hexsha
stringlengths 40
40
| size
int64 3
1.05M
| ext
stringclasses 163
values | lang
stringclasses 53
values | max_stars_repo_path
stringlengths 3
945
| max_stars_repo_name
stringlengths 4
112
| max_stars_repo_head_hexsha
stringlengths 40
78
| max_stars_repo_licenses
listlengths 1
10
| max_stars_count
float64 1
191k
⌀ | max_stars_repo_stars_event_min_datetime
stringlengths 24
24
⌀ | max_stars_repo_stars_event_max_datetime
stringlengths 24
24
⌀ | max_issues_repo_path
stringlengths 3
945
| max_issues_repo_name
stringlengths 4
113
| max_issues_repo_head_hexsha
stringlengths 40
78
| max_issues_repo_licenses
listlengths 1
10
| max_issues_count
float64 1
116k
⌀ | max_issues_repo_issues_event_min_datetime
stringlengths 24
24
⌀ | max_issues_repo_issues_event_max_datetime
stringlengths 24
24
⌀ | max_forks_repo_path
stringlengths 3
945
| max_forks_repo_name
stringlengths 4
113
| max_forks_repo_head_hexsha
stringlengths 40
78
| max_forks_repo_licenses
listlengths 1
10
| max_forks_count
float64 1
105k
⌀ | max_forks_repo_forks_event_min_datetime
stringlengths 24
24
⌀ | max_forks_repo_forks_event_max_datetime
stringlengths 24
24
⌀ | content
stringlengths 3
1.05M
| avg_line_length
float64 1
966k
| max_line_length
int64 1
977k
| alphanum_fraction
float64 0
1
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a0ec9c40a07d40c48c3b4572628734324adbe5bf
| 1,235
|
agda
|
Agda
|
theorems/cw/cohomology/TipCoboundary.agda
|
mikeshulman/HoTT-Agda
|
e7d663b63d89f380ab772ecb8d51c38c26952dbb
|
[
"MIT"
] | null | null | null |
theorems/cw/cohomology/TipCoboundary.agda
|
mikeshulman/HoTT-Agda
|
e7d663b63d89f380ab772ecb8d51c38c26952dbb
|
[
"MIT"
] | null | null | null |
theorems/cw/cohomology/TipCoboundary.agda
|
mikeshulman/HoTT-Agda
|
e7d663b63d89f380ab772ecb8d51c38c26952dbb
|
[
"MIT"
] | 1
|
2018-12-26T21:31:57.000Z
|
2018-12-26T21:31:57.000Z
|
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
open import groups.Cokernel
open import groups.Exactness
open import groups.ExactSequence
open import cohomology.Theory
open import cw.CW
module cw.cohomology.TipCoboundary {i} (OT : OrdinaryTheory i)
(⊙skel : ⊙Skeleton {i} 1) where
open OrdinaryTheory OT
open import cw.cohomology.TipAndAugment OT (⊙cw-init ⊙skel)
open import cw.cohomology.WedgeOfCells OT ⊙skel
open import cohomology.LongExactSequence cohomology-theory 0 (⊙cw-incl-last ⊙skel)
CX₁/X₀-is-abelian = CXₙ/Xₙ₋₁-is-abelian 1
cw-co∂-head' : CX₀ 0 →ᴳ CXₙ/Xₙ₋₁ 1
cw-co∂-head' = co∂
cw-co∂-head : C2×CX₀ 0 →ᴳ CXₙ/Xₙ₋₁ 1
cw-co∂-head = record {f = GroupHom.f cw-co∂-head' ∘ snd; pres-comp = lemma}
where abstract lemma = ∘-pres-comp cw-co∂-head' (×ᴳ-snd {G = C2 0} {H = CX₀ 0})
abstract
-- This relies on the [lemma] above being non-abstract within this scope.
co∂-head-incl-exact : is-exact cw-co∂-head (C-fmap 1 (⊙cfcod' (⊙cw-incl-last ⊙skel)))
co∂-head-incl-exact = pre∘-is-exact
(×ᴳ-snd {G = C2 0} {H = CX₀ 0})
(×ᴳ-snd-is-surj {G = C2 0} {H = CX₀ 0})
(exact-seq-index 1 C-cofiber-exact-seq)
module CokerCo∂Head where
grp = Coker cw-co∂-head CX₁/X₀-is-abelian
open Group grp public
| 31.666667
| 87
| 0.689879
|
52305ac95c2fc6622421d94ed4097038de3f327a
| 1,527
|
agda
|
Agda
|
src/data/lib/prim/Agda/Builtin/String.agda
|
cagix/agda
|
cc026a6a97a3e517bb94bafa9d49233b067c7559
|
[
"BSD-2-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
src/data/lib/prim/Agda/Builtin/String.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
src/data/lib/prim/Agda/Builtin/String.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
{-# OPTIONS --without-K --safe --no-sized-types --no-guardedness #-}
module Agda.Builtin.String where
open import Agda.Builtin.Bool
open import Agda.Builtin.Char
open import Agda.Builtin.List
open import Agda.Builtin.Maybe
open import Agda.Builtin.Nat using (Nat)
open import Agda.Builtin.Sigma
postulate String : Set
{-# BUILTIN STRING String #-}
primitive
primStringUncons : String → Maybe (Σ Char (λ _ → String))
primStringToList : String → List Char
primStringFromList : List Char → String
primStringAppend : String → String → String
primStringEquality : String → String → Bool
primShowChar : Char → String
primShowString : String → String
primShowNat : Nat → String
{-# COMPILE JS primStringUncons = function(x) {
if (x === "") { return z_jAgda_Agda_Builtin_Maybe["Maybe"]["nothing"]; };
return z_jAgda_Agda_Builtin_Maybe["Maybe"]["just"](z_jAgda_Agda_Builtin_Sigma["_,_"](x.charAt(0))(x.slice(1)));
}
#-}
{-# COMPILE JS primStringToList = function(x) { return x.split(""); } #-}
{-# COMPILE JS primStringFromList = function(x) { return x.join(""); } #-}
{-# COMPILE JS primStringAppend = function(x) { return function(y) { return x+y; }; } #-}
{-# COMPILE JS primStringEquality = function(x) { return function(y) { return x===y; }; } #-}
{-# COMPILE JS primShowChar = function(x) { return JSON.stringify(x); } #-}
{-# COMPILE JS primShowString = function(x) { return JSON.stringify(x); } #-}
{-# COMPILE JS primShowNat = function(x) { return JSON.stringify(x); } #-}
| 41.27027
| 114
| 0.681074
|
436d12d82f5a7930af700e5958a419abefd98698
| 20,157
|
agda
|
Agda
|
bench/Bench.agda
|
zarybnicky/smalltt
|
783840e3444cbdc7927dd4a940d9c0ad5dc47223
|
[
"BSD-3-Clause"
] | null | null | null |
bench/Bench.agda
|
zarybnicky/smalltt
|
783840e3444cbdc7927dd4a940d9c0ad5dc47223
|
[
"BSD-3-Clause"
] | null | null | null |
bench/Bench.agda
|
zarybnicky/smalltt
|
783840e3444cbdc7927dd4a940d9c0ad5dc47223
|
[
"BSD-3-Clause"
] | null | null | null |
{-# OPTIONS --type-in-type #-}
U = Set
id : {A : Set} → A → A
id = λ x → x
id2 : ∀ {A} → A → A
id2 = id id
id3 : ∀ {A} → A → A
id3 = λ x → id x
id4 : {A : Set} -> A -> A
id4 = \x -> x
the : (A : Set) → A → A
the = λ _ x → x
constTy = {A B : Set} → A → B → A
const : constTy
const = λ x y → x
constU = const {Set}
namedArgTest = const {B = U} U
namedArgTest2 = the constTy (λ x y → x) {B = U} U
-- Church bools
--------------------------------------------------------------------------------
Bool = (B : U) → B → B → B
true : Bool
true = λ _ t f → t
false : Bool
false = λ _ t f → f
and : Bool → Bool → Bool
and = λ b1 b2 → b1 Bool true b2
-- Church natural numbers
--------------------------------------------------------------------------------
Nat : U
Nat = (n : U) → (n → n) → n → n
zero : Nat
zero = λ n s z → z
suc : Nat → Nat
suc = λ a n s z → s (a n s z)
n2 : Nat
n2 = λ n s z → s (s z)
n5 : Nat
n5 = λ n s z → s (s (s (s (s z))))
mul : Nat → Nat → Nat
mul = λ a b n s z → a n (b n s) z
add : Nat → Nat → Nat
add = λ a b n s z → a n s (b n s z)
n10 = mul n2 n5
n10b = mul n5 n2
n100 = mul n10 n10
n100b = mul n10b n10b
n10k = mul n100 n100
n10kb = mul n100b n100b
n100k = mul n10k n10
n100kb = mul n10kb n10b
n1M = mul n10k n100
n1Mb = mul n10kb n100b
n10M = mul n1M n10
n10Mb = mul n1Mb n10b
n100M = mul n10M n10
n200M = mul n2 n100M
-- Church lists
--------------------------------------------------------------------------------
List : U → U
List = λ a → (l : U) → (a → l → l) → l → l
lnil : ∀{a} → List a
lnil = λ l c n → n
lcons : ∀{a} → a → List a → List a
lcons = λ a as l c n → c a (as l c n)
list1 = lcons true (lcons false (lcons false lnil))
map : ∀{a b} → (a → b) → List a → List b
map = λ f as l c → as l (λ a → c (f a))
-- Church vectors
--------------------------------------------------------------------------------
Vec : U → Nat → U
Vec = λ a n → (V : Nat → U) → V zero → (∀{n} → a → V n → V (suc n)) → V n
vnil : ∀{a} → Vec a zero
vnil = λ V n c → n
vcons : ∀{a n} → a → Vec a n → Vec a (suc n)
vcons = λ a as V n c → c a (as V n c)
vec1 = vcons true (vcons false (vcons true vnil))
vecStress =
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true
vnil))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
))))))))))))))))))))))))))))))))))))
-- Leibniz (Church) propositional equality, useful for testing conversion.
--------------------------------------------------------------------------------
Eq : ∀{A : U} → A → A → U
Eq {A} = λ x y → (P : A → U) → P x → P y
refl : ∀{A}{x : A} → Eq x x
refl = λ P px → px
trans : ∀{A}{x y z : A} → Eq x y → Eq y z → Eq x z
trans = λ p q → q _ p
sym : ∀{A}{x y : A} → Eq x y → Eq y x
sym {_}{x}{y} = λ p → p (λ y → Eq y x) refl
ap : ∀{A B}(f : A → B){x y : A} → Eq x y → Eq (f x) (f y)
ap = λ f {x}{y} p → p (λ y → Eq (f x) (f y)) refl
-- Pairs, Top, Bot
--------------------------------------------------------------------------------
Pair : U → U → U
Pair = λ A B → (Pair : U)(pair : A → B → Pair) → Pair
pair : ∀{A B} → A → B → Pair A B
pair = λ a b Pair pair → pair a b
proj1 : ∀{A B} → Pair A B → A
proj1 = λ p → p _ (λ x y → x)
proj2 : ∀{A B} → Pair A B → B
proj2 = λ p → p _ (λ x y → y)
Top : U
Top = (Top : U)(tt : Top) → Top
tt : Top
tt = λ Top tt → tt
Bot : U
Bot = (Bot : U) → Bot
-- Dependent function composition
--------------------------------------------------------------------------------
comp :
∀ {A : U}
{B : A → U}
{C : ∀{a} → B a → U}
(f : ∀{a}(b : B a) → C b)
(g : (a : A) → B a)
(x : A)
→ C (g x)
comp = λ f g a → f (g a)
compTest1 : Nat → Nat
compTest1 = comp suc suc
compTest2 : ∀{m A} → A → Vec A m → Vec A (suc (suc m))
compTest2 = λ a → comp (vcons a) (vcons a)
-- Some stress tests
--------------------------------------------------------------------------------
nfun : Nat → U
nfun n = n U (λ A → U → A) U
-- OK
synEqTest1 : Eq n1M n1M
synEqTest1 = refl
-- fail
-- synEqTest2 : nfun n10k → nfun n10k
-- synEqTest2 = λ x → x
-- OK
idStress : ∀{A} → A → A
idStress =
id id id id id id id id id id id id id id id id id id id id
id id id id id id id id id id id id id id id id id id id id
-- fail
-- pairStress : Top
-- pairStress =
-- let x0 = pair tt tt
-- x1 = pair x0 x0
-- x2 = pair x1 x1
-- x3 = pair x2 x2
-- x4 = pair x3 x3
-- x5 = pair x4 x4
-- x6 = pair x5 x5
-- x7 = pair x6 x6
-- x8 = pair x7 x7
-- x9 = pair x8 x8
-- x10 = pair x9 x9
-- x11 = pair x10 x10
-- x12 = pair x11 x11
-- x13 = pair x12 x12
-- x14 = pair x13 x13
-- x15 = pair x14 x14
-- x16 = pair x15 x15
-- x17 = pair x16 x16
-- x18 = pair x17 x17
-- x19 = pair x18 x18
-- x20 = pair x19 x19
-- in tt
forceNat : Nat → Bool
forceNat n = n _ (λ b → b) true
computeTest = forceNat n10M
-- Conversion checking tests
--------------------------------------------------------------------------------
-- conv100k : Eq n100k n100kb
-- conv100k = refl
-- conv1M : Eq n1M n1Mb
-- conv1M = refl
-- OOM
-- conv10M : Eq n10M n1M0b
-- conv10M = refl
-- convNfun1M : Eq (nfun n1M) (nfun n1Mb)
-- convNfun1M = refl
-- conv10kmeta : Eq n10k (add n10kb _)
-- conv10kmeta = refl
-- OOM
-- conv1Mmeta : Eq n1M (add n1Mb _)
-- conv1Mmeta = refl
--------------------------------------------------------------------------------
-- normalized instantly
lazyU = const U (forceNat n10M)
localCBN : Nat → Bool
localCBN
= λ n → let m = forceNat (mul n n100k)
in n _ (λ b → and m b) true
cbnReference = forceNat (mul n10 n100k)
localCBNtest = localCBN n10
-- Church-coded simply typed lambda calculus
--------------------------------------------------------------------------------
Ty : U
Ty
= (Ty : U)
(ι : Ty)
(fun : Ty → Ty → Ty)
→ Ty
ι : Ty
ι
= λ _ ι _ → ι
fun : Ty → Ty → Ty
fun
= λ A B Ty ι fun → fun (A Ty ι fun) (B Ty ι fun)
Con : U
Con
= (Con : U)
(nil : Con)
(cons : Con → Ty → Con)
→ Con
nil : Con
nil
= λ Con nil cons → nil
cons : Con → Ty → Con
cons
= λ Γ A Con nil cons → cons (Γ Con nil cons) A
Var : Con → Ty → U
Var
= λ Γ A →
(Var : Con → Ty → U)
(vz : ∀{Γ A} → Var (cons Γ A) A)
(vs : ∀{Γ B A} → Var Γ A → Var (cons Γ B) A)
→ Var Γ A
vz : ∀{Γ A} → Var (cons Γ A) A
vz
= λ Var vz vs → vz
vs : ∀{Γ B A} → Var Γ A → Var (cons Γ B) A
vs
= λ x Var vz vs → vs (x Var vz vs)
Tm : Con → Ty → U
Tm
= λ Γ A →
(Tm : Con → Ty → U)
(var : ∀{Γ A} → Var Γ A → Tm Γ A)
(lam : ∀{Γ A B} → Tm (cons Γ A) B → Tm Γ (fun A B))
(app : ∀{Γ A B} → Tm Γ (fun A B) → Tm Γ A → Tm Γ B)
→ Tm Γ A
var : ∀{Γ A} → Var Γ A → Tm Γ A
var
= λ x Tm var lam app → var x
lam : ∀{Γ A B} → Tm (cons Γ A) B → Tm Γ (fun A B)
lam
= λ t Tm var lam app → lam (t Tm var lam app)
app : ∀{Γ A B} → Tm Γ (fun A B) → Tm Γ A → Tm Γ B
app
= λ t u Tm var lam app → app (t Tm var lam app) (u Tm var lam app)
-- Well-typed interpreter for Church-coded STLC
--------------------------------------------------------------------------------
EvalTy : Ty → U
EvalTy
= λ A → A _ Bot (λ A B → A → B)
EvalCon : Con → U
EvalCon
= λ Γ → Γ _ Top (λ Δ A → Pair Δ (EvalTy A))
EvalVar : ∀{Γ A} → Var Γ A → EvalCon Γ → EvalTy A
EvalVar
= λ x → x (λ Γ A → EvalCon Γ → EvalTy A)
(λ env → proj2 env)
(λ rec env → rec (proj1 env))
EvalTm : ∀{Γ A} → Tm Γ A → EvalCon Γ → EvalTy A
EvalTm
= λ t → t (λ Γ A → EvalCon Γ → EvalTy A)
EvalVar
(λ t env α → t (pair env α))
(λ t u env → t env (u env))
-- Large embedded STLC term
--------------------------------------------------------------------------------
t1 : Tm nil (fun (fun ι ι) (fun ι ι))
t1
= lam (lam (
app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(var vz))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
))))))))))))))))))))))))))))))))))))))
))
-- test evaluation
evalTest = EvalTm t1 tt
| 37.121547
| 80
| 0.52359
|
4d59644e80600bd6b8bf4fea1e511c6667957982
| 277
|
agda
|
Agda
|
src/PosNat.agda
|
ice1k/Theorems
|
7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc
|
[
"Apache-2.0"
] | 1
|
2020-04-15T15:28:03.000Z
|
2020-04-15T15:28:03.000Z
|
src/PosNat.agda
|
ice1k/Theorems
|
7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc
|
[
"Apache-2.0"
] | null | null | null |
src/PosNat.agda
|
ice1k/Theorems
|
7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc
|
[
"Apache-2.0"
] | null | null | null |
module PosNat where
open import Nats
open import Data.Product
open import Equality
data ℕ⁺ : Set where
psuc : ℕ → ℕ⁺
_→ℕ : ℕ⁺ → ℕ
psuc zero →ℕ = suc zero
psuc (suc x) →ℕ = suc (psuc x →ℕ)
_⟨_⟩→ℕ⁺ : (a : ℕ) → ∃ (λ x → a ≡ suc x) → ℕ⁺
.(suc x) ⟨ x , refl ⟩→ℕ⁺ = psuc x
| 17.3125
| 44
| 0.559567
|
0d6e21c50f1e25fe9dd3845937da1611332f8b0d
| 4,710
|
agda
|
Agda
|
Cubical/HITs/KleinBottle/Properties.agda
|
ryanorendorff/cubical
|
c67854d2e11aafa5677e25a09087e176fafd3e43
|
[
"MIT"
] | 1
|
2020-03-23T23:52:11.000Z
|
2020-03-23T23:52:11.000Z
|
Cubical/HITs/KleinBottle/Properties.agda
|
ryanorendorff/cubical
|
c67854d2e11aafa5677e25a09087e176fafd3e43
|
[
"MIT"
] | null | null | null |
Cubical/HITs/KleinBottle/Properties.agda
|
ryanorendorff/cubical
|
c67854d2e11aafa5677e25a09087e176fafd3e43
|
[
"MIT"
] | null | null | null |
{-
Definition of the Klein bottle as a HIT
-}
{-# OPTIONS --cubical --safe #-}
module Cubical.HITs.KleinBottle.Properties where
open import Cubical.Core.Everything
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.GroupoidLaws
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Transport
open import Cubical.Foundations.Univalence
open import Cubical.Data.Nat
open import Cubical.Data.Int public renaming (_+_ to _+Int_ ; +-assoc to +Int-assoc; +-comm to +Int-comm)
open import Cubical.Data.Sigma
open import Cubical.HITs.S1
open import Cubical.HITs.PropositionalTruncation as PropTrunc
open import Cubical.HITs.KleinBottle.Base
loop1 : S¹ → KleinBottle
loop1 base = point
loop1 (loop i) = line1 i
invS¹Loop : S¹ → Set
invS¹Loop base = S¹
invS¹Loop (loop i) = invS¹Path i
loop1Inv : (s : S¹) → loop1 (inv s) ≡ loop1 s
loop1Inv base = line2
loop1Inv (loop i) = square i
twist : (s : S¹) → PathP (λ i → invS¹Path i) s (inv s)
twist s i = glue (λ {(i = i0) → s; (i = i1) → inv s}) (inv s)
twistBaseLoop : (s : S¹) → invS¹Loop s
twistBaseLoop base = base
twistBaseLoop (loop i) = twist base i
kleinBottle≃Σ : KleinBottle ≃ Σ S¹ invS¹Loop
kleinBottle≃Σ = isoToEquiv (iso fro to froTo toFro)
where
fro : KleinBottle → Σ S¹ invS¹Loop
fro point = (base , base)
fro (line1 i) = (base , loop i)
fro (line2 j) = (loop (~ j) , twist base (~ j))
fro (square i j) = (loop (~ j) , twist (loop i) (~ j))
toLoopFiller : (j : I) → ua invS¹Equiv j → I → KleinBottle
toLoopFiller j g l =
hfill
(λ l → λ
{ (j = i0) → loop1Inv g l
; (j = i1) → loop1 g
})
(inS (loop1 (unglue (j ∨ ~ j) g)))
l
to : Σ S¹ invS¹Loop → KleinBottle
to (base , s) = loop1 s
to (loop j , g) = toLoopFiller j g i1
toFro : (a : KleinBottle) → to (fro a) ≡ a
toFro point = refl
toFro (line1 i) = refl
toFro (line2 j) k = lUnit line2 (~ k) j
toFro (square i j) k = lUnit (square i) (~ k) j
froLoop1 : (s : S¹) → fro (loop1 s) ≡ (base , s)
froLoop1 base = refl
froLoop1 (loop i) = refl
froLoop1Inv :
PathP (λ k → (s : S¹) → froLoop1 (inv s) k ≡ froLoop1 s k)
(λ s l → fro (loop1Inv s l))
(λ s l → loop (~ l) , twist s (~ l))
froLoop1Inv k base l = loop (~ l) , twist base (~ l)
froLoop1Inv k (loop i) l = loop (~ l) , twist (loop i) (~ l)
froTo : (a : Σ S¹ invS¹Loop) → fro (to a) ≡ a
froTo (base , s) = froLoop1 s
froTo (loop j , g) k =
hcomp
(λ l → λ
{ (j = i0) → froLoop1Inv k g l
; (j = i1) → froLoop1 g k
; (k = i0) → fro (toLoopFiller j g l)
; (k = i1) →
( loop (j ∨ ~ l)
, glue
(λ
{ (j = i0) (l = i1) → g
; (j = i1) → g
; (l = i0) → unglue (j ∨ ~ j) g
})
(unglue (j ∨ ~ j) g)
)
})
(froLoop1 (unglue (j ∨ ~ j) g) k)
isGroupoidKleinBottle : isGroupoid KleinBottle
isGroupoidKleinBottle =
transport (λ i → isGroupoid (ua kleinBottle≃Σ (~ i)))
(isOfHLevelΣ 3 isGroupoidS¹
(λ s →
PropTrunc.rec
(isPropIsOfHLevel 3)
(λ p → subst (λ s → isGroupoid (invS¹Loop s)) p isGroupoidS¹)
(isConnectedS¹ s)))
-- Transport across the following is too slow :(
ΩKlein≡Int² : Path KleinBottle point point ≡ Int × Int
ΩKlein≡Int² =
Path KleinBottle point point
≡⟨ (λ i → basePath i ≡ basePath i) ⟩
Path (Σ S¹ invS¹Loop) (base , base) (base , base)
≡⟨ sym Σ≡ ⟩
Σ ΩS¹ (λ p → PathP (λ j → invS¹Loop (p j)) base base)
≡⟨ (λ i → Σ ΩS¹ (λ p → PathP (λ j → invS¹Loop (p (j ∨ i))) (twistBaseLoop (p i)) base)) ⟩
ΩS¹ × ΩS¹
≡⟨ (λ i → ΩS¹≡Int i × ΩS¹≡Int i) ⟩
Int × Int ∎
where
basePath : PathP (λ i → ua kleinBottle≃Σ i) point (base , base)
basePath i = glue (λ {(i = i0) → point; (i = i1) → base , base}) (base , base)
-- We can at least define the winding function directly and get results on small examples
windingKlein : Path KleinBottle point point → Int × Int
windingKlein p = (z₀ , z₁)
where
step₀ : Path (Σ S¹ invS¹Loop) (base , base) (base , base)
step₀ = (λ i → kleinBottle≃Σ .fst (p i))
z₀ : Int
z₀ = winding (λ i → kleinBottle≃Σ .fst (p i) .fst)
z₁ : Int
z₁ = winding
(transport
(λ i → PathP (λ j → invS¹Loop (step₀ (j ∨ i) .fst)) (twistBaseLoop (step₀ i .fst)) base)
(cong snd step₀))
_ : windingKlein line1 ≡ (pos 0 , pos 1)
_ = refl
_ : windingKlein line2 ≡ (negsuc 0 , pos 0)
_ = refl
_ : windingKlein (line1 ∙ line2) ≡ (negsuc 0 , negsuc 0)
_ = refl
_ : windingKlein (line1 ∙ line2 ∙ line1) ≡ (negsuc 0 , pos 0)
_ = refl
| 29.254658
| 105
| 0.594692
|
4e46b3a6ba5ffde39fd34151e06639028c537ed3
| 18,031
|
agda
|
Agda
|
LibraBFT/Lemmas.agda
|
cwjnkins/bft-consensus-agda
|
71aa2168e4875ffdeece9ba7472ee3cee5fa9084
|
[
"UPL-1.0"
] | null | null | null |
LibraBFT/Lemmas.agda
|
cwjnkins/bft-consensus-agda
|
71aa2168e4875ffdeece9ba7472ee3cee5fa9084
|
[
"UPL-1.0"
] | null | null | null |
LibraBFT/Lemmas.agda
|
cwjnkins/bft-consensus-agda
|
71aa2168e4875ffdeece9ba7472ee3cee5fa9084
|
[
"UPL-1.0"
] | null | null | null |
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2020, 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import LibraBFT.Prelude
open import Level using (0ℓ)
-- This module incldes various Agda lemmas that are independent of the project's domain
module LibraBFT.Lemmas where
cong₃ : ∀{a b c d}{A : Set a}{B : Set b}{C : Set c}{D : Set d}
→ (f : A → B → C → D) → ∀{x y u v m n} → x ≡ y → u ≡ v → m ≡ n
→ f x u m ≡ f y v n
cong₃ f refl refl refl = refl
≡-pi : ∀{a}{A : Set a}{x y : A}(p q : x ≡ y) → p ≡ q
≡-pi refl refl = refl
Unit-pi : {u1 u2 : Unit}
→ u1 ≡ u2
Unit-pi {unit} {unit} = refl
++-inj : ∀{a}{A : Set a}{m n o p : List A}
→ length m ≡ length n → m ++ o ≡ n ++ p
→ m ≡ n × o ≡ p
++-inj {m = []} {x ∷ n} () hip
++-inj {m = x ∷ m} {[]} () hip
++-inj {m = []} {[]} lhip hip
= refl , hip
++-inj {m = m ∷ ms} {n ∷ ns} lhip hip
with ++-inj {m = ms} {ns} (suc-injective lhip) (proj₂ (∷-injective hip))
...| (mn , op) rewrite proj₁ (∷-injective hip)
= cong (n ∷_) mn , op
++-abs : ∀{a}{A : Set a}{n : List A}(m : List A)
→ 1 ≤ length m → [] ≡ m ++ n → ⊥
++-abs [] ()
++-abs (x ∷ m) imp ()
data All-vec {ℓ} {A : Set ℓ} (P : A → Set ℓ) : ∀ {n} → Vec {ℓ} A n → Set (Level.suc ℓ) where
[] : All-vec P []
_∷_ : ∀ {x n} {xs : Vec A n} (px : P x) (pxs : All-vec P xs) → All-vec P (x ∷ xs)
≤-unstep : ∀{m n} → suc m ≤ n → m ≤ n
≤-unstep (s≤s ss) = ≤-step ss
≡⇒≤ : ∀{m n} → m ≡ n → m ≤ n
≡⇒≤ refl = ≤-refl
∈-cong : ∀{a b}{A : Set a}{B : Set b}{x : A}{l : List A}
→ (f : A → B) → x ∈ l → f x ∈ List-map f l
∈-cong f (here px) = here (cong f px)
∈-cong f (there hyp) = there (∈-cong f hyp)
All-self : ∀{a}{A : Set a}{xs : List A} → All (_∈ xs) xs
All-self = All-tabulate (λ x → x)
All-reduce⁺
: ∀{a b}{A : Set a}{B : Set b}{Q : A → Set}{P : B → Set}
→ { xs : List A }
→ (f : ∀{x} → Q x → B)
→ (∀{x} → (prf : Q x) → P (f prf))
→ (all : All Q xs)
→ All P (All-reduce f all)
All-reduce⁺ f hyp [] = []
All-reduce⁺ f hyp (ax ∷ axs) = (hyp ax) ∷ All-reduce⁺ f hyp axs
All-reduce⁻
: ∀{a b}{A : Set a}{B : Set b}
{Q : A → Set}
→ { xs : List A }
→ ∀ {vdq}
→ (f : ∀{x} → Q x → B)
→ (all : All Q xs)
→ vdq ∈ All-reduce f all
→ ∃[ v ] ∃[ v∈xs ] (vdq ≡ f {v} v∈xs)
All-reduce⁻ {Q = Q} {(h ∷ _)} {vdq} f (px ∷ pxs) (here refl) = h , px , refl
All-reduce⁻ {Q = Q} {(_ ∷ t)} {vdq} f (px ∷ pxs) (there vdq∈) = All-reduce⁻ {xs = t} f pxs vdq∈
List-index : ∀ {A : Set} → (_≟A_ : (a₁ a₂ : A) → Dec (a₁ ≡ a₂)) → A → (l : List A) → Maybe (Fin (length l))
List-index _≟A_ x l with break (_≟A x) l
...| not≡ , _ with length not≡ <? length l
...| no _ = nothing
...| yes found = just ( fromℕ< {length not≡} {length l} found)
nats : ℕ → List ℕ
nats 0 = []
nats (suc n) = (nats n) ++ (n ∷ [])
_ : nats 4 ≡ 0 ∷ 1 ∷ 2 ∷ 3 ∷ []
_ = refl
_ : Maybe-map toℕ (List-index _≟_ 2 (nats 4)) ≡ just 2
_ = refl
_ : Maybe-map toℕ (List-index _≟_ 4 (nats 4)) ≡ nothing
_ = refl
allDistinct : ∀ {A : Set} → List A → Set
allDistinct l = ∀ (i j : Σ ℕ (_< length l)) →
proj₁ i ≡ proj₁ j
⊎ List-lookup l (fromℕ< (proj₂ i)) ≢ List-lookup l (fromℕ< (proj₂ j))
postulate -- TODO-1: currently unused; prove it, if needed
allDistinct? : ∀ {A : Set} → {≟A : (a₁ a₂ : A) → Dec (a₁ ≡ a₂)} → (l : List A) → Dec (allDistinct l)
-- Extends an arbitrary relation to work on the head of
-- the supplied list, if any.
data OnHead {A : Set}(P : A → A → Set) (x : A) : List A → Set where
[] : OnHead P x []
on-∷ : ∀{y ys} → P x y → OnHead P x (y ∷ ys)
-- Establishes that a list is sorted according to the supplied
-- relation.
data IsSorted {A : Set}(_<_ : A → A → Set) : List A → Set where
[] : IsSorted _<_ []
_∷_ : ∀{x xs} → OnHead _<_ x xs → IsSorted _<_ xs → IsSorted _<_ (x ∷ xs)
OnHead-prop : ∀{A}(P : A → A → Set)(x : A)(l : List A)
→ Irrelevant P
→ isPropositional (OnHead P x l)
OnHead-prop P x [] hyp [] [] = refl
OnHead-prop P x (x₁ ∷ l) hyp (on-∷ x₂) (on-∷ x₃) = cong on-∷ (hyp x₂ x₃)
IsSorted-prop : ∀{A}(_<_ : A → A → Set)(l : List A)
→ Irrelevant _<_
→ isPropositional (IsSorted _<_ l)
IsSorted-prop _<_ [] hyp [] [] = refl
IsSorted-prop _<_ (x ∷ l) hyp (x₁ ∷ a) (x₂ ∷ b)
= cong₂ _∷_ (OnHead-prop _<_ x l hyp x₁ x₂)
(IsSorted-prop _<_ l hyp a b)
IsSorted-map⁻ : {A : Set}{_≤_ : A → A → Set}
→ {B : Set}(f : B → A)(l : List B)
→ IsSorted (λ x y → f x ≤ f y) l
→ IsSorted _≤_ (List-map f l)
IsSorted-map⁻ f .[] [] = []
IsSorted-map⁻ f .(_ ∷ []) (x ∷ []) = [] ∷ []
IsSorted-map⁻ f .(_ ∷ _ ∷ _) (on-∷ x ∷ (x₁ ∷ is)) = (on-∷ x) ∷ IsSorted-map⁻ f _ (x₁ ∷ is)
transOnHead : ∀ {A} {l : List A} {y x : A} {_<_ : A → A → Set}
→ Transitive _<_
→ OnHead _<_ y l
→ x < y
→ OnHead _<_ x l
transOnHead _ [] _ = []
transOnHead trans (on-∷ y<f) x<y = on-∷ (trans x<y y<f)
++-OnHead : ∀ {A} {xs ys : List A} {y : A} {_<_ : A → A → Set}
→ OnHead _<_ y xs
→ OnHead _<_ y ys
→ OnHead _<_ y (xs ++ ys)
++-OnHead [] y<y₁ = y<y₁
++-OnHead (on-∷ y<x) _ = on-∷ y<x
h∉t : ∀ {A} {t : List A} {h : A} {_<_ : A → A → Set}
→ Irreflexive _<_ _≡_ → Transitive _<_
→ IsSorted _<_ (h ∷ t)
→ h ∉ t
h∉t irfl trans (on-∷ h< ∷ sxs) (here refl) = ⊥-elim (irfl h< refl)
h∉t irfl trans (on-∷ h< ∷ (x₁< ∷ sxs)) (there h∈t)
= h∉t irfl trans ((transOnHead trans x₁< h<) ∷ sxs) h∈t
≤-head : ∀ {A} {l : List A} {x y : A} {_<_ : A → A → Set} {_≤_ : A → A → Set}
→ Reflexive _≤_ → Trans _<_ _≤_ _≤_
→ y ∈ (x ∷ l) → IsSorted _<_ (x ∷ l)
→ _≤_ x y
≤-head ref≤ trans (here refl) _ = ref≤
≤-head ref≤ trans (there y∈) (on-∷ x<x₁ ∷ sl) = trans x<x₁ (≤-head ref≤ trans y∈ sl)
-- TODO-1 : Better name and/or replace with library property
Any-sym : ∀ {a b}{A : Set a}{B : Set b}{tgt : B}{l : List A}{f : A → B}
→ Any (λ x → tgt ≡ f x) l
→ Any (λ x → f x ≡ tgt) l
Any-sym (here x) = here (sym x)
Any-sym (there x) = there (Any-sym x)
Any-lookup-correct : ∀ {a b}{A : Set a}{B : Set b}{tgt : B}{l : List A}{f : A → B}
→ (p : Any (λ x → f x ≡ tgt) l)
→ Any-lookup p ∈ l
Any-lookup-correct (here px) = here refl
Any-lookup-correct (there p) = there (Any-lookup-correct p)
Any-lookup-correctP : ∀ {a}{A : Set a}{l : List A}{P : A → Set}
→ (p : Any P l)
→ Any-lookup p ∈ l
Any-lookup-correctP (here px) = here refl
Any-lookup-correctP (there p) = there (Any-lookup-correctP p)
Any-witness : ∀ {a b} {A : Set a} {l : List A} {P : A → Set b}
→ (p : Any P l) → P (Any-lookup p)
Any-witness (here px) = px
Any-witness (there x) = Any-witness x
-- TODO-1: there is probably a library property for this.
