hexsha
stringlengths
40
40
size
int64
3
1.05M
ext
stringclasses
163 values
lang
stringclasses
53 values
max_stars_repo_path
stringlengths
3
945
max_stars_repo_name
stringlengths
4
112
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
float64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
945
max_issues_repo_name
stringlengths
4
113
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
float64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
945
max_forks_repo_name
stringlengths
4
113
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
float64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.05M
avg_line_length
float64
1
966k
max_line_length
int64
1
977k
alphanum_fraction
float64
0
1
a160e08b22d4041f49aecbd6ced76f02cf860dda
17,297
agda
Agda
src/GenericElim/Desc.agda
larrytheliquid/generic-elim
832383d7adf37aa2364213fb0aeb67e9f61a248f
[ "MIT" ]
11
2015-06-02T14:05:20.000Z
2021-09-09T08:46:42.000Z
src/GenericElim/Desc.agda
larrytheliquid/generic-elim
832383d7adf37aa2364213fb0aeb67e9f61a248f
[ "MIT" ]
null
null
null
src/GenericElim/Desc.agda
larrytheliquid/generic-elim
832383d7adf37aa2364213fb0aeb67e9f61a248f
[ "MIT" ]
2
2016-05-02T08:56:15.000Z
2022-03-12T11:31:22.000Z
{-# OPTIONS --type-in-type #-} open import Data.Unit open import Data.Product hiding ( curry ; uncurry ) open import Data.List hiding ( concat ) open import Data.String open import Relation.Binary.PropositionalEquality open import Function module GenericElim.Desc where ---------------------------------------------------------------------- Label : Set Label = String Enum : Set Enum = List Label data Tag : Enum → Set where here : ∀{l E} → Tag (l ∷ E) there : ∀{l E} → Tag E → Tag (l ∷ E) Branches : (E : Enum) (P : Tag E → Set) → Set Branches [] P = ⊤ Branches (l ∷ E) P = P here × Branches E (λ t → P (there t)) case : {E : Enum} (P : Tag E → Set) (cs : Branches E P) (t : Tag E) → P t case P (c , cs) here = c case P (c , cs) (there t) = case (λ t → P (there t)) cs t UncurriedBranches : (E : Enum) (P : Tag E → Set) (X : Set) → Set UncurriedBranches E P X = Branches E P → X CurriedBranches : (E : Enum) (P : Tag E → Set) (X : Set) → Set CurriedBranches [] P X = X CurriedBranches (l ∷ E) P X = P here → CurriedBranches E (λ t → P (there t)) X curryBranches : {E : Enum} {P : Tag E → Set} {X : Set} → UncurriedBranches E P X → CurriedBranches E P X curryBranches {[]} f = f tt curryBranches {l ∷ E} f = λ c → curryBranches (λ cs → f (c , cs)) uncurryBranches : {E : Enum} {P : Tag E → Set} {X : Set} → CurriedBranches E P X → UncurriedBranches E P X uncurryBranches {[]} x tt = x uncurryBranches {l ∷ E} f (c , cs) = uncurryBranches (f c) cs ---------------------------------------------------------------------- data Desc (I : Set) : Set₁ where End : (i : I) → Desc I Rec : (i : I) (D : Desc I) → Desc I Arg : (A : Set) (B : A → Desc I) → Desc I ISet : Set → Set₁ ISet I = I → Set El : {I : Set} (D : Desc I) → ISet I → ISet I El (End j) X i = j ≡ i El (Rec j D) X i = X j × El D X i El (Arg A B) X i = Σ A (λ a → El (B a) X i) Hyps : {I : Set} (D : Desc I) (X : ISet I) (P : (i : I) → X i → Set) (i : I) (xs : El D X i) → Set Hyps (End j) X P i q = ⊤ Hyps (Rec j D) X P i (x , xs) = P j x × Hyps D X P i xs Hyps (Arg A B) X P i (a , b) = Hyps (B a) X P i b ---------------------------------------------------------------------- BranchesD : (I : Set) (E : Enum) → Set BranchesD I E = Branches E (λ _ → Desc I) caseD : {I : Set} {E : Enum} (cs : BranchesD I E) (t : Tag E) → Desc I caseD = case (λ _ → Desc _) ---------------------------------------------------------------------- UncurriedEl : {I : Set} (D : Desc I) (X : ISet I) → Set UncurriedEl D X = ∀{i} → El D X i → X i CurriedEl : {I : Set} (D : Desc I) (X : ISet I) → Set CurriedEl (End i) X = X i CurriedEl (Rec i D) X = (x : X i) → CurriedEl D X CurriedEl (Arg A B) X = (a : A) → CurriedEl (B a) X CurriedEl' : {I : Set} (D : Desc I) (X : ISet I) (i : I) → Set CurriedEl' (End j) X i = j ≡ i → X i CurriedEl' (Rec j D) X i = (x : X j) → CurriedEl' D X i CurriedEl' (Arg A B) X i = (a : A) → CurriedEl' (B a) X i curryEl : {I : Set} (D : Desc I) (X : ISet I) → UncurriedEl D X → CurriedEl D X curryEl (End i) X cn = cn refl curryEl (Rec i D) X cn = λ x → curryEl D X (λ xs → cn (x , xs)) curryEl (Arg A B) X cn = λ a → curryEl (B a) X (λ xs → cn (a , xs)) uncurryEl : {I : Set} (D : Desc I) (X : ISet I) → CurriedEl D X → UncurriedEl D X uncurryEl (End i) X cn refl = cn uncurryEl (Rec i D) X cn (x , xs) = uncurryEl D X (cn x) xs uncurryEl (Arg A B) X cn (a , xs) = uncurryEl (B a) X (cn a) xs ---------------------------------------------------------------------- UncurriedHyps : {I : Set} (D : Desc I) (X : ISet I) (P : (i : I) → X i → Set) (cn : UncurriedEl D X) → Set UncurriedHyps D X P cn = ∀ i (xs : El D X i) (ihs : Hyps D X P i xs) → P i (cn xs) CurriedHyps : {I : Set} (D : Desc I) (X : ISet I) (P : (i : I) → X i → Set) (cn : UncurriedEl D X) → Set CurriedHyps (End i) X P cn = P i (cn refl) CurriedHyps (Rec i D) X P cn = (x : X i) → P i x → CurriedHyps D X P (λ xs → cn (x , xs)) CurriedHyps (Arg A B) X P cn = (a : A) → CurriedHyps (B a) X P (λ xs → cn (a , xs)) CurriedHyps' : {I : Set} (D : Desc I) (X : ISet I) (P : (i : I) → X i → Set) (i : I) (cn : El D X i → X i) → Set CurriedHyps' (End j) X P i cn = (q : j ≡ i) → P i (cn q) CurriedHyps' (Rec j D) X P i cn = (x : X j) → P j x → CurriedHyps' D X P i (λ xs → cn (x , xs)) CurriedHyps' (Arg A B) X P i cn = (a : A) → CurriedHyps' (B a) X P i (λ xs → cn (a , xs)) curryHyps : {I : Set} (D : Desc I) (X : ISet I) (P : (i : I) → X i → Set) (cn : UncurriedEl D X) → UncurriedHyps D X P cn → CurriedHyps D X P cn curryHyps (End i) X P cn pf = pf i refl tt curryHyps (Rec i D) X P cn pf = λ x ih → curryHyps D X P (λ xs → cn (x , xs)) (λ i xs ihs → pf i (x , xs) (ih , ihs)) curryHyps (Arg A B) X P cn pf = λ a → curryHyps (B a) X P (λ xs → cn (a , xs)) (λ i xs ihs → pf i (a , xs) ihs) uncurryHyps : {I : Set} (D : Desc I) (X : ISet I) (P : (i : I) → X i → Set) (cn : UncurriedEl D X) → CurriedHyps D X P cn → UncurriedHyps D X P cn uncurryHyps (End .i) X P cn pf i refl tt = pf uncurryHyps (Rec j D) X P cn pf i (x , xs) (ih , ihs) = uncurryHyps D X P (λ ys → cn (x , ys)) (pf x ih) i xs ihs uncurryHyps (Arg A B) X P cn pf i (a , xs) ihs = uncurryHyps (B a) X P (λ ys → cn (a , ys)) (pf a) i xs ihs ---------------------------------------------------------------------- data μ {I : Set} (D : Desc I) : ISet I where init : UncurriedEl D (μ D) inj : {I : Set} (D : Desc I) → CurriedEl D (μ D) inj D = curryEl D (μ D) init ---------------------------------------------------------------------- ind : {I : Set} (D : Desc I) (P : (i : I) → μ D i → Set) (α : UncurriedHyps D (μ D) P init) (i : I) (x : μ D i) → P i x hyps : {I : Set} (D₁ : Desc I) (P : (i : I) → μ D₁ i → Set) (α : UncurriedHyps D₁ (μ D₁) P init) (D₂ : Desc I) (i : I) (xs : El D₂ (μ D₁) i) → Hyps D₂ (μ D₁) P i xs ind D P α i (init xs) = α i xs (hyps D P α D i xs) hyps D P α (End j) i q = tt hyps D P α (Rec j A) i (x , xs) = ind D P α j x , hyps D P α A i xs hyps D P α (Arg A B) i (a , b) = hyps D P α (B a) i b ---------------------------------------------------------------------- indCurried : {I : Set} (D : Desc I) (P : (i : I) → μ D i → Set) (f : CurriedHyps D (μ D) P init) (i : I) (x : μ D i) → P i x indCurried D P f i x = ind D P (uncurryHyps D (μ D) P init f) i x Summer : {I : Set} (E : Enum) (C : Tag E → Desc I) → let D = Arg (Tag E) C in (X : ISet I) (cn : UncurriedEl D X) (P : (i : I) → X i → Set) → Tag E → Set Summer E C X cn P t = let D = Arg (Tag E) C in CurriedHyps (C t) X P (λ xs → cn (t , xs)) SumCurriedHyps : {I : Set} (E : Enum) (C : Tag E → Desc I) → let D = Arg (Tag E) C in (P : (i : I) → μ D i → Set) → Tag E → Set SumCurriedHyps E C P t = let D = Arg (Tag E) C in Summer E C (μ D) init P t elimUncurried : {I : Set} (E : Enum) (C : Tag E → Desc I) → let D = Arg (Tag E) C in (P : (i : I) → μ D i → Set) → Branches E (SumCurriedHyps E C P) → (i : I) (x : μ D i) → P i x elimUncurried E C P cs i x = let D = Arg (Tag E) C in indCurried D P (case (SumCurriedHyps E C P) cs) i x elim : {I : Set} (E : Enum) (C : Tag E → Desc I) → let D = Arg (Tag E) C in (P : (i : I) → μ D i → Set) → CurriedBranches E (SumCurriedHyps E C P) ((i : I) (x : μ D i) → P i x) elim E C P = curryBranches (elimUncurried E C P) ---------------------------------------------------------------------- Soundness : Set₁ Soundness = {I : Set} (E : Enum) (C : Tag E → Desc I) → let D = Arg (Tag E) C in (P : (i : I) → μ D i → Set) (cs : Branches E (SumCurriedHyps E C P)) (i : I) (x : μ D i) → ∃ λ α → elimUncurried E C P cs i x ≡ ind D P α i x sound : Soundness sound E C P cs i x = let D = Arg (Tag E) C in (uncurryHyps D (μ D) P init (case (SumCurriedHyps E C P) cs)) , refl Completeness : Set₁ Completeness = {I : Set} (E : Enum) (C : Tag E → Desc I) → let D = Arg (Tag E) C in (P : (i : I) → μ D i → Set) (α : UncurriedHyps D (μ D) P init) (i : I) (x : μ D i) → ∃ λ cs → ind D P α i x ≡ elimUncurried E C P cs i x uncurryHypsIdent : {I : Set} (D : Desc I) (X : ISet I) (P : (i : I) → X i → Set) (cn : UncurriedEl D X) (α : UncurriedHyps D X P cn) (i : I) (xs : El D X i) (ihs : Hyps D X P i xs) → α i xs ihs ≡ uncurryHyps D X P cn (curryHyps D X P cn α) i xs ihs uncurryHypsIdent (End .i) X P cn α i refl tt = refl uncurryHypsIdent (Rec j D) X P cn α i (x , xs) (p , ps) = uncurryHypsIdent D X P (λ xs → cn (x , xs)) (λ k ys rs → α k (x , ys) (p , rs)) i xs ps uncurryHypsIdent (Arg A B) X P cn α i (a , xs) ps = uncurryHypsIdent (B a) X P (λ xs → cn (a , xs)) (λ j ys → α j (a , ys)) i xs ps postulate ext3 : {A : Set} {B : A → Set} {C : (a : A) → B a → Set} {Z : (a : A) (b : B a) → C a b → Set} (f g : (a : A) (b : B a) (c : C a b) → Z a b c) → ((a : A) (b : B a) (c : C a b) → f a b c ≡ g a b c) → f ≡ g toBranches : {I : Set} (E : Enum) (C : Tag E → Desc I) → let D = Arg (Tag E) C in (X : ISet I) (cn : UncurriedEl D X) (P : (i : I) → X i → Set) (α : UncurriedHyps D X P cn) → Branches E (Summer E C X cn P) toBranches [] C X cn P α = tt toBranches (l ∷ E) C X cn P α = curryHyps (C here) X P (λ xs → cn (here , xs)) (λ i xs → α i (here , xs)) , toBranches E (λ t → C (there t)) X (λ xs → cn (there (proj₁ xs) , proj₂ xs)) P (λ i xs ih → α i (there (proj₁ xs) , proj₂ xs) ih) ToBranches : {I : Set} {E : Enum} (C : Tag E → Desc I) → let D = Arg (Tag E) C in (X : ISet I) (cn : UncurriedEl D X) (P : (i : I) → X i → Set) (α : UncurriedHyps D X P cn) (t : Tag E) → let β = toBranches E C X cn P α in case (Summer E C X cn P) β t ≡ curryHyps D X P cn α t ToBranches C X cn P α here = refl ToBranches C X cn P α (there t) with ToBranches (λ t → C (there t)) X (λ xs → cn (there (proj₁ xs) , proj₂ xs)) P (λ i xs ih → α i (there (proj₁ xs) , proj₂ xs) ih) t ... | ih rewrite ih = refl completeα : {I : Set} (E : Enum) (C : Tag E → Desc I) → let D = Arg (Tag E) C in (P : (i : I) → μ D i → Set) (α : UncurriedHyps D (μ D) P init) (i : I) (xs : El D (μ D) i) (ihs : Hyps D (μ D) P i xs) → let β = toBranches E C (μ D) init P α in α i xs ihs ≡ uncurryHyps D (μ D) P init (case (SumCurriedHyps E C P) β) i xs ihs completeα E C P α i (t , xs) ihs with ToBranches C (μ D) init P α t where D = Arg (Tag E) C ... | q rewrite q = uncurryHypsIdent D (μ D) P init α i (t , xs) ihs where D = Arg (Tag E) C complete' : {I : Set} (E : Enum) (C : Tag E → Desc I) → let D = Arg (Tag E) C in (P : (i : I) → μ D i → Set) (α : UncurriedHyps D (μ D) P init) (i : I) (x : μ D i) → let β = toBranches E C (μ D) init P α in ind D P α i x ≡ elimUncurried E C P β i x complete' E C P α i (init (t , xs)) = cong (λ f → ind D P f i (init (t , xs))) (ext3 α (uncurryHyps D (μ D) P init (case (SumCurriedHyps E C P) β)) (completeα E C P α)) where D = Arg (Tag E) C β = toBranches E C (μ D) init P α complete : Completeness complete E C P α i x = let D = Arg (Tag E) C in toBranches E C (μ D) init P α , complete' E C P α i x ---------------------------------------------------------------------- ℕE : Enum ℕE = "zero" ∷ "suc" ∷ [] VecE : Enum VecE = "nil" ∷ "cons" ∷ [] ℕT : Set ℕT = Tag ℕE VecT : Set VecT = Tag VecE zeroT : ℕT zeroT = here sucT : ℕT sucT = there here nilT : VecT nilT = here consT : VecT consT = there here ℕC : ℕT → Desc ⊤ ℕC = caseD $ End tt , Rec tt (End tt) , tt ℕD : Desc ⊤ ℕD = Arg ℕT ℕC ℕ : ⊤ → Set ℕ = μ ℕD zero : ℕ tt zero = init (zeroT , refl) suc : ℕ tt → ℕ tt suc n = init (sucT , n , refl) VecC : (A : Set) → VecT → Desc (ℕ tt) VecC A = caseD $ End zero , Arg (ℕ tt) (λ n → Arg A λ _ → Rec n (End (suc n))) , tt nilD : (A : Set) → Desc (ℕ tt) nilD A = End zero consD : (A : Set) → Desc (ℕ tt) consD A = Arg (ℕ tt) (λ n → Arg A (λ _ → Rec n (End (suc n)))) VecD : (A : Set) → Desc (ℕ tt) VecD A = Arg VecT (VecC A) Vec : (A : Set) → ℕ tt → Set Vec A = μ (VecD A) NilEl : (A : Set) (n : ℕ tt) → Set NilEl A n = El (nilD A) (Vec A) n ConsEl : (A : Set) → ℕ tt → Set ConsEl A n = El (consD A) (Vec A) n VecEl : (A : Set) → ℕ tt → Set VecEl A n = El (VecD A) (Vec A) n NilHyps : (A : Set) (P : (n : ℕ tt) → Vec A n → Set) (n : ℕ tt) (xs : NilEl A n) → Set NilHyps A P n xs = Hyps (nilD A) (Vec A) P n xs ConsHyps : (A : Set) (P : (n : ℕ tt) → Vec A n → Set) (n : ℕ tt) (xs : ConsEl A n) → Set ConsHyps A P n xs = Hyps (consD A) (Vec A) P n xs VecHyps : (A : Set) (P : (n : ℕ tt) → Vec A n → Set) (n : ℕ tt) (xs : VecEl A n) → Set VecHyps A P n xs = Hyps (VecD A) (Vec A) P n xs ConsUncurriedHyps : (A : Set) (P : (n : ℕ tt) → Vec A n → Set) (cn : UncurriedEl (consD A) (Vec A)) → Set ConsUncurriedHyps A P cn = UncurriedHyps (consD A) (Vec A) P cn nil : (A : Set) → Vec A zero nil A = init (nilT , refl) cons : (A : Set) (n : ℕ tt) (x : A) (xs : Vec A n) → Vec A (suc n) cons A n x xs = init (consT , n , x , xs , refl) nil2 : (A : Set) → Vec A zero nil2 A = inj (VecD A) nilT cons2 : (A : Set) (n : ℕ tt) (x : A) (xs : Vec A n) → Vec A (suc n) cons2 A = inj (VecD A) consT ---------------------------------------------------------------------- module Induction where add : ℕ tt → ℕ tt → ℕ tt add = ind ℕD (λ _ _ → ℕ tt → ℕ tt) (λ u t,c → case (λ t → (c : El (ℕC t) ℕ u) (ih : Hyps ℕD ℕ (λ u n → ℕ u → ℕ u) u (t , c)) → ℕ u → ℕ u ) ( (λ q ih n → n) , (λ m,q ih,tt n → suc (proj₁ ih,tt n)) , tt ) (proj₁ t,c) (proj₂ t,c) ) tt mult : ℕ tt → ℕ tt → ℕ tt mult = ind ℕD (λ _ _ → ℕ tt → ℕ tt) (λ u t,c → case (λ t → (c : El (ℕC t) ℕ u) (ih : Hyps ℕD ℕ (λ u n → ℕ u → ℕ u) u (t , c)) → ℕ u → ℕ u ) ( (λ q ih n → zero) , (λ m,q ih,tt n → add n (proj₁ ih,tt n)) , tt ) (proj₁ t,c) (proj₂ t,c) ) tt append : (A : Set) (m : ℕ tt) (xs : Vec A m) (n : ℕ tt) (ys : Vec A n) → Vec A (add m n) append A = ind (VecD A) (λ m xs → (n : ℕ tt) (ys : Vec A n) → Vec A (add m n)) (λ m t,c → case (λ t → (c : El (VecC A t) (Vec A) m) (ih : Hyps (VecD A) (Vec A) (λ m xs → (n : ℕ tt) (ys : Vec A n) → Vec A (add m n)) m (t , c)) (n : ℕ tt) (ys : Vec A n) → Vec A (add m n) ) ( (λ q ih n ys → subst (λ m → Vec A (add m n)) q ys) , (λ m',x,xs,q ih,tt n ys → let m' = proj₁ m',x,xs,q x = proj₁ (proj₂ m',x,xs,q) q = proj₂ (proj₂ (proj₂ m',x,xs,q)) ih = proj₁ ih,tt in subst (λ m → Vec A (add m n)) q (cons A (add m' n) x (ih n ys)) ) , tt ) (proj₁ t,c) (proj₂ t,c) ) Concat : (A : Set) (m n : ℕ tt) (xss : Vec (Vec A m) n) → Set Concat A m n xss = Vec A (mult n m) ConsBranch : (A : Set) (m : ℕ tt) → Set ConsBranch A m = UncurriedHyps (consD (Vec A m)) (Vec (Vec A m)) (Concat A m) (λ xs → init (consT , xs)) ConsElimBranch : (A : Set) (m : ℕ tt) → Set ConsElimBranch A m = CurriedHyps (consD (Vec A m)) (Vec (Vec A m)) (Concat A m) (λ xs → init (consT , xs)) ElimBranch : (t : VecT) (A : Set) (m : ℕ tt) → Set ElimBranch t A m = SumCurriedHyps VecE (VecC (Vec A m)) (Concat A m) t nilBranch : (A : Set) (m n : ℕ tt) (xss : NilEl (Vec A m) n) (ihs : NilHyps (Vec A m) (Concat A m) n xss) → Vec A (mult n m) nilBranch A m n q u = subst (λ n → Vec A (mult n m)) q (nil A) consBranch : (A : Set) (m : ℕ tt) → ConsBranch A m consBranch A m n n',xs,xss,q ih,u = let n' = proj₁ n',xs,xss,q xs = proj₁ (proj₂ n',xs,xss,q) q = proj₂ (proj₂ (proj₂ n',xs,xss,q)) ih = proj₁ ih,u in subst (λ n → Vec A (mult n m)) q (append A m xs (mult n' m) ih) ConcatConvoy : (A : Set) (m n : ℕ tt) (t : VecT) → Set ConcatConvoy A m n t = (xss : El (VecC (Vec A m) t) (Vec (Vec A m)) n) (ihs : VecHyps (Vec A m) (Concat A m) n (t , xss)) → Vec A (mult n m) concatα : (A : Set) (m n : ℕ tt) (xss : VecEl (Vec A m) n) (ihs : VecHyps (Vec A m) (Concat A m) n xss) → Vec A (mult n m) concatα A m n xss = case (ConcatConvoy A m n) (nilBranch A m n , consBranch A m n , tt) (proj₁ xss) (proj₂ xss) concat : (A : Set) (m n : ℕ tt) (xss : Vec (Vec A m) n) → Concat A m n xss concat A m = ind (VecD (Vec A m)) (Concat A m) (concatα A m) ---------------------------------------------------------------------- module GenericElim where add : ℕ tt → ℕ tt → ℕ tt add = elim ℕE ℕC _ (λ n → n) (λ m ih n → suc (ih n)) tt mult : ℕ tt → ℕ tt → ℕ tt mult = elim ℕE ℕC _ (λ n → zero) (λ m ih n → add n (ih n)) tt append : (A : Set) (m : ℕ tt) (xs : Vec A m) (n : ℕ tt) (ys : Vec A n) → Vec A (add m n) append A = elim VecE (VecC A) (λ m xs → (n : ℕ tt) (ys : Vec A n) → Vec A (add m n)) (λ n ys → ys) (λ m x xs ih n ys → cons A (add m n) x (ih n ys)) concat : (A : Set) (m n : ℕ tt) (xss : Vec (Vec A m) n) → Vec A (mult n m) concat A m = elim VecE (VecC (Vec A m)) (λ n xss → Vec A (mult n m)) (nil A) (λ n xs xss ih → append A m xs (mult n m) ih) ----------------------------------------------------------------------
29.719931
106
0.485576
299da8dcde60772bc2d13a6465631fa15279f1e3
402
agda
Agda
test/Succeed/ForcingRelevance.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/ForcingRelevance.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/ForcingRelevance.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
open import Agda.Builtin.Nat open import Agda.Builtin.Equality data Ix : Set where ix : .(i : Nat) (n : Nat) → Ix data D : Ix → Set where mkD : ∀ n → D (ix n n) data ΣD : Set where _,_ : ∀ i → D i → ΣD foo : ΣD → Nat foo (i , mkD n) = n d : ΣD d = ix 0 6 , mkD 6 -- Check that we pick the right (the non-irrelevant) `n` when binding -- the forced argument. check : foo d ≡ 6 check = refl
16.75
69
0.597015
0b944ed04c922615fe8dd3aac8174b9727919fb5
2,684
agda
Agda
src/fot/FOTC/Data/Nat/Induction/Acc/WF-ATP.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
11
2015-09-03T20:53:42.000Z
2021-09-12T16:09:54.000Z
src/fot/FOTC/Data/Nat/Induction/Acc/WF-ATP.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
2
2016-10-12T17:28:16.000Z
2017-01-01T14:34:26.000Z
src/fot/FOTC/Data/Nat/Induction/Acc/WF-ATP.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
3
2016-09-19T14:18:30.000Z
2018-03-14T08:50:00.000Z
------------------------------------------------------------------------------ -- Well-founded induction on the natural numbers ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- N.B This module does not contain combined proofs, but it imports -- modules which contain combined proofs. module FOTC.Data.Nat.Induction.Acc.WF-ATP where open import FOTC.Base open import FOTC.Data.Nat.Inequalities open import FOTC.Data.Nat.Inequalities.EliminationPropertiesATP open import FOTC.Data.Nat.Inequalities.PropertiesATP open import FOTC.Data.Nat.Type open import FOTC.Induction.WF ------------------------------------------------------------------------------ -- The relation _<_ is well-founded. module <-WF where <-wf : WellFounded _<_ <-wf Nn = acc (helper Nn) where -- N.B. The helper function is the same that the function used by -- FOTC.Data.Nat.Induction.NonAcc.WellFoundedInductionATP. helper : ∀ {n m} → N n → N m → m < n → Acc N _<_ m helper nzero Nm m<0 = ⊥-elim (x<0→⊥ Nm m<0) helper (nsucc _) nzero 0<Sn = acc (λ Nm' m'<0 → ⊥-elim (x<0→⊥ Nm' m'<0)) helper (nsucc {n} Nn) (nsucc {m} Nm) Sm<Sn = acc (λ {m'} Nm' m'<Sm → let m<n : m < n m<n = Sx<Sy→x<y Sm<Sn m'<n : m' < n m'<n = case (λ m'<m → <-trans Nm' Nm Nn m'<m m<n) (λ m'≡m → x≡y→y<z→x<z m'≡m m<n) (x<Sy→x<y∨x≡y Nm' Nm m'<Sm) in helper Nn Nm' m'<n ) -- Well-founded induction on the natural numbers. <-wfind : (A : D → Set) → (∀ {n} → N n → (∀ {m} → N m → m < n → A m) → A n) → ∀ {n} → N n → A n <-wfind A = WellFoundedInduction <-wf ------------------------------------------------------------------------------ -- The relation _<_ is well-founded (a different proof). module <-WF' where <-wf : WellFounded {N} _<_ <-wf nzero = acc (λ Nm m<0 → ⊥-elim (x<0→⊥ Nm m<0)) <-wf (nsucc Nn) = acc (λ Nm m<Sn → helper Nm Nn (<-wf Nn) (x<Sy→x≤y Nm Nn m<Sn)) where helper : ∀ {n m} → N n → N m → Acc N _<_ m → n ≤ m → Acc N _<_ n helper {n} {m} Nn Nm (acc h) n≤m = case (λ n<m → h Nn n<m) (λ n≡m → helper₁ (sym n≡m) (acc h)) (x≤y→x<y∨x≡y Nn Nm n≤m) where helper₁ : ∀ {a b} → a ≡ b → Acc N _<_ a → Acc N _<_ b helper₁ refl h = h
39.470588
79
0.445976
2f46aa74083bd01110c1e48ccaafc03a244fb599
674
agda
Agda
test/Succeed/TerminationSubExpression.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/TerminationSubExpression.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/TerminationSubExpression.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- {-# OPTIONS -v term:20 #-} -- Andreas, 2011-04-19 (Agda list post by Leonard Rodriguez) module TerminationSubExpression where infixr 3 _⇨_ data Type : Set where int : Type _⇨_ : Type → Type → Type test : Type → Type test int = int test (φ ⇨ int) = test φ test (φ ⇨ (φ′ ⇨ φ″)) = test (φ′ ⇨ φ″) -- this should terminate since rec. call on subterm test' : Type → Type test' int = int test' (φ ⇨ int) = test' φ test' (φ ⇨ φ′) = test' φ′ -- This no longer checks after the fix to issue 59, since the fact -- that we case on φ′ in particular is lost. -- ok : Type → Type -- ok int = int -- ok (φ ⇨ φ′) with φ′ -- ... | int = ok φ -- ... | (φ″ ⇨ φ‴) = ok (φ″ ⇨ φ‴)
23.241379
66
0.58457
4d43d3caf85031b156ab1e156935a3b8106cd268
299
agda
Agda
lambda/vec.agda
Lapin0t/lambda
09a231d9b3057d57b864070188ed9fe14a07eda2
[ "Apache-2.0" ]
null
null
null
lambda/vec.agda
Lapin0t/lambda
09a231d9b3057d57b864070188ed9fe14a07eda2
[ "Apache-2.0" ]
null
null
null
lambda/vec.agda
Lapin0t/lambda
09a231d9b3057d57b864070188ed9fe14a07eda2
[ "Apache-2.0" ]
null
null
null
module lambda.vec where open import Data.Nat open import Data.Fin hiding (_+_) infixr 40 _▸_ data vec (T : Set) : ℕ → Set where ε : vec T 0 _▸_ : ∀ {n} → vec T n → T → vec T (suc n) lookup : ∀ {n} → {T : Set} → Fin n → vec T n → T lookup zero (Γ ▸ x) = x lookup (suc i) (Γ ▸ x) = lookup i Γ
19.933333
48
0.565217
4da1da58ca51e7c042d6b37505626648115ae5b2
4,586
agda
Agda
Structure/Operator/Vector/LinearMap.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
Structure/Operator/Vector/LinearMap.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
Structure/Operator/Vector/LinearMap.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
module Structure.Operator.Vector.LinearMap where open import Functional open import Logic open import Logic.Predicate open import Logic.Propositional import Lvl open import Structure.Function open import Structure.Function.Domain open import Structure.Function.Multi open import Structure.Operator open import Structure.Operator.Field.VectorSpace open import Structure.Operator.Properties using (Distributivityₗ ; Distributivityᵣ) open import Structure.Operator.Vector open import Structure.Setoid open import Type open import Syntax.Function open import Syntax.Transitivity private variable ℓ ℓᵥ ℓᵥₗ ℓᵥᵣ ℓₛ ℓᵥₑ ℓᵥₑₗ ℓᵥₑᵣ ℓᵥₑ₁ ℓᵥₑ₂ ℓᵥₑ₃ ℓₛₑ : Lvl.Level private variable V Vₗ Vᵣ V₁ V₂ V₃ S : Type{ℓ} private variable _+ᵥ_ _+ᵥₗ_ _+ᵥᵣ_ _+ᵥ₁_ _+ᵥ₂_ _+ᵥ₃_ : V → V → V private variable _⋅ₛᵥ_ _⋅ₛᵥₗ_ _⋅ₛᵥᵣ_ _⋅ₛᵥ₁_ _⋅ₛᵥ₂_ _⋅ₛᵥ₃_ : S → V → V private variable _+ₛ_ _⋅ₛ_ : S → S → S module _ ⦃ equiv-Vₗ : Equiv{ℓᵥₑₗ}(Vₗ) ⦄ ⦃ equiv-Vᵣ : Equiv{ℓᵥₑᵣ}(Vᵣ) ⦄ ⦃ equiv-S : Equiv{ℓₛₑ}(S) ⦄ (vectorSpaceₗ : VectorSpace{V = Vₗ}{S = S}(_+ᵥₗ_)(_⋅ₛᵥₗ_)(_+ₛ_)(_⋅ₛ_)) (vectorSpaceᵣ : VectorSpace{V = Vᵣ}{S = S}(_+ᵥᵣ_)(_⋅ₛᵥᵣ_)(_+ₛ_)(_⋅ₛ_)) (f : Vₗ → Vᵣ) where record LinearMap : Type{Lvl.of(Vₗ) Lvl.⊔ ℓᵥₑₗ Lvl.⊔ ℓᵥₑᵣ Lvl.⊔ Lvl.of(S)} where constructor intro field ⦃ function ⦄ : Function(f) ⦃ preserves-[+ᵥ] ⦄ : Preserving₂(f)(_+ᵥₗ_)(_+ᵥᵣ_) ⦃ preserves-[⋅ₛᵥ] ⦄ : ∀{s} → Preserving₁(f)(s ⋅ₛᵥₗ_)(s ⋅ₛᵥᵣ_) _→ˡⁱⁿᵉᵃʳᵐᵃᵖ_ : ⦃ equiv-S : Equiv{ℓₛₑ}(S) ⦄ → VectorSpaceVObject{ℓᵥ = ℓᵥₗ}{ℓᵥₑ = ℓᵥₑₗ}{S = S}(_+ₛ_)(_⋅ₛ_) → VectorSpaceVObject{ℓᵥ = ℓᵥᵣ}{ℓᵥₑ = ℓᵥₑᵣ}{S = S}(_+ₛ_)(_⋅ₛ_) → Stmt V₁ →ˡⁱⁿᵉᵃʳᵐᵃᵖ V₂ = ∃(LinearMap(VectorSpaceVObject.vectorSpace(V₁)) (VectorSpaceVObject.vectorSpace(V₂))) _↔ˡⁱⁿᵉᵃʳᵐᵃᵖ_ : ⦃ equiv-S : Equiv{ℓₛₑ}(S) ⦄ → VectorSpaceVObject{ℓᵥ = ℓᵥₗ}{ℓᵥₑ = ℓᵥₑₗ}{S = S}(_+ₛ_)(_⋅ₛ_) → VectorSpaceVObject{ℓᵥ = ℓᵥᵣ}{ℓᵥₑ = ℓᵥₑᵣ}{S = S}(_+ₛ_)(_⋅ₛ_) → Stmt V₁ ↔ˡⁱⁿᵉᵃʳᵐᵃᵖ V₂ = ∃(f ↦ Invertible(f) ∧ LinearMap(VectorSpaceVObject.vectorSpace(V₁)) (VectorSpaceVObject.vectorSpace(V₂))(f)) module _ ⦃ equiv-V : Equiv{ℓᵥₑ}(V) ⦄ ⦃ equiv-S : Equiv{ℓₛₑ}(S) ⦄ (vectorSpace : VectorSpace{V = V}{S = S}(_+ᵥ_)(_⋅ₛᵥ_)(_+ₛ_)(_⋅ₛ_)) (f : V → V) where LinearOperator = LinearMap(vectorSpace)(vectorSpace) (f) module _ ⦃ equiv-V : Equiv{ℓᵥₑ}(V) ⦄ ⦃ equiv-S : Equiv{ℓₛₑ}(S) ⦄ (vectorSpace : VectorSpace{V = V}{S = S}(_+ᵥ_)(_⋅ₛᵥ_)(_+ₛ_)(_⋅ₛ_)) (f : V → S) where LinearFunctional = LinearMap(vectorSpace)(fieldVectorSpace(VectorSpace.scalarField(vectorSpace))) (f) module _ ⦃ equiv-V₁ : Equiv{ℓᵥₑ₁}(V₁) ⦄ ⦃ equiv-V₂ : Equiv{ℓᵥₑ₂}(V₂) ⦄ ⦃ equiv-V₃ : Equiv{ℓᵥₑ₃}(V₃) ⦄ ⦃ equiv-S : Equiv{ℓₛₑ}(S) ⦄ (vectorSpace₁ : VectorSpace{V = V₁}{S = S}(_+ᵥ₁_)(_⋅ₛᵥ₁_)(_+ₛ_)(_⋅ₛ_)) (vectorSpace₂ : VectorSpace{V = V₂}{S = S}(_+ᵥ₂_)(_⋅ₛᵥ₂_)(_+ₛ_)(_⋅ₛ_)) (vectorSpace₃ : VectorSpace{V = V₃}{S = S}(_+ᵥ₃_)(_⋅ₛᵥ₃_)(_+ₛ_)(_⋅ₛ_)) (f : V₁ → V₂ → V₃) where record BilinearMap : Type{Lvl.of(V₁) Lvl.⊔ Lvl.of(V₂) Lvl.⊔ ℓᵥₑ₁ Lvl.⊔ ℓᵥₑ₂ Lvl.⊔ ℓᵥₑ₃ Lvl.⊔ Lvl.of(S)} where constructor intro field ⦃ linearMap₁ ⦄ : ∀{y} → LinearMap vectorSpace₁ vectorSpace₃ (x ↦ f(x)(y)) ⦃ linearMap₂ ⦄ : ∀{x} → LinearMap vectorSpace₂ vectorSpace₃ (y ↦ f(x)(y)) open module LinearMapₗ{y} = LinearMap(linearMap₁{y}) renaming (function to functionₗ ; preserves-[+ᵥ] to preserves-[+ᵥ]ₗ ; preserves-[⋅ₛᵥ] to preserves-[⋅ₛᵥ]ₗ) public open module LinearMapᵣ{x} = LinearMap(linearMap₂{x}) renaming (function to functionᵣ ; preserves-[+ᵥ] to preserves-[+ᵥ]ᵣ ; preserves-[⋅ₛᵥ] to preserves-[⋅ₛᵥ]ᵣ) public binaryOperator : BinaryOperator(f) binaryOperator = functions-to-binaryOperator(f) ⦃ functionₗ ⦄ ⦃ functionᵣ ⦄ module _ ⦃ equiv-V : Equiv{ℓᵥₑ}(V) ⦄ ⦃ equiv-S : Equiv{ℓₛₑ}(S) ⦄ (vectorSpace : VectorSpace{V = V}{S = S}(_+ᵥ_)(_⋅ₛᵥ_)(_+ₛ_)(_⋅ₛ_)) (_▫_ : V → V → V) where BilinearOperator = BilinearMap(vectorSpace)(vectorSpace)(vectorSpace) (_▫_) module BilinearOperator(bilinearOper : BilinearOperator) where -- TODO: Move the proof for distributivity from preserving [+ᵥ]-distributivityₗ : Distributivityₗ(_▫_)(_+ᵥ_) Distributivityₗ.proof [+ᵥ]-distributivityₗ {x}{y}{z} = x ▫ (y +ᵥ z) 🝖[ _≡_ ]-[ preserving₂(x ▫_)(_+ᵥ_)(_+ᵥ_) ⦃ LinearMap.preserves-[+ᵥ] (BilinearMap.linearMap₂ bilinearOper) ⦄ ] (x ▫ y) +ᵥ (x ▫ z) 🝖-end [+ᵥ]-distributivityᵣ : Distributivityᵣ(_▫_)(_+ᵥ_) Distributivityᵣ.proof [+ᵥ]-distributivityᵣ {x}{y}{z} = (x +ᵥ y) ▫ z 🝖[ _≡_ ]-[ preserving₂(_▫ z)(_+ᵥ_)(_+ᵥ_) ⦃ LinearMap.preserves-[+ᵥ] (BilinearMap.linearMap₁ bilinearOper) ⦄ ] (x ▫ z) +ᵥ (y ▫ z) 🝖-end
42.462963
173
0.656782
1c593d6d6378f8c02fb35a84789ca6020d8c26be
3,371
agda
Agda
src/TemporalOps/Common/Compare.agda
DimaSamoz/temporal-type-systems
7d993ba55e502d5ef8707ca216519012121a08dd
[ "MIT" ]
4
2018-05-31T20:37:04.000Z
2022-01-04T09:33:48.000Z
src/TemporalOps/Common/Compare.agda
DimaSamoz/temporal-type-systems
7d993ba55e502d5ef8707ca216519012121a08dd
[ "MIT" ]
null
null
null
src/TemporalOps/Common/Compare.agda
DimaSamoz/temporal-type-systems
7d993ba55e502d5ef8707ca216519012121a08dd
[ "MIT" ]
null
null
null
{- Comparison view and associated lemmas -} module TemporalOps.Common.Compare where open import CategoryTheory.Categories open import Relation.Binary.PropositionalEquality as ≡ open import Relation.Binary.HeterogeneousEquality as ≅ open import Data.Nat.Properties using (+-identityʳ ; +-assoc ; +-suc) open import Data.Nat using (ℕ ; zero ; suc ; _+_) public -- (Very verbose) comparison view -- Like 'compare', but only distinguishes ≤ or >. data LeqOrdering : ℕ -> ℕ -> Set where snd==[_+_] : ∀ k l → LeqOrdering k (k + l) fst==suc[_+_] : ∀ k l → LeqOrdering (k + suc l) k -- Auxiliary function to compareLeq compareLeq-suc : ∀ n k -> LeqOrdering n k -> LeqOrdering (suc n) (suc k) compareLeq-suc n .(n + l) snd==[ .n + l ] = snd==[ suc n + l ] compareLeq-suc .(k + suc l) k fst==suc[ .k + l ] = fst==suc[ suc k + l ] compareLeq : ∀ n k -> LeqOrdering n k compareLeq zero k = snd==[ zero + k ] compareLeq (suc n) zero = fst==suc[ zero + n ] compareLeq (suc n) (suc k) = compareLeq-suc n k (compareLeq n k) -- Lemmas for compareLeq -- Comparing n and (n + k) always gives snd==[ n + k ] compare-snd : ∀ (n k : ℕ) -> compareLeq n (n + k) ≡ snd==[ n + k ] compare-snd zero k = refl compare-snd (suc n) k rewrite compare-snd n k = refl -- If n ≤ n + k, then l + n  ≤ (l + n) + k compare-snd-+ : ∀ (n k l : ℕ) -> compareLeq n (n + k) ≡ snd==[ n + k ] -> compareLeq (l + n) ((l + n) + k) ≡ snd==[ (l + n) + k ] compare-snd-+ n k zero pf = pf compare-snd-+ zero k (suc l) pf rewrite +-identityʳ l = compare-snd (suc l) k compare-snd-+ (suc n) k (suc l) pf rewrite +-suc l n | compare-snd (l + n) k = refl -- Heterogeneous version of compare-snd-+ with associativity compare-snd-+-assoc : ∀ (n k l : ℕ) -> compareLeq n (n + k) ≡ snd==[ n + k ] -> compareLeq (l + n) (l + (n + k)) ≅ snd==[ (l + n) + k ] compare-snd-+-assoc n k l pf = begin compareLeq (l + n) (l + (n + k)) ≅⟨ ≅.cong (λ x → compareLeq (l + n) x) (≡-to-≅ (≡.sym (+-assoc l n k))) ⟩ compareLeq (l + n) ((l + n) + k) ≅⟨ ≡-to-≅ (compare-snd-+ n k l pf) ⟩ snd==[ (l + n) + k ] ∎ where open ≅.≅-Reasoning -- Comparing (n + suc k and n always gives fst==suc[ n + k ] compare-fst : ∀ (n k : ℕ) -> compareLeq (n + suc k) n ≡ fst==suc[ n + k ] compare-fst zero k = refl compare-fst (suc n) k rewrite compare-fst n k = refl -- If n + suc k > n, then (l + n) + suc k  > l + n compare-fst-+ : ∀ (n k l : ℕ) -> compareLeq (n + suc k) n ≡ fst==suc[ n + k ] -> compareLeq ((l + n) + suc k) (l + n) ≡ fst==suc[ (l + n) + k ] compare-fst-+ n k zero pf = pf compare-fst-+ zero k (suc l) pf rewrite +-identityʳ l = compare-fst (suc l) k compare-fst-+ (suc n) k (suc l) pf rewrite +-suc l n | compare-fst (l + n) k = refl -- Heterogeneous version of compare-fst-+ with associativity compare-fst-+-assoc : ∀ (n k l : ℕ) -> compareLeq (n + suc k) n ≡ fst==suc[ n + k ] -> compareLeq (l + (n + suc k)) (l + n) ≅ fst==suc[ (l + n) + k ] compare-fst-+-assoc n k l pf = begin compareLeq (l + (n + suc k)) (l + n) ≅⟨ ≅.cong (λ x → compareLeq x (l + n)) (≡-to-≅ (≡.sym (+-assoc l n (suc k)))) ⟩ compareLeq ((l + n) + suc k) (l + n) ≅⟨ ≡-to-≅ (compare-fst-+ n k l pf) ⟩ fst==suc[ (l + n) + k ] ∎ where open ≅.≅-Reasoning
41.109756
84
0.545832
2fadf9a4840cd810a8e5b1b595764be7069440ac
8,055
agda
Agda
theorems/cohomology/MayerVietorisExact.agda
cmknapp/HoTT-Agda
bc849346a17b33e2679a5b3f2b8efbe7835dc4b6
[ "MIT" ]
1
2021-06-30T00:17:55.000Z
2021-06-30T00:17:55.000Z
theorems/cohomology/MayerVietorisExact.agda
cmknapp/HoTT-Agda
bc849346a17b33e2679a5b3f2b8efbe7835dc4b6
[ "MIT" ]
null
null
null
theorems/cohomology/MayerVietorisExact.agda
cmknapp/HoTT-Agda
bc849346a17b33e2679a5b3f2b8efbe7835dc4b6
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} open import HoTT open import homotopy.PtdAdjoint open import homotopy.SuspAdjointLoop open import cohomology.Exactness open import cohomology.FunctionOver open import cohomology.MayerVietoris open import cohomology.Theory {- Standard Mayer-Vietoris exact sequence (algebraic) derived from - the result in cohomology.MayerVietoris (topological). - This is a whole bunch of algebra which is not very interesting. -} module cohomology.MayerVietorisExact {i} (CT : CohomologyTheory i) (n : ℤ) (ps : ⊙Span {i} {i} {i}) where open MayerVietorisFunctions ps module MV = MayerVietoris ps open ⊙Span ps open CohomologyTheory CT open import cohomology.BaseIndependence CT open import cohomology.Functor CT open import cohomology.InverseInSusp CT open import cohomology.LongExactSequence CT n ⊙reglue open import cohomology.Wedge CT mayer-vietoris-seq : HomSequence _ _ mayer-vietoris-seq = C n (⊙Pushout ps) ⟨ ×ᴳ-hom-in (CF-hom n (⊙left ps)) (CF-hom n (⊙right ps)) ⟩→ C n X ×ᴳ C n Y ⟨ ×ᴳ-sum-hom (C-abelian _ _) (CF-hom n f) (inv-hom _ (C-abelian _ _) ∘ᴳ (CF-hom n g)) ⟩→ C n Z ⟨ CF-hom (succ n) ⊙ext-glue ∘ᴳ fst ((C-Susp n Z)⁻¹ᴳ) ⟩→ C (succ n) (⊙Pushout ps) ⟨ ×ᴳ-hom-in (CF-hom _ (⊙left ps)) (CF-hom _ (⊙right ps)) ⟩→ C (succ n) X ×ᴳ C (succ n) Y ⊣| mayer-vietoris-exact : is-exact-seq mayer-vietoris-seq mayer-vietoris-exact = transport (λ {(r , s) → is-exact-seq s}) (pair= _ $ sequence= _ _ $ idp ∥⟨ ↓-over-×-in _→ᴳ_ idp (CWedge.⊙wedge-rec-over n X Y _ _) ⟩∥ CWedge.path n X Y ∥⟨ ↓-over-×-in' _→ᴳ_ (ap↓ (λ φ → φ ∘ᴳ fst (C-Susp n (X ⊙∨ Y) ⁻¹ᴳ)) (CF-↓cod= (succ n) MV.ext-over) ∙ᵈ codomain-over-iso {χ = diff'} (codomain-over-equiv _ _)) (CWedge.wedge-hom-η n X Y _ ▹ ap2 (×ᴳ-sum-hom (C-abelian n Z)) inl-lemma inr-lemma) ⟩∥ ap (C (succ n)) MV.⊙path ∙ group-ua (C-Susp n Z) ∥⟨ ↓-over-×-in _→ᴳ_ (CF-↓dom= (succ n) MV.cfcod-over ∙ᵈ domain-over-iso (! (ap (λ h → CF _ ⊙ext-glue ∘ h) (λ= (is-equiv.g-f (snd (C-Susp n Z))))) ◃ domain-over-equiv _ _)) idp ⟩∥ idp ∥⟨ ↓-over-×-in _→ᴳ_ idp (CWedge.⊙wedge-rec-over (succ n) X Y _ _) ⟩∥ CWedge.path (succ n) X Y ∥⊣|) long-cofiber-exact where {- shorthand -} diff' = fst (C-Susp n Z) ∘ᴳ CF-hom (succ n) MV.⊙mv-diff ∘ᴳ fst (C-Susp n (X ⊙∨ Y) ⁻¹ᴳ) {- Variations on suspension axiom naturality -} natural-lemma₁ : {X Y : Ptd i} (n : ℤ) (f : fst (X ⊙→ Y)) → (fst (C-Susp n X) ∘ᴳ CF-hom _ (⊙susp-fmap f)) ∘ᴳ fst (C-Susp n Y ⁻¹ᴳ) == CF-hom n f natural-lemma₁ {X} {Y} n f = ap (λ φ → φ ∘ᴳ fst (C-Susp n Y ⁻¹ᴳ)) (C-SuspF n f) ∙ hom= _ _ (λ= (ap (CF n f) ∘ is-equiv.f-g (snd (C-Susp n Y)))) natural-lemma₂ : {X Y : Ptd i} (n : ℤ) (f : fst (X ⊙→ Y)) → CF-hom _ (⊙susp-fmap f) ∘ᴳ fst (C-Susp n Y ⁻¹ᴳ) == fst (C-Susp n X ⁻¹ᴳ) ∘ᴳ CF-hom n f natural-lemma₂ {X} {Y} n f = hom= _ _ (λ= (! ∘ is-equiv.g-f (snd (C-Susp n X)) ∘ CF _ (⊙susp-fmap f) ∘ GroupHom.f (fst (C-Susp n Y ⁻¹ᴳ)))) ∙ ap (λ φ → fst (C-Susp n X ⁻¹ᴳ) ∘ᴳ φ) (natural-lemma₁ n f) {- Associativity lemmas -} assoc-lemma : ∀ {i} {G H K L J : Group i} (φ : L →ᴳ J) (ψ : K →ᴳ L) (χ : H →ᴳ K) (ξ : G →ᴳ H) → (φ ∘ᴳ ψ) ∘ᴳ χ ∘ᴳ ξ == φ ∘ᴳ ((ψ ∘ᴳ χ) ∘ᴳ ξ) assoc-lemma _ _ _ _ = hom= _ _ idp assoc-lemma₂ : ∀ {i} {G H K L J : Group i} (φ : L →ᴳ J) (ψ : K →ᴳ L) (χ : H →ᴳ K) (ξ : G →ᴳ H) → (φ ∘ᴳ ψ ∘ᴳ χ) ∘ᴳ ξ == φ ∘ᴳ ψ ∘ᴳ χ ∘ᴳ ξ assoc-lemma₂ _ _ _ _ = hom= _ _ idp inl-lemma : diff' ∘ᴳ CF-hom n (⊙projl X Y) == CF-hom n f inl-lemma = assoc-lemma₂ (fst (C-Susp n Z)) (CF-hom (succ n) MV.⊙mv-diff) (fst (C-Susp n (X ⊙∨ Y) ⁻¹ᴳ)) (CF-hom n (⊙projl X Y)) ∙ ap (λ φ → fst (C-Susp n Z) ∘ᴳ CF-hom (succ n) MV.⊙mv-diff ∘ᴳ φ) (! (natural-lemma₂ n (⊙projl X Y))) ∙ ! (assoc-lemma₂ (fst (C-Susp n Z)) (CF-hom _ MV.⊙mv-diff) (CF-hom _ (⊙susp-fmap (⊙projl X Y))) (fst (C-Susp n X ⁻¹ᴳ))) ∙ ap (λ φ → (fst (C-Susp n Z) ∘ᴳ φ) ∘ᴳ fst (C-Susp n X ⁻¹ᴳ)) (! (CF-comp _ (⊙susp-fmap (⊙projl X Y)) MV.⊙mv-diff)) ∙ ap (λ φ → (fst (C-Susp n Z) ∘ᴳ φ) ∘ᴳ fst (C-Susp n X ⁻¹ᴳ)) (CF-λ= (succ n) projl-mv-diff) ∙ natural-lemma₁ n f where {- Compute the left projection of mv-diff -} projl-mv-diff : (σz : fst (⊙Susp Z)) → susp-fmap (projl X Y) (MV.mv-diff σz) == susp-fmap (fst f) σz projl-mv-diff = Suspension-elim _ idp (merid _ (snd X)) $ ↓-='-from-square ∘ λ z → (ap-∘ (susp-fmap (projl X Y)) MV.mv-diff (merid _ z) ∙ ap (ap (susp-fmap (projl X Y))) (MV.MVDiff.glue-β z) ∙ ap-∙ (susp-fmap (projl X Y)) (merid _ (winl (fst f z))) (! (merid _ (winr (fst g z)))) ∙ (SuspFmap.glue-β (projl X Y) (winl (fst f z)) ∙2 (ap-! (susp-fmap _) (merid _ (winr (fst g z))) ∙ ap ! (SuspFmap.glue-β (projl X Y) (winr (fst g z)))))) ∙v⊡ (vid-square {p = merid _ (fst f z)} ⊡h rt-square (merid _ (snd X))) ⊡v∙ (∙-unit-r _ ∙ ! (SuspFmap.glue-β (fst f) z)) inr-lemma : diff' ∘ᴳ CF-hom n (⊙projr X Y) == inv-hom _ (C-abelian n Z) ∘ᴳ CF-hom n g inr-lemma = assoc-lemma₂ (fst (C-Susp n Z)) (CF-hom (succ n) MV.⊙mv-diff) (fst (C-Susp n (X ⊙∨ Y) ⁻¹ᴳ)) (CF-hom n (⊙projr X Y)) ∙ ap (λ φ → fst (C-Susp n Z) ∘ᴳ CF-hom (succ n) MV.⊙mv-diff ∘ᴳ φ) (! (natural-lemma₂ n (⊙projr X Y))) ∙ ! (assoc-lemma₂ (fst (C-Susp n Z)) (CF-hom _ MV.⊙mv-diff) (CF-hom _ (⊙susp-fmap (⊙projr X Y))) (fst (C-Susp n Y ⁻¹ᴳ))) ∙ ap (λ φ → (fst (C-Susp n Z) ∘ᴳ φ) ∘ᴳ fst (C-Susp n Y ⁻¹ᴳ)) (! (CF-comp _ (⊙susp-fmap (⊙projr X Y)) MV.⊙mv-diff)) ∙ ∘ᴳ-assoc (fst (C-Susp n Z)) (CF-hom _ (⊙susp-fmap (⊙projr X Y) ⊙∘ MV.⊙mv-diff)) (fst (C-Susp n Y ⁻¹ᴳ)) ∙ ap (λ φ → fst (C-Susp n Z) ∘ᴳ φ ∘ᴳ fst (C-Susp n Y ⁻¹ᴳ)) (CF-λ= (succ n) projr-mv-diff) ∙ ap (λ φ → fst (C-Susp n Z) ∘ᴳ φ ∘ᴳ fst (C-Susp n Y ⁻¹ᴳ)) (CF-comp _ (⊙susp-fmap g) (⊙flip-susp Z)) ∙ ! (assoc-lemma (fst (C-Susp n Z)) (CF-hom _ (⊙flip-susp Z)) (CF-hom _ (⊙susp-fmap g)) (fst (C-Susp n Y ⁻¹ᴳ))) ∙ ap (λ φ → (fst (C-Susp n Z) ∘ᴳ φ) ∘ᴳ CF-hom _ (⊙susp-fmap g) ∘ᴳ fst (C-Susp n Y ⁻¹ᴳ)) (C-flip-susp-is-inv (succ n)) ∙ ap (λ φ → φ ∘ᴳ CF-hom _ (⊙susp-fmap g) ∘ᴳ fst (C-Susp n Y ⁻¹ᴳ)) (inv-hom-natural (C-abelian _ _) (C-abelian _ _) (fst (C-Susp n Z))) ∙ assoc-lemma (inv-hom _ (C-abelian n Z)) (fst (C-Susp n Z)) (CF-hom _ (⊙susp-fmap g)) (fst (C-Susp n Y ⁻¹ᴳ)) ∙ ap (λ φ → inv-hom _ (C-abelian n Z) ∘ᴳ φ) (natural-lemma₁ n g) where {- Compute the right projection of mv-diff -} projr-mv-diff : (σz : fst (⊙Susp Z)) → susp-fmap (projr X Y) (MV.mv-diff σz) == susp-fmap (fst g) (flip-susp σz) projr-mv-diff = Suspension-elim _ (merid _ (snd Y)) idp $ ↓-='-from-square ∘ λ z → (ap-∘ (susp-fmap (projr X Y)) MV.mv-diff (merid _ z) ∙ ap (ap (susp-fmap (projr X Y))) (MV.MVDiff.glue-β z) ∙ ap-∙ (susp-fmap (projr X Y)) (merid _ (winl (fst f z))) (! (merid _ (winr (fst g z)))) ∙ (SuspFmap.glue-β (projr X Y) (winl (fst f z)) ∙2 (ap-! (susp-fmap (projr X Y)) (merid _ (winr (fst g z))) ∙ ap ! (SuspFmap.glue-β (projr X Y) (winr (fst g z)))))) ∙v⊡ ((lt-square (merid _ (snd Y)) ⊡h vid-square {p = ! (merid _ (fst g z))})) ⊡v∙ ! (ap-∘ (susp-fmap (fst g)) flip-susp (merid _ z) ∙ ap (ap (susp-fmap (fst g))) (FlipSusp.glue-β z) ∙ ap-! (susp-fmap (fst g)) (merid _ z) ∙ ap ! (SuspFmap.glue-β (fst g) z))
42.845745
76
0.503662
06f83433c237edf265a52384f6f40afe5e58d592
114
agda
Agda
test/interaction/SplitOnHidden.agda
redfish64/autonomic-agda
c0ae7d20728b15d7da4efff6ffadae6fe4590016
[ "BSD-3-Clause" ]
null
null
null
test/interaction/SplitOnHidden.agda
redfish64/autonomic-agda
c0ae7d20728b15d7da4efff6ffadae6fe4590016
[ "BSD-3-Clause" ]
null
null
null
test/interaction/SplitOnHidden.agda
redfish64/autonomic-agda
c0ae7d20728b15d7da4efff6ffadae6fe4590016
[ "BSD-3-Clause" ]
1
2022-03-12T11:35:18.000Z
2022-03-12T11:35:18.000Z
data Nat : Set where zero : Nat suc : Nat → Nat test : ∀{N M : Nat} → Nat → Nat → Nat test N M = {!.N N .M!}
16.285714
37
0.508772
1d86e62d1a65e142f36961f9512eb77a13c29e16
602
agda
Agda
test/Fail/Issue610-module-alias.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue610-module-alias.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue610-module-alias.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2016-02-11, bug reported by sanzhiyan {-# OPTIONS --irrelevant-projections #-} module Issue610-module-alias where import Common.Level open import Common.Equality data ⊥ : Set where record ⊤ : Set where data A : Set₁ where set : .Set → A module M .(x : Set) where .out : _ out = x .ack : A → Set ack (set x) = M.out x hah : set ⊤ ≡ set ⊥ hah = refl .moo' : ⊥ moo' = subst (λ x → x) (cong ack hah) _ -- Expected error: -- .(⊥) !=< ⊥ of type Set -- when checking that the expression subst (λ x → x) (cong ack hah) _ has type ⊥ baa : .⊥ → ⊥ baa () yoink : ⊥ yoink = baa moo'
15.435897
80
0.607973
065897a587baad93a728e064a9f9cae033d8b2d0
8,031
agda
Agda
Definition/LogicalRelation/Substitution/Irrelevance.agda
Vtec234/logrel-mltt
4746894adb5b8edbddc8463904ee45c2e9b29b69
[ "MIT" ]
null
null
null
Definition/LogicalRelation/Substitution/Irrelevance.agda
Vtec234/logrel-mltt
4746894adb5b8edbddc8463904ee45c2e9b29b69
[ "MIT" ]
null
null
null
Definition/LogicalRelation/Substitution/Irrelevance.agda
Vtec234/logrel-mltt
4746894adb5b8edbddc8463904ee45c2e9b29b69
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} open import Definition.Typed.EqualityRelation module Definition.LogicalRelation.Substitution.Irrelevance {{eqrel : EqRelSet}} where open EqRelSet {{...}} open import Definition.Untyped open import Definition.Typed open import Definition.LogicalRelation import Definition.LogicalRelation.Irrelevance as LR open import Definition.LogicalRelation.Substitution open import Tools.Product open import Tools.Unit import Tools.PropositionalEquality as PE -- Irrelevance of valid substitutions with different derivations of contexts irrelevanceSubst : ∀ {σ Γ Δ} ([Γ] [Γ]′ : ⊩ᵛ Γ) (⊢Δ ⊢Δ′ : ⊢ Δ) → Δ ⊩ˢ σ ∷ Γ / [Γ] / ⊢Δ → Δ ⊩ˢ σ ∷ Γ / [Γ]′ / ⊢Δ′ irrelevanceSubst ε ε ⊢Δ ⊢Δ′ [σ] = tt irrelevanceSubst ([Γ] ∙ [A]) ([Γ]′ ∙ [A]′) ⊢Δ ⊢Δ′ ([tailσ] , [headσ]) = let [tailσ]′ = irrelevanceSubst [Γ] [Γ]′ ⊢Δ ⊢Δ′ [tailσ] in [tailσ]′ , LR.irrelevanceTerm (proj₁ ([A] ⊢Δ [tailσ])) (proj₁ ([A]′ ⊢Δ′ [tailσ]′)) [headσ] -- Irrelevance of valid substitutions with different contexts -- that are propositionally equal irrelevanceSubst′ : ∀ {σ Γ Δ Δ′} (eq : Δ PE.≡ Δ′) ([Γ] [Γ]′ : ⊩ᵛ Γ) (⊢Δ : ⊢ Δ) (⊢Δ′ : ⊢ Δ′) → Δ ⊩ˢ σ ∷ Γ / [Γ] / ⊢Δ → Δ′ ⊩ˢ σ ∷ Γ / [Γ]′ / ⊢Δ′ irrelevanceSubst′ PE.refl [Γ] [Γ]′ ⊢Δ ⊢Δ′ [σ] = irrelevanceSubst [Γ] [Γ]′ ⊢Δ ⊢Δ′ [σ] -- Irrelevance of valid substitution equality -- with different derivations of contexts irrelevanceSubstEq : ∀ {σ σ′ Γ Δ} ([Γ] [Γ]′ : ⊩ᵛ Γ) (⊢Δ ⊢Δ′ : ⊢ Δ) ([σ] : Δ ⊩ˢ σ ∷ Γ / [Γ] / ⊢Δ) ([σ]′ : Δ ⊩ˢ σ ∷ Γ / [Γ]′ / ⊢Δ′) → Δ ⊩ˢ σ ≡ σ′ ∷ Γ / [Γ] / ⊢Δ / [σ] → Δ ⊩ˢ σ ≡ σ′ ∷ Γ / [Γ]′ / ⊢Δ′ / [σ]′ irrelevanceSubstEq ε ε ⊢Δ ⊢Δ′ [σ] [σ]′ [σ≡σ′] = tt irrelevanceSubstEq ([Γ] ∙ [A]) ([Γ]′ ∙ [A]′) ⊢Δ ⊢Δ′ [σ] [σ]′ [σ≡σ′] = irrelevanceSubstEq [Γ] [Γ]′ ⊢Δ ⊢Δ′ (proj₁ [σ]) (proj₁ [σ]′) (proj₁ [σ≡σ′]) , LR.irrelevanceEqTerm (proj₁ ([A] ⊢Δ (proj₁ [σ]))) (proj₁ ([A]′ ⊢Δ′ (proj₁ [σ]′))) (proj₂ [σ≡σ′]) -- Irrelevance of valid types with different derivations of contexts irrelevance : ∀ {l A Γ} ([Γ] [Γ]′ : ⊩ᵛ Γ) → Γ ⊩ᵛ⟨ l ⟩ A / [Γ] → Γ ⊩ᵛ⟨ l ⟩ A / [Γ]′ irrelevance [Γ] [Γ]′ [A] ⊢Δ [σ] = let [σ]′ = irrelevanceSubst [Γ]′ [Γ] ⊢Δ ⊢Δ [σ] in proj₁ ([A] ⊢Δ [σ]′) , λ [σ′] [σ≡σ′] → proj₂ ([A] ⊢Δ [σ]′) (irrelevanceSubst [Γ]′ [Γ] ⊢Δ ⊢Δ [σ′]) (irrelevanceSubstEq [Γ]′ [Γ] ⊢Δ ⊢Δ [σ] [σ]′ [σ≡σ′]) open import Definition.LogicalRelation.Properties -- Irrelevance of valid types with different derivations of contexts -- with lifting of eqaul types irrelevanceLift : ∀ {l A F H Γ} ([Γ] : ⊩ᵛ Γ) ([F] : Γ ⊩ᵛ⟨ l ⟩ F / [Γ]) ([H] : Γ ⊩ᵛ⟨ l ⟩ H / [Γ]) ([F≡H] : Γ ⊩ᵛ⟨ l ⟩ F ≡ H / [Γ] / [F]) → Γ ∙ F ⊩ᵛ⟨ l ⟩ A / [Γ] ∙ [F] → Γ ∙ H ⊩ᵛ⟨ l ⟩ A / [Γ] ∙ [H] irrelevanceLift [Γ] [F] [H] [F≡H] [A] ⊢Δ ([tailσ] , [headσ]) = let [σ]′ = [tailσ] , convTerm₂ (proj₁ ([F] ⊢Δ [tailσ])) (proj₁ ([H] ⊢Δ [tailσ])) ([F≡H] ⊢Δ [tailσ]) [headσ] in proj₁ ([A] ⊢Δ [σ]′) , (λ [σ′] x → let [σ′]′ = proj₁ [σ′] , convTerm₂ (proj₁ ([F] ⊢Δ (proj₁ [σ′]))) (proj₁ ([H] ⊢Δ (proj₁ [σ′]))) ([F≡H] ⊢Δ (proj₁ [σ′])) (proj₂ [σ′]) [tailσ′] = proj₁ [σ′] in proj₂ ([A] ⊢Δ [σ]′) [σ′]′ (proj₁ x , convEqTerm₂ (proj₁ ([F] ⊢Δ [tailσ])) (proj₁ ([H] ⊢Δ [tailσ])) ([F≡H] ⊢Δ [tailσ]) (proj₂ x))) -- Irrelevance of valid type equality with different derivations of -- contexts and types irrelevanceEq : ∀ {l l′ A B Γ} ([Γ] [Γ]′ : ⊩ᵛ Γ) ([A] : Γ ⊩ᵛ⟨ l ⟩ A / [Γ]) ([A]′ : Γ ⊩ᵛ⟨ l′ ⟩ A / [Γ]′) → Γ ⊩ᵛ⟨ l ⟩ A ≡ B / [Γ] / [A] → Γ ⊩ᵛ⟨ l′ ⟩ A ≡ B / [Γ]′ / [A]′ irrelevanceEq [Γ] [Γ]′ [A] [A]′ [A≡B] ⊢Δ [σ] = let [σ]′ = irrelevanceSubst [Γ]′ [Γ] ⊢Δ ⊢Δ [σ] in LR.irrelevanceEq (proj₁ ([A] ⊢Δ [σ]′)) (proj₁ ([A]′ ⊢Δ [σ])) ([A≡B] ⊢Δ [σ]′) -- Irrelevance of valid terms with different derivations of contexts and types irrelevanceTerm : ∀ {l l′ A t Γ} ([Γ] [Γ]′ : ⊩ᵛ Γ) ([A] : Γ ⊩ᵛ⟨ l ⟩ A / [Γ]) ([A]′ : Γ ⊩ᵛ⟨ l′ ⟩ A / [Γ]′) → Γ ⊩ᵛ⟨ l ⟩ t ∷ A / [Γ] / [A] → Γ ⊩ᵛ⟨ l′ ⟩ t ∷ A / [Γ]′ / [A]′ irrelevanceTerm [Γ] [Γ]′ [A] [A]′ [t] ⊢Δ [σ]′ = let [σ] = irrelevanceSubst [Γ]′ [Γ] ⊢Δ ⊢Δ [σ]′ [σA] = proj₁ ([A] ⊢Δ [σ]) [σA]′ = proj₁ ([A]′ ⊢Δ [σ]′) in LR.irrelevanceTerm [σA] [σA]′ (proj₁ ([t] ⊢Δ [σ])) , (λ [σ′] x → LR.irrelevanceEqTerm [σA] [σA]′ ((proj₂ ([t] ⊢Δ [σ])) (irrelevanceSubst [Γ]′ [Γ] ⊢Δ ⊢Δ [σ′]) (irrelevanceSubstEq [Γ]′ [Γ] ⊢Δ ⊢Δ [σ]′ [σ] x))) -- Irrelevance of valid terms with different derivations of -- contexts and types which are propositionally equal irrelevanceTerm′ : ∀ {l l′ A A′ t Γ} (eq : A PE.≡ A′) ([Γ] [Γ]′ : ⊩ᵛ Γ) ([A] : Γ ⊩ᵛ⟨ l ⟩ A / [Γ]) ([A′] : Γ ⊩ᵛ⟨ l′ ⟩ A′ / [Γ]′) → Γ ⊩ᵛ⟨ l ⟩ t ∷ A / [Γ] / [A] → Γ ⊩ᵛ⟨ l′ ⟩ t ∷ A′ / [Γ]′ / [A′] irrelevanceTerm′ {A = A} {t = t} PE.refl [Γ] [Γ]′ [A] [A]′ [t] = irrelevanceTerm {A = A} {t = t} [Γ] [Γ]′ [A] [A]′ [t] -- Irrelevance of valid terms with different derivations of -- contexts and types with a lifting of equal types irrelevanceTermLift : ∀ {l A F H t Γ} ([Γ] : ⊩ᵛ Γ) ([F] : Γ ⊩ᵛ⟨ l ⟩ F / [Γ]) ([H] : Γ ⊩ᵛ⟨ l ⟩ H / [Γ]) ([F≡H] : Γ ⊩ᵛ⟨ l ⟩ F ≡ H / [Γ] / [F]) ([A] : Γ ∙ F ⊩ᵛ⟨ l ⟩ A / [Γ] ∙ [F]) → Γ ∙ F ⊩ᵛ⟨ l ⟩ t ∷ A / [Γ] ∙ [F] / [A] → Γ ∙ H ⊩ᵛ⟨ l ⟩ t ∷ A / [Γ] ∙ [H] / irrelevanceLift {A = A} {F = F} {H = H} [Γ] [F] [H] [F≡H] [A] irrelevanceTermLift [Γ] [F] [H] [F≡H] [A] [t] ⊢Δ ([tailσ] , [headσ]) = let [σ]′ = [tailσ] , convTerm₂ (proj₁ ([F] ⊢Δ [tailσ])) (proj₁ ([H] ⊢Δ [tailσ])) ([F≡H] ⊢Δ [tailσ]) [headσ] in proj₁ ([t] ⊢Δ [σ]′) , (λ [σ′] x → let [σ′]′ = proj₁ [σ′] , convTerm₂ (proj₁ ([F] ⊢Δ (proj₁ [σ′]))) (proj₁ ([H] ⊢Δ (proj₁ [σ′]))) ([F≡H] ⊢Δ (proj₁ [σ′])) (proj₂ [σ′]) [tailσ′] = proj₁ [σ′] in proj₂ ([t] ⊢Δ [σ]′) [σ′]′ (proj₁ x , convEqTerm₂ (proj₁ ([F] ⊢Δ [tailσ])) (proj₁ ([H] ⊢Δ [tailσ])) ([F≡H] ⊢Δ [tailσ]) (proj₂ x))) -- Irrelevance of valid term equality with different derivations of -- contexts and types irrelevanceEqTerm : ∀ {l l′ A t u Γ} ([Γ] [Γ]′ : ⊩ᵛ Γ) ([A] : Γ ⊩ᵛ⟨ l ⟩ A / [Γ]) ([A]′ : Γ ⊩ᵛ⟨ l′ ⟩ A / [Γ]′) → Γ ⊩ᵛ⟨ l ⟩ t ≡ u ∷ A / [Γ] / [A] → Γ ⊩ᵛ⟨ l′ ⟩ t ≡ u ∷ A / [Γ]′ / [A]′ irrelevanceEqTerm {A = A} {t = t} {u = u} [Γ] [Γ]′ [A] [A]′ [t≡u] ⊢Δ [σ] = let [σ]′ = irrelevanceSubst [Γ]′ [Γ] ⊢Δ ⊢Δ [σ] in LR.irrelevanceEqTerm (proj₁ ([A] ⊢Δ [σ]′)) (proj₁ ([A]′ ⊢Δ [σ])) ([t≡u] ⊢Δ [σ]′)
43.646739
85
0.382144
599b9ca688f61742380e796b404d3d2af04adb9c
144
agda
Agda
test/fail/Issue476d.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
1
2019-11-27T07:26:06.000Z
2019-11-27T07:26:06.000Z
test/fail/Issue476d.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
test/fail/Issue476d.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
-- Private signatures module Issue476d where module M where private record R : Set₁ record R where field X : Set Q : Set₁ Q = M.R
12
22
0.666667
1d0da00332ca25a66879dae26a5f612419ac450b
3,406
agda
Agda
src/JVM/Model.agda
ajrouvoet/jvm.agda
c84bc6b834295ac140ff30bfc8e55228efbf6d2a
[ "Apache-2.0" ]
6
2020-10-07T14:07:17.000Z
2021-02-28T21:49:08.000Z
src/JVM/Model.agda
ajrouvoet/jvm.agda
c84bc6b834295ac140ff30bfc8e55228efbf6d2a
[ "Apache-2.0" ]
null
null
null
src/JVM/Model.agda
ajrouvoet/jvm.agda
c84bc6b834295ac140ff30bfc8e55228efbf6d2a
[ "Apache-2.0" ]
1
2021-12-28T17:37:15.000Z
2021-12-28T17:37:15.000Z
{-# OPTIONS --safe #-} module JVM.Model {ℓ} (T : Set ℓ) where open import Level hiding (Lift) open import Data.Product open import Data.Unit open import Data.List open import Relation.Binary.PropositionalEquality using (_≡_; refl) open import Relation.Ternary.Core open import Relation.Ternary.Structures open import Relation.Ternary.Construct.Empty T public open import Relation.Ternary.Construct.Duplicate T public open import Data.List.Relation.Binary.Permutation.Propositional using () renaming (_↭_ to _≈_) open import Data.List.Relation.Binary.Permutation.Propositional.Properties using (++-isMonoid) instance ++-monoid-instance = ++-isMonoid module Disjoint where open import Relation.Ternary.Construct.Bag empty-rel tt public open IsPartialSemigroup bags-isSemigroup public open IsPartialMonoid bags-isMonoid public open IsCommutative bags-isCommutative public module Overlap where open import Relation.Ternary.Construct.Bag duplicate tt public open IsPartialSemigroup bags-isSemigroup public open IsPartialMonoid bags-isMonoid public open IsCommutative bags-isCommutative public open IsTotal bags-isTotal public open Disjoint using (bag-emptiness) renaming ( empty-unique to empty-bag-unique ; singleton-unique to singleton-bag-unique) public open Rel₃ Disjoint.bags using () renaming (_∙_≣_ to _⊕_≣_; _✴_ to _⊕_; _─✴_ to _─⊕_; _∙⟨_⟩_ to _⊕⟨_⟩_) public open Rel₃ Overlap.bags using () renaming (_∙_≣_ to _⊗_≣_; _✴_ to _⊗_; _─✴_ to _─⊗_; _∙⟨_⟩_ to _⊗⟨_⟩_) public open import Relation.Ternary.Construct.Bag.Properties open import Data.List.Relation.Binary.Permutation.Propositional open CrossSplittable {{div₁ = duplicate}} {{empty-rel}} (λ _ ()) abstract private m₁ : IsPartialMonoid _↭_ Disjoint.bags [] m₁ = Disjoint.bags-isMonoid m₂ : IsPartialMonoid _↭_ Overlap.bags [] m₂ = Overlap.bags-isMonoid p₁ : IsPositiveWithZero 0ℓ _↭_ Disjoint.bags [] p₁ = Disjoint.bags-isPositive-w/0 p₂ : IsPositiveWithZero 0ℓ _↭_ Overlap.bags [] p₂ = Overlap.bags-isPositive-w/0 c₁ : IsCommutative Disjoint.bags c₁ = Disjoint.bags-isCommutative c₂ : IsCommutative Overlap.bags c₂ = Overlap.bags-isCommutative x : CrossSplit Overlap.bags Disjoint.bags x = xsplit ux : Uncross Disjoint.bags Overlap.bags ux = uncrossover (unxcross λ ()) open import Relation.Ternary.Construct.Exchange {A = List T} {{m₁}} {{m₂}} {{p₁}} {{p₂}} {{empty-bag-unique}} {{c₁}} {{c₂}} {{Disjoint.bags-isTotal}} {{Overlap.bags-isTotal}} {{++-isMonoid}} x ux public renaming (Account to Intf ; _≈_ to _≈intf≈_ ; exchange-rel to intf-rel ; exchange-emptiness to intf-emptiness ; exchange-isSemigroup to intf-isSemigroup ; exchange-isCommutative to intf-isCommutative ; exchange-isMonoid to intf-isMonoid ; exchange-isTotal to intf-isTotal) open DownIntuitive {{Overlap.bags-isContractive}} public module Syntax where open Rel₃ intf-rel public open Emptiness intf-emptiness public open IsPartialSemigroup intf-isSemigroup public open IsPartialMonoid intf-isMonoid public open IsCommutative intf-isCommutative public open CommutativeSemigroupOps {{intf-isSemigroup}} {{intf-isCommutative}} public -- module _ {P} where -- open IsIntuitionistic (intf-isIntuitive {P}) w public open Syntax
31.247706
81
0.724604
293113a79d6ac77a984c275487a8634e93bc9f7c
11,350
agda
Agda
Definition/LogicalRelation/Properties/Neutral.agda
Vtec234/logrel-mltt
4746894adb5b8edbddc8463904ee45c2e9b29b69
[ "MIT" ]
null
null
null
Definition/LogicalRelation/Properties/Neutral.agda
Vtec234/logrel-mltt
4746894adb5b8edbddc8463904ee45c2e9b29b69
[ "MIT" ]
null
null
null
Definition/LogicalRelation/Properties/Neutral.agda
Vtec234/logrel-mltt
4746894adb5b8edbddc8463904ee45c2e9b29b69
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} open import Definition.Typed.EqualityRelation module Definition.LogicalRelation.Properties.Neutral {{eqrel : EqRelSet}} where open EqRelSet {{...}} open import Definition.Untyped open import Definition.Untyped.Properties open import Definition.Typed open import Definition.Typed.Properties import Definition.Typed.Weakening as Wk open import Definition.LogicalRelation open import Definition.LogicalRelation.ShapeView open import Definition.LogicalRelation.Irrelevance open import Definition.LogicalRelation.Properties.Reflexivity open import Definition.LogicalRelation.Properties.Escape open import Definition.LogicalRelation.Properties.Symmetry open import Tools.Product import Tools.PropositionalEquality as PE -- Neutral reflexive types are reducible. neu : ∀ {l Γ A} (neA : Neutral A) → Γ ⊢ A → Γ ⊢ A ~ A ∷ U → Γ ⊩⟨ l ⟩ A neu neA A A~A = ne′ _ (idRed:*: A) neA A~A -- Helper function for reducible neutral equality of a specific type of derivation. neuEq′ : ∀ {l Γ A B} ([A] : Γ ⊩⟨ l ⟩ne A) (neA : Neutral A) (neB : Neutral B) → Γ ⊢ A → Γ ⊢ B → Γ ⊢ A ~ B ∷ U → Γ ⊩⟨ l ⟩ A ≡ B / ne-intr [A] neuEq′ (noemb (ne K [ ⊢A , ⊢B , D ] neK K≡K)) neA neB A B A~B = let A≡K = whnfRed* D (ne neA) in ne₌ _ (idRed:*: B) neB (PE.subst (λ x → _ ⊢ x ~ _ ∷ _) A≡K A~B) neuEq′ (emb 0<1 x) neB A:≡:B = neuEq′ x neB A:≡:B -- Neutrally equal types are of reducible equality. neuEq : ∀ {l Γ A B} ([A] : Γ ⊩⟨ l ⟩ A) (neA : Neutral A) (neB : Neutral B) → Γ ⊢ A → Γ ⊢ B → Γ ⊢ A ~ B ∷ U → Γ ⊩⟨ l ⟩ A ≡ B / [A] neuEq [A] neA neB A B A~B = irrelevanceEq (ne-intr (ne-elim neA [A])) [A] (neuEq′ (ne-elim neA [A]) neA neB A B A~B) mutual -- Neutral reflexive terms are reducible. neuTerm : ∀ {l Γ A n} ([A] : Γ ⊩⟨ l ⟩ A) (neN : Neutral n) → Γ ⊢ n ∷ A → Γ ⊢ n ~ n ∷ A → Γ ⊩⟨ l ⟩ n ∷ A / [A] neuTerm (Uᵣ′ .⁰ 0<1 ⊢Γ) neN n n~n = Uₜ _ (idRedTerm:*: n) (ne neN) (~-to-≅ₜ n~n) (neu neN (univ n) n~n) neuTerm (ℕᵣ [ ⊢A , ⊢B , D ]) neN n n~n = let A≡ℕ = subset* D n~n′ = ~-conv n~n A≡ℕ n≡n = ~-to-≅ₜ n~n′ in ℕₜ _ (idRedTerm:*: (conv n A≡ℕ)) n≡n (ne (neNfₜ neN (conv n A≡ℕ) n~n′)) neuTerm (Emptyᵣ [ ⊢A , ⊢B , D ]) neN n n~n = let A≡Empty = subset* D n~n′ = ~-conv n~n A≡Empty n≡n = ~-to-≅ₜ n~n′ in Emptyₜ _ (idRedTerm:*: (conv n A≡Empty)) n≡n (ne (neNfₜ neN (conv n A≡Empty) n~n′)) neuTerm (Unitᵣ [ ⊢A , ⊢B , D ]) neN n n~n = let A≡Unit = subset* D n~n′ = ~-conv n~n A≡Unit in Unitₜ _ (idRedTerm:*: (conv n A≡Unit)) (ne neN) neuTerm (ne′ K [ ⊢A , ⊢B , D ] neK K≡K) neN n n~n = let A≡K = subset* D in neₜ _ (idRedTerm:*: (conv n A≡K)) (neNfₜ neN (conv n A≡K) (~-conv n~n A≡K)) neuTerm (Πᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext) neN n n~n = let A≡ΠFG = subset* (red D) in Πₜ _ (idRedTerm:*: (conv n A≡ΠFG)) (ne neN) (~-to-≅ₜ (~-conv n~n A≡ΠFG)) (λ {ρ} [ρ] ⊢Δ [a] [b] [a≡b] → let A≡ΠFG = subset* (red D) ρA≡ρΠFG = Wk.wkEq [ρ] ⊢Δ (subset* (red D)) G[a]≡G[b] = escapeEq ([G] [ρ] ⊢Δ [b]) (symEq ([G] [ρ] ⊢Δ [a]) ([G] [ρ] ⊢Δ [b]) (G-ext [ρ] ⊢Δ [a] [b] [a≡b])) a = escapeTerm ([F] [ρ] ⊢Δ) [a] b = escapeTerm ([F] [ρ] ⊢Δ) [b] a≡b = escapeTermEq ([F] [ρ] ⊢Δ) [a≡b] ρn = conv (Wk.wkTerm [ρ] ⊢Δ n) ρA≡ρΠFG neN∘a = ∘ₙ (wkNeutral ρ neN) neN∘b = ∘ₙ (wkNeutral ρ neN) in neuEqTerm ([G] [ρ] ⊢Δ [a]) neN∘a neN∘b (ρn ∘ⱼ a) (conv (ρn ∘ⱼ b) (≅-eq G[a]≡G[b])) (~-app (~-wk [ρ] ⊢Δ (~-conv n~n A≡ΠFG)) a≡b)) (λ {ρ} [ρ] ⊢Δ [a] → let ρA≡ρΠFG = Wk.wkEq [ρ] ⊢Δ (subset* (red D)) a = escapeTerm ([F] [ρ] ⊢Δ) [a] a≡a = escapeTermEq ([F] [ρ] ⊢Δ) (reflEqTerm ([F] [ρ] ⊢Δ) [a]) in neuTerm ([G] [ρ] ⊢Δ [a]) (∘ₙ (wkNeutral ρ neN)) (conv (Wk.wkTerm [ρ] ⊢Δ n) ρA≡ρΠFG ∘ⱼ a) (~-app (~-wk [ρ] ⊢Δ (~-conv n~n A≡ΠFG)) a≡a)) neuTerm (Σᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext) neN ⊢n n~n = let A≡ΣFG = subset* (red D) ⊢Γ = wf ⊢F ⊢n = conv ⊢n A≡ΣFG n~n = ~-conv n~n A≡ΣFG [F] = [F] Wk.id ⊢Γ [fst] = neuTerm [F] (fstₙ neN) (PE.subst (λ x → _ ⊢ fst _ ∷ x) (PE.sym (wk-id F)) (fstⱼ ⊢F ⊢G ⊢n)) (PE.subst (λ x → _ ⊢ _ ~ _ ∷ x) (PE.sym (wk-id F)) (~-fst ⊢F ⊢G n~n)) [Gfst] = [G] Wk.id ⊢Γ [fst] [snd] = neuTerm [Gfst] (sndₙ neN) (PE.subst (λ x → _ ⊢ snd _ ∷ x) (PE.cong (λ x → x [ fst _ ]) (PE.sym (wk-lift-id G))) (sndⱼ ⊢F ⊢G ⊢n)) (PE.subst (λ x → _ ⊢ _ ~ _ ∷ x) (PE.cong (λ x → x [ fst _ ]) (PE.sym (wk-lift-id G))) (~-snd ⊢F ⊢G n~n)) in Σₜ _ (idRedTerm:*: ⊢n) (ne neN) (~-to-≅ₜ n~n) [fst] [snd] neuTerm (emb 0<1 x) neN n = neuTerm x neN n -- Neutrally equal terms are of reducible equality. neuEqTerm : ∀ {l Γ A n n′} ([A] : Γ ⊩⟨ l ⟩ A) (neN : Neutral n) (neN′ : Neutral n′) → Γ ⊢ n ∷ A → Γ ⊢ n′ ∷ A → Γ ⊢ n ~ n′ ∷ A → Γ ⊩⟨ l ⟩ n ≡ n′ ∷ A / [A] neuEqTerm (Uᵣ′ .⁰ 0<1 ⊢Γ) neN neN′ n n′ n~n′ = let [n] = neu neN (univ n) (~-trans n~n′ (~-sym n~n′)) [n′] = neu neN′ (univ n′) (~-trans (~-sym n~n′) n~n′) in Uₜ₌ _ _ (idRedTerm:*: n) (idRedTerm:*: n′) (ne neN) (ne neN′) (~-to-≅ₜ n~n′) [n] [n′] (neuEq [n] neN neN′ (univ n) (univ n′) n~n′) neuEqTerm (ℕᵣ [ ⊢A , ⊢B , D ]) neN neN′ n n′ n~n′ = let A≡ℕ = subset* D n~n′₁ = ~-conv n~n′ A≡ℕ n≡n′ = ~-to-≅ₜ n~n′₁ in ℕₜ₌ _ _ (idRedTerm:*: (conv n A≡ℕ)) (idRedTerm:*: (conv n′ A≡ℕ)) n≡n′ (ne (neNfₜ₌ neN neN′ n~n′₁)) neuEqTerm (Emptyᵣ [ ⊢A , ⊢B , D ]) neN neN′ n n′ n~n′ = let A≡Empty = subset* D n~n′₁ = ~-conv n~n′ A≡Empty n≡n′ = ~-to-≅ₜ n~n′₁ in Emptyₜ₌ _ _ (idRedTerm:*: (conv n A≡Empty)) (idRedTerm:*: (conv n′ A≡Empty)) n≡n′ (ne (neNfₜ₌ neN neN′ n~n′₁)) neuEqTerm (Unitᵣ [ ⊢A , ⊢B , D ]) neN neN′ n n′ n~n′ = let A≡Unit = subset* D in Unitₜ₌ (conv n A≡Unit) (conv n′ A≡Unit) neuEqTerm (ne (ne K [ ⊢A , ⊢B , D ] neK K≡K)) neN neN′ n n′ n~n′ = let A≡K = subset* D in neₜ₌ _ _ (idRedTerm:*: (conv n A≡K)) (idRedTerm:*: (conv n′ A≡K)) (neNfₜ₌ neN neN′ (~-conv n~n′ A≡K)) neuEqTerm (Πᵣ′ F G [ ⊢A , ⊢B , D ] ⊢F ⊢G A≡A [F] [G] G-ext) neN neN′ n n′ n~n′ = let [ΠFG] = Πᵣ′ F G [ ⊢A , ⊢B , D ] ⊢F ⊢G A≡A [F] [G] G-ext A≡ΠFG = subset* D n~n′₁ = ~-conv n~n′ A≡ΠFG n≡n′ = ~-to-≅ₜ n~n′₁ n~n = ~-trans n~n′ (~-sym n~n′) n′~n′ = ~-trans (~-sym n~n′) n~n′ in Πₜ₌ _ _ (idRedTerm:*: (conv n A≡ΠFG)) (idRedTerm:*: (conv n′ A≡ΠFG)) (ne neN) (ne neN′) n≡n′ (neuTerm [ΠFG] neN n n~n) (neuTerm [ΠFG] neN′ n′ n′~n′) (λ {ρ} [ρ] ⊢Δ [a] → let ρA≡ρΠFG = Wk.wkEq [ρ] ⊢Δ A≡ΠFG ρn = Wk.wkTerm [ρ] ⊢Δ n ρn′ = Wk.wkTerm [ρ] ⊢Δ n′ a = escapeTerm ([F] [ρ] ⊢Δ) [a] a≡a = escapeTermEq ([F] [ρ] ⊢Δ) (reflEqTerm ([F] [ρ] ⊢Δ) [a]) neN∙a = ∘ₙ (wkNeutral ρ neN) neN′∙a′ = ∘ₙ (wkNeutral ρ neN′) in neuEqTerm ([G] [ρ] ⊢Δ [a]) neN∙a neN′∙a′ (conv ρn ρA≡ρΠFG ∘ⱼ a) (conv ρn′ ρA≡ρΠFG ∘ⱼ a) (~-app (~-wk [ρ] ⊢Δ n~n′₁) a≡a)) neuEqTerm (Σᵣ′ F G [ ⊢A , ⊢B , D ] ⊢F ⊢G A≡A [F] [G] G-ext) neN neN′ ⊢n ⊢n′ n~n′ = let [ΣFG] = Σᵣ′ F G [ ⊢A , ⊢B , D ] ⊢F ⊢G A≡A [F] [G] G-ext A≡ΣFG = subset* D n~n = ~-trans n~n′ (~-sym n~n′) n′~n′ = ~-trans (~-sym n~n′) n~n′ ⊢Γ = wf ⊢F ⊢nΣ = conv ⊢n A≡ΣFG ⊢n′Σ = conv ⊢n′ A≡ΣFG n~n′Σ = ~-conv n~n′ A≡ΣFG n~nΣ = ~-conv n~n A≡ΣFG n′~n′Σ = ~-conv n′~n′ A≡ΣFG [F] = [F] Wk.id ⊢Γ ⊢fstnΣ = (PE.subst (λ x → _ ⊢ fst _ ∷ x) (PE.sym (wk-id F)) (fstⱼ ⊢F ⊢G ⊢nΣ)) ⊢fstn′Σ = (PE.subst (λ x → _ ⊢ fst _ ∷ x) (PE.sym (wk-id F)) (fstⱼ ⊢F ⊢G ⊢n′Σ)) [fstn] = neuTerm [F] (fstₙ neN) ⊢fstnΣ (PE.subst (λ x → _ ⊢ _ ~ _ ∷ x) (PE.sym (wk-id F)) (~-fst ⊢F ⊢G n~nΣ)) [fstn′] = neuTerm [F] (fstₙ neN′) ⊢fstn′Σ (PE.subst (λ x → _ ⊢ _ ~ _ ∷ x) (PE.sym (wk-id F)) (~-fst ⊢F ⊢G n′~n′Σ)) [fstn≡fstn′] = neuEqTerm [F] (fstₙ neN) (fstₙ neN′) ⊢fstnΣ ⊢fstn′Σ (PE.subst (λ x → _ ⊢ _ ~ _ ∷ x) (PE.sym (wk-id F)) (~-fst ⊢F ⊢G n~n′Σ)) [Gfstn] = [G] Wk.id ⊢Γ [fstn] [Gfstn′] = PE.subst (λ x → _ ⊩⟨ _ ⟩ x [ fst _ ]) (wk-lift-id G) ([G] Wk.id ⊢Γ [fstn′]) [fstn′≡fstn] = symEqTerm [F] [fstn≡fstn′] [Gfstn′≡Gfstn] = irrelevanceEq″ (PE.cong (λ x → x [ fst _ ]) (wk-lift-id G)) (PE.cong (λ x → x [ fst _ ]) (wk-lift-id G)) ([G] Wk.id ⊢Γ [fstn′]) [Gfstn′] (G-ext Wk.id ⊢Γ [fstn′] [fstn] [fstn′≡fstn]) Gfstn′≡Gfstn = ≅-eq (escapeEq [Gfstn′] [Gfstn′≡Gfstn]) [sndn≡sndn′] = neuEqTerm [Gfstn] (sndₙ neN) (sndₙ neN′) (PE.subst (λ x → _ ⊢ snd _ ∷ x) (PE.cong (λ x → x [ fst _ ]) (PE.sym (wk-lift-id G))) (sndⱼ ⊢F ⊢G ⊢nΣ)) (PE.subst (λ x → _ ⊢ snd _ ∷ x) (PE.cong (λ x → x [ fst _ ]) (PE.sym (wk-lift-id G))) (conv (sndⱼ ⊢F ⊢G ⊢n′Σ) Gfstn′≡Gfstn)) (PE.subst (λ x → _ ⊢ _ ~ _ ∷ x) (PE.cong (λ x → x [ fst _ ]) (PE.sym (wk-lift-id G))) (~-snd ⊢F ⊢G n~n′Σ)) in Σₜ₌ _ _ (idRedTerm:*: ⊢nΣ) (idRedTerm:*: ⊢n′Σ) (ne neN) (ne neN′) (~-to-≅ₜ n~n′Σ) (neuTerm [ΣFG] neN ⊢n n~n) (neuTerm [ΣFG] neN′ ⊢n′ n′~n′) [fstn] [fstn′] [fstn≡fstn′] [sndn≡sndn′] neuEqTerm (emb 0<1 x) neN neN′ n:≡:n′ = neuEqTerm x neN neN′ n:≡:n′
