hexsha
stringlengths
40
40
size
int64
3
1.05M
ext
stringclasses
163 values
lang
stringclasses
53 values
max_stars_repo_path
stringlengths
3
945
max_stars_repo_name
stringlengths
4
112
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
float64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
945
max_issues_repo_name
stringlengths
4
113
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
float64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
945
max_forks_repo_name
stringlengths
4
113
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
float64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.05M
avg_line_length
float64
1
966k
max_line_length
int64
1
977k
alphanum_fraction
float64
0
1
126ad82ec80e0cc0f4a6e85bb6ec77a6564206cd
6,273
agda
Agda
Cubical/Algebra/CommRing/Base.agda
apabepa10/cubical
3a9bb56260c25a6f2e9c20af8d278de0fe8d9e05
[ "MIT" ]
null
null
null
Cubical/Algebra/CommRing/Base.agda
apabepa10/cubical
3a9bb56260c25a6f2e9c20af8d278de0fe8d9e05
[ "MIT" ]
null
null
null
Cubical/Algebra/CommRing/Base.agda
apabepa10/cubical
3a9bb56260c25a6f2e9c20af8d278de0fe8d9e05
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Algebra.CommRing.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Foundations.Transport open import Cubical.Foundations.SIP open import Cubical.Data.Sigma open import Cubical.Structures.Axioms open import Cubical.Algebra.Semigroup open import Cubical.Algebra.Monoid open import Cubical.Algebra.AbGroup open import Cubical.Algebra.Ring.Base open Iso private variable ℓ : Level record IsCommRing {R : Type ℓ} (0r 1r : R) (_+_ _·_ : R → R → R) (-_ : R → R) : Type ℓ where constructor iscommring field isRing : IsRing 0r 1r _+_ _·_ -_ ·-comm : (x y : R) → x · y ≡ y · x open IsRing isRing public record CommRingStr (A : Type ℓ) : Type (ℓ-suc ℓ) where constructor commringstr field 0r : A 1r : A _+_ : A → A → A _·_ : A → A → A -_ : A → A isCommRing : IsCommRing 0r 1r _+_ _·_ -_ infix 8 -_ infixl 7 _·_ infixl 6 _+_ open IsCommRing isCommRing public CommRing : Type (ℓ-suc ℓ) CommRing = TypeWithStr _ CommRingStr makeIsCommRing : {R : Type ℓ} {0r 1r : R} {_+_ _·_ : R → R → R} { -_ : R → R} (is-setR : isSet R) (+-assoc : (x y z : R) → x + (y + z) ≡ (x + y) + z) (+-rid : (x : R) → x + 0r ≡ x) (+-rinv : (x : R) → x + (- x) ≡ 0r) (+-comm : (x y : R) → x + y ≡ y + x) (·-assoc : (x y z : R) → x · (y · z) ≡ (x · y) · z) (·-rid : (x : R) → x · 1r ≡ x) (·-rdist-+ : (x y z : R) → x · (y + z) ≡ (x · y) + (x · z)) (·-comm : (x y : R) → x · y ≡ y · x) → IsCommRing 0r 1r _+_ _·_ -_ makeIsCommRing {_+_ = _+_} is-setR +-assoc +-rid +-rinv +-comm ·-assoc ·-rid ·-rdist-+ ·-comm = iscommring (makeIsRing is-setR +-assoc +-rid +-rinv +-comm ·-assoc ·-rid (λ x → ·-comm _ _ ∙ ·-rid x) ·-rdist-+ (λ x y z → ·-comm _ _ ∙∙ ·-rdist-+ z x y ∙∙ λ i → (·-comm z x i) + (·-comm z y i))) ·-comm makeCommRing : {R : Type ℓ} (0r 1r : R) (_+_ _·_ : R → R → R) (-_ : R → R) (is-setR : isSet R) (+-assoc : (x y z : R) → x + (y + z) ≡ (x + y) + z) (+-rid : (x : R) → x + 0r ≡ x) (+-rinv : (x : R) → x + (- x) ≡ 0r) (+-comm : (x y : R) → x + y ≡ y + x) (·-assoc : (x y z : R) → x · (y · z) ≡ (x · y) · z) (·-rid : (x : R) → x · 1r ≡ x) (·-rdist-+ : (x y z : R) → x · (y + z) ≡ (x · y) + (x · z)) (·-comm : (x y : R) → x · y ≡ y · x) → CommRing makeCommRing 0r 1r _+_ _·_ -_ is-setR +-assoc +-rid +-rinv +-comm ·-assoc ·-rid ·-rdist-+ ·-comm = _ , commringstr _ _ _ _ _ (makeIsCommRing is-setR +-assoc +-rid +-rinv +-comm ·-assoc ·-rid ·-rdist-+ ·-comm) CommRing→Ring : CommRing {ℓ} → Ring CommRing→Ring (_ , commringstr _ _ _ _ _ H) = _ , ringstr _ _ _ _ _ (IsCommRing.isRing H) CommRingEquiv : (R S : CommRing) (e : ⟨ R ⟩ ≃ ⟨ S ⟩) → Type ℓ CommRingEquiv R S e = RingEquiv (CommRing→Ring R) (CommRing→Ring S) e CommRingHom : (R S : CommRing) → Type ℓ CommRingHom R S = RingHom (CommRing→Ring R) (CommRing→Ring S) module CommRingΣTheory {ℓ} where open RingΣTheory CommRingAxioms : (R : Type ℓ) (s : RawRingStructure R) → Type ℓ CommRingAxioms R (_+_ , 1r , _·_) = RingAxioms R (_+_ , 1r , _·_) × ((x y : R) → x · y ≡ y · x) CommRingStructure : Type ℓ → Type ℓ CommRingStructure = AxiomsStructure RawRingStructure CommRingAxioms CommRingΣ : Type (ℓ-suc ℓ) CommRingΣ = TypeWithStr ℓ CommRingStructure CommRingEquivStr : StrEquiv CommRingStructure ℓ CommRingEquivStr = AxiomsEquivStr RawRingEquivStr CommRingAxioms isPropCommRingAxioms : (R : Type ℓ) (s : RawRingStructure R) → isProp (CommRingAxioms R s) isPropCommRingAxioms R (_·_ , 0r , _+_) = isPropΣ (isPropRingAxioms R (_·_ , 0r , _+_)) λ { (_ , x , _) → isPropΠ2 λ _ _ → x .IsMonoid.isSemigroup .IsSemigroup.is-set _ _} CommRing→CommRingΣ : CommRing → CommRingΣ CommRing→CommRingΣ (_ , commringstr _ _ _ _ _ (iscommring G C)) = _ , _ , Ring→RingΣ (_ , ringstr _ _ _ _ _ G) .snd .snd , C CommRingΣ→CommRing : CommRingΣ → CommRing CommRingΣ→CommRing (_ , _ , G , C) = _ , commringstr _ _ _ _ _ (iscommring (RingΣ→Ring (_ , _ , G) .snd .RingStr.isRing) C) CommRingIsoCommRingΣ : Iso CommRing CommRingΣ CommRingIsoCommRingΣ = iso CommRing→CommRingΣ CommRingΣ→CommRing (λ _ → refl) (λ _ → refl) commRingUnivalentStr : UnivalentStr CommRingStructure CommRingEquivStr commRingUnivalentStr = axiomsUnivalentStr _ isPropCommRingAxioms rawRingUnivalentStr CommRingΣPath : (R S : CommRingΣ) → (R ≃[ CommRingEquivStr ] S) ≃ (R ≡ S) CommRingΣPath = SIP commRingUnivalentStr CommRingEquivΣ : (R S : CommRing) → Type ℓ CommRingEquivΣ R S = CommRing→CommRingΣ R ≃[ CommRingEquivStr ] CommRing→CommRingΣ S CommRingPath : (R S : CommRing) → (Σ[ e ∈ ⟨ R ⟩ ≃ ⟨ S ⟩ ] CommRingEquiv R S e) ≃ (R ≡ S) CommRingPath R S = Σ[ e ∈ ⟨ R ⟩ ≃ ⟨ S ⟩ ] CommRingEquiv R S e ≃⟨ isoToEquiv RingIsoΣPath ⟩ CommRingEquivΣ R S ≃⟨ CommRingΣPath _ _ ⟩ CommRing→CommRingΣ R ≡ CommRing→CommRingΣ S ≃⟨ isoToEquiv (invIso (congIso CommRingIsoCommRingΣ)) ⟩ R ≡ S ■ CommRingPath : (R S : CommRing {ℓ}) → (Σ[ e ∈ ⟨ R ⟩ ≃ ⟨ S ⟩ ] CommRingEquiv R S e) ≃ (R ≡ S) CommRingPath = CommRingΣTheory.CommRingPath isPropIsCommRing : {R : Type ℓ} (0r 1r : R) (_+_ _·_ : R → R → R) (-_ : R → R) → isProp (IsCommRing 0r 1r _+_ _·_ -_) isPropIsCommRing 0r 1r _+_ _·_ -_ (iscommring RR RC) (iscommring SR SC) = λ i → iscommring (isPropIsRing _ _ _ _ _ RR SR i) (isPropComm RC SC i) where isSetR : isSet _ isSetR = RR .IsRing.·IsMonoid .IsMonoid.isSemigroup .IsSemigroup.is-set isPropComm : isProp ((x y : _) → x · y ≡ y · x) isPropComm = isPropΠ2 λ _ _ → isSetR _ _
38.25
115
0.565599
570c0211ec6243fd8c9454f771ced967b5d757fa
1,366
agda
Agda
examples/lib/Logic/Congruence.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
1
2018-10-10T17:08:44.000Z
2018-10-10T17:08:44.000Z
examples/lib/Logic/Congruence.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
examples/lib/Logic/Congruence.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
1
2022-03-12T11:35:18.000Z
2022-03-12T11:35:18.000Z
module Logic.Congruence where import Prelude import Logic.Relations import Logic.Equivalence open Prelude open Logic.Relations open Logic.Equivalence using (Equivalence) renaming (module Equivalence to Proj) data Congruence (A : Set) : Set1 where congruence : (Eq : Equivalence A) -> Congruent (Proj._==_ Eq) -> Congruence A module Projections where eq : {A : Set} -> Congruence A -> Rel A eq (congruence Eq _) = Proj._==_ Eq refl : {A : Set}(Cong : Congruence A) -> Reflexive (eq Cong) refl (congruence Eq _) = Proj.refl Eq sym : {A : Set}(Cong : Congruence A) -> Symmetric (eq Cong) sym (congruence Eq _) = Proj.sym Eq trans : {A : Set}(Cong : Congruence A) -> Transitive (eq Cong) trans (congruence Eq _) = Proj.trans Eq cong : {A : Set}(Cong : Congruence A) -> Congruent (eq Cong) cong (congruence _ c) = c module Congruence {A : Set}(Cong : Congruence A) where _==_ = Projections.eq Cong refl = Projections.refl Cong sym = Projections.sym Cong trans = Projections.trans Cong cong = Projections.cong Cong cong2 : (f : A -> A -> A)(a b c d : A) -> a == c -> b == d -> f a b == f c d cong2 f a b c d ac bd = trans _ _ _ rem1 rem2 where rem1 : f a b == f a d rem1 = cong (f a) _ _ bd rem2 : f a d == f c d rem2 = cong (flip f d) _ _ ac
25.773585
78
0.611274
12c16ab75c3ee77fdd61e205339d15373792c12d
24,652
agda
Agda
Cubical/HITs/Truncation/Properties.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
1
2022-03-05T00:29:41.000Z
2022-03-05T00:29:41.000Z
Cubical/HITs/Truncation/Properties.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
Cubical/HITs/Truncation/Properties.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
{-# OPTIONS --safe #-} module Cubical.HITs.Truncation.Properties where open import Cubical.Data.NatMinusOne open import Cubical.HITs.Truncation.Base open import Cubical.Foundations.Prelude open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.Function open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.HLevels open import Cubical.Foundations.Univalence open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Foundations.Equiv.PathSplit open isPathSplitEquiv open import Cubical.Modalities.Modality open Modality open import Cubical.Data.Nat hiding (elim) open import Cubical.Data.Sigma open import Cubical.Data.Bool open import Cubical.Data.Unit open import Cubical.HITs.Sn.Base open import Cubical.HITs.S1 open import Cubical.HITs.Susp.Base open import Cubical.HITs.Nullification as Null hiding (rec; elim) open import Cubical.HITs.PropositionalTruncation as PropTrunc renaming (∥_∥ to ∥_∥₁; ∣_∣ to ∣_∣₁; squash to squash₁) using () open import Cubical.HITs.SetTruncation as SetTrunc using (∥_∥₂; ∣_∣₂; squash₂) open import Cubical.HITs.GroupoidTruncation as GpdTrunc using (∥_∥₃; ∣_∣₃; squash₃) open import Cubical.HITs.2GroupoidTruncation as 2GpdTrunc using (∥_∥₄; ∣_∣₄; squash₄) private variable ℓ ℓ' : Level A : Type ℓ B : Type ℓ' sphereFill : (n : ℕ) (f : S₊ n → A) → Type _ sphereFill {A = A} n f = Σ[ top ∈ A ] ((x : S₊ n) → top ≡ f x) isSphereFilled : ℕ → Type ℓ → Type ℓ isSphereFilled n A = (f : S₊ n → A) → sphereFill n f isSphereFilled∥∥ : {n : ℕ} → isSphereFilled n (HubAndSpoke A n) isSphereFilled∥∥ f = (hub f) , (spoke f) isSphereFilled→isOfHLevel : (n : ℕ) → isSphereFilled n A → isOfHLevel (suc n) A isSphereFilled→isOfHLevel {A = A} zero h x y = sym (snd (h f) true) ∙ snd (h f) false where f : Bool → A f true = x f false = y isSphereFilled→isOfHLevel {A = A} (suc zero) h x y = J (λ y q → (p : x ≡ y) → q ≡ p) (helper x) where helper : (x : A) (p : x ≡ x) → refl ≡ p helper x p i j = hcomp (λ k → λ { (i = i0) → h S¹→A .snd base k ; (i = i1) → p j ; (j = i0) → h S¹→A .snd base (i ∨ k) ; (j = i1) → h S¹→A .snd base (i ∨ k)}) (h S¹→A .snd (loop j) i) where S¹→A : S¹ → A S¹→A base = x S¹→A (loop i) = p i isSphereFilled→isOfHLevel {A = A} (suc (suc n)) h x y = isSphereFilled→isOfHLevel (suc n) (helper h x y) where helper : {n : ℕ} → isSphereFilled (suc (suc n)) A → (x y : A) → isSphereFilled (suc n) (x ≡ y) helper {n = n} h x y f = sym (snd (h f') north) ∙ (snd (h f') south) , r where f' : Susp (S₊ (suc n)) → A f' north = x f' south = y f' (merid u i) = f u i r : (s : S₊ (suc n)) → sym (snd (h f') north) ∙ (snd (h f') south) ≡ f s r s i j = hcomp (λ k → λ { (i = i1) → snd (h f') (merid s j) k ; (j = i0) → snd (h f') north (k ∨ (~ i)) ; (j = i1) → snd (h f') south k }) (snd (h f') north (~ i ∧ ~ j)) isOfHLevel→isSphereFilled : (n : ℕ) → isOfHLevel (suc n) A → isSphereFilled n A isOfHLevel→isSphereFilled zero h f = (f true) , (λ _ → h _ _) isOfHLevel→isSphereFilled {A = A} (suc zero) h f = (f base) , toPropElim (λ _ → h _ _) refl isOfHLevel→isSphereFilled {A = A} (suc (suc n)) h = helper λ x y → isOfHLevel→isSphereFilled (suc n) (h x y) where helper : {n : ℕ} → ((x y : A) → isSphereFilled (suc n) (x ≡ y)) → isSphereFilled (suc (suc n)) A helper {n = n} h f = f north , r where r : (x : S₊ (suc (suc n))) → f north ≡ f x r north = refl r south = h (f north) (f south) (λ x → cong f (merid x)) .fst r (merid x i) j = hcomp (λ k → λ { (i = i0) → f north ; (i = i1) → h (f north) (f south) (λ x → cong f (merid x)) .snd x (~ k) j ; (j = i0) → f north ; (j = i1) → f (merid x i) }) (f (merid x (i ∧ j))) isOfHLevelTrunc : (n : ℕ) → isOfHLevel n (∥ A ∥ n) isOfHLevelTrunc zero = isOfHLevelUnit* 0 isOfHLevelTrunc (suc n) = isSphereFilled→isOfHLevel n isSphereFilled∥∥ isOfHLevelTruncPath : {n : ℕ} {x y : hLevelTrunc n A} → isOfHLevel n (x ≡ y) isOfHLevelTruncPath {n = n} = isOfHLevelPath n (isOfHLevelTrunc n) _ _ rec₊ : {n : HLevel} {B : Type ℓ'} → isOfHLevel (suc n) B → (A → B) → hLevelTrunc (suc n) A → B rec₊ h g ∣ x ∣ = g x rec₊ {n = n} {B = B} hB g (hub f) = isOfHLevel→isSphereFilled n hB (λ x → rec₊ hB g (f x)) .fst rec₊ {n = n} hB g (spoke f x i) = isOfHLevel→isSphereFilled n hB (λ x → rec₊ hB g (f x)) .snd x i rec : {n : HLevel} {B : Type ℓ'} → isOfHLevel n B → (A → B) → hLevelTrunc n A → B rec {n = zero} h g t = h .fst rec {n = suc n} = rec₊ rec2 : {n : HLevel} {B : Type ℓ'} → isOfHLevel n B → (A → A → B) → (t u : hLevelTrunc n A) → B rec2 h g = rec (isOfHLevelΠ _ (λ _ → h)) (λ a → rec h (λ b → g a b)) rec3 : {n : HLevel} {B : Type ℓ'} → isOfHLevel n B → (A → A → A → B) → (t u v : hLevelTrunc n A) → B rec3 h g = rec2 (isOfHLevelΠ _ (λ _ → h)) (λ a b → rec h (λ c → g a b c)) elim₊ : {n : ℕ} {B : ∥ A ∥ (suc n) → Type ℓ'} (hB : (x : ∥ A ∥ (suc n)) → isOfHLevel (suc n) (B x)) (g : (a : A) → B (∣ a ∣)) (x : ∥ A ∥ (suc n)) → B x elim₊ hB g (∣ a ∣ ) = g a elim₊ {B = B} hB g (hub f) = isOfHLevel→isSphereFilled _ (hB (hub f)) (λ x → subst B (sym (spoke f x)) (elim₊ hB g (f x)) ) .fst elim₊ {B = B} hB g (spoke f x i) = toPathP {A = λ i → B (spoke f x (~ i))} (sym (isOfHLevel→isSphereFilled _ (hB (hub f)) (λ x → subst B (sym (spoke f x)) (elim₊ hB g (f x))) .snd x)) (~ i) elim : {n : ℕ} {B : ∥ A ∥ n → Type ℓ'} (hB : (x : ∥ A ∥ n) → isOfHLevel n (B x)) (g : (a : A) → B (∣ a ∣ₕ)) (x : ∥ A ∥ n) → B x elim {n = zero} h g t = h t .fst elim {n = suc n} = elim₊ elim2 : {n : ℕ} {B : ∥ A ∥ n → ∥ A ∥ n → Type ℓ'} (hB : ((x y : ∥ A ∥ n) → isOfHLevel n (B x y))) (g : (a b : A) → B ∣ a ∣ₕ ∣ b ∣ₕ) (x y : ∥ A ∥ n) → B x y elim2 hB g = elim (λ _ → isOfHLevelΠ _ (λ _ → hB _ _)) λ a → elim (λ _ → hB _ _) (λ b → g a b) elim3 : {n : ℕ} {B : (x y z : ∥ A ∥ n) → Type ℓ'} (hB : ((x y z : ∥ A ∥ n) → isOfHLevel n (B x y z))) (g : (a b c : A) → B (∣ a ∣ₕ) ∣ b ∣ₕ ∣ c ∣ₕ) (x y z : ∥ A ∥ n) → B x y z elim3 hB g = elim2 (λ _ _ → isOfHLevelΠ _ (hB _ _)) λ a b → elim (λ _ → hB _ _ _) (λ c → g a b c) isContr→isContr∥ : (n : ℕ) → isContr A → isContr (∥ A ∥ n) isContr→isContr∥ zero _ = tt* , (λ _ _ → tt*) isContr→isContr∥ (suc n) contr = ∣ fst contr ∣ , (elim (λ _ → isOfHLevelPath (suc n) (isOfHLevelTrunc (suc n)) _ _) (λ a i → ∣ snd contr a i ∣)) isOfHLevelMin→isOfHLevel : {n m : ℕ} → isOfHLevel (min n m) A → isOfHLevel n A × isOfHLevel m A isOfHLevelMin→isOfHLevel {n = zero} {m = m} h = h , isContr→isOfHLevel m h isOfHLevelMin→isOfHLevel {n = suc n} {m = zero} h = (isContr→isOfHLevel (suc n) h) , h isOfHLevelMin→isOfHLevel {A = A} {n = suc n} {m = suc m} h = subst (λ x → isOfHLevel x A) (helper n m) (isOfHLevelPlus (suc n ∸ (suc (min n m))) h) , subst (λ x → isOfHLevel x A) ((λ i → m ∸ (minComm n m i) + suc (minComm n m i)) ∙ helper m n) (isOfHLevelPlus (suc m ∸ (suc (min n m))) h) where helper : (n m : ℕ) → n ∸ min n m + suc (min n m) ≡ suc n helper zero zero = refl helper zero (suc m) = refl helper (suc n) zero = cong suc (+-comm n 1) helper (suc n) (suc m) = +-suc _ _ ∙ cong suc (helper n m) ΣTruncElim : ∀ {ℓ ℓ' ℓ''} {A : Type ℓ} {n m : ℕ} {B : (x : ∥ A ∥ n) → Type ℓ'} {C : (Σ[ a ∈ (∥ A ∥ n) ] (∥ B a ∥ m)) → Type ℓ''} → ((x : (Σ[ a ∈ (∥ A ∥ n) ] (∥ B a ∥ m))) → isOfHLevel (min n m) (C x)) → ((a : A) (b : B (∣ a ∣ₕ)) → C (∣ a ∣ₕ , ∣ b ∣ₕ)) → (x : (Σ[ a ∈ (∥ A ∥ n) ] (∥ B a ∥ m))) → C x ΣTruncElim hB g (a , b) = elim (λ x → isOfHLevelΠ _ λ b → isOfHLevelMin→isOfHLevel (hB (x , b)) .fst ) (λ a → elim (λ _ → isOfHLevelMin→isOfHLevel (hB (∣ a ∣ₕ , _)) .snd) λ b → g a b) a b truncIdempotentIso : (n : ℕ) → isOfHLevel n A → Iso (∥ A ∥ n) A truncIdempotentIso zero hA = isContr→Iso (isOfHLevelUnit* 0) hA Iso.fun (truncIdempotentIso (suc n) hA) = rec hA λ a → a Iso.inv (truncIdempotentIso (suc n) hA) = ∣_∣ Iso.rightInv (truncIdempotentIso (suc n) hA) _ = refl Iso.leftInv (truncIdempotentIso (suc n) hA) = elim (λ _ → isOfHLevelPath (suc n) (isOfHLevelTrunc (suc n)) _ _) λ _ → refl truncIdempotent≃ : (n : ℕ) → isOfHLevel n A → ∥ A ∥ n ≃ A truncIdempotent≃ n hA = isoToEquiv (truncIdempotentIso n hA) truncIdempotent : (n : ℕ) → isOfHLevel n A → ∥ A ∥ n ≡ A truncIdempotent n hA = ua (truncIdempotent≃ n hA) HLevelTruncModality : ∀ {ℓ} (n : HLevel) → Modality ℓ isModal (HLevelTruncModality n) = isOfHLevel n isPropIsModal (HLevelTruncModality n) = isPropIsOfHLevel n ◯ (HLevelTruncModality n) = hLevelTrunc n ◯-isModal (HLevelTruncModality n) = isOfHLevelTrunc n η (HLevelTruncModality zero) _ = tt* η (HLevelTruncModality (suc n)) = ∣_∣ ◯-elim (HLevelTruncModality zero) cB _ tt* = cB tt* .fst ◯-elim (HLevelTruncModality (suc n)) = elim ◯-elim-β (HLevelTruncModality zero) cB f a = cB tt* .snd (f a) ◯-elim-β (HLevelTruncModality (suc n)) = λ _ _ _ → refl ◯-=-isModal (HLevelTruncModality zero) x y = (isOfHLevelUnit* 1 x y) , (isOfHLevelUnit* 2 x y _) ◯-=-isModal (HLevelTruncModality (suc n)) = isOfHLevelPath (suc n) (isOfHLevelTrunc (suc n)) -- universal property univTrunc : ∀ {ℓ} (n : HLevel) {B : TypeOfHLevel ℓ n} → Iso (hLevelTrunc n A → B .fst) (A → B .fst) univTrunc zero {B , lev} = isContr→Iso (isOfHLevelΠ 0 (λ _ → lev)) (isOfHLevelΠ 0 λ _ → lev) Iso.fun (univTrunc (suc n) {B , lev}) g a = g ∣ a ∣ Iso.inv (univTrunc (suc n) {B , lev}) = rec lev Iso.rightInv (univTrunc (suc n) {B , lev}) b = refl Iso.leftInv (univTrunc (suc n) {B , lev}) b = funExt (elim (λ x → isOfHLevelPath _ lev _ _) λ a → refl) -- some useful properties of recursor recUniq : {n : HLevel} → (h : isOfHLevel n B) → (g : A → B) → (x : A) → rec h g ∣ x ∣ₕ ≡ g x recUniq {n = zero} h g x = h .snd (g x) recUniq {n = suc n} _ _ _ = refl ∘rec : ∀{ℓ''} {n : HLevel}{C : Type ℓ''} → (h : isOfHLevel n B) → (h' : isOfHLevel n C) → (g : A → B) → (f : B → C) → (x : hLevelTrunc n A) → rec h' (f ∘ g) x ≡ f (rec h g x) ∘rec {n = zero} h h' g f x = h' .snd (f (rec h g x)) ∘rec {n = suc n} h h' g f = elim (λ _ → isOfHLevelPath _ h' _ _) (λ _ → refl) recId : {n : HLevel} → (f : A → hLevelTrunc n A) → ((x : A) → f x ≡ ∣ x ∣ₕ) → rec (isOfHLevelTrunc _) f ≡ idfun _ recId {n = n} f h i x = elim {B = λ a → rec (isOfHLevelTrunc _) f a ≡ a} (λ _ → isOfHLevelTruncPath) (λ a → recUniq {n = n} (isOfHLevelTrunc _) f a ∙ h a) x i -- functorial action map : {n : HLevel} {B : Type ℓ'} (g : A → B) → hLevelTrunc n A → hLevelTrunc n B map g = rec (isOfHLevelTrunc _) (λ a → ∣ g a ∣ₕ) map2 : ∀ {ℓ''} {n : HLevel} {B : Type ℓ'} {C : Type ℓ''} (g : A → B → C) → hLevelTrunc n A → hLevelTrunc n B → hLevelTrunc n C map2 {n = zero} g = λ _ _ → tt* map2 {n = suc n} g = rec (isOfHLevelΠ (suc n) λ _ → isOfHLevelTrunc _) (λ a → rec (isOfHLevelTrunc _) λ b → ∣ g a b ∣) mapCompIso : {n : HLevel} {B : Type ℓ'} → (Iso A B) → Iso (hLevelTrunc n A) (hLevelTrunc n B) mapCompIso {n = zero} {B} _ = isContr→Iso (isOfHLevelUnit* 0) (isOfHLevelUnit* 0) Iso.fun (mapCompIso {n = (suc n)} g) = map (Iso.fun g) Iso.inv (mapCompIso {n = (suc n)} g) = map (Iso.inv g) Iso.rightInv (mapCompIso {n = (suc n)} g) = elim (λ x → isOfHLevelPath _ (isOfHLevelTrunc _) _ _) λ b → cong ∣_∣ (Iso.rightInv g b) Iso.leftInv (mapCompIso {n = (suc n)} g) = elim (λ x → isOfHLevelPath _ (isOfHLevelTrunc _) _ _) λ a → cong ∣_∣ (Iso.leftInv g a) mapId : {n : HLevel} → ∀ t → map {n = n} (idfun A) t ≡ t mapId {n = 0} tt* = refl mapId {n = (suc n)} = elim (λ _ → isOfHLevelPath (suc n) (isOfHLevelTrunc (suc n)) _ _) (λ _ → refl) -- equivalences to prop/set/groupoid truncations propTruncTrunc1Iso : Iso ∥ A ∥₁ (∥ A ∥ 1) Iso.fun propTruncTrunc1Iso = PropTrunc.rec (isOfHLevelTrunc 1) ∣_∣ Iso.inv propTruncTrunc1Iso = rec squash₁ ∣_∣₁ Iso.rightInv propTruncTrunc1Iso = elim (λ _ → isOfHLevelPath 1 (isOfHLevelTrunc 1) _ _) (λ _ → refl) Iso.leftInv propTruncTrunc1Iso = PropTrunc.elim (λ _ → isOfHLevelPath 1 squash₁ _ _) (λ _ → refl) propTrunc≃Trunc1 : ∥ A ∥₁ ≃ ∥ A ∥ 1 propTrunc≃Trunc1 = isoToEquiv propTruncTrunc1Iso propTrunc≡Trunc1 : ∥ A ∥₁ ≡ ∥ A ∥ 1 propTrunc≡Trunc1 = ua propTrunc≃Trunc1 setTruncTrunc2Iso : Iso ∥ A ∥₂ (∥ A ∥ 2) Iso.fun setTruncTrunc2Iso = SetTrunc.rec (isOfHLevelTrunc 2) ∣_∣ Iso.inv setTruncTrunc2Iso = rec squash₂ ∣_∣₂ Iso.rightInv setTruncTrunc2Iso = elim (λ _ → isOfHLevelPath 2 (isOfHLevelTrunc 2) _ _) (λ _ → refl) Iso.leftInv setTruncTrunc2Iso = SetTrunc.elim (λ _ → isOfHLevelPath 2 squash₂ _ _) (λ _ → refl) setTrunc≃Trunc2 : ∥ A ∥₂ ≃ ∥ A ∥ 2 setTrunc≃Trunc2 = isoToEquiv setTruncTrunc2Iso propTrunc≡Trunc2 : ∥ A ∥₂ ≡ ∥ A ∥ 2 propTrunc≡Trunc2 = ua setTrunc≃Trunc2 groupoidTruncTrunc3Iso : Iso ∥ A ∥₃ (∥ A ∥ 3) Iso.fun groupoidTruncTrunc3Iso = GpdTrunc.rec (isOfHLevelTrunc 3) ∣_∣ Iso.inv groupoidTruncTrunc3Iso = rec squash₃ ∣_∣₃ Iso.rightInv groupoidTruncTrunc3Iso = elim (λ _ → isOfHLevelPath 3 (isOfHLevelTrunc 3) _ _) (λ _ → refl) Iso.leftInv groupoidTruncTrunc3Iso = GpdTrunc.elim (λ _ → isOfHLevelPath 3 squash₃ _ _) (λ _ → refl) groupoidTrunc≃Trunc3 : ∥ A ∥₃ ≃ ∥ A ∥ 3 groupoidTrunc≃Trunc3 = isoToEquiv groupoidTruncTrunc3Iso groupoidTrunc≡Trunc3 : ∥ A ∥₃ ≡ ∥ A ∥ 3 groupoidTrunc≡Trunc3 = ua groupoidTrunc≃Trunc3 2GroupoidTruncTrunc4Iso : Iso ∥ A ∥₄ (∥ A ∥ 4) Iso.fun 2GroupoidTruncTrunc4Iso = 2GpdTrunc.rec (isOfHLevelTrunc 4) ∣_∣ Iso.inv 2GroupoidTruncTrunc4Iso = rec squash₄ ∣_∣₄ Iso.rightInv 2GroupoidTruncTrunc4Iso = elim (λ _ → isOfHLevelPath 4 (isOfHLevelTrunc 4) _ _) (λ _ → refl) Iso.leftInv 2GroupoidTruncTrunc4Iso = 2GpdTrunc.elim (λ _ → isOfHLevelPath 4 squash₄ _ _) (λ _ → refl) 2GroupoidTrunc≃Trunc4 : ∥ A ∥₄ ≃ ∥ A ∥ 4 2GroupoidTrunc≃Trunc4 = isoToEquiv 2GroupoidTruncTrunc4Iso 2GroupoidTrunc≡Trunc4 : ∥ A ∥₄ ≡ ∥ A ∥ 4 2GroupoidTrunc≡Trunc4 = ua 2GroupoidTrunc≃Trunc4 isContr→isContrTrunc : ∀ {ℓ} {A : Type ℓ} (n : ℕ) → isContr A → isContr (hLevelTrunc n A) isContr→isContrTrunc zero contr = isOfHLevelUnit* 0 isContr→isContrTrunc (suc n) contr = ∣ fst contr ∣ , (elim (λ _ → isOfHLevelPath (suc n) (isOfHLevelTrunc (suc n)) _ _) λ a → cong ∣_∣ (snd contr a)) truncOfProdIso : (n : ℕ) → Iso (hLevelTrunc n (A × B)) (hLevelTrunc n A × hLevelTrunc n B) truncOfProdIso 0 = isContr→Iso (isOfHLevelUnit* 0) (isOfHLevel× 0 (isOfHLevelUnit* 0) (isOfHLevelUnit* 0)) Iso.fun (truncOfProdIso (suc n)) = rec (isOfHLevelΣ (suc n) (isOfHLevelTrunc (suc n)) (λ _ → isOfHLevelTrunc (suc n))) λ {(a , b) → ∣ a ∣ , ∣ b ∣} Iso.inv (truncOfProdIso (suc n)) (a , b) = rec (isOfHLevelTrunc (suc n)) (λ a → rec (isOfHLevelTrunc (suc n)) (λ b → ∣ a , b ∣) b) a Iso.rightInv (truncOfProdIso (suc n)) (a , b) = elim {B = λ a → Iso.fun (truncOfProdIso (suc n)) (Iso.inv (truncOfProdIso (suc n)) (a , b)) ≡ (a , b)} (λ _ → isOfHLevelPath (suc n) (isOfHLevelΣ (suc n) (isOfHLevelTrunc (suc n)) (λ _ → isOfHLevelTrunc (suc n))) _ _) (λ a → elim {B = λ b → Iso.fun (truncOfProdIso (suc n)) (Iso.inv (truncOfProdIso (suc n)) (∣ a ∣ , b)) ≡ (∣ a ∣ , b)} (λ _ → isOfHLevelPath (suc n) (isOfHLevelΣ (suc n) (isOfHLevelTrunc (suc n)) (λ _ → isOfHLevelTrunc (suc n))) _ _) (λ b → refl) b) a Iso.leftInv (truncOfProdIso (suc n)) = elim (λ _ → isOfHLevelPath (suc n) (isOfHLevelTrunc (suc n)) _ _) λ a → refl ---- ∥ Ω A ∥ ₙ ≡ Ω ∥ A ∥ₙ₊₁ ---- {- Proofs of Theorem 7.3.12. and Corollary 7.3.13. in the HoTT book -} module ΩTrunc {X : Type ℓ} {n : HLevel} where {- We define the fibration P to show a more general result -} Code : ∥ X ∥ (2 + n) → ∥ X ∥ (2 + n) → TypeOfHLevel ℓ (suc n) Code x y = rec2 (isOfHLevelTypeOfHLevel (suc n)) (λ a b → ∥ a ≡ b ∥ (suc n) , isOfHLevelTrunc (suc n)) x y P : ∥ X ∥ (2 + n) → ∥ X ∥ (2 + n) → Type ℓ P x y = Code x y .fst {- We will need P to be of hLevel n + 3 -} hLevelP : (a b : ∥ X ∥ (2 + n)) → isOfHLevel (2 + n) (P a b) hLevelP x y = isOfHLevelSuc (suc n) (Code x y .snd) {- decode function from P x y to x ≡ y -} decode-fun : (x y : ∥ X ∥ (2 + n)) → P x y → x ≡ y decode-fun = elim2 (λ u v → isOfHLevelΠ (2 + n)(λ _ → isOfHLevelSuc (2 + n) (isOfHLevelTrunc (2 + n)) u v)) decode* where decode* : (u v : X) → P ∣ u ∣ ∣ v ∣ → Path (∥ X ∥ (2 + n)) ∣ u ∣ ∣ v ∣ decode* u v = rec (isOfHLevelTrunc (2 + n) ∣ u ∣ ∣ v ∣) (cong ∣_∣) {- auxiliary function r used to define encode -} r : (u : ∥ X ∥ (2 + n)) → P u u r = elim (λ x → hLevelP x x) (λ a → ∣ refl ∣) encode-fun : (x y : ∥ X ∥ (2 + n)) → x ≡ y → P x y encode-fun x y p = subst (P x) p (r x) encode-fill : (x y : ∥ X ∥ (2 + n)) (p : x ≡ y) → PathP (λ i → P x (p i)) (r x) (encode-fun x y p) encode-fill x y p = subst-filler (P x) p (r x) {- We need the following lemma on the functions behaviour for refl -} dec-refl : (x : ∥ X ∥ (2 + n)) → decode-fun x x (r x) ≡ refl dec-refl = elim (λ x → isOfHLevelSuc (1 + n) (isOfHLevelSuc (1 + n) (isOfHLevelTrunc (2 + n) x x) (decode-fun x x (r x)) refl)) (λ _ → refl) {- decode-fun is a right-inverse -} P-rinv : (u v : ∥ X ∥ (2 + n)) (x : Path (∥ X ∥ (2 + n)) u v) → decode-fun u v (encode-fun u v x) ≡ x P-rinv u v p = transport (λ i → decode-fun u (p i) (encode-fill u v p i) ≡ (λ j → p (i ∧ j))) (dec-refl u) {- decode-fun is a left-inverse -} P-linv : (u v : ∥ X ∥ (2 + n)) (x : P u v) → encode-fun u v (decode-fun u v x) ≡ x P-linv = elim2 (λ x y → isOfHLevelΠ (2 + n) (λ z → isOfHLevelSuc (2 + n) (hLevelP x y) _ _)) (λ a b → elim (λ p → hLevelP ∣ a ∣ ∣ b ∣ _ _) (helper a b)) where helper : (a b : X) (p : a ≡ b) → encode-fun _ _ (decode-fun ∣ a ∣ ∣ b ∣ (∣ p ∣)) ≡ ∣ p ∣ helper a b p = transport (λ i → subst-filler (P ∣ a ∣) (cong ∣_∣ p) ∣ refl ∣ i ≡ ∣ (λ j → p (i ∧ j)) ∣) refl {- The final Iso established -} IsoFinal : (x y : ∥ X ∥ (2 + n)) → Iso (x ≡ y) (P x y) Iso.fun (IsoFinal x y) = encode-fun x y Iso.inv (IsoFinal x y) = decode-fun x y Iso.rightInv (IsoFinal x y) = P-linv x y Iso.leftInv (IsoFinal x y) = P-rinv x y +P : (x y z : ∥ X ∥ (2 + n)) → (P x y) → (P y z) → P x z +P = elim3 (λ x _ z → isOfHLevelΠ (2 + n) λ _ → isOfHLevelΠ (2 + n) λ _ → hLevelP x z) λ a b c → rec (isOfHLevelΠ (suc n) λ _ → isOfHLevelTrunc (suc n)) λ p → rec (isOfHLevelTrunc (suc n)) λ q → ∣ p ∙ q ∣ +P-funct : (x y z : ∥ X ∥ (2 + n)) (p : x ≡ y) (q : y ≡ z) → +P x y z (encode-fun x y p) (encode-fun y z q) ≡ encode-fun x z (p ∙ q) +P-funct x y z p q = transport (λ i → +P x y (q i) (encode-fun x y p) (encode-fill y z q i) ≡ encode-fun x (q i) (compPath-filler p q i)) (transport (λ i → +P x (p i) (p i) (encode-fill x y p i) (r (p i)) ≡ encode-fill x y p i) (elim {B = λ x → +P x x x (r x) (r x) ≡ r x} (λ x → isOfHLevelPath (2 + n) (hLevelP x x) _ _) (λ a i → ∣ rUnit refl (~ i) ∣) x)) PathIdTruncIso : {a b : A} (n : HLevel) → Iso (Path (∥ A ∥ (suc n)) ∣ a ∣ ∣ b ∣) (∥ a ≡ b ∥ n) PathIdTruncIso zero = isContr→Iso (isOfHLevelTrunc 1 _ _ , isOfHLevelPath 1 (isOfHLevelTrunc 1) ∣ _ ∣ ∣ _ ∣ _) (isOfHLevelUnit* 0) PathIdTruncIso (suc n) = ΩTrunc.IsoFinal ∣ _ ∣ ∣ _ ∣ PathIdTrunc : {a b : A} (n : HLevel) → (Path (∥ A ∥ (suc n)) ∣ a ∣ ∣ b ∣) ≡ (∥ a ≡ b ∥ n) PathIdTrunc n = isoToPath (PathIdTruncIso n) PathΩ : {a : A} (n : HLevel) → (Path (∥ A ∥ (suc n)) ∣ a ∣ ∣ a ∣) ≡ (∥ a ≡ a ∥ n) PathΩ n = PathIdTrunc n PathIdTruncIsoFunct : ∀ {A : Type ℓ} {a : A} (n : HLevel) → (p q : (Path (∥ A ∥ (2 + n)) ∣ a ∣ ∣ a ∣)) → Iso.fun (PathIdTruncIso (suc n)) (p ∙ q) ≡ map2 _∙_ (Iso.fun (PathIdTruncIso (suc n)) p) (Iso.fun (PathIdTruncIso (suc n)) q) PathIdTruncIsoFunct {a = a} n p q = sym (ΩTrunc.+P-funct (∣ a ∣) ∣ a ∣ ∣ a ∣ p q) ------------------------- truncOfTruncIso : (n m : HLevel) → Iso (hLevelTrunc n A) (hLevelTrunc n (hLevelTrunc (m + n) A)) truncOfTruncIso zero m = isContr→Iso (isOfHLevelUnit* 0) (isOfHLevelUnit* 0) Iso.fun (truncOfTruncIso (suc n) zero) = rec (isOfHLevelTrunc (suc n)) λ a → ∣ ∣ a ∣ ∣ Iso.fun (truncOfTruncIso (suc n) (suc m)) = rec (isOfHLevelTrunc (suc n)) λ a → ∣ ∣ a ∣ ∣ Iso.inv (truncOfTruncIso (suc n) zero) = rec (isOfHLevelTrunc (suc n)) (rec (isOfHLevelTrunc (suc n)) λ a → ∣ a ∣) Iso.inv (truncOfTruncIso (suc n) (suc m)) = rec (isOfHLevelTrunc (suc n)) (rec (isOfHLevelPlus (suc m) (isOfHLevelTrunc (suc n))) λ a → ∣ a ∣) Iso.rightInv (truncOfTruncIso (suc n) zero) = elim (λ x → isOfHLevelPath (suc n) (isOfHLevelTrunc (suc n)) _ _ ) (elim (λ x → isOfHLevelPath (suc n) (isOfHLevelTrunc (suc n)) _ _ ) λ a → refl) Iso.rightInv (truncOfTruncIso (suc n) (suc m)) = elim (λ x → isOfHLevelPath (suc n) (isOfHLevelTrunc (suc n)) _ _ ) (elim (λ x → isOfHLevelPath ((suc m) + (suc n)) (isOfHLevelPlus (suc m) (isOfHLevelTrunc (suc n))) _ _ ) λ a → refl) Iso.leftInv (truncOfTruncIso (suc n) zero) = elim (λ x → isOfHLevelPath (suc n) (isOfHLevelTrunc (suc n)) _ _) λ a → refl Iso.leftInv (truncOfTruncIso (suc n) (suc m)) = elim (λ x → isOfHLevelPath (suc n) (isOfHLevelTrunc (suc n)) _ _) λ a → refl truncOfTruncIso' : (n m : HLevel) → Iso (hLevelTrunc n A) (hLevelTrunc n (hLevelTrunc (n + m) A)) truncOfTruncIso' zero m = isContr→Iso (isOfHLevelUnit* 0) (isOfHLevelUnit* 0) Iso.fun (truncOfTruncIso' (suc n) m) = rec (isOfHLevelTrunc (suc n)) λ a → ∣ ∣ a ∣ ∣ Iso.inv (truncOfTruncIso' {A = A} (suc n) m) = rec (isOfHLevelTrunc (suc n)) (rec (isOfHLevelPlus' {n = m} (suc n) (isOfHLevelTrunc (suc n))) ∣_∣) Iso.rightInv (truncOfTruncIso' (suc n) m) = elim (λ _ → isOfHLevelPath (suc n) (isOfHLevelTrunc (suc n)) _ _) (elim (λ _ → isOfHLevelPath (suc n + m) (isOfHLevelPlus' {n = m} (suc n) (isOfHLevelTrunc (suc n))) _ _) λ _ → refl) Iso.leftInv (truncOfTruncIso' (suc n) m) = elim (λ _ → isOfHLevelPath (suc n) (isOfHLevelTrunc (suc n)) _ _) λ _ → refl truncOfTruncEq : (n m : ℕ) → (hLevelTrunc n A) ≃ (hLevelTrunc n (hLevelTrunc (m + n) A)) truncOfTruncEq n m = isoToEquiv (truncOfTruncIso n m) truncOfTruncIso2 : (n m : HLevel) → Iso (hLevelTrunc (m + n) (hLevelTrunc n A)) (hLevelTrunc n A) truncOfTruncIso2 n m = truncIdempotentIso (m + n) (isOfHLevelPlus m (isOfHLevelTrunc n)) truncOfΣIso : ∀ {ℓ ℓ'} (n : HLevel) {A : Type ℓ} {B : A → Type ℓ'} → Iso (hLevelTrunc n (Σ A B)) (hLevelTrunc n (Σ A λ x → hLevelTrunc n (B x))) truncOfΣIso zero = idIso Iso.fun (truncOfΣIso (suc n)) = map λ {(a , b) → a , ∣ b ∣} Iso.inv (truncOfΣIso (suc n)) = rec (isOfHLevelTrunc (suc n)) (uncurry λ a → rec (isOfHLevelTrunc (suc n)) λ b → ∣ a , b ∣) Iso.rightInv (truncOfΣIso (suc n)) = elim (λ _ → isOfHLevelPath (suc n) (isOfHLevelTrunc (suc n)) _ _) (uncurry λ a → elim (λ _ → isOfHLevelPath (suc n) (isOfHLevelTrunc (suc n)) _ _) λ b → refl) Iso.leftInv (truncOfΣIso (suc n)) = elim (λ _ → isOfHLevelPath (suc n) (isOfHLevelTrunc (suc n)) _ _) λ {(a , b) → refl} {- transport along family of truncations -} transportTrunc : {n : HLevel}{p : A ≡ B} → (a : A) → transport (λ i → hLevelTrunc n (p i)) ∣ a ∣ₕ ≡ ∣ transport (λ i → p i) a ∣ₕ transportTrunc {n = zero} a = refl transportTrunc {n = suc n} a = refl
43.477954
146
0.550706
dcf7c49e348a35315ed41cc7842e271e79509e95
90
agda
Agda
test/interaction/Issue4215.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/interaction/Issue4215.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/interaction/Issue4215.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
open import Agda.Builtin.Nat foo : Nat → Nat → Nat foo 0 m = {!m!} foo (suc n) m = {!!}
12.857143
28
0.555556
5969e8de8704c6862cd0fb6062152c1dc2c451b5
238
agda
Agda
test/Fail/CoinductiveBuiltinList.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/Fail/CoinductiveBuiltinList.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
3
2018-11-14T15:31:44.000Z
2019-04-01T19:39:26.000Z
test/Fail/CoinductiveBuiltinList.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1
2015-09-15T14:36:15.000Z
2015-09-15T14:36:15.000Z
module CoinductiveBuiltinList where open import Common.Coinduction data List (A : Set) : Set where [] : List A _∷_ : (x : A) (xs : ∞ (List A)) → List A {-# BUILTIN LIST List #-} {-# BUILTIN NIL [] #-} {-# BUILTIN CONS _∷_ #-}
19.833333
42
0.584034
23def69502ccde6368272f5648a846a698a23454
1,522
agda
Agda
src/Categories/Minus2-Category/Properties.agda
jaykru/agda-categories
a4053cf700bcefdf73b857c3352f1eae29382a60
[ "MIT" ]
279
2019-06-01T14:36:40.000Z
2022-03-22T00:40:14.000Z
src/Categories/Minus2-Category/Properties.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
236
2019-06-01T14:53:54.000Z
2022-03-28T14:31:43.000Z
src/Categories/Minus2-Category/Properties.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
64
2019-06-02T16:58:15.000Z
2022-03-14T02:00:59.000Z
{-# OPTIONS --without-K --safe #-} module Categories.Minus2-Category.Properties where -- All -2-Categories are equivalent to One open import Level open import Data.Product using (Σ; _,_; proj₁; proj₂) open import Data.Unit using (⊤; tt) open import Categories.Minus2-Category open import Categories.Category import Categories.Morphism as M open import Categories.Category.Monoidal open import Categories.Category.Instance.One open import Categories.Category.Equivalence hiding (refl) open import Categories.NaturalTransformation using (ntHelper) private variable o ℓ e : Level shrink-them-all : (X : -2-Category {o} {ℓ} {e}) → StrongEquivalence (-2-Category.cat X) (One {o} {ℓ} {e}) shrink-them-all X = record { F = record { F₀ = λ _ → lift tt ; F₁ = λ _ → lift tt } ; G = record { F₀ = λ _ → proj₁ Obj-Contr ; F₁ = λ _ → M._≅_.from (proj₂ Obj-Contr (proj₁ Obj-Contr)) ; identity = Hom-Conn ; homomorphism = Hom-Conn ; F-resp-≈ = λ _ → Hom-Conn } ; weak-inverse = record { F∘G≈id = _ ; G∘F≈id = record { F⇒G = ntHelper (record { η = λ y → M._≅_.from (proj₂ Obj-Contr y) ; commute = λ _ → Hom-Conn }) ; F⇐G = ntHelper (record { η = λ y → M._≅_.to (proj₂ Obj-Contr y) ; commute = λ _ → Hom-Conn }) ; iso = λ Z → record { isoˡ = M._≅_.isoˡ (proj₂ Obj-Contr Z) ; isoʳ = M._≅_.isoʳ (proj₂ Obj-Contr Z) } } } } where open -2-Category X open Category cat
26.701754
105
0.604468
06b1d21487c59a58803fd36e4e40bef2c3735b55
421
agda
Agda
Eq.agda
msullivan/godels-t
7412725cf27873b2b23f7e411a236a97dd99ef91
[ "MIT" ]
4
2016-12-25T01:52:57.000Z
2021-03-22T00:28:03.000Z
Eq.agda
msullivan/godels-t
7412725cf27873b2b23f7e411a236a97dd99ef91
[ "MIT" ]
null
null
null
Eq.agda
msullivan/godels-t
7412725cf27873b2b23f7e411a236a97dd99ef91
[ "MIT" ]
3
2015-04-26T11:39:14.000Z
2021-05-04T22:37:18.000Z
module Eq where open import Prelude open import T open import Contexts open import Eq.Defs import Eq.KleeneTheory import Eq.ObsTheory import Eq.LogicalTheory import Eq.Theory open Eq.Defs public open Eq.KleeneTheory public using (kleene-is-equivalence ; nats-halt) open Eq.ObsTheory public using (obs-is-coarsest ; obs-is-con-congruence) open Eq.LogicalTheory public using (log-is-con-congruence) open Eq.Theory public
24.764706
72
0.812352
1d0c02576e146353a45a8d094e4d691a8ece1969
1,466
agda
Agda
src/LibraBFT/Impl/Consensus/ConsensusTypes/ExecutedBlock.agda
LaudateCorpus1/bft-consensus-agda
a4674fc473f2457fd3fe5123af48253cfb2404ef
[ "UPL-1.0" ]
null
null
null
src/LibraBFT/Impl/Consensus/ConsensusTypes/ExecutedBlock.agda
LaudateCorpus1/bft-consensus-agda
a4674fc473f2457fd3fe5123af48253cfb2404ef
[ "UPL-1.0" ]
null
null
null
src/LibraBFT/Impl/Consensus/ConsensusTypes/ExecutedBlock.agda
LaudateCorpus1/bft-consensus-agda
a4674fc473f2457fd3fe5123af48253cfb2404ef
[ "UPL-1.0" ]
null
null
null
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Base.Types import LibraBFT.Impl.Consensus.ConsensusTypes.Block as Block import LibraBFT.Impl.Execution.ExecutorTypes.StateComputeResult as StateComputeResult import LibraBFT.Impl.OBM.Crypto as Crypto open import LibraBFT.ImplShared.Base.Types open import LibraBFT.ImplShared.Consensus.Types open import Optics.All open import Util.Prelude module LibraBFT.Impl.Consensus.ConsensusTypes.ExecutedBlock where isNilBlock : ExecutedBlock → Bool isNilBlock eb = Block.isNilBlock (eb ^∙ ebBlock) blockInfo : ExecutedBlock → BlockInfo blockInfo eb = Block.genBlockInfo (eb ^∙ ebBlock) (Crypto.obmHashVersion -- OBM-LBFT-DIFF - see SafetyRules.extensionCheck (eb ^∙ ebStateComputeResult ∙ scrObmNumLeaves)) (eb ^∙ ebStateComputeResult ∙ scrObmNumLeaves) (eb ^∙ ebStateComputeResult ∙ scrEpochState) maybeSignedVoteProposal : ExecutedBlock → MaybeSignedVoteProposal maybeSignedVoteProposal self = MaybeSignedVoteProposal∙new (VoteProposal∙new (StateComputeResult.extensionProof (self ^∙ ebStateComputeResult)) (self ^∙ ebBlock) (self ^∙ ebStateComputeResult ∙ scrEpochState))
40.722222
111
0.740791
3d52ca2a14165c539bbe847c6e176ce35a4fa107
1,489
agda
Agda
test/Succeed/QuoteExtLam.agda
cagix/agda
cc026a6a97a3e517bb94bafa9d49233b067c7559
[ "BSD-2-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/QuoteExtLam.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/QuoteExtLam.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
open import Common.Prelude open import Common.Reflection open import Common.Equality open import Agda.Builtin.Sigma magic₁ : ⊥ → Nat magic₁ = λ () magic₂ : ⊥ → Nat magic₂ = λ { () } magic₃ : ⊥ → Nat magic₃ () data Wrap (A : Set) : Set where wrap : A → Wrap A magic₄ : Wrap ⊥ → Nat magic₄ (wrap ()) data OK : Set where ok : OK bad : String bad = "not good" macro checkDefinition : (Definition → Bool) → QName → Tactic checkDefinition isOk f hole = bindTC (getDefinition f) λ def → give (if isOk def then quoteTerm ok else quoteTerm bad) hole pattern `Nat = def (quote Nat) [] pattern _`→_ a b = pi (vArg a) (abs "_" b) pattern `Wrap a = def (quote Wrap) (vArg a ∷ []) pattern `⊥ = def (quote ⊥) [] pattern expected₄ = funDef (absurdClause (("()" , vArg `⊥) ∷ []) (vArg (con (quote wrap) (vArg (absurd 0) ∷ [])) ∷ []) ∷ []) check₄ : OK check₄ = checkDefinition (λ { expected₄ → true; _ → false }) magic₄ expected = extLam (absurdClause (("()" , vArg `⊥) ∷ []) (vArg (absurd 0) ∷ []) ∷ []) [] macro quoteTermNormalised : Term → Term → TC ⊤ quoteTermNormalised t hole = bindTC (normalise t) λ t → bindTC (quoteTC t) λ t → unify hole t check₁ : quoteTermNormalised magic₁ ≡ expected check₁ = refl check₂ : quoteTermNormalised magic₂ ≡ expected check₂ = refl pattern expectedDef = funDef (absurdClause (("()" , vArg `⊥) ∷ []) (vArg (absurd 0) ∷ []) ∷ []) check₃ : OK check₃ = checkDefinition (λ { expectedDef → true; _ → false }) magic₃
22.223881
93
0.627267
3db94f28f40c5c1591aed1deab022e532f43ddfc
2,328
agda
Agda
Cubical/Categories/Additive/Instances/Terminal.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
1
2021-10-31T17:32:49.000Z
2021-10-31T17:32:49.000Z
Cubical/Categories/Additive/Instances/Terminal.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
Cubical/Categories/Additive/Instances/Terminal.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
{-# OPTIONS --safe #-} module Cubical.Categories.Additive.Instances.Terminal where open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Categories.Category open import Cubical.Categories.Additive.Base open import Cubical.Categories.Instances.Discrete open import Cubical.Algebra.AbGroup open import Cubical.Algebra.AbGroup.Instances.Unit open import Cubical.Data.Unit private variable ℓ ℓ' : Level open PreaddCategory open PreaddCategoryStr open AdditiveCategory open AdditiveCategoryStr private terminalCategory : Category ℓ ℓ terminalCategory = DiscreteCategory (Unit* , isOfHLevelUnit* 3) terminalAbGroupStr : AbGroupStr {ℓ = ℓ} Unit* terminalAbGroupStr = snd UnitAbGroup homProp : (x y : Category.ob {ℓ = ℓ} terminalCategory) → isProp (terminalCategory [ x , y ]) homProp x y = isOfHLevelUnit* 2 x y homContr : (x y : Category.ob {ℓ = ℓ} terminalCategory) → isContr (terminalCategory [ x , y ]) homContr x y = isProp→isContrPath (isOfHLevelUnit* 1) x y terminalPreAdd : PreaddCategory ℓ ℓ cat terminalPreAdd = terminalCategory homAbStr (preadd terminalPreAdd) = λ x y → subst AbGroupStr (sym (isContr→≡Unit* (homContr x y))) terminalAbGroupStr ⋆distl+ (preadd terminalPreAdd) = λ _ _ _ _ → refl ⋆distr+ (preadd terminalPreAdd) = λ _ _ _ → refl terminalAdditiveCategory : AdditiveCategory ℓ ℓ preaddcat terminalAdditiveCategory = terminalPreAdd ZeroObject.z (zero (addit terminalAdditiveCategory)) = tt* ZeroObject.zInit (zero (addit terminalAdditiveCategory)) y = homContr _ _ ZeroObject.zTerm (zero (addit terminalAdditiveCategory)) y = homContr _ _ biprod (addit terminalAdditiveCategory) x y = trivProd where trivProd : Biproduct terminalPreAdd x y Biproduct.x⊕y trivProd = tt* Biproduct.i₁ trivProd = refl Biproduct.i₂ trivProd = refl Biproduct.π₁ trivProd = refl Biproduct.π₂ trivProd = refl IsBiproduct.i₁⋆π₁ (Biproduct.isBipr trivProd) = homProp _ _ _ _ IsBiproduct.i₁⋆π₂ (Biproduct.isBipr trivProd) = homProp _ _ _ _ IsBiproduct.i₂⋆π₁ (Biproduct.isBipr trivProd) = homProp _ _ _ _ IsBiproduct.i₂⋆π₂ (Biproduct.isBipr trivProd) = homProp _ _ _ _ IsBiproduct.∑π⋆i (Biproduct.isBipr trivProd) = homProp _ _ _ _
34.746269
96
0.734536
299a852c9841ee9d6a016a12bf43323e193c683e
2,082
agda
Agda
notes/FOT/FOTC/Polymorphism/List.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
11
2015-09-03T20:53:42.000Z
2021-09-12T16:09:54.000Z
notes/FOT/FOTC/Polymorphism/List.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
2
2016-10-12T17:28:16.000Z
2017-01-01T14:34:26.000Z
notes/FOT/FOTC/Polymorphism/List.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
3
2016-09-19T14:18:30.000Z
2018-03-14T08:50:00.000Z
------------------------------------------------------------------------------ -- Testing polymorphic lists using data types ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOT.FOTC.Polymorphism.List where open import FOTC.Base open import FOTC.Base.List open import FOTC.Data.Bool.Type open import FOTC.Data.List.Type open import FOTC.Data.Nat.List.Type open import FOTC.Data.Nat.Type open import FOTC.Data.Nat.UnaryNumbers ------------------------------------------------------------------------------ -- "Heterogeneous" total lists xs : D xs = 0' ∷ true ∷ 1' ∷ false ∷ [] xs-List : List xs xs-List = lcons 0' (lcons true (lcons 1' (lcons false lnil))) -- Total lists of total natural numbers ys : D ys = 0' ∷ 1' ∷ 2' ∷ [] ys-ListN : ListN ys ys-ListN = lncons nzero (lncons (nsucc nzero) (lncons (nsucc (nsucc nzero)) lnnil)) -- Total lists of total Booleans data ListB : D → Set where lbnil : ListB [] lbcons : ∀ {b bs} → Bool b → ListB bs → ListB (b ∷ bs) zs : D zs = true ∷ false ∷ true ∷ [] zs-ListB : ListB zs zs-ListB = lbcons btrue (lbcons bfalse (lbcons btrue lbnil)) ------------------------------------------------------------------------------ -- Polymorphic lists. data Plist (P : D → Set) : D → Set where lnil : Plist P [] lcons : ∀ {x xs} → P x → Plist P xs → Plist P (x ∷ xs) -- "Heterogeneous" total lists List₁ : D → Set List₁ = Plist (λ d → d ≡ d) xs-List₁ : List₁ xs xs-List₁ = lcons refl (lcons refl (lcons refl (lcons refl lnil))) -- Total lists of total natural numbers ListN₁ : D → Set ListN₁ = Plist N ys-ListN₁ : ListN₁ ys ys-ListN₁ = lcons nzero (lcons (nsucc nzero) (lcons (nsucc (nsucc nzero)) lnil)) -- Total lists of total Booleans ListB₁ : D → Set ListB₁ = Plist Bool zs-ListB₁ : ListB₁ zs zs-ListB₁ = lcons btrue (lcons bfalse (lcons btrue lnil))
28.520548
80
0.534582
3d3369edfd6b96bd62c1798a3b9a4f7acf497ebb
321
agda
Agda
notes/agda-interface/OptionPragma.agda
asr/apia
a66c5ddca2ab470539fd68c42c4fbd45f720d682
[ "MIT" ]
10
2015-09-03T20:54:16.000Z
2019-12-03T13:44:25.000Z
notes/agda-interface/OptionPragma.agda
asr/apia
a66c5ddca2ab470539fd68c42c4fbd45f720d682
[ "MIT" ]
121
2015-01-25T13:22:12.000Z
2018-04-22T06:01:44.000Z
notes/agda-interface/OptionPragma.agda
asr/apia
a66c5ddca2ab470539fd68c42c4fbd45f720d682
[ "MIT" ]
4
2016-05-10T23:06:19.000Z
2016-08-03T03:54:55.000Z
{-# OPTIONS --no-termination-check #-} -- Testing how the pragmas are saved in the agda interface files (using -- the program dump-agdai). -- 13 July 2012. Because for example the --no-termination-check is a -- PragmaOption it is saved as: -- -- iPragmaOptions = [["--no-termination-check"]] module OptionPragma where
26.75
71
0.713396
c58e8de704e9b49a95e8de304577807f8def9918
2,064
agda
Agda
examples/Sized/CounterCell.agda
agda/ooAgda
7cc45e0148a4a508d20ed67e791544c30fecd795
[ "MIT" ]
23
2016-06-19T12:57:55.000Z
2020-10-12T23:15:25.000Z
examples/Sized/CounterCell.agda
agda/ooAgda
7cc45e0148a4a508d20ed67e791544c30fecd795
[ "MIT" ]
null
null
null
examples/Sized/CounterCell.agda
agda/ooAgda
7cc45e0148a4a508d20ed67e791544c30fecd795
[ "MIT" ]
2
2018-09-01T15:02:37.000Z
2022-03-12T11:41:00.000Z
module Sized.CounterCell where open import Data.Product open import Data.Nat.Base open import Data.Nat.Show open import Data.String.Base using (String; _++_) open import SizedIO.Object open import SizedIO.IOObject open import SizedIO.Base open import SizedIO.Console hiding (main) open import SizedIO.ConsoleObject open import NativeIO open import Sized.SimpleCell hiding (program; main) open import Size data CounterMethod A : Set where super : (m : CellMethod A) → CounterMethod A stats : CounterMethod A pattern getᶜ = super get pattern putᶜ x = super (put x) -- CounterResult : ∀{A} → counterI : (A : Set) → Interface Method (counterI A) = CounterMethod A Result (counterI A) (super m) = Result (cellJ A) m Result (counterI A) stats = Unit CounterC : (i : Size) → Set CounterC i = ConsoleObject i (counterI String) -- counterP is constructor for the consoleObject for interface counterI counterP : ∀{i} (c : CellC i) (ngets nputs : ℕ) → CounterC i method (counterP c ngets nputs) getᶜ = method c get >>= λ { (s , c') → return (s , counterP c' (1 + ngets) nputs) } method (counterP c ngets nputs) (putᶜ x) = method c (put x) >>= λ { (_ , c') → return (_ , counterP c' ngets (1 + nputs)) } method (counterP c ngets nputs) stats = exec (putStrLn ("Counted " ++ show ngets ++ " calls to get and " ++ show nputs ++ " calls to put.")) λ _ → return (_ , counterP c ngets nputs) program : String → IOConsole ∞ Unit program arg = let c₀ = counterP (cellP "Start") 0 0 in method c₀ getᶜ >>= λ{ (s , c₁) → exec1 (putStrLn s) >> method c₁ (putᶜ arg) >>= λ{ (_ , c₂) → method c₂ getᶜ >>= λ{ (s' , c₃) → exec1 (putStrLn s') >> method c₃ (putᶜ "Over!") >>= λ{ (_ , c₄) → method c₄ stats >>= λ{ (_ , c₅) → return _ }}}}} main : NativeIO Unit main = translateIOConsole (program "Hello") -- -} -- -} -- -} -- -} -- -} -- -} -- -}
27.157895
71
0.588663
068d53d8dc10e05ab2125b8d79c589208f6bc5d0
6,145
agda
Agda
src/Categories/Category/Construction/Adjoints.agda
yourboynico/agda-categories
6a087c592dbe58fc4bd9d02e1be9b94a9e138aca
[ "MIT" ]
279
2019-06-01T14:36:40.000Z
2022-03-22T00:40:14.000Z
src/Categories/Category/Construction/Adjoints.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
236
2019-06-01T14:53:54.000Z
2022-03-28T14:31:43.000Z
src/Categories/Category/Construction/Adjoints.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
64
2019-06-02T16:58:15.000Z
2022-03-14T02:00:59.000Z
{-# OPTIONS --without-K --safe #-} module Categories.Category.Construction.Adjoints where open import Level open import Data.Product using (_×_ ; _,_) open import Categories.Category open import Categories.Category.Helper open import Categories.Adjoint open import Categories.Adjoint.Compose open import Categories.Adjoint.Mate open import Categories.Functor renaming (id to idF) open import Categories.NaturalTransformation renaming (id to idN) open import Categories.NaturalTransformation.NaturalIsomorphism open import Categories.NaturalTransformation.Equivalence renaming (_≃_ to _≊_) import Categories.Morphism.Reasoning as MR private variable o o′ ℓ ℓ′ e e′ : Level -- category of adjunctions between two fixed categories module _ (C : Category o ℓ e) (D : Category o′ ℓ′ e′) where private module C = Category C using (_∘_; ∘-resp-≈ˡ; ∘-resp-≈; sym-assoc; identityʳ; identityˡ; module Equiv; module HomReasoning) module D = Category D using (_∘_; ∘-resp-≈ʳ; ∘-resp-≈; assoc; identityˡ; identityʳ; module Equiv; module HomReasoning) record AdjointObj : Set (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′) where field L : Functor C D R : Functor D C L⊣R : L ⊣ R module L = Functor L module R = Functor R module L⊣R = Adjoint L⊣R using (module unit; module counit) record Adjoint⇒ (X Y : AdjointObj) : Set (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′) where field mate : HaveMate (AdjointObj.L⊣R X) (AdjointObj.L⊣R Y) open HaveMate mate using (α; β; commute₁; commute₂) public private _≈_ : ∀ {A B} → Adjoint⇒ A B → Adjoint⇒ A B → Set (o ⊔ e ⊔ o′ ⊔ e′) f ≈ g = Adjoint⇒.α f ≊ Adjoint⇒.α g × Adjoint⇒.β f ≊ Adjoint⇒.β g id : {X : AdjointObj} → Adjoint⇒ X X id {X} = record { mate = record { α = idN ; β = idN ; mate = record { commute₁ = C.∘-resp-≈ˡ R.identity ; commute₂ = D.∘-resp-≈ʳ L.identity } } } where open AdjointObj X using (L; R) _∘_ : ∀ {X Y Z} → Adjoint⇒ Y Z → Adjoint⇒ X Y → Adjoint⇒ X Z _∘_ {X} {Y} {Z} f g = record { mate = record { α = f.α ∘ᵥ g.α ; β = g.β ∘ᵥ f.β ; mate = record { commute₁ = λ {W} → let open C.HomReasoning open MR C using (pullʳ; pullˡ) in begin X.R.F₁ (f.α.η W D.∘ g.α.η W) C.∘ X.L⊣R.unit.η W ≈⟨ X.R.homomorphism ⟩∘⟨refl ⟩ (X.R.F₁ (f.α.η W) C.∘ X.R.F₁ (g.α.η W)) C.∘ X.L⊣R.unit.η W ≈⟨ pullʳ g.commute₁ ⟩ X.R.F₁ (f.α.η W) C.∘ g.β.η (Y.L.F₀ W) C.∘ Y.L⊣R.unit.η W ≈⟨ pullˡ (g.β.sym-commute _) ⟩ (g.β.η (Z.L.F₀ W) C.∘ Y.R.F₁ (f.α.η W)) C.∘ Y.L⊣R.unit.η W ≈⟨ pullʳ f.commute₁ ⟩ g.β.η (Z.L.F₀ W) C.∘ f.β.η (Z.L.F₀ W) C.∘ Z.L⊣R.unit.η W ≈⟨ C.sym-assoc ⟩ (g.β.η (Z.L.F₀ W) C.∘ f.β.η (Z.L.F₀ W)) C.∘ Z.L⊣R.unit.η W ∎ ; commute₂ = λ {W} → let open D.HomReasoning open MR D using (pullʳ; pullˡ) in begin X.L⊣R.counit.η W D.∘ X.L.F₁ (g.β.η W C.∘ f.β.η W) ≈⟨ refl⟩∘⟨ X.L.homomorphism ⟩ X.L⊣R.counit.η W D.∘ X.L.F₁ (g.β.η W) D.∘ X.L.F₁ (f.β.η W) ≈⟨ pullˡ g.commute₂ ⟩ (Y.L⊣R.counit.η W D.∘ g.α.η (Y.R.F₀ W)) D.∘ X.L.F₁ (f.β.η W) ≈⟨ pullʳ (g.α.commute _) ⟩ Y.L⊣R.counit.η W D.∘ Y.L.F₁ (f.β.η W) D.∘ g.α.η (Z.R.F₀ W) ≈⟨ pullˡ f.commute₂ ⟩ (Z.L⊣R.counit.η W D.∘ f.α.η (Z.R.F₀ W)) D.∘ g.α.η (Z.R.F₀ W) ≈⟨ D.assoc ⟩ Z.L⊣R.counit.η W D.∘ f.α.η (Z.R.F₀ W) D.∘ g.α.η (Z.R.F₀ W) ∎ } } } where module X = AdjointObj X using (module L⊣R; module R; module L) module Y = AdjointObj Y using (module L⊣R; module R; module L) module Z = AdjointObj Z using (module L⊣R; module R; module L) module f = Adjoint⇒ f using (α; β; commute₁; commute₂) module g = Adjoint⇒ g using (α; β; commute₁; commute₂) Adjoints : Category (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′) (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′) (o ⊔ e ⊔ o′ ⊔ e′) Adjoints = categoryHelper record { Obj = AdjointObj ; _⇒_ = Adjoint⇒ ; _≈_ = _≈_ ; id = id ; _∘_ = _∘_ ; assoc = D.assoc , C.sym-assoc ; identityˡ = D.identityˡ , C.identityʳ ; identityʳ = D.identityʳ , C.identityˡ ; equiv = record { refl = D.Equiv.refl , C.Equiv.refl ; sym = λ { (eq₁ , eq₂) → D.Equiv.sym eq₁ , C.Equiv.sym eq₂ } ; trans = λ { (eq₁ , eq₂) (eq₃ , eq₄) → D.Equiv.trans eq₁ eq₃ , C.Equiv.trans eq₂ eq₄ } } ; ∘-resp-≈ = λ { (eq₁ , eq₂) (eq₃ , eq₄) → D.∘-resp-≈ eq₁ eq₃ , C.∘-resp-≈ eq₄ eq₂ } } module _ o ℓ e where private _≈_ : ∀ {A B : Category o ℓ e} → AdjointObj A B → AdjointObj A B → Set (o ⊔ ℓ ⊔ e) f ≈ g = f.L ≃ g.L × f.R ≃ g.R where module f = AdjointObj f using (L;R) module g = AdjointObj g using (L;R) id : {A : Category o ℓ e} → AdjointObj A A id = record { L = idF ; R = idF ; L⊣R = ⊣-id } _∘_ : {A B C : Category o ℓ e} → AdjointObj B C → AdjointObj A B → AdjointObj A C f ∘ g = record { L = f.L ∘F g.L ; R = g.R ∘F f.R ; L⊣R = g.L⊣R ∘⊣ f.L⊣R } where module f = AdjointObj f using (L; R; L⊣R) module g = AdjointObj g using (L; R; L⊣R) Adjunctions : Category (suc (o ⊔ ℓ ⊔ e)) (o ⊔ ℓ ⊔ e) (o ⊔ ℓ ⊔ e) Adjunctions = categoryHelper record { Obj = Category o ℓ e ; _⇒_ = AdjointObj ; _≈_ = _≈_ ; id = id ; _∘_ = _∘_ ; assoc = λ {_ _ _ _ f g h} → associator (AdjointObj.L f) (AdjointObj.L g) (AdjointObj.L h) , sym-associator (AdjointObj.R h) (AdjointObj.R g) (AdjointObj.R f) ; identityˡ = unitorˡ , unitorʳ ; identityʳ = unitorʳ , unitorˡ ; equiv = record { refl = ≃.refl , ≃.refl ; sym = λ { (α , β) → ≃.sym α , ≃.sym β } ; trans = λ { (α₁ , β₁) (α₂ , β₂) → ≃.trans α₁ α₂ , ≃.trans β₁ β₂ } } ; ∘-resp-≈ = λ { (α₁ , β₁) (α₂ , β₂) → α₁ ⓘₕ α₂ , β₂ ⓘₕ β₁ } }
38.892405
126
0.5131
59b1243121a3dca7dfdc2768a67b7f3e31cf758b
1,560
agda
Agda
src/Prelude/Functor.agda
t-more/agda-prelude
da4fca7744d317b8843f2bc80a923972f65548d3
[ "MIT" ]
111
2015-01-05T11:28:15.000Z
2022-02-12T23:29:26.000Z
src/Prelude/Functor.agda
t-more/agda-prelude
da4fca7744d317b8843f2bc80a923972f65548d3
[ "MIT" ]
59
2016-02-09T05:36:44.000Z
2022-01-14T07:32:36.000Z
src/Prelude/Functor.agda
t-more/agda-prelude
da4fca7744d317b8843f2bc80a923972f65548d3
[ "MIT" ]
24
2015-03-12T18:03:45.000Z
2021-04-22T06:10:41.000Z
module Prelude.Functor where open import Agda.Primitive open import Prelude.Function open import Prelude.Equality record Functor {a b} (F : Set a → Set b) : Set (lsuc a ⊔ b) where infixl 4 _<$>_ _<$_ field fmap : ∀ {A B} → (A → B) → F A → F B _<$>_ = fmap _<$_ : ∀ {A B} → A → F B → F A x <$ m = fmap (const x) m open Functor {{...}} public {-# DISPLAY Functor.fmap _ = fmap #-} {-# DISPLAY Functor._<$>_ _ = _<$>_ #-} {-# DISPLAY Functor._<$_ _ = _<$_ #-} -- Level polymorphic functors record Functor′ {a b} (F : ∀ {a} → Set a → Set a) : Set (lsuc (a ⊔ b)) where infixl 4 _<$>′_ _<$′_ field fmap′ : {A : Set a} {B : Set b} → (A → B) → F A → F B _<$>′_ = fmap′ _<$′_ : {A : Set a} {B : Set b} → B → F A → F B x <$′ m = fmap′ (const x) m open Functor′ {{...}} public infixr 0 flip-fmap syntax flip-fmap a (λ x → y) = for x ← a return y flip-fmap : ∀ {a b} {F : Set a → Set b} {{_ : Functor F}} {A B} → F A → (A → B) → F B flip-fmap x f = fmap f x infixr 0 caseF_of_ caseF_of_ : ∀ {a b} {F : Set a → Set b} {{_ : Functor F}} {A B} → F A → (A → B) → F B caseF_of_ x f = fmap f x for = caseF_of_ {-# INLINE for #-} {-# INLINE caseF_of_ #-} -- Congruence for _<$>_ -- infixl 4 _=$=_ _=$=′_ _=$=_ : ∀ {a b} {A B : Set a} {F : Set a → Set b} {{_ : Functor F}} {x y : F A} (f : A → B) → x ≡ y → (f <$> x) ≡ (f <$> y) f =$= refl = refl _=$=′_ : ∀ {a b} {A : Set a} {B : Set b} {F : ∀ {a} → Set a → Set a} {{_ : Functor′ F}} {x y : F A} (f : A → B) → x ≡ y → (f <$>′ x) ≡ (f <$>′ y) f =$=′ refl = refl
26.440678
99
0.484615
29e3a8eb9c0e9d19b155ff219991289ce6919bb4
2,516
agda
Agda
Cubical/Categories/Instances/CommAlgebras.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
1
2022-03-05T00:29:41.000Z
2022-03-05T00:29:41.000Z
Cubical/Categories/Instances/CommAlgebras.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
Cubical/Categories/Instances/CommAlgebras.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
{-# OPTIONS --safe #-} module Cubical.Categories.Instances.CommAlgebras where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Powerset open import Cubical.Algebra.CommRing open import Cubical.Algebra.Algebra open import Cubical.Algebra.CommAlgebra open import Cubical.Categories.Category open import Cubical.Categories.Functor.Base open import Cubical.HITs.PropositionalTruncation open Category open CommAlgebraHoms private variable ℓ ℓ' ℓ'' : Level module _ (R : CommRing ℓ) where CommAlgebrasCategory : Category (ℓ-suc (ℓ-max ℓ ℓ')) (ℓ-max ℓ ℓ') ob CommAlgebrasCategory = CommAlgebra R _ Hom[_,_] CommAlgebrasCategory = CommAlgebraHom id CommAlgebrasCategory {A} = idCommAlgebraHom A _⋆_ CommAlgebrasCategory {A} {B} {C} = compCommAlgebraHom A B C ⋆IdL CommAlgebrasCategory {A} {B} = compIdCommAlgebraHom {A = A} {B} ⋆IdR CommAlgebrasCategory {A} {B} = idCompCommAlgebraHom {A = A} {B} ⋆Assoc CommAlgebrasCategory {A} {B} {C} {D} = compAssocCommAlgebraHom {A = A} {B} {C} {D} isSetHom CommAlgebrasCategory = isSetAlgebraHom _ _ module PreSheafFromUniversalProp (C : Category ℓ ℓ') (P : ob C → Type ℓ) {R : CommRing ℓ''} (𝓕 : Σ (ob C) P → CommAlgebra R ℓ'') (uniqueHom : ∀ x y → C [ fst x , fst y ] → isContr (CommAlgebraHom (𝓕 y) (𝓕 x))) where private ∥P∥ : ℙ (ob C) ∥P∥ x = ∥ P x ∥ , isPropPropTrunc ΣC∥P∥Cat = ΣPropCat C ∥P∥ 𝓕UniqueEquiv : (x : ob C) (p q : P x) → isContr (CommAlgebraEquiv (𝓕 (x , p)) (𝓕 (x , q))) 𝓕UniqueEquiv x = contrCommAlgebraHom→contrCommAlgebraEquiv (curry 𝓕 x) λ p q → uniqueHom _ _ (id C) theMap : (x : ob C) → ∥ P x ∥ → CommAlgebra R ℓ'' theMap x = recPT→CommAlgebra (curry 𝓕 x) (λ p q → 𝓕UniqueEquiv x p q .fst) λ p q r → 𝓕UniqueEquiv x p r .snd _ theAction : (x y : ob C) → C [ x , y ] → (p : ∥ P x ∥) (q : ∥ P y ∥) → isContr (CommAlgebraHom (theMap y q) (theMap x p)) theAction _ _ f = elim2 (λ _ _ → isPropIsContr) λ _ _ → uniqueHom _ _ f open Functor universalPShf : Functor (ΣC∥P∥Cat ^op) (CommAlgebrasCategory {ℓ = ℓ''} R {ℓ' = ℓ''}) F-ob universalPShf = uncurry theMap F-hom universalPShf {x = x} {y = y} f = theAction _ _ f (y .snd) (x. snd) .fst F-id universalPShf {x = x} = theAction (x .fst) (x .fst) (id C) (x .snd) (x .snd) .snd _ F-seq universalPShf {x = x} {z = z} f g = theAction _ _ (g ⋆⟨ C ⟩ f) (z .snd) (x .snd) .snd _
39.936508
100
0.638712
29afc43a8ff6e4af733d97802c820d7782ad76e4
1,274
agda
Agda
test/interaction/Issue1138.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/interaction/Issue1138.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/interaction/Issue1138.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2014-05-21, reported and test case by Fabien Renaud module Issue1138 where open import Common.Equality postulate Var : Set Varset : Set _∖_ : Varset -> Var -> Varset _⊆_ : Varset -> Varset -> Set data Expression : Set where abs : Var -> Expression -> Expression FV : Expression -> Varset FV (abs x M) = FV M ∖ x data Env (A : Set) : Set where <> : Env A _,_:=_ : Env A -> Var -> A -> Env A postulate dom : ∀ {A} -> Env A -> Varset extend-dom : ∀ {A : Set} {a : A} {x xs ρ} -> (xs ∖ x) ⊆ dom ρ -> xs ⊆ dom (ρ , x := a) record Model (D : Set) : Set where field eval : (e : Expression) (ρ : Env D) -> FV e ⊆ dom ρ -> D d : D law : ∀ {M N ρ ν x y} -> eval M (ρ , x := d) (extend-dom {!!}) ≡ eval N (ν , y := d) (extend-dom {!!}) -> eval (abs x M) ρ {!!} ≡ eval (abs y N) ν {!!} -- Expected: For holes numbered 0,1,2,3 above and four goals below: -- ?0 : (FV M ∖ x) ⊆ dom ρ -- ?1 : (FV N ∖ y) ⊆ dom ν -- ?2 : FV (abs x M) ⊆ dom ρ -- ?3 : FV (abs y N) ⊆ dom ν -- There was a problem that two interaction points were created -- per ? in record fields, thus, they were off in emacs. -- (Introduced by fix for issue 1083).
