cats
import Categories.Category.Monoidal.Instance.One
import Categories.Category.Monoidal.Instance.Rels
import Categories.Category.Monoidal.Instance.Setoids
import Categories.Category.Monoidal.Instance.Sets
import Categories.Category.Monoidal.Instance.StrictCats
import Categories.Category.Monoidal.Interchange
import Categories.Category.Monoidal.Interchange.Braided
import Categories.Category.Monoidal.Interchange.Symmetric
import Categories.Category.Monoidal.Properties
import Categories.Category.Monoidal.Reasoning
import Categories.Category.Monoidal.Rigid
import Categories.Category.Monoidal.Star-Autonomous
import Categories.Category.Monoidal.Symmetric
import Categories.Category.Monoidal.Traced
import Categories.Category.Monoidal.Utilities
import Categories.Category.Product
import Categories.Category.Product.Properties
import Categories.Category.Regular
import Categories.Category.Restriction
import Categories.Category.Restriction.Construction.Trivial
import Categories.Category.Restriction.Instance.PartialFunctions
import Categories.Category.Restriction.Properties
import Categories.Category.RigCategory
import Categories.Category.Site
import Categories.Category.Slice
import Categories.Category.Slice.Properties
import Categories.Category.Species
import Categories.Category.Species.Constructions
import Categories.Category.SubCategory
import Categories.Category.Topos
import Categories.Category.Unbundled
import Categories.Category.Unbundled.Properties
import Categories.Category.Unbundled.Utilities
import Categories.CoYoneda
import Categories.Comonad
import Categories.Comonad.Relative
import Categories.Diagram.Cocone
import Categories.Diagram.Cocone.Properties
import Categories.Diagram.Coend
import Categories.Diagram.Coend.Properties
import Categories.Diagram.Coequalizer
import Categories.Diagram.Coequalizer.Properties
import Categories.Diagram.Colimit
import Categories.Diagram.Colimit.DualProperties
import Categories.Diagram.Colimit.Lan
import Categories.Diagram.Colimit.Properties
import Categories.Diagram.Cone
import Categories.Diagram.Cone.Properties
import Categories.Diagram.Cowedge
import Categories.Diagram.Cowedge.Properties
import Categories.Diagram.Duality
import Categories.Diagram.End
import Categories.Diagram.End.Properties
import Categories.Diagram.Equalizer
import Categories.Diagram.Equalizer.Indexed
import Categories.Diagram.Equalizer.Limit
import Categories.Diagram.Equalizer.Properties
import Categories.Diagram.Finite
import Categories.Diagram.KernelPair
import Categories.Diagram.Limit
import Categories.Diagram.Limit.Properties
import Categories.Diagram.Limit.Ran
import Categories.Diagram.Pullback
import Categories.Diagram.Pullback.Limit
import Categories.Diagram.Pullback.Properties
import Categories.Diagram.Pushout
import Categories.Diagram.Pushout.Properties
import Categories.Diagram.ReflexivePair
import Categories.Diagram.SubobjectClassifier
import Categories.Diagram.Wedge
import Categories.Diagram.Wedge.Properties
import Categories.Enriched.Category
import Categories.Enriched.Category.Opposite
import Categories.Enriched.Category.Underlying
import Categories.Enriched.Functor
import Categories.Enriched.NaturalTransformation
import Categories.Enriched.NaturalTransformation.NaturalIsomorphism
import Categories.Enriched.Over.One
import Categories.Enriched.Over.Setoids
import Categories.Functor
import Categories.Functor.Algebra
import Categories.Functor.Bifunctor
import Categories.Functor.Bifunctor.Properties
import Categories.Functor.Cartesian
import Categories.Functor.Cartesian.Properties
import Categories.Functor.Coalgebra
import Categories.Functor.Construction.Constant
import Categories.Functor.Construction.Diagonal
import Categories.Functor.Construction.FromDiscrete
import Categories.Functor.Construction.LiftSetoids
import Categories.Functor.Construction.Limit
import Categories.Functor.Construction.ObjectRestriction
import Categories.Functor.Construction.PathsOf
import Categories.Functor.Construction.SubCategory
import Categories.Functor.Construction.SubCategory.Properties
import Categories.Functor.Construction.Zero
import Categories.Functor.Core
import Categories.Functor.Duality
import Categories.Functor.Equivalence
import Categories.Functor.Fibration
import Categories.Functor.Groupoid
import Categories.Functor.Hom
import Categories.Functor.Hom.Properties
import Categories.Functor.Hom.Properties.Contra
import Categories.Functor.Hom.Properties.Covariant
import Categories.Functor.IdentityOnObjects
import Categories.Functor.Instance.0-Truncation
import Categories.Functor.Instance.01-Truncation
import Categories.Functor.Instance.Core
import Categories.Functor.Instance.Discrete
import Categories.Functor.Instance.SetoidDiscrete
import Categories.Functor.Instance.StrictCore
import Categories.Functor.Instance.Twisted
import Categories.Functor.Instance.UnderlyingQuiver
import Categories.Functor.Limits
import Categories.Functor.Monoidal
import Categories.Functor.Monoidal.Braided
import Categories.Functor.Monoidal.Construction.Product
import Categories.Functor.Monoidal.PointwiseTensor
import Categories.Functor.Monoidal.Properties
import Categories.Functor.Monoidal.Symmetric
import Categories.Functor.Monoidal.Tensor
import Categories.Functor.Power
import Categories.Functor.Power.Functorial
import Categories.Functor.Power.NaturalTransformation
import Categories.Functor.Presheaf
import Categories.Functor.Profunctor
import Categories.Functor.Properties
import Categories.Functor.Representable
import Categories.Functor.Restriction
import Categories.Functor.Slice
import Categories.GlobularSet
import Categories.Kan
import Categories.Kan.Duality
import Categories.Minus2-Category
import Categories.Minus2-Category.Construction.Indiscrete
import Categories.Minus2-Category.Instance.One
import Categories.Minus2-Category.Properties
import Categories.Monad
import Categories.Monad.Duality
import Categories.Monad.Idempotent
import Categories.Monad.Relative
import Categories.Monad.Strong
import Categories.Morphism
import Categories.Morphism.Cartesian
import Categories.Morphism.Duality
import Categories.Morphism.HeterogeneousIdentity
import Categories.Morphism.HeterogeneousIdentity.Properties
import Categories.Morphism.Idempotent
import Categories.Morphism.Idempotent.Bundles
import Categories.Morphism.IsoEquiv
import Categories.Morphism.Isomorphism
import Categories.Morphism.Normal
import Categories.Morphism.Notation
import Categories.Morphism.Properties
import Categories.Morphism.Reasoning
import Categories.Morphism.Reasoning.Core
import Categories.Morphism.Reasoning.Iso
import Categories.Morphism.Regular
import Categories.Morphism.Universal
import Categories.Multi.Category.Indexed
import Categories.NaturalTransformation
import Categories.NaturalTransformation.Core
import Categories.NaturalTransformation.Dinatural
import Categories.NaturalTransformation.Equivalence
import Categories.NaturalTransformation.Extranatural
import Categories.NaturalTransformation.Hom
import Categories.NaturalTransformation.Monoidal
import Categories.NaturalTransformation.Monoidal.Braided
import Categories.NaturalTransformation.Monoidal.Symmetric
import Categories.NaturalTransformation.NaturalIsomorphism
import Categories.NaturalTransformation.NaturalIsomorphism.Equivalence
import Categories.NaturalTransformation.NaturalIsomorphism.Functors
import Categories.NaturalTransformation.NaturalIsomorphism.Monoidal
import Categories.NaturalTransformation.NaturalIsomorphism.Monoidal.Braided
import Categories.NaturalTransformation.NaturalIsomorphism.Monoidal.Symmetric
import Categories.NaturalTransformation.NaturalIsomorphism.Properties
import Categories.NaturalTransformation.Properties
import Categories.Object.Biproduct
import Categories.Object.Cokernel
import Categories.Object.Coproduct
import Categories.Object.Duality
import Categories.Object.Exponential
import Categories.Object.Initial
import Categories.Object.Kernel
import Categories.Object.Kernel.Properties
import Categories.Object.Monoid
import Categories.Object.NaturalNumber
import Categories.Object.NaturalNumber.Properties.F-Algebras
import Categories.Object.Product
import Categories.Object.Product.Construction
import Categories.Object.Product.Core
import Categories.Object.Product.Indexed
import Categories.Object.Product.Indexed.Properties
import Categories.Object.Product.Limit
import Categories.Object.Product.Morphisms
import Categories.Object.Subobject
import Categories.Object.Subobject.Properties
import Categories.Object.Terminal
import Categories.Object.Terminal.Limit
import Categories.Object.Zero
import Categories.Pseudofunctor
import Categories.Pseudofunctor.Composition
import Categories.Pseudofunctor.Hom
import Categories.Pseudofunctor.Identity
import Categories.Pseudofunctor.Instance.EnrichedUnderlying
import Categories.Tactic.Category
import Categories.Theory.Lawvere
import Categories.Theory.Lawvere.Instance.Identity
import Categories.Theory.Lawvere.Instance.Triv
import Categories.Utils.EqReasoning
import Categories.Utils.Product
import Categories.Yoneda
import Categories.Yoneda.Continuous
import Categories.Yoneda.Properties
import Data.Quiver
import Data.Quiver.Morphism
import Data.Quiver.Paths
import Relation.Binary.PropositionalEquality.Subst.Properties
| 44.740291
| 78
| 0.892475
|
3d973c37d8f3c5ed2d2af1b312e0cf7b4181f7bf
| 1,026
|
agda
|
Agda
|
test/asset/agda-stdlib-1.0/Data/List/Reverse.agda
|
omega12345/agda-mode
|
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
|
[
"MIT"
] | 5
|
2020-10-07T12:07:53.000Z
|
2020-10-10T21:41:32.000Z
|
test/asset/agda-stdlib-1.0/Data/List/Reverse.agda
|
omega12345/agda-mode
|
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
|
[
"MIT"
] | null | null | null |
test/asset/agda-stdlib-1.0/Data/List/Reverse.agda
|
omega12345/agda-mode
|
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
|
[
"MIT"
] | 1
|
2021-11-04T06:54:45.000Z
|
2021-11-04T06:54:45.000Z
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Reverse view
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.List.Reverse where
open import Data.List.Base as L hiding (reverse)
open import Data.List.Properties
open import Function
open import Relation.Binary.PropositionalEquality
-- If you want to traverse a list from the end, then you can use the
-- reverse view of it.
infixl 5 _∶_∶ʳ_
data Reverse {a} {A : Set a} : List A → Set a where
[] : Reverse []
_∶_∶ʳ_ : ∀ xs (rs : Reverse xs) (x : A) → Reverse (xs ∷ʳ x)
module _ {a} {A : Set a} where
reverse : (xs : List A) → Reverse (L.reverse xs)
reverse [] = []
reverse (x ∷ xs) = cast $ _ ∶ reverse xs ∶ʳ x where
cast = subst Reverse (sym $ unfold-reverse x xs)
reverseView : (xs : List A) → Reverse xs
reverseView xs = cast $ reverse (L.reverse xs) where
cast = subst Reverse (reverse-involutive xs)
| 29.314286
| 72
| 0.559454
|
fb28682470add9af6d1557c4d47022951e27917a
| 3,939
|
agda
|
Agda
|
test/Succeed/Issue1324.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Succeed/Issue1324.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Succeed/Issue1324.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
------------------------------------------------------------------------
-- Library stuff
data ⊥ : Set where
record ⊤ : Set where
constructor tt
data Bool : Set where
true false : Bool
if_then_else_ : ∀ {A : Set} → Bool → A → A → A
if true then t else f = t
if false then t else f = f
data ℕ : Set where
zero : ℕ
suc : ℕ → ℕ
{-# BUILTIN NATURAL ℕ #-}
_∸_ : ℕ → ℕ → ℕ
m ∸ zero = m
zero ∸ suc n = zero
suc m ∸ suc n = m ∸ n
_≤_ : ℕ → ℕ → Bool
zero ≤ n = true
suc m ≤ zero = false
suc m ≤ suc n = m ≤ n
data _⊎_ (A : Set) (B : Set) : Set where
inj₁ : (x : A) → A ⊎ B
inj₂ : (y : B) → A ⊎ B
[_,_]₁ : ∀ {A : Set} {B : Set} {C : A ⊎ B → Set₁} →
((x : A) → C (inj₁ x)) → ((x : B) → C (inj₂ x)) →
((x : A ⊎ B) → C x)
[ f , g ]₁ (inj₁ x) = f x
[ f , g ]₁ (inj₂ y) = g y
data _≡_ {A : Set}(x : A) : A → Set where
refl : x ≡ x
record Σ (X : Set) (Y : X → Set) : Set where
constructor _,_
field
proj₁ : X
proj₂ : Y proj₁
_×_ : Set → Set → Set
X × Y = Σ X λ _ → Y
record Sig : Set₁ where
constructor _◃_
field
Parameter : Set
Arity : Parameter → Set
open Sig public
⟦_⟧ : Sig → Set → Set
⟦ P ◃ A ⟧ X = Σ P λ p → A p → X
Alg : Sig → Set → Set
Alg Σ X = ⟦ Σ ⟧ X → X
data μ (C : Sig) : Set where
sup : Alg C (μ C)
const^C : Set → Sig
const^C X = X ◃ λ _ → ⊥
_⊎^C_ : Sig → Sig → Sig
(P₁ ◃ A₁) ⊎^C (P₂ ◃ A₂) = (P₁ ⊎ P₂) ◃ [ A₁ , A₂ ]₁
_⋆^C_ : Sig → Set → Sig
C ⋆^C X = const^C X ⊎^C C
_⋆_ : Sig → Set → Set
C ⋆ X = μ (C ⋆^C X)
act : ∀ {C X} → Alg C (C ⋆ X)
act (p , k) = sup (inj₂ p , k)
record Monad (T : Set → Set) : Set₁ where
infixl 1 _>>=_
field
return : ∀ {X} → X → T X
_>>=_ : ∀ {X Y} → T X → (X → T Y) → T Y
monad : ∀ {Σ} → Monad (_⋆_ Σ)
monad {Σ} = record
{ return = λ x → sup (inj₁ x , λ ())
; _>>=_ = _>>=_
}
where
_>>=_ : ∀ {X Y} → Σ ⋆ X → (X → Σ ⋆ Y) → Σ ⋆ Y
sup (inj₁ x , _) >>= f = f x
sup (inj₂ p , k) >>= f = act (p , λ a → k a >>= f)
generic : ∀ {Σ} (p : Parameter Σ) → Σ ⋆ Arity Σ p
generic p = act (p , return)
where
open Monad monad
------------------------------------------------------------------------
-- Example
Π : (X : Set) → (X → Set) → Set
Π X Y = (x : X) → (X ◃ Y) ⋆ Y x
call : ∀ {X Y} → Π X Y
call x = generic x
dom : ∀ {X Y} → ∀ {x} → (X ◃ Y) ⋆ Y x → (X → Set) → Set
dom (sup (inj₁ _ , _)) R = ⊤
dom {Y = Y} (sup (inj₂ x , k)) R
= R x × ((y : Y x) → dom (k y) R)
data Dom {X}{Y} (f : (x : X) → (X ◃ Y) ⋆ Y x) : X → Set
where
⟨_⟩ : ∀ {x} → dom (f x) (Dom f) → Dom f x
dom-map : ∀ {X Y} {R₁ R₂ : X → Set} {x}
{w : (X ◃ Y) ⋆ Y x} →
(∀ {x} → R₁ x → R₂ x) → dom w R₁ → dom w R₂
dom-map {w = sup (inj₁ _ , _)} f _ = tt
dom-map {w = sup (inj₂ _ , _)} f (y₁ , k) =
f y₁ , λ y₂ → dom-map f (k y₂)
{-# TERMINATING #-}
bove-capretta : ∀ {X Y} (f : Π X Y) → (x : X) → Dom f x → Y x
bove-capretta {X}{Y} f x ⟨ d ⟩
= helper (f x) (dom-map (λ {x′} → bove-capretta f x′) d)
where
helper : ∀ {x} (w : (X ◃ Y) ⋆ Y x) → dom w Y → Y x
helper (sup (inj₁ y , _)) _ = y
helper (sup (inj₂ _ , k)) (d , dk) = helper (k d) (dk d)
-- AIM XXIX, 2019-03-18, issue #3597
-- Freezing cannot be prevented by eta-expansion any more.
-- WAS:
-- module _ where
-- open Monad monad
--
-- Ulf: proper use of monad would be this:
-- module _ where
-- open module M {Σ} = Monad (monad {Σ})
--
-- Andreas: this works because metas in module parameters are not frozed immediately
module _ (open Monad monad) where
gcd : Π (ℕ × ℕ) (λ _ → ℕ)
gcd (0 , n) = return n
gcd (m , 0) = return m
gcd (suc m , suc n) = if m ≤ n
then call (suc m , (n ∸ m))
else call ((m ∸ n) , suc n)
acc : Dom gcd (8 , 12)
acc = ⟨ ⟨ ⟨ ⟨ _ ⟩ , _ ⟩ , _ ⟩ , _ ⟩ -- ⟨ ⟨ ⟨ ⟨ tt ⟩ , (λ _ → tt) ⟩ , (λ _ → tt) ⟩ , (λ _ → tt) ⟩
test-gcd′ : bove-capretta gcd (8 , 12) acc ≡ 4
test-gcd′ = refl
| 23.586826
| 96
| 0.44199
|
580a11db74be97a3a50f2ff2952bfbebcc83ca5e
| 8,013
|
agda
|
Agda
|
Cubical/Algebra/Lattice/Base.agda
|
guilhermehas/cubical
|
ce3120d3f8d692847b2744162bcd7a01f0b687eb
|
[
"MIT"
] | 1
|
2021-10-31T17:32:49.000Z
|
2021-10-31T17:32:49.000Z
|
Cubical/Algebra/Lattice/Base.agda
|
guilhermehas/cubical
|
ce3120d3f8d692847b2744162bcd7a01f0b687eb
|
[
"MIT"
] | null | null | null |
Cubical/Algebra/Lattice/Base.agda
|
guilhermehas/cubical
|
ce3120d3f8d692847b2744162bcd7a01f0b687eb
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --safe #-}
module Cubical.Algebra.Lattice.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Equiv.HalfAdjoint
open import Cubical.Foundations.Function
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.Transport
open import Cubical.Foundations.SIP
open import Cubical.Data.Sigma
open import Cubical.Algebra.Semigroup
open import Cubical.Algebra.Monoid
open import Cubical.Algebra.CommMonoid
open import Cubical.Algebra.Semilattice
open import Cubical.Displayed.Base
open import Cubical.Displayed.Auto
open import Cubical.Displayed.Record
open import Cubical.Displayed.Universe
open import Cubical.Reflection.RecordEquiv
open Iso
private
variable
ℓ ℓ' : Level