43.822394
94
0.396035
4a1be14b8dce45405e39c629c53d2a04ec39c723
1,698
agda
Agda
src/cedille-main.agda
mb64/cedille
d0f69cc6fbfb69d7ef83a436b623d612328eb016
[ "MIT" ]
328
2018-09-14T20:06:09.000Z
2022-03-26T10:33:07.000Z
src/cedille-main.agda
mb64/cedille
d0f69cc6fbfb69d7ef83a436b623d612328eb016
[ "MIT" ]
123
2018-09-17T10:53:20.000Z
2022-01-12T03:51:28.000Z
src/cedille-main.agda
mb64/cedille
d0f69cc6fbfb69d7ef83a436b623d612328eb016
[ "MIT" ]
34
2018-09-17T11:51:36.000Z
2022-02-20T18:33:16.000Z
module cedille-main where import parse open import ial open import cedille-types import cedille module parsem = parse cedille.gratr2-nt ptr open parsem open parsem.pnoderiv cedille.rrs cedille.cedille-rtn open import run ptr open noderiv {- from run.agda -} process-start : start → string process-start s = "" process : Run → string process (ParseTree (parsed-start p) :: []) = process-start p process r = "Parsing failure (run with -" ^ "-showParsed).\n" putStrRunIf : 𝔹 → Run → IO ⊤ putStrRunIf tt r = putStr (Run-to-string r) >> putStr "\n" putStrRunIf ff r = return triv processArgs : (showRun : 𝔹) → (showParsed : 𝔹) → 𝕃 string → IO ⊤ processArgs showRun showParsed (input-filename :: []) = (readFiniteFile input-filename) >>= processText where processText : string → IO ⊤ processText x with runRtn (string-to-𝕃char x) processText x | s with s processText x | s | inj₁ cs = putStr "Characters left before failure : " >> putStr (𝕃char-to-string cs) >> putStr "\nCannot proceed to parsing.\n" processText x | s | inj₂ r with putStrRunIf showRun r | rewriteRun r processText x | s | inj₂ r | sr | r' with putStrRunIf showParsed r' processText x | s | inj₂ r | sr | r' | sr' = sr >> sr' >> putStr (process r') processArgs showRun showParsed ("--showRun" :: xs) = processArgs tt showParsed xs processArgs showRun showParsed ("--showParsed" :: xs) = processArgs showRun tt xs processArgs showRun showParsed (x :: xs) = putStr ("Unknown option " ^ x ^ "\n") processArgs showRun showParsed [] = putStr "Please run with the name of a file to process.\n" main : IO ⊤ main = getArgs >>= processArgs ff ff
39.488372
154
0.671378
31bd4f69806cda96d8e8ece059555713c524f94b
198
agda
Agda
sets/empty.agda
HoTT/M-types
beebe176981953ab48f37de5eb74557cfc5402f4
[ "BSD-3-Clause" ]
27
2015-04-14T15:47:03.000Z
2022-01-09T07:26:57.000Z
sets/empty.agda
HoTT/M-types
beebe176981953ab48f37de5eb74557cfc5402f4
[ "BSD-3-Clause" ]
2
2015-02-11T11:14:59.000Z
2015-02-11T15:20:34.000Z
sets/empty.agda
HoTT/M-types
beebe176981953ab48f37de5eb74557cfc5402f4
[ "BSD-3-Clause" ]
4
2015-04-11T17:19:12.000Z
2019-02-26T06:17:38.000Z
{-# OPTIONS --without-K #-} module sets.empty where open import level using () data ⊥ : Set where ⊥-elim : ∀ {i}{A : Set i} → ⊥ → A ⊥-elim () ¬_ : ∀ {i} → Set i → Set i ¬ X = X → ⊥ infix 3 ¬_
13.2
33
0.510101
2feaf49122a033e1989506ece4d770f4f50faa30
223
agda
Agda
test/Succeed/Issue4909.agda
LaloHao/agda
7de768bb7bc65dbe1efa35c699cfa8b8f9510573
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue4909.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue4909.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --rewriting #-} {-# OPTIONS --no-fast-reduce #-} open import Agda.Builtin.Equality {-# BUILTIN REWRITE _≡_ #-} data A : Set where a b : A postulate rew : a ≡ b {-# REWRITE rew #-} test : a ≡ b test = refl
14.866667
33
0.600897
0bafaf7510289f635524659f3a1769538e04448c
2,388
agda
Agda
preservation.agda
hazelgrove/hazelnat-myth
a8f9299090d95f4ef1a6c2f15954c2981c0ee25c
[ "MIT" ]
1
2019-12-19T23:42:31.000Z
2019-12-19T23:42:31.000Z
preservation.agda
hazelgrove/hazelnat-myth
a8f9299090d95f4ef1a6c2f15954c2981c0ee25c
[ "MIT" ]
null
null
null
preservation.agda
hazelgrove/hazelnat-myth
a8f9299090d95f4ef1a6c2f15954c2981c0ee25c
[ "MIT" ]
null
null
null
open import Nat open import Prelude open import List open import contexts open import core open import lemmas-env module preservation where preservation : ∀{⛽ Δ Σ' Γ E e r k τ} → Δ , Σ' , Γ ⊢ E → Δ , Σ' , Γ ⊢ e :: τ → E ⊢ e ⌊ ⛽ ⌋⇒ r ⊣ k → Δ , Σ' ⊢ r ·: τ preservation ctxcons ta EFix = TAFix ctxcons ta preservation ctxcons (TAVar tah) (EVar h) with env-all-Γ ctxcons tah ... | π3 , π4 , π5 rewrite ctxunicity h π4 = π5 preservation ctxcons (TAHole h) EHole = TAHole h ctxcons preservation ctxcons TAUnit EUnit = TAUnit preservation ctxcons (TAPair _ ta1 ta2) (EPair eval1 eval2) = TAPair (preservation ctxcons ta1 eval1 ) (preservation ctxcons ta2 eval2) preservation ctxcons (TACtor h1 h2 ta) (ECtor eval) = TACtor h1 h2 (preservation ctxcons ta eval) preservation ctxcons (TAApp _ ta-f ta-arg) (EAppFix _ h eval1 eval2 eval-ef) rewrite h with preservation ctxcons ta-f eval1 ... | TAFix ctxcons-Ef (TAFix ta-ef) = preservation (EnvInd (EnvInd ctxcons-Ef (preservation ctxcons ta-f eval1)) (preservation ctxcons ta-arg eval2)) ta-ef eval-ef preservation ctxcons (TAApp _ ta1 ta2) (EAppUnfinished eval1 _ eval2) = TAApp (preservation ctxcons ta1 eval1) (preservation ctxcons ta2 eval2) preservation ctxcons (TAFst ta) (EFst eval) with preservation ctxcons ta eval ... | TAPair ta1 ta2 = ta1 preservation ctxcons (TAFst ta) (EFstUnfinished eval x) = TAFst (preservation ctxcons ta eval) preservation ctxcons (TASnd ta) (ESnd eval) with preservation ctxcons ta eval ... | TAPair ta1 ta2 = ta2 preservation ctxcons (TASnd ta) (ESndUnfinished eval x) = TASnd (preservation ctxcons ta eval) preservation {Σ' = Σ'} ctxcons (TACase d∈Σ' ta h1 h2) (EMatch _ form eval-e eval-ec) with h2 form ... | _ , _ , _ , c∈cctx2 , ta-ec with preservation ctxcons ta eval-e ... | TACtor {cctx = cctx} d∈Σ'2 c∈cctx ta' with ctxunicity {Γ = π1 Σ'} d∈Σ' d∈Σ'2 ... | refl with ctxunicity {Γ = cctx} c∈cctx c∈cctx2 ... | refl = preservation (EnvInd ctxcons ta') ta-ec eval-ec preservation ctxcons (TACase d∈Σ' ta h1 h2) (EMatchUnfinished eval h) = TACase d∈Σ' ctxcons (preservation ctxcons ta eval) h1 λ form' → let _ , _ , _ , p2 , p3 = h2 form' in _ , p2 , p3 preservation ctxcons (TAAsrt _ ta1 ta2) (EAsrt eval1 eval2 _) = TAUnit
46.823529
129
0.664992
573c8b7125689eb0891f09d6a658c17f7e1aad2e
1,372
agda
Agda
archive/agda-3/src/Oscar/Class/Symmetry/ToSym.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
archive/agda-3/src/Oscar/Class/Symmetry/ToSym.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
1
2019-04-29T00:35:04.000Z
2019-05-11T23:33:04.000Z
archive/agda-3/src/Oscar/Class/Symmetry/ToSym.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
open import Oscar.Prelude open import Oscar.Class open import Oscar.Class.Symmetry module Oscar.Class.Symmetry.ToSym where private test-class : ⦃ _ : ∀ {𝔬} {𝔒 : Ø 𝔬} {𝔯} {_∼_ : 𝔒 → 𝔒 → Ø 𝔯} → Symmetry.class _∼_ ⦄ → ∀ {𝔬} {𝔒 : Ø 𝔬} {𝔯} {_∼_ : 𝔒 → 𝔒 → Ø 𝔯} → Symmetry.class _∼_ test-class = ! test-class' : ∀ {𝔬} {𝔒 : Ø 𝔬} {x : 𝔒} {𝔯} {F : (𝔒 → 𝔒 → Ø 𝔯) → 𝔒 → 𝔒 → Ø 𝔯} ⦃ _ : ∀ {S : 𝔒 → 𝔒 → 𝔒 → Ø 𝔯} → Symmetry.class (F (S x)) ⦄ → ∀ {S : 𝔒 → 𝔒 → 𝔒 → Ø 𝔯} → Symmetry.class (F (S x)) test-class' ⦃ ⌶ ⦄ {S} = ⌶ {S} -- FIXME _S _x ≟ _S' _x test-class'' : ∀ {𝔬} {𝔒 : Ø 𝔬} {x : 𝔒} {𝔯} {F : (𝔒 → 𝔒 → 𝔒 → Ø 𝔯) → 𝔒 → 𝔒 → 𝔒 → Ø 𝔯} ⦃ _ : ∀ {S : 𝔒 → 𝔒 → 𝔒 → Ø 𝔯} → Symmetry.class (F S x) ⦄ → ∀ {S : 𝔒 → 𝔒 → 𝔒 → Ø 𝔯} → Symmetry.class (F S x) test-class'' = ! test-class''' : ∀ {𝔬} {𝔒 : Ø 𝔬} {𝔯} {F : (𝔒 → 𝔒 → 𝔒 → Ø 𝔯) → 𝔒 → 𝔒 → Ø 𝔯} ⦃ _ : ∀ {S : 𝔒 → 𝔒 → 𝔒 → Ø 𝔯} → Symmetry.class (F S) ⦄ → ∀ {S : 𝔒 → 𝔒 → 𝔒 → Ø 𝔯} → Symmetry.class (F S) test-class''' = ! test-method-sym : ∀ {𝔬} {𝔒 : Ø 𝔬} {𝔯} {_∼_ : 𝔒 → 𝔒 → Ø 𝔯} ⦃ _ : Symmetry.class _∼_ ⦄ → _ test-method-sym {_∼_ = _∼_} = λ {x} {y} → Symmetry.method _∼_ {x} {y} test-method-symmetry : ∀ {𝔬} {𝔒 : Ø 𝔬} {𝔯} {_∼_ : 𝔒 → 𝔒 → Ø 𝔯} ⦃ _ : Symmetry.class _∼_ ⦄ → _ test-method-symmetry {_∼_ = _∼_} = λ {x} {y} → symmetry[ _∼_ ] {x} {y}
29.826087
73
0.433673
31996c0bc9dc6bd6dd2ca6ae0410a1d511dd82d3
2,732
agda
Agda
Cubical/Algebra/Ring/Ideal.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
Cubical/Algebra/Ring/Ideal.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
Cubical/Algebra/Ring/Ideal.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Algebra.Ring.Ideal where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Structure open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Foundations.Powerset open import Cubical.Algebra.Ring.Base open import Cubical.Algebra.Ring.Properties private variable ℓ : Level module _ (R' : Ring {ℓ}) where open RingStr (snd R') private R = ⟨ R' ⟩ {- by default, 'ideal' means two-sided ideal -} record isIdeal (I : R → hProp ℓ) : Type ℓ where field +-closed : {x y : R} → x ∈ I → y ∈ I → (x + y) ∈ I -closed : {x : R} → x ∈ I → - x ∈ I 0r-closed : 0r ∈ I ·-closedLeft : {x : R} → (r : R) → x ∈ I → r · x ∈ I ·-closedRight : {x : R} → (r : R) → x ∈ I → x · r ∈ I Ideal : Type _ Ideal = Σ[ I ∈ (R → hProp ℓ) ] isIdeal I record isLeftIdeal (I : R → hProp ℓ) : Type ℓ where field +-closed : {x y : R} → x ∈ I → y ∈ I → (x + y) ∈ I -closed : {x : R} → x ∈ I → - x ∈ I 0r-closed : 0r ∈ I ·-closedLeft : {x : R} → (r : R) → x ∈ I → r · x ∈ I record isRightIdeal (I : R → hProp ℓ) : Type ℓ where field +-closed : {x y : R} → x ∈ I → y ∈ I → (x + y) ∈ I -closed : {x : R} → x ∈ I → - x ∈ I 0r-closed : 0r ∈ I ·-closedRight : {x : R} → (r : R) → x ∈ I → x · r ∈ I {- Examples of ideals -} zeroSubset : (x : R) → hProp ℓ zeroSubset x = (x ≡ 0r) , isSetRing R' _ _ open Theory R' isIdealZeroIdeal : isIdeal zeroSubset isIdealZeroIdeal = record { +-closed = λ x≡0 y≡0 → _ + _ ≡⟨ cong (λ u → u + _) x≡0 ⟩ 0r + _ ≡⟨ +Lid _ ⟩ _ ≡⟨ y≡0 ⟩ 0r ∎ ; -closed = λ x≡0 → - _ ≡⟨ cong (λ u → - u) x≡0 ⟩ - 0r ≡⟨ 0Selfinverse ⟩ 0r ∎ ; 0r-closed = refl ; ·-closedLeft = λ r x≡0 → r · _ ≡⟨ cong (λ u → r · u) x≡0 ⟩ r · 0r ≡⟨ 0RightAnnihilates r ⟩ 0r ∎ ; ·-closedRight = λ r x≡0 → _ · r ≡⟨ cong (λ u → u · r) x≡0 ⟩ 0r · r ≡⟨ 0LeftAnnihilates r ⟩ 0r ∎ } zeroIdeal : Ideal zeroIdeal = zeroSubset , isIdealZeroIdeal IdealsIn : (R : Ring {ℓ}) → Type _ IdealsIn {ℓ} R = Σ[ I ∈ (⟨ R ⟩ → hProp ℓ) ] isIdeal R I
34.582278
84
0.421669
d043833bfd028add2f70e28671d8cf0b0f69aa85
4,087
agda
Agda
MuNu.agda
nad/codata
1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e
[ "MIT" ]
1
2021-02-13T14:48:45.000Z
2021-02-13T14:48:45.000Z
MuNu.agda
nad/codata
1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e
[ "MIT" ]
null
null
null
MuNu.agda
nad/codata
1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- An investigation of nested fixpoints of the form μX.νY.… in Agda ------------------------------------------------------------------------ module MuNu where open import Codata.Musical.Notation import Codata.Musical.Colist as Colist open import Codata.Musical.Stream open import Data.Digit open import Data.Empty open import Data.List using (List; _∷_; []) open import Data.Product open import Relation.Binary.PropositionalEquality open import Relation.Nullary using (¬_) -- Christophe Raffalli discusses (essentially) the type μO. νZ. Z + O -- in his thesis. If Z is read as zero and O as one, then this type -- contains bit sequences of the form (0^⋆1)^⋆0^ω. -- It is interesting to note that currently it is not possible to -- encode this type directly in Agda. One might believe that the -- following definition should work. First we define the inner -- greatest fixpoint: data Z (O : Set) : Set where [0] : ∞ (Z O) → Z O [1] : O → Z O -- Then we define the outer least fixpoint: data O : Set where ↓ : Z O → O -- However, it is still possible to define values of the form (01)^ω: 01^ω : O 01^ω = ↓ ([0] (♯ [1] 01^ω)) -- The reason is the way the termination/productivity checker works: -- it accepts definitions by guarded corecursion as long as the guard -- contains at least one occurrence of ♯_, no matter how the types -- involved are defined. In effect ∞ has global reach. The mistake -- done above was believing that O is defined to be a least fixpoint. -- The type O really corresponds to νZ. μO. Z + O, i.e. (1^⋆0)^ω: data O′ : Set where [0] : ∞ O′ → O′ [1] : O′ → O′ mutual O→O′ : O → O′ O→O′ (↓ z) = ZO→O′ z ZO→O′ : Z O → O′ ZO→O′ ([0] z) = [0] (♯ ZO→O′ (♭ z)) ZO→O′ ([1] o) = [1] (O→O′ o) mutual O′→O : O′ → O O′→O o = ↓ (O′→ZO o) O′→ZO : O′ → Z O O′→ZO ([0] o) = [0] (♯ O′→ZO (♭ o)) O′→ZO ([1] o) = [1] (O′→O o) -- If O had actually encoded the type μO. νZ. Z + O, then we could -- have proved the following theorem: mutual ⟦_⟧O : O → Stream Bit ⟦ ↓ z ⟧O = ⟦ z ⟧Z ⟦_⟧Z : Z O → Stream Bit ⟦ [0] z ⟧Z = 0b ∷ ♯ ⟦ ♭ z ⟧Z ⟦ [1] o ⟧Z = 1b ∷ ♯ ⟦ o ⟧O Theorem : Set Theorem = ∀ o → ¬ (head ⟦ o ⟧O ≡ 0b × head (tail ⟦ o ⟧O) ≡ 1b × tail (tail ⟦ o ⟧O) ≈ ⟦ o ⟧O) -- This would have been unfortunate, though: inconsistency : Theorem → ⊥ inconsistency theorem = theorem 01^ω (refl , refl , proof) where proof : tail (tail ⟦ 01^ω ⟧O) ≈ ⟦ 01^ω ⟧O proof = refl ∷ ♯ (refl ∷ ♯ proof) -- Using the following elimination principle we can prove the theorem: data ⇑ {O} (P : O → Set) : Z O → Set where [0] : ∀ {z} → ∞ (⇑ P (♭ z)) → ⇑ P ([0] z) [1] : ∀ {o} → P o → ⇑ P ([1] o) O-Elim : Set₁ O-Elim = (P : O → Set) → (∀ {z} → ⇑ P z → P (↓ z)) → (o : O) → P o theorem : O-Elim → Theorem theorem O-elim = O-elim P helper where P : O → Set P o = ¬ (head ⟦ o ⟧O ≡ 0b × head (tail ⟦ o ⟧O) ≡ 1b × tail (tail ⟦ o ⟧O) ≈ ⟦ o ⟧O) helper : ∀ {z} → ⇑ P z → P (↓ z) helper ([1] p) (() , eq₂ , eq₃) helper ([0] p) (refl , eq₂ , eq₃) = hlp _ eq₂ (head-cong eq₃) (tail-cong eq₃) (♭ p) where hlp : ∀ z → head ⟦ z ⟧Z ≡ 1b → head (tail ⟦ z ⟧Z) ≡ 0b → tail (tail ⟦ z ⟧Z) ≈ ⟦ z ⟧Z → ⇑ P z → ⊥ hlp .([0] _) () eq₂ eq₃ ([0] p) hlp .([1] _) eq₁ eq₂ eq₃ ([1] p) = p (eq₂ , head-cong eq₃ , tail-cong eq₃) -- Fortunately it appears as if we cannot prove this elimination -- principle. The following code is not accepted by the termination -- checker: {- mutual O-elim : O-Elim O-elim P hyp (↓ z) = hyp (Z-elim P hyp z) Z-elim : (P : O → Set) → (∀ {z} → ⇑ P z → P (↓ z)) → (z : Z O) → ⇑ P z Z-elim P hyp ([0] z) = [0] (♯ Z-elim P hyp (♭ z)) Z-elim P hyp ([1] o) = [1] (O-elim P hyp o) -} -- If hyp were known to be contractive, then the code above would be -- correct (if not accepted by the termination checker). This is not -- the case in theorem above.
28.78169
72
0.537069
cbbefe66809fca43551aaf7033dc5657c03d9537
4,420
agda
Agda
Syntax/Transitivity.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
Syntax/Transitivity.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
Syntax/Transitivity.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
module Syntax.Transitivity where import Lvl open import Logic import Structure.Relator.Names as Names open import Structure.Relator.Properties open import Type private variable ℓ₁ ℓ₂ ℓ₃ : Lvl.Level private variable T : Type{ℓ₁} -- The transitivity operator infixl 1000 _🝖_ _🝖_ : ∀{_▫_ : T → T → Stmt{ℓ₂}} → ⦃ _ : Transitivity(_▫_) ⦄ → Names.Transitivity(_▫_) _🝖_ {_▫_ = _▫_} = transitivity(_▫_) _🝖-subₗ_ : ∀{_▫₁_ : T → T → Stmt{ℓ₂}}{_▫₂_ : T → T → Stmt{ℓ₃}} → ⦃ _ : Subtransitivityₗ(_▫₁_)(_▫₂_) ⦄ → Names.Subtransitivityₗ(_▫₁_)(_▫₂_) _🝖-subₗ_ {_▫₁_ = _▫₁_} {_▫₂_ = _▫₂_} = subtransitivityₗ(_▫₁_)(_▫₂_) _🝖-subᵣ_ : ∀{_▫₁_ : T → T → Stmt{ℓ₂}}{_▫₂_ : T → T → Stmt{ℓ₃}} → ⦃ _ : Subtransitivityᵣ(_▫₁_)(_▫₂_) ⦄ → Names.Subtransitivityᵣ(_▫₁_)(_▫₂_) _🝖-subᵣ_ {_▫₁_ = _▫₁_} {_▫₂_ = _▫₂_} = subtransitivityᵣ(_▫₁_)(_▫₂_) -- Syntax for "equational reasoning" for reflexive-transitive relation infixr 1 _🝖[_]-[_]_ _🝖[_]-[_]_ : (x : T) → ∀{y z : T} → (_▫_ : T → T → Stmt{ℓ₂}) → ⦃ _ : Transitivity(_▫_) ⦄ → (x ▫ y) → (y ▫ z) → (x ▫ z) _🝖[_]-[_]_ (_)(_▫_) = transitivity(_▫_) infixr 1 _🝖[_]-[_]-sym_ _🝖[_]-[_]-sym_ : (x : T) → ∀{y z : T} → (_▫_ : T → T → Stmt{ℓ₂}) → ⦃ _ : Transitivity(_▫_) ⦄ → ⦃ _ : Symmetry(_▫_) ⦄ → (y ▫ x) → (y ▫ z) → (x ▫ z) _🝖[_]-[_]-sym_ (_)(_▫_) yx yz = transitivity(_▫_) (symmetry(_▫_) yx) (yz) infixr 1 _🝖[_]-[_]-sub_ _🝖[_]-[_]-sub_ : (x : T) → ∀{y z : T}{_▫₁_ : T → T → Stmt{ℓ₂}} (_▫₂_ : T → T → Stmt{ℓ₃}) → ⦃ _ : Subtransitivityₗ(_▫₁_)(_▫₂_) ⦄ → (x ▫₂ y) → (y ▫₁ z) → (x ▫₁ z) _🝖[_]-[_]-sub_ (_) {_▫₁_ = _▫₁_} (_▫₂_) = subtransitivityₗ(_▫₁_)(_▫₂_) infixr 1 _🝖[_]-[_]-super_ _🝖[_]-[_]-super_ : (x : T) → ∀{y z : T} (_▫₁_ : T → T → Stmt{ℓ₂}) {_▫₂_ : T → T → Stmt{ℓ₃}} → ⦃ _ : Subtransitivityᵣ(_▫₁_)(_▫₂_) ⦄ → (x ▫₁ y) → (y ▫₂ z) → (x ▫₁ z) _🝖[_]-[_]-super_ (_) (_▫₁_) {_▫₂_ = _▫₂_} = subtransitivityᵣ(_▫₁_)(_▫₂_) infixr 1 _🝖[_]-[]_ _🝖[_]-[]_ : (x : T) → ∀{y : T} → (_▫_ : T → T → Stmt{ℓ₂}) → (x ▫ y) → (x ▫ y) _🝖[_]-[]_ (_)(_▫_) xy = xy infixr 2 _🝖-semiend_🝖[_]-end-from-[_] _🝖-semiend_🝖[_]-end-from-[_] : (x y : T) → (_▫_ : T → T → Stmt{ℓ₂}) → ⦃ _ : Transitivity(_▫_) ⦄ → (x ▫ y) → (x ▫ y) _🝖-semiend_🝖[_]-end-from-[_] _ _ (_▫_) xy = xy infixr 2 _🝖[_]-end _🝖[_]-end : (x : T) → (_▫_ : T → T → Stmt{ℓ₂}) → ⦃ _ : Reflexivity(_▫_) ⦄ → (x ▫ x) _🝖[_]-end (_)(_▫_) = reflexivity(_▫_) -- Syntax for "equational reasoning" for reflexive-transitive relations. -- Example: -- import Lvl -- open import Logic -- open import Structure.Relator.Properties -- open import Type -- postulate ℓ₁ ℓ₂ : Lvl.Level -- postulate T : Type{ℓ₁} -- postulate _▫_ : T → T → Stmt{ℓ₂} -- instance postulate trans : Transitivity(_▫_) -- instance postulate sym : Symmetry (_▫_) -- instance postulate refl : Reflexivity (_▫_) -- postulate a b c e : T -- d = c -- postulate ab : (a ▫ b) -- postulate cb : (c ▫ b) -- postulate de : (d ▫ e) -- -- ac : (a ▫ e) -- ac = -- a 🝖-[ ab ] -- b 🝖-[ cb ]-sym -- c 🝖-[] -- d 🝖-[ de ] -- e 🝖-end infixr 1 _🝖-[_]_ _🝖-[_]_ : (x : T) → ∀{y z : T}{_▫_ : T → T → Stmt{ℓ₂}} → ⦃ _ : Transitivity(_▫_) ⦄ → (x ▫ y) → (y ▫ z) → (x ▫ z) _🝖-[_]_ (_) {_▫_ = _▫_} = transitivity(_▫_) infixr 1 _🝖-[_]-sym_ _🝖-[_]-sym_ : (x : T) → ∀{y z : T}{_▫_ : T → T → Stmt{ℓ₂}} → ⦃ _ : Transitivity(_▫_) ⦄ → ⦃ _ : Symmetry(_▫_) ⦄ → (y ▫ x) → (y ▫ z) → (x ▫ z) _🝖-[_]-sym_ (_) {_▫_ = _▫_} yx yz = transitivity(_▫_) (symmetry(_▫_) yx) (yz) infixr 1 _🝖-[_]-sub_ _🝖-[_]-sub_ : (x : T) → ∀{y z : T}{_▫₁_ : T → T → Stmt{ℓ₂}}{_▫₂_ : T → T → Stmt{ℓ₃}} → ⦃ _ : Subtransitivityₗ(_▫₁_)(_▫₂_) ⦄ → (x ▫₂ y) → (y ▫₁ z) → (x ▫₁ z) _🝖-[_]-sub_ (_) {_▫₁_ = _▫₁_} {_▫₂_ = _▫₂_} = subtransitivityₗ(_▫₁_)(_▫₂_) infixr 1 _🝖-[_]-super_ _🝖-[_]-super_ : (x : T) → ∀{y z : T}{_▫₁_ : T → T → Stmt{ℓ₂}}{_▫₂_ : T → T → Stmt{ℓ₃}} → ⦃ _ : Subtransitivityᵣ(_▫₁_)(_▫₂_) ⦄ → (x ▫₁ y) → (y ▫₂ z) → (x ▫₁ z) _🝖-[_]-super_ (_) {_▫₁_ = _▫₁_} {_▫₂_ = _▫₂_} = subtransitivityᵣ(_▫₁_)(_▫₂_) infixr 1 _🝖-[]_ _🝖-[]_ : (x : T) → ∀{y : T}{_▫_ : T → T → Stmt{ℓ₂}} → (x ▫ y) → (x ▫ y) _🝖-[]_ (_) xy = xy infixr 2 _🝖-semiend_🝖-end-from-[_] _🝖-semiend_🝖-end-from-[_] : (x y : T) → ∀{_▫_ : T → T → Stmt{ℓ₂}} → ⦃ _ : Transitivity(_▫_) ⦄ → (x ▫ y) → (x ▫ y) _🝖-semiend_🝖-end-from-[_] _ _ {_▫_ = _▫_} xy = xy infixr 2 _🝖-end _🝖-end : (x : T) → ∀{_▫_ : T → T → Stmt{ℓ₂}} → ⦃ _ : Reflexivity(_▫_) ⦄ → (x ▫ x) _🝖-end x {_▫_} = reflexivity(_▫_) -- syntax _🝖-[]_ a {b} ab = a 🝖-[ ab ]-end b
39.464286
163
0.505204
2958e237b58ba940b6a2a79eba57e977c054eabb
3,809
agda
Agda
src/lift.agda
mb64/cedille
d0f69cc6fbfb69d7ef83a436b623d612328eb016
[ "MIT" ]
328
2018-09-14T20:06:09.000Z
2022-03-26T10:33:07.000Z
src/lift.agda
mb64/cedille
d0f69cc6fbfb69d7ef83a436b623d612328eb016
[ "MIT" ]
123
2018-09-17T10:53:20.000Z
2022-01-12T03:51:28.000Z
src/lift.agda
mb64/cedille
d0f69cc6fbfb69d7ef83a436b623d612328eb016
[ "MIT" ]
34
2018-09-17T11:51:36.000Z
2022-02-20T18:33:16.000Z
{- functions related to lift types. The main function is do-lift, which is called from hnf -} module lift where open import ial open import cedille-types open import ctxt open import syntax-util open import subst open import erase liftingType-to-kind : liftingType → kind liftingType-to-kind (LiftArrow l1 l2) = KndArrow (liftingType-to-kind l1) (liftingType-to-kind l2) liftingType-to-kind (LiftStar _) = star liftingType-to-kind (LiftParens _ l _) = liftingType-to-kind l liftingType-to-kind (LiftTpArrow tp l) = KndTpArrow tp (liftingType-to-kind l) liftingType-to-kind (LiftPi _ x tp l) = KndPi posinfo-gen posinfo-gen x (Tkt tp) (liftingType-to-kind l) liftingType-to-type : var → liftingType → type liftingType-to-type X (LiftArrow l1 l2) = TpArrow (liftingType-to-type X l1) NotErased (liftingType-to-type X l2) liftingType-to-type X (LiftTpArrow tp l) = TpArrow tp NotErased (liftingType-to-type X l) liftingType-to-type X (LiftStar _) = TpVar posinfo-gen X liftingType-to-type X (LiftParens _ l _) = liftingType-to-type X l liftingType-to-type X (LiftPi _ x tp l) = Abs posinfo-gen Pi posinfo-gen x (Tkt tp) (liftingType-to-type X l) {- create a type-level redex of the form (↑ X . (λ xs . t) : ls → l) xs where xs and ls are packaged as the input list of tuples, l is the input liftingType, and t is the input term. -} lift-freeze : var → 𝕃 (var × liftingType) → liftingType → term → type lift-freeze X tobind l t = let xs = map fst tobind in TpApp* (Lft posinfo-gen posinfo-gen X (Lam* xs t) (LiftArrow* (map snd tobind) l)) (map (λ p → TpVar posinfo-gen (fst p)) tobind) do-liftargs : ctxt → type → liftingType → 𝕃 term → var → 𝕃 (var × liftingType) → type do-liftargs Γ tp (LiftArrow l1 l2) (arg :: args) X tobind = do-liftargs Γ (TpApp tp (lift-freeze X tobind l1 arg)) l2 args X tobind do-liftargs Γ tp (LiftTpArrow l1 l2) (arg :: args) X tobind = do-liftargs Γ (TpAppt tp arg) l2 args X tobind do-liftargs Γ tp (LiftPi _ x _ l) (arg :: args) X tobind = do-liftargs Γ (TpAppt tp arg) (subst Γ arg x l) args X tobind do-liftargs Γ tp (LiftParens _ l _) args X tobind = do-liftargs Γ tp l args X tobind do-liftargs Γ tp _ _ _ _ = tp -- tobind are the variables we have seen going through the lifting type (they are also mapped by the trie) do-lifth : ctxt → trie liftingType → 𝕃 (var × liftingType) → type → var → liftingType → (term → term) → -- function to put terms in hnf term → type do-lifth Γ m tobind origtp X (LiftParens _ l _) hnf t = do-lifth Γ m tobind origtp X l hnf t do-lifth Γ m tobind origtp X (LiftArrow l1 l2) hnf (Lam _ _ _ x _ t) = do-lifth Γ (trie-insert m x l1) ((x , l1) :: tobind) origtp X l2 hnf t do-lifth Γ m tobind origtp X (LiftTpArrow tp l2) hnf (Lam _ _ _ x _ t) = TpLambda posinfo-gen posinfo-gen x (Tkt tp) (do-lifth Γ m tobind origtp X l2 hnf t) do-lifth Γ m tobind origtp X l hnf t with decompose-apps (hnf t) do-lifth Γ m tobind origtp X l hnf t | (Var _ x) , args with trie-lookup m x do-lifth Γ m tobind origtp X l hnf t | (Var _ x) , args | nothing = origtp -- the term being lifted is not headed by one of the bound vars do-lifth Γ m tobind origtp X l hnf t | (Var _ x) , args | just l' = rebind tobind (do-liftargs Γ (TpVar posinfo-gen x) l' (erase-term-args args) X tobind) where rebind : 𝕃 (var × liftingType) → type → type rebind ((x , l'):: xs) tp = rebind xs (TpLambda posinfo-gen posinfo-gen x (Tkk (liftingType-to-kind l')) tp) rebind [] tp = tp do-lifth Γ m tobind origtp X l hnf t | _ , args = origtp -- lift a term to a type at the given liftingType, if possible. do-lift : ctxt → type → var → liftingType → (term → term) {- hnf -} → term → type do-lift Γ origtp X l hnf t = do-lifth Γ empty-trie [] origtp X l hnf t
52.178082
138
0.683381
41757fc04fbf25d90f09318e92b2f2a35e17c9cb
5,880
agda
Agda
Cubical/Homotopy/Group/S3.agda
barrettj12/cubical
7b41b9171f90473efc98487cb2ea7a4d02320cb2
[ "MIT" ]
null
null
null
Cubical/Homotopy/Group/S3.agda
barrettj12/cubical
7b41b9171f90473efc98487cb2ea7a4d02320cb2
[ "MIT" ]
null
null
null
Cubical/Homotopy/Group/S3.agda
barrettj12/cubical
7b41b9171f90473efc98487cb2ea7a4d02320cb2
[ "MIT" ]
null
null
null
{-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.Homotopy.Group.S3 where {- This file contains a summary of what remains for π₄S³≅ℤ/2 to be proved. See the module π₄S³ at the end of this file. -} open import Cubical.Foundations.Prelude open import Cubical.Foundations.Pointed open import Cubical.Foundations.Equiv open import Cubical.Foundations.Function open import Cubical.Data.Nat open import Cubical.Data.Sum open import Cubical.Data.Sigma open import Cubical.Data.Int renaming (_·_ to _·ℤ_ ; _+_ to _+ℤ_) open import Cubical.Homotopy.Group.Base open import Cubical.Homotopy.HopfInvariant.Base open import Cubical.Homotopy.HopfInvariant.Homomorphism open import Cubical.Homotopy.HopfInvariant.HopfMap open import Cubical.Homotopy.Whitehead open import Cubical.Algebra.Group.Instances.IntMod open import Cubical.Foundations.Isomorphism open import Cubical.HITs.Sn open import Cubical.HITs.SetTruncation open import Cubical.Algebra.Group renaming (ℤ to ℤGroup ; Bool to BoolGroup ; Unit to UnitGroup) open import Cubical.Algebra.Group.ZAction [_]× : ∀ {ℓ} {X : Pointed ℓ} {n m : ℕ} → π' (suc n) X × π' (suc m) X → π' (suc (n + m)) X [_]× (f , g) = [ f ∣ g ]π' -- Some type abbreviations (unproved results) π₃S²-gen : Type π₃S²-gen = gen₁-by (π'Gr 2 (S₊∙ 2)) ∣ HopfMap ∣₂ π₄S³≅ℤ/something : GroupEquiv ℤGroup (π'Gr 2 (S₊∙ 2)) → Type π₄S³≅ℤ/something eq = GroupIso (π'Gr 3 (S₊∙ 3)) (ℤ/ abs (invEq (fst eq) [ ∣ idfun∙ _ ∣₂ , ∣ idfun∙ _ ∣₂ ]×)) miniLem₁ : Type miniLem₁ = (g : ℤ) → gen₁-by ℤGroup g → (g ≡ 1) ⊎ (g ≡ -1) miniLem₂ : Type miniLem₂ = (ϕ : GroupEquiv ℤGroup ℤGroup) (g : ℤ) → (abs g ≡ abs (fst (fst ϕ) g)) -- some minor group lemmas groupLem-help : miniLem₁ → (g : ℤ) → gen₁-by ℤGroup g → (ϕ : GroupHom ℤGroup ℤGroup) → (fst ϕ g ≡ pos 1) ⊎ (fst ϕ g ≡ negsuc 0) → isEquiv (fst ϕ) groupLem-help grlem1 g gen ϕ = main (grlem1 g gen) where isEquiv- : isEquiv (-_) isEquiv- = isoToIsEquiv (iso -_ -_ -Involutive -Involutive) lem : fst ϕ (pos 1) ≡ pos 1 → fst ϕ ≡ idfun _ lem p = funExt lem2 where lem₁ : (x₁ : ℕ) → fst ϕ (pos x₁) ≡ idfun ℤ (pos x₁) lem₁ zero = IsGroupHom.pres1 (snd ϕ) lem₁ (suc zero) = p lem₁ (suc (suc n)) = IsGroupHom.pres· (snd ϕ) (pos (suc n)) 1 ∙ cong₂ _+ℤ_ (lem₁ (suc n)) p lem2 : (x₁ : ℤ) → fst ϕ x₁ ≡ idfun ℤ x₁ lem2 (pos n) = lem₁ n lem2 (negsuc zero) = IsGroupHom.presinv (snd ϕ) 1 ∙ cong (λ x → pos 0 - x) p lem2 (negsuc (suc n)) = (cong (fst ϕ) (sym (+Comm (pos 0) (negsuc (suc n)))) ∙ IsGroupHom.presinv (snd ϕ) (pos (suc (suc n)))) ∙∙ +Comm (pos 0) _ ∙∙ cong (-_) (lem₁ (suc (suc n))) lem₂ : fst ϕ (negsuc 0) ≡ pos 1 → fst ϕ ≡ -_ lem₂ p = funExt lem2 where s = IsGroupHom.presinv (snd ϕ) (negsuc 0) ∙∙ +Comm (pos 0) _ ∙∙ cong -_ p lem2 : (n : ℤ) → fst ϕ n ≡ - n lem2 (pos zero) = IsGroupHom.pres1 (snd ϕ) lem2 (pos (suc zero)) = s lem2 (pos (suc (suc n))) = IsGroupHom.pres· (snd ϕ) (pos (suc n)) 1 ∙ cong₂ _+ℤ_ (lem2 (pos (suc n))) s lem2 (negsuc zero) = p lem2 (negsuc (suc n)) = IsGroupHom.pres· (snd ϕ) (negsuc n) (negsuc 0) ∙ cong₂ _+ℤ_ (lem2 (negsuc n)) p main : (g ≡ pos 1) ⊎ (g ≡ negsuc 0) → (fst ϕ g ≡ pos 1) ⊎ (fst ϕ g ≡ negsuc 0) → isEquiv (fst ϕ) main (inl p) = J (λ g p → (fst ϕ g ≡ pos 1) ⊎ (fst ϕ g ≡ negsuc 0) → isEquiv (fst ϕ)) (λ { (inl x) → subst isEquiv (sym (lem x)) (snd (idEquiv _)) ; (inr x) → subst isEquiv (sym (lem₂ (IsGroupHom.presinv (snd ϕ) (pos 1) ∙ (cong (λ x → pos 0 - x) x)))) isEquiv- }) (sym p) main (inr p) = J (λ g p → (fst ϕ g ≡ pos 1) ⊎ (fst ϕ g ≡ negsuc 0) → isEquiv (fst ϕ)) (λ { (inl x) → subst isEquiv (sym (lem₂ x)) isEquiv- ; (inr x) → subst isEquiv (sym (lem ( IsGroupHom.presinv (snd ϕ) (negsuc 0) ∙ cong (λ x → pos 0 - x) x))) (snd (idEquiv _))}) (sym p) groupLem : {G : Group₀} → miniLem₁ → GroupEquiv ℤGroup G → (g : fst G) → gen₁-by G g → (ϕ : GroupHom G ℤGroup) → (fst ϕ g ≡ 1) ⊎ (fst ϕ g ≡ -1) → isEquiv (fst ϕ) groupLem {G = G} s = GroupEquivJ (λ G _ → (g : fst G) → gen₁-by G g → (ϕ : GroupHom G ℤGroup) → (fst ϕ g ≡ 1) ⊎ (fst ϕ g ≡ -1) → isEquiv (fst ϕ)) (groupLem-help s) -- summary module π₄S³ (mini-lem₁ : miniLem₁) (mini-lem₂ : miniLem₂) (ℤ≅π₃S² : GroupEquiv ℤGroup (π'Gr 2 (S₊∙ 2))) (gen-by-HopfMap : π₃S²-gen) (π₄S³≅ℤ/whitehead : π₄S³≅ℤ/something ℤ≅π₃S²) (hopfWhitehead : abs (HopfInvariant-π' 0 ([ (∣ idfun∙ _ ∣₂ , ∣ idfun∙ _ ∣₂) ]×)) ≡ 2) where π₄S³ = π'Gr 3 (S₊∙ 3) hopfInvariantEquiv : GroupEquiv (π'Gr 2 (S₊∙ 2)) ℤGroup fst (fst hopfInvariantEquiv) = HopfInvariant-π' 0 snd (fst hopfInvariantEquiv) = groupLem mini-lem₁ ℤ≅π₃S² ∣ HopfMap ∣₂ gen-by-HopfMap (GroupHom-HopfInvariant-π' 0) (abs→⊎ _ _ HopfInvariant-HopfMap) snd hopfInvariantEquiv = snd (GroupHom-HopfInvariant-π' 0) lem : ∀ {G : Group₀} (ϕ ψ : GroupEquiv ℤGroup G) (g : fst G) → abs (invEq (fst ϕ) g) ≡ abs (invEq (fst ψ) g) lem = GroupEquivJ (λ G ϕ → (ψ : GroupEquiv ℤGroup G) (g : fst G) → abs (invEq (fst ϕ) g) ≡ abs (invEq (fst ψ) g)) λ ψ → mini-lem₂ (invGroupEquiv ψ) main : GroupIso π₄S³ (ℤ/ 2) main = subst (GroupIso π₄S³) (cong (ℤ/_) (lem ℤ≅π₃S² (invGroupEquiv (hopfInvariantEquiv)) _ ∙ hopfWhitehead)) π₄S³≅ℤ/whitehead
32.131148
77
0.553061
4d0a72b9091f9b5703fc6f7922d01707015af67f
12,631
agda
Agda
LP/Terms.agda
hbasold/Sandbox
8fc7a6cd878f37f9595124ee8dea62258da28aa4
[ "MIT" ]
null
null
null
LP/Terms.agda
hbasold/Sandbox
8fc7a6cd878f37f9595124ee8dea62258da28aa4
[ "MIT" ]
null
null
null
LP/Terms.agda
hbasold/Sandbox
8fc7a6cd878f37f9595124ee8dea62258da28aa4
[ "MIT" ]
null
null
null
open import Signature -- | In this module, we construct the free monad and the free completely -- iterative monad over a signature Σ (see Aczel, Adamek, Milius and Velebil). -- The first assigns to a set V of variables the set TV of finite terms over Σ -- (that is, finite trees labelled with symbols in f ∈ ∥Σ∥ and ar(f) branching). -- The second extends this to also allow for infinite trees, the set of those -- is then denoted by T∞(V). -- Categorically, T(V) is the initial (Σ + V)-algebra, whereas T∞(V) is the -- final (Σ + V)-coalgebra. module Terms (Σ : Sig) where open import Function open import Data.Empty open import Data.Unit hiding (_≤_) open import Data.Product as Prod renaming (Σ to ⨿) open import Data.Nat as Nat open import Data.Sum as Sum open import Relation.Binary.PropositionalEquality hiding ([_]) open ≡-Reasoning open import Relation.Binary hiding (_⇒_) open import Relation.Unary hiding (_⇒_) import Streams as Str open import Streams hiding (corec) -- | Natural transformations Nat : (Set → Set) → (Set → Set) → Set₁ Nat F G = ∀{X} → F X → G X Id : Set → Set Id = id least : {X : Set} (_⊑_ : Rel X _) (P : X → Set) → X → Set least _⊑_ P x = (P x) × (∀ {y} → P y → x ⊑ y) least-unique : {X : Set} {_⊑_ : Rel X _} → (IsTotalOrder _≡_ _⊑_) → {P : X → Set} → (x y : X) → least _⊑_ P x → least _⊑_ P y → x ≡ y least-unique isTO x y (p , l₁) (q , l₂) with IsTotalOrder.total isTO x y least-unique isTO x y (p , l₁) (q , l₂) | inj₁ x⊑y = IsTotalOrder.antisym isTO x⊑y (l₂ p) least-unique isTO x y (p , l₁) (q , l₂) | inj₂ y⊑x = IsTotalOrder.antisym isTO (l₁ q) y⊑x infixr 1 _⇒_ _⇒_ = Nat data T (V : Set) : Set where sup : ⟪ Σ ⟫ (T V) ⊎ V → T V rec : ∀{V X} → (f : ⟪ Σ ⟫ X ⊎ V → X) → T V → X rec f (sup (inj₁ (s , α))) = f (inj₁ (s , λ i → rec f (α i))) rec f (sup (inj₂ y)) = f (inj₂ y) rec-hom : ∀{V X} → (f : ⟪ Σ ⟫ X ⊎ V → X) (u : ⟪ Σ ⟫ (T V) ⊎ V) → rec f (sup u) ≡ f (Sum.map (⟪ Σ ⟫₁ (rec f)) id u) rec-hom f (inj₁ (s , α)) = cong (λ u → f (inj₁ (s , u))) refl rec-hom f (inj₂ v) = refl -- | Functor T, on morphisms T₁ : ∀ {V W} → (V → W) → T V → T W T₁ f = rec (sup ∘ Sum.map id f) η : Id ⇒ T η = sup ∘ inj₂ μ : T ∘ T ⇒ T μ {V} = rec f where f : ⟪ Σ ⟫ (T V) ⊎ T V → T V f = [ sup ∘ inj₁ , id ] -- | First monad law postulate unitᵣ : ∀{V} {t : T V} → μ (T₁ η t) ≡ t {- unitᵣ {V} {t} = begin μ (T₁ η t) ≡⟨ {!!} ⟩ t ∎ -} -- | T is free over Σ with inclusion ι : ⟪ Σ ⟫ ⇒ T ι = sup ∘ inj₁ ∘ ⟪ Σ ⟫₁ η postulate T₁-top-sym : ∀{V W} (f : V → W) (s : ∥ Σ ∥) (α : ar Σ s → T V) → T₁ f (μ (ι (s , α))) ≡ μ (ι (s , T₁ f ∘ α)) -- T₁-top-sym = {!!} -- | Kleisli morphsims for T∞ V Subst : Set → Set → Set Subst V W = V → T W infixr 9 _•_ -- | Kleisli composition _•_ : ∀ {U V W} → Subst V W → Subst U V → Subst U W τ • σ = μ ∘ T₁ τ ∘ σ -- | Application of substitutions to infinite terms app : ∀ {V W} → Subst V W → T V → T W app σ = μ ∘ T₁ σ infixl 1 _≡ₛ_ _≡ₛ_ : ∀{V W} → Rel (Subst V W) _ σ ≡ₛ τ = ∀ {v} → σ v ≡ τ v -- | Order on subsitutions _⊑_ : ∀{V W} → Rel (Subst V W) _ σ₁ ⊑ σ₂ = ∃ λ σ → σ • σ₁ ≡ₛ σ₂ matches : ∀{V W} → T V → T W → Subst V W → Set matches t s σ = app σ t ≡ s -- | Most general matcher mgm : ∀{V W} → T V → T W → Subst V W → Set mgm t s = least _⊑_ (matches t s) η-mgm : ∀{V} (t : T V) → mgm t t η η-mgm {V} t = m , min t where m : matches t t η m = begin app η t ≡⟨ refl ⟩ μ (T₁ η t) ≡⟨ unitᵣ ⟩ t ∎ min : {σ : Subst V V} (t : T V) → matches t t σ → η ⊑ σ min {σ} t m with app σ t min {σ} (sup (inj₁ y)) refl | sup (inj₁ .y) = σ , refl min (sup (inj₁ x)) () | sup (inj₂ w) min (sup (inj₂ v)) () | sup (inj₁ y) min {σ} (sup (inj₂ v)) refl | sup (inj₂ .v) = σ , refl unifies : ∀{V W} → T V → T V → Subst V W → Set unifies t s σ = app σ t ≡ app σ s -- | Most general unifier mgu : ∀{V W} → T V → T V → Subst V W → Set mgu t s = least _⊑_ (unifies t s) -- | Free variables fv : ∀{V} → T V → Pred V _ fv (sup (inj₁ (s , α))) v = ⨿ (Sig.ar Σ s) λ i → (fv (α i) v) fv (sup (inj₂ v₁)) v = v₁ ≡ v isCons : ∀{V} → Pred (T V) _ isCons (sup (inj₁ x)) = ⊤ isCons (sup (inj₂ y)) = ⊥ isVar : ∀{V} → Pred (T V) _ isVar (sup (inj₁ x)) = ⊥ isVar (sup (inj₂ y)) = ⊤ record T∞ (V : Set) : Set where coinductive field out : ⟪ Σ ⟫ (T∞ V) ⊎ V open T∞ public sum-lift : {A B : Set} (R₁ : A → A → Set) (R₂ : B → B → Set) (x y : A ⊎ B) → Set sum-lift R₁ R₂ (inj₁ x) (inj₁ y) = R₁ x y sum-lift R₁ R₂ (inj₁ x) (inj₂ y) = ⊥ sum-lift R₁ R₂ (inj₂ x) (inj₁ y) = ⊥ sum-lift R₁ R₂ (inj₂ x) (inj₂ y) = R₂ x y ~-data : ∀{V} (R : T∞ V → T∞ V → Set) (u w : ⟪ Σ ⟫ (T∞ V) ⊎ V) → Set ~-data R = sum-lift (sig-lift R) _≡_ record _~_ {V : Set} (t s : T∞ V) : Set where coinductive field out~ : ~-data _~_ (out t) (out s) open _~_ public corec : ∀{V X} → (f : X → ⟪ Σ ⟫ X ⊎ V) → X → T∞ V out (corec f x) with f x ... | inj₁ (s , α) = inj₁ (s , (λ i → corec f (α i))) ... | inj₂ v = inj₂ v prim-corec : ∀{V X} → (f : X → ⟪ Σ ⟫ X ⊎ V ⊎ T∞ V) → X → T∞ V out (prim-corec {V} {X} f x) with f x ... | inj₁ (s , α) = inj₁ (s , (λ i → prim-corec f (α i))) ... | inj₂ (inj₁ v) = inj₂ v ... | inj₂ (inj₂ t) = out t sup∞ : ∀{V} → ⟪ Σ ⟫ (T∞ V) ⊎ V → T∞ V out (sup∞ (inj₁ u)) = inj₁ u out (sup∞ (inj₂ v)) = inj₂ v -- | Functor T∞, on morphisms T∞₁ : ∀ {V W} → (V → W) → T∞ V → T∞ W T∞₁ f = corec (Sum.map id f ∘ out) η∞ : Id ⇒ T∞ η∞ = sup∞ ∘ inj₂ μ∞ : T∞ ∘ T∞ ⇒ T∞ μ∞ {V} = corec f where g : T∞ V → ⟪ Σ ⟫ (T∞ (T∞ V)) ⊎ V g = Sum.map (⟪ Σ ⟫₁ η∞) id ∘ out f : T∞ (T∞ V) → ⟪ Σ ⟫ (T∞ (T∞ V)) ⊎ V f = [ inj₁ , g ] ∘ out ι∞ : ⟪ Σ ⟫ ⇒ T∞ ι∞ {V} = g ∘ inj₁ where g : ⟪ Σ ⟫ V ⊎ T∞ V → T∞ V g = prim-corec [ inj₁ ∘ ⟪ Σ ⟫₁ (inj₂ ∘ η∞) , inj₂ ∘ inj₂ ] -- | T is a submonad of T∞ χ : T ⇒ T∞ χ = rec sup∞ -- | Kleisli morphsims for T∞ V Subst∞ : Set → Set → Set Subst∞ V W = V → T∞ W infixl 1 _≡ₛ∞_ _≡ₛ∞_ : ∀{V W} → Rel (Subst∞ V W) _ σ ≡ₛ∞ τ = ∀ {v} → σ v ~ τ v infixr 9 _•∞_ -- | Kleisli composition _•∞_ : ∀ {U V W} → Subst∞ V W → Subst∞ U V → Subst∞ U W τ •∞ σ = μ∞ ∘ T∞₁ τ ∘ σ -- | Application of substitutions to infinite terms app∞ : ∀ {V W} → Subst∞ V W → T∞ V → T∞ W app∞ σ = μ∞ ∘ T∞₁ σ isVar∞ : ∀{V} → Pred (T∞ V) _ isVar∞ t with out t isVar∞ t | inj₁ x = ⊥ isVar∞ t | inj₂ v = ⊤ varNowOrLater : ∀{V} → (T∞ V → Pred V _) → T∞ V → Pred V _ varNowOrLater R t v with out t ... | inj₁ (f , α) = ∃ (λ i → R (α i) v) ... | inj₂ v₁ = v ≡ v₁ record fv∞ {V : Set} (t : T∞ V) (v : V) : Set where coinductive field isFv∞ : varNowOrLater fv∞ t v root-matches : ∀{V} → T V → ∥ Σ ∥ → Set root-matches (sup (inj₁ (g , _))) f = g ≡ f root-matches (sup (inj₂ y)) f = ⊥ record RootsMatch {V : Set} (s : Stream (T V)) (f : ∥ Σ ∥) : Set where coinductive field hd-match : root-matches (hd s) f tl-match : RootsMatch (tl s) f open RootsMatch -- | Nasty hack: assume that RootsMatch is propositional postulate RootsMatch-unique : ∀{V} {s : Stream (T V)} {f : ∥ Σ ∥} (p q : RootsMatch s f) → p ≡ q split : {V : Set} (s : Stream (T V)) (f : ∥ Σ ∥) → RootsMatch s f → ar Σ f → Stream (T V) hd (split s f p i) with hd s | hd-match p hd (split s f p i) | sup (inj₁ (.f , α)) | refl = α i hd (split s f p i) | sup (inj₂ y) | () tl (split s f p i) = split (tl s) f (tl-match p) i root-matches∞ : ∀{V} → T∞ V → ∥ Σ ∥ → Set root-matches∞ t f with out t root-matches∞ t f | inj₁ (g , _) = f ≡ g root-matches∞ t f | inj₂ v = ⊥ split∞ : {V : Set} → (t : T∞ V) (f : ∥ Σ ∥) → root-matches∞ t f → ar Σ f → T∞ V split∞ t f p i with out t split∞ t f refl i | inj₁ (.f , α) = α i split∞ t f () i | inj₂ y data AnyRootMatch {V : Set} (s : Stream (T V)) (f : ∥ Σ ∥) : Stream (T V) → Set where match-hd : root-matches (hd s) f → AnyRootMatch s f s match-tl : AnyRootMatch (tl s) f (tl s) → AnyRootMatch s f (tl s) first-root-match : ∀{V} → Stream (T V) → ∥ Σ ∥ → ℕ → Set first-root-match s f = least _≤_ (λ k → root-matches (s at k) f) conv-branch : {V : Set} (R : Stream (T V) → T∞ V → Set) → Stream (T V) → T∞ V → T V → ⟪ Σ ⟫ (T∞ V) ⊎ V → Set conv-branch R s t (sup (inj₁ (f , α))) (inj₁ (g , β)) = ⨿ (f ≡ g) λ p → ⨿ (RootsMatch (tl s) f) λ q → ∀ i → R (split (tl s) f q i) (β (subst (ar Σ) p i)) conv-branch R s t (sup (inj₁ (f , α))) (inj₂ v) = ⊥ conv-branch R s t (sup (inj₂ v)) (inj₁ (f , α)) = ∃ λ s' → AnyRootMatch s f s' × R s' t conv-branch R s t (sup (inj₂ v)) (inj₂ w) = v ≡ w × R (tl s) t -- | A sequence s of finite terms converges to a possibly infinite term, -- if for all i, sᵢ₊₁ = sᵢ[σ] for some substitution σ : V → T V and t = sᵢ[τ] -- for some τ : V → T∞ V. -- Note that this coincides with convergence in the prefix metric. record _→∞_ {V : Set} (s : Stream (T V)) (t : T∞ V) : Set where coinductive field conv-out : conv-branch _→∞_ s t (hd s) (out t) open _→∞_ public {- unique-conv : ∀{V} (s : Stream (T V)) (t₁ t₂ : T∞ V) → s →∞ t₁ → s →∞ t₂ → t₁ ~ t₂ -} ProperlyRefining : ∀{V} → T V → Pred (Subst V V) _ ProperlyRefining t σ = ∀ v → v ∈ fv t → isCons (σ v) record ProperlyRefiningSeq {V : Set} (t : T V) : Set where coinductive field hd-ref : Subst V V hd-is-ref : hd-ref ∈ ProperlyRefining t tl-ref : ProperlyRefiningSeq (app hd-ref t) open ProperlyRefiningSeq public {- refining-on-subterms : ∀{V f α} (t : T V) → t ≡ sup (inj₁ (f , α)) → ProperlyRefiningSeq t → (i : ar Σ f) → ProperlyRefiningSeq (α i) hd-ref (refining-on-subterms ._ refl p i) = hd-ref p hd-is-ref (refining-on-subterms ._ refl p i) = {!!} tl-ref (refining-on-subterms ._ refl p i) = {!!} -- refining-on-subterms {!!} {!!} {!!} {!!} -- | A non-trivial substitution is a substitution σ, such that, for all v ∈ V -- we have that either σ(v) is a non-trivial term or if it is a variable w, then -- w = v. -- This allows us to stop substituting the first time we hit a variable. NonTrivSubst : Set → Set NonTrivSubst V = ⨿ (Subst V V) λ σ → (∀ v → isVar (σ v) → σ v ≡ η v) term-seq-from-subst-seq : ∀{V} (t : T V) → ProperlyRefiningSeq t → Stream (T V) hd (term-seq-from-subst-seq t Δ) = t tl (term-seq-from-subst-seq t Δ) = term-seq-from-subst-seq (app (hd-ref Δ) t) (tl-ref Δ) var-app-lem : ∀{V} → (σ : Subst V V) → ∀ v → app σ (η v) ≡ σ v var-app-lem = {!!} ∞term-from-subst-seq : ∀{V} (t : T V) → ProperlyRefiningSeq t → T∞ V out (∞term-from-subst-seq {V} (sup (inj₁ (f , α))) Δ) = inj₁ (f , β) where β : ar Σ f → T∞ V β i = ∞term-from-subst-seq (α i) (refining-on-subterms (sup (inj₁ (f , α))) refl Δ i) out (∞term-from-subst-seq {V} (sup (inj₂ v)) Δ) = {!!} -- with fv (sup (inj₂ v)) v | hd-ref Δ v | hd-is-ref Δ v refl where g : ∀{σ} → σ ∈ ProperlyRefining (sup (inj₂ v)) → ⟪ Σ ⟫ (T∞ V) g {σ} p with σ v | p v refl g p | sup (inj₁ (f , α)) | tt = f , β where β : ar Σ f → T∞ V β i = ∞term-from-subst-seq (α i) (refining-on-subterms (sup (inj₁ (f , α))) refl {!!} i) g p | sup (inj₂ w) | () -} {- out (∞term-from-subst-seq {V} (sup (inj₂ v)) Δ) | p | sup (inj₁ (f , α)) | tt = inj₁ (f , β {!refl!}) where foo : hd-ref Δ v ≡ sup (inj₁ (f , α)) → app (hd-ref Δ) (sup (inj₂ v)) ≡ sup (inj₁ (f , α)) foo p = begin app (hd-ref Δ) (sup (inj₂ v)) ≡⟨ {!!} ⟩ hd-ref Δ v ≡⟨ {!refl!} ⟩ sup (inj₁ (f , α)) ∎ β : hd-ref Δ v ≡ sup (inj₁ (f , α)) → ar Σ f → T∞ V β p i = ∞term-from-subst-seq (α i) (refining-on-subterms (sup (inj₁ (f , α))) refl (subst ProperlyRefiningSeq {!!} (tl-ref Δ)) i) -- (app (hd-ref Δ) (η v)) (var-app-lem {!!} v) out (∞term-from-subst-seq (sup (inj₂ v)) Δ) | p | sup (inj₂ y) | () -} {- ∞term-from-subst-seq : ∀{V} → Stream (NonTrivSubst V) → T V → T∞ V out (∞term-from-subst-seq Δ (sup (inj₁ (s , α)))) = inj₁ (s , (λ i → ∞term-from-subst-seq Δ (α i))) out (∞term-from-subst-seq Δ (sup (inj₂ v))) with proj₁ (hd Δ) v | proj₂ (hd Δ) v ... | sup (inj₁ (s , α)) | f = inj₁ (s , (λ i → ∞term-from-subst-seq (tl Δ) (α i))) ... | sup (inj₂ v₁) | f with f tt out (∞term-from-subst-seq Δ (sup (inj₂ v))) | sup (inj₂ .v) | f | refl = inj₂ v -} {- ∞term-from-subst-seq-converges : ∀{V} → (Δ : Stream (NonTrivSubst V)) → (t : T V) → term-seq-from-subst-seq Δ t →∞ ∞term-from-subst-seq Δ t -}
29.790094
95
0.510253
4de1f3af998e6a211f94992e2cc7bd22a6308aae
1,648
agda
Agda
vendor/stdlib/src/Algebra/Props/Ring.agda
isabella232/Lemmachine
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
[ "MIT" ]
56
2015-01-20T02:11:42.000Z
2021-12-21T17:02:19.000Z
vendor/stdlib/src/Algebra/Props/Ring.agda
larrytheliquid/Lemmachine
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
[ "MIT" ]
1
2022-03-12T12:17:51.000Z
2022-03-12T12:17:51.000Z
vendor/stdlib/src/Algebra/Props/Ring.agda
isabella232/Lemmachine
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
[ "MIT" ]
3
2015-07-21T16:37:58.000Z
2022-03-12T11:54:10.000Z
------------------------------------------------------------------------ -- Some derivable properties ------------------------------------------------------------------------ open import Algebra module Algebra.Props.Ring (r : Ring) where open Ring r import Relation.Binary.EqReasoning as EqR; open EqR setoid open import Data.Function open import Data.Product -‿*-distribˡ : ∀ x y → - x * y ≈ - (x * y) -‿*-distribˡ x y = begin - x * y ≈⟨ sym $ proj₂ +-identity _ ⟩ - x * y + 0# ≈⟨ refl ⟨ +-pres-≈ ⟩ sym (proj₂ -‿inverse _) ⟩ - x * y + (x * y + - (x * y)) ≈⟨ sym $ +-assoc _ _ _ ⟩ - x * y + x * y + - (x * y) ≈⟨ sym (proj₂ distrib _ _ _) ⟨ +-pres-≈ ⟩ refl ⟩ (- x + x) * y + - (x * y) ≈⟨ (proj₁ -‿inverse _ ⟨ *-pres-≈ ⟩ refl) ⟨ +-pres-≈ ⟩ refl ⟩ 0# * y + - (x * y) ≈⟨ proj₁ zero _ ⟨ +-pres-≈ ⟩ refl ⟩ 0# + - (x * y) ≈⟨ proj₁ +-identity _ ⟩ - (x * y) ∎ -‿*-distribʳ : ∀ x y → x * - y ≈ - (x * y) -‿*-distribʳ x y = begin x * - y ≈⟨ sym $ proj₁ +-identity _ ⟩ 0# + x * - y ≈⟨ sym (proj₁ -‿inverse _) ⟨ +-pres-≈ ⟩ refl ⟩ - (x * y) + x * y + x * - y ≈⟨ +-assoc _ _ _ ⟩ - (x * y) + (x * y + x * - y) ≈⟨ refl ⟨ +-pres-≈ ⟩ sym (proj₁ distrib _ _ _) ⟩ - (x * y) + x * (y + - y) ≈⟨ refl ⟨ +-pres-≈ ⟩ (refl ⟨ *-pres-≈ ⟩ proj₂ -‿inverse _) ⟩ - (x * y) + x * 0# ≈⟨ refl ⟨ +-pres-≈ ⟩ proj₂ zero _ ⟩ - (x * y) + 0# ≈⟨ proj₂ +-identity _ ⟩ - (x * y) ∎
44.540541
93
0.34466
1cdcf9ee56470703548729fe19980a847ad4c6c8
168
agda
Agda
data/declaration/Import.agda
msuperdock/agda-unused
f327f9aab8dcb07022b857736d8201906bba02e9
[ "MIT" ]
6
2020-10-29T09:38:43.000Z
2022-03-01T16:38:05.000Z
data/declaration/Import.agda
msuperdock/agda-unused
f327f9aab8dcb07022b857736d8201906bba02e9
[ "MIT" ]
null
null
null
data/declaration/Import.agda
msuperdock/agda-unused
f327f9aab8dcb07022b857736d8201906bba02e9
[ "MIT" ]
1
2022-03-01T16:38:14.000Z
2022-03-01T16:38:14.000Z
module Import where import Agda.Builtin.Bool as _ open import Agda.Builtin.Nat as _ import Agda.Builtin.Unit using (⊤; tt) A : Set A = Agda.Builtin.Unit.⊤
11.2
28
0.690476
39fa0bff8bee8963a5ade5207290f887c1f28014
1,100
agda
Agda
examples/Lookup.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
examples/Lookup.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
examples/Lookup.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Lookup where data Bool : Set where false : Bool true : Bool data IsTrue : Bool -> Set where isTrue : IsTrue true data List (A : Set) : Set where [] : List A _::_ : A -> List A -> List A data _×_ (A B : Set) : Set where _,_ : A -> B -> A × B module Map (Key : Set) (_==_ : Key -> Key -> Bool) (Code : Set) (Val : Code -> Set) where infixr 40 _⟼_,_ infix 20 _∈_ data Map : List Code -> Set where ε : Map [] _⟼_,_ : forall {c cs} -> Key -> Val c -> Map cs -> Map (c :: cs) _∈_ : forall {cs} -> Key -> Map cs -> Bool k ∈ ε = false k ∈ (k' ⟼ _ , m) with k == k' ... | true = true ... | false = k ∈ m Lookup : forall {cs} -> (k : Key)(m : Map cs) -> IsTrue (k ∈ m) -> Set Lookup k ε () Lookup k (_⟼_,_ {c} k' _ m) p with k == k' ... | true = Val c ... | false = Lookup k m p lookup : {cs : List Code}(k : Key)(m : Map cs)(p : IsTrue (k ∈ m)) -> Lookup k m p lookup k ε () lookup k (k' ⟼ v , m) p with k == k' ... | true = v ... | false = lookup k m p
22
72
0.459091
31e2bb130aa20fa3e9f74fd2f0fcd0821761530e
11,112
agda
Agda
benchmark/cwf/Setoid.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
benchmark/cwf/Setoid.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
3
2018-11-14T15:31:44.000Z
2019-04-01T19:39:26.000Z
benchmark/cwf/Setoid.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1
2015-09-15T14:36:15.000Z
2015-09-15T14:36:15.000Z
{-# OPTIONS --no-positivity-check --no-termination-check #-} -- A universe setoids module Setoid where import Chain record True : Set where data False : Set where Rel : Set -> Set1 Rel A = A -> A -> Set Pred : Set -> Set1 Pred A = A -> Set Resp : {A : Set} -> Rel A -> {B : Set} -> Rel B -> Pred (A -> B) Resp _R_ _S_ f = forall x y -> x R y -> f x S f y mutual infixr 10 _,_ infix 40 _=El=_ _=S=_ _=Fam=_ infix 60 _!_ data Setoid : Set where nat : Setoid Π : (A : Setoid)(F : Fam A) -> Setoid Σ : (A : Setoid)(F : Fam A) -> Setoid data Fam (A : Setoid) : Set where fam : (F : El A -> Setoid) -> Resp _=El=_ _=S=_ F -> Fam A data El : Setoid -> Set where zero : El nat suc : El nat -> El nat ƛ : {A : Setoid}{F : Fam A} (f : (x : El A) -> El (F ! x)) -> ((x y : El A) -> x =El= y -> f x =El= f y) -> El (Π A F) _,_ : {A : Setoid}{F : Fam A}(x : El A) -> El (F ! x) -> El (Σ A F) data _=S=_ : (A B : Setoid) -> Set where eqNat : nat =S= nat eqΠ : {A₁ A₂ : Setoid}{F₁ : Fam A₁}{F₂ : Fam A₂} -> A₂ =S= A₁ -> F₁ =Fam= F₂ -> Π A₁ F₁ =S= Π A₂ F₂ eqΣ : {A₁ A₂ : Setoid}{F₁ : Fam A₁}{F₂ : Fam A₂} -> A₁ =S= A₂ -> F₁ =Fam= F₂ -> Σ A₁ F₁ =S= Σ A₂ F₂ data _=El=_ : {A B : Setoid} -> El A -> El B -> Set where eqInNat : {n : El nat} -> n =El= n eqInΠ : {A₁ A₂ : Setoid}{F₁ : Fam A₁}{F₂ : Fam A₂} {f₁ : (x : El A₁) -> El (F₁ ! x)} {pf₁ : (x y : El A₁) -> x =El= y -> f₁ x =El= f₁ y} {f₂ : (x : El A₂) -> El (F₂ ! x)} -> {pf₂ : (x y : El A₂) -> x =El= y -> f₂ x =El= f₂ y} -> A₂ =S= A₁ -> ((x : El A₁)(y : El A₂) -> x =El= y -> f₁ x =El= f₂ y) -> ƛ f₁ pf₁ =El= ƛ f₂ pf₂ eqInΣ : {A₁ A₂ : Setoid}{F₁ : Fam A₁}{F₂ : Fam A₂} {x₁ : El A₁}{y₁ : El (F₁ ! x₁)} {x₂ : El A₂}{y₂ : El (F₂ ! x₂)} -> F₁ =Fam= F₂ -> x₁ =El= x₂ -> y₁ =El= y₂ -> (x₁ , y₁) =El= (x₂ , y₂) data _=Fam=_ {A B : Setoid}(F : Fam A)(G : Fam B) : Set where eqFam : B =S= A -> (forall x y -> x =El= y -> F ! x =S= G ! y) -> F =Fam= G _!_ : {A : Setoid} -> Fam A -> El A -> Setoid fam F _ ! x = F x -- Inversions famEqDom : {A B : Setoid}{F : Fam A}{G : Fam B} -> F =Fam= G -> B =S= A famEqDom (eqFam p _) = p famEqCodom : {A B : Setoid}{F : Fam A}{G : Fam B} -> F =Fam= G -> (x : El A)(y : El B) -> x =El= y -> F ! x =S= G ! y famEqCodom (eqFam _ p) = p eqΠ-inv₁ : {A₁ A₂ : Setoid}{F₁ : Fam A₁}{F₂ : Fam A₂} -> Π A₁ F₁ =S= Π A₂ F₂ -> A₂ =S= A₁ eqΠ-inv₁ (eqΠ p _) = p eqΠ-inv₂ : {A₁ A₂ : Setoid}{F₁ : Fam A₁}{F₂ : Fam A₂} -> Π A₁ F₁ =S= Π A₂ F₂ -> F₁ =Fam= F₂ eqΠ-inv₂ (eqΠ _ p) = p eqΣ-inv₁ : {A₁ A₂ : Setoid}{F₁ : Fam A₁}{F₂ : Fam A₂} -> Σ A₁ F₁ =S= Σ A₂ F₂ -> A₁ =S= A₂ eqΣ-inv₁ (eqΣ p _) = p eqΣ-inv₂ : {A₁ A₂ : Setoid}{F₁ : Fam A₁}{F₂ : Fam A₂} -> Σ A₁ F₁ =S= Σ A₂ F₂ -> F₁ =Fam= F₂ eqΣ-inv₂ (eqΣ _ p) = p -- Equivalence proofs and casts mutual -- _=Fam=_ is an equivalence =Fam=-refl : {A : Setoid}{F : Fam A} -> F =Fam= F =Fam=-refl {F = fam _ p} = eqFam =S=-refl p =Fam=-sym : {A B : Setoid}{F : Fam A}{G : Fam B} -> F =Fam= G -> G =Fam= F =Fam=-sym (eqFam B=A F=G) = eqFam (=S=-sym B=A) \x y x=y -> =S=-sym (F=G _ _ (=El=-sym x=y)) =Fam=-trans : {A B C : Setoid}{F : Fam A}{G : Fam B}{H : Fam C} -> F =Fam= G -> G =Fam= H -> F =Fam= H =Fam=-trans (eqFam B=A F=G) (eqFam C=B G=H) = eqFam (=S=-trans C=B B=A) \x y x=y -> =S=-trans (F=G x (B=A << x) (cast-id _)) (G=H _ y (=El=-trans (=El=-sym (cast-id _)) x=y)) -- _=S=_ is an equivalence =S=-refl : {A : Setoid} -> A =S= A =S=-refl {nat} = eqNat =S=-refl {Π A F} = eqΠ =S=-refl =Fam=-refl =S=-refl {Σ A F} = eqΣ =S=-refl =Fam=-refl =S=-sym : {A B : Setoid} -> A =S= B -> B =S= A =S=-sym eqNat = eqNat =S=-sym (eqΠ pA pF) = eqΠ (=S=-sym pA) (=Fam=-sym pF) =S=-sym (eqΣ pA pF) = eqΣ (=S=-sym pA) (=Fam=-sym pF) =S=-trans : {A B C : Setoid} -> A =S= B -> B =S= C -> A =S= C =S=-trans eqNat eqNat = eqNat =S=-trans (eqΠ B=A F=G) (eqΠ C=B G=H) = eqΠ (=S=-trans C=B B=A) (=Fam=-trans F=G G=H) =S=-trans (eqΣ A=B F=G) (eqΣ B=C G=H) = eqΣ (=S=-trans A=B B=C) (=Fam=-trans F=G G=H) -- _=El=_ is an equivalence =El=-refl : {A : Setoid}{x : El A} -> x =El= x =El=-refl {nat} = eqInNat =El=-refl {Π A F}{ƛ f pf} = eqInΠ =S=-refl pf =El=-refl {Σ A F}{x , y} = eqInΣ =Fam=-refl =El=-refl =El=-refl =El=-sym : {A B : Setoid}{x : El A}{y : El B} -> x =El= y -> y =El= x =El=-sym eqInNat = eqInNat =El=-sym (eqInΠ B=A p) = eqInΠ (=S=-sym B=A) \x y x=y -> =El=-sym (p y x (=El=-sym x=y)) =El=-sym (eqInΣ pF px py) = eqInΣ (=Fam=-sym pF) (=El=-sym px) (=El=-sym py) =El=-trans : {A B C : Setoid}{x : El A}{y : El B}{z : El C} -> x =El= y -> y =El= z -> x =El= z =El=-trans eqInNat eqInNat = eqInNat =El=-trans (eqInΠ B=A f=g) (eqInΠ C=B g=h) = eqInΠ (=S=-trans C=B B=A) \x y x=y -> =El=-trans (f=g x (B=A << x) (cast-id _)) (g=h _ y (=El=-trans (=El=-sym (cast-id _)) x=y)) =El=-trans (eqInΣ F₁=F₂ x₁=x₂ y₁=y₂) (eqInΣ F₂=F₃ x₂=x₃ y₂=y₃) = eqInΣ (=Fam=-trans F₁=F₂ F₂=F₃) (=El=-trans x₁=x₂ x₂=x₃) (=El=-trans y₁=y₂ y₂=y₃) -- Casting. Important: don't look at the proof! infix 50 _<<_ _>>_ _<<_ : {A B : Setoid} -> A =S= B -> El B -> El A _<<_ {nat}{Π _ _} () _ _<<_ {nat}{Σ _ _} () _ _<<_ {Π _ _}{nat} () _ _<<_ {Π _ _}{Σ _ _} () _ _<<_ {Σ _ _}{nat} () _ _<<_ {Σ _ _}{Π _ _} () _ _<<_ {nat}{nat} p x = x _<<_ {Π A₁ F₁}{Π A₂ F₂} p (ƛ f pf) = ƛ g pg where g : (x : El A₁) -> El (F₁ ! x) g x = let A₂=A₁ = eqΠ-inv₁ p F₁=F₂ = famEqCodom (eqΠ-inv₂ p) x _ (cast-id _) in F₁=F₂ << f (A₂=A₁ << x) pg : (x y : El A₁) -> x =El= y -> g x =El= g y pg x y x=y = cast-irr _ _ (pf _ _ (cast-irr _ _ x=y)) _<<_ {Σ A₁ F₁}{Σ A₂ F₂} p (x , y) = eqΣ-inv₁ p << x , F₁=F₂ << y where F₁=F₂ : F₁ ! (eqΣ-inv₁ p << x) =S= F₂ ! x F₁=F₂ = famEqCodom (eqΣ-inv₂ p) _ _ (=El=-sym (cast-id _)) _>>_ : {A B : Setoid} -> Fam A -> A =S= B -> Fam B fam F pF >> A=B = fam G pG where G : El _ -> Setoid G y = F (A=B << y) pG : forall x y -> x =El= y -> G x =S= G y pG x y x=y = pF _ _ (cast-irr _ _ x=y) cast-id : {A B : Setoid}{x : El A}(p : B =S= A) -> x =El= p << x cast-id eqNat = eqInNat cast-id {x = x , y } (eqΣ A=B F=G) = eqInΣ (=Fam=-sym F=G) (cast-id _) (cast-id _) cast-id {x = ƛ f pf} (eqΠ B=A F=G) = eqInΠ (=S=-sym B=A) \x y x=y -> proof f x ≡ f (_ << y) by pf _ _ (=El=-trans x=y (cast-id _)) ≡ _ << f (_ << y) by cast-id _ qed where open Chain El _=El=_ (\x -> =El=-refl) (\x y z -> =El=-trans) cast-irr : {A₁ A₂ B₁ B₂ : Setoid}{x : El A₁}{y : El A₂} (p₁ : B₁ =S= A₁)(p₂ : B₂ =S= A₂) -> x =El= y -> p₁ << x =El= p₂ << y cast-irr {x = x}{y = y} p q x=y = proof p << x ≡ x by =El=-sym (cast-id _) ≡ y by x=y ≡ q << y by cast-id _ qed where open Chain El _=El=_ (\x -> =El=-refl) (\x y z -> =El=-trans) -- Let's do some overloading data EqFam : Set -> Set where el : EqFam Setoid setoid : EqFam True fam : EqFam Setoid [_] : {I : Set} -> EqFam I -> I -> Set [ el ] A = El A [ setoid ] _ = Setoid [ fam ] A = Fam A infix 5 _==_ _==_ : {I : Set}{eqf : EqFam I}{i j : I} -> [ eqf ] i -> [ eqf ] j -> Set _==_ {eqf = el } x y = x =El= y _==_ {eqf = setoid} A B = A =S= B _==_ {eqf = fam } F G = F =Fam= G refl : {I : Set}{eqf : EqFam I}{i : I}{x : [ eqf ] i} -> x == x refl {eqf = el} = =El=-refl refl {eqf = setoid} = =S=-refl refl {eqf = fam} = =Fam=-refl sym : {I : Set}{eqf : EqFam I}{i j : I}{x : [ eqf ] i}{y : [ eqf ] j} -> x == y -> y == x sym {eqf = el} = =El=-sym sym {eqf = setoid} = =S=-sym sym {eqf = fam} = =Fam=-sym trans : {I : Set}{eqf : EqFam I}{i j k : I}{x : [ eqf ] i}{y : [ eqf ] j}{z : [ eqf ] k} -> x == y -> y == z -> x == z trans {eqf = el} = =El=-trans trans {eqf = setoid} = =S=-trans trans {eqf = fam} = =Fam=-trans open module EqChain {I : Set}{eqf : EqFam I} = Chain ([ eqf ]) _==_ (\x -> refl) (\x y z -> trans) homo : {A B : Setoid}{x : El A}{y : El B} -> x == y -> A == B homo eqInNat = eqNat homo (eqInΠ B=A p) = eqΠ B=A (eqFam B=A \x y x=y -> homo (p x y x=y)) homo (eqInΣ F=G p q) = eqΣ (homo p) F=G cast-id' : {A B C : Setoid}{x : El A}{y : El B}(p : C == B) -> x == y -> x == p << y cast-id' C=B x=y = trans x=y (cast-id _) -- Some helper stuff K : {A : Setoid} -> Setoid -> Fam A K B = fam (\_ -> B) (\_ _ _ -> refl) infixr 20 _==>_ infixl 70 _·_ _∘_ _○_ infixl 90 _#_ !-cong : {A B : Setoid}(F : Fam A)(G : Fam B){x : El A}{y : El B} -> F == G -> x == y -> F ! x == G ! y !-cong F G (eqFam B=A F=G) x=y = F=G _ _ x=y !-cong-R : {A : Setoid}(F : Fam A){x y : El A} -> x == y -> F ! x == F ! y !-cong-R F x=y = !-cong F F refl x=y _==>_ : Setoid -> Setoid -> Setoid A ==> B = Π A (K B) _#_ : {A : Setoid}{F : Fam A} -> El (Π A F) -> (x : El A) -> El (F ! x) ƛ f _ # x = f x #-cong : {A B : Setoid}{F : Fam A}{G : Fam B} (f : El (Π A F))(g : El (Π B G)){x : El A}{y : El B} -> f == g -> x == y -> f # x == g # y #-cong ._ ._ (eqInΠ _ f=g) x=y = f=g _ _ x=y #-cong-R : {A : Setoid}{F : Fam A}(f : El (Π A F)){x y : El A} -> x == y -> f # x == f # y #-cong-R f p = #-cong f f refl p id : {A : Setoid} -> El (A ==> A) id = ƛ (\x -> x) (\_ _ p -> p) -- Family composition _○_ : {A B : Setoid} -> Fam A -> El (B ==> A) -> Fam B F ○ f = fam (\x -> F ! (f # x)) (\x y x=y -> !-cong-R F (#-cong-R f x=y)) lem-○-id : {A : Setoid}{F : Fam A} -> F ○ id == F lem-○-id {F = F} = eqFam refl \x y x=y -> !-cong-R F x=y _∘_ : {A B : Setoid}{F : Fam B} -> El (Π B F) -> (g : El (A ==> B)) -> El (Π A (F ○ g)) f ∘ g = ƛ (\x -> f # (g # x)) \x y x=y -> #-cong-R f (#-cong-R g x=y) lem-∘-id : {A : Setoid}{F : Fam A}(f : El (Π A F)) -> f ∘ id == f lem-∘-id (ƛ f pf) = eqInΠ refl pf lem-id-∘ : {A B : Setoid}(f : El (A ==> B)) -> id ∘ f == f lem-id-∘ (ƛ f pf) = eqInΠ refl pf -- Simply type composition (not quite a special case of ∘ because of proof relevance) _·_ : {A B C : Setoid} -> El (B ==> C) -> El (A ==> B) -> El (A ==> C) f · g = eqΠ refl (eqFam refl \_ _ _ -> refl) << f ∘ g fst : {A : Setoid}{F : Fam A} -> El (Σ A F) -> El A fst (x , y) = x snd : {A : Setoid}{F : Fam A}(p : El (Σ A F)) -> El (F ! fst p) snd (x , y) = y fst-eq : {A B : Setoid}{F : Fam A}{G : Fam B} {x : El (Σ A F)}{y : El (Σ B G)} -> x == y -> fst x == fst y fst-eq (eqInΣ _ x₁=x₂ _) = x₁=x₂ snd-eq : {A B : Setoid}{F : Fam A}{G : Fam B} {x : El (Σ A F)}{y : El (Σ B G)} -> x == y -> snd x == snd y snd-eq (eqInΣ _ _ y₁=y₂) = y₁=y₂ η : {A : Setoid}{F : Fam A}(f : El (Π A F)){pf : (x y : El A) -> x == y -> f # x == f # y} -> f == ƛ {F = F} (_#_ f) pf η (ƛ f pf) = eqInΠ refl pf
34.08589
94
0.448614
061bff43af312fe2d77bf1e22b128f27e81c616d
458
agda
Agda
test/Fail/Issue653.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue653.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue653.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2013-02-27 module Issue653 where postulate P : {A : Set} → (A → Set) → Set mutual {-# NON_TERMINATING #-} A : Set A = P B -- note A = P {A} B is non-terminating data B : A → Set where c : (a : A) → B a -- This caused a stack overflow due to infinite reduction -- in the positivity checker. -- Now functions that do not pass the termination checker are not unfolded -- any more. -- So, it should report positivity violation now.