26
68
0.511774
414d931715b84d1150a8a189edb0822dbc47f43a
2,396
agda
Agda
src/Categories/Morphism/Properties.agda
yourboynico/agda-categories
6a087c592dbe58fc4bd9d02e1be9b94a9e138aca
[ "MIT" ]
279
2019-06-01T14:36:40.000Z
2022-03-22T00:40:14.000Z
src/Categories/Morphism/Properties.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
236
2019-06-01T14:53:54.000Z
2022-03-28T14:31:43.000Z
src/Categories/Morphism/Properties.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
64
2019-06-02T16:58:15.000Z
2022-03-14T02:00:59.000Z
{-# OPTIONS --without-K --safe #-} open import Categories.Category module Categories.Morphism.Properties {o ℓ e} (𝒞 : Category o ℓ e) where open import Data.Product using (_,_; _×_) open Category 𝒞 open Definitions 𝒞 open HomReasoning import Categories.Morphism as M open M 𝒞 open import Categories.Morphism.Reasoning 𝒞 private variable A B C D : Obj f g h i : A ⇒ B module _ (iso : Iso f g) where open Iso iso Iso-resp-≈ : f ≈ h → g ≈ i → Iso h i Iso-resp-≈ {h = h} {i = i} eq₁ eq₂ = record { isoˡ = begin i ∘ h ≈˘⟨ eq₂ ⟩∘⟨ eq₁ ⟩ g ∘ f ≈⟨ isoˡ ⟩ id ∎ ; isoʳ = begin h ∘ i ≈˘⟨ eq₁ ⟩∘⟨ eq₂ ⟩ f ∘ g ≈⟨ isoʳ ⟩ id ∎ } Iso-swap : Iso g f Iso-swap = record { isoˡ = isoʳ ; isoʳ = isoˡ } Iso⇒Mono : Mono f Iso⇒Mono h i eq = begin h ≈⟨ introˡ isoˡ ⟩ (g ∘ f) ∘ h ≈⟨ pullʳ eq ⟩ g ∘ f ∘ i ≈⟨ cancelˡ isoˡ ⟩ i ∎ Iso⇒Epi : Epi f Iso⇒Epi h i eq = begin h ≈⟨ introʳ isoʳ ⟩ h ∘ f ∘ g ≈⟨ pullˡ eq ⟩ (i ∘ f) ∘ g ≈⟨ cancelʳ isoʳ ⟩ i ∎ Iso-∘ : Iso f g → Iso h i → Iso (h ∘ f) (g ∘ i) Iso-∘ {f = f} {g = g} {h = h} {i = i} iso iso′ = record { isoˡ = begin (g ∘ i) ∘ h ∘ f ≈⟨ cancelInner (isoˡ iso′) ⟩ g ∘ f ≈⟨ isoˡ iso ⟩ id ∎ ; isoʳ = begin (h ∘ f) ∘ g ∘ i ≈⟨ cancelInner (isoʳ iso) ⟩ h ∘ i ≈⟨ isoʳ iso′ ⟩ id ∎ } where open Iso Iso-≈ : f ≈ h → Iso f g → Iso h i → g ≈ i Iso-≈ {f = f} {h = h} {g = g} {i = i} eq iso iso′ = begin g ≈⟨ introˡ (isoˡ iso′) ⟩ (i ∘ h) ∘ g ≈˘⟨ (refl⟩∘⟨ eq) ⟩∘⟨refl ⟩ (i ∘ f) ∘ g ≈⟨ cancelʳ (isoʳ iso) ⟩ i ∎ where open Iso module _ where open _≅_ isos×≈⇒≈ : ∀ {f g : A ⇒ B} → h ≈ i → (iso₁ : A ≅ C) → (iso₂ : B ≅ D) → CommutativeSquare f (from iso₁) (from iso₂) h → CommutativeSquare g (from iso₁) (from iso₂) i → f ≈ g isos×≈⇒≈ {h = h} {i = i} {f = f} {g = g} eq iso₁ iso₂ sq₁ sq₂ = begin f ≈⟨ switch-fromtoˡ iso₂ sq₁ ⟩ to iso₂ ∘ h ∘ from iso₁ ≈⟨ refl⟩∘⟨ (eq ⟩∘⟨refl ) ⟩ to iso₂ ∘ i ∘ from iso₁ ≈˘⟨ switch-fromtoˡ iso₂ sq₂ ⟩ g ∎ -- This might be trivial, but it also shouldn't be proved more than once! Mono-id : Mono {A = A} id Mono-id g₁ g₂ eq = begin g₁ ≈˘⟨ identityˡ ⟩ id ∘ g₁ ≈⟨ eq ⟩ id ∘ g₂ ≈⟨ identityˡ ⟩ g₂ ∎
24.44898
73
0.476628
313b0ff2f91a8d2b56ed9d4907615576452f1165
121
agda
Agda
prototyping/Properties/Functions.agda
JohnnyMorganz/luau
f2191b9e4da6a4bb2d9d344ebd7941ec2f00844b
[ "MIT" ]
1
2021-12-05T21:53:03.000Z
2021-12-05T21:53:03.000Z
prototyping/Properties/Functions.agda
JohnnyMorganz/luau
f2191b9e4da6a4bb2d9d344ebd7941ec2f00844b
[ "MIT" ]
null
null
null
prototyping/Properties/Functions.agda
JohnnyMorganz/luau
f2191b9e4da6a4bb2d9d344ebd7941ec2f00844b
[ "MIT" ]
null
null
null
module Properties.Functions where infixr 5 _∘_ _∘_ : ∀ {A B C : Set} → (B → C) → (A → B) → (A → C) (f ∘ g) x = f (g x)
17.285714
51
0.487603
4aafcf4749a34ebb46473069bd29f34af434055d
30,869
agda
Agda
agda/FsubMinus.agda
HuStmpHrrr/popl20-artifact
48214a55ebb484fd06307df4320813d4a002535b
[ "MIT" ]
1
2021-09-23T08:40:28.000Z
2021-09-23T08:40:28.000Z
agda/FsubMinus.agda
HuStmpHrrr/popl20-artifact
48214a55ebb484fd06307df4320813d4a002535b
[ "MIT" ]
null
null
null
agda/FsubMinus.agda
HuStmpHrrr/popl20-artifact
48214a55ebb484fd06307df4320813d4a002535b
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} -- In this module, we define F<:⁻, F<:ᵈ (F<: deterministic defined in Pierce92) and -- show that F<:⁻ subtyping is undecidable. module FsubMinus where open import Data.List as List open import Data.Nat open import Data.Maybe as Maybe open import Data.Product open import Data.Vec as Vec renaming (_∷_ to _‼_ ; [] to nil) hiding (_++_) open import Function open import Data.Empty renaming (⊥ to False) open import Relation.Nullary open import Relation.Unary using () renaming (Decidable to UDecidable) open import Relation.Binary using () renaming (Decidable to BDecidable) open import Relation.Binary.PropositionalEquality as ≡ open import Data.Nat.Properties as ℕₚ open import Data.Maybe.Properties as Maybeₚ open import Utils -- Definition of F<:⁻ -- -- F<:⁻ is defined by removing function types (_⟶_ in the paper) from F<:. module FsubMinus where infix 6 var_ infixr 6 Π<:_∙_ -- Types -- -- * ⊤ is a supertype of all types. -- * (var n) represents a type variable. -- * (Π<: S ∙ U) represent a universal type (∀ X <: S . U). data Ftyp : Set where ⊤ : Ftyp var_ : ℕ → Ftyp Π<:_∙_ : Ftyp → Ftyp → Ftyp -- typing context Env : Set Env = List Ftyp -- shifting operation of de Bruijn indices infixl 7 _↑_ _↑_ : Ftyp → ℕ → Ftyp ⊤ ↑ n = ⊤ (var x) ↑ n with n ≤? x ... | yes p = var (suc x) ... | no ¬p = var x (Π<: S ∙ U) ↑ n = Π<: S ↑ n ∙ U ↑ suc n infix 4 _<:_∈_ data _<:_∈_ : ℕ → Ftyp → Env → Set where hd : ∀ {T Γ} → 0 <: T ↑ 0 ∈ T ∷ Γ tl : ∀ {n T T′ Γ} → n <: T ∈ Γ → suc n <: T ↑ 0 ∈ T′ ∷ Γ -- subtyping judgment of F<:⁻ -- The statement of the rules should be self-explanatory. infix 4 _⊢F_<:_ data _⊢F_<:_ : Env → Ftyp → Ftyp → Set where ftop : ∀ {Γ T} → Γ ⊢F T <: ⊤ fvrefl : ∀ {Γ n} → Γ ⊢F var n <: var n fbinds : ∀ {Γ n T U} → n <: T ∈ Γ → Γ ⊢F T <: U → Γ ⊢F var n <: U fall : ∀ {Γ S₁ S₂ U₁ U₂} → Γ ⊢F S₂ <: S₁ → Γ ‣ S₂ ! ⊢F U₁ <: U₂ → Γ ⊢F Π<: S₁ ∙ U₁ <: Π<: S₂ ∙ U₂ -- The remaining are some technical setup. env-lookup : Env → ℕ → Maybe Ftyp env-lookup [] n = nothing env-lookup (T ∷ Γ) zero = just $ T ↑ 0 env-lookup (T ∷ Γ) (suc n) = Maybe.map (_↑ 0) $ env-lookup Γ n lookup⇒<:∈ : ∀ {Γ n T} → env-lookup Γ n ≡ just T → n <: T ∈ Γ lookup⇒<:∈ {[]} {n} () lookup⇒<:∈ {T ∷ Γ} {zero} refl = hd lookup⇒<:∈ {T ∷ Γ} {suc n} eq with env-lookup Γ n | lookup⇒<:∈ {Γ} {n} ... | nothing | rec with eq ... | () lookup⇒<:∈ {T ∷ Γ} {suc n} refl | just T′ | rec = tl (rec refl) <:∈⇒lookup : ∀ {Γ n T} → n <: T ∈ Γ → env-lookup Γ n ≡ just T <:∈⇒lookup hd = refl <:∈⇒lookup (tl <:∈) rewrite <:∈⇒lookup <:∈ = refl env-lookup′ : Env → ℕ → Maybe Ftyp env-lookup′ Γ n = Maybe.map (repeat (suc n) (_↑ 0)) (lookupOpt Γ n) env-lookup-same : ∀ Γ n → env-lookup Γ n ≡ env-lookup′ Γ n env-lookup-same [] n = refl env-lookup-same (T ∷ Γ) zero = refl env-lookup-same (T ∷ Γ) (suc n) rewrite env-lookup-same Γ n = sym $ Maybeₚ.map-compose (lookupOpt Γ n) <:∈-map : ∀ {a} {A : Set a} {n T} {f : A → Ftyp} {_↑′_ : A → ℕ → A} Γ → (∀ a n → f a ↑ n ≡ f (a ↑′ n)) → n <: T ∈ List.map f Γ → ∃ λ a → T ≡ f a <:∈-map {f = f} Γ comm d = aux _ d refl where aux : ∀ {n T Γ*} Γ → n <: T ∈ Γ* → Γ* ≡ List.map f Γ → ∃ λ a → T ≡ f a aux [] hd () aux (T ∷ Γ) hd refl = -, comm _ _ aux [] (tl <:∈) () aux (T ∷ Γ) (tl <:∈) refl with aux Γ <:∈ refl ... | a , refl = -, comm _ _ <:∈-func : ∀ {x T T′ Γ} → x <: T ∈ Γ → x <: T′ ∈ Γ → T ≡ T′ <:∈-func hd hd = refl <:∈-func (tl T∈Γ) (tl T′∈Γ) = cong (_↑ 0) (<:∈-func T∈Γ T′∈Γ) Ftyp-measure : Ftyp → ℕ Ftyp-measure ⊤ = 1 Ftyp-measure (var x) = 1 Ftyp-measure (Π<: S ∙ U) = Ftyp-measure S + Ftyp-measure U Ftyp-measure≥1 : ∀ T → Ftyp-measure T ≥ 1 Ftyp-measure≥1 ⊤ = s≤s z≤n Ftyp-measure≥1 (var _) = s≤s z≤n Ftyp-measure≥1 (Π<: S ∙ U) = ≤-trans (Ftyp-measure≥1 S) (≤-stepsʳ _ ≤-refl) ↑-idx : ℕ → ℕ → ℕ ↑-idx x n with n ≤? x ... | yes p = suc x ... | no ¬p = x ↑-var : ∀ x n → (var x) ↑ n ≡ var (↑-idx x n) ↑-var x n with n ≤? x ... | yes p = refl ... | no ¬p = refl Ftyp-measure-↑ : ∀ T m → Ftyp-measure (T ↑ m) ≡ Ftyp-measure T Ftyp-measure-↑ ⊤ m = refl Ftyp-measure-↑ (var x) m rewrite ↑-var x m = refl Ftyp-measure-↑ (Π<: S ∙ U) m rewrite Ftyp-measure-↑ S m | Ftyp-measure-↑ U (suc m) = refl F-measure : ∀ {Γ S U} → Γ ⊢F S <: U → ℕ F-measure ftop = 1 F-measure fvrefl = 1 F-measure (fbinds _ D) = 1 + F-measure D F-measure (fall D₁ D₂) = 1 + F-measure D₁ + F-measure D₂ F-deriv = Σ (Env × Ftyp × Ftyp) λ { (Γ , S , U) → Γ ⊢F S <: U } env : F-deriv → Env env ((Γ , _) , _) = Γ typ₁ : F-deriv → Ftyp typ₁ ((_ , S , U) , _) = S typ₂ : F-deriv → Ftyp typ₂ ((_ , S , U) , _) = U F-measure-packed : F-deriv → ℕ F-measure-packed (_ , D) = F-measure D ≡⊤-dec : UDecidable (_≡ ⊤) ≡⊤-dec ⊤ = yes refl ≡⊤-dec (var _) = no (λ ()) ≡⊤-dec (Π<: _ ∙ _) = no (λ ()) Π<:-injective : ∀ {S U S′ U′} → Π<: S ∙ U ≡ Π<: S′ ∙ U′ → S ≡ S′ × U ≡ U′ Π<:-injective refl = refl , refl Ftyp-≡-dec : BDecidable (_≡_ {A = Ftyp}) Ftyp-≡-dec ⊤ ⊤ = yes refl Ftyp-≡-dec ⊤ (var _) = no (λ ()) Ftyp-≡-dec ⊤ (Π<: _ ∙ _) = no (λ ()) Ftyp-≡-dec (var _) ⊤ = no (λ ()) Ftyp-≡-dec (var x) (var y) with x ≟ y ... | yes x≡y = yes (cong var_ x≡y) ... | no x≢y = no (λ { refl → x≢y refl }) Ftyp-≡-dec (var _) (Π<: _ ∙ _) = no (λ ()) Ftyp-≡-dec (Π<: _ ∙ _) ⊤ = no (λ ()) Ftyp-≡-dec (Π<: _ ∙ _) (var _) = no (λ ()) Ftyp-≡-dec (Π<: S ∙ U) (Π<: S′ ∙ U′) with Ftyp-≡-dec S S′ | Ftyp-≡-dec U U′ ... | yes S≡S′ | yes U≡U′ = yes (cong₂ Π<:_∙_ S≡S′ U≡U′) ... | yes S≡S′ | no U≢U′ = no λ Π<:≡ → U≢U′ (proj₂ (Π<:-injective Π<:≡)) ... | no S≢S′ | yes U≡U′ = no (λ Π<:≡ → S≢S′ (proj₁ (Π<:-injective Π<:≡))) ... | no S≢S′ | no U≢U′ = no (λ Π<:≡ → S≢S′ (proj₁ (Π<:-injective Π<:≡))) -- Definition of F<: -- -- Here we also define full F<:. We do not use it anywhere. module Full where infix 6 var_ infixr 6 _⇒_ Π<:_∙_ -- Types -- -- * ⊤ is a supertype of all types. -- * (var n) represent a type variable. -- * (S ⇒ U) represents a function type (S ⟶ U). -- * (Π<: S ∙ U) represents a universal type (∀ X <: S . U). data Ftyp : Set where ⊤ : Ftyp var_ : ℕ → Ftyp _⇒_ : Ftyp → Ftyp → Ftyp Π<:_∙_ : Ftyp → Ftyp → Ftyp Env : Set Env = List Ftyp infixl 7 _↑_ _↑_ : Ftyp → ℕ → Ftyp ⊤ ↑ n = ⊤ (var x) ↑ n with n ≤? x ... | yes p = var (suc x) ... | no ¬p = var x (S ⇒ U) ↑ n = S ↑ n ⇒ U ↑ n (Π<: S ∙ U) ↑ n = Π<: S ↑ n ∙ U ↑ suc n infix 4 _<:_∈_ data _<:_∈_ : ℕ → Ftyp → Env → Set where hd : ∀ {T Γ} → 0 <: T ↑ 0 ∈ T ∷ Γ tl : ∀ {n T T′ Γ} → n <: T ∈ Γ → suc n <: T ↑ 0 ∈ T′ ∷ Γ infix 4 _⊢F_<:_ data _⊢F_<:_ : Env → Ftyp → Ftyp → Set where ftop : ∀ {Γ T} → Γ ⊢F T <: ⊤ fvrefl : ∀ {Γ n} → Γ ⊢F var n <: var n fbinds : ∀ {Γ n T U} → n <: T ∈ Γ → Γ ⊢F T <: U → Γ ⊢F var n <: U ffun : ∀ {Γ S₁ S₂ U₁ U₂} → Γ ⊢F S₂ <: S₁ → Γ ⊢F U₁ <: U₂ → Γ ⊢F S₁ ⇒ U₁ <: S₂ ⇒ U₂ fall : ∀ {Γ S₁ S₂ U₁ U₂} → Γ ⊢F S₂ <: S₁ → S₂ ∷ Γ ⊢F U₁ <: U₂ → Γ ⊢F Π<: S₁ ∙ U₁ <: Π<: S₂ ∙ U₂ env-lookup : Env → ℕ → Maybe Ftyp env-lookup [] n = nothing env-lookup (T ∷ Γ) zero = just $ T ↑ 0 env-lookup (T ∷ Γ) (suc n) = Maybe.map (_↑ 0) $ env-lookup Γ n lookup⇒<:∈ : ∀ {Γ n T} → env-lookup Γ n ≡ just T → n <: T ∈ Γ lookup⇒<:∈ {[]} {n} () lookup⇒<:∈ {T ∷ Γ} {zero} refl = hd lookup⇒<:∈ {T ∷ Γ} {suc n} eq with env-lookup Γ n | lookup⇒<:∈ {Γ} {n} ... | nothing | rec with eq ... | () lookup⇒<:∈ {T ∷ Γ} {suc n} refl | just T′ | rec = tl (rec refl) <:∈⇒lookup : ∀ {Γ n T} → n <: T ∈ Γ → env-lookup Γ n ≡ just T <:∈⇒lookup hd = refl <:∈⇒lookup (tl <:∈) rewrite <:∈⇒lookup <:∈ = refl env-lookup′ : Env → ℕ → Maybe Ftyp env-lookup′ Γ n = Maybe.map (repeat (suc n) (_↑ 0)) (lookupOpt Γ n) env-lookup-same : ∀ Γ n → env-lookup Γ n ≡ env-lookup′ Γ n env-lookup-same [] n = refl env-lookup-same (T ∷ Γ) zero = refl env-lookup-same (T ∷ Γ) (suc n) rewrite env-lookup-same Γ n = sym $ Maybeₚ.map-compose (lookupOpt Γ n) open FsubMinus -- Undecidability of F<: -- -- Here we show a reduction proof from F<:⁻ to F<:. Assuming F<:⁻ subtyping being -- undecidable (which is about to be shown below), we formalize that F<: subtyping is -- undecidable. module FsubUndec where -- the interpretation function of types from F<:⁻ to F<: infixl 5 _* _* : Ftyp → Full.Ftyp ⊤ * = Full.⊤ var x * = Full.var x Π<: T₁ ∙ T₂ * = Full.Π<: T₁ * ∙ (T₂ *) *-↑-comm : ∀ (T : Ftyp) n → (T *) Full.↑ n ≡ (T ↑ n) * *-↑-comm ⊤ n = refl *-↑-comm (var x) n with n ≤? x ... | yes p = refl ... | no ¬p = refl *-↑-comm (Π<: S ∙ U) n rewrite *-↑-comm S n | *-↑-comm U (suc n) = refl repeat*-↑-comm : ∀ T n m → repeat n (Full._↑ m) (T *) ≡ (repeat n (_↑ m) T) * repeat*-↑-comm T zero m = refl repeat*-↑-comm T (suc n) m rewrite repeat*-↑-comm T n m = *-↑-comm (repeat n (_↑ m) T) m *-injective : ∀ {S U} → S * ≡ U * → S ≡ U *-injective {⊤} {⊤} refl = refl *-injective {⊤} {var x} () *-injective {⊤} {Π<: _ ∙ _} () *-injective {var x} {⊤} () *-injective {var x} {var .x} refl = refl *-injective {var _} {Π<: _ ∙ _} () *-injective {Π<: S ∙ S₁} {⊤} () *-injective {Π<: _ ∙ _} {var x} () *-injective {Π<: S ∙ S₁} {Π<: U ∙ U₁} eq with S * | U * | *-injective {S} {U} | S₁ * | U₁ * | *-injective {S₁} {U₁} ... | S* | U* | r | S₁* | U₁* | r₁ with eq ... | refl rewrite r refl | r₁ refl = refl Full<:∈⇒<:∈ : ∀ {Γ n T} → n Full.<: T * ∈ List.map _* Γ → n <: T ∈ Γ Full<:∈⇒<:∈ {Γ} {n} <:∈ with Full.<:∈⇒lookup <:∈ ... | eq rewrite Full.env-lookup-same (List.map _* Γ) n with lookupOpt (List.map _* Γ) n | lookupOpt-map-inv {f = _*} Γ {n} ... | just T | inv with inv refl ... | T′ , refl , lk with just-injective eq ... | eq′ rewrite repeat*-↑-comm T′ n 0 | *-↑-comm (repeat n (_↑ 0) T′) 0 with *-injective eq′ ... | refl = lookup⇒<:∈ (trans (env-lookup-same Γ n) aux) where aux : env-lookup′ Γ n ≡ just (repeat n (_↑ 0) T′ ↑ 0) aux rewrite lk = refl Full<:∈⇒<:∈ {Γ} {n} <:∈ | () | nothing | _ <:∈⇒Full<:∈ : ∀ {Γ n T} → n <: T ∈ Γ → n Full.<: T * ∈ List.map _* Γ <:∈⇒Full<:∈ (hd {T}) rewrite sym $ *-↑-comm T 0 = Full.hd <:∈⇒Full<:∈ (tl {T = T} <:∈) rewrite sym $ *-↑-comm T 0 = Full.tl (<:∈⇒Full<:∈ <:∈) full⇒minus-gen : ∀ {Γ* S* U*} → Γ* Full.⊢F S* <: U* → ∀ {Γ S U} → Γ* ≡ List.map _* Γ → S* ≡ (S *) → U* ≡ (U *) → Γ ⊢F S <: U full⇒minus-gen Full.ftop {Γ} {S} {⊤} eqΓ eqS refl = ftop full⇒minus-gen Full.ftop {Γ} {S} {var x} eqΓ eqS () full⇒minus-gen Full.ftop {Γ} {S} {Π<: U ∙ U₁} eqΓ eqS () full⇒minus-gen Full.fvrefl {Γ} {⊤} {⊤} eqΓ () eqU full⇒minus-gen Full.fvrefl {Γ} {var x} {⊤} eqΓ refl () full⇒minus-gen Full.fvrefl {Γ} {Π<: S ∙ S₁} {⊤} eqΓ () eqU full⇒minus-gen Full.fvrefl {Γ} {⊤} {var x} eqΓ () eqU full⇒minus-gen Full.fvrefl {Γ} {var x} {var .x} eqΓ refl refl = fvrefl full⇒minus-gen Full.fvrefl {Γ} {Π<: S ∙ S₁} {var x} eqΓ () eqU full⇒minus-gen Full.fvrefl {Γ} {⊤} {Π<: U ∙ U₁} eqΓ () eqU full⇒minus-gen Full.fvrefl {Γ} {var x} {Π<: U ∙ U₁} eqΓ refl () full⇒minus-gen Full.fvrefl {Γ} {Π<: S ∙ S₁} {Π<: U ∙ U₁} eqΓ () eqU full⇒minus-gen (Full.fbinds T∈Γ* Dfull) {Γ} {⊤} {U} eqΓ () eqU full⇒minus-gen (Full.fbinds {n = n} T∈Γ* Dfull) {Γ} {var x} {U} eqΓ refl eqU = aux where T′∈Γ : ∀ {Γ* T} → n Full.<: T ∈ Γ* → Γ* ≡ List.map _* Γ → ∃[ T′ ] (T ≡ T′ *) T′∈Γ <:∈ refl with Full.<:∈⇒lookup <:∈ ... | eq rewrite Full.env-lookup-same (List.map _* Γ) n with lookupOpt (List.map _* Γ) n | inspect (lookupOpt (List.map _* Γ)) n ... | just T | [ lk ] with lookupOpt-map-inv Γ lk | just-injective eq ... | T′ , refl , lkeq | eq′ rewrite repeat*-↑-comm T′ n 0 | *-↑-comm (repeat n (_↑ 0) T′) 0 = -, sym eq′ T′∈Γ <:∈ refl | () | nothing | _ aux : Γ ⊢F var n <: U aux with T′∈Γ T∈Γ* eqΓ ... | T′ , refl rewrite eqΓ = fbinds (Full<:∈⇒<:∈ T∈Γ*) (full⇒minus-gen Dfull refl refl eqU) full⇒minus-gen (Full.fbinds T∈Γ* Dfull) {Γ} {Π<: S ∙ S₁} {U} eqΓ () eqU full⇒minus-gen (Full.ffun _ _) {Γ} {⊤} {U} eqΓ () eqU full⇒minus-gen (Full.ffun _ _) {Γ} {var x₂} {U} eqΓ () eqU full⇒minus-gen (Full.ffun _ _) {Γ} {Π<: S ∙ S₁} {U} eqΓ () eqU full⇒minus-gen (Full.fall Dp Dbody) {Γ} {⊤} {⊤} eqΓ () eqU full⇒minus-gen (Full.fall Dp Dbody) {Γ} {⊤} {var x} eqΓ () eqU full⇒minus-gen (Full.fall Dp Dbody) {Γ} {⊤} {Π<: U ∙ U₁} eqΓ () eqU full⇒minus-gen (Full.fall Dp Dbody) {Γ} {var x} {⊤} eqΓ () eqU full⇒minus-gen (Full.fall Dp Dbody) {Γ} {var x} {var x₁} eqΓ () eqU full⇒minus-gen (Full.fall Dp Dbody) {Γ} {var x} {Π<: U ∙ U₁} eqΓ () eqU full⇒minus-gen (Full.fall Dp Dbody) {Γ} {Π<: S ∙ S₁} {⊤} eqΓ refl () full⇒minus-gen (Full.fall Dp Dbody) {Γ} {Π<: S ∙ S₁} {var x} eqΓ refl () full⇒minus-gen (Full.fall Dp Dbody) {Γ} {Π<: S₁ ∙ U₁} {Π<: S₂ ∙ U₂} eqΓ refl refl = fall (full⇒minus-gen Dp eqΓ refl refl) (full⇒minus-gen Dbody (aux eqΓ) refl refl) where aux : ∀ {Γ*} → Γ* ≡ List.map _* Γ → (S₂ *) ∷ Γ* ≡ (S₂ *) ∷ List.map _* Γ aux refl = refl -- The following two functions accomplish the reduction proof. full⇒minus : ∀ {Γ S U} → List.map _* Γ Full.⊢F S * <: U * → Γ ⊢F S <: U full⇒minus Dfull = full⇒minus-gen Dfull refl refl refl minus⇒full : ∀ {Γ S U} → Γ ⊢F S <: U → List.map _* Γ Full.⊢F S * <: U * minus⇒full ftop = Full.ftop minus⇒full fvrefl = Full.fvrefl minus⇒full {Γ} (fbinds T∈Γ Dminus) = Full.fbinds (<:∈⇒Full<:∈ T∈Γ) (minus⇒full Dminus) minus⇒full (fall Dp Db) = Full.fall (minus⇒full Dp) (minus⇒full Db) -- Definition of F<:ᵈ -- -- Definition of F<:ᵈ F<:ᵈ (F<: deterministic) is an intermediate construction in -- Pierce92 towards the undecidability proof of F<: subtyping. This intermediate -- construction is also shown undecidable and we directly use that result here. module DeterministicFsubSized where open import Induction.Nat import Relation.Binary.EqReasoning as Eq infix 6 var⁻_ infixr 6 Π⁺<:_∙¬_ Π⁻<:⊤∙¬_ -- Types -- -- Types in F<:ᵈ are divided into two parts and the two parts are mutually defined. -- The two parts are positive types [Ftyp⁺] and negative types [Ftyp⁻] and defined -- as follows. mutual -- Positive types -- * ⊤⁺ corresponds to ⊤ in F<:⁻. -- * (Π⁺<: Ts ∙¬ U) represents a universal type where all types involved are negative types (∀ X₁ <: T₁ ... ∀ Xₙ <: Tₙ . ∀ X <: U . X). data Ftyp⁺ (n : ℕ) : Set where ⊤⁺ : Ftyp⁺ n Π⁺<:_∙¬_ : Vec (Ftyp⁻ n) n → Ftyp⁻ n → Ftyp⁺ n -- Negative types -- * (var⁻ n) corresponds to a type variable in F<:⁻. -- * (Π⁻<:⊤∙¬_ T) represents a universal type where all parameter types are ⊤ and T is positive (∀ X₁ <: ⊤ ... ∀ Xₙ <: ⊤ . ∀ X <: T . X). data Ftyp⁻ (n : ℕ) : Set where var⁻_ : ℕ → Ftyp⁻ n Π⁻<:⊤∙¬_ : Ftyp⁺ n → Ftyp⁻ n -- shifting operation for both positive and negative types infixl 7 _↑⁺_ _↑⁺_ ⟦_↑⁻_⟧ mutual _↑⁺_ : ∀ {n} → Ftyp⁺ n → ℕ → Ftyp⁺ n ⊤⁺ ↑⁺ n = ⊤⁺ _↑⁺_ {m} (Π⁺<: S ∙¬ U) n = Π⁺<: ⟦ S ↑⁻ n ⟧ ∙¬ (U ↑⁻ (m + n)) _↑⁻_ : ∀ {n} → Ftyp⁻ n → ℕ → Ftyp⁻ n (var⁻ x) ↑⁻ n with n ≤? x ... | yes p = var⁻ (suc x) ... | no ¬p = var⁻ x _↑⁻_ {m} (Π⁻<:⊤∙¬ T) n = Π⁻<:⊤∙¬ (T ↑⁺ (m + n)) ⟦_↑⁻_⟧ : ∀ {n m} → Vec (Ftyp⁻ n) m → ℕ → Vec (Ftyp⁻ n) m ⟦ nil ↑⁻ n ⟧ = nil ⟦ T ‼ S ↑⁻ n ⟧ = T ↑⁻ n ‼ ⟦ S ↑⁻ suc n ⟧ -- In F<:ᵈ, typing contexts consist only of negative types. NEnv : ℕ → Set NEnv n = List (Ftyp⁻ n) nenv-lookup : ∀ {n} → NEnv n → ℕ → Maybe (Ftyp⁻ n) nenv-lookup Γ n = Maybe.map (repeat (suc n) (_↑⁻ 0)) (lookupOpt Γ n) -- subtyping judgment of F<:ᵈ -- -- For a fixed n, a subtyping judgment of F<:ᵈ is a ternary predicate, among a -- typing context (consisting of negative types), a negative type and a positive -- type. A subtyping judgment in F<:ᵈ asserts that a negative type is a subtype of -- a positive type in the given context. Notice that there is no subtyping relation -- between two negative types or two positive types. infix 4 [_]_⊢FD_<:_ data [_]_⊢FD_<:_ (n : ℕ) : NEnv n → Ftyp⁻ n → Ftyp⁺ n → Set where fdtop : ∀ {Γ T} → [ n ] Γ ⊢FD T <: ⊤⁺ fdvar : ∀ {Γ m T S U} → nenv-lookup Γ m ≡ just T → [ n ] Γ ⊢FD T <: Π⁺<: S ∙¬ U → [ n ] Γ ⊢FD var⁻ m <: Π⁺<: S ∙¬ U fdall : ∀ {Γ T S U} → [ n ] Vec.foldl (λ _ → _) (flip _∷_) Γ S ⊢FD U <: T → [ n ] Γ ⊢FD Π⁻<:⊤∙¬ T <: Π⁺<: S ∙¬ U infix 5 _*⁺ _*⁻ infix 6 Π⁻[_]∙_ Π⁺_∙_ -- the interpretation function of types from F<:ᵈ to F<:⁻ mutual _*⁺ : ∀ {n} → Ftyp⁺ n → Ftyp ⊤⁺ *⁺ = ⊤ Π⁺<: S ∙¬ U *⁺ = Π⁻[ S ]∙ U Π⁻[_]∙_ : ∀ {n m} → Vec (Ftyp⁻ n) m → Ftyp⁻ n → Ftyp Π⁻[ nil ]∙ U = Π<: U *⁻ ∙ var zero Π⁻[ S ‼ Ss ]∙ U = Π<: S *⁻ ∙ Π⁻[ Ss ]∙ U _*⁻ : ∀ {n} → Ftyp⁻ n → Ftyp var⁻ n *⁻ = var n _*⁻ {n} (Π⁻<:⊤∙¬ T) = Π⁺ n ∙ T Π⁺_∙_ : ∀ {n} → ℕ → Ftyp⁺ n → Ftyp Π⁺ zero ∙ T = Π<: T *⁺ ∙ var zero Π⁺ suc n ∙ T = Π<: ⊤ ∙ Π⁺ n ∙ T module _ where open Eq (setoid ℕ) mutual *-↑-comm⁺ : ∀ {m} (T : Ftyp⁺ m) n → (T *⁺) ↑ n ≡ (T ↑⁺ n) *⁺ *-↑-comm⁺ ⊤⁺ n = refl *-↑-comm⁺ (Π⁺<: S ∙¬ U) n = Π-↑-comm⁻ S U n Π-↑-comm⁻ : ∀ {i j} (S : Vec (Ftyp⁻ i) j) (U : Ftyp⁻ i) n → (Π⁻[ S ]∙ U) ↑ n ≡ Π⁻[ ⟦ S ↑⁻ n ⟧ ]∙ (U ↑⁻ (j + n)) Π-↑-comm⁻ nil U n rewrite *-↑-comm⁻ U n = refl Π-↑-comm⁻ {j = suc j} (T ‼ S) U n rewrite *-↑-comm⁻ T n | Π-↑-comm⁻ S U (suc n) | +-suc j n = refl *-↑-comm⁻ : ∀ {m} (T : Ftyp⁻ m) n → (T *⁻) ↑ n ≡ (T ↑⁻ n) *⁻ *-↑-comm⁻ (var⁻ x) n with n ≤? x ... | yes p = refl ... | no ¬p = refl *-↑-comm⁻ (Π⁻<:⊤∙¬ T) n = Π-↑-comm⁺ _ T n Π-↑-comm⁺ : ∀ {i} j (T : Ftyp⁺ i) n → (Π⁺ j ∙ T) ↑ n ≡ Π⁺ j ∙ (T ↑⁺ (j + n)) Π-↑-comm⁺ zero T n rewrite *-↑-comm⁺ T n = refl Π-↑-comm⁺ (suc j) T n rewrite Π-↑-comm⁺ j T (suc n) | +-suc j n = refl repeat*-↑-comm⁻ : ∀ {i} (T : Ftyp⁻ i) n m → repeat n (_↑ m) (T *⁻) ≡ (repeat n (_↑⁻ m) T) *⁻ repeat*-↑-comm⁻ T zero m = refl repeat*-↑-comm⁻ T (suc n) m rewrite repeat*-↑-comm⁻ T n m = *-↑-comm⁻ (repeat n (_↑⁻ m) T) m mutual *-injective⁺ : ∀ {n} {S U : Ftyp⁺ n} → S *⁺ ≡ U *⁺ → S ≡ U *-injective⁺ {n} {⊤⁺} {⊤⁺} eq = refl *-injective⁺ {.0} {⊤⁺} {Π⁺<: nil ∙¬ _} () *-injective⁺ {.(suc _)} {⊤⁺} {Π⁺<: _ ‼ _ ∙¬ _} () *-injective⁺ {n} {Π⁺<: S ∙¬ U} {⊤⁺} eq = ⊥-elim $ aux eq where aux : ∀ {n m} {S : Vec (Ftyp⁻ n) m} {U} → ¬ Π⁻[ S ]∙ U ≡ ⊤ aux {S = nil} () aux {S = _ ‼ S} () *-injective⁺ {n} {Π⁺<: S₁ ∙¬ U₁} {Π⁺<: S₂ ∙¬ U₂} eq with Π-injective⁻ eq ... | refl , refl = refl Π-injective⁻ : ∀ {n m} {S₁ S₂ : Vec (Ftyp⁻ n) m} {U₁ U₂ : Ftyp⁻ n} → Π⁻[ S₁ ]∙ U₁ ≡ Π⁻[ S₂ ]∙ U₂ → S₁ ≡ S₂ × U₁ ≡ U₂ Π-injective⁻ {S₁ = nil} {nil} {U₁} {U₂} eq with U₁ *⁻ | U₂ *⁻ | *-injective⁻ {S = U₁} {U₂} ... | U₁* | U₂* | rec with eq ... | refl = refl , rec refl Π-injective⁻ {S₁ = S ‼ S₁} {S′ ‼ S₂} {U₁} {U₂} eq with S *⁻ | S′ *⁻ | Π⁻[ S₁ ]∙ U₁ | Π⁻[ S₂ ]∙ U₂ | *-injective⁻ {S = S} {S′} | Π-injective⁻ {S₁ = S₁} {S₂} {U₁} {U₂} ... | S* | S′* | Π₁ | Π₂ | recS | rec with eq ... | refl with recS refl | rec refl ... | refl | refl , eqU = refl , eqU *-injective⁻ : ∀ {n} {S U : Ftyp⁻ n} → S *⁻ ≡ U *⁻ → S ≡ U *-injective⁻ {n} {var⁻ x} {var⁻ .x} refl = refl *-injective⁻ {zero} {var⁻ _} {Π⁻<:⊤∙¬ _} () *-injective⁻ {suc n} {var⁻ _} {Π⁻<:⊤∙¬ _} () *-injective⁻ {n} {Π⁻<:⊤∙¬ T} {var⁻ x} eq = ⊥-elim $ aux _ eq where aux : ∀ {n x} {T : Ftyp⁺ n} m → ¬ Π⁺ m ∙ T ≡ var x aux zero () aux (suc m) () *-injective⁻ {n} {Π⁻<:⊤∙¬ T₁} {Π⁻<:⊤∙¬ T₂} eq with Π-injective⁺ n eq ... | refl = refl Π-injective⁺ : ∀ {n} {T₁ T₂ : Ftyp⁺ n} m → Π⁺ m ∙ T₁ ≡ Π⁺ m ∙ T₂ → T₁ ≡ T₂ Π-injective⁺ {T₁ = T₁} {T₂} zero eq with T₁ *⁺ | T₂ *⁺ | *-injective⁺ {S = T₁} {T₂} ... | T₁* | T₂* | rec with eq ... | refl = rec refl Π-injective⁺ {T₁ = T₁} {T₂} (suc m) eq with Π⁺ m ∙ T₁ | Π⁺ m ∙ T₂ | Π-injective⁺ {T₁ = T₁} {T₂} m ... | Π₁ | Π₂ | rec with eq ... | refl = rec refl data Pi (P Q : Ftyp → Set) : ℕ → Ftyp → Set where pzero : ∀ {U} → Q U → Pi P Q zero (Π<: U ∙ var zero) psuc : ∀ {n S T} → P S → Pi P Q n T -> Pi P Q (suc n) (Π<: S ∙ T) -- two predicates that capture the images of the interpretation functions mutual -- Covar captures the image of the interpretation function from positive types to F<:. data Covar (n : ℕ) : Ftyp → Set where cvtop : Covar n ⊤ cvΠ : ∀ {T} → Pi (Contra n) (Contra n) n T → Covar n T -- Contra captures the image of the interpretation function from negative types to F<:. data Contra (n : ℕ) : Ftyp → Set where cnvar : ∀ m → Contra n (var m) cnΠ : ∀ {T} → Pi (⊤ ≡_) (Covar n) n T → Contra n T infix 5 ⟦_⟧⁺ ⟦_⟧⁻ -- the inverse functions of the interpretation functions mutual ⟦_⟧⁺ : ∀ {n T} → Covar n T → Ftyp⁺ n ⟦ cvtop ⟧⁺ = ⊤⁺ ⟦ cvΠ P ⟧⁺ = Π⁺<: ∥ P ∥⁺₁ ∙¬ ∥ P ∥⁺₂ ∥_∥⁺₁ : ∀ {n m T} → Pi (Contra n) (Contra n) m T → Vec (Ftyp⁻ n) m ∥ pzero U ∥⁺₁ = nil ∥ psuc S P ∥⁺₁ = ⟦ S ⟧⁻ ‼ ∥ P ∥⁺₁ ∥_∥⁺₂ : ∀ {n m T} → Pi (Contra n) (Contra n) m T → Ftyp⁻ n ∥ pzero U ∥⁺₂ = ⟦ U ⟧⁻ ∥ psuc S P ∥⁺₂ = ∥ P ∥⁺₂ ⟦_⟧⁻ : ∀ {n T} → Contra n T → Ftyp⁻ n ⟦ cnvar m ⟧⁻ = var⁻ m ⟦ cnΠ P ⟧⁻ = Π⁻<:⊤∙¬ ∥ P ∥⁻ ∥_∥⁻ : ∀ {n m T} → Pi (⊤ ≡_) (Covar n) m T → Ftyp⁺ n ∥ pzero T ∥⁻ = ⟦ T ⟧⁺ ∥ psuc S P ∥⁻ = ∥ P ∥⁻ mutual ⟦⟧⁺*⁺⇒id : ∀ {n T} (cT : Covar n T) → (⟦ cT ⟧⁺ *⁺) ≡ T ⟦⟧⁺*⁺⇒id cvtop = refl ⟦⟧⁺*⁺⇒id (cvΠ P) = ∥∥⁻Π⇒id P ∥∥⁻Π⇒id : ∀ {n m T} (P : Pi (Contra n) (Contra n) m T) → Π⁻[ ∥ P ∥⁺₁ ]∙ ∥ P ∥⁺₂ ≡ T ∥∥⁻Π⇒id (pzero U) rewrite ⟦⟧⁻*⁻⇒id U = refl ∥∥⁻Π⇒id (psuc S P) rewrite ⟦⟧⁻*⁻⇒id S | ∥∥⁻Π⇒id P = refl ⟦⟧⁻*⁻⇒id : ∀ {n T} (cT : Contra n T) → (⟦ cT ⟧⁻ *⁻) ≡ T ⟦⟧⁻*⁻⇒id (cnvar m) = refl ⟦⟧⁻*⁻⇒id (cnΠ P) = ∥∥⁺Π⇒id P ∥∥⁺Π⇒id : ∀ {n m T} (P : Pi (⊤ ≡_) (Covar n) m T) → Π⁺ m ∙ ∥ P ∥⁻ ≡ T ∥∥⁺Π⇒id (pzero U) rewrite ⟦⟧⁺*⁺⇒id U = refl ∥∥⁺Π⇒id (psuc refl P) rewrite ∥∥⁺Π⇒id P = refl infix 5 *⟦_⟧⁺ *⟦_⟧⁻ *∥_,_∥⁺ mutual *⟦_⟧⁺ : ∀ {n} (T : Ftyp⁺ n) → Covar n (T *⁺) *⟦ ⊤⁺ ⟧⁺ = cvtop *⟦ Π⁺<: S ∙¬ U ⟧⁺ = cvΠ *∥ S , U ∥⁺ *∥_,_∥⁺ : ∀ {n m} (S : Vec (Ftyp⁻ n) m) (U : Ftyp⁻ n) → Pi (Contra n) (Contra n) m (Π⁻[ S ]∙ U) *∥ nil , U ∥⁺ = pzero *⟦ U ⟧⁻ *∥ S ‼ Ss , U ∥⁺ = psuc *⟦ S ⟧⁻ *∥ Ss , U ∥⁺ *⟦_⟧⁻ : ∀ {n} (T : Ftyp⁻ n) → Contra n (T *⁻) *⟦ var⁻ x ⟧⁻ = cnvar x *⟦ Π⁻<:⊤∙¬ T ⟧⁻ = cnΠ *∥ _ , T ∥⁻ *∥_,_∥⁻ : ∀ {n} m (T : Ftyp⁺ n) → Pi (⊤ ≡_) (Covar n) m (Π⁺ m ∙ T) *∥ zero , T ∥⁻ = pzero *⟦ T ⟧⁺ *∥ suc m , T ∥⁻ = psuc refl *∥ m , T ∥⁻ mutual *⁺⟦⟧⁺⇒id : ∀ {n} (T : Ftyp⁺ n) → ⟦ *⟦ T ⟧⁺ ⟧⁺ ≡ T *⁺⟦⟧⁺⇒id ⊤⁺ = refl *⁺⟦⟧⁺⇒id (Π⁺<: S ∙¬ U) rewrite *∥∥⁺₁⇒id S U | *∥∥⁺₂⇒id S U = refl *∥∥⁺₁⇒id : ∀ {n m} (S : Vec (Ftyp⁻ n) m) (U : Ftyp⁻ n) → ∥ *∥ S , U ∥⁺ ∥⁺₁ ≡ S *∥∥⁺₁⇒id nil U = refl *∥∥⁺₁⇒id (S ‼ Ss) U rewrite *⁻⟦⟧⁻⇒id S | *∥∥⁺₁⇒id Ss U = refl *∥∥⁺₂⇒id : ∀ {n m} (S : Vec (Ftyp⁻ n) m) (U : Ftyp⁻ n) → ∥ *∥ S , U ∥⁺ ∥⁺₂ ≡ U *∥∥⁺₂⇒id nil U = *⁻⟦⟧⁻⇒id U *∥∥⁺₂⇒id (S ‼ Ss) U = *∥∥⁺₂⇒id Ss U *⁻⟦⟧⁻⇒id : ∀ {n} (T : Ftyp⁻ n) → ⟦ *⟦ T ⟧⁻ ⟧⁻ ≡ T *⁻⟦⟧⁻⇒id (var⁻ x) = refl *⁻⟦⟧⁻⇒id {n} (Π⁻<:⊤∙¬ T) rewrite *∥∥⁻⇒id n T = refl *∥∥⁻⇒id : ∀ {n} m (T : Ftyp⁺ n) → ∥ *∥ m , T ∥⁻ ∥⁻ ≡ T *∥∥⁻⇒id zero T = *⁺⟦⟧⁺⇒id T *∥∥⁻⇒id (suc m) T = *∥∥⁻⇒id m T open Measure <-wellFounded F-measure-packed renaming (wfRec to F-rec) minus⇒deterministic-gen : ∀ (D : F-deriv) → ∀ n {Γ} (S : Contra n (typ₁ D)) (U : Covar n (typ₂ D)) → env D ≡ List.map _*⁻ Γ → [ n ] Γ ⊢FD ⟦ S ⟧⁻ <: ⟦ U ⟧⁺ minus⇒deterministic-gen D = F-rec (λ D → prop D) pf D where prop : F-deriv → Set prop D = ∀ n {Γ} (S : Contra n (typ₁ D)) (U : Covar n (typ₂ D)) → env D ≡ List.map _*⁻ Γ → [ n ] Γ ⊢FD ⟦ S ⟧⁻ <: ⟦ U ⟧⁺ open ≤-Reasoning pf : ∀ (D : F-deriv) → (∀ D′ → F-measure-packed D′ < F-measure-packed D → prop D′) → prop D pf ((Γ , S* , .⊤) , ftop) rec n S cvtop eq = fdtop pf ((Γ , S* , .⊤) , ftop) rec n S (cvΠ ()) eq pf ((Γ , .(var _) , .(var _)) , fvrefl) rec n S (cvΠ ()) eq pf ((Γ , .(var m) , .⊤) , fbinds T∈Γ D) rec n (cnvar m) cvtop eq = fdtop pf ((Γ , .(var m) , U*) , fbinds T∈Γ D) rec n {Γ′} (cnvar m) (cvΠ P) refl with trans (sym $ env-lookup-same (List.map _*⁻ Γ′) m) $ <:∈⇒lookup T∈Γ ... | eq with lookupOpt (List.map _*⁻ Γ′) m | inspect (lookupOpt (List.map _*⁻ Γ′)) m pf ((Γ , .(var m) , U*) , fbinds T∈Γ D) rec n {Γ′} (cnvar m) (cvΠ P) refl | refl | just T | [ lk ] with lookupOpt-map-inv Γ′ lk ... | T′ , refl , lk′ rewrite repeat*-↑-comm⁻ T′ m 0 | *-↑-comm⁻ (repeat m (_↑⁻ 0) T′) 0 with rec (-, D) ≤-refl n *⟦ repeat m (_↑⁻ 0) T′ ↑⁻ 0 ⟧⁻ (cvΠ P) refl ... | Drec rewrite *⁻⟦⟧⁻⇒id (repeat m (_↑⁻ 0) T′ ↑⁻ 0) = fdvar (cong (Maybe.map (repeat (suc m) (_↑⁻ 0))) lk′) Drec pf ((Γ , .(var m) , U*) , fbinds T∈Γ D) rec n {Γ′} (cnvar m) (cvΠ P) refl | () | nothing | [ lk ] pf ((Γ , .(var _) , U*) , fbinds T∈Γ D) rec n (cnΠ ()) U eq pf ((Γ , .(Π<: _ ∙ _) , .(Π<: _ ∙ _)) , Dtop@(fall S₂<:S₁ U₁<:U₂)) rec n (cnΠ Ps) (cvΠ Pu) refl = fdall (aux _ n (fall S₂<:S₁ U₁<:U₂) Ps Pu ≤-refl) where transport : ∀ {Γ T₁ T₂ S*} (S : Contra n S*) (D : S* ∷ Γ ⊢F T₁ <: T₂) → Σ ((⟦ S ⟧⁻ *⁻) ∷ Γ ⊢F T₁ <: T₂) (λ D′ → F-measure D′ ≡ F-measure D) transport {Γ} {T₁} {T₂} S D = subst (λ S → Σ (S ∷ Γ ⊢F T₁ <: T₂) (λ D′ → F-measure D′ ≡ F-measure D)) (sym $ ⟦⟧⁻*⁻⇒id S) (D , refl) aux : ∀ {T₁ T₂} Γ m (D : List.map _*⁻ Γ ⊢F T₁ <: T₂) (Ps : Pi (_≡_ ⊤) (Covar n) m T₁) (Pu : Pi (Contra n) (Contra n) m T₂) → F-measure D ≤ F-measure Dtop → [ n ] Vec.foldl (λ _ → _) (flip _∷_) Γ ∥ Pu ∥⁺₁ ⊢FD ∥ Pu ∥⁺₂ <: ∥ Ps ∥⁻ aux Γ zero (fall <:₁ <:₂) (pzero S₁) (pzero S₂) ≤ = rec (-, <:₁) (≤-trans shrinks ≤) n S₂ S₁ refl where shrinks : (F-measure <:₁) < suc (F-measure <:₁ + F-measure <:₂) shrinks = begin-strict F-measure <:₁ ≤⟨ ≤-stepsʳ (F-measure <:₂) ≤-refl ⟩ F-measure <:₁ + F-measure <:₂ <⟨ ≤-refl ⟩ suc (F-measure <:₁ + F-measure <:₂) ∎ aux Γ (suc m) (fall <:₁ <:₂) (psuc refl Ps) (psuc S₂ Pu) ≤ with transport S₂ <:₂ ... | <:₂′ , eq = aux (⟦ S₂ ⟧⁻ ∷ Γ) m <:₂′ Ps Pu $ begin F-measure <:₂′ ≡⟨ eq ⟩ F-measure <:₂ ≤⟨ ≤-stepsˡ (F-measure <:₁) ≤-refl ⟩ F-measure <:₁ + F-measure <:₂ <⟨ ≤ ⟩ suc (F-measure S₂<:S₁ + F-measure U₁<:U₂) ∎ -- The following two functions conclude the reduction proof from F<:ᵈ to F<:⁻. minus⇒deterministic : ∀ n {Γ : NEnv n} {S U} → List.map _*⁻ Γ ⊢F S *⁻ <: U *⁺ → [ n ] Γ ⊢FD S <: U minus⇒deterministic n {Γ} {S} {U} D with minus⇒deterministic-gen (-, D) n *⟦ S ⟧⁻ *⟦ U ⟧⁺ refl ... | D′ rewrite *⁻⟦⟧⁻⇒id S | *⁺⟦⟧⁺⇒id U = D′ deterministic⇒minus : ∀ n {Γ : NEnv n} {S U} → [ n ] Γ ⊢FD S <: U → List.map _*⁻ Γ ⊢F S *⁻ <: U *⁺ deterministic⇒minus n fdtop = ftop deterministic⇒minus n {Γ} (fdvar {m = m} T∈Γ D) with lookupOpt Γ m | inspect (lookupOpt Γ) m deterministic⇒minus n {Γ} (fdvar {m = m} refl D) | just T | [ eq ] = fbinds (lookup⇒<:∈ $ begin env-lookup (List.map _*⁻ Γ) m ≡⟨ env-lookup-same (List.map _*⁻ Γ) m ⟩ env-lookup′ (List.map _*⁻ Γ) m ≡⟨ cong (Maybe.map (repeat (suc m) (_↑ 0))) (lookupOpt-map Γ _*⁻ eq) ⟩ just (repeat m (_↑ 0) (T *⁻) ↑ 0) ≡⟨ cong (just ∘ (_↑ 0)) (repeat*-↑-comm⁻ T m 0) ⟩ just ((repeat m (_↑⁻ 0) T *⁻) ↑ 0) ≡⟨ cong just $ *-↑-comm⁻ (repeat m (_↑⁻ 0) T) 0 ⟩ just ((repeat m (_↑⁻ 0) T ↑⁻ 0) *⁻) ∎) (deterministic⇒minus n D) where open Eq (setoid (Maybe Ftyp)) deterministic⇒minus n {Γ} (fdvar {m = m} () D) | nothing | _ deterministic⇒minus n {Γ} (fdall D) = aux n _ _ _ D where aux : ∀ {n} m {Γ} (S : Vec (Ftyp⁻ n) m) U T → [ n ] Vec.foldl (λ _ → _) (flip _∷_) Γ S ⊢FD U <: T → List.map _*⁻ Γ ⊢F Π⁺ m ∙ T <: Π⁻[ S ]∙ U aux .0 nil U T D = fall (deterministic⇒minus _ D) fvrefl aux .(suc _) (x ‼ S) U T D = fall ftop (aux _ S U T D)
39.626444
139
0.439826
1293c21dd341e78c395ee6572a3c180b7ee1e413
1,783
agda
Agda
Cubical/Data/HomotopyGroup/Base.agda
ryanorendorff/cubical
c67854d2e11aafa5677e25a09087e176fafd3e43
[ "MIT" ]
1
2020-03-23T23:52:11.000Z
2020-03-23T23:52:11.000Z
Cubical/Data/HomotopyGroup/Base.agda
ryanorendorff/cubical
c67854d2e11aafa5677e25a09087e176fafd3e43
[ "MIT" ]
null
null
null
Cubical/Data/HomotopyGroup/Base.agda
ryanorendorff/cubical
c67854d2e11aafa5677e25a09087e176fafd3e43
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --safe #-} module Cubical.Data.HomotopyGroup.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels import Cubical.Foundations.GroupoidLaws as GL open import Cubical.Foundations.Pointed open import Cubical.Data.Nat open import Cubical.Data.Group.Base open import Cubical.Homotopy.Loopspace open import Cubical.HITs.SetTruncation as SetTrunc π^_ : ∀ {ℓ} → ℕ → Pointed ℓ → Group ℓ π^_ {ℓ} n p = group ∥ A ∥₀ squash₀ g where n' : ℕ n' = suc n A : Type ℓ A = typ ((Ω^ n') p) g : isGroup ∥ A ∥₀ g = group-struct e _⁻¹ _⊙_ lUnit rUnit assoc lCancel rCancel where e : ∥ A ∥₀ e = ∣ pt ((Ω^ n') p) ∣₀ _⁻¹ : ∥ A ∥₀ → ∥ A ∥₀ _⁻¹ = SetTrunc.elim {B = λ _ → ∥ A ∥₀} (λ x → squash₀) λ a → ∣ sym a ∣₀ _⊙_ : ∥ A ∥₀ → ∥ A ∥₀ → ∥ A ∥₀ _⊙_ = SetTrunc.elim2 (λ _ _ → squash₀) λ a₀ a₁ → ∣ a₀ ∙ a₁ ∣₀ lUnit : (a : ∥ A ∥₀) → (e ⊙ a) ≡ a lUnit = SetTrunc.elim (λ _ → isProp→isSet (squash₀ _ _)) (λ a → cong ∣_∣₀ (sym (GL.lUnit a) )) rUnit : (a : ∥ A ∥₀) → a ⊙ e ≡ a rUnit = SetTrunc.elim (λ _ → isProp→isSet (squash₀ _ _)) (λ a → cong ∣_∣₀ (sym (GL.rUnit a) )) assoc : (a b c : ∥ A ∥₀) → ((a ⊙ b) ⊙ c) ≡ (a ⊙ (b ⊙ c)) assoc = SetTrunc.elim3 (λ _ _ _ → isProp→isSet (squash₀ _ _)) (λ a b c → cong ∣_∣₀ (sym (GL.assoc _ _ _))) lCancel : (a : ∥ A ∥₀) → ((a ⁻¹) ⊙ a) ≡ e lCancel = SetTrunc.elim (λ _ → isProp→isSet (squash₀ _ _)) λ a → cong ∣_∣₀ (GL.lCancel _) rCancel : (a : ∥ A ∥₀) → (a ⊙ (a ⁻¹)) ≡ e rCancel = SetTrunc.elim (λ _ → isProp→isSet (squash₀ _ _)) λ a → cong ∣_∣₀ (GL.rCancel _)
31.839286
80
0.514302
1c2f030b97274f8c50775b169eba2f6f1df89364
559
agda
Agda
test/Succeed/Issue133.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue133.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue133.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Issue133 where data Nat : Set where zz : Nat ss : Nat → Nat data _==_ {X : Set}(x : X) : X → Set where refl : x == x data Zero : Set where data Eq? (x : Nat) : Nat → Set where same : Eq? x x diff : {y : Nat} → (x == y → Zero) → Eq? x y -- This failed before due to absurd lambda checking not getting -- postponed. ioo : {y : Nat} → Eq? zz (ss y) ioo {y} = diff λ () foo : {y : Nat} → zz == ss y → Zero foo () goo : {y : Nat} → zz == ss y → Zero goo = λ () hoo : {y : Nat}{X : Set} → ((zz == ss y → Zero) → X) → X hoo boo = boo λ ()
18.032258
63
0.520572
417f9125ec2e908813fcc9640dd9941664d09e53
342
agda
Agda
test/Succeed/OverloadedConstructors.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/OverloadedConstructors.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/OverloadedConstructors.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module OverloadedConstructors where data Nat : Set where zero : Nat suc : Nat -> Nat data Fin : Nat -> Set where zero : {n : Nat} -> Fin (suc n) suc : {n : Nat} -> Fin n -> Fin (suc n) three : Nat three = suc (suc (suc zero)) ftwo : Fin three ftwo = suc (suc zero) inc : Nat -> Nat inc = suc {- {-# BUILTIN NATURAL Nat #-} -}
14.25
42
0.581871
57de82bb317950f59abe43b9dc83a7e74c9bda68
9,696
agda
Agda
dialectica-cats/DCBSets.agda
heades/AUGL
b33c6a59d664aed46cac8ef77d34313e148fecc2
[ "MIT" ]
null
null
null
dialectica-cats/DCBSets.agda
heades/AUGL
b33c6a59d664aed46cac8ef77d34313e148fecc2
[ "MIT" ]
null
null
null
dialectica-cats/DCBSets.agda
heades/AUGL
b33c6a59d664aed46cac8ef77d34313e148fecc2
[ "MIT" ]
null
null
null
module DCBSets where open import prelude open import relations -- The objects: Obj : Set₁ Obj = Σ[ U ∈ Set ] (Σ[ X ∈ Set ] (Σ[ x ∈ (⊤ → X) ] (Σ[ d ∈ (X × X → X) ](Σ[ α ∈ (U → X → Set) ]( (∀{u : U}{x₁ x₂ : X} → α u (d (x₁ , x₂)) → ((α u x₁) × (α u x₂))) × ( ∀{Y : Set}{x' : X}{F : Y → X}{y : ⊤ → Y} → d (x' , F (y triv)) ≡ x' ) × ( ∀{Y : Set}{x' : X}{F : Y → X}{y : ⊤ → Y} → d (F (y triv) , x') ≡ x' )))))) -- The morphisms: Hom : Obj → Obj → Set Hom (U , X , x , d₁ , α , p₁ ) (V , Y , y , d₂ , β , p₂) = Σ[ f ∈ (U → V) ] (Σ[ F ∈ (U → Y → X) ] ((∀{u : U}{y : Y} → α u (F u y) → β (f u) y))) -- Composition: comp : {A B C : Obj} → Hom A B → Hom B C → Hom A C comp {(U , X , x , d₁ , α , dec₁ , p₁ , p₂)} {(V , Y , y , d₂ , β , dec₂ , p₃ , p₄)} {(W , Z , z , d₃ , γ , dec₃ , p₅ , p₆)} (f , F , q₁) (g , G , q₂) = g ∘ f , (((λ u z' → F u (G (f u) z'))) ) , (λ {u} {z'} r → q₂ (q₁ r)) infixl 5 _○_ _○_ = comp -- The contravariant hom-functor: Homₐ : {A' A B B' : Obj} → Hom A' A → Hom B B' → Hom A B → Hom A' B' Homₐ f h g = comp f (comp g h) -- The identity function: id : {A : Obj} → Hom A A id {(U , V , n , d , α , p)} = (id-set , curry snd , id-set) -- In this formalization we will only worry about proving that the -- data of morphisms are equivalent, and not worry about the morphism -- conditions. This will make proofs shorter and faster. -- -- If we have parallel morphisms (f,F) and (g,G) in which we know that -- f = g and F = G, then the condition for (f,F) will imply the -- condition of (g,G) and vice versa. Thus, we can safely ignore it. infix 4 _≡h_ _≡h_ : {A B : Obj} → (f g : Hom A B) → Set _≡h_ {(U , X , _ , _ , _ , _ , _ , _)}{(V , Y , _ , β , _ , _ , _ , _)} (f , F , p₁) (g , G , p₂) = f ≡ g × F ≡ G ≡h-refl : {A B : Obj}{f : Hom A B} → f ≡h f ≡h-refl {U , X , _ , α , _ , _ , _ , _}{V , Y , _ , β , _ , _ , _ , _}{f , F , _} = refl , refl ≡h-trans : ∀{A B}{f g h : Hom A B} → f ≡h g → g ≡h h → f ≡h h ≡h-trans {U , X , _ , α , _ , _ , _ , _}{V , Y , _ , β , _ , _ , _ , _}{f , F , _}{g , G , _}{h , H , _} (p₁ , p₂) (p₃ , p₄) rewrite p₁ | p₂ | p₃ | p₄ = refl , refl ≡h-sym : ∀{A B}{f g : Hom A B} → f ≡h g → g ≡h f ≡h-sym {U , X , _ , α , _ , _ , _ , _}{V , Y , _ , β , _ , _ , _ , _}{f , F , _}{g , G , _} (p₁ , p₂) rewrite p₁ | p₂ = refl , refl ≡h-subst-○ : ∀{A B C}{f₁ f₂ : Hom A B}{g₁ g₂ : Hom B C}{j : Hom A C} → f₁ ≡h f₂ → g₁ ≡h g₂ → f₂ ○ g₂ ≡h j → f₁ ○ g₁ ≡h j ≡h-subst-○ {U , X , _ , α , _ , _ , _ , _} {V , Y , _ , β , _ , _ , _ , _} {W , Z , _ , γ , _ , _ , _ , _} {f₁ , F₁ , _} {f₂ , F₂ , _} {g₁ , G₁ , _} {g₂ , G₂ , _} {j , J , _} (p₅ , p₆) (p₇ , p₈) (p₉ , p₁₀) rewrite p₅ | p₆ | p₇ | p₈ | p₉ | p₁₀ = refl , refl ○-assoc : ∀{A B C D}{f : Hom A B}{g : Hom B C}{h : Hom C D} → f ○ (g ○ h) ≡h (f ○ g) ○ h ○-assoc {U , X , _ , α , _ , _ , _ , _}{V , Y , _ , β , _ , _ , _ , _}{W , Z , _ , γ , _ , _ , _ , _}{S , T , _ , ι , _ , _ , _ , _} {f , F , _}{g , G , _}{h , H , _} = refl , refl ○-idl : ∀{A B}{f : Hom A B} → id ○ f ≡h f ○-idl {U , X , _ , _ , _ , _ , _ , _}{V , Y , _ , _ , _ , _ , _ , _}{f , F , _} = refl , refl ○-idr : ∀{A B}{f : Hom A B} → f ○ id ≡h f ○-idr {U , X , _ , _ , _ , _ , _ , _}{V , Y , _ , _ , _ , _ , _ , _}{f , F , _} = refl , refl -- The tensor functor: ⊗ _⊗ᵣ_ : ∀{U X V Y : Set} → (U → X → Set) → (V → Y → Set) → ((U × V) → (X × Y) → Set) _⊗ᵣ_ α β (u , v) (x , y) = (α u x) × (β v y) _⊗ₒ_ : (A B : Obj) → Obj (U , X , n₁ , d₁ , α , pr₁ , q₁ , q₂ ) ⊗ₒ (V , Y , n₂ , d₂ , β , pr₂ , q₃ , q₄) = ((U × V) , (X × Y) , trans-× n₁ n₂ , d⊗ , (α ⊗ᵣ β) , pr⊗ , ((λ {Y x' F y} → q₁⊗ {Y} {x'}{F}{y}) , (λ {Y x' F y} → q₂⊗ {Y} {x'}{F}{y}))) where d⊗ : Σ (Σ X (λ x → Y)) (λ x → Σ X (λ x₁ → Y)) → Σ X (λ x → Y) d⊗ ((x , y) , (x' , y')) = d₁ (x , x') , d₂ (y , y') pr⊗ : {u : Σ U (λ x → V)} {x₁ x₂ : Σ X (λ x → Y)} → (α ⊗ᵣ β) u (d⊗ (x₁ , x₂)) → Σ ((α ⊗ᵣ β) u x₁) (λ x → (α ⊗ᵣ β) u x₂) pr⊗ {u , v}{x , y}{x' , y'} (p , p') = (fst (pr₁ p) , fst (pr₂ p')) , snd (pr₁ p) , snd (pr₂ p') q₁⊗ : {Y₁ : Set} {x' : Σ X (λ x → Y)} {F : Y₁ → Σ X (λ x → Y)}{y : ⊤ → Y₁} → d⊗ (x' , F (y triv)) ≡ x' q₁⊗ {_}{x , y}{F}{p} with q₁ {x' = x}{fst ∘ F}{p} | q₃ {x' = y}{snd ∘ F}{p} ... | q'₁ | q'₂ with F (p triv) ... | x' , y' rewrite q'₁ | q'₂ = refl q₂⊗ : {Y₁ : Set} {x' : Σ X (λ x → Y)} {F : Y₁ → Σ X (λ x → Y)}{y : ⊤ → Y₁} → d⊗ (F (y triv) , x') ≡ x' q₂⊗ {Y}{x , y}{F}{p} with q₂ {_}{x}{fst ∘ F}{p} | q₄ {_}{y}{snd ∘ F}{p} ... | q'₁ | q'₂ with F (p triv) ... | x' , y' rewrite q'₁ | q'₂ = refl F⊗ : ∀{Z T V X U Y : Set}{F : U → Z → X}{G : V → T → Y} → (U × V) → (Z × T) → (X × Y) F⊗ {F = F}{G} (u , v) (z , t) = F u z , G v t _⊗ₐ_ : {A B C D : Obj} → Hom A C → Hom B D → Hom (A ⊗ₒ B) (C ⊗ₒ D) _⊗ₐ_ {(U , X , _ , _ , α , _ , _ , _)}{(V , Y , _ , _ , β , _ , _ , _)}{(W , Z , _ , _ , γ , _ , _ , _)}{(S , T , _ , _ , δ , _ , _ , _)} (f , F , p₁) (g , G , p₂) = ⟨ f , g ⟩ , F⊗ {F = F}{G} , p⊗ where p⊗ : {u : Σ U (λ x → V)} {y : Σ Z (λ x → T)} → (α ⊗ᵣ β) u (F⊗ {F = F}{G} u y) → (γ ⊗ᵣ δ) (⟨ f , g ⟩ u) y p⊗ {u , v}{z , t} (p₃ , p₄) = p₁ p₃ , p₂ p₄ π₁ : {A B : Obj} → Hom (A ⊗ₒ B) A π₁ {U , X , n₁ , _ , α , _ , _ , _}{V , Y , n₂ , _ , β , _ , _ , _} = fst , (λ r x → x , n₂ triv) , cond where cond : {u : Σ U (λ x → V)} {y : X} → (α ⊗ᵣ β) u (y , n₂ triv) → α (fst u) y cond {u , v}{x} (p₁ , p₂) = p₁ π₂ : {A B : Obj} → Hom (A ⊗ₒ B) B π₂ {U , X , n₁ , _ , α , _ , _ , _}{V , Y , n₂ , _ , β , _ , _ , _} = snd , (λ r y → n₁ triv , y) , cond where cond : {u : Σ U (λ x → V)} {y : Y} → (α ⊗ᵣ β) u (n₁ triv , y) → β (snd u) y cond {u , v}{y} (p₁ , p₂) = p₂ cart-ar : {A B C : Obj} → (f : Hom C A) → (g : Hom C B) → Hom C (A ⊗ₒ B) cart-ar {U , X , x , d₁ , α , pr₁ , q₁ , q₂}{V , Y , y , d₂ , β , pr₂ , q₃ , q₄}{W , Z , z , d₃ , γ , pr₃ , q₅ , q₆} (f , F , p₁) (g , G , p₂) = trans-× f g , crt , cond where crt : W → Σ X (λ x₁ → Y) → Z crt w (x' , y') = d₃ ((F w x') , (G w y')) cond : {u : W} {y₁ : Σ X (λ x₁ → Y)} → γ u (crt u y₁) → (α ⊗ᵣ β) (f u , g u) y₁ cond {w}{x' , y'} p = p₁ (fst (pr₃ {w}{F w x'}{G w y'} p)) , p₂ (snd (pr₃ {w}{F w x'}{G w y'} p)) cart-diag₁ : ∀{A B C : Obj} → {f : Hom C A} → {g : Hom C B} → (cart-ar f g) ○ π₁ ≡h f cart-diag₁ {U , X , x , d₁ , α , pr₁ , q₁ , q₂}{V , Y , y , d₂ , β , q₃ , q₄ , q₅}{W , Z , z , d₃ , γ , q₆ , q₇ , q₈}{f , F , p₁}{g , G , p₂} = refl , ext-set (λ {w} → ext-set (λ {x} → q₇ {x' = F w x}{G w}{y})) cart-diag₂ : ∀{A B C : Obj} → {f : Hom C A} → {g : Hom C B} → (cart-ar f g) ○ π₂ ≡h g cart-diag₂ {U , X , x , d₁ , α , pr₁ , q₁ , q₂}{V , Y , y , d₂ , β , q₃ , q₄ , q₅}{W , Z , z , d₃ , γ , q₆ , q₇ , q₈}{f , F , p₁}{g , G , p₂} = refl , ext-set (λ {w} → ext-set (λ {y₁} → q₈ {x' = G w y₁}{F w}{x})) -- The □-comonad: □ₒ-cond : ∀{U X : Set} → (α : U → X → Set) → U → 𝕃 X → Set □ₒ-cond {U}{X} α u [] = ⊤ □ₒ-cond {U}{X} α u (x :: xs) = (α u x) × (□ₒ-cond α u xs) □ₒ-cond-++ : ∀{U X : Set}{α : U → X → Set}{u : U}{l₁ l₂ : 𝕃 X} → □ₒ-cond α u (l₁ ++ l₂) ≡ ((□ₒ-cond α u l₁) × (□ₒ-cond α u l₂)) □ₒ-cond-++ {U}{X}{α}{u}{[]}{l₂} = ∧-unit □ₒ-cond-++ {U}{X}{α}{u}{x :: xs}{l₂} rewrite □ₒ-cond-++ {U}{X}{α}{u}{xs}{l₂} = ∧-assoc □ₒ : Obj → Obj □ₒ (U , X , x , d , α , pr , q₁ , q₂) = U , X * , (λ t → [ x t ]) , □d , □ₒ-cond {U}{X} α , {!!} , {!!} , {!!} where □d : (X *) × (X *) → X * □d (l₁ , l₂) = l₁ ++ l₂ -- □pr : {u : U} {x₁ x₂ : 𝕃 X} -- → □ₒ-cond α u (□d (x₁ , x₂)) -- → Σ (□ₒ-cond α u x₁) (λ x₃ → □ₒ-cond α u x₂) -- □pr {_}{[]} {[]} x₁ = triv , triv -- □pr {u}{x₁ = []} {x₁ :: x₂} (a , b) = triv , snd (pr a) , snd (□pr {u}{[]}{x₂} b) -- □pr {u}{x₁ = x₁ :: x₂} {[]} (a , b) = (fst (pr a) , fst (□pr {u}{x₂}{[]} b)) , triv -- □pr {_}{x₁ :: x₂} {x₃ :: x₄} (a , b) with pr a -- ... | c , e with □pr {x₁ = x₂} b -- ... | f , g = (c , f) , (e , g) □q₁ : {Y : Set} {x' : 𝕃 X} {F : Y → 𝕃 X} {y : ⊤ → Y} → □d (x' , F (y triv)) ≡ x' □q₁ {x' = []}{F}{y} = {!!} □q₁ {x' = x₁ :: x'}{F}{y} with F (y triv) ... | [] = {!!} ... | a :: as = {!!} {- □ₐ-s : ∀{U Y X : Set} → (U → Y → X) → (U → Y * → X *) □ₐ-s f u l = map (f u) l □ₐ : {A B : Obj} → Hom A B → Hom (□ₒ A) (□ₒ B) □ₐ {U , X , α}{V , Y , β} (f , F , p) = f , (□ₐ-s F , aux) where aux : {u : U} {y : 𝕃 Y} → □ₒ-cond α u (□ₐ-s F u y) → □ₒ-cond β (f u) y aux {u}{[]} p₁ = triv aux {u}{y :: ys} (p₁ , p₂) = p p₁ , aux p₂ -- Of-course is a comonad: ε : ∀{A} → Hom (□ₒ A) A ε {U , X , α} = id-set , (λ u x → [ x ]) , fst δ-s : {U X : Set} → U → 𝕃 (𝕃 X) → 𝕃 X δ-s u xs = foldr _++_ [] xs δ : ∀{A} → Hom (□ₒ A) (□ₒ (□ₒ A)) δ {U , X , α} = id-set , δ-s , cond where cond : {u : U} {y : 𝕃 (𝕃 X)} → □ₒ-cond α u (foldr _++_ [] y) → □ₒ-cond (□ₒ-cond α) u y cond {u}{[]} p = triv cond {u}{l :: ls} p with □ₒ-cond-++ {U}{X}{α}{u}{l}{foldr _++_ [] ls} ... | p' rewrite p' with p ... | p₂ , p₃ = p₂ , cond {u}{ls} p₃ comonand-diag₁ : ∀{A} → (δ {A}) ○ (□ₐ (δ {A})) ≡h (δ {A}) ○ (δ { □ₒ A}) comonand-diag₁ {U , X , α} = refl , ext-set (λ {x} → ext-set (λ {l} → aux {x} {l})) where aux : ∀{x : U}{l : 𝕃 (𝕃 (𝕃 X))} → foldr _++_ [] (□ₐ-s (λ u xs → foldr _++_ [] xs) x l) ≡ foldr _++_ [] (foldr _++_ [] l) aux {u}{[]} = refl aux {u}{x :: xs} rewrite aux {u}{xs} = foldr-append {_}{_}{X}{X}{x}{foldr _++_ [] xs} comonand-diag₂ : ∀{A} → (δ {A}) ○ (ε { □ₒ A}) ≡h (δ {A}) ○ (□ₐ (ε {A})) comonand-diag₂ {U , X , α} = refl , ext-set (λ {u} → ext-set (λ {l} → aux {l})) where aux : ∀{a : 𝕃 X} → a ++ [] ≡ foldr _++_ [] (map (λ x → x :: []) a) aux {[]} = refl aux {x :: xs} rewrite (++[] xs) | sym (foldr-map {_}{X}{xs}) = refl -}
39.414634
218
0.379744
29c9a393b0381dd344d77bd9f5a8de7d7f9d6282
214
agda
Agda
src/Auxiliary/Extensionality.agda
peterthiemann/dual-session
7a8bc1f6b2f808bd2a22c592bd482dbcc271979c
[ "BSD-2-Clause" ]
1
2022-02-13T05:43:25.000Z
2022-02-13T05:43:25.000Z
src/Auxiliary/Extensionality.agda
peterthiemann/dual-session
7a8bc1f6b2f808bd2a22c592bd482dbcc271979c
[ "BSD-2-Clause" ]
null
null
null
src/Auxiliary/Extensionality.agda
peterthiemann/dual-session
7a8bc1f6b2f808bd2a22c592bd482dbcc271979c
[ "BSD-2-Clause" ]
1
2019-12-07T16:12:50.000Z
2019-12-07T16:12:50.000Z
module Auxiliary.Extensionality where open import Relation.Binary.PropositionalEquality using (_≡_) postulate ext : {A : Set}{B : A → Set}{f : (x : A) → B x} {g : (x : A) → B x} → (∀ x → f x ≡ g x) → f ≡ g
26.75
71
0.579439
57ef13a9b6c667e681b5d8a6e4fd17c8c8258ace
111,198
agda
Agda
src/Structure-identity-principle/Erased.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
3
2020-05-21T22:58:50.000Z
2021-09-02T17:18:15.000Z
src/Structure-identity-principle/Erased.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
null
null
null
src/Structure-identity-principle/Erased.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- A variant of the development in "Internalizing Representation -- Independence with Univalence" (by Angiuli, Cavallo, Mörtberg and -- Zeuner) with support for erasure ------------------------------------------------------------------------ -- This development follows parts of "Internalizing Representation -- Independence with Univalence" (and sometimes the code supporting -- that paper) fairly closely, but with explicit support for erasure, -- and there are some other differences. Note that some things -- discussed in the paper are not included, for instance tactics and -- most examples. -- This formalisation was started because an anonymous reviewer asked -- whether something like this could be done, and when I had made some -- initial experiments Andrea Vezzosi encouraged me to include more in -- the formalisation. {-# OPTIONS --erased-cubical --safe #-} import Equality.Path as P module Structure-identity-principle.Erased {e⁺} (eq : ∀ {a p} → P.Equality-with-paths a p e⁺) where open P.Derived-definitions-and-properties eq open import Logical-equivalence using (_⇔_) open import Prelude open import Bijection equality-with-J as B using (_↔_) open import Equality.Decidable-UIP equality-with-J open import Equality.Path.Isomorphisms eq import Equality.Path.Isomorphisms.Univalence eq as U open import Equivalence equality-with-J as Eq using (_≃_; Is-equivalence) open import Equivalence.Erased.Cubical eq as EEq using (_≃ᴱ_; Is-equivalenceᴱ) open import Equivalence.Erased.Contractible-preimages.Cubical eq as ECP using (Contractibleᴱ) open import Equivalence-relation equality-with-J open import Erased.Cubical eq as Er hiding (map; map-id) open import Function-universe equality-with-J as F hiding (id; _∘_) open import H-level equality-with-J as H-level open import H-level.Closure equality-with-J open import H-level.Truncation.Propositional.Erased eq as T using (∥_∥ᴱ; ∣_∣) import List equality-with-J as L import Maybe equality-with-J as Maybe import Monad equality-with-J as Monad import Nat equality-with-J as Nat open import Quotient.Erased eq as Q using (_/ᴱ_; [_]) open import Univalence-axiom equality-with-J open import Nat.Binary equality-with-J instance-of-[]-cong-axiomatisation as Bin using (Bin) private variable a b c d e r : Level C : Type c A A₁ A₂ B B₁ B₂ Ax F f G g M m N P R R₁ R₂ S x x′ x₁ x₂ y y′ ys z z₁ z₂ : C ------------------------------------------------------------------------ -- The structure identity principle -- Structures. Structure : (a b : Level) → Type (lsuc (a ⊔ b)) Structure a b = Type a → Type b -- Types with a given structure. Type-with : Structure a b → Type (lsuc a ⊔ b) Type-with {a = a} F = ∃ λ (A : Type a) → F A -- Axioms. -- -- Originally I made the argument of type Type-with F erased. After -- feedback from Andrea Vezzosi I instead added a use of Erased in -- _With-the-axioms_ below. Axioms : Structure a b → (c : Level) → Type (lsuc a ⊔ b ⊔ lsuc c) Axioms F c = Type-with F → Type c -- One can add axioms to structures. _With-the-axioms_ : (F : Structure a b) → Axioms F c → Structure a (b ⊔ c) (F With-the-axioms Ax) A = ∃ λ (x : F A) → Erased (Ax (A , x)) -- A type of predicates defining when a given equivalence (with erased -- proofs) is structure-preserving. Structure-preserving-equivalence-predicate : Structure a b → (c : Level) → Type (lsuc a ⊔ b ⊔ lsuc c) Structure-preserving-equivalence-predicate F c = (A B : Type-with F) → proj₁ A ≃ᴱ proj₁ B → Type c -- One can lift a "structure-preserving equivalence predicate" from F -- to F With-the-axioms Ax. Lift-With-the-axioms : Structure-preserving-equivalence-predicate F c → Structure-preserving-equivalence-predicate (F With-the-axioms Ax) c Lift-With-the-axioms P (A , x , _) (B , y , _) = P (A , x) (B , y) -- Structure-preserving equivalences (with erased proofs). infix 4 _≃[_]ᴱ_ _≃[_]ᴱ_ : {F : Structure a b} → Type-with F → @0 Structure-preserving-equivalence-predicate F c → Type-with F → Type (a ⊔ c) A ≃[ P ]ᴱ B = ∃ λ (eq : proj₁ A ≃ᴱ proj₁ B) → Erased (P A B eq) -- Univalent pairs of structures and predicates. record Univalent (@0 F : Structure a b) (@0 P : Structure-preserving-equivalence-predicate F c) : Type (lsuc a ⊔ b ⊔ c) where field -- This field is erased because it uses univalence and EEq.≃ᴱ→≃. @0 univalent : {A B : Type-with F} (eq : proj₁ A ≃ᴱ proj₁ B) → P A B eq ≃ (subst F (≃⇒≡ U.abstract-univ (EEq.≃ᴱ→≃ eq)) (proj₂ A) ≡ proj₂ B) -- If Ax is pointwise propositional, then the functions -- _With-the-axioms Ax and Lift-With-the-axioms preserve -- Univalent univ. -- -- This is a variant of Lemma 3.3 from "Internalizing Representation -- Independence with Univalence". Univalent-With-the-axioms : {@0 P : Structure-preserving-equivalence-predicate F c} → @0 (∀ A → Is-proposition (Ax A)) → Univalent F P → Univalent (F With-the-axioms Ax) (Lift-With-the-axioms P) Univalent-With-the-axioms {F = F} {Ax = Ax} {P = P} prop u .Univalent.univalent {A = A₁ , x₁ , ax₁} {B = A₂ , x₂ , ax₂} eq = P (A₁ , x₁) (A₂ , x₂) eq ↝⟨ u .Univalent.univalent eq ⟩ subst F (≃⇒≡ univ (EEq.≃ᴱ→≃ eq)) x₁ ≡ x₂ ↔⟨ ignore-propositional-component (H-level-Erased 1 (prop _)) ⟩ (subst F (≃⇒≡ univ (EEq.≃ᴱ→≃ eq)) x₁ , _) ≡ (x₂ , ax₂) ↝⟨ ≡⇒≃ $ cong (_≡ _) $ sym $ push-subst-pair _ _ ⟩□ subst (F With-the-axioms Ax) (≃⇒≡ univ (EEq.≃ᴱ→≃ eq)) (x₁ , ax₁) ≡ (x₂ , ax₂) □ where univ = U.abstract-univ -- The structure identity principle. -- -- This is a variant of Theorem 3.1 from "Internalizing Representation -- Independence with Univalence". Note that the principle is erased. @0 sip : Univalent F P → (A ≃[ P ]ᴱ B) ≃ (A ≡ B) sip {F = F} {P = P} {A = A} {B = B} u = (A ≃[ P ]ᴱ B) ↔⟨⟩ (∃ λ (eq : proj₁ A ≃ᴱ proj₁ B) → Erased (P A B eq)) ↔⟨ (∃-cong λ _ → erased Erased↔) ⟩ (∃ λ (eq : proj₁ A ≃ᴱ proj₁ B) → P A B eq) ↝⟨ Σ-cong (inverse $ EEq.≃≃≃ᴱ F.∘ ≡≃≃ U.abstract-univ) (u .Univalent.univalent) ⟩ (∃ λ (eq : proj₁ A ≡ proj₁ B) → subst F eq (proj₂ A) ≡ proj₂ B) ↔⟨ B.Σ-≡,≡↔≡ ⟩□ (A ≡ B) □ -- If there is a structure-preserving equivalence (for a univalent -- pair of a structure and a predicate) between two types with -- structures, where one side satisfies some axioms, then the other -- side also satisfies the axioms (in erased contexts), and the -- resulting triple is equivalent (with erased proofs) to the other -- one. -- -- This is a variant of Corollary 3.4 from "Internalizing -- Representation Independence with Univalence". induced-structures : {@0 P : Structure-preserving-equivalence-predicate F c} → @0 Univalent F P → (X@(A , x , _) : Type-with (F With-the-axioms Ax)) → ((B , y) : Type-with F) → (A , x) ≃[ P ]ᴱ (B , y) → ∃ λ (ax : Erased (Ax (B , y))) → X ≃[ Lift-With-the-axioms P ]ᴱ (B , y , ax) induced-structures {Ax = Ax} u (A , x , ax) (B , y) eq = Er.map (subst Ax (_≃_.to (sip u) eq)) ax , eq ------------------------------------------------------------------------ -- Some binary relation combinators, along with some properties -- The converse of a binary relation. infix 10 _⁻¹ _⁻¹ : (A → B → Type c) → (B → A → Type c) (R ⁻¹) x y = R y x -- Propositionally truncated composition of two binary relations (the -- definition uses ∥_∥ᴱ). infixr 9 _;ᴱ_ _;ᴱ_ : {B : Type b} → (A → B → Type d) → (B → C → Type e) → A → C → Type (b ⊔ d ⊔ e) (R ;ᴱ S) x z = ∥ (∃ λ y → R x y × S y z) ∥ᴱ -- Two ways to compose a relation and its converse. infix 10 _⟵ _⟶ _⟵ : {B : Type b} → (A → B → Type c) → A → A → Type (b ⊔ c) R ⟵ = R ;ᴱ R ⁻¹ _⟶ : {A : Type a} → (A → B → Type c) → B → B → Type (a ⊔ c) R ⟶ = R ⁻¹ ;ᴱ R -- If R is a propositional equivalence relation targetting a certain -- universe, then R ⟵ is pointwise logically equivalent (with erased -- proofs) to R. ⟵≃ᴱ : {A : Type a} {R : A → A → Type a} → @0 (∀ x y → Is-proposition (R x y)) → Is-equivalence-relation R → ∀ {x y} → (R ⟵) x y ≃ᴱ R x y ⟵≃ᴱ prop equiv = EEq.⇔→≃ᴱ T.truncation-is-proposition (prop _ _) (T.rec λ where .T.truncation-is-propositionʳ → prop _ _ .T.∣∣ʳ (_ , Rxy , Rzy) → E.transitive Rxy (E.symmetric Rzy)) (λ Rxz → ∣ _ , Rxz , E.reflexive ∣) where module E = Is-equivalence-relation equiv -- If R is a propositional equivalence relation targetting a certain -- universe, then R ⟶ is pointwise logically equivalent (with erased -- proofs) to R. ⟶≃ᴱ : {A : Type a} {R : A → A → Type a} → @0 (∀ x y → Is-proposition (R x y)) → Is-equivalence-relation R → ∀ {x y} → (R ⟶) x y ≃ᴱ R x y ⟶≃ᴱ prop equiv = EEq.⇔→≃ᴱ T.truncation-is-proposition (prop _ _) (T.rec λ where .T.truncation-is-propositionʳ → prop _ _ .T.∣∣ʳ (_ , Ryx , Ryz) → E.transitive (E.symmetric Ryx) Ryz) (λ Rzx → ∣ _ , E.symmetric Rzx , E.reflexive ∣) where module E = Is-equivalence-relation equiv -- If R is a propositional equivalence relation targetting a certain -- universe, then R ⟵ is equal to R (in erased contexts). @0 ⟵≡ : {A : Type a} {R : A → A → Type a} → (∀ x y → Is-proposition (R x y)) → Is-equivalence-relation R → R ⟵ ≡ R ⟵≡ prop equiv = ⟨ext⟩ λ _ → ⟨ext⟩ λ _ → ≃⇒≡ U.univ $ EEq.≃ᴱ→≃ $ ⟵≃ᴱ prop equiv -- If R is a propositional equivalence relation targetting a certain -- universe, then R ⟶ is equal to R (in erased contexts). @0 ⟶≡ : {A : Type a} {R : A → A → Type a} → (∀ x y → Is-proposition (R x y)) → Is-equivalence-relation R → R ⟶ ≡ R ⟶≡ prop equiv = ⟨ext⟩ λ _ → ⟨ext⟩ λ _ → ≃⇒≡ U.univ $ EEq.≃ᴱ→≃ $ ⟶≃ᴱ prop equiv -- The graph of a function. Graph : {A : Type a} {B : Type b} → (A → B) → A → B → Type b Graph f x y = f x ≡ y -- If R is a propositional equivalence relation targetting a certain -- universe, then Graph (Q.[_] {R = R}) ⟵ is equal to R (in erased -- contexts). @0 Graph-[]-⟵≡ : {A : Type a} {R : A → A → Type a} → (∀ x y → Is-proposition (R x y)) → Is-equivalence-relation R → Graph (Q.[_] {R = R}) ⟵ ≡ R Graph-[]-⟵≡ {R = R} prop equiv = ⟨ext⟩ λ x → ⟨ext⟩ λ y → let lemma = Eq.⇔→≃ T.truncation-is-proposition Q./ᴱ-is-set (T.rec λ @0 where .T.truncation-is-propositionʳ → Q./ᴱ-is-set .T.∣∣ʳ (_ , [x]≡z , [y]≡z) → trans [x]≡z (sym [y]≡z)) (λ [x]≡[y] → ∣ _ , [x]≡[y] , refl _ ∣) in ≃⇒≡ U.univ ((Graph [_] ⟵) x y ↝⟨ lemma ⟩ [ x ] ≡ [ y ] ↔⟨ inverse $ Q.related≃[equal] equiv (prop _ _) ⟩□ R x y □) -- If R is a propositional equivalence relation, then -- R ;ᴱ Graph ([_] {R = R}) is equal to Graph ([_] {R = R}) (in erased -- contexts). @0 ;ᴱ-Graph-[]≡Graph-[] : {A : Type a} {R : A → A → Type r} → (∀ x y → Is-proposition (R x y)) → Is-equivalence-relation R → R ;ᴱ Graph ([_] {R = R}) ≡ Graph ([_] {R = R}) ;ᴱ-Graph-[]≡Graph-[] {R = R} prop equiv = ⟨ext⟩ λ x → ⟨ext⟩ λ y → ≃⇒≡ U.univ $ flip (Q.elim-prop {P = λ y → (R ;ᴱ Graph ([_] {R = R})) x y ≃ Graph ([_] {R = R}) x y}) y λ @0 where .Q.is-propositionʳ _ → Eq.left-closure ext 0 $ T.truncation-is-proposition .Q.[]ʳ y → Eq.⇔→≃ T.truncation-is-proposition Q./ᴱ-is-set (T.rec λ @0 where .T.Rec.truncation-is-propositionʳ → Q./ᴱ-is-set .T.Rec.∣∣ʳ (z , Rxz , [z]≡[y]) → [ x ] ≡⟨ Q.[]-respects-relation Rxz ⟩ [ z ] ≡⟨ [z]≡[y] ⟩∎ [ y ] ∎) ([ x ] ≡ [ y ] ↔⟨ inverse $ Q.related≃[equal] equiv (prop _ _) ⟩ R x y ↝⟨ (λ Rxy → ∣ _ , Rxy , refl _ ∣) ⟩ (R ;ᴱ Graph [_]) x [ y ] □) ------------------------------------------------------------------------ -- Quasi-equivalence relations -- Quasi-PERs, or zigzag-complete relations (following Krishnaswami -- and Dreyer, see "Internalizing Relational Parametricity in the -- Extensional Calculus of Constructions"). -- -- Angiuli et al. only define what it means to be a quasi-PER for -- propositional relations. The following definition applies to -- arbitrary relations. Is-QPER : {A : Type a} {B : Type b} → (A → B → Type c) → Type (a ⊔ b ⊔ c) Is-QPER R = ∀ {x x′ y y′} → R x y → R x′ y → R x′ y′ → R x y′ -- Quasi-equivalence relations (QERs), defined using ∥_∥ᴱ instead of -- ∥_∥. Is-QER : {A : Type a} {B : Type b} → (A → B → Type c) → Type (a ⊔ b ⊔ c) Is-QER R = Is-QPER R × (∀ x → ∥ ∃ (λ y → R x y) ∥ᴱ) × (∀ y → ∥ ∃ (λ x → R x y) ∥ᴱ) -- Quasi-equivalence relations (QERs), defined using ∥_∥ᴱ instead of -- ∥_∥, and with some parts erased. Is-QERᴱ : {A : Type a} {B : Type b} → @0 (A → B → Type c) → Type (a ⊔ b ⊔ c) Is-QERᴱ R = Erased (Is-QPER R) × (∀ x → ∥ ∃ (λ y → Erased (R x y)) ∥ᴱ) × (∀ y → ∥ ∃ (λ x → Erased (R x y)) ∥ᴱ) -- Is-QERᴱ can be expressed using Is-QER and Erased. Is-QERᴱ≃Is-QER-Erased : {@0 R : A → B → Type r} → Is-QERᴱ R ≃ Is-QER (λ x y → Erased (R x y)) Is-QERᴱ≃Is-QER-Erased {A = A} {B = B} {R = R} = ×-cong₁ λ _ → Erased (∀ {x x′ y y′} → R x y → R x′ y → R x′ y′ → R x y′) ↝⟨ Erased-cong lemma ⟩ Erased (∀ x x′ y y′ → R x y → R x′ y → R x′ y′ → R x y′) ↔⟨ (∀-cong ext λ _ → (∀-cong ext λ _ → (∀-cong ext λ _ → Erased-Π↔Π) F.∘ Erased-Π↔Π) F.∘ Erased-Π↔Π) F.∘ Erased-Π↔Π ⟩ (∀ x x′ y y′ → Erased (R x y → R x′ y → R x′ y′ → R x y′)) ↔⟨ (∀-cong ext λ _ → ∀-cong ext λ _ → ∀-cong ext λ _ → ∀-cong ext λ _ → (∀-cong ext λ _ → (∀-cong ext λ _ → Erased-Π↔Π-Erased) F.∘ Erased-Π↔Π-Erased) F.∘ Erased-Π↔Π-Erased) ⟩ (∀ x x′ y y′ → Erased (R x y) → Erased (R x′ y) → Erased (R x′ y′) → Erased (R x y′)) ↝⟨ inverse lemma ⟩□ (∀ {x x′ y y′} → Erased (R x y) → Erased (R x′ y) → Erased (R x′ y′) → Erased (R x y′)) □ where lemma : {P : A → A → B → B → Type r} → (∀ {x x′ y y′} → P x x′ y y′) ≃ (∀ x x′ y y′ → P x x′ y y′) lemma = Eq.↔⇒≃ $ (∀-cong ext λ _ → (∀-cong ext λ _ → (∀-cong ext λ _ → B.implicit-Π↔Π) F.∘ B.implicit-Π↔Π) F.∘ B.implicit-Π↔Π) F.∘ B.implicit-Π↔Π -- Is-QER R implies Is-QERᴱ R. Is-QER→Is-QERᴱ : Is-QER R → Is-QERᴱ R Is-QER→Is-QERᴱ = [_]→ ×-cong (∀-cong _ λ x → T.∥∥ᴱ-map $ ∃-cong λ _ → [_]→) ×-cong (∀-cong _ λ x → T.∥∥ᴱ-map $ ∃-cong λ _ → [_]→) -- In erased contexts Is-QER R is equivalent to Is-QERᴱ R. @0 Is-QER≃Is-QERᴱ : Is-QER R ≃ Is-QERᴱ R Is-QER≃Is-QERᴱ = Eq.↔⇒≃ $ inverse $ Erased↔ .erased ×-cong (∀-cong ext λ x → T.∥∥ᴱ-cong $ ∃-cong λ _ → Erased↔ .erased) ×-cong (∀-cong ext λ x → T.∥∥ᴱ-cong $ ∃-cong λ _ → Erased↔ .erased) -- The forward direction of Is-QER≃Is-QERᴱ {R = R} is definitionally -- equal to Is-QER→Is-QERᴱ. _ : _≃_.to (Is-QER≃Is-QERᴱ {R = R}) ≡ Is-QER→Is-QERᴱ _ = refl _ -- If Is-QER R holds, then R ⟵ is an equivalence relation. Is-QER→Is-equivalence-relation-⟵ : Is-QER R → Is-equivalence-relation (R ⟵) Is-QER→Is-equivalence-relation-⟵ (qper , lr , rl) = λ where .Is-equivalence-relation.reflexive {x = x} → T.∥∥ᴱ-map (λ (y , Rxy) → y , Rxy , Rxy) (lr x) .Is-equivalence-relation.symmetric → T.∥∥ᴱ-map (Σ-map id swap) .Is-equivalence-relation.transitive → T.rec λ where .T.truncation-is-propositionʳ → Π-closure ext 1 λ _ → T.truncation-is-proposition .T.∣∣ʳ (_ , Rx₁y₁ , Rx₂y₁) → T.∥∥ᴱ-map λ (_ , Rx₂y₂ , Rx₃y₂) → _ , qper Rx₁y₁ Rx₂y₁ Rx₂y₂ , Rx₃y₂ -- If Is-QERᴱ R holds, then R ⟵ is an equivalence relation (in erased -- contexts). @0 Is-QERᴱ→Is-equivalence-relation-⟵ : Is-QERᴱ R → Is-equivalence-relation (R ⟵) Is-QERᴱ→Is-equivalence-relation-⟵ {R = R} = Is-QERᴱ R ↔⟨ inverse Is-QER≃Is-QERᴱ ⟩ Is-QER R ↝⟨ Is-QER→Is-equivalence-relation-⟵ ⟩□ Is-equivalence-relation (R ⟵) □ -- If Is-QER R holds, then R ⟶ is an equivalence relation. Is-QER→Is-equivalence-relation-⟶ : Is-QER R → Is-equivalence-relation (R ⟶) Is-QER→Is-equivalence-relation-⟶ (qper , lr , rl) = λ where .Is-equivalence-relation.reflexive {x = y} → T.∥∥ᴱ-map (λ (x , Rxy) → x , Rxy , Rxy) (rl y) .Is-equivalence-relation.symmetric → T.∥∥ᴱ-map (Σ-map id swap) .Is-equivalence-relation.transitive → T.rec λ where .T.truncation-is-propositionʳ → Π-closure ext 1 λ _ → T.truncation-is-proposition .T.∣∣ʳ (_ , Rx₁y₁ , Rx₁y₂) → T.∥∥ᴱ-map λ (_ , Rx₂y₂ , Rx₂y₃) → _ , qper Rx₂y₂ Rx₁y₂ Rx₁y₁ , Rx₂y₃ -- If Is-QERᴱ R holds, then R ⟶ is an equivalence relation (in erased -- contexts). @0 Is-QERᴱ→Is-equivalence-relation-⟶ : Is-QERᴱ R → Is-equivalence-relation (R ⟶) Is-QERᴱ→Is-equivalence-relation-⟶ {R = R} = Is-QERᴱ R ↔⟨ inverse Is-QER≃Is-QERᴱ ⟩ Is-QER R ↝⟨ Is-QER→Is-equivalence-relation-⟶ ⟩□ Is-equivalence-relation (R ⟶) □ -- A propositional QER R can be turned into an equivalence (with -- erased proofs) satisfying a certain (partly erased) condition. -- -- This is a variant of Lemma 5.4 from "Internalizing Representation -- Independence with Univalence". /ᴱ⟵≃ᴱ/ᴱ⟶ : Is-QER R → @0 (∀ x y → Is-proposition (R x y)) → ∃ λ (eq : A /ᴱ R ⟵ ≃ᴱ B /ᴱ R ⟶) → ∀ x y → ∃ λ (f : _≃ᴱ_.to eq [ x ] ≡ [ y ] → R x y) → Erased (Is-equivalence f) /ᴱ⟵≃ᴱ/ᴱ⟶ {A = A} {B = B} {R = R} qer@(qper , lr , rl) prop = EEq.↔→≃ᴱ to from to-from from-to , (λ _ _ → to″ , [ _≃_.is-equivalence $ Eq.⇔→≃ Q./ᴱ-is-set (prop _ _) to″ from″ ]) where to′ : ∥ ∃ (R x) ∥ᴱ → B /ᴱ R ⟶ to′ = _≃_.to (Q.Σ→Erased-Constant≃∥∥ᴱ→ Q./ᴱ-is-set) ( [_] ∘ proj₁ , [ (λ (_ , r₁) (_ , r₂) → Q.[]-respects-relation ∣ _ , r₁ , r₂ ∣) ] ) @0 to′-lemma : R x y → R x′ y → (p : ∥ ∃ (R x) ∥ᴱ) (p′ : ∥ ∃ (R x′) ∥ᴱ) → to′ p ≡ to′ p′ to′-lemma Rxy Rx′y = T.elim λ @0 where .T.truncation-is-propositionʳ _ → Π-closure ext 1 λ _ → Q./ᴱ-is-set .T.∣∣ʳ (y₁ , Rxy₁) → T.elim λ @0 where .T.truncation-is-propositionʳ _ → Q./ᴱ-is-set .T.∣∣ʳ (y₂ , Rx′y₂) → [ y₁ ] ≡⟨ Q.[]-respects-relation ∣ _ , Rxy₁ , qper Rxy Rx′y Rx′y₂ ∣ ⟩∎ [ y₂ ] ∎ to : A /ᴱ R ⟵ → B /ᴱ R ⟶ to = Q.rec λ where .Q.is-setʳ → Q./ᴱ-is-set .Q.[]ʳ → to′ ∘ lr .Q.[]-respects-relationʳ {x = x} {y = x′} → T.elim λ @0 where .T.truncation-is-propositionʳ _ → Q./ᴱ-is-set .T.∣∣ʳ (_ , Rxy , Rx′y) → to′ (lr x) ≡⟨ to′-lemma Rxy Rx′y (lr x) (lr x′) ⟩∎ to′ (lr x′) ∎ from′ : ∥ ∃ ((R ⁻¹) y) ∥ᴱ → A /ᴱ R ⟵ from′ = _≃_.to (Q.Σ→Erased-Constant≃∥∥ᴱ→ Q./ᴱ-is-set) ( [_] ∘ proj₁ , [ (λ (_ , r₁) (_ , r₂) → Q.[]-respects-relation ∣ _ , r₁ , r₂ ∣) ] ) @0 from′-lemma : R x y → R x y′ → (p : ∥ ∃ ((R ⁻¹) y) ∥ᴱ) (p′ : ∥ ∃ ((R ⁻¹) y′) ∥ᴱ) → from′ p ≡ from′ p′ from′-lemma Rxy Rxy′ = T.elim λ @0 where .T.truncation-is-propositionʳ _ → Π-closure ext 1 λ _ → Q./ᴱ-is-set .T.∣∣ʳ (x₁ , Rx₁y) → T.elim λ @0 where .T.truncation-is-propositionʳ _ → Q./ᴱ-is-set .T.∣∣ʳ (x₂ , Rx₂y′) → [ x₁ ] ≡⟨ Q.[]-respects-relation ∣ _ , Rx₁y , qper Rx₂y′ Rxy′ Rxy ∣ ⟩∎ [ x₂ ] ∎ from : B /ᴱ R ⟶ → A /ᴱ R ⟵ from = Q.rec λ where .Q.is-setʳ → Q./ᴱ-is-set .Q.[]ʳ → from′ ∘ rl .Q.[]-respects-relationʳ {x = y} {y = y′} → T.elim λ @0 where .T.truncation-is-propositionʳ _ → Q./ᴱ-is-set .T.∣∣ʳ (_ , Rxy , Rxy′) → from′ (rl y) ≡⟨ from′-lemma Rxy Rxy′ (rl y) (rl y′) ⟩∎ from′ (rl y′) ∎ @0 to′≡[] : R x y → (p : ∥ ∃ (R x) ∥ᴱ) → to′ p ≡ [ y ] to′≡[] {x = x} {y = y} Rxy = T.elim λ @0 where .T.truncation-is-propositionʳ _ → Q./ᴱ-is-set .T.∣∣ʳ (y′ , Rxy′) → [ y′ ] ≡⟨ Q.[]-respects-relation ∣ _ , Rxy′ , Rxy ∣ ⟩∎ [ y ] ∎ @0 to-from′ : ∀ y (p : ∥ ∃ ((R ⁻¹) y) ∥ᴱ) → to (from′ p) ≡ [ y ] to-from′ y = T.elim λ @0 where .T.truncation-is-propositionʳ _ → Q./ᴱ-is-set .T.∣∣ʳ (x , Rxy) → to′ (lr x) ≡⟨ to′≡[] Rxy (lr x) ⟩∎ [ y ] ∎ @0 to-from : ∀ y → to (from y) ≡ y to-from = Q.elim-prop λ @0 where .Q.is-propositionʳ _ → Q./ᴱ-is-set .Q.[]ʳ y → to (from′ (rl y)) ≡⟨ to-from′ y (rl y) ⟩∎ [ y ] ∎ @0 from′≡[] : R x y → (p : ∥ ∃ ((R ⁻¹) y) ∥ᴱ) → from′ p ≡ [ x ] from′≡[] {x = x} {y = y} Rxy = T.elim λ @0 where .T.truncation-is-propositionʳ _ → Q./ᴱ-is-set .T.∣∣ʳ (x′ , Rx′y) → [ x′ ] ≡⟨ Q.[]-respects-relation ∣ _ , Rx′y , Rxy ∣ ⟩∎ [ x ] ∎ @0 from-to′ : ∀ x (p : ∥ ∃ (R x) ∥ᴱ) → from (to′ p) ≡ [ x ] from-to′ x = T.elim λ @0 where .T.truncation-is-propositionʳ _ → Q./ᴱ-is-set .T.∣∣ʳ (y , Rxy) → from′ (rl y) ≡⟨ from′≡[] Rxy (rl y) ⟩∎ [ x ] ∎ @0 from-to : ∀ x → from (to x) ≡ x from-to = Q.elim-prop λ @0 where .Q.is-propositionʳ _ → Q./ᴱ-is-set .Q.[]ʳ x → from (to′ (lr x)) ≡⟨ from-to′ x (lr x) ⟩∎ [ x ] ∎ to″ : to [ x ] ≡ [ y ] → R x y to″ {x = x} {y = y} = to′ (lr x) ≡ [ y ] ↝⟨ flip (T.elim {P = λ p → to′ p ≡ [ y ] → R x y}) (lr x) (λ where .T.truncation-is-propositionʳ _ → Π-closure ext 1 λ _ → prop _ _ .T.∣∣ʳ (y′ , Rxy′) → [ y′ ] ≡ [ y ] ↝⟨ Q.effective (Is-QER→Is-equivalence-relation-⟶ qer) T.truncation-is-proposition ∣ _ , Rxy′ , Rxy′ ∣ ⟩ (R ⟶) y′ y ↝⟨ T.rec (λ where .T.truncation-is-propositionʳ → prop _ _ .T.∣∣ʳ (_ , Rx′y′ , Rx′y) → qper Rxy′ Rx′y′ Rx′y) ⟩□ R x y □) ⟩□ R x y □ @0 from″ : R x y → to [ x ] ≡ [ y ] from″ {x = x} {y = y} Rxy = to′ (lr x) ≡⟨ to′≡[] Rxy (lr x) ⟩∎ [ y ] ∎ -- A propositional QER R (with erased proofs) can be turned into an -- equivalence (with erased proofs) satisfying a certain (erased) -- condition. -- -- This is another variant of Lemma 5.4 from "Internalizing -- Representation Independence with Univalence". /ᴱ⟵≃ᴱ/ᴱ⟶ᴱ : {@0 R : A → B → Type c} → Is-QERᴱ R → @0 (∀ x y → Is-proposition (R x y)) → ∃ λ (eq : A /ᴱ R ⟵ ≃ᴱ B /ᴱ R ⟶) → Erased (∀ x y → (_≃ᴱ_.to eq [ x ] ≡ [ y ]) ≃ R x y) /ᴱ⟵≃ᴱ/ᴱ⟶ᴱ {A = A} {B = B} {R = R} qer prop = $⟨ [ prop ] ⟩ Erased (∀ x y → Is-proposition (R x y)) ↝⟨ (λ ([ hyp ]) x y → H-level-Erased 1 (hyp x y)) ⦂ (_ → _) ⟩ (∀ x y → Is-proposition (Rᴱ x y)) ↝⟨ (λ prop → /ᴱ⟵≃ᴱ/ᴱ⟶ (_≃_.to Is-QERᴱ≃Is-QER-Erased qer) prop) ⟩ (∃ λ (eq : A /ᴱ Rᴱ ⟵ ≃ᴱ B /ᴱ Rᴱ ⟶) → ∀ x y → ∃ λ (f : _≃ᴱ_.to eq [ x ] ≡ [ y ] → Rᴱ x y) → Erased (Is-equivalence f)) ↝⟨ (λ (eq , ok) → drop-ᴱ eq , [ drop-ᴱ-ok eq ok ]) ⟩□ (∃ λ (eq : A /ᴱ R ⟵ ≃ᴱ B /ᴱ R ⟶) → Erased (∀ x y → (_≃ᴱ_.to eq [ x ] ≡ [ y ]) ≃ R x y)) □ where Rᴱ = λ x y → Erased (R x y) @0 lemma : ∀ x y → ((λ x y → Erased (R₁ x y)) ;ᴱ (λ x y → Erased (R₂ x y))) x y ⇔ (R₁ ;ᴱ R₂) x y lemma {R₁ = R₁} {R₂ = R₂} x z = ∥ (∃ λ y → Erased (R₁ x y) × Erased (R₂ y z)) ∥ᴱ ↔⟨ (T.∥∥ᴱ-cong $ ∃-cong λ _ → Erased↔ .erased ×-cong Erased↔ .erased) ⟩□ ∥ (∃ λ y → R₁ x y × R₂ y z) ∥ᴱ □ drop-ᴱ : A /ᴱ Rᴱ ⟵ ≃ᴱ B /ᴱ Rᴱ ⟶ → A /ᴱ R ⟵ ≃ᴱ B /ᴱ R ⟶ drop-ᴱ eq = A /ᴱ R ⟵ ↔⟨ Eq.id Q./ᴱ-cong (λ x y → inverse (lemma {R₁ = R} {R₂ = R ⁻¹} x y)) ⟩ A /ᴱ Rᴱ ⟵ ↝⟨ eq ⟩ B /ᴱ Rᴱ ⟶ ↔⟨ Eq.id Q./ᴱ-cong lemma ⟩□ B /ᴱ R ⟶ □ @0 drop-ᴱ-ok : (eq : A /ᴱ Rᴱ ⟵ ≃ᴱ B /ᴱ Rᴱ ⟶) → (∀ x y → ∃ λ (f : _≃ᴱ_.to eq [ x ] ≡ [ y ] → Rᴱ x y) → Erased (Is-equivalence f)) → ∀ x y → (_≃ᴱ_.to (drop-ᴱ eq) [ x ] ≡ [ y ]) ≃ R x y drop-ᴱ-ok eq ok x y = _≃ᴱ_.to (drop-ᴱ eq) [ x ] ≡ [ y ] ↔⟨⟩ _≃_.to (Eq.id Q./ᴱ-cong lemma) (_≃ᴱ_.to eq [ x ]) ≡ [ y ] ↝⟨ Eq.≃-≡ (Eq.id Q./ᴱ-cong lemma) ⟩ _≃ᴱ_.to eq [ x ] ≡ [ y ] ↝⟨ (let f , [ eq ] = ok x y in Eq.⟨ f , eq ⟩) ⟩ Rᴱ x y ↔⟨ Erased↔ .erased ⟩□ R x y □ ------------------------------------------------------------------------ -- Relation transformers -- Relation transformers for a given structure. Relation-transformer-for : Structure a b → Type (lsuc (a ⊔ b)) Relation-transformer-for {a = a} {b = b} F = ∀ {A B} → (A → B → Type a) → F A → F B → Type b -- A notion of "suitable" relation transformers. record Suitable {F : Structure a b} (@0 G : Relation-transformer-for F) : Type (lsuc a ⊔ b) where field -- F preserves Is-set. @0 preserves-is-set : Is-set A → Is-set (F A) -- G preserves a variant of Is-proposition. @0 preserves-is-proposition : (∀ x y → Is-proposition (R x y)) → ∀ x y → Is-proposition (G R x y) -- G is "symmetric" for propositional relations. @0 symmetric : (∀ x y → Is-proposition (R x y)) → G R x y → G (R ⁻¹) y x -- G is "transitive" for propositional relations. @0 transitive : (∀ x y → Is-proposition (R x y)) → (∀ x y → Is-proposition (S x y)) → G R x y → G S y z → G (R ;ᴱ S) x z -- Descent to quotients. Note that this is the only non-erased -- field of this record type. descent : {@0 R : A → A → Type a} → @0 (∀ x y → Is-proposition (R x y)) → @0 Is-equivalence-relation R → @0 G R x x → Contractibleᴱ (∃ λ (y : F (A /ᴱ R)) → Erased (G (Graph [_]) x y)) -- A variant of transitive. @0 transitive-;ᴱ : (∀ x y → Is-proposition (R x y)) → (∀ x y → Is-proposition (S x y)) → ∀ x z → (G R ;ᴱ G S) x z → G (R ;ᴱ S) x z transitive-;ᴱ R-prop S-prop _ _ = T.rec λ @0 where .T.truncation-is-propositionʳ → preserves-is-proposition (λ _ _ → T.truncation-is-proposition) _ _ .T.∣∣ʳ (_ , GRxy , GSyz) → transitive R-prop S-prop GRxy GSyz -- A variant of Univalent for relation transformers. Univalentᴿ : {F : Structure a b} → @0 Relation-transformer-for F → Type (lsuc a ⊔ b) Univalentᴿ {F = F} G = Suitable G × Univalent F (λ (A , x) (B , y) eq → G (Graph (_≃ᴱ_.to eq)) x y) -- A notion of "acting on functions" for relation transformers. record Acts-on-functions {F : Structure a b} (@0 G : Relation-transformer-for F) : Type (lsuc a ⊔ b) where field -- A map function. map : (A → B) → F A → F B -- Mapping the identity function is the same thing as applying the -- identity function. @0 map-id : map {A = A} id ≡ id -- G respects map in a certain way. @0 map-map : {R₁ : A₁ → B₁ → Type a} {R₂ : A₂ → B₂ → Type a} → (∀ {x y} → R₁ x y → R₂ (f x) (g y)) → G R₁ x y → G R₂ (map f x) (map g y) -- Suitable respects equivalences. Suitable-map : {@0 G H : Relation-transformer-for F} → @0 (∀ {A B} {R : A → B → _} {x y} → G R x y ≃ H R x y) → Suitable G → Suitable H Suitable-map {G = G} {H = H} G≃H s-G = λ where .Suitable.preserves-is-set → S.preserves-is-set .Suitable.preserves-is-proposition {R = R} → (∀ x y → Is-proposition (R x y)) ↝⟨ S.preserves-is-proposition ⟩ (∀ x y → Is-proposition (G R x y)) ↝⟨ (∀-cong _ λ _ → ∀-cong _ λ _ → H-level-cong _ 1 G≃H) ⟩□ (∀ x y → Is-proposition (H R x y)) □ .Suitable.symmetric {R = R} {x = x} {y = y} → (∀ x y → Is-proposition (R x y)) ↝⟨ S.symmetric ⟩ (G R x y → G (R ⁻¹) y x) ↝⟨ →-cong-→ (_≃_.from G≃H) (_≃_.to G≃H) ⟩□ (H R x y → H (R ⁻¹) y x) □ .Suitable.transitive {R = R} {S = S} {x = x} {y = y} {z = z} → curry ((∀ x y → Is-proposition (R x y)) × (∀ x y → Is-proposition (S x y)) ↝⟨ uncurry S.transitive ⟩ (G R x y → G S y z → G (R ;ᴱ S) x z) ↝⟨ →-cong-→ (_≃_.from G≃H) (→-cong-→ (_≃_.from G≃H) (_≃_.to G≃H)) ⟩□ (H R x y → H S y z → H (R ;ᴱ S) x z) □) .Suitable.descent {x = x} {R = R} prop equiv HRxx → $⟨ [ HRxx ] ⟩ Erased (H R x x) ↔⟨ Erased-cong (inverse G≃H) ⟩ Erased (G R x x) ↝⟨ (λ ([ hyp ]) → S.descent prop equiv hyp) ⦂ (_ → _) ⟩ Contractibleᴱ (∃ λ y → Erased (G (Graph [_]) x y)) ↝⟨ ECP.Contractibleᴱ-cong _ (∃-cong λ _ → Erased-cong G≃H) ⟩□ Contractibleᴱ (∃ λ y → Erased (H (Graph [_]) x y)) □ where module S = Suitable s-G -- If R is a propositional QER (with erased proofs) between A and B, G -- is a suitable relation transformer for F, and G R x y holds, then -- there are structures in F (A /ᴱ R ⟵) and F (B /ᴱ R ⟶) that are -- related in a certain way to x and y, respectively, and the two -- structures are also related to each other by /ᴱ⟵≃ᴱ/ᴱ⟶ᴱ in a certain -- way. -- -- This is a variant of Theorem 5.7 from "Internalizing Representation -- Independence with Univalence". Note that quite a few inputs are -- erased, and also parts of the result. Suitable→/ᴱ⟵×/ᴱ⟶ : {F : Structure a b} ((A , x) (B , y) : Type-with F) → {@0 R : A → B → Type a} {@0 G : Relation-transformer-for F} → Suitable G → (qer : Is-QERᴱ R) (@0 prop : ∀ x y → Is-proposition (R x y)) → @0 G R x y → ∃ λ (x′ : F (A /ᴱ R ⟵)) → ∃ λ (y′ : F (B /ᴱ R ⟶)) → Erased (G (Graph [_]) x x′ × G (Graph [_]) y y′ × G (Graph (_≃ᴱ_.to (/ᴱ⟵≃ᴱ/ᴱ⟶ᴱ qer prop .proj₁))) x′ y′) Suitable→/ᴱ⟵×/ᴱ⟶ {F = F} (A , x) (B , y) {R = R} {G = G} s qer@([ qper ] , _) prop g = x″ , y″ , [ (Gxx″ , Gyy″ , g″) ] where module S = Suitable s @0 x∼x : G (R ⟵) x x x∼x = S.transitive prop (flip prop) g (S.symmetric prop g) @0 y∼y : G (R ⟶) y y y∼y = S.transitive (flip prop) prop (S.symmetric prop g) g x-lemma : Contractibleᴱ (∃ λ (x′ : F (A /ᴱ R ⟵)) → Erased (G (Graph [_]) x x′)) x-lemma = S.descent (λ _ _ → T.truncation-is-proposition) (Is-QERᴱ→Is-equivalence-relation-⟵ qer) x∼x y-lemma : Contractibleᴱ (∃ λ (y′ : F (B /ᴱ R ⟶)) → Erased (G (Graph [_]) y y′)) y-lemma = S.descent (λ _ _ → T.truncation-is-proposition) (Is-QERᴱ→Is-equivalence-relation-⟶ qer) y∼y x″ = x-lemma .proj₁ .proj₁ y″ = y-lemma .proj₁ .proj₁ @0 Gxx″ : G (Graph [_]) x x″ Gxx″ = x-lemma .proj₁ .proj₂ .erased @0 Gyy″ : G (Graph [_]) y y″ Gyy″ = y-lemma .proj₁ .proj₂ .erased @0 g′ : G (Graph [_] ⁻¹ ;ᴱ R ;ᴱ Graph [_]) x″ y″ g′ = S.transitive (λ _ _ → Q./ᴱ-is-set) (λ _ _ → T.truncation-is-proposition) (S.symmetric (λ _ _ → Q./ᴱ-is-set) Gxx″) (S.transitive prop (λ _ _ → Q./ᴱ-is-set) g Gyy″) equiv = /ᴱ⟵≃ᴱ/ᴱ⟶ᴱ qer prop .proj₁ @0 to : ∀ {x y} → (Graph [_] ⁻¹ ;ᴱ R ;ᴱ Graph [_]) [ x ] [ y ] → R x y to {x = x} {y = y} = T.rec λ @0 where .T.truncation-is-propositionʳ → prop _ _ .T.∣∣ʳ → uncurry λ x′ → uncurry λ [x′]≡[x] → T.rec λ @0 where .T.truncation-is-propositionʳ → prop _ _ .T.∣∣ʳ (y′ , Rx′y′ , [y′]≡[y]) → let R⟵x′x : (R ⟵) x′ x R⟵x′x = _≃_.from (Q.related≃[equal] (Is-QERᴱ→Is-equivalence-relation-⟵ qer) T.truncation-is-proposition) [x′]≡[x] R⟶y′y : (R ⟶) y′ y R⟶y′y = _≃_.from (Q.related≃[equal] (Is-QERᴱ→Is-equivalence-relation-⟶ qer) T.truncation-is-proposition) [y′]≡[y] in flip T.rec R⟵x′x λ @0 where .T.truncation-is-propositionʳ → prop _ _ .T.∣∣ʳ (_ , Rx′x″ , Rxx″) → flip T.rec R⟶y′y λ @0 where .T.truncation-is-propositionʳ → prop _ _ .T.∣∣ʳ (_ , Ry″y′ , Ry″y) → qper Rxx″ Rx′x″ (qper Rx′y′ Ry″y′ Ry″y) @0 from : ∀ {x y} → R x y → (Graph [_] ⁻¹ ;ᴱ R ;ᴱ Graph [_]) [ x ] [ y ] from Rxy = ∣ _ , refl _ , ∣ _ , Rxy , refl _ ∣ ∣ @0 lemma : ∀ x y → (Graph [_] ⁻¹ ;ᴱ R ;ᴱ Graph [_]) x y ≃ Graph (_≃ᴱ_.to equiv) x y lemma = Q.elim-prop λ @0 where .Q.is-propositionʳ _ → Π-closure ext 1 λ _ → Eq.left-closure ext 0 T.truncation-is-proposition .Q.[]ʳ x → Q.elim-prop λ @0 where .Q.is-propositionʳ _ → Eq.left-closure ext 0 T.truncation-is-proposition .Q.[]ʳ y → (Graph [_] ⁻¹ ;ᴱ R ;ᴱ Graph [_]) [ x ] [ y ] ↝⟨ Eq.⇔→≃ T.truncation-is-proposition (prop _ _) to from ⟩ R x y ↝⟨ inverse (/ᴱ⟵≃ᴱ/ᴱ⟶ᴱ qer prop .proj₂ .erased _ _) ⟩□ Graph (_≃ᴱ_.to equiv) [ x ] [ y ] □ @0 g″ : G (Graph (_≃ᴱ_.to equiv)) x″ y″ g″ = subst (λ R → G R x″ y″) (⟨ext⟩ λ x → ⟨ext⟩ λ y → ≃⇒≡ U.univ (lemma x y)) g′ -- If R is a propositional QER (with erased proofs) between A and B, G -- is a univalent relation transformer for F, and G R x y holds, then -- there are structures x′ : F (A /ᴱ R ⟵) and y′ : F (B /ᴱ R ⟶) that -- are related in a certain way to x and y, respectively, and -- furthermore the two values A /ᴱ R ⟵ , x′ and B /ᴱ R ⟶ , y′ of type -- Type-with F are equal (in erased contexts). -- -- This is a corollary of Suitable→/ᴱ⟵×/ᴱ⟶, /ᴱ⟵≃ᴱ/ᴱ⟶ᴱ and sip. Univalentᴿ→/ᴱ⟵×/ᴱ⟶ : {F : Structure a b} ((A , x) (B , y) : Type-with F) → {@0 R : A → B → Type a} {@0 G : Relation-transformer-for F} → Univalentᴿ G → (qer : Is-QERᴱ R) (@0 prop : ∀ x y → Is-proposition (R x y)) → @0 G R x y → ∃ λ (x′ : F (A /ᴱ R ⟵)) → ∃ λ (y′ : F (B /ᴱ R ⟶)) → Erased (G (Graph [_]) x x′ × G (Graph [_]) y y′ × _≡_ {A = Type-with F} (A /ᴱ R ⟵ , x′) (B /ᴱ R ⟶ , y′)) Univalentᴿ→/ᴱ⟵×/ᴱ⟶ (A , x) (B , y) {R = R} {G = G} (s , u) qer prop g = let (x′ , y′ , [ x∼x′ , y∼y′ , x′∼y′ ]) = Suitable→/ᴱ⟵×/ᴱ⟶ (A , x) (B , y) s qer prop g in x′ , y′ , [ ( x∼x′ , y∼y′ , ( $⟨ /ᴱ⟵≃ᴱ/ᴱ⟶ᴱ qer prop .proj₁ , [ x′∼y′ ] ⟩ (A /ᴱ R ⟵ , x′) ≃[ (λ (A , x) (B , y) eq → G (Graph (_≃ᴱ_.to eq)) x y) ]ᴱ (B /ᴱ R ⟶ , y′) ↝⟨ sip u ⟩□ (A /ᴱ R ⟵ , x′) ≡ (B /ᴱ R ⟶ , y′) □) ) ] -- If G is a suitable relation transformer (for F) that acts on -- functions, and R is a propositional equivalence relation on A, then -- there is a function from F A /ᴱ G R to F (A /ᴱ R). -- -- This is a variant of Lemma 5.10 from "Internalizing Representation -- Independence with Univalence". Note that quite a few inputs are -- erased. /ᴱ→/ᴱ : {A : Type a} {@0 R : A → A → Type a} (@0 G : Relation-transformer-for F) → Suitable G → Acts-on-functions G → @0 (∀ x y → Is-proposition (R x y)) → @0 Is-equivalence-relation R → F A /ᴱ G R → F (A /ᴱ R) /ᴱ→/ᴱ {F = F} {R = R} G s acts prop equiv = Q.rec λ where .Q.