∈⇒Any : ∀ {A : Set}{x : A}
→ {xs : List A}
→ x ∈ xs
→ Any (_≡ x) xs
∈⇒Any {x = x} (here refl) = here refl
∈⇒Any {x = x} {h ∷ t} (there xxxx) = there (∈⇒Any {xs = t} xxxx)
false≢true : false ≢ true
false≢true ()
witness : {A : Set}{P : A → Set}{x : A}{xs : List A}
→ x ∈ xs → All P xs → P x
witness x y = All-lookup y x
maybe-⊥ : ∀{a}{A : Set a}{x : A}{y : Maybe A}
→ y ≡ just x
→ y ≡ nothing
→ ⊥
maybe-⊥ () refl
Maybe-map-cool : ∀ {S S₁ : Set} {f : S → S₁} {x : Maybe S} {z}
→ Maybe-map f x ≡ just z
→ x ≢ nothing
Maybe-map-cool {x = nothing} ()
Maybe-map-cool {x = just y} prf = λ x → ⊥-elim (maybe-⊥ (sym x) refl)
Maybe-map-cool-1 : ∀ {S S₁ : Set} {f : S → S₁} {x : Maybe S} {z}
→ Maybe-map f x ≡ just z
→ Σ S (λ x' → f x' ≡ z)
Maybe-map-cool-1 {x = nothing} ()
Maybe-map-cool-1 {x = just y} {z = z} refl = y , refl
Maybe-map-cool-2 : ∀ {S S₁ : Set} {f : S → S₁} {x : S} {z}
→ f x ≡ z
→ Maybe-map f (just x) ≡ just z
Maybe-map-cool-2 {S}{S₁}{f}{x}{z} prf rewrite prf = refl
T⇒true : ∀ {a : Bool} → T a → a ≡ true
T⇒true {true} _ = refl
isJust : ∀ {A : Set}{aMB : Maybe A}{a : A}
→ aMB ≡ just a
→ Is-just aMB
isJust refl = just tt
to-witness-isJust-≡ : ∀ {A : Set}{aMB : Maybe A}{a prf}
→ to-witness (isJust {aMB = aMB} {a} prf) ≡ a
to-witness-isJust-≡ {aMB = just a'} {a} {prf}
with to-witness-lemma (isJust {aMB = just a'} {a} prf) refl
...| xxx = just-injective (trans (sym xxx) prf)
deMorgan : ∀ {A B : Set} → (¬ A) ⊎ (¬ B) → ¬ (A × B)
deMorgan (inj₁ ¬a) = λ a×b → ¬a (proj₁ a×b)
deMorgan (inj₂ ¬b) = λ a×b → ¬b (proj₂ a×b)
¬subst : ∀ {ℓ₁ ℓ₂} {A : Set ℓ₁} {P : A → Set ℓ₂}
→ {x y : A}
→ ¬ (P x)
→ y ≡ x
→ ¬ (P y)
¬subst px refl = px
∸-suc-≤ : ∀ (x w : ℕ) → suc x ∸ w ≤ suc (x ∸ w)
∸-suc-≤ x zero = ≤-refl
∸-suc-≤ zero (suc w) rewrite 0∸n≡0 w = z≤n
∸-suc-≤ (suc x) (suc w) = ∸-suc-≤ x w
m∸n≤o⇒m∸o≤n : ∀ (x z w : ℕ) → x ∸ z ≤ w → x ∸ w ≤ z
m∸n≤o⇒m∸o≤n x zero w p≤ rewrite m≤n⇒m∸n≡0 p≤ = z≤n
m∸n≤o⇒m∸o≤n zero (suc z) w p≤ rewrite 0∸n≡0 w = z≤n
m∸n≤o⇒m∸o≤n (suc x) (suc z) w p≤ = ≤-trans (∸-suc-≤ x w) (s≤s (m∸n≤o⇒m∸o≤n x z w p≤))
tail-⊆ : ∀ {A : Set} {x} {xs ys : List A}
→ (x ∷ xs) ⊆List ys
→ xs ⊆List ys
tail-⊆ xxs⊆ys x∈xs = xxs⊆ys (there x∈xs)
allDistinctTail : ∀ {A : Set} {x} {xs : List A}
→ allDistinct (x ∷ xs)
→ allDistinct xs
allDistinctTail allDist (i , i<l) (j , j<l)
with allDist (suc i , s≤s i<l) (suc j , s≤s j<l)
...| inj₁ 1+i≡1+j = inj₁ (cong pred 1+i≡1+j)
...| inj₂ lookup≢ = inj₂ lookup≢
∈-Any-Index-elim : ∀ {A : Set} {x y} {ys : List A} (x∈ys : x ∈ ys)
→ x ≢ y → y ∈ ys
→ y ∈ ys ─ Any-index x∈ys
∈-Any-Index-elim (here refl) x≢y (here refl) = ⊥-elim (x≢y refl)
∈-Any-Index-elim (here refl) _ (there y∈ys) = y∈ys
∈-Any-Index-elim (there _) _ (here refl) = here refl
∈-Any-Index-elim (there x∈ys) x≢y (there y∈ys) = there (∈-Any-Index-elim x∈ys x≢y y∈ys)
∉∧⊆List⇒∉ : ∀ {A : Set} {x} {xs ys : List A}
→ x ∉ xs → ys ⊆List xs
→ x ∉ ys
∉∧⊆List⇒∉ x∉xs ys∈xs x∈ys = ⊥-elim (x∉xs (ys∈xs x∈ys))
allDistinctʳʳ : ∀ {A : Set} {x x₁ : A} {xs : List A}
→ allDistinct (x ∷ x₁ ∷ xs)
→ allDistinct (x ∷ xs)
allDistinctʳʳ _ (zero , _) (zero , _) = inj₁ refl
allDistinctʳʳ allDist (zero , i<l) (suc j , j<l)
with allDist (0 , s≤s z≤n) (suc (suc j) , s≤s j<l)
...| inj₂ x≢lookup
= inj₂ λ x≡lkpxs → ⊥-elim (x≢lookup x≡lkpxs)
allDistinctʳʳ allDist (suc i , i<l) (zero , j<l)
with allDist (suc (suc i) , s≤s i<l) (0 , s≤s z≤n)
...| inj₂ x≢lookup
= inj₂ λ x≡lkpxs → ⊥-elim (x≢lookup x≡lkpxs)
allDistinctʳʳ allDist (suc i , i<l) (suc j , j<l)
with allDist (2 + i , (s≤s i<l)) (2 + j , s≤s j<l)
...| inj₁ si≡sj = inj₁ (cong pred si≡sj)
...| inj₂ lookup≡ = inj₂ lookup≡
allDistinct⇒∉ : ∀ {A : Set} {x} {xs : List A}
→ allDistinct (x ∷ xs)
→ x ∉ xs
allDistinct⇒∉ allDist (here x≡x₁)
with allDist (0 , s≤s z≤n) (1 , s≤s (s≤s z≤n))
... | inj₂ x≢x₁ = ⊥-elim (x≢x₁ x≡x₁)
allDistinct⇒∉ allDist (there x∈xs)
= allDistinct⇒∉ (allDistinctʳʳ allDist) x∈xs
sumListMap : ∀ {A : Set} {x} {xs : List A} (f : A → ℕ) → (x∈xs : x ∈ xs)
→ f-sum f xs ≡ f x + f-sum f (xs ─ Any-index x∈xs)
sumListMap _ (here refl) = refl
sumListMap {_} {x} {x₁ ∷ xs} f (there x∈xs)
rewrite sumListMap f x∈xs
| sym (+-assoc (f x) (f x₁) (f-sum f (xs ─ Any-index x∈xs)))
| +-comm (f x) (f x₁)
| +-assoc (f x₁) (f x) (f-sum f (xs ─ Any-index x∈xs)) = refl
lookup⇒Any : ∀ {A : Set} {xs : List A} {P : A → Set} (i : Fin (length xs))
→ P (List-lookup xs i) → Any P xs
lookup⇒Any {_} {_ ∷ _} zero px = here px
lookup⇒Any {_} {_ ∷ _} (suc i) px = there (lookup⇒Any i px)
x∉→AllDistinct : ∀ {A : Set} {x} {xs : List A}
→ allDistinct xs
→ x ∉ xs
→ allDistinct (x ∷ xs)
x∉→AllDistinct _ _ (0 , _) (0 , _) = inj₁ refl
x∉→AllDistinct _ x∉xs (0 , _) (suc j , j<l)
= inj₂ (λ x≡lkp → x∉xs (lookup⇒Any (fromℕ< (≤-pred j<l)) x≡lkp))
x∉→AllDistinct _ x∉xs (suc i , i<l) (0 , _)
= inj₂ (λ x≡lkp → x∉xs (lookup⇒Any (fromℕ< (≤-pred i<l)) (sym x≡lkp)))
x∉→AllDistinct allDist x∉xs (suc i , i<l) (suc j , j<l)
with allDist (i , (≤-pred i<l)) (j , (≤-pred j<l))
...| inj₁ i≡j = inj₁ (cong suc i≡j)
...| inj₂ lkup≢ = inj₂ lkup≢
module DecLemmas {A : Set} (_≟D_ : Decidable {A = A} (_≡_)) where
_∈?_ : ∀ (x : A) → (xs : List A) → Dec (Any (x ≡_) xs)
x ∈? xs = Any-any (x ≟D_) xs
y∉xs⇒Allxs≢y : ∀ {xs : List A} {x y}
→ y ∉ (x ∷ xs)
→ x ≢ y × y ∉ xs
y∉xs⇒Allxs≢y {xs} {x} {y} y∉
with y ∈? xs
...| yes y∈xs = ⊥-elim (y∉ (there y∈xs))
...| no y∉xs
with x ≟D y
...| yes x≡y = ⊥-elim (y∉ (here (sym x≡y)))
...| no x≢y = x≢y , y∉xs
⊆List-Elim : ∀ {x} {xs ys : List A} (x∈ys : x ∈ ys)
→ x ∉ xs → xs ⊆List ys
→ xs ⊆List ys ─ Any-index x∈ys
⊆List-Elim (here refl) x∉xs xs∈ys x₂∈xs
with xs∈ys x₂∈xs
...| here refl = ⊥-elim (x∉xs x₂∈xs)
...| there x∈xs = x∈xs
⊆List-Elim (there x∈ys) x∉xs xs∈ys x₂∈xxs
with x₂∈xxs
...| there x₂∈xs
= ⊆List-Elim (there x∈ys) (proj₂ (y∉xs⇒Allxs≢y x∉xs)) (tail-⊆ xs∈ys) x₂∈xs
...| here refl
with xs∈ys x₂∈xxs
...| here refl = here refl
...| there x₂∈ys
= there (∈-Any-Index-elim x∈ys (≢-sym (proj₁ (y∉xs⇒Allxs≢y x∉xs))) x₂∈ys)
sum-⊆-≤ : ∀ {ys} (xs : List A) (f : A → ℕ)
→ allDistinct xs
→ xs ⊆List ys
→ f-sum f xs ≤ f-sum f ys
sum-⊆-≤ [] _ _ _ = z≤n
sum-⊆-≤ (x ∷ xs) f dxs xs⊆ys
rewrite sumListMap f (xs⊆ys (here refl))
= let x∉xs = allDistinct⇒∉ dxs
xs⊆ysT = tail-⊆ xs⊆ys
xs⊆ys-x = ⊆List-Elim (xs⊆ys (here refl)) x∉xs xs⊆ysT
disTail = allDistinctTail dxs
in +-monoʳ-≤ (f x) (sum-⊆-≤ xs f disTail xs⊆ys-x)
intersect : List A → List A → List A
intersect xs [] = []
intersect xs (y ∷ ys)
with y ∈? xs
...| yes _ = y ∷ intersect xs ys
...| no _ = intersect xs ys
union : List A → List A → List A
union xs [] = xs
union xs (y ∷ ys)
with y ∈? xs
...| yes _ = union xs ys
...| no _ = y ∷ union xs ys
∈-intersect : ∀ (xs ys : List A) {α}
→ α ∈ intersect xs ys
→ α ∈ xs × α ∈ ys
∈-intersect xs (y ∷ ys) α∈int
with y ∈? xs | α∈int
...| no y∉xs | α∈ = ×-map₂ there (∈-intersect xs ys α∈)
...| yes y∈xs | here refl = y∈xs , here refl
...| yes y∈xs | there α∈ = ×-map₂ there (∈-intersect xs ys α∈)
x∉⇒x∉intersect : ∀ {x} {xs ys : List A}
→ x ∉ xs ⊎ x ∉ ys
→ x ∉ intersect xs ys
x∉⇒x∉intersect {x} {xs} {ys} x∉ x∈int
= contraposition (∈-intersect xs ys) (deMorgan x∉) x∈int
intersectDistinct : ∀ (xs ys : List A)
→ allDistinct xs → allDistinct ys
→ allDistinct (intersect xs ys)
intersectDistinct xs (y ∷ ys) dxs dys
with y ∈? xs
...| yes y∈xs = let distTail = allDistinctTail dys
intDTail = intersectDistinct xs ys dxs distTail
y∉intTail = x∉⇒x∉intersect (inj₂ (allDistinct⇒∉ dys))
in x∉→AllDistinct intDTail y∉intTail
...| no y∉xs = intersectDistinct xs ys dxs (allDistinctTail dys)
x∉⇒x∉union : ∀ {x} {xs ys : List A}
→ x ∉ xs × x ∉ ys
→ x ∉ union xs ys
x∉⇒x∉union {_} {_} {[]} (x∉xs , _) x∈∪ = ⊥-elim (x∉xs x∈∪)
x∉⇒x∉union {x} {xs} {y ∷ ys} (x∉xs , x∉ys) x∈union
with y ∈? xs | x∈union
...| yes y∈xs | x∈∪
= ⊥-elim (x∉⇒x∉union (x∉xs , (proj₂ (y∉xs⇒Allxs≢y x∉ys))) x∈∪)
...| no y∉xs | here refl
= ⊥-elim (proj₁ (y∉xs⇒Allxs≢y x∉ys) refl)
...| no y∉xs | there x∈∪
= ⊥-elim (x∉⇒x∉union (x∉xs , (proj₂ (y∉xs⇒Allxs≢y x∉ys))) x∈∪)
unionDistinct : ∀ (xs ys : List A)
→ allDistinct xs → allDistinct ys
→ allDistinct (union xs ys)
unionDistinct xs [] dxs dys = dxs
unionDistinct xs (y ∷ ys) dxs dys
with y ∈? xs
...| yes y∈xs = unionDistinct xs ys dxs (allDistinctTail dys)
...| no y∉xs = let distTail = allDistinctTail dys
uniDTail = unionDistinct xs ys dxs distTail
y∉intTail = x∉⇒x∉union (y∉xs , allDistinct⇒∉ dys)
in x∉→AllDistinct uniDTail y∉intTail
sumIntersect≤ : ∀ (xs ys : List A) (f : A → ℕ)
→ f-sum f (intersect xs ys) ≤ f-sum f (xs ++ ys)
sumIntersect≤ _ [] _ = z≤n
sumIntersect≤ xs (y ∷ ys) f
with y ∈? xs
...| yes y∈xs rewrite map-++-commute f xs (y ∷ ys)
| sum-++-commute (List-map f xs) (List-map f (y ∷ ys))
| sym (+-assoc (f-sum f xs) (f y) (f-sum f ys))
| +-comm (f-sum f xs) (f y)
| +-assoc (f y) (f-sum f xs) (f-sum f ys)
| sym (sum-++-commute (List-map f xs) (List-map f ys))
| sym (map-++-commute f xs ys)
= +-monoʳ-≤ (f y) (sumIntersect≤ xs ys f)
...| no y∉xs rewrite map-++-commute f xs (y ∷ ys)
| sum-++-commute (List-map f xs) (List-map f (y ∷ ys))
| +-comm (f y) (f-sum f ys)
| sym (+-assoc (f-sum f xs) (f-sum f ys) (f y))
| sym (sum-++-commute (List-map f xs) (List-map f ys))
| sym (map-++-commute f xs ys)
= ≤-stepsʳ (f y) (sumIntersect≤ xs ys f)
| 37.331263
| 111
| 0.472852
|
37f9ba530bd3701fc2bc101df3843a8e2cb411fc
| 4,520
|
agda
|
Agda
|
proofs/AKS/Modular/Equivalence.agda
|
mckeankylej/thesis
|
ddad4c0d5f384a0219b2177461a68dae06952dde
|
[
"MIT"
] | 1
|
2020-12-01T22:38:27.000Z
|
2020-12-01T22:38:27.000Z
|
proofs/AKS/Modular/Equivalence.agda
|
mckeankylej/thesis
|
ddad4c0d5f384a0219b2177461a68dae06952dde
|
[
"MIT"
] | null | null | null |
proofs/AKS/Modular/Equivalence.agda
|
mckeankylej/thesis
|
ddad4c0d5f384a0219b2177461a68dae06952dde
|
[
"MIT"
] | null | null | null |
open import Level using (_⊔_)
open import Function using (_$_)
open import Algebra using (CommutativeRing)
module AKS.Modular.Equivalence {c ℓ} (R : CommutativeRing c ℓ) where
open CommutativeRing R using (0#; 1#; _+_; _*_; -_; _-_)
renaming (Carrier to C)
open CommutativeRing R using (+-cong; +-congˡ; +-congʳ; +-identityʳ; +-assoc; +-comm)
open CommutativeRing R using (-‿inverseʳ; -‿inverseˡ; -‿cong)
open CommutativeRing R using (zeroˡ; distribʳ; distribˡ; *-congˡ; *-assoc; *-comm)
open CommutativeRing R using (_≈_; isEquivalence; setoid; ring)
renaming (refl to ≈-refl; sym to ≈-sym)
open import Relation.Binary.Reasoning.Setoid setoid
open import Algebra.Properties.Ring ring using (-‿distribˡ-*; -‿+-comm; -‿involutive; -0#≈0#)
infix 4 _≈_[mod_]
record _≈_[mod_] (x : C) (y : C) (n : C) : Set (c ⊔ ℓ) where
constructor modulo
field
k : C
x-y≈k*n : x - y ≈ k * n
refl : ∀ {x} {y} {n} → x ≈ y → x ≈ y [mod n ]
refl {x} {y} {n} x≈y = modulo 0# $ begin
x - y ≈⟨ +-congˡ (-‿cong (≈-sym x≈y)) ⟩
x - x ≈⟨ -‿inverseʳ x ⟩
0# ≈⟨ ≈-sym (zeroˡ n) ⟩
0# * n ∎
sym : ∀ {x y} {n} → x ≈ y [mod n ] → y ≈ x [mod n ]
sym {x} {y} {n} (modulo k x-y≈k*n) = modulo (- k) $ begin
y - x ≈⟨ +-congʳ (≈-sym (-‿involutive y)) ⟩
- (- y) - x ≈⟨ -‿+-comm (- y) x ⟩
- (- y + x) ≈⟨ -‿cong (+-comm (- y) x) ⟩
- (x - y) ≈⟨ -‿cong x-y≈k*n ⟩
- (k * n) ≈⟨ -‿distribˡ-* k n ⟩
- k * n ∎
trans : ∀ {x y z} {n} → x ≈ y [mod n ] → y ≈ z [mod n ] → x ≈ z [mod n ]
trans {x} {y} {z} {n} (modulo k₁ x-y≈k₁*n) (modulo k₂ y-z≈k₂*n) = modulo (k₁ + k₂) $ begin
x - z ≈⟨ +-congʳ (≈-sym (+-identityʳ x)) ⟩
x + 0# - z ≈⟨ +-congʳ (+-congˡ (≈-sym (-‿inverseˡ y))) ⟩
x + (- y + y) - z ≈⟨ +-congʳ (≈-sym (+-assoc x (- y) y)) ⟩
(x - y) + y - z ≈⟨ +-assoc (x - y) y (- z) ⟩
(x - y) + (y - z) ≈⟨ +-cong x-y≈k₁*n y-z≈k₂*n ⟩
(k₁ * n) + (k₂ * n) ≈⟨ ≈-sym (distribʳ n k₁ k₂) ⟩
(k₁ + k₂) * n ∎
+-compat : ∀ {a₁ a₂ b₁ b₂} {n} → a₁ ≈ b₁ [mod n ] → a₂ ≈ b₂ [mod n ] → a₁ + a₂ ≈ b₁ + b₂ [mod n ]
+-compat {a₁} {a₂} {b₁} {b₂} {n} (modulo k₁ a₁-b₁≈k₁*n) (modulo k₂ a₂-b₂≈k₂*n) = modulo (k₁ + k₂) $ begin
a₁ + a₂ - (b₁ + b₂) ≈⟨ +-assoc a₁ a₂ (- (b₁ + b₂)) ⟩
a₁ + (a₂ - (b₁ + b₂)) ≈⟨ +-congˡ (+-congˡ (≈-sym (-‿+-comm b₁ b₂))) ⟩
a₁ + (a₂ + (- b₁ - b₂)) ≈⟨ +-congˡ (≈-sym (+-assoc a₂ (- b₁) (- b₂))) ⟩
a₁ + (a₂ - b₁ - b₂) ≈⟨ +-congˡ (+-congʳ (+-comm a₂ (- b₁))) ⟩
a₁ + (- b₁ + a₂ - b₂) ≈⟨ +-congˡ (+-assoc (- b₁) a₂ (- b₂)) ⟩
a₁ + (- b₁ + (a₂ - b₂)) ≈⟨ ≈-sym (+-assoc a₁ (- b₁) (a₂ - b₂)) ⟩
(a₁ - b₁) + (a₂ - b₂) ≈⟨ +-cong a₁-b₁≈k₁*n a₂-b₂≈k₂*n ⟩
(k₁ * n) + (k₂ * n) ≈⟨ ≈-sym (distribʳ n k₁ k₂) ⟩
(k₁ + k₂) * n ∎
*-compat : ∀ {a₁ a₂ b₁ b₂} {n} → a₁ ≈ b₁ [mod n ] → a₂ ≈ b₂ [mod n ] → a₁ * a₂ ≈ b₁ * b₂ [mod n ]
*-compat {a₁} {a₂} {b₁} {b₂} {n} (modulo k₁ a₁-b₁≈k₁*n) (modulo k₂ a₂-b₂≈k₂*n) = modulo (a₂ * k₁ + b₁ * k₂) $ begin
a₁ * a₂ - b₁ * b₂ ≈⟨ +-congˡ (-‿cong (*-comm b₁ b₂)) ⟩
a₁ * a₂ - b₂ * b₁ ≈⟨ +-congʳ (≈-sym (+-identityʳ (a₁ * a₂))) ⟩
a₁ * a₂ + 0# - b₂ * b₁ ≈⟨ +-congʳ (+-congˡ lemma) ⟩
a₁ * a₂ + (- (b₁ * a₂) + a₂ * b₁) - b₂ * b₁ ≈⟨ +-congʳ (≈-sym (+-assoc (a₁ * a₂) (- (b₁ * a₂)) (a₂ * b₁))) ⟩
a₁ * a₂ - b₁ * a₂ + a₂ * b₁ - b₂ * b₁ ≈⟨ +-assoc (a₁ * a₂ - b₁ * a₂) (a₂ * b₁) (- (b₂ * b₁)) ⟩
(a₁ * a₂ - b₁ * a₂) + (a₂ * b₁ - b₂ * b₁) ≈⟨ +-cong (+-congˡ (-‿distribˡ-* b₁ a₂)) (+-congˡ (-‿distribˡ-* b₂ b₁)) ⟩
(a₁ * a₂ + (- b₁) * a₂) + (a₂ * b₁ + (- b₂) * b₁) ≈⟨ +-cong (≈-sym (distribʳ a₂ a₁ (- b₁))) (≈-sym (distribʳ b₁ a₂ (- b₂))) ⟩
(a₁ - b₁) * a₂ + (a₂ - b₂) * b₁ ≈⟨ +-cong (*-comm (a₁ - b₁) a₂) (*-comm (a₂ - b₂) b₁) ⟩
a₂ * (a₁ - b₁) + b₁ * (a₂ - b₂) ≈⟨ +-cong (*-congˡ a₁-b₁≈k₁*n) (*-congˡ a₂-b₂≈k₂*n) ⟩
a₂ * (k₁ * n) + b₁ * (k₂ * n) ≈⟨ +-cong (≈-sym (*-assoc a₂ k₁ n)) (≈-sym (*-assoc b₁ k₂ n)) ⟩
a₂ * k₁ * n + b₁ * k₂ * n ≈⟨ ≈-sym (distribʳ n (a₂ * k₁) (b₁ * k₂)) ⟩
(a₂ * k₁ + b₁ * k₂) * n ∎
where
lemma : 0# ≈ - (b₁ * a₂) + a₂ * b₁
lemma = begin
0# ≈⟨ ≈-sym (-‿inverseˡ (b₁ * a₂)) ⟩
- (b₁ * a₂) + b₁ * a₂ ≈⟨ +-congˡ (*-comm b₁ a₂) ⟩
- (b₁ * a₂) + a₂ * b₁ ∎
n*x≈0 : ∀ {x} {n} → n * x ≈ 0# [mod n ]
n*x≈0 {x} {n} = modulo x $ begin
n * x - 0# ≈⟨ +-congˡ -0#≈0# ⟩
n * x + 0# ≈⟨ +-identityʳ (n * x) ⟩
n * x ≈⟨ *-comm n x ⟩
x * n ∎
| 50.786517
| 127
| 0.434513
|
527339568a03fa0663812b7fb47dfd35f000bbea
| 3,310
|
agda
|
Agda
|
test/Succeed/Issue1544.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Succeed/Issue1544.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Succeed/Issue1544.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
-- Andreas, 2015-07-16 issue reported by G.Allais
-- This ought to pass, ideally, but the lack of positivity polymorphism
-- does not allow for a precise analysis of the composition operator.
--
-- Subsequently, the positivity analysis for tabulate returns no
-- positivity info for all arguments, leading to a rejection of
-- Command₃.
-- {-# OPTIONS -v tc.pos:10 #-}
open import Common.Product
open import Common.List
record ⊤ {a} : Set a where
_∘_ : ∀ {a b c}
{A : Set a} {B : A → Set b} {C : {x : A} → B x → Set c} →
(∀ {x} (y : B x) → C y) → (g : (x : A) → B x) →
((x : A) → C (g x))
f ∘ g = λ x → f (g x)
postulate
String : Set
USL = List String
data _∈_ a : USL → Set where
z : ∀ {xs} → a ∈ (a ∷ xs)
s : ∀ {b xs} → a ∈ xs → a ∈ (b ∷ xs)
[Fields] : (args : USL) → Set₁
[Fields] [] = ⊤
[Fields] (_ ∷ args) = Set × [Fields] args
[tabulate] : (args : USL) (ρ : {arg : _} (pr : arg ∈ args) → Set) → [Fields] args
[tabulate] [] ρ = _
[tabulate] (arg ∷ args) ρ = ρ z , [tabulate] args (λ x → ρ (s x))
[Record] : (args : USL) (f : [Fields] args) → Set
[Record] [] _ = ⊤
[Record] (hd ∷ args) (f , fs) = f × [Record] args fs
record Fields (args : USL) : Set₁ where
constructor mkFields
field
fields : [Fields] args
open Fields public
record Record (args : USL) (f : Fields args) : Set where
constructor mkRecord
field
content : [Record] args (fields f)
open Record public
module WORKS where
tabulate : {args : USL} (ρ : {arg : _} (pr : arg ∈ args) → Set) → Fields args
tabulate {args = args} ρ = mkFields ([tabulate] args ρ) -- WORKS
-- tabulate {args = args} = mkFields ∘ [tabulate] args -- FAILS
mutual
data Command₁ : Set where
mkCommand : (modifierNames : USL) →
Record modifierNames (tabulate (λ {s} _ → Modifier s)) → Command₁
record Command₂ : Set where
inductive
field
modifierNames : USL
modifiers : [Record] modifierNames ([tabulate] _ (λ {s} _ → Modifier s))
record Command₃ : Set where
inductive
field
modifierNames : USL
modifiers : Record modifierNames (tabulate (λ {s} _ → Modifier s))
data Modifier (name : String) : Set where
command₁ : Command₁ → Modifier name
command₂ : Command₂ → Modifier name
command₃ : Command₃ → Modifier name
module FAILS where
tabulate : {args : USL} (ρ : {arg : _} (pr : arg ∈ args) → Set) → Fields args
-- tabulate {args = args} ρ = mkFields ([tabulate] args ρ) -- WORKS
tabulate {args = args} = mkFields ∘ [tabulate] args -- FAILS
mutual
data Command₁ : Set where
mkCommand : (modifierNames : USL) →
Record modifierNames (tabulate (λ {s} _ → Modifier s)) → Command₁
record Command₂ : Set where
inductive
field
modifierNames : USL
modifiers : [Record] modifierNames ([tabulate] _ (λ {s} _ → Modifier s))
record Command₃ : Set where
inductive
field
modifierNames : USL
modifiers : Record modifierNames (tabulate (λ {s} _ → Modifier s))
data Modifier (name : String) : Set where
command₁ : Command₁ → Modifier name
command₂ : Command₂ → Modifier name
command₃ : Command₃ → Modifier name
| 28.782609
| 84
| 0.586103
|
1b931f8ffe5ab413a9fc40bf5daa62f3bb437db9
| 7,543
|
agda
|
Agda
|
TotalParserCombinators/Congruence.agda
|
nad/parser-combinators
|
76774f54f466cfe943debf2da731074fe0c33644
|
[
"MIT"
] | 1
|
2020-07-03T08:56:13.000Z
|
2020-07-03T08:56:13.000Z
|
TotalParserCombinators/Congruence.agda
|
nad/parser-combinators
|
76774f54f466cfe943debf2da731074fe0c33644
|
[
"MIT"
] | null | null | null |
TotalParserCombinators/Congruence.agda
|
nad/parser-combinators
|
76774f54f466cfe943debf2da731074fe0c33644
|
[
"MIT"
] | null | null | null |
------------------------------------------------------------------------
-- A language of parser equivalence proofs
------------------------------------------------------------------------
-- This module defines yet another set of equivalence relations and
-- preorders for parsers. For symmetric kinds these relations are
-- equalities (compatible equivalence relations) by construction, and
-- they are sound and complete with respect to the previously defined
-- equivalences (see TotalParserCombinators.Congruence.Sound for the
-- soundness proof). This means that parser and language equivalence
-- are also equalities. The related orderings are compatible
-- preorders.
module TotalParserCombinators.Congruence where
open import Codata.Musical.Notation
open import Data.List
open import Data.List.Relation.Binary.BagAndSetEquality
using (bag) renaming (_∼[_]_ to _List-∼[_]_)
open import Data.Maybe hiding (_>>=_)
open import Data.Nat hiding (_^_)
open import Data.Product
open import Data.Vec.Recursive
open import Function
open import Function.Related using (Symmetric-kind; ⌊_⌋)
open import Relation.Binary.PropositionalEquality using (_≡_; _≗_)
open import TotalParserCombinators.Derivative using (D)
open import TotalParserCombinators.CoinductiveEquality as CE
using (_∼[_]c_; _∷_)
open import TotalParserCombinators.Parser
open import TotalParserCombinators.Semantics
hiding ([_-_]_⊛_; [_-_]_>>=_)
infixl 50 [_-_]_⊛_ [_-_-_-_]_⊛_ _<$>_
infix 10 [_-_]_>>=_ [_-_-_-_]_>>=_
infixl 5 _∣_
infix 5 _∷_
infix 4 _∼[_]P_ ∞⟨_⟩_∼[_]P_ _≅P_ _≈P_
infix 3 _∎
infixr 2 _∼⟨_⟩_ _≅⟨_⟩_
------------------------------------------------------------------------
-- Helper functions
flatten₁ : {A : Set} → Maybe (Maybe A ^ 2) → Maybe A
flatten₁ nothing = nothing
flatten₁ (just (m , _)) = m
flatten₂ : {A : Set} → Maybe (Maybe A ^ 2) → Maybe A
flatten₂ nothing = nothing
flatten₂ (just (_ , m)) = m
------------------------------------------------------------------------
-- Equivalence proof programs
mutual
_≅P_ : ∀ {Tok R xs₁ xs₂} → Parser Tok R xs₁ → Parser Tok R xs₂ → Set₁
p₁ ≅P p₂ = p₁ ∼[ parser ]P p₂
_≈P_ : ∀ {Tok R xs₁ xs₂} → Parser Tok R xs₁ → Parser Tok R xs₂ → Set₁
p₁ ≈P p₂ = p₁ ∼[ language ]P p₂
data _∼[_]P_ {Tok} :
∀ {R xs₁ xs₂} →
Parser Tok R xs₁ → Kind → Parser Tok R xs₂ → Set₁ where
-- This constructor, which corresponds to CE._∷_, ensures that the
-- relation is complete.
_∷_ : ∀ {k R xs₁ xs₂}
{p₁ : Parser Tok R xs₁}
{p₂ : Parser Tok R xs₂}
(xs₁≈xs₂ : xs₁ List-∼[ k ] xs₂)
(Dp₁≈Dp₂ : ∀ t → ∞ (D t p₁ ∼[ k ]P D t p₂)) →
p₁ ∼[ k ]P p₂
-- Equational reasoning.
_∎ : ∀ {k R xs} (p : Parser Tok R xs) → p ∼[ k ]P p
_∼⟨_⟩_ : ∀ {k R xs₁ xs₂ xs₃}
(p₁ : Parser Tok R xs₁)
{p₂ : Parser Tok R xs₂}
{p₃ : Parser Tok R xs₃}
(p₁≈p₂ : p₁ ∼[ k ]P p₂) (p₂≈p₃ : p₂ ∼[ k ]P p₃) →
p₁ ∼[ k ]P p₃
_≅⟨_⟩_ : ∀ {k R xs₁ xs₂ xs₃}
(p₁ : Parser Tok R xs₁)
{p₂ : Parser Tok R xs₂}
{p₃ : Parser Tok R xs₃}
(p₁≅p₂ : p₁ ≅P p₂) (p₂≈p₃ : p₂ ∼[ k ]P p₃) →
p₁ ∼[ k ]P p₃
sym : ∀ {k : Symmetric-kind} {R xs₁ xs₂}
{p₁ : Parser Tok R xs₁}
{p₂ : Parser Tok R xs₂}
(p₁≈p₂ : p₁ ∼[ ⌊ k ⌋ ]P p₂) → p₂ ∼[ ⌊ k ⌋ ]P p₁
-- Congruences.
return : ∀ {k R} {x₁ x₂ : R}
(x₁≡x₂ : x₁ ≡ x₂) → return x₁ ∼[ k ]P return x₂
fail : ∀ {k R} → fail {R = R} ∼[ k ]P fail {R = R}
token : ∀ {k} → token ∼[ k ]P token
_∣_ : ∀ {k R xs₁ xs₂ xs₃ xs₄}
{p₁ : Parser Tok R xs₁}
{p₂ : Parser Tok R xs₂}
{p₃ : Parser Tok R xs₃}
{p₄ : Parser Tok R xs₄}
(p₁≈p₃ : p₁ ∼[ k ]P p₃) (p₂≈p₄ : p₂ ∼[ k ]P p₄) →
p₁ ∣ p₂ ∼[ k ]P p₃ ∣ p₄
_<$>_ : ∀ {k R₁ R₂} {f₁ f₂ : R₁ → R₂} {xs₁ xs₂}
{p₁ : Parser Tok R₁ xs₁}
{p₂ : Parser Tok R₁ xs₂}
(f₁≗f₂ : f₁ ≗ f₂) (p₁≈p₂ : p₁ ∼[ k ]P p₂) →
f₁ <$> p₁ ∼[ k ]P f₂ <$> p₂
[_-_]_⊛_ :
∀ {k R₁ R₂} xs₁xs₂ fs₁fs₂ →
let xs₁ = flatten₁ xs₁xs₂; xs₂ = flatten₂ xs₁xs₂
fs₁ = flatten₁ fs₁fs₂; fs₂ = flatten₂ fs₁fs₂ in
{p₁ : ∞⟨ xs₁ ⟩Parser Tok (R₁ → R₂) (flatten fs₁)}
{p₂ : ∞⟨ fs₁ ⟩Parser Tok R₁ (flatten xs₁)}
{p₃ : ∞⟨ xs₂ ⟩Parser Tok (R₁ → R₂) (flatten fs₂)}
{p₄ : ∞⟨ fs₂ ⟩Parser Tok R₁ (flatten xs₂)}
(p₁≈p₃ : ∞⟨ xs₁xs₂ ⟩ p₁ ∼[ k ]P p₃)
(p₂≈p₄ : ∞⟨ fs₁fs₂ ⟩ p₂ ∼[ k ]P p₄) →
p₁ ⊛ p₂ ∼[ k ]P p₃ ⊛ p₄
[_-_]_>>=_ :
∀ {k R₁ R₂} (f₁f₂ : Maybe (Maybe (R₁ → List R₂) ^ 2)) xs₁xs₂ →
let f₁ = flatten₁ f₁f₂; f₂ = flatten₂ f₁f₂
xs₁ = flatten₁ xs₁xs₂; xs₂ = flatten₂ xs₁xs₂ in
{p₁ : ∞⟨ f₁ ⟩Parser Tok R₁ (flatten xs₁)}
{p₂ : (x : R₁) → ∞⟨ xs₁ ⟩Parser Tok R₂ (apply f₁ x)}
{p₃ : ∞⟨ f₂ ⟩Parser Tok R₁ (flatten xs₂)}
{p₄ : (x : R₁) → ∞⟨ xs₂ ⟩Parser Tok R₂ (apply f₂ x)}
(p₁≈p₃ : ∞⟨ f₁f₂ ⟩ p₁ ∼[ k ]P p₃)
(p₂≈p₄ : ∀ x → ∞⟨ xs₁xs₂ ⟩ p₂ x ∼[ k ]P p₄ x) →
p₁ >>= p₂ ∼[ k ]P p₃ >>= p₄
nonempty : ∀ {k R xs₁ xs₂}
{p₁ : Parser Tok R xs₁} {p₂ : Parser Tok R xs₂}
(p₁≈p₂ : p₁ ∼[ k ]P p₂) → nonempty p₁ ∼[ k ]P nonempty p₂
cast : ∀ {k R xs₁ xs₂ xs₁′ xs₂′}
{p₁ : Parser Tok R xs₁} {p₂ : Parser Tok R xs₂}
{xs₁≈xs₁′ : xs₁ List-∼[ bag ] xs₁′}
{xs₂≈xs₂′ : xs₂ List-∼[ bag ] xs₂′}
(p₁≈p₂ : p₁ ∼[ k ]P p₂) →
cast xs₁≈xs₁′ p₁ ∼[ k ]P cast xs₂≈xs₂′ p₂
-- Certain proofs can be coinductive if both sides are delayed.