22.9
74
0.652838
23bae51ac87e49520d795994f36ebf05490fc7a5
696
agda
Agda
test/interaction/Issue2466.agda
zgrannan/agda
5953ce337eb6b77b29ace7180478f49c541aea1c
[ "BSD-3-Clause" ]
null
null
null
test/interaction/Issue2466.agda
zgrannan/agda
5953ce337eb6b77b29ace7180478f49c541aea1c
[ "BSD-3-Clause" ]
null
null
null
test/interaction/Issue2466.agda
zgrannan/agda
5953ce337eb6b77b29ace7180478f49c541aea1c
[ "BSD-3-Clause" ]
null
null
null
-- Andreas, 2017-03-21, issue #2466 -- The unifier should not turn user-written variable patterns into -- dot patterns. -- {-# OPTIONS -v reify.implicit:100 -v interaction.case:100 #-} -- {-# OPTIONS -v tc.lhs.unify:40 #-} postulate A B : Set module Explicit where data D : A → B → Set where c : ∀ p {p'} x → D p' x → D p x test : ∀ p x → D p x → D p x test .p _ (c p x pp) = {!p'!} where y = x -- Expected: test .p _ (c p {p'} x pp) = ? module Implicit where data D : A → B → Set where c : ∀ {p p' x} → D p' x → D p x test : ∀ p {x} → D p x → D p x test .p (c {p} {x = x} pp) = {!p'!} where y = x -- Expected: test .p (c {p} {p'} {x} pp) = ?
19.885714
66
0.510057
c5262ec7cd33f3941acd848db7f1410d80aff130
7,518
agda
Agda
CP/Session2.agda
banacorn/bidirectional
0c9a6e79c23192b28ddb07315b200a94ee900ca6
[ "MIT" ]
2
2020-08-25T07:34:40.000Z
2020-08-25T14:05:01.000Z
CP/Session2.agda
banacorn/bidirectional
0c9a6e79c23192b28ddb07315b200a94ee900ca6
[ "MIT" ]
null
null
null
CP/Session2.agda
banacorn/bidirectional
0c9a6e79c23192b28ddb07315b200a94ee900ca6
[ "MIT" ]
null
null
null
open import Relation.Binary using (Decidable; DecSetoid) open import Level module CP.Session2 {a} (ChanSetoid : DecSetoid zero a) (Type : Set) where Chan : Set Chan = DecSetoid.Carrier ChanSetoid _≟Chan_ = DecSetoid._≟_ ChanSetoid _≈Chan_ = DecSetoid._≈_ ChanSetoid _≉Chan_ = DecSetoid._≉_ ChanSetoid infixl 5 _,_∶_ data Session : Set a where _,_∶_ : Session → Chan → Type → Session _++_ : Session → Session → Session ∅ : Session -- open import Data.Bool hiding (_≟_) -- open import Data.Empty -- open import Data.Unit open import Relation.Nullary open import Relation.Nullary.Decidable -- open import Relation.Binary.PropositionalEquality infix 4 _∋_ data _∋_ : (Γ : Session) → (x : Chan) → Set a where here : ∀ {Γ x y A} → x ≈Chan y → Γ , y ∶ A ∋ x there : ∀ {Γ x y A} → Γ ∋ x → Γ , y ∶ A ∋ x left : ∀ {Γ Δ x} → Γ ∋ x → Γ ++ Δ ∋ x right : ∀ {Γ Δ x} → Δ ∋ x → Γ ++ Δ ∋ x infix 4 _∋?_ _∋?_ : (Γ : Session) → (x : Chan) → Dec (Γ ∋ x) Γ , y ∶ A ∋? x with x ≟Chan y ... | yes x≈y = yes (here x≈y) ... | no ¬x≈y with Γ ∋? x ... | yes Γ∋x = yes (there Γ∋x) ... | no ¬Γ∋x = no (λ where (here x≈y) → ¬x≈y x≈y (there Γ∋x) → ¬Γ∋x Γ∋x) (Γ ++ Δ) ∋? x with Γ ∋? x ... | yes Γ∋x = yes (left Γ∋x) ... | no ¬Γ∋x with Δ ∋? x ... | yes Δ∋x = yes (right Δ∋x) ... | no ¬Δ∋x = no (λ where (left Γ∋x) → ¬Γ∋x Γ∋x (right Δ∋x) → ¬Δ∋x Δ∋x) ∅ ∋? x = no (λ ()) open import Data.Product open import Data.Empty using (⊥-elim) infix 4 _≈_ _≈_ : Session → Session → Set a Γ ≈ Δ = (∀ x → Γ ∋ x → Δ ∋ x) × (∀ x → Δ ∋ x → Γ ∋ x) ∅∌x : ∀ {x} → ¬ ∅ ∋ x ∅∌x () open DecSetoid ChanSetoid hiding (_≈_) ∅-empty : ∀ {Δ x A} → ¬ ∅ ≈ Δ , x ∶ A ∅-empty {Δ} {x} (P , Q) = ∅∌x (Q x (here refl)) <<<<<<< HEAD swap : ∀ {Γ x y A B} → Γ , x ∶ A , y ∶ B ≈ Γ , y ∶ B , x ∶ A swap {Γ} {x} {y} {A} {B} = to , from where to : ∀ v → Γ , x ∶ A , y ∶ B ∋ v → Γ , y ∶ B , x ∶ A ∋ v to v (here P) = there (here P) to v (there (here P)) = here P to v (there (there P)) = there (there P) from : ∀ v → Γ , y ∶ B , x ∶ A ∋ v → Γ , x ∶ A , y ∶ B ∋ v from v (here P) = there (here P) from v (there (here P)) = here P from v (there (there P)) = there (there P) -- contract : ∀ {Γ x y A B} → → Γ , x ∶ A ≈ Γ -- contract -- strengthen : ∀ {Γ x A v} → Γ , x ∶ A ∋ v → x ≉ v → Γ ∋ v -- strengthen (here x≈v) x≉v = ⊥-elim (x≉v (sym x≈v)) -- strengthen (there P) x≉v = P ======= >>>>>>> 40f82fd098a0c30c87ea0056baa48152aefae1f6 lookup : (Γ : Session) (x : Chan) → Dec (∃[ Δ ] ∃[ A ] (Γ ≈ (Δ , x ∶ A))) lookup (Γ , y ∶ A) x with x ≟Chan y ... | yes x≈y = yes (Γ , A , (λ where v (here v≈y) → here (trans v≈y (sym x≈y)) v (there Γ∷y∋v) → there Γ∷y∋v) , λ where v (here v≈x) → here (trans v≈x x≈y) v (there Γ∷x∋v) → there Γ∷x∋v) ... | no ¬x≈y with lookup Γ x ... | yes (Δ , B , Γ≈Δ,x∶B) = yes (Δ , y ∶ A , B , (λ where v (here v≈y) → there (here v≈y) <<<<<<< HEAD v (there Γ∋v) → proj₁ swap v (there (proj₁ Γ≈Δ,x∶B v Γ∋v))) , λ where v (here v≈x) → there (proj₂ Γ≈Δ,x∶B v (here v≈x)) v (there (here v≈y)) → here v≈y v (there (there Δ∋v)) → there (proj₂ Γ≈Δ,x∶B v (there Δ∋v))) ... | no ¬P = no (λ (Δ , B , Q) → ¬P (Δ , B , {! !})) -- (λ where v P → proj₁ Q v (there P)) -- , (λ where v P → {! proj₂ Q v P !}))) ======= v (there Γ∋v) → {! !}) , {! !}) ... | no P = {! !} >>>>>>> 40f82fd098a0c30c87ea0056baa48152aefae1f6 lookup (Γ ++ Δ) x = {! !} lookup ∅ x = no (λ where (Δ , A , P) → ∅-empty P) -- ... | yes x≈y = yes (Γ , A , λ v → (λ where (here v≈y) → here (trans v≈y (sym x≈y)) -- (there Γ∋v) → there Γ∋v) -- (λ v≈x → v≉y (trans v≈x x≈y)) -- , λ where (here v≈x) → here (trans v≈x x≈y) -- (there Γ∋v) → there Γ∋v) -- (λ v≈y → v≉x (trans v≈y (sym x≈y))) -- ... | no ¬x≈y with lookup Γ x -- ... | yes (Δ , B , Γ≈Δ,x∶B) = yes (Δ , y ∶ A , B , λ v → (λ where (here v≈y) → there (here v≈y) -- (λ v≈x → ¬x≈y (trans (sym v≈x) v≈y)) -- (there Γ∋v) → lemma-1 (proj₁ (Γ≈Δ,x∶B v) Γ∋v)) -- , λ where (here v≈x) → there (proj₂ (Γ≈Δ,x∶B v) (here v≈x)) -- (λ v≈y → ¬x≈y (trans (sym v≈x) v≈y)) -- (there Δ,y∶A∋y) → ,-weakening y A (proj₂ (Γ≈Δ,x∶B v)) (lemma-1 Δ,y∶A∋y)) -- where -- lemma-1 : ∀ {Γ x y z A B} → Γ , x ∶ A ∋ z → Γ , y ∶ B , x ∶ A ∋ z -- lemma-1 (here z≈x) = here z≈x -- lemma-1 (there Γ∋z) = there (there Γ∋z) -- ,-weakening : ∀ {Γ Δ v} x A → (Γ ∋ v → Δ ∋ v) → (Γ , x ∶ A ∋ v → Δ , x ∶ A ∋ v) -- ,-weakening x A f (here v≈x) = here v≈x -- ,-weakening x A f (there Γ∋v) = there (f Γ∋v) -- ... | no ¬P = no λ Q → {! !} -- -- GOAL : Γ , y ∶ A ≉ CTX , x ∶ TYPE -- -- ¬P Γ ≉ CTX , x : TYPE -- -- no (λ (Δ , B , Q) → ¬P (Δ , B , {! Q !})) -- -- λ v → (λ Γ∋v → proj₁ (Q v) (there Γ∋v)) -- -- , (λ Δ,x∶B∋v → {! proj₂ (Q v) Δ,x∶B∋v !}))) -- -- → (λ Γ∋v → proj₁ (Q v) (there Γ∋v)) -- -- , λ Δ,x∶B∋v → {! (proj₂ (Q v) Δ,x∶B∋v) !})) -- -- where -- -- (here P) → strengthen (proj₂ (Q v) (here P)) (λ y≈v → ¬x≈y (sym (trans y≈v P))) -- -- (there P) → {! !})) -- where -- -- GOAL : Δ , x ∶ B → Γ -- -- Q v : Δ , x ∶ B <≈> Γ , y ∶ A -- -- -- ¬P Δ A = Γ <=> Δ , x ∶ A -- -- (x₁ : Carrier) → -- -- Σ (Γ ∋ x₁ → Δ₁ , x ∶ A₁ ∋ x₁) (λ x₂ → Δ₁ , x ∶ A₁ ∋ x₁ → Γ ∋ x₁))) -- strengthen : ∀ {Γ x A v} → Γ , x ∶ A ∋ v → x ≉ v → Γ ∋ v -- strengthen (here x≈v) x≉v = ⊥-elim (x≉v (sym x≈v)) -- strengthen (there P) x≉v = P -- temp : ∀ Δ B v → (Δ ∋ v) → (f : Δ , x ∶ B ∋ v → Γ , y ∶ A ∋ v) → Γ ∋ v -- temp Δ B v Δ∋v f with v ≟Chan x -- ... | yes v≈x = strengthen (f (here v≈x)) (λ y≈v → ¬x≈y (sym (trans y≈v v≈x))) -- ... | no ¬v≈x with y ≟Chan v -- ... | yes y≈v = {! !} -- ... | no ¬y≈v = strengthen (f (there Δ∋v)) ¬y≈v -- -- strengthen (f (there Δ∈v)) λ y≈v → {! !} -- -- lemma : G -- lookup (Γ ++ Δ) x = {! !} -- lookup ∅ x = no (λ where (Δ , A , P) → ∅-empty P) -- -- _≈?_ : (Γ Δ : Session) → Dec (Γ ≈ Δ) -- -- Γ ≈? Δ = {! !} -- -- empty : ∀ {Γ x A} → ¬ (∅ ≈ (Γ , x ∶ A)) -- -- empty {Γ} {x} {A} P with x ≟ x -- -- ... | no ¬p = {! !} -- -- ... | yes p = {! !} -- -- lookup : (Γ : Session) (x : Chan) → Dec (∃[ Δ ] ∃[ A ] (Γ ≈ (Δ , x ∶ A))) -- -- lookup (Γ , y ∶ A) x = {! !} -- -- lookup (Γ ++ Δ) x with lookup Γ x -- -- ... | yes p = {! !} -- -- ... | no ¬p = {! !} -- -- lookup ∅ x = no (λ where (Γ , A , P) → {! P x !})
39.777778
158
0.373371
5777aca1d40fcc4b83fabb9272db3cf395fca365
3,401
agda
Agda
src/Auto/Counting.agda
wenkokke/AutoInAgda
f384b5c236645fcf8ab93179723a7355383a8716
[ "MIT" ]
22
2017-07-18T18:14:09.000Z
2021-03-20T15:04:47.000Z
src/Auto/Counting.agda
wenkokke/AutoInAgda
f384b5c236645fcf8ab93179723a7355383a8716
[ "MIT" ]
1
2017-11-03T09:46:19.000Z
2017-11-06T16:49:27.000Z
src/Auto/Counting.agda
wenkokke/AutoInAgda
f384b5c236645fcf8ab93179723a7355383a8716
[ "MIT" ]
2
2018-07-10T10:47:30.000Z
2019-07-07T07:37:07.000Z
open import Auto.Core using (Rule; RuleName; _≟-RuleName_; name2rule; IsHintDB) open import Level using (zero) open import Function using (id; _∘_) open import Category.Functor using (module RawFunctor) open import Data.Bool as Bool using (if_then_else_) open import Data.List as List using (List; _++_; []; [_]) open import Data.Maybe as Maybe using (Maybe; just; nothing) open import Data.Nat as Nat using (ℕ; pred) open import Data.Product as Prod using (∃; _,_; proj₂) open import Data.Sum as Sum using (_⊎_; inj₁; inj₂) open import Data.Unit as Unit using (⊤) open import Reflection using (Name) open import Relation.Nullary.Decidable using (⌊_⌋) module Auto.Counting where -------------------------------------------------------------------------------- -- Define a 'counting' hint database which, upon selection of a rule will -- -- decrement an associated 'count' value, and upon reaching 0 will delete -- -- the hint from the hint database. -- -- -- -- The count values can either be natural numbers, in which case they -- -- will be decremented as expected, or the value ⊤, in which case they -- -- will not be decremented, effectively inserting infinite copies of the -- -- rule into the hint database. -- -------------------------------------------------------------------------------- module CountingHintDB where open RawFunctor (Maybe.functor {zero}) using (_<$>_) Count : Set Count = ℕ ⊎ ⊤ record Hint (k : ℕ) : Set where constructor mkHint field rule : Rule k count : Count ruleName : RuleName ruleName = Rule.name rule HintDB : Set HintDB = List (∃ Hint) decrCount : ∀ {k} → Hint k → Maybe (Hint k) decrCount {k} (mkHint r c) = mkHint r <$> decrCount′ c where decrCount′ : Count → Maybe Count decrCount′ (inj₁ 0) = nothing decrCount′ (inj₁ 1) = nothing decrCount′ (inj₁ x) = just (inj₁ (pred x)) decrCount′ (inj₂ _) = just (inj₂ _) getTr : ∀ {k} → Hint k → (HintDB → HintDB) getTr h₁ = List.concatMap (List.fromMaybe ∘ mdecr₁) where mdecr₁ : ∃ Hint → Maybe (∃ Hint) mdecr₁ (_ , h₂) = if ⌊ Hint.ruleName h₁ ≟-RuleName Hint.ruleName h₂ ⌋ then (_,_ _) <$> decrCount h₂ else just (_ , h₂) countingHintDB : IsHintDB countingHintDB = record { HintDB = HintDB ; Hint = Hint ; getHints = id ; getRule = Hint.rule ; getTr = getTr ; ε = [] ; _∙_ = _++_ ; return = λ r → [ _ , mkHint r (inj₂ _) ] } open CountingHintDB using (mkHint; countingHintDB) open import Auto.Extensible countingHintDB public -------------------------------------------------------------------------------- -- Define some new syntax in order to insert rules with limited usage. -- -------------------------------------------------------------------------------- infixl 5 _<<[_]_ _<<[_]_ : HintDB → ℕ → Name → HintDB db <<[ 0 ] _ = db db <<[ x ] n with (name2rule n) db <<[ x ] n | inj₁ msg = db db <<[ x ] n | inj₂ (k , r) = db ∙ [ k , mkHint r (inj₁ x) ]
35.061856
96
0.510438
c5c2f015237a55ed44ef244f3f7567f21d91fc0f
1,854
agda
Agda
Cubical/HITs/TypeQuotients/Properties.agda
Edlyr/cubical
5de11df25b79ee49d5c084fbbe6dfc66e4147a2e
[ "MIT" ]
null
null
null
Cubical/HITs/TypeQuotients/Properties.agda
Edlyr/cubical
5de11df25b79ee49d5c084fbbe6dfc66e4147a2e
[ "MIT" ]
null
null
null
Cubical/HITs/TypeQuotients/Properties.agda
Edlyr/cubical
5de11df25b79ee49d5c084fbbe6dfc66e4147a2e
[ "MIT" ]
null
null
null
{- Type quotients: -} {-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.TypeQuotients.Properties where open import Cubical.HITs.TypeQuotients.Base open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.HITs.PropositionalTruncation as PropTrunc using (∥_∥ ; ∣_∣ ; squash) open import Cubical.HITs.SetTruncation as SetTrunc using (∥_∥₂ ; ∣_∣₂ ; squash₂ ; setTruncIsSet) private variable ℓ ℓ' ℓ'' : Level A : Type ℓ R : A → A → Type ℓ' B : A /ₜ R → Type ℓ'' C : A /ₜ R → A /ₜ R → Type ℓ'' elim : (f : (a : A) → (B [ a ])) → ((a b : A) (r : R a b) → PathP (λ i → B (eq/ a b r i)) (f a) (f b)) ------------------------------------------------------------------------ → (x : A /ₜ R) → B x elim f feq [ a ] = f a elim f feq (eq/ a b r i) = feq a b r i rec : {X : Type ℓ''} → (f : A → X) → (∀ (a b : A) → R a b → f a ≡ f b) ------------------------------------- → A /ₜ R → X rec f feq [ a ] = f a rec f feq (eq/ a b r i) = feq a b r i elimProp : ((x : A /ₜ R ) → isProp (B x)) → ((a : A) → B ( [ a ])) --------------------------------- → (x : A /ₜ R) → B x elimProp Bprop f [ a ] = f a elimProp Bprop f (eq/ a b r i) = isOfHLevel→isOfHLevelDep 1 Bprop (f a) (f b) (eq/ a b r) i elimProp2 : ((x y : A /ₜ R ) → isProp (C x y)) → ((a b : A) → C [ a ] [ b ]) -------------------------------------- → (x y : A /ₜ R) → C x y elimProp2 Cprop f = elimProp (λ x → isPropΠ (λ y → Cprop x y)) (λ x → elimProp (λ y → Cprop [ x ] y) (f x))
30.393443
91
0.468177
292c24a52c189729d15dfa928064f311ca54fd21
141
agda
Agda
test/Compiler/simple/Issue728.agda
MxmUrw/agda
6ede01fa854c5472e54f7d1799ca2c08ed316129
[ "BSD-2-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Compiler/simple/Issue728.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Compiler/simple/Issue728.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --guardedness #-} module Issue728 where open import Common.MAlonzo using () renaming (main to mainDefault) main = mainDefault
17.625
66
0.744681
234dfc973426944a9a57e4345c8f5f2d5f630a00
15,161
agda
Agda
Definition/Typed/Weakening.agda
Vtec234/logrel-mltt
4746894adb5b8edbddc8463904ee45c2e9b29b69
[ "MIT" ]
null
null
null
Definition/Typed/Weakening.agda
Vtec234/logrel-mltt
4746894adb5b8edbddc8463904ee45c2e9b29b69
[ "MIT" ]
null
null
null
Definition/Typed/Weakening.agda
Vtec234/logrel-mltt
4746894adb5b8edbddc8463904ee45c2e9b29b69
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} module Definition.Typed.Weakening where open import Definition.Untyped as U hiding (wk) open import Definition.Untyped.Properties open import Definition.Typed import Tools.PropositionalEquality as PE -- Weakening type data _∷_⊆_ : Wk → Con Term → Con Term → Set where id : ∀ {Γ} → id ∷ Γ ⊆ Γ step : ∀ {Γ Δ A ρ} → ρ ∷ Δ ⊆ Γ → step ρ ∷ Δ ∙ A ⊆ Γ lift : ∀ {Γ Δ A ρ} → ρ ∷ Δ ⊆ Γ → lift ρ ∷ Δ ∙ U.wk ρ A ⊆ Γ ∙ A -- -- Weakening composition _•ₜ_ : ∀ {ρ ρ′ Γ Δ Δ′} → ρ ∷ Γ ⊆ Δ → ρ′ ∷ Δ ⊆ Δ′ → ρ • ρ′ ∷ Γ ⊆ Δ′ id •ₜ η′ = η′ step η •ₜ η′ = step (η •ₜ η′) lift η •ₜ id = lift η lift η •ₜ step η′ = step (η •ₜ η′) _•ₜ_ {lift ρ} {lift ρ′} {Δ′ = Δ′ ∙ A} (lift η) (lift η′) = PE.subst (λ x → lift (ρ • ρ′) ∷ x ⊆ Δ′ ∙ A) (PE.cong₂ _∙_ PE.refl (PE.sym (wk-comp ρ ρ′ A))) (lift (η •ₜ η′)) -- Weakening of judgements wkIndex : ∀ {Γ Δ n A ρ} → ρ ∷ Δ ⊆ Γ → let ρA = U.wk ρ A ρn = wkVar ρ n in ⊢ Δ → n ∷ A ∈ Γ → ρn ∷ ρA ∈ Δ wkIndex id ⊢Δ i = PE.subst (λ x → _ ∷ x ∈ _) (PE.sym (wk-id _)) i wkIndex (step ρ) (⊢Δ ∙ A) i = PE.subst (λ x → _ ∷ x ∈ _) (wk1-wk _ _) (there (wkIndex ρ ⊢Δ i)) wkIndex (lift ρ) (⊢Δ ∙ A) (there i) = PE.subst (λ x → _ ∷ x ∈ _) (wk1-wk≡lift-wk1 _ _) (there (wkIndex ρ ⊢Δ i)) wkIndex (lift ρ) ⊢Δ here = let G = _ n = _ in PE.subst (λ x → n ∷ x ∈ G) (wk1-wk≡lift-wk1 _ _) here mutual wk : ∀ {Γ Δ A ρ} → ρ ∷ Δ ⊆ Γ → let ρA = U.wk ρ A in ⊢ Δ → Γ ⊢ A → Δ ⊢ ρA wk ρ ⊢Δ (ℕⱼ ⊢Γ) = ℕⱼ ⊢Δ wk ρ ⊢Δ (Emptyⱼ ⊢Γ) = Emptyⱼ ⊢Δ wk ρ ⊢Δ (Unitⱼ ⊢Γ) = Unitⱼ ⊢Δ wk ρ ⊢Δ (Uⱼ ⊢Γ) = Uⱼ ⊢Δ wk ρ ⊢Δ (Πⱼ F ▹ G) = let ρF = wk ρ ⊢Δ F in Πⱼ ρF ▹ (wk (lift ρ) (⊢Δ ∙ ρF) G) wk ρ ⊢Δ (Σⱼ F ▹ G) = let ρF = wk ρ ⊢Δ F in Σⱼ ρF ▹ (wk (lift ρ) (⊢Δ ∙ ρF) G) wk ρ ⊢Δ (univ A) = univ (wkTerm ρ ⊢Δ A) wkTerm : ∀ {Γ Δ A t ρ} → ρ ∷ Δ ⊆ Γ → let ρA = U.wk ρ A ρt = U.wk ρ t in ⊢ Δ → Γ ⊢ t ∷ A → Δ ⊢ ρt ∷ ρA wkTerm ρ ⊢Δ (ℕⱼ ⊢Γ) = ℕⱼ ⊢Δ wkTerm ρ ⊢Δ (Emptyⱼ ⊢Γ) = Emptyⱼ ⊢Δ wkTerm ρ ⊢Δ (Unitⱼ ⊢Γ) = Unitⱼ ⊢Δ wkTerm ρ ⊢Δ (Πⱼ F ▹ G) = let ρF = wkTerm ρ ⊢Δ F in Πⱼ ρF ▹ (wkTerm (lift ρ) (⊢Δ ∙ univ ρF) G) wkTerm ρ ⊢Δ (Σⱼ F ▹ G) = let ρF = wkTerm ρ ⊢Δ F in Σⱼ ρF ▹ (wkTerm (lift ρ) (⊢Δ ∙ univ ρF) G) wkTerm ρ ⊢Δ (var ⊢Γ x) = var ⊢Δ (wkIndex ρ ⊢Δ x) wkTerm ρ ⊢Δ (lamⱼ F t) = let ρF = wk ρ ⊢Δ F in lamⱼ ρF (wkTerm (lift ρ) (⊢Δ ∙ ρF) t) wkTerm ρ ⊢Δ (_∘ⱼ_ {G = G} g a) = PE.subst (λ x → _ ⊢ _ ∷ x) (PE.sym (wk-β G)) (wkTerm ρ ⊢Δ g ∘ⱼ wkTerm ρ ⊢Δ a) wkTerm ρ ⊢Δ (prodⱼ {G = G} ⊢F ⊢G t u) = let ρF = wk ρ ⊢Δ ⊢F ρG = wk (lift ρ) (⊢Δ ∙ ρF) ⊢G ρt = wkTerm ρ ⊢Δ t ρu = wkTerm ρ ⊢Δ u ρu = PE.subst (λ x → _ ⊢ _ ∷ x) (wk-β G) ρu in prodⱼ ρF ρG ρt ρu wkTerm ρ ⊢Δ (fstⱼ {G = G} ⊢F ⊢G t) = let ρF = wk ρ ⊢Δ ⊢F ρG = wk (lift ρ) (⊢Δ ∙ ρF) ⊢G ρt = wkTerm ρ ⊢Δ t in fstⱼ ρF ρG ρt wkTerm ρ ⊢Δ (sndⱼ {G = G} ⊢F ⊢G t) = let ρF = wk ρ ⊢Δ ⊢F ρG = wk (lift ρ) (⊢Δ ∙ ρF) ⊢G ρt = wkTerm ρ ⊢Δ t in PE.subst (λ x → _ ⊢ snd _ ∷ x) (PE.sym (wk-β G)) (sndⱼ ρF ρG ρt) wkTerm ρ ⊢Δ (zeroⱼ ⊢Γ) = zeroⱼ ⊢Δ wkTerm ρ ⊢Δ (sucⱼ n) = sucⱼ (wkTerm ρ ⊢Δ n) wkTerm {Δ = Δ} {ρ = ρ} [ρ] ⊢Δ (natrecⱼ {G = G} {s = s} ⊢G ⊢z ⊢s ⊢n) = PE.subst (λ x → _ ⊢ natrec _ _ _ _ ∷ x) (PE.sym (wk-β G)) (natrecⱼ (wk (lift [ρ]) (⊢Δ ∙ ℕⱼ ⊢Δ) ⊢G) (PE.subst (λ x → _ ⊢ _ ∷ x) (wk-β G) (wkTerm [ρ] ⊢Δ ⊢z)) (PE.subst (λ x → Δ ⊢ U.wk ρ s ∷ x) (wk-β-natrec ρ G) (wkTerm [ρ] ⊢Δ ⊢s)) (wkTerm [ρ] ⊢Δ ⊢n)) wkTerm {Δ = Δ} {ρ = ρ} [ρ] ⊢Δ (Emptyrecⱼ {A = A} {e = e} ⊢A ⊢e) = (Emptyrecⱼ (wk [ρ] ⊢Δ ⊢A) (wkTerm [ρ] ⊢Δ ⊢e)) wkTerm ρ ⊢Δ (starⱼ ⊢Γ) = starⱼ ⊢Δ wkTerm ρ ⊢Δ (conv t A≡B) = conv (wkTerm ρ ⊢Δ t) (wkEq ρ ⊢Δ A≡B) wkEq : ∀ {Γ Δ A B ρ} → ρ ∷ Δ ⊆ Γ → let ρA = U.wk ρ A ρB = U.wk ρ B in ⊢ Δ → Γ ⊢ A ≡ B → Δ ⊢ ρA ≡ ρB wkEq ρ ⊢Δ (univ A≡B) = univ (wkEqTerm ρ ⊢Δ A≡B) wkEq ρ ⊢Δ (refl A) = refl (wk ρ ⊢Δ A) wkEq ρ ⊢Δ (sym A≡B) = sym (wkEq ρ ⊢Δ A≡B) wkEq ρ ⊢Δ (trans A≡B B≡C) = trans (wkEq ρ ⊢Δ A≡B) (wkEq ρ ⊢Δ B≡C) wkEq ρ ⊢Δ (Π-cong F F≡H G≡E) = let ρF = wk ρ ⊢Δ F in Π-cong ρF (wkEq ρ ⊢Δ F≡H) (wkEq (lift ρ) (⊢Δ ∙ ρF) G≡E) wkEq ρ ⊢Δ (Σ-cong F F≡H G≡E) = let ρF = wk ρ ⊢Δ F in Σ-cong ρF (wkEq ρ ⊢Δ F≡H) (wkEq (lift ρ) (⊢Δ ∙ ρF) G≡E) wkEqTerm : ∀ {Γ Δ A t u ρ} → ρ ∷ Δ ⊆ Γ → let ρA = U.wk ρ A ρt = U.wk ρ t ρu = U.wk ρ u in ⊢ Δ → Γ ⊢ t ≡ u ∷ A → Δ ⊢ ρt ≡ ρu ∷ ρA wkEqTerm ρ ⊢Δ (refl t) = refl (wkTerm ρ ⊢Δ t) wkEqTerm ρ ⊢Δ (sym t≡u) = sym (wkEqTerm ρ ⊢Δ t≡u) wkEqTerm ρ ⊢Δ (trans t≡u u≡r) = trans (wkEqTerm ρ ⊢Δ t≡u) (wkEqTerm ρ ⊢Δ u≡r) wkEqTerm ρ ⊢Δ (conv t≡u A≡B) = conv (wkEqTerm ρ ⊢Δ t≡u) (wkEq ρ ⊢Δ A≡B) wkEqTerm ρ ⊢Δ (Π-cong F F≡H G≡E) = let ρF = wk ρ ⊢Δ F in Π-cong ρF (wkEqTerm ρ ⊢Δ F≡H) (wkEqTerm (lift ρ) (⊢Δ ∙ ρF) G≡E) wkEqTerm ρ ⊢Δ (Σ-cong F F≡H G≡E) = let ρF = wk ρ ⊢Δ F in Σ-cong ρF (wkEqTerm ρ ⊢Δ F≡H) (wkEqTerm (lift ρ) (⊢Δ ∙ ρF) G≡E) wkEqTerm ρ ⊢Δ (app-cong {G = G} f≡g a≡b) = PE.subst (λ x → _ ⊢ _ ≡ _ ∷ x) (PE.sym (wk-β G)) (app-cong (wkEqTerm ρ ⊢Δ f≡g) (wkEqTerm ρ ⊢Δ a≡b)) wkEqTerm ρ ⊢Δ (β-red {a = a} {t = t} {G = G} F ⊢t ⊢a) = let ρF = wk ρ ⊢Δ F in PE.subst (λ x → _ ⊢ _ ≡ _ ∷ x) (PE.sym (wk-β G)) (PE.subst (λ x → _ ⊢ U.wk _ ((lam t) ∘ a) ≡ x ∷ _) (PE.sym (wk-β t)) (β-red ρF (wkTerm (lift ρ) (⊢Δ ∙ ρF) ⊢t) (wkTerm ρ ⊢Δ ⊢a))) wkEqTerm ρ ⊢Δ (η-eq F f g f0≡g0) = let ρF = wk ρ ⊢Δ F in η-eq ρF (wkTerm ρ ⊢Δ f) (wkTerm ρ ⊢Δ g) (PE.subst (λ t → _ ⊢ t ∘ _ ≡ _ ∷ _) (PE.sym (wk1-wk≡lift-wk1 _ _)) (PE.subst (λ t → _ ⊢ _ ≡ t ∘ _ ∷ _) (PE.sym (wk1-wk≡lift-wk1 _ _)) (wkEqTerm (lift ρ) (⊢Δ ∙ ρF) f0≡g0))) wkEqTerm ρ ⊢Δ (fst-cong ⊢F ⊢G t≡t') = let ρF = wk ρ ⊢Δ ⊢F ρG = wk (lift ρ) (⊢Δ ∙ ρF) ⊢G in fst-cong ρF ρG (wkEqTerm ρ ⊢Δ t≡t') wkEqTerm ρ ⊢Δ (snd-cong {G = G} ⊢F ⊢G t≡t') = let ρF = wk ρ ⊢Δ ⊢F ρG = wk (lift ρ) (⊢Δ ∙ ρF) ⊢G ρt≡t' = wkEqTerm ρ ⊢Δ t≡t' in PE.subst (λ x → _ ⊢ snd _ ≡ snd _ ∷ x) (PE.sym (wk-β G)) (snd-cong ρF ρG ρt≡t') wkEqTerm ρ ⊢Δ (Σ-η {G = G} ⊢F ⊢G ⊢p ⊢r fst≡ snd≡) = let ρF = wk ρ ⊢Δ ⊢F ρG = wk (lift ρ) (⊢Δ ∙ ρF) ⊢G ρp = wkTerm ρ ⊢Δ ⊢p ρr = wkTerm ρ ⊢Δ ⊢r ρfst≡ = wkEqTerm ρ ⊢Δ fst≡ ρsnd≡ = wkEqTerm ρ ⊢Δ snd≡ ρsnd≡ = PE.subst (λ x → _ ⊢ _ ≡ _ ∷ x) (wk-β G) ρsnd≡ in Σ-η ρF ρG ρp ρr ρfst≡ ρsnd≡ wkEqTerm {ρ = ρ} [ρ] ⊢Δ (Σ-β₁ {G = G} ⊢F ⊢G t u) = let ρF = wk [ρ] ⊢Δ ⊢F ρG = wk (lift [ρ]) (⊢Δ ∙ ρF) ⊢G ρt = wkTerm [ρ] ⊢Δ t ρu = wkTerm [ρ] ⊢Δ u ρu = PE.subst (λ x → _ ⊢ _ ∷ x) (wk-β G) ρu in Σ-β₁ ρF ρG ρt ρu wkEqTerm {ρ = ρ} [ρ] ⊢Δ (Σ-β₂ {G = G} ⊢F ⊢G t u) = let ρF = wk [ρ] ⊢Δ ⊢F ρG = wk (lift [ρ]) (⊢Δ ∙ ρF) ⊢G ρt = wkTerm [ρ] ⊢Δ t ρu = wkTerm [ρ] ⊢Δ u ρu = PE.subst (λ x → _ ⊢ _ ∷ x) (wk-β G) ρu in PE.subst (λ x → _ ⊢ _ ≡ _ ∷ x) (PE.sym (wk-β G)) (Σ-β₂ ρF ρG ρt ρu) wkEqTerm ρ ⊢Δ (suc-cong m≡n) = suc-cong (wkEqTerm ρ ⊢Δ m≡n) wkEqTerm {Δ = Δ} {ρ = ρ} [ρ] ⊢Δ (natrec-cong {s = s} {s′ = s′} {F = F} F≡F′ z≡z′ s≡s′ n≡n′) = PE.subst (λ x → Δ ⊢ natrec _ _ _ _ ≡ _ ∷ x) (PE.sym (wk-β F)) (natrec-cong (wkEq (lift [ρ]) (⊢Δ ∙ ℕⱼ ⊢Δ) F≡F′) (PE.subst (λ x → Δ ⊢ _ ≡ _ ∷ x) (wk-β F) (wkEqTerm [ρ] ⊢Δ z≡z′)) (PE.subst (λ x → Δ ⊢ U.wk ρ s ≡ U.wk ρ s′ ∷ x) (wk-β-natrec _ F) (wkEqTerm [ρ] ⊢Δ s≡s′)) (wkEqTerm [ρ] ⊢Δ n≡n′)) wkEqTerm {Δ = Δ} {ρ = ρ} [ρ] ⊢Δ (natrec-zero {z} {s} {F} ⊢F ⊢z ⊢s) = PE.subst (λ x → Δ ⊢ natrec (U.wk (lift _) F) _ _ _ ≡ _ ∷ x) (PE.sym (wk-β F)) (natrec-zero (wk (lift [ρ]) (⊢Δ ∙ ℕⱼ ⊢Δ) ⊢F) (PE.subst (λ x → Δ ⊢ U.wk ρ z ∷ x) (wk-β F) (wkTerm [ρ] ⊢Δ ⊢z)) (PE.subst (λ x → Δ ⊢ U.wk ρ s ∷ x) (wk-β-natrec _ F) (wkTerm [ρ] ⊢Δ ⊢s))) wkEqTerm {Δ = Δ} {ρ = ρ} [ρ] ⊢Δ (natrec-suc {n} {z} {s} {F} ⊢n ⊢F ⊢z ⊢s) = PE.subst (λ x → Δ ⊢ natrec (U.wk (lift _) F) _ _ _ ≡ _ ∘ (natrec _ _ _ _) ∷ x) (PE.sym (wk-β F)) (natrec-suc (wkTerm [ρ] ⊢Δ ⊢n) (wk (lift [ρ]) (⊢Δ ∙ ℕⱼ ⊢Δ) ⊢F) (PE.subst (λ x → Δ ⊢ U.wk ρ z ∷ x) (wk-β F) (wkTerm [ρ] ⊢Δ ⊢z)) (PE.subst (λ x → Δ ⊢ U.wk ρ s ∷ x) (wk-β-natrec _ F) (wkTerm [ρ] ⊢Δ ⊢s))) wkEqTerm {Δ = Δ} {ρ = ρ} [ρ] ⊢Δ (Emptyrec-cong {A = A} {A' = A'} {e = e} {e' = e'} A≡A' e≡e') = (Emptyrec-cong (wkEq [ρ] ⊢Δ A≡A') (wkEqTerm [ρ] ⊢Δ e≡e')) wkEqTerm ρ ⊢Δ (η-unit e e') = η-unit (wkTerm ρ ⊢Δ e) (wkTerm ρ ⊢Δ e') mutual wkRed : ∀ {Γ Δ A B ρ} → ρ ∷ Δ ⊆ Γ → let ρA = U.wk ρ A ρB = U.wk ρ B in ⊢ Δ → Γ ⊢ A ⇒ B → Δ ⊢ ρA ⇒ ρB wkRed ρ ⊢Δ (univ A⇒B) = univ (wkRedTerm ρ ⊢Δ A⇒B) wkRedTerm : ∀ {Γ Δ A t u ρ} → ρ ∷ Δ ⊆ Γ → let ρA = U.wk ρ A ρt = U.wk ρ t ρu = U.wk ρ u in ⊢ Δ → Γ ⊢ t ⇒ u ∷ A → Δ ⊢ ρt ⇒ ρu ∷ ρA wkRedTerm ρ ⊢Δ (conv t⇒u A≡B) = conv (wkRedTerm ρ ⊢Δ t⇒u) (wkEq ρ ⊢Δ A≡B) wkRedTerm ρ ⊢Δ (app-subst {B = B} t⇒u a) = PE.subst (λ x → _ ⊢ _ ⇒ _ ∷ x) (PE.sym (wk-β B)) (app-subst (wkRedTerm ρ ⊢Δ t⇒u) (wkTerm ρ ⊢Δ a)) wkRedTerm ρ ⊢Δ (β-red {A} {B} {a} {t} ⊢A ⊢t ⊢a) = let ⊢ρA = wk ρ ⊢Δ ⊢A in PE.subst (λ x → _ ⊢ _ ⇒ _ ∷ x) (PE.sym (wk-β B)) (PE.subst (λ x → _ ⊢ U.wk _ ((lam t) ∘ a) ⇒ x ∷ _) (PE.sym (wk-β t)) (β-red ⊢ρA (wkTerm (lift ρ) (⊢Δ ∙ ⊢ρA) ⊢t) (wkTerm ρ ⊢Δ ⊢a))) wkRedTerm ρ ⊢Δ (fst-subst ⊢F ⊢G t⇒) = let ρF = wk ρ ⊢Δ ⊢F ρG = wk (lift ρ) (⊢Δ ∙ ρF) ⊢G ρt⇒ = wkRedTerm ρ ⊢Δ t⇒ in fst-subst ρF ρG ρt⇒ wkRedTerm ρ ⊢Δ (snd-subst {G = G} ⊢F ⊢G t⇒) = let ρF = wk ρ ⊢Δ ⊢F ρG = wk (lift ρ) (⊢Δ ∙ ρF) ⊢G ρt⇒ = wkRedTerm ρ ⊢Δ t⇒ in PE.subst (λ x → _ ⊢ snd _ ⇒ snd _ ∷ x) (PE.sym (wk-β G)) (snd-subst ρF ρG ρt⇒) wkRedTerm {ρ = ρ} [ρ] ⊢Δ (Σ-β₁ {G = G} ⊢F ⊢G t u) = let ρF = wk [ρ] ⊢Δ ⊢F ρG = wk (lift [ρ]) (⊢Δ ∙ ρF) ⊢G ρt = wkTerm [ρ] ⊢Δ t ρu = wkTerm [ρ] ⊢Δ u ρu = PE.subst (λ x → _ ⊢ _ ∷ x) (wk-β G) ρu in Σ-β₁ ρF ρG ρt ρu wkRedTerm {ρ = ρ} [ρ] ⊢Δ (Σ-β₂ {G = G} ⊢F ⊢G t u) = let ρF = wk [ρ] ⊢Δ ⊢F ρG = wk (lift [ρ]) (⊢Δ ∙ ρF) ⊢G ρt = wkTerm [ρ] ⊢Δ t ρu = wkTerm [ρ] ⊢Δ u ρu = PE.subst (λ x → _ ⊢ _ ∷ x) (wk-β G) ρu in PE.subst (λ x → _ ⊢ _ ⇒ _ ∷ x) (PE.sym (wk-β G)) (Σ-β₂ ρF ρG ρt ρu) wkRedTerm {Δ = Δ} {ρ = ρ} [ρ] ⊢Δ (natrec-subst {s = s} {F = F} ⊢F ⊢z ⊢s n⇒n′) = PE.subst (λ x → _ ⊢ natrec _ _ _ _ ⇒ _ ∷ x) (PE.sym (wk-β F)) (natrec-subst (wk (lift [ρ]) (⊢Δ ∙ ℕⱼ ⊢Δ) ⊢F) (PE.subst (λ x → _ ⊢ _ ∷ x) (wk-β F) (wkTerm [ρ] ⊢Δ ⊢z)) (PE.subst (λ x → Δ ⊢ U.wk ρ s ∷ x) (wk-β-natrec _ F) (wkTerm [ρ] ⊢Δ ⊢s)) (wkRedTerm [ρ] ⊢Δ n⇒n′)) wkRedTerm {Δ = Δ} {ρ = ρ} [ρ] ⊢Δ (natrec-zero {s = s} {F = F} ⊢F ⊢z ⊢s) = PE.subst (λ x → _ ⊢ natrec (U.wk (lift ρ) F) _ _ _ ⇒ _ ∷ x) (PE.sym (wk-β F)) (natrec-zero (wk (lift [ρ]) (⊢Δ ∙ ℕⱼ ⊢Δ) ⊢F) (PE.subst (λ x → _ ⊢ _ ∷ x) (wk-β F) (wkTerm [ρ] ⊢Δ ⊢z)) (PE.subst (λ x → Δ ⊢ U.wk ρ s ∷ x) (wk-β-natrec ρ F) (wkTerm [ρ] ⊢Δ ⊢s))) wkRedTerm {Δ = Δ} {ρ = ρ} [ρ] ⊢Δ (natrec-suc {s = s} {F = F} ⊢n ⊢F ⊢z ⊢s) = PE.subst (λ x → _ ⊢ natrec _ _ _ _ ⇒ _ ∘ natrec _ _ _ _ ∷ x) (PE.sym (wk-β F)) (natrec-suc (wkTerm [ρ] ⊢Δ ⊢n) (wk (lift [ρ]) (⊢Δ ∙ ℕⱼ ⊢Δ) ⊢F) (PE.subst (λ x → _ ⊢ _ ∷ x) (wk-β F) (wkTerm [ρ] ⊢Δ ⊢z)) (PE.subst (λ x → Δ ⊢ U.wk ρ s ∷ x) (wk-β-natrec ρ F) (wkTerm [ρ] ⊢Δ ⊢s))) wkRedTerm {Δ = Δ} {ρ = ρ} [ρ] ⊢Δ (Emptyrec-subst {A = A} ⊢A n⇒n′) = (Emptyrec-subst (wk [ρ] ⊢Δ ⊢A) (wkRedTerm [ρ] ⊢Δ n⇒n′)) wkRed* : ∀ {Γ Δ A B ρ} → ρ ∷ Δ ⊆ Γ → let ρA = U.wk ρ A ρB = U.wk ρ B in ⊢ Δ → Γ ⊢ A ⇒* B → Δ ⊢ ρA ⇒* ρB wkRed* ρ ⊢Δ (id A) = id (wk ρ ⊢Δ A) wkRed* ρ ⊢Δ (A⇒A′ ⇨ A′⇒*B) = wkRed ρ ⊢Δ A⇒A′ ⇨ wkRed* ρ ⊢Δ A′⇒*B wkRed*Term : ∀ {Γ Δ A t u ρ} → ρ ∷ Δ ⊆ Γ → let ρA = U.wk ρ A ρt = U.wk ρ t ρu = U.wk ρ u in ⊢ Δ → Γ ⊢ t ⇒* u ∷ A → Δ ⊢ ρt ⇒* ρu ∷ ρA wkRed*Term ρ ⊢Δ (id t) = id (wkTerm ρ ⊢Δ t) wkRed*Term ρ ⊢Δ (t⇒t′ ⇨ t′⇒*u) = wkRedTerm ρ ⊢Δ t⇒t′ ⇨ wkRed*Term ρ ⊢Δ t′⇒*u wkRed:*: : ∀ {Γ Δ A B ρ} → ρ ∷ Δ ⊆ Γ → let ρA = U.wk ρ A ρB = U.wk ρ B in ⊢ Δ → Γ ⊢ A :⇒*: B → Δ ⊢ ρA :⇒*: ρB wkRed:*: ρ ⊢Δ [ ⊢A , ⊢B , D ] = [ wk ρ ⊢Δ ⊢A , wk ρ ⊢Δ ⊢B , wkRed* ρ ⊢Δ D ] wkRed:*:Term : ∀ {Γ Δ A t u ρ} → ρ ∷ Δ ⊆ Γ → let ρA = U.wk ρ A ρt = U.wk ρ t ρu = U.wk ρ u in ⊢ Δ → Γ ⊢ t :⇒*: u ∷ A → Δ ⊢ ρt :⇒*: ρu ∷ ρA wkRed:*:Term ρ ⊢Δ [ ⊢t , ⊢u , d ] = [ wkTerm ρ ⊢Δ ⊢t , wkTerm ρ ⊢Δ ⊢u , wkRed*Term ρ ⊢Δ d ]
42.587079
84
0.369501
cba1fa9dbd68d565381e97c46eed596ce5ac9d38
398
agda
Agda
Nat.agda
divipp/agda-intro-prezi
a8902e36ed2037de9008e061d54517d4d7d99f0f
[ "BSD-3-Clause" ]
2
2018-11-27T02:50:48.000Z
2020-01-21T14:53:25.000Z
Nat.agda
divipp/agda-intro-prezi
a8902e36ed2037de9008e061d54517d4d7d99f0f
[ "BSD-3-Clause" ]
null
null
null
Nat.agda
divipp/agda-intro-prezi
a8902e36ed2037de9008e061d54517d4d7d99f0f
[ "BSD-3-Clause" ]
null
null
null
module Nat where data ℕ : Set where zero : ℕ suc : ℕ → ℕ _+_ : ℕ → ℕ → ℕ zero + a = a suc a + b = suc (a + b) data _≡_ {A : Set} : A → A → Set where refl : {a : A} → a ≡ a infix 4 _≡_ cong : {A B : Set} {a b : A} (f : A → B) → a ≡ b → f a ≡ f b cong f refl = refl +-assoc : (a b c : ℕ) → (a + b) + c ≡ a + (b + c) +-assoc zero b c = refl +-assoc (suc a) b c = cong suc (+-assoc a b c)
18.090909
60
0.462312
1dd786b98dec4a0fbd57f028c21054090a0789eb
8,390
agda
Agda
src/fot/FOTC/Program/SortList/Properties/MiscellaneousI.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
11
2015-09-03T20:53:42.000Z
2021-09-12T16:09:54.000Z
src/fot/FOTC/Program/SortList/Properties/MiscellaneousI.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
2
2016-10-12T17:28:16.000Z
2017-01-01T14:34:26.000Z
src/fot/FOTC/Program/SortList/Properties/MiscellaneousI.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
3
2016-09-19T14:18:30.000Z
2018-03-14T08:50:00.000Z
------------------------------------------------------------------------------ -- Miscellaneous properties ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Program.SortList.Properties.MiscellaneousI where open import Common.FOL.Relation.Binary.EqReasoning open import FOTC.Base open import FOTC.Base.List open import FOTC.Data.Bool open import FOTC.Data.Bool.PropertiesI open import FOTC.Data.Nat.Inequalities open import FOTC.Data.Nat.List.PropertiesI open import FOTC.Data.Nat.List.Type open import FOTC.Data.Nat.Type open import FOTC.Data.List open import FOTC.Data.List.PropertiesI open import FOTC.Program.SortList.Properties.Totality.BoolI open import FOTC.Program.SortList.SortList ------------------------------------------------------------------------------ -- This is a weird result but recall that "the relation ≤ between -- lists is only an ordering if nil is excluded" (Burstall 1969, -- p. 46). -- xs≤[] : ∀ {is} → ListN is → OrdList is → LE-Lists is [] -- xs≤[] lnnil _ = ≤-Lists-[] [] -- xs≤[] (lncons {i} {is} Ni LNis) LOconsL = -- begin -- ≤-Lists (i ∷ is) [] -- ≡⟨ ≤-Lists-∷ i is [] ⟩ -- ≤-ItemList i [] && ≤-Lists is [] -- ≡⟨ subst (λ t → ≤-ItemList i [] && ≤-Lists is [] ≡ t && ≤-Lists is []) -- (≤-ItemList-[] i) -- refl -- ⟩ -- true && ≤-Lists is [] -- ≡⟨ subst (λ t → true && ≤-Lists is [] ≡ true && t) -- (xs≤[] LNis (subList-OrdList Ni LNis LOconsL)) -- refl -- ⟩ -- true && true -- ≡⟨ &&-tt ⟩ -- true -- ∎ x≤ys++zs→x≤zs : ∀ {i js ks} → N i → ListN js → ListN ks → ≤-ItemList i (js ++ ks) → ≤-ItemList i ks x≤ys++zs→x≤zs {i} {ks = ks} Ni lnnil LNks i≤[]++ks = subst (≤-ItemList i) (++-leftIdentity ks) i≤[]++ks x≤ys++zs→x≤zs {i} {ks = ks} Ni (lncons {j} {js} Nj LNjs) LNks i≤j∷js++ks = x≤ys++zs→x≤zs Ni LNjs LNks lemma₂ where lemma₁ : le i j && le-ItemList i (js ++ ks) ≡ true lemma₁ = le i j && le-ItemList i (js ++ ks) ≡⟨ sym (le-ItemList-∷ i j (js ++ ks)) ⟩ le-ItemList i (j ∷ (js ++ ks)) ≡⟨ subst (λ t → le-ItemList i (j ∷ (js ++ ks)) ≡ le-ItemList i t) (sym (++-∷ j js ks)) refl ⟩ le-ItemList i ((j ∷ js) ++ ks) ≡⟨ i≤j∷js++ks ⟩ true ∎ lemma₂ : ≤-ItemList i (js ++ ks) lemma₂ = &&-list₂-t₂ (le-Bool Ni Nj) (le-ItemList-Bool Ni (++-ListN LNjs LNks)) lemma₁ xs++ys-OrdList→xs≤ys : ∀ {is js} → ListN is → ListN js → OrdList (is ++ js) → ≤-Lists is js xs++ys-OrdList→xs≤ys {js = js} lnnil LNjs OLis++js = le-Lists-[] js xs++ys-OrdList→xs≤ys {js = js} (lncons {i} {is} Ni LNis) LNjs OLis++js = le-Lists (i ∷ is) js ≡⟨ le-Lists-∷ i is js ⟩ le-ItemList i js && le-Lists is js ≡⟨ subst (λ t → le-ItemList i js && le-Lists is js ≡ t && le-Lists is js) (x≤ys++zs→x≤zs Ni LNis LNjs lemma₁) refl ⟩ true && le-Lists is js ≡⟨ subst (λ t → true && le-Lists is js ≡ true && t) (xs++ys-OrdList→xs≤ys LNis LNjs lemma₂) --IH. refl ⟩ true && true ≡⟨ t&&x≡x true ⟩ true ∎ where lemma₀ : le-ItemList i (is ++ js) && ordList (is ++ js) ≡ true lemma₀ = trans (sym (ordList-∷ i (is ++ js))) (trans (subst (λ t → ordList (i ∷ is ++ js) ≡ ordList t) (sym (++-∷ i is js)) refl) OLis++js) helper₁ : Bool (le-ItemList i (is ++ js)) helper₁ = le-ItemList-Bool Ni (++-ListN LNis LNjs) helper₂ : Bool (ordList (is ++ js)) helper₂ = ordList-Bool (++-ListN LNis LNjs) lemma₁ : le-ItemList i (is ++ js) ≡ true lemma₁ = &&-list₂-t₁ helper₁ helper₂ lemma₀ lemma₂ : ordList (is ++ js) ≡ true lemma₂ = &&-list₂-t₂ helper₁ helper₂ lemma₀ x≤ys→x≤zs→x≤ys++zs : ∀ {i js ks} → N i → ListN js → ListN ks → ≤-ItemList i js → ≤-ItemList i ks → ≤-ItemList i (js ++ ks) x≤ys→x≤zs→x≤ys++zs {i} {ks = ks} Ni lnnil LNks _ i≤k = subst (≤-ItemList i) (sym (++-leftIdentity ks)) i≤k x≤ys→x≤zs→x≤ys++zs {i} {ks = ks} Ni (lncons {j} {js} Nj LNjs) LNks i≤j∷js i≤k = le-ItemList i ((j ∷ js) ++ ks) ≡⟨ subst (λ t → le-ItemList i ((j ∷ js) ++ ks) ≡ le-ItemList i t) (++-∷ j js ks) refl ⟩ le-ItemList i (j ∷ (js ++ ks)) ≡⟨ le-ItemList-∷ i j (js ++ ks) ⟩ le i j && le-ItemList i (js ++ ks) ≡⟨ subst₂ (λ t₁ t₂ → le i j && le-ItemList i (js ++ ks) ≡ t₁ && t₂) (&&-list₂-t₁ helper₁ helper₂ helper₃) (x≤ys→x≤zs→x≤ys++zs Ni LNjs LNks (&&-list₂-t₂ helper₁ helper₂ helper₃) i≤k) refl ⟩ true && true ≡⟨ t&&x≡x true ⟩ true ∎ where helper₁ : Bool (le i j) helper₁ = le-Bool Ni Nj helper₂ : Bool (le-ItemList i js) helper₂ = le-ItemList-Bool Ni LNjs helper₃ : le i j && (le-ItemList i js) ≡ true helper₃ = trans (sym (le-ItemList-∷ i j js)) i≤j∷js xs≤ys→xs≤zs→xs≤ys++zs : ∀ {is js ks} → ListN is → ListN js → ListN ks → ≤-Lists is js → ≤-Lists is ks → ≤-Lists is (js ++ ks) xs≤ys→xs≤zs→xs≤ys++zs lnnil LNjs LNks _ _ = le-Lists-[] _ xs≤ys→xs≤zs→xs≤ys++zs {js = js} {ks} (lncons {i} {is} Ni LNis) LNjs LNks i∷is≤js i∷is≤ks = le-Lists (i ∷ is) (js ++ ks) ≡⟨ le-Lists-∷ i is (js ++ ks) ⟩ le-ItemList i (js ++ ks) && le-Lists is (js ++ ks) ≡⟨ subst (λ t → le-ItemList i (js ++ ks) && le-Lists is (js ++ ks) ≡ t && le-Lists is (js ++ ks)) (x≤ys→x≤zs→x≤ys++zs Ni LNjs LNks (&&-list₂-t₁ helper₁ helper₂ helper₃) (&&-list₂-t₁ helper₄ helper₅ helper₆)) refl ⟩ true && le-Lists is (js ++ ks) ≡⟨ subst (λ t → true && le-Lists is (js ++ ks) ≡ true && t) (xs≤ys→xs≤zs→xs≤ys++zs LNis LNjs LNks (&&-list₂-t₂ helper₁ helper₂ helper₃) (&&-list₂-t₂ helper₄ helper₅ helper₆)) refl ⟩ true && true ≡⟨ t&&x≡x true ⟩ true ∎ where helper₁ = le-ItemList-Bool Ni LNjs helper₂ = le-Lists-Bool LNis LNjs helper₃ = trans (sym (le-Lists-∷ i is js)) i∷is≤js helper₄ = le-ItemList-Bool Ni LNks helper₅ = le-Lists-Bool LNis LNks helper₆ = trans (sym (le-Lists-∷ i is ks)) i∷is≤ks xs≤zs→ys≤zs→xs++ys≤zs : ∀ {is js ks} → ListN is → ListN js → ListN ks → ≤-Lists is ks → ≤-Lists js ks → ≤-Lists (is ++ js) ks xs≤zs→ys≤zs→xs++ys≤zs {js = js} {ks} lnnil LNjs LNks is≤ks js≤ks = subst (λ t → ≤-Lists t ks) (sym (++-leftIdentity js)) js≤ks xs≤zs→ys≤zs→xs++ys≤zs {js = js} {ks} (lncons {i} {is} Ni LNis) LNjs LNks i∷is≤ks js≤ks = le-Lists ((i ∷ is) ++ js) ks ≡⟨ subst (λ t → le-Lists ((i ∷ is) ++ js) ks ≡ le-Lists t ks) (++-∷ i is js) refl ⟩ le-Lists (i ∷ (is ++ js)) ks ≡⟨ le-Lists-∷ i (is ++ js) ks ⟩ le-ItemList i ks && le-Lists (is ++ js) ks ≡⟨ subst₂ (λ x y → le-ItemList i ks && le-Lists (is ++ js) ks ≡ x && y) ≤-ItemList-i-ks ≤-Lists-is++js-ks refl ⟩ true && true ≡⟨ t&&x≡x true ⟩ true ∎ where helper₁ = le-ItemList-Bool Ni LNks helper₂ = le-Lists-Bool LNis LNks helper₃ = trans (sym (le-Lists-∷ i is ks)) i∷is≤ks ≤-ItemList-i-ks : ≤-ItemList i ks ≤-ItemList-i-ks = &&-list₂-t₁ helper₁ helper₂ helper₃ ≤-Lists-is++js-ks : ≤-Lists (is ++ js) ks ≤-Lists-is++js-ks = xs≤zs→ys≤zs→xs++ys≤zs LNis LNjs LNks (&&-list₂-t₂ helper₁ helper₂ helper₃) js≤ks ------------------------------------------------------------------------------ -- References -- -- Burstall, R. M. (1969). Proving properties of programs by -- structural induction. The Computer Journal 12.1, pp. 41–48.
36.008584
79
0.474851
4a3d747c0b5042bb5b4d2044473d1c144eb0f055
571
agda
Agda
test/Succeed/Issue3309.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue3309.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue3309.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2018-10-23, issue #3309 reported by G. Brunerie -- -- Check that we can use irrelevant record fields in copattern matching. -- -- (A refactoring broke the correct relevances of pattern variables -- after matching on an irrelevant projection pattern.) record Σ (A : Set) (B : A → Set) : Set where constructor _,_ field fst : A .snd : B fst open Σ pair : {A : Set} {B : A → Set} (a : A) .(b : B a) → Σ A B pair a b .fst = a pair a b .snd = b f : {A : Set} {B : A → Set} (a : A) .(b : B a) → Σ A B fst (f a b) = a snd (f a b) = b -- Should work.