[]ʳ → map [_] .Q.is-setʳ → S.preserves-is-set Q./ᴱ-is-set .Q.[]-respects-relationʳ {x = x} {y = y} GRxy → let GRxx = $⟨ GRxy ⟩ G R x y ↝⟨ (λ GRxy → S.transitive prop (flip prop) GRxy (S.symmetric prop GRxy)) ⟩ G (R ⟵) x x ↝⟨ subst (λ R → G R _ _) (⟵≡ prop equiv) ⟩□ G R x x □ ((z , _) , [ unique ]) = $⟨ GRxx ⟩ G R x x ↝⟨ (λ GRxx → S.descent prop equiv GRxx) ⦂ (_ → _) ⟩□ Contractibleᴱ (∃ λ z → Erased (G (Graph [_]) x z)) □ lemma₁ = $⟨ map-map Q.[]-respects-relation GRxx ⟩ G (Graph [_]) (map id x) (map [_] x) ↝⟨ subst (λ x′ → G (Graph [_]) x′ (map [_] x)) (cong (_$ x) map-id) ⟩□ G (Graph [_]) x (map [_] x) □ lemma₂ = $⟨ map-map Q.[]-respects-relation GRxy ⟩ G (Graph [_]) (map id x) (map [_] y) ↝⟨ subst (λ x → G (Graph [_]) x (map [_] y)) (cong (_$ x) map-id) ⟩□ G (Graph [_]) x (map [_] y) □ in map [_] x ≡⟨ sym $ cong proj₁ (unique (_ , [ lemma₁ ])) ⟩ z ≡⟨ cong proj₁ (unique (_ , [ lemma₂ ])) ⟩∎ map [_] y ∎ where module S = Suitable s open Acts-on-functions acts -- Positive relation transformers. -- -- Angiuli et al. define this notion for suitable relation -- transformers that act on functions. This definition works for -- arbitrary relation transformers G, and instead inludes fields of -- type Suitable G and Acts-on-functions G. (In their source code -- Angiuli et al. take a third approach, with the property -- corresponding to Suitable G as a parameter, and the property -- corresponding to Acts-on-functions G as a field.) record Positive {F : Structure a b} (@0 G : Relation-transformer-for F) : Type (lsuc a ⊔ b) where field -- G is suitable. suitable : Suitable G -- G acts on functions. acts-on-functions : Acts-on-functions G -- G is reflexive for a certain relation. @0 reflexive-∥≡∥ᴱ : G (λ x y → ∥ x ≡ y ∥ᴱ) x x -- The function Suitable.transitive-;ᴱ suitable is an equivalence -- (pointwise). @0 transitive-;ᴱ⁻¹ : {R : A → B → Type a} {S : B → C → Type a} (R-prop : ∀ x y → Is-proposition (R x y)) (S-prop : ∀ x y → Is-proposition (S x y)) (x : F A) (z : F C) → Is-equivalence (Suitable.transitive-;ᴱ suitable R-prop S-prop x z) -- The function /ᴱ→/ᴱ G suitable acts-on-functions is an -- equivalence with erased proofs (pointwise). commutes-with-/ᴱ : {@0 R : A → A → Type a} (@0 prop : ∀ x y → Is-proposition (R x y)) (@0 equiv : Is-equivalence-relation R) → Is-equivalenceᴱ (/ᴱ→/ᴱ G suitable acts-on-functions prop equiv) -- G R is reflexive for propositional equivalence relations R (in -- erased contexts). @0 reflexive : (∀ x y → Is-proposition (R x y)) → Is-equivalence-relation R → ∀ x → G R x x reflexive {R = R} prop equiv x = $⟨ reflexive-∥≡∥ᴱ ⟩ G (λ x y → ∥ x ≡ y ∥ᴱ) x x ↝⟨ A.map-map (T.rec λ @0 where .T.truncation-is-propositionʳ → prop _ _ .T.∣∣ʳ x≡y → subst (R _) x≡y E.reflexive) ⟩ G R (A.map id x) (A.map id x) ↝⟨ subst (uncurry (G R)) (cong (λ f → f x , f x) A.map-id) ⟩□ G R x x □ where module A = Acts-on-functions acts-on-functions module E = Is-equivalence-relation equiv ------------------------------------------------------------------------ -- The Const and Constᴿ combinators, along with some properties -- Constant structures. Const : Type b → Structure a b Const B = λ _ → B -- Relation transformers for Const. Constᴿ : (B : Type b) → Relation-transformer-for (Const {a = a} B) Constᴿ _ _ = _≡_ -- When is an equivalence structure-preserving for Const? Is-Const-equivalence : {B : Type b} → Structure-preserving-equivalence-predicate (Const {a = a} B) b Is-Const-equivalence (_ , x) (_ , y) _ = x ≡ y -- Const and Is-Const-equivalence are univalent. Const-univalent : Univalent (Const {a = a} B) Is-Const-equivalence Const-univalent {B = B} .Univalent.univalent {A = _ , x} {B = _ , y} eq = x ≡ y ↝⟨ ≡⇒≃ $ cong (_≡ _) $ sym $ subst-const _ ⟩□ subst (Const B) (≃⇒≡ U.abstract-univ (EEq.≃ᴱ→≃ eq)) x ≡ y □ -- Constᴿ is suitable for sets. Constᴿ-suitable : @0 Is-set B → Suitable (Constᴿ {a = a} B) Constᴿ-suitable set = λ where .Suitable.preserves-is-set _ → set .Suitable.preserves-is-proposition _ _ _ → set .Suitable.symmetric _ → sym .Suitable.transitive _ _ → trans .Suitable.descent _ _ _ → Contractibleᴱ-Erased-other-singleton -- Constᴿ is univalent for sets. Constᴿ-univalent : @0 Is-set B → Univalentᴿ (Constᴿ {a = a} B) Constᴿ-univalent set = Constᴿ-suitable set , Const-univalent -- Constᴿ acts on functions. Constᴿ-acts-on-functions : Acts-on-functions (Constᴿ {a = a} B) Constᴿ-acts-on-functions = λ where .Acts-on-functions.map _ → id .Acts-on-functions.map-id → refl _ .Acts-on-functions.map-map _ → id -- Constᴿ is positive for sets. Constᴿ-positive : @0 Is-set B → Positive (Constᴿ {a = a} B) Constᴿ-positive {B = B} set = λ where .Positive.suitable → Constᴿ-suitable set .Positive.acts-on-functions → Constᴿ-acts-on-functions .Positive.reflexive-∥≡∥ᴱ → refl _ .Positive.transitive-;ᴱ⁻¹ {R = R} {S = S} _ _ x z → _≃_.is-equivalence ((Constᴿ B R ;ᴱ Constᴿ B S) x z ↔⟨⟩ ∥ (∃ λ y → x ≡ y × y ≡ z) ∥ᴱ ↝⟨ Eq.⇔→≃ T.truncation-is-proposition set _ (λ x≡z → ∣ _ , x≡z , refl _ ∣) ⟩ x ≡ z ↔⟨⟩ Constᴿ B (R ;ᴱ S) x z □) .Positive.commutes-with-/ᴱ {A = C} {R = R} prop equiv → _≃ᴱ_.is-equivalence $ EEq.with-other-function (Const B C /ᴱ Constᴿ B R ↔⟨⟩ B /ᴱ _≡_ ↔⟨ Q./ᴱ≡↔ set ⟩ B ↔⟨⟩ Const B (C /ᴱ R) □) (/ᴱ→/ᴱ (Constᴿ B) (Constᴿ-suitable set) Constᴿ-acts-on-functions prop equiv) (Q.elim-prop λ @0 where .Q.is-propositionʳ _ → set .Q.[]ʳ _ → refl _) ------------------------------------------------------------------------ -- The Id and Idᴿ combinators, along with some properties -- Identity structures. Id : Structure a a Id A = A -- Relation transformers for Id. Idᴿ : Relation-transformer-for (Id {a = a}) Idᴿ R = R -- When is an equivalence structure-preserving for Id? Is-Id-equivalence : Structure-preserving-equivalence-predicate Id a Is-Id-equivalence (_ , x) (_ , y) eq = _≃ᴱ_.to eq x ≡ y -- Id and Is-Id-equivalence are univalent. Id-univalent : Univalent (Id {a = a}) Is-Id-equivalence Id-univalent .Univalent.univalent {A = _ , x} {B = _ , y} eq = _≃ᴱ_.to eq x ≡ y ↝⟨ ≡⇒≃ $ cong (_≡ _) $ cong (λ eq → _≃_.to eq x) $ sym $ _≃_.right-inverse-of (≡≃≃ univ) _ ⟩ ≡⇒→ (≃⇒≡ univ (EEq.≃ᴱ→≃ eq)) x ≡ y ↝⟨ ≡⇒≃ $ cong (_≡ _) $ sym $ subst-id-in-terms-of-≡⇒↝ equivalence ⟩□ subst Id (≃⇒≡ univ (EEq.≃ᴱ→≃ eq)) x ≡ y □ where univ = U.abstract-univ -- Idᴿ is suitable. Idᴿ-suitable : Suitable (Idᴿ {a = a}) Idᴿ-suitable = λ where .Suitable.preserves-is-set → id .Suitable.preserves-is-proposition → id .Suitable.symmetric _ → id .Suitable.transitive _ _ Rxy Syz → ∣ _ , Rxy , Syz ∣ .Suitable.descent _ _ _ → Contractibleᴱ-Erased-other-singleton -- Idᴿ is univalent. Idᴿ-univalent : Univalentᴿ (Idᴿ {a = a}) Idᴿ-univalent = Idᴿ-suitable , Id-univalent -- Idᴿ acts on functions. Idᴿ-acts-on-functions : Acts-on-functions (Idᴿ {a = a}) Idᴿ-acts-on-functions = λ where .Acts-on-functions.map → id .Acts-on-functions.map-id → refl _ .Acts-on-functions.map-map f → f -- Idᴿ is positive. Idᴿ-positive : Positive (Idᴿ {a = a}) Idᴿ-positive = λ where .Positive.suitable → Idᴿ-suitable .Positive.acts-on-functions → Idᴿ-acts-on-functions .Positive.reflexive-∥≡∥ᴱ → ∣ refl _ ∣ .Positive.transitive-;ᴱ⁻¹ {R = R} {S = S} R-prop S-prop x z → _≃_.is-equivalence $ Eq.with-other-function ((Idᴿ R ;ᴱ Idᴿ S) x z ↔⟨⟩ (R ;ᴱ S) x z ↔⟨⟩ Idᴿ (R ;ᴱ S) x z □) (Suitable.transitive-;ᴱ Idᴿ-suitable R-prop S-prop x z) (T.elim λ @0 where .T.truncation-is-propositionʳ _ → H-level.⇒≡ 1 T.truncation-is-proposition .T.∣∣ʳ _ → refl _) .Positive.commutes-with-/ᴱ {A = A} {R = R} prop equiv → _≃ᴱ_.is-equivalence $ EEq.with-other-function (Id A /ᴱ Idᴿ R ↔⟨⟩ A /ᴱ R ↔⟨⟩ Id (A /ᴱ R) □) (/ᴱ→/ᴱ Idᴿ Idᴿ-suitable Idᴿ-acts-on-functions prop equiv) (Q.elim-prop λ @0 where .Q.is-propositionʳ _ → Q./ᴱ-is-set .Q.[]ʳ _ → refl _) ------------------------------------------------------------------------ -- Combinators related to Cartesian products -- Product structures. Product : Structure a b → Structure a c → Structure a (b ⊔ c) Product F G A = F A × G A -- A combinator that, given relation transformers for F and G, -- produces a relation transformer for Product F G. Productᴿ : Relation-transformer-for F → Relation-transformer-for G → Relation-transformer-for (Product F G) Productᴿ S T R = S R ×ᴾ T R -- When is an equivalence structure-preserving for Product F G? Is-Product-equivalence : Structure-preserving-equivalence-predicate F a → Structure-preserving-equivalence-predicate G b → Structure-preserving-equivalence-predicate (Product F G) (a ⊔ b) Is-Product-equivalence Is-F-eq Is-G-eq (A , x₁ , x₂) (B , y₁ , y₂) eq = Is-F-eq (A , x₁) (B , y₁) eq × Is-G-eq (A , x₂) (B , y₂) eq -- If F and G are univalent, then Product F G is univalent. Product-univalent : {@0 F : Structure a b} {@0 G : Structure a c} {@0 Is-F-eq : Structure-preserving-equivalence-predicate F d} {@0 Is-G-eq : Structure-preserving-equivalence-predicate G e} → @0 Univalent F Is-F-eq → @0 Univalent G Is-G-eq → Univalent (Product F G) (Is-Product-equivalence Is-F-eq Is-G-eq) Product-univalent {F = F} {G = G} {Is-F-eq = Is-F-eq} {Is-G-eq = Is-G-eq} u-F u-G .Univalent.univalent {A = A , x₁ , x₂} {B = B , y₁ , y₂} eq = Is-F-eq (A , x₁) (B , y₁) eq × Is-G-eq (A , x₂) (B , y₂) eq ↝⟨ u-F .Univalent.univalent eq ×-cong u-G .Univalent.univalent eq ⟩ subst F (≃⇒≡ univ (EEq.≃ᴱ→≃ eq)) x₁ ≡ y₁ × subst G (≃⇒≡ univ (EEq.≃ᴱ→≃ eq)) x₂ ≡ y₂ ↔⟨ ≡×≡↔≡ ⟩ ( subst F (≃⇒≡ univ (EEq.≃ᴱ→≃ eq)) x₁ , subst G (≃⇒≡ univ (EEq.≃ᴱ→≃ eq)) x₂ ) ≡ (y₁ , y₂) ↝⟨ ≡⇒≃ $ cong (_≡ _) $ sym $ push-subst-, _ _ ⟩□ subst (Product F G) (≃⇒≡ univ (EEq.≃ᴱ→≃ eq)) (x₁ , x₂) ≡ (y₁ , y₂) □ where univ = U.abstract-univ -- If S and T are suitable, then Productᴿ S T is suitable. Productᴿ-suitable : {@0 S : Relation-transformer-for F} {@0 T : Relation-transformer-for G} → Suitable S → Suitable T → Suitable (Productᴿ S T) Productᴿ-suitable {S = S} {T = T} s-S s-T = λ where .Suitable.preserves-is-set set → ×-closure 2 (s-S .Suitable.preserves-is-set set) (s-T .Suitable.preserves-is-set set) .Suitable.preserves-is-proposition prop _ _ → ×-closure 1 (s-S .Suitable.preserves-is-proposition prop _ _) (s-T .Suitable.preserves-is-proposition prop _ _) .Suitable.symmetric prop → Σ-map (s-S .Suitable.symmetric prop) (s-T .Suitable.symmetric prop) .Suitable.transitive prop₁ prop₂ → Σ-zip (s-S .Suitable.transitive prop₁ prop₂) (s-T .Suitable.transitive prop₁ prop₂) .Suitable.descent {x = x , y} {R = R} prop equiv (SRxx , Tryy) → $⟨ [ SRxx ] , [ Tryy ] ⟩ Erased (S R x x) × Erased (T R y y) ↝⟨ Σ-map (λ ([ SRxx ]) → s-S .Suitable.descent prop equiv SRxx) (λ ([ TRyy ]) → s-T .Suitable.descent prop equiv TRyy) ⟩ Contractibleᴱ (∃ λ x′ → Erased (S (Graph [_]) x x′)) × Contractibleᴱ (∃ λ y′ → Erased (T (Graph [_]) y y′)) ↝⟨ uncurry ECP.Contractibleᴱ-× ⟩ Contractibleᴱ ((∃ λ x′ → Erased (S (Graph [_]) x x′)) × (∃ λ y′ → Erased (T (Graph [_]) y y′))) ↝⟨ ECP.Contractibleᴱ-cong _ $ Σ-assoc F.∘ (∃-cong λ _ → ∃-cong λ _ → inverse Erased-Σ↔Σ) F.∘ (∃-cong λ _ → ∃-comm) F.∘ inverse Σ-assoc ⟩□ Contractibleᴱ (∃ λ p → Erased (Productᴿ S T (Graph [_]) (x , y) p)) □ -- If S and T are univalent, then Productᴿ S T is univalent. Productᴿ-univalent : {@0 S : Relation-transformer-for F} {@0 T : Relation-transformer-for G} → Univalentᴿ S → Univalentᴿ T → Univalentᴿ (Productᴿ S T) Productᴿ-univalent (s-S , u-S) (s-T , u-T) = Productᴿ-suitable s-S s-T , Product-univalent u-S u-T -- If S and T act on functions, then Productᴿ S T acts on functions. Productᴿ-acts-on-functions : {@0 S : Relation-transformer-for F} {@0 T : Relation-transformer-for G} → Acts-on-functions S → Acts-on-functions T → Acts-on-functions (Productᴿ S T) Productᴿ-acts-on-functions {S = S} {T = T} a-S a-T = λ where .Acts-on-functions.map f → Σ-map (a-S .Acts-on-functions.map f) (a-T .Acts-on-functions.map f) .Acts-on-functions.map-id → Σ-map (a-S .Acts-on-functions.map id) (a-T .Acts-on-functions.map id) ≡⟨ cong₂ (λ f g → Σ-map f g) (a-S .Acts-on-functions.map-id) (a-T .Acts-on-functions.map-id) ⟩ Σ-map id id ≡⟨⟩ id ∎ .Acts-on-functions.map-map {f = f} {g = g} {x = x₁ , x₂} {y = y₁ , y₂} {R₁ = R₁} {R₂ = R₂} R₁→R₂ → S R₁ x₁ y₁ × T R₁ x₂ y₂ ↝⟨ a-S .Acts-on-functions.map-map R₁→R₂ ×-cong a-T .Acts-on-functions.map-map R₁→R₂ ⟩□ S R₂ (a-S .Acts-on-functions.map f x₁) (a-S .Acts-on-functions.map g y₁) × T R₂ (a-T .Acts-on-functions.map f x₂) (a-T .Acts-on-functions.map g y₂) □ -- If S and T are positive, then Productᴿ S T is positive. Productᴿ-positive : {@0 S : Relation-transformer-for F} {@0 T : Relation-transformer-for G} → Positive S → Positive T → Positive (Productᴿ S T) Productᴿ-positive {F = F} {G = G} {S = S} {T = T} p-S p-T = λ where .Positive.suitable → suitable .Positive.acts-on-functions → acts-on-functions .Positive.reflexive-∥≡∥ᴱ → SP.reflexive-∥≡∥ᴱ , TP.reflexive-∥≡∥ᴱ .Positive.transitive-;ᴱ⁻¹ {R = R₁} {S = R₂} R₁-prop R₂-prop x@(x₁ , x₂) z@(z₁ , z₂) → _≃_.is-equivalence $ Eq.with-other-function ((Productᴿ S T R₁ ;ᴱ Productᴿ S T R₂) x z ↝⟨ lemma ⟩ (S R₁ ;ᴱ S R₂) x₁ z₁ × (T R₁ ;ᴱ T R₂) x₂ z₂ ↝⟨ Eq.⟨ _ , SP.transitive-;ᴱ⁻¹ R₁-prop R₂-prop _ _ ⟩ ×-cong Eq.⟨ _ , TP.transitive-;ᴱ⁻¹ R₁-prop R₂-prop _ _ ⟩ ⟩ S (R₁ ;ᴱ R₂) x₁ z₁ × T (R₁ ;ᴱ R₂) x₂ z₂ ↔⟨⟩ Productᴿ S T (R₁ ;ᴱ R₂) x z □) _ (T.elim λ @0 where .T.truncation-is-propositionʳ _ → H-level.mono₁ 1 $ ×-closure 1 (SS.preserves-is-proposition (λ _ _ → T.truncation-is-proposition) _ _) (TS.preserves-is-proposition (λ _ _ → T.truncation-is-proposition) _ _) .T.∣∣ʳ _ → refl _) .Positive.commutes-with-/ᴱ {A = A} {R = R} prop equiv → _≃ᴱ_.is-equivalence $ EEq.with-other-function (Product F G A /ᴱ Productᴿ S T R ↔⟨⟩ (F A × G A) /ᴱ Productᴿ S T R ↔⟨ Q.×/ᴱ (SP.reflexive prop equiv _) (TP.reflexive prop equiv _) ⟩ F A /ᴱ S R × G A /ᴱ T R ↝⟨ EEq.⟨ _ , SP.commutes-with-/ᴱ prop equiv ⟩ ×-cong EEq.⟨ _ , TP.commutes-with-/ᴱ prop equiv ⟩ ⟩ F (A /ᴱ R) × G (A /ᴱ R) ↔⟨⟩ Product F G (A /ᴱ R) □) _ (Q.elim-prop λ @0 where .Q.is-propositionʳ _ → ×-closure 2 (SS.preserves-is-set Q./ᴱ-is-set) (TS.preserves-is-set Q./ᴱ-is-set) .Q.[]ʳ _ → refl _) where module SP = Positive p-S module SS = Suitable SP.suitable module TP = Positive p-T module TS = Suitable TP.suitable suitable = Productᴿ-suitable SP.suitable TP.suitable acts-on-functions = Productᴿ-acts-on-functions SP.acts-on-functions TP.acts-on-functions @0 lemma : (Productᴿ S T R₁ ;ᴱ Productᴿ S T R₂) (x₁ , x₂) (z₁ , z₂) ≃ ((S R₁ ;ᴱ S R₂) x₁ z₁ × (T R₁ ;ᴱ T R₂) x₂ z₂) lemma = Eq.⇔→≃ T.truncation-is-proposition (×-closure 1 T.truncation-is-proposition T.truncation-is-proposition) (T.rec λ @0 where .T.truncation-is-propositionʳ → ×-closure 1 T.truncation-is-proposition T.truncation-is-proposition .T.∣∣ʳ (_ , (SR₁x₁y₁ , TR₁x₂y₂) , (SR₂y₁z₁ , TR₂y₂z₂)) → ∣ _ , SR₁x₁y₁ , SR₂y₁z₁ ∣ , ∣ _ , TR₁x₂y₂ , TR₂y₂z₂ ∣) (uncurry $ T.rec λ @0 where .T.truncation-is-propositionʳ → Π-closure ext 1 λ _ → T.truncation-is-proposition .T.∣∣ʳ (_ , SR₁x₁y₁ , SR₂y₁z₁) → T.∥∥ᴱ-map λ (_ , TR₁x₂y₂ , TR₂y₂z₂) → _ , (SR₁x₁y₁ , TR₁x₂y₂) , (SR₂y₁z₁ , TR₂y₂z₂)) ------------------------------------------------------------------------ -- Combinators related to Maybe -- A combinator that, given a relation transformer for F, produces a -- relation transformer for Maybe ∘ F. Maybeᴿ : Relation-transformer-for F → Relation-transformer-for (Maybe ∘ F) Maybeᴿ = Maybeᴾ ∘_ -- When is an equivalence structure-preserving for Maybe ∘ F? Is-Maybe-equivalence : Structure-preserving-equivalence-predicate F a → Structure-preserving-equivalence-predicate (Maybe ∘ F) a Is-Maybe-equivalence Is-F-eq = λ where (A , nothing) (B , nothing) eq → ↑ _ ⊤ (A , just x) (B , just y) eq → Is-F-eq (A , x) (B , y) eq (A , _) (B , _) eq → ⊥ -- If F is univalent, then Maybe ∘ F is univalent. Maybe-univalent : {@0 F : Structure a b} {@0 Is-F-eq : Structure-preserving-equivalence-predicate F c} → @0 Univalent F Is-F-eq → Univalent (Maybe ∘ F) (Is-Maybe-equivalence Is-F-eq) Maybe-univalent {F = F} {Is-F-eq = Is-F-eq} u-F .Univalent.univalent {A = A , x} {B = B , y} = lemma x y where univ = U.abstract-univ lemma : (x : Maybe (F A)) (y : Maybe (F B)) → (eq : A ≃ᴱ B) → Is-Maybe-equivalence Is-F-eq (A , x) (B , y) eq ≃ (subst (Maybe ∘ F) (≃⇒≡ univ (EEq.≃ᴱ→≃ eq)) x ≡ y) lemma nothing nothing eq = ↑ _ ⊤ ↔⟨ B.↑↔ ⟩ ⊤ ↔⟨ inverse tt≡tt↔⊤ ⟩ tt ≡ tt ↔⟨ B.≡↔inj₁≡inj₁ ⟩ nothing ≡ nothing ↝⟨ ≡⇒≃ $ cong (_≡ _) $ sym $ push-subst-inj₁ _ _ ⟩□ subst (Maybe ∘ F) (≃⇒≡ univ (EEq.≃ᴱ→≃ eq)) nothing ≡ nothing □ lemma nothing (just y) eq = ⊥ ↔⟨ ⊥↔⊥ ⟩ ⊥ ↔⟨ inverse B.≡↔⊎ ⟩ nothing ≡ just y ↝⟨ ≡⇒≃ $ cong (_≡ _) $ sym $ push-subst-inj₁ _ _ ⟩□ subst (Maybe ∘ F) (≃⇒≡ univ (EEq.≃ᴱ→≃ eq)) nothing ≡ just y □ lemma (just x) nothing eq = ⊥ ↔⟨ ⊥↔⊥ ⟩ ⊥ ↔⟨ inverse B.≡↔⊎ ⟩ just _ ≡ nothing ↝⟨ ≡⇒≃ $ cong (_≡ _) $ sym $ push-subst-inj₂ _ _ ⟩□ subst (Maybe ∘ F) (≃⇒≡ univ (EEq.≃ᴱ→≃ eq)) (just x) ≡ nothing □ lemma (just x) (just y) eq = Is-F-eq (A , x) (B , y) eq ↝⟨ u-F .Univalent.univalent eq ⟩ subst F (≃⇒≡ univ (EEq.≃ᴱ→≃ eq)) x ≡ y ↔⟨ B.≡↔inj₂≡inj₂ ⟩ just (subst F (≃⇒≡ univ (EEq.≃ᴱ→≃ eq)) x) ≡ just y ↝⟨ ≡⇒≃ $ cong (_≡ _) $ sym $ push-subst-inj₂ _ _ ⟩□ subst (Maybe ∘ F) (≃⇒≡ univ (EEq.≃ᴱ→≃ eq)) (just x) ≡ just y □ -- If G is suitable, then Maybeᴿ G is suitable. Maybeᴿ-suitable : {@0 G : Relation-transformer-for F} → Suitable G → Suitable (Maybeᴿ G) Maybeᴿ-suitable {G = G} s-G = λ where .Suitable.preserves-is-set set → Maybe-closure 0 (S.preserves-is-set set) .Suitable.preserves-is-proposition prop → λ @0 where nothing nothing → H-level.mono₁ 0 $ ↑-closure 0 ⊤-contractible nothing (just _) → ⊥-propositional (just _) nothing → ⊥-propositional (just x) (just y) → S.preserves-is-proposition prop x y .Suitable.symmetric {x = nothing} {y = nothing} → _ .Suitable.symmetric {x = just x} {y = just y} → S.symmetric .Suitable.transitive {x = nothing} {y = nothing} {z = nothing} → _ .Suitable.transitive {x = just _} {y = just _} {z = just _} → S.transitive .Suitable.descent {x = nothing} {R = R} prop equiv _ → (nothing , [ _ ]) , [ (λ @0 where (nothing , _) → refl _) ] .Suitable.descent {x = just x} {R = R} prop equiv SRxx → $⟨ [ SRxx ] ⟩ Erased (G R x x) ↝⟨ (λ ([ SRxx ]) → S.descent prop equiv SRxx) ⟩ Contractibleᴱ (∃ λ y → Erased (G (Graph [_]) x y)) ↝⟨ ECP.Contractibleᴱ-cong _ (Eq.↔→≃ (Σ-map just id) (λ where (nothing , ()) (just y , s) → y , s) (λ where (nothing , ()) (just _ , _) → refl _) refl) ⦂ (_ → _) ⟩□ Contractibleᴱ (∃ λ y → Erased (Maybeᴿ G (Graph [_]) (just x) y)) □ where module S = Suitable s-G -- If G is univalent, then Maybeᴿ G is univalent. Maybeᴿ-univalent : {@0 G : Relation-transformer-for F} → Univalentᴿ G → Univalentᴿ (Maybeᴿ G) Maybeᴿ-univalent {F = F} {G = G} (s-G , u-G) = Maybeᴿ-suitable s-G , ( $⟨ Maybe-univalent u-G ⟩ Univalent (Maybe ∘ F) (Is-Maybe-equivalence λ (A , x) (B , y) eq → G (Graph (_≃ᴱ_.to eq)) x y) ↝⟨ substᴱ (Univalent _) (⟨ext⟩ λ p → ⟨ext⟩ λ q → lemma (p .proj₂) (q .proj₂)) ⟩□ Univalent (Maybe ∘ F) (λ (A , x) (B , y) eq → Maybeᴿ G (Graph (_≃ᴱ_.to eq)) x y) □) where @0 lemma : ∀ x y → Is-Maybe-equivalence (λ (A , x) (B , y) eq → G (Graph (_≃ᴱ_.to eq)) x y) (A , x) (B , y) ≡ (λ eq → Maybeᴿ G (Graph (_≃ᴱ_.to eq)) x y) lemma nothing nothing = refl _ lemma nothing (just _) = refl _ lemma (just _) nothing = refl _ lemma (just _) (just _) = refl _ -- If G acts on functions, then Maybeᴿ G acts on functions. Maybeᴿ-acts-on-functions : {@0 G : Relation-transformer-for F} → Acts-on-functions G → Acts-on-functions (Maybeᴿ G) Maybeᴿ-acts-on-functions {G = G} a-G = λ where .Acts-on-functions.map f → Monad.map (A.map f) .Acts-on-functions.map-id → Monad.map (A.map id) ≡⟨ cong Monad.map A.map-id ⟩ Monad.map id ≡⟨ ⟨ext⟩ Monad.map-id ⟩∎ id ∎ .Acts-on-functions.map-map {x = nothing} {y = nothing} → _ .Acts-on-functions.map-map {x = nothing} {y = just _} _ () .Acts-on-functions.map-map {x = just _} {y = nothing} _ () .Acts-on-functions.map-map {x = just _} {y = just _} → A.map-map where module A = Acts-on-functions a-G -- If G is positive, then Maybeᴿ G is positive. Maybeᴿ-positive : {@0 G : Relation-transformer-for F} → Positive G → Positive (Maybeᴿ G) Maybeᴿ-positive {F = F} {G = G} p-G = λ where .Positive.suitable → suitable .Positive.acts-on-functions → acts-on-functions .Positive.reflexive-∥≡∥ᴱ {x = nothing} → _ .Positive.reflexive-∥≡∥ᴱ {x = just _} → SP.reflexive-∥≡∥ᴱ .Positive.transitive-;ᴱ⁻¹ R₁-prop R₂-prop x z → _≃_.is-equivalence $ Eq.with-other-function (lemma R₁-prop R₂-prop x z .proj₁) _ (lemma R₁-prop R₂-prop x z .proj₂) .Positive.commutes-with-/ᴱ {A = A} {R = R} prop equiv → _≃ᴱ_.is-equivalence $ EEq.with-other-function (Maybe (F A) /ᴱ Maybeᴿ G R ↔⟨ Q.Maybe/ᴱ ⟩ Maybe (F A /ᴱ G R) ↝⟨ F.id ⊎-cong EEq.⟨ _ , SP.commutes-with-/ᴱ prop equiv ⟩ ⟩□ Maybe (F (A /ᴱ R)) □) (/ᴱ→/ᴱ (Maybeᴿ G) suitable acts-on-functions prop equiv) (Q.elim-prop λ @0 where .Q.is-propositionʳ _ → Maybe-closure 0 (SS.preserves-is-set Q./ᴱ-is-set) .Q.[]ʳ nothing → refl _ .Q.[]ʳ (just _) → refl _) where module SP = Positive p-G module SS = Suitable SP.suitable suitable = Maybeᴿ-suitable SP.suitable acts-on-functions = Maybeᴿ-acts-on-functions SP.acts-on-functions @0 lemma : (R₁-prop : ∀ x y → Is-proposition (R₁ x y)) → (R₂-prop : ∀ x y → Is-proposition (R₂ x y)) → ∀ x z → ∃ λ (eq : (Maybeᴿ G R₁ ;ᴱ Maybeᴿ G R₂) x z ≃ Maybeᴿ G (R₁ ;ᴱ R₂) x z) → ∀ p → _≃_.to eq p ≡ Suitable.transitive-;ᴱ suitable R₁-prop R₂-prop x z p lemma {R₁ = R₁} {R₂ = R₂} R₁-prop R₂-prop = λ @0 where nothing nothing → ((Maybeᴿ G R₁ ;ᴱ Maybeᴿ G R₂) nothing nothing ↝⟨ Eq.⇔→≃ T.truncation-is-proposition (H-level.mono₁ 0 $ ↑-closure 0 ⊤-contractible) _ (λ _ → ∣ nothing , _ ∣) ⟩□ ↑ _ ⊤ □) , (λ _ → refl _) nothing (just z) → ((Maybeᴿ G R₁ ;ᴱ Maybeᴿ G R₂) nothing (just z) ↝⟨ Eq.⇔→≃ T.truncation-is-proposition ⊥-propositional (T.rec λ @0 where .T.truncation-is-propositionʳ → ⊥-propositional .T.∣∣ʳ (nothing , _ , ()) .T.∣∣ʳ (just _ , () , _)) ⊥-elim ⟩□ ⊥ □) , (T.elim λ @0 where .T.truncation-is-propositionʳ _ → H-level.⇒≡ 1 $ ⊥-propositional .T.∣∣ʳ (nothing , _ , ()) .T.∣∣ʳ (just _ , () , _)) (just x) nothing → ((Maybeᴿ G R₁ ;ᴱ Maybeᴿ G R₂) (just x) nothing ↝⟨ Eq.⇔→≃ T.truncation-is-proposition ⊥-propositional (T.rec λ @0 where .T.truncation-is-propositionʳ → ⊥-propositional .T.∣∣ʳ (nothing , () , _) .T.∣∣ʳ (just _ , _ , ())) ⊥-elim ⟩□ ⊥ □) , (T.elim λ @0 where .T.truncation-is-propositionʳ _ → H-level.⇒≡ 1 $ ⊥-propositional .T.∣∣ʳ (nothing , () , _) .T.∣∣ʳ (just _ , _ , ())) (just x) (just z) → ((Maybeᴿ G R₁ ;ᴱ Maybeᴿ G R₂) (just x) (just z) ↝⟨ Eq.⇔→≃ T.truncation-is-proposition T.truncation-is-proposition (T.∥∥ᴱ-map λ where (nothing , () , ()) (just _ , p) → _ , p) (T.∥∥ᴱ-map (Σ-map just id)) ⟩ (G R₁ ;ᴱ G R₂) x z ↝⟨ Eq.⟨ _ , SP.transitive-;ᴱ⁻¹ R₁-prop R₂-prop _ _ ⟩ ⟩□ G (R₁ ;ᴱ R₂) x z □) , (T.elim λ @0 where .T.truncation-is-propositionʳ _ → H-level.⇒≡ 1 $ SS.preserves-is-proposition (λ _ _ → T.truncation-is-proposition) _ _ .T.∣∣ʳ (nothing , () , ()) .T.∣∣ʳ (just _ , _) → refl _) ------------------------------------------------------------------------ -- The Function and Functionᴿ combinators, along with some properties -- Function structures. Function : Structure a b → Structure a c → Structure a (b ⊔ c) Function F G A = F A → G A -- A combinator that, given relation transformers for F and G, -- produces a relation transformer for Function F G. Functionᴿ : {F : Structure a b} {G : Structure a c} → Relation-transformer-for F → Relation-transformer-for G → Relation-transformer-for (Function F G) Functionᴿ S T R f g = ∀ {x y} → S R x y → T R (f x) (g y) -- A variant of Functionᴿ ∘ Constᴿ. Function-Constᴿ : {F : Structure b c} (A : Type a) → Relation-transformer-for F → Relation-transformer-for (Function (Const A) F) Function-Constᴿ A G R f g = (x : A) → G R (f x) (g x) -- Function-Constᴿ is pointwise equivalent to Functionᴿ ∘ Constᴿ. Function-Constᴿ≃Functionᴿ∘Constᴿ : {f : A → F B} {g : A → F C} (G : Relation-transformer-for F) → Function-Constᴿ A G R f g ≃ (Functionᴿ ∘ Constᴿ) A G R f g Function-Constᴿ≃Functionᴿ∘Constᴿ {R = R} {f = f} {g = g} G = (∀ x → G R (f x) (g x)) ↝⟨ (∀-cong ext λ _ → ∀-intro _ ext) ⟩ (∀ x y → x ≡ y → G R (f x) (g y)) ↔⟨ inverse (∀-cong ext (λ _ → B.implicit-Π↔Π) F.∘ B.implicit-Π↔Π) ⟩□ (∀ {x y} → x ≡ y → G R (f x) (g y)) □ -- When is an equivalence structure-preserving for Function F G? Is-Function-equivalence : {F : Structure a b} → Structure-preserving-equivalence-predicate F c → Structure-preserving-equivalence-predicate G d → Structure-preserving-equivalence-predicate (Function F G) (b ⊔ c ⊔ d) Is-Function-equivalence Is-F-eq Is-G-eq (A , f) (B , g) eq = ∀ {x y} → Is-F-eq (A , x) (B , y) eq → Is-G-eq (A , f x) (B , g y) eq -- A variant of Is-Function-equivalence. Is-Function-equivalence′ : {F : Structure a b} → (∀ {A B} → A ≃ᴱ B → F A ≃ᴱ F B) → Structure-preserving-equivalence-predicate G c → Structure-preserving-equivalence-predicate (Function F G) (b ⊔ c) Is-Function-equivalence′ F-cong Is-G-eq (A , f) (B , g) eq = ∀ x → Is-G-eq (A , f x) (B , g (_≃ᴱ_.to (F-cong eq) x)) eq -- If F and G are univalent, then Function F G is univalent. Function-univalent : {@0 F : Structure a b} {@0 G : Structure a c} {@0 Is-F-eq : Structure-preserving-equivalence-predicate F d} {@0 Is-G-eq : Structure-preserving-equivalence-predicate G e} → @0 Univalent F Is-F-eq → @0 Univalent G Is-G-eq → Univalent (Function F G) (Is-Function-equivalence Is-F-eq Is-G-eq) Function-univalent {F = F} {G = G} {Is-F-eq = Is-F-eq} {Is-G-eq = Is-G-eq} u-F u-G .Univalent.univalent {A = A , f} {B = B , g} eq = (∀ {x y} → Is-F-eq (A , x) (B , y) eq → Is-G-eq (A , f x) (B , g y) eq) ↔⟨ B.implicit-Π↔Π F.∘ implicit-∀-cong ext B.implicit-Π↔Π ⟩ (∀ x y → Is-F-eq (A , x) (B , y) eq → Is-G-eq (A , f x) (B , g y) eq) ↝⟨ (∀-cong ext λ _ → ∀-cong ext λ _ → →-cong ext (u-F .Univalent.univalent eq) (u-G .Univalent.univalent eq)) ⟩ (∀ x y → subst F (≃⇒≡ univ (EEq.≃ᴱ→≃ eq)) x ≡ y → subst G (≃⇒≡ univ (EEq.≃ᴱ→≃ eq)) (f x) ≡ g y) ↝⟨ (∀-cong ext λ _ → ∀-cong ext λ _ → →-cong₁ ext $ ≡⇒≃ (cong (_ ≡_) $ _≃_.left-inverse-of (Eq.subst-as-equivalence _ _) _) F.∘ inverse (Eq.≃-≡ $ inverse $ Eq.subst-as-equivalence _ _) F.∘ from-bijection ≡-comm) ⟩ (∀ x y → subst F (sym (≃⇒≡ univ (EEq.≃ᴱ→≃ eq))) y ≡ x → subst G (≃⇒≡ univ (EEq.≃ᴱ→≃ eq)) (f x) ≡ g y) ↔⟨ Π-comm ⟩ (∀ y x → subst F (sym (≃⇒≡ univ (EEq.≃ᴱ→≃ eq))) y ≡ x → subst G (≃⇒≡ univ (EEq.≃ᴱ→≃ eq)) (f x) ≡ g y) ↝⟨ (∀-cong ext λ _ → ∀-cong ext λ _ → ∀-cong ext λ eq → ≡⇒≃ $ cong (_≡ _) $ cong (subst G _) $ cong f $ sym eq) ⟩ (∀ y x → subst F (sym (≃⇒≡ univ (EEq.≃ᴱ→≃ eq))) y ≡ x → subst G (≃⇒≡ univ (EEq.≃ᴱ→≃ eq)) (f (subst F (sym (≃⇒≡ univ (EEq.≃ᴱ→≃ eq))) y)) ≡ g y) ↝⟨ (∀-cong ext λ _ → inverse $ ∀-intro _ ext) ⟩ (∀ y → subst G (≃⇒≡ univ (EEq.≃ᴱ→≃ eq)) (f (subst F (sym (≃⇒≡ univ (EEq.≃ᴱ→≃ eq))) y)) ≡ g y) ↝⟨ (∀-cong ext λ _ → ≡⇒≃ $ cong (_≡ _) $ sym $ subst-→) ⟩ (∀ y → subst (Function F G) (≃⇒≡ univ (EEq.≃ᴱ→≃ eq)) f y ≡ g y) ↝⟨ Eq.extensionality-isomorphism ext ⟩□ subst (Function F G) (≃⇒≡ univ (EEq.≃ᴱ→≃ eq)) f ≡ g □ where univ = U.abstract-univ -- A variant of Function-univalent that is stated using -- Is-Function-equivalence′ instead of Is-Function-equivalence. Function-univalent′ : {@0 G : Structure a c} {@0 Is-G-eq : Structure-preserving-equivalence-predicate G e} (@0 F-cong : ∀ {A B} → A ≃ᴱ B → F A ≃ᴱ F B) → @0 (∀ {A} (x : F A) → _≃ᴱ_.to (F-cong F.id) x ≡ x) → @0 Univalent G Is-G-eq → Univalent (Function F G) (Is-Function-equivalence′ F-cong Is-G-eq) Function-univalent′ {F = F} {G = G} {Is-G-eq = Is-G-eq} F-cong F-cong-id u-G .Univalent.univalent {A = A , f} {B = B , g} eq = (∀ x → Is-G-eq (A , f x) (B , g (_≃ᴱ_.to (F-cong eq) x)) eq) ↝⟨ (∀-cong ext λ _ → u-G .Univalent.univalent eq) ⟩ (∀ x → subst G (≃⇒≡ univ (EEq.≃ᴱ→≃ eq)) (f x) ≡ g (_≃ᴱ_.to (F-cong eq) x)) ↝⟨ Eq.extensionality-isomorphism ext ⟩ subst G (≃⇒≡ univ (EEq.≃ᴱ→≃ eq)) ∘ f ≡ g ∘ _≃ᴱ_.to (F-cong eq) ↝⟨ ≡⇒≃ $ cong (subst G (≃⇒≡ univ (EEq.≃ᴱ→≃ eq)) ∘ f ≡_) $ cong (g ∘_) $ cong _≃ᴱ_.to $ cong F-cong $ sym $ _≃_.right-inverse-of EEq.≃≃≃ᴱ _ ⟩ subst G (≃⇒≡ univ (EEq.≃ᴱ→≃ eq)) ∘ f ≡ g ∘ _≃ᴱ_.to (F-cong $ EEq.≃→≃ᴱ $ EEq.≃ᴱ→≃ eq) ↝⟨ ≡⇒≃ $ cong (subst G (≃⇒≡ univ (EEq.≃ᴱ→≃ eq)) ∘ f ≡_) $ cong (g ∘_) $ ⟨ext⟩ $ transport-theorem F (_≃ᴱ_.to ∘ F-cong ∘ EEq.≃→≃ᴱ) F-cong-id univ (EEq.≃ᴱ→≃ eq) ⟩ subst G (≃⇒≡ univ (EEq.≃ᴱ→≃ eq)) ∘ f ≡ g ∘ subst F (≃⇒≡ univ (EEq.≃ᴱ→≃ eq)) ↝⟨ inverse $ Eq.≃-≡ $ →-cong₁ ext $ Eq.subst-as-equivalence _ _ ⟩ subst G (≃⇒≡ univ (EEq.≃ᴱ→≃ eq)) ∘ f ∘ subst F (sym (≃⇒≡ univ (EEq.≃ᴱ→≃ eq))) ≡ g ∘ subst F (≃⇒≡ univ (EEq.≃ᴱ→≃ eq)) ∘ subst F (sym (≃⇒≡ univ (EEq.≃ᴱ→≃ eq))) ↝⟨ ≡⇒≃ $ cong (subst G (≃⇒≡ univ (EEq.≃ᴱ→≃ eq)) ∘ f ∘ subst F (sym (≃⇒≡ univ (EEq.≃ᴱ→≃ eq))) ≡_) $ cong (g ∘_) $ ⟨ext⟩ $ _≃_.right-inverse-of (Eq.subst-as-equivalence _ _) ⟩ subst G (≃⇒≡ univ (EEq.≃ᴱ→≃ eq)) ∘ f ∘ subst F (sym (≃⇒≡ univ (EEq.≃ᴱ→≃ eq))) ≡ g ↝⟨ (≡⇒≃ $ cong (_≡ _) $ sym $ ⟨ext⟩ λ _ → subst-→) ⟩□ subst (Function F G) (≃⇒≡ univ (EEq.≃ᴱ→≃ eq)) f ≡ g □ where univ = U.abstract-univ -- If S is positive and T is suitable, then Functionᴿ S T is suitable. -- -- This is a variant of Theorem 5.12 from "Internalizing -- Representation Independence with Univalence". Functionᴿ-suitable : {@0 S : Relation-transformer-for F} → {@0 T : Relation-transformer-for G} → Positive S → Suitable T → Suitable (Functionᴿ S T) Functionᴿ-suitable {F = F} {G = G} {S = S} {T = T} p-S s-T = λ where .Suitable.preserves-is-set set → Π-closure ext 2 λ _ → TS.preserves-is-set set .Suitable.preserves-is-proposition prop _ _ → implicit-Π-closure ext 1 λ _ → implicit-Π-closure ext 1 λ _ → Π-closure ext 1 λ _ → TS.preserves-is-proposition prop _ _ .Suitable.symmetric {R = R} {x = f} {y = g} prop S→T {x = x} {y = y} → S (R ⁻¹) x y ↝⟨ SS.symmetric (flip prop) ⟩ S R y x ↝⟨ S→T ⟩ T R (f y) (g x) ↝⟨ TS.symmetric prop ⟩□ T (R ⁻¹) (g x) (f y) □ .Suitable.transitive {R = R₁} {S = R₂} {x = f} {y = g} {z = h} R₁-prop R₂-prop S→T₁ S→T₂ {x = x} {y = y} → S (R₁ ;ᴱ R₂) x y ↔⟨ inverse Eq.⟨ _ , SP.transitive-;ᴱ⁻¹ R₁-prop R₂-prop _ _ ⟩ ⟩ (S R₁ ;ᴱ S R₂) x y ↝⟨ T.∥∥ᴱ-map (Σ-map _ (Σ-map S→T₁ S→T₂)) ⟩ (T R₁ ;ᴱ T R₂) (f x) (h y) ↝⟨ TS.transitive-;ᴱ R₁-prop R₂-prop _ _ ⟩□ T (R₁ ;ᴱ R₂) (f x) (h y) □ .Suitable.descent {A = A} {x = f} {R = R} prop equiv S→T → let d : (x : F A) → Contractibleᴱ (∃ λ y → Erased (T (Graph [_]) (f x) y)) d x = TS.descent prop equiv (S→T (SP.reflexive prop equiv x)) g-[] : F A → G (A /ᴱ R) g-[] x = d x .proj₁ .proj₁ S→T′ : Erased (S R x y → T (Graph [_]) (f x) (g-[] y)) S→T′ = λ {x = x} {y = y} → [ S R x y ↝⟨ S→T ⟩ T R (f x) (f y) ↝⟨ flip (TS.transitive prop (λ _ _ → Q./ᴱ-is-set)) (d y .proj₁ .proj₂ .erased) ⟩ T (R ;ᴱ Graph [_]) (f x) (g-[] y) ↝⟨ subst (λ R → T R (f x) (g-[] y)) (;ᴱ-Graph-[]≡Graph-[] prop equiv) ⟩□ T (Graph [_]) (f x) (g-[] y) □ ] S-[]-map-[] : ∀ {x} → Erased (S (Graph [_]) x (SA.map [_] x)) S-[]-map-[] = λ {x = x} → [ $⟨ SA.map-map Q.[]-respects-relation (SP.reflexive prop equiv x) ⟩ S (Graph [_]) (SA.map id x) (SA.map [_] x) ↝⟨ subst (λ f → S (Graph (Q.[_] {R = R})) (f x) (SA.map Q.[_] x)) SA.map-id ⟩□ S (Graph [_]) x (SA.map [_] x) □ ] g : F A /ᴱ S R → G (A /ᴱ R) g = Q.rec λ where .Q.is-setʳ → TS.preserves-is-set Q./ᴱ-is-set .Q.[]ʳ → g-[] .Q.[]-respects-relationʳ {x = x} {y = y} SRxy → g-[] x ≡⟨ cong proj₁ $ d x .proj₂ .erased (g-[] y , Er.map (_$ SRxy) S→T′) ⟩∎ g-[] y ∎ h : F A /ᴱ S R ≃ᴱ F (A /ᴱ R) h = EEq.⟨ _ , SP.commutes-with-/ᴱ prop equiv ⟩ in ( (F (A /ᴱ R) ↝⟨ _≃ᴱ_.from h ⟩ F A /ᴱ S R ↝⟨ g ⟩□ G (A /ᴱ R) □) , [ (λ {x = x} {y = y} → let lemma : ∀ y → S (Graph [_]) x (_≃ᴱ_.to h y) → T (Graph [_]) (f x) (g y) lemma = Q.elim-prop λ @0 where .Q.is-propositionʳ _ → Π-closure ext 1 λ _ → TS.preserves-is-proposition (λ _ _ → Q./ᴱ-is-set) _ _ .Q.[]ʳ y → let s = $⟨ S-[]-map-[] .erased ⟩ S (Graph [_]) y (SA.map [_] y) ↝⟨ SS.symmetric (λ _ _ → Q./ᴱ-is-set) ⟩□ S (Graph [_] ⁻¹) (SA.map [_] y) y □ in S (Graph [_]) x (SA.map [_] y) ↝⟨ flip (SS.transitive (λ _ _ → Q./ᴱ-is-set) λ _ _ → Q./ᴱ-is-set) s ⟩ S (Graph [_] ⟵) x y ↝⟨ subst (λ R → S R x y) (Graph-[]-⟵≡ prop equiv) ⟩ S R x y ↝⟨ S→T′ .erased ⟩□ T (Graph [_]) (f x) (g-[] y) □ in S (Graph [_]) x y ↝⟨ subst (S (Graph [_]) x) (sym $ _≃ᴱ_.right-inverse-of h _) ⟩ S (Graph [_]) x (_≃ᴱ_.to h (_≃ᴱ_.from h y)) ↝⟨ lemma (_≃ᴱ_.from h y) ⟩□ T (Graph [_]) (f x) (g (_≃ᴱ_.from h y)) □) ] ) , [ (λ (g′ , [ g′-hyp ]) → let lemma : ∀ y → g y ≡ g′ (_≃ᴱ_.to h y) lemma = Q.elim-prop λ @0 where .Q.is-propositionʳ _ → TS.preserves-is-set Q./ᴱ-is-set .Q.[]ʳ y → g-[] y ≡⟨ cong proj₁ $ d y .proj₂ .erased ( g′ (SA.map [_] y) , [ $⟨ S-[]-map-[] .erased ⟩ S (Graph [_]) y (SA.map [_] y) ↝⟨ g′-hyp ⟩□ T (Graph [_]) (f y) (g′ (SA.map [_] y)) □ ] ) ⟩∎ g′ (SA.map [_] y) ∎ in Σ-≡,≡→≡ (⟨ext⟩ λ x → g (_≃ᴱ_.from h x) ≡⟨ lemma (_≃ᴱ_.from h x) ⟩ g′ (_≃ᴱ_.to h (_≃ᴱ_.from h x)) ≡⟨ cong g′ $ _≃ᴱ_.right-inverse-of h _ ⟩∎ g′ x ∎) (H-level-Erased 1 (implicit-Π-closure ext 1 λ _ → implicit-Π-closure ext 1 λ _ → Π-closure ext 1 λ _ → TS.preserves-is-proposition (λ _ _ → Q./ᴱ-is-set) _ _) _ _)) ] where module SP = Positive p-S module SA = Acts-on-functions SP.acts-on-functions module SS = Suitable SP.suitable module TS = Suitable s-T -- If A is a set and G is suitable, then Function-Constᴿ A G is -- suitable. Function-Constᴿ-suitable : {@0 G : Relation-transformer-for F} → @0 Is-set A → Suitable G → Suitable (Function-Constᴿ A G) Function-Constᴿ-suitable {F = F} {A = A} {G = G} set = Suitable G ↝⟨ Functionᴿ-suitable (Constᴿ-positive set) ⟩ Suitable (Functionᴿ (Constᴿ A) G) ↝⟨ Suitable-map (inverse $ Function-Constᴿ≃Functionᴿ∘Constᴿ G) ⟩□ Suitable (Function-Constᴿ A G) □ -- If S is positive and univalent, and T is univalent, then -- Functionᴿ S T is univalent. Functionᴿ-univalent : {@0 S : Relation-transformer-for F} {@0 T : Relation-transformer-for G} → Positive S → Univalentᴿ S → Univalentᴿ T → Univalentᴿ (Functionᴿ S T) Functionᴿ-univalent p-S (_ , u-S) (s-T , u-T) = Functionᴿ-suitable p-S s-T , Function-univalent u-S u-T -- If A is a set and G is univalent, then Function-Constᴿ A G is -- univalent. Function-Constᴿ-univalent : {@0 G : Relation-transformer-for F} → @0 Is-set A → Univalentᴿ G → Univalentᴿ (Function-Constᴿ A G) Function-Constᴿ-univalent set (s-G , u-G) = Function-Constᴿ-suitable set s-G , Function-univalent′ (λ _ → F.id) refl u-G ------------------------------------------------------------------------ -- Combinators related to Erased -- A combinator that, given a relation transformer for F, produces a -- relation transformer for λ A → Erased (F A). -- -- Note that I have not proved that Erasedᴿ G is positive if G is -- positive. Erasedᴿ : {@0 F : Structure a b} → @0 Relation-transformer-for F → Relation-transformer-for (λ A → Erased (F A)) Erasedᴿ G R = Erasedᴾ (G R) -- When is an equivalence structure-preserving for λ A → Erased (F A)? Is-Erased-equivalence : @0 Structure-preserving-equivalence-predicate F a → Structure-preserving-equivalence-predicate (λ A → Erased (F A)) a Is-Erased-equivalence Is-F-eq (_ , [ x ]) (_ , [ y ]) eq = Erased (Is-F-eq (_ , x) (_ , y) eq) -- If F is univalent, then λ A → Erased (F A) is univalent. Erased-univalent : {@0 F : Structure a b} {@0 Is-F-eq : Structure-preserving-equivalence-predicate F c} → @0 Univalent F Is-F-eq → Univalent (λ A → Erased (F A)) (Is-Erased-equivalence Is-F-eq) Erased-univalent {F = F} {Is-F-eq = Is-F-eq} u-F .Univalent.univalent {A = A , [ x ]} {B = B , [ y ]} eq = Erased (Is-F-eq (A , x) (B , y) eq) ↝⟨ Erased-cong (u-F .Univalent.univalent eq) ⟩ Erased (subst F (≃⇒≡ univ (EEq.≃ᴱ→≃ eq)) x ≡ y) ↔⟨ Erased-≡↔[]≡[] ⟩ [ subst F (≃⇒≡ univ (EEq.≃ᴱ→≃ eq)) x ] ≡ [ y ] ↝⟨ ≡⇒≃ $ cong (_≡ _) $ sym push-subst-[] ⟩□ subst (λ A → Erased (F A)) (≃⇒≡ univ (EEq.≃ᴱ→≃ eq)) [ x ] ≡ [ y ] □ where univ = U.abstract-univ -- If G is suitable, then Erasedᴿ G is suitable. Erasedᴿ-suitable : {@0 G : Relation-transformer-for F} → @0 Suitable G → Suitable (Erasedᴿ G) Erasedᴿ-suitable {G = G} s-G = λ where .Suitable.preserves-is-set set → H-level-Erased 2 (s-G .Suitable.preserves-is-set set) .Suitable.preserves-is-proposition prop _ _ → H-level-Erased 1 (s-G .Suitable.preserves-is-proposition prop _ _) .Suitable.symmetric prop → Er.map (s-G .Suitable.symmetric prop) .Suitable.transitive R-prop S-prop [ GRxy ] [ GSyz ] → [ s-G .Suitable.transitive R-prop S-prop GRxy GSyz ] .Suitable.descent {x = [ x ]} {R = R} prop equiv [GRxx] → $⟨ [ [GRxx] .erased ] ⟩ Erased (G R x x) ↝⟨ Er.map (λ GRxx → s-G .Suitable.descent prop equiv GRxx) ⟩ Erased (Contractibleᴱ (∃ λ y → Erased (G (Graph [_]) x y))) ↝⟨ ECP.Erased-Contractibleᴱ↔Contractibleᴱ-Erased _ ⟩ Contractibleᴱ (Erased (∃ λ y → Erased (G (Graph [_]) x y))) ↝⟨ ECP.Contractibleᴱ-cong _ Erased-Σ↔Σ ⟩ Contractibleᴱ (∃ λ ([ y ]) → Erased (Erased (G (Graph [_]) x y))) ↔⟨⟩ Contractibleᴱ (∃ λ y → Erased (Erasedᴿ G (Graph [_]) [ x ] y)) □ -- If G is univalent, then Erasedᴿ G is univalent. Erasedᴿ-univalent : {@0 G : Relation-transformer-for F} → @0 Univalentᴿ G → Univalentᴿ (Erasedᴿ G) Erasedᴿ-univalent (s-G , u-G) = Erasedᴿ-suitable s-G , Erased-univalent u-G -- If G acts on functions, then Erasedᴿ G acts on functions. Erasedᴿ-acts-on-functions : {@0 G : Relation-transformer-for F} → @0 Acts-on-functions G → Acts-on-functions (Erasedᴿ G) Erasedᴿ-acts-on-functions {G = G} a-G = λ where .Acts-on-functions.map f → Er.map (a-G .Acts-on-functions.map f) .Acts-on-functions.map-id → Er.map (a-G .Acts-on-functions.map id) ≡⟨ cong (λ f → Er.map f) (a-G .Acts-on-functions.map-id) ⟩ Er.map id ≡⟨⟩ id ∎ .Acts-on-functions.map-map {f = f} {g = g} {x = [ x ]} {y = [ y ]} {R₁ = R₁} {R₂ = R₂} R₁→R₂ → Erased (G R₁ x y) ↝⟨ Er.map (a-G .Acts-on-functions.map-map R₁→R₂) ⟩□ Erased (G R₂ (a-G .Acts-on-functions.map f x) (a-G .Acts-on-functions.map g y)) □ ------------------------------------------------------------------------ -- An example: monoids -- This is a variant of Examples 3.5 and 3.6 from "Internalizing -- Representation Independence with Univalence". module Example₁ where -- Raw monoid structures. Raw-monoid-structure : Structure a a Raw-monoid-structure A = A × (A → A → A) -- Raw-monoid-structure can be expressed using some combinators. _ : Raw-monoid-structure {a = a} ≡ Product Id (Function Id (Function Id Id)) _ = refl _ -- Raw monoids, i.e., monoids without the monoid laws. Raw-monoid : (a : Level) → Type (lsuc a) Raw-monoid _ = Type-with Raw-monoid-structure -- Raw monoid equivalence predicates. Is-raw-monoid-equivalence : Structure-preserving-equivalence-predicate Raw-monoid-structure a Is-raw-monoid-equivalence (_ , id₁ , _∘₁_) (_ , id₂ , _∘₂_) eq = _≃ᴱ_.to eq id₁ ≡ id₂ × (∀ x y → _≃ᴱ_.to eq (x ∘₁ y) ≡ _≃ᴱ_.to eq x ∘₂ _≃ᴱ_.to eq y) -- Is-raw-monoid-equivalence can be expressed using some -- combinators. _ : Is-raw-monoid-equivalence {a = a} ≡ Is-Product-equivalence Is-Id-equivalence (Is-Function-equivalence′ id (Is-Function-equivalence′ id Is-Id-equivalence)) _ = refl _ -- Raw monoid equivalences (with erased proofs). infix 4 _≃ᴿᴹᴱ_ _≃ᴿᴹᴱ_ : Raw-monoid a → Raw-monoid a → Type a _≃ᴿᴹᴱ_ = _≃[ Is-raw-monoid-equivalence ]ᴱ_ -- The combination of Raw-monoid-structure and -- Is-raw-monoid-equivalence is univalent (in erased settings). Is-raw-monoid-equivalence-univalent : Univalent (Raw-monoid-structure {a = a}) Is-raw-monoid-equivalence Is-raw-monoid-equivalence-univalent = Product-univalent Id-univalent (Function-univalent′ id refl (Function-univalent′ id refl Id-univalent)) -- The monoid laws. Monoid-laws : Axioms Raw-monoid-structure a Monoid-laws (A , id , _∘_) = Is-set A × (∀ x → id ∘ x ≡ x) × (∀ x → x ∘ id ≡ x) × (∀ x y z → x ∘ (y ∘ z) ≡ (x ∘ y) ∘ z) -- The monoid laws are propositional. Monoid-laws-propositional : (M : Raw-monoid a) → Is-proposition (Monoid-laws M) Monoid-laws-propositional (A , id , _∘_) = Σ-closure 1 (H-level-propositional ext 2) λ A-set → ×-closure 1 (Π-closure ext 1 λ _ → A-set) $ ×-closure 1 (Π-closure ext 1 λ _ → A-set) $ Π-closure ext 1 λ _ → Π-closure ext 1 λ _ → Π-closure ext 1 λ _ → A-set -- Monoid structures. Monoid-structure : Structure a a Monoid-structure = Raw-monoid-structure With-the-axioms Monoid-laws -- Monoids. Monoid : (a : Level) → Type (lsuc a) Monoid _ = Type-with Monoid-structure -- Monoid equivalence predicates. Is-monoid-equivalence : Structure-preserving-equivalence-predicate Monoid-structure a Is-monoid-equivalence = Lift-With-the-axioms Is-raw-monoid-equivalence -- Monoid equivalences (with erased proofs). infix 4 _≃ᴹᴱ_ _≃ᴹᴱ_ : Monoid a → Monoid a → Type a _≃ᴹᴱ_ = _≃[ Is-monoid-equivalence ]ᴱ_ -- The combination of Monoid-structure and Is-monoid-equivalence is -- univalent (in erased settings). Is-monoid-equivalence-univalent : Univalent (Monoid-structure {a = a}) Is-monoid-equivalence Is-monoid-equivalence-univalent = Univalent-With-the-axioms Monoid-laws-propositional Is-raw-monoid-equivalence-univalent -- The structure identity principle for monoids. @0 sip-for-monoids : (M ≃ᴹᴱ N) ≃ (M ≡ N) sip-for-monoids = sip Is-monoid-equivalence-univalent -- If a raw monoid M₂ is equivalent (with erased proofs) to the -- underlying raw monoid of a monoid M₁, then the monoid laws hold -- for M₂ (in erased contexts), and M₁ is equivalent (with erased -- proofs) to the monoid constructed from M₂ and the laws. induced-monoid : (M₁@(A₁ , ops₁ , _) : Monoid a) (M₂@(A₂ , ops₂) : Raw-monoid a) → (A₁ , ops₁) ≃ᴿᴹᴱ M₂ → ∃ λ (l₂ : Erased (Monoid-laws M₂)) → M₁ ≃ᴹᴱ (A₂ , ops₂ , l₂) induced-monoid = induced-structures Is-raw-monoid-equivalence-univalent -- The unary natural numbers form a monoid. ℕ-monoid : Monoid lzero ℕ-monoid = ℕ , (0 , _+_) , [ ( ℕ-set , refl , (λ _ → Nat.+-right-identity) , (λ m _ _ → Nat.+-assoc m) ) ] -- One variant of binary natural numbers forms a raw monoid. Bin-raw-monoid : Raw-monoid lzero Bin-raw-monoid = Bin , Bin.Operations-for-Bin.zero , Bin.Operations-for-Bin._+_ -- The raw monoid underlying ℕ-monoid is equivalent (with erased -- proofs) to Bin-raw-monoid. ℕ≃ᴿᴹᴱBin : (ℕ , (0 , _+_)) ≃ᴿᴹᴱ Bin-raw-monoid ℕ≃ᴿᴹᴱBin = (ℕ ↔⟨ inverse Bin.Bin↔ℕ ⟩□ Bin □) , [ ( (_↔_.from Bin.Bin↔ℕ 0 ≡⟨ _↔_.to Bin.≡-for-indices↔≡ [ refl _ ] ⟩∎ Bin.Operations-for-Bin.zero ∎) , (λ m n → _↔_.from Bin.Bin↔ℕ (m + n) ≡⟨ _↔_.to Bin.≡-for-indices↔≡ [ refl _ ] ⟩∎ _↔_.from Bin.Bin↔ℕ m Bin.Operations-for-Bin.+ _↔_.from Bin.Bin↔ℕ n ∎) ) ] -- The monoid laws hold for Bin-raw-monoid (in erased contexts). @0 Bin-monoid-laws : Monoid-laws Bin-raw-monoid Bin-monoid-laws = induced-monoid ℕ-monoid Bin-raw-monoid ℕ≃ᴿᴹᴱBin .proj₁ .erased -- One variant of binary natural numbers forms a monoid. Bin-monoid : Monoid lzero Bin-monoid = Bin-raw-monoid .proj₁ , Bin-raw-monoid .proj₂ , [ Bin-monoid-laws ] -- This monoid is equivalent, with erased proofs, to ℕ-monoid. ℕ≃ᴹᴱBin : ℕ-monoid ≃ᴹᴱ Bin-monoid ℕ≃ᴹᴱBin = induced-monoid ℕ-monoid Bin-raw-monoid ℕ≃ᴿᴹᴱBin .proj₂ -- In erased contexts the monoid is equal to ℕ-monoid. @0 ℕ≡Bin : ℕ-monoid ≡ Bin-monoid ℕ≡Bin = _≃_.to sip-for-monoids ℕ≃ᴹᴱBin ------------------------------------------------------------------------ -- Another example: bags -- This is a variant of Examples 5.5 and 5.13 from "Internalizing -- Representation Independence with Univalence". -- The type A is assumed to come with decidable equality. module Example₂ {A : Type a} (_≟_ : Decidable-equality A) where private -- The type A is a set. set : Is-set A set = decidable⇒set _≟_ -- Raw bag structures. Raw-bag-structure : Structure a a Raw-bag-structure Bag = -- An empty bag. Bag × -- Insertion. (A → Bag → Bag) × -- Union. (Bag → Bag → Bag) × -- The number of occurrences of the given element in the given -- bag. (A → Bag → ℕ) -- Raw-bag-structure can be expressed using some combinators. _ : Raw-bag-structure ≡ Product Id (Product (Function (Const A) (Function Id Id)) (Product (Function Id (Function Id Id)) (Function (Const A) (Function Id (Const ℕ))))) _ = refl _ -- Raw bag types. Raw-bag-type : Type (lsuc a) Raw-bag-type = Type-with Raw-bag-structure -- Raw bag equivalence predicates. Is-raw-bag-equivalence : Structure-preserving-equivalence-predicate Raw-bag-structure a Is-raw-bag-equivalence (_ , empty₁ , insert₁ , union₁ , count₁) (_ , empty₂ , insert₂ , union₂ , count₂) eq = _≃ᴱ_.to eq empty₁ ≡ empty₂ × (∀ x xs → _≃ᴱ_.to eq (insert₁ x xs) ≡ insert₂ x (_≃ᴱ_.to eq xs)) × (∀ xs ys → _≃ᴱ_.to eq (union₁ xs ys) ≡ union₂ (_≃ᴱ_.to eq xs) (_≃ᴱ_.to eq ys)) × (∀ x xs → count₁ x xs ≡ count₂ x (_≃ᴱ_.to eq xs)) -- Is-raw-bag-equivalence can be expressed using some combinators. _ : Is-raw-bag-equivalence ≡ Is-Product-equivalence Is-Id-equivalence (Is-Product-equivalence (Is-Function-equivalence′ (λ _ → EEq.id) (Is-Function-equivalence′ id Is-Id-equivalence)) (Is-Product-equivalence (Is-Function-equivalence′ id (Is-Function-equivalence′ id Is-Id-equivalence)) (Is-Function-equivalence′ (λ _ → EEq.id) (Is-Function-equivalence′ id Is-Const-equivalence)))) _ = refl _ -- Raw bag equivalences (with erased proofs). infix 4 _≃ᴮᴱ_ _≃ᴮᴱ_ : Raw-bag-type → Raw-bag-type → Type a _≃ᴮᴱ_ = _≃[ Is-raw-bag-equivalence ]ᴱ_ -- Relation transformers for raw bag types. Raw-bag-typeᴿ : Relation-transformer-for Raw-bag-structure Raw-bag-typeᴿ = Productᴿ Idᴿ (Productᴿ (Function-Constᴿ A (Functionᴿ Idᴿ Idᴿ)) (Productᴿ (Functionᴿ Idᴿ (Functionᴿ Idᴿ Idᴿ)) (Function-Constᴿ A (Functionᴿ Idᴿ (Constᴿ ℕ))))) -- Raw-bag-typeᴿ is univalent. Raw-bag-typeᴿ-univalent : Univalentᴿ Raw-bag-typeᴿ Raw-bag-typeᴿ-univalent = Productᴿ-univalent Idᴿ-univalent (Productᴿ-univalent (Function-Constᴿ-univalent set (Functionᴿ-univalent Idᴿ-positive Idᴿ-univalent Idᴿ-univalent)) (Productᴿ-univalent (Functionᴿ-univalent Idᴿ-positive Idᴿ-univalent (Functionᴿ-univalent Idᴿ-positive Idᴿ-univalent Idᴿ-univalent)) (Function-Constᴿ-univalent set (Functionᴿ-univalent Idᴿ-positive Idᴿ-univalent (Constᴿ-univalent ℕ-set))))) -- One implementation of bags. List-bag : Type a List-bag = List A count₁′ : A → A → ℕ count₁′ x y = if x ≟ y then 1 else 0 count₁ : A → List-bag → ℕ count₁ x = L.foldr (λ y → count₁′ x y +_) 0 Raw-bag-structure-List-bag : Raw-bag-structure List-bag Raw-bag-structure-List-bag = [] , _∷_ , L._++_ , count₁ Raw-bag-type-List-bag : Raw-bag-type Raw-bag-type-List-bag = List-bag , Raw-bag-structure-List-bag -- Another implementation of bags. Assoc-list-bag : Type a Assoc-list-bag = List (ℕ × A) insert : ℕ → A → Assoc-list-bag → Assoc-list-bag insert m x [] = (m , x) ∷ [] insert m x ((n , y) ∷ ys) = if x ≟ y then (m + n , y) ∷ ys else (n , y) ∷ insert m x ys union : Assoc-list-bag → Assoc-list-bag → Assoc-list-bag union = flip (L.foldr (uncurry insert)) count₂′ : A → ℕ × A → ℕ count₂′ x (n , y) = if x ≟ y then n else 0 count₂ : A → Assoc-list-bag → ℕ count₂ x = L.foldr (λ y → count₂′ x y +_) 0 Raw-bag-structure-Assoc-list-bag : Raw-bag-structure Assoc-list-bag Raw-bag-structure-Assoc-list-bag = [] , insert 1 , union , count₂ Raw-bag-type-Assoc-list-bag : Raw-bag-type Raw-bag-type-Assoc-list-bag = Assoc-list-bag , Raw-bag-structure-Assoc-list-bag -- Some properties of count₁. count₁-++ : ∀ xs → count₁ z (xs L.++ ys) ≡ count₁ z xs + count₁ z ys count₁-++ [] = refl _ count₁-++ {z = z} {ys = ys} (x ∷ xs) = count₁′ z x + (count₁ z (xs L.++ ys)) ≡⟨ cong (count₁′ z x +_) $ count₁-++ xs ⟩ count₁′ z x + (count₁ z xs + count₁ z ys) ≡⟨ Nat.+-assoc (count₁′ z x) ⟩∎ (count₁′ z x + count₁ z xs) + count₁ z ys ∎ count₁-replicate : ∀ n → count₁ z (L.replicate n y) ≡ count₂′ z (n , y) count₁-replicate {z = z} {y = y} zero with z ≟ y … | yes _ = refl _ … | no _ = refl _ count₁-replicate {z = z} {y = y} (suc n) = count₁′ z y + count₁ z (L.replicate n y) ≡⟨ cong (count₁′ z y +_) $ count₁-replicate n ⟩ count₁′ z y + count₂′ z (n , y) ≡⟨ lemma ⟩∎ count₂′ z (suc n , y) ∎ where lemma : count₁′ z y + count₂′ z (n , y) ≡ count₂′ z (suc n , y) lemma with z ≟ y … | yes _ = refl _ … | no _ = refl _ -- Some properties of count₂. count₂-insert-≡ : z ≡ x → ∀ ys → count₂ z (insert m x ys) ≡ m + count₂ z ys count₂-insert-≡ {z = z} {x = x} {m = m} z≡x = helper where helper : ∀ ys → count₂ z (insert m x ys) ≡ m + count₂ z ys helper [] with z ≟ x … | yes _ = m + 0 ∎ … | no z≢x = ⊥-elim $ z≢x z≡x helper ((n , y) ∷ ys) with x ≟ y helper ((n , y) ∷ ys) | no x≢y = count₂′ z (n , y) + count₂ z (insert m x ys) ≡⟨ cong (count₂′ z (n , y) +_) $ helper ys ⟩ count₂′ z (n , y) + (m + count₂ z ys) ≡⟨ Nat.+-assoc (count₂′ z (n , y)) ⟩ (count₂′ z (n , y) + m) + count₂ z ys ≡⟨ cong (_+ count₂ z ys) $ sym $ Nat.+-comm m ⟩ (m + count₂′ z (n , y)) + count₂ z ys ≡⟨ sym $ Nat.+-assoc m ⟩∎ m + (count₂′ z (n , y) + count₂ z ys) ∎ helper ((n , y) ∷ ys) | yes x≡y = count₂′ z (m + n , y) + count₂ z ys ≡⟨ cong (_+ _) lemma ⟩ (m + count₂′ z (n , y)) + count₂ z ys ≡⟨ sym $ Nat.+-assoc m ⟩∎ m + (count₂′ z (n , y) + count₂ z ys) ∎ where lemma : count₂′ z (m + n , y) ≡ m + count₂′ z (n , y) lemma with z ≟ y … | yes _ = m + n ∎ … | no z≢y = ⊥-elim $ z≢y (trans z≡x x≡y) count₂-insert-≢ : z ≢ x → ∀ ys → count₂ z (insert m x ys) ≡ count₂ z ys count₂-insert-≢ {z = z} {x = x} {m = m} z≢x = helper where helper : ∀ ys → count₂ z (insert m x ys) ≡ count₂ z ys helper [] with z ≟ x … | no _ = 0 ∎ … | yes z≡x = ⊥-elim $ z≢x z≡x helper ((n , y) ∷ ys) with x ≟ y … | no _ = count₂′ z (n , y) + count₂ z (insert m x ys) ≡⟨ cong (count₂′ z (n , y) +_) $ helper ys ⟩∎ count₂′ z (n , y) + count₂ z ys ∎ … | yes x≡y = count₂′ z (m + n , y) + count₂ z ys ≡⟨ cong (_+ _) lemma ⟩∎ count₂′ z ( n , y) + count₂ z ys ∎ where lemma : count₂′ z (m + n , y) ≡ count₂′ z (n , y) lemma with z ≟ y … | no _ = 0 ∎ … | yes z≡y = ⊥-elim $ z≢x (trans z≡y (sym x≡y)) count₂-insert : ∀ ys → count₂ z (insert m x ys) ≡ count₂′ z (m , x) + count₂ z ys count₂-insert {z = z} {m = m} {x = x} ys with z ≟ x … | yes z≡x = count₂ z (insert m x ys) ≡⟨ count₂-insert-≡ z≡x ys ⟩∎ m + count₂ z ys ∎ … | no z≢x = count₂ z (insert m x ys) ≡⟨ count₂-insert-≢ z≢x ys ⟩∎ count₂ z ys ∎ count₂-union : ∀ xs → count₂ z (union xs ys) ≡ count₂ z xs + count₂ z ys count₂-union {z = z} {ys = ys} [] = count₂ z ys ∎ count₂-union {z = z} {ys = ys} ((m , x) ∷ xs) = count₂ z (insert m x (union xs ys)) ≡⟨ count₂-insert (union xs ys) ⟩ count₂′ z (m , x) + count₂ z (union xs ys) ≡⟨ cong (count₂′ z (m , x) +_) $ count₂-union xs ⟩ count₂′ z (m , x) + (count₂ z xs + count₂ z ys) ≡⟨ Nat.+-assoc (count₂′ z (m , x)) ⟩∎ (count₂′ z (m , x) + count₂ z xs) + count₂ z ys ∎ -- A relation relating values of the two bag types. infix 4 _∼_ _∼_ : List-bag → Assoc-list-bag → Type a xs ∼ ys = ∀ z → count₁ z xs ≡ count₂ z ys -- The relation _∼_ is propositional. ∼-propositional : ∀ xs ys → Is-proposition (xs ∼ ys) ∼-propositional _ _ = Π-closure ext 1 λ _ → ℕ-set -- The relation _∼_ is a QER. ∼-QER : Is-QER _∼_ ∼-QER = (λ {xs₁ xs₂ ys₁ ys₂} xs₁∼ys₁ xs₂∼ys₁ xs₂∼ys₂ z → count₁ z xs₁ ≡⟨ xs₁∼ys₁ z ⟩ count₂ z ys₁ ≡⟨ sym $ xs₂∼ys₁ z ⟩ count₁ z xs₂ ≡⟨ xs₂∼ys₂ z ⟩∎ count₂ z ys₂ ∎) , (λ xs → ∣ to xs , ∼to xs ∣) , (λ ys → ∣ from ys , from∼ ys ∣) where to : List-bag → Assoc-list-bag to = L.foldr (insert 1) [] from : Assoc-list-bag → List-bag from = L.foldr (λ (n , x) → L.replicate n x L.++_) [] ∼to : ∀ xs → xs ∼ to xs ∼to [] _ = refl _ ∼to (x ∷ xs) z = count₁′ z x + count₁ z xs ≡⟨ cong (count₁′ z x +_) $ ∼to xs z ⟩ count₁′ z x + count₂ z (to xs) ≡⟨⟩ count₂′ z (1 , x) + count₂ z (to xs) ≡⟨ sym $ count₂-insert (to xs) ⟩∎ count₂ z (insert 1 x (to xs)) ∎ from∼ : ∀ ys → from ys ∼ ys from∼ [] _ = refl _ from∼ ((n , y) ∷ ys) z = count₁ z (L.replicate n y L.++ from ys) ≡⟨ count₁-++ (L.replicate n y) ⟩ count₁ z (L.replicate n y) + count₁ z (from ys) ≡⟨ cong (count₁ z (L.replicate n y) +_) $ from∼ ys z ⟩ count₁ z (L.replicate n y) + count₂ z ys ≡⟨ cong (_+ count₂ z ys) $ count₁-replicate n ⟩ count₂′ z (n , y) + count₂ z ys ≡⟨⟩ count₂ z ((n , y) ∷ ys) ∎ -- Raw-bag-structure-List-bag and Raw-bag-structure-Assoc-list-bag -- are related by Raw-bag-typeᴿ _∼_. List-bag∼Assoc-list-bag : Raw-bag-typeᴿ _∼_ Raw-bag-structure-List-bag Raw-bag-structure-Assoc-list-bag List-bag∼Assoc-list-bag = (λ z → count₁ z [] ≡⟨⟩ count₂ z [] ∎) , (λ x {x = xs} {y = ys} xs∼ys z → count₁ z (x ∷ xs) ≡⟨⟩ count₁′ z x + count₁ z xs ≡⟨ cong (count₁′ z x +_) (xs∼ys z) ⟩ count₁′ z x + count₂ z ys ≡⟨⟩ count₂′ z (1 , x) + count₂ z ys ≡⟨ sym $ count₂-insert ys ⟩∎ count₂ z (insert 1 x ys) ∎) , (λ {x = xs₁} {y = ys₁} xs₁∼ys₁ {x = xs₂} {y = ys₂} xs₂∼ys₂ z → count₁ z (xs₁ L.++ xs₂) ≡⟨ count₁-++ xs₁ ⟩ count₁ z xs₁ + count₁ z xs₂ ≡⟨ cong₂ _+_ (xs₁∼ys₁ z) (xs₂∼ys₂ z) ⟩ count₂ z ys₁ + count₂ z ys₂ ≡⟨ sym $ count₂-union ys₁ ⟩∎ count₂ z (union ys₁ ys₂) ∎) , (λ x {x = xs} {y = ys} xs∼ys → count₁ x xs ≡⟨ xs∼ys x ⟩∎ count₂ x ys ∎) -- There is an equivalence (with erased proofs) between List-bag -- quotiented by _∼_ ⟵ and Assoc-list-bag quotiented by _∼_ ⟶ -- (where _/ᴱ_ is used for the quotients). List-bag≃ᴱAssoc-list-bag : List-bag /ᴱ _∼_ ⟵ ≃ᴱ Assoc-list-bag /ᴱ _∼_ ⟶ List-bag≃ᴱAssoc-list-bag = /ᴱ⟵≃ᴱ/ᴱ⟶ᴱ (Is-QER→Is-QERᴱ ∼-QER) ∼-propositional .proj₁ -- Lists that are related by List-bag≃ᴱAssoc-list-bag (in a -- certain way) are also related by _∼_. -- -- Note that this definition is not erased: it uses /ᴱ⟵≃ᴱ/ᴱ⟶ -- instead of /ᴱ⟵≃ᴱ/ᴱ⟶ᴱ, and ∼-QER instead of -- Is-QER→Is-QERᴱ ∼-QER. →∼ : ∀ xs ys → _≃ᴱ_.to List-bag≃ᴱAssoc-list-bag [ xs ] ≡ [ ys ] → xs ∼ ys →∼ xs ys = /ᴱ⟵≃ᴱ/ᴱ⟶ ∼-QER ∼-propositional .proj₂ xs ys .proj₁ -- The function →∼ is an equivalence (in erased contexts). @0 →∼-equivalence : ∀ xs ys → Is-equivalence (→∼ xs ys) →∼-equivalence xs ys = /ᴱ⟵≃ᴱ/ᴱ⟶ ∼-QER ∼-propositional .proj₂ xs ys .proj₂ .erased -- The relation _∼_ can be expressed using -- List-bag≃ᴱAssoc-list-bag (in erased contexts). @0 ≃∼ : ∀ xs ys → (_≃ᴱ_.to List-bag≃ᴱAssoc-list-bag [ xs ] ≡ [ ys ]) ≃ (xs ∼ ys) ≃∼ = /ᴱ⟵≃ᴱ/ᴱ⟶ᴱ (Is-QER→Is-QERᴱ ∼-QER) ∼-propositional .proj₂ .erased private instance-of-Suitable→/ᴱ⟵×/ᴱ⟶ = Suitable→/ᴱ⟵×/ᴱ⟶ Raw-bag-type-List-bag Raw-bag-type-Assoc-list-bag (Raw-bag-typeᴿ-univalent .proj₁) (Is-QER→Is-QERᴱ ∼-QER) ∼-propositional List-bag∼Assoc-list-bag -- There is a raw bag structure on List-bag /ᴱ _∼_ ⟵. Raw-bag-structure-List-bag-/ᴱ : Raw-bag-structure (List-bag /ᴱ _∼_ ⟵) Raw-bag-structure-List-bag-/ᴱ = instance-of-Suitable→/ᴱ⟵×/ᴱ⟶ .proj₁ Raw-bag-type-List-bag-/ᴱ : Raw-bag-type Raw-bag-type-List-bag-/ᴱ = List-bag /ᴱ _∼_ ⟵ , Raw-bag-structure-List-bag-/ᴱ -- There is a raw bag structure on Assoc-list-bag /ᴱ _∼_ ⟶. Raw-bag-structure-Assoc-list-bag-/ᴱ : Raw-bag-structure (Assoc-list-bag /ᴱ _∼_ ⟶) Raw-bag-structure-Assoc-list-bag-/ᴱ = instance-of-Suitable→/ᴱ⟵×/ᴱ⟶ .proj₂ .proj₁ Raw-bag-type-Assoc-list-bag-/ᴱ : Raw-bag-type Raw-bag-type-Assoc-list-bag-/ᴱ = Assoc-list-bag /ᴱ _∼_ ⟶ , Raw-bag-structure-Assoc-list-bag-/ᴱ -- The two raw bag structures are related to the underlying raw -- bag structures (in erased contexts). @0 List∼List-/ᴱ : Raw-bag-typeᴿ (Graph [_]) Raw-bag-structure-List-bag Raw-bag-structure-List-bag-/ᴱ List∼List-/ᴱ = instance-of-Suitable→/ᴱ⟵×/ᴱ⟶ .proj₂ .proj₂ .erased .proj₁ @0 Assoc-list∼Assoc-list-/ᴱ : Raw-bag-typeᴿ (Graph [_]) Raw-bag-structure-Assoc-list-bag Raw-bag-structure-Assoc-list-bag-/ᴱ Assoc-list∼Assoc-list-/ᴱ = instance-of-Suitable→/ᴱ⟵×/ᴱ⟶ .proj₂ .proj₂ .erased .proj₂ .proj₁ -- They are also related to each other (in erased contexts). @0 List-/ᴱ∼Assoc-list-/ᴱ : Raw-bag-typeᴿ (Graph (_≃ᴱ_.to List-bag≃ᴱAssoc-list-bag)) Raw-bag-structure-List-bag-/ᴱ Raw-bag-structure-Assoc-list-bag-/ᴱ List-/ᴱ∼Assoc-list-/ᴱ = instance-of-Suitable→/ᴱ⟵×/ᴱ⟶ .proj₂ .proj₂ .erased .proj₂ .proj₂ -- Raw-bag-type-List-bag-/ᴱ is equal to -- Raw-bag-type-Assoc-list-bag-/ᴱ (in erased contexts). @0 List-/ᴱ≡Assoc-list-/ᴱ : Raw-bag-type-List-bag-/ᴱ ≡ Raw-bag-type-Assoc-list-bag-/ᴱ List-/ᴱ≡Assoc-list-/ᴱ = Univalentᴿ→/ᴱ⟵×/ᴱ⟶ Raw-bag-type-List-bag Raw-bag-type-Assoc-list-bag Raw-bag-typeᴿ-univalent (Is-QER→Is-QERᴱ ∼-QER) ∼-propositional List-bag∼Assoc-list-bag .proj₂ .proj₂ .erased .proj₂ .proj₂ -- For List-bag /ᴱ _∼_ ⟵ equality of two lists can be expressed in -- terms of the induced count function (in erased contexts). @0 List-≡≃ : let count = Raw-bag-structure-List-bag-/ᴱ .proj₂ .proj₂ .proj₂ in (xs ys : List-bag /ᴱ _∼_ ⟵) → (xs ≡ ys) ≃ (∀ z → count z xs ≡ count z ys) List-≡≃ = Q.elim-prop λ @0 where .Q.is-propositionʳ _ → Π-closure ext 1 λ _ → Eq.left-closure ext 0 $ Q./ᴱ-is-set .Q.[]ʳ xs → Q.elim-prop λ @0 where .Q.is-propositionʳ _ → Eq.left-closure ext 0 $ Q./ᴱ-is-set .Q.[]ʳ ys → ([ xs ] ≡ [ ys ]) ↝⟨ inverse $ Q.related≃[equal] (Is-QER→Is-equivalence-relation-⟵ ∼-QER) T.truncation-is-proposition ⟩ (_∼_ ⟵) xs ys ↝⟨ Eq.⇔→≃ T.truncation-is-proposition (Π-closure ext 1 λ _ → ℕ-set) (T.rec λ @0 where .T.truncation-is-propositionʳ → Π-closure ext 1 λ _ → ℕ-set .T.∣∣ʳ (zs , xs∼zs , ys∼zs) z → count₁ z xs ≡⟨ xs∼zs z ⟩ count₂ z zs ≡⟨ sym $ ys∼zs z ⟩∎ count₁ z ys ∎) (λ xs∼ys → T.∥∥ᴱ-map (λ (zs , xs∼zs) → zs , xs∼zs , λ z → count₁ z ys ≡⟨ sym $ xs∼ys z ⟩ count₁ z xs ≡⟨ xs∼zs z ⟩∎ count₂ z zs ∎) (∼-QER .proj₂ .proj₁ xs)) ⟩□ (∀ z → count₁ z xs ≡ count₁ z ys) □ -- This property can easily be transported to -- Assoc-list-bag /ᴱ _∼_ ⟶. @0 Assoc-list-≡≃ : let count = Raw-bag-structure-Assoc-list-bag-/ᴱ .proj₂ .proj₂ .proj₂ in (xs ys : Assoc-list-bag /ᴱ _∼_ ⟶) → (xs ≡ ys) ≃ (∀ z → count z xs ≡ count z ys) Assoc-list-≡≃ = subst (λ B → let count = B .proj₂ .proj₂ .proj₂ .proj₂ in (xs ys : B .proj₁) → (xs ≡ ys) ≃ (∀ z → count z xs ≡ count z ys)) List-/ᴱ≡Assoc-list-/ᴱ List-≡≃
36.66271
146
0.479298
59a97c5ab989f2f1dbbf45b113b5cbcb6f004d60
618
agda
Agda
test/Succeed/Issue1292.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue1292.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue1292.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2014-10-05, issue reported by Stevan Andjelkovic {-# OPTIONS --without-K #-} postulate IO : Set → Set record ⊤ : Set where constructor tt record Container : Set₁ where field Shape : Set Position : Shape → Set open Container public data W (A : Set) (B : A → Set) : Set where sup : (x : A) (f : B x → W A B) → W A B postulate Ω : Container p : ∀ {s} → Position Ω s mutual bad : W (Shape Ω) (Position Ω) → IO ⊤ bad (sup c k) = helper c k helper : (s : Shape Ω) → (Position Ω s → W (Shape Ω) (Position Ω)) → IO ⊤ helper _ k = bad (k p) -- should pass termination check
18.727273
75
0.595469
295d1d912ae496a39acf28cc2e455e08d7e7f71b
725
agda
Agda
Parametric/Change/Type.agda
inc-lc/ilc-agda
39bb081c6f192bdb87bd58b4a89291686d2d7d03
[ "MIT" ]
10
2015-03-04T06:09:20.000Z
2019-07-19T07:06:59.000Z
Parametric/Change/Type.agda
inc-lc/ilc-agda
39bb081c6f192bdb87bd58b4a89291686d2d7d03
[ "MIT" ]
6
2015-07-01T18:09:31.000Z
2017-05-04T13:53:59.000Z
Parametric/Change/Type.agda
inc-lc/ilc-agda
39bb081c6f192bdb87bd58b4a89291686d2d7d03
[ "MIT" ]
1
2016-02-18T12:26:44.000Z
2016-02-18T12:26:44.000Z
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Simply-typed changes (Fig. 3 and Fig. 4d) ------------------------------------------------------------------------ import Parametric.Syntax.Type as Type module Parametric.Change.Type (Base : Type.Structure) where open Type.Structure Base -- Extension point: Simply-typed changes of base types. Structure : Set Structure = Base → Type module Structure (ΔBase : Structure) where -- We provide: Simply-typed changes on simple types. ΔType : Type → Type ΔType (base ι) = ΔBase ι ΔType (σ ⇒ τ) = σ ⇒ ΔType σ ⇒ ΔType τ -- And we also provide context merging. open import Base.Change.Context ΔType public
26.851852
72
0.571034
579bc96e79998985f0235dd79c04aa08165ba3ef
1,187
agda
Agda
src/Structure/Monoid/Laws.agda
jespercockx/agda-prelude
1984cf0341835b2f7bfe678098bd57cfe16ea11f
[ "MIT" ]
null
null
null
src/Structure/Monoid/Laws.agda
jespercockx/agda-prelude
1984cf0341835b2f7bfe678098bd57cfe16ea11f
[ "MIT" ]
null
null
null
src/Structure/Monoid/Laws.agda
jespercockx/agda-prelude
1984cf0341835b2f7bfe678098bd57cfe16ea11f
[ "MIT" ]
null
null
null
module Structure.Monoid.Laws where open import Prelude record MonoidLaws {a} (A : Set a) {{Mon : Monoid A}} : Set a where field idLeft : (x : A) → mempty <> x ≡ x idRight : (x : A) → x <> mempty ≡ x <>assoc : (x y z : A) → x <> (y <> z) ≡ (x <> y) <> z open MonoidLaws {{...}} public {-# DISPLAY MonoidLaws.idLeft _ = idLeft #-} {-# DISPLAY MonoidLaws.idRight _ = idRight #-} {-# DISPLAY MonoidLaws.<>assoc _ = <>assoc #-} instance MonoidLawsList : ∀ {a} {A : Set a} → MonoidLaws (List A) idLeft {{MonoidLawsList}} xs = refl idRight {{MonoidLawsList}} [] = refl idRight {{MonoidLawsList}} (x ∷ xs) = x ∷_ $≡ idRight xs <>assoc {{MonoidLawsList}} [] ys zs = refl <>assoc {{MonoidLawsList}} (x ∷ xs) ys zs = x ∷_ $≡ <>assoc xs ys zs MonoidLawsMaybe : ∀ {a} {A : Set a} {{_ : Monoid A}} {{_ : MonoidLaws A}} → MonoidLaws (Maybe A) idLeft {{MonoidLawsMaybe}} x = refl idRight {{MonoidLawsMaybe}} nothing = refl idRight {{MonoidLawsMaybe}} (just _) = refl <>assoc {{MonoidLawsMaybe}} nothing y z = refl <>assoc {{MonoidLawsMaybe}} (just x) y z = refl -- Can't do function lifting because no extentionality.
34.911765
98
0.590564
2966cae708ad6e70042228ea1fd0bd48aafc3728
305
agda
Agda
setoid-cats/Basics.agda
heades/AUGL
b33c6a59d664aed46cac8ef77d34313e148fecc2
[ "MIT" ]
null
null
null
setoid-cats/Basics.agda
heades/AUGL
b33c6a59d664aed46cac8ef77d34313e148fecc2
[ "MIT" ]
null
null
null
setoid-cats/Basics.agda
heades/AUGL
b33c6a59d664aed46cac8ef77d34313e148fecc2
[ "MIT" ]
null
null
null
------------------------------------------- -- This file contains basic definitions. -- ------------------------------------------- module Basics where open import Level data ⊥-poly {l : Level} : Set l where ⊥-poly-elim : ∀ {l w} {Whatever : Set w} → ⊥-poly {l} → Whatever ⊥-poly-elim ()
25.416667
66
0.42623
29e036e6086afaf8a3bfa714b25c3f4ddb02c530
266
agda
Agda
src/Utilities/ExistsSyntax.agda
armkeh/agda-computability
f6a6845a54aed7ecc6841ff5ad89643b553cbd77
[ "MIT" ]
null
null
null
src/Utilities/ExistsSyntax.agda
armkeh/agda-computability
f6a6845a54aed7ecc6841ff5ad89643b553cbd77
[ "MIT" ]
null
null
null
src/Utilities/ExistsSyntax.agda
armkeh/agda-computability
f6a6845a54aed7ecc6841ff5ad89643b553cbd77
[ "MIT" ]
null
null
null
module Utilities.ExistsSyntax where open import Level using (Level ; _⊔_) open import Data.Product using (Σ) variable a b : Level A : Set a B : Set b ∃-syntax : (A : Set a) → (A → Set b) → Set (a ⊔ b) ∃-syntax = Σ syntax ∃-syntax A (λ x → B) = ∃ x ∶ A • B
17.733333
50
0.593985
18184134662dd12aa651dfdadbd92368c5b190c0
3,132
agda
Agda
homotopy/SuspensionJoin.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
1
2021-06-30T00:17:55.000Z
2021-06-30T00:17:55.000Z
homotopy/SuspensionJoin.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
null
null
null
homotopy/SuspensionJoin.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} open import HoTT module homotopy.SuspensionJoin {i} (A : Type i) where {- To -} false, : A → Bool × A false, a = false , a true, : A → Bool × A true, a = true , a module To = SuspensionRec {i} A {_} {Bool * A} (left false :> Bool * A) (left true) (λ a → glue (false, a) ∙ ! (glue (true, a))) to : Suspension A → (Bool * A) to = To.f {- From -} from : Bool * A → Suspension A from = From.f module _ where from-bool : Bool → Suspension A from-bool false = north A from-bool true = south A from-glue : (c : Bool × A) → from-bool (fst c) == south A from-glue (false , a) = merid A a from-glue (true , a) = idp module From = PushoutRec {d = *-span Bool A} from-bool (λ _ → south A) from-glue {- ToFrom -} to-from : (c : Bool * A) → to (from c) == c to-from = Pushout-elim to-from-left (λ a → glue (true , a)) to-from-glue where to-from-left : (b : Bool) → to (from (left b)) == left b to-from-left false = idp to-from-left true = idp to-from-glue' : (b : Bool) (a : A) → ap to (ap from (glue (b , a))) ∙' glue (true , a) == to-from-left b ∙ glue (b , a) to-from-glue' true a = ap to (ap from (glue (true , a))) ∙' glue (true , a) =⟨ From.glue-β (true , a) |in-ctx (λ u → ap to u ∙' glue (true , a)) ⟩ idp ∙' glue (true , a) =⟨ ∙'-unit-l _ ⟩ glue (true , a) ∎ to-from-glue' false a = ap to (ap from (glue (false , a))) ∙' glue (true , a) =⟨ From.glue-β (false , a) |in-ctx (λ u → ap to u ∙' glue (true , a)) ⟩ ap to (merid A a) ∙' glue (true , a) =⟨ To.glue-β a |in-ctx (λ u → u ∙' glue (true , a)) ⟩ (glue (false , a) ∙ ! (glue (true , a))) ∙' glue (true , a) =⟨ coh (glue (false , a)) (glue (true , a)) ⟩ glue (false , a) ∎ where coh : ∀ {i} {A : Type i} {a b c : A} (p : a == b) (q : c == b) → (p ∙ ! q) ∙' q == p coh idp idp = idp to-from-glue : (c : Bool × A) → to-from-left (fst c) == glue (true , snd c) [ (λ z → to (from z) == z) ↓ glue c ] to-from-glue c = ↓-∘=idf-in to from (uncurry to-from-glue' c) {- FromTo -} from-to : (c : Suspension A) → from (to c) == c from-to = Suspension-elim A idp idp from-to-merid where from-to-merid' : (a : A) → ap from (ap to (merid A a)) == merid A a from-to-merid' a = ap from (ap to (merid A a)) =⟨ To.glue-β a |in-ctx ap from ⟩ ap from (glue (false , a) ∙ ! (glue (true , a))) =⟨ ap-∙ from (glue (false , a)) (! (glue (true , a))) ⟩ ap from (glue (false , a)) ∙ ap from (! (glue (true , a))) =⟨ ap-! from (glue (true , a)) |in-ctx (λ u → ap from (glue (false , a)) ∙ u) ⟩ ap from (glue (false , a)) ∙ ! (ap from (glue (true , a))) =⟨ From.glue-β (false , a) |in-ctx (λ u → u ∙ ! (ap from (glue (true , a)))) ⟩ merid A a ∙ ! (ap from (glue (true , a))) =⟨ From.glue-β (true , a) |in-ctx (λ u → merid A a ∙ ! u) ⟩ merid A a ∙ idp =⟨ ∙-unit-r _ ⟩ merid A a ∎ from-to-merid : (a : A) → idp == idp [ (λ z → from (to z) == z) ↓ merid A a ] from-to-merid a = ↓-∘=idf-in from to (from-to-merid' a) {- Conclusion -} e : Suspension A ≃ (Bool * A) e = equiv to from to-from from-to
36.418605
144
0.515645
06612f6b2d88751d9f90a743139b1bab8d4b5d60
4,050
agda
Agda
Cubical/Foundations/Pointed/Homotopy.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
301
2018-10-17T18:00:24.000Z
2022-03-24T02:10:47.000Z
Cubical/Foundations/Pointed/Homotopy.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
584
2018-10-15T09:49:02.000Z
2022-03-30T12:09:17.000Z
Cubical/Foundations/Pointed/Homotopy.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
134
2018-11-16T06:11:03.000Z
2022-03-23T16:22:13.000Z
{-# OPTIONS --safe #-} module Cubical.Foundations.Pointed.Homotopy where {- This module defines two kinds of pointed homotopies, ∙∼ and ∙∼P, and proves their equivalence -} open import Cubical.Foundations.Prelude open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.Equiv.Fiberwise open import Cubical.Foundations.Equiv.Properties open import Cubical.Foundations.Path open import Cubical.Foundations.Transport open import Cubical.Foundations.Univalence open import Cubical.Foundations.Pointed.Base open import Cubical.Foundations.Pointed.Properties open import Cubical.Homotopy.Base open import Cubical.Data.Sigma private variable ℓ ℓ' : Level module _ {A : Pointed ℓ} {B : typ A → Type ℓ'} {ptB : B (pt A)} where ⋆ = pt A -- pointed homotopy as pointed Π. This is just a Σ-type, see ∙∼Σ _∙∼_ : (f g : Π∙ A B ptB) → Type (ℓ-max ℓ ℓ') (f₁ , f₂) ∙∼ (g₁ , g₂) = Π∙ A (λ x → f₁ x ≡ g₁ x) (f₂ ∙ g₂ ⁻¹) -- pointed homotopy with PathP. Also a Σ-type, see ∙∼PΣ _∙∼P_ : (f g : Π∙ A B ptB) → Type (ℓ-max ℓ ℓ') (f₁ , f₂) ∙∼P (g₁ , g₂) = Σ[ h ∈ f₁ ∼ g₁ ] PathP (λ i → h ⋆ i ≡ ptB) f₂ g₂ -- Proof that f ∙∼ g ≃ f ∙∼P g -- using equivalence of the total map of φ private module _ (f g : Π∙ A B ptB) (H : f .fst ∼ g .fst) where -- convenient notation f₁ = fst f f₂ = snd f g₁ = fst g g₂ = snd g -- P is the predicate on a homotopy H to be pointed of the ∙∼ kind P : Type ℓ' P = H ⋆ ≡ f₂ ∙ g₂ ⁻¹ -- Q is the predicate on a homotopy H to be pointed of the ∙∼P kind Q : Type ℓ' Q = PathP (λ i → H ⋆ i ≡ ptB) f₂ g₂ -- simplify the notation even more to see that P≡Q -- is just a jingle of paths p = H ⋆ r = f₂ s = g₂ P≡Q : P ≡ Q P≡Q = p ≡ r ∙ s ⁻¹ ≡⟨ isoToPath (symIso p (r ∙ s ⁻¹)) ⟩ r ∙ s ⁻¹ ≡ p ≡⟨ cong (r ∙ s ⁻¹ ≡_) (rUnit p ∙∙ cong (p ∙_) (sym (rCancel s)) ∙∙ assoc p s (s ⁻¹)) ⟩ r ∙ s ⁻¹ ≡ (p ∙ s) ∙ s ⁻¹ ≡⟨ sym (ua (compr≡Equiv r (p ∙ s) (s ⁻¹))) ⟩ r ≡ p ∙ s ≡⟨ ua (compl≡Equiv (p ⁻¹) r (p ∙ s)) ⟩ p ⁻¹ ∙ r ≡ p ⁻¹ ∙ (p ∙ s) ≡⟨ cong (p ⁻¹ ∙ r ≡_ ) (assoc (p ⁻¹) p s ∙∙ (cong (_∙ s) (lCancel p)) ∙∙ sym (lUnit s)) ⟩ p ⁻¹ ∙ r ≡ s ≡⟨ cong (λ z → p ⁻¹ ∙ z ≡ s) (rUnit r) ⟩ p ⁻¹ ∙ (r ∙ refl) ≡ s ≡⟨ cong (_≡ s) (sym (doubleCompPath-elim' (p ⁻¹) r refl)) ⟩ p ⁻¹ ∙∙ r ∙∙ refl ≡ s ≡⟨ sym (ua (Square≃doubleComp r s p refl)) ⟩ PathP (λ i → p i ≡ ptB) r s ∎ -- φ is a fiberwise transformation (H : f ∼ g) → P H → Q H -- φ is even a fiberwise equivalence by P≡Q φ : P → Q φ = transport P≡Q -- The total map corresponding to φ totφ : (f g : Π∙ A B ptB) → f ∙∼ g → f ∙∼P g totφ f g p .fst = p .fst totφ f g p .snd = φ f g (p .fst) (p .snd) -- transformation of the homotopies using totφ ∙∼→∙∼P : (f g : Π∙ A B ptB) → (f ∙∼ g) → (f ∙∼P g) ∙∼→∙∼P f g = totφ f g -- Proof that ∙∼ and ∙∼P are equivalent using the fiberwise equivalence φ ∙∼≃∙∼P : (f g : Π∙ A B ptB) → (f ∙∼ g) ≃ (f ∙∼P g) ∙∼≃∙∼P f g = Σ-cong-equiv-snd (λ H → transportEquiv (P≡Q f g H)) -- inverse of ∙∼→∙∼P extracted from the equivalence ∙∼P→∙∼ : {f g : Π∙ A B ptB} → f ∙∼P g → f ∙∼ g ∙∼P→∙∼ {f = f} {g = g} = invEq (∙∼≃∙∼P f g) -- ∙∼≃∙∼P transformed to a path ∙∼≡∙∼P : (f g : Π∙ A B ptB) → (f ∙∼ g) ≡ (f ∙∼P g) ∙∼≡∙∼P f g = ua (∙∼≃∙∼P f g) -- Verifies that the pointed homotopies actually correspond -- to their Σ-type versions _∙∼Σ_ : (f g : Π∙ A B ptB) → Type (ℓ-max ℓ ℓ') f ∙∼Σ g = Σ[ H ∈ f .fst ∼ g .fst ] (P f g H) _∙∼PΣ_ : (f g : Π∙ A B ptB) → Type (ℓ-max ℓ ℓ') f ∙∼PΣ g = Σ[ H ∈ f .fst ∼ g .fst ] (Q f g H) ∙∼≡∙∼Σ : (f g : Π∙ A B ptB) → f ∙∼ g ≡ f ∙∼Σ g ∙∼≡∙∼Σ f g = refl ∙∼P≡∙∼PΣ : (f g : Π∙ A B ptB) → f ∙∼P g ≡ f ∙∼PΣ g ∙∼P≡∙∼PΣ f g = refl
33.75
103
0.512593
c5518ca6f89ab2d8be41d51cb37b7ddc3093192f
629
agda
Agda
examples/outdated-and-incorrect/Alonzo/PreludeString.agda
larrytheliquid/agda
477c8c37f948e6038b773409358fd8f38395f827
[ "MIT" ]
null
null
null
examples/outdated-and-incorrect/Alonzo/PreludeString.agda
larrytheliquid/agda
477c8c37f948e6038b773409358fd8f38395f827
[ "MIT" ]
null
null
null
examples/outdated-and-incorrect/Alonzo/PreludeString.agda
larrytheliquid/agda
477c8c37f948e6038b773409358fd8f38395f827
[ "MIT" ]
1
2022-03-12T11:35:18.000Z
2022-03-12T11:35:18.000Z
module PreludeString where import RTP -- magic module import PreludeList open PreludeList using (List) open import AlonzoPrelude infixr 50 _++_ private primitive primStringAppend : String -> String -> String -- primStringReverse : String -> String primStringToList : String -> List Char primStringFromList : List Char -> String _++_ = primStringAppend reverseString = RTP.primStringReverse toList : String -> List Char toList = primStringToList fromList : List Char -> String fromList = primStringFromList -- toList = RTP.primStringToList -- fromList = RTP.primStringFromList
17.971429
52
0.721781
4a61b856ef684ab111337fb8759f321e001e06aa
3,174
agda
Agda
Cubical/Foundations/FunExtEquiv.agda
borsiemir/cubical
cefeb3669ffdaea7b88ae0e9dd258378418819ca
[ "MIT" ]
null
null
null
Cubical/Foundations/FunExtEquiv.agda
borsiemir/cubical
cefeb3669ffdaea7b88ae0e9dd258378418819ca
[ "MIT" ]
null
null
null
Cubical/Foundations/FunExtEquiv.agda
borsiemir/cubical
cefeb3669ffdaea7b88ae0e9dd258378418819ca
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --safe #-} module Cubical.Foundations.FunExtEquiv where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Univalence private variable ℓ ℓ₁ ℓ₂ ℓ₃ : Level -- Function extensionality is an equivalence module _ {A : Type ℓ} {B : A → Type ℓ₁} {f g : (x : A) → B x} where private fib : (p : f ≡ g) → fiber funExt p fib p = (funExt⁻ p , refl) funExt-fiber-isContr : (p : f ≡ g) → (fi : fiber funExt p) → fib p ≡ fi funExt-fiber-isContr p (h , eq) i = (funExt⁻ (eq (~ i)) , λ j → eq (~ i ∨ j)) funExt-isEquiv : isEquiv funExt equiv-proof funExt-isEquiv p = (fib p , funExt-fiber-isContr p) funExtEquiv : (∀ x → f x ≡ g x) ≃ (f ≡ g) funExtEquiv = (funExt {B = B} , funExt-isEquiv) funExtPath : (∀ x → f x ≡ g x) ≡ (f ≡ g) funExtPath = ua funExtEquiv -- Function extensionality for binary functions funExt₂ : {A : Type ℓ} {B : A → Type ℓ₁} {C : (x : A) → B x → Type ℓ₂} {f g : (x : A) → (y : B x) → C x y} → ((x : A) (y : B x) → f x y ≡ g x y) → f ≡ g funExt₂ p i x y = p x y i -- Function extensionality for binary functions is an equivalence module _ {A : Type ℓ} {B : A → Type ℓ₁} {C : (x : A) → B x → Type ℓ₂} {f g : (x : A) → (y : B x) → C x y} where private appl₂ : f ≡ g → ∀ x y → f x y ≡ g x y appl₂ eq x y i = eq i x y fib : (p : f ≡ g) → fiber funExt₂ p fib p = (appl₂ p , refl) funExt₂-fiber-isContr : (p : f ≡ g) → (fi : fiber funExt₂ p) → fib p ≡ fi funExt₂-fiber-isContr p (h , eq) i = (appl₂ (eq (~ i)) , λ j → eq (~ i ∨ j)) funExt₂-isEquiv : isEquiv funExt₂ equiv-proof funExt₂-isEquiv p = (fib p , funExt₂-fiber-isContr p) funExt₂Equiv : (∀ x y → f x y ≡ g x y) ≃ (f ≡ g) funExt₂Equiv = (funExt₂ , funExt₂-isEquiv) funExt₂Path : (∀ x y → f x y ≡ g x y) ≡ (f ≡ g) funExt₂Path = ua funExt₂Equiv -- Function extensionality for ternary functions funExt₃ : {A : Type ℓ} {B : A → Type ℓ₁} {C : (x : A) → B x → Type ℓ₂} {D : (x : A) → (y : B x) → C x y → Type ℓ₃} {f g : (x : A) → (y : B x) → (z : C x y) → D x y z} → ((x : A) (y : B x) (z : C x y) → f x y z ≡ g x y z) → f ≡ g funExt₃ p i x y z = p x y z i -- Function extensionality for ternary functions is an equivalence module _ {A : Type ℓ} {B : A → Type ℓ₁} {C : (x : A) → B x → Type ℓ₂} {D : (x : A) → (y : B x) → C x y → Type ℓ₃} {f g : (x : A) → (y : B x) → (z : C x y) → D x y z} where private appl₃ : f ≡ g → ∀ x y z → f x y z ≡ g x y z appl₃ eq x y z i = eq i x y z fib : (p : f ≡ g) → fiber funExt₃ p fib p = (appl₃ p , refl) funExt₃-fiber-isContr : (p : f ≡ g) → (fi : fiber funExt₃ p) → fib p ≡ fi funExt₃-fiber-isContr p (h , eq) i = (appl₃ (eq (~ i)) , λ j → eq (~ i ∨ j)) funExt₃-isEquiv : isEquiv funExt₃ equiv-proof funExt₃-isEquiv p = (fib p , funExt₃-fiber-isContr p) funExt₃Equiv : (∀ x y z → f x y z ≡ g x y z) ≃ (f ≡ g) funExt₃Equiv = (funExt₃ , funExt₃-isEquiv) funExt₃Path : (∀ x y z → f x y z ≡ g x y z) ≡ (f ≡ g) funExt₃Path = ua funExt₃Equiv -- Puzzle: Can one generalize this to n-ary functions?