∞⟨_⟩_∼[_]P_ :
∀ {Tok R xs₁ xs₂} {A : Set} (m₁m₂ : Maybe (Maybe A ^ 2)) →
∞⟨ flatten₁ m₁m₂ ⟩Parser Tok R xs₁ → Kind →
∞⟨ flatten₂ m₁m₂ ⟩Parser Tok R xs₂ → Set₁
∞⟨ nothing ⟩ p₁ ∼[ k ]P p₂ = ∞ (♭ p₁ ∼[ k ]P ♭ p₂)
∞⟨ just _ ⟩ p₁ ∼[ k ]P p₂ = ♭? p₁ ∼[ k ]P ♭? p₂
------------------------------------------------------------------------
-- Some derived combinators
[_-_-_-_]_⊛_ :
∀ {k Tok R₁ R₂} xs₁ xs₂ fs₁ fs₂
{p₁ : ∞⟨ xs₁ ⟩Parser Tok (R₁ → R₂) (flatten fs₁)}
{p₂ : ∞⟨ fs₁ ⟩Parser Tok R₁ (flatten xs₁)}
{p₃ : ∞⟨ xs₂ ⟩Parser Tok (R₁ → R₂) (flatten fs₂)}
{p₄ : ∞⟨ fs₂ ⟩Parser Tok R₁ (flatten xs₂)} →
♭? p₁ ∼[ k ]P ♭? p₃ → ♭? p₂ ∼[ k ]P ♭? p₄ → p₁ ⊛ p₂ ∼[ k ]P p₃ ⊛ p₄
[ xs₁ - xs₂ - fs₁ - fs₂ ] p₁≈p₃ ⊛ p₂≈p₄ =
[ just (xs₁ , xs₂) - just (fs₁ , fs₂) ] p₁≈p₃ ⊛ p₂≈p₄
[_-_-_-_]_>>=_ :
∀ {k Tok R₁ R₂} (f₁ f₂ : Maybe (R₁ → List R₂)) xs₁ xs₂
{p₁ : ∞⟨ f₁ ⟩Parser Tok R₁ (flatten xs₁)}
{p₂ : (x : R₁) → ∞⟨ xs₁ ⟩Parser Tok R₂ (apply f₁ x)}
{p₃ : ∞⟨ f₂ ⟩Parser Tok R₁ (flatten xs₂)}
{p₄ : (x : R₁) → ∞⟨ xs₂ ⟩Parser Tok R₂ (apply f₂ x)} →
♭? p₁ ∼[ k ]P ♭? p₃ → (∀ x → ♭? (p₂ x) ∼[ k ]P ♭? (p₄ x)) →
p₁ >>= p₂ ∼[ k ]P p₃ >>= p₄
[ f₁ - f₂ - xs₁ - xs₂ ] p₁≈p₃ >>= p₂≈p₄ =
[ just (f₁ , f₂) - just (xs₁ , xs₂) ] p₁≈p₃ >>= p₂≈p₄
------------------------------------------------------------------------
-- Completeness
complete : ∀ {k Tok R xs₁ xs₂}
{p₁ : Parser Tok R xs₁}
{p₂ : Parser Tok R xs₂} →
p₁ ∼[ k ] p₂ → p₁ ∼[ k ]P p₂
complete = complete′ ∘ CE.complete
where
complete′ : ∀ {k Tok R xs₁ xs₂}
{p₁ : Parser Tok R xs₁}
{p₂ : Parser Tok R xs₂} →
p₁ ∼[ k ]c p₂ → p₁ ∼[ k ]P p₂
complete′ (xs₁≈xs₂ ∷ Dp₁≈Dp₂) =
xs₁≈xs₂ ∷ λ t → ♯ complete′ (♭ (Dp₁≈Dp₂ t))
| 36.264423
| 72
| 0.489195
|
fd34188eadde1857a4df4c2aba2f8916a14cacdf
| 520
|
agda
|
Agda
|
Groups/Polynomials/Examples.agda
|
Smaug123/agdaproofs
|
0f4230011039092f58f673abcad8fb0652e6b562
|
[
"MIT"
] | 4
|
2019-08-08T12:44:19.000Z
|
2022-01-28T06:04:15.000Z
|
Groups/Polynomials/Examples.agda
|
Smaug123/agdaproofs
|
0f4230011039092f58f673abcad8fb0652e6b562
|
[
"MIT"
] | 14
|
2019-01-06T21:11:59.000Z
|
2020-04-11T11:03:39.000Z
|
Groups/Polynomials/Examples.agda
|
Smaug123/agdaproofs
|
0f4230011039092f58f673abcad8fb0652e6b562
|
[
"MIT"
] | 1
|
2021-11-29T13:23:07.000Z
|
2021-11-29T13:23:07.000Z
|
{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Numbers.Integers.Integers
open import Numbers.Integers.Definition
open import Lists.Lists
open import Maybe
module Groups.Polynomials.Examples where
open import Groups.Polynomials.Definition ℤGroup
private
decide : _
decide = (λ a → ℤDecideEquality a (nonneg 0))
p1 : degree decide [] ≡ no
p1 = refl
p2 : degree decide (nonneg 0 :: []) ≡ no
p2 = refl
p3 : degree decide (nonneg 1 :: []) ≡ yes 0
p3 = refl
| 20
| 50
| 0.701923
|
3606fd92fe49378abd16c062c2d35651572e58bc
| 22,446
|
agda
|
Agda
|
Ex3.agda
|
clarkdm/CS410
|
523a8749f49c914bcd28402116dcbe79a78dbbf4
|
[
"CC0-1.0"
] | null | null | null |
Ex3.agda
|
clarkdm/CS410
|
523a8749f49c914bcd28402116dcbe79a78dbbf4
|
[
"CC0-1.0"
] | null | null | null |
Ex3.agda
|
clarkdm/CS410
|
523a8749f49c914bcd28402116dcbe79a78dbbf4
|
[
"CC0-1.0"
] | null | null | null |
module Ex3 where -- Conor: 5.5/15 (marked in sem 1 for 3.1-3.4)
-- really 5.5/7 then another 3/8 in sem 2, giving 8.5/15
----------------------------------------------------------------------------
-- EXERCISE 3 -- MONADS FOR HUTTON'S RAZOR
--
-- VALUE: 15%
-- DEADLINE: 5pm, Friday 20 November (week 9)
--
-- DON'T SUBMIT, COMMIT!
--
-- The purpose of this exercise is to introduce you to some useful
-- mathematical structures and build good tools for working with
-- vectors
----------------------------------------------------------------------------
open import CS410-Prelude
open import CS410-Monoid
open import CS410-Nat
open import CS410-Vec
open import CS410-Functor
-- HINT: your tasks are heralded with the eminently searchable tag, "???"
----------------------------------------------------------------------------
-- HUTTON'S RAZOR
----------------------------------------------------------------------------
HVal : Set -- the set of *values* for Hutton's Razor
HVal = Two + Nat -- Booleans or natural numbers
data HExp (X : Set) : Set where
var : X -> HExp X -- variables
val : HVal -> HExp X -- values
_+H_ _>=H_ : (e1 e2 : HExp X) -> HExp X -- addition, comparison
ifH_then_else_ : (e1 e2 e3 : HExp X) -> HExp X -- conditional
_>=2_ : Nat -> Nat -> Two
x >=2 zero = tt
zero >=2 suc _ = ff
suc m >=2 suc n = m >=2 n
----------------------------------------------------------------------------
-- ??? 3.1 the HExp syntax-with-substitution monad (score: 2 / 2)
----------------------------------------------------------------------------
-- Show that HExp is a monad, where the "bind" operation performs
-- simultaneous substitution (transforming all the variables in a term).
hExpMonad : Monad HExp
hExpMonad = record { return = λ x → var x
; _>>=_ = λ x f → hExpMonad>>= x f
; law1 = λ x f → refl
; law2 = λ t → hExpMonadLaw2 t
; law3 = λ f g t → hExpMonadLaw3 t g f
} where
hExpMonad>>= : {X Y : Set} → HExp X → (X → HExp Y) → HExp Y
hExpMonad>>= (var x) f = f x
hExpMonad>>= (val x) f = val x
hExpMonad>>= (x +H y) f = hExpMonad>>= x f +H hExpMonad>>= y f
hExpMonad>>= (x >=H y) f = hExpMonad>>= x f >=H hExpMonad>>= y f
hExpMonad>>= (ifH x then y else z) f = ifH hExpMonad>>= x f then
hExpMonad>>= y f else hExpMonad>>= z f
hExpMonadLaw2 : {X : Set} → (t : HExp X) → hExpMonad>>= t (λ x → var x) == t
hExpMonadLaw2 (var x) = refl
hExpMonadLaw2 (val x) = refl
hExpMonadLaw2 (x +H y) rewrite hExpMonadLaw2 x | hExpMonadLaw2 y = refl
hExpMonadLaw2 (x >=H y) rewrite hExpMonadLaw2 x | hExpMonadLaw2 y = refl
hExpMonadLaw2 (ifH x then y else z) rewrite hExpMonadLaw2 x | hExpMonadLaw2 y | hExpMonadLaw2 z = refl
hExpMonadLaw3 : {X Y Z : Set} → (t : HExp X) → (g : Y → HExp Z) → (f : X → HExp Y) → hExpMonad>>= (hExpMonad>>= t f) g == hExpMonad>>= t (λ x → hExpMonad>>= (f x) g)
hExpMonadLaw3 (var x) g t = refl
hExpMonadLaw3 (val x) g t = refl
hExpMonadLaw3 (f +H f₁) g t rewrite hExpMonadLaw3 f g t | hExpMonadLaw3 f₁ g t = refl
hExpMonadLaw3 (f >=H f₁) g t rewrite hExpMonadLaw3 f g t | hExpMonadLaw3 f₁ g t = refl
hExpMonadLaw3 (ifH f then f₁ else f₂) g t rewrite hExpMonadLaw3 f g t | hExpMonadLaw3 f₁ g t | hExpMonadLaw3 f₂ g t = refl
----------------------------------------------------------------------------
-- ??? 3.2 the error management monad (score: 1 / 1)
----------------------------------------------------------------------------
-- show that "+ E" is monadic, generalising the "Maybe" monad by allowing
-- some sort of error report
errorMonad : (E : Set) -> Monad \ V -> V + E -- "value or error"
errorMonad E = record { return = λ x → tt , x
; _>>=_ = errorMonad>>=
; law1 = λ x f → refl
; law2 = errorMonadLaw2
; law3 = errorMonadLaw3
} where
errorMonad>>= : {X Y : Set} → X + E → (X → Y + E) → Y + E
errorMonad>>= (tt , snd) y = y snd
errorMonad>>= (ff , snd) y = ff , snd
errorMonadLaw2 : {X : Set} (t : X + E) → errorMonad>>= t (λ x → tt , x) == t
errorMonadLaw2 (tt , snd) = refl
errorMonadLaw2 (ff , snd) = refl
errorMonadLaw3 : {X Y Z : Set} (f : X → Y + E) (g : Y → Z + E) (t : X + E) →
errorMonad>>= (errorMonad>>= t f) g == errorMonad>>= t
(λ x → errorMonad>>= (f x) g)
errorMonadLaw3 f g (tt , snd) = refl
errorMonadLaw3 f g (ff , snd) = refl
----------------------------------------------------------------------------
-- ??? 3.3 the environment monad transformer (score: 1 / 1)
----------------------------------------------------------------------------
-- show that any monad can be adapted to thread some environment information
-- as well as whatever else it already managed
envMonad : (G : Set){M : Set -> Set} -> Monad M ->
Monad \ V -> G -> M V -- "computation in an environment"
envMonad G {M} MM = record { return = λ {X} z _ → Monad.return MM z
; _>>=_ = λ {X} {Y} z z₁ z₂ → (MM Monad.>>= z z₂)
(λ z₃ → z₁ z₃ z₂)
; law1 = λ {X Y} x f → envMonadLaw1 f x
; law2 = envMonadLaw2
; law3 = envMonadLaw3
} where
open Monad MM
envMonadLaw1 : {X Y : Set} (f : X → G → M Y) -> (x : X) ->
(λ z₂ → return x >>= (λ z₃ → f z₃ z₂)) == f x
envMonadLaw1 f x = ext (λ g → Monad.law1 MM x (λ z → f z g))
envMonadLaw2 : {X : Set} (t : G → M X) →
(λ z₂ → t z₂ >>= (λ z₃ → return z₃)) == t
envMonadLaw2 x = ext (λ a → Monad.law2 MM (x a))
envMonadLaw3 : {X Y Z : Set} (f : X → G → M Y) (g : Y → G → M Z) (t : G → M X) →(λ z₂ → (t z₂ >>= (λ z₃ → f z₃ z₂)) >>= (λ z₃ → g z₃ z₂)) == (λ z₂ → t z₂ >>= (λ z₃ → f z₃ z₂ >>= (λ z₄ → g z₄ z₂)))
envMonadLaw3 f g t = ext (λ a → Monad.law3 MM (λ z → f z a) (λ z → g z a) (t a))
----------------------------------------------------------------------------
-- ??? 3.4 interpreting Hutton's Razor (score: 1.5 / 3)
----------------------------------------------------------------------------
-- Implement an interpreter for Hutton's Razor.
-- You will need to construct a type to represent possible run-time errors.
-- Ensure that addition and comparison act on numbers, not Booleans.
-- Ensure that the condition in an "if" is a Boolean, not a number.
data InterpretError : Set where
NotTwo : InterpretError
NotNat : InterpretError
-- helpful things to build
Env : Set -> Set -- an environment for a given set of variables
Env X = X -> HVal
Compute : Set{- variables -} -> Set{- values -} -> Set
Compute X V = Env X -> V + InterpretError -- how to compute a V
computeMonad : {Z : Set} -> Monad (Compute Z)
computeMonad {Z} = envMonad (Env Z) (errorMonad InterpretError)
-- build this from the above parts
-- This operation should explain how to get the value of a variable
-- from the environment.
varVal : {X : Set} -> X -> Compute X HVal
varVal x y = tt , (y x)
-- tt , (y x)
-- These operations should ensure that you get the sort of value
-- that you want, in order to ensure that you don't do bogus
-- computation.
mustBeNat : {X : Set} -> HVal -> Compute X Nat
mustBeNat (tt , tt) x = ff , NotNat -- Conor: more case analysis than needed
mustBeNat (tt , ff) x = ff , NotNat
mustBeNat (ff , zero) x = tt , zero -- Conor: more case analysis than needed
mustBeNat (ff , suc snd) x = tt , suc snd
mustBeTwo : {X : Set} -> HVal -> Compute X Two
mustBeTwo (tt , tt) x = tt , tt -- Conor: more case analysis than needed
mustBeTwo (tt , ff) x = tt , ff
mustBeTwo (ff , zero) x = ff , NotTwo -- Conor: more case analysis than needed
mustBeTwo (ff , suc snd) x = ff , NotTwo
-- Now, you're ready to go. Don't introduce the environment explicitly.
-- Use the monad to thread it.
interpret : {X : Set} -> HExp X -> Compute X HVal
interpret {X} = go where
open Monad (computeMonad {X})
go : HExp X -> Compute X HVal
-- Conor: you already have the right kit, so it's counterproductive to go down to this detail
go (var x) E = tt , (E x)
-- Conor: go (var x) = varVal x
go (val x) E = tt , x
go (t +H t₁) E = {!!}
-- Conor: go (l +H r) =
-- go l >>= \ lv -> -- lv : HVal
-- mustBeNat lv >>= \ ln -> -- ln : Nat
-- go r >>= \ rv -> -- rv : HVal
-- mustBeNat rv >>= \ rn -> -- rn : Nat
-- return (ln +N rn)
go (t >=H t₁) E = {!!}
go (ifH t then t₁ else t₂) E = {!!}
----------------------------------------------------------------------------
-- ??? 3.5 Typed Hutton's Razor (score: 0.5 / 1)
----------------------------------------------------------------------------
-- Labelling the expressions with their types gives strong guarantees
-- sooner (we can make it grammatically incorrect to add a bool to a
-- nat) and makes some things easier as (if we're adding them then we
-- know they are nats).
-- some names for the types we will use in our typed syntax.
data HType : Set where hTwo hNat : HType
-- mapping names for types to real types.
THVal : HType -> Set
THVal hTwo = Two
THVal hNat = Nat
-- A syntax for types expressions, indexed by typed variables. Compare
-- with the untyped HExp and fill in the missing expression formers,
-- we have shown you the way with _+H_. think: what can be guaranteed?
data THExp (X : HType -> Set) : HType -> Set where
var : forall {T} -> X T -> THExp X T
val : forall {T} -> THVal T -> THExp X T
_+H_ : THExp X hNat -> THExp X hNat -> THExp X hNat
_>=H_ : THExp X hNat -> THExp X hTwo {- Conor: hNat here! -} -> THExp X hTwo
ifH_then_else_ : forall {T} -> THExp X hTwo -> THExp X T -> THExp X T -> THExp X T
-- ??? fill in the other two constructs, typed appropriately
-- (remember that "if then else" can compute values at any type)
----------------------------------------------------------------------------
-- ??? 3.6 Well Typed Programs Don't Go Wrong (score: 0 / 1)
----------------------------------------------------------------------------
-- notation for functions betweeen indexed sets (e.g. indexed by types)
_-:>_ : {I : Set}(S T : I -> Set) -> I -> Set
(S -:> T) i = S i -> T i
infixr 3 _-:>_
-- notation for indexed sets
[_] : {I : Set}(X : I -> Set) -> Set
[ X ] = forall {i} -> X i
-- We can put the two together to make types like
-- [ S -:> T ]
-- = forall {i} -> S i -> T i
-- which is the type of functions which work at any index
-- and respect that index. That'll be very useful in just a moment.
-- An evaluator for typed terms, it takes an environment for
-- variables (a function mapping variables to values) and a expression
-- and returns a value). Written as below it looks like it lifts a
-- function from variables to values to a function from terms to
-- values.
eval : {X : HType -> Set} -> [ X -:> THVal ] -> [ THExp X -:> THVal ]
eval g (var x) = g x
eval g (val x) = x
eval g (t +H t1) = eval g t +N eval g t
eval g (t >=H t1) = eval g t >=2 eval g t
eval g (ifH t then t1 else t2) = if eval g t then eval g t1 else eval g t1
-- Conor: all three step cases get the wrong answers
-- Note that the environment is an *index-respecting* function from
-- variables to values. The index is the type of the variable: you're
-- making sure that when you look up a variable of a given type, you
-- get a value of that type. As a result, you can deliver a *type-safe*
-- evaluator: when an expression has a given type, its value must have
-- that type.
----------------------------------------------------------------------------
-- ??? 3.7 Variable Contexts (score: 1 / 1)
----------------------------------------------------------------------------
-- backwards lists.
data Bwd (X : Set) : Set where
[] : Bwd X
_/_ : Bwd X -> X -> Bwd X
-- Our datatype for type indexed expressions is very liberal about
-- variables, they can be any set indexed by types. Here we build
-- something more structured, that nevertheless satisfies the specification
-- We will not use names for variables only numbers.
-- Hence, a context is just a list of types.
Context : Set
Context = Bwd HType
-- Well scoped and well typed variables, top = 0, pop = suc.
-- top is the variable on the right hand end of a non-empty context.
-- pop takes a variable and extends puts it into a longer context.
data Var : (G : Context)(T : HType) -> Set where
top : {G : Context}{T : HType} -> Var (G / T) T
pop : {G : Context}{T S : HType} -> Var G T -> Var (G / S) T
-- We can also represent environments as stacks, as opposed to functions.
-- You can read a variable as the sequence of instructions for extracting
-- a value from a stack: you keep popping stuff off until the value you
-- want is the the one at the top.
Stack : Context -> Set
Stack [] = One
Stack (G / S) = Stack G * THVal S
-- Looking up a value for a variable in an an environment or fetching
-- something from a stack given a sequence of pop and top
-- instructions. It's all the same to us!
fetch : {G : Context} -> Stack G -> [ Var G -:> THVal ]
fetch g top = snd g
fetch g (pop v) = fetch (fst g) v
-- An evaluator for expression with more structured variables. We
-- already know how to evaluate, we just have to explain how to deal
-- with manage the different style of environment.
evalStack : {G : Context}{T : HType} ->
Stack G -> [ THExp (Var G) -:> THVal ]
evalStack g = eval (fetch g)
----------------------------------------------------------------------------
-- ??? 3.8 Terms-With-One-Hole (score: 1 / 1)
----------------------------------------------------------------------------
-- Next, we build some kit that we'll use to present type errors.
-- Here we represent an expression with a bit missing. Addition can have
-- have a bit missing (a hole) on the right or on the left. What about
-- the other expression formers?
data HExp' (X : Set) : Set where
[]+H_ _+H[] : HExp X -> HExp' X
[]>=H_ _>=H[] : HExp X -> HExp' X
ifH[]then_else_ ifH_then[]else_ ifH_then_else[] : HExp X -> HExp X -> HExp' X
-- ??? more constructors here
-- specifically, you will need a constructor for each way that a
-- subexpression can fit inside an expression;
-- we use the naming convention of showing where the "hole" is
-- by putting [] in the corresponding place in the name.
-- take a expression with a hole, and a expression to plug in and plug
-- it in!
_[]<-_ : forall {X} -> HExp' X -> HExp X -> HExp X
([]+H r) []<- t = t +H r
(l +H[]) []<- t = l +H t
([]>=H r) []<- t = t >=H r
(l >=H[]) []<- t = l >=H t
(ifH[]then l else r) []<- t = ifH t then l else r
(ifH e then[]else r) []<- t = ifH e then t else r
(ifH e then l else[]) []<- t = ifH e then l else t
-- ??? more cases here
{-
data List (X : Set) : Set where -- X scopes over the whole declaration...
[] : List X -- ...so you can use it here...
_::_ : X -> List X -> List X -- ...and here.
infixr 3 _::_
-}
-- As we descend down into a term we can keep the pieces we pass along
-- the way in a list, this is a zipper. For example, given the
-- expression 3 + (4 + 5) we could go down by going right and right
-- again to reach 5. In our list we would have [ 4 + [] , 3 + [] ].
-- we need an operation that takes us back up to the root of the tree,
-- restoring the expression to its former state (e.g. 3 + (4 + 5)).
rootToHole : forall {X} -> List (HExp' X) -> HExp X -> HExp X
rootToHole [] t = t
rootToHole (t' :: t's) t = t' []<- rootToHole t's t
-- The idea is that the pair of a List (HExp' X) and a single
-- HExp X together represent a term with a designated subterm "in focus".
-- The list of one-hole terms represents the *path* to the designated
-- subterm, together with the *other stuff* hanging off to either side
-- of that path.
----------------------------------------------------------------------------
-- ??? 3.9 Forgetting Types (score: 0.5 / 1)
----------------------------------------------------------------------------
-- SUSPICION: why would we want to?
-- Given a typed term (THEXP X T) we can forget the types to obtain an
-- untyped term (HExp Y) if we know how to forget types from variables
-- (varFog).
termFog : {X : HType -> Set}{Y : Set}(varFog : {T : HType} -> X T -> Y) ->
{T : HType} -> THExp X T -> HExp Y
termFog vF (var x) = var (vF x)
termFog vF (val x) = {!x!} -- Conor: need to find the type
termFog vF (t +H t1) = (termFog vF t) +H (termFog vF t1)
termFog vF (t >=H t1) = (termFog vF t) >=H (termFog vF t1)
termFog vF (ifH t then t1 else t2) = ifH (termFog vF t) then (termFog vF t1) else (termFog vF t2)
-- Note that it's a local naming convention to call functions which
-- forget information "fog". When it is foggy, you can see less.
-- Our purpose in writing a function to throw away information is to
-- *specify* what it means to *obtain* information.
----------------------------------------------------------------------------
-- ??? 3.10 A Typechecking View (score: 0 / 3)
----------------------------------------------------------------------------
-- We finish by building a typechecker which will allow us to detect
-- when an untyped Hutton's Razor term can be converted into a typed
-- term (and evaluated safely without rechecking). We make use of
-- your solution to part 3.9 to express the idea that
-- an untyped term is the forgetful image of a typed term we know
-- and your solution to part 3.8 to express the idea that
-- an untyped term can be focused at a place where there is a type error
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
-- But first, we need to build you a wee bit more kit. Typechecking relies
-- on checking that the type you want is the type you've got, which sometimes
-- means testing *equality* of types. It's not enough to have a function
-- htypeEq : HType -> HType -> Two
-- because we need to convince *Agda* of the equality, not just write a function
-- that happens to say yes to equal things.
-- a set with one element removed, i.e. X -[ x ] is the pair of some y in X and
-- a proof that y isn't x
_-[_] : (X : Set) -> X -> Set
X -[ x ] = Sg X \ y -> x == y -> Zero
-- a view for comparing types for equality
data HTypeComparable (T : HType) : HType -> Set where
same : HTypeComparable T T
diff : (SnT : HType -[ T ]) -> HTypeComparable T (fst SnT)
-- the above view type presents is two options, and in both of them, we
-- have to come through with enough evidence to convince Agda
-- implementing the view
hTypeCompare : (S T : HType) -> HTypeComparable S T
hTypeCompare hTwo hTwo = same
hTypeCompare hTwo hNat = diff (hNat , \ ())
hTypeCompare hNat hTwo = diff (hTwo , \ ())
hTypeCompare hNat hNat = same
-- we write the obvious four cases; in the "same" cases, the types really
-- do match; in the "diff" cases, Agda can rule out the equation hTwo == hNat
-- (or vice versa) because it knows the constructors of datatypes differ
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
-- But back to our typechecker. To make things easier, we'll assume
-- that our supplier has already been kind enough to do *scope* checking,
-- so that all the variables written by the programmer have been looked
-- up and turned into typed references.
-- a reference: a pair of a type and a variable of that type.
Ref : Context -> Set
Ref G = Sg HType (Var G)
-- making a reference
ref : forall {G S} -> Var G S -> Ref G
ref {G}{S} v = S , v
-- ??? At last, your bit! Show that the following view type covers all
-- untyped terms:
-- either things go well and get the 'ok' and a well typed term
-- or something went wrong down in the expression tree somewhere,
-- so we can explain where that is.
data Checkable (G : Context) -- the context of typed variables in scope
(T : HType) -- the type we expect
:
HExp (Ref G) -- the untyped term we hope has type T
-> Set where -- one of two situations applies
-- either
ok : (t : THExp (Var G) T) -- we have a term of type T
-> Checkable G T (termFog ref t) -- and it's what we're checking
-- or
err : (t's : List (HExp' (Ref G))) -- there's some surroundings
(s : HExp (Ref G)) -- and a subterm of interest
-> Checkable G T (rootToHole t's s) -- in what we're checking
check : (G : Context)(T : HType)(h : HExp (Ref G)) -> Checkable G T h
check G T h = {!!}
-- Now, this isn't quite the whole story, but it's pretty good. We've
-- guaranteed that
-- * if we say yes, it's because we've found the typed version
-- of the untyped input
-- * if we say no, we can point to a place where (we say that) there's a
-- problem
-- So we're *sound* (we never say yes to bad things), but not necessarily
-- *complete* (we can say no to good things). Nothing stops us reporting a
-- bogus type error at the subterm of our choosing! We could work harder
-- and define, in the same way as the typed terms, the "terrors", being
-- the terms containing at least one type error. The canny way to do that
-- is to try writing the typechecker, then grow the datatype that describes
-- all the failure cases.
------------------------------------------------------------------------------
--
-- If you want to read around this topic, you may be interested in
--
-- The Zipper
-- Gerard Huet
-- Journal of Functional Programming, 1997.
--
-- Monadic presentations of lambda terms using generalized inductive types
-- Thorsten Altenkirch and Bernhard Reus
-- Computer Science Logic, 1999.
--
-- An exercise in dependent types: A well-typed interpreter
-- Lennart Augustsson and Magnus Carlsson
-- Workshop on Dependent Types in Programming, Gothenburg, 1999.
--
-- The view from the left
-- Conor McBride and James McKinna
-- Journal of Functional Programming, 2004.
| 41.337017
| 198
| 0.556179
|
1bb0ce1b708d94069f5c7cec134dff49c00b7cd8
| 1,629
|
agda
|
Agda
|
test/succeed/FlexibleFunArity.agda
|
larrytheliquid/agda
|
477c8c37f948e6038b773409358fd8f38395f827
|
[
"MIT"
] | 1
|
2018-10-10T17:08:44.000Z
|
2018-10-10T17:08:44.000Z
|
test/succeed/FlexibleFunArity.agda
|
masondesu/agda
|
70c8a575c46f6a568c7518150a1a64fcd03aa437
|
[
"MIT"
] | null | null | null |
test/succeed/FlexibleFunArity.agda
|
masondesu/agda
|
70c8a575c46f6a568c7518150a1a64fcd03aa437
|
[
"MIT"
] | 1
|
2022-03-12T11:35:18.000Z
|
2022-03-12T11:35:18.000Z
|
-- {-# OPTIONS --no-coverage-check #-}
-- {-# OPTIONS -v tc.lhs:40 #-}
module FlexibleFunArity where
open import Common.Equality
data Bool : Set where true false : Bool
data Maybe (A : Set) : Set where
nothing : Maybe A
just : A → Maybe A
Case : {A : Set} → Maybe A → Set → Set → Set
Case nothing B C = B
Case (just _) B C = C
sample : {A : Set} (m : Maybe A) → Case m Bool (Maybe A → Bool)
sample (just a) (just b) = true
sample (just a) nothing = false
sample nothing = true
g : Bool -> Bool -> Bool
g false true = false
g true = \ x -> true
g false false = true
-- g true false = false -- Unreachable clause
testg1 : ∀ {x} → g true x ≡ true
testg1 = refl
testg2 : g false true ≡ false
testg2 = refl
testg3 : g false false ≡ true
testg3 = refl
T : Bool -> Set
T true = Bool
T false = Bool -> Bool
f : (b : Bool) -> T b
f false true = false
f false false = true
f true = true
testf1 : f true ≡ true
testf1 = refl
testf2 : f false true ≡ false
testf2 = refl
testf3 : f false false ≡ true
testf3 = refl
{- checking clause
f false true
starts with
f (b : Bool) : T b
splits on b
f true -- no match, discard
f false -- matches
instantiate type
f false : T false = Bool -> Bool
extend clause
f false (y : Bool) : Bool
split on y
f false true -- matches
f false false -- no match, discard
done
-}
{- coverage check starts with
f (x : Bool)
splits on x
f true -- finds clause 1
f false
NEW: remaing clauses have bigger arity, so expands to
f false (y : Bool)
splits on y
f false true -- finds clause 2
f false false -- finds clause 3
done
-}
| 15.224299
| 63
| 0.624923
|
1e5d9d95a62d3a8e52ae99df85540cc64bd7c11a
| 632
|
agda
|
Agda
|
Cubical/Data/Nat/Literals.agda
|
borsiemir/cubical
|
cefeb3669ffdaea7b88ae0e9dd258378418819ca
|
[
"MIT"
] | 1
|
2020-03-23T23:52:11.000Z
|
2020-03-23T23:52:11.000Z
|
Cubical/Data/Nat/Literals.agda
|
borsiemir/cubical
|
cefeb3669ffdaea7b88ae0e9dd258378418819ca
|
[
"MIT"
] | null | null | null |
Cubical/Data/Nat/Literals.agda
|
borsiemir/cubical
|
cefeb3669ffdaea7b88ae0e9dd258378418819ca
|
[
"MIT"
] | null | null | null |
{-
Importing and re-exporting this module allows for (constrained) natural number
and negative integer literals for any type (e.g. Int, ℕ₋₁, ℕ₋₂, ℕ₊₁).
-}
{-# OPTIONS --cubical --no-exact-split --safe #-}
module Cubical.Data.Nat.Literals where
open import Agda.Builtin.FromNat public
renaming (Number to HasFromNat)
open import Agda.Builtin.FromNeg public
renaming (Negative to HasFromNeg)
open import Cubical.Data.Unit.Base public
-- Natural number literals for ℕ
open import Agda.Builtin.Nat renaming (Nat to ℕ)
instance
fromNatℕ : HasFromNat ℕ
fromNatℕ = record { Constraint = λ _ → Unit ; fromNat = λ n → n }
| 27.478261
| 80
| 0.732595
|
03e3495f88bf43678951313e2dfaa03c5ad9e29d
| 1,102
|
agda
|
Agda
|
src/HIT/Interval.agda
|
vituscze/HoTT-lectures
|
7730385adfdbdda38ee8b124be3cdeebb7312c65
|
[
"BSD-3-Clause"
] | null | null | null |
src/HIT/Interval.agda
|
vituscze/HoTT-lectures
|
7730385adfdbdda38ee8b124be3cdeebb7312c65
|
[
"BSD-3-Clause"
] | null | null | null |
src/HIT/Interval.agda
|
vituscze/HoTT-lectures
|
7730385adfdbdda38ee8b124be3cdeebb7312c65
|
[
"BSD-3-Clause"
] | null | null | null |
{-# OPTIONS --without-K #-}
module HIT.Interval where
open import PathOperations
open import PathStructure.Id.Tr
open import Types
module I-Definition where
private
data #I : Set where
#0 : #I
#1 : #I
I : Set
I = #I
0ᵢ : I
0ᵢ = #0
1ᵢ : I
1ᵢ = #1
postulate
seg : 0ᵢ ≡ 1ᵢ
I-ind : ∀ {p} (P : I → Set p)
(x₀ : P 0ᵢ) (x₁ : P 1ᵢ) (p : tr P seg x₀ ≡ x₁) →
∀ i → P i
I-ind P x₀ x₁ p #0 = x₀
I-ind P x₀ x₁ p #1 = x₁
postulate
I-β-i : ∀ {p} (P : I → Set p)
(x₀ : P 0ᵢ) (x₁ : P 1ᵢ)
(p : tr P seg x₀ ≡ x₁) →
apd (I-ind P x₀ x₁ p) seg ≡ p
I-rec : ∀ {p} {P : Set p}
(x₀ x₁ : P) (p : x₀ ≡ x₁)
(i : I) → P
I-rec x₀ x₁ p #0 = x₀
I-rec x₀ x₁ p #1 = x₁
postulate
I-β-r : ∀ {p} {P : Set p}
(x₀ x₁ : P) (p : x₀ ≡ x₁) →
ap (I-rec x₀ x₁ p) seg ≡ p
open I-Definition public
from-path-space : ∀ {a} {A : Set a} →
(Σ A λ x → Σ A λ y → x ≡ y) → I → A
from-path-space (x , y , p) = I-rec x y p
to-path-space : ∀ {a} {A : Set a} →
(I → A) → Σ A λ x → Σ A λ y → x ≡ y
to-path-space f = f 0ᵢ , f 1ᵢ , ap f seg
| 19
| 52
| 0.470962
|
37484354d2a350654a543753807f9ab8e0e9ee92
| 14,059
|
agda
|
Agda
|
Cubical/HITs/S1/Base.agda
|
limemloh/cubical
|
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
|
[
"MIT"
] | null | null | null |
Cubical/HITs/S1/Base.agda
|
limemloh/cubical
|
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
|
[
"MIT"
] | null | null | null |
Cubical/HITs/S1/Base.agda
|
limemloh/cubical
|
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
|
[
"MIT"
] | null | null | null |
{-
Definition of the circle as a HIT with a proof that Ω(S¹) ≡ ℤ
-}
{-# OPTIONS --cubical --safe #-}
module Cubical.HITs.S1.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.GroupoidLaws
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Univalence
open import Cubical.Data.Nat
hiding (_+_ ; _*_ ; +-assoc ; +-comm)
open import Cubical.Data.Int
data S¹ : Type₀ where
base : S¹
loop : base ≡ base
-- Check that transp is the identity function for S¹
module _ where
transpS¹ : ∀ (φ : I) (u0 : S¹) → transp (λ _ → S¹) φ u0 ≡ u0
transpS¹ φ u0 = refl
compS1 : ∀ (φ : I) (u : ∀ i → Partial φ S¹) (u0 : S¹ [ φ ↦ u i0 ]) →
comp (λ _ → S¹) u (outS u0) ≡ hcomp u (outS u0)
compS1 φ u u0 = refl
helix : S¹ → Type₀
helix base = Int
helix (loop i) = sucPathInt i
ΩS¹ : Type₀
ΩS¹ = base ≡ base
encode : ∀ x → base ≡ x → helix x
encode x p = subst helix p (pos zero)
winding : ΩS¹ → Int
winding = encode base
intLoop : Int → ΩS¹
intLoop (pos zero) = refl
intLoop (pos (suc n)) = intLoop (pos n) ∙ loop
intLoop (negsuc zero) = sym loop
intLoop (negsuc (suc n)) = intLoop (negsuc n) ∙ sym loop
decodeSquare : (n : Int) → PathP (λ i → base ≡ loop i) (intLoop (predInt n)) (intLoop n)
decodeSquare (pos zero) i j = loop (i ∨ ~ j)
decodeSquare (pos (suc n)) i j = hfill (λ k → λ { (j = i0) → base
; (j = i1) → loop k } )
(inS (intLoop (pos n) j)) i
decodeSquare (negsuc n) i j = hcomp (λ k → λ { (i = i1) → intLoop (negsuc n) j
; (j = i0) → base
; (j = i1) → loop (i ∨ ~ k) })
(intLoop (negsuc n) j)
decode : (x : S¹) → helix x → base ≡ x
decode base = intLoop
decode (loop i) y j =
let n : Int
n = unglue (i ∨ ~ i) y
in hcomp (λ k → λ { (i = i0) → intLoop (predSuc y k) j
; (i = i1) → intLoop y j
; (j = i0) → base
; (j = i1) → loop i })
(decodeSquare n i j)
decodeEncode : (x : S¹) (p : base ≡ x) → decode x (encode x p) ≡ p
decodeEncode x p = J (λ y q → decode y (encode y q) ≡ q) (λ _ → refl) p
isSetΩS¹ : isSet ΩS¹
isSetΩS¹ p q r s j i =
hcomp (λ k → λ { (i = i0) → decodeEncode base p k
; (i = i1) → decodeEncode base q k
; (j = i0) → decodeEncode base (r i) k
; (j = i1) → decodeEncode base (s i) k })
(decode base (isSetInt (winding p) (winding q) (cong winding r) (cong winding s) j i))
-- This proof does not rely on rewriting hcomp with empty systems in
-- Int as ghcomp has been implemented!