23.791667
72
0.597198
4173bdc37c29eda3fe4c67d4f57dc868b8120592
1,648
agda
Agda
test/asset/agda-stdlib-1.0/Data/Container.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
test/asset/agda-stdlib-1.0/Data/Container.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Data/Container.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- Containers, based on the work of Abbott and others ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe --sized-types #-} module Data.Container where open import Level using (_⊔_) open import Codata.M hiding (map) open import Data.W open import Size ------------------------------------------------------------------------ -- Re-exporting content to maintain backwards compatibility open import Data.Container.Core public open import Data.Container.Relation.Unary.Any using (◇) renaming (map to ◇-map) public open import Data.Container.Relation.Unary.All using (□) renaming (map to □-map) public open import Data.Container.Membership using (_∈_) public open import Data.Container.Relation.Binary.Pointwise using () renaming (Pointwise to Eq) public open import Data.Container.Relation.Binary.Pointwise.Properties using (refl; sym; trans) public open import Data.Container.Relation.Binary.Equality.Setoid using (isEquivalence; setoid) public open import Data.Container.Properties using () renaming (map-identity to identity; map-compose to composition) public open import Data.Container.Related public module Morphism where open import Data.Container.Morphism.Properties using (Natural; NT; natural; complete; id-correct; ∘-correct) public open import Data.Container.Morphism using (id; _∘_) public -- The least and greatest fixpoints of a container. μ : ∀ {s p} → Container s p → Set (s ⊔ p) μ = W ν : ∀ {s p} → Container s p → Set (s ⊔ p) ν C = M C ∞
32.313725
81
0.646238
c560b08a1f9582c1a6e0bf953dc1269c85ff6199
701
agda
Agda
test/Succeed/Issue1596.agda
cagix/agda
cc026a6a97a3e517bb94bafa9d49233b067c7559
[ "BSD-2-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue1596.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue1596.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2015-06-28 -- {-# OPTIONS -v tc.polarity:20 #-} {-# OPTIONS --sized-types #-} open import Common.Size -- List should be monotone in both arguments -- (even as phantom type). data List (i : Size) (A : Set) : Set where [] : List i A castL : ∀{i A} → List i A → List ∞ A castL x = x castLL : ∀{i A} → List i (List i A) → List ∞ (List ∞ A) castLL x = x -- Stream should be antitone in the first and monotone in the second argument -- (even with field `tail' missing). record Stream (i : Size) (A : Set) : Set where coinductive field head : A castS : ∀{i A} → Stream ∞ A → Stream i A castS x = x castSS : ∀{i A} → Stream ∞ (Stream ∞ A) → Stream i (Stream i A) castSS x = x
21.242424
77
0.606277
061da231777db5bd1355e1662709cf8f9557e7b0
334
agda
Agda
src/Examples/Sorting/Sequential/Comparable.agda
jonsterling/agda-calf
e51606f9ca18d8b4cf9a63c2d6caa2efc5516146
[ "Apache-2.0" ]
29
2021-07-14T03:18:28.000Z
2022-03-22T20:35:11.000Z
src/Examples/Sorting/Sequential/Comparable.agda
jonsterling/agda-calf
e51606f9ca18d8b4cf9a63c2d6caa2efc5516146
[ "Apache-2.0" ]
null
null
null
src/Examples/Sorting/Sequential/Comparable.agda
jonsterling/agda-calf
e51606f9ca18d8b4cf9a63c2d6caa2efc5516146
[ "Apache-2.0" ]
2
2021-10-06T10:28:24.000Z
2022-01-29T08:12:01.000Z
{-# OPTIONS --prop --rewriting #-} module Examples.Sorting.Sequential.Comparable where open import Calf.CostMonoid open import Calf.CostMonoids costMonoid = ℕ-CostMonoid open import Data.Nat using (ℕ) open CostMonoid costMonoid using (ℂ) fromℕ : ℕ → ℂ fromℕ n = n open import Examples.Sorting.Comparable costMonoid fromℕ public
19.647059
63
0.775449
410fc1fba380510879efdb75d6548fd019c45a12
765
agda
Agda
part1/lists/reverse-involution.agda
akiomik/plfa-solutions
df7722b88a9b3dfde320a690b78c4c1ef8c7c547
[ "Apache-2.0" ]
1
2020-07-07T09:42:22.000Z
2020-07-07T09:42:22.000Z
part1/lists/reverse-involution.agda
akiomik/plfa-solutions
df7722b88a9b3dfde320a690b78c4c1ef8c7c547
[ "Apache-2.0" ]
null
null
null
part1/lists/reverse-involution.agda
akiomik/plfa-solutions
df7722b88a9b3dfde320a690b78c4c1ef8c7c547
[ "Apache-2.0" ]
null
null
null
module reverse-involution where import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl; sym; cong) open Eq.≡-Reasoning open import lists using (List; []; _∷_; [_]; _++_; reverse) open import reverse-++-distrib using (reverse-++-distrib) -- reverseが対合(involution)である事の証明 reverse-involution : {A : Set} → (xs : List A) → reverse (reverse xs) ≡ xs reverse-involution [] = begin reverse (reverse []) ≡⟨⟩ reverse [] ≡⟨⟩ [] ∎ reverse-involution (x ∷ xs) = begin reverse (reverse (x ∷ xs)) ≡⟨⟩ reverse ((reverse xs) ++ [ x ]) ≡⟨ reverse-++-distrib (reverse xs) [ x ] ⟩ (reverse [ x ]) ++ (reverse (reverse xs)) ≡⟨⟩ [ x ] ++ reverse (reverse xs) ≡⟨ cong (x ∷_) (reverse-involution xs) ⟩ x ∷ xs ∎
23.90625
59
0.6
0b770b23d6b49038c99f1e4ee4673d0edef3e434
160
agda
Agda
test/interaction/Issue619.agda
larrytheliquid/agda
477c8c37f948e6038b773409358fd8f38395f827
[ "MIT" ]
null
null
null
test/interaction/Issue619.agda
larrytheliquid/agda
477c8c37f948e6038b773409358fd8f38395f827
[ "MIT" ]
null
null
null
test/interaction/Issue619.agda
larrytheliquid/agda
477c8c37f948e6038b773409358fd8f38395f827
[ "MIT" ]
1
2022-03-12T11:35:18.000Z
2022-03-12T11:35:18.000Z
open import Common.Reflect open import Common.Prelude data Z : Set where zero : Z foo : QName → Bool → Bool foo (quote Nat.zero) b = {!b!} foo _ _ = false
14.545455
30
0.66875
1d8a07eba8b2e69f7fc305589a6001685beb4462
2,029
agda
Agda
Definition/Typed/EqRelInstance.agda
CoqHott/logrel-mltt
e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04
[ "MIT" ]
2
2018-06-21T08:39:01.000Z
2022-01-17T16:13:53.000Z
Definition/Typed/EqRelInstance.agda
CoqHott/logrel-mltt
e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04
[ "MIT" ]
null
null
null
Definition/Typed/EqRelInstance.agda
CoqHott/logrel-mltt
e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04
[ "MIT" ]
2
2022-01-26T14:55:51.000Z
2022-02-15T19:42:19.000Z
{-# OPTIONS --safe #-} module Definition.Typed.EqRelInstance where open import Definition.Untyped open import Definition.Typed open import Definition.Typed.Properties open import Definition.Typed.Weakening open import Definition.Typed.Properties open import Definition.Typed.Reduction open import Definition.Typed.EqualityRelation open import Tools.Function Urefl : ∀ {r l Γ} → ⊢ Γ → Γ ⊢ (Univ r l) ≡ (Univ r l) ^ [ ! , next l ] Urefl {l = ⁰} ⊢Γ = refl (univ (univ 0<1 ⊢Γ)) Urefl {l = ¹} ⊢Γ = refl (Uⱼ ⊢Γ) instance eqRelInstance : EqRelSet eqRelInstance = eqRel _⊢_≡_^_ _⊢_≡_∷_^_ _⊢_≡_∷_^_ idᶠ idᶠ idᶠ univ un-univ≡ sym genSym genSym trans genTrans genTrans conv conv wkEq wkEqTerm wkEqTerm reduction reductionₜ Urefl (refl ∘ᶠ univ 0<1) (refl ∘ᶠ ℕⱼ) (refl ∘ᶠ Emptyⱼ) Π-cong ∃-cong (refl ∘ᶠ zeroⱼ) suc-cong (λ lF lG x x₁ x₂ x₃ x₄ x₅ → η-eq lF lG x x₁ x₂ x₅) genVar app-cong natrec-cong Emptyrec-cong Id-cong (λ ⊢Γ → Id-cong (refl (ℕⱼ ⊢Γ))) (λ ⊢Γ → Id-cong (refl (ℕⱼ ⊢Γ)) (refl (zeroⱼ ⊢Γ))) (λ ⊢Γ t → Id-cong (refl (ℕⱼ ⊢Γ)) (suc-cong t)) (λ ⊢Γ → Id-cong (refl (univ 0<1 ⊢Γ))) (λ ⊢Γ → Id-cong (refl (univ 0<1 ⊢Γ)) (refl (ℕⱼ ⊢Γ))) (λ ⊢A B → Id-cong (refl (univ 0<1 (wfEq (univ ⊢A)))) ⊢A B) cast-cong (λ ⊢Γ → cast-cong (refl (ℕⱼ ⊢Γ))) (λ ⊢Γ → cast-cong (refl (ℕⱼ ⊢Γ)) (refl (ℕⱼ ⊢Γ))) cast-cong (λ ⊢A ⊢P P → cast-cong (refl (ℕⱼ (wf (univ ⊢A)))) P) (λ ⊢A ⊢P P → cast-cong P (refl (ℕⱼ (wf (univ ⊢A))))) (λ ⊢A ⊢P P ⊢A' ⊢P' P' → cast-cong P P') (λ ⊢A ⊢P P ⊢A' ⊢P' P' → cast-cong P P') proof-irrelevance
45.088889
81
0.473632
4a4d646da79ae4a7a226bf686946374cced664d9
2,479
agda
Agda
agda-stdlib/src/Data/List/NonEmpty/Categorical.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Data/List/NonEmpty/Categorical.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Data/List/NonEmpty/Categorical.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- A categorical view of List⁺ ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.List.NonEmpty.Categorical where open import Agda.Builtin.List import Data.List.Categorical as List open import Data.List.NonEmpty open import Data.Product using (uncurry) open import Category.Functor open import Category.Applicative open import Category.Monad open import Category.Comonad open import Function ------------------------------------------------------------------------ -- List⁺ applicative functor functor : ∀ {f} → RawFunctor {f} List⁺ functor = record { _<$>_ = map } applicative : ∀ {f} → RawApplicative {f} List⁺ applicative = record { pure = [_] ; _⊛_ = λ fs as → concatMap (λ f → map f as) fs } ------------------------------------------------------------------------ -- List⁺ monad monad : ∀ {f} → RawMonad {f} List⁺ monad = record { return = [_] ; _>>=_ = flip concatMap } ------------------------------------------------------------------------ -- List⁺ comonad comonad : ∀ {f} → RawComonad {f} List⁺ comonad = record { extract = head ; extend = λ f → uncurry (extend f) ∘′ uncons } where extend : ∀ {A B} → (List⁺ A → B) → A → List A → List⁺ B extend f x xs@[] = f (x ∷ xs) ∷ [] extend f x xs@(y ∷ ys) = f (x ∷ xs) ∷⁺ extend f y ys ------------------------------------------------------------------------ -- Get access to other monadic functions module TraversableA {f F} (App : RawApplicative {f} F) where open RawApplicative App sequenceA : ∀ {A} → List⁺ (F A) → F (List⁺ A) sequenceA (x ∷ xs) = _∷_ <$> x ⊛ List.TraversableA.sequenceA App xs mapA : ∀ {a} {A : Set a} {B} → (A → F B) → List⁺ A → F (List⁺ B) mapA f = sequenceA ∘ map f forA : ∀ {a} {A : Set a} {B} → List⁺ A → (A → F B) → F (List⁺ B) forA = flip mapA module TraversableM {m M} (Mon : RawMonad {m} M) where open RawMonad Mon open TraversableA rawIApplicative public renaming ( sequenceA to sequenceM ; mapA to mapM ; forA to forM ) ------------------------------------------------------------------------ -- List⁺ monad transformer monadT : ∀ {f} → RawMonadT {f} (_∘′ List⁺) monadT M = record { return = pure ∘′ [_] ; _>>=_ = λ mas f → mas >>= λ as → concat <$> mapM f as } where open RawMonad M; open TraversableM M
26.655914
72
0.486083
0b5986de697c1d0508f8b24d4ded49cc3d7faac9
2,176
agda
Agda
Categories/Morphism/Properties.agda
rei1024/agda-categories
89d163f72caa7deeac9413f27bc1b4ed7f9e025b
[ "MIT" ]
null
null
null
Categories/Morphism/Properties.agda
rei1024/agda-categories
89d163f72caa7deeac9413f27bc1b4ed7f9e025b
[ "MIT" ]
null
null
null
Categories/Morphism/Properties.agda
rei1024/agda-categories
89d163f72caa7deeac9413f27bc1b4ed7f9e025b
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} open import Categories.Category module Categories.Morphism.Properties {o ℓ e} (𝒞 : Category o ℓ e) where open import Data.Product using (_,_; _×_) open Category 𝒞 open HomReasoning import Categories.Morphism as M open M 𝒞 open import Categories.Morphism.Reasoning 𝒞 private variable A B C D : Obj f g h i : A ⇒ B module _ (iso : Iso f g) where open Iso iso Iso-resp-≈ : f ≈ h → g ≈ i → Iso h i Iso-resp-≈ {h = h} {i = i} eq₁ eq₂ = record { isoˡ = begin i ∘ h ≈˘⟨ eq₂ ⟩∘⟨ eq₁ ⟩ g ∘ f ≈⟨ isoˡ ⟩ id ∎ ; isoʳ = begin h ∘ i ≈˘⟨ eq₁ ⟩∘⟨ eq₂ ⟩ f ∘ g ≈⟨ isoʳ ⟩ id ∎ } Iso-swap : Iso g f Iso-swap = record { isoˡ = isoʳ ; isoʳ = isoˡ } Iso⇒Mono : Mono f Iso⇒Mono h i eq = begin h ≈⟨ introˡ isoˡ ⟩ (g ∘ f) ∘ h ≈⟨ pullʳ eq ⟩ g ∘ f ∘ i ≈⟨ cancelˡ isoˡ ⟩ i ∎ Iso⇒Epi : Epi f Iso⇒Epi h i eq = begin h ≈⟨ introʳ isoʳ ⟩ h ∘ f ∘ g ≈⟨ pullˡ eq ⟩ (i ∘ f) ∘ g ≈⟨ cancelʳ isoʳ ⟩ i ∎ Iso-∘ : Iso f g → Iso h i → Iso (h ∘ f) (g ∘ i) Iso-∘ {f = f} {g = g} {h = h} {i = i} iso iso′ = record { isoˡ = begin (g ∘ i) ∘ h ∘ f ≈⟨ cancelInner (isoˡ iso′) ⟩ g ∘ f ≈⟨ isoˡ iso ⟩ id ∎ ; isoʳ = begin (h ∘ f) ∘ g ∘ i ≈⟨ cancelInner (isoʳ iso) ⟩ h ∘ i ≈⟨ isoʳ iso′ ⟩ id ∎ } where open Iso Iso-≈ : f ≈ h → Iso f g → Iso h i → g ≈ i Iso-≈ {f = f} {h = h} {g = g} {i = i} eq iso iso′ = begin g ≈⟨ introˡ (isoˡ iso′) ⟩ (i ∘ h) ∘ g ≈˘⟨ (refl ⟩∘⟨ eq) ⟩∘⟨refl ⟩ (i ∘ f) ∘ g ≈⟨ cancelʳ (isoʳ iso) ⟩ i ∎ where open Iso module _ where open _≅_ isos×≈⇒≈ : ∀ {f g : A ⇒ B} → h ≈ i → (iso₁ : A ≅ C) → (iso₂ : B ≅ D) → CommutativeSquare f (from iso₁) (from iso₂) h → CommutativeSquare g (from iso₁) (from iso₂) i → f ≈ g isos×≈⇒≈ {h = h} {i = i} {f = f} {g = g} eq iso₁ iso₂ sq₁ sq₂ = begin f ≈⟨ switch-fromtoˡ iso₂ sq₁ ⟩ to iso₂ ∘ h ∘ from iso₁ ≈⟨ refl⟩∘⟨ (eq ⟩∘⟨refl ) ⟩ to iso₂ ∘ i ∘ from iso₁ ≈˘⟨ switch-fromtoˡ iso₂ sq₂ ⟩ g ∎
24.449438
72
0.463235
0be2bf4cbaae8e6e9858d063887dba29c1fdd228
134
agda
Agda
archive/agda-1/HasNeitherNor.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
archive/agda-1/HasNeitherNor.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
1
2019-04-29T00:35:04.000Z
2019-05-11T23:33:04.000Z
archive/agda-1/HasNeitherNor.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
module HasNeitherNor where record HasNeitherNor (A : Set) : Set where field _⊗_ : A → A → A open HasNeitherNor ⦃ … ⦄ public
13.4
36
0.656716
293d6a26a10231b985030ce434a7032b4c224c6f
599
agda
Agda
examples/outdated-and-incorrect/univ/tmp.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
1
2018-10-10T17:08:44.000Z
2018-10-10T17:08:44.000Z
examples/outdated-and-incorrect/univ/tmp.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
examples/outdated-and-incorrect/univ/tmp.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
1
2022-03-12T11:35:18.000Z
2022-03-12T11:35:18.000Z
module tmp where open import univ open import cwf open import Base open import Nat open import help open import proofs {- TODO: Prove w = ƛ ((w // wk) ∙ vz) (η) ƛ v // σ = ƛ (v // (σ ∘ wk ,, vz)) w ∙ u // σ = (w // σ) ∙ (u // σ) -} {- lem-tmp : {Γ : Con}{A : Type Γ}(B : Type (Γ , A)) -> Π A B =Ty Π A (B / (wk ∘ wk ,, castElem ? vz) / [ vz ]) lem-tmp B = ? lem-η : {Γ : Con}{A : Type Γ}{B : Type (Γ , A)}(w : Elem Γ (Π A B)) -> w =El castElem (lem-tmp B) (ƛ {A = A} (castElem (symTy (lem-Π/ B wk)) (w // wk {A = A}) ∙ vz) ) lem-η (elem (el < w , pw >)) = ? -}
18.71875
70
0.462437
127fd24d80eec13e858c02c085dfba927ef5bd94
20,635
agda
Agda
agda/Esterel/Lang/CanFunction/MergePotentialRuleTheta.agda
florence/esterel-calculus
4340bef3f8df42ab8167735d35a4cf56243a45cd
[ "MIT" ]
3
2020-04-16T10:58:53.000Z
2020-07-01T03:59:31.000Z
agda/Esterel/Lang/CanFunction/MergePotentialRuleTheta.agda
florence/esterel-calculus
4340bef3f8df42ab8167735d35a4cf56243a45cd
[ "MIT" ]
null
null
null
agda/Esterel/Lang/CanFunction/MergePotentialRuleTheta.agda
florence/esterel-calculus
4340bef3f8df42ab8167735d35a4cf56243a45cd
[ "MIT" ]
1
2020-04-15T20:02:49.000Z
2020-04-15T20:02:49.000Z
{- The equivalent "goodness" of can-θ w.r.t. the rmerge reduction. The main properties of the Can function proved in this file are: canθₛ-mergeˡ : ∀ {E θ' r p BV FV} sigs θ → CorrectBinding p BV FV → p ≐ E ⟦ ρ θ' · r ⟧e → ∀ S' → Signal.unwrap S' ∉ SigMap.keys (Env.sig θ') → Signal.unwrap S' ∈ Canθₛ (SigMap.union sigs (Env.sig θ')) 0 (E ⟦ r ⟧e) θ → Signal.unwrap S' ∈ Canθₛ sigs 0 p θ canθₛ-mergeʳ : ∀ sigs θ' r θ → distinct' (proj₁ (Dom θ)) (SigMap.keys sigs) → ∀ S' → Signal.unwrap S' ∈ Canθₛ (SigMap.union sigs (Env.sig θ')) 0 r θ → Signal.unwrap S' ∈ Canθₛ (Env.sig θ') 0 r θ and their corresponding counterparts for the shared variables. -} module Esterel.Lang.CanFunction.MergePotentialRuleTheta where open import utility renaming (_U̬_ to _∪_ ; _|̌_ to _-_) open import Esterel.Lang open import Esterel.Lang.Binding open import Esterel.Lang.CanFunction open import Esterel.Lang.CanFunction.Base open import Esterel.Lang.CanFunction.CanThetaContinuation open import Esterel.Lang.CanFunction.MergePotentialRuleLeftInductive open import Esterel.Lang.CanFunction.NonMergePotentialRules open import Esterel.Context using (EvaluationContext1 ; EvaluationContext ; _⟦_⟧e ; _≐_⟦_⟧e) open import Esterel.Context.Properties using (plug ; unplug) open import Esterel.Environment as Env using (Env ; Θ ; _←_ ; Dom ; module SigMap ; module ShrMap ; module VarMap) open import Esterel.CompletionCode as Code using () renaming (CompletionCode to Code) open import Esterel.Variable.Signal as Signal using (Signal ; _ₛ) open import Esterel.Variable.Shared as SharedVar using (SharedVar ; _ₛₕ) open import Esterel.Variable.Sequential as SeqVar using (SeqVar) open EvaluationContext1 open _≐_⟦_⟧e open import Data.Bool using (Bool ; not ; if_then_else_) open import Data.Empty using (⊥ ; ⊥-elim) open import Data.List using (List ; [] ; _∷_ ; _++_ ; map ; concatMap ; foldr) open import Data.List.Properties using (map-id) open import Data.List.Any using (Any ; any ; here ; there) open import Data.List.Any.Properties using () renaming (++⁺ˡ to ++ˡ ; ++⁺ʳ to ++ʳ) open import Data.Maybe using (Maybe ; maybe ; just ; nothing) open import Data.Nat using (ℕ ; zero ; suc ; _≟_ ; _+_) open import Data.Nat.Properties.Simple using (+-comm) open import Data.Product using (Σ ; proj₁ ; proj₂ ; ∃ ; _,_ ; _,′_ ; _×_) open import Data.Sum using (_⊎_ ; inj₁ ; inj₂) open import Function using (_∘_ ; id ; _∋_) open import Relation.Nullary using (¬_ ; Dec ; yes ; no) open import Relation.Nullary.Decidable using (⌊_⌋) open import Relation.Binary.PropositionalEquality using (_≡_ ; _≢_ ; refl ; trans ; sym ; cong ; subst ; module ≡-Reasoning) open ListSet Data.Nat._≟_ using (set-subtract ; set-subtract-[] ; set-subtract-split ; set-subtract-merge ; set-subtract-notin ; set-remove ; set-remove-mono-∈ ; set-remove-removed ; set-remove-not-removed ; set-subtract-[a]≡set-remove) open import Data.OrderedListMap Signal Signal.unwrap Signal.Status as SigM open import Data.OrderedListMap SharedVar SharedVar.unwrap (Σ SharedVar.Status (λ _ → ℕ)) as ShrM open import Data.OrderedListMap SeqVar SeqVar.unwrap ℕ as SeqM open ≡-Reasoning canθₖ-mergeˡ : ∀ {E θ' r p BV FV A} sigs θ → CorrectBinding p BV FV → p ≐ E ⟦ ρ⟨ θ' , A ⟩· r ⟧e → ∀ k → k ∈ Canθₖ (SigMap.union sigs (Env.sig θ')) 0 (E ⟦ r ⟧e) θ → k ∈ Canθₖ sigs 0 p θ canθₖ-mergeˡ {E} {θ'} {r} {A = A} sigs θ cb p≐E⟦ρθ'r⟧ k k∈canθ-sigs←θ'-E⟦r⟧-θ rewrite sym (unplug p≐E⟦ρθ'r⟧) with binding-extract cb (((E ⟦ ρ⟨ θ' , A ⟩· r ⟧e) ≐ E ⟦ ρ⟨ θ' , A ⟩· r ⟧e) ∋ plug refl) ... | (BVp , FVp) , (BVp⊆BV , FVp⊆FV) , cbρθ'r@(CBρ cbp) with binding-subst cb (((E ⟦ ρ⟨ θ' , A ⟩· r ⟧e) ≐ E ⟦ ρ⟨ θ' , A ⟩· r ⟧e) ∋ plug refl) cbρθ'r ((λ _ ()) ,′ (λ _ ()) ,′ (λ _ ())) ((λ _ ()) ,′ (λ _ ()) ,′ (λ _ ())) CBnothing ... | (BV' , FV') , (BVnothin⊆BV , FVnothin⊆FV) , cbnothin rewrite canθ'-←-distribute sigs (Env.sig θ') 0 (E ⟦ r ⟧e) θ = canθₖ-mergeˡ-sigs-induction sigs 0 (Env.sig θ') (Env.shr θ') (Env.var θ') r θ ((E ⟦ nothin ⟧e ≐ E ⟦ nothin ⟧e) ∋ plug refl) cbnothin (distinct'-sym (dist'++ˡ (distinct'-sym (proj₁ (distinct-term-context-help (ρ⟨ θ' , A ⟩· r) E cb cbρθ'r BVp⊆BV cbnothin))))) k k∈canθ-sigs←θ'-E⟦r⟧-θ canθₛ-mergeˡ : ∀ {E θ' r p BV FV A} sigs θ → CorrectBinding p BV FV → p ≐ E ⟦ ρ⟨ θ' , A ⟩· r ⟧e → ∀ S' → Signal.unwrap S' ∉ SigMap.keys (Env.sig θ') → Signal.unwrap S' ∈ Canθₛ (SigMap.union sigs (Env.sig θ')) 0 (E ⟦ r ⟧e) θ → Signal.unwrap S' ∈ Canθₛ sigs 0 p θ canθₛ-mergeˡ {E} {θ'} {r} {A = A} sigs θ cb p≐E⟦ρθ'r⟧ S' S'∉Domθ' S'∈canθ-sigs←θ'-E⟦r⟧-θ rewrite sym (unplug p≐E⟦ρθ'r⟧) with binding-extract cb (((E ⟦ ρ⟨ θ' , A ⟩· r ⟧e) ≐ E ⟦ ρ⟨ θ' , A ⟩· r ⟧e) ∋ plug refl) ... | (BVp , FVp) , (BVp⊆BV , FVp⊆FV) , cbρθ'r@(CBρ cbp) with binding-subst cb (((E ⟦ ρ⟨ θ' , A ⟩· r ⟧e) ≐ E ⟦ ρ⟨ θ' , A ⟩· r ⟧e) ∋ plug refl) cbρθ'r ((λ _ ()) ,′ (λ _ ()) ,′ (λ _ ())) ((λ _ ()) ,′ (λ _ ()) ,′ (λ _ ())) CBnothing ... | (BV' , FV') , (BVnothin⊆BV , FVnothin⊆FV) , cbnothin rewrite canθ'-←-distribute sigs (Env.sig θ') 0 (E ⟦ r ⟧e) θ = canθₛ-mergeˡ-sigs-induction sigs 0 (Env.sig θ') (Env.shr θ') (Env.var θ') r θ ((E ⟦ nothin ⟧e ≐ E ⟦ nothin ⟧e) ∋ plug refl) cbnothin (distinct'-sym (dist'++ˡ (distinct'-sym (proj₁ (distinct-term-context-help (ρ⟨ θ' , A ⟩· r) E cb cbρθ'r BVp⊆BV cbnothin))))) (Signal.unwrap S') S'∉Domθ' S'∈canθ-sigs←θ'-E⟦r⟧-θ canθₛₕ-mergeˡ : ∀ {E θ' r p BV FV A} sigs θ → CorrectBinding p BV FV → p ≐ E ⟦ ρ⟨ θ' , A ⟩· r ⟧e → ∀ s' → SharedVar.unwrap s' ∉ ShrMap.keys (Env.shr θ') → SharedVar.unwrap s' ∈ Canθₛₕ (SigMap.union sigs (Env.sig θ')) 0 (E ⟦ r ⟧e) θ → SharedVar.unwrap s' ∈ Canθₛₕ sigs 0 p θ canθₛₕ-mergeˡ {E} {θ'} {r} {A = A} sigs θ cb p≐E⟦ρθ'r⟧ s' s'∉Domθ' s'∈canθ-sigs←θ'-E⟦r⟧-θ rewrite sym (unplug p≐E⟦ρθ'r⟧) with binding-extract cb (((E ⟦ ρ⟨ θ' , A ⟩· r ⟧e) ≐ E ⟦ ρ⟨ θ' , A ⟩· r ⟧e) ∋ plug refl) ... | (BVp , FVp) , (BVp⊆BV , FVp⊆FV) , cbρθ'r@(CBρ cbp) with binding-subst cb (((E ⟦ ρ⟨ θ' , A ⟩· r ⟧e) ≐ E ⟦ ρ⟨ θ' , A ⟩· r ⟧e) ∋ plug refl) cbρθ'r ((λ _ ()) ,′ (λ _ ()) ,′ (λ _ ())) ((λ _ ()) ,′ (λ _ ()) ,′ (λ _ ())) CBnothing ... | (BV' , FV') , (BVnothin⊆BV , FVnothin⊆FV) , cbnothin rewrite canθ'-←-distribute sigs (Env.sig θ') 0 (E ⟦ r ⟧e) θ = canθₛₕ-mergeˡ-sigs-induction sigs 0 (Env.sig θ') (Env.shr θ') (Env.var θ') r θ ((E ⟦ nothin ⟧e ≐ E ⟦ nothin ⟧e) ∋ plug refl) cbnothin (distinct'-sym (dist'++ˡ (distinct'-sym (proj₁ (distinct-term-context-help (ρ⟨ θ' , A ⟩· r) E cb cbρθ'r BVp⊆BV cbnothin))))) (SharedVar.unwrap s') s'∉Domθ' s'∈canθ-sigs←θ'-E⟦r⟧-θ canθₛ-mergeʳ-add-sig-notin : ∀ sigs' r θ S status → S ∉ proj₁ (Dom θ) → S ∉ SigMap.keys sigs' → ∀ S'' → S'' ∈ Canθₛ sigs' 0 r (θ ← [ (S ₛ) ↦ status ]) → S'' ∈ Canθₛ sigs' 0 r θ canθₛ-mergeʳ-add-sig-notin sigs' r θ S status S∉Domθ S∉sigs' S'' S''∈canθ-sigs'-r-θ←[S] rewrite canθ-is-unknown-lemma sigs' 0 r θ (S ₛ) S∉Domθ (subst (S ∉_) (sym (map-id (SigMap.keys sigs'))) S∉sigs') = canθₛ-add-sig-monotonic sigs' 0 r θ (S ₛ) status S'' S''∈canθ-sigs'-r-θ←[S] canθₛ-mergeʳ-sigs-induction : ∀ sigs S sigs' r θ → distinct' (proj₁ (Dom θ)) (map (_+_ S) (SigMap.keys sigs)) → ∀ S'' → S'' ∈ proj₁ (Canθ' sigs S (Canθ sigs' 0 r) θ) → S'' ∈ proj₁ (Canθ sigs' 0 r θ) canθₛ-mergeʳ-sigs-induction [] S sigs' r θ θ≠sigs S'' S''∈canθ'-sigs-canθ-sigs'-r-θ = S''∈canθ'-sigs-canθ-sigs'-r-θ canθₛ-mergeʳ-sigs-induction (nothing ∷ sigs) S sigs' r θ θ≠sigs S'' S''∈canθ'-sigs-canθ-sigs'-r-θ rewrite map-+-compose-suc S (SigMap.keys sigs) = canθₛ-mergeʳ-sigs-induction sigs (suc S) sigs' r θ θ≠sigs S'' S''∈canθ'-sigs-canθ-sigs'-r-θ canθₛ-mergeʳ-sigs-induction (just Signal.present ∷ sigs) S sigs' r θ θ≠sigs S'' S''∈canθ'-sigs-canθ-sigs'-r-θ rewrite map-+-compose-suc S (SigMap.keys sigs) with any (_≟_ S) (SigMap.keys sigs') ... | yes S∈sigs' rewrite canθ'-inner-shadowing-irr sigs (suc S) sigs' r S Signal.present θ S∈sigs' = canθₛ-mergeʳ-sigs-induction sigs (suc S) sigs' r θ (dist'++ʳ {V2 = S + 0 ∷ []} θ≠sigs) S'' S''∈canθ'-sigs-canθ-sigs'-r-θ ... | no S∉sigs' rewrite +-comm S 0 = canθₛ-mergeʳ-add-sig-notin sigs' r θ S Signal.present (λ S∈Domθ → θ≠sigs S S∈Domθ (here refl)) S∉sigs' S'' (canθₛ-mergeʳ-sigs-induction sigs (suc S) sigs' r (θ ← [S]-env-present (S ₛ)) (λ S'' S''∈Domθ←[S] S''∈map-+-suc-S-sigs → -- TODO: should make this a function Data.Sum.[ (λ S''∈Domθ → θ≠sigs S'' S''∈Domθ (there S''∈map-+-suc-S-sigs)) , (λ S''∈[S] → subst (_∉ _) (sym (Env.sig-single-∈-eq (S'' ₛ) (S ₛ) Signal.present S''∈[S])) (n∉map-suc-n-+ S (SigMap.keys sigs)) S''∈map-+-suc-S-sigs) ] (Env.sig-←⁻ {θ} {[S]-env-present (S ₛ)} (S'' ₛ) S''∈Domθ←[S])) S'' S''∈canθ'-sigs-canθ-sigs'-r-θ) canθₛ-mergeʳ-sigs-induction (just Signal.absent ∷ sigs) S sigs' r θ θ≠sigs S'' S''∈canθ'-sigs-canθ-sigs'-r-θ rewrite map-+-compose-suc S (SigMap.keys sigs) with any (_≟_ S) (SigMap.keys sigs') ... | yes S∈sigs' rewrite canθ'-inner-shadowing-irr sigs (suc S) sigs' r S Signal.absent θ S∈sigs' = canθₛ-mergeʳ-sigs-induction sigs (suc S) sigs' r θ (dist'++ʳ {V2 = S + 0 ∷ []} θ≠sigs) S'' S''∈canθ'-sigs-canθ-sigs'-r-θ ... | no S∉sigs' rewrite +-comm S 0 = canθₛ-mergeʳ-add-sig-notin sigs' r θ S Signal.absent (λ S∈Domθ → θ≠sigs S S∈Domθ (here refl)) S∉sigs' S'' (canθₛ-mergeʳ-sigs-induction sigs (suc S) sigs' r (θ ← [S]-env-absent (S ₛ)) (λ S'' S''∈Domθ←[S] S''∈map-+-suc-S-sigs → -- TODO: should make this a function Data.Sum.[ (λ S''∈Domθ → θ≠sigs S'' S''∈Domθ (there S''∈map-+-suc-S-sigs)) , (λ S''∈[S] → subst (_∉ _) (sym (Env.sig-single-∈-eq (S'' ₛ) (S ₛ) Signal.absent S''∈[S])) (n∉map-suc-n-+ S (SigMap.keys sigs)) S''∈map-+-suc-S-sigs) ] (Env.sig-←⁻ {θ} {[S]-env-absent (S ₛ)} (S'' ₛ) S''∈Domθ←[S])) S'' S''∈canθ'-sigs-canθ-sigs'-r-θ) canθₛ-mergeʳ-sigs-induction (just Signal.unknown ∷ sigs) S sigs' r θ θ≠sigs S'' S''∈canθ'-sigs-canθ-sigs'-r-θ with any (_≟_ S) (proj₁ (Canθ' sigs (suc S) (Canθ sigs' 0 r) (θ ← [S]-env (S ₛ)))) canθₛ-mergeʳ-sigs-induction (just Signal.unknown ∷ sigs) S sigs' r θ θ≠sigs S'' S''∈canθ'-sigs-canθ-sigs'-r-θ | yes S∈canθ'-sigs-canθ-sigs'-r-θ←[S] rewrite map-+-compose-suc S (SigMap.keys sigs) with any (_≟_ S) (SigMap.keys sigs') ... | yes S∈sigs' rewrite canθ'-inner-shadowing-irr sigs (suc S) sigs' r S Signal.unknown θ S∈sigs' = canθₛ-mergeʳ-sigs-induction sigs (suc S) sigs' r θ (dist'++ʳ {V2 = S + 0 ∷ []} θ≠sigs) S'' S''∈canθ'-sigs-canθ-sigs'-r-θ ... | no S∉sigs' rewrite +-comm S 0 = canθₛ-mergeʳ-add-sig-notin sigs' r θ S Signal.unknown (λ S∈Domθ → θ≠sigs S S∈Domθ (here refl)) S∉sigs' S'' (canθₛ-mergeʳ-sigs-induction sigs (suc S) sigs' r (θ ← [S]-env (S ₛ)) (λ S'' S''∈Domθ←[S] S''∈map-+-suc-S-sigs → -- TODO: should make this a function Data.Sum.[ (λ S''∈Domθ → θ≠sigs S'' S''∈Domθ (there S''∈map-+-suc-S-sigs)) , (λ S''∈[S] → subst (_∉ _) (sym (Env.sig-single-∈-eq (S'' ₛ) (S ₛ) Signal.unknown S''∈[S])) (n∉map-suc-n-+ S (SigMap.keys sigs)) S''∈map-+-suc-S-sigs) ] (Env.sig-←⁻ {θ} {[S]-env (S ₛ)} (S'' ₛ) S''∈Domθ←[S])) S'' S''∈canθ'-sigs-canθ-sigs'-r-θ) canθₛ-mergeʳ-sigs-induction (just Signal.unknown ∷ sigs) S sigs' r θ θ≠sigs S'' S''∈canθ'-sigs-canθ-sigs'-r-θ | no S∉canθ'-sigs-canθ-sigs'-r-θ←[S] rewrite map-+-compose-suc S (SigMap.keys sigs) with any (_≟_ S) (SigMap.keys sigs') ... | yes S∈sigs' rewrite canθ'-inner-shadowing-irr sigs (suc S) sigs' r S Signal.absent θ S∈sigs' = canθₛ-mergeʳ-sigs-induction sigs (suc S) sigs' r θ (dist'++ʳ {V2 = S + 0 ∷ []} θ≠sigs) S'' S''∈canθ'-sigs-canθ-sigs'-r-θ ... | no S∉sigs' rewrite +-comm S 0 = canθₛ-mergeʳ-add-sig-notin sigs' r θ S Signal.absent (λ S∈Domθ → θ≠sigs S S∈Domθ (here refl)) S∉sigs' S'' (canθₛ-mergeʳ-sigs-induction sigs (suc S) sigs' r (θ ← [S]-env-absent (S ₛ)) (λ S'' S''∈Domθ←[S] S''∈map-+-suc-S-sigs → -- TODO: should make this a function Data.Sum.[ (λ S''∈Domθ → θ≠sigs S'' S''∈Domθ (there S''∈map-+-suc-S-sigs)) , (λ S''∈[S] → subst (_∉ _) (sym (Env.sig-single-∈-eq (S'' ₛ) (S ₛ) Signal.absent S''∈[S])) (n∉map-suc-n-+ S (SigMap.keys sigs)) S''∈map-+-suc-S-sigs) ] (Env.sig-←⁻ {θ} {[S]-env-absent (S ₛ)} (S'' ₛ) S''∈Domθ←[S])) S'' S''∈canθ'-sigs-canθ-sigs'-r-θ) canθₛ-mergeʳ : ∀ sigs θ' r θ → distinct' (proj₁ (Dom θ)) (SigMap.keys sigs) → ∀ S' → Signal.unwrap S' ∈ Canθₛ (SigMap.union sigs (Env.sig θ')) 0 r θ → Signal.unwrap S' ∈ Canθₛ (Env.sig θ') 0 r θ canθₛ-mergeʳ sigs θ' r θ θ≠sigs S' S'∈canθ-sigs←θ'-r-θ rewrite canθ'-←-distribute sigs (Env.sig θ') 0 r θ = canθₛ-mergeʳ-sigs-induction sigs 0 (Env.sig θ') r θ (subst (distinct' _) (sym (map-id (SigMap.keys sigs))) θ≠sigs) (Signal.unwrap S') S'∈canθ-sigs←θ'-r-θ canθₛₕ-mergeʳ-add-sig-notin : ∀ sigs' r θ S status → S ∉ proj₁ (Dom θ) → S ∉ SigMap.keys sigs' → ∀ s'' → s'' ∈ Canθₛₕ sigs' 0 r (θ ← [ (S ₛ) ↦ status ]) → s'' ∈ Canθₛₕ sigs' 0 r θ canθₛₕ-mergeʳ-add-sig-notin sigs' r θ S status S∉Domθ S∉sigs' s'' s''∈canθ-sigs'-r-θ←[S] rewrite canθ-is-unknown-lemma sigs' 0 r θ (S ₛ) S∉Domθ (subst (S ∉_) (sym (map-id (SigMap.keys sigs'))) S∉sigs') = canθₛₕ-add-sig-monotonic sigs' 0 r θ (S ₛ) status s'' s''∈canθ-sigs'-r-θ←[S] canθₛₕ-mergeʳ-sigs-induction : ∀ sigs S sigs' r θ → distinct' (proj₁ (Dom θ)) (map (_+_ S) (SigMap.keys sigs)) → ∀ s'' → s'' ∈ proj₂ (proj₂ (Canθ' sigs S (Canθ sigs' 0 r) θ)) → s'' ∈ proj₂ (proj₂ (Canθ sigs' 0 r θ)) canθₛₕ-mergeʳ-sigs-induction [] S sigs' r θ θ≠sigs s'' s''∈canθ'-sigs-canθ-sigs'-r-θ = s''∈canθ'-sigs-canθ-sigs'-r-θ canθₛₕ-mergeʳ-sigs-induction (nothing ∷ sigs) S sigs' r θ θ≠sigs s'' s''∈canθ'-sigs-canθ-sigs'-r-θ rewrite map-+-compose-suc S (SigMap.keys sigs) = canθₛₕ-mergeʳ-sigs-induction sigs (suc S) sigs' r θ θ≠sigs s'' s''∈canθ'-sigs-canθ-sigs'-r-θ canθₛₕ-mergeʳ-sigs-induction (just Signal.present ∷ sigs) S sigs' r θ θ≠sigs s'' s''∈canθ'-sigs-canθ-sigs'-r-θ rewrite map-+-compose-suc S (SigMap.keys sigs) with any (_≟_ S) (SigMap.keys sigs') ... | yes S∈sigs' rewrite canθ'-inner-shadowing-irr sigs (suc S) sigs' r S Signal.present θ S∈sigs' = canθₛₕ-mergeʳ-sigs-induction sigs (suc S) sigs' r θ (dist'++ʳ {V2 = S + 0 ∷ []} θ≠sigs) s'' s''∈canθ'-sigs-canθ-sigs'-r-θ ... | no S∉sigs' rewrite +-comm S 0 = canθₛₕ-mergeʳ-add-sig-notin sigs' r θ S Signal.present (λ S∈Domθ → θ≠sigs S S∈Domθ (here refl)) S∉sigs' s'' (canθₛₕ-mergeʳ-sigs-induction sigs (suc S) sigs' r (θ ← [S]-env-present (S ₛ)) (λ S'' S''∈Domθ←[S] S''∈map-+-suc-S-sigs → -- TODO: should make this a function Data.Sum.[ (λ S''∈Domθ → θ≠sigs S'' S''∈Domθ (there S''∈map-+-suc-S-sigs)) , (λ S''∈[S] → subst (_∉ _) (sym (Env.sig-single-∈-eq (S'' ₛ) (S ₛ) Signal.present S''∈[S])) (n∉map-suc-n-+ S (SigMap.keys sigs)) S''∈map-+-suc-S-sigs) ] (Env.sig-←⁻ {θ} {[S]-env-present (S ₛ)} (S'' ₛ) S''∈Domθ←[S])) s'' s''∈canθ'-sigs-canθ-sigs'-r-θ) canθₛₕ-mergeʳ-sigs-induction (just Signal.absent ∷ sigs) S sigs' r θ θ≠sigs s'' s''∈canθ'-sigs-canθ-sigs'-r-θ rewrite map-+-compose-suc S (SigMap.keys sigs) with any (_≟_ S) (SigMap.keys sigs') ... | yes S∈sigs' rewrite canθ'-inner-shadowing-irr sigs (suc S) sigs' r S Signal.absent θ S∈sigs' = canθₛₕ-mergeʳ-sigs-induction sigs (suc S) sigs' r θ (dist'++ʳ {V2 = S + 0 ∷ []} θ≠sigs) s'' s''∈canθ'-sigs-canθ-sigs'-r-θ ... | no S∉sigs' rewrite +-comm S 0 = canθₛₕ-mergeʳ-add-sig-notin sigs' r θ S Signal.absent (λ S∈Domθ → θ≠sigs S S∈Domθ (here refl)) S∉sigs' s'' (canθₛₕ-mergeʳ-sigs-induction sigs (suc S) sigs' r (θ ← [S]-env-absent (S ₛ)) (λ S'' S''∈Domθ←[S] S''∈map-+-suc-S-sigs → -- TODO: should make this a function Data.Sum.[ (λ S''∈Domθ → θ≠sigs S'' S''∈Domθ (there S''∈map-+-suc-S-sigs)) , (λ S''∈[S] → subst (_∉ _) (sym (Env.sig-single-∈-eq (S'' ₛ) (S ₛ) Signal.absent S''∈[S])) (n∉map-suc-n-+ S (SigMap.keys sigs)) S''∈map-+-suc-S-sigs) ] (Env.sig-←⁻ {θ} {[S]-env-absent (S ₛ)} (S'' ₛ) S''∈Domθ←[S])) s'' s''∈canθ'-sigs-canθ-sigs'-r-θ) canθₛₕ-mergeʳ-sigs-induction (just Signal.unknown ∷ sigs) S sigs' r θ θ≠sigs s'' s''∈canθ'-sigs-canθ-sigs'-r-θ with any (_≟_ S) (proj₁ (Canθ' sigs (suc S) (Canθ sigs' 0 r) (θ ← [S]-env (S ₛ)))) canθₛₕ-mergeʳ-sigs-induction (just Signal.unknown ∷ sigs) S sigs' r θ θ≠sigs s'' s''∈canθ'-sigs-canθ-sigs'-r-θ | yes S∈canθ'-sigs-canθ-sigs'-r-θ←[S] rewrite map-+-compose-suc S (SigMap.keys sigs) with any (_≟_ S) (SigMap.keys sigs') ... | yes S∈sigs' rewrite canθ'-inner-shadowing-irr sigs (suc S) sigs' r S Signal.unknown θ S∈sigs' = canθₛₕ-mergeʳ-sigs-induction sigs (suc S) sigs' r θ (dist'++ʳ {V2 = S + 0 ∷ []} θ≠sigs) s'' s''∈canθ'-sigs-canθ-sigs'-r-θ ... | no S∉sigs' rewrite +-comm S 0 = canθₛₕ-mergeʳ-add-sig-notin sigs' r θ S Signal.unknown (λ S∈Domθ → θ≠sigs S S∈Domθ (here refl)) S∉sigs' s'' (canθₛₕ-mergeʳ-sigs-induction sigs (suc S) sigs' r (θ ← [S]-env (S ₛ)) (λ S'' S''∈Domθ←[S] S''∈map-+-suc-S-sigs → -- TODO: should make this a function Data.Sum.[ (λ S''∈Domθ → θ≠sigs S'' S''∈Domθ (there S''∈map-+-suc-S-sigs)) , (λ S''∈[S] → subst (_∉ _) (sym (Env.sig-single-∈-eq (S'' ₛ) (S ₛ) Signal.unknown S''∈[S])) (n∉map-suc-n-+ S (SigMap.keys sigs)) S''∈map-+-suc-S-sigs) ] (Env.sig-←⁻ {θ} {[S]-env (S ₛ)} (S'' ₛ) S''∈Domθ←[S])) s'' s''∈canθ'-sigs-canθ-sigs'-r-θ) canθₛₕ-mergeʳ-sigs-induction (just Signal.unknown ∷ sigs) S sigs' r θ θ≠sigs s'' s''∈canθ'-sigs-canθ-sigs'-r-θ | no S∉canθ'-sigs-canθ-sigs'-r-θ←[S] rewrite map-+-compose-suc S (SigMap.keys sigs) with any (_≟_ S) (SigMap.keys sigs') ... | yes S∈sigs' rewrite canθ'-inner-shadowing-irr sigs (suc S) sigs' r S Signal.absent θ S∈sigs' = canθₛₕ-mergeʳ-sigs-induction sigs (suc S) sigs' r θ (dist'++ʳ {V2 = S + 0 ∷ []} θ≠sigs) s'' s''∈canθ'-sigs-canθ-sigs'-r-θ ... | no S∉sigs' rewrite +-comm S 0 = canθₛₕ-mergeʳ-add-sig-notin sigs' r θ S Signal.absent (λ S∈Domθ → θ≠sigs S S∈Domθ (here refl)) S∉sigs' s'' (canθₛₕ-mergeʳ-sigs-induction sigs (suc S) sigs' r (θ ← [S]-env-absent (S ₛ)) (λ S'' S''∈Domθ←[S] S''∈map-+-suc-S-sigs → -- TODO: should make this a function Data.Sum.[ (λ S''∈Domθ → θ≠sigs S'' S''∈Domθ (there S''∈map-+-suc-S-sigs)) , (λ S''∈[S] → subst (_∉ _) (sym (Env.sig-single-∈-eq (S'' ₛ) (S ₛ) Signal.absent S''∈[S])) (n∉map-suc-n-+ S (SigMap.keys sigs)) S''∈map-+-suc-S-sigs) ] (Env.sig-←⁻ {θ} {[S]-env-absent (S ₛ)} (S'' ₛ) S''∈Domθ←[S])) s'' s''∈canθ'-sigs-canθ-sigs'-r-θ) canθₛₕ-mergeʳ : ∀ sigs θ' r θ → distinct' (proj₁ (Dom θ)) (SigMap.keys sigs) → ∀ s' → SharedVar.unwrap s' ∈ Canθₛₕ (SigMap.union sigs (Env.sig θ')) 0 r θ → SharedVar.unwrap s' ∈ Canθₛₕ (Env.sig θ') 0 r θ canθₛₕ-mergeʳ sigs θ' r θ θ≠sigs s' s'∈canθ-sigs←θ'-r-θ rewrite canθ'-←-distribute sigs (Env.sig θ') 0 r θ = canθₛₕ-mergeʳ-sigs-induction sigs 0 (Env.sig θ') r θ (subst (distinct' _) (sym (map-id (SigMap.keys sigs))) θ≠sigs) (SharedVar.unwrap s') s'∈canθ-sigs←θ'-r-θ
45.957684
97
0.551054
59f4c0896c60a4b6bcd0b1e5bb9cc252a5888852
8,572
agda
Agda
Cubical/Algebra/Semilattice/Base.agda
thomas-lamiaux/cubical
58c0b83bb0fed0dc683f3d29b1709effe51c1689
[ "MIT" ]
null
null
null
Cubical/Algebra/Semilattice/Base.agda
thomas-lamiaux/cubical
58c0b83bb0fed0dc683f3d29b1709effe51c1689
[ "MIT" ]
null
null
null
Cubical/Algebra/Semilattice/Base.agda
thomas-lamiaux/cubical
58c0b83bb0fed0dc683f3d29b1709effe51c1689
[ "MIT" ]
null
null
null
{- following Johnstone's book "Stone Spaces" we define semilattices to be commutative monoids such that every element is idempotent. In particular, we take every semilattice to have a neutral element that is either the maximal or minimal element depending on whether we have a join or meet semilattice. -} {-# OPTIONS --safe #-} module Cubical.Algebra.Semilattice.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Foundations.Function open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Foundations.Transport open import Cubical.Foundations.SIP open import Cubical.Data.Sigma open import Cubical.Algebra.Semigroup open import Cubical.Algebra.Monoid open import Cubical.Algebra.CommMonoid open import Cubical.Displayed.Base open import Cubical.Displayed.Auto open import Cubical.Displayed.Record open import Cubical.Displayed.Universe open import Cubical.Relation.Binary open import Cubical.Relation.Binary.Poset open import Cubical.Reflection.RecordEquiv open Iso private variable ℓ ℓ' : Level record IsSemilattice {A : Type ℓ} (ε : A) (_·_ : A → A → A) : Type ℓ where constructor issemilattice field isCommMonoid : IsCommMonoid ε _·_ idem : (x : A) → x · x ≡ x open IsCommMonoid isCommMonoid public unquoteDecl IsSemilatticeIsoΣ = declareRecordIsoΣ IsSemilatticeIsoΣ (quote IsSemilattice) record SemilatticeStr (A : Type ℓ) : Type ℓ where constructor semilatticestr field ε : A _·_ : A → A → A isSemilattice : IsSemilattice ε _·_ infixl 7 _·_ open IsSemilattice isSemilattice public Semilattice : ∀ ℓ → Type (ℓ-suc ℓ) Semilattice ℓ = TypeWithStr ℓ SemilatticeStr semilattice : (A : Type ℓ) (ε : A) (_·_ : A → A → A) (h : IsSemilattice ε _·_) → Semilattice ℓ semilattice A ε _·_ h = A , semilatticestr ε _·_ h -- Easier to use constructors makeIsSemilattice : {L : Type ℓ} {ε : L} {_·_ : L → L → L} (is-setL : isSet L) (assoc : (x y z : L) → x · (y · z) ≡ (x · y) · z) (rid : (x : L) → x · ε ≡ x) (lid : (x : L) → ε · x ≡ x) (comm : (x y : L) → x · y ≡ y · x) (idem : (x : L) → x · x ≡ x) → IsSemilattice ε _·_ IsSemilattice.isCommMonoid (makeIsSemilattice is-setL assoc rid lid comm idem) = makeIsCommMonoid is-setL assoc rid comm IsSemilattice.idem (makeIsSemilattice is-setL assoc rid lid comm idem) = idem makeSemilattice : {L : Type ℓ} (ε : L) (_·_ : L → L → L) (is-setL : isSet L) (assoc : (x y z : L) → x · (y · z) ≡ (x · y) · z) (rid : (x : L) → x · ε ≡ x) (lid : (x : L) → ε · x ≡ x) (comm : (x y : L) → x · y ≡ y · x) (idem : (x : L) → x · x ≡ x) → Semilattice ℓ makeSemilattice ε _·_ is-setL assoc rid lid comm idem = semilattice _ ε _·_ (makeIsSemilattice is-setL assoc rid lid comm idem) SemilatticeStr→MonoidStr : {A : Type ℓ} → SemilatticeStr A → MonoidStr A SemilatticeStr→MonoidStr (semilatticestr _ _ H) = monoidstr _ _ (H .IsSemilattice.isCommMonoid .IsCommMonoid.isMonoid) Semilattice→Monoid : Semilattice ℓ → Monoid ℓ Semilattice→Monoid (_ , semilatticestr _ _ H) = _ , monoidstr _ _ (H .IsSemilattice.isCommMonoid .IsCommMonoid.isMonoid) Semilattice→CommMonoid : Semilattice ℓ → CommMonoid ℓ Semilattice→CommMonoid (_ , semilatticestr _ _ H) = _ , commmonoidstr _ _ (H .IsSemilattice.isCommMonoid) SemilatticeHom : (L : Semilattice ℓ) (M : Semilattice ℓ') → Type (ℓ-max ℓ ℓ') SemilatticeHom L M = MonoidHom (Semilattice→Monoid L) (Semilattice→Monoid M) IsSemilatticeEquiv : {A : Type ℓ} {B : Type ℓ'} (M : SemilatticeStr A) (e : A ≃ B) (N : SemilatticeStr B) → Type (ℓ-max ℓ ℓ') IsSemilatticeEquiv M e N = IsMonoidHom (SemilatticeStr→MonoidStr M) (e .fst) (SemilatticeStr→MonoidStr N) SemilatticeEquiv : (M : Semilattice ℓ) (N : Semilattice ℓ') → Type (ℓ-max ℓ ℓ') SemilatticeEquiv M N = Σ[ e ∈ (M .fst ≃ N .fst) ] IsSemilatticeEquiv (M .snd) e (N .snd) isPropIsSemilattice : {L : Type ℓ} (ε : L) (_·_ : L → L → L) → isProp (IsSemilattice ε _·_) isPropIsSemilattice ε _·_ (issemilattice LL LC) (issemilattice SL SC) = λ i → issemilattice (isPropIsCommMonoid _ _ LL SL i) (isPropIdem LC SC i) where isSetL : isSet _ isSetL = LL .IsCommMonoid.isMonoid .IsMonoid.isSemigroup .IsSemigroup.is-set isPropIdem : isProp ((x : _) → x · x ≡ x) isPropIdem = isPropΠ λ _ → isSetL _ _ 𝒮ᴰ-Semilattice : DUARel (𝒮-Univ ℓ) SemilatticeStr ℓ 𝒮ᴰ-Semilattice = 𝒮ᴰ-Record (𝒮-Univ _) IsSemilatticeEquiv (fields: data[ ε ∣ autoDUARel _ _ ∣ presε ] data[ _·_ ∣ autoDUARel _ _ ∣ pres· ] prop[ isSemilattice ∣ (λ _ _ → isPropIsSemilattice _ _) ]) where open SemilatticeStr open IsMonoidHom SemilatticePath : (L K : Semilattice ℓ) → SemilatticeEquiv L K ≃ (L ≡ K) SemilatticePath = ∫ 𝒮ᴰ-Semilattice .UARel.ua -- TODO: decide if that's the right approach module JoinSemilattice (L' : Semilattice ℓ) where private L = fst L' open SemilatticeStr (snd L') renaming (_·_ to _∨l_ ; ε to 1l) open CommMonoidTheory (Semilattice→CommMonoid L') _≤_ : L → L → Type ℓ x ≤ y = x ∨l y ≡ y infix 4 _≤_ IndPoset : Poset ℓ ℓ fst IndPoset = L PosetStr._≤_ (snd IndPoset) = _≤_ IsPoset.is-set (PosetStr.isPoset (snd IndPoset)) = is-set IsPoset.is-prop-valued (PosetStr.isPoset (snd IndPoset)) = λ _ _ → is-set _ _ IsPoset.is-refl (PosetStr.isPoset (snd IndPoset)) = idem IsPoset.is-trans (PosetStr.isPoset (snd IndPoset)) = path where path : (a b c : L) → a ∨l b ≡ b → b ∨l c ≡ c → a ∨l c ≡ c path a b c a∨b≡b b∨c≡c = a ∨l c ≡⟨ cong (a ∨l_) (sym b∨c≡c) ⟩ a ∨l (b ∨l c) ≡⟨ ·Assoc _ _ _ ⟩ (a ∨l b) ∨l c ≡⟨ cong (_∨l c) a∨b≡b ⟩ b ∨l c ≡⟨ b∨c≡c ⟩ c ∎ IsPoset.is-antisym (PosetStr.isPoset (snd IndPoset)) = λ _ _ a∨b≡b b∨a≡a → sym b∨a≡a ∙∙ ·Comm _ _ ∙∙ a∨b≡b ∨lIsMax : ∀ x y z → x ≤ z → y ≤ z → x ∨l y ≤ z ∨lIsMax x y z x≤z y≤z = cong ((x ∨l y) ∨l_) (sym (idem z)) ∙ commAssocSwap x y z z ∙ cong₂ (_∨l_) x≤z y≤z ∙ idem z ∨≤LCancel : ∀ x y → y ≤ x ∨l y ∨≤LCancel x y = commAssocl y x y ∙ cong (x ∨l_) (idem y) ∨≤RCancel : ∀ x y → x ≤ x ∨l y ∨≤RCancel x y = ·Assoc _ _ _ ∙ cong (_∨l y) (idem x) ≤-∨Pres : ∀ x y u w → x ≤ y → u ≤ w → x ∨l u ≤ y ∨l w ≤-∨Pres x y u w x≤y u≤w = commAssocSwap x u y w ∙ cong₂ (_∨l_) x≤y u≤w ≤-∨LPres : ∀ x y z → x ≤ y → z ∨l x ≤ z ∨l y ≤-∨LPres x y z x≤y = ≤-∨Pres _ _ _ _ (idem z) x≤y module MeetSemilattice (L' : Semilattice ℓ) where private L = fst L' open SemilatticeStr (snd L') renaming (_·_ to _∧l_ ; ε to 0l) open CommMonoidTheory (Semilattice→CommMonoid L') _≤_ : L → L → Type ℓ x ≤ y = x ∧l y ≡ x infix 4 _≤_ IndPoset : Poset ℓ ℓ fst IndPoset = L PosetStr._≤_ (snd IndPoset) = _≤_ IsPoset.is-set (PosetStr.isPoset (snd IndPoset)) = is-set IsPoset.is-prop-valued (PosetStr.isPoset (snd IndPoset)) = λ _ _ → is-set _ _ IsPoset.is-refl (PosetStr.isPoset (snd IndPoset)) = idem IsPoset.is-trans (PosetStr.isPoset (snd IndPoset)) = path where path : (a b c : L) → a ∧l b ≡ a → b ∧l c ≡ b → a ∧l c ≡ a path a b c a∧b≡a b∧c≡b = a ∧l c ≡⟨ cong (_∧l c) (sym a∧b≡a) ⟩ (a ∧l b) ∧l c ≡⟨ sym (·Assoc _ _ _) ⟩ a ∧l (b ∧l c) ≡⟨ cong (a ∧l_) b∧c≡b ⟩ a ∧l b ≡⟨ a∧b≡a ⟩ a ∎ IsPoset.is-antisym (PosetStr.isPoset (snd IndPoset)) = λ _ _ a∧b≡a b∧a≡b → sym a∧b≡a ∙∙ ·Comm _ _ ∙∙ b∧a≡b ≤-∧LPres : ∀ x y z → x ≤ y → z ∧l x ≤ z ∧l y ≤-∧LPres x y z x≤y = commAssocSwap z x z y ∙∙ cong (_∧l (x ∧l y)) (idem z) ∙∙ cong (z ∧l_) x≤y ∧≤LCancel : ∀ x y → x ∧l y ≤ y ∧≤LCancel x y = sym (·Assoc _ _ _) ∙ cong (x ∧l_) (idem y) ∧≤RCancel : ∀ x y → x ∧l y ≤ x ∧≤RCancel x y = commAssocr x y x ∙ cong (_∧l y) (idem x) ∧lIsMin : ∀ x y z → z ≤ x → z ≤ y → z ≤ x ∧l y ∧lIsMin x y z z≤x z≤y = cong (_∧l (x ∧l y)) (sym (idem z)) ∙ commAssocSwap z z x y ∙ cong₂ (_∧l_) z≤x z≤y ∙ idem z
36.632479
97
0.587611
cbf3c499cf61a0e656cc639c47dbdfd9cc1f3027
546
agda
Agda
test/Succeed/Erased-cubical.agda
cagix/agda
cc026a6a97a3e517bb94bafa9d49233b067c7559
[ "BSD-2-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Erased-cubical.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Erased-cubical.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --safe --erased-cubical #-} module Erased-cubical where -- Modules that use --cubical can be imported. open import Erased-cubical.Cubical-again -- Code from such modules that was originally defined in modules using -- --without-K or --erased-cubical can be used without restrictions. _ : {A : Set} → A → ∥ A ∥ᴱ _ = ∣_∣ _ : D _ = c -- Matching on an erased constructor that was defined in a module that -- uses --cubical is fine, and makes it possible to use erased -- definitions in the right-hand side. f : D′ → D′ f c′ = c′
22.75
70
0.688645
4d4f398b48bdc760383fa906f75dd623678c5814
932
agda
Agda
test/Fail/Issue1994.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue1994.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue1994.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{- Example by Andrew Pitts, 2016-05-23 -} {-# OPTIONS --rewriting --without-K #-} open import Agda.Builtin.Equality public infix 6 I─_ postulate 𝕀 : Set O : 𝕀 I : 𝕀 I─_ : 𝕀 → 𝕀 {-# BUILTIN REWRITE _≡_ #-} postulate I─O≡I : I─ O ≡ I {-# REWRITE I─O≡I #-} data Pth (A : Set) : A → A → Set where path : (f : 𝕀 → A) → Pth A (f O) (f I) infix 6 _at_ _at_ : {A : Set}{x y : A} → Pth A x y → 𝕀 → A path f at i = f i record Path (A : Set)(x y : A) : Set where field pth : Pth A x y feq : pth at O ≡ x seq : pth at I ≡ y open Path public {-# REWRITE feq #-} {-# REWRITE seq #-} infix 6 _′_ _′_ : {A : Set}{x y : A} → Path A x y → 𝕀 → A p ′ i = pth p at i fun2path : {A : Set}(f : 𝕀 → A) → Path A (f O) (f I) pth (fun2path f) = path f feq (fun2path f) = refl seq (fun2path f) = refl inv : {A : Set}{x y : A} → Path A x y → Path A y x inv p = fun2path (λ i → p ′ (I─ i))
18.64
52
0.508584
2f32d81ec06dedf414621f6d77dbb7c78715bc43
7,944
agda
Agda
Cubical/Experiments/Brunerie.agda
howsiyu/cubical
1b9c97a2140fe96fe636f4c66beedfd7b8096e8f
[ "MIT" ]
null
null
null
Cubical/Experiments/Brunerie.agda
howsiyu/cubical
1b9c97a2140fe96fe636f4c66beedfd7b8096e8f
[ "MIT" ]
null
null
null
Cubical/Experiments/Brunerie.agda
howsiyu/cubical
1b9c97a2140fe96fe636f4c66beedfd7b8096e8f
[ "MIT" ]
null
null
null
{-# OPTIONS --safe #-} module Cubical.Experiments.Brunerie where open import Cubical.Foundations.Everything open import Cubical.Data.Bool open import Cubical.Data.Nat open import Cubical.Data.Int open import Cubical.HITs.S1 open import Cubical.HITs.S2 open import Cubical.HITs.S3 open import Cubical.HITs.Join open import Cubical.HITs.SetTruncation as SetTrunc open import Cubical.HITs.GroupoidTruncation as GroupoidTrunc open import Cubical.HITs.2GroupoidTruncation as 2GroupoidTrunc open import Cubical.Homotopy.Loopspace open import Cubical.Homotopy.Hopf open S¹Hopf -- This code is adapted from examples/brunerie3.ctt on the pi4s3_nobug branch of cubicaltt Bool∙ S¹∙ S³∙ : Pointed₀ Bool∙ = (Bool , true) S¹∙ = (S¹ , base) S³∙ = (S³ , base) ∥_∥₃∙ ∥_∥₄∙ : Pointed₀ → Pointed₀ ∥ A , a ∥₃∙ = ∥ A ∥₃ , ∣ a ∣₃ ∥ A , a ∥₄∙ = ∥ A ∥₄ , ∣ a ∣₄ join∙ : Pointed₀ → Type₀ → Pointed₀ join∙ (A , a) B = join A B , inl a Ω² Ω³ : Pointed₀ → Pointed₀ Ω² = Ω^ 2 Ω³ = Ω^ 3 mapΩrefl : {A : Pointed₀} {B : Type₀} (f : A .fst → B) → Ω A .fst → Ω (B , f (pt A)) .fst mapΩrefl f p i = f (p i) mapΩ²refl : {A : Pointed₀} {B : Type₀} (f : A .fst → B) → Ω² A .fst → Ω² (B , f (pt A)) .fst mapΩ²refl f p i j = f (p i j) mapΩ³refl : {A : Pointed₀} {B : Type₀} (f : A .fst → B) → Ω³ A .fst → Ω³ (B , f (pt A)) .fst mapΩ³refl f p i j k = f (p i j k) meridS² : S¹ → Path S² base base meridS² base _ = base meridS² (loop i) j = surf i j alpha : join S¹ S¹ → S² alpha (inl x) = base alpha (inr y) = base alpha (push x y i) = (meridS² y ∙ meridS² x) i connectionBoth : {A : Type₀} {a : A} (p : Path A a a) → PathP (λ i → Path A (p i) (p i)) p p connectionBoth {a = a} p i j = hcomp (λ k → λ { (i = i0) → p (j ∨ ~ k) ; (i = i1) → p (j ∧ k) ; (j = i0) → p (i ∨ ~ k) ; (j = i1) → p (i ∧ k) }) a data PostTotalHopf : Type₀ where base : S¹ → PostTotalHopf loop : (x : S¹) → PathP (λ i → Path PostTotalHopf (base x) (base (rotLoop x (~ i)))) refl refl tee12 : (x : S²) → HopfS² x → PostTotalHopf tee12 base y = base y tee12 (surf i j) y = hcomp (λ k → λ { (i = i0) → base y ; (i = i1) → base y ; (j = i0) → base y ; (j = i1) → base (rotLoopInv y (~ i) k) }) (loop (unglue (i ∨ ~ i ∨ j ∨ ~ j) y) i j) tee34 : PostTotalHopf → join S¹ S¹ tee34 (base x) = inl x tee34 (loop x i j) = hcomp (λ k → λ { (i = i0) → push x x (j ∧ ~ k) ; (i = i1) → push x x (j ∧ ~ k) ; (j = i0) → inl x ; (j = i1) → push (rotLoop x (~ i)) x (~ k) }) (push x x j) tee : (x : S²) → HopfS² x → join S¹ S¹ tee x y = tee34 (tee12 x y) fibΩ : {B : Pointed₀} (P : B .fst → Type₀) → P (pt B) → Ω B .fst → Type₀ fibΩ P f p = PathP (λ i → P (p i)) f f fibΩ² : {B : Pointed₀} (P : B .fst → Type₀) → P (pt B) → Ω² B .fst → Type₀ fibΩ² P f = fibΩ (fibΩ P f) refl fibΩ³ : {B : Pointed₀} (P : B .fst → Type₀) → P (pt B) → Ω³ B .fst → Type₀ fibΩ³ P f = fibΩ² (fibΩ P f) refl Ω³Hopf : Ω³ S²∙ .fst → Type₀ Ω³Hopf = fibΩ³ HopfS² base fibContrΩ³Hopf : ∀ p → Ω³Hopf p fibContrΩ³Hopf p i j k = hcomp (λ m → λ { (i = i0) → base ; (i = i1) → base ; (j = i0) → base ; (j = i1) → base ; (k = i0) → base ; (k = i1) → isSetΩS¹ refl refl (λ i j → transp (λ n → HopfS² (p i j n)) (i ∨ ~ i ∨ j ∨ ~ j) base) (λ _ _ → base) m i j }) (transp (λ n → HopfS² (p i j (k ∧ n))) (i ∨ ~ i ∨ j ∨ ~ j ∨ ~ k) base) h : Ω³ S²∙ .fst → Ω³ (join∙ S¹∙ S¹) .fst h p i j k = tee (p i j k) (fibContrΩ³Hopf p i j k) multTwoAux : (x : S²) → Path (Path ∥ S² ∥₄ ∣ x ∣₄ ∣ x ∣₄) refl refl multTwoAux base i j = ∣ surf i j ∣₄ multTwoAux (surf k l) i j = hcomp (λ m → λ { (i = i0) → ∣ surf k l ∣₄ ; (i = i1) → ∣ surf k l ∣₄ ; (j = i0) → ∣ surf k l ∣₄ ; (j = i1) → ∣ surf k l ∣₄ ; (k = i0) → ∣ surf i j ∣₄ ; (k = i1) → ∣ surf i j ∣₄ ; (l = i0) → ∣ surf i j ∣₄ ; (l = i1) → squash₄ _ _ _ _ _ _ (λ k i j → step₁ k i j) refl m k i j }) (step₁ k i j) where step₁ : I → I → I → ∥ S² ∥₄ step₁ k i j = hcomp {A = ∥ S² ∥₄} (λ m → λ { (i = i0) → ∣ surf k (l ∧ m) ∣₄ ; (i = i1) → ∣ surf k (l ∧ m) ∣₄ ; (j = i0) → ∣ surf k (l ∧ m) ∣₄ ; (j = i1) → ∣ surf k (l ∧ m) ∣₄ ; (k = i0) → ∣ surf i j ∣₄ ; (k = i1) → ∣ surf i j ∣₄ ; (l = i0) → ∣ surf i j ∣₄ }) ∣ surf i j ∣₄ multTwoTildeAux : (t : ∥ S² ∥₄) → Path (Path ∥ S² ∥₄ t t) refl refl multTwoTildeAux ∣ x ∣₄ = multTwoAux x multTwoTildeAux (squash₄ _ _ _ _ _ _ t u k l m n) i j = squash₄ _ _ _ _ _ _ (λ k l m → multTwoTildeAux (t k l m) i j) (λ k l m → multTwoTildeAux (u k l m) i j) k l m n multTwoEquivAux : Path (Path (∥ S² ∥₄ ≃ ∥ S² ∥₄) (idEquiv _) (idEquiv _)) refl refl multTwoEquivAux i j = ( f i j , hcomp (λ l → λ { (i = i0) → isPropIsEquiv _ (idIsEquiv _) (idIsEquiv _) l ; (i = i1) → isPropIsEquiv _ (idIsEquiv _) (idIsEquiv _) l ; (j = i0) → isPropIsEquiv _ (idIsEquiv _) (idIsEquiv _) l ; (j = i1) → isPropIsEquiv _ (transp (λ k → isEquiv (f i k)) (i ∨ ~ i) (idIsEquiv _)) (idIsEquiv _) l }) (transp (λ k → isEquiv (f i (j ∧ k))) (i ∨ ~ i ∨ ~ j) (idIsEquiv _)) ) where f : I → I → ∥ S² ∥₄ → ∥ S² ∥₄ f i j t = multTwoTildeAux t i j tHopf³ : S³ → Type₀ tHopf³ base = ∥ S² ∥₄ tHopf³ (surf i j k) = Glue ∥ S² ∥₄ (λ { (i = i0) → (∥ S² ∥₄ , idEquiv _) ; (i = i1) → (∥ S² ∥₄ , idEquiv _) ; (j = i0) → (∥ S² ∥₄ , idEquiv _) ; (j = i1) → (∥ S² ∥₄ , idEquiv _) ; (k = i0) → (∥ S² ∥₄ , multTwoEquivAux i j) ; (k = i1) → (∥ S² ∥₄ , idEquiv _) }) π₃S³ : Ω³ S³∙ .fst → Ω² ∥ S²∙ ∥₄∙ .fst π₃S³ p i j = transp (λ k → tHopf³ (p j k i)) i0 ∣ base ∣₄ codeS² : S² → hGroupoid _ codeS² s = ∥ HopfS² s ∥₃ , squash₃ codeTruncS² : ∥ S² ∥₄ → hGroupoid _ codeTruncS² = 2GroupoidTrunc.rec (isOfHLevelTypeOfHLevel 3) codeS² encodeTruncS² : Ω ∥ S²∙ ∥₄∙ .fst → ∥ S¹ ∥₃ encodeTruncS² p = transp (λ i → codeTruncS² (p i) .fst) i0 ∣ base ∣₃ codeS¹ : S¹ → hSet _ codeS¹ s = ∥ helix s ∥₂ , squash₂ codeTruncS¹ : ∥ S¹ ∥₃ → hSet _ codeTruncS¹ = GroupoidTrunc.rec (isOfHLevelTypeOfHLevel 2) codeS¹ encodeTruncS¹ : Ω ∥ S¹∙ ∥₃∙ .fst → ∥ ℤ ∥₂ encodeTruncS¹ p = transp (λ i → codeTruncS¹ (p i) .fst) i0 ∣ pos zero ∣₂ -- THE BIG GAME f3 : Ω³ S³∙ .fst → Ω³ (join∙ S¹∙ S¹) .fst f3 = mapΩ³refl S³→joinS¹S¹ f4 : Ω³ (join∙ S¹∙ S¹) .fst → Ω³ S²∙ .fst f4 = mapΩ³refl alpha f5 : Ω³ S²∙ .fst → Ω³ (join∙ S¹∙ S¹) .fst f5 = h f6 : Ω³ (join∙ S¹∙ S¹) .fst → Ω³ S³∙ .fst f6 = mapΩ³refl joinS¹S¹→S³ f7 : Ω³ S³∙ .fst → Ω² ∥ S²∙ ∥₄∙ .fst f7 = π₃S³ g8 : Ω² ∥ S²∙ ∥₄∙ .fst → Ω ∥ S¹∙ ∥₃∙ .fst g8 = mapΩrefl encodeTruncS² g9 : Ω ∥ S¹∙ ∥₃∙ .fst → ∥ ℤ ∥₂ g9 = encodeTruncS¹ g10 : ∥ ℤ ∥₂ → ℤ g10 = SetTrunc.rec isSetℤ (idfun ℤ) -- don't run me brunerie : ℤ brunerie = g10 (g9 (g8 (f7 (f6 (f5 (f4 (f3 (λ i j k → surf i j k)))))))) -- simpler tests test63 : ℕ → ℤ test63 n = g10 (g9 (g8 (f7 (63n n)))) where 63n : ℕ → Ω³ S³∙ .fst 63n zero i j k = surf i j k 63n (suc n) = f6 (f3 (63n n)) foo : Ω³ S²∙ .fst foo i j k = hcomp (λ l → λ { (i = i0) → surf l l ; (i = i1) → surf l l ; (j = i0) → surf l l ; (j = i1) → surf l l ; (k = i0) → surf l l ; (k = i1) → surf l l }) base sorghum : Ω³ S²∙ .fst sorghum i j k = hcomp (λ l → λ { (i = i0) → surf j l ; (i = i1) → surf k (~ l) ; (j = i0) → surf k (i ∧ ~ l) ; (j = i1) → surf k (i ∧ ~ l) ; (k = i0) → surf j (i ∨ l) ; (k = i1) → surf j (i ∨ l) }) (hcomp (λ l → λ { (i = i0) → base ; (i = i1) → surf j l ; (j = i0) → surf k i ; (j = i1) → surf k i ; (k = i0) → surf j (i ∧ l) ; (k = i1) → surf j (i ∧ l) }) (surf k i)) goo : Ω³ S²∙ .fst → ℤ goo x = g10 (g9 (g8 (f7 (f6 (f5 x)))))
26.657718
96
0.502014
2f50bed5137b5d0dfd1a7b2d82967e711d1d3a12
13,379
agda
Agda
Vectors.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
4
2019-08-08T12:44:19.000Z
2022-01-28T06:04:15.000Z
Vectors.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
14
2019-01-06T21:11:59.000Z
2020-04-11T11:03:39.000Z
Vectors.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
1
2021-11-29T13:23:07.000Z
2021-11-29T13:23:07.000Z