34.5
81
0.543793
3d3c79a681db018ee58ea8b7a9c4a23b8432d79c
25,358
agda
Agda
Cubical/Homotopy/Group/Base.agda
barrettj12/cubical
7b41b9171f90473efc98487cb2ea7a4d02320cb2
[ "MIT" ]
null
null
null
Cubical/Homotopy/Group/Base.agda
barrettj12/cubical
7b41b9171f90473efc98487cb2ea7a4d02320cb2
[ "MIT" ]
null
null
null
Cubical/Homotopy/Group/Base.agda
barrettj12/cubical
7b41b9171f90473efc98487cb2ea7a4d02320cb2
[ "MIT" ]
null
null
null
{-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.Homotopy.Group.Base where open import Cubical.Homotopy.Loopspace open import Cubical.Foundations.Prelude open import Cubical.Foundations.Pointed open import Cubical.Foundations.Pointed.Homogeneous open import Cubical.Foundations.HLevels open import Cubical.Foundations.GroupoidLaws renaming (assoc to ∙assoc) open import Cubical.Foundations.Path open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.Univalence open import Cubical.Functions.Morphism open import Cubical.HITs.SetTruncation renaming (rec to sRec ; rec2 to sRec2 ; elim to sElim ; elim2 to sElim2 ; elim3 to sElim3 ; map to sMap) open import Cubical.HITs.Sn open import Cubical.HITs.Susp renaming (toSusp to σ) open import Cubical.HITs.S1 open import Cubical.Data.Sigma open import Cubical.Data.Nat open import Cubical.Data.Bool open import Cubical.Algebra.Group open import Cubical.Algebra.Semigroup open import Cubical.Algebra.Monoid open Iso open IsGroup open IsSemigroup open IsMonoid open GroupStr {- Homotopy group -} π : ∀ {ℓ} (n : ℕ) (A : Pointed ℓ) → Type ℓ π n A = ∥ typ ((Ω^ n) A) ∥₂ {- Alternative formulation. This will be given a group structure in the Properties file -} π' : ∀ {ℓ} (n : ℕ) (A : Pointed ℓ) → Type ℓ π' n A = ∥ S₊∙ n →∙ A ∥₂ {- π as a group -} 1π : ∀ {ℓ} (n : ℕ) {A : Pointed ℓ} → π n A 1π zero {A = A} = ∣ pt A ∣₂ 1π (suc n) = ∣ refl ∣₂ ·π : ∀ {ℓ} (n : ℕ) {A : Pointed ℓ} → π (suc n) A → π (suc n) A → π (suc n) A ·π n = sRec2 squash₂ λ p q → ∣ p ∙ q ∣₂ -π : ∀ {ℓ} (n : ℕ) {A : Pointed ℓ} → π (suc n) A → π (suc n) A -π n = sMap sym π-rUnit : ∀ {ℓ} (n : ℕ) {A : Pointed ℓ} (x : π (suc n) A) → (·π n x (1π (suc n))) ≡ x π-rUnit n = sElim (λ _ → isSetPathImplicit) λ p i → ∣ rUnit p (~ i) ∣₂ π-lUnit : ∀ {ℓ} (n : ℕ) {A : Pointed ℓ} (x : π (suc n) A) → (·π n (1π (suc n)) x) ≡ x π-lUnit n = sElim (λ _ → isSetPathImplicit) λ p i → ∣ lUnit p (~ i) ∣₂ π-rCancel : ∀ {ℓ} (n : ℕ) {A : Pointed ℓ} (x : π (suc n) A) → (·π n x (-π n x)) ≡ 1π (suc n) π-rCancel n = sElim (λ _ → isSetPathImplicit) λ p i → ∣ rCancel p i ∣₂ π-lCancel : ∀ {ℓ} (n : ℕ) {A : Pointed ℓ} (x : π (suc n) A) → (·π n (-π n x) x) ≡ 1π (suc n) π-lCancel n = sElim (λ _ → isSetPathImplicit) λ p i → ∣ lCancel p i ∣₂ π-assoc : ∀ {ℓ} (n : ℕ) {A : Pointed ℓ} (x y z : π (suc n) A) → ·π n x (·π n y z) ≡ ·π n (·π n x y) z π-assoc n = sElim3 (λ _ _ _ → isSetPathImplicit) λ p q r i → ∣ ∙assoc p q r i ∣₂ π-comm : ∀ {ℓ} (n : ℕ) {A : Pointed ℓ} (x y : π (suc (suc n)) A) → ·π (suc n) x y ≡ ·π (suc n) y x π-comm n = sElim2 (λ _ _ → isSetPathImplicit) λ p q i → ∣ EH n p q i ∣₂ -- πₙ₊₁ πGr : ∀ {ℓ} (n : ℕ) (A : Pointed ℓ) → Group ℓ fst (πGr n A) = π (suc n) A 1g (snd (πGr n A)) = 1π (suc n) GroupStr._·_ (snd (πGr n A)) = ·π n inv (snd (πGr n A)) = -π n is-set (isSemigroup (isMonoid (isGroup (snd (πGr n A))))) = squash₂ assoc (isSemigroup (isMonoid (isGroup (snd (πGr n A))))) = π-assoc n identity (isMonoid (isGroup (snd (πGr n A)))) x = (π-rUnit n x) , (π-lUnit n x) inverse (isGroup (snd (πGr n A))) x = (π-rCancel n x) , (π-lCancel n x) -- Group operations on π'. -- We define the corresponding structure on the untruncated -- (S₊∙ n →∙ A). ∙Π : ∀ {ℓ} {A : Pointed ℓ} {n : ℕ} → (S₊∙ n →∙ A) → (S₊∙ n →∙ A) → (S₊∙ n →∙ A) ∙Π {A = A} {n = zero} p q = (λ _ → pt A) , refl fst (∙Π {A = A} {n = suc zero} (f , p) (g , q)) base = pt A fst (∙Π {A = A} {n = suc zero} (f , p) (g , q)) (loop j) = ((sym p ∙∙ cong f loop ∙∙ p) ∙ (sym q ∙∙ cong g loop ∙∙ q)) j snd (∙Π {A = A} {n = suc zero} (f , p) (g , q)) = refl fst (∙Π {A = A} {n = suc (suc n)} (f , p) (g , q)) north = pt A fst (∙Π {A = A} {n = suc (suc n)} (f , p) (g , q)) south = pt A fst (∙Π {A = A} {n = suc (suc n)} (f , p) (g , q)) (merid a j) = ((sym p ∙∙ cong f (merid a ∙ sym (merid (ptSn (suc n)))) ∙∙ p) ∙ (sym q ∙∙ cong g (merid a ∙ sym (merid (ptSn (suc n)))) ∙∙ q)) j snd (∙Π {A = A} {n = suc (suc n)} (f , p) (g , q)) = refl -Π : ∀ {ℓ} {A : Pointed ℓ} {n : ℕ} → (S₊∙ n →∙ A) → (S₊∙ n →∙ A) -Π {n = zero} f = f fst (-Π {A = A} {n = suc zero} f) base = fst f base fst (-Π {A = A} {n = suc zero} f) (loop j) = fst f (loop (~ j)) snd (-Π {A = A} {n = suc zero} f) = snd f fst (-Π {A = A} {n = suc (suc n)} f) north = fst f north fst (-Π {A = A} {n = suc (suc n)} f) south = fst f north fst (-Π {A = A} {n = suc (suc n)} f) (merid a j) = fst f ((merid a ∙ sym (merid (ptSn _))) (~ j)) snd (-Π {A = A} {n = suc (suc n)} f) = snd f -- to prove that this gives a group structure on π', we first -- prove that Ωⁿ A ≃ (Sⁿ →∙ A). -- We use the following map mutual Ω→SphereMap : ∀ {ℓ} (n : ℕ) {A : Pointed ℓ} → typ ((Ω^ n) A) → (S₊∙ n →∙ A) fst (Ω→SphereMap zero a) false = a fst (Ω→SphereMap zero {A = A} a) true = pt A snd (Ω→SphereMap zero a) = refl fst (Ω→SphereMap (suc zero) {A = A} p) base = pt A fst (Ω→SphereMap (suc zero) p) (loop i) = p i snd (Ω→SphereMap (suc zero) p) = refl fst (Ω→SphereMap (suc (suc n)) {A = A} p) north = pt A fst (Ω→SphereMap (suc (suc n)) {A = A} p) south = pt A fst (Ω→SphereMap (suc (suc n)) p) (merid a i) = (sym (Ω→SphereMapId (suc n) a) ∙∙ (λ i → Ω→SphereMap (suc n) (p i) .fst a) ∙∙ Ω→SphereMapId (suc n) a) i snd (Ω→SphereMap (suc (suc n)) p) = refl Ω→SphereMapId : ∀ {ℓ} (n : ℕ) {A : Pointed ℓ} (a : _) → Ω→SphereMap n {A = A} (pt ((Ω^ n) A)) .fst a ≡ pt A Ω→SphereMapId zero false = refl Ω→SphereMapId zero true = refl Ω→SphereMapId (suc zero) base = refl Ω→SphereMapId (suc zero) (loop i) = refl Ω→SphereMapId (suc (suc n)) north = refl Ω→SphereMapId (suc (suc n)) south = refl Ω→SphereMapId (suc (suc n)) {A = A} (merid a i) j = ∙∙lCancel (Ω→SphereMapId (suc n) {A = A} a) j i Ω→SphereMapId2 : ∀ {ℓ} (n : ℕ) {A : Pointed ℓ} → Ω→SphereMap n {A = A} (pt ((Ω^ n) A)) ≡ ((λ _ → pt A) , refl) fst (Ω→SphereMapId2 n {A = A} i) a = funExt (Ω→SphereMapId n {A = A}) i a snd (Ω→SphereMapId2 zero {A = A} i) = refl snd (Ω→SphereMapId2 (suc zero) {A = A} i) = refl snd (Ω→SphereMapId2 (suc (suc n)) {A = A} i) = refl -- Pointed version Ω→SphereMap∙ : ∀ {ℓ} (n : ℕ) {A : Pointed ℓ} → ((Ω^ n) A) →∙ (S₊∙ n →∙ A ∙) Ω→SphereMap∙ n .fst = Ω→SphereMap n Ω→SphereMap∙ n .snd = Ω→SphereMapId2 n -- We define the following maps which will be used to -- show that Ω→SphereMap is an equivalence Ω→SphereMapSplit₁ : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) → typ ((Ω^ (suc n)) A) → typ (Ω (S₊∙ n →∙ A ∙)) Ω→SphereMapSplit₁ n = Ω→ (Ω→SphereMap∙ n) .fst ΩSphereMap : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) → typ (Ω (S₊∙ n →∙ A ∙)) → (S₊∙ (suc n) →∙ A) fst (ΩSphereMap {A = A} zero p) base = p i0 .fst false fst (ΩSphereMap {A = A} zero p) (loop i) = p i .fst false snd (ΩSphereMap {A = A} zero p) = refl ΩSphereMap {A = A} (suc n) = fun IsoΩFunSuspFun -- Functoriality -- The homogeneity assumption is not necessary but simplifying isNaturalΩSphereMap : ∀ {ℓ ℓ'} (A : Pointed ℓ) (B : Pointed ℓ') (homogB : isHomogeneous B) (f : A →∙ B) (n : ℕ) → ∀ g → f ∘∙ ΩSphereMap n g ≡ ΩSphereMap n (Ω→ (post∘∙ (S₊∙ n) f) .fst g) isNaturalΩSphereMap A B homogB f 0 g = →∙Homogeneous≡ homogB (funExt lem) where lem : ∀ x → f .fst (ΩSphereMap 0 g .fst x) ≡ ΩSphereMap 0 (Ω→ (post∘∙ (S₊∙ 0) f) .fst g) .fst x lem base = f .snd lem (loop i) j = hfill (λ j → λ { (i = i0) → post∘∙ _ f .snd j ; (i = i1) → post∘∙ _ f .snd j }) (inS (f ∘∙ g i)) j .fst false isNaturalΩSphereMap A B homogB f (n@(suc _)) g = →∙Homogeneous≡ homogB (funExt lem) where lem : ∀ x → f .fst (ΩSphereMap n g .fst x) ≡ ΩSphereMap n (Ω→ (post∘∙ (S₊∙ n) f) .fst g) .fst x lem north = f .snd lem south = f .snd lem (merid a i) j = hfill (λ j → λ { (i = i0) → post∘∙ _ f .snd j ; (i = i1) → post∘∙ _ f .snd j }) (inS (f ∘∙ g i)) j .fst a SphereMapΩ : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) → (S₊∙ (suc n) →∙ A) → typ (Ω (S₊∙ n →∙ A ∙)) SphereMapΩ {A = A} zero (f , p) = ΣPathP ((funExt λ { false → sym p ∙∙ cong f loop ∙∙ p ; true → refl}) , refl) SphereMapΩ {A = A} (suc n) = inv IsoΩFunSuspFun SphereMapΩIso : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) → Iso (S₊∙ (suc n) →∙ A) (typ (Ω (S₊∙ n →∙ A ∙))) fun (SphereMapΩIso n) = SphereMapΩ n inv (SphereMapΩIso n) = ΩSphereMap n fst (rightInv (SphereMapΩIso zero) f i j) false = rUnit (λ j → fst (f j) false) (~ i) j fst (rightInv (SphereMapΩIso {A = A} zero) f i j) true = snd (f j) (~ i) snd (rightInv (SphereMapΩIso {A = A} zero) f i j) k = snd (f j) (~ i ∨ k) rightInv (SphereMapΩIso (suc n)) = leftInv IsoΩFunSuspFun leftInv (SphereMapΩIso zero) f = ΣPathP ((funExt (λ { base → sym (snd f) ; (loop i) j → doubleCompPath-filler (sym (snd f)) (cong (fst f) loop) (snd f) (~ j) i})) , λ i j → snd f (~ i ∨ j)) leftInv (SphereMapΩIso (suc n)) = rightInv IsoΩFunSuspFun {- In order to show that Ω→SphereMap is an equivalence, we show that it factors Ω→SphereMapSplit₁ ΩSphereMap Ωⁿ⁺¹(Sⁿ →∙ A) ----------------> Ω (Sⁿ →∙ A) -----------> (Sⁿ⁺¹ →∙ A) -} Ω→SphereMap-split : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) (p : typ ((Ω^ (suc n)) A)) → Ω→SphereMap (suc n) p ≡ ΩSphereMap n (Ω→SphereMapSplit₁ n p) Ω→SphereMap-split {A = A} zero p = ΣPathP ((funExt (λ { base → refl ; (loop i) j → lem (~ j) i})) , refl) where lem : funExt⁻ (cong fst (Ω→SphereMapSplit₁ zero p)) false ≡ p lem = (λ i → funExt⁻ (cong-∙∙ fst (sym (Ω→SphereMapId2 zero)) (cong (Ω→SphereMap zero) p) (Ω→SphereMapId2 zero) i) false) ∙ sym (rUnit _) Ω→SphereMap-split {A = A} (suc n) p = ΣPathP ((funExt (λ { north → refl ; south → refl ; (merid a i) j → lem₂ a j i})) , refl) where lem : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) (a : S₊ (suc n)) → Ω→SphereMapId (suc n) {A = A} a ≡ (λ i → fst (Ω→SphereMapId2 (suc n) {A = A} i) a) lem zero base = refl lem zero (loop i) = refl lem (suc n) north = refl lem (suc n) south = refl lem (suc n) (merid a i) = refl lem₂ : (a : S₊ (suc n)) → ((λ i₁ → Ω→SphereMapId (suc n) {A = A} a (~ i₁)) ∙∙ (λ i₁ → Ω→SphereMap (suc n) (p i₁) .fst a) ∙∙ Ω→SphereMapId (suc n) a) ≡ (λ i → Ω→SphereMapSplit₁ (suc n) p i .fst a) lem₂ a = cong (λ x → sym x ∙∙ funExt⁻ (cong fst (λ i → Ω→SphereMap (suc n) (p i))) a ∙∙ x) (lem n a) ∙∙ sym (cong-∙∙ (λ x → x a) (cong fst (λ i → Ω→SphereMapId2 (suc n) (~ i))) (cong fst (λ i → Ω→SphereMap (suc n) (p i))) (cong fst (Ω→SphereMapId2 (suc n)))) ∙∙ (λ i → funExt⁻ (cong-∙∙ fst (sym (Ω→SphereMapId2 (suc n))) (cong (Ω→SphereMap (suc n)) p) (Ω→SphereMapId2 (suc n)) (~ i)) a) isEquiv-Ω→SphereMap₀ : ∀ {ℓ} {A : Pointed ℓ} → isEquiv (Ω→SphereMap 0 {A = A}) isEquiv-Ω→SphereMap₀ {A = A} = isoToIsEquiv (iso _ (λ f → fst f false) (λ f → ΣPathP ((funExt (λ { false → refl ; true → sym (snd f)})) , λ i j → snd f (~ i ∨ j))) λ p → refl) isEquiv-Ω→SphereMap : ∀ {ℓ} (n : ℕ) {A : Pointed ℓ} → isEquiv (Ω→SphereMap n {A = A}) isEquiv-Ω→SphereMap zero {A = A} = (isoToIsEquiv (iso _ (λ f → fst f false) (λ f → ΣPathP ((funExt (λ { false → refl ; true → sym (snd f)})) , λ i j → snd f (~ i ∨ j))) λ _ → refl)) isEquiv-Ω→SphereMap (suc zero) {A = A} = isoToIsEquiv (iso _ invFun sec λ p → sym (rUnit p)) where invFun : S₊∙ 1 →∙ A → typ (Ω A) invFun (f , p) = sym p ∙∙ cong f loop ∙∙ p sec : section (Ω→SphereMap 1) invFun sec (f , p) = ΣPathP ((funExt (λ { base → sym p ; (loop i) j → doubleCompPath-filler (sym p) (cong f loop) p (~ j) i})) , λ i j → p (~ i ∨ j)) isEquiv-Ω→SphereMap (suc (suc n)) = subst isEquiv (sym (funExt (Ω→SphereMap-split (suc n)))) (snd (compEquiv ((Ω→SphereMapSplit₁ (suc n)) , (isEquivΩ→ (Ω→SphereMap (suc n) , Ω→SphereMapId2 (suc n)) (isEquiv-Ω→SphereMap (suc n)))) (invEquiv (isoToEquiv (SphereMapΩIso (suc n)))))) IsoΩSphereMap : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) → Iso (typ ((Ω^ n) A)) (S₊∙ n →∙ A) IsoΩSphereMap n = equivToIso (_ , isEquiv-Ω→SphereMap n) IsoSphereMapΩ : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) → Iso (S₊∙ n →∙ A) (fst ((Ω^ n) A)) IsoSphereMapΩ {A = A} n = invIso (IsoΩSphereMap n) SphereMap→Ω : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) → S₊∙ n →∙ A → fst ((Ω^ n) A) SphereMap→Ω n = fun (IsoSphereMapΩ n) isHom-Ω→SphereMap : ∀ {ℓ} (n : ℕ) {A : Pointed ℓ} (p q : _) → Ω→SphereMap (suc n) {A = A} (p ∙ q) ≡ ∙Π (Ω→SphereMap (suc n) {A = A} p) (Ω→SphereMap (suc n) {A = A} q) isHom-Ω→SphereMap zero {A = A} p q = ΣPathP ((funExt (λ { base → refl ; (loop i) j → (rUnit p j ∙ rUnit q j) i})) , refl) isHom-Ω→SphereMap (suc n) {A = A} p q = ΣPathP ((funExt (λ { north → refl ; south → refl ; (merid a i) j → main a j i})) , refl) where doubleComp-lem : ∀ {ℓ} {A : Type ℓ} {x y : A} (p : x ≡ y) (q r : y ≡ y) → (p ∙∙ q ∙∙ sym p) ∙ (p ∙∙ r ∙∙ sym p) ≡ (p ∙∙ (q ∙ r) ∙∙ sym p) doubleComp-lem p q r i j = hcomp (λ k → λ { (i = i0) → (doubleCompPath-filler p q (sym p) k ∙ doubleCompPath-filler p r (sym p) k) j ; (i = i1) → doubleCompPath-filler p (q ∙ r) (sym p) k j ; (j = i0) → p (~ k) ; (j = i1) → p (~ k)}) ((q ∙ r) j) lem : (p : typ ((Ω^ (suc (suc n))) A)) → cong (fst (Ω→SphereMap (suc (suc n)) p)) (merid (ptSn _)) ≡ refl lem p = cong (sym (Ω→SphereMapId (suc n) (ptSn _)) ∙∙_∙∙ Ω→SphereMapId (suc n) (ptSn _)) (rUnit _ ∙ (λ j → (λ i → Ω→SphereMap (suc n) {A = A} refl .snd (i ∧ j)) ∙∙ (λ i → Ω→SphereMap (suc n) {A = A} (p i) .snd j) ∙∙ λ i → Ω→SphereMap (suc n) {A = A} refl .snd (~ i ∧ j)) ∙ ∙∙lCancel _) ∙ ∙∙lCancel _ main : (a : S₊ (suc n)) → sym (Ω→SphereMapId (suc n) a) ∙∙ funExt⁻ (cong fst (cong (Ω→SphereMap (suc n)) (p ∙ q))) a ∙∙ Ω→SphereMapId (suc n) a ≡ cong (fst (∙Π (Ω→SphereMap (suc (suc n)) p) (Ω→SphereMap (suc (suc n)) q))) (merid a) main a = (cong (sym (Ω→SphereMapId (suc n) a) ∙∙_∙∙ (Ω→SphereMapId (suc n) a)) (cong-∙ (λ x → Ω→SphereMap (suc n) x .fst a) p q) ∙ sym (doubleComp-lem (sym (Ω→SphereMapId (suc n) a)) _ _)) ∙∙ cong₂ _∙_ (sym (cong (cong (fst (Ω→SphereMap (suc (suc n)) p)) (merid a) ∙_) (cong sym (lem p)) ∙ sym (rUnit _))) (sym (cong (cong (fst (Ω→SphereMap (suc (suc n)) q)) (merid a) ∙_) (cong sym (lem q)) ∙ sym (rUnit _))) ∙∙ λ i → (rUnit (cong-∙ (fst (Ω→SphereMap (suc (suc n)) p)) (merid a) (sym (merid (ptSn _))) (~ i)) i) ∙ (rUnit (cong-∙ (fst (Ω→SphereMap (suc (suc n)) q)) (merid a) (sym (merid (ptSn _)))(~ i)) i) -- The iso is structure preserving IsoSphereMapΩ-pres∙Π : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) (f g : S₊∙ (suc n) →∙ A) → SphereMap→Ω (suc n) (∙Π f g) ≡ SphereMap→Ω (suc n) f ∙ SphereMap→Ω (suc n) g IsoSphereMapΩ-pres∙Π n = morphLemmas.isMorphInv _∙_ ∙Π (Ω→SphereMap (suc n)) (isHom-Ω→SphereMap n) (SphereMap→Ω (suc n)) (leftInv (IsoSphereMapΩ (suc n))) (rightInv (IsoSphereMapΩ (suc n))) -- It is useful to define the ``Group Structure'' on (S₊∙ n →∙ A) -- before doing it on π'. These will be the equivalents of the -- usual groupoid laws on Ω A. 1Π : ∀ {ℓ} {A : Pointed ℓ} {n : ℕ} → (S₊∙ n →∙ A) fst (1Π {A = A}) _ = pt A snd (1Π {A = A}) = refl ∙Π-rUnit : ∀ {ℓ} {A : Pointed ℓ} {n : ℕ} → (f : S₊∙ (suc n) →∙ A) → ∙Π f 1Π ≡ f fst (∙Π-rUnit {A = A} {n = zero} f i) base = snd f (~ i) fst (∙Π-rUnit {A = A} {n = zero} f i) (loop j) = help i j where help : PathP (λ i → snd f (~ i) ≡ snd f (~ i)) (((sym (snd f)) ∙∙ (cong (fst f) loop) ∙∙ snd f) ∙ (refl ∙ refl)) (cong (fst f) loop) help = (cong ((sym (snd f) ∙∙ cong (fst f) loop ∙∙ snd f) ∙_) (sym (rUnit refl)) ∙ sym (rUnit _)) ◁ λ i j → doubleCompPath-filler (sym (snd f)) (cong (fst f) loop) (snd f) (~ i) j snd (∙Π-rUnit {A = A} {n = zero} f i) j = snd f (~ i ∨ j) fst (∙Π-rUnit {A = A} {n = suc n} f i) north = snd f (~ i) fst (∙Π-rUnit {A = A} {n = suc n} f i) south = (sym (snd f) ∙ cong (fst f) (merid (ptSn (suc n)))) i fst (∙Π-rUnit {A = A} {n = suc n} f i) (merid a j) = help i j where help : PathP (λ i → snd f (~ i) ≡ (sym (snd f) ∙ cong (fst f) (merid (ptSn (suc n)))) i) (((sym (snd f)) ∙∙ (cong (fst f) (merid a ∙ sym (merid (ptSn (suc n))))) ∙∙ snd f) ∙ (refl ∙ refl)) (cong (fst f) (merid a)) help = (cong (((sym (snd f)) ∙∙ (cong (fst f) (merid a ∙ sym (merid (ptSn (suc n))))) ∙∙ snd f) ∙_) (sym (rUnit refl)) ∙ sym (rUnit _)) ◁ λ i j → hcomp (λ k → λ { (j = i0) → snd f (~ i ∧ k) ; (j = i1) → compPath-filler' (sym (snd f)) (cong (fst f) (merid (ptSn (suc n)))) k i ; (i = i0) → doubleCompPath-filler (sym (snd f)) (cong (fst f) (merid a ∙ sym (merid (ptSn (suc n))))) (snd f) k j ; (i = i1) → fst f (merid a j)}) (fst f (compPath-filler (merid a) (sym (merid (ptSn _))) (~ i) j)) snd (∙Π-rUnit {A = A} {n = suc n} f i) j = snd f (~ i ∨ j) ∙Π-lUnit : ∀ {ℓ} {A : Pointed ℓ} {n : ℕ} → (f : S₊∙ (suc n) →∙ A) → ∙Π 1Π f ≡ f fst (∙Π-lUnit {n = zero} f i) base = snd f (~ i) fst (∙Π-lUnit {n = zero} f i) (loop j) = s i j where s : PathP (λ i → snd f (~ i) ≡ snd f (~ i)) ((refl ∙ refl) ∙ (sym (snd f) ∙∙ cong (fst f) loop ∙∙ snd f)) (cong (fst f) loop) s = (cong (_∙ (sym (snd f) ∙∙ cong (fst f) loop ∙∙ snd f)) (sym (rUnit refl)) ∙ sym (lUnit _)) ◁ λ i j → doubleCompPath-filler (sym (snd f)) (cong (fst f) loop) (snd f) (~ i) j snd (∙Π-lUnit {n = zero} f i) j = snd f (~ i ∨ j) fst (∙Π-lUnit {n = suc n} f i) north = snd f (~ i) fst (∙Π-lUnit {n = suc n} f i) south = (sym (snd f) ∙ cong (fst f) (merid (ptSn _))) i fst (∙Π-lUnit {n = suc n} f i) (merid a j) = help i j where help : PathP (λ i → snd f (~ i) ≡ (sym (snd f) ∙ cong (fst f) (merid (ptSn (suc n)))) i) ((refl ∙ refl) ∙ ((sym (snd f)) ∙∙ (cong (fst f) (merid a ∙ sym (merid (ptSn (suc n))))) ∙∙ snd f)) (cong (fst f) (merid a)) help = (cong (_∙ ((sym (snd f)) ∙∙ (cong (fst f) (merid a ∙ sym (merid (ptSn (suc n))))) ∙∙ snd f)) (sym (rUnit refl)) ∙ sym (lUnit _)) ◁ λ i j → hcomp (λ k → λ { (j = i0) → snd f (~ i ∧ k) ; (j = i1) → compPath-filler' (sym (snd f)) (cong (fst f) (merid (ptSn (suc n)))) k i ; (i = i0) → doubleCompPath-filler (sym (snd f)) (cong (fst f) (merid a ∙ sym (merid (ptSn (suc n))))) (snd f) k j ; (i = i1) → fst f (merid a j)}) (fst f (compPath-filler (merid a) (sym (merid (ptSn _))) (~ i) j)) snd (∙Π-lUnit {n = suc n} f i) j = snd f (~ i ∨ j) ∙Π-rCancel : ∀ {ℓ} {A : Pointed ℓ} {n : ℕ} → (f : S₊∙ (suc n) →∙ A) → ∙Π f (-Π f) ≡ 1Π fst (∙Π-rCancel {A = A} {n = zero} f i) base = pt A fst (∙Π-rCancel {A = A} {n = zero} f i) (loop j) = rCancel (sym (snd f) ∙∙ cong (fst f) loop ∙∙ snd f) i j snd (∙Π-rCancel {A = A} {n = zero} f i) = refl fst (∙Π-rCancel {A = A} {n = suc n} f i) north = pt A fst (∙Π-rCancel {A = A} {n = suc n} f i) south = pt A fst (∙Π-rCancel {A = A} {n = suc n} f i) (merid a i₁) = lem i i₁ where pl = (sym (snd f) ∙∙ cong (fst f) (merid a ∙ sym (merid (ptSn _))) ∙∙ snd f) lem : pl ∙ ((sym (snd f) ∙∙ cong (fst (-Π f)) (merid a ∙ sym (merid (ptSn _))) ∙∙ snd f)) ≡ refl lem = cong (pl ∙_) (cong (sym (snd f) ∙∙_∙∙ (snd f)) (cong-∙ (fst (-Π f)) (merid a) (sym (merid (ptSn _))) ∙∙ cong₂ _∙_ refl (cong (cong (fst f)) (rCancel (merid (ptSn _)))) ∙∙ sym (rUnit _))) ∙ rCancel pl snd (∙Π-rCancel {A = A} {n = suc n} f i) = refl ∙Π-lCancel : ∀ {ℓ} {A : Pointed ℓ} {n : ℕ} → (f : S₊∙ (suc n) →∙ A) → ∙Π (-Π f) f ≡ 1Π fst (∙Π-lCancel {A = A} {n = zero} f i) base = pt A fst (∙Π-lCancel {A = A} {n = zero} f i) (loop j) = rCancel (sym (snd f) ∙∙ cong (fst f) (sym loop) ∙∙ snd f) i j fst (∙Π-lCancel {A = A} {n = suc n} f i) north = pt A fst (∙Π-lCancel {A = A} {n = suc n} f i) south = pt A fst (∙Π-lCancel {A = A} {n = suc n} f i) (merid a j) = lem i j where pl = (sym (snd f) ∙∙ cong (fst f) (merid a ∙ sym (merid (ptSn _))) ∙∙ snd f) lem : (sym (snd f) ∙∙ cong (fst (-Π f)) (merid a ∙ sym (merid (ptSn _))) ∙∙ snd f) ∙ pl ≡ refl lem = cong (_∙ pl) (cong (sym (snd f) ∙∙_∙∙ (snd f)) (cong-∙ (fst (-Π f)) (merid a) (sym (merid (ptSn _))) ∙∙ cong₂ _∙_ refl (cong (cong (fst f)) (rCancel (merid (ptSn _)))) ∙∙ sym (rUnit _))) ∙ lCancel pl snd (∙Π-lCancel {A = A} {n = zero} f i) = refl snd (∙Π-lCancel {A = A} {n = suc n} f i) = refl ∙Π-assoc : ∀ {ℓ} {A : Pointed ℓ} {n : ℕ} → (f g h : S₊∙ (suc n) →∙ A) → ∙Π f (∙Π g h) ≡ ∙Π (∙Π f g) h ∙Π-assoc {n = n} f g h = sym (leftInv (IsoSphereMapΩ (suc n)) (∙Π f (∙Π g h))) ∙∙ cong (Ω→SphereMap (suc n)) (IsoSphereMapΩ-pres∙Π n f (∙Π g h) ∙∙ cong (SphereMap→Ω (suc n) f ∙_) (IsoSphereMapΩ-pres∙Π n g h) ∙∙ ∙assoc (SphereMap→Ω (suc n) f) (SphereMap→Ω (suc n) g) (SphereMap→Ω (suc n) h) ∙∙ cong (_∙ SphereMap→Ω (suc n) h) (sym (IsoSphereMapΩ-pres∙Π n f g)) ∙∙ sym (IsoSphereMapΩ-pres∙Π n (∙Π f g) h)) ∙∙ leftInv (IsoSphereMapΩ (suc n)) (∙Π (∙Π f g) h) ∙Π-comm : ∀ {ℓ} {A : Pointed ℓ} {n : ℕ} → (f g : S₊∙ (suc (suc n)) →∙ A) → ∙Π f g ≡ ∙Π g f ∙Π-comm {A = A} {n = n} f g = sym (leftInv (IsoSphereMapΩ (suc (suc n))) (∙Π f g)) ∙∙ cong (Ω→SphereMap (suc (suc n))) (IsoSphereMapΩ-pres∙Π (suc n) f g ∙∙ EH _ _ _ ∙∙ sym (IsoSphereMapΩ-pres∙Π (suc n) g f)) ∙∙ leftInv (IsoSphereMapΩ (suc (suc n))) (∙Π g f) {- π'' as a group -} 1π' : ∀ {ℓ} (n : ℕ) {A : Pointed ℓ} → π' n A 1π' n {A = A} = ∣ 1Π ∣₂ ·π' : ∀ {ℓ} (n : ℕ) {A : Pointed ℓ} → π' (suc n) A → π' (suc n) A → π' (suc n) A ·π' n = sRec2 squash₂ λ p q → ∣ ∙Π p q ∣₂ -π' : ∀ {ℓ} (n : ℕ) {A : Pointed ℓ} → π' (suc n) A → π' (suc n) A -π' n = sMap -Π π'-rUnit : ∀ {ℓ} (n : ℕ) {A : Pointed ℓ} (x : π' (suc n) A) → (·π' n x (1π' (suc n))) ≡ x π'-rUnit n = sElim (λ _ → isSetPathImplicit) λ p i → ∣ ∙Π-rUnit p i ∣₂ π'-lUnit : ∀ {ℓ} (n : ℕ) {A : Pointed ℓ} (x : π' (suc n) A) → (·π' n (1π' (suc n)) x) ≡ x π'-lUnit n = sElim (λ _ → isSetPathImplicit) λ p i → ∣ ∙Π-lUnit p i ∣₂ π'-rCancel : ∀ {ℓ} (n : ℕ) {A : Pointed ℓ} (x : π' (suc n) A) → (·π' n x (-π' n x)) ≡ 1π' (suc n) π'-rCancel n = sElim (λ _ → isSetPathImplicit) λ p i → ∣ ∙Π-rCancel p i ∣₂ π'-lCancel : ∀ {ℓ} (n : ℕ) {A : Pointed ℓ} (x : π' (suc n) A) → (·π' n (-π' n x) x) ≡ 1π' (suc n) π'-lCancel n = sElim (λ _ → isSetPathImplicit) λ p i → ∣ ∙Π-lCancel p i ∣₂ π'-assoc : ∀ {ℓ} (n : ℕ) {A : Pointed ℓ} (x y z : π' (suc n) A) → ·π' n x (·π' n y z) ≡ ·π' n (·π' n x y) z π'-assoc n = sElim3 (λ _ _ _ → isSetPathImplicit) λ p q r i → ∣ ∙Π-assoc p q r i ∣₂ π'-comm : ∀ {ℓ} (n : ℕ) {A : Pointed ℓ} (x y : π' (suc (suc n)) A) → ·π' (suc n) x y ≡ ·π' (suc n) y x π'-comm n = sElim2 (λ _ _ → isSetPathImplicit) λ p q i → ∣ ∙Π-comm p q i ∣₂ -- We finally get the group definition π'Gr : ∀ {ℓ} (n : ℕ) (A : Pointed ℓ) → Group ℓ fst (π'Gr n A) = π' (suc n) A 1g (snd (π'Gr n A)) = 1π' (suc n) GroupStr._·_ (snd (π'Gr n A)) = ·π' n inv (snd (π'Gr n A)) = -π' n is-set (isSemigroup (isMonoid (isGroup (snd (π'Gr n A))))) = squash₂ assoc (isSemigroup (isMonoid (isGroup (snd (π'Gr n A))))) = π'-assoc n identity (isMonoid (isGroup (snd (π'Gr n A)))) x = (π'-rUnit n x) , (π'-lUnit n x) inverse (isGroup (snd (π'Gr n A))) x = (π'-rCancel n x) , (π'-lCancel n x) -- and finally, the Iso π'Gr≅πGr : ∀ {ℓ} (n : ℕ) (A : Pointed ℓ) → GroupIso (π'Gr n A) (πGr n A) fst (π'Gr≅πGr n A) = setTruncIso (IsoSphereMapΩ (suc n)) snd (π'Gr≅πGr n A) = makeIsGroupHom (sElim2 (λ _ _ → isSetPathImplicit) λ p q i → ∣ IsoSphereMapΩ-pres∙Π n p q i ∣₂)
39.871069
97
0.486158
585892ca4d325640137f88710f6ea731791250b4
33,561
agda
Agda
test/LibSucceed/Issue784/Values.agda
pthariensflame/agda
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/LibSucceed/Issue784/Values.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
null
null
null
test/LibSucceed/Issue784/Values.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
null
null
null
module Issue784.Values where open import Data.Bool using (Bool; true; false; not) open import Data.String public using (String; _≟_) open import Function public open import Data.List using (List; []; _∷_; _++_; [_]; filter) renaming (map to mapL) open import Data.List.Any public using (Any; here; there) renaming (map to mapA; any to anyA) open import Data.Product public using (Σ; Σ-syntax; proj₁; proj₂; _,_; _×_) renaming (map to mapΣ) open import Data.Unit public using (⊤) open import Data.Unit.NonEta public using (Unit; unit) open import Data.Empty public using (⊥; ⊥-elim) open import Relation.Binary.Core public open import Relation.Nullary public import Level open import Relation.Binary.PropositionalEquality public hiding ([_]) renaming (cong to ≡-cong; cong₂ to ≡-cong₂) open import Relation.Binary.PropositionalEquality.Core public renaming (sym to ≡-sym; trans to ≡-trans) ≢-sym : ∀ {ℓ} {A : Set ℓ} {x y : A} → x ≢ y → y ≢ x ≢-sym x≢y = x≢y ∘ ≡-sym ≡-elim : ∀ {ℓ} {X Y : Set ℓ} → X ≡ Y → X → Y ≡-elim refl p = p ≡-elim′ : ∀ {a ℓ} {A : Set a} {x y : A} → (P : A → Set ℓ) → x ≡ y → P x → P y ≡-elim′ P = ≡-elim ∘ (≡-cong P) Named : ∀ {ℓ} (A : Set ℓ) → Set ℓ Named A = String × A NamedType : ∀ ℓ → Set (Level.suc ℓ) NamedType ℓ = Named (Set ℓ) NamedValue : ∀ ℓ → Set (Level.suc ℓ) NamedValue ℓ = Named (Σ[ A ∈ Set ℓ ] A) Names : Set Names = List String Types : ∀ ℓ → Set (Level.suc ℓ) Types ℓ = List (NamedType ℓ) Values : ∀ ℓ → Set (Level.suc ℓ) Values ℓ = List (NamedValue ℓ) names : ∀ {ℓ} {A : Set ℓ} → List (Named A) → Names names = mapL proj₁ types : ∀ {ℓ} → Values ℓ → Types ℓ types = mapL (mapΣ id proj₁) infix 4 _∈_ _∉_ _∈_ : ∀ {ℓ} {A : Set ℓ} → A → List A → Set ℓ x ∈ xs = Any (_≡_ x) xs _∉_ : ∀ {ℓ} {A : Set ℓ} → A → List A → Set ℓ x ∉ xs = ¬ x ∈ xs x∉y∷l⇒x≢y : ∀ {ℓ} {A : Set ℓ} {x y : A} {l : List A} → x ∉ y ∷ l → x ≢ y x∉y∷l⇒x≢y x∉y∷l x≡y = x∉y∷l $ here x≡y x∉y∷l⇒x∉l : ∀ {ℓ} {A : Set ℓ} {x y : A} {l : List A} → x ∉ y ∷ l → x ∉ l x∉y∷l⇒x∉l x∉y∷l x∈l = x∉y∷l $ there x∈l x≢y⇒x∉l⇒x∉y∷l : ∀ {ℓ} {A : Set ℓ} {x y : A} {l : List A} → x ≢ y → x ∉ l → x ∉ y ∷ l x≢y⇒x∉l⇒x∉y∷l x≢y x∉l (here x≡y) = x≢y x≡y x≢y⇒x∉l⇒x∉y∷l x≢y x∉l (there x∈l) = x∉l x∈l infix 5 _∋!_ _∈?_ _∈?_ : (s : String) (n : Names) → Dec (s ∈ n) s ∈? [] = no λ() s ∈? (h ∷ t) with s ≟ h ... | yes s≡h = yes $ here s≡h ... | no s≢h with s ∈? t ... | yes s∈t = yes $ there s∈t ... | no s∉t = no $ x≢y⇒x∉l⇒x∉y∷l s≢h s∉t _∋!_ : Names → String → Bool l ∋! e with e ∈? l ... | yes _ = true ... | no _ = false infix 4 _⊆_ _⊈_ _⊆_ : ∀ {ℓ} {A : Set ℓ} → List A → List A → Set ℓ xs ⊆ ys = ∀ {x} → x ∈ xs → x ∈ ys _⊈_ : ∀ {ℓ} {A : Set ℓ} → List A → List A → Set ℓ xs ⊈ ys = ¬ xs ⊆ ys infixl 5 _∪_ _∪_ : ∀ {ℓ} {A : Set ℓ} → List A → List A → List A _∪_ = _++_ infixl 6 _∩_ _∩_ : Names → Names → Names x ∩ y = filter (_∋!_ y) x infixl 6 _∖_ _∖∖_ _∖_ : Names → Names → Names _∖_ x y = filter (not ∘ _∋!_ y) x _∖∖_ : ∀ {ℓ} {A : Set ℓ} → List (Named A) → Names → List (Named A) _∖∖_ l n = filter (not ∘ _∋!_ n ∘ proj₁) l filter-∈ : ∀ {ℓ} {A : Set ℓ} → List (Named A) → Names → List (Named A) filter-∈ l n = filter (_∋!_ n ∘ proj₁) l infixr 5 _∷_ data NonRepetitive {ℓ} {A : Set ℓ} : List A → Set ℓ where [] : NonRepetitive [] _∷_ : ∀ {x xs} → x ∉ xs → NonRepetitive xs → NonRepetitive (x ∷ xs) infix 4 _≋_ data _≋_ {ℓ} {A : Set ℓ} : List A → List A → Set ℓ where refl : ∀ {l} → l ≋ l perm : ∀ {l} l₁ x₁ x₂ l₂ → l ≋ l₁ ++ x₂ ∷ x₁ ∷ l₂ → l ≋ l₁ ++ x₁ ∷ x₂ ∷ l₂ NonRepetitiveNames : ∀ {ℓ} {A : Set ℓ} → List (Named A) → Set NonRepetitiveNames = NonRepetitive ∘ names NonRepetitiveTypes : ∀ ℓ → Set (Level.suc ℓ) NonRepetitiveTypes ℓ = Σ[ t ∈ Types ℓ ] NonRepetitiveNames t -- lemmas ∪-assoc : ∀ {l} {A : Set l} (x y z : List A) → (x ∪ y) ∪ z ≡ x ∪ (y ∪ z) ∪-assoc [] y z = refl ∪-assoc (x ∷ xs) y z = ≡-elim′ (λ e → x ∷ e ≡ (x ∷ xs) ∪ (y ∪ z)) (≡-sym $ ∪-assoc xs y z) refl ≡⇒≋ : ∀ {ℓ} {A : Set ℓ} {x y : List A} → x ≡ y → x ≋ y ≡⇒≋ refl = refl private ∈-perm : ∀ {ℓ} {A : Set ℓ} {x : A} (l₁ : List A) (e₁ : A) (e₂ : A) (l₂ : List A) → x ∈ l₁ ++ e₁ ∷ e₂ ∷ l₂ → x ∈ l₁ ++ e₂ ∷ e₁ ∷ l₂ ∈-perm [] e₁ e₂ l₂ (here .{e₁} .{e₂ ∷ l₂} px) = there $ here px ∈-perm [] e₁ e₂ l₂ (there .{e₁} .{e₂ ∷ l₂} (here .{e₂} .{l₂} px)) = here px ∈-perm [] e₁ e₂ l₂ (there .{e₁} .{e₂ ∷ l₂} (there .{e₂} .{l₂} pxs)) = there $ there pxs ∈-perm (h₁ ∷ t₁) e₁ e₂ l₂ (here .{h₁} .{t₁ ++ e₁ ∷ e₂ ∷ l₂} px) = here px ∈-perm (h₁ ∷ t₁) e₁ e₂ l₂ (there .{h₁} .{t₁ ++ e₁ ∷ e₂ ∷ l₂} pxs) = there $ ∈-perm t₁ e₁ e₂ l₂ pxs ≋⇒⊆ : ∀ {ℓ} {A : Set ℓ} {x y : List A} → x ≋ y → x ⊆ y ≋⇒⊆ refl p = p ≋⇒⊆ {x = x} {y = .(l₁ ++ x₁ ∷ x₂ ∷ l₂)} (perm l₁ x₁ x₂ l₂ p) {e} e∈x = ∈-perm l₁ x₂ x₁ l₂ $ ≋⇒⊆ p e∈x ≋-trans : ∀ {l} {A : Set l} {x y z : List A} → x ≋ y → y ≋ z → x ≋ z ≋-trans p refl = p ≋-trans p₁ (perm l₁ x₁ x₂ l₂ p₂) = perm l₁ x₁ x₂ l₂ $ ≋-trans p₁ p₂ ≋-sym : ∀ {l} {A : Set l} {x y : List A} → x ≋ y → y ≋ x ≋-sym refl = refl ≋-sym (perm l₁ x₁ x₂ l₂ p) = ≋-trans (perm l₁ x₂ x₁ l₂ refl) (≋-sym p) ≋-del-ins-r : ∀ {l} {A : Set l} (l₁ : List A) (x : A) (l₂ l₃ : List A) → (l₁ ++ x ∷ l₂ ++ l₃) ≋ (l₁ ++ l₂ ++ x ∷ l₃) ≋-del-ins-r l₁ x [] l₃ = refl ≋-del-ins-r l₁ x (h ∷ t) l₃ = ≋-trans p₀ p₅ where p₀ : (l₁ ++ x ∷ h ∷ t ++ l₃) ≋ (l₁ ++ h ∷ x ∷ t ++ l₃) p₀ = perm l₁ h x (t ++ l₃) refl p₁ : ((l₁ ++ [ h ]) ++ x ∷ t ++ l₃) ≋ ((l₁ ++ [ h ]) ++ t ++ x ∷ l₃) p₁ = ≋-del-ins-r (l₁ ++ [ h ]) x t l₃ p₂ : (l₁ ++ [ h ]) ++ t ++ x ∷ l₃ ≡ l₁ ++ h ∷ t ++ x ∷ l₃ p₂ = ∪-assoc l₁ [ h ] (t ++ x ∷ l₃) p₃ : (l₁ ++ [ h ]) ++ x ∷ t ++ l₃ ≡ l₁ ++ h ∷ x ∷ t ++ l₃ p₃ = ∪-assoc l₁ [ h ] (x ∷ t ++ l₃) p₄ : ((l₁ ++ [ h ]) ++ x ∷ t ++ l₃) ≋ (l₁ ++ h ∷ t ++ x ∷ l₃) p₄ = ≡-elim′ (λ y → ((l₁ ++ [ h ]) ++ x ∷ t ++ l₃) ≋ y) p₂ p₁ p₅ : (l₁ ++ h ∷ x ∷ t ++ l₃) ≋ (l₁ ++ h ∷ t ++ x ∷ l₃) p₅ = ≡-elim′ (λ y → y ≋ (l₁ ++ h ∷ t ++ x ∷ l₃)) p₃ p₄ ≋-del-ins-l : ∀ {l} {A : Set l} (l₁ l₂ : List A) (x : A) (l₃ : List A) → (l₁ ++ l₂ ++ x ∷ l₃) ≋ (l₁ ++ x ∷ l₂ ++ l₃) ≋-del-ins-l l₁ l₂ x l₃ = ≋-sym $ ≋-del-ins-r l₁ x l₂ l₃ x∪[]≡x : ∀ {ℓ} {A : Set ℓ} (x : List A) → x ∪ [] ≡ x x∪[]≡x [] = refl x∪[]≡x (h ∷ t) = ≡-trans p₀ p₁ where p₀ : (h ∷ t) ++ [] ≡ h ∷ t ++ [] p₀ = ∪-assoc [ h ] t [] p₁ : h ∷ t ++ [] ≡ h ∷ t p₁ = ≡-cong (λ x → h ∷ x) (x∪[]≡x t) x∖[]≡x : (x : Names) → x ∖ [] ≡ x x∖[]≡x [] = refl x∖[]≡x (h ∷ t) = ≡-cong (_∷_ h) (x∖[]≡x t) t∖[]≡t : ∀ {ℓ} {A : Set ℓ} (t : List (Named A)) → t ∖∖ [] ≡ t t∖[]≡t [] = refl t∖[]≡t (h ∷ t) = ≡-cong (_∷_ h) (t∖[]≡t t) e∷x≋e∷y : ∀ {ℓ} {A : Set ℓ} (e : A) {x y : List A} → x ≋ y → e ∷ x ≋ e ∷ y e∷x≋e∷y _ refl = refl e∷x≋e∷y x (perm l₁ e₁ e₂ l₂ p) = perm (x ∷ l₁) e₁ e₂ l₂ (e∷x≋e∷y x p) ∪-sym : ∀ {ℓ} {A : Set ℓ} (x y : List A) → x ∪ y ≋ y ∪ x ∪-sym [] y = ≡-elim′ (λ z → y ≋ z) (≡-sym $ x∪[]≡x y) refl ∪-sym x [] = ≡-elim′ (λ z → z ≋ x) (≡-sym $ x∪[]≡x x) refl ∪-sym x (y ∷ ys) = ≡-elim′ (λ z → x ++ (y ∷ ys) ≋ z) p₃ (≋-trans p₁ p₂) where p₁ : x ++ (y ∷ ys) ≋ y ∷ (x ++ ys) p₁ = ≋-del-ins-l [] x y ys p₂ : y ∷ (x ++ ys) ≋ y ∷ (ys ++ x) p₂ = e∷x≋e∷y y $ ∪-sym x ys p₃ : y ∷ (ys ++ x) ≡ (y ∷ ys) ++ x p₃ = ∪-assoc [ y ] ys x y≋ỳ⇒x∪y≋x∪ỳ : ∀ {ℓ} {A : Set ℓ} (x : List A) {y ỳ : List A} → y ≋ ỳ → x ∪ y ≋ x ∪ ỳ y≋ỳ⇒x∪y≋x∪ỳ [] p = p y≋ỳ⇒x∪y≋x∪ỳ (h ∷ t) p = e∷x≋e∷y h (y≋ỳ⇒x∪y≋x∪ỳ t p) x≋x̀⇒x∪y≋x̀∪y : ∀ {ℓ} {A : Set ℓ} {x x̀ : List A} → x ≋ x̀ → (y : List A) → x ∪ y ≋ x̀ ∪ y x≋x̀⇒x∪y≋x̀∪y {x = x} {x̀ = x̀} p y = ≋-trans (∪-sym x y) $ ≋-trans (y≋ỳ⇒x∪y≋x∪ỳ y p) (∪-sym y x̀) x⊆y≋z : ∀ {ℓ} {A : Set ℓ} {x y z : List A} → x ⊆ y → y ≋ z → x ⊆ z x⊆y≋z x⊆y refl = x⊆y x⊆y≋z {x = x} {y = y} {z = .(l₁ ++ x₁ ∷ x₂ ∷ l₂)} x⊆y (perm l₁ x₁ x₂ l₂ p) = ∈-perm l₁ x₂ x₁ l₂ ∘ x⊆y≋z x⊆y p x≋y⊆z : ∀ {ℓ} {A : Set ℓ} {x y z : List A} → x ≋ y → x ⊆ z → y ⊆ z x≋y⊆z refl x⊆z = x⊆z x≋y⊆z {y = .(l₁ ++ x₁ ∷ x₂ ∷ l₂)} {z = z} (perm l₁ x₁ x₂ l₂ p) x⊆z = x≋y⊆z p x⊆z ∘ ∈-perm l₁ x₁ x₂ l₂ x⊆x∪y : ∀ {ℓ} {A : Set ℓ} (x y : List A) → x ⊆ x ∪ y x⊆x∪y .(x ∷ xs) y (here {x} {xs} px) = here px x⊆x∪y .(x ∷ xs) y (there {x} {xs} pxs) = there $ x⊆x∪y xs y pxs x∪y⊆z⇒x⊆z : ∀ {ℓ} {A : Set ℓ} (x y : List A) {z : List A} → x ∪ y ⊆ z → x ⊆ z x∪y⊆z⇒x⊆z x y x∪y⊆z = x∪y⊆z ∘ x⊆x∪y x y x∪y⊆z⇒y⊆z : ∀ {ℓ} {A : Set ℓ} (x y : List A) {z : List A} → x ∪ y ⊆ z → y ⊆ z x∪y⊆z⇒y⊆z x y = x∪y⊆z⇒x⊆z y x ∘ x≋y⊆z (∪-sym x y) n-x∪y : ∀ {ℓ} {A : Set ℓ} (x y : List (Named A)) → names (x ∪ y) ≡ names x ∪ names y n-x∪y [] _ = refl n-x∪y {ℓ} (x ∷ xs) y = ≡-trans p₁ p₂ where nx = [ proj₁ x ] nxs = names xs ny = names y p₁ : nx ∪ names (xs ∪ y) ≡ nx ∪ (nxs ∪ ny) p₁ = ≡-cong (λ z → nx ∪ z) (n-x∪y xs y) p₂ : nx ∪ (nxs ∪ ny) ≡ (nx ∪ nxs) ∪ ny p₂ = ≡-sym $ ∪-assoc nx nxs ny t-x∪y : ∀ {ℓ} (x y : Values ℓ) → types (x ∪ y) ≡ types x ∪ types y t-x∪y [] _ = refl t-x∪y (x ∷ xs) y = ≡-trans p₁ p₂ where nx = types [ x ] nxs = types xs ny = types y p₁ : nx ∪ types (xs ∪ y) ≡ nx ∪ (nxs ∪ ny) p₁ = ≡-cong (λ z → nx ∪ z) (t-x∪y xs y) p₂ : nx ∪ (nxs ∪ ny) ≡ (nx ∪ nxs) ∪ ny p₂ = ≡-sym $ ∪-assoc nx nxs ny n-x≋y : ∀ {ℓ} {A : Set ℓ} {x y : List (Named A)} → x ≋ y → names x ≋ names y n-x≋y refl = refl n-x≋y (perm {x} l₁ e₁ e₂ l₂ p) = p₃ where n-l₁e₁e₂l₂ : ∀ e₁ e₂ → names (l₁ ++ e₁ ∷ e₂ ∷ l₂) ≡ names l₁ ++ names [ e₁ ] ++ names [ e₂ ] ++ names l₂ n-l₁e₁e₂l₂ e₁ e₂ = ≡-trans p₁ $ ≡-trans p₂ p₃ where p₁ : names (l₁ ++ e₁ ∷ e₂ ∷ l₂) ≡ names l₁ ++ names (e₁ ∷ e₂ ∷ l₂) p₁ = n-x∪y l₁ (e₁ ∷ e₂ ∷ l₂) p₂ : names l₁ ++ names (e₁ ∷ e₂ ∷ l₂) ≡ names l₁ ++ names [ e₁ ] ++ names (e₂ ∷ l₂) p₂ = ≡-cong (λ z → names l₁ ++ z) (n-x∪y [ e₁ ] (e₂ ∷ l₂)) p₃ : names l₁ ++ names [ e₁ ] ++ names (e₂ ∷ l₂) ≡ names l₁ ++ names [ e₁ ] ++ names [ e₂ ] ++ names l₂ p₃ = ≡-cong (λ z → names l₁ ++ names [ e₁ ] ++ z) (n-x∪y [ e₂ ] l₂) p₁ : names x ≋ names l₁ ++ proj₁ e₂ ∷ proj₁ e₁ ∷ names l₂ p₁ = ≡-elim′ (λ z → names x ≋ z) (n-l₁e₁e₂l₂ e₂ e₁) (n-x≋y p) p₂ : names x ≋ names l₁ ++ proj₁ e₁ ∷ proj₁ e₂ ∷ names l₂ p₂ = perm (names l₁) (proj₁ e₁) (proj₁ e₂) (names l₂) p₁ p₃ : names x ≋ names (l₁ ++ e₁ ∷ e₂ ∷ l₂) p₃ = ≡-elim′ (λ z → names x ≋ z) (≡-sym $ n-l₁e₁e₂l₂ e₁ e₂) p₂ n-types : ∀ {ℓ} (x : Values ℓ) → names (types x) ≡ names x n-types [] = refl n-types (x ∷ xs) = ≡-cong (λ z → proj₁ x ∷ z) (n-types xs) nr-x≋y : ∀ {ℓ} {A : Set ℓ} {x y : List A} → x ≋ y → NonRepetitive x → NonRepetitive y nr-x≋y refl u = u nr-x≋y {y = .(l₁ ++ e₁ ∷ e₂ ∷ l₂)} (perm l₁ e₁ e₂ l₂ p) u = ≋-step l₁ e₂ e₁ l₂ (nr-x≋y p u) where ∉-step : ∀ {ℓ} {A : Set ℓ} {x : A} (l₁ : List A) (e₁ : A) (e₂ : A) (l₂ : List A) → x ∉ l₁ ++ e₁ ∷ e₂ ∷ l₂ → x ∉ l₁ ++ e₂ ∷ e₁ ∷ l₂ ∉-step l₁ e₁ e₂ l₂ x∉l x∈l = ⊥-elim $ x∉l $ ∈-perm l₁ e₂ e₁ l₂ x∈l ≋-step : ∀ {ℓ} {A : Set ℓ} (l₁ : List A) (e₁ : A) (e₂ : A) (l₂ : List A) → NonRepetitive (l₁ ++ e₁ ∷ e₂ ∷ l₂) → NonRepetitive (l₁ ++ e₂ ∷ e₁ ∷ l₂) ≋-step [] e₁ e₂ l₂ (_∷_ .{e₁} .{e₂ ∷ l₂} e₁∉e₂∷l₂ (_∷_ .{e₂} .{l₂} e₂∉l₂ pU)) = e₂∉e₁∷l₂ ∷ e₁∉l₂ ∷ pU where e₁∉l₂ = e₁ ∉ l₂ ∋ x∉y∷l⇒x∉l e₁∉e₂∷l₂ e₂∉e₁∷l₂ = e₂ ∉ e₁ ∷ l₂ ∋ x≢y⇒x∉l⇒x∉y∷l (≢-sym $ x∉y∷l⇒x≢y e₁∉e₂∷l₂) e₂∉l₂ ≋-step (h₁ ∷ t₁) e₁ e₂ l₂ (_∷_ .{h₁} .{t₁ ++ e₁ ∷ e₂ ∷ l₂} p∉ pU) = ∉-step t₁ e₁ e₂ l₂ p∉ ∷ ≋-step t₁ e₁ e₂ l₂ pU nr-x⇒nr-t-x : ∀ {ℓ} {x : Values ℓ} → NonRepetitiveNames x → NonRepetitiveNames (types x) nr-x⇒nr-t-x {x = x} = ≡-elim′ NonRepetitive (≡-sym $ n-types x) n-x∖y : ∀ {ℓ} {A : Set ℓ} (x : List (Named A)) (y : Names) → names (x ∖∖ y) ≡ names x ∖ y n-x∖y [] _ = refl n-x∖y (x ∷ xs) ny with not $ ny ∋! proj₁ x ... | false = n-x∖y xs ny ... | true = ≡-trans p₁ p₂ where p₁ : names (x ∷ (xs ∖∖ ny)) ≡ proj₁ x ∷ names (xs ∖∖ ny) p₁ = n-x∪y [ x ] (xs ∖∖ ny) p₂ : proj₁ x ∷ names (xs ∖∖ ny) ≡ proj₁ x ∷ (names xs ∖ ny) p₂ = ≡-cong (λ z → proj₁ x ∷ z) (n-x∖y xs ny) t-x∖y : ∀ {ℓ} (x : Values ℓ) (y : Names) → types (x ∖∖ y) ≡ types x ∖∖ y t-x∖y [] _ = refl t-x∖y (x ∷ xs) ny with not $ ny ∋! proj₁ x ... | false = t-x∖y xs ny ... | true = ≡-trans p₁ p₂ where x̀ = types [ x ] p₁ : types (x ∷ (xs ∖∖ ny)) ≡ x̀ ∪ types (xs ∖∖ ny) p₁ = t-x∪y [ x ] (xs ∖∖ ny) p₂ : x̀ ∪ types (xs ∖∖ ny) ≡ x̀ ∪ (types xs ∖∖ ny) p₂ = ≡-cong (λ z → x̀ ∪ z) (t-x∖y xs ny) n-filter-∈ : ∀ {ℓ} {A : Set ℓ} (x : List (Named A)) (y : Names) → names (filter-∈ x y) ≡ names x ∩ y n-filter-∈ [] _ = refl n-filter-∈ (x ∷ xs) ny with ny ∋! proj₁ x ... | false = n-filter-∈ xs ny ... | true = ≡-trans p₁ p₂ where p₁ : names (x ∷ (filter-∈ xs ny)) ≡ proj₁ x ∷ names (filter-∈ xs ny) p₁ = n-x∪y [ x ] (filter-∈ xs ny) p₂ : proj₁ x ∷ names (filter-∈ xs ny) ≡ proj₁ x ∷ (names xs ∩ ny) p₂ = ≡-cong (λ z → proj₁ x ∷ z) (n-filter-∈ xs ny) t-filter-∈ : ∀ {ℓ} (x : Values ℓ) (y : Names) → types (filter-∈ x y) ≡ filter-∈ (types x) y t-filter-∈ [] _ = refl t-filter-∈ (x ∷ xs) ny with ny ∋! proj₁ x ... | false = t-filter-∈ xs ny ... | true = ≡-trans p₁ p₂ where x̀ = types [ x ] p₁ : types (x ∷ filter-∈ xs ny) ≡ x̀ ∪ types (filter-∈ xs ny) p₁ = t-x∪y [ x ] (filter-∈ xs ny) p₂ : x̀ ∪ types (filter-∈ xs ny) ≡ x̀ ∪ filter-∈ (types xs) ny p₂ = ≡-cong (λ z → x̀ ∪ z) (t-filter-∈ xs ny) []⊆x : ∀ {ℓ} {A : Set ℓ} (x : List A) → [] ⊆ x []⊆x _ () ∀x∉[] : ∀ {ℓ} {A : Set ℓ} {x : A} → x ∉ [] ∀x∉[] () x⊆[]⇒x≡[] : ∀ {ℓ} {A : Set ℓ} {x : List A} → x ⊆ [] → x ≡ [] x⊆[]⇒x≡[] {x = []} _ = refl x⊆[]⇒x≡[] {x = _ ∷ _} x⊆[] = ⊥-elim $ ∀x∉[] $ x⊆[] (here refl) x∩y⊆x : ∀ {ℓ} {A : Set ℓ} (x : List (Named A)) (y : Names) → filter-∈ x y ⊆ x x∩y⊆x [] _ = λ() x∩y⊆x (h ∷ t) y with y ∋! proj₁ h ... | false = there ∘ x∩y⊆x t y ... | true = f where f : h ∷ filter-∈ t y ⊆ h ∷ t f (here {x = .h} p) = here p f (there {xs = .(filter-∈ t y)} p) = there $ x∩y⊆x t y p e∈x⇒e∈y∪x : ∀ {ℓ} {A : Set ℓ} {e : A} {x : List A} (y : List A) → e ∈ x → e ∈ y ∪ x e∈x⇒e∈y∪x [] = id e∈x⇒e∈y∪x (h ∷ t) = there ∘ e∈x⇒e∈y∪x t e∈x⇒e∈x∪y : ∀ {ℓ} {A : Set ℓ} {e : A} {x : List A} (y : List A) → e ∈ x → e ∈ x ∪ y e∈x⇒e∈x∪y {e = e} {x = x} y e∈x = x⊆y≋z f (∪-sym y x) (e ∈ [ e ] ∋ here refl) where f : [ e ] ⊆ y ∪ x f {è} (here {x = .e} p) = ≡-elim′ (λ z → z ∈ y ∪ x) (≡-sym p) (e∈x⇒e∈y∪x y e∈x) f (there ()) x∪y⊆x̀∪ỳ : ∀ {ℓ} {A : Set ℓ} {x x̀ y ỳ : List A} → x ⊆ x̀ → y ⊆ ỳ → x ∪ y ⊆ x̀ ∪ ỳ x∪y⊆x̀∪ỳ {x = []} {x̀ = []} _ y⊆ỳ = y⊆ỳ x∪y⊆x̀∪ỳ {x = []} {x̀ = _ ∷ t̀} _ y⊆ỳ = there ∘ x∪y⊆x̀∪ỳ ([]⊆x t̀) y⊆ỳ x∪y⊆x̀∪ỳ {x = h ∷ t} {x̀ = x̀} {y = y} {ỳ = ỳ} x⊆x̀ y⊆ỳ = f where f : (h ∷ t) ∪ y ⊆ x̀ ∪ ỳ f {e} (here {x = .h} e≡h) = e∈x⇒e∈x∪y ỳ (x⊆x̀ $ here e≡h) f {e} (there {xs = .(t ∪ y)} p) = x∪y⊆x̀∪ỳ (x∪y⊆z⇒y⊆z [ h ] t x⊆x̀) y⊆ỳ p x∖y⊆x : (x y : Names) → x ∖ y ⊆ x x∖y⊆x [] _ = λ() x∖y⊆x (h ∷ t) y with y ∋! h ... | true = there ∘ x∖y⊆x t y ... | false = x∪y⊆x̀∪ỳ (≋⇒⊆ $ ≡⇒≋ $ refl {x = [ h ]}) (x∖y⊆x t y) t≋t∖n∪t∩n : ∀ {ℓ} {A : Set ℓ} (t : List (Named A)) (n : Names) → t ≋ (t ∖∖ n) ∪ filter-∈ t n t≋t∖n∪t∩n [] _ = refl t≋t∖n∪t∩n (h ∷ t) n with n ∋! proj₁ h ... | false = e∷x≋e∷y h $ t≋t∖n∪t∩n t n ... | true = ≋-trans p₁ p₂ where p₁ : h ∷ t ≋ (h ∷ (t ∖∖ n)) ∪ filter-∈ t n p₁ = e∷x≋e∷y h $ t≋t∖n∪t∩n t n p₂ : (h ∷ (t ∖∖ n)) ∪ filter-∈ t n ≋ (t ∖∖ n) ∪ (h ∷ filter-∈ t n) p₂ = ≋-del-ins-r [] h (t ∖∖ n) (filter-∈ t n) e₁∈x⇒e₂∉x⇒e≢e₂ : ∀ {ℓ} {A : Set ℓ} {e₁ e₂ : A} {x : List A} → e₁ ∈ x → e₂ ∉ x → e₁ ≢ e₂ e₁∈x⇒e₂∉x⇒e≢e₂ e₁∈x e₂∉x refl = e₂∉x e₁∈x e₁∈e₂∷x⇒e₁≢e₂⇒e₁∈x : ∀ {ℓ} {A : Set ℓ} {e₁ e₂ : A} {x : List A} → e₁ ∈ e₂ ∷ x → e₁ ≢ e₂ → e₁ ∈ x e₁∈e₂∷x⇒e₁≢e₂⇒e₁∈x (here e₁≡e₂) e₁≢e₂ = ⊥-elim $ e₁≢e₂ e₁≡e₂ e₁∈e₂∷x⇒e₁≢e₂⇒e₁∈x (there e₁∈x) _ = e₁∈x x⊆e∷y⇒e∉x⇒x⊆y : ∀ {ℓ} {A : Set ℓ} {e : A} {x y : List A} → x ⊆ e ∷ y → e ∉ x → x ⊆ y x⊆e∷y⇒e∉x⇒x⊆y {e = e} {x = x} {y = y} x⊆e∷y e∉x {è} è∈x = e₁∈e₂∷x⇒e₁≢e₂⇒e₁∈x (x⊆e∷y è∈x) (e₁∈x⇒e₂∉x⇒e≢e₂ è∈x e∉x) n-e∉l⇒e∉l : ∀ {ℓ} {A : Set ℓ} {e : Named A} {l : List (Named A)} → proj₁ e ∉ names l → e ∉ l n-e∉l⇒e∉l {e = e} n-e∉l (here {x = è} p) = ⊥-elim $ n-e∉l $ here $ ≡-cong proj₁ p n-e∉l⇒e∉l n-e∉l (there p) = n-e∉l⇒e∉l (x∉y∷l⇒x∉l n-e∉l) p nr-names⇒nr : ∀ {ℓ} {A : Set ℓ} {l : List (Named A)} → NonRepetitiveNames l → NonRepetitive l nr-names⇒nr {l = []} [] = [] nr-names⇒nr {l = _ ∷ _} (nh∉nt ∷ nr-t) = n-e∉l⇒e∉l nh∉nt ∷ nr-names⇒nr nr-t e∉x⇒e∉y⇒e∉x∪y : ∀ {ℓ} {A : Set ℓ} {e : A} {x y : List A} → e ∉ x → e ∉ y → e ∉ x ∪ y e∉x⇒e∉y⇒e∉x∪y {x = []} _ e∉y e∈y = ⊥-elim $ e∉y e∈y e∉x⇒e∉y⇒e∉x∪y {x = h ∷ t} e∉x e∉y (here e≡h) = ⊥-elim $ e∉x $ here e≡h e∉x⇒e∉y⇒e∉x∪y {x = h ∷ t} e∉x e∉y (there e∈t∪y) = e∉x⇒e∉y⇒e∉x∪y (x∉y∷l⇒x∉l e∉x) e∉y e∈t∪y nr-x∖y∪y : {x y : Names} → NonRepetitive x → NonRepetitive y → NonRepetitive (x ∖ y ∪ y) nr-x∖y∪y {x = []} _ nr-y = nr-y nr-x∖y∪y {x = x ∷ xs} {y = y} (x∉xs ∷ nr-xs) nr-y with x ∈? y ... | yes x∈y = nr-x∖y∪y nr-xs nr-y ... | no x∉y = e∉x⇒e∉y⇒e∉x∪y (⊥-elim ∘ x∉xs ∘ x∖y⊆x xs y) x∉y ∷ nr-x∖y∪y nr-xs nr-y e∉l∖[e] : (e : String) (l : Names) → e ∉ l ∖ [ e ] e∉l∖[e] _ [] = λ() e∉l∖[e] e (h ∷ t) with h ≟ e ... | yes _ = e∉l∖[e] e t ... | no h≢e = x≢y⇒x∉l⇒x∉y∷l (≢-sym h≢e) (e∉l∖[e] e t) e∉l⇒l∖e≡l : {e : String} {l : Names} → e ∉ l → l ∖ [ e ] ≡ l e∉l⇒l∖e≡l {e = e} {l = []} _ = refl e∉l⇒l∖e≡l {e = e} {l = h ∷ t} e∉l with h ∈? [ e ] ... | yes h∈e = ⊥-elim $ x≢y⇒x∉l⇒x∉y∷l (≢-sym $ x∉y∷l⇒x≢y e∉l) (λ()) h∈e ... | no h∉e = ≡-cong (_∷_ h) (e∉l⇒l∖e≡l $ x∉y∷l⇒x∉l e∉l) e∈l⇒nr-l⇒l∖e∪e≋l : {e : String} {l : Names} → e ∈ l → NonRepetitive l → l ∖ [ e ] ∪ [ e ] ≋ l e∈l⇒nr-l⇒l∖e∪e≋l {l = []} () _ e∈l⇒nr-l⇒l∖e∪e≋l {e = e} {l = h ∷ t} e∈h∷t (h∉t ∷ nr-t) with h ∈? [ e ] ... | yes (here h≡e) = ≋-trans (≡⇒≋ $ ≡-trans p₁ p₂) (∪-sym t [ h ]) where p₁ : t ∖ [ e ] ∪ [ e ] ≡ t ∖ [ h ] ∪ [ h ] p₁ = ≡-cong (λ x → t ∖ [ x ] ∪ [ x ]) (≡-sym h≡e) p₂ : t ∖ [ h ] ∪ [ h ] ≡ t ∪ [ h ] p₂ = ≡-cong (λ x → x ∪ [ h ]) (e∉l⇒l∖e≡l h∉t) ... | yes (there ()) ... | no h∉e with e∈h∷t ... | here e≡h = ⊥-elim ∘ h∉e ∘ here ∘ ≡-sym $ e≡h ... | there e∈t = e∷x≋e∷y _ $ e∈l⇒nr-l⇒l∖e∪e≋l e∈t nr-t nr-x∖y : {x : Names} → NonRepetitive x → (y : Names) → NonRepetitive (x ∖ y) nr-x∖y {x = []} _ _ = [] nr-x∖y {x = x ∷ xs} (x∉xs ∷ nr-xs) y with x ∈? y ... | yes x∈y = nr-x∖y nr-xs y ... | no x∉y = ⊥-elim ∘ x∉xs ∘ x∖y⊆x xs y ∷ nr-x∖y nr-xs y x⊆y⇒e∉y⇒e∉x : ∀ {ℓ} {A : Set ℓ} {e : A} {x y : List A} → x ⊆ y → e ∉ y → e ∉ x x⊆y⇒e∉y⇒e∉x x⊆y e∉y e∈x = e∉y $ x⊆y e∈x e∈n-l⇒∃è,n-è≡e×è∈l : ∀ {ℓ} {A : Set ℓ} {e : String} {l : List (Named A)} → e ∈ names l → Σ[ è ∈ Named A ] (e ≡ proj₁ è × è ∈ l) e∈n-l⇒∃è,n-è≡e×è∈l {l = []} () e∈n-l⇒∃è,n-è≡e×è∈l {l = h ∷ t} (here e≡n-h) = h , e≡n-h , here refl e∈n-l⇒∃è,n-è≡e×è∈l {l = h ∷ t} (there e∈n-t) with e∈n-l⇒∃è,n-è≡e×è∈l e∈n-t ... | è , n-è≡e , è∈l = è , n-è≡e , there è∈l x⊆y⇒nx⊆ny : ∀ {ℓ} {A : Set ℓ} {x y : List (Named A)} → x ⊆ y → names x ⊆ names y x⊆y⇒nx⊆ny {x = x} {y = y} x⊆y {e} e∈n-x with e ∈? names y ... | yes e∈n-y = e∈n-y ... | no e∉n-y with e∈n-l⇒∃è,n-è≡e×è∈l e∈n-x ... | è , e≡n-è , è∈x = ⊥-elim $ x⊆y⇒e∉y⇒e∉x x⊆y (n-e∉l⇒e∉l $ ≡-elim′ (λ z → z ∉ names y) e≡n-è e∉n-y) è∈x nr-x⇒nr-x∩y : ∀ {ℓ} {A : Set ℓ} {x : List (Named A)} → NonRepetitiveNames x → (y : Names) → NonRepetitiveNames (filter-∈ x y) nr-x⇒nr-x∩y {x = []} _ _ = [] nr-x⇒nr-x∩y {x = h ∷ t} (h∉t ∷ nr-t) y with y ∋! proj₁ h ... | false = nr-x⇒nr-x∩y nr-t y ... | true = x⊆y⇒e∉y⇒e∉x (x⊆y⇒nx⊆ny $ x∩y⊆x t y) h∉t ∷ nr-x⇒nr-x∩y nr-t y e∈l⇒[e]⊆l : ∀ {ℓ} {A : Set ℓ} {e : A} {l : List A} → e ∈ l → [ e ] ⊆ l e∈l⇒[e]⊆l e∈l (here è≡e) = ≡-elim′ (λ x → x ∈ _) (≡-sym è≡e) e∈l e∈l⇒[e]⊆l e∈l (there ()) a∈x⇒x≋y⇒a∈y : ∀ {ℓ} {A : Set ℓ} {x y : List A} {a : A} → a ∈ x → x ≋ y → a ∈ y a∈x⇒x≋y⇒a∈y a∈x x≋y = x⊆y≋z (e∈l⇒[e]⊆l a∈x) x≋y (here refl) x⊆z⇒y⊆z⇒x∪y⊆z : ∀ {ℓ} {A : Set ℓ} {x y z : List A} → x ⊆ z → y ⊆ z → x ∪ y ⊆ z x⊆z⇒y⊆z⇒x∪y⊆z {x = []} _ y⊆z = y⊆z x⊆z⇒y⊆z⇒x∪y⊆z {x = h ∷ t} {y = y} {z = z} x⊆z y⊆z = f where f : (h ∷ t) ∪ y ⊆ z f {e} (here e≡h) = x⊆z $ here e≡h f {e} (there e∈t∪y) = x⊆z⇒y⊆z⇒x∪y⊆z (x∪y⊆z⇒y⊆z [ h ] t x⊆z) y⊆z e∈t∪y x⊆x∖y∪y : (x y : Names) → x ⊆ x ∖ y ∪ y x⊆x∖y∪y [] _ = []⊆x _ x⊆x∖y∪y (h ∷ t) y with h ∈? y x⊆x∖y∪y (h ∷ t) y | yes h∈y = x⊆z⇒y⊆z⇒x∪y⊆z (e∈l⇒[e]⊆l $ e∈x⇒e∈y∪x (t ∖ y) h∈y) (x⊆x∖y∪y t y) x⊆x∖y∪y (h ∷ t) y | no _ = x∪y⊆x̀∪ỳ ([ h ] ⊆ [ h ] ∋ ≋⇒⊆ refl) (x⊆x∖y∪y t y) e₁∈l⇒e₁∉l∖e₂⇒e₁≡e₂ : {e₁ e₂ : String} {l : Names} → e₁ ∈ l → e₁ ∉ l ∖ [ e₂ ] → e₁ ≡ e₂ e₁∈l⇒e₁∉l∖e₂⇒e₁≡e₂ {e₁ = e₁} {e₂ = e₂} {l = l} e₁∈l e₁∉l∖e₂ with e₁ ≟ e₂ ... | yes e₁≡e₂ = e₁≡e₂ ... | no e₁≢e₂ = ⊥-elim $ p₄ e₁∈l where p₁ : e₁ ∉ [ e₂ ] ∪ (l ∖ [ e₂ ]) p₁ = x≢y⇒x∉l⇒x∉y∷l e₁≢e₂ e₁∉l∖e₂ p₂ : [ e₂ ] ∪ (l ∖ [ e₂ ]) ≋ (l ∖ [ e₂ ]) ∪ [ e₂ ] p₂ = ∪-sym [ e₂ ] (l ∖ [ e₂ ]) p₃ : e₁ ∉ (l ∖ [ e₂ ]) ∪ [ e₂ ] p₃ = p₁ ∘ ≋⇒⊆ (∪-sym (l ∖ [ e₂ ]) [ e₂ ]) p₄ : e₁ ∉ l p₄ = x⊆y⇒e∉y⇒e∉x (x⊆x∖y∪y l [ e₂ ]) p₃ e∉x⇒x∩y≋x∩y∖e : {e : String} {x : Names} (y : Names) → e ∉ x → x ∩ y ≡ x ∩ (y ∖ [ e ]) e∉x⇒x∩y≋x∩y∖e {x = []} _ _ = refl e∉x⇒x∩y≋x∩y∖e {e = e} {x = h ∷ t} y e∉x with h ∈? y | h ∈? (y ∖ [ e ]) ... | yes h∈y | yes h∈y∖e = ≡-cong (_∷_ h) $ e∉x⇒x∩y≋x∩y∖e y $ x∉y∷l⇒x∉l e∉x ... | yes h∈y | no h∉y∖e = ⊥-elim $ e∉x e∈x where e∈x : e ∈ h ∷ t e∈x = here $ ≡-sym $ e₁∈l⇒e₁∉l∖e₂⇒e₁≡e₂ h∈y h∉y∖e ... | no h∉y | yes h∈y∖e = ⊥-elim $ h∉y $ x∖y⊆x y [ e ] h∈y∖e ... | no h∉y | no h∉y∖e = e∉x⇒x∩y≋x∩y∖e y $ x∉y∷l⇒x∉l e∉x y⊆x⇒x∩y≋y : {x y : Names} → NonRepetitive y → NonRepetitive x → y ⊆ x → x ∩ y ≋ y y⊆x⇒x∩y≋y {x = []} _ _ y⊆[] = ≡⇒≋ $ ≡-elim′ (λ y → [] ∩ y ≡ y) (≡-sym $ x⊆[]⇒x≡[] y⊆[]) refl y⊆x⇒x∩y≋y {x = h ∷ t} {y = y} nr-y (h∉t ∷ nr-t) y⊆h∷t with h ∈? y ... | yes h∈y = ≋-trans (∪-sym [ h ] (t ∩ y)) p₄ where p₁ : t ∩ y ≋ t ∩ (y ∖ [ h ]) p₁ = ≡⇒≋ $ e∉x⇒x∩y≋x∩y∖e y h∉t p₂ : t ∩ (y ∖ [ h ]) ≋ y ∖ [ h ] p₂ = y⊆x⇒x∩y≋y (nr-x∖y nr-y [ h ]) nr-t $ x⊆e∷y⇒e∉x⇒x⊆y (y⊆h∷t ∘ x∖y⊆x y [ h ]) (e∉l∖[e] h y) p₃ : y ∖ [ h ] ∪ [ h ] ≋ y p₃ = e∈l⇒nr-l⇒l∖e∪e≋l h∈y nr-y p₄ : t ∩ y ∪ [ h ] ≋ y p₄ = ≋-trans (x≋x̀⇒x∪y≋x̀∪y (≋-trans p₁ p₂) [ h ]) p₃ ... | no h∉y = y⊆x⇒x∩y≋y nr-y nr-t $ x⊆e∷y⇒e∉x⇒x⊆y y⊆h∷t h∉y x∪y∖n≡x∖n∪y∖n : ∀ {ℓ} {A : Set ℓ} (x y : List (Named A)) (n : Names) → (x ∪ y) ∖∖ n ≡ (x ∖∖ n) ∪ (y ∖∖ n) x∪y∖n≡x∖n∪y∖n [] _ _ = refl x∪y∖n≡x∖n∪y∖n (h ∷ t) y n with proj₁ h ∈? n ... | yes _ = x∪y∖n≡x∖n∪y∖n t y n ... | no _ = ≡-cong (_∷_ h) (x∪y∖n≡x∖n∪y∖n t y n) n-x⊆n⇒x∖n≡[] : ∀ {ℓ} {A : Set ℓ} (x : List (Named A)) (n : Names) → names x ⊆ n → x ∖∖ n ≡ [] n-x⊆n⇒x∖n≡[] [] _ _ = refl n-x⊆n⇒x∖n≡[] (h ∷ t) n n-x⊆n with proj₁ h ∈? n ... | yes _ = n-x⊆n⇒x∖n≡[] t n $ x∪y⊆z⇒y⊆z [ proj₁ h ] (names t) (x≋y⊆z (≡⇒≋ $ n-x∪y [ h ] t) n-x⊆n) ... | no h∉n = ⊥-elim $ h∉n $ n-x⊆n (proj₁ h ∈ proj₁ h ∷ names t ∋ here refl) x∖x≡[] : ∀ {ℓ} {A : Set ℓ} (x : List (Named A)) → x ∖∖ names x ≡ [] x∖x≡[] x = n-x⊆n⇒x∖n≡[] x (names x) (≋⇒⊆ refl) nr-[a] : ∀ {ℓ} {A : Set ℓ} {a : A} → NonRepetitive [ a ] nr-[a] = (λ()) ∷ [] x≋y⇒x∖n≋y∖n : ∀ {ℓ} {A : Set ℓ} {x y : List (Named A)} → x ≋ y → (n : Names) → x ∖∖ n ≋ y ∖∖ n x≋y⇒x∖n≋y∖n refl _ = refl x≋y⇒x∖n≋y∖n {x = x} (perm l₁ x₁ x₂ l₂ p) n = ≋-trans p₀ $ ≋-trans (≡⇒≋ p₅) $ ≋-trans pg (≡⇒≋ $ ≡-sym g₅) where p₀ : x ∖∖ n ≋ (l₁ ++ x₂ ∷ x₁ ∷ l₂) ∖∖ n p₀ = x≋y⇒x∖n≋y∖n p n p₁ : (l₁ ++ [ x₂ ] ++ [ x₁ ] ++ l₂) ∖∖ n ≡ l₁ ∖∖ n ++ ([ x₂ ] ++ [ x₁ ] ++ l₂) ∖∖ n p₁ = x∪y∖n≡x∖n∪y∖n l₁ ([ x₂ ] ++ [ x₁ ] ++ l₂) n p₂ : l₁ ∖∖ n ++ ([ x₂ ] ++ [ x₁ ] ++ l₂) ∖∖ n ≡ l₁ ∖∖ n ++ [ x₂ ] ∖∖ n ++ ([ x₁ ] ++ l₂) ∖∖ n p₂ = ≡-cong (λ z → l₁ ∖∖ n ++ z) (x∪y∖n≡x∖n∪y∖n [ x₂ ] ([ x₁ ] ++ l₂) n) p₃ : l₁ ∖∖ n ++ [ x₂ ] ∖∖ n ++ ([ x₁ ] ++ l₂) ∖∖ n ≡ l₁ ∖∖ n ++ [ x₂ ] ∖∖ n ++ [ x₁ ] ∖∖ n ++ l₂ ∖∖ n p₃ = ≡-cong (λ z → l₁ ∖∖ n ++ [ x₂ ] ∖∖ n ++ z) (x∪y∖n≡x∖n∪y∖n [ x₁ ] l₂ n) p₄ : l₁ ∖∖ n ++ [ x₂ ] ∖∖ n ++ [ x₁ ] ∖∖ n ++ l₂ ∖∖ n ≡ l₁ ∖∖ n ++ ([ x₂ ] ∖∖ n ++ [ x₁ ] ∖∖ n) ++ l₂ ∖∖ n p₄ = ≡-cong (λ z → l₁ ∖∖ n ++ z) (≡-sym $ ∪-assoc ([ x₂ ] ∖∖ n) ([ x₁ ] ∖∖ n) (l₂ ∖∖ n)) p₅ : (l₁ ++ [ x₂ ] ++ [ x₁ ] ++ l₂) ∖∖ n ≡ l₁ ∖∖ n ++ ([ x₂ ] ∖∖ n ++ [ x₁ ] ∖∖ n) ++ l₂ ∖∖ n p₅ = ≡-trans p₁ $ ≡-trans p₂ $ ≡-trans p₃ p₄ pg : l₁ ∖∖ n ++ ([ x₂ ] ∖∖ n ++ [ x₁ ] ∖∖ n) ++ l₂ ∖∖ n ≋ l₁ ∖∖ n ++ ([ x₁ ] ∖∖ n ++ [ x₂ ] ∖∖ n) ++ l₂ ∖∖ n pg = y≋ỳ⇒x∪y≋x∪ỳ (l₁ ∖∖ n) $ x≋x̀⇒x∪y≋x̀∪y (∪-sym ([ x₂ ] ∖∖ n) ([ x₁ ] ∖∖ n)) (l₂ ∖∖ n) g₁ : (l₁ ++ [ x₁ ] ++ [ x₂ ] ++ l₂) ∖∖ n ≡ l₁ ∖∖ n ++ ([ x₁ ] ++ [ x₂ ] ++ l₂) ∖∖ n g₁ = x∪y∖n≡x∖n∪y∖n l₁ ([ x₁ ] ++ [ x₂ ] ++ l₂) n g₂ : l₁ ∖∖ n ++ ([ x₁ ] ++ [ x₂ ] ++ l₂) ∖∖ n ≡ l₁ ∖∖ n ++ [ x₁ ] ∖∖ n ++ ([ x₂ ] ++ l₂) ∖∖ n g₂ = ≡-cong (λ z → l₁ ∖∖ n ++ z) (x∪y∖n≡x∖n∪y∖n [ x₁ ] ([ x₂ ] ++ l₂) n) g₃ : l₁ ∖∖ n ++ [ x₁ ] ∖∖ n ++ ([ x₂ ] ++ l₂) ∖∖ n ≡ l₁ ∖∖ n ++ [ x₁ ] ∖∖ n ++ [ x₂ ] ∖∖ n ++ l₂ ∖∖ n g₃ = ≡-cong (λ z → l₁ ∖∖ n ++ [ x₁ ] ∖∖ n ++ z) (x∪y∖n≡x∖n∪y∖n [ x₂ ] l₂ n) g₄ : l₁ ∖∖ n ++ [ x₁ ] ∖∖ n ++ [ x₂ ] ∖∖ n ++ l₂ ∖∖ n ≡ l₁ ∖∖ n ++ ([ x₁ ] ∖∖ n ++ [ x₂ ] ∖∖ n) ++ l₂ ∖∖ n g₄ = ≡-cong (λ z → l₁ ∖∖ n ++ z) (≡-sym $ ∪-assoc ([ x₁ ] ∖∖ n) ([ x₂ ] ∖∖ n) (l₂ ∖∖ n)) g₅ : (l₁ ++ [ x₁ ] ++ [ x₂ ] ++ l₂) ∖∖ n ≡ l₁ ∖∖ n ++ ([ x₁ ] ∖∖ n ++ [ x₂ ] ∖∖ n) ++ l₂ ∖∖ n g₅ = ≡-trans g₁ $ ≡-trans g₂ $ ≡-trans g₃ g₄ nr-x∪y⇒e∈x⇒e∈y⇒⊥ : ∀ {ℓ} {A : Set ℓ} {e : A} {x y : List A} → NonRepetitive (x ∪ y) → e ∈ x → e ∈ y → ⊥ nr-x∪y⇒e∈x⇒e∈y⇒⊥ {x = []} _ () nr-x∪y⇒e∈x⇒e∈y⇒⊥ {x = h ∷ t} (h∉t∪y ∷ nr-t∪y) (here e≡h) = h∉t∪y ∘ e∈x⇒e∈y∪x t ∘ ≡-elim′ (λ x → x ∈ _) e≡h nr-x∪y⇒e∈x⇒e∈y⇒⊥ {x = h ∷ t} (h∉t∪y ∷ nr-t∪y) (there e∈t) = nr-x∪y⇒e∈x⇒e∈y⇒⊥ nr-t∪y e∈t nr-x∪y⇒x∖y≡x : ∀ {ℓ} {A : Set ℓ} (x y : List (Named A)) → NonRepetitiveNames (x ∪ y) → y ∖∖ names x ≡ y nr-x∪y⇒x∖y≡x x y nr-x∪y = f₀ y (≋⇒⊆ refl) where f₀ : ∀ t → t ⊆ y → t ∖∖ names x ≡ t f₀ [] _ = refl f₀ (h ∷ t) h∷t⊆y with proj₁ h ∈? names x ... | yes h∈x = ⊥-elim $ nr-x∪y⇒e∈x⇒e∈y⇒⊥ (≡-elim′ NonRepetitive (n-x∪y x y) nr-x∪y) h∈x (x⊆y⇒nx⊆ny h∷t⊆y $ here refl) ... | no _ = ≡-cong (_∷_ h) (f₀ t $ x∪y⊆z⇒y⊆z [ h ] t h∷t⊆y) t≋t₁∪t₂⇒t∖t₁≋t₂ : ∀ {ℓ} {A : Set ℓ} {t : List (Named A)} → NonRepetitiveNames t → (t₁ t₂ : List (Named A)) → t ≋ t₁ ∪ t₂ → t ∖∖ names t₁ ≋ t₂ t≋t₁∪t₂⇒t∖t₁≋t₂ {t = t} nr-t t₁ t₂ t≋t₁∪t₂ = ≋-trans p₂ (≡⇒≋ $ nr-x∪y⇒x∖y≡x t₁ t₂ $ nr-x≋y (n-x≋y t≋t₁∪t₂) nr-t) where n-t₁ = names t₁ p₁ : t ∖∖ n-t₁ ≋ (t₁ ∖∖ n-t₁) ∪ (t₂ ∖∖ n-t₁) p₁ = ≋-trans (x≋y⇒x∖n≋y∖n t≋t₁∪t₂ n-t₁) (≡⇒≋ $ x∪y∖n≡x∖n∪y∖n t₁ t₂ n-t₁) p₂ : t ∖∖ n-t₁ ≋ t₂ ∖∖ n-t₁ p₂ = ≡-elim′ (λ x → t ∖∖ n-t₁ ≋ x ∪ (t₂ ∖∖ n-t₁)) (x∖x≡[] t₁) p₁ x≋x̀⇒y≋ỳ⇒x∪y≋x̀∪ỳ : ∀ {ℓ} {A : Set ℓ} {x x̀ y ỳ : List A} → x ≋ x̀ → y ≋ ỳ → x ∪ y ≋ x̀ ∪ ỳ x≋x̀⇒y≋ỳ⇒x∪y≋x̀∪ỳ x≋x̀ (refl {y}) = x≋x̀⇒x∪y≋x̀∪y x≋x̀ y x≋x̀⇒y≋ỳ⇒x∪y≋x̀∪ỳ {x = x} {x̀ = x̀} {y = y} {ỳ = ._} x≋x̀ (perm l₁ x₁ x₂ l₂ y≋l₁x₂x₁l₂) = ≋-trans p₁ $ ≋-trans p₂ $ ≋-trans p₃ p₄ where p₁ : x ∪ y ≋ x̀ ∪ (l₁ ++ x₂ ∷ x₁ ∷ l₂) p₁ = x≋x̀⇒y≋ỳ⇒x∪y≋x̀∪ỳ x≋x̀ y≋l₁x₂x₁l₂ p₂ : x̀ ∪ (l₁ ++ x₂ ∷ x₁ ∷ l₂) ≋ (x̀ ∪ l₁) ++ x₂ ∷ x₁ ∷ l₂ p₂ = ≡⇒≋ $ ≡-sym $ ∪-assoc x̀ l₁ (x₂ ∷ x₁ ∷ l₂) p₃ : (x̀ ∪ l₁) ++ x₂ ∷ x₁ ∷ l₂ ≋ (x̀ ∪ l₁) ++ x₁ ∷ x₂ ∷ l₂ p₃ = perm (x̀ ∪ l₁) x₁ x₂ l₂ refl p₄ : (x̀ ∪ l₁) ++ x₁ ∷ x₂ ∷ l₂ ≋ x̀ ∪ (l₁ ++ x₁ ∷ x₂ ∷ l₂) p₄ = ≡⇒≋ $ ∪-assoc x̀ l₁ (x₁ ∷ x₂ ∷ l₂) x∖y∪y≋y∖x∪x : ∀ {ℓ} {A : Set ℓ} (x y : List (Named A)) → let nx = names x ny = names y in filter-∈ x ny ≋ filter-∈ y nx → x ∖∖ ny ∪ y ≋ y ∖∖ nx ∪ x x∖y∪y≋y∖x∪x x y p₀ = ≋-trans p₁ $ ≋-trans p₂ p₃ where nx = names x ny = names y p₁ : x ∖∖ ny ∪ y ≋ x ∖∖ ny ∪ y ∖∖ nx ∪ filter-∈ y nx p₁ = ≋-trans (y≋ỳ⇒x∪y≋x∪ỳ (x ∖∖ ny) (t≋t∖n∪t∩n y nx)) (≡⇒≋ $ ≡-sym $ ∪-assoc (x ∖∖ ny) (y ∖∖ nx) (filter-∈ y nx)) p₂ : (x ∖∖ ny ∪ y ∖∖ nx) ∪ filter-∈ y nx ≋ (y ∖∖ nx ∪ x ∖∖ ny) ∪ filter-∈ x ny p₂ = x≋x̀⇒y≋ỳ⇒x∪y≋x̀∪ỳ (∪-sym (x ∖∖ ny) (y ∖∖ nx)) (≋-sym p₀) p₃ : y ∖∖ nx ∪ x ∖∖ ny ∪ filter-∈ x ny ≋ y ∖∖ nx ∪ x p₃ = ≋-trans (≡⇒≋ $ ∪-assoc (y ∖∖ nx) (x ∖∖ ny) (filter-∈ x ny)) (≋-sym $ y≋ỳ⇒x∪y≋x∪ỳ (y ∖∖ nx) (t≋t∖n∪t∩n x ny)) names⇒named : Names → List (Named Unit) names⇒named = mapL (λ x → x , unit) nn-x∪y≡nn-x∪nn-y : ∀ x y → names⇒named (x ∪ y) ≡ names⇒named x ∪ names⇒named y nn-x∪y≡nn-x∪nn-y [] y = refl nn-x∪y≡nn-x∪nn-y (h ∷ t) y = ≡-cong (_∷_ _) (nn-x∪y≡nn-x∪nn-y t y) nn-x≡x : ∀ x → names (names⇒named x) ≡ x nn-x≡x [] = refl nn-x≡x (h ∷ t) = ≡-cong (_∷_ h) (nn-x≡x t) x≋y⇒nn-x≋nn-y : ∀ {x y} → x ≋ y → names⇒named x ≋ names⇒named y x≋y⇒nn-x≋nn-y refl = refl x≋y⇒nn-x≋nn-y {x = x} {y = ._} (perm l₁ x₁ x₂ l₂ x≋l₁x₂x₁l₂) = ≋-trans p₁ p₂ where p₁ : names⇒named x ≋ names⇒named l₁ ++ (x₂ , unit) ∷ (x₁ , unit) ∷ names⇒named l₂ p₁ = ≋-trans (x≋y⇒nn-x≋nn-y x≋l₁x₂x₁l₂) (≡⇒≋ $ nn-x∪y≡nn-x∪nn-y l₁ (x₂ ∷ x₁ ∷ l₂)) p₂ : names⇒named l₁ ++ (x₂ , unit) ∷ (x₁ , unit) ∷ names⇒named l₂ ≋ names⇒named (l₁ ++ x₁ ∷ x₂ ∷ l₂) p₂ = ≋-trans (perm (names⇒named l₁) (x₁ , unit) (x₂ , unit) (names⇒named l₂) refl) (≡⇒≋ $ ≡-sym $ nn-x∪y≡nn-x∪nn-y l₁ (x₁ ∷ x₂ ∷ l₂)) x≋y∪z⇒x∖y≋z : {x : Names} → NonRepetitive x → (y z : Names) → x ≋ y ∪ z → x ∖ y ≋ z x≋y∪z⇒x∖y≋z {x} nr-x y z x≋y∪z = ≋-trans (≡⇒≋ $ ≡-sym $ ≡-trans p₂ p₃) (≋-trans p₁ $ ≡⇒≋ $ nn-x≡x z) where ux = names⇒named x uy = names⇒named y uz = names⇒named z ux≋uy∪uz : ux ≋ uy ∪ uz ux≋uy∪uz = ≋-trans (x≋y⇒nn-x≋nn-y x≋y∪z) (≡⇒≋ $ nn-x∪y≡nn-x∪nn-y y z) p₁ : names (ux ∖∖ names uy) ≋ names uz p₁ = n-x≋y $ t≋t₁∪t₂⇒t∖t₁≋t₂ (≡-elim′ NonRepetitive (≡-sym $ nn-x≡x x) nr-x) uy uz ux≋uy∪uz p₂ : names (ux ∖∖ names uy) ≡ names ux ∖ names uy p₂ = n-x∖y ux (names uy) p₃ : names ux ∖ names uy ≡ x ∖ y p₃ = ≡-cong₂ _∖_ (nn-x≡x x) (nn-x≡x y) h∈x⇒∃t,x≋h∷t : ∀ {ℓ} {A : Set ℓ} {h : A} {x : List A} → h ∈ x → NonRepetitive x → Σ[ t ∈ List A ] x ≋ h ∷ t h∈x⇒∃t,x≋h∷t {h = h} .