record IsLattice {L : Type ℓ}
(0l 1l : L) (_∨l_ _∧l_ : L → L → L) : Type ℓ where
constructor islattice
field
joinSemilattice : IsSemilattice 0l _∨l_
meetSemilattice : IsSemilattice 1l _∧l_
absorb : (x y : L) → (x ∨l (x ∧l y) ≡ x)
× (x ∧l (x ∨l y) ≡ x)
open IsSemilattice joinSemilattice public
renaming
( assoc to ∨lAssoc
; identity to ∨lIdentity
; lid to ∨lLid
; rid to ∨lRid
; comm to ∨lComm
; idem to ∨lIdem
; isCommMonoid to ∨lIsCommMonoid
; isMonoid to ∨lIsMonoid
; isSemigroup to ∨lIsSemigroup )
open IsSemilattice meetSemilattice public
renaming
( assoc to ∧lAssoc
; identity to ∧lIdentity
; lid to ∧lLid
; rid to ∧lRid
; comm to ∧lComm
; idem to ∧lIdem
; isCommMonoid to ∧lIsCommMonoid
; isMonoid to ∧lIsMonoid
; isSemigroup to ∧lIsSemigroup )
hiding
( is-set )
∨lAbsorb∧l : (x y : L) → x ∨l (x ∧l y) ≡ x
∨lAbsorb∧l x y = absorb x y .fst
∧lAbsorb∨l : (x y : L) → x ∧l (x ∨l y) ≡ x
∧lAbsorb∨l x y = absorb x y .snd
record LatticeStr (A : Type ℓ) : Type (ℓ-suc ℓ) where
constructor latticestr
field
0l : A
1l : A
_∨l_ : A → A → A
_∧l_ : A → A → A
isLattice : IsLattice 0l 1l _∨l_ _∧l_
infix 6 _∨l_
infix 6 _∧l_
open IsLattice isLattice public
Lattice : ∀ ℓ → Type (ℓ-suc ℓ)
Lattice ℓ = TypeWithStr ℓ LatticeStr
isSetLattice : (L : Lattice ℓ) → isSet ⟨ L ⟩
isSetLattice L = L .snd .LatticeStr.is-set
makeIsLattice : {L : Type ℓ} {0l 1l : L} {_∨l_ _∧l_ : L → L → L}
(is-setL : isSet L)
(∨l-assoc : (x y z : L) → x ∨l (y ∨l z) ≡ (x ∨l y) ∨l z)
(∨l-rid : (x : L) → x ∨l 0l ≡ x)
(∨l-lid : (x : L) → 0l ∨l x ≡ x)
(∨l-comm : (x y : L) → x ∨l y ≡ y ∨l x)
(∧l-assoc : (x y z : L) → x ∧l (y ∧l z) ≡ (x ∧l y) ∧l z)
(∧l-rid : (x : L) → x ∧l 1l ≡ x)
(∧l-lid : (x : L) → 1l ∧l x ≡ x)
(∧l-comm : (x y : L) → x ∧l y ≡ y ∧l x)
(∨l-absorb-∧l : (x y : L) → x ∨l (x ∧l y) ≡ x)
(∧l-absorb-∨l : (x y : L) → x ∧l (x ∨l y) ≡ x)
→ IsLattice 0l 1l _∨l_ _∧l_
makeIsLattice {0l = 0l} {1l = 1l} {_∨l_ = _∨l_} {_∧l_ = _∧l_}
is-setL ∨l-assoc ∨l-rid ∨l-lid ∨l-comm
∧l-assoc ∧l-rid ∧l-lid ∧l-comm ∨l-absorb-∧l ∧l-absorb-∨l =
islattice (makeIsSemilattice is-setL ∨l-assoc ∨l-rid ∨l-lid ∨l-comm ∨l-idem)
(makeIsSemilattice is-setL ∧l-assoc ∧l-rid ∧l-lid ∧l-comm ∧l-idem)
λ x y → ∨l-absorb-∧l x y , ∧l-absorb-∨l x y
where
∨l-idem : ∀ x → x ∨l x ≡ x
∨l-idem x = cong (x ∨l_) (sym (∧l-rid _)) ∙ ∨l-absorb-∧l _ _
∧l-idem : ∀ x → x ∧l x ≡ x
∧l-idem x = cong (x ∧l_) (sym (∨l-rid _)) ∙ ∧l-absorb-∨l _ _
makeLattice : {L : Type ℓ} (0l 1l : L) (_∨l_ _∧l_ : L → L → L)
(is-setL : isSet L)
(∨l-assoc : (x y z : L) → x ∨l (y ∨l z) ≡ (x ∨l y) ∨l z)
(∨l-rid : (x : L) → x ∨l 0l ≡ x)
(∨l-lid : (x : L) → 0l ∨l x ≡ x)
(∨l-comm : (x y : L) → x ∨l y ≡ y ∨l x)
(∨l-idem : (x : L) → x ∨l x ≡ x)
(∧l-assoc : (x y z : L) → x ∧l (y ∧l z) ≡ (x ∧l y) ∧l z)
(∧l-rid : (x : L) → x ∧l 1l ≡ x)
(∧l-lid : (x : L) → 1l ∧l x ≡ x)
(∧l-comm : (x y : L) → x ∧l y ≡ y ∧l x)
(∧l-idem : (x : L) → x ∧l x ≡ x)
(∨l-absorb-∧l : (x y : L) → x ∨l (x ∧l y) ≡ x)
(∧l-absorb-∨l : (x y : L) → x ∧l (x ∨l y) ≡ x)
→ Lattice ℓ
makeLattice 0l 1l _∨l_ _∧l_ is-setL ∨l-assoc ∨l-rid ∨l-lid ∨l-comm ∨l-idem
∧l-assoc ∧l-rid ∧l-lid ∧l-comm ∧l-idem ∨l-absorb-∧l ∧l-absorb-∨l =
_ , latticestr 0l 1l _∨l_ _∧l_
(makeIsLattice is-setL ∨l-assoc ∨l-rid ∨l-lid ∨l-comm
∧l-assoc ∧l-rid ∧l-lid ∧l-comm ∨l-absorb-∧l ∧l-absorb-∨l)
record IsLatticeHom {A : Type ℓ} {B : Type ℓ'} (L : LatticeStr A) (f : A → B) (M : LatticeStr B)
: Type (ℓ-max ℓ ℓ')
where
-- Shorter qualified names
private
module L = LatticeStr L
module M = LatticeStr M
field
pres0 : f L.0l ≡ M.0l
pres1 : f L.1l ≡ M.1l
pres∨l : (x y : A) → f (x L.∨l y) ≡ f x M.∨l f y
pres∧l : (x y : A) → f (x L.∧l y) ≡ f x M.∧l f y
unquoteDecl IsLatticeHomIsoΣ = declareRecordIsoΣ IsLatticeHomIsoΣ (quote IsLatticeHom)
LatticeHom : (L : Lattice ℓ) (M : Lattice ℓ') → Type (ℓ-max ℓ ℓ')
LatticeHom L M = Σ[ f ∈ (⟨ L ⟩ → ⟨ M ⟩) ] IsLatticeHom (L .snd) f (M .snd)
idLatticeHom : (L : Lattice ℓ) → LatticeHom L L
fst (idLatticeHom L) x = x
IsLatticeHom.pres0 (snd (idLatticeHom L)) = refl
IsLatticeHom.pres1 (snd (idLatticeHom L)) = refl
IsLatticeHom.pres∨l (snd (idLatticeHom L)) x y = refl
IsLatticeHom.pres∧l (snd (idLatticeHom L)) x y = refl
IsLatticeEquiv : {A : Type ℓ} {B : Type ℓ'} (M : LatticeStr A) (e : A ≃ B) (N : LatticeStr B)
→ Type (ℓ-max ℓ ℓ')
IsLatticeEquiv M e N = IsLatticeHom M (e .fst) N
LatticeEquiv : (L : Lattice ℓ) (M : Lattice ℓ') → Type (ℓ-max ℓ ℓ')
LatticeEquiv L M = Σ[ e ∈ (⟨ L ⟩ ≃ ⟨ M ⟩) ] IsLatticeEquiv (L .snd) e (M .snd)
isPropIsLattice : {L : Type ℓ} (0l 1l : L) (_∨l_ _∧l_ : L → L → L)
→ isProp (IsLattice 0l 1l _∨l_ _∧l_)
isPropIsLattice 0l 1l _∨l_ _∧l_ (islattice LJ LM LA) (islattice MJ MM MA) =
λ i → islattice (isPropIsSemilattice _ _ LJ MJ i)
(isPropIsSemilattice _ _ LM MM i)
(isPropAbsorb LA MA i)
where
isSetL : isSet _
isSetL = LJ .IsSemilattice.isCommMonoid .IsCommMonoid.isMonoid
.IsMonoid.isSemigroup .IsSemigroup.is-set
isPropAbsorb : isProp ((x y : _) → (x ∨l (x ∧l y) ≡ x) × (x ∧l (x ∨l y) ≡ x))
isPropAbsorb = isPropΠ2 λ _ _ → isProp× (isSetL _ _) (isSetL _ _)
isPropIsLatticeHom : {A : Type ℓ} {B : Type ℓ'} (R : LatticeStr A) (f : A → B) (S : LatticeStr B)
→ isProp (IsLatticeHom R f S)
isPropIsLatticeHom R f S = isOfHLevelRetractFromIso 1 IsLatticeHomIsoΣ
(isProp×3 (isSetLattice (_ , S) _ _)
(isSetLattice (_ , S) _ _)
(isPropΠ2 λ _ _ → isSetLattice (_ , S) _ _)
(isPropΠ2 λ _ _ → isSetLattice (_ , S) _ _))
𝒮ᴰ-Lattice : DUARel (𝒮-Univ ℓ) LatticeStr ℓ
𝒮ᴰ-Lattice =
𝒮ᴰ-Record (𝒮-Univ _) IsLatticeEquiv
(fields:
data[ 0l ∣ null ∣ pres0 ]
data[ 1l ∣ null ∣ pres1 ]
data[ _∨l_ ∣ bin ∣ pres∨l ]
data[ _∧l_ ∣ bin ∣ pres∧l ]
prop[ isLattice ∣ (λ _ _ → isPropIsLattice _ _ _ _) ])
where
open LatticeStr
open IsLatticeHom
-- faster with some sharing
null = autoDUARel (𝒮-Univ _) (λ A → A)
bin = autoDUARel (𝒮-Univ _) (λ A → A → A → A)
LatticePath : (L M : Lattice ℓ) → LatticeEquiv L M ≃ (L ≡ M)
LatticePath = ∫ 𝒮ᴰ-Lattice .UARel.ua
Lattice→JoinSemilattice : Lattice ℓ → Semilattice ℓ
Lattice→JoinSemilattice (A , latticestr _ _ _ _ L) = semilattice _ _ _ (L .IsLattice.joinSemilattice )
Lattice→MeetSemilattice : Lattice ℓ → Semilattice ℓ
Lattice→MeetSemilattice (A , latticestr _ _ _ _ L) = semilattice _ _ _ (L .IsLattice.meetSemilattice )
| 34.538793
| 102
| 0.555472
|
0b0efefaf6555c6c82ff2a6f6220ad4c1e9930c1
| 148
|
agda
|
Agda
|
test/interaction/Issue3032.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/interaction/Issue3032.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/interaction/Issue3032.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
postulate
A : Set
B : Set
t : B
data C : (b : B) → Set
foo : (b : B) → C b → B
data C where
c : (x : C t) → C (foo t x)
foo b x = {!x!}
| 10.571429
| 29
| 0.425676
|
a149bb1e877edf01aedc8d49b43c99b78a2f8302
| 12,702
|
agda
|
Agda
|
theorems/cw/cohomology/ReconstructedCochainsEquivCellularCochains.agda
|
AntoineAllioux/HoTT-Agda
|
1037d82edcf29b620677a311dcfd4fc2ade2faa6
|
[
"MIT"
] | 294
|
2015-01-09T16:23:23.000Z
|
2022-03-20T13:54:45.000Z
|
theorems/cw/cohomology/ReconstructedCochainsEquivCellularCochains.agda
|
AntoineAllioux/HoTT-Agda
|
1037d82edcf29b620677a311dcfd4fc2ade2faa6
|
[
"MIT"
] | 31
|
2015-03-05T20:09:00.000Z
|
2021-10-03T19:15:25.000Z
|
theorems/cw/cohomology/ReconstructedCochainsEquivCellularCochains.agda
|
AntoineAllioux/HoTT-Agda
|
1037d82edcf29b620677a311dcfd4fc2ade2faa6
|
[
"MIT"
] | 50
|
2015-01-10T01:48:08.000Z
|
2022-02-14T03:03:25.000Z
|
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
open import cw.CW
open import cw.FinCW
open import cw.FinBoundary
open import cohomology.Theory
open import cohomology.ChainComplex
module cw.cohomology.ReconstructedCochainsEquivCellularCochains
(OT : OrdinaryTheory lzero) where
open OrdinaryTheory OT
open import cw.cohomology.cellular.ChainComplex as CCC
open import cw.cohomology.reconstructed.cochain.Complex OT as RCC
open import cw.cohomology.ReconstructedCochainsIsoCellularCochains OT
open import cw.cohomology.cochainequiv.AugmentCommSquare OT
open import cw.cohomology.cochainequiv.FirstCoboundaryCommSquare OT
open import cw.cohomology.cochainequiv.HigherCoboundaryCommSquare OT
private
frcc-comm-fccc-Type : ∀ {n} (⊙fin-skel : ⊙FinSkeleton n)
{m} (m≤n? : Dec (m ≤ n)) (Sm≤n? : Dec (S m ≤ n))
(coboundary : AbGroup.grp (RCC.cochain-template ⊙⦉ ⊙fin-skel ⦊ m≤n?)
→ᴳ AbGroup.grp (RCC.cochain-template ⊙⦉ ⊙fin-skel ⦊ Sm≤n?))
(boundary : AbGroup.grp (CCC.chain-template ⦉ ⊙FinSkeleton.skel ⊙fin-skel ⦊ Sm≤n?)
→ᴳ AbGroup.grp (CCC.chain-template ⦉ ⊙FinSkeleton.skel ⊙fin-skel ⦊ m≤n?))
→ Type₀
frcc-comm-fccc-Type {n} ⊙fin-skel {m} m≤n? Sm≤n? coboundary boundary =
CommSquareᴳ
coboundary
(pre∘ᴳ-hom (C2-abgroup 0) boundary)
(GroupIso.f-hom (rcc-iso-ccc-template ⊙⦉ ⊙fin-skel ⦊ m≤n?
(⊙FinSkeleton-has-cells-with-choice 0 ⊙fin-skel lzero)))
(GroupIso.f-hom (rcc-iso-ccc-template ⊙⦉ ⊙fin-skel ⦊ Sm≤n?
(⊙FinSkeleton-has-cells-with-choice 0 ⊙fin-skel lzero)))
CCC-boundary-template' : ∀ {n} (⊙fin-skel : ⊙FinSkeleton n)
→ {m : ℕ} (m≤n? : Dec (m ≤ n)) (Sm≤n? : Dec (S m ≤ n))
→ AbGroup.grp (CCC.chain-template ⦉ ⊙FinSkeleton.skel ⊙fin-skel ⦊ Sm≤n?)
→ᴳ AbGroup.grp (CCC.chain-template ⦉ ⊙FinSkeleton.skel ⊙fin-skel ⦊ m≤n?)
CCC-boundary-template' ⊙fin-skel =
CCC.boundary-template ⦉ ⊙FinSkeleton.skel ⊙fin-skel ⦊
(FinSkeleton-has-cells-with-dec-eq (⊙FinSkeleton.skel ⊙fin-skel))
(FinSkeleton-has-degrees-with-finite-support (⊙FinSkeleton.skel ⊙fin-skel))
RCC-coboundary-template' : ∀ {n} (⊙fin-skel : ⊙FinSkeleton n)
→ {m : ℕ} (m≤n? : Dec (m ≤ n)) (Sm≤n? : Dec (S m ≤ n))
→ AbGroup.grp (RCC.cochain-template ⊙⦉ ⊙fin-skel ⦊ m≤n?)
→ᴳ AbGroup.grp (RCC.cochain-template ⊙⦉ ⊙fin-skel ⦊ Sm≤n?)
RCC-coboundary-template' ⊙fin-skel = RCC.coboundary-template ⊙⦉ ⊙fin-skel ⦊
abstract
{- This can be directly generalized to the non-finite cases. -}
frcc-comm-fccc-above : ∀ {n} (⊙fin-skel : ⊙FinSkeleton n)
{m} (m≤n? : Dec (m ≤ n)) (Sm≰n : ¬ (S m ≤ n))
→ frcc-comm-fccc-Type ⊙fin-skel m≤n? (inr Sm≰n)
(RCC-coboundary-template' ⊙fin-skel m≤n? (inr Sm≰n))
(CCC-boundary-template' ⊙fin-skel m≤n? (inr Sm≰n))
frcc-comm-fccc-above ⊙fin-skel m≤n? Sm≰n =
(comm-sqrᴳ λ g → group-hom= $ λ= λ _ →
! $ GroupHom.pres-ident
(GroupIso.f
(rcc-iso-ccc-template ⊙⦉ ⊙fin-skel ⦊ m≤n?
(⊙FinSkeleton-has-cells-with-choice 0 ⊙fin-skel lzero)) g))
frcc-comm-fccc-nth-zero : ∀ {n} (⊙fin-skel : ⊙FinSkeleton n) (0≤n : 0 ≤ n) (1≤n : 1 ≤ n)
→ frcc-comm-fccc-Type ⊙fin-skel (inl 0≤n) (inl 1≤n)
(RCC-coboundary-template' ⊙fin-skel (inl 0≤n) (inl 1≤n))
(CCC-boundary-template' ⊙fin-skel (inl 0≤n) (inl 1≤n))
frcc-comm-fccc-nth-zero ⊙fin-skel (inl idp) (inl 1=0) = ⊥-rec (ℕ-S≠O O 1=0)
frcc-comm-fccc-nth-zero ⊙fin-skel (inl idp) (inr ())
frcc-comm-fccc-nth-zero ⊙fin-skel (inr ltS) (inl 1=1) =
transport!
(λ 1=1 → frcc-comm-fccc-Type ⊙fin-skel (inl lteS) (inl (inl 1=1))
(RCC-coboundary-template' ⊙fin-skel (inl lteS) (inl (inl 1=1)))
(CCC-boundary-template' ⊙fin-skel (inl lteS) (inl (inl 1=1))))
(prop-has-all-paths 1=1 idp)
(coe!
(ap2 (λ p₁ p₂ → frcc-comm-fccc-Type ⊙fin-skel {m = O} (inl (inr ltS)) (inl (inl idp)) p₁ p₂)
(RCC.coboundary-first-template-β ⊙⦉ ⊙fin-skel ⦊)
(CCC.boundary-template-β ⦉ ⊙FinSkeleton.skel ⊙fin-skel ⦊
(FinSkeleton-has-cells-with-dec-eq (⊙FinSkeleton.skel ⊙fin-skel))
(FinSkeleton-has-degrees-with-finite-support (⊙FinSkeleton.skel ⊙fin-skel))))
(fst (first-coboundary-comm-sqrᴳ ⊙fin-skel)))
frcc-comm-fccc-nth-zero ⊙fin-skel (inr ltS) (inr (ltSR ()))
frcc-comm-fccc-nth-zero ⊙fin-skel (inr (ltSR 0<n)) (inl 1=Sn) = ⊥-rec (<-to-≠ (<-ap-S 0<n) 1=Sn)
frcc-comm-fccc-nth-zero ⊙fin-skel (inr (ltSR ltS)) (inr 1<2) =
transport!
(λ 1<2 → frcc-comm-fccc-Type ⊙fin-skel (inl (inr (ltSR ltS))) (inl (inr 1<2))
(RCC-coboundary-template' ⊙fin-skel (inl (inr (ltSR ltS))) (inl (inr 1<2)))
(CCC-boundary-template' ⊙fin-skel (inl (inr (ltSR ltS))) (inl (inr 1<2))))
(prop-has-all-paths 1<2 ltS)
(coe!
(ap2 (λ p₁ p₂ → frcc-comm-fccc-Type ⊙fin-skel (inl (inr (ltSR ltS))) (inl (inr ltS)) p₁ p₂)
(RCC.coboundary-first-template-descend-from-two ⊙⦉ ⊙fin-skel ⦊)
(CCC.boundary-template-descend-from-two-above ⦉ ⊙FinSkeleton.skel ⊙fin-skel ⦊
(FinSkeleton-has-cells-with-dec-eq (⊙FinSkeleton.skel ⊙fin-skel))
(FinSkeleton-has-degrees-with-finite-support (⊙FinSkeleton.skel ⊙fin-skel))))
(frcc-comm-fccc-nth-zero (⊙fcw-init ⊙fin-skel) (inr ltS) (inl idp)))
frcc-comm-fccc-nth-zero ⊙fin-skel (inr (ltSR (ltSR ()))) (inr ltS)
frcc-comm-fccc-nth-zero ⊙fin-skel (inr (ltSR (ltSR 0<n))) (inr (ltSR 1<Sn)) =
(coe!
(ap2 (λ p₁ p₂ → frcc-comm-fccc-Type ⊙fin-skel (inl (inr (ltSR (ltSR 0<n)))) (inl (inr (ltSR 1<Sn))) p₁ p₂)
(RCC.coboundary-first-template-descend-from-far ⊙⦉ ⊙fin-skel ⦊ (ltSR 0<n) 1<Sn)
(CCC.boundary-template-descend-from-far ⦉ ⊙FinSkeleton.skel ⊙fin-skel ⦊
(FinSkeleton-has-cells-with-dec-eq (⊙FinSkeleton.skel ⊙fin-skel))
(FinSkeleton-has-degrees-with-finite-support (⊙FinSkeleton.skel ⊙fin-skel))
(ltSR 0<n) 1<Sn))
(frcc-comm-fccc-nth-zero (⊙fcw-init ⊙fin-skel) (inr (ltSR 0<n)) (inr 1<Sn)))
frcc-comm-fccc-nth-higher : ∀ {n} (⊙fin-skel : ⊙FinSkeleton n) {m} (Sm≤n : S m ≤ n) (SSm≤n : S (S m) ≤ n)
→ frcc-comm-fccc-Type ⊙fin-skel (inl Sm≤n) (inl SSm≤n)
(RCC-coboundary-template' ⊙fin-skel (inl Sm≤n) (inl SSm≤n))
(CCC-boundary-template' ⊙fin-skel (inl Sm≤n) (inl SSm≤n))
frcc-comm-fccc-nth-higher ⊙fin-skel (inl idp) (inl SSm=Sm) = ⊥-rec (<-to-≠ ltS (! SSm=Sm))
frcc-comm-fccc-nth-higher ⊙fin-skel (inl idp) (inr SSm<Sm) = ⊥-rec (<-to-≠ (<-trans SSm<Sm ltS) idp)
frcc-comm-fccc-nth-higher ⊙fin-skel {m} (inr ltS) (inl SSm=SSm) =
transport!
(λ SSm=SSm → frcc-comm-fccc-Type ⊙fin-skel (inl lteS) (inl (inl SSm=SSm))
(RCC-coboundary-template' ⊙fin-skel (inl lteS) (inl (inl SSm=SSm)))
(CCC-boundary-template' ⊙fin-skel (inl lteS) (inl (inl SSm=SSm))))
(prop-has-all-paths SSm=SSm idp)
(coe!
(ap2 (λ p₁ p₂ → frcc-comm-fccc-Type ⊙fin-skel {m = S m} (inl (inr ltS)) (inl (inl idp)) p₁ p₂)
(RCC.coboundary-higher-template-β ⊙⦉ ⊙fin-skel ⦊)
(CCC.boundary-template-β ⦉ ⊙FinSkeleton.skel ⊙fin-skel ⦊
(FinSkeleton-has-cells-with-dec-eq (⊙FinSkeleton.skel ⊙fin-skel))
(FinSkeleton-has-degrees-with-finite-support (⊙FinSkeleton.skel ⊙fin-skel))))
(fst (higher-coboundary-comm-sqrᴳ ⊙fin-skel)))
frcc-comm-fccc-nth-higher ⊙fin-skel (inr ltS) (inr SSm<SSm) = ⊥-rec (<-to-≠ SSm<SSm idp)
frcc-comm-fccc-nth-higher ⊙fin-skel (inr (ltSR Sm<n)) (inl SSm=Sn) = ⊥-rec (<-to-≠ (<-ap-S Sm<n) SSm=Sn)
frcc-comm-fccc-nth-higher ⊙fin-skel (inr (ltSR ltS)) (inr SSm<SSSm) =
transport!
(λ SSm<SSSm → frcc-comm-fccc-Type ⊙fin-skel (inl (inr (ltSR ltS))) (inl (inr SSm<SSSm))
(RCC-coboundary-template' ⊙fin-skel (inl (inr (ltSR ltS))) (inl (inr SSm<SSSm)))
(CCC-boundary-template' ⊙fin-skel (inl (inr (ltSR ltS))) (inl (inr SSm<SSSm))))
(prop-has-all-paths SSm<SSSm ltS)
(coe!
(ap2 (λ p₁ p₂ → frcc-comm-fccc-Type ⊙fin-skel (inl (inr (ltSR ltS))) (inl (inr ltS)) p₁ p₂)
(RCC.coboundary-higher-template-descend-from-one-above ⊙⦉ ⊙fin-skel ⦊)
(CCC.boundary-template-descend-from-two-above ⦉ ⊙FinSkeleton.skel ⊙fin-skel ⦊
(FinSkeleton-has-cells-with-dec-eq (⊙FinSkeleton.skel ⊙fin-skel))
(FinSkeleton-has-degrees-with-finite-support (⊙FinSkeleton.skel ⊙fin-skel))))
(frcc-comm-fccc-nth-higher (⊙fcw-init ⊙fin-skel) (inr ltS) (inl idp)))
frcc-comm-fccc-nth-higher ⊙fin-skel (inr (ltSR (ltSR Sm<Sm))) (inr ltS) = ⊥-rec (<-to-≠ Sm<Sm idp)
frcc-comm-fccc-nth-higher ⊙fin-skel (inr (ltSR (ltSR Sm<n))) (inr (ltSR SSm<Sn)) =
(coe!
(ap2 (λ p₁ p₂ → frcc-comm-fccc-Type ⊙fin-skel (inl (inr (ltSR (ltSR Sm<n)))) (inl (inr (ltSR SSm<Sn))) p₁ p₂)
(RCC.coboundary-higher-template-descend-from-far ⊙⦉ ⊙fin-skel ⦊ (ltSR Sm<n) SSm<Sn)
(CCC.boundary-template-descend-from-far ⦉ ⊙FinSkeleton.skel ⊙fin-skel ⦊
(FinSkeleton-has-cells-with-dec-eq (⊙FinSkeleton.skel ⊙fin-skel))
(FinSkeleton-has-degrees-with-finite-support (⊙FinSkeleton.skel ⊙fin-skel))
(ltSR Sm<n) SSm<Sn))
(frcc-comm-fccc-nth-higher (⊙fcw-init ⊙fin-skel) (inr (ltSR Sm<n)) (inr SSm<Sn)))
frcc-comm-fccc-template : ∀ {n} (⊙fin-skel : ⊙FinSkeleton n)
{m} (m≤n? : Dec (m ≤ n)) (Sm≤n? : Dec (S m ≤ n))
→ frcc-comm-fccc-Type ⊙fin-skel m≤n? Sm≤n?
(RCC-coboundary-template' ⊙fin-skel m≤n? Sm≤n?)
