hexsha
stringlengths
40
40
size
int64
3
1.05M
ext
stringclasses
163 values
lang
stringclasses
53 values
max_stars_repo_path
stringlengths
3
945
max_stars_repo_name
stringlengths
4
112
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
float64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
945
max_issues_repo_name
stringlengths
4
113
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
float64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
945
max_forks_repo_name
stringlengths
4
113
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
float64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.05M
avg_line_length
float64
1
966k
max_line_length
int64
1
977k
alphanum_fraction
float64
0
1
0ba399540897dcbde387e3ca1b1d243171286248
730
agda
Agda
test/Compiler/simple/BuiltinInt.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Compiler/simple/BuiltinInt.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Compiler/simple/BuiltinInt.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module _ where open import Common.Prelude renaming (_+_ to _+N_) open import Common.Integer diff : Nat → Nat → Integer diff a zero = pos a diff zero (suc b) = negsuc b diff (suc a) (suc b) = diff a b _+_ : Integer → Integer → Integer pos a + pos b = pos (a +N b) pos a + negsuc b = diff a (suc b) negsuc a + pos b = diff b (suc a) negsuc a + negsuc b = negsuc (suc a +N b) printInt : Integer → IO Unit printInt n = putStrLn (intToString n) main : IO Unit main = printInt (pos 42 + pos 58) ,, printInt (pos 42 + negsuc 141) ,, printInt (pos 42 + negsuc 31) ,, printInt (negsuc 42 + pos 143) ,, printInt (negsuc 42 + pos 33) ,, printInt (negsuc 42 + negsuc 56)
26.071429
49
0.59589
5949acd28b8c81e2bb167c3e6d585f9a53914789
7,642
agda
Agda
weakening.agda
hazelgrove/hazel-palette-agda
c3225acc3c94c56376c6842b82b8b5d76912df2a
[ "MIT" ]
4
2020-10-04T06:45:06.000Z
2021-12-19T15:38:31.000Z
weakening.agda
hazelgrove/hazel-palette-agda
c3225acc3c94c56376c6842b82b8b5d76912df2a
[ "MIT" ]
9
2020-09-30T20:27:56.000Z
2020-10-20T20:44:13.000Z
weakening.agda
hazelgrove/hazelnut-livelits-agda
c3225acc3c94c56376c6842b82b8b5d76912df2a
[ "MIT" ]
null
null
null
open import Nat open import Prelude open import core open import contexts open import lemmas-disjointness open import exchange open import lemmas-freshG -- this module contains all the proofs of different weakening structural -- properties that we use for the hypothetical judgements module weakening where mutual weaken-subst-Δ : ∀{Δ1 Δ2 Γ σ Γ'} → Δ1 ## Δ2 → Δ1 , Γ ⊢ σ :s: Γ' → (Δ1 ∪ Δ2) , Γ ⊢ σ :s: Γ' weaken-subst-Δ disj (STAId x) = STAId x weaken-subst-Δ disj (STASubst subst x) = STASubst (weaken-subst-Δ disj subst) (weaken-ta-Δ1 disj x) weaken-ta-Δ1 : ∀{Δ1 Δ2 Γ d τ} → Δ1 ## Δ2 → Δ1 , Γ ⊢ d :: τ → (Δ1 ∪ Δ2) , Γ ⊢ d :: τ weaken-ta-Δ1 disj TAConst = TAConst weaken-ta-Δ1 disj (TAVar x₁) = TAVar x₁ weaken-ta-Δ1 disj (TALam x₁ wt) = TALam x₁ (weaken-ta-Δ1 disj wt) weaken-ta-Δ1 disj (TAAp wt wt₁) = TAAp (weaken-ta-Δ1 disj wt) (weaken-ta-Δ1 disj wt₁) weaken-ta-Δ1 {Δ1} {Δ2} {Γ} disj (TAEHole {u = u} {Γ' = Γ'} x x₁) = TAEHole (x∈∪l Δ1 Δ2 u _ x ) (weaken-subst-Δ disj x₁) weaken-ta-Δ1 {Δ1} {Δ2} {Γ} disj (TANEHole {Γ' = Γ'} {u = u} x wt x₁) = TANEHole (x∈∪l Δ1 Δ2 u _ x) (weaken-ta-Δ1 disj wt) (weaken-subst-Δ disj x₁) weaken-ta-Δ1 disj (TACast wt x) = TACast (weaken-ta-Δ1 disj wt) x weaken-ta-Δ1 disj (TAFailedCast wt x x₁ x₂) = TAFailedCast (weaken-ta-Δ1 disj wt) x x₁ x₂ weaken-ta-Δ1 disj (TAFst wt) = TAFst (weaken-ta-Δ1 disj wt) weaken-ta-Δ1 disj (TASnd wt) = TASnd (weaken-ta-Δ1 disj wt) weaken-ta-Δ1 disj (TAPair wt wt₁) = TAPair (weaken-ta-Δ1 disj wt) (weaken-ta-Δ1 disj wt₁) -- this is a little bit of a time saver. since ∪ is commutative on -- disjoint contexts, and we need that premise anyway in both positions, -- there's no real reason to repeat the inductive argument above weaken-ta-Δ2 : ∀{Δ1 Δ2 Γ d τ} → Δ1 ## Δ2 → Δ2 , Γ ⊢ d :: τ → (Δ1 ∪ Δ2) , Γ ⊢ d :: τ weaken-ta-Δ2 {Δ1} {Δ2} {Γ} {d} {τ} disj D = tr (λ q → q , Γ ⊢ d :: τ) (∪comm Δ2 Δ1 (##-comm disj)) (weaken-ta-Δ1 (##-comm disj) D) -- note that these statements are somewhat stronger than usual. this is -- because we don't have implcit α-conversion. this reifies the -- often-silent on paper assumption that if you collide with a bound -- variable you can just α-convert it away and not worry. -- used in both cases below, so factored into a lemma to save repeated code lem-reassoc : {A : Set} {Γ Γ' : A ctx} {x : Nat} {τ : A} → (x # Γ') → (Γ ,, (x , τ)) ∪ Γ' == (Γ ∪ Γ') ,, (x , τ) lem-reassoc {A} {Γ} {Γ'} {x} {τ} apt with lem-apart-sing-disj apt ... | disj = (∪assoc Γ (■ (x , τ)) Γ' disj) · (ap1 (λ qq → Γ ∪ qq) (∪comm (■ (x , τ)) (Γ') disj) · ! (∪assoc Γ Γ' (■ (x , τ)) (##-comm disj))) -- first we prove a general form of weakening, that you can add any -- context Γ as long as it's fresh with respect to e mutual weaken-synth-∪ : ∀{e τ Γ Γ'} → freshΓ Γ' e → Γ ⊢ e => τ → (Γ ∪ Γ') ⊢ e => τ weaken-synth-∪ frsh SConst = SConst weaken-synth-∪ frsh (SAsc x) = SAsc (weaken-ana-∪ (freshΓ-asc frsh) x) weaken-synth-∪ {Γ = Γ} {Γ' = Γ'} frsh (SVar {x = x} x₁) = SVar (x∈∪l Γ Γ' x _ x₁) weaken-synth-∪ frsh (SAp x wt x₁ x₂) = SAp x (weaken-synth-∪ (freshΓ-ap1 frsh) wt) x₁ (weaken-ana-∪ (freshΓ-ap2 frsh) x₂) weaken-synth-∪ frsh SEHole = SEHole weaken-synth-∪ frsh (SNEHole x wt) = SNEHole x (weaken-synth-∪ (freshΓ-nehole frsh) wt) weaken-synth-∪ {Γ = Γ} {Γ' = Γ'} frsh (SLam {e = e} {τ2 = τ2} {x = x} x₁ wt) with ctxindirect Γ' x ... | Inl qq = abort (lem-fresh-lam2 (frsh x qq)) ... | Inr qq = SLam (apart-parts Γ Γ' x x₁ qq) (tr (λ qq → qq ⊢ e => τ2) (lem-reassoc {Γ = Γ} qq) (weaken-synth-∪ (freshΓ-lam2 frsh) wt)) weaken-synth-∪ frsh (SFst wt x) = SFst (weaken-synth-∪ (freshΓ-fst frsh) wt) x weaken-synth-∪ frsh (SSnd wt x) = SSnd (weaken-synth-∪ (freshΓ-snd frsh) wt) x weaken-synth-∪ frsh (SPair hd wt wt₁) = SPair hd (weaken-synth-∪ (freshΓ-pair1 frsh) wt) (weaken-synth-∪ (freshΓ-pair2 frsh) wt₁) weaken-ana-∪ : ∀{e τ Γ Γ'} → freshΓ Γ' e → Γ ⊢ e <= τ → (Γ ∪ Γ') ⊢ e <= τ weaken-ana-∪ frsh (ASubsume x x₁) = ASubsume (weaken-synth-∪ frsh x) x₁ weaken-ana-∪ {Γ = Γ} {Γ' = Γ'} frsh (ALam {e = e} {τ2 = τ2} {x = x} x₁ x₂ wt) with ctxindirect Γ' x ... | Inl qq = abort (lem-fresh-lam1 (frsh x qq)) ... | Inr qq = ALam (apart-parts Γ Γ' x x₁ qq) x₂ (tr (λ qq → qq ⊢ e <= τ2) (lem-reassoc {Γ = Γ} qq) (weaken-ana-∪ (freshΓ-lam1 frsh) wt)) -- it follows from this that if the term is closed, you can weaken with -- any context that's fresh in e weaken-synth-closed : ∀{e τ Γ} → freshΓ Γ e → ∅ ⊢ e => τ → Γ ⊢ e => τ weaken-synth-closed {e} {τ} {Γ} f wt = tr (λ qq → qq ⊢ e => τ) ∅∪1 (weaken-synth-∪ f wt) weaken-ana-closed : ∀{e τ Γ} → freshΓ Γ e → ∅ ⊢ e <= τ → Γ ⊢ e <= τ weaken-ana-closed {e} {τ} {Γ} f wt = tr (λ qq → qq ⊢ e <= τ) ∅∪1 (weaken-ana-∪ f wt) -- the very structural forms also follow from the union weakening, since -- ,, is defined by ∪ weaken-synth : ∀{ x Γ e τ τ'} → freshe x e → Γ ⊢ e => τ → (Γ ,, (x , τ')) ⊢ e => τ weaken-synth f wt = weaken-synth-∪ (fresh-freshΓ f) wt weaken-ana : ∀{x Γ e τ τ'} → freshe x e → Γ ⊢ e <= τ → (Γ ,, (x , τ')) ⊢ e <= τ weaken-ana f wt = weaken-ana-∪ (fresh-freshΓ f) wt mutual weaken-subst-Γ : ∀{ x Γ Δ σ Γ' τ} → envfresh x σ → Δ , Γ ⊢ σ :s: Γ' → Δ , (Γ ,, (x , τ)) ⊢ σ :s: Γ' weaken-subst-Γ {Γ = Γ} (EFId x₁) (STAId x₂) = STAId (λ x τ x₃ → x∈∪l Γ _ x τ (x₂ x τ x₃) ) weaken-subst-Γ {x = x} {Γ = Γ} (EFSubst x₁ efrsh x₂) (STASubst {y = y} {τ = τ'} subst x₃) = STASubst (exchange-subst-Γ {Γ = Γ} (flip x₂) (weaken-subst-Γ {Γ = Γ ,, (y , τ')} efrsh subst)) (weaken-ta x₁ x₃) weaken-ta : ∀{x Γ Δ d τ τ'} → fresh x d → Δ , Γ ⊢ d :: τ → Δ , Γ ,, (x , τ') ⊢ d :: τ weaken-ta _ TAConst = TAConst weaken-ta {x} {Γ} {_} {_} {τ} {τ'} (FVar x₂) (TAVar x₃) = TAVar (x∈∪l Γ (■ (x , τ')) _ _ x₃) weaken-ta {x = x} frsh (TALam {x = y} x₂ wt) with natEQ x y weaken-ta (FLam x₁ x₂) (TALam x₃ wt) | Inl refl = abort (x₁ refl) weaken-ta {Γ = Γ} {τ' = τ'} (FLam x₁ x₃) (TALam {x = y} x₄ wt) | Inr x₂ = TALam (apart-extend1 Γ (flip x₁) x₄) (exchange-ta-Γ {Γ = Γ} (flip x₁) (weaken-ta x₃ wt)) weaken-ta (FAp frsh frsh₁) (TAAp wt wt₁) = TAAp (weaken-ta frsh wt) (weaken-ta frsh₁ wt₁) weaken-ta (FHole x₁) (TAEHole x₂ x₃) = TAEHole x₂ (weaken-subst-Γ x₁ x₃) weaken-ta (FNEHole x₁ frsh) (TANEHole x₂ wt x₃) = TANEHole x₂ (weaken-ta frsh wt) (weaken-subst-Γ x₁ x₃) weaken-ta (FCast frsh) (TACast wt x₁) = TACast (weaken-ta frsh wt) x₁ weaken-ta (FFailedCast frsh) (TAFailedCast wt x₁ x₂ x₃) = TAFailedCast (weaken-ta frsh wt) x₁ x₂ x₃ weaken-ta (FFst frsh) (TAFst wt) = TAFst (weaken-ta frsh wt) weaken-ta (FSnd frsh) (TASnd wt) = TASnd (weaken-ta frsh wt) weaken-ta (FPair frsh frsh₁) (TAPair wt wt₁) = TAPair (weaken-ta frsh wt) (weaken-ta frsh₁ wt₁)
56.607407
166
0.528527
4a48984c7523257967d806e0ce874e7f5c18adbb
6,010
agda
Agda
BasicIS4/Semantics/TarskiOvergluedDyadicHilbert.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
29
2016-07-03T18:51:56.000Z
2022-01-01T10:29:18.000Z
BasicIS4/Semantics/TarskiOvergluedDyadicHilbert.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
1
2018-06-10T09:11:22.000Z
2018-06-10T09:11:22.000Z
BasicIS4/Semantics/TarskiOvergluedDyadicHilbert.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
null
null
null
-- Basic intuitionistic modal logic S4, without ∨, ⊥, or ◇. -- Tarski-style semantics with context pairs as concrete worlds, and glueing for α, ▻, and □. -- Hilbert-style syntax. module BasicIS4.Semantics.TarskiOvergluedDyadicHilbert where open import BasicIS4.Syntax.Common public open import Common.Semantics public -- Intuitionistic Tarski models. record Model : Set₁ where infix 3 _⊩ᵅ_ _[⊢]_ field -- Forcing for atomic propositions; monotonic. _⊩ᵅ_ : Cx² Ty Ty → Atom → Set mono²⊩ᵅ : ∀ {P Π Π′} → Π ⊆² Π′ → Π ⊩ᵅ P → Π′ ⊩ᵅ P -- Hilbert-style syntax representation; monotonic. _[⊢]_ : Cx² Ty Ty → Ty → Set mono²[⊢] : ∀ {A Π Π′} → Π ⊆² Π′ → Π [⊢] A → Π′ [⊢] A [var] : ∀ {A Γ Δ} → A ∈ Γ → Γ ⁏ Δ [⊢] A [app] : ∀ {A B Γ Δ} → Γ ⁏ Δ [⊢] A ▻ B → Γ ⁏ Δ [⊢] A → Γ ⁏ Δ [⊢] B [ci] : ∀ {A Γ Δ} → Γ ⁏ Δ [⊢] A ▻ A [ck] : ∀ {A B Γ Δ} → Γ ⁏ Δ [⊢] A ▻ B ▻ A [cs] : ∀ {A B C Γ Δ} → Γ ⁏ Δ [⊢] (A ▻ B ▻ C) ▻ (A ▻ B) ▻ A ▻ C [mvar] : ∀ {A Γ Δ} → A ∈ Δ → Γ ⁏ Δ [⊢] A [box] : ∀ {A Γ Δ} → ∅ ⁏ Δ [⊢] A → Γ ⁏ Δ [⊢] □ A [cdist] : ∀ {A B Γ Δ} → Γ ⁏ Δ [⊢] □ (A ▻ B) ▻ □ A ▻ □ B [cup] : ∀ {A Γ Δ} → Γ ⁏ Δ [⊢] □ A ▻ □ □ A [cdown] : ∀ {A Γ Δ} → Γ ⁏ Δ [⊢] □ A ▻ A [cpair] : ∀ {A B Γ Δ} → Γ ⁏ Δ [⊢] A ▻ B ▻ A ∧ B [cfst] : ∀ {A B Γ Δ} → Γ ⁏ Δ [⊢] A ∧ B ▻ A [csnd] : ∀ {A B Γ Δ} → Γ ⁏ Δ [⊢] A ∧ B ▻ B [unit] : ∀ {Γ Δ} → Γ ⁏ Δ [⊢] ⊤ -- NOTE: [mlam] is necessary for [mmulticut], which is necessary for eval. [mlam] : ∀ {A B Γ Δ} → Γ ⁏ Δ , A [⊢] B → Γ ⁏ Δ [⊢] □ A ▻ B infix 3 _[⊢]⋆_ _[⊢]⋆_ : Cx² Ty Ty → Cx Ty → Set Π [⊢]⋆ ∅ = 𝟙 Π [⊢]⋆ Ξ , A = Π [⊢]⋆ Ξ × Π [⊢] A open Model {{…}} public -- Forcing in a particular model. module _ {{_ : Model}} where infix 3 _⊩_ _⊩_ : Cx² Ty Ty → Ty → Set Π ⊩ α P = Glue (Π [⊢] α P) (Π ⊩ᵅ P) Π ⊩ A ▻ B = ∀ {Π′} → Π ⊆² Π′ → Glue (Π′ [⊢] A ▻ B) (Π′ ⊩ A → Π′ ⊩ B) Π ⊩ □ A = ∀ {Π′} → Π ⊆² Π′ → Glue (Π′ [⊢] □ A) (Π′ ⊩ A) Π ⊩ A ∧ B = Π ⊩ A × Π ⊩ B Π ⊩ ⊤ = 𝟙 infix 3 _⊩⋆_ _⊩⋆_ : Cx² Ty Ty → Cx Ty → Set Π ⊩⋆ ∅ = 𝟙 Π ⊩⋆ Ξ , A = Π ⊩⋆ Ξ × Π ⊩ A -- Monotonicity with respect to context inclusion. module _ {{_ : Model}} where mono²⊩ : ∀ {A Π Π′} → Π ⊆² Π′ → Π ⊩ A → Π′ ⊩ A mono²⊩ {α P} ψ s = mono²[⊢] ψ (syn s) ⅋ mono²⊩ᵅ ψ (sem s) mono²⊩ {A ▻ B} ψ s = λ ψ′ → s (trans⊆² ψ ψ′) mono²⊩ {□ A} ψ s = λ ψ′ → s (trans⊆² ψ ψ′) mono²⊩ {A ∧ B} ψ s = mono²⊩ {A} ψ (π₁ s) , mono²⊩ {B} ψ (π₂ s) mono²⊩ {⊤} ψ s = ∙ mono²⊩⋆ : ∀ {Ξ Π Π′} → Π ⊆² Π′ → Π ⊩⋆ Ξ → Π′ ⊩⋆ Ξ mono²⊩⋆ {∅} ψ ∙ = ∙ mono²⊩⋆ {Ξ , A} ψ (ts , t) = mono²⊩⋆ ψ ts , mono²⊩ {A} ψ t -- Extraction of syntax representation in a particular model. module _ {{_ : Model}} where reifyʳ : ∀ {A Π} → Π ⊩ A → Π [⊢] A reifyʳ {α P} s = syn s reifyʳ {A ▻ B} s = syn (s refl⊆²) reifyʳ {□ A} s = syn (s refl⊆²) reifyʳ {A ∧ B} s = [app] ([app] [cpair] (reifyʳ {A} (π₁ s))) (reifyʳ {B} (π₂ s)) reifyʳ {⊤} s = [unit] reifyʳ⋆ : ∀ {Ξ Π} → Π ⊩⋆ Ξ → Π [⊢]⋆ Ξ reifyʳ⋆ {∅} ∙ = ∙ reifyʳ⋆ {Ξ , A} (ts , t) = reifyʳ⋆ ts , reifyʳ t -- Useful theorems in functional form. module _ {{_ : Model}} where [mmulticut] : ∀ {Ξ A Γ Δ} → Γ ⁏ Δ [⊢]⋆ □⋆ Ξ → Γ ⁏ Ξ [⊢] A → Γ ⁏ Δ [⊢] A [mmulticut] {∅} ∙ u = mono²[⊢] (refl⊆ , bot⊆) u [mmulticut] {Ξ , B} (ts , t) u = [app] ([mmulticut] ts ([mlam] u)) t -- Additional useful equipment. module _ {{_ : Model}} where _⟪$⟫_ : ∀ {A B Π} → Π ⊩ A ▻ B → Π ⊩ A → Π ⊩ B s ⟪$⟫ a = sem (s refl⊆²) a ⟪K⟫ : ∀ {A B Π} → Π ⊩ A → Π ⊩ B ▻ A ⟪K⟫ {A} a ψ = let a′ = mono²⊩ {A} ψ a in [app] [ck] (reifyʳ a′) ⅋ K a′ ⟪S⟫ : ∀ {A B C Π} → Π ⊩ A ▻ B ▻ C → Π ⊩ A ▻ B → Π ⊩ A → Π ⊩ C ⟪S⟫ s₁ s₂ a = (s₁ ⟪$⟫ a) ⟪$⟫ (s₂ ⟪$⟫ a) ⟪S⟫′ : ∀ {A B C Π} → Π ⊩ A ▻ B ▻ C → Π ⊩ (A ▻ B) ▻ A ▻ C ⟪S⟫′ {A} {B} {C} s₁ ψ = let s₁′ = mono²⊩ {A ▻ B ▻ C} ψ s₁ t = syn (s₁′ refl⊆²) in [app] [cs] t ⅋ λ s₂ ψ′ → let s₁″ = mono²⊩ {A ▻ B ▻ C} (trans⊆² ψ ψ′) s₁ s₂′ = mono²⊩ {A ▻ B} ψ′ s₂ t′ = syn (s₁″ refl⊆²) u = syn (s₂′ refl⊆²) in [app] ([app] [cs] t′) u ⅋ ⟪S⟫ s₁″ s₂′ _⟪D⟫_ : ∀ {A B Π} → Π ⊩ □ (A ▻ B) → Π ⊩ □ A → Π ⊩ □ B (s₁ ⟪D⟫ s₂) ψ = let t ⅋ s₁′ = s₁ ψ u ⅋ a = s₂ ψ in [app] ([app] [cdist] t) u ⅋ s₁′ ⟪$⟫ a _⟪D⟫′_ : ∀ {A B Π} → Π ⊩ □ (A ▻ B) → Π ⊩ □ A ▻ □ B _⟪D⟫′_ {A} {B} s₁ ψ = let s₁′ = mono²⊩ {□ (A ▻ B)} ψ s₁ in [app] [cdist] (reifyʳ (λ {_} ψ′ → s₁′ ψ′)) ⅋ _⟪D⟫_ s₁′ ⟪↑⟫ : ∀ {A Π} → Π ⊩ □ A → Π ⊩ □ □ A ⟪↑⟫ {A} s ψ = [app] [cup] (syn (s ψ)) ⅋ λ ψ′ → s (trans⊆² ψ ψ′) ⟪↓⟫ : ∀ {A Π} → Π ⊩ □ A → Π ⊩ A ⟪↓⟫ s = sem (s refl⊆²) _⟪,⟫′_ : ∀ {A B Π} → Π ⊩ A → Π ⊩ B ▻ A ∧ B _⟪,⟫′_ {A} a ψ = let a′ = mono²⊩ {A} ψ a in [app] [cpair] (reifyʳ a′) ⅋ _,_ a′ -- Forcing in a particular world of a particular model, for sequents. module _ {{_ : Model}} where infix 3 _⊩_⇒_ _⊩_⇒_ : Cx² Ty Ty → Cx² Ty Ty → Ty → Set Π ⊩ Γ ⁏ Δ ⇒ A = Π ⊩⋆ Γ → Π ⊩⋆ □⋆ Δ → Π ⊩ A infix 3 _⊩_⇒⋆_ _⊩_⇒⋆_ : Cx² Ty Ty → Cx² Ty Ty → Cx Ty → Set Π ⊩ Γ ⁏ Δ ⇒⋆ Ξ = Π ⊩⋆ Γ → Π ⊩⋆ □⋆ Δ → Π ⊩⋆ Ξ -- Entailment, or forcing in all worlds of all models, for sequents. infix 3 _⊨_ _⊨_ : Cx² Ty Ty → Ty → Set₁ Π ⊨ A = ∀ {{_ : Model}} {w : Cx² Ty Ty} → w ⊩ Π ⇒ A infix 3 _⊨⋆_ _⊨⋆_ : Cx² Ty Ty → Cx Ty → Set₁ Π ⊨⋆ Ξ = ∀ {{_ : Model}} {w : Cx² Ty Ty} → w ⊩ Π ⇒⋆ Ξ -- Additional useful equipment, for sequents. module _ {{_ : Model}} where lookup : ∀ {A Γ w} → A ∈ Γ → w ⊩⋆ Γ → w ⊩ A lookup top (γ , a) = a lookup (pop i) (γ , b) = lookup i γ mlookup : ∀ {A Δ w} → A ∈ Δ → w ⊩⋆ □⋆ Δ → w ⊩ A mlookup top (γ , s) = sem (s refl⊆²) mlookup (pop i) (γ , s) = mlookup i γ -- TODO: More equipment.
33.021978
93
0.403328
4d36d98f70f50eed27c9bc8012e52707d644bf75
4,756
agda
Agda
examples/vfl/Typechecker.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
examples/vfl/Typechecker.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
examples/vfl/Typechecker.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Typechecker where data Nat : Set where zero : Nat suc : Nat -> Nat {-# BUILTIN NATURAL Nat #-} _+_ : Nat -> Nat -> Nat zero + m = m suc n + m = suc (n + m) data Fin : Nat -> Set where f0 : {n : Nat} -> Fin (suc n) fs : {n : Nat} -> Fin n -> Fin (suc n) infixl 30 _::_ _++_ data Vect (A : Set) : Nat -> Set where ε : Vect A zero _::_ : {n : Nat} -> Vect A n -> A -> Vect A (suc n) fs^ : {n : Nat}(m : Nat) -> Fin n -> Fin (m + n) fs^ zero i = i fs^ (suc m) i = fs (fs^ m i) _++_ : {A : Set}{n m : Nat} -> Vect A n -> Vect A m -> Vect A (m + n) xs ++ ε = xs xs ++ (ys :: y) = (xs ++ ys) :: y data Chop {A : Set} : {n : Nat} -> Vect A n -> Fin n -> Set where chopGlue : {m n : Nat}(xs : Vect A n)(x : A)(ys : Vect A m) -> Chop (xs :: x ++ ys) (fs^ m f0) chop : {A : Set}{n : Nat}(xs : Vect A n)(i : Fin n) -> Chop xs i chop ε () chop (xs :: x) f0 = chopGlue xs x ε chop (xs :: y) (fs i) with chop xs i chop (.(xs :: x ++ ys) :: y) (fs .(fs^ m f0)) | chopGlue {m} xs x ys = chopGlue xs x (ys :: y) infixr 40 _⊃_ data Simp : Set where o : Simp _⊃_ : Simp -> Simp -> Simp infix 20 Simp-_ data Simp-_ : Simp -> Set where neqo : Simp -> Simp -> Simp- o neq⊃ : {S T : Simp} -> Simp- (S ⊃ T) neqT : {S T : Simp}(T' : Simp- T) -> Simp- (S ⊃ T) neqS : {S : Simp}{T₁ : Simp}(S' : Simp- S)(T₂ : Simp) -> Simp- (S ⊃ T₁) infixl 60 _∖_ _∖_ : (S : Simp) -> Simp- S -> Simp .o ∖ neqo S T = S ⊃ T .(_ ⊃ _) ∖ neq⊃ = o .(S ⊃ T) ∖ neqT {S}{T} T' = S ⊃ T ∖ T' .(S ⊃ _) ∖ neqS {S} S' T₂ = S ∖ S' ⊃ T₂ data SimpEq? (S : Simp) : Simp -> Set where simpSame : SimpEq? S S simpDiff : (T : Simp- S) -> SimpEq? S (S ∖ T) simpEq? : (S T : Simp) -> SimpEq? S T simpEq? o o = simpSame simpEq? o (S ⊃ T) = simpDiff (neqo S T) simpEq? (S ⊃ T) o = simpDiff neq⊃ simpEq? (S₁ ⊃ T₁) (S₂ ⊃ T₂) with simpEq? S₁ S₂ simpEq? (S ⊃ T₁) (.S ⊃ T₂) | simpSame with simpEq? T₁ T₂ simpEq? (S ⊃ T) (.S ⊃ .T) | simpSame | simpSame = simpSame simpEq? (S ⊃ T) (.S ⊃ .(T ∖ T')) | simpSame | simpDiff T' = simpDiff (neqT T') simpEq? (S ⊃ T₁) (.(S ∖ S') ⊃ T₂) | simpDiff S' = simpDiff (neqS S' T₂) data Term : Nat -> Set where var : {n : Nat} -> Fin n -> Term n app : {n : Nat} -> Term n -> Term n -> Term n lam : {n : Nat} -> Simp -> Term (suc n) -> Term n data Good : {n : Nat} -> Vect Simp n -> Simp -> Set where gVar : {n m : Nat}(Γ : Vect Simp n)(T : Simp)(Δ : Vect Simp m) -> Good (Γ :: T ++ Δ) T gApp : {n : Nat}{Γ : Vect Simp n}{S T : Simp} -> Good Γ (S ⊃ T) -> Good Γ S -> Good Γ T gLam : {n : Nat}{Γ : Vect Simp n}(S : Simp){T : Simp} -> Good (Γ :: S) T -> Good Γ (S ⊃ T) g : {n : Nat}{Γ : Vect Simp n}(T : Simp) -> Good Γ T -> Term n g T (gVar{n}{m} Γ .T Δ) = var (fs^ m f0) g T (gApp f s) = app (g _ f) (g _ s) g .(S ⊃ _) (gLam S t) = lam S (g _ t) data Bad {n : Nat}(Γ : Vect Simp n) : Set where bNonFun : Good Γ o -> Term n -> Bad Γ bMismatch : {S T : Simp}(S' : Simp- S) -> Good Γ (S ⊃ T) -> Good Γ (S ∖ S') -> Bad Γ bArg : {S T : Simp} -> Good Γ (S ⊃ T) -> Bad Γ -> Bad Γ bFun : Bad Γ -> Term n -> Bad Γ bLam : (S : Simp) -> Bad (Γ :: S) -> Bad Γ b : {n : Nat}{Γ : Vect Simp n} -> Bad Γ -> Term n b (bNonFun f s) = app (g o f) s b (bMismatch _ f s) = app (g _ f) (g _ s) b (bArg f s) = app (g _ f) (b s) b (bFun f s) = app (b f) s b (bLam S t) = lam S (b t) data TypeCheck? {n : Nat}(Γ : Vect Simp n) : Term n -> Set where good : (T : Simp)(t : Good Γ T) -> TypeCheck? Γ (g T t) bad : (t : Bad Γ) -> TypeCheck? Γ (b t) typeCheck? : {n : Nat}(Γ : Vect Simp n)(t : Term n) -> TypeCheck? Γ t typeCheck? Γ (var i) with chop Γ i typeCheck? .(Γ :: T ++ Δ) (var ._) | chopGlue Γ T Δ = good T (gVar Γ T Δ) typeCheck? Γ (app f s) with typeCheck? Γ f typeCheck? Γ (app .(g (S ⊃ T) f) s) | good (S ⊃ T) f with typeCheck? Γ s typeCheck? Γ (app .(g (S ⊃ T) f) .(g S' s)) | good (S ⊃ T) f | good S' s with simpEq? S S' typeCheck? Γ (app .(g (S ⊃ T) f) .(g S s)) | good (S ⊃ T) f | good .S s | simpSame = good T (gApp f s) typeCheck? Γ (app .(g (S ⊃ T) f) .(g (S ∖ S') s)) | good (S ⊃ T) f | good .(S ∖ S') s | simpDiff S' = bad (bMismatch S' f s) typeCheck? Γ (app .(g (S ⊃ T) f) .(b s)) | good (S ⊃ T) f | bad s = bad (bArg f s) typeCheck? Γ (app .(g o f) s) | good o f = bad (bNonFun f s) typeCheck? Γ (app .(b f) s) | bad f = bad (bFun f s) typeCheck? Γ (lam S t) with typeCheck? (Γ :: S) t typeCheck? Γ (lam S .(g T t)) | good T t = good (S ⊃ T) (gLam S t) typeCheck? Γ (lam S .(b t)) | bad t = bad (bLam S t)
34.970588
87
0.472246
29c09ffb6a1d071fff48de56e1f0144e69b23537
8,314
agda
Agda
Cubical/Foundations/Equiv/Properties.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
1
2022-03-05T00:29:41.000Z
2022-03-05T00:29:41.000Z
Cubical/Foundations/Equiv/Properties.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
Cubical/Foundations/Equiv/Properties.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
{- A couple of general facts about equivalences: - if f is an equivalence then (cong f) is an equivalence ([equivCong]) - if f is an equivalence then pre- and postcomposition with f are equivalences ([preCompEquiv], [postCompEquiv]) - if f is an equivalence then (Σ[ g ] section f g) and (Σ[ g ] retract f g) are contractible ([isContr-section], [isContr-retract]) - isHAEquiv is a proposition [isPropIsHAEquiv] (these are not in 'Equiv.agda' because they need Univalence.agda (which imports Equiv.agda)) -} {-# OPTIONS --safe #-} module Cubical.Foundations.Equiv.Properties where open import Cubical.Core.Everything open import Cubical.Data.Sigma open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Equiv open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Foundations.Univalence open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Path open import Cubical.Foundations.HLevels open import Cubical.Functions.FunExtEquiv private variable ℓ ℓ′ : Level A B C : Type ℓ isEquivInvEquiv : isEquiv (λ (e : A ≃ B) → invEquiv e) isEquivInvEquiv = isoToIsEquiv goal where open Iso goal : Iso (A ≃ B) (B ≃ A) goal .fun = invEquiv goal .inv = invEquiv goal .rightInv g = equivEq refl goal .leftInv f = equivEq refl invEquivEquiv : (A ≃ B) ≃ (B ≃ A) invEquivEquiv = _ , isEquivInvEquiv isEquivCong : {x y : A} (e : A ≃ B) → isEquiv (λ (p : x ≡ y) → cong (equivFun e) p) isEquivCong e = isoToIsEquiv (congIso (equivToIso e)) congEquiv : {x y : A} (e : A ≃ B) → (x ≡ y) ≃ (equivFun e x ≡ equivFun e y) congEquiv e = isoToEquiv (congIso (equivToIso e)) equivAdjointEquiv : (e : A ≃ B) → ∀ {a b} → (a ≡ invEq e b) ≃ (equivFun e a ≡ b) equivAdjointEquiv e = compEquiv (congEquiv e) (compPathrEquiv (secEq e _)) invEq≡→equivFun≡ : (e : A ≃ B) → ∀ {a b} → invEq e b ≡ a → equivFun e a ≡ b invEq≡→equivFun≡ e = equivFun (equivAdjointEquiv e) ∘ sym isEquivPreComp : (e : A ≃ B) → isEquiv (λ (φ : B → C) → φ ∘ equivFun e) isEquivPreComp e = snd (equiv→ (invEquiv e) (idEquiv _)) preCompEquiv : (e : A ≃ B) → (B → C) ≃ (A → C) preCompEquiv e = (λ φ → φ ∘ fst e) , isEquivPreComp e isEquivPostComp : (e : A ≃ B) → isEquiv (λ (φ : C → A) → e .fst ∘ φ) isEquivPostComp e = snd (equivΠCod (λ _ → e)) postCompEquiv : (e : A ≃ B) → (C → A) ≃ (C → B) postCompEquiv e = _ , isEquivPostComp e -- see also: equivΠCod for a dependent version of postCompEquiv hasSection : (A → B) → Type _ hasSection {A = A} {B = B} f = Σ[ g ∈ (B → A) ] section f g hasRetract : (A → B) → Type _ hasRetract {A = A} {B = B} f = Σ[ g ∈ (B → A) ] retract f g isEquiv→isContrHasSection : {f : A → B} → isEquiv f → isContr (hasSection f) fst (isEquiv→isContrHasSection isEq) = invIsEq isEq , secIsEq isEq snd (isEquiv→isContrHasSection isEq) (f , ε) i = (λ b → fst (p b i)) , (λ b → snd (p b i)) where p : ∀ b → (invIsEq isEq b , secIsEq isEq b) ≡ (f b , ε b) p b = isEq .equiv-proof b .snd (f b , ε b) isEquiv→hasSection : {f : A → B} → isEquiv f → hasSection f isEquiv→hasSection = fst ∘ isEquiv→isContrHasSection isContr-hasSection : (e : A ≃ B) → isContr (hasSection (fst e)) isContr-hasSection e = isEquiv→isContrHasSection (snd e) isEquiv→isContrHasRetract : {f : A → B} → isEquiv f → isContr (hasRetract f) fst (isEquiv→isContrHasRetract isEq) = invIsEq isEq , retIsEq isEq snd (isEquiv→isContrHasRetract {f = f} isEq) (g , η) = λ i → (λ b → p b i) , (λ a → q a i) where p : ∀ b → invIsEq isEq b ≡ g b p b = sym (η (invIsEq isEq b)) ∙' cong g (secIsEq isEq b) -- one square from the definition of invIsEq ieSq : ∀ a → Square (cong g (secIsEq isEq (f a))) refl (cong (g ∘ f) (retIsEq isEq a)) refl ieSq a k j = g (commSqIsEq isEq a k j) -- one square from η ηSq : ∀ a → Square (η (invIsEq isEq (f a))) (η a) (cong (g ∘ f) (retIsEq isEq a)) (retIsEq isEq a) ηSq a i j = η (retIsEq isEq a i) j -- and one last square from the definition of p pSq : ∀ b → Square (η (invIsEq isEq b)) refl (cong g (secIsEq isEq b)) (p b) pSq b i j = compPath'-filler (sym (η (invIsEq isEq b))) (cong g (secIsEq isEq b)) j i q : ∀ a → Square (retIsEq isEq a) (η a) (p (f a)) refl q a i j = hcomp (λ k → λ { (i = i0) → ηSq a j k ; (i = i1) → η a (j ∧ k) ; (j = i0) → pSq (f a) i k ; (j = i1) → η a k }) (ieSq a j i) isEquiv→hasRetract : {f : A → B} → isEquiv f → hasRetract f isEquiv→hasRetract = fst ∘ isEquiv→isContrHasRetract isContr-hasRetract : (e : A ≃ B) → isContr (hasRetract (fst e)) isContr-hasRetract e = isEquiv→isContrHasRetract (snd e) cong≃ : (F : Type ℓ → Type ℓ′) → (A ≃ B) → F A ≃ F B cong≃ F e = pathToEquiv (cong F (ua e)) cong≃-char : (F : Type ℓ → Type ℓ′) {A B : Type ℓ} (e : A ≃ B) → ua (cong≃ F e) ≡ cong F (ua e) cong≃-char F e = ua-pathToEquiv (cong F (ua e)) cong≃-idEquiv : (F : Type ℓ → Type ℓ′) (A : Type ℓ) → cong≃ F (idEquiv A) ≡ idEquiv (F A) cong≃-idEquiv F A = cong≃ F (idEquiv A) ≡⟨ cong (λ p → pathToEquiv (cong F p)) uaIdEquiv ⟩ pathToEquiv refl ≡⟨ pathToEquivRefl ⟩ idEquiv (F A) ∎ isPropIsHAEquiv : {f : A → B} → isProp (isHAEquiv f) isPropIsHAEquiv {f = f} ishaef = goal ishaef where equivF : isEquiv f equivF = isHAEquiv→isEquiv ishaef rCoh1 : (sec : hasSection f) → Type _ rCoh1 (g , ε) = Σ[ η ∈ retract f g ] ∀ x → cong f (η x) ≡ ε (f x) rCoh2 : (sec : hasSection f) → Type _ rCoh2 (g , ε) = Σ[ η ∈ retract f g ] ∀ x → Square (ε (f x)) refl (cong f (η x)) refl rCoh3 : (sec : hasSection f) → Type _ rCoh3 (g , ε) = ∀ x → Σ[ ηx ∈ g (f x) ≡ x ] Square (ε (f x)) refl (cong f ηx) refl rCoh4 : (sec : hasSection f) → Type _ rCoh4 (g , ε) = ∀ x → Path (fiber f (f x)) (g (f x) , ε (f x)) (x , refl) characterization : isHAEquiv f ≃ Σ _ rCoh4 characterization = isHAEquiv f -- first convert between Σ and record ≃⟨ isoToEquiv (iso (λ e → (e .g , e .rinv) , (e .linv , e .com)) (λ e → record { g = e .fst .fst ; rinv = e .fst .snd ; linv = e .snd .fst ; com = e .snd .snd }) (λ _ → refl) λ _ → refl) ⟩ Σ _ rCoh1 -- secondly, convert the path into a dependent path for later convenience ≃⟨ Σ-cong-equiv-snd (λ s → Σ-cong-equiv-snd λ η → equivΠCod λ x → compEquiv (flipSquareEquiv {a₀₀ = f x}) (invEquiv slideSquareEquiv)) ⟩ Σ _ rCoh2 ≃⟨ Σ-cong-equiv-snd (λ s → invEquiv Σ-Π-≃) ⟩ Σ _ rCoh3 ≃⟨ Σ-cong-equiv-snd (λ s → equivΠCod λ x → ΣPath≃PathΣ) ⟩ Σ _ rCoh4 ■ where open isHAEquiv goal : isProp (isHAEquiv f) goal = subst isProp (sym (ua characterization)) (isPropΣ (isContr→isProp (isEquiv→isContrHasSection equivF)) λ s → isPropΠ λ x → isProp→isSet (isContr→isProp (equivF .equiv-proof (f x))) _ _) -- loop spaces connected by a path are equivalent conjugatePathEquiv : {A : Type ℓ} {a b : A} (p : a ≡ b) → (a ≡ a) ≃ (b ≡ b) conjugatePathEquiv p = compEquiv (compPathrEquiv p) (compPathlEquiv (sym p)) -- composition on the right induces an equivalence of path types compr≡Equiv : {A : Type ℓ} {a b c : A} (p q : a ≡ b) (r : b ≡ c) → (p ≡ q) ≃ (p ∙ r ≡ q ∙ r) compr≡Equiv p q r = congEquiv ((λ s → s ∙ r) , compPathr-isEquiv r) -- composition on the left induces an equivalence of path types compl≡Equiv : {A : Type ℓ} {a b c : A} (p : a ≡ b) (q r : b ≡ c) → (q ≡ r) ≃ (p ∙ q ≡ p ∙ r) compl≡Equiv p q r = congEquiv ((λ s → p ∙ s) , (compPathl-isEquiv p)) isEquivFromIsContr : {A : Type ℓ} {B : Type ℓ′} → (f : A → B) → isContr A → isContr B → isEquiv f isEquivFromIsContr f isContrA isContrB = subst isEquiv (λ i x → isContr→isProp isContrB (fst B≃A x) (f x) i) (snd B≃A) where B≃A = isContr→Equiv isContrA isContrB
41.363184
131
0.572649
12c889a0470cec8f09f26fca7873ef56ed979d18
1,292
agda
Agda
src/fot/FOL/ExclusiveDisjunction/TheoremsATP.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
11
2015-09-03T20:53:42.000Z
2021-09-12T16:09:54.000Z
src/fot/FOL/ExclusiveDisjunction/TheoremsATP.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
2
2016-10-12T17:28:16.000Z
2017-01-01T14:34:26.000Z
src/fot/FOL/ExclusiveDisjunction/TheoremsATP.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
3
2016-09-19T14:18:30.000Z
2018-03-14T08:50:00.000Z
------------------------------------------------------------------------------ -- Exclusive disjunction theorems ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOL.ExclusiveDisjunction.TheoremsATP where -- The theorems below are valid on intuitionistic logic and with an -- empty domain. open import FOL.Base hiding ( D≢∅ ; pem ) open import FOL.ExclusiveDisjunction.Base ------------------------------------------------------------------------------ -- We postulate some propositional formulae (which are translated as -- 0-ary predicates). postulate P Q : Set -- We do not use the _⊻_ operator because its definition is not a -- FOL-definition. postulate p⊻q→p→¬q : ((P ∨ Q) ∧ ¬ (P ∧ Q)) → P → ¬ Q {-# ATP prove p⊻q→p→¬q #-} postulate p⊻q→q→¬p : ((P ∨ Q) ∧ ¬ (P ∧ Q)) → Q → ¬ P {-# ATP prove p⊻q→q→¬p #-} postulate p⊻q→¬p→q : ((P ∨ Q) ∧ ¬ (P ∧ Q)) → ¬ P → Q {-# ATP prove p⊻q→¬p→q #-} postulate p⊻q→¬q→p : ((P ∨ Q) ∧ ¬ (P ∧ Q)) → ¬ Q → P {-# ATP prove p⊻q→¬q→p #-} postulate ¬[p⊻q] : ¬ ((P ∨ Q) ∧ ¬ (P ∧ Q)) → ((P ∧ Q) ∨ (¬ P ∧ ¬ Q)) {-# ATP prove ¬[p⊻q] #-}
29.363636
78
0.44969
31d0b7fb9d7a9680187d82108ac74af9cbca9a60
2,878
agda
Agda
agda-stdlib/src/Data/List/Relation/Unary/AllPairs.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Data/List/Relation/Unary/AllPairs.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Data/List/Relation/Unary/AllPairs.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- Lists where every pair of elements are related (symmetrically) ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary using (Rel) module Data.List.Relation.Unary.AllPairs {a ℓ} {A : Set a} {R : Rel A ℓ} where open import Data.List.Base using (List; []; _∷_) open import Data.List.Relation.Unary.All as All using (All; []; _∷_) open import Data.Product as Prod using (_,_; _×_; uncurry; <_,_>) open import Function using (id; _∘_) open import Level using (_⊔_) open import Relation.Binary as B using (Rel; _⇒_) open import Relation.Binary.Construct.Intersection renaming (_∩_ to _∩ᵇ_) open import Relation.Binary.PropositionalEquality open import Relation.Unary as U renaming (_∩_ to _∩ᵘ_) hiding (_⇒_) open import Relation.Nullary using (yes; no) import Relation.Nullary.Decidable as Dec open import Relation.Nullary.Product using (_×-dec_) ------------------------------------------------------------------------ -- Definition open import Data.List.Relation.Unary.AllPairs.Core public ------------------------------------------------------------------------ -- Operations head : ∀ {x xs} → AllPairs R (x ∷ xs) → All (R x) xs head (px ∷ pxs) = px tail : ∀ {x xs} → AllPairs R (x ∷ xs) → AllPairs R xs tail (px ∷ pxs) = pxs uncons : ∀ {x xs} → AllPairs R (x ∷ xs) → All (R x) xs × AllPairs R xs uncons = < head , tail > module _ {q} {S : Rel A q} where map : R ⇒ S → AllPairs R ⊆ AllPairs S map ~₁⇒~₂ [] = [] map ~₁⇒~₂ (x~xs ∷ pxs) = All.map ~₁⇒~₂ x~xs ∷ (map ~₁⇒~₂ pxs) module _ {s t} {S : Rel A s} {T : Rel A t} where zipWith : R ∩ᵇ S ⇒ T → AllPairs R ∩ᵘ AllPairs S ⊆ AllPairs T zipWith f ([] , []) = [] zipWith f (px ∷ pxs , qx ∷ qxs) = All.zipWith f (px , qx) ∷ zipWith f (pxs , qxs) unzipWith : T ⇒ R ∩ᵇ S → AllPairs T ⊆ AllPairs R ∩ᵘ AllPairs S unzipWith f [] = [] , [] unzipWith f (rx ∷ rxs) = Prod.zip _∷_ _∷_ (All.unzipWith f rx) (unzipWith f rxs) module _ {s} {S : Rel A s} where zip : AllPairs R ∩ᵘ AllPairs S ⊆ AllPairs (R ∩ᵇ S) zip = zipWith id unzip : AllPairs (R ∩ᵇ S) ⊆ AllPairs R ∩ᵘ AllPairs S unzip = unzipWith id ------------------------------------------------------------------------ -- Properties of predicates preserved by AllPairs allPairs? : B.Decidable R → U.Decidable (AllPairs R) allPairs? R? [] = yes [] allPairs? R? (x ∷ xs) = Dec.map′ (uncurry _∷_) uncons (All.all (R? x) xs ×-dec allPairs? R? xs) irrelevant : B.Irrelevant R → U.Irrelevant (AllPairs R) irrelevant irr [] [] = refl irrelevant irr (px₁ ∷ pxs₁) (px₂ ∷ pxs₂) = cong₂ _∷_ (All.irrelevant irr px₁ px₂) (irrelevant irr pxs₁ pxs₂) satisfiable : U.Satisfiable (AllPairs R) satisfiable = [] , []
34.674699
83
0.556637
106267de5a732725944dce5b45735e41ac08c5c7
4,817
agda
Agda
Cubical/Homotopy/Freudenthal.agda
knrafto/cubical
f6771617374bfe65a7043d00731fed5a673aa729
[ "MIT" ]
null
null
null
Cubical/Homotopy/Freudenthal.agda
knrafto/cubical
f6771617374bfe65a7043d00731fed5a673aa729
[ "MIT" ]
null
null
null
Cubical/Homotopy/Freudenthal.agda
knrafto/cubical
f6771617374bfe65a7043d00731fed5a673aa729
[ "MIT" ]
null
null
null
{- Freudenthal suspension theorem -} {-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Homotopy.Freudenthal where open import Cubical.Foundations.Everything open import Cubical.Data.HomotopyGroup open import Cubical.Data.Nat open import Cubical.Data.Sigma open import Cubical.HITs.Nullification open import Cubical.HITs.Susp open import Cubical.HITs.Truncation as Trunc renaming (rec to trRec) open import Cubical.Homotopy.Connected open import Cubical.Homotopy.WedgeConnectivity open import Cubical.Homotopy.Loopspace module _ {ℓ} (n : HLevel) {A : Pointed ℓ} (connA : isConnected (suc (suc n)) (typ A)) where σ : typ A → typ (Ω (∙Susp (typ A))) σ a = merid a ∙ merid (pt A) ⁻¹ private 2n+2 = suc n + suc n module WC (p : north ≡ north) = WedgeConnectivity (suc n) (suc n) A connA A connA (λ a b → ( (σ b ≡ p → hLevelTrunc 2n+2 (fiber (λ x → merid x ∙ merid a ⁻¹) p)) , isOfHLevelΠ 2n+2 λ _ → isOfHLevelTrunc 2n+2 )) (λ a r → ∣ a , (rCancel' (merid a) ∙ rCancel' (merid (pt A)) ⁻¹) ∙ r ∣) (λ b r → ∣ b , r ∣) (funExt λ r → cong′ (λ w → ∣ pt A , w ∣) (cong (_∙ r) (rCancel' (rCancel' (merid (pt A)))) ∙ lUnit r ⁻¹)) fwd : (p : north ≡ north) (a : typ A) → hLevelTrunc 2n+2 (fiber σ p) → hLevelTrunc 2n+2 (fiber (λ x → merid x ∙ merid a ⁻¹) p) fwd p a = Trunc.rec (isOfHLevelTrunc 2n+2) (uncurry (WC.extension p a)) isEquivFwd : (p : north ≡ north) (a : typ A) → isEquiv (fwd p a) isEquivFwd p a .equiv-proof = elim.isEquivPrecompose (λ _ → pt A) (suc n) (λ a → ( (∀ t → isContr (fiber (fwd p a) t)) , isProp→isOfHLevelSuc n (isPropΠ λ _ → isPropIsContr) )) (isConnectedPoint (suc n) connA (pt A)) .equiv-proof (λ _ → Trunc.elim (λ _ → isProp→isOfHLevelSuc (n + suc n) isPropIsContr) (λ fib → subst (λ k → isContr (fiber k ∣ fib ∣)) (cong (Trunc.rec (isOfHLevelTrunc 2n+2) ∘ uncurry) (funExt (WC.right p) ⁻¹)) (subst isEquiv (funExt (Trunc.mapId) ⁻¹) (idIsEquiv _) .equiv-proof ∣ fib ∣) )) .fst .fst a interpolate : (a : typ A) → PathP (λ i → typ A → north ≡ merid a i) (λ x → merid x ∙ merid a ⁻¹) merid interpolate a i x j = compPath-filler (merid x) (merid a ⁻¹) (~ i) j Code : (y : Susp (typ A)) → north ≡ y → Type ℓ Code north p = hLevelTrunc 2n+2 (fiber σ p) Code south q = hLevelTrunc 2n+2 (fiber merid q) Code (merid a i) p = Glue (hLevelTrunc 2n+2 (fiber (interpolate a i) p)) (λ { (i = i0) → _ , (fwd p a , isEquivFwd p a) ; (i = i1) → _ , idEquiv _ }) encode : (y : Susp (typ A)) (p : north ≡ y) → Code y p encode y = J Code ∣ pt A , rCancel' (merid (pt A)) ∣ encodeMerid : (a : typ A) → encode south (merid a) ≡ ∣ a , refl ∣ encodeMerid a = cong (transport (λ i → gluePath i)) (funExt⁻ (WC.left refl a) _ ∙ cong ∣_∣ (cong (a ,_) (lem _ _))) ∙ transport (PathP≡Path gluePath _ _) (λ i → ∣ a , (λ j k → rCancel-filler' (merid a) i j k) ∣) where gluePath : I → Type _ gluePath i = hLevelTrunc 2n+2 (fiber (interpolate a i) (λ j → merid a (i ∧ j))) lem : ∀ {ℓ} {A : Type ℓ} {x y z : A} (p : x ≡ y) (q : z ≡ y) → (p ∙ q ⁻¹) ∙ q ≡ p lem p q = assoc p (q ⁻¹) q ⁻¹ ∙ cong (p ∙_) (lCancel q) ∙ rUnit p ⁻¹ contractCodeSouth : (p : north ≡ south) (c : Code south p) → encode south p ≡ c contractCodeSouth p = Trunc.elim (λ _ → isOfHLevelPath 2n+2 (isOfHLevelTrunc 2n+2) _ _) (uncurry λ a → J (λ p r → encode south p ≡ ∣ a , r ∣) (encodeMerid a)) isConnectedMerid : isConnectedFun 2n+2 (merid {A = typ A}) isConnectedMerid p = encode south p , contractCodeSouth p isConnectedσ : isConnectedFun 2n+2 σ isConnectedσ = transport (λ i → isConnectedFun 2n+2 (interpolate (pt A) (~ i))) isConnectedMerid FreudenthalEquiv : ∀ {ℓ} (n : HLevel) (A : Pointed ℓ) → isConnected (2 + n) (typ A) → hLevelTrunc ((suc n) + (suc n)) (typ A) ≃ hLevelTrunc ((suc n) + (suc n)) (typ (Ω (Susp (typ A) , north))) FreudenthalEquiv n A iscon = connectedTruncEquiv _ (σ n {A = A} iscon) (isConnectedσ _ iscon) FreudenthalIso : ∀ {ℓ} (n : HLevel) (A : Pointed ℓ) → isConnected (2 + n) (typ A) → Iso (hLevelTrunc ((suc n) + (suc n)) (typ A)) (hLevelTrunc ((suc n) + (suc n)) (typ (Ω (Susp (typ A) , north)))) FreudenthalIso n A iscon = connectedTruncIso _ (σ n {A = A} iscon) (isConnectedσ _ iscon)
37.929134
91
0.542039
20a716b5169235a1e32906050c1546f021c710a7
174
agda
Agda
test/fail/Issue203.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
1
2019-11-27T04:41:05.000Z
2019-11-27T04:41:05.000Z
test/fail/Issue203.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
test/fail/Issue203.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
{-# OPTIONS --universe-polymorphism #-} module Issue203 where open import Imports.Level -- shouldn't work data Bad {a b} (A : Set a) : Set b where [_] : (x : A) → Bad A
17.4
40
0.632184
59045dfe6dcea80e5ae093880090ac94356c9e58
5,980
agda
Agda
misc/RecursiveDescent/InductiveWithFix/Lib.agda
yurrriq/parser-combinators
b396d35cc2cb7e8aea50b982429ee385f001aa88
[ "MIT" ]
7
2016-12-13T05:23:14.000Z
2021-06-22T05:35:31.000Z
misc/RecursiveDescent/InductiveWithFix/Lib.agda
nad/parser-combinators
76774f54f466cfe943debf2da731074fe0c33644
[ "MIT" ]
1
2018-01-22T22:21:41.000Z
2018-01-24T16:39:37.000Z
misc/RecursiveDescent/InductiveWithFix/Lib.agda
nad/parser-combinators
76774f54f466cfe943debf2da731074fe0c33644
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- Some defined parsers ------------------------------------------------------------------------ -- Note that the fixpoint combinator ensures that _⋆ can be defined -- without any need for library grammars (c.f. -- RecursiveDescent.Inductive.Lib). However, use of the fixpoint -- combinator can lead to code which is hard to understand, and should -- be kept at a minimum. -- This module also provides an example of a parser for which the -- Index cannot be inferred. module RecursiveDescent.InductiveWithFix.Lib where open import RecursiveDescent.Index open import RecursiveDescent.InductiveWithFix open import Utilities open import Data.Nat hiding (_≟_) import Data.Vec as V; open V using (Vec) import Data.Vec1 as V₁; open V₁ using (Vec₁) import Data.List as L ; open L using (List) open import Relation.Nullary open import Data.Product.Record open import Data.Product renaming (_,_ to pair) open import Data.Bool hiding (_≟_) open import Data.Function open import Data.Maybe open import Data.Unit hiding (_≟_) ------------------------------------------------------------------------ -- Applicative functor parsers -- We could get these for free with better library support. infixl 50 _⊛_ _<⊛_ _⊛>_ _<$>_ _<$_ _⊛_ : forall {tok nt i₁ i₂ r₁ r₂} -> Parser tok nt i₁ (r₁ -> r₂) -> Parser tok nt i₂ r₁ -> Parser tok nt _ r₂ p₁ ⊛ p₂ = p₁ >>= \f -> p₂ >>= \x -> return (f x) _<$>_ : forall {tok nt i r₁ r₂} -> (r₁ -> r₂) -> Parser tok nt i r₁ -> Parser tok nt _ r₂ f <$> x = return f ⊛ x _<⊛_ : forall {tok nt i₁ i₂ r₁ r₂} -> Parser tok nt i₁ r₁ -> Parser tok nt i₂ r₂ -> Parser tok nt _ r₁ x <⊛ y = const <$> x ⊛ y _⊛>_ : forall {tok nt i₁ i₂ r₁ r₂} -> Parser tok nt i₁ r₁ -> Parser tok nt i₂ r₂ -> Parser tok nt _ r₂ x ⊛> y = flip const <$> x ⊛ y _<$_ : forall {tok nt i r₁ r₂} -> r₁ -> Parser tok nt i r₂ -> Parser tok nt _ r₁ x <$ y = const x <$> y ------------------------------------------------------------------------ -- Parsing sequences infix 55 _⋆ _+ _⋆ : forall {tok nt c r} -> Parser tok nt (false , c) r -> Parser tok nt _ (List r) p ⋆ = fix (return L.[] ∣ L._∷_ <$> lift p ⊛ ! fresh) _+ : forall {tok nt c r} -> Parser tok nt (false , c) r -> Parser tok nt _ (List r) p + = L._∷_ <$> p ⊛ p ⋆ chain₁ : forall {tok nt c₁ i₂ r} -> Assoc -> Parser tok nt (false , c₁) r -> Parser tok nt i₂ (r -> r -> r) -> Parser tok nt _ r chain₁ a p op = chain₁-combine a <$> (pair <$> p ⊛ op) ⋆ ⊛ p chain : forall {tok nt c₁ i₂ r} -> Assoc -> Parser tok nt (false , c₁) r -> Parser tok nt i₂ (r -> r -> r) -> r -> Parser tok nt _ r chain a p op x = return x ∣ chain₁ a p op -- Note that the resulting index here cannot be inferred... private exactly'-corners : Corners -> ℕ -> Corners exactly'-corners c zero = _ exactly'-corners c (suc n) = _ exactly' : forall {tok nt c r} n -> Parser tok nt (false , c) r -> Parser tok nt (false , exactly'-corners c n) (Vec r (suc n)) exactly' zero p = V.[_] <$> p exactly' (suc n) p = V._∷_ <$> p ⊛ exactly' n p -- ...so we might as well generalise the function a little. -- exactly n p parses n occurrences of p. exactly-index : Index -> ℕ -> Index exactly-index i zero = _ exactly-index i (suc n) = _ exactly : forall {tok nt i r} n -> Parser tok nt i r -> Parser tok nt (exactly-index i n) (Vec r n) exactly zero p = return V.[] exactly (suc n) p = V._∷_ <$> p ⊛ exactly n p -- A function with a similar type: sequence : forall {tok nt i r n} -> Vec₁ (Parser tok nt i r) n -> Parser tok nt (exactly-index i n) (Vec r n) sequence V₁.[] = return V.[] sequence (V₁._∷_ p ps) = V._∷_ <$> p ⊛ sequence ps ------------------------------------------------------------------------ -- sat and friends sat : forall {tok nt r} -> (tok -> Maybe r) -> Parser tok nt (0I ·I 1I) r sat {tok} {nt} {r} p = symbol !>>= \c -> ok (p c) where okIndex : Maybe r -> Index okIndex nothing = _ okIndex (just _) = _ ok : (x : Maybe r) -> Parser tok nt (okIndex x) r ok nothing = fail ok (just x) = return x sat' : forall {tok nt} -> (tok -> Bool) -> Parser tok nt _ ⊤ sat' p = sat (boolToMaybe ∘ p) any : forall {tok nt} -> Parser tok nt _ tok any = sat just ------------------------------------------------------------------------ -- Some parsers which require a decidable token equality open import Relation.Binary module Token (D : DecSetoid) where open DecSetoid D using (_≟_) renaming (carrier to tok) open import Data.Vec1 -- Parsing a given token (or, really, a given equivalence class of -- tokens). sym : forall {nt} -> tok -> Parser tok nt _ tok sym c = sat p where p : tok -> Maybe tok p x with c ≟ x ... | yes _ = just x ... | no _ = nothing -- Parsing a sequence of tokens. string : forall {nt n} -> Vec tok n -> Parser tok nt _ (Vec tok n) string cs = sequence (map₀₁ sym cs) ------------------------------------------------------------------------ -- Character parsers import Data.Char as C open C using (Char; _==_) open Token C.decSetoid digit : forall {nt} -> Parser Char nt _ ℕ digit = 0 <$ sym '0' ∣ 1 <$ sym '1' ∣ 2 <$ sym '2' ∣ 3 <$ sym '3' ∣ 4 <$ sym '4' ∣ 5 <$ sym '5' ∣ 6 <$ sym '6' ∣ 7 <$ sym '7' ∣ 8 <$ sym '8' ∣ 9 <$ sym '9' number : forall {nt} -> Parser Char nt _ ℕ number = toNum <$> digit + where toNum = L.foldr (\n x -> 10 * x + n) 0 ∘ L.reverse -- whitespace recognises an incomplete but useful list of whitespace -- characters. whitespace : forall {nt} -> Parser Char nt _ ⊤ whitespace = sat' isSpace where isSpace = \c -> (c == ' ') ∨ (c == '\t') ∨ (c == '\n') ∨ (c == '\r')
28.207547
72
0.532107
dccfbc9684780eaf89d2a589c3c7c51c97c0c419
3,328
agda
Agda
test/Succeed/ReflectTC.agda
vlopezj/agda
ff4d89e75970cf27599fb9f572bd43c9455cbb56
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/Succeed/ReflectTC.agda
vikfret/agda
49ad0b3f0d39c01bc35123478b857e702b29fb9d
[ "BSD-3-Clause" ]
3
2018-11-14T15:31:44.000Z
2019-04-01T19:39:26.000Z
test/Succeed/ReflectTC.agda
vikfret/agda
49ad0b3f0d39c01bc35123478b857e702b29fb9d
[ "BSD-3-Clause" ]
1
2015-09-15T14:36:15.000Z
2015-09-15T14:36:15.000Z
-- Building some simple tactics using the reflected type checking monad. module _ where open import Common.Reflection open import Common.Prelude hiding (_>>=_) open import Common.Equality -- Some helpers -- quotegoal : (Type → Tactic) → Tactic quotegoal tac hole = inferType hole >>= λ goal → reduce goal >>= λ goal → tac goal hole case_of_ : ∀ {a b} {A : Set a} {B : Set b} → A → (A → B) → B case x of f = f x replicateTC : {A : Set} → Nat → TC A → TC (List A) replicateTC zero m = returnTC [] replicateTC (suc n) m = m >>= λ x → replicateTC n m >>= λ xs → returnTC (x ∷ xs) mapTC! : ∀ {A : Set} → (A → TC ⊤) → List A → TC ⊤ mapTC! f [] = returnTC _ mapTC! f (x ∷ xs) = f x >>= λ _ → mapTC! f xs mapTC!r : ∀ {A} → (A → TC ⊤) → List A → TC ⊤ mapTC!r f [] = returnTC _ mapTC!r f (x ∷ xs) = mapTC! f xs >>= λ _ → f x visibleArity : QName → TC Nat visibleArity q = getType q >>= λ t → returnTC (typeArity t) where typeArity : Type → Nat typeArity (pi (arg (argInfo visible _) _) (abs _ b)) = suc (typeArity b) typeArity (pi _ (abs _ b)) = typeArity b typeArity _ = 0 newMeta! : TC Term newMeta! = newMeta unknown absurdLam : Term absurdLam = extLam (absurdClause (arg (argInfo visible relevant) absurd ∷ []) ∷ []) [] -- Simple assumption tactic -- assumption-tac : Nat → Nat → Tactic assumption-tac x 0 _ = typeError (strErr "No assumption matched" ∷ []) assumption-tac x (suc n) hole = catchTC (unify hole (var x [])) (assumption-tac (suc x) n hole) macro assumption : Tactic assumption hole = getContext >>= λ Γ → assumption-tac 0 (length Γ) hole test-assumption : ∀ {A B : Set} → A → B → A test-assumption x y = assumption test-assumption₂ : ∀ {A B : Set} → A → B → _ test-assumption₂ x y = assumption -- will pick y -- Solving a goal using only constructors -- tryConstructors : Nat → List QName → Tactic constructors-tac : Nat → Type → Tactic constructors-tac zero _ _ = typeError (strErr "Search depth exhausted" ∷ []) constructors-tac (suc n) (def d vs) hole = getDefinition d >>= λ def → case def of λ { (dataDef _ cs) → tryConstructors n cs hole ; _ → returnTC _ } constructors-tac _ (pi a b) hole = give absurdLam hole constructors-tac _ _ hole = returnTC _ tryConstructors n [] hole = typeError (strErr "No matching constructor term" ∷ []) tryConstructors n (c ∷ cs) hole = visibleArity c >>= λ ar → catchTC (replicateTC ar newMeta! >>= λ vs → unify hole (con c (map (arg (argInfo visible relevant)) vs)) >>= λ _ → mapTC!r (quotegoal (constructors-tac n)) vs) (tryConstructors n cs hole) macro constructors : Tactic constructors = quotegoal (constructors-tac 10) data Any {A : Set} (P : A → Set) : List A → Set where zero : ∀ {x xs} → P x → Any P (x ∷ xs) suc : ∀ {x xs} → Any P xs → Any P (x ∷ xs) infix 1 _∈_ _∈_ : ∀ {A : Set} → A → List A → Set x ∈ xs = Any (x ≡_) xs data Dec (A : Set) : Set where yes : A → Dec A no : (A → ⊥) → Dec A test₁ : 3 ∈ 1 ∷ 2 ∷ 3 ∷ [] test₁ = constructors test₂ : Dec (2 + 3 ≡ 5) test₂ = constructors test₃ : Dec (2 + 2 ≡ 5) test₃ = constructors data Singleton (n : Nat) : Set where it : (m : Nat) → m ≡ n → Singleton n test₄ : Singleton 5 test₄ = constructors -- this works because we solve goals right to left (picking refl before m)
28.93913
95
0.61899
0efbcf3feb24d59c1841cd80f4772e8a788e0226
206
agda
Agda
test/Fail/Issue998c.agda
alex-mckenna/agda
78b62cd24bbd570271a7153e44ad280e52ef3e29
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/Fail/Issue998c.agda
andersk/agda
56928ff709dcb931cb9a48c4790e5ed3739e3032
[ "BSD-3-Clause" ]
null
null
null
test/Fail/Issue998c.agda
andersk/agda
56928ff709dcb931cb9a48c4790e5ed3739e3032
[ "BSD-3-Clause" ]
1
2019-03-05T20:02:38.000Z
2019-03-05T20:02:38.000Z
postulate A : Set f : (B : Set) → B → A f A a = a -- Expected error: -- A !=< A of type Set -- (because one is a variable and one a defined identifier) -- when checking that the expression a has type A
18.727273
59
0.635922
598d98bf11ae318e93dc49470be5fcd15ce3ff48
2,156
agda
Agda
test/Succeed/HigherOrderRewriting.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/HigherOrderRewriting.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/HigherOrderRewriting.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --rewriting #-} open import Common.Prelude open import Common.Equality {-# BUILTIN REWRITE _≡_ #-} postulate is-id : ∀ {A : Set} → (A → A) → Bool postulate is-id-true : ∀ {A} → is-id {A} (λ x → x) ≡ true {-# REWRITE is-id-true #-} test₁ : is-id {Nat} (λ x → x) ≡ true test₁ = refl postulate is-const : ∀ {A : Set} → (A → A) → Bool postulate is-const-true : ∀ {A} (x : A) → is-const (λ _ → x) ≡ true {-# REWRITE is-const-true #-} test₂ : is-const {Nat} (λ _ → 42) ≡ true test₂ = refl ap : {A B : Set} (f : A → B) {x y : A} → x ≡ y → f x ≡ f y ap f refl = refl record _×_ (A B : Set) : Set where constructor _,_ field fst : A snd : B open _×_ {- Cartesian product -} module _ {A B : Set} where _,=_ : {a a' : A} (p : a ≡ a') {b b' : B} (q : b ≡ b') → (a , b) ≡ (a' , b') refl ,= refl = refl ap-,-l : (b : B) {a a' : A} (p : a ≡ a') → ap (λ z → z , b) p ≡ (p ,= refl) ap-,-l b refl = refl {-# REWRITE ap-,-l #-} test₃ : (b : B) {a a' : A} (p : a ≡ a') → ap (λ z → z , b) p ≡ (p ,= refl) test₃ _ _ = refl ap-,-r : (a : A) {b b' : B} (p : b ≡ b') → ap (λ z → a , z) p ≡ (refl ,= p) ap-,-r a refl = refl {-# REWRITE ap-,-r #-} test₄ : (a : A) {b b' : B} (p : b ≡ b') → ap (λ z → a , z) p ≡ (refl ,= p) test₄ a _ = refl ap-idf : {A : Set} {x y : A} (p : x ≡ y) → ap (λ x → x) p ≡ p ap-idf refl = refl {-# REWRITE ap-idf #-} {- Function extensionality -} module _ {A B : Set} {f g : A → B} where postulate funext : ((x : A) → f x ≡ g x) → f ≡ g postulate ap-app-funext : (a : A) (h : (x : A) → f x ≡ g x) → ap (λ f → f a) (funext h) ≡ h a {-# REWRITE ap-app-funext #-} test₅ : (a : A) (h : (x : A) → f x ≡ g x) → ap (λ f → f a) (funext h) ≡ h a test₅ a h = refl {- Dependent paths -} module _ where PathOver : {A : Set} (B : A → Set) {x y : A} (p : x ≡ y) (u : B x) (v : B y) → Set PathOver B refl u v = (u ≡ v) postulate PathOver-triv : {A B : Set} {x y : A} (p : x ≡ y) (u v : B) → (PathOver (λ _ → B) p u v) ≡ (u ≡ v) {-# REWRITE PathOver-triv #-} test₆ : (p : 1 ≡ 1) → PathOver (λ _ → Nat) p 2 2 test₆ p = refl
22.93617
78
0.459184
dc5a5bd85c61671e3b00a528ca64d81c3f0c1517
525
agda
Agda
test/Succeed/fol-theorems/Existential.agda
asr/apia
a66c5ddca2ab470539fd68c42c4fbd45f720d682
[ "MIT" ]
10
2015-09-03T20:54:16.000Z
2019-12-03T13:44:25.000Z
test/Succeed/fol-theorems/Existential.agda
asr/apia
a66c5ddca2ab470539fd68c42c4fbd45f720d682
[ "MIT" ]
121
2015-01-25T13:22:12.000Z
2018-04-22T06:01:44.000Z
test/Succeed/fol-theorems/Existential.agda
asr/apia
a66c5ddca2ab470539fd68c42c4fbd45f720d682
[ "MIT" ]
4
2016-05-10T23:06:19.000Z
2016-08-03T03:54:55.000Z
------------------------------------------------------------------------------ -- Testing the existential quantifier ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module Existential where postulate D : Set A : D → Set ∃ : (A : D → Set) → Set postulate foo : (∃ λ x → A x) → (∃ λ x → A x) {-# ATP prove foo #-}
27.631579
78
0.361905
1dbdd8a4d6360858ff393c9639482c0f12657c9e
1,194
agda
Agda
notes/FOT/FOTC/Program/Min/Min.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
11
2015-09-03T20:53:42.000Z
2021-09-12T16:09:54.000Z
notes/FOT/FOTC/Program/Min/Min.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
2
2016-10-12T17:28:16.000Z
2017-01-01T14:34:26.000Z
notes/FOT/FOTC/Program/Min/Min.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
3
2016-09-19T14:18:30.000Z
2018-03-14T08:50:00.000Z
------------------------------------------------------------------------------ -- Example of a partial function ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- From (Bove, A. and Capretta, V. (2001)). module FOT.FOTC.Program.Min.Min where open import Data.Nat renaming ( suc to succ ) open import Relation.Binary.PropositionalEquality ------------------------------------------------------------------------------ -- Note: Although the function is partial the problem is that it is -- rejected by Agda's termination checker. {-# NON_TERMINATING #-} min : (ℕ → ℕ) → ℕ min f with f 0 ... | 0 = 0 ... | succ x = succ (min (λ n → f (succ n))) ------------------------------------------------------------------------------ -- References -- -- Bove, A. and Capretta, V. (2001). Nested General Recursion and -- Partiality in Type Theory. In: Theorem Proving in Higher Order -- Logics (TPHOLs 2001). Ed. by Boulton, R. J. and Jackson, -- P. B. Vol. 2152. LNCS. Springer, pp. 121–135.