{x = x ∷ xs} (here {x = x} {xs = xs} h≡x) (x∉xs ∷ nr-xs) = xs , ≡⇒≋ (≡-cong (λ z → z ∷ xs) (≡-sym h≡x)) h∈x⇒∃t,x≋h∷t {h = h} .{x = x ∷ xs} (there {x = x} {xs = xs} h∈xs) (x∉xs ∷ nr-xs) = let t , xs≋h∷t = ((Σ[ t ∈ List _ ] xs ≋ h ∷ t) ∋ h∈x⇒∃t,x≋h∷t h∈xs nr-xs) p₁ : x ∷ xs ≋ x ∷ h ∷ t p₁ = y≋ỳ⇒x∪y≋x∪ỳ [ x ] xs≋h∷t p₂ : x ∷ h ∷ t ≋ h ∷ x ∷ t p₂ = ≋-del-ins-l [] [ x ] h t in x ∷ t , ≋-trans p₁ p₂ nr-x∪y⇒nr-y : ∀ {ℓ} {A : Set ℓ} (x y : List A) → NonRepetitive (x ∪ y) → NonRepetitive y nr-x∪y⇒nr-y [] _ nr-y = nr-y nr-x∪y⇒nr-y (h ∷ t) y (_ ∷ nr-t∪y) = nr-x∪y⇒nr-y t y nr-t∪y x⊆y⇒∃x̀,y≋x∪x̀ : ∀ {ℓ} {A : Set ℓ} {x y : List A} → NonRepetitive x → NonRepetitive y → x ⊆ y → Σ[ x̀ ∈ List A ] y ≋ x ∪ x̀ x⊆y⇒∃x̀,y≋x∪x̀ {x = []} {y = y} _ _ _ = y , refl x⊆y⇒∃x̀,y≋x∪x̀ {x = h ∷ t} {y = y} (h∉t ∷ nr-t) nr-y h∷t⊆y = let ỳ , y≋h∷ỳ = h∈x⇒∃t,x≋h∷t (h∷t⊆y (h ∈ h ∷ t ∋ here refl)) nr-y p₁ : t ⊆ ỳ p₁ = x⊆e∷y⇒e∉x⇒x⊆y (x⊆y≋z (x∪y⊆z⇒y⊆z [ h ] t h∷t⊆y) y≋h∷ỳ) h∉t nr-ỳ = nr-x∪y⇒nr-y [ h ] ỳ $ nr-x≋y y≋h∷ỳ nr-y t̀ , ỳ≋t∪t̀ = x⊆y⇒∃x̀,y≋x∪x̀ nr-t nr-ỳ p₁ p₂ : h ∷ ỳ ≋ (h ∷ t) ∪ t̀ p₂ = y≋ỳ⇒x∪y≋x∪ỳ [ h ] ỳ≋t∪t̀ in t̀ , ≋-trans y≋h∷ỳ p₂ t₁⊆t₂⇒t₂≋t₁∪t₂∖nt₁ : ∀ {ℓ} {A : Set ℓ} {t₁ t₂ : List (Named A)} → NonRepetitiveNames t₁ → NonRepetitiveNames t₂ → t₁ ⊆ t₂ → t₂ ≋ t₁ ∪ t₂ ∖∖ names t₁ t₁⊆t₂⇒t₂≋t₁∪t₂∖nt₁ {t₁ = t₁} {t₂ = t₂} nr-nt₁ nr-nt₂ t₁⊆t₂ = ≋-trans p₁ $ y≋ỳ⇒x∪y≋x∪ỳ t₁ p₆ where n-t₁ = names t₁ nr-t₁ = nr-names⇒nr nr-nt₁ nr-t₂ = nr-names⇒nr nr-nt₂ t̀₁,t₁∪t̀₁≋t₂ = x⊆y⇒∃x̀,y≋x∪x̀ nr-t₁ nr-t₂ t₁⊆t₂ t̀₁ = proj₁ t̀₁,t₁∪t̀₁≋t₂ p₁ : t₂ ≋ t₁ ∪ t̀₁ p₁ = proj₂ t̀₁,t₁∪t̀₁≋t₂ p₂ : t₂ ∖∖ n-t₁ ≋ (t₁ ∪ t̀₁) ∖∖ n-t₁ p₂ = x≋y⇒x∖n≋y∖n p₁ n-t₁ p₃ : (t₁ ∪ t̀₁) ∖∖ n-t₁ ≡ t₁ ∖∖ n-t₁ ∪ t̀₁ ∖∖ n-t₁ p₃ = x∪y∖n≡x∖n∪y∖n t₁ t̀₁ n-t₁ p₄ : t₁ ∖∖ n-t₁ ∪ t̀₁ ∖∖ n-t₁ ≡ t̀₁ ∖∖ n-t₁ p₄ = ≡-cong (λ x → x ∪ t̀₁ ∖∖ n-t₁) (x∖x≡[] t₁) p₅ : t̀₁ ∖∖ n-t₁ ≡ t̀₁ p₅ = nr-x∪y⇒x∖y≡x t₁ t̀₁ $ nr-x≋y (n-x≋y p₁) nr-nt₂ p₆ : t̀₁ ≋ t₂ ∖∖ n-t₁ p₆ = ≋-sym $ ≋-trans p₂ $ ≡⇒≋ $ ≡-trans p₃ $ ≡-trans p₄ p₅ t₁⊆t₂⇒t₁≋f∈-t₂-nt₁ : ∀ {ℓ} {A : Set ℓ} {t₁ t₂ : List (Named A)} → NonRepetitiveNames t₁ → NonRepetitiveNames t₂ → t₁ ⊆ t₂ → t₁ ≋ filter-∈ t₂ (names t₁) t₁⊆t₂⇒t₁≋f∈-t₂-nt₁ {t₁ = t₁} {t₂ = t₂} nr-t₁ nr-t₂ t₁⊆t₂ = ≋-trans (≋-sym p₃) p₄ where nt₁ = names t₁ p₁ : t₂ ≋ t₂ ∖∖ nt₁ ∪ t₁ p₁ = ≋-trans (t₁⊆t₂⇒t₂≋t₁∪t₂∖nt₁ nr-t₁ nr-t₂ t₁⊆t₂) (∪-sym t₁ (t₂ ∖∖ nt₁)) p₂ : t₂ ≋ t₂ ∖∖ nt₁ ∪ filter-∈ t₂ nt₁ p₂ = t≋t∖n∪t∩n t₂ nt₁ p₃ : t₂ ∖∖ names (t₂ ∖∖ nt₁) ≋ t₁ p₃ = t≋t₁∪t₂⇒t∖t₁≋t₂ nr-t₂ (t₂ ∖∖ nt₁) t₁ p₁ p₄ : t₂ ∖∖ names (t₂ ∖∖ nt₁) ≋ filter-∈ t₂ nt₁ p₄ = t≋t₁∪t₂⇒t∖t₁≋t₂ nr-t₂ (t₂ ∖∖ nt₁) (filter-∈ t₂ nt₁) p₂ -- /lemmas -- assertions infix 4 _s-≢!_ _s-≢!_ : String → String → Set x s-≢! y with x ≟ y ... | yes _ = ⊥ ... | no _ = ⊤ s-≢!⇒≢? : ∀ {x y} → x s-≢! y → x ≢ y s-≢!⇒≢? {x} {y} x≢!y with x ≟ y s-≢!⇒≢? () | yes _ s-≢!⇒≢? _ | no p = p s-NonRepetitive? : (n : Names) → Dec (NonRepetitive n) s-NonRepetitive? [] = yes [] s-NonRepetitive? (h ∷ t) with h ∈? t | s-NonRepetitive? t ... | no h∉t | yes nr-t = yes (h∉t ∷ nr-t) ... | yes h∈t | _ = no f where f : NonRepetitive (_ ∷ _) → _ f (h∉t ∷ _) = h∉t h∈t ... | _ | no ¬nr-t = no f where f : NonRepetitive (_ ∷ _) → _ f (_ ∷ nr-t) = ¬nr-t nr-t s-NonRepetitive! : Names → Set s-NonRepetitive! n with s-NonRepetitive? n ... | yes _ = ⊤ ... | no _ = ⊥ NonRepetitiveNames! : ∀ {ℓ} {A : Set ℓ} → List (Named A) → Set NonRepetitiveNames! = s-NonRepetitive! ∘ names s-nr!⇒nr : {n : Names} → s-NonRepetitive! n → NonRepetitive n s-nr!⇒nr {n = n} _ with s-NonRepetitive? n s-nr!⇒nr _ | yes p = p s-nr!⇒nr () | no _ -- /assertions
43.529183
151
0.430559
3d58a993f4c6bc86cd5491e4665afdb5df87c7d6
32,269
agda
Agda
agda/sn-calculus-confluence/potrec.agda
florence/esterel-calculus
4340bef3f8df42ab8167735d35a4cf56243a45cd
[ "MIT" ]
3
2020-04-16T10:58:53.000Z
2020-07-01T03:59:31.000Z
agda/sn-calculus-confluence/potrec.agda
florence/esterel-calculus
4340bef3f8df42ab8167735d35a4cf56243a45cd
[ "MIT" ]
null
null
null
agda/sn-calculus-confluence/potrec.agda
florence/esterel-calculus
4340bef3f8df42ab8167735d35a4cf56243a45cd
[ "MIT" ]
1
2020-04-15T20:02:49.000Z
2020-04-15T20:02:49.000Z
module sn-calculus-confluence.potrec where open import utility open import sn-calculus open import context-properties using (->pot-view ; ->E-view) open import sn-calculus-confluence.helper open import Esterel.Lang open import Esterel.Lang.Binding open import Esterel.Lang.Properties open import Esterel.Lang.CanFunction open import Esterel.Lang.CanFunction.Properties using (canθₛ-subset ; canθₛₕ-subset ; canθₛ-membership ; canθₛₕ-membership ; canθₛ-mergeˡ ; canθₛₕ-mergeˡ ; canθ-is-present ; canθ-is-absent ; canθₛₕ-emit ; canθₛ-emit ; term-raise ; canₛ-raise ; canₛₕ-raise ; term-nothin ; canₛ-term-nothin ; canₛₕ-term-nothin ; canₛ-if-true ; canₛ-if-false ; canₛₕ-if-true ; canₛₕ-if-false ; canₛ-capture-emit-signal ; canₛₕ-capture-set-shared) open import Esterel.Environment as Env using (Env ; Θ ; _←_ ; module SigMap ; module ShrMap ; module VarMap) open import Esterel.Context open import Esterel.CompletionCode as Code using () renaming (CompletionCode to Code) open import Esterel.Variable.Signal as Signal using (Signal) open import Esterel.Variable.Shared as SharedVar using (SharedVar) open import Esterel.Variable.Sequential as SeqVar using (SeqVar) open import Data.Bool using (Bool ; true ; false ; if_then_else_) open import Data.Empty using (⊥ ; ⊥-elim) open import Data.List using (List ; [] ; _∷_ ; [_]) open import Data.List.Any using (Any ; here ; there ; any) open import Data.Maybe using (Maybe ; just ; nothing) open import Data.Nat using (ℕ ; _≟_ ; zero ; suc ; _+_) open import Data.Product using (Σ ; Σ-syntax ; _,_ ; proj₁ ; proj₂ ; _,′_ ; _×_) open import Data.Sum using (_⊎_ ; inj₁ ; inj₂) open import Function using (_∘_ ; id ; _∋_) open import Relation.Nullary using (¬_ ; Dec ; yes ; no) open import Relation.Binary.PropositionalEquality using (_≡_ ; refl ; sym ; trans ; cong ; subst ; module ≡-Reasoning) open ->pot-view open ->E-view open term-nothin open term-raise open ≡-Reasoning using (begin_ ; _∎ ; _≡⟨_⟩_ ; _≡⟨⟩_) open import Data.OrderedListMap Signal Signal.unwrap Signal.Status as SigM open import Data.OrderedListMap SharedVar SharedVar.unwrap (Σ SharedVar.Status (λ _ → ℕ)) as ShrM open import Data.OrderedListMap SeqVar SeqVar.unwrap ℕ as SeqM ρ-pot-conf-rec : ∀{p θ ql θl qr θr p≡ql E pin qin FV₀ BV₀ A Al Ar A≡Al} → {ρθ·psn⟶₁ρθl·ql : (ρ⟨ θ , A ⟩· p) sn⟶₁ (ρ⟨ θl , Al ⟩· ql)} → {ρθ·psn⟶₁ρθr·qr : (ρ⟨ θ , A ⟩· p) sn⟶₁ (ρ⟨ θr , Ar ⟩· qr)} → {p≐E⟦pin⟧ : p ≐ E ⟦ pin ⟧e} → {qr≐E⟦qin⟧ : qr ≐ E ⟦ qin ⟧e} → CorrectBinding (ρ⟨ θ , A ⟩· p) FV₀ BV₀ → ->pot-view ρθ·psn⟶₁ρθl·ql p≡ql A≡Al → ->E-view ρθ·psn⟶₁ρθr·qr p≐E⟦pin⟧ qr≐E⟦qin⟧ → (ρ⟨ θl , Al ⟩· ql sn⟶₁ ρ⟨ θr , Ar ⟩· qr) ⊎ (Σ[ s ∈ Term ] Σ[ θo ∈ Env.Env ] Σ[ Ao ∈ Ctrl ] (ρ⟨ θl , Al ⟩· ql) sn⟶₁ (ρ⟨ θo , Ao ⟩· s) × (ρ⟨ θr , Ar ⟩· qr) sn⟶₁ (ρ⟨ θo , Ao ⟩· s)) ρ-pot-conf-rec {p} {θ} {ql} {θl} {.(E ⟦ qin ⟧e)} {θr} {_} {E} {(ρ⟨ .θin , Ain ⟩· .qin)} {qin} {_} {_} {A} {.A} {_} {_} {.(rabsence {θ} {p} {S} S∈ θS≡unknown S∉can-p-θ)} {.(rmerge {θ} {θin} p≐E⟦pin⟧)} {p≐E⟦pin⟧} {qr≐E⟦qin⟧} (CBρ cbp) (vabsence S S∈ θS≡unknown S∉can-p-θ) (vmerge {.θ} {θin} {.p} {.qin} {.E}) with Env.Sig∈ S θin ... | yes S∈Domθin rewrite SigMap.update-union-union S Signal.absent (Env.sig θ) (Env.sig θin) S∈ S∈Domθin = inj₁ (ρ⟨ θl , A ⟩· ql sn⟶₁ ρ⟨ (θl ← θin) , A-max A Ain ⟩· E ⟦ qin  ⟧e ∋ rmerge {θl} {θin} p≐E⟦pin⟧) ... | no S∉Domθin with Env.sig-←-irr-get {θ} {θin} {S} S∈ S∉Domθin -- θr ≡ (θ ← θin) ... | S∈Domθ←θin , θS≡⟨θ←θin⟩S = inj₂ (_ , _ , A-max A Ain , subst (λ { θ* → ρ⟨ θl , A ⟩· ql sn⟶₁ ρ⟨ θ* , A-max A Ain ⟩· E ⟦ qin ⟧e}) ((Env.set-sig {S} θ S∈ Signal.absent) ← θin ≡ Env.set-sig {S} (θ ← θin) S∈Domθ←θin Signal.absent ∋ cong (λ sig* → Θ sig* (Env.shr (θ ← θin)) (Env.var (θ ← θin))) (SigMap.put-union-comm S Signal.absent (Env.sig θ) (Env.sig θin) S∉Domθin)) (ρ⟨ θl , A ⟩· ql sn⟶₁ ρ⟨ (θl ← θin) , A-max A Ain ⟩· E ⟦ qin ⟧e ∋ rmerge {θl} {θin} p≐E⟦pin⟧) ,′ (ρ⟨ (θ ← θin) , A-max A Ain ⟩· E ⟦ qin ⟧e sn⟶₁ ρ⟨ (Env.set-sig {S} (θ ← θin) S∈Domθ←θin Signal.absent) , A-max A Ain ⟩· E ⟦ qin ⟧e ∋ (rabsence {θr} {_} {S} S∈Domθ←θin (trans (sym θS≡⟨θ←θin⟩S) θS≡unknown) (λ S∈can-E⟦qin⟧-θ←θin → S∉can-p-θ (canθₛ-mergeˡ (Env.sig θ) Env.[]env cbp p≐E⟦pin⟧ S S∉Domθin S∈can-E⟦qin⟧-θ←θin))))) ρ-pot-conf-rec {p} {θ} {ql} {θl} {.(E ⟦ qin ⟧e)} {θr} {_} {E} {(ρ⟨ .θin , Ain ⟩· qin)} {qin} {_} {_} {A} {Al} {Ar} {_} {.(rreadyness {θ} {p} {s} s∈ θs≡old⊎θs≡new s∉can-p-θ)} {.(rmerge p≐E⟦pin⟧)} {p≐E⟦pin⟧} {qr≐E⟦qin⟧} (CBρ cbp) (vreadyness s s∈ θs≡old⊎θs≡new s∉can-p-θ) (vmerge {.θ} {θin} {.p} {.qin} {.E}) with Env.Shr∈ s θin ... | yes s∈Domθin rewrite ShrMap.update-union-union s (SharedVar.ready , Env.shr-vals {s} θ s∈) (Env.shr θ) (Env.shr θin) s∈ s∈Domθin = inj₁ (rmerge {θl} {θin} p≐E⟦pin⟧) ... | no s∉Domθin with Env.shr-←-irr-get {θ} {θin} {s} s∈ s∉Domθin ... | s∈Domθ←θin , θs≡⟨θ←θin⟩s = inj₂ (_ , _ , _ , subst (λ { θ* → ρ⟨ θl , A ⟩· ql sn⟶₁ ρ⟨ θ* , A-max A Ain ⟩· E ⟦ qin ⟧e }) (cong (λ shr* → Θ (Env.sig (θ ← θin)) shr* (Env.var (θ ← θin))) (trans (cong (λ shrval* → ShrMap.union (ShrMap.update (Env.shr θ) s (SharedVar.ready , proj₂ shrval*)) (Env.shr θin)) (ShrMap.U-∉-irr-get-help-m {_} {Env.shr θ} {Env.shr θin} {s} s∈ s∉Domθin s∈Domθ←θin )) (ShrMap.put-union-comm s (SharedVar.ready , Env.shr-vals {s} (θ ← θin) s∈Domθ←θin) (Env.shr θ) (Env.shr θin) s∉Domθin))) (rmerge {θl} {θin} p≐E⟦pin⟧) ,′ rreadyness {θr} {_} {s} s∈Domθ←θin (Data.Sum.map (trans (sym θs≡⟨θ←θin⟩s)) (trans (sym θs≡⟨θ←θin⟩s)) θs≡old⊎θs≡new) (λ s∈can-E⟦qin⟧-θ←θin → s∉can-p-θ (canθₛₕ-mergeˡ (Env.sig θ) Env.[]env cbp p≐E⟦pin⟧ s s∉Domθin s∈can-E⟦qin⟧-θ←θin))) ρ-pot-conf-rec {p} {θ} {.p} {θl} {.(E ⟦ qin ⟧e)} {.θ} {_} {E} {.(present _ ∣⇒ qin ∣⇒ _)} {qin} {_} {_} {_} {_} {_} {_} {.(rabsence {θ} {p} {S} S∈ θS≡unknown S∉can-p-θ)} {.(ris-present {θ} {S'} S'∈ θS'≡present p≐E⟦pin⟧)} {p≐E⟦pin⟧} {qr≐E⟦qin⟧} (CBρ cbp) (vabsence S S∈ θS≡unknown S∉can-p-θ) (vis-present {.θ} {S'} {S∈ = S'∈} {θS'≡present} {.p≐E⟦pin⟧}) with S' Signal.≟ S ... | yes refl = ((Signal.unknown ≡ Signal.present → _) ∋ λ ()) (trans (trans (sym θS≡unknown) (Env.sig-stats-∈-irr {S} {θ} S∈ S'∈)) θS'≡present) ... | no S'≠S = inj₂ (_ , _ , _ , ris-present {θl} {S'} (Env.sig-set-mono' {S'} {S} {θ} {_} {S∈} S'∈) (Env.sig-putputget {S'} {S} {θ} S'≠S S'∈ S∈ _ θS'≡present) p≐E⟦pin⟧ ,′ rabsence {θ} {_} {S} S∈ θS≡unknown (λ S∈can-E⟦qin⟧-θ → S∉can-p-θ (subst (Signal.unwrap S ∈_) (cong proj₁ (sym (canθ-is-present (Env.sig θ) S'∈ Env.[]env p≐E⟦pin⟧ θS'≡present)) ) S∈can-E⟦qin⟧-θ))) ρ-pot-conf-rec {p} {θ} {.p} {θl} {.(E ⟦ qin ⟧e)} {.θ} {_} {E} {.(present _ ∣⇒ _ ∣⇒ qin)} {qin} {_} {_} {_} {_} {_} {_} {.(rabsence {θ} {p} {S} S∈ θS≡unknown S∉can-p-θ)} {.(ris-absent {θ} {S'} S'∈ θS'≡absent p≐E⟦pin⟧)} {p≐E⟦pin⟧} {qr≐E⟦qin⟧} (CBρ cbp) (vabsence S S∈ θS≡unknown S∉can-p-θ) (vis-absent {.θ} {S'} {S∈ = S'∈} {θS'≡absent} {.p≐E⟦pin⟧}) with S' Signal.≟ S ... | yes refl = ((Signal.unknown ≡ Signal.absent → _) ∋ λ ()) (trans (trans (sym θS≡unknown) (Env.sig-stats-∈-irr {S} {θ} S∈ S'∈)) θS'≡absent) ... | no S'≠S = inj₂ (_ , _ , _ , ris-absent {θl} {S'} (Env.sig-set-mono' {S'} {S} {θ} {_} {S∈} S'∈) (Env.sig-putputget {S'} {S} {θ} S'≠S S'∈ S∈ _ θS'≡absent) p≐E⟦pin⟧ ,′ rabsence {θ} {_} {S} S∈ θS≡unknown (λ S∈can-E⟦qin⟧-θ → S∉can-p-θ (subst (Signal.unwrap S ∈_) (cong proj₁ (sym (canθ-is-absent (Env.sig θ) S'∈ Env.[]env p≐E⟦pin⟧ θS'≡absent))) S∈can-E⟦qin⟧-θ))) ρ-pot-conf-rec {p} {θ} {.p} {θl} {.(E ⟦ qin ⟧e)} {.θ} {_} {E} {.(present _ ∣⇒ qin ∣⇒ _)} {qin} {_} {_} {_} {_} {_} {_} {.(rreadyness {θ} {p} {s} s∈ θs≡old⊎θs≡new s∉can-p-θ)} {.(ris-present {θ} {S'} S'∈ θS'≡present p≐E⟦pin⟧)} {p≐E⟦pin⟧} {qr≐E⟦qin⟧} (CBρ cbp) (vreadyness s s∈ θs≡old⊎θs≡new s∉can-p-θ) (vis-present {.θ} {S'} {S∈ = S'∈} {θS'≡present} {.p≐E⟦pin⟧}) = inj₂ (_ , _ , _ , ris-present {θl} {S'} S'∈ θS'≡present p≐E⟦pin⟧ ,′ rreadyness {θ} {_} {s} s∈ θs≡old⊎θs≡new (λ s∈can-E⟦qin⟧-θ → s∉can-p-θ (subst (SharedVar.unwrap s ∈_) (cong (proj₂ ∘ proj₂) (sym (canθ-is-present (Env.sig θ) S'∈ Env.[]env p≐E⟦pin⟧ θS'≡present))) s∈can-E⟦qin⟧-θ))) ρ-pot-conf-rec {p} {θ} {.p} {θl} {.(E ⟦ qin ⟧e)} {.θ} {_} {E} {.(present _ ∣⇒ _ ∣⇒ qin)} {qin} {_} {_} {_} {_} {_} {_} {.(rreadyness {θ} {p} {s} s∈ θs≡old⊎θs≡new s∉can-p-θ)} {.(ris-absent {θ} {S'} S'∈ θS'≡absent p≐E⟦pin⟧)} {p≐E⟦pin⟧} {qr≐E⟦qin⟧} (CBρ cbp) (vreadyness s s∈ θs≡old⊎θs≡new s∉can-p-θ) (vis-absent {.θ} {S'} {S∈ = S'∈} {θS'≡absent} {.p≐E⟦pin⟧}) = inj₂ (_ , _ , _ , ris-absent {θl} {S'} S'∈ θS'≡absent p≐E⟦pin⟧ ,′ rreadyness {θ} {_} {s} s∈ θs≡old⊎θs≡new (λ s∈can-E⟦qin⟧-θ → s∉can-p-θ (subst (SharedVar.unwrap s ∈_) (cong (proj₂ ∘ proj₂) (sym (canθ-is-absent (Env.sig θ) S'∈ Env.[]env p≐E⟦pin⟧ θS'≡absent))) s∈can-E⟦qin⟧-θ))) ρ-pot-conf-rec {p} {θ} {.p} {θl} {.(E ⟦ nothin ⟧e)} {θr} {_} {E} {.(emit S')} {.nothin} {_} {_} {_} {_} {_} {_} {.(rreadyness {θ} {p} {s} s∈ θs≡old⊎θs≡new s∉can-p-θ)} {.(remit {θ} {p} {S'} S'∈ θS'≢absent p≐E⟦pin⟧)} {p≐E⟦pin⟧} {qr≐E⟦qin⟧} (CBρ cbp) (vreadyness s s∈ θs≡old⊎θs≡new s∉can-p-θ) (vemit {.θ} {.p} {S'} {.E} {S'∈} {θS'≢absent} {.p≐E⟦pin⟧}) = inj₂ (_ , _ , _ , remit {θl} {_} {S'} S'∈ θS'≢absent p≐E⟦pin⟧ ,′ rreadyness {θr} {_} {s} s∈ θs≡old⊎θs≡new (λ s∈can-E⟦nothin⟧-θr → s∉can-p-θ (canθₛₕ-emit θ S'∈ Env.[]env p≐E⟦pin⟧ θS'≢absent (canθₛ-membership (Env.sig θ) 0 p Env.[]env S' (λ θ* → canₛ-capture-emit-signal θ* p≐E⟦pin⟧)) s s∈can-E⟦nothin⟧-θr))) ρ-pot-conf-rec {p} {θ} {.p} {θl} {.(E ⟦ nothin ⟧e)} {θr} {_} {E} {.(emit S')} {.nothin} {_} {_} {A} {Al} {Ar} {_} {.(rabsence {θ} {p} {S} S∈ θS≡unknown S∉can-p-θ)} {.(remit {θ} {p} {S'} S'∈ θS'≢absent p≐E⟦pin⟧)} {p≐E⟦pin⟧} {qr≐E⟦qin⟧} (CBρ cbp) (vabsence S S∈ θS≡unknown S∉can-p-θ) (vemit {.θ} {.p} {S'} {.E} {S'∈} {θS'≢absent} {.p≐E⟦pin⟧}) with S' Signal.≟ S ... | yes refl = ⊥-elim (S∉can-p-θ (canθₛ-membership (Env.sig θ) 0 p Env.[]env S' (λ θ* → canₛ-capture-emit-signal θ* p≐E⟦pin⟧))) ... | no S'≢S = inj₂ (_ , _ , _ , remit {θl} {_} {S'} (SigMap.insert-mono {_} {S'} {Env.sig θ} {S} {Signal.absent} S'∈) (θS'≢absent ∘ trans (sym (SigMap.putputget {_} {Env.sig θ} {S'} {S} {_} {Signal.absent} S'≢S S'∈ S'∈Domθl refl))) p≐E⟦pin⟧ ,′ subst (λ sig* → ρ⟨ θr , Ar ⟩· E ⟦ nothin ⟧e sn⟶₁ ρ⟨ (Θ sig* (Env.shr θ) (Env.var θ)) , Ar ⟩· E ⟦ nothin ⟧e) (SigMap.put-comm {_} {Env.sig θ} {_} {_} {Signal.present} {Signal.absent} S'≢S) (rabsence {θr} {_} {S} S∈Domθr (SigMap.putputget {_} {Env.sig θ} {S} {S'} {_} {Signal.present} (S'≢S ∘ sym) S∈ S∈Domθr θS≡unknown) (λ S''∈can-E⟦nothin⟧-θr → S∉can-p-θ (canθₛ-emit θ S'∈ Env.[]env p≐E⟦pin⟧ θS'≢absent (canθₛ-membership (Env.sig θ) 0 p Env.[]env S' (λ θ* → canₛ-capture-emit-signal θ* p≐E⟦pin⟧)) S S''∈can-E⟦nothin⟧-θr)))) where S∈Domθr = SigMap.insert-mono {_} {S} {Env.sig θ} {S'} {Signal.present} S∈ S'∈Domθl = SigMap.insert-mono {_} {S'} {Env.sig θ} {S} {Signal.absent} S'∈ ρ-pot-conf-rec {p} {θ} {.p} {θl} {.(E ⟦ ρ⟨ (Θ SigMap.empty ShrMap.[ s' ↦ (SharedVar.old , δ e') ] VarMap.empty) , WAIT ⟩· p' ⟧e)} {.θ} {_} {E} {.(shared s' ≔ e in: p')} {.(ρ⟨ (Θ SigMap.empty ShrMap.[ s' ↦ (SharedVar.old , δ e') ] VarMap.empty) , WAIT ⟩· p')} {_} {_} {A} {Al} {Ar} {_} {.(rabsence {θ} {p} {S} S∈ θS≡unknown S∉can-p-θ)} {.(rraise-shared e' p≐E⟦pin⟧)} {p≐E⟦pin⟧} {qr≐E⟦qin⟧} (CBρ cbp) (vabsence S S∈ θS≡unknown S∉can-p-θ) (vraise-shared {.θ} {.p} {s'} {e} {p'} {.E} {e'} {.p≐E⟦pin⟧}) with ready-maint/irr S S∈ Signal.absent e' ... | e'' , δe'≡δe'' = inj₂ (_ , _ , _ , subst (λ δe* → (ρ⟨ θl , Al ⟩· p) sn⟶₁ (ρ⟨ θl , Al ⟩· E ⟦ ρ⟨ ([s,δe]-env s' δe*) , WAIT ⟩· p' ⟧e)) (sym δe'≡δe'') (rraise-shared e'' p≐E⟦pin⟧) ,′ rabsence {θ} {_} {S} S∈ θS≡unknown (λ S∈can-E⟦ρΘp'⟧-θ → S∉can-p-θ (canθₛ-subset (Env.sig θ) 0 (E ⟦ ρ⟨ ([s,δe]-env s' (δ e')) , WAIT ⟩· p' ⟧e) p Env.[]env (λ θ* S* → canₛ-raise θ* (tshared (δ e') s' e p') p≐E⟦pin⟧ S*) S S∈can-E⟦ρΘp'⟧-θ))) ρ-pot-conf-rec {p} {θ} {.p} {θl} {.(E ⟦ ρ⟨ (Θ SigMap.empty ShrMap.[ s' ↦ (SharedVar.old , δ e') ] VarMap.empty) , WAIT ⟩· p' ⟧e)} {.θ} {_} {E} {.(shared s' ≔ e in: p')} {.(ρ⟨ (Θ SigMap.empty ShrMap.[ s' ↦ (SharedVar.old , δ e') ] VarMap.empty) , WAIT ⟩· p')} {_} {_} {A} {Al} {Ar} {_} {.(rreadyness {θ} {p} {s} s∈ θs≡old⊎θs≡new s∉can-p-θ)} {.(rraise-shared e' p≐E⟦pin⟧)} {p≐E⟦pin⟧} {qr≐E⟦qin⟧} (CBρ cbp) (vreadyness s s∈ θs≡old⊎θs≡new s∉can-p-θ) (vraise-shared {.θ} {.p} {s'} {e} {p'} {.E} {e'} {.p≐E⟦pin⟧}) with ready-irr-on-irr-s/ready {θ} {e} s (Env.shr-vals {s} θ s∈) s∈ (θs≢ready θs≡old⊎θs≡new) e' where θs≢ready : typeof θs≡old⊎θs≡new → ¬ (Env.shr-stats {s} θ s∈ ≡ SharedVar.ready) θs≢ready (inj₁ θs≡old) θs≡ready with trans (sym θs≡old) θs≡ready ... | () θs≢ready (inj₂ θs≡new) θs≡ready with trans (sym θs≡new) θs≡ready ... | () ... | e'' , δe'≡δe'' = inj₂ (_ , _ , _ , subst (λ δe* → (ρ⟨ θl , Al ⟩· p) sn⟶₁ (ρ⟨ θl , Al ⟩· E ⟦ ρ⟨ ([s,δe]-env s' δe*) , WAIT ⟩· p' ⟧e)) (sym δe'≡δe'') (rraise-shared e'' p≐E⟦pin⟧) ,′ rreadyness {θ} {_} {s} s∈ θs≡old⊎θs≡new (λ s∈can-E⟦ρΘp'⟧-θ → s∉can-p-θ (canθₛₕ-subset (Env.sig θ) 0 (E ⟦ ρ⟨ ([s,δe]-env s' (δ e')) , WAIT ⟩· p' ⟧e) p Env.[]env (λ θ* S* → canₛ-raise θ* (tshared (δ e') s' e p') p≐E⟦pin⟧ S*) (λ θ* s* → canₛₕ-raise θ* (tshared (δ e') s' e p') p≐E⟦pin⟧ s*) s s∈can-E⟦ρΘp'⟧-θ))) ρ-pot-conf-rec {p} {θ} {.p} {θl} {.(E ⟦ nothin ⟧e)} {θr} {_} {E} {.(s' ⇐ e)} {.nothin} {_} {_} {GO} {GO} {GO} {_} {.(rabsence {θ} {p} {S} S∈ θS≡unknown S∉can-p-θ)} {.(rset-shared-value-old {θ} {p} {s'} e' s'∈ θs'≡old p≐E⟦pin⟧)} {p≐E⟦pin⟧} {qr≐E⟦qin⟧} (CBρ cbp) (vabsence S S∈ θS≡unknown S∉can-p-θ) (vset-shared-value-old {.θ} {.p} {s'} {e} {.E} {e'} {s'∈} {θs'≡old}) with ready-maint/irr S S∈ Signal.absent e' ... | e'' , δe'≡δe'' = inj₂ (_ , _ , _ , subst (λ δe* → ρ⟨ θl , GO ⟩· p sn⟶₁ ρ⟨ (θl-set-shr δe*) , GO ⟩· E ⟦ nothin ⟧e) (sym δe'≡δe'') (rset-shared-value-old {θl} {_} {s'} e'' s'∈ θs'≡old p≐E⟦pin⟧) ,′ rabsence {θr} {_} {S} S∈ θS≡unknown (λ S∈can-E⟦nothin⟧-θr → S∉can-p-θ (canθₛ-subset (Env.sig θ) 0 (E ⟦ nothin ⟧e) p Env.[]env (λ θ* S* → canₛ-term-nothin θ* θ* refl (tset-shr s' e) p≐E⟦pin⟧ S*) S S∈can-E⟦nothin⟧-θr))) where θl-set-shr : ℕ → Env θl-set-shr n = Env.set-shr {s'} θl s'∈ SharedVar.new n ρ-pot-conf-rec {p} {θ} {.p} {θl} {.(E ⟦ nothin ⟧e)} {θr} {_} {E} {.(s' ⇐ e)} {.nothin} {_} {_} {GO} {GO} {GO} {_} {.(rreadyness {θ} {p} {s} s∈ θs≡old⊎θs≡new s∉can-p-θ)} {.(rset-shared-value-old {θ} {p} {s'} e' s'∈ θs'≡old p≐E⟦pin⟧)} {p≐E⟦pin⟧} {qr≐E⟦qin⟧} (CBρ cbp) (vreadyness s s∈ θs≡old⊎θs≡new s∉can-p-θ) (vset-shared-value-old {.θ} {.p} {s'} {e} {.E} {e'} {s'∈} {θs'≡old}) with s SharedVar.≟ s' ... | yes refl = ⊥-elim (s∉can-p-θ (canθₛₕ-membership (Env.sig θ) 0 p Env.[]env s (λ θ* → canₛₕ-capture-set-shared θ* p≐E⟦pin⟧))) ... | no s≢s' with ready-irr-on-irr-s/ready {θ} {e} s (Env.shr-vals {s} θ s∈) s∈ (θs≢ready θs≡old⊎θs≡new) e' where θs≢ready : typeof θs≡old⊎θs≡new → ¬ (Env.shr-stats {s} θ s∈ ≡ SharedVar.ready) θs≢ready (inj₁ θs≡old) θs≡ready with trans (sym θs≡old) θs≡ready ... | () θs≢ready (inj₂ θs≡new) θs≡ready with trans (sym θs≡new) θs≡ready ... | () ... | e'' , δe'≡δe'' = inj₂ (_ , _ , _ , subst (λ shr* → ρ⟨ θl , GO ⟩· p sn⟶₁ ρ⟨ (Θ (Env.sig θl) shr* (Env.var θl)) , GO ⟩· E ⟦ nothin ⟧e) (cong Env.shr (begin Env.set-shr {s'} θl s'∈Domθl SharedVar.new (δ e'') ≡⟨ cong (Env.set-shr {s'} θl s'∈Domθl SharedVar.new) (sym δe'≡δe'') ⟩ Env.set-shr {s'} θl s'∈Domθl SharedVar.new (δ e') ≡⟨ cong (λ sig* → Θ (Env.sig θ) sig* (Env.var θ)) (ShrMap.put-comm {_} {Env.shr θ} {_} {_} {SharedVar.ready ,′ θs} {SharedVar.new ,′ δ e'} s≢s') ⟩ Env.set-shr {s} θr s∈Domθr SharedVar.ready θs ≡⟨ cong (Env.set-shr {s} θr s∈Domθr SharedVar.ready ∘ proj₂) (sym θrs≡θs) ⟩ Env.set-shr {s} θr s∈Domθr SharedVar.ready (Env.shr-vals {s} θr s∈Domθr) ∎)) (rset-shared-value-old {θl} {_} {s'} e'' s'∈Domθl (trans (cong proj₁ θls'≡θs') θs'≡old) p≐E⟦pin⟧) ,′ rreadyness {θr} {_} {s} s∈Domθr (Data.Sum.map (trans (cong proj₁ θrs≡θs)) (trans (cong proj₁ θrs≡θs)) θs≡old⊎θs≡new) (λ s∈can-E⟦nothin⟧-θr → s∉can-p-θ (canθₛₕ-subset (Env.sig θ) 0 (E ⟦ nothin ⟧e) p Env.[]env (λ θ* S* → canₛ-term-nothin θ* θ* refl (tset-shr s' e) p≐E⟦pin⟧ S*) (λ θ* s* → canₛₕ-term-nothin θ* θ* refl (tset-shr s' e) p≐E⟦pin⟧ s*) s s∈can-E⟦nothin⟧-θr))) where θs = Env.shr-vals {s} θ s∈ s∈Domθr = Env.shr-set-mono' {s} {s'} {θ} {SharedVar.new} {δ e'} {s'∈} s∈ θrs≡θs = ShrMap.putputget {_} {Env.shr θ} {_} {_} {_} {SharedVar.new ,′ δ e'} s≢s' s∈ s∈Domθr refl s'∈Domθl = Env.shr-set-mono' {s'} {s} {θ} {SharedVar.ready} {θs} {s∈} s'∈ θls'≡θs' = ShrMap.putputget {_} {Env.shr θ} {_} {_} {_} {SharedVar.ready ,′ θs} (s≢s' ∘ sym) s'∈ s'∈Domθl refl ρ-pot-conf-rec {p} {θ} {.p} {θl} {.(E ⟦ nothin ⟧e)} {θr} {_} {E} {.(s' ⇐ e)} {.nothin} {_} {_} {GO} {GO} {GO} {_} {.(rabsence {θ} {p} {S} S∈ θS≡unknown S∉can-p-θ)} {.(rset-shared-value-new {θ} {p} {s'} e' s'∈ θs'≡new p≐E⟦pin⟧)} {p≐E⟦pin⟧} {qr≐E⟦qin⟧} (CBρ cbp) (vabsence S S∈ θS≡unknown S∉can-p-θ) (vset-shared-value-new {.θ} {.p} {s'} {e} {.E} {e'} {s'∈} {θs'≡new}) with ready-maint/irr S S∈ Signal.absent e' ... | e'' , δe'≡δe'' = inj₂ (_ , _ , _ , subst (λ δe* → ρ⟨ θl , GO ⟩· p sn⟶₁ ρ⟨ (θl-set-shr δe*) , GO ⟩· E ⟦ nothin ⟧e) (cong (Env.shr-vals {s'} θ s'∈ +_) (sym δe'≡δe'')) (rset-shared-value-new {θl} {_} {s'} e'' s'∈ θs'≡new p≐E⟦pin⟧) ,′ rabsence {θr} {_} {S} S∈ θS≡unknown (λ S∈can-E⟦nothin⟧-θr → S∉can-p-θ (canθₛ-subset (Env.sig θ) 0 (E ⟦ nothin ⟧e) p Env.[]env (λ θ* S* → canₛ-term-nothin θ* θ* refl (tset-shr s' e) p≐E⟦pin⟧ S*) S S∈can-E⟦nothin⟧-θr))) where θl-set-shr : ℕ → Env θl-set-shr n = Env.set-shr {s'} θl s'∈ SharedVar.new n ρ-pot-conf-rec {p} {θ} {.p} {θl} {.(E ⟦ nothin ⟧e)} {θr} {_} {E} {.(s' ⇐ e)} {.nothin} {_} {_} {GO} {GO} {GO} {_} {.(rreadyness {θ} {p} {s} s∈ θs≡old⊎θs≡new s∉can-p-θ)} {.(rset-shared-value-new {θ} {p} {s'} e' s'∈ θs'≡new p≐E⟦pin⟧)} {p≐E⟦pin⟧} {qr≐E⟦qin⟧} (CBρ cbp) (vreadyness s s∈ θs≡old⊎θs≡new s∉can-p-θ) (vset-shared-value-new {.θ} {.p} {s'} {e} {.E} {e'} {s'∈} {θs'≡new}) with s SharedVar.≟ s' ... | yes refl = ⊥-elim (s∉can-p-θ (canθₛₕ-membership (Env.sig θ) 0 p Env.[]env s (λ θ* → canₛₕ-capture-set-shared θ* p≐E⟦pin⟧))) ... | no s≢s' with ready-irr-on-irr-s/ready {θ} {e} s (Env.shr-vals {s} θ s∈) s∈ (θs≢ready θs≡old⊎θs≡new) e' where θs≢ready : typeof θs≡old⊎θs≡new → ¬ (Env.shr-stats {s} θ s∈ ≡ SharedVar.ready) θs≢ready (inj₁ θs≡old) θs≡ready with trans (sym θs≡old) θs≡ready ... | () θs≢ready (inj₂ θs≡new) θs≡ready with trans (sym θs≡new) θs≡ready ... | () ... | e'' , δe'≡δe'' = inj₂ (_ , _ , _ , subst (λ shr* → ρ⟨ θl , GO ⟩· p sn⟶₁ ρ⟨ (Θ (Env.sig θl) shr* (Env.var θl)) , GO ⟩· E ⟦ nothin ⟧e) (cong Env.shr (begin Env.set-shr {s'} θl s'∈Domθl SharedVar.new (Env.shr-vals {s'} θl s'∈Domθl + δ e'') ≡⟨ cong (λ v* → Env.set-shr {s'} θl s'∈Domθl SharedVar.new (v* + δ e'')) (cong proj₂ θls'≡θs') ⟩ Env.set-shr {s'} θl s'∈Domθl SharedVar.new (θs' + δ e'') ≡⟨ cong (λ v* → Env.set-shr {s'} θl s'∈Domθl SharedVar.new (θs' + v*)) (sym δe'≡δe'') ⟩ Env.set-shr {s'} θl s'∈Domθl SharedVar.new (θs' + δ e') ≡⟨ cong (λ sig* → Θ (Env.sig θ) sig* (Env.var θ)) (ShrMap.put-comm {_} {Env.shr θ} {_} {_} {SharedVar.ready ,′ θs} {SharedVar.new ,′ θs' + δ e'} s≢s') ⟩ Env.set-shr {s} θr s∈Domθr SharedVar.ready θs ≡⟨ cong (Env.set-shr {s} θr s∈Domθr SharedVar.ready ∘ proj₂) (sym θrs≡θs) ⟩ Env.set-shr {s} θr s∈Domθr SharedVar.ready (Env.shr-vals {s} θr s∈Domθr) ∎)) (rset-shared-value-new {θl} {_} {s'} e'' s'∈Domθl (trans (cong proj₁ θls'≡θs') θs'≡new) p≐E⟦pin⟧) ,′ rreadyness {θr} {_} {s} s∈Domθr (Data.Sum.map (trans (cong proj₁ θrs≡θs)) (trans (cong proj₁ θrs≡θs)) θs≡old⊎θs≡new) (λ s∈can-E⟦nothin⟧-θr → s∉can-p-θ (canθₛₕ-subset (Env.sig θ) 0 (E ⟦ nothin ⟧e) p Env.[]env (λ θ* S* → canₛ-term-nothin θ* θ* refl (tset-shr s' e) p≐E⟦pin⟧ S*) (λ θ* s* → canₛₕ-term-nothin θ* θ* refl (tset-shr s' e) p≐E⟦pin⟧ s*) s s∈can-E⟦nothin⟧-θr))) where θs' = Env.shr-vals {s'} θ s'∈ θs = Env.shr-vals {s} θ s∈ s∈Domθr = Env.shr-set-mono' {s} {s'} {θ} {SharedVar.new} {θs' + δ e'} {s'∈} s∈ θrs≡θs = ShrMap.putputget {_} {Env.shr θ} {_} {_} {_} {SharedVar.new ,′ θs' + δ e'} s≢s' s∈ s∈Domθr refl s'∈Domθl = Env.shr-set-mono' {s'} {s} {θ} {SharedVar.ready} {θs} {s∈} s'∈ θls'≡θs' = ShrMap.putputget {_} {Env.shr θ} {_} {_} {_} {SharedVar.ready ,′ θs} (s≢s' ∘ sym) s'∈ s'∈Domθl refl ρ-pot-conf-rec {p} {θ} {.p} {θl} {.(E ⟦ ρ⟨ (Θ SigMap.empty ShrMap.empty VarMap.[ x ↦ δ e' ]) , WAIT ⟩· p' ⟧e)} {.θ} {_} {E} {.(var x ≔ e in: p')} {.(ρ⟨ (Θ SigMap.empty ShrMap.empty VarMap.[ x ↦ δ e' ]) , WAIT ⟩· p')} {_} {_} {A} {.A} {.A} {_} {.(rabsence {θ} {p} {S} S∈ θS≡unknown S∉can-p-θ)} {.(rraise-var {θ} {p} {x} {p'} {e} e' p≐E⟦pin⟧)} {p≐E⟦pin⟧} {qr≐E⟦qin⟧} (CBρ cbp) (vabsence S S∈ θS≡unknown S∉can-p-θ) (vraise-var {.θ} {.p} {x} {p'} {e} {.E} {e'} {.p≐E⟦pin⟧}) with ready-maint/irr S S∈ Signal.absent e' ... | e'' , δe'≡δe'' = inj₂ (_ , _ , _ , subst (λ δe* → (ρ⟨ θl , A ⟩· p) sn⟶₁ (ρ⟨ θl , A ⟩· E ⟦ ρ⟨ ([x,δe]-env x δe*) , WAIT ⟩· p' ⟧e)) (sym δe'≡δe'') (rraise-var {θl} {_} {x} {p'} {e} e'' p≐E⟦pin⟧) ,′ rabsence {θ} {_} {S} S∈ θS≡unknown (λ S∈can-E⟦ρΘp'⟧-θ → S∉can-p-θ (canθₛ-subset (Env.sig θ) 0 (E ⟦ ρ⟨ [x,δe]-env x (δ e') , WAIT ⟩· p' ⟧e) p Env.[]env (λ θ* S* → canₛ-raise θ* (tvar (δ e') x e p') p≐E⟦pin⟧ S*) S S∈can-E⟦ρΘp'⟧-θ))) ρ-pot-conf-rec {p} {θ} {.p} {θl} {.(E ⟦ ρ⟨ (Θ SigMap.empty ShrMap.empty VarMap.[ x ↦ δ e' ]) , WAIT ⟩· p' ⟧e)} {.θ} {_} {E} {.(var x ≔ e in: p')} {.(ρ⟨ (Θ SigMap.empty ShrMap.empty VarMap.[ x ↦ δ e' ]) , WAIT ⟩· p')} {_} {_} {A} {.A} {.A} {_} {.(rreadyness {θ} {p} {s} s∈ θs≡old⊎θs≡new s∉can-p-θ)} {.(rraise-var {θ} {p} {x} {p'} {e} e' p≐E⟦pin⟧)} {p≐E⟦pin⟧} {qr≐E⟦qin⟧} (CBρ cbp) (vreadyness s s∈ θs≡old⊎θs≡new s∉can-p-θ) (vraise-var {.θ} {.p} {x} {p'} {e} {.E} {e'} {.p≐E⟦pin⟧}) with ready-irr-on-irr-s/ready {θ} {e} s (Env.shr-vals {s} θ s∈) s∈ (θs≢ready θs≡old⊎θs≡new) e' where θs≢ready : typeof θs≡old⊎θs≡new → ¬ (Env.shr-stats {s} θ s∈ ≡ SharedVar.ready) θs≢ready (inj₁ θs≡old) θs≡ready with trans (sym θs≡old) θs≡ready ... | () θs≢ready (inj₂ θs≡new) θs≡ready with trans (sym θs≡new) θs≡ready ... | () ... | e'' , δe'≡δe'' = inj₂ (_ , _ , _ , subst (λ δe* → (ρ⟨ θl , A ⟩· p) sn⟶₁ (ρ⟨ θl , A ⟩· E ⟦ ρ⟨ ([x,δe]-env x δe*) , WAIT ⟩· p' ⟧e)) (sym δe'≡δe'') (rraise-var {θl} {_} {x} {p'} {e} e'' p≐E⟦pin⟧) ,′ rreadyness {θ} {_} {s} s∈ θs≡old⊎θs≡new (λ s∈can-E⟦ρΘp'⟧-θ → s∉can-p-θ (canθₛₕ-subset (Env.sig θ) 0 (E ⟦ ρ⟨ [x,δe]-env x (δ e') , WAIT ⟩· p' ⟧e) p Env.[]env (λ θ* S* → canₛ-raise θ* (tvar (δ e') x e p') p≐E⟦pin⟧ S*) (λ θ* s* → canₛₕ-raise θ* (tvar (δ e') x e p') p≐E⟦pin⟧ s*) s s∈can-E⟦ρΘp'⟧-θ))) ρ-pot-conf-rec {p} {θ} {.p} {θl} {.(E ⟦ nothin ⟧e)} {θr} {_} {E} {.(x ≔ e)} {.nothin} {_} {_} {A} {.A} {.A} {_} {.(rabsence {θ} {p} {S} S∈ θS≡unknown S∉can-p-θ)} {.(rset-var {θ} {p} {x} {e} x∈ e' p≐E⟦pin⟧)} {p≐E⟦pin⟧} {qr≐E⟦qin⟧} (CBρ cbp) (vabsence S S∈ θS≡unknown S∉can-p-θ) (vset-var {.θ} {.p} {x} {e} {.E} {x∈} {e'} {.p≐E⟦pin⟧}) with ready-maint/irr S S∈ Signal.absent e' ... | e'' , δe'≡δe'' = inj₂ (_ , _ , _ , subst (λ δe* → ρ⟨ θl , A ⟩· p sn⟶₁ ρ⟨ (θl-set-var δe*) , A ⟩· E ⟦ nothin ⟧e) (sym δe'≡δe'') (rset-var {θl} {_} {x} {e} x∈ e'' p≐E⟦pin⟧) ,′ rabsence {θr} {_} {S} S∈ θS≡unknown (λ S∈can-E⟦nothin⟧-θ' → S∉can-p-θ (canθₛ-subset (Env.sig θ) 0 (E ⟦ nothin ⟧e) p Env.[]env (λ θ* S* → canₛ-term-nothin θ* θ* refl (tset-var x e) p≐E⟦pin⟧ S*) S S∈can-E⟦nothin⟧-θ'))) where θl-set-var : ℕ → Env θl-set-var n = Env.set-var {x} θl x∈ n ρ-pot-conf-rec {p} {θ} {.p} {θl} {.(E ⟦ nothin ⟧e)} {θr} {_} {E} {.(x ≔ e)} {.nothin} {_} {_} {A} {.A} {.A} {_} {.(rreadyness {θ} {p} {s} s∈ θs≡old⊎θs≡new s∉can-p-θ)} {.(rset-var {θ} {p} {x} {e} x∈ e' p≐E⟦pin⟧)} {p≐E⟦pin⟧} {qr≐E⟦qin⟧} (CBρ cbp) (vreadyness s s∈ θs≡old⊎θs≡new s∉can-p-θ) (vset-var {.θ} {.p} {x} {e} {.E} {x∈} {e'} {.p≐E⟦pin⟧}) with ready-irr-on-irr-s/ready {θ} {e} s (Env.shr-vals {s} θ s∈) s∈ (θs≢ready θs≡old⊎θs≡new) e' where θs≢ready : typeof θs≡old⊎θs≡new → ¬ (Env.shr-stats {s} θ s∈ ≡ SharedVar.ready) θs≢ready (inj₁ θs≡old) θs≡ready with trans (sym θs≡old) θs≡ready ... | () θs≢ready (inj₂ θs≡new) θs≡ready with trans (sym θs≡new) θs≡ready ... | () ... | e'' , δe'≡δe'' = inj₂ (_ , _ , _ , subst (λ δe* → ρ⟨ θl , A ⟩· p sn⟶₁ ρ⟨ (θl-set-var δe*) , A ⟩· E ⟦ nothin ⟧e) (sym δe'≡δe'') (rset-var {θl} {_} {x} {e} x∈ e'' p≐E⟦pin⟧) ,′ rreadyness {θr} {_} {s} s∈ θs≡old⊎θs≡new (λ s∈can-E⟦nothin⟧-θ' → s∉can-p-θ (canθₛₕ-subset (Env.sig θ) 0 (E ⟦ nothin ⟧e) p Env.[]env (λ θ* S* → canₛ-term-nothin θ* θ* refl (tset-var x e) p≐E⟦pin⟧ S*) (λ θ* s* → canₛₕ-term-nothin θ* θ* refl (tset-var x e) p≐E⟦pin⟧ s*) s s∈can-E⟦nothin⟧-θ'))) where θl-set-var : ℕ → Env θl-set-var n = Env.set-var {x} θl x∈ n ρ-pot-conf-rec {p} {θ} {.p} {θl} {.(E ⟦ qin ⟧e)} {.θ} {_} {E} {.(if x ∣⇒ th ∣⇒ qin)} {qin} {_} {_} {_} {_} {_} {_} {.(rabsence {θ} {p} {S} S∈ θS≡unknown S∉can-p-θ)} {.(rif-false {x = x} x∈ θx≡zero p≐E⟦pin⟧)} {p≐E⟦pin⟧} {qr≐E⟦qin⟧} (CBρ cbp) (vabsence S S∈ θS≡unknown S∉can-p-θ) (vif-false {.θ} {.p} {th} {.qin} {x} {.E} {x∈} {θx≡zero} {.p≐E⟦pin⟧}) = inj₂ (_ , _ , _ , rif-false {x = x} x∈ θx≡zero p≐E⟦pin⟧ ,′ rabsence {θ} {_} {S} S∈ θS≡unknown (λ S∈can-E⟦qin⟧ → S∉can-p-θ (canθₛ-subset (Env.sig θ) 0 (E ⟦ qin ⟧e) p Env.[]env (λ θ* S* → canₛ-if-false θ* p≐E⟦pin⟧ S*) S S∈can-E⟦qin⟧))) ρ-pot-conf-rec {p} {θ} {.p} {θl} {.(E ⟦ qin ⟧e)} {.θ} {_} {E} {.(if x ∣⇒ th ∣⇒ qin)} {qin} {_} {_} {_} {_} {_} {_} {.(rreadyness {θ} {p} {s} s∈ θs≡old⊎θs≡new s∉can-p-θ)} {.(rif-false {x = x} x∈ θx≡zero p≐E⟦pin⟧)} {p≐E⟦pin⟧} {qr≐E⟦qin⟧} (CBρ cbp) (vreadyness s s∈ θs≡old⊎θs≡new s∉can-p-θ) (vif-false {.θ} {.p} {th} {.qin} {x} {.E} {x∈} {θx≡zero} {.p≐E⟦pin⟧}) = inj₂ (_ , _ , _ , rif-false {x = x} x∈ θx≡zero p≐E⟦pin⟧ ,′ rreadyness {θ} {_} {s} s∈ θs≡old⊎θs≡new (λ s∈can-E⟦qin⟧ → s∉can-p-θ (canθₛₕ-subset (Env.sig θ) 0 (E ⟦ qin ⟧e) p Env.[]env (λ θ* S* → canₛ-if-false θ* p≐E⟦pin⟧ S*) (λ θ* s* → canₛₕ-if-false θ* p≐E⟦pin⟧ s*) s s∈can-E⟦qin⟧))) ρ-pot-conf-rec {p} {θ} {.p} {θl} {.(E ⟦ qin ⟧e)} {.θ} {_} {E} {.(if x ∣⇒ qin ∣⇒ els)} {qin} {_} {_} {_} {_} {_} {_} {.(rabsence {θ} {p} {S} S∈ θS≡unknown S∉can-p-θ)} {.(rif-true {x = x} {E} {n} x∈ θx≡suc p≐E⟦pin⟧)} {p≐E⟦pin⟧} {qr≐E⟦qin⟧} (CBρ cbp) (vabsence S S∈ θS≡unknown S∉can-p-θ) (vif-true {.θ} {.p} {.qin} {els} {x} {.E} {n} {x∈} {θx≡suc} {.p≐E⟦pin⟧}) = inj₂ (_ , _ , _ , rif-true {x = x} x∈ θx≡suc p≐E⟦pin⟧ ,′ rabsence {θ} {_} {S} S∈ θS≡unknown (λ S∈can-E⟦qin⟧ → S∉can-p-θ (canθₛ-subset (Env.sig θ) 0 (E ⟦ qin ⟧e) p Env.[]env (λ θ* S* → canₛ-if-true θ* p≐E⟦pin⟧ S*) S S∈can-E⟦qin⟧))) ρ-pot-conf-rec {p} {θ} {.p} {θl} {.(E ⟦ qin ⟧e)} {.θ} {_} {E} {.(if x ∣⇒ qin ∣⇒ els)} {qin} {_} {_} {_} {_} {_} {_} {.(rreadyness {θ} {p} {s} s∈ θs≡old⊎θs≡new s∉can-p-θ)} {.(rif-true {x = x} {E} {n} x∈ θx≡suc p≐E⟦pin⟧)} {p≐E⟦pin⟧} {qr≐E⟦qin⟧} (CBρ cbp) (vreadyness s s∈ θs≡old⊎θs≡new s∉can-p-θ) (vif-true {.θ} {.p} {.qin} {els} {x} {.E} {n} {x∈} {θx≡suc} {.p≐E⟦pin⟧}) = inj₂ (_ , _ , _ , rif-true {x = x} x∈ θx≡suc p≐E⟦pin⟧ ,′ rreadyness {θ} {_} {s} s∈ θs≡old⊎θs≡new (λ s∈can-E⟦qin⟧ → s∉can-p-θ (canθₛₕ-subset (Env.sig θ) 0 (E ⟦ qin ⟧e) p Env.[]env (λ θ* S* → canₛ-if-true θ* p≐E⟦pin⟧ S*) (λ θ* s* → canₛₕ-if-true θ* p≐E⟦pin⟧ s*) s s∈can-E⟦qin⟧)))
42.740397
137
0.45254
291624ab2602e7a17b001193f29b65afdfe8bf44
1,664
agda
Agda
Univalence/Pi0Semiring.agda
JacquesCarette/pi-dual
003835484facfde0b770bc2b3d781b42b76184c1
[ "BSD-2-Clause" ]
14
2015-08-18T21:40:15.000Z
2021-05-05T01:07:57.000Z
Univalence/Pi0Semiring.agda
JacquesCarette/pi-dual
003835484facfde0b770bc2b3d781b42b76184c1
[ "BSD-2-Clause" ]
4
2018-06-07T16:27:41.000Z
2021-10-29T20:41:23.000Z
Univalence/Pi0Semiring.agda
JacquesCarette/pi-dual
003835484facfde0b770bc2b3d781b42b76184c1
[ "BSD-2-Clause" ]
3
2016-05-29T01:56:33.000Z
2019-09-10T09:47:13.000Z
{-# OPTIONS --without-K #-} module Pi0Semiring where import Level open import PiU open import PiLevel0 open import Algebra using (CommutativeSemiring) open import Algebra.Structures using (IsSemigroup; IsCommutativeMonoid; IsCommutativeSemiring) ------------------------------------------------------------------------------ -- Commutative semiring structure of U typesPlusIsSG : IsSemigroup _⟷_ PLUS typesPlusIsSG = record { isEquivalence = record { refl = id⟷ ; sym = ! ; trans = _◎_ } ; assoc = λ t₁ t₂ t₃ → assocr₊ {t₁} {t₂} {t₃} ; ∙-cong = _⊕_ } typesTimesIsSG : IsSemigroup _⟷_ TIMES typesTimesIsSG = record { isEquivalence = record { refl = id⟷ ; sym = ! ; trans = _◎_ } ; assoc = λ t₁ t₂ t₃ → assocr⋆ {t₁} {t₂} {t₃} ; ∙-cong = _⊗_ } typesPlusIsCM : IsCommutativeMonoid _⟷_ PLUS ZERO typesPlusIsCM = record { isSemigroup = typesPlusIsSG ; identityˡ = λ t → unite₊l {t} ; comm = λ t₁ t₂ → swap₊ {t₁} {t₂} } typesTimesIsCM : IsCommutativeMonoid _⟷_ TIMES ONE typesTimesIsCM = record { isSemigroup = typesTimesIsSG ; identityˡ = λ t → unite⋆l {t} ; comm = λ t₁ t₂ → swap⋆ {t₁} {t₂} } typesIsCSR : IsCommutativeSemiring _⟷_ PLUS TIMES ZERO ONE typesIsCSR = record { +-isCommutativeMonoid = typesPlusIsCM ; *-isCommutativeMonoid = typesTimesIsCM ; distribʳ = λ t₁ t₂ t₃ → dist {t₂} {t₃} {t₁} ; zeroˡ = λ t → absorbr {t} } typesCSR : CommutativeSemiring Level.zero Level.zero typesCSR = record { Carrier = U ; _≈_ = _⟷_ ; _+_ = PLUS ; _*_ = TIMES ; 0# = ZERO ; 1# = ONE ; isCommutativeSemiring = typesIsCSR } ------------------------------------------------------------------------------
25.6
78
0.602163
39f1db7849806cd4d7fa25d67003b627da323b5b
4,539
agda
Agda
Cubical/Algebra/Ring/BigOps.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
1
2021-10-31T17:32:49.000Z
2021-10-31T17:32:49.000Z
Cubical/Algebra/Ring/BigOps.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
Cubical/Algebra/Ring/BigOps.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
-- define ∑ and ∏ as the bigOps of a Ring when interpreted -- as an additive/multiplicative monoid {-# OPTIONS --safe #-} module Cubical.Algebra.Ring.BigOps where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Equiv open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Foundations.Transport open import Cubical.Foundations.SIP open import Cubical.Data.Sigma open import Cubical.Data.Nat using (ℕ ; zero ; suc) open import Cubical.Data.FinData open import Cubical.Data.Bool open import Cubical.Structures.Axioms open import Cubical.Structures.Auto open import Cubical.Structures.Macro open import Cubical.Algebra.Semigroup open import Cubical.Algebra.Monoid open import Cubical.Algebra.Monoid.BigOp open import Cubical.Algebra.AbGroup open import Cubical.Algebra.Ring.Base open import Cubical.Algebra.Ring.Properties private variable ℓ ℓ' : Level module KroneckerDelta (R' : Ring ℓ) where private R = fst R' open RingStr (snd R') δ : {n : ℕ} (i j : Fin n) → R δ i j = if i == j then 1r else 0r module Sum (R' : Ring ℓ) where private R = fst R' open RingStr (snd R') open MonoidBigOp (Ring→AddMonoid R') open RingTheory R' open KroneckerDelta R' ∑ = bigOp ∑Ext = bigOpExt ∑0r = bigOpε ∑Last = bigOpLast ∑Split : ∀ {n} → (V W : FinVec R n) → ∑ (λ i → V i + W i) ≡ ∑ V + ∑ W ∑Split = bigOpSplit +Comm ∑Split++ : ∀ {n m : ℕ} (V : FinVec R n) (W : FinVec R m) → ∑ (V ++Fin W) ≡ ∑ V + ∑ W ∑Split++ = bigOpSplit++ +Comm ∑Mulrdist : ∀ {n} → (x : R) → (V : FinVec R n) → x · ∑ V ≡ ∑ λ i → x · V i ∑Mulrdist {n = zero} x _ = 0RightAnnihilates x ∑Mulrdist {n = suc n} x V = x · (V zero + ∑ (V ∘ suc)) ≡⟨ ·Rdist+ _ _ _ ⟩ x · V zero + x · ∑ (V ∘ suc) ≡⟨ (λ i → x · V zero + ∑Mulrdist x (V ∘ suc) i) ⟩ x · V zero + ∑ (λ i → x · V (suc i)) ∎ ∑Mulldist : ∀ {n} → (x : R) → (V : FinVec R n) → (∑ V) · x ≡ ∑ λ i → V i · x ∑Mulldist {n = zero} x _ = 0LeftAnnihilates x ∑Mulldist {n = suc n} x V = (V zero + ∑ (V ∘ suc)) · x ≡⟨ ·Ldist+ _ _ _ ⟩ V zero · x + (∑ (V ∘ suc)) · x ≡⟨ (λ i → V zero · x + ∑Mulldist x (V ∘ suc) i) ⟩ V zero · x + ∑ (λ i → V (suc i) · x) ∎ ∑Mulr0 : ∀ {n} → (V : FinVec R n) → ∑ (λ i → V i · 0r) ≡ 0r ∑Mulr0 V = sym (∑Mulldist 0r V) ∙ 0RightAnnihilates _ ∑Mul0r : ∀ {n} → (V : FinVec R n) → ∑ (λ i → 0r · V i) ≡ 0r ∑Mul0r V = sym (∑Mulrdist 0r V) ∙ 0LeftAnnihilates _ ∑Mulr1 : (n : ℕ) (V : FinVec R n) → (j : Fin n) → ∑ (λ i → V i · δ i j) ≡ V j ∑Mulr1 (suc n) V zero = (λ k → ·Rid (V zero) k + ∑Mulr0 (V ∘ suc) k) ∙ +Rid (V zero) ∑Mulr1 (suc n) V (suc j) = (λ i → 0RightAnnihilates (V zero) i + ∑ (λ x → V (suc x) · δ x j)) ∙∙ +Lid _ ∙∙ ∑Mulr1 n (V ∘ suc) j ∑Mul1r : (n : ℕ) (V : FinVec R n) → (j : Fin n) → ∑ (λ i → (δ j i) · V i) ≡ V j ∑Mul1r (suc n) V zero = (λ k → ·Lid (V zero) k + ∑Mul0r (V ∘ suc) k) ∙ +Rid (V zero) ∑Mul1r (suc n) V (suc j) = (λ i → 0LeftAnnihilates (V zero) i + ∑ (λ i → (δ j i) · V (suc i))) ∙∙ +Lid _ ∙∙ ∑Mul1r n (V ∘ suc) j ∑Dist- : ∀ {n : ℕ} (V : FinVec R n) → ∑ (λ i → - V i) ≡ - ∑ V ∑Dist- V = ∑Ext (λ i → -IsMult-1 (V i)) ∙ sym (∑Mulrdist _ V) ∙ sym (-IsMult-1 _) module SumMap (Ar@(A , Astr) : Ring ℓ) (Br@(B , Bstr) : Ring ℓ') (f'@(f , fstr) : RingHom Ar Br) where open IsRingHom fstr open RingStr Astr using () renaming ( _+_ to _+A_ ) open RingStr Bstr using () renaming ( _+_ to _+B_ ) ∑Map : {n : ℕ} → (V : FinVec A n) → f (Sum.∑ Ar V) ≡ Sum.∑ Br (λ k → f (V k)) ∑Map {n = zero} V = pres0 ∑Map {n = suc n} V = f ((V zero) +A helper) ≡⟨ pres+ (V zero) helper ⟩ ((f (V zero)) +B (f helper)) ≡⟨ cong (λ X → f (V zero) +B X) (∑Map (λ k → (V ∘ suc) k)) ⟩ Sum.∑ Br (λ k → f (V k)) ∎ where helper : _ helper = foldrFin _+A_ (RingStr.0r (snd Ar)) (λ x → V (suc x)) -- anything interesting to prove here? module Product (R' : Ring ℓ) where private R = fst R' open RingStr (snd R') open RingTheory R' open MonoidBigOp (Ring→MultMonoid R') ∏ = bigOp ∏Ext = bigOpExt ∏0r = bigOpε ∏Last = bigOpLast -- only holds in CommRings! -- ∏Split : ∀ {n} → (V W : FinVec R n) → ∏ (λ i → V i · W i) ≡ ∏ V · ∏ W -- ∏Split = bigOpSplit MultR' ·-comm
31.303448
112
0.551223
cb1ebcac57aefa7095f26d5f1263dbcaaf463afa
2,236
agda
Agda
BasicIPC/Metatheory/GentzenNormalForm-KripkeMcKinseyTarski.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
29
2016-07-03T18:51:56.000Z
2022-01-01T10:29:18.000Z
BasicIPC/Metatheory/GentzenNormalForm-KripkeMcKinseyTarski.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
1
2018-06-10T09:11:22.000Z
2018-06-10T09:11:22.000Z
BasicIPC/Metatheory/GentzenNormalForm-KripkeMcKinseyTarski.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
null
null
null
module BasicIPC.Metatheory.GentzenNormalForm-KripkeMcKinseyTarski where open import BasicIPC.Syntax.GentzenNormalForm public open import BasicIPC.Semantics.KripkeMcKinseyTarski public -- Soundness with respect to all models, or evaluation. eval : ∀ {A Γ} → Γ ⊢ A → Γ ⊨ A eval (var i) γ = lookup i γ eval (lam t) γ = λ ξ a → eval t (mono⊩⋆ ξ γ , a) eval (app t u) γ = (eval t γ refl≤) (eval u γ) eval (pair t u) γ = eval t γ , eval u γ eval (fst t) γ = π₁ (eval t γ) eval (snd t) γ = π₂ (eval t γ) eval unit γ = ∙ eval⋆ : ∀ {Ξ Γ} → Γ ⊢⋆ Ξ → Γ ⊨⋆ Ξ eval⋆ {∅} ∙ γ = ∙ eval⋆ {Ξ , A} (ts , t) γ = eval⋆ ts γ , eval t γ -- TODO: Correctness of evaluation with respect to conversion. -- The canonical model. private instance canon : Model canon = record { World = Cx Ty ; _≤_ = _⊆_ ; refl≤ = refl⊆ ; trans≤ = trans⊆ ; _⊩ᵅ_ = λ Γ P → Γ ⊢ⁿᵉ α P ; mono⊩ᵅ = mono⊢ⁿᵉ } -- Soundness and completeness with respect to the canonical model. mutual reflectᶜ : ∀ {A Γ} → Γ ⊢ⁿᵉ A → Γ ⊩ A reflectᶜ {α P} t = t reflectᶜ {A ▻ B} t = λ η a → reflectᶜ (appⁿᵉ (mono⊢ⁿᵉ η t) (reifyᶜ a)) reflectᶜ {A ∧ B} t = reflectᶜ (fstⁿᵉ t) , reflectᶜ (sndⁿᵉ t) reflectᶜ {⊤} t = ∙ reifyᶜ : ∀ {A Γ} → Γ ⊩ A → Γ ⊢ⁿᶠ A reifyᶜ {α P} s = neⁿᶠ s reifyᶜ {A ▻ B} s = lamⁿᶠ (reifyᶜ (s weak⊆ (reflectᶜ {A} (varⁿᵉ top)))) reifyᶜ {A ∧ B} s = pairⁿᶠ (reifyᶜ (π₁ s)) (reifyᶜ (π₂ s)) reifyᶜ {⊤} s = unitⁿᶠ reflectᶜ⋆ : ∀ {Ξ Γ} → Γ ⊢⋆ⁿᵉ Ξ → Γ ⊩⋆ Ξ reflectᶜ⋆ {∅} ∙ = ∙ reflectᶜ⋆ {Ξ , A} (ts , t) = reflectᶜ⋆ ts , reflectᶜ t reifyᶜ⋆ : ∀ {Ξ Γ} → Γ ⊩⋆ Ξ → Γ ⊢⋆ⁿᶠ Ξ reifyᶜ⋆ {∅} ∙ = ∙ reifyᶜ⋆ {Ξ , A} (ts , t) = reifyᶜ⋆ ts , reifyᶜ t -- Reflexivity and transitivity. refl⊩⋆ : ∀ {Γ} → Γ ⊩⋆ Γ refl⊩⋆ = reflectᶜ⋆ refl⊢⋆ⁿᵉ trans⊩⋆ : ∀ {Γ Γ′ Γ″} → Γ ⊩⋆ Γ′ → Γ′ ⊩⋆ Γ″ → Γ ⊩⋆ Γ″ trans⊩⋆ ts us = eval⋆ (trans⊢⋆ (nf→tm⋆ (reifyᶜ⋆ ts)) (nf→tm⋆ (reifyᶜ⋆ us))) refl⊩⋆ -- Completeness with respect to all models, or quotation. quot : ∀ {A Γ} → Γ ⊨ A → Γ ⊢ A quot s = nf→tm (reifyᶜ (s refl⊩⋆)) -- Normalisation by evaluation. norm : ∀ {A Γ} → Γ ⊢ A → Γ ⊢ A norm = quot ∘ eval -- TODO: Correctness of normalisation with respect to conversion.