(CCC-boundary-template' ⊙fin-skel m≤n? Sm≤n?)
frcc-comm-fccc-template ⊙fin-skel m≤n? (inr Sm≰n) = frcc-comm-fccc-above ⊙fin-skel m≤n? Sm≰n
frcc-comm-fccc-template ⊙fin-skel (inr m≰n) (inl Sm≤n) = ⊥-rec $ m≰n (≤-trans lteS Sm≤n)
frcc-comm-fccc-template ⊙fin-skel {m = O} (inl m≤n) (inl Sm≤n) = frcc-comm-fccc-nth-zero ⊙fin-skel m≤n Sm≤n
frcc-comm-fccc-template ⊙fin-skel {m = S m} (inl Sm≤n) (inl SSm≤n) = frcc-comm-fccc-nth-higher ⊙fin-skel Sm≤n SSm≤n
frcc-comm-fccc : ∀ {n} (⊙fin-skel : ⊙FinSkeleton n) m
→ frcc-comm-fccc-Type ⊙fin-skel (≤-dec m n) (≤-dec (S m) n)
(RCC-coboundary-template' ⊙fin-skel (≤-dec m n) (≤-dec (S m) n))
(CCC-boundary-template' ⊙fin-skel (≤-dec m n) (≤-dec (S m) n))
frcc-comm-fccc {n} ⊙fin-skel m =
frcc-comm-fccc-template ⊙fin-skel {m} (≤-dec m n) (≤-dec (S m) n)
frcc-comm-fccc-augment : ∀ {n} (⊙fin-skel : ⊙FinSkeleton n)
→ CommSquareᴳ
(CochainComplex.augment (RCC.cochain-complex ⊙⦉ ⊙fin-skel ⦊))
(pre∘ᴳ-hom (C2-abgroup 0) (FreeAbelianGroup.Freeness.extend _ (Lift-abgroup {j = lzero} ℤ-abgroup) λ _ → lift 1))
(GroupIso.f-hom rhead-iso-chead)
(GroupIso.f-hom (rcc-iso-ccc-template ⊙⦉ ⊙fin-skel ⦊ (inl (O≤ n))
(⊙FinSkeleton-has-cells-with-choice 0 ⊙fin-skel lzero)))
frcc-comm-fccc-augment {n = O} ⊙fin-skel =
fst (augment-comm-sqrᴳ ⊙fin-skel)
frcc-comm-fccc-augment {n = S O} ⊙fin-skel =
frcc-comm-fccc-augment (⊙fcw-init ⊙fin-skel)
frcc-comm-fccc-augment {n = S (S n)} ⊙fin-skel =
frcc-comm-fccc-augment (⊙fcw-init ⊙fin-skel)
frcc-equiv-fccc : ∀ {n} (⊙fin-skel : ⊙FinSkeleton n) →
CochainComplexEquiv
(RCC.cochain-complex ⊙⦉ ⊙fin-skel ⦊)
(CCC.cochain-complex ⦉ ⊙FinSkeleton.skel ⊙fin-skel ⦊
(FinSkeleton-has-cells-with-dec-eq (⊙FinSkeleton.skel ⊙fin-skel))
(FinSkeleton-has-degrees-with-finite-support (⊙FinSkeleton.skel ⊙fin-skel))
(C2-abgroup 0))
frcc-equiv-fccc {n} ⊙fin-skel = record
{ head = rhead-iso-chead
; cochain = λ m → rcc-iso-ccc ⊙⦉ ⊙fin-skel ⦊ m (⊙FinSkeleton-has-cells-with-choice 0 ⊙fin-skel lzero)
; augment = frcc-comm-fccc-augment ⊙fin-skel
; coboundary = frcc-comm-fccc ⊙fin-skel}
frc-iso-fcc : ∀ {n} (⊙fin-skel : ⊙FinSkeleton n) (m : ℤ)
→ cohomology-group (RCC.cochain-complex ⊙⦉ ⊙fin-skel ⦊) m
≃ᴳ cohomology-group
(CCC.cochain-complex ⦉ ⊙FinSkeleton.skel ⊙fin-skel ⦊
(FinSkeleton-has-cells-with-dec-eq (⊙FinSkeleton.skel ⊙fin-skel))
(FinSkeleton-has-degrees-with-finite-support (⊙FinSkeleton.skel ⊙fin-skel))
(C2-abgroup 0))
m
frc-iso-fcc ⊙fin-skel = cohomology-group-emap (frcc-equiv-fccc ⊙fin-skel)
| 60.485714
| 125
| 0.591324
|
580427716fc8f33b4193a2e1f6d9086fa74c42fa
| 460
|
agda
|
Agda
|
test/Succeed/Issue3538.agda
|
zliu41/agda
|
73405f70bced057d24dd4bf122d53f9548544aba
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Succeed/Issue3538.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Succeed/Issue3538.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
{-# OPTIONS --rewriting #-}
open import Agda.Builtin.Equality
{-# BUILTIN REWRITE _≡_ #-}
module _ (Form : Set) where -- FAILS
-- postulate Form : Set -- WORKS
data Cxt : Set where
ε : Cxt
_∙_ : (Γ : Cxt) (A : Form) → Cxt
data _≤_ : (Γ Δ : Cxt) → Set where
id≤ : ∀{Γ} → Γ ≤ Γ
weak : ∀{A Γ Δ} (τ : Γ ≤ Δ) → (Γ ∙ A) ≤ Δ
lift : ∀{A Γ Δ} (τ : Γ ≤ Δ) → (Γ ∙ A) ≤ (Δ ∙ A)
postulate lift-id≤ : ∀{Γ A} → lift id≤ ≡ id≤ {Γ ∙ A}
{-# REWRITE lift-id≤ #-}
| 23
| 52
| 0.5
|
57aba13abe277a62d2890838e77d1e4287efd81d
| 14,760
|
agda
|
Agda
|
agda/sn-calculus-compatconf.agda
|
florence/esterel-calculus
|
4340bef3f8df42ab8167735d35a4cf56243a45cd
|
[
"MIT"
] | 3
|
2020-04-16T10:58:53.000Z
|
2020-07-01T03:59:31.000Z
|
agda/sn-calculus-compatconf.agda
|
florence/esterel-calculus
|
4340bef3f8df42ab8167735d35a4cf56243a45cd
|
[
"MIT"
] | null | null | null |
agda/sn-calculus-compatconf.agda
|
florence/esterel-calculus
|
4340bef3f8df42ab8167735d35a4cf56243a45cd
|
[
"MIT"
] | 1
|
2020-04-15T20:02:49.000Z
|
2020-04-15T20:02:49.000Z
|
module sn-calculus-compatconf where
open import sn-calculus
open import utility renaming (_U̬_ to _∪_)
open import context-properties
using (get-view ; ->E-view ; ->pot-view)
open import sn-calculus-compatconf.eview
using (1-steplρ-E-view)
open import sn-calculus-compatconf.pot
using (1-steplρ-pot)
open import sn-calculus-confluence
using (R-confluent)
open import Esterel.Lang
open import Esterel.Lang.Binding
open import Esterel.Lang.Properties
open import Esterel.Environment as Env
using (Env ; Θ ; _←_ ; module SigMap ; module ShrMap ; module VarMap)
open import Esterel.Context
using (EvaluationContext ; EvaluationContext1 ; _⟦_⟧e ; _≐_⟦_⟧e ;
Context ; Context1 ; _⟦_⟧c ; _≐_⟦_⟧c)
open import Esterel.CompletionCode as Code
using () renaming (CompletionCode to Code)
open import Esterel.Variable.Signal as Signal
using (Signal ; _ₛ)
open import Esterel.Variable.Shared as SharedVar
using (SharedVar ; _ₛₕ)
open import Esterel.Variable.Sequential as SeqVar
using (SeqVar ; _ᵥ)
open import Relation.Nullary
using (¬_ ; Dec ; yes ; no)
open import Relation.Binary.PropositionalEquality
using (_≡_ ; refl ; sym ; cong ; trans ; subst ; module ≡-Reasoning)
open import Data.Bool
using (Bool ; if_then_else_)
open import Data.Empty
using (⊥ ; ⊥-elim)
open import Data.List
using (List ; _∷_ ; [] ; _++_)
open import Data.List.Any
using (Any ; any ; here ; there)
open import Data.List.Any.Properties
using ()
renaming (++⁺ˡ to ++ˡ ; ++⁺ʳ to ++ʳ)
open import Data.Maybe
using (Maybe ; just ; nothing)
open import Data.Nat
using (ℕ ; zero ; suc ; _+_) renaming (_⊔_ to _⊔ℕ_)
open import Data.Product
using (Σ-syntax ; Σ ; _,_ ; _,′_ ; proj₁ ; proj₂ ; _×_ ; ∃)
open import Data.Sum
using (_⊎_ ; inj₁ ; inj₂)
open import Function using (_∘_ ; id ; _∋_)
open import Data.OrderedListMap Signal Signal.unwrap Signal.Status as SigM
open import Data.OrderedListMap SharedVar SharedVar.unwrap (Σ SharedVar.Status (λ _ → ℕ)) as ShrM
open import Data.OrderedListMap SeqVar SeqVar.unwrap ℕ as SeqM
open ->E-view
open ->pot-view
open EvaluationContext1
open _≐_⟦_⟧e
open Context1
open _≐_⟦_⟧c
open ListSet Data.Nat._≟_
1-step-sn⟶₁ : ∀{p q r BV FV} →
CorrectBinding p BV FV →
p sn⟶₁ q →
p sn⟶₁ r →
Σ[ p' ∈ Term ] (q sn⟶* p' × r sn⟶* p')
1-step-sn⟶₁ cb psn⟶₁q psn⟶₁r with R-confluent cb psn⟶₁q psn⟶₁r
... | inj₁ refl = _ , rrefl ,′ rrefl
... | inj₂ (inj₁ (_ , qsn⟶₁s , rsn⟶₁s)) =
_ , sn⟶*-inclusion (sn⟶-inclusion qsn⟶₁s) ,′ sn⟶*-inclusion (sn⟶-inclusion rsn⟶₁s)
... | inj₂ (inj₂ (inj₁ qsn⟶₁r)) =
_ , sn⟶*-inclusion (sn⟶-inclusion qsn⟶₁r) ,′ rrefl
... | inj₂ (inj₂ (inj₂ rsn⟶₁q)) =
_ , rrefl ,′ sn⟶*-inclusion (sn⟶-inclusion rsn⟶₁q)
1-steplρ : ∀{p q r θ θq BV FV A Aq} →
CorrectBinding (ρ⟨ θ , A ⟩· p) BV FV →
ρ⟨ θ , A ⟩· p sn⟶₁ ρ⟨ θq , Aq ⟩· q →
p sn⟶ r →
Σ[ p' ∈ Term ] ((ρ⟨ θq , Aq ⟩· q) sn⟶* p' × (ρ⟨ θ , A ⟩· r) sn⟶* p')
1-steplρ {p} {q} {r} cb
ρθ·psn⟶₁ρθq·q psn⟶r@(rcontext {.p} {rin} {ro} C p≐C⟦rin⟧ rinsn⟶₁ro)
with get-view ρθ·psn⟶₁ρθq·q
... | inj₂ (refl , refl , pot) =
_ , 1-steplρ-pot cb pot psn⟶r
... | inj₁ (E , qin , qo , p≐E⟦qin⟧ , q≐E⟦qo⟧ , e-view) =
_ , proj₂ (1-steplρ-E-view cb p≐E⟦qin⟧ q≐E⟦qo⟧ e-view p≐C⟦rin⟧ rinsn⟶₁ro)
1-stepl : ∀{p q r BV FV} →
CorrectBinding p BV FV →
p sn⟶₁ q →
p sn⟶ r →
Σ[ p' ∈ Term ] (q sn⟶* p' × r sn⟶* p')
1-stepl cb psn⟶₁q
(rcontext [] dchole psn⟶₁r) =
1-step-sn⟶₁ cb psn⟶₁q psn⟶₁r
1-stepl cb (rpar-done-right p' q')
(rcontext (ceval (epar₁ _) ∷ crs) (dcpar₁ dcr) psn⟶₁r) =
⊥-elim (halted-¬sn⟶ p' (rcontext _ dcr psn⟶₁r))
1-stepl cb (rpar-done-left (dhalted p') q')
(rcontext (ceval (epar₁ _) ∷ crs) (dcpar₁ dcr) psn⟶₁r) =
⊥-elim (halted-¬sn⟶ p' (rcontext _ dcr psn⟶₁r))
1-stepl cb (rpar-done-left (dpaused p') hnothin)
(rcontext (ceval (epar₁ _) ∷ crs) (dcpar₁ dcr) psn⟶₁r) =
_ ,
sn⟶*-inclusion (rcontext _ dcr psn⟶₁r) ,′
sn⟶*-inclusion (rcontext _ dchole
(rpar-done-left
(dpaused (paused-sn⟶ p' (rcontext _ dcr psn⟶₁r)))
hnothin))
1-stepl cb (rpar-done-left (dpaused p') (hexit n))
(rcontext (ceval (epar₁ _) ∷ crs) (dcpar₁ dcr) psn⟶₁r) =
_ ,
rrefl ,′
sn⟶*-inclusion (rcontext _ dchole
(rpar-done-left
(dpaused (paused-sn⟶ p' (rcontext _ dcr psn⟶₁r)))
(hexit n)))
1-stepl cb (rpar-done-right p' (dhalted q'))
(rcontext (ceval (epar₂ p₁) ∷ crs) (dcpar₂ dcr) psn⟶₁r) =
⊥-elim (halted-¬sn⟶ q' (rcontext _ dcr psn⟶₁r))
1-stepl cb (rpar-done-right hnothin (dpaused q'))
(rcontext (ceval (epar₂ .nothin) ∷ crs) (dcpar₂ dcr) psn⟶₁r) =
_ ,
sn⟶*-inclusion (rcontext _ dcr psn⟶₁r) ,′
sn⟶*-inclusion (rcontext _ dchole
(rpar-done-right
hnothin
(dpaused (paused-sn⟶ q' (rcontext _ dcr psn⟶₁r)))))
1-stepl cb (rpar-done-right (hexit n) (dpaused q'))
(rcontext (ceval (epar₂ .(exit n)) ∷ crs) (dcpar₂ dcr) psn⟶₁r) =
_ ,
rrefl ,′
sn⟶*-inclusion (rcontext _ dchole
(rpar-done-right
(hexit n)
(dpaused (paused-sn⟶ q' (rcontext _ dcr psn⟶₁r)))))
1-stepl cb (rpar-done-left p' q')
(rcontext (ceval (epar₂ p₁) ∷ crs) (dcpar₂ dcr) psn⟶₁r) =
⊥-elim (halted-¬sn⟶ q' (rcontext _ dcr psn⟶₁r))
1-stepl cb rseq-done
(rcontext _ (dcseq₁ dchole) psn⟶₁r) =
⊥-elim (halted-¬sn⟶₁ hnothin psn⟶₁r)
1-stepl cb rseq-exit
(rcontext _ (dcseq₁ dchole) psn⟶₁r) =
⊥-elim (halted-¬sn⟶₁ (hexit _) psn⟶₁r)
1-stepl cb rloopˢ-exit
(rcontext _ (dcloopˢ₁ dchole) psn⟶₁r) =
⊥-elim (halted-¬sn⟶₁ (hexit _) psn⟶₁r)
1-stepl cb (rsuspend-done p')
(rcontext (ceval (esuspend S) ∷ crs) (dcsuspend dcr) psn⟶₁r) =
⊥-elim (halted-¬sn⟶₁ (halted-⟦⟧c p' dcr) psn⟶₁r)
1-stepl cb (rtrap-done p')
(rcontext (ceval etrap ∷ crs) (dctrap dcr) psn⟶₁r) =
⊥-elim (halted-¬sn⟶₁ (halted-⟦⟧c p' dcr) psn⟶₁r)
1-stepl cb rraise-signal (rcontext (csignl S ∷ crs) (dcsignl dcr) psn⟶₁r) =
_ ,
sn⟶*-inclusion (rcontext _ (dcenv dcr) psn⟶₁r) ,′
sn⟶*-inclusion (rcontext _ dchole rraise-signal)
1-stepl cb rloop-unroll
(rcontext (cloop ∷ crs) (dcloop dcr) psn⟶₁r) =
_ ,
rstep (rcontext _ (dcloopˢ₁ dcr) psn⟶₁r)
(rstep (rcontext _ (dcloopˢ₂ dcr) psn⟶₁r) rrefl) ,′
sn⟶*-inclusion (rcontext [] dchole rloop-unroll)
1-stepl cb rseq-done
(rcontext (cseq₂ .nothin ∷ crs) (dcseq₂ dcr) psn⟶₁r) =
_ ,
sn⟶*-inclusion (rcontext _ dcr psn⟶₁r) ,′
sn⟶*-inclusion (rcontext _ dchole rseq-done)
1-stepl cb rseq-exit
(rcontext (cseq₂ .(exit _) ∷ crs) (dcseq₂ dcr) psn⟶₁r) =
_ ,
rrefl ,′
sn⟶*-inclusion (rcontext _ dchole rseq-exit)
1-stepl cb rloopˢ-exit
(rcontext (cloopˢ₂ .(exit _) ∷ crs) (dcloopˢ₂ dcr) psn⟶₁r) =
_ ,
rrefl ,′
sn⟶*-inclusion (rcontext _ dchole rloopˢ-exit)
1-stepl {ρ⟨ .θ , .A ⟩· p} cb
ρθpsn⟶₁q
ρθpsn⟶r@(rcontext {p = p₂} {p' = r} (cenv θ A ∷ crs) (dcenv p≐crs⟦p₂⟧) p₂sn⟶₁r)
with ρ-stays-ρ-sn⟶₁ ρθpsn⟶₁q
... | θ' , A' , qin , refl =
1-steplρ cb ρθpsn⟶₁q (rcontext crs p≐crs⟦p₂⟧ p₂sn⟶₁r)
1-step : ∀{p q r BV FV} →
CorrectBinding p BV FV →
p sn⟶ q →
p sn⟶ r →
Σ[ p' ∈ Term ] (q sn⟶* p' × r sn⟶* p')
1-step cb (rcontext [] dchole psn⟶₁q) psn⟶r = 1-stepl cb psn⟶₁q psn⟶r
1-step cb
psn⟶q@(rcontext (_ ∷ _) _ _) (rcontext [] dchole psn⟶₁r) with 1-stepl cb psn⟶₁r psn⟶q
... | _ , rsn⟶*p' , qsn⟶*p' = _ , qsn⟶*p' ,′ rsn⟶*p'
1-step cb@(CBpar cbp cbq _ _ _ _)
(rcontext (cq ∷ cqs) (dcpar₁ dcq) psn⟶₁q)
(rcontext (cr ∷ crs) (dcpar₁ dcr) psn⟶₁r)
with 1-step cbp (rcontext cqs dcq psn⟶₁q) (rcontext crs dcr psn⟶₁r)
... | p'' , q'sn⟶*p'' , r'sn⟶*p'' = _ , Context1-sn⟶* cq q'sn⟶*p'' ,′ Context1-sn⟶* cr r'sn⟶*p''
1-step cb@(CBpar cbp cbq _ _ _ _)
(rcontext (cq ∷ cqs) (dcpar₁ dcq) psn⟶₁q)
(rcontext (cr ∷ crs) (dcpar₂ dcr) psn⟶₁r) =
_ ,
sn⟶*-inclusion (rcontext _ (dcpar₂ dcr) psn⟶₁r) ,′
sn⟶*-inclusion (rcontext _ (dcpar₁ dcq) psn⟶₁q)
1-step cb@(CBpar cbp cbq _ _ _ _)
(rcontext (cq ∷ cqs) (dcpar₂ dcq) psn⟶₁q)
(rcontext (cr ∷ crs) (dcpar₁ dcr) psn⟶₁r) =
_ ,
sn⟶*-inclusion (rcontext _ (dcpar₁ dcr) psn⟶₁r) ,′
sn⟶*-inclusion (rcontext _ (dcpar₂ dcq) psn⟶₁q)
1-step cb@(CBpar cbp cbq _ _ _ _)
(rcontext (cq ∷ cqs) (dcpar₂ dcq) psn⟶₁q)
(rcontext (cr ∷ crs) (dcpar₂ dcr) psn⟶₁r)
with 1-step cbq (rcontext cqs dcq psn⟶₁q) (rcontext crs dcr psn⟶₁r)
... | p'' , q'sn⟶*p'' , r'sn⟶*p'' = _ , Context1-sn⟶* cq q'sn⟶*p'' ,′ Context1-sn⟶* cr r'sn⟶*p''
1-step cb@(CBseq cbp cbq _)
(rcontext (cq ∷ cqs) (dcseq₁ dcq) psn⟶₁q)
(rcontext (cr ∷ crs) (dcseq₁ dcr) psn⟶₁r)
with 1-step cbp (rcontext cqs dcq psn⟶₁q) (rcontext crs dcr psn⟶₁r)
... | p'' , q'sn⟶*p'' , r'sn⟶*p'' = _ , Context1-sn⟶* cq q'sn⟶*p'' ,′ Context1-sn⟶* cr r'sn⟶*p''
1-step cb
(rcontext (cq ∷ cqs) (dcseq₁ dcq) psn⟶₁q)
(rcontext (cr ∷ crs) (dcseq₂ dcr) psn⟶₁r) =
_ ,
sn⟶*-inclusion (rcontext _ (dcseq₂ dcr) psn⟶₁r) ,′
sn⟶*-inclusion (rcontext _ (dcseq₁ dcq) psn⟶₁q)
1-step cb
(rcontext (cq ∷ cqs) (dcseq₂ dcq) psn⟶₁q)
(rcontext (cr ∷ crs) (dcseq₁ dcr) psn⟶₁r) =
_ ,
sn⟶*-inclusion (rcontext _ (dcseq₁ dcr) psn⟶₁r) ,′
sn⟶*-inclusion (rcontext _ (dcseq₂ dcq) psn⟶₁q)
1-step cb@(CBseq cbp cbq _)
(rcontext (cq ∷ cqs) (dcseq₂ dcq) psn⟶₁q)
(rcontext (cr ∷ crs) (dcseq₂ dcr) psn⟶₁r)
with 1-step cbq (rcontext cqs dcq psn⟶₁q) (rcontext crs dcr psn⟶₁r)
... | p'' , q'sn⟶*p'' , r'sn⟶*p'' = _ , Context1-sn⟶* cq q'sn⟶*p'' ,′ Context1-sn⟶* cr r'sn⟶*p''
1-step cb@(CBloopˢ cbp cbq _ _)
(rcontext (cq ∷ cqs) (dcloopˢ₁ dcq) psn⟶₁q)
(rcontext (cr ∷ crs) (dcloopˢ₁ dcr) psn⟶₁r)
with 1-step cbp (rcontext cqs dcq psn⟶₁q) (rcontext crs dcr psn⟶₁r)
... | p'' , q'sn⟶*p'' , r'sn⟶*p'' = _ , Context1-sn⟶* cq q'sn⟶*p'' ,′ Context1-sn⟶* cr r'sn⟶*p''
1-step cb
(rcontext (cq ∷ cqs) (dcloopˢ₁ dcq) psn⟶₁q)
(rcontext (cr ∷ crs) (dcloopˢ₂ dcr) psn⟶₁r) =
_ ,
sn⟶*-inclusion (rcontext _ (dcloopˢ₂ dcr) psn⟶₁r) ,′
sn⟶*-inclusion (rcontext _ (dcloopˢ₁ dcq) psn⟶₁q)
1-step cb
(rcontext (cq ∷ cqs) (dcloopˢ₂ dcq) psn⟶₁q)
(rcontext (cr ∷ crs) (dcloopˢ₁ dcr) psn⟶₁r) =
_ ,
sn⟶*-inclusion (rcontext _ (dcloopˢ₁ dcr) psn⟶₁r) ,′
sn⟶*-inclusion (rcontext _ (dcloopˢ₂ dcq) psn⟶₁q)
1-step cb@(CBloopˢ cbp cbq _ _)
(rcontext (cq ∷ cqs) (dcloopˢ₂ dcq) psn⟶₁q)
(rcontext (cr ∷ crs) (dcloopˢ₂ dcr) psn⟶₁r)
with 1-step cbq (rcontext cqs dcq psn⟶₁q) (rcontext crs dcr psn⟶₁r)
... | p'' , q'sn⟶*p'' , r'sn⟶*p'' = _ , Context1-sn⟶* cq q'sn⟶*p'' ,′ Context1-sn⟶* cr r'sn⟶*p''
1-step cb@(CBsusp cb' _)
(rcontext (cq ∷ cqs) (dcsuspend dcq) psn⟶₁q)
(rcontext (cr ∷ crs) (dcsuspend dcr) psn⟶₁r)
with 1-step cb' (rcontext cqs dcq psn⟶₁q) (rcontext crs dcr psn⟶₁r)
... | p'' , q'sn⟶*p'' , r'sn⟶*p'' = _ , Context1-sn⟶* cq q'sn⟶*p'' ,′ Context1-sn⟶* cr r'sn⟶*p''
1-step cb@(CBtrap cb')
(rcontext (cq ∷ cqs) (dctrap dcq) psn⟶₁q)
(rcontext (cr ∷ crs) (dctrap dcr) psn⟶₁r)
with 1-step cb' (rcontext cqs dcq psn⟶₁q) (rcontext crs dcr psn⟶₁r)
... | p'' , q'sn⟶*p'' , r'sn⟶*p'' = _ , Context1-sn⟶* cq q'sn⟶*p'' ,′ Context1-sn⟶* cr r'sn⟶*p''
1-step cb@(CBsig cb')
(rcontext (cq ∷ cqs) (dcsignl dcq) psn⟶₁q)
(rcontext (cr ∷ crs) (dcsignl dcr) psn⟶₁r)
with 1-step cb' (rcontext cqs dcq psn⟶₁q) (rcontext crs dcr psn⟶₁r)
... | p'' , q'sn⟶*p'' , r'sn⟶*p'' = _ , Context1-sn⟶* cq q'sn⟶*p'' ,′ Context1-sn⟶* cr r'sn⟶*p''
1-step cb@(CBpresent cbp cbq)
(rcontext (cq ∷ cqs) (dcpresent₁ dcq) psn⟶₁q)
(rcontext (cr ∷ crs) (dcpresent₁ dcr) psn⟶₁r)
with 1-step cbp (rcontext cqs dcq psn⟶₁q) (rcontext crs dcr psn⟶₁r)
... | p'' , q'sn⟶*p'' , r'sn⟶*p'' = _ , Context1-sn⟶* cq q'sn⟶*p'' ,′ Context1-sn⟶* cr r'sn⟶*p''
1-step cb
(rcontext (cq ∷ cqs) (dcpresent₁ dcq) psn⟶₁q)
(rcontext (cr ∷ crs) (dcpresent₂ dcr) psn⟶₁r) =
_ ,
sn⟶*-inclusion (rcontext _ (dcpresent₂ dcr) psn⟶₁r) ,′
sn⟶*-inclusion (rcontext _ (dcpresent₁ dcq) psn⟶₁q)
1-step cb
(rcontext (cq ∷ cqs) (dcpresent₂ dcq) psn⟶₁q)
(rcontext (cr ∷ crs) (dcpresent₁ dcr) psn⟶₁r) =
_ ,
sn⟶*-inclusion (rcontext _ (dcpresent₁ dcr) psn⟶₁r) ,′
sn⟶*-inclusion (rcontext _ (dcpresent₂ dcq) psn⟶₁q)
1-step cb@(CBpresent cbp cbq)
(rcontext (cq ∷ cqs) (dcpresent₂ dcq) psn⟶₁q)
(rcontext (cr ∷ crs) (dcpresent₂ dcr) psn⟶₁r)
with 1-step cbq (rcontext cqs dcq psn⟶₁q) (rcontext crs dcr psn⟶₁r)
... | p'' , q'sn⟶*p'' , r'sn⟶*p'' = _ , Context1-sn⟶* cq q'sn⟶*p'' ,′ Context1-sn⟶* cr r'sn⟶*p''
1-step cb@(CBloop cb' _)
(rcontext (cq ∷ cqs) (dcloop dcq) psn⟶₁q) (rcontext (cr ∷ crs) (dcloop dcr) psn⟶₁r)
with 1-step cb' (rcontext cqs dcq psn⟶₁q) (rcontext crs dcr psn⟶₁r)
... | p'' , q'sn⟶*p'' , r'sn⟶*p'' = _ , Context1-sn⟶* cq q'sn⟶*p'' ,′ Context1-sn⟶* cr r'sn⟶*p''
1-step cb@(CBshared cb')
(rcontext (cq ∷ cqs) (dcshared dcq) psn⟶₁q) (rcontext (cr ∷ crs) (dcshared dcr) psn⟶₁r)
with 1-step cb' (rcontext cqs dcq psn⟶₁q) (rcontext crs dcr psn⟶₁r)
... | p'' , q'sn⟶*p'' , r'sn⟶*p'' = _ , Context1-sn⟶* cq q'sn⟶*p'' ,′ Context1-sn⟶* cr r'sn⟶*p''
1-step cb@(CBvar cb')
(rcontext (cq ∷ cqs) (dcvar dcq) psn⟶₁q)
(rcontext (cr ∷ crs) (dcvar dcr) psn⟶₁r)
with 1-step cb' (rcontext cqs dcq psn⟶₁q) (rcontext crs dcr psn⟶₁r)
... | p'' , q'sn⟶*p'' , r'sn⟶*p'' = _ , Context1-sn⟶* cq q'sn⟶*p'' ,′ Context1-sn⟶* cr r'sn⟶*p''
1-step cb@(CBif cbp cbq)
(rcontext (cq ∷ cqs) (dcif₁ dcq) psn⟶₁q)
(rcontext (cr ∷ crs) (dcif₁ dcr) psn⟶₁r)
with 1-step cbp (rcontext cqs dcq psn⟶₁q) (rcontext crs dcr psn⟶₁r)
... | p'' , q'sn⟶*p'' , r'sn⟶*p'' = _ , Context1-sn⟶* cq q'sn⟶*p'' ,′ Context1-sn⟶* cr r'sn⟶*p''
1-step cb
(rcontext (cq ∷ cqs) (dcif₁ dcq) psn⟶₁q)
(rcontext (cr ∷ crs) (dcif₂ dcr) psn⟶₁r) =
_ ,
sn⟶*-inclusion (rcontext _ (dcif₂ dcr) psn⟶₁r) ,′
sn⟶*-inclusion (rcontext _ (dcif₁ dcq) psn⟶₁q)
1-step cb
(rcontext (cq ∷ cqs) (dcif₂ dcq) psn⟶₁q)
(rcontext (cr ∷ crs) (dcif₁ dcr) psn⟶₁r) =
_ ,
sn⟶*-inclusion (rcontext _ (dcif₁ dcr) psn⟶₁r) ,′
sn⟶*-inclusion (rcontext _ (dcif₂ dcq) psn⟶₁q)
1-step cb@(CBif cbp cbq)
(rcontext (cq ∷ cqs) (dcif₂ dcq) psn⟶₁q)
(rcontext (cr ∷ crs) (dcif₂ dcr) psn⟶₁r)
with 1-step cbq (rcontext cqs dcq psn⟶₁q) (rcontext crs dcr psn⟶₁r)
... | p'' , q'sn⟶*p'' , r'sn⟶*p'' = _ , Context1-sn⟶* cq q'sn⟶*p'' ,′ Context1-sn⟶* cr r'sn⟶*p''
1-step cb@(CBρ cb')
(rcontext (cq ∷ cqs) (dcenv dcq) psn⟶₁q)
(rcontext (cr ∷ crs) (dcenv dcr) psn⟶₁r)
with 1-step cb' (rcontext cqs dcq psn⟶₁q) (rcontext crs dcr psn⟶₁r)
... | p'' , q'sn⟶*p'' , r'sn⟶*p'' = _ , Context1-sn⟶* cq q'sn⟶*p'' ,′ Context1-sn⟶* cr r'sn⟶*p''
| 41.694915
| 97
| 0.591734
|
57c8f0736bd1ffef1c5f9b7c6f9165a049135109
| 123
|
agda
|
Agda
|
test/interaction/Issue936.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/interaction/Issue936.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/interaction/Issue936.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
module Issue936 where
-- The highlighting generated for this file should not contain
-- any references to Agda.Primitive.