35.117647
78
0.463149
12908a9a77f51da4c388fe1ad04eb6c12f577e22
5,909
agda
Agda
src/MLib/Finite/Properties.agda
bch29/agda-matrices
e26ae2e0aa7721cb89865aae78625a2f3fd2b574
[ "MIT" ]
null
null
null
src/MLib/Finite/Properties.agda
bch29/agda-matrices
e26ae2e0aa7721cb89865aae78625a2f3fd2b574
[ "MIT" ]
null
null
null
src/MLib/Finite/Properties.agda
bch29/agda-matrices
e26ae2e0aa7721cb89865aae78625a2f3fd2b574
[ "MIT" ]
null
null
null
open import MLib.Finite module MLib.Finite.Properties {c ℓ} (finiteSet : FiniteSet c ℓ) where open import MLib.Prelude import Data.Fin.Permutation as Perm import Relation.Binary as B open FE using (cong) open LeftInverse using () renaming (_∘_ to _ⁱ∘_) open Algebra using (IdempotentCommutativeMonoid) open Table hiding (setoid) open FiniteSet finiteSet renaming (Carrier to A) private enumₜAt : ∀ {N} → OntoFin N → Table A N enumₜAt = tabulate ∘ _⟨$⟩_ ∘ LeftInverse.from module _ {c ℓ} (icMonoid : IdempotentCommutativeMonoid c ℓ) where module S = IdempotentCommutativeMonoid icMonoid open S using (_∙_; ∙-cong) renaming (Carrier to S; _≈_ to _≈′_) open import Algebra.Operations.CommutativeMonoid S.commutativeMonoid open import Algebra.Properties.CommutativeMonoid S.commutativeMonoid foldMap : (A → S) → S foldMap f = sumₜ (Table.map f enumₜ) foldMap-cong : ∀ {f g} → (∀ x → f x ≈′ g x) → foldMap f ≈′ foldMap g foldMap-cong p = sumₜ-cong-≈ (p ∘ lookup enumₜ) private inhabited : ∀ {N} (i : Fin N) → ∃ λ n → N ≡ Nat.suc n inhabited Fin.zero = _ , ≡.refl inhabited (Fin.suc i) = _ , ≡.refl -- Folding with a constant function produces the constant. foldMap-const : ∀ {x} → x ∙ foldMap (λ _ → x) ≈′ x foldMap-const {x} = begin x ∙ foldMap (λ _ → x) ≡⟨⟩ x ∙ sumₜ (Table.map (λ _ → x) enumₜ) ≡⟨⟩ x ∙ sumₜ (Table.replicate {N} x) ≡⟨⟩ sumₜ (Table.replicate {Nat.suc N} x) ≈⟨ sumₜ-idem-replicate N (S.idem x) ⟩ x ∎ where open EqReasoning S.setoid private module _ {n : ℕ} (ontoFin′ : OntoFin (Nat.suc n)) where from = LeftInverse.from ontoFin′ ⟨$⟩_ to = LeftInverse.to ontoFin′ ⟨$⟩_ from-to = LeftInverse.left-inverse-of ontoFin′ enumₜ′ : Table A (Nat.suc n) enumₜ′ = enumₜAt ontoFin′ ap : setoid ⟶ S.setoid → A → S ap = _⟨$⟩_ enumₜ-complete′ : ∀ (func : setoid ⟶ S.setoid) x → (func ⟨$⟩ x) ∙ sumₜ (map (ap func) enumₜ′) ≈′ sumₜ (map (ap func) enumₜ′) enumₜ-complete′ func x = begin f x ∙ sumₜ (map f enumₜ′) ≈⟨ ∙-cong S.refl (sumₜ-permute (map f enumₜ′) (Perm.transpose Fin.zero i)) ⟩ f x ∙ sumₜ (permute (Perm.transpose Fin.zero i) (map f enumₜ′)) ≡⟨⟩ f x ∙ (f (from (to x)) ∙ _) ≈⟨ ∙-cong S.refl (∙-cong (cong func (from-to _)) S.refl) ⟩ f x ∙ (f x ∙ _) ≈⟨ S.sym (S.assoc _ _ _) ⟩ (f x ∙ f x) ∙ _ ≈⟨ ∙-cong (S.idem _) S.refl ⟩ f x ∙ _ ≈⟨ ∙-cong (cong func (sym (from-to _))) S.refl ⟩ f (from (to x)) ∙ _ ≡⟨⟩ sumₜ (permute (Perm.transpose Fin.zero i) (map f enumₜ′)) ≈⟨ S.sym (sumₜ-permute (map f enumₜ′) (Perm.transpose Fin.zero i)) ⟩ sumₜ (map f enumₜ′) ∎ where f = ap func i = to x open EqReasoning S.setoid private enumₜ-complete′′ : ∀ {N} (ontoFin′ : OntoFin N) (f : setoid ⟶ S.setoid) x → (f ⟨$⟩ x) ∙ sumₜ (Table.map (f ⟨$⟩_) (enumₜAt ontoFin′)) ≈′ sumₜ (Table.map (f ⟨$⟩_) (enumₜAt ontoFin′)) enumₜ-complete′′ ontoFin′ f x with inhabited (LeftInverse.to ontoFin′ ⟨$⟩ x) enumₜ-complete′′ ontoFin′ f x | n , ≡.refl = enumₜ-complete′ ontoFin′ f x sum/map-hom : ∀ {n} {a}{A : Set a} (f : A → S) (t : Table A n) → sumₗ (List.map f (toList t)) ≡ sumₜ (map f t) sum/map-hom f t = begin sumₗ (List.map f (toList t)) ≡⟨ ≡.cong sumₗ (Table.map-toList-hom t) ⟩ sumₗ (toList (map f t)) ≡⟨ ≡.sym (sumₜ-toList (map f t)) ⟩ sumₜ (map f t) ∎ where open ≡.Reasoning -- Enumeration is complete: in any idempotent commutative monoid, adding one -- more element to the sum won't change it. In particular, this works in the -- powerset monoid, where 'f' is the singleton at its argument and addition -- is set union. This shows that every member of 'A' is present in the -- enumeration (even though the powerset monoid is quite difficult to -- implement in Agda so this proof is not present). enumₜ-complete : ∀ f x → (f ⟨$⟩ x) ∙ foldMap (f ⟨$⟩_) ≈′ foldMap (f ⟨$⟩_) enumₜ-complete = enumₜ-complete′′ ontoFin enumₗ-complete : ∀ (f : setoid ⟶ S.setoid) x → (f ⟨$⟩ x) ∙ sumₗ (List.map (f ⟨$⟩_) enumₗ) ≈′ sumₗ (List.map (f ⟨$⟩_) enumₗ) enumₗ-complete func x = begin f x ∙ sumₗ (List.map f enumₗ) ≡⟨⟩ f x ∙ sumₗ (List.map f (toList enumₜ)) ≡⟨ ≡.cong₂ _∙_ ≡.refl (sum/map-hom f enumₜ) ⟩ f x ∙ sumₜ (map f enumₜ) ≈⟨ enumₜ-complete func x ⟩ sumₜ (map f enumₜ) ≡⟨ ≡.sym (sum/map-hom f enumₜ) ⟩ sumₗ (List.map f enumₗ) ∎ where f = func ⟨$⟩_ open EqReasoning S.setoid -- A finite set can be strictly totally ordered by its elements' indices Ixorder : B.StrictTotalOrder _ _ _ Ixorder = record { _≈_ = _≈_ ; _<_ = λ x y → toIx x Fin.< toIx y ; isStrictTotalOrder = record { isEquivalence = isEquivalence ; trans = Fin.<-trans ; compare = compare } } where compare : Trichotomous _≈_ (λ x y → toIx x Fin.< toIx y) compare x y with B.StrictTotalOrder.compare (Fin.<-strictTotalOrder N) (toIx x) (toIx y) compare x y | B.tri< a ¬b ¬c = B.tri< a (¬b ∘ cong (LeftInverse.to ontoFin)) ¬c compare x y | B.tri≈ ¬a b ¬c = B.tri≈ ¬a (LeftInverse.injective ontoFin b) ¬c compare x y | B.tri> ¬a ¬b c = B.tri> ¬a (¬b ∘ cong (LeftInverse.to ontoFin)) c -- Equality between members of a finite set is decidable. _≟_ : B.Decidable _≈_ _≟_ = B.StrictTotalOrder._≟_ Ixorder
40.197279
151
0.550685
1ce9ce65247c14a87e97442423f90c31899308ed
3,543
agda
Agda
agda-stdlib-0.9/src/Data/Nat/DivMod.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
1
2016-10-20T15:52:05.000Z
2016-10-20T15:52:05.000Z
agda-stdlib-0.9/src/Data/Nat/DivMod.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
null
null
null
agda-stdlib-0.9/src/Data/Nat/DivMod.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
null
null
null
------------------------------------------------------------------------ -- The Agda standard library -- -- Integer division ------------------------------------------------------------------------ module Data.Nat.DivMod where open import Data.Nat as Nat open import Data.Nat.Properties open SemiringSolver open import Data.Fin as Fin using (Fin; zero; suc; toℕ; fromℕ) import Data.Fin.Properties as Fin open import Induction.Nat open import Relation.Nullary.Decidable open import Relation.Binary.PropositionalEquality open ≡-Reasoning open import Function ------------------------------------------------------------------------ -- Some boring lemmas private lem₁ : (m k : ℕ) → Nat.suc m ≡ suc (toℕ (Fin.inject+ k (fromℕ m)) + 0) lem₁ m k = cong suc $ begin m ≡⟨ sym $ Fin.to-from m ⟩ toℕ (fromℕ m) ≡⟨ Fin.inject+-lemma k (fromℕ m) ⟩ toℕ (Fin.inject+ k (fromℕ m)) ≡⟨ solve 1 (λ x → x := x :+ con 0) refl _ ⟩ toℕ (Fin.inject+ k (fromℕ m)) + 0 ∎ lem₂ : ∀ n → _ lem₂ = solve 1 (λ n → con 1 :+ n := con 1 :+ (n :+ con 0)) refl lem₃ : ∀ n k q (r : Fin n) eq → suc n + k ≡ toℕ r + suc q * n lem₃ n k q r eq = begin suc n + k ≡⟨ solve 2 (λ n k → con 1 :+ n :+ k := n :+ (con 1 :+ k)) refl n k ⟩ n + suc k ≡⟨ cong (_+_ n) eq ⟩ n + (toℕ r + q * n) ≡⟨ solve 3 (λ n r q → n :+ (r :+ q :* n) := r :+ (con 1 :+ q) :* n) refl n (toℕ r) q ⟩ toℕ r + suc q * n ∎ ------------------------------------------------------------------------ -- Division -- A specification of integer division. record DivMod (dividend divisor : ℕ) : Set where constructor result field quotient : ℕ remainder : Fin divisor property : dividend ≡ toℕ remainder + quotient * divisor -- Integer division with remainder. -- Note that Induction.Nat.<-rec is used to establish termination of -- division. The run-time complexity of this implementation of integer -- division should be linear in the size of the dividend, assuming -- that well-founded recursion and the equality type are optimised -- properly (see "Inductive Families Need Not Store Their Indices" -- (Brady, McBride, McKinna, TYPES 2003)). _divMod_ : (dividend divisor : ℕ) {≢0 : False (divisor ≟ 0)} → DivMod dividend divisor _divMod_ m n {≢0} = <-rec Pred dm m n {≢0} where Pred : ℕ → Set Pred dividend = (divisor : ℕ) {≢0 : False (divisor ≟ 0)} → DivMod dividend divisor 1+_ : ∀ {k n} → DivMod (suc k) n → DivMod (suc n + k) n 1+_ {k} {n} (result q r eq) = result (1 + q) r (lem₃ n k q r eq) dm : (dividend : ℕ) → <-Rec Pred dividend → Pred dividend dm m rec zero {≢0 = ()} dm zero rec (suc n) = result 0 zero refl dm (suc m) rec (suc n) with compare m n dm (suc m) rec (suc .(suc m + k)) | less .m k = result 0 r (lem₁ m k) where r = suc (Fin.inject+ k (fromℕ m)) dm (suc m) rec (suc .m) | equal .m = result 1 zero (lem₂ m) dm (suc .(suc n + k)) rec (suc n) | greater .n k = 1+ rec (suc k) le (suc n) where le = s≤′s (s≤′s (n≤′m+n n k)) -- Integer division. _div_ : (dividend divisor : ℕ) {≢0 : False (divisor ≟ 0)} → ℕ _div_ m n {≢0} = DivMod.quotient $ _divMod_ m n {≢0} -- The remainder after integer division. _mod_ : (dividend divisor : ℕ) {≢0 : False (divisor ≟ 0)} → Fin divisor _mod_ m n {≢0} = DivMod.remainder $ _divMod_ m n {≢0}
33.424528
79
0.518769
50b8352825106b5e804d0de7128705ec9cf5af8b
227
agda
Agda
test/Succeed/Issue3667.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue3667.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue3667.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
data Unit : Set where unit : Unit P : Unit → Set P unit = Unit postulate Q : (u : Unit) → P u → Set variable u : Unit p : P u postulate q : P u → Q u p q' : (u : Unit) (p : P u) → P u → Q u p q' u p = q {u} {p}
11.35
39
0.493392
a1faad9bcffd8fb4ac9dd34073bae31d434acbad
63
agda
Agda
test/epic/Prelude/Unit.agda
pthariensflame/agda
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
[ "BSD-3-Clause" ]
null
null
null
test/epic/Prelude/Unit.agda
pthariensflame/agda
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
[ "BSD-3-Clause" ]
null
null
null
test/epic/Prelude/Unit.agda
pthariensflame/agda
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
[ "BSD-3-Clause" ]
null
null
null
module Prelude.Unit where data Unit : Set where unit : Unit
12.6
25
0.730159
416becf895a38ad44c9d7aa9c062750a6f2ae9e5
4,408
agda
Agda
core/lib/types/Wedge.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
null
null
null
core/lib/types/Wedge.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
null
null
null
core/lib/types/Wedge.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
1
2018-12-26T21:31:57.000Z
2018-12-26T21:31:57.000Z
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics open import lib.types.Coproduct open import lib.types.Paths open import lib.types.Pointed open import lib.types.Pushout open import lib.types.PushoutFlattening open import lib.types.PushoutFmap open import lib.types.Span open import lib.types.Unit -- Wedge of two pointed types is defined as a particular case of pushout module lib.types.Wedge where module _ {i j} (X : Ptd i) (Y : Ptd j) where wedge-span : Span wedge-span = span (de⊙ X) (de⊙ Y) Unit (λ _ → pt X) (λ _ → pt Y) Wedge : Type (lmax i j) Wedge = Pushout wedge-span infix 80 _∨_ _∨_ = Wedge module _ {i j} {X : Ptd i} {Y : Ptd j} where winl : de⊙ X → X ∨ Y winl x = left x winr : de⊙ Y → X ∨ Y winr y = right y wglue : winl (pt X) == winr (pt Y) wglue = glue tt module _ {i j} (X : Ptd i) (Y : Ptd j) where ⊙Wedge : Ptd (lmax i j) ⊙Wedge = ⊙[ Wedge X Y , winl (pt X) ] infix 80 _⊙∨_ _⊙∨_ = ⊙Wedge module _ {i j} {X : Ptd i} {Y : Ptd j} where ⊙winl : X ⊙→ X ⊙∨ Y ⊙winl = (winl , idp) ⊙winr : Y ⊙→ X ⊙∨ Y ⊙winr = (winr , ! wglue) module _ {i j} {X : Ptd i} {Y : Ptd j} where module WedgeElim {k} {P : X ∨ Y → Type k} (inl* : (x : de⊙ X) → P (winl x)) (inr* : (y : de⊙ Y) → P (winr y)) (glue* : inl* (pt X) == inr* (pt Y) [ P ↓ wglue ]) where private module M = PushoutElim inl* inr* (λ _ → glue*) f = M.f glue-β = M.glue-β unit open WedgeElim public using () renaming (f to Wedge-elim) module WedgeRec {k} {C : Type k} (inl* : de⊙ X → C) (inr* : de⊙ Y → C) (glue* : inl* (pt X) == inr* (pt Y)) where private module M = PushoutRec {d = wedge-span X Y} inl* inr* (λ _ → glue*) f = M.f glue-β = M.glue-β unit open WedgeRec public using () renaming (f to Wedge-rec) module ⊙WedgeRec {i j k} {X : Ptd i} {Y : Ptd j} {Z : Ptd k} (g : X ⊙→ Z) (h : Y ⊙→ Z) where open WedgeRec (fst g) (fst h) (snd g ∙ ! (snd h)) public ⊙f : X ⊙∨ Y ⊙→ Z ⊙f = (f , snd g) ⊙winl-β : ⊙f ⊙∘ ⊙winl == g ⊙winl-β = idp ⊙winr-β : ⊙f ⊙∘ ⊙winr == h ⊙winr-β = ⊙λ= (λ _ → idp) $ ap (_∙ snd g) (ap-! f wglue ∙ ap ! glue-β ∙ !-∙ (snd g) (! (snd h))) ∙ ∙-assoc (! (! (snd h))) (! (snd g)) (snd g) ∙ ap (! (! (snd h)) ∙_) (!-inv-l (snd g)) ∙ ∙-unit-r (! (! (snd h))) ∙ !-! (snd h) ⊙Wedge-rec = ⊙WedgeRec.⊙f ⊙Wedge-rec-post∘ : ∀ {i j k l} {X : Ptd i} {Y : Ptd j} {Z : Ptd k} {W : Ptd l} (k : Z ⊙→ W) (g : X ⊙→ Z) (h : Y ⊙→ Z) → k ⊙∘ ⊙Wedge-rec g h == ⊙Wedge-rec (k ⊙∘ g) (k ⊙∘ h) ⊙Wedge-rec-post∘ k g h = ⊙λ= (Wedge-elim (λ _ → idp) (λ _ → idp) (↓-='-in' $ ⊙WedgeRec.glue-β (k ⊙∘ g) (k ⊙∘ h) ∙ lemma (fst k) (snd g) (snd h) (snd k) ∙ ! (ap (ap (fst k)) (⊙WedgeRec.glue-β g h)) ∙ ∘-ap (fst k) (fst (⊙Wedge-rec g h)) wglue)) idp where lemma : ∀ {i j} {A : Type i} {B : Type j} (f : A → B) {x y z : A} {w : B} (p : x == z) (q : y == z) (r : f z == w) → (ap f p ∙ r) ∙ ! (ap f q ∙ r) == ap f (p ∙ ! q) lemma f idp idp idp = idp ⊙Wedge-rec-η : ∀ {i j} {X : Ptd i} {Y : Ptd j} → ⊙Wedge-rec ⊙winl ⊙winr == ⊙idf (X ⊙∨ Y) ⊙Wedge-rec-η = ⊙λ= (Wedge-elim (λ _ → idp) (λ _ → idp) (↓-='-in' $ ap-idf wglue ∙ ! (!-! wglue) ∙ ! (⊙WedgeRec.glue-β ⊙winl ⊙winr))) idp module _ {i j} {X : Ptd i} {Y : Ptd j} where add-wglue : de⊙ (X ⊙⊔ Y) → X ∨ Y add-wglue (inl x) = winl x add-wglue (inr y) = winr y ⊙add-wglue : X ⊙⊔ Y ⊙→ X ⊙∨ Y ⊙add-wglue = add-wglue , idp module Fold {i} {X : Ptd i} = ⊙WedgeRec (⊙idf X) (⊙idf X) fold = Fold.f ⊙fold = Fold.⊙f module _ {i j} (X : Ptd i) (Y : Ptd j) where module Projl = ⊙WedgeRec (⊙idf X) (⊙cst {X = Y}) module Projr = ⊙WedgeRec (⊙cst {X = X}) (⊙idf Y) projl = Projl.f projr = Projr.f ⊙projl = Projl.⊙f ⊙projr = Projr.⊙f module _ {i i' j j'} {X : Ptd i} {X' : Ptd i'} {Y : Ptd j} {Y' : Ptd j'} (eqX : X ⊙≃ X') (eqY : Y ⊙≃ Y') where wedge-span-emap : SpanEquiv (wedge-span X Y) (wedge-span X' Y') wedge-span-emap = ( span-map (fst (fst eqX)) (fst (fst eqY)) (idf _) (comm-sqr λ _ → snd (fst eqX)) (comm-sqr λ _ → snd (fst eqY)) , snd eqX , snd eqY , idf-is-equiv _) ∨-emap : X ∨ Y ≃ X' ∨ Y' ∨-emap = Pushout-emap wedge-span-emap ⊙∨-emap : X ⊙∨ Y ⊙≃ X' ⊙∨ Y' ⊙∨-emap = ≃-to-⊙≃ ∨-emap (ap winl (snd (fst eqX)))
26.878049
78
0.495463
df844e17a2b8271ec4ac9fba2fce7f5b6ecc8d8a
2,431
agda
Agda
theorems/homotopy/WedgeExtension.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
null
null
null
theorems/homotopy/WedgeExtension.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
null
null
null
theorems/homotopy/WedgeExtension.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
1
2018-12-26T21:31:57.000Z
2018-12-26T21:31:57.000Z
{-# OPTIONS --without-K --rewriting #-} open import HoTT module homotopy.WedgeExtension {i j} {A : Type i} {a₀ : A} {B : Type j} {b₀ : B} where -- easier to keep track of than a long list of arguments record args : Type (lmax (lsucc i) (lsucc j)) where field n m : ℕ₋₂ cA : is-connected (S n) A cB : is-connected (S m) B P : A → B → (n +2+ m) -Type (lmax i j) f : (a : A) → fst (P a b₀) g : (b : B) → fst (P a₀ b) p : f a₀ == g b₀ private module _ (r : args) where open args r Q : A → n -Type (lmax i j) Q a = ((Σ (∀ b → fst (P a b)) (λ k → (k ∘ cst b₀) == cst (f a)) , conn-elim-general (pointed-conn-out B b₀ cB) (P a) (cst (f a)))) l : Π A (fst ∘ Q) l = conn-elim (pointed-conn-out A a₀ cA) Q (λ (_ : Unit) → (g , ap cst (! p))) module _ (r : args) where open args r ext : ∀ a → ∀ b → fst (P a b) ext a = fst (l r a) module _ {r : args} where open args r abstract β-l : ∀ a → ext r a b₀ == f a β-l a = ap (λ t → t unit) (snd (l r a)) abstract β-r-aux : fst (l r a₀) == g β-r-aux = fst= (conn-elim-β (pointed-conn-out A a₀ cA) (Q r) (λ (_ : Unit) → (g , ap cst (! p))) unit) abstract β-r : ∀ b → ext r a₀ b == g b β-r = app= β-r-aux abstract coh : ! (β-l a₀) ∙ β-r b₀ == p coh = ! (β-l a₀) ∙ β-r b₀ =⟨ ! lemma₂ |in-ctx (λ w → ! w ∙ β-r b₀) ⟩ ! (β-r b₀ ∙ ! p) ∙ β-r b₀ =⟨ !-∙ (β-r b₀) (! p) |in-ctx (λ w → w ∙ β-r b₀) ⟩ (! (! p) ∙ ! (β-r b₀)) ∙ β-r b₀ =⟨ !-! p |in-ctx (λ w → (w ∙ ! (β-r b₀)) ∙ β-r b₀) ⟩ (p ∙ ! (β-r b₀)) ∙ β-r b₀ =⟨ ∙-assoc p (! (β-r b₀)) (β-r b₀) ⟩ p ∙ ! (β-r b₀) ∙ β-r b₀ =⟨ ap (λ w → p ∙ w) (!-inv-l (β-r b₀)) ∙ ∙-unit-r p ⟩ p ∎ where lemma₁ : β-l a₀ == ap (λ s → s unit) (ap cst (! p)) [ (λ k → k b₀ == f a₀) ↓ β-r-aux ] lemma₁ = ap↓ (ap (λ s → s unit)) $ snd= (conn-elim-β (pointed-conn-out A a₀ cA) (Q r) (λ (_ : Unit) → (g , ap cst (! p))) unit) lemma₂ : β-r b₀ ∙ ! p == β-l a₀ lemma₂ = ap (λ w → β-r b₀ ∙ w) (! (ap-idf (! p)) ∙ ap-∘ (λ s → s unit) cst (! p)) ∙ (! (↓-app=cst-out lemma₁))
29.646341
74
0.393665
12fdb2b52721fb5010c8eabd62f2f95bb8652185
3,186
agda
Agda
Graph/Category.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
Graph/Category.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
Graph/Category.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
open import Type module Graph.Category {ℓ₁ ℓ₂} {V : Type{ℓ₁}} where open import Data.Tuple as Tuple using () open import Functional open import Logic.Propositional import Lvl open import Graph{ℓ₁}{ℓ₂}(V) open import Graph.Walk{ℓ₁}{ℓ₂}{V} open import Graph.Walk.Proofs{ℓ₁}{ℓ₂}{V} open import Relator.Equals open import Relator.Equals.Proofs open import Relator.Equals.Proofs.Equiv open import Structure.Category import Structure.Categorical.Names as Names open import Structure.Categorical.Properties open import Structure.Function open import Structure.Operator open import Structure.Relator.Properties open import Syntax.Transitivity module _ (_⟶_ : Graph) where private variable a b c d : V private variable e e₁ e₂ e₃ : a ⟶ b private variable w w₁ w₂ w₃ : Walk(_⟶_) a b Walk-transitivity-raw-identityₗ-raw : (Walk-transitivity-raw at w ≡ w) Walk-transitivity-raw-identityₗ-raw = [≡]-intro Walk-transitivity-raw-identityᵣ-raw : (Walk-transitivity-raw w at ≡ w) Walk-transitivity-raw-identityᵣ-raw {a}{.a} {Walk.at} = [≡]-intro Walk-transitivity-raw-identityᵣ-raw {a}{c} {Walk.prepend {b = b} e w} = congruence₁(prepend e) (Walk-transitivity-raw-identityᵣ-raw {b}{c} {w}) Walk-transitivity-raw-associativity-raw : Names.Morphism.Associativity{Obj = V}(\{w} → Walk-transitivity-raw{_⟶_ = _⟶_}{z = w}) Walk-transitivity-raw-associativity-raw {a}{b}{c}{d} {Walk.at} {w₂}{w₃} = [≡]-intro Walk-transitivity-raw-associativity-raw {a}{b}{c}{d} {Walk.prepend e w₁}{w₂}{w₃} = congruence₁(prepend e) (Walk-transitivity-raw-associativity-raw {a}{b}{c}{_} {w₁}{w₂}{w₃}) instance Walk-transitivity-raw-identityₗ : Morphism.Identityₗ{Obj = V}(\{w} → Walk-transitivity-raw{z = w})(at) Walk-transitivity-raw-identityₗ = Morphism.intro Walk-transitivity-raw-identityₗ-raw instance Walk-transitivity-raw-identityᵣ : Morphism.Identityᵣ{Obj = V}(\{w} → Walk-transitivity-raw{z = w})(at) Walk-transitivity-raw-identityᵣ = Morphism.intro Walk-transitivity-raw-identityᵣ-raw instance Walk-transitivity-raw-identity : Morphism.Identity{Obj = V}(\{w} → Walk-transitivity-raw{_⟶_ = _⟶_}{z = w})(at) Walk-transitivity-raw-identity = [∧]-intro Walk-transitivity-raw-identityₗ Walk-transitivity-raw-identityᵣ -- The category arising from a graph by its vertices and walks. -- Note that `Walk` is defined so that every sequence of edges have an unique walk. For example `ReflexitiveTransitiveClosure` (a relation equivalent to a walk) would not work. free-category : Category(Walk(_⟶_)) Category._∘_ free-category = swap(transitivity(Walk(_⟶_))) Category.id free-category = reflexivity(Walk(_⟶_)) BinaryOperator.congruence (Category.binaryOperator free-category) [≡]-intro [≡]-intro = [≡]-intro Morphism.Associativity.proof (Category.associativity free-category) {a}{b}{c}{d} {w₁}{w₂}{w₃} = symmetry(_≡_) (Walk-transitivity-raw-associativity-raw {d}{c}{b}{a} {w₃}{w₂}{w₁}) Morphism.Identityₗ.proof (Tuple.left (Category.identity free-category)) = Walk-transitivity-raw-identityᵣ-raw Morphism.Identityᵣ.proof (Tuple.right (Category.identity free-category)) = Walk-transitivity-raw-identityₗ-raw
53.1
179
0.728186
1d396f4e6e39820424ea6917f7d8c62aac654572
883
agda
Agda
part1/lists/map-is-foldr.agda
akiomik/plfa-solutions
df7722b88a9b3dfde320a690b78c4c1ef8c7c547
[ "Apache-2.0" ]
1
2020-07-07T09:42:22.000Z
2020-07-07T09:42:22.000Z
part1/lists/map-is-foldr.agda
akiomik/plfa-solutions
df7722b88a9b3dfde320a690b78c4c1ef8c7c547
[ "Apache-2.0" ]
null
null
null
part1/lists/map-is-foldr.agda
akiomik/plfa-solutions
df7722b88a9b3dfde320a690b78c4c1ef8c7c547
[ "Apache-2.0" ]
null
null
null
module map-is-foldr where import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; cong) open Eq.≡-Reasoning open import lists using (List; []; _∷_; map; foldr) postulate -- 外延性の公理 extensionality : ∀ {A B : Set} {f g : A → B} → (∀ (x : A) → f x ≡ g x) ----------------------- → f ≡ g -- 外延性の公理を利用した証明のための補題 lemma : ∀ {A B : Set} → (f : A → B) → (xs : List A) → map f xs ≡ foldr (λ x xs → f x ∷ xs) [] xs lemma f [] = begin map f [] ≡⟨⟩ [] ≡⟨⟩ foldr (λ x xs → f x ∷ xs) [] [] ∎ lemma f (x ∷ xs) = begin map f (x ∷ xs) ≡⟨⟩ f x ∷ map f xs ≡⟨ cong (f x ∷_) (lemma f xs) ⟩ f x ∷ foldr (λ x xs → f x ∷ xs) [] xs ≡⟨⟩ foldr (λ x xs → f x ∷ xs) [] (x ∷ xs) ∎ -- mapが畳み込みで表現できることの証明 map-is-foldr : ∀ {A B : Set} → (f : A → B) → map f ≡ foldr (λ x xs → f x ∷ xs) [] map-is-foldr f = extensionality (lemma f)
21.536585
51
0.484711
cb8cd4ebb79c39065810aae2219ed875a9ece805
439
agda
Agda
test/Succeed/RewriteQualified.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/RewriteQualified.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/RewriteQualified.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2016-08-01, issue #2125, qualified names in pragmas {-# OPTIONS --rewriting --confluence-check #-} import Common.Equality as Eq {-# BUILTIN REWRITE Eq._≡_ #-} -- qualified name, should be accepted postulate A : Set a b : A module M where open Eq postulate rule : a ≡ b {-# REWRITE M.rule #-} -- qualified name, should be accepted -- ERROR WAS: in the name M.rule, the part M.rule is not valid -- NOW: works
19.954545
68
0.66287
5972e0b99fab564766e43d1e09f5a451afc063ff
566
agda
Agda
test/Succeed/Issue5291.agda
cagix/agda
cc026a6a97a3e517bb94bafa9d49233b067c7559
[ "BSD-2-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue5291.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue5291.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2021-08-19, issue #5291 reported by gergoerdi -- https://stackoverflow.com/q/66816547/477476 open import Agda.Builtin.Char open import Agda.Builtin.String works : Char works = '\SOH' -- This used to fail as the matcher was committed to finding SOH after SO. -- (Worked only for prefix-free matching.) test : Char test = '\SO' -- Here, all the silly legacy ASCII escape sequences in their glorious detail... all : String all = "\NUL\SOH\STX\ETX\EOT\ENQ\ACK\BEL\BS\HT\LF\VT\FF\CR\SO\SI\DEL\DLE\DC1\DC2\DC3\DC4\NAK\SYN\ETB\CAN\EM\SUB\ESC\FS\GS\RS\US"
28.3
127
0.724382
dfa8f69e4fa80281f406f53bd4f7e7dd6a6bfd7a
4,695
agda
Agda
agda/sn-calculus-confluence.agda
florence/esterel-calculus
4340bef3f8df42ab8167735d35a4cf56243a45cd
[ "MIT" ]
3
2020-04-16T10:58:53.000Z
2020-07-01T03:59:31.000Z
agda/sn-calculus-confluence.agda
florence/esterel-calculus
4340bef3f8df42ab8167735d35a4cf56243a45cd
[ "MIT" ]
null
null
null
agda/sn-calculus-confluence.agda
florence/esterel-calculus
4340bef3f8df42ab8167735d35a4cf56243a45cd
[ "MIT" ]
1
2020-04-15T20:02:49.000Z
2020-04-15T20:02:49.000Z
module _ where open import Data.Nat using (_+_) open import Data.Nat.Properties.Simple using ( +-comm ; +-assoc) open import utility open import Esterel.Lang open import Esterel.Lang.Properties open import Esterel.Environment as Env open import Esterel.Context open import Data.Product open import Data.Sum open import Data.Bool open import Data.List open import Relation.Nullary open import Relation.Binary.PropositionalEquality open import Data.Empty open import sn-calculus open import context-properties open import Esterel.Lang.Binding open import Data.Maybe using ( just ) open import Function using (_$_) open import Data.FiniteMap import Data.OrderedListMap as OMap open import Data.Nat as Nat using (ℕ) open import Esterel.Variable.Signal as Signal using (Signal) open import Esterel.Variable.Shared as SharedVar using (SharedVar) open import Esterel.Variable.Sequential as SeqVar open import sn-calculus-confluence.helper open import sn-calculus-confluence.rec open import sn-calculus-confluence.potrec open import sn-calculus-confluence.potpot ρ-conf : ∀{p FV BV ql qr θ qi A} → CorrectBinding p FV BV → p sn⟶₁ ql → p sn⟶₁ qr → p ≡ (ρ⟨ θ , A ⟩· qi) → ql ≡ qr ⊎ (∃ (λ o → ql sn⟶₁ o × qr sn⟶₁ o)) ⊎ ql sn⟶₁ qr ⊎ qr sn⟶₁ ql ρ-conf {(ρ⟨ θ , .A ⟩· qi)}{ql = ql}{qr = qr}{A = A} cb redl redr refl with ρ-stays-ρ-sn⟶₁ redl | ρ-stays-ρ-sn⟶₁ redr ... | (θl , qlin , Al , refl) | (θr , qrin , Ar , refl) with get-view redl | get-view redr ρ-conf {(ρ⟨ θ , .A ⟩· qi)}{ql = ql}{qr = qr}{A = A} cb redl redr refl | (θl , qlin , Al , refl) | (θr , qrin , Ar , refl) | inj₁ (_ , _ , _ , _ , _ , viewl) | inj₁ (_ , _ , _ , _ , _ , viewr) with E-view-main-bind viewl viewr ... | inj₁ (e= , q= , θ= , A=) rewrite e= | q= | θ= | A= = inj₁ refl ... | inj₂ ~a with ρ-conf-rec cb _ _ ~a redl redr _ _ viewl viewr ... | (θo , Ao , so , _ , _ , _ , _ , _ , _ , redol , redor , _) = inj₂ $ inj₁ ((ρ⟨ θo , Ao ⟩· so) , redol , redor) ρ-conf {(ρ⟨ θ , .A ⟩· qi)}{ql = ql}{qr = qr}{A = A} cb redl redr refl | (θl , qlin , Al , refl) | (θr , qrin , Ar , refl) | inj₁ (_ , _ , _ , _ , _ , viewl) | inj₂ (_ , _ , viewr) with ρ-pot-conf-rec cb viewr viewl ... | inj₁ redo = inj₂ (inj₂ (inj₂ redo)) ... | inj₂ (s , env , Ao , redol , redor) = inj₂ $ inj₁ (ρ⟨ env , Ao ⟩· s , redor , redol) ρ-conf {(ρ⟨ θ , .A ⟩· qi)}{ql = ql}{qr = qr}{A = A} cb redl redr refl | (θl , qlin , Al , refl) | (θr , qrin , Ar , refl) | inj₂ (_ , _ , viewl) | inj₁ (_ , _ , _ , _ , _ , viewr) with ρ-pot-conf-rec cb viewl viewr ... | inj₁ redo = inj₂ (inj₂ (inj₁ redo)) ... | inj₂ (s , env , Ao , redol , redor) = inj₂ $ inj₁ ((ρ⟨ env , Ao ⟩· s) , redol , redor) ρ-conf {(ρ⟨ θ , .A ⟩· qi)}{ql = ql}{qr = qr}{A = A} cb redl redr refl | (θl , qlin , Al , refl) | (θr , qrin , Ar , refl) | inj₂ (_ , _ , viewl) | inj₂ (_ , _ , viewr) with pot-pot-conf-rec viewl viewr ... | inj₁ eq = inj₁ eq ... | inj₂ (env , redol , redor) = inj₂ $ inj₁ (ρ⟨ env , A ⟩· qi , redol , redor) R-confluent : ∀{p q r BV FV} → CorrectBinding p BV FV → p sn⟶₁ q → p sn⟶₁ r → q ≡ r ⊎ (∃ (λ s → q sn⟶₁ s × r sn⟶₁ s)) ⊎ q sn⟶₁ r ⊎ r sn⟶₁ q R-confluent {.(_ ∥ _)} cb (rpar-done-right p'' q'') (rpar-done-right p' q') = inj₁ ( value-max-unique{d1 = (dhalted p'')}{d2 = q''}{d3 = (dhalted p')}{d4 = q'} ) R-confluent {.(_ ∥ _)} cb (rpar-done-right p'' q'') (rpar-done-left p' q') = inj₁ ( value-max-unique{d1 = (dhalted p'')}{d2 = q''}{d3 = p'}{d4 = (dhalted q')} ) R-confluent {.(_ ∥ _)} cb (rpar-done-left p'' q'') (rpar-done-right p' q') = inj₁ (value-max-unique{d1 = (p'')}{d2 =(dhalted q'')}{d3 = (dhalted p')}{d4 = (q')}) R-confluent {.(_ ∥ _)} cb (rpar-done-left p'' q'') (rpar-done-left p' q') = inj₁ (value-max-unique{d1 = p''}{d2 = (dhalted q'')}{d3 = p'}{d4 = (dhalted q')}) R-confluent {.(loop _)} cb rloop-unroll rloop-unroll = inj₁ refl R-confluent {.(nothin >> _)} cb rseq-done rseq-done = inj₁ refl R-confluent {.(exit _ >> _)} cb rseq-exit rseq-exit = inj₁ refl R-confluent {.(loopˢ (exit _) _)} cb rloopˢ-exit rloopˢ-exit = inj₁ refl R-confluent {.(suspend nothin _)} cb (rsuspend-done hnothin) (rsuspend-done hnothin) = inj₁ refl R-confluent {.(suspend (exit n) _)} cb (rsuspend-done (hexit n)) (rsuspend-done (hexit .n)) = inj₁ refl R-confluent {.(trap nothin)} cb (rtrap-done hnothin) (rtrap-done hnothin) = inj₁ refl R-confluent {.(trap (exit n))} cb (rtrap-done (hexit n)) (rtrap-done (hexit .n)) = inj₁ refl R-confluent {.(signl _ _)} cb rraise-signal rraise-signal = inj₁ refl R-confluent {p@(ρ⟨ _ , _ ⟩· _)} cb redl redr = ρ-conf cb redl redr refl
57.962963
191
0.592332
184b4eca0530faea9a8d3070bbfc9352582289b8
1,270
agda
Agda
test/Succeed/Issue2045.agda
cagix/agda
cc026a6a97a3e517bb94bafa9d49233b067c7559
[ "BSD-2-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue2045.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue2045.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2016-06-16 Issue #2045 -- Size solver should be called before checking extended lambda -- {-# OPTIONS -v tc.term.exlam:100 #-} {-# OPTIONS --sized-types #-} open import Common.Size postulate anything : ∀{a}{A : Set a} → A data Exp : Size → Set where abs : ∀ i (t : Exp i) → Exp (↑ i) data Val : ∀ i (t : Exp i) → Set where valAbs : ∀ i (t : Exp i) → Val (↑ i) (abs i t) data Whnf i (t : Exp i) : Set where immed : (v : Val i t) → Whnf i t postulate Evaluate : ∀ i (t : Exp i) (P : (w : Whnf i t) → Set) → Set worksE : ∀ i (fa : Exp i) → Set worksE i fa = Evaluate i fa λ{ (immed (valAbs _ _)) → anything } works : ∀ i (fa : Exp i) → Set works i fa = Evaluate i fa aux where aux : Whnf i fa → Set aux (immed (valAbs _ _)) = anything test : ∀ i (fa : Exp i) → Set test i fa = Evaluate _ fa λ{ (immed (valAbs _ _)) → anything } -- Should work. -- WAS: -- extended lambda's implementation ".extendedlambda1" has type: -- (Whnf (_38 i fa) fa → Set) -- Cannot instantiate the metavariable _38 to solution (↑ i₁) since it -- contains the variable i₁ which is not in scope of the metavariable -- or irrelevant in the metavariable but relevant in the solution -- when checking that the pattern (valAbs _ _) has type -- (Val (_38 i fa) fa)
27.021277
70
0.624409
29d73f48434ddea7c78094de5c31cc0de9e18924
496
agda
Agda
test/succeed/Issue300.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
1
2019-11-27T04:41:05.000Z
2019-11-27T04:41:05.000Z
test/succeed/Issue300.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
test/succeed/Issue300.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
{-# OPTIONS --sized-types --show-implicit #-} -- {-# OPTIONS -v tc.size.solve:20 #-} module Issue300 where open import Common.Size data Nat : {size : Size} -> Set where zero : {size : Size} -> Nat {↑ size} suc : {size : Size} -> Nat {size} -> Nat {↑ size} -- Size meta used in a different context than the one created in A : Set1 A = (Id : {i : Size} -> Nat {_} -> Set) (k : Size)(m : Nat {↑ k}) -> Id {k} m -> (j : Size)(n : Nat {j}) -> Id {j} n -- should solve _ with ↑ i
26.105263
64
0.546371
59842f91863e220e366db52b56e599686291d95c
183
agda
Agda
Cubical/HITs/SmashProduct.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
1
2020-03-23T23:52:11.000Z
2020-03-23T23:52:11.000Z
Cubical/HITs/SmashProduct.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
null
null
null
Cubical/HITs/SmashProduct.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --safe #-} module Cubical.HITs.SmashProduct where open import Cubical.HITs.SmashProduct.Base public -- open import Cubical.HITs.SmashProduct.Properties public
26.142857
58
0.786885
4aae168fc47de7fd746f4de0142808776d3e4b23
130
agda
Agda
test/Fail/Issue3420-Identity.agda
favonia/agda
8d433b967567c08afe15d04a5cb63b6f6d8884ee
[ "BSD-2-Clause" ]
null
null
null
test/Fail/Issue3420-Identity.agda
favonia/agda
8d433b967567c08afe15d04a5cb63b6f6d8884ee
[ "BSD-2-Clause" ]
6
2021-10-18T08:12:24.000Z
2021-11-24T08:31:10.000Z
test/Fail/Issue3420-Identity.agda
antoinevanmuylder/agda
bd59d5b07ffe02a43b28d186d95e1747aac5bc8c
[ "BSD-2-Clause" ]
null
null
null
{-# OPTIONS --cubical-compatible #-} open import Agda.Primitive data _≡_ {a} {A : Set a} (x : A) : A → Set where refl : x ≡ x
18.571429
48
0.584615
4a50f51267200cd912fedd98b875686e7cc7c648
775
agda
Agda
univ.agda
hjorthjort/IdrisToAgda
a5f65e28cc9fdfefde49e7d8cf84486601b9e7b1
[ "MIT" ]
2
2020-02-16T23:22:50.000Z
2020-06-29T20:42:43.000Z
univ.agda
hjorthjort/IdrisToAgda
a5f65e28cc9fdfefde49e7d8cf84486601b9e7b1
[ "MIT" ]
1
2019-11-28T17:52:42.000Z
2019-11-28T17:52:42.000Z
univ.agda
hjorthjort/IdrisToAgda
a5f65e28cc9fdfefde49e7d8cf84486601b9e7b1
[ "MIT" ]
1
2019-11-27T16:25:18.000Z
2019-11-27T16:25:18.000Z
open import Agda.Primitive open import Data.List -- f1 : {l : Level} -> (a : Set l) -> (x : a) -> (y : x) -> x -- f1 : (a : Set2) -> (x : a) -> (y : x) -> x -- f1 a x y = ? f0 : (a : Set) -> (x : a) -> a f0 a x = x f1 : (a : Set1) -> (x : a) -> a f1 a x = x myprod : (As : List Set) -> Set myprod = {!!} mysum : (As : List Set) -> Set mysum = {!!} hej : (tyOp : List Set -> Set) -> Set hej = {!!} test1 = hej myprod test2 = hej mysum Type = Set data Dummy : Set where Dum : Dummy -- Start of example hej2 : List Type -> Type -- Is universe-monomorphic in Agda, but polymorphic in Idris hej2 (t ∷ ts) = t hej2 _ = ? test21 : Type test21 = hej2 [ Type ] -- test21 == Type in Idris, but Agda complains test22 : Type test22 = hej2 [ Dummy ] -- test22 == Dummy
19.375
89
0.538065
39e679ffb1b06aa589bb716e887bee6ab30aec6c
807
agda
Agda
Categories/Product/Projections.agda
copumpkin/categories
36f4181d751e2ecb54db219911d8c69afe8ba892
[ "BSD-3-Clause" ]
98
2015-04-15T14:57:33.000Z
2022-03-08T05:20:36.000Z
Categories/Product/Projections.agda
p-pavel/categories
e41aef56324a9f1f8cf3cd30b2db2f73e01066f2
[ "BSD-3-Clause" ]
19
2015-05-23T06:47:10.000Z
2019-08-09T16:31:40.000Z
Categories/Product/Projections.agda
p-pavel/categories
e41aef56324a9f1f8cf3cd30b2db2f73e01066f2
[ "BSD-3-Clause" ]
23
2015-02-05T13:03:09.000Z
2021-11-11T13:50:56.000Z
{-# OPTIONS --universe-polymorphism #-} open import Level open import Categories.Category open import Categories.Product module Categories.Product.Projections {o ℓ e o′ ℓ′ e′} (C : Category o ℓ e) (D : Category o′ ℓ′ e′) where open import Categories.Functor open import Data.Product using (_×_; Σ; _,_; proj₁; proj₂; zip; map; <_,_>; swap) ∏₁ : Functor (Product C D) C ∏₁ = record { F₀ = proj₁ ; F₁ = proj₁ ; identity = refl ; homomorphism = refl ; F-resp-≡ = proj₁ } where open Category.Equiv C ∏₂ : Functor (Product C D) D ∏₂ = record { F₀ = proj₂ ; F₁ = proj₂ ; identity = refl ; homomorphism = refl ; F-resp-≡ = proj₂ } where open Category.Equiv D
22.416667
81
0.552664
50a498bd6b2c040c503cfee4bf5f4a5561799bc5
3,355
agda
Agda
ProcessProgress.agda
danelahman/aeff-agda
71ebed9f90a3eb37ae6cd209457bae23a4d122d1
[ "MIT" ]
4
2020-07-17T00:15:00.000Z
2021-03-22T22:48:48.000Z
ProcessProgress.agda
danelahman/aeff-agda
71ebed9f90a3eb37ae6cd209457bae23a4d122d1
[ "MIT" ]
null
null
null
ProcessProgress.agda
danelahman/aeff-agda
71ebed9f90a3eb37ae6cd209457bae23a4d122d1
[ "MIT" ]
null
null
null
open import Data.Empty open import Data.List renaming (_∷_ to _∷ₗ_ ; [_] to [_]ₗ) open import Data.Maybe open import Data.Product open import Data.Sum open import Data.Unit open import AEff open import AwaitingComputations open import EffectAnnotations open import Preservation open import ProcessPreservation open import Progress open import Renamings open import Substitutions open import Types open import Relation.Binary.PropositionalEquality hiding ([_]) open import Relation.Nullary open import Relation.Nullary.Negation module ProcessProgress where -- PROCESS RESULTS data ParResult⟨_⟩ : {o : O} {PP : PType o} → [] ⊢P⦂ PP → Set where run : {X : VType} {o : O} {i : I} → {M : [] ⊢M⦂ X ! (o , i)} → RunResult⟨ [] ∣ M ⟩ → -------------------------- ParResult⟨ run M ⟩ par : {o o' : O} {PP : PType o} {QQ : PType o'} {P : [] ⊢P⦂ PP} {Q : [] ⊢P⦂ QQ} → ParResult⟨ P ⟩ → ParResult⟨ Q ⟩ → ------------------ ParResult⟨ P ∥ Q ⟩ data ProcResult⟨_⟩ : {o : O} {PP : PType o} → [] ⊢P⦂ PP → Set where proc : {o : O} {PP : PType o} {P : [] ⊢P⦂ PP} → ParResult⟨ P ⟩ → ----------------- ProcResult⟨ P ⟩ signal : {o : O} {PP : PType o} {op : Σₛ} {p : op ∈ₒ o} {V : [] ⊢V⦂ ``(payload op)} {P : [] ⊢P⦂ PP} → ProcResult⟨ P ⟩ → --------------------------- ProcResult⟨ ↑ op p V P ⟩ -- PROGRESS THEOREM FOR PROCESSES {- THEOREM 4.3 -} proc-progress : {o : O} {PP : PType o} → (P : [] ⊢P⦂ PP) → ------------------------------------------------------------------------------- (Σ[ o' ∈ O ] Σ[ QQ ∈ PType o' ] Σ[ r ∈ PP ⇝ QQ ] Σ[ Q ∈ [] ⊢P⦂ QQ ] (P [ r ]↝ Q) ⊎ ProcResult⟨ P ⟩) proc-progress (run {X} {o} {i} M) with progress M ... | inj₁ (M' , r) = inj₁ (_ , _ , _ , _ , run r) ... | inj₂ (comp R) = inj₂ (proc (run R)) ... | inj₂ (signal {_} {_} {_} {_} {p} {V} {Q} R) = inj₁ (_ , _ , _ , _ , ↑ p V Q) proc-progress (P ∥ Q) with proc-progress P ... | inj₁ (o' , PP' , r , P' , r') = inj₁ (_ , _ , _ , _ , context ([-] ∥ₗ Q) r') ... | inj₂ R with proc-progress Q ... | inj₁ (o' , QQ' , r , Q' , r') = inj₁ (_ , _ , _ , _ , context (P ∥ᵣ [-]) r') proc-progress (P ∥ Q) | inj₂ (proc R) | inj₂ (proc R') = inj₂ (proc (par R R')) proc-progress (P ∥ .(↑ _ _ _ _)) | inj₂ R | inj₂ (signal {_} {_} {_} {p} {V} {Q} R') = inj₁ (_ , _ , _ , _ , ↑-∥ᵣ p V P Q) proc-progress (.(↑ _ _ _ _) ∥ Q) | inj₂ (signal {_} {_} {_} {p} {V} {P} R) | inj₂ R' = inj₁ (_ , _ , _ , _ , ↑-∥ₗ p V P Q) proc-progress (↑ op p V P) with proc-progress P ... | inj₁ (o' , PP' , r , P' , r') = inj₁ (_ , _ , _ , _ , context (↑ op p V [-]) r') ... | inj₂ R = inj₂ (signal R) proc-progress (↓ op V P) with proc-progress P ... | inj₁ (o' , OO' , r , P' , r') = inj₁ (_ , _ , _ , _ , context (↓ op V [-]) r') ... | inj₂ (proc (run {_} {_} {_} {M} R)) = inj₁ (_ , _ , _ , _ , ↓-run V M) ... | inj₂ (proc (par {_} {_} {_} {_} {Q} {Q'} R R')) = inj₁ (_ , _ , _ , _ , ↓-∥ V Q Q') ... | inj₂ (signal {_} {_} {_} {p} {W} {Q} R) = inj₁ (_ , _ , _ , _ , ↓-↑ p V W Q)
30.225225
96
0.430402
10088c6888bc6db111fe4d5bc49ad4efaf1630f4
434
agda
Agda
src/PathStructure/Empty.agda
vituscze/HoTT-lectures
7730385adfdbdda38ee8b124be3cdeebb7312c65
[ "BSD-3-Clause" ]
null
null
null
src/PathStructure/Empty.agda
vituscze/HoTT-lectures
7730385adfdbdda38ee8b124be3cdeebb7312c65
[ "BSD-3-Clause" ]
null
null
null
src/PathStructure/Empty.agda
vituscze/HoTT-lectures
7730385adfdbdda38ee8b124be3cdeebb7312c65
[ "BSD-3-Clause" ]
null
null
null
{-# OPTIONS --without-K #-} module PathStructure.Empty where open import Equivalence open import Types split-path : {x y : ⊥} → x ≡ y → ⊥ split-path = J (λ _ _ _ → ⊥) id _ _ merge-path : {x y : ⊥} → ⊥ → x ≡ y merge-path = 0-elim split-merge-eq : {x y : ⊥} → (x ≡ y) ≃ ⊥ split-merge-eq = split-path , (merge-path , λ b → 0-elim b) , (merge-path , J (λ _ _ p → merge-path (split-path p) ≡ p) (λ b → 0-elim b) _ _)
21.7
47
0.543779
310dde3d3b482ad31915f9c7bcd69bafcea192ef
6,999
agda
Agda
formalization/Data/Bit.agda
brunoczim/Celeste
9f5129d97ee7b89fb8e43136779a78806b7506ab
[ "MIT" ]
1
2020-09-16T17:31:57.000Z
2020-09-16T17:31:57.000Z
formalization/Data/Bit.agda
brunoczim/Celeste
9f5129d97ee7b89fb8e43136779a78806b7506ab
[ "MIT" ]
null
null
null
formalization/Data/Bit.agda
brunoczim/Celeste
9f5129d97ee7b89fb8e43136779a78806b7506ab
[ "MIT" ]
null
null
null
module Data.Bit where open import Data.Nat.Literal using (Number; ℕ-num; Fin-num) open import Data.Nat using (ℕ ; suc; zero; ⌊_/2⌋) renaming (_*_ to ℕ*; _+_ to ℕ+; _≤_ to ℕ≤; _^_ to ℕ^) open import Data.Int.Literal using (Negative) open import Data.Fin using (Fin; suc; zero; raise) renaming (toℕ to finToℕ; fromℕ to finFromℕ) open import Data.Product using (_×_; _,_; proj₁; proj₂) open import Data.Vec using (Vec; []; _∷_; _++_; replicate; insert; head; tail) renaming (map to mapVec) open import Data.Unit using (⊤) open import Data.Empty using (⊥) open import Level using (_⊔_) open import Data.Bool using (Bool; false; true) renaming (_∧_ to Bool-∧) open import Data.Maybe using (Maybe; just; nothing; map) record WithCarry {a} {c} (A : Set a) (C : Set c) : Set (a ⊔ c) where constructor _with-carry:_ field result : A carry : C open WithCarry public record Overflowing {a} (A : Set a) : Set a where constructor _overflow:_ field result : A overflow : Bool open Overflowing public data Bit : Set where b0 : Bit b1 : Bit infixl 8 _-_ _+_ infixl 7 _<<_ _>>_ infixl 6 _∧_ _&_ infixl 5 _⊕_ _^_ infixl 4 _∨_ _~|_ infixl 3 _↔_ _==_ infixl 1 _with-carry:_ fromBool : Bool → Bit fromBool false = b0 fromBool true = b1 toBool : Bit → Bool toBool b0 = false toBool b1 = true ! : Bit → Bit ! b0 = b1 ! b1 = b0 _∧_ : Bit → Bit → Bit b0 ∧ _ = b0 b1 ∧ q = q _∨_ : Bit → Bit → Bit b0 ∨ q = q b1 ∨ _ = b1 _⊕_ : Bit → Bit → Bit b0 ⊕ q = q b1 ⊕ q = ! q _↔_ : Bit → Bit → Bit b0 ↔ q = ! q b1 ↔ q = q maj3 : Bit → Bit → Bit → Bit maj3 p q r = p ∧ q ∨ p ∧ r ∨ q ∧ r half-add : Bit → Bit → WithCarry Bit Bit half-add p q = p ⊕ q with-carry: p ∧ q full-add : Bit → Bit → Bit → WithCarry Bit Bit full-add p q r = p ⊕ q ⊕ r with-carry: maj3 p q r full-addₙ : {n : ℕ} → Vec Bit n → Vec Bit n → Bit → WithCarry (Vec Bit n) (Vec Bit 2) full-addₙ [] [] r = [] with-carry: b0 ∷ r ∷ [] full-addₙ (p ∷ []) (q ∷ []) r = result s ∷ [] with-carry: r ∷ carry s ∷ [] where s = full-add p q r full-addₙ (p ∷ ps) (q ∷ qs) r = result s ∷ result ss with-carry: carry ss where s = full-add p q r ss = full-addₙ ps qs (carry s) !ₙ : {n : ℕ} → Vec Bit n → Vec Bit n !ₙ = mapVec ! _+_ : {n : ℕ} → Vec Bit n → Vec Bit n → WithCarry (Vec Bit n) (Vec Bit 2) ps + qs = full-addₙ ps qs b0 _-_ : {n : ℕ} → Vec Bit n → Vec Bit n → WithCarry (Vec Bit n) (Vec Bit 2) ps - qs = full-addₙ ps (!ₙ qs) b1 inc : {n : ℕ} → Vec Bit n → WithCarry (Vec Bit n) (Vec Bit 2) inc ps = full-addₙ ps (replicate b0) b1 dec : {n : ℕ} → Vec Bit n → WithCarry (Vec Bit n) (Vec Bit 2) dec ps = full-addₙ ps (replicate b1) b0 _>>_ : {m : ℕ} → Vec Bit m → Fin m → WithCarry (Vec Bit m) (Vec Bit m) ps >> zero = ps with-carry: replicate b0 _>>_ {suc m} (p ∷ ps) (suc i) = new-result with-carry: new-carry where qs : WithCarry (Vec Bit m) (Vec Bit m) qs = ps >> i new-result : Vec Bit (suc m) new-result = insert (result qs) (finFromℕ m) b0 new-carry : Vec Bit (suc m) new-carry = insert (carry qs) (finFromℕ m) p _<<_ : {m : ℕ} → Vec Bit m → Fin m → WithCarry (Vec Bit m) (Vec Bit m) _<<_ {m} ps i = proj₂ (do-shift ps) where do-shift : {n : ℕ} → Vec Bit n → Fin m × WithCarry (Vec Bit n) (Vec Bit n) do-shift [] = i , ([] with-carry: []) do-shift {suc n} (p ∷ ps) = ret (proj₁ pair) where pair : Fin m × WithCarry (Vec Bit n) (Vec Bit n) pair = do-shift ps qs : WithCarry (Vec Bit n) (Vec Bit n) qs = proj₂ pair ret : Fin m → Fin m × WithCarry (Vec Bit (suc n)) (Vec Bit (suc n)) ret zero = zero , (b0 ∷ result qs with-carry: p ∷ carry qs) ret (suc j) = raise 1 j , (p ∷ result qs with-carry: b0 ∷ carry qs) _>>>_ : {m : ℕ} → Vec Bit m → Fin m → WithCarry (Vec Bit m) (Vec Bit m) ps >>> zero = ps with-carry: replicate b0 _>>>_ {suc m} (p ∷ ps) (suc i) = new-result with-carry: new-carry where qs : WithCarry (Vec Bit m) (Vec Bit m) qs = ps >> i new-result : Vec Bit (suc m) new-result = insert (result qs) (finFromℕ m) p new-carry : Vec Bit (suc m) new-carry = b0 ∷ carry qs _<<<_ : {m : ℕ} → Vec Bit m → Fin m → WithCarry (Vec Bit m) (Vec Bit m) ps <<< zero = ps with-carry: replicate b0 _<<<_ {suc m} (p ∷ ps) (suc i) = new-result with-carry: new-carry where qs : WithCarry (Vec Bit m) (Vec Bit m) qs = ps << i new-result : Vec Bit (suc m) new-result = p ∷ result qs new-carry : Vec Bit (suc m) new-carry = insert (result qs) (finFromℕ m) b0 _&_ : {n : ℕ} → Vec Bit n → Vec Bit n → Vec Bit n [] & [] = [] (p ∷ ps) & (q ∷ qs) = p ∧ q ∷ ps & qs _~|_ : {n : ℕ} → Vec Bit n → Vec Bit n → Vec Bit n [] ~| [] = [] (p ∷ ps) ~| (q ∷ qs) = (p ∨ q) ∷ (ps ~| qs) _^_ : {n : ℕ} → Vec Bit n → Vec Bit n → Vec Bit n [] ^ [] = [] (p ∷ ps) ^ (q ∷ qs) = (p ⊕ q) ∷ (ps ^ qs) ~ : {n : ℕ} → Vec Bit n → WithCarry (Vec Bit n) (Vec Bit 2) ~ n = inc (!ₙ n) toℕ : Bit → ℕ toℕ b0 = 0 toℕ b1 = 1 toFin : {n : ℕ} → Bit → Fin (suc (suc n)) toFin b0 = 0 toFin b1 = 1 toℕₙ : {n : ℕ} → Vec Bit n → ℕ toℕₙ [] = 0 toℕₙ (p ∷ ps) = ℕ+ (toℕ p) (ℕ* 2 (toℕₙ ps)) tryToFinₙ : {m n : ℕ} → Vec Bit m → Maybe (Fin n) tryToFinₙ {_} {n} ps = tryℕ n (toℕₙ ps) where tryℕ : (k : ℕ) → ℕ → Maybe (Fin k) tryℕ zero _ = nothing tryℕ (suc _) zero = just zero tryℕ (suc m) (suc n) = map suc (tryℕ m n) ℕ-mod2 : ℕ → Bit ℕ-mod2 zero = b0 ℕ-mod2 (suc zero) = b1 ℕ-mod2 (suc (suc n)) = ℕ-mod2 n instance Bit-num : Number Bit Bit-num .Number.Constraint n = constrain n where constrain : ℕ → Set constrain zero = ⊤ constrain (suc zero) = ⊤ constrain _ = ⊥ Bit-num .Number.fromNat n ⦃ p ⦄ = fromNat n p where fromNat : (m : ℕ) → (Number.Constraint Bit-num) m → Bit fromNat zero _ = b0 fromNat (suc zero) _ = b1 fromNat (suc (suc _)) () instance Bits-num : {m : ℕ} → Number (Vec Bit m) Bits-num {m} .Number.Constraint n = ℕ≤ (suc n) (ℕ^ 2 m) Bits-num {m} .Number.fromNat n = fromNat m n where fromNat : (m : ℕ) → ℕ → Vec Bit m fromNat zero _ = [] fromNat (suc m) n = ℕ-mod2 n ∷ fromNat m ⌊ n /2⌋ instance Bits-neg : {m : ℕ} → Negative (Vec Bit (suc m)) Bits-neg {m} .Negative.Constraint n = ℕ≤ n (ℕ^ 2 m) Bits-neg {m} .Negative.fromNeg n = number where iterateBits : (m : ℕ) → ℕ → Vec Bit m × Bit iterateBits zero _ = [] , b0 where iterateBits (suc m) n = newVec , newSign where subRes : Vec Bit m × Bit subRes = iterateBits m ⌊ n /2⌋ newVec : Vec Bit (suc m) newVec = ℕ-mod2 n ∷ proj₁ subRes newSign : Bit newSign = ℕ-mod2 n ∨ proj₂ subRes iteration : Vec Bit (suc m) × Bit iteration = iterateBits (suc m) n preNumber : Vec Bit (suc m) preNumber = proj₁ iteration signBit : Bit signBit = proj₂ iteration number : Vec Bit (suc m) number = (head preNumber ∨ signBit) ∷ tail preNumber _==_ : {n : ℕ} → Vec Bit n → Vec Bit n → Bool [] == [] = true p ∷ ps == q ∷ qs = Bool-∧ (toBool (p ↔ q)) (ps == qs)