25.701149
82
0.549195
59948cf2299311be70bc0abf948e15756afb1abb
1,832
agda
Agda
test/LanguageConstructs.agda
JonathanBrouwer/agda2hs
dcf63cc7ce51a325a97ac58bdd0aeace24c08b15
[ "MIT" ]
55
2020-10-20T13:36:25.000Z
2022-03-26T21:57:56.000Z
test/LanguageConstructs.agda
SNU-2D/agda2hs
160478a51bc78b0fdab07b968464420439f9fed6
[ "MIT" ]
63
2020-10-22T05:19:27.000Z
2022-02-25T15:47:30.000Z
test/LanguageConstructs.agda
SNU-2D/agda2hs
160478a51bc78b0fdab07b968464420439f9fed6
[ "MIT" ]
18
2020-10-21T22:19:09.000Z
2022-03-12T11:42:52.000Z
module LanguageConstructs where open import Haskell.Prelude {-# FOREIGN AGDA2HS {-# LANGUAGE LambdaCase #-} #-} -------------------------------------------------- -- Lists oneTwoThree : List Int oneTwoThree = 1 ∷ 2 ∷ 3 ∷ [] {-# COMPILE AGDA2HS oneTwoThree #-} exactlyTwo : List a → Maybe (a × a) exactlyTwo (x ∷ y ∷ []) = Just (x , y) exactlyTwo _ = Nothing {-# COMPILE AGDA2HS exactlyTwo #-} -------------------------------------------------- -- If-then-else ifThenElse : Int → String ifThenElse n = if n >= 10 then "big" else "small" {-# COMPILE AGDA2HS ifThenElse #-} -------------------------------------------------- -- Case maybeToList : Maybe a → List a maybeToList = λ where Nothing → [] (Just x) → x ∷ [] {-# COMPILE AGDA2HS maybeToList #-} mhead : List a → Maybe a mhead xs = case xs of λ where [] → Nothing (x ∷ _) → Just x {-# COMPILE AGDA2HS mhead #-} -- Applied to lambda plus5minus5 : Int → Int plus5minus5 n = case n + 5 of λ m → m - 5 {-# COMPILE AGDA2HS plus5minus5 #-} -- Applied to non-lambda len : List a → Int len xs = case xs of length {-# COMPILE AGDA2HS len #-} -- Underapplied applyToFalse : (Bool → a) → a applyToFalse = case false of_ {-# COMPILE AGDA2HS applyToFalse #-} caseOf : a → (a → b) → b caseOf = case_of_ {-# COMPILE AGDA2HS caseOf #-} -------------------------------------------------- -- Enums enum₁ : List Int enum₁ = enumFromTo 5 10 {-# COMPILE AGDA2HS enum₁ #-} enum₂ : List Integer enum₂ = enumFromThenTo 10 20 100 {-# COMPILE AGDA2HS enum₂ #-} enum₃ : List Bool enum₃ = enumFrom false {-# COMPILE AGDA2HS enum₃ #-} enum₄ : List Ordering enum₄ = enumFromThen LT EQ {-# COMPILE AGDA2HS enum₄ #-} underappliedEnum : List Int → List (List Int) underappliedEnum = map (enumFromTo 1) {-# COMPILE AGDA2HS underappliedEnum #-}
21.302326
51
0.57369
31f718821773ee9ce7bdd8bbbfecb3f878f79948
879
agda
Agda
archive/agda-2/Oscar/Property/Extensionality.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
archive/agda-2/Oscar/Property/Extensionality.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
1
2019-04-29T00:35:04.000Z
2019-05-11T23:33:04.000Z
archive/agda-2/Oscar/Property/Extensionality.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
module Oscar.Property.Extensionality where open import Oscar.Level record Extensionality {a} {A : Set a} {b} {B : A → Set b} {ℓ₁} (_≤₁_ : (x : A) → B x → Set ℓ₁) {c} {C : A → Set c} {d} {D : ∀ {x} → B x → Set d} {ℓ₂} (_≤₂_ : ∀ {x} → C x → ∀ {y : B x} → D y → Set ℓ₂) (μ₁ : (x : A) → C x) (μ₂ : ∀ {x} → (y : B x) → D y) : Set (a ⊔ ℓ₁ ⊔ b ⊔ ℓ₂) where field extensionality : ∀ {x} {y : B x} → x ≤₁ y → μ₁ x ≤₂ μ₂ y open Extensionality ⦃ … ⦄ public extension : ∀ {a} {A : Set a} {b} {B : A → Set b} {ℓ₁} {_≤₁_ : (x : A) → B x → Set ℓ₁} {c} {C : A → Set c} {d} {D : ∀ {x} → B x → Set d} {ℓ₂} (_≤₂_ : ∀ {x} → C x → ∀ {y : B x} → D y → Set ℓ₂) {μ₁ : (x : A) → C x} {μ₂ : ∀ {x} → (y : B x) → D y} ⦃ _ : Extensionality _≤₁_ _≤₂_ μ₁ μ₂ ⦄ {x} {y : B x} → x ≤₁ y → μ₁ x ≤₂ μ₂ y extension _≤₂_ = extensionality {_≤₂_ = _≤₂_}
28.354839
60
0.431172
58175f345dbe2857f9928405920814726e1c742b
2,928
agda
Agda
Fields/Orders/Partial/Archimedean.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
4
2019-08-08T12:44:19.000Z
2022-01-28T06:04:15.000Z
Fields/Orders/Partial/Archimedean.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
14
2019-01-06T21:11:59.000Z
2020-04-11T11:03:39.000Z
Fields/Orders/Partial/Archimedean.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
1
2021-11-29T13:23:07.000Z
2021-11-29T13:23:07.000Z
{-# OPTIONS --safe --warning=error --without-K #-} open import Sets.EquivalenceRelations open import Numbers.Naturals.Semiring open import Numbers.Integers.Definition open import Numbers.Naturals.Order open import LogicalFormulae open import Groups.Definition open import Rings.Orders.Partial.Definition open import Setoids.Orders.Partial.Definition open import Setoids.Setoids open import Functions.Definition open import Rings.Definition open import Fields.Fields open import Fields.Orders.Partial.Definition open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) module Fields.Orders.Partial.Archimedean {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ _*_ : A → A → A} {R : Ring S _+_ _*_} {c : _} {_<_ : A → A → Set c} {pOrder : SetoidPartialOrder S _<_} {F : Field R} (p : PartiallyOrderedField F pOrder) where open Setoid S open Equivalence eq open Ring R open Group additiveGroup open import Groups.Lemmas additiveGroup open import Groups.Cyclic.Definition additiveGroup open import Groups.Cyclic.DefinitionLemmas additiveGroup open import Groups.Orders.Archimedean (toGroup R (PartiallyOrderedField.oRing p)) open import Rings.Orders.Partial.Lemmas (PartiallyOrderedField.oRing p) open import Rings.InitialRing R open SetoidPartialOrder pOrder open PartiallyOrderedRing (PartiallyOrderedField.oRing p) open Field F ArchimedeanField : Set (a ⊔ c) ArchimedeanField = (x : A) → (0R < x) → Sg ℕ (λ n → x < (fromN n)) private lemma : (r : A) (N : ℕ) → (positiveEltPower 1R N * r) ∼ positiveEltPower r N lemma r zero = timesZero' lemma r (succ n) = transitive *DistributesOver+' (+WellDefined identIsIdent (lemma r n)) findBound : (0<1 : 0R < 1R) → (r s : A) (N : ℕ) → (1R < r) → (s < positiveEltPower 1R N) → s < positiveEltPower r N findBound _ r s zero 1<r s<N = s<N findBound 0<1 r s (succ N) 1<r s<N = <Transitive s<N (<WellDefined (transitive *Commutative identIsIdent) (lemma r (succ N)) (ringCanMultiplyByPositive' (fromNPreservesOrder 0<1 (succIsPositive N)) 1<r)) archFieldToGrp : ((x y : A) → .(0R < x) → (x * y) ∼ 1R → 0R < y) → ArchimedeanField → Archimedean archFieldToGrp reciprocalPositive a r s 0<r 0<s with allInvertible r (λ r=0 → irreflexive (<WellDefined reflexive r=0 0<r)) ... | inv , prInv with a inv (reciprocalPositive r inv 0<r (transitive *Commutative prInv)) ... | N , invBound with a s 0<s ... | Ns , nSBound = (Ns *N N) , <WellDefined reflexive (symmetric (elementPowerMultiplies (nonneg Ns) (nonneg N) r)) (findBound (<WellDefined reflexive (transitive *Commutative prInv) (orderRespectsMultiplication 0<r (reciprocalPositive r inv 0<r (transitive *Commutative prInv)))) (positiveEltPower r N) s Ns m nSBound) where m : 1R < positiveEltPower r N m = <WellDefined prInv (lemma r N) (ringCanMultiplyByPositive 0<r invBound) archToArchField : 0R < 1R → Archimedean → ArchimedeanField archToArchField 0<1 arch a 0<a with arch 1R a 0<1 0<a ... | N , pr = N , pr
49.627119
321
0.730533
2fb54e35d6d1df9408cedf4f14cdc028a265b26e
705
agda
Agda
test/Compiler/simple/VecReverse.agda
zgrannan/agda
5953ce337eb6b77b29ace7180478f49c541aea1c
[ "BSD-3-Clause" ]
7
2018-11-05T22:13:36.000Z
2018-11-06T16:38:43.000Z
test/Compiler/simple/VecReverse.agda
andersk/agda
56928ff709dcb931cb9a48c4790e5ed3739e3032
[ "BSD-3-Clause" ]
16
2018-10-08T00:32:04.000Z
2019-09-08T13:47:04.000Z
test/Compiler/simple/VecReverse.agda
xekoukou/agda-ocaml
026a8f8473ab91f99c3f6545728e71fa847d2720
[ "BSD-3-Clause" ]
1
2019-03-05T20:02:38.000Z
2019-03-05T20:02:38.000Z
module _ where open import Common.Prelude open import Lib.Vec _∘_ : ∀ {a b c} {A : Set a} {B : A → Set b} {C : ∀ x → B x → Set c} (f : ∀ {x} (y : B x) → C x y) (g : ∀ x → B x) → ∀ x → C x (g x) (f ∘ g) x = f (g x) sum : ∀ {n} → Vec Nat n → Nat sum (x ∷ xs) = x + sum xs sum [] = 0 foldl : ∀ {A}{B : Nat → Set} → (∀ {n} → B n → A → B (suc n)) → B 0 → ∀ {n} → Vec A n → B n foldl {B = B} f z (x ∷ xs) = foldl {B = λ n → B (suc n)} f (f z x) xs foldl f z [] = z reverse : ∀ {A n} → Vec A n → Vec A n reverse = foldl {B = Vec _} (λ xs x → x ∷ xs) [] downFrom : ∀ n → Vec Nat n downFrom zero = [] downFrom (suc n) = n ∷ downFrom n main : IO Unit main = printNat (sum (reverse (downFrom 600)))
25.178571
90
0.475177
dc73acad7124149d51753fbe125fe233e75ad97c
2,100
agda
Agda
test/asset/agda-stdlib-1.0/Data/Product/Categorical/Examples.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
test/asset/agda-stdlib-1.0/Data/Product/Categorical/Examples.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Data/Product/Categorical/Examples.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- Universe-sensitive functor and monad instances for the Product type. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Algebra module Data.Product.Categorical.Examples {a e b} {A : Monoid a e} {B : Set b} where open import Level using (Lift; lift; _⊔_) open import Category.Functor using (RawFunctor) open import Category.Monad using (RawMonad) open import Data.Product open import Data.Product.Relation.Binary.Pointwise.NonDependent open import Function import Function.Identity.Categorical as Id open import Relation.Binary using (Rel) open import Relation.Binary.PropositionalEquality using (_≡_; refl) ------------------------------------------------------------------------ -- Examples -- Note that these examples are simple unit tests, because the type -- checker verifies them. private module A = Monoid A open import Data.Product.Categorical.Left A.rawMonoid b _≈_ : Rel (A.Carrier × Lift a B) (e ⊔ a ⊔ b) _≈_ = Pointwise A._≈_ _≡_ open RawFunctor functor -- This type to the right of × needs to be a "lifted" version of (B : Set b) -- that lives in the universe (Set (a ⊔ b)). fmapIdₗ : (x : A.Carrier × Lift a B) → (id <$> x) ≈ x fmapIdₗ x = A.refl , refl open RawMonad monad -- Now, let's show that "return" is a unit for >>=. We use Lift in exactly -- the same way as above. The data (x : B) then needs to be "lifted" to -- this new type (Lift B). returnUnitL : ∀ {x : B} {f : Lift a B → A.Carrier × Lift a B} → ((return (lift x)) >>= f) ≈ f (lift x) returnUnitL = A.identityˡ _ , refl returnUnitR : {x : A.Carrier × Lift a B} → (x >>= return) ≈ x returnUnitR = A.identityʳ _ , refl -- And another (limited version of a) monad law... bindCompose : ∀ {f g : Lift a B → A.Carrier × Lift a B} → {x : A.Carrier × Lift a B} → ((x >>= f) >>= g) ≈ (x >>= (λ y → (f y >>= g))) bindCompose = A.assoc _ _ _ , refl
33.333333
78
0.57619
299f648cfdc4094f77243c5efd93c26d2263296c
19,747
agda
Agda
prototyping/Properties/TypeNormalization.agda
JohnnyMorganz/luau
f2191b9e4da6a4bb2d9d344ebd7941ec2f00844b
[ "MIT" ]
1
2021-12-05T21:53:03.000Z
2021-12-05T21:53:03.000Z
prototyping/Properties/TypeNormalization.agda
JohnnyMorganz/luau
f2191b9e4da6a4bb2d9d344ebd7941ec2f00844b
[ "MIT" ]
null
null
null
prototyping/Properties/TypeNormalization.agda
JohnnyMorganz/luau
f2191b9e4da6a4bb2d9d344ebd7941ec2f00844b
[ "MIT" ]
null
null
null
{-# OPTIONS --rewriting #-} module Properties.TypeNormalization where open import Luau.Type using (Type; Scalar; nil; number; string; boolean; never; unknown; _⇒_; _∪_; _∩_) open import Luau.Subtyping using (scalar-function-err) open import Luau.TypeNormalization using (_∪ⁿ_; _∩ⁿ_; _∪ᶠ_; _∪ⁿˢ_; _∩ⁿˢ_; normalize) open import Luau.Subtyping using (_<:_) open import Properties.Subtyping using (<:-trans; <:-refl; <:-unknown; <:-never; <:-∪-left; <:-∪-right; <:-∪-lub; <:-∩-left; <:-∩-right; <:-∩-glb; <:-∩-symm; <:-function; <:-function-∪-∩; <:-function-∩-∪; <:-function-∪; <:-everything; <:-union; <:-∪-assocl; <:-∪-assocr; <:-∪-symm; <:-intersect; ∪-distl-∩-<:; ∪-distr-∩-<:; <:-∪-distr-∩; <:-∪-distl-∩; ∩-distl-∪-<:; <:-∩-distl-∪; <:-∩-distr-∪; scalar-∩-function-<:-never; scalar-≢-∩-<:-never) -- Notmal forms for types data FunType : Type → Set data Normal : Type → Set data FunType where _⇒_ : ∀ {S T} → Normal S → Normal T → FunType (S ⇒ T) _∩_ : ∀ {F G} → FunType F → FunType G → FunType (F ∩ G) data Normal where never : Normal never unknown : Normal unknown _⇒_ : ∀ {S T} → Normal S → Normal T → Normal (S ⇒ T) _∩_ : ∀ {F G} → FunType F → FunType G → Normal (F ∩ G) _∪_ : ∀ {S T} → Normal S → Scalar T → Normal (S ∪ T) data OptScalar : Type → Set where never : OptScalar never number : OptScalar number boolean : OptScalar boolean string : OptScalar string nil : OptScalar nil -- Normalization produces normal types normal : ∀ T → Normal (normalize T) normalᶠ : ∀ {F} → FunType F → Normal F normal-∪ⁿ : ∀ {S T} → Normal S → Normal T → Normal (S ∪ⁿ T) normal-∩ⁿ : ∀ {S T} → Normal S → Normal T → Normal (S ∩ⁿ T) normal-∪ⁿˢ : ∀ {S T} → Normal S → OptScalar T → Normal (S ∪ⁿˢ T) normal-∩ⁿˢ : ∀ {S T} → Normal S → Scalar T → OptScalar (S ∩ⁿˢ T) normal-∪ᶠ : ∀ {F G} → FunType F → FunType G → FunType (F ∪ᶠ G) normal nil = never ∪ nil normal (S ⇒ T) = normalᶠ ((normal S) ⇒ (normal T)) normal never = never normal unknown = unknown normal boolean = never ∪ boolean normal number = never ∪ number normal string = never ∪ string normal (S ∪ T) = normal-∪ⁿ (normal S) (normal T) normal (S ∩ T) = normal-∩ⁿ (normal S) (normal T) normalᶠ (S ⇒ T) = S ⇒ T normalᶠ (F ∩ G) = F ∩ G normal-∪ⁿ S (T₁ ∪ T₂) = (normal-∪ⁿ S T₁) ∪ T₂ normal-∪ⁿ S never = S normal-∪ⁿ S unknown = unknown normal-∪ⁿ never (T ⇒ U) = T ⇒ U normal-∪ⁿ never (G₁ ∩ G₂) = G₁ ∩ G₂ normal-∪ⁿ unknown (T ⇒ U) = unknown normal-∪ⁿ unknown (G₁ ∩ G₂) = unknown normal-∪ⁿ (R ⇒ S) (T ⇒ U) = normalᶠ (normal-∪ᶠ (R ⇒ S) (T ⇒ U)) normal-∪ⁿ (R ⇒ S) (G₁ ∩ G₂) = normalᶠ (normal-∪ᶠ (R ⇒ S) (G₁ ∩ G₂)) normal-∪ⁿ (F₁ ∩ F₂) (T ⇒ U) = normalᶠ (normal-∪ᶠ (F₁ ∩ F₂) (T ⇒ U)) normal-∪ⁿ (F₁ ∩ F₂) (G₁ ∩ G₂) = normalᶠ (normal-∪ᶠ (F₁ ∩ F₂) (G₁ ∩ G₂)) normal-∪ⁿ (S₁ ∪ S₂) (T₁ ⇒ T₂) = normal-∪ⁿ S₁ (T₁ ⇒ T₂) ∪ S₂ normal-∪ⁿ (S₁ ∪ S₂) (G₁ ∩ G₂) = normal-∪ⁿ S₁ (G₁ ∩ G₂) ∪ S₂ normal-∩ⁿ S never = never normal-∩ⁿ S unknown = S normal-∩ⁿ S (T ∪ U) = normal-∪ⁿˢ (normal-∩ⁿ S T) (normal-∩ⁿˢ S U ) normal-∩ⁿ never (T ⇒ U) = never normal-∩ⁿ unknown (T ⇒ U) = T ⇒ U normal-∩ⁿ (R ⇒ S) (T ⇒ U) = (R ⇒ S) ∩ (T ⇒ U) normal-∩ⁿ (R ∩ S) (T ⇒ U) = (R ∩ S) ∩ (T ⇒ U) normal-∩ⁿ (R ∪ S) (T ⇒ U) = normal-∩ⁿ R (T ⇒ U) normal-∩ⁿ never (T ∩ U) = never normal-∩ⁿ unknown (T ∩ U) = T ∩ U normal-∩ⁿ (R ⇒ S) (T ∩ U) = (R ⇒ S) ∩ (T ∩ U) normal-∩ⁿ (R ∩ S) (T ∩ U) = (R ∩ S) ∩ (T ∩ U) normal-∩ⁿ (R ∪ S) (T ∩ U) = normal-∩ⁿ R (T ∩ U) normal-∪ⁿˢ S never = S normal-∪ⁿˢ never number = never ∪ number normal-∪ⁿˢ unknown number = unknown normal-∪ⁿˢ (R ⇒ S) number = (R ⇒ S) ∪ number normal-∪ⁿˢ (R ∩ S) number = (R ∩ S) ∪ number normal-∪ⁿˢ (R ∪ number) number = R ∪ number normal-∪ⁿˢ (R ∪ boolean) number = normal-∪ⁿˢ R number ∪ boolean normal-∪ⁿˢ (R ∪ string) number = normal-∪ⁿˢ R number ∪ string normal-∪ⁿˢ (R ∪ nil) number = normal-∪ⁿˢ R number ∪ nil normal-∪ⁿˢ never boolean = never ∪ boolean normal-∪ⁿˢ unknown boolean = unknown normal-∪ⁿˢ (R ⇒ S) boolean = (R ⇒ S) ∪ boolean normal-∪ⁿˢ (R ∩ S) boolean = (R ∩ S) ∪ boolean normal-∪ⁿˢ (R ∪ number) boolean = normal-∪ⁿˢ R boolean ∪ number normal-∪ⁿˢ (R ∪ boolean) boolean = R ∪ boolean normal-∪ⁿˢ (R ∪ string) boolean = normal-∪ⁿˢ R boolean ∪ string normal-∪ⁿˢ (R ∪ nil) boolean = normal-∪ⁿˢ R boolean ∪ nil normal-∪ⁿˢ never string = never ∪ string normal-∪ⁿˢ unknown string = unknown normal-∪ⁿˢ (R ⇒ S) string = (R ⇒ S) ∪ string normal-∪ⁿˢ (R ∩ S) string = (R ∩ S) ∪ string normal-∪ⁿˢ (R ∪ number) string = normal-∪ⁿˢ R string ∪ number normal-∪ⁿˢ (R ∪ boolean) string = normal-∪ⁿˢ R string ∪ boolean normal-∪ⁿˢ (R ∪ string) string = R ∪ string normal-∪ⁿˢ (R ∪ nil) string = normal-∪ⁿˢ R string ∪ nil normal-∪ⁿˢ never nil = never ∪ nil normal-∪ⁿˢ unknown nil = unknown normal-∪ⁿˢ (R ⇒ S) nil = (R ⇒ S) ∪ nil normal-∪ⁿˢ (R ∩ S) nil = (R ∩ S) ∪ nil normal-∪ⁿˢ (R ∪ number) nil = normal-∪ⁿˢ R nil ∪ number normal-∪ⁿˢ (R ∪ boolean) nil = normal-∪ⁿˢ R nil ∪ boolean normal-∪ⁿˢ (R ∪ string) nil = normal-∪ⁿˢ R nil ∪ string normal-∪ⁿˢ (R ∪ nil) nil = R ∪ nil normal-∩ⁿˢ never number = never normal-∩ⁿˢ never boolean = never normal-∩ⁿˢ never string = never normal-∩ⁿˢ never nil = never normal-∩ⁿˢ unknown number = number normal-∩ⁿˢ unknown boolean = boolean normal-∩ⁿˢ unknown string = string normal-∩ⁿˢ unknown nil = nil normal-∩ⁿˢ (R ⇒ S) number = never normal-∩ⁿˢ (R ⇒ S) boolean = never normal-∩ⁿˢ (R ⇒ S) string = never normal-∩ⁿˢ (R ⇒ S) nil = never normal-∩ⁿˢ (R ∩ S) number = never normal-∩ⁿˢ (R ∩ S) boolean = never normal-∩ⁿˢ (R ∩ S) string = never normal-∩ⁿˢ (R ∩ S) nil = never normal-∩ⁿˢ (R ∪ number) number = number normal-∩ⁿˢ (R ∪ boolean) number = normal-∩ⁿˢ R number normal-∩ⁿˢ (R ∪ string) number = normal-∩ⁿˢ R number normal-∩ⁿˢ (R ∪ nil) number = normal-∩ⁿˢ R number normal-∩ⁿˢ (R ∪ number) boolean = normal-∩ⁿˢ R boolean normal-∩ⁿˢ (R ∪ boolean) boolean = boolean normal-∩ⁿˢ (R ∪ string) boolean = normal-∩ⁿˢ R boolean normal-∩ⁿˢ (R ∪ nil) boolean = normal-∩ⁿˢ R boolean normal-∩ⁿˢ (R ∪ number) string = normal-∩ⁿˢ R string normal-∩ⁿˢ (R ∪ boolean) string = normal-∩ⁿˢ R string normal-∩ⁿˢ (R ∪ string) string = string normal-∩ⁿˢ (R ∪ nil) string = normal-∩ⁿˢ R string normal-∩ⁿˢ (R ∪ number) nil = normal-∩ⁿˢ R nil normal-∩ⁿˢ (R ∪ boolean) nil = normal-∩ⁿˢ R nil normal-∩ⁿˢ (R ∪ string) nil = normal-∩ⁿˢ R nil normal-∩ⁿˢ (R ∪ nil) nil = nil normal-∪ᶠ (R ⇒ S) (T ⇒ U) = (normal-∩ⁿ R T) ⇒ (normal-∪ⁿ S U) normal-∪ᶠ (R ⇒ S) (G ∩ H) = normal-∪ᶠ (R ⇒ S) G ∩ normal-∪ᶠ (R ⇒ S) H normal-∪ᶠ (E ∩ F) G = normal-∪ᶠ E G ∩ normal-∪ᶠ F G scalar-∩-fun-<:-never : ∀ {F S} → FunType F → Scalar S → (F ∩ S) <: never scalar-∩-fun-<:-never (T ⇒ U) S = scalar-∩-function-<:-never S scalar-∩-fun-<:-never (F ∩ G) S = <:-trans (<:-intersect <:-∩-left <:-refl) (scalar-∩-fun-<:-never F S) flipper : ∀ {S T U} → ((S ∪ T) ∪ U) <: ((S ∪ U) ∪ T) flipper = <:-trans <:-∪-assocr (<:-trans (<:-union <:-refl <:-∪-symm) <:-∪-assocl) ∩-<:-∩ⁿ : ∀ {S T} → Normal S → Normal T → (S ∩ T) <: (S ∩ⁿ T) ∩ⁿ-<:-∩ : ∀ {S T} → Normal S → Normal T → (S ∩ⁿ T) <: (S ∩ T) ∩-<:-∩ⁿˢ : ∀ {S T} → Normal S → Scalar T → (S ∩ T) <: (S ∩ⁿˢ T) ∩ⁿˢ-<:-∩ : ∀ {S T} → Normal S → Scalar T → (S ∩ⁿˢ T) <: (S ∩ T) ∪ᶠ-<:-∪ : ∀ {F G} → FunType F → FunType G → (F ∪ᶠ G) <: (F ∪ G) ∪ⁿ-<:-∪ : ∀ {S T} → Normal S → Normal T → (S ∪ⁿ T) <: (S ∪ T) ∪-<:-∪ⁿ : ∀ {S T} → Normal S → Normal T → (S ∪ T) <: (S ∪ⁿ T) ∪ⁿˢ-<:-∪ : ∀ {S T} → Normal S → OptScalar T → (S ∪ⁿˢ T) <: (S ∪ T) ∪-<:-∪ⁿˢ : ∀ {S T} → Normal S → OptScalar T → (S ∪ T) <: (S ∪ⁿˢ T) ∩-<:-∩ⁿ S never = <:-∩-right ∩-<:-∩ⁿ S unknown = <:-∩-left ∩-<:-∩ⁿ S (T ∪ U) = <:-trans <:-∩-distl-∪ (<:-trans (<:-union (∩-<:-∩ⁿ S T) (∩-<:-∩ⁿˢ S U)) (∪-<:-∪ⁿˢ (normal-∩ⁿ S T) (normal-∩ⁿˢ S U)) ) ∩-<:-∩ⁿ never (T ⇒ U) = <:-∩-left ∩-<:-∩ⁿ unknown (T ⇒ U) = <:-∩-right ∩-<:-∩ⁿ (R ⇒ S) (T ⇒ U) = <:-refl ∩-<:-∩ⁿ (R ∩ S) (T ⇒ U) = <:-refl ∩-<:-∩ⁿ (R ∪ S) (T ⇒ U) = <:-trans <:-∩-distr-∪ (<:-trans (<:-union (∩-<:-∩ⁿ R (T ⇒ U)) (<:-trans <:-∩-symm (∩-<:-∩ⁿˢ (T ⇒ U) S))) (<:-∪-lub <:-refl <:-never)) ∩-<:-∩ⁿ never (T ∩ U) = <:-∩-left ∩-<:-∩ⁿ unknown (T ∩ U) = <:-∩-right ∩-<:-∩ⁿ (R ⇒ S) (T ∩ U) = <:-refl ∩-<:-∩ⁿ (R ∩ S) (T ∩ U) = <:-refl ∩-<:-∩ⁿ (R ∪ S) (T ∩ U) = <:-trans <:-∩-distr-∪ (<:-trans (<:-union (∩-<:-∩ⁿ R (T ∩ U)) (<:-trans <:-∩-symm (∩-<:-∩ⁿˢ (T ∩ U) S))) (<:-∪-lub <:-refl <:-never)) ∩ⁿ-<:-∩ S never = <:-never ∩ⁿ-<:-∩ S unknown = <:-∩-glb <:-refl <:-unknown ∩ⁿ-<:-∩ S (T ∪ U) = <:-trans (∪ⁿˢ-<:-∪ (normal-∩ⁿ S T) (normal-∩ⁿˢ S U)) (<:-trans (<:-union (∩ⁿ-<:-∩ S T) (∩ⁿˢ-<:-∩ S U)) ∩-distl-∪-<:) ∩ⁿ-<:-∩ never (T ⇒ U) = <:-never ∩ⁿ-<:-∩ unknown (T ⇒ U) = <:-∩-glb <:-unknown <:-refl ∩ⁿ-<:-∩ (R ⇒ S) (T ⇒ U) = <:-refl ∩ⁿ-<:-∩ (R ∩ S) (T ⇒ U) = <:-refl ∩ⁿ-<:-∩ (R ∪ S) (T ⇒ U) = <:-trans (∩ⁿ-<:-∩ R (T ⇒ U)) (<:-∩-glb (<:-trans <:-∩-left <:-∪-left) <:-∩-right) ∩ⁿ-<:-∩ never (T ∩ U) = <:-never ∩ⁿ-<:-∩ unknown (T ∩ U) = <:-∩-glb <:-unknown <:-refl ∩ⁿ-<:-∩ (R ⇒ S) (T ∩ U) = <:-refl ∩ⁿ-<:-∩ (R ∩ S) (T ∩ U) = <:-refl ∩ⁿ-<:-∩ (R ∪ S) (T ∩ U) = <:-trans (∩ⁿ-<:-∩ R (T ∩ U)) (<:-∩-glb (<:-trans <:-∩-left <:-∪-left) <:-∩-right) ∩-<:-∩ⁿˢ never number = <:-∩-left ∩-<:-∩ⁿˢ never boolean = <:-∩-left ∩-<:-∩ⁿˢ never string = <:-∩-left ∩-<:-∩ⁿˢ never nil = <:-∩-left ∩-<:-∩ⁿˢ unknown T = <:-∩-right ∩-<:-∩ⁿˢ (R ⇒ S) T = scalar-∩-fun-<:-never (R ⇒ S) T ∩-<:-∩ⁿˢ (F ∩ G) T = scalar-∩-fun-<:-never (F ∩ G) T ∩-<:-∩ⁿˢ (R ∪ number) number = <:-∩-right ∩-<:-∩ⁿˢ (R ∪ boolean) number = <:-trans <:-∩-distr-∪ (<:-∪-lub (∩-<:-∩ⁿˢ R number) (scalar-≢-∩-<:-never boolean number (λ ()))) ∩-<:-∩ⁿˢ (R ∪ string) number = <:-trans <:-∩-distr-∪ (<:-∪-lub (∩-<:-∩ⁿˢ R number) (scalar-≢-∩-<:-never string number (λ ()))) ∩-<:-∩ⁿˢ (R ∪ nil) number = <:-trans <:-∩-distr-∪ (<:-∪-lub (∩-<:-∩ⁿˢ R number) (scalar-≢-∩-<:-never nil number (λ ()))) ∩-<:-∩ⁿˢ (R ∪ number) boolean = <:-trans <:-∩-distr-∪ (<:-∪-lub (∩-<:-∩ⁿˢ R boolean) (scalar-≢-∩-<:-never number boolean (λ ()))) ∩-<:-∩ⁿˢ (R ∪ boolean) boolean = <:-∩-right ∩-<:-∩ⁿˢ (R ∪ string) boolean = <:-trans <:-∩-distr-∪ (<:-∪-lub (∩-<:-∩ⁿˢ R boolean) (scalar-≢-∩-<:-never string boolean (λ ()))) ∩-<:-∩ⁿˢ (R ∪ nil) boolean = <:-trans <:-∩-distr-∪ (<:-∪-lub (∩-<:-∩ⁿˢ R boolean) (scalar-≢-∩-<:-never nil boolean (λ ()))) ∩-<:-∩ⁿˢ (R ∪ number) string = <:-trans <:-∩-distr-∪ (<:-∪-lub (∩-<:-∩ⁿˢ R string) (scalar-≢-∩-<:-never number string (λ ()))) ∩-<:-∩ⁿˢ (R ∪ boolean) string = <:-trans <:-∩-distr-∪ (<:-∪-lub (∩-<:-∩ⁿˢ R string) (scalar-≢-∩-<:-never boolean string (λ ()))) ∩-<:-∩ⁿˢ (R ∪ string) string = <:-∩-right ∩-<:-∩ⁿˢ (R ∪ nil) string = <:-trans <:-∩-distr-∪ (<:-∪-lub (∩-<:-∩ⁿˢ R string) (scalar-≢-∩-<:-never nil string (λ ()))) ∩-<:-∩ⁿˢ (R ∪ number) nil = <:-trans <:-∩-distr-∪ (<:-∪-lub (∩-<:-∩ⁿˢ R nil) (scalar-≢-∩-<:-never number nil (λ ()))) ∩-<:-∩ⁿˢ (R ∪ boolean) nil = <:-trans <:-∩-distr-∪ (<:-∪-lub (∩-<:-∩ⁿˢ R nil) (scalar-≢-∩-<:-never boolean nil (λ ()))) ∩-<:-∩ⁿˢ (R ∪ string) nil = <:-trans <:-∩-distr-∪ (<:-∪-lub (∩-<:-∩ⁿˢ R nil) (scalar-≢-∩-<:-never string nil (λ ()))) ∩-<:-∩ⁿˢ (R ∪ nil) nil = <:-∩-right ∩ⁿˢ-<:-∩ never T = <:-never ∩ⁿˢ-<:-∩ unknown T = <:-∩-glb <:-unknown <:-refl ∩ⁿˢ-<:-∩ (R ⇒ S) T = <:-never ∩ⁿˢ-<:-∩ (F ∩ G) T = <:-never ∩ⁿˢ-<:-∩ (R ∪ number) number = <:-∩-glb <:-∪-right <:-refl ∩ⁿˢ-<:-∩ (R ∪ boolean) number = <:-trans (∩ⁿˢ-<:-∩ R number) (<:-intersect <:-∪-left <:-refl) ∩ⁿˢ-<:-∩ (R ∪ string) number = <:-trans (∩ⁿˢ-<:-∩ R number) (<:-intersect <:-∪-left <:-refl) ∩ⁿˢ-<:-∩ (R ∪ nil) number = <:-trans (∩ⁿˢ-<:-∩ R number) (<:-intersect <:-∪-left <:-refl) ∩ⁿˢ-<:-∩ (R ∪ number) boolean = <:-trans (∩ⁿˢ-<:-∩ R boolean) (<:-intersect <:-∪-left <:-refl) ∩ⁿˢ-<:-∩ (R ∪ boolean) boolean = <:-∩-glb <:-∪-right <:-refl ∩ⁿˢ-<:-∩ (R ∪ string) boolean = <:-trans (∩ⁿˢ-<:-∩ R boolean) (<:-intersect <:-∪-left <:-refl) ∩ⁿˢ-<:-∩ (R ∪ nil) boolean = <:-trans (∩ⁿˢ-<:-∩ R boolean) (<:-intersect <:-∪-left <:-refl) ∩ⁿˢ-<:-∩ (R ∪ number) string = <:-trans (∩ⁿˢ-<:-∩ R string) (<:-intersect <:-∪-left <:-refl) ∩ⁿˢ-<:-∩ (R ∪ boolean) string = <:-trans (∩ⁿˢ-<:-∩ R string) (<:-intersect <:-∪-left <:-refl) ∩ⁿˢ-<:-∩ (R ∪ string) string = <:-∩-glb <:-∪-right <:-refl ∩ⁿˢ-<:-∩ (R ∪ nil) string = <:-trans (∩ⁿˢ-<:-∩ R string) (<:-intersect <:-∪-left <:-refl) ∩ⁿˢ-<:-∩ (R ∪ number) nil = <:-trans (∩ⁿˢ-<:-∩ R nil) (<:-intersect <:-∪-left <:-refl) ∩ⁿˢ-<:-∩ (R ∪ boolean) nil = <:-trans (∩ⁿˢ-<:-∩ R nil) (<:-intersect <:-∪-left <:-refl) ∩ⁿˢ-<:-∩ (R ∪ string) nil = <:-trans (∩ⁿˢ-<:-∩ R nil) (<:-intersect <:-∪-left <:-refl) ∩ⁿˢ-<:-∩ (R ∪ nil) nil = <:-∩-glb <:-∪-right <:-refl ∪ᶠ-<:-∪ (R ⇒ S) (T ⇒ U) = <:-trans (<:-function (∩-<:-∩ⁿ R T) (∪ⁿ-<:-∪ S U)) <:-function-∪-∩ ∪ᶠ-<:-∪ (R ⇒ S) (G ∩ H) = <:-trans (<:-intersect (∪ᶠ-<:-∪ (R ⇒ S) G) (∪ᶠ-<:-∪ (R ⇒ S) H)) ∪-distl-∩-<: ∪ᶠ-<:-∪ (E ∩ F) G = <:-trans (<:-intersect (∪ᶠ-<:-∪ E G) (∪ᶠ-<:-∪ F G)) ∪-distr-∩-<: ∪-<:-∪ᶠ : ∀ {F G} → FunType F → FunType G → (F ∪ G) <: (F ∪ᶠ G) ∪-<:-∪ᶠ (R ⇒ S) (T ⇒ U) = <:-trans <:-function-∪ (<:-function (∩ⁿ-<:-∩ R T) (∪-<:-∪ⁿ S U)) ∪-<:-∪ᶠ (R ⇒ S) (G ∩ H) = <:-trans <:-∪-distl-∩ (<:-intersect (∪-<:-∪ᶠ (R ⇒ S) G) (∪-<:-∪ᶠ (R ⇒ S) H)) ∪-<:-∪ᶠ (E ∩ F) G = <:-trans <:-∪-distr-∩ (<:-intersect (∪-<:-∪ᶠ E G) (∪-<:-∪ᶠ F G)) ∪ⁿˢ-<:-∪ S never = <:-∪-left ∪ⁿˢ-<:-∪ never number = <:-refl ∪ⁿˢ-<:-∪ never boolean = <:-refl ∪ⁿˢ-<:-∪ never string = <:-refl ∪ⁿˢ-<:-∪ never nil = <:-refl ∪ⁿˢ-<:-∪ unknown number = <:-∪-left ∪ⁿˢ-<:-∪ unknown boolean = <:-∪-left ∪ⁿˢ-<:-∪ unknown string = <:-∪-left ∪ⁿˢ-<:-∪ unknown nil = <:-∪-left ∪ⁿˢ-<:-∪ (R ⇒ S) number = <:-refl ∪ⁿˢ-<:-∪ (R ⇒ S) boolean = <:-refl ∪ⁿˢ-<:-∪ (R ⇒ S) string = <:-refl ∪ⁿˢ-<:-∪ (R ⇒ S) nil = <:-refl ∪ⁿˢ-<:-∪ (R ∩ S) number = <:-refl ∪ⁿˢ-<:-∪ (R ∩ S) boolean = <:-refl ∪ⁿˢ-<:-∪ (R ∩ S) string = <:-refl ∪ⁿˢ-<:-∪ (R ∩ S) nil = <:-refl ∪ⁿˢ-<:-∪ (R ∪ number) number = <:-union <:-∪-left <:-refl ∪ⁿˢ-<:-∪ (R ∪ boolean) number = <:-trans (<:-union (∪ⁿˢ-<:-∪ R number) <:-refl) flipper ∪ⁿˢ-<:-∪ (R ∪ string) number = <:-trans (<:-union (∪ⁿˢ-<:-∪ R number) <:-refl) flipper ∪ⁿˢ-<:-∪ (R ∪ nil) number = <:-trans (<:-union (∪ⁿˢ-<:-∪ R number) <:-refl) flipper ∪ⁿˢ-<:-∪ (R ∪ number) boolean = <:-trans (<:-union (∪ⁿˢ-<:-∪ R boolean) <:-refl) flipper ∪ⁿˢ-<:-∪ (R ∪ boolean) boolean = <:-union <:-∪-left <:-refl ∪ⁿˢ-<:-∪ (R ∪ string) boolean = <:-trans (<:-union (∪ⁿˢ-<:-∪ R boolean) <:-refl) flipper ∪ⁿˢ-<:-∪ (R ∪ nil) boolean = <:-trans (<:-union (∪ⁿˢ-<:-∪ R boolean) <:-refl) flipper ∪ⁿˢ-<:-∪ (R ∪ number) string = <:-trans (<:-union (∪ⁿˢ-<:-∪ R string) <:-refl) flipper ∪ⁿˢ-<:-∪ (R ∪ boolean) string = <:-trans (<:-union (∪ⁿˢ-<:-∪ R string) <:-refl) flipper ∪ⁿˢ-<:-∪ (R ∪ string) string = <:-union <:-∪-left <:-refl ∪ⁿˢ-<:-∪ (R ∪ nil) string = <:-trans (<:-union (∪ⁿˢ-<:-∪ R string) <:-refl) flipper ∪ⁿˢ-<:-∪ (R ∪ number) nil = <:-trans (<:-union (∪ⁿˢ-<:-∪ R nil) <:-refl) flipper ∪ⁿˢ-<:-∪ (R ∪ boolean) nil = <:-trans (<:-union (∪ⁿˢ-<:-∪ R nil) <:-refl) flipper ∪ⁿˢ-<:-∪ (R ∪ string) nil = <:-trans (<:-union (∪ⁿˢ-<:-∪ R nil) <:-refl) flipper ∪ⁿˢ-<:-∪ (R ∪ nil) nil = <:-union <:-∪-left <:-refl ∪-<:-∪ⁿˢ T never = <:-∪-lub <:-refl <:-never ∪-<:-∪ⁿˢ never number = <:-refl ∪-<:-∪ⁿˢ never boolean = <:-refl ∪-<:-∪ⁿˢ never string = <:-refl ∪-<:-∪ⁿˢ never nil = <:-refl ∪-<:-∪ⁿˢ unknown number = <:-unknown ∪-<:-∪ⁿˢ unknown boolean = <:-unknown ∪-<:-∪ⁿˢ unknown string = <:-unknown ∪-<:-∪ⁿˢ unknown nil = <:-unknown ∪-<:-∪ⁿˢ (R ⇒ S) number = <:-refl ∪-<:-∪ⁿˢ (R ⇒ S) boolean = <:-refl ∪-<:-∪ⁿˢ (R ⇒ S) string = <:-refl ∪-<:-∪ⁿˢ (R ⇒ S) nil = <:-refl ∪-<:-∪ⁿˢ (R ∩ S) number = <:-refl ∪-<:-∪ⁿˢ (R ∩ S) boolean = <:-refl ∪-<:-∪ⁿˢ (R ∩ S) string = <:-refl ∪-<:-∪ⁿˢ (R ∩ S) nil = <:-refl ∪-<:-∪ⁿˢ (R ∪ number) number = <:-∪-lub <:-refl <:-∪-right ∪-<:-∪ⁿˢ (R ∪ boolean) number = <:-trans flipper (<:-union (∪-<:-∪ⁿˢ R number) <:-refl) ∪-<:-∪ⁿˢ (R ∪ string) number = <:-trans flipper (<:-union (∪-<:-∪ⁿˢ R number) <:-refl) ∪-<:-∪ⁿˢ (R ∪ nil) number = <:-trans flipper (<:-union (∪-<:-∪ⁿˢ R number) <:-refl) ∪-<:-∪ⁿˢ (R ∪ number) boolean = <:-trans flipper (<:-union (∪-<:-∪ⁿˢ R boolean) <:-refl) ∪-<:-∪ⁿˢ (R ∪ boolean) boolean = <:-∪-lub <:-refl <:-∪-right ∪-<:-∪ⁿˢ (R ∪ string) boolean = <:-trans flipper (<:-union (∪-<:-∪ⁿˢ R boolean) <:-refl) ∪-<:-∪ⁿˢ (R ∪ nil) boolean = <:-trans flipper (<:-union (∪-<:-∪ⁿˢ R boolean) <:-refl) ∪-<:-∪ⁿˢ (R ∪ number) string = <:-trans flipper (<:-union (∪-<:-∪ⁿˢ R string) <:-refl) ∪-<:-∪ⁿˢ (R ∪ boolean) string = <:-trans flipper (<:-union (∪-<:-∪ⁿˢ R string) <:-refl) ∪-<:-∪ⁿˢ (R ∪ string) string = <:-∪-lub <:-refl <:-∪-right ∪-<:-∪ⁿˢ (R ∪ nil) string = <:-trans flipper (<:-union (∪-<:-∪ⁿˢ R string) <:-refl) ∪-<:-∪ⁿˢ (R ∪ number) nil = <:-trans flipper (<:-union (∪-<:-∪ⁿˢ R nil) <:-refl) ∪-<:-∪ⁿˢ (R ∪ boolean) nil = <:-trans flipper (<:-union (∪-<:-∪ⁿˢ R nil) <:-refl) ∪-<:-∪ⁿˢ (R ∪ string) nil = <:-trans flipper (<:-union (∪-<:-∪ⁿˢ R nil) <:-refl) ∪-<:-∪ⁿˢ (R ∪ nil) nil = <:-∪-lub <:-refl <:-∪-right ∪ⁿ-<:-∪ S never = <:-∪-left ∪ⁿ-<:-∪ S unknown = <:-∪-right ∪ⁿ-<:-∪ never (T ⇒ U) = <:-∪-right ∪ⁿ-<:-∪ unknown (T ⇒ U) = <:-∪-left ∪ⁿ-<:-∪ (R ⇒ S) (T ⇒ U) = ∪ᶠ-<:-∪ (R ⇒ S) (T ⇒ U) ∪ⁿ-<:-∪ (R ∩ S) (T ⇒ U) = ∪ᶠ-<:-∪ (R ∩ S) (T ⇒ U) ∪ⁿ-<:-∪ (R ∪ S) (T ⇒ U) = <:-trans (<:-union (∪ⁿ-<:-∪ R (T ⇒ U)) <:-refl) (<:-∪-lub (<:-∪-lub (<:-trans <:-∪-left <:-∪-left) <:-∪-right) (<:-trans <:-∪-right <:-∪-left)) ∪ⁿ-<:-∪ never (T ∩ U) = <:-∪-right ∪ⁿ-<:-∪ unknown (T ∩ U) = <:-∪-left ∪ⁿ-<:-∪ (R ⇒ S) (T ∩ U) = ∪ᶠ-<:-∪ (R ⇒ S) (T ∩ U) ∪ⁿ-<:-∪ (R ∩ S) (T ∩ U) = ∪ᶠ-<:-∪ (R ∩ S) (T ∩ U) ∪ⁿ-<:-∪ (R ∪ S) (T ∩ U) = <:-trans (<:-union (∪ⁿ-<:-∪ R (T ∩ U)) <:-refl) (<:-∪-lub (<:-∪-lub (<:-trans <:-∪-left <:-∪-left) <:-∪-right) (<:-trans <:-∪-right <:-∪-left)) ∪ⁿ-<:-∪ S (T ∪ U) = <:-∪-lub (<:-trans (∪ⁿ-<:-∪ S T) (<:-union <:-refl <:-∪-left)) (<:-trans <:-∪-right <:-∪-right) ∪-<:-∪ⁿ S never = <:-∪-lub <:-refl <:-never ∪-<:-∪ⁿ S unknown = <:-unknown ∪-<:-∪ⁿ never (T ⇒ U) = <:-∪-lub <:-never <:-refl ∪-<:-∪ⁿ unknown (T ⇒ U) = <:-unknown ∪-<:-∪ⁿ (R ⇒ S) (T ⇒ U) = ∪-<:-∪ᶠ (R ⇒ S) (T ⇒ U) ∪-<:-∪ⁿ (R ∩ S) (T ⇒ U) = ∪-<:-∪ᶠ (R ∩ S) (T ⇒ U) ∪-<:-∪ⁿ (R ∪ S) (T ⇒ U) = <:-trans <:-∪-assocr (<:-trans (<:-union <:-refl <:-∪-symm) (<:-trans <:-∪-assocl (<:-union (∪-<:-∪ⁿ R (T ⇒ U)) <:-refl))) ∪-<:-∪ⁿ never (T ∩ U) = <:-∪-lub <:-never <:-refl ∪-<:-∪ⁿ unknown (T ∩ U) = <:-unknown ∪-<:-∪ⁿ (R ⇒ S) (T ∩ U) = ∪-<:-∪ᶠ (R ⇒ S) (T ∩ U) ∪-<:-∪ⁿ (R ∩ S) (T ∩ U) = ∪-<:-∪ᶠ (R ∩ S) (T ∩ U) ∪-<:-∪ⁿ (R ∪ S) (T ∩ U) = <:-trans <:-∪-assocr (<:-trans (<:-union <:-refl <:-∪-symm) (<:-trans <:-∪-assocl (<:-union (∪-<:-∪ⁿ R (T ∩ U)) <:-refl))) ∪-<:-∪ⁿ never (T ∪ U) = <:-trans <:-∪-assocl (<:-union (∪-<:-∪ⁿ never T) <:-refl) ∪-<:-∪ⁿ unknown (T ∪ U) = <:-trans <:-∪-assocl (<:-union (∪-<:-∪ⁿ unknown T) <:-refl) ∪-<:-∪ⁿ (R ⇒ S) (T ∪ U) = <:-trans <:-∪-assocl (<:-union (∪-<:-∪ⁿ (R ⇒ S) T) <:-refl) ∪-<:-∪ⁿ (R ∩ S) (T ∪ U) = <:-trans <:-∪-assocl (<:-union (∪-<:-∪ⁿ (R ∩ S) T) <:-refl) ∪-<:-∪ⁿ (R ∪ S) (T ∪ U) = <:-trans <:-∪-assocl (<:-union (∪-<:-∪ⁿ (R ∪ S) T) <:-refl) normalize-<: : ∀ T → normalize T <: T <:-normalize : ∀ T → T <: normalize T <:-normalize nil = <:-∪-right <:-normalize (S ⇒ T) = <:-function (normalize-<: S) (<:-normalize T) <:-normalize never = <:-refl <:-normalize unknown = <:-refl <:-normalize boolean = <:-∪-right <:-normalize number = <:-∪-right <:-normalize string = <:-∪-right <:-normalize (S ∪ T) = <:-trans (<:-union (<:-normalize S) (<:-normalize T)) (∪-<:-∪ⁿ (normal S) (normal T)) <:-normalize (S ∩ T) = <:-trans (<:-intersect (<:-normalize S) (<:-normalize T)) (∩-<:-∩ⁿ (normal S) (normal T)) normalize-<: nil = <:-∪-lub <:-never <:-refl normalize-<: (S ⇒ T) = <:-function (<:-normalize S) (normalize-<: T) normalize-<: never = <:-refl normalize-<: unknown = <:-refl normalize-<: boolean = <:-∪-lub <:-never <:-refl normalize-<: number = <:-∪-lub <:-never <:-refl normalize-<: string = <:-∪-lub <:-never <:-refl normalize-<: (S ∪ T) = <:-trans (∪ⁿ-<:-∪ (normal S) (normal T)) (<:-union (normalize-<: S) (normalize-<: T)) normalize-<: (S ∩ T) = <:-trans (∩ⁿ-<:-∩ (normal S) (normal T)) (<:-intersect (normalize-<: S) (normalize-<: T))
52.37931
443
0.495316
1877a7fe8a330a747a8d8cd3621c2067a5e16768
625
agda
Agda
test/Fail/Issue2985-2.agda
cagix/agda
cc026a6a97a3e517bb94bafa9d49233b067c7559
[ "BSD-2-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue2985-2.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue2985-2.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- This variant of the code is due to Ulf Norell. {-# OPTIONS --sized-types #-} open import Agda.Builtin.Size data ⊥ : Set where mutual data Unit (i : Size) : Set where c : Unit′ i → Unit i data Unit₁ (i : Size) : Set where c₁ : ⊥ → Unit i → Unit₁ i record Unit′ (i : Size) : Set where coinductive field force : {j : Size< i} → Unit₁ j open Unit′ public tail : Unit ∞ → Unit₁ ∞ tail (c x) = force x u : (∀ {i} → Unit′ i → Unit i) → ∀ {i} → Unit₁ i u cons = tail (cons λ { .force → u cons }) bad : Unit₁ ∞ bad = u c refute : Unit₁ ∞ → ⊥ refute (c₁ () _) loop : ⊥ loop = refute bad
16.025641
49
0.5616
598edf4561251944b74482cac06ffab0439dffa7
4,586
agda
Agda
src/fot/FOTC/Data/Stream/PropertiesI.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
11
2015-09-03T20:53:42.000Z
2021-09-12T16:09:54.000Z
src/fot/FOTC/Data/Stream/PropertiesI.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
2
2016-10-12T17:28:16.000Z
2017-01-01T14:34:26.000Z
src/fot/FOTC/Data/Stream/PropertiesI.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
3
2016-09-19T14:18:30.000Z
2018-03-14T08:50:00.000Z
------------------------------------------------------------------------------ -- Streams properties ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Data.Stream.PropertiesI where open import FOTC.Base open import FOTC.Base.List open import FOTC.Base.List.PropertiesI open import FOTC.Data.Conat open import FOTC.Data.Conat.Equality.Type open import FOTC.Data.Colist open import FOTC.Data.Colist.PropertiesI open import FOTC.Data.List open import FOTC.Data.List.PropertiesI open import FOTC.Data.Stream ----------------------------------------------------------------------------- -- Because a greatest post-fixed point is a fixed-point, then the -- Stream predicate is also a pre-fixed point of the functional -- StreamF, i.e. -- -- StreamF Stream ≤ Stream (see FOTC.Data.Stream.Type). Stream-in : ∀ {xs} → ∃[ x' ] ∃[ xs' ] xs ≡ x' ∷ xs' ∧ Stream xs' → Stream xs Stream-in h = Stream-coind A h' h where A : D → Set A xs = ∃[ x' ] ∃[ xs' ] xs ≡ x' ∷ xs' ∧ Stream xs' h' : ∀ {xs} → A xs → ∃[ x' ] ∃[ xs' ] xs ≡ x' ∷ xs' ∧ A xs' h' (x' , xs' , prf , Sxs') = x' , xs' , prf , Stream-out Sxs' zeros-Stream : Stream zeros zeros-Stream = Stream-coind A h refl where A : D → Set A xs = xs ≡ zeros h : ∀ {xs} → A xs → ∃[ x' ] ∃[ xs' ] xs ≡ x' ∷ xs' ∧ A xs' h Axs = zero , zeros , trans Axs zeros-eq , refl ones-Stream : Stream ones ones-Stream = Stream-coind A h refl where A : D → Set A xs = xs ≡ ones h : ∀ {xs} → A xs → ∃[ x' ] ∃[ xs' ] xs ≡ x' ∷ xs' ∧ A xs' h Axs = succ₁ zero , ones , trans Axs ones-eq , refl ∷-Stream : ∀ {x xs} → Stream (x ∷ xs) → Stream xs ∷-Stream {x} {xs} h = ∷-Stream-helper (Stream-out h) where ∷-Stream-helper : ∃[ x' ] ∃[ xs' ] x ∷ xs ≡ x' ∷ xs' ∧ Stream xs' → Stream xs ∷-Stream-helper (x' , xs' , prf , Sxs') = subst Stream (sym (∧-proj₂ (∷-injective prf))) Sxs' -- Version using Agda with constructor. ∷-Stream' : ∀ {x xs} → Stream (x ∷ xs) → Stream xs ∷-Stream' h with Stream-out h ... | x' , xs' , prf , Sxs' = subst Stream (sym (∧-proj₂ (∷-injective prf))) Sxs' Stream→Colist : ∀ {xs} → Stream xs → Colist xs Stream→Colist {xs} Sxs = Colist-coind A h₁ h₂ where A : D → Set A ys = Stream ys h₁ : ∀ {xs} → A xs → xs ≡ [] ∨ (∃[ x' ] ∃[ xs' ] xs ≡ x' ∷ xs' ∧ A xs') h₁ Axs with Stream-out Axs ... | x' , xs' , prf , Sxs' = inj₂ (x' , xs' , prf , Sxs') h₂ : A xs h₂ = Sxs -- Adapted from (Sander 1992, p. 59). streamLength : ∀ {xs} → Stream xs → length xs ≈ ∞ streamLength {xs} Sxs = ≈-coind R h₁ h₂ where R : D → D → Set R m n = ∃[ xs ] Stream xs ∧ m ≡ length xs ∧ n ≡ ∞ h₁ : ∀ {m n} → R m n → m ≡ zero ∧ n ≡ zero ∨ (∃[ m' ] ∃[ n' ] m ≡ succ₁ m' ∧ n ≡ succ₁ n' ∧ R m' n') h₁ {m} {n} (xs , Sxs , m=lxs , n≡∞) = helper₁ (Stream-out Sxs) where helper₁ : (∃[ x' ] ∃[ xs' ] xs ≡ x' ∷ xs' ∧ Stream xs') → m ≡ zero ∧ n ≡ zero ∨ (∃[ m' ] ∃[ n' ] m ≡ succ₁ m' ∧ n ≡ succ₁ n' ∧ R m' n') helper₁ (x' , xs' , xs≡x'∷xs' , Sxs') = inj₂ (length xs' , ∞ , helper₂ , trans n≡∞ ∞-eq , (xs' , Sxs' , refl , refl)) where helper₂ : m ≡ succ₁ (length xs') helper₂ = trans m=lxs (trans (lengthCong xs≡x'∷xs') (length-∷ x' xs')) h₂ : R (length xs) ∞ h₂ = xs , Sxs , refl , refl -- Adapted from (Sander 1992, p. 59). Version using Agda with -- constructor. streamLength' : ∀ {xs} → Stream xs → length xs ≈ ∞ streamLength' {xs} Sxs = ≈-coind R h₁ h₂ where R : D → D → Set R m n = ∃[ xs ] Stream xs ∧ m ≡ length xs ∧ n ≡ ∞ h₁ : ∀ {m n} → R m n → m ≡ zero ∧ n ≡ zero ∨ (∃[ m' ] ∃[ n' ] m ≡ succ₁ m' ∧ n ≡ succ₁ n' ∧ R m' n') h₁ {m} (xs , Sxs , m=lxs , n≡∞) with Stream-out Sxs ... | x' , xs' , xs≡x'∷xs' , Sxs' = inj₂ (length xs' , ∞ , helper , trans n≡∞ ∞-eq , (xs' , Sxs' , refl , refl)) where helper : m ≡ succ₁ (length xs') helper = trans m=lxs (trans (lengthCong xs≡x'∷xs') (length-∷ x' xs')) h₂ : R (length xs) ∞ h₂ = xs , Sxs , refl , refl ------------------------------------------------------------------------------ -- References -- -- Sander, Herbert P. (1992). A Logic of Functional Programs with an -- Application to Concurrency. PhD thesis. Department of Computer -- Sciences: Chalmers University of Technology and University of -- Gothenburg.
32.524823
80
0.497165
41a5a84d0dd8059dfba3704fb37f6b61e8437733
8,645
agda
Agda
Cubical/Functions/Embedding.agda
jorge-jbs/cubical
ebbe824fda41ab6524b62a42959665be4e67b847
[ "MIT" ]
null
null
null
Cubical/Functions/Embedding.agda
jorge-jbs/cubical
ebbe824fda41ab6524b62a42959665be4e67b847
[ "MIT" ]
null
null
null
Cubical/Functions/Embedding.agda
jorge-jbs/cubical
ebbe824fda41ab6524b62a42959665be4e67b847
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Functions.Embedding where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Equiv open import Cubical.Foundations.Equiv.Properties open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Foundations.HLevels open import Cubical.Foundations.Transport open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Path open import Cubical.Foundations.Powerset open import Cubical.Foundations.Univalence using (ua) open import Cubical.Functions.Fibration open import Cubical.Relation.Nullary using (Discrete; yes; no) open import Cubical.Data.Nat using (ℕ; zero; suc) open import Cubical.Data.Sigma private variable ℓ ℓ₁ ℓ₂ : Level A B : Type ℓ f : A → B w x : A y z : B -- Embeddings are generalizations of injections. The usual -- definition of injection as: -- -- f x ≡ f y → x ≡ y -- -- is not well-behaved with higher h-levels, while embeddings -- are. isEmbedding : (A → B) → Type _ isEmbedding f = ∀ w x → isEquiv {A = w ≡ x} (cong f) isEmbeddingIsProp : isProp (isEmbedding f) isEmbeddingIsProp {f = f} = isPropΠ2 λ _ _ → isPropIsEquiv (cong f) -- If A and B are h-sets, then injective functions between -- them are embeddings. -- -- Note: It doesn't appear to be possible to omit either of -- the `isSet` hypotheses. injEmbedding : {f : A → B} → isSet A → isSet B → (∀{w x} → f w ≡ f x → w ≡ x) → isEmbedding f injEmbedding {f = f} iSA iSB inj w x = isoToIsEquiv (iso (cong f) inj sect retr) where sect : section (cong f) inj sect p = iSB (f w) (f x) _ p retr : retract (cong f) inj retr p = iSA w x _ p private lemma₀ : (p : y ≡ z) → fiber f y ≡ fiber f z lemma₀ {f = f} p = λ i → fiber f (p i) lemma₁ : isEmbedding f → ∀ x → isContr (fiber f (f x)) lemma₁ {f = f} iE x = value , path where value : fiber f (f x) value = (x , refl) path : ∀(fi : fiber f (f x)) → value ≡ fi path (w , p) i = case equiv-proof (iE w x) p of λ { ((q , sq) , _) → hfill (λ j → λ { (i = i0) → (x , refl) ; (i = i1) → (w , sq j) }) (inS (q (~ i) , λ j → f (q (~ i ∨ j)))) i1 } -- If `f` is an embedding, we'd expect the fibers of `f` to be -- propositions, like an injective function. hasPropFibers : (A → B) → Type _ hasPropFibers f = ∀ y → isProp (fiber f y) -- some notation _↪_ : Type ℓ₁ → Type ℓ₂ → Type (ℓ-max ℓ₁ ℓ₂) A ↪ B = Σ[ f ∈ (A → B) ] hasPropFibers f hasPropFibersIsProp : isProp (hasPropFibers f) hasPropFibersIsProp = isPropΠ (λ _ → isPropIsProp) isEmbedding→hasPropFibers : isEmbedding f → hasPropFibers f isEmbedding→hasPropFibers iE y (x , p) = subst (λ f → isProp f) (lemma₀ p) (isContr→isProp (lemma₁ iE x)) (x , p) private fibCong→PathP : {f : A → B} → (p : f w ≡ f x) → (fi : fiber (cong f) p) → PathP (λ i → fiber f (p i)) (w , refl) (x , refl) fibCong→PathP p (q , r) i = q i , λ j → r j i PathP→fibCong : {f : A → B} → (p : f w ≡ f x) → (pp : PathP (λ i → fiber f (p i)) (w , refl) (x , refl)) → fiber (cong f) p PathP→fibCong p pp = (λ i → fst (pp i)) , (λ j i → snd (pp i) j) PathP≡fibCong : {f : A → B} → (p : f w ≡ f x) → PathP (λ i → fiber f (p i)) (w , refl) (x , refl) ≡ fiber (cong f) p PathP≡fibCong p = isoToPath (iso (PathP→fibCong p) (fibCong→PathP p) (λ _ → refl) (λ _ → refl)) hasPropFibers→isEmbedding : hasPropFibers f → isEmbedding f hasPropFibers→isEmbedding {f = f} iP w x .equiv-proof p = subst isContr (PathP≡fibCong p) (isProp→isContrPathP (λ i → iP (p i)) fw fx) where fw : fiber f (f w) fw = (w , refl) fx : fiber f (f x) fx = (x , refl) isEmbedding≡hasPropFibers : isEmbedding f ≡ hasPropFibers f isEmbedding≡hasPropFibers = isoToPath (iso isEmbedding→hasPropFibers hasPropFibers→isEmbedding (λ _ → hasPropFibersIsProp _ _) (λ _ → isEmbeddingIsProp _ _)) isEquiv→hasPropFibers : isEquiv f → hasPropFibers f isEquiv→hasPropFibers e b = isContr→isProp (equiv-proof e b) isEquiv→isEmbedding : isEquiv f → isEmbedding f isEquiv→isEmbedding e = λ _ _ → congEquiv (_ , e) .snd iso→isEmbedding : ∀ {ℓ} {A B : Type ℓ} → (isom : Iso A B) ------------------------------- → isEmbedding (Iso.fun isom) iso→isEmbedding {A = A} {B} isom = (isEquiv→isEmbedding (equivIsEquiv (isoToEquiv isom))) isEmbedding→Injection : ∀ {ℓ} {A B C : Type ℓ} → (a : A -> B) → (e : isEmbedding a) ---------------------- → ∀ {f g : C -> A} -> ∀ x → (a (f x) ≡ a (g x)) ≡ (f x ≡ g x) isEmbedding→Injection a e {f = f} {g} x = sym (ua (cong a , e (f x) (g x))) -- if `f` has a retract, then `cong f` has, as well. If `B` is a set, then `cong f` -- further has a section, making `f` an embedding. module _ {f : A → B} (retf : hasRetract f) where open Σ retf renaming (fst to g ; snd to ϕ) congRetract : f w ≡ f x → w ≡ x congRetract {w = w} {x = x} p = sym (ϕ w) ∙∙ cong g p ∙∙ ϕ x isRetractCongRetract : retract (cong {x = w} {y = x} f) congRetract isRetractCongRetract p = transport (PathP≡doubleCompPathˡ _ _ _ _) (λ i j → ϕ (p j) i) hasRetract→hasRetractCong : hasRetract (cong {x = w} {y = x} f) hasRetract→hasRetractCong = congRetract , isRetractCongRetract retractableIntoSet→isEmbedding : isSet B → isEmbedding f retractableIntoSet→isEmbedding setB w x = isoToIsEquiv (iso (cong f) congRetract (λ _ → setB _ _ _ _) (hasRetract→hasRetractCong .snd)) Embedding-into-Discrete→Discrete : A ↪ B → Discrete B → Discrete A Embedding-into-Discrete→Discrete (f , propFibers) _≟_ x y with f x ≟ f y ... | yes p = yes (cong fst (propFibers (f y) (x , p) (y , refl))) ... | no ¬p = no (¬p ∘ cong f) Embedding-into-isProp→isProp : A ↪ B → isProp B → isProp A Embedding-into-isProp→isProp (f , hasPropFibers-f) isProp-B x y = invIsEq (hasPropFibers→isEmbedding hasPropFibers-f x y) (isProp-B (f x) (f y)) Embedding-into-isSet→isSet : A ↪ B → isSet B → isSet A Embedding-into-isSet→isSet (f , hasPropFibers-f) isSet-B x y p q = p ≡⟨ sym (retIsEq isEquiv-cong-f p) ⟩ cong-f⁻¹ (cong f p) ≡⟨ cong cong-f⁻¹ cong-f-p≡cong-f-q ⟩ cong-f⁻¹ (cong f q) ≡⟨ retIsEq isEquiv-cong-f q ⟩ q ∎ where cong-f-p≡cong-f-q = isSet-B (f x) (f y) (cong f p) (cong f q) isEquiv-cong-f = hasPropFibers→isEmbedding hasPropFibers-f x y cong-f⁻¹ = invIsEq isEquiv-cong-f Embedding-into-hLevel→hLevel : ∀ n → A ↪ B → isOfHLevel (suc n) B → isOfHLevel (suc n) A Embedding-into-hLevel→hLevel zero = Embedding-into-isProp→isProp Embedding-into-hLevel→hLevel (suc n) (f , hasPropFibers-f) Blvl x y = isOfHLevelRespectEquiv (suc n) (invEquiv equiv) subLvl where equiv : (x ≡ y) ≃ (f x ≡ f y) equiv .fst = cong f equiv .snd = hasPropFibers→isEmbedding hasPropFibers-f x y subLvl : isOfHLevel (suc n) (f x ≡ f y) subLvl = Blvl (f x) (f y) -- We now show that the powerset is the subtype classifier -- i.e. ℙ X ≃ Σ[A ∈ Type ℓ] (A ↪ X) Embedding→Subset : {X : Type ℓ} → Σ[ A ∈ Type ℓ ] (A ↪ X) → ℙ X Embedding→Subset (_ , f , isPropFiber) x = fiber f x , isPropFiber x Subset→Embedding : {X : Type ℓ} → ℙ X → Σ[ A ∈ Type ℓ ] (A ↪ X) Subset→Embedding {X = X} A = D , fst , ψ where D = Σ[ x ∈ X ] x ∈ A ψ : hasPropFibers fst ψ x ((y , y∈A) , y≡x) ((z , z∈A) , z≡x) = ΣPathP (r , q) where p : y ≡ z p = y≡x ∙ sym z≡x r : (y , y∈A) ≡ (z , z∈A) r = Σ≡Prop (∈-isProp A) p q : PathP (λ i → p i ≡ x) y≡x z≡x q i j = hcomp (λ k → λ { (j = i1) → x ; (i = i0) → y≡x j ; (i = i1) → z≡x (~ k ∨ j) }) (y≡x (i ∨ j)) Subset→Embedding→Subset : {X : Type ℓ} → section (Embedding→Subset {ℓ} {X}) (Subset→Embedding {ℓ} {X}) Subset→Embedding→Subset _ = funExt λ x → Σ≡Prop (λ _ → isPropIsProp) (ua (FiberIso.fiberEquiv _ x)) Embedding→Subset→Embedding : {X : Type ℓ} → retract (Embedding→Subset {ℓ} {X}) (Subset→Embedding {ℓ} {X}) Embedding→Subset→Embedding {ℓ = ℓ} {X = X} (A , f , ψ) = cong (Σ-assoc-≃ .fst) p where χ = Subset→Embedding (Embedding→Subset (A , f , ψ)) .snd .snd p : (((Σ[ x ∈ X ] fiber f x) , fst) , χ) ≡ ((A , f) , ψ) p = Σ≡Prop (λ _ → hasPropFibersIsProp) (equivToIso (fibrationEquiv X ℓ) .Iso.leftInv (A , f)) Subset≃Embedding : {X : Type ℓ} → ℙ X ≃ (Σ[ A ∈ Type ℓ ] (A ↪ X)) Subset≃Embedding = isoToEquiv (iso Subset→Embedding Embedding→Subset Embedding→Subset→Embedding Subset→Embedding→Subset) Subset≡Embedding : {X : Type ℓ} → ℙ X ≡ (Σ[ A ∈ Type ℓ ] (A ↪ X)) Subset≡Embedding = ua Subset≃Embedding
34.035433
105
0.605205
593702ff4b28b413f5850fa33ebfb3d45309f04f
4,143
agda
Agda
LibraBFT/Impl/Util/RWST.agda
cwjnkins/bft-consensus-agda
71aa2168e4875ffdeece9ba7472ee3cee5fa9084
[ "UPL-1.0" ]
null
null
null
LibraBFT/Impl/Util/RWST.agda
cwjnkins/bft-consensus-agda
71aa2168e4875ffdeece9ba7472ee3cee5fa9084
[ "UPL-1.0" ]
null
null
null
LibraBFT/Impl/Util/RWST.agda
cwjnkins/bft-consensus-agda
71aa2168e4875ffdeece9ba7472ee3cee5fa9084
[ "UPL-1.0" ]
null
null
null
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020, 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import Optics.All open import LibraBFT.Prelude -- This module defines syntax and functionality modeling an RWST monad, -- which we use to define an implementation. -- TODO-2: this module is independent of any particular implementation -- and arguably belongs somewhere more general, such as next to Optics. module LibraBFT.Impl.Util.RWST (ℓ-State : Level) where ---------------- -- RWST Monad -- ---------------- -- 'Fake' RWST monad; fake in the sense -- we use the free monoid on the writer (aka. lists) -- instad of requiring it to be a monoid in a separate -- argument. RWST-Raw : Set → Set → Set ℓ-State → {ℓ-Result : Level} → Set ℓ-Result → Set (ℓ-State ℓ⊔ ℓ-Result) RWST-Raw Ev Wr St R = Ev → St → (R × St × List Wr) -- Wrap it in a type; prevents spurious evaluation and -- obliges us to 'run' the monad. data RWST (Ev Wr : Set) (St : Set ℓ-State) {ℓ-Result : Level} : Set ℓ-Result → Set (ℓ-State ℓ⊔ ℓ-Result) where rwst : ∀ {R : Set ℓ-Result} → RWST-Raw Ev Wr St {ℓ-Result} R → RWST Ev Wr St R private variable Ev Wr : Set ℓ-A ℓ-B : Level A : Set ℓ-A B : Set ℓ-B St : Set ℓ-State RWST-run : RWST Ev Wr St A → Ev → St → (A × St × List Wr) RWST-run (rwst f) = f RWST-bind : RWST Ev Wr St A → (A → RWST Ev Wr St B) → RWST Ev Wr St B RWST-bind x f = rwst (λ ev st → let (a , st' , wr₀) = RWST-run x ev st (b , st'' , wr₁) = RWST-run (f a) ev st' in b , st'' , wr₀ ++ wr₁) RWST-return : A → RWST Ev Wr St A RWST-return x = rwst (λ _ st → x , st , []) -- Functorial Functionality RWST-map : (A → B) → RWST Ev Wr St A → RWST Ev Wr St B RWST-map f x = rwst (λ ev st → let (a , st' , wr) = RWST-run x ev st in f a , st' , wr) -- Provided Functionality get : RWST Ev Wr St {ℓ-State} St get = rwst (λ _ st → st , st , []) gets : (St → A) → RWST Ev Wr St A gets f = RWST-bind get (RWST-return ∘ f) {- TODO-2: extend Lens to work with different levels and reinstate this Note that a preliminary exploration by @cwjnkins revealed this to be more painful than it's worth, at least until we have a compelling use case for St to be at a higher level. In the meantime, we have defined use and modify' specifically for our state type, which is in Set; see LibraBFT.Impl.Util.Util. use : Lens St A → RWST Ev Wr St A use f = RWST-bind get (RWST-return ∘ (_^∙ f)) -} modify : (St → St) → RWST Ev Wr St Unit modify f = rwst (λ _ st → unit , f st , []) {- TODO-2: extend Lens to work with different levels and reinstate this See comment above for use modify' : ∀ {A} → Lens St A → A → RWST Ev Wr St Unit modify' l val = modify λ x → x [ l := val ] syntax modify' l val = l ∙= val -} put : St → RWST Ev Wr St Unit put s = modify (λ _ → s) tell : List Wr → RWST Ev Wr St Unit tell wrs = rwst (λ _ st → unit , st , wrs) tell1 : Wr → RWST Ev Wr St Unit tell1 wr = tell (wr ∷ []) ask : RWST Ev Wr St Ev ask = rwst (λ ev st → (ev , st , [])) -- Easy to use do notation; i.e.; module RWST-do where infixl 1 _>>=_ _>>_ _>>=_ : RWST Ev Wr St A → (A → RWST Ev Wr St B) → RWST Ev Wr St B _>>=_ = RWST-bind _>>_ : RWST Ev Wr St A → RWST Ev Wr St B → RWST Ev Wr St B x >> y = x >>= λ _ → y return : A → RWST Ev Wr St A return = RWST-return pure : A → RWST Ev Wr St A pure = return infixr 4 _<$>_ _<$>_ : (A → B) → RWST Ev Wr St A → RWST Ev Wr St B _<$>_ = RWST-map private ex₀ : RWST ℕ Wr (Lift ℓ-State ℕ) ℕ ex₀ = do x₁ ← get x₂ ← ask return (lower x₁ + x₂) where open RWST-do -- Derived Functionality maybeMP : RWST Ev Wr St (Maybe A) → B → (A → RWST Ev Wr St B) → RWST Ev Wr St B maybeMP ma b f = do x ← ma case x of λ { (just r) → f r ; nothing → return b } where open RWST-do
29.592857
112
0.5916
57ce5d72918f4b4e13f6b72b8bf6577741f57d37
142
agda
Agda
test/fail/IrrelevantModuleParameter1.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
1
2018-10-10T17:08:44.000Z
2018-10-10T17:08:44.000Z
test/fail/IrrelevantModuleParameter1.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
test/fail/IrrelevantModuleParameter1.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
module IrrelevantModuleParameter1 (A : Set) .(a : A) where postulate P : A -> Set p : P a -- cannot use a here, because it is irrelevant
23.666667
58
0.669014
41b431be371e2e72a44d4eca5b9531841c267a3b
1,011
agda
Agda
archive/agda-3/src/AgdaFeatureInstanceResolutionViaConstraint.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
archive/agda-3/src/AgdaFeatureInstanceResolutionViaConstraint.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
1
2019-04-29T00:35:04.000Z
2019-05-11T23:33:04.000Z
archive/agda-3/src/AgdaFeatureInstanceResolutionViaConstraint.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
{-# OPTIONS --allow-unsolved-metas #-} module AgdaFeatureInstanceResolutionViaConstraint where postulate A : Set postulate y : A Appy : (A → Set) → Set Appy H = H y record Foo (T : Set) : Set where field foo : T open Foo ⦃ … ⦄ public postulate S : A → Set record Failing : Set where no-eta-equality postulate instance FooInstance : {R : A → Set} → Foo (Appy R) works1 : Appy S works1 = foo ⦃ FooInstance {R = S} ⦄ fails2 : Appy S fails2 = foo ⦃ FooInstance {R = {!!}} ⦄ {- [21] (_R_11 y) =< (S y) : Set _12 := λ → Foo.foo FooInstance [blocked by problem 21] -} fails3 : Appy S fails3 = foo record Succeeds : Set where no-eta-equality record Bar (B : A → Set) : Set where no-eta-equality postulate instance BarInstance : Bar S instance FooInstance : {R : A → Set} ⦃ _ : Bar R ⦄ → Foo (Appy R) works1 : Appy S works1 = foo ⦃ FooInstance {R = S} ⦄ works2 : Appy S works2 = foo ⦃ FooInstance {R = {!!}} ⦄ works3 : Appy S works3 = foo
18.381818
69
0.60633
4d173c6ca7f5eee294dcaf24d565acc211b0d0e8
1,883
agda
Agda
proto/agda/Equality.agda
Riib11/monadic-equality
525a3d42431bf5dc6837939441f389ea5cead937
[ "BSD-3-Clause" ]
null
null
null
proto/agda/Equality.agda
Riib11/monadic-equality
525a3d42431bf5dc6837939441f389ea5cead937
[ "BSD-3-Clause" ]
1
2021-02-25T15:49:12.000Z
2021-02-25T15:49:12.000Z
proto/agda/Equality.agda
Riib11/monadic-equality
525a3d42431bf5dc6837939441f389ea5cead937
[ "BSD-3-Clause" ]
null
null
null
module Equality where open import Function using (_∘_) open import Relation.Binary.PropositionalEquality using (_≡_) open import Data.Product using (_×_; _,_; ∃-syntax; proj₁; proj₂) open import Data.Bool using (Bool; true; false) open import Data.Nat using (ℕ) -- -- Relation -- record Relation (R : Set → Set) (A : Set) : Set where field relate : A × A → Bool to-witness : ∀ x → relate x ≡ true → R A from-witness : R A → ∃[ x ] (relate x ≡ true) to-from-witness : ∀ x d → x ≡ (proj₁ ∘ from-witness) (to-witness x d) Related : A × A → Set Related (x , y) = R A × relate (x , y) ≡ true -- Properties IsReflexive : ∀ R A (rel : Relation R A) → Set IsReflexive R A rel = ∀ x → Related (x , x) where open Relation rel IsSymmetric : ∀ R A (rel : Relation R A) → Set IsSymmetric R A rel = ∀ x y → Related (x , y) → Related (y , x) where open Relation rel IsTransitive : ∀ R A (rel : Relation R A) → Set IsTransitive R A rel = ∀ x y z → Related (x , y) → Related (y , z) → Related (x , z) where open Relation rel -- -- Equality -- record Equality (E : Set → Set) (A : Set) : Set where field rel : Relation E A isReflexive : IsReflexive E A rel isSymmetric : IsSymmetric E A rel isTransitive : IsTransitive E A rel -- -- SMT Equality -- postulate -- datatype EqualitySMT : ∀ A → A → A → Set -- instances equalitySMT-Bool : Equality EqualitySMT Bool equalitySMT-ℕ : Equality EqualitySMT ℕ -- eq-smt : (A : Set) (x y : A) → Bool -- -- Propositional Equality -- postulate eq-prop : ∀ (A : Set) (x y : A) → Bool data EqualityProp : ∀ A → A → A → Set where injection-SMT : ∀ (A : Set) (equ : Equality EqualitySMT A) x y → Relation.Related EqualitySMT (x , y) → Relation.Related EqualityProp (x , y) -- extensional : -- ∀ (A B : Set) f g → -- (∀ x → EqualityProp
22.416667
84
0.603824
312b72a4dddb2fb2cb642ca4e8b0fc172a55196b
19,430
agda
Agda
agda-stdlib-0.9/src/Algebra/RingSolver.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
1
2016-10-20T15:52:05.000Z
2016-10-20T15:52:05.000Z
agda-stdlib-0.9/src/Algebra/RingSolver.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
null
null
null
agda-stdlib-0.9/src/Algebra/RingSolver.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
null
null
null
------------------------------------------------------------------------ -- The Agda standard library -- -- Solver for commutative ring or semiring equalities ------------------------------------------------------------------------ -- Uses ideas from the Coq ring tactic. See "Proving Equalities in a -- Commutative Ring Done Right in Coq" by Grégoire and Mahboubi. The -- code below is not optimised like theirs, though (in particular, our -- Horner normal forms are not sparse). open import Algebra open import Algebra.RingSolver.AlmostCommutativeRing open import Relation.Binary module Algebra.RingSolver {r₁ r₂ r₃} (Coeff : RawRing r₁) -- Coefficient "ring". (R : AlmostCommutativeRing r₂ r₃) -- Main "ring". (morphism : Coeff -Raw-AlmostCommutative⟶ R) (_coeff≟_ : Decidable (Induced-equivalence morphism)) where import Algebra.RingSolver.Lemmas as L; open L Coeff R morphism private module C = RawRing Coeff open AlmostCommutativeRing R renaming (zero to zero*) import Algebra.FunctionProperties as P; open P _≈_ open import Algebra.Morphism open _-Raw-AlmostCommutative⟶_ morphism renaming (⟦_⟧ to ⟦_⟧′) import Algebra.Operations as Ops; open Ops semiring open import Relation.Binary open import Relation.Nullary.Core import Relation.Binary.EqReasoning as EqR; open EqR setoid import Relation.Binary.PropositionalEquality as PropEq import Relation.Binary.Reflection as Reflection open import Data.Empty open import Data.Product open import Data.Nat as Nat using (ℕ; suc; zero) open import Data.Fin as Fin using (Fin; zero; suc) open import Data.Vec open import Function open import Level using (_⊔_) infix 9 :-_ -H_ -N_ infixr 9 _:^_ _^N_ infix 8 _*x+_ _*x+HN_ _*x+H_ infixl 8 _:*_ _*N_ _*H_ _*NH_ _*HN_ infixl 7 _:+_ _:-_ _+H_ _+N_ infix 4 _≈H_ _≈N_ ------------------------------------------------------------------------ -- Polynomials data Op : Set where [+] : Op [*] : Op -- The polynomials are indexed by the number of variables. data Polynomial (m : ℕ) : Set r₁ where op : (o : Op) (p₁ : Polynomial m) (p₂ : Polynomial m) → Polynomial m con : (c : C.Carrier) → Polynomial m var : (x : Fin m) → Polynomial m _:^_ : (p : Polynomial m) (n : ℕ) → Polynomial m :-_ : (p : Polynomial m) → Polynomial m -- Short-hand notation. _:+_ : ∀ {n} → Polynomial n → Polynomial n → Polynomial n _:+_ = op [+] _:*_ : ∀ {n} → Polynomial n → Polynomial n → Polynomial n _:*_ = op [*] _:-_ : ∀ {n} → Polynomial n → Polynomial n → Polynomial n x :- y = x :+ :- y -- Semantics. sem : Op → Op₂ Carrier sem [+] = _+_ sem [*] = _*_ ⟦_⟧ : ∀ {n} → Polynomial n → Vec Carrier n → Carrier ⟦ op o p₁ p₂ ⟧ ρ = ⟦ p₁ ⟧ ρ ⟨ sem o ⟩ ⟦ p₂ ⟧ ρ ⟦ con c ⟧ ρ = ⟦ c ⟧′ ⟦ var x ⟧ ρ = lookup x ρ ⟦ p :^ n ⟧ ρ = ⟦ p ⟧ ρ ^ n ⟦ :- p ⟧ ρ = - ⟦ p ⟧ ρ ------------------------------------------------------------------------ -- Normal forms of polynomials -- A univariate polynomial of degree d, -- -- p = a_d x^d + a_{d-1}x^{d-1} + … + a_0, -- -- is represented in Horner normal form by -- -- p = ((a_d x + a_{d-1})x + …)x + a_0. -- -- Note that Horner normal forms can be represented as lists, with the -- empty list standing for the zero polynomial of degree "-1". -- -- Given this representation of univariate polynomials over an -- arbitrary ring, polynomials in any number of variables over the -- ring C can be represented via the isomorphisms -- -- C[] ≅ C -- -- and -- -- C[X_0,...X_{n+1}] ≅ C[X_0,...,X_n][X_{n+1}]. mutual -- The polynomial representations are indexed by the polynomial's -- degree. data HNF : ℕ → Set r₁ where ∅ : ∀ {n} → HNF (suc n) _*x+_ : ∀ {n} → HNF (suc n) → Normal n → HNF (suc n) data Normal : ℕ → Set r₁ where con : C.Carrier → Normal zero poly : ∀ {n} → HNF (suc n) → Normal (suc n) -- Note that the data types above do /not/ ensure uniqueness of -- normal forms: the zero polynomial of degree one can be -- represented using both ∅ and ∅ *x+ con C.0#. mutual -- Semantics. ⟦_⟧H : ∀ {n} → HNF (suc n) → Vec Carrier (suc n) → Carrier ⟦ ∅ ⟧H _ = 0# ⟦ p *x+ c ⟧H (x ∷ ρ) = ⟦ p ⟧H (x ∷ ρ) * x + ⟦ c ⟧N ρ ⟦_⟧N : ∀ {n} → Normal n → Vec Carrier n → Carrier ⟦ con c ⟧N _ = ⟦ c ⟧′ ⟦ poly p ⟧N ρ = ⟦ p ⟧H ρ ------------------------------------------------------------------------ -- Equality and decidability mutual -- Equality. data _≈H_ : ∀ {n} → HNF n → HNF n → Set (r₁ ⊔ r₃) where ∅ : ∀ {n} → _≈H_ {suc n} ∅ ∅ _*x+_ : ∀ {n} {p₁ p₂ : HNF (suc n)} {c₁ c₂ : Normal n} → p₁ ≈H p₂ → c₁ ≈N c₂ → (p₁ *x+ c₁) ≈H (p₂ *x+ c₂) data _≈N_ : ∀ {n} → Normal n → Normal n → Set (r₁ ⊔ r₃) where con : ∀ {c₁ c₂} → ⟦ c₁ ⟧′ ≈ ⟦ c₂ ⟧′ → con c₁ ≈N con c₂ poly : ∀ {n} {p₁ p₂ : HNF (suc n)} → p₁ ≈H p₂ → poly p₁ ≈N poly p₂ mutual -- Equality is decidable. _≟H_ : ∀ {n} → Decidable (_≈H_ {n = n}) ∅ ≟H ∅ = yes ∅ ∅ ≟H (_ *x+ _) = no λ() (_ *x+ _) ≟H ∅ = no λ() (p₁ *x+ c₁) ≟H (p₂ *x+ c₂) with p₁ ≟H p₂ | c₁ ≟N c₂ ... | yes p₁≈p₂ | yes c₁≈c₂ = yes (p₁≈p₂ *x+ c₁≈c₂) ... | _ | no c₁≉c₂ = no λ { (_ *x+ c₁≈c₂) → c₁≉c₂ c₁≈c₂ } ... | no p₁≉p₂ | _ = no λ { (p₁≈p₂ *x+ _) → p₁≉p₂ p₁≈p₂ } _≟N_ : ∀ {n} → Decidable (_≈N_ {n = n}) con c₁ ≟N con c₂ with c₁ coeff≟ c₂ ... | yes c₁≈c₂ = yes (con c₁≈c₂) ... | no c₁≉c₂ = no λ { (con c₁≈c₂) → c₁≉c₂ c₁≈c₂} poly p₁ ≟N poly p₂ with p₁ ≟H p₂ ... | yes p₁≈p₂ = yes (poly p₁≈p₂) ... | no p₁≉p₂ = no λ { (poly p₁≈p₂) → p₁≉p₂ p₁≈p₂ } mutual -- The semantics respect the equality relations defined above. ⟦_⟧H-cong : ∀ {n} {p₁ p₂ : HNF (suc n)} → p₁ ≈H p₂ → ∀ ρ → ⟦ p₁ ⟧H ρ ≈ ⟦ p₂ ⟧H ρ ⟦ ∅ ⟧H-cong _ = refl ⟦ p₁≈p₂ *x+ c₁≈c₂ ⟧H-cong (x ∷ ρ) = (⟦ p₁≈p₂ ⟧H-cong (x ∷ ρ) ⟨ *-cong ⟩ refl) ⟨ +-cong ⟩ ⟦ c₁≈c₂ ⟧N-cong ρ ⟦_⟧N-cong : ∀ {n} {p₁ p₂ : Normal n} → p₁ ≈N p₂ → ∀ ρ → ⟦ p₁ ⟧N ρ ≈ ⟦ p₂ ⟧N ρ ⟦ con c₁≈c₂ ⟧N-cong _ = c₁≈c₂ ⟦ poly p₁≈p₂ ⟧N-cong ρ = ⟦ p₁≈p₂ ⟧H-cong ρ ------------------------------------------------------------------------ -- Ring operations on Horner normal forms -- Zero. 0H : ∀ {n} → HNF (suc n) 0H = ∅ 0N : ∀ {n} → Normal n 0N {zero} = con C.0# 0N {suc n} = poly 0H mutual -- One. 1H : ∀ {n} → HNF (suc n) 1H {n} = ∅ *x+ 1N {n} 1N : ∀ {n} → Normal n 1N {zero} = con C.1# 1N {suc n} = poly 1H -- A simplifying variant of _*x+_. _*x+HN_ : ∀ {n} → HNF (suc n) → Normal n → HNF (suc n) (p *x+ c′) *x+HN c = (p *x+ c′) *x+ c ∅ *x+HN c with c ≟N 0N ... | yes c≈0 = ∅ ... | no c≉0 = ∅ *x+ c mutual -- Addition. _+H_ : ∀ {n} → HNF (suc n) → HNF (suc n) → HNF (suc n) ∅ +H p = p p +H ∅ = p (p₁ *x+ c₁) +H (p₂ *x+ c₂) = (p₁ +H p₂) *x+HN (c₁ +N c₂) _+N_ : ∀ {n} → Normal n → Normal n → Normal n con c₁ +N con c₂ = con (c₁ C.+ c₂) poly p₁ +N poly p₂ = poly (p₁ +H p₂) -- Multiplication. _*x+H_ : ∀ {n} → HNF (suc n) → HNF (suc n) → HNF (suc n) p₁ *x+H (p₂ *x+ c) = (p₁ +H p₂) *x+HN c ∅ *x+H ∅ = ∅ (p₁ *x+ c) *x+H ∅ = (p₁ *x+ c) *x+ 0N mutual _*NH_ : ∀ {n} → Normal n → HNF (suc n) → HNF (suc n) c *NH ∅ = ∅ c *NH (p *x+ c′) with c ≟N 0N ... | yes c≈0 = ∅ ... | no c≉0 = (c *NH p) *x+ (c *N c′) _*HN_ : ∀ {n} → HNF (suc n) → Normal n → HNF (suc n) ∅ *HN c = ∅ (p *x+ c′) *HN c with c ≟N 0N ... | yes c≈0 = ∅ ... | no c≉0 = (p *HN c) *x+ (c′ *N c) _*H_ : ∀ {n} → HNF (suc n) → HNF (suc n) → HNF (suc n) ∅ *H _ = ∅ (_ *x+ _) *H ∅ = ∅ (p₁ *x+ c₁) *H (p₂ *x+ c₂) = ((p₁ *H p₂) *x+H (p₁ *HN c₂ +H c₁ *NH p₂)) *x+HN (c₁ *N c₂) _*N_ : ∀ {n} → Normal n → Normal n → Normal n con c₁ *N con c₂ = con (c₁ C.* c₂) poly p₁ *N poly p₂ = poly (p₁ *H p₂) -- Exponentiation. _^N_ : ∀ {n} → Normal n → ℕ → Normal n p ^N zero = 1N p ^N suc n = p *N (p ^N n) mutual -- Negation. -H_ : ∀ {n} → HNF (suc n) → HNF (suc n) -H p = (-N 1N) *NH p -N_ : ∀ {n} → Normal n → Normal n -N con c = con (C.- c) -N poly p = poly (-H p) ------------------------------------------------------------------------ -- Normalisation normalise-con : ∀ {n} → C.Carrier → Normal n normalise-con {zero} c = con c normalise-con {suc n} c = poly (∅ *x+HN normalise-con c) normalise-var : ∀ {n} → Fin n → Normal n normalise-var zero = poly ((∅ *x+ 1N) *x+ 0N) normalise-var (suc i) = poly (∅ *x+HN normalise-var i) normalise : ∀ {n} → Polynomial n → Normal n normalise (op [+] t₁ t₂) = normalise t₁ +N normalise t₂ normalise (op [*] t₁ t₂) = normalise t₁ *N normalise t₂ normalise (con c) = normalise-con c normalise (var i) = normalise-var i normalise (t :^ k) = normalise t ^N k normalise (:- t) = -N normalise t -- Evaluation after normalisation. ⟦_⟧↓ : ∀ {n} → Polynomial n → Vec Carrier n → Carrier ⟦ p ⟧↓ ρ = ⟦ normalise p ⟧N ρ ------------------------------------------------------------------------ -- Homomorphism lemmas 0N-homo : ∀ {n} ρ → ⟦ 0N {n} ⟧N ρ ≈ 0# 0N-homo [] = 0-homo 0N-homo (x ∷ ρ) = refl -- If c is equal to 0N, then c is semantically equal to 0#. 0≈⟦0⟧ : ∀ {n} {c : Normal n} → c ≈N 0N → ∀ ρ → 0# ≈ ⟦ c ⟧N ρ 0≈⟦0⟧ {c = c} c≈0 ρ = sym (begin ⟦ c ⟧N ρ ≈⟨ ⟦ c≈0 ⟧N-cong ρ ⟩ ⟦ 0N ⟧N ρ ≈⟨ 0N-homo ρ ⟩ 0# ∎) 1N-homo : ∀ {n} ρ → ⟦ 1N {n} ⟧N ρ ≈ 1# 1N-homo [] = 1-homo 1N-homo (x ∷ ρ) = begin 0# * x + ⟦ 1N ⟧N ρ ≈⟨ refl ⟨ +-cong ⟩ 1N-homo ρ ⟩ 0# * x + 1# ≈⟨ lemma₆ _ _ ⟩ 1# ∎ -- _*x+HN_ is equal to _*x+_. *x+HN≈*x+ : ∀ {n} (p : HNF (suc n)) (c : Normal n) → ∀ ρ → ⟦ p *x+HN c ⟧H ρ ≈ ⟦ p *x+ c ⟧H ρ *x+HN≈*x+ (p *x+ c′) c ρ = refl *x+HN≈*x+ ∅ c (x ∷ ρ) with c ≟N 0N ... | yes c≈0 = begin 0# ≈⟨ 0≈⟦0⟧ c≈0 ρ ⟩ ⟦ c ⟧N ρ ≈⟨ sym $ lemma₆ _ _ ⟩ 0# * x + ⟦ c ⟧N ρ ∎ ... | no c≉0 = refl ∅*x+HN-homo : ∀ {n} (c : Normal n) x ρ → ⟦ ∅ *x+HN c ⟧H (x ∷ ρ) ≈ ⟦ c ⟧N ρ ∅*x+HN-homo c x ρ with c ≟N 0N ... | yes c≈0 = 0≈⟦0⟧ c≈0 ρ ... | no c≉0 = lemma₆ _ _ mutual +H-homo : ∀ {n} (p₁ p₂ : HNF (suc n)) → ∀ ρ → ⟦ p₁ +H p₂ ⟧H ρ ≈ ⟦ p₁ ⟧H ρ + ⟦ p₂ ⟧H ρ +H-homo ∅ p₂ ρ = sym (proj₁ +-identity _) +H-homo (p₁ *x+ x₁) ∅ ρ = sym (proj₂ +-identity _) +H-homo (p₁ *x+ c₁) (p₂ *x+ c₂) (x ∷ ρ) = begin ⟦ (p₁ +H p₂) *x+HN (c₁ +N c₂) ⟧H (x ∷ ρ) ≈⟨ *x+HN≈*x+ (p₁ +H p₂) (c₁ +N c₂) (x ∷ ρ) ⟩ ⟦ p₁ +H p₂ ⟧H (x ∷ ρ) * x + ⟦ c₁ +N c₂ ⟧N ρ ≈⟨ (+H-homo p₁ p₂ (x ∷ ρ) ⟨ *-cong ⟩ refl) ⟨ +-cong ⟩ +N-homo c₁ c₂ ρ ⟩ (⟦ p₁ ⟧H (x ∷ ρ) + ⟦ p₂ ⟧H (x ∷ ρ)) * x + (⟦ c₁ ⟧N ρ + ⟦ c₂ ⟧N ρ) ≈⟨ lemma₁ _ _ _ _ _ ⟩ (⟦ p₁ ⟧H (x ∷ ρ) * x + ⟦ c₁ ⟧N ρ) + (⟦ p₂ ⟧H (x ∷ ρ) * x + ⟦ c₂ ⟧N ρ) ∎ +N-homo : ∀ {n} (p₁ p₂ : Normal n) → ∀ ρ → ⟦ p₁ +N p₂ ⟧N ρ ≈ ⟦ p₁ ⟧N ρ + ⟦ p₂ ⟧N ρ +N-homo (con c₁) (con c₂) _ = +-homo _ _ +N-homo (poly p₁) (poly p₂) ρ = +H-homo p₁ p₂ ρ *x+H-homo : ∀ {n} (p₁ p₂ : HNF (suc n)) x ρ → ⟦ p₁ *x+H p₂ ⟧H (x ∷ ρ) ≈ ⟦ p₁ ⟧H (x ∷ ρ) * x + ⟦ p₂ ⟧H (x ∷ ρ) *x+H-homo ∅ ∅ _ _ = sym $ lemma₆ _ _ *x+H-homo (p *x+ c) ∅ x ρ = begin ⟦ p *x+ c ⟧H (x ∷ ρ) * x + ⟦ 0N ⟧N ρ ≈⟨ refl ⟨ +-cong ⟩ 0N-homo ρ ⟩ ⟦ p *x+ c ⟧H (x ∷ ρ) * x + 0# ∎ *x+H-homo p₁ (p₂ *x+ c₂) x ρ = begin ⟦ (p₁ +H p₂) *x+HN c₂ ⟧H (x ∷ ρ) ≈⟨ *x+HN≈*x+ (p₁ +H p₂) c₂ (x ∷ ρ) ⟩ ⟦ p₁ +H p₂ ⟧H (x ∷ ρ) * x + ⟦ c₂ ⟧N ρ ≈⟨ (+H-homo p₁ p₂ (x ∷ ρ) ⟨ *-cong ⟩ refl) ⟨ +-cong ⟩ refl ⟩ (⟦ p₁ ⟧H (x ∷ ρ) + ⟦ p₂ ⟧H (x ∷ ρ)) * x + ⟦ c₂ ⟧N ρ ≈⟨ lemma₀ _ _ _ _ ⟩ ⟦ p₁ ⟧H (x ∷ ρ) * x + (⟦ p₂ ⟧H (x ∷ ρ) * x + ⟦ c₂ ⟧N ρ) ∎ mutual *NH-homo : ∀ {n} (c : Normal n) (p : HNF (suc n)) x ρ → ⟦ c *NH p ⟧H (x ∷ ρ) ≈ ⟦ c ⟧N ρ * ⟦ p ⟧H (x ∷ ρ) *NH-homo c ∅ x ρ = sym (proj₂ zero* _) *NH-homo c (p *x+ c′) x ρ with c ≟N 0N ... | yes c≈0 = begin 0# ≈⟨ sym (proj₁ zero* _) ⟩ 0# * (⟦ p ⟧H (x ∷ ρ) * x + ⟦ c′ ⟧N ρ) ≈⟨ 0≈⟦0⟧ c≈0 ρ ⟨ *-cong ⟩ refl ⟩ ⟦ c ⟧N ρ * (⟦ p ⟧H (x ∷ ρ) * x + ⟦ c′ ⟧N ρ) ∎ ... | no c≉0 = begin ⟦ c *NH p ⟧H (x ∷ ρ) * x + ⟦ c *N c′ ⟧N ρ ≈⟨ (*NH-homo c p x ρ ⟨ *-cong ⟩ refl) ⟨ +-cong ⟩ *N-homo c c′ ρ ⟩ (⟦ c ⟧N ρ * ⟦ p ⟧H (x ∷ ρ)) * x + (⟦ c ⟧N ρ * ⟦ c′ ⟧N ρ) ≈⟨ lemma₃ _ _ _ _ ⟩ ⟦ c ⟧N ρ * (⟦ p ⟧H (x ∷ ρ) * x + ⟦ c′ ⟧N ρ) ∎ *HN-homo : ∀ {n} (p : HNF (suc n)) (c : Normal n) x ρ → ⟦ p *HN c ⟧H (x ∷ ρ) ≈ ⟦ p ⟧H (x ∷ ρ) * ⟦ c ⟧N ρ *HN-homo ∅ c x ρ = sym (proj₁ zero* _) *HN-homo (p *x+ c′) c x ρ with c ≟N 0N ... | yes c≈0 = begin 0# ≈⟨ sym (proj₂ zero* _) ⟩ (⟦ p ⟧H (x ∷ ρ) * x + ⟦ c′ ⟧N ρ) * 0# ≈⟨ refl ⟨ *-cong ⟩ 0≈⟦0⟧ c≈0 ρ ⟩ (⟦ p ⟧H (x ∷ ρ) * x + ⟦ c′ ⟧N ρ) * ⟦ c ⟧N ρ ∎ ... | no c≉0 = begin ⟦ p *HN c ⟧H (x ∷ ρ) * x + ⟦ c′ *N c ⟧N ρ ≈⟨ (*HN-homo p c x ρ ⟨ *-cong ⟩ refl) ⟨ +-cong ⟩ *N-homo c′ c ρ ⟩ (⟦ p ⟧H (x ∷ ρ) * ⟦ c ⟧N ρ) * x + (⟦ c′ ⟧N ρ * ⟦ c ⟧N ρ) ≈⟨ lemma₂ _ _ _ _ ⟩ (⟦ p ⟧H (x ∷ ρ) * x + ⟦ c′ ⟧N ρ) * ⟦ c ⟧N ρ ∎ *H-homo : ∀ {n} (p₁ p₂ : HNF (suc n)) → ∀ ρ → ⟦ p₁ *H p₂ ⟧H ρ ≈ ⟦ p₁ ⟧H ρ * ⟦ p₂ ⟧H ρ *H-homo ∅ p₂ ρ = sym $ proj₁ zero* _ *H-homo (p₁ *x+ c₁) ∅ ρ = sym $ proj₂ zero* _ *H-homo (p₁ *x+ c₁) (p₂ *x+ c₂) (x ∷ ρ) = begin ⟦ ((p₁ *H p₂) *x+H ((p₁ *HN c₂) +H (c₁ *NH p₂))) *x+HN (c₁ *N c₂) ⟧H (x ∷ ρ) ≈⟨ *x+HN≈*x+ ((p₁ *H p₂) *x+H ((p₁ *HN c₂) +H (c₁ *NH p₂))) (c₁ *N c₂) (x ∷ ρ) ⟩ ⟦ (p₁ *H p₂) *x+H ((p₁ *HN c₂) +H (c₁ *NH p₂)) ⟧H (x ∷ ρ) * x + ⟦ c₁ *N c₂ ⟧N ρ ≈⟨ (*x+H-homo (p₁ *H p₂) ((p₁ *HN c₂) +H (c₁ *NH p₂)) x ρ ⟨ *-cong ⟩ refl) ⟨ +-cong ⟩ *N-homo c₁ c₂ ρ ⟩ (⟦ p₁ *H p₂ ⟧H (x ∷ ρ) * x + ⟦ (p₁ *HN c₂) +H (c₁ *NH p₂) ⟧H (x ∷ ρ)) * x + ⟦ c₁ ⟧N ρ * ⟦ c₂ ⟧N ρ ≈⟨ (((*H-homo p₁ p₂ (x ∷ ρ) ⟨ *-cong ⟩ refl) ⟨ +-cong ⟩ (+H-homo (p₁ *HN c₂) (c₁ *NH p₂) (x ∷ ρ))) ⟨ *-cong ⟩ refl) ⟨ +-cong ⟩ refl ⟩ (⟦ p₁ ⟧H (x ∷ ρ) * ⟦ p₂ ⟧H (x ∷ ρ) * x + (⟦ p₁ *HN c₂ ⟧H (x ∷ ρ) + ⟦ c₁ *NH p₂ ⟧H (x ∷ ρ))) * x + ⟦ c₁ ⟧N ρ * ⟦ c₂ ⟧N ρ ≈⟨ ((refl ⟨ +-cong ⟩ (*HN-homo p₁ c₂ x ρ ⟨ +-cong ⟩ *NH-homo c₁ p₂ x ρ)) ⟨ *-cong ⟩ refl) ⟨ +-cong ⟩ refl ⟩ (⟦ p₁ ⟧H (x ∷ ρ) * ⟦ p₂ ⟧H (x ∷ ρ) * x + (⟦ p₁ ⟧H (x ∷ ρ) * ⟦ c₂ ⟧N ρ + ⟦ c₁ ⟧N ρ * ⟦ p₂ ⟧H (x ∷ ρ))) * x + (⟦ c₁ ⟧N ρ * ⟦ c₂ ⟧N ρ) ≈⟨ lemma₄ _ _ _ _ _ ⟩ (⟦ p₁ ⟧H (x ∷ ρ) * x + ⟦ c₁ ⟧N ρ) * (⟦ p₂ ⟧H (x ∷ ρ) * x + ⟦ c₂ ⟧N ρ) ∎ *N-homo : ∀ {n} (p₁ p₂ : Normal n) → ∀ ρ → ⟦ p₁ *N p₂ ⟧N ρ ≈ ⟦ p₁ ⟧N ρ * ⟦ p₂ ⟧N ρ *N-homo (con c₁) (con c₂) _ = *-homo _ _ *N-homo (poly p₁) (poly p₂) ρ = *H-homo p₁ p₂ ρ ^N-homo : ∀ {n} (p : Normal n) (k : ℕ) → ∀ ρ → ⟦ p ^N k ⟧N ρ ≈ ⟦ p ⟧N ρ ^ k ^N-homo p zero ρ = 1N-homo ρ ^N-homo p (suc k) ρ = begin ⟦ p *N (p ^N k) ⟧N ρ ≈⟨ *N-homo p (p ^N k) ρ ⟩ ⟦ p ⟧N ρ * ⟦ p ^N k ⟧N ρ ≈⟨ refl ⟨ *-cong ⟩ ^N-homo p k ρ ⟩ ⟦ p ⟧N ρ * (⟦ p ⟧N ρ ^ k) ∎ mutual -H‿-homo : ∀ {n} (p : HNF (suc n)) → ∀ ρ → ⟦ -H p ⟧H ρ ≈ - ⟦ p ⟧H ρ -H‿-homo p (x ∷ ρ) = begin ⟦ (-N 1N) *NH p ⟧H (x ∷ ρ) ≈⟨ *NH-homo (-N 1N) p x ρ ⟩ ⟦ -N 1N ⟧N ρ * ⟦ p ⟧H (x ∷ ρ) ≈⟨ trans (-N‿-homo 1N ρ) (-‿cong (1N-homo ρ)) ⟨ *-cong ⟩ refl ⟩ - 1# * ⟦ p ⟧H (x ∷ ρ) ≈⟨ lemma₇ _ ⟩ - ⟦ p ⟧H (x ∷ ρ) ∎ -N‿-homo : ∀ {n} (p : Normal n) → ∀ ρ → ⟦ -N p ⟧N ρ ≈ - ⟦ p ⟧N ρ -N‿-homo (con c) _ = -‿homo _ -N‿-homo (poly p) ρ = -H‿-homo p ρ ------------------------------------------------------------------------ -- Correctness correct-con : ∀ {n} (c : C.Carrier) (ρ : Vec Carrier n) → ⟦ normalise-con c ⟧N ρ ≈ ⟦ c ⟧′ correct-con c [] = refl correct-con c (x ∷ ρ) = begin ⟦ ∅ *x+HN normalise-con c ⟧H (x ∷ ρ) ≈⟨ ∅*x+HN-homo (normalise-con c) x ρ ⟩ ⟦ normalise-con c ⟧N ρ ≈⟨ correct-con c ρ ⟩ ⟦ c ⟧′ ∎ correct-var : ∀ {n} (i : Fin n) → ∀ ρ → ⟦ normalise-var i ⟧N ρ ≈ lookup i ρ correct-var () [] correct-var (suc i) (x ∷ ρ) = begin ⟦ ∅ *x+HN normalise-var i ⟧H (x ∷ ρ) ≈⟨ ∅*x+HN-homo (normalise-var i) x ρ ⟩ ⟦ normalise-var i ⟧N ρ ≈⟨ correct-var i ρ ⟩ lookup i ρ ∎ correct-var zero (x ∷ ρ) = begin (0# * x + ⟦ 1N ⟧N ρ) * x + ⟦ 0N ⟧N ρ ≈⟨ ((refl ⟨ +-cong ⟩ 1N-homo ρ) ⟨ *-cong ⟩ refl) ⟨ +-cong ⟩ 0N-homo ρ ⟩ (0# * x + 1#) * x + 0# ≈⟨ lemma₅ _ ⟩ x ∎ correct : ∀ {n} (p : Polynomial n) → ∀ ρ → ⟦ p ⟧↓ ρ ≈ ⟦ p ⟧ ρ correct (op [+] p₁ p₂) ρ = begin ⟦ normalise p₁ +N normalise p₂ ⟧N ρ ≈⟨ +N-homo (normalise p₁) (normalise p₂) ρ ⟩ ⟦ p₁ ⟧↓ ρ + ⟦ p₂ ⟧↓ ρ ≈⟨ correct p₁ ρ ⟨ +-cong ⟩ correct p₂ ρ ⟩ ⟦ p₁ ⟧ ρ + ⟦ p₂ ⟧ ρ ∎ correct (op [*] p₁ p₂) ρ = begin ⟦ normalise p₁ *N normalise p₂ ⟧N ρ ≈⟨ *N-homo (normalise p₁) (normalise p₂) ρ ⟩ ⟦ p₁ ⟧↓ ρ * ⟦ p₂ ⟧↓ ρ ≈⟨ correct p₁ ρ ⟨ *-cong ⟩ correct p₂ ρ ⟩ ⟦ p₁ ⟧ ρ * ⟦ p₂ ⟧ ρ ∎ correct (con c) ρ = correct-con c ρ correct (var i) ρ = correct-var i ρ correct (p :^ k) ρ = begin ⟦ normalise p ^N k ⟧N ρ ≈⟨ ^N-homo (normalise p) k ρ ⟩ ⟦ p ⟧↓ ρ ^ k ≈⟨ correct p ρ ⟨ ^-cong ⟩ PropEq.refl {x = k} ⟩ ⟦ p ⟧ ρ ^ k ∎ correct (:- p) ρ = begin ⟦ -N normalise p ⟧N ρ ≈⟨ -N‿-homo (normalise p) ρ ⟩ - ⟦ p ⟧↓ ρ ≈⟨ -‿cong (correct p ρ) ⟩ - ⟦ p ⟧ ρ ∎ ------------------------------------------------------------------------ -- "Tactics" open Reflection setoid var ⟦_⟧ ⟦_⟧↓ correct public using (prove; solve) renaming (_⊜_ to _:=_) -- For examples of how solve and _:=_ can be used to -- semi-automatically prove ring equalities, see, for instance, -- Data.Digit or Data.Nat.DivMod.