| 24.6
| 62
| 0.796748
|
29a4abb97421bf9ff8858d77c759234305c82bb9
| 24
|
agda
|
Agda
|
test/Fail/InvalidNamePartMeta.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Fail/InvalidNamePartMeta.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Fail/InvalidNamePartMeta.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
test = forall _?_ → Set
| 12
| 23
| 0.625
|
31b6ff17f24aa79316ba5528b3bbc4eee0a3408a
| 2,866
|
agda
|
Agda
|
Lists.agda
|
NAMEhzj/Divide-and-Conquer-in-Agda
|
99bd3a5e772563153d78f61c1bbca48d7809ff48
|
[
"MIT"
] | null | null | null |
Lists.agda
|
NAMEhzj/Divide-and-Conquer-in-Agda
|
99bd3a5e772563153d78f61c1bbca48d7809ff48
|
[
"MIT"
] | null | null | null |
Lists.agda
|
NAMEhzj/Divide-and-Conquer-in-Agda
|
99bd3a5e772563153d78f61c1bbca48d7809ff48
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --no-universe-polymorphism #-}
open import Induction.WellFounded as WF
open import Induction.Nat
open import Relation.Binary.Core hiding (Total)
open import Relation.Unary as U using (Decidable)
open import Relation.Nullary
open import Function using (_on_)
open import Data.Nat
import Level as L using (zero)
open import Data.List
open import BagEquality
module Lists where
infixr 8 _<l_
_<l_ : {A : Set} → Rel (List A) L.zero
_<l_ = Data.Nat._<′_ on length
<l-wellFounded : {A : Set} → Well-founded (_<l_ {A = A})
<l-wellFounded = newWf where
module InverseOfProj = WF.Inverse-image length
newWf = InverseOfProj.well-founded <′-well-founded
data Ordered : {A : Set} → Rel A _ → List A → Set where
NilIsOrd : {A : Set} {LEQ : Rel A _} → Ordered LEQ []
SingleIsOrd : {A : Set} {LEQ : Rel A _} {x : A} → Ordered LEQ [ x ]
HeadTailOrd : {A : Set} {LEQ : Rel A _} {x y : A} {zs : List A} → LEQ x y → Ordered LEQ (y ∷ zs) → Ordered LEQ (x ∷ (y ∷ zs))
cons-Order-cong : {A : Set} → {LEQ : Rel A L.zero} → {x : A} → {ys : List A} → (∀ z → z ∈ ys → LEQ x z) → Ordered LEQ ys → Ordered LEQ (x ∷ ys)
cons-Order-cong {A} {LEQ} {y} {[]} _ _ = SingleIsOrd
cons-Order-cong {A} {LEQ} {x} {y ∷ ys} xLEQ ord-ys = HeadTailOrd (xLEQ y (inj₁ refl)) ord-ys
++-Order-cong : {A : Set} {LEQ : Rel A L.zero} → {xs ys : List A} {y : A} → (∀ z → z ∈ xs → LEQ z y) → Ordered LEQ xs → Ordered LEQ (y ∷ ys) → Ordered LEQ (xs ++ (y ∷ ys))
++-Order-cong {A} {LEQ} {[]} {ys} {y} _ _ ord-y∷ys = ord-y∷ys
++-Order-cong {A} {LEQ} {x ∷ []} {ys} {y} yGEQ _ ord-y∷ys = HeadTailOrd (yGEQ x (inj₁ refl)) ord-y∷ys
++-Order-cong {A} {LEQ} {x₁ ∷ (x₂ ∷ xs)} {ys} {y} yGEQ (HeadTailOrd x₁LEQx₂ ord-x∷xs) ord-y∷ys = HeadTailOrd x₁LEQx₂ (++-Order-cong (λ z zIn → yGEQ z (inj₂ zIn)) ord-x∷xs ord-y∷ys)
Total : {A : Set} → Rel A L.zero → Set
Total {A} LEQ = (x y : A) → LEQ x y ⊕ LEQ y x
data ListPrimitive : {A : Set} → List A → Set where
NilIsPrim : ∀{A} → ListPrimitive {A = A} []
consIsNotPrim : {A : Set} → {x : A} → {xs : List A} → ¬ ListPrimitive (x ∷ xs)
consIsNotPrim ()
primDec : {A : Set} → U.Decidable (ListPrimitive {A = A})
primDec [] = yes NilIsPrim
primDec (x ∷ xs) = no consIsNotPrim
data ListPrimitive2 : {A : Set} → List A → Set where
NilIsPrim2 : ∀{A} → ListPrimitive2 {A = A} []
SingleIsPrim2 : ∀{A} {x : A} → ListPrimitive2 (x ∷ [])
consConsIsNotPrim2 : {A : Set} → {x y : A} → {zs : List A} → ¬ ListPrimitive2 (x ∷ (y ∷ zs))
consConsIsNotPrim2 ()
prim2Dec : {A : Set} → U.Decidable (ListPrimitive2 {A = A})
prim2Dec [] = yes NilIsPrim2
prim2Dec (x ∷ []) = yes SingleIsPrim2
prim2Dec (x ∷ (y ∷ zs)) = no consConsIsNotPrim2
| 40.366197
| 180
| 0.564899
|
a1c53762ffdc7799e1e087ac60dd2cd867de48ff
| 1,769
|
agda
|
Agda
|
Cubical/Categories/Functor.agda
|
apabepa10/cubical
|
3a9bb56260c25a6f2e9c20af8d278de0fe8d9e05
|
[
"MIT"
] | null | null | null |
Cubical/Categories/Functor.agda
|
apabepa10/cubical
|
3a9bb56260c25a6f2e9c20af8d278de0fe8d9e05
|
[
"MIT"
] | null | null | null |
Cubical/Categories/Functor.agda
|
apabepa10/cubical
|
3a9bb56260c25a6f2e9c20af8d278de0fe8d9e05
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Categories.Functor where
open import Cubical.Foundations.Prelude
open import Cubical.Data.Sigma
open import Cubical.Categories.Category
private
variable
ℓC ℓC' ℓD ℓD' : Level
record Functor (C : Precategory ℓC ℓC') (D : Precategory ℓD ℓD') : Type (ℓ-max (ℓ-max ℓC ℓC') (ℓ-max ℓD ℓD')) where
no-eta-equality
open Precategory
field
F-ob : C .ob → D .ob
F-hom : {x y : C .ob} → C [ x , y ] → D [(F-ob x) , (F-ob y)]
F-id : {x : C .ob} → F-hom (C .id x) ≡ D .id (F-ob x)
F-seq : {x y z : C .ob} (f : C [ x , y ]) (g : C [ y , z ]) → F-hom (f ⋆⟨ C ⟩ g) ≡ (F-hom f) ⋆⟨ D ⟩ (F-hom g)
isFull = (x y : _) (F[f] : D [(F-ob x) , (F-ob y)]) → ∃ (C [ x , y ]) (λ f → F-hom f ≡ F[f])
isFaithful = (x y : _) (f g : C [ x , y ]) → F-hom f ≡ F-hom g → f ≡ g
-- Functor results
module _ (C : Precategory ℓC ℓC') (D : Precategory ℓC ℓC') (F : Functor C D ) where
open Precategory
open Functor F
open CatIso
-- functors preserve isomorphisms
preserveIsosF : ∀ {x y : C .ob} → CatIso {C = C} x y → CatIso {C = D} (F-ob x) (F-ob y)
preserveIsosF {x} {y} (catiso f f⁻¹ sec' ret') =
catiso
g g⁻¹
-- sec
( (g⁻¹ ⋆⟨ D ⟩ g)
≡⟨ sym (F-seq f⁻¹ f) ⟩
F-hom (f⁻¹ ⋆⟨ C ⟩ f)
≡⟨ cong F-hom sec' ⟩
F-hom (C .id y)
≡⟨ F-id ⟩
D .id y'
∎ )
-- ret
( (g ⋆⟨ D ⟩ g⁻¹)
≡⟨ sym (F-seq f f⁻¹) ⟩
F-hom (f ⋆⟨ C ⟩ f⁻¹)
≡⟨ cong F-hom ret' ⟩
F-hom (C .id x)
≡⟨ F-id ⟩
D .id x'
∎ )
where
x' : D .ob
x' = F-ob x
y' : D .ob
y' = F-ob y
g : D [ x' , y' ]
g = F-hom f
g⁻¹ : D [ y' , x' ]
g⁻¹ = F-hom f⁻¹
| 25.637681
| 115
| 0.458451
|
57107e0b353ff3c3c6fbb6cb999b59565bef3198
| 16,280
|
agda
|
Agda
|
Categories/Adjoint/Properties.agda
|
Taneb/agda-categories
|
6ebc1349ee79669c5c496dcadd551d5bbefd1972
|
[
"MIT"
] | null | null | null |
Categories/Adjoint/Properties.agda
|
Taneb/agda-categories
|
6ebc1349ee79669c5c496dcadd551d5bbefd1972
|
[
"MIT"
] | null | null | null |
Categories/Adjoint/Properties.agda
|
Taneb/agda-categories
|
6ebc1349ee79669c5c496dcadd551d5bbefd1972
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --without-K --safe #-}
module Categories.Adjoint.Properties where
open import Level
open import Data.Product using (Σ; _,_; -,_; proj₂; uncurry)
open import Function using (_$_)
open import Categories.Adjoint using (_⊣_; Adjoint; Hom-NI′⇒Adjoint)
open import Categories.Adjoint.RAPL public
open import Categories.Category using (Category; _[_,_])
open import Categories.Category.Product using (_⁂_; _⁂ⁿⁱ_)
open import Categories.Category.Construction.Comma using (CommaObj; Comma⇒; _↙_)
open import Categories.Functor renaming (id to idF)
open import Categories.Functor.Hom
open import Categories.Functor.Construction.Constant
open import Categories.Functor.Construction.LiftSetoids
open import Categories.Functor.Properties
open import Categories.Functor.Continuous
open import Categories.Functor.Cocontinuous
open import Categories.Functor.Bifunctor
open import Categories.Functor.Bifunctor.Properties
open import Categories.NaturalTransformation
open import Categories.NaturalTransformation.Properties
open import Categories.NaturalTransformation.NaturalIsomorphism using (NaturalIsomorphism; _≃_; _ⓘₕ_; _ⓘˡ_; module ≃)
open import Categories.NaturalTransformation.NaturalIsomorphism.Properties
open import Categories.Monad
open import Categories.Monad.Duality
open import Categories.Comonad
open import Categories.Morphism.Universal
open import Categories.Yoneda
import Categories.Yoneda.Properties as YP
import Categories.Diagram.Colimit as Col
import Categories.Diagram.Duality as Duality
import Categories.Morphism as Mor
import Categories.Morphism.Reasoning as MR
private
variable
o ℓ e : Level
C D E J : Category o ℓ e
-- if the left adjoint functor is a partial application of bifunctor, then it uniquely
-- determines a bifunctor compatible with the right adjoint functor.
module _ {C : Category o ℓ e}
(L : Bifunctor C E D) {R : ∀ (X : Category.Obj E) → Functor D C}
(LR : ∀ (X : Category.Obj E) → appʳ L X ⊣ R X) where
private
module C = Category C
module D = Category D
module E = Category E
module L = Functor L
module R X = Functor (R X)
module LR X = Adjoint (LR X)
open C
F′ : ∀ {A X B Y} f g → R.F₀ A X ⇒ R.F₀ B Y
F′ {A} {X} {B} {Y} f g = LR.Ladjunct B (LR.counit.η A Y D.∘ L.F₁ (R.F₁ A g , f))
-- R.F₁ B (LR.counit.η A Y) ∘ R.F₁ B (L.F₁ (R.F₁ A g , f)) ∘ LR.unit.η B (R.F₀ A X)
commute′ : ∀ {A B X} (f : A E.⇒ B) → LR.counit.η A X D.∘ L.F₁ (F′ f D.id , E.id) D.≈ LR.counit.η B X D.∘ L.F₁ (C.id , f)
commute′ {A} {B} {X} f = begin
LR.counit.η A X D.∘ L.F₁ (F′ f D.id , E.id) ≈⟨ LR.RLadjunct≈id A ⟩
LR.counit.η B X D.∘ L.F₁ (R.F₁ B D.id , f) ≈⟨ refl ⟩∘⟨ L.F-resp-≈ (R.identity B , E.Equiv.refl) ⟩
LR.counit.η B X D.∘ L.F₁ (C.id , f) ∎
where open D.HomReasoning
open HomReasoning
decompose₁ : ∀ {A B X Y} {f : A E.⇒ B} {g : X D.⇒ Y} → F′ f g ≈ R.F₁ A g ∘ F′ f D.id
decompose₁ {A} {B} {X} {Y} {f} {g} = begin
F′ f g
≈⟨ R.F-resp-≈ A (D.∘-resp-≈ʳ [ L ]-decompose₁) ⟩∘⟨refl ⟩
R.F₁ A (LR.counit.η B Y D.∘ L.F₁ (R.F₁ B g , E.id) D.∘ L.F₁ (C.id , f)) ∘ LR.unit.η A (R.F₀ B X)
≈⟨ R.F-resp-≈ A (pullˡ (LR.counit.commute B g)) ⟩∘⟨refl ⟩
R.F₁ A ((g D.∘ LR.counit.η B X) D.∘ L.F₁ (C.id , f)) ∘ LR.unit.η A (R.F₀ B X)
≈˘⟨ R.F-resp-≈ A (pushʳ (D.∘-resp-≈ʳ (L.F-resp-≈ (R.identity B , E.Equiv.refl)))) ⟩∘⟨refl ⟩
R.F₁ A (g D.∘ LR.counit.η B X D.∘ L.F₁ (R.F₁ B D.id , f)) ∘ LR.unit.η A (R.F₀ B X)
≈⟨ R.homomorphism A ⟩∘⟨refl ⟩
(R.F₁ A g ∘ R.F₁ A (LR.counit.η B X D.∘ L.F₁ (R.F₁ B D.id , f))) ∘ LR.unit.η A (R.F₀ B X)
≈⟨ assoc ⟩
R.F₁ A g ∘ F′ f D.id
∎
where open MR D
decompose₂ : ∀ {A B X Y} {f : A E.⇒ B} {g : X D.⇒ Y} → F′ f g ≈ F′ f D.id ∘ R.F₁ B g
decompose₂ {A} {B} {X} {Y} {f} {g} = begin
F′ f g
≈⟨ R.F-resp-≈ A (D.∘-resp-≈ʳ [ L ]-decompose₂) ⟩∘⟨refl ⟩
R.F₁ A (LR.counit.η B Y D.∘ L.F₁ (C.id , f) D.∘ L.F₁ (R.F₁ B g , E.id)) ∘ LR.unit.η A (R.F₀ B X)
≈˘⟨ R.F-resp-≈ A (pushˡ (D.∘-resp-≈ʳ (L.F-resp-≈ (R.identity B , E.Equiv.refl)))) ⟩∘⟨refl ⟩
R.F₁ A ((LR.counit.η B Y D.∘ L.F₁ (R.F₁ B D.id , f)) D.∘ L.F₁ (R.F₁ B g , E.id)) ∘ LR.unit.η A (R.F₀ B X)
≈⟨ R.homomorphism A ⟩∘⟨refl ⟩
(R.F₁ A (LR.counit.η B Y D.∘ L.F₁ (R.F₁ B D.id , f)) ∘ R.F₁ A (L.F₁ (R.F₁ B g , E.id))) ∘ LR.unit.η A (R.F₀ B X)
≈˘⟨ MR.pushʳ C (LR.unit.commute A (R.F₁ B g)) ⟩
R.F₁ A (LR.counit.η B Y D.∘ L.F₁ (R.F₁ B D.id , f)) ∘ LR.unit.η A (R.F₀ B Y) ∘ R.F₁ B g
≈˘⟨ assoc ⟩
F′ f D.id ∘ R.F₁ B g
∎
where open MR D
swap : ∀ {A B X Y} {f : A E.⇒ B} {g : X D.⇒ Y} → R.F₁ A g ∘ F′ f D.id ≈ F′ f D.id ∘ R.F₁ B g
swap = trans (⟺ decompose₁) decompose₂
commute″ : ∀ {X Y Z A} {f : Y E.⇒ Z} {g : X E.⇒ Y} → F′ (f E.∘ g) (D.id {A}) ≈ F′ g D.id ∘ F′ f D.id
commute″ {X} {Y} {Z} {A} {f} {g} = begin
F′ (f E.∘ g) D.id
≈⟨ R.F-resp-≈ X (D.∘-resp-≈ʳ (L.F-resp-≈ (R.identity Z , E.Equiv.refl))) ⟩∘⟨refl ⟩
R.F₁ X (LR.counit.η Z A D.∘ L.F₁ (C.id , f E.∘ g)) ∘ LR.unit.η X (R.F₀ Z A)
≈⟨ R.F-resp-≈ X (D.∘-resp-≈ʳ (Functor.homomorphism (appˡ L (R.F₀ Z A)))) ⟩∘⟨refl ⟩
R.F₁ X (LR.counit.η Z A D.∘ L.F₁ (C.id , f) D.∘ L.F₁ (C.id , g)) ∘ LR.unit.η X (R.F₀ Z A)
≈˘⟨ R.F-resp-≈ X (MR.pushˡ D (commute′ f)) ⟩∘⟨refl ⟩
R.F₁ X ((LR.counit.η Y A D.∘ L.F₁ (F′ f D.id , E.id)) D.∘ L.F₁ (C.id , g)) ∘ LR.unit.η X (R.F₀ Z A)
≈˘⟨ R.F-resp-≈ X (MR.pushʳ D [ L ]-commute) ⟩∘⟨refl ⟩
R.F₁ X (LR.counit.η Y A D.∘ L.F₁ (C.id , g) D.∘ L.F₁ (F′ f D.id , E.id)) ∘ LR.unit.η X (R.F₀ Z A)
≈˘⟨ R.F-resp-≈ X D.assoc ⟩∘⟨refl ⟩
R.F₁ X ((LR.counit.η Y A D.∘ L.F₁ (C.id , g)) D.∘ L.F₁ (F′ f D.id , E.id)) ∘ LR.unit.η X (R.F₀ Z A)
≈⟨ R.homomorphism X ⟩∘⟨refl ⟩
(R.F₁ X (LR.counit.η Y A D.∘ L.F₁ (C.id , g)) ∘ R.F₁ X (L.F₁ (F′ f D.id , E.id))) ∘ LR.unit.η X (R.F₀ Z A)
≈˘⟨ MR.pushʳ C (LR.unit.commute X (F′ f D.id)) ⟩
R.F₁ X (LR.counit.η Y A D.∘ L.F₁ (C.id , g)) ∘ LR.unit.η X (R.F₀ Y A) ∘ F′ f D.id
≈˘⟨ R.F-resp-≈ X (D.∘-resp-≈ʳ (L.F-resp-≈ (R.identity Y , E.Equiv.refl))) ⟩∘⟨ refl ⟩∘⟨ refl ⟩
R.F₁ X (LR.counit.η Y A D.∘ L.F₁ (R.F₁ Y D.id , g)) ∘ LR.unit.η X (R.F₀ Y A) ∘ F′ f D.id
≈˘⟨ assoc ⟩
F′ g D.id ∘ F′ f D.id
∎
induced-bifunctorʳ : Bifunctor E.op D C
induced-bifunctorʳ = record
{ F₀ = uncurry R.F₀
; F₁ = uncurry F′
; identity = λ where
{e , d} →
let open MR D
in begin
F′ E.id D.id
≈⟨ R.F-resp-≈ e (D.∘-resp-≈ʳ (L.F-resp-≈ (R.identity e , E.Equiv.refl))) ⟩∘⟨ refl ⟩
R.F₁ e (LR.counit.η e d D.∘ L.F₁ (C.id , E.id)) ∘ LR.unit.η e (R.F₀ e d)
≈⟨ R.F-resp-≈ e (elimʳ L.identity) ⟩∘⟨ refl ⟩
R.F₁ e (LR.counit.η e d) ∘ LR.unit.η e (R.F₀ e d)
≈⟨ LR.zag e ⟩
C.id
∎
; homomorphism = λ where
{A , X} {B , Y} {W , Z} {f , h} {g , i} →
let open MR C
in begin
F′ (f E.∘ g) (i D.∘ h)
≈⟨ decompose₁ ⟩
R.F₁ W (i D.∘ h) ∘ F′ (f E.∘ g) D.id
≈˘⟨ center⁻¹ (⟺ (R.homomorphism W)) (⟺ commute″) ⟩
R.F₁ W i ∘ (R.F₁ W h ∘ F′ g D.id) ∘ F′ f D.id
≈˘⟨ center (⟺ swap) ⟩
(R.F₁ W i ∘ F′ g D.id) ∘ R.F₁ B h ∘ F′ f D.id
≈˘⟨ decompose₁ ⟩∘⟨ decompose₁ ⟩
F′ g i ∘ F′ f h
∎
; F-resp-≈ = λ where
{A , X} {B , Y} (eq , eq′) →
∘-resp-≈ˡ (R.F-resp-≈ B (D.∘-resp-≈ʳ (L.F-resp-≈ (R.F-resp-≈ A eq′ , eq))))
}
-- LAPC: left adjoint preserves colimits.