29.041494
80
0.567367
29c090a6a134659ca3bdf7c886571a4b76fcb8b8
28
agda
Agda
test/interaction/Issue2447b.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/interaction/Issue2447b.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/interaction/Issue2447b.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
import Issue2447.Type-error
14
27
0.857143
4a2e9785b8f0222171d8e00c5fdcaad00dfbf05a
1,586
agda
Agda
agda-stdlib-0.9/README/Nat.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
1
2016-10-20T15:52:05.000Z
2016-10-20T15:52:05.000Z
agda-stdlib-0.9/README/Nat.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
null
null
null
agda-stdlib-0.9/README/Nat.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
null
null
null
------------------------------------------------------------------------ -- The Agda standard library -- -- Some examples showing where the natural numbers and some related -- operations and properties are defined, and how they can be used ------------------------------------------------------------------------ module README.Nat where -- The natural numbers and various arithmetic operations are defined -- in Data.Nat. open import Data.Nat ex₁ : ℕ ex₁ = 1 + 3 -- Propositional equality and some related properties can be found -- in Relation.Binary.PropositionalEquality. open import Relation.Binary.PropositionalEquality ex₂ : 3 + 5 ≡ 2 * 4 ex₂ = refl -- Data.Nat.Properties contains a number of properties about natural -- numbers. Algebra defines what a commutative semiring is, among -- other things. open import Algebra import Data.Nat.Properties as Nat private module CS = CommutativeSemiring Nat.commutativeSemiring ex₃ : ∀ m n → m * n ≡ n * m ex₃ m n = CS.*-comm m n -- The module ≡-Reasoning in Relation.Binary.PropositionalEquality -- provides some combinators for equational reasoning. open ≡-Reasoning open import Data.Product ex₄ : ∀ m n → m * (n + 0) ≡ n * m ex₄ m n = begin m * (n + 0) ≡⟨ cong (_*_ m) (proj₂ CS.+-identity n) ⟩ m * n ≡⟨ CS.*-comm m n ⟩ n * m ∎ -- The module SemiringSolver in Data.Nat.Properties contains a solver -- for natural number equalities involving variables, constants, _+_ -- and _*_. open Nat.SemiringSolver ex₅ : ∀ m n → m * (n + 0) ≡ n * m ex₅ = solve 2 (λ m n → m :* (n :+ con 0) := n :* m) refl
27.344828
72
0.629256
203a6d2bb61fc92a9aabf8b2979038f2351bfff7
1,461
agda
Agda
test/Succeed/TelescopingLet.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/Succeed/TelescopingLet.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
3
2018-11-14T15:31:44.000Z
2019-04-01T19:39:26.000Z
test/Succeed/TelescopingLet.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1
2015-09-15T14:36:15.000Z
2015-09-15T14:36:15.000Z
module TelescopingLet where module Star where ★ : Set₁ ★ = Set ★₁ : Set₂ ★₁ = Set₁ module MEndo (open Star) (A : ★) where Endo : ★ Endo = A → A module Batch1 where f : (let ★ = Set) (A : ★) → A → A f A x = x g : (let ★ = Set Endo = λ A → A → A) (A : ★) → Endo A g = f h : (open Star) (A : ★) → A → A h = g module N (open Star) (A : ★) (open MEndo A) (f : Endo) where B : ★ B = A f' : Endo f' = f -- module N can be desugared as follows: module _ where open Star module _ (A : ★) where open MEndo A module N' (f : Endo) where B : ★ B = A f' : Endo f' = f -- Here are instantiations of N and its desugaring: f'1 = f' where postulate A : Set f : A → A open N A f f'2 = f' where postulate A : Set f : A → A open N' A f data ⊥ : Set where module Batch2 where f = λ (let ★ = Set) (A : ★) (x : A) → x g = λ (open Star) (A : ★) (x : A) → x h0 = let open Star in λ (A : ★) → let module MA = MEndo A in let open MA in λ (f : Endo) → f h1 = let open Star in λ (A : ★) → let open MEndo A in λ (f : Endo) → f h = λ (open Star) (A : ★) (open MEndo A) (f : Endo) → f module Batch3 where e1 : (let ★ = Set) → ★ e1 = ⊥ e2 = λ (let ★ = Set) → ★ e3 = λ (open Star) → ★ -- "λ (open M es) → e" is an edge case which behaves like "let open M es in e"
16.602273
80
0.465435
1045dd402bb102577a0fae564818b46b50e49630
5,201
agda
Agda
core/lib/types/TLevel.agda
cmknapp/HoTT-Agda
bc849346a17b33e2679a5b3f2b8efbe7835dc4b6
[ "MIT" ]
null
null
null
core/lib/types/TLevel.agda
cmknapp/HoTT-Agda
bc849346a17b33e2679a5b3f2b8efbe7835dc4b6
[ "MIT" ]
null
null
null
core/lib/types/TLevel.agda
cmknapp/HoTT-Agda
bc849346a17b33e2679a5b3f2b8efbe7835dc4b6
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} open import lib.Base open import lib.PathGroupoid open import lib.types.Empty open import lib.types.Nat module lib.types.TLevel where ⟨_⟩₋₁ : ℕ → ℕ₋₂ ⟨ n ⟩₋₁ = S ⟨ n ⟩₋₂ ⟨_⟩ : ℕ → ℕ₋₂ ⟨ n ⟩ = from-nat n infixl 80 _+2+_ _+2+_ : ℕ₋₂ → ℕ₋₂ → ℕ₋₂ ⟨-2⟩ +2+ n = n S m +2+ n = S (m +2+ n) +2+-unit-r : (m : ℕ₋₂) → m +2+ ⟨-2⟩ == m +2+-unit-r ⟨-2⟩ = idp +2+-unit-r (S m) = ap S (+2+-unit-r m) +2+-βr : (m n : ℕ₋₂) → m +2+ (S n) == S (m +2+ n) +2+-βr ⟨-2⟩ n = idp +2+-βr (S m) n = ap S (+2+-βr m n) +2+-comm : (m n : ℕ₋₂) → m +2+ n == n +2+ m +2+-comm m ⟨-2⟩ = +2+-unit-r m +2+-comm m (S n) = +2+-βr m n ∙ ap S (+2+-comm m n) +2+0 : (n : ℕ₋₂) → n +2+ 0 == S (S n) +2+0 n = +2+-comm n 0 {- Inequalities -} infix 40 _<T_ infix 40 _≤T_ data _<T_ : ℕ₋₂ → ℕ₋₂ → Type₀ where ltS : {m : ℕ₋₂} → m <T (S m) ltSR : {m n : ℕ₋₂} → m <T n → m <T (S n) _≤T_ : ℕ₋₂ → ℕ₋₂ → Type₀ m ≤T n = Coprod (m == n) (m <T n) -2<T : (m : ℕ₋₂) → ⟨-2⟩ <T S m -2<T ⟨-2⟩ = ltS -2<T (S m) = ltSR (-2<T m) -2≤T : (m : ℕ₋₂) → ⟨-2⟩ ≤T m -2≤T ⟨-2⟩ = inl idp -2≤T (S m) = inr (-2<T m) <T-trans : {m n k : ℕ₋₂} → m <T n → n <T k → m <T k <T-trans lt₁ ltS = ltSR lt₁ <T-trans lt₁ (ltSR lt₂) = ltSR (<T-trans lt₁ lt₂) ≤T-refl : {m : ℕ₋₂} → m ≤T m ≤T-refl = inl idp ≤T-trans : {m n k : ℕ₋₂} → m ≤T n → n ≤T k → m ≤T k ≤T-trans {k = k} (inl p₁) lte₂ = transport (λ t → t ≤T k) (! p₁) lte₂ ≤T-trans {m = m} lte₁ (inl p₂) = transport (λ t → m ≤T t) p₂ lte₁ ≤T-trans (inr lt₁) (inr lt₂) = inr (<T-trans lt₁ lt₂) <T-ap-S : {m n : ℕ₋₂} → m <T n → S m <T S n <T-ap-S ltS = ltS <T-ap-S (ltSR lt) = ltSR (<T-ap-S lt) ≤T-ap-S : {m n : ℕ₋₂} → m ≤T n → S m ≤T S n ≤T-ap-S (inl p) = inl (ap S p) ≤T-ap-S (inr lt) = inr (<T-ap-S lt) <T-cancel-S : {m n : ℕ₋₂} → S m <T S n → m <T n <T-cancel-S ltS = ltS <T-cancel-S (ltSR lt) = <T-trans ltS lt <T-+2+-l : {m n : ℕ₋₂} (k : ℕ₋₂) → m <T n → (k +2+ m) <T (k +2+ n) <T-+2+-l ⟨-2⟩ lt = lt <T-+2+-l (S k) lt = <T-ap-S (<T-+2+-l k lt) ≤T-+2+-l : {m n : ℕ₋₂} (k : ℕ₋₂) → m ≤T n → (k +2+ m) ≤T (k +2+ n) ≤T-+2+-l k (inl p) = inl (ap (λ t → k +2+ t) p) ≤T-+2+-l k (inr lt) = inr (<T-+2+-l k lt) <T-+2+-r : {m n : ℕ₋₂} (k : ℕ₋₂) → m <T n → (m +2+ k) <T (n +2+ k) <T-+2+-r k ltS = ltS <T-+2+-r k (ltSR lt) = ltSR (<T-+2+-r k lt) ≤T-+2+-r : {m n : ℕ₋₂} (k : ℕ₋₂) → m ≤T n → (m +2+ k) ≤T (n +2+ k) ≤T-+2+-r k (inl p) = inl (ap (λ t → t +2+ k) p) ≤T-+2+-r k (inr lt) = inr (<T-+2+-r k lt) private T-get-S : ℕ₋₂ → ℕ₋₂ T-get-S ⟨-2⟩ = ⟨ 42 ⟩ T-get-S (S n) = n T-S≠⟨-2⟩-type : ℕ₋₂ → Type₀ T-S≠⟨-2⟩-type ⟨-2⟩ = Empty T-S≠⟨-2⟩-type (S n) = Unit T-S≠⟨-2⟩ : (n : ℕ₋₂) → S n ≠ ⟨-2⟩ T-S≠⟨-2⟩ n p = transport T-S≠⟨-2⟩-type p unit T-S≠ : (n : ℕ₋₂) → S n ≠ n T-S≠ ⟨-2⟩ p = T-S≠⟨-2⟩ ⟨-2⟩ p T-S≠ (S n) p = T-S≠ n (ap T-get-S p) T-S+2+≠ : (n k : ℕ₋₂) → S (k +2+ n) ≠ n T-S+2+≠ ⟨-2⟩ k p = T-S≠⟨-2⟩ (k +2+ ⟨-2⟩) p T-S+2+≠ (S n) k p = T-S+2+≠ n k (ap T-get-S (ap S (! (+2+-βr k n)) ∙ p)) <T-witness : {m n : ℕ₋₂} → (m <T n) → Σ ℕ₋₂ (λ k → S k +2+ m == n) <T-witness ltS = (⟨-2⟩ , idp) <T-witness (ltSR lt) = let w' = <T-witness lt in (S (fst w') , ap S (snd w')) ≤T-witness : {m n : ℕ₋₂} → (m ≤T n) → Σ ℕ₋₂ (λ k → k +2+ m == n) ≤T-witness (inl p) = (⟨-2⟩ , p) ≤T-witness (inr lt) = let w' = <T-witness lt in (S (fst w') , snd w') <T-to-≤T : {m n : ℕ₋₂} → m <T S n → m ≤T n <T-to-≤T ltS = inl idp <T-to-≤T (ltSR lt) = inr lt <T-to-≠ : {m n : ℕ₋₂} → (m <T n) → m ≠ n <T-to-≠ {m} {n} lt p = T-S+2+≠ m (fst w) (snd w ∙ ! p) where w = <T-witness lt =-to-≮T : {m n : ℕ₋₂} → (m == n) → ¬ (m <T n) =-to-≮T p lt = <T-to-≠ lt p <T-to-≯T : {m n : ℕ₋₂} → (m <T n) → ¬ (n <T m) <T-to-≯T lt gt = =-to-≮T idp (<T-trans lt gt) <T-to-≱T : {m n : ℕ₋₂} → (m <T n) → ¬ (n ≤T m) <T-to-≱T lt (inl p) = <T-to-≠ lt (! p) <T-to-≱T lt (inr gt) = <T-to-≯T lt gt {- -2-monotone-< : {m n : ℕ} → (m < n) → (m -2 <T n -2) -2-monotone-< ltS = ltS -2-monotone-< (ltSR lt) = ltSR (-2-monotone-< lt) -2-monotone-≤ : {m n : ℕ} → (m ≤ n) → (m -2 ≤T n -2) -2-monotone-≤ (inl p) = inl (ap _-2 p) -2-monotone-≤ (inr lt) = inr (-2-monotone-< lt) -} ⟨⟩-monotone-< : {m n : ℕ} → (m < n) → (⟨ m ⟩ <T ⟨ n ⟩) ⟨⟩-monotone-< ltS = ltS ⟨⟩-monotone-< (ltSR lt) = ltSR (⟨⟩-monotone-< lt) ⟨⟩-monotone-≤ : {m n : ℕ} → (m ≤ n) → (⟨ m ⟩ ≤T ⟨ n ⟩) ⟨⟩-monotone-≤ (inl p) = inl (ap ⟨_⟩ p) ⟨⟩-monotone-≤ (inr lt) = inr (⟨⟩-monotone-< lt) minT : ℕ₋₂ → ℕ₋₂ → ℕ₋₂ minT ⟨-2⟩ n = ⟨-2⟩ minT (S m) ⟨-2⟩ = ⟨-2⟩ minT (S m) (S n) = S (minT m n) minT≤l : (m n : ℕ₋₂) → minT m n ≤T m minT≤l ⟨-2⟩ n = inl idp minT≤l (S m) ⟨-2⟩ = -2≤T (S m) minT≤l (S m) (S n) = ≤T-ap-S (minT≤l m n) minT≤r : (m n : ℕ₋₂) → minT m n ≤T n minT≤r ⟨-2⟩ n = -2≤T n minT≤r (S m) ⟨-2⟩ = inl idp minT≤r (S m) (S n) = ≤T-ap-S (minT≤r m n) minT-out : (m n : ℕ₋₂) → Coprod (minT m n == m) (minT m n == n) minT-out ⟨-2⟩ _ = inl idp minT-out (S _) ⟨-2⟩ = inr idp minT-out (S m) (S n) with minT-out m n minT-out (S m) (S n) | inl p = inl (ap S p) minT-out (S m) (S n) | inr q = inr (ap S q) minT-out-l : {m n : ℕ₋₂} → (m ≤T n) → minT m n == m minT-out-l {m} {n} lte with minT-out m n minT-out-l lte | inl eqm = eqm minT-out-l (inl p) | inr eqn = eqn ∙ ! p minT-out-l {m} {n} (inr lt) | inr eq = ⊥-rec (<T-to-≱T (transport (λ k → m <T k) (! eq) lt) (minT≤l m n))
27.812834
77
0.44453
cbda26e3165bb31bc38a08ca87d23206509b5683
746
agda
Agda
test/asset/agda-stdlib-1.0/Algebra/Solver/Ring/Simple.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Algebra/Solver/Ring/Simple.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Algebra/Solver/Ring/Simple.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- The Agda standard library -- -- Instantiates the ring solver with two copies of the same ring with -- decidable equality ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Algebra.Solver.Ring.AlmostCommutativeRing open import Relation.Binary open import Relation.Binary.Consequences using (dec⟶weaklyDec) module Algebra.Solver.Ring.Simple {r₁ r₂} (R : AlmostCommutativeRing r₁ r₂) (_≟_ : Decidable (AlmostCommutativeRing._≈_ R)) where open AlmostCommutativeRing R import Algebra.Solver.Ring as RS open RS rawRing R (-raw-almostCommutative⟶ R) (dec⟶weaklyDec _≟_) public
33.909091
72
0.596515
0e7b043b31a0fbc508be481c404df50f09496096
23,966
agda
Agda
huffman/huffman.agda
rfindler/ial
f3f0261904577e930bd7646934f756679a6cbba6
[ "MIT" ]
29
2019-02-06T13:09:31.000Z
2022-03-04T15:05:12.000Z
huffman/huffman.agda
rfindler/ial
f3f0261904577e930bd7646934f756679a6cbba6
[ "MIT" ]
8
2018-07-09T22:53:38.000Z
2022-03-22T03:43:34.000Z
huffman/huffman.agda
rfindler/ial
f3f0261904577e930bd7646934f756679a6cbba6
[ "MIT" ]
17
2018-12-03T22:38:15.000Z
2021-11-28T20:13:21.000Z
module huffman where open import lib open import huffman-types public ---------------------------------------------------------------------------------- -- Run-rewriting rules ---------------------------------------------------------------------------------- data gratr2-nt : Set where _ws-plus-10 : gratr2-nt _ws : gratr2-nt _words : gratr2-nt _word : gratr2-nt _start : gratr2-nt _posinfo : gratr2-nt _ows-star-11 : gratr2-nt _ows : gratr2-nt _digit : gratr2-nt _codes : gratr2-nt _code : gratr2-nt _cmd : gratr2-nt _character-range-2 : gratr2-nt _character-range-1 : gratr2-nt _character-bar-7 : gratr2-nt _character-bar-6 : gratr2-nt _character-bar-5 : gratr2-nt _character-bar-4 : gratr2-nt _character-bar-3 : gratr2-nt _character : gratr2-nt _bvlit : gratr2-nt _aws-bar-9 : gratr2-nt _aws-bar-8 : gratr2-nt _aws : gratr2-nt gratr2-nt-eq : gratr2-nt → gratr2-nt → 𝔹 gratr2-nt-eq _ws-plus-10 _ws-plus-10 = tt gratr2-nt-eq _ws _ws = tt gratr2-nt-eq _words _words = tt gratr2-nt-eq _word _word = tt gratr2-nt-eq _start _start = tt gratr2-nt-eq _posinfo _posinfo = tt gratr2-nt-eq _ows-star-11 _ows-star-11 = tt gratr2-nt-eq _ows _ows = tt gratr2-nt-eq _digit _digit = tt gratr2-nt-eq _codes _codes = tt gratr2-nt-eq _code _code = tt gratr2-nt-eq _cmd _cmd = tt gratr2-nt-eq _character-range-2 _character-range-2 = tt gratr2-nt-eq _character-range-1 _character-range-1 = tt gratr2-nt-eq _character-bar-7 _character-bar-7 = tt gratr2-nt-eq _character-bar-6 _character-bar-6 = tt gratr2-nt-eq _character-bar-5 _character-bar-5 = tt gratr2-nt-eq _character-bar-4 _character-bar-4 = tt gratr2-nt-eq _character-bar-3 _character-bar-3 = tt gratr2-nt-eq _character _character = tt gratr2-nt-eq _bvlit _bvlit = tt gratr2-nt-eq _aws-bar-9 _aws-bar-9 = tt gratr2-nt-eq _aws-bar-8 _aws-bar-8 = tt gratr2-nt-eq _aws _aws = tt gratr2-nt-eq _ _ = ff open import rtn gratr2-nt huffman-start : gratr2-nt → 𝕃 gratr2-rule huffman-start _ws-plus-10 = (just "P71" , nothing , just _ws-plus-10 , inj₁ _aws :: inj₁ _ws-plus-10 :: []) :: (just "P70" , nothing , just _ws-plus-10 , inj₁ _aws :: []) :: [] huffman-start _ws = (just "P72" , nothing , just _ws , inj₁ _ws-plus-10 :: []) :: [] huffman-start _words = (just "WordsStart" , nothing , just _words , inj₁ _word :: []) :: (just "WordsNext" , nothing , just _words , inj₁ _word :: inj₁ _ws :: inj₁ _words :: []) :: [] huffman-start _word = (just "P1" , nothing , just _word , inj₁ _character :: inj₁ _word :: []) :: (just "P0" , nothing , just _word , inj₁ _character :: []) :: [] huffman-start _start = (just "File" , nothing , just _start , inj₁ _ows :: inj₁ _cmd :: inj₁ _ows :: []) :: [] huffman-start _posinfo = (just "Posinfo" , nothing , just _posinfo , []) :: [] huffman-start _ows-star-11 = (just "P74" , nothing , just _ows-star-11 , inj₁ _aws :: inj₁ _ows-star-11 :: []) :: (just "P73" , nothing , just _ows-star-11 , []) :: [] huffman-start _ows = (just "P75" , nothing , just _ows , inj₁ _ows-star-11 :: []) :: [] huffman-start _digit = (just "Zero" , nothing , just _digit , inj₂ '0' :: []) :: (just "One" , nothing , just _digit , inj₂ '1' :: []) :: [] huffman-start _codes = (just "CodesStart" , nothing , just _codes , inj₁ _code :: []) :: (just "CodesNext" , nothing , just _codes , inj₁ _code :: inj₁ _ws :: inj₁ _codes :: []) :: [] huffman-start _code = (just "Code" , nothing , just _code , inj₁ _word :: inj₁ _ws :: inj₂ '<' :: inj₂ '-' :: inj₁ _ws :: inj₁ _bvlit :: []) :: [] huffman-start _cmd = (just "Encode" , nothing , just _cmd , inj₁ _words :: []) :: (just "Decode" , nothing , just _cmd , inj₂ '!' :: inj₁ _ws :: inj₁ _codes :: inj₁ _ws :: inj₁ _bvlit :: []) :: [] huffman-start _character-range-2 = (just "P53" , nothing , just _character-range-2 , inj₂ 'Z' :: []) :: (just "P52" , nothing , just _character-range-2 , inj₂ 'Y' :: []) :: (just "P51" , nothing , just _character-range-2 , inj₂ 'X' :: []) :: (just "P50" , nothing , just _character-range-2 , inj₂ 'W' :: []) :: (just "P49" , nothing , just _character-range-2 , inj₂ 'V' :: []) :: (just "P48" , nothing , just _character-range-2 , inj₂ 'U' :: []) :: (just "P47" , nothing , just _character-range-2 , inj₂ 'T' :: []) :: (just "P46" , nothing , just _character-range-2 , inj₂ 'S' :: []) :: (just "P45" , nothing , just _character-range-2 , inj₂ 'R' :: []) :: (just "P44" , nothing , just _character-range-2 , inj₂ 'Q' :: []) :: (just "P43" , nothing , just _character-range-2 , inj₂ 'P' :: []) :: (just "P42" , nothing , just _character-range-2 , inj₂ 'O' :: []) :: (just "P41" , nothing , just _character-range-2 , inj₂ 'N' :: []) :: (just "P40" , nothing , just _character-range-2 , inj₂ 'M' :: []) :: (just "P39" , nothing , just _character-range-2 , inj₂ 'L' :: []) :: (just "P38" , nothing , just _character-range-2 , inj₂ 'K' :: []) :: (just "P37" , nothing , just _character-range-2 , inj₂ 'J' :: []) :: (just "P36" , nothing , just _character-range-2 , inj₂ 'I' :: []) :: (just "P35" , nothing , just _character-range-2 , inj₂ 'H' :: []) :: (just "P34" , nothing , just _character-range-2 , inj₂ 'G' :: []) :: (just "P33" , nothing , just _character-range-2 , inj₂ 'F' :: []) :: (just "P32" , nothing , just _character-range-2 , inj₂ 'E' :: []) :: (just "P31" , nothing , just _character-range-2 , inj₂ 'D' :: []) :: (just "P30" , nothing , just _character-range-2 , inj₂ 'C' :: []) :: (just "P29" , nothing , just _character-range-2 , inj₂ 'B' :: []) :: (just "P28" , nothing , just _character-range-2 , inj₂ 'A' :: []) :: [] huffman-start _character-range-1 = (just "P9" , nothing , just _character-range-1 , inj₂ 'h' :: []) :: (just "P8" , nothing , just _character-range-1 , inj₂ 'g' :: []) :: (just "P7" , nothing , just _character-range-1 , inj₂ 'f' :: []) :: (just "P6" , nothing , just _character-range-1 , inj₂ 'e' :: []) :: (just "P5" , nothing , just _character-range-1 , inj₂ 'd' :: []) :: (just "P4" , nothing , just _character-range-1 , inj₂ 'c' :: []) :: (just "P3" , nothing , just _character-range-1 , inj₂ 'b' :: []) :: (just "P27" , nothing , just _character-range-1 , inj₂ 'z' :: []) :: (just "P26" , nothing , just _character-range-1 , inj₂ 'y' :: []) :: (just "P25" , nothing , just _character-range-1 , inj₂ 'x' :: []) :: (just "P24" , nothing , just _character-range-1 , inj₂ 'w' :: []) :: (just "P23" , nothing , just _character-range-1 , inj₂ 'v' :: []) :: (just "P22" , nothing , just _character-range-1 , inj₂ 'u' :: []) :: (just "P21" , nothing , just _character-range-1 , inj₂ 't' :: []) :: (just "P20" , nothing , just _character-range-1 , inj₂ 's' :: []) :: (just "P2" , nothing , just _character-range-1 , inj₂ 'a' :: []) :: (just "P19" , nothing , just _character-range-1 , inj₂ 'r' :: []) :: (just "P18" , nothing , just _character-range-1 , inj₂ 'q' :: []) :: (just "P17" , nothing , just _character-range-1 , inj₂ 'p' :: []) :: (just "P16" , nothing , just _character-range-1 , inj₂ 'o' :: []) :: (just "P15" , nothing , just _character-range-1 , inj₂ 'n' :: []) :: (just "P14" , nothing , just _character-range-1 , inj₂ 'm' :: []) :: (just "P13" , nothing , just _character-range-1 , inj₂ 'l' :: []) :: (just "P12" , nothing , just _character-range-1 , inj₂ 'k' :: []) :: (just "P11" , nothing , just _character-range-1 , inj₂ 'j' :: []) :: (just "P10" , nothing , just _character-range-1 , inj₂ 'i' :: []) :: [] huffman-start _character-bar-7 = (just "P63" , nothing , just _character-bar-7 , inj₁ _character-bar-6 :: []) :: (just "P62" , nothing , just _character-bar-7 , inj₁ _character-range-1 :: []) :: [] huffman-start _character-bar-6 = (just "P61" , nothing , just _character-bar-6 , inj₁ _character-bar-5 :: []) :: (just "P60" , nothing , just _character-bar-6 , inj₁ _character-range-2 :: []) :: [] huffman-start _character-bar-5 = (just "P59" , nothing , just _character-bar-5 , inj₁ _character-bar-4 :: []) :: (just "P58" , nothing , just _character-bar-5 , inj₂ '(' :: []) :: [] huffman-start _character-bar-4 = (just "P57" , nothing , just _character-bar-4 , inj₁ _character-bar-3 :: []) :: (just "P56" , nothing , just _character-bar-4 , inj₂ ')' :: []) :: [] huffman-start _character-bar-3 = (just "P55" , nothing , just _character-bar-3 , inj₂ '.' :: []) :: (just "P54" , nothing , just _character-bar-3 , inj₂ ',' :: []) :: [] huffman-start _character = (just "P64" , nothing , just _character , inj₁ _character-bar-7 :: []) :: [] huffman-start _bvlit = (just "BvlitStart" , nothing , just _bvlit , inj₁ _digit :: []) :: (just "BvlitCons" , nothing , just _bvlit , inj₁ _digit :: inj₁ _bvlit :: []) :: [] huffman-start _aws-bar-9 = (just "P68" , nothing , just _aws-bar-9 , inj₁ _aws-bar-8 :: []) :: (just "P67" , nothing , just _aws-bar-9 , inj₂ '\n' :: []) :: [] huffman-start _aws-bar-8 = (just "P66" , nothing , just _aws-bar-8 , inj₂ ' ' :: []) :: (just "P65" , nothing , just _aws-bar-8 , inj₂ '\t' :: []) :: [] huffman-start _aws = (just "P69" , nothing , just _aws , inj₁ _aws-bar-9 :: []) :: [] huffman-return : maybe gratr2-nt → 𝕃 gratr2-rule huffman-return _ = [] huffman-rtn : gratr2-rtn huffman-rtn = record { start = _start ; _eq_ = gratr2-nt-eq ; gratr2-start = huffman-start ; gratr2-return = huffman-return } open import run ptr open noderiv ------------------------------------------ -- Length-decreasing rules ------------------------------------------ len-dec-rewrite : Run → maybe (Run × ℕ) len-dec-rewrite {- BvlitCons-} ((Id "BvlitCons") :: (ParseTree (parsed-digit x0)) :: _::_(ParseTree (parsed-bvlit x1)) rest) = just (ParseTree (parsed-bvlit (norm-bvlit (BvlitCons x0 x1))) ::' rest , 3) len-dec-rewrite {- BvlitStart-} ((Id "BvlitStart") :: _::_(ParseTree (parsed-digit x0)) rest) = just (ParseTree (parsed-bvlit (norm-bvlit (BvlitStart x0))) ::' rest , 2) len-dec-rewrite {- Code-} ((Id "Code") :: (ParseTree (parsed-word x0)) :: (ParseTree parsed-ws) :: (InputChar '<') :: (InputChar '-') :: (ParseTree parsed-ws) :: _::_(ParseTree (parsed-bvlit x1)) rest) = just (ParseTree (parsed-code (norm-code (Code x0 x1))) ::' rest , 7) len-dec-rewrite {- CodesNext-} ((Id "CodesNext") :: (ParseTree (parsed-code x0)) :: (ParseTree parsed-ws) :: _::_(ParseTree (parsed-codes x1)) rest) = just (ParseTree (parsed-codes (norm-codes (CodesNext x0 x1))) ::' rest , 4) len-dec-rewrite {- CodesStart-} ((Id "CodesStart") :: _::_(ParseTree (parsed-code x0)) rest) = just (ParseTree (parsed-codes (norm-codes (CodesStart x0))) ::' rest , 2) len-dec-rewrite {- Decode-} ((Id "Decode") :: (InputChar '!') :: (ParseTree parsed-ws) :: (ParseTree (parsed-codes x0)) :: (ParseTree parsed-ws) :: _::_(ParseTree (parsed-bvlit x1)) rest) = just (ParseTree (parsed-cmd (norm-cmd (Decode x0 x1))) ::' rest , 6) len-dec-rewrite {- Encode-} ((Id "Encode") :: _::_(ParseTree (parsed-words x0)) rest) = just (ParseTree (parsed-cmd (norm-cmd (Encode x0))) ::' rest , 2) len-dec-rewrite {- File-} ((Id "File") :: (ParseTree parsed-ows) :: (ParseTree (parsed-cmd x0)) :: _::_(ParseTree parsed-ows) rest) = just (ParseTree (parsed-start (norm-start (File x0))) ::' rest , 4) len-dec-rewrite {- One-} ((Id "One") :: _::_(InputChar '1') rest) = just (ParseTree (parsed-digit (norm-digit One)) ::' rest , 2) len-dec-rewrite {- P0-} ((Id "P0") :: _::_(ParseTree (parsed-character x0)) rest) = just (ParseTree (parsed-word (string-append 0 x0)) ::' rest , 2) len-dec-rewrite {- P1-} ((Id "P1") :: (ParseTree (parsed-character x0)) :: _::_(ParseTree (parsed-word x1)) rest) = just (ParseTree (parsed-word (string-append 1 x0 x1)) ::' rest , 3) len-dec-rewrite {- P10-} ((Id "P10") :: _::_(InputChar 'i') rest) = just (ParseTree (parsed-character-range-1 (string-append 0 (char-to-string 'i'))) ::' rest , 2) len-dec-rewrite {- P11-} ((Id "P11") :: _::_(InputChar 'j') rest) = just (ParseTree (parsed-character-range-1 (string-append 0 (char-to-string 'j'))) ::' rest , 2) len-dec-rewrite {- P12-} ((Id "P12") :: _::_(InputChar 'k') rest) = just (ParseTree (parsed-character-range-1 (string-append 0 (char-to-string 'k'))) ::' rest , 2) len-dec-rewrite {- P13-} ((Id "P13") :: _::_(InputChar 'l') rest) = just (ParseTree (parsed-character-range-1 (string-append 0 (char-to-string 'l'))) ::' rest , 2) len-dec-rewrite {- P14-} ((Id "P14") :: _::_(InputChar 'm') rest) = just (ParseTree (parsed-character-range-1 (string-append 0 (char-to-string 'm'))) ::' rest , 2) len-dec-rewrite {- P15-} ((Id "P15") :: _::_(InputChar 'n') rest) = just (ParseTree (parsed-character-range-1 (string-append 0 (char-to-string 'n'))) ::' rest , 2) len-dec-rewrite {- P16-} ((Id "P16") :: _::_(InputChar 'o') rest) = just (ParseTree (parsed-character-range-1 (string-append 0 (char-to-string 'o'))) ::' rest , 2) len-dec-rewrite {- P17-} ((Id "P17") :: _::_(InputChar 'p') rest) = just (ParseTree (parsed-character-range-1 (string-append 0 (char-to-string 'p'))) ::' rest , 2) len-dec-rewrite {- P18-} ((Id "P18") :: _::_(InputChar 'q') rest) = just (ParseTree (parsed-character-range-1 (string-append 0 (char-to-string 'q'))) ::' rest , 2) len-dec-rewrite {- P19-} ((Id "P19") :: _::_(InputChar 'r') rest) = just (ParseTree (parsed-character-range-1 (string-append 0 (char-to-string 'r'))) ::' rest , 2) len-dec-rewrite {- P2-} ((Id "P2") :: _::_(InputChar 'a') rest) = just (ParseTree (parsed-character-range-1 (string-append 0 (char-to-string 'a'))) ::' rest , 2) len-dec-rewrite {- P20-} ((Id "P20") :: _::_(InputChar 's') rest) = just (ParseTree (parsed-character-range-1 (string-append 0 (char-to-string 's'))) ::' rest , 2) len-dec-rewrite {- P21-} ((Id "P21") :: _::_(InputChar 't') rest) = just (ParseTree (parsed-character-range-1 (string-append 0 (char-to-string 't'))) ::' rest , 2) len-dec-rewrite {- P22-} ((Id "P22") :: _::_(InputChar 'u') rest) = just (ParseTree (parsed-character-range-1 (string-append 0 (char-to-string 'u'))) ::' rest , 2) len-dec-rewrite {- P23-} ((Id "P23") :: _::_(InputChar 'v') rest) = just (ParseTree (parsed-character-range-1 (string-append 0 (char-to-string 'v'))) ::' rest , 2) len-dec-rewrite {- P24-} ((Id "P24") :: _::_(InputChar 'w') rest) = just (ParseTree (parsed-character-range-1 (string-append 0 (char-to-string 'w'))) ::' rest , 2) len-dec-rewrite {- P25-} ((Id "P25") :: _::_(InputChar 'x') rest) = just (ParseTree (parsed-character-range-1 (string-append 0 (char-to-string 'x'))) ::' rest , 2) len-dec-rewrite {- P26-} ((Id "P26") :: _::_(InputChar 'y') rest) = just (ParseTree (parsed-character-range-1 (string-append 0 (char-to-string 'y'))) ::' rest , 2) len-dec-rewrite {- P27-} ((Id "P27") :: _::_(InputChar 'z') rest) = just (ParseTree (parsed-character-range-1 (string-append 0 (char-to-string 'z'))) ::' rest , 2) len-dec-rewrite {- P28-} ((Id "P28") :: _::_(InputChar 'A') rest) = just (ParseTree (parsed-character-range-2 (string-append 0 (char-to-string 'A'))) ::' rest , 2) len-dec-rewrite {- P29-} ((Id "P29") :: _::_(InputChar 'B') rest) = just (ParseTree (parsed-character-range-2 (string-append 0 (char-to-string 'B'))) ::' rest , 2) len-dec-rewrite {- P3-} ((Id "P3") :: _::_(InputChar 'b') rest) = just (ParseTree (parsed-character-range-1 (string-append 0 (char-to-string 'b'))) ::' rest , 2) len-dec-rewrite {- P30-} ((Id "P30") :: _::_(InputChar 'C') rest) = just (ParseTree (parsed-character-range-2 (string-append 0 (char-to-string 'C'))) ::' rest , 2) len-dec-rewrite {- P31-} ((Id "P31") :: _::_(InputChar 'D') rest) = just (ParseTree (parsed-character-range-2 (string-append 0 (char-to-string 'D'))) ::' rest , 2) len-dec-rewrite {- P32-} ((Id "P32") :: _::_(InputChar 'E') rest) = just (ParseTree (parsed-character-range-2 (string-append 0 (char-to-string 'E'))) ::' rest , 2) len-dec-rewrite {- P33-} ((Id "P33") :: _::_(InputChar 'F') rest) = just (ParseTree (parsed-character-range-2 (string-append 0 (char-to-string 'F'))) ::' rest , 2) len-dec-rewrite {- P34-} ((Id "P34") :: _::_(InputChar 'G') rest) = just (ParseTree (parsed-character-range-2 (string-append 0 (char-to-string 'G'))) ::' rest , 2) len-dec-rewrite {- P35-} ((Id "P35") :: _::_(InputChar 'H') rest) = just (ParseTree (parsed-character-range-2 (string-append 0 (char-to-string 'H'))) ::' rest , 2) len-dec-rewrite {- P36-} ((Id "P36") :: _::_(InputChar 'I') rest) = just (ParseTree (parsed-character-range-2 (string-append 0 (char-to-string 'I'))) ::' rest , 2) len-dec-rewrite {- P37-} ((Id "P37") :: _::_(InputChar 'J') rest) = just (ParseTree (parsed-character-range-2 (string-append 0 (char-to-string 'J'))) ::' rest , 2) len-dec-rewrite {- P38-} ((Id "P38") :: _::_(InputChar 'K') rest) = just (ParseTree (parsed-character-range-2 (string-append 0 (char-to-string 'K'))) ::' rest , 2) len-dec-rewrite {- P39-} ((Id "P39") :: _::_(InputChar 'L') rest) = just (ParseTree (parsed-character-range-2 (string-append 0 (char-to-string 'L'))) ::' rest , 2) len-dec-rewrite {- P4-} ((Id "P4") :: _::_(InputChar 'c') rest) = just (ParseTree (parsed-character-range-1 (string-append 0 (char-to-string 'c'))) ::' rest , 2) len-dec-rewrite {- P40-} ((Id "P40") :: _::_(InputChar 'M') rest) = just (ParseTree (parsed-character-range-2 (string-append 0 (char-to-string 'M'))) ::' rest , 2) len-dec-rewrite {- P41-} ((Id "P41") :: _::_(InputChar 'N') rest) = just (ParseTree (parsed-character-range-2 (string-append 0 (char-to-string 'N'))) ::' rest , 2) len-dec-rewrite {- P42-} ((Id "P42") :: _::_(InputChar 'O') rest) = just (ParseTree (parsed-character-range-2 (string-append 0 (char-to-string 'O'))) ::' rest , 2) len-dec-rewrite {- P43-} ((Id "P43") :: _::_(InputChar 'P') rest) = just (ParseTree (parsed-character-range-2 (string-append 0 (char-to-string 'P'))) ::' rest , 2) len-dec-rewrite {- P44-} ((Id "P44") :: _::_(InputChar 'Q') rest) = just (ParseTree (parsed-character-range-2 (string-append 0 (char-to-string 'Q'))) ::' rest , 2) len-dec-rewrite {- P45-} ((Id "P45") :: _::_(InputChar 'R') rest) = just (ParseTree (parsed-character-range-2 (string-append 0 (char-to-string 'R'))) ::' rest , 2) len-dec-rewrite {- P46-} ((Id "P46") :: _::_(InputChar 'S') rest) = just (ParseTree (parsed-character-range-2 (string-append 0 (char-to-string 'S'))) ::' rest , 2) len-dec-rewrite {- P47-} ((Id "P47") :: _::_(InputChar 'T') rest) = just (ParseTree (parsed-character-range-2 (string-append 0 (char-to-string 'T'))) ::' rest , 2) len-dec-rewrite {- P48-} ((Id "P48") :: _::_(InputChar 'U') rest) = just (ParseTree (parsed-character-range-2 (string-append 0 (char-to-string 'U'))) ::' rest , 2) len-dec-rewrite {- P49-} ((Id "P49") :: _::_(InputChar 'V') rest) = just (ParseTree (parsed-character-range-2 (string-append 0 (char-to-string 'V'))) ::' rest , 2) len-dec-rewrite {- P5-} ((Id "P5") :: _::_(InputChar 'd') rest) = just (ParseTree (parsed-character-range-1 (string-append 0 (char-to-string 'd'))) ::' rest , 2) len-dec-rewrite {- P50-} ((Id "P50") :: _::_(InputChar 'W') rest) = just (ParseTree (parsed-character-range-2 (string-append 0 (char-to-string 'W'))) ::' rest , 2) len-dec-rewrite {- P51-} ((Id "P51") :: _::_(InputChar 'X') rest) = just (ParseTree (parsed-character-range-2 (string-append 0 (char-to-string 'X'))) ::' rest , 2) len-dec-rewrite {- P52-} ((Id "P52") :: _::_(InputChar 'Y') rest) = just (ParseTree (parsed-character-range-2 (string-append 0 (char-to-string 'Y'))) ::' rest , 2) len-dec-rewrite {- P53-} ((Id "P53") :: _::_(InputChar 'Z') rest) = just (ParseTree (parsed-character-range-2 (string-append 0 (char-to-string 'Z'))) ::' rest , 2) len-dec-rewrite {- P54-} ((Id "P54") :: _::_(InputChar ',') rest) = just (ParseTree (parsed-character-bar-3 (string-append 0 (char-to-string ','))) ::' rest , 2) len-dec-rewrite {- P55-} ((Id "P55") :: _::_(InputChar '.') rest) = just (ParseTree (parsed-character-bar-3 (string-append 0 (char-to-string '.'))) ::' rest , 2) len-dec-rewrite {- P56-} ((Id "P56") :: _::_(InputChar ')') rest) = just (ParseTree (parsed-character-bar-4 (string-append 0 (char-to-string ')'))) ::' rest , 2) len-dec-rewrite {- P57-} ((Id "P57") :: _::_(ParseTree (parsed-character-bar-3 x0)) rest) = just (ParseTree (parsed-character-bar-4 (string-append 0 x0)) ::' rest , 2) len-dec-rewrite {- P58-} ((Id "P58") :: _::_(InputChar '(') rest) = just (ParseTree (parsed-character-bar-5 (string-append 0 (char-to-string '('))) ::' rest , 2) len-dec-rewrite {- P59-} ((Id "P59") :: _::_(ParseTree (parsed-character-bar-4 x0)) rest) = just (ParseTree (parsed-character-bar-5 (string-append 0 x0)) ::' rest , 2) len-dec-rewrite {- P6-} ((Id "P6") :: _::_(InputChar 'e') rest) = just (ParseTree (parsed-character-range-1 (string-append 0 (char-to-string 'e'))) ::' rest , 2) len-dec-rewrite {- P60-} ((Id "P60") :: _::_(ParseTree (parsed-character-range-2 x0)) rest) = just (ParseTree (parsed-character-bar-6 (string-append 0 x0)) ::' rest , 2) len-dec-rewrite {- P61-} ((Id "P61") :: _::_(ParseTree (parsed-character-bar-5 x0)) rest) = just (ParseTree (parsed-character-bar-6 (string-append 0 x0)) ::' rest , 2) len-dec-rewrite {- P62-} ((Id "P62") :: _::_(ParseTree (parsed-character-range-1 x0)) rest) = just (ParseTree (parsed-character-bar-7 (string-append 0 x0)) ::' rest , 2) len-dec-rewrite {- P63-} ((Id "P63") :: _::_(ParseTree (parsed-character-bar-6 x0)) rest) = just (ParseTree (parsed-character-bar-7 (string-append 0 x0)) ::' rest , 2) len-dec-rewrite {- P64-} ((Id "P64") :: _::_(ParseTree (parsed-character-bar-7 x0)) rest) = just (ParseTree (parsed-character (string-append 0 x0)) ::' rest , 2) len-dec-rewrite {- P65-} ((Id "P65") :: _::_(InputChar '\t') rest) = just (ParseTree parsed-aws-bar-8 ::' rest , 2) len-dec-rewrite {- P66-} ((Id "P66") :: _::_(InputChar ' ') rest) = just (ParseTree parsed-aws-bar-8 ::' rest , 2) len-dec-rewrite {- P67-} ((Id "P67") :: _::_(InputChar '\n') rest) = just (ParseTree parsed-aws-bar-9 ::' rest , 2) len-dec-rewrite {- P68-} ((Id "P68") :: _::_(ParseTree parsed-aws-bar-8) rest) = just (ParseTree parsed-aws-bar-9 ::' rest , 2) len-dec-rewrite {- P69-} ((Id "P69") :: _::_(ParseTree parsed-aws-bar-9) rest) = just (ParseTree parsed-aws ::' rest , 2) len-dec-rewrite {- P7-} ((Id "P7") :: _::_(InputChar 'f') rest) = just (ParseTree (parsed-character-range-1 (string-append 0 (char-to-string 'f'))) ::' rest , 2) len-dec-rewrite {- P70-} ((Id "P70") :: _::_(ParseTree parsed-aws) rest) = just (ParseTree parsed-ws-plus-10 ::' rest , 2) len-dec-rewrite {- P71-} ((Id "P71") :: (ParseTree parsed-aws) :: _::_(ParseTree parsed-ws-plus-10) rest) = just (ParseTree parsed-ws-plus-10 ::' rest , 3) len-dec-rewrite {- P72-} ((Id "P72") :: _::_(ParseTree parsed-ws-plus-10) rest) = just (ParseTree parsed-ws ::' rest , 2) len-dec-rewrite {- P74-} ((Id "P74") :: (ParseTree parsed-aws) :: _::_(ParseTree parsed-ows-star-11) rest) = just (ParseTree parsed-ows-star-11 ::' rest , 3) len-dec-rewrite {- P75-} ((Id "P75") :: _::_(ParseTree parsed-ows-star-11) rest) = just (ParseTree parsed-ows ::' rest , 2) len-dec-rewrite {- P8-} ((Id "P8") :: _::_(InputChar 'g') rest) = just (ParseTree (parsed-character-range-1 (string-append 0 (char-to-string 'g'))) ::' rest , 2) len-dec-rewrite {- P9-} ((Id "P9") :: _::_(InputChar 'h') rest) = just (ParseTree (parsed-character-range-1 (string-append 0 (char-to-string 'h'))) ::' rest , 2) len-dec-rewrite {- WordsNext-} ((Id "WordsNext") :: (ParseTree (parsed-word x0)) :: (ParseTree parsed-ws) :: _::_(ParseTree (parsed-words x1)) rest) = just (ParseTree (parsed-words (norm-words (WordsNext x0 x1))) ::' rest , 4) len-dec-rewrite {- WordsStart-} ((Id "WordsStart") :: _::_(ParseTree (parsed-word x0)) rest) = just (ParseTree (parsed-words (norm-words (WordsStart x0))) ::' rest , 2) len-dec-rewrite {- Zero-} ((Id "Zero") :: _::_(InputChar '0') rest) = just (ParseTree (parsed-digit (norm-digit Zero)) ::' rest , 2) len-dec-rewrite {- P73-} (_::_(Id "P73") rest) = just (ParseTree parsed-ows-star-11 ::' rest , 1) len-dec-rewrite {- Posinfo-} (_::_(Posinfo n) rest) = just (ParseTree (parsed-posinfo (ℕ-to-string n)) ::' rest , 1) len-dec-rewrite x = nothing rrs : rewriteRules rrs = record { len-dec-rewrite = len-dec-rewrite }
118.643564
1,831
0.615163
319fab7307486b5f7d0c380e712db663f2813f0f
11,070
agda
Agda
Cubical/Algebra/Group/MorphismProperties.agda
MatthiasHu/cubical
58f2d0dd07e51f8aa5b348a522691097b6695d1c
[ "MIT" ]
1
2022-03-05T00:29:41.000Z
2022-03-05T00:29:41.000Z
Cubical/Algebra/Group/MorphismProperties.agda
snu-development/cubical
58f2d0dd07e51f8aa5b348a522691097b6695d1c
[ "MIT" ]
null
null
null
Cubical/Algebra/Group/MorphismProperties.agda
snu-development/cubical
58f2d0dd07e51f8aa5b348a522691097b6695d1c
[ "MIT" ]
null
null
null
{- This file contains: - Elementary properties of homomorphisms - H-level results for the properties of morphisms - Special homomorphisms and operations (id, composition, inversion) - Conversion functions between different notions of group morphisms -} {-# OPTIONS --safe #-} module Cubical.Algebra.Group.MorphismProperties where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Function open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Foundations.Structure open import Cubical.Functions.Embedding open import Cubical.Data.Sigma open import Cubical.Algebra.Group.Base open import Cubical.Algebra.Group.DirProd open import Cubical.Algebra.Group.Properties open import Cubical.Algebra.Group.Morphisms open import Cubical.HITs.PropositionalTruncation renaming (map to pMap) private variable ℓ ℓ' ℓ'' ℓ''' : Level F G H : Group ℓ open Iso open GroupStr open IsGroupHom open BijectionIso -- Elementary properties of homomorphisms module _ {A : Type ℓ} {B : Type ℓ'} (G : GroupStr A) (f : A → B) (H : GroupStr B) (pres : (x y : A) → f (G ._·_ x y) ≡ H ._·_ (f x) (f y)) where private module G = GroupStr G module H = GroupStr H -- ϕ(1g) ≡ 1g hom1g : f G.1g ≡ H.1g hom1g = f G.1g ≡⟨ sym (H.rid _) ⟩ f G.1g H.· H.1g ≡⟨ (λ i → f G.1g H.· H.invr (f G.1g) (~ i)) ⟩ f G.1g H.· (f G.1g H.· H.inv (f G.1g)) ≡⟨ H.assoc _ _ _ ⟩ (f G.1g H.· f G.1g) H.· H.inv (f G.1g) ≡⟨ sym (cong (λ x → x H.· _) (sym (cong f (G.lid _)) ∙ pres G.1g G.1g)) ⟩ f G.1g H.· H.inv (f G.1g) ≡⟨ H.invr _ ⟩ H.1g ∎ -- ϕ(- x) = - ϕ(x) homInv : ∀ g → f (G.inv g) ≡ H.inv (f g) homInv g = f (G.inv g) ≡⟨ sym (H.rid _) ⟩ f (G.inv g) H.· H.1g ≡⟨ cong (_ H.·_) (sym (H.invr _)) ⟩ f (G.inv g) H.· (f g H.· H.inv (f g)) ≡⟨ H.assoc _ _ _ ⟩ (f (G.inv g) H.· f g) H.· H.inv (f g) ≡⟨ cong (H._· _) (sym (pres _ g) ∙∙ cong f (G.invl g) ∙∙ hom1g) ⟩ H.1g H.· H.inv (f g) ≡⟨ H.lid _ ⟩ H.inv (f g) ∎ module _ {A : Type ℓ} {B : Type ℓ'} {G : GroupStr A} {f : A → B} {H : GroupStr B} (pres : (x y : A) → f (G ._·_ x y) ≡ H ._·_ (f x) (f y)) where makeIsGroupHom : IsGroupHom G f H makeIsGroupHom .pres· = pres makeIsGroupHom .pres1 = hom1g G f H pres makeIsGroupHom .presinv = homInv G f H pres -- H-level results isPropIsGroupHom : (G : Group ℓ) (H : Group ℓ') {f : ⟨ G ⟩ → ⟨ H ⟩} → isProp (IsGroupHom (G .snd) f (H .snd)) isPropIsGroupHom G H = isOfHLevelRetractFromIso 1 IsGroupHomIsoΣ (isProp× (isPropΠ2 λ _ _ → GroupStr.is-set (snd H) _ _) (isProp× (GroupStr.is-set (snd H) _ _) (isPropΠ λ _ → GroupStr.is-set (snd H) _ _))) isSetGroupHom : isSet (GroupHom G H) isSetGroupHom {G = G} {H = H} = isSetΣ (isSetΠ λ _ → is-set (snd H)) λ _ → isProp→isSet (isPropIsGroupHom G H) isPropIsInIm : (f : GroupHom G H) (x : ⟨ H ⟩) → isProp (isInIm f x) isPropIsInIm f x = squash isSetIm : (f : GroupHom G H) → isSet (Im f) isSetIm {H = H} f = isSetΣ (is-set (snd H)) λ x → isProp→isSet (isPropIsInIm f x) isPropIsInKer : (f : GroupHom G H) (x : ⟨ G ⟩) → isProp (isInKer f x) isPropIsInKer {H = H} f x = is-set (snd H) _ _ isSetKer : (f : GroupHom G H) → isSet (Ker f) isSetKer {G = G} f = isSetΣ (is-set (snd G)) λ x → isProp→isSet (isPropIsInKer f x) isPropIsSurjective : (f : GroupHom G H) → isProp (isSurjective f) isPropIsSurjective f = isPropΠ (λ x → isPropIsInIm f x) isPropIsInjective : (f : GroupHom G H) → isProp (isInjective f) isPropIsInjective {G = G} _ = isPropΠ2 (λ _ _ → is-set (snd G) _ _) isPropIsMono : (f : GroupHom G H) → isProp (isMono f) isPropIsMono {G = G} f = isPropImplicitΠ2 λ _ _ → isPropΠ (λ _ → is-set (snd G) _ _) -- Logically equivalent versions of isInjective isMono→isInjective : (f : GroupHom G H) → isMono f → isInjective f isMono→isInjective f h x p = h (p ∙ sym (f .snd .pres1)) isInjective→isMono : (f : GroupHom G H) → isInjective f → isMono f isInjective→isMono {G = G} {H = H} f h {x = x} {y = y} p = x ≡⟨ sym (G.rid _) ⟩ x G.· G.1g ≡⟨ cong (x G.·_) (sym (G.invl _)) ⟩ x G.· (G.inv y G.· y) ≡⟨ G.assoc _ _ _ ⟩ (x G.· G.inv y) G.· y ≡⟨ cong (G._· y) idHelper ⟩ G.1g G.· y ≡⟨ G.lid _ ⟩ y ∎ where module G = GroupStr (snd G) module H = GroupStr (snd H) idHelper : x G.· G.inv y ≡ G.1g idHelper = h _ (f .snd .pres· _ _ ∙ cong (λ a → f .fst x H.· a) (f .snd .presinv y) ∙ cong (H._· H.inv (f .fst y)) p ∙ H.invr _) -- TODO: maybe it would be better to take this as the definition of isInjective? isInjective→isContrKer : (f : GroupHom G H) → isInjective f → isContr (Ker f) fst (isInjective→isContrKer {G = G} f hf) = 1g (snd G) , f .snd .pres1 snd (isInjective→isContrKer {G = G} f hf) k = Σ≡Prop (isPropIsInKer f) (sym (isInjective→isMono f hf (k .snd ∙ sym (f .snd .pres1)))) isContrKer→isInjective : (f : GroupHom G H) → isContr (Ker f) → isInjective f isContrKer→isInjective {G = G} f ((a , b) , c) x y = cong fst (sym (c (x , y)) ∙ rem) where rem : (a , b) ≡ (1g (snd G) , pres1 (snd f)) rem = c (1g (snd G) , pres1 (snd f)) -- Special homomorphisms and operations (id, composition...) idGroupHom : GroupHom G G idGroupHom .fst x = x idGroupHom .snd = makeIsGroupHom λ _ _ → refl isGroupHomComp : (f : GroupHom F G) → (g : GroupHom G H) → IsGroupHom (F .snd) (fst g ∘ fst f) (H .snd) isGroupHomComp f g = makeIsGroupHom λ _ _ → cong (fst g) (f .snd .pres· _ _) ∙ (g .snd .pres· _ _) compGroupHom : GroupHom F G → GroupHom G H → GroupHom F H fst (compGroupHom f g) = fst g ∘ fst f snd (compGroupHom f g) = isGroupHomComp f g GroupHomDirProd : {A : Group ℓ} {B : Group ℓ'} {C : Group ℓ''} {D : Group ℓ'''} → GroupHom A C → GroupHom B D → GroupHom (DirProd A B) (DirProd C D) fst (GroupHomDirProd mf1 mf2) = map-× (fst mf1) (fst mf2) snd (GroupHomDirProd mf1 mf2) = makeIsGroupHom λ _ _ → ≡-× (mf1 .snd .pres· _ _) (mf2 .snd .pres· _ _) GroupHom≡ : {f g : GroupHom G H} → (fst f ≡ fst g) → f ≡ g fst (GroupHom≡ p i) = p i snd (GroupHom≡ {G = G} {H = H} {f = f} {g = g} p i) = p-hom i where p-hom : PathP (λ i → IsGroupHom (G .snd) (p i) (H .snd)) (f .snd) (g .snd) p-hom = toPathP (isPropIsGroupHom G H _ _) -- The composition of surjective maps is surjective compSurjective : ∀ {ℓ ℓ' ℓ''} {G : Group ℓ} {H : Group ℓ'} {L : Group ℓ''} → (G→H : GroupHom G H) (H→L : GroupHom H L) → isSurjective G→H → isSurjective H→L → isSurjective (compGroupHom G→H H→L) compSurjective G→H H→L surj1 surj2 l = rec squash (λ {(h , p) → pMap (λ {(g , q) → g , (cong (fst H→L) q ∙ p)}) (surj1 h)}) (surj2 l) -- GroupEquiv identity, composition and inversion idGroupEquiv : GroupEquiv G G fst (idGroupEquiv {G = G}) = idEquiv ⟨ G ⟩ snd idGroupEquiv = makeIsGroupHom λ _ _ → refl compGroupEquiv : GroupEquiv F G → GroupEquiv G H → GroupEquiv F H fst (compGroupEquiv f g) = compEquiv (fst f) (fst g) snd (compGroupEquiv f g) = isGroupHomComp (_ , f .snd) (_ , g .snd) isGroupHomInv : (f : GroupEquiv G H) → IsGroupHom (H .snd) (invEq (fst f)) (G .snd) isGroupHomInv {G = G} {H = H} f = makeIsGroupHom λ h h' → isInj-f _ _ (f' (g (h ⋆² h')) ≡⟨ secEq (fst f) _ ⟩ (h ⋆² h') ≡⟨ sym (cong₂ _⋆²_ (secEq (fst f) h) (secEq (fst f) h')) ⟩ (f' (g h) ⋆² f' (g h')) ≡⟨ sym (pres· (snd f) _ _) ⟩ f' (g h ⋆¹ g h') ∎) where f' = fst (fst f) _⋆¹_ = _·_ (snd G) _⋆²_ = _·_ (snd H) g = invEq (fst f) isInj-f : (x y : ⟨ G ⟩) → f' x ≡ f' y → x ≡ y isInj-f x y = invEq (_ , isEquiv→isEmbedding (snd (fst f)) x y) invGroupEquiv : GroupEquiv G H → GroupEquiv H G fst (invGroupEquiv f) = invEquiv (fst f) snd (invGroupEquiv f) = isGroupHomInv f GroupEquivDirProd : {A : Group ℓ} {B : Group ℓ'} {C : Group ℓ''} {D : Group ℓ'''} → GroupEquiv A C → GroupEquiv B D → GroupEquiv (DirProd A B) (DirProd C D) fst (GroupEquivDirProd eq1 eq2) = ≃-× (fst eq1) (fst eq2) snd (GroupEquivDirProd eq1 eq2) = GroupHomDirProd (_ , eq1 .snd) (_ , eq2 .snd) .snd GroupEquiv≡ : {f g : GroupEquiv G H} → fst f ≡ fst g → f ≡ g fst (GroupEquiv≡ p i) = p i snd (GroupEquiv≡ {G = G} {H = H} {f} {g} p i) = p-hom i where p-hom : PathP (λ i → IsGroupHom (G .snd) (p i .fst) (H .snd)) (snd f) (snd g) p-hom = toPathP (isPropIsGroupHom G H _ _) -- GroupIso identity, composition and inversion idGroupIso : GroupIso G G fst idGroupIso = idIso snd idGroupIso = makeIsGroupHom λ _ _ → refl compGroupIso : GroupIso G H → GroupIso H F → GroupIso G F fst (compGroupIso iso1 iso2) = compIso (fst iso1) (fst iso2) snd (compGroupIso iso1 iso2) = isGroupHomComp (_ , snd iso1) (_ , snd iso2) invGroupIso : GroupIso G H → GroupIso H G fst (invGroupIso iso1) = invIso (fst iso1) snd (invGroupIso iso1) = isGroupHomInv (isoToEquiv (fst iso1) , snd iso1) GroupIsoDirProd : {G : Group ℓ} {H : Group ℓ'} {A : Group ℓ''} {B : Group ℓ'''} → GroupIso G H → GroupIso A B → GroupIso (DirProd G A) (DirProd H B) fun (fst (GroupIsoDirProd iso1 iso2)) prod = fun (fst iso1) (fst prod) , fun (fst iso2) (snd prod) inv (fst (GroupIsoDirProd iso1 iso2)) prod = inv (fst iso1) (fst prod) , inv (fst iso2) (snd prod) rightInv (fst (GroupIsoDirProd iso1 iso2)) a = ΣPathP (rightInv (fst iso1) (fst a) , (rightInv (fst iso2) (snd a))) leftInv (fst (GroupIsoDirProd iso1 iso2)) a = ΣPathP (leftInv (fst iso1) (fst a) , (leftInv (fst iso2) (snd a))) snd (GroupIsoDirProd iso1 iso2) = makeIsGroupHom λ a b → ΣPathP (pres· (snd iso1) (fst a) (fst b) , pres· (snd iso2) (snd a) (snd b)) -- Conversion functions between different notions of group morphisms GroupIso→GroupEquiv : GroupIso G H → GroupEquiv G H fst (GroupIso→GroupEquiv i) = isoToEquiv (fst i) snd (GroupIso→GroupEquiv i) = snd i GroupEquiv→GroupIso : GroupEquiv G H → GroupIso G H fst (GroupEquiv→GroupIso e) = equivToIso (fst e) snd (GroupEquiv→GroupIso e) = snd e -- TODO: prove the converse BijectionIso→GroupIso : BijectionIso G H → GroupIso G H BijectionIso→GroupIso {G = G} {H = H} i = grIso where f = fst (fun i) helper : (b : _) → isProp (Σ[ a ∈ ⟨ G ⟩ ] f a ≡ b) helper _ (a , ha) (b , hb) = Σ≡Prop (λ _ → is-set (snd H) _ _) (isInjective→isMono (fun i) (inj i) (ha ∙ sym hb) ) grIso : GroupIso G H fun (fst grIso) = f inv (fst grIso) b = rec (helper b) (λ a → a) (surj i b) .fst rightInv (fst grIso) b = rec (helper b) (λ a → a) (surj i b) .snd leftInv (fst grIso) b j = rec (helper (f b)) (λ a → a) (isPropPropTrunc (surj i (f b)) ∣ b , refl ∣ j) .fst snd grIso = snd (fun i) BijectionIsoToGroupEquiv : BijectionIso G H → GroupEquiv G H BijectionIsoToGroupEquiv i = GroupIso→GroupEquiv (BijectionIso→GroupIso i)