windingIntLoop : (n : Int) → winding (intLoop n) ≡ n
windingIntLoop (pos zero) = refl
windingIntLoop (pos (suc n)) = cong sucInt (windingIntLoop (pos n))
windingIntLoop (negsuc zero) = refl
windingIntLoop (negsuc (suc n)) = cong predInt (windingIntLoop (negsuc n))
ΩS¹≡Int : ΩS¹ ≡ Int
ΩS¹≡Int = isoToPath (iso winding intLoop windingIntLoop (decodeEncode base))
-- intLoop and winding are group homomorphisms
private
intLoop-sucInt : (z : Int) → intLoop (sucInt z) ≡ intLoop z ∙ loop
intLoop-sucInt (pos n) = refl
intLoop-sucInt (negsuc zero) = sym (lCancel loop)
intLoop-sucInt (negsuc (suc n)) =
rUnit (intLoop (negsuc n))
∙ (λ i → intLoop (negsuc n) ∙ lCancel loop (~ i))
∙ assoc (intLoop (negsuc n)) (sym loop) loop
intLoop-predInt : (z : Int) → intLoop (predInt z) ≡ intLoop z ∙ sym loop
intLoop-predInt (pos zero) = lUnit (sym loop)
intLoop-predInt (pos (suc n)) =
rUnit (intLoop (pos n))
∙ (λ i → intLoop (pos n) ∙ (rCancel loop (~ i)))
∙ assoc (intLoop (pos n)) loop (sym loop)
intLoop-predInt (negsuc n) = refl
intLoop-hom : (a b : Int) → (intLoop a) ∙ (intLoop b) ≡ intLoop (a + b)
intLoop-hom a (pos zero) = sym (rUnit (intLoop a))
intLoop-hom a (pos (suc n)) =
assoc (intLoop a) (intLoop (pos n)) loop
∙ (λ i → (intLoop-hom a (pos n) i) ∙ loop)
∙ sym (intLoop-sucInt (a + pos n))
intLoop-hom a (negsuc zero) = sym (intLoop-predInt a)
intLoop-hom a (negsuc (suc n)) =
assoc (intLoop a) (intLoop (negsuc n)) (sym loop)
∙ (λ i → (intLoop-hom a (negsuc n) i) ∙ (sym loop))
∙ sym (intLoop-predInt (a + negsuc n))
winding-hom : (a b : ΩS¹) → winding (a ∙ b) ≡ (winding a) + (winding b)
winding-hom a b i =
hcomp (λ t → λ { (i = i0) → winding (decodeEncode base a t ∙ decodeEncode base b t)
; (i = i1) → windingIntLoop (winding a + winding b) t })
(winding (intLoop-hom (winding a) (winding b) i))
-- Based homotopy group
basedΩS¹ : (x : S¹) → Type₀
basedΩS¹ x = x ≡ x
-- Proof that the homotopy group is actually independent on the basepoint
-- first, give a quasi-inverse to the basechange basedΩS¹→ΩS¹ for any loop i
-- (which does *not* match at endpoints)
private
ΩS¹→basedΩS¹-filler : I → I → ΩS¹ → I → S¹
ΩS¹→basedΩS¹-filler l i x j =
hfill (λ t → λ { (j = i0) → loop (i ∧ t)
; (j = i1) → loop (i ∧ t) })
(inS (x j)) l
basedΩS¹→ΩS¹-filler : (_ i : I) → basedΩS¹ (loop i) → I → S¹
basedΩS¹→ΩS¹-filler l i x j =
hfill (λ t → λ { (j = i0) → loop (i ∧ (~ t))
; (j = i1) → loop (i ∧ (~ t)) })
(inS (x j)) l
ΩS¹→basedΩS¹ : (i : I) → ΩS¹ → basedΩS¹ (loop i)
ΩS¹→basedΩS¹ i x j = ΩS¹→basedΩS¹-filler i1 i x j
basedΩS¹→ΩS¹ : (i : I) → basedΩS¹ (loop i) → ΩS¹
basedΩS¹→ΩS¹ i x j = basedΩS¹→ΩS¹-filler i1 i x j
basedΩS¹→ΩS¹→basedΩS¹ : (i : I) → (x : basedΩS¹ (loop i))
→ ΩS¹→basedΩS¹ i (basedΩS¹→ΩS¹ i x) ≡ x
basedΩS¹→ΩS¹→basedΩS¹ i x j k =
hcomp (λ t → λ { (j = i1) → basedΩS¹→ΩS¹-filler (~ t) i x k
; (j = i0) → ΩS¹→basedΩS¹ i (basedΩS¹→ΩS¹ i x) k
; (k = i0) → loop (i ∧ (t ∨ (~ j)))
; (k = i1) → loop (i ∧ (t ∨ (~ j))) })
(ΩS¹→basedΩS¹-filler (~ j) i (basedΩS¹→ΩS¹ i x) k)
ΩS¹→basedΩS¹→ΩS¹ : (i : I) → (x : ΩS¹)
→ basedΩS¹→ΩS¹ i (ΩS¹→basedΩS¹ i x) ≡ x
ΩS¹→basedΩS¹→ΩS¹ i x j k =
hcomp (λ t → λ { (j = i1) → ΩS¹→basedΩS¹-filler (~ t) i x k
; (j = i0) → basedΩS¹→ΩS¹ i (ΩS¹→basedΩS¹ i x) k
; (k = i0) → loop (i ∧ ((~ t) ∧ j))
; (k = i1) → loop (i ∧ ((~ t) ∧ j)) })
(basedΩS¹→ΩS¹-filler (~ j) i (ΩS¹→basedΩS¹ i x) k)
-- from the existence of our quasi-inverse, we deduce that the basechange is an equivalence
-- for all loop i
basedΩS¹→ΩS¹-isequiv : (i : I) → isEquiv (basedΩS¹→ΩS¹ i)
basedΩS¹→ΩS¹-isequiv i = isoToIsEquiv (iso (basedΩS¹→ΩS¹ i) (ΩS¹→basedΩS¹ i)
(ΩS¹→basedΩS¹→ΩS¹ i) (basedΩS¹→ΩS¹→basedΩS¹ i))
-- now extend the basechange so that both ends match
-- (and therefore we get a basechange for any x : S¹)
private
loop-conjugation : basedΩS¹→ΩS¹ i1 ≡ λ x → x
loop-conjugation i x =
let p = (doubleCompPath-elim loop x (sym loop))
∙ (λ i → (lUnit loop i ∙ x) ∙ sym loop)
in
((sym (decodeEncode base (basedΩS¹→ΩS¹ i1 x)))
∙ (λ t → intLoop (winding (p t)))
∙ (λ t → intLoop (winding-hom (intLoop (pos (suc zero)) ∙ x)
(intLoop (negsuc zero)) t))
∙ (λ t → intLoop ((winding-hom (intLoop (pos (suc zero))) x t)
+ (windingIntLoop (negsuc zero) t)))
∙ (λ t → intLoop (((windingIntLoop (pos (suc zero)) t) + (winding x)) + (negsuc zero)))
∙ (λ t → intLoop ((+-comm (pos (suc zero)) (winding x) t) + (negsuc zero)))
∙ (λ t → intLoop (+-assoc (winding x) (pos (suc zero)) (negsuc zero) (~ t)))
∙ (decodeEncode base x)) i
refl-conjugation : basedΩS¹→ΩS¹ i0 ≡ λ x → x
refl-conjugation i x j =
hfill (λ t → λ { (j = i0) → base
; (j = i1) → base })
(inS (x j)) (~ i)
basechange : (x : S¹) → basedΩS¹ x → ΩS¹
basechange base y = y
basechange (loop i) y =
hcomp (λ t → λ { (i = i0) → refl-conjugation t y
; (i = i1) → loop-conjugation t y })
(basedΩS¹→ΩS¹ i y)
-- for any loop i, the old basechange is equal to the new one
basedΩS¹→ΩS¹≡basechange : (i : I) → basedΩS¹→ΩS¹ i ≡ basechange (loop i)
basedΩS¹→ΩS¹≡basechange i j y =
hfill (λ t → λ { (i = i0) → refl-conjugation t y
; (i = i1) → loop-conjugation t y })
(inS (basedΩS¹→ΩS¹ i y)) j
-- so for any loop i, the extended basechange is an equivalence
basechange-isequiv-aux : (i : I) → isEquiv (basechange (loop i))
basechange-isequiv-aux i =
transport (λ j → isEquiv (basedΩS¹→ΩS¹≡basechange i j)) (basedΩS¹→ΩS¹-isequiv i)
-- as being an equivalence is contractible, basechange is an equivalence for all x : S¹
basechange-isequiv : (x : S¹) → isEquiv (basechange x)
basechange-isequiv base = basechange-isequiv-aux i0
basechange-isequiv (loop i) =
hcomp (λ t → λ { (i = i0) → basechange-isequiv-aux i0
; (i = i1) → isPropIsEquiv (basechange base) (basechange-isequiv-aux i1)
(basechange-isequiv-aux i0) t })
(basechange-isequiv-aux i)
basedΩS¹≡ΩS¹ : (x : S¹) → basedΩS¹ x ≡ ΩS¹
basedΩS¹≡ΩS¹ x = ua (basechange x , basechange-isequiv x)
basedΩS¹≡Int : (x : S¹) → basedΩS¹ x ≡ Int
basedΩS¹≡Int x = (basedΩS¹≡ΩS¹ x) ∙ ΩS¹≡Int
-- Some tests
module _ where
private
test-winding-pos : winding (intLoop (pos 5)) ≡ pos 5
test-winding-pos = refl
test-winding-neg : winding (intLoop (negsuc 5)) ≡ negsuc 5
test-winding-neg = refl
-- the inverse when S¹ is seen as a group
inv : S¹ → S¹
inv base = base
inv (loop i) = loop (~ i)
invInvolutive : section inv inv
invInvolutive base = refl
invInvolutive (loop i) = refl
invS¹Equiv : S¹ ≃ S¹
invS¹Equiv = isoToEquiv (iso inv inv invInvolutive invInvolutive)
invS¹Path : S¹ ≡ S¹
invS¹Path = ua invS¹Equiv
-- rot, used in the Hopf fibration
rotLoop : (a : S¹) → a ≡ a
rotLoop base = loop
rotLoop (loop i) j =
hcomp (λ k → λ { (i = i0) → loop (j ∨ ~ k)
; (i = i1) → loop (j ∧ k)
; (j = i0) → loop (i ∨ ~ k)
; (j = i1) → loop (i ∧ k)}) base
rot : S¹ → S¹ → S¹
rot base x = x
rot (loop i) x = rotLoop x i
_*_ : S¹ → S¹ → S¹
a * b = rot a b
infixl 30 _*_
-- rot i j = filler-rot i j i1
filler-rot : I → I → I → S¹
filler-rot i j = hfill (λ k → λ { (i = i0) → loop (j ∨ ~ k)
; (i = i1) → loop (j ∧ k)
; (j = i0) → loop (i ∨ ~ k)
; (j = i1) → loop (i ∧ k) }) (inS base)
isPropFamS¹ : ∀ {ℓ} (P : S¹ → Type ℓ) (pP : (x : S¹) → isProp (P x)) (b0 : P base) →
PathP (λ i → P (loop i)) b0 b0
isPropFamS¹ P pP b0 i = pP (loop i) (transp (λ j → P (loop (i ∧ j))) (~ i) b0)
(transp (λ j → P (loop (i ∨ ~ j))) i b0) i
rotIsEquiv : (a : S¹) → isEquiv (rot a)
rotIsEquiv base = idIsEquiv S¹
rotIsEquiv (loop i) = isPropFamS¹ (λ x → isEquiv (rot x))
(λ x → isPropIsEquiv (rot x))
(idIsEquiv _) i
-- more direct definition of the rot (loop i) equivalence
rotLoopInv : (a : S¹) → PathP (λ i → rotLoop (rotLoop a (~ i)) i ≡ a) refl refl
rotLoopInv a i j =
hcomp
(λ k → λ {
(i = i0) → a;
(i = i1) → rotLoop a (j ∧ ~ k);
(j = i0) → rotLoop (rotLoop a (~ i)) i;
(j = i1) → rotLoop a (i ∧ ~ k)})
(rotLoop (rotLoop a (~ i ∨ j)) i)
rotLoopEquiv : (i : I) → S¹ ≃ S¹
rotLoopEquiv i =
isoToEquiv
(iso (λ a → rotLoop a i)
(λ a → rotLoop a (~ i))
(λ a → rotLoopInv a i)
(λ a → rotLoopInv a (~ i)))
-- some cancellation laws, used in the Hopf fibration
private
rotInv-aux-1 : I → I → I → I → S¹
rotInv-aux-1 j k i =
hfill (λ l → λ { (k = i0) → (loop (i ∧ ~ l)) * loop j
; (k = i1) → loop j
; (i = i0) → (loop k * loop j) * loop (~ k)
; (i = i1) → loop (~ k ∧ ~ l) * loop j })
(inS ((loop (k ∨ i) * loop j) * loop (~ k)))
rotInv-aux-2 : I → I → I → S¹
rotInv-aux-2 i j k =
hcomp (λ l → λ { (k = i0) → inv (filler-rot (~ i) (~ j) l)
; (k = i1) → loop (j ∧ l)
; (i = i0) → filler-rot k j l
; (i = i1) → loop (j ∧ l)
; (j = i0) → loop (i ∨ k ∨ (~ l))
; (j = i1) → loop ((i ∨ k) ∧ l) })
(base)
rotInv-aux-3 : I → I → I → I → S¹
rotInv-aux-3 j k i =
hfill (λ l → λ { (k = i0) → rotInv-aux-2 i j l
; (k = i1) → loop j
; (i = i0) → loop (k ∨ l) * loop j
; (i = i1) → loop k * (inv (loop (~ j) * loop k)) })
(inS (loop k * (inv (loop (~ j) * loop (k ∨ ~ i)))))
rotInv-aux-4 : I → I → I → I → S¹
rotInv-aux-4 j k i =
hfill (λ l → λ { (k = i0) → rotInv-aux-2 i j l
; (k = i1) → loop j
; (i = i0) → loop j * loop (k ∨ l)
; (i = i1) → (inv (loop (~ j) * loop k)) * loop k })
(inS ((inv (loop (~ j) * loop (k ∨ ~ i))) * loop k))
rotInv-1 : (a b : S¹) → b * a * inv b ≡ a
rotInv-1 base base i = base
rotInv-1 base (loop k) i = rotInv-aux-1 i0 k i i1
rotInv-1 (loop j) base i = loop j
rotInv-1 (loop j) (loop k) i = rotInv-aux-1 j k i i1
rotInv-2 : (a b : S¹) → inv b * a * b ≡ a
rotInv-2 base base i = base
rotInv-2 base (loop k) i = rotInv-aux-1 i0 (~ k) i i1
rotInv-2 (loop j) base i = loop j
rotInv-2 (loop j) (loop k) i = rotInv-aux-1 j (~ k) i i1
rotInv-3 : (a b : S¹) → b * (inv (inv a * b)) ≡ a
rotInv-3 base base i = base
rotInv-3 base (loop k) i = rotInv-aux-3 i0 k (~ i) i1
rotInv-3 (loop j) base i = loop j
rotInv-3 (loop j) (loop k) i = rotInv-aux-3 j k (~ i) i1
rotInv-4 : (a b : S¹) → inv (b * inv a) * b ≡ a
rotInv-4 base base i = base
rotInv-4 base (loop k) i = rotInv-aux-4 i0 k (~ i) i1
rotInv-4 (loop j) base i = loop j
rotInv-4 (loop j) (loop k) i = rotInv-aux-4 j k (~ i) i1
| 36.328165
| 94
| 0.529625
|
4e1f3f00928961253468a264e16499a12ade9f34
| 380
|
agda
|
Agda
|
test/Succeed/Issue1550.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 2
|
2019-10-29T09:40:30.000Z
|
2020-09-20T00:28:57.000Z
|
test/Succeed/Issue1550.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 3
|
2018-11-14T15:31:44.000Z
|
2019-04-01T19:39:26.000Z
|
test/Succeed/Issue1550.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1
|
2021-06-14T11:07:38.000Z
|
2021-06-14T11:07:38.000Z
|
-- Andreas, 2015-08-27 Allow rewrite rules for symbols defined in other file
{-# OPTIONS --rewriting --confluence-check #-}
open import Common.Nat
open import Common.Equality
{-# BUILTIN REWRITE _≡_ #-}
x+0 : ∀ x → x + 0 ≡ x
x+0 zero = refl
x+0 (suc x) rewrite x+0 x = refl
{-# REWRITE x+0 #-} -- adding rewrite rule for + is ok
x+0+0 : ∀{x} → (x + 0) + 0 ≡ x
x+0+0 = refl
| 21.111111
| 76
| 0.615789
|
0d3fa289a73778f14a3a1bb7a3a7f21e341a7672
| 1,514
|
agda
|
Agda
|
src/finiteSet.agda
|
shinji-kono/automaton-in-agda
|
eba0538f088f3d0c0fedb19c47c081954fbc69cb
|
[
"MIT"
] | null | null | null |
src/finiteSet.agda
|
shinji-kono/automaton-in-agda
|
eba0538f088f3d0c0fedb19c47c081954fbc69cb
|
[
"MIT"
] | null | null | null |
src/finiteSet.agda
|
shinji-kono/automaton-in-agda
|
eba0538f088f3d0c0fedb19c47c081954fbc69cb
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --allow-unsolved-metas #-}
module finiteSet where
open import Data.Nat hiding ( _≟_ )
open import Data.Fin renaming ( _<_ to _<<_ ) hiding (_≤_)
-- open import Data.Fin.Properties hiding ( ≤-refl )
open import Data.Empty
open import Relation.Nullary
open import Relation.Binary.Definitions
open import Relation.Binary.PropositionalEquality
open import logic
open import nat
open import Data.Nat.Properties hiding ( _≟_ )
open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ )
record FiniteSet ( Q : Set ) : Set where
field
finite : ℕ
Q←F : Fin finite → Q
F←Q : Q → Fin finite
finiso→ : (q : Q) → Q←F ( F←Q q ) ≡ q
finiso← : (f : Fin finite ) → F←Q ( Q←F f ) ≡ f
exists1 : (m : ℕ ) → m Data.Nat.≤ finite → (Q → Bool) → Bool
exists1 zero _ _ = false
exists1 ( suc m ) m<n p = p (Q←F (fromℕ< {m} {finite} m<n)) \/ exists1 m (<to≤ m<n) p
exists : ( Q → Bool ) → Bool
exists p = exists1 finite ≤-refl p
open import Data.List
list1 : (m : ℕ ) → m Data.Nat.≤ finite → (Q → Bool) → List Q
list1 zero _ _ = []
list1 ( suc m ) m<n p with bool-≡-? (p (Q←F (fromℕ< {m} {finite} m<n))) true
... | yes _ = Q←F (fromℕ< {m} {finite} m<n) ∷ list1 m (<to≤ m<n) p
... | no _ = list1 m (<to≤ m<n) p
to-list : ( Q → Bool ) → List Q
to-list p = list1 finite ≤-refl p
equal? : Q → Q → Bool
equal? q0 q1 with F←Q q0 ≟ F←Q q1
... | yes p = true
... | no ¬p = false
| 35.209302
| 90
| 0.564729
|
34c45ea53c53a159b7b0cfc3b6881733a27ee31b
| 116
|
agda
|
Agda
|
test/fail/Issue332.agda
|
asr/agda-kanso
|
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
|
[
"MIT"
] | 1
|
2019-11-27T07:26:06.000Z
|
2019-11-27T07:26:06.000Z
|
test/fail/Issue332.agda
|
np/agda-git-experiment
|
20596e9dd9867166a64470dd24ea68925ff380ce
|
[
"MIT"
] | null | null | null |
test/fail/Issue332.agda
|
np/agda-git-experiment
|
20596e9dd9867166a64470dd24ea68925ff380ce
|
[
"MIT"
] | null | null | null |
module Issue332 where
id : {A : Set} → A → A
id x = x
syntax id x = id x -- This makes parsing id x ambiguous
| 10.545455
| 55
| 0.612069
|
d1cb049d27fd95ad9df82051238a3da9be6d62be
| 3,806
|
agda
|
Agda
|
old/Spaces/FlatteningTypes.agda
|
danbornside/HoTT-Agda
|
1695a7f3dc60177457855ae846bbd86fcd96983e
|
[
"MIT"
] | 294
|
2015-01-09T16:23:23.000Z
|
2022-03-20T13:54:45.000Z
|
old/Spaces/FlatteningTypes.agda
|
danbornside/HoTT-Agda
|
1695a7f3dc60177457855ae846bbd86fcd96983e
|
[
"MIT"
] | 31
|
2015-03-05T20:09:00.000Z
|
2021-10-03T19:15:25.000Z
|
old/Spaces/FlatteningTypes.agda
|
danbornside/HoTT-Agda
|
1695a7f3dc60177457855ae846bbd86fcd96983e
|
[
"MIT"
] | 50
|
2015-01-10T01:48:08.000Z
|
2022-02-14T03:03:25.000Z
|
{-# OPTIONS --without-K #-}
open import BaseOver
module Spaces.FlatteningTypes {i j k}
(A : Set i) (B : Set j) (f g : B → A)
(C : A → Set k) (D : (b : B) → C (f b) ≃ C (g b)) where
ijk = max i (max j k)
module BaseHIT where
{-
data W : Set where
cc : A → W
pp : (b : B) → cc (f b) ≡ cc (g b)
-}
private
data #W : Set ijk where
#cc : A → #W
W : Set ijk
W = #W
cc : A → W
cc = #cc
postulate
pp : (b : B) → cc (f b) ≡ cc (g b)
W-rec : ∀ {ℓ} (P : W → Set ℓ) (cc* : (a : A) → P (cc a))
(pp* : (b : B) → cc* (f b) == cc* (g b) [ P ↓ pp b ])
→ ((w : W) → P w)
W-rec P cc* pp* (#cc a) = cc* a
postulate
W-rec-β : ∀ {ℓ} (P : W → Set ℓ) (cc* : (a : A) → P (cc a))
(pp* : (b : B) → cc* (f b) == cc* (g b) [ P ↓ pp b ])
→ ((b : B) → apd (W-rec P cc* pp*) (pp b) ≡ pp* b)
W-rec-nondep : ∀ {ℓ} (P : Set ℓ) (cc* : A → P)
(pp* : (b : B) → cc* (f b) ≡ cc* (g b))
→ (W → P)
W-rec-nondep P cc* pp* (#cc a) = cc* a
postulate
W-rec-nondep-β : ∀ {ℓ} (P : Set ℓ) (cc* : A → P)
(pp* : (b : B) → cc* (f b) ≡ cc* (g b))
→ ((b : B) → ap (W-rec-nondep P cc* pp*) (pp b) ≡ pp* b)
open BaseHIT public
module FlattenedHIT where
{-
data Wt : Set where
cct : (a : A) → C a → Wt
pp : (b : B) (d : C (f b)) → cct (f b) d ≡ cct (g b) (π₁ (D b) d)
-}
private
data #Wt : Set ijk where
#cct : (a : A) (c : C a) → #Wt
Wt : Set ijk
Wt = #Wt
cct : (a : A) → C a → Wt
cct = #cct
postulate
ppt : (b : B) (d : C (f b)) → cct (f b) d ≡ cct (g b) (π₁ (D b) d)
Wt-rec : ∀ {ℓ} (P : Wt → Set ℓ) (cct* : (a : A) (c : C a) → P (cct a c))
(ppt* : (b : B) (d : C (f b)) →
cct* (f b) d == cct* (g b) (π₁ (D b) d) [ P ↓ ppt b d ])
→ ((w : Wt) → P w)
Wt-rec P cct* ppt* (#cct a c) = cct* a c
postulate
Wt-rec-β : ∀ {ℓ} (P : Wt → Set ℓ) (cct* : (a : A) (c : C a) → P (cct a c))
(ppt* : (b : B) (d : C (f b)) →
cct* (f b) d == cct* (g b) (π₁ (D b) d) [ P ↓ ppt b d ])
→ ((b : B) (d : C (f b)) → apd (Wt-rec P cct* ppt*) (ppt b d) ≡ ppt* b d)
Wt-rec-nondep : ∀ {ℓ} (P : Set ℓ) (cct* : (a : A) → C a → P)
(ppt* : (b : B) (d : C (f b)) → cct* (f b) d ≡ cct* (g b) (π₁ (D b) d))
→ (Wt → P)
Wt-rec-nondep P cct* ppt* (#cct a c) = cct* a c
postulate
Wt-rec-nondep-β : ∀ {ℓ} (P : Set ℓ) (cct* : (a : A) → C a → P)
(ppt* : (b : B) (d : C (f b)) → cct* (f b) d ≡ cct* (g b) (π₁ (D b) d))
→ ((b : B) (d : C (f b))
→ ap (Wt-rec-nondep P cct* ppt*) (ppt b d) ≡ ppt* b d)
open FlattenedHIT public
-- Here is the fibration
D-eq : (b : B) → C (f b) ≡ C (g b)
D-eq b = ua-in (D b)
P : W → Set k
P = W-rec-nondep _ C D-eq
pp-path : (b : B) (d : C (f b)) → π₁ (ua-out (ap P (pp b))) d ≡ π₁ (D b) d
pp-path b d =
π₁ (ua-out (ap P (pp b))) d
≡⟨ W-rec-nondep-β _ C D-eq _ |in-ctx (λ u → π₁ (ua-out u) d) ⟩
π₁ (ua-out (ua-in (D b))) d
≡⟨ ua-β (D b) |in-ctx (λ u → π₁ u d) ⟩
π₁ (D b) d ∎
lem : ∀ {i} {A : Set i} {x y z : A} (p : x ≡ y) (q : y ≡ z)
→ ! p ∘ (p ∘' q) ≡ q
lem refl refl = refl
-- Dependent path in [P] over [pp b]
module _ {b : B} {d : C (f b)} {d' : C (g b)} where
↓-pp-in : (π₁ (D b) d ≡ d' → d == d' [ P ↓ pp b ])
↓-pp-in p = to-transp-in P (pp b) (pp-path b d ∘' p)
↓-pp-out : (d == d' [ P ↓ pp b ] → π₁ (D b) d ≡ d')
↓-pp-out p = ! (pp-path b d) ∘ to-transp-out p
↓-pp-β : (q : π₁ (D b) d ≡ d') → ↓-pp-out (↓-pp-in q) ≡ q
↓-pp-β q =
↓-pp-out (↓-pp-in q)
≡⟨ refl ⟩
! (pp-path b d) ∘ to-transp-out (to-transp-in P (pp b) (pp-path b d ∘' q))
≡⟨ to-transp-β P (pp b) (pp-path b d ∘' q) |in-ctx (λ u → ! (pp-path b d) ∘ u) ⟩
! (pp-path b d) ∘ (pp-path b d ∘' q)
≡⟨ lem (pp-path b d) q ⟩
q ∎
| 28.192593
| 95
| 0.401471
|
0dbc17d8be3077d445ac130cd7e0b82ea1b23fb5
| 763
|
agda
|
Agda
|
RefactorAgdaEngine/Test/Tests/input/ExtractDependent.agda
|
omega12345/RefactorAgda
|
52d1034aed14c578c9e077fb60c3db1d0791416b
|
[
"BSD-3-Clause"
] | 5
|
2019-01-31T14:10:18.000Z
|
2019-05-03T10:03:36.000Z
|
RefactorAgdaEngine/Test/Tests/input/ExtractDependent.agda
|
omega12345/RefactorAgda
|
52d1034aed14c578c9e077fb60c3db1d0791416b
|
[
"BSD-3-Clause"
] | 3
|
2019-01-31T08:03:07.000Z
|
2019-02-05T12:53:36.000Z
|
RefactorAgdaEngine/Test/Tests/input/ExtractDependent.agda
|
omega12345/RefactorAgda
|
52d1034aed14c578c9e077fb60c3db1d0791416b
|
[
"BSD-3-Clause"
] | 1
|
2019-01-31T08:40:41.000Z
|
2019-01-31T08:40:41.000Z
|
{-# OPTIONS --allow-unsolved-metas #-}
module ExtractDependent where
open import Agda.Builtin.Nat
open import Agda.Builtin.Bool
open import Agda.Builtin.String
apply : (A : Set) -> (B : A -> Set) ->
((x : A) -> B x) -> (a : A) -> B a
apply A B f a = f a
applySameName : (A : Set) -> (A : Set) -> (B : A -> Set) ->
(h : Set) -> (h : (x : A) -> B x) -> (a : A) -> B a
applySameName C A B g f a = f a
-- TODO : Try same test with {A} {B} once the parser can handle that.
applyImp : {A : Set} -> {B : A -> Set} ->
((x : A) -> B x) -> (y : A) -> B y
applyImp f a = f a
applyImpSameName : {A : Set} -> {A : Set} -> {B : A -> Set} ->
(h : Set) -> (h : (x : A) -> B x) -> (a : A) -> B a
applyImpSameName A B h = B h
| 31.791667
| 69
| 0.482307
|
362481033b2350d9db1c8e385489e4acaeb9998b
| 7,918
|
agda
|
Agda
|
Fields/CauchyCompletion/EquivalentMonotone.agda
|
Smaug123/agdaproofs
|
0f4230011039092f58f673abcad8fb0652e6b562
|
[
"MIT"
] | 4
|
2019-08-08T12:44:19.000Z
|
2022-01-28T06:04:15.000Z
|
Fields/CauchyCompletion/EquivalentMonotone.agda
|
Smaug123/agdaproofs
|
0f4230011039092f58f673abcad8fb0652e6b562
|
[
"MIT"
] | 14
|
2019-01-06T21:11:59.000Z
|
2020-04-11T11:03:39.000Z
|
Fields/CauchyCompletion/EquivalentMonotone.agda
|
Smaug123/agdaproofs
|
0f4230011039092f58f673abcad8fb0652e6b562
|
[
"MIT"
] | 1
|
2021-11-29T13:23:07.000Z
|
2021-11-29T13:23:07.000Z
|
{-# OPTIONS --safe --warning=error --without-K --guardedness #-}
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import Setoids.Setoids
open import Rings.Definition
open import Rings.Lemmas
open import Rings.Orders.Partial.Definition
open import Rings.Orders.Total.Definition
open import Groups.Definition
open import Groups.Groups
open import Fields.Fields
open import Sets.EquivalenceRelations
open import Sequences
open import Setoids.Orders.Partial.Definition
open import Setoids.Orders.Total.Definition
open import Functions.Definition
open import LogicalFormulae
open import Numbers.Naturals.Naturals
module Fields.CauchyCompletion.EquivalentMonotone {m n o : _} {A : Set m} {S : Setoid {m} {n} A} {_+_ : A → A → A} {_*_ : A → A → A} {_<_ : Rel {m} {o} A} {pOrder : SetoidPartialOrder S _<_} {tOrder : SetoidTotalOrder {_<_ = _<_} pOrder} {R : Ring S _+_ _*_} (order : TotallyOrderedRing R tOrder) (F : Field R) (charNot2 : Setoid._∼_ S ((Ring.1R R) + (Ring.1R R)) (Ring.0R R) → False) where
open Setoid S
open SetoidTotalOrder tOrder
open SetoidPartialOrder pOrder
open Equivalence eq
open TotallyOrderedRing order
open Field F
open Group (Ring.additiveGroup R)
open Ring R
open import Fields.Lemmas F
open import Fields.Orders.Lemmas {F = F} record { oRing = order }
open import Rings.Orders.Lemmas(order)
open import Fields.CauchyCompletion.Definition order F
open import Fields.CauchyCompletion.Multiplication order F charNot2
open import Fields.CauchyCompletion.Addition order F charNot2
open import Fields.CauchyCompletion.Setoid order F charNot2
open import Fields.CauchyCompletion.Group order F charNot2
open import Fields.CauchyCompletion.Ring order F charNot2
open import Fields.CauchyCompletion.Comparison order F charNot2
open import Fields.CauchyCompletion.Approximation order F charNot2
halvingSequence : (start : A) → Sequence A
Sequence.head (halvingSequence start) = start
Sequence.tail (halvingSequence start) with halve charNot2 start
Sequence.tail (halvingSequence start) | start/2 , _ = halvingSequence start/2
halvingSequenceMultiple : (start : A) → {n : ℕ} → index (halvingSequence start) n ∼ index (map (start *_) (halvingSequence (Ring.1R R))) n
halvingSequenceMultiple start {zero} = Equivalence.symmetric eq (Equivalence.transitive eq *Commutative identIsIdent)
halvingSequenceMultiple start {succ n} with halve charNot2 start
... | start/2 , _ with allInvertible (1R + 1R) charNot2
halvingSequenceMultiple start {succ n} | start/2 , b | 1/2 , pr1/2 rewrite equalityCommutative (mapAndIndex (halvingSequence (1R * 1/2)) (_*_ start) n) = Equivalence.transitive eq (halvingSequenceMultiple start/2 {n}) f
where
g : (start * (1/2 * index (halvingSequence 1R) n)) ∼ (start * index (map (_*_ (1R * 1/2)) (halvingSequence 1R)) n)
g rewrite equalityCommutative (mapAndIndex (halvingSequence 1R) (_*_ (1R * 1/2)) n) = *WellDefined (Equivalence.reflexive eq) (*WellDefined (Equivalence.symmetric eq identIsIdent) (Equivalence.reflexive eq))
f : index (map (_*_ start/2) (halvingSequence 1R)) n ∼ (start * index (halvingSequence (1R * 1/2)) n)
f rewrite equalityCommutative (mapAndIndex (halvingSequence 1R) (_*_ start/2) n) = Equivalence.transitive eq (Equivalence.transitive eq (Equivalence.transitive eq (*WellDefined (Equivalence.symmetric eq (Equivalence.transitive eq (*WellDefined (Equivalence.symmetric eq b) (Equivalence.reflexive eq)) (halfHalves 1/2 (Equivalence.transitive eq (Equivalence.transitive eq (+WellDefined (Equivalence.symmetric eq (Equivalence.transitive eq *Commutative identIsIdent)) (Equivalence.symmetric eq (Equivalence.transitive eq *Commutative identIsIdent))) (Equivalence.symmetric eq *DistributesOver+)) pr1/2)))) (Equivalence.reflexive eq)) (Equivalence.symmetric eq *Associative)) g) (Equivalence.symmetric eq (*WellDefined (Equivalence.reflexive eq) (halvingSequenceMultiple (1R * 1/2) {n})))
Decreasing : Sequence A → Set o
Decreasing seq = ∀ (N : ℕ) → (index seq (succ N)) < (index seq N)
halvingSequencePositive : (n : ℕ) → 0G < index (halvingSequence 1R) n
halvingSequencePositive zero = 0<1 (charNot2ImpliesNontrivial charNot2)
halvingSequencePositive (succ n) with halve charNot2 1R
halvingSequencePositive (succ n) | 1/2 , pr1/2 = <WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq (Equivalence.transitive eq (halvingSequenceMultiple 1/2 {n}) (Equivalence.transitive eq (identityOfIndiscernablesLeft _∼_ (Equivalence.reflexive eq) (mapAndIndex (halvingSequence 1R) (_*_ 1/2) n)) *Commutative))) (orderRespectsMultiplication (halvingSequencePositive n) (halvePositive 1/2 (<WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq pr1/2) (0<1 (charNot2ImpliesNontrivial charNot2)))))
decreasingHalving : Decreasing (halvingSequence 1R)
decreasingHalving N with halve charNot2 1R
decreasingHalving N | 1/2 , pr1/2 with (halfLess 1/2 1R (0<1 (charNot2ImpliesNontrivial charNot2)) pr1/2)
... | 1/2<1 = <WellDefined (Equivalence.transitive eq (identityOfIndiscernablesLeft _∼_ (Equivalence.reflexive eq) (equalityCommutative (mapAndIndex (halvingSequence 1R) (_*_ 1/2) N))) (Equivalence.symmetric eq (halvingSequenceMultiple 1/2 {N}))) identIsIdent (ringCanMultiplyByPositive {c = index (halvingSequence 1R) N} (halvingSequencePositive N) 1/2<1)
imageOfN : ℕ → A
imageOfN zero = 0R
imageOfN (succ x) = 1R + imageOfN x
nextImageOfN : (a : A) → 0R < a → ℕ
nextImageOfN a 0<a = ?
halvingToZero : (a : A) → (0G < a) → Sg ℕ (λ N → (index (halvingSequence 1R) N) < a)
halvingToZero a 0<a with SetoidTotalOrder.totality tOrder a 1R
halvingToZero a 0<a | inl (inl a<1) = {!!}
halvingToZero a 0<a | inl (inr 1<a) = 0 , 1<a
halvingToZero a 0<a | inr a=1 with halve charNot2 1R
... | 1/2 , pr1/2 = 1 , <WellDefined ans (Equivalence.symmetric eq a=1) (halfLess 1/2 1R (0<1 (charNot2ImpliesNontrivial charNot2)) pr1/2)
where
ans : 1/2 ∼ Sequence.head (Sequence.tail (halvingSequence 1R))
ans with halve charNot2 1R
ans | 1/2' , pr1/2' = halvesEqual charNot2 1/2 1/2' pr1/2 pr1/2'
halvesCauchy : cauchy (halvingSequence 1R)
halvesCauchy e 0<e = {!!}
multipleOfCauchyIsCauchy : (mult : A) → (seq : Sequence A) → cauchy seq → cauchy (map (mult *_) seq)
multipleOfCauchyIsCauchy mult seq seqCauchy e 0<e with SetoidTotalOrder.totality tOrder 0R mult
multipleOfCauchyIsCauchy mult seq seqCauchy e 0<e | inl (inl x) with allInvertible mult λ pr → irreflexive (<WellDefined (Equivalence.reflexive eq) pr x)
... | 1/mult , pr1/mult = {!!}
multipleOfCauchyIsCauchy mult seq seqCauchy e 0<e | inl (inr x) with allInvertible mult λ pr → irreflexive (<WellDefined pr (Equivalence.reflexive eq) x)
... | 1/mult , pr1/mult = {!!}
multipleOfCauchyIsCauchy mult seq seqCauchy e 0<e | inr 0=mult = 0 , ans
where
ans : {m n : ℕ} → (0 <N m) → (0 <N n) → abs (index (map (_*_ mult) seq) m + inverse (index (map (_*_ mult) seq) n)) < e
ans {m} {n} _ _ rewrite equalityCommutative (mapAndIndex seq (_*_ mult) m) | equalityCommutative (mapAndIndex seq (_*_ mult) n) = <WellDefined {!!} (Equivalence.reflexive eq) 0<e
halvingSequenceCauchy : (start : A) → cauchy (halvingSequence start)
halvingSequenceCauchy start = {!!}
sequenceAllAbove : (a : CauchyCompletion) → Sequence A
sequenceAllAbove a = go (Ring.1R R) (0<1 (charNot2ImpliesNontrivial charNot2))
where
go : (e : A) → (0G < e) → Sequence A
Sequence.head (go e 0<e) = rationalApproximatelyAbove a e 0<e
Sequence.tail (go e 0<e) with halve charNot2 e
... | e/2 , prE/2 = go e/2 (halvePositive e/2 (<WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq prE/2) 0<e))
sequenceAllAboveCauchy : (a : CauchyCompletion) → cauchy (sequenceAllAbove a)
sequenceAllAboveCauchy a e 0<e = {!!}
-- find N such that 1/2^N < e
-- show that this N is enough
-- show that sequenceAllAbove ∼ a
-- monotonify sequenceAllAbove
-- show that monotonify of a sequence which is all above its limit still converges to that limit
| 64.373984
| 789
| 0.74438
|
7c1eedfcce12f476181a7cda32455f92904568c9
| 2,869
|
agda
|
Agda
|
TypeTheory/HoTT/Functions.agda
|
hbasold/Sandbox
|
8fc7a6cd878f37f9595124ee8dea62258da28aa4
|
[
"MIT"
] | null | null | null |
TypeTheory/HoTT/Functions.agda
|
hbasold/Sandbox
|
8fc7a6cd878f37f9595124ee8dea62258da28aa4
|
[
"MIT"
] | null | null | null |
TypeTheory/HoTT/Functions.agda
|
hbasold/Sandbox
|
8fc7a6cd878f37f9595124ee8dea62258da28aa4
|
[
"MIT"
] | null | null | null |
{-
A possible implementation of the following HIT arr. Note that this type is
mutually defined with App, that is to say, they are defined by
induction-recursion!