{-# OPTIONS --warning=error --safe --without-K #-} open import LogicalFormulae open import Numbers.Naturals.Semiring open import Numbers.Naturals.Order open import Numbers.Naturals.Order.Lemmas open import Semirings.Definition open import Orders.Total.Definition open import Lists.Lists module Vectors where data Vec {a : _} (X : Set a) : ℕ -> Set a where [] : Vec X zero _,-_ : {n : ℕ} -> X -> Vec X n -> Vec X (succ n) infixr 10 _,-_ vecLen : {a : _} {X : Set a} {n : ℕ} → Vec X n → ℕ vecLen {a} {X} {n} v = n vecHead : {a : _} {X : Set a} {n : ℕ} → Vec X (succ n) → X vecHead (x ,- xs) = x vecTail : {a : _} {X : Set a} {n : ℕ} → Vec X (succ n) → Vec X n vecTail (x ,- xs) = xs vecIsHeadPlusTail : {a : _} {X : Set a} {n : ℕ} → (xs : Vec X (succ n)) → (vecHead xs ,- vecTail xs) ≡ xs vecIsHeadPlusTail (x ,- xs) = refl _+V_ : {a : _} {X : Set a} {m n : ℕ} → Vec X m → Vec X n → Vec X (m +N n) [] +V ys = ys (x ,- xs) +V ys = (x ,- (xs +V ys)) vecIndex : {a : _} {X : Set a} {m : ℕ} → Vec X m → (i : ℕ) → .(i <N m) → X vecIndex [] zero () vecIndex (x ,- vec) zero i<m = x vecIndex [] (succ i) () vecIndex (x ,- vec) (succ i) i<m = vecIndex vec i (canRemoveSuccFrom<N i<m) vecLast : {a : _} {X : Set a} {m : ℕ} → Vec X m → (0 <N m) → X vecLast {a} {X} {zero} v () vecLast {a} {X} {succ zero} (x ,- []) _ = x vecLast {a} {X} {succ (succ m)} (x ,- v) _ = vecLast v (succIsPositive m) vecLast' : {a : _} {X : Set a} {m : ℕ} → Vec X (succ m) → X vecLast' {m = m} v = vecLast v (le m (applyEquality succ (Semiring.sumZeroRight ℕSemiring m))) vecAppend : {a : _} {X : Set a} {m : ℕ} → Vec X m → (x : X) → Vec X (succ m) vecAppend {a} {X} {zero} [] x = x ,- [] vecAppend {a} {X} {succ m} (y ,- v) x = y ,- vecAppend v x vecAppendIsNowLast : {a : _} {X : Set a} {m : ℕ} → (x : X) → (v : Vec X m) → (vecLast (vecAppend v x) (succIsPositive m)) ≡ x vecAppendIsNowLast {a} {X} {zero} x [] = refl vecAppendIsNowLast {a} {X} {succ m} x (y ,- v) = vecAppendIsNowLast x v vecRev : {a : _} {X : Set a} {m : ℕ} → Vec X m → Vec X m vecRev {a} {X} {zero} [] = [] vecRev {a} {X} {succ m} (x ,- v) = vecAppend (vecRev v) x vecMoveAppend : {a : _} {X : Set a} {m : ℕ} → (x : X) → (v : Vec X m) → vecRev (vecAppend v x) ≡ x ,- vecRev v vecMoveAppend {a} {X} {.0} x [] = refl vecMoveAppend {a} {X} {.(succ _)} x (y ,- v) rewrite vecMoveAppend x v = refl vecRevRevIsId : {a : _} {X : Set a} {m : ℕ} → (v : Vec X m) → (vecRev (vecRev v)) ≡ v vecRevRevIsId {a} {X} {zero} [] = refl vecRevRevIsId {a} {X} {succ m} (x ,- v) rewrite vecMoveAppend x (vecRev v) = applyEquality (λ i → x ,- i) (vecRevRevIsId v) record vecContains {a : _} {X : Set a} {m : ℕ} (vec : Vec X m) (x : X) : Set a where field index : ℕ index<m : index <N m isHere : vecIndex vec index index<m ≡ x vecSolelyContains : {a : _} {X : Set a} → {m : X} → (n : X) → (vecContains (m ,- []) n) → m ≡ n vecSolelyContains {m} n record { index = zero ; index<m = _ ; isHere = isHere } = isHere vecSolelyContains {m} n record { index = (succ index) ; index<m = (le x proof) ; isHere = isHere } = exFalso (f {x} {index} proof) where f : {x index : ℕ} → succ (x +N succ index) ≡ 1 → False f {x} {index} pr rewrite Semiring.commutative ℕSemiring x (succ index) = naughtE (equalityCommutative (succInjective pr)) vecChop : {a : _} {X : Set a} (m : ℕ) {n : ℕ} → Vec X (m +N n) → Vec X m && Vec X n _&&_.fst (vecChop zero xs) = [] _&&_.fst (vecChop (succ m) (x ,- xs)) = (x ,- _&&_.fst (vecChop m xs)) _&&_.snd (vecChop zero xs) = xs _&&_.snd (vecChop (succ m) (x ,- xs)) = _&&_.snd (vecChop m xs) {- vecIsChopThenAppend : {a : _} {X : Set a} {m n : ℕ} (xs : Vec X m) (ys : Vec X n) → vecChop m (xs +V ys) ≡ record { fst = xs ; snd = ys } vecIsChopThenAppend {a} {X} {m} xs ys with vecChop m (xs +V ys) vecIsChopThenAppend {a} {X} {zero} [] ys | record { fst = [] ; snd = snd } = {!!} vecIsChopThenAppend {a} {X} {succ m} xs ys | bl = {!!} -} vecMap : {a b : _} {X : Set a} {Y : Set b} → (X → Y) → {n : ℕ} → Vec X n → Vec Y n vecMap f [] = [] vecMap f (x ,- vec) = f x ,- (vecMap f vec) vecMapCommutesWithAppend : {a b : _} {X : Set a} {Y : Set b} → (f : X → Y) → {n : ℕ} → (x : X) → (v : Vec X n) → (vecMap f (vecAppend v x) ≡ vecAppend (vecMap f v) (f x)) vecMapCommutesWithAppend f {.0} x [] = refl vecMapCommutesWithAppend f {.(succ _)} x (y ,- v) = applyEquality (λ i → (f y ,- i)) (vecMapCommutesWithAppend f x v) vecMapCommutesWithRev : {a b : _} {X : Set a} {Y : Set b} → (f : X → Y) → {n : ℕ} → (v : Vec X n) → (vecMap f (vecRev v) ≡ vecRev (vecMap f v)) vecMapCommutesWithRev {a} {b} {X} {Y} f {.0} [] = refl vecMapCommutesWithRev {a} {b} {X} {Y} f {.(succ _)} (x ,- v) rewrite vecMapCommutesWithAppend f x (vecRev v) = applyEquality (λ i → vecAppend i (f x)) (vecMapCommutesWithRev f v) vecIndex0AndAppend : {a : _} {X : Set a} {n : ℕ} → (v : Vec X n) → (0<n : 0 <N n) → (x : X) → vecIndex (vecAppend v x) 0 (succIsPositive n) ≡ vecIndex v 0 0<n vecIndex0AndAppend [] () x vecIndex0AndAppend (a ,- v) 0<n x = refl vecIndexMAndAppend : {a : _} {X : Set a} {n : ℕ} → (v : Vec X n) → (x : X) → (m : ℕ) → (m<n : m <N n) → (pr : m <N succ n) → vecIndex (vecAppend v x) m pr ≡ vecIndex v m m<n vecIndexMAndAppend {n = .(succ _)} (v ,- vs) x zero m<n pr = refl vecIndexMAndAppend [] x (succ m) () vecIndexMAndAppend {n = n} (y ,- v) x (succ m) m<n pr = vecIndexMAndAppend v x m (canRemoveSuccFrom<N m<n) (canRemoveSuccFrom<N pr) vecMapCompose : {a b c : _} {X : Set a} {Y : Set b} {Z : Set c} → (f : X → Y) → (g : Y → Z) → {n : ℕ} → (v : Vec X n) → (vecMap g (vecMap f v)) ≡ vecMap (λ i → g (f i)) v vecMapCompose f g [] = refl vecMapCompose f g (x ,- v) = applyEquality (λ w → (g (f x) ,- w)) (vecMapCompose f g v) vecMapIdFact : {a : _} {X : Set a} {f : X → X} (feq : (x : X) → f x ≡ x) {n : ℕ} (xs : Vec X n) → vecMap f xs ≡ xs vecMapIdFact feq [] = refl vecMapIdFact feq (x ,- xs) rewrite (feq x) | vecMapIdFact feq xs = refl vecMapCompositionFact : {a b c : _} {X : Set a} {Y : Set b} {Z : Set c} {f : Y → Z} {g : X → Y} {h : X → Z} (heq : (x : X) → f (g x) ≡ h x) → {n : ℕ} (xs : Vec X n) → vecMap f (vecMap g xs) ≡ vecMap h xs vecMapCompositionFact heq [] = refl vecMapCompositionFact {a} {b} {c} {X} {Y} {Z} {f} {g} {h} heq (x ,- xs) rewrite heq x | vecMapCompositionFact {a} {b} {c} {X} {Y} {Z} {f} {g} {h} heq xs = refl vecMapIsNatural : {a b : _} {X : Set a} {Y : Set b} (f : X → Y) → {m n : ℕ} (xs : Vec X m) (xs' : Vec X n) → vecMap f (xs +V xs') ≡ (vecMap f xs +V vecMap f xs') vecMapIsNatural f [] xs' = refl vecMapIsNatural f (x ,- xs) xs' rewrite vecMapIsNatural f xs xs' = refl vecMapAndIndex : {n : ℕ} {a b : _} {A : Set a} {B : Set b} (v : Vec A n) (f : A → B) → {a : ℕ} → (a<n : a <N n) → vecIndex (vecMap f v) a a<n ≡ f (vecIndex v a a<n) vecMapAndIndex (x ,- v) f {zero} a<n = refl vecMapAndIndex (x ,- v) f {succ a} a<n = vecMapAndIndex v f (canRemoveSuccFrom<N a<n) vecPure : {a : _} {X : Set a} → X → {n : ℕ} → Vec X n vecPure x {zero} = [] vecPure x {succ n} = x ,- vecPure x {n} vecAllTrue : {a b : _} {X : Set a} (f : X → Set b) → {n : ℕ} (v : Vec X n) → Set b vecAllTrue f [] = True' vecAllTrue f (x ,- v) = f x && vecAllTrue f v vecFold : {a b : _} {X : Set a} {S : Set b} (f : X → S → S) (s : S) {n : ℕ} (v : Vec X n) → S vecFold f s [] = s vecFold f s (x ,- v) = vecFold f (f x s) v private succLess1 : (i : ℕ) → .(succ i <N 1) → False succLess1 zero pr with <NProp pr ... | le zero () ... | le (succ x) () succLess1 (succ i) pr with <NProp pr ... | le zero () ... | le (succ x) () vecDelete : {a : _} {X : Set a} {n : ℕ} (index : ℕ) .(pr : index <N succ n) → Vec X (succ n) → Vec X n vecDelete zero _ (x ,- v) = v vecDelete (succ i) p (x ,- []) = exFalso (succLess1 i p) vecDelete (succ i) pr (x ,- (y ,- v)) = x ,- vecDelete i (canRemoveSuccFrom<N pr) (y ,- v) _$V_ : {a b : _} {X : Set a} {Y : Set b} {n : ℕ} → Vec (X → Y) n → Vec X n → Vec Y n [] $V [] = [] (f ,- fs) $V (x ,- xs) = f x ,- (fs $V xs) infixl 3 _$V_ vec : {a b : _} {X : Set a} {Y : Set b} → (X → Y) → {n : ℕ} → Vec X n → Vec Y n vec f xs = (vecPure f) $V xs vecZip : {a b : _} {X : Set a} {Y : Set b} {n : ℕ} → Vec X n → Vec Y n → Vec (X && Y) n vecZip [] [] = [] vecZip (x ,- xs) (x₁ ,- ys) = record { fst = x ; snd = x₁ } ,- vecZip xs ys vecIdentity : {a : _} {X : Set a} {f : X → X} (feq : (x : X) → f x ≡ x) → {n : ℕ} (xs : Vec X n) → (vecPure f $V xs) ≡ xs vecIdentity feq [] = refl vecIdentity feq (x ,- xs) rewrite feq x | vecIdentity feq xs = refl vecHom : {a b : _} {X : Set a} {Y : Set b} (f : X → Y) (x : X) → {n : ℕ} → (vecPure f $V vecPure x) ≡ vecPure (f x) {n} vecHom f x {zero} = refl vecHom f x {succ n} rewrite vecHom f x {n} = refl vecInterchange : {a b : _} {X : Set a} {Y : Set b} {n : ℕ} (fs : Vec (X → Y) n) (x : X) → (fs $V vecPure x) ≡ (vecPure (λ f → f x) $V fs) vecInterchange [] x = refl vecInterchange (f ,- fs) x rewrite vecInterchange fs x = refl vecComposition : {a b c : _} {X : Set a} {Y : Set b} {Z : Set c} {n : ℕ} (fs : Vec (Y → Z) n) (gs : Vec (X → Y) n) (xs : Vec X n) → (vecPure (λ i j x → i (j x)) $V fs $V gs $V xs) ≡ (fs $V (gs $V xs)) vecComposition [] [] [] = refl vecComposition (f ,- fs) (g ,- gs) (x ,- xs) rewrite vecComposition fs gs xs = refl vecToList : {a : _} {A : Set a} {n : ℕ} → (v : Vec A n) → List A vecToList [] = [] vecToList (x ,- v) = x :: vecToList v listToVec : {a : _} {A : Set a} (l : List A) → Vec A (length l) listToVec [] = [] listToVec (x :: l) = x ,- listToVec l ------------ data _<=_ : ℕ → ℕ → Set where oz : zero <= zero os : {n m : ℕ} → n <= m → succ n <= succ m o' : {n m : ℕ} → n <= m → n <= succ m all0<=4 : Vec (0 <= 4) 1 all0<=4 = o' (o' (o' (o' oz))) ,- [] all1<=4 : Vec (1 <= 4) 4 all1<=4 = (o' ((o' (o' (os oz))))) ,- ((o' (o' (os (o' oz)))) ,- ((o' (os (o' (o' oz)))) ,- ((os (o' (o' (o' oz)))) ,- []))) all2<=4 : Vec (2 <= 4) 6 all2<=4 = os (os (o' (o' oz))) ,- (os (o' (os (o' oz))) ,- (os (o' (o' (os oz))) ,- (o' (o' (os (os oz))) ,- (o' (os (o' (os oz))) ,- (o' (os (os (o' oz))) ,- []))))) all3<=4 : Vec (3 <= 4) 4 all3<=4 = os (os (os (o' oz))) ,- (os (os (o' (os oz))) ,- (os (o' (os (os oz))) ,- (o' (os (os (os oz))) ,- []))) all4<=4 : Vec (4 <= 4) 1 all4<=4 = os (os (os (os oz))) ,- [] <=Is≤N : {n m : ℕ} → (n <= m) → n ≤N m <=Is≤N {n} {m} thm with TotalOrder.totality ℕTotalOrder n m <=Is≤N {n} {m} thm | inl (inl n<m) = inl n<m <=Is≤N {n} {.n} thm | inr refl = inr refl <=Is≤N {zero} {zero} thm | inl (inr m<n) = inl m<n <=Is≤N {zero} {succ m} thm | inl (inr m<n) = inl (succIsPositive m) <=Is≤N {succ n} {zero} () | inl (inr m<n) <=Is≤N {succ n} {succ m} (os thm) | inl (inr m<n) with <=Is≤N thm <=Is≤N {succ n} {succ m} (os thm) | inl (inr m<n) | inl x = inl (succPreservesInequality x) <=Is≤N {succ n} {succ m} (os thm) | inl (inr m<n) | inr x rewrite x = inr refl <=Is≤N {succ n} {succ m} (o' thm) | inl (inr m<n) with <=Is≤N thm <=Is≤N {succ n} {succ m} (o' thm) | inl (inr m<n) | inl x with a<SuccA m ... | m<sm = inl (lessTransitive x m<sm) <=Is≤N {succ n} {succ m} (o' thm) | inl (inr m<n) | inr x rewrite x = inl (a<SuccA m) succIsNotEqual : {n : ℕ} → (succ n ≡ n) → False succIsNotEqual {zero} pr = naughtE (equalityCommutative pr) succIsNotEqual {succ n} pr = succIsNotEqual (succInjective pr) succIsNotLess : {n : ℕ} → (succ n <N n) → False succIsNotLess {zero} (le x proof) = naughtE (equalityCommutative proof) succIsNotLess {succ n} pr = succIsNotLess (canRemoveSuccFrom<N pr) noSN<=N : {n : ℕ} → (succ n) <= n → False noSN<=N {n} thm with <=Is≤N thm noSN<=N {n} thm | inl x = succIsNotLess x noSN<=N {n} thm | inr x = succIsNotEqual x no5<=4 : 5 <= 4 → False no5<=4 th = noSN<=N {4} th _<?=_ : {a : _} {X : Set a} {n m : ℕ} → (n <= m) → Vec X m → Vec X n oz <?= xs = xs os th <?= (x ,- xs) = x ,- (th <?= xs) o' th <?= (x ,- xs) = th <?= xs vMap<?=Fact : {a b : _} {X : Set a} {Y : Set b} (f : X → Y) {n m : ℕ} (th : n <= m) (xs : Vec X m) → vecMap f (th <?= xs) ≡ (th <?= vecMap f xs) vMap<?=Fact f oz xs = refl vMap<?=Fact f (os th) (x ,- xs) rewrite vMap<?=Fact f th xs = refl vMap<?=Fact f (o' th) (x ,- xs) rewrite vMap<?=Fact f th xs = refl oi : {n : ℕ} → n <= n oi {zero} = oz oi {succ n} = os oi oe : {n : ℕ} → 0 <= n oe {zero} = oz oe {succ n} = o' oe oeUnique : {n : ℕ} (th : 0 <= n) → th ≡ oe oeUnique oz = refl oeUnique (o' i) rewrite oeUnique i = refl oTooBig : {n m : ℕ} → m ≤N n → succ n <= m → False oTooBig {n} {m} m<=n th with <=Is≤N th oTooBig {n} {m} (inl m<n) th | inl x = succIsNotLess (lessTransitive x m<n) oTooBig {n} {m} (inr m=n) th | inl x rewrite m=n = succIsNotLess x oTooBig {n} {m} (inl m<n) th | inr x rewrite (equalityCommutative x) = succIsNotLess m<n oTooBig {n} {m} (inr m=n) th | inr x rewrite m=n = succIsNotEqual x oiUnique : {n : ℕ} (th : n <= n) → (th ≡ oi) oiUnique oz = refl oiUnique (os th) rewrite oiUnique th = refl oiUnique {succ n} (o' th) with oTooBig {n} {n} (inr refl) th ... | bl = exFalso bl id-<?= : {a : _} {X : Set a} {n : ℕ} (xs : Vec X n) → (oi <?= xs) ≡ xs id-<?= [] = refl id-<?= (x ,- xs) rewrite id-<?= xs = refl _o>>_ : {p n m : ℕ} → p <= n → n <= m → p <= m oz o>> th' = th' os th o>> os th' = os (th o>> th') os th o>> o' th' = os (o' th o>> th') o' th o>> os th' = o' (th o>> th') o' th o>> o' th' = o' (o' th o>> th') eqHelper : {a : _} {X : Set a} (x : X) {n : ℕ} {r s : Vec X n} (pr : r ≡ s) → (x ,- r) ≡ (x ,- s) eqHelper x pr rewrite pr = refl
44.745819
203
0.530458
2f9afd2d15da51cba9474f1fc15745fb23eb1163
1,288
agda
Agda
agda/Algebra/Construct/Free/Semilattice/Relation/Unary/All/Properties.agda
oisdk/combinatorics-paper
3c176d4690566d81611080e9378f5a178b39b851
[ "MIT" ]
6
2020-09-11T17:45:41.000Z
2021-11-16T08:11:34.000Z
agda/Algebra/Construct/Free/Semilattice/Relation/Unary/All/Properties.agda
oisdk/combinatorics-paper
3c176d4690566d81611080e9378f5a178b39b851
[ "MIT" ]
null
null
null
agda/Algebra/Construct/Free/Semilattice/Relation/Unary/All/Properties.agda
oisdk/combinatorics-paper
3c176d4690566d81611080e9378f5a178b39b851
[ "MIT" ]
1
2021-11-11T12:30:21.000Z
2021-11-11T12:30:21.000Z
{-# OPTIONS --cubical --safe #-} module Algebra.Construct.Free.Semilattice.Relation.Unary.All.Properties where open import Prelude hiding (⊥; ⊤) open import Algebra.Construct.Free.Semilattice.Eliminators open import Algebra.Construct.Free.Semilattice.Definition open import Cubical.Foundations.HLevels open import Data.Empty.UniversePolymorphic open import HITs.PropositionalTruncation.Sugar open import HITs.PropositionalTruncation.Properties open import HITs.PropositionalTruncation open import Data.Unit.UniversePolymorphic open import Algebra.Construct.Free.Semilattice.Relation.Unary.All.Def open import Algebra.Construct.Free.Semilattice.Relation.Unary.Membership open import Relation.Nullary open import Relation.Nullary.Decidable open import Relation.Nullary.Decidable.Properties open import Relation.Nullary.Decidable.Logic private variable p : Level P∈◇ : ∀ {p} {P : A → Type p} → ∀ x xs → x ∈ xs → ◻ P xs → ∥ P x ∥ P∈◇ {A = A} {P = P} = λ x → ∥ P∈◇′ x ∥⇓ where P∈◇′ : (x : A) → xs ∈𝒦 A ⇒∥ (x ∈ xs → ◻ P xs → ∥ P x ∥) ∥ ∥ P∈◇′ x ∥-prop p q i x∈xs ◻Pxs = squash (p x∈xs ◻Pxs) (q x∈xs ◻Pxs) i ∥ P∈◇′ x ∥[] () ∥ P∈◇′ x ∥ y ∷ ys ⟨ Pys ⟩ x∈xs ◻Pxs = x∈xs >>= either′ (λ y≡x → subst (∥_∥ ∘ P) y≡x (◻Pxs .fst)) (λ x∈ys → Pys x∈ys (◻Pxs .snd))
36.8
77
0.682453
06780fc7b336fa314db7d3deff51f176f945277d
17
agda
Agda
test/interaction/Issue4516.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/interaction/Issue4516.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/interaction/Issue4516.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Set where
8.5
16
0.823529
1c9cf87b8d3319b99a75df42729daa902197b64c
4,472
agda
Agda
src/Categories/Adjoint/Instance/PosetCore.agda
jaykru/agda-categories
a4053cf700bcefdf73b857c3352f1eae29382a60
[ "MIT" ]
1
2021-04-18T18:21:47.000Z
2021-04-18T18:21:47.000Z
src/Categories/Adjoint/Instance/PosetCore.agda
jaykru/agda-categories
a4053cf700bcefdf73b857c3352f1eae29382a60
[ "MIT" ]
null
null
null
src/Categories/Adjoint/Instance/PosetCore.agda
jaykru/agda-categories
a4053cf700bcefdf73b857c3352f1eae29382a60
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} module Categories.Adjoint.Instance.PosetCore where -- The adjunction between the "forgetful" functor from Posets to -- Setoids and the core functor for posets. open import Level using (_⊔_) import Function open import Function.Equality using (Π; _⟶_) open import Relation.Binary using (Setoid; Poset) open import Categories.Adjoint using (_⊣_) import Categories.Adjoint.Instance.0-Truncation as Setd import Categories.Adjoint.Instance.01-Truncation as Pos open import Categories.Category using (Category) open import Categories.Category.Construction.Thin open import Categories.Category.Instance.Posets using (Posets; _⇒-Poset_; ⇒-Poset-∘; ⇒-Poset-helper) open import Categories.Category.Instance.Setoids using (Setoids) open import Categories.Functor.Instance.Core using () renaming (Core to CatCore) import Categories.Functor.Instance.Core as Cat open import Categories.Functor using (Functor; _∘F_; id) import Categories.Morphism as Morphism open import Categories.Morphism.IsoEquiv using (⌞_⌟) open import Categories.NaturalTransformation using (ntHelper) open import Categories.NaturalTransformation.NaturalIsomorphism using (_≃_; niHelper) open Π open _⇒-Poset_ -- The "forgetful" functor from Setoids to Posets (forgetting symmetry). Forgetful : ∀ {c ℓ} → Functor (Setoids c ℓ) (Posets c ℓ ℓ) Forgetful = record { F₀ = Forgetful₀ ; F₁ = λ f → ⇒-Poset-helper (f ⟨$⟩_) (cong f) ; identity = λ {S} → refl S ; homomorphism = λ {_ _ S} → refl S ; F-resp-≈ = λ {S _} f≗g → f≗g (refl S) } where Forgetful₀ : ∀ {c ℓ} → Setoid c ℓ → Poset c ℓ ℓ Forgetful₀ S = record { _≈_ = _≈_ ; _≤_ = _≈_ ; isPartialOrder = record { isPreorder = record { isEquivalence = isEquivalence ; reflexive = Function.id ; trans = trans } ; antisym = Function.const } } where open Setoid S open Setoid -- The "core" functor from Posets to Setoids. -- -- This functor simply forgets the _≤_ relation, mapping a Poset to -- the Setoid over which it is defined. This Setoid is the "core" of -- the Poset in the sense that the "equality" _≈_ associated with the -- Poset is really an equivalence, and antisymmetry ensures that this -- equivalence is equivalent to the symmetric core of _≤_. Core : ∀ {c ℓ₁ ℓ₂} → Functor (Posets c ℓ₁ ℓ₂) (Setoids c ℓ₁) Core = record { F₀ = λ A → record { isEquivalence = isEquivalence A } ; F₁ = λ f → record { _⟨$⟩_ = fun f ; cong = cong f } ; identity = Function.id ; homomorphism = λ {_ _ _ f g} → cong (⇒-Poset-∘ g f) ; F-resp-≈ = λ {_ B} {f _} f≗g x≈y → Eq.trans B (cong f x≈y) f≗g } where open Poset -- Core is right-adjoint to the forgetful functor CoreAdj : ∀ {o ℓ} → Forgetful ⊣ Core {o} {ℓ} {ℓ} CoreAdj = record { unit = ntHelper record { η = unit ; commute = cong } ; counit = ntHelper record { η = counit ; commute = λ {_ B} _ → Eq.refl B } ; zig = λ {S} → Setoid.refl S ; zag = Function.id } where open Poset open Functor Core using () renaming (F₀ to Core₀; F₁ to Core₁) open Functor Forgetful using () renaming (F₀ to U₀ ; F₁ to U₁) unit : ∀ S → S ⟶ Core₀ (U₀ S) unit S = record { _⟨$⟩_ = Function.id ; cong = Function.id } counit : ∀ A → U₀ (Core₀ A) ⇒-Poset A counit C = ⇒-Poset-helper Function.id (reflexive C) -- The core functor commutes with inclusion, i.e. the core of a thin -- category is the 0-Groupoid generated by the associated equivalence. -- -- Note that the core functor does not commute with truncation, -- because the latter forgets too much (there are many more isos in -- the (0,1)-truncated category). Core-commutes : ∀ {c ℓ} e → Setd.Inclusion e ∘F Core ≃ Cat.Core ∘F Pos.Inclusion {c} {ℓ ⊔ e} {ℓ} e Core-commutes e = niHelper record { η = λ A → record { F₀ = Function.id ; F₁ = EqIsIso.≈⇒≅ e A } ; η⁻¹ = λ A → record { F₀ = Function.id ; F₁ = EqIsIso.≅⇒≈ e A } ; commute = λ {A B} f → let open Morphism (Thin e B) in niHelper record { η = λ _ → ≅.refl ; η⁻¹ = λ _ → ≅.refl } ; iso = λ A → let open Poset A open Morphism (Thin e A) in record { isoˡ = niHelper record { η = λ _ → Eq.refl ; η⁻¹ = λ _ → Eq.refl } ; isoʳ = niHelper record { η = λ _ → ≅.refl ; η⁻¹ = λ _ → ≅.refl } } }
36.958678
100
0.628578
59dd2127ce11275befe80fc76abd1cbd6778c070
7,943
agda
Agda
algebra/DecidableFreeGroupIsReducedWord.agda
UlrikBuchholtz/HoTT-Agda
f8fa68bf753d64d7f45556ca09d0da7976709afa
[ "MIT" ]
1
2021-06-30T00:17:55.000Z
2021-06-30T00:17:55.000Z
algebra/DecidableFreeGroupIsReducedWord.agda
UlrikBuchholtz/HoTT-Agda
f8fa68bf753d64d7f45556ca09d0da7976709afa
[ "MIT" ]
null
null
null
algebra/DecidableFreeGroupIsReducedWord.agda
UlrikBuchholtz/HoTT-Agda
f8fa68bf753d64d7f45556ca09d0da7976709afa
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} open import HoTT hiding (_::_) module algebra.DecidableFreeGroupIsReducedWord {i} (A : Type i) (dec : has-dec-eq A) where open import algebra.Word A open import algebra.ReducedWord A dec -- Some helper functions. tail-is-reduced : (x : A) (w : Word) → is-reduced (x :: w) → is-reduced w tail-is-reduced x nil red = lift unit tail-is-reduced x (y :: w) red = red tail-is-reduced x (y inv:: w) red = snd red tail'-is-reduced : (x : A) (w : Word) → is-reduced (x inv:: w) → is-reduced w tail'-is-reduced x nil red = lift unit tail'-is-reduced x (y :: w) red = snd red tail'-is-reduced x (y inv:: w) red = red -- Conversion function. ReducedWord⇒FreeGroup : ReducedWord → FreeGroup A ReducedWord⇒FreeGroup (w , red) = f w red where f : (w : Word) → is-reduced w → FreeGroup A f nil _ = fg-nil f (x :: w) r = x fg:: f w (tail-is-reduced x w r) f (x inv:: w) r = x fg-inv:: f w (tail'-is-reduced x w r) infixr 60 _rw::_ _rw-inv::_ _rw::_ : A → ReducedWord → ReducedWord x rw:: (nil , red) = ((x :: nil) , lift unit) x rw:: ((y :: w) , red) = ((x :: y :: w) , red) x rw:: ((y inv:: w) , red) with dec x y x rw:: ((y inv:: w) , red) | inl x=y = (w , tail'-is-reduced y w red) x rw:: ((y inv:: w) , red) | inr x≠y = ((x :: y inv:: w) , (x≠y , red)) _rw-inv::_ : A → ReducedWord → ReducedWord x rw-inv:: (nil , red) = ((x inv:: nil) , lift unit) x rw-inv:: ((y inv:: w) , red) = ((x inv:: y inv:: w) , red) x rw-inv:: ((y :: w) , red) with dec x y x rw-inv:: ((y :: w) , red) | inl eq = (w , tail-is-reduced y w red) x rw-inv:: ((y :: w) , red) | inr neq = ((x inv:: y :: w) , (neq , red)) abstract rw-inv-r : ∀ x w → x rw:: x rw-inv:: w == w rw-inv-r x (nil , red) with dec x x rw-inv-r x (nil , red) | inl x=x = idp rw-inv-r x (nil , red) | inr x≠x = ⊥-rec (x≠x idp) rw-inv-r x ((y :: w) , red) with dec x y rw-inv-r x ((y :: nil) , red) | inl x=y = x=y |in-ctx _ rw-inv-r x ((y :: z :: w) , red) | inl x=y = x=y |in-ctx _ rw-inv-r x ((y :: z inv:: w) , red) | inl x=y with dec x z rw-inv-r x ((y :: z inv:: w) , red) | inl x=y | inl x=z = ⊥-rec (fst red (! x=y ∙ x=z)) rw-inv-r x ((y :: z inv:: w) , red) | inl x=y | inr x≠z = ReducedWord=-in (x=y |in-ctx _) rw-inv-r x ((y :: w) , red) | inr x≠y with dec x x rw-inv-r x ((y :: w) , red) | inr x≠y | inl x=x = idp rw-inv-r x ((y :: w) , red) | inr x≠y | inr x≠x = ⊥-rec (x≠x idp) rw-inv-r x ((y inv:: w) , red) with dec x x rw-inv-r x ((y inv:: w) , red) | inl x=x = idp rw-inv-r x ((y inv:: w) , red) | inr x≠x = ⊥-rec (x≠x idp) abstract rw-inv-l : ∀ x w → x rw-inv:: x rw:: w == w rw-inv-l x (nil , red) with dec x x rw-inv-l x (nil , red) | inl x=x = idp rw-inv-l x (nil , red) | inr x≠x = ⊥-rec (x≠x idp) rw-inv-l x ((y inv:: w) , red) with dec x y rw-inv-l x ((y inv:: nil) , red) | inl x=y = x=y |in-ctx _ rw-inv-l x ((y inv:: z inv:: w) , red) | inl x=y = x=y |in-ctx _ rw-inv-l x ((y inv:: z :: w) , red) | inl x=y with dec x z rw-inv-l x ((y inv:: z :: w) , red) | inl x=y | inl x=z = ⊥-rec (fst red (! x=y ∙ x=z)) rw-inv-l x ((y inv:: z :: w) , red) | inl x=y | inr x≠z = ReducedWord=-in (x=y |in-ctx _) rw-inv-l x ((y inv:: w) , red) | inr x≠y with dec x x rw-inv-l x ((y inv:: w) , red) | inr x≠y | inl x=x = idp rw-inv-l x ((y inv:: w) , red) | inr x≠y | inr x≠x = ⊥-rec (x≠x idp) rw-inv-l x ((y :: w) , red) with dec x x rw-inv-l x ((y :: w) , red) | inl x=x = idp rw-inv-l x ((y :: w) , red) | inr x≠x = ⊥-rec (x≠x idp) FreeGroup⇒ReducedWord : FreeGroup A → ReducedWord FreeGroup⇒ReducedWord = FreeGroup-rec ReducedWord-is-set (nil , lift unit) (λ x _ rw → x rw:: rw) (λ x _ rw → x rw-inv:: rw) (λ x {_} rw → rw-inv-l x rw) (λ x {_} rw → rw-inv-r x rw) abstract rw::-reduced : ∀ x w (red : is-reduced (x :: w)) → x rw:: (w , tail-is-reduced x w red) == ((x :: w) , red) rw::-reduced x nil red = idp rw::-reduced x (y :: w) red = idp rw::-reduced x (y inv:: w) red with dec x y rw::-reduced x (y inv:: w) red | inl x=y = ⊥-rec (fst red x=y) rw::-reduced x (y inv:: w) red | inr x≠y = ReducedWord=-in idp abstract rw-inv::-reduced : ∀ x w (red : is-reduced (x inv:: w)) → x rw-inv:: (w , tail'-is-reduced x w red) == ((x inv:: w) , red) rw-inv::-reduced x nil red = idp rw-inv::-reduced x (y inv:: w) red = idp rw-inv::-reduced x (y :: w) red with dec x y rw-inv::-reduced x (y :: w) red | inl x=y = ⊥-rec (fst red x=y) rw-inv::-reduced x (y :: w) red | inr x≠y = ReducedWord=-in idp ReducedWord⇒FreeGroup⇒ReducedWord : ∀ w → FreeGroup⇒ReducedWord (ReducedWord⇒FreeGroup w) == w ReducedWord⇒FreeGroup⇒ReducedWord (w , red) = f w red where f : ∀ w red → FreeGroup⇒ReducedWord (ReducedWord⇒FreeGroup (w , red)) == w , red f nil _ = idp f (x :: w) red = x rw:: FreeGroup⇒ReducedWord (ReducedWord⇒FreeGroup (w , tail-is-reduced x w red)) =⟨ f w (tail-is-reduced x w red) |in-ctx (λ w → x rw:: w) ⟩ x rw:: (w , tail-is-reduced x w red) =⟨ rw::-reduced x w red ⟩ (x :: w) , red ∎ f (x inv:: w) red = x rw-inv:: FreeGroup⇒ReducedWord (ReducedWord⇒FreeGroup (w , tail'-is-reduced x w red)) =⟨ f w (tail'-is-reduced x w red) |in-ctx (λ w → x rw-inv:: w) ⟩ x rw-inv:: (w , tail'-is-reduced x w red) =⟨ rw-inv::-reduced x w red ⟩ (x inv:: w) , red ∎ ReducedWord⇒FreeGroup-rw:: : ∀ x w → ReducedWord⇒FreeGroup (x rw:: w) == x fg:: ReducedWord⇒FreeGroup w ReducedWord⇒FreeGroup-rw:: x (nil , red) = idp ReducedWord⇒FreeGroup-rw:: x ((y :: w) , red) = idp ReducedWord⇒FreeGroup-rw:: x ((y inv:: w) , red) with dec x y ReducedWord⇒FreeGroup-rw:: x ((.x inv:: w) , red) | inl idp = ! (fg-inv-r x (ReducedWord⇒FreeGroup (w , tail'-is-reduced x w red))) ReducedWord⇒FreeGroup-rw:: x ((y inv:: w) , red) | inr x≠y = idp ReducedWord⇒FreeGroup-rw-inv:: : ∀ x w → ReducedWord⇒FreeGroup (x rw-inv:: w) == x fg-inv:: ReducedWord⇒FreeGroup w ReducedWord⇒FreeGroup-rw-inv:: x (nil , red) = idp ReducedWord⇒FreeGroup-rw-inv:: x ((y inv:: w) , red) = idp ReducedWord⇒FreeGroup-rw-inv:: x ((y :: w) , red) with dec x y ReducedWord⇒FreeGroup-rw-inv:: x ((.x :: w) , red) | inl idp = ! (fg-inv-l x (ReducedWord⇒FreeGroup (w , tail-is-reduced x w red))) ReducedWord⇒FreeGroup-rw-inv:: x ((y :: w) , red) | inr x≠y = idp FreeGroup⇒ReducedWord⇒FreeGroup : ∀ fg → ReducedWord⇒FreeGroup (FreeGroup⇒ReducedWord fg) == fg FreeGroup⇒ReducedWord⇒FreeGroup = FreeGroup-elim (λ _ → =-preserves-set FreeGroup-is-set) idp (λ x {fg} fg* → ReducedWord⇒FreeGroup (x rw:: FreeGroup⇒ReducedWord fg) =⟨ ReducedWord⇒FreeGroup-rw:: x (FreeGroup⇒ReducedWord fg) ⟩ x fg:: ReducedWord⇒FreeGroup (FreeGroup⇒ReducedWord fg) =⟨ fg* |in-ctx (_fg::_ x) ⟩ x fg:: fg ∎) (λ x {fg} fg* → ReducedWord⇒FreeGroup (x rw-inv:: FreeGroup⇒ReducedWord fg) =⟨ ReducedWord⇒FreeGroup-rw-inv:: x (FreeGroup⇒ReducedWord fg) ⟩ x fg-inv:: ReducedWord⇒FreeGroup (FreeGroup⇒ReducedWord fg) =⟨ fg* |in-ctx (_fg-inv::_ x) ⟩ x fg-inv:: fg ∎) (λ x {fg} fg* → prop-has-all-paths-↓ (FreeGroup-is-set _ _)) (λ x {fg} fg* → prop-has-all-paths-↓ (FreeGroup-is-set _ _)) FreeGroup≃ReducedWord : FreeGroup A ≃ ReducedWord FreeGroup≃ReducedWord = FreeGroup⇒ReducedWord , is-eq _ ReducedWord⇒FreeGroup ReducedWord⇒FreeGroup⇒ReducedWord FreeGroup⇒ReducedWord⇒FreeGroup
44.623596
96
0.529397
101e4eb4864a0eb2ce871bbddf11a1d3c40f4460
405
agda
Agda
test/Compiler/simple/Erased-constructors.agda
AntoineAllioux/agda
68ec2312961776e415c99d2839e41a92ffe464db
[ "BSD-3-Clause" ]
null
null
null
test/Compiler/simple/Erased-constructors.agda
AntoineAllioux/agda
68ec2312961776e415c99d2839e41a92ffe464db
[ "BSD-3-Clause" ]
null
null
null
test/Compiler/simple/Erased-constructors.agda
AntoineAllioux/agda
68ec2312961776e415c99d2839e41a92ffe464db
[ "BSD-3-Clause" ]
null
null
null
-- Partly based on code due to Andrea Vezzosi. open import Common.Prelude data D : Set where run-time : Bool → D @0 compile-time : Bool → D f : D → @0 D → Bool f (run-time x) _ = x f (compile-time x) (run-time y) = x f (compile-time x) (compile-time y) = y main : IO Unit main = putStrLn (if f (run-time true) (compile-time false) then "ok" else "bad")
22.5
53
0.57284
0b5318cab5dae8e5c4faf160a80379bec15b3971
6,172
agda
Agda
src/NumberTheory/ModularArithmetic.agda
Taneb/antlion
8c3a4235a16f66a94267aada287bd8ee7d054ead
[ "MIT" ]
null
null
null
src/NumberTheory/ModularArithmetic.agda
Taneb/antlion
8c3a4235a16f66a94267aada287bd8ee7d054ead
[ "MIT" ]
null
null
null
src/NumberTheory/ModularArithmetic.agda
Taneb/antlion
8c3a4235a16f66a94267aada287bd8ee7d054ead
[ "MIT" ]
null
null
null
import Data.Integer as Integer open Integer using (ℤ) module NumberTheory.ModularArithmetic (m : ℤ) where open import Algebra.Structures open Integer hiding (+_; _-_) -- using (_+_; _*_; -_; +0) open import Data.Integer.GCD open import Data.Integer.Properties hiding (*-1-isMonoid; *-1-isCommutativeMonoid; +-*-isCommutativeRing) open import Data.Integer.Tactic.RingSolver open import Data.Product open import Relation.Binary open import Relation.Binary.PropositionalEquality as ≡ using (_≡_) _≈_ : Rel ℤ _ x ≈ y = ∃ λ k → k * m + x ≡ y refl : Reflexive _≈_ refl {x} = +0 , (begin +0 * m + x ≡⟨ ≡.cong (_+ x) (*-zeroˡ m) ⟩ +0 + x ≡⟨ +-identityˡ x ⟩ x ∎) where open ≡.≡-Reasoning sym : Symmetric _≈_ sym {x} {y} (k , p) = (- k) , (begin - k * m + y ≡˘⟨ ≡.cong₂ _+_ (neg-distribˡ-* k m) (neg-involutive y) ⟩ - (k * m) + - - y ≡˘⟨ neg-distrib-+ (k * m) (- y) ⟩ - (k * m + - y) ≡⟨ ≡.cong -_ (begin k * m + - y ≡˘⟨ +-identityʳ _ ⟩ k * m + - y + +0 ≡˘⟨ ≡.cong (k * m + - y +_) (+-inverseʳ x) ⟩ k * m + - y + (x + - x) ≡˘⟨ +-assoc (k * m + - y) x (- x) ⟩ k * m + - y + x + - x ≡⟨ ≡.cong (_+ - x) (begin k * m + - y + x ≡⟨ +-assoc (k * m) (- y) x ⟩ k * m + (- y + x) ≡⟨ ≡.cong (k * m +_) (+-comm (- y) x) ⟩ k * m + (x + - y) ≡˘⟨ +-assoc (k * m) x (- y) ⟩ k * m + x + - y ≡⟨ ≡.cong (_+ - y) p ⟩ y + - y ≡⟨ +-inverseʳ y ⟩ +0 ∎) ⟩ +0 + - x ≡⟨ +-identityˡ (- x) ⟩ - x ∎) ⟩ - - x ≡⟨ neg-involutive x ⟩ x ∎) where open ≡.≡-Reasoning trans : Transitive _≈_ trans {x} {y} {z} (j , p) (k , q) = k + j , (begin (k + j) * m + x ≡⟨ ≡.cong (_+ x) (*-distribʳ-+ (m) k j) ⟩ k * m + j * m + x ≡⟨ +-assoc (k * m) (j * m) x ⟩ k * m + (j * m + x) ≡⟨ ≡.cong (_+_ (k * m)) p ⟩ k * m + y ≡⟨ q ⟩ z ∎) where open ≡.≡-Reasoning ≈-isEquivalence : IsEquivalence _≈_ ≈-isEquivalence = record { refl = refl ; sym = sym ; trans = trans } open IsEquivalence ≈-isEquivalence public using (reflexive) setoid : Setoid _ _ setoid = record { isEquivalence = ≈-isEquivalence } open import Algebra.Definitions _≈_ +-cong : Congruent₂ _+_ +-cong {x} {y} {u} {v} (j , p) (k , q) = j + k , (begin (j + k) * m + (x + u) ≡⟨ ≡.cong (_+ (x + u)) (*-distribʳ-+ m j k) ⟩ j * m + k * m + (x + u) ≡˘⟨ +-assoc (j * m + k * m) x u ⟩ j * m + k * m + x + u ≡⟨ ≡.cong (_+ u) (begin j * m + k * m + x ≡⟨ +-assoc (j * m) (k * m) x ⟩ j * m + (k * m + x) ≡⟨ ≡.cong (j * m +_) (+-comm (k * m) x) ⟩ j * m + (x + k * m) ≡˘⟨ +-assoc (j * m) x (k * m) ⟩ j * m + x + k * m ∎) ⟩ j * m + x + k * m + u ≡⟨ +-assoc (j * m + x) (k * m) u ⟩ j * m + x + (k * m + u) ≡⟨ ≡.cong₂ _+_ p q ⟩ y + v ∎) where open ≡.≡-Reasoning *-cong : Congruent₂ _*_ *-cong {x} {y} {u} {v} (j , p) (k , q) = j * m * k + j * u + x * k , (begin (j * m * k + j * u + x * k) * m + x * u ≡⟨ ≡.cong (_+ x * u) (begin (j * m * k + j * u + x * k) * m ≡⟨ *-distribʳ-+ m (j * m * k + j * u) (x * k) ⟩ (j * m * k + j * u) * m + (x * k) * m ≡⟨ ≡.cong₂ _+_ (*-distribʳ-+ m (j * m * k) (j * u)) (*-assoc x k m) ⟩ j * m * k * m + j * u * m + x * (k * m) ≡⟨ ≡.cong (_+ x * (k * m)) (begin j * m * k * m + (j * u) * m ≡⟨ ≡.cong (_+ j * u * m) (*-assoc (j * m) k m) ⟩ j * m * (k * m) + j * u * m ≡⟨ ≡.cong (j * m * (k * m) +_) (begin j * u * m ≡⟨ *-assoc j u m ⟩ j * (u * m) ≡⟨ ≡.cong (j *_) (*-comm u m) ⟩ j * (m * u) ≡˘⟨ *-assoc j m u ⟩ j * m * u ∎) ⟩ (j * m) * (k * m) + (j * m) * u ∎) ⟩ j * m * (k * m) + j * m * u + x * (k * m) ∎) ⟩ (j * m) * (k * m) + (j * m) * u + x * (k * m) + x * u ≡⟨ +-assoc ((j * m) * (k * m) + (j * m) * u) (x * (k * m)) (x * u) ⟩ (j * m) * (k * m) + (j * m) * u + (x * (k * m) + x * u) ≡˘⟨ ≡.cong₂ _+_ (*-distribˡ-+ (j * m) (k * m) u) (*-distribˡ-+ x (k * m) u) ⟩ (j * m) * (k * m + u) + x * (k * m + u) ≡˘⟨ *-distribʳ-+ (k * m + u) (j * m) x ⟩ (j * m + x) * (k * m + u) ≡⟨ ≡.cong₂ _*_ p q ⟩ y * v ∎) where open ≡.≡-Reasoning neg-cong : Congruent₁ -_ neg-cong {x} {y} (k , p) = - k , (begin - k * m + - x ≡˘⟨ ≡.cong (_+ - x) (neg-distribˡ-* k m) ⟩ - (k * m) + - x ≡˘⟨ neg-distrib-+ (k * m) x ⟩ - (k * m + x) ≡⟨ ≡.cong -_ p ⟩ - y ∎) where open ≡.≡-Reasoning +-0-isAbelianGroup : IsAbelianGroup _≈_ _+_ +0 -_ +-0-isAbelianGroup = record { isGroup = record { isMonoid = record { isSemigroup = record { isMagma = record { isEquivalence = ≈-isEquivalence ; ∙-cong = +-cong } ; assoc = λ x y z → reflexive (+-assoc x y z) } ; identity = (λ x → reflexive (+-identityˡ x)) , λ x → reflexive (+-identityʳ x) } ; inverse = (λ x → reflexive (+-inverseˡ x)) , λ x → reflexive(+-inverseʳ x) ; ⁻¹-cong = neg-cong } ; comm = λ x y → reflexive (+-comm x y) } *-1-isCommutativeMonoid : IsCommutativeMonoid _≈_ _*_ (Integer.+ 1) *-1-isCommutativeMonoid = record { isMonoid = record { isSemigroup = record { isMagma = record { isEquivalence = ≈-isEquivalence ; ∙-cong = *-cong } ; assoc = λ x y z → reflexive (*-assoc x y z) } ; identity = (λ x → reflexive (*-identityˡ x)) , λ x → reflexive (*-identityʳ x ) } ; comm = λ x y → reflexive (*-comm x y) } open IsCommutativeMonoid *-1-isCommutativeMonoid using () renaming (isMonoid to *-1-isMonoid) +-*-isCommutativeRing : IsCommutativeRing _≈_ _+_ _*_ -_ +0 (Integer.+ 1) +-*-isCommutativeRing = record { isRing = record { +-isAbelianGroup = +-0-isAbelianGroup ; *-isMonoid = *-1-isMonoid ; distrib = (λ x y z → reflexive (*-distribˡ-+ x y z)) , λ x y z → reflexive (*-distribʳ-+ x y z) ; zero = (λ x → reflexive (*-zeroˡ x)) , λ x → reflexive (*-zeroʳ x) } ; *-comm = λ x y → reflexive (*-comm x y) }
27.801802
105
0.423364
fb793932d4f9672abe5a6ff865895bbda6678870
1,099
agda
Agda
test/Succeed/Issue1110.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue1110.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue1110.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --allow-unsolved-metas #-} -- Andreas, 2014-05-17 reported by Fabien Renaud open import Common.Equality data Nat : Set where zero : Nat suc : Nat → Nat {-# BUILTIN NATURAL Nat #-} data List {a} (A : Set a) : Set a where [] : List A _∷_ : A → List A → List A length : ∀{a}{A : Set a} → List A → Nat length [] = zero length (x ∷ xs) = suc (length xs) foldr : ∀{a b}{A : Set a}{B : Set b} → (A → B → B) → B → List A → B foldr c n [] = n foldr c n (x ∷ xs) = c x (foldr c n xs) length-cons : ∀{b} {B : Set b} (L : List B) x → length (x ∷ L) ≡ suc (length L) length-cons [] _ = refl length-cons (x ∷ L) _ = refl suc-foldr-eq : ∀{b} {c} {B : Set b} {C : Set c} (LL : List B) (LA : List C) → suc (foldr (λ _ → suc) 0 LL) ≡ suc (foldr (λ _ → suc) 0 LA) → length LL ≡ length LA suc-foldr-eq [] [] Eq = refl suc-foldr-eq [] (x ∷ LA) () suc-foldr-eq (x ∷ LL) [] () suc-foldr-eq (x ∷ LL) (y ∷ LA) Eq rewrite length-cons LL x = {!!} -- WAS: -- Failed to infer the value of dotted pattern -- when checking that the pattern ._ has type Nat -- NOW: unsolved meta
23.382979
79
0.55414
50cf5e3403bbe0f6e8f11ac20fa2ec15c7c7fc69
1,177
agda
Agda
test/Succeed/Issue2322.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue2322.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue2322.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --guardedness #-} open import Agda.Builtin.Coinduction open import Agda.Builtin.Equality record Reveal_·_is_ {A : Set} {B : A → Set} (f : (x : A) → B x) (x : A) (y : B x) : Set where constructor [_] field eq : f x ≡ y inspect : {A : Set} {B : A → Set} (f : (x : A) → B x) (x : A) → Reveal f · x is f x inspect f x = [ refl ] infixr 5 _∷_ data Stream (A : Set) : Set where _∷_ : (x : A) (xs : ∞ (Stream A)) → Stream A infix 4 _≈_ data _≈_ {A} : Stream A → Stream A → Set where _∷_ : ∀ {x y xs ys} (x≡ : x ≡ y) (xs≈ : ∞ (♭ xs ≈ ♭ ys)) → x ∷ xs ≈ y ∷ ys map : ∀ {A B} → (A → B) → Stream A → Stream B map f (x ∷ xs) = f x ∷ ♯ map f (♭ xs) map₂ : ∀ {A B} → (A → B) → Stream A → Stream B map₂ f (x ∷ xs) with ♭ xs map₂ f (x ∷ xs) | y ∷ ys = f x ∷ ♯ (f y ∷ ♯ map₂ f (♭ ys)) map≈map₂ : ∀ {A B} → (f : A → B) → (xs : Stream A) → map f xs ≈ map₂ f xs map≈map₂ {A} f (x ∷ xs) with ♭ xs | inspect ♭ xs map≈map₂ {A} f (x ∷ xs) | y ∷ ys | [ eq ] = refl ∷ ♯ helper eq where map-f-y∷ys = _ helper : ∀ {xs} → xs ≡ y ∷ ys → map f xs ≈ map-f-y∷ys helper refl = refl ∷ ♯ map≈map₂ f (♭ ys)
27.372093
63
0.468139
2f4c4bf8fcef6752ddbf7bc465460636a3630121
394
agda
Agda
test/Succeed/Issue1523b.agda
MxmUrw/agda
6ede01fa854c5472e54f7d1799ca2c08ed316129
[ "BSD-2-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue1523b.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue1523b.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- {-# OPTIONS --copatterns #-} -- {-# OPTIONS -v tc.lhs:20 #-} {-# OPTIONS --sized-types #-} open import Common.Size record Stream (i : Size) (A : Set) : Set where coinductive constructor _::_ field head : A tail : ∀ {j : Size< i} → Stream j A open Stream public -- size forgetful cons cons : ∀ i {A} → A → Stream i A → Stream (↑ i) A cons i a as = a :: as -- Should work
18.761905
48
0.576142
1d2ae4d857f10898eec54863e616755066cf35c7
3,128
agda
Agda
Base/Syntax/Context.agda
inc-lc/ilc-agda
39bb081c6f192bdb87bd58b4a89291686d2d7d03
[ "MIT" ]
10
2015-03-04T06:09:20.000Z
2019-07-19T07:06:59.000Z
Base/Syntax/Context.agda
inc-lc/ilc-agda
39bb081c6f192bdb87bd58b4a89291686d2d7d03
[ "MIT" ]
6
2015-07-01T18:09:31.000Z
2017-05-04T13:53:59.000Z
Base/Syntax/Context.agda
inc-lc/ilc-agda
39bb081c6f192bdb87bd58b4a89291686d2d7d03
[ "MIT" ]
1
2016-02-18T12:26:44.000Z
2016-02-18T12:26:44.000Z
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Variables and contexts -- -- This module defines the syntax of contexts and subcontexts, -- together with variables and properties of these notions. -- -- This module is parametric in the syntax of types, so it -- can be reused for different calculi. ------------------------------------------------------------------------ module Base.Syntax.Context (Type : Set) where open import Relation.Binary open import Relation.Binary.PropositionalEquality -- Typing Contexts -- =============== import Data.List as List open import Base.Data.ContextList public Context : Set Context = List.List Type -- Variables -- ========= -- -- Here it is clear that we are using de Bruijn indices, -- encoded as natural numbers, more or less. data Var : Context → Type → Set where this : ∀ {Γ τ} → Var (τ • Γ) τ that : ∀ {Γ σ τ} → (x : Var Γ τ) → Var (σ • Γ) τ -- Weakening -- ========= -- -- We define weakening based on subcontext relationship. -- Subcontexts -- ----------- -- -- Useful as a reified weakening operation, -- and for making theorems strong enough to prove by induction. -- -- The contents of this module are currently exported at the end -- of this file. -- This handling of contexts is recommended by [this -- email](https://lists.chalmers.se/pipermail/agda/2011/003423.html) and -- attributed to Conor McBride. -- -- The associated thread discusses a few alternatives solutions, including one -- where beta-reduction can handle associativity of ++. module Subcontexts where infix 4 _≼_ data _≼_ : (Γ₁ Γ₂ : Context) → Set where ∅ : ∅ ≼ ∅ keep_•_ : ∀ {Γ₁ Γ₂} → (τ : Type) → Γ₁ ≼ Γ₂ → τ • Γ₁ ≼ τ • Γ₂ drop_•_ : ∀ {Γ₁ Γ₂} → (τ : Type) → Γ₁ ≼ Γ₂ → Γ₁ ≼ τ • Γ₂ -- Properties ∅≼Γ : ∀ {Γ} → ∅ ≼ Γ ∅≼Γ {∅} = ∅ ∅≼Γ {τ • Γ} = drop τ • ∅≼Γ ≼-refl : Reflexive _≼_ ≼-refl {∅} = ∅ ≼-refl {τ • Γ} = keep τ • ≼-refl ≼-reflexive : ∀ {Γ₁ Γ₂} → Γ₁ ≡ Γ₂ → Γ₁ ≼ Γ₂ ≼-reflexive refl = ≼-refl ≼-trans : Transitive _≼_ ≼-trans ≼₁ ∅ = ≼₁ ≼-trans (keep .τ • ≼₁) (keep τ • ≼₂) = keep τ • ≼-trans ≼₁ ≼₂ ≼-trans (drop .τ • ≼₁) (keep τ • ≼₂) = drop τ • ≼-trans ≼₁ ≼₂ ≼-trans ≼₁ (drop τ • ≼₂) = drop τ • ≼-trans ≼₁ ≼₂ ≼-isPreorder : IsPreorder _≡_ _≼_ ≼-isPreorder = record { isEquivalence = isEquivalence ; reflexive = ≼-reflexive ; trans = ≼-trans } ≼-preorder : Preorder _ _ _ ≼-preorder = record { Carrier = Context ; _≈_ = _≡_ ; _∼_ = _≼_ ; isPreorder = ≼-isPreorder } module ≼-Reasoning where open import Relation.Binary.PreorderReasoning ≼-preorder public renaming ( _≈⟨_⟩_ to _≡⟨_⟩_ ; _∼⟨_⟩_ to _≼⟨_⟩_ ; _≈⟨⟩_ to _≡⟨⟩_ ) -- Lift a variable to a super context weaken-var : ∀ {Γ₁ Γ₂ τ} → Γ₁ ≼ Γ₂ → Var Γ₁ τ → Var Γ₂ τ weaken-var (keep τ • ≼₁) this = this weaken-var (keep τ • ≼₁) (that x) = that (weaken-var ≼₁ x) weaken-var (drop τ • ≼₁) x = that (weaken-var ≼₁ x) -- Currently, we export the subcontext relation. open Subcontexts public
25.024
78
0.568414
a162e56c4fd08370ec22b9563ecca9ee1184cca5
2,498
agda
Agda
Cubical/HITs/Rationals/QuoQ/Base.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
Cubical/HITs/Rationals/QuoQ/Base.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
1
2022-01-27T02:07:48.000Z
2022-01-27T02:07:48.000Z
Cubical/HITs/Rationals/QuoQ/Base.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.Rationals.QuoQ.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Data.Nat as ℕ using (discreteℕ) open import Cubical.Data.NatPlusOne open import Cubical.Data.Sigma open import Cubical.HITs.Ints.QuoInt open import Cubical.HITs.SetQuotients as SetQuotient using ([_]; eq/; discreteSetQuotients) renaming (_/_ to _//_) public open import Cubical.Relation.Nullary open import Cubical.Relation.Binary.Base open BinaryRelation ℕ₊₁→ℤ : ℕ₊₁ → ℤ ℕ₊₁→ℤ n = pos (ℕ₊₁→ℕ n) private ℕ₊₁→ℤ-hom : ∀ m n → ℕ₊₁→ℤ (m ·₊₁ n) ≡ ℕ₊₁→ℤ m · ℕ₊₁→ℤ n ℕ₊₁→ℤ-hom _ _ = refl -- ℚ as a set quotient of ℤ × ℕ₊₁ (as in the HoTT book) _∼_ : ℤ × ℕ₊₁ → ℤ × ℕ₊₁ → Type₀ (a , b) ∼ (c , d) = a · ℕ₊₁→ℤ d ≡ c · ℕ₊₁→ℤ b ℚ : Type₀ ℚ = (ℤ × ℕ₊₁) // _∼_ isSetℚ : isSet ℚ isSetℚ = SetQuotient.squash/ [_/_] : ℤ → ℕ₊₁ → ℚ [ a / b ] = [ a , b ] isEquivRel∼ : isEquivRel _∼_ isEquivRel.reflexive isEquivRel∼ (a , b) = refl isEquivRel.symmetric isEquivRel∼ (a , b) (c , d) = sym isEquivRel.transitive isEquivRel∼ (a , b) (c , d) (e , f) p q = ·-injʳ _ _ _ r where r = (a · ℕ₊₁→ℤ f) · ℕ₊₁→ℤ d ≡[ i ]⟨ ·-comm a (ℕ₊₁→ℤ f) i · ℕ₊₁→ℤ d ⟩ (ℕ₊₁→ℤ f · a) · ℕ₊₁→ℤ d ≡⟨ sym (·-assoc (ℕ₊₁→ℤ f) a (ℕ₊₁→ℤ d)) ⟩ ℕ₊₁→ℤ f · (a · ℕ₊₁→ℤ d) ≡[ i ]⟨ ℕ₊₁→ℤ f · p i ⟩ ℕ₊₁→ℤ f · (c · ℕ₊₁→ℤ b) ≡⟨ ·-assoc (ℕ₊₁→ℤ f) c (ℕ₊₁→ℤ b) ⟩ (ℕ₊₁→ℤ f · c) · ℕ₊₁→ℤ b ≡[ i ]⟨ ·-comm (ℕ₊₁→ℤ f) c i · ℕ₊₁→ℤ b ⟩ (c · ℕ₊₁→ℤ f) · ℕ₊₁→ℤ b ≡[ i ]⟨ q i · ℕ₊₁→ℤ b ⟩ (e · ℕ₊₁→ℤ d) · ℕ₊₁→ℤ b ≡⟨ sym (·-assoc e (ℕ₊₁→ℤ d) (ℕ₊₁→ℤ b)) ⟩ e · (ℕ₊₁→ℤ d · ℕ₊₁→ℤ b) ≡[ i ]⟨ e · ·-comm (ℕ₊₁→ℤ d) (ℕ₊₁→ℤ b) i ⟩ e · (ℕ₊₁→ℤ b · ℕ₊₁→ℤ d) ≡⟨ ·-assoc e (ℕ₊₁→ℤ b) (ℕ₊₁→ℤ d) ⟩ (e · ℕ₊₁→ℤ b) · ℕ₊₁→ℤ d ∎ eq/⁻¹ : ∀ x y → Path ℚ [ x ] [ y ] → x ∼ y eq/⁻¹ = SetQuotient.effective (λ _ _ → isSetℤ _ _) isEquivRel∼ discreteℚ : Discrete ℚ discreteℚ = discreteSetQuotients (discreteΣ discreteℤ (λ _ → subst Discrete 1+Path discreteℕ)) (λ _ _ → isSetℤ _ _) isEquivRel∼ (λ _ _ → discreteℤ _ _) -- Natural number and negative integer literals for ℚ open import Cubical.Data.Nat.Literals public instance fromNatℚ : HasFromNat ℚ fromNatℚ = record { Constraint = λ _ → Unit ; fromNat = λ n → [ pos n / 1 ] } instance fromNegℚ : HasFromNeg ℚ fromNegℚ = record { Constraint = λ _ → Unit ; fromNeg = λ n → [ neg n / 1 ] }
32.441558
94
0.556045
41d0d317e6790ad8101fb3da9aebf84f650d0670
1,463
agda
Agda
src/exercices/Commerce.agda
d-plaindoux/colca
a81447af3ab2ba898bb7d57be71369abbba12d81
[ "MIT" ]
2
2021-03-12T18:31:14.000Z
2021-05-04T09:35:36.000Z
src/exercices/Commerce.agda
d-plaindoux/colca
a81447af3ab2ba898bb7d57be71369abbba12d81
[ "MIT" ]
null
null
null
src/exercices/Commerce.agda
d-plaindoux/colca
a81447af3ab2ba898bb7d57be71369abbba12d81
[ "MIT" ]
null
null
null
-- -- Created by Dependently-Typed Lambda Calculus on 2020-09-23 -- Commerce -- Author: dplaindoux -- {-# OPTIONS --without-K --safe #-} module Commerce where open import Relation.Nullary using (Reflects; Dec; yes; no) open import Data.Bool using (Bool; true; false) open import Data.Nat using (ℕ; _+_; _≥?_; _≥_) open import Agda.Builtin.Nat using (_-_) import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl; cong) open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; _∎; step-≡) module Customer where record Account : Set where field balance : ℕ account : ℕ -> Account account n = record { balance = n } _↑_ : Account → ℕ → Account c ↑ n = account (Account.balance c + n) _↓_ : Account → ℕ → Account c ↓ n = account (Account.balance c - n ) infixl 50 _↑_ infixl 50 _↓_ module Product where record Item : Set where field price : ℕ data Basket : Set where ∅ : Basket _then_ : Item → Basket → Basket total : Basket → ℕ total ∅ = 0 total (a then b) = Item.price a + total b module Payment where open Customer open Product pay : (c : Account) → (p : Basket) → {Account.balance c ≥ total p} → Account pay c p = c ↓ total p module Front where pay? : Account → Basket → Account pay? c p with Account.balance c ≥? total p ... | yes proof = pay c p {proof} ... | no _ = c
23.983607
80
0.597403
d06ccf83e04074488e927c138f78301a1668726a
2,984
agda
Agda
Categories/Category/Construction/EnrichedFunctors.agda
rei1024/agda-categories
89d163f72caa7deeac9413f27bc1b4ed7f9e025b
[ "MIT" ]
null
null
null
Categories/Category/Construction/EnrichedFunctors.agda
rei1024/agda-categories
89d163f72caa7deeac9413f27bc1b4ed7f9e025b
[ "MIT" ]
null
null
null
Categories/Category/Construction/EnrichedFunctors.agda
rei1024/agda-categories
89d163f72caa7deeac9413f27bc1b4ed7f9e025b
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} open import Categories.Category using () renaming (Category to Setoid-Category) open import Categories.Category.Monoidal module Categories.Category.Construction.EnrichedFunctors {o ℓ e} {V : Setoid-Category o ℓ e} (M : Monoidal V) where -- The (enriched) functor category for a given pair of V-enriched categories open import Level open import Data.Product using (_,_; uncurry′) open import Categories.Enriched.Category M open import Categories.Enriched.Functor M renaming (id to idF) open import Categories.Enriched.NaturalTransformation M renaming (id to idNT) open import Categories.Functor.Bifunctor using (Bifunctor) open NaturalTransformation using (_[_]) EnrichedFunctors : ∀ {c d} (C : Category c) (D : Category d) → Setoid-Category (ℓ ⊔ e ⊔ c ⊔ d) (ℓ ⊔ e ⊔ c) (e ⊔ c) EnrichedFunctors C D = record { Obj = Functor C D ; _⇒_ = NaturalTransformation ; _≈_ = λ α β → ∀ {X} → α [ X ] ≈ β [ X ] ; id = idNT ; _∘_ = _∘ᵥ_ ; assoc = assoc ; sym-assoc = sym-assoc ; identityˡ = identityˡ ; identityʳ = identityʳ ; identity² = identity² ; equiv = record { refl = Equiv.refl ; sym = λ α≈β → Equiv.sym α≈β ; trans = λ α≈β β≈γ → Equiv.trans α≈β β≈γ } ; ∘-resp-≈ = λ α₁≈β₁ α₂≈β₂ → ∘-resp-≈ α₁≈β₁ α₂≈β₂ } where open Underlying D -- Horizontal composition of natural transformations (aka the Godement -- product) induces a composition functor over functor categories. -- -- Note that all the equational reasoning happens in the underlying -- (ordinary) categories! ⊚ : ∀ {c d e} {C : Category c} {D : Category d} {E : Category e} → Bifunctor (EnrichedFunctors D E) (EnrichedFunctors C D) (EnrichedFunctors C E) ⊚ {_} {_} {_} {_} {D} {E} = record { F₀ = uncurry′ _∘F_ ; F₁ = uncurry′ _∘ₕ_ ; identity = λ{ {F , G} {X} → begin (F $₁ D.id) ∘ E.id ≈⟨ identityʳ ⟩ F $₁ D.id ≈⟨ identity F ⟩ E.id ∎ } ; homomorphism = λ{ {_ , F₂} {G₁ , G₂} {H₁ , _} {α₁ , α₂} {β₁ , β₂} {X} → begin H₁ $₁ (β₂ [ X ] D.∘ α₂ [ X ]) ∘ β₁ [ F₂ $₀ X ] ∘ α₁ [ F₂ $₀ X ] ≈⟨ homomorphism H₁ ⟩∘⟨refl ⟩ (H₁ $₁ β₂ [ X ] ∘ H₁ $₁ α₂ [ X ]) ∘ β₁ [ F₂ $₀ X ] ∘ α₁ [ F₂ $₀ X ] ≈⟨ ⟺ assoc ○ ∘-resp-≈ˡ assoc ⟩ (H₁ $₁ β₂ [ X ] ∘ (H₁ $₁ α₂ [ X ] ∘ β₁ [ F₂ $₀ X ])) ∘ α₁ [ F₂ $₀ X ] ≈˘⟨ (refl⟩∘⟨ commute β₁ (α₂ [ X ])) ⟩∘⟨refl ⟩ (H₁ $₁ β₂ [ X ] ∘ (β₁ [ G₂ $₀ X ] ∘ G₁ $₁ α₂ [ X ])) ∘ α₁ [ F₂ $₀ X ] ≈˘⟨ ⟺ assoc ○ ∘-resp-≈ˡ assoc ⟩ (H₁ $₁ β₂ [ X ] ∘ β₁ [ G₂ $₀ X ]) ∘ G₁ $₁ α₂ [ X ] ∘ α₁ [ F₂ $₀ X ] ∎ } ; F-resp-≈ = λ{ {_} {F , _} (eq₁ , eq₂) → ∘-resp-≈ (F-resp-≈ F eq₂) eq₁ } } where module D = Underlying D module E = Underlying E open E hiding (id) open HomReasoning open UnderlyingFunctor hiding (F₀; F₁) open UnderlyingNT -- Aliases used to shorten some proof expressions infixr 14 _$₀_ _$₁_ _$₀_ = UnderlyingFunctor.F₀ _$₁_ = UnderlyingFunctor.F₁
34.697674
82
0.577078
59cd4169829d53ac64aedd0ec5c285c77b1d3ee2
9,296
agda
Agda
Cubical/HITs/SmashProduct/Base.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
301
2018-10-17T18:00:24.000Z
2022-03-24T02:10:47.000Z
Cubical/HITs/SmashProduct/Base.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
584
2018-10-15T09:49:02.000Z
2022-03-30T12:09:17.000Z
Cubical/HITs/SmashProduct/Base.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
134
2018-11-16T06:11:03.000Z
2022-03-23T16:22:13.000Z
{-# OPTIONS --safe #-} module Cubical.HITs.SmashProduct.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Pointed open import Cubical.Foundations.Isomorphism open import Cubical.HITs.Pushout.Base open import Cubical.Data.Unit open import Cubical.Data.Prod open import Cubical.HITs.Wedge open import Cubical.Foundations.Function open import Cubical.Foundations.GroupoidLaws data Smash {ℓ ℓ'} (A : Pointed ℓ) (B : Pointed ℓ') : Type (ℓ-max ℓ ℓ') where basel : Smash A B baser : Smash A B proj : (x : typ A) → (y : typ B) → Smash A B gluel : (a : typ A) → proj a (pt B) ≡ basel gluer : (b : typ B) → proj (pt A) b ≡ baser private variable ℓ ℓ' : Level A B C D : Pointed ℓ Smash-map : (f : A →∙ C) (g : B →∙ D) → Smash A B → Smash C D Smash-map f g basel = basel Smash-map f g baser = baser Smash-map (f , fpt) (g , gpt) (proj x y) = proj (f x) (g y) Smash-map (f , fpt) (g , gpt) (gluel a i) = ((λ j → proj (f a) (gpt j)) ∙ gluel (f a)) i Smash-map (f , fpt) (g , gpt) (gluer b i) = ((λ j → proj (fpt j) (g b)) ∙ gluer (g b)) i -- Commutativity comm : Smash A B → Smash B A comm basel = baser comm baser = basel comm (proj x y) = proj y x comm (gluel a i) = gluer a i comm (gluer b i) = gluel b i commK : (x : Smash A B) → comm (comm x) ≡ x commK basel = refl commK baser = refl commK (proj x y) = refl commK (gluel a x) = refl commK (gluer b x) = refl -- WIP below SmashPt : (A : Pointed ℓ) (B : Pointed ℓ') → Pointed (ℓ-max ℓ ℓ') SmashPt A B = (Smash A B , basel) SmashPtProj : (A : Pointed ℓ) (B : Pointed ℓ') → Pointed (ℓ-max ℓ ℓ') SmashPtProj A B = Smash A B , (proj (snd A) (snd B)) --- Alternative definition i∧ : ∀ {ℓ ℓ'} {A : Pointed ℓ} {B : Pointed ℓ'} → A ⋁ B → (typ A) × (typ B) i∧ {A = A , ptA} {B = B , ptB} (inl x) = x , ptB i∧ {A = A , ptA} {B = B , ptB} (inr x) = ptA , x i∧ {A = A , ptA} {B = B , ptB} (push tt i) = ptA , ptB _⋀_ : ∀ {ℓ ℓ'} → Pointed ℓ → Pointed ℓ' → Type (ℓ-max ℓ ℓ') A ⋀ B = Pushout {A = (A ⋁ B)} (λ _ → tt) i∧ _⋀∙_ : ∀ {ℓ ℓ'} → Pointed ℓ → Pointed ℓ' → Pointed (ℓ-max ℓ ℓ') A ⋀∙ B = Pushout {A = (A ⋁ B)} (λ _ → tt) i∧ , (inl tt) _⋀→_ : (f : A →∙ C) (g : B →∙ D) → A ⋀ B → C ⋀ D (f ⋀→ g) (inl tt) = inl tt ((f , fpt) ⋀→ (g , gpt)) (inr (x , x₁)) = inr (f x , g x₁) _⋀→_ {B = B} {D = D} (f , fpt) (b , gpt) (push (inl x) i) = (push (inl (f x)) ∙ (λ i → inr (f x , gpt (~ i)))) i _⋀→_ (f , fpt) (g , gpt) (push (inr x) i) = (push (inr (g x)) ∙ (λ i → inr (fpt (~ i) , g x))) i _⋀→_ {A = A} {C = C} {B = B} {D = D} (f , fpt) (g , gpt) (push (push tt j) i) = hcomp (λ k → λ { (i = i0) → inl tt ; (i = i1) → inr (fpt (~ k) , gpt (~ k)) ; (j = i0) → compPath-filler (push (inl (fpt (~ k)))) ((λ i → inr (fpt (~ k) , gpt (~ i)))) k i ; (j = i1) → compPath-filler (push (inr (gpt (~ k)))) ((λ i → inr (fpt (~ i) , gpt (~ k)))) k i}) (push (push tt j) i) ⋀→Smash : A ⋀ B → Smash A B ⋀→Smash (inl x) = basel ⋀→Smash (inr (x , x₁)) = proj x x₁ ⋀→Smash (push (inl x) i) = gluel x (~ i) ⋀→Smash {A = A} {B = B} (push (inr x) i) = (sym (gluel (snd A)) ∙∙ gluer (snd B) ∙∙ sym (gluer x)) i ⋀→Smash {A = A} {B = B} (push (push a j) i) = hcomp (λ k → λ { (i = i0) → gluel (snd A) (k ∨ ~ j) ; (i = i1) → gluer (snd B) (~ k ∧ j) ; (j = i0) → gluel (snd A) (~ i)}) (invSides-filler (gluel (snd A)) (gluer (snd B)) j (~ i)) Smash→⋀ : Smash A B → A ⋀ B Smash→⋀ basel = inl tt Smash→⋀ baser = inl tt Smash→⋀ (proj x y) = inr (x , y) Smash→⋀ (gluel a i) = push (inl a) (~ i) Smash→⋀ (gluer b i) = push (inr b) (~ i) {- associativity maps for smash produts. Proof pretty much direcly translated from https://github.com/ecavallo/redtt/blob/master/library/pointed/smash.red -} private pivotl : (b b' : typ B) → Path (Smash A B) (proj (snd A) b) (proj (snd A) b') pivotl b b' i = (gluer b ∙ sym (gluer b')) i pivotr : (a a' : typ A) → Path (Smash A B) (proj a (snd B)) (proj a' (snd B)) pivotr a a' i = (gluel a ∙ sym (gluel a')) i pivotlrId : {A : Pointed ℓ} {B : Pointed ℓ'} → _ pivotlrId {A = A} {B = B} = rCancel (gluer (snd B)) ∙ sym (rCancel (gluel (snd A))) rearrange-proj : (c : fst C) → (Smash A B) → Smash (SmashPtProj C B) A rearrange-proj c basel = baser rearrange-proj c baser = basel rearrange-proj c (proj x y) = proj (proj c y) x rearrange-proj {C = C} c (gluel a i) = hcomp (λ k → λ { (i = i0) → proj (pivotr (snd C) c k) a ; (i = i1) → baser}) (gluer a i) rearrange-proj c (gluer b i) = gluel (proj c b) i rearrange-gluel : (s : Smash A B) → Path (Smash (SmashPtProj C B) A) basel (rearrange-proj (snd C) s) rearrange-gluel {A = A} {B = B} {C = C} basel = sym (gluel (proj (snd C) (snd B))) ∙ gluer (snd A) rearrange-gluel baser = refl rearrange-gluel {A = A} {B = B} {C = C} (proj a b) i = hcomp (λ k → λ { (i = i0) → (sym (gluel (proj (snd C) (snd B))) ∙ gluer (snd A)) (~ k) ; (i = i1) → proj (pivotl (snd B) b k) a}) (gluer a (~ i)) rearrange-gluel {A = A} {B = B} {C = C} (gluel a i) j = hcomp (λ k → λ { (i = i1) → ((λ i₁ → gluel (proj (snd C) (snd B)) (~ i₁)) ∙ gluer (snd A)) (~ k ∨ j) ; (j = i0) → ((λ i₁ → gluel (proj (snd C) (snd B)) (~ i₁)) ∙ gluer (snd A)) (~ k) ; (j = i1) → top-filler i k}) (gluer a (i ∨ ~ j)) where top-filler : I → I → Smash (SmashPtProj C B) A top-filler i j = hcomp (λ k → λ { (i = i0) → side-filler k j ; (i = i1) → gluer a (j ∨ k) ; (j = i0) → gluer a (i ∧ k)}) (gluer a (i ∧ j)) where side-filler : I → I → Smash (SmashPtProj C B) A side-filler i j = hcomp (λ k → λ { (i = i0) → proj (proj (snd C) (snd B)) a ; (i = i1) → proj ((rCancel (gluel (snd C)) ∙ sym (rCancel (gluer (snd B)))) k j) a ; (j = i0) → proj (proj (snd C) (snd B)) a ; (j = i1) → (proj ((gluel (snd C) ∙ sym (gluel (snd C))) i) a)}) (proj ((gluel (snd C) ∙ sym (gluel (snd C))) (j ∧ i)) a) rearrange-gluel {A = A} {B = B} {C = C} (gluer b i) j = hcomp (λ k → λ {(i = i1) → ((sym (gluel (proj (snd C) (snd B)))) ∙ gluer (snd A)) (~ k) ; (j = i0) → ((sym (gluel (proj (snd C) (snd B)))) ∙ gluer (snd A)) (~ k) ; (j = i1) → top-filler1 i k}) (gluer (snd A) (i ∨ (~ j))) where top-filler1 : I → I → Smash (SmashPtProj C B) A top-filler1 i j = hcomp (λ k → λ { (i = i0) → congFunct (λ x → proj x (snd A)) (gluer (snd B)) (sym (gluer b)) (~ k) j ; (i = i1) → (sym (gluel (proj (snd C) (snd B))) ∙ gluer (snd A)) (~ j) ; (j = i0) → gluer (snd A) i ; (j = i1) → gluel (proj (snd C) b) i}) (top-filler2 i j) where top-filler2 : I → I → Smash (SmashPtProj C B) A top-filler2 i j = hcomp (λ k → λ { (j = i0) → gluer (snd A) (i ∧ k) ; (j = i1) → gluel (gluer b (~ k)) i}) (hcomp (λ k → λ { (j = i0) → gluel (gluer (snd B) i0) (~ k ∧ (~ i)) ; (j = i1) → gluel (baser) (~ k ∨ i) ; (i = i0) → gluel (gluer (snd B) j) (~ k) ; (i = i1) → gluel (proj (snd C) (snd B)) j }) (gluel (proj (snd C) (snd B)) (j ∨ (~ i)))) rearrange : Smash (SmashPtProj A B) C → Smash (SmashPtProj C B) A rearrange basel = basel rearrange baser = baser rearrange (proj x y) = rearrange-proj y x rearrange (gluel a i) = rearrange-gluel a (~ i) rearrange {A = A} {B = B} {C = C} (gluer b i) = ((λ j → proj (pivotr b (snd C) j) (snd A)) ∙ gluer (snd A)) i ⋀∙→SmashPtProj : (A ⋀∙ B) →∙ SmashPtProj A B ⋀∙→SmashPtProj {A = A} {B = B} = fun , refl where fun : (A ⋀ B) → Smash A B fun (inl x) = proj (snd A) (snd B) fun (inr (x , x₁)) = proj x x₁ fun (push (inl x) i) = pivotr (snd A) x i fun (push (inr x) i) = pivotl (snd B) x i fun (push (push a j) i) = pivotlrId (~ j) i SmashPtProj→⋀∙ : (SmashPtProj A B) →∙ (A ⋀∙ B) SmashPtProj→⋀∙ {A = A} {B = B} = Smash→⋀ , sym (push (inr (snd B))) SmashAssociate : Smash (SmashPtProj A B) C → Smash A (SmashPtProj B C) SmashAssociate = comm ∘ Smash-map (comm , refl) (idfun∙ _) ∘ rearrange SmashAssociate⁻ : Smash A (SmashPtProj B C) → Smash (SmashPtProj A B) C SmashAssociate⁻ = rearrange ∘ comm ∘ Smash-map (idfun∙ _) (comm , refl) ⋀-associate : (A ⋀∙ B) ⋀ C → A ⋀ (B ⋀∙ C) ⋀-associate = (idfun∙ _ ⋀→ SmashPtProj→⋀∙) ∘ Smash→⋀ ∘ SmashAssociate ∘ ⋀→Smash ∘ (⋀∙→SmashPtProj ⋀→ idfun∙ _) ⋀-associate⁻ : A ⋀ (B ⋀∙ C) → (A ⋀∙ B) ⋀ C ⋀-associate⁻ = (SmashPtProj→⋀∙ ⋀→ idfun∙ _) ∘ Smash→⋀ ∘ SmashAssociate⁻ ∘ ⋀→Smash ∘ (idfun∙ _ ⋀→ ⋀∙→SmashPtProj)
43.439252
157
0.472569
cbbb62e0b4d17cf6949a48db0015ff7d289c709d
702
agda
Agda
test/Fail/Issue2423.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/Fail/Issue2423.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
null
null
null
test/Fail/Issue2423.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
null
null
null
-- Andreas, 2017-01-21, issue #2423 overloading inherited projections -- {-# OPTIONS -v tc.lhs.split:30 #-} -- {-# OPTIONS -v tc.proj.amb:100 #-} -- {-# OPTIONS -v tc.mod.apply:100 #-} postulate A : Set record R : Set where field f : A record S : Set where field r : R open R r public -- The inherited projection (in the eyes of the scope checker) S.f -- is actually a composition of projections R.f ∘ S.r -- s .S.f = s .S.r .R.f open S open R test : S → S test s .f = s .f -- Error WAS: -- Cannot eliminate type S with pattern .f (did you supply too many arguments?) -- NOW: -- Cannot eliminate type S with projection R.f -- Shows the chosen disambiguation in error message.