38.172414
108
0.596206
4116818782299afad087fcbf76c80000ee323824
1,088
agda
Agda
test/Succeed/Issue1652-3.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue1652-3.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue1652-3.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{- Example by Guillaume Brunerie, 17-11-2015 -} {-# OPTIONS --rewriting --without-K #-} open import Agda.Primitive postulate _↦_ : ∀ {i} {A : Set i} → A → A → Set i idr : ∀ {i} {A : Set i} {a : A} → a ↦ a {-# BUILTIN REWRITE _↦_ #-} infixr 3 _==_ data _==_ {i} {A : Set i} (a : A) : A → Set i where idp : a == a PathOver : ∀ {i j} {A : Set i} (B : A → Set j) {x y : A} (p : x == y) (u : B x) (v : B y) → Set j PathOver B idp u v = (u == v) syntax PathOver B p u v = u == v [ B ↓ p ] postulate PathOver-rewr : ∀ {i j} {A : Set i} {B : Set j} {x y : A} (p : x == y) (u v : B) → (PathOver (λ _ → B) p u v) ↦ (u == v) {-# REWRITE PathOver-rewr #-} ap : ∀ {i j} {A : Set i} {B : A → Set j} (f : (a : A) → B a) {x y : A} → (p : x == y) → PathOver B p (f x) (f y) ap f idp = idp module _ {i j k} {A : Set i} {B : Set j} {C : Set k} (g : B → C) (f : A → B) where ∘ap : {x y : A} (p : x == y) → ap g (ap f p) ↦ ap (λ x → g (f x)) p ∘ap idp = idr {-# REWRITE ∘ap #-} ap∘ : {x y : A} (p : x == y) → ap (λ x → g (f x)) p ↦ ap g (ap f p) ap∘ p = idr
24.727273
84
0.438419
185ff58fbf22fac284855fa63fd4c78bb1676ae6
2,292
agda
Agda
agda/SNat/Order/Properties.agda
bgbianchi/sorting
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
[ "MIT" ]
6
2015-05-21T12:50:35.000Z
2021-08-24T22:11:15.000Z
agda/SNat/Order/Properties.agda
bgbianchi/sorting
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
[ "MIT" ]
null
null
null
agda/SNat/Order/Properties.agda
bgbianchi/sorting
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
[ "MIT" ]
null
null
null
{-# OPTIONS --sized-types #-} module SNat.Order.Properties where open import Data.Sum renaming (_⊎_ to _∨_) open import Relation.Binary.PropositionalEquality open import Size open import SNat open import SNat.Order tot≤ : {ι ι' : Size} → (m : SNat {ι}) → (n : SNat {ι'}) → m ≤ n ∨ n ≤ m tot≤ zero n = inj₁ (z≤n n) tot≤ m zero = inj₂ (z≤n m) tot≤ (succ m) (succ n) with tot≤ m n ...| inj₁ m≤n = inj₁ (s≤s m≤n) ...| inj₂ n≤m = inj₂ (s≤s n≤m) refl≤ : {n : SNat} → n ≤ n refl≤ {n} with tot≤ n n ... | inj₁ n≤n = n≤n ... | inj₂ n≤n = n≤n trans≤ : {ι ι' ι'' : Size}{n : SNat {ι}}{n' : SNat {ι'}}{n'' : SNat {ι''}} → n ≤ n' → n' ≤ n'' → n ≤ n'' trans≤ {n'' = n''} (z≤n n') _ = z≤n n'' trans≤ (s≤s n≤n') (s≤s n'≤n'') = s≤s (trans≤ n≤n' n'≤n'') refl≅ : {n : SNat} → n ≅ n refl≅ {zero} = z≅z refl≅ {succ _} = s≅s refl≅ trans≅ : {ι ι' ι'' : Size}{n : SNat {ι}}{n' : SNat {ι'}}{n'' : SNat {ι''}} → n ≅ n' → n' ≅ n'' → n ≅ n'' trans≅ z≅z z≅z = z≅z trans≅ (s≅s n≅n') (s≅s n'≅n'') = s≅s (trans≅ n≅n' n'≅n'') lemma-z≤′n : {ι ι' : Size}(n : SNat {ι}) → zero {ι'} ≤′ n lemma-z≤′n zero = ≤′-eq z≅z lemma-z≤′n (succ n) = ≤′-step (lemma-z≤′n n) lemma-s≤′s : {ι ι' : Size}{m : SNat {ι}}{n : SNat {ι'}} → m ≤′ n → succ m ≤′ succ n lemma-s≤′s (≤′-eq m≅n) = ≤′-eq (s≅s m≅n) lemma-s≤′s (≤′-step m≤′n) = ≤′-step (lemma-s≤′s m≤′n) lemma-≤-≤′ : {ι ι' : Size}{m : SNat {ι}}{n : SNat {ι'}} → m ≤ n → m ≤′ n lemma-≤-≤′ (z≤n n) = lemma-z≤′n n lemma-≤-≤′ (s≤s m≤n) = lemma-s≤′s (lemma-≤-≤′ m≤n) lemma-≅-≤ : {ι ι' : Size}{m : SNat {ι}}{n : SNat {ι'}} → m ≅ n → m ≤ n lemma-≅-≤ z≅z = z≤n zero lemma-≅-≤ (s≅s m≅n) = s≤s (lemma-≅-≤ m≅n) lemma-≡-≤′ : {a b c : SNat} → b ≡ a → a ≤′ c → b ≤′ c lemma-≡-≤′ b≡a a≤′c rewrite b≡a = a≤′c lemma-n≤sn : {ι : Size}(n : SNat {ι}) → n ≤ succ n lemma-n≤sn zero = z≤n (succ zero) lemma-n≤sn (succ n) = s≤s (lemma-n≤sn n) lemma-≤′-≤ : {ι ι' : Size}{m : SNat {ι}}{n : SNat {ι'}} → m ≤′ n → m ≤ n lemma-≤′-≤ (≤′-eq m≅n) = lemma-≅-≤ m≅n lemma-≤′-≤ (≤′-step {n = n} m≤′n) = trans≤ (lemma-≤′-≤ m≤′n) (lemma-n≤sn n) refl≤′ : {n : SNat} → n ≤′ n refl≤′ = lemma-≤-≤′ refl≤ trans≤′ : {ι ι' ι'' : Size}{n : SNat {ι}}{n' : SNat {ι'}}{n'' : SNat {ι''}} → n ≤′ n' → n' ≤′ n'' → n ≤′ n'' trans≤′ n≤′n' n'≤′n'' = lemma-≤-≤′ (trans≤ (lemma-≤′-≤ n≤′n') (lemma-≤′-≤ n'≤′n''))
33.705882
109
0.455497
4d71244f16761b1c4f425a2a119b29c1aa9362ba
1,209
agda
Agda
cohomology/SphereProduct.agda
UlrikBuchholtz/HoTT-Agda
f8fa68bf753d64d7f45556ca09d0da7976709afa
[ "MIT" ]
1
2021-06-30T00:17:55.000Z
2021-06-30T00:17:55.000Z
cohomology/SphereProduct.agda
UlrikBuchholtz/HoTT-Agda
f8fa68bf753d64d7f45556ca09d0da7976709afa
[ "MIT" ]
null
null
null
cohomology/SphereProduct.agda
UlrikBuchholtz/HoTT-Agda
f8fa68bf753d64d7f45556ca09d0da7976709afa
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} open import HoTT open import homotopy.SuspProduct open import homotopy.SuspSmash open import homotopy.JoinSusp open import cohomology.Theory module cohomology.SphereProduct {i} (CT : CohomologyTheory i) where open CohomologyTheory CT open import cohomology.Wedge CT module _ (n : ℤ) (m : ℕ) (X : Ptd i) where private space-path : ⊙Susp (⊙Sphere {i} m ⊙× X) == ⊙Sphere {i} (S m) ⊙∨ (⊙Susp X ⊙∨ ⊙Susp^ (S m) X) space-path = SuspProduct.⊙path (⊙Sphere m) X ∙ ap (λ Z → ⊙Sphere (S m) ⊙∨ (⊙Susp X ⊙∨ Z)) (SuspSmash.⊙path (⊙Sphere m) X ∙ ⊙join-sphere X m) C-Sphere× : C n (⊙Sphere {i} m ⊙× X) == C n (⊙Sphere m) ×ᴳ (C n X ×ᴳ C n (⊙Susp^ m X)) C-Sphere× = ! (group-ua (C-Susp n (⊙Sphere m ⊙× X))) ∙ ap (C (succ n)) space-path ∙ CWedge.path (succ n) (⊙Sphere (S m)) (⊙Susp X ⊙∨ ⊙Susp^ (S m) X) ∙ ap (λ H → C (succ n) (⊙Sphere (S m)) ×ᴳ H) (CWedge.path (succ n) (⊙Susp X) (⊙Susp^ (S m) X) ∙ ap2 _×ᴳ_ (group-ua (C-Susp n X)) (group-ua (C-Susp n (⊙Susp^ m X)))) ∙ ap (λ H → H ×ᴳ (C n X ×ᴳ C n (⊙Susp^ m X))) (group-ua (C-Susp n (⊙Sphere m)))
31.815789
70
0.527709
591105af40ae94e331e3e8a703eb0ec97c3f6187
4,326
agda
Agda
agda-stdlib/src/Reflection/Definition.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Reflection/Definition.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Reflection/Definition.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- Definitions used in the reflection machinery ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Reflection.Definition where open import Data.List.Base using (map) import Data.List.Properties as Listₚ import Data.Nat.Properties as ℕₚ import Data.Nat.Show as NatShow open import Data.Product using (_×_; <_,_>; uncurry) open import Data.String as String using (String; _<+>_; intersperse; braces) open import Function using (_∘′_) open import Relation.Nullary import Relation.Nullary.Decidable as Dec open import Relation.Nullary.Product using (_×-dec_) open import Relation.Binary using (DecidableEquality) open import Relation.Binary.PropositionalEquality import Reflection.Argument as Arg import Reflection.Name as Name import Reflection.Term as Term ------------------------------------------------------------------------ -- Re-exporting type publically open import Agda.Builtin.Reflection public using ( Definition ; function ; data-type ; axiom ) renaming ( record-type to record′ ; data-cons to constructor′ ; prim-fun to primitive′ ) ------------------------------------------------------------------------ -- Decidable equality function-injective : ∀ {cs cs′} → function cs ≡ function cs′ → cs ≡ cs′ function-injective refl = refl data-type-injective₁ : ∀ {pars pars′ cs cs′} → data-type pars cs ≡ data-type pars′ cs′ → pars ≡ pars′ data-type-injective₁ refl = refl data-type-injective₂ : ∀ {pars pars′ cs cs′} → data-type pars cs ≡ data-type pars′ cs′ → cs ≡ cs′ data-type-injective₂ refl = refl data-type-injective : ∀ {pars pars′ cs cs′} → data-type pars cs ≡ data-type pars′ cs′ → pars ≡ pars′ × cs ≡ cs′ data-type-injective = < data-type-injective₁ , data-type-injective₂ > record′-injective₁ : ∀ {c c′ fs fs′} → record′ c fs ≡ record′ c′ fs′ → c ≡ c′ record′-injective₁ refl = refl record′-injective₂ : ∀ {c c′ fs fs′} → record′ c fs ≡ record′ c′ fs′ → fs ≡ fs′ record′-injective₂ refl = refl record′-injective : ∀ {c c′ fs fs′} → record′ c fs ≡ record′ c′ fs′ → c ≡ c′ × fs ≡ fs′ record′-injective = < record′-injective₁ , record′-injective₂ > constructor′-injective : ∀ {c c′} → constructor′ c ≡ constructor′ c′ → c ≡ c′ constructor′-injective refl = refl _≟_ : DecidableEquality Definition function cs ≟ function cs′ = Dec.map′ (cong function) function-injective (cs Term.≟-Clauses cs′) data-type pars cs ≟ data-type pars′ cs′ = Dec.map′ (uncurry (cong₂ data-type)) data-type-injective (pars ℕₚ.≟ pars′ ×-dec Listₚ.≡-dec Name._≟_ cs cs′) record′ c fs ≟ record′ c′ fs′ = Dec.map′ (uncurry (cong₂ record′)) record′-injective (c Name.≟ c′ ×-dec Listₚ.≡-dec (Arg.≡-dec Name._≟_) fs fs′) constructor′ d ≟ constructor′ d′ = Dec.map′ (cong constructor′) constructor′-injective (d Name.≟ d′) axiom ≟ axiom = yes refl primitive′ ≟ primitive′ = yes refl -- antidiagonal function cs ≟ data-type pars cs₁ = no (λ ()) function cs ≟ record′ c fs = no (λ ()) function cs ≟ constructor′ d = no (λ ()) function cs ≟ axiom = no (λ ()) function cs ≟ primitive′ = no (λ ()) data-type pars cs ≟ function cs₁ = no (λ ()) data-type pars cs ≟ record′ c fs = no (λ ()) data-type pars cs ≟ constructor′ d = no (λ ()) data-type pars cs ≟ axiom = no (λ ()) data-type pars cs ≟ primitive′ = no (λ ()) record′ c fs ≟ function cs = no (λ ()) record′ c fs ≟ data-type pars cs = no (λ ()) record′ c fs ≟ constructor′ d = no (λ ()) record′ c fs ≟ axiom = no (λ ()) record′ c fs ≟ primitive′ = no (λ ()) constructor′ d ≟ function cs = no (λ ()) constructor′ d ≟ data-type pars cs = no (λ ()) constructor′ d ≟ record′ c fs = no (λ ()) constructor′ d ≟ axiom = no (λ ()) constructor′ d ≟ primitive′ = no (λ ()) axiom ≟ function cs = no (λ ()) axiom ≟ data-type pars cs = no (λ ()) axiom ≟ record′ c fs = no (λ ()) axiom ≟ constructor′ d = no (λ ()) axiom ≟ primitive′ = no (λ ()) primitive′ ≟ function cs = no (λ ()) primitive′ ≟ data-type pars cs = no (λ ()) primitive′ ≟ record′ c fs = no (λ ()) primitive′ ≟ constructor′ d = no (λ ()) primitive′ ≟ axiom = no (λ ())
38.283186
111
0.594313
0b6618e346c7bec43d51edbc4a7adfd510d21142
463
agda
Agda
examples/outdated-and-incorrect/univ/Example.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
examples/outdated-and-incorrect/univ/Example.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
examples/outdated-and-incorrect/univ/Example.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Example where open import Base open import Nat open import univ -- Application _#_ : {A : S}{F : El A -> S}{pF : Map _==_ _=S_ F} -> El (pi A F pF) -> (x : El A) -> El (F x) el < f , pf > # x = f x -- Projection π₀ : {A : S}{F : El A -> S}{pF : Map _==_ _=S_ F} -> El (sigma A F pF) -> El A π₀ (el < x , Fx >) = x π₁ : {A : S}{F : El A -> S}{pF : Map _==_ _=S_ F} -> (p : El (sigma A F pF)) -> El (F (π₀ p)) π₁ (el < x , Fx >) = Fx
19.291667
53
0.460043
064149d637e90631ddec02d70989c01173305b56
1,816
agda
Agda
Thesis/SIRelBigStep/SemEquiv.agda
inc-lc/ilc-agda
39bb081c6f192bdb87bd58b4a89291686d2d7d03
[ "MIT" ]
10
2015-03-04T06:09:20.000Z
2019-07-19T07:06:59.000Z
Thesis/SIRelBigStep/SemEquiv.agda
inc-lc/ilc-agda
39bb081c6f192bdb87bd58b4a89291686d2d7d03
[ "MIT" ]
6
2015-07-01T18:09:31.000Z
2017-05-04T13:53:59.000Z
Thesis/SIRelBigStep/SemEquiv.agda
inc-lc/ilc-agda
39bb081c6f192bdb87bd58b4a89291686d2d7d03
[ "MIT" ]
1
2016-02-18T12:26:44.000Z
2016-02-18T12:26:44.000Z
module Thesis.SIRelBigStep.SemEquiv where open import Data.Nat open import Data.Product open import Relation.Binary.PropositionalEquality open import Thesis.SIRelBigStep.Syntax public open import Thesis.SIRelBigStep.OpSem open import Thesis.SIRelBigStep.DenSem ⟦_⟧Val : ∀ {τ} → Val τ → ⟦ τ ⟧Type ⟦_⟧Env : ∀ {Γ} → ⟦ Γ ⟧Context → Den.⟦ Γ ⟧Context ⟦ ∅ ⟧Env = ∅ ⟦ v • ρ ⟧Env = ⟦ v ⟧Val • ⟦ ρ ⟧Env ⟦ closure t ρ ⟧Val = λ v → (⟦ t ⟧Term) (v • ⟦ ρ ⟧Env) ⟦ natV n ⟧Val = n ⟦ pairV v1 v2 ⟧Val = ⟦ v1 ⟧Val , ⟦ v2 ⟧Val ↦-sound : ∀ {Γ τ} ρ (x : Var Γ τ) → Den.⟦ x ⟧Var ⟦ ρ ⟧Env ≡ ⟦ ⟦ x ⟧Var ρ ⟧Val ↦-sound (px • ρ) this = refl ↦-sound (px • ρ) (that x) = ↦-sound ρ x eval-const-sound : ∀ {τ} (c : Const τ) → ⟦ c ⟧Const ≡ ⟦ eval-const c ⟧Val eval-const-sound (lit n) = refl eval-primitive-sound : ∀ {σ τ} (p : Primitive (σ ⇒ τ)) v → ⟦ p ⟧Primitive ⟦ v ⟧Val ≡ ⟦ eval-primitive p v ⟧Val eval-primitive-sound succ (natV n) = refl eval-primitive-sound add (pairV (natV n1) (natV n2)) = refl eval-sound : ∀ {Γ τ} ρ (sv : SVal Γ τ) → ⟦ sv ⟧SVal ⟦ ρ ⟧Env ≡ ⟦ eval sv ρ ⟧Val eval-sound ρ (var x) = ↦-sound ρ x eval-sound ρ (abs t) = refl eval-sound ρ (cons sv1 sv2) rewrite eval-sound ρ sv1 | eval-sound ρ sv2 = refl eval-sound ρ (const c) = eval-const-sound c -- Check it's fine to use i 0 in the derivations for app ↓-sv-1-step : ∀ {Γ τ ρ v} {n} {sv : SVal Γ τ} → ρ ⊢ val sv ↓[ i' n ] v → n ≡ 0 ↓-sv-1-step (val sv) = refl ↓-sound : ∀ {Γ τ ρ v hasIdx} {n : Idx hasIdx} {t : Term Γ τ} → ρ ⊢ t ↓[ n ] v → ⟦ t ⟧Term ⟦ ρ ⟧Env ≡ ⟦ v ⟧Val ↓-sound (val sv) = eval-sound _ sv ↓-sound (app _ _ ↓₁ ↓₂ ↓′) rewrite ↓-sound ↓₁ | ↓-sound ↓₂ | ↓-sound ↓′ = refl ↓-sound (lett n1 n2 vsv s t ↓ ↓₁) rewrite ↓-sound ↓ | ↓-sound ↓₁ = refl ↓-sound {ρ = ρ} (primapp p sv) rewrite eval-sound ρ sv = eval-primitive-sound p (eval sv ρ)
34.264151
110
0.59196
50b6d0335bf8f5a4728a84025943c1217162cabc
79
agda
Agda
test/interaction/HighlightSafePostulate.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/interaction/HighlightSafePostulate.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/interaction/HighlightSafePostulate.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2020-03-21, issue #4456 {-# OPTIONS --safe #-} postulate A : Set
13.166667
35
0.607595
4144d0fb36f20e537c2318e4c3bbd5f3287f4fe8
534
agda
Agda
Computability/Prelude.agda
jesyspa/computability-in-agda
1b5cf338eb0adb90c1897383e05251ddd954efff
[ "MIT" ]
2
2020-09-19T15:51:22.000Z
2021-04-30T11:15:51.000Z
Computability/Prelude.agda
jesyspa/computability-in-agda
1b5cf338eb0adb90c1897383e05251ddd954efff
[ "MIT" ]
null
null
null
Computability/Prelude.agda
jesyspa/computability-in-agda
1b5cf338eb0adb90c1897383e05251ddd954efff
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} module Computability.Prelude where open import Data.Bool public using (Bool; false; true) open import Data.Empty public using (⊥; ⊥-elim) open import Data.Nat public using (ℕ; zero; suc; _+_; _*_) open import Data.Product public using (Σ; Σ-syntax; _×_; _,_; proj₁; proj₂) open import Data.Sum public using (_⊎_) open import Data.Unit public using (⊤) open import Relation.Binary.PropositionalEquality public using (_≡_; refl) open import Level public using (Level) renaming (zero to lzero; suc to lsuc)
41.076923
76
0.741573
397e18f416d53b4cd22aff028f81f8e1735ffddc
18,507
agda
Agda
Univalence/Obsolete/PiLevel0.agda
JacquesCarette/pi-dual
003835484facfde0b770bc2b3d781b42b76184c1
[ "BSD-2-Clause" ]
14
2015-08-18T21:40:15.000Z
2021-05-05T01:07:57.000Z
Univalence/Obsolete/PiLevel0.agda
JacquesCarette/pi-dual
003835484facfde0b770bc2b3d781b42b76184c1
[ "BSD-2-Clause" ]
4
2018-06-07T16:27:41.000Z
2021-10-29T20:41:23.000Z
Univalence/Obsolete/PiLevel0.agda
JacquesCarette/pi-dual
003835484facfde0b770bc2b3d781b42b76184c1
[ "BSD-2-Clause" ]
3
2016-05-29T01:56:33.000Z
2019-09-10T09:47:13.000Z
{-# OPTIONS --without-K #-} module PiLevel0 where open import Relation.Binary.PropositionalEquality using (_≡_; refl; cong₂; module ≡-Reasoning) -- using (_≡_; refl; sym; trans; cong₂; proof-irrelevance; module ≡-Reasoning) --open import Data.Nat.Properties.Simple -- using (+-right-identity; +-suc; +-assoc; +-comm; -- *-assoc; *-comm; *-right-zero; distribʳ-*-+) --open import Data.Bool using (Bool; false; true; _∧_; _∨_) open import Data.Nat using (ℕ) -- ; _+_; _*_) --open import Data.Vec -- using (Vec; []; _∷_) -- renaming (_++_ to _++V_; map to mapV; concat to concatV) --open import Data.Empty using (⊥; ⊥-elim) --open import Data.Unit using (⊤; tt) --open import Data.Sum using (_⊎_; inj₁; inj₂) --open import Data.Product using (_×_; _,_; proj₁; proj₂) --open import Proofs using ( -- FinNatLemmas -- distribˡ-*-+; *-right-identity -- ) open import PiU using (U; ZERO; ONE; PLUS; TIMES; toℕ) ------------------------------------------------------------------------------ -- Level 0 of Pi -- {-- ⟦_⟧ : U → Set ⟦ ZERO ⟧ = ⊥ ⟦ ONE ⟧ = ⊤ ⟦ PLUS t₁ t₂ ⟧ = ⟦ t₁ ⟧ ⊎ ⟦ t₂ ⟧ ⟦ TIMES t₁ t₂ ⟧ = ⟦ t₁ ⟧ × ⟦ t₂ ⟧ -- Abbreviations for examples BOOL : U BOOL = PLUS ONE ONE BOOL² : U BOOL² = TIMES BOOL BOOL -- false⟷ true⟷ : ⟦ BOOL ⟧ -- false⟷ = inj₁ tt -- true⟷ = inj₂ tt -- For any finite type (t : U) there is no non-trivial path structure -- between the elements of t. All such finite types are discrete -- groupoids -- -- For U, there are non-trivial paths between its points. In the -- conventional HoTT presentation, a path between t₁ and t₂ is -- postulated by univalence for each equivalence between t₁ and t₂. In -- the context of finite types, an equivalence corresponds to a -- permutation as each permutation has a unique inverse -- permutation. Thus instead of the detour using univalence, we can -- give an inductive definition of all possible permutations between -- finite types which naturally induces paths between the points of U, -- i.e., the finite types. More precisely, two types t₁ and t₂ have a -- path between them if there is a permutation (c : t₁ ⟷ t₂). The fact -- that c is a permutation guarantees, by construction, that (c ◎ ! c -- ∼ id⟷) and (! c ◎ c ∼ id⟷). A complete set of generators for all -- possible permutations between finite types is given by the -- following definition. Note that these permutations do not reach -- inside the types and hence do not generate paths between the points -- within the types. The paths are just between the types themselves. --} size : U → ℕ size = toℕ infix 30 _⟷_ infixr 50 _◎_ -- Combinators, permutations, or paths depending on the perspective data _⟷_ : U → U → Set where unite₊l : {t : U} → PLUS ZERO t ⟷ t uniti₊l : {t : U} → t ⟷ PLUS ZERO t unite₊r : {t : U} → PLUS t ZERO ⟷ t uniti₊r : {t : U} → t ⟷ PLUS t ZERO swap₊ : {t₁ t₂ : U} → PLUS t₁ t₂ ⟷ PLUS t₂ t₁ assocl₊ : {t₁ t₂ t₃ : U} → PLUS t₁ (PLUS t₂ t₃) ⟷ PLUS (PLUS t₁ t₂) t₃ assocr₊ : {t₁ t₂ t₃ : U} → PLUS (PLUS t₁ t₂) t₃ ⟷ PLUS t₁ (PLUS t₂ t₃) unite⋆l : {t : U} → TIMES ONE t ⟷ t uniti⋆l : {t : U} → t ⟷ TIMES ONE t unite⋆r : {t : U} → TIMES t ONE ⟷ t uniti⋆r : {t : U} → t ⟷ TIMES t ONE swap⋆ : {t₁ t₂ : U} → TIMES t₁ t₂ ⟷ TIMES t₂ t₁ assocl⋆ : {t₁ t₂ t₃ : U} → TIMES t₁ (TIMES t₂ t₃) ⟷ TIMES (TIMES t₁ t₂) t₃ assocr⋆ : {t₁ t₂ t₃ : U} → TIMES (TIMES t₁ t₂) t₃ ⟷ TIMES t₁ (TIMES t₂ t₃) absorbr : {t : U} → TIMES ZERO t ⟷ ZERO absorbl : {t : U} → TIMES t ZERO ⟷ ZERO factorzr : {t : U} → ZERO ⟷ TIMES t ZERO factorzl : {t : U} → ZERO ⟷ TIMES ZERO t dist : {t₁ t₂ t₃ : U} → TIMES (PLUS t₁ t₂) t₃ ⟷ PLUS (TIMES t₁ t₃) (TIMES t₂ t₃) factor : {t₁ t₂ t₃ : U} → PLUS (TIMES t₁ t₃) (TIMES t₂ t₃) ⟷ TIMES (PLUS t₁ t₂) t₃ distl : {t₁ t₂ t₃ : U } → TIMES t₁ (PLUS t₂ t₃) ⟷ PLUS (TIMES t₁ t₂) (TIMES t₁ t₃) factorl : {t₁ t₂ t₃ : U } → PLUS (TIMES t₁ t₂) (TIMES t₁ t₃) ⟷ TIMES t₁ (PLUS t₂ t₃) id⟷ : {t : U} → t ⟷ t _◎_ : {t₁ t₂ t₃ : U} → (t₁ ⟷ t₂) → (t₂ ⟷ t₃) → (t₁ ⟷ t₃) _⊕_ : {t₁ t₂ t₃ t₄ : U} → (t₁ ⟷ t₃) → (t₂ ⟷ t₄) → (PLUS t₁ t₂ ⟷ PLUS t₃ t₄) _⊗_ : {t₁ t₂ t₃ t₄ : U} → (t₁ ⟷ t₃) → (t₂ ⟷ t₄) → (TIMES t₁ t₂ ⟷ TIMES t₃ t₄) {-- -- Syntactic equality of combinators comb= : {t₁ t₂ t₃ t₄ : U} → (t₁ ⟷ t₂) → (t₃ ⟷ t₄) → Bool comb= unite₊l unite₊l = true comb= uniti₊l uniti₊l = true comb= swap₊ swap₊ = true comb= assocl₊ assocl₊ = true comb= assocr₊ assocr₊ = true comb= unite⋆l unite⋆l = true comb= unite⋆r unite⋆r = true comb= uniti⋆l uniti⋆l = true comb= uniti⋆r uniti⋆r = true comb= swap⋆ swap⋆ = true comb= assocl⋆ assocl⋆ = true comb= assocr⋆ assocr⋆ = true comb= absorbl absorbl = true comb= absorbr absorbr = true comb= factorzl factorzl = true comb= factorzr factorzr = true comb= dist dist = true comb= factor factor = true comb= id⟷ id⟷ = true comb= (c₁ ◎ c₂) (c₃ ◎ c₄) = comb= c₁ c₃ ∧ comb= c₂ c₄ comb= (c₁ ⊕ c₂) (c₃ ⊕ c₄) = comb= c₁ c₃ ∧ comb= c₂ c₄ comb= (c₁ ⊗ c₂) (c₃ ⊗ c₄) = comb= c₁ c₃ ∧ comb= c₂ c₄ comb= _ _ = false -- Extensional evaluator for testing: serves as a specification -- A canonical representation of each type as a vector of values. This -- fixes a canonical order for the elements of the types: each value -- has a canonical index. utoVec : (t : U) → Vec ⟦ t ⟧ (size t) utoVec ZERO = [] utoVec ONE = tt ∷ [] utoVec (PLUS t₁ t₂) = mapV inj₁ (utoVec t₁) ++V mapV inj₂ (utoVec t₂) utoVec (TIMES t₁ t₂) = concatV (mapV (λ v₁ → mapV (λ v₂ → (v₁ , v₂)) (utoVec t₂)) (utoVec t₁)) -- Combinators are always between types of the same size -- Paths preserve sizes size≡ : {t₁ t₂ : U} → (t₁ ⟷ t₂) → (size t₁ ≡ size t₂) -- the composition case must be the first one -- otherwise Agda will not unfold (c ◎ id⟷) -- See "inconclusive matching" at -- http://wiki.portal.chalmers.se/agda/ -- pmwiki.php?n=ReferenceManual.PatternMatching size≡ (c₁ ◎ c₂) = trans (size≡ c₁) (size≡ c₂) size≡ {PLUS ZERO t} {.t} unite₊l = refl size≡ {t} {PLUS ZERO .t} uniti₊l = refl size≡ {PLUS t ZERO} unite₊r = +-right-identity (size t) size≡ {t} uniti₊r = sym (+-right-identity (size t)) size≡ {PLUS t₁ t₂} {PLUS .t₂ .t₁} swap₊ = +-comm (size t₁) (size t₂) size≡ {PLUS t₁ (PLUS t₂ t₃)} {PLUS (PLUS .t₁ .t₂) .t₃} assocl₊ = sym (+-assoc (size t₁) (size t₂) (size t₃)) size≡ {PLUS (PLUS t₁ t₂) t₃} {PLUS .t₁ (PLUS .t₂ .t₃)} assocr₊ = +-assoc (size t₁) (size t₂) (size t₃) size≡ {TIMES ONE t} {.t} unite⋆l = +-right-identity (size t) size≡ {t} {TIMES ONE .t} uniti⋆l = sym (+-right-identity (size t)) size≡ {TIMES t ONE} {.t} unite⋆r = *-right-identity (size t) size≡ {t} {TIMES .t ONE} uniti⋆r = sym (*-right-identity (size t)) size≡ {TIMES t₁ t₂} {TIMES .t₂ .t₁} swap⋆ = *-comm (size t₁) (size t₂) size≡ {TIMES t₁ (TIMES t₂ t₃)} {TIMES (TIMES .t₁ .t₂) .t₃} assocl⋆ = sym (*-assoc (size t₁) (size t₂) (size t₃)) size≡ {TIMES (TIMES t₁ t₂) t₃} {TIMES .t₁ (TIMES .t₂ .t₃)} assocr⋆ = *-assoc (size t₁) (size t₂) (size t₃) size≡ {TIMES .ZERO t} {ZERO} absorbr = refl size≡ {TIMES t .ZERO} {ZERO} absorbl = *-right-zero (size t) size≡ {ZERO} {TIMES ZERO t} factorzl = refl size≡ {ZERO} {TIMES t ZERO} factorzr = sym (*-right-zero (size t)) size≡ {TIMES (PLUS t₁ t₂) t₃} {PLUS (TIMES .t₁ .t₃) (TIMES .t₂ .t₃)} dist = distribʳ-*-+ (size t₃) (size t₁) (size t₂) size≡ {PLUS (TIMES t₁ t₃) (TIMES t₂ .t₃)} {TIMES (PLUS .t₁ .t₂) .t₃} factor = sym (distribʳ-*-+ (size t₃) (size t₁) (size t₂)) size≡ {TIMES t₁ (PLUS t₂ t₃)} distl = distribˡ-*-+ (size t₁) (size t₂) (size t₃) size≡ {PLUS (TIMES t₁ t₂) (TIMES .t₁ t₃)} factorl = sym (distribˡ-*-+ (size t₁) (size t₂) (size t₃)) size≡ {t} {.t} id⟷ = refl size≡ {PLUS t₁ t₂} {PLUS t₃ t₄} (c₁ ⊕ c₂) = cong₂ _+_ (size≡ c₁) (size≡ c₂) size≡ {TIMES t₁ t₂} {TIMES t₃ t₄} (c₁ ⊗ c₂) = cong₂ _*_ (size≡ c₁) (size≡ c₂) -- All proofs about sizes are "the same" size∼ : {t₁ t₂ : U} → (c₁ c₂ : t₁ ⟷ t₂) → (size≡ c₁ ≡ size≡ c₂) size∼ c₁ c₂ = proof-irrelevance (size≡ c₁) (size≡ c₂) ------------------------------------------------------------------------------ -- Examples of Pi programs -- Nicer syntax that shows intermediate values instead of the above -- point-free notation of permutations infixr 2 _⟷⟨_⟩_ infix 2 _□ _⟷⟨_⟩_ : (t₁ : U) {t₂ : U} {t₃ : U} → (t₁ ⟷ t₂) → (t₂ ⟷ t₃) → (t₁ ⟷ t₃) _ ⟷⟨ α ⟩ β = α ◎ β _□ : (t : U) → {t : U} → (t ⟷ t) _□ t = id⟷ -- calculate and print specification of a combinator spec : {t₁ t₂ : U} → (t₁ ⟷ t₂) → Vec (⟦ t₁ ⟧ × ⟦ t₂ ⟧) (size t₁) spec {t₁} {t₂} c = mapV (λ v₁ → (v₁ , eval c v₁)) (utoVec t₁) -- For easier manipulation of Bool foldBool unfoldBool : BOOL ⟷ BOOL foldBool = id⟷ unfoldBool = id⟷ -- Many ways of negating a BOOL. Again, it is absolutely critical that there -- is NO path between false⟷ and true⟷. These permutations instead are based -- on paths between x and neg (neg x) which are the trivial paths on each of -- the two points in BOOL. NOT : BOOL ⟷ BOOL NOT = unfoldBool ◎ swap₊ ◎ foldBool -- spec: (false , true) ∷ (true , false) ∷ [] NEG1 NEG2 NEG3 NEG4 NEG5 : BOOL ⟷ BOOL NEG1 = unfoldBool ◎ swap₊ ◎ foldBool -- spec: (false , true) ∷ (true , false) ∷ [] NEG2 = id⟷ ◎ NOT -- spec: (false , true) ∷ (true , false) ∷ [] NEG3 = NOT ◎ NOT ◎ NOT -- spec: (false , true) ∷ (true , false) ∷ [] NEG4 = NOT ◎ id⟷ -- spec: (false , true) ∷ (true , false) ∷ [] NEG5 = uniti⋆l ◎ swap⋆ ◎ (NOT ⊗ id⟷) ◎ swap⋆ ◎ unite⋆l -- spec: (false , true) ∷ (true , false) ∷ [] NEG6 = uniti⋆r ◎ (NOT ⊗ id⟷) ◎ unite⋆r -- same as above, but shorter -- CNOT CNOT : BOOL² ⟷ BOOL² CNOT = TIMES BOOL BOOL ⟷⟨ unfoldBool ⊗ id⟷ ⟩ TIMES (PLUS x y) BOOL ⟷⟨ dist ⟩ PLUS (TIMES x BOOL) (TIMES y BOOL) ⟷⟨ id⟷ ⊕ (id⟷ ⊗ NOT) ⟩ PLUS (TIMES x BOOL) (TIMES y BOOL) ⟷⟨ factor ⟩ TIMES (PLUS x y) BOOL ⟷⟨ foldBool ⊗ id⟷ ⟩ TIMES BOOL BOOL □ where x = ONE; y = ONE -- spec: -- ((false , false) , false , false) ∷ -- ((false , true) , false , true) ∷ -- ((true , false) , true , true) ∷ -- ((true , true) , true , false) ∷ [] -- TOFFOLI TOFFOLI : TIMES BOOL BOOL² ⟷ TIMES BOOL BOOL² TOFFOLI = TIMES BOOL BOOL² ⟷⟨ unfoldBool ⊗ id⟷ ⟩ TIMES (PLUS x y) BOOL² ⟷⟨ dist ⟩ PLUS (TIMES x BOOL²) (TIMES y BOOL²) ⟷⟨ id⟷ ⊕ (id⟷ ⊗ CNOT) ⟩ PLUS (TIMES x BOOL²) (TIMES y BOOL²) ⟷⟨ factor ⟩ TIMES (PLUS x y) BOOL² ⟷⟨ foldBool ⊗ id⟷ ⟩ TIMES BOOL BOOL² □ where x = ONE; y = ONE -- spec: -- ((false , false , false) , false , false , false) ∷ -- ((false , false , true) , false , false , true) ∷ -- ((false , true , false) , false , true , false) ∷ -- ((false , true , true) , false , true , true) ∷ -- ((true , false , false) , true , false , false) ∷ -- ((true , false , true) , true , false , true) ∷ -- ((true , true , false) , true , true , true) ∷ -- ((true , true , true) , true , true , false) ∷ [] -- Swaps for the type 1+(1+1) -- We have three values in the type 1+(1+1) -- Let's call them a, b, and c -- There 6 permutations. Using the swaps below we can express every permutation: -- a b c id⟷ -- a c b SWAP23 -- b a c SWAP12 -- b c a ROTL -- c a b ROTR -- c b a SWAP13 SWAP12 SWAP23 SWAP13 ROTL ROTR : PLUS ONE (PLUS ONE ONE) ⟷ PLUS ONE (PLUS ONE ONE) SWAP12 = assocl₊ ◎ (swap₊ ⊕ id⟷) ◎ assocr₊ -- spec: -- (inj₁ tt , inj₂ (inj₁ tt)) ∷ -- (inj₂ (inj₁ tt) , inj₁ tt) ∷ -- (inj₂ (inj₂ tt) , inj₂ (inj₂ tt)) ∷ [] SWAP23 = id⟷ ⊕ swap₊ -- spec: -- (inj₁ tt , inj₁ tt) ∷ -- (inj₂ (inj₁ tt) , inj₂ (inj₂ tt)) ∷ -- (inj₂ (inj₂ tt) , inj₂ (inj₁ tt)) ∷ [] SWAP13 = SWAP23 ◎ SWAP12 ◎ SWAP23 -- spec: -- (inj₁ tt , inj₂ (inj₂ tt)) ∷ -- (inj₂ (inj₁ tt) , inj₂ (inj₁ tt)) ∷ -- (inj₂ (inj₂ tt) , inj₁ tt) ∷ [] ROTR = SWAP12 ◎ SWAP23 -- spec: -- (inj₁ tt , inj₂ (inj₂ tt)) ∷ -- (inj₂ (inj₁ tt) , inj₁ tt) ∷ -- (inj₂ (inj₂ tt) , inj₂ (inj₁ tt)) ∷ [] ROTL = SWAP13 ◎ SWAP23 -- spec: -- (inj₁ tt , inj₂ (inj₁ tt)) ∷ -- (inj₂ (inj₁ tt) , inj₂ (inj₂ tt)) ∷ -- (inj₂ (inj₂ tt) , inj₁ tt) ∷ [] -- The Peres gate is a universal gate: it takes three inputs a, b, and c, and -- produces a, a xor b, (a and b) xor c PERES : TIMES (TIMES BOOL BOOL) BOOL ⟷ TIMES (TIMES BOOL BOOL) BOOL PERES = (id⟷ ⊗ NOT) ◎ assocr⋆ ◎ (id⟷ ⊗ swap⋆) ◎ TOFFOLI ◎ (id⟷ ⊗ (NOT ⊗ id⟷)) ◎ TOFFOLI ◎ (id⟷ ⊗ swap⋆) ◎ (id⟷ ⊗ (NOT ⊗ id⟷)) ◎ TOFFOLI ◎ (id⟷ ⊗ (NOT ⊗ id⟷)) ◎ assocl⋆ -- spec: -- (((false , false) , false) , (false , false) , false) ∷ -- (((false , false) , true) , (false , false) , true) ∷ -- (((false , true) , false) , (false , true) , false) ∷ -- (((false , true) , true) , (false , true) , true) ∷ -- (((true , false) , false) , (true , true) , false) ∷ -- (((true , false) , true) , (true , true) , true) ∷ -- (((true , true) , false) , (true , false) , true) ∷ -- (((true , true) , true) , (true , false) , false) ∷ [] -- A reversible full adder: See http://arxiv.org/pdf/1008.3533.pdf -- Input: (z, ((n1, n2), cin))) -- Output (g1, (g2, (sum, cout))) -- where sum = n1 xor n2 xor cin -- and cout = ((n1 xor n2) and cin) xor (n1 and n2) xor z FULLADDER : TIMES BOOL (TIMES (TIMES BOOL BOOL) BOOL) ⟷ TIMES BOOL (TIMES BOOL (TIMES BOOL BOOL)) FULLADDER = -- (z,((n1,n2),cin)) swap⋆ ◎ -- (((n1,n2),cin),z) (swap⋆ ⊗ id⟷) ◎ -- ((cin,(n1,n2)),z) assocr⋆ ◎ -- (cin,((n1,n2),z)) swap⋆ ◎ -- (((n1,n2),z),cin) (PERES ⊗ id⟷) ◎ -- (((n1,n1 xor n2),(n1 and n2) xor z),cin) assocr⋆ ◎ -- ((n1,n1 xor n2),((n1 and n2) xor z,cin)) (id⟷ ⊗ swap⋆) ◎ -- ((n1,n1 xor n2),(cin,(n1 and n2) xor z)) assocr⋆ ◎ -- (n1,(n1 xor n2,(cin,(n1 and n2) xor z))) (id⟷ ⊗ assocl⋆) ◎ -- (n1,((n1 xor n2,cin),(n1 and n2) xor z)) (id⟷ ⊗ PERES) ◎ -- (n1,((n1 xor n2,n1 xor n2 xor cin), -- ((n1 xor n2) and cin) xor (n1 and n2) xor z)) (id⟷ ⊗ assocr⋆) -- (n1,(n1 xor n2, -- (n1 xor n2 xor cin,((n1 xor n2) and cin) xor (n1 and n2) xor z))) -- spec: -- ((false , (false , false) , false) , false , false , false , false) ∷ -- ((false , (false , false) , true) , false , false , true , false) ∷ -- ((false , (false , true) , false) , false , true , true , false) ∷ -- ((false , (false , true) , true) , false , true , false , true) ∷ -- ((false , (true , false) , false) , true , true , true , false) ∷ -- ((false , (true , false) , true) , true , true , false , true) ∷ -- ((false , (true , true) , false) , true , false , false , true) ∷ -- ((false , (true , true) , true) , true , false , true , true) ∷ -- ((true , (false , false) , false) , false , false , false , true) ∷ -- ((true , (false , false) , true) , false , false , true , true) ∷ -- ((true , (false , true) , false) , false , true , true , true) ∷ -- ((true , (false , true) , true) , false , true , false , false) ∷ -- ((true , (true , false) , false) , true , true , true , true) ∷ -- ((true , (true , false) , true) , true , true , false , false) ∷ -- ((true , (true , true) , false) , true , false , false , false) ∷ -- ((true , (true , true) , true) , true , false , true , false) ∷ [] --} ------------------------------------------------------------------------------ -- Every permutation has an inverse. There are actually many syntactically -- different inverses but they are all equivalent. -- Alternative view: this corresponds to Lemma 2.1.1 In our notation, -- for every path t₁ ⟷ t₂, we have a path t₂ ⟷ t₁ such that (! id⟷) -- reduces to id⟷. ! : {t₁ t₂ : U} → (t₁ ⟷ t₂) → (t₂ ⟷ t₁) ! unite₊l = uniti₊l ! uniti₊l = unite₊l ! unite₊r = uniti₊r ! uniti₊r = unite₊r ! swap₊ = swap₊ ! assocl₊ = assocr₊ ! assocr₊ = assocl₊ ! unite⋆l = uniti⋆l ! uniti⋆l = unite⋆l ! unite⋆r = uniti⋆r ! uniti⋆r = unite⋆r ! swap⋆ = swap⋆ ! assocl⋆ = assocr⋆ ! assocr⋆ = assocl⋆ ! absorbl = factorzr ! absorbr = factorzl ! factorzl = absorbr ! factorzr = absorbl ! dist = factor ! factor = dist ! distl = factorl ! factorl = distl ! id⟷ = id⟷ ! (c₁ ◎ c₂) = ! c₂ ◎ ! c₁ ! (c₁ ⊕ c₂) = (! c₁) ⊕ (! c₂) ! (c₁ ⊗ c₂) = (! c₁) ⊗ (! c₂) !! : {t₁ t₂ : U} {c : t₁ ⟷ t₂} → ! (! c) ≡ c !! {c = unite₊l} = refl !! {c = uniti₊l} = refl !! {c = unite₊r} = refl !! {c = uniti₊r} = refl !! {c = swap₊} = refl !! {c = assocl₊} = refl !! {c = assocr₊} = refl !! {c = unite⋆l} = refl !! {c = uniti⋆l} = refl !! {c = unite⋆r} = refl !! {c = uniti⋆r} = refl !! {c = swap⋆} = refl !! {c = assocl⋆} = refl !! {c = assocr⋆} = refl !! {c = absorbr} = refl !! {c = absorbl} = refl !! {c = factorzl} = refl !! {c = factorzr} = refl !! {c = dist} = refl !! {c = factor} = refl !! {c = distl} = refl !! {c = factorl} = refl !! {c = id⟷} = refl !! {c = c₁ ◎ c₂} = begin (! (! (c₁ ◎ c₂)) ≡⟨ refl ⟩ ! (! c₂ ◎ ! c₁) ≡⟨ refl ⟩ ! (! c₁) ◎ ! (! c₂) ≡⟨ cong₂ _◎_ (!! {c = c₁}) (!! {c = c₂}) ⟩ c₁ ◎ c₂ ∎) where open ≡-Reasoning !! {c = c₁ ⊕ c₂} = begin (! (! (c₁ ⊕ c₂)) ≡⟨ refl ⟩ ! (! c₁) ⊕ ! (! c₂) ≡⟨ cong₂ _⊕_ (!! {c = c₁}) (!! {c = c₂}) ⟩ c₁ ⊕ c₂ ∎) where open ≡-Reasoning !! {c = c₁ ⊗ c₂} = begin (! (! (c₁ ⊗ c₂)) ≡⟨ refl ⟩ ! (! c₁) ⊗ ! (! c₂) ≡⟨ cong₂ _⊗_ (!! {c = c₁}) (!! {c = c₂}) ⟩ c₁ ⊗ c₂ ∎) where open ≡-Reasoning {-- -- size≡ and ! size≡! : {t₁ t₂ : U} → (t₁ ⟷ t₂) → (size t₂ ≡ size t₁) size≡! c = sym (size≡ c) ------------------------------------------------------------------------------ ttt : {t₁ t₂ t₃ t₄ : U} → (TIMES (PLUS t₁ t₂) (PLUS t₃ t₄)) ⟷ (PLUS (PLUS (PLUS (TIMES t₁ t₃) (TIMES t₂ t₃)) (TIMES t₁ t₄))) (TIMES t₂ t₄) ttt {t₁} {t₂} {t₃} {t₄} = (distl ◎ (dist {t₁} {t₂} {t₃} ⊕ dist {t₁} {t₂} {t₄})) ◎ assocl₊ ------------------------------------------------------------------------------ -- generalized CNOT gcnot : {A B C : U} → (TIMES (PLUS A B) (PLUS C C)) ⟷ (TIMES (PLUS A B) (PLUS C C)) gcnot = dist ◎ (id⟷ ⊕ (id⟷ ⊗ swap₊)) ◎ factor -- Generalized Toffolli gate. See what 'arithmetic' it performs. GToffoli : {A B C D E : U} → TIMES (PLUS A B) (TIMES (PLUS C D) (PLUS E E)) ⟷ TIMES (PLUS A B) (TIMES (PLUS C D) (PLUS E E)) GToffoli = dist ◎ (id⟷ ⊕ (id⟷ ⊗ gcnot)) ◎ factor ------------------------------------------------------------------------------ --}
35.184411
124
0.5345
cbef682b7bca326b7ed0bf44fe1b7869519fe899
3,896
agda
Agda
lemmas-freshness.agda
hazelgrove/hazel-palette-agda
c3225acc3c94c56376c6842b82b8b5d76912df2a
[ "MIT" ]
4
2020-10-04T06:45:06.000Z
2021-12-19T15:38:31.000Z
lemmas-freshness.agda
hazelgrove/hazel-palette-agda
c3225acc3c94c56376c6842b82b8b5d76912df2a
[ "MIT" ]
9
2020-09-30T20:27:56.000Z
2020-10-20T20:44:13.000Z
lemmas-freshness.agda
hazelgrove/hazelnut-livelits-agda
c3225acc3c94c56376c6842b82b8b5d76912df2a
[ "MIT" ]
null
null
null
open import Prelude open import Nat open import core open import contexts open import lemmas-disjointness module lemmas-freshness where -- if x is fresh in an eexp, it's fresh in its expansion mutual fresh-elab-synth1 : ∀{x e τ d Γ Δ} → x # Γ → freshe x e → Γ ⊢ e ⇒ τ ~> d ⊣ Δ → fresh x d fresh-elab-synth1 _ FRHConst ESConst = FConst fresh-elab-synth1 apt (FRHAsc frsh) (ESAsc x₁) = FCast (fresh-elab-ana1 apt frsh x₁) fresh-elab-synth1 _ (FRHVar x₂) (ESVar x₃) = FVar x₂ fresh-elab-synth1 {Γ = Γ} apt (FRHLam2 x₂ frsh) (ESLam x₃ exp) = FLam x₂ (fresh-elab-synth1 (apart-extend1 Γ x₂ apt) frsh exp) fresh-elab-synth1 apt FRHEHole ESEHole = FHole (EFId apt) fresh-elab-synth1 apt (FRHNEHole frsh) (ESNEHole x₁ exp) = FNEHole (EFId apt) (fresh-elab-synth1 apt frsh exp) fresh-elab-synth1 apt (FRHAp frsh frsh₁) (ESAp x₁ x₂ x₃ x₄ x₅ x₆) = FAp (FCast (fresh-elab-ana1 apt frsh x₅)) (FCast (fresh-elab-ana1 apt frsh₁ x₆)) fresh-elab-synth1 apt (FRHLam1 x₁ frsh) () fresh-elab-synth1 apt (FRHFst frsh) (ESFst s m esana) = FFst (FCast (fresh-elab-ana1 apt frsh esana)) fresh-elab-synth1 apt (FRHSnd frsh) (ESSnd s m esana) = FSnd (FCast (fresh-elab-ana1 apt frsh esana)) fresh-elab-synth1 apt (FRHPair frsh frsh₁) (ESPair x₁ x₂ exp exp₁) = FPair (fresh-elab-synth1 apt frsh exp) (fresh-elab-synth1 apt frsh₁ exp₁) fresh-elab-ana1 : ∀{ x e τ d τ' Γ Δ} → x # Γ → freshe x e → Γ ⊢ e ⇐ τ ~> d :: τ' ⊣ Δ → fresh x d fresh-elab-ana1 {Γ = Γ} apt (FRHLam1 x₁ frsh) (EALam x₂ x₃ exp) = FLam x₁ (fresh-elab-ana1 (apart-extend1 Γ x₁ apt) frsh exp ) fresh-elab-ana1 apt frsh (EASubsume x₁ x₂ x₃ x₄) = fresh-elab-synth1 apt frsh x₃ fresh-elab-ana1 apt FRHEHole EAEHole = FHole (EFId apt) fresh-elab-ana1 apt (FRHNEHole frsh) (EANEHole x₁ x₂) = FNEHole (EFId apt) (fresh-elab-synth1 apt frsh x₂) -- if x is fresh in the expansion of an eexp, it's fresh in that eexp mutual fresh-elab-synth2 : ∀{x e τ d Γ Δ} → fresh x d → Γ ⊢ e ⇒ τ ~> d ⊣ Δ → freshe x e fresh-elab-synth2 FConst ESConst = FRHConst fresh-elab-synth2 (FVar x₂) (ESVar x₃) = FRHVar x₂ fresh-elab-synth2 (FLam x₂ frsh) (ESLam x₃ exp) = FRHLam2 x₂ (fresh-elab-synth2 frsh exp) fresh-elab-synth2 (FHole x₁) ESEHole = FRHEHole fresh-elab-synth2 (FNEHole x₁ frsh) (ESNEHole x₂ exp) = FRHNEHole (fresh-elab-synth2 frsh exp) fresh-elab-synth2 (FAp (FCast frsh) (FCast frsh₁)) (ESAp x₁ x₂ x₃ x₄ x₅ x₆) = FRHAp (fresh-elab-ana2 frsh x₅) (fresh-elab-ana2 frsh₁ x₆) fresh-elab-synth2 (FCast frsh) (ESAsc x₁) = FRHAsc (fresh-elab-ana2 frsh x₁) fresh-elab-synth2 (FFailedCast frsh) () fresh-elab-synth2 (FFst (FCast frsh)) (ESFst s m esana) = FRHFst (fresh-elab-ana2 frsh esana) fresh-elab-synth2 (FSnd (FCast frsh)) (ESSnd s m esana) = FRHSnd (fresh-elab-ana2 frsh esana) fresh-elab-synth2 (FPair frsh frsh₁) (ESPair x₁ x₂ exp exp₁) = FRHPair (fresh-elab-synth2 frsh exp) (fresh-elab-synth2 frsh₁ exp₁) fresh-elab-ana2 : ∀{ x e τ d τ' Γ Δ} → fresh x d → Γ ⊢ e ⇐ τ ~> d :: τ' ⊣ Δ → freshe x e fresh-elab-ana2 (FLam x₁ frsh) (EALam x₂ x₃ exp) = FRHLam1 x₁ (fresh-elab-ana2 frsh exp) fresh-elab-ana2 frsh (EASubsume x₁ x₂ x₃ x₄) = fresh-elab-synth2 frsh x₃ fresh-elab-ana2 (FHole x₁) EAEHole = FRHEHole fresh-elab-ana2 (FNEHole x₁ frsh) (EANEHole x₂ x₃) = FRHNEHole (fresh-elab-synth2 frsh x₃)
57.294118
134
0.587526
59eb7a227e447678cd6b2aa0c90dba3030897a0e
2,439
agda
Agda
Cubical/Categories/Functor/Base.agda
hyleIndex/cubical
ce5c2820ecb2e0fd8dce74fb0247856cdbf034c4
[ "MIT" ]
301
2018-10-17T18:00:24.000Z
2022-03-24T02:10:47.000Z
Cubical/Categories/Functor/Base.agda
hyleIndex/cubical
ce5c2820ecb2e0fd8dce74fb0247856cdbf034c4
[ "MIT" ]
584
2018-10-15T09:49:02.000Z
2022-03-30T12:09:17.000Z
Cubical/Categories/Functor/Base.agda
hyleIndex/cubical
ce5c2820ecb2e0fd8dce74fb0247856cdbf034c4
[ "MIT" ]
134
2018-11-16T06:11:03.000Z
2022-03-23T16:22:13.000Z
{-# OPTIONS --safe #-} module Cubical.Categories.Functor.Base where open import Cubical.Foundations.Prelude open import Cubical.Data.Sigma open import Cubical.Categories.Category private variable ℓC ℓC' ℓD ℓD' : Level record Functor (C : Precategory ℓC ℓC') (D : Precategory ℓD ℓD') : Type (ℓ-max (ℓ-max ℓC ℓC') (ℓ-max ℓD ℓD')) where no-eta-equality open Precategory field F-ob : C .ob → D .ob F-hom : {x y : C .ob} → C [ x , y ] → D [(F-ob x) , (F-ob y)] F-id : {x : C .ob} → F-hom (C .id x) ≡ D .id (F-ob x) F-seq : {x y z : C .ob} (f : C [ x , y ]) (g : C [ y , z ]) → F-hom (f ⋆⟨ C ⟩ g) ≡ (F-hom f) ⋆⟨ D ⟩ (F-hom g) isFull = (x y : _) (F[f] : D [(F-ob x) , (F-ob y)]) → ∃ (C [ x , y ]) (λ f → F-hom f ≡ F[f]) isFaithful = (x y : _) (f g : C [ x , y ]) → F-hom f ≡ F-hom g → f ≡ g isEssentiallySurj = ∀ (d : D .ob) → Σ[ c ∈ C .ob ] CatIso {C = D} (F-ob c) d private variable ℓ ℓ' : Level C D E : Precategory ℓ ℓ' open Precategory open Functor -- Helpful notation -- action on objects infix 30 _⟅_⟆ _⟅_⟆ : (F : Functor C D) → C .ob → D .ob _⟅_⟆ = F-ob -- action on morphisms infix 30 _⟪_⟫ -- same infix level as on objects since these will never be used in the same context _⟪_⟫ : (F : Functor C D) → ∀ {x y} → C [ x , y ] → D [(F ⟅ x ⟆) , (F ⟅ y ⟆)] _⟪_⟫ = F-hom -- Functor constructions 𝟙⟨_⟩ : ∀ (C : Precategory ℓ ℓ') → Functor C C 𝟙⟨ C ⟩ .F-ob x = x 𝟙⟨ C ⟩ .F-hom f = f 𝟙⟨ C ⟩ .F-id = refl 𝟙⟨ C ⟩ .F-seq _ _ = refl -- functor composition funcComp : ∀ (G : Functor D E) (F : Functor C D) → Functor C E (funcComp G F) .F-ob c = G ⟅ F ⟅ c ⟆ ⟆ (funcComp G F) .F-hom f = G ⟪ F ⟪ f ⟫ ⟫ (funcComp {D = D} {E = E} {C = C} G F) .F-id {c} = (G ⟪ F ⟪ C .id c ⟫ ⟫) ≡⟨ cong (G ⟪_⟫) (F .F-id) ⟩ G .F-id -- (G ⟪ D .id (F ⟅ c ⟆) ⟫) -- deleted this cause the extra refl composition was annoying -- ≡⟨ G .F-id ⟩ -- E .id (G ⟅ F ⟅ c ⟆ ⟆) -- ∎ (funcComp {D = D} {E = E} {C = C} G F) .F-seq {x} {y} {z} f g = (G ⟪ F ⟪ f ⋆⟨ C ⟩ g ⟫ ⟫) ≡⟨ cong (G ⟪_⟫) (F .F-seq _ _) ⟩ G .F-seq _ _ -- (G ⟪ (F ⟪ f ⟫) ⋆⟨ D ⟩ (F ⟪ g ⟫) ⟫) -- deleted for same reason as above -- ≡⟨ G .F-seq _ _ ⟩ -- (G ⟪ F ⟪ f ⟫ ⟫) ⋆⟨ E ⟩ (G ⟪ F ⟪ g ⟫ ⟫) -- ∎ infixr 30 funcComp syntax funcComp G F = G ∘F F _^opF : Functor C D → Functor (C ^op) (D ^op) (F ^opF) .F-ob = F .F-ob (F ^opF) .F-hom = F .F-hom (F ^opF) .F-id = F .F-id (F ^opF) .F-seq f g = F .F-seq g f