module _ {L : Functor C D} {R : Functor D C} (L⊣R : L ⊣ R) (F : Functor J C) where
private
module F = Functor F
open Col
lapc : Colimit F → Colimit (L ∘F F)
lapc col = Duality.coLimit⇒Colimit D (rapl (Adjoint.op L⊣R) F.op (Duality.Colimit⇒coLimit C col))
-- adjoint functors induce monads and comonads
module _ {L : Functor C D} {R : Functor D C} (L⊣R : L ⊣ R) where
private
module C = Category C
module D = Category D
module L = Functor L
module R = Functor R
open Adjoint L⊣R
rapl′ : ∀ {o ℓ e} → Continuous o ℓ e R
rapl′ lim = rapl L⊣R _ lim , Mor.≅.refl C
lapc′ : ∀ {o ℓ e} → Cocontinuous o ℓ e L
lapc′ col = lapc L⊣R _ col , Mor.≅.refl D
adjoint⇒monad : Monad C
adjoint⇒monad = record
{ F = R ∘F L
; η = unit
; μ = record
{ η = μ′.η
; commute = μ′.commute
; sym-commute = μ′.sym-commute
}
; assoc = [ R ]-resp-square (counit.commute _)
; sym-assoc = [ R ]-resp-square (counit.sym-commute _)
; identityˡ = λ {X} → begin
μ′.η X ∘ R.F₁ (L.F₁ (unit.η X)) ≈⟨ [ R ]-resp-∘ zig ⟩
R.F₁ D.id ≈⟨ R.identity ⟩
C.id ∎
; identityʳ = zag
}
where open C
open HomReasoning
μ′ : NaturalTransformation (R ∘F (L ∘F R) ∘F L) (R ∘F Categories.Functor.id ∘F L)
μ′ = R ∘ˡ counit ∘ʳ L
module μ′ = NaturalTransformation μ′
module _ {L : Functor C D} {R : Functor D C} (L⊣R : L ⊣ R) where
open Adjoint L⊣R
adjoint⇒comonad : Comonad D
adjoint⇒comonad = coMonad⇒Comonad D (adjoint⇒monad op)
-- adjoint functors are the same as universal morphisms
module _ {R : Functor D C} where
private
module C = Category C
module D = Category D
module R = Functor R
adjoint⇒universalMorphisms : ∀ {L : Functor C D} → L ⊣ R → ∀ (X : C.Obj) → UniversalMorphism X R
adjoint⇒universalMorphisms {L} L⊣R X = record
{ initial = record
{ ⊥ = record { f = unit.η X }
; ! =
let open C.HomReasoning
in record { commute = LRadjunct≈id ○ ⟺ C.identityʳ }
; !-unique = λ {A} g →
let open D.HomReasoning
in -, (begin
Radjunct (f A) ≈⟨ Radjunct-resp-≈ (C.Equiv.sym (C.Equiv.trans (commute g) (C.identityʳ {f = f A}))) ⟩
Radjunct (Ladjunct (h g)) ≈⟨ RLadjunct≈id ⟩
h g ∎)
}
}
where module L = Functor L
open Adjoint L⊣R
open Comma⇒
open CommaObj
universalMophisms⇒adjoint : (∀ (X : C.Obj) → UniversalMorphism X R) → Σ (Functor C D) (λ L → L ⊣ R)
universalMophisms⇒adjoint umors = L , record
{ unit = ntHelper record
{ η = λ c → f (umors.⊥ c)
; commute = λ i → let open C.HomReasoning in ⟺ (commute (⊥X⇒⊥Y i) ○ C.identityʳ )
}
; counit = ntHelper record
{ η = ε
; commute = λ {X Y} i →
let open C.HomReasoning
open MR C
in proj₂ $ umors.!-unique₂ (R.F₀ X)
{record { f = R.F₁ i }}
(record
{ h = ε Y D.∘ L₁ (R.F₁ i)
; commute = begin
R.F₁ (ε Y D.∘ L₁ (R.F₁ i)) C.∘ f (⊥Rd X) ≈⟨ R.homomorphism ⟩∘⟨refl ⟩
(R.F₁ (ε Y) C.∘ R.F₁ (L₁ (R.F₁ i))) C.∘ f (⊥Rd X) ≈⟨ pullʳ (commute (⊥X⇒⊥Y (R.F₁ i)) ○ C.identityʳ) ⟩
R.F₁ (ε Y) C.∘ f (⊥Rd Y) C.∘ R.F₁ i ≈⟨ cancelˡ (commute (⊥Rd⇒id Y) ○ C.identityˡ) ⟩
R.F₁ i ≈˘⟨ C.identityʳ ⟩
R.F₁ i C.∘ C.id ∎
})
(record
{ h = i D.∘ ε X
; commute = begin
R.F₁ (i D.∘ ε X) C.∘ f (⊥Rd X) ≈⟨ R.homomorphism ⟩∘⟨refl ⟩
(R.F₁ i C.∘ R.F₁ (ε X)) C.∘ f (⊥Rd X) ≈⟨ cancelʳ (commute (⊥Rd⇒id X) ○ C.identityˡ) ⟩
R.F₁ i ≈˘⟨ C.identityʳ ⟩
R.F₁ i C.∘ C.id ∎
})
}
; zig = λ {c} →
let open C.HomReasoning
open MR C
α = f (umors.⊥ c)
in proj₂ $ umors.!-unique₂ c
{record { f = α }}
(record
{ h = ε (L₀ c) D.∘ L₁ α
; commute = begin
R.F₁ (ε (L₀ c) D.∘ L₁ α) C.∘ α ≈⟨ R.homomorphism ⟩∘⟨refl ⟩
(R.F₁ (ε (L₀ c)) C.∘ R.F₁ (L₁ α)) C.∘ α ≈⟨ pullʳ (commute (⊥X⇒⊥Y α) ○ C.identityʳ) ⟩
R.F₁ (ε (L₀ c)) C.∘ f (⊥Rd (L₀ c)) C.∘ α ≈⟨ cancelˡ (commute (⊥Rd⇒id (L₀ c)) ○ C.identityˡ) ⟩
α ≈˘⟨ C.identityʳ ⟩
α C.∘ C.id ∎
})
(record
{ h = D.id
; commute = C.∘-resp-≈ˡ R.identity ○ id-comm-sym
})
; zag = λ {d} → C.Equiv.trans (commute (⊥Rd⇒id d)) C.identityˡ
}
where module umors X = UniversalMorphism (umors X)
open CommaObj
open Comma⇒
commaObj∘g : ∀ {X Y} → X C.⇒ Y → CommaObj (const! X) R
commaObj∘g {X} {Y} g = record { f = f (umors.⊥ Y) C.∘ g }
⊥X⇒⊥Y : ∀ {X Y} (g : X C.⇒ Y) → (X ↙ R) [ umors.⊥ X , commaObj∘g g ]
⊥X⇒⊥Y {X} {Y} g = umors.! X {commaObj∘g g}
L₀ : ∀ X → D.Obj
L₀ X = β (umors.⊥ X)
L₁ : ∀ {X Y} → X C.⇒ Y → β (umors.⊥ X) D.⇒ β (umors.⊥ Y)
L₁ {X} {Y} g = h (⊥X⇒⊥Y g)
L : Functor C D
L = record
{ F₀ = L₀
; F₁ = L₁
; identity = λ {X} → proj₂ $ umors.!-unique X $
record { commute = elimˡ R.identity ○ ⟺ C.identityʳ ○ ⟺ C.identityʳ }
; homomorphism = λ {X Y Z} {i j} → proj₂ $ umors.!-unique₂ X (umors.! X) $
record { commute = begin
R.F₁ (h (umors.! Y) D.∘ h (umors.! X)) C.∘ f (umors.⊥ X)
≈⟨ (C.∘-resp-≈ˡ R.homomorphism) ○ C.assoc ⟩
R.F₁ (h (umors.! Y)) C.∘ R.F₁ (h (umors.! X)) C.∘ f (umors.⊥ X)
≈⟨ (C.∘-resp-≈ʳ (commute (⊥X⇒⊥Y i) ○ C.identityʳ)) ○ C.sym-assoc ⟩
(R.F₁ (h (umors.! Y)) C.∘ f (umors.⊥ Y)) C.∘ i
≈⟨ pushˡ (commute (⊥X⇒⊥Y j) ○ C.identityʳ) ⟩
f (umors.⊥ Z) C.∘ j C.∘ i
≈˘⟨ C.identityʳ ⟩
(f (umors.⊥ Z) C.∘ j C.∘ i) C.∘ C.id
∎ }
; F-resp-≈ = λ {X} eq → proj₂ $ umors.!-unique₂ X (umors.! X) $
record { commute = commute (umors.! X) ○ C.∘-resp-≈ˡ (C.∘-resp-≈ʳ (⟺ eq)) }
}
where open C.HomReasoning
open MR C
module L = Functor L
⊥Rd : (d : D.Obj) → CommaObj (const! (R.F₀ d)) R
⊥Rd d = umors.⊥ (R.F₀ d)
⊥Rd⇒id : (d : D.Obj) → (R.F₀ d ↙ R) [ ⊥Rd d , record { f = C.id } ]
⊥Rd⇒id d = umors.! (R.F₀ d) {record { f = C.id }}
ε : ∀ d → L₀ (R.F₀ d) D.⇒ d
ε d = h (⊥Rd⇒id d)
-- adjoint functors of a functor are isomorphic
module _ (L : Functor C D) where
open YP C
R≃R′ : ∀ {R R′} → L ⊣ R → L ⊣ R′ → R ≃ R′
R≃R′ {R} {R′} L⊣R L⊣R′ = yoneda-NI R R′ (unlift-≃ Hom[-,R-]≃Hom[-,R′-])
where module ⊣₁ = Adjoint L⊣R
module ⊣₂ = Adjoint L⊣R′
Hom[-,R-]≃Hom[-,R′-] : ⊣₁.Hom[-,R-]′ ≃ ⊣₂.Hom[-,R-]′
Hom[-,R-]≃Hom[-,R′-] = ≃.trans (≃.sym ⊣₁.Hom-NI) ⊣₂.Hom-NI
module _ {R : Functor D C} where
L≃L′ : ∀ {L L′} → L ⊣ R → L′ ⊣ R → L ≃ L′
L≃L′ L⊣R L′⊣R = NaturalIsomorphism.op L′≃Lᵒᵖ
where module ⊣₁ = Adjoint L⊣R
module ⊣₂ = Adjoint L′⊣R
L′≃Lᵒᵖ = R≃R′ (Functor.op R) ⊣₂.op ⊣₁.op
-- adjoint functors are preserved by natural isomorphisms
module _ {L L′ : Functor C D} {R R′ : Functor D C} where
private
module C = Category C
module D = Category D
module L = Functor L
module L′ = Functor L′
module R = Functor R
module R′ = Functor R′
⊣×≃⇒⊣ : L ⊣ R → L ≃ L′ → R ≃ R′ → L′ ⊣ R′
⊣×≃⇒⊣ L⊣R L≃L′ R≃R′ = Hom-NI′⇒Adjoint (≃.trans (LiftSetoids _ _ ⓘˡ Hom[L′-,-]≃Hom[L-,-])
(≃.trans Hom-NI
(LiftSetoids _ _ ⓘˡ Hom[-,R-]≃Hom[-,R′-])))
where open Adjoint L⊣R
Hom[L′-,-]≃Hom[L-,-] : Hom[ D ][-,-] ∘F (L′.op ⁂ idF) ≃ Hom[ D ][-,-] ∘F (L.op ⁂ idF)
Hom[L′-,-]≃Hom[L-,-] = Hom[ D ][-,-] ⓘˡ (NaturalIsomorphism.op L≃L′ ⁂ⁿⁱ ≃.refl)
Hom[-,R-]≃Hom[-,R′-] : Hom[ C ][-,-] ∘F (idF ⁂ R) ≃ Hom[ C ][-,-] ∘F (idF ⁂ R′)
Hom[-,R-]≃Hom[-,R′-] = Hom[ C ][-,-] ⓘˡ (≃.refl ⁂ⁿⁱ R≃R′)
| 42.729659
| 124
| 0.480098
|
d0fa9c0d6a0fe41889b9ace1dba45baaa745a396
| 762
|
agda
|
Agda
|
lib/types/Unit.agda
|
sattlerc/HoTT-Agda
|
c8fb8da3354fc9e0c430ac14160161759b4c5b37
|
[
"MIT"
] | null | null | null |
lib/types/Unit.agda
|
sattlerc/HoTT-Agda
|
c8fb8da3354fc9e0c430ac14160161759b4c5b37
|
[
"MIT"
] | null | null | null |
lib/types/Unit.agda
|
sattlerc/HoTT-Agda
|
c8fb8da3354fc9e0c430ac14160161759b4c5b37
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --without-K #-}
open import lib.Basics
module lib.types.Unit where
⊤ = Unit
tt = unit
abstract
-- Unit is contractible
Unit-is-contr : is-contr Unit
Unit-is-contr = (unit , λ y → idp)
Unit-has-level : {n : ℕ₋₂} → has-level n Unit
Unit-has-level = contr-has-level Unit-is-contr
-- [Unit-has-level#instance] produces unsolved metas
Unit-has-level-S#instance : {n : ℕ₋₂} → has-level (S n) Unit
Unit-has-level-S#instance = contr-has-level Unit-is-contr
Unit-is-prop : is-prop Unit
Unit-is-prop = Unit-has-level
Unit-is-set : is-set Unit
Unit-is-set = Unit-has-level
Unit-level = Unit-is-contr
⊤-is-contr = Unit-is-contr
⊤-level = Unit-is-contr
⊤-has-level = Unit-has-level
⊤-is-prop = Unit-is-prop
⊤-is-set = Unit-is-set
| 22.411765
| 62
| 0.666667
|
3d6f4cf44e208c2635dda6c4ebfca12fc3e9a122
| 2,695
|
agda
|
Agda
|
container/core.agda
|
HoTT/M-types
|
beebe176981953ab48f37de5eb74557cfc5402f4
|
[
"BSD-3-Clause"
] | 27
|
2015-04-14T15:47:03.000Z
|
2022-01-09T07:26:57.000Z
|
container/core.agda
|
HoTT/M-types
|
beebe176981953ab48f37de5eb74557cfc5402f4
|
[
"BSD-3-Clause"
] | 2
|
2015-02-11T11:14:59.000Z
|
2015-02-11T15:20:34.000Z
|
container/core.agda
|
HoTT/M-types
|
beebe176981953ab48f37de5eb74557cfc5402f4
|
[
"BSD-3-Clause"
] | 4
|
2015-04-11T17:19:12.000Z
|
2019-02-26T06:17:38.000Z
|
{-# OPTIONS --without-K #-}
module container.core where
open import level
open import sum
open import equality
open import function
module _ {li}{I : Set li} where
-- homsets in the slice category
_→ⁱ_ : ∀ {lx ly} → (I → Set lx) → (I → Set ly) → Set _
X →ⁱ Y = (i : I) → X i → Y i
-- identity of the slice category
idⁱ : ∀ {lx}{X : I → Set lx} → X →ⁱ X
idⁱ i x = x
-- composition in the slice category
_∘ⁱ_ : ∀ {lx ly lz} {X : I → Set lx}{Y : I → Set ly}{Z : I → Set lz}
→ (Y →ⁱ Z) → (X →ⁱ Y) → (X →ⁱ Z)
(f ∘ⁱ g) i = f i ∘ g i
infixl 9 _∘ⁱ_
-- extensionality
funext-isoⁱ : ∀ {lx ly} {X : I → Set lx}{Y : (i : I) → X i → Set ly}
→ {f g : (i : I)(x : X i) → Y i x}
→ (∀ i x → f i x ≡ g i x)
≅ (f ≡ g)
funext-isoⁱ {f = f}{g = g}
= (Π-ap-iso refl≅ λ i → strong-funext-iso)
·≅ strong-funext-iso
funext-invⁱ : ∀ {lx ly} {X : I → Set lx}{Y : (i : I) → X i → Set ly}
→ {f g : (i : I)(x : X i) → Y i x}
→ f ≡ g → ∀ i x → f i x ≡ g i x
funext-invⁱ = invert funext-isoⁱ
funextⁱ : ∀ {lx ly} {X : I → Set lx}{Y : (i : I) → X i → Set ly}
→ {f g : (i : I)(x : X i) → Y i x}
→ (∀ i x → f i x ≡ g i x) → f ≡ g
funextⁱ = apply funext-isoⁱ
-- Definition 1 in Ahrens, Capriotti and Spadotti (arXiv:1504.02949v1 [cs.LO])
record Container (li la lb : Level) : Set (lsuc (li ⊔ la ⊔ lb)) where
constructor container
field
I : Set li
A : I → Set la
B : {i : I} → A i → Set lb
r : {i : I}{a : A i} → B a → I
-- Definition 2 in Ahrens, Capriotti and Spadotti (arXiv:1504.02949v1 [cs.LO])
-- functor associated to this indexed container
F : ∀ {lx} → (I → Set lx) → I → Set _
F X i = Σ (A i) λ a → (b : B a) → X (r b)
F-ap-iso : ∀ {lx ly}{X : I → Set lx}{Y : I → Set ly}
→ (∀ i → X i ≅ Y i)
→ ∀ i → F X i ≅ F Y i
F-ap-iso isom i = Σ-ap-iso refl≅ λ a
→ Π-ap-iso refl≅ λ b
→ isom (r b)
-- morphism map for the functor F
imap : ∀ {lx ly}
→ {X : I → Set lx}
→ {Y : I → Set ly}
→ (X →ⁱ Y)
→ (F X →ⁱ F Y)
imap g i (a , f) = a , λ b → g (r b) (f b)
-- action of a functor on homotopies
hmap : ∀ {lx ly}
→ {X : I → Set lx}
→ {Y : I → Set ly}
→ {f g : X →ⁱ Y}
→ (∀ i x → f i x ≡ g i x)
→ (∀ i x → imap f i x ≡ imap g i x)
hmap p i (a , u) = ap (_,_ a) (funext (λ b → p (r b) (u b)))
hmap-id : ∀ {lx ly}
→ {X : I → Set lx}
→ {Y : I → Set ly}
→ (f : X →ⁱ Y)
→ ∀ i x
→ hmap (λ i x → refl {x = f i x}) i x ≡ refl
hmap-id f i (a , u) = ap (ap (_,_ a)) (funext-id _)
| 30.280899
| 80
| 0.444156
|
dc2963ee5f593f7fd7c2a66c205e2fb1f657898d
| 1,798
|
agda
|
Agda
|
agda-stdlib/src/Codata/Musical/Cofin.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | 5
|
2020-10-07T12:07:53.000Z
|
2020-10-10T21:41:32.000Z
|
agda-stdlib/src/Codata/Musical/Cofin.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | null | null | null |
agda-stdlib/src/Codata/Musical/Cofin.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | 1
|
2021-11-04T06:54:45.000Z
|
2021-11-04T06:54:45.000Z
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- "Finite" sets indexed on coinductive "natural" numbers
------------------------------------------------------------------------
{-# OPTIONS --without-K --sized-types --guardedness #-}
module Codata.Musical.Cofin where
open import Codata.Musical.Notation
open import Codata.Musical.Conat as Conat using (Coℕ; suc; ∞ℕ)
open import Data.Nat.Base using (ℕ; zero; suc)
open import Data.Fin.Base using (Fin; zero; suc)
open import Relation.Binary.PropositionalEquality using (_≡_ ; refl)
open import Function
------------------------------------------------------------------------
-- The type
-- Note that Cofin ∞ℕ is /not/ finite. Note also that this is not a
-- coinductive type, but it is indexed on a coinductive type.