21.272727
79
0.648148
2f224718319f3af18b3f7256165a1ece5e693df2
327
agda
Agda
test/features/matrixShapedTerminationOrder/TerminationMixingTupledCurried.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/features/matrixShapedTerminationOrder/TerminationMixingTupledCurried.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/features/matrixShapedTerminationOrder/TerminationMixingTupledCurried.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module TerminationMixingTupledCurried where data Nat : Set where zero : Nat succ : Nat -> Nat data _×_ (A B : Set) : Set where _,_ : A -> B -> A × B good : Nat × Nat -> Nat -> Nat good (succ x , y) z = good (x , succ y) (succ z) good (x , succ y) z = good (x , y) x good xy (succ z) = good xy z good _ _ = zero
20.4375
48
0.568807
41612992a09ef931bf695b50a5aab21844047612
603
agda
Agda
plutus-metatheory/test/IntegerOverflow.agda
imikushin/plutus
2c5bda20fb94b0f3737ba1a236ef5d7a7fd9f631
[ "Apache-2.0" ]
1,299
2018-10-02T13:41:39.000Z
2022-03-28T01:10:02.000Z
plutus-metatheory/test/IntegerOverflow.agda
imikushin/plutus
2c5bda20fb94b0f3737ba1a236ef5d7a7fd9f631
[ "Apache-2.0" ]
2,493
2018-09-28T19:28:17.000Z
2022-03-31T15:31:31.000Z
plutus-metatheory/test/IntegerOverflow.agda
imikushin/plutus
2c5bda20fb94b0f3737ba1a236ef5d7a7fd9f631
[ "Apache-2.0" ]
399
2018-10-05T09:36:10.000Z
2022-03-31T11:18:25.000Z
module test.IntegerOverflow where open import Type open import Declarative open import Builtin open import Builtin.Constant.Type open import Builtin.Constant.Term Ctx⋆ Kind * # _⊢⋆_ con size⋆ open import Agda.Builtin.Sigma open import Data.Integer open import Data.Nat open import Data.Empty -- plutus/plutus-core/test/data/integerOverflow.plc -- This term is impossible as terms are intrinsically sized -- completeting this definition requires an element of the empty type {- intOverflow : ∀{Γ} → Γ ⊢ con integer (size⋆ 1) intOverflow = con (integer 1 (ℤ.pos 128) (-≤+ Σ., +≤+ (gen _ _ {!!}))) -}
26.217391
70
0.74461
39adb41fccd4bdeb128a43a422a764d7a987ebd5
3,946
agda
Agda
src/fot/FOTC/Program/GCD/Total/TotalityI.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
11
2015-09-03T20:53:42.000Z
2021-09-12T16:09:54.000Z
src/fot/FOTC/Program/GCD/Total/TotalityI.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
2
2016-10-12T17:28:16.000Z
2017-01-01T14:34:26.000Z
src/fot/FOTC/Program/GCD/Total/TotalityI.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
3
2016-09-19T14:18:30.000Z
2018-03-14T08:50:00.000Z
------------------------------------------------------------------------------ -- Totality properties of the gcd ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Program.GCD.Total.TotalityI where open import FOTC.Base open import FOTC.Data.Nat open import FOTC.Data.Nat.Induction.NonAcc.LexicographicI open import FOTC.Data.Nat.Inequalities open import FOTC.Data.Nat.Inequalities.EliminationPropertiesI open import FOTC.Data.Nat.Inequalities.PropertiesI open import FOTC.Data.Nat.PropertiesI open import FOTC.Program.GCD.Total.ConversionRulesI open import FOTC.Program.GCD.Total.Definitions open import FOTC.Program.GCD.Total.GCD ------------------------------------------------------------------------------ -- gcd 0 0 is total. gcd-00-N : N (gcd zero zero) gcd-00-N = subst N (sym (gcd-00)) nzero ------------------------------------------------------------------------------ -- gcd 0 (succ n) is total. gcd-0S-N : ∀ {n} → N n → N (gcd zero (succ₁ n)) gcd-0S-N {n} Nn = subst N (sym (gcd-0S n)) (nsucc Nn) ------------------------------------------------------------------------------ -- gcd (succ₁ n) 0 is total. gcd-S0-N : ∀ {n} → N n → N (gcd (succ₁ n) zero) gcd-S0-N {n} Nn = subst N (sym (gcd-S0 n)) (nsucc Nn) ------------------------------------------------------------------------------ -- gcd (succ₁ m) (succ₁ n) when succ₁ m > succ₁ n is total. gcd-S>S-N : ∀ {m n} → N m → N n → N (gcd (succ₁ m ∸ succ₁ n) (succ₁ n)) → succ₁ m > succ₁ n → N (gcd (succ₁ m) (succ₁ n)) gcd-S>S-N {m} {n} Nm Nn ih Sm>Sn = subst N (sym (gcd-S>S m n Sm>Sn)) ih ------------------------------------------------------------------------------ -- gcd (succ₁ m) (succ₁ n) when succ₁ m ≯ succ₁ n is total. gcd-S≯S-N : ∀ {m n} → N m → N n → N (gcd (succ₁ m) (succ₁ n ∸ succ₁ m)) → succ₁ m ≯ succ₁ n → N (gcd (succ₁ m) (succ₁ n)) gcd-S≯S-N {m} {n} Nm Nn ih Sm≯Sn = subst N (sym (gcd-S≯S m n Sm≯Sn)) ih ------------------------------------------------------------------------------ -- gcd m n when m > n is total. gcd-x>y-N : ∀ {m n} → N m → N n → (∀ {o p} → N o → N p → Lexi o p m n → N (gcd o p)) → m > n → N (gcd m n) gcd-x>y-N nzero Nn _ 0>n = ⊥-elim (0>x→⊥ Nn 0>n) gcd-x>y-N (nsucc Nm) nzero _ _ = gcd-S0-N Nm gcd-x>y-N (nsucc {m} Nm) (nsucc {n} Nn) ah Sm>Sn = gcd-S>S-N Nm Nn ih Sm>Sn where -- Inductive hypothesis. ih : N (gcd (succ₁ m ∸ succ₁ n) (succ₁ n)) ih = ah {succ₁ m ∸ succ₁ n} {succ₁ n} (∸-N (nsucc Nm) (nsucc Nn)) (nsucc Nn) ([Sx∸Sy,Sy]<[Sx,Sy] Nm Nn) ------------------------------------------------------------------------------ -- gcd m n when m ≯ n is total. gcd-x≯y-N : ∀ {m n} → N m → N n → (∀ {o p} → N o → N p → Lexi o p m n → N (gcd o p)) → m ≯ n → N (gcd m n) gcd-x≯y-N nzero nzero _ _ = gcd-00-N gcd-x≯y-N nzero (nsucc Nn) _ _ = gcd-0S-N Nn gcd-x≯y-N (nsucc _) nzero _ Sm≯0 = ⊥-elim (S≯0→⊥ Sm≯0) gcd-x≯y-N (nsucc {m} Nm) (nsucc {n} Nn) ah Sm≯Sn = gcd-S≯S-N Nm Nn ih Sm≯Sn where -- Inductive hypothesis. ih : N (gcd (succ₁ m) (succ₁ n ∸ succ₁ m)) ih = ah {succ₁ m} {succ₁ n ∸ succ₁ m} (nsucc Nm) (∸-N (nsucc Nn) (nsucc Nm)) ([Sx,Sy∸Sx]<[Sx,Sy] Nm Nn) ------------------------------------------------------------------------------ -- gcd m n is total. gcd-N : ∀ {m n} → N m → N n → N (gcd m n) gcd-N = Lexi-wfind A h where A : D → D → Set A i j = N (gcd i j) h : ∀ {i j} → N i → N j → (∀ {k l} → N k → N l → Lexi k l i j → A k l) → A i j h Ni Nj ah = case (gcd-x>y-N Ni Nj ah) (gcd-x≯y-N Ni Nj ah) (x>y∨x≯y Ni Nj)
37.942308
78
0.424734
57bd54d8f0a7a9559025bed0c822d205a945b5b0
52
agda
Agda
test/Fail/Unknown-name-in-polarity-pragma.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Unknown-name-in-polarity-pragma.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Unknown-name-in-polarity-pragma.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --warning=error #-} {-# POLARITY F #-}
13
31
0.538462
41185121bbdac32d2b512e85df6cd485bb4fcd20
2,131
agda
Agda
BasicIPC/Syntax/HilbertSequential.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
29
2016-07-03T18:51:56.000Z
2022-01-01T10:29:18.000Z
BasicIPC/Syntax/HilbertSequential.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
1
2018-06-10T09:11:22.000Z
2018-06-10T09:11:22.000Z
BasicIPC/Syntax/HilbertSequential.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
null
null
null
-- Basic intuitionistic propositional calculus, without ∨ or ⊥. -- Hilbert-style formalisation of syntax. -- Sequences of terms. module BasicIPC.Syntax.HilbertSequential where open import BasicIPC.Syntax.Common public -- Derivations. infix 3 _⊦⊢_ data _⊦⊢_ (Γ : Cx Ty) : Cx Ty → Set where nil : Γ ⊦⊢ ∅ var : ∀ {Ξ A} → A ∈ Γ → Γ ⊦⊢ Ξ → Γ ⊦⊢ Ξ , A mp : ∀ {Ξ A B} → A ▻ B ∈ Ξ → A ∈ Ξ → Γ ⊦⊢ Ξ → Γ ⊦⊢ Ξ , B ci : ∀ {Ξ A} → Γ ⊦⊢ Ξ → Γ ⊦⊢ Ξ , A ▻ A ck : ∀ {Ξ A B} → Γ ⊦⊢ Ξ → Γ ⊦⊢ Ξ , A ▻ B ▻ A cs : ∀ {Ξ A B C} → Γ ⊦⊢ Ξ → Γ ⊦⊢ Ξ , (A ▻ B ▻ C) ▻ (A ▻ B) ▻ A ▻ C cpair : ∀ {Ξ A B} → Γ ⊦⊢ Ξ → Γ ⊦⊢ Ξ , A ▻ B ▻ A ∧ B cfst : ∀ {Ξ A B} → Γ ⊦⊢ Ξ → Γ ⊦⊢ Ξ , A ∧ B ▻ A csnd : ∀ {Ξ A B} → Γ ⊦⊢ Ξ → Γ ⊦⊢ Ξ , A ∧ B ▻ B unit : ∀ {Ξ} → Γ ⊦⊢ Ξ → Γ ⊦⊢ Ξ , ⊤ infix 3 _⊢_ _⊢_ : Cx Ty → Ty → Set Γ ⊢ A = ∃ (λ Ξ → Γ ⊦⊢ Ξ , A) -- Monotonicity with respect to context inclusion. mono⊦⊢ : ∀ {Ξ Γ Γ′} → Γ ⊆ Γ′ → Γ ⊦⊢ Ξ → Γ′ ⊦⊢ Ξ mono⊦⊢ η nil = nil mono⊦⊢ η (var i ts) = var (mono∈ η i) (mono⊦⊢ η ts) mono⊦⊢ η (mp i j ts) = mp i j (mono⊦⊢ η ts) mono⊦⊢ η (ci ts) = ci (mono⊦⊢ η ts) mono⊦⊢ η (ck ts) = ck (mono⊦⊢ η ts) mono⊦⊢ η (cs ts) = cs (mono⊦⊢ η ts) mono⊦⊢ η (cpair ts) = cpair (mono⊦⊢ η ts) mono⊦⊢ η (cfst ts) = cfst (mono⊦⊢ η ts) mono⊦⊢ η (csnd ts) = csnd (mono⊦⊢ η ts) mono⊦⊢ η (unit ts) = unit (mono⊦⊢ η ts) mono⊢ : ∀ {A Γ Γ′} → Γ ⊆ Γ′ → Γ ⊢ A → Γ′ ⊢ A mono⊢ η (Ξ , ts) = Ξ , mono⊦⊢ η ts -- Concatenation of derivations. _⧺⊦_ : ∀ {Γ Ξ Ξ′} → Γ ⊦⊢ Ξ → Γ ⊦⊢ Ξ′ → Γ ⊦⊢ Ξ ⧺ Ξ′ us ⧺⊦ nil = us us ⧺⊦ var i ts = var i (us ⧺⊦ ts) us ⧺⊦ mp i j ts = mp (mono∈ weak⊆⧺₂ i) (mono∈ weak⊆⧺₂ j) (us ⧺⊦ ts) us ⧺⊦ ci ts = ci (us ⧺⊦ ts) us ⧺⊦ ck ts = ck (us ⧺⊦ ts) us ⧺⊦ cs ts = cs (us ⧺⊦ ts) us ⧺⊦ cpair ts = cpair (us ⧺⊦ ts) us ⧺⊦ cfst ts = cfst (us ⧺⊦ ts) us ⧺⊦ csnd ts = csnd (us ⧺⊦ ts) us ⧺⊦ unit ts = unit (us ⧺⊦ ts) -- Modus ponens in expanded form. app : ∀ {A B Γ} → Γ ⊢ A ▻ B → Γ ⊢ A → Γ ⊢ B app {A} {B} (Ξ , ts) (Ξ′ , us) = Ξ″ , vs where Ξ″ = (Ξ′ , A) ⧺ (Ξ , A ▻ B) vs = mp top (mono∈ (weak⊆⧺₁ (Ξ , A ▻ B)) top) (us ⧺⊦ ts)
30.884058
71
0.441107
57e28d61cf14efa360d9df34533431ab8f6ea0e8
3,621
agda
Agda
src/Categories/Enriched/Functor.agda
jaykru/agda-categories
a4053cf700bcefdf73b857c3352f1eae29382a60
[ "MIT" ]
279
2019-06-01T14:36:40.000Z
2022-03-22T00:40:14.000Z
src/Categories/Enriched/Functor.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
236
2019-06-01T14:53:54.000Z
2022-03-28T14:31:43.000Z
src/Categories/Enriched/Functor.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
64
2019-06-02T16:58:15.000Z
2022-03-14T02:00:59.000Z
{-# OPTIONS --without-K --safe #-} open import Categories.Category using (module Commutation) renaming (Category to Setoid-Category) open import Categories.Category.Monoidal using (Monoidal) module Categories.Enriched.Functor {o ℓ e} {V : Setoid-Category o ℓ e} (M : Monoidal V) where open import Level open import Categories.Enriched.Category M open import Categories.Enriched.Category.Underlying M open import Categories.Functor using () renaming (Functor to Setoid-Functor) open import Categories.Morphism.Reasoning V open import Categories.Category.Monoidal.Reasoning M using (⊗-distrib-over-∘) open Setoid-Category V renaming (Obj to ObjV; id to idV) open Commutation V open HomReasoning open Monoidal M record Functor {c d} (C : Category c) (D : Category d) : Set (ℓ ⊔ e ⊔ c ⊔ d) where eta-equality private module C = Category C module D = Category D field map₀ : C.Obj → D.Obj map₁ : ∀ {X Y} → C [ X , Y ] ⇒ D [ map₀ X , map₀ Y ] identity : ∀ {X} → map₁ ∘ C.id ≈ D.id {map₀ X} homomorphism : ∀ {X Y Z} → [ C [ Y , Z ] ⊗₀ C [ X , Y ] ⇒ D [ map₀ X , map₀ Z ] ]⟨ C.⊚ ⇒⟨ C [ X , Z ] ⟩ map₁ ≈ map₁ ⊗₁ map₁ ⇒⟨ D [ _ , _ ] ⊗₀ D [ _ , _ ] ⟩ D.⊚ ⟩ -- We don't need an analogue of F-resp-≈ because |hom A B| is not -- a hom-Setoid but a hom-object (in V) and the functorial action -- is not a Setoid-map but a V-morphism. Whether V-objects have a -- notion of equality, and whether such equalities are preserved -- by V-morphisms, depends entirely on V. -- Shorthands for the functorial actions that work well as -- post-projections. ₀ = map₀ ₁ = map₁ Endofunctor : ∀ {c} → Category c → Set (ℓ ⊔ e ⊔ c) Endofunctor C = Functor C C id : ∀ {c} {C : Category c} → Endofunctor C id {_} {C} = record { map₀ = λ X → X ; map₁ = idV ; identity = identityˡ ; homomorphism = id-comm-sym ○ ∘-resp-≈ʳ (⟺ ⊗.identity) } where open Category C infixr 9 _∘F_ _∘F_ : ∀ {c d e} {C : Category c} {D : Category d} {E : Category e} → Functor D E → Functor C D → Functor C E _∘F_ {_} {_} {_} {C} {D} {E} G F = record { map₀ = λ X → G.₀ (F.₀ X) ; map₁ = G.₁ ∘ F.₁ ; identity = begin (G.₁ ∘ F.₁) ∘ C.id ≈⟨ pullʳ F.identity ⟩ G.₁ ∘ D.id ≈⟨ G.identity ⟩ E.id ∎ ; homomorphism = begin (G.₁ ∘ F.₁) ∘ C.⊚ ≈⟨ pullʳ F.homomorphism ⟩ G.₁ ∘ (D.⊚ ∘ F.₁ ⊗₁ F.₁) ≈⟨ pullˡ G.homomorphism ⟩ (E.⊚ ∘ G.₁ ⊗₁ G.₁) ∘ F.₁ ⊗₁ F.₁ ≈˘⟨ pushʳ ⊗-distrib-over-∘ ⟩ E.⊚ ∘ (G.₁ ∘ F.₁) ⊗₁ (G.₁ ∘ F.₁) ∎ } where module C = Category C module D = Category D module E = Category E module F = Functor F module G = Functor G -- A V-enriched functor induces an ordinary functor on the underlying -- categories. module _ {c d} {C : Category c} {D : Category d} where UnderlyingFunctor : Functor C D → Setoid-Functor (Underlying C) (Underlying D) UnderlyingFunctor F = record { F₀ = F.₀ ; F₁ = F.₁ ∘_ ; identity = F.identity ; homomorphism = λ {_} {_} {_} {f} {g} → begin F.₁ ∘ C.⊚ ∘ g ⊗₁ f ∘ λ⇐ ≈⟨ pullˡ F.homomorphism ⟩ (D.⊚ ∘ F.₁ ⊗₁ F.₁) ∘ g ⊗₁ f ∘ λ⇐ ≈˘⟨ pushʳ (pushˡ ⊗-distrib-over-∘) ⟩ D.⊚ ∘ (F.₁ ∘ g) ⊗₁ (F.₁ ∘ f) ∘ λ⇐ ∎ ; F-resp-≈ = ∘-resp-≈ʳ } where module C = Category C module D = Category D module F = Functor F λ⇐ = unitorˡ.to module UnderlyingFunctor F = Setoid-Functor (UnderlyingFunctor F)
32.330357
97
0.5562
314adc4507da08e8aafe6fb0d8a935cd6346bc1e
1,217
agda
Agda
Categories/Functor/Diagonal.agda
copumpkin/categories
36f4181d751e2ecb54db219911d8c69afe8ba892
[ "BSD-3-Clause" ]
98
2015-04-15T14:57:33.000Z
2022-03-08T05:20:36.000Z
Categories/Functor/Diagonal.agda
p-pavel/categories
e41aef56324a9f1f8cf3cd30b2db2f73e01066f2
[ "BSD-3-Clause" ]
19
2015-05-23T06:47:10.000Z
2019-08-09T16:31:40.000Z
Categories/Functor/Diagonal.agda
p-pavel/categories
e41aef56324a9f1f8cf3cd30b2db2f73e01066f2
[ "BSD-3-Clause" ]
23
2015-02-05T13:03:09.000Z
2021-11-11T13:50:56.000Z
{-# OPTIONS --universe-polymorphism #-} module Categories.Functor.Diagonal where open import Data.Product open import Categories.Category open import Categories.Functor open import Categories.Product open import Categories.FunctorCategory open import Categories.Functor.Constant import Categories.Power as Power Δ : ∀ {o ℓ e} → (C : Category o ℓ e) → Functor C (Product C C) Δ C = record { F₀ = λ x → x , x ; F₁ = λ f → f , f ; identity = refl , refl ; homomorphism = refl , refl ; F-resp-≡ = λ x → x , x } where open Category C open Equiv Δ′ : ∀ {o ℓ e} → (I : Set) → (C : Category o ℓ e) → Functor C (Power.Exp C I) Δ′ I C = record { F₀ = λ x _ → x ; F₁ = λ f _ → f ; identity = λ _ → refl ; homomorphism = λ _ → refl ; F-resp-≡ = λ x _ → x } where open Power C open Category C open Equiv ΔF : ∀ {o ℓ e o₁ ℓ₁ e₁} {C : Category o ℓ e} (I : Category o₁ ℓ₁ e₁) → Functor C (Functors I C) ΔF {C = C} I = record { F₀ = λ c → Constant c ; F₁ = λ f → record { η = λ X → f; commute = λ g → trans C.identityʳ (sym C.identityˡ) } ; identity = refl ; homomorphism = refl ; F-resp-≡ = λ x → x } where module C = Category C open C.Equiv module I = Category I
23.862745
95
0.608053
590d71a4bbe28c2e4b13265c021b28180f6dfdf2
406
agda
Agda
test/succeed/InstanceGuessesMeta.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
1
2019-11-27T07:26:06.000Z
2019-11-27T07:26:06.000Z
test/succeed/InstanceGuessesMeta.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
test/succeed/InstanceGuessesMeta.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
-- Andreas, 2012-01-10 -- {-# OPTIONS -v tc.constr.findInScope:50 #-} module InstanceGuessesMeta where data Bool : Set where true false : Bool postulate D : Bool -> Set E : Bool -> Set d : {x : Bool} -> D x f : {x : Bool}{{ dx : D x }} -> E x b : E true b = f -- should succeed -- Agda is now allowed to solve hidden x in type of d by unification, -- when searching for inhabitant of D x
23.882353
70
0.618227
df363ebc3bcd49fc593f5ceef4702fec3c8d605a
5,260
agda
Agda
Cubical/Data/Queue/Untruncated2List.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
1
2021-10-31T17:32:49.000Z
2021-10-31T17:32:49.000Z
Cubical/Data/Queue/Untruncated2List.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
Cubical/Data/Queue/Untruncated2List.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
{-# OPTIONS --no-exact-split --safe #-} module Cubical.Data.Queue.Untruncated2List where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.SIP open import Cubical.Structures.Queue open import Cubical.Data.Maybe open import Cubical.Data.List open import Cubical.Data.Sigma open import Cubical.HITs.PropositionalTruncation open import Cubical.Data.Queue.1List module Untruncated2List {ℓ} (A : Type ℓ) (Aset : isSet A) where open Queues-on A Aset -- Untruncated 2Lists data Q : Type ℓ where Q⟨_,_⟩ : (xs ys : List A) → Q tilt : ∀ xs ys z → Q⟨ xs ++ [ z ] , ys ⟩ ≡ Q⟨ xs , ys ++ [ z ] ⟩ -- enq into the first list, deq from the second if possible flushEq' : (xs ys : List A) → Q⟨ xs ++ ys , [] ⟩ ≡ Q⟨ xs , rev ys ⟩ flushEq' xs [] = cong Q⟨_, [] ⟩ (++-unit-r xs) flushEq' xs (z ∷ ys) j = hcomp (λ i → λ { (j = i0) → Q⟨ ++-assoc xs [ z ] ys i , [] ⟩ ; (j = i1) → tilt xs (rev ys) z i }) (flushEq' (xs ++ [ z ]) ys j) flushEq : (xs ys : List A) → Q⟨ xs ++ rev ys , [] ⟩ ≡ Q⟨ xs , ys ⟩ flushEq xs ys = flushEq' xs (rev ys) ∙ cong Q⟨ xs ,_⟩ (rev-rev ys) emp : Q emp = Q⟨ [] , [] ⟩ enq : A → Q → Q enq a Q⟨ xs , ys ⟩ = Q⟨ a ∷ xs , ys ⟩ enq a (tilt xs ys z i) = tilt (a ∷ xs) ys z i deqFlush : List A → Maybe (Q × A) deqFlush [] = nothing deqFlush (x ∷ xs) = just (Q⟨ [] , xs ⟩ , x) deq : Q → Maybe (Q × A) deq Q⟨ xs , [] ⟩ = deqFlush (rev xs) deq Q⟨ xs , y ∷ ys ⟩ = just (Q⟨ xs , ys ⟩ , y) deq (tilt xs [] z i) = path i where path : deqFlush (rev (xs ++ [ z ])) ≡ just (Q⟨ xs , [] ⟩ , z) path = cong deqFlush (rev-snoc xs z) ∙ cong (λ q → just (q , z)) (sym (flushEq' [] xs)) deq (tilt xs (y ∷ ys) z i) = just (tilt xs ys z i , y) Raw : RawQueue Raw = (Q , emp , enq , deq) -- We construct an equivalence Q₁≃Q and prove that this is an equivalence of queue structures private module One = 1List A Aset open One renaming (Q to Q₁; emp to emp₁; enq to enq₁; deq to deq₁) using () quot : Q₁ → Q quot xs = Q⟨ xs , [] ⟩ eval : Q → Q₁ eval Q⟨ xs , ys ⟩ = xs ++ rev ys eval (tilt xs ys z i) = hcomp (λ j → λ { (i = i0) → (xs ++ [ z ]) ++ rev ys ; (i = i1) → xs ++ rev-snoc ys z (~ j) }) (++-assoc xs [ z ] (rev ys) i) quot∘eval : ∀ q → quot (eval q) ≡ q quot∘eval Q⟨ xs , ys ⟩ = flushEq xs ys quot∘eval (tilt xs ys z i) j = hcomp (λ k → λ { (i = i0) → compPath-filler (flushEq' (xs ++ [ z ]) (rev ys)) (cong Q⟨ xs ++ [ z ] ,_⟩ (rev-rev ys)) k j ; (i = i1) → helper k ; (j = i0) → Q⟨ compPath-filler (++-assoc xs [ z ] (rev ys)) (cong (xs ++_) (sym (rev-snoc ys z))) k i , [] ⟩ ; (j = i1) → tilt xs (rev-rev ys k) z i }) flushEq'-filler where flushEq'-filler : Q flushEq'-filler = hfill (λ i → λ { (j = i0) → Q⟨ ++-assoc xs [ z ] (rev ys) i , [] ⟩ ; (j = i1) → tilt xs (rev (rev ys)) z i }) (inS (flushEq' (xs ++ [ z ]) (rev ys) j)) i helper : I → Q helper k = hcomp (λ l → λ { (j = i0) → Q⟨ xs ++ rev-snoc ys z (l ∧ ~ k) , [] ⟩ ; (j = i1) → Q⟨ xs , rev-rev-snoc ys z l k ⟩ ; (k = i0) → flushEq' xs (rev-snoc ys z l) j ; (k = i1) → flushEq xs (ys ++ [ z ]) j }) (compPath-filler (flushEq' xs (rev (ys ++ [ z ]))) (cong Q⟨ xs ,_⟩ (rev-rev (ys ++ [ z ]))) k j) eval∘quot : ∀ xs → eval (quot xs) ≡ xs eval∘quot = ++-unit-r -- We get our desired equivalence quotEquiv : Q₁ ≃ Q quotEquiv = isoToEquiv (iso quot eval quot∘eval eval∘quot) -- Now it only remains to prove that this is an equivalence of queue structures quot∘emp : quot emp₁ ≡ emp quot∘emp = refl quot∘enq : ∀ x xs → quot (enq₁ x xs) ≡ enq x (quot xs) quot∘enq x xs = refl quot∘deq : ∀ xs → deqMap quot (deq₁ xs) ≡ deq (quot xs) quot∘deq [] = refl quot∘deq (x ∷ []) = refl quot∘deq (x ∷ x' ∷ xs) = deqMap-∘ quot (enq₁ x) (deq₁ (x' ∷ xs)) ∙ sym (deqMap-∘ (enq x) quot (deq₁ (x' ∷ xs))) ∙ cong (deqMap (enq x)) (quot∘deq (x' ∷ xs)) ∙ lemma x x' (rev xs) where lemma : ∀ x x' ys → deqMap (enq x) (deqFlush (ys ++ [ x' ])) ≡ deqFlush ((ys ++ [ x' ]) ++ [ x ]) lemma x x' [] i = just (tilt [] [] x i , x') lemma x x' (y ∷ ys) i = just (tilt [] (ys ++ [ x' ]) x i , y) quotEquivHasQueueEquivStr : RawQueueEquivStr One.Raw Raw quotEquiv quotEquivHasQueueEquivStr = quot∘emp , quot∘enq , quot∘deq -- And we get a path between the raw 1Lists and 2Lists Raw-1≡2 : One.Raw ≡ Raw Raw-1≡2 = sip rawQueueUnivalentStr _ _ (quotEquiv , quotEquivHasQueueEquivStr) -- We derive the axioms for 2List from those for 1List WithLaws : Queue WithLaws = Q , str Raw , subst (uncurry QueueAxioms) Raw-1≡2 (snd (str One.WithLaws)) -- In particular, the untruncated queue type is a set isSetQ : isSet Q isSetQ = str WithLaws .snd .fst WithLaws-1≡2 : One.WithLaws ≡ WithLaws WithLaws-1≡2 = sip queueUnivalentStr _ _ (quotEquiv , quotEquivHasQueueEquivStr) Finite : FiniteQueue Finite = Q , str WithLaws , subst (uncurry FiniteQueueAxioms) WithLaws-1≡2 (snd (str One.Finite))
30.941176
105
0.552091
202d89a5a3778c0b674cf9dc1fcd8c934fa14057
588
agda
Agda
HoTT.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
1
2021-06-30T00:17:55.000Z
2021-06-30T00:17:55.000Z
HoTT.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
null
null
null
HoTT.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} module HoTT where open import lib.Basics public open import lib.types.Types public open import lib.groups.Groups public open import lib.cubical.Cubical public open import lib.NType2 public open import lib.Equivalences2 public open import lib.NConnected public {- To use coinduction in the form of [∞], [♭] and [♯] you can do: open import HoTT open Coinduction You can also use coinductive records and copatterns instead, that’s prettier (see experimental/GlobularTypes.agda for an example) -} module Coinduction where open import lib.Coinduction public
24.5
76
0.784014
0e0c75ef5cc8ddf159320baf6f11e9abfd963ed4
46,435
agda
Agda
Agda/07-finite-sets.agda
tmoux/HoTT-Intro
22023fd35023cb6804424ce12cd10d252b80fd29
[ "CC-BY-4.0" ]
333
2018-09-26T08:33:30.000Z
2022-03-22T23:50:15.000Z
Agda/07-finite-sets.agda
tmoux/HoTT-Intro
22023fd35023cb6804424ce12cd10d252b80fd29
[ "CC-BY-4.0" ]
8
2019-06-18T04:16:04.000Z
2020-10-16T15:27:01.000Z
Agda/07-finite-sets.agda
tmoux/HoTT-Intro
22023fd35023cb6804424ce12cd10d252b80fd29
[ "CC-BY-4.0" ]
30
2018-09-26T09:08:57.000Z
2022-03-16T00:33:50.000Z
{-# OPTIONS --without-K --exact-split --safe #-} module 07-finite-sets where import 06-universes open 06-universes public -------------------------------------------------------------------------------- {- Section 7.1 The congruence relations -} {- Definition 7.1.1 -} -- We introduce the divisibility relation. -- div-ℕ : ℕ → ℕ → UU lzero div-ℕ m n = Σ ℕ (λ k → Id (mul-ℕ k m) n) {- Proposition 7.1.2 -} {- In the following three constructions we show that if any two of the three numbers x, y, and x + y, is divisible by d, then so is the third. -} div-add-ℕ : (d x y : ℕ) → div-ℕ d x → div-ℕ d y → div-ℕ d (add-ℕ x y) div-add-ℕ d x y (pair n p) (pair m q) = pair ( add-ℕ n m) ( ( right-distributive-mul-add-ℕ n m d) ∙ ( ap-add-ℕ p q)) div-left-summand-ℕ : (d x y : ℕ) → div-ℕ d y → div-ℕ d (add-ℕ x y) → div-ℕ d x div-left-summand-ℕ zero-ℕ x y (pair m q) (pair n p) = pair zero-ℕ ( ( inv (right-zero-law-mul-ℕ n)) ∙ ( p ∙ (ap (add-ℕ x) ((inv q) ∙ (right-zero-law-mul-ℕ m))))) div-left-summand-ℕ (succ-ℕ d) x y (pair m q) (pair n p) = pair ( dist-ℕ m n) ( is-injective-add-ℕ (mul-ℕ m (succ-ℕ d)) (mul-ℕ (dist-ℕ m n) (succ-ℕ d)) x ( ( inv ( ( right-distributive-mul-add-ℕ m (dist-ℕ m n) (succ-ℕ d)) ∙ ( commutative-add-ℕ ( mul-ℕ m (succ-ℕ d)) ( mul-ℕ (dist-ℕ m n) (succ-ℕ d))))) ∙ ( ( ap ( mul-ℕ' (succ-ℕ d)) ( leq-dist-ℕ m n ( leq-leq-mul-ℕ' m n d ( concatenate-eq-leq-eq-ℕ q ( leq-add-ℕ' y x) ( inv p))))) ∙ ( p ∙ (ap (add-ℕ x) (inv q)))))) div-right-summand-ℕ : (d x y : ℕ) → div-ℕ d x → div-ℕ d (add-ℕ x y) → div-ℕ d y div-right-summand-ℕ d x y H1 H2 = div-left-summand-ℕ d y x H1 (tr (div-ℕ d) (commutative-add-ℕ x y) H2) {- Definition 7.1.3 -} {- We define the congruence relation on ℕ and we do some bureaucracy that will help us in calculations involving the congruence relations. -} cong-ℕ : ℕ → ℕ → ℕ → UU lzero cong-ℕ k x y = div-ℕ k (dist-ℕ x y) _≡_mod_ : ℕ → ℕ → ℕ → UU lzero x ≡ y mod k = cong-ℕ k x y concatenate-eq-cong-eq-ℕ : (k : ℕ) {x1 x2 x3 x4 : ℕ} → Id x1 x2 → cong-ℕ k x2 x3 → Id x3 x4 → cong-ℕ k x1 x4 concatenate-eq-cong-eq-ℕ k refl H refl = H concatenate-eq-cong-ℕ : (k : ℕ) {x1 x2 x3 : ℕ} → Id x1 x2 → cong-ℕ k x2 x3 → cong-ℕ k x1 x3 concatenate-eq-cong-ℕ k refl H = H concatenate-cong-eq-ℕ : (k : ℕ) {x1 x2 x3 : ℕ} → cong-ℕ k x1 x2 → Id x2 x3 → cong-ℕ k x1 x3 concatenate-cong-eq-ℕ k H refl = H {- Proposition 7.1.4 -} -- We show that cong-ℕ is an equivalence relation. reflexive-cong-ℕ : (k x : ℕ) → cong-ℕ k x x reflexive-cong-ℕ k x = pair zero-ℕ ((left-zero-law-mul-ℕ (succ-ℕ k)) ∙ (dist-eq-ℕ x x refl)) cong-identification-ℕ : (k : ℕ) {x y : ℕ} → Id x y → cong-ℕ k x y cong-identification-ℕ k {x} refl = reflexive-cong-ℕ k x symmetric-cong-ℕ : (k x y : ℕ) → cong-ℕ k x y → cong-ℕ k y x symmetric-cong-ℕ k x y (pair d p) = pair d (p ∙ (symmetric-dist-ℕ x y)) {- Before we show that cong-ℕ is transitive, we give some lemmas that will help us showing that cong is an equivalence relation. They are basically bureaucracy, manipulating already known facts. -} -- Three elements can be ordered in 6 possible ways cases-order-three-elements-ℕ : (x y z : ℕ) → UU lzero cases-order-three-elements-ℕ x y z = coprod ( coprod ((leq-ℕ x y) × (leq-ℕ y z)) ((leq-ℕ x z) × (leq-ℕ z y))) ( coprod ( coprod ((leq-ℕ y z) × (leq-ℕ z x)) ((leq-ℕ y x) × (leq-ℕ x z))) ( coprod ((leq-ℕ z x) × (leq-ℕ x y)) ((leq-ℕ z y) × (leq-ℕ y x)))) order-three-elements-ℕ : (x y z : ℕ) → cases-order-three-elements-ℕ x y z order-three-elements-ℕ zero-ℕ zero-ℕ zero-ℕ = inl (inl (pair star star)) order-three-elements-ℕ zero-ℕ zero-ℕ (succ-ℕ z) = inl (inl (pair star star)) order-three-elements-ℕ zero-ℕ (succ-ℕ y) zero-ℕ = inl (inr (pair star star)) order-three-elements-ℕ zero-ℕ (succ-ℕ y) (succ-ℕ z) = inl (functor-coprod (pair star) (pair star) (decide-leq-ℕ y z)) order-three-elements-ℕ (succ-ℕ x) zero-ℕ zero-ℕ = inr (inl (inl (pair star star))) order-three-elements-ℕ (succ-ℕ x) zero-ℕ (succ-ℕ z) = inr (inl (functor-coprod (pair star) (pair star) (decide-leq-ℕ z x))) order-three-elements-ℕ (succ-ℕ x) (succ-ℕ y) zero-ℕ = inr (inr (functor-coprod (pair star) (pair star) (decide-leq-ℕ x y))) order-three-elements-ℕ (succ-ℕ x) (succ-ℕ y) (succ-ℕ z) = order-three-elements-ℕ x y z {- We show that the distances of any three elements always add up, when they are added up in the right way :) -} cases-dist-ℕ : (x y z : ℕ) → UU lzero cases-dist-ℕ x y z = coprod ( Id (add-ℕ (dist-ℕ x y) (dist-ℕ y z)) (dist-ℕ x z)) ( coprod ( Id (add-ℕ (dist-ℕ y z) (dist-ℕ x z)) (dist-ℕ x y)) ( Id (add-ℕ (dist-ℕ x z) (dist-ℕ x y)) (dist-ℕ y z))) is-total-dist-ℕ : (x y z : ℕ) → cases-dist-ℕ x y z is-total-dist-ℕ x y z with order-three-elements-ℕ x y z is-total-dist-ℕ x y z | inl (inl (pair H1 H2)) = inl (triangle-equality-dist-ℕ x y z H1 H2) is-total-dist-ℕ x y z | inl (inr (pair H1 H2)) = inr ( inl ( ( commutative-add-ℕ (dist-ℕ y z) (dist-ℕ x z)) ∙ ( ( ap (add-ℕ (dist-ℕ x z)) (symmetric-dist-ℕ y z)) ∙ ( triangle-equality-dist-ℕ x z y H1 H2)))) is-total-dist-ℕ x y z | inr (inl (inl (pair H1 H2))) = inr ( inl ( ( ap (add-ℕ (dist-ℕ y z)) (symmetric-dist-ℕ x z)) ∙ ( ( triangle-equality-dist-ℕ y z x H1 H2) ∙ ( symmetric-dist-ℕ y x)))) is-total-dist-ℕ x y z | inr (inl (inr (pair H1 H2))) = inr ( inr ( ( ap (add-ℕ (dist-ℕ x z)) (symmetric-dist-ℕ x y)) ∙ ( ( commutative-add-ℕ (dist-ℕ x z) (dist-ℕ y x)) ∙ ( triangle-equality-dist-ℕ y x z H1 H2)))) is-total-dist-ℕ x y z | inr (inr (inl (pair H1 H2))) = inr ( inr ( ( ap (add-ℕ' (dist-ℕ x y)) (symmetric-dist-ℕ x z)) ∙ ( ( triangle-equality-dist-ℕ z x y H1 H2) ∙ ( symmetric-dist-ℕ z y)))) is-total-dist-ℕ x y z | inr (inr (inr (pair H1 H2))) = inl ( ( ap-add-ℕ (symmetric-dist-ℕ x y) (symmetric-dist-ℕ y z)) ∙ ( ( commutative-add-ℕ (dist-ℕ y x) (dist-ℕ z y)) ∙ ( ( triangle-equality-dist-ℕ z y x H1 H2) ∙ ( symmetric-dist-ℕ z x)))) -- Finally, we show that cong-ℕ is transitive. transitive-cong-ℕ : (k x y z : ℕ) → cong-ℕ k x y → cong-ℕ k y z → cong-ℕ k x z transitive-cong-ℕ k x y z d e with is-total-dist-ℕ x y z transitive-cong-ℕ k x y z d e | inl α = tr (div-ℕ k) α (div-add-ℕ k (dist-ℕ x y) (dist-ℕ y z) d e) transitive-cong-ℕ k x y z d e | inr (inl α) = div-right-summand-ℕ k (dist-ℕ y z) (dist-ℕ x z) e (tr (div-ℕ k) (inv α) d) transitive-cong-ℕ k x y z d e | inr (inr α) = div-left-summand-ℕ k (dist-ℕ x z) (dist-ℕ x y) d (tr (div-ℕ k) (inv α) e) concatenate-cong-eq-cong-ℕ : {k x1 x2 x3 x4 : ℕ} → cong-ℕ k x1 x2 → Id x2 x3 → cong-ℕ k x3 x4 → cong-ℕ k x1 x4 concatenate-cong-eq-cong-ℕ {k} {x} {y} {.y} {z} H refl K = transitive-cong-ℕ k x y z H K concatenate-eq-cong-eq-cong-eq-ℕ : (k : ℕ) {x1 x2 x3 x4 x5 x6 : ℕ} → Id x1 x2 → cong-ℕ k x2 x3 → Id x3 x4 → cong-ℕ k x4 x5 → Id x5 x6 → cong-ℕ k x1 x6 concatenate-eq-cong-eq-cong-eq-ℕ k {x} {.x} {y} {.y} {z} {.z} refl H refl K refl = transitive-cong-ℕ k x y z H K {- Remark 7.1.6 (this is also Exercise 7.2) -} -- We show that cong-ℕ one-ℕ is the indiscrete equivalence relation -- div-one-ℕ : (x : ℕ) → div-ℕ one-ℕ x div-one-ℕ x = pair x (right-unit-law-mul-ℕ x) is-indiscrete-cong-one-ℕ : (x y : ℕ) → cong-ℕ one-ℕ x y is-indiscrete-cong-one-ℕ x y = div-one-ℕ (dist-ℕ x y) -- We show that the congruence relation modulo 0 is discrete div-zero-ℕ : (k : ℕ) → div-ℕ k zero-ℕ div-zero-ℕ k = pair zero-ℕ (left-zero-law-mul-ℕ k) is-discrete-cong-zero-ℕ : (x y : ℕ) → cong-ℕ zero-ℕ x y → Id x y is-discrete-cong-zero-ℕ x y (pair k p) = eq-dist-ℕ x y ((inv (right-zero-law-mul-ℕ k)) ∙ p) -- We show that d | 1 if and only if d = 1. -- We show that 0 | x if and only if x = 0. -- We show that zero-ℕ is congruent to n modulo n. cong-zero-ℕ : (k : ℕ) → cong-ℕ k k zero-ℕ cong-zero-ℕ k = pair one-ℕ ((left-unit-law-mul-ℕ k) ∙ (inv (right-zero-law-dist-ℕ k))) cong-zero-ℕ' : (k : ℕ) → cong-ℕ k zero-ℕ k cong-zero-ℕ' k = symmetric-cong-ℕ k k zero-ℕ (cong-zero-ℕ k) -------------------------------------------------------------------------------- {- Section 7.2 The finite types -} {- Definition 7.2.1 -} -- We introduce the finite types as a family indexed by ℕ. Fin : ℕ → UU lzero Fin zero-ℕ = empty Fin (succ-ℕ k) = coprod (Fin k) unit inl-Fin : (k : ℕ) → Fin k → Fin (succ-ℕ k) inl-Fin k = inl neg-one-Fin : {k : ℕ} → Fin (succ-ℕ k) neg-one-Fin {k} = inr star {- Definition 7.2.4 -} -- We define the inclusion of Fin k into ℕ. nat-Fin : {k : ℕ} → Fin k → ℕ nat-Fin {succ-ℕ k} (inl x) = nat-Fin x nat-Fin {succ-ℕ k} (inr x) = k {- Lemma 7.2.5 -} -- We show that nat-Fin is bounded strict-upper-bound-nat-Fin : {k : ℕ} (x : Fin k) → le-ℕ (nat-Fin x) k strict-upper-bound-nat-Fin {succ-ℕ k} (inl x) = transitive-le-ℕ ( nat-Fin x) ( k) ( succ-ℕ k) ( strict-upper-bound-nat-Fin x) ( succ-le-ℕ k) strict-upper-bound-nat-Fin {succ-ℕ k} (inr star) = succ-le-ℕ k -- We also give a non-strict upper bound for convenience upper-bound-nat-Fin : {k : ℕ} (x : Fin (succ-ℕ k)) → leq-ℕ (nat-Fin x) k upper-bound-nat-Fin {zero-ℕ} (inr star) = star upper-bound-nat-Fin {succ-ℕ k} (inl x) = preserves-leq-succ-ℕ (nat-Fin x) k (upper-bound-nat-Fin x) upper-bound-nat-Fin {succ-ℕ k} (inr star) = reflexive-leq-ℕ (succ-ℕ k) {- Proposition 7.2.6 -} -- We show that nat-Fin is an injective function neq-le-ℕ : {x y : ℕ} → le-ℕ x y → ¬ (Id x y) neq-le-ℕ {zero-ℕ} {succ-ℕ y} H = Peano-8 y neq-le-ℕ {succ-ℕ x} {succ-ℕ y} H p = neq-le-ℕ H (is-injective-succ-ℕ x y p) is-injective-nat-Fin : {k : ℕ} {x y : Fin k} → Id (nat-Fin x) (nat-Fin y) → Id x y is-injective-nat-Fin {succ-ℕ k} {inl x} {inl y} p = ap inl (is-injective-nat-Fin p) is-injective-nat-Fin {succ-ℕ k} {inl x} {inr star} p = ex-falso (neq-le-ℕ (strict-upper-bound-nat-Fin x) p) is-injective-nat-Fin {succ-ℕ k} {inr star} {inl y} p = ex-falso (neq-le-ℕ (strict-upper-bound-nat-Fin y) (inv p)) is-injective-nat-Fin {succ-ℕ k} {inr star} {inr star} p = refl {- Definition 7.2.7 -} -- We define the zero element of Fin k. zero-Fin : {k : ℕ} → Fin (succ-ℕ k) zero-Fin {zero-ℕ} = inr star zero-Fin {succ-ℕ k} = inl zero-Fin -- We define a function skip-zero-Fin in order to define succ-Fin. skip-zero-Fin : {k : ℕ} → Fin k → Fin (succ-ℕ k) skip-zero-Fin {succ-ℕ k} (inl x) = inl (skip-zero-Fin x) skip-zero-Fin {succ-ℕ k} (inr star) = inr star -- We define the successor function on Fin k. succ-Fin : {k : ℕ} → Fin k → Fin k succ-Fin {succ-ℕ k} (inl x) = skip-zero-Fin x succ-Fin {succ-ℕ k} (inr star) = zero-Fin {- Definition 7.2.8 -} -- We define the negative two element of Fin k. neg-two-Fin : {k : ℕ} → Fin (succ-ℕ k) neg-two-Fin {zero-ℕ} = inr star neg-two-Fin {succ-ℕ k} = inl (inr star) -- We define a function skip-neg-two-Fin in order to define pred-Fin. skip-neg-two-Fin : {k : ℕ} → Fin k → Fin (succ-ℕ k) skip-neg-two-Fin {succ-ℕ k} (inl x) = inl (inl x) skip-neg-two-Fin {succ-ℕ k} (inr x) = neg-one-Fin {succ-ℕ k} -- We define the predecessor function on Fin k. pred-Fin : {k : ℕ} → Fin k → Fin k pred-Fin {succ-ℕ k} (inl x) = skip-neg-two-Fin (pred-Fin x) pred-Fin {succ-ℕ k} (inr x) = neg-two-Fin {- Definition 7.2.9 -} -- We define the modulo function mod-succ-ℕ : (k : ℕ) → ℕ → Fin (succ-ℕ k) mod-succ-ℕ k zero-ℕ = zero-Fin mod-succ-ℕ k (succ-ℕ n) = succ-Fin (mod-succ-ℕ k n) mod-two-ℕ : ℕ → Fin two-ℕ mod-two-ℕ = mod-succ-ℕ one-ℕ mod-three-ℕ : ℕ → Fin three-ℕ mod-three-ℕ = mod-succ-ℕ two-ℕ {- Lemma 7.2.10 -} successor-law-mod-succ-ℕ : (k x : ℕ) → leq-ℕ x k → Id (mod-succ-ℕ (succ-ℕ k) x) (inl (mod-succ-ℕ k x)) successor-law-mod-succ-ℕ k zero-ℕ star = refl successor-law-mod-succ-ℕ (succ-ℕ k) (succ-ℕ x) p = ( ( ap succ-Fin ( successor-law-mod-succ-ℕ (succ-ℕ k) x ( preserves-leq-succ-ℕ x k p))) ∙ ( ap succ-Fin (ap inl (successor-law-mod-succ-ℕ k x p)))) ∙ ( ap inl (ap succ-Fin (inv (successor-law-mod-succ-ℕ k x p)))) {- Corollary 7.2.11 -} neg-one-law-mod-succ-ℕ : (k : ℕ) → Id (mod-succ-ℕ k k) neg-one-Fin neg-one-law-mod-succ-ℕ zero-ℕ = refl neg-one-law-mod-succ-ℕ (succ-ℕ k) = ap succ-Fin ( ( successor-law-mod-succ-ℕ k k (reflexive-leq-ℕ k)) ∙ ( ap inl (neg-one-law-mod-succ-ℕ k))) base-case-is-periodic-mod-succ-ℕ : (k : ℕ) → Id (mod-succ-ℕ k (succ-ℕ k)) zero-Fin base-case-is-periodic-mod-succ-ℕ zero-ℕ = refl base-case-is-periodic-mod-succ-ℕ (succ-ℕ k) = ap succ-Fin (neg-one-law-mod-succ-ℕ (succ-ℕ k)) {- Theorem 7.2.12 -} -- Now we show that Fin (succ-ℕ k) is a retract of ℕ issec-nat-Fin : (k : ℕ) (x : Fin (succ-ℕ k)) → Id (mod-succ-ℕ k (nat-Fin x)) x issec-nat-Fin zero-ℕ (inr star) = refl issec-nat-Fin (succ-ℕ k) (inl x) = ( successor-law-mod-succ-ℕ k (nat-Fin x) (upper-bound-nat-Fin x)) ∙ ( ap inl (issec-nat-Fin k x)) issec-nat-Fin (succ-ℕ k) (inr star) = neg-one-law-mod-succ-ℕ (succ-ℕ k) -------------------------------------------------------------------------------- {- Section 7.3 The effectiveness theorem of modular arithmetic -} {- Lemma 7.3.1 -} -- We prove three things to help calculating with nat-Fin. nat-zero-Fin : {k : ℕ} → Id (nat-Fin (zero-Fin {k})) zero-ℕ nat-zero-Fin {zero-ℕ} = refl nat-zero-Fin {succ-ℕ k} = nat-zero-Fin {k} nat-skip-zero-Fin : {k : ℕ} (x : Fin k) → Id (nat-Fin (skip-zero-Fin x)) (succ-ℕ (nat-Fin x)) nat-skip-zero-Fin {succ-ℕ k} (inl x) = nat-skip-zero-Fin x nat-skip-zero-Fin {succ-ℕ k} (inr star) = refl cong-nat-succ-Fin : (k : ℕ) (x : Fin k) → cong-ℕ k (nat-Fin (succ-Fin x)) (succ-ℕ (nat-Fin x)) cong-nat-succ-Fin (succ-ℕ k) (inl x) = cong-identification-ℕ ( succ-ℕ k) { nat-Fin (succ-Fin (inl x))} { succ-ℕ (nat-Fin x)} ( nat-skip-zero-Fin x) cong-nat-succ-Fin (succ-ℕ k) (inr star) = concatenate-eq-cong-ℕ ( succ-ℕ k) { nat-Fin {succ-ℕ k} zero-Fin} { zero-ℕ} { succ-ℕ k} ( nat-zero-Fin {k}) ( cong-zero-ℕ' (succ-ℕ k)) {- Corollary 7.3.2 -} -- We show that (nat-Fin (mod-succ-ℕ n x)) is congruent to x modulo n+1. -- cong-nat-mod-succ-ℕ : (k x : ℕ) → cong-ℕ (succ-ℕ k) (nat-Fin (mod-succ-ℕ k x)) x cong-nat-mod-succ-ℕ k zero-ℕ = cong-identification-ℕ (succ-ℕ k) (nat-zero-Fin {k}) cong-nat-mod-succ-ℕ k (succ-ℕ x) = transitive-cong-ℕ ( succ-ℕ k) ( nat-Fin (mod-succ-ℕ k (succ-ℕ x))) ( succ-ℕ (nat-Fin (mod-succ-ℕ k x))) ( succ-ℕ x) ( cong-nat-succ-Fin (succ-ℕ k) (mod-succ-ℕ k x) ) ( cong-nat-mod-succ-ℕ k x) {- Proposition 7.3.4 -} contradiction-leq-ℕ : (x y : ℕ) → leq-ℕ x y → leq-ℕ (succ-ℕ y) x → empty contradiction-leq-ℕ (succ-ℕ x) (succ-ℕ y) H K = contradiction-leq-ℕ x y H K eq-zero-div-ℕ : (d x : ℕ) → leq-ℕ x d → div-ℕ (succ-ℕ d) x → Id x zero-ℕ eq-zero-div-ℕ d zero-ℕ H D = refl eq-zero-div-ℕ d (succ-ℕ x) H (pair (succ-ℕ k) p) = ex-falso ( contradiction-leq-ℕ d x ( concatenate-eq-leq-eq-ℕ { x1 = succ-ℕ d} { x2 = succ-ℕ d} { x3 = succ-ℕ (add-ℕ (mul-ℕ k (succ-ℕ d)) d)} { x4 = succ-ℕ x} ( refl) ( leq-add-ℕ' d (mul-ℕ k (succ-ℕ d))) ( p)) H) {- Theorem 7.3.5 -} {- We show that if mod-succ-ℕ k x = mod-succ-ℕ k y, then x and y must be congruent modulo succ-ℕ n. This is the forward direction of the theorm. -} cong-eq-ℕ : (k x y : ℕ) → Id (mod-succ-ℕ k x) (mod-succ-ℕ k y) → cong-ℕ (succ-ℕ k) x y cong-eq-ℕ k x y p = concatenate-cong-eq-cong-ℕ {succ-ℕ k} {x} ( symmetric-cong-ℕ (succ-ℕ k) (nat-Fin (mod-succ-ℕ k x)) x ( cong-nat-mod-succ-ℕ k x)) ( ap nat-Fin p) ( cong-nat-mod-succ-ℕ k y) eq-cong-nat-Fin : (k : ℕ) (x y : Fin k) → cong-ℕ k (nat-Fin x) (nat-Fin y) → Id x y eq-cong-nat-Fin (succ-ℕ k) x y H = is-injective-nat-Fin ( eq-dist-ℕ ( nat-Fin x) ( nat-Fin y) ( inv ( eq-zero-div-ℕ k ( dist-ℕ (nat-Fin x) (nat-Fin y)) ( upper-bound-dist-ℕ k ( nat-Fin x) ( nat-Fin y) ( upper-bound-nat-Fin x) ( upper-bound-nat-Fin y)) ( H)))) eq-cong-ℕ : (k x y : ℕ) → cong-ℕ (succ-ℕ k) x y → Id (mod-succ-ℕ k x) (mod-succ-ℕ k y) eq-cong-ℕ k x y H = eq-cong-nat-Fin ( succ-ℕ k) ( mod-succ-ℕ k x) ( mod-succ-ℕ k y) ( transitive-cong-ℕ ( succ-ℕ k) ( nat-Fin (mod-succ-ℕ k x)) ( x) ( nat-Fin (mod-succ-ℕ k y)) ( cong-nat-mod-succ-ℕ k x) ( transitive-cong-ℕ (succ-ℕ k) x y (nat-Fin (mod-succ-ℕ k y)) H ( symmetric-cong-ℕ (succ-ℕ k) (nat-Fin (mod-succ-ℕ k y)) y ( cong-nat-mod-succ-ℕ k y)))) -------------------------------------------------------------------------------- {- Section 7.4 The cyclic group structure on the finite types -} {- Definition 7.4.1 -} -- Addition on finite sets -- add-Fin : {k : ℕ} → Fin k → Fin k → Fin k add-Fin {succ-ℕ k} x y = mod-succ-ℕ k (add-ℕ (nat-Fin x) (nat-Fin y)) add-Fin' : {k : ℕ} → Fin k → Fin k → Fin k add-Fin' x y = add-Fin y x -- We define an action on paths of add-Fin on the two arguments at once. ap-add-Fin : {k : ℕ} {x y x' y' : Fin k} → Id x x' → Id y y' → Id (add-Fin x y) (add-Fin x' y') ap-add-Fin refl refl = refl -- The negative of an element of Fin k -- neg-Fin : {k : ℕ} → Fin k → Fin k neg-Fin {succ-ℕ k} x = mod-succ-ℕ k (dist-ℕ (nat-Fin x) (succ-ℕ k)) {- Remark 7.4.2 -} cong-nat-zero-Fin : {k : ℕ} → cong-ℕ (succ-ℕ k) (nat-Fin (zero-Fin {k})) zero-ℕ cong-nat-zero-Fin {k} = cong-nat-mod-succ-ℕ k zero-ℕ cong-add-Fin : {k : ℕ} (x y : Fin k) → cong-ℕ k (nat-Fin (add-Fin x y)) (add-ℕ (nat-Fin x) (nat-Fin y)) cong-add-Fin {succ-ℕ k} x y = cong-nat-mod-succ-ℕ k (add-ℕ (nat-Fin x) (nat-Fin y)) cong-neg-Fin : {k : ℕ} (x : Fin k) → cong-ℕ k (nat-Fin (neg-Fin x)) (dist-ℕ (nat-Fin x) k) cong-neg-Fin {succ-ℕ k} x = cong-nat-mod-succ-ℕ k (dist-ℕ (nat-Fin x) (succ-ℕ k)) {- Proposition 7.4.3 -} -- We show that congruence is translation invariant -- translation-invariant-cong-ℕ : (k x y z : ℕ) → cong-ℕ k x y → cong-ℕ k (add-ℕ z x) (add-ℕ z y) translation-invariant-cong-ℕ k x y z (pair d p) = pair d (p ∙ inv (translation-invariant-dist-ℕ z x y)) translation-invariant-cong-ℕ' : (k x y z : ℕ) → cong-ℕ k x y → cong-ℕ k (add-ℕ x z) (add-ℕ y z) translation-invariant-cong-ℕ' k x y z H = concatenate-eq-cong-eq-ℕ k ( commutative-add-ℕ x z) ( translation-invariant-cong-ℕ k x y z H) ( commutative-add-ℕ z y) step-invariant-cong-ℕ : (k x y : ℕ) → cong-ℕ k x y → cong-ℕ k (succ-ℕ x) (succ-ℕ y) step-invariant-cong-ℕ k x y = translation-invariant-cong-ℕ' k x y one-ℕ -- We show that addition respects the congruence relation -- congruence-add-ℕ : (k : ℕ) {x y x' y' : ℕ} → cong-ℕ k x x' → cong-ℕ k y y' → cong-ℕ k (add-ℕ x y) (add-ℕ x' y') congruence-add-ℕ k {x} {y} {x'} {y'} H K = transitive-cong-ℕ k (add-ℕ x y) (add-ℕ x y') (add-ℕ x' y') ( translation-invariant-cong-ℕ k y y' x K) ( translation-invariant-cong-ℕ' k x x' y' H) {- Theorem 7.4.4 -} -- We show that addition is commutative -- commutative-add-Fin : {k : ℕ} (x y : Fin k) → Id (add-Fin x y) (add-Fin y x) commutative-add-Fin {succ-ℕ k} x y = ap (mod-succ-ℕ k) (commutative-add-ℕ (nat-Fin x) (nat-Fin y)) -- We show that addition is associative -- associative-add-Fin : {k : ℕ} (x y z : Fin k) → Id (add-Fin (add-Fin x y) z) (add-Fin x (add-Fin y z)) associative-add-Fin {succ-ℕ k} x y z = eq-cong-ℕ k ( add-ℕ (nat-Fin (add-Fin x y)) (nat-Fin z)) ( add-ℕ (nat-Fin x) (nat-Fin (add-Fin y z))) ( concatenate-cong-eq-cong-ℕ { x1 = add-ℕ (nat-Fin (add-Fin x y)) (nat-Fin z)} { x2 = add-ℕ (add-ℕ (nat-Fin x) (nat-Fin y)) (nat-Fin z)} { x3 = add-ℕ (nat-Fin x) (add-ℕ (nat-Fin y) (nat-Fin z))} { x4 = add-ℕ (nat-Fin x) (nat-Fin (add-Fin y z))} ( congruence-add-ℕ ( succ-ℕ k) { x = nat-Fin (add-Fin x y)} { y = nat-Fin z} { x' = add-ℕ (nat-Fin x) (nat-Fin y)} { y' = nat-Fin z} ( cong-add-Fin x y) ( reflexive-cong-ℕ (succ-ℕ k) (nat-Fin z))) ( associative-add-ℕ (nat-Fin x) (nat-Fin y) (nat-Fin z)) ( congruence-add-ℕ ( succ-ℕ k) { x = nat-Fin x} { y = add-ℕ (nat-Fin y) (nat-Fin z)} { x' = nat-Fin x} { y' = nat-Fin (add-Fin y z)} ( reflexive-cong-ℕ (succ-ℕ k) (nat-Fin x)) ( symmetric-cong-ℕ ( succ-ℕ k) ( nat-Fin (add-Fin y z)) ( add-ℕ (nat-Fin y) (nat-Fin z)) ( cong-add-Fin y z)))) -- We show that addition satisfies the right unit law -- right-unit-law-add-Fin : {k : ℕ} (x : Fin (succ-ℕ k)) → Id (add-Fin x zero-Fin) x right-unit-law-add-Fin {k} x = ( eq-cong-ℕ k ( add-ℕ (nat-Fin x) (nat-Fin {succ-ℕ k} zero-Fin)) ( add-ℕ (nat-Fin x) zero-ℕ) ( congruence-add-ℕ ( succ-ℕ k) { x = nat-Fin {succ-ℕ k} x} { y = nat-Fin {succ-ℕ k} zero-Fin} { x' = nat-Fin x} { y' = zero-ℕ} ( reflexive-cong-ℕ (succ-ℕ k) (nat-Fin {succ-ℕ k} x)) ( cong-nat-zero-Fin {k}))) ∙ ( issec-nat-Fin k x) left-unit-law-add-Fin : {k : ℕ} (x : Fin (succ-ℕ k)) → Id (add-Fin zero-Fin x) x left-unit-law-add-Fin {k} x = ( commutative-add-Fin zero-Fin x) ∙ ( right-unit-law-add-Fin x) -- We show that addition satisfies the left inverse law -- left-inverse-law-add-Fin : {k : ℕ} (x : Fin (succ-ℕ k)) → Id (add-Fin (neg-Fin x) x) zero-Fin left-inverse-law-add-Fin {k} x = eq-cong-ℕ k (add-ℕ (nat-Fin (neg-Fin x)) (nat-Fin x)) zero-ℕ ( concatenate-cong-eq-cong-ℕ { succ-ℕ k} { x1 = add-ℕ (nat-Fin (neg-Fin x)) (nat-Fin x)} { x2 = add-ℕ (dist-ℕ (nat-Fin x) (succ-ℕ k)) (nat-Fin x)} { x3 = succ-ℕ k} { x4 = zero-ℕ} ( congruence-add-ℕ ( succ-ℕ k) { x = nat-Fin (neg-Fin x)} { y = nat-Fin x} ( cong-neg-Fin x) ( reflexive-cong-ℕ (succ-ℕ k) (nat-Fin x))) ( ( ap ( add-ℕ (dist-ℕ (nat-Fin x) (succ-ℕ k))) ( inv (left-zero-law-dist-ℕ (nat-Fin x)))) ∙ ( ( commutative-add-ℕ ( dist-ℕ (nat-Fin x) (succ-ℕ k)) ( dist-ℕ zero-ℕ (nat-Fin x))) ∙ ( triangle-equality-dist-ℕ zero-ℕ (nat-Fin x) (succ-ℕ k) star ( preserves-leq-succ-ℕ (nat-Fin x) k (upper-bound-nat-Fin x))))) ( symmetric-cong-ℕ ( succ-ℕ k) ( zero-ℕ) ( succ-ℕ k) ( cong-zero-ℕ (succ-ℕ k)))) right-inverse-law-add-Fin : {k : ℕ} (x : Fin (succ-ℕ k)) → Id (add-Fin x (neg-Fin x)) zero-Fin right-inverse-law-add-Fin x = ( commutative-add-Fin x (neg-Fin x)) ∙ (left-inverse-law-add-Fin x) -------------------------------------------------------------------------------- {- Exercises -} {- Exercise 7.1 -} -- See Proposition 7.1.2 {- Exercise 7.2 -} {- Exercise 7.3 -} {- Exercise 7.4 -} {- Exercise 7.5 -} {- Exercise 7.6 -} {- Exercise 7.7 -} pred-zero-Fin : {k : ℕ} → Id (pred-Fin {succ-ℕ k} zero-Fin) neg-one-Fin pred-zero-Fin {zero-ℕ} = refl pred-zero-Fin {succ-ℕ k} = ap skip-neg-two-Fin (pred-zero-Fin {k}) succ-skip-neg-two-Fin : {k : ℕ} (x : Fin (succ-ℕ k)) → Id (succ-Fin (skip-neg-two-Fin x)) (inl (succ-Fin x)) succ-skip-neg-two-Fin {zero-ℕ} (inr star) = refl succ-skip-neg-two-Fin {succ-ℕ k} (inl x) = refl succ-skip-neg-two-Fin {succ-ℕ k} (inr star) = refl succ-pred-Fin : {k : ℕ} (x : Fin k) → Id (succ-Fin (pred-Fin x)) x succ-pred-Fin {succ-ℕ zero-ℕ} (inr star) = refl succ-pred-Fin {succ-ℕ (succ-ℕ k)} (inl x) = succ-skip-neg-two-Fin (pred-Fin x) ∙ ap inl (succ-pred-Fin x) succ-pred-Fin {succ-ℕ (succ-ℕ k)} (inr star) = refl pred-succ-Fin : {k : ℕ} (x : Fin k) → Id (pred-Fin (succ-Fin x)) x pred-succ-Fin {succ-ℕ zero-ℕ} (inr star) = refl pred-succ-Fin {succ-ℕ (succ-ℕ k)} (inl (inl x)) = ap skip-neg-two-Fin (pred-succ-Fin (inl x)) pred-succ-Fin {succ-ℕ (succ-ℕ k)} (inl (inr star)) = refl pred-succ-Fin {succ-ℕ (succ-ℕ k)} (inr star) = pred-zero-Fin {- Exercise 7.8 -} {- Exercise 7.9 -} reverse-Fin : {k : ℕ} → Fin k → Fin k reverse-Fin {succ-ℕ k} (inl x) = skip-zero-Fin (reverse-Fin x) reverse-Fin {succ-ℕ k} (inr x) = zero-Fin reverse-skip-zero-Fin : {k : ℕ} (x : Fin k) → Id (reverse-Fin (skip-zero-Fin x)) (inl-Fin k (reverse-Fin x)) reverse-skip-zero-Fin {succ-ℕ k} (inl x) = ap skip-zero-Fin (reverse-skip-zero-Fin x) reverse-skip-zero-Fin {succ-ℕ k} (inr star) = refl reverse-neg-one-Fin : {k : ℕ} → Id (reverse-Fin (neg-one-Fin {k})) (zero-Fin {k}) reverse-neg-one-Fin {k} = refl reverse-zero-Fin : {k : ℕ} → Id (reverse-Fin (zero-Fin {k})) (neg-one-Fin {k}) reverse-zero-Fin {zero-ℕ} = refl reverse-zero-Fin {succ-ℕ k} = ap skip-zero-Fin (reverse-zero-Fin {k}) reverse-reverse-Fin : {k : ℕ} (x : Fin k) → Id (reverse-Fin (reverse-Fin x)) x reverse-reverse-Fin {succ-ℕ k} (inl x) = ( reverse-skip-zero-Fin (reverse-Fin x)) ∙ ( ap inl (reverse-reverse-Fin x)) reverse-reverse-Fin {succ-ℕ k} (inr star) = reverse-zero-Fin {- Exercise 7.10 -} -- We show that congruence is invariant under scalar multiplication -- scalar-invariant-cong-ℕ : (k x y z : ℕ) → cong-ℕ k x y → cong-ℕ k (mul-ℕ z x) (mul-ℕ z y) scalar-invariant-cong-ℕ k x y z (pair d p) = pair ( mul-ℕ z d) ( ( associative-mul-ℕ z d k) ∙ ( ( ap (mul-ℕ z) p) ∙ ( inv (linear-dist-ℕ x y z)))) scalar-invariant-cong-ℕ' : (k x y z : ℕ) → cong-ℕ k x y → cong-ℕ k (mul-ℕ x z) (mul-ℕ y z) scalar-invariant-cong-ℕ' k x y z H = concatenate-eq-cong-eq-ℕ k ( commutative-mul-ℕ x z) ( scalar-invariant-cong-ℕ k x y z H) ( commutative-mul-ℕ z y) -- We show that multiplication respects the congruence relation -- congruence-mul-ℕ : (k : ℕ) {x y x' y' : ℕ} → cong-ℕ k x x' → cong-ℕ k y y' → cong-ℕ k (mul-ℕ x y) (mul-ℕ x' y') congruence-mul-ℕ k {x} {y} {x'} {y'} H K = transitive-cong-ℕ k (mul-ℕ x y) (mul-ℕ x y') (mul-ℕ x' y') ( scalar-invariant-cong-ℕ k y y' x K) ( scalar-invariant-cong-ℕ' k x x' y' H) {- We define the multiplication on the types Fin k. -} mul-Fin : {k : ℕ} → Fin k → Fin k → Fin k mul-Fin {succ-ℕ k} x y = mod-succ-ℕ k (mul-ℕ (nat-Fin x) (nat-Fin y)) ap-mul-Fin : {k : ℕ} {x y x' y' : Fin k} → Id x x' → Id y y' → Id (mul-Fin x y) (mul-Fin x' y') ap-mul-Fin refl refl = refl cong-mul-Fin : {k : ℕ} (x y : Fin k) → cong-ℕ k (nat-Fin (mul-Fin x y)) (mul-ℕ (nat-Fin x) (nat-Fin y)) cong-mul-Fin {succ-ℕ k} x y = cong-nat-mod-succ-ℕ k (mul-ℕ (nat-Fin x) (nat-Fin y)) associative-mul-Fin : {k : ℕ} (x y z : Fin k) → Id (mul-Fin (mul-Fin x y) z) (mul-Fin x (mul-Fin y z)) associative-mul-Fin {succ-ℕ k} x y z = eq-cong-ℕ k ( mul-ℕ (nat-Fin (mul-Fin x y)) (nat-Fin z)) ( mul-ℕ (nat-Fin x) (nat-Fin (mul-Fin y z))) ( concatenate-cong-eq-cong-ℕ { x1 = mul-ℕ (nat-Fin (mul-Fin x y)) (nat-Fin z)} { x2 = mul-ℕ (mul-ℕ (nat-Fin x) (nat-Fin y)) (nat-Fin z)} { x3 = mul-ℕ (nat-Fin x) (mul-ℕ (nat-Fin y) (nat-Fin z))} { x4 = mul-ℕ (nat-Fin x) (nat-Fin (mul-Fin y z))} ( congruence-mul-ℕ ( succ-ℕ k) { x = nat-Fin (mul-Fin x y)} { y = nat-Fin z} ( cong-mul-Fin x y) ( reflexive-cong-ℕ (succ-ℕ k) (nat-Fin z))) ( associative-mul-ℕ (nat-Fin x) (nat-Fin y) (nat-Fin z)) ( symmetric-cong-ℕ ( succ-ℕ k) ( mul-ℕ (nat-Fin x) (nat-Fin (mul-Fin y z))) ( mul-ℕ (nat-Fin x) (mul-ℕ (nat-Fin y) (nat-Fin z))) ( congruence-mul-ℕ ( succ-ℕ k) { x = nat-Fin x} { y = nat-Fin (mul-Fin y z)} ( reflexive-cong-ℕ (succ-ℕ k) (nat-Fin x)) ( cong-mul-Fin y z)))) commutative-mul-Fin : {k : ℕ} (x y : Fin k) → Id (mul-Fin x y) (mul-Fin y x) commutative-mul-Fin {succ-ℕ k} x y = eq-cong-ℕ k ( mul-ℕ (nat-Fin x) (nat-Fin y)) ( mul-ℕ (nat-Fin y) (nat-Fin x)) ( cong-identification-ℕ ( succ-ℕ k) ( commutative-mul-ℕ (nat-Fin x) (nat-Fin y))) one-Fin : {k : ℕ} → Fin (succ-ℕ k) one-Fin {k} = mod-succ-ℕ k one-ℕ nat-one-Fin : {k : ℕ} → Id (nat-Fin (one-Fin {succ-ℕ k})) one-ℕ nat-one-Fin {zero-ℕ} = refl nat-one-Fin {succ-ℕ k} = nat-one-Fin {k} left-unit-law-mul-Fin : {k : ℕ} (x : Fin (succ-ℕ k)) → Id (mul-Fin one-Fin x) x left-unit-law-mul-Fin {zero-ℕ} (inr star) = refl left-unit-law-mul-Fin {succ-ℕ k} x = ( eq-cong-ℕ (succ-ℕ k) ( mul-ℕ (nat-Fin (one-Fin {succ-ℕ k})) (nat-Fin x)) ( nat-Fin x) ( cong-identification-ℕ ( succ-ℕ (succ-ℕ k)) ( ( ap ( mul-ℕ' (nat-Fin x)) ( nat-one-Fin {k})) ∙ ( left-unit-law-mul-ℕ (nat-Fin x))))) ∙ ( issec-nat-Fin (succ-ℕ k) x) right-unit-law-mul-Fin : {k : ℕ} (x : Fin (succ-ℕ k)) → Id (mul-Fin x one-Fin) x right-unit-law-mul-Fin x = ( commutative-mul-Fin x one-Fin) ∙ ( left-unit-law-mul-Fin x) left-distributive-mul-add-Fin : {k : ℕ} (x y z : Fin k) → Id (mul-Fin x (add-Fin y z)) (add-Fin (mul-Fin x y) (mul-Fin x z)) left-distributive-mul-add-Fin {succ-ℕ k} x y z = eq-cong-ℕ k ( mul-ℕ (nat-Fin x) (nat-Fin (add-Fin y z))) ( add-ℕ (nat-Fin (mul-Fin x y)) (nat-Fin (mul-Fin x z))) ( concatenate-cong-eq-cong-ℕ { k = succ-ℕ k} { x1 = mul-ℕ ( nat-Fin x) (nat-Fin (add-Fin y z))} { x2 = mul-ℕ ( nat-Fin x) (add-ℕ (nat-Fin y) (nat-Fin z))} { x3 = add-ℕ ( mul-ℕ (nat-Fin x) (nat-Fin y)) ( mul-ℕ (nat-Fin x) (nat-Fin z))} { x4 = add-ℕ (nat-Fin (mul-Fin x y)) (nat-Fin (mul-Fin x z))} ( congruence-mul-ℕ ( succ-ℕ k) { x = nat-Fin x} { y = nat-Fin (add-Fin y z)} { x' = nat-Fin x} { y' = add-ℕ (nat-Fin y) (nat-Fin z)} ( reflexive-cong-ℕ (succ-ℕ k) (nat-Fin x)) ( cong-add-Fin y z)) ( left-distributive-mul-add-ℕ (nat-Fin x) (nat-Fin y) (nat-Fin z)) ( symmetric-cong-ℕ (succ-ℕ k) ( add-ℕ ( nat-Fin (mul-Fin x y)) ( nat-Fin (mul-Fin x z))) ( add-ℕ ( mul-ℕ (nat-Fin x) (nat-Fin y)) ( mul-ℕ (nat-Fin x) (nat-Fin z))) ( congruence-add-ℕ ( succ-ℕ k) { x = nat-Fin (mul-Fin x y)} { y = nat-Fin (mul-Fin x z)} { x' = mul-ℕ (nat-Fin x) (nat-Fin y)} { y' = mul-ℕ (nat-Fin x) (nat-Fin z)} ( cong-mul-Fin x y) ( cong-mul-Fin x z)))) right-distributive-mul-add-Fin : {k : ℕ} (x y z : Fin k) → Id (mul-Fin (add-Fin x y) z) (add-Fin (mul-Fin x z) (mul-Fin y z)) right-distributive-mul-add-Fin {k} x y z = ( commutative-mul-Fin (add-Fin x y) z) ∙ ( ( left-distributive-mul-add-Fin z x y) ∙ ( ap-add-Fin (commutative-mul-Fin z x) (commutative-mul-Fin z y))) {- Exercise 7.11 -} {- Exercise 7.12 -} -- We introduce the observational equality on finite sets. Eq-Fin : (k : ℕ) → Fin k → Fin k → UU lzero Eq-Fin (succ-ℕ k) (inl x) (inl y) = Eq-Fin k x y Eq-Fin (succ-ℕ k) (inl x) (inr y) = empty Eq-Fin (succ-ℕ k) (inr x) (inl y) = empty Eq-Fin (succ-ℕ k) (inr x) (inr y) = unit -- Exercise 7.12 (a) refl-Eq-Fin : {k : ℕ} (x : Fin k) → Eq-Fin k x x refl-Eq-Fin {succ-ℕ k} (inl x) = refl-Eq-Fin x refl-Eq-Fin {succ-ℕ k} (inr x) = star Eq-Fin-eq : {k : ℕ} {x y : Fin k} → Id x y → Eq-Fin k x y Eq-Fin-eq {k} refl = refl-Eq-Fin {k} _ eq-Eq-Fin : {k : ℕ} {x y : Fin k} → Eq-Fin k x y → Id x y eq-Eq-Fin {succ-ℕ k} {inl x} {inl y} e = ap inl (eq-Eq-Fin e) eq-Eq-Fin {succ-ℕ k} {inr star} {inr star} star = refl -- Exercise 7.12 (b) is-injective-inl-Fin : {k : ℕ} {x y : Fin k} → Id (inl-Fin k x) (inl-Fin k y) → Id x y is-injective-inl-Fin p = eq-Eq-Fin (Eq-Fin-eq p) -- Exercise 7.12 (c) neq-zero-succ-Fin : {k : ℕ} {x : Fin k} → ¬ (Id (succ-Fin (inl-Fin k x)) zero-Fin) neq-zero-succ-Fin {succ-ℕ k} {inl x} p = neq-zero-succ-Fin (is-injective-inl-Fin p) neq-zero-succ-Fin {succ-ℕ k} {inr star} p = Eq-Fin-eq {succ-ℕ (succ-ℕ k)} {inr star} {zero-Fin} p -- Exercise 7.12 (d) is-injective-skip-zero-Fin : {k : ℕ} {x y : Fin k} → Id (skip-zero-Fin x) (skip-zero-Fin y) → Id x y is-injective-skip-zero-Fin {succ-ℕ k} {inl x} {inl y} p = ap inl (is-injective-skip-zero-Fin (is-injective-inl-Fin p)) is-injective-skip-zero-Fin {succ-ℕ k} {inl x} {inr star} p = ex-falso (Eq-Fin-eq p) is-injective-skip-zero-Fin {succ-ℕ k} {inr star} {inl y} p = ex-falso (Eq-Fin-eq p) is-injective-skip-zero-Fin {succ-ℕ k} {inr star} {inr star} p = refl is-injective-succ-Fin : {k : ℕ} {x y : Fin k} → Id (succ-Fin x) (succ-Fin y) → Id x y is-injective-succ-Fin {succ-ℕ k} {inl x} {inl y} p = ap inl (is-injective-skip-zero-Fin {k} {x} {y} p) is-injective-succ-Fin {succ-ℕ k} {inl x} {inr star} p = ex-falso (neq-zero-succ-Fin {succ-ℕ k} {inl x} (ap inl p)) is-injective-succ-Fin {succ-ℕ k} {inr star} {inl y} p = ex-falso (neq-zero-succ-Fin {succ-ℕ k} {inl y} (ap inl (inv p))) is-injective-succ-Fin {succ-ℕ k} {inr star} {inr star} p = refl -------------------------------------------------------------------------------- -------------------------------------------------------------------------------- -------------------------------------------------------------------------------- -------------------------------------------------------------------------------- {- Section 7.2 Decidability -} {- Definition 7.2.1 -} is-decidable : {l : Level} (A : UU l) → UU l is-decidable A = coprod A (¬ A) {- Example 7.2.2 -} is-decidable-unit : is-decidable unit is-decidable-unit = inl star is-decidable-empty : is-decidable empty is-decidable-empty = inr id {- Definition 7.2.3 -} {- We say that a type has decidable equality if we can decide whether x = y holds for any x, y : A. -} has-decidable-equality : {l : Level} (A : UU l) → UU l has-decidable-equality A = (x y : A) → is-decidable (Id x y) {- Lemma 7.2.5 -} is-decidable-iff : {l1 l2 : Level} {A : UU l1} {B : UU l2} → (A → B) → (B → A) → is-decidable A → is-decidable B is-decidable-iff f g = functor-coprod f (functor-neg g) {- Proposition 7.2.6 -} {- The type ℕ is an example of a type with decidable equality. -} is-decidable-Eq-ℕ : (m n : ℕ) → is-decidable (Eq-ℕ m n) is-decidable-Eq-ℕ zero-ℕ zero-ℕ = inl star is-decidable-Eq-ℕ zero-ℕ (succ-ℕ n) = inr id is-decidable-Eq-ℕ (succ-ℕ m) zero-ℕ = inr id is-decidable-Eq-ℕ (succ-ℕ m) (succ-ℕ n) = is-decidable-Eq-ℕ m n has-decidable-equality-ℕ : has-decidable-equality ℕ has-decidable-equality-ℕ x y = is-decidable-iff (eq-Eq-ℕ x y) Eq-ℕ-eq (is-decidable-Eq-ℕ x y) {- Proposition 7.2.9 -} {- We show that Fin k has decidable equality, for each n : ℕ. -} is-decidable-Eq-Fin : (k : ℕ) (x y : Fin k) → is-decidable (Eq-Fin k x y) is-decidable-Eq-Fin (succ-ℕ k) (inl x) (inl y) = is-decidable-Eq-Fin k x y is-decidable-Eq-Fin (succ-ℕ k) (inl x) (inr y) = inr id is-decidable-Eq-Fin (succ-ℕ k) (inr x) (inl y) = inr id is-decidable-Eq-Fin (succ-ℕ k) (inr x) (inr y) = inl star is-decidable-eq-Fin : (k : ℕ) (x y : Fin k) → is-decidable (Id x y) is-decidable-eq-Fin k x y = functor-coprod eq-Eq-Fin (functor-neg Eq-Fin-eq) (is-decidable-Eq-Fin k x y) {- Section 7.3 Definitions by case analysis -} {- We define an alternative definition of the predecessor function with manual with-abstraction. -} cases-pred-Fin-2 : {k : ℕ} (x : Fin (succ-ℕ k)) (d : is-decidable (Eq-Fin (succ-ℕ k) x zero-Fin)) → Fin (succ-ℕ k) cases-pred-Fin-2 {zero-ℕ} (inr star) d = zero-Fin cases-pred-Fin-2 {succ-ℕ k} (inl x) (inl e) = neg-one-Fin cases-pred-Fin-2 {succ-ℕ k} (inl x) (inr f) = inl (cases-pred-Fin-2 {k} x (inr f)) cases-pred-Fin-2 {succ-ℕ k} (inr star) (inr f) = inl neg-one-Fin pred-Fin-2 : {k : ℕ} → Fin k → Fin k pred-Fin-2 {succ-ℕ k} x = cases-pred-Fin-2 {k} x (is-decidable-Eq-Fin (succ-ℕ k) x zero-Fin) {- We give a solution to the exercise for the alternative definition of the predecessor function, using with-abstraction. -} pred-zero-Fin-2 : {k : ℕ} → Id (pred-Fin-2 {succ-ℕ k} zero-Fin) neg-one-Fin pred-zero-Fin-2 {k} with is-decidable-Eq-Fin (succ-ℕ k) zero-Fin zero-Fin pred-zero-Fin-2 {zero-ℕ} | d = refl pred-zero-Fin-2 {succ-ℕ k} | inl e = refl pred-zero-Fin-2 {succ-ℕ k} | inr f = ex-falso (f (refl-Eq-Fin {succ-ℕ k} zero-Fin)) cases-succ-pred-Fin-2 : {k : ℕ} (x : Fin (succ-ℕ k)) (d : is-decidable (Eq-Fin (succ-ℕ k) x zero-Fin)) → Id (succ-Fin (cases-pred-Fin-2 x d)) x cases-succ-pred-Fin-2 {zero-ℕ} (inr star) d = refl cases-succ-pred-Fin-2 {succ-ℕ k} (inl x) (inl e) = inv (eq-Eq-Fin e) cases-succ-pred-Fin-2 {succ-ℕ zero-ℕ} (inl (inr x)) (inr f) = ex-falso (f star) cases-succ-pred-Fin-2 {succ-ℕ (succ-ℕ k)} (inl (inl x)) (inr f) = ap inl (cases-succ-pred-Fin-2 (inl x) (inr f)) cases-succ-pred-Fin-2 {succ-ℕ (succ-ℕ k)} (inl (inr star)) (inr f) = refl cases-succ-pred-Fin-2 {succ-ℕ k} (inr star) (inr f) = refl succ-pred-Fin-2 : {k : ℕ} (x : Fin k) → Id (succ-Fin (pred-Fin-2 x)) x succ-pred-Fin-2 {succ-ℕ k} x = cases-succ-pred-Fin-2 x (is-decidable-Eq-Fin (succ-ℕ k) x zero-Fin) pred-inl-Fin-2 : {k : ℕ} (x : Fin (succ-ℕ k)) (f : ¬ (Eq-Fin (succ-ℕ k) x zero-Fin)) → Id (pred-Fin-2 (inl x)) (inl (pred-Fin-2 x)) pred-inl-Fin-2 {k} x f with is-decidable-Eq-Fin (succ-ℕ k) x zero-Fin ... | inl e = ex-falso (f e) ... | inr f' = refl nEq-zero-succ-Fin : {k : ℕ} (x : Fin (succ-ℕ k)) → ¬ (Eq-Fin (succ-ℕ (succ-ℕ k)) (succ-Fin (inl x)) zero-Fin) nEq-zero-succ-Fin {succ-ℕ k} (inl (inl x)) e = nEq-zero-succ-Fin (inl x) e nEq-zero-succ-Fin {succ-ℕ k} (inl (inr star)) () nEq-zero-succ-Fin {succ-ℕ k} (inr star) () pred-succ-Fin-2 : {k : ℕ} (x : Fin (succ-ℕ k)) → Id (pred-Fin-2 (succ-Fin x)) x pred-succ-Fin-2 {zero-ℕ} (inr star) = refl pred-succ-Fin-2 {succ-ℕ zero-ℕ} (inl (inr star)) = refl pred-succ-Fin-2 {succ-ℕ zero-ℕ} (inr star) = refl pred-succ-Fin-2 {succ-ℕ (succ-ℕ k)} (inl (inl (inl x))) = ( pred-inl-Fin-2 (inl (succ-Fin (inl x))) (nEq-zero-succ-Fin (inl x))) ∙ ( ( ap inl (pred-inl-Fin-2 (succ-Fin (inl x)) (nEq-zero-succ-Fin (inl x)))) ∙ ( ap (inl ∘ inl) (pred-succ-Fin-2 (inl x)))) pred-succ-Fin-2 {succ-ℕ (succ-ℕ k)} (inl (inl (inr star))) = refl pred-succ-Fin-2 {succ-ℕ (succ-ℕ k)} (inl (inr star)) = refl pred-succ-Fin-2 {succ-ℕ (succ-ℕ k)} (inr star) = pred-zero-Fin-2 -------------------------------------------------------------------------------- -------------------------------------------------------------------------------- -------------------------------------------------------------------------------- -------------------------------------------------------------------------------- dist-ℤ : ℤ → ℤ → ℕ dist-ℤ (inl x) (inl y) = dist-ℕ x y dist-ℤ (inl x) (inr (inl star)) = succ-ℕ x dist-ℤ (inl x) (inr (inr y)) = succ-ℕ (succ-ℕ (add-ℕ x y)) dist-ℤ (inr (inl star)) (inl y) = succ-ℕ y dist-ℤ (inr (inr x)) (inl y) = succ-ℕ (succ-ℕ (add-ℕ x y)) dist-ℤ (inr (inl star)) (inr (inl star)) = zero-ℕ dist-ℤ (inr (inl star)) (inr (inr y)) = succ-ℕ y dist-ℤ (inr (inr x)) (inr (inl star)) = succ-ℕ x dist-ℤ (inr (inr x)) (inr (inr y)) = dist-ℕ x y dist-ℤ' : ℤ → ℤ → ℕ dist-ℤ' x y = dist-ℤ y x ap-dist-ℤ : {x y x' y' : ℤ} → Id x x' → Id y y' → Id (dist-ℤ x y) (dist-ℤ x' y') ap-dist-ℤ refl refl = refl eq-dist-ℤ : (x y : ℤ) → Id zero-ℕ (dist-ℤ x y) → Id x y eq-dist-ℤ (inl x) (inl y) p = ap inl (eq-dist-ℕ x y p) eq-dist-ℤ (inl x) (inr (inl star)) p = ex-falso (Peano-8 x p) eq-dist-ℤ (inr (inl star)) (inl y) p = ex-falso (Peano-8 y p) eq-dist-ℤ (inr (inl star)) (inr (inl star)) p = refl eq-dist-ℤ (inr (inl star)) (inr (inr y)) p = ex-falso (Peano-8 y p) eq-dist-ℤ (inr (inr x)) (inr (inl star)) p = ex-falso (Peano-8 x p) eq-dist-ℤ (inr (inr x)) (inr (inr y)) p = ap (inr ∘ inr) (eq-dist-ℕ x y p) dist-eq-ℤ' : (x : ℤ) → Id zero-ℕ (dist-ℤ x x) dist-eq-ℤ' (inl x) = dist-eq-ℕ' x dist-eq-ℤ' (inr (inl star)) = refl dist-eq-ℤ' (inr (inr x)) = dist-eq-ℕ' x dist-eq-ℤ : (x y : ℤ) → Id x y → Id zero-ℕ (dist-ℤ x y) dist-eq-ℤ x .x refl = dist-eq-ℤ' x {- The distance function on ℤ is symmetric. -} symmetric-dist-ℤ : (x y : ℤ) → Id (dist-ℤ x y) (dist-ℤ y x) symmetric-dist-ℤ (inl x) (inl y) = symmetric-dist-ℕ x y symmetric-dist-ℤ (inl x) (inr (inl star)) = refl symmetric-dist-ℤ (inl x) (inr (inr y)) = ap (succ-ℕ ∘ succ-ℕ) (commutative-add-ℕ x y) symmetric-dist-ℤ (inr (inl star)) (inl y) = refl symmetric-dist-ℤ (inr (inr x)) (inl y) = ap (succ-ℕ ∘ succ-ℕ) (commutative-add-ℕ x y) symmetric-dist-ℤ (inr (inl star)) (inr (inl star)) = refl symmetric-dist-ℤ (inr (inl star)) (inr (inr y)) = refl symmetric-dist-ℤ (inr (inr x)) (inr (inl star)) = refl symmetric-dist-ℤ (inr (inr x)) (inr (inr y)) = symmetric-dist-ℕ x y -- We compute the distance from zero -- left-zero-law-dist-ℤ : (x : ℤ) → Id (dist-ℤ zero-ℤ x) (abs-ℤ x) left-zero-law-dist-ℤ (inl x) = refl left-zero-law-dist-ℤ (inr (inl star)) = refl left-zero-law-dist-ℤ (inr (inr x)) = refl right-zero-law-dist-ℤ : (x : ℤ) → Id (dist-ℤ x zero-ℤ) (abs-ℤ x) right-zero-law-dist-ℤ (inl x) = refl right-zero-law-dist-ℤ (inr (inl star)) = refl right-zero-law-dist-ℤ (inr (inr x)) = refl -- We prove the triangle inequality -- {- triangle-inequality-dist-ℤ : (x y z : ℤ) → leq-ℕ (dist-ℤ x y) (add-ℕ (dist-ℤ x z) (dist-ℤ z y)) triangle-inequality-dist-ℤ (inl x) (inl y) (inl z) = triangle-inequality-dist-ℕ x y z triangle-inequality-dist-ℤ (inl x) (inl y) (inr (inl star)) = triangle-inequality-dist-ℕ (succ-ℕ x) (succ-ℕ y) zero-ℕ triangle-inequality-dist-ℤ (inl x) (inl y) (inr (inr z)) = {!!