Inductive arr (A,B:Set) : Set :=
| base : B -> arr A B
| step : (A -> arr A B) -> arr A B.
| path : (forall x : A, App f x = App g x) -> f = g.
where App is defined by
Fixpoint App (f : arr A B)(a : A) :=
match f with
| base b => b
| step g => App (g a) a
end.
Due to the fact that arr and App are defined by induction-recuriosn, the
recursion principle for arr needs to make extra assumptions, see the parameters
of the arr-Rec module.
Effectively, we see the function space A → B as algebra for the functor (-) × A
and App is an algebra homomorphism from arr A B to A → B.
This is reflected in the extra assumption in the recursion principle.
-}
{-# OPTIONS --without-K #-}
open import lib.Basics
open import lib.PathGroupoid
open import lib.types.Paths
open import lib.Funext
module _ where
private
data #arr-aux (A B : Set) : Set where
#base : B → #arr-aux A B
#step : (A → #arr-aux A B) → #arr-aux A B
#App : ∀{A B} → #arr-aux A B → A → B
#App (#base b) a = b
#App (#step g) a = #App (g a) a
_~>_ : Set → Set → Set
_~>_ = #arr-aux
base : ∀{A B} → B → A ~> B
base = #base
step : ∀{A B} → (A → A ~> B) → A ~> B
step = #step
App : ∀{A B} → A ~> B → A → B
App = #App
Abstr : ∀{A B} → (A → B) → A ~> B
Abstr f = step (λ x → base (f x))
postulate
path : ∀{A B} (f g : A ~> B) (a : A) → App f a == App g a → f == g
module arr-Rec {A B X : Set}
(base* : B → X)
(step* : (A → X) → X)
(App* : X → A → B)
-- Here we need to make the assumption that App* is an algebra homomorphism
-- from X into the function space.
(App*-β₂ : (a : A) (f : A → X) → App* (step* f) a == App* (f a) a)
(path* : (x y : X) (a : A) → App* x a == App* y a → x == y)
where
rec : A ~> B → X
rec = rec-aux phantom where
rec-aux : Phantom path* → A ~> B → X
rec-aux ph (#base b) = base* b
rec-aux ph (#step f) = step* (λ a → rec-aux ph (f a))
lem : (f g : A ~> B) (a : A) →
App f a == App g a → App* (rec f) a == App* (rec g) a
lem (#base b) (#base .b) a idp = idp
lem (#base b) (#step g) a p =
let β-red* = App*-β₂ a (rec ∘ g)
IH = lem (#base b) (g a) a p
in IH ∙ ! β-red*
lem (#step f) (#base b) a p =
let β-red* = App*-β₂ a (rec ∘ f)
IH = lem (f a) (#base b) a p
in β-red* ∙ IH
lem (#step f) (#step g) a p =
let IH = lem (f a) (g a) a p
β-red-f = App*-β₂ a (rec ∘ f)
β-red-g = App*-β₂ a (rec ∘ g)
in β-red-f ∙ IH ∙ ! β-red-g
postulate
path-β : (f g : A ~> B) (a : A) (p : App f a == App g a) →
ap rec (path f g a p)
== path* (rec f) (rec g) a (lem f g a p)
| 28.405941
| 79
| 0.515511
|
5e6b420205cef42344186a2b5a0bfd0a5f20226d
| 8,474
|
agda
|
Agda
|
src/Categories/Category/Complete/Properties.agda
|
glittershark/agda-categories
|
2128fab9e8d341364cbf784bb17c547bf73891de
|
[
"MIT"
] | null | null | null |
src/Categories/Category/Complete/Properties.agda
|
glittershark/agda-categories
|
2128fab9e8d341364cbf784bb17c547bf73891de
|
[
"MIT"
] | null | null | null |
src/Categories/Category/Complete/Properties.agda
|
glittershark/agda-categories
|
2128fab9e8d341364cbf784bb17c547bf73891de
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --without-K --safe #-}
open import Categories.Category
module Categories.Category.Complete.Properties {o ℓ e} (C : Category o ℓ e) where
open import Level
open import Data.Product
open import Relation.Binary
open import Categories.Category.Complete
open import Categories.Category.Complete.Finitely
open import Categories.Category.Construction.Functors
open import Categories.Diagram.Limit as Lim
open import Categories.Diagram.Limit.Properties
open import Categories.Diagram.Equalizer.Limit C
open import Categories.Diagram.Cone.Properties
open import Categories.Object.Product.Limit C
open import Categories.Object.Terminal.Limit C
open import Categories.Functor
open import Categories.Functor.Continuous
open import Categories.Functor.Properties
open import Categories.NaturalTransformation
open import Categories.NaturalTransformation.NaturalIsomorphism using (_≃_)
import Categories.Category.Construction.Cones as Co
import Categories.Morphism.Reasoning as MR
import Categories.Morphism as Mor
import Categories.Morphism.Properties as Morₚ
private
variable
o′ ℓ′ e′ o″ ℓ″ e″ : Level
module C = Category C
module _ (Com : Complete o′ ℓ′ e′ C) where
Complete⇒FinitelyComplete : FinitelyComplete C
Complete⇒FinitelyComplete = record
{ cartesian = record
{ terminal = limit⇒⊥ (Com (⊥⇒limit-F _ _ _))
; products = record
{ product = λ {A B} → limit⇒product (Com (product⇒limit-F _ _ _ A B))
}
}
; equalizer = λ f g → limit⇒equalizer (Com (equalizer⇒limit-F _ _ _ f g))
}
module _ {D : Category o′ ℓ′ e′} (Com : Complete o″ ℓ″ e″ D) where
private
D^C = Functors C D
module D^C = Category D^C
module D = Category D
module _ {J : Category o″ ℓ″ e″} (F : Functor J D^C) where
private
module J = Category J
module F = Functor F
open F
module F₀ j = Functor (F₀ j)
module F₁ {a b} (f : a J.⇒ b) = NaturalTransformation (F₁ f)
F[-,_] : C.Obj → Functor J D
F[-, X ] = record
{ F₀ = λ j → F₀.₀ j X
; F₁ = λ f → F₁.η f X
; identity = identity
; homomorphism = homomorphism
; F-resp-≈ = λ eq → F-resp-≈ eq -- this application cannot be eta reduced
}
F[-,-] : Functor C (Functors J D)
F[-,-] = record
{ F₀ = F[-,_]
; F₁ = λ f → ntHelper record
{ η = λ j → F₀.₁ j f
; commute = λ g → F₁.sym-commute g f
}
; identity = F₀.identity _
; homomorphism = F₀.homomorphism _
; F-resp-≈ = λ eq → F₀.F-resp-≈ _ eq
}
module F[-,-] = Functor F[-,-]
module LimFX X = Limit (Com F[-, X ])
open LimFX hiding (commute)
K⇒lim : ∀ {X Y} (f : X C.⇒ Y) K → Co.Cones F[-, Y ] [ nat-map-Cone (F[-,-].₁ f) K , limit Y ]
K⇒lim f K = rep-cone _ (nat-map-Cone (F[-,-].₁ f) K)
lim⇒lim : ∀ {X Y} (f : X C.⇒ Y) → Co.Cones F[-, Y ] [ nat-map-Cone (F[-,-].₁ f) (limit X) , limit Y ]
lim⇒lim f = K⇒lim f (limit _)
module lim⇒lim {X Y} (f : X C.⇒ Y) = Co.Cone⇒ F[-, Y ] (lim⇒lim f)
module FCone (K : Co.Cone F) where
open Co.Cone F K public
module N = Functor N
module ψ j = NaturalTransformation (ψ j)
module FCone⇒ {K K′ : Co.Cone F} (K⇒K′ : Co.Cone⇒ F K K′) where
open Co.Cone⇒ F K⇒K′ public
module arr = NaturalTransformation arr
FXcone : ∀ X → (K : Co.Cone F) → Co.Cone F[-, X ]
FXcone X K = record
{ N = N.₀ X
; apex = record
{ ψ = λ j → ψ.η j X
; commute = λ f → commute f -- this application cannot be eta reduced
}
}
where open FCone K
⊤ : Co.Cone F
⊤ = record
{ N = record
{ F₀ = λ X → apex X
; F₁ = λ {A B} f → lim⇒lim.arr f
; identity = λ {X} →
terminal.!-unique X record
{ arr = D.id
; commute = D.identityʳ ○ ⟺ (elimˡ (F₀.identity _))
}
; homomorphism = λ {X Y Z} {f g} →
terminal.!-unique₂ Z
{nat-map-Cone (F[-,-].₁ (g C.∘ f)) (limit X)}
{terminal.! Z}
{record { commute = λ {j} →
begin
proj Z j ∘ lim⇒lim.arr g ∘ lim⇒lim.arr f
≈⟨ pullˡ (lim⇒lim.commute g) ⟩
(F₀.₁ j g ∘ proj Y j) ∘ lim⇒lim.arr f
≈⟨ pullʳ (lim⇒lim.commute f) ⟩
F₀.₁ j g ∘ F₀.₁ j f ∘ proj X j
≈˘⟨ pushˡ (F₀.homomorphism j) ⟩
F₀.₁ j (g C.∘ f) ∘ proj X j
∎ }}
; F-resp-≈ = λ {A B} {f g} eq → terminal.!-unique B record
{ commute = lim⇒lim.commute g ○ ∘-resp-≈ˡ (F₀.F-resp-≈ _ (C.Equiv.sym eq)) }
}
; apex = record
{ ψ = λ j → ntHelper record
{ η = λ X → proj X j
; commute = λ _ → LimFX.commute _
}
; commute = λ f {X} → limit-commute X f
}
}
where open D
open D.HomReasoning
open MR D
K⇒⊤′ : ∀ X {K} → Co.Cones F [ K , ⊤ ] → Co.Cones F[-, X ] [ FXcone X K , LimFX.limit X ]
K⇒⊤′ X {K} K⇒⊤ = record
{ arr = arr.η X
; commute = comm
}
where open FCone⇒ K⇒⊤ renaming (commute to comm)
complete : Limit F
complete = record
{ terminal = record
{ ⊤ = ⊤
; ! = λ {K} →
let module K = FCone K
in record
{ arr = ntHelper record
{ η = λ X → rep X (FXcone X K)
; commute = λ {X Y} f →
terminal.!-unique₂ Y
{nat-map-Cone (F[-,-].₁ f) (FXcone X K)}
{record { commute = λ {j} →
begin
proj Y j ∘ rep Y (FXcone Y K) ∘ K.N.₁ f ≈⟨ pullˡ (LimFX.commute Y) ⟩
K.ψ.η j Y ∘ K.N.F₁ f ≈⟨ K.ψ.commute j f ⟩
F₀.₁ j f ∘ K.ψ.η j X ∎ }}
{record { commute = λ {j} →
begin
proj Y j ∘ lim⇒lim.arr f ∘ rep X (FXcone X K) ≈⟨ pullˡ (lim⇒lim.commute f) ⟩
(F₀.₁ j f ∘ proj X j) ∘ rep X (FXcone X K) ≈⟨ pullʳ (LimFX.commute X) ⟩
F₀.₁ j f ∘ K.ψ.η j X ∎ }}
}
; commute = λ {_} {X} → LimFX.commute X
}
; !-unique = λ K⇒⊤ {X} → terminal.!-unique X (K⇒⊤′ X K⇒⊤)
}
}
where open D
open D.HomReasoning
open MR D
ev : C.Obj → Functor D^C D
ev = evalF C D
module _ (L : Limit F) (X : C.Obj) where
private
module ev = Functor (ev X)
open Mor D^C
module DM = Mor D
open Morₚ D
open D.HomReasoning
open MR D
L′ : Limit (ev X ∘F F)
L′ = Com (ev X ∘F F)
Fiso : F[-, X ] ≃ ev X ∘F F
Fiso = record
{ F⇒G = ntHelper record
{ η = λ _ → D.id
; commute = λ _ → id-comm-sym ○ D.∘-resp-≈ˡ (introʳ (F₀.identity _))
}
; F⇐G = ntHelper record
{ η = λ _ → D.id
; commute = λ _ → D.∘-resp-≈ʳ (elimʳ (F₀.identity _)) ○ id-comm-sym
}
; iso = λ _ → record
{ isoˡ = D.identity²
; isoʳ = D.identity²
}
}
apex-iso : Limit.apex L ≅ Limit.apex complete
apex-iso = up-to-iso F L complete
apex-iso′ : Limit.apex (Com F[-, X ]) DM.≅ Limit.apex L′
apex-iso′ = ≃⇒lim≅ Fiso (Com F[-, X ]) L′
project-iso : Functor.F₀ (Limit.apex L) X DM.≅ Limit.apex L′
project-iso = record
{ from = ai.from D.∘ from.η X
; to = to.η X D.∘ ai.to
; iso = Iso-∘ (record { isoˡ = isoˡ ; isoʳ = isoʳ }) ai.iso
}
where open _≅_ apex-iso
module from = NaturalTransformation from
module to = NaturalTransformation to
module ai = DM._≅_ apex-iso′
Functors-Complete : Complete o″ ℓ″ e″ D^C
Functors-Complete F = complete F
evalF-Continuous : ∀ X → Continuous o″ ℓ″ e″ (evalF C D X)
evalF-Continuous X {J} {F} L = Com (evalF C D X ∘F F) , project-iso F L X
| 34.307692
| 107
| 0.481591
|
37c3fe2c621bdeb38f25f58b2a76de826d73567d
| 6,375
|
agda
|
Agda
|
agda-stdlib/src/Data/Container/Indexed.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | 5
|
2020-10-07T12:07:53.000Z
|
2020-10-10T21:41:32.000Z
|
agda-stdlib/src/Data/Container/Indexed.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | null | null | null |
agda-stdlib/src/Data/Container/Indexed.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | 1
|
2021-11-04T06:54:45.000Z
|
2021-11-04T06:54:45.000Z
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Indexed containers aka interaction structures aka polynomial
-- functors. The notation and presentation here is closest to that of
-- Hancock and Hyvernat in "Programming interfaces and basic topology"
-- (2006/9).
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe --guardedness #-}
module Data.Container.Indexed where
open import Level
open import Codata.Musical.M.Indexed
open import Data.Product as Prod hiding (map)
open import Data.W.Indexed
open import Function.Base renaming (id to ⟨id⟩; _∘_ to _⟨∘⟩_)
open import Function.Equality using (_⟨$⟩_)
open import Function.Inverse using (_↔_; module Inverse)
open import Relation.Unary using (Pred; _⊆_)
import Relation.Binary as B
open import Relation.Binary.PropositionalEquality as P using (_≡_; _≗_; refl)
------------------------------------------------------------------------
-- The type and its semantics ("extension").
open import Data.Container.Indexed.Core public
open Container public
-- Abbreviation for the commonly used level one version of indexed
-- containers.
_▷_ : Set → Set → Set₁
I ▷ O = Container I O zero zero
-- The least and greatest fixpoint.
μ ν : ∀ {o c r} {O : Set o} → Container O O c r → Pred O _
μ = W
ν = M
-- An equivalence relation is defined in Data.Container.Indexed.WithK.
------------------------------------------------------------------------
-- Functoriality
-- Indexed containers are functors.
map : ∀ {i o c r ℓ₁ ℓ₂} {I : Set i} {O : Set o}
(C : Container I O c r) {X : Pred I ℓ₁} {Y : Pred I ℓ₂} →
X ⊆ Y → ⟦ C ⟧ X ⊆ ⟦ C ⟧ Y
map _ f = Prod.map ⟨id⟩ (λ g → f ⟨∘⟩ g)
-- Some properties are proved in Data.Container.Indexed.WithK.
------------------------------------------------------------------------
-- Container morphisms
module _ {i₁ i₂ o₁ o₂}
{I₁ : Set i₁} {I₂ : Set i₂} {O₁ : Set o₁} {O₂ : Set o₂} where
-- General container morphism.
record ContainerMorphism {c₁ c₂ r₁ r₂ ℓ₁ ℓ₂}
(C₁ : Container I₁ O₁ c₁ r₁) (C₂ : Container I₂ O₂ c₂ r₂)
(f : I₁ → I₂) (g : O₁ → O₂)
(_∼_ : B.Rel I₂ ℓ₁) (_≈_ : B.REL (Set r₂) (Set r₁) ℓ₂)
(_·_ : ∀ {A B} → A ≈ B → A → B) :
Set (i₁ ⊔ i₂ ⊔ o₁ ⊔ o₂ ⊔ c₁ ⊔ c₂ ⊔ r₁ ⊔ r₂ ⊔ ℓ₁ ⊔ ℓ₂) where
field
command : Command C₁ ⊆ Command C₂ ⟨∘⟩ g
response : ∀ {o} {c₁ : Command C₁ o} →
Response C₂ (command c₁) ≈ Response C₁ c₁
coherent : ∀ {o} {c₁ : Command C₁ o} {r₂ : Response C₂ (command c₁)} →
f (next C₁ c₁ (response · r₂)) ∼ next C₂ (command c₁) r₂
open ContainerMorphism public
-- Plain container morphism.
_⇒[_/_]_ : ∀ {c₁ c₂ r₁ r₂} →
Container I₁ O₁ c₁ r₁ → (I₁ → I₂) → (O₁ → O₂) →
Container I₂ O₂ c₂ r₂ → Set _
C₁ ⇒[ f / g ] C₂ = ContainerMorphism C₁ C₂ f g _≡_ (λ R₂ R₁ → R₂ → R₁) _$_
-- Linear container morphism.
_⊸[_/_]_ : ∀ {c₁ c₂ r₁ r₂} →
Container I₁ O₁ c₁ r₁ → (I₁ → I₂) → (O₁ → O₂) →
Container I₂ O₂ c₂ r₂ → Set _
C₁ ⊸[ f / g ] C₂ = ContainerMorphism C₁ C₂ f g _≡_ _↔_
(λ r₂↔r₁ r₂ → Inverse.to r₂↔r₁ ⟨$⟩ r₂)
-- Cartesian container morphism.
_⇒C[_/_]_ : ∀ {c₁ c₂ r} →
Container I₁ O₁ c₁ r → (I₁ → I₂) → (O₁ → O₂) →
Container I₂ O₂ c₂ r → Set _
C₁ ⇒C[ f / g ] C₂ = ContainerMorphism C₁ C₂ f g _≡_ (λ R₂ R₁ → R₂ ≡ R₁)
(λ r₂≡r₁ r₂ → P.subst ⟨id⟩ r₂≡r₁ r₂)
-- Degenerate cases where no reindexing is performed.
module _ {i o c r} {I : Set i} {O : Set o} where
_⇒_ : B.Rel (Container I O c r) _
C₁ ⇒ C₂ = C₁ ⇒[ ⟨id⟩ / ⟨id⟩ ] C₂
_⊸_ : B.Rel (Container I O c r) _
C₁ ⊸ C₂ = C₁ ⊸[ ⟨id⟩ / ⟨id⟩ ] C₂
_⇒C_ : B.Rel (Container I O c r) _
C₁ ⇒C C₂ = C₁ ⇒C[ ⟨id⟩ / ⟨id⟩ ] C₂
------------------------------------------------------------------------
-- Plain morphisms
-- Interpretation of _⇒_.
⟪_⟫ : ∀ {i o c r ℓ} {I : Set i} {O : Set o} {C₁ C₂ : Container I O c r} →
C₁ ⇒ C₂ → (X : Pred I ℓ) → ⟦ C₁ ⟧ X ⊆ ⟦ C₂ ⟧ X
⟪ m ⟫ X (c , k) = command m c , λ r₂ →
P.subst X (coherent m) (k (response m r₂))
module PlainMorphism {i o c r} {I : Set i} {O : Set o} where
-- Identity.
id : (C : Container I O c r) → C ⇒ C
id _ = record
{ command = ⟨id⟩
; response = ⟨id⟩
; coherent = refl
}
-- Composition.
infixr 9 _∘_
_∘_ : {C₁ C₂ C₃ : Container I O c r} →
C₂ ⇒ C₃ → C₁ ⇒ C₂ → C₁ ⇒ C₃
f ∘ g = record
{ command = command f ⟨∘⟩ command g
; response = response g ⟨∘⟩ response f
; coherent = coherent g ⟨ P.trans ⟩ coherent f
}
-- Identity commutes with ⟪_⟫.
id-correct : ∀ {ℓ} {C : Container I O c r} → ∀ {X : Pred I ℓ} {o} →
⟪ id C ⟫ X {o} ≗ ⟨id⟩
id-correct _ = refl
-- More properties are proved in Data.Container.Indexed.WithK.
------------------------------------------------------------------------
-- Linear container morphisms
module LinearMorphism
{i o c r} {I : Set i} {O : Set o} {C₁ C₂ : Container I O c r}
(m : C₁ ⊸ C₂)
where
morphism : C₁ ⇒ C₂
morphism = record
{ command = command m
; response = _⟨$⟩_ (Inverse.to (response m))
; coherent = coherent m
}
⟪_⟫⊸ : ∀ {ℓ} (X : Pred I ℓ) → ⟦ C₁ ⟧ X ⊆ ⟦ C₂ ⟧ X
⟪_⟫⊸ = ⟪ morphism ⟫
open LinearMorphism public using (⟪_⟫⊸)
------------------------------------------------------------------------
-- Cartesian morphisms
module CartesianMorphism
{i o c r} {I : Set i} {O : Set o} {C₁ C₂ : Container I O c r}
(m : C₁ ⇒C C₂)
where
morphism : C₁ ⇒ C₂
morphism = record
{ command = command m
; response = P.subst ⟨id⟩ (response m)
; coherent = coherent m
}
⟪_⟫C : ∀ {ℓ} (X : Pred I ℓ) → ⟦ C₁ ⟧ X ⊆ ⟦ C₂ ⟧ X
⟪_⟫C = ⟪ morphism ⟫
open CartesianMorphism public using (⟪_⟫C)
------------------------------------------------------------------------
-- All and any
-- □ and ◇ are defined in the core module.
module _ {i o c r ℓ₁ ℓ₂} {I : Set i} {O : Set o} (C : Container I O c r)
{X : Pred I ℓ₁} {P Q : Pred (Σ I X) ℓ₂} where
-- All.
□-map : P ⊆ Q → □ C P ⊆ □ C Q
□-map P⊆Q = _⟨∘⟩_ P⊆Q
-- Any.
◇-map : P ⊆ Q → ◇ C P ⊆ ◇ C Q
◇-map P⊆Q = Prod.map ⟨id⟩ P⊆Q
-- Membership is defined in Data.Container.Indexed.WithK.
| 29.37788
| 77
| 0.502118
|
fd8657e7bdf36f4b0607b6baacbaad737b5300f7
| 406
|
agda
|
Agda
|
Groups/Abelian/Definition.agda
|
Smaug123/agdaproofs
|
0f4230011039092f58f673abcad8fb0652e6b562
|
[
"MIT"
] | 4
|
2019-08-08T12:44:19.000Z
|
2022-01-28T06:04:15.000Z
|
Groups/Abelian/Definition.agda
|
Smaug123/agdaproofs
|
0f4230011039092f58f673abcad8fb0652e6b562
|
[
"MIT"
] | 14
|
2019-01-06T21:11:59.000Z
|
2020-04-11T11:03:39.000Z
|
Groups/Abelian/Definition.agda
|
Smaug123/agdaproofs
|
0f4230011039092f58f673abcad8fb0652e6b562
|
[
"MIT"
] | 1
|
2021-11-29T13:23:07.000Z
|
2021-11-29T13:23:07.000Z
|
{-# OPTIONS --safe --warning=error --without-K #-}
open import Setoids.Setoids
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import Groups.Definition
module Groups.Abelian.Definition where
record AbelianGroup {a} {b} {A : Set a} {S : Setoid {a} {b} A} {_·_ : A → A → A} (G : Group S _·_) : Set (lsuc a ⊔ b) where
open Setoid S
field
commutative : {a b : A} → (a · b) ∼ (b · a)
| 31.230769
| 123
| 0.630542
|
1b399f27ebc5ca1b7e3f7facc8e663cd46355bc4
| 4,223
|
agda
|
Agda
|
test/asset/agda-stdlib-1.0/Data/Table/Properties.agda
|
omega12345/agda-mode
|
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
|
[
"MIT"
] | null | null | null |
test/asset/agda-stdlib-1.0/Data/Table/Properties.agda
|
omega12345/agda-mode
|
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
|
[
"MIT"
] | null | null | null |
test/asset/agda-stdlib-1.0/Data/Table/Properties.agda
|
omega12345/agda-mode
|
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
|
[
"MIT"
] | null | null | null |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Table-related properties
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Table.Properties where
open import Data.Table
open import Data.Table.Relation.Binary.Equality
open import Data.Bool using (true; false; if_then_else_)
open import Data.Nat using (zero; suc)
open import Data.Empty using (⊥-elim)
open import Data.Fin using (Fin; suc; zero; _≟_; punchIn)
import Data.Fin.Properties as FP
open import Data.Fin.Permutation as Perm using (Permutation; _⟨$⟩ʳ_; _⟨$⟩ˡ_)
open import Data.List as L using (List; _∷_; [])
open import Data.List.Relation.Unary.Any using (here; there; index)
open import Data.List.Membership.Propositional using (_∈_)
open import Data.Product as Product using (Σ; ∃; _,_; proj₁; proj₂)
open import Data.Vec as V using (Vec; _∷_; [])
import Data.Vec.Properties as VP
open import Function using (_∘_; flip)
open import Function.Inverse using (Inverse)
open import Relation.Binary.PropositionalEquality as P
using (_≡_; _≢_; refl; sym; cong)
open import Relation.Nullary using (yes; no)
open import Relation.Nullary.Negation using (contradiction)
------------------------------------------------------------------------
-- select
module _ {a} {A : Set a} where
-- Selecting from any table is the same as selecting from a constant table.
select-const : ∀ {n} (z : A) (i : Fin n) t →
select z i t ≗ select z i (replicate (lookup t i))
select-const z i t j with j ≟ i
... | yes _ = refl
... | no _ = refl
-- Selecting an element from a table then looking it up is the same as looking
-- up the index in the original table
select-lookup : ∀ {n x i} (t : Table A n) →
lookup (select x i t) i ≡ lookup t i
select-lookup {i = i} t with i ≟ i
... | yes _ = refl
... | no i≢i = contradiction refl i≢i
-- Selecting an element from a table then removing the same element produces a
-- constant table
select-remove : ∀ {n x} i (t : Table A (suc n)) →
remove i (select x i t) ≗ replicate {n = n} x
select-remove i t j with punchIn i j ≟ i
... | yes p = contradiction p (FP.punchInᵢ≢i _ _)
... | no ¬p = refl
------------------------------------------------------------------------
-- permute
-- Removing an index 'i' from a table permuted with 'π' is the same as
-- removing the element, then permuting with 'π' minus 'i'.
remove-permute : ∀ {m n} (π : Permutation (suc m) (suc n))
i (t : Table A (suc n)) →
remove (π ⟨$⟩ˡ i) (permute π t)
≗ permute (Perm.remove (π ⟨$⟩ˡ i) π) (remove i t)
remove-permute π i t j = P.cong (lookup t) (Perm.punchIn-permute′ π i j)
------------------------------------------------------------------------
-- fromList
module _ {a} {A : Set a} where
fromList-∈ : ∀ {xs : List A} (i : Fin (L.length xs)) → lookup (fromList xs) i ∈ xs
fromList-∈ {[]} ()
fromList-∈ {x ∷ xs} zero = here refl
fromList-∈ {x ∷ xs} (suc i) = there (fromList-∈ i)
index-fromList-∈ : ∀ {xs i} → index (fromList-∈ {xs} i) ≡ i
index-fromList-∈ {[]} {()}
index-fromList-∈ {x ∷ xs} {zero} = refl
index-fromList-∈ {x ∷ xs} {suc i} = cong suc index-fromList-∈
fromList-index : ∀ {xs} {x : A} (x∈xs : x ∈ xs) → lookup (fromList xs) (index x∈xs) ≡ x
fromList-index (here px) = sym px
fromList-index (there x∈xs) = fromList-index x∈xs
------------------------------------------------------------------------
-- There exists an isomorphism between tables and vectors.
module _ {a n} {A : Set a} where
↔Vec : Inverse (≡-setoid A n) (P.setoid (Vec A n))
↔Vec = record
{ to = record { _⟨$⟩_ = toVec ; cong = VP.tabulate-cong }
; from = P.→-to-⟶ fromVec
; inverse-of = record
{ left-inverse-of = VP.lookup∘tabulate ∘ lookup
; right-inverse-of = VP.tabulate∘lookup
}
}
------------------------------------------------------------------------
-- Other
module _ {a} {A : Set a} where
lookup∈ : ∀ {xs : List A} (i : Fin (L.length xs)) → ∃ λ x → x ∈ xs
lookup∈ i = _ , fromList-∈ i
| 35.191667
| 89
| 0.542979
|
fdc21dd616b081ad1e600072502c2076620baa98
| 1,830
|
agda
|
Agda
|
test/Succeed/SizedNatNew.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 3
|
2015-03-28T14:51:03.000Z
|
2015-12-07T20:14:00.000Z
|
test/Succeed/SizedNatNew.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 3
|
2018-11-14T15:31:44.000Z
|
2019-04-01T19:39:26.000Z
|
test/Succeed/SizedNatNew.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1
|
2019-03-05T20:02:38.000Z
|
2019-03-05T20:02:38.000Z
|
-- {-# OPTIONS --sized-types --show-implicit #-}
module _ where
open import Common.Size
data Either (A B : Set) : Set where
left : A → Either A B
right : B → Either A B
caseEither : ∀{A B C : Set} → Either A B → (A → C) → (B → C) → C
caseEither (left a) l r = l a
caseEither (right b) l r = r b
data Nat {i : Size} : Set where
zero : Nat
suc : {i' : Size< i} → Nat {i'} → Nat
-- subtraction is non size increasing
sub : {size : Size} → Nat {size} → Nat {∞} → Nat {size}
sub zero n = zero
sub (suc m) zero = suc m
sub (suc m) (suc n) = sub m n
-- div' m n computes ceiling(m/(n+1))
div' : {size : Size} → Nat {size} → Nat → Nat {size}
div' zero n = zero
div' (suc m) n = suc (div' (sub m n) n)
-- one can use sized types as if they were not sized
-- sizes default to ∞
add : Nat → Nat → Nat
add (zero ) n = n
add (suc m) n = suc (add m n)
nisse : {i : Size} → Nat {i} → Nat {i}
nisse zero = zero
nisse (suc zero) = suc zero
nisse (suc (suc n)) = suc zero
-- symmetric difference
-- @diff n m@ returns @left (n - m)@ if @n@ is bigger, otherwise @right (m - n)@
diff : ∀{i j} → Nat {i} → Nat {j} → Either (Nat {i}) (Nat {j})
diff zero m = right m
diff (suc n) zero = left (suc n)
diff (suc n) (suc m) = diff n m
module Case where
gcd : ∀{i j} → Nat {i} → Nat {j} → Nat
gcd zero m = m
gcd (suc n) zero = suc n
gcd (suc n) (suc m) = caseEither (diff n m)
(λ n' → gcd n' (suc m))
(λ m' → gcd (suc n) m')
module With where
gcd : ∀{i j} → Nat {i} → Nat {j} → Nat
gcd zero m = m
gcd (suc n) zero = suc n
gcd (suc n) (suc m) with diff n m
... | left n' = gcd n' (suc m)
... | right m' = gcd (suc n) m'
NatInfty = Nat {∞}
{-# BUILTIN NATURAL NatInfty #-}
-- {-# BUILTIN NATPLUS add #-} -- not accepted
| 24.4
| 80
| 0.53388
|
43238f6610951cbe639a7b8863bd9e148a7f45c0
| 99
|
agda
|
Agda
|
test/tests/assets/GotoDefinition.agda
|
EdNutting/agda-mode-vscode
|
7628c254e87374a924a781cf15ea3abd715fd2d3
|
[
"MIT"
] | 98
|
2020-05-29T07:46:51.000Z
|
2022-03-18T09:35:55.000Z
|
test/tests/assets/GotoDefinition.agda
|
Code-distancing/agda-mode-vscode
|
7628c254e87374a924a781cf15ea3abd715fd2d3
|
[
"MIT"
] | 84
|
2020-06-03T13:16:16.000Z
|
2022-03-26T11:43:19.000Z
|
test/tests/assets/GotoDefinition.agda
|
Code-distancing/agda-mode-vscode
|
7628c254e87374a924a781cf15ea3abd715fd2d3
|
[
"MIT"
] | 22
|
2020-05-29T12:07:13.000Z
|
2022-03-15T11:37:47.000Z
|
module GotoDefinition where
data ℕ : Set where
Z : ℕ
S : ℕ → ℕ
_+_ : ℕ → ℕ → ℕ
x + y = {! !}
| 14.142857
| 27
| 0.505051
|
19a8a25724487f2160f1a039e860666c860c1c68
| 618
|
agda
|
Agda
|
demo/agda/FRP/JS/Demo/Geolocation.agda
|
agda/agda-frp-js
|
c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72
|
[
"MIT",
"BSD-3-Clause"
] | 63
|
2015-04-20T21:47:00.000Z
|
2022-02-28T09:46:14.000Z
|
demo/agda/FRP/JS/Demo/Geolocation.agda
|
agda/agda-frp-js
|
c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72
|
[
"MIT",
"BSD-3-Clause"
] | null | null | null |
demo/agda/FRP/JS/Demo/Geolocation.agda
|
agda/agda-frp-js
|
c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72
|
[
"MIT",
"BSD-3-Clause"
] | 7
|
2016-11-07T21:50:58.000Z
|
2022-03-12T11:39:38.000Z
|
open import FRP.JS.Behaviour using ( Beh ; map ; [_] )
open import FRP.JS.DOM using ( DOM ; text ; _++_ )
open import FRP.JS.RSet using ( ⟦_⟧ )
open import FRP.JS.Maybe using ( Maybe ; just ; nothing )
open import FRP.JS.String using ( String )
open import FRP.JS.Geolocation using ( geolocation )
open import FRP.JS.Geolocation.Coords using ( Coords ; toString )
module FRP.JS.Demo.Geolocation where
show : Maybe Coords → String
show nothing = "unknown"
show (just coords) = toString coords
main : ∀ {w} → ⟦ Beh (DOM w) ⟧
main =
text ["Current location: "] ++
text (map show geolocation) ++
text ["."]
| 32.526316
| 65
| 0.676375
|
370dc712a9c8c14c45094a8eb263e146e68ab246
| 1,826
|
agda
|
Agda
|
test/Fail/Issue5891.agda
|
favonia/agda
|
8d433b967567c08afe15d04a5cb63b6f6d8884ee
|
[
"BSD-2-Clause"
] | null | null | null |
test/Fail/Issue5891.agda
|
favonia/agda
|
8d433b967567c08afe15d04a5cb63b6f6d8884ee
|
[
"BSD-2-Clause"
] | 6
|
2021-10-18T08:12:24.000Z
|
2021-11-24T08:31:10.000Z
|
test/Fail/Issue5891.agda
|
antoinevanmuylder/agda
|
bd59d5b07ffe02a43b28d186d95e1747aac5bc8c
|
[
"BSD-2-Clause"
] | null | null | null |
-- AIM XXXV, 2022-05-06, issue #5891:
-- SizeUniv : SizeUniv was causing non-termination and inhabitation of Size< 0.