data Cofin : Coℕ → Set where
zero : ∀ {n} → Cofin (suc n)
suc : ∀ {n} (i : Cofin (♭ n)) → Cofin (suc n)
suc-injective : ∀ {m} {p q : Cofin (♭ m)} → (Cofin (suc m) ∋ suc p) ≡ suc q → p ≡ q
suc-injective refl = refl
------------------------------------------------------------------------
-- Some operations
fromℕ : ℕ → Cofin ∞ℕ
fromℕ zero = zero
fromℕ (suc n) = suc (fromℕ n)
toℕ : ∀ {n} → Cofin n → ℕ
toℕ zero = zero
toℕ (suc i) = suc (toℕ i)
fromFin : ∀ {n} → Fin n → Cofin (Conat.fromℕ n)
fromFin zero = zero
fromFin (suc i) = suc (fromFin i)
toFin : ∀ n → Cofin (Conat.fromℕ n) → Fin n
toFin (suc n) zero = zero
toFin (suc n) (suc i) = suc (toFin n i)
import Codata.Cofin as C
fromMusical : ∀ {n} → Cofin n → C.Cofin (Conat.fromMusical n)
fromMusical zero = C.zero
fromMusical (suc n) = C.suc (fromMusical n)
toMusical : ∀ {n} → C.Cofin n → Cofin (Conat.toMusical n)
toMusical C.zero = zero
toMusical (C.suc n) = suc (toMusical n)
| 30.474576
| 83
| 0.548387
|
50d8e107575fd7976a05a85339aa09c9d712bf57
| 2,556
|
agda
|
Agda
|
Cubical/Codata/M/AsLimit/itree.agda
|
FernandoLarrain/cubical
|
9acdecfa6437ec455568be4e5ff04849cc2bc13b
|
[
"MIT"
] | 301
|
2018-10-17T18:00:24.000Z
|
2022-03-24T02:10:47.000Z
|
Cubical/Codata/M/AsLimit/itree.agda
|
FernandoLarrain/cubical
|
9acdecfa6437ec455568be4e5ff04849cc2bc13b
|
[
"MIT"
] | 584
|
2018-10-15T09:49:02.000Z
|
2022-03-30T12:09:17.000Z
|
Cubical/Codata/M/AsLimit/itree.agda
|
FernandoLarrain/cubical
|
9acdecfa6437ec455568be4e5ff04849cc2bc13b
|
[
"MIT"
] | 134
|
2018-11-16T06:11:03.000Z
|
2022-03-23T16:22:13.000Z
|
{-# OPTIONS --guardedness --safe #-}
module Cubical.Codata.M.AsLimit.itree where
open import Cubical.Data.Unit
open import Cubical.Data.Prod
open import Cubical.Data.Nat as ℕ using (ℕ ; suc ; _+_ )
open import Cubical.Data.Sum
open import Cubical.Data.Empty
open import Cubical.Data.Bool
open import Cubical.Foundations.Function
open import Cubical.Foundations.Prelude
open import Cubical.Codata.M.AsLimit.Container
open import Cubical.Codata.M.AsLimit.M
open import Cubical.Codata.M.AsLimit.Coalg
-- Delay monad defined as an M-type
delay-S : (R : Type₀) -> Container ℓ-zero
delay-S R = (Unit ⊎ R) , λ { (inr _) -> ⊥ ; (inl tt) -> Unit }
delay : (R : Type₀) -> Type₀
delay R = M (delay-S R)
delay-ret : {R : Type₀} -> R -> delay R
delay-ret r = in-fun (inr r , λ ())
delay-tau : {R : Type₀} -> delay R -> delay R
delay-tau S = in-fun (inl tt , λ x → S)
-- Bottom element raised
data ⊥₁ : Type₁ where
-- TREES
tree-S : (E : Type₀ -> Type₁) (R : Type₀) -> Container (ℓ-suc ℓ-zero)
tree-S E R = (R ⊎ (Σ[ A ∈ Type₀ ] (E A))) , (λ { (inl _) -> ⊥₁ ; (inr (A , e)) -> Lift A } )
tree : (E : Type₀ -> Type₁) (R : Type₀) -> Type₁
tree E R = M (tree-S E R)
tree-ret : ∀ {E} {R} -> R -> tree E R
tree-ret {E} {R} r = in-fun (inl r , λ ())
tree-vis : ∀ {E} {R} -> ∀ {A} -> E A -> (A -> tree E R) -> tree E R
tree-vis {A = A} e k = in-fun (inr (A , e) , λ { (lift x) -> k x } )
-- ITrees (and buildup examples)
-- https://arxiv.org/pdf/1906.00046.pdf
-- Interaction Trees: Representing Recursive and Impure Programs in Coq
-- Li-yao Xia, Yannick Zakowski, Paul He, Chung-Kil Hur, Gregory Malecha, Benjamin C. Pierce, Steve Zdancewic
itree-S : ∀ (E : Type₀ -> Type₁) (R : Type₀) -> Container (ℓ-suc ℓ-zero)
itree-S E R = ((Unit ⊎ R) ⊎ (Σ[ A ∈ Type₀ ] (E A))) , (λ { (inl (inl _)) -> Lift Unit ; (inl (inr _)) -> ⊥₁ ; (inr (A , e)) -> Lift A } )
itree : ∀ (E : Type₀ -> Type₁) (R : Type₀) -> Type₁
itree E R = M (itree-S E R)
ret' : ∀ {E} {R} -> R -> P₀ (itree-S E R) (itree E R)
ret' {E} {R} r = inl (inr r) , λ ()
tau' : {E : Type₀ -> Type₁} -> {R : Type₀} -> itree E R -> P₀ (itree-S E R) (itree E R)
tau' t = inl (inl tt) , λ x → t
vis' : ∀ {E} {R} -> ∀ {A : Type₀} -> E A -> (A -> itree E R) -> P₀ (itree-S E R) (itree E R)
vis' {A = A} e k = inr (A , e) , λ { (lift x) -> k x }
ret : ∀ {E} {R} -> R -> itree E R
ret = in-fun ∘ ret'
tau : {E : Type₀ -> Type₁} -> {R : Type₀} -> itree E R -> itree E R
tau = in-fun ∘ tau'
vis : ∀ {E} {R} -> ∀ {A : Type₀} -> E A -> (A -> itree E R) -> itree E R
vis {A = A} e = in-fun ∘ (vis' {A = A} e)
| 33.631579
| 137
| 0.563772
|
31e236aff4bebbb443625deaab653c5d4c368b23
| 789
|
agda
|
Agda
|
notes/FOT/FOTC/Data/Nat/AddPartialRightIdentity.agda
|
asr/fotc
|
2fc9f2b81052a2e0822669f02036c5750371b72d
|
[
"MIT"
] | 11
|
2015-09-03T20:53:42.000Z
|
2021-09-12T16:09:54.000Z
|
notes/FOT/FOTC/Data/Nat/AddPartialRightIdentity.agda
|
asr/fotc
|
2fc9f2b81052a2e0822669f02036c5750371b72d
|
[
"MIT"
] | 2
|
2016-10-12T17:28:16.000Z
|
2017-01-01T14:34:26.000Z
|
notes/FOT/FOTC/Data/Nat/AddPartialRightIdentity.agda
|
asr/fotc
|
2fc9f2b81052a2e0822669f02036c5750371b72d
|
[
"MIT"
] | 3
|
2016-09-19T14:18:30.000Z
|
2018-03-14T08:50:00.000Z
|
------------------------------------------------------------------------------
-- Reasoning partially about functions
------------------------------------------------------------------------------
{-# OPTIONS --allow-unsolved-metas #-}
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
-- We cannot reasoning partially about partial functions intended to
-- operate in total values.
module FOT.FOTC.Data.Nat.AddPartialRightIdentity where
open import FOTC.Base
open import FOTC.Data.Nat
------------------------------------------------------------------------------
-- How proceed?
+-partialRightIdentity : ∀ n → n + zero ≡ n
+-partialRightIdentity n = {!!}
| 32.875
| 78
| 0.455006
|
1224f08ac9fdd65c80e17556af5f7e763570bdc3
| 452
|
agda
|
Agda
|
src/is-lib/InfSys.agda
|
boystrange/FairSubtypingAgda
|
c4b78e70c3caf68d509f4360b9171d9f80ecb825
|
[
"MIT"
] | 4
|
2021-07-29T14:32:30.000Z
|
2022-01-24T14:38:47.000Z
|
src/is-lib/InfSys.agda
|
boystrange/FairSubtypingAgda
|
c4b78e70c3caf68d509f4360b9171d9f80ecb825
|
[
"MIT"
] | null | null | null |
src/is-lib/InfSys.agda
|
boystrange/FairSubtypingAgda
|
c4b78e70c3caf68d509f4360b9171d9f80ecb825
|
[
"MIT"
] | null | null | null |
--------------------------------------------------------------------------------
-- This is part of Agda Inference Systems
{-# OPTIONS --guardedness #-}
module is-lib.InfSys {𝓁} where
open import is-lib.InfSys.Base {𝓁} public
open import is-lib.InfSys.Induction {𝓁} public
open import is-lib.InfSys.Coinduction {𝓁} public
open import is-lib.InfSys.FlexCoinduction {𝓁} public
open MetaRule public
open FinMetaRule public
open IS public
| 34.769231
| 80
| 0.608407
|
06c8305dab78e058c1377ddf174cb4e1171a8f35
| 1,821
|
agda
|
Agda
|
Cubical/HITs/Rationals/SigmaQ/Base.agda
|
L-TChen/cubical
|
60226aacd7b386aef95d43a0c29c4eec996348a8
|
[
"MIT"
] | null | null | null |
Cubical/HITs/Rationals/SigmaQ/Base.agda
|
L-TChen/cubical
|
60226aacd7b386aef95d43a0c29c4eec996348a8
|
[
"MIT"
] | 1
|
2022-01-27T02:07:48.000Z
|
2022-01-27T02:07:48.000Z
|
Cubical/HITs/Rationals/SigmaQ/Base.agda
|
L-TChen/cubical
|
60226aacd7b386aef95d43a0c29c4eec996348a8
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.HITs.Rationals.SigmaQ.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.HITs.Ints.QuoInt
open import Cubical.Data.Nat as ℕ hiding (_·_)
open import Cubical.Data.NatPlusOne
open import Cubical.Data.Sigma
open import Cubical.Data.Nat.GCD
open import Cubical.Data.Nat.Coprime
-- ℚ as the set of coprime pairs in ℤ × ℕ₊₁
ℚ : Type₀
ℚ = Σ[ (a , b) ∈ ℤ × ℕ₊₁ ] areCoprime (abs a , ℕ₊₁→ℕ b)
isSetℚ : isSet ℚ
isSetℚ = isSetΣ (isSet× isSetℤ (subst isSet 1+Path isSetℕ)) (λ _ → isProp→isSet isPropIsGCD)
signedPair : Sign → ℕ × ℕ₊₁ → ℤ × ℕ₊₁
signedPair s (a , b) = (signed s a , b)
[_] : ℤ × ℕ₊₁ → ℚ
[ signed s a , b ] = signedPair s (toCoprime (a , b)) , toCoprimeAreCoprime (a , b)
[ posneg i , b ] = (posneg i , 1) , toCoprimeAreCoprime (0 , b)
[]-cancelʳ : ∀ ((a , b) : ℤ × ℕ₊₁) k → [ a · pos (ℕ₊₁→ℕ k) , b ·₊₁ k ] ≡ [ a , b ]
[]-cancelʳ (signed s zero , b) k =
Σ≡Prop (λ _ → isPropIsGCD) (λ i → signed-zero spos s i , 1)
[]-cancelʳ (signed s (suc a) , b) k =
Σ≡Prop (λ _ → isPropIsGCD) (λ i → signedPair (·S-comm s spos i)
(toCoprime-cancelʳ (suc a , b) k i))
[]-cancelʳ (posneg i , b) k j =
isSet→isSet' isSetℚ ([]-cancelʳ (pos zero , b) k) ([]-cancelʳ (neg zero , b) k)
(λ i → [ posneg i · pos (ℕ₊₁→ℕ k) , b ·₊₁ k ]) (λ i → [ posneg i , b ]) i j
-- Natural number and negative integer literals for ℚ
open import Cubical.Data.Nat.Literals public
instance
fromNatℚ : HasFromNat ℚ
fromNatℚ = record { Constraint = λ _ → Unit ; fromNat = λ n → (pos n , 1) , oneGCD n }
instance
fromNegℚ : HasFromNeg ℚ
fromNegℚ = record { Constraint = λ _ → Unit ; fromNeg = λ n → (neg n , 1) , oneGCD n }
| 33.109091
| 97
| 0.602965
|
0b71bbc555dbdbaced03ec091a50334d8a585edf
| 1,455
|
agda
|
Agda
|
examples/AIM4/bag/Nat.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
examples/AIM4/bag/Nat.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
examples/AIM4/bag/Nat.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
module Nat where
import Prelude
import Equiv
import Datoid
open Prelude
open Equiv
open Datoid
data Nat : Set where
zero : Nat
suc : Nat -> Nat
one : Nat
one = suc zero
_+_ : Nat -> Nat -> Nat
zero + n = n
suc m + n = suc (m + n)
private
eqNat : Nat -> Nat -> Bool
eqNat zero zero = True
eqNat (suc m) (suc n) = eqNat m n
eqNat _ _ = False
refl' : (x : Nat) -> T (eqNat x x)
refl' zero = unit
refl' (suc n) = refl' n
sym' : (x y : Nat) -> T (eqNat x y) -> T (eqNat y x)
sym' zero zero _ = unit
sym' (suc n1) (suc n2) eq = sym' n1 n2 eq
sym' (suc _) zero wrong = wrong
sym' zero (suc _) wrong = wrong
trans' : (x y z : Nat) -> T (eqNat x y) -> T (eqNat y z) -> T (eqNat x z)
trans' zero _ zero _ _ = unit
trans' (suc n1) (suc n2) (suc n3) eq12 eq23 = trans' n1 n2 n3 eq12 eq23
trans' zero (suc _) _ wrong _ = absurdElim wrong
trans' _ zero (suc _) _ wrong = absurdElim wrong
trans' (suc _) zero _ wrong _ = absurdElim wrong
trans' _ (suc _) zero _ wrong = absurdElim wrong
decidableEquiv : DecidableEquiv Nat
decidableEquiv = decEquiv (equiv (T' eqNat) refl' sym' trans')
(boolFunctionsDecidable eqNat)
natDatoid : Datoid
natDatoid = datoid Nat decidableEquiv
| 26.944444
| 77
| 0.525086
|
2323a297c88f440dac644e59c4e2e730789995be
| 986
|
agda
|
Agda
|
Modules/Definition.agda
|
Smaug123/agdaproofs
|
0f4230011039092f58f673abcad8fb0652e6b562
|
[
"MIT"
] | 4
|
2019-08-08T12:44:19.000Z
|
2022-01-28T06:04:15.000Z
|
Modules/Definition.agda
|
Smaug123/agdaproofs
|
0f4230011039092f58f673abcad8fb0652e6b562
|
[
"MIT"
] | 14
|
2019-01-06T21:11:59.000Z
|
2020-04-11T11:03:39.000Z
|
Modules/Definition.agda
|
Smaug123/agdaproofs
|
0f4230011039092f58f673abcad8fb0652e6b562
|
[
"MIT"
] | 1
|
2021-11-29T13:23:07.000Z
|
2021-11-29T13:23:07.000Z
|
{-# OPTIONS --safe --warning=error --without-K #-}
open import Groups.Definition
open import Groups.Abelian.Definition
open import Setoids.Setoids
open import Rings.Definition
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
module Modules.Definition {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+R_ : A → A → A} {_*_ : A → A → A} (R : Ring S _+R_ _*_) {m n : _} {M : Set m} {T : Setoid {m} {n} M} {_+_ : M → M → M} {G' : Group T _+_} (G : AbelianGroup G') (_·_ : A → M → M) where
record Module : Set (a ⊔ b ⊔ m ⊔ n) where
field
dotWellDefined : {r s : A} {t u : M} → Setoid._∼_ S r s → Setoid._∼_ T t u → Setoid._∼_ T (r · t) (s · u)
dotDistributesLeft : {r : A} {x y : M} → Setoid._∼_ T (r · (x + y)) ((r · x) + (r · y))
dotDistributesRight : {r s : A} {x : M} → Setoid._∼_ T ((r +R s) · x) ((r · x) + (s · x))
dotAssociative : {r s : A} {x : M} → Setoid._∼_ T ((r * s) · x) (r · (s · x))
dotIdentity : {x : M} → Setoid._∼_ T ((Ring.1R R) · x) x
| 51.894737
| 257
| 0.53854
|
577fa5e17342743a2c8ea3007964bb9f217b7c56
| 9,977
|
agda
|
Agda
|
src/Pts/Reduction/Full.agda
|
asr/pts-agda
|
d701c2688e4a88eb81bdd9d458f9a2fcf81d5a43
|
[
"BSD-3-Clause"
] | 21
|
2016-05-13T12:11:10.000Z
|
2021-08-31T10:47:57.000Z
|
src/Pts/Reduction/Full.agda
|
asr/pts-agda
|
d701c2688e4a88eb81bdd9d458f9a2fcf81d5a43
|
[
"BSD-3-Clause"
] | 1
|
2017-08-21T14:48:09.000Z
|
2017-08-21T16:01:50.000Z
|
src/Pts/Reduction/Full.agda
|
asr/pts-agda
|
d701c2688e4a88eb81bdd9d458f9a2fcf81d5a43
|
[
"BSD-3-Clause"
] | 4
|
2017-08-20T10:29:44.000Z
|
2019-08-11T23:28:33.000Z
|
------------------------------------------------------------------------
-- Full β-reduction in pure type systems (PTS)
------------------------------------------------------------------------
module Pts.Reduction.Full where
open import Data.Fin.Substitution
open import Data.Fin.Substitution.ExtraLemmas
open import Data.Star using (ε; _◅_; map; gmap; _⋆)
open import Data.Sum using ([_,_])
open import Data.Product using (_,_; ∃; _×_)
open import Function using (_∘_)
open import Relation.Binary
import Relation.Binary.EquivalenceClosure as EqClos
import Relation.Binary.PropositionalEquality as P
import Relation.Binary.SymmetricClosure as SymClos
open import Relation.Binary.Reduction
import Function.Equivalence as Equiv
open import Pts.Syntax
open import Pts.Reduction.Parallel as Par hiding (reduction; _⋄*_; Π-inj)
-- All remaining submodules are parametrized by a given set of sorts.
module _ {Sort : Set} where
open Syntax Sort
open Substitution Sort using (_[_])
----------------------------------------------------------------------
-- Full β-reduction and equivalence relations
infixl 9 _·₁_ _·₂_
infix 5 _→β_
-- One-step β-reduction.
data _→β_ {n} : Term n → Term n → Set where
cont : ∀ a b c → (ƛ a b) · c →β b [ c ]
Π₁ : ∀ {a₁ a₂} → a₁ →β a₂ → ∀ b → Π a₁ b →β Π a₂ b
Π₂ : ∀ {b₁ b₂} a → b₁ →β b₂ → Π a b₁ →β Π a b₂
ƛ₁ : ∀ {a₁ a₂} → a₁ →β a₂ → ∀ b → ƛ a₁ b →β ƛ a₂ b
ƛ₂ : ∀ {b₁ b₂} a → b₁ →β b₂ → ƛ a b₁ →β ƛ a b₂
_·₁_ : ∀ {a₁ a₂} → a₁ →β a₂ → ∀ b → a₁ · b →β a₂ · b
_·₂_ : ∀ {b₁ b₂} a → b₁ →β b₂ → a · b₁ →β a · b₂
reduction : Reduction Term
reduction = record { _→1_ = _→β_ }
-- Full beta reduction and equivalence.
open Reduction reduction public renaming (_→*_ to _→β*_; _↔_ to _≡β_)
----------------------------------------------------------------------
-- Substitutions in full β-reductions/equivalence
--
-- The applications _/→β_, _/→β*_ and _/≡β_ below may be considered
-- substitution lemmas, i.e. they establish the commutativity of the
-- respective reductions/equivalence with substitutions.
-- Application of generic substitutions to the
-- reductions/equivalence.
record BetaSubstApp {T} (l : Lift T Term) : Set where
open Lift l
open SubstApp Sort l
open P hiding ([_])
-- Substitutions commute.
field /-sub-↑ : ∀ {m n} a b (σ : Sub T m n) →
a [ b ] / σ ≡ (a / σ ↑) [ b / σ ]
infixl 8 _/→β_
-- Substitution commutes with one-step β-reduction.
_/→β_ : ∀ {m n a b} → a →β b → (σ : Sub T m n) → a / σ →β b / σ
cont a b c /→β σ =
subst (_→β_ _) (sym (/-sub-↑ b c σ)) (cont (a / σ) (b / σ ↑) (c / σ))
Π₁ a₁→a₂ b /→β σ = Π₁ (a₁→a₂ /→β σ) (b / σ ↑)
Π₂ a b₁→b₂ /→β σ = Π₂ (a / σ) (b₁→b₂ /→β σ ↑)
ƛ₁ a₁→a₂ b /→β σ = ƛ₁ (a₁→a₂ /→β σ) (b / σ ↑)
ƛ₂ a b₁→b₂ /→β σ = ƛ₂ (a / σ) (b₁→b₂ /→β σ ↑)
a₁→a₂ ·₁ b /→β σ = (a₁→a₂ /→β σ) ·₁ (b / σ)
a ·₂ b₁→b₂ /→β σ = (a / σ) ·₂ (b₁→b₂ /→β σ)
redSubstApp : RedSubstApp reduction (record { _/_ = _/_ })
redSubstApp = record { _/→1_ = _/→β_ }
open RedSubstApp redSubstApp public
hiding (_/→1_) renaming (_/→*_ to _/→β*_; _/↔_ to _/≡β_)
-- Term substitutions in reductions/equivalences.
module BetaSubstitution where
open Substitution Sort
using (termSubst; weaken; sub-commutes; varLiftSubLemmas)
-- Application of renamings to reductions/equivalences.
varSubstApp : BetaSubstApp (TermSubst.varLift termSubst)
varSubstApp = record { /-sub-↑ = /-sub-↑ }
where open LiftSubLemmas varLiftSubLemmas
private module V = BetaSubstApp varSubstApp
-- Weakening of one-step β-reductions.
weaken-→β : ∀ {n} {a b : Term n} → a →β b → weaken a →β weaken b
weaken-→β a→b = a→b V./→β VarSubst.wk
-- Weakening of β-reductions.
weaken-→β* : ∀ {n} {a b : Term n} → a →β* b → weaken a →β* weaken b
weaken-→β* = gmap weaken weaken-→β
-- Weakening of β-equivalences.
weaken-≡β : ∀ {n} {a b : Term n} → a ≡β b → weaken a ≡β weaken b
weaken-≡β = EqClos.gmap weaken weaken-→β
-- Application of term substitutions to reductions/equivalences.
termSubstApp : BetaSubstApp (TermSubst.termLift termSubst)
termSubstApp = record { /-sub-↑ = λ a _ _ → sub-commutes a }
open BetaSubstApp termSubstApp public
----------------------------------------------------------------------
-- Simple properties of the β-reductions/equivalence
-- Inclusions.
→β⇒→β* = →1⇒→* reduction
→β*⇒≡β = →*⇒↔ reduction
→β⇒≡β = →1⇒↔ reduction
-- β-reduction is a preorder.
→β*-predorder = →*-predorder reduction
-- Preorder reasoning for β-reduction.
module →β*-Reasoning = →*-Reasoning reduction
-- Terms together with β-equivalence form a setoid.
≡β-setoid = ↔-setoid reduction
-- Equational reasoning for β-equivalence.
module ≡β-Reasoning = ↔-Reasoning reduction
----------------------------------------------------------------------
-- Relationships between β-reduction and parallel reduction
-- One-step β-reduction implies one-step parallel reduction.
→β⇒⇛ : ∀ {n} {a b : Term n} → a →β b → a ⇛ b
→β⇒⇛ (cont a b c) = cont refl refl
→β⇒⇛ (Π₁ a₁→a₂ b) = Π (→β⇒⇛ a₁→a₂) refl
→β⇒⇛ (Π₂ a b₁→b₂) = Π refl (→β⇒⇛ b₁→b₂)
→β⇒⇛ (ƛ₁ a₁→a₂ b) = ƛ (→β⇒⇛ a₁→a₂) refl
→β⇒⇛ (ƛ₂ a b₁→b₂) = ƛ refl (→β⇒⇛ b₁→b₂)
→β⇒⇛ (a₁→a₂ ·₁ b) = →β⇒⇛ a₁→a₂ · refl
→β⇒⇛ (a ·₂ b₁→b₂) = refl · →β⇒⇛ b₁→b₂
-- β-reduction implies parallel reduction.
→β*⇒⇛* : ∀ {n} {a b : Term n} → a →β* b → a ⇛* b
→β*⇒⇛* = map →β⇒⇛
-- β-equivalence implies parallel equivalence.
≡β⇒≡p : ∀ {n} {a b : Term n} → a ≡β b → a ≡p b
≡β⇒≡p = EqClos.map →β⇒⇛
open →*-Reasoning reduction
-- One-step parallel reduction implies β-reduction.