} triangle-inequality-dist-ℤ (inl x) (inr y) (inl z) = {!!} triangle-inequality-dist-ℤ (inl x) (inr y) (inr z) = {!!} triangle-inequality-dist-ℤ (inr x) (inl y) (inl z) = {!!} triangle-inequality-dist-ℤ (inr x) (inl y) (inr z) = {!!} triangle-inequality-dist-ℤ (inr x) (inr y) (inl z) = {!!} triangle-inequality-dist-ℤ (inr x) (inr y) (inr z) = {!!} -} {- triangle-inequality-dist-ℕ : (m n k : ℕ) → leq-ℕ (dist-ℕ m n) (add-ℕ (dist-ℕ m k) (dist-ℕ k n)) triangle-inequality-dist-ℕ zero-ℕ zero-ℕ zero-ℕ = star triangle-inequality-dist-ℕ zero-ℕ zero-ℕ (succ-ℕ k) = star triangle-inequality-dist-ℕ zero-ℕ (succ-ℕ n) zero-ℕ = tr ( leq-ℕ (succ-ℕ n)) ( inv (left-unit-law-add-ℕ (succ-ℕ n))) ( reflexive-leq-ℕ (succ-ℕ n)) triangle-inequality-dist-ℕ zero-ℕ (succ-ℕ n) (succ-ℕ k) = concatenate-eq-leq-eq-ℕ ( inv (ap succ-ℕ (left-zero-law-dist-ℕ n))) ( triangle-inequality-dist-ℕ zero-ℕ n k) ( ( ap (succ-ℕ ∘ (add-ℕ' (dist-ℕ k n))) (left-zero-law-dist-ℕ k)) ∙ ( inv (left-successor-law-add-ℕ k (dist-ℕ k n)))) triangle-inequality-dist-ℕ (succ-ℕ m) zero-ℕ zero-ℕ = reflexive-leq-ℕ (succ-ℕ m) triangle-inequality-dist-ℕ (succ-ℕ m) zero-ℕ (succ-ℕ k) = concatenate-eq-leq-eq-ℕ ( inv (ap succ-ℕ (right-zero-law-dist-ℕ m))) ( triangle-inequality-dist-ℕ m zero-ℕ k) ( ap (succ-ℕ ∘ (add-ℕ (dist-ℕ m k))) (right-zero-law-dist-ℕ k)) triangle-inequality-dist-ℕ (succ-ℕ m) (succ-ℕ n) zero-ℕ = concatenate-leq-eq-ℕ ( dist-ℕ m n) ( transitive-leq-ℕ ( dist-ℕ m n) ( succ-ℕ (add-ℕ (dist-ℕ m zero-ℕ) (dist-ℕ zero-ℕ n))) ( succ-ℕ (succ-ℕ (add-ℕ (dist-ℕ m zero-ℕ) (dist-ℕ zero-ℕ n)))) ( transitive-leq-ℕ ( dist-ℕ m n) ( add-ℕ (dist-ℕ m zero-ℕ) (dist-ℕ zero-ℕ n)) ( succ-ℕ (add-ℕ (dist-ℕ m zero-ℕ) (dist-ℕ zero-ℕ n))) ( triangle-inequality-dist-ℕ m n zero-ℕ) ( succ-leq-ℕ (add-ℕ (dist-ℕ m zero-ℕ) (dist-ℕ zero-ℕ n)))) ( succ-leq-ℕ (succ-ℕ (add-ℕ (dist-ℕ m zero-ℕ) (dist-ℕ zero-ℕ n))))) ( ( ap (succ-ℕ ∘ succ-ℕ) ( ap-add-ℕ (right-zero-law-dist-ℕ m) (left-zero-law-dist-ℕ n))) ∙ ( inv (left-successor-law-add-ℕ m (succ-ℕ n)))) triangle-inequality-dist-ℕ (succ-ℕ m) (succ-ℕ n) (succ-ℕ k) = triangle-inequality-dist-ℕ m n k -- We show that dist-ℕ x y is a solution to a simple equation. leq-dist-ℕ : (x y : ℕ) → leq-ℕ x y → Id (add-ℕ x (dist-ℕ x y)) y leq-dist-ℕ zero-ℕ zero-ℕ H = refl leq-dist-ℕ zero-ℕ (succ-ℕ y) star = left-unit-law-add-ℕ (succ-ℕ y) leq-dist-ℕ (succ-ℕ x) (succ-ℕ y) H = ( left-successor-law-add-ℕ x (dist-ℕ x y)) ∙ ( ap succ-ℕ (leq-dist-ℕ x y H)) rewrite-left-add-dist-ℕ : (x y z : ℕ) → Id (add-ℕ x y) z → Id x (dist-ℕ y z) rewrite-left-add-dist-ℕ zero-ℕ zero-ℕ .zero-ℕ refl = refl rewrite-left-add-dist-ℕ zero-ℕ (succ-ℕ y) .(succ-ℕ (add-ℕ zero-ℕ y)) refl = ( dist-eq-ℕ' y) ∙ ( inv (ap (dist-ℕ (succ-ℕ y)) (left-unit-law-add-ℕ (succ-ℕ y)))) rewrite-left-add-dist-ℕ (succ-ℕ x) zero-ℕ .(succ-ℕ x) refl = refl rewrite-left-add-dist-ℕ (succ-ℕ x) (succ-ℕ y) .(succ-ℕ (add-ℕ (succ-ℕ x) y)) refl = rewrite-left-add-dist-ℕ (succ-ℕ x) y (add-ℕ (succ-ℕ x) y) refl rewrite-left-dist-add-ℕ : (x y z : ℕ) → leq-ℕ y z → Id x (dist-ℕ y z) → Id (add-ℕ x y) z rewrite-left-dist-add-ℕ .(dist-ℕ y z) y z H refl = ( commutative-add-ℕ (dist-ℕ y z) y) ∙ ( leq-dist-ℕ y z H) rewrite-right-add-dist-ℕ : (x y z : ℕ) → Id (add-ℕ x y) z → Id y (dist-ℕ x z) rewrite-right-add-dist-ℕ x y z p = rewrite-left-add-dist-ℕ y x z (commutative-add-ℕ y x ∙ p) rewrite-right-dist-add-ℕ : (x y z : ℕ) → leq-ℕ x z → Id y (dist-ℕ x z) → Id (add-ℕ x y) z rewrite-right-dist-add-ℕ x .(dist-ℕ x z) z H refl = leq-dist-ℕ x z H -- We show that dist-ℕ is translation invariant translation-invariant-dist-ℕ : (k m n : ℕ) → Id (dist-ℕ (add-ℕ k m) (add-ℕ k n)) (dist-ℕ m n) translation-invariant-dist-ℕ zero-ℕ m n = ap-dist-ℕ (left-unit-law-add-ℕ m) (left-unit-law-add-ℕ n) translation-invariant-dist-ℕ (succ-ℕ k) m n = ( ap-dist-ℕ (left-successor-law-add-ℕ k m) (left-successor-law-add-ℕ k n)) ∙ ( translation-invariant-dist-ℕ k m n) -- We show that dist-ℕ is linear with respect to scalar multiplication linear-dist-ℕ : (m n k : ℕ) → Id (dist-ℕ (mul-ℕ k m) (mul-ℕ k n)) (mul-ℕ k (dist-ℕ m n)) linear-dist-ℕ zero-ℕ zero-ℕ zero-ℕ = refl linear-dist-ℕ zero-ℕ zero-ℕ (succ-ℕ k) = linear-dist-ℕ zero-ℕ zero-ℕ k linear-dist-ℕ zero-ℕ (succ-ℕ n) zero-ℕ = refl linear-dist-ℕ zero-ℕ (succ-ℕ n) (succ-ℕ k) = ap (dist-ℕ' (mul-ℕ (succ-ℕ k) (succ-ℕ n))) (right-zero-law-mul-ℕ (succ-ℕ k)) linear-dist-ℕ (succ-ℕ m) zero-ℕ zero-ℕ = refl linear-dist-ℕ (succ-ℕ m) zero-ℕ (succ-ℕ k) = ap (dist-ℕ (mul-ℕ (succ-ℕ k) (succ-ℕ m))) (right-zero-law-mul-ℕ (succ-ℕ k)) linear-dist-ℕ (succ-ℕ m) (succ-ℕ n) zero-ℕ = refl linear-dist-ℕ (succ-ℕ m) (succ-ℕ n) (succ-ℕ k) = ( ap-dist-ℕ ( right-successor-law-mul-ℕ (succ-ℕ k) m) ( right-successor-law-mul-ℕ (succ-ℕ k) n)) ∙ ( ( translation-invariant-dist-ℕ ( succ-ℕ k) ( mul-ℕ (succ-ℕ k) m) ( mul-ℕ (succ-ℕ k) n)) ∙ ( linear-dist-ℕ m n (succ-ℕ k))) -}
33.215308
82
0.563562
39b2850b3005cf04adbab228a64c8570768bd3d7
15,011
agda
Agda
Lambda/Closure/Functional/Alternative.agda
nad/codata
1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e
[ "MIT" ]
1
2021-02-13T14:48:45.000Z
2021-02-13T14:48:45.000Z
Lambda/Closure/Functional/Alternative.agda
nad/codata
1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e
[ "MIT" ]
null
null
null
Lambda/Closure/Functional/Alternative.agda
nad/codata
1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- Alternative functional semantics for an untyped λ-calculus with -- constants ------------------------------------------------------------------------ -- I noted that the compiler correctness proof in -- Lambda.Closure.Functional might be easier if the semantics was -- defined using continuation-passing style, so I decided to try this -- out. The proof at the end of this module /is/ slightly shorter, but -- the continuation-passing definition of the semantics is quite -- awkward (due to the limitations imposed by Agda). Furthermore it -- seemed to me as if the soundness proofs in -- Lambda.Closure.Equivalence would be harder to prove using this -- formulation of the semantics. module Lambda.Closure.Functional.Alternative where open import Category.Monad open import Category.Monad.Partiality as Partiality using (_⊥; never; Kind; OtherKind) open import Codata.Musical.Notation open import Data.List hiding (lookup) open import Data.Maybe import Data.Maybe.Categorical as Maybe open import Data.Vec using (Vec; []; _∷_; lookup) open import Function open import Level open import Relation.Binary using (module Preorder) open import Relation.Binary.PropositionalEquality as P using (_≡_) open Partiality._⊥ open Partiality.Kind private open module E {A : Set} = Partiality.Equality (_≡_ {A = A}) open module R {A : Set} = Partiality.Reasoning (P.isEquivalence {A = A}) open import Lambda.Syntax open Closure Tm open import Lambda.VirtualMachine open Functional private module VM = Closure Code ------------------------------------------------------------------------ -- A monad with partiality and failure PF : RawMonad {f = zero} (_⊥ ∘ Maybe) PF = Maybe.monadT Partiality.monad module PF where open RawMonad PF public fail : {A : Set} → Maybe A ⊥ fail = now nothing open PF ------------------------------------------------------------------------ -- Semantics module Workaround₁ where -- This module provides a workaround for the limitations of -- guardedness. mutual data Maybe_⊥P (A : Set) : Set where ⌈_⌉ : (x : Maybe A ⊥) → Maybe A ⊥P later : (x : ∞ (Maybe A ⊥P)) → Maybe A ⊥P ⟦_⟧P : ∀ {n} (t : Tm n) (ρ : Env n) (k : Value → Maybe A ⊥W) → Maybe A ⊥P data Maybe_⊥W (A : Set) : Set where ⌈_⌉ : (x : Maybe A ⊥) → Maybe A ⊥W later : (x : Maybe A ⊥P) → Maybe A ⊥W mutual -- The semantics, in slightly scrambled form. infix 5 _∙W_ ⟦_⟧W : ∀ {A n} → Tm n → Env n → (Value → Maybe A ⊥W) → Maybe A ⊥W ⟦ con i ⟧W ρ k = k (con i) ⟦ var x ⟧W ρ k = k (lookup ρ x) ⟦ ƛ t ⟧W ρ k = k (ƛ t ρ) ⟦ t₁ · t₂ ⟧W ρ k = ⟦ t₁ ⟧W ρ (λ v₁ → ⟦ t₂ ⟧W ρ (λ v₂ → (v₁ ∙W v₂) k)) _∙W_ : ∀ {A} → Value → Value → (Value → Maybe A ⊥W) → Maybe A ⊥W (con i ∙W v₂) k = ⌈ fail ⌉ (ƛ t₁ ρ ∙W v₂) k = later (⟦ t₁ ⟧P (v₂ ∷ ρ) k) -- Interpretation of the definitions above. whnf : ∀ {A} → Maybe A ⊥P → Maybe A ⊥W whnf ⌈ x ⌉ = ⌈ x ⌉ whnf (later x) = later (♭ x) whnf (⟦ t ⟧P ρ k) = ⟦ t ⟧W ρ k mutual ⟪_⟫W : ∀ {A} → Maybe A ⊥W → Maybe A ⊥ ⟪ ⌈ x ⌉ ⟫W = x ⟪ later x ⟫W = later (♯ ⟪ x ⟫P) ⟪_⟫P : ∀ {A} → Maybe A ⊥P → Maybe A ⊥ ⟪ x ⟫P = ⟪ whnf x ⟫W -- The actual semantics. Note that this definition gives us -- determinism "for free". infix 5 _∙_ ⟦_⟧ : ∀ {A n} → Tm n → Env n → (Value → Maybe A ⊥) → Maybe A ⊥ ⟦ t ⟧ ρ k = ⟪ ⟦ t ⟧P ρ (λ v → ⌈ k v ⌉) ⟫P where open Workaround₁ _∙_ : ∀ {A} → Value → Value → (Value → Maybe A ⊥) → Maybe A ⊥ (v₁ ∙ v₂) k = ⟪ (v₁ ∙W v₂) (λ v → ⌈ k v ⌉) ⟫W where open Workaround₁ -- ⟦_⟧ and _∙_ preserve equality of their continuations. module Workaround₂ {k : Kind} where open Workaround₁ mutual infix 4 _≈P_ _≈W_ data _≈P_ {A : Set} : Maybe A ⊥ → Maybe A ⊥ → Set where ⌈_⌉ : ∀ {x y} (x≈y : Rel k x y) → x ≈P y later : ∀ {x y} (x≈y : ∞ (♭ x ≈P ♭ y)) → later x ≈P later y ⟦_⟧W-congP : ∀ {n} t (ρ : Env n) {k₁ k₂ : Value → Maybe A ⊥W} (k₁≈k₂ : ∀ v → ⟪ k₁ v ⟫W ≈W ⟪ k₂ v ⟫W) → ⟪ ⟦ t ⟧W ρ k₁ ⟫W ≈P ⟪ ⟦ t ⟧W ρ k₂ ⟫W data _≈W_ {A : Set} : Maybe A ⊥ → Maybe A ⊥ → Set where ⌈_⌉ : ∀ {x y} (x≈y : Rel k x y) → x ≈W y later : ∀ {x y} (x≈y : ♭ x ≈P ♭ y) → later x ≈W later y mutual ⟦_⟧W-congW : ∀ {A n} t (ρ : Env n) {k₁ k₂ : Value → Maybe A ⊥W} → (∀ v → ⟪ k₁ v ⟫W ≈W ⟪ k₂ v ⟫W) → ⟪ ⟦ t ⟧W ρ k₁ ⟫W ≈W ⟪ ⟦ t ⟧W ρ k₂ ⟫W ⟦ con i ⟧W-congW ρ k₁≈k₂ = k₁≈k₂ (con i) ⟦ var x ⟧W-congW ρ k₁≈k₂ = k₁≈k₂ (lookup ρ x) ⟦ ƛ t ⟧W-congW ρ k₁≈k₂ = k₁≈k₂ (ƛ t ρ) ⟦ t₁ · t₂ ⟧W-congW ρ k₁≈k₂ = ⟦ t₁ ⟧W-congW ρ (λ v₁ → ⟦ t₂ ⟧W-congW ρ (λ v₂ → (v₁ ∙W v₂ -congW) k₁≈k₂)) _∙W_-congW : ∀ {A} v₁ v₂ {k₁ k₂ : Value → Maybe A ⊥W} → (∀ v → ⟪ k₁ v ⟫W ≈W ⟪ k₂ v ⟫W) → ⟪ (v₁ ∙W v₂) k₁ ⟫W ≈W ⟪ (v₁ ∙W v₂) k₂ ⟫W (con i ∙W v₂ -congW) k₁≈k₂ = ⌈ fail ∎ ⌉ (ƛ t₁ ρ ∙W v₂ -congW) k₁≈k₂ = later (⟦ t₁ ⟧W-congP (v₂ ∷ ρ) k₁≈k₂) whnf≈ : ∀ {A} {x y : Maybe A ⊥} → x ≈P y → x ≈W y whnf≈ ⌈ x≈y ⌉ = ⌈ x≈y ⌉ whnf≈ (later x≈y) = later (♭ x≈y) whnf≈ (⟦ t ⟧W-congP ρ k₁≈k₂) = ⟦ t ⟧W-congW ρ k₁≈k₂ mutual soundW : ∀ {A} {x y : Maybe A ⊥} → x ≈W y → Rel k x y soundW ⌈ x≈y ⌉ = x≈y soundW (later x≈y) = later (♯ soundP x≈y) soundP : ∀ {A} {x y : Maybe A ⊥} → x ≈P y → Rel k x y soundP x≈y = soundW (whnf≈ x≈y) ⟦_⟧-cong : ∀ {k A n} t (ρ : Env n) {k₁ k₂ : Value → Maybe A ⊥} → (∀ v → Rel k (k₁ v) (k₂ v)) → Rel k (⟦ t ⟧ ρ k₁) (⟦ t ⟧ ρ k₂) ⟦ t ⟧-cong ρ k₁≈k₂ = soundW (⟦ t ⟧W-congW ρ (λ v → ⌈ k₁≈k₂ v ⌉)) where open Workaround₂ _∙_-cong : ∀ {k A} v₁ v₂ {k₁ k₂ : Value → Maybe A ⊥} → (∀ v → Rel k (k₁ v) (k₂ v)) → Rel k ((v₁ ∙ v₂) k₁) ((v₁ ∙ v₂) k₂) (v₁ ∙ v₂ -cong) k₁≈k₂ = soundW ((v₁ ∙W v₂ -congW) (λ v → ⌈ k₁≈k₂ v ⌉)) where open Workaround₂ -- ⟦_⟧ and _∙_ satisfy their intended defining equations. sem-con : ∀ {A n} i {ρ : Env n} {k : Value → Maybe A ⊥} → ⟦ con i ⟧ ρ k ≅ k (con i) sem-con i {k = k} = k (con i) ∎ sem-var : ∀ {A n} x {ρ : Env n} {k : Value → Maybe A ⊥} → ⟦ var x ⟧ ρ k ≅ k (lookup ρ x) sem-var x {ρ} {k} = k (lookup ρ x) ∎ sem-ƛ : ∀ {A n} t {ρ : Env n} {k : Value → Maybe A ⊥} → ⟦ ƛ t ⟧ ρ k ≅ k (ƛ t ρ) sem-ƛ t {ρ} {k} = k (ƛ t ρ) ∎ sem-· : ∀ {A n} t₁ t₂ {ρ : Env n} {k : Value → Maybe A ⊥} → ⟦ t₁ · t₂ ⟧ ρ k ≅ (⟦ t₁ ⟧ ρ λ v₁ → ⟦ t₂ ⟧ ρ λ v₂ → (v₁ ∙ v₂) k) sem-· t₁ t₂ {ρ} {k} = soundW $ ⟦ t₁ ⟧W-congW ρ λ v₁ → ⟦ t₂ ⟧W-congW ρ λ v₂ → ⌈ (v₁ ∙ v₂) k ∎ ⌉ where open Workaround₂ app-con : ∀ {A} i v₂ {k : Value → Maybe A ⊥} → (con i ∙ v₂) k ≅ fail app-con i v₂ = fail ∎ app-ƛ : ∀ {A n} t₁ (ρ : Env n) v₂ {k : Value → Maybe A ⊥} → (ƛ t₁ ρ ∙ v₂) k ≅ later (♯ ⟦ t₁ ⟧ (v₂ ∷ ρ) k) app-ƛ t₁ ρ v₂ {k} = later (♯ (⟦ t₁ ⟧ (v₂ ∷ ρ) k ∎)) -- ⟦_⟧ and _∙_ are the unique solutions to the system of equations -- which is intended to define them. I have stated this result using -- strong equality, which is (more or less) the kind of equality you -- get from a definition. I tried using weak equality instead, but -- this turned out to make the proof tricky (due to the lack of -- transitivity). module Unique {A : Set} (⟪_⟫ : ∀ {n} t (ρ : Env n) (k : Value → Maybe A ⊥) → Maybe A ⊥) (_○_ : Value → Value → (Value → Maybe A ⊥) → Maybe A ⊥) (⟪con⟫ : ∀ {n} i {ρ : Env n} {k : Value → Maybe A ⊥} → ⟪ con i ⟫ ρ k ≅ k (con i)) (⟪var⟫ : ∀ {n} x {ρ : Env n} {k : Value → Maybe A ⊥} → ⟪ var x ⟫ ρ k ≅ k (lookup ρ x)) (⟪ƛ⟫ : ∀ {n} t {ρ : Env n} {k : Value → Maybe A ⊥} → ⟪ ƛ t ⟫ ρ k ≅ k (ƛ t ρ)) (⟪·⟫ : ∀ {n} t₁ t₂ {ρ : Env n} {k : Value → Maybe A ⊥} → ⟪ t₁ · t₂ ⟫ ρ k ≅ (⟪ t₁ ⟫ ρ λ v₁ → ⟪ t₂ ⟫ ρ λ v₂ → (v₁ ○ v₂) k)) (con○ : ∀ i v₂ {k : Value → Maybe A ⊥} → (con i ○ v₂) k ≅ fail) (ƛ○ : ∀ {n} t₁ (ρ : Env n) v₂ {k : Value → Maybe A ⊥} → (ƛ t₁ ρ ○ v₂) k ≅ later (♯ ⟪ t₁ ⟫ (v₂ ∷ ρ) k)) where infix 4 _≅P_ _≅W_ infixr 2 _≅⟨_⟩P_ _≅⟨_⟩W_ _≅⟪_⟫P_ _≅⟪_⟫W_ mutual data _≅P_ : Maybe A ⊥ → Maybe A ⊥ → Set where _≅⟨_⟩P_ : ∀ x {y z} (x≅y : x ≅ y) (y≅z : y ≅P z) → x ≅P z _≅⟪_⟫P_ : ∀ x {y z} (x≅y : x ≅P y) (y≅z : y ≅ z) → x ≅P z semP : ∀ {n} t {ρ : Env n} {k₁ k₂ : Value → Maybe A ⊥} → (k₁≅k₂ : ∀ v → k₁ v ≅W k₂ v) → ⟪ t ⟫ ρ k₁ ≅P ⟦ t ⟧ ρ k₂ data _≅W_ : Maybe A ⊥ → Maybe A ⊥ → Set where ⌈_⌉ : ∀ {x y} (x≅y : x ≅ y) → x ≅W y later : ∀ {x y} (x≅y : ♭ x ≅P ♭ y) → later x ≅W later y _≅⟨_⟩W_ : ∀ x {y z} → x ≅ y → y ≅W z → x ≅W z _ ≅⟨ x≅y ⟩W ⌈ y≅z ⌉ = ⌈ _ ≅⟨ x≅y ⟩ y≅z ⌉ ._ ≅⟨ later x≅y ⟩W later y≅z = later (_ ≅⟨ ♭ x≅y ⟩P y≅z) _≅⟪_⟫W_ : ∀ x {y z} → x ≅W y → y ≅ z → x ≅W z _ ≅⟪ ⌈ x≅y ⌉ ⟫W y≅z = ⌈ _ ≅⟨ x≅y ⟩ y≅z ⌉ ._ ≅⟪ later x≅y ⟫W later y≅z = later (_ ≅⟪ x≅y ⟫P ♭ y≅z) mutual semW : ∀ {n} t {ρ : Env n} {k₁ k₂ : Value → Maybe A ⊥} → (∀ v → k₁ v ≅W k₂ v) → ⟪ t ⟫ ρ k₁ ≅W ⟦ t ⟧ ρ k₂ semW (con i) {ρ} {k₁} {k₂} k₁≅k₂ = ⟪ con i ⟫ ρ k₁ ≅⟨ ⟪con⟫ i ⟩W k₁ (con i) ≅⟪ k₁≅k₂ _ ⟫W k₂ (con i) ∎ semW (var x) {ρ} {k₁} {k₂} k₁≅k₂ = ⟪ var x ⟫ ρ k₁ ≅⟨ ⟪var⟫ x ⟩W k₁ (lookup ρ x) ≅⟪ k₁≅k₂ _ ⟫W k₂ (lookup ρ x) ∎ semW (ƛ t) {ρ} {k₁} {k₂} k₁≅k₂ = ⟪ ƛ t ⟫ ρ k₁ ≅⟨ ⟪ƛ⟫ t ⟩W k₁ (ƛ t ρ) ≅⟪ k₁≅k₂ _ ⟫W k₂ (ƛ t ρ) ∎ semW (t₁ · t₂) {ρ} {k₁} {k₂} k₁≅k₂ = ⟪ t₁ · t₂ ⟫ ρ k₁ ≅⟨ ⟪·⟫ t₁ t₂ ⟩W (⟪ t₁ ⟫ ρ λ v₁ → ⟪ t₂ ⟫ ρ λ v₂ → (v₁ ○ v₂) k₁) ≅⟪ semW t₁ (λ v₁ → semW t₂ (λ v₂ → appW v₁ v₂ k₁≅k₂)) ⟫W (⟦ t₁ ⟧ ρ λ v₁ → ⟦ t₂ ⟧ ρ λ v₂ → (v₁ ∙ v₂) k₂) ≅⟨ sym $ sem-· t₁ t₂ ⟩ ⟦ t₁ · t₂ ⟧ ρ k₂ ∎ appW : ∀ v₁ v₂ {k₁ k₂ : Value → Maybe A ⊥} → (∀ v → k₁ v ≅W k₂ v) → (v₁ ○ v₂) k₁ ≅W (v₁ ∙ v₂) k₂ appW (con i) v₂ {k₁} {k₂} k₁≅k₂ = ⌈ (con i ○ v₂) k₁ ≅⟨ con○ i v₂ ⟩ fail ∎ ⌉ appW (ƛ t₁ ρ) v₂ {k₁} {k₂} k₁≅k₂ = (ƛ t₁ ρ ○ v₂) k₁ ≅⟨ ƛ○ t₁ ρ v₂ ⟩W later _ ≅⟪ later (semP t₁ k₁≅k₂) ⟫W (ƛ t₁ ρ ∙ v₂) k₂ ∎ whnf : ∀ {x y} → x ≅P y → x ≅W y whnf (x ≅⟨ x≅y ⟩P y≅z) = x ≅⟨ x≅y ⟩W whnf y≅z whnf (x ≅⟪ x≅y ⟫P y≅z) = x ≅⟪ whnf x≅y ⟫W y≅z whnf (semP t k₁≅k₂) = semW t k₁≅k₂ mutual soundW : ∀ {x y} → x ≅W y → x ≅ y soundW ⌈ x≅y ⌉ = x≅y soundW (later x≅y) = later (♯ soundP x≅y) soundP : ∀ {x y} → x ≅P y → x ≅ y soundP x≅y = soundW (whnf x≅y) sem : ∀ {n} t {ρ : Env n} {k : Value → Maybe A ⊥} → ⟪ t ⟫ ρ k ≅ ⟦ t ⟧ ρ k sem t {k = k} = soundW (semW t (λ v → ⌈ k v ∎ ⌉)) dot : ∀ v₁ v₂ {k : Value → Maybe A ⊥} → (v₁ ○ v₂) k ≅ (v₁ ∙ v₂) k dot v₁ v₂ {k} = soundW (appW v₁ v₂ (λ v → ⌈ k v ∎ ⌉)) ------------------------------------------------------------------------ -- Example Ω-loops : ⟦ Ω ⟧ [] return ≈ never Ω-loops = later (♯ Ω-loops) ------------------------------------------------------------------------ -- Compiler correctness module Correctness {k : OtherKind} where infix 4 _≈P_ _≈W_ infixr 2 _≡⟨_⟩W_ _≈⟨_⟩P_ _≈⟨_⟩W_ mutual data _≈P_ : Maybe VM.Value ⊥ → Maybe VM.Value ⊥ → Set where _≈⟨_⟩P_ : ∀ x {y z} (x≈y : x ≈P y) (y≅z : y ≅ z) → x ≈P z correct : ∀ {n} t {ρ : Env n} {c s} {k : Value → Maybe VM.Value ⊥} → (hyp : ∀ v → exec ⟨ c , val (comp-val v) ∷ s , comp-env ρ ⟩ ≈W k v) → exec ⟨ comp t c , s , comp-env ρ ⟩ ≈P ⟦ t ⟧ ρ k data _≈W_ : Maybe VM.Value ⊥ → Maybe VM.Value ⊥ → Set where ⌈_⌉ : ∀ {x y} (x≈y : Rel (other k) x y) → x ≈W y later : ∀ {x y} (x≈y : ♭ x ≈P ♭ y) → later x ≈W later y laterˡ : ∀ {x y} (x≈y : ♭ x ≈W y) → later x ≈W y _≡⟨_⟩W_ : ∀ x {y z} → x ≡ y → y ≈W z → x ≈W z _ ≡⟨ P.refl ⟩W y≈z = y≈z _≈⟨_⟩W_ : ∀ x {y z} → x ≈W y → y ≅ z → x ≈W z ._ ≈⟨ later x≈y ⟩W later y≅z = later (_ ≈⟨ x≈y ⟩P ♭ y≅z) ._ ≈⟨ laterˡ x≈y ⟩W y≅z = laterˡ (_ ≈⟨ x≈y ⟩W y≅z) _ ≈⟨ ⌈ x≈y ⌉ ⟩W y≅z = ⌈ trans x≈y (Partiality.≅⇒ y≅z) ⌉ where trans = Preorder.trans (Partiality.preorder P.isPreorder _) mutual correctW : ∀ {n} t {ρ : Env n} {c s} {k : Value → Maybe VM.Value ⊥} → (∀ v → exec ⟨ c , val (comp-val v) ∷ s , comp-env ρ ⟩ ≈W k v) → exec ⟨ comp t c , s , comp-env ρ ⟩ ≈W ⟦ t ⟧ ρ k correctW (con i) {ρ} {c} {s} {k} hyp = laterˡ ( exec ⟨ c , val (Lambda.Syntax.Closure.con i) ∷ s , comp-env ρ ⟩ ≈⟨ hyp (con i) ⟩W k (con i) ∎) correctW (var x) {ρ} {c} {s} {k} hyp = laterˡ ( exec ⟨ c , val (lookup (comp-env ρ) x) ∷ s , comp-env ρ ⟩ ≡⟨ P.cong (λ v → exec ⟨ c , val v ∷ s , comp-env ρ ⟩) $ lookup-hom x ρ ⟩W exec ⟨ c , val (comp-val (lookup ρ x)) ∷ s , comp-env ρ ⟩ ≈⟨ hyp (lookup ρ x) ⟩W k (lookup ρ x) ∎) correctW (ƛ t) {ρ} {c} {s} {k} hyp = laterˡ ( exec ⟨ c , val (comp-val (ƛ t ρ)) ∷ s , comp-env ρ ⟩ ≈⟨ hyp (ƛ t ρ) ⟩W k (ƛ t ρ) ∎) correctW (t₁ · t₂) {ρ} {c} {s} {k} hyp = exec ⟨ comp t₁ (comp t₂ (app ∷ c)) , s , comp-env ρ ⟩ ≈⟨ correctW t₁ (λ v₁ → correctW t₂ (λ v₂ → ∙-correctW v₁ v₂ hyp)) ⟩W (⟦ t₁ ⟧ ρ λ v₁ → ⟦ t₂ ⟧ ρ λ v₂ → (v₁ ∙ v₂) k) ≅⟨ sym $ sem-· t₁ t₂ ⟩ ⟦ t₁ · t₂ ⟧ ρ k ∎ ∙-correctW : ∀ {n} v₁ v₂ {ρ : Env n} {c s} {k : Value → Maybe VM.Value ⊥} → (∀ v → exec ⟨ c , val (comp-val v) ∷ s , comp-env ρ ⟩ ≈W k v) → exec ⟨ app ∷ c , val (comp-val v₂) ∷ val (comp-val v₁) ∷ s , comp-env ρ ⟩ ≈W (v₁ ∙ v₂) k ∙-correctW (con i) v₂ _ = ⌈ fail ∎ ⌉ ∙-correctW (ƛ t₁ ρ₁) v₂ {ρ} {c} {s} {k} hyp = exec ⟨ app ∷ c , val (comp-val v₂) ∷ val (comp-val (ƛ t₁ ρ₁)) ∷ s , comp-env ρ ⟩ ≈⟨ later ( exec ⟨ comp t₁ [ ret ] , ret c (comp-env ρ) ∷ s , comp-env (v₂ ∷ ρ₁) ⟩ ≈⟨ correct t₁ (λ v → laterˡ (hyp v)) ⟩P (⟦ t₁ ⟧ (v₂ ∷ ρ₁) k) ∎) ⟩W (ƛ t₁ ρ₁ ∙ v₂) k ∎ whnf : ∀ {x y} → x ≈P y → x ≈W y whnf (x ≈⟨ x≈y ⟩P y≅z) = x ≈⟨ whnf x≈y ⟩W y≅z whnf (correct t hyp) = correctW t hyp mutual soundW : ∀ {x y} → x ≈W y → Rel (other k) x y soundW ⌈ x≈y ⌉ = x≈y soundW (later x≈y) = later (♯ soundP x≈y) soundW (laterˡ x≈y) = laterˡ (soundW x≈y) soundP : ∀ {x y} → x ≈P y → Rel (other k) x y soundP x≈y = soundW (whnf x≈y) correct : ∀ t → exec ⟨ comp t [] , [] , [] ⟩ ≈ ⟦ t ⟧ [] (λ v → return (comp-val v)) correct t = soundP $ Correctness.correct t (λ v → ⌈ return (comp-val v) ∎ ⌉) where open Correctness
35.825776
138
0.44594
50976c29b6da15636c5b9aa2f84f0f7f64e6a4d1
713
agda
Agda
Logic/IntroInstances.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
Logic/IntroInstances.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
Logic/IntroInstances.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
module Logic.IntroInstances where import Data.Tuple as Tuple import Lvl open import Logic.Predicate open import Logic.Propositional open import Type private variable ℓ : Lvl.Level private variable A B Obj : Type{ℓ} private variable P : Obj → Type{ℓ} private variable x : Obj instance [∧]-intro-instance : ⦃ _ : A ⦄ → ⦃ _ : B ⦄ → (A ∧ B) [∧]-intro-instance ⦃ a ⦄ ⦃ b ⦄ = [∧]-intro a b instance [∨]-introₗ-instance : ⦃ _ : A ⦄ → (A ∨ B) [∨]-introₗ-instance ⦃ a ⦄ = [∨]-introₗ a instance [∨]-introᵣ-instance : ⦃ _ : B ⦄ → (A ∨ B) [∨]-introᵣ-instance ⦃ b ⦄ = [∨]-introᵣ b instance [∃]-intro-instance : ⦃ _ : P(x) ⦄ → ∃(P) [∃]-intro-instance {x = x} ⦃ proof ⦄ = [∃]-intro (x) ⦃ proof ⦄
24.586207
64
0.58906
dcf69e784c577b62f9dd1d735761ad05dfe987a9
27,502
agda
Agda
Agda/05-identity-types.agda
jonsterling/HoTT-Intro
7457d00fbd2c0a993b01cd2b3dbc4f259213845e
[ "CC-BY-4.0" ]
null
null
null
Agda/05-identity-types.agda
jonsterling/HoTT-Intro
7457d00fbd2c0a993b01cd2b3dbc4f259213845e
[ "CC-BY-4.0" ]
null
null
null
Agda/05-identity-types.agda
jonsterling/HoTT-Intro
7457d00fbd2c0a993b01cd2b3dbc4f259213845e
[ "CC-BY-4.0" ]
null
null
null
{-# OPTIONS --without-K --exact-split #-} module 05-identity-types where import 04-inductive-types open 04-inductive-types public -- Section 5.1 -- Definition 5.1.1 {- We introduce the identity type. -} data Id {i : Level} {A : UU i} (x : A) : A → UU i where refl : Id x x {- In the following definition we give a construction of path induction. However, in the development of this library we will mostly use Agda's built-in methods to give constructions by path induction. -} ind-Id : {i j : Level} {A : UU i} (x : A) (B : (y : A) (p : Id x y) → UU j) → (B x refl) → (y : A) (p : Id x y) → B y p ind-Id x B b y refl = b -- Section 5.2 The groupoid structure of types -- Definition 5.2.1 _∙_ : {i : Level} {A : UU i} {x y z : A} → Id x y → Id y z → Id x z refl ∙ q = q concat : {i : Level} {A : UU i} {x y : A} → Id x y → (z : A) → Id y z → Id x z concat p z q = p ∙ q -- Definition 5.2.2 inv : {i : Level} {A : UU i} {x y : A} → Id x y → Id y x inv refl = refl -- Definition 5.2.3 assoc : {i : Level} {A : UU i} {x y z w : A} (p : Id x y) (q : Id y z) (r : Id z w) → Id ((p ∙ q) ∙ r) (p ∙ (q ∙ r)) assoc refl q r = refl -- Definition 5.2.4 left-unit : {i : Level} {A : UU i} {x y : A} {p : Id x y} → Id (refl ∙ p) p left-unit = refl right-unit : {i : Level} {A : UU i} {x y : A} {p : Id x y} → Id (p ∙ refl) p right-unit {p = refl} = refl -- Definition 5.2.5 left-inv : {i : Level} {A : UU i} {x y : A} (p : Id x y) → Id ((inv p) ∙ p) refl left-inv refl = refl right-inv : {i : Level} {A : UU i} {x y : A} (p : Id x y) → Id (p ∙ (inv p)) refl right-inv refl = refl -- Section 5.3 The action on paths of functions -- Definition 5.3.1 ap : {i j : Level} {A : UU i} {B : UU j} (f : A → B) {x y : A} (p : Id x y) → Id (f x) (f y) ap f refl = refl ap-id : {i : Level} {A : UU i} {x y : A} (p : Id x y) → Id (ap id p) p ap-id refl = refl ap-comp : {i j k : Level} {A : UU i} {B : UU j} {C : UU k} (g : B → C) (f : A → B) {x y : A} (p : Id x y) → Id (ap (g ∘ f) p) (ap g (ap f p)) ap-comp g f refl = refl -- Definition 5.3.2 ap-refl : {i j : Level} {A : UU i} {B : UU j} (f : A → B) (x : A) → Id (ap f (refl {_} {_} {x})) refl ap-refl f x = refl ap-concat : {i j : Level} {A : UU i} {B : UU j} (f : A → B) {x y z : A} (p : Id x y) (q : Id y z) → Id (ap f (p ∙ q)) ((ap f p) ∙ (ap f q)) ap-concat f refl q = refl ap-inv : {i j : Level} {A : UU i} {B : UU j} (f : A → B) {x y : A} (p : Id x y) → Id (ap f (inv p)) (inv (ap f p)) ap-inv f refl = refl -- Section 5.4 Transport -- Definition 5.4.1 tr : {i j : Level} {A : UU i} (B : A → UU j) {x y : A} (p : Id x y) → B x → B y tr B refl b = b -- Definition 5.4.2 apd : {i j : Level} {A : UU i} {B : A → UU j} (f : (x : A) → B x) {x y : A} (p : Id x y) → Id (tr B p (f x)) (f y) apd f refl = refl path-over : {i j : Level} {A : UU i} (B : A → UU j) {x x' : A} (p : Id x x') → B x → B x' → UU j path-over B p y y' = Id (tr B p y) y' refl-path-over : {i j : Level} {A : UU i} (B : A → UU j) (x : A) (y : B x) → path-over B refl y y refl-path-over B x y = refl -- Exercises -- Exercise 5.1 -- Exercise 5.2 distributive-inv-concat : {i : Level} {A : UU i} {x y : A} (p : Id x y) {z : A} (q : Id y z) → Id (inv (p ∙ q)) ((inv q) ∙ (inv p)) distributive-inv-concat refl refl = refl -- Exercise 5.3 inv-con : {i : Level} {A : UU i} {x y : A} (p : Id x y) {z : A} (q : Id y z) (r : Id x z) → (Id (p ∙ q) r) → Id q ((inv p) ∙ r) inv-con refl q r = id con-inv : {i : Level} {A : UU i} {x y : A} (p : Id x y) {z : A} (q : Id y z) (r : Id x z) → (Id (p ∙ q) r) → Id p (r ∙ (inv q)) con-inv p refl r = ( λ α → α ∙ (inv right-unit)) ∘ (concat (inv right-unit) r) -- Exercise 5.4 lift : {i j : Level} {A : UU i} {B : A → UU j} {x y : A} (p : Id x y) (b : B x) → Id (pair x b) (pair y (tr B p b)) lift refl b = refl -- Exercise 5.5 -- Exercise 5.5(a) abstract right-unit-law-add-ℕ : (x : ℕ) → Id (add-ℕ x zero-ℕ) x right-unit-law-add-ℕ x = refl left-unit-law-add-ℕ : (x : ℕ) → Id (add-ℕ zero-ℕ x) x left-unit-law-add-ℕ zero-ℕ = refl left-unit-law-add-ℕ (succ-ℕ x) = ap succ-ℕ (left-unit-law-add-ℕ x) left-successor-law-add-ℕ : (x y : ℕ) → Id (add-ℕ (succ-ℕ x) y) (succ-ℕ (add-ℕ x y)) left-successor-law-add-ℕ x zero-ℕ = refl left-successor-law-add-ℕ x (succ-ℕ y) = ap succ-ℕ (left-successor-law-add-ℕ x y) right-successor-law-add-ℕ : (x y : ℕ) → Id (add-ℕ x (succ-ℕ y)) (succ-ℕ (add-ℕ x y)) right-successor-law-add-ℕ x y = refl -- Exercise 5.5(b) abstract associative-add-ℕ : (x y z : ℕ) → Id (add-ℕ (add-ℕ x y) z) (add-ℕ x (add-ℕ y z)) associative-add-ℕ x y zero-ℕ = refl associative-add-ℕ x y (succ-ℕ z) = ap succ-ℕ (associative-add-ℕ x y z) abstract commutative-add-ℕ : (x y : ℕ) → Id (add-ℕ x y) (add-ℕ y x) commutative-add-ℕ zero-ℕ y = left-unit-law-add-ℕ y commutative-add-ℕ (succ-ℕ x) y = (left-successor-law-add-ℕ x y) ∙ (ap succ-ℕ (commutative-add-ℕ x y)) -- Exercise 5.5(c) abstract left-zero-law-mul-ℕ : (x : ℕ) → Id (mul-ℕ zero-ℕ x) zero-ℕ left-zero-law-mul-ℕ x = refl right-zero-law-mul-ℕ : (x : ℕ) → Id (mul-ℕ x zero-ℕ) zero-ℕ right-zero-law-mul-ℕ zero-ℕ = refl right-zero-law-mul-ℕ (succ-ℕ x) = ( right-unit-law-add-ℕ (mul-ℕ x zero-ℕ)) ∙ (right-zero-law-mul-ℕ x) abstract right-unit-law-mul-ℕ : (x : ℕ) → Id (mul-ℕ x one-ℕ) x right-unit-law-mul-ℕ zero-ℕ = refl right-unit-law-mul-ℕ (succ-ℕ x) = ap succ-ℕ (right-unit-law-mul-ℕ x) left-unit-law-mul-ℕ : (x : ℕ) → Id (mul-ℕ one-ℕ x) x left-unit-law-mul-ℕ zero-ℕ = refl left-unit-law-mul-ℕ (succ-ℕ x) = ap succ-ℕ (left-unit-law-mul-ℕ x) abstract left-successor-law-mul-ℕ : (x y : ℕ) → Id (mul-ℕ (succ-ℕ x) y) (add-ℕ (mul-ℕ x y) y) left-successor-law-mul-ℕ x y = refl right-successor-law-mul-ℕ : (x y : ℕ) → Id (mul-ℕ x (succ-ℕ y)) (add-ℕ x (mul-ℕ x y)) right-successor-law-mul-ℕ zero-ℕ y = refl right-successor-law-mul-ℕ (succ-ℕ x) y = ( ( ap (λ t → succ-ℕ (add-ℕ t y)) (right-successor-law-mul-ℕ x y)) ∙ ( ap succ-ℕ (associative-add-ℕ x (mul-ℕ x y) y))) ∙ ( inv (left-successor-law-add-ℕ x (add-ℕ (mul-ℕ x y) y))) -- Exercise 5.5(d) abstract commutative-mul-ℕ : (x y : ℕ) → Id (mul-ℕ x y) (mul-ℕ y x) commutative-mul-ℕ zero-ℕ y = inv (right-zero-law-mul-ℕ y) commutative-mul-ℕ (succ-ℕ x) y = ( commutative-add-ℕ (mul-ℕ x y) y) ∙ ( ( ap (add-ℕ y) (commutative-mul-ℕ x y)) ∙ ( inv (right-successor-law-mul-ℕ y x))) -- Exercise 5.5(e) abstract left-distributive-mul-add-ℕ : (x y z : ℕ) → Id (mul-ℕ x (add-ℕ y z)) (add-ℕ (mul-ℕ x y) (mul-ℕ x z)) left-distributive-mul-add-ℕ zero-ℕ y z = refl left-distributive-mul-add-ℕ (succ-ℕ x) y z = ( left-successor-law-mul-ℕ x (add-ℕ y z)) ∙ ( ( ap (λ t → add-ℕ t (add-ℕ y z)) (left-distributive-mul-add-ℕ x y z)) ∙ ( ( associative-add-ℕ (mul-ℕ x y) (mul-ℕ x z) (add-ℕ y z)) ∙ ( ( ap ( add-ℕ (mul-ℕ x y)) ( ( inv (associative-add-ℕ (mul-ℕ x z) y z)) ∙ ( ( ap (λ t → add-ℕ t z) (commutative-add-ℕ (mul-ℕ x z) y)) ∙ ( associative-add-ℕ y (mul-ℕ x z) z)))) ∙ ( inv (associative-add-ℕ (mul-ℕ x y) y (add-ℕ (mul-ℕ x z) z)))))) abstract right-distributive-mul-add-ℕ : (x y z : ℕ) → Id (mul-ℕ (add-ℕ x y) z) (add-ℕ (mul-ℕ x z) (mul-ℕ y z)) right-distributive-mul-add-ℕ x y z = ( commutative-mul-ℕ (add-ℕ x y) z) ∙ ( ( left-distributive-mul-add-ℕ z x y) ∙ ( ( ap (λ t → add-ℕ t (mul-ℕ z y)) (commutative-mul-ℕ z x)) ∙ ( ap (λ t → add-ℕ (mul-ℕ x z) t) (commutative-mul-ℕ z y)))) -- Exercise 5.5(f) abstract associative-mul-ℕ : (x y z : ℕ) → Id (mul-ℕ (mul-ℕ x y) z) (mul-ℕ x (mul-ℕ y z)) associative-mul-ℕ zero-ℕ y z = refl associative-mul-ℕ (succ-ℕ x) y z = ( right-distributive-mul-add-ℕ (mul-ℕ x y) y z) ∙ ( ap (λ t → add-ℕ t (mul-ℕ y z)) (associative-mul-ℕ x y z)) -- Exercise 5.6 Mac-Lane-pentagon : {i : Level} {A : UU i} {a b c d e : A} (p : Id a b) (q : Id b c) (r : Id c d) (s : Id d e) → let α₁ = (ap (λ t → t ∙ s) (assoc p q r)) α₂ = (assoc p (q ∙ r) s) α₃ = (ap (λ t → p ∙ t) (assoc q r s)) α₄ = (assoc (p ∙ q) r s) α₅ = (assoc p q (r ∙ s)) in Id ((α₁ ∙ α₂) ∙ α₃) (α₄ ∙ α₅) Mac-Lane-pentagon refl refl refl refl = refl {- The following code is an experiment that shows that constructions in an abstract environment do remember the specific definitions of previous definitions in abstract environments. -} abstract abstract-concat : {l : Level} {A : UU l} {x y z : A} → Id x y → Id y z → Id x z abstract-concat refl q = q abstract-left-unit-law : {l : Level} {A : UU l} {x y : A} (q : Id x y) → Id (abstract-concat refl q) q abstract-left-unit-law q = refl {- We just make some random definition to make sure that we are not in the same abstract envirnoment anymore. -} one : ℕ one = succ-ℕ zero-ℕ abstract abstract-right-unit-law : {l : Level} {A : UU l} {x y : A} (p : Id x y) → Id (abstract-concat p refl) p abstract-right-unit-law refl = refl {- The term refl should not be accepted if the definition of abstract-concat were forgotten. A definition that would work under all circumstances is abstract-left-unit refl. -} -- The ring axioms for ℤ abstract left-inverse-pred-ℤ : (k : ℤ) → Id (pred-ℤ (succ-ℤ k)) k left-inverse-pred-ℤ (inl zero-ℕ) = refl left-inverse-pred-ℤ (inl (succ-ℕ x)) = refl left-inverse-pred-ℤ (inr (inl star)) = refl left-inverse-pred-ℤ (inr (inr zero-ℕ)) = refl left-inverse-pred-ℤ (inr (inr (succ-ℕ x))) = refl right-inverse-pred-ℤ : (k : ℤ) → Id (succ-ℤ (pred-ℤ k)) k right-inverse-pred-ℤ (inl zero-ℕ) = refl right-inverse-pred-ℤ (inl (succ-ℕ x)) = refl right-inverse-pred-ℤ (inr (inl star)) = refl right-inverse-pred-ℤ (inr (inr zero-ℕ)) = refl right-inverse-pred-ℤ (inr (inr (succ-ℕ x))) = refl {- Exercise 6.12 (a) simply asks to prove the unit laws. The left unit law holds by judgmental equality. -} abstract left-unit-law-add-ℤ : (k : ℤ) → Id (add-ℤ zero-ℤ k) k left-unit-law-add-ℤ k = refl right-unit-law-add-ℤ : (k : ℤ) → Id (add-ℤ k zero-ℤ) k right-unit-law-add-ℤ (inl zero-ℕ) = refl right-unit-law-add-ℤ (inl (succ-ℕ x)) = ap pred-ℤ (right-unit-law-add-ℤ (inl x)) right-unit-law-add-ℤ (inr (inl star)) = refl right-unit-law-add-ℤ (inr (inr zero-ℕ)) = refl right-unit-law-add-ℤ (inr (inr (succ-ℕ x))) = ap succ-ℤ (right-unit-law-add-ℤ (inr (inr x))) {- Exercise 6.12 (b) asks to show the left and right predecessor and successor laws. These are helpful to give proofs of associativity and commutativity. -} abstract left-predecessor-law-add-ℤ : (x y : ℤ) → Id (add-ℤ (pred-ℤ x) y) (pred-ℤ (add-ℤ x y)) left-predecessor-law-add-ℤ (inl n) y = refl left-predecessor-law-add-ℤ (inr (inl star)) y = refl left-predecessor-law-add-ℤ (inr (inr zero-ℕ)) y = ( ap (λ t → add-ℤ t y) (left-inverse-pred-ℤ zero-ℤ)) ∙ ( inv (left-inverse-pred-ℤ y)) left-predecessor-law-add-ℤ (inr (inr (succ-ℕ x))) y = ( ap (λ t → (add-ℤ t y)) (left-inverse-pred-ℤ (inr (inr x)))) ∙ ( inv (left-inverse-pred-ℤ (add-ℤ (inr (inr x)) y))) right-predecessor-law-add-ℤ : (x y : ℤ) → Id (add-ℤ x (pred-ℤ y)) (pred-ℤ (add-ℤ x y)) right-predecessor-law-add-ℤ (inl zero-ℕ) n = refl right-predecessor-law-add-ℤ (inl (succ-ℕ m)) n = ap pred-ℤ (right-predecessor-law-add-ℤ (inl m) n) right-predecessor-law-add-ℤ (inr (inl star)) n = refl right-predecessor-law-add-ℤ (inr (inr zero-ℕ)) n = (right-inverse-pred-ℤ n) ∙ (inv (left-inverse-pred-ℤ n)) right-predecessor-law-add-ℤ (inr (inr (succ-ℕ x))) n = ( ap succ-ℤ (right-predecessor-law-add-ℤ (inr (inr x)) n)) ∙ ( ( right-inverse-pred-ℤ (add-ℤ (inr (inr x)) n)) ∙ ( inv (left-inverse-pred-ℤ (add-ℤ (inr (inr x)) n)))) abstract left-successor-law-add-ℤ : (x y : ℤ) → Id (add-ℤ (succ-ℤ x) y) (succ-ℤ (add-ℤ x y)) left-successor-law-add-ℤ (inl zero-ℕ) y = ( ap (λ t → add-ℤ t y) (right-inverse-pred-ℤ zero-ℤ)) ∙ ( inv (right-inverse-pred-ℤ y)) left-successor-law-add-ℤ (inl (succ-ℕ x)) y = ( inv (right-inverse-pred-ℤ (add-ℤ (inl x) y))) ∙ ( ap succ-ℤ (inv (left-predecessor-law-add-ℤ (inl x) y))) left-successor-law-add-ℤ (inr (inl star)) y = refl left-successor-law-add-ℤ (inr (inr x)) y = refl right-successor-law-add-ℤ : (x y : ℤ) → Id (add-ℤ x (succ-ℤ y)) (succ-ℤ (add-ℤ x y)) right-successor-law-add-ℤ (inl zero-ℕ) y = (left-inverse-pred-ℤ y) ∙ (inv (right-inverse-pred-ℤ y)) right-successor-law-add-ℤ (inl (succ-ℕ x)) y = ( ap pred-ℤ (right-successor-law-add-ℤ (inl x) y)) ∙ ( ( left-inverse-pred-ℤ (add-ℤ (inl x) y)) ∙ ( inv (right-inverse-pred-ℤ (add-ℤ (inl x) y)))) right-successor-law-add-ℤ (inr (inl star)) y = refl right-successor-law-add-ℤ (inr (inr zero-ℕ)) y = refl right-successor-law-add-ℤ (inr (inr (succ-ℕ x))) y = ap succ-ℤ (right-successor-law-add-ℤ (inr (inr x)) y) {- Exercise 6.12 (c) asks to prove associativity and commutativity. Note that we avoid an unwieldy amount of cases by only using induction on the first argument. The resulting proof term is fairly short, and we don't have to present ℤ as a certain quotient of ℕ × ℕ. -} abstract associative-add-ℤ : (x y z : ℤ) → Id (add-ℤ (add-ℤ x y) z) (add-ℤ x (add-ℤ y z)) associative-add-ℤ (inl zero-ℕ) y z = ( ap (λ t → add-ℤ t z) (left-predecessor-law-add-ℤ zero-ℤ y)) ∙ ( ( left-predecessor-law-add-ℤ y z) ∙ ( inv (left-predecessor-law-add-ℤ zero-ℤ (add-ℤ y z)))) associative-add-ℤ (inl (succ-ℕ x)) y z = ( ap (λ t → add-ℤ t z) (left-predecessor-law-add-ℤ (inl x) y)) ∙ ( ( left-predecessor-law-add-ℤ (add-ℤ (inl x) y) z) ∙ ( ( ap pred-ℤ (associative-add-ℤ (inl x) y z)) ∙ ( inv (left-predecessor-law-add-ℤ (inl x) (add-ℤ y z))))) associative-add-ℤ (inr (inl star)) y z = refl associative-add-ℤ (inr (inr zero-ℕ)) y z = ( ap (λ t → add-ℤ t z) (left-successor-law-add-ℤ zero-ℤ y)) ∙ ( ( left-successor-law-add-ℤ y z) ∙ ( inv (left-successor-law-add-ℤ zero-ℤ (add-ℤ y z)))) associative-add-ℤ (inr (inr (succ-ℕ x))) y z = ( ap (λ t → add-ℤ t z) (left-successor-law-add-ℤ (inr (inr x)) y)) ∙ ( ( left-successor-law-add-ℤ (add-ℤ (inr (inr x)) y) z) ∙ ( ( ap succ-ℤ (associative-add-ℤ (inr (inr x)) y z)) ∙ ( inv (left-successor-law-add-ℤ (inr (inr x)) (add-ℤ y z))))) abstract commutative-add-ℤ : (x y : ℤ) → Id (add-ℤ x y) (add-ℤ y x) commutative-add-ℤ (inl zero-ℕ) y = ( left-predecessor-law-add-ℤ zero-ℤ y) ∙ ( inv ( ( right-predecessor-law-add-ℤ y zero-ℤ) ∙ ( ap pred-ℤ (right-unit-law-add-ℤ y)))) commutative-add-ℤ (inl (succ-ℕ x)) y = ( ap pred-ℤ (commutative-add-ℤ (inl x) y)) ∙ ( inv (right-predecessor-law-add-ℤ y (inl x))) commutative-add-ℤ (inr (inl star)) y = inv (right-unit-law-add-ℤ y) commutative-add-ℤ (inr (inr zero-ℕ)) y = inv ( ( right-successor-law-add-ℤ y zero-ℤ) ∙ ( ap succ-ℤ (right-unit-law-add-ℤ y))) commutative-add-ℤ (inr (inr (succ-ℕ x))) y = ( ap succ-ℤ (commutative-add-ℤ (inr (inr x)) y)) ∙ ( inv (right-successor-law-add-ℤ y (inr (inr x)))) {- Exercise 6.12 (d) finally asks to show the inverse laws, completing the verification of the group laws. Combined with associativity and commutativity we conclude that (add-ℤ x) and (λ x → add-ℤ x y) are equivalences, for every x : ℤ and y : ℤ, respectively. -} abstract left-inverse-law-add-ℤ : (x : ℤ) → Id (add-ℤ (neg-ℤ x) x) zero-ℤ left-inverse-law-add-ℤ (inl zero-ℕ) = refl left-inverse-law-add-ℤ (inl (succ-ℕ x)) = ( ap succ-ℤ (right-predecessor-law-add-ℤ (inr (inr x)) (inl x))) ∙ ( ( right-inverse-pred-ℤ (add-ℤ (inr (inr x)) (inl x))) ∙ ( left-inverse-law-add-ℤ (inl x))) left-inverse-law-add-ℤ (inr (inl star)) = refl left-inverse-law-add-ℤ (inr (inr x)) = ( commutative-add-ℤ (inl x) (inr (inr x))) ∙ ( left-inverse-law-add-ℤ (inl x)) right-inverse-law-add-ℤ : (x : ℤ) → Id (add-ℤ x (neg-ℤ x)) zero-ℤ right-inverse-law-add-ℤ x = ( commutative-add-ℤ x (neg-ℤ x)) ∙ (left-inverse-law-add-ℤ x) -- Similar for multiplication on ℤ neg-neg-ℤ : (k : ℤ) → Id (neg-ℤ (neg-ℤ k)) k neg-neg-ℤ (inl n) = refl neg-neg-ℤ (inr (inl star)) = refl neg-neg-ℤ (inr (inr n)) = refl neg-pred-ℤ : (k : ℤ) → Id (neg-ℤ (pred-ℤ k)) (succ-ℤ (neg-ℤ k)) neg-pred-ℤ (inl x) = refl neg-pred-ℤ (inr (inl star)) = refl neg-pred-ℤ (inr (inr zero-ℕ)) = refl neg-pred-ℤ (inr (inr (succ-ℕ x))) = refl pred-neg-ℤ : (k : ℤ) → Id (pred-ℤ (neg-ℤ k)) (neg-ℤ (succ-ℤ k)) pred-neg-ℤ (inl zero-ℕ) = refl pred-neg-ℤ (inl (succ-ℕ x)) = refl pred-neg-ℤ (inr (inl star)) = refl pred-neg-ℤ (inr (inr x)) = refl right-negative-law-add-ℤ : (k l : ℤ) → Id (add-ℤ k (neg-ℤ l)) (neg-ℤ (add-ℤ (neg-ℤ k) l)) right-negative-law-add-ℤ (inl zero-ℕ) l = ( left-predecessor-law-add-ℤ zero-ℤ (neg-ℤ l)) ∙ ( pred-neg-ℤ l) right-negative-law-add-ℤ (inl (succ-ℕ x)) l = ( left-predecessor-law-add-ℤ (inl x) (neg-ℤ l)) ∙ ( ( ap pred-ℤ (right-negative-law-add-ℤ (inl x) l)) ∙ ( pred-neg-ℤ (add-ℤ (inr (inr x)) l))) right-negative-law-add-ℤ (inr (inl star)) l = refl right-negative-law-add-ℤ (inr (inr zero-ℕ)) l = inv (neg-pred-ℤ l) right-negative-law-add-ℤ (inr (inr (succ-ℕ n))) l = ( left-successor-law-add-ℤ (in-pos n) (neg-ℤ l)) ∙ ( ( ap succ-ℤ (right-negative-law-add-ℤ (inr (inr n)) l)) ∙ ( inv (neg-pred-ℤ (add-ℤ (inl n) l)))) distributive-neg-add-ℤ : (k l : ℤ) → Id (neg-ℤ (add-ℤ k l)) (add-ℤ (neg-ℤ k) (neg-ℤ l)) distributive-neg-add-ℤ (inl zero-ℕ) l = ( ap neg-ℤ (left-predecessor-law-add-ℤ zero-ℤ l)) ∙ ( neg-pred-ℤ l) distributive-neg-add-ℤ (inl (succ-ℕ n)) l = ( neg-pred-ℤ (add-ℤ (inl n) l)) ∙ ( ( ap succ-ℤ (distributive-neg-add-ℤ (inl n) l)) ∙ ( ap (λ t → add-ℤ t (neg-ℤ l)) (inv (neg-pred-ℤ (inl n))))) distributive-neg-add-ℤ (inr (inl star)) l = refl distributive-neg-add-ℤ (inr (inr zero-ℕ)) l = inv (pred-neg-ℤ l) distributive-neg-add-ℤ (inr (inr (succ-ℕ n))) l = ( inv (pred-neg-ℤ (add-ℤ (in-pos n) l))) ∙ ( ap pred-ℤ (distributive-neg-add-ℤ (inr (inr n)) l)) left-zero-law-mul-ℤ : (k : ℤ) → Id (mul-ℤ zero-ℤ k) zero-ℤ left-zero-law-mul-ℤ k = refl right-zero-law-mul-ℤ : (k : ℤ) → Id (mul-ℤ k zero-ℤ) zero-ℤ right-zero-law-mul-ℤ (inl zero-ℕ) = refl right-zero-law-mul-ℤ (inl (succ-ℕ n)) = right-zero-law-mul-ℤ (inl n) right-zero-law-mul-ℤ (inr (inl star)) = refl right-zero-law-mul-ℤ (inr (inr zero-ℕ)) = refl right-zero-law-mul-ℤ (inr (inr (succ-ℕ n))) = right-zero-law-mul-ℤ (inr (inr n)) left-unit-law-mul-ℤ : (k : ℤ) → Id (mul-ℤ one-ℤ k) k left-unit-law-mul-ℤ k = refl right-unit-law-mul-ℤ : (k : ℤ) → Id (mul-ℤ k one-ℤ) k right-unit-law-mul-ℤ (inl zero-ℕ) = refl right-unit-law-mul-ℤ (inl (succ-ℕ n)) = ap (add-ℤ (neg-one-ℤ)) (right-unit-law-mul-ℤ (inl n)) right-unit-law-mul-ℤ (inr (inl star)) = refl right-unit-law-mul-ℤ (inr (inr zero-ℕ)) = refl right-unit-law-mul-ℤ (inr (inr (succ-ℕ n))) = ap (add-ℤ one-ℤ) (right-unit-law-mul-ℤ (inr (inr n))) left-neg-unit-law-mul-ℤ : (k : ℤ) → Id (mul-ℤ neg-one-ℤ k) (neg-ℤ k) left-neg-unit-law-mul-ℤ k = refl right-neg-unit-law-mul-ℤ : (k : ℤ) → Id (mul-ℤ k neg-one-ℤ) (neg-ℤ k) right-neg-unit-law-mul-ℤ (inl zero-ℕ) = refl right-neg-unit-law-mul-ℤ (inl (succ-ℕ n)) = ap (add-ℤ one-ℤ) (right-neg-unit-law-mul-ℤ (inl n)) right-neg-unit-law-mul-ℤ (inr (inl star)) = refl right-neg-unit-law-mul-ℤ (inr (inr zero-ℕ)) = refl right-neg-unit-law-mul-ℤ (inr (inr (succ-ℕ n))) = ap (add-ℤ neg-one-ℤ) (right-neg-unit-law-mul-ℤ (inr (inr n))) left-successor-law-mul-ℤ : (k l : ℤ) → Id (mul-ℤ (succ-ℤ k) l) (add-ℤ l (mul-ℤ k l)) left-successor-law-mul-ℤ (inl zero-ℕ) l = inv (right-inverse-law-add-ℤ l) left-successor-law-mul-ℤ (inl (succ-ℕ n)) l = ( ( inv (left-unit-law-add-ℤ (mul-ℤ (inl n) l))) ∙ ( ap ( λ x → add-ℤ x (mul-ℤ (inl n) l)) ( inv (right-inverse-law-add-ℤ l)))) ∙ ( associative-add-ℤ l (neg-ℤ l) (mul-ℤ (inl n) l)) left-successor-law-mul-ℤ (inr (inl star)) l = inv (right-unit-law-add-ℤ l) left-successor-law-mul-ℤ (inr (inr n)) l = refl left-predecessor-law-mul-ℤ : (k l : ℤ) → Id (mul-ℤ (pred-ℤ k) l) (add-ℤ (neg-ℤ l) (mul-ℤ k l)) left-predecessor-law-mul-ℤ (inl n) l = refl left-predecessor-law-mul-ℤ (inr (inl star)) l = ( left-neg-unit-law-mul-ℤ l) ∙ ( inv (right-unit-law-add-ℤ (neg-ℤ l))) left-predecessor-law-mul-ℤ (inr (inr zero-ℕ)) l = inv (left-inverse-law-add-ℤ l) left-predecessor-law-mul-ℤ (inr (inr (succ-ℕ x))) l = ( ap ( λ t → add-ℤ t (mul-ℤ (in-pos x) l)) ( inv (left-inverse-law-add-ℤ l))) ∙ ( associative-add-ℤ (neg-ℤ l) l (mul-ℤ (in-pos x) l)) right-successor-law-mul-ℤ : (k l : ℤ) → Id (mul-ℤ k (succ-ℤ l)) (add-ℤ k (mul-ℤ k l)) right-successor-law-mul-ℤ (inl zero-ℕ) l = inv (pred-neg-ℤ l) right-successor-law-mul-ℤ (inl (succ-ℕ n)) l = ( left-predecessor-law-mul-ℤ (inl n) (succ-ℤ l)) ∙ ( ( ap (add-ℤ (neg-ℤ (succ-ℤ l))) (right-successor-law-mul-ℤ (inl n) l)) ∙ ( ( inv (associative-add-ℤ (neg-ℤ (succ-ℤ l)) (inl n) (mul-ℤ (inl n) l))) ∙ ( ( ap ( λ t → add-ℤ t (mul-ℤ (inl n) l)) { x = add-ℤ (neg-ℤ (succ-ℤ l)) (inl n)} { y = add-ℤ (inl (succ-ℕ n)) (neg-ℤ l)} ( ( right-successor-law-add-ℤ (neg-ℤ (succ-ℤ l)) (inl (succ-ℕ n))) ∙ ( ( ap succ-ℤ ( commutative-add-ℤ (neg-ℤ (succ-ℤ l)) (inl (succ-ℕ n)))) ∙ ( ( inv ( right-successor-law-add-ℤ ( inl (succ-ℕ n)) ( neg-ℤ (succ-ℤ l)))) ∙ ( ap ( add-ℤ (inl (succ-ℕ n))) ( ( ap succ-ℤ (inv (pred-neg-ℤ l))) ∙ ( right-inverse-pred-ℤ (neg-ℤ l)))))))) ∙ ( associative-add-ℤ (inl (succ-ℕ n)) (neg-ℤ l) (mul-ℤ (inl n) l))))) right-successor-law-mul-ℤ (inr (inl star)) l = refl right-successor-law-mul-ℤ (inr (inr zero-ℕ)) l = refl right-successor-law-mul-ℤ (inr (inr (succ-ℕ n))) l = ( left-successor-law-mul-ℤ (in-pos n) (succ-ℤ l)) ∙ ( ( ap (add-ℤ (succ-ℤ l)) (right-successor-law-mul-ℤ (inr (inr n)) l)) ∙ ( ( inv (associative-add-ℤ (succ-ℤ l) (in-pos n) (mul-ℤ (in-pos n) l))) ∙ ( ( ap ( λ t → add-ℤ t (mul-ℤ (in-pos n) l)) { x = add-ℤ (succ-ℤ l) (in-pos n)} { y = add-ℤ (in-pos (succ-ℕ n)) l} ( ( left-successor-law-add-ℤ l (in-pos n)) ∙ ( ( ap succ-ℤ (commutative-add-ℤ l (in-pos n))) ∙ ( inv (left-successor-law-add-ℤ (in-pos n) l))))) ∙ ( associative-add-ℤ (inr (inr (succ-ℕ n))) l (mul-ℤ (inr (inr n)) l))))) right-predecessor-law-mul-ℤ : (k l : ℤ) → Id (mul-ℤ k (pred-ℤ l)) (add-ℤ (neg-ℤ k) (mul-ℤ k l)) right-predecessor-law-mul-ℤ (inl zero-ℕ) l = ( left-neg-unit-law-mul-ℤ (pred-ℤ l)) ∙ ( neg-pred-ℤ l) right-predecessor-law-mul-ℤ (inl (succ-ℕ n)) l = ( left-predecessor-law-mul-ℤ (inl n) (pred-ℤ l)) ∙ ( ( ap (add-ℤ (neg-ℤ (pred-ℤ l))) (right-predecessor-law-mul-ℤ (inl n) l)) ∙ ( ( inv ( associative-add-ℤ (neg-ℤ (pred-ℤ l)) (in-pos n) (mul-ℤ (inl n) l))) ∙ ( ( ap ( λ t → add-ℤ t (mul-ℤ (inl n) l)) { x = add-ℤ (neg-ℤ (pred-ℤ l)) (inr (inr n))} { y = add-ℤ (neg-ℤ (inl (succ-ℕ n))) (neg-ℤ l)} ( ( ap (λ t → add-ℤ t (in-pos n)) (neg-pred-ℤ l)) ∙ ( ( left-successor-law-add-ℤ (neg-ℤ l) (in-pos n)) ∙ ( ( ap succ-ℤ (commutative-add-ℤ (neg-ℤ l) (in-pos n))) ∙ ( inv (left-successor-law-add-ℤ (in-pos n) (neg-ℤ l))))))) ∙ ( associative-add-ℤ (in-pos (succ-ℕ n)) (neg-ℤ l) (mul-ℤ (inl n) l))))) right-predecessor-law-mul-ℤ (inr (inl star)) l = refl right-predecessor-law-mul-ℤ (inr (inr zero-ℕ)) l = refl right-predecessor-law-mul-ℤ (inr (inr (succ-ℕ n))) l = ( left-successor-law-mul-ℤ (in-pos n) (pred-ℤ l)) ∙ ( ( ap (add-ℤ (pred-ℤ l)) (right-predecessor-law-mul-ℤ (inr (inr n)) l)) ∙ ( ( inv (associative-add-ℤ (pred-ℤ l) (inl n) (mul-ℤ (inr (inr n)) l))) ∙ ( ( ap ( λ t → add-ℤ t (mul-ℤ (in-pos n) l)) { x = add-ℤ (pred-ℤ l) (inl n)} { y = add-ℤ (neg-ℤ (in-pos (succ-ℕ n))) l} ( ( left-predecessor-law-add-ℤ l (inl n)) ∙ ( ( ap pred-ℤ (commutative-add-ℤ l (inl n))) ∙ ( inv (left-predecessor-law-add-ℤ (inl n) l))))) ∙ ( associative-add-ℤ (inl (succ-ℕ n)) l (mul-ℤ (inr (inr n)) l))))) right-distributive-mul-add-ℤ : (k l m : ℤ) → Id (mul-ℤ (add-ℤ k l) m) (add-ℤ (mul-ℤ k m) (mul-ℤ l m)) right-distributive-mul-add-ℤ (inl zero-ℕ) l m = ( left-predecessor-law-mul-ℤ l m) ∙ ( ap ( λ t → add-ℤ t (mul-ℤ l m)) ( inv ( ( left-predecessor-law-mul-ℤ zero-ℤ m) ∙ ( right-unit-law-add-ℤ (neg-ℤ m))))) right-distributive-mul-add-ℤ (inl (succ-ℕ x)) l m = ( left-predecessor-law-mul-ℤ (add-ℤ (inl x) l) m) ∙ ( ( ap (add-ℤ (neg-ℤ m)) (right-distributive-mul-add-ℤ (inl x) l m)) ∙ ( inv (associative-add-ℤ (neg-ℤ m) (mul-ℤ (inl x) m) (mul-ℤ l m)))) right-distributive-mul-add-ℤ (inr (inl star)) l m = refl right-distributive-mul-add-ℤ (inr (inr zero-ℕ)) l m = left-successor-law-mul-ℤ l m right-distributive-mul-add-ℤ (inr (inr (succ-ℕ n))) l m = ( left-successor-law-mul-ℤ (add-ℤ (in-pos n) l) m) ∙ ( ( ap (add-ℤ m) (right-distributive-mul-add-ℤ (inr (inr n)) l m)) ∙ ( inv (associative-add-ℤ m (mul-ℤ (in-pos n) m) (mul-ℤ l m)))) left-negative-law-mul-ℤ : (k l : ℤ) → Id (mul-ℤ (neg-ℤ k) l) (neg-ℤ (mul-ℤ k l)) left-negative-law-mul-ℤ (inl zero-ℕ) l = ( left-unit-law-mul-ℤ l) ∙ ( inv (neg-neg-ℤ l)) left-negative-law-mul-ℤ (inl (succ-ℕ n)) l = ( ap (λ t → mul-ℤ t l) (neg-pred-ℤ (inl n))) ∙ ( ( left-successor-law-mul-ℤ (neg-ℤ (inl n)) l) ∙ ( ( ap (add-ℤ l) (left-negative-law-mul-ℤ (inl n) l)) ∙ ( right-negative-law-add-ℤ l (mul-ℤ (inl n) l)))) left-negative-law-mul-ℤ (inr (inl star)) l = refl left-negative-law-mul-ℤ (inr (inr zero-ℕ)) l = refl left-negative-law-mul-ℤ (inr (inr (succ-ℕ n))) l = ( left-predecessor-law-mul-ℤ (inl n) l) ∙ ( ( ap (add-ℤ (neg-ℤ l)) (left-negative-law-mul-ℤ (inr (inr n)) l)) ∙ ( inv (distributive-neg-add-ℤ l (mul-ℤ (in-pos n) l)))) associative-mul-ℤ : (k l m : ℤ) → Id (mul-ℤ (mul-ℤ k l) m) (mul-ℤ k (mul-ℤ l m)) associative-mul-ℤ (inl zero-ℕ) l m = left-negative-law-mul-ℤ l m associative-mul-ℤ (inl (succ-ℕ n)) l m = ( right-distributive-mul-add-ℤ (neg-ℤ l) (mul-ℤ (inl n) l) m) ∙ ( ( ap (add-ℤ (mul-ℤ (neg-ℤ l) m)) (associative-mul-ℤ (inl n) l m)) ∙ ( ap ( λ t → add-ℤ t (mul-ℤ (inl n) (mul-ℤ l m))) ( left-negative-law-mul-ℤ l m))) associative-mul-ℤ (inr (inl star)) l m = refl associative-mul-ℤ (inr (inr zero-ℕ)) l m = refl associative-mul-ℤ (inr (inr (succ-ℕ n))) l m = ( right-distributive-mul-add-ℤ l (mul-ℤ (in-pos n) l) m) ∙ ( ap (add-ℤ (mul-ℤ l m)) (associative-mul-ℤ (inr (inr n)) l m)) commutative-mul-ℤ : (k l : ℤ) → Id (mul-ℤ k l) (mul-ℤ l k) commutative-mul-ℤ (inl zero-ℕ) l = inv (right-neg-unit-law-mul-ℤ l) commutative-mul-ℤ (inl (succ-ℕ n)) l = ( ap (add-ℤ (neg-ℤ l)) (commutative-mul-ℤ (inl n) l)) ∙ ( inv (right-predecessor-law-mul-ℤ l (inl n))) commutative-mul-ℤ (inr (inl star)) l = inv (right-zero-law-mul-ℤ l) commutative-mul-ℤ (inr (inr zero-ℕ)) l = inv (right-unit-law-mul-ℤ l) commutative-mul-ℤ (inr (inr (succ-ℕ n))) l = ( ap (add-ℤ l) (commutative-mul-ℤ (inr (inr n)) l)) ∙ ( inv (right-successor-law-mul-ℤ l (in-pos n)))
37.014805
81
0.561995
50dc0cd6f8297945ae40a6f9f3636be8b46ed53a
3,417
agda
Agda
Categories/Agda.agda
copumpkin/categories
36f4181d751e2ecb54db219911d8c69afe8ba892
[ "BSD-3-Clause" ]
98
2015-04-15T14:57:33.000Z
2022-03-08T05:20:36.000Z
Categories/Agda.agda
p-pavel/categories
e41aef56324a9f1f8cf3cd30b2db2f73e01066f2
[ "BSD-3-Clause" ]
19
2015-05-23T06:47:10.000Z
2019-08-09T16:31:40.000Z
Categories/Agda.agda
p-pavel/categories
e41aef56324a9f1f8cf3cd30b2db2f73e01066f2
[ "BSD-3-Clause" ]
23
2015-02-05T13:03:09.000Z
2021-11-11T13:50:56.000Z
{-# OPTIONS --universe-polymorphism #-} module Categories.Agda where open import Level import Relation.Binary import Function.Equality import Categories.Support.Equivalence import Categories.Support.SetoidFunctions open import Categories.Support.PropositionalEquality open import Categories.Category open import Categories.Functor using (Functor) Sets : ∀ o → Category _ _ _ Sets o = record { Obj = Set o ; _⇒_ = λ d c → d → c ; _≡_ = λ f g → ∀ {x} → f x ≣ g x ; _∘_ = λ f g x → f (g x) ; id = λ x → x ; assoc = ≣-refl ; identityˡ = ≣-refl ; identityʳ = ≣-refl ; equiv = record { refl = ≣-refl; sym = s; trans = t } ; ∘-resp-≡ = ∘-resp-≡′ } where s : {A B : Set o} → {i j : A → B} → ({x : A} → i x ≣ j x) → {x : A} → j x ≣ i x s f {x} rewrite f {x} = ≣-refl t : {A B : Set o} {i j k : A → B} → ({x : A} → i x ≣ j x) → ({x : A} → j x ≣ k x) → {x : A} → i x ≣ k x t f g {x} rewrite f {x} | g {x} = ≣-refl ∘-resp-≡′ : {A B C : Set o} {f h : B → C} {g i : A → B} → (∀ {x} → f x ≣ h x) → (∀ {x} → g x ≣ i x) → (∀ {x} → f (g x) ≣ h (i x)) ∘-resp-≡′ {g = g} f≡h g≡i {x} rewrite f≡h {g x} | g≡i {x} = ≣-refl -- use standard library setoids here, not our special irrelevant ones Setoids : ∀ c ℓ → Category (suc (ℓ ⊔ c)) (ℓ ⊔ c) (ℓ ⊔ c) Setoids c ℓ = record { Obj = Setoid c ℓ ; _⇒_ = _⟶_ ; _≡_ = λ {X} {Y} → _≡′_ {X} {Y} ; _∘_ = _∘′_ ; id = id′ ; assoc = λ {_} {_} {_} {D} → Setoid.refl D ; identityˡ = λ {_} {B} → Setoid.refl B ; identityʳ = λ {_} {B} → Setoid.refl B ; equiv = λ {A} {B} → record { refl = Setoid.refl B ; sym = λ f → Setoid.sym B f ; trans = λ f g → Setoid.trans B f g } ; ∘-resp-≡ = λ {A} {B} {C} {f} {h} {g} {i} → ∘-resp-≡′ {A} {B} {C} {f} {h} {g} {i} } where infix 4 _≡′_ open Function.Equality using (_⟨$⟩_; cong; _⟶_) renaming (_∘_ to _∘′_; id to id′) open Relation.Binary using (Setoid; module Setoid; Rel) _≡′_ : ∀ {X Y} → Rel (X ⟶ Y) _ _≡′_ {X} {Y} f g = ∀ {x} → Setoid._≈_ Y (f ⟨$⟩ x) (g ⟨$⟩ x) .∘-resp-≡′ : ∀ {A B C} {f h : B ⟶ C} {g i : A ⟶ B} → f ≡′ h → g ≡′ i → f ∘′ g ≡′ h ∘′ i ∘-resp-≡′ {C = C} {h = h} f≡h g≡i {x} = Setoid.trans C f≡h (cong h g≡i) -- setoids with irrelevant equality ISetoids : ∀ c ℓ → Category (suc (ℓ ⊔ c)) (ℓ ⊔ c) (ℓ ⊔ c) ISetoids c ℓ = record { Obj = Setoid c ℓ ; _⇒_ = _⟶_ ; _≡_ = λ {A B} → Setoid._≈_ (A ⇨ B) ; _∘_ = _∙_ ; id = id′ ; assoc = λ {A B C D} {f g h} → cong (h ∙ g ∙ f) ; identityˡ = λ {A B f} → cong f ; identityʳ = λ {A B f} → cong f ; equiv = λ {A B} → Setoid.isEquivalence (A ⇨ B) ; ∘-resp-≡ = λ f≡h g≡i x≡y → f≡h (g≡i x≡y) } where open Relation.Binary using (Rel) open Categories.Support.Equivalence open Categories.Support.SetoidFunctions renaming (id to id′) Lift-IS : ∀ {c ℓ} a b → Functor (ISetoids c ℓ) (ISetoids (c ⊔ a) (ℓ ⊔ b)) Lift-IS {c} {ℓ} a b = record { F₀ = Lift-setoid {c} {ℓ} {a} {b}; F₁ = λ f → record { _⟨$⟩_ = λ x → lift (f ⟨$⟩ (lower x)); cong = λ eq → lift (cong f (lower eq)) }; identity = λ x → x; homomorphism = λ {_} {_} {_} {f} {g} eq → lift (cong g (cong f (lower eq))); F-resp-≡ = λ eq₀ eq₁ → lift (eq₀ (lower eq₁)) } where open import Categories.Support.Equivalence open Categories.Support.SetoidFunctions renaming (id to id′)
32.855769
118
0.494586
2f525621f0df691630df89448ecc7ed6793f53f7
958
agda
Agda
test/asset/agda-stdlib-1.0/Relation/Nullary/Construct/Add/Extrema.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
test/asset/agda-stdlib-1.0/Relation/Nullary/Construct/Add/Extrema.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Relation/Nullary/Construct/Add/Extrema.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- Notation for freely adding extrema to any set ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Relation.Nullary.Construct.Add.Extrema where open import Relation.Binary.PropositionalEquality using (_≡_; refl) open import Relation.Nullary.Construct.Add.Infimum as Infimum using (_₋) open import Relation.Nullary.Construct.Add.Supremum as Supremum using (_⁺) ------------------------------------------------------------------------ -- Definition _± : ∀ {a} → Set a → Set a A ± = A ₋ ⁺ pattern ⊥± = Supremum.[ Infimum.⊥₋ ] pattern [_] k = Supremum.[ Infimum.[ k ] ] pattern ⊤± = Supremum.⊤⁺ ------------------------------------------------------------------------ -- Properties [_]-injective : ∀ {a} {A : Set a} {k l : A} → [ k ] ≡ [ l ] → k ≡ l [_]-injective refl = refl
31.933333
74
0.454071
12457290036376d25e45faa2b1952ab9a96c4573
88
agda
Agda
agda/Data/Pi.agda
oisdk/combinatorics-paper
3c176d4690566d81611080e9378f5a178b39b851
[ "MIT" ]
6
2020-09-11T17:45:41.000Z
2021-11-16T08:11:34.000Z
agda/Data/Pi.agda
oisdk/combinatorics-paper
3c176d4690566d81611080e9378f5a178b39b851
[ "MIT" ]
null
null
null
agda/Data/Pi.agda
oisdk/combinatorics-paper
3c176d4690566d81611080e9378f5a178b39b851
[ "MIT" ]
1
2021-11-11T12:30:21.000Z
2021-11-11T12:30:21.000Z
{-# OPTIONS --cubical --safe #-} module Data.Pi where open import Data.Pi.Base public
14.666667
32
0.693182
dc3f7dcc30133c17d5f5bd3a44e5346d93748f04
2,234
agda
Agda
LC/stash/STLC.agda
banacorn/bidirectional
0c9a6e79c23192b28ddb07315b200a94ee900ca6
[ "MIT" ]
2
2020-08-25T07:34:40.000Z
2020-08-25T14:05:01.000Z
LC/stash/STLC.agda
banacorn/bidirectional
0c9a6e79c23192b28ddb07315b200a94ee900ca6
[ "MIT" ]
null
null
null
LC/stash/STLC.agda
banacorn/bidirectional
0c9a6e79c23192b28ddb07315b200a94ee900ca6
[ "MIT" ]
null
null
null
module STLC where open import Data.Nat open import Data.Empty open import Relation.Binary.PropositionalEquality -- infix 4 _⊢_ -- infix 4 _∋_∶_ -- infixl 5 _,_ infixr 7 _⟶_ infix 5 ƛ_ infixl 7 _∙_ -- infix 9 `_ infixl 10 _∶_ -- infix 5 μ_ -- infix 8 `suc_ -- infix 9 S_ -- infix 9 #_ data Type : Set where _⟶_ : Type → Type → Type ⊤ : Type data Context : Set data Term : Set infix 4 _∋_∶_ data _∋_∶_ : Context → Term → Type → Set infixl 10 _,_∶_ data Context where ∅ : Context _,_∶_ : Context → Term → Type → Context data Term where ‵_ : ∀ {Γ x A} → Γ ∋ x ∶ A → Term ƛ_ : Term → Term _∙_ : Term → Term → Term _∶_ : Term → Type → Term tt : Term data _∋_∶_ where Z : ∀ {Γ x A} --------- → Γ , x ∶ A ∋ x ∶ A S_ : ∀ {Γ x A y B} → Γ ∋ x ∶ A --------- → Γ , y ∶ B ∋ x ∶ A -- lookup : Context → ℕ → Type -- lookup (Γ , A) zero = A -- lookup (Γ , _) (suc n) = lookup Γ n -- lookup ∅ _ = ⊥-elim impossible -- where postulate impossible : ⊥ -- count : ∀ {Γ} → (n : ℕ) → Γ ∋ lookup Γ n -- count {Γ , _} zero = Z -- count {Γ , _} (suc n) = S (count n) -- count {∅} _ = ⊥-elim impossible -- where postulate impossible : ⊥ -- -- #_ : ∀ {Γ} → (n : ℕ) → Γ ⊢ lookup Γ n -- -- # n = ` count n -- a = {! !} infix 4 _⊢_⇐_ infix 4 _⊢_⇒_ data _⊢_⇐_ : Context → Term → Type → Set data _⊢_⇒_ : Context → Term → Type → Set variable Γ : Context x e f : Term A B : Type data _⊢_⇒_ where Var : Γ ∋ x ∶ A ---------------------------- → Γ ⊢ x ⇒ A Anno : Γ ⊢ e ⇐ A ---------------------------- → Γ ⊢ (e ∶ A) ⇒ A ⟶E : Γ ⊢ f ⇒ (A ⟶ B) → Γ ⊢ e ⇐ A ---------------------------- → Γ ⊢ f ∙ e ⇒ B data _⊢_⇐_ where Sub : Γ ∋ e ∶ A → A ≡ B ---------------------------- → Γ ⊢ e ⇐ B ⊤I : ∀ {Γ} ---------------------------- → Γ ⊢ tt ⇐ ⊤ ⟶I : (Γ , x ∶ A) ⊢ e ⇐ B ---------------------------- → Γ ⊢ ƛ e ⇐ A ⟶ B 4-4-Synth : ∅ , x ∶ A ⊢ x ⇒ A 4-4-Synth = Var Z 4-4-Check : ∅ , x ∶ A ⊢ x ⇐ A 4-4-Check = Sub Z refl 4-4-Sym→Elim : ∅ , f ∶ (A ⟶ B) , x ∶ A ⊢ (f ∙ x) ⇒ B 4-4-Sym→Elim = ⟶E (Var (S Z)) (Sub Z refl)