-- This is inconsistent; proof by Jonathan Chan.
{-# OPTIONS --sized-types #-}
open import Agda.Primitive
open import Agda.Builtin.Size
data ⊥ : Set where
-- Original exploit:
-- data False : SizeUniv where
False : SizeUniv
False = (X : SizeUniv) → X
-- Should fail.
-- Expected error:
-- Setω != SizeUniv
-- when checking that the expression (X : SizeUniv) → X has type SizeUniv
-- Step 1: Hurken's Paradox with SizeUniv : SizeUniv.
℘ : SizeUniv → SizeUniv
℘ S = S → SizeUniv
U : SizeUniv
U = ∀ (X : SizeUniv) → (℘ (℘ X) → X) → ℘ (℘ X)
τ : ℘ (℘ U) → U
τ t = λ X f p → t (λ x → p (f (x X f)))
σ : U → ℘ (℘ U)
σ s = s U τ
Δ : ℘ U
Δ y = (∀ p → σ y p → p (τ (σ y))) → False
Ω : U
Ω = τ (λ p → (∀ x → σ x p → p x))
R : ∀ p → (∀ x → σ x p → p x) → p Ω
R _ 𝟙 = 𝟙 Ω (λ x → 𝟙 (τ (σ x)))
M : ∀ x → σ x Δ → Δ x
M _ 𝟚 𝟛 = 𝟛 Δ 𝟚 (λ p → 𝟛 (λ y → p (τ (σ y))))
L : (∀ p → (∀ x → σ x p → p x) → p Ω) → False
L 𝟘 = 𝟘 Δ M (λ p → 𝟘 (λ y → p (τ (σ y))))
-- Prevent unfolding, as this term has no whnf.
-- Stops Agda from looping.
abstract
false : False
false = L R
-- This gives us a predecessor on Size.
size-pred : ∀ i → Size< i
size-pred i = false (Size< i)
-- Step 2: Size predecessor is inconsistent.
-- Jonathan Chan:
-- I managed to do so using ∞ but only because it's the only closed
-- size expression, not using the ∞ < ∞ property, although the
-- principle is the same as for #3026:
data _>_ (s : Size) : Size → Set where
lt : (r : Size< s) → s > r
data Acc (s : Size) : Set where
acc : (∀ {r} → s > r → Acc r) → Acc s
wf : ∀ s → Acc s
wf s = acc λ{ (lt r) → wf r }
¬wf : ∀ s → Acc s → ⊥
¬wf s (acc p) = ¬wf (size-pred s) (p (lt (size-pred s)))
absurd : ⊥
absurd = (¬wf ∞) (wf ∞)
| 21.232558
| 79
| 0.556407
|
7c93b93f4bda6a98141cc8fd48f41532e4269051
| 3,115
|
agda
|
Agda
|
Control/Comonad/IntervalHeap.agda
|
oisdk/agda-playground
|
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
|
[
"MIT"
] | 6
|
2020-09-11T17:45:41.000Z
|
2021-11-16T08:11:34.000Z
|
Control/Comonad/IntervalHeap.agda
|
oisdk/agda-playground
|
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
|
[
"MIT"
] | null | null | null |
Control/Comonad/IntervalHeap.agda
|
oisdk/agda-playground
|
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
|
[
"MIT"
] | 1
|
2021-11-11T12:30:21.000Z
|
2021-11-11T12:30:21.000Z
|
{-# OPTIONS --cubical --safe --postfix-projections --guardedness #-}
open import Algebra
open import Prelude
open import Relation.Binary
open import WellFounded
open import Algebra.Monus
open import Data.Maybe
module Control.Comonad.IntervalHeap {s}
(mon : TMAPOM s)
(wf : WellFounded (TMAPOM._<_ mon))
(cancel : Cancellativeˡ (TMAPOM._∙_ mon))
where
open TMAPOM mon
mutual
record Heap (A : Type a) : Type (s ℓ⊔ a) where
inductive; constructor _◃_
field
hd : A
tl : Next A
record Next {a} (A : Type a) : Type (s ℓ⊔ a) where
coinductive; constructor ⟪_⟫
field next : Span A
data Span {a} (A : Type a) : Type (s ℓ⊔ a) where
[] : Span A
until : (s : 𝑆) → (s≢ε : s ≢ ε) → (xs : Heap A) → Span A
open Heap public
open Next public
State : Type a → Type _
State A = 𝑆 → A × 𝑆
pop′ : (s : 𝑆) → Acc _<_ s → Heap A → A × 𝑆
pop′ s₂ a xs with xs .tl .next
pop′ s₂ a xs | [] = xs .hd , ε
pop′ s₂ a xs | until s₁ s₁≢ε ys with s₁ ≤? s₂
pop′ s₂ a xs | until s₁ s₁≢ε ys | no s₁≰s₂ = xs .hd , fst (<⇒≤ s₁≰s₂)
pop′ s₂ (acc wf) xs | until s₁ s₁≢ε ys | yes (k₁ , s₂≡s₁∙k₁) = pop′ k₁ (wf k₁ lemma) ys
where
lemma : k₁ < s₂
lemma (k₂ , k₁≡s₂∙k₂) = s₁≢ε (zeroSumFree s₁ k₂ (sym (cancel k₁ _ _ p)))
where
p : k₁ ∙ ε ≡ k₁ ∙ (s₁ ∙ k₂)
p = ∙ε k₁ ; k₁≡s₂∙k₂ ; cong (_∙ k₂) s₂≡s₁∙k₁ ; cong (_∙ k₂) (comm s₁ k₁) ; assoc k₁ s₁ k₂
pop : Heap A → State A
pop xs s = pop′ s (wf s) xs
mutual
stepFrom : State A → (s : 𝑆) → Dec (s ≡ ε) → Span A
stepFrom f s (yes p) = []
stepFrom f s (no ¬p) = until s ¬p (tabulate (f ∘ (s ∙_)))
tabulate : State A → Heap A
tabulate f =
let x , s = f ε
in x ◃ λ where .next → stepFrom f s (s ≟ ε)
pop-ε : (xs : Heap A) (a : Acc _<_ ε) → pop′ ε a xs .fst ≡ xs .hd
pop-ε xs _ with xs .tl .next
pop-ε xs _ | [] = refl
pop-ε xs _ | until s s≢ε ys with s ≤? ε
pop-ε xs _ | until s s≢ε ys | no s≰ε = refl
pop-ε xs _ | until s s≢ε ys | yes s≤ε = ⊥-elim (s≢ε (antisym s≤ε (positive s)))
-- slide : Heap A → Heap A
-- slide xs with xs .tl .next
-- slide xs | [] = xs
-- slide xs | [] = []
-- pop-tl : ∀ (x : A) s₁ (s₁≢ε : s₁ ≢ ε) xs s₂ → pop (x ◃ ⟪ until s₁ s₁≢ε xs ⟫) (s₁ ∙ s₂) ≡ pop xs s₂
-- pop-tl x s₁ s₁≢ε xs s₂ with s₁ ≤? (s₁ ∙ s₂)
-- pop-tl x s₁ s₁≢ε xs s₂ | no s₁≰s₁∙s₂ = ⊥-elim (s₁≰s₁∙s₂ (s₂ , refl))
-- pop-tl x s₁ s₁≢ε xs s₂ | yes (k , s₁≤s₁∙s₂) =
-- let p = cancel s₁ s₂ k s₁≤s₁∙s₂
-- in {!!} ; cong (λ w → pop′ s₂ w xs) (isPropAcc {!!} (wf s₂))
-- seg-leftInv′ : (x : Heap A) → tabulate (pop x) ≡ x
-- seg-leftInv′ x = {!!}
-- mutual
-- seg-leftInv′ : (xs : Heap A) → stepFrom (pop xs) (pop xs ε .snd) (pop xs ε .snd ≟ ε) ≡ xs .tl .next
-- seg-leftInv′ (x ◃ xs) with pop (x ◃ xs) ε .snd ≟ ε
-- seg-leftInv′ (x ◃ xs) | yes s≡ε = {!!}
-- seg-leftInv′ (x ◃ xs) | no s≢ε = {!!}
-- seg-leftInv : (x : Heap A) → tabulate (pop x) ≡ x
-- seg-leftInv (x ◃ xs) i .hd = pop-ε (x ◃ xs) (wf ε) i
-- seg-leftInv (x ◃ xs) i .tl .next = seg-leftInv′ (x ◃ xs) i
-- state-iso : Heap A ⇔ State A
-- state-iso .fun = pop
-- state-iso .inv = tabulate
-- state-iso .rightInv = {!!}
-- state-iso .leftInv = {!!}
| 30.841584
| 104
| 0.549599
|
7c71c8f99af71397eccfcb44fefe1b7d28dec256
| 5,929
|
agda
|
Agda
|
test/epic/Prelude/File.agda
|
asr/agda-kanso
|
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
|
[
"MIT"
] | 1
|
2018-10-10T17:08:44.000Z
|
2018-10-10T17:08:44.000Z
|
test/epic/Prelude/File.agda
|
np/agda-git-experiment
|
20596e9dd9867166a64470dd24ea68925ff380ce
|
[
"MIT"
] | null | null | null |
test/epic/Prelude/File.agda
|
np/agda-git-experiment
|
20596e9dd9867166a64470dd24ea68925ff380ce
|
[
"MIT"
] | null | null | null |
{- An adaptation of Edwin Brady and Kevin Hammond's paper Scrapping your inefficient engine ... -}
{-# OPTIONS --type-in-type #-}
module File where
open import Bool
open import Bot
open import IO
open import Fin
open import Eq
open import Nat
open import Product
open import String
open import Unit
open import Vec
data Ty : Set where
TyUnit : Ty
TyBool : Ty
TyLift : Set -> Ty
TyHandle : Nat -> Ty
interpTy : Ty -> Set
interpTy TyUnit = Unit
interpTy TyBool = Bool
interpTy (TyLift A) = A
interpTy (TyHandle n) = Fin n
data Purpose : Set where
Reading : Purpose
Writing : Purpose
getMode : Purpose -> String
getMode Reading = "r"
getMode Writing = "w"
data FileState : Set where
Open : Purpose -> FileState
Closed : FileState
postulate
EpicFile : Set
FileVec : Nat -> Set
FileVec n = Vec FileState n
data FileHandle : FileState -> Set where
OpenFile : ∀{p} -> EpicFile -> FileHandle (Open p)
ClosedFile : FileHandle Closed
data Env : ∀{n} -> FileVec n -> Set where
Empty : Env []
Extend : {n : Nat}{T : FileState}{G : FileVec n} -> (res : FileHandle T) -> Env G -> Env (T :: G)
addEnd : ∀{n T}{G : FileVec n} -> Env G -> FileHandle T -> Env (snoc G T)
addEnd Empty fh = Extend fh Empty
addEnd (Extend x xs) fh = Extend x (addEnd xs fh)
updateEnv : ∀{n T}{G : FileVec n} -> Env G -> (i : Fin n) -> (fh : FileHandle T) -> Env (G [ i ]= T)
updateEnv (Extend x xs) fz e = Extend e xs
updateEnv (Extend x xs) (fs n) e = Extend x (updateEnv xs n e)
updateEnv Empty () e
bound : ∀{n : Nat} -> Fin (S n)
bound {Z} = fz
bound {S n} = fs (bound {n})
data OpenH : ∀{n} -> Fin n -> Purpose -> FileVec n -> Set where
nil : ∀{p n}{as : FileVec n} -> OpenH fz p (Open p :: as)
suc : ∀{p n a}{as : FileVec n}{i : Fin n} -> OpenH i p as -> OpenH (fs i) p (a :: as)
getFile : ∀{n}{i : Fin n}{p : Purpose}{ts : FileVec n} -> OpenH i p ts -> Env ts -> EpicFile
getFile nil (Extend (OpenFile f) env) = f
getFile (suc p) (Extend _ env) = getFile p env
getPurpose : {n : Nat} -> Fin n -> FileVec n -> Purpose
getPurpose f ts with ts ! f
... | Open p = p
... | Closed = Reading -- Should not happen right?
FilePath : Set
FilePath = String
data File : ∀{n n'} -> FileVec n -> FileVec n' -> Ty -> Set where
ACTION : ∀{a l}{ts : FileVec l} -> IO (interpTy a) -> File ts ts a
RETURN : ∀{a l}{ts : FileVec l} -> interpTy a -> File ts ts a
WHILE : ∀{l}{ts : FileVec l} -> File ts ts TyBool -> File ts ts TyUnit -> File ts ts TyUnit
IF : ∀{a l}{ts : FileVec l} -> Bool -> File ts ts a -> File ts ts a -> File ts ts a
BIND : ∀{a b l l' l''}{ts : FileVec l}{ts' : FileVec l'}{ts'' : FileVec l''}
-> File ts ts' a -> (interpTy a -> File ts' ts'' b) -> File ts ts'' b
OPEN : ∀{l}{ts : FileVec l}
-> (p : Purpose) -> (fd : FilePath) -> File ts (snoc ts (Open p)) (TyHandle (S l))
CLOSE : ∀ {l}{ts : FileVec l} -> (i : Fin l) -> (OpenH i (getPurpose i ts) ts) -> File ts (ts [ i ]= Closed) TyUnit
GETLINE : ∀ {l}{ts : FileVec l} -> (i : Fin l) -> (p : OpenH i Reading ts) -> File ts ts (TyLift String)
EOF : ∀ {l}{ts : FileVec l} -> (i : Fin l) -> (p : OpenH i Reading ts) -> File ts ts TyBool
PUTLINE : ∀ {l}{ts : FileVec l} -> (i : Fin l) -> (str : String) -> (p : OpenH i Writing ts) -> File ts ts TyUnit
postulate
while : IO Bool -> IO Unit -> IO Unit
fopen : FilePath -> String -> IO EpicFile
fclose : EpicFile -> IO Unit
fread : EpicFile -> IO String
feof : EpicFile -> IO Bool
fwrite : EpicFile -> String -> IO Unit
{-# COMPILED_EPIC while (add : Any, body : Any, u : Unit) -> Any = %while (add(u), body(u)) #-}
{-# COMPILED_EPIC fopen (fp : String, mode : String, u : Unit) -> Ptr = foreign Ptr "fopen" (fp : String, mode : String) #-}
{-# COMPILED_EPIC fclose (file : Ptr, u : Unit) -> Unit = foreign Int "fclose" (file : Ptr); unit #-}
{-# COMPILED_EPIC fread (file : Ptr, u : Unit) -> Any = foreign Any "freadStr" (file : Ptr) #-}
{-# COMPILED_EPIC feof (file : Ptr, u : Unit) -> Bool = foreign Int "feof" (file : Ptr) #-}
{-# COMPILED_EPIC fwrite (file : Ptr, str : String, u : Unit) -> Unit = foreign Unit "fputStr" (file : Ptr, str : String) #-}
fmap : {A B : Set} -> (A -> B) -> IO A -> IO B
fmap f io =
x <- io ,
return (f x)
interp : ∀{n n' T}{ts : FileVec n}{ts' : FileVec n'} -> Env ts -> File ts ts' T -> IO (Env ts' × interpTy T)
interp env (ACTION io) = fmap (_,_ env) io
interp env (RETURN val) = return (env , val)
interp env (WHILE add body) =
while (fmap snd (interp env add)) (fmap snd (interp env body)) ,,
return (env , unit)
interp env (IF b t f) = if b then interp env t else interp env f
interp env (BIND code k) =
v <- interp env code ,
interp (fst v) (k (snd v))
interp env (OPEN p fpath) =
fh <- fopen fpath (getMode p),
return (addEnd env (OpenFile fh), bound)
interp env (CLOSE i p) =
fclose (getFile p env) ,,
return (updateEnv env i ClosedFile , unit)
interp env (GETLINE i p) =
fmap (_,_ env) (fread (getFile p env))
interp env (EOF i p) =
e <- feof (getFile p env) ,
return (env , e)
interp env (PUTLINE i str p) =
fmap (_,_ env) (fwrite (getFile p env) str ,, fwrite (getFile p env) "\n")
printBool : Bool -> IO Unit
printBool b = putStr (if b then "true" else "false")
allClosed : (n : Nat) -> FileVec n
allClosed Z = []
allClosed (S n) = Closed :: allClosed n
cat : File [] (Closed :: []) TyUnit
cat = BIND (OPEN Reading "hej")
cont
where
cont : Fin 1 -> File (Open Reading :: []) (Closed :: []) TyUnit
cont (fs ())
cont fz = BIND (WHILE (BIND (EOF fz nil) (\b -> RETURN (not b)))
(BIND (GETLINE fz nil)
(\str -> ACTION (putStrLn str))
)
)
(λ x → CLOSE fz nil)
main : IO Unit
main = fmap snd (interp Empty cat)
| 36.152439
| 126
| 0.576488
|
d1893206262ff42db0b49dd1af9b6ebba3dc227f
| 891
|
agda
|
Agda
|
test/Succeed/LineEndings/LexASCII.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Succeed/LineEndings/LexASCII.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Succeed/LineEndings/LexASCII.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
-- All 256 ASCII characters
module LineEndings.LexASCII where
{- In Block comment:
Control characters 0-31
Rest of 7-bit ASCII
!"#$%&'()*+,-./0123456789:;<=>?
@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_
`abcdefghijklmnopqrstuvwxyz{|}~
8-Bit ASCII
¡¢£¤¥¦§¨©ª«¬®¯°±²³´µ¶·¸¹º»¼½¾¿
ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖרÙÚÛÜÝÞß
àáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿ
-}
-- In line comments
--
--
--
-- !"#$%&'()*+,-./0123456789:;<=>?
-- @ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_
-- `abcdefghijklmnopqrstuvwxyz{|}~
--
-- Note: Agda translates the following character (decimal: 133 xd: x85)
-- into a new line, see function convertLineEndings.
--
--
--
--
--
-- ¡¢£¤¥¦§¨©ª«¬®¯°±²³´µ¶·¸¹º»¼½¾¿
-- ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖרÙÚÛÜÝÞß
-- àáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿ
-- -}
| 15.362069
| 71
| 0.545455
|
2ee133b4ac50973972be1f78b4a3a31291d02746
| 36
|
agda
|
Agda
|
src/Generics/Mu/Conversion.agda
|
flupe/generics
|
db764f858d908aa39ea4901669a6bbce1525f757
|
[
"MIT"
] | 11
|
2021-04-08T15:10:20.000Z
|
2022-02-05T09:35:17.000Z
|
src/Generics/Mu/Conversion.agda
|
flupe/generics
|
db764f858d908aa39ea4901669a6bbce1525f757
|
[
"MIT"
] | 4
|
2021-09-13T07:33:50.000Z
|
2022-01-14T10:48:30.000Z
|
src/Generics/Mu/Conversion.agda
|
flupe/generics
|
db764f858d908aa39ea4901669a6bbce1525f757
|
[
"MIT"
] | 3
|
2021-04-08T08:32:42.000Z
|
2022-01-14T10:35:16.000Z
|
module Generics.Mu.Conversion where
| 18
| 35
| 0.861111
|
0dd49c7af1a9fcf296cd396f15174030f5c79f78
| 273
|
agda
|
Agda
|
test/Fail/NonUniqueInstance1.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Fail/NonUniqueInstance1.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Fail/NonUniqueInstance1.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
open import Common.Prelude hiding (tt)
instance
tt : ⊤
tt = record{}
NonZero : Nat → Set
NonZero zero = ⊥
NonZero (suc _) = ⊤
pred′ : (n : Nat) {{_ : NonZero n}} → Nat
pred′ zero {{}}
pred′ (suc n) = n
test : (n : Nat) {{x y : NonZero n}} → Nat
test n = pred′ n
| 16.058824
| 42
| 0.556777
|
37fea119c1eb7de4bf2d50dd705999ec5bc6ae9a
| 2,147
|
agda
|
Agda
|
LibraBFT/Impl/Handle/InitProperties.agda
|
oracle/bft-consensus-agda
|
49f8b1b70823be805d84ffc3157c3b880edb1e92
|
[
"UPL-1.0"
] | 4
|
2020-12-16T19:43:41.000Z
|
2021-12-18T19:24:05.000Z
|
LibraBFT/Impl/Handle/InitProperties.agda
|
oracle/bft-consensus-agda
|
49f8b1b70823be805d84ffc3157c3b880edb1e92
|
[
"UPL-1.0"
] | 72
|
2021-02-04T05:04:33.000Z
|
2022-03-25T05:36:11.000Z
|
LibraBFT/Impl/Handle/InitProperties.agda
|
oracle/bft-consensus-agda
|
49f8b1b70823be805d84ffc3157c3b880edb1e92
|
[
"UPL-1.0"
] | 6
|
2020-12-16T19:43:52.000Z
|
2022-02-18T01:04:32.000Z
|
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import LibraBFT.Impl.Consensus.EpochManagerTypes
open import LibraBFT.ImplShared.Consensus.Types
open import LibraBFT.ImplShared.Interface.Output
open import LibraBFT.ImplShared.Util.Dijkstra.EitherD
import LibraBFT.Impl.Properties.Util as Util
open import LibraBFT.Prelude
open import Optics.All
module LibraBFT.Impl.Handle.InitProperties where
module initHandlerSpec
(pid : Author)
(bsi : BootstrapInfo)
where
import LibraBFT.Yasm.Types as LYT
record ContractOk (rm : RoundManager) (acts : List (LYT.Action NetworkMsg)) : Set where
constructor mkContractOk
field
rmInv : Util.Invariants.RoundManagerInv rm
sigs∈bs : ∀ {vs qc}
→ vs ∈ qcVotes qc
→ qc Util.QCProps.∈RoundManager rm
→ ∈BootstrapInfo-impl bsi (proj₂ vs)
-- During epoch initialisation, no messages are sent
-- EXCEPT the leader of Round 1 SENDS a ProposalMsg during initialization.
-- Rust/Haskell impls do not include signatures in the genesis QC's LIWS.
-- The initial proposal for (Epoch N) (Round 1) is built on a QC with empty signatures.
isInitPM : ∀ {m}
→ LYT.send m ∈ acts
→ ∃[ pm ] ( m ≡ P pm
× ∀ {vs qc}
→ vs ∈ qcVotes qc
→ qc QC∈NM m
→ ⊥)
sdLVNothing : rm ^∙ rmSafetyRules ∙ srPersistentStorage
∙ pssSafetyData ∙ sdLastVote ≡ nothing
Contract : Maybe (RoundManager × List (LYT.Action NetworkMsg)) → Set
Contract nothing = ⊤
Contract (just (rm , acts)) = ContractOk rm acts
import LibraBFT.Impl.Handle as Handle
open Handle.InitHandler
postulate
contract : ∀ {x} → initHandler pid bsi ≡ x → Contract x
-- contract = EitherD-contract {!!} Contract contract'
| 37.666667
| 111
| 0.632045
|
03fae44ca65fd5709e84b994e88f7f22798180c2
| 4,961
|
agda
|
Agda
|
Cubical/Codata/Conat/Properties.agda
|
L-TChen/cubical
|
60226aacd7b386aef95d43a0c29c4eec996348a8
|
[
"MIT"
] | null | null | null |
Cubical/Codata/Conat/Properties.agda
|
L-TChen/cubical
|
60226aacd7b386aef95d43a0c29c4eec996348a8
|
[
"MIT"
] | 1
|
2022-01-27T02:07:48.000Z
|
2022-01-27T02:07:48.000Z
|
Cubical/Codata/Conat/Properties.agda
|
L-TChen/cubical
|
60226aacd7b386aef95d43a0c29c4eec996348a8
|
[
"MIT"
] | null | null | null |
{- Conatural number properties (Tesla Ice Zhang et al., Feb. 2019)
This file defines operations and properties on conatural numbers:
- Infinity (∞).
- Proof that ∞ + 1 is equivalent to ∞.
- Proof that conatural is an hSet.
- Bisimulation on conatural
- Proof that bisimulation is equivalent to equivalence (Coinductive Proof
Principle).
- Proof that this bisimulation is prop valued
The standard library also defines bisimulation on conaturals:
https://github.com/agda/agda-stdlib/blob/master/src/Codata/Conat/Bisimilarity.agda
-}
{-# OPTIONS --cubical --no-import-sorts --safe --guardedness #-}
module Cubical.Codata.Conat.Properties where
open import Cubical.Data.Unit
open import Cubical.Data.Sum
open import Cubical.Data.Empty as ⊥
open import Cubical.Core.Everything
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Path
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Univalence
open import Cubical.Relation.Nullary
open import Cubical.Codata.Conat.Base
Unwrap-prev : Conat′ → Type₀
Unwrap-prev zero = Unit
Unwrap-prev (suc _) = Conat
unwrap-prev : (n : Conat′) -> Unwrap-prev n
unwrap-prev zero = _
unwrap-prev (suc x) = x
private -- tests
𝟘 = conat zero
𝟙 = succ 𝟘
𝟚 = succ 𝟙
succ𝟙≡𝟚 : succ 𝟙 ≡ 𝟚
succ𝟙≡𝟚 i = 𝟚
pred𝟚≡𝟙 : unwrap-prev (force 𝟚) ≡ 𝟙
pred𝟚≡𝟙 i = 𝟙
∞ : Conat
force ∞ = suc ∞
∞+1≡∞ : succ ∞ ≡ ∞
force (∞+1≡∞ _) = suc ∞
∞+2≡∞ : succ (succ ∞) ≡ ∞
∞+2≡∞ = (cong succ ∞+1≡∞) ∙ ∞+1≡∞
_+_ : Conat → Conat → Conat
_+′_ : Conat′ → Conat → Conat′
force (x + y) = force x +′ y
zero +′ y = force y
suc x +′ y = suc (x + y)
n+∞≡∞ : ∀ n → n + ∞ ≡ ∞
n+′∞≡∞′ : ∀ n → n +′ ∞ ≡ suc ∞
force (n+∞≡∞ n i) = n+′∞≡∞′ (force n) i
n+′∞≡∞′ zero = refl
n+′∞≡∞′ (suc n) = λ i → suc (n+∞≡∞ n i)
∞+∞≡∞ : ∞ + ∞ ≡ ∞
force (∞+∞≡∞ i) = suc (∞+∞≡∞ i)
+-zeroˡ : ∀ n → 𝟘 + n ≡ n
force (+-zeroˡ n _) = force n
+-zeroʳ : ∀ n → n + 𝟘 ≡ n
+′-zeroʳ : ∀ n → n +′ 𝟘 ≡ n
force (+-zeroʳ n i) = +′-zeroʳ (force n) i
+′-zeroʳ zero _ = zero
+′-zeroʳ (suc n) i = suc (+-zeroʳ n i)
+-assoc : ∀ m n p → (m + n) + p ≡ m + (n + p)
+′-assoc : ∀ m n p → (m +′ n) +′ p ≡ m +′ (n + p)
force (+-assoc m n p i) = +′-assoc (force m) n p i
+′-assoc zero _ _ = refl
+′-assoc (suc m) n p i = suc (+-assoc m n p i)
conat-absurd : ∀ {y : Conat} {ℓ} {Whatever : Type ℓ} → zero ≡ suc y → Whatever
conat-absurd eq = ⊥.rec (transport (cong diag eq) tt)
where
diag : Conat′ → Type₀
diag zero = Unit
diag (suc _) = ⊥
module IsSet where
≡-stable : {x y : Conat} → Stable (x ≡ y)
≡′-stable : {x y : Conat′} → Stable (x ≡ y)
force (≡-stable ¬¬p i) = ≡′-stable (λ ¬p → ¬¬p (λ p → ¬p (cong force p))) i
≡′-stable {zero} {zero} ¬¬p′ = refl
≡′-stable {suc x} {suc y} ¬¬p′ =
cong′ suc (≡-stable λ ¬p → ¬¬p′ λ p → ¬p (cong pred′′ p))
≡′-stable {zero} {suc y} ¬¬p′ = ⊥.rec (¬¬p′ conat-absurd)
≡′-stable {suc x} {zero} ¬¬p′ = ⊥.rec (¬¬p′ λ p → conat-absurd (sym p))
isSetConat : isSet Conat
isSetConat _ _ = Separated→isSet (λ _ _ → ≡-stable) _ _
isSetConat′ : isSet Conat′
isSetConat′ m n p′ q′ = cong (cong force) (isSetConat (conat m) (conat n) p q)
where p = λ where i .force → p′ i
q = λ where i .force → q′ i
module Bisimulation where
open IsSet using (isSetConat)
record _≈_ (x y : Conat) : Type₀
data _≈′_ (x y : Conat′) : Type₀
_≈′′_ : Conat′ → Conat′ → Type₀
zero ≈′′ zero = Unit
suc x ≈′′ suc y = x ≈ y
-- So impossible proofs are preserved
x ≈′′ y = ⊥
record _≈_ x y where
coinductive
field prove : force x ≈′ force y
data _≈′_ x y where
con : x ≈′′ y → x ≈′ y
open _≈_ public
bisim : ∀ {x y} → x ≈ y → x ≡ y
bisim′ : ∀ {x y} → x ≈′ y → x ≡ y
bisim′ {zero} {zero} (con tt) = refl
bisim′ {zero} {suc x} (con ())
bisim′ {suc x} {zero} (con ())
bisim′ {suc x} {suc y} (con eq) i = suc (bisim eq i)
force (bisim eq i) = bisim′ (prove eq) i
misib : ∀ {x y} → x ≡ y → x ≈ y
misib′ : ∀ {x y} → x ≡ y → x ≈′ y
misib′ {zero} {zero} _ = con tt
misib′ {zero} {suc x} = conat-absurd
misib′ {suc x} {zero} p = conat-absurd (sym p)
-- misib′ {suc x} {suc y} p = con λ where .prove → misib′ (cong pred′ p)
misib′ {suc x} {suc y} p = con (misib (cong pred′′ p))
prove (misib x≡y) = misib′ (cong force x≡y)
iso″ : ∀ {x y} → (p : x ≈ y) → misib (bisim p) ≡ p
iso′ : ∀ {x y} → (p : x ≈′ y) → misib′ (bisim′ p) ≡ p
iso′ {zero} {zero} (con p) = refl
iso′ {zero} {suc x} (con ())
iso′ {suc x} {zero} (con ())
iso′ {suc x} {suc y} (con p) = cong con (iso″ p)
prove (iso″ p i) = iso′ (prove p) i
osi : ∀ {x y} → (p : x ≡ y) → bisim (misib p) ≡ p
osi p = isSetConat _ _ _ p
path≃bisim : ∀ {x y} → (x ≡ y) ≃ (x ≈ y)
path≃bisim = isoToEquiv (iso misib bisim iso″ osi)
path≡bisim : ∀ {x y} → (x ≡ y) ≡ (x ≈ y)
path≡bisim = ua path≃bisim
isProp≈ : ∀ {x y} → isProp (x ≈ y)
isProp≈ = subst isProp path≡bisim (isSetConat _ _)
| 26.248677
| 82
| 0.564402
|
d1c18552d98ed4f91d8bcb14983165a76b6ca8f7
| 1,165
|
agda
|
Agda
|
test/asset/agda-stdlib-1.0/Debug/Trace.agda
|
omega12345/agda-mode
|
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
|
[
"MIT"
] | 5
|
2020-10-07T12:07:53.000Z
|
2020-10-10T21:41:32.000Z
|
test/asset/agda-stdlib-1.0/Debug/Trace.agda
|
omega12345/agda-mode
|
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
|
[
"MIT"
] | null | null | null |
test/asset/agda-stdlib-1.0/Debug/Trace.agda
|
omega12345/agda-mode
|
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
|
[
"MIT"
] | 1
|
2021-11-04T06:54:45.000Z
|
2021-11-04T06:54:45.000Z
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Printing Strings During Evaluation
------------------------------------------------------------------------
{-# OPTIONS --without-K --rewriting #-}
-- see README.Debug.Trace for a use-case
module Debug.Trace where
open import Agda.Builtin.String
open import Agda.Builtin.Equality
-- Postulating the `trace` function and explaining how to compile it
postulate
trace : ∀ {a} {A : Set a} → String → A → A
{-# FOREIGN GHC import qualified Debug.Trace as Debug #-}
{-# FOREIGN GHC import qualified Data.Text as Text #-}
{-# COMPILE GHC trace = const (const (Debug.trace . Text.unpack)) #-}
-- Because expressions involving postulates get stuck during evaluation,
-- we also postulate an equality characterising `trace`'s behaviour. By
-- declaring it as a rewrite rule we internalise that evaluation rule.
postulate
trace-eq : ∀ {a} {A : Set a} (a : A) str → trace str a ≡ a
{-# BUILTIN REWRITE _≡_ #-}
{-# REWRITE trace-eq #-}
-- Specialised version of `trace` returning the traced message.
traceId : String → String
traceId str = trace str str
| 29.871795
| 72
| 0.619742
|
0de1b7d667091678af3d8e53c1408bcc8ef18b27
| 16,762
|
agda
|
Agda
|
Cubical/Algebra/CommRing/Localisation/UniversalProperty.agda
|
apabepa10/cubical
|
3a9bb56260c25a6f2e9c20af8d278de0fe8d9e05
|
[
"MIT"
] | null | null | null |
Cubical/Algebra/CommRing/Localisation/UniversalProperty.agda
|
apabepa10/cubical
|
3a9bb56260c25a6f2e9c20af8d278de0fe8d9e05
|
[
"MIT"
] | null | null | null |
Cubical/Algebra/CommRing/Localisation/UniversalProperty.agda
|
apabepa10/cubical
|
3a9bb56260c25a6f2e9c20af8d278de0fe8d9e05
|
[
"MIT"
] | null | null | null |
-- We define what it means to satisfy the universal property
-- of localisation and show that the localisation in Base satisfies
-- it. We will also show that the localisation is uniquely determined
-- by the universal property, and give sufficient criteria for
-- satisfying the universal property.