⇛⇒→β* : ∀ {n} {a b : Term n} → a ⇛ b → a →β* b
⇛⇒→β* refl = ε
⇛⇒→β* (Π {a₁} {a₂} {b₁} {b₂} a₁⇛a₂ b₁⇛b₂) = begin
Π a₁ b₁ ⟶⋆⟨ gmap (λ a → Π a _) (λ a₁→a₂ → Π₁ a₁→a₂ _) (⇛⇒→β* a₁⇛a₂) ⟩
Π a₂ b₁ ⟶⋆⟨ gmap (Π _) (Π₂ _) (⇛⇒→β* b₁⇛b₂) ⟩
Π a₂ b₂ ∎
⇛⇒→β* (ƛ {a₁} {a₂} {b₁} {b₂} a₁⇛a₂ b₁⇛b₂) = begin
ƛ a₁ b₁ ⟶⋆⟨ gmap (λ a → ƛ a _) (λ a₁→a₂ → ƛ₁ a₁→a₂ _) (⇛⇒→β* a₁⇛a₂) ⟩
ƛ a₂ b₁ ⟶⋆⟨ gmap (ƛ _) (ƛ₂ _) (⇛⇒→β* b₁⇛b₂) ⟩
ƛ a₂ b₂ ∎
⇛⇒→β* (_·_ {a₁} {a₂} {b₁} {b₂} a₁⇛a₂ b₁⇛b₂) = begin
a₁ · b₁ ⟶⋆⟨ gmap (λ a → a · _) (λ a₁→a₂ → a₁→a₂ ·₁ _) (⇛⇒→β* a₁⇛a₂) ⟩
a₂ · b₁ ⟶⋆⟨ gmap (_·_ _) (_·₂_ _) (⇛⇒→β* b₁⇛b₂) ⟩
a₂ · b₂ ∎
⇛⇒→β* (cont {a} {b₁} {b₂} {c₁} {c₂} b₁⇛b₂ c₁⇛c₂) = begin
(ƛ a b₁) · c₁ ⟶⋆⟨ gmap (λ b → (ƛ _ b) · _)
(λ b₁→b₂ → (ƛ₂ _ b₁→b₂) ·₁ _) (⇛⇒→β* b₁⇛b₂) ⟩
(ƛ a b₂) · c₁ ⟶⋆⟨ gmap (_·_ _) (_·₂_ _) (⇛⇒→β* c₁⇛c₂) ⟩
(ƛ a b₂) · c₂ ⟶⟨ cont a b₂ c₂ ⟩
b₂ [ c₂ ] ∎
-- Parallel reduction implies β-reduction.
⇛*⇒→β* : ∀ {n} {a b : Term n} → a ⇛* b → a →β* b
⇛*⇒→β* a⇛*b = (⇛⇒→β* ⋆) a⇛*b
-- Parallel equivalence implies β-equivalence.
≡p⇒≡β : ∀ {n} {a b : Term n} → a ≡p b → a ≡β b
≡p⇒≡β a≡b = ([ ⇛⇒≡β , sym ∘ ⇛⇒≡β ] ⋆) a≡b
where
open Setoid ≡β-setoid using (sym)
⇛⇒≡β : ∀ {n} {a b : Term n} → a ⇛ b → a ≡β b
⇛⇒≡β = →*⇒↔ reduction ∘ ⇛⇒→β*
open Equiv using (_⇔_; equivalence)
-- Full β-reduction is equivalent to parallel reduction.
→β*-⇛*-equivalence : ∀ {n} {a b : Term n} → a →β* b ⇔ a ⇛* b
→β*-⇛*-equivalence = equivalence →β*⇒⇛* ⇛*⇒→β*
-- β-equivalence is equivalent to parallel equivalence.
≡β-≡p-equivalence : ∀ {n} {a b : Term n} → a ≡β b ⇔ a ≡p b
≡β-≡p-equivalence = equivalence ≡β⇒≡p ≡p⇒≡β
-- Shorthand for single-variable substitutions lifted to β-redcution.
_[→β_] : ∀ {n} a {b₁ b₂ : Term n} → b₁ →β b₂ → a [ b₁ ] →β* a [ b₂ ]
a [→β b₁→b₂ ] = ⇛⇒→β* (a / sub (→β⇒⇛ b₁→b₂))
where open ParSubstitution using (_/_; sub)
open P using (_≡_)
-- Shapes are preserved by full β-reduction.
sort-→β* : ∀ {n s} {a : Term n} → sort s →β* a → sort s ≡ a
sort-→β* ε = P.refl
sort-→β* (() ◅ _)
ƛ-→β* : ∀ {n} {a : Term n} {b c} → ƛ a b →β* c →
∃ λ a′ → ∃ λ b′ → a →β* a′ × b →β* b′ × ƛ a′ b′ ≡ c
ƛ-→β* λab→*c =
let a′ , b′ , a⇛a′ , b⇛b′ , λa′b′≡c = ƛ-⇛* (→β*⇒⇛* λab→*c)
in a′ , b′ , ⇛*⇒→β* a⇛a′ , ⇛*⇒→β* b⇛b′ , λa′b′≡c
Π-→β* : ∀ {n} {a : Term n} {b c} → Π a b →β* c →
∃ λ a′ → ∃ λ b′ → a →β* a′ × b →β* b′ × Π a′ b′ ≡ c
Π-→β* Πab→*c =
let a′ , b′ , a⇛a′ , b⇛b′ , Πa′b′≡c = Π-⇛* (→β*⇒⇛* Πab→*c)
in a′ , b′ , ⇛*⇒→β* a⇛a′ , ⇛*⇒→β* b⇛b′ , Πa′b′≡c
----------------------------------------------------------------------
-- Confluence (aka the Church-Rosser property) of full β-reduction
--
-- Full β-reduction is confluent, i.e. i.e. for any pair a →β* b₁,
-- a →β* b₂ of parallel reductions, there is a term c, such that
--
-- →β*
-- a ------→ b₂
-- | :
-- →β* | : →β*
-- ↓ →β* ↓
-- b₁ ·····→ c
--
-- commutes.
-- Confluence of _→β*_ (aka the Church-Rosser property).
_⋄*_ : ∀ {n} {a b₁ b₂ : Term n} →
a →β* b₁ → a →β* b₂ → ∃ λ c → b₁ →β* c × b₂ →β* c
a→*b₁ ⋄* a→*b₂ =
let c , b₁⇛*c , b₂⇛*c = (→β*⇒⇛* a→*b₁) Par.⋄* (→β*⇒⇛* a→*b₂)
in c , ⇛*⇒→β* b₁⇛*c , ⇛*⇒→β* b₂⇛*c
-- Factorization of β-equivalence into β-reductions.
≡β⇒→β* : ∀ {n} {a b : Term n} → a ≡β b → ∃ λ c → a →β* c × b →β* c
≡β⇒→β* a≡b =
let c , a⇛*c , b⇛*c = ≡p⇒⇛* (≡β⇒≡p a≡b)
in c , ⇛*⇒→β* a⇛*c , ⇛*⇒→β* b⇛*c
-- Π-injectivity (with respect to ≡β).
Π-inj : ∀ {n} {a₁ a₂ : Term n} {b₁ b₂} → Π a₁ b₁ ≡β Π a₂ b₂ →
a₁ ≡β a₂ × b₁ ≡β b₂
Π-inj Πa₁b₁≡Πa₂b₂ =
let a₁≡a₂ , b₁≡b₂ = Par.Π-inj (≡β⇒≡p Πa₁b₁≡Πa₂b₂)
in ≡p⇒≡β a₁≡a₂ , ≡p⇒≡β b₁≡b₂
-- β-equivalence on sorts implies syntactic equivalence.
sort-≡β : ∀ {n s₁ s₂} → sort {n} s₁ ≡β sort s₂ → s₁ ≡ s₂
sort-≡β s₁≡βs₂ = Par.sort-≡p (≡β⇒≡p s₁≡βs₂)
| 36.680147
| 75
| 0.494137
|
312ea657da89b7f2ce1dcc552474d1d0661e1f03
| 800
|
agda
|
Agda
|
src/Fiber.agda
|
vituscze/HoTT-lectures
|
7730385adfdbdda38ee8b124be3cdeebb7312c65
|
[
"BSD-3-Clause"
] | null | null | null |
src/Fiber.agda
|
vituscze/HoTT-lectures
|
7730385adfdbdda38ee8b124be3cdeebb7312c65
|
[
"BSD-3-Clause"
] | null | null | null |
src/Fiber.agda
|
vituscze/HoTT-lectures
|
7730385adfdbdda38ee8b124be3cdeebb7312c65
|
[
"BSD-3-Clause"
] | null | null | null |
{-# OPTIONS --without-K #-}
module Fiber where
open import Equivalence
open import NTypes.Contractible
open import PathOperations
open import Types
fib : ∀ {a b} {A : Set a} {B : Set b}
(f : A → B) (y : B) →
Set _
fib {A = A} f y = Σ A λ x → f x ≡ y
fib→dom : ∀ {a b} {A : Set a} {B : Set b} (f : A → B) →
Σ B (fib f) → A
fib→dom f (b , a , p) = a
dom→fib : ∀ {a b} {A : Set a} {B : Set b} (f : A → B) →
A → Σ B (fib f)
dom→fib f a = f a , a , refl
fib-dom-eq : ∀ {a b} {A : Set a} {B : Set b} (f : A → B) →
Σ B (fib f) ≃ A
fib-dom-eq {A = A} {B = B} f
= fib→dom f
, (dom→fib f , λ _ → refl)
, (dom→fib f , λ {(b , a , p) →
ap (swap ∘ _,_ a) (π₂ (pp-space-contr (f a)) (b , p))})
where
swap : (Σ A λ x → Σ B λ y → f x ≡ y) → Σ B (fib f)
swap (b , a , p) = a , b , p
| 25
| 61
| 0.47
|
2f2b042348c701f30ceafdcc8d02ed9480a3884f
| 1,751
|
agda
|
Agda
|
PiFrac/Interp.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | 5
|
2020-10-07T12:07:53.000Z
|
2020-10-10T21:41:32.000Z
|
PiFrac/Interp.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | null | null | null |
PiFrac/Interp.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | 1
|
2021-11-04T06:54:45.000Z
|
2021-11-04T06:54:45.000Z
|
module PiFrac.Interp where
open import Data.Empty
open import Data.Unit hiding (_≟_)
open import Data.Sum
open import Data.Product
open import Data.Maybe
open import Relation.Binary.Core
open import Relation.Binary
open import Relation.Nullary
open import Relation.Binary.PropositionalEquality
open import Function using (_∘_)
open import PiFrac.Syntax
open import PiFrac.Opsem
interp : {t₁ t₂ : 𝕌} → (t₁ ↔ t₂) → ⟦ t₁ ⟧ → Maybe ⟦ t₂ ⟧
interp unite₊l (inj₂ v) = just v
interp uniti₊l v = just (inj₂ v)
interp swap⋆ (v₁ , v₂) = just (v₂ , v₁)
interp swap₊ (inj₁ v) = just (inj₂ v)
interp swap₊ (inj₂ v) = just (inj₁ v)
interp assocl₊ (inj₁ v) = just (inj₁ (inj₁ v))
interp assocl₊ (inj₂ (inj₁ v)) = just (inj₁ (inj₂ v))
interp assocl₊ (inj₂ (inj₂ v)) = just (inj₂ v)
interp assocr₊ (inj₁ (inj₁ v)) = just (inj₁ v)
interp assocr₊ (inj₁ (inj₂ v)) = just (inj₂ (inj₁ v))
interp assocr₊ (inj₂ v) = just (inj₂ (inj₂ v))
interp unite⋆l v = just (proj₂ v)
interp uniti⋆l v = just (tt , v)
interp assocl⋆ (v₁ , v₂ , v₃) = just ((v₁ , v₂) , v₃)
interp assocr⋆ ((v₁ , v₂) , v₃) = just (v₁ , v₂ , v₃)
interp dist (inj₁ v₁ , v₃) = just (inj₁ (v₁ , v₃))
interp dist (inj₂ v₂ , v₃) = just (inj₂ (v₂ , v₃))
interp factor (inj₁ (v₁ , v₃)) = just (inj₁ v₁ , v₃)
interp factor (inj₂ (v₂ , v₃)) = just (inj₂ v₂ , v₃)
interp id↔ v = just v
interp (c₁ ⊕ c₂) (inj₁ v) = interp c₁ v >>= just ∘ inj₁
interp (c₁ ⊕ c₂) (inj₂ v) = interp c₂ v >>= just ∘ inj₂
interp (c₁ ⊗ c₂) (v₁ , v₂) = interp c₁ v₁ >>=
(λ v₁' → interp c₂ v₂ >>=
λ v₂' → just (v₁' , v₂'))
interp (c₁ ⨾ c₂) v = interp c₁ v >>= interp c₂
interp (ηₓ v) tt = just (v , ↻)
interp (εₓ v) (v' , ○) with v ≟ v'
... | yes _ = just tt
... | no _ = nothing
| 38.065217
| 59
| 0.611079
|
2923552eb8b680b1f789ad49c3368c6fece33a1a
| 676
|
agda
|
Agda
|
test/interaction/Issue1360.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/interaction/Issue1360.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/interaction/Issue1360.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
-- {-# OPTIONS -v interaction.give:20 #-}
-- Reported by stevan.andjelkovic, Yesterday (17 hours ago)
-- Trying to give the expression in the goal gives the following error:
-- tt != tt p a of type Prop
-- when checking that the expression (λ x y → ?) has type
-- ({o : ⊤} (p : ⊤) → ⊥ → ⊤)
record _▷_ (I O : Set) : Set₁ where
constructor _◃_/_
field
Parameter : (o : O) → Set
Arity : ∀ {o} (p : Parameter o) → Set
input : ∀ {o} (p : Parameter o) (a : Arity p) → I
open _▷_ public
data ⊥ : Set where
record ⊤ : Set where
constructor tt
--data ⊤ : Set where
-- tt : ⊤
Abort : ⊤ ▷ ⊤
Abort = (λ _ → ⊤) ◃ (λ _ → ⊥) / {!!λ x y → {!!}!}
| 21.806452
| 71
| 0.54142
|
31ffce97f94d24a397def688d6c3007225761a12
| 10,038
|
agda
|
Agda
|
Cubical/Experiments/EscardoSIP.agda
|
limemloh/cubical
|
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
|
[
"MIT"
] | null | null | null |
Cubical/Experiments/EscardoSIP.agda
|
limemloh/cubical
|
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
|
[
"MIT"
] | null | null | null |
Cubical/Experiments/EscardoSIP.agda
|
limemloh/cubical
|
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
|
[
"MIT"
] | null | null | null |
{-
This is a rather literal translation of Martin Hötzel-Escardó's structure identity principle into cubical Agda. See
https://www.cs.bham.ac.uk/~mhe/HoTT-UF-in-Agda-Lecture-Notes/HoTT-UF-Agda.html#sns
All the needed preliminary results from the lecture notes are stated and proven in this file.
It would be interesting to compare the proves with the one in Cubical.Foundations.SIP
-}
{-# OPTIONS --cubical --safe #-}
module Cubical.Experiments.EscardoSIP where
open import Cubical.Core.Everything
open import Cubical.Foundations.Everything
open import Cubical.Foundations.HAEquiv
open import Cubical.Data.Sigma.Properties
private
variable
ℓ ℓ' ℓ'' : Level
-- We prove several useful equalities and equivalences between Σ-types all the proofs are taken from
-- Martin Hötzel-Escardó's lecture notes.
-- The next result is just a reformulation of pathSigma≡sigmaPath from Sigma.Properties.
Σ-≡-≃ : {X : Type ℓ} {A : X → Type ℓ'}
→ (σ τ : Σ X A) → ((σ ≡ τ) ≃ (Σ[ p ∈ (σ .fst) ≡ (τ .fst) ] (subst A p (σ .snd) ≡ (τ .snd))))
Σ-≡-≃ {A = A} σ τ = pathToEquiv (pathSigma≡sigmaPath σ τ)
-- This cubical proof is much shorter than in HoTT but requires that A, B live in the same universe.
Σ-cong : {X : Type ℓ} {A B : X → Type ℓ'} →
((x : X) → (A x ≡ B x)) → (Σ X A ≡ Σ X B)
Σ-cong {X = X} p i = Σ[ x ∈ X ] (p x i)
-- Two lemmas for the more general formulation using equivalences
NatΣ : {X : Type ℓ} {A : X → Type ℓ'} {B : X → Type ℓ''}
→ ((x : X) → (A x) → (B x)) → (Σ X A) → (Σ X B)
NatΣ τ (x , a) = (x , τ x a)
Σ-to-PathP : {X : Type ℓ} {A : X → Type ℓ'} {x : X} {a b : A x}
→ (a ≡ b) → PathP (λ i → Σ X A) (x , a) (x , b)
Σ-to-PathP {x = x} p i = (x , p i)
Σ-cong-≃ : {X : Type ℓ} {A : X → Type ℓ'} {B : X → Type ℓ''} →
((x : X) → (A x ≃ B x)) → (Σ X A ≃ Σ X B)
Σ-cong-≃ {X = X} {A = A} {B = B} φ = isoToEquiv (iso (NatΣ f) (NatΣ g) NatΣ-ε NatΣ-η)
where
f : (x : X) → (A x) → (B x)
f x = equivFun (φ x)
g : (x : X) → (B x) → (A x)
g x = equivFun (invEquiv (φ x))
η : (x : X) → (a : A x) → (g x) ((f x) a) ≡ a
η x = retEq (invEquiv (φ x))
ε : (x : X) → (b : B x) → f x (g x b) ≡ b
ε x = secEq (invEquiv (φ x))
NatΣ-η : (w : Σ X A) → NatΣ g (NatΣ f w) ≡ w
NatΣ-η (x , a) = (x , g x (f x a)) ≡⟨ Σ-to-PathP (η x a) ⟩
(x , a) ∎
NatΣ-ε : (u : Σ X B) → NatΣ f (NatΣ g u) ≡ u
NatΣ-ε (x , b) = (x , f x (g x b)) ≡⟨ Σ-to-PathP (ε x b) ⟩
(x , b) ∎
-- The next result is stated a bit awkwardly but is rather straightforward to prove.
Σ-change-of-variable-Iso : {X : Type ℓ} {Y : Type ℓ'} {A : Y → Type ℓ''} (f : X → Y)
→ (isHAEquiv f) → (Iso (Σ X (A ∘ f)) (Σ Y A))
Σ-change-of-variable-Iso {ℓ = ℓ} {ℓ' = ℓ'} {X = X} {Y = Y} {A = A} f isHAEquivf = iso φ ψ φψ ψφ
where
g : Y → X
g = isHAEquiv.g isHAEquivf
ε : (x : X) → (g (f x)) ≡ x
ε = isHAEquiv.sec isHAEquivf
η : (y : Y) → f (g y) ≡ y
η = isHAEquiv.ret isHAEquivf
τ : (x : X) → cong f (ε x) ≡ η (f x)
τ = isHAEquiv.com isHAEquivf
φ : (Σ X (A ∘ f)) → (Σ Y A)
φ (x , a) = (f x , a)
ψ : (Σ Y A) → (Σ X (A ∘ f))
ψ (y , a) = (g y , subst A (sym (η y)) a)
φψ : (z : (Σ Y A)) → φ (ψ z) ≡ z
φψ (y , a) = sigmaPath→pathSigma (φ (ψ (y , a))) (y , a)
(η y , transportTransport⁻ (λ i → A (η y i)) a)
-- last term proves transp (λ i → A (η y i)) i0 (transp (λ i → A (η y (~ i))) i0 a) ≡ a
ψφ : (z : (Σ X (A ∘ f))) → ψ (φ z) ≡ z
ψφ (x , a) = sigmaPath→pathSigma (ψ (φ (x , a))) (x , a) (ε x , q)
where
b : A (f (g (f x)))
b = (transp (λ i → A (η (f x) (~ i))) i0 a)
q : transp (λ i → A (f (ε x i))) i0 (transp (λ i → A (η (f x) (~ i))) i0 a) ≡ a
q = transp (λ i → A (f (ε x i))) i0 b ≡⟨ S ⟩
transp (λ i → A (η (f x) i)) i0 b ≡⟨ transportTransport⁻ (λ i → A (η (f x) i)) a ⟩
a ∎
where
S : (transp (λ i → A (f (ε x i))) i0 b) ≡ (transp (λ i → A (η (f x) i)) i0 b)
S = subst (λ p → (transp (λ i → A (f (ε x i))) i0 b) ≡ (transp (λ i → A (p i)) i0 b))
(τ x) refl
-- Using the result above we can prove the following quite useful result.
Σ-change-of-variable-≃ : {X : Type ℓ} {Y : Type ℓ'} {A : Y → Type ℓ''} (f : X → Y)
→ (isEquiv f) → ((Σ X (A ∘ f)) ≃ (Σ Y A))
Σ-change-of-variable-≃ f isEquivf =
isoToEquiv (Σ-change-of-variable-Iso f (equiv→HAEquiv (f , isEquivf) .snd))
Σ-assoc-Iso : (X : Type ℓ) (A : X → Type ℓ') (P : Σ X A → Type ℓ'')
→ (Iso (Σ (Σ X A) P) (Σ[ x ∈ X ] (Σ[ a ∈ A x ] P (x , a))))
Σ-assoc-Iso X A P = iso f g ε η
where
f : (Σ (Σ X A) P) → (Σ[ x ∈ X ] (Σ[ a ∈ A x ] P (x , a)))
f ((x , a) , p) = (x , (a , p))
g : (Σ[ x ∈ X ] (Σ[ a ∈ A x ] P (x , a))) → (Σ (Σ X A) P)
g (x , (a , p)) = ((x , a) , p)
ε : section f g
ε n = refl
η : retract f g
η m = refl
Σ-assoc-≃ : (X : Type ℓ) (A : X → Type ℓ') (P : Σ X A → Type ℓ'')
→ (Σ (Σ X A) P) ≃ (Σ[ x ∈ X ] (Σ[ a ∈ A x ] P (x , a)))
Σ-assoc-≃ X A P = isoToEquiv (Σ-assoc-Iso X A P)
-- A structure is a type-family S : Type ℓ → Type ℓ', i.e. for X : Type ℓ and s : S X, the pair (X , s)
-- means that X is equipped with a S-structure, which is witnessed by s.
-- An S-structure should have a notion of S-homomorphism, or rather S-isomorphism.
-- This will be implemented by a function ι
-- that gives us for any two types with S-structure (X , s) and (Y , t) a family:
-- ι (X , s) (Y , t) : (X ≃ Y) → Type ℓ''
-- Note that for any equivalence (f , e) : X ≃ Y the type ι (X , s) (Y , t) (f , e) need not to be
-- a proposition. Indeed this type should correspond to the ways s and t can be identified
-- as S-structures. This we call a standard notion of structure.