27.1
115
0.493235
311000f5d7bb38d4c19654ca1c51dae8f808fe9e
666
agda
Agda
agda/ExtInterface/Data/Maybe.agda
RPI-WCL/safety-envelopes-sentinels
896e67a2ad21041a1c9ef5f3ad6318c67d730341
[ "BSD-3-Clause" ]
null
null
null
agda/ExtInterface/Data/Maybe.agda
RPI-WCL/safety-envelopes-sentinels
896e67a2ad21041a1c9ef5f3ad6318c67d730341
[ "BSD-3-Clause" ]
null
null
null
agda/ExtInterface/Data/Maybe.agda
RPI-WCL/safety-envelopes-sentinels
896e67a2ad21041a1c9ef5f3ad6318c67d730341
[ "BSD-3-Clause" ]
1
2020-09-20T00:36:09.000Z
2020-09-20T00:36:09.000Z
module ExtInterface.Data.Maybe where open import Function using (_∘_) open import Level using (Level) private variable a b c : Level A : Set a B : Set b C : Set c data Maybe (A : Set) : Set where nothing : Maybe A just : (x : A) → Maybe A maybe : ∀ {A : Set} {B : Maybe A → Set} → ((x : A) → B (just x)) → B nothing → (x : Maybe A) → B x maybe j n (just x) = j x maybe j n nothing = n map : (A → B) → Maybe A → Maybe B map f = maybe (just ∘ f) nothing -- Monad: bind infixl 1 _>>=_ _>>=_ : Maybe A → (A → Maybe B) → Maybe B nothing >>= f = nothing just a >>= f = f a {-# COMPILE GHC Maybe = data Maybe (Nothing | Just) #-}
20.181818
64
0.561562
1dda8aab2e493903d2c933061c4328d63f7f9156
2,653
agda
Agda
examples/SummerSchool07/Lecture/Records.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
examples/SummerSchool07/Lecture/Records.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
examples/SummerSchool07/Lecture/Records.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{- Types Summer School 2007 Bertinoro Aug 19 - 31, 2007 Agda Ulf Norell -} -- Records are labeled sigma types. module Records where open import Nat open import Bool {- A very simple record. -} record Point : Set where field x : Nat y : Nat -- A record can be seen as a one constructor datatype. In this case: data Point' : Set where mkPoint : (x : Nat)(y : Nat) -> Point' -- There are a few differences, though: -- To construct a record you use the syntax record { ..; x = e; .. } origin : Point origin = record { x = 0; y = 0 } -- instead of origin' : Point' origin' = mkPoint 0 0 -- What's more interesting is that you get projection functions -- for free when you declare a record. More precisely, you get a module -- parameterised over a record, containing functions corresponding to the -- fields. In the Point example you get: {- module Point (p : Point) where x : Nat y : Nat -} -- So Point.x : Point -> Nat is the projection function for the field x. getX : Point -> Nat getX = Point.x -- A nifty thing with having the projection functions in a module is that -- you can apply the module to a record value, in effect opening the record. sum : Point -> Nat sum p = x + y where open module Pp = Point p -- The final difference between records and datatypes is that we have -- η-equality on records. data _==_ {A : Set}(x : A) : A -> Set where refl : x == x η-Point : (p : Point) -> p == record { x = Point.x p; y = Point.y p } η-Point p = refl {- The empty record -} -- One interesting benefit of this is that we get a unit type with -- η-equality. record True : Set where tt : True tt = record{} -- Now, since any element of True is equal to tt, metavariables of -- type True will simply disappear. The following cute example exploits -- this: data False : Set where NonZero : Nat -> Set NonZero zero = False NonZero (suc _) = True -- We make the proof that m is non-zero implicit. _/_ : (n m : Nat){p : NonZero m} -> Nat (n / zero) {} zero / suc m = zero suc n / suc m = div (suc n) (suc m) m where div : Nat -> Nat -> Nat -> Nat div zero zero c = suc zero div zero (suc y) c = zero div (suc x) zero c = suc (div x c c) div (suc x) (suc y) c = div x y c -- Now, as long as we're dividing by things which are obviously -- NonZero we can completely ignore the proof. five = 17 / 3 {- A dependent record -} -- Of course, records can be dependent, and have parameters. record ∃ {A : Set}(P : A -> Set) : Set where field witness : A proof : P witness
20.565891
76
0.626838
2973970ade6dfc1cbc34ef4885b82121e01651be
674
agda
Agda
Cubical/Algebra/CommRing/Instances/Int.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
1
2022-03-05T00:29:41.000Z
2022-03-05T00:29:41.000Z
Cubical/Algebra/CommRing/Instances/Int.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
Cubical/Algebra/CommRing/Instances/Int.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
{-# OPTIONS --safe #-} module Cubical.Algebra.CommRing.Instances.Int where open import Cubical.Foundations.Prelude open import Cubical.Algebra.CommRing open import Cubical.Data.Int as Int renaming ( ℤ to ℤType ; _+_ to _+ℤ_; _·_ to _·ℤ_; -_ to -ℤ_) open CommRingStr ℤ : CommRing ℓ-zero fst ℤ = ℤType 0r (snd ℤ) = 0 1r (snd ℤ) = 1 _+_ (snd ℤ) = _+ℤ_ _·_ (snd ℤ) = _·ℤ_ - snd ℤ = -ℤ_ isCommRing (snd ℤ) = isCommRingℤ where abstract isCommRingℤ : IsCommRing 0 1 _+ℤ_ _·ℤ_ -ℤ_ isCommRingℤ = makeIsCommRing isSetℤ Int.+Assoc (λ _ → refl) -Cancel Int.+Comm Int.·Assoc Int.·Rid ·DistR+ Int.·Comm
24.962963
63
0.617211
29709ceb873a0f857c7966f6e231c7009946c328
1,086
agda
Agda
prototyping/Luau/Run.agda
FreakingBarbarians/luau
5187e64f88953f34785ffe58acd0610ee5041f5f
[ "MIT" ]
1
2022-02-11T21:30:17.000Z
2022-02-11T21:30:17.000Z
prototyping/Luau/Run.agda
FreakingBarbarians/luau
5187e64f88953f34785ffe58acd0610ee5041f5f
[ "MIT" ]
null
null
null
prototyping/Luau/Run.agda
FreakingBarbarians/luau
5187e64f88953f34785ffe58acd0610ee5041f5f
[ "MIT" ]
null
null
null
module Luau.Run where open import Agda.Builtin.Equality using (_≡_; refl) open import Luau.Heap using (Heap; emp) open import Luau.Syntax using (Block; return; _∙_; done) open import Luau.OpSem using (_⊢_⟶*_⊣_; refl; step) open import Luau.Value using (val) open import Properties.Step using (stepᴮ; step; return; done; error) open import Luau.RuntimeError using (RuntimeErrorᴮ) data RunResult (H : Heap) (B : Block) : Set where return : ∀ V {B′ H′} → (H ⊢ B ⟶* (return (val V) ∙ B′) ⊣ H′) → RunResult H B done : ∀ {H′} → (H ⊢ B ⟶* done ⊣ H′) → RunResult H B error : ∀ {B′ H′} → (RuntimeErrorᴮ H′ B′) → (H ⊢ B ⟶* B′ ⊣ H′) → RunResult H B {-# TERMINATING #-} run′ : ∀ H B → RunResult H B run′ H B with stepᴮ H B run′ H B | step H′ B′ D with run′ H′ B′ run′ H B | step H′ B′ D | return V D′ = return V (step D D′) run′ H B | step H′ B′ D | done D′ = done (step D D′) run′ H B | step H′ B′ D | error E D′ = error E (step D D′) run′ H _ | return V refl = return V refl run′ H _ | done refl = done refl run′ H B | error E = error E refl run : ∀ B → RunResult emp B run = run′ emp
37.448276
80
0.61326
a146f89ccc858025434b05890c50382f0b9766e6
1,623
agda
Agda
Cubical/Algebra/Ring/Kernel.agda
cangiuli/cubical
d103ec455d41cccf9b13a4803e7d3cf462e00067
[ "MIT" ]
null
null
null
Cubical/Algebra/Ring/Kernel.agda
cangiuli/cubical
d103ec455d41cccf9b13a4803e7d3cf462e00067
[ "MIT" ]
1
2022-01-27T02:07:48.000Z
2022-01-27T02:07:48.000Z
Cubical/Algebra/Ring/Kernel.agda
cangiuli/cubical
d103ec455d41cccf9b13a4803e7d3cf462e00067
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Algebra.Ring.Kernel where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Structure open import Cubical.Foundations.HLevels open import Cubical.Foundations.Powerset open import Cubical.Algebra.Ring.Base open import Cubical.Algebra.Ring.Properties open import Cubical.Algebra.Ring.Ideal private variable ℓ : Level module _ {{R S : Ring {ℓ}}} (f′ : RingHom R S) where open RingHom f′ open HomTheory f′ open RingStr ⦃...⦄ open isIdeal open Theory private instance _ = R _ = S _ = snd R _ = snd S kernel : ⟨ R ⟩ → hProp ℓ kernel x = (f x ≡ 0r) , isSetRing S _ _ kernelIsIdeal : isIdeal R kernel +-closed kernelIsIdeal = λ fx≡0 fy≡0 → f (_ + _) ≡⟨ isHom+ _ _ ⟩ f _ + f _ ≡⟨ cong (λ u → u + f _) fx≡0 ⟩ 0r + f _ ≡⟨ cong (λ u → 0r + u) fy≡0 ⟩ 0r + 0r ≡⟨ 0-idempotent S ⟩ 0r ∎ -closed kernelIsIdeal = λ fx≡0 → f (- _) ≡⟨ -commutesWithHom _ ⟩ - f _ ≡⟨ cong -_ fx≡0 ⟩ - 0r ≡⟨ 0-selfinverse S ⟩ 0r ∎ 0r-closed kernelIsIdeal = f 0r ≡⟨ homPres0 ⟩ 0r ∎ ·-closedLeft kernelIsIdeal = λ r fx≡0 → f (r · _) ≡⟨ isHom· _ _ ⟩ f r · f (_) ≡⟨ cong (λ u → f r · u) fx≡0 ⟩ f r · 0r ≡⟨ 0-rightNullifies S _ ⟩ 0r ∎ ·-closedRight kernelIsIdeal = λ r fx≡0 → f (_ · r) ≡⟨ isHom· _ _ ⟩ f _ · f r ≡⟨ cong (λ u → u · f r) fx≡0 ⟩ 0r · f r ≡⟨ 0-leftNullifies S _ ⟩ 0r ∎
28.473684
59
0.546519
c51f085ccd9a85d570391448ad8b05dfbbb740ea
617
agda
Agda
test/asset/agda-stdlib-1.0/Relation/Nullary/Implication.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Relation/Nullary/Implication.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Relation/Nullary/Implication.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- The Agda standard library -- -- Implications of nullary relations ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Relation.Nullary.Implication where open import Relation.Nullary open import Data.Empty -- Some properties which are preserved by _→_. infixr 2 _→-dec_ _→-dec_ : ∀ {p q} {P : Set p} {Q : Set q} → Dec P → Dec Q → Dec (P → Q) yes p →-dec no ¬q = no (λ f → ¬q (f p)) yes p →-dec yes q = yes (λ _ → q) no ¬p →-dec _ = yes (λ p → ⊥-elim (¬p p))
26.826087
72
0.455429
cb97ab7df7144d679da0e56ea8767fe498691d78
17,133
agda
Agda
Cubical/HITs/Truncation/FromNegTwo/Properties.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
1
2022-02-05T01:25:26.000Z
2022-02-05T01:25:26.000Z
Cubical/HITs/Truncation/FromNegTwo/Properties.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
Cubical/HITs/Truncation/FromNegTwo/Properties.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
{-# OPTIONS --safe #-} module Cubical.HITs.Truncation.FromNegTwo.Properties where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.HLevels open import Cubical.Foundations.Univalence open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Foundations.Equiv.PathSplit open isPathSplitEquiv open import Cubical.Modalities.Modality open Modality open import Cubical.Data.Empty as ⊥ using (⊥) open import Cubical.Data.Nat hiding (elim) open import Cubical.Data.NatMinusOne as ℕ₋₁ open import Cubical.Data.Sigma open import Cubical.HITs.Sn.Base open import Cubical.HITs.Susp.Base open import Cubical.HITs.Nullification as Null hiding (rec; elim) open import Cubical.HITs.Truncation.FromNegTwo.Base open import Cubical.HITs.PropositionalTruncation as PropTrunc renaming (∥_∥ to ∥_∥₁; ∣_∣ to ∣_∣₁; squash to squash₁) using () open import Cubical.HITs.SetTruncation as SetTrunc using (∥_∥₂; ∣_∣₂; squash₂) open import Cubical.HITs.GroupoidTruncation as GpdTrunc using (∥_∥₃; ∣_∣₃; squash₃) open import Cubical.HITs.2GroupoidTruncation as 2GpdTrunc using (∥_∥₄; ∣_∣₄; squash₄) private variable ℓ ℓ' : Level A B : Type ℓ sphereFill : (n : ℕ₋₁) (f : S n → A) → Type _ sphereFill {A = A} n f = Σ[ top ∈ A ] ((x : S n) → top ≡ f x) isSphereFilled : ℕ₋₁ → Type ℓ → Type ℓ isSphereFilled n A = (f : S n → A) → sphereFill n f isSphereFilledTrunc : {n : HLevel} → isSphereFilled (-1+ n) (hLevelTrunc n A) isSphereFilledTrunc {n = zero} f = hub f , ⊥.elim isSphereFilledTrunc {n = suc n} f = hub f , spoke f isSphereFilled→isOfHLevelSuc : {n : HLevel} → isSphereFilled (ℕ→ℕ₋₁ n) A → isOfHLevel (suc n) A isSphereFilled→isOfHLevelSuc {A = A} {zero} h x y = sym (snd (h f) north) ∙ snd (h f) south where f : Susp ⊥ → A f north = x f south = y isSphereFilled→isOfHLevelSuc {A = A} {suc n} h x y = isSphereFilled→isOfHLevelSuc (helper h x y) where helper : isSphereFilled (ℕ→ℕ₋₁ (suc n)) A → (x y : A) → isSphereFilled (ℕ→ℕ₋₁ n) (x ≡ y) helper h x y f = sym p ∙ q , r where f' : Susp (S (ℕ→ℕ₋₁ n)) → A f' north = x f' south = y f' (merid u i) = f u i p = snd (h f') north q = snd (h f') south r : (s : S (ℕ→ℕ₋₁ n)) → sym p ∙ q ≡ f s r s i j = hcomp (λ k → λ { (i = i0) → compPath-filler (sym p) q k j ; (i = i1) → snd (h f') (merid s j) k ; (j = i0) → p (k ∨ ~ i) ; (j = i1) → q k }) (p (~ i ∧ ~ j)) isOfHLevel→isSphereFilled : {n : HLevel} → isOfHLevel n A → isSphereFilled (-1+ n) A isOfHLevel→isSphereFilled {n = zero} h f = fst h , λ _ → snd h _ isOfHLevel→isSphereFilled {n = suc zero} h f = f north , λ _ → h _ _ isOfHLevel→isSphereFilled {A = A} {suc (suc n)} h = helper λ x y → isOfHLevel→isSphereFilled (h x y) where helper : {n : HLevel} → ((x y : A) → isSphereFilled (-1+ n) (x ≡ y)) → isSphereFilled (suc₋₁ (-1+ n)) A helper {n} h f = l , r where l : A l = f north f' : S (-1+ n) → f north ≡ f south f' x i = f (merid x i) h' : sphereFill (-1+ n) f' h' = h (f north) (f south) f' r : (x : S (suc₋₁ (-1+ n))) → l ≡ f x r north = refl r south = h' .fst r (merid x i) j = hcomp (λ k → λ { (i = i0) → f north ; (i = i1) → h' .snd x (~ k) j ; (j = i0) → f north ; (j = i1) → f (merid x i) }) (f (merid x (i ∧ j))) -- isNull (S n) A ≃ (isSphereFilled n A) × (∀ (x y : A) → isSphereFilled n (x ≡ y)) isOfHLevel→isSnNull : {n : HLevel} → isOfHLevel n A → isNull (S (-1+ n)) A fst (sec (isOfHLevel→isSnNull h)) f = fst (isOfHLevel→isSphereFilled h f) snd (sec (isOfHLevel→isSnNull h)) f i s = snd (isOfHLevel→isSphereFilled h f) s i fst (secCong (isOfHLevel→isSnNull h) x y) p = fst (isOfHLevel→isSphereFilled (isOfHLevelPath _ h x y) (funExt⁻ p)) snd (secCong (isOfHLevel→isSnNull h) x y) p i j s = snd (isOfHLevel→isSphereFilled (isOfHLevelPath _ h x y) (funExt⁻ p)) s i j isSnNull→isOfHLevel : {n : HLevel} → isNull (S (-1+ n)) A → isOfHLevel n A isSnNull→isOfHLevel {n = zero} nA = fst (sec nA) ⊥.rec , λ y → fst (secCong nA _ y) (funExt ⊥.elim) isSnNull→isOfHLevel {n = suc n} nA = isSphereFilled→isOfHLevelSuc (λ f → fst (sec nA) f , λ s i → snd (sec nA) f i s) isOfHLevelTrunc : (n : HLevel) → isOfHLevel n (hLevelTrunc n A) isOfHLevelTrunc zero = hub ⊥.rec , λ _ → ≡hub ⊥.rec isOfHLevelTrunc (suc n) = isSphereFilled→isOfHLevelSuc isSphereFilledTrunc -- isOfHLevelTrunc n = isSnNull→isOfHLevel isNull-Null -- hLevelTrunc n is a modality rec : {n : HLevel} {B : Type ℓ'} → isOfHLevel n B → (A → B) → hLevelTrunc n A → B rec h = Null.rec (isOfHLevel→isSnNull h) elim : {n : HLevel} {B : hLevelTrunc n A → Type ℓ'} (hB : (x : hLevelTrunc n A) → isOfHLevel n (B x)) (g : (a : A) → B (∣ a ∣)) (x : hLevelTrunc n A) → B x elim hB = Null.elim (λ x → isOfHLevel→isSnNull (hB x)) elim2 : {n : HLevel} {B : hLevelTrunc n A → hLevelTrunc n A → Type ℓ'} (hB : ((x y : hLevelTrunc n A) → isOfHLevel n (B x y))) (g : (a b : A) → B ∣ a ∣ ∣ b ∣) (x y : hLevelTrunc n A) → B x y elim2 {n = n} hB g = elim (λ _ → isOfHLevelΠ n (λ _ → hB _ _)) (λ a → elim (λ _ → hB _ _) (λ b → g a b)) elim3 : {n : HLevel} {B : (x y z : hLevelTrunc n A) → Type ℓ'} (hB : ((x y z : hLevelTrunc n A) → isOfHLevel n (B x y z))) (g : (a b c : A) → B (∣ a ∣) ∣ b ∣ ∣ c ∣) (x y z : hLevelTrunc n A) → B x y z elim3 {n = n} hB g = elim2 (λ _ _ → isOfHLevelΠ n (hB _ _)) (λ a b → elim (λ _ → hB _ _ _) (λ c → g a b c)) HLevelTruncModality : ∀ {ℓ} (n : HLevel) → Modality ℓ isModal (HLevelTruncModality n) = isOfHLevel n isPropIsModal (HLevelTruncModality n) = isPropIsOfHLevel n ◯ (HLevelTruncModality n) = hLevelTrunc n ◯-isModal (HLevelTruncModality n) = isOfHLevelTrunc n η (HLevelTruncModality n) = ∣_∣ ◯-elim (HLevelTruncModality n) = elim ◯-elim-β (HLevelTruncModality n) = λ _ _ _ → refl ◯-=-isModal (HLevelTruncModality n) = isOfHLevelPath n (isOfHLevelTrunc n) truncIdempotentIso : (n : HLevel) → isOfHLevel n A → Iso A (hLevelTrunc n A) truncIdempotentIso n hA = isModalToIso (HLevelTruncModality n) hA truncIdempotent≃ : (n : HLevel) → isOfHLevel n A → A ≃ hLevelTrunc n A truncIdempotent≃ n hA = ∣_∣ , isModalToIsEquiv (HLevelTruncModality n) hA truncIdempotent : (n : HLevel) → isOfHLevel n A → hLevelTrunc n A ≡ A truncIdempotent n hA = ua (invEquiv (truncIdempotent≃ n hA)) -- universal property univTrunc : ∀ {ℓ} (n : HLevel) {B : TypeOfHLevel ℓ n} → Iso (hLevelTrunc n A → B .fst) (A → B .fst) Iso.fun (univTrunc n {B , lev}) g a = g ∣ a ∣ Iso.inv (univTrunc n {B , lev}) = elim λ _ → lev Iso.rightInv (univTrunc n {B , lev}) b = refl Iso.leftInv (univTrunc n {B , lev}) b = funExt (elim (λ x → isOfHLevelPath _ lev _ _) λ a → refl) -- functorial action map : {n : HLevel} {B : Type ℓ'} (g : A → B) → hLevelTrunc n A → hLevelTrunc n B map g = rec (isOfHLevelTrunc _) (λ a → ∣ g a ∣) mapCompIso : {n : HLevel} {B : Type ℓ'} → (Iso A B) → Iso (hLevelTrunc n A) (hLevelTrunc n B) Iso.fun (mapCompIso g) = map (Iso.fun g) Iso.inv (mapCompIso g) = map (Iso.inv g) Iso.rightInv (mapCompIso g) = elim (λ x → isOfHLevelPath _ (isOfHLevelTrunc _) _ _) λ b → cong ∣_∣ (Iso.rightInv g b) Iso.leftInv (mapCompIso g) = elim (λ x → isOfHLevelPath _ (isOfHLevelTrunc _) _ _) λ a → cong ∣_∣ (Iso.leftInv g a) mapId : {n : HLevel} → ∀ t → map {n = n} (idfun A) t ≡ t mapId {n = n} = elim (λ _ → isOfHLevelPath n (isOfHLevelTrunc n) _ _) (λ _ → refl) -- equivalences to prop/set/groupoid truncations propTruncTrunc1Iso : Iso ∥ A ∥₁ (∥ A ∥ 1) Iso.fun propTruncTrunc1Iso = PropTrunc.elim (λ _ → isOfHLevelTrunc 1) ∣_∣ Iso.inv propTruncTrunc1Iso = elim (λ _ → squash₁) ∣_∣₁ Iso.rightInv propTruncTrunc1Iso = elim (λ _ → isOfHLevelPath 1 (isOfHLevelTrunc 1) _ _) (λ _ → refl) Iso.leftInv propTruncTrunc1Iso = PropTrunc.elim (λ _ → isOfHLevelPath 1 squash₁ _ _) (λ _ → refl) propTrunc≃Trunc1 : ∥ A ∥₁ ≃ ∥ A ∥ 1 propTrunc≃Trunc1 = isoToEquiv propTruncTrunc1Iso propTrunc≡Trunc1 : ∥ A ∥₁ ≡ ∥ A ∥ 1 propTrunc≡Trunc1 = ua propTrunc≃Trunc1 setTruncTrunc2Iso : Iso ∥ A ∥₂ (∥ A ∥ 2) Iso.fun setTruncTrunc2Iso = SetTrunc.elim (λ _ → isOfHLevelTrunc 2) ∣_∣ Iso.inv setTruncTrunc2Iso = elim (λ _ → squash₂) ∣_∣₂ Iso.rightInv setTruncTrunc2Iso = elim (λ _ → isOfHLevelPath 2 (isOfHLevelTrunc 2) _ _) (λ _ → refl) Iso.leftInv setTruncTrunc2Iso = SetTrunc.elim (λ _ → isOfHLevelPath 2 squash₂ _ _) (λ _ → refl) setTrunc≃Trunc2 : ∥ A ∥₂ ≃ ∥ A ∥ 2 setTrunc≃Trunc2 = isoToEquiv setTruncTrunc2Iso propTrunc≡Trunc2 : ∥ A ∥₂ ≡ ∥ A ∥ 2 propTrunc≡Trunc2 = ua setTrunc≃Trunc2 groupoidTrunc≃Trunc3Iso : Iso ∥ A ∥₃ (∥ A ∥ 3) Iso.fun groupoidTrunc≃Trunc3Iso = GpdTrunc.elim (λ _ → isOfHLevelTrunc 3) ∣_∣ Iso.inv groupoidTrunc≃Trunc3Iso = elim (λ _ → squash₃) ∣_∣₃ Iso.rightInv groupoidTrunc≃Trunc3Iso = elim (λ _ → isOfHLevelPath 3 (isOfHLevelTrunc 3) _ _) (λ _ → refl) Iso.leftInv groupoidTrunc≃Trunc3Iso = GpdTrunc.elim (λ _ → isOfHLevelPath 3 squash₃ _ _) (λ _ → refl) groupoidTrunc≃Trunc3 : ∥ A ∥₃ ≃ ∥ A ∥ 3 groupoidTrunc≃Trunc3 = isoToEquiv groupoidTrunc≃Trunc3Iso groupoidTrunc≡Trunc3 : ∥ A ∥₃ ≡ ∥ A ∥ 3 groupoidTrunc≡Trunc3 = ua groupoidTrunc≃Trunc3 2GroupoidTrunc≃Trunc4Iso : Iso ∥ A ∥₄ (∥ A ∥ 4) Iso.fun 2GroupoidTrunc≃Trunc4Iso = 2GpdTrunc.elim (λ _ → isOfHLevelTrunc 4) ∣_∣ Iso.inv 2GroupoidTrunc≃Trunc4Iso = elim (λ _ → squash₄) ∣_∣₄ Iso.rightInv 2GroupoidTrunc≃Trunc4Iso = elim (λ _ → isOfHLevelPath 4 (isOfHLevelTrunc 4) _ _) (λ _ → refl) Iso.leftInv 2GroupoidTrunc≃Trunc4Iso = 2GpdTrunc.elim (λ _ → isOfHLevelPath 4 squash₄ _ _) (λ _ → refl) 2GroupoidTrunc≃Trunc4 : ∥ A ∥₄ ≃ ∥ A ∥ 4 2GroupoidTrunc≃Trunc4 = isoToEquiv (iso (2GpdTrunc.elim (λ _ → isOfHLevelTrunc 4) ∣_∣) (elim (λ _ → squash₄) ∣_∣₄) (elim (λ _ → isOfHLevelPath 4 (isOfHLevelTrunc 4) _ _) (λ _ → refl)) (2GpdTrunc.elim (λ _ → isOfHLevelPath 4 squash₄ _ _) (λ _ → refl))) 2GroupoidTrunc≡Trunc4 : ∥ A ∥₄ ≡ ∥ A ∥ 4 2GroupoidTrunc≡Trunc4 = ua 2GroupoidTrunc≃Trunc4 isContr→isContrTrunc : ∀ {ℓ} {A : Type ℓ} (n : ℕ) → isContr A → isContr (hLevelTrunc n A) isContr→isContrTrunc n contr = ∣ fst contr ∣ , (elim (λ _ → isOfHLevelPath n (isOfHLevelTrunc n) _ _) λ a → cong ∣_∣ (snd contr a)) truncOfProdIso : (n : ℕ) → Iso (hLevelTrunc n (A × B)) (hLevelTrunc n A × hLevelTrunc n B) Iso.fun (truncOfProdIso n) = rec (isOfHLevelΣ n (isOfHLevelTrunc n) (λ _ → isOfHLevelTrunc n)) λ {(a , b) → ∣ a ∣ , ∣ b ∣} Iso.inv (truncOfProdIso n) (a , b) = rec (isOfHLevelTrunc n) (λ a → rec (isOfHLevelTrunc n) (λ b → ∣ a , b ∣) b) a Iso.rightInv (truncOfProdIso n) (a , b) = elim {B = λ a → Iso.fun (truncOfProdIso n) (Iso.inv (truncOfProdIso n) (a , b)) ≡ (a , b)} (λ _ → isOfHLevelPath n (isOfHLevelΣ n (isOfHLevelTrunc n) (λ _ → isOfHLevelTrunc n)) _ _) (λ a → elim {B = λ b → Iso.fun (truncOfProdIso n) (Iso.inv (truncOfProdIso n) (∣ a ∣ , b)) ≡ (∣ a ∣ , b)} (λ _ → isOfHLevelPath n (isOfHLevelΣ n (isOfHLevelTrunc n) (λ _ → isOfHLevelTrunc n)) _ _) (λ b → refl) b) a Iso.leftInv (truncOfProdIso n) = elim (λ _ → isOfHLevelPath n (isOfHLevelTrunc n) _ _) λ a → refl ---- ∥ Ω A ∥ ₙ ≡ Ω ∥ A ∥ₙ₊₁ ---- isOfHLevelTypeOfHLevel2 : ∀ n → isOfHLevel (suc n) (TypeOfHLevel ℓ n) isOfHLevelTypeOfHLevel2 n = isOfHLevelTypeOfHLevel n {- Proofs of Theorem 7.3.12. and Corollary 7.3.13. in the HoTT book -} module ΩTrunc where {- We define the fibration P to show a more general result -} P : {X : Type ℓ} {n : HLevel} → ∥ X ∥ (suc n) → ∥ X ∥ (suc n) → Type ℓ P {n = n} x y = elim2 (λ _ _ → isOfHLevelTypeOfHLevel2 (n)) (λ a b → ∥ a ≡ b ∥ n , isOfHLevelTrunc (n)) x y .fst {- We will need P to be of hLevel n + 3 -} hLevelP : {n : HLevel} (a b : ∥ B ∥ (suc n)) → isOfHLevel ((suc n)) (P a b) hLevelP {n = n} = elim2 (λ x y → isProp→isOfHLevelSuc (n) (isPropIsOfHLevel (suc n))) (λ a b → isOfHLevelSuc (n) (isOfHLevelTrunc (n))) {- decode function from P x y to x ≡ y -} decode-fun : {n : HLevel} (x y : ∥ B ∥ (suc n)) → P x y → x ≡ y decode-fun {n = n} = elim2 (λ u v → isOfHLevelΠ (suc n) (λ _ → isOfHLevelSuc (suc n) (isOfHLevelTrunc (suc n)) u v)) decode* where decode* : ∀ {n : HLevel} (u v : B) → P {n = n} ∣ u ∣ ∣ v ∣ → Path (∥ B ∥ (suc n)) ∣ u ∣ ∣ v ∣ decode* {B = B} {n = zero} u v = rec ( isOfHLevelTrunc 1 ∣ u ∣ ∣ v ∣ , λ _ → isOfHLevelSuc 1 (isOfHLevelTrunc 1) _ _ _ _) (cong ∣_∣) decode* {n = suc n} u v = rec (isOfHLevelTrunc (suc (suc n)) ∣ u ∣ ∣ v ∣) (cong ∣_∣) {- auxiliary function r used to define encode -} r : {m : HLevel} (u : ∥ B ∥ (suc m)) → P u u r = elim (λ x → hLevelP x x) (λ a → ∣ refl ∣) {- encode function from x ≡ y to P x y -} encode-fun : {n : HLevel} (x y : ∥ B ∥ (suc n)) → x ≡ y → P x y encode-fun x y p = transport (λ i → P x (p i)) (r x) {- We need the following two lemmas on the functions behaviour for refl -} dec-refl : {n : HLevel} (x : ∥ B ∥ (suc n)) → decode-fun x x (r x) ≡ refl dec-refl {n = zero} = elim (λ x → isOfHLevelSuc 1 (isOfHLevelSuc 1 (isOfHLevelTrunc 1) x x) _ _) (λ _ → refl) dec-refl {n = suc n} = elim (λ x → isOfHLevelSuc (suc n) (isOfHLevelSuc (suc n) (isOfHLevelTrunc (suc (suc n)) x x) (decode-fun x x (r x)) refl)) (λ _ → refl) enc-refl : {n : HLevel} (x : ∥ B ∥ (suc n)) → encode-fun x x refl ≡ r x enc-refl x j = transp (λ _ → P x x) j (r x) {- decode-fun is a right-inverse -} P-rinv : {n : HLevel} (u v : ∥ B ∥ (suc n)) (x : Path (∥ B ∥ (suc n)) u v) → decode-fun u v (encode-fun u v x) ≡ x P-rinv u v = J (λ y p → decode-fun u y (encode-fun u y p) ≡ p) (cong (decode-fun u u) (enc-refl u) ∙ dec-refl u) {- decode-fun is a left-inverse -} P-linv : {n : HLevel} (u v : ∥ B ∥ (suc n )) (x : P u v) → encode-fun u v (decode-fun u v x) ≡ x P-linv {n = n} = elim2 (λ x y → isOfHLevelΠ (suc n) (λ z → isOfHLevelSuc (suc n) (hLevelP x y) _ _)) helper where helper : {n : HLevel} (a b : B) (p : P {n = n} ∣ a ∣ ∣ b ∣) → encode-fun _ _ (decode-fun ∣ a ∣ ∣ b ∣ p) ≡ p helper {n = zero} a b = elim (λ x → ( sym (isOfHLevelTrunc 0 .snd _) ∙ isOfHLevelTrunc 0 .snd x , λ y → isOfHLevelSuc 1 (isOfHLevelSuc 0 (isOfHLevelTrunc 0)) _ _ _ _)) (J (λ y p → encode-fun ∣ a ∣ ∣ y ∣ (decode-fun _ _ ∣ p ∣) ≡ ∣ p ∣) (enc-refl ∣ a ∣)) helper {n = suc n} a b = elim (λ x → hLevelP {n = suc n} ∣ a ∣ ∣ b ∣ _ _) (J (λ y p → encode-fun {n = suc n} ∣ a ∣ ∣ y ∣ (decode-fun _ _ ∣ p ∣) ≡ ∣ p ∣) (enc-refl ∣ a ∣)) {- The final Iso established -} IsoFinal : (n : HLevel) (x y : ∥ B ∥ (suc n)) → Iso (x ≡ y) (P x y) Iso.fun (IsoFinal _ x y) = encode-fun x y Iso.inv (IsoFinal _ x y) = decode-fun x y Iso.rightInv (IsoFinal _ x y) = P-linv x y Iso.leftInv (IsoFinal _ x y) = P-rinv x y PathIdTrunc : {a b : A} (n : HLevel) → (Path (∥ A ∥ (suc n)) ∣ a ∣ ∣ b ∣) ≡ (∥ a ≡ b ∥ n) PathIdTrunc n = isoToPath (ΩTrunc.IsoFinal n _ _) PathΩ : {a : A} (n : HLevel) → (Path (∥ A ∥ (suc n)) ∣ a ∣ ∣ a ∣) ≡ (∥ a ≡ a ∥ n) PathΩ n = PathIdTrunc n {- Special case using direct defs of truncations -} PathIdTrunc₀Iso : {a b : A} → Iso (∣ a ∣₂ ≡ ∣ b ∣₂) ∥ a ≡ b ∥₁ PathIdTrunc₀Iso = compIso (congIso setTruncTrunc2Iso) (compIso (ΩTrunc.IsoFinal _ ∣ _ ∣ ∣ _ ∣) (invIso propTruncTrunc1Iso)) ------------------------- truncOfTruncIso : (n m : HLevel) → Iso (hLevelTrunc n A) (hLevelTrunc n (hLevelTrunc (m + n) A)) Iso.fun (truncOfTruncIso n m) = elim (λ _ → isOfHLevelTrunc n) λ a → ∣ ∣ a ∣ ∣ Iso.inv (truncOfTruncIso {A = A} n m) = elim (λ _ → isOfHLevelTrunc n) (elim (λ _ → (isOfHLevelPlus m (isOfHLevelTrunc n ))) λ a → ∣ a ∣) Iso.rightInv (truncOfTruncIso {A = A} n m) = elim (λ x → isOfHLevelPath n (isOfHLevelTrunc n) _ _ ) (elim (λ x → isOfHLevelPath (m + n) (isOfHLevelPlus m (isOfHLevelTrunc n)) _ _ ) λ a → refl) Iso.leftInv (truncOfTruncIso n m) = elim (λ x → isOfHLevelPath n (isOfHLevelTrunc n) _ _) λ a → refl truncOfTruncEq : (n m : ℕ) → (hLevelTrunc n A) ≃ (hLevelTrunc n (hLevelTrunc (m + n) A)) truncOfTruncEq n m = isoToEquiv (truncOfTruncIso n m)
43.156171
131
0.578941
1d3b91efac9fafc4ca7da5b723e211a23550949f
42
agda
Agda
test/interaction/Issue2575/M.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/interaction/Issue2575/M.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/interaction/Issue2575/M.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Issue2575.M where A : Set A = Set
8.4
24
0.690476
c550636fac3ae484d68797d417661df18de1d718
26,076
agda
Agda
agda/course/2017-conor_mcbride_cs410/CS410-17-master/exercises/Ex2.agda
haroldcarr/learn-haskell-coq-ml-etc
3dc7abca7ad868316bb08f31c77fbba0d3910225
[ "Unlicense" ]
36
2015-01-29T14:37:15.000Z
2021-07-30T06:55:03.000Z
agda/course/2017-conor_mcbride_cs410/CS410-17-master/exercises/Ex2.agda
haroldcarr/learn-haskell-coq-ml-etc
3dc7abca7ad868316bb08f31c77fbba0d3910225
[ "Unlicense" ]
null
null
null
agda/course/2017-conor_mcbride_cs410/CS410-17-master/exercises/Ex2.agda
haroldcarr/learn-haskell-coq-ml-etc
3dc7abca7ad868316bb08f31c77fbba0d3910225
[ "Unlicense" ]
8
2015-04-13T21:40:15.000Z
2021-09-21T15:58:10.000Z
{-# OPTIONS --type-in-type #-} -- yes, I will let you cheat in this exercise {-# OPTIONS --allow-unsolved-metas #-} -- allows import, unfinished ------------------------------------------------------------------------------ ------------------------------------------------------------------------------ -- CS410 2017/18 Exercise 2 CATEGORIES AND MONADS (worth 50%) ------------------------------------------------------------------------------ ------------------------------------------------------------------------------ -- NOTE (19/10/17) This file is currently incomplete: more will arrive on -- GitHub. -- NOTE (29/10/17) All components are now present. -- REFLECTION: When I started setting this exercise, I intended it as a -- normal size 25% exercise, but it grew and grew, as did the struggles of -- the students. I accepted that I had basically set two exercises in one -- file and revalued it as such. ------------------------------------------------------------------------------ -- Dependencies ------------------------------------------------------------------------------ open import CS410-Prelude open import CS410-Categories open import Ex1 ------------------------------------------------------------------------------ -- Categorical Jigsaws (based on Ex1) ------------------------------------------------------------------------------ -- In this section, most of the work has already happened. All you have to do -- is assemble the collection of things you did into Ex1 into neat categorical -- packaging. --??--2.1-(4)----------------------------------------------------------------- OPE : Category -- The category of order-preserving embeddings... OPE = record { Obj = Nat -- ...has numbers as objects... ; _~>_ = _<=_ -- ...and "thinnings" as arrows. -- Now, assemble the rest of the components. ; id~> = {!!} ; _>~>_ = {!!} ; law-id~>>~> = {!!} ; law->~>id~> = {!!} ; law->~>>~> = {!!} } VEC : Nat -> SET => SET -- Vectors of length n... VEC n = record { F-Obj = \ X -> Vec X n -- ...give a functor from SET to SET... ; F-map = \ f xs -> vMap f xs -- ...doing vMap to arrows. -- Now prove the laws. ; F-map-id~> = extensionality \ xs -> {!!} ; F-map->~> = \ f g -> extensionality \ xs -> {!!} } Op : Category -> Category -- Every category has an opposite... Op C = record { Obj = Obj -- ...with the same objects, but... ; _~>_ = \ S T -> T ~> S -- ...arrows that go backwards! -- Now, find the rest! ; id~> = {!!} ; _>~>_ = {!!} ; law-id~>>~> = {!!} ; law->~>id~> = {!!} ; law->~>>~> = {!!} } where open Category C CHOOSE : Set -> OPE => Op SET -- Show that thinnings from n to m... CHOOSE X = record -- ...act by selection... { F-Obj = Vec X -- ...to cut vectors down from m to n. ; F-map = {!!} ; F-map-id~> = extensionality {!!} ; F-map->~> = \ f g -> extensionality {!!} } --??-------------------------------------------------------------------------- ------------------------------------------------------------------------------ -- The List Monad (a warm-up) ------------------------------------------------------------------------------ -- The declaration of List has been added to the CS410-Prelude file: -- data List (X : Set) : Set where -- [] : List X -- _,-_ : (x : X)(xs : List X) -> List X -- infixr 4 _,-_ -- Appending two lists is rather well known, so I'll not ask you to write it. _+L_ : {X : Set} -> List X -> List X -> List X [] +L ys = ys (x ,- xs) +L ys = x ,- (xs +L ys) infixr 4 _+L_ -- But I will ask you to find some structure for it. --??--2.2-(3)----------------------------------------------------------------- LIST-MONOID : Set -> Category LIST-MONOID X = -- Show that _+L_ is the operation of a monoid,... record { Obj = One -- ... i.e., a category with one object. ; _~>_ = {!!} ; id~> = {!!} ; _>~>_ = {!!} ; law-id~>>~> = {!!} ; law->~>id~> = {!!} ; law->~>>~> = {!!} } where -- useful helper proofs (lemmas) go here --??-------------------------------------------------------------------------- -- Next, functoriality of lists. Given a function on elements, show how to -- apply that function to all the elements of a list. (Haskell calls this -- operation "map".) --??--2.3-(3)----------------------------------------------------------------- list : {X Y : Set} -> (X -> Y) -> List X -> List Y list f xs = {!!} LIST : SET => SET LIST = record { F-Obj = List ; F-map = list ; F-map-id~> = extensionality {!!} ; F-map->~> = \ f g -> extensionality {!!} } where -- useful helper proofs (lemmas) go here --??-------------------------------------------------------------------------- -- Moreover, applying a function elementwise should respect appending. --??--2.4-(3)----------------------------------------------------------------- LIST+L : {X Y : Set}(f : X -> Y) -> LIST-MONOID X => LIST-MONOID Y LIST+L {X}{Y} f = record { F-Obj = id ; F-map = list f -- this yellow will go once LIST-MONOID has arrows! ; F-map-id~> = {!!} ; F-map->~> = {!!} } where -- useful helper proofs (lemmas) go here --??-------------------------------------------------------------------------- -- Next, we have two very important "natural transformations". --??--2.5-(1)----------------------------------------------------------------- SINGLE : ID ~~> LIST SINGLE = record { xf = \ x -> x ,- [] -- turn a value into a singleton list ; naturality = \ f -> {!!} } --??-------------------------------------------------------------------------- -- Here, naturality means that it doesn't matter -- whether you apply a function f, then make a singleton list -- or you make a singleton list, then apply f to all (one of) its elements. -- Now, define the operation that concatenates a whole list of lists, and -- show that it, too, is natural. That is, it doesn't matter whether you -- transform the elements (two layers inside) then concatenate, or you -- concatenate, then transform the elements. --??--2.6-(3)----------------------------------------------------------------- concat : {X : Set} -> List (List X) -> List X concat xss = {!!} CONCAT : (LIST >=> LIST) ~~> LIST CONCAT = record { xf = concat ; naturality = {!!} } where -- useful helper proofs (lemmas) go here --??-------------------------------------------------------------------------- -- You've nearly built your first monad! You just need to prove that -- single and concat play nicely with each other. --??--2.7-(4)----------------------------------------------------------------- module LIST-MONAD where open MONAD LIST public ListMonad : Monad ListMonad = record { unit = SINGLE ; mult = CONCAT ; unitMult = {!!} ; multUnit = {!!} ; multMult = {!!} } where -- useful helper proofs (lemmas) go here -- open LIST-MONAD --??-------------------------------------------------------------------------- -- More monads to come... ------------------------------------------------------------------------------ -- Categories of Indexed Sets ------------------------------------------------------------------------------ -- We can think of some -- P : I -> Set -- as a collection of sets indexed by I, such that -- P i -- means "exactly the P-things which fit with i". -- You've met -- Vec X : Nat -> Set -- where -- Vec X n -- means "exactly the vectors which fit with n". -- Now, given two such collections, S and T, we can make a collection -- of function types: the functions which fit with i map the -- S-things which fit with i to the T-things which fit with i. _-:>_ : {I : Set} -> (I -> Set) -> (I -> Set) -> (I -> Set) (S -:> T) i = S i -> T i -- So, (Vec X -:> Vec Y) n contains the functions which turn -- n Xs into n Ys. -- Next, if we know such a collection of sets, we can claim to have -- one for each index. [_] : {I : Set} -> (I -> Set) -> Set [ P ] = forall i -> P i -- [_] {I} P = (i : I) -> P i -- E.g., [ Vec X -:> Vec Y ] is the type of functions from X-vectors -- to Y-vectors which preserve length. -- For any such I, we get a category of indexed sets with index-preserving -- functions. _->SET : Set -> Category I ->SET = record { Obj = I -> Set -- I-indexed sets ; _~>_ = \ S T -> [ S -:> T ] -- index-respecting functions ; id~> = \ i -> id -- the identity at every index ; _>~>_ = \ f g i -> f i >> g i -- composition at every index ; law-id~>>~> = refl -- and the laws are very boring ; law->~>id~> = refl ; law->~>>~> = \ f g h -> refl _ } -- In fact, we didn't need to choose SET here. We could do this construction -- for any category: index the objects; index the morphisms. -- But SET is plenty to be getting on with. -- Now, let me define an operation that makes types from lists. All : {X : Set} -> (X -> Set) -> (List X -> Set) All P [] = One All P (x ,- xs) = P x * All P xs -- The idea is that we get a tuple of P-things: one for each list element. -- So -- All P (1 ,- 2 ,- 3 ,- []) -- = P 1 * P 2 * P 3 * One -- Note that if you think of List One as a version of Nat, -- All becomes a lot like Vec. copy : Nat -> List One copy zero = [] copy (suc n) = <> ,- copy n VecCopy : Set -> Nat -> Set VecCopy X n = All (\ _ -> X) (copy n) -- Now, your turn... --??--2.8-(4)----------------------------------------------------------------- -- Show that, for any X, All induces a functor -- from (X ->SET) to (List X ->SET) all : {X : Set}{S T : X -> Set} -> [ S -:> T ] -> [ All S -:> All T ] all f xs ss = {!!} ALL : (X : Set) -> (X ->SET) => (List X ->SET) ALL X = record { F-Obj = All ; F-map = all ; F-map-id~> = {!!} ; F-map->~> = {!!} } where -- useful helper facts go here --??-------------------------------------------------------------------------- -- ABOVE THIS LINE, 25% -- BELOW THIS LINE, 25% ------------------------------------------------------------------------------ -- Cutting Things Up ------------------------------------------------------------------------------ -- Next, we're going to develop a very general technique for building -- data structures. -- We may think of an I |> O as a way to "cut O-shapes into I-shaped pieces". -- The pointy end points to the type being cut; the flat end to the type of -- pieces. record _|>_ (I O : Set) : Set where field Cuts : O -> Set -- given o : O, how may we cut it? inners : {o : O} -> Cuts o -> List I -- given how we cut it, what are -- the shapes of its pieces? -- Let us have some examples right away! VecCut : One |> Nat -- cut numbers into boring pieces VecCut = record { Cuts = \ n -> One -- there is one way to cut n ; inners = \ {n} _ -> copy n -- and you get n pieces } -- Here's a less boring example. You can cut a number into *two* pieces -- by finding two numbers that add to it. NatCut : Nat |> Nat NatCut = record { Cuts = \ mn -> Sg Nat \ m -> Sg Nat \ n -> (m +N n) == mn ; inners = \ { (m , n , _) -> m ,- n ,- [] } } -- The point is that we can make data structures that record how we -- built an O-shaped thing from I-shaped pieces. record Cutting {I O}(C : I |> O)(P : I -> Set)(o : O) : Set where constructor _8><_ -- "scissors" open _|>_ C field cut : Cuts o -- we decide how to cut o pieces : All P (inners cut) -- then we give all the pieces. infixr 3 _8><_ -- For example... VecCutting : Set -> Nat -> Set VecCutting X = Cutting VecCut (\ _ -> X) myVecCutting : VecCutting Char 5 myVecCutting = <> 8>< 'h' , 'e' , 'l' , 'l' , 'o' , <> -- Or, if you let me fiddle about with strings for a moment,... length : {X : Set} -> List X -> Nat length [] = zero length (x ,- xs) = suc (length xs) listVec : {X : Set}(xs : List X) -> Vec X (length xs) listVec [] = [] listVec (x ,- xs) = x ,- listVec xs strVec : (s : String) -> Vec Char (length (primStringToList s)) strVec s = listVec (primStringToList s) -- ...an example of cutting a number in two, with vector pieces. footprints : Cutting NatCut (Vec Char) 10 footprints = (4 , 6 , refl 10) 8>< strVec "foot" , strVec "prints" , <> -- Now, let me direct you to the =$ operator, now in CS410-Prelude.agda, -- which you may find helps with the proofs in the following. --??--2.9-(3)----------------------------------------------------------------- -- Using what you already built for ALL, show that every Cutting C gives us -- a functor between categories of indexed sets. CUTTING : {I O : Set}(C : I |> O) -> (I ->SET) => (O ->SET) CUTTING {I}{O} C = record { F-Obj = Cutting C ; F-map = {!!} ; F-map-id~> = extensionality \ o -> extensionality \ { (c 8>< ps) -> {!!} } ; F-map->~> = \ f g -> extensionality \ o -> extensionality \ { (c 8>< ps) -> {!!} } } where open _|>_ C open _=>_ (ALL I) --??-------------------------------------------------------------------------- ------------------------------------------------------------------------------ -- Interiors ------------------------------------------------------------------------------ -- Next, let me define the notion of an algebra for a given functor in C => C module ALGEBRA {C : Category}(F : C => C) where open Category C open _=>_ F Algebra : (X : Obj) -> Set -- we call X the "carrier" of the algebra... Algebra X = F-Obj X ~> X -- ...and we explain how to turn a bunch of Xs -- into one open ALGEBRA -- Some week, we'll build categories whose objects are algebras. Not this week. -- Instead, let's work with them a bit. -- If we know a way to cut I-shapes into I-shaped pieces, we can build the -- ways to "tile" an I with I-shaped T-tiles. data Interior {I}(C : I |> I)(T : I -> Set)(i : I) : Set where -- either... tile : T i -> Interior C T i -- we have a tile that fits, or... <_> : Cutting C (Interior C T) i -> -- ...we cut, then tile the pieces. Interior C T i -- Let me give you an example of an interior. subbookkeeper : Interior NatCut (Vec Char) 13 subbookkeeper = < (3 , 10 , refl _) 8>< tile (strVec "sub") , < (4 , 6 , refl _) 8>< tile (strVec "book") , tile (strVec "keeper") , <> > , <> > -- We make a 13-interior from -- a 3-tile and a 10-interior made from a 4-tile and a 6-tile. -- Guess what? Interior C is always a Monad! We'll get there. module INTERIOR {I : Set}{C : I |> I} where -- fix some C... open _|>_ C -- ...and open it open module I->SET {I : Set} = Category (I ->SET) -- work in I ->SET -- tile gives us an arrow from T into Interior C T tile' : {T : I -> Set} -> [ T -:> Interior C T ] tile' i = tile -- <_> gives us an algebra! cut' : {T : I -> Set} -> Algebra (CUTTING C) (Interior C T) cut' i = <_> -- Now, other (CUTTING C) algebras give us operators on interiors. module INTERIORFOLD {P Q : I -> Set} where interiorFold : [ P -:> Q ] -> -- if we can turn a P into a Q... Algebra (CUTTING C) Q -> -- ...and a bunch of Qs into a Q... [ Interior C P -:> Q ] -- ...we can turn an interior of Ps into a Q allInteriorFold : -- annoyingly, we'll need a specialized "all" [ P -:> Q ] -> Algebra (CUTTING C) Q -> [ All (Interior C P) -:> All Q ] interiorFold pq qalg i (tile p) = pq i p interiorFold pq qalg i < c 8>< pis > = qalg i (c 8>< allInteriorFold pq qalg (inners c) pis) -- recursively turn all the sub-interiors into Qs allInteriorFold pq qalg [] <> = <> allInteriorFold pq qalg (i ,- is) (pi , pis) = interiorFold pq qalg i pi , allInteriorFold pq qalg is pis -- The trouble is that if you use -- all (interiorFold pq qalg) -- to process the sub-interiors, the termination checker complains. -- But if you've built "all" correctly, you should be able to prove this: --??--2.10-(2)---------------------------------------------------------------- allInteriorFoldLaw : (pq : [ P -:> Q ])(qalg : Algebra (CUTTING C) Q) -> allInteriorFold pq qalg == all (interiorFold pq qalg) allInteriorFoldLaw pq qalg = extensionality \ is -> extensionality \ ps -> {!!} where -- helper lemmas go here --??-------------------------------------------------------------------------- -- Now, do me a favour and prove this extremely useful fact. -- Its purpose is to bottle the inductive proof method for functions -- built with interiorFold. --??--2.11-(3)---------------------------------------------------------------- interiorFoldLemma : (pq : [ P -:> Q ])(qalg : Algebra (CUTTING C) Q) (f : [ Interior C P -:> Q ]) -> ((i : I)(p : P i) -> pq i p == f i (tile p)) -> ((i : I)(c : Cuts i)(ps : All (Interior C P) (inners c)) -> qalg i (c 8>< all f (inners c) ps) == f i < c 8>< ps >) -> (i : I)(pi : Interior C P i) -> interiorFold pq qalg i pi == f i pi interiorFoldLemma pq qalg f base step i pi = {!!} --??