35.914972
145
0.403551
2fc17099c074492c322e0c9f6a22dc043fc30fc3
1,633
agda
Agda
char.agda
rfindler/ial
f3f0261904577e930bd7646934f756679a6cbba6
[ "MIT" ]
29
2019-02-06T13:09:31.000Z
2022-03-04T15:05:12.000Z
char.agda
rfindler/ial
f3f0261904577e930bd7646934f756679a6cbba6
[ "MIT" ]
8
2018-07-09T22:53:38.000Z
2022-03-22T03:43:34.000Z
char.agda
rfindler/ial
f3f0261904577e930bd7646934f756679a6cbba6
[ "MIT" ]
17
2018-12-03T22:38:15.000Z
2021-11-28T20:13:21.000Z
module char where open import bool open import nat open import eq open import product open import product-thms ---------------------------------------------------------------------- -- datatypes ---------------------------------------------------------------------- postulate char : Set {-# BUILTIN CHAR char #-} ---------------------------------------------------------------------- -- primitive operations ---------------------------------------------------------------------- private primitive primCharToNat : char → ℕ primCharEquality : char → char → 𝔹 toNat : char → ℕ toNat = primCharToNat infix 4 _=char_ _=char_ : char → char → 𝔹 _=char_ = primCharEquality postulate ≡char-to-= : (c1 c2 : char) → c1 ≡ c2 → _=char_ c1 c2 ≡ tt =char-to-≡ : (c1 c2 : char) → _=char_ c1 c2 ≡ tt → c1 ≡ c2 =char-sym : (c1 c2 : char) → (c1 =char c2) ≡ (c2 =char c1) =char-sym c1 c2 with keep (c1 =char c2) =char-sym c1 c2 | tt , p rewrite =char-to-≡ c1 c2 p = refl =char-sym c1 c2 | ff , p with keep (c2 =char c1) =char-sym c1 c2 | ff , p | tt , p' rewrite =char-to-≡ c2 c1 p' = refl =char-sym c1 c2 | ff , p | ff , p' rewrite p | p' = refl postulate _<char_ : char → char → 𝔹 {-# COMPILE GHC _<char_ = (<) #-} ---------------------------------------------------------------------- -- defined operations ---------------------------------------------------------------------- -- is a decimal digit is-digit : char → 𝔹 is-digit '0' = tt is-digit '1' = tt is-digit '2' = tt is-digit '3' = tt is-digit '4' = tt is-digit '5' = tt is-digit '6' = tt is-digit '7' = tt is-digit '8' = tt is-digit '9' = tt is-digit _ = ff
24.014706
70
0.454991
3d96c013b17151a76007027ec27ad02823a51d01
1,205
agda
Agda
test/succeed/Issue376.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
1
2019-11-27T07:26:06.000Z
2019-11-27T07:26:06.000Z
test/succeed/Issue376.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
test/succeed/Issue376.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
-- {-# OPTIONS -v tc.meta:50 #-} -- Andreas 2012-03-27, record pattern unification module Issue376 where import Common.Level open import Common.Equality open import Common.Irrelevance record Sigma (A : Set)(B : A -> Set) : Set where constructor _,_ field fst : A snd : B fst open Sigma public record Unit : Set where constructor unit bla1 : (A : Set) (a : A) -> let X : Unit -> A X = _ in X unit ≡ a bla1 A a = refl bla2 : (A : Set)(B : A -> Set) -> let X : Sigma A B -> Sigma A B X = _ in (x : A)(y : B x) -> X (x , y) ≡ (x , y) bla2 A B x y = refl -- _55 A B (x , y) := (x , y) -- irrelevant records bla3 : (A : Set)(B : A -> Set) -> let X : .(z : Sigma A B) -> (C : .(Sigma A B) -> Set) -> (.(z : Sigma A B) -> C z) -> C z X = _ in (x : A)(y : B x)(C : .(Sigma A B) -> Set)(k : .(z : Sigma A B) -> C z) -> X (x , y) C k ≡ k (x , y) bla3 A B x y C k = refl -- nested irrelevance bla4 : (A : Set) -> let A' = Squash (Squash A) in let X : .(z : A') -> (C : .A' -> Set) -> (.(z : A') -> C z) -> C z X = _ in (a : A)(C : .A' -> Set)(k : .(z : A') -> C z) -> X (squash (squash a)) C k ≡ k (squash (squash a)) bla4 A a C k = refl
25.104167
91
0.488797
1ddc12a1df5316a88b7ab6647a0b9d7a0119431b
370
agda
Agda
Cubical/Algebra/AbGroup/Instances/FreeAbGroup.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
1
2021-10-31T17:32:49.000Z
2021-10-31T17:32:49.000Z
Cubical/Algebra/AbGroup/Instances/FreeAbGroup.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
Cubical/Algebra/AbGroup/Instances/FreeAbGroup.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
{-# OPTIONS --safe #-} module Cubical.Algebra.AbGroup.Instances.FreeAbGroup where open import Cubical.Foundations.Prelude open import Cubical.HITs.FreeAbGroup open import Cubical.Algebra.AbGroup private variable ℓ : Level module _ {A : Type ℓ} where FAGAbGroup : AbGroup ℓ FAGAbGroup = makeAbGroup {G = FreeAbGroup A} ε _·_ _⁻¹ trunc assoc identityᵣ invᵣ comm
24.666667
88
0.767568
3d73782800f4489c62dc7019dfd6980ed6171630
369
agda
Agda
test/Fail/Issue2840.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue2840.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue2840.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2017-11-06, issue #2840 reported by wenkokke Id : (F : Set → Set) → Set → Set Id F = F data D (A : Set) : Set where c : Id _ A -- WAS: internal error in positivity checker -- EXPECTED: success, or -- The target of a constructor must be the datatype applied to its -- parameters, _F_2 A isn't -- when checking the constructor c in the declaration of D
24.6
66
0.682927
419ccf875ae6c67840aee4eaa90dd3108d16e723
670
agda
Agda
src/Categories/Category/SetoidDiscrete.agda
jaykru/agda-categories
a4053cf700bcefdf73b857c3352f1eae29382a60
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
src/Categories/Category/SetoidDiscrete.agda
jaykru/agda-categories
a4053cf700bcefdf73b857c3352f1eae29382a60
[ "MIT" ]
null
null
null
src/Categories/Category/SetoidDiscrete.agda
jaykru/agda-categories
a4053cf700bcefdf73b857c3352f1eae29382a60
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
{-# OPTIONS --without-K --safe #-} module Categories.Category.SetoidDiscrete where open import Categories.Category open import Level open import Relation.Binary using (Setoid) open import Function open import Data.Unit {- This is a better version of Discrete, which is more in line with the rest of this library, and makes a Category out of a Setoid. But here we have no choice, and we need to truncate the equivalence. -} Discrete : ∀ {o ℓ e} (A : Setoid o ℓ) → Category o ℓ e Discrete {_} {_} {e} A = record { Obj = Carrier ; _⇒_ = _≈_ ; _≈_ = λ _ _ → Lift e ⊤ ; id = refl ; _∘_ = flip trans } where open Setoid A
24.814815
69
0.650746
5783cebe99429226ae69ab8380dbc0d6c07c9ea0
4,579
agda
Agda
Cubical/Foundations/Path.agda
scott-fleischman/cubical
337ce3883449862c2d27380b36a2a7b599ef9f0d
[ "MIT" ]
null
null
null
Cubical/Foundations/Path.agda
scott-fleischman/cubical
337ce3883449862c2d27380b36a2a7b599ef9f0d
[ "MIT" ]
null
null
null
Cubical/Foundations/Path.agda
scott-fleischman/cubical
337ce3883449862c2d27380b36a2a7b599ef9f0d
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --safe #-} module Cubical.Foundations.Path where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Transport private variable ℓ ℓ' : Level A : Type ℓ -- Less polymorphic version of `cong`, to avoid some unresolved metas cong′ : ∀ {B : Type ℓ'} (f : A → B) {x y : A} (p : x ≡ y) → Path B (f x) (f y) cong′ f = cong f PathP≡Path : ∀ (P : I → Type ℓ) (p : P i0) (q : P i1) → PathP P p q ≡ Path (P i1) (transport (λ i → P i) p) q PathP≡Path P p q i = PathP (λ j → P (i ∨ j)) (transp (λ j → P (i ∧ j)) (~ i) p) q PathP≃Path : ∀ (P : I → Type ℓ) (p : P i0) (q : P i1) → PathP P p q ≃ Path (P i1) (transport (λ i → P i) p) q PathP≃Path P p q = transportEquiv (PathP≡Path P p q) -- Alternative more unfolded proof toPathP-isEquiv : ∀ (A : I → Set ℓ) {x y} → isEquiv (toPathP {A = A} {x} {y}) toPathP-isEquiv A {x} {y} = isoToIsEquiv (iso toPathP fromPathP to-from from-to) where to-from : ∀ (p : PathP A x y) → toPathP (fromPathP p) ≡ p to-from p h i = outS (hcomp-unique (λ { j (i = i0) → x ; j (i = i1) → fromPathP p j }) (inS (transp (λ j → A (i ∧ j)) (~ i) x)) \ h → inS (sq1 h i)) h where sq1 : (\ h → A [ x ≡ transp (\ j → A (h ∨ j)) h (p h) ]) [ (\ i → transp (λ j → A (i ∧ j)) (~ i) x) ≡ p ] sq1 = \ h i → comp (\ z → (hcomp (\ w → \ { (z = i1) → A (i ∧ (w ∨ h)) ; (z = i0) → A (i ∧ h) ; (i = i0) → A i0 ; (i = i1) → A (h ∨ (w ∧ z)) ; (h = i0) → A (i ∧ (w ∧ z)) ; (h = i1) → A i}) ((A (i ∧ h))))) (\ z → \ { (i = i0) → x ; (i = i1) → transp (\ j → A (h ∨ (z ∧ j))) (h ∨ ~ z) (p h) ; (h = i0) → transp (λ j → A ((i ∧ z) ∧ j)) (~ (i ∧ z)) x ; (h = i1) → p i }) (p (i ∧ h)) from-to : ∀ (q : transp A i0 x ≡ y) → fromPathP (toPathP {A = A} q) ≡ q from-to q = (\ h i → outS (transp-hcomp i {A' = A i1} (\ j → inS (A (i ∨ j))) ((λ { j (i = i0) → x ; j (i = i1) → q j })) (inS ((transp (λ j → A (i ∧ j)) (~ i) x)))) h) ∙ (\ h i → outS (hcomp-unique {A = A i1} ((λ { j (i = i0) → transp A i0 x ; j (i = i1) → q j })) (inS ((transp (λ j → A (i ∨ j)) i (transp (λ j → A (i ∧ j)) (~ i) x)))) \ h → inS (sq2 h i)) h) ∙ sym (lUnit q) where sq2 : (\ h → transp A i0 x ≡ q h) [ (\ i → transp (\ j → A (i ∨ j)) i (transp (\ j → A (i ∧ j)) (~ i) x)) ≡ refl ∙ q ] sq2 = \ h i → comp (\ z → hcomp (\ w → \ { (i = i1) → A i1 ; (i = i0) → A (h ∨ (w ∧ z)) ; (h = i0) → A (i ∨ (w ∧ z)) ; (h = i1) → A i1 ; (z = i0) → A (i ∨ h) ; (z = i1) → A ((i ∨ h) ∨ w) }) (A (i ∨ h))) (\ z → \ { (i = i0) → transp (λ j → A ((z ∨ h) ∧ j)) (~ z ∧ ~ h) x ; (i = i1) → q (z ∧ h) ; (h = i1) → compPath-filler refl q z i ; (h = i0) → transp (\ j → A (i ∨ (z ∧ j))) (i ∨ ~ z) (transp (\ j → A (i ∧ j)) (~ i) x) }) (transp (\ j → A ((i ∨ h) ∧ j)) (~ (i ∨ h)) x) -- Variation of isProp→isSet for PathP isProp→isSet-PathP : ∀ {ℓ} {B : I → Type ℓ} → ((i : I) → isProp (B i)) → (b0 : B i0) (b1 : B i1) → isProp (PathP (λ i → B i) b0 b1) isProp→isSet-PathP {B = B} hB b0 b1 = transport (λ i → isProp (PathP≡Path B b0 b1 (~ i))) (isProp→isSet (hB i1) _ _)
53.870588
125
0.322123
06bc6616efb75aaf5db50b92ce6ae770c33fb09d
2,786
agda
Agda
src/Tactic/Reflection.agda
jespercockx/agda-prelude
1984cf0341835b2f7bfe678098bd57cfe16ea11f
[ "MIT" ]
null
null
null
src/Tactic/Reflection.agda
jespercockx/agda-prelude
1984cf0341835b2f7bfe678098bd57cfe16ea11f
[ "MIT" ]
null
null
null
src/Tactic/Reflection.agda
jespercockx/agda-prelude
1984cf0341835b2f7bfe678098bd57cfe16ea11f
[ "MIT" ]
null
null
null
module Tactic.Reflection where open import Prelude hiding (abs; _>>=_) renaming (_>>=′_ to _>>=_) open import Builtin.Reflection public open import Tactic.Reflection.DeBruijn public open import Tactic.Reflection.Telescope public open import Tactic.Reflection.Substitute public open import Tactic.Reflection.Free public open import Tactic.Reflection.Equality public open import Tactic.Reflection.Meta public set₀ : Type set₀ = agda-sort (lit 0) set! : Type set! = agda-sort unknown pattern var₀ x = var x [] pattern var₁ x a = var x (vArg a ∷ []) pattern var₂ x a b = var x (vArg a ∷ vArg b ∷ []) pattern var₃ x a b c = var x (vArg a ∷ vArg b ∷ vArg c ∷ []) pattern var₄ x a b c d = var x (vArg a ∷ vArg b ∷ vArg c ∷ vArg d ∷ []) pattern con₀ c = con c [] pattern con₁ c x = con c (vArg x ∷ []) pattern con₂ c x y = con c (vArg x ∷ vArg y ∷ []) pattern con₃ c x y z = con c (vArg x ∷ vArg y ∷ vArg z ∷ []) pattern con₄ c x y z u = con c (vArg x ∷ vArg y ∷ vArg z ∷ vArg u ∷ []) pattern def₀ f = def f [] pattern def₁ f x = def f (vArg x ∷ []) pattern def₂ f x y = def f (vArg x ∷ vArg y ∷ []) pattern def₃ f x y z = def f (vArg x ∷ vArg y ∷ vArg z ∷ []) pattern def₄ f x y z u = def f (vArg x ∷ vArg y ∷ vArg z ∷ vArg u ∷ []) infixr 4 _`→_ _`→ʰ_ _`→ⁱ_ _`→_ _`→ʰ_ _`→ⁱ_ : Type → Type → Type _`→_ a b = pi (vArg a) (abs "_" b) _`→ʰ_ a b = pi (hArg a) (abs "_" b) _`→ⁱ_ a b = pi (iArg a) (abs "_" b) `λ : Term → Term `λ b = lam visible (abs "_" b) infixl 9 _`∘_ _`∘_ : Term → Term → Term _`∘_ = def₂ (quote _∘_) infixr -20 _`$_ _`$_ : Term → Term → Term _`$_ = def₂ (quote _$_) _:′_ : Term → Type → TC Term _:′_ = checkType λ′ : ∀ {a} {A : Set a} → Arg Type → TC A → TC A λ′ = extendContext infix 2 _=′_ _=′_ : Term → Term → TC ⊤ _=′_ = unify on-goal : (Type → Tactic) → Tactic on-goal tac hole = inferNormalisedType hole >>= λ goal → tac goal hole forceFun : Type → TC Type forceFun a = do dom ← newMeta set! rng ← newMeta set! unify a (dom `→ weaken 1 rng) normalise a inferFunRange : Term → TC Type inferFunRange hole = unPi =<< forceFun =<< inferType hole where unPi : Type → TC Type unPi (pi _ (abs _ (meta x _))) = blockOnMeta! x unPi (pi _ (abs _ b)) = maybe (typeError ( strErr "Must be applied in a non-dependent function position" ∷ termErr b ∷ [])) pure $ strengthen 1 b unPi x = typeError (strErr "Invalid goal" ∷ termErr x ∷ []) macro runT : Tactic → Tactic runT t = t evalTC : ∀ {a} {A : Set a} → TC A → Tactic evalTC {A = A} c hole = do v ← c `v ← quoteTC v `A ← quoteTC A checkedHole ← checkType hole `A unify checkedHole `v macro evalT : ∀ {a} {A : Set a} → TC A → Tactic evalT = evalTC
28.721649
106
0.591888
591b1e66b2f511ff75e7dd9a687de04c5b9b00f3
4,730
agda
Agda
Cubical/HITs/GroupoidQuotients/Properties.agda
Schippmunk/cubical
c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a
[ "MIT" ]
null
null
null
Cubical/HITs/GroupoidQuotients/Properties.agda
Schippmunk/cubical
c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a
[ "MIT" ]
null
null
null
Cubical/HITs/GroupoidQuotients/Properties.agda
Schippmunk/cubical
c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a
[ "MIT" ]
null
null
null
{- Groupoid quotients: -} {-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.GroupoidQuotients.Properties where open import Cubical.HITs.GroupoidQuotients.Base open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Foundations.Univalence open import Cubical.Data.Sigma open import Cubical.Relation.Nullary open import Cubical.Relation.Binary.Base open import Cubical.HITs.PropositionalTruncation as PropTrunc using (∥_∥; ∣_∣; squash) open import Cubical.HITs.SetTruncation as SetTrunc using (∥_∥₂; ∣_∣₂; squash₂) -- Type quotients private variable ℓA ℓR ℓ : Level A : Type ℓA R : A → A → Type ℓR -- B : A // Rt → Type ℓ -- C : A // Rt → A // Rt → Type ℓ elimEq// : (Rt : BinaryRelation.isTrans R) {B : A // Rt → Type ℓ} (Bprop : (x : A // Rt) → isProp (B x)) {x y : A // Rt} (eq : x ≡ y) (bx : B x) (by : B y) → PathP (λ i → B (eq i)) bx by elimEq// Rt {B} Bprop {x = x} = J (λ y eq → ∀ bx by → PathP (λ i → B (eq i)) bx by) (λ bx by → Bprop x bx by) elimProp : (Rt : BinaryRelation.isTrans R) → {B : A // Rt → Type ℓ} → ((x : A // Rt) → isProp (B x)) → ((a : A) → B [ a ]) → (x : A // Rt) → B x elimProp Rt Bprop f [ x ] = f x elimProp Rt Bprop f (eq// {a} {b} r i) = elimEq// Rt Bprop (eq// r) (f a) (f b) i elimProp Rt Bprop f (comp// {a} {b} {c} r s i j) = isSet→isSetDep (λ x → isProp→isSet (Bprop x)) (eq// r) (eq// (Rt a b c r s)) (λ j → [ a ]) (eq// s) (comp// r s) (λ i → elimEq// Rt Bprop (eq// r) (f a) (f b) i) (λ i → elimEq// Rt Bprop (eq// (Rt a b c r s)) (f a) (f c) i) (λ j → f a ) (λ j → elimEq// Rt Bprop (eq// s) (f b) (f c) j) i j elimProp Rt Bprop f (squash// x y p q r s i j k) = isOfHLevel→isOfHLevelDep 3 (λ x → isSet→isGroupoid (isProp→isSet (Bprop x))) _ _ _ _ (λ j k → g (r j k)) (λ j k → g (s j k)) (squash// x y p q r s) i j k where g = elimProp Rt Bprop f elimProp2 : (Rt : BinaryRelation.isTrans R) → {C : A // Rt → A // Rt → Type ℓ} → ((x y : A // Rt) → isProp (C x y)) → ((a b : A) → C [ a ] [ b ]) → (x y : A // Rt) → C x y elimProp2 Rt Cprop f = elimProp Rt (λ x → isPropΠ (λ y → Cprop x y)) (λ x → elimProp Rt (λ y → Cprop [ x ] y) (f x)) []surjective : (Rt : BinaryRelation.isTrans R) → (x : A // Rt ) → ∃[ a ∈ A ] [ a ] ≡ x []surjective Rt = elimProp Rt (λ x → squash) (λ a → ∣ a , refl ∣) elimSet : (Rt : BinaryRelation.isTrans R) → {B : A // Rt → Type ℓ} → ((x : A // Rt) → isSet (B x)) → (f : (a : A) → B [ a ]) → ({a b : A} (r : R a b) → PathP (λ i → B (eq// r i)) (f a) (f b)) → (x : A // Rt) → B x elimSet Rt Bset f feq [ a ] = f a elimSet Rt Bset f feq (eq// r i) = feq r i elimSet Rt Bset f feq (comp// {a} {b} {c} r s i j) = isSet→isSetDep Bset (eq// r) (eq// (Rt a b c r s)) (λ j → [ a ]) (eq// s) (comp// r s) (feq r) (feq (Rt a b c r s)) refl (feq s) i j elimSet Rt Bset f feq (squash// x y p q r s i j k) = isOfHLevel→isOfHLevelDep 3 (λ x → isSet→isGroupoid (Bset x)) _ _ _ _ (λ j k → g (r j k)) (λ j k → g (s j k)) (squash// x y p q r s) i j k where g = elimSet Rt Bset f feq elim : (Rt : BinaryRelation.isTrans R) → {B : A // Rt → Type ℓ} → ((x : A // Rt) → isGroupoid (B x)) → (f : (a : A) → B [ a ]) → (feq : {a b : A} (r : R a b) → PathP (λ i → B (eq// r i)) (f a) (f b)) → ({a b c : A} (r : R a b) (s : R b c) → SquareP (λ i j → B (comp// r s i j)) (feq r) (feq (Rt a b c r s)) (λ j → f a) (feq s)) → (x : A // Rt) → B x elim Rt Bgpd f feq fcomp [ a ] = f a elim Rt Bgpd f feq fcomp (eq// r i) = feq r i elim Rt Bgpd f feq fcomp (comp// r s i j) = fcomp r s i j elim Rt Bgpd f feq fcomp (squash// x y p q r s i j k) = isOfHLevel→isOfHLevelDep 3 Bgpd _ _ _ _ (λ j k → g (r j k)) (λ j k → g (s j k)) (squash// x y p q r s) i j k where g = elim Rt Bgpd f feq fcomp rec : (Rt : BinaryRelation.isTrans R) → {B : Type ℓ} → isGroupoid B → (f : A → B) → (feq : {a b : A} (r : R a b) → f a ≡ f b) → ({a b c : A} (r : R a b) (s : R b c) → Square (feq r) (feq (Rt a b c r s)) refl (feq s)) → (x : A // Rt) → B rec Rt Bgpd = elim Rt (λ _ → Bgpd) module BinarySetRelation {ℓA ℓR : Level} {A : Type ℓA} (R : Rel A A ℓR) where open BinaryRelation R isSetValued : Type (ℓ-max ℓA ℓR) isSetValued = (a b : A) → isSet (R a b)
34.525547
88
0.515011
3d9b73c12b25f7bf1931226fc56a0f6402dd3f4b
354
agda
Agda
agda/Data/Maybe/Sugar.agda
oisdk/combinatorics-paper
3c176d4690566d81611080e9378f5a178b39b851
[ "MIT" ]
null
null
null
agda/Data/Maybe/Sugar.agda
oisdk/combinatorics-paper
3c176d4690566d81611080e9378f5a178b39b851
[ "MIT" ]
null
null
null
agda/Data/Maybe/Sugar.agda
oisdk/combinatorics-paper
3c176d4690566d81611080e9378f5a178b39b851
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --safe #-} module Data.Maybe.Sugar where open import Prelude open import Data.Maybe _>>=_ : Maybe A → (A → Maybe B) → Maybe B nothing >>= f = nothing just x >>= f = f x pure : A → Maybe A pure = just _<*>_ : Maybe (A → B) → Maybe A → Maybe B nothing <*> xs = nothing just f <*> nothing = nothing just f <*> just x = just (f x)
18.631579
41
0.60452
1d32d9db34a34c51095ee8befdebe03e9810ef6b
6,919
agda
Agda
src/Categories/NaturalTransformation/Monoidal/Symmetric.agda
o1lo01ol1o/agda-categories
5fc007768264a270b8ff319570225986773da601
[ "MIT" ]
null
null
null
src/Categories/NaturalTransformation/Monoidal/Symmetric.agda
o1lo01ol1o/agda-categories
5fc007768264a270b8ff319570225986773da601
[ "MIT" ]
null
null
null
src/Categories/NaturalTransformation/Monoidal/Symmetric.agda
o1lo01ol1o/agda-categories
5fc007768264a270b8ff319570225986773da601
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} -- Monoidal natural transformations between lax and strong symmetric -- monoidal functors. -- -- NOTE. Symmetric monoidal natural transformations are really just -- monoidal natural transformations that happen to go between -- symmetric monoidal functors. No additional conditions are -- necessary. Nevertheless, the definitions in this module are useful -- when one is working in a symmetric monoidal setting. They also -- help Agda's type checker by bundling the (symmetric monoidal) -- categories and functors involved. -- -- See -- * John Baez, Some definitions everyone should know, -- https://math.ucr.edu/home/baez/qg-fall2004/definitions.pdf -- * https://ncatlab.org/nlab/show/monoidal+natural+transformation module Categories.NaturalTransformation.Monoidal.Symmetric where open import Level open import Categories.Category.Monoidal using (SymmetricMonoidalCategory) import Categories.Functor.Monoidal.Symmetric as BMF open import Categories.Functor.Monoidal.Properties using () renaming (∘-SymmetricMonoidal to _∘Fˡ_; ∘-StrongSymmetricMonoidal to _∘Fˢ_) open import Categories.NaturalTransformation as NT using (NaturalTransformation) import Categories.NaturalTransformation.Monoidal as MNT module Lax where open BMF.Lax using (SymmetricMonoidalFunctor) open MNT.Lax using (IsMonoidalNaturalTransformation) open SymmetricMonoidalFunctor using () renaming (F to UF; monoidalFunctor to MF) module _ {o ℓ e o′ ℓ′ e′} {C : SymmetricMonoidalCategory o ℓ e} {D : SymmetricMonoidalCategory o′ ℓ′ e′} where -- Monoidal natural transformations between symmetric monoidal functors. record SymmetricMonoidalNaturalTransformation (F G : SymmetricMonoidalFunctor C D) : Set (o ⊔ ℓ ⊔ ℓ′ ⊔ e′) where field U : NaturalTransformation (UF F) (UF G) isMonoidal : IsMonoidalNaturalTransformation (MF F) (MF G) U open NaturalTransformation U public open IsMonoidalNaturalTransformation isMonoidal public -- To shorten some definitions private _⇛_ = SymmetricMonoidalNaturalTransformation module U = MNT.Lax module _ {o ℓ e o′ ℓ′ e′} {C : SymmetricMonoidalCategory o ℓ e} {D : SymmetricMonoidalCategory o′ ℓ′ e′} where -- Conversions ⌊_⌋ : {F G : SymmetricMonoidalFunctor C D} → F ⇛ G → U.MonoidalNaturalTransformation (MF F) (MF G) ⌊ α ⌋ = record { U = U ; isMonoidal = isMonoidal } where open SymmetricMonoidalNaturalTransformation α ⌈_⌉ : {F G : SymmetricMonoidalFunctor C D} → U.MonoidalNaturalTransformation (MF F) (MF G) → F ⇛ G ⌈ α ⌉ = record { U = U ; isMonoidal = isMonoidal } where open U.MonoidalNaturalTransformation α -- Identity and compositions infixr 9 _∘ᵥ_ id : {F : SymmetricMonoidalFunctor C D} → F ⇛ F id = ⌈ U.id ⌉ _∘ᵥ_ : {F G H : SymmetricMonoidalFunctor C D} → G ⇛ H → F ⇛ G → F ⇛ H α ∘ᵥ β = ⌈ ⌊ α ⌋ U.∘ᵥ ⌊ β ⌋ ⌉ module _ {o ℓ e o′ ℓ′ e′ o″ ℓ″ e″} {C : SymmetricMonoidalCategory o ℓ e} {D : SymmetricMonoidalCategory o′ ℓ′ e′} {E : SymmetricMonoidalCategory o″ ℓ″ e″} where infixr 9 _∘ₕ_ _∘ˡ_ _∘ʳ_ _∘ₕ_ : {F G : SymmetricMonoidalFunctor C D} {H I : SymmetricMonoidalFunctor D E} → H ⇛ I → F ⇛ G → (H ∘Fˡ F) ⇛ (I ∘Fˡ G) α ∘ₕ β = ⌈ ⌊ α ⌋ U.∘ₕ ⌊ β ⌋ ⌉ _∘ˡ_ : {F G : SymmetricMonoidalFunctor C D} (H : SymmetricMonoidalFunctor D E) → F ⇛ G → (H ∘Fˡ F) ⇛ (H ∘Fˡ G) H ∘ˡ α = id {F = H} ∘ₕ α _∘ʳ_ : {G H : SymmetricMonoidalFunctor D E} → G ⇛ H → (F : SymmetricMonoidalFunctor C D) → (G ∘Fˡ F) ⇛ (H ∘Fˡ F) α ∘ʳ F = α ∘ₕ id {F = F} module Strong where open BMF.Strong using (SymmetricMonoidalFunctor) open MNT.Strong using (IsMonoidalNaturalTransformation) open SymmetricMonoidalFunctor using () renaming ( F to UF ; monoidalFunctor to MF ; laxSymmetricMonoidalFunctor to laxBMF ) module _ {o ℓ e o′ ℓ′ e′} {C : SymmetricMonoidalCategory o ℓ e} {D : SymmetricMonoidalCategory o′ ℓ′ e′} where -- Monoidal natural transformations between symmetric strong -- monoidal functors. record SymmetricMonoidalNaturalTransformation (F G : SymmetricMonoidalFunctor C D) : Set (o ⊔ ℓ ⊔ ℓ′ ⊔ e′) where field U : NaturalTransformation (UF F) (UF G) isMonoidal : IsMonoidalNaturalTransformation (MF F) (MF G) U laxBNT : Lax.SymmetricMonoidalNaturalTransformation (laxBMF F) (laxBMF G) laxBNT = record { U = U ; isMonoidal = isMonoidal } open Lax.SymmetricMonoidalNaturalTransformation laxBNT public hiding (U; isMonoidal) -- To shorten some definitions private _⇛_ = SymmetricMonoidalNaturalTransformation module U = MNT.Strong module _ {o ℓ e o′ ℓ′ e′} {C : SymmetricMonoidalCategory o ℓ e} {D : SymmetricMonoidalCategory o′ ℓ′ e′} where -- Conversions ⌊_⌋ : {F G : SymmetricMonoidalFunctor C D} → F ⇛ G → U.MonoidalNaturalTransformation (MF F) (MF G) ⌊ α ⌋ = record { U = U ; isMonoidal = isMonoidal } where open SymmetricMonoidalNaturalTransformation α ⌈_⌉ : {F G : SymmetricMonoidalFunctor C D} → U.MonoidalNaturalTransformation (MF F) (MF G) → F ⇛ G ⌈ α ⌉ = record { U = U ; isMonoidal = isMonoidal } where open U.MonoidalNaturalTransformation α -- Identity and compositions infixr 9 _∘ᵥ_ id : {F : SymmetricMonoidalFunctor C D} → F ⇛ F id = ⌈ U.id ⌉ _∘ᵥ_ : {F G H : SymmetricMonoidalFunctor C D} → G ⇛ H → F ⇛ G → F ⇛ H α ∘ᵥ β = ⌈ ⌊ α ⌋ U.∘ᵥ ⌊ β ⌋ ⌉ module _ {o ℓ e o′ ℓ′ e′ o″ ℓ″ e″} {C : SymmetricMonoidalCategory o ℓ e} {D : SymmetricMonoidalCategory o′ ℓ′ e′} {E : SymmetricMonoidalCategory o″ ℓ″ e″} where infixr 9 _∘ₕ_ _∘ˡ_ _∘ʳ_ _∘ₕ_ : {F G : SymmetricMonoidalFunctor C D} {H I : SymmetricMonoidalFunctor D E} → H ⇛ I → F ⇛ G → (H ∘Fˢ F) ⇛ (I ∘Fˢ G) -- NOTE: this definition is clearly equivalent to -- -- α ∘ₕ β = ⌈ ⌊ α ⌋ U.∘ₕ ⌊ β ⌋ ⌉ -- -- but the latter takes an unreasonably long time to typecheck, -- while the unfolded version typechecks almost immediately. α ∘ₕ β = record { U = C.U ; isMonoidal = record { ε-compat = C.ε-compat ; ⊗-homo-compat = C.⊗-homo-compat } } where module C = U.MonoidalNaturalTransformation (⌊ α ⌋ U.∘ₕ ⌊ β ⌋) _∘ˡ_ : {F G : SymmetricMonoidalFunctor C D} (H : SymmetricMonoidalFunctor D E) → F ⇛ G → (H ∘Fˢ F) ⇛ (H ∘Fˢ G) H ∘ˡ α = id {F = H} ∘ₕ α _∘ʳ_ : {G H : SymmetricMonoidalFunctor D E} → G ⇛ H → (F : SymmetricMonoidalFunctor C D) → (G ∘Fˢ F) ⇛ (H ∘Fˢ F) α ∘ʳ F = α ∘ₕ id {F = F}
35.30102
80
0.62509
3108637958879ff8d6b952f0647bdcb3196b643b
566
agda
Agda
src/FRP/LTL/ISet/Stateless.agda
agda/agda-frp-ltl
e88107d7d192cbfefd0a94505e6a5793afe1a7a5
[ "MIT" ]
21
2015-07-02T20:25:05.000Z
2020-06-15T02:51:13.000Z
src/FRP/LTL/ISet/Stateless.agda
agda/agda-frp-ltl
e88107d7d192cbfefd0a94505e6a5793afe1a7a5
[ "MIT" ]
2
2015-03-01T07:01:31.000Z
2015-03-02T15:23:53.000Z
src/FRP/LTL/ISet/Stateless.agda
agda/agda-frp-ltl
e88107d7d192cbfefd0a94505e6a5793afe1a7a5
[ "MIT" ]
3
2015-03-01T07:33:00.000Z
2022-03-12T11:39:04.000Z
open import Data.Product using ( _,_ ) open import FRP.LTL.ISet.Core using ( ISet ; _⇛_ ; mset ; M⟦_⟧ ; ⟦_⟧ ; [_] ; subsumM⟦_⟧ ) open import FRP.LTL.Time.Interval using ( ⊑-refl ) module FRP.LTL.ISet.Stateless where infixr 2 _⇒_ _⇒_ : ISet → ISet → ISet A ⇒ B = mset A ⇛ B -- We could define $ as -- f $ σ = i→m (λ j j⊑i → f j j⊑i [ subsumM⟦ A ⟧ j i j⊑i σ ]) -- but we inline i→m for efficiency _$_ : ∀ {A B i} → M⟦ A ⇒ B ⟧ i → M⟦ A ⟧ i → M⟦ B ⟧ i _$_ {A} {[ B ]} {i} f σ = f i ⊑-refl [ σ ] _$_ {A} {B ⇛ C} {i} f σ = λ j j⊑i → f j j⊑i [ subsumM⟦ A ⟧ j i j⊑i σ ]
31.444444
89
0.531802
3d8d71347aa28d33da9f0397149108b2f1382d48
14,259
agda
Agda
Preliminaries.agda
ayberkt/system-t-normalization
785c3d1f93ce2dac7801504b806abfd59f3875f6
[ "BSD-3-Clause" ]
3
2016-06-24T14:36:42.000Z
2016-06-25T03:40:58.000Z
Preliminaries.agda
ayberkt/system-t-normalization
785c3d1f93ce2dac7801504b806abfd59f3875f6
[ "BSD-3-Clause" ]
null
null
null
Preliminaries.agda
ayberkt/system-t-normalization
785c3d1f93ce2dac7801504b806abfd59f3875f6
[ "BSD-3-Clause" ]
null
null
null
module Preliminaries where -- universe levels postulate Level : Set lZ : Level lS : Level -> Level lmax : Level -> Level -> Level {-# BUILTIN LEVEL Level #-} {-# BUILTIN LEVELZERO lZ #-} {-# BUILTIN LEVELSUC lS #-} {-# BUILTIN LEVELMAX lmax #-} -- ---------------------------------------------------------------------- -- functions _o_ : {A B C : Set} → (B → C) → (A → B) → A → C g o f = \ x → g (f x) infixr 10 _o_ -- ---------------------------------------------------------------------- -- identity type data _==_ {l : Level} {A : Set l} (M : A) : A → Set l where Refl : M == M {-# BUILTIN EQUALITY _==_ #-} {-# BUILTIN REFL Refl #-} transport : {l1 : Level} {l2 : Level} {A : Set l1} (B : A → Set l2) {a1 a2 : A} → a1 == a2 → (B a1 → B a2) transport B Refl = λ x → x ! : {l : Level} {A : Set l} {M N : A} → M == N → N == M ! Refl = Refl _∘_ : {l : Level} {A : Set l} {M N P : A} → N == P → M == N → M == P β ∘ Refl = β ap : {l1 l2 : Level} {A : Set l1} {B : Set l2} {M N : A} (f : A → B) → M == N → (f M) == (f N) ap f Refl = Refl ap2 : {l1 l2 l3 : Level} {A : Set l1} {B : Set l2} {C : Set l3} {M N : A} {M' N' : B} (f : A -> B -> C) -> M == N -> M' == N' -> (f M M') == (f N N') ap2 f Refl Refl = Refl postulate -- function extensionality λ= : {l1 l2 : Level} {A : Set l1} {B : A -> Set l2} {f g : (x : A) -> B x} -> ((x : A) -> (f x) == (g x)) -> f == g -- function extensionality for implicit functions λ=i : {l1 l2 : Level} {A : Set l1} {B : A -> Set l2} {f g : {x : A} -> B x} -> ((x : A) -> (f {x}) == (g {x})) -> _==_ {_}{ {x : A} → B x } f g private primitive primTrustMe : {l : Level} {A : Set l} {x y : A} -> x == y infixr 9 _==_ infix 2 _∎ infixr 2 _=〈_〉_ _=〈_〉_ : {l : Level} {A : Set l} (x : A) {y z : A} → x == y → y == z → x == z _ =〈 p1 〉 p2 = (p2 ∘ p1) _∎ : {l : Level} {A : Set l} (x : A) → x == x _∎ _ = Refl -- ---------------------------------------------------------------------- -- product types record Unit : Set where constructor <> record Σ {l1 l2 : Level} {A : Set l1} (B : A -> Set l2) : Set (lmax l1 l2) where constructor _,_ field fst : A snd : B fst open Σ public infixr 0 _,_ _×_ : {l1 l2 : Level} → Set l1 -> Set l2 -> Set (lmax l1 l2) A × B = Σ (\ (_ : A) -> B) infixr 10 _×_ -- ---------------------------------------------------------------------- -- booleans data Bool : Set where True : Bool False : Bool {-# COMPILED_DATA Bool Bool True False #-} {-# BUILTIN BOOL Bool #-} {-# BUILTIN TRUE True #-} {-# BUILTIN FALSE False #-} -- ---------------------------------------------------------------------- -- order data Order : Set where Less : Order Equal : Order Greater : Order -- ---------------------------------------------------------------------- -- sums data Void : Set where abort : {A : Set} → Void → A abort () data Either (A B : Set) : Set where Inl : A → Either A B Inr : B → Either A B DecEq : Set → Set DecEq A = (x y : A) → Either (x == y) (x == y → Void) -- ---------------------------------------------------------------------- -- natural numbers module Nat where data Nat : Set where Z : Nat S : Nat -> Nat -- let's you use numerals for Nat {-# BUILTIN NATURAL Nat #-} {-# BUILTIN SUC S #-} {-# BUILTIN ZERO Z #-} _+_ : Nat → Nat → Nat Z + n = n (S m) + n = S (m + n) max : Nat → Nat → Nat max Z n = n max m Z = m max (S m) (S n) = S (max m n) equal : Nat → Nat → Bool equal Z Z = True equal Z (S _) = False equal (S _) Z = False equal (S m) (S n) = equal m n compare : Nat → Nat → Order compare Z Z = Equal compare Z (S m) = Less compare (S n) Z = Greater compare (S n) (S m) = compare n m open Nat public using (Nat ; Z ; S) -- ---------------------------------------------------------------------- -- monad module Monad where record Monad : Set1 where field T : Set → Set return : ∀ {A} → A → T A _>>=_ : ∀ {A B} → T A → (A → T B) -> T B -- ---------------------------------------------------------------------- -- options module Maybe where data Maybe {l : Level} (A : Set l) : Set l where Some : A → Maybe A None : Maybe A Monad : Monad.Monad Monad = record { T = Maybe; return = Some; _>>=_ = (λ {None _ → None; (Some v) f → f v}) } open Maybe public using (Maybe;Some;None) -- ---------------------------------------------------------------------- -- lists module List where data List {l : Level} (A : Set l) : Set l where [] : List A _::_ : A -> List A -> List A {-# COMPILED_DATA List [] [] (:) #-} {-# BUILTIN LIST List #-} {-# BUILTIN NIL [] #-} {-# BUILTIN CONS _::_ #-} infixr 99 _::_ _++_ : {A : Set} → List A → List A → List A [] ++ ys = ys (x :: xs) ++ ys = x :: (xs ++ ys) infixr 10 _++_ map : {l1 l2 : Level} {A : Set l1} {B : Set l2} → (A → B) → List A → List B map f [] = [] map f (x :: xs) = f x :: map f xs map-id : {l : Level} {A : Set l} (l : List A) → map (\ (x : A) → x) l == l map-id [] = Refl map-id (x :: l) with map (\ x -> x) l | map-id l ... | ._ | Refl = Refl module Uninformative where -- simply typed version peelOff : {A : Set} (eq : A → A → Bool) → List A → List A → Maybe (List A) peelOff eq [] ys = Some ys peelOff eq (_ :: _) [] = None peelOff eq (x :: xs) (y :: ys) with eq x y ... | False = None ... | True = peelOff eq xs ys peelOff : {A : Set} (eq : DecEq A) → (xs ys : List A) → Maybe (Σ \ zs → (xs ++ zs) == ys ) peelOff eq [] ys = Some (ys , Refl) peelOff eq (_ :: _) [] = None peelOff eq (x :: xs) (y :: ys) with eq x y ... | Inr xyneq = None peelOff eq (x :: xs) (.x :: ys) | Inl Refl with peelOff eq xs ys peelOff eq (x :: xs) (.x :: .(xs ++ zs)) | Inl Refl | Some (zs , Refl) = Some (zs , Refl) ... | None = None [_] : {A : Set} → A → List A [ c ] = c :: [] ++-assoc : ∀ {A} (l1 l2 l3 : List A) → (l1 ++ l2) ++ l3 == l1 ++ (l2 ++ l3) ++-assoc [] l2 l3 = Refl ++-assoc (x :: xs) l2 l3 = ap (_::_ x) (++-assoc xs l2 l3) open List public using (List ; [] ; _::_) -- ---------------------------------------------------------------------- -- characters module Char where postulate {- Agda Primitive -} Char : Set {-# BUILTIN CHAR Char #-} {-# COMPILED_TYPE Char Char #-} private primitive primCharToNat : Char → Nat primCharEquality : Char → Char → Bool toNat : Char → Nat toNat = primCharToNat equalb : Char -> Char -> Bool equalb = primCharEquality -- need to go outside the real language a little to give the primitives good types, -- but from the outside this should be safe equal : DecEq Char equal x y with equalb x y ... | True = Inl primTrustMe ... | False = Inr canthappen where postulate canthappen : _ open Char public using (Char) -- ---------------------------------------------------------------------- -- vectors module Vector where data Vec (A : Set) : Nat → Set where [] : Vec A 0 _::_ : ∀ {n} → A → Vec A n → Vec A (S n) infixr 99 _::_ Vec-elim : {A : Set} (P : {n : Nat} → Vec A n → Set) → (P []) → ({n : Nat} (x : A) (xs : Vec A n) → P xs → P (x :: xs)) → {n : Nat} (v : Vec A n) → P v Vec-elim P n c [] = n Vec-elim P n c (y :: ys) = c y ys (Vec-elim P n c ys) fromList : {A : Set} → List A → Σ \n → Vec A n fromList [] = _ , [] fromList (x :: xs) = _ , x :: snd (fromList xs) toList : {A : Set} {n : Nat} → Vec A n → List A toList [] = [] toList (x :: xs) = x :: (toList xs) toList' : {A : Set} → (Σ \ n → Vec A n) → List A toList' (._ , []) = [] toList' (._ , (x :: xs)) = x :: (toList' (_ , xs)) to-from : {A : Set} (l : List A) → toList' (fromList l) == l to-from [] = Refl to-from (x :: l) with toList' (fromList l) | to-from l to-from (x :: l) | .l | Refl = Refl from-to : {A : Set} (l : Σ \n → Vec A n) → fromList (toList' l) == l from-to (._ , []) = Refl from-to (._ , x :: l) with fromList (toList' (_ , l)) | from-to (_ , l) from-to (.(S n) , _::_ {n} x l) | .(n , l) | Refl = Refl -- ---------------------------------------------------------------------- -- strings module String where postulate {- Agda Primitive -} String : Set {-# BUILTIN STRING String #-} {-# COMPILED_TYPE String String #-} private primitive primStringToList : String -> List Char primStringFromList : List Char -> String primStringAppend : String -> String -> String primStringEquality : String -> String -> Bool equal : String -> String -> Bool equal = primStringEquality toList = primStringToList fromList = primStringFromList append = primStringAppend toVec : String -> Σ \ m → Vector.Vec Char m toVec = Vector.fromList o toList -- ---------------------------------------------------------------------- -- fancy order module FancyOrder where data FancyOrder {A : Set} {_≤_ : A → A → Set} (a1 a2 : A) : Set where Less : a1 ≤ a2 -> (a1 == a2 -> Void) → FancyOrder a1 a2 Equal : a1 == a2 -> FancyOrder a1 a2 Greater : a2 ≤ a1 → (a1 == a2 -> Void) -> FancyOrder a1 a2 record DecidableOrder : Set1 where field A : Set _≤_ : A → A → Set ≤-refl : ∀ {a} → a ≤ a ≤-trans : ∀ {a1 a2 a3} → a1 ≤ a2 -> a2 ≤ a3 -> a1 ≤ a3 ≤-saturated : ∀ {a1 a2} -> a1 ≤ a2 -> a2 ≤ a1 -> a1 == a2 compare : (a1 a2 : A) → FancyOrder {A}{_≤_} a1 a2 ≤-refl' : ∀ {a1 a2} → a1 == a2 -> a1 ≤ a2 ≤-refl' Refl = ≤-refl min : A → A → A min a1 a2 with compare a1 a2 ... | Less _ _ = a1 ... | Equal _ = a1 ... | Greater _ _ = a2 min-≤-1 : {a1 a2 : A} → min a1 a2 ≤ a1 min-≤-1 {a1}{a2} with compare a1 a2 ... | Less lt _ = ≤-refl ... | Equal eq = ≤-refl ... | Greater gt _ = gt min-≤-2 : {a1 a2 : A} → min a1 a2 ≤ a2 min-≤-2 {a1}{a2} with compare a1 a2 ... | Less lt _ = lt min-≤-2 | Equal Refl = ≤-refl ... | Greater gt _ = ≤-refl min-sym : {a1 a2 : A} → min a1 a2 == min a2 a1 min-sym {a1}{a2} with compare a1 a2 | compare a2 a1 min-sym | Less lt12 _ | Less lt21 _ = ≤-saturated lt12 lt21 min-sym | Less lt12 _ | Equal Refl = Refl min-sym | Less lt12 _ | Greater gt21 _ = Refl min-sym | Equal eq12 | Less lt21 _ = eq12 min-sym | Equal eq12 | Equal eq21 = eq12 min-sym | Equal eq12 | Greater gt21 _ = Refl min-sym | Greater gt12 _ | Less lt21 _ = Refl min-sym | Greater gt12 _ | Equal eq21 = Refl min-sym | Greater gt12 _ | Greater gt21 _ = ≤-saturated gt12 gt21 min-≤ : {a1 a2 : A} → a1 ≤ a2 -> (min a1 a2) == a1 min-≤ {a1} {a2} lt1 with compare a1 a2 ... | Less lt _ = Refl ... | Equal eq = Refl ... | Greater gt _ = ≤-saturated gt lt1 max : A → A → A max a1 a2 with compare a1 a2 ... | Less _ _ = a2 ... | Equal _ = a2 ... | Greater _ _ = a1 max-≥-1 : {a1 a2 : A} → a1 ≤ max a1 a2 max-≥-1 {a1}{a2} with compare a1 a2 ... | Less lt _ = lt max-≥-1 | Equal Refl = ≤-refl ... | Greater gt _ = ≤-refl max-≥-2 : {a1 a2 : A} → a2 ≤ max a1 a2 max-≥-2 {a1}{a2} with compare a1 a2 ... | Less lt _ = ≤-refl ... | Equal eq = ≤-refl ... | Greater gt _ = gt min-monotone : {a1 a1' a2 a2' : A} → a1 ≤ a1' -> a2 ≤ a2' -> min a1 a2 ≤ min a1' a2' min-monotone {a1}{a1'}{a2}{a2'} lt1 lt2 with compare a1 a2 | compare a1' a2' min-monotone lt1 lt2 | Less x x₁ | Less x₂ x₃ = lt1 min-monotone lt1 lt2 | Less x x₁ | Equal x₂ = lt1 min-monotone lt1 lt2 | Less x x₁ | Greater x₂ x₃ = ≤-trans x lt2 min-monotone lt1 lt2 | Equal x | Less x₁ x₂ = lt1 min-monotone lt1 lt2 | Equal x | Equal x₁ = lt1 min-monotone lt1 lt2 | Equal Refl | Greater x₁ x₂ = lt2 min-monotone lt1 lt2 | Greater x x₁ | Less x₂ x₃ = ≤-trans x lt1 min-monotone lt1 lt2 | Greater x x₁ | Equal x₂ = ≤-trans x lt1 min-monotone lt1 lt2 | Greater x x₁ | Greater x₂ x₃ = lt2 max-sym : {a1 a2 : A} → max a1 a2 == max a2 a1 max-sym {a1}{a2} with compare a1 a2 | compare a2 a1 max-sym | Less lt12 _ | Less lt21 _ = ≤-saturated lt21 lt12 max-sym | Less lt12 _ | Equal eq21 = eq21 max-sym | Less lt12 _ | Greater gt21 _ = Refl max-sym | Equal eq12 | Less lt21 _ = ! eq12 max-sym | Equal eq12 | Equal eq21 = eq21 max-sym | Equal eq12 | Greater gt21 _ = Refl max-sym | Greater gt12 _ | Less lt21 _ = Refl max-sym | Greater gt12 _ | Equal eq21 = Refl max-sym | Greater gt12 _ | Greater gt21 _ = ≤-saturated gt21 gt12 max-≤ : {a1 a2 : A} → a1 ≤ a2 -> (max a1 a2) == a2 max-≤ {a1} {a2} lt1 with compare a1 a2 ... | Less lt _ = Refl ... | Equal eq = Refl ... | Greater gt _ = ≤-saturated lt1 gt max-monotone : {a1 a1' a2 a2' : A} → a1 ≤ a1' -> a2 ≤ a2' -> max a1 a2 ≤ max a1' a2' max-monotone {a1}{a1'}{a2}{a2'} lt1 lt2 with compare a1 a2 | compare a1' a2' max-monotone lt1 lt2 | Less x x₁ | Less x₂ x₃ = lt2 max-monotone lt1 lt2 | Less x x₁ | Equal x₂ = lt2 max-monotone lt1 lt2 | Less x x₁ | Greater x₂ x₃ = ≤-trans lt2 x₂ max-monotone lt1 lt2 | Equal x | Less x₁ x₂ = lt2 max-monotone lt1 lt2 | Equal x | Equal x₁ = lt2 max-monotone lt1 lt2 | Equal Refl | Greater x₁ x₂ = lt1 max-monotone lt1 lt2 | Greater x x₁ | Less x₂ x₃ = ≤-trans lt1 x₂ max-monotone lt1 lt2 | Greater x x₁ | Equal Refl = lt1 max-monotone lt1 lt2 | Greater x x₁ | Greater x₂ x₃ = lt1
30.796976
151
0.458167
3d375b184f959d8ed92cd09b34993d58704e116d
1,493
agda
Agda
GauInt/Instances.agda
onestruggler/EucDomain
7e268e8354065fde734c9c2d9998d2cfd4a21f71
[ "CC0-1.0" ]
null
null
null
GauInt/Instances.agda
onestruggler/EucDomain
7e268e8354065fde734c9c2d9998d2cfd4a21f71
[ "CC0-1.0" ]
null
null
null
GauInt/Instances.agda
onestruggler/EucDomain
7e268e8354065fde734c9c2d9998d2cfd4a21f71
[ "CC0-1.0" ]
null
null
null
-- Instances of Gaussian integers. {-# OPTIONS --without-K --safe #-} module GauInt.Instances where open import Data.Integer using (+_ ; -[1+_] ; +[1+_]) open import Data.Nat using (suc ) open import Instances open import GauInt.Base renaming (-_ to -𝔾_ ; _-_ to _-𝔾_ ; _+_ to _+𝔾_ ; _*_ to _*𝔾_ ; NonZero to NonZero𝔾 ; rank to rank𝔾) -- Instances to overload operations. instance sr𝔾 : SemiRing 𝔾 _+_ {{sr𝔾}} = _+𝔾_ _*_ {{sr𝔾}} = _*𝔾_ 0# {{sr𝔾}} = 0𝔾 1# {{sr𝔾}} = 1𝔾 instance ring𝔾 : Ring 𝔾 ring𝔾 .sra = sr𝔾 ring𝔾 .-_ = -𝔾_ instance Rank𝔾 : Rank 𝔾 Rank𝔾 .rank = rank𝔾 -- This depends on how the boolean equality on 𝔾 is defined. To be -- precise, it depends on the order of comparing the components. instance nzp : ∀ {n} {y} -> NonZero𝔾 (+ suc n + y i) nzp = _ nzn : ∀ {n} {y} -> NonZero𝔾 (-[1+ n ] + y i) nzn = _ nzpi : ∀ {n} -> NonZero𝔾 (0# + (+ suc n) i) nzpi = _ nzni : ∀ {n} -> NonZero𝔾 (0# + (-[1+ n ]) i) nzni = _ instance NZT𝔾 : NonZeroTypeclass 𝔾 NZT𝔾 .NonZero = NonZero𝔾 {- -- Translation from NonZero predicate to non-equality. test-t : ∀ (x : 𝔾) -> .{{NonZero x}} -> ¬ x ≡ 0# test-t (+_ zero + +[1+ n ] i) = λ {()} test-t (+_ zero + -[1+_] n i) = λ {()} test-t (+[1+ n ] + x₁ i) = λ {()} test-t (-[1+_] n + x₁ i) = λ {()} open import Relation.Binary.Structures open IsDecEquivalence {{...}} open IsDecTotalOrder {{...}} open import Data.Nat.Instances open import Data.Integer.Instances test : {!!} test = 0ℤ ≤? 0ℤ -}
21.637681
124
0.586068
58233971c6f0cd908ef7d6637bfcf334676bf33c
1,365
agda
Agda
Cubical/HITs/Truncation/Base.agda
borsiemir/cubical
cefeb3669ffdaea7b88ae0e9dd258378418819ca
[ "MIT" ]
1
2020-03-23T23:52:11.000Z
2020-03-23T23:52:11.000Z
Cubical/HITs/Truncation/Base.agda
borsiemir/cubical
cefeb3669ffdaea7b88ae0e9dd258378418819ca
[ "MIT" ]
null
null
null
Cubical/HITs/Truncation/Base.agda
borsiemir/cubical
cefeb3669ffdaea7b88ae0e9dd258378418819ca
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --safe #-} module Cubical.HITs.Truncation.Base where open import Cubical.Foundations.Prelude open import Cubical.Data.Nat open import Cubical.Data.NatMinusOne open import Cubical.Data.NatMinusTwo hiding (-1+_) open import Cubical.HITs.Nullification open import Cubical.HITs.Sn -- For the hub-and-spoke construction discussed in the HoTT book, which doesn't work in the base case -- of contractibility, see `HITs.Truncation.FromNegOne`. The definition of truncation here contains -- two more constructors which are redundant when n ≥ 1 but give contractibility when n = 0. -- data hLevelTrunc {ℓ} (n : ℕ) (A : Type ℓ) : Type (ℓ-max ℓ ℓ') where -- -- the hub-and-spoke definition in `Truncation.FromNegOne` -- ∣_∣ : A → hLevelTrunc n A -- hub : (f : S (-1+ n) → hLevelTrunc n A) → hLevelTrunc n A -- spoke : (f : S (-1+ n) → hLevelTrunc n A) (s : S) → hub f ≡ f s -- -- two additional constructors needed to ensure that hLevelTrunc 0 A is contractible -- ≡hub : ∀ {x y} (p : S (-1+ n) → x ≡ y) → x ≡ y -- ≡spoke : ∀ {x y} (p : S (-1+ n) → x ≡ y) (s : S (-1+ n)) → ≡hub p ≡ p s hLevelTrunc : ∀ {ℓ} → ℕ → Type ℓ → Type ℓ hLevelTrunc n A = Null (S (-1+ n)) A -- a re-indexing of `hLevelTrunc` which is consistent with the HoTT book ∥_∥_ : ∀ {ℓ} → Type ℓ → ℕ₋₂ → Type ℓ ∥ A ∥ n = hLevelTrunc (2+ n) A -- ≡ Null (S (1+ n)) A
45.5
101
0.644689
2f9c7d9081327136236d0a2dd2dc791deab00add
109
agda
Agda
Cubical/Algebra/Algebra.agda
barrettj12/cubical
7b41b9171f90473efc98487cb2ea7a4d02320cb2
[ "MIT" ]
301
2018-10-17T18:00:24.000Z
2022-03-24T02:10:47.000Z
Cubical/Algebra/Algebra.agda
barrettj12/cubical
7b41b9171f90473efc98487cb2ea7a4d02320cb2
[ "MIT" ]
584
2018-10-15T09:49:02.000Z
2022-03-30T12:09:17.000Z
Cubical/Algebra/Algebra.agda
barrettj12/cubical
7b41b9171f90473efc98487cb2ea7a4d02320cb2
[ "MIT" ]
134
2018-11-16T06:11:03.000Z
2022-03-23T16:22:13.000Z
{-# OPTIONS --safe #-} module Cubical.Algebra.Algebra where open import Cubical.Algebra.Algebra.Base public
21.8
47
0.770642
207f590394c1e603bf5915ea80bfd786ea06f4ab
204
agda
Agda
agda/MoreLogic.agda
mchristianl/synthetic-reals
10206b5c3eaef99ece5d18bf703c9e8b2371bde4
[ "MIT" ]
3
2020-07-31T18:15:26.000Z
2022-02-19T12:15:21.000Z
agda/MoreLogic.agda
mchristianl/synthetic-reals
10206b5c3eaef99ece5d18bf703c9e8b2371bde4
[ "MIT" ]
null
null
null
agda/MoreLogic.agda
mchristianl/synthetic-reals
10206b5c3eaef99ece5d18bf703c9e8b2371bde4
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts #-} module MoreLogic where -- hProp logic open import MoreLogic.Reasoning public open import MoreLogic.Definitions public open import MoreLogic.Properties public
25.5
43
0.794118
31b31e259f45073b995e2713143c0a4a39e39744
15,124
agda
Agda
Univalence/FinEquivEquivPlus.agda
JacquesCarette/pi-dual
003835484facfde0b770bc2b3d781b42b76184c1
[ "BSD-2-Clause" ]
14
2015-08-18T21:40:15.000Z
2021-05-05T01:07:57.000Z
Univalence/FinEquivEquivPlus.agda
JacquesCarette/pi-dual
003835484facfde0b770bc2b3d781b42b76184c1
[ "BSD-2-Clause" ]
4
2018-06-07T16:27:41.000Z
2021-10-29T20:41:23.000Z
Univalence/FinEquivEquivPlus.agda
JacquesCarette/pi-dual
003835484facfde0b770bc2b3d781b42b76184c1
[ "BSD-2-Clause" ]
3
2016-05-29T01:56:33.000Z
2019-09-10T09:47:13.000Z
{-# OPTIONS --without-K #-} module FinEquivEquivPlus where open import Data.Product using (_×_; proj₁; proj₂) open import Equiv using (refl∼; sym∼; sym≃; _⊎≃_; id≃; _≃_; _●_; _×≃_; qinv) open import FinEquivPlusTimes using (F0≃⊥; module Plus; module Times) open Plus using (⊎≃+; +≃⊎) open Times using (×≃*; *≃×) open import FinEquivTypeEquiv using (_fin≃_; module PlusE; module TimesE; module PlusTimesE) open PlusE using (_+F_; unite+; uniti+; unite+r; uniti+r; assocr+; assocl+; swap+; sswap+) open TimesE using (_*F_; unite*; uniti*; unite*r; uniti*r; assocr*; assocl*; swap*; sswap*) open PlusTimesE using (distz; factorz; distzr; factorzr; dist; factor; distl; factorl) open import EquivEquiv open import TypeEquiv using (unite₊equiv; unite₊′equiv; assocl₊equiv) open import Data.Empty using (⊥) open import Data.Unit using (⊤) open import Data.Nat using (ℕ; _+_; _*_) open import Data.Fin using (Fin) open import Data.Sum using (_⊎_) open import Data.Product using (_,_) import Relation.Binary.PropositionalEquality as P using (refl) import TypeEquivEquiv as T using ([id,id]≋id; ⊎●≋●⊎; _⊎≋_; sym≃-distrib⊎; unite₊-nat; assocl₊-nat; [g+1]●[1+f]≋[1+f]●[g+1]; unite₊′-nat) ------------------------------------------------------------------------------ -- equivalences for the ⊎ structure id0≃ : Fin 0 ≃ Fin 0 id0≃ = id≃ {A = Fin 0} [id+id]≋id : ∀ {p : ℕ × ℕ} → let m = proj₁ p in let n = proj₂ p in id≃ {A = Fin m} +F id≃ {A = Fin n} ≋ id≃ [id+id]≋id {(m , n)} = let em = id≃ {A = Fin m} in let en = id≃ {A = Fin n} in let em⊎en = id≃ {A = Fin m ⊎ Fin n} in let em+n = id≃ {A = Fin (m + n)} in let f≋ = id≋ {x = ⊎≃+ {m} {n}} in let g≋ = id≋ {x = +≃⊎ {m} {n}} in begin ( em +F en ≋⟨ id≋ ⟩ ⊎≃+ ● (em ⊎≃ en) ● +≃⊎ ≋⟨ f≋ ◎ (T.[id,id]≋id ◎ g≋) ⟩ ⊎≃+ ● id≃ {A = Fin m ⊎ Fin n} ● +≃⊎ ≋⟨ f≋ ◎ lid≋ {f = +≃⊎} ⟩ ⊎≃+ {m} ● +≃⊎ ≋⟨ rinv≋ (⊎≃+ {m}) ⟩ em+n ∎) where open ≋-Reasoning intro-inv-r+ : {m n : ℕ} {B : Set} (f : (Fin m ⊎ Fin n) ≃ B) → f ≋ (f ● +≃⊎) ● ⊎≃+ intro-inv-r+ f = begin ( f ≋⟨ sym≋ rid≋ ⟩ f ● id≃ ≋⟨ id≋ {x = f} ◎ sym≋ (linv≋ ⊎≃+) ⟩ f ● (+≃⊎ ● ⊎≃+) ≋⟨ ●-assocl {f = ⊎≃+} {+≃⊎} {f} ⟩ (f ● +≃⊎) ● ⊎≃+ ∎) where open ≋-Reasoning +●≋●+ : {A B C D E F : ℕ} → {f : A fin≃ C} {g : B fin≃ D} {h : C fin≃ E} {i : D fin≃ F} → (h ● f) +F (i ● g) ≋ (h +F i) ● (f +F g) +●≋●+ {f = f} {g} {h} {i} = let f≋ = id≋ {x = ⊎≃+} in let g≋ = id≋ {x = +≃⊎} in let id≋fg = id≋ {x = f ⊎≃ g} in begin ( (h ● f) +F (i ● g) ≋⟨ id≋ ⟩ ⊎≃+ ● ((h ● f) ⊎≃ (i ● g)) ● +≃⊎ ≋⟨ f≋ ◎ (T.⊎●≋●⊎ ◎ g≋) ⟩ -- the real work, rest is shuffling ⊎≃+ ● ((h ⊎≃ i) ● (f ⊎≃ g)) ● +≃⊎ ≋⟨ ●-assocl ⟩ (⊎≃+ ● ((h ⊎≃ i) ● (f ⊎≃ g))) ● +≃⊎ ≋⟨ ●-assocl ◎ g≋ ⟩ ((⊎≃+ ● h ⊎≃ i) ● f ⊎≃ g) ● +≃⊎ ≋⟨ ((f≋ ◎ intro-inv-r+ (h ⊎≃ i)) ◎ id≋fg) ◎ g≋ ⟩ ((⊎≃+ ● (h ⊎≃ i ● +≃⊎) ● ⊎≃+) ● f ⊎≃ g) ● +≃⊎ ≋⟨ (●-assocl ◎ id≋fg) ◎ g≋ ⟩ (((⊎≃+ ● (h ⊎≃ i ● +≃⊎)) ● ⊎≃+) ● f ⊎≃ g) ● +≃⊎ ≋⟨ id≋ ⟩ -- the left part is done, show it ((h +F i ● ⊎≃+) ● f ⊎≃ g) ● +≃⊎ ≋⟨ ●-assoc {f = f ⊎≃ g} {⊎≃+} {h +F i} ◎ g≋ ⟩ (h +F i ● (⊎≃+ ● f ⊎≃ g)) ● +≃⊎ ≋⟨ ●-assoc {f = +≃⊎} {⊎≃+ ● f ⊎≃ g} {h +F i}⟩ (h +F i) ● ((⊎≃+ ● f ⊎≃ g) ● +≃⊎) ≋⟨ id≋ {x = h +F i} ◎ ●-assoc {f = +≃⊎} {f ⊎≃ g} {⊎≃+}⟩ (h +F i) ● (f +F g) ∎) where open ≋-Reasoning _+≋_ : {A B C D : ℕ} {f₁ g₁ : A fin≃ B} {f₂ g₂ : C fin≃ D} → (f₁ ≋ g₁) → (f₂ ≋ g₂) → (f₁ +F f₂ ≋ g₁ +F g₂) _+≋_ {A} {B} {C} {D} {f₁} {g₁} {f₂} {g₂} f₁≋g₁ f₂≋g₂ = let f≋ = id≋ {x = ⊎≃+} in let g≋ = id≋ {x = +≃⊎} in begin ( f₁ +F f₂ ≋⟨ id≋ ⟩ ⊎≃+ ● (f₁ ⊎≃ f₂) ● +≃⊎ ≋⟨ f≋ ◎ (T._⊎≋_ f₁≋g₁ f₂≋g₂ ◎ g≋) ⟩ ⊎≃+ ● (g₁ ⊎≃ g₂) ● +≃⊎ ≋⟨ id≋ ⟩ g₁ +F g₂ ∎) where open ≋-Reasoning unite₊-nat : {m n : ℕ} {f : m fin≃ n} → unite+ ● (id0≃ +F f) ≋ f ● unite+ unite₊-nat {m} {n} {f} = begin ( unite+ ● (id0≃ +F f) ≋⟨ id≋ ⟩ (unite₊equiv ● (F0≃⊥ ⊎≃ id≃) ● +≃⊎) ● ⊎≃+ ● ((id≃ ⊎≃ f) ● +≃⊎) ≋⟨ ●-assocl {f = (id≃ ⊎≃ f) ● +≃⊎} {⊎≃+} {unite₊equiv ● (F0≃⊥ ⊎≃ id≃) ● +≃⊎} ⟩ ((unite₊equiv ● ((F0≃⊥ ⊎≃ id≃) ● +≃⊎)) ● ⊎≃+) ● ((id≃ ⊎≃ f) ● +≃⊎) ≋⟨ (●-assocl ◎ id≋) ◎ id≋ ⟩ (((unite₊equiv ● (F0≃⊥ ⊎≃ id≃)) ● +≃⊎) ● ⊎≃+) ● (id≃ ⊎≃ f) ● +≃⊎ ≋⟨ sym≋ (intro-inv-r+ (unite₊equiv ● (F0≃⊥ ⊎≃ id≃))) ◎ id≋ ⟩ (unite₊equiv ● (F0≃⊥ ⊎≃ id≃)) ● (id≃ ⊎≃ f) ● +≃⊎ ≋⟨ ●-assocl ⟩ ((unite₊equiv ● (F0≃⊥ ⊎≃ id≃)) ● (id≃ ⊎≃ f)) ● +≃⊎ ≋⟨ ●-assoc ◎ id≋ ⟩ (unite₊equiv ● (F0≃⊥ ⊎≃ id≃) ● (id≃ ⊎≃ f)) ● +≃⊎ ≋⟨ (id≋ ◎ (T.[g+1]●[1+f]≋[1+f]●[g+1] {f = f} {F0≃⊥})) ◎ id≋ ⟩ (unite₊equiv ● ((id≃ ⊎≃ f) ● (F0≃⊥ ⊎≃ id≃))) ● +≃⊎ ≋⟨ ●-assocl ◎ id≋ ⟩ ((unite₊equiv ● (id≃ ⊎≃ f)) ● (F0≃⊥ ⊎≃ id≃)) ● +≃⊎ ≋⟨ ●-assoc ⟩ (unite₊equiv ● (id≃ ⊎≃ f)) ● (F0≃⊥ ⊎≃ id≃) ● +≃⊎ ≋⟨ T.unite₊-nat ◎ id≋ ⟩ (f ● unite₊equiv) ● (F0≃⊥ ⊎≃ id≃) ● +≃⊎ ≋⟨ ●-assoc ⟩ f ● unite₊equiv ● (F0≃⊥ ⊎≃ id≃) ● +≃⊎ ≋⟨ id≋ ⟩ f ● unite+ ∎) where open ≋-Reasoning -- sym≃ distributes over +F sym+F : ∀ {A B C D} {f : A fin≃ B} {g : C fin≃ D} → sym≃ (f +F g) ≋ sym≃ f +F sym≃ g sym+F {f = f} {g = g} = begin ( sym≃ (f +F g) ≋⟨ id≋ ⟩ sym≃ (⊎≃+ ● (f ⊎≃ g ● +≃⊎)) ≋⟨ sym≃● ⟩ sym≃ (f ⊎≃ g ● +≃⊎) ● sym≃ ⊎≃+ ≋⟨ sym≃● ◎ id≋ ⟩ (sym≃ +≃⊎ ● sym≃ (f ⊎≃ g)) ● sym≃ ⊎≃+ ≋⟨ (id≋ ◎ T.sym≃-distrib⊎) ◎ id≋ ⟩ (sym≃ +≃⊎ ● (sym≃ f ⊎≃ sym≃ g)) ● sym≃ ⊎≃+ ≋⟨ ●-assoc ⟩ sym≃ +≃⊎ ● ((sym≃ f ⊎≃ sym≃ g) ● sym≃ ⊎≃+) ≋⟨ id≋ ⟩ sym≃ f +F sym≃ g ∎) where open ≋-Reasoning uniti₊-nat : ∀ {A B} {f : A fin≃ B} → uniti+ ● f ≋ (id0≃ +F f) ● uniti+ uniti₊-nat {f = f} = begin ( uniti+ ● f ≋⟨ id≋ ⟩ sym≃ unite+ ● sym≃ (sym≃ f) ≋⟨ sym≋ sym≃● ⟩ sym≃ (sym≃ f ● unite+) ≋⟨ flip-sym≋ unite₊-nat ⟩ sym≃ (unite+ ● (id0≃ +F sym≃ f)) ≋⟨ sym≃● ⟩ sym≃ (id0≃ +F sym≃ f) ● uniti+ ≋⟨ sym+F ◎ id≋ {x = uniti+} ⟩ (id0≃ +F sym≃ (sym≃ f)) ● uniti+ ≋⟨ id≋ ⟩ (id0≃ +F f) ● uniti+ ∎) where open ≋-Reasoning unite₊r-nat : {m n : ℕ} {f : m fin≃ n} → unite+r ● (f +F id0≃) ≋ f ● unite+r unite₊r-nat {m} {n} {f} = let 1+⊥ = id≃ ⊎≃ F0≃⊥ in let f+1 = f ⊎≃ id≃ in let g≋ = id≋ {x = +≃⊎} in let rhs≋ = id≋ {x = f+1 ● +≃⊎} in begin ( unite+r ● (f +F id0≃) ≋⟨ id≋ ⟩ (unite₊′equiv ● 1+⊥ ● +≃⊎) ● ⊎≃+ ● (f+1 ● +≃⊎) ≋⟨ ●-assocl ⟩ ((unite₊′equiv ● 1+⊥ ● +≃⊎) ● ⊎≃+) ● (f+1 ● +≃⊎) ≋⟨ (●-assocl ◎ id≋) ◎ id≋ ⟩ (((unite₊′equiv ● 1+⊥) ● +≃⊎) ● ⊎≃+) ● (f+1 ● +≃⊎) ≋⟨ sym≋ (intro-inv-r+ (unite₊′equiv ● 1+⊥)) ◎ rhs≋ ⟩ (unite₊′equiv ● 1+⊥) ● (f+1 ● +≃⊎) ≋⟨ trans≋ ●-assocl (●-assoc ◎ id≋) ⟩ (unite₊′equiv ● (1+⊥ ● f+1)) ● +≃⊎ ≋⟨ (id≋ {x = unite₊′equiv} ◎ sym≋ (T.[g+1]●[1+f]≋[1+f]●[g+1] {f = F0≃⊥} {f})) ◎ g≋ ⟩ (unite₊′equiv ● (f ⊎≃ id≃) ● (id≃ ⊎≃ F0≃⊥)) ● +≃⊎ -- the id≃ are at different types! ≋⟨ ●-assocl ◎ id≋ ⟩ ((unite₊′equiv ● (f ⊎≃ id≃)) ● (id≃ ⊎≃ F0≃⊥)) ● +≃⊎ ≋⟨ ●-assoc ⟩ (unite₊′equiv ● (f ⊎≃ id≃)) ● (id≃ ⊎≃ F0≃⊥) ● +≃⊎ ≋⟨ T.unite₊′-nat ◎ id≋ {x = (id≃ ⊎≃ F0≃⊥) ● +≃⊎} ⟩ (f ● unite₊′equiv) ● (id≃ ⊎≃ F0≃⊥) ● +≃⊎ ≋⟨ ●-assoc ⟩ -- assoc + defn f ● unite+r ∎) where open ≋-Reasoning uniti₊r-nat : {m n : ℕ} {f : m fin≃ n} → uniti+r ● f ≋ (f +F id0≃) ● uniti+r uniti₊r-nat {f = f} = begin ( uniti+r ● f ≋⟨ id≋ ⟩ sym≃ unite+r ● sym≃ (sym≃ f) ≋⟨ sym≋ sym≃● ⟩ sym≃ (sym≃ f ● unite+r) ≋⟨ flip-sym≋ unite₊r-nat ⟩ sym≃ (unite+r ● (sym≃ f +F id0≃)) ≋⟨ sym≃● ⟩ sym≃ (sym≃ f +F id0≃) ● uniti+r ≋⟨ sym+F ◎ id≋ {x = uniti+r} ⟩ (sym≃ (sym≃ f) +F id0≃) ● uniti+r ≋⟨ id≋ ⟩ (f +F id0≃) ● uniti+r ∎) where open ≋-Reasoning -- assocl+ is the one which is defined directly (?) assocl₊-nat : {m n o m' n' o' : ℕ} {f : m fin≃ m'} {g : n fin≃ n'} {h : o fin≃ o'} → assocl+ {m'} {n'} {o'} ● (f +F (g +F h)) ≋ ((f +F g) +F h) ● assocl+ {m} {n} {o} -- expand the definitions right away, the pattern is clear assocl₊-nat {m} {n} {o} {m'} {n'} {o'} {f} {g} {h} = let αmno' = assocl₊equiv {Fin m'} {Fin n'} {Fin o'} in let αmno = assocl₊equiv {Fin m} {Fin n} {Fin o} in begin ( (⊎≃+ ● ⊎≃+ ⊎≃ id≃ ● αmno' ● id≃ ⊎≃ +≃⊎ ● +≃⊎) ● ⊎≃+ ● ((f ⊎≃ (⊎≃+ ● g ⊎≃ h ● +≃⊎)) ● +≃⊎) ≋⟨ ●-assocl ⟩ ((⊎≃+ ● ⊎≃+ ⊎≃ id≃ ● assocl₊equiv ● id≃ ⊎≃ +≃⊎ ● +≃⊎) ● ⊎≃+) ● (f ⊎≃ (⊎≃+ ● g ⊎≃ h ● +≃⊎) ● +≃⊎) ≋⟨ ((id≋ ◎ (id≋ ◎ ●-assocl)) ◎ id≋) ◎ id≋ ⟩ ((⊎≃+ ● ⊎≃+ ⊎≃ id≃ ● (assocl₊equiv ● id≃ ⊎≃ +≃⊎) ● +≃⊎) ● ⊎≃+) ● (f ⊎≃ (⊎≃+ ● g ⊎≃ h ● +≃⊎) ● +≃⊎) ≋⟨ ((id≋ ◎ ●-assocl) ◎ id≋) ◎ id≋ ⟩ ((⊎≃+ ● (⊎≃+ ⊎≃ id≃ ● (assocl₊equiv ● id≃ ⊎≃ +≃⊎)) ● +≃⊎) ● ⊎≃+) ● (f ⊎≃ (⊎≃+ ● g ⊎≃ h ● +≃⊎) ● +≃⊎) ≋⟨ (●-assocl ◎ id≋) ◎ id≋ ⟩ (((⊎≃+ ● (⊎≃+ ⊎≃ id≃ ● (assocl₊equiv ● id≃ ⊎≃ +≃⊎))) ● +≃⊎) ● ⊎≃+) ● (f ⊎≃ (⊎≃+ ● g ⊎≃ h ● +≃⊎) ● +≃⊎) ≋⟨ sym≋ (intro-inv-r+ (⊎≃+ ● (⊎≃+ ⊎≃ id≃ ● (assocl₊equiv ● id≃ ⊎≃ +≃⊎)))) ◎ id≋ ⟩ (⊎≃+ ● (⊎≃+ ⊎≃ id≃ ● (assocl₊equiv ● id≃ ⊎≃ +≃⊎))) ● (f ⊎≃ (⊎≃+ ● g ⊎≃ h ● +≃⊎) ● +≃⊎) ≋⟨ ●-assoc ⟩ ⊎≃+ ● (⊎≃+ ⊎≃ id≃ ● (assocl₊equiv ● id≃ ⊎≃ +≃⊎)) ● (f ⊎≃ (⊎≃+ ● g ⊎≃ h ● +≃⊎) ● +≃⊎) ≋⟨ id≋ ◎ (●-assocl ◎ id≋) ⟩ ⊎≃+ ● ((⊎≃+ ⊎≃ id≃ ● assocl₊equiv) ● id≃ ⊎≃ +≃⊎) ● (f ⊎≃ (⊎≃+ ● g ⊎≃ h ● +≃⊎) ● +≃⊎) ≋⟨ id≋ ◎ ●-assoc ⟩ ⊎≃+ ● (⊎≃+ ⊎≃ id≃ ● assocl₊equiv) ● (id≃ ⊎≃ +≃⊎ ● (f ⊎≃ (⊎≃+ ● g ⊎≃ h ● +≃⊎) ● +≃⊎)) ≋⟨ id≋ ◎ (id≋ ◎ ●-assocl) ⟩ ⊎≃+ ● (⊎≃+ ⊎≃ id≃ ● assocl₊equiv) ● ((id≃ ⊎≃ +≃⊎ ● f ⊎≃ (⊎≃+ ● g ⊎≃ h ● +≃⊎)) ● +≃⊎) ≋⟨ id≋ ◎ (id≋ ◎ (sym≋ T.⊎●≋●⊎ ◎ id≋)) ⟩ ⊎≃+ ● (⊎≃+ ⊎≃ id≃ ● assocl₊equiv) ● ((id≃ ● f) ⊎≃ (+≃⊎ ● (⊎≃+ ● g ⊎≃ h ● +≃⊎))) ● +≃⊎ ≋⟨ id≋ ◎ (id≋ ◎ (T._⊎≋_ (trans≋ lid≋ (sym≋ rid≋)) (trans≋ ●-assocl (trans≋ (linv≋ ⊎≃+ ◎ id≋) lid≋)) ◎ id≋)) ⟩ ⊎≃+ ● (⊎≃+ ⊎≃ id≃ ● assocl₊equiv) ● ((f ● id≃) ⊎≃ (g ⊎≃ h ● +≃⊎)) ● +≃⊎ ≋⟨ id≋ ◎ (id≋ ◎ (T.⊎●≋●⊎ ◎ id≋)) ⟩ ⊎≃+ ● (⊎≃+ ⊎≃ id≃ ● assocl₊equiv) ● (f ⊎≃ (g ⊎≃ h) ● id≃ ⊎≃ +≃⊎) ● +≃⊎ ≋⟨ id≋ ◎ ●-assocl ⟩ ⊎≃+ ● ((⊎≃+ ⊎≃ id≃ ● assocl₊equiv) ● (f ⊎≃ (g ⊎≃ h) ● id≃ ⊎≃ +≃⊎)) ● +≃⊎ ≋⟨ id≋ ◎ (●-assocl ◎ id≋) ⟩ ⊎≃+ ● (((⊎≃+ ⊎≃ id≃ ● assocl₊equiv) ● f ⊎≃ (g ⊎≃ h)) ● id≃ ⊎≃ +≃⊎) ● +≃⊎ ≋⟨ id≋ ◎ ((●-assoc ◎ id≋) ◎ id≋) ⟩ ⊎≃+ ● ((⊎≃+ ⊎≃ id≃ ● (assocl₊equiv ● f ⊎≃ (g ⊎≃ h))) ● id≃ ⊎≃ +≃⊎) ● +≃⊎ ≋⟨ id≋ ◎ ( ((id≋ ◎ T.assocl₊-nat) ◎ id≋) ◎ id≋) ⟩ ⊎≃+ ● ((⊎≃+ ⊎≃ id≃ ● ((f ⊎≃ g) ⊎≃ h) ● assocl₊equiv) ● id≃ ⊎≃ +≃⊎) ● +≃⊎ ≋⟨ id≋ ◎ ((●-assocl ◎ id≋) ◎ id≋) ⟩ ⊎≃+ ● (((⊎≃+ ⊎≃ id≃ ● (f ⊎≃ g) ⊎≃ h) ● assocl₊equiv) ● id≃ ⊎≃ +≃⊎) ● +≃⊎ ≋⟨ id≋ ◎ (((T+1-nat ◎ id≋) ◎ id≋) ◎ id≋) ⟩ ⊎≃+ ● ((((⊎≃+ ● f ⊎≃ g ● +≃⊎) ● ⊎≃+) ⊎≃ (h ● id≃) ● assocl₊equiv) ● id≃ ⊎≃ +≃⊎) ● +≃⊎ ≋⟨ id≋ ◎ ●-assoc ⟩ ⊎≃+ ● (((⊎≃+ ● f ⊎≃ g ● +≃⊎) ● ⊎≃+) ⊎≃ (h ● id≃) ● assocl₊equiv) ● (id≃ ⊎≃ +≃⊎ ● +≃⊎) ≋⟨ id≋ ◎ ●-assoc ⟩ ⊎≃+ ● ((⊎≃+ ● f ⊎≃ g ● +≃⊎) ● ⊎≃+) ⊎≃ (h ● id≃) ● (assocl₊equiv ● id≃ ⊎≃ +≃⊎ ● +≃⊎) ≋⟨ ●-assocl ⟩ (⊎≃+ ● ((⊎≃+ ● (f ⊎≃ g) ● +≃⊎) ● ⊎≃+) ⊎≃ (h ● id≃)) ● (αmno ● id≃ ⊎≃ +≃⊎ ● +≃⊎) ≋⟨ (id≋ ◎ T.⊎●≋●⊎ ) ◎ id≋ ⟩ (⊎≃+ ● (((⊎≃+ ● (f ⊎≃ g) ● +≃⊎) ⊎≃ h) ● (⊎≃+ ⊎≃ id≃))) ● (αmno ● id≃ ⊎≃ +≃⊎ ● +≃⊎) ≋⟨ ●-assocl ◎ id≋ ⟩ ((⊎≃+ ● ((⊎≃+ ● (f ⊎≃ g) ● +≃⊎) ⊎≃ h)) ● (⊎≃+ ⊎≃ id≃)) ● (αmno ● id≃ ⊎≃ +≃⊎ ● +≃⊎) ≋⟨ ●-assoc ⟩ (⊎≃+ ● ((⊎≃+ ● (f ⊎≃ g) ● +≃⊎) ⊎≃ h)) ● (⊎≃+ ⊎≃ id≃ ● αmno ● id≃ ⊎≃ +≃⊎ ● +≃⊎) ≋⟨ id≋ ◎ sym≋ lid≋ ⟩ (⊎≃+ ● ((⊎≃+ ● (f ⊎≃ g) ● +≃⊎) ⊎≃ h)) ● id≃ ● (⊎≃+ ⊎≃ id≃ ● αmno ● id≃ ⊎≃ +≃⊎ ● +≃⊎) ≋⟨ id≋ ◎ (sym≋ (rinv≋ +≃⊎) ◎ id≋) ⟩ (⊎≃+ ● ((⊎≃+ ● (f ⊎≃ g) ● +≃⊎) ⊎≃ h)) ● (+≃⊎ ● ⊎≃+) ● (⊎≃+ ⊎≃ id≃ ● αmno ● id≃ ⊎≃ +≃⊎ ● +≃⊎) ≋⟨ id≋ ◎ ●-assoc ⟩ ((⊎≃+ ● ((⊎≃+ ● (f ⊎≃ g) ● +≃⊎) ⊎≃ h))) ● (+≃⊎ ● ⊎≃+ ● ⊎≃+ ⊎≃ id≃ ● αmno ● id≃ ⊎≃ +≃⊎ ● +≃⊎) ≋⟨ ●-assocl ⟩ ((⊎≃+ ● ((⊎≃+ ● (f ⊎≃ g) ● +≃⊎) ⊎≃ h)) ● +≃⊎) ● (⊎≃+ ● ⊎≃+ ⊎≃ id≃ ● αmno ● id≃ ⊎≃ +≃⊎ ● +≃⊎) ≋⟨ ●-assoc ◎ id≋ ⟩ (⊎≃+ ● ((⊎≃+ ● (f ⊎≃ g) ● +≃⊎) ⊎≃ h) ● +≃⊎) ● (⊎≃+ ● ⊎≃+ ⊎≃ id≃ ● αmno ● id≃ ⊎≃ +≃⊎ ● +≃⊎) ∎) where open ≋-Reasoning T+1-nat : ⊎≃+ ⊎≃ id≃ ● (f ⊎≃ g) ⊎≃ h ≋ ((⊎≃+ ● f ⊎≃ g ● +≃⊎) ● ⊎≃+) ⊎≃ (h ● id≃) T+1-nat = begin ( ⊎≃+ ⊎≃ id≃ ● (f ⊎≃ g) ⊎≃ h ≋⟨ sym≋ (T.⊎●≋●⊎) ⟩ (⊎≃+ ● f ⊎≃ g) ⊎≃ (id≃ ● h) ≋⟨ id≋ T.⊎≋ (trans≋ lid≋ (sym≋ rid≋))⟩ (⊎≃+ ● f ⊎≃ g) ⊎≃ (h ● id≃) ≋⟨ trans≋ (intro-inv-r+ ((⊎≃+ ● f ⊎≃ g))) ●-assoc T.⊎≋ id≋ ⟩ ((⊎≃+ ● f ⊎≃ g) ● +≃⊎ ● ⊎≃+) ⊎≃ (h ● id≃) ≋⟨ trans≋ ●-assocl (●-assoc ◎ id≋) T.⊎≋ id≋ ⟩ ((⊎≃+ ● f ⊎≃ g ● +≃⊎) ● ⊎≃+) ⊎≃ (h ● id≃) ∎) assocr₊-nat : {m n o m' n' o' : ℕ} {f : m fin≃ m'} {g : n fin≃ n'} {h : o fin≃ o'} → assocr+ {m'} {n'} {o'} ● ((f +F g) +F h) ≋ (f +F (g +F h)) ● assocr+ {m} {n} {o} assocr₊-nat {m} {n} {o} {m'} {n'} {o'} {f} {g} {h} = begin ( assocr+ {m'} {n'} {o'} ● ((f +F g) +F h) ≋⟨ id≋ ⟩ sym≃ assocl+ ● sym≃ (sym≃ ((f +F g) +F h)) ≋⟨ sym≋ (sym≃● {f = assocl+}) ⟩ sym≃ (sym≃ ((f +F g) +F h) ● assocl+ {m'} {n'} {o'}) ≋⟨ flip≋ ((trans≋ sym+F (sym+F +≋ id≋ )) ◎ id≋) ⟩ sym≃ (((sym≃ f +F sym≃ g) +F sym≃ h) ● assocl+ {m'}) ≋⟨ flip-sym≋ assocl₊-nat ⟩ sym≃ (assocl+ {m} {n} {o} ● (sym≃ f +F (sym≃ g +F sym≃ h))) ≋⟨ flip≋ (id≋ ◎ (trans≋ (id≋ +≋ (sym≋ sym+F)) (sym≋ sym+F))) ⟩ sym≃ ( assocl+ ● sym≃ (f +F (g +F h))) ≋⟨ sym≃● ⟩ sym≃ (sym≃ (f +F (g +F h))) ● sym≃ (assocl+ {m} {n} {o}) ≋⟨ id≋ ⟩ (f +F (g +F h)) ● (assocr+ {m} {n} {o}) ∎) where open ≋-Reasoning unite-assocr₊-coh : {m n : ℕ} → unite+r {m = m} +F id≃ {A = Fin n} ≋ (id≃ {A = Fin m} +F unite+ {m = n}) ● assocr+ {m} {0} {n} unite-assocr₊-coh {m} {n} = begin ( ⊎≃+ ● (unite₊′equiv {Fin m} ● id≃ ⊎≃ F0≃⊥ ● +≃⊎) ⊎≃ id≃ {A = Fin n} ● +≃⊎ ≋⟨ {!!} ⟩ (⊎≃+ ● (id≃ ⊎≃ (unite₊equiv ● F0≃⊥ ⊎≃ id≃ ● +≃⊎)) ● +≃⊎) ● sym≃ (assocl+ {m} {0} {n}) ∎) where open ≋-Reasoning assocr₊-coh : {m n o p : ℕ} → assocr+ {m} {n} {o + p} ● assocr+ {m + n} {o} {p} ≋ (id≃ {A = Fin m} +F assocr+ {n} {o} {p}) ● assocr+ {m} {n + o} {p} ● (assocr+ {m} {n} {o} +F id≃ {A = Fin p}) assocr₊-coh = {!!} where open ≋-Reasoning swap₊-nat : {m n o p : ℕ} {f : m fin≃ o} {g : n fin≃ p} → swap+ {o} {p} ● (f +F g) ≋ (g +F f) ● swap+ {m} {n} swap₊-nat = {!!} sswap₊-nat : {m n o p : ℕ} {f : m fin≃ o} {g : n fin≃ p} → sswap+ {o} {p} ● (g +F f) ≋ (f +F g) ● sswap+ {m} {n} sswap₊-nat = {!!} assocr₊-swap₊-coh : {m n o : ℕ} → assocr+ {n} {o} {m} ● swap+ {m} {n + o} ● assocr+ {m} {n} {o} ≋ (id≃ {A = Fin n} +F swap+ {m} {o}) ● assocr+ {n} {m} {o} ● (swap+ {m} {n} +F id≃ {A = Fin o}) assocr₊-swap₊-coh = {!!} where open ≋-Reasoning assocl₊-swap₊-coh : {m n o : ℕ} → assocl+ {o} {m} {n} ● swap+ {m + n} {o} ● assocl+ {m} {n} {o} ≋ (swap+ {m} {o} +F id≃ {A = Fin n}) ● assocl+ {m} {o} {n} ● (id≃ {A = Fin m} +F swap+ {n} {o}) assocl₊-swap₊-coh = {!!} where open ≋-Reasoning ------------------------------------------------------------------------------
37.068627
91
0.336221
3d973672ec56bc440de938931cabdeb3f6fc40db
925
agda
Agda
test/Succeed/Issue3246.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
2
2019-10-29T09:40:30.000Z
2020-09-20T00:28:57.000Z
test/Succeed/Issue3246.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
3
2018-11-14T15:31:44.000Z
2019-04-01T19:39:26.000Z
test/Succeed/Issue3246.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1
2015-09-15T14:36:15.000Z
2015-09-15T14:36:15.000Z
-- Andreas, 2018-10-29, issue #3246 -- More things are now allowed in mutual blocks. -- @mutual@ just pushes the definition parts to the bottom. -- Definitions exist for data, record, functions, and pattern synonyms. postulate Float : Set {-# BUILTIN FLOAT Float #-} -- not (yet) allowed in mutual block mutual import Agda.Builtin.Bool open Agda.Builtin.Bool f : Bool f = g -- pushed to bottom -- module M where -- not (yet) allowed in mutual block module B = Agda.Builtin.Bool primitive primFloatEquality : Float → Float → Bool {-# INJECTIVE primFloatEquality #-} -- certainly a lie open import Agda.Builtin.Equality {-# DISPLAY primFloatEquality x y = x ≡ y #-} postulate A : Set {-# COMPILE GHC A = type Integer #-} variable x : Bool g : Bool g = true -- pushed to bottom {-# STATIC g #-} record R : Set where coinductive field foo : R {-# ETA R #-}
19.680851
71
0.651892
129fd3a22319f3e3e604e025cca3d44f611582f1
5,261
agda
Agda
src/Web/Semantic/DL/Category/Properties/Tensor/Functor.agda
bblfish/agda-web-semantic
38fbc3af7062ba5c3d7d289b2b4bcfb995d99057
[ "MIT" ]
1
2022-02-22T09:43:23.000Z
2022-02-22T09:43:23.000Z
src/Web/Semantic/DL/Category/Properties/Tensor/Functor.agda
bblfish/agda-web-semantic
38fbc3af7062ba5c3d7d289b2b4bcfb995d99057
[ "MIT" ]
null
null
null
src/Web/Semantic/DL/Category/Properties/Tensor/Functor.agda
bblfish/agda-web-semantic
38fbc3af7062ba5c3d7d289b2b4bcfb995d99057
[ "MIT" ]
null
null
null
open import Data.Sum using ( _⊎_ ; inj₁ ; inj₂ ) open import Relation.Binary.PropositionalEquality using ( refl ) open import Web.Semantic.DL.ABox.Interp using ( ⌊_⌋ ; ind ; _*_ ) open import Web.Semantic.DL.ABox.Model using ( _⊨a_ ; ⊨a-resp-≡³ ; on-bnode ; bnodes ; _,_ ) open import Web.Semantic.DL.Category.Object using ( Object ; IN ) open import Web.Semantic.DL.Category.Morphism using ( _⇒_ ; BN ; impl ; _⊑_ ; _≣_ ; _,_ ) open import Web.Semantic.DL.Category.Composition using ( _∙_ ) open import Web.Semantic.DL.Category.Tensor using ( _⊗_ ; _⟨⊗⟩_ ) open import Web.Semantic.DL.Category.Wiring using ( identity ; id✓ ) open import Web.Semantic.DL.Category.Properties.Composition.Lemmas using ( compose-left ; compose-right ; compose-resp-⊨a ) open import Web.Semantic.DL.Category.Properties.Tensor.Lemmas using ( tensor-up ; tensor-down ; tensor-resp-⊨a ) open import Web.Semantic.DL.Category.Properties.Tensor.RespectsWiring using ( tensor-resp-wiring ) open import Web.Semantic.DL.Signature using ( Signature ) open import Web.Semantic.DL.TBox using ( TBox ) open import Web.Semantic.DL.TBox.Interp using ( Δ ) open import Web.Semantic.Util using ( id ; _∘_ ; _⊕_⊕_ ; inode ; bnode ; enode ; left ; right ; up ; down ) module Web.Semantic.DL.Category.Properties.Tensor.Functor {Σ : Signature} {S T : TBox Σ} where tensor-resp-id : ∀ (A₁ A₂ : Object S T) → ((identity A₁ ⟨⊗⟩ identity A₂) ≣ identity (A₁ ⊗ A₂)) tensor-resp-id A₁ A₂ = tensor-resp-wiring A₁ A₂ A₁ A₂ id (id✓ A₁) id (id✓ A₂) id (id✓ (A₁ ⊗ A₂)) (λ x → refl) (λ x → refl) tensor-resp-compose : ∀ {A₁ A₂ B₁ B₂ C₁ C₂ : Object S T} (F₁ : A₁ ⇒ B₁) (F₂ : A₂ ⇒ B₂) (G₁ : B₁ ⇒ C₁) (G₂ : B₂ ⇒ C₂) → (((F₁ ∙ G₁) ⟨⊗⟩ (F₂ ∙ G₂)) ≣ ((F₁ ⟨⊗⟩ F₂) ∙ (G₁ ⟨⊗⟩ G₂))) tensor-resp-compose {A₁} {A₂} {B₁} {B₂} {C₁} {C₂} F₁ F₂ G₁ G₂ = (LHS⊑RHS , RHS⊑LHS) where LHS⊑RHS : (F₁ ∙ G₁) ⟨⊗⟩ (F₂ ∙ G₂) ⊑ (F₁ ⟨⊗⟩ F₂) ∙ (G₁ ⟨⊗⟩ G₂) LHS⊑RHS I I⊨STA₁A₂ I⊨LHS = (f , I⊨RHS) where f : ((BN F₁ ⊎ BN F₂) ⊕ (IN B₁ ⊎ IN B₂) ⊕ (BN G₁ ⊎ BN G₂)) → Δ ⌊ I ⌋ f (inode (inj₁ v)) = ind I (bnode (inj₁ (inode v))) f (inode (inj₂ v)) = ind I (bnode (inj₂ (inode v))) f (bnode (inj₁ y)) = ind I (bnode (inj₁ (bnode y))) f (bnode (inj₂ y)) = ind I (bnode (inj₂ (bnode y))) f (enode (inj₁ w)) = ind I (bnode (inj₁ (enode w))) f (enode (inj₂ w)) = ind I (bnode (inj₂ (enode w))) Iˡ₁⊨F₁ : up * left * bnodes I f ⊨a impl F₁ Iˡ₁⊨F₁ = ⊨a-resp-≡³ (left * up * I) (on-bnode {Σ} f (ind I) ∘ left ∘ up) refl (impl F₁) (compose-left F₁ G₁ (up * I) (tensor-up (F₁ ∙ G₁) (F₂ ∙ G₂) I I⊨LHS)) Iˡ₂⊨F₂ : down * (left * bnodes I f) ⊨a impl F₂ Iˡ₂⊨F₂ = ⊨a-resp-≡³ (left * down * I) (on-bnode {Σ} f (ind I) ∘ left ∘ down) refl (impl F₂) (compose-left F₂ G₂ (down * I) (tensor-down (F₁ ∙ G₁) (F₂ ∙ G₂) I I⊨LHS)) Iʳ₁⊨G₁ : up * (right * bnodes I f) ⊨a impl G₁ Iʳ₁⊨G₁ = ⊨a-resp-≡³ (right * up * I) (on-bnode {Σ} f (ind I) ∘ right ∘ up) refl (impl G₁) (compose-right F₁ G₁ (up * I) (tensor-up (F₁ ∙ G₁) (F₂ ∙ G₂) I I⊨LHS)) Iʳ₂⊨G₂ : down * (right * bnodes I f) ⊨a impl G₂ Iʳ₂⊨G₂ = ⊨a-resp-≡³ (right * down * I) (on-bnode {Σ} f (ind I) ∘ right ∘ down) refl (impl G₂) (compose-right F₂ G₂ (down * I) (tensor-down (F₁ ∙ G₁) (F₂ ∙ G₂) I I⊨LHS)) I⊨RHS : bnodes I f ⊨a impl ((F₁ ⟨⊗⟩ F₂) ∙ (G₁ ⟨⊗⟩ G₂)) I⊨RHS = compose-resp-⊨a (F₁ ⟨⊗⟩ F₂) (G₁ ⟨⊗⟩ G₂) (bnodes I f) (tensor-resp-⊨a F₁ F₂ (left * bnodes I f) Iˡ₁⊨F₁ Iˡ₂⊨F₂) (tensor-resp-⊨a G₁ G₂ (right * bnodes I f) Iʳ₁⊨G₁ Iʳ₂⊨G₂) RHS⊑LHS : (F₁ ⟨⊗⟩ F₂) ∙ (G₁ ⟨⊗⟩ G₂) ⊑ (F₁ ∙ G₁) ⟨⊗⟩ (F₂ ∙ G₂) RHS⊑LHS I I⊨STA₁A₂ I⊨RHS = (f , I⊨LHS) where f : ((BN F₁ ⊕ IN B₁ ⊕ BN G₁) ⊎ (BN F₂ ⊕ IN B₂ ⊕ BN G₂)) → Δ ⌊ I ⌋ f (inj₁ (inode v)) = ind I (bnode (inode (inj₁ v))) f (inj₁ (bnode y)) = ind I (bnode (bnode (inj₁ y))) f (inj₁ (enode w)) = ind I (bnode (enode (inj₁ w))) f (inj₂ (inode v)) = ind I (bnode (inode (inj₂ v))) f (inj₂ (bnode y)) = ind I (bnode (bnode (inj₂ y))) f (inj₂ (enode w)) = ind I (bnode (enode (inj₂ w))) I₁ˡ⊨F₁ : left * up * bnodes I f ⊨a impl F₁ I₁ˡ⊨F₁ = ⊨a-resp-≡³ (up * left * I) (on-bnode {Σ} f (ind I) ∘ up ∘ left) refl (impl F₁) (tensor-up F₁ F₂ (left * I) (compose-left (F₁ ⟨⊗⟩ F₂) (G₁ ⟨⊗⟩ G₂) I I⊨RHS)) I₁ʳ⊨G₁ : right * up * bnodes I f ⊨a impl G₁ I₁ʳ⊨G₁ = ⊨a-resp-≡³ (up * right * I) (on-bnode {Σ} f (ind I) ∘ up ∘ right) refl (impl G₁) (tensor-up G₁ G₂ (right * I) (compose-right (F₁ ⟨⊗⟩ F₂) (G₁ ⟨⊗⟩ G₂) I I⊨RHS)) I₂ˡ⊨F₂ : left * down * bnodes I f ⊨a impl F₂ I₂ˡ⊨F₂ = ⊨a-resp-≡³ (down * left * I) (on-bnode {Σ} f (ind I) ∘ down ∘ left) refl (impl F₂) (tensor-down F₁ F₂ (left * I) (compose-left (F₁ ⟨⊗⟩ F₂) (G₁ ⟨⊗⟩ G₂) I I⊨RHS)) I₂ʳ⊨G₂ : right * down * bnodes I f ⊨a impl G₂ I₂ʳ⊨G₂ = ⊨a-resp-≡³ (down * right * I) (on-bnode {Σ} f (ind I) ∘ down ∘ right) refl (impl G₂) (tensor-down G₁ G₂ (right * I) (compose-right (F₁ ⟨⊗⟩ F₂) (G₁ ⟨⊗⟩ G₂) I I⊨RHS)) I⊨LHS : bnodes I f ⊨a impl ((F₁ ∙ G₁) ⟨⊗⟩ (F₂ ∙ G₂)) I⊨LHS = tensor-resp-⊨a (F₁ ∙ G₁) (F₂ ∙ G₂) (bnodes I f) (compose-resp-⊨a F₁ G₁ (up * bnodes I f) I₁ˡ⊨F₁ I₁ʳ⊨G₁) (compose-resp-⊨a F₂ G₂ (down * bnodes I f) I₂ˡ⊨F₂ I₂ʳ⊨G₂)
47.396396
85
0.563771
c53c8be096e05f59282e50d8819a71e0f1604c07
3,278
agda
Agda
Modules/Span.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
4
2019-08-08T12:44:19.000Z
2022-01-28T06:04:15.000Z
Modules/Span.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
14
2019-01-06T21:11:59.000Z
2020-04-11T11:03:39.000Z
Modules/Span.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
1
2021-11-29T13:23:07.000Z
2021-11-29T13:23:07.000Z
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Functions.Definition open import Groups.Definition open import Groups.Abelian.Definition open import Setoids.Setoids open import Rings.Definition open import Sets.FinSet.Definition open import Vectors open import Numbers.Naturals.Semiring open import Numbers.Naturals.Order open import Sets.EquivalenceRelations open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) open import Modules.Definition module Modules.Span {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+R_ : A → A → A} {_*_ : A → A → A} {R : Ring S _+R_ _*_} {m n : _} {M : Set m} {T : Setoid {m} {n} M} {_+_ : M → M → M} {G' : Group T _+_} {G : AbelianGroup G'} {_·_ : A → M → M} (mod : Module R G _·_) where open Group G' open Setoid T open Equivalence eq _=V_ : {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A → A → A} (G : Group S _+_) {n1 : ℕ} → Rel {a} {b ⊔ n} (Vec A n1) _=V_ G [] [] = True' _=V_ {S = S} G (x ,- xs) (y ,- ys) = (Setoid._∼_ S x y) && (_=V_ G xs ys) dot : {n : ℕ} → (Vec M n) → (Vec A n) → M dot [] [] = 0G dot (v ,- vs) (x ,- xs) = (x · v) + (dot vs xs) Spans : {c : _} {C : Set c} (f : C → M) → Set (a ⊔ m ⊔ n ⊔ c) Spans {C = C} f = (m : M) → Sg ℕ (λ n → Sg ((Vec C n) && (Vec A n)) (λ t → (dot (vecMap f (_&&_.fst t)) (_&&_.snd t)) ∼ m)) Independent : {c : _} {C : Set c} (f : C → M) → Set (a ⊔ b ⊔ n ⊔ c) Independent {C = C} f = {n : ℕ} → (r : Vec C n) → ({a b : ℕ} → (a<n : a <N n) → (b<n : b <N n) → vecIndex r a a<n ≡ vecIndex r b b<n → a ≡ b) → (b : Vec A n) → (dot (vecMap f r) b) ∼ 0G → _=V_ (Ring.additiveGroup R) (vecPure (Group.0G (Ring.additiveGroup R))) b independentSubset : {c : _} {C : Set c} (f : C → M) → {d : _} {D : Set d} {inj : D → C} (isInj : Injection inj) → Independent f → Independent (f ∘ inj) independentSubset f {inj = inj} isInj indp {n = n} r coeffInj coeffs dotZero = indp {n = n} (vecMap inj r) inj' coeffs (transitive (identityOfIndiscernablesRight _∼_ reflexive (applyEquality (λ i → dot i coeffs) (vecMapCompose inj f r))) dotZero) where inj' : {a b : ℕ} (a<n : a <N n) (b<n : b <N n) → vecIndex (vecMap inj r) a a<n ≡ vecIndex (vecMap inj r) b b<n → a ≡ b inj' a<n b<n x rewrite vecMapAndIndex r inj a<n | vecMapAndIndex r inj b<n = coeffInj a<n b<n (isInj x) spanSuperset : {c : _} {C : Set c} (f : C → M) → {d : _} {D : Set d} {surj : D → C} (isSurj : Surjection surj) → Spans f → Spans (f ∘ surj) spanSuperset f {surj = surj} isSurj spans m with spans m spanSuperset {C = C} f {surj = surj} isSurj spans m | n , ((coeffs ,, basis) , b) = n , ((vecMap (λ c → underlying (isSurj c)) coeffs ,, basis) , transitive (identityOfIndiscernablesLeft _∼_ reflexive (applyEquality (λ i → dot i basis) (equalityCommutative {x = vecMap (λ i → f (surj i)) (vecMap (λ c → underlying (isSurj c)) coeffs)} {vecMap f coeffs} (transitivity (vecMapCompose (λ i → underlying (isSurj i)) (λ z → f (surj z)) coeffs) (t coeffs))))) b) where t : {n : ℕ} (coeffs : Vec C n) → vecMap (λ i → f (surj (underlying (isSurj i)))) coeffs ≡ vecMap f coeffs t [] = refl t (x ,- coeffs) with isSurj x ... | img , pr rewrite pr | t coeffs = refl Basis : {c : _} {C : Set c} (f : C → M) → Set (a ⊔ b ⊔ m ⊔ n ⊔ c) Basis v = Spans v && Independent v
59.6
456
0.585723
3d36074668ea511cf749b4d817cb21d9cd0a8b19
9,654
agda
Agda
deBruijn/Substitution/Data/Application/Application222.agda
nad/dependently-typed-syntax
498f8aefc570f7815fd1d6616508eeb92c52abce
[ "MIT" ]
5
2020-04-16T12:14:44.000Z
2020-07-08T22:51:36.000Z
deBruijn/Substitution/Data/Application/Application222.agda
nad/dependently-typed-syntax
498f8aefc570f7815fd1d6616508eeb92c52abce
[ "MIT" ]
null
null
null
deBruijn/Substitution/Data/Application/Application222.agda
nad/dependently-typed-syntax
498f8aefc570f7815fd1d6616508eeb92c52abce