SNS : (S : Type ℓ → Type ℓ')
→ ((A B : Σ[ X ∈ (Type ℓ) ] (S X)) → ((A .fst) ≃ (B .fst)) → Type ℓ'')
→ Type (ℓ-max (ℓ-max(ℓ-suc ℓ) ℓ') ℓ'')
SNS {ℓ = ℓ} S ι = ∀ {X : (Type ℓ)} (s t : S X) → ((s ≡ t) ≃ ι (X , s) (X , t) (idEquiv X))
-- Escardo's ρ can actually be defined from this:
ρ : {S : Type ℓ → Type ℓ'}
→ {ι : (A B : Σ[ X ∈ (Type ℓ) ] (S X)) → ((A .fst) ≃ (B .fst)) → Type ℓ''}
→ (SNS S ι)
→ (A : Σ[ X ∈ (Type ℓ) ] (S X)) → (ι A A (idEquiv (A .fst)))
ρ θ A = equivFun (θ (A .snd) (A .snd)) refl
-- We introduce the notation a bit differently:
_≃[_]_ : {S : Type ℓ → Type ℓ'} → (Σ[ X ∈ (Type ℓ) ] (S X))
→ (ι : (A B : Σ[ X ∈ (Type ℓ) ] (S X)) → ((A .fst) ≃ (B .fst)) → Type ℓ'')
→ (Σ[ X ∈ (Type ℓ) ] (S X))
→ (Type (ℓ-max ℓ ℓ''))
A ≃[ ι ] B = Σ[ f ∈ ((A .fst) ≃ (B. fst)) ] (ι A B f)
Id→homEq : (S : Type ℓ → Type ℓ')
→ (ι : (A B : Σ[ X ∈ (Type ℓ) ] (S X)) → ((A .fst) ≃ (B .fst)) → Type ℓ'')
→ (ρ : (A : Σ[ X ∈ (Type ℓ) ] (S X)) → ι A A (idEquiv (A .fst)))
→ (A B : Σ[ X ∈ (Type ℓ) ] (S X)) → A ≡ B → (A ≃[ ι ] B)
Id→homEq S ι ρ A B p = J (λ y x → A ≃[ ι ] y) (idEquiv (A .fst) , ρ A) p
-- Use a PathP version of Escardó's homomorphism-lemma
hom-lemma-dep : (S : Type ℓ → Type ℓ')
→ (ι : (A B : Σ[ X ∈ (Type ℓ) ] (S X)) → ((A .fst) ≃ (B .fst)) → Type ℓ'')
→ (θ : SNS S ι)
→ (A B : Σ[ X ∈ (Type ℓ) ] (S X))
→ (p : (A .fst) ≡ (B. fst))
→ (PathP (λ i → S (p i)) (A .snd) (B .snd)) ≃ (ι A B (pathToEquiv p))
hom-lemma-dep S ι θ A B p = (J P (λ s → γ s) p) (B .snd)
where
P = (λ y x → (s : S y) → PathP (λ i → S (x i)) (A .snd) s ≃ ι A (y , s) (pathToEquiv x))
γ : (s : S (A .fst)) → ((A .snd) ≡ s) ≃ ι A ((A .fst) , s) (pathToEquiv refl)
γ s = subst (λ f → ((A .snd) ≡ s) ≃ ι A ((A .fst) , s) f) (sym pathToEquivRefl) (θ (A. snd) s)
-- Define the inverse of Id→homEq directly.
ua-lemma : (A B : Type ℓ) (e : A ≃ B) → (pathToEquiv (ua e)) ≡ e
ua-lemma A B e = EquivJ (λ b a f → (pathToEquiv (ua f)) ≡ f)
(λ x → subst (λ r → pathToEquiv r ≡ idEquiv x) (sym uaIdEquiv) pathToEquivRefl)
B A e
homEq→Id : (S : Type ℓ → Type ℓ')
→ (ι : (A B : Σ[ X ∈ (Type ℓ) ] (S X)) → ((A .fst) ≃ (B .fst)) → Type ℓ'')
→ (θ : SNS S ι)
→ (A B : Σ[ X ∈ (Type ℓ) ] (S X)) → (A ≃[ ι ] B) → A ≡ B
homEq→Id S ι θ A B (f , φ) = ΣPathP (p , q)
where
p = ua f
ψ : ι A B (pathToEquiv p)
ψ = subst (λ g → ι A B g) (sym (ua-lemma (A .fst) (B. fst) f)) φ
q : PathP (λ i → S (p i)) (A .snd) (B .snd)
q = equivFun (invEquiv (hom-lemma-dep S ι θ A B p)) ψ
-- Proof of the SIP:
SIP : (S : Type ℓ → Type ℓ')
→ (ι : (A B : Σ[ X ∈ (Type ℓ) ] (S X)) → ((A .fst) ≃ (B .fst)) → Type ℓ'')
→ (θ : SNS S ι)
→ (A B : Σ[ X ∈ (Type ℓ) ] (S X)) → ((A ≡ B) ≃ (A ≃[ ι ] B))
SIP S ι θ A B =
(A ≡ B) ≃⟨ i ⟩
(Σ[ p ∈ (A .fst) ≡ (B. fst) ] PathP (λ i → S (p i)) (A .snd) (B .snd)) ≃⟨ ii ⟩
(Σ[ p ∈ (A .fst) ≡ (B. fst) ] (ι A B (pathToEquiv p))) ≃⟨ iii ⟩
(A ≃[ ι ] B) ■
where
i = invEquiv Σ≡
ii = Σ-cong-≃ (hom-lemma-dep S ι θ A B)
iii = Σ-change-of-variable-≃ pathToEquiv (equivIsEquiv univalence)
-- A simple example: pointed types
pointed-structure : Type ℓ → Type ℓ
pointed-structure X = X
Pointed-Type : Type (ℓ-suc ℓ)
Pointed-Type {ℓ = ℓ} = Σ (Type ℓ) pointed-structure
pointed-ι : (A B : Pointed-Type) → (A .fst) ≃ (B. fst) → Type ℓ
pointed-ι (X , x) (Y , y) f = (equivFun f) x ≡ y
pointed-is-sns : SNS {ℓ = ℓ} pointed-structure pointed-ι
pointed-is-sns s t = idEquiv (s ≡ t)
pointed-type-sip : (X Y : Type ℓ) (x : X) (y : Y)
→ (Σ[ f ∈ X ≃ Y ] (f .fst) x ≡ y) ≃ ((X , x) ≡ (Y , y))
pointed-type-sip X Y x y = invEquiv (SIP pointed-structure pointed-ι pointed-is-sns (X , x) (Y , y))
| 38.607692
| 115
| 0.461447
|
184148f43a45602b960b3d519dec547b4a463d9a
| 4,151
|
agda
|
Agda
|
src/ZAxioms.agda
|
acallesalda/setform
|
4ab3c1a8bfd679cb3ced25500aa8103cb6c4b1f4
|
[
"MIT"
] | 3
|
2019-08-02T23:13:13.000Z
|
2022-01-06T20:04:13.000Z
|
src/ZAxioms.agda
|
acallesalda/setform
|
4ab3c1a8bfd679cb3ced25500aa8103cb6c4b1f4
|
[
"MIT"
] | null | null | null |
src/ZAxioms.agda
|
acallesalda/setform
|
4ab3c1a8bfd679cb3ced25500aa8103cb6c4b1f4
|
[
"MIT"
] | null | null | null |
-------------------------------------------------
-- Formalisation of the Z axioms of set theory.
-------------------------------------------------
infix 1 ∃
infix 5 _⊆_
infix 5 _∈_ _∉_
infix 4 _≡_
module ZAxioms where
open import Logic
-- The universe of discourse (pure sets) and the membership
-- relationship. (The letter 𝓢 is type by "\MCS")
postulate
𝓢 : Set
_∈_ : 𝓢 → 𝓢 → Set
-- Existential quantifier
data ∃ (A : 𝓢 → Set) : Set where
_,_ : (t : 𝓢) → A t → ∃ A
-- Sugar syntax for the existential quantifier.
syntax ∃ (λ x → e) = ∃[ x ] e
-- Existential projections.
proj₁ : {A : 𝓢 → Set} → ∃ A → 𝓢
proj₁ (t , _) = t
proj₂ : (A : 𝓢 → Set) → (foo : ∃ A) → A (proj₁ foo)
proj₂ A (_ , Ax) = Ax
-- Equivalence and non equivalence with some useful properties
data _≡_ (x : 𝓢) : 𝓢 → Set where
refl : x ≡ x
_≢_ : 𝓢 → 𝓢 → Set
x ≢ y = ¬ x ≡ y
sym : (x y : 𝓢) → x ≡ y → y ≡ x
sym x .x refl = refl
cong : (f : 𝓢 → 𝓢) {x y : 𝓢} → x ≡ y → f x ≡ f y
cong f refl = refl
subs : (P : 𝓢 → Set) {x y : 𝓢} (p : x ≡ y) (h : P x) → P y
subs P {x} {.x} refl h = h
trans : {x y z : 𝓢} → x ≡ y → y ≡ z → x ≡ z
trans refl refl = refl
-- Property concerning bi-implication, needed in a proof.
⇔-p₂ : (z : 𝓢) → {A B C : Set} → A ⇔ (B ∧ C) → (C → B) → A ⇔ C
⇔-p₂ z (h₁ , h₂) h₃ = (λ a → ∧-proj₂ (h₁ a)) , (λ c → h₂ ((h₃ c) , c))
-- Definitions of subset and not-membership.
_⊆_ : 𝓢 → 𝓢 → Set
x ⊆ y = (t : 𝓢) → t ∈ x → t ∈ y
_∉_ : 𝓢 → 𝓢 → Set
x ∉ y = ¬ (x ∈ y)
{-# ATP definition _∉_ #-}
_⊂_ : 𝓢 → 𝓢 → Set
x ⊂ y = x ⊆ y ∧ x ≢ y
_⊂'_ : 𝓢 → 𝓢 → Set
x ⊂' y = x ⊆ y ∧ ∃ (λ z → z ∈ y ∧ z ∉ x)
-------------------------------------------
-- ZFC's axioms
-- From (Suppes 1960, p. 56)
-- ext (Extensionality) : If two sets have exactly the same members,
-- they are equal.
-- empt (Empty Set Axiom) : There is a set having no
-- members. Allows us to define the empty set.
-- pair (Pairing Axiom) : For any sets y and z, there is a set having
-- as members just y and z. Allows to define a set which is just
-- the pair of any two sets.
-- pow (Power Set Axiom): For any x there is a set whose members are
-- exactly the subsets of x. Allows us to define the power set
-- operation.
-- sub (Subset Axiom, or Specification Axiom): This axiom asserts the
-- existence of a set B whose members are exactly those sets x in y
-- such that they satisfy certain property. Allows us to define
-- many operations like cartesian products and difference of sets.
-- uni (Union Axiom) : For any set x, there exists a set A whose
-- elements are exactly the members of x. Allows us to define the
-- union of two sets.
-- pem (Principle of the excluded middle) : To prove some things
-- not valid in intuitionistic logic and valid in classical logic. Taken
-- from the Standford Encyclopedia entry on Intuitionistic Logic.
-- (https://plato.stanford.edu/entries/logic-intuitionistic/).
-- The sum axioms allow us to define the union operation
-- over a family of sets.
postulate
empt : ∃ (λ B → ∀ x → x ∉ B)
ext : (x y : 𝓢) → ∀ {z} → z ∈ x ⇔ z ∈ y → x ≡ y
union : (x y : 𝓢) → ∃ (λ B → {z : 𝓢} → z ∈ B ⇔ z ∈ x ∨ z ∈ y)
pair : (x y : 𝓢) → ∃ (λ B → {z : 𝓢} → z ∈ B ⇔ (z ≡ x ∨ z ≡ y))
pow : (x : 𝓢) → ∃ (λ B → ∀ {y} → y ∈ B ⇔ y ⊆ x)
sub : (A : 𝓢 → Set) → (y : 𝓢) → ∃ (λ B → {z : 𝓢} → (z ∈ B ⇔ (z ∈ y ∧ A z)))
pem : (A : Set) → A ∨ ¬ A
sum : (A : 𝓢) → ∃ (λ C → (x : 𝓢) → x ∈ C ⇔ ∃ (λ B → x ∈ B ∧ B ∈ A))
{-# ATP axioms empt ext union pair pow #-}
-- sub not given to apia since it is an axiom schema and ATPs don't deal
-- with that.
-- pem isn't given either since ATP's use classical logic so it uses
-- this principle by default.
∅ : 𝓢
∅ = proj₁ empt
{-# ATP definition ∅ #-}
-- Axiom of regularity: Axiom that have two very intuitive consequences:
-- ∀ A (A ∉ A) and ¬ ∀ A,B (A∈B ∧ B∈A). From Suppes, p. 56 (1960).
postulate
reg : (A : 𝓢) → A ≢ ∅ → ∃ (λ x → x ∈ A ∧ ∀ y → y ∈ x → y ∉ A)
-- References
--
-- Suppes, Patrick (1960). Axiomatic Set Theory.
-- The University Series in Undergraduate Mathematics.
-- D. Van Nostrand Company, inc.
--
-- Enderton, Herbert B. (1977). Elements of Set Theory.
-- Academic Press Inc.
| 28.431507
| 78
| 0.558901
|
59d1107fcd84a5116bd6798e7e2af5cf7812d87c
| 5,248
|
agda
|
Agda
|
prototyping/Luau/Type.agda
|
saga/luau
|
5bb9f379b07e378db0a170e7c4030e3a943b2f14
|
[
"MIT"
] | null | null | null |
prototyping/Luau/Type.agda
|
saga/luau
|
5bb9f379b07e378db0a170e7c4030e3a943b2f14
|
[
"MIT"
] | null | null | null |
prototyping/Luau/Type.agda
|
saga/luau
|
5bb9f379b07e378db0a170e7c4030e3a943b2f14
|
[
"MIT"
] | null | null | null |
module Luau.Type where
open import FFI.Data.Maybe using (Maybe; just; nothing; just-inv)
open import Agda.Builtin.Equality using (_≡_; refl)
open import Properties.Dec using (Dec; yes; no)
open import Properties.Equality using (cong)
open import FFI.Data.Maybe using (Maybe; just; nothing)
data Type : Set where
nil : Type
_⇒_ : Type → Type → Type
never : Type
unknown : Type
boolean : Type
number : Type
string : Type
_∪_ : Type → Type → Type
_∩_ : Type → Type → Type
data Scalar : Type → Set where
number : Scalar number
boolean : Scalar boolean
string : Scalar string
nil : Scalar nil
lhs : Type → Type
lhs (T ⇒ _) = T
lhs (T ∪ _) = T
lhs (T ∩ _) = T
lhs nil = nil
lhs never = never
lhs unknown = unknown
lhs number = number
lhs boolean = boolean
lhs string = string
rhs : Type → Type
rhs (_ ⇒ T) = T
rhs (_ ∪ T) = T
rhs (_ ∩ T) = T
rhs nil = nil
rhs never = never
rhs unknown = unknown
rhs number = number
rhs boolean = boolean
rhs string = string
_≡ᵀ_ : ∀ (T U : Type) → Dec(T ≡ U)
nil ≡ᵀ nil = yes refl
nil ≡ᵀ (S ⇒ T) = no (λ ())
nil ≡ᵀ never = no (λ ())
nil ≡ᵀ unknown = no (λ ())
nil ≡ᵀ number = no (λ ())
nil ≡ᵀ boolean = no (λ ())
nil ≡ᵀ (S ∪ T) = no (λ ())
nil ≡ᵀ (S ∩ T) = no (λ ())
nil ≡ᵀ string = no (λ ())
(S ⇒ T) ≡ᵀ string = no (λ ())
never ≡ᵀ string = no (λ ())
unknown ≡ᵀ string = no (λ ())
boolean ≡ᵀ string = no (λ ())
number ≡ᵀ string = no (λ ())
(S ∪ T) ≡ᵀ string = no (λ ())
(S ∩ T) ≡ᵀ string = no (λ ())
(S ⇒ T) ≡ᵀ nil = no (λ ())
(S ⇒ T) ≡ᵀ (U ⇒ V) with (S ≡ᵀ U) | (T ≡ᵀ V)
(S ⇒ T) ≡ᵀ (S ⇒ T) | yes refl | yes refl = yes refl
(S ⇒ T) ≡ᵀ (U ⇒ V) | _ | no p = no (λ q → p (cong rhs q))
(S ⇒ T) ≡ᵀ (U ⇒ V) | no p | _ = no (λ q → p (cong lhs q))
(S ⇒ T) ≡ᵀ never = no (λ ())
(S ⇒ T) ≡ᵀ unknown = no (λ ())
(S ⇒ T) ≡ᵀ number = no (λ ())
(S ⇒ T) ≡ᵀ boolean = no (λ ())
(S ⇒ T) ≡ᵀ (U ∪ V) = no (λ ())
(S ⇒ T) ≡ᵀ (U ∩ V) = no (λ ())
never ≡ᵀ nil = no (λ ())
never ≡ᵀ (U ⇒ V) = no (λ ())
never ≡ᵀ never = yes refl
never ≡ᵀ unknown = no (λ ())
never ≡ᵀ number = no (λ ())
never ≡ᵀ boolean = no (λ ())
never ≡ᵀ (U ∪ V) = no (λ ())
never ≡ᵀ (U ∩ V) = no (λ ())
unknown ≡ᵀ nil = no (λ ())
unknown ≡ᵀ (U ⇒ V) = no (λ ())
unknown ≡ᵀ never = no (λ ())
unknown ≡ᵀ unknown = yes refl
unknown ≡ᵀ number = no (λ ())
unknown ≡ᵀ boolean = no (λ ())
unknown ≡ᵀ (U ∪ V) = no (λ ())
unknown ≡ᵀ (U ∩ V) = no (λ ())
number ≡ᵀ nil = no (λ ())
number ≡ᵀ (T ⇒ U) = no (λ ())
number ≡ᵀ never = no (λ ())
number ≡ᵀ unknown = no (λ ())
number ≡ᵀ number = yes refl
number ≡ᵀ boolean = no (λ ())
number ≡ᵀ (T ∪ U) = no (λ ())
number ≡ᵀ (T ∩ U) = no (λ ())
boolean ≡ᵀ nil = no (λ ())
boolean ≡ᵀ (T ⇒ U) = no (λ ())
boolean ≡ᵀ never = no (λ ())
boolean ≡ᵀ unknown = no (λ ())
boolean ≡ᵀ boolean = yes refl
boolean ≡ᵀ number = no (λ ())
boolean ≡ᵀ (T ∪ U) = no (λ ())
boolean ≡ᵀ (T ∩ U) = no (λ ())
string ≡ᵀ nil = no (λ ())
string ≡ᵀ (x ⇒ x₁) = no (λ ())
string ≡ᵀ never = no (λ ())
string ≡ᵀ unknown = no (λ ())
string ≡ᵀ boolean = no (λ ())
string ≡ᵀ number = no (λ ())
string ≡ᵀ string = yes refl
string ≡ᵀ (U ∪ V) = no (λ ())
string ≡ᵀ (U ∩ V) = no (λ ())
(S ∪ T) ≡ᵀ nil = no (λ ())
(S ∪ T) ≡ᵀ (U ⇒ V) = no (λ ())
(S ∪ T) ≡ᵀ never = no (λ ())
(S ∪ T) ≡ᵀ unknown = no (λ ())
(S ∪ T) ≡ᵀ number = no (λ ())
(S ∪ T) ≡ᵀ boolean = no (λ ())
(S ∪ T) ≡ᵀ (U ∪ V) with (S ≡ᵀ U) | (T ≡ᵀ V)
(S ∪ T) ≡ᵀ (S ∪ T) | yes refl | yes refl = yes refl
(S ∪ T) ≡ᵀ (U ∪ V) | _ | no p = no (λ q → p (cong rhs q))
(S ∪ T) ≡ᵀ (U ∪ V) | no p | _ = no (λ q → p (cong lhs q))
(S ∪ T) ≡ᵀ (U ∩ V) = no (λ ())
(S ∩ T) ≡ᵀ nil = no (λ ())
(S ∩ T) ≡ᵀ (U ⇒ V) = no (λ ())
(S ∩ T) ≡ᵀ never = no (λ ())
(S ∩ T) ≡ᵀ unknown = no (λ ())
(S ∩ T) ≡ᵀ number = no (λ ())
(S ∩ T) ≡ᵀ boolean = no (λ ())
(S ∩ T) ≡ᵀ (U ∪ V) = no (λ ())
(S ∩ T) ≡ᵀ (U ∩ V) with (S ≡ᵀ U) | (T ≡ᵀ V)
(S ∩ T) ≡ᵀ (U ∩ V) | yes refl | yes refl = yes refl
(S ∩ T) ≡ᵀ (U ∩ V) | _ | no p = no (λ q → p (cong rhs q))
(S ∩ T) ≡ᵀ (U ∩ V) | no p | _ = no (λ q → p (cong lhs q))
_≡ᴹᵀ_ : ∀ (T U : Maybe Type) → Dec(T ≡ U)
nothing ≡ᴹᵀ nothing = yes refl
nothing ≡ᴹᵀ just U = no (λ ())
just T ≡ᴹᵀ nothing = no (λ ())
just T ≡ᴹᵀ just U with T ≡ᵀ U
(just T ≡ᴹᵀ just T) | yes refl = yes refl
(just T ≡ᴹᵀ just U) | no p = no (λ q → p (just-inv q))
src : Type → Type
src nil = never
src number = never
src boolean = never
src string = never
src (S ⇒ T) = S
src (S ∪ T) = (src S) ∩ (src T)
src (S ∩ T) = (src S) ∪ (src T)
src never = unknown
src unknown = never
tgt : Type → Type
tgt nil = never
tgt (S ⇒ T) = T
tgt never = never
tgt unknown = unknown
tgt number = never
tgt boolean = never
tgt string = never
tgt (S ∪ T) = (tgt S) ∪ (tgt T)
tgt (S ∩ T) = (tgt S) ∩ (tgt T)
optional : Type → Type
optional nil = nil
optional (T ∪ nil) = (T ∪ nil)
optional T = (T ∪ nil)
normalizeOptional : Type → Type
normalizeOptional (S ∪ T) with normalizeOptional S | normalizeOptional T
normalizeOptional (S ∪ T) | (S′ ∪ nil) | (T′ ∪ nil) = (S′ ∪ T′) ∪ nil
normalizeOptional (S ∪ T) | S′ | (T′ ∪ nil) = (S′ ∪ T′) ∪ nil
normalizeOptional (S ∪ T) | (S′ ∪ nil) | T′ = (S′ ∪ T′) ∪ nil
normalizeOptional (S ∪ T) | S′ | nil = optional S′
normalizeOptional (S ∪ T) | nil | T′ = optional T′
normalizeOptional (S ∪ T) | S′ | T′ = S′ ∪ T′
normalizeOptional T = T
| 28.367568
| 72
| 0.517912
|
20300660e0e5a0be5787989dab973458d5581852
| 2,000
|
agda
|
Agda
|
Cubical/ZCohomology/Groups/Connected.agda
|
Schippmunk/cubical
|
c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a
|
[
"MIT"
] | null | null | null |
Cubical/ZCohomology/Groups/Connected.agda
|
Schippmunk/cubical
|
c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a
|
[
"MIT"
] | null | null | null |
Cubical/ZCohomology/Groups/Connected.agda
|
Schippmunk/cubical
|
c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.ZCohomology.Groups.Connected where
open import Cubical.ZCohomology.Base
open import Cubical.ZCohomology.GroupStructure
open import Cubical.ZCohomology.Groups.Unit
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.GroupoidLaws
open import Cubical.HITs.SetTruncation renaming (rec to sRec ; elim to sElim ; elim2 to sElim2)
open import Cubical.HITs.PropositionalTruncation renaming (rec to pRec ; ∥_∥ to ∥_∥₁ ; ∣_∣ to ∣_∣₁)
open import Cubical.HITs.Nullification
open import Cubical.Data.Sigma hiding (_×_)
open import Cubical.Data.Int renaming (_+_ to _+ℤ_; +-comm to +ℤ-comm ; +-assoc to +ℤ-assoc)
open import Cubical.Data.Nat
open import Cubical.HITs.Truncation renaming (rec to trRec)
open import Cubical.Algebra.Group
open import Cubical.Homotopy.Connected
open import Cubical.Foundations.Equiv
private
H⁰-connected-type : ∀ {ℓ} {A : Type ℓ} (a : A) → isConnected 2 A → Iso (coHom 0 A) Int
Iso.fun (H⁰-connected-type a con) = sRec isSetInt λ f → f a
Iso.inv (H⁰-connected-type a con) b = ∣ (λ x → b) ∣₂
Iso.rightInv (H⁰-connected-type a con) b = refl
Iso.leftInv (H⁰-connected-type a con) =
sElim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _)
λ f → cong ∣_∣₂ (funExt λ x → trRec (isSetInt _ _) (cong f) (isConnectedPath 1 con a x .fst))
H⁰-connected : ∀ {ℓ} {A : Type ℓ} (a : A) → ((x : A) → ∥ a ≡ x ∥₁) → GroupIso (coHomGr 0 A) intGroup
GroupHom.fun (GroupIso.map (H⁰-connected a con)) = sRec isSetInt (λ f → f a)
GroupHom.isHom (GroupIso.map (H⁰-connected a con)) =
sElim2 (λ _ _ → isProp→isSet (isSetInt _ _)) λ x y → refl
GroupIso.inv (H⁰-connected a con) b = ∣ (λ _ → b) ∣₂
GroupIso.rightInv (H⁰-connected a con) _ = refl
GroupIso.leftInv (H⁰-connected a con) =
sElim (λ _ → isProp→isSet (setTruncIsSet _ _))
(λ f → cong ∣_∣₂ (funExt λ x → pRec (isSetInt _ _) (cong f) (con x)))
| 45.454545
| 104
| 0.7095
|
Subsets and Splits
HTML Code Excluding Scripts
The query retrieves a limited set of HTML content entries that are longer than 8 characters and do not contain script tags, offering only basic filtering with minimal analytical value.