-------------------------------------------------------------------------- -- We'll use it in this form: interiorFoldLaw : (pq : [ P -:> Q ])(qalg : Algebra (CUTTING C) Q) (f : [ Interior C P -:> Q ]) -> ((i : I)(p : P i) -> pq i p == f i (tile p)) -> ((i : I)(c : Cuts i)(ps : All (Interior C P) (inners c)) -> qalg i (c 8>< all f (inners c) ps) == f i < c 8>< ps >) -> interiorFold pq qalg == f interiorFoldLaw pq qalg f base step = extensionality \ i -> extensionality \ pi -> interiorFoldLemma pq qalg f base step i pi open INTERIORFOLD -- Let me pay you back immediately! -- An interiorBind is an interiorFold which computes an Interior, -- rewrapping each layer with < ... > interiorBind : {X Y : I -> Set} -> [ X -:> Interior C Y ] -> [ Interior C X -:> Interior C Y ] interiorBind f = interiorFold f (\ i -> <_>) -- Because an interiorBind *makes* an interior, we can say something useful -- about what happens if we follow it with an interiorFold. interiorBindFusion : {X Y Z : I -> Set} -> (f : [ X -:> Interior C Y ]) (yz : [ Y -:> Z ])(zalg : Algebra (CUTTING C) Z) -> (interiorBind f >~> interiorFold yz zalg) == interiorFold (f >~> interiorFold yz zalg) zalg -- That is, we can "fuse" the two together, making one interiorFold. -- I'll do the proof as it's a bit hairy. You've given me all I need. -- Note that I don't use extensionality, just laws that relate functions. interiorBindFusion f yz zalg = (interiorBind f >~> interiorFold yz zalg) =< interiorFoldLaw (f >~> interiorFold yz zalg) zalg (interiorBind f >~> interiorFold yz zalg) (\ i p -> refl (interiorFold yz zalg i (f i p))) (\ i c ps -> refl (zalg i) =$= (refl (c 8><_) =$= ( ((all (interiorBind f >~> interiorFold yz zalg) =[ F-map->~> (interiorBind f) (interiorFold yz zalg) >= (all (interiorBind f) >~> all (interiorFold yz zalg)) =< refl _>~>_ =$= allInteriorFoldLaw f cut' =$= allInteriorFoldLaw yz zalg ]= allInteriorFold f (\ i -> <_>) >~> allInteriorFold yz zalg [QED]) =$ inners c =$= refl ps)))) ]= interiorFold (f >~> interiorFold yz zalg) zalg [QED] where open _=>_ (ALL I) -- You should find that a very useful piece of kit. In fact, you should -- not need extensionality, either. -- We need Interior C to be a functor. --??--2.12-(5)---------------------------------------------------------------- -- using interiorBind, implement the "F-map" for Interiors as a one-liner interior : {X Y : I -> Set} -> [ X -:> Y ] -> [ Interior C X -:> Interior C Y ] interior f = {!!} -- using interiorBindFusion, prove the following law for "fold after map" interiorFoldFusion : {P Q R : I -> Set} (pq : [ P -:> Q ])(qr : [ Q -:> R ])(ralg : Algebra (CUTTING C) R) -> (interior pq >~> interiorFold qr ralg) == interiorFold (pq >~> qr) ralg interiorFoldFusion pq qr ralg = interior pq >~> interiorFold qr ralg =[ {!!} >= interiorFold (pq >~> qr) ralg [QED] where open _=>_ (ALL I) -- and now, using interiorFoldFusion if it helps, -- complete the functor construction INTERIOR : (I ->SET) => (I ->SET) INTERIOR = record { F-Obj = Interior C ; F-map = interior ; F-map-id~> = {!!} ; F-map->~> = {!!} } where open _=>_ (ALL I) --??-------------------------------------------------------------------------- -- Now let's build the Monad. -- You should find that all the laws you have to prove follow from the -- fusion laws you already have. open MONAD INTERIOR --??--2.13-(5)---------------------------------------------------------------- WRAP : ID ~~> INTERIOR WRAP = record { xf = {!!} ; naturality = {!!} } -- use interiorBind to define the following FLATTEN : (INTERIOR >=> INTERIOR) ~~> INTERIOR FLATTEN = record { xf = {!!} ; naturality = {!!} } INTERIOR-Monad : Monad INTERIOR-Monad = record { unit = WRAP ; mult = FLATTEN ; unitMult = {!!} ; multUnit = {!!} ; multMult = {!!} } where open _=>_ INTERIOR --??-------------------------------------------------------------------------- open INTERIOR open INTERIORFOLD -- You should be able to define an algebra on vectors for NatCut, using +V --??--2.14-(2)---------------------------------------------------------------- NatCutVecAlg : {X : Set} -> Algebra (CUTTING NatCut) (Vec X) NatCutVecAlg n xsc = {!!} --??-------------------------------------------------------------------------- -- Check that it puts things together suitably when you evaluate this: test1 : Vec Char 13 test1 = interiorFold (\ _ -> id) NatCutVecAlg 13 subbookkeeper ------------------------------------------------------------------------------ -- Cutting Up Pairs ------------------------------------------------------------------------------ module CHOICE where open _|>_ --??--2.15-(2)---------------------------------------------------------------- -- Show that if you can cut up I and cut up J, then you can cut up I * J. -- You now have two dimensions (I and J). The idea is that you choose one -- dimension in which to make a cut, and keep everything in the other -- dimension the same. _+C_ : {I J : Set} -> I |> I -> J |> J -> (I * J) |> (I * J) Cuts (P +C Q) (i , j) = Cuts P i + Cuts Q j inners (P +C Q) = {!!} --??-------------------------------------------------------------------------- open CHOICE -- That should get us the ability to cut up *rectangules* by cutting either -- vertically or horizontally. NatCut2D : (Nat * Nat) |> (Nat * Nat) NatCut2D = NatCut +C NatCut Matrix : Set -> Nat * Nat -> Set Matrix X (w , h) = Vec (Vec X w) h -- If you've done it right, you should find that the following typechecks. -- It's the interior of a rectangle, tiled with matrices of characters. rectangle : Interior NatCut2D (Matrix Char) (15 , 6) rectangle = < inr (4 , 2 , refl _) 8>< < inl (7 , 8 , refl _) 8>< tile (strVec "seventy" ,- strVec "kitchen" ,- strVec "program" ,- strVec "mistake" ,- []) , tile (strVec "thousand" ,- strVec "soldiers" ,- strVec "probably" ,- strVec "undefine" ,- []) , <> > , tile (strVec "acknowledgement" ,- strVec "procrastination" ,- []) , <> > -- Later, we'll use rectangular interiors as the underlying data structure -- for a window manager. -- But for now, one last thing. --??--2.16-(4)---------------------------------------------------------------- -- Show that if you have a vector of n Ps for every element of a list, -- then you can make a vector of n (All P)s . -- Hint: Ex1 provides some useful equipment for this job. vecAll : {I : Set}{P : I -> Set}{is : List I}{n : Nat} -> All (\ i -> Vec (P i) n) is -> Vec (All P is) n vecAll {is = is} pss = {!!} -- Given vecAll, show that algebra for any cutting can be lifted -- to an algebra on vectors. VecLiftAlg : {I : Set}(C : I |> I){X : I -> Set} (alg : Algebra (CUTTING C) X){n : Nat} -> Algebra (CUTTING C) (\ i -> Vec (X i) n) VecLiftAlg C alg i (c 8>< pss) = {!!} -- Now show that you can build an algebra for matrices -- which handles cuts in either dimension, -- combining them either horizontally or vertically! NatCut2DMatAlg : {X : Set} -> Algebra (CUTTING NatCut2D) (Matrix X) NatCut2DMatAlg _ (inl c 8>< ms) = {!!} NatCut2DMatAlg _ (inr c 8>< ms) = {!!} --??-------------------------------------------------------------------------- -- And that should give you a way to glue pictures together from interiors. picture : [ Interior NatCut2D (Matrix Char) -:> Matrix Char ] picture = interiorFold (\ _ -> id) NatCut2DMatAlg -- You should be able to check that the following gives you something -- sensible: test2 = picture _ rectangle
33.559846
79
0.473501
0e37a2bd81294b6183406c3c34359903c19ee33a
12,799
agda
Agda
Cubical/Algebra/Group/MorphismProperties.agda
knrafto/cubical
f6771617374bfe65a7043d00731fed5a673aa729
[ "MIT" ]
null
null
null
Cubical/Algebra/Group/MorphismProperties.agda
knrafto/cubical
f6771617374bfe65a7043d00731fed5a673aa729
[ "MIT" ]
null
null
null
Cubical/Algebra/Group/MorphismProperties.agda
knrafto/cubical
f6771617374bfe65a7043d00731fed5a673aa729
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Algebra.Group.MorphismProperties where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Foundations.HLevels open import Cubical.Foundations.Transport open import Cubical.Foundations.Univalence open import Cubical.Foundations.SIP open import Cubical.Foundations.Function using (_∘_) open import Cubical.Foundations.GroupoidLaws open import Cubical.Functions.Embedding open import Cubical.Data.Sigma open import Cubical.Structures.Axioms open import Cubical.Structures.Pointed open import Cubical.Algebra.Semigroup hiding (⟨_⟩) open import Cubical.Algebra.Monoid hiding (⟨_⟩) open import Cubical.Algebra.Group.Base open import Cubical.Algebra.Group.Properties open import Cubical.Algebra.Group.Morphism private variable ℓ ℓ' ℓ'' : Level open Iso open Group open GroupHom isPropIsGroupHom : (G : Group {ℓ}) (H : Group {ℓ'}) {f : ⟨ G ⟩ → ⟨ H ⟩} → isProp (isGroupHom G H f) isPropIsGroupHom G H {f} = isPropΠ2 λ a b → Group.is-set H _ _ isSetGroupHom : {G : Group {ℓ}} {H : Group {ℓ'}} → isSet (GroupHom G H) isSetGroupHom {G = G} {H = H} = isOfHLevelRespectEquiv 2 equiv (isSetΣ (isSetΠ λ _ → is-set H) λ _ → isProp→isSet (isPropIsGroupHom G H)) where equiv : (Σ[ g ∈ (Carrier G → Carrier H) ] (isGroupHom G H g)) ≃ (GroupHom G H) equiv = isoToEquiv (iso (λ (g , m) → grouphom g m) (λ hom → fun hom , isHom hom) (λ a → η-hom _) λ _ → refl) -- Morphism composition isGroupHomComp : {F : Group {ℓ}} {G : Group {ℓ'}} {H : Group {ℓ''}} → (f : GroupHom F G) → (g : GroupHom G H) → isGroupHom F H (fun g ∘ fun f) isGroupHomComp f g x y = cong (fun g) (isHom f _ _) ∙ isHom g _ _ compGroupHom : {F : Group {ℓ}} {G : Group {ℓ'}} {H : Group {ℓ''}} → GroupHom F G → GroupHom G H → GroupHom F H fun (compGroupHom f g) = fun g ∘ fun f isHom (compGroupHom f g) = isGroupHomComp f g open GroupEquiv compGroupEquiv : {F : Group {ℓ}} {G : Group {ℓ'}} {H : Group {ℓ''}} → GroupEquiv F G → GroupEquiv G H → GroupEquiv F H eq (compGroupEquiv f g) = compEquiv (eq f) (eq g) isHom (compGroupEquiv f g) = isHom (compGroupHom (hom f) (hom g)) idGroupEquiv : (G : Group {ℓ}) → GroupEquiv G G eq (idGroupEquiv G) = idEquiv ⟨ G ⟩ isHom (idGroupEquiv G) = λ _ _ → refl -- Isomorphism inversion isGroupHomInv : {G : Group {ℓ}} {H : Group {ℓ'}} (f : GroupEquiv G H) → isGroupHom H G (invEq (GroupEquiv.eq f)) isGroupHomInv {G = G} {H = H} f h h' = isInj-f _ _ ( f' (g (h ⋆² h')) ≡⟨ retEq (eq f) _ ⟩ (h ⋆² h') ≡⟨ sym (cong₂ _⋆²_ (retEq (eq f) h) (retEq (eq f) h')) ⟩ (f' (g h) ⋆² f' (g h')) ≡⟨ sym (isHom (hom f) _ _) ⟩ f' (g h ⋆¹ g h') ∎) where f' = fst (eq f) _⋆¹_ = _+_ G _⋆²_ = _+_ H g = invEq (eq f) isInj-f : (x y : ⟨ G ⟩) → f' x ≡ f' y → x ≡ y isInj-f x y = invEq (_ , isEquiv→isEmbedding (snd (eq f)) x y) invGroupEquiv : {G : Group {ℓ}} {H : Group {ℓ'}} → GroupEquiv G H → GroupEquiv H G eq (invGroupEquiv f) = invEquiv (eq f) isHom (invGroupEquiv f) = isGroupHomInv f dirProdEquiv : ∀ {ℓ ℓ' ℓ'' ℓ'''} {A : Group {ℓ}} {B : Group {ℓ'}} {C : Group {ℓ''}} {D : Group {ℓ'''}} → GroupEquiv A C → GroupEquiv B D → GroupEquiv (dirProd A B) (dirProd C D) eq (dirProdEquiv eq1 eq2) = ≃-× (eq eq1) (eq eq2) isHom (dirProdEquiv eq1 eq2) = isHom (×hom (GroupEquiv.hom eq1) (GroupEquiv.hom eq2)) groupHomEq : {G : Group {ℓ}} {H : Group {ℓ'}} {f g : GroupHom G H} → (fun f ≡ fun g) → f ≡ g fun (groupHomEq p i) = p i isHom (groupHomEq {G = G} {H = H} {f = f} {g = g} p i) = p-hom i where p-hom : PathP (λ i → isGroupHom G H (p i)) (isHom f) (isHom g) p-hom = toPathP (isPropIsGroupHom G H _ _) groupEquivEq : {G : Group {ℓ}} {H : Group {ℓ'}} {f g : GroupEquiv G H} → (eq f ≡ eq g) → f ≡ g eq (groupEquivEq {G = G} {H = H} {f} {g} p i) = p i isHom (groupEquivEq {G = G} {H = H} {f} {g} p i) = p-hom i where p-hom : PathP (λ i → isGroupHom G H (p i .fst)) (isHom f) (isHom g) p-hom = toPathP (isPropIsGroupHom G H _ _) module GroupΣTheory {ℓ} where RawGroupStructure : Type ℓ → Type ℓ RawGroupStructure = SemigroupΣTheory.RawSemigroupStructure RawGroupEquivStr : StrEquiv RawGroupStructure _ RawGroupEquivStr = SemigroupΣTheory.RawSemigroupEquivStr rawGroupUnivalentStr : UnivalentStr RawGroupStructure _ rawGroupUnivalentStr = SemigroupΣTheory.rawSemigroupUnivalentStr -- The neutral element and the inverse function will be derived from the -- axioms, instead of being defined in the RawGroupStructure in order -- to have that group equivalences are equivalences that preserves -- multiplication (so we don't have to show that they also preserve inversion -- and neutral element, although they will preserve them). GroupAxioms : (G : Type ℓ) → RawGroupStructure G → Type ℓ GroupAxioms G _·_ = IsSemigroup _·_ × (Σ[ e ∈ G ] ((x : G) → (x · e ≡ x) × (e · x ≡ x)) × ((x : G) → Σ[ x' ∈ G ] (x · x' ≡ e) × (x' · x ≡ e))) GroupStructure : Type ℓ → Type ℓ GroupStructure = AxiomsStructure RawGroupStructure GroupAxioms GroupΣ : Type (ℓ-suc ℓ) GroupΣ = TypeWithStr ℓ GroupStructure -- Structured equivalences for groups are those for monoids (but different axioms) GroupEquivStr : StrEquiv GroupStructure ℓ GroupEquivStr = AxiomsEquivStr RawGroupEquivStr GroupAxioms open MonoidTheory isSetGroupΣ : (G : GroupΣ) → isSet _ isSetGroupΣ (_ , _ , (isSemigroup-G , _ , _)) = IsSemigroup.is-set isSemigroup-G isPropGroupAxioms : (G : Type ℓ) → (s : RawGroupStructure G) → isProp (GroupAxioms G s) isPropGroupAxioms G _+_ = isPropΣ (isPropIsSemigroup _) γ where γ : (h : IsSemigroup _+_) → isProp (Σ[ e ∈ G ] ((x : G) → (x + e ≡ x) × (e + x ≡ x)) × ((x : G) → Σ[ x' ∈ G ] (x + x' ≡ e) × (x' + x ≡ e))) γ h (e , P , _) (e' , Q , _) = Σ≡Prop (λ x → isPropΣ (isPropΠ λ _ → isProp× ((IsSemigroup.is-set h) _ _) ((IsSemigroup.is-set h) _ _)) (β x)) (sym (fst (Q e)) ∙ snd (P e')) where β : (e : G) → ((x : G) → (x + e ≡ x) × (e + x ≡ x)) → isProp ((x : G) → Σ[ x' ∈ G ] (x + x' ≡ e) × (x' + x ≡ e)) β e He = isPropΠ λ { x (x' , _ , P) (x'' , Q , _) → Σ≡Prop (λ _ → isProp× ((IsSemigroup.is-set h) _ _) ((IsSemigroup.is-set h) _ _)) (inv-lemma ℳ x x' x'' P Q) } where ℳ : Monoid ℳ = makeMonoid e _+_ (IsSemigroup.is-set h) (IsSemigroup.assoc h) (λ x → He x .fst) (λ x → He x .snd) Group→GroupΣ : Group → GroupΣ Group→GroupΣ G = _ , _ , ((isSemigroup G) , _ , (identity G) , λ x → (- G) x , inverse G x) GroupΣ→Group : GroupΣ → Group GroupΣ→Group (G , _ , SG , _ , H0g , invertible ) = group _ _ _ (λ x → invertible x .fst) (isgroup (ismonoid SG H0g) λ x → invertible x .snd) GroupIsoGroupΣ : Iso Group GroupΣ GroupIsoGroupΣ = iso Group→GroupΣ GroupΣ→Group (λ _ → refl) helper where open MonoidΣTheory monoid-helper : retract (Monoid→MonoidΣ {ℓ}) MonoidΣ→Monoid monoid-helper = Iso.leftInv MonoidIsoMonoidΣ helper : retract (λ z → Group→GroupΣ z) GroupΣ→Group Carrier (helper a i) = ⟨ a ⟩ 0g (helper a i) = 0g a _+_ (helper a i) = (_+_) a - helper a i = - a IsGroup.isMonoid (isGroup (helper a i)) = Monoid.isMonoid (monoid-helper (monoid (Carrier a) (0g a) (_+_ a) (isMonoid a)) i) IsGroup.inverse (isGroup (helper a i)) = inverse a groupUnivalentStr : UnivalentStr GroupStructure GroupEquivStr groupUnivalentStr = axiomsUnivalentStr _ isPropGroupAxioms rawGroupUnivalentStr GroupΣPath : (G H : GroupΣ) → (G ≃[ GroupEquivStr ] H) ≃ (G ≡ H) GroupΣPath = SIP groupUnivalentStr GroupEquivΣ : (G H : Group) → Type ℓ GroupEquivΣ G H = Group→GroupΣ G ≃[ GroupEquivStr ] Group→GroupΣ H GroupIsoΣPath : {G H : Group} → Iso (GroupEquiv G H) (GroupEquivΣ G H) fun GroupIsoΣPath f = (eq f) , isHom f inv GroupIsoΣPath (e , h) = groupequiv e h rightInv GroupIsoΣPath _ = refl leftInv GroupIsoΣPath _ = η-equiv _ GroupPath : (G H : Group) → (GroupEquiv G H) ≃ (G ≡ H) GroupPath G H = GroupEquiv G H ≃⟨ isoToEquiv GroupIsoΣPath ⟩ GroupEquivΣ G H ≃⟨ GroupΣPath _ _ ⟩ Group→GroupΣ G ≡ Group→GroupΣ H ≃⟨ isoToEquiv (invIso (congIso GroupIsoGroupΣ)) ⟩ G ≡ H ■ RawGroupΣ : Type (ℓ-suc ℓ) RawGroupΣ = TypeWithStr ℓ RawGroupStructure open Group Group→RawGroupΣ : Group → RawGroupΣ Group→RawGroupΣ G = ⟨ G ⟩ , (_+_ G) InducedGroup : (G : Group) (H : RawGroupΣ) (e : G .Carrier ≃ H .fst) → RawGroupEquivStr (Group→RawGroupΣ G) H e → Group InducedGroup G H e r = GroupΣ→Group (transferAxioms rawGroupUnivalentStr (Group→GroupΣ G) H (e , r)) InducedGroupPath : (G : Group {ℓ}) (H : RawGroupΣ) (e : G .Carrier ≃ H .fst) (E : RawGroupEquivStr (Group→RawGroupΣ G) H e) → G ≡ InducedGroup G H e E InducedGroupPath G H e E = GroupPath G (InducedGroup G H e E) .fst (groupequiv e E) -- Extract the characterization of equality of groups GroupPath : (G H : Group {ℓ}) → (GroupEquiv G H) ≃ (G ≡ H) GroupPath = GroupΣTheory.GroupPath InducedGroup : (G : Group {ℓ}) (H : GroupΣTheory.RawGroupΣ) (e : G .Carrier ≃ H .fst) → GroupΣTheory.RawGroupEquivStr (GroupΣTheory.Group→RawGroupΣ G) H e → Group InducedGroup = GroupΣTheory.InducedGroup InducedGroupPath : (G : Group {ℓ}) (H : GroupΣTheory.RawGroupΣ) (e : G .Carrier ≃ H .fst) (E : GroupΣTheory.RawGroupEquivStr (GroupΣTheory.Group→RawGroupΣ G) H e) → G ≡ InducedGroup G H e E InducedGroupPath = GroupΣTheory.InducedGroupPath uaGroup : {G H : Group {ℓ}} → GroupEquiv G H → G ≡ H uaGroup {G = G} {H = H} = equivFun (GroupPath G H) carac-uaGroup : {G H : Group {ℓ}} (f : GroupEquiv G H) → cong Carrier (uaGroup f) ≡ ua (GroupEquiv.eq f) carac-uaGroup f = ua (eq f) ∙ refl ≡⟨ sym (rUnit _) ⟩ ua (eq f) ∎ -- Group-ua functoriality Group≡ : (G H : Group {ℓ}) → ( Σ[ p ∈ Carrier G ≡ Carrier H ] Σ[ q ∈ PathP (λ i → p i) (0g G) (0g H) ] Σ[ r ∈ PathP (λ i → p i → p i → p i) (_+_ G) (_+_ H) ] Σ[ s ∈ PathP (λ i → p i → p i) (-_ G) (-_ H) ] PathP (λ i → IsGroup (q i) (r i) (s i)) (isGroup G) (isGroup H)) ≃ (G ≡ H) Group≡ G H = isoToEquiv theIso where theIso : Iso _ _ Carrier (fun theIso (p , q , r , s , t) i) = p i 0g (fun theIso (p , q , r , s , t) i) = q i _+_ (fun theIso (p , q , r , s , t) i) = r i - fun theIso (p , q , r , s , t) i = s i isGroup (fun theIso (p , q , r , s , t) i) = t i inv theIso p = cong ⟨_⟩ p , cong 0g p , cong _+_ p , cong -_ p , cong isGroup p Carrier (rightInv theIso a i i₁) = ⟨ a i₁ ⟩ 0g (rightInv theIso a i i₁) = 0g (a i₁) _+_ (rightInv theIso a i i₁) = _+_ (a i₁) - rightInv theIso a i i₁ = -_ (a i₁) isGroup (rightInv theIso a i i₁) = isGroup (a i₁) leftInv theIso _ = refl caracGroup≡ : {G H : Group {ℓ}} (p q : G ≡ H) → cong ⟨_⟩ p ≡ cong ⟨_⟩ q → p ≡ q caracGroup≡ {G = G} {H = H} p q P = sym (transportTransport⁻ (ua (Group≡ G H)) p) ∙∙ cong (transport (ua (Group≡ G H))) helper ∙∙ transportTransport⁻ (ua (Group≡ G H)) q where helper : transport (sym (ua (Group≡ G H))) p ≡ transport (sym (ua (Group≡ G H))) q helper = Σ≡Prop (λ _ → isPropΣ (isOfHLevelPathP' 1 (is-set H) _ _) λ _ → isPropΣ (isOfHLevelPathP' 1 (isSetΠ2 λ _ _ → is-set H) _ _) λ _ → isPropΣ (isOfHLevelPathP' 1 (isSetΠ λ _ → is-set H) _ _) λ _ → isOfHLevelPathP 1 (isPropIsGroup _ _ _) _ _) (transportRefl (cong ⟨_⟩ p) ∙ P ∙ sym (transportRefl (cong ⟨_⟩ q))) uaGroupId : (G : Group {ℓ}) → uaGroup (idGroupEquiv G) ≡ refl uaGroupId G = caracGroup≡ _ _ (carac-uaGroup (idGroupEquiv G) ∙ uaIdEquiv) uaCompGroupEquiv : {F G H : Group {ℓ}} (f : GroupEquiv F G) (g : GroupEquiv G H) → uaGroup (compGroupEquiv f g) ≡ uaGroup f ∙ uaGroup g uaCompGroupEquiv f g = caracGroup≡ _ _ ( cong Carrier (uaGroup (compGroupEquiv f g)) ≡⟨ carac-uaGroup (compGroupEquiv f g) ⟩ ua (eq (compGroupEquiv f g)) ≡⟨ uaCompEquiv _ _ ⟩ ua (eq f) ∙ ua (eq g) ≡⟨ cong (_∙ ua (eq g)) (sym (carac-uaGroup f)) ⟩ cong Carrier (uaGroup f) ∙ ua (eq g) ≡⟨ cong (cong Carrier (uaGroup f) ∙_) (sym (carac-uaGroup g)) ⟩ cong Carrier (uaGroup f) ∙ cong Carrier (uaGroup g) ≡⟨ sym (cong-∙ Carrier (uaGroup f) (uaGroup g)) ⟩ cong Carrier (uaGroup f ∙ uaGroup g) ∎) where open GroupEquiv
41.287097
143
0.600438
d0271493f68d06ae5f5f3b0db7e9184d84d290ea
466
agda
Agda
Tools/Nullary.agda
CoqHott/logrel-mltt
e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04
[ "MIT" ]
2
2018-06-21T08:39:01.000Z
2022-01-17T16:13:53.000Z
Tools/Nullary.agda
CoqHott/logrel-mltt
e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04
[ "MIT" ]
null
null
null
Tools/Nullary.agda
CoqHott/logrel-mltt
e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04
[ "MIT" ]
2
2022-01-26T14:55:51.000Z
2022-02-15T19:42:19.000Z
-- Some proposition constructors. {-# OPTIONS --safe #-} module Tools.Nullary where open import Tools.Empty -- Negation. infix 3 ¬_ ¬_ : Set → Set ¬ P = P → ⊥ -- Decidable propositions. data Dec (P : Set) : Set where yes : ( p : P) → Dec P no : (¬p : ¬ P) → Dec P -- If A and B are logically equivalent, then so are Dec A and Dec B. map : ∀ {A B} → (A → B) → (B → A) → Dec A → Dec B map f g (yes p) = yes (f p) map f g (no ¬p) = no (λ x → ¬p (g x))
17.259259
68
0.551502
318c164701914e2387cd07a394605d514538b9a1
2,281
agda
Agda
src/Prelude/Maybe.agda
jespercockx/agda-prelude
1984cf0341835b2f7bfe678098bd57cfe16ea11f
[ "MIT" ]
null
null
null
src/Prelude/Maybe.agda
jespercockx/agda-prelude
1984cf0341835b2f7bfe678098bd57cfe16ea11f
[ "MIT" ]
null
null
null
src/Prelude/Maybe.agda
jespercockx/agda-prelude
1984cf0341835b2f7bfe678098bd57cfe16ea11f
[ "MIT" ]
null
null
null
module Prelude.Maybe where open import Prelude.Unit open import Prelude.Empty open import Prelude.Function open import Prelude.Functor open import Prelude.Applicative open import Prelude.Monad open import Prelude.Equality open import Prelude.Decidable data Maybe {a} (A : Set a) : Set a where nothing : Maybe A just : A → Maybe A {-# FOREIGN GHC type AgdaMaybe l = Maybe #-} {-# COMPILE GHC Maybe = data MAlonzo.Code.Prelude.Maybe.AgdaMaybe (Nothing | Just) #-} maybe : ∀ {a b} {A : Set a} {B : Set b} → B → (A → B) → Maybe A → B maybe z f nothing = z maybe z f (just x) = f x {-# INLINE maybe #-} fromMaybe : ∀ {a} {A : Set a} → A → Maybe A → A fromMaybe z = maybe z id {-# INLINE fromMaybe #-} IsJust : ∀ {a} {A : Set a} → Maybe A → Set IsJust = maybe ⊥ (const ⊤) FromJust : ∀ {a} {A : Set a} → Maybe A → Set a FromJust {A = A} = maybe ⊤′ (const A) fromJust : ∀ {a} {A : Set a} (m : Maybe A) → FromJust m fromJust nothing = _ fromJust (just x) = x maybeYes : ∀ {a} {A : Set a} → Dec A → Maybe A maybeYes (yes x) = just x maybeYes (no _) = nothing --- Equality --- just-inj : ∀ {a} {A : Set a} {x y : A} → just x ≡ just y → x ≡ y just-inj refl = refl instance EqMaybe : ∀ {a} {A : Set a} {{EqA : Eq A}} → Eq (Maybe A) _==_ {{EqMaybe}} nothing nothing = yes refl _==_ {{EqMaybe}} nothing (just x) = no λ () _==_ {{EqMaybe}} (just x) nothing = no λ () _==_ {{EqMaybe}} (just x) (just y) with x == y ... | yes eq = yes (just $≡ eq) ... | no neq = no (λ eq → neq (just-inj eq)) --- Monad --- instance FunctorMaybe : ∀ {a} → Functor (Maybe {a}) fmap {{FunctorMaybe}} f m = maybe nothing (just ∘ f) m ApplicativeMaybe : ∀ {a} → Applicative (Maybe {a}) pure {{ApplicativeMaybe}} = just _<*>_ {{ApplicativeMaybe}} mf mx = maybe nothing (λ f → fmap f mx) mf MonadMaybe : ∀ {a} → Monad {a} Maybe _>>=_ {{MonadMaybe}} m f = maybe nothing f m FunctorMaybe′ : ∀ {a b} → Functor′ {a} {b} Maybe fmap′ {{FunctorMaybe′}} f m = maybe nothing (just ∘ f) m ApplicativeMaybe′ : ∀ {a b} → Applicative′ {a} {b} Maybe _<*>′_ {{ApplicativeMaybe′}} (just f) (just x) = just (f x) _<*>′_ {{ApplicativeMaybe′}} _ _ = nothing MonadMaybe′ : ∀ {a b} → Monad′ {a} {b} Maybe _>>=′_ {{MonadMaybe′}} m f = maybe nothing f m
28.873418
86
0.589654
298bf8bb9386e6c32b50edfa4f53c4bed2cea165
1,849
agda
Agda
theorems/stash/modalities/PushoutProduct.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
294
2015-01-09T16:23:23.000Z
2022-03-20T13:54:45.000Z
theorems/stash/modalities/PushoutProduct.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
31
2015-03-05T20:09:00.000Z
2021-10-03T19:15:25.000Z
theorems/stash/modalities/PushoutProduct.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
50
2015-01-10T01:48:08.000Z
2022-02-14T03:03:25.000Z
{-# OPTIONS --without-K --rewriting #-} open import HoTT module stash.modalities.PushoutProduct {i j k l} {A : Type i} {B : Type j} {A' : Type k} {B' : Type l} where □-span : (f : A → B) (g : A' → B') → Span □-span f g = span (B × A') (A × B') (A × A') (λ { (a , a') → f a , a'}) (λ { (a , a') → a , g a' }) module PshoutProd (f : A → B) (g : A' → B') = PushoutRec {d = □-span f g} (λ { (b , a') → b , g a' }) (λ { (a , b') → f a , b' }) (λ { (a , a') → idp }) _□_ : (f : A → B) (g : A' → B') → Pushout (□-span f g) → B × B' f □ g = PshoutProd.f f g □-glue-β : (f : A → B) (g : A' → B') (a : A) (a' : A') → ap (f □ g) (glue (a , a')) == idp □-glue-β f g a a' = PshoutProd.glue-β f g (a , a') module _ (f : A → B) (g : A' → B') where private abstract ↓-□=cst-out : ∀ {a a' b b'} {p p' : (f a , g a') == (b , b')} → p == p' [ (λ w → (f □ g) w == (b , b')) ↓ glue (a , a') ] → p == p' ↓-□=cst-out {p' = idp} q = ↓-app=cst-out' q ∙ □-glue-β f g _ _ ↓-□=cst-in : ∀ {a a' b b'} {p p' : (f a , g a') == (b , b')} → p == p' → p == p' [ (λ w → (f □ g) w == (b , b')) ↓ glue (a , a') ] ↓-□=cst-in {p' = idp} q = ↓-app=cst-in' (q ∙ ! (□-glue-β f g _ _)) ↓-□=cst-β : ∀ {a a' b b'} {p p' : (f a , g a') == (b , b')} (q : p == p') → ↓-□=cst-out (↓-□=cst-in q) == q ↓-□=cst-β {a} {a'} {p' = idp} idp = {!!} ∙ !-inv-l (□-glue-β f g a a') □-hfiber-to : (b : B) (b' : B') → hfiber (f □ g) (b , b') → hfiber f b * hfiber g b' □-hfiber-to b b' = uncurry $ Pushout-elim (λ { (_ , a') → λ p → right (a' , snd×= p) }) (λ { (a , _) → λ p → left (a , fst×= p) }) {!!} -- -- Here is the main theorem -- □-hfiber : (b : B) (b' : B') → hfiber (f □ g) (b , b') ≃ hfiber f b * hfiber g b' □-hfiber b b' = {!!}
29.822581
90
0.365603
0629f93ac4df9c419d77e21c5840f2507c979818
2,152
agda
Agda
src/Data/ByteString/Primitive.agda
semenov-vladyslav/bytes-agda
98a53f35fca27e3379cf851a9a6bdfe5bd8c9626
[ "MIT" ]
null
null
null
src/Data/ByteString/Primitive.agda
semenov-vladyslav/bytes-agda
98a53f35fca27e3379cf851a9a6bdfe5bd8c9626
[ "MIT" ]
null
null
null
src/Data/ByteString/Primitive.agda
semenov-vladyslav/bytes-agda
98a53f35fca27e3379cf851a9a6bdfe5bd8c9626
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} module Data.ByteString.Primitive where open import Data.Word8.Primitive using (Word8) open import Data.Nat using (ℕ; _<_) open import Data.Colist using (Colist) open import Data.List using (List; length) open import Agda.Builtin.String using (String) open import Agda.Builtin.Bool using (Bool) open import Agda.Builtin.IO using (IO) open import Data.Tuple.Base using (Pair) open import Relation.Binary.PropositionalEquality using (_≡_) open import Relation.Binary.PropositionalEquality.TrustMe using (trustMe) {-# FOREIGN GHC import qualified Data.ByteString.Lazy #-} open import Data.ByteString.Primitive.Int open import Data.ByteString.Primitive.Lazy open import Data.ByteString.Primitive.Strict -- properties module _ where List→Strict→List : (l : List Word8) → List←Strict (List→Strict l) ≡ l List→Strict→List l = trustMe Strict→List→Strict : (bs : ByteStringStrict) → List→Strict (List←Strict bs) ≡ bs Strict→List→Strict bs = trustMe ∣Strict∣≡∣List∣ : (bs : ByteStringStrict) → IntToℕ (lengthStrict bs) ≡ length (List←Strict bs) ∣Strict∣≡∣List∣ bs = trustMe 2³¹ = 2147483648 ∣List∣≡∣Strict∣ : (l : List Word8) → (l-small : length l < 2³¹) → IntToℕ (lengthStrict (List→Strict l)) ≡ length l ∣List∣≡∣Strict∣ l l-small = trustMe postulate toLazy : ByteStringStrict → ByteStringLazy toStrict : ByteStringLazy → ByteStringStrict lazy≟lazy : ByteStringLazy → ByteStringLazy → Bool strict≟strict : ByteStringStrict → ByteStringStrict → Bool {-# COMPILE GHC toLazy = (Data.ByteString.Lazy.fromStrict) #-} {-# COMPILE GHC toStrict = (Data.ByteString.Lazy.toStrict) #-} {-# COMPILE GHC lazy≟lazy = (==) #-} {-# COMPILE GHC strict≟strict = (==) #-} lazy≟strict : ByteStringLazy → ByteStringStrict → Bool lazy≟strict l s = lazy≟lazy l (toLazy s) strict≟lazy : ByteStringStrict → ByteStringLazy → Bool strict≟lazy s l = lazy≟lazy (toLazy s) l postulate fromChunks : List ByteStringStrict → ByteStringLazy toChunks : ByteStringLazy → List ByteStringStrict {-# COMPILE GHC fromChunks = (Data.ByteString.Lazy.fromChunks) #-} {-# COMPILE GHC toChunks = (Data.ByteString.Lazy.toChunks) #-}
36.474576
116
0.733271
31b93ad213106ff9ec3fa3361bb4f97def23250c
263
agda
Agda
test/Succeed/WithAbstractTwiceInApplication.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/WithAbstractTwiceInApplication.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/WithAbstractTwiceInApplication.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2015-02-07 postulate X Y : Set fix : (X → X) → X g : Y → X → X y : Y P : X → Set yes : (f : X → X) → P (f (fix f)) test : P (g y (fix (g y))) test with g y test | f = yes f -- should be able to abstract (g y) twice -- and succeed
15.470588
41
0.486692
29874568e00bdf675569ddca04e03eb7ed8a6f47
611
agda
Agda
src/Categories/Morphism/Universal.agda
jaykru/agda-categories
a4053cf700bcefdf73b857c3352f1eae29382a60
[ "MIT" ]
279
2019-06-01T14:36:40.000Z
2022-03-22T00:40:14.000Z
src/Categories/Morphism/Universal.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
236
2019-06-01T14:53:54.000Z
2022-03-28T14:31:43.000Z
src/Categories/Morphism/Universal.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
64
2019-06-02T16:58:15.000Z
2022-03-14T02:00:59.000Z
{-# OPTIONS --without-K --safe #-} module Categories.Morphism.Universal where open import Level open import Categories.Category open import Categories.Category.Construction.Comma open import Categories.Functor open import Categories.Object.Initial record UniversalMorphism {o ℓ e o′ ℓ′ e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} (X : Category.Obj C) (F : Functor D C) : Set (e ⊔ ℓ ⊔ o′ ⊔ ℓ′ ⊔ e′) where X↙F : Category _ _ _ X↙F = X ↙ F private module X↙F = Category X↙F field initial : Initial X↙F module initial = Initial initial open initial public
25.458333
98
0.656301
29548e97f750f206911d0df3732af7df022c235c
12,661
agda
Agda
TotalRecognisers/LeftRecursion/ExpressiveStrength.agda
yurrriq/parser-combinators
b396d35cc2cb7e8aea50b982429ee385f001aa88
[ "MIT" ]
7
2016-12-13T05:23:14.000Z
2021-06-22T05:35:31.000Z
TotalRecognisers/LeftRecursion/ExpressiveStrength.agda
yurrriq/parser-combinators
b396d35cc2cb7e8aea50b982429ee385f001aa88
[ "MIT" ]
1
2018-01-22T22:21:41.000Z
2018-01-24T16:39:37.000Z
TotalRecognisers/LeftRecursion/ExpressiveStrength.agda
yurrriq/parser-combinators
b396d35cc2cb7e8aea50b982429ee385f001aa88
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- This module establishes that the recognisers are as expressive as -- possible when the alphabet is Bool (this could be generalised to -- arbitrary finite alphabets), whereas this is not the case when the -- alphabet is ℕ ------------------------------------------------------------------------ module TotalRecognisers.LeftRecursion.ExpressiveStrength where open import Algebra open import Coinduction open import Data.Bool as Bool hiding (_∧_) open import Data.Empty open import Function open import Function.Equality using (_⟨$⟩_) open import Function.Equivalence using (_⇔_; equivalence; module Equivalence) open import Data.List import Data.List.Properties as ListProp open import Data.List.Reverse open import Data.Nat as Nat open import Data.Nat.InfinitelyOften as Inf import Data.Nat.Properties as NatProp open import Data.Product open import Data.Sum open import Relation.Binary open import Relation.Binary.PropositionalEquality hiding ([_]) open import Relation.Nullary open import Relation.Nullary.Decidable open import Relation.Nullary.Negation private module ListMonoid {A : Set} = Monoid (ListProp.++-monoid A) module NatOrder = DecTotalOrder NatProp.≤-decTotalOrder import TotalRecognisers.LeftRecursion open TotalRecognisers.LeftRecursion Bool using (_∧_; left-zero) private open module LR {Tok : Set} = TotalRecognisers.LeftRecursion Tok hiding (P; ∞⟨_⟩P; _∧_; left-zero; _∷_) P : Set → Bool → Set P Tok = LR.P {Tok} ∞⟨_⟩P : Bool → Set → Bool → Set ∞⟨ b ⟩P Tok n = LR.∞⟨_⟩P {Tok} b n open import TotalRecognisers.LeftRecursion.Lib Bool hiding (_∷_) ------------------------------------------------------------------------ -- A boring lemma private lemma : (f : List Bool → Bool) → (false ∧ f [ true ] ∨ false ∧ f [ false ]) ∨ f [] ≡ f [] lemma f = cong₂ (λ b₁ b₂ → (b₁ ∨ b₂) ∨ f []) (left-zero (f [ true ])) (left-zero (f [ false ])) ------------------------------------------------------------------------ -- Expressive strength -- For every grammar there is an equivalent decidable predicate. grammar⇒pred : ∀ {Tok n} (p : P Tok n) → ∃ λ (f : List Tok → Bool) → ∀ {s} → s ∈ p ⇔ T (f s) grammar⇒pred p = ((λ s → ⌊ s ∈? p ⌋) , λ {_} → equivalence fromWitness toWitness) -- When the alphabet is Bool the other direction holds: for every -- decidable predicate there is a corresponding grammar. -- -- Note that the grammars constructed by the proof are all "infinite -- LL(1)". pred⇒grammar : (f : List Bool → Bool) → ∃ λ (p : P Bool (f [])) → ∀ {s} → s ∈ p ⇔ T (f s) pred⇒grammar f = (p f , λ {s} → equivalence (p-sound f) (p-complete f s)) where p : (f : List Bool → Bool) → P Bool (f []) p f = cast (lemma f) ( ♯? (sat id ) · ♯ p (f ∘ _∷_ true ) ∣ ♯? (sat not) · ♯ p (f ∘ _∷_ false) ∣ accept-if-true (f []) ) p-sound : ∀ f {s} → s ∈ p f → T (f s) p-sound f (cast (∣-right s∈)) with AcceptIfTrue.sound (f []) s∈ ... | (refl , ok) = ok p-sound f (cast (∣-left (∣-left (t∈ · s∈)))) with drop-♭♯ (f [ true ]) t∈ ... | sat {t = true} _ = p-sound (f ∘ _∷_ true ) s∈ ... | sat {t = false} () p-sound f (cast (∣-left (∣-right (t∈ · s∈)))) with drop-♭♯ (f [ false ]) t∈ ... | sat {t = false} _ = p-sound (f ∘ _∷_ false) s∈ ... | sat {t = true} () p-complete : ∀ f s → T (f s) → s ∈ p f p-complete f [] ok = cast (∣-right {n₁ = false ∧ f [ true ] ∨ false ∧ f [ false ]} $ AcceptIfTrue.complete ok) p-complete f (true ∷ bs) ok = cast (∣-left $ ∣-left $ add-♭♯ (f [ true ]) (sat _) · p-complete (f ∘ _∷_ true ) bs ok) p-complete f (false ∷ bs) ok = cast (∣-left $ ∣-right {n₁ = false ∧ f [ true ]} $ add-♭♯ (f [ false ]) (sat _) · p-complete (f ∘ _∷_ false) bs ok) -- An alternative proof which uses a left recursive definition of the -- grammar to avoid the use of a cast. pred⇒grammar′ : (f : List Bool → Bool) → ∃ λ (p : P Bool (f [])) → ∀ {s} → s ∈ p ⇔ T (f s) pred⇒grammar′ f = (p f , λ {s} → equivalence (p-sound f) (p-complete f s)) where extend : {A B : Set} → (List A → B) → A → (List A → B) extend f x = λ xs → f (xs ∷ʳ x) p : (f : List Bool → Bool) → P Bool (f []) p f = ♯ p (extend f true ) · ♯? (sat id ) ∣ ♯ p (extend f false) · ♯? (sat not) ∣ accept-if-true (f []) p-sound : ∀ f {s} → s ∈ p f → T (f s) p-sound f (∣-right s∈) with AcceptIfTrue.sound (f []) s∈ ... | (refl , ok) = ok p-sound f (∣-left (∣-left (s∈ · t∈))) with drop-♭♯ (f [ true ]) t∈ ... | sat {t = true} _ = p-sound (extend f true ) s∈ ... | sat {t = false} () p-sound f (∣-left (∣-right (s∈ · t∈))) with drop-♭♯ (f [ false ]) t∈ ... | sat {t = false} _ = p-sound (extend f false) s∈ ... | sat {t = true} () p-complete′ : ∀ f {s} → Reverse s → T (f s) → s ∈ p f p-complete′ f [] ok = ∣-right {n₁ = false} $ AcceptIfTrue.complete ok p-complete′ f (bs ∶ rs ∶ʳ true ) ok = ∣-left {n₁ = false} $ ∣-left {n₁ = false} $ p-complete′ (extend f true ) rs ok · add-♭♯ (f [ true ]) (sat _) p-complete′ f (bs ∶ rs ∶ʳ false) ok = ∣-left {n₁ = false} $ ∣-right {n₁ = false} $ p-complete′ (extend f false) rs ok · add-♭♯ (f [ false ]) (sat _) p-complete : ∀ f s → T (f s) → s ∈ p f p-complete f s = p-complete′ f (reverseView s) -- If infinite alphabets are allowed the result is different: there -- are decidable predicates which cannot be realised as grammars. The -- proof below shows that a recogniser for natural number strings -- cannot accept exactly the strings of the form "nn". module NotExpressible where -- A "pair" is a string containing two equal elements. pair : ℕ → List ℕ pair n = n ∷ n ∷ [] -- OnlyPairs p is inhabited iff p only accepts pairs and empty -- strings. (Empty strings are allowed due to the presence of the -- nonempty combinator.) OnlyPairs : ∀ {n} → P ℕ n → Set OnlyPairs p = ∀ {n s} → n ∷ s ∈ p → s ≡ [ n ] -- ManyPairs p is inhabited iff p accepts infinitely many pairs. ManyPairs : ∀ {n} → P ℕ n → Set ManyPairs p = Inf (λ n → pair n ∈ p) -- AcceptsNonEmptyString p is inhabited iff p accepts a non-empty -- string. AcceptsNonEmptyString : ∀ {Tok n} → P Tok n → Set AcceptsNonEmptyString p = ∃₂ λ t s → t ∷ s ∈ p -- If a recogniser does not accept any non-empty string, then it -- either accepts the empty string or no string at all. nullable-or-fail : ∀ {Tok n} {p : P Tok n} → ¬ AcceptsNonEmptyString p → [] ∈ p ⊎ (∀ s → ¬ s ∈ p) nullable-or-fail {p = p} ¬a with [] ∈? p ... | yes []∈p = inj₁ []∈p ... | no []∉p = inj₂ helper where helper : ∀ s → ¬ s ∈ p helper [] = []∉p helper (t ∷ s) = ¬a ∘ _,_ t ∘ _,_ s -- If p₁ · p₂ accepts infinitely many pairs, and nothing but pairs -- (or the empty string), then at most one of p₁ and p₂ accepts a -- non-empty string. This follows because p₁ and p₂ are independent -- of each other. For instance, if p₁ accepted n and p₂ accepted i -- and j, then p₁ · p₂ would accept both ni and nj, and if p₁ -- accepted mm and p₂ accepted n then p₁ · p₂ would accept mmn. at-most-one : ∀ {n₁ n₂} {p₁ : ∞⟨ n₂ ⟩P ℕ n₁} {p₂ : ∞⟨ n₁ ⟩P ℕ n₂} → OnlyPairs (p₁ · p₂) → ManyPairs (p₁ · p₂) → AcceptsNonEmptyString (♭? p₁) → AcceptsNonEmptyString (♭? p₂) → ⊥ at-most-one op mp (n₁ , s₁ , n₁s₁∈p₁) (n₂ , s₂ , n₂s₂∈p₂) with op (n₁s₁∈p₁ · n₂s₂∈p₂) at-most-one _ _ (_ , _ ∷ [] , _) (_ , _ , _) | () at-most-one _ _ (_ , _ ∷ _ ∷ _ , _) (_ , _ , _) | () at-most-one {p₁ = p₁} {p₂} op mp (n , [] , n∈p₁) (.n , .[] , n∈p₂) | refl = twoDifferentWitnesses mp helper where ¬pair : ∀ {i s} → s ∈ p₁ · p₂ → n ≢ i → s ≢ pair i ¬pair (_·_ {s₁ = []} _ ii∈p₂) n≢i refl with op (n∈p₁ · ii∈p₂) ... | () ¬pair (_·_ {s₁ = i ∷ []} i∈p₁ _) n≢i refl with op (i∈p₁ · n∈p₂) ¬pair (_·_ {s₁ = .n ∷ []} n∈p₁ _) n≢n refl | refl = n≢n refl ¬pair (_·_ {s₁ = i ∷ .i ∷ []} ii∈p₁ _) n≢i refl with op (ii∈p₁ · n∈p₂) ... | () ¬pair (_·_ {s₁ = _ ∷ _ ∷ _ ∷ _} _ _) _ () helper : ¬ ∃₂ λ i j → i ≢ j × pair i ∈ p₁ · p₂ × pair j ∈ p₁ · p₂ helper (i , j , i≢j , ii∈ , jj∈) with Nat._≟_ n i helper (.n , j , n≢j , nn∈ , jj∈) | yes refl = ¬pair jj∈ n≢j refl helper (i , j , i≢j , ii∈ , jj∈) | no n≢i = ¬pair ii∈ n≢i refl -- OnlyPairs and ManyPairs are mutually exclusive. ¬pairs : ∀ {n} (p : P ℕ n) → OnlyPairs p → ManyPairs p → ⊥ ¬pairs fail op mp = witness mp (helper ∘ proj₂) where helper : ∀ {t} → ¬ pair t ∈ fail helper () ¬pairs empty op mp = witness mp (helper ∘ proj₂) where helper : ∀ {t} → ¬ pair t ∈ empty helper () ¬pairs (sat f) op mp = witness mp (helper ∘ proj₂) where helper : ∀ {t} → ¬ pair t ∈ sat f helper () ¬pairs (nonempty p) op mp = ¬pairs p (op ∘ nonempty) (Inf.map helper mp) where helper : ∀ {n} → pair n ∈ nonempty p → pair n ∈ p helper (nonempty pr) = pr ¬pairs (cast eq p) op mp = ¬pairs p (op ∘ cast) (Inf.map helper mp) where helper : ∀ {n} → pair n ∈ cast eq p → pair n ∈ p helper (cast pr) = pr -- The most interesting cases are _∣_ and _·_. For the choice -- combinator we make use of the fact that if p₁ ∣ p₂ accepts -- infinitely many pairs, then at least one of p₁ and p₂ do. (We are -- deriving a contradiction, so the use of classical reasoning is -- unproblematic.) ¬pairs (p₁ ∣ p₂) op mp = commutes-with-∪ (Inf.map split mp) helper where helper : ¬ (ManyPairs p₁ ⊎ ManyPairs p₂) helper (inj₁ mp₁) = ¬pairs p₁ (op ∘ ∣-left) mp₁ helper (inj₂ mp₂) = ¬pairs p₂ (op ∘ ∣-right {p₁ = p₁}) mp₂ split : ∀ {s} → s ∈ p₁ ∣ p₂ → s ∈ p₁ ⊎ s ∈ p₂ split (∣-left s∈p₁) = inj₁ s∈p₁ split (∣-right s∈p₂) = inj₂ s∈p₂ -- For the sequencing combinator we make use of the fact that the -- argument recognisers cannot both accept non-empty strings. ¬pairs (p₁ · p₂) op mp = excluded-middle λ a₁? → excluded-middle λ a₂? → helper a₁? a₂? where continue : {n n′ : Bool} (p : ∞⟨ n′ ⟩P ℕ n) → n′ ≡ true → OnlyPairs (♭? p) → ManyPairs (♭? p) → ⊥ continue p eq with forced? p continue p refl | true = ¬pairs p continue p () | false helper : Dec (AcceptsNonEmptyString (♭? p₁)) → Dec (AcceptsNonEmptyString (♭? p₂)) → ⊥ helper (yes a₁) (yes a₂) = at-most-one op mp a₁ a₂ helper (no ¬a₁) _ with nullable-or-fail ¬a₁ ... | inj₁ []∈p₁ = continue p₂ (⇒ []∈p₁) (op ∘ _·_ []∈p₁) (Inf.map right mp) where right : ∀ {s} → s ∈ p₁ · p₂ → s ∈ ♭? p₂ right (_·_ {s₁ = []} _ ∈p₂) = ∈p₂ right (_·_ {s₁ = _ ∷ _} ∈p₁ _) = ⊥-elim (¬a₁ (, , ∈p₁)) ... | inj₂ is-fail = witness mp (∉ ∘ proj₂) where ∉ : ∀ {s} → ¬ s ∈ p₁ · p₂ ∉ (∈p₁ · _) = is-fail _ ∈p₁ helper _ (no ¬a₂) with nullable-or-fail ¬a₂ ... | inj₁ []∈p₂ = continue p₁ (⇒ []∈p₂) (op ∘ (λ ∈p₁ → cast∈ (proj₂ ListMonoid.identity _) refl (∈p₁ · []∈p₂))) (Inf.map left mp) where left : ∀ {s} → s ∈ p₁ · p₂ → s ∈ ♭? p₁ left (_·_ {s₂ = _ ∷ _} _ ∈p₂) = ⊥-elim (¬a₂ (, , ∈p₂)) left (_·_ {s₁ = s₁} {s₂ = []} ∈p₁ _) = cast∈ (sym $ proj₂ ListMonoid.identity s₁) refl ∈p₁ ... | inj₂ is-fail = witness mp (∉ ∘ proj₂) where ∉ : ∀ {s} → ¬ s ∈ p₁ · p₂ ∉ (_ · ∈p₂) = is-fail _ ∈p₂ -- Note that it is easy to decide whether a string is a pair or not. pair? : List ℕ → Bool pair? (m ∷ n ∷ []) = ⌊ Nat._≟_ m n ⌋ pair? _ = false -- This means that there are decidable predicates over token strings -- which cannot be realised using the recogniser combinators. not-realisable : ¬ ∃₂ (λ n (p : P ℕ n) → ∀ {s} → s ∈ p ⇔ T (pair? s)) not-realisable (_ , p , hyp) = ¬pairs p op mp where op : OnlyPairs p op {n} {[]} s∈p = ⊥-elim (Equivalence.to hyp ⟨$⟩ s∈p) op {n} { m ∷ []} s∈p with toWitness (Equivalence.to hyp ⟨$⟩ s∈p) op {n} {.n ∷ []} s∈p | refl = refl op {n} {_ ∷ _ ∷ _} s∈p = ⊥-elim (Equivalence.to hyp ⟨$⟩ s∈p) mp : ManyPairs p mp (i , ¬pair) = ¬pair i NatOrder.refl $ Equivalence.from hyp ⟨$⟩ fromWitness refl not-expressible : ∃₂ λ (Tok : Set) (f : List Tok → Bool) → ¬ ∃₂ (λ n (p : P Tok n) → ∀ {s} → s ∈ p ⇔ T (f s)) not-expressible = (ℕ , pair? , not-realisable) where open NotExpressible
36.698551
77
0.53495
315e509ac62ab88dbb411c87ff8a978479ac3aca
1,804
agda
Agda
src/Basics.agda
jstolarek/dep-typed-wbl-heaps
57db566cb840dc70331c29eb7bf3a0c849f8b27e
[ "BSD-3-Clause" ]
1
2018-05-02T21:48:43.000Z
2018-05-02T21:48:43.000Z
src/Basics.agda
jstolarek/dep-typed-wbl-heaps
57db566cb840dc70331c29eb7bf3a0c849f8b27e
[ "BSD-3-Clause" ]
null
null
null
src/Basics.agda
jstolarek/dep-typed-wbl-heaps
57db566cb840dc70331c29eb7bf3a0c849f8b27e
[ "BSD-3-Clause" ]
null
null
null
---------------------------------------------------------------------- -- Copyright: 2013, Jan Stolarek, Lodz University of Technology -- -- -- -- License: See LICENSE file in root of the repo -- -- Repo address: https://github.com/jstolarek/dep-typed-wbl-heaps -- -- -- -- This module re-exports all Basics/* modules for convenience. -- -- Note that both Basics.Nat and Basics.Ordering define ≥ operator. -- -- Here we re-export the one from Basics.Ordering as it will be -- -- used most of the time. -- -- This module also defines two type synonyms that will be helpful -- -- when working on heaps: Rank and Priority. -- ---------------------------------------------------------------------- module Basics where open import Basics.Bool public open import Basics.Nat public hiding (_≥_) open import Basics.Ordering public open import Basics.Reasoning public -- Rank of a weight biased leftist heap is defined as number of nodes -- in a heap. In other words it is size of a tree used to represent a -- heap. Rank : Set Rank = Nat -- Priority assigned to elements stored in a Heap. -- -- CONVENTION: Lower number means higher Priority. Therefore the -- highest Priority is zero. It will sometimes be more convenient not -- to use this inversed terminology. We will then use terms "smaller" -- and "greater" (in contrast to "lower" and "higher"). Example: -- Priority 3 is higher than 5, but 3 is smaller than 5. Priority : Set Priority = Nat -- Note that both Rank and Priority are Nat, which allows us to -- operate on them with functions that work for Nat.