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- Lemmas related to application of substitutions ------------------------------------------------------------------------ open import Data.Universe.Indexed module deBruijn.Substitution.Data.Application.Application222 {i u e} {Uni : IndexedUniverse i u e} where import deBruijn.Context; open deBruijn.Context Uni open import deBruijn.Substitution.Data.Application.Application221 open import deBruijn.Substitution.Data.Basics open import deBruijn.Substitution.Data.Map open import deBruijn.Substitution.Data.Simple open import Function using (_$_) open import Level using (_⊔_) import Relation.Binary.PropositionalEquality as P open P.≡-Reasoning -- Lemmas related to application. record Application₂₂₂ {t₁} {T₁ : Term-like t₁} {t₂} {T₂ : Term-like t₂} -- Simple substitutions for the first kind of terms. (simple₁ : Simple T₁) -- Simple substitutions for the second kind of terms. (simple₂ : Simple T₂) -- A translation from the first to the second kind of terms. (trans : [ T₁ ⟶⁼ T₂ ]) : Set (i ⊔ u ⊔ e ⊔ t₁ ⊔ t₂) where open Term-like T₁ using () renaming (_⊢_ to _⊢₁_) open Term-like T₂ using ([_]) renaming (_⊢_ to _⊢₂_; _≅-⊢_ to _≅-⊢₂_) open Simple simple₁ using () renaming ( id to id₁; sub to sub₁; var to var₁ ; wk to wk₁; wk[_] to wk₁[_] ; _↑ to _↑₁; _↑_ to _↑₁_; _↑⁺_ to _↑⁺₁_; _↑₊_ to _↑₊₁_ ; _↑⋆ to _↑⋆₁; _↑⁺⋆_ to _↑⁺⋆₁_ ) open Simple simple₂ using () renaming ( var to var₂ ; weaken to weaken₂; weaken[_] to weaken₂[_]; wk⁺ to wk⁺₂ ; wk-subst to wk-subst₂; wk-subst[_] to wk-subst₂[_] ; _↑ to _↑₂; _↑_ to _↑₂_; _↑⁺_ to _↑⁺₂_; _↑₊_ to _↑₊₂_ ) field application₂₂₁ : Application₂₂₁ simple₁ simple₂ trans open Application₂₂₁ application₂₂₁ public abstract -- A variant of suc-/∋-↑. suc-/⊢⋆-↑⋆ : ∀ {Γ Δ} {ρ̂ : Γ ⇨̂ Δ} σ {τ} (x : Γ ∋ τ) (ρs : Subs T₁ ρ̂) → var₂ · suc[ σ ] x /⊢⋆ ρs ↑⋆₁ ≅-⊢₂ var₂ · x /⊢⋆ (ρs ▻ wk₁[ σ /⋆ ρs ]) suc-/⊢⋆-↑⋆ σ x ε = begin [ var₂ · suc x ] ≡⟨ P.sym $ var-/⊢-wk-↑⁺ ε x ⟩ [ var₂ · x /⊢ wk₁ ] ∎ suc-/⊢⋆-↑⋆ σ x (ρs ▻ ρ) = begin [ var₂ · suc[ σ ] x /⊢⋆ ρs ↑⋆₁ /⊢ ρ ↑₁ ] ≡⟨ /⊢-cong (suc-/⊢⋆-↑⋆ σ x ρs) (P.refl {x = [ ρ ↑₁ ]}) ⟩ [ var₂ · x /⊢⋆ ρs /⊢ wk₁[ σ /⋆ ρs ] /⊢ ρ ↑₁ ] ≡⟨ P.sym $ /⊢-/⊢-wk (σ /⋆ ρs) (var₂ · x /⊢⋆ ρs) ρ ⟩ [ var₂ · x /⊢⋆ ρs /⊢ ρ /⊢ wk₁ ] ∎ -- The antecedent of var-/⊢⋆-↑⁺⋆-⇒-/⊢⋆-↑⁺⋆ follows from a less -- complicated statement. var-/⊢⋆-⇒-var-/⊢⋆-↑⁺⋆ : ∀ {Γ Δ} {ρ̂ : Γ ⇨̂ Δ} {ρs₁ : Subs T₁ ρ̂} {ρs₂ : Subs T₁ ρ̂} → (∀ {σ} (x : Γ ∋ σ) → var₂ · x /⊢⋆ ρs₁ ≅-⊢₂ var₂ · x /⊢⋆ ρs₂) → ∀ Γ⁺ {σ} (x : Γ ++⁺ Γ⁺ ∋ σ) → var₂ · x /⊢⋆ ρs₁ ↑⁺⋆₁ Γ⁺ ≅-⊢₂ var₂ · x /⊢⋆ ρs₂ ↑⁺⋆₁ Γ⁺ var-/⊢⋆-⇒-var-/⊢⋆-↑⁺⋆ hyp ε x = hyp x var-/⊢⋆-⇒-var-/⊢⋆-↑⁺⋆ {ρs₁ = ρs₁} {ρs₂} hyp (Γ⁺ ▻ σ) zero = begin [ var₂ · zero /⊢⋆ ρs₁ ↑⁺⋆₁ (Γ⁺ ▻ σ) ] ≡⟨ zero-/⊢⋆-↑⋆ σ (ρs₁ ↑⁺⋆₁ Γ⁺) ⟩ [ var₂ · zero ] ≡⟨ P.sym $ zero-/⊢⋆-↑⋆ σ (ρs₂ ↑⁺⋆₁ Γ⁺) ⟩ [ var₂ · zero /⊢⋆ ρs₂ ↑⁺⋆₁ (Γ⁺ ▻ σ) ] ∎ var-/⊢⋆-⇒-var-/⊢⋆-↑⁺⋆ {ρs₁ = ρs₁} {ρs₂} hyp (Γ⁺ ▻ σ) (suc x) = begin [ var₂ · suc x /⊢⋆ ρs₁ ↑⁺⋆₁ (Γ⁺ ▻ σ) ] ≡⟨ suc-/⊢⋆-↑⋆ σ x (ρs₁ ↑⁺⋆₁ Γ⁺) ⟩ [ var₂ · x /⊢⋆ ρs₁ ↑⁺⋆₁ Γ⁺ /⊢ wk₁ ] ≡⟨ /⊢-cong (var-/⊢⋆-⇒-var-/⊢⋆-↑⁺⋆ hyp Γ⁺ x) (P.refl {x = [ wk₁ ]}) ⟩ [ var₂ · x /⊢⋆ ρs₂ ↑⁺⋆₁ Γ⁺ /⊢ wk₁ ] ≡⟨ P.sym $ suc-/⊢⋆-↑⋆ σ x (ρs₂ ↑⁺⋆₁ Γ⁺) ⟩ [ var₂ · suc x /⊢⋆ ρs₂ ↑⁺⋆₁ (Γ⁺ ▻ σ) ] ∎ -- Variants of var-/⊢⋆-↑⁺⋆-⇒-/⊢⋆-↑⁺⋆ which may be easier to use. var-/⊢⋆-⇒-/⊢⋆-↑⁺⋆ : ∀ {Γ Δ} {ρ̂ : Γ ⇨̂ Δ} (ρs₁ : Subs T₁ ρ̂) (ρs₂ : Subs T₁ ρ̂) → (∀ {σ} (x : Γ ∋ σ) → var₂ · x /⊢⋆ ρs₁ ≅-⊢₂ var₂ · x /⊢⋆ ρs₂) → ∀ Γ⁺ {σ} (t : Γ ++⁺ Γ⁺ ⊢₂ σ) → t /⊢⋆ ρs₁ ↑⁺⋆₁ Γ⁺ ≅-⊢₂ t /⊢⋆ ρs₂ ↑⁺⋆₁ Γ⁺ var-/⊢⋆-⇒-/⊢⋆-↑⁺⋆ ρs₁ ρs₂ hyp = var-/⊢⋆-↑⁺⋆-⇒-/⊢⋆-↑⁺⋆ ρs₁ ρs₂ (var-/⊢⋆-⇒-var-/⊢⋆-↑⁺⋆ hyp) var-/⊢⋆-⇒-/⊢⋆ : ∀ {Γ Δ} {ρ̂ : Γ ⇨̂ Δ} (ρs₁ : Subs T₁ ρ̂) (ρs₂ : Subs T₁ ρ̂) → (∀ {σ} (x : Γ ∋ σ) → var₂ · x /⊢⋆ ρs₁ ≅-⊢₂ var₂ · x /⊢⋆ ρs₂) → ∀ {σ} (t : Γ ⊢₂ σ) → t /⊢⋆ ρs₁ ≅-⊢₂ t /⊢⋆ ρs₂ var-/⊢⋆-⇒-/⊢⋆ ρs₁ ρs₂ hyp = var-/⊢⋆-⇒-/⊢⋆-↑⁺⋆ ρs₁ ρs₂ hyp ε -- The identity substitution has no effect. /⊢-id : ∀ {Γ σ} (t : Γ ⊢₂ σ) → t /⊢ id₁ ≅-⊢₂ t /⊢-id = var-/⊢⋆-⇒-/⊢⋆ (ε ▻ id₁) ε var-/⊢-id -- id is a right identity of _∘_. ∘-id : ∀ {Γ Δ} {ρ̂ : Γ ⇨̂ Δ} (ρ : Sub T₂ ρ̂) → ρ ∘ id₁ ≅-⇨ ρ ∘-id ρ = extensionality P.refl λ x → begin [ x /∋ ρ ∘ id₁ ] ≡⟨ /∋-∘ x ρ id₁ ⟩ [ x /∋ ρ /⊢ id₁ ] ≡⟨ /⊢-id (x /∋ ρ) ⟩ [ x /∋ ρ ] ∎ -- Lifting distributes over composition. ∘-↑ : ∀ {Γ Δ Ε} σ {ρ̂₁ : Γ ⇨̂ Δ} {ρ̂₂ : Δ ⇨̂ Ε} (ρ₁ : Sub T₂ ρ̂₁) (ρ₂ : Sub T₁ ρ̂₂) → (ρ₁ ∘ ρ₂) ↑₂ σ ≅-⇨ ρ₁ ↑₂ σ ∘ ρ₂ ↑₁ ∘-↑ σ ρ₁ ρ₂ = let ρ₂↑ = ρ₂ ↑₁ (σ / ρ₁) lemma₁ = begin [ wk-subst₂ (ρ₁ ∘ ρ₂) ] ≡⟨ P.refl ⟩ [ map weaken₂ (map (app ρ₂) ρ₁) ] ≡⟨ P.sym $ map-[∘] weaken₂ (app ρ₂) ρ₁ ⟩ [ map (weaken₂ [∘] app ρ₂) ρ₁ ] ≡⟨ map-cong-ext₁ P.refl (λ t → begin [ weaken₂ · (t /⊢ ρ₂) ] ≡⟨ P.sym $ /⊢-wk (t /⊢ ρ₂) ⟩ [ t /⊢ ρ₂ /⊢ wk₁ ] ≡⟨ /⊢-/⊢-wk (σ / ρ₁) t ρ₂ ⟩ [ t /⊢ wk₁ /⊢ ρ₂↑ ] ≡⟨ /⊢-cong (/⊢-wk t) P.refl ⟩ [ weaken₂ · t /⊢ ρ₂↑ ] ∎) (P.refl {x = [ ρ₁ ]}) ⟩ [ map (app ρ₂↑ [∘] weaken₂) ρ₁ ] ≡⟨ map-[∘] (app ρ₂↑) weaken₂ ρ₁ ⟩ [ map (app ρ₂↑) (map (weaken₂) ρ₁) ] ∎ lemma₂ = begin [ var₂ · zero ] ≡⟨ P.sym $ trans-var zero ⟩ [ trans · (var₁ · zero) ] ≡⟨ trans-cong (P.sym $ Simple.zero-/∋-↑ simple₁ (σ / ρ₁) ρ₂) ⟩ [ trans · (zero /∋ ρ₂↑) ] ≡⟨ P.sym $ var-/⊢ zero ρ₂↑ ⟩ [ var₂ · zero /⊢ ρ₂↑ ] ∎ in begin [ (ρ₁ ∘ ρ₂) ↑₂ ] ≡⟨ Simple.unfold-↑ simple₂ (ρ₁ ∘ ρ₂) ⟩ [ wk-subst₂ (ρ₁ ∘ ρ₂) ▻ var₂ · zero ] ≡⟨ ▻⇨-cong P.refl lemma₁ lemma₂ ⟩ [ map (app ρ₂↑) (map weaken₂[ σ / ρ₁ ] ρ₁) ▻ var₂ · zero /⊢ ρ₂↑ ] ≡⟨ P.sym $ map-▻ (app ρ₂↑) (wk-subst₂[ σ / ρ₁ ] ρ₁) (var₂ · zero) ⟩ [ map (app ρ₂↑) (wk-subst₂[ σ / ρ₁ ] ρ₁ ▻ var₂ · zero) ] ≡⟨ map-cong (app ρ₂↑ ∎-⟶) (P.sym $ Simple.unfold-↑ simple₂ ρ₁) ⟩ [ map (app ρ₂↑) (ρ₁ ↑₂) ] ≡⟨ P.refl ⟩ [ ρ₁ ↑₂ ∘ ρ₂ ↑₁ ] ∎ -- N-ary lifting distributes over composition. ∘-↑⁺ : ∀ {Γ Δ Ε} {ρ̂₁ : Γ ⇨̂ Δ} {ρ̂₂ : Δ ⇨̂ Ε} (ρ₁ : Sub T₂ ρ̂₁) (ρ₂ : Sub T₁ ρ̂₂) Γ⁺ → (ρ₁ ∘ ρ₂) ↑⁺₂ Γ⁺ ≅-⇨ ρ₁ ↑⁺₂ Γ⁺ ∘ ρ₂ ↑⁺₁ (Γ⁺ /⁺ ρ₁) ∘-↑⁺ ρ₁ ρ₂ ε = P.refl ∘-↑⁺ ρ₁ ρ₂ (Γ⁺ ▻ σ) = begin [ ((ρ₁ ∘ ρ₂) ↑⁺₂ Γ⁺) ↑₂ ] ≡⟨ Simple.↑-cong simple₂ (∘-↑⁺ ρ₁ ρ₂ Γ⁺) P.refl ⟩ [ (ρ₁ ↑⁺₂ Γ⁺ ∘ ρ₂ ↑⁺₁ (Γ⁺ /⁺ ρ₁)) ↑₂ ] ≡⟨ ∘-↑ σ (ρ₁ ↑⁺₂ Γ⁺) (ρ₂ ↑⁺₁ (Γ⁺ /⁺ ρ₁)) ⟩ [ (ρ₁ ↑⁺₂ Γ⁺) ↑₂ ∘ (ρ₂ ↑⁺₁ (Γ⁺ /⁺ ρ₁)) ↑₁ ] ∎ ∘-↑₊ : ∀ {Γ Δ Ε} {ρ̂₁ : Γ ⇨̂ Δ} {ρ̂₂ : Δ ⇨̂ Ε} (ρ₁ : Sub T₂ ρ̂₁) (ρ₂ : Sub T₁ ρ̂₂) Γ₊ → (ρ₁ ∘ ρ₂) ↑₊₂ Γ₊ ≅-⇨ ρ₁ ↑₊₂ Γ₊ ∘ ρ₂ ↑₊₁ (Γ₊ /₊ ρ₁) ∘-↑₊ ρ₁ ρ₂ ε = P.refl ∘-↑₊ ρ₁ ρ₂ (σ ◅ Γ₊) = begin [ (ρ₁ ∘ ρ₂ ) ↑₂ σ ↑₊₂ Γ₊ ] ≡⟨ Simple.↑₊-cong simple₂ (∘-↑ σ ρ₁ ρ₂) (P.refl {x = [ Γ₊ ]}) ⟩ [ (ρ₁ ↑₂ σ ∘ ρ₂ ↑₁) ↑₊₂ Γ₊ ] ≡⟨ ∘-↑₊ (ρ₁ ↑₂ σ) (ρ₂ ↑₁) Γ₊ ⟩ [ ρ₁ ↑₊₂ (σ ◅ Γ₊) ∘ ρ₂ ↑₊₁ ((σ ◅ Γ₊) /₊ ρ₁) ] ∎ -- First weakening and then substituting something for the first -- variable is equivalent to doing nothing. /⊢-wk-/⊢-sub : ∀ {Γ σ τ} (t : Γ ⊢₂ τ) (t′ : Γ ⊢₁ σ) → t /⊢ wk₁ /⊢ sub₁ t′ ≅-⊢₂ t /⊢-wk-/⊢-sub t t′ = var-/⊢⋆-⇒-/⊢⋆ (ε ▻ wk₁ ▻ sub₁ t′) ε (λ x → begin [ var₂ · x /⊢ wk₁ /⊢ sub₁ t′ ] ≡⟨ /⊢-cong (/∋-≅-⊢-var x wk₁ (Simple./∋-wk simple₁ x)) P.refl ⟩ [ var₂ · suc x /⊢ sub₁ t′ ] ≡⟨ suc-/⊢-sub x t′ ⟩ [ var₂ · x ] ∎) t -- Weakening a substitution and composing with sub is the same as -- doing nothing. wk-subst-∘-sub : ∀ {Γ Δ σ} {ρ̂ : Γ ⇨̂ Δ} (ρ : Sub T₂ ρ̂) (t : Δ ⊢₁ σ) → wk-subst₂ ρ ∘ sub₁ t ≅-⇨ ρ wk-subst-∘-sub ρ t = extensionality P.refl λ x → let lemma = begin [ x /∋ wk-subst₂ ρ ] ≡⟨ Simple./∋-wk-subst simple₂ x ρ ⟩ [ weaken₂ · (x /∋ ρ) ] ≡⟨ P.sym $ /⊢-wk (x /∋ ρ) ⟩ [ x /∋ ρ /⊢ wk₁ ] ∎ in begin [ x /∋ wk-subst₂ ρ ∘ sub₁ t ] ≡⟨ /∋-∘ x (wk-subst₂ ρ) (sub₁ t) ⟩ [ x /∋ wk-subst₂ ρ /⊢ sub₁ t ] ≡⟨ /⊢-cong lemma P.refl ⟩ [ x /∋ ρ /⊢ wk₁ /⊢ sub₁ t ] ≡⟨ /⊢-wk-/⊢-sub (x /∋ ρ) t ⟩ [ x /∋ ρ ] ∎ -- Unfolding lemma for wk⁺. wk⁺-▻ : ∀ {Γ} (Γ⁺ : Ctxt⁺ Γ) {σ} → wk⁺₂ (Γ⁺ ▻ σ) ≅-⇨ wk⁺₂ Γ⁺ ∘ wk₁[ σ ] wk⁺-▻ Γ⁺ {σ = σ} = begin [ wk⁺₂ (Γ⁺ ▻ σ) ] ≡⟨ P.refl ⟩ [ wk-subst₂ (wk⁺₂ Γ⁺) ] ≡⟨ P.sym $ ∘-wk (wk⁺₂ Γ⁺) ⟩ [ wk⁺₂ Γ⁺ ∘ wk₁ ] ∎
44.694444
134
0.379221
58fc21c4f41df5b2bef89880df5afd911e13c680
3,654
agda
Agda
Cubical/Data/Nat/Coprime.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
1
2021-10-31T17:32:49.000Z
2021-10-31T17:32:49.000Z
Cubical/Data/Nat/Coprime.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
Cubical/Data/Nat/Coprime.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
{-# OPTIONS --safe #-} module Cubical.Data.Nat.Coprime where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Data.Sigma open import Cubical.Data.NatPlusOne open import Cubical.HITs.PropositionalTruncation as PropTrunc open import Cubical.Data.Nat.Base open import Cubical.Data.Nat.Properties open import Cubical.Data.Nat.Divisibility open import Cubical.Data.Nat.GCD areCoprime : ℕ × ℕ → Type₀ areCoprime (m , n) = isGCD m n 1 -- Any pair (m , n) can be converted to a coprime pair (m' , n') s.t. -- m' ∣ m, n' ∣ n if and only if one of m or n is nonzero module ToCoprime ((m , n) : ℕ × ℕ₊₁) where d = gcd m (ℕ₊₁→ℕ n) d∣m = gcdIsGCD m (ℕ₊₁→ℕ n) .fst .fst d∣n = gcdIsGCD m (ℕ₊₁→ℕ n) .fst .snd gr = gcdIsGCD m (ℕ₊₁→ℕ n) .snd c₁ : ℕ p₁ : c₁ · d ≡ m c₁ = ∣-untrunc d∣m .fst; p₁ = ∣-untrunc d∣m .snd c₂ : ℕ₊₁ p₂ : (ℕ₊₁→ℕ c₂) · d ≡ (ℕ₊₁→ℕ n) c₂ = 1+ (∣s-untrunc d∣n .fst); p₂ = ∣s-untrunc d∣n .snd toCoprime : ℕ × ℕ₊₁ toCoprime = (c₁ , c₂) private lem : ∀ a {b c d e} → a · b ≡ c → c · d ≡ e → a · (b · d) ≡ e lem a p q = ·-assoc a _ _ ∙ cong (_· _) p ∙ q gr' : ∀ d' → prediv d' c₁ → prediv d' (ℕ₊₁→ℕ c₂) → (d' · d) ∣ d gr' d' (b₁ , q₁) (b₂ , q₂) = gr (d' · d) ((∣ b₁ , lem b₁ q₁ p₁ ∣₁) , (∣ b₂ , lem b₂ q₂ p₂ ∣₁)) d-1 = m∣sn→z<m d∣n .fst q : d ≡ suc d-1 q = sym (+-comm 1 d-1 ∙ m∣sn→z<m d∣n .snd) private -- this only works because d > 0 (<=> m > 0 or n > 0) d-cancelʳ : ∀ d' → (d' · d) ∣ d → d' ∣ 1 d-cancelʳ d' div = ∣-cancelʳ d-1 (∣-trans (subst (λ x → (d' · x) ∣ x) q div) (∣-refl (sym (·-identityˡ _)))) toCoprimeAreCoprime : areCoprime (c₁ , ℕ₊₁→ℕ c₂) fst toCoprimeAreCoprime = ∣-oneˡ c₁ , ∣-oneˡ (ℕ₊₁→ℕ c₂) snd toCoprimeAreCoprime d' (d'∣c₁ , d'∣c₂) = PropTrunc.rec isProp∣ (λ a → PropTrunc.rec isProp∣ (λ b → d-cancelʳ d' (gr' d' a b)) d'∣c₂) d'∣c₁ toCoprime∣ : (c₁ ∣ m) × (ℕ₊₁→ℕ c₂ ∣ ℕ₊₁→ℕ n) toCoprime∣ = ∣ d , ·-comm d c₁ ∙ p₁ ∣₁ , ∣ d , ·-comm d (ℕ₊₁→ℕ c₂) ∙ p₂ ∣₁ toCoprime-idem : areCoprime (m , ℕ₊₁→ℕ n) → (c₁ , c₂) ≡ (m , n) toCoprime-idem cp i = q₁ i , ℕ₊₁→ℕ-inj q₂ i where q₁ = sym (·-identityʳ c₁) ∙ cong (c₁ ·_) (sym (isGCD→gcd≡ cp)) ∙ p₁ q₂ = sym (·-identityʳ (ℕ₊₁→ℕ c₂)) ∙ cong (ℕ₊₁→ℕ c₂ ·_) (sym (isGCD→gcd≡ cp)) ∙ p₂ open ToCoprime using (toCoprime; toCoprimeAreCoprime; toCoprime∣; toCoprime-idem) public toCoprime-cancelʳ : ∀ ((m , n) : ℕ × ℕ₊₁) k → toCoprime (m · ℕ₊₁→ℕ k , n ·₊₁ k) ≡ toCoprime (m , n) toCoprime-cancelʳ (m , n) (1+ k) i = inj-·sm {c₁'} {d-1} {c₁} r₁ i , ℕ₊₁→ℕ-inj (inj-·sm {ℕ₊₁→ℕ c₂'} {d-1} {ℕ₊₁→ℕ c₂} r₂) i where open ToCoprime (m , n) open ToCoprime (m · suc k , n ·₊₁ (1+ k)) using () renaming (c₁ to c₁'; p₁ to p₁'; c₂ to c₂'; p₂ to p₂') q₁ : c₁' · d · suc k ≡ m · suc k q₁ = sym (·-assoc c₁' (ToCoprime.d (m , n)) (suc k)) ∙ cong (c₁' ·_) (sym (gcd-factorʳ m (ℕ₊₁→ℕ n) (suc k))) ∙ p₁' q₂ : ℕ₊₁→ℕ c₂' · (ToCoprime.d (m , n)) · suc k ≡ ℕ₊₁→ℕ n · suc k q₂ = sym (·-assoc (ℕ₊₁→ℕ c₂') (ToCoprime.d (m , n)) (suc k)) ∙ cong (ℕ₊₁→ℕ c₂' ·_) (sym (gcd-factorʳ m (ℕ₊₁→ℕ n) (suc k))) ∙ p₂' r₁ : c₁' · suc d-1 ≡ c₁ · suc d-1 r₁ = subst (λ z → c₁' · z ≡ c₁ · z) q (inj-·sm q₁ ∙ sym p₁) r₂ : ℕ₊₁→ℕ c₂' · suc d-1 ≡ ℕ₊₁→ℕ c₂ · suc d-1 r₂ = subst (λ z → ℕ₊₁→ℕ c₂' · z ≡ ℕ₊₁→ℕ c₂ · z) q (inj-·sm q₂ ∙ sym p₂)
38.0625
91
0.498905
12c5b3f15bad75952cfb0e7867a97db3a19529de
169
agda
Agda
test/Fail/NoEtaEquality.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/NoEtaEquality.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/NoEtaEquality.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2016-09-20 test whether --no-eta-equality is respected {-# OPTIONS --no-eta-equality #-} record ⊤ : Set where test : ⊤ test = _ -- should remain unsolved
18.777778
66
0.668639
317bbc577520ce07cadcc8a87f31f3d3c60bad68
350
agda
Agda
test/Succeed/Issue3697.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue3697.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue3697.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --type-in-type #-} open import Agda.Primitive using (Setω) -- No panic should be triggered data A : Setω where record B' : Set where field theA : A data B : Set where b : A → B data C : Set where c : Setω → C data C' : Setω where c : Setω → C' record C'' : Setω where field theSet : Setω thefield : theSet
12.5
39
0.605714
220b2e3869d85755fe46c0399cbd2199a7d22fa8
418
agda
Agda
test/Compiler/with-stdlib/TrustMe.agda
vlopezj/agda
ff4d89e75970cf27599fb9f572bd43c9455cbb56
[ "BSD-3-Clause" ]
7
2018-11-05T22:13:36.000Z
2018-11-06T16:38:43.000Z
test/Compiler/with-stdlib/TrustMe.agda
vikfret/agda
49ad0b3f0d39c01bc35123478b857e702b29fb9d
[ "BSD-3-Clause" ]
16
2018-10-08T00:32:04.000Z
2019-09-08T13:47:04.000Z
test/Compiler/with-stdlib/TrustMe.agda
vikfret/agda
49ad0b3f0d39c01bc35123478b857e702b29fb9d
[ "BSD-3-Clause" ]
1
2015-09-15T14:36:15.000Z
2015-09-15T14:36:15.000Z
module TrustMe where open import Data.String open import Data.String.Unsafe open import Data.Unit using (⊤) open import IO import IO.Primitive as Prim open import Relation.Binary.PropositionalEquality open import Relation.Nullary -- Check that trustMe works. testTrustMe : IO ⊤ testTrustMe with "apa" ≟ "apa" ... | yes refl = putStrLn "Yes!" ... | no _ = putStrLn "No." main : Prim.IO ⊤ main = run testTrustMe
20.9
49
0.732057
4a875685502e4716b0193b168c59dc818b14bfa7
5,455
agda
Agda
TotalRecognisers/LeftRecursion/Lib.agda
yurrriq/parser-combinators
b396d35cc2cb7e8aea50b982429ee385f001aa88
[ "MIT" ]
7
2016-12-13T05:23:14.000Z
2021-06-22T05:35:31.000Z
TotalRecognisers/LeftRecursion/Lib.agda
yurrriq/parser-combinators
b396d35cc2cb7e8aea50b982429ee385f001aa88
[ "MIT" ]
1
2018-01-22T22:21:41.000Z
2018-01-24T16:39:37.000Z
TotalRecognisers/LeftRecursion/Lib.agda
yurrriq/parser-combinators
b396d35cc2cb7e8aea50b982429ee385f001aa88
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- A tiny library of derived combinators ------------------------------------------------------------------------ module TotalRecognisers.LeftRecursion.Lib (Tok : Set) where open import Coinduction open import Data.Bool hiding (_∧_) open import Data.Bool.Properties open import Function hiding (_∋_) open import Function.Equality using (_⟨$⟩_) open import Function.Equivalence using (module Equivalence) open import Data.List open import Data.Nat using (ℕ; zero; suc) open import Data.Product as Prod open import Relation.Binary open import Relation.Binary.PropositionalEquality hiding ([_]) open import Relation.Nullary.Decidable import TotalRecognisers.LeftRecursion open TotalRecognisers.LeftRecursion Tok ------------------------------------------------------------------------ -- Kleene star -- The intended semantics of the Kleene star. infixr 5 _∷_ infix 4 _∈[_]⋆ data _∈[_]⋆ {n} : List Tok → P n → Set where [] : ∀ {p} → [] ∈[ p ]⋆ _∷_ : ∀ {s₁ s₂ p} → s₁ ∈ p → s₂ ∈[ p ]⋆ → s₁ ++ s₂ ∈[ p ]⋆ module KleeneStar₁ where infix 15 _⋆ _+ -- This definition requires that the argument recognisers are not -- nullable. mutual _⋆ : P false → P true p ⋆ = empty ∣ p + _+ : P false → P false p + = p · ♯ (p ⋆) -- The definition of _⋆ above is correct. ⋆-sound : ∀ {s p} → s ∈ p ⋆ → s ∈[ p ]⋆ ⋆-sound (∣-left empty) = [] ⋆-sound (∣-right (pr₁ · pr₂)) = pr₁ ∷ ⋆-sound pr₂ ⋆-complete : ∀ {s p} → s ∈[ p ]⋆ → s ∈ p ⋆ ⋆-complete [] = ∣-left empty ⋆-complete (_∷_ {[]} pr₁ pr₂) = ⋆-complete pr₂ ⋆-complete (_∷_ {_ ∷ _} pr₁ pr₂) = ∣-right {n₁ = true} (pr₁ · ⋆-complete pr₂) module KleeneStar₂ where infix 15 _⋆ -- This definition works for any argument recogniser. _⋆ : ∀ {n} → P n → P true _⋆ = KleeneStar₁._⋆ ∘ nonempty -- The definition of _⋆ above is correct. ⋆-sound : ∀ {s n} {p : P n} → s ∈ p ⋆ → s ∈[ p ]⋆ ⋆-sound (∣-left empty) = [] ⋆-sound (∣-right (nonempty pr₁ · pr₂)) = pr₁ ∷ ⋆-sound pr₂ ⋆-complete : ∀ {s n} {p : P n} → s ∈[ p ]⋆ → s ∈ p ⋆ ⋆-complete [] = ∣-left empty ⋆-complete (_∷_ {[]} pr₁ pr₂) = ⋆-complete pr₂ ⋆-complete (_∷_ {_ ∷ _} pr₁ pr₂) = ∣-right {n₁ = true} (nonempty pr₁ · ⋆-complete pr₂) -- Note, however, that for actual parsing the corresponding -- definition would not be correct. The reason is that p would give -- a result also when the empty string was accepted, and these -- results are ignored by the definition above. In the case of -- actual parsing the result of p ⋆, when p is nullable, should be a -- stream and not a finite list. ------------------------------------------------------------------------ -- A simplified sequencing operator infixl 10 _⊙_ _⊙_ : ∀ {n₁ n₂} → P n₁ → P n₂ → P (n₁ ∧ n₂) _⊙_ {n₁ = n₁} p₁ p₂ = ♯? p₁ · ♯? {b = n₁} p₂ module ⊙ where complete : ∀ {n₁ n₂ s₁ s₂} {p₁ : P n₁} {p₂ : P n₂} → s₁ ∈ p₁ → s₂ ∈ p₂ → s₁ ++ s₂ ∈ p₁ ⊙ p₂ complete {n₁} {n₂} s₁∈p₁ s₂∈p₂ = add-♭♯ n₂ s₁∈p₁ · add-♭♯ n₁ s₂∈p₂ infixl 10 _⊙′_ infix 4 _⊙_∋_ data _⊙_∋_ {n₁ n₂} (p₁ : P n₁) (p₂ : P n₂) : List Tok → Set where _⊙′_ : ∀ {s₁ s₂} (s₁∈p₁ : s₁ ∈ p₁) (s₂∈p₂ : s₂ ∈ p₂) → p₁ ⊙ p₂ ∋ s₁ ++ s₂ sound : ∀ {n₁} n₂ {s} {p₁ : P n₁} {p₂ : P n₂} → s ∈ p₁ ⊙ p₂ → p₁ ⊙ p₂ ∋ s sound {n₁} n₂ (s₁∈p₁ · s₂∈p₂) = drop-♭♯ n₂ s₁∈p₁ ⊙′ drop-♭♯ n₁ s₂∈p₂ ------------------------------------------------------------------------ -- A combinator which repeats a recogniser a fixed number of times ⟨_^_⟩-nullable : Bool → ℕ → Bool ⟨ n ^ zero ⟩-nullable = true ⟨ n ^ suc i ⟩-nullable = n ∧ ⟨ n ^ i ⟩-nullable infixl 15 _^_ _^_ : ∀ {n} → P n → (i : ℕ) → P ⟨ n ^ i ⟩-nullable p ^ 0 = empty p ^ suc i = p ⊙ p ^ i -- Some lemmas relating _^_ to _⋆. open KleeneStar₂ ^≤⋆ : ∀ {n} {p : P n} i → p ^ i ≤ p ⋆ ^≤⋆ {n} {p} i s∈ = ⋆-complete $ helper i s∈ where helper : ∀ i {s} → s ∈ p ^ i → s ∈[ p ]⋆ helper zero empty = [] helper (suc i) (s₁∈p · s₂∈pⁱ) = drop-♭♯ ⟨ n ^ i ⟩-nullable s₁∈p ∷ helper i (drop-♭♯ n s₂∈pⁱ) ⋆≤^ : ∀ {n} {p : P n} {s} → s ∈ p ⋆ → ∃ λ i → s ∈ p ^ i ⋆≤^ {n} {p} s∈p⋆ = helper (⋆-sound s∈p⋆) where helper : ∀ {s} → s ∈[ p ]⋆ → ∃ λ i → s ∈ p ^ i helper [] = (0 , empty) helper (s₁∈p ∷ s₂∈p⋆) = Prod.map suc (λ {i} s₂∈pⁱ → add-♭♯ ⟨ n ^ i ⟩-nullable s₁∈p · add-♭♯ n s₂∈pⁱ) (helper s₂∈p⋆) ------------------------------------------------------------------------ -- A recogniser which only accepts a given token module Tok (dec : Decidable (_≡_ {A = Tok})) where tok : Tok → P false tok t = sat (⌊_⌋ ∘ dec t) sound : ∀ {s t} → s ∈ tok t → s ≡ [ t ] sound (sat ok) = cong [_] $ sym $ toWitness ok complete : ∀ {t} → [ t ] ∈ tok t complete = sat (fromWitness refl) ------------------------------------------------------------------------ -- A recogniser which accepts the empty string iff the argument is -- true (and never accepts non-empty strings) accept-if-true : ∀ b → P b accept-if-true true = empty accept-if-true false = fail module AcceptIfTrue where sound : ∀ b {s} → s ∈ accept-if-true b → s ≡ [] × T b sound true empty = (refl , _) sound false () complete : ∀ {b} → T b → [] ∈ accept-if-true b complete ok with Equivalence.to T-≡ ⟨$⟩ ok ... | refl = empty
30.138122
72
0.498992
2227f88da652d1b1ea394a735e2328267da7c53a
4,073
agda
Agda
formalization/agda/Spire/Hybrid.agda
spire/spire
3d67f137ee9423b7e6f8593634583998cd692353
[ "BSD-3-Clause" ]
43
2015-05-28T23:25:33.000Z
2022-03-08T17:10:59.000Z
formalization/agda/Spire/Hybrid.agda
spire/spire
3d67f137ee9423b7e6f8593634583998cd692353
[ "BSD-3-Clause" ]
null
null
null
formalization/agda/Spire/Hybrid.agda
spire/spire
3d67f137ee9423b7e6f8593634583998cd692353
[ "BSD-3-Clause" ]
1
2015-08-17T21:00:07.000Z
2015-08-17T21:00:07.000Z
open import Spire.Type module Spire.Hybrid where ---------------------------------------------------------------------- data Context : Set₁ Environment : Context → Set ScopedType : Context → Set₁ ScopedType Γ = Environment Γ → Set data Context where ∅ : Context _,_ : (Γ : Context) (A : ScopedType Γ) → Context Environment ∅ = ⊤ Environment (Γ , A) = Σ (Environment Γ) A data Var : (Γ : Context) (A : ScopedType Γ) → Set₁ where here : ∀{Γ A} → Var (Γ , A) (λ vs → A (proj₁ vs)) there : ∀{Γ A} {B : ScopedType Γ} → Var Γ A → Var (Γ , B) (λ vs → A (proj₁ vs)) lookup : ∀{Γ A} → Var Γ A → (vs : Environment Γ) → A vs lookup here (vs , v) = v lookup (there i) (vs , v) = lookup i vs ScopedType₂ : (Γ : Context) → ScopedType Γ → Set₁ ScopedType₂ Γ A = (vs : Environment Γ) → A vs → Set ---------------------------------------------------------------------- data Term (Γ : Context) : ScopedType Γ → Set₁ eval : ∀{Γ A} → Term Γ A → (vs : Environment Γ) → A vs -- ---------------------------------------------------------------------- data Term Γ where {- Type introduction -} `⊥ `⊤ `Bool `ℕ `Type : ∀{ℓ} → Term Γ (const (Type ℓ)) `Π `Σ : ∀{ℓ} (A : Term Γ (const (Type ℓ))) (B : Term (Γ , λ vs → ⟦ ℓ ∣ eval A vs ⟧) (const (Type ℓ))) → Term Γ (λ _ → Type ℓ) `⟦_⟧ : ∀{ℓ} (A : Term Γ (const (Type ℓ))) → Term Γ (const (Type (suc ℓ))) {- Value introduction -} `tt : Term Γ (const ⊤) `true `false : Term Γ (const Bool) `zero : Term Γ (const ℕ) `suc : Term Γ (const ℕ) → Term Γ (const ℕ) `λ : ∀{A} {B : ScopedType₂ Γ A} (f : Term (Γ , A) (λ vs → B (proj₁ vs) (proj₂ vs))) → Term Γ (λ vs → (v : A vs) → (B vs v)) _`,_ : ∀{A} {B : ScopedType₂ Γ A} (a : Term Γ A) (b : Term Γ (λ vs → B vs (eval a vs))) → Term Γ (λ vs → Σ (A vs) (λ v → B vs v)) {- Value elimination -} `var : ∀{A} (a : Var Γ A) → Term Γ A `elim⊥ : ∀{A ℓ} (P : Term Γ (const (Type ℓ))) (x : Term Γ (const ⊥)) → Term Γ A `elimBool : ∀{ℓ} (P : Term (Γ , const Bool) (const (Type ℓ))) (pt : Term Γ (λ vs → ⟦ ℓ ∣ eval P (vs , true) ⟧)) (pf : Term Γ (λ vs → ⟦ ℓ ∣ eval P (vs , false) ⟧)) (b : Term Γ (const Bool)) → Term Γ (λ vs → ⟦ ℓ ∣ eval P (vs , eval b vs) ⟧) `elimℕ : ∀{ℓ} (P : Term (Γ , (const ℕ)) (const (Type ℓ))) (pz : Term Γ (λ vs → ⟦ ℓ ∣ eval P (vs , zero) ⟧)) (ps : Term ((Γ , const ℕ) , (λ { (vs , n) → ⟦ ℓ ∣ eval P (vs , n) ⟧ })) (λ { ((vs , n) , p) → ⟦ ℓ ∣ eval P (vs , suc n) ⟧ })) (n : Term Γ (const ℕ)) → Term Γ (λ vs → ⟦ ℓ ∣ eval P (vs , eval n vs) ⟧) _`$_ : ∀{A} {B : ScopedType₂ Γ A} (f : Term Γ (λ vs → (v : A vs) → (B vs v))) (a : Term Γ A) → Term Γ (λ vs → B vs (eval a vs)) `proj₁ : ∀{A} {B : ScopedType₂ Γ A} (ab : Term Γ (λ vs → Σ (A vs) (B vs))) → Term Γ A `proj₂ : ∀{A} {B : ScopedType₂ Γ A} (ab : Term Γ (λ vs → Σ (A vs) (B vs))) → Term Γ (λ vs → B vs (proj₁ (eval ab vs))) ---------------------------------------------------------------------- {- Type introduction -} eval `⊥ vs = `⊥ eval `⊤ vs = `⊤ eval `Bool vs = `Bool eval `ℕ vs = `ℕ eval `Type vs = `Type eval (`Π A B) vs = `Π (eval A vs) λ v → eval B (vs , v) eval (`Σ A B) vs = `Σ (eval A vs) λ v → eval B (vs , v) eval `⟦ A ⟧ vs = `⟦ eval A vs ⟧ {- Value introduction -} eval `tt vs = tt eval `true vs = true eval `false vs = false eval `zero vs = zero eval (`suc n) vs = suc (eval n vs) eval (`λ f) vs = λ v → eval f (vs , v) eval (a `, b) vs = eval a vs , eval b vs {- Value elimination -} eval (`var i) vs = lookup i vs eval (`elim⊥ P x) vs = elim⊥ (eval x vs) eval (`elimBool {ℓ} P pt pf b) vs = elimBool (λ v → ⟦ ℓ ∣ eval P (vs , v) ⟧) (eval pt vs) (eval pf vs) (eval b vs) eval (`elimℕ {ℓ} P pz ps n) vs = elimℕ (λ v → ⟦ ℓ ∣ eval P (vs , v) ⟧) (eval pz vs) (λ n rec → eval ps ((vs , n) , rec)) (eval n vs) eval (f `$ a) vs = (eval f vs) (eval a vs) eval (`proj₁ ab) vs = proj₁ (eval ab vs) eval (`proj₂ ab) vs = proj₂ (eval ab vs) ----------------------------------------------------------------------
30.856061
76
0.458876
0b40a14919f914f8ec170b1324e247e482e0a890
706
agda
Agda
Cubical/Algebra/CommRing/Instances/Unit.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
1
2022-03-05T00:29:41.000Z
2022-03-05T00:29:41.000Z
Cubical/Algebra/CommRing/Instances/Unit.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
Cubical/Algebra/CommRing/Instances/Unit.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
{-# OPTIONS --safe #-} module Cubical.Algebra.CommRing.Instances.Unit where open import Cubical.Foundations.Prelude open import Cubical.Data.Unit open import Cubical.Algebra.Ring open import Cubical.Algebra.CommRing private variable ℓ : Level open CommRingStr UnitCommRing : CommRing ℓ-zero fst UnitCommRing = Unit 0r (snd UnitCommRing) = tt 1r (snd UnitCommRing) = tt _+_ (snd UnitCommRing) = λ _ _ → tt _·_ (snd UnitCommRing) = λ _ _ → tt - snd UnitCommRing = λ _ → tt isCommRing (snd UnitCommRing) = makeIsCommRing isSetUnit (λ _ _ _ → refl) (λ { tt → refl }) (λ _ → refl) (λ _ _ → refl) (λ _ _ _ → refl) (λ { tt → refl }) (λ _ _ _ → refl) (λ _ _ → refl)
25.214286
74
0.657224
3d66a0ac3f5b62dcf286e862b9efddd57f66b374
415
agda
Agda
src/Fragment/Examples/Semigroup/Arith/Base.agda
yallop/agda-fragment
f2a6b1cf4bc95214bd075a155012f84c593b9496
[ "MIT" ]
18
2021-06-15T15:45:39.000Z
2022-01-17T17:26:09.000Z
src/Fragment/Examples/Semigroup/Arith/Base.agda
yallop/agda-fragment
f2a6b1cf4bc95214bd075a155012f84c593b9496
[ "MIT" ]
1
2021-06-16T09:44:31.000Z
2021-06-16T10:24:15.000Z
src/Fragment/Examples/Semigroup/Arith/Base.agda
yallop/agda-fragment
f2a6b1cf4bc95214bd075a155012f84c593b9496
[ "MIT" ]
3
2021-06-15T15:34:50.000Z
2021-06-16T08:04:31.000Z
{-# OPTIONS --without-K --safe #-} module Fragment.Examples.Semigroup.Arith.Base where open import Fragment.Prelude public open import Data.Nat using (ℕ; _*_; _+_) public open import Data.Nat.Properties using (*-isSemigroup; +-isSemigroup) open import Relation.Binary.PropositionalEquality public open ≡-Reasoning public +-semigroup = semigroup→model +-isSemigroup *-semigroup = semigroup→model *-isSemigroup
27.666667
56
0.771084
418b444311ad02b6946c0f08fdcfbdea94a6ad88
6,393
agda
Agda
test/asset/agda-stdlib-1.0/Data/Nat/GCD.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Data/Nat/GCD.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Data/Nat/GCD.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- The Agda standard library -- -- Greatest common divisor ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Nat.GCD where open import Data.Nat open import Data.Nat.Divisibility open import Data.Nat.GCD.Lemmas open import Data.Nat.Properties using (+-suc) open import Data.Product open import Function open import Induction open import Induction.Nat using (<′-Rec; <′-recBuilder) open import Induction.Lexicographic open import Relation.Binary open import Relation.Binary.PropositionalEquality as P using (_≡_; subst) open import Relation.Nullary using (Dec; yes; no) ------------------------------------------------------------------------ -- Greatest common divisor module GCD where -- Specification of the greatest common divisor (gcd) of two natural -- numbers. record GCD (m n gcd : ℕ) : Set where constructor is field -- The gcd is a common divisor. commonDivisor : gcd ∣ m × gcd ∣ n -- All common divisors divide the gcd, i.e. the gcd is the -- greatest common divisor according to the partial order _∣_. greatest : ∀ {d} → d ∣ m × d ∣ n → d ∣ gcd open GCD public -- The gcd is unique. unique : ∀ {d₁ d₂ m n} → GCD m n d₁ → GCD m n d₂ → d₁ ≡ d₂ unique d₁ d₂ = ∣-antisym (GCD.greatest d₂ (GCD.commonDivisor d₁)) (GCD.greatest d₁ (GCD.commonDivisor d₂)) -- The gcd relation is "symmetric". sym : ∀ {d m n} → GCD m n d → GCD n m d sym g = is (swap $ GCD.commonDivisor g) (GCD.greatest g ∘ swap) -- The gcd relation is "reflexive". refl : ∀ {n} → GCD n n n refl = is (∣-refl , ∣-refl) proj₁ -- The GCD of 0 and n is n. base : ∀ {n} → GCD 0 n n base {n} = is (n ∣0 , ∣-refl) proj₂ -- If d is the gcd of n and k, then it is also the gcd of n and -- n + k. step : ∀ {n k d} → GCD n k d → GCD n (n + k) d step g with GCD.commonDivisor g step {n} {k} {d} g | (d₁ , d₂) = is (d₁ , ∣m∣n⇒∣m+n d₁ d₂) greatest′ where greatest′ : ∀ {d′} → d′ ∣ n × d′ ∣ n + k → d′ ∣ d greatest′ (d₁ , d₂) = GCD.greatest g (d₁ , ∣m+n∣m⇒∣n d₂ d₁) open GCD public using (GCD) hiding (module GCD) ------------------------------------------------------------------------ -- Calculating the gcd -- The calculation also proves Bézout's lemma. module Bézout where module Identity where -- If m and n have greatest common divisor d, then one of the -- following two equations is satisfied, for some numbers x and y. -- The proof is "lemma" below (Bézout's lemma). -- -- (If this identity was stated using integers instead of natural -- numbers, then it would not be necessary to have two equations.) data Identity (d m n : ℕ) : Set where +- : (x y : ℕ) (eq : d + y * n ≡ x * m) → Identity d m n -+ : (x y : ℕ) (eq : d + x * m ≡ y * n) → Identity d m n -- Various properties about Identity. sym : ∀ {d} → Symmetric (Identity d) sym (+- x y eq) = -+ y x eq sym (-+ x y eq) = +- y x eq refl : ∀ {d} → Identity d d d refl = -+ 0 1 P.refl base : ∀ {d} → Identity d 0 d base = -+ 0 1 P.refl private infixl 7 _⊕_ _⊕_ : ℕ → ℕ → ℕ m ⊕ n = 1 + m + n step : ∀ {d n k} → Identity d n k → Identity d n (n + k) step {d} (+- x y eq) with compare x y step {d} (+- .x .x eq) | equal x = +- (2 * x) x (lem₂ d x eq) step {d} (+- .x .(x ⊕ i) eq) | less x i = +- (2 * x ⊕ i) (x ⊕ i) (lem₃ d x eq) step {d} {n} (+- .(y ⊕ i) .y eq) | greater y i = +- (2 * y ⊕ i) y (lem₄ d y n eq) step {d} (-+ x y eq) with compare x y step {d} (-+ .x .x eq) | equal x = -+ (2 * x) x (lem₅ d x eq) step {d} (-+ .x .(x ⊕ i) eq) | less x i = -+ (2 * x ⊕ i) (x ⊕ i) (lem₆ d x eq) step {d} {n} (-+ .(y ⊕ i) .y eq) | greater y i = -+ (2 * y ⊕ i) y (lem₇ d y n eq) open Identity public using (Identity; +-; -+) hiding (module Identity) module Lemma where -- This type packs up the gcd, the proof that it is a gcd, and the -- proof that it satisfies Bézout's identity. data Lemma (m n : ℕ) : Set where result : (d : ℕ) (g : GCD m n d) (b : Identity d m n) → Lemma m n -- Various properties about Lemma. sym : Symmetric Lemma sym (result d g b) = result d (GCD.sym g) (Identity.sym b) base : ∀ d → Lemma 0 d base d = result d GCD.base Identity.base refl : ∀ d → Lemma d d refl d = result d GCD.refl Identity.refl stepˡ : ∀ {n k} → Lemma n (suc k) → Lemma n (suc (n + k)) stepˡ {n} {k} (result d g b) = subst (Lemma n) (+-suc n k) $ result d (GCD.step g) (Identity.step b) stepʳ : ∀ {n k} → Lemma (suc k) n → Lemma (suc (n + k)) n stepʳ = sym ∘ stepˡ ∘ sym open Lemma public using (Lemma; result) hiding (module Lemma) -- Bézout's lemma proved using some variant of the extended -- Euclidean algorithm. lemma : (m n : ℕ) → Lemma m n lemma m n = build [ <′-recBuilder ⊗ <′-recBuilder ] P gcd (m , n) where P : ℕ × ℕ → Set P (m , n) = Lemma m n gcd : ∀ p → (<′-Rec ⊗ <′-Rec) P p → P p gcd (zero , n ) rec = Lemma.base n gcd (suc m , zero ) rec = Lemma.sym (Lemma.base (suc m)) gcd (suc m , suc n ) rec with compare m n gcd (suc m , suc .m ) rec | equal .m = Lemma.refl (suc m) gcd (suc m , suc .(suc (m + k))) rec | less .m k = -- "gcd (suc m) (suc k)" Lemma.stepˡ $ proj₁ rec (suc k) (lem₁ k m) gcd (suc .(suc (n + k)) , suc n) rec | greater .n k = -- "gcd (suc k) (suc n)" Lemma.stepʳ $ proj₂ rec (suc k) (lem₁ k n) (suc n) -- Bézout's identity can be recovered from the GCD. identity : ∀ {m n d} → GCD m n d → Identity d m n identity {m} {n} g with lemma m n ... | result d g′ b with GCD.unique g g′ ... | P.refl = b -- Calculates the gcd of the arguments. gcd : (m n : ℕ) → ∃ λ d → GCD m n d gcd m n with Bézout.lemma m n ... | Bézout.result d g _ = (d , g) -- gcd as a proposition is decidable gcd? : (m n d : ℕ) → Dec (GCD m n d) gcd? m n d with gcd m n ... | d′ , p with d′ ≟ d ... | no ¬g = no (¬g ∘ GCD.unique p) ... | yes g = yes (subst (GCD m n) g p)
32.451777
91
0.51791
10bcbf704be0bb81aeda47765a72e07d0cce5ce9
6,537
agda
Agda
src/Syntax/Substitution/Kits.agda
DimaSamoz/temporal-type-systems
7d993ba55e502d5ef8707ca216519012121a08dd
[ "MIT" ]
4
2018-05-31T20:37:04.000Z
2022-01-04T09:33:48.000Z
src/Syntax/Substitution/Kits.agda
DimaSamoz/temporal-type-systems
7d993ba55e502d5ef8707ca216519012121a08dd
[ "MIT" ]
null
null
null
src/Syntax/Substitution/Kits.agda
DimaSamoz/temporal-type-systems
7d993ba55e502d5ef8707ca216519012121a08dd
[ "MIT" ]
null
null
null
-- Syntactic kits from Conor McBride's -- "Type-Preserving Renaming and Substitution" module Syntax.Substitution.Kits where open import Syntax.Types open import Syntax.Context open import Syntax.Terms open import CategoryTheory.Categories open import Relation.Binary.PropositionalEquality using (_≡_ ; refl ; sym) -- Type of entities that we can traverse -- (instantiated by variables and types) Schema : Set₁ Schema = Context -> Judgement -> Set -- Explicit substitution from term in context Δ to term in context Γ -- E.g. from Γ ⌊ A ⌋ Γ′ ⊢ N : B to Γ ⌊⌋ Γ′ ⊢ N[σ] : B -- using substitution Γ ⌊⌋ Γ′ ⊢ σ : Γ ⌊ A ⌋ Γ′ data Subst (𝒮 : Schema) : Context -> Context -> Set where -- Empty substitution ● : ∀ {Δ} -> Subst 𝒮 ∙ Δ -- Extending the domain of a substitution _▸_ : ∀ {A Γ Δ} -> (σ : Subst 𝒮 Γ Δ) -> (T : 𝒮 Δ A) -> Subst 𝒮 (Γ , A) Δ -- Syntactic kit grouping together common operations on traversable -- syntactic entities such as variables and terms record Kit (𝒮 : Schema) : Set where field -- Convert a variable to the entity 𝓋 : ∀ {Γ A} -> A ∈ Γ -> 𝒮 Γ A -- Convert the entity to a term 𝓉 : ∀ {Γ A} -> 𝒮 Γ A -> Γ ⊢ A -- Weaken the entity 𝓌 : ∀ {B Γ A} -> 𝒮 Γ A -> 𝒮 (Γ , B) A -- Stabilise the context of the entity 𝒶 : ∀ {Γ A} -> 𝒮 Γ (A always) -> 𝒮 (Γ ˢ) (A always) -- Substitutable kit record SubstKit (𝒮 : Schema) : Set where field -- Underlying traversable kit 𝓀 : Kit 𝒮 -- Apply substitution to a kit 𝓈 : ∀ {Γ Δ A} -> Subst 𝒮 Γ Δ -> 𝒮 Γ A -> 𝒮 Δ A open Kit -- | Combinators -- | All take a syntactic (substitutable) kit as an argument -- | which provides the necessary operations -- Weakening a substitution -- Δ ⊢ σ : Γ to (Δ , A) ⊢ σ : Γ _⁺_ : ∀ {A 𝒮 Γ Δ} -> Subst 𝒮 Γ Δ -> Kit 𝒮 -> Subst 𝒮 Γ (Δ , A) ● ⁺ _ = ● (σ ▸ T) ⁺ k = (σ ⁺ k) ▸ 𝓌 k T infixl 40 _⁺_ -- Lifting a substitution -- Δ ⊢ σ : Γ to (Δ , A) ⊢ σ : (Γ , A) _↑_ : ∀ {A 𝒮 Γ Δ} -> Subst 𝒮 Γ Δ -> Kit 𝒮 -> Subst 𝒮 (Γ , A) (Δ , A) σ ↑ k = (σ ⁺ k) ▸ 𝓋 k top infixl 40 _↑_ -- Stabilising a substitution -- Δ ⊢ σ : Γ to Δ ˢ ⊢ σ : Γ ˢ _↓ˢ_ : ∀ {𝒮 Γ Δ} -> Subst 𝒮 Γ Δ -> Kit 𝒮 -> Subst 𝒮 (Γ ˢ) (Δ ˢ) ● ↓ˢ _ = ● (_▸_ {A now} σ T) ↓ˢ k = σ ↓ˢ k (_▸_ {A always} σ T) ↓ˢ k = (σ ↓ˢ k) ▸ 𝒶 k T infixl 40 _↓ˢ_ -- Identity substitution idₛ : ∀ {Γ 𝒮} -> Kit 𝒮 -> Subst 𝒮 Γ Γ idₛ {∙} k = ● idₛ {Γ , _} k = idₛ k ↑ k -- Composition of substitutions _∘[_]ₛ_ : ∀ {𝒮 Γ Δ Ξ} -> Subst 𝒮 Δ Ξ -> SubstKit 𝒮 -> Subst 𝒮 Γ Δ -> Subst 𝒮 Γ Ξ σ₂ ∘[ k ]ₛ ● = ● σ₂ ∘[ k ]ₛ (σ₁ ▸ T) = (σ₂ ∘[ k ]ₛ σ₁) ▸ SubstKit.𝓈 k σ₂ T -- Substitution from an order-preserving embedding -- Γ ⊆ Δ to Δ ⊢ σ : Γ _⊆ₛ_ : ∀ {𝒮 Γ Δ} -> Γ ⊆ Δ -> Kit 𝒮 -> Subst 𝒮 Γ Δ refl ⊆ₛ k = idₛ k (keep s) ⊆ₛ k = (s ⊆ₛ k) ↑ k (drop s) ⊆ₛ k = (s ⊆ₛ k) ⁺ k -- Substitution from propositional equality of contexts _≡ₛ_ : ∀ {𝒮 Γ Δ} -> Γ ≡ Δ -> Kit 𝒮 -> Subst 𝒮 Γ Δ refl ≡ₛ k = idₛ k -- Substitution from idempotence of stabilisation _ˢˢₛ_ : ∀ {𝒮} -> (Γ : Context) -> Kit 𝒮 -> Subst 𝒮 (Γ ˢ) (Γ ˢ ˢ) ∙ ˢˢₛ k = ● (Γ , A now) ˢˢₛ k = Γ ˢˢₛ k (Γ , A always) ˢˢₛ k = (Γ ˢˢₛ k) ↑ k -- | Standard substitutions -- | Common transformations between contexts module _ {𝒮 : Schema} (sk : SubstKit 𝒮) where open SubstKit sk open Kit 𝓀 -- | Weakening -- Weakening the top of the context weak-topₛ : ∀{A Γ} -> Subst 𝒮 Γ (Γ , A) weak-topₛ = idₛ 𝓀 ⁺ 𝓀 -- Weakening the middle of the context weak-midₛ : ∀{A} Γ Γ′ -> Subst 𝒮 (Γ ⌊⌋ Γ′) (Γ ⌊ A ⌋ Γ′) weak-midₛ Γ ∙ = weak-topₛ weak-midₛ Γ (Γ′ , B) = weak-midₛ Γ Γ′ ↑ 𝓀 -- General weakening from an OPE weakₛ : ∀{Γ Δ} -> Γ ⊆ Δ -> Subst 𝒮 Γ Δ weakₛ = _⊆ₛ 𝓀 -- | Exchange -- Exchange on top ex-topₛ : ∀{A B} Γ -> Subst 𝒮 (Γ , A , B) (Γ , B , A) ex-topₛ Γ = (idₛ 𝓀 ⁺ 𝓀 ↑ 𝓀) ▸ (𝓋 𝓀 (pop top)) -- General exchange lemma exₛ : ∀{A B} Γ Γ′ Γ″ -> Subst 𝒮 (Γ ⌊ A ⌋ Γ′ ⌊ B ⌋ Γ″) (Γ ⌊ B ⌋ Γ′ ⌊ A ⌋ Γ″) exₛ Γ ∙ ∙ = ex-topₛ Γ exₛ {A} {B} Γ (Γ′ , C) ∙ = (exₛ Γ Γ′ [ A ] ∘[ sk ]ₛ ex-topₛ (Γ , C ⌊⌋ Γ′)) ∘[ sk ]ₛ exₛ Γ Γ′ [ B ] exₛ Γ ∙ (Γ″ , D) = exₛ Γ ∙ Γ″ ↑ 𝓀 exₛ Γ (Γ′ , C) (Γ″ , D) = exₛ Γ (Γ′ , C) Γ″ ↑ 𝓀 -- | Contraction -- Contraction on top contr-topₛ : ∀{A Γ} -> Subst 𝒮 (Γ , A , A) (Γ , A) contr-topₛ = (idₛ 𝓀) ▸ (𝓋 𝓀 top) -- General contraction lemma (left) contr-lₛ : ∀{A} Γ Γ′ Γ″ -> Subst 𝒮 (Γ ⌊ A ⌋ Γ′ ⌊ A ⌋ Γ″) (Γ ⌊ A ⌋ Γ′ ⌊⌋ Γ″) contr-lₛ Γ ∙ ∙ = contr-topₛ contr-lₛ Γ (Γ′ , B) ∙ = (idₛ 𝓀) ▸ (𝓌 𝓀 (𝓈 (contr-lₛ Γ Γ′ ∙) (𝓋 𝓀 top))) contr-lₛ Γ ∙ (Γ″ , C) = contr-lₛ Γ ∙ Γ″ ↑ 𝓀 contr-lₛ Γ (Γ′ , B) (Γ″ , C) = contr-lₛ Γ (Γ′ , B) Γ″ ↑ 𝓀 -- General contraction lemma (right) contr-rₛ : ∀{A} Γ Γ′ Γ″ -> Subst 𝒮 (Γ ⌊ A ⌋ Γ′ ⌊ A ⌋ Γ″) (Γ ⌊⌋ Γ′ ⌊ A ⌋ Γ″) contr-rₛ Γ ∙ ∙ = contr-topₛ contr-rₛ {A} Γ (Γ′ , B) ∙ = (ex-topₛ (Γ ⌊⌋ Γ′) ∘[ sk ]ₛ contr-rₛ Γ Γ′ [ B ]) ∘[ sk ]ₛ ex-topₛ (Γ , A ⌊⌋ Γ′) contr-rₛ Γ ∙ (Γ″ , C) = contr-rₛ Γ ∙ Γ″ ↑ 𝓀 contr-rₛ Γ (Γ′ , B) (Γ″ , C) = contr-rₛ Γ (Γ′ , B) Γ″ ↑ 𝓀 -- | Movement -- Moving a variable to the right in the context move-rₛ : ∀{A} Γ Γ′ Γ″ -> Subst 𝒮 (Γ ⌊ A ⌋ Γ′ ⌊⌋ Γ″) (Γ ⌊⌋ Γ′ ⌊ A ⌋ Γ″) move-rₛ {A} Γ Γ′ Γ″ = contr-rₛ Γ Γ′ Γ″ ∘[ sk ]ₛ weak-midₛ (Γ ⌊ A ⌋ Γ′) Γ″ -- Moving a variable to the left in the context -- Bit verbose as we have to deal with associativity move-lₛ : ∀{A} Γ Γ′ Γ″ -> Subst 𝒮 (Γ ⌊⌋ Γ′ ⌊ A ⌋ Γ″) (Γ ⌊ A ⌋ Γ′ ⌊⌋ Γ″) move-lₛ {A} Γ Γ′ Γ″ = contr-lₛ Γ Γ′ Γ″ ∘[ sk ]ₛ ((sym (⌊A⌋-assoc Γ Γ′ Γ″ A A) ≡ₛ 𝓀) ∘[ sk ]ₛ ((weak-midₛ {A} Γ (Γ′ ⌊ A ⌋ Γ″)) ∘[ sk ]ₛ (⌊⌋-assoc Γ (Γ′ , A) Γ″ ≡ₛ 𝓀))) -- Moving a variable to the right in the stabilised context context moveˢ-rₛ : ∀{A} Γ Γ′ Γ″ -> Subst 𝒮 (Γ ˢ ⌊ A ⌋ (Γ′ ⌊⌋ Γ″) ˢ) ((Γ ⌊⌋ Γ′) ˢ ⌊ A ⌋ Γ″ ˢ) moveˢ-rₛ {A} Γ Γ′ Γ″ rewrite ˢ-pres-⌊⌋ Γ Γ′ | ˢ-pres-⌊⌋ Γ′ Γ″ | sym (⌊⌋-assoc (Γ ˢ , A) (Γ′ ˢ) (Γ″ ˢ)) = move-rₛ (Γ ˢ) (Γ′ ˢ) (Γ″ ˢ) -- | Substitution -- Substitution for the top of the context sub-topₛ : ∀{A Γ} -> 𝒮 Γ A -> Subst 𝒮 (Γ , A) Γ sub-topₛ T = (idₛ 𝓀) ▸ T -- Substitution for the top of a stabilised context sub-topˢₛ : ∀{Γ A} -> 𝒮 Γ A -> Subst 𝒮 (Γ ˢ , A) Γ sub-topˢₛ {Γ} T = (Γˢ⊆Γ Γ ⊆ₛ 𝓀) ▸ T -- Substitution for the middle of the context sub-midₛ : ∀{A} Γ Γ′ -> 𝒮 (Γ ⌊⌋ Γ′) A -> Subst 𝒮 (Γ ⌊ A ⌋ Γ′) (Γ ⌊⌋ Γ′) sub-midₛ Γ Γ′ T = sub-topₛ T ∘[ sk ]ₛ move-rₛ Γ Γ′ ∙
33.352041
88
0.503595
579e17821e53bcfd11580d9d22aaeee2dd05679f
161
agda
Agda
test/Fail/Issue1419.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue1419.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue1419.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Issue1419 where module A where module M where module B where module M where open A open B module N (let open M) where module LotsOfStuff where
10.733333
27
0.745342
39115e548dfb54ce683f78c86f95dbf19a5dd091
822
agda
Agda
lib/Explore/Experimental/Isos.agda
crypto-agda/explore
16bc8333503ff9c00d47d56f4ec6113b9269a43e
[ "BSD-3-Clause" ]
2
2016-06-05T09:25:32.000Z
2017-06-28T19:19:29.000Z
lib/Explore/Experimental/Isos.agda
crypto-agda/explore
16bc8333503ff9c00d47d56f4ec6113b9269a43e
[ "BSD-3-Clause" ]
1
2019-03-16T14:24:04.000Z
2019-03-16T14:24:04.000Z
lib/Explore/Experimental/Isos.agda
crypto-agda/explore
16bc8333503ff9c00d47d56f4ec6113b9269a43e
[ "BSD-3-Clause" ]
null
null
null
{-# OPTIONS --without-K #-} module Explore.Explorable.Isos where open import Function open import Data.Product open import Data.Nat open import Data.Vec renaming (sum to vsum) open import Function.Related.TypeIsomorphisms.NP import Relation.Binary.PropositionalEquality.NP as ≡ open ≡ using (_≡_; _≗_) open import Explore.Type open import Explore.Explorable open import Explore.Product swap-μ : ∀ {A B} → Explorable (A × B) → Explorable (B × A) swap-μ = μ-iso swap-iso swapS-preserve : ∀ {A B} f (μA×B : Explorable (A × B)) → sum μA×B f ≡ sum (swap-μ μA×B) (f ∘ swap) swapS-preserve = μ-iso-preserve swap-iso μ^ : ∀ {A} (μA : Explorable A) n → Explorable (A ^ n) μ^ μA zero = μLift μ𝟙 μ^ μA (suc n) = μA ×-μ μ^ μA n μVec : ∀ {A} (μA : Explorable A) n → Explorable (Vec A n) μVec μA n = μ-iso (^↔Vec n) (μ^ μA n)
29.357143
98
0.671533
5864ad555148d25cd5e3d67557ce409bfb432958
454
agda
Agda
test/Succeed/Issue807.agda
alex-mckenna/agda
78b62cd24bbd570271a7153e44ad280e52ef3e29
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/Succeed/Issue807.agda
andersk/agda
56928ff709dcb931cb9a48c4790e5ed3739e3032
[ "BSD-3-Clause" ]
null
null
null
test/Succeed/Issue807.agda
andersk/agda
56928ff709dcb931cb9a48c4790e5ed3739e3032
[ "BSD-3-Clause" ]
1
2022-03-12T11:35:18.000Z
2022-03-12T11:35:18.000Z
-- {-# OPTIONS -v term:20 -v tc.term:20 #-} -- {-# OPTIONS -v tc.def.alias:100 -v tc.term.expr.coind:100 #-} module Issue807 where open import Common.Coinduction data Stream : Set where cons : ∞ Stream → Stream mutual -- s : Stream s = cons s′ -- s′ : ∞ _ s′ = ♯ s -- Under 2.3.0.1: The code is accepted. -- Under 2.3.2: The termination checker complains. -- Bug was that aliases did not lead to construction of ♯-auxiliary function.
20.636364
77
0.638767
2329beccf05ef9a8334ff75e2fbddf85f3c97dd1
2,244
agda
Agda
Cats/Category/Setoids/Facts/Exponentials.agda
alessio-b-zak/cats
a3b69911c4c6ec380ddf6a0f4510d3a755734b86
[ "MIT" ]
null
null
null
Cats/Category/Setoids/Facts/Exponentials.agda
alessio-b-zak/cats
a3b69911c4c6ec380ddf6a0f4510d3a755734b86
[ "MIT" ]
null
null
null
Cats/Category/Setoids/Facts/Exponentials.agda
alessio-b-zak/cats
a3b69911c4c6ec380ddf6a0f4510d3a755734b86
[ "MIT" ]
null
null
null
module Cats.Category.Setoids.Facts.Exponentials where open import Data.Product using (_,_) open import Relation.Binary using (Setoid) open import Cats.Category open import Cats.Category.Setoids as Setoids using (Setoids ; ≈-intro ; ≈-elim) open import Cats.Category.Setoids.Facts.Products as Products using (hasBinaryProducts) open import Cats.Util.Conv import Relation.Binary.PropositionalEquality as ≡ import Cats.Category.Base as Base import Cats.Util.SetoidReasoning as SetoidReasoning module Build l where infixr 1 _↝_ open Base.Category (Setoids l l) open Category (Setoids l l) using (∃!-intro ; Exp ; IsUniqueSuchThat) open HasBinaryProducts (hasBinaryProducts l l) open Setoids._⇒_ using (resp) _↝_ : Obj → Obj → Obj A ↝ B = record { Carrier = A ⇒ B ; _≈_ = _≈_ {A} {B} ; isEquivalence = equiv } eval : ∀ {B C} → (B ↝ C) × B ⇒ C eval = record { arr = λ { (f , x) → (f ⃗) x } ; resp = λ { (eq₁ , eq₂) → ≈-elim eq₁ eq₂ } } curry : ∀ {A B C} → A × B ⇒ C → A ⇒ B ↝ C curry {A} f = record { arr = λ a → record { arr = λ b → (f ⃗) (a , b) ; resp = λ eqb → resp f (refl , eqb) } ; resp = λ eqa → ≈-intro λ eqb → resp f (eqa , eqb) } where open Setoid A using (refl) curry-correct : ∀ {A B C} (f : A × B ⇒ C) → eval ∘ ⟨ curry f × id ⟩ ≈ f curry-correct f = ≈-intro (resp f) curry-unique : ∀ {A B C} (f : A × B ⇒ C) → IsUniqueSuchThat (λ f̃ → eval ∘ ⟨ f̃ × id ⟩ ≈ f) (curry f) curry-unique {A} {B} {C} f {g} eval∘g≈f = ≈-intro λ {a} {a′} a≈a′ → ≈-intro λ {b} {b′} b≈b′ → begin⟨ C ⟩ ((((curry f) ⃗) a) ⃗) b ≡⟨⟩ (f ⃗) (a , b) ≈⟨ sym C (≈-elim eval∘g≈f (sym A a≈a′ , sym B b≈b′)) ⟩ (((g ⃗) a′) ⃗) b′ ∎ where open SetoidReasoning open Setoid using (sym) _↝′_ : ∀ B C → Exp B C B ↝′ C = record { Cᴮ = B ↝ C ; eval = eval ; curry′ = λ f → ∃!-intro (curry f) (curry-correct f) (λ {g} eval∘g≈f → curry-unique f {g} eval∘g≈f) } instance hasExponentials : ∀ l → HasExponentials (Setoids l l) hasExponentials l = record { _↝′_ = Build._↝′_ l }
24.933333
79
0.529857
10e83154aa11cc8089b50c3dbcd06c356926c33b
293
agda
Agda
test/Succeed/Issue611.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue611.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue611.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2012-04-18 module Issue611 where data Nat : Set where zero : Nat suc : Nat -> Nat data Bool : Set where true false : Bool T : Bool -> Set T true = {x : Bool} -> Nat T false = {x : Bool} -> Bool data D (b : Bool) : Set where c : T b -> D b d : D false d = c {_} true
14.65
29
0.569966
a15267bbafa74e8ea7b71a5b6ba94d2b2b4658b2
941
agda
Agda
Cubical/Structures/Pointed.agda
RobertHarper/cubical
d13941587a58895b65f714f1ccc9c1f5986b109c
[ "MIT" ]
null
null
null
Cubical/Structures/Pointed.agda
RobertHarper/cubical
d13941587a58895b65f714f1ccc9c1f5986b109c
[ "MIT" ]
null
null
null
Cubical/Structures/Pointed.agda
RobertHarper/cubical
d13941587a58895b65f714f1ccc9c1f5986b109c
[ "MIT" ]
1
2021-11-22T02:02:01.000Z
2021-11-22T02:02:01.000Z
{- Pointed structure: X ↦ X -} {-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Structures.Pointed where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Univalence open import Cubical.Foundations.SIP open import Cubical.Foundations.Pointed.Base private variable ℓ : Level -- Structured isomorphisms PointedStructure : Type ℓ → Type ℓ PointedStructure X = X PointedEquivStr : StrEquiv PointedStructure ℓ PointedEquivStr A B f = equivFun f (pt A) ≡ pt B pointedUnivalentStr : UnivalentStr {ℓ} PointedStructure PointedEquivStr pointedUnivalentStr f = invEquiv (ua-ungluePath-Equiv f) pointedSIP : (A B : Pointed ℓ) → A ≃[ PointedEquivStr ] B ≃ (A ≡ B) pointedSIP = SIP pointedUnivalentStr pointed-sip : (A B : Pointed ℓ) → A ≃[ PointedEquivStr ] B → (A ≡ B) pointed-sip A B = equivFun (pointedSIP A B) -- ≡ λ (e , p) i → ua e i , ua-gluePath e p i
26.138889
89
0.735388
1de609373ec8e653c3a77ffbf75e55d319b1519d
576
agda
Agda
test/asset/agda-stdlib-1.0/Data/Integer/Literals.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Data/Integer/Literals.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Data/Integer/Literals.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- The Agda standard library -- -- Integer Literals ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Integer.Literals where open import Agda.Builtin.FromNat open import Agda.Builtin.FromNeg open import Data.Unit open import Data.Integer number : Number ℤ number = record { Constraint = λ _ → ⊤ ; fromNat = λ n → + n } negative : Negative ℤ negative = record { Constraint = λ _ → ⊤ ; fromNeg = λ n → - (+ n) }
21.333333
72
0.487847
1d7ff4d259c0e12cbd3d69934945a553b1724a95
3,542
agda
Agda
src/JVM/Model/Properties.agda
ajrouvoet/jvm.agda
c84bc6b834295ac140ff30bfc8e55228efbf6d2a
[ "Apache-2.0" ]
6
2020-10-07T14:07:17.000Z
2021-02-28T21:49:08.000Z
src/JVM/Model/Properties.agda
ajrouvoet/jvm.agda
c84bc6b834295ac140ff30bfc8e55228efbf6d2a
[ "Apache-2.0" ]
null
null
null
src/JVM/Model/Properties.agda
ajrouvoet/jvm.agda
c84bc6b834295ac140ff30bfc8e55228efbf6d2a
[ "Apache-2.0" ]
1
2021-12-28T17:37:15.000Z
2021-12-28T17:37:15.000Z
module JVM.Model.Properties where open import Data.List open import Data.List.Properties open import Data.List.Relation.Binary.Permutation.Propositional open import Data.List.Relation.Binary.Permutation.Propositional.Properties open import Data.Product hiding (map) open import Relation.Unary using (Pred) open import Relation.Binary.PropositionalEquality open import Relation.Ternary.Core open import Relation.Ternary.Structures open import Relation.Ternary.Structures.Syntax open import Relation.Ternary.Construct.Bag.Properties open import Function module _ {p t} {T : Set t} {P : Pred _ p} where open import JVM.Model (List T) open import Data.List.Relation.Unary.All -- If you know the split and what is bubbling up from the left and right parts, -- then you know what bubbles up from the composite. source : ∀ {Φ₁ : Intf} → Φ₁ ∙ Φ₂ ≣ Φ → All P (up Φ₁) → All P (up Φ₂) → All P (up Φ) source (ex {u₁} {u₂} (sub x₁ x₂) (sub x₃ x₄) x₅ x₆) pu₁ pu₂ = joinAll (λ ()) x₅ pu₁' pu₂' where pu₂' = proj₁ (splitAll (λ where dup p → p , p) x₂ pu₂) pu₁' = proj₁ (splitAll (λ where dup p → p , p) x₄ pu₁) -- If you know the split and what is bubbling up from the left and flowing down the composite, -- then you know what flows down the right part. sinkᵣ : ∀ {Φ₁ : Intf} → Φ₁ ∙ Φ₂ ≣ Φ → All P (up Φ₁) → All P (down Φ) → All P (down Φ₂) sinkᵣ (ex (sub x₁ x₂) (sub x₃ x₄) x₅ x₆) pu₁ pu₂ = joinAll (λ ()) x₃ pd₁' pe₁ where pd₁' = proj₁ (splitAll (λ where dup p → p , p) x₆ pu₂) pe₁ = proj₂ (splitAll (λ where dup p → p , p) x₄ pu₁) -- The same, but different. sinkₗ : ∀ {Φ₁ Φ₂ Φ : Intf} → Φ₁ ∙ Φ₂ ≣ Φ → All P (up Φ₂) → All P (down Φ) → All P (down Φ₁) sinkₗ σ ups downs = sinkᵣ (∙-comm σ) ups downs -- {- Mapping along any injection yields a model morphism -} -- module _ {a b} {A : Set a} {B : Set b} (𝑚 : A ↣ B) where -- open Injection 𝑚 -- private -- ⟦_⟧ = λ a → f a -- j = map ⟦_⟧ -- open import JVM.Model A as L -- open import JVM.Model B as R -- import Relation.Ternary.Construct.Duplicate.Properties as D -- import Relation.Ternary.Construct.Empty.Properties as E -- module OMM = MonoidMorphism (bagMap (D.f-morphism 𝑚)) -- module DMM = MonoidMorphism (bagMap (E.⊥-morphism ⟦_⟧)) -- import Relation.Ternary.Construct.Bag.Overlapping as O -- import Relation.Ternary.Construct.Bag.Disjoint as D -- private -- sub-lemma⁺ : ∀ {xs ys u d} → xs L.- ys ≣ (u L.⇅ d) → j xs R.- j ys ≣ (j u R.⇅ j d) -- sub-lemma⁺ (sub x x₁) = R.sub (DMM.j-∙ x) (OMM.j-∙ x₁) -- sub-lemma⁻ : ∀ {xs ys u d} → j xs R.- j ys ≣ (u R.⇅ d) → -- ∃₂ λ u' d' → xs L.- ys ≣ (u' L.⇅ d') × u ≡ j u' × d ≡ j d' -- sub-lemma⁻ (sub x y) -- with _ , x' , refl , refl ← D.map-inv _ ⟦_⟧ x -- | _ , y' , refl , eq ← O.map-inv _ ⟦_⟧ y -- with refl ← map-injective 𝑚 eq -- = -, -, (L.sub x' y' , refl , refl) -- ⟦⟧-morphism : SemigroupMorphism L.intf-isSemigroup R.intf-isSemigroup -- SemigroupMorphism.j ⟦⟧-morphism (e ⇅ d) = (j e) R.⇅ (j d) -- SemigroupMorphism.jcong ⟦⟧-morphism (ρ₁ , ρ₂) = map⁺ ⟦_⟧ ρ₁ , map⁺ ⟦_⟧ ρ₂ -- SemigroupMorphism.j-∙ ⟦⟧-morphism (ex x x₁ σ₁ σ₂) = -- R.ex (sub-lemma⁺ x) (sub-lemma⁺ x₁) (DMM.j-∙ σ₁) (OMM.j-∙ σ₂) -- SemigroupMorphism.j-∙⁻ ⟦⟧-morphism (ex x x₁ σ₁ σ₂) with sub-lemma⁻ x -- ... | _ , _ , y , refl , refl with sub-lemma⁻ x₁ -- ... | _ , _ , y₁ , refl , refl with _ , τ₁ , refl ← DMM.j-∙⁻ σ₁ | _ , τ₂ , refl ← OMM.j-∙⁻ σ₂ -- = -, L.ex y y₁ τ₁ τ₂ , refl
42.674699
98
0.604461
d0d24933d1ed0bfbd9efd81df5eed3a46dec5c86
5,436
agda
Agda
Cubical/HITs/Ints/QuoInt/Base.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/HITs/Ints/QuoInt/Base.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/HITs/Ints/QuoInt/Base.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
1
2021-11-22T02:02:01.000Z
2021-11-22T02:02:01.000Z
-- Define the integers as a HIT by identifying +0 and -0 {-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.Ints.QuoInt.Base where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Transport open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Relation.Nullary open import Cubical.Data.Int as Int using (Int; sucInt; predInt; discreteInt; isSetInt) open import Cubical.Data.Nat as ℕ using (ℕ; zero; suc) open import Cubical.Data.Bool as Bool using (Bool; not; notnot) variable l : Level Sign : Type₀ Sign = Bool pattern spos = Bool.false pattern sneg = Bool.true _*S_ : Sign → Sign → Sign _*S_ = Bool._⊕_ data ℤ : Type₀ where signed : (s : Sign) (n : ℕ) → ℤ posneg : signed spos 0 ≡ signed sneg 0 pattern pos n = signed spos n pattern neg n = signed sneg n sign : ℤ → Sign sign (signed _ zero) = spos sign (signed s (suc _)) = s sign (posneg i) = spos sign-pos : ∀ n → sign (pos n) ≡ spos sign-pos zero = refl sign-pos (suc n) = refl abs : ℤ → ℕ abs (signed _ n) = n abs (posneg i) = zero signed-inv : ∀ n → signed (sign n) (abs n) ≡ n signed-inv (pos zero) = refl signed-inv (neg zero) = posneg signed-inv (signed s (suc n)) = refl signed-inv (posneg i) j = posneg (i ∧ j) signed-zero : ∀ s₁ s₂ → signed s₁ zero ≡ signed s₂ zero signed-zero spos spos = refl signed-zero sneg sneg = refl signed-zero spos sneg = posneg signed-zero sneg spos = sym posneg rec : ∀ {A : Type l} → (pos' neg' : ℕ → A) → pos' 0 ≡ neg' 0 → ℤ → A rec pos' neg' eq (pos m) = pos' m rec pos' neg' eq (neg m) = neg' m rec pos' neg' eq (posneg i) = eq i elim : ∀ (P : ℤ → Type l) → (pos' : ∀ n → P (pos n)) → (neg' : ∀ n → P (neg n)) → (λ i → P (posneg i)) [ pos' 0 ≡ neg' 0 ] → ∀ z → P z elim P pos' neg' eq (pos n) = pos' n elim P pos' neg' eq (neg n) = neg' n elim P pos' neg' eq (posneg i) = eq i Int→ℤ : Int → ℤ Int→ℤ (Int.pos n) = pos n Int→ℤ (Int.negsuc n) = neg (suc n) ℤ→Int : ℤ → Int ℤ→Int (pos n) = Int.pos n ℤ→Int (neg zero) = Int.pos 0 ℤ→Int (neg (suc n)) = Int.negsuc n ℤ→Int (posneg _) = Int.pos 0 ℤ→Int→ℤ : ∀ (n : ℤ) → Int→ℤ (ℤ→Int n) ≡ n ℤ→Int→ℤ (pos n) _ = pos n ℤ→Int→ℤ (neg zero) i = posneg i ℤ→Int→ℤ (neg (suc n)) _ = neg (suc n) ℤ→Int→ℤ (posneg j) i = posneg (j ∧ i) Int→ℤ→Int : ∀ (n : Int) → ℤ→Int (Int→ℤ n) ≡ n Int→ℤ→Int (Int.pos n) _ = Int.pos n Int→ℤ→Int (Int.negsuc n) _ = Int.negsuc n Int≡ℤ : Int ≡ ℤ Int≡ℤ = isoToPath (iso Int→ℤ ℤ→Int ℤ→Int→ℤ Int→ℤ→Int) discreteℤ : Discrete ℤ discreteℤ = subst Discrete Int≡ℤ discreteInt isSetℤ : isSet ℤ isSetℤ = subst isSet Int≡ℤ isSetInt -_ : ℤ → ℤ - signed s n = signed (not s) n - posneg i = posneg (~ i) negate-invol : ∀ n → - - n ≡ n negate-invol (signed s n) i = signed (notnot s i) n negate-invol (posneg i) _ = posneg i negateEquiv : ℤ ≃ ℤ negateEquiv = isoToEquiv (iso -_ -_ negate-invol negate-invol) negateEq : ℤ ≡ ℤ negateEq = ua negateEquiv infixl 6 _+_ infixl 7 _*_ sucℤ : ℤ → ℤ sucℤ (pos n) = pos (suc n) sucℤ (neg zero) = pos 1 sucℤ (neg (suc n)) = neg n sucℤ (posneg _) = pos 1 predℤ : ℤ → ℤ predℤ = subst (λ Z → (Z → Z)) negateEq sucℤ -- definitionally equal to λ n → - (sucℤ (- n)) -- strictly more useful than the direct pattern matching version, -- see negateSuc and negatePred sucPredℤ : ∀ n → sucℤ (predℤ n) ≡ n sucPredℤ (pos zero) = sym posneg sucPredℤ (pos (suc _)) = refl sucPredℤ (neg _) = refl sucPredℤ (posneg i) j = posneg (i ∨ ~ j) predSucℤ : ∀ n → predℤ (sucℤ n) ≡ n predSucℤ (pos _) = refl predSucℤ (neg zero) = posneg predSucℤ (neg (suc _)) = refl predSucℤ (posneg i) j = posneg (i ∧ j) _+_ : ℤ → ℤ → ℤ (signed _ zero) + n = n (posneg _) + n = n (pos (suc m)) + n = sucℤ (pos m + n) (neg (suc m)) + n = predℤ (neg m + n) sucPathℤ : ℤ ≡ ℤ sucPathℤ = isoToPath (iso sucℤ predℤ sucPredℤ predSucℤ) -- We do the same trick as in Cubical.Data.Int to prove that addition -- is an equivalence addEqℤ : ℕ → ℤ ≡ ℤ addEqℤ zero = refl addEqℤ (suc n) = addEqℤ n ∙ sucPathℤ predPathℤ : ℤ ≡ ℤ predPathℤ = isoToPath (iso predℤ sucℤ predSucℤ sucPredℤ) subEqℤ : ℕ → ℤ ≡ ℤ subEqℤ zero = refl subEqℤ (suc n) = subEqℤ n ∙ predPathℤ addℤ : ℤ → ℤ → ℤ addℤ (pos m) n = transport (addEqℤ m) n addℤ (neg m) n = transport (subEqℤ m) n addℤ (posneg _) n = n isEquivAddℤ : (m : ℤ) → isEquiv (addℤ m) isEquivAddℤ (pos n) = isEquivTransport (addEqℤ n) isEquivAddℤ (neg n) = isEquivTransport (subEqℤ n) isEquivAddℤ (posneg _) = isEquivTransport refl addℤ≡+ℤ : addℤ ≡ _+_ addℤ≡+ℤ i (pos (suc m)) n = sucℤ (addℤ≡+ℤ i (pos m) n) addℤ≡+ℤ i (neg (suc m)) n = predℤ (addℤ≡+ℤ i (neg m) n) addℤ≡+ℤ i (pos zero) n = n addℤ≡+ℤ i (neg zero) n = n addℤ≡+ℤ _ (posneg _) n = n isEquiv+ℤ : (m : ℤ) → isEquiv (m +_) isEquiv+ℤ = subst (λ _+_ → (m : ℤ) → isEquiv (m +_)) addℤ≡+ℤ isEquivAddℤ _*_ : ℤ → ℤ → ℤ m * n = signed (sign m *S sign n) (abs m ℕ.* abs n) private *-abs : ∀ m n → abs (m * n) ≡ abs m ℕ.* abs n *-abs m n = refl -- Natural number and negative integer literals for ℤ open import Cubical.Data.Nat.Literals public instance fromNatℤ : HasFromNat ℤ fromNatℤ = record { Constraint = λ _ → Unit ; fromNat = λ n → pos n } instance fromNegℤ : HasFromNeg ℤ fromNegℤ = record { Constraint = λ _ → Unit ; fromNeg = λ n → neg n }
25.166667
87
0.619573
a17883b1c7626a1c67463ef1797291101b226f76
4,137
agda
Agda
src/MultiSorted/AlgebraicTheory.agda
cilinder/formaltt
0a9d25e6e3965913d9b49a47c88cdfb94b55ffeb
[ "MIT" ]
21
2021-02-16T14:07:06.000Z
2021-11-19T15:50:08.000Z
src/MultiSorted/AlgebraicTheory.agda
andrejbauer/formaltt
2aaf850bb1a262681c5a232cdefae312f921b9d4
[ "MIT" ]
1
2021-04-30T14:18:25.000Z
2021-05-14T16:15:17.000Z
src/MultiSorted/AlgebraicTheory.agda
andrejbauer/formaltt
2aaf850bb1a262681c5a232cdefae312f921b9d4
[ "MIT" ]
6
2021-02-16T13:43:07.000Z
2021-05-24T02:51:43.000Z
open import Agda.Primitive using (lzero; lsuc; _⊔_) open import Relation.Binary using (Setoid) import MultiSorted.Context as Context module MultiSorted.AlgebraicTheory where -- an algebraic signature record Signature {𝓈 ℴ} : Set (lsuc (𝓈 ⊔ ℴ)) where field sort : Set 𝓈 -- sorts oper : Set ℴ -- operations open Context sort public -- Arity and arguments Arity : Set 𝓈 Arity = Context field oper-arity : oper → Arity -- the arity of an operation (with the sorts of the arguments) oper-sort : oper → sort -- the sort of an operation arg : Arity → Set arg = var arg-sort : ∀ (f : oper) → arg (oper-arity f) → sort arg-sort f = sort-of (oper-arity f) -- terms in a context of a given sort data Term (Γ : Context) : ∀ (A : sort) → Set (lsuc ℴ) where tm-var : ∀ (x : var Γ) → Term Γ (sort-of Γ x) tm-oper : ∀ (f : oper) → (∀ (i : arg (oper-arity f)) → Term Γ (arg-sort f i)) → Term Γ (oper-sort f) -- Substitutions (definitions - some useful properties are in another file) _⇒s_ : ∀ (Γ Δ : Context) → Set (lsuc ℴ) Γ ⇒s Δ = ∀ (x : var Δ) → Term Γ (sort-of Δ x) infix 4 _⇒s_ -- identity substitution id-s : ∀ {Γ : Context} → Γ ⇒s Γ id-s = tm-var -- the action of a substitution on a term (contravariant) _[_]s : ∀ {Γ Δ : Context} {A : sort} → Term Δ A → Γ ⇒s Δ → Term Γ A (tm-var x) [ σ ]s = σ x (tm-oper f ts) [ σ ]s = tm-oper f (λ i → ts i [ σ ]s) infixr 6 _[_]s -- composition of substitutions _∘s_ : ∀ {Γ Δ Θ : Context} → Δ ⇒s Θ → Γ ⇒s Δ → Γ ⇒s Θ (σ ∘s ρ) x = σ x [ ρ ]s infixl 7 _∘s_ -- Equations record Equation {s o} (Σ : Signature {s} {o} ) : Set (lsuc (s ⊔ o)) where constructor make-eq field eq-ctx : Signature.Context Σ eq-sort : Signature.sort Σ eq-lhs : Signature.Term Σ eq-ctx eq-sort eq-rhs : Signature.Term Σ eq-ctx eq-sort infix 5 make-eq syntax make-eq Γ A s t = Γ ∥ s ≈ t ⦂ A -- Theory -- an equational theory is a family of axioms over a given sort record Theory ℓ {𝓈 ℴ} (Σ : Signature {𝓈} {ℴ}) : Set (lsuc (ℓ ⊔ 𝓈 ⊔ ℴ)) where open Signature Σ public field ax : Set ℓ -- the axioms ax-eq : ax → Equation Σ ax-ctx : ax → Context ax-ctx ε = Equation.eq-ctx (ax-eq ε) ax-sort : ax → sort ax-sort ε = Equation.eq-sort (ax-eq ε) ax-lhs : ∀ (ε : ax) → Term (ax-ctx ε) (ax-sort ε) ax-lhs ε = Equation.eq-lhs (ax-eq ε) ax-rhs : ∀ (ε : ax) → Term (ax-ctx ε) (ax-sort ε) ax-rhs ε = Equation.eq-rhs (ax-eq ε) -- equality of terms infix 4 ⊢_ data ⊢_ : Equation Σ → Set (lsuc (ℓ ⊔ 𝓈 ⊔ ℴ)) where -- general rules eq-refl : ∀ {Γ A} {t : Term Γ A} → ⊢ Γ ∥ t ≈ t ⦂ A eq-symm : ∀ {Γ A} {s t : Term Γ A} → ⊢ Γ ∥ s ≈ t ⦂ A → ⊢ Γ ∥ t ≈ s ⦂ A eq-tran : ∀ {Γ A} {s t u : Term Γ A} → ⊢ Γ ∥ s ≈ t ⦂ A → ⊢ Γ ∥ t ≈ u ⦂ A → ⊢ Γ ∥ s ≈ u ⦂ A -- congruence rule eq-congr : ∀ {Γ} {f : oper} {xs ys : ∀ (i : arg (oper-arity f)) → Term Γ (sort-of (oper-arity f) i)} → (∀ i → ⊢ Γ ∥ (xs i) ≈ (ys i) ⦂ (sort-of (oper-arity f) i)) → ⊢ Γ ∥ (tm-oper f xs) ≈ (tm-oper f ys) ⦂ (oper-sort f) -- equational axiom eq-axiom : ∀ (ε : ax) {Γ : Context} (σ : Γ ⇒s ax-ctx ε) → ⊢ Γ ∥ (ax-lhs ε [ σ ]s) ≈ (ax-rhs ε [ σ ]s) ⦂ (ax-sort ε) -- the action of the identity substitution is the identity id-action : ∀ {Γ : Context} {A} {a : Term Γ A} → (⊢ Γ ∥ a ≈ (a [ id-s ]s) ⦂ A) id-action {a = tm-var a} = eq-refl id-action {a = tm-oper f x} = eq-congr (λ i → id-action {a = x i}) eq-axiom-id : ∀ (ε : ax) → ⊢ (ax-ctx ε ∥ ax-lhs ε ≈ ax-rhs ε ⦂ (ax-sort ε)) eq-axiom-id ε = eq-tran id-action (eq-tran (eq-axiom ε id-s) (eq-symm id-action)) eq-setoid : ∀ (Γ : Context) (A : sort) → Setoid (lsuc ℴ) (lsuc (ℓ ⊔ ℴ ⊔ 𝓈)) eq-setoid Γ A = record { Carrier = Term Γ A ; _≈_ = λ s t → (⊢ Γ ∥ s ≈ t ⦂ A) ; isEquivalence = record { refl = eq-refl ; sym = eq-symm ; trans = eq-tran } }
33.096
131
0.519942
413af7f062c43503a6e90c17366d2a95f0b5bec7
5,067
agda
Agda
part1/isomorphism/Isomorphism.agda
akiomik/plfa-solutions
df7722b88a9b3dfde320a690b78c4c1ef8c7c547
[ "Apache-2.0" ]
1
2020-07-07T09:42:22.000Z
2020-07-07T09:42:22.000Z
part1/isomorphism/Isomorphism.agda
akiomik/plfa-solutions
df7722b88a9b3dfde320a690b78c4c1ef8c7c547
[ "Apache-2.0" ]
null
null
null
part1/isomorphism/Isomorphism.agda
akiomik/plfa-solutions
df7722b88a9b3dfde320a690b78c4c1ef8c7c547
[ "Apache-2.0" ]
null
null
null
module Isomorphism where -- Imports import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl; cong; cong-app) open Eq.≡-Reasoning open import Data.Nat using (ℕ; zero; suc; _+_) open import Data.Nat.Properties using (+-comm) -- Function composition (関数の合成) _∘_ : ∀ {A B C : Set} → (B → C) → (A → B) → (A → C) (g ∘ f) x = g (f x) _∘′_ : ∀ {A B C : Set} → (B → C) → (A → B) → (A → C) g ∘′ f = λ x → g (f x) -- Extensionality postulate extensionality : ∀ {A B : Set} {f g : A → B} → (∀ (x : A) → f x ≡ g x) ----------------------- → f ≡ g _+′_ : ℕ → ℕ → ℕ m +′ zero = m m +′ suc n = suc (m +′ n) same-app : ∀ (m n : ℕ) → m +′ n ≡ m + n same-app m n rewrite +-comm m n = helper m n where helper : ∀ (m n : ℕ) → m +′ n ≡ n + m helper m zero = refl helper m (suc n) = cong suc (helper m n) same : _+′_ ≡ _+_ same = extensionality (λ m → extensionality (λ n → same-app m n)) postulate ∀-extensionality : ∀ {A : Set} {B : A → Set} {f g : ∀(x : A) → B x} → (∀ (x : A) → f x ≡ g x) ----------------------- → f ≡ g -- Isomorphism (同型) infix 0 _≃_ record _≃_ (A B : Set) : Set where field to : A → B from : B → A from∘to : ∀ (x : A) → from (to x) ≡ x to∘from : ∀ (y : B) → to (from y) ≡ y open _≃_ data _≃′_ (A B : Set): Set where mk-≃′ : ∀ (to : A → B) → ∀ (from : B → A) → ∀ (from∘to : (∀ (x : A) → from (to x) ≡ x)) → ∀ (to∘from : (∀ (y : B) → to (from y) ≡ y)) → A ≃′ B to′ : ∀ {A B : Set} → (A ≃′ B) → (A → B) to′ (mk-≃′ f g g∘f f∘g) = f from′ : ∀ {A B : Set} → (A ≃′ B) → (B → A) from′ (mk-≃′ f g g∘f f∘g) = g from∘to′ : ∀ {A B : Set} → (A≃B : A ≃′ B) → (∀ (x : A) → from′ A≃B (to′ A≃B x) ≡ x) from∘to′ (mk-≃′ f g g∘f f∘g) = g∘f to∘from′ : ∀ {A B : Set} → (A≃B : A ≃′ B) → (∀ (y : B) → to′ A≃B (from′ A≃B y) ≡ y) to∘from′ (mk-≃′ f g g∘f f∘g) = f∘g -- Isomorphism is an equivalence ≃-refl : ∀ {A : Set} ----- → A ≃ A ≃-refl = record { to = λ{x → x} ; from = λ{y → y} ; from∘to = λ{x → refl} ; to∘from = λ{y → refl} } ≃-sym : ∀ {A B : Set} → A ≃ B ----- → B ≃ A ≃-sym A≃B = record { to = from A≃B ; from = to A≃B ; from∘to = to∘from A≃B ; to∘from = from∘to A≃B } ≃-trans : ∀ {A B C : Set} → A ≃ B → B ≃ C ----- → A ≃ C ≃-trans A≃B B≃C = record { to = to B≃C ∘ to A≃B ; from = from A≃B ∘ from B≃C ; from∘to = λ{x → begin (from A≃B ∘ from B≃C) ((to B≃C ∘ to A≃B) x) ≡⟨⟩ from A≃B (from B≃C (to B≃C (to A≃B x))) ≡⟨ cong (from A≃B) (from∘to B≃C (to A≃B x)) ⟩ from A≃B (to A≃B x) ≡⟨ from∘to A≃B x ⟩ x ∎} ; to∘from = λ{y → begin (to B≃C ∘ to A≃B) ((from A≃B ∘ from B≃C) y) ≡⟨⟩ to B≃C (to A≃B (from A≃B (from B≃C y))) ≡⟨ cong (to B≃C) (to∘from A≃B (from B≃C y)) ⟩ to B≃C (from B≃C y) ≡⟨ to∘from B≃C y ⟩ y ∎} } -- Equational reasoning for isomorphism module ≃-Reasoning where infix 1 ≃-begin_ infixr 2 _≃⟨_⟩_ infix 3 _≃-∎ ≃-begin_ : ∀ {A B : Set} → A ≃ B ----- → A ≃ B ≃-begin A≃B = A≃B _≃⟨_⟩_ : ∀ (A : Set) {B C : Set} → A ≃ B → B ≃ C ----- → A ≃ C A ≃⟨ A≃B ⟩ B≃C = ≃-trans A≃B B≃C _≃-∎ : ∀ (A : Set) ----- → A ≃ A A ≃-∎ = ≃-refl open ≃-Reasoning -- Embedding (埋め込み) infix 0 _≲_ record _≲_ (A B : Set) : Set where field to : A → B from : B → A from∘to : ∀ (x : A) → from (to x) ≡ x open _≲_ ≲-refl : ∀ {A : Set} → A ≲ A ≲-refl = record { to = λ{x → x} ; from = λ{y → y} ; from∘to = λ{x → refl} } ≲-trans : ∀ {A B C : Set} → A ≲ B → B ≲ C → A ≲ C ≲-trans A≲B B≲C = record { to = λ{x → to B≲C (to A≲B x)} ; from = λ{y → from A≲B (from B≲C y)} ; from∘to = λ{x → begin from A≲B (from B≲C (to B≲C (to A≲B x))) ≡⟨ cong (from A≲B) (from∘to B≲C (to A≲B x)) ⟩ from A≲B (to A≲B x) ≡⟨ from∘to A≲B x ⟩ x ∎} } ≲-antisym : ∀ {A B : Set} → (A≲B : A ≲ B) → (B≲A : B ≲ A) → (to A≲B ≡ from B≲A) → (from A≲B ≡ to B≲A) ------------------- → A ≃ B ≲-antisym A≲B B≲A to≡from from≡to = record { to = to A≲B ; from = from A≲B ; from∘to = from∘to A≲B ; to∘from = λ{y → begin to A≲B (from A≲B y) ≡⟨ cong (to A≲B) (cong-app from≡to y) ⟩ to A≲B (to B≲A y) ≡⟨ cong-app to≡from (to B≲A y) ⟩ from B≲A (to B≲A y) ≡⟨ from∘to B≲A y ⟩ y ∎} } -- Equational reasoning for embedding module ≲-Reasoning where infix 1 ≲-begin_ infixr 2 _≲⟨_⟩_ infix 3 _≲-∎ ≲-begin_ : ∀ {A B : Set} → A ≲ B ----- → A ≲ B ≲-begin A≲B = A≲B _≲⟨_⟩_ : ∀ (A : Set) {B C : Set} → A ≲ B → B ≲ C ----- → A ≲ C A ≲⟨ A≲B ⟩ B≲C = ≲-trans A≲B B≲C _≲-∎ : ∀ (A : Set) ----- → A ≲ A A ≲-∎ = ≲-refl open ≲-Reasoning
20.681633
83
0.397474
3d7f7d61026b6666e15eb94fa57f7a988a00d2b9
3,914
agda
Agda
Structure/Operator/Monoid/Invertible/Proofs.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
Structure/Operator/Monoid/Invertible/Proofs.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
Structure/Operator/Monoid/Invertible/Proofs.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
module Structure.Operator.Monoid.Invertible.Proofs where import Data.Tuple as Tuple import Lvl open import Logic.Propositional open import Logic.Predicate open import Structure.Operator open import Structure.Operator.Monoid open import Structure.Operator.Monoid.Invertible open import Structure.Operator.Properties hiding (InverseOperatorₗ ; InverseOperatorᵣ) open import Structure.Relator.Properties open import Structure.Setoid open import Syntax.Transitivity open import Type private variable ℓ ℓₗ ℓₑ : Lvl.Level private variable T : Type{ℓ} private variable _▫_ : T → T → T private variable _⨞_ : T → T → Type{ℓₗ} module _ ⦃ equiv : Equiv{ℓₑ}(T) ⦄ ⦃ monoid : Monoid{T = T}(_▫_) ⦄ ⦃ invRel : InverseRelationᵣ(_▫_){ℓₗ}(_⨞_) ⦄ where open Monoid(monoid) using (id) instance inverseRelationᵣ-reflexivity : Reflexivity(_⨞_) Reflexivity.proof inverseRelationᵣ-reflexivity = [↔]-to-[←] (InverseRelationᵣ.proof invRel) ([∃]-intro id ⦃ identityᵣ(_▫_)(id) ⦄) instance inverseRelationᵣ-transitivity : Transitivity(_⨞_) Transitivity.proof inverseRelationᵣ-transitivity xy yz with [∃]-intro a ⦃ pa ⦄ ← [↔]-to-[→] (InverseRelationᵣ.proof invRel) xy with [∃]-intro b ⦃ pb ⦄ ← [↔]-to-[→] (InverseRelationᵣ.proof invRel) yz = [↔]-to-[←] (InverseRelationᵣ.proof invRel) ([∃]-intro (a ▫ b) ⦃ symmetry(_≡_) (associativity(_▫_)) 🝖 congruence₂ₗ(_▫_)(b) pa 🝖 pb ⦄) inverseRelationᵣ-with-opᵣ : ∀{a x y} → (x ⨞ y) → ((a ▫ x) ⨞ (a ▫ y)) inverseRelationᵣ-with-opᵣ {a}{x}{y} xy with [∃]-intro z ⦃ xzy ⦄ ← [↔]-to-[→] (InverseRelationᵣ.proof invRel) xy = [↔]-to-[←] (InverseRelationᵣ.proof invRel) ([∃]-intro z ⦃ associativity(_▫_) 🝖 congruence₂ᵣ(_▫_)(a) xzy ⦄) inverseRelationᵣ-without-opᵣ : ⦃ cancₗ : Cancellationₗ(_▫_) ⦄ → ∀{a x y} → ((a ▫ x) ⨞ (a ▫ y)) → (x ⨞ y) inverseRelationᵣ-without-opᵣ {a}{x}{y} xy with [∃]-intro z ⦃ xzy ⦄ ← [↔]-to-[→] (InverseRelationᵣ.proof invRel) xy = [↔]-to-[←] (InverseRelationᵣ.proof invRel) ([∃]-intro z ⦃ cancellationₗ(_▫_) (symmetry(_≡_) (associativity(_▫_)) 🝖 xzy) ⦄) inverseRelationᵣ-of-idₗ : ∀{x} → (id ⨞ x) inverseRelationᵣ-of-idₗ {x} = [↔]-to-[←] (InverseRelationᵣ.proof invRel) ([∃]-intro x ⦃ identityₗ(_▫_)(id) ⦄) module _ {_⋄_ : (x : T) → (y : T) → . ⦃ inv : (y ⨞ x) ⦄ → T} ⦃ invOper : InverseOperatorᵣ(_▫_)(_⋄_) ⦄ where {-op-cancellationᵣ : ∀{a x y} → (a ⨞ x) → (a ⨞ y) → (a ▫ x ≡ a ▫ y) → (x ≡ y) op-cancellationᵣ {a}{x}{y} ax ay axay with [∃]-intro r ⦃ pr ⦄ ← [↔]-to-[→] (InverseRelationᵣ.proof invRel) ax with [∃]-intro s ⦃ ps ⦄ ← [↔]-to-[→] (InverseRelationᵣ.proof invRel) ay = x 🝖[ _≡_ ]-[ {!!} ] y 🝖-end-} inverseRelationᵣ-to-invertibleᵣ : ∀{x} → ⦃ x ⨞ id ⦄ → InvertibleElementᵣ(_▫_) ⦃ Monoid.identity-existenceᵣ(monoid) ⦄ (x) inverseRelationᵣ-to-invertibleᵣ {x} ⦃ xid ⦄ = [∃]-intro (id ⋄ x) ⦃ intro p ⦄ where p = (x ▫ (id ⋄ x)) 🝖[ _≡_ ]-[ congruence₂ᵣ(_▫_)(x) (InverseOperatorᵣ.proof invOper {id}{x}) ] (x ▫ [∃]-witness([↔]-to-[→] (InverseRelationᵣ.proof invRel) xid)) 🝖[ _≡_ ]-[ [∃]-proof([↔]-to-[→] (InverseRelationᵣ.proof invRel) xid) ] id 🝖-end {- TODO: Should this not be possible without cancellation? inverseOperator-self : ∀{x} → let instance _ = reflexivity(_⨞_) in (x ⋄ x ≡ id) inverseOperator-self {x} = let instance _ = reflexivity(_⨞_) {x} in (x ⋄ x) 🝖[ _≡_ ]-[ InverseOperatorᵣ.proof invOper {x}{x} ] [∃]-witness([↔]-to-[→] (InverseRelationᵣ.proof invRel) (reflexivity(_⨞_) {x})) 🝖[ _≡_ ]-[] ∃.witness(Tuple.right(InverseRelationᵣ.proof invRel) (reflexivity(_⨞_))) 🝖[ _≡_ ]-[ {!!} ] id 🝖-end -}
54.361111
148
0.573838
415776b728e896003e5b35d8eb1b124242f1c096
4,121
agda
Agda
Formalization/PredicateLogic/Minimal/NaturalDeduction.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
Formalization/PredicateLogic/Minimal/NaturalDeduction.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
Formalization/PredicateLogic/Minimal/NaturalDeduction.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
open import Formalization.PredicateLogic.Signature module Formalization.PredicateLogic.Minimal.NaturalDeduction (𝔏 : Signature) where open Signature(𝔏) open import Data.ListSized import Lvl open import Formalization.PredicateLogic.Syntax(𝔏) open import Formalization.PredicateLogic.Syntax.Substitution(𝔏) open import Functional using (_∘_ ; _∘₂_ ; swap) open import Numeral.Finite open import Numeral.Natural open import Relator.Equals.Proofs.Equiv open import Sets.PredicateSet using (PredSet ; _∈_ ; _∉_ ; _∪_ ; _∪•_ ; _∖_ ; _⊆_ ; _⊇_ ; ∅ ; [≡]-to-[⊆] ; [≡]-to-[⊇]) renaming (•_ to · ; _≡_ to _≡ₛ_) open import Type private variable ℓ : Lvl.Level private variable args vars : ℕ private variable Γ : PredSet{ℓ}(Formula(vars)) data _⊢_ {ℓ} : PredSet{ℓ}(Formula(vars)) → Formula(vars) → Type{Lvl.𝐒(ℓₚ Lvl.⊔ ℓₒ Lvl.⊔ ℓ)} where direct : (Γ ⊆ (Γ ⊢_)) [⊤]-intro : (Γ ⊢ ⊤) [∧]-intro : ∀{φ ψ} → (Γ ⊢ φ) → (Γ ⊢ ψ) → (Γ ⊢ (φ ∧ ψ)) [∧]-elimₗ : ∀{φ ψ} → (Γ ⊢ (φ ∧ ψ)) → (Γ ⊢ φ) [∧]-elimᵣ : ∀{φ ψ} → (Γ ⊢ (φ ∧ ψ)) → (Γ ⊢ ψ) [∨]-introₗ : ∀{φ ψ} → (Γ ⊢ φ) → (Γ ⊢ (φ ∨ ψ)) [∨]-introᵣ : ∀{φ ψ} → (Γ ⊢ ψ) → (Γ ⊢ (φ ∨ ψ)) [∨]-elim : ∀{φ ψ χ} → ((Γ ∪ · φ) ⊢ χ) → ((Γ ∪ · ψ) ⊢ χ) → (Γ ⊢ (φ ∨ ψ)) → (Γ ⊢ χ) [⟶]-intro : ∀{φ ψ} → ((Γ ∪ · φ) ⊢ ψ) → (Γ ⊢ (φ ⟶ ψ)) [⟶]-elim : ∀{φ ψ} → (Γ ⊢ φ) → (Γ ⊢ (φ ⟶ ψ)) → (Γ ⊢ ψ) [Ɐ]-intro : ∀{φ} → (∀{t} → (Γ ⊢ (substitute0 t φ))) → (Γ ⊢ (Ɐ φ)) [Ɐ]-elim : ∀{φ} → (Γ ⊢ (Ɐ φ)) → ∀{t} → (Γ ⊢ (substitute0 t φ)) [∃]-intro : ∀{φ}{t} → (Γ ⊢ (substitute0 t φ)) → (Γ ⊢ (∃ φ)) [∃]-elim : ∀{φ ψ} → (∀{t} → (Γ ∪ ·(substitute0 t φ)) ⊢ ψ) → (Γ ⊢ (∃ φ)) → (Γ ⊢ ψ) module _ where open import Data.Either as Either import Logic.Propositional as Meta open import Relator.Equals private variable Γ₁ Γ₂ : PredSet{ℓ}(Formula(vars)) private variable φ ψ : Formula(vars) _⊬_ : PredSet{ℓ}(Formula(vars)) → Formula(vars) → Type _⊬_ = Meta.¬_ ∘₂ (_⊢_) [⟵]-intro : ((Γ ∪ · φ) ⊢ ψ) → (Γ ⊢ (ψ ⟵ φ)) [⟵]-intro = [⟶]-intro [⟵]-elim : (Γ ⊢ φ) → (Γ ⊢ (ψ ⟵ φ)) → (Γ ⊢ ψ) [⟵]-elim = [⟶]-elim [¬]-intro : ((Γ ∪ · φ) ⊢ ⊥) → (Γ ⊢ (¬ φ)) [¬]-intro = [⟶]-intro [⟷]-intro : ∀{φ ψ} → ((Γ ∪ · ψ) ⊢ φ) → ((Γ ∪ · φ) ⊢ ψ) → (Γ ⊢ (φ ⟷ ψ)) [⟷]-intro l r = [∧]-intro ([⟶]-intro l) ([⟶]-intro r) [⟷]-elimₗ : ∀{φ ψ} → (Γ ⊢ ψ) → (Γ ⊢ (φ ⟷ ψ)) → (Γ ⊢ φ) [⟷]-elimₗ Γψ Γφψ = [⟶]-elim Γψ ([∧]-elimₗ Γφψ) [⟷]-elimᵣ : ∀{φ ψ} → (Γ ⊢ φ) → (Γ ⊢ (φ ⟷ ψ)) → (Γ ⊢ ψ) [⟷]-elimᵣ Γφ Γφψ = [⟶]-elim Γφ ([∧]-elimᵣ Γφψ) weaken-union-singleton : (Γ₁ ⊆ Γ₂) → (((Γ₁ ∪ · φ) ⊢_) ⊆ ((Γ₂ ∪ · φ) ⊢_)) weaken : (Γ₁ ⊆ Γ₂) → ((Γ₁ ⊢_) ⊆ (Γ₂ ⊢_)) weaken Γ₁Γ₂ {φ} (direct p) = direct (Γ₁Γ₂ p) weaken Γ₁Γ₂ {.⊤} [⊤]-intro = [⊤]-intro weaken Γ₁Γ₂ {.(_ ∧ _)} ([∧]-intro p q) = [∧]-intro (weaken Γ₁Γ₂ p) (weaken Γ₁Γ₂ q) weaken Γ₁Γ₂ {φ} ([∧]-elimₗ p) = [∧]-elimₗ (weaken Γ₁Γ₂ p) weaken Γ₁Γ₂ {φ} ([∧]-elimᵣ p) = [∧]-elimᵣ (weaken Γ₁Γ₂ p) weaken Γ₁Γ₂ {.(_ ∨ _)} ([∨]-introₗ p) = [∨]-introₗ (weaken Γ₁Γ₂ p) weaken Γ₁Γ₂ {.(_ ∨ _)} ([∨]-introᵣ p) = [∨]-introᵣ (weaken Γ₁Γ₂ p) weaken Γ₁Γ₂ {φ} ([∨]-elim p q r) = [∨]-elim (weaken-union-singleton Γ₁Γ₂ p) (weaken-union-singleton Γ₁Γ₂ q) (weaken Γ₁Γ₂ r) weaken Γ₁Γ₂ {.(_ ⟶ _)} ([⟶]-intro p) = [⟶]-intro (weaken-union-singleton Γ₁Γ₂ p) weaken Γ₁Γ₂ {φ} ([⟶]-elim p q) = [⟶]-elim (weaken Γ₁Γ₂ p) (weaken Γ₁Γ₂ q) weaken Γ₁Γ₂ {.(Ɐ _)} ([Ɐ]-intro p) = [Ɐ]-intro (weaken Γ₁Γ₂ p) weaken Γ₁Γ₂ {.(substitute0 _ _)} ([Ɐ]-elim p) = [Ɐ]-elim (weaken Γ₁Γ₂ p) weaken Γ₁Γ₂ {.(∃ _)} ([∃]-intro p) = [∃]-intro (weaken Γ₁Γ₂ p) weaken Γ₁Γ₂ {φ} ([∃]-elim p q) = [∃]-elim (weaken-union-singleton Γ₁Γ₂ p) (weaken Γ₁Γ₂ q) weaken-union-singleton Γ₁Γ₂ p = weaken (Either.mapLeft Γ₁Γ₂) p weaken-union : (Γ₁ ⊢_) ⊆ ((Γ₁ ∪ Γ₂) ⊢_) weaken-union = weaken Left [¬¬]-intro : (Γ ⊢ φ) → (Γ ⊢ ¬(¬ φ)) [¬¬]-intro Γφ = ([¬]-intro ([⟶]-elim (weaken-union Γφ) (direct (Right [≡]-intro)) ) )
40.401961
151
0.480466
1d91fa367834b689f0ea766eb6090e862f8469b0
649
agda
Agda
test/Succeed/RewritingRuleInParametrizedModule.agda
pthariensflame/agda
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/Succeed/RewritingRuleInParametrizedModule.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
null
null
null
test/Succeed/RewritingRuleInParametrizedModule.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
null
null
null
-- Andreas, 2015-08-27 Rewrite rules in parametrized modules are fine. -- Jesper, 2015-10-14 Semantics of rewrite rules in parametrized modules has -- changed (see issue 1652) -- Jesper, 2015-11-9 Rewrite rules in parametrized modules are now -- generalized to the top-context automatically {-# OPTIONS --rewriting #-} open import Common.Nat open import Common.Equality {-# BUILTIN REWRITE _≡_ #-} module _ (y z : Nat) where assoc+ : ∀ x → (x + y) + z ≡ x + (y + z) assoc+ zero = refl assoc+ (suc x) rewrite assoc+ x = refl {-# REWRITE assoc+ #-} test : ∀{x y} → (x + 0) + y ≡ x + y test = refl
27.041667
76
0.616333