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Algebra.CommRing.Localisation.UniversalProperty where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Powerset
open import Cubical.Foundations.Transport
open import Cubical.Functions.FunExtEquiv
open import Cubical.Functions.Surjection
open import Cubical.Functions.Embedding
import Cubical.Data.Empty as ⊥
open import Cubical.Data.Bool
open import Cubical.Data.Nat renaming ( _+_ to _+ℕ_ ; _·_ to _·ℕ_
; +-comm to +ℕ-comm ; +-assoc to +ℕ-assoc
; ·-assoc to ·ℕ-assoc ; ·-comm to ·ℕ-comm)
open import Cubical.Data.Vec
open import Cubical.Data.Sigma.Base
open import Cubical.Data.Sigma.Properties
open import Cubical.Data.FinData
open import Cubical.Relation.Nullary
open import Cubical.Relation.Binary
open import Cubical.Algebra.Group
open import Cubical.Algebra.AbGroup
open import Cubical.Algebra.Monoid
open import Cubical.Algebra.Ring
open import Cubical.Algebra.CommRing
open import Cubical.Algebra.CommRing.Localisation.Base
open import Cubical.HITs.SetQuotients as SQ
open import Cubical.HITs.PropositionalTruncation as PT
open Iso
private
variable
ℓ ℓ' : Level
module _ (R' : CommRing {ℓ}) (S' : ℙ (R' .fst)) (SMultClosedSubset : isMultClosedSubset R' S') where
open isMultClosedSubset
private R = R' .fst
open CommRingStr (R' .snd) hiding (is-set)
open Theory (CommRing→Ring R')
open RingHom
hasLocUniversalProp : (A : CommRing {ℓ}) (φ : CommRingHom R' A)
→ (∀ s → s ∈ S' → f φ s ∈ A ˣ)
→ Type (ℓ-suc ℓ)
hasLocUniversalProp A φ _ = (B : CommRing {ℓ}) (ψ : CommRingHom R' B)
→ (∀ s → s ∈ S' → f ψ s ∈ B ˣ)
→ ∃![ χ ∈ CommRingHom A B ] (f χ) ∘ (f φ) ≡ (f ψ)
UniversalPropIsProp : (A : CommRing {ℓ}) (φ : CommRingHom R' A)
→ (φS⊆Aˣ : ∀ s → s ∈ S' → f φ s ∈ A ˣ)
→ isProp (hasLocUniversalProp A φ φS⊆Aˣ)
UniversalPropIsProp A φ φS⊆Aˣ = isPropΠ3 (λ _ _ _ → isPropIsContr)
-- S⁻¹R has the universal property
module S⁻¹RUniversalProp where
open Loc R' S' SMultClosedSubset
_/1 : R → S⁻¹R
r /1 = [ r , 1r , SMultClosedSubset .containsOne ]
/1AsCommRingHom : CommRingHom R' S⁻¹RAsCommRing
f /1AsCommRingHom = _/1
pres1 /1AsCommRingHom = refl
isHom+ /1AsCommRingHom r r' = cong [_] (≡-× (cong₂ (_+_) (sym (·Rid r)) (sym (·Rid r')))
(Σ≡Prop (λ x → S' x .snd) (sym (·Lid 1r))))
isHom· /1AsCommRingHom r r' = cong [_] (≡-× refl (Σ≡Prop (λ x → S' x .snd) (sym (·Lid 1r))))
S⁻¹Rˣ = S⁻¹RAsCommRing ˣ
S/1⊆S⁻¹Rˣ : ∀ s → s ∈ S' → (s /1) ∈ S⁻¹Rˣ
S/1⊆S⁻¹Rˣ s s∈S' = [ 1r , s , s∈S' ] , eq/ _ _ ((1r , SMultClosedSubset .containsOne) , path)
where
path : 1r · (s · 1r) · 1r ≡ 1r · 1r · (1r · s)
path = 1r · (s · 1r) · 1r ≡⟨ (λ i → ·Rid (·Lid (·Rid s i) i) i) ⟩
s ≡⟨ (λ i → ·Lid (·Lid s (~ i)) (~ i)) ⟩
1r · (1r · s) ≡⟨ cong (_· (1r · s)) (sym (·Lid _)) ⟩
1r · 1r · (1r · s) ∎
S⁻¹RHasUniversalProp : hasLocUniversalProp S⁻¹RAsCommRing /1AsCommRingHom S/1⊆S⁻¹Rˣ
S⁻¹RHasUniversalProp B' ψ ψS⊆Bˣ = (χ , funExt χcomp) , χunique
where
B = B' .fst
open CommRingStr (B' .snd) renaming ( is-set to Bset ; _·_ to _·B_ ; 1r to 1b
; _+_ to _+B_
; ·Assoc to ·B-assoc ; ·-comm to ·B-comm
; ·Lid to ·B-lid ; ·Rid to ·B-rid
; ·Ldist+ to ·B-ldist-+)
open Units B' renaming (Rˣ to Bˣ ; RˣMultClosed to BˣMultClosed ; RˣContainsOne to BˣContainsOne)
open Theory (CommRing→Ring B') renaming (·-assoc2 to ·B-assoc2)
open CommTheory B' renaming (·-commAssocl to ·B-commAssocl ; ·-commAssocSwap to ·B-commAssocSwap)
χ : CommRingHom S⁻¹RAsCommRing B'
f χ = SQ.rec Bset fχ fχcoh
where
fχ : R × S → B
fχ (r , s , s∈S') = (f ψ r) ·B ((f ψ s) ⁻¹) ⦃ ψS⊆Bˣ s s∈S' ⦄
fχcoh : (a b : R × S) → a ≈ b → fχ a ≡ fχ b
fχcoh (r , s , s∈S') (r' , s' , s'∈S') ((u , u∈S') , p) = instancepath
⦃ ψS⊆Bˣ s s∈S' ⦄ ⦃ ψS⊆Bˣ s' s'∈S' ⦄ ⦃ ψS⊆Bˣ (u · s · s')
(SMultClosedSubset .multClosed (SMultClosedSubset .multClosed u∈S' s∈S') s'∈S') ⦄
⦃ BˣMultClosed _ _ ⦃ ψS⊆Bˣ (u · s) (SMultClosedSubset .multClosed u∈S' s∈S') ⦄
⦃ ψS⊆Bˣ s' s'∈S' ⦄ ⦄
⦃ ψS⊆Bˣ (u · s) (SMultClosedSubset .multClosed u∈S' s∈S') ⦄
where
instancepath : ⦃ _ : f ψ s ∈ Bˣ ⦄ ⦃ _ : f ψ s' ∈ Bˣ ⦄
⦃ _ : f ψ (u · s · s') ∈ Bˣ ⦄ ⦃ _ : f ψ (u · s) ·B f ψ s' ∈ Bˣ ⦄
⦃ _ : f ψ (u · s) ∈ Bˣ ⦄
→ f ψ r ·B f ψ s ⁻¹ ≡ f ψ r' ·B f ψ s' ⁻¹
instancepath = f ψ r ·B f ψ s ⁻¹
≡⟨ sym (·B-rid _) ⟩
f ψ r ·B f ψ s ⁻¹ ·B 1b
≡⟨ cong (f ψ r ·B f ψ s ⁻¹ ·B_) (sym (·-rinv _)) ⟩
f ψ r ·B f ψ s ⁻¹ ·B (f ψ (u · s · s') ·B f ψ (u · s · s') ⁻¹)
≡⟨ ·B-assoc _ _ _ ⟩
f ψ r ·B f ψ s ⁻¹ ·B f ψ (u · s · s') ·B f ψ (u · s · s') ⁻¹
≡⟨ cong (λ x → f ψ r ·B f ψ s ⁻¹ ·B x ·B f ψ (u · s · s') ⁻¹) (isHom· ψ _ _) ⟩
f ψ r ·B f ψ s ⁻¹ ·B (f ψ (u · s) ·B f ψ s') ·B f ψ (u · s · s') ⁻¹
≡⟨ cong (_·B f ψ (u · s · s') ⁻¹) (·B-assoc _ _ _) ⟩
f ψ r ·B f ψ s ⁻¹ ·B f ψ (u · s) ·B f ψ s' ·B f ψ (u · s · s') ⁻¹
≡⟨ cong (λ x → f ψ r ·B f ψ s ⁻¹ ·B x ·B f ψ s' ·B f ψ (u · s · s') ⁻¹)
(isHom· ψ _ _) ⟩
f ψ r ·B f ψ s ⁻¹ ·B (f ψ u ·B f ψ s) ·B f ψ s' ·B f ψ (u · s · s') ⁻¹
≡⟨ cong (λ x → x ·B f ψ s' ·B f ψ (u · s · s') ⁻¹) (·B-commAssocSwap _ _ _ _) ⟩
f ψ r ·B f ψ u ·B (f ψ s ⁻¹ ·B f ψ s) ·B f ψ s' ·B f ψ (u · s · s') ⁻¹
≡⟨ (λ i → ·B-comm (f ψ r) (f ψ u) i ·B (·-linv (f ψ s) i)
·B f ψ s' ·B f ψ (u · s · s') ⁻¹) ⟩
f ψ u ·B f ψ r ·B 1b ·B f ψ s' ·B f ψ (u · s · s') ⁻¹
≡⟨ (λ i → (·B-rid (sym (isHom· ψ u r) i) i) ·B f ψ s' ·B f ψ (u · s · s') ⁻¹) ⟩
f ψ (u · r) ·B f ψ s' ·B f ψ (u · s · s') ⁻¹
≡⟨ cong (_·B f ψ (u · s · s') ⁻¹) (sym (isHom· ψ _ _)) ⟩
f ψ (u · r · s') ·B f ψ (u · s · s') ⁻¹
≡⟨ cong (λ x → f ψ x ·B f ψ (u · s · s') ⁻¹) p ⟩
f ψ (u · r' · s) ·B f ψ (u · s · s') ⁻¹
≡⟨ cong (_·B f ψ (u · s · s') ⁻¹) (isHom· ψ _ _) ⟩
f ψ (u · r') ·B f ψ s ·B f ψ (u · s · s') ⁻¹
≡⟨ cong (λ x → x ·B f ψ s ·B f ψ (u · s · s') ⁻¹) (isHom· ψ _ _) ⟩
f ψ u ·B f ψ r' ·B f ψ s ·B f ψ (u · s · s') ⁻¹
≡⟨ cong (_·B f ψ (u · s · s') ⁻¹) (sym (·B-assoc _ _ _)) ⟩
f ψ u ·B (f ψ r' ·B f ψ s) ·B f ψ (u · s · s') ⁻¹
≡⟨ cong (_·B f ψ (u · s · s') ⁻¹) (·B-commAssocl _ _ _) ⟩
f ψ r' ·B (f ψ u ·B f ψ s) ·B f ψ (u · s · s') ⁻¹
≡⟨ cong (λ x → f ψ r' ·B x ·B f ψ (u · s · s') ⁻¹) (sym (isHom· ψ _ _)) ⟩
f ψ r' ·B f ψ (u · s) ·B f ψ (u · s · s') ⁻¹
≡⟨ cong (f ψ r' ·B f ψ (u · s) ·B_) (unitCong (isHom· ψ _ _)) ⟩
f ψ r' ·B f ψ (u · s) ·B (f ψ (u · s) ·B f ψ s') ⁻¹
≡⟨ cong (f ψ r' ·B f ψ (u · s) ·B_) (⁻¹-dist-· _ _) ⟩
f ψ r' ·B f ψ (u · s) ·B (f ψ (u · s) ⁻¹ ·B f ψ s' ⁻¹)
≡⟨ ·B-assoc2 _ _ _ _ ⟩
f ψ r' ·B (f ψ (u · s) ·B f ψ (u · s) ⁻¹) ·B f ψ s' ⁻¹
≡⟨ cong (λ x → f ψ r' ·B x ·B f ψ s' ⁻¹) (·-rinv _) ⟩
f ψ r' ·B 1b ·B f ψ s' ⁻¹
≡⟨ cong (_·B f ψ s' ⁻¹) (·B-rid _) ⟩
f ψ r' ·B f ψ s' ⁻¹ ∎
pres1 χ = instancepres1χ ⦃ ψS⊆Bˣ 1r (SMultClosedSubset .containsOne) ⦄ ⦃ BˣContainsOne ⦄
where
instancepres1χ : ⦃ _ : f ψ 1r ∈ Bˣ ⦄ ⦃ _ : 1b ∈ Bˣ ⦄
→ f ψ 1r ·B (f ψ 1r) ⁻¹ ≡ 1b
instancepres1χ = (λ i → (pres1 ψ i) ·B (unitCong (pres1 ψ) i))
∙ (λ i → ·B-lid (1⁻¹≡1 i) i)
isHom+ χ = elimProp2 (λ _ _ _ _ → Bset _ _ _ _) isHom+[]
where
isHom+[] : (a b : R × S) → f χ ([ a ] +ₗ [ b ]) ≡ (f χ [ a ]) +B (f χ [ b ])
isHom+[] (r , s , s∈S') (r' , s' , s'∈S') = instancepath
⦃ ψS⊆Bˣ s s∈S' ⦄ ⦃ ψS⊆Bˣ s' s'∈S' ⦄ ⦃ ψS⊆Bˣ (s · s') (SMultClosedSubset .multClosed s∈S' s'∈S') ⦄
⦃ BˣMultClosed _ _ ⦃ ψS⊆Bˣ s s∈S' ⦄ ⦃ ψS⊆Bˣ s' s'∈S' ⦄ ⦄
where
instancepath : ⦃ _ : f ψ s ∈ Bˣ ⦄ ⦃ _ : f ψ s' ∈ Bˣ ⦄
⦃ _ : f ψ (s · s') ∈ Bˣ ⦄ ⦃ _ : f ψ s ·B f ψ s' ∈ Bˣ ⦄
→ f ψ (r · s' + r' · s) ·B f ψ (s · s') ⁻¹ ≡ f ψ r ·B f ψ s ⁻¹ +B f ψ r' ·B f ψ s' ⁻¹
instancepath =
f ψ (r · s' + r' · s) ·B f ψ (s · s') ⁻¹
≡⟨ (λ i → isHom+ ψ (r · s') (r' · s) i ·B unitCong (isHom· ψ s s') i) ⟩
(f ψ (r · s') +B f ψ (r' · s)) ·B (f ψ s ·B f ψ s') ⁻¹
≡⟨ (λ i → (isHom· ψ r s' i +B isHom· ψ r' s i) ·B ⁻¹-dist-· (f ψ s) (f ψ s') i) ⟩
(f ψ r ·B f ψ s' +B f ψ r' ·B f ψ s) ·B (f ψ s ⁻¹ ·B f ψ s' ⁻¹)
≡⟨ ·B-ldist-+ _ _ _ ⟩
f ψ r ·B f ψ s' ·B (f ψ s ⁻¹ ·B f ψ s' ⁻¹) +B f ψ r' ·B f ψ s ·B (f ψ s ⁻¹ ·B f ψ s' ⁻¹)
≡⟨ (λ i → ·B-commAssocSwap (f ψ r) (f ψ s') (f ψ s ⁻¹) (f ψ s' ⁻¹) i
+B ·B-assoc2 (f ψ r') (f ψ s) (f ψ s ⁻¹) (f ψ s' ⁻¹) i) ⟩
f ψ r ·B f ψ s ⁻¹ ·B (f ψ s' ·B f ψ s' ⁻¹) +B f ψ r' ·B (f ψ s ·B f ψ s ⁻¹) ·B f ψ s' ⁻¹
≡⟨ (λ i → f ψ r ·B f ψ s ⁻¹ ·B (·-rinv (f ψ s') i)
+B f ψ r' ·B (·-rinv (f ψ s) i) ·B f ψ s' ⁻¹) ⟩
f ψ r ·B f ψ s ⁻¹ ·B 1b +B f ψ r' ·B 1b ·B f ψ s' ⁻¹
≡⟨ (λ i → ·B-rid (f ψ r ·B f ψ s ⁻¹) i +B ·B-rid (f ψ r') i ·B f ψ s' ⁻¹) ⟩
f ψ r ·B f ψ s ⁻¹ +B f ψ r' ·B f ψ s' ⁻¹ ∎
isHom· χ = elimProp2 (λ _ _ _ _ → Bset _ _ _ _) isHom·[]
where
isHom·[] : (a b : R × S) → f χ ([ a ] ·ₗ [ b ]) ≡ (f χ [ a ]) ·B (f χ [ b ])
isHom·[] (r , s , s∈S') (r' , s' , s'∈S') = instancepath
⦃ ψS⊆Bˣ s s∈S' ⦄ ⦃ ψS⊆Bˣ s' s'∈S' ⦄ ⦃ ψS⊆Bˣ (s · s') (SMultClosedSubset .multClosed s∈S' s'∈S') ⦄
⦃ BˣMultClosed _ _ ⦃ ψS⊆Bˣ s s∈S' ⦄ ⦃ ψS⊆Bˣ s' s'∈S' ⦄ ⦄
where
instancepath : ⦃ _ : f ψ s ∈ Bˣ ⦄ ⦃ _ : f ψ s' ∈ Bˣ ⦄
⦃ _ : f ψ (s · s') ∈ Bˣ ⦄ ⦃ _ : f ψ s ·B f ψ s' ∈ Bˣ ⦄
→ f ψ (r · r') ·B f ψ (s · s') ⁻¹ ≡ (f ψ r ·B f ψ s ⁻¹) ·B (f ψ r' ·B f ψ s' ⁻¹)
instancepath = f ψ (r · r') ·B f ψ (s · s') ⁻¹
≡⟨ (λ i → isHom· ψ r r' i ·B unitCong (isHom· ψ s s') i) ⟩
f ψ r ·B f ψ r' ·B (f ψ s ·B f ψ s') ⁻¹
≡⟨ cong (f ψ r ·B f ψ r' ·B_) (⁻¹-dist-· _ _) ⟩
f ψ r ·B f ψ r' ·B (f ψ s ⁻¹ ·B f ψ s' ⁻¹)
≡⟨ ·B-commAssocSwap _ _ _ _ ⟩
f ψ r ·B f ψ s ⁻¹ ·B (f ψ r' ·B f ψ s' ⁻¹) ∎
χcomp : (r : R) → f χ (r /1) ≡ f ψ r
χcomp = instanceχcomp ⦃ ψS⊆Bˣ 1r (SMultClosedSubset .containsOne) ⦄ ⦃ Units.RˣContainsOne B' ⦄
where
instanceχcomp : ⦃ _ : f ψ 1r ∈ Bˣ ⦄ ⦃ _ : 1b ∈ Bˣ ⦄
(r : R) → f ψ r ·B (f ψ 1r) ⁻¹ ≡ f ψ r
instanceχcomp r = f ψ r ·B (f ψ 1r) ⁻¹ ≡⟨ cong (f ψ r ·B_) (unitCong (pres1 ψ)) ⟩
f ψ r ·B 1b ⁻¹ ≡⟨ cong (f ψ r ·B_) 1⁻¹≡1 ⟩
f ψ r ·B 1b ≡⟨ ·B-rid _ ⟩
f ψ r ∎
χunique : (y : Σ[ χ' ∈ CommRingHom S⁻¹RAsCommRing B' ] f χ' ∘ _/1 ≡ f ψ)
→ (χ , funExt χcomp) ≡ y
χunique (χ' , χ'/1≡ψ) = Σ≡Prop (λ x → isSetΠ (λ _ → Bset) _ _) (RingHom≡f _ _ fχ≡fχ')
where
open RingHomRespUnits {A' = S⁻¹RAsCommRing} {B' = B'} χ'
renaming (φ[x⁻¹]≡φ[x]⁻¹ to χ'[x⁻¹]≡χ'[x]⁻¹)
[]-path : (a : R × S) → f χ [ a ] ≡ f χ' [ a ]
[]-path (r , s , s∈S') = instancepath ⦃ ψS⊆Bˣ s s∈S' ⦄ ⦃ S/1⊆S⁻¹Rˣ s s∈S' ⦄
⦃ RingHomRespInv _ ⦃ S/1⊆S⁻¹Rˣ s s∈S' ⦄ ⦄
where
open Units S⁻¹RAsCommRing renaming (_⁻¹ to _⁻¹ˡ ; inverseUniqueness to S⁻¹RInverseUniqueness)
hiding (unitCong)
s-inv : ⦃ s/1∈S⁻¹Rˣ : s /1 ∈ S⁻¹Rˣ ⦄ → s /1 ⁻¹ˡ ≡ [ 1r , s , s∈S' ]
s-inv ⦃ s/1∈S⁻¹Rˣ ⦄ = PathPΣ (S⁻¹RInverseUniqueness (s /1) s/1∈S⁻¹Rˣ
(_ , eq/ _ _ ((1r , SMultClosedSubset .containsOne) , path))) .fst
where
path : 1r · (s · 1r) · 1r ≡ 1r · 1r · (1r · s)
path = 1r · (s · 1r) · 1r ≡⟨ (λ i → ·Rid (·Lid (·Rid s i) i) i) ⟩
s ≡⟨ (λ i → ·Lid (·Lid s (~ i)) (~ i)) ⟩
1r · (1r · s) ≡⟨ cong (_· (1r · s)) (sym (·Lid _)) ⟩
1r · 1r · (1r · s) ∎
·ₗ-path : [ r , s , s∈S' ] ≡ [ r , 1r , SMultClosedSubset .containsOne ]
·ₗ [ 1r , s , s∈S' ]
·ₗ-path = cong [_] (≡-× (sym (·Rid r)) (Σ≡Prop (λ x → S' x .snd) (sym (·Lid s))))
instancepath : ⦃ _ : f ψ s ∈ Bˣ ⦄ ⦃ _ : s /1 ∈ S⁻¹Rˣ ⦄ ⦃ _ : f χ' (s /1) ∈ Bˣ ⦄
→ f ψ r ·B f ψ s ⁻¹ ≡ f χ' [ r , s , s∈S' ]
instancepath = f ψ r ·B f ψ s ⁻¹
≡⟨ cong (f ψ r ·B_) (unitCong (cong (λ φ → φ s) (sym χ'/1≡ψ))) ⟩
f ψ r ·B f χ' (s /1) ⁻¹
≡⟨ cong (f ψ r ·B_) (sym (χ'[x⁻¹]≡χ'[x]⁻¹ _)) ⟩
f ψ r ·B f χ' (s /1 ⁻¹ˡ)
≡⟨ cong (λ x → f ψ r ·B f χ' x) s-inv ⟩
f ψ r ·B f χ' [ 1r , s , s∈S' ]
≡⟨ cong (_·B f χ' [ 1r , s , s∈S' ]) (cong (λ φ → φ r) (sym χ'/1≡ψ)) ⟩
f χ' [ r , 1r , SMultClosedSubset .containsOne ] ·B f χ' [ 1r , s , s∈S' ]
≡⟨ sym (isHom· χ' _ _) ⟩
f χ' ([ r , 1r , SMultClosedSubset .containsOne ] ·ₗ [ 1r , s , s∈S' ])
≡⟨ cong (f χ') (sym ·ₗ-path) ⟩
f χ' [ r , s , s∈S' ] ∎
fχ≡fχ' : f χ ≡ f χ'
fχ≡fχ' = funExt (SQ.elimProp (λ _ → Bset _ _) []-path)
-- sufficient conditions for having the universal property
-- used as API in the leanprover-community/mathlib
-- Corollary 3.2 in Atiyah-McDonald
open S⁻¹RUniversalProp
record PathToS⁻¹R (A' : CommRing {ℓ}) (φ : CommRingHom R' A') : Type ℓ where
constructor
pathtoS⁻¹R
open Units A' renaming (Rˣ to Aˣ)
open CommRingStr (A' .snd) renaming (is-set to Aset ; 0r to 0a ; _·_ to _·A_)
field
φS⊆Aˣ : ∀ s → s ∈ S' → f φ s ∈ Aˣ
kerφ⊆annS : ∀ r → f φ r ≡ 0a → ∃[ s ∈ S ] (s .fst) · r ≡ 0r
surχ : ∀ a → ∃[ x ∈ R × S ] f φ (x .fst) ·A (f φ (x .snd .fst) ⁻¹) ⦃ φS⊆Aˣ _ (x .snd .snd) ⦄ ≡ a
S⁻¹RChar : (A' : CommRing {ℓ}) (φ : CommRingHom R' A')
→ PathToS⁻¹R A' φ
→ S⁻¹RAsCommRing ≡ A'
S⁻¹RChar A' φ cond = CommRingPath S⁻¹RAsCommRing A' .fst
(S⁻¹R≃A , record { pres1 = pres1 χ ; isHom+ = isHom+ χ ; isHom· = isHom· χ })
where
open CommRingStr (A' .snd) renaming ( is-set to Aset ; 0r to 0a ; _·_ to _·A_ ; 1r to 1a
; ·Rid to ·A-rid)
open Units A' renaming (Rˣ to Aˣ ; RˣInvClosed to AˣInvClosed)
open PathToS⁻¹R ⦃...⦄
private
A = A' .fst
instance
_ = cond
χ = (S⁻¹RHasUniversalProp A' φ φS⊆Aˣ .fst .fst)
open HomTheory χ
S⁻¹R≃A : S⁻¹R ≃ A
S⁻¹R≃A = f χ , isEmbedding×isSurjection→isEquiv (Embχ , Surχ)
where
Embχ : isEmbedding (f χ)
Embχ = injEmbedding squash/ Aset (ker≡0→inj λ {x} → kerχ≡0 x)
where
kerχ≡0 : (r/s : S⁻¹R) → f χ r/s ≡ 0a → r/s ≡ 0ₗ
kerχ≡0 = SQ.elimProp (λ _ → isPropΠ λ _ → squash/ _ _) kerχ≡[]
where
kerχ≡[] : (a : R × S) → f χ [ a ] ≡ 0a → [ a ] ≡ 0ₗ
kerχ≡[] (r , s , s∈S') p = PT.rec (squash/ _ _) Σhelper
(kerφ⊆annS r (UnitsAreNotZeroDivisors _ _ p))
where
instance
_ : f φ s ∈ Aˣ
_ = φS⊆Aˣ s s∈S'
_ : f φ s ⁻¹ ∈ Aˣ
_ = AˣInvClosed _
Σhelper : Σ[ s ∈ S ] (s .fst) · r ≡ 0r → [ r , s , s∈S' ] ≡ 0ₗ
Σhelper ((u , u∈S') , q) = eq/ _ _ ((u , u∈S') , path)
where
path : u · r · 1r ≡ u · 0r · s
path = (λ i → ·Rid (q i) i) ∙∙ sym (0LeftAnnihilates _)
∙∙ cong (_· s) (sym (0RightAnnihilates _))
Surχ : isSurjection (f χ)
Surχ a = PT.rec propTruncIsProp (λ x → ∣ [ x .fst ] , x .snd ∣) (surχ a)
| 48.868805
| 101
| 0.445532
|
35bb8eb45ef58aa65e00bd17313a559c3a1fcd7e
| 1,320
|
agda
|
Agda
|
Cubical/Algebra/CommRing/Instances/MultivariatePoly.agda
|
howsiyu/cubical
|
1b9c97a2140fe96fe636f4c66beedfd7b8096e8f
|
[
"MIT"
] | null | null | null |
Cubical/Algebra/CommRing/Instances/MultivariatePoly.agda
|
howsiyu/cubical
|
1b9c97a2140fe96fe636f4c66beedfd7b8096e8f
|
[
"MIT"
] | null | null | null |
Cubical/Algebra/CommRing/Instances/MultivariatePoly.agda
|
howsiyu/cubical
|
1b9c97a2140fe96fe636f4c66beedfd7b8096e8f
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --safe --experimental-lossy-unification #-}
module Cubical.Algebra.CommRing.Instances.MultivariatePoly where
open import Cubical.Foundations.Prelude
open import Cubical.Data.Nat renaming(_+_ to _+n_; _·_ to _·n_)
open import Cubical.Data.Vec
open import Cubical.Algebra.Ring
open import Cubical.Algebra.CommRing
open import Cubical.Algebra.Polynomials.Multivariate.Base
open import Cubical.Algebra.Polynomials.Multivariate.Properties
private variable
ℓ ℓ' : Level
module _ (A' : CommRing ℓ) (n : ℕ) where
private
A = fst A'
Ar = CommRing→Ring A'
open CommRingStr
open RingTheory Ar
open Nth-Poly-structure A' n
PolyCommRing : CommRing ℓ
fst PolyCommRing = Poly A' n
0r (snd PolyCommRing) = 0P
1r (snd PolyCommRing) = 1P
_+_ (snd PolyCommRing) = _Poly+_
_·_ (snd PolyCommRing) = _Poly*_
- snd PolyCommRing = Poly-inv
isCommRing (snd PolyCommRing) = makeIsCommRing
trunc
Poly+-assoc
Poly+-Rid
Poly+-rinv
Poly+-comm
Poly*-assoc
Poly*-Rid
Poly*-Rdist
Poly*-comm
| 28.695652
| 64
| 0.570455
|
35bf861a11eef20e0b78f7f464aa1e5300f88156
| 1,191
|
agda
|
Agda
|
test/js/TestBool.agda
|
pthariensflame/agda
|
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
|
[
"BSD-3-Clause"
] | 1
|
2018-10-10T17:08:44.000Z
|
2018-10-10T17:08:44.000Z
|
test/js/TestBool.agda
|
np/agda-git-experiment
|
20596e9dd9867166a64470dd24ea68925ff380ce
|
[
"MIT"
] | null | null | null |
test/js/TestBool.agda
|
np/agda-git-experiment
|
20596e9dd9867166a64470dd24ea68925ff380ce
|
[
"MIT"
] | 1
|
2022-03-12T11:35:18.000Z
|
2022-03-12T11:35:18.000Z
|
open import Common.Prelude
open import TestHarness
module TestBool where
not : Bool → Bool
not true = false
not false = true
{-# COMPILED_JS not function (x) { return !x; } #-}
_∧_ : Bool → Bool → Bool
true ∧ x = x
false ∧ x = false
{-# COMPILED_JS _∧_ function (x) { return function (y) { return x && y; }; } #-}
_∨_ : Bool → Bool → Bool
true ∨ x = true
false ∨ x = x
{-# COMPILED_JS _∨_ function (x) { return function (y) { return x || y; }; } #-}
_↔_ : Bool → Bool → Bool
true ↔ true = true
false ↔ false = true
_ ↔ _ = false
{-# COMPILED_JS _↔_ function (x) { return function (y) { return x === y; }; } #-}
tests : Tests
tests _ = (
assert true "tt" ,
assert (not false) "!ff" ,
assert (true ∧ true) "tt∧tt" ,
assert (not (true ∧ false)) "!(tt∧ff)" ,
assert (not (false ∧ false)) "!(ff∧ff)" ,
assert (not (false ∧ true)) "!(ff∧tt)" ,
assert (true ∨ true) "tt∨tt" ,
assert (true ∨ false) "tt∨ff" ,
assert (false ∨ true) "ff∨tt" ,
assert (not (false ∨ false)) "!(ff∧ff)" ,
assert (true ↔ true) "tt=tt" ,
assert (not (true ↔ false)) "tt≠ff" ,
assert (not (false ↔ true)) "ff≠tt" ,
assert (false ↔ false) "ff=ff"
)
| 27.068182
| 81
| 0.554996
|
fd05e5f006236d4957b00dc8515c44b0e3d46b2a
| 1,137
|
agda
|
Agda
|
src/Fragment/Setoid/Morphism/Base.agda
|
yallop/agda-fragment
|
f2a6b1cf4bc95214bd075a155012f84c593b9496
|
[
"MIT"
] | 18
|
2021-06-15T15:45:39.000Z
|
2022-01-17T17:26:09.000Z
|
src/Fragment/Setoid/Morphism/Base.agda
|
yallop/agda-fragment
|
f2a6b1cf4bc95214bd075a155012f84c593b9496
|
[
"MIT"
] | 1
|
2021-06-16T09:44:31.000Z
|
2021-06-16T10:24:15.000Z
|
src/Fragment/Setoid/Morphism/Base.agda
|
yallop/agda-fragment
|
f2a6b1cf4bc95214bd075a155012f84c593b9496
|
[
"MIT"
] | 3
|
2021-06-15T15:34:50.000Z
|
2021-06-16T08:04:31.000Z
|
{-# OPTIONS --without-K --exact-split --safe #-}
module Fragment.Setoid.Morphism.Base where
open import Level using (Level; _⊔_)
open import Function using (_∘_; Congruent)
import Relation.Binary.PropositionalEquality as PE
open import Relation.Binary using (Setoid)
private
variable
a b c ℓ₁ ℓ₂ ℓ₃ : Level
module _ (S : Setoid a ℓ₁) (T : Setoid b ℓ₂) where
open Setoid S renaming (Carrier to A; _≈_ to _≈₁_)
open Setoid T renaming (Carrier to B; _≈_ to _≈₂_)
infixr 1 _↝_
record _↝_ : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where
field
∣_∣ : A → B
∣_∣-cong : Congruent _≈₁_ _≈₂_ ∣_∣
open _↝_ public
lift : ∀ {A : Set a} {B : Setoid b ℓ₂}
→ (A → Setoid.Carrier B)
→ (PE.setoid A ↝ B)
lift {B = B} f
= record { ∣_∣ = f
; ∣_∣-cong = reflexive ∘ (PE.cong f)
}
where open Setoid B
id : ∀ {A : Setoid a ℓ₁} → A ↝ A
id = record { ∣_∣ = λ x → x ; ∣_∣-cong = λ x → x }
_·_ : ∀ {A : Setoid a ℓ₁} {B : Setoid b ℓ₂} {C : Setoid c ℓ₃}
→ B ↝ C → A ↝ B → A ↝ C
g · f = record { ∣_∣ = ∣ g ∣ ∘ ∣ f ∣
; ∣_∣-cong = ∣ g ∣-cong ∘ ∣ f ∣-cong
}
| 24.717391
| 61
| 0.532982
|
7cf942c36ee00733c05c086819bddcea8d6c5cc2
| 1,997
|
agda
|
Agda
|
test/asset/agda-stdlib-1.0/Data/Container/Indexed/FreeMonad.agda
|
omega12345/agda-mode
|
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
|
[
"MIT"
] | null | null | null |
test/asset/agda-stdlib-1.0/Data/Container/Indexed/FreeMonad.agda
|
omega12345/agda-mode
|
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
|
[
"MIT"
] | null | null | null |
test/asset/agda-stdlib-1.0/Data/Container/Indexed/FreeMonad.agda
|
omega12345/agda-mode
|
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
|
[
"MIT"
] | null | null | null |
------------------------------------------------------------------------
-- The Agda standard library
--
-- The free monad construction on indexed containers
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe --guardedness #-}
module Data.Container.Indexed.FreeMonad where
open import Level
open import Function hiding (const)
open import Category.Monad.Predicate
open import Data.Container.Indexed
open import Data.Container.Indexed.Combinator hiding (id; _∘_)
open import Data.Empty
open import Data.Sum using (inj₁; inj₂)
open import Data.Product
open import Data.W.Indexed
open import Relation.Unary
open import Relation.Unary.PredicateTransformer
open import Relation.Binary.PropositionalEquality
------------------------------------------------------------------------
infixl 9 _⋆C_
infix 9 _⋆_
_⋆C_ : ∀ {i o c r} {I : Set i} {O : Set o} →
Container I O c r → Pred O c → Container I O _ _
C ⋆C X = const X ⊎ C
_⋆_ : ∀ {ℓ} {O : Set ℓ} → Container O O ℓ ℓ → Pt O ℓ
C ⋆ X = μ (C ⋆C X)
pattern returnP x = (inj₁ x , _)
pattern doP c k = (inj₂ c , k)
inn : ∀ {ℓ} {O : Set ℓ} {C : Container O O ℓ ℓ} {X} →
⟦ C ⟧ (C ⋆ X) ⊆ C ⋆ X
inn (c , k) = sup (doP c k)
rawPMonad : ∀ {ℓ} {O : Set ℓ} {C : Container O O ℓ ℓ} →
RawPMonad {ℓ = ℓ} (_⋆_ C)
rawPMonad {C = C} = record
{ return? = return
; _=<?_ = _=<<_
}
where
return : ∀ {X} → X ⊆ C ⋆ X
return x = sup (inj₁ x , ⊥-elim ∘ lower)
_=<<_ : ∀ {X Y} → X ⊆ C ⋆ Y → C ⋆ X ⊆ C ⋆ Y
f =<< sup (returnP x) = f x
f =<< sup (doP c k) = inn (c , λ r → f =<< k r)
leaf : ∀ {ℓ} {O : Set ℓ} {C : Container O O ℓ ℓ} {X : Pred O ℓ} →
⟦ C ⟧ X ⊆ C ⋆ X
leaf (c , k) = inn (c , return? ∘ k)
where
open RawPMonad rawPMonad
generic : ∀ {ℓ} {O : Set ℓ} {C : Container O O ℓ ℓ} {o}
(c : Command C o) →
o ∈ C ⋆ (⋃[ r ∶ Response C c ] { next C c r })
generic c = inn (c , λ r → return? (r , refl))
where
open RawPMonad rawPMonad
| 28.942029
| 72
| 0.515774
|
4ea42d201de8c6d9727bcf83986fe00c4e1eea55
| 284
|
agda
|
Agda
|
Type.agda
|
Lolirofle/stuff-in-agda
|
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
|
[
"MIT"
] | 6
|
2020-04-07T17:58:13.000Z
|
2022-02-05T06:53:22.000Z
|
Type.agda
|
Lolirofle/stuff-in-agda
|
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
|
[
"MIT"
] | null | null | null |
Type.agda
|
Lolirofle/stuff-in-agda
|
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
|
[
"MIT"
] | null | null | null |
module Type{ℓ} where
open import Agda.Primitive public
using ()
renaming (Set to TYPE ; Setω to Typeω)
Type : TYPE(_)
Type = TYPE(ℓ)
{-# INLINE Type #-}
module Type where
-- Returns the type of a certain value
of : ∀{T : Type} → T → Type
of {T} _ = T
{-# INLINE of #-}
| 17.75
| 40
| 0.616197
|
372824fc0dfa715cd1833e5e29970ad92f580457
| 490
|
agda
|
Agda
|
test/Succeed/Issue1886-omit-hidden.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Succeed/Issue1886-omit-hidden.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Succeed/Issue1886-omit-hidden.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
-- Andreas, 2016-12-30, issues #555 and #1886, reported by nad
-- Hidden parameters can be omitted in the repetition
-- of the parameter list.
record R {a} (A : Set a) : Set a
record R A where
constructor c
field f : A
testR : ∀{a}{A : Set a}(x : A) → R A
testR x = c x
data D {a} (A : Set a) : Set a
data D A where
c : A → D A
testD : ∀{a}{A : Set a}(x : A) → D A
testD x = c x
-- Now, c is overloaded, should still work.
testR' : ∀{a}{A : Set a}(x : A) → R A
testR' x = c x
| 18.846154
| 62
| 0.579592
|
0d9c7ff85e13e708ae5e8e13f07ea68c7fc70884
| 2,955
|
agda
|
Agda
|
notes/FOT/FOTC/Program/Mirror/Tree/TotalityNonTerminationI.agda
|
asr/fotc
|
2fc9f2b81052a2e0822669f02036c5750371b72d
|
[
"MIT"
] | 11
|
2015-09-03T20:53:42.000Z
|
2021-09-12T16:09:54.000Z
|
notes/FOT/FOTC/Program/Mirror/Tree/TotalityNonTerminationI.agda
|
asr/fotc
|
2fc9f2b81052a2e0822669f02036c5750371b72d
|
[
"MIT"
] | 2
|
2016-10-12T17:28:16.000Z
|
2017-01-01T14:34:26.000Z
|
notes/FOT/FOTC/Program/Mirror/Tree/TotalityNonTerminationI.agda
|
asr/fotc
|
2fc9f2b81052a2e0822669f02036c5750371b72d
|
[
"MIT"
] | 3
|
2016-09-19T14:18:30.000Z
|
2018-03-14T08:50:00.000Z
|
------------------------------------------------------------------------------
-- Properties related with the totality of the rose tree type
------------------------------------------------------------------------------
{-# OPTIONS --injective-type-constructors #-}
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOT.FOTC.Program.Mirror.Tree.TotalityNonTerminationI where
open import Common.FOL.Relation.Binary.EqReasoning
open import FOTC.Base
open import FOTC.Base.List
open import FOTC.Data.List
open import FOTC.Program.Mirror.Mirror
open import FOTC.Program.Mirror.Type
open import FOTC.Program.Mirror.Forest.TotalityI
open import FOTC.Program.Mirror.Forest.PropertiesI
------------------------------------------------------------------------------
-- Requires --injective-type-constructors
-- Peter: To use injectivity of type constructors means asking for
-- trouble. The logic behind this is very unclear.
node-Forest : ∀ {d ts} → Tree (node d ts) → Forest ts
node-Forest {d} (tree .d Fts) = Fts
postulate reverse-∷' : ∀ x ys → reverse (x ∷ ys) ≡ reverse ys ++ (x ∷ [])
-- The termination checker can not determine that the function mirror-Tree
-- defined by
--
-- mirror-Tree (tree d (fcons {t} {ts} Tt Fts)) =
-- ... mirror-Tree (tree d Fts) ... mirror-Tree Tt ...
--
-- is structurally recursive.