45.1
70
0.575942
10662b02868e1d6bc108be2d4eded6d818cf0c57
982
agda
Agda
notes/thesis/report/Verification/CorruptFormalisations.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
11
2015-09-03T20:53:42.000Z
2021-09-12T16:09:54.000Z
notes/thesis/report/Verification/CorruptFormalisations.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
2
2016-10-12T17:28:16.000Z
2017-01-01T14:34:26.000Z
notes/thesis/report/Verification/CorruptFormalisations.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
3
2016-09-19T14:18:30.000Z
2018-03-14T08:50:00.000Z
{-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module Verification.CorruptFormalisations where open import FOTC.Base open import FOTC.Base.List open import FOTC.Base.Loop open import FOTC.Program.ABP.Terms ------------------------------------------------------------------------------ -- Corrupt as a constant. module Constant where postulate corrupt : D corrupt-T : ∀ os x xs → corrupt · (T ∷ os) · (x ∷ xs) ≡ ok x ∷ corrupt · os · xs corrupt-F : ∀ os x xs → corrupt · (F ∷ os) · (x ∷ xs) ≡ error ∷ corrupt · os · xs -- Corrupt as a binary function. module BinaryFunction where postulate corrupt : D → D → D corrupt-T : ∀ os x xs → corrupt (T ∷ os) (x ∷ xs) ≡ ok x ∷ corrupt os xs corrupt-F : ∀ os x xs → corrupt (F ∷ os) (x ∷ xs) ≡ error ∷ corrupt os xs
30.6875
78
0.510183
4db605e7a49696e44e77fee9258f806a495a14b4
625
agda
Agda
Cubical/Algebra/CommRing/Instances/BiInvInt.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
301
2018-10-17T18:00:24.000Z
2022-03-24T02:10:47.000Z
Cubical/Algebra/CommRing/Instances/BiInvInt.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
584
2018-10-15T09:49:02.000Z
2022-03-30T12:09:17.000Z
Cubical/Algebra/CommRing/Instances/BiInvInt.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
134
2018-11-16T06:11:03.000Z
2022-03-23T16:22:13.000Z
-- It is recommended to use Cubical.Algebra.CommRing.Instances.Int -- instead of this file. {-# OPTIONS --safe #-} module Cubical.Algebra.CommRing.Instances.BiInvInt where open import Cubical.Foundations.Prelude open import Cubical.Algebra.CommRing open import Cubical.Data.Int.MoreInts.BiInvInt renaming ( _+_ to _+ℤ_; -_ to _-ℤ_; +-assoc to +ℤ-assoc; +-comm to +ℤ-comm ) BiInvℤAsCommRing : CommRing ℓ-zero BiInvℤAsCommRing = makeCommRing zero (suc zero) _+ℤ_ _·_ _-ℤ_ isSetBiInvℤ +ℤ-assoc +-zero +-invʳ +ℤ-comm ·-assoc ·-identityʳ (λ x y z → sym (·-distribˡ x y z)) ·-comm
23.148148
66
0.6816
1c9db04abbaa28623110c1337874ec7005a8135f
819
agda
Agda
src/fot/PA/Axiomatic/Standard/Base/Consistency/Axioms.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
11
2015-09-03T20:53:42.000Z
2021-09-12T16:09:54.000Z
src/fot/PA/Axiomatic/Standard/Base/Consistency/Axioms.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
2
2016-10-12T17:28:16.000Z
2017-01-01T14:34:26.000Z
src/fot/PA/Axiomatic/Standard/Base/Consistency/Axioms.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
3
2016-09-19T14:18:30.000Z
2018-03-14T08:50:00.000Z
------------------------------------------------------------------------------ -- Test the consistency of PA.Axiomatic.Standard.Base ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- In the module PA.Axiomatic.Standard.Base we declare Agda postulates -- as first-order logic axioms. We test if it is possible to prove an -- unprovable theorem from these axioms. module PA.Axiomatic.Standard.Base.Consistency.Axioms where open import PA.Axiomatic.Standard.Base ------------------------------------------------------------------------------ postulate impossible : (m n : ℕ) → m ≡ n {-# ATP prove impossible #-}
37.227273
78
0.47619
10b2b04ff0e356bcfbfd3d1a4170eeae244b6cc9
13,845
agda
Agda
lib/Explore/Old/Sum/sum-properties-setoid.agda
crypto-agda/explore
16bc8333503ff9c00d47d56f4ec6113b9269a43e
[ "BSD-3-Clause" ]
2
2016-06-05T09:25:32.000Z
2017-06-28T19:19:29.000Z
lib/Explore/Old/Sum/sum-properties-setoid.agda
crypto-agda/explore
16bc8333503ff9c00d47d56f4ec6113b9269a43e
[ "BSD-3-Clause" ]
1
2019-03-16T14:24:04.000Z
2019-03-16T14:24:04.000Z
lib/Explore/Old/Sum/sum-properties-setoid.agda
crypto-agda/explore
16bc8333503ff9c00d47d56f4ec6113b9269a43e
[ "BSD-3-Clause" ]
null
null
null
{-# OPTIONS --without-K #-} module sum-properties-setoid where open import Type import Level as L open import Algebra import Algebra.FunctionProperties as FP open import Data.Zero using (𝟘) open import Data.Bool.NP open Data.Bool.NP.Indexed open import Data.Fin using (Fin) open import Data.Nat.NP open import Data.Nat.Properties open import Data.Product renaming (map to pmap) open import Data.Sum open import Data.One using (𝟙) open import Function.NP import Function.Inverse as Inv open Inv using (_↔_) open import Function.Related open import Function.Related.TypeIsomorphisms.NP import Function.Equality as FE open FE using (_⟨$⟩_) import Function.Injection as FInj open import sum-setoid open import Relation.Binary open import Relation.Binary.Sum.NP open import Relation.Binary.Product.Pointwise import Relation.Binary.PropositionalEquality.NP as ≡ open ≡ using (_≡_ ; _≗_ ; _≗₂_) module _ {A : ★} (μA : SumProp A) (f g : A → ℕ) where open ≡.≡-Reasoning sum-⊓-∸ : sum μA f ≡ sum μA (f ⊓° g) + sum μA (f ∸° g) sum-⊓-∸ = sum μA f ≡⟨ sum-ext μA (f ⟨ a≡a⊓b+a∸b ⟩° g) ⟩ sum μA ((f ⊓° g) +° (f ∸° g)) ≡⟨ sum-hom μA (f ⊓° g) (f ∸° g) ⟩ sum μA (f ⊓° g) + sum μA (f ∸° g) ∎ sum-⊔-⊓ : sum μA f + sum μA g ≡ sum μA (f ⊔° g) + sum μA (f ⊓° g) sum-⊔-⊓ = sum μA f + sum μA g ≡⟨ ≡.sym (sum-hom μA f g) ⟩ sum μA (f +° g) ≡⟨ sum-ext μA (f ⟨ a+b≡a⊔b+a⊓b ⟩° g) ⟩ sum μA (f ⊔° g +° f ⊓° g) ≡⟨ sum-hom μA (f ⊔° g) (f ⊓° g) ⟩ sum μA (f ⊔° g) + sum μA (f ⊓° g) ∎ sum-⊔ : sum μA (f ⊔° g) ≤ sum μA f + sum μA g sum-⊔ = ℕ≤.trans (sum-mono μA (f ⟨ ⊔≤+ ⟩° g)) (ℕ≤.reflexive (sum-hom μA f g)) module _M2 {A : ★} (μA : SumProp A) (f g : A → Bool) where count-∧-not : count μA f ≡ count μA (f ∧° g) + count μA (f ∧° not° g) count-∧-not rewrite sum-⊓-∸ μA (toℕ ∘ f) (toℕ ∘ g) | sum-ext μA (f ⟨ toℕ-⊓ ⟩° g) | sum-ext μA (f ⟨ toℕ-∸ ⟩° g) = ≡.refl count-∨-∧ : count μA f + count μA g ≡ count μA (f ∨° g) + count μA (f ∧° g) count-∨-∧ rewrite sum-⊔-⊓ μA (toℕ ∘ f) (toℕ ∘ g) | sum-ext μA (f ⟨ toℕ-⊔ ⟩° g) | sum-ext μA (f ⟨ toℕ-⊓ ⟩° g) = ≡.refl count-∨≤+ : count μA (f ∨° g) ≤ count μA f + count μA g count-∨≤+ = ℕ≤.trans (ℕ≤.reflexive (sum-ext μA (≡.sym ∘ (f ⟨ toℕ-⊔ ⟩° g)))) (sum-⊔ μA (toℕ ∘ f) (toℕ ∘ g)) sum-ext₂ : ∀ {A B}{f g : A → B → ℕ}(μA : SumProp A)(μB : SumProp B) → f ≗₂ g → sum μA (sum μB ∘ f) ≡ sum μA (sum μB ∘ g) sum-ext₂ μA μB f≗g = sum-ext μA (sum-ext μB ∘ f≗g) Injective : ∀ {a b}{A : Set a}{B : Set b}(f : A → B) → Set (a L.⊔ b) Injective f = ∀ {x y} → f x ≡ f y → x ≡ y Injectivoid : ∀ {A B : SEToid} → (Setoid.Carrier A → Setoid.Carrier B) → Set Injectivoid {A}{B} f = ∀ {x y} → Setoid._≈_ B (f x) (f y) → Setoid._≈_ A x y StableUnderInjection : ∀ {A} → SumPropoid A → Set StableUnderInjection {A} μ = ∀ p → SumStableUnder μ (FInj.Injection.to p) CountStableUnderInjection : ∀ {A} → SumPropoid A → Set CountStableUnderInjection μ = ∀ p → CountStableUnder μ (FInj.Injection.to p) {- #-StableUnderInjection : ∀ {A}{μ : SumPropoid A} → StableUnderInjection μ → ∀ f p → Injective p → count μ f ≡ count μ (f ∘ p) #-StableUnderInjection sui f p p-inj = {!sui p p-inj (toℕ ∘ f)!} -} sum$ : ∀ {As} → SumPropoid As → (As FE.⟶ ≡.setoid ℕ) → ℕ sum$ μA f = sum μA (_⟨$⟩_ f) infix 4 _≈_ -- _≈'_ record _≈_ {As Bs : SEToid}(μA : SumPropoid As)(μB : SumPropoid Bs): Set where constructor mk field iso : Inv.Inverse As Bs private A = Setoid.Carrier As B = Setoid.Carrier Bs from : Bs FE.⟶ As from = Inv.Inverse.from iso from$ : B → A from$ = _⟨$⟩_ from to : As FE.⟶ Bs to = Inv.Inverse.to iso to$ : A → B to$ = _⟨$⟩_ to from-inj : FInj.Injection Bs As -- Injectivoid {Bs} {As} from$ from-inj = Inv.Inverse.injection (Inv.sym iso) to-inj : FInj.Injection As Bs -- Injectivoid {As} {Bs} to$ to-inj = Inv.Inverse.injection iso field sums-ok : ∀ f → sum$ μA f ≡ sum$ μB (f FE.∘ from) sums-ok' : ∀ f → sum$ μB f ≡ sum$ μA (f FE.∘ to) sums-ok' f = sum$ μB f ≡⟨ search-extoid μB _+_ {f = f} {g = f FE.∘ to FE.∘ from} (λ {x}{y} x≈y → FE.cong f (SB.trans x≈y (SB.sym (Inv.Inverse.right-inverse-of iso y)))) ⟩ sum$ μB (f FE.∘ to FE.∘ from) ≡⟨ ≡.sym (sums-ok (f FE.∘ to)) ⟩ sum$ μA (f FE.∘ to) ∎ where open ≡.≡-Reasoning module SB = Setoid Bs module SA = Setoid As StableUnder≈ : StableUnderInjection μA → StableUnderInjection μB StableUnder≈ μA-SUI p f = sum$ μB f ≡⟨ sums-ok' f ⟩ sum$ μA (f FE.∘ to) ≡⟨ μA-SUI (from-inj FInj.∘ p FInj.∘ to-inj) (f FE.∘ to) ⟩ sum$ μA (f FE.∘ to FE.∘ from FE.∘ FInj.Injection.to p FE.∘ to) ≡⟨ ≡.sym (sums-ok' (f FE.∘ to FE.∘ from FE.∘ FInj.Injection.to p)) ⟩ sum$ μB (f FE.∘ to FE.∘ from FE.∘ FInj.Injection.to p) ≡⟨ search-extoid μB _+_ {f = f FE.∘ to FE.∘ from FE.∘ FInj.Injection.to p} {g = f FE.∘ FInj.Injection.to p} (FE.cong f ∘ Setoid.trans Bs (Inv.Inverse.right-inverse-of iso _) ∘ FE.cong (FInj.Injection.to p)) ⟩ sum$ μB (f FE.∘ FInj.Injection.to p) ∎ where open ≡.≡-Reasoning _≈'_ : ∀ {A B} (μA : SumProp A)(μB : SumProp B) → Set _≈'_ = _≈_ ≈-refl : ∀ {A} (μA : SumPropoid A) → μA ≈ μA ≈-refl μA = mk Inv.id (λ f → ≡.refl) ≈-id : ∀ {A} {μA : SumPropoid A} → μA ≈ μA ≈-id = ≈-refl _ ≈-sym : ∀ {A B}{μA : SumPropoid A}{μB : SumPropoid B} → μA ≈ μB → μB ≈ μA ≈-sym A≈B = mk (Inv.sym iso) sums-ok' where open _≈_ A≈B ≈-trans : ∀ {A B C}{μA : SumPropoid A}{μB : SumPropoid B}{μC : SumPropoid C} → μA ≈ μB → μB ≈ μC → μA ≈ μC ≈-trans A≈B B≈C = mk (iso B≈C Inv.∘ iso A≈B) (λ f → ≡.trans (sums-ok A≈B f) (sums-ok B≈C (f FE.∘ from A≈B))) where open _≈_ infix 2 _≈∎ infixr 2 _≈⟨_⟩_ _≈∎ : ∀ {A} (μA : SumPropoid A) → μA ≈ μA _≈∎ = ≈-refl _≈⟨_⟩_ : ∀ {A B C} (μA : SumPropoid A){μB : SumPropoid B}{μC : SumPropoid C} → μA ≈ μB → μB ≈ μC → μA ≈ μC _ ≈⟨ A≈B ⟩ B≈C = ≈-trans A≈B B≈C lift-⊎ : ∀ {A B : Set} → Inv.Inverse (≡.setoid (A ⊎ B)) ((≡.setoid A) ⊎-setoid (≡.setoid B)) lift-⊎ {A} {B} = record { to = to; from = from; inverse-of = inverse-of } where to : _ to = record { _⟨$⟩_ = id; cong = cong } where cong : ∀ {i j} → i ≡ j → _ cong ≡.refl = Setoid.refl (≡.setoid (A) ⊎-setoid (≡.setoid B)) from : _ from = record { _⟨$⟩_ = id; cong = cong } where cong : ∀ {i j} → ⊎ʳ 𝟘 _≡_ _≡_ i j → i ≡ j cong (₁∼₂ ()) cong (₁∼₁ x∼₁y) = ≡.cong inj₁ x∼₁y cong (₂∼₂ x∼₂y) = ≡.cong inj₂ x∼₂y inverse-of : _ inverse-of = record { left-inverse-of = left-inverse-of; right-inverse-of = right-inverse-of } where left-inverse-of : (_ : _) → _ left-inverse-of x = Setoid.refl (≡.setoid (A ⊎ B)) right-inverse-of : (_ : _) → _ right-inverse-of x = Setoid.refl ((≡.setoid A) ⊎-setoid (≡.setoid B)) Fin0≈𝟙 : μFinSuc zero ≈ μ𝟙 Fin0≈𝟙 = mk iso sums-ok where open import Relation.Binary.Sum iso : _ iso = (A⊎𝟘↔A Inv.∘ Inv.id ⊎-cong Fin0↔𝟘) Inv.∘ Fin∘suc↔𝟙⊎Fin sums-ok : (_ : _) → _ sums-ok f = ≡.refl 𝟙+Fin : ∀ {n} → μ𝟙 +μ μFinSuc n ≈ μFinSuc (suc n) 𝟙+Fin {n} = mk iso sums-ok where iso : _ iso = Inv.sym (Inv._∘_ (lift-⊎ {𝟙} {Fin (suc n)}) Fin∘suc↔𝟙⊎Fin) sums-ok : (_ : _) → _ sums-ok f = ≡.refl 𝟙×A≈A : ∀ {A}{μA : SumProp A} → μ𝟙 ×μ μA ≈ μA 𝟙×A≈A {A} = mk iso sums-ok where iso : _ iso = ×-ICMon.identityˡ _ sums-ok : (_ : _) → _ sums-ok f = ≡.refl μFinPres : ∀ {m n} → m ≡ n → μFinSuc m ≈ μFinSuc n μFinPres eq rewrite eq = ≈-refl _ _+μ-cong_ : ∀ {A B C D}{μA : SumPropoid A}{μB : SumPropoid B}{μC : SumPropoid C}{μD : SumPropoid D} → μA ≈ μC → μB ≈ μD → μA +μ μB ≈ μC +μ μD A≈C +μ-cong B≈D = mk iso sums-ok where iso : _ iso = (_≈_.iso A≈C) ⊎-inverse (_≈_.iso B≈D) -- (_≈_.iso A≈C) ⊎-cong (_≈_.iso B≈D) sums-ok : (_ : _) → _ sums-ok f = ≡.cong₂ _+_ (_≈_.sums-ok A≈C (f FE.∘ inj₁-setoid)) -- (λ x≈y → f-resp (₁∼₁ x≈y))) (_≈_.sums-ok B≈D (f FE.∘ inj₂-setoid)) -- (λ x≈y → f-resp (₂∼₂ x≈y))) +μ-assoc : ∀ {A B C}(μA : SumPropoid A)(μB : SumPropoid B)(μC : SumPropoid C) → (μA +μ μB) +μ μC ≈ μA +μ (μB +μ μC) +μ-assoc μA μB μC = mk iso sums-ok where iso : _ iso = ⊎-ICMon.assoc _ _ _ sums-ok : (_ : _) → _ sums-ok f = ℕ°.+-assoc (sum μA (_⟨$⟩_ f ∘ inj₁ ∘ inj₁)) (sum μB (_⟨$⟩_ f ∘ inj₁ ∘ inj₂)) (sum μC (_⟨$⟩_ f ∘ inj₂)) +μ-comm : ∀ {A B}(μA : SumPropoid A)(μB : SumPropoid B) → μA +μ μB ≈ μB +μ μA +μ-comm μA μB = mk iso sums-ok where iso : _ iso = ⊎-ICMon.comm _ _ sums-ok : (_ : _) → _ sums-ok f = ℕ°.+-comm (sum$ μA (f FE.∘ inj₁-setoid)) (sum$ μB (f FE.∘ inj₂-setoid)) _×μ-cong_ : ∀ {A B C D}{μA : SumPropoid A}{μB : SumPropoid B}{μC : SumPropoid C}{μD : SumPropoid D} → μA ≈ μC → μB ≈ μD → μA ×μ μB ≈ μC ×μ μD _×μ-cong_ {A}{B}{C}{D}{μA}{μB}{μC}{μD} A≈C B≈D = mk iso sums-ok where open import Relation.Binary.Product.Pointwise iso : _ iso = _≈_.iso A≈C ×-inverse _≈_.iso B≈D sums-ok : (_ : (A ×-setoid B) FE.⟶ ≡.setoid ℕ) → _ sums-ok f = sum$ (μA ×μ μB) f ≡⟨ sum-ext μA (λ xa → _≈_.sums-ok B≈D (record { _⟨$⟩_ = λ x → f ⟨$⟩ (xa , x) ; cong = λ x → FE.cong f (Setoid.refl A , x) })) ⟩ sum$ (μA ×μ μD) (f FE.∘ FE.id {A = A} ×-⟶ _≈_.from B≈D) ≡⟨ _≈_.sums-ok A≈C (record { _⟨$⟩_ = _; cong = λ x → search-ext μD _+_ (λ y → FE.cong f (x , Setoid.refl B)) }) ⟩ sum$ (μC ×μ μD) (f FE.∘ Inv.Inverse.from iso) ∎ where open ≡.≡-Reasoning ×μ-assoc : ∀ {A B C}(μA : SumPropoid A)(μB : SumPropoid B)(μC : SumPropoid C) → (μA ×μ μB) ×μ μC ≈ μA ×μ (μB ×μ μC) ×μ-assoc {A}{B}{C} μA μB μC = mk iso sums-ok where iso : _ iso = ×-ICMon.assoc A B C sums-ok : (_ : _) → _ sums-ok f = ≡.refl ×μ-comm : ∀ {A B}(μA : SumPropoid A)(μB : SumPropoid B) → μA ×μ μB ≈ μB ×μ μA ×μ-comm {A}{B} μA μB = mk iso sums-ok where iso : _ iso = ×-ICMon.comm A B sums-ok : (_ : _) → _ sums-ok f = sum-swap μA μB (curry (_⟨$⟩_ f)) ×+-distrib : ∀ {A B C}(μA : SumPropoid A)(μB : SumPropoid B)(μC : SumPropoid C) → (μA +μ μB) ×μ μC ≈ (μA ×μ μC) +μ (μB ×μ μC) ×+-distrib {A}{B}{C} μA μB μC = mk iso sums-ok where iso : _ iso = ×⊎°I.distribʳ C A B sums-ok : (_ : _) → _ sums-ok f = ≡.refl +-≈ : ∀ m n → (μFinSuc m) +μ (μFinSuc n) ≈ μFinSuc (m + suc n) +-≈ zero n = μFinSuc zero +μ μFinSuc n ≈⟨ Fin0≈𝟙 +μ-cong ≈-refl (μFinSuc n) ⟩ μ𝟙 +μ μFinSuc n ≈⟨ 𝟙+Fin ⟩ μFinSuc (suc n) ≈∎ +-≈ (suc m) n = μFinSuc (suc m) +μ μFinSuc n ≈⟨ ≈-sym 𝟙+Fin +μ-cong ≈-refl (μFinSuc n) ⟩ (μ𝟙 +μ μFinSuc m) +μ μFinSuc n ≈⟨ +μ-assoc μ𝟙 (μFinSuc m) (μFinSuc n) ⟩ μ𝟙 +μ (μFinSuc m +μ μFinSuc n) ≈⟨ ≈-refl μ𝟙 +μ-cong +-≈ m n ⟩ μ𝟙 +μ μFinSuc (m + suc n) ≈⟨ 𝟙+Fin ⟩ μFinSuc (suc m + suc n) ≈∎ ×-≈ : ∀ m n → μFinSuc m ×μ μFinSuc n ≈ μFinSuc (n + m * suc n) ×-≈ zero n = μFinSuc 0 ×μ μFinSuc n ≈⟨ Fin0≈𝟙 ×μ-cong (≈-refl (μFinSuc n)) ⟩ μ𝟙 ×μ μFinSuc n ≈⟨ 𝟙×A≈A ⟩ μFinSuc n ≈⟨ μFinPres (ℕ°.+-comm 0 n) ⟩ μFinSuc (n + 0) ≈∎ ×-≈ (suc m) n = μFinSuc (suc m) ×μ μFinSuc n ≈⟨ ≈-sym 𝟙+Fin ×μ-cong ≈-refl (μFinSuc n) ⟩ (μ𝟙 +μ μFinSuc m) ×μ μFinSuc n ≈⟨ ×+-distrib μ𝟙 (μFinSuc m) (μFinSuc n) ⟩ (μ𝟙 ×μ μFinSuc n) +μ (μFinSuc m ×μ μFinSuc n) ≈⟨ 𝟙×A≈A {μA = μFinSuc n} +μ-cong ×-≈ m n ⟩ μFinSuc n +μ μFinSuc (n + m * suc n) ≈⟨ +-≈ n (n + m * suc n) ⟩ μFinSuc (n + suc m * suc n) ≈∎ open import Data.Fin using (Fin ; zero ; suc) Finable : ∀ {A} → SumPropoid A → Set Finable μA = Σ ℕ λ FinCard → μA ≈ μFinSuc FinCard 𝟙-Finable : Finable μ𝟙 𝟙-Finable = 0 , ≈-sym Fin0≈𝟙 Fin-Finable : ∀ {n} → Finable (μFinSuc n) Fin-Finable {n} = n , ≈-refl (μFinSuc n) +-Finable : ∀ {A B}(μA : SumPropoid A)(μB : SumPropoid B) → Finable μA → Finable μB → Finable (μA +μ μB) +-Finable μA μB (|A| , A≈) (|B| , B≈) = (|A| + suc |B|) , ( μA +μ μB ≈⟨ A≈ +μ-cong B≈ ⟩ μFinSuc |A| +μ μFinSuc |B| ≈⟨ +-≈ |A| |B| ⟩ μFinSuc (|A| + suc |B|) ≈∎) ×-Finable : ∀ {A B}(μA : SumPropoid A)(μB : SumPropoid B) → Finable μA → Finable μB → Finable (μA ×μ μB) ×-Finable μA μB (|A| , A≈) (|B| , B≈) = (|B| + |A| * suc |B|) , ( μA ×μ μB ≈⟨ A≈ ×μ-cong B≈ ⟩ μFinSuc |A| ×μ μFinSuc |B| ≈⟨ ×-≈ |A| |B| ⟩ μFinSuc (|B| + |A| * suc |B|) ≈∎) module _ where open import bijection-fin open import Data.Fin using (Fin; zero; suc) open import Data.Vec.NP renaming (sum to vsum) sumFin : ∀ n → Sum (Fin n) sumFin n f = vsum (tabulate f) sumFin-spec : ∀ n → sumFin (suc n) ≗ sum (μFinSuc n) sumFin-spec zero f = ℕ°.+-comm (f zero) 0 sumFin-spec (suc n) f = ≡.cong (_+_ (f zero)) (sumFin-spec n (f ∘ suc)) sumFinSUI : ∀ n f p → Injective p → sumFin n f ≡ sumFin n (f ∘ p) sumFinSUI n f p p-inj = count-perm f p (λ _ _ → p-inj) μFinSUI : ∀ {n} → StableUnderInjection (μFinSuc n) μFinSUI {n} p f rewrite ≡.sym (sumFin-spec n (_⟨$⟩_ f)) | ≡.sym (sumFin-spec n (_⟨$⟩_ (f FE.∘ FInj.Injection.to p))) = sumFinSUI (suc n) (_⟨$⟩_ f) (_⟨$⟩_ (FInj.Injection.to p)) (FInj.Injection.injective p) StableIfFinable : ∀ {A} (μA : SumProp A) → Finable μA → StableUnderInjection μA StableIfFinable μA (_ , A≈Fin) = _≈_.StableUnder≈ (≈-sym A≈Fin) μFinSUI -- -} -- -}
33.768293
142
0.513615
0be0019e0ebec34d51030a4feee2222104abff7b
4,918
agda
Agda
BasicIS4/Semantics/TarskiGluedHilbert.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
29
2016-07-03T18:51:56.000Z
2022-01-01T10:29:18.000Z
BasicIS4/Semantics/TarskiGluedHilbert.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
1
2018-06-10T09:11:22.000Z
2018-06-10T09:11:22.000Z
BasicIS4/Semantics/TarskiGluedHilbert.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
null
null
null
-- Basic intuitionistic modal logic S4, without ∨, ⊥, or ◇. -- Tarski-style semantics with contexts as concrete worlds, and glueing for □ only. -- Hilbert-style syntax. module BasicIS4.Semantics.TarskiGluedHilbert where open import BasicIS4.Syntax.Common public open import Common.Semantics public -- Intuitionistic Tarski models. record Model : Set₁ where infix 3 _⊩ᵅ_ _[⊢]_ field -- Forcing for atomic propositions; monotonic. _⊩ᵅ_ : Cx Ty → Atom → Set mono⊩ᵅ : ∀ {P Γ Γ′} → Γ ⊆ Γ′ → Γ ⊩ᵅ P → Γ′ ⊩ᵅ P -- Hilbert-style syntax representation; monotonic. _[⊢]_ : Cx Ty → Ty → Set mono[⊢] : ∀ {A Γ Γ′} → Γ ⊆ Γ′ → Γ [⊢] A → Γ′ [⊢] A [var] : ∀ {A Γ} → A ∈ Γ → Γ [⊢] A [app] : ∀ {A B Γ} → Γ [⊢] A ▻ B → Γ [⊢] A → Γ [⊢] B [ci] : ∀ {A Γ} → Γ [⊢] A ▻ A [ck] : ∀ {A B Γ} → Γ [⊢] A ▻ B ▻ A [cs] : ∀ {A B C Γ} → Γ [⊢] (A ▻ B ▻ C) ▻ (A ▻ B) ▻ A ▻ C [box] : ∀ {A Γ} → ∅ [⊢] A → Γ [⊢] □ A [cdist] : ∀ {A B Γ} → Γ [⊢] □ (A ▻ B) ▻ □ A ▻ □ B [cup] : ∀ {A Γ} → Γ [⊢] □ A ▻ □ □ A [cdown] : ∀ {A Γ} → Γ [⊢] □ A ▻ A [cpair] : ∀ {A B Γ} → Γ [⊢] A ▻ B ▻ A ∧ B [cfst] : ∀ {A B Γ} → Γ [⊢] A ∧ B ▻ A [csnd] : ∀ {A B Γ} → Γ [⊢] A ∧ B ▻ B [unit] : ∀ {Γ} → Γ [⊢] ⊤ open Model {{…}} public -- Forcing in a particular model. module _ {{_ : Model}} where infix 3 _⊩_ _⊩_ : Cx Ty → Ty → Set Γ ⊩ α P = Γ ⊩ᵅ P Γ ⊩ A ▻ B = ∀ {Γ′} → Γ ⊆ Γ′ → Γ′ ⊩ A → Γ′ ⊩ B Γ ⊩ □ A = ∀ {Γ′} → Γ ⊆ Γ′ → Glue (Γ′ [⊢] □ A) (Γ′ ⊩ A) Γ ⊩ A ∧ B = Γ ⊩ A × Γ ⊩ B Γ ⊩ ⊤ = 𝟙 infix 3 _⊩⋆_ _⊩⋆_ : Cx Ty → Cx Ty → Set Γ ⊩⋆ ∅ = 𝟙 Γ ⊩⋆ Ξ , A = Γ ⊩⋆ Ξ × Γ ⊩ A -- Monotonicity with respect to context inclusion. module _ {{_ : Model}} where mono⊩ : ∀ {A Γ Γ′} → Γ ⊆ Γ′ → Γ ⊩ A → Γ′ ⊩ A mono⊩ {α P} η s = mono⊩ᵅ η s mono⊩ {A ▻ B} η s = λ η′ → s (trans⊆ η η′) mono⊩ {□ A} η s = λ η′ → s (trans⊆ η η′) mono⊩ {A ∧ B} η s = mono⊩ {A} η (π₁ s) , mono⊩ {B} η (π₂ s) mono⊩ {⊤} η s = ∙ mono⊩⋆ : ∀ {Ξ Γ Γ′} → Γ ⊆ Γ′ → Γ ⊩⋆ Ξ → Γ′ ⊩⋆ Ξ mono⊩⋆ {∅} η ∙ = ∙ mono⊩⋆ {Ξ , A} η (ts , t) = mono⊩⋆ {Ξ} η ts , mono⊩ {A} η t -- Additional useful equipment. module _ {{_ : Model}} where _⟪$⟫_ : ∀ {A B Γ} → Γ ⊩ A ▻ B → Γ ⊩ A → Γ ⊩ B s ⟪$⟫ a = s refl⊆ a ⟪K⟫ : ∀ {A B Γ} → Γ ⊩ A → Γ ⊩ B ▻ A ⟪K⟫ {A} a η = K (mono⊩ {A} η a) ⟪S⟫ : ∀ {A B C Γ} → Γ ⊩ A ▻ B ▻ C → Γ ⊩ A ▻ B → Γ ⊩ A → Γ ⊩ C ⟪S⟫ {A} {B} {C} s₁ s₂ a = _⟪$⟫_ {B} {C} (_⟪$⟫_ {A} {B ▻ C} s₁ a) (_⟪$⟫_ {A} {B} s₂ a) ⟪S⟫′ : ∀ {A B C Γ} → Γ ⊩ A ▻ B ▻ C → Γ ⊩ (A ▻ B) ▻ A ▻ C ⟪S⟫′ {A} {B} {C} s₁ η s₂ η′ a = let s₁′ = mono⊩ {A ▻ B ▻ C} (trans⊆ η η′) s₁ s₂′ = mono⊩ {A ▻ B} η′ s₂ in ⟪S⟫ {A} {B} {C} s₁′ s₂′ a _⟪D⟫_ : ∀ {A B Γ} → Γ ⊩ □ (A ▻ B) → Γ ⊩ □ A → Γ ⊩ □ B _⟪D⟫_ {A} {B} s₁ s₂ η = let t ⅋ s₁′ = s₁ η u ⅋ a = s₂ η in [app] ([app] [cdist] t) u ⅋ _⟪$⟫_ {A} {B} s₁′ a _⟪D⟫′_ : ∀ {A B Γ} → Γ ⊩ □ (A ▻ B) → Γ ⊩ □ A ▻ □ B _⟪D⟫′_ {A} {B} s₁ η = _⟪D⟫_ (mono⊩ {□ (A ▻ B)} η s₁) ⟪↑⟫ : ∀ {A Γ} → Γ ⊩ □ A → Γ ⊩ □ □ A ⟪↑⟫ s η = [app] [cup] (syn (s η)) ⅋ λ η′ → s (trans⊆ η η′) ⟪↓⟫ : ∀ {A Γ} → Γ ⊩ □ A → Γ ⊩ A ⟪↓⟫ s = sem (s refl⊆) _⟪,⟫′_ : ∀ {A B Γ} → Γ ⊩ A → Γ ⊩ B ▻ A ∧ B _⟪,⟫′_ {A} {B} a η = _,_ (mono⊩ {A} η a) -- Forcing in a particular world of a particular model, for sequents. module _ {{_ : Model}} where infix 3 _⊩_⇒_ _⊩_⇒_ : Cx Ty → Cx Ty → Ty → Set w ⊩ Γ ⇒ A = w ⊩⋆ Γ → w ⊩ A infix 3 _⊩_⇒⋆_ _⊩_⇒⋆_ : Cx Ty → Cx Ty → Cx Ty → Set w ⊩ Γ ⇒⋆ Ξ = w ⊩⋆ Γ → w ⊩⋆ Ξ -- Entailment, or forcing in all worlds of all models, for sequents. infix 3 _⊨_ _⊨_ : Cx Ty → Ty → Set₁ Γ ⊨ A = ∀ {{_ : Model}} {w : Cx Ty} → w ⊩ Γ ⇒ A infix 3 _⊨⋆_ _⊨⋆_ : Cx Ty → Cx Ty → Set₁ Γ ⊨⋆ Ξ = ∀ {{_ : Model}} {w : Cx Ty} → w ⊩ Γ ⇒⋆ Ξ -- Additional useful equipment, for sequents. module _ {{_ : Model}} where lookup : ∀ {A Γ w} → A ∈ Γ → w ⊩ Γ ⇒ A lookup top (γ , a) = a lookup (pop i) (γ , b) = lookup i γ _⟦$⟧_ : ∀ {A B Γ w} → w ⊩ Γ ⇒ A ▻ B → w ⊩ Γ ⇒ A → w ⊩ Γ ⇒ B _⟦$⟧_ {A} {B} s₁ s₂ γ = _⟪$⟫_ {A} {B} (s₁ γ) (s₂ γ) ⟦K⟧ : ∀ {A B Γ w} → w ⊩ Γ ⇒ A → w ⊩ Γ ⇒ B ▻ A ⟦K⟧ {A} {B} a γ = ⟪K⟫ {A} {B} (a γ) ⟦S⟧ : ∀ {A B C Γ w} → w ⊩ Γ ⇒ A ▻ B ▻ C → w ⊩ Γ ⇒ A ▻ B → w ⊩ Γ ⇒ A → w ⊩ Γ ⇒ C ⟦S⟧ {A} {B} {C} s₁ s₂ a γ = ⟪S⟫ {A} {B} {C} (s₁ γ) (s₂ γ) (a γ) _⟦D⟧_ : ∀ {A B Γ w} → w ⊩ Γ ⇒ □ (A ▻ B) → w ⊩ Γ ⇒ □ A → w ⊩ Γ ⇒ □ B (s₁ ⟦D⟧ s₂) γ = (s₁ γ) ⟪D⟫ (s₂ γ) ⟦↑⟧ : ∀ {A Γ w} → w ⊩ Γ ⇒ □ A → w ⊩ Γ ⇒ □ □ A ⟦↑⟧ s γ = ⟪↑⟫ (s γ) ⟦↓⟧ : ∀ {A Γ w} → w ⊩ Γ ⇒ □ A → w ⊩ Γ ⇒ A ⟦↓⟧ s γ = ⟪↓⟫ (s γ) _⟦,⟧_ : ∀ {A B Γ w} → w ⊩ Γ ⇒ A → w ⊩ Γ ⇒ B → w ⊩ Γ ⇒ A ∧ B (a ⟦,⟧ b) γ = a γ , b γ ⟦π₁⟧ : ∀ {A B Γ w} → w ⊩ Γ ⇒ A ∧ B → w ⊩ Γ ⇒ A ⟦π₁⟧ s γ = π₁ (s γ) ⟦π₂⟧ : ∀ {A B Γ w} → w ⊩ Γ ⇒ A ∧ B → w ⊩ Γ ⇒ B ⟦π₂⟧ s γ = π₂ (s γ)
30.171779
87
0.375356
4ddf0f5570945680f97f490fc3691cee7b02c8e5
121
agda
Agda
notes/papers/implicit/examples/Simple.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
notes/papers/implicit/examples/Simple.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
notes/papers/implicit/examples/Simple.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Simple where postulate Nat : Set zero : Nat -- we want -- ?0 zero = zero -- and then -- ?0 x = x
9.307692
19
0.528926
417a03ff6f157e5c75ee1074c38d2a30e945a741
415
agda
Agda
src/Debug.agda
Zalastax/singly-typed-actors
ae541df13d069df4eb1464f29fbaa9804aad439f
[ "MIT" ]
1
2019-10-29T09:30:26.000Z
2019-10-29T09:30:26.000Z
src/Debug.agda
Zalastax/singly-typed-actors
ae541df13d069df4eb1464f29fbaa9804aad439f
[ "MIT" ]
null
null
null
src/Debug.agda
Zalastax/singly-typed-actors
ae541df13d069df4eb1464f29fbaa9804aad439f
[ "MIT" ]
null
null
null
module Debug where open import Data.String using (String) public open import Level public {-# FOREIGN GHC import qualified Data.Text #-} {-# FOREIGN GHC import qualified Debug.Trace as Trace #-} {-# FOREIGN GHC debug' :: Data.Text.Text -> c -> c debug' txt c = Trace.trace (Data.Text.unpack txt) c #-} postulate debug : {a : Level} {A : Set a} → String → A → A {-# COMPILE GHC debug = (\x -> (\y -> debug')) #-}
27.666667
58
0.650602
39529018339db884ed4bb6615840b16f8a3642a8
1,226
agda
Agda
src/fot/PA/Inductive/Relation/Binary/PropositionalEquality.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
11
2015-09-03T20:53:42.000Z
2021-09-12T16:09:54.000Z
src/fot/PA/Inductive/Relation/Binary/PropositionalEquality.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
2
2016-10-12T17:28:16.000Z
2017-01-01T14:34:26.000Z
src/fot/PA/Inductive/Relation/Binary/PropositionalEquality.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
3
2016-09-19T14:18:30.000Z
2018-03-14T08:50:00.000Z
------------------------------------------------------------------------------ -- Propositional equality on inductive PA ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- This file contains some definitions which are reexported by -- PA.Inductive.Base. module PA.Inductive.Relation.Binary.PropositionalEquality where open import Common.FOL.FOL using ( ¬_ ) open import PA.Inductive.Base.Core infix 4 _≡_ _≢_ ------------------------------------------------------------------------------ -- The identity type on PA. data _≡_ (x : ℕ) : ℕ → Set where refl : x ≡ x -- Inequality. _≢_ : ℕ → ℕ → Set x ≢ y = ¬ x ≡ y {-# ATP definition _≢_ #-} -- Identity properties sym : ∀ {x y} → x ≡ y → y ≡ x sym refl = refl trans : ∀ {x y z} → x ≡ y → y ≡ z → x ≡ z trans refl h = h subst : (A : ℕ → Set) → ∀ {x y} → x ≡ y → A x → A y subst A refl Ax = Ax cong : (f : ℕ → ℕ) → ∀ {x y} → x ≡ y → f x ≡ f y cong f refl = refl cong₂ : (f : ℕ → ℕ → ℕ) → ∀ {x x' y y'} → x ≡ y → x' ≡ y' → f x x' ≡ f y y' cong₂ f refl refl = refl
26.652174
78
0.445351
120fa9396e7562912731a14c1bf4f3535500c7b5
11,024
agda
Agda
Numbers/Naturals/Order.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
4
2019-08-08T12:44:19.000Z
2022-01-28T06:04:15.000Z
Numbers/Naturals/Order.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
14
2019-01-06T21:11:59.000Z
2020-04-11T11:03:39.000Z
Numbers/Naturals/Order.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
1
2021-11-29T13:23:07.000Z
2021-11-29T13:23:07.000Z
{-# OPTIONS --warning=error --safe --without-K #-} open import LogicalFormulae open import Semirings.Definition open import Numbers.Naturals.Definition open import Numbers.Naturals.Semiring open import Orders.Total.Definition open import Orders.Partial.Definition module Numbers.Naturals.Order where open Semiring ℕSemiring open import Decidable.Lemmas ℕDecideEquality private infix 5 _<NLogical_ _<NLogical_ : ℕ → ℕ → Set zero <NLogical zero = False zero <NLogical (succ n) = True (succ n) <NLogical zero = False (succ n) <NLogical (succ m) = n <NLogical m infix 5 _<N_ record _<N_ (a : ℕ) (b : ℕ) : Set where constructor le field x : ℕ proof : (succ x) +N a ≡ b infix 5 _<N'_ record _<N'_ (a : ℕ) (b : ℕ) : Set where constructor le' field x : ℕ .proof : (succ x) +N a ≡ b infix 5 _≤N_ _≤N_ : ℕ → ℕ → Set a ≤N b = (a <N b) || (a ≡ b) succIsPositive : (a : ℕ) → zero <N succ a succIsPositive a = le a (applyEquality succ (Semiring.commutative ℕSemiring a 0)) aLessSucc : (a : ℕ) → (a <NLogical succ a) aLessSucc zero = record {} aLessSucc (succ a) = aLessSucc a private succPreservesInequalityLogical : {a b : ℕ} → (a <NLogical b) → (succ a <NLogical succ b) succPreservesInequalityLogical {a} {b} prAB = prAB lessTransitiveLogical : {a b c : ℕ} → (a <NLogical b) → (b <NLogical c) → (a <NLogical c) lessTransitiveLogical {a} {zero} {zero} prAB prBC = prAB lessTransitiveLogical {a} {(succ b)} {zero} prAB () lessTransitiveLogical {zero} {zero} {(succ c)} prAB prBC = record {} lessTransitiveLogical {(succ a)} {zero} {(succ c)} () prBC lessTransitiveLogical {zero} {(succ b)} {(succ c)} prAB prBC = record {} lessTransitiveLogical {(succ a)} {(succ b)} {(succ c)} prAB prBC = lessTransitiveLogical {a} {b} {c} prAB prBC aLessXPlusSuccA : (a x : ℕ) → (a <NLogical x +N succ a) aLessXPlusSuccA a zero = aLessSucc a aLessXPlusSuccA zero (succ x) = record {} aLessXPlusSuccA (succ a) (succ x) = lessTransitiveLogical {a} {succ a} {x +N succ (succ a)} (aLessXPlusSuccA a zero) (aLessXPlusSuccA (succ a) x) leImpliesLogical<N : {a b : ℕ} → (a <N b) → (a <NLogical b) leImpliesLogical<N {zero} {zero} (le x ()) leImpliesLogical<N {zero} {(succ b)} (le x proof) = record {} leImpliesLogical<N {(succ a)} {zero} (le x ()) leImpliesLogical<N {(succ a)} {(succ .(succ a))} (le zero refl) = aLessSucc a leImpliesLogical<N {(succ a)} {(succ .(succ (x +N succ a)))} (le (succ x) refl) = succPreservesInequalityLogical {a} {succ (x +N succ a)} (lessTransitiveLogical {a} {succ a} {succ (x +N succ a)} (aLessSucc a) (aLessXPlusSuccA a x)) logical<NImpliesLe : {a b : ℕ} → (a <NLogical b) → (a <N b) logical<NImpliesLe {zero} {zero} () _<N_.x (logical<NImpliesLe {zero} {succ b} prAB) = b _<N_.proof (logical<NImpliesLe {zero} {succ b} prAB) = applyEquality succ (sumZeroRight b) logical<NImpliesLe {(succ a)} {zero} () logical<NImpliesLe {(succ a)} {(succ b)} prAB with logical<NImpliesLe {a} prAB logical<NImpliesLe {(succ a)} {(succ .(succ (x +N a)))} prAB | le x refl = le x (applyEquality succ (transitivity (commutative x _) (applyEquality succ (commutative a _)))) lessTransitive : {a b c : ℕ} → (a <N b) → (b <N c) → (a <N c) lessTransitive {a} {b} {c} prab prbc = logical<NImpliesLe (lessTransitiveLogical {a} {b} {c} (leImpliesLogical<N prab) (leImpliesLogical<N prbc)) lessIrreflexive : {a : ℕ} → (a <N a) → False lessIrreflexive {zero} pr = leImpliesLogical<N pr lessIrreflexive {succ a} pr = lessIrreflexive {a} (logical<NImpliesLe {a} {a} (leImpliesLogical<N {succ a} {succ a} pr)) succPreservesInequality : {a b : ℕ} → (a <N b) → (succ a <N succ b) succPreservesInequality {a} {b} prAB = logical<NImpliesLe (succPreservesInequalityLogical {a} {b} (leImpliesLogical<N prAB)) canRemoveSuccFrom<N : {a b : ℕ} → (succ a <N succ b) → (a <N b) canRemoveSuccFrom<N {a} {b} (le x proof) rewrite commutative x (succ a) | commutative a x = le x (succInjective proof) a<SuccA : (a : ℕ) → a <N succ a a<SuccA a = le zero refl <NWellDefined : {a b : ℕ} → (p1 : a <N b) → (p2 : a <N b) → _<N_.x p1 ≡ _<N_.x p2 <NWellDefined {a} {b} (le x proof) (le y proof1) = equalityCommutative r where q : y +N a ≡ x +N a q = succInjective {y +N a} {x +N a} (transitivity proof1 (equalityCommutative proof)) r : y ≡ x r = canSubtractFromEqualityRight q canAddToOneSideOfInequality : {a b : ℕ} (c : ℕ) → a <N b → a <N (b +N c) canAddToOneSideOfInequality {a} {b} c (le x proof) = le (x +N c) (transitivity (applyEquality succ (equalityCommutative (+Associative x c a))) (transitivity (applyEquality (λ i → (succ x) +N i) (commutative c a)) (transitivity (applyEquality succ (+Associative x a c)) (applyEquality (_+N c) proof)))) canAddToOneSideOfInequality' : {a b : ℕ} (c : ℕ) → a <N b → a <N (c +N b) canAddToOneSideOfInequality' {a} {b} c (le x proof) = le (x +N c) ans where ans : succ ((x +N c) +N a) ≡ c +N b ans rewrite (equalityCommutative (+Associative x c a)) | commutative c a | (+Associative x a c) = transitivity (applyEquality (_+N c) proof) (commutative b c) addingIncreases : (a b : ℕ) → a <N a +N succ b addingIncreases zero b = succIsPositive b addingIncreases (succ a) b = succPreservesInequality (addingIncreases a b) zeroNeverGreater : {a : ℕ} → (a <N zero) → False zeroNeverGreater {a} (le x ()) noIntegersBetweenXAndSuccX : {a : ℕ} (x : ℕ) → (x <N a) → (a <N succ x) → False noIntegersBetweenXAndSuccX {zero} x x<a a<sx = zeroNeverGreater x<a noIntegersBetweenXAndSuccX {succ a} x (le y proof) (le z proof1) with succInjective proof1 ... | ah rewrite (equalityCommutative proof) | (succExtracts z (y +N x)) | +Associative (succ z) y x | commutative (succ (z +N y)) x = lessIrreflexive {x} (le (z +N y) (transitivity (commutative _ x) ah)) private orderIsTotal : (a b : ℕ) → ((a <N b) || (b <N a)) || (a ≡ b) orderIsTotal zero zero = inr refl orderIsTotal zero (succ b) = inl (inl (logical<NImpliesLe (record {}))) orderIsTotal (succ a) zero = inl (inr (logical<NImpliesLe (record {}))) orderIsTotal (succ a) (succ b) with orderIsTotal a b orderIsTotal (succ a) (succ b) | inl (inl x) = inl (inl (logical<NImpliesLe (leImpliesLogical<N x))) orderIsTotal (succ a) (succ b) | inl (inr x) = inl (inr (logical<NImpliesLe (leImpliesLogical<N x))) orderIsTotal (succ a) (succ b) | inr x = inr (applyEquality succ x) orderIsIrreflexive : {a b : ℕ} → (a <N b) → (b <N a) → False orderIsIrreflexive {zero} {b} prAB (le x ()) orderIsIrreflexive {(succ a)} {zero} (le x ()) prBA orderIsIrreflexive {(succ a)} {(succ b)} prAB prBA = orderIsIrreflexive {a} {b} (logical<NImpliesLe (leImpliesLogical<N prAB)) (logical<NImpliesLe (leImpliesLogical<N prBA)) orderIsTransitive : {a b c : ℕ} → (a <N b) → (b <N c) → (a <N c) orderIsTransitive {a} {.(succ (x +N a))} {.(succ (y +N succ (x +N a)))} (le x refl) (le y refl) = le (y +N succ x) (applyEquality succ (equalityCommutative (+Associative y (succ x) a))) ℕTotalOrder : TotalOrder ℕ PartialOrder._<_ (TotalOrder.order ℕTotalOrder) = _<N_ PartialOrder.irreflexive (TotalOrder.order ℕTotalOrder) = lessIrreflexive PartialOrder.<Transitive (TotalOrder.order ℕTotalOrder) = orderIsTransitive TotalOrder.totality ℕTotalOrder = orderIsTotal cannotAddAndEnlarge : (a b : ℕ) → a <N succ (a +N b) cannotAddAndEnlarge a b = le b (applyEquality succ (commutative b a)) cannotAddAndEnlarge' : {a b : ℕ} → a +N b <N a → False cannotAddAndEnlarge' {a} {zero} pr rewrite sumZeroRight a = lessIrreflexive pr cannotAddAndEnlarge' {a} {succ b} pr rewrite (succExtracts a b) = lessIrreflexive {a} (lessTransitive {a} {succ (a +N b)} {a} (cannotAddAndEnlarge a b) pr) cannotAddAndEnlarge'' : {a b : ℕ} → a +N succ b ≡ a → False cannotAddAndEnlarge'' {a} {b} pr = naughtE (equalityCommutative inter) where inter : succ b ≡ 0 inter rewrite commutative a (succ b) = canSubtractFromEqualityRight pr naturalsAreNonnegative : (a : ℕ) → (a <N zero) → False naturalsAreNonnegative zero () naturalsAreNonnegative (succ x) () lessRespectsAddition : {a b : ℕ} (c : ℕ) → (a <N b) → ((a +N c) <N (b +N c)) lessRespectsAddition {a} {b} zero prAB rewrite commutative a 0 | commutative b 0 = prAB lessRespectsAddition {a} {b} (succ c) prAB rewrite commutative a (succ c) | commutative b (succ c) | commutative c a | commutative c b = succPreservesInequality (lessRespectsAddition c prAB) lessRespectsMultiplicationLeft : (a b c : ℕ) → (a <N b) → (zero <N c) → (c *N a <N c *N b) lessRespectsMultiplicationLeft zero zero c (le x ()) cPos lessRespectsMultiplicationLeft zero (succ b) zero prAB (le x ()) lessRespectsMultiplicationLeft zero (succ b) (succ c) prAB cPos = i where productNonzeroIsNonzero : {a b : ℕ} → zero <N a → zero <N b → zero <N a *N b productNonzeroIsNonzero {zero} {b} prA prB = prA productNonzeroIsNonzero {succ a} {zero} prA () productNonzeroIsNonzero {succ a} {succ b} prA prB = le (b +N a *N succ b) (applyEquality succ (Semiring.sumZeroRight ℕSemiring _)) j : zero <N succ c *N succ b j = productNonzeroIsNonzero cPos prAB i : succ c *N zero <N succ c *N succ b i = identityOfIndiscernablesLeft _<N_ j (equalityCommutative (productZeroRight c)) lessRespectsMultiplicationLeft (succ a) zero c (le x ()) cPos lessRespectsMultiplicationLeft (succ a) (succ b) c prAB cPos = m where h : c *N a <N c *N b h = lessRespectsMultiplicationLeft a b c (canRemoveSuccFrom<N prAB) cPos j : c *N a +N c <N c *N b +N c j = lessRespectsAddition c h i : c *N succ a <N c *N b +N c i = identityOfIndiscernablesLeft _<N_ j (equalityCommutative (transitivity (multiplicationNIsCommutative c _) (transitivity (applyEquality (c +N_) (multiplicationNIsCommutative a _)) (commutative c _)))) m : c *N succ a <N c *N succ b m = identityOfIndiscernablesRight _<N_ i (equalityCommutative (transitivity (multiplicationNIsCommutative c _) (transitivity (commutative c _) (applyEquality (_+N c) (multiplicationNIsCommutative b _))))) canFlipMultiplicationsInIneq : {a b c d : ℕ} → (a *N b <N c *N d) → b *N a <N d *N c canFlipMultiplicationsInIneq {a} {b} {c} {d} pr = identityOfIndiscernablesRight _<N_ (identityOfIndiscernablesLeft _<N_ pr (multiplicationNIsCommutative a b)) (multiplicationNIsCommutative c d) lessRespectsMultiplication : (a b c : ℕ) → (a <N b) → (zero <N c) → (a *N c <N b *N c) lessRespectsMultiplication a b c prAB cPos = canFlipMultiplicationsInIneq {c} {a} {c} {b} (lessRespectsMultiplicationLeft a b c prAB cPos) squash<N : {a b : ℕ} → .(a <N b) → a <N b squash<N {a} {b} a<b with orderIsTotal a b ... | inl (inl x) = x ... | inl (inr x) = exFalso (lessIrreflexive (orderIsTransitive x a<b)) squash<N {a} {b} a<b | inr refl = exFalso (lessIrreflexive a<b) <NTo<N' : {a b : ℕ} → a <N b → a <N' b <NTo<N' (le x proof) = le' x proof <N'To<N : {a b : ℕ} → a <N' b → a <N b <N'To<N {a} {b} (le' x proof) = le x (squash proof) <N'Refl : {a b : ℕ} → (p1 p2 : a <N' b) → p1 ≡ p2 <N'Refl p1 p2 with <NWellDefined (<N'To<N p1) (<N'To<N p2) ... | refl = refl
51.037037
301
0.669267
5903026568cb11255c60d117dc35ff26299aea13
11,355
agda
Agda
LibraBFT/Concrete/Properties/VotesOnce.agda
cwjnkins/bft-consensus-agda
71aa2168e4875ffdeece9ba7472ee3cee5fa9084
[ "UPL-1.0" ]
null
null
null
LibraBFT/Concrete/Properties/VotesOnce.agda
cwjnkins/bft-consensus-agda
71aa2168e4875ffdeece9ba7472ee3cee5fa9084
[ "UPL-1.0" ]
null
null
null
LibraBFT/Concrete/Properties/VotesOnce.agda
cwjnkins/bft-consensus-agda
71aa2168e4875ffdeece9ba7472ee3cee5fa9084
[ "UPL-1.0" ]
null
null
null
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020, 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import Optics.All open import LibraBFT.Prelude open import LibraBFT.Lemmas open import LibraBFT.Base.KVMap open import LibraBFT.Base.PKCS open import LibraBFT.Impl.Base.Types open import LibraBFT.Impl.NetworkMsg open import LibraBFT.Impl.Consensus.Types open import LibraBFT.Impl.Util.Crypto open import LibraBFT.Impl.Handle open import LibraBFT.Impl.Handle.Properties open import LibraBFT.Concrete.System.Parameters open import LibraBFT.Concrete.System open EpochConfig open import LibraBFT.Yasm.Types open import LibraBFT.Yasm.Yasm ℓ-RoundManager ℓ-VSFP ConcSysParms PeerCanSignForPK (λ {st} {part} {pk} → PeerCanSignForPK-stable {st} {part} {pk}) -- In this module, we define two "implementation obligations" -- (ImplObligationᵢ for i ∈ {1 , 2}), which are predicates over -- reachable states of a system defined by -- 'LibraBFT.Concrete.System.Parameters'. These two properties relate -- votes sent by the same sender, ensuring that if they are for the -- same epoch and round, then they vote for the same blockID; the -- first relates a vote output by the handler to a vote sent -- previously, and the second relates two votes both sent by the -- handler. -- -- We then prove that, if an implementation satisfies these two -- semantic obligations, along with a structural one about messages -- sent by honest peers in the implementation, then the implemenation -- satisfies the LibraBFT.Abstract.Properties.VotesOnce invariant. module LibraBFT.Concrete.Properties.VotesOnce where -- TODO-3: This may not be the best way to state the implementation obligation. Why not reduce -- this as much as possible before giving the obligation to the implementation? For example, this -- will still require the implementation to deal with hash collisons (v and v' could be different, -- but yield the same bytestring and therefore same signature). Also, avoid the need for the -- implementation to reason about messages sent by step-cheat, or give it something to make this -- case easy to eliminate. ImplObligation₁ : Set (ℓ+1 ℓ-RoundManager) ImplObligation₁ = ∀{pid pid' s' outs pk}{pre : SystemState} → ReachableSystemState pre -- For any honest call to /handle/ or /init/, → (sps : StepPeerState pid (msgPool pre) (initialised pre) (peerStates pre pid) (s' , outs)) → ∀{v m v' m'} → Meta-Honest-PK pk -- For signed every vote v of every outputted message → v ⊂Msg m → send m ∈ outs → (sig : WithVerSig pk v) → ¬ (∈GenInfo (ver-signature sig)) -- If v is really new and valid → ¬ (MsgWithSig∈ pk (ver-signature sig) (msgPool pre)) → PeerCanSignForPK (StepPeer-post {pre = pre} (step-honest sps)) v pid pk -- And if there exists another v' that has been sent before → v' ⊂Msg m' → (pid' , m') ∈ (msgPool pre) → (sig' : WithVerSig pk v') → ¬ (∈GenInfo (ver-signature sig')) -- If v and v' share the same epoch and round → v ^∙ vEpoch ≡ v' ^∙ vEpoch → v ^∙ vRound ≡ v' ^∙ vRound ---------------------------------------------------------- -- Then an honest implemenation promises v and v' vote for the same blockId. → v ^∙ vProposedId ≡ v' ^∙ vProposedId ImplObligation₂ : Set (ℓ+1 ℓ-RoundManager) ImplObligation₂ = ∀{pid s' outs pk}{pre : SystemState} → ReachableSystemState pre -- For any honest call to /handle/ or /init/, → (sps : StepPeerState pid (msgPool pre) (initialised pre) (peerStates pre pid) (s' , outs)) → ∀{v m v' m'} → Meta-Honest-PK pk -- For every vote v represented in a message output by the call → v ⊂Msg m → send m ∈ outs → (sig : WithVerSig pk v) → ¬ (∈GenInfo (ver-signature sig)) -- If v is really new and valid → ¬ (MsgWithSig∈ pk (ver-signature sig) (msgPool pre)) → PeerCanSignForPK (StepPeer-post {pre = pre} (step-honest sps)) v pid pk -- And if there exists another v' that is also new and valid → v' ⊂Msg m' → send m' ∈ outs → (sig' : WithVerSig pk v') → ¬ (∈GenInfo (ver-signature sig')) → ¬ (MsgWithSig∈ pk (ver-signature sig') (msgPool pre)) → PeerCanSignForPK (StepPeer-post {pre = pre} (step-honest sps)) v' pid pk -- If v and v' share the same epoch and round → v ^∙ vEpoch ≡ v' ^∙ vEpoch → v ^∙ vRound ≡ v' ^∙ vRound ---------------------------------------------------------- -- Then, an honest implemenation promises v and v' vote for the same blockId. → v ^∙ vProposedId ≡ v' ^∙ vProposedId -- Next, we prove that, given the necessary obligations, module Proof (sps-corr : StepPeerState-AllValidParts) (Impl-VO1 : ImplObligation₁) (Impl-VO2 : ImplObligation₂) where -- Any reachable state satisfies the VO rule for any epoch in the system. module _ (st : SystemState)(r : ReachableSystemState st)(𝓔 : EpochConfig) where open Structural sps-corr -- Bring in IntSystemState open WithSPS sps-corr open PerState st r open PerEpoch 𝓔 open import LibraBFT.Concrete.Obligations.VotesOnce 𝓔 (ConcreteVoteEvidence 𝓔) as VO -- The VO proof is done by induction on the execution trace leading to 'st'. In -- Agda, this is 'r : RechableSystemState st' above. private -- From this point onwards, it might be easier to read this proof starting at 'voo' -- at the end of the file. Next, we provide an overview the proof. -- -- We wish to prove that, for any two votes v and v' cast by an honest α in the message -- pool of a state st, if v and v' have equal rounds and epochs, then they vote for the -- same block. -- -- The base case and the case for a new epoch in the system are trivial. For the base case -- we get to a contradiction because it's not possible to have any message in the msgpool. -- -- Regarding the PeerStep case. The induction hypothesis tells us that the property holds -- in the pre-state. Next, we reason about the post-state. We start by analyzing whether -- v and v' have been sent as outputs of the PeerStep under scrutiny or were already in -- the pool before. -- -- There are four possibilities: -- -- i) v and v' were aleady present in the msgPool before: use induction hypothesis. -- ii) v and v' are both in the output produced by the PeerStep under scrutiny. -- iii) v was present before, but v' is new. -- iv) v' was present before, but v is new. -- -- In order to obtain this four possiblities we invoke newMsg⊎msgSent4 lemma, which -- receives proof that some vote is in a message that is in the msgPool of the post state -- and returns evidence that either the vote is new or that some message with the same -- signature was sent before. -- -- Case (i) is trivial; cases (iii) and (iv) are symmetric and reduce to an implementation -- obligation (Impl-VO1) and case (ii) reduces to a different implementation obligation -- (Impl-VO2). VotesOnceProof : ∀ {v v' pk} {st : SystemState} → ReachableSystemState st → Meta-Honest-PK pk → (vv : WithVerSig pk v) → MsgWithSig∈ pk (ver-signature vv) (msgPool st) → (vv' : WithVerSig pk v') → MsgWithSig∈ pk (ver-signature vv') (msgPool st) → v ^∙ vEpoch ≡ v' ^∙ vEpoch → v ^∙ vRound ≡ v' ^∙ vRound → v ^∙ vProposedId ≡ v' ^∙ vProposedId VotesOnceProof step-0 _ _ msv _ _ _ _ = ⊥-elim (¬Any[] (msg∈pool msv)) VotesOnceProof {v} {v'} (step-s r theStep) pkH vv msv vv' msv' eid≡ r≡ with msgSameSig msv | msgSameSig msv' ...| refl | refl with sameSig⇒sameVoteDataNoCol (msgSigned msv) vv (msgSameSig msv ) | sameSig⇒sameVoteDataNoCol (msgSigned msv') vv' (msgSameSig msv') ...| refl | refl with ∈GenInfo? (₋vSignature (msgPart msv)) | ∈GenInfo? (₋vSignature (msgPart msv')) ...| yes init | yes init' = genVotesConsistent (msgPart msv) (msgPart msv') init init' -- A signature in GenInfo is for a vote with round 0, and a signature for which we have a -- MsgWithSig∈ that is not in GenInfo and is for an honest PK is for a round ≢ 0, so we can -- derive a contradiction using r≡. ...| yes init | no ¬init = ⊥-elim (¬genVotesRound≢0 (step-s r theStep) pkH msv' ¬init ((trans (sym r≡) (genVotesRound≡0 vv init)))) ...| no ¬init | yes init = ⊥-elim (¬genVotesRound≢0 (step-s r theStep) pkH msv ¬init ((trans r≡ (genVotesRound≡0 vv' init)))) ...| no ¬init | no ¬init' with theStep ...| step-peer cheat@(step-cheat c) with ¬cheatForgeNew cheat refl unit pkH msv ¬init | ¬cheatForgeNew cheat refl unit pkH msv' ¬init' ...| msb4 | m'sb4 with msgSameSig msb4 | msgSameSig m'sb4 ...| refl | refl = VotesOnceProof r pkH vv msb4 vv' m'sb4 eid≡ r≡ VotesOnceProof (step-s r theStep) pkH vv msv vv' msv' eid≡ r≡ | refl | refl | refl | refl | no ¬init | no ¬init' | step-peer (step-honest stPeer) with newMsg⊎msgSentB4 r stPeer pkH (msgSigned msv) ¬init (msg⊆ msv) (msg∈pool msv) | newMsg⊎msgSentB4 r stPeer pkH (msgSigned msv') ¬init' (msg⊆ msv') (msg∈pool msv') ...| inj₂ msb4 | inj₂ m'sb4 = VotesOnceProof r pkH vv msb4 vv' m'sb4 eid≡ r≡ ...| inj₁ (m∈outs , vspk , newV) | inj₁ (m'∈outs , v'spk , newV') = Impl-VO2 r stPeer pkH (msg⊆ msv) m∈outs (msgSigned msv) ¬init newV vspk (msg⊆ msv') m'∈outs (msgSigned msv') ¬init' newV' v'spk eid≡ r≡ ...| inj₁ (m∈outs , vspk , newV) | inj₂ m'sb4 with sameSig⇒sameVoteData (msgSigned m'sb4) vv' (msgSameSig m'sb4) ...| inj₁ hb = ⊥-elim (meta-sha256-cr hb) ...| inj₂ refl rewrite sym (msgSameSig msv') = Impl-VO1 r stPeer pkH (msg⊆ msv) m∈outs (msgSigned msv) ¬init newV vspk (msg⊆ m'sb4) (msg∈pool m'sb4) (msgSigned m'sb4) (¬subst ¬init' (msgSameSig m'sb4)) eid≡ r≡ VotesOnceProof (step-s r theStep) pkH vv msv vv' msv' eid≡ r≡ | refl | refl | refl | refl | no ¬init | no ¬init' | step-peer (step-honest stPeer) | inj₂ msb4 | inj₁ (m'∈outs , v'spk , newV') with sameSig⇒sameVoteData (msgSigned msb4) vv (msgSameSig msb4) ...| inj₁ hb = ⊥-elim (meta-sha256-cr hb) ...| inj₂ refl = sym (Impl-VO1 r stPeer pkH (msg⊆ msv') m'∈outs (msgSigned msv') ¬init' newV' v'spk (msg⊆ msb4) (msg∈pool msb4) (msgSigned msb4) (¬subst ¬init (msgSameSig msb4)) (sym eid≡) (sym r≡)) voo : VO.Type IntSystemState voo hpk refl sv refl sv' round≡ with vmsg≈v (vmFor sv) | vmsg≈v (vmFor sv') ...| refl | refl = let ver = vmsgSigned (vmFor sv) mswsv = mkMsgWithSig∈ (nm (vmFor sv)) (cv (vmFor sv)) (cv∈nm (vmFor sv)) _ (nmSentByAuth sv) (vmsgSigned (vmFor sv)) refl ver' = vmsgSigned (vmFor sv') mswsv' = mkMsgWithSig∈ (nm (vmFor sv')) (cv (vmFor sv')) (cv∈nm (vmFor sv')) _ (nmSentByAuth sv') (vmsgSigned (vmFor sv')) refl epoch≡ = trans (vmsgEpoch (vmFor sv)) (sym (vmsgEpoch (vmFor sv'))) in VotesOnceProof r hpk ver mswsv ver' mswsv' epoch≡ round≡
50.466667
146
0.644562
1cf2e974757279808ed2b1771fdbaa98afe5afeb
99
agda
Agda
Cubical/HITs/Wedge.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
301
2018-10-17T18:00:24.000Z
2022-03-24T02:10:47.000Z
Cubical/HITs/Wedge.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
584
2018-10-15T09:49:02.000Z
2022-03-30T12:09:17.000Z
Cubical/HITs/Wedge.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
134
2018-11-16T06:11:03.000Z
2022-03-23T16:22:13.000Z
{-# OPTIONS --safe #-} module Cubical.HITs.Wedge where open import Cubical.HITs.Wedge.Base public
19.8
42
0.747475
dcb7eaaa01f5b2e84e78ec50127ee0b84bc04f30
2,003
agda
Agda
src/Similarity/Equational-reasoning-instances.agda
nad/up-to
b936ff85411baf3401ad85ce85d5ff2e9aa0ca14
[ "MIT" ]
null
null
null
src/Similarity/Equational-reasoning-instances.agda
nad/up-to
b936ff85411baf3401ad85ce85d5ff2e9aa0ca14
[ "MIT" ]
null
null
null
src/Similarity/Equational-reasoning-instances.agda
nad/up-to
b936ff85411baf3401ad85ce85d5ff2e9aa0ca14
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- "Equational" reasoning combinator setup ------------------------------------------------------------------------ {-# OPTIONS --sized-types #-} open import Prelude.Size open import Labelled-transition-system module Similarity.Equational-reasoning-instances {ℓ} {lts : LTS ℓ} {i : Size} where open import Prelude open import Bisimilarity lts open import Equational-reasoning open import Similarity lts instance reflexive≤ : Reflexive [ i ]_≤_ reflexive≤ = is-reflexive reflexive-≤ reflexive≤′ : Reflexive [ i ]_≤′_ reflexive≤′ = is-reflexive reflexive-≤′ convert≤≤ : Convertible [ i ]_≤_ [ i ]_≤_ convert≤≤ = is-convertible id convert≤′≤ : Convertible _≤′_ [ i ]_≤_ convert≤′≤ = is-convertible λ p≤′q → force p≤′q convert≤≤′ : Convertible [ i ]_≤_ [ i ]_≤′_ convert≤≤′ = is-convertible lemma where lemma : ∀ {p q} → [ i ] p ≤ q → [ i ] p ≤′ q force (lemma p≤q) = p≤q convert≤′≤′ : Convertible [ i ]_≤′_ [ i ]_≤′_ convert≤′≤′ = is-convertible id convert∼≤ : Convertible [ i ]_∼_ [ i ]_≤_ convert∼≤ = is-convertible ∼⇒≤ convert∼′≤ : Convertible _∼′_ [ i ]_≤_ convert∼′≤ = is-convertible (convert ∘ ∼⇒≤′) convert∼≤′ : ∀ {i} → Convertible [ i ]_∼_ [ i ]_≤′_ convert∼≤′ {i} = is-convertible lemma where lemma : ∀ {p q} → [ i ] p ∼ q → [ i ] p ≤′ q force (lemma p∼q) = ∼⇒≤ p∼q convert∼′≤′ : ∀ {i} → Convertible [ i ]_∼′_ [ i ]_≤′_ convert∼′≤′ = is-convertible ∼⇒≤′ trans≤≤ : Transitive [ i ]_≤_ [ i ]_≤_ trans≤≤ = is-transitive transitive-≤ trans≤′≤ : Transitive _≤′_ [ i ]_≤_ trans≤′≤ = is-transitive λ p≤′q → transitive (force p≤′q) trans≤′≤′ : Transitive [ i ]_≤′_ [ i ]_≤′_ trans≤′≤′ = is-transitive transitive-≤′ trans≤≤′ : Transitive [ i ]_≤_ [ i ]_≤′_ trans≤≤′ = is-transitive lemma where lemma : ∀ {p q r} → [ i ] p ≤ q → [ i ] q ≤′ r → [ i ] p ≤′ r force (lemma p≤q q≤′r) = transitive-≤ p≤q (force q≤′r)