16.071942
52
0.416294
4daa53efb5ecf31690be20a9d0f0ada553b10361
2,719
agda
Agda
theorems/cohomology/LongExactSequence.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
null
null
null
theorems/cohomology/LongExactSequence.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
null
null
null
theorems/cohomology/LongExactSequence.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
1
2018-12-26T21:31:57.000Z
2018-12-26T21:31:57.000Z
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import cohomology.Theory open import groups.ExactSequence open import groups.HomSequence open import homotopy.CofiberSequence module cohomology.LongExactSequence {i} (CT : CohomologyTheory i) {X Y : Ptd i} (n : ℤ) (f : X ⊙→ Y) where open CohomologyTheory CT open import cohomology.PtdMapSequence CT co∂ : C n X →ᴳ C (succ n) (⊙Cofiber f) co∂ = record {f = CEl-fmap (succ n) ⊙extract-glue ∘ GroupIso.g (C-Susp n X); pres-comp = lemma} where abstract lemma = ∘-pres-comp (C-fmap (succ n) ⊙extract-glue) (GroupIso.g-hom (C-Susp n X)) C-cofiber-seq : HomSequence (C n Y) (C (succ n) X) C-cofiber-seq = C n Y →⟨ C-fmap n f ⟩ᴳ C n X →⟨ co∂ ⟩ᴳ C (succ n) (⊙Cofiber f) →⟨ C-fmap (succ n) (⊙cfcod' f) ⟩ᴳ C (succ n) Y →⟨ C-fmap (succ n) f ⟩ᴳ C (succ n) X ⊣|ᴳ private C-iterated-cofiber-seq = C-seq (succ n) (iterated-cofiber-seq f) C-iterated-cofiber-seq-is-exact : is-exact-seq C-iterated-cofiber-seq C-iterated-cofiber-seq-is-exact = C-exact (succ n) (⊙cfcod²' f) , C-exact (succ n) (⊙cfcod' f) , C-exact (succ n) f , lift tt -- An intermediate sequence for proving exactness of [C-cofiber-seq]. C-cofiber-seq' = C-seq (succ n) (cyclic-cofiber-seq f) C-cofiber-seq'-is-exact : is-exact-seq C-cofiber-seq' C-cofiber-seq'-is-exact = seq-equiv-preserves'-exact (C-seq-emap (succ n) (iterated-equiv-cyclic f)) C-iterated-cofiber-seq-is-exact -- Now the final sequence C-cofiber-seq'-to-C-cofiber-seq : HomSeqMap C-cofiber-seq' C-cofiber-seq (GroupIso.f-hom (C-Susp n Y)) (idhom _) C-cofiber-seq'-to-C-cofiber-seq = GroupIso.f-hom (C-Susp n Y) ↓⟨ C-Susp-fmap n f ⟩ᴳ GroupIso.f-hom (C-Susp n X) ↓⟨ comm-sqrᴳ (λ x → ap (CEl-fmap (succ n) ⊙extract-glue) (! $ GroupIso.g-f (C-Susp n X) x)) ⟩ᴳ idhom _ ↓⟨ comm-sqrᴳ (λ _ → idp) ⟩ᴳ idhom _ ↓⟨ comm-sqrᴳ (λ _ → idp) ⟩ᴳ idhom _ ↓|ᴳ C-cofiber-seq'-equiv-C-cofiber-seq : HomSeqEquiv C-cofiber-seq' C-cofiber-seq (GroupIso.f-hom (C-Susp n Y)) (idhom _) C-cofiber-seq'-equiv-C-cofiber-seq = C-cofiber-seq'-to-C-cofiber-seq , (GroupIso.f-is-equiv (C-Susp n Y) , GroupIso.f-is-equiv (C-Susp n X) , idf-is-equiv _ , idf-is-equiv _ , idf-is-equiv _) abstract C-cofiber-seq-is-exact : is-exact-seq C-cofiber-seq C-cofiber-seq-is-exact = seq-equiv-preserves-exact C-cofiber-seq'-equiv-C-cofiber-seq C-cofiber-seq'-is-exact C-cofiber-exact-seq : ExactSequence (C n Y) (C (succ n) X) C-cofiber-exact-seq = C-cofiber-seq , C-cofiber-seq-is-exact
39.985294
126
0.613093
d08ca99a2258f57dc222ad2fa643095efa5a90e8
878
agda
Agda
AnyBoolean.agda
larrytheliquid/bahug-april2010
60f71d369015b83b9ef5fabc75a70f367d20ac97
[ "MIT" ]
null
null
null
AnyBoolean.agda
larrytheliquid/bahug-april2010
60f71d369015b83b9ef5fabc75a70f367d20ac97
[ "MIT" ]
null
null
null
AnyBoolean.agda
larrytheliquid/bahug-april2010
60f71d369015b83b9ef5fabc75a70f367d20ac97
[ "MIT" ]
1
2022-03-12T12:03:09.000Z
2022-03-12T12:03:09.000Z
module AnyBoolean where open import Data.Bool open import Data.Nat open import Data.List hiding (any) open import Relation.Binary.PropositionalEquality even : ℕ → Bool even zero = true even (suc zero) = false even (suc (suc n)) = even n test-6-even : even 6 ≡ true test-6-even = refl odd : ℕ → Bool odd zero = false odd (suc zero) = true odd (suc (suc n)) = odd n test-5-odd : odd 5 ≡ true test-5-odd = refl any : {A : Set} → (A → Bool) → List A → Bool any _ [] = false any p (x ∷ xs) with p x ... | true = true ... | false = any p xs test-any-even-true : any even (3 ∷ 6 ∷ 9 ∷ []) ≡ true test-any-even-true = refl test-any-even-false : any even (3 ∷ 7 ∷ 9 ∷ []) ≡ false test-any-even-false = refl test-any-odd-true : any odd (4 ∷ 7 ∷ 10 ∷ []) ≡ true test-any-odd-true = refl test-any-odd-false : any odd (4 ∷ 8 ∷ 10 ∷ []) ≡ false test-any-odd-false = refl
19.954545
49
0.61959
0633a6ac1e97e1b950ef87073eb65d92d2bf83f3
7,854
agda
Agda
Cubical/HITs/Ints/BiInvInt/Properties.agda
maxdore/cubical
ef62b84397396d48135d73ba7400b71c721ddc94
[ "MIT" ]
null
null
null
Cubical/HITs/Ints/BiInvInt/Properties.agda
maxdore/cubical
ef62b84397396d48135d73ba7400b71c721ddc94
[ "MIT" ]
null
null
null
Cubical/HITs/Ints/BiInvInt/Properties.agda
maxdore/cubical
ef62b84397396d48135d73ba7400b71c721ddc94
[ "MIT" ]
1
2021-03-12T20:08:45.000Z
2021-03-12T20:08:45.000Z
{-# OPTIONS --safe #-} module Cubical.HITs.Ints.BiInvInt.Properties where open import Cubical.Core.Everything open import Cubical.Foundations.Equiv open import Cubical.Foundations.Equiv.Properties open import Cubical.Foundations.Function open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Prelude open import Cubical.Data.Nat using (ℕ) import Cubical.Data.Int as Int open import Cubical.Data.Bool open import Cubical.HITs.Ints.BiInvInt.Base infixl 6 _+_ _-_ infixl 7 _·_ -- To prove a property P about BiInvInt, we need to show: -- * P zero -- * If P n, then P (suc n) -- * If P n, then P (pred n) BiInvInt-ind-prop : ∀ {ℓ} {P : BiInvInt → Type ℓ} → (∀ n → isProp (P n)) → P zero → (∀ n → P n → P (suc n)) → (∀ n → P n → P (pred n)) → (n : BiInvInt) → P n BiInvInt-ind-prop {P = P} P-isProp P-zero P-suc P-pred = φ where P-predr : ∀ n → P n → P (predr n) P-predr n x = subst P (predl≡predr n) (P-pred n x) P-predl : ∀ n → P n → P (predl n) P-predl = P-pred P-isProp' : {a b : BiInvInt} (p : a ≡ b) (x : P a) (y : P b) → PathP (λ i → P (p i)) x y P-isProp' _ _ _ = toPathP (P-isProp _ _ _) φ : (n : BiInvInt) → P n φ zero = P-zero φ (suc n) = P-suc n (φ n) φ (predr n) = P-predr n (φ n) φ (suc-predr n i) = P-isProp' (suc-predr n) (P-suc (predr n) (P-predr n (φ n))) (φ n) i φ (predl n) = P-predl n (φ n) φ (predl-suc n i) = P-isProp' (predl-suc n) (P-predl (suc n) (P-suc n (φ n))) (φ n) i -- To define a function BiInvInt → A, we need: -- · a point z : A for zero -- · an equivalence s : A ≃ A for suc/pred BiInvInt-rec : ∀ {ℓ} {A : Type ℓ} → A → A ≃ A → BiInvInt → A BiInvInt-rec {A = A} z e = φ where e-Iso : Iso A A e-Iso = equivToIso e φ : BiInvInt → A φ zero = z φ (suc n) = Iso.fun e-Iso (φ n) φ (predr n) = Iso.inv e-Iso (φ n) φ (suc-predr n i) = Iso.rightInv e-Iso (φ n) i φ (predl n) = Iso.inv e-Iso (φ n) φ (predl-suc n i) = Iso.leftInv e-Iso (φ n) i sucIso : Iso BiInvInt BiInvInt Iso.fun sucIso = suc Iso.inv sucIso = pred Iso.rightInv sucIso = suc-predl Iso.leftInv sucIso = predl-suc sucEquiv : BiInvInt ≃ BiInvInt sucEquiv = isoToEquiv sucIso -- addition -- the following equalities hold definitionally: -- zero + n ≡ n -- suc m + n ≡ suc (m + n) -- pred m + n ≡ pred (m + n) _+_ : BiInvInt → BiInvInt → BiInvInt _+_ = BiInvInt-rec (idfun BiInvInt) (postCompEquiv sucEquiv) -- properties of addition +-zero : ∀ n → n + zero ≡ n +-zero = BiInvInt-ind-prop (λ _ → isSetBiInvInt _ _) refl (λ n p → cong suc p) (λ n p → cong pred p) +-suc : ∀ m n → m + suc n ≡ suc (m + n) +-suc = BiInvInt-ind-prop (λ _ → isPropΠ λ _ → isSetBiInvInt _ _) (λ m → refl) (λ m p n → cong suc (p n)) (λ m p n → cong pred (p n) ∙ predl-suc (m + n) ∙ sym (suc-predl (m + n))) +-pred : ∀ m n → m + pred n ≡ pred (m + n) +-pred = BiInvInt-ind-prop (λ _ → isPropΠ λ _ → isSetBiInvInt _ _) (λ m → refl) (λ m p n → cong suc (p n) ∙ suc-predl (m + n) ∙ sym (predl-suc (m + n))) (λ m p n → cong pred (p n)) +-comm : ∀ m n → m + n ≡ n + m +-comm m n = +-comm' n m where +-comm' : ∀ n m → m + n ≡ n + m +-comm' = BiInvInt-ind-prop (λ _ → isPropΠ λ _ → isSetBiInvInt _ _) +-zero (λ n p m → +-suc m n ∙ cong suc (p m)) (λ n p m → +-pred m n ∙ cong pred (p m)) +-assoc : ∀ m n o → m + (n + o) ≡ (m + n) + o +-assoc = BiInvInt-ind-prop (λ _ → isPropΠ2 λ _ _ → isSetBiInvInt _ _) (λ n o → refl) (λ m p n o → cong suc (p n o)) (λ m p n o → cong pred (p n o)) -- negation / subtraction -- the following equalities hold definitionally: -- - zero ≡ zero -- - (suc m) ≡ pred m -- - (pred m) ≡ suc m -_ : BiInvInt → BiInvInt -_ = BiInvInt-rec zero (invEquiv sucEquiv) _-_ : BiInvInt → BiInvInt → BiInvInt m - n = m + (- n) +-invˡ : ∀ n → (- n) + n ≡ zero +-invˡ = BiInvInt-ind-prop (λ _ → isSetBiInvInt _ _) refl (λ n p → cong pred (+-suc (- n) n) ∙ predl-suc _ ∙ p) (λ n p → cong suc (+-pred (- n) n) ∙ suc-predl _ ∙ p) +-invʳ : ∀ n → n + (- n) ≡ zero +-invʳ = BiInvInt-ind-prop (λ _ → isSetBiInvInt _ _) refl (λ n p → cong suc (+-pred n (- n)) ∙ suc-predl _ ∙ p) (λ n p → cong pred (+-suc n (- n)) ∙ predl-suc _ ∙ p) inv-hom : ∀ m n → - (m + n) ≡ (- m) + (- n) inv-hom = BiInvInt-ind-prop (λ _ → isPropΠ λ _ → isSetBiInvInt _ _) (λ n → refl) (λ m p n → cong pred (p n)) (λ m p n → cong suc (p n)) -- natural injections from ℕ pos : ℕ → BiInvInt pos ℕ.zero = zero pos (ℕ.suc n) = suc (pos n) neg : ℕ → BiInvInt neg ℕ.zero = zero neg (ℕ.suc n) = pred (neg n) -- absolute value and sign -- (Note that there doesn't appear to be any way around using -- bwd here! Any direct proof ends up doing the same work...) abs : BiInvInt → ℕ abs n = Int.abs (bwd n) sgn : BiInvInt → Bool sgn n = Int.sgn (bwd n) Iso-n+ : (n : BiInvInt) → Iso BiInvInt BiInvInt Iso.fun (Iso-n+ n) = n +_ Iso.inv (Iso-n+ n) = - n +_ Iso.rightInv (Iso-n+ n) m = +-assoc n (- n) m ∙ cong (_+ m) (+-invʳ n) Iso.leftInv (Iso-n+ n) m = +-assoc (- n) n m ∙ cong (_+ m) (+-invˡ n) isEquiv-n+ : ∀ n → isEquiv (n +_) isEquiv-n+ n = isoToIsEquiv (Iso-n+ n) -- multiplication -- the following equalities hold definitionally: -- zero · n ≡ zero -- suc m · n ≡ n + m · n -- pred m · n ≡ (- n) + m · n _·_ : BiInvInt → BiInvInt → BiInvInt m · n = BiInvInt-rec zero (n +_ , isEquiv-n+ n) m -- properties of multiplication ·-zero : ∀ n → n · zero ≡ zero ·-zero = BiInvInt-ind-prop (λ _ → isSetBiInvInt _ _) refl (λ n p → p) (λ n p → p) ·-suc : ∀ m n → m · suc n ≡ m + m · n ·-suc = BiInvInt-ind-prop (λ _ → isPropΠ λ _ → isSetBiInvInt _ _) (λ n → refl) (λ m p n → cong suc (cong (n +_) (p n) ∙ +-assoc n m (m · n) ∙ cong (_+ m · n) (+-comm n m) ∙ sym (+-assoc m n (m · n)))) (λ m p n → cong pred (cong (- n +_) (p n) ∙ +-assoc (- n) m (m · n) ∙ cong (_+ m · n) (+-comm (- n) m) ∙ sym (+-assoc m (- n) (m · n)))) ·-pred : ∀ m n → m · pred n ≡ (- m) + m · n ·-pred = BiInvInt-ind-prop (λ _ → isPropΠ λ _ → isSetBiInvInt _ _) (λ n → refl) (λ m p n → cong pred (cong (n +_) (p n) ∙ +-assoc n (- m) (m · n) ∙ cong (_+ m · n) (+-comm n (- m)) ∙ sym (+-assoc (- m) n (m · n)))) (λ m p n → cong suc (cong (- n +_) (p n) ∙ +-assoc (- n) (- m) (m · n) ∙ cong (_+ m · n) (+-comm (- n) (- m)) ∙ sym (+-assoc (- m) (- n) (m · n)))) ·-comm : ∀ m n → m · n ≡ n · m ·-comm = BiInvInt-ind-prop (λ _ → isPropΠ λ _ → isSetBiInvInt _ _) (λ n → sym (·-zero n)) (λ m p n → cong (n +_) (p n) ∙ sym (·-suc n m)) (λ m p n → cong (- n +_) (p n) ∙ sym (·-pred n m)) ·-identityˡ : ∀ m → suc zero · m ≡ m ·-identityˡ = +-zero ·-identityʳ : ∀ m → m · suc zero ≡ m ·-identityʳ m = ·-comm m (suc zero) ∙ ·-identityˡ m ·-distribʳ : ∀ m n o → (m · o) + (n · o) ≡ (m + n) · o ·-distribʳ = BiInvInt-ind-prop (λ _ → isPropΠ2 λ _ _ → isSetBiInvInt _ _) (λ n o → refl) (λ m p n o → sym (+-assoc o (m · o) (n · o)) ∙ cong (o +_) (p n o)) (λ m p n o → sym (+-assoc (- o) (m · o) (n · o)) ∙ cong (- o +_) (p n o)) ·-distribˡ : ∀ o m n → (o · m) + (o · n) ≡ o · (m + n) ·-distribˡ o m n = cong (_+ o · n) (·-comm o m) ∙ cong (m · o +_) (·-comm o n) ∙ ·-distribʳ m n o ∙ ·-comm (m + n) o ·-inv : ∀ m n → m · (- n) ≡ - (m · n) ·-inv = BiInvInt-ind-prop (λ _ → isPropΠ λ _ → isSetBiInvInt _ _) (λ n → refl) (λ m p n → cong (- n +_) (p n) ∙ sym (inv-hom n (m · n))) (λ m p n → cong (- (- n) +_) (p n) ∙ sym (inv-hom (- n) (m · n))) inv-· : ∀ m n → (- m) · n ≡ - (m · n) inv-· m n = ·-comm (- m) n ∙ ·-inv n m ∙ cong (-_) (·-comm n m) ·-assoc : ∀ m n o → m · (n · o) ≡ (m · n) · o ·-assoc = BiInvInt-ind-prop (λ _ → isPropΠ2 λ _ _ → isSetBiInvInt _ _) (λ n o → refl) (λ m p n o → cong (n · o +_) (p n o) ∙ ·-distribʳ n (m · n) o) (λ m p n o → cong (- (n · o) +_) (p n o) ∙ cong (_+ m · n · o) (sym (inv-· n o)) ∙ ·-distribʳ (- n) (m · n) o)
31.542169
100
0.535523
57c5847ec68766c394f3d59972450e6dadca26a0
4,210
agda
Agda
Cubical/Algebra/Group/Instances/Bool.agda
thomas-lamiaux/cubical
58c0b83bb0fed0dc683f3d29b1709effe51c1689
[ "MIT" ]
null
null
null
Cubical/Algebra/Group/Instances/Bool.agda
thomas-lamiaux/cubical
58c0b83bb0fed0dc683f3d29b1709effe51c1689
[ "MIT" ]
null
null
null
Cubical/Algebra/Group/Instances/Bool.agda
thomas-lamiaux/cubical
58c0b83bb0fed0dc683f3d29b1709effe51c1689
[ "MIT" ]
null
null
null
{-# OPTIONS --safe #-} module Cubical.Algebra.Group.Instances.Bool where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Structure open import Cubical.Relation.Nullary open import Cubical.Data.Bool open import Cubical.Data.Empty as ⊥ open import Cubical.Data.Sum hiding (map ; rec) open import Cubical.Algebra.Group.Base open import Cubical.Algebra.Group.Morphisms open import Cubical.Algebra.Group.MorphismProperties open import Cubical.Algebra.Monoid open import Cubical.Algebra.Semigroup open GroupStr open IsGroup open IsMonoid open IsSemigroup BoolGroup : Group₀ fst BoolGroup = Bool 1g (snd BoolGroup) = true (snd BoolGroup · false) false = true (snd BoolGroup · false) true = false (snd BoolGroup · true) y = y inv (snd BoolGroup) x = x is-set (isSemigroup (isMonoid (isGroup (snd BoolGroup)))) = isSetBool ·Assoc (isSemigroup (isMonoid (isGroup (snd BoolGroup)))) false false false = refl ·Assoc (isSemigroup (isMonoid (isGroup (snd BoolGroup)))) false false true = refl ·Assoc (isSemigroup (isMonoid (isGroup (snd BoolGroup)))) false true false = refl ·Assoc (isSemigroup (isMonoid (isGroup (snd BoolGroup)))) false true true = refl ·Assoc (isSemigroup (isMonoid (isGroup (snd BoolGroup)))) true false false = refl ·Assoc (isSemigroup (isMonoid (isGroup (snd BoolGroup)))) true false true = refl ·Assoc (isSemigroup (isMonoid (isGroup (snd BoolGroup)))) true true false = refl ·Assoc (isSemigroup (isMonoid (isGroup (snd BoolGroup)))) true true true = refl ·IdR (isMonoid (isGroup (snd BoolGroup))) false = refl ·IdR (isMonoid (isGroup (snd BoolGroup))) true = refl ·IdL (isMonoid (isGroup (snd BoolGroup))) false = refl ·IdL (isMonoid (isGroup (snd BoolGroup))) true = refl ·InvR (isGroup (snd BoolGroup)) false = refl ·InvR (isGroup (snd BoolGroup)) true = refl ·InvL (isGroup (snd BoolGroup)) false = refl ·InvL (isGroup (snd BoolGroup)) true = refl -- Proof that any Group equivalent to Bool as types is also isomorphic to Bool as groups. open GroupStr renaming (·Assoc to ·AssocG) module _ {ℓ : Level} {A : Group ℓ} (e : Iso (fst A) Bool) where private discreteA : Discrete (typ A) discreteA = isoPresDiscrete (invIso e) _≟_ _·A_ = GroupStr._·_ (snd A) -A_ = GroupStr.inv (snd A) IsoABool : Iso Bool (typ A) IsoABool with (Iso.fun e (1g (snd A))) ≟ true ... | yes p = invIso e ... | no p = compIso notIso (invIso e) true→1 : Iso.fun IsoABool true ≡ 1g (snd A) true→1 with (Iso.fun e (1g (snd A))) ≟ true ... | yes p = sym (cong (Iso.inv e) p) ∙ Iso.leftInv e _ ... | no p = sym (cong (Iso.inv e) (¬true→false (Iso.fun e (1g (snd A))) p)) ∙ Iso.leftInv e (1g (snd A)) decA : (x : typ A) → (x ≡ 1g (snd A)) ⊎ (x ≡ Iso.fun IsoABool false) decA x with (Iso.inv IsoABool x) ≟ false | discreteA x (1g (snd A)) ... | yes p | yes q = inl q ... | yes p | no q = inr (sym (Iso.rightInv IsoABool x) ∙ cong (Iso.fun (IsoABool)) p) ... | no p | no q = inr (⊥.rec (q (sym (Iso.rightInv IsoABool x) ∙∙ cong (Iso.fun IsoABool) (¬false→true _ p) ∙∙ true→1))) ... | no p | yes q = inl q ≅Bool : GroupIso BoolGroup A ≅Bool .fst = IsoABool ≅Bool .snd = makeIsGroupHom homHelp where homHelp : _ homHelp false false with discreteA (Iso.fun IsoABool false) (1g (snd A)) | (decA ((Iso.fun IsoABool false) ·A Iso.fun IsoABool false)) ... | yes p | _ = true→1 ∙∙ sym (GroupStr.·IdR (snd A) (1g (snd A))) ∙∙ cong₂ (_·A_) (sym p) (sym p) ... | no p | inl x = true→1 ∙ sym x ... | no p | inr x = true→1 ∙∙ sym (helper _ x) ∙∙ sym x where helper : (x : typ A) → x ·A x ≡ x → x ≡ (1g (snd A)) helper x p = sym (GroupStr.·IdR (snd A) x) ∙∙ cong (x ·A_) (sym ((snd A) .·InvR x)) ∙∙ ·AssocG (snd A) x x (-A x) ∙∙ cong (_·A (-A x)) p ∙∙ (snd A) .·InvR x homHelp false true = sym (GroupStr.·IdR (snd A) _) ∙ cong (Iso.fun IsoABool false ·A_) (sym true→1) homHelp true y = sym (GroupStr.·IdL (snd A) _) ∙ cong (_·A (Iso.fun IsoABool y)) (sym true→1)
41.683168
108
0.631116
063eea785d09782acd63a212a2e792276d4aec13
2,280
agda
Agda
complexity-drafts/Translation2.agda
benhuds/Agda
2404a6ef2688f879bda89860bb22f77664ad813e
[ "MIT" ]
2
2016-04-26T20:22:22.000Z
2019-08-08T12:27:18.000Z
complexity-drafts/Translation2.agda
benhuds/Agda
2404a6ef2688f879bda89860bb22f77664ad813e
[ "MIT" ]
1
2020-03-23T08:39:04.000Z
2020-05-12T00:32:45.000Z
complexity-drafts/Translation2.agda
benhuds/Agda
2404a6ef2688f879bda89860bb22f77664ad813e
[ "MIT" ]
null
null
null
--NEW TRANSLATION FILE open import Preliminaries open import Source2 open import Comp2 module Translation2 where -- translation from source types to complexity types mutual ⟨⟨_⟩⟩ : Tp → CTp ⟨⟨ unit ⟩⟩ = unit ⟨⟨ nat ⟩⟩ = nat ⟨⟨ susp A ⟩⟩ = || A || ⟨⟨ A ->s B ⟩⟩ = ⟨⟨ A ⟩⟩ ->c || B || ⟨⟨ A ×s B ⟩⟩ = ⟨⟨ A ⟩⟩ ×c ⟨⟨ B ⟩⟩ ⟨⟨ list A ⟩⟩ = list ⟨⟨ A ⟩⟩ ⟨⟨ bool ⟩⟩ = bool ||_|| : Tp → CTp || τ || = C ×c ⟨⟨ τ ⟩⟩ ⟨⟨_⟩⟩c : Source2.Ctx → Comp2.Ctx ⟨⟨ [] ⟩⟩c = [] ⟨⟨ x :: Γ ⟩⟩c = ⟨⟨ x ⟩⟩ :: ⟨⟨ Γ ⟩⟩c -- translate source Cost types to complexity costs interp-Cost : ∀{Γ} → Cost → Γ Comp2.|- C interp-Cost 0c = 0C interp-Cost 1c = 1C interp-Cost (m +c n) = plusC (interp-Cost m) (interp-Cost n) -- need to fill this out postulate lookup : ∀{Γ τ} → τ Source2.∈ Γ → ⟨⟨ τ ⟩⟩ Comp2.∈ ⟨⟨ Γ ⟩⟩c -- translation from source expressions to complexity expressions ||_||e : ∀{Γ τ} → Γ Source2.|- τ → ⟨⟨ Γ ⟩⟩c Comp2.|- || τ || || unit ||e = prod 0C unit || var x ||e = prod 0C (var (lookup x)) || z ||e = prod 0C z || suc e ||e = prod (l-proj (|| e ||e)) (suc (r-proj (|| e ||e))) || rec e e0 e1 ||e = (l-proj (|| e ||e)) +C (rec (r-proj || e ||e) (1C +C || e0 ||e) (1C +C || e1 ||e)) || lam e ||e = prod 0C (lam || e ||e) || app e1 e2 ||e = prod (plusC (plusC (l-proj (|| e1 ||e)) (l-proj (|| e2 ||e))) (l-proj (app (r-proj (|| e1 ||e)) (r-proj (|| e2 ||e))))) (r-proj (app (r-proj (|| e1 ||e)) (r-proj (|| e2 ||e)))) || prod e1 e2 ||e = prod (plusC (l-proj (|| e1 ||e)) (l-proj (|| e2 ||e))) (prod (r-proj (|| e1 ||e)) (r-proj (|| e2 ||e))) || delay e ||e = prod 0C (|| e ||e) || force e ||e = prod (plusC (l-proj (|| e ||e)) (l-proj (r-proj || e ||e))) (r-proj (r-proj (|| e ||e))) || split e0 e1 ||e = prod (plusC (l-proj (|| e0 ||e)) (l-proj E1)) (r-proj E1) where E1 = (Comp2.subst || e1 ||e (Comp2.lem4 (l-proj (r-proj || e0 ||e)) (r-proj (r-proj || e0 ||e)))) || nil ||e = prod 0C nil || e ::s e₁ ||e = prod (plusC (l-proj || e ||e) (l-proj || e₁ ||e)) ((r-proj || e ||e) ::c (r-proj || e₁ ||e)) || listrec e e₁ e₂ ||e = l-proj || e ||e +C listrec (r-proj || e ||e) (1C +C || e₁ ||e) (1C +C || e₂ ||e) || true ||e = prod 0C true || false ||e = prod 0C false
40
140
0.463596
23b885835d11ce4b6f841f69f86c60c163125035
19,533
agda
Agda
Definition/Conversion/EqRelInstance.agda
CoqHott/logrel-mltt
e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04
[ "MIT" ]
2
2018-06-21T08:39:01.000Z
2022-01-17T16:13:53.000Z
Definition/Conversion/EqRelInstance.agda
CoqHott/logrel-mltt
e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04
[ "MIT" ]
null
null
null
Definition/Conversion/EqRelInstance.agda
CoqHott/logrel-mltt
e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04
[ "MIT" ]
2
2022-01-26T14:55:51.000Z
2022-02-15T19:42:19.000Z
{-# OPTIONS --safe #-} module Definition.Conversion.EqRelInstance where open import Definition.Untyped open import Definition.Untyped.Properties using (wkSingleSubstId) open import Definition.Typed open import Definition.Typed.Properties open import Definition.Typed.Weakening using (_∷_⊆_; wkEq; step; id) open import Definition.Conversion open import Definition.Conversion.Reduction open import Definition.Conversion.Universe open import Definition.Conversion.Stability open import Definition.Conversion.Soundness open import Definition.Conversion.Lift open import Definition.Conversion.Conversion open import Definition.Conversion.Transitivity open import Definition.Conversion.Weakening open import Definition.Conversion.Whnf open import Definition.Typed.EqualityRelation open import Definition.Typed.Consequences.Syntactic open import Definition.Typed.Consequences.Substitution open import Definition.Typed.Consequences.Injectivity open import Definition.Typed.Consequences.Equality open import Definition.Typed.Consequences.Reduction open import Definition.Conversion.Symmetry open import Tools.Nat open import Tools.Product import Tools.PropositionalEquality as PE open import Tools.Function -- Algorithmic equality of neutrals with injected conversion. data _⊢_~_∷_^_ (Γ : Con Term) (k l A : Term) (r : TypeInfo) : Set where ↑ : ∀ {B} → Γ ⊢ A ≡ B ^ r → Γ ⊢ k ~ l ↑ B ^ r → Γ ⊢ k ~ l ∷ A ^ r -- Properties of algorithmic equality of neutrals with injected conversion. ~-var : ∀ {x A r Γ} → Γ ⊢ var x ∷ A ^ r → Γ ⊢ var x ~ var x ∷ A ^ r ~-var x = let ⊢A = syntacticTerm x in ↑ (refl ⊢A) (var-refl′ x) ~-app : ∀ {f g a b F G Γ rF lF lG lΠ} → Γ ⊢ f ~ g ∷ Π F ^ rF ° lF ▹ G ° lG ° lΠ ^ [ ! , ι lΠ ] → Γ ⊢ a [genconv↑] b ∷ F ^ [ rF , ι lF ] → Γ ⊢ f ∘ a ^ lΠ ~ g ∘ b ^ lΠ ∷ G [ a ] ^ [ ! , ι lG ] ~-app {rF = !} (↑ A≡B (~↑! x)) x₁ = let _ , ⊢B = syntacticEq A≡B B′ , whnfB′ , D = whNorm ⊢B ΠFG≡B′ = trans A≡B (subset* (red D)) H , E , B≡ΠHE = Π≡A ΠFG≡B′ whnfB′ F≡H , _ , _ , _ , G≡E = injectivity (PE.subst (λ x → _ ⊢ _ ≡ x ^ _) B≡ΠHE ΠFG≡B′) _ , ⊢f , _ = syntacticEqTerm (soundnessConv↑Term x₁) in ↑ (substTypeEq G≡E (refl ⊢f)) (app-cong′ (PE.subst (λ x → _ ⊢ _ ~ _ ↓! x ^ _) B≡ΠHE ([~] _ (red D) whnfB′ x)) (convConvTerm x₁ F≡H)) ~-app {rF = %} (↑ A≡B (~↑! x)) x₁ = let _ , ⊢B = syntacticEq A≡B B′ , whnfB′ , D = whNorm ⊢B ΠFG≡B′ = trans A≡B (subset* (red D)) H , E , B≡ΠHE = Π≡A ΠFG≡B′ whnfB′ F≡H , _ , _ , _ , G≡E = injectivity (PE.subst (λ x → _ ⊢ _ ≡ x ^ _) B≡ΠHE ΠFG≡B′) _ , ⊢f , _ = syntacticEqTerm (proj₂ (proj₂ (soundness~↑% x₁))) in ↑ (substTypeEq G≡E (genRefl ⊢f)) (app-cong′ (PE.subst (λ x → _ ⊢ _ ~ _ ↓! x ^ _) B≡ΠHE ([~] _ (red D) whnfB′ x)) (conv~↑% x₁ F≡H)) ~-natrec : ∀ {z z′ s s′ n n′ F F′ Γ lF} → (Γ ∙ ℕ ^ [ ! , ι ⁰ ]) ⊢ F [conv↑] F′ ^ [ ! , ι lF ] → Γ ⊢ z [conv↑] z′ ∷ (F [ zero ]) ^ ι lF → Γ ⊢ s [conv↑] s′ ∷ (Π ℕ ^ ! ° ⁰ ▹ (F ^ ! ° lF ▹▹ F [ suc (var 0) ]↑ ° lF ° lF) ° lF ° lF) ^ ι lF → Γ ⊢ n ~ n′ ∷ ℕ ^ [ ! , ι ⁰ ] → Γ ⊢ natrec lF F z s n ~ natrec lF F′ z′ s′ n′ ∷ (F [ n ]) ^ [ ! , ι lF ] ~-natrec {n = n} {n′ = n′} x x₁ x₂ (↑ A≡B (~↑! x₄)) = let _ , ⊢B = syntacticEq A≡B B′ , whnfB′ , D = whNorm ⊢B ℕ≡B′ = trans A≡B (subset* (red D)) B≡ℕ = ℕ≡A ℕ≡B′ whnfB′ k~l′ = PE.subst (λ x → _ ⊢ n ~ n′ ↓! x ^ _) B≡ℕ ([~] _ (red D) whnfB′ x₄) ⊢F , _ = syntacticEq (soundnessConv↑ x) _ , ⊢n , _ = syntacticEqTerm (soundness~↓! k~l′) in ↑ (refl (substType ⊢F ⊢n)) (natrec-cong′ x x₁ x₂ k~l′) ~-Emptyrec : ∀ {e e' F F′ Γ l lEmpty} → Γ ⊢ F [conv↑] F′ ^ [ ! , ι l ] → Γ ⊢ e ∷ Empty lEmpty ^ [ % , ι lEmpty ] → Γ ⊢ e' ∷ Empty lEmpty ^ [ % , ι lEmpty ] → Γ ⊢ Emptyrec l lEmpty F e ~ Emptyrec l lEmpty F′ e' ∷ F ^ [ ! , ι l ] ~-Emptyrec {e = e} {e' = e'} x ⊢e ⊢e' = let k~l′ = %~↑ ⊢e ⊢e' ⊢F , _ = syntacticEq (soundnessConv↑ x) in ↑ (refl ⊢F) (Emptyrec-cong′ x k~l′) ~-IdCong : ∀ {A A' : Term} {l : Level} {t t' u u' : Term} {Γ : Con Term} → Γ ⊢ A ~ A' ∷ Univ ! l ^ [ ! , next l ] → Γ ⊢ t [conv↑] t' ∷ A ^ ι l → Γ ⊢ u [conv↑] u' ∷ A ^ ι l → Γ ⊢ Id A t u ~ Id A' t' u' ∷ SProp l ^ [ ! , next l ] ~-IdCong (↑ A≡B (~↑! x)) t~t' u~u' = let ⊢Γ = wfEqTerm (soundnessConv↑Term t~t') _ , ⊢B = syntacticEq A≡B B′ , whnfB′ , D = whNorm ⊢B U≡B′ = trans A≡B (subset* (red D)) B≡U = U≡A-whnf U≡B′ whnfB′ A~A′ = PE.subst (λ x → _ ⊢ _ ~ _ ↓! x ^ _) B≡U ([~] _ (red D) whnfB′ x) in ↑ (refl (Ugenⱼ ⊢Γ)) (~↑! (Id-cong A~A′ t~t' u~u')) ~-Idℕ : ∀ {t t' u u' : Term} {Γ : Con Term} → ⊢ Γ → Γ ⊢ t ~ t' ∷ ℕ ^ [ ! , ι ⁰ ] → Γ ⊢ u [genconv↑] u' ∷ ℕ ^ [ ! , ι ⁰ ] → Γ ⊢ Id ℕ t u ~ Id ℕ t' u' ∷ SProp ⁰ ^ [ ! , next ⁰ ] ~-Idℕ ⊢Γ (↑ A≡B (~↑! x)) u~u' = let _ , ⊢B = syntacticEq A≡B B′ , whnfB′ , D = whNorm ⊢B ℕ≡B′ = trans A≡B (subset* (red D)) B≡ℕ = ℕ≡A ℕ≡B′ whnfB′ t~t′ = PE.subst (λ x → _ ⊢ _ ~ _ ↓! x ^ _) B≡ℕ ([~] _ (red D) whnfB′ x) in ↑ (refl (Ugenⱼ ⊢Γ)) (~↑! (Id-ℕ t~t′ u~u')) ~-Idℕ0 : ∀ {u u' : Term} {Γ : Con Term} → ⊢ Γ → Γ ⊢ u ~ u' ∷ ℕ ^ [ ! , ι ⁰ ] → Γ ⊢ Id ℕ zero u ~ Id ℕ zero u' ∷ SProp ⁰ ^ [ ! , next ⁰ ] ~-Idℕ0 ⊢Γ (↑ A≡B (~↑! x)) = let _ , ⊢B = syntacticEq A≡B B′ , whnfB′ , D = whNorm ⊢B ℕ≡B′ = trans A≡B (subset* (red D)) B≡ℕ = ℕ≡A ℕ≡B′ whnfB′ t~t′ = PE.subst (λ x → _ ⊢ _ ~ _ ↓! x ^ _) B≡ℕ ([~] _ (red D) whnfB′ x) in ↑ (refl (Ugenⱼ ⊢Γ)) (~↑! (Id-ℕ0 t~t′)) ~-IdℕS : ∀ {t t' u u' : Term} {Γ : Con Term} → ⊢ Γ → Γ ⊢ t [genconv↑] t' ∷ ℕ ^ [ ! , ι ⁰ ] → Γ ⊢ u ~ u' ∷ ℕ ^ [ ! , ι ⁰ ] → Γ ⊢ Id ℕ (suc t) u ~ Id ℕ (suc t') u' ∷ SProp ⁰ ^ [ ! , next ⁰ ] ~-IdℕS ⊢Γ X (↑ A≡B (~↑! x)) = let _ , ⊢B = syntacticEq A≡B B′ , whnfB′ , D = whNorm ⊢B ℕ≡B′ = trans A≡B (subset* (red D)) B≡ℕ = ℕ≡A ℕ≡B′ whnfB′ t~t′ = PE.subst (λ x → _ ⊢ _ ~ _ ↓! x ^ _) B≡ℕ ([~] _ (red D) whnfB′ x) in ↑ (refl (Ugenⱼ ⊢Γ)) (~↑! (Id-ℕS X t~t′)) ~-IdU : ∀ {t t' u u' : Term} {Γ : Con Term} → ⊢ Γ → Γ ⊢ t ~ t' ∷ U ⁰ ^ [ ! , next ⁰ ] → Γ ⊢ u [genconv↑] u' ∷ U ⁰ ^ [ ! , next ⁰ ] → Γ ⊢ Id (U ⁰) t u ~ Id (U ⁰) t' u' ∷ SProp ¹ ^ [ ! , next ¹ ] ~-IdU ⊢Γ (↑ A≡B (~↑! x)) X = let _ , ⊢B = syntacticEq A≡B B′ , whnfB′ , D = whNorm ⊢B U≡B′ = trans A≡B (subset* (red D)) B≡U = U≡A-whnf U≡B′ whnfB′ t~t′ = PE.subst (λ x → _ ⊢ _ ~ _ ↓! x ^ _) B≡U ([~] _ (red D) whnfB′ x) in ↑ (refl (Ugenⱼ ⊢Γ)) (~↑! (Id-U t~t′ X)) ~-IdUℕ : ∀ {u u' : Term} {Γ : Con Term} → ⊢ Γ → Γ ⊢ u ~ u' ∷ U ⁰ ^ [ ! , next ⁰ ] → Γ ⊢ Id (U ⁰) ℕ u ~ Id (U ⁰) ℕ u' ∷ SProp ¹ ^ [ ! , next ¹ ] ~-IdUℕ ⊢Γ (↑ A≡B (~↑! x)) = let _ , ⊢B = syntacticEq A≡B B′ , whnfB′ , D = whNorm ⊢B U≡B′ = trans A≡B (subset* (red D)) B≡U = U≡A-whnf U≡B′ whnfB′ t~t′ = PE.subst (λ x → _ ⊢ _ ~ _ ↓! x ^ _) B≡U ([~] _ (red D) whnfB′ x) in ↑ (refl (Ugenⱼ ⊢Γ)) (~↑! (Id-Uℕ t~t′)) ~-IdUΠ : ∀ {A : Term} {rA : Relevance} {B A' B' u u' : Term} {Γ : Con Term} → Γ ⊢ Π A ^ rA ° ⁰ ▹ B ° ⁰ ° ⁰ [genconv↑] Π A' ^ rA ° ⁰ ▹ B' ° ⁰ ° ⁰ ∷ U ⁰ ^ [ ! , next ⁰ ] → Γ ⊢ u ~ u' ∷ U ⁰ ^ [ ! , next ⁰ ] → Γ ⊢ Id (U ⁰) (Π A ^ rA ° ⁰ ▹ B ° ⁰ ° ⁰) u ~ Id (U ⁰) (Π A' ^ rA ° ⁰ ▹ B' ° ⁰ ° ⁰) u' ∷ SProp ¹ ^ [ ! , next ¹ ] ~-IdUΠ X (↑ A≡B (~↑! x)) = let ⊢Γ = wfEqTerm (soundnessConv↑Term X) _ , ⊢B = syntacticEq A≡B B′ , whnfB′ , D = whNorm ⊢B U≡B′ = trans A≡B (subset* (red D)) B≡U = U≡A-whnf U≡B′ whnfB′ t~t′ = PE.subst (λ x → _ ⊢ _ ~ _ ↓! x ^ _) B≡U ([~] _ (red D) whnfB′ x) in ↑ (refl (Ugenⱼ ⊢Γ)) (~↑! (Id-UΠ X t~t′)) ~-castcong : ∀ {A A' B B' e e' t t' : Term} {Γ : Con Term} → Γ ⊢ A ~ A' ∷ U ⁰ ^ [ ! , next ⁰ ] → Γ ⊢ B [genconv↑] B' ∷ U ⁰ ^ [ ! , next ⁰ ] → Γ ⊢ t [genconv↑] t' ∷ A ^ [ ! , ι ⁰ ] → Γ ⊢ e ∷ Id (U ⁰) A B ^ [ % , next ⁰ ] → Γ ⊢ e' ∷ Id (U ⁰) A' B' ^ [ % , next ⁰ ] → Γ ⊢ cast ⁰ A B e t ~ cast ⁰ A' B' e' t' ∷ B ^ [ ! , ι ⁰ ] ~-castcong (↑ A≡B (~↑! x)) X Y ⊢e ⊢e' = let _ , ⊢B , _ = syntacticEqTerm (soundnessConv↑Term X) _ , ⊢B' = syntacticEq A≡B B′ , whnfB′ , D = whNorm ⊢B' U≡B′ = trans A≡B (subset* (red D)) B≡U = U≡A-whnf U≡B′ whnfB′ t~t′ = PE.subst (λ x → _ ⊢ _ ~ _ ↓! x ^ _) B≡U ([~] _ (red D) whnfB′ x) in ↑ (refl (univ ⊢B)) (~↑! (cast-cong t~t′ X Y ⊢e ⊢e')) ~-castℕ : ∀ {B B' e e' t t' : Term} {Γ : Con Term} → ⊢ Γ → Γ ⊢ B ~ B' ∷ U ⁰ ^ [ ! , next ⁰ ] → Γ ⊢ t [genconv↑] t' ∷ ℕ ^ [ ! , ι ⁰ ] → Γ ⊢ e ∷ Id (U ⁰) ℕ B ^ [ % , next ⁰ ] → Γ ⊢ e' ∷ Id (U ⁰) ℕ B' ^ [ % , next ⁰ ] → Γ ⊢ cast ⁰ ℕ B e t ~ cast ⁰ ℕ B' e' t' ∷ B ^ [ ! , ι ⁰ ] ~-castℕ ⊢Γ (↑ A≡B (~↑! x)) X ⊢e ⊢e' = let _ , ⊢B' = syntacticEq A≡B B′ , whnfB′ , D = whNorm ⊢B' U≡B′ = trans A≡B (subset* (red D)) B≡U = U≡A-whnf U≡B′ whnfB′ t~t′ = PE.subst (λ x → _ ⊢ _ ~ _ ↓! x ^ _) B≡U ([~] _ (red D) whnfB′ x) _ , ⊢B , _ = syntacticEqTerm (soundness~↓! t~t′) in ↑ (refl (univ ⊢B)) (~↑! (cast-ℕ t~t′ X ⊢e ⊢e')) ~-castℕℕ : ∀ {e e' t t' : Term} {Γ : Con Term} → ⊢ Γ → Γ ⊢ t ~ t' ∷ ℕ ^ [ ! , ι ⁰ ] → Γ ⊢ e ∷ Id (U ⁰) ℕ ℕ ^ [ % , next ⁰ ] → Γ ⊢ e' ∷ Id (U ⁰) ℕ ℕ ^ [ % , next ⁰ ] → Γ ⊢ cast ⁰ ℕ ℕ e t ~ cast ⁰ ℕ ℕ e' t' ∷ ℕ ^ [ ! , ι ⁰ ] ~-castℕℕ ⊢Γ (↑ A≡B (~↑! x)) ⊢e ⊢e' = let _ , ⊢B' = syntacticEq A≡B B′ , whnfB′ , D = whNorm ⊢B' ℕ≡B′ = trans A≡B (subset* (red D)) B≡ℕ = ℕ≡A ℕ≡B′ whnfB′ t~t′ = PE.subst (λ x → _ ⊢ _ ~ _ ↓! x ^ _) B≡ℕ ([~] _ (red D) whnfB′ x) _ , ⊢B , _ = syntacticEqTerm (soundness~↓! t~t′) in ↑ (refl (univ (ℕⱼ ⊢Γ))) (~↑! (cast-ℕℕ t~t′ ⊢e ⊢e')) ~-castΠ : ∀ {A A' : Term} {rA : Relevance} {P P' B B' e e' t t' : Term} {Γ : Con Term} → Γ ⊢ Π A ^ rA ° ⁰ ▹ P ° ⁰ ° ⁰ [genconv↑] Π A' ^ rA ° ⁰ ▹ P' ° ⁰ ° ⁰ ∷ U ⁰ ^ [ ! , next ⁰ ] → Γ ⊢ B ~ B' ∷ U ⁰ ^ [ ! , next ⁰ ] → Γ ⊢ t [genconv↑] t' ∷ Π A ^ rA ° ⁰ ▹ P ° ⁰ ° ⁰ ^ [ ! , ι ⁰ ] → Γ ⊢ e ∷ Id (U ⁰) (Π A ^ rA ° ⁰ ▹ P ° ⁰ ° ⁰) B ^ [ % , next ⁰ ] → Γ ⊢ e' ∷ Id (U ⁰) (Π A' ^ rA ° ⁰ ▹ P' ° ⁰ ° ⁰) B' ^ [ % , next ⁰ ] → Γ ⊢ cast ⁰ (Π A ^ rA ° ⁰ ▹ P ° ⁰ ° ⁰) B e t ~ cast ⁰ (Π A' ^ rA ° ⁰ ▹ P' ° ⁰ ° ⁰) B' e' t' ∷ B ^ [ ! , ι ⁰ ] ~-castΠ X (↑ A≡B (~↑! x)) Y ⊢e ⊢e' = let _ , ⊢B' = syntacticEq A≡B B′ , whnfB′ , D = whNorm ⊢B' U≡B′ = trans A≡B (subset* (red D)) B≡U = U≡A-whnf U≡B′ whnfB′ t~t′ = PE.subst (λ x → _ ⊢ _ ~ _ ↓! x ^ _) B≡U ([~] _ (red D) whnfB′ x) _ , ⊢B , _ = syntacticEqTerm (soundness~↓! t~t′) in ↑ (refl (univ ⊢B)) (~↑! (cast-Π X t~t′ Y ⊢e ⊢e')) ~-castℕΠ : ∀ {A A' : Term} {rA : Relevance} {P P' e e' t t' : Term} {Γ : Con Term} → Γ ⊢ A ∷ Univ rA ⁰ ^ [ ! , next ⁰ ] → (Γ ∙ A ^ [ rA , ι ⁰ ]) ⊢ P ∷ U ⁰ ^ [ ! , next ⁰ ] → Γ ⊢ Π A ^ rA ° ⁰ ▹ P ° ⁰ ° ⁰ [genconv↑] Π A' ^ rA ° ⁰ ▹ P' ° ⁰ ° ⁰ ∷ U ⁰ ^ [ ! , next ⁰ ] → Γ ⊢ t [genconv↑] t' ∷ ℕ ^ [ ! , ι ⁰ ] → Γ ⊢ e ∷ Id (U ⁰) ℕ (Π A ^ rA ° ⁰ ▹ P ° ⁰ ° ⁰) ^ [ % , next ⁰ ] → Γ ⊢ e' ∷ Id (U ⁰) ℕ (Π A' ^ rA ° ⁰ ▹ P' ° ⁰ ° ⁰) ^ [ % , next ⁰ ] → Γ ⊢ cast ⁰ ℕ (Π A ^ rA ° ⁰ ▹ P ° ⁰ ° ⁰) e t ~ cast ⁰ ℕ (Π A' ^ rA ° ⁰ ▹ P' ° ⁰ ° ⁰) e' t' ∷ Π A ^ rA ° ⁰ ▹ P ° ⁰ ° ⁰ ^ [ ! , ι ⁰ ] ~-castℕΠ ⊢A ⊢P X Y ⊢e ⊢e' = ↑ (refl (univ (Πⱼ ≡is≤ PE.refl ▹ ≡is≤ PE.refl ▹ ⊢A ▹ ⊢P))) (~↑! (cast-ℕΠ X Y ⊢e ⊢e')) ~-castΠℕ : ∀ {A A' : Term} {rA : Relevance} {P P' e e' t t' : Term} {Γ : Con Term} → Γ ⊢ A ∷ Univ rA ⁰ ^ [ ! , next ⁰ ] → (Γ ∙ A ^ [ rA , ι ⁰ ]) ⊢ P ∷ U ⁰ ^ [ ! , next ⁰ ] → Γ ⊢ Π A ^ rA ° ⁰ ▹ P ° ⁰ ° ⁰ [genconv↑] Π A' ^ rA ° ⁰ ▹ P' ° ⁰ ° ⁰ ∷ U ⁰ ^ [ ! , next ⁰ ] → Γ ⊢ t [genconv↑] t' ∷ Π A ^ rA ° ⁰ ▹ P ° ⁰ ° ⁰ ^ [ ! , ι ⁰ ] → Γ ⊢ e ∷ Id (U ⁰) (Π A ^ rA ° ⁰ ▹ P ° ⁰ ° ⁰) ℕ ^ [ % , next ⁰ ] → Γ ⊢ e' ∷ Id (U ⁰) (Π A' ^ rA ° ⁰ ▹ P' ° ⁰ ° ⁰) ℕ ^ [ % , next ⁰ ] → Γ ⊢ cast ⁰ (Π A ^ rA ° ⁰ ▹ P ° ⁰ ° ⁰) ℕ e t ~ cast ⁰ (Π A' ^ rA ° ⁰ ▹ P' ° ⁰ ° ⁰) ℕ e' t' ∷ ℕ ^ [ ! , ι ⁰ ] ~-castΠℕ ⊢A ⊢P X Y ⊢e ⊢e' = ↑ (refl (univ (ℕⱼ (wfTerm ⊢A)))) (~↑! (cast-Πℕ X Y ⊢e ⊢e')) ~-castΠΠ%! : ∀ {A A' P P' B B' Q Q' e e' t t' : Term} {Γ : Con Term} → Γ ⊢ A ∷ Univ % ⁰ ^ [ ! , next ⁰ ] → (Γ ∙ A ^ [ % , ι ⁰ ]) ⊢ P ∷ U ⁰ ^ [ ! , next ⁰ ] → Γ ⊢ Π A ^ % ° ⁰ ▹ P ° ⁰ ° ⁰ [genconv↑] Π A' ^ % ° ⁰ ▹ P' ° ⁰ ° ⁰ ∷ U ⁰ ^ [ ! , next ⁰ ] → Γ ⊢ B ∷ Univ ! ⁰ ^ [ ! , next ⁰ ] → (Γ ∙ B ^ [ ! , ι ⁰ ]) ⊢ Q ∷ U ⁰ ^ [ ! , next ⁰ ] → Γ ⊢ Π B ^ ! ° ⁰ ▹ Q ° ⁰ ° ⁰ [genconv↑] Π B' ^ ! ° ⁰ ▹ Q' ° ⁰ ° ⁰ ∷ U ⁰ ^ [ ! , next ⁰ ] → Γ ⊢ t [genconv↑] t' ∷ Π A ^ % ° ⁰ ▹ P ° ⁰ ° ⁰ ^ [ ! , ι ⁰ ] → Γ ⊢ e ∷ Id (U ⁰) (Π A ^ % ° ⁰ ▹ P ° ⁰ ° ⁰) (Π B ^ ! ° ⁰ ▹ Q ° ⁰ ° ⁰) ^ [ % , next ⁰ ] → Γ ⊢ e' ∷ Id (U ⁰) (Π A' ^ % ° ⁰ ▹ P' ° ⁰ ° ⁰) (Π B' ^ ! ° ⁰ ▹ Q' ° ⁰ ° ⁰) ^ [ % , next ⁰ ] → Γ ⊢ cast ⁰ (Π A ^ % ° ⁰ ▹ P ° ⁰ ° ⁰) (Π B ^ ! ° ⁰ ▹ Q ° ⁰ ° ⁰) e t ~ cast ⁰ (Π A' ^ % ° ⁰ ▹ P' ° ⁰ ° ⁰) (Π B' ^ ! ° ⁰ ▹ Q' ° ⁰ ° ⁰) e' t' ∷ Π B ^ ! ° ⁰ ▹ Q ° ⁰ ° ⁰ ^ [ ! , ι ⁰ ] ~-castΠΠ%! ⊢A ⊢P X ⊢B ⊢Q Y t~t' ⊢e ⊢e' = ↑ (refl (univ (Πⱼ ≡is≤ PE.refl ▹ ≡is≤ PE.refl ▹ ⊢B ▹ ⊢Q))) (~↑! (cast-ΠΠ%! X Y t~t' ⊢e ⊢e')) ~-castΠΠ!% : ∀ {A A' P P' B B' Q Q' e e' t t' : Term} {Γ : Con Term} → Γ ⊢ A ∷ Univ ! ⁰ ^ [ ! , next ⁰ ] → (Γ ∙ A ^ [ ! , ι ⁰ ]) ⊢ P ∷ U ⁰ ^ [ ! , next ⁰ ] → Γ ⊢ Π A ^ ! ° ⁰ ▹ P ° ⁰ ° ⁰ [genconv↑] Π A' ^ ! ° ⁰ ▹ P' ° ⁰ ° ⁰ ∷ U ⁰ ^ [ ! , next ⁰ ] → Γ ⊢ B ∷ Univ % ⁰ ^ [ ! , next ⁰ ] → (Γ ∙ B ^ [ % , ι ⁰ ]) ⊢ Q ∷ U ⁰ ^ [ ! , next ⁰ ] → Γ ⊢ Π B ^ % ° ⁰ ▹ Q ° ⁰ ° ⁰ [genconv↑] Π B' ^ % ° ⁰ ▹ Q' ° ⁰ ° ⁰ ∷ U ⁰ ^ [ ! , next ⁰ ] → Γ ⊢ t [genconv↑] t' ∷ Π A ^ ! ° ⁰ ▹ P ° ⁰ ° ⁰ ^ [ ! , ι ⁰ ] → Γ ⊢ e ∷ Id (U ⁰) (Π A ^ ! ° ⁰ ▹ P ° ⁰ ° ⁰) (Π B ^ % ° ⁰ ▹ Q ° ⁰ ° ⁰) ^ [ % , next ⁰ ] → Γ ⊢ e' ∷ Id (U ⁰) (Π A' ^ ! ° ⁰ ▹ P' ° ⁰ ° ⁰) (Π B' ^ % ° ⁰ ▹ Q' ° ⁰ ° ⁰) ^ [ % , next ⁰ ] → Γ ⊢ cast ⁰ (Π A ^ ! ° ⁰ ▹ P ° ⁰ ° ⁰) (Π B ^ % ° ⁰ ▹ Q ° ⁰ ° ⁰) e t ~ cast ⁰ (Π A' ^ ! ° ⁰ ▹ P' ° ⁰ ° ⁰) (Π B' ^ % ° ⁰ ▹ Q' ° ⁰ ° ⁰) e' t' ∷ Π B ^ % ° ⁰ ▹ Q ° ⁰ ° ⁰ ^ [ ! , ι ⁰ ] ~-castΠΠ!% ⊢A ⊢P X ⊢B ⊢Q Y t~t' ⊢e ⊢e' = ↑ (refl (univ (Πⱼ ≡is≤ PE.refl ▹ ≡is≤ PE.refl ▹ ⊢B ▹ ⊢Q))) (~↑! (cast-ΠΠ!% X Y t~t' ⊢e ⊢e')) ~-sym : {k l A : Term} {r : TypeInfo} {Γ : Con Term} → Γ ⊢ k ~ l ∷ A ^ r → Γ ⊢ l ~ k ∷ A ^ r ~-sym (↑ A≡B x) = let ⊢Γ = wfEq A≡B B , A≡B′ , l~k = sym~↑ (reflConEq ⊢Γ) x in ↑ (trans A≡B A≡B′) l~k ~-trans : {k l m A : Term} {r : TypeInfo} {Γ : Con Term} → Γ ⊢ k ~ l ∷ A ^ r → Γ ⊢ l ~ m ∷ A ^ r → Γ ⊢ k ~ m ∷ A ^ r ~-trans (↑ x (~↑! x₁)) (↑ x₂ (~↑! x₃)) = let ⊢Γ = wfEq x k~m , _ = trans~↑! PE.refl (reflConEq ⊢Γ) x₁ x₃ in ↑ x (~↑! k~m) ~-trans (↑ x (~↑% x₁)) (↑ x₂ (~↑% x₃)) = let ⊢Γ = wfEq x k~m = trans~↑% (reflConEq ⊢Γ) x₁ (conv~↑% x₃ (trans (sym x₂) x)) in ↑ x (~↑% k~m) ~-wk : {k l A : Term} {r : TypeInfo} {ρ : Wk} {Γ Δ : Con Term} → ρ ∷ Δ ⊆ Γ → ⊢ Δ → Γ ⊢ k ~ l ∷ A ^ r → Δ ⊢ wk ρ k ~ wk ρ l ∷ wk ρ A ^ r ~-wk x x₁ (↑ x₂ x₃) = ↑ (wkEq x x₁ x₂) (wk~↑ x x₁ x₃) ~-conv : {k l A B : Term} {r : TypeInfo} {Γ : Con Term} → Γ ⊢ k ~ l ∷ A ^ r → Γ ⊢ A ≡ B ^ r → Γ ⊢ k ~ l ∷ B ^ r ~-conv (↑ x x₁) x₂ = ↑ (trans (sym x₂) x) x₁ ~-to-conv : {k l A : Term} {Γ : Con Term} {r : TypeInfo} → Γ ⊢ k ~ l ∷ A ^ r → Γ ⊢ k [genconv↑] l ∷ A ^ r ~-to-conv {r = [ ! , ll ]} (↑ x x₁) = convConvTerm (lift~toConv↑ x₁) (sym x) ~-to-conv {r = [ % , ll ]} (↑ x (~↑% x₁)) = conv~↑% x₁ (sym x) un-univConv : ∀ {A B : Term} {r : Relevance} {l : Level} {Γ : Con Term} → Γ ⊢ A [conv↑] B ^ [ r , ι l ] → Γ ⊢ A [conv↑] B ∷ Univ r l ^ next l un-univConv {A} {B} {r} {l} ([↑] A′ B′ D D′ whnfA′ whnfB′ (univ x)) = let ⊢Γ = wfEqTerm (soundnessConv↓Term x) in [↑]ₜ (Univ r l) A′ B′ (id (Ugenⱼ ⊢Γ)) (un-univ⇒* D) (un-univ⇒* D′) Uₙ whnfA′ whnfB′ x Πₜ-cong : ∀ {F G H E rF rG lF lG lΠ Γ} → lF ≤ lΠ → lG ≤ lΠ → Γ ⊢ F ^ [ rF , ι lF ] → Γ ⊢ F [conv↑] H ∷ Univ rF lF ^ next lF → Γ ∙ F ^ [ rF , ι lF ] ⊢ G [conv↑] E ∷ Univ rG lG ^ next lG → Γ ⊢ Π F ^ rF ° lF ▹ G ° lG ° lΠ [conv↑] Π H ^ rF ° lF ▹ E ° lG ° lΠ ∷ Univ rG lΠ ^ next lΠ Πₜ-cong lF< lG< x x₁ x₂ = liftConvTerm (Π-cong PE.refl PE.refl PE.refl PE.refl lF< lG< x x₁ x₂) ~-irrelevance : {k l A : Term} {Γ : Con Term} {ll : TypeLevel} → Γ ⊢ k ∷ A ^ [ % , ll ] → Γ ⊢ l ∷ A ^ [ % , ll ] → Γ ⊢ k ~ l ∷ A ^ [ % , ll ] ~-irrelevance ⊢k ⊢l = let X = ~↑% (%~↑ ⊢k ⊢l) ⊢A = syntacticTerm ⊢k in ↑ (refl ⊢A) X soundnessgenConv : ∀ {a b A r Γ} → Γ ⊢ a [genconv↑] b ∷ A ^ r → Γ ⊢ a ≡ b ∷ A ^ r soundnessgenConv {r = [ ! , l ]} = soundnessConv↑Term soundnessgenConv {r = [ % , l ]} x = proj₂ (proj₂ (soundness~↑% x)) symgenConv : ∀ {t u A r Γ} → Γ ⊢ t [genconv↑] u ∷ A ^ r → Γ ⊢ u [genconv↑] t ∷ A ^ r symgenConv {r = [ ! , l ]} = symConvTerm symgenConv {r = [ % , l ]} t<>u = let ⊢Γ = wfEqTerm (proj₂ (proj₂ (soundness~↑% t<>u))) in sym~↑% (reflConEq ⊢Γ) t<>u wkgenConv↑Term : ∀ {ρ t u A Γ r Δ} ([ρ] : ρ ∷ Δ ⊆ Γ) → ⊢ Δ → Γ ⊢ t [genconv↑] u ∷ A ^ r → Δ ⊢ wk ρ t [genconv↑] wk ρ u ∷ wk ρ A ^ r wkgenConv↑Term {r = [ ! , l ]} = wkConv↑Term wkgenConv↑Term {r = [ % , l ]} = wk~↑% convgenconv : ∀ {t u A B : Term} {r : TypeInfo} {Γ : Con Term} → Γ ⊢ t [genconv↑] u ∷ A ^ r → Γ ⊢ A ≡ B ^ r → Γ ⊢ t [genconv↑] u ∷ B ^ r convgenconv {r = [ ! , l ]} = convConvTerm convgenconv {r = [ % , l ]} = conv~↑% transgenConv : ∀ {t u v A : Term} {r : TypeInfo} {Γ : Con Term} → Γ ⊢ t [genconv↑] u ∷ A ^ r → Γ ⊢ u [genconv↑] v ∷ A ^ r → Γ ⊢ t [genconv↑] v ∷ A ^ r transgenConv {r = [ ! , l ]} = transConvTerm transgenConv {r = [ % , l ]} = trans~↑!Term -- Algorithmic equality instance of the generic equality relation. instance eqRelInstance : EqRelSet eqRelInstance = eqRel _⊢_[conv↑]_^_ _⊢_[genconv↑]_∷_^_ _⊢_~_∷_^_ ~-to-conv soundnessConv↑ soundnessgenConv univConv↑ un-univConv symConv symgenConv ~-sym transConv transgenConv ~-trans convgenconv ~-conv wkConv↑ wkgenConv↑Term ~-wk reductionConv↑ reductionConv↑Term (liftConv ∘ᶠ (U-refl PE.refl)) ( liftConvTerm ∘ᶠ (U-refl PE.refl)) (liftConvTerm ∘ᶠ ℕ-refl) (liftConvTerm ∘ᶠ (Empty-refl PE.refl)) Πₜ-cong (λ x x₁ x₂ → liftConvTerm (∃-cong PE.refl x x₁ x₂)) (liftConvTerm ∘ᶠ zero-refl) (liftConvTerm ∘ᶠ suc-cong) (λ l< l<' x x₁ x₂ x₃ x₄ x₅ → liftConvTerm (η-eq l< l<' x x₁ x₂ x₃ x₄ x₅)) ~-var ~-app ~-natrec ~-Emptyrec ~-IdCong ~-Idℕ ~-Idℕ0 ~-IdℕS ~-IdU ~-IdUℕ ~-IdUΠ ~-castcong ~-castℕ ~-castℕℕ ~-castΠ ~-castℕΠ ~-castΠℕ ~-castΠΠ%! ~-castΠΠ!% ~-irrelevance
45.425581
116
0.410638
1872a9c5ed4ff860e6507e3be921b3726159c928
8,728
agda
Agda
Cubical/Functions/Logic.agda
jorge-jbs/cubical
ebbe824fda41ab6524b62a42959665be4e67b847
[ "MIT" ]
null
null
null
Cubical/Functions/Logic.agda
jorge-jbs/cubical
ebbe824fda41ab6524b62a42959665be4e67b847
[ "MIT" ]
null
null
null
Cubical/Functions/Logic.agda
jorge-jbs/cubical
ebbe824fda41ab6524b62a42959665be4e67b847
[ "MIT" ]
null
null
null
-- Various functions for manipulating hProps. -- -- This file used to be part of Foundations, but it turned out to be -- not very useful so moved here. Feel free to upstream content. -- -- Note that it is often a bad idea to use hProp instead of having the -- isProp proof separate. The reason is that Agda can rarely infer -- isProp proofs making it easier to just give them explicitly instead -- of having them bundled up with the type. -- {-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Functions.Logic where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Structure open import Cubical.Foundations.Function open import Cubical.Foundations.Univalence using (hPropExt) import Cubical.Data.Empty as ⊥ open import Cubical.Data.Sum as ⊎ using (_⊎_) open import Cubical.Data.Unit open import Cubical.Data.Sigma open import Cubical.HITs.PropositionalTruncation as PropTrunc open import Cubical.Relation.Nullary hiding (¬_) -------------------------------------------------------------------------------- -- The type hProp of mere propositions -- the definition hProp is given in Foundations.HLevels -- hProp ℓ = Σ (Type ℓ) isProp private variable ℓ ℓ' ℓ'' : Level P Q R : hProp ℓ A B C : Type ℓ infix 10 ¬_ infixr 8 _⊔_ infixr 8 _⊔′_ infixr 8 _⊓_ infixr 8 _⊓′_ infixr 6 _⇒_ infixr 4 _⇔_ infix 30 _≡ₚ_ infix 30 _≢ₚ_ infix 2 ∃[]-syntax infix 2 ∃[∶]-syntax infix 2 ∀[∶]-syntax infix 2 ∀[]-syntax infix 2 ⇒∶_⇐∶_ infix 2 ⇐∶_⇒∶_ ∥_∥ₚ : Type ℓ → hProp ℓ ∥ A ∥ₚ = ∥ A ∥ , propTruncIsProp _≡ₚ_ : (x y : A) → hProp _ x ≡ₚ y = ∥ x ≡ y ∥ₚ hProp≡ : ⟨ P ⟩ ≡ ⟨ Q ⟩ → P ≡ Q hProp≡ = TypeOfHLevel≡ 1 isProp⟨⟩ : (A : hProp ℓ) → isProp ⟨ A ⟩ isProp⟨⟩ = snd -------------------------------------------------------------------------------- -- Logical implication of mere propositions _⇒_ : (A : hProp ℓ) → (B : hProp ℓ') → hProp _ A ⇒ B = (⟨ A ⟩ → ⟨ B ⟩) , isPropΠ λ _ → isProp⟨⟩ B ⇔toPath : ⟨ P ⇒ Q ⟩ → ⟨ Q ⇒ P ⟩ → P ≡ Q ⇔toPath {P = P} {Q = Q} P⇒Q Q⇒P = hProp≡ (hPropExt (isProp⟨⟩ P) (isProp⟨⟩ Q) P⇒Q Q⇒P) pathTo⇒ : P ≡ Q → ⟨ P ⇒ Q ⟩ pathTo⇒ p x = subst fst p x pathTo⇐ : P ≡ Q → ⟨ Q ⇒ P ⟩ pathTo⇐ p x = subst fst (sym p) x substₚ : {x y : A} (B : A → hProp ℓ) → ⟨ x ≡ₚ y ⇒ B x ⇒ B y ⟩ substₚ {x = x} {y = y} B = PropTrunc.elim (λ _ → isPropΠ λ _ → isProp⟨⟩ (B y)) (subst (fst ∘ B)) -------------------------------------------------------------------------------- -- Mixfix notations for ⇔-toPath -- see ⊔-identityˡ and ⊔-identityʳ for the difference ⇒∶_⇐∶_ : ⟨ P ⇒ Q ⟩ → ⟨ Q ⇒ P ⟩ → P ≡ Q ⇒∶_⇐∶_ = ⇔toPath ⇐∶_⇒∶_ : ⟨ Q ⇒ P ⟩ → ⟨ P ⇒ Q ⟩ → P ≡ Q ⇐∶ g ⇒∶ f = ⇔toPath f g -------------------------------------------------------------------------------- -- False and True ⊥ : hProp _ ⊥ = ⊥.⊥ , λ () ⊤ : hProp _ ⊤ = Unit , (λ _ _ _ → tt) -------------------------------------------------------------------------------- -- Pseudo-complement of mere propositions ¬_ : hProp ℓ → hProp _ ¬ A = (⟨ A ⟩ → ⊥.⊥) , isPropΠ λ _ → ⊥.isProp⊥ _≢ₚ_ : (x y : A) → hProp _ x ≢ₚ y = ¬ x ≡ₚ y -------------------------------------------------------------------------------- -- Disjunction of mere propositions _⊔′_ : Type ℓ → Type ℓ' → Type _ A ⊔′ B = ∥ A ⊎ B ∥ _⊔_ : hProp ℓ → hProp ℓ' → hProp _ P ⊔ Q = ∥ ⟨ P ⟩ ⊎ ⟨ Q ⟩ ∥ₚ inl : A → A ⊔′ B inl x = ∣ ⊎.inl x ∣ inr : B → A ⊔′ B inr x = ∣ ⊎.inr x ∣ ⊔-elim : (P : hProp ℓ) (Q : hProp ℓ') (R : ⟨ P ⊔ Q ⟩ → hProp ℓ'') → (∀ x → ⟨ R (inl x) ⟩) → (∀ y → ⟨ R (inr y) ⟩) → (∀ z → ⟨ R z ⟩) ⊔-elim _ _ R P⇒R Q⇒R = PropTrunc.elim (snd ∘ R) (⊎.elim P⇒R Q⇒R) -------------------------------------------------------------------------------- -- Conjunction of mere propositions _⊓′_ : Type ℓ → Type ℓ' → Type _ A ⊓′ B = A × B _⊓_ : hProp ℓ → hProp ℓ' → hProp _ A ⊓ B = ⟨ A ⟩ ⊓′ ⟨ B ⟩ , isOfHLevelΣ 1 (isProp⟨⟩ A) (\ _ → isProp⟨⟩ B) ⊓-intro : (P : hProp ℓ) (Q : ⟨ P ⟩ → hProp ℓ') (R : ⟨ P ⟩ → hProp ℓ'') → (∀ a → ⟨ Q a ⟩) → (∀ a → ⟨ R a ⟩) → (∀ (a : ⟨ P ⟩) → ⟨ Q a ⊓ R a ⟩ ) ⊓-intro _ _ _ = \ f g a → f a , g a -------------------------------------------------------------------------------- -- Logical bi-implication of mere propositions _⇔_ : hProp ℓ → hProp ℓ' → hProp _ A ⇔ B = (A ⇒ B) ⊓ (B ⇒ A) -------------------------------------------------------------------------------- -- Universal Quantifier ∀[∶]-syntax : (A → hProp ℓ) → hProp _ ∀[∶]-syntax {A = A} P = (∀ x → ⟨ P x ⟩) , isPropΠ (isProp⟨⟩ ∘ P) ∀[]-syntax : (A → hProp ℓ) → hProp _ ∀[]-syntax {A = A} P = (∀ x → ⟨ P x ⟩) , isPropΠ (isProp⟨⟩ ∘ P) syntax ∀[∶]-syntax {A = A} (λ a → P) = ∀[ a ∶ A ] P syntax ∀[]-syntax (λ a → P) = ∀[ a ] P -------------------------------------------------------------------------------- -- Existential Quantifier ∃[]-syntax : (A → hProp ℓ) → hProp _ ∃[]-syntax {A = A} P = ∥ Σ A (⟨_⟩ ∘ P) ∥ₚ ∃[∶]-syntax : (A → hProp ℓ) → hProp _ ∃[∶]-syntax {A = A} P = ∥ Σ A (⟨_⟩ ∘ P) ∥ₚ syntax ∃[∶]-syntax {A = A} (λ x → P) = ∃[ x ∶ A ] P syntax ∃[]-syntax (λ x → P) = ∃[ x ] P -------------------------------------------------------------------------------- -- Decidable mere proposition Decₚ : (P : hProp ℓ) → hProp ℓ Decₚ P = Dec ⟨ P ⟩ , isPropDec (isProp⟨⟩ P) -------------------------------------------------------------------------------- -- Negation commutes with truncation ∥¬A∥≡¬∥A∥ : (A : Type ℓ) → ∥ (A → ⊥.⊥) ∥ₚ ≡ (¬ ∥ A ∥ₚ) ∥¬A∥≡¬∥A∥ _ = ⇒∶ (λ ¬A A → PropTrunc.elim (λ _ → ⊥.isProp⊥) (PropTrunc.elim (λ _ → isPropΠ λ _ → ⊥.isProp⊥) (λ ¬p p → ¬p p) ¬A) A) ⇐∶ λ ¬p → ∣ (λ p → ¬p ∣ p ∣) ∣ -------------------------------------------------------------------------------- -- (hProp, ⊔, ⊥) is a bounded ⊔-semilattice ⊔-assoc : (P : hProp ℓ) (Q : hProp ℓ') (R : hProp ℓ'') → P ⊔ (Q ⊔ R) ≡ (P ⊔ Q) ⊔ R ⊔-assoc P Q R = ⇒∶ ⊔-elim P (Q ⊔ R) (λ _ → (P ⊔ Q) ⊔ R) (inl ∘ inl) (⊔-elim Q R (λ _ → (P ⊔ Q) ⊔ R) (inl ∘ inr) inr) ⇐∶ assoc2 where assoc2 : (A ⊔′ B) ⊔′ C → A ⊔′ (B ⊔′ C) assoc2 ∣ ⊎.inr a ∣ = ∣ ⊎.inr ∣ ⊎.inr a ∣ ∣ assoc2 ∣ ⊎.inl ∣ ⊎.inr b ∣ ∣ = ∣ ⊎.inr ∣ ⊎.inl b ∣ ∣ assoc2 ∣ ⊎.inl ∣ ⊎.inl c ∣ ∣ = ∣ ⊎.inl c ∣ assoc2 ∣ ⊎.inl (squash x y i) ∣ = propTruncIsProp (assoc2 ∣ ⊎.inl x ∣) (assoc2 ∣ ⊎.inl y ∣) i assoc2 (squash x y i) = propTruncIsProp (assoc2 x) (assoc2 y) i ⊔-idem : (P : hProp ℓ) → P ⊔ P ≡ P ⊔-idem P = ⇒∶ (⊔-elim P P (\ _ → P) (\ x → x) (\ x → x)) ⇐∶ inl ⊔-comm : (P : hProp ℓ) (Q : hProp ℓ') → P ⊔ Q ≡ Q ⊔ P ⊔-comm P Q = ⇒∶ (⊔-elim P Q (\ _ → (Q ⊔ P)) inr inl) ⇐∶ (⊔-elim Q P (\ _ → (P ⊔ Q)) inr inl) ⊔-identityˡ : (P : hProp ℓ) → ⊥ ⊔ P ≡ P ⊔-identityˡ P = ⇒∶ (⊔-elim ⊥ P (λ _ → P) (λ ()) (λ x → x)) ⇐∶ inr ⊔-identityʳ : (P : hProp ℓ) → P ⊔ ⊥ ≡ P ⊔-identityʳ P = ⇔toPath (⊔-elim P ⊥ (λ _ → P) (λ x → x) λ ()) inl -------------------------------------------------------------------------------- -- (hProp, ⊓, ⊤) is a bounded ⊓-lattice ⊓-assoc : (P : hProp ℓ) (Q : hProp ℓ') (R : hProp ℓ'') → P ⊓ Q ⊓ R ≡ (P ⊓ Q) ⊓ R ⊓-assoc _ _ _ = ⇒∶ (λ {(x , (y , z)) → (x , y) , z}) ⇐∶ (λ {((x , y) , z) → x , (y , z) }) ⊓-comm : (P : hProp ℓ) (Q : hProp ℓ') → P ⊓ Q ≡ Q ⊓ P ⊓-comm _ _ = ⇔toPath (\ p → p .snd , p .fst) (\ p → p .snd , p .fst) ⊓-idem : (P : hProp ℓ) → P ⊓ P ≡ P ⊓-idem _ = ⇔toPath fst (λ x → x , x) ⊓-identityˡ : (P : hProp ℓ) → ⊤ ⊓ P ≡ P ⊓-identityˡ _ = ⇔toPath snd λ x → tt , x ⊓-identityʳ : (P : hProp ℓ) → P ⊓ ⊤ ≡ P ⊓-identityʳ _ = ⇔toPath fst λ x → x , tt -------------------------------------------------------------------------------- -- Distributive laws ⇒-⊓-distrib : (P : hProp ℓ) (Q : hProp ℓ')(R : hProp ℓ'') → P ⇒ (Q ⊓ R) ≡ (P ⇒ Q) ⊓ (P ⇒ R) ⇒-⊓-distrib _ _ _ = ⇒∶ (λ f → (fst ∘ f) , (snd ∘ f)) ⇐∶ (λ { (f , g) x → f x , g x}) ⊓-⊔-distribˡ : (P : hProp ℓ) (Q : hProp ℓ')(R : hProp ℓ'') → P ⊓ (Q ⊔ R) ≡ (P ⊓ Q) ⊔ (P ⊓ R) ⊓-⊔-distribˡ P Q R = ⇒∶ (λ { (x , a) → ⊔-elim Q R (λ _ → (P ⊓ Q) ⊔ (P ⊓ R)) (λ y → ∣ ⊎.inl (x , y) ∣ ) (λ z → ∣ ⊎.inr (x , z) ∣ ) a }) ⇐∶ ⊔-elim (P ⊓ Q) (P ⊓ R) (λ _ → P ⊓ Q ⊔ R) (λ y → fst y , inl (snd y)) (λ z → fst z , inr (snd z)) ⊔-⊓-distribˡ : (P : hProp ℓ) (Q : hProp ℓ')(R : hProp ℓ'') → P ⊔ (Q ⊓ R) ≡ (P ⊔ Q) ⊓ (P ⊔ R) ⊔-⊓-distribˡ P Q R = ⇒∶ ⊔-elim P (Q ⊓ R) (λ _ → (P ⊔ Q) ⊓ (P ⊔ R) ) (\ x → inl x , inl x) (\ p → inr (p .fst) , inr (p .snd)) ⇐∶ (λ { (x , y) → ⊔-elim P R (λ _ → P ⊔ Q ⊓ R) inl (λ z → ⊔-elim P Q (λ _ → P ⊔ Q ⊓ R) inl (λ y → inr (y , z)) x) y }) ⊓-∀-distrib : (P : A → hProp ℓ) (Q : A → hProp ℓ') → (∀[ a ∶ A ] P a) ⊓ (∀[ a ∶ A ] Q a) ≡ (∀[ a ∶ A ] (P a ⊓ Q a)) ⊓-∀-distrib P Q = ⇒∶ (λ {(p , q) a → p a , q a}) ⇐∶ λ pq → (fst ∘ pq ) , (snd ∘ pq)
30.305556
97
0.421173
20038931de22af6fa5969c81c558b28ec514bd53
13,903
agda
Agda
src/fot/Agsy/McCarthy91/Arithmetic.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
11
2015-09-03T20:53:42.000Z
2021-09-12T16:09:54.000Z
src/fot/Agsy/McCarthy91/Arithmetic.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
2
2016-10-12T17:28:16.000Z
2017-01-01T14:34:26.000Z
src/fot/Agsy/McCarthy91/Arithmetic.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
3
2016-09-19T14:18:30.000Z
2018-03-14T08:50:00.000Z
------------------------------------------------------------------------------ -- Testing Agsy arithmetic properties used by the McCarthy 91 function ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- Tested with the development version of the Agda standard library on -- 02 February 2012. module Agsy.McCarthy91.Arithmetic where open import Data.Nat open import Relation.Binary.PropositionalEquality ------------------------------------------------------------------------------ 91≡[100+11∸10]∸10 : (100 + 11 ∸ 10) ∸ 10 ≡ 91 91≡[100+11∸10]∸10 = refl 20>19 : 20 > 19 -- via Agsy 20>19 = s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s z≤n))))))))))))))))))) 50>49 : 50 > 49 -- via Agsy {-t 30} 50>49 = s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s z≤n))))))))))))))))))))))))))))))))))))))))))))))))) 75>74 : 75 > 74 -- via Agsy {-t 180} 75>74 = s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s z≤n)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) 101>100 : 101 > 100 -- via Agsy {-t 600} 101>100 = s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s z≤n))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
51.302583
213
0.067324
41e6912b0c4054e9580615d48fd887dd9f411b0d
776
agda
Agda
Lang/Instance.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
Lang/Instance.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
Lang/Instance.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
module Lang.Instance where import Lvl open import Type private variable ℓ : Lvl.Level private variable T X Y Z : Type{ℓ} -- Infers/resolves/(searches for) an instance/proof of the specified type/statement resolve : (T : Type{ℓ}) → ⦃ _ : T ⦄ → T resolve (_) ⦃ x ⦄ = x -- Infers/resolves/(searches for) an instance/proof of an inferred type/statement infer : ⦃ _ : T ⦄ → T infer ⦃ x ⦄ = x inst-fn : (X → Y) → (⦃ inst : X ⦄ → Y) inst-fn P ⦃ x ⦄ = P(x) inst-fn₂ : (X → Y → Z) → (⦃ inst₁ : X ⦄ → ⦃ inst₂ : Y ⦄ → Z) inst-fn₂ P ⦃ x ⦄ ⦃ y ⦄ = P(x)(y) inst-fnᵢ : ({_ : X} → Y → Z) → ({_ : X} → ⦃ _ : Y ⦄ → Z) inst-fnᵢ P {x} ⦃ y ⦄ = P{x}(y) impl-to-expl : ({ _ : X} → Y) → (X → Y) impl-to-expl f(x) = f{x} expl-to-impl : (X → Y) → ({ _ : X} → Y) expl-to-impl f{x} = f(x)
25.032258
83
0.533505
dc910eb4db889c24ee89fe92aa902bab5e02cf1d
1,373
agda
Agda
LibraBFT/Yasm/Yasm.agda
haroldcarr/bft-consensus-agda
34e4627855fb198665d0c98f377403a906ba75d7
[ "UPL-1.0" ]
null
null
null
LibraBFT/Yasm/Yasm.agda
haroldcarr/bft-consensus-agda
34e4627855fb198665d0c98f377403a906ba75d7
[ "UPL-1.0" ]
null
null
null
LibraBFT/Yasm/Yasm.agda
haroldcarr/bft-consensus-agda
34e4627855fb198665d0c98f377403a906ba75d7
[ "UPL-1.0" ]
null
null
null
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021 Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Prelude open import LibraBFT.Base.PKCS open import LibraBFT.Base.Types import LibraBFT.Yasm.Base as LYB -- This module provides a single import for all Yasm modules module LibraBFT.Yasm.Yasm (ℓ-EC : Level) (EpochConfig : Set ℓ-EC) (epochId : EpochConfig → EpochId) (authorsN : EpochConfig → ℕ) (parms : LYB.SystemParameters ℓ-EC EpochConfig epochId authorsN) (senderPKOK : (ec : EpochConfig) → PK → LYB.SystemParameters.PeerId parms → Set) where open LYB.SystemParameters parms open import LibraBFT.Yasm.AvailableEpochs PeerId ℓ-EC EpochConfig epochId authorsN using (AvailableEpochs) renaming (lookup' to EC-lookup; lookup'' to EC-lookup') public open import LibraBFT.Yasm.Base ℓ-EC EpochConfig epochId authorsN public open import LibraBFT.Yasm.System ℓ-EC EpochConfig epochId authorsN parms public open import LibraBFT.Yasm.Properties ℓ-EC EpochConfig epochId authorsN parms senderPKOK public open import Util.FunctionOverride PeerId _≟PeerId_ public
49.035714
111
0.708667
0eddd9fe0565b854e53c1f0ab82a46a20a5936ae
3,027
agda
Agda
prototyping/Properties/Step.agda
FreakingBarbarians/luau
5187e64f88953f34785ffe58acd0610ee5041f5f
[ "MIT" ]
1
2022-02-11T21:30:17.000Z
2022-02-11T21:30:17.000Z
prototyping/Properties/Step.agda
FreakingBarbarians/luau
5187e64f88953f34785ffe58acd0610ee5041f5f
[ "MIT" ]
null
null
null
prototyping/Properties/Step.agda
FreakingBarbarians/luau
5187e64f88953f34785ffe58acd0610ee5041f5f
[ "MIT" ]
null
null
null
module Properties.Step where open import Agda.Builtin.Equality using (_≡_; refl) open import FFI.Data.Maybe using (just; nothing) open import Luau.Heap using (Heap; lookup; alloc; ok; function_⟨_⟩_end) open import Luau.Syntax using (Block; Expr; nil; var; addr; function⟨_⟩_end; block_is_end; _$_; local_←_; function_⟨_⟩_end; return; done; _∙_) open import Luau.OpSem using (_⊢_⟶ᴱ_⊣_; _⊢_⟶ᴮ_⊣_; app ; beta; function; block; return; done; local; subst) open import Luau.RuntimeError using (RuntimeErrorᴱ; RuntimeErrorᴮ; NilIsNotAFunction; UnboundVariable; SEGV; app; block; local; return) open import Luau.Substitution using (_[_/_]ᴮ) open import Luau.Value using (nil; addr; val) open import Properties.Remember using (remember; _,_) data StepResultᴮ (H : Heap) (B : Block) : Set data StepResultᴱ (H : Heap) (M : Expr) : Set data StepResultᴮ H B where step : ∀ H′ B′ → (H ⊢ B ⟶ᴮ B′ ⊣ H′) → StepResultᴮ H B return : ∀ V {B′} → (B ≡ (return (val V) ∙ B′)) → StepResultᴮ H B done : (B ≡ done) → StepResultᴮ H B error : (RuntimeErrorᴮ H B) → StepResultᴮ H B data StepResultᴱ H M where step : ∀ H′ M′ → (H ⊢ M ⟶ᴱ M′ ⊣ H′) → StepResultᴱ H M value : ∀ V → (M ≡ val V) → StepResultᴱ H M error : (RuntimeErrorᴱ H M) → StepResultᴱ H M stepᴱ : ∀ H M → StepResultᴱ H M stepᴮ : ∀ H B → StepResultᴮ H B stepᴱ H nil = value nil refl stepᴱ H (var x) = error (UnboundVariable x) stepᴱ H (addr a) = value (addr a) refl stepᴱ H (M $ N) with stepᴱ H M stepᴱ H (M $ N) | step H′ M′ D = step H′ (M′ $ N) (app D) stepᴱ H (nil $ N) | value nil refl = error NilIsNotAFunction stepᴱ H (addr a $ N) | value (addr a) refl with remember (lookup H a) stepᴱ H (addr a $ N) | value (addr a) refl | (nothing , p) = error (app (SEGV a p)) stepᴱ H (addr a $ N) | value (addr a) refl | (just(function f ⟨ x ⟩ B end) , p) = step H (block f is local x ← N ∙ B end) (beta p) stepᴱ H (M $ N) | error E = error (app E) stepᴱ H (function⟨ x ⟩ B end) with alloc H (function "anon" ⟨ x ⟩ B end) stepᴱ H (function⟨ x ⟩ B end) | ok a H′ p = step H′ (addr a) (function p) stepᴱ H (block b is B end) with stepᴮ H B stepᴱ H (block b is B end) | step H′ B′ D = step H′ (block b is B′ end) (block D) stepᴱ H (block b is (return _ ∙ B′) end) | return V refl = step H (val V) return stepᴱ H (block b is done end) | done refl = step H nil done stepᴱ H (block b is B end) | error E = error (block b E) stepᴮ H (function f ⟨ x ⟩ C end ∙ B) with alloc H (function f ⟨ x ⟩ C end) stepᴮ H (function f ⟨ x ⟩ C end ∙ B) | ok a H′ p = step H′ (B [ addr a / f ]ᴮ) (function p) stepᴮ H (local x ← M ∙ B) with stepᴱ H M stepᴮ H (local x ← M ∙ B) | step H′ M′ D = step H′ (local x ← M′ ∙ B) (local D) stepᴮ H (local x ← _ ∙ B) | value V refl = step H (B [ V / x ]ᴮ) subst stepᴮ H (local x ← M ∙ B) | error E = error (local x E) stepᴮ H (return M ∙ B) with stepᴱ H M stepᴮ H (return M ∙ B) | step H′ M′ D = step H′ (return M′ ∙ B) (return D) stepᴮ H (return _ ∙ B) | value V refl = return V refl stepᴮ H (return M ∙ B) | error E = error (return E) stepᴮ H done = done refl
51.305085
142
0.635282
290d1ebeadc3a03fd0778c9e50239eee7e8a5e96
1,829
agda
Agda
src/Category/Profunctor.agda
crisoagf/agda-optics
308afeeaa905870dbf1a995fa82e8825dfaf2d74
[ "BSD-3-Clause" ]
null
null
null
src/Category/Profunctor.agda
crisoagf/agda-optics
308afeeaa905870dbf1a995fa82e8825dfaf2d74
[ "BSD-3-Clause" ]
null
null
null
src/Category/Profunctor.agda
crisoagf/agda-optics
308afeeaa905870dbf1a995fa82e8825dfaf2d74
[ "BSD-3-Clause" ]
null
null
null
module Category.Profunctor where open import Agda.Primitive using (Level; _⊔_; lsuc) open import Data.Product using (_,_; _×_) open import Function using (id) open import Relation.Binary.PropositionalEquality using (_≡_) Dimap : ∀ {a b} (p : Set a → Set a → Set b) → Set (lsuc a ⊔ b) Lmap : ∀ {a b} (p : Set a → Set a → Set b) → Set (lsuc a ⊔ b) Rmap : ∀ {a b} (p : Set a → Set a → Set b) → Set (lsuc a ⊔ b) Dimap p = ∀ {x y z w} → (f : x -> y) -> (h : z -> w) -> (g : p y z) → p x w Lmap p = ∀ {x y w} → (f : x -> y) -> (g : p y w) → p x w Rmap p = ∀ {x z w} → (h : z -> w) -> (g : p x z) → p x w record ProfunctorImp {a b : Level} (p : Set a → Set a → Set b) : Set (lsuc (a ⊔ b)) where field dimap : Dimap p lmap : Lmap p rmap : Rmap p dimapFromLmapRmap : ∀ {a b} {p : Set a → Set a → Set b} (lmap : Lmap p) (rmap : Rmap p) → Dimap p dimapFromLmapRmap lmap rmap f h g = rmap h (lmap f g) lmapRmapFromDimap : ∀ {a b} {p : Set a → Set a → Set b} (dimap : Dimap p) → (Lmap p × Rmap p) lmapRmapFromDimap dimap = (λ f → dimap f id) , dimap id module Profunctor {a b : Level} {p : Set a → Set a → Set b} (isProfunctor : ProfunctorImp p) where open ProfunctorImp isProfunctor public record LawfulProfunctorImp {a b} {p : Set a → Set a → Set b} (isProfunctor : ProfunctorImp p) : Set (lsuc (a ⊔ b)) where open Profunctor isProfunctor field lmapId : ∀ {a b} {g : p a b} → lmap id g ≡ g rmapId : ∀ {a b} {g : p a b} → rmap id g ≡ g dimapLmapRmap : ∀ {a b c d} {f : a → b} {g : p b c} {h : c → d} → dimap f h g ≡ lmap f (rmap h g) module LawfulProfunctor {a b} {p : Set a → Set a → Set b} {isProfunctor : ProfunctorImp p} (isLawful : LawfulProfunctorImp isProfunctor) where open Profunctor isProfunctor public open LawfulProfunctorImp isLawful public
44.609756
142
0.583926