27.819444
72
0.533699
c567557fed7a03962899d8717d698129ec1d0313
6,429
agda
Agda
Cubical/Core/Primitives.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/Core/Primitives.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
1
2022-01-27T02:07:48.000Z
2022-01-27T02:07:48.000Z
Cubical/Core/Primitives.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
{- This file document and export the main primitives of Cubical Agda. It also defines some basic derived operations (composition and filling). -} {-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Core.Primitives where open import Agda.Builtin.Cubical.Path public open import Agda.Builtin.Cubical.Sub public renaming ( inc to inS ; primSubOut to outS ) open import Agda.Primitive.Cubical public renaming ( primIMin to _∧_ -- I → I → I ; primIMax to _∨_ -- I → I → I ; primINeg to ~_ -- I → I ; isOneEmpty to empty ; primComp to comp ; primHComp to hcomp ; primTransp to transp ; itIsOne to 1=1 ) -- These two are to make sure all the primitives are loaded and ready -- to compute hcomp/transp for the universe. import Agda.Builtin.Cubical.Glue -- HCompU is already imported from Glue, and older Agda versions do -- not have it. So we comment it out for now. -- import Agda.Builtin.Cubical.HCompU open import Agda.Primitive public using ( Level ) renaming ( lzero to ℓ-zero ; lsuc to ℓ-suc ; _⊔_ to ℓ-max ; Set to Type ; Setω to Typeω ) open import Agda.Builtin.Sigma public -- This file document the Cubical Agda primitives. The primitives -- themselves are bound by the Agda files imported above. -- * The Interval -- I : Typeω -- Endpoints, Connections, Reversal -- i0 i1 : I -- _∧_ _∨_ : I → I → I -- ~_ : I → I -- * Dependent path type. (Path over Path) -- Introduced with lambda abstraction and eliminated with application, -- just like function types. -- PathP : ∀ {ℓ} (A : I → Type ℓ) → A i0 → A i1 → Type ℓ infix 4 _[_≡_] _[_≡_] : ∀ {ℓ} (A : I → Type ℓ) → A i0 → A i1 → Type ℓ _[_≡_] = PathP -- Non dependent path types Path : ∀ {ℓ} (A : Type ℓ) → A → A → Type ℓ Path A a b = PathP (λ _ → A) a b -- PathP (λ i → A) x y gets printed as x ≡ y when A does not mention i. -- _≡_ : ∀ {ℓ} {A : Type ℓ} → A → A → Type ℓ -- _≡_ {A = A} = PathP (λ _ → A) -- * @IsOne r@ represents the constraint "r = i1". -- Often we will use "φ" for elements of I, when we intend to use them -- with IsOne (or Partial[P]). -- IsOne : I → Typeω -- i1 is indeed equal to i1. -- 1=1 : IsOne i1 -- * Types of partial elements, and their dependent version. -- "Partial φ A" is a special version of "IsOne φ → A" with a more -- extensional judgmental equality. -- "PartialP φ A" allows "A" to be defined only on "φ". -- Partial : ∀ {ℓ} → I → Type ℓ → Typeω -- PartialP : ∀ {ℓ} → (φ : I) → Partial φ (Type ℓ) → Typeω -- Partial elements are introduced by pattern matching with (r = i0) -- or (r = i1) constraints, like so: private sys : ∀ i → Partial (i ∨ ~ i) Type₁ sys i (i = i0) = Type₀ sys i (i = i1) = Type₀ → Type₀ -- It also works with pattern matching lambdas: -- http://wiki.portal.chalmers.se/agda/pmwiki.php?n=ReferenceManual.PatternMatchingLambdas sys' : ∀ i → Partial (i ∨ ~ i) Type₁ sys' i = λ { (i = i0) → Type₀ ; (i = i1) → Type₀ → Type₀ } -- When the cases overlap they must agree. sys2 : ∀ i j → Partial (i ∨ (i ∧ j)) Type₁ sys2 i j = λ { (i = i1) → Type₀ ; (i = i1) (j = i1) → Type₀ } -- (i0 = i1) is actually absurd. sys3 : Partial i0 Type₁ sys3 = λ { () } -- * There are cubical subtypes as in CCHM. Note that these are not -- fibrant (hence in Typeω): _[_↦_] : ∀ {ℓ} (A : Type ℓ) (φ : I) (u : Partial φ A) → _ A [ φ ↦ u ] = Sub A φ u infix 4 _[_↦_] -- Any element u : A can be seen as an element of A [ φ ↦ u ] which -- agrees with u on φ: -- inS : ∀ {ℓ} {A : Type ℓ} {φ} (u : A) → A [ φ ↦ (λ _ → u) ] -- One can also forget that an element agrees with u on φ: -- outS : ∀ {ℓ} {A : Type ℓ} {φ : I} {u : Partial φ A} → A [ φ ↦ u ] → A -- * Composition operation according to [CCHM 18]. -- When calling "comp A φ u a" Agda makes sure that "a" agrees with "u i0" on "φ". -- compCCHM : ∀ {ℓ} (A : (i : I) → Type ℓ) (φ : I) (u : ∀ i → Partial φ (A i)) (a : A i0) → A i1 -- Note: this is not recommended to use, instead use the CHM -- primitives! The reason is that these work with HITs and produce -- fewer empty systems. -- * Generalized transport and homogeneous composition [CHM 18]. -- When calling "transp A φ a" Agda makes sure that "A" is constant on "φ" (see below). -- transp : ∀ {ℓ} (A : I → Type ℓ) (φ : I) (a : A i0) → A i1 -- "A" being constant on "φ" means that "A" should be a constant function whenever the -- constraint "φ = i1" is satisfied. For example: -- - If "φ" is "i0" then "A" can be anything, since this condition is vacuously true. -- - If "φ" is "i1" then "A" must be a constant function. -- - If "φ" is some in-scope variable "i" then "A" only needs to be a constant function -- when substituting "i1" for "i". -- When calling "hcomp A φ u a" Agda makes sure that "a" agrees with "u i0" on "φ". -- hcomp : ∀ {ℓ} {A : Type ℓ} {φ : I} (u : I → Partial φ A) (a : A) → A private variable ℓ : Level ℓ′ : I → Level -- Homogeneous filling hfill : {A : Type ℓ} {φ : I} (u : ∀ i → Partial φ A) (u0 : A [ φ ↦ u i0 ]) ----------------------- (i : I) → A hfill {φ = φ} u u0 i = hcomp (λ j → λ { (φ = i1) → u (i ∧ j) 1=1 ; (i = i0) → outS u0 }) (outS u0) -- Heterogeneous composition can defined as in CHM, however we use the -- builtin one as it doesn't require u0 to be a cubical subtype. This -- reduces the number of inS's a lot. -- comp : (A : ∀ i → Type (ℓ′ i)) -- {φ : I} -- (u : ∀ i → Partial φ (A i)) -- (u0 : A i0 [ φ ↦ u i0 ]) -- → --------------------------- -- A i1 -- comp A {φ = φ} u u0 = -- hcomp (λ i → λ { (φ = i1) → transp (λ j → A (i ∨ j)) i (u _ 1=1) }) -- (transp A i0 (outS u0)) -- Heterogeneous filling defined using comp fill : (A : ∀ i → Type (ℓ′ i)) {φ : I} (u : ∀ i → Partial φ (A i)) (u0 : A i0 [ φ ↦ u i0 ]) --------------------------- (i : I) → A i fill A {φ = φ} u u0 i = comp (λ j → A (i ∧ j)) (λ j → λ { (φ = i1) → u (i ∧ j) 1=1 ; (i = i0) → outS u0 }) (outS u0) -- Σ-types infix 2 Σ-syntax Σ-syntax : ∀ {ℓ ℓ'} (A : Type ℓ) (B : A → Type ℓ') → Type (ℓ-max ℓ ℓ') Σ-syntax = Σ syntax Σ-syntax A (λ x → B) = Σ[ x ∈ A ] B
30.325472
96
0.551097
cb7314e796f78563e843f66e36e23e79879e9d6c
2,932
agda
Agda
OldBasicILP/Syntax/ClosedHilbert.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
29
2016-07-03T18:51:56.000Z
2022-01-01T10:29:18.000Z
OldBasicILP/Syntax/ClosedHilbert.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
1
2018-06-10T09:11:22.000Z
2018-06-10T09:11:22.000Z
OldBasicILP/Syntax/ClosedHilbert.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
null
null
null
-- Hilbert-style formalisation of closed syntax. -- Nested terms. module OldBasicILP.Syntax.ClosedHilbert where open import OldBasicILP.Syntax.Common public -- Types parametrised by closed derivations. mutual infixr 10 _⦂_ infixl 9 _∧_ infixr 7 _▻_ data Ty : Set where α_ : Atom → Ty _▻_ : Ty → Ty → Ty _⦂_ : ∀ {A} → Proof A → Ty → Ty _∧_ : Ty → Ty → Ty ⊤ : Ty -- Anti-bug wrappers. record Proof (A : Ty) : Set where inductive constructor [_] field der : ⊢ A -- Derivations. infix 3 ⊢_ data ⊢_ : Ty → Set where app : ∀ {A B} → ⊢ A ▻ B → ⊢ A → ⊢ B ci : ∀ {A} → ⊢ A ▻ A ck : ∀ {A B} → ⊢ A ▻ B ▻ A cs : ∀ {A B C} → ⊢ (A ▻ B ▻ C) ▻ (A ▻ B) ▻ A ▻ C box : ∀ {A} → (d : ⊢ A) → ⊢ [ d ] ⦂ A cdist : ∀ {A B} → {d₁ : ⊢ A ▻ B} {d₂ : ⊢ A} → ⊢ [ d₁ ] ⦂ (A ▻ B) ▻ [ d₂ ] ⦂ A ▻ [ app d₁ d₂ ] ⦂ B cup : ∀ {A} → {d : ⊢ A} → ⊢ [ d ] ⦂ A ▻ [ box d ] ⦂ [ d ] ⦂ A cdown : ∀ {A} → {d : ⊢ A} → ⊢ [ d ] ⦂ A ▻ A cpair : ∀ {A B} → ⊢ A ▻ B ▻ A ∧ B cfst : ∀ {A B} → ⊢ A ∧ B ▻ A csnd : ∀ {A B} → ⊢ A ∧ B ▻ B unit : ⊢ ⊤ infix 3 ⊢⋆_ ⊢⋆_ : Cx Ty → Set ⊢⋆ ∅ = 𝟙 ⊢⋆ Ξ , A = ⊢⋆ Ξ × ⊢ A -- Additional useful types. infixr 7 _▻⋯▻_ _▻⋯▻_ : Cx Ty → Ty → Ty ∅ ▻⋯▻ B = B (Ξ , A) ▻⋯▻ B = Ξ ▻⋯▻ (A ▻ B) -- Cut and multicut. cut : ∀ {A B} → ⊢ A → ⊢ A ▻ B → ⊢ B cut d₁ d₂ = app d₂ d₁ multicut : ∀ {Ξ A} → ⊢⋆ Ξ → ⊢ Ξ ▻⋯▻ A → ⊢ A multicut {∅} ∙ d₂ = d₂ multicut {Ξ , B} (ds , d₁) d₂ = app (multicut ds d₂) d₁ -- Contraction. ccont : ∀ {A B} → ⊢ (A ▻ A ▻ B) ▻ A ▻ B ccont = app (app cs cs) (app ck ci) cont : ∀ {A B} → ⊢ A ▻ A ▻ B → ⊢ A ▻ B cont d = app ccont d -- Exchange, or Schönfinkel’s C combinator. cexch : ∀ {A B C} → ⊢ (A ▻ B ▻ C) ▻ B ▻ A ▻ C cexch = app (app cs (app (app cs (app ck cs)) (app (app cs (app ck ck)) cs))) (app ck ck) exch : ∀ {A B C} → ⊢ A ▻ B ▻ C → ⊢ B ▻ A ▻ C exch d = app cexch d -- Composition, or Schönfinkel’s B combinator. ccomp : ∀ {A B C} → ⊢ (B ▻ C) ▻ (A ▻ B) ▻ A ▻ C ccomp = app (app cs (app ck cs)) ck comp : ∀ {A B C} → ⊢ B ▻ C → ⊢ A ▻ B → ⊢ A ▻ C comp d₁ d₂ = app (app ccomp d₁) d₂ -- Useful theorems in functional form. dist : ∀ {A B r₁ r₂} → ⊢ [ r₁ ] ⦂ (A ▻ B) → ⊢ [ r₂ ] ⦂ A → ⊢ [ app r₁ r₂ ] ⦂ B dist d₁ d₂ = app (app cdist d₁) d₂ up : ∀ {A r} → ⊢ [ r ] ⦂ A → ⊢ [ box r ] ⦂ [ r ] ⦂ A up d = app cup d down : ∀ {A r} → ⊢ [ r ] ⦂ A → ⊢ A down d = app cdown d distup : ∀ {A B} → {r₀ : ⊢ A} {r₁ : ⊢ [ r₀ ] ⦂ A ▻ B} → ⊢ [ r₁ ] ⦂ ([ r₀ ] ⦂ A ▻ B) → ⊢ [ r₀ ] ⦂ A → ⊢ [ app r₁ (box r₀) ] ⦂ B distup d₁ d₂ = dist d₁ (up d₂) pair : ∀ {A B} → ⊢ A → ⊢ B → ⊢ A ∧ B pair d₁ d₂ = app (app cpair d₁) d₂ fst : ∀ {A B} → ⊢ A ∧ B → ⊢ A fst d = app cfst d snd : ∀ {A B} → ⊢ A ∧ B → ⊢ B snd d = app csnd d
21.880597
81
0.409959
2f3beba717ddf80935dac0bf41e1380191d37dad
3,245
agda
Agda
Categories/Category/Construction/F-Algebras.agda
rei1024/agda-categories
89d163f72caa7deeac9413f27bc1b4ed7f9e025b
[ "MIT" ]
null
null
null
Categories/Category/Construction/F-Algebras.agda
rei1024/agda-categories
89d163f72caa7deeac9413f27bc1b4ed7f9e025b
[ "MIT" ]
null
null
null
Categories/Category/Construction/F-Algebras.agda
rei1024/agda-categories
89d163f72caa7deeac9413f27bc1b4ed7f9e025b
[ "MIT" ]
null
null
null
{-# OPTIONS --universe-polymorphism #-} module Categories.Category.Construction.F-Algebras where open import Level open import Data.Product using (proj₁; proj₂) open import Categories.Category open import Categories.Functor hiding (id) open import Categories.Functor.Algebra open import Categories.Object.Initial import Categories.Morphism.Reasoning as MR import Categories.Morphism as Mor using (_≅_) private variable o ℓ e : Level 𝒞 : Category o ℓ e F-Algebras : {𝒞 : Category o ℓ e} → Endofunctor 𝒞 → Category (ℓ ⊔ o) (e ⊔ ℓ) e F-Algebras {𝒞 = 𝒞} F = record { Obj = F-Algebra F ; _⇒_ = F-Algebra-Morphism ; _≈_ = λ α₁ α₂ → f α₁ ≈ f α₂ ; _∘_ = λ α₁ α₂ → record { f = f α₁ ∘ f α₂ ; commutes = commut α₁ α₂ } ; id = record { f = id ; commutes = identityˡ ○ ⟺ identityʳ ○ ⟺ (∘-resp-≈ʳ identity) } ; assoc = assoc ; sym-assoc = sym-assoc ; identityˡ = identityˡ ; identityʳ = identityʳ ; identity² = identity² ; equiv = record { refl = refl ; sym = sym ; trans = trans } ; ∘-resp-≈ = ∘-resp-≈ } where open Category 𝒞 open Equiv open HomReasoning using (⟺; _○_; begin_; _≈⟨_⟩_; _∎) open Functor F open F-Algebra-Morphism open F-Algebra commut : {A B C : F-Algebra F} (α₁ : F-Algebra-Morphism B C) (α₂ : F-Algebra-Morphism A B) → (f α₁ ∘ f α₂) ∘ α A ≈ α C ∘ F₁ (f α₁ ∘ f α₂) commut {A} {B} {C} α₁ α₂ = begin (f α₁ ∘ f α₂) ∘ α A ≈⟨ assoc ○ ∘-resp-≈ʳ (commutes α₂) ⟩ f α₁ ∘ (α B ∘ F₁ (f α₂)) ≈⟨ ⟺ assoc ○ ∘-resp-≈ˡ (commutes α₁) ⟩ (α C ∘ F₁ (f α₁)) ∘ F₁ (f α₂) ≈⟨ assoc ○ ∘-resp-≈ʳ (⟺ homomorphism) ⟩ α C ∘ F₁ (f α₁ ∘ f α₂) ∎ module Lambek {𝒞 : Category o ℓ e} {F : Endofunctor 𝒞} (I : Initial (F-Algebras F)) where open Category 𝒞 open Functor F open F-Algebra using (α) open MR 𝒞 using (glue) open Mor 𝒞 open Initial I -- so ⊥ is an F-Algebra, which is initial -- While an expert might be able to decipher the proof at the nLab -- (https://ncatlab.org/nlab/show/initial+algebra+of+an+endofunctor) -- I (JC) have found that the notes at -- http://www.cs.ru.nl/~jrot/coalgebra/ak-algebras.pdf -- are easier to follow, and lead to the full proof below. private module ⊥ = F-Algebra ⊥ A = ⊥.A a : F₀ A ⇒ A a = ⊥.α -- The F-Algebra structure that will make things work F⊥ : F-Algebra F F⊥ = iterate ⊥ -- By initiality, we get the following morphism f : F-Algebra-Morphism ⊥ F⊥ f = ! module FAM = F-Algebra-Morphism f i : A ⇒ F₀ A i = FAM.f a∘f : F-Algebra-Morphism ⊥ ⊥ a∘f = record { f = a ∘ i ; commutes = glue triv FAM.commutes ○ ∘-resp-≈ʳ (⟺ homomorphism) } where open HomReasoning using (_○_; ⟺) triv : CommutativeSquare (α F⊥) (α F⊥) a a triv = Equiv.refl lambek : A ≅ F₀ A lambek = record { from = i ; to = a ; iso = record { isoˡ = ⊥-id a∘f ; isoʳ = begin i ∘ a ≈⟨ F-Algebra-Morphism.commutes f ⟩ F₁ a ∘ F₁ i ≈˘⟨ homomorphism ⟩ F₁ (a ∘ i) ≈⟨ F-resp-≈ (⊥-id a∘f) ⟩ F₁ id ≈⟨ identity ⟩ id ∎ } } where open HomReasoning
28.716814
96
0.565177
18636541a0d72e261485a1bbfa5ef4155be69f59
1,211
agda
Agda
homotopy/Hopf.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
1
2021-06-30T00:17:55.000Z
2021-06-30T00:17:55.000Z
homotopy/Hopf.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
null
null
null
homotopy/Hopf.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} open import HoTT import homotopy.HopfConstruction open import homotopy.CircleHSpace open import homotopy.SuspensionJoin using () renaming (e to suspension-join) open import homotopy.S1SuspensionS0 using () renaming (e to S¹≃SuspensionS⁰) import homotopy.JoinAssoc module homotopy.Hopf where -- To move S⁰ = Bool S² = Suspension S¹ S³ = Suspension S² -- To move S¹-connected : is-connected ⟨0⟩ S¹ S¹-connected = ([ base ] , Trunc-elim (λ x → =-preserves-level ⟨0⟩ Trunc-level) (S¹-elim idp (prop-has-all-paths-↓ ((Trunc-level :> is-set (Trunc ⟨0⟩ S¹)) _ _)))) module Hopf = homotopy.HopfConstruction S¹ S¹-connected S¹-hSpace Hopf : S² → Type₀ Hopf = Hopf.H.f Hopf-fiber : Hopf (north _) == S¹ Hopf-fiber = idp Hopf-total : Σ _ Hopf == S³ Hopf-total = Σ _ Hopf =⟨ Hopf.theorem ⟩ S¹ * S¹ =⟨ ua S¹≃SuspensionS⁰ |in-ctx (λ u → u * S¹) ⟩ (Suspension S⁰) * S¹ =⟨ ua (suspension-join S⁰) |in-ctx (λ u → u * S¹) ⟩ (S⁰ * S⁰) * S¹ =⟨ ua (homotopy.JoinAssoc.*-assoc S⁰ S⁰ S¹) ⟩ S⁰ * (S⁰ * S¹) =⟨ ! (ua (suspension-join S¹)) |in-ctx (λ u → S⁰ * u) ⟩ S⁰ * S² =⟨ ! (ua (suspension-join S²)) ⟩ S³ ∎
30.275
95
0.617671
39d9c884e82badb77a535bca2a2e4dd2be835e34
365
agda
Agda
test/Fail/WithoutK-PatternMatchingLambdas2.agda
favonia/agda
8d433b967567c08afe15d04a5cb63b6f6d8884ee
[ "BSD-2-Clause" ]
null
null
null
test/Fail/WithoutK-PatternMatchingLambdas2.agda
favonia/agda
8d433b967567c08afe15d04a5cb63b6f6d8884ee
[ "BSD-2-Clause" ]
6
2021-10-18T08:12:24.000Z
2021-11-24T08:31:10.000Z
test/Fail/WithoutK-PatternMatchingLambdas2.agda
antoinevanmuylder/agda
bd59d5b07ffe02a43b28d186d95e1747aac5bc8c
[ "BSD-2-Clause" ]
null
null
null
{-# OPTIONS --cubical-compatible #-} module WithoutK-PatternMatchingLambdas2 where -- Equality defined with two indices. data _≡_ {A : Set} : A → A → Set where refl : ∀ x → x ≡ x -- The --cubical-compatible option works with pattern matching lambdas. K : (A : Set) (x : A) (P : x ≡ x → Set) → P (refl x) → (p : x ≡ x ) → P p K = λ { A .x P pr (refl x) → pr }
30.416667
74
0.594521
18a36a364d7407f549da703df573d1a574d353af
4,244
agda
Agda
Cubical/Algebra/RingSolver/CommRingHornerForms.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
Cubical/Algebra/RingSolver/CommRingHornerForms.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
Cubical/Algebra/RingSolver/CommRingHornerForms.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Algebra.RingSolver.CommRingHornerForms where open import Cubical.Foundations.Prelude open import Cubical.Data.Nat using (ℕ) open import Cubical.Data.FinData open import Cubical.Data.Vec open import Cubical.Data.Bool using (Bool; true; false; if_then_else_; _and_) open import Cubical.Algebra.RingSolver.RawRing open import Cubical.Algebra.RingSolver.RawAlgebra renaming (⟨_⟩ to ⟨_⟩ₐ) open import Cubical.Algebra.RingSolver.AlmostRing renaming (⟨_⟩ to ⟨_⟩ᵣ) private variable ℓ ℓ′ : Level {- This defines the type of multivariate Polynomials over the RawRing R. The construction is based on the algebraic fact R[X₀][X₁]⋯[Xₙ] ≅ R[X₀,⋯,Xₙ] BUT: Contrary to algebraic convetions, we will give 'Xₙ' the lowest index in the definition of 'Variable' below. So if 'Variable n R k' is identified with 'Xₖ', then the RawRing we construct should rather be denoted with R[Xₙ][Xₙ₋₁]⋯[X₀] or, to be precise about the evaluation order: (⋯((R[Xₙ])[Xₙ₋₁])⋯)[X₀] -} data IteratedHornerForms (A : RawAlgebra ℤAsRawRing ℓ) : ℕ → Type ℓ where const : ℤ → IteratedHornerForms A ℕ.zero 0H : {n : ℕ} → IteratedHornerForms A (ℕ.suc n) _·X+_ : {n : ℕ} → IteratedHornerForms A (ℕ.suc n) → IteratedHornerForms A n → IteratedHornerForms A (ℕ.suc n) module _ (A : RawAlgebra ℤAsRawRing ℓ′) where open RawRing ℤAsRawRing isZero : {n : ℕ} → IteratedHornerForms A n → Bool isZero (const (pos ℕ.zero)) = true isZero (const (pos (ℕ.suc _))) = false isZero (const (negsuc _)) = false isZero 0H = true isZero (P ·X+ P₁) = false eval : {A : RawAlgebra ℤAsRawRing ℓ′} (n : ℕ) (P : IteratedHornerForms A n) → Vec ⟨ A ⟩ₐ n → ⟨ A ⟩ₐ eval {A = A} ℕ.zero (const r) [] = RawAlgebra.scalar A r eval {A = A} .(ℕ.suc _) 0H (_ ∷ _) = RawAlgebra.0r A eval {A = A} (ℕ.suc n) (P ·X+ Q) (x ∷ xs) = let open RawAlgebra A P' = (eval (ℕ.suc n) P (x ∷ xs)) Q' = eval n Q xs in if (isZero A P) then Q' else P' · x + Q' module IteratedHornerOperations (A : RawAlgebra ℤAsRawRing ℓ) where open RawRing ℤAsRawRing private 1H' : (n : ℕ) → IteratedHornerForms A n 1H' ℕ.zero = const 1r 1H' (ℕ.suc n) = 0H ·X+ 1H' n 0H' : (n : ℕ) → IteratedHornerForms A n 0H' ℕ.zero = const 0r 0H' (ℕ.suc n) = 0H 1ₕ : {n : ℕ} → IteratedHornerForms A n 1ₕ {n = n} = 1H' n 0ₕ : {n : ℕ} → IteratedHornerForms A n 0ₕ {n = n} = 0H' n X : (n : ℕ) (k : Fin n) → IteratedHornerForms A n X (ℕ.suc m) zero = 1ₕ ·X+ 0ₕ X (ℕ.suc m) (suc k) = 0ₕ ·X+ X m k _+ₕ_ : {n : ℕ} → IteratedHornerForms A n → IteratedHornerForms A n → IteratedHornerForms A n (const r) +ₕ (const s) = const (r + s) 0H +ₕ Q = Q (P ·X+ r) +ₕ 0H = P ·X+ r (P ·X+ r) +ₕ (Q ·X+ s) = let left = (P +ₕ Q) right = (r +ₕ s) in if ((isZero A left) and (isZero A right)) then 0ₕ else left ·X+ right -ₕ : {n : ℕ} → IteratedHornerForms A n → IteratedHornerForms A n -ₕ (const x) = const (- x) -ₕ 0H = 0H -ₕ (P ·X+ Q) = (-ₕ P) ·X+ (-ₕ Q) _⋆_ : {n : ℕ} → IteratedHornerForms A n → IteratedHornerForms A (ℕ.suc n) → IteratedHornerForms A (ℕ.suc n) _·ₕ_ : {n : ℕ} → IteratedHornerForms A n → IteratedHornerForms A n → IteratedHornerForms A n r ⋆ 0H = 0H r ⋆ (P ·X+ Q) = if (isZero A r) then 0ₕ else (r ⋆ P) ·X+ (r ·ₕ Q) const x ·ₕ const y = const (x · y) 0H ·ₕ Q = 0H (P ·X+ Q) ·ₕ S = let z = (P ·ₕ S) in if (isZero A z) then (Q ⋆ S) else (z ·X+ 0ₕ) +ₕ (Q ⋆ S) asRawRing : (n : ℕ) → RawRing {ℓ} RawRing.Carrier (asRawRing n) = IteratedHornerForms A n RawRing.0r (asRawRing n) = 0ₕ RawRing.1r (asRawRing n) = 1ₕ RawRing._+_ (asRawRing n) = _+ₕ_ RawRing._·_ (asRawRing n) = _·ₕ_ RawRing.- (asRawRing n) = -ₕ Variable : (n : ℕ) (R : RawAlgebra ℤAsRawRing ℓ′) (k : Fin n) → IteratedHornerForms R n Variable n R k = IteratedHornerOperations.X R n k Constant : (n : ℕ) (R : RawAlgebra ℤAsRawRing ℓ′) (r : ℤ) → IteratedHornerForms R n Constant ℕ.zero R r = const r Constant (ℕ.suc n) R r = IteratedHornerOperations.0ₕ R ·X+ Constant n R r
30.753623
87
0.601084
29ae8f05ca9b3ba37c038091a58c8ed01a64b7fc
1,426
agda
Agda
RMonads/REM/Functors.agda
jmchapman/Relative-Monads
74707d3538bf494f4bd30263d2f5515a84733865
[ "MIT" ]
21
2015-07-30T01:25:12.000Z
2021-02-13T18:02:18.000Z
RMonads/REM/Functors.agda
jmchapman/Relative-Monads
74707d3538bf494f4bd30263d2f5515a84733865
[ "MIT" ]
3
2019-01-13T13:12:33.000Z
2019-05-29T09:50:26.000Z
RMonads/REM/Functors.agda
jmchapman/Relative-Monads
74707d3538bf494f4bd30263d2f5515a84733865
[ "MIT" ]
1
2019-11-04T21:33:13.000Z
2019-11-04T21:33:13.000Z
open import Functors open import Categories open import RMonads module RMonads.REM.Functors {a b c d}{C : Cat {a}{b}}{D : Cat {c}{d}} (J : Fun C D)(M : RMonad J) where open import Library open import RMonads.REM M open Cat open Fun open RAlg open RAlgMorph open RMonad M REML : Fun C EM REML = record { OMap = λ X → record { acar = T X; astr = bind; alaw1 = sym law2; alaw2 = law3}; HMap = λ f → record { amor = bind (comp D η (HMap J f)); ahom = sym law3}; fid = RAlgMorphEq ( proof bind (comp D η (HMap J (iden C))) ≅⟨ cong (bind ∘ comp D η) (fid J) ⟩ bind (comp D η (iden D)) ≅⟨ cong bind (idr D) ⟩ bind η ≅⟨ law1 ⟩ iden D ∎); fcomp = λ{_ _ _ f g} → RAlgMorphEq ( proof bind (comp D η (HMap J (comp C f g))) ≅⟨ cong (bind ∘ comp D η) (fcomp J) ⟩ bind (comp D η (comp D (HMap J f) (HMap J g))) ≅⟨ cong bind (sym (ass D)) ⟩ bind (comp D (comp D η (HMap J f)) (HMap J g)) ≅⟨ cong (λ f₁ → bind (comp D f₁ (HMap J g))) (sym law2) ⟩ bind (comp D (comp D (bind (comp D η (HMap J f))) η) (HMap J g)) ≅⟨ cong bind (ass D) ⟩ bind (comp D (bind (comp D η (HMap J f))) (comp D η (HMap J g))) ≅⟨ law3 ⟩ comp D (bind (comp D η (HMap J f))) (bind (comp D η (HMap J g))) ∎)} REMR : Fun EM D REMR = record { OMap = acar; HMap = amor; fid = refl; fcomp = refl}
25.017544
69
0.528752
1d23485fd36364e58e2fb2eb654c6a432d307f5e
853
agda
Agda
out/Sub/Signature.agda
JoeyEremondi/agda-soas
ff1a985a6be9b780d3ba2beff68e902394f0a9d8
[ "MIT" ]
39
2021-11-09T20:39:55.000Z
2022-03-19T17:33:12.000Z
out/Sub/Signature.agda
JoeyEremondi/agda-soas
ff1a985a6be9b780d3ba2beff68e902394f0a9d8
[ "MIT" ]
1
2021-11-21T12:19:32.000Z
2021-11-21T12:19:32.000Z
out/Sub/Signature.agda
JoeyEremondi/agda-soas
ff1a985a6be9b780d3ba2beff68e902394f0a9d8
[ "MIT" ]
4
2021-11-09T20:39:59.000Z
2022-01-24T12:49:17.000Z
{- This second-order signature was created from the following second-order syntax description: syntax Sub | S type L : 0-ary T : 0-ary term vr : L -> T sb : L.T T -> T theory (C) x y : T |> sb (a. x[], y[]) = x[] (L) x : T |> sb (a. vr(a), x[]) = x[] (R) a : L x : L.T |> sb (b. x[b], vr(a[])) = x[a[]] (A) x : (L,L).T y : L.T z : T |> sb (a. sb (b. x[a,b], y[a]), z[]) = sb (b. sb (a. x[a, b], z[]), sb (a. y[a], z[])) -} module Sub.Signature where open import SOAS.Context -- Type declaration data ST : Set where L : ST T : ST open import SOAS.Syntax.Signature ST public open import SOAS.Syntax.Build ST public -- Operator symbols data Sₒ : Set where vrₒ sbₒ : Sₒ -- Term signature S:Sig : Signature Sₒ S:Sig = sig λ { vrₒ → (⊢₀ L) ⟼₁ T ; sbₒ → (L ⊢₁ T) , (⊢₀ T) ⟼₂ T } open Signature S:Sig public
18.148936
120
0.538101
c576fef6a38cf9fcf13635156427a0568895b2d2
667
agda
Agda
src/constants.agda
xoltar/cedille
acf691e37210607d028f4b19f98ec26c4353bfb5
[ "MIT" ]
null
null
null
src/constants.agda
xoltar/cedille
acf691e37210607d028f4b19f98ec26c4353bfb5
[ "MIT" ]
null
null
null
src/constants.agda
xoltar/cedille
acf691e37210607d028f4b19f98ec26c4353bfb5
[ "MIT" ]
null
null
null
module constants where open import lib cedille-extension : string cedille-extension = "ced" self-name : string self-name = "self" pattern ignored-var = "_" pattern meta-var-pfx = '?' pattern qual-local-chr = '@' pattern qual-global-chr = '.' meta-var-pfx-str = 𝕃char-to-string [ meta-var-pfx ] qual-local-str = 𝕃char-to-string [ qual-local-chr ] qual-global-str = 𝕃char-to-string [ qual-global-chr ] options-file-name : string options-file-name = "options" global-error-string : string → string global-error-string msg = "{\"error\":\"" ^ msg ^ "\"" ^ "}" dot-cedille-directory : string → string dot-cedille-directory dir = combineFileNames dir ".cedille"
22.233333
60
0.697151
dcbc27b23f2db53addda787c56f12ff98cde16bf
764
agda
Agda
src/Categories/Diagram/Colimit/Lan.agda
turion/agda-categories
ad0f94b6cf18d8a448b844b021aeda58e833d152
[ "MIT" ]
279
2019-06-01T14:36:40.000Z
2022-03-22T00:40:14.000Z
src/Categories/Diagram/Colimit/Lan.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
236
2019-06-01T14:53:54.000Z
2022-03-28T14:31:43.000Z
src/Categories/Diagram/Colimit/Lan.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
64
2019-06-02T16:58:15.000Z
2022-03-14T02:00:59.000Z
{-# OPTIONS --without-K --safe #-} module Categories.Diagram.Colimit.Lan where open import Level open import Categories.Category open import Categories.Category.Cocomplete open import Categories.Diagram.Duality open import Categories.Diagram.Limit.Ran open import Categories.Functor open import Categories.Kan open import Categories.Kan.Duality private variable o ℓ e : Level C D E : Category o ℓ e module _ {o ℓ e o′ ℓ′ e′} {C : Category o′ ℓ′ e′} {D : Category o ℓ e} (F : Functor C D) (X : Functor C E) (Com : Cocomplete (o′ ⊔ ℓ) (ℓ′ ⊔ e) e′ E) where private module F = Functor F module X = Functor X colimit-is-lan : Lan F X colimit-is-lan = coRan⇒Lan (limit-is-ran F.op X.op λ G → Colimit⇒coLimit E (Com (Functor.op G)))
28.296296
98
0.687173
cbf373ad226fb21e4df7281a23ce9395b4e3b953
464
agda
Agda
test/Fail/Issue1946-5.agda
caryoscelus/agda
98d6f195fe672e54ef0389b4deb62e04e3e98327
[ "BSD-3-Clause" ]
null
null
null
test/Fail/Issue1946-5.agda
caryoscelus/agda
98d6f195fe672e54ef0389b4deb62e04e3e98327
[ "BSD-3-Clause" ]
null
null
null
test/Fail/Issue1946-5.agda
caryoscelus/agda
98d6f195fe672e54ef0389b4deb62e04e3e98327
[ "BSD-3-Clause" ]
null
null
null
-- This test case was reported by Andrea Vezzosi. open import Agda.Builtin.Size data Σ (A : Set) (B : A → Set) : Set where _,_ : (x : A) → B x → Σ A B data ⊥ : Set where record T (i : Size) : Set where constructor con coinductive field force : Σ (Size< i) \ { j → T j } open T public empty : ∀ i → T i → ⊥ empty i x with force x ... | j , y = empty j y inh : T ∞ inh = \ { .force → ∞ , inh } -- using oo < oo here false : ⊥ false = empty ∞ inh
17.185185
50
0.5625
4d72918e7e7a2dbbd5e749b9501ed6eab8e85678
10,695
agda
Agda
Categories/Grothendieck.agda
copumpkin/categories
36f4181d751e2ecb54db219911d8c69afe8ba892
[ "BSD-3-Clause" ]
98
2015-04-15T14:57:33.000Z
2022-03-08T05:20:36.000Z
Categories/Grothendieck.agda
p-pavel/categories
e41aef56324a9f1f8cf3cd30b2db2f73e01066f2
[ "BSD-3-Clause" ]
19
2015-05-23T06:47:10.000Z
2019-08-09T16:31:40.000Z
Categories/Grothendieck.agda
p-pavel/categories
e41aef56324a9f1f8cf3cd30b2db2f73e01066f2
[ "BSD-3-Clause" ]
23
2015-02-05T13:03:09.000Z
2021-11-11T13:50:56.000Z
{-# OPTIONS --universe-polymorphism #-} module Categories.Grothendieck where open import Relation.Binary using (Rel) open import Data.Product using (Σ; _,_; proj₁; proj₂; _×_) open import Categories.Support.Experimental open import Categories.Support.PropositionalEquality open import Categories.Support.IProduct import Categories.Category as CCat open CCat hiding (module Heterogeneous) open import Categories.Functor using (Functor; module Functor; ≡⇒≣) open import Categories.Agda open import Categories.Categories open import Categories.Congruence -- TODO: don't use sigmas -- Break into modules Strict and Weak using Sets and Setoids? Elements : ∀ {o ℓ e o′} {C : Category o ℓ e} → Functor C (Sets o′) → Category _ _ _ Elements {o′ = o′} {C = C} F = record { Obj = Obj′ ; _⇒_ = Hom′ ; _≡_ = _≡′_ ; _∘_ = _∘′_ ; id = id , identity ; assoc = assoc ; identityˡ = identityˡ ; identityʳ = identityʳ ; equiv = record { refl = refl ; sym = sym ; trans = trans } ; ∘-resp-≡ = ∘-resp-≡ } where open Category C open Equiv open Functor F Obj′ = Σ Obj F₀ Hom′ : Rel Obj′ _ Hom′ (c₁ , x₁) (c₂ , x₂) = Σ′ (c₁ ⇒ c₂) (λ f → F₁ f x₁ ≣ x₂) _≡′_ : ∀ {X Y} → Rel (Hom′ X Y) _ (f , pf₁) ≡′ (g , pf₂) = f ≡ g _∘′_ : ∀ {X Y Z} → Hom′ Y Z → Hom′ X Y → Hom′ X Z _∘′_ {X} {Y} {Z} (f , pf₁) (g , pf₂) = (f ∘ g) , pf where -- This could be a lot prettier... .pf : F₁ (f ∘ g) (proj₂ X) ≣ proj₂ Z pf = ≣-trans homomorphism (≣-sym (≣-trans (≣-sym pf₁) (≣-cong (F₁ f) (≣-sym pf₂)))) Dom : ∀ {o ℓ e o′} {C : Category o ℓ e} → (F : Functor C (Sets o′)) -> Functor (Elements F) C Dom {C = C} F = record { F₀ = proj₁; F₁ = proj₁′; identity = Equiv.refl; homomorphism = Equiv.refl; F-resp-≡ = λ x → x } where open Category C -- because we want the following function to reduce all the time, define it globally private module _ {o ℓ e o′ ℓ′ e′} {C : Category o ℓ e} (F : Functor C (Categories o′ ℓ′ e′)) where private module C = Category C module F = Functor F module Cat = Category (Categories o′ ℓ′ e′) ∘-eq : ∀ {cx xx cy cz} -> (f : cy C.⇒ cz) (g : cx C.⇒ cy) -> Functor.F₀ (F.F₁ f Cat.∘ F.F₁ g) xx ≣ Functor.F₀ (F.F₁ (f C.∘ g)) xx ∘-eq {cx} {xx} {cy} {cz} f g = ≣-relevant (≣-sym (≡⇒≣ (F.F₁ (f C.∘ g)) (F.F₁ f Cat.∘ F.F₁ g) (F.homomorphism {f = g} {g = f}) xx)) Grothendieck : ∀ {o ℓ e o′ ℓ′ e′} {C : Category o ℓ e} → Functor C (Categories o′ ℓ′ e′) → Category _ _ _ Grothendieck {o′ = o′} {ℓ′} {e′} {C = C} F = record { Obj = Obj′ ; _⇒_ = Hom′ ; _≡_ = _≡′_ ; _∘_ = _∘′_ ; id = id′ ; assoc = assoc′ ; identityˡ = identityˡ′ ; identityʳ = identityʳ′ ; equiv = record { refl = refl , Het.refl; sym = λ { (eq₁ , eq₂) → sym eq₁ , Het.sym eq₂}; trans = λ { (xeq₁ , xeq₂) (yeq₁ , yeq₂) → trans xeq₁ yeq₁ , Het.trans xeq₂ yeq₂} } ; ∘-resp-≡ = ∘-resp-≡′ } module Groth where open Functor F module Fc {c} where open Category (F₀ c) public open Equiv public open Category C open Equiv module Cat = Category (Categories o′ ℓ′ e′) module Cong {c} where open Congruence (TrivialCongruence (F₀ c)) public open Cong public using () renaming (coerce to coe) module Het {c} = Heterogeneous (TrivialCongruence (F₀ c)) open Het using (▹_) module OHet {c} where open CCat.Heterogeneous (F₀ c) public ohet⇒het : ∀ {A B} {f : A Fc.⇒ B} -> ∀ {X Y} → {g : X Fc.⇒ Y} → f ∼ g -> f Het.∼ g ohet⇒het (≡⇒∼ x) = Het.≡⇒∼ ≣-refl ≣-refl x Obj′ = Σ Obj (\ c -> Category.Obj (F₀ c)) Hom′ : Rel Obj′ _ Hom′ (c₁ , x₁) (c₂ , x₂) = Σ (c₁ ⇒ c₂) (λ f → Functor.F₀ (F₁ f) x₁ Fc.⇒ x₂) _≡′_ : ∀ {X Y} → Rel (Hom′ X Y) _ _≡′_ {c₁ , x₁} {c₂ , x₂} (f , α) (g , β) = f ≡ g × α Het.∼ β _∘′_ : ∀ {X Y Z} → Hom′ Y Z → Hom′ X Y → Hom′ X Z _∘′_ {cx , xx} {Y} {cz , xz} (f , α) (g , β) = (f ∘ g) , α Fc.∘ Cong.coerce (∘-eq F f g) ≣-refl (Functor.F₁ (F₁ f) β) id-eq : ∀ {c x} -> Functor.F₀ (Cat.id {F₀ c}) x ≣ Functor.F₀ (F₁ id) x id-eq {c} {x} = ≣-relevant (≣-sym (≡⇒≣ (F₁ id) Cat.id (identity {c}) x)) id′ : {A : Obj′} → Hom′ A A id′ {c , x} = id , Cong.coerce id-eq ≣-refl Fc.id F-resp-∼ : ∀ {b c} -> (H : Functor (F₀ b) (F₀ c)) -> {A B A' B' : Category.Obj (F₀ b)} {α : A Fc.⇒ B }{β : A' Fc.⇒ B'} → (α Het.∼ β) → (Functor.F₁ H α Het.∼ Functor.F₁ H β) F-resp-∼ H (Heterogeneous.≡⇒∼ ≣-refl ≣-refl x) = Heterogeneous.≡⇒∼ ≣-refl ≣-refl (Functor.F-resp-≡ H x) .identityˡ′ : {A B : Obj′} {f : Hom′ A B} → (id′ ∘′ f) ≡′ f identityˡ′ {ca , xa} {cb , xb} {f , α} = identityˡ , (begin ▹ coe id-eq ≣-refl Fc.id Fc.∘ coe (∘-eq F id f) ≣-refl (Functor.F₁ (F₁ id) α) ↓⟨ Het.∘-resp-∼ (Het.sym (Het.coerce-resp-∼ id-eq ≣-refl)) F₁id[α]~α ⟩ ▹ Fc.id Fc.∘ α ↓⟨ Het.≡⇒∼ ≣-refl ≣-refl Fc.identityˡ ⟩ ▹ α ∎) where open Het.HetReasoning F₁id[α]~α : coe (∘-eq F id f) ≣-refl (Functor.F₁ (F₁ id) α) Het.∼ α F₁id[α]~α = begin ▹ coe (∘-eq F id f) ≣-refl (Functor.F₁ (F₁ id) α) ↑⟨ Het.coerce-resp-∼ (∘-eq F id f) ≣-refl ⟩ ▹ Functor.F₁ (F₁ id) α ↓⟨ OHet.ohet⇒het (identity α) ⟩ ▹ α ∎ .identityʳ′ : {A B : Obj′} {f : Hom′ A B} → (f ∘′ id′) ≡′ f identityʳ′ {ca , xa} {cb , xb} {f , α} = identityʳ , (begin ▹ α Fc.∘ coe (∘-eq F f id) ≣-refl (Functor.F₁ (F₁ f) (coe id-eq ≣-refl Fc.id)) ↓⟨ Het.∘-resp-∼ʳ F₁f[id]~id ⟩ ▹ α Fc.∘ Fc.id ↓⟨ Het.≡⇒∼ ≣-refl ≣-refl Fc.identityʳ ⟩ ▹ α ∎) where open Het.HetReasoning F₁f[id]~id : coe (∘-eq F f id) ≣-refl (Functor.F₁ (F₁ f) (coe id-eq ≣-refl Fc.id)) Het.∼ Fc.id F₁f[id]~id = begin ▹ coe (∘-eq F f id) ≣-refl (Functor.F₁ (F₁ f) (coe id-eq ≣-refl Fc.id)) ↑⟨ Het.coerce-resp-∼ (∘-eq F f id) ≣-refl ⟩ ▹ Functor.F₁ (F₁ f) (coe id-eq ≣-refl Fc.id) ↓⟨ F-resp-∼ (F₁ f) (Het.sym (Het.coerce-resp-∼ id-eq ≣-refl)) ⟩ ▹ Functor.F₁ (F₁ f) (Category.id (F₀ ca)) ↓⟨ Het.≡⇒∼ ≣-refl ≣-refl (Functor.identity (F₁ f)) ⟩ ▹ Fc.id ∎ .assoc′ : {A B C₁ D : Obj′} {f : Hom′ A B} {g : Hom′ B C₁} {h : Hom′ C₁ D} → ((h ∘′ g) ∘′ f) ≡′ (h ∘′ (g ∘′ f)) assoc′ {ca , xa} {cb , xb} {cc , xc} {cd , xd} {f , α} {g , β} {h , γ} = assoc , Het.trans (Het.≡⇒∼ ≣-refl ≣-refl Fc.assoc) (Het.∘-resp-∼ʳ F₁h[β]∘F₁h∘g[α]~F₁h[β∘F₁g[α]]) where open Het.HetReasoning eq : Functor.F₀ (F₁ ((h ∘ g) ∘ f)) xa ≣ Functor.F₀ (F₁ (h ∘ g ∘ f)) xa eq = ≡⇒≣ (F₁ ((h ∘ g) ∘ f)) (F₁ (h ∘ g ∘ f)) (F-resp-≡ (assoc {f = f})) xa F₁h[β]∘F₁h∘g[α]~F₁h[β∘F₁g[α]] : (coe (∘-eq F h g) ≣-refl (Functor.F₁ (F₁ h) β) Fc.∘ coe (∘-eq F (h ∘ g) f) ≣-refl (Functor.F₁ (F₁ (h ∘ g)) α)) Het.∼ (coe (∘-eq F h (g ∘ f)) ≣-refl (Functor.F₁ (F₁ h) (proj₂ ((g , β) ∘′ (f , α))))) F₁h[β]∘F₁h∘g[α]~F₁h[β∘F₁g[α]] = Het.sym (begin ▹ coe (∘-eq F h (g ∘ f)) ≣-refl (Functor.F₁ (F₁ h) (β Fc.∘ coe(∘-eq F g f) ≣-refl (Functor.F₁ (F₁ g) α))) ↑⟨ Het.coerce-resp-∼ (∘-eq F h (g ∘ f)) ≣-refl ⟩ ▹ Functor.F₁ (F₁ h) (β Fc.∘ coe (∘-eq F g f) ≣-refl (Functor.F₁ (F₁ g) α)) ↓⟨ Het.≡⇒∼ ≣-refl ≣-refl (Functor.homomorphism (F₁ h)) ⟩ ▹ Functor.F₁ (F₁ h) β Fc.∘ (Functor.F₁ (F₁ h) (coe (∘-eq F g f) ≣-refl (Functor.F₁ (F₁ g) α))) ↓⟨ Het.∘-resp-∼ (Het.coerce-resp-∼ (∘-eq F h g) ≣-refl) F₁h[β]~F₁h∘g[α] ⟩ ▹ coe (∘-eq F h g) ≣-refl (Functor.F₁ (F₁ h) β) Fc.∘ coe (∘-eq F (h ∘ g) f) ≣-refl (Functor.F₁ (F₁ (h ∘ g)) α) ∎) where F₁h[β]~F₁h∘g[α] : (Functor.F₁ (F₁ h) (coe (∘-eq F g f) ≣-refl (Functor.F₁ (F₁ g) α))) Het.∼ coe (∘-eq F (h ∘ g) f) ≣-refl (Functor.F₁ (F₁ (h ∘ g)) α) F₁h[β]~F₁h∘g[α] = begin ▹ Functor.F₁ (F₁ h) (coe (∘-eq F g f) ≣-refl (Functor.F₁ (F₁ g) α)) ↓⟨ F-resp-∼ (F₁ h) (Het.sym (Het.coerce-resp-∼ (∘-eq F g f) ≣-refl)) ⟩ ▹ Functor.F₁ (F₁ h) (Functor.F₁ (F₁ g) α) ↑⟨ OHet.ohet⇒het (homomorphism α) ⟩ ▹ Functor.F₁ (F₁ (h ∘ g)) α ↓⟨ Het.coerce-resp-∼ (∘-eq F (h ∘ g) f) ≣-refl ⟩ ▹ coe (∘-eq F (h ∘ g) f) ≣-refl (Functor.F₁ (F₁ (h ∘ g)) α) ∎ .∘-resp-≡′ : {A B C₁ : Obj′} {f h : Hom′ B C₁} {g i : Hom′ A B} → f ≡′ h → g ≡′ i → (f ∘′ g) ≡′ (h ∘′ i) ∘-resp-≡′ {a , ax} {b , bx} {c , cx} {f = f , α} {h , η} {g , γ} {i , ι} (f≡h , α~η) (g≡i , γ~ι) = ∘-resp-≡ f≡h g≡i , Het.∘-resp-∼ α~η (begin ▹ coe (∘-eq F f g) ≣-refl (Functor.F₁ (F₁ f) γ) ↑⟨ Het.coerce-resp-∼ (∘-eq F f g) ≣-refl ⟩ ▹ Functor.F₁ (F₁ f) γ ↓⟨ OHet.ohet⇒het (F-resp-≡ f≡h γ) ⟩ ▹ Functor.F₁ (F₁ h) γ ↓⟨ F-resp-∼ (F₁ h) γ~ι ⟩ ▹ Functor.F₁ (F₁ h) ι ↓⟨ Het.coerce-resp-∼ (∘-eq F h i) ≣-refl ⟩ ▹ coe (∘-eq F h i) ≣-refl (Functor.F₁ (F₁ h) ι) ∎) where open Het.HetReasoning Gr = Grothendieck DomGr : ∀ {o ℓ e o′ ℓ′ e′} {C : Category o ℓ e} → (F : Functor C (Categories o′ ℓ′ e′)) → Functor (Grothendieck F) C DomGr {C = C} F = record { F₀ = proj₁; F₁ = proj₁; identity = C.Equiv.refl; homomorphism = C.Equiv.refl; F-resp-≡ = proj₁ } where module C = Category C inGr : ∀ {o ℓ e o′ ℓ′ e′} {C : Category o ℓ e} (F : Functor C (Categories o′ ℓ′ e′)) → ∀ c -> Functor (Functor.F₀ F c) (Gr F) inGr {C = C} F c = record { F₀ = _,_ c; F₁ = λ f → C.id , GrF.coe GrF.id-eq ≣-refl f; identity = Category.Equiv.refl (Grothendieck F); homomorphism = C.Equiv.sym C.identityʳ , Het.trans (Het.sym (Het.coerce-resp-∼ GrF.id-eq ≣-refl)) (Het.∘-resp-∼ (Het.coerce-resp-∼ GrF.id-eq ≣-refl) (Het.trans (Het.trans (Het.coerce-resp-∼ GrF.id-eq ≣-refl) (Het.sym (GrF.OHet.ohet⇒het (F.identity _)))) (Het.coerce-resp-∼ (∘-eq F C.id C.id) ≣-refl))); F-resp-≡ = λ x → C.Equiv.refl , (Het.trans (Het.trans (Het.sym (Het.coerce-resp-∼ GrF.id-eq ≣-refl)) (Heterogeneous.≡⇒∼ ≣-refl ≣-refl x)) (Het.coerce-resp-∼ GrF.id-eq ≣-refl)) } where module C = Category C module F = Functor F module GrF = Groth F open GrF using (module Het; module Cong)
43.299595
155
0.478074
39174043bf8a41d70679e75671305037aaaffd6e
5,207
agda
Agda
test/asset/agda-stdlib-1.0/Codata/Musical/Stream.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
test/asset/agda-stdlib-1.0/Codata/Musical/Stream.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Codata/Musical/Stream.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- Streams ------------------------------------------------------------------------ {-# OPTIONS --without-K --sized-types --guardedness #-} module Codata.Musical.Stream where open import Codata.Musical.Notation open import Codata.Musical.Colist using (Colist; []; _∷_) open import Data.Vec using (Vec; []; _∷_) open import Data.Nat.Base using (ℕ; zero; suc) open import Relation.Binary open import Relation.Binary.PropositionalEquality as P using (_≡_) ------------------------------------------------------------------------ -- The type infixr 5 _∷_ data Stream {a} (A : Set a) : Set a where _∷_ : (x : A) (xs : ∞ (Stream A)) → Stream A {-# FOREIGN GHC data AgdaStream a = Cons a (MAlonzo.RTE.Inf (AgdaStream a)) type AgdaStream' l a = AgdaStream a #-} {-# COMPILE GHC Stream = data AgdaStream' (Cons) #-} ------------------------------------------------------------------------ -- Some operations head : ∀ {a} {A : Set a} → Stream A → A head (x ∷ xs) = x tail : ∀ {a} {A : Set a} → Stream A → Stream A tail (x ∷ xs) = ♭ xs map : ∀ {a b} {A : Set a} {B : Set b} → (A → B) → Stream A → Stream B map f (x ∷ xs) = f x ∷ ♯ map f (♭ xs) zipWith : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} → (A → B → C) → Stream A → Stream B → Stream C zipWith _∙_ (x ∷ xs) (y ∷ ys) = (x ∙ y) ∷ ♯ zipWith _∙_ (♭ xs) (♭ ys) take : ∀ {a} {A : Set a} n → Stream A → Vec A n take zero xs = [] take (suc n) (x ∷ xs) = x ∷ take n (♭ xs) drop : ∀ {a} {A : Set a} → ℕ → Stream A → Stream A drop zero xs = xs drop (suc n) (x ∷ xs) = drop n (♭ xs) repeat : ∀ {a} {A : Set a} → A → Stream A repeat x = x ∷ ♯ repeat x iterate : ∀ {a} {A : Set a} → (A → A) → A → Stream A iterate f x = x ∷ ♯ iterate f (f x) -- Interleaves the two streams. infixr 5 _⋎_ _⋎_ : ∀ {a} {A : Set a} → Stream A → Stream A → Stream A (x ∷ xs) ⋎ ys = x ∷ ♯ (ys ⋎ ♭ xs) mutual -- Takes every other element from the stream, starting with the -- first one. evens : ∀ {a} {A : Set a} → Stream A → Stream A evens (x ∷ xs) = x ∷ ♯ odds (♭ xs) -- Takes every other element from the stream, starting with the -- second one. odds : ∀ {a} {A : Set a} → Stream A → Stream A odds (x ∷ xs) = evens (♭ xs) toColist : ∀ {a} {A : Set a} → Stream A → Colist A toColist (x ∷ xs) = x ∷ ♯ toColist (♭ xs) lookup : ∀ {a} {A : Set a} → ℕ → Stream A → A lookup zero (x ∷ xs) = x lookup (suc n) (x ∷ xs) = lookup n (♭ xs) infixr 5 _++_ _++_ : ∀ {a} {A : Set a} → Colist A → Stream A → Stream A [] ++ ys = ys (x ∷ xs) ++ ys = x ∷ ♯ (♭ xs ++ ys) ------------------------------------------------------------------------ -- Equality and other relations -- xs ≈ ys means that xs and ys are equal. infix 4 _≈_ data _≈_ {a} {A : Set a} : Stream A → Stream A → Set a where _∷_ : ∀ {x y xs ys} (x≡ : x ≡ y) (xs≈ : ∞ (♭ xs ≈ ♭ ys)) → x ∷ xs ≈ y ∷ ys -- x ∈ xs means that x is a member of xs. infix 4 _∈_ data _∈_ {a} {A : Set a} : A → Stream A → Set a where here : ∀ {x xs} → x ∈ x ∷ xs there : ∀ {x y xs} (x∈xs : x ∈ ♭ xs) → x ∈ y ∷ xs -- xs ⊑ ys means that xs is a prefix of ys. infix 4 _⊑_ data _⊑_ {a} {A : Set a} : Colist A → Stream A → Set a where [] : ∀ {ys} → [] ⊑ ys _∷_ : ∀ x {xs ys} (p : ∞ (♭ xs ⊑ ♭ ys)) → x ∷ xs ⊑ x ∷ ys ------------------------------------------------------------------------ -- Some proofs setoid : ∀ {a} → Set a → Setoid _ _ setoid A = record { Carrier = Stream A ; _≈_ = _≈_ {A = A} ; isEquivalence = record { refl = refl ; sym = sym ; trans = trans } } where refl : Reflexive _≈_ refl {_ ∷ _} = P.refl ∷ ♯ refl sym : Symmetric _≈_ sym (x≡ ∷ xs≈) = P.sym x≡ ∷ ♯ sym (♭ xs≈) trans : Transitive _≈_ trans (x≡ ∷ xs≈) (y≡ ∷ ys≈) = P.trans x≡ y≡ ∷ ♯ trans (♭ xs≈) (♭ ys≈) head-cong : ∀ {a} {A : Set a} {xs ys : Stream A} → xs ≈ ys → head xs ≡ head ys head-cong (x≡ ∷ _) = x≡ tail-cong : ∀ {a} {A : Set a} {xs ys : Stream A} → xs ≈ ys → tail xs ≈ tail ys tail-cong (_ ∷ xs≈) = ♭ xs≈ map-cong : ∀ {a b} {A : Set a} {B : Set b} (f : A → B) {xs ys} → xs ≈ ys → map f xs ≈ map f ys map-cong f (x≡ ∷ xs≈) = P.cong f x≡ ∷ ♯ map-cong f (♭ xs≈) zipWith-cong : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} (_∙_ : A → B → C) {xs xs′ ys ys′} → xs ≈ xs′ → ys ≈ ys′ → zipWith _∙_ xs ys ≈ zipWith _∙_ xs′ ys′ zipWith-cong _∙_ (x≡ ∷ xs≈) (y≡ ∷ ys≈) = P.cong₂ _∙_ x≡ y≡ ∷ ♯ zipWith-cong _∙_ (♭ xs≈) (♭ ys≈) infixr 5 _⋎-cong_ _⋎-cong_ : ∀ {a} {A : Set a} {xs xs′ ys ys′ : Stream A} → xs ≈ xs′ → ys ≈ ys′ → xs ⋎ ys ≈ xs′ ⋎ ys′ (x ∷ xs≈) ⋎-cong ys≈ = x ∷ ♯ (ys≈ ⋎-cong ♭ xs≈) ------------------------------------------------------------------------ -- Legacy import Codata.Stream as S open import Codata.Thunk import Size module _ {a} {A : Set a} where fromMusical : ∀ {i} → Stream A → S.Stream A i fromMusical (x ∷ xs) = x S.∷ λ where .force → fromMusical (♭ xs) toMusical : S.Stream A Size.∞ → Stream A toMusical (x S.∷ xs) = x ∷ ♯ toMusical (xs .force)
28.453552
78
0.459574
0b9f1c284565ff4bae82b4696351fe1a6c9b4c95
1,845
agda
Agda
Univalence/Obsolete/SubstLemmas.agda
JacquesCarette/pi-dual
003835484facfde0b770bc2b3d781b42b76184c1
[ "BSD-2-Clause" ]
14
2015-08-18T21:40:15.000Z
2021-05-05T01:07:57.000Z
Univalence/Obsolete/SubstLemmas.agda
JacquesCarette/pi-dual
003835484facfde0b770bc2b3d781b42b76184c1
[ "BSD-2-Clause" ]
4
2018-06-07T16:27:41.000Z
2021-10-29T20:41:23.000Z
Univalence/Obsolete/SubstLemmas.agda
JacquesCarette/pi-dual
003835484facfde0b770bc2b3d781b42b76184c1
[ "BSD-2-Clause" ]
3
2016-05-29T01:56:33.000Z
2019-09-10T09:47:13.000Z
{-# OPTIONS --without-K #-} module SubstLemmas where open import Level using (Level) open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans; subst; cong₂) open import Data.Nat using (ℕ; _+_; _*_) ------------------------------------------------------------------------------ -- Lemmas about subst (and a couple about trans) subst-dist : {a b : Level} {A : Set a} {B : A → Set b} (f : {x : A} → B x → B x → B x) → {x₁ x₂ : A} → (x₂≡x₁ : x₂ ≡ x₁) → (v₁ v₂ : B x₂) → subst B x₂≡x₁ (f v₁ v₂) ≡ f (subst B x₂≡x₁ v₁) (subst B x₂≡x₁ v₂) subst-dist f refl v₁ v₂ = refl subst-trans : {a b : Level} {A : Set a} {B : A → Set b} {x₁ x₂ x₃ : A} → (x₂≡x₁ : x₂ ≡ x₁) → (x₃≡x₂ : x₃ ≡ x₂) → (v : B x₃) → subst B x₂≡x₁ (subst B x₃≡x₂ v) ≡ subst B (trans x₃≡x₂ x₂≡x₁) v subst-trans refl refl v = refl subst₂+ : {b : Level} {B : ℕ → Set b} {x₁ x₂ x₃ x₄ : ℕ} → (x₂≡x₁ : x₂ ≡ x₁) → (x₄≡x₃ : x₄ ≡ x₃) → (v₁ : B x₂) → (v₂ : B x₄) → (f : {x₁ x₂ : ℕ} → B x₁ → B x₂ → B (x₁ + x₂)) → subst B (cong₂ _+_ x₂≡x₁ x₄≡x₃) (f v₁ v₂) ≡ f (subst B x₂≡x₁ v₁) (subst B x₄≡x₃ v₂) subst₂+ refl refl v₁ v₂ f = refl subst₂* : {b : Level} {B : ℕ → Set b} {x₁ x₂ x₃ x₄ : ℕ} → (x₂≡x₁ : x₂ ≡ x₁) → (x₄≡x₃ : x₄ ≡ x₃) → (v₁ : B x₂) → (v₂ : B x₄) → (f : {x₁ x₂ : ℕ} → B x₁ → B x₂ → B (x₁ * x₂)) → subst B (cong₂ _*_ x₂≡x₁ x₄≡x₃) (f v₁ v₂) ≡ f (subst B x₂≡x₁ v₁) (subst B x₄≡x₃ v₂) subst₂* refl refl v₁ v₂ f = refl trans-syml : {A : Set} {x y : A} → (p : x ≡ y) → trans (sym p) p ≡ refl trans-syml refl = refl trans-symr : {A : Set} {x y : A} → (p : x ≡ y) → trans p (sym p) ≡ refl trans-symr refl = refl subst-subst : {a b : Level} {A : Set a} {B : A → Set b} {x y : A} → (eq : x ≡ y) → (eq' : y ≡ x) → (irr : sym eq ≡ eq') → (v : B y) → subst B eq (subst B eq' v) ≡ v subst-subst refl .refl refl v = refl
36.176471
79
0.499187
41f62ef709d3b05ef63a8bf2b20616547562bc5d
496
agda
Agda
Cubical/Categories/Instances/TypePrecategory.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
1
2022-03-05T00:29:41.000Z
2022-03-05T00:29:41.000Z
Cubical/Categories/Instances/TypePrecategory.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
Cubical/Categories/Instances/TypePrecategory.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
{-# OPTIONS --safe #-} module Cubical.Categories.Instances.TypePrecategory where open import Cubical.Foundations.Prelude open import Cubical.Categories.Category.Precategory open Precategory -- TYPE precategory has types as objects module _ ℓ where TYPE : Precategory (ℓ-suc ℓ) ℓ TYPE .ob = Type ℓ TYPE .Hom[_,_] A B = A → B TYPE .id = λ x → x TYPE ._⋆_ f g = λ x → g (f x) TYPE .⋆IdL f = refl TYPE .⋆IdR f = refl TYPE .⋆Assoc f g h = refl
24.8
57
0.627016
39cdf6005bd27621b0f7ee0cc918f49e691b5df9
2,319
agda
Agda
Categories/Morphism.agda
rei1024/agda-categories
89d163f72caa7deeac9413f27bc1b4ed7f9e025b
[ "MIT" ]
null
null
null
Categories/Morphism.agda
rei1024/agda-categories
89d163f72caa7deeac9413f27bc1b4ed7f9e025b
[ "MIT" ]
null
null
null
Categories/Morphism.agda
rei1024/agda-categories
89d163f72caa7deeac9413f27bc1b4ed7f9e025b
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} {- Properties and definitions regarding Morphisms of a category: - Monomorphism - Epimorphism - Isomorphism - (object) equivalence ('spelled' _≅_ ). Exported as the module ≅ -} open import Categories.Category module Categories.Morphism {o ℓ e} (𝒞 : Category o ℓ e) where open import Level open import Relation.Binary hiding (_⇒_) open import Categories.Morphism.Reasoning.Core 𝒞 open Category 𝒞 private variable A B C : Obj Mono : ∀ (f : A ⇒ B) → Set (o ⊔ ℓ ⊔ e) Mono {A = A} f = ∀ {C} → (g₁ g₂ : C ⇒ A) → f ∘ g₁ ≈ f ∘ g₂ → g₁ ≈ g₂ Epi : ∀ (f : A ⇒ B) → Set (o ⊔ ℓ ⊔ e) Epi {B = B} f = ∀ {C} → (g₁ g₂ : B ⇒ C) → g₁ ∘ f ≈ g₂ ∘ f → g₁ ≈ g₂ record Iso (from : A ⇒ B) (to : B ⇒ A) : Set e where field isoˡ : to ∘ from ≈ id isoʳ : from ∘ to ≈ id infix 4 _≅_ record _≅_ (A B : Obj) : Set (ℓ ⊔ e) where field from : A ⇒ B to : B ⇒ A iso : Iso from to open Iso iso public -- don't pollute the name space too much private ≅-refl : Reflexive _≅_ ≅-refl = record { from = id ; to = id ; iso = record { isoˡ = identityˡ ; isoʳ = identityʳ } } ≅-sym : Symmetric _≅_ ≅-sym A≅B = record { from = to ; to = from ; iso = record { isoˡ = isoʳ ; isoʳ = isoˡ } } where open _≅_ A≅B ≅-trans : Transitive _≅_ ≅-trans A≅B B≅C = record { from = from B≅C ∘ from A≅B ; to = to A≅B ∘ to B≅C ; iso = record { isoˡ = begin (to A≅B ∘ to B≅C) ∘ from B≅C ∘ from A≅B ≈⟨ cancelInner (isoˡ B≅C) ⟩ to A≅B ∘ from A≅B ≈⟨ isoʳ (≅-sym A≅B) ⟩ id ∎ ; isoʳ = begin (from B≅C ∘ from A≅B) ∘ to A≅B ∘ to B≅C ≈⟨ cancelInner (isoʳ A≅B) ⟩ from B≅C ∘ to B≅C ≈⟨ isoˡ (≅-sym B≅C) ⟩ id ∎ } } where open _≅_ open HomReasoning open Equiv ≅-isEquivalence : IsEquivalence _≅_ ≅-isEquivalence = record { refl = ≅-refl ; sym = ≅-sym ; trans = ≅-trans } -- But make accessing it easy: module ≅ = IsEquivalence ≅-isEquivalence ≅-setoid : Setoid _ _ ≅-setoid = record { Carrier = Obj ; _≈_ = _≅_ ; isEquivalence = ≅-isEquivalence }
22.514563
75
0.499784
29197dd72afd681d132a35c9cc34bef69b0dceec
3,145
agda
Agda
homotopy/HopfJunior.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
1
2021-06-30T00:17:55.000Z
2021-06-30T00:17:55.000Z
homotopy/HopfJunior.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
null
null
null
homotopy/HopfJunior.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} open import HoTT module homotopy.HopfJunior where -- We define the negation function and prove that it’s an equivalence not : Bool → Bool not true = false not false = true not-not : (b : Bool) → not (not b) == b not-not true = idp not-not false = idp not-equiv : Bool ≃ Bool not-equiv = equiv not not not-not not-not -- Definition of the junior Hopf fibration module HopfJunior = S¹RecType Bool not-equiv open HopfJunior using (module Wt; Wt; cct; ppt; flattening-S¹) HopfJunior : S¹ → Type₀ HopfJunior = HopfJunior.f -- We get that the total space is the type Wt defined in the flattening lemma. tot-is-Wt : Σ S¹ HopfJunior == Wt tot-is-Wt = flattening-S¹ -- Now we prove that Wt is equivalent to S¹ private -- Map from [Wt] to [S¹] to-cct : Unit × Bool → S¹ to-cct _ = base to-ppt : (x : Unit × Bool) → to-cct x == to-cct x to-ppt (_ , true) = loop to-ppt (_ , false) = idp module To = Wt.Rec to-cct to-ppt to : Wt → S¹ to = To.f -- Map from [S¹] to [Wt] from-base : Wt from-base = cct tt true from-loop : from-base == from-base from-loop = ppt tt true ∙ ppt tt false module From = S¹Rec from-base from-loop from : S¹ → Wt from = From.f -- First composite abstract to-from : (x : S¹) → to (from x) == x to-from = S¹-elim idp (↓-∘=idf-in to from (ap to (ap from loop) =⟨ From.loop-β |in-ctx ap to ⟩ ap to (ppt tt true ∙ ppt tt false) =⟨ ap-∙ to (ppt tt true) (ppt tt false) ⟩ ap to (ppt tt true) ∙ ap to (ppt tt false) =⟨ To.pp-β (tt , true) |in-ctx (λ u → u ∙ ap to (ppt tt false)) ⟩ loop ∙ ap to (ppt tt false) =⟨ To.pp-β (tt , false) |in-ctx (λ u → loop ∙ u) ⟩ loop ∙ idp =⟨ ∙-unit-r loop ⟩ loop ∎)) -- Second composite from-to-cct : (b : Bool) → from (to (cct tt b)) == cct tt b from-to-cct true = idp from-to-cct false = ! (ppt tt false) abstract from-to-ppt : (b : Bool) → ap from (ap to (ppt tt b)) ∙' from-to-cct (not b) == from-to-cct b ∙ ppt tt b from-to-ppt true = ap from (ap to (ppt tt true)) ∙' ! (ppt tt false) =⟨ To.pp-β (tt , true) |in-ctx (λ u → ap from u ∙' ! (ppt tt false)) ⟩ ap from loop ∙' ! (ppt tt false) =⟨ From.loop-β |in-ctx (λ u → u ∙' ! (ppt tt false)) ⟩ (ppt tt true ∙ ppt tt false) ∙' ! (ppt tt false) =⟨ lemma (ppt tt true) (ppt tt false) ⟩ ppt tt true ∎ where lemma : ∀ {i} {A : Type i} {a b c : A} (p : a == b) (q : b == c) → (p ∙ q) ∙' (! q) == p lemma idp idp = idp from-to-ppt false = ap from (ap to (ppt tt false)) =⟨ To.pp-β (tt , false) |in-ctx ap from ⟩ ap from (idp {a = base}) =⟨ ! (!-inv-l (ppt tt false)) ⟩ ! (ppt tt false) ∙ ppt tt false ∎ from-to : (x : Wt) → from (to x) == x from-to = Wt.elim (from-to-cct ∘ snd) (λ b → ↓-∘=idf-in from to (from-to-ppt (snd b))) -- Conclusion subresult : Wt ≃ S¹ subresult = equiv to from to-from from-to -- Conclusion result : Σ S¹ HopfJunior ≃ S¹ result = subresult ∘e (coe-equiv tot-is-Wt)
31.767677
126
0.553577