-- Andreas Abel: The function does not terminate because we are using
-- postulates (i.e. D, _∷_, etc). In particular, x is not structurally
-- smaller than x ∷ xs.
{-# TERMINATING #-}
mirror-Tree : ∀ {t} → Tree t → Tree (mirror · t)
mirror-Tree (tree d fnil) =
subst Tree (sym (mirror-eq d [])) (tree d helper₂)
where
helper₁ : rev (map mirror []) [] ≡ []
helper₁ =
rev (map mirror []) []
≡⟨ subst (λ x → rev (map mirror []) [] ≡ rev x [])
(map-[] mirror)
refl
⟩
rev [] []
≡⟨ rev-[] [] ⟩
[] ∎
helper₂ : Forest (rev (map mirror []) [])
helper₂ = subst Forest (sym helper₁) fnil
mirror-Tree (tree d (fcons {t} {ts} Tt Fts)) =
subst Tree (sym (mirror-eq d (t ∷ ts))) (tree d helper)
where
h₁ : Tree (node d (reverse (map mirror ts)))
h₁ = subst Tree (mirror-eq d ts) (mirror-Tree (tree d Fts))
h₂ : Forest (reverse (map mirror ts))
h₂ = node-Forest h₁
h₃ : Forest ((reverse (map mirror ts)) ++ (mirror · t ∷ []))
h₃ = ++-Forest h₂ (fcons (mirror-Tree Tt) fnil)
h₄ : Forest (reverse (mirror · t ∷ map mirror ts))
h₄ = subst Forest (sym (reverse-∷' (mirror · t) (map mirror ts))) h₃
helper : Forest (reverse (map mirror (t ∷ ts)))
helper = subst Forest
(subst (λ x → reverse x ≡ reverse (map mirror (t ∷ ts)))
(map-∷ mirror t ts)
refl)
h₄
| 34.360465
| 78
| 0.544501
|
1e1a544f3dfedd2ee6a4ab914362189772f30fab
| 5,859
|
agda
|
Agda
|
Type/Cubical/Path/Equality.agda
|
Lolirofle/stuff-in-agda
|
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
|
[
"MIT"
] | 6
|
2020-04-07T17:58:13.000Z
|
2022-02-05T06:53:22.000Z
|
Type/Cubical/Path/Equality.agda
|
Lolirofle/stuff-in-agda
|
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
|
[
"MIT"
] | null | null | null |
Type/Cubical/Path/Equality.agda
|
Lolirofle/stuff-in-agda
|
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --cubical #-}
module Type.Cubical.Path.Equality where
open import Functional
open import Function.Axioms
import Lvl
open import Type
open import Type.Cubical
open import Type.Cubical.Path
open import Type.Cubical.Path.Proofs as Path
open import Structure.Function
open import Structure.Operator
open import Structure.Relator.Equivalence
open import Structure.Relator.Properties
open import Structure.Relator
open import Structure.Setoid using (Equiv ; intro)
open import Structure.Type.Identity
private variable ℓ ℓ₁ ℓ₂ ℓₚ : Lvl.Level
private variable T A B C : Type{ℓ}
private variable f : A → B
private variable _▫_ : A → B → C
private variable P : T → Type{ℓ}
private variable x y : T
_≡_ : T → T → Type
_≡_ = Path
instance
Path-reflexivity : Reflexivity{T = T}(Path)
Path-reflexivity = intro Path.point
instance
Path-symmetry : Symmetry{T = T}(Path)
Path-symmetry = intro Path.reverse
instance
Path-transitivity : Transitivity{T = T}(Path)
Path-transitivity = intro Path.concat
instance
Path-equivalence : Equivalence{T = T}(Path)
Path-equivalence = intro
instance
Path-equiv : Equiv(T)
Path-equiv = intro(Path) ⦃ Path-equivalence ⦄
instance
Path-congruence₁ : Function(f)
Path-congruence₁ {f = f} = intro(Path.map f)
instance
Path-congruence₂ : BinaryOperator(_▫_)
Path-congruence₂ {_▫_ = _▫_} = intro(Path.map₂(_▫_))
instance
Path-substitution₁ : UnaryRelator(P)
Path-substitution₁ {P = P} = intro(Path.liftedSpaceMap P)
instance
Path-substitution₂ : BinaryRelator(_▫_)
Path-substitution₂ {_▫_ = _▫_} = intro(Path.liftedSpaceMap₂(_▫_))
instance
Path-coercion : Path ⊆₂ (_→ᶠ_ {ℓ}{ℓ})
Path-coercion = intro(Path.spaceMap)
Path-sub-of-reflexive : ⦃ refl : Reflexivity(_▫_) ⦄ → (Path ⊆₂ (_▫_))
Path-sub-of-reflexive {_▫_ = _▫_} = intro(\{a b} → ab ↦ sub₂(Path)(_→ᶠ_) ⦃ Path-coercion ⦄ (congruence₂ᵣ(_▫_)(a) ab) (reflexivity(_▫_) {a}))
instance
Path-function-extensionality : FunctionExtensionality A B
Path-function-extensionality = intro Path.mapping
instance
Path-dependent-function-extensionality : ∀{A : Type{ℓ₁}}{B : (a : A) → Type{ℓ₂}} → DependentFunctionExtensionality A B
Path-dependent-function-extensionality = intro Path.mapping
instance
Path-function-application : FunctionApplication A B
Path-function-application = intro Path.mappingPoint
Path-identity-eliminator : IdentityEliminator{ℓₚ = ℓₚ}(Path{P = T})
IdentityEliminator.elim Path-identity-eliminator P prefl eq = sub₂(Path)(_→ᶠ_) ⦃ Path-coercion ⦄ (\i → P(\j → eq(Interval.min i j))) prefl
-- TODO: Organize and move everything below
open import Type.Properties.MereProposition
open import Type.Properties.Singleton
prop-is-prop-unit : ⦃ proof : MereProposition(A) ⦄ → IsUnit(MereProposition(A))
MereProposition.uniqueness (IsUnit.unit prop-is-prop-unit) {x} {y} = uniqueness _
MereProposition.uniqueness (IsUnit.uniqueness (prop-is-prop-unit {A = A}) {intro p} i) {x}{y} j = Interval.hComp d x where
d : Interval → Interval.Partial (Interval.max (Interval.max (Interval.flip i) i) (Interval.max (Interval.flip j) j)) A
d k (i = Interval.𝟎) = uniqueness(A) {x}{p{x}{y} j} k
d k (i = Interval.𝟏) = uniqueness(A) {x}{uniqueness(A) {x}{y} j} k
d k (j = Interval.𝟎) = uniqueness(A) {x}{x} k
d k (j = Interval.𝟏) = uniqueness(A) {x}{y} k
{-
Path-isUnit : ∀{ℓ}{A : Type{ℓ}} → ⦃ _ : MereProposition(A) ⦄ → (∀{x y : A} → IsUnit(x ≡ y))
IsUnit.unit (Path-isUnit {A = A}) = uniqueness(A)
IsUnit.uniqueness (Path-isUnit {A = A} ⦃ mere-A ⦄ {x = x} {y = y}) {p} i = Interval.hComp d p where
d : Interval → Interval.Partial (Interval.max (Interval.flip i) i) (Path x y)
d j (i = Interval.𝟎) = p
d j (i = Interval.𝟏) = {!uniqueness(A) {x}{y}!}
-- congruence₁ (prop ↦ MereProposition.uniqueness prop {x}{y}) (IsUnit.uniqueness prop-is-prop-unit {intro (\{x y} → {!p!})})
-}
{-
open import Structure.Setoid.Uniqueness
open import Type.Dependent
-}
-- TODO
-- ∀{eu₁ eu₂ : ∃!{Obj = Obj}(Pred)} → () → (eu₁ ≡ eu₂)
{-
Unique-MereProposition-equivalence : ⦃ prop : ∀{x} → MereProposition(P(x)) ⦄ → (Unique(P) ↔ MereProposition(∃ P))
Unique-MereProposition-equivalence {P = P} = [↔]-intro l r where
l : Unique(P) ← MereProposition(∃ P)
l (intro p) {x} {y} px py = mapP([∃]-witness) (p{[∃]-intro x ⦃ px ⦄} {[∃]-intro y ⦃ py ⦄})
r : Unique(P) → MereProposition(∃ P)
MereProposition.uniqueness (r p) {[∃]-intro w₁ ⦃ p₁ ⦄} {[∃]-intro w₂ ⦃ p₂ ⦄} i = mapP (mapP (\w p → [∃]-intro w ⦃ p ⦄) (p p₁ p₂) i) {!!} i
-- mapP [∃]-intro (p p₁ p₂) i ⦃ {!!} ⦄
Unique-prop : ⦃ prop : ∀{x} → MereProposition(P(x)) ⦄ → MereProposition(Unique(P))
MereProposition.uniqueness Unique-prop {u₁} {u₂} i {x} {y} px py j = Interval.hComp d x where
d : Interval → Interval.Partial (Interval.max (Interval.max (Interval.flip i) i) (Interval.max (Interval.flip j) j)) A
d k (i = Interval.𝟎) = {!!}
d k (i = Interval.𝟏) = {!!}
d k (j = Interval.𝟎) = {!!}
d k (j = Interval.𝟏) = {!!}
[∃!trunc]-to-existence : ⦃ prop : ∀{x} → MereProposition(Pred(x)) ⦄ → HTrunc₁(∃!{Obj = Obj}(Pred)) → HomotopyLevel(0)(∃{Obj = Obj}(Pred))
[∃!trunc]-to-existence {Pred = Pred} (trunc ([∧]-intro e u)) = intro e (\{e₂} i → [∃]-intro (u ([∃]-proof e₂) ([∃]-proof e) i) ⦃ {!!} ⦄)
-- MereProposition.uniqueness test) {u _ _ _}
-- sub₂(_≡_)(_→ᶠ_) ⦃ [≡][→]-sub ⦄ (congruence₁(Pred) ?) ?
[∃!trunc]-to-existence (trunc-proof i) = {!!}
-}
{-
[∃!]-squashed-witness : HTrunc₁(∃!{Obj = Obj}(Pred)) → Obj
[∃!]-squashed-witness (trunc eu) = [∃]-witness([∧]-elimₗ eu)
[∃!]-squashed-witness (trunc-proof {trunc ([∧]-intro e₁ u₁)} {trunc ([∧]-intro e₂ u₂)} i) = u₁ ([∃]-proof e₁) ([∃]-proof e₂) i
[∃!]-squashed-witness (trunc-proof {trunc ([∧]-intro e₁ u₁)} {trunc-proof j} i) = {!!}
[∃!]-squashed-witness (trunc-proof {trunc-proof i₁} {trunc x} i) = {!!}
[∃!]-squashed-witness (trunc-proof {trunc-proof i₁} {trunc-proof i₂} i) = {!!}
-}
| 38.546053
| 140
| 0.657621
|
349123ca2825c2d18b3b229dc363b12af3f67e68
| 2,925
|
agda
|
Agda
|
Rings/Ideals/FirstIsomorphismTheorem.agda
|
Smaug123/agdaproofs
|
0f4230011039092f58f673abcad8fb0652e6b562
|
[
"MIT"
] | 4
|
2019-08-08T12:44:19.000Z
|
2022-01-28T06:04:15.000Z
|
Rings/Ideals/FirstIsomorphismTheorem.agda
|
Smaug123/agdaproofs
|
0f4230011039092f58f673abcad8fb0652e6b562
|
[
"MIT"
] | 14
|
2019-01-06T21:11:59.000Z
|
2020-04-11T11:03:39.000Z
|
Rings/Ideals/FirstIsomorphismTheorem.agda
|
Smaug123/agdaproofs
|
0f4230011039092f58f673abcad8fb0652e6b562
|
[
"MIT"
] | 1
|
2021-11-29T13:23:07.000Z
|
2021-11-29T13:23:07.000Z
|
{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Groups.Homomorphisms.Definition
open import Groups.Definition
open import Groups.Lemmas
open import Setoids.Setoids
open import Sets.EquivalenceRelations
open import Rings.Definition
open import Rings.Homomorphisms.Definition
open import Groups.Homomorphisms.Lemmas
open import Rings.Subrings.Definition
open import Rings.Cosets
open import Rings.Isomorphisms.Definition
open import Groups.Isomorphisms.Definition
module Rings.Ideals.FirstIsomorphismTheorem {a b c d : _} {A : Set a} {B : Set c} {S : Setoid {a} {b} A} {T : Setoid {c} {d} B} {_+A_ _*A_ : A → A → A} {_+B_ _*B_ : B → B → B} {R1 : Ring S _+A_ _*A_} {R2 : Ring T _+B_ _*B_} {f : A → B} (hom : RingHom R1 R2 f) where
open import Rings.Quotients.Definition R1 R2 hom
open import Rings.Homomorphisms.Image hom
open import Rings.Homomorphisms.Kernel hom
open Setoid T
open Equivalence eq
open import Groups.FirstIsomorphismTheorem (RingHom.groupHom hom)
ringFirstIsomorphismTheorem : RingsIsomorphic (cosetRing R1 ringKernelIsIdeal) (subringIsRing R2 imageGroupSubring)
RingsIsomorphic.f ringFirstIsomorphismTheorem = GroupsIsomorphic.isomorphism groupFirstIsomorphismTheorem
RingHom.preserves1 (RingIso.ringHom (RingsIsomorphic.iso ringFirstIsomorphismTheorem)) = RingHom.preserves1 hom
RingHom.ringHom (RingIso.ringHom (RingsIsomorphic.iso ringFirstIsomorphismTheorem)) = RingHom.ringHom hom
GroupHom.groupHom (RingHom.groupHom (RingIso.ringHom (RingsIsomorphic.iso ringFirstIsomorphismTheorem))) = GroupHom.groupHom (RingHom.groupHom hom)
GroupHom.wellDefined (RingHom.groupHom (RingIso.ringHom (RingsIsomorphic.iso ringFirstIsomorphismTheorem))) {x} {y} x=y = transferToRight (Ring.additiveGroup R2) t
where
t : f x +B Group.inverse (Ring.additiveGroup R2) (f y) ∼ Ring.0R R2
t = transitive (Ring.groupIsAbelian R2) (transitive (Group.+WellDefined (Ring.additiveGroup R2) (symmetric (homRespectsInverse (RingHom.groupHom hom))) reflexive) (transitive (symmetric (GroupHom.groupHom (RingHom.groupHom hom))) x=y))
RingIso.bijective (RingsIsomorphic.iso ringFirstIsomorphismTheorem) = GroupIso.bij (GroupsIsomorphic.proof groupFirstIsomorphismTheorem)
ringFirstIsomorphismTheorem' : RingsIsomorphic quotientByRingHom (subringIsRing R2 imageGroupSubring)
RingsIsomorphic.f ringFirstIsomorphismTheorem' a = f a , (a , reflexive)
RingHom.preserves1 (RingIso.ringHom (RingsIsomorphic.iso ringFirstIsomorphismTheorem')) = RingHom.preserves1 hom
RingHom.ringHom (RingIso.ringHom (RingsIsomorphic.iso ringFirstIsomorphismTheorem')) {r} {s} = RingHom.ringHom hom
RingHom.groupHom (RingIso.ringHom (RingsIsomorphic.iso ringFirstIsomorphismTheorem')) = GroupIso.groupHom (GroupsIsomorphic.proof (groupFirstIsomorphismTheorem'))
RingIso.bijective (RingsIsomorphic.iso ringFirstIsomorphismTheorem') = GroupIso.bij (GroupsIsomorphic.proof groupFirstIsomorphismTheorem')
| 66.477273
| 265
| 0.807521
|
3533999d8617d140398b95d93f0dcf80214b8177
| 393
|
agda
|
Agda
|
test/Succeed/Issue3382.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Succeed/Issue3382.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Succeed/Issue3382.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
{-# OPTIONS --cubical --rewriting --confluence-check #-}
open import Agda.Primitive.Cubical public
postulate
Int : Set
_↦_ : {A : Set} → A → A → Set
id↦ : {A : Set} {a : A} → a ↦ a
{-# BUILTIN REWRITE _↦_ #-}
postulate
hcompIntEmpty : (n : Int) → primHComp (λ _ → isOneEmpty) n ↦ n
{-# REWRITE hcompIntEmpty #-}
test : (n : Int) → primHComp (λ _ → isOneEmpty) n ↦ n
test n = id↦
| 20.684211
| 64
| 0.592875
|
7cf02157f7bb5befdaaddd48cf5334428efec4d4
| 3,304
|
agda
|
Agda
|
Cubical/HITs/Join/Base.agda
|
L-TChen/cubical
|
60226aacd7b386aef95d43a0c29c4eec996348a8
|
[
"MIT"
] | null | null | null |
Cubical/HITs/Join/Base.agda
|
L-TChen/cubical
|
60226aacd7b386aef95d43a0c29c4eec996348a8
|
[
"MIT"
] | 1
|
2022-01-27T02:07:48.000Z
|
2022-01-27T02:07:48.000Z
|
Cubical/HITs/Join/Base.agda
|
L-TChen/cubical
|
60226aacd7b386aef95d43a0c29c4eec996348a8
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.HITs.Join.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Isomorphism
open import Cubical.HITs.S1
open import Cubical.HITs.S3
-- redtt version : https://github.com/RedPRL/redtt/blob/master/library/cool/s3-to-join.red
data join {ℓ ℓ'} (A : Type ℓ) (B : Type ℓ') : Type (ℓ-max ℓ ℓ') where
inl : A → join A B
inr : B → join A B
push : ∀ a b → inl a ≡ inr b
facek01 : I → I → I → join S¹ S¹
facek01 i j k = hfill (λ l → λ { (j = i0) → push base base (~ l ∧ ~ k)
; (j = i1) → push base base (~ l ∧ ~ k)
; (k = i0) → push (loop j) base (~ l)
; (k = i1) → inl base })
(inS (push base base (~ k))) i
border-contraction : I → I → I → I → join S¹ S¹
border-contraction i j k m =
hfill (λ l → λ { (i = i0) → facek01 i1 j l
; (i = i1) → push base (loop k) (~ l)
; (j = i0) → push base (loop k) (i ∧ ~ l)
; (j = i1) → push base (loop k) (i ∧ ~ l)
; (k = i0) → facek01 (~ i) j l
; (k = i1) → facek01 (~ i) j l })
(inS (push (loop j) (loop k) i)) m
S³→joinS¹S¹ : S³ → join S¹ S¹
S³→joinS¹S¹ base = inl base
S³→joinS¹S¹ (surf j k i) = border-contraction i j k i1
joinS¹S¹→S³ : join S¹ S¹ → S³
joinS¹S¹→S³ (inl x) = base
joinS¹S¹→S³ (inr x) = base
joinS¹S¹→S³ (push base b i) = base
joinS¹S¹→S³ (push (loop x) base i) = base
joinS¹S¹→S³ (push (loop i) (loop j) k) = surf i j k
connection : I → I → I → I → S³
connection i j k l =
hfill (λ m → λ { (k = i0) → joinS¹S¹→S³ (facek01 m i j)
; (k = i1) → base
; (j = i0) → base
; (j = i1) → base
; (i = i0) → base
; (i = i1) → base })
(inS base) l
S³→joinS¹S¹→S³ : ∀ x → joinS¹S¹→S³ (S³→joinS¹S¹ x) ≡ x
S³→joinS¹S¹→S³ base l = base
S³→joinS¹S¹→S³ (surf j k i) l =
hcomp (λ m → λ { (l = i0) → joinS¹S¹→S³ (border-contraction i j k m)
; (l = i1) → surf j k i
; (i = i0) → connection j m l i1
; (i = i1) → base
; (j = i0) → base
; (j = i1) → base
; (k = i0) → connection j m l (~ i)
; (k = i1) → connection j m l (~ i) })
(surf j k i)
joinS¹S¹→S³→joinS¹S¹ : ∀ x → S³→joinS¹S¹ (joinS¹S¹→S³ x) ≡ x
joinS¹S¹→S³→joinS¹S¹ (inl base) l = inl base
joinS¹S¹→S³→joinS¹S¹ (inl (loop i)) l = facek01 i1 i (~ l)
joinS¹S¹→S³→joinS¹S¹ (inr base) l = push base base l
joinS¹S¹→S³→joinS¹S¹ (inr (loop i)) l = push base (loop i) l
joinS¹S¹→S³→joinS¹S¹ (push base base i) l = push base base (i ∧ l)
joinS¹S¹→S³→joinS¹S¹ (push base (loop k) i) l = push base (loop k) (i ∧ l)
joinS¹S¹→S³→joinS¹S¹ (push (loop k) base i) l = facek01 (~ i) k (~ l)
joinS¹S¹→S³→joinS¹S¹ (push (loop j) (loop k) i) l = border-contraction i j k (~ l)
S³IsojoinS¹S¹ : Iso S³ (join S¹ S¹)
Iso.fun S³IsojoinS¹S¹ = S³→joinS¹S¹
Iso.inv S³IsojoinS¹S¹ = joinS¹S¹→S³
Iso.rightInv S³IsojoinS¹S¹ = joinS¹S¹→S³→joinS¹S¹
Iso.leftInv S³IsojoinS¹S¹ = S³→joinS¹S¹→S³
S³≡joinS¹S¹ : S³ ≡ join S¹ S¹
S³≡joinS¹S¹ = isoToPath S³IsojoinS¹S¹
| 37.545455
| 90
| 0.534806
|
7c7cb96c2924fd820fd9922937398180d9722527
| 1,371
|
agda
|
Agda
|
src/Prelude/Monad/Indexed.agda
|
t-more/agda-prelude
|
da4fca7744d317b8843f2bc80a923972f65548d3
|
[
"MIT"
] | 111
|
2015-01-05T11:28:15.000Z
|
2022-02-12T23:29:26.000Z
|
src/Prelude/Monad/Indexed.agda
|
t-more/agda-prelude
|
da4fca7744d317b8843f2bc80a923972f65548d3
|
[
"MIT"
] | 59
|
2016-02-09T05:36:44.000Z
|
2022-01-14T07:32:36.000Z
|
src/Prelude/Monad/Indexed.agda
|
t-more/agda-prelude
|
da4fca7744d317b8843f2bc80a923972f65548d3
|
[
"MIT"
] | 24
|
2015-03-12T18:03:45.000Z
|
2021-04-22T06:10:41.000Z
|
module Prelude.Monad.Indexed {i} {I : Set i} where
open import Agda.Primitive
open import Prelude.Function
open import Prelude.Functor
open import Prelude.Applicative.Indexed {I = I}
record IMonad {a b} (M : I → I → Set a → Set b) : Set (i ⊔ lsuc a ⊔ b) where
infixr 1 _=<<_
infixl 1 _>>=_ _>>_
field
_>>=_ : ∀ {A B i j k} → M i j A → (A → M j k B) → M i k B
overlap {{super}} : IApplicative M
_>>_ : ∀ {A B i j k} → M i j A → M j k B → M i k B
m₁ >> m₂ = m₁ >>= λ _ → m₂
_=<<_ : ∀ {A B i j k} → (A → M j k B) → M i j A → M i k B
_=<<_ = flip _>>=_
return : ∀ {a b} {A : Set a} {M : I → I → Set a → Set b} {{_ : IMonad M}}
{i : I} → A → M i i A
return = pure
open IMonad {{...}} public
{-# DISPLAY IMonad._>>=_ _ = _>>=_ #-}
{-# DISPLAY IMonad._=<<_ _ = _=<<_ #-}
{-# DISPLAY IMonad._>>_ _ = _>>_ #-}
join : ∀ {a} {M : I → I → Set a → Set a} {{_ : IMonad M}} {A : Set a}
{i j k} → M i j (M j k A) → M i k A
join = _=<<_ id
-- Level polymorphic monads
record IMonad′ {a b} (M : ∀ {a} → I → I → Set a → Set a) : Set (i ⊔ lsuc (a ⊔ b)) where
field
_>>=′_ : {A : Set a} {B : Set b} {i j k : I} → M i j A → (A → M j k B) → M i k B
overlap {{super}} : IApplicative′ {a} {b} M
_>>′_ : {A : Set a} {B : Set b} {i j k : I} → M i j A → M j k B → M i k B
m >>′ m′ = m >>=′ λ _ → m′
open IMonad′ {{...}} public
| 29.804348
| 87
| 0.478483
|
2e73b18f34c7f4da0f5e1ffc8217e8faa71b7a31
| 154
|
agda
|
Agda
|
src/sets/nat/ordering/lt.agda
|
pcapriotti/agda-base
|
bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c
|
[
"BSD-3-Clause"
] | 20
|
2015-06-12T12:20:17.000Z
|
2022-02-01T11:25:54.000Z
|
src/sets/nat/ordering/lt.agda
|
pcapriotti/agda-base
|
bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c
|
[
"BSD-3-Clause"
] | 4
|
2015-02-02T14:32:16.000Z
|
2016-10-26T11:57:26.000Z
|
src/sets/nat/ordering/lt.agda
|
pcapriotti/agda-base
|
bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c
|
[
"BSD-3-Clause"
] | 4
|
2015-02-02T12:17:00.000Z
|
2019-05-04T19:31:00.000Z
|
{-# OPTIONS --without-K #-}
module sets.nat.ordering.lt where
open import sets.nat.ordering.lt.core public
open import sets.nat.ordering.lt.level public
| 25.666667
| 45
| 0.766234
|
37c2730fd7d308a7a1e4b3db83fc85078df3336b
| 15,938
|
agda
|
Agda
|
Everything.agda
|
iblech/agda-categories
|
8cd50f92ce3c91dbb325b4b0a66d231df809d0a9
|
[
"MIT"
] | null | null | null |
Everything.agda
|
iblech/agda-categories
|
8cd50f92ce3c91dbb325b4b0a66d231df809d0a9
|
[
"MIT"
] | null | null | null |
Everything.agda
|
iblech/agda-categories
|
8cd50f92ce3c91dbb325b4b0a66d231df809d0a9
|
[
"MIT"
] | null | null | null |
import Categories.2-Category
import Categories.2-Functor
import Categories.Adjoint
import Categories.Adjoint.AFT
import Categories.Adjoint.AFT.SolutionSet
import Categories.Adjoint.Alternatives
import Categories.Adjoint.Compose
import Categories.Adjoint.Construction.EilenbergMoore
import Categories.Adjoint.Construction.Kleisli
import Categories.Adjoint.Equivalence
import Categories.Adjoint.Equivalence.Properties
import Categories.Adjoint.Equivalents
import Categories.Adjoint.Instance.0-Truncation
import Categories.Adjoint.Instance.01-Truncation
import Categories.Adjoint.Instance.Core
import Categories.Adjoint.Instance.Discrete
import Categories.Adjoint.Instance.PosetCore
import Categories.Adjoint.Instance.StrictCore
import Categories.Adjoint.Mate
import Categories.Adjoint.Monadic
import Categories.Adjoint.Monadic.Crude
import Categories.Adjoint.Monadic.Properties
import Categories.Adjoint.Properties
import Categories.Adjoint.RAPL
import Categories.Adjoint.Relative
import Categories.Adjoint.TwoSided
import Categories.Adjoint.TwoSided.Compose
import Categories.Bicategory
import Categories.Bicategory.Bigroupoid
import Categories.Bicategory.Construction.1-Category
import Categories.Bicategory.Construction.Spans
import Categories.Bicategory.Construction.Spans.Properties
import Categories.Bicategory.Extras
import Categories.Bicategory.Instance.Cats
import Categories.Bicategory.Instance.EnrichedCats
import Categories.Bicategory.Monad
import Categories.Bicategory.Monad.Properties
import Categories.Bicategory.Opposite
import Categories.Category
import Categories.Category.BicartesianClosed
import Categories.Category.CMonoidEnriched
import Categories.Category.Cartesian
import Categories.Category.Cartesian.Properties
import Categories.Category.Cartesian.Structure
import Categories.Category.CartesianClosed
import Categories.Category.CartesianClosed.Canonical
import Categories.Category.CartesianClosed.Locally
import Categories.Category.CartesianClosed.Locally.Properties
import Categories.Category.CartesianClosed.Properties
import Categories.Category.Closed
import Categories.Category.Cocartesian
import Categories.Category.Cocomplete
import Categories.Category.Cocomplete.Finitely
import Categories.Category.Cocomplete.Finitely.Properties
import Categories.Category.Cocomplete.Properties
import Categories.Category.Complete
import Categories.Category.Complete.Finitely
import Categories.Category.Complete.Finitely.Properties
import Categories.Category.Complete.Properties
import Categories.Category.Complete.Properties.Construction
import Categories.Category.Complete.Properties.SolutionSet
import Categories.Category.Concrete
import Categories.Category.Concrete.Properties
import Categories.Category.Construction.0-Groupoid
import Categories.Category.Construction.Adjoints
import Categories.Category.Construction.Arrow
import Categories.Category.Construction.Cocones
import Categories.Category.Construction.Comma
import Categories.Category.Construction.Cones
import Categories.Category.Construction.Coproduct
import Categories.Category.Construction.Core
import Categories.Category.Construction.Cowedges
import Categories.Category.Construction.EilenbergMoore
import Categories.Category.Construction.Elements
import Categories.Category.Construction.EnrichedFunctors
import Categories.Category.Construction.F-Algebras
import Categories.Category.Construction.Fin
import Categories.Category.Construction.Functors
import Categories.Category.Construction.Graphs
import Categories.Category.Construction.Grothendieck
import Categories.Category.Construction.GroupAsCategory
import Categories.Category.Construction.Kleisli
import Categories.Category.Construction.MonoidAsCategory
import Categories.Category.Construction.Monoids
import Categories.Category.Construction.ObjectRestriction
import Categories.Category.Construction.Path
import Categories.Category.Construction.Presheaves
import Categories.Category.Construction.Properties.Comma
import Categories.Category.Construction.Properties.EilenbergMoore
import Categories.Category.Construction.Properties.Functors
import Categories.Category.Construction.Properties.Kleisli
import Categories.Category.Construction.Properties.Presheaves
import Categories.Category.Construction.Properties.Presheaves.Cartesian
import Categories.Category.Construction.Properties.Presheaves.CartesianClosed
import Categories.Category.Construction.Properties.Presheaves.Complete
import Categories.Category.Construction.Properties.Presheaves.FromCartesianCCC
import Categories.Category.Construction.Pullbacks
import Categories.Category.Construction.Spans
import Categories.Category.Construction.Thin
import Categories.Category.Construction.TwistedArrow
import Categories.Category.Construction.Wedges
import Categories.Category.Core
import Categories.Category.Dagger
import Categories.Category.Dagger.Construction.Discrete
import Categories.Category.Dagger.Instance.Rels
import Categories.Category.Diagram.Span
import Categories.Category.Discrete
import Categories.Category.Duality
import Categories.Category.Equivalence
import Categories.Category.Equivalence.Preserves
import Categories.Category.Equivalence.Properties
import Categories.Category.Finite
import Categories.Category.Finite.Fin
import Categories.Category.Finite.Fin.Construction.Discrete
import Categories.Category.Finite.Fin.Construction.Poset
import Categories.Category.Finite.Fin.Instance.Parallel
import Categories.Category.Finite.Fin.Instance.Span
import Categories.Category.Finite.Fin.Instance.Triangle
import Categories.Category.Groupoid
import Categories.Category.Groupoid.Properties
import Categories.Category.Helper
import Categories.Category.Indiscrete
import Categories.Category.Instance.Cartesians
import Categories.Category.Instance.Cats
import Categories.Category.Instance.EmptySet
import Categories.Category.Instance.FamilyOfSetoids
import Categories.Category.Instance.FamilyOfSets
import Categories.Category.Instance.FinCatShapes
import Categories.Category.Instance.FinSetoids
import Categories.Category.Instance.Globe
import Categories.Category.Instance.Groupoids
import Categories.Category.Instance.LawvereTheories
import Categories.Category.Instance.Monoidals
import Categories.Category.Instance.One
import Categories.Category.Instance.PointedSets
import Categories.Category.Instance.Posets
import Categories.Category.Instance.Properties.Cats
import Categories.Category.Instance.Properties.Posets
import Categories.Category.Instance.Properties.Setoids
import Categories.Category.Instance.Properties.Setoids.CCC
import Categories.Category.Instance.Properties.Setoids.Cocomplete
import Categories.Category.Instance.Properties.Setoids.Complete
import Categories.Category.Instance.Properties.Setoids.LCCC
import Categories.Category.Instance.Properties.Setoids.Limits.Canonical
import Categories.Category.Instance.Rels
import Categories.Category.Instance.Setoids
import Categories.Category.Instance.Sets
import Categories.Category.Instance.Simplex
import Categories.Category.Instance.SimplicialSet
import Categories.Category.Instance.SingletonSet
import Categories.Category.Instance.Span
import Categories.Category.Instance.StrictCats
import Categories.Category.Instance.StrictGroupoids
import Categories.Category.Instance.Zero
import Categories.Category.Inverse
import Categories.Category.Lift
import Categories.Category.Monoidal
import Categories.Category.Monoidal.Braided
import Categories.Category.Monoidal.Braided.Properties
import Categories.Category.Monoidal.Closed
import Categories.Category.Monoidal.Closed.IsClosed
import Categories.Category.Monoidal.Closed.IsClosed.Diagonal
import Categories.Category.Monoidal.Closed.IsClosed.Dinatural
import Categories.Category.Monoidal.Closed.IsClosed.Identity
import Categories.Category.Monoidal.Closed.IsClosed.L
import Categories.Category.Monoidal.Closed.IsClosed.Pentagon
import Categories.Category.Monoidal.CompactClosed
import Categories.Category.Monoidal.Construction.Minus2
import Categories.Category.Monoidal.Core
import Categories.Category.Monoidal.Instance.Cats
import Categories.Category.Monoidal.Instance.One
import Categories.Category.Monoidal.Instance.Rels
import Categories.Category.Monoidal.Instance.Setoids
import Categories.Category.Monoidal.Instance.Sets
import Categories.Category.Monoidal.Instance.StrictCats
import Categories.Category.Monoidal.Properties
import Categories.Category.Monoidal.Reasoning
import Categories.Category.Monoidal.Rigid
import Categories.Category.Monoidal.Star-Autonomous
import Categories.Category.Monoidal.Structure
import Categories.Category.Monoidal.Symmetric
import Categories.Category.Monoidal.Traced
import Categories.Category.Monoidal.Utilities
import Categories.Category.Product
import Categories.Category.Product.Properties
import Categories.Category.Regular
import Categories.Category.RigCategory
import Categories.Category.SetoidDiscrete
import Categories.Category.Site
import Categories.Category.Slice
import Categories.Category.Slice.Properties
import Categories.Category.Species
import Categories.Category.Species.Constructions
import Categories.Category.SubCategory
import Categories.Category.Topos
import Categories.Category.WithFamilies
import Categories.CoYoneda
import Categories.Comonad
import Categories.Comonad.Relative
import Categories.Diagram.Cocone
import Categories.Diagram.Cocone.Properties
import Categories.Diagram.Coend
import Categories.Diagram.Coend.Properties
import Categories.Diagram.Coequalizer
import Categories.Diagram.Coequalizer.Properties
import Categories.Diagram.Colimit
import Categories.Diagram.Colimit.DualProperties
import Categories.Diagram.Colimit.Lan
import Categories.Diagram.Colimit.Properties
import Categories.Diagram.Cone
import Categories.Diagram.Cone.Properties
import Categories.Diagram.Cowedge
import Categories.Diagram.Cowedge.Properties
import Categories.Diagram.Duality
import Categories.Diagram.End
import Categories.Diagram.End.Properties
import Categories.Diagram.Equalizer
import Categories.Diagram.Equalizer.Indexed
import Categories.Diagram.Equalizer.Limit
import Categories.Diagram.Equalizer.Properties
import Categories.Diagram.Finite
import Categories.Diagram.KernelPair
import Categories.Diagram.Limit
import Categories.Diagram.Limit.Properties
import Categories.Diagram.Limit.Ran
import Categories.Diagram.Pullback
import Categories.Diagram.Pullback.Limit
import Categories.Diagram.Pullback.Properties
import Categories.Diagram.Pushout
import Categories.Diagram.Pushout.Properties
import Categories.Diagram.ReflexivePair
import Categories.Diagram.SubobjectClassifier
import Categories.Diagram.Wedge
import Categories.Diagram.Wedge.Properties
import Categories.Enriched.Category
import Categories.Enriched.Category.Opposite
import Categories.Enriched.Category.Underlying
import Categories.Enriched.Functor
import Categories.Enriched.NaturalTransformation
import Categories.Enriched.NaturalTransformation.NaturalIsomorphism
import Categories.Enriched.Over.One
import Categories.Enriched.Over.Setoids
import Categories.Functor
import Categories.Functor.Algebra
import Categories.Functor.Bifunctor
import Categories.Functor.Bifunctor.Properties
import Categories.Functor.Cartesian
import Categories.Functor.Cartesian.Properties
import Categories.Functor.Coalgebra
import Categories.Functor.Construction.Constant
import Categories.Functor.Construction.Diagonal
import Categories.Functor.Construction.FromDiscrete
import Categories.Functor.Construction.LiftSetoids
import Categories.Functor.Construction.Limit
import Categories.Functor.Construction.ObjectRestriction
import Categories.Functor.Construction.SubCategory
import Categories.Functor.Construction.SubCategory.Properties
import Categories.Functor.Construction.Zero
import Categories.Functor.Core
import Categories.Functor.Duality
import Categories.Functor.Equivalence
import Categories.Functor.Fibration
import Categories.Functor.Groupoid
import Categories.Functor.Hom
import Categories.Functor.Hom.Properties
import Categories.Functor.Hom.Properties.Contra
import Categories.Functor.Hom.Properties.Covariant
import Categories.Functor.Instance.0-Truncation
import Categories.Functor.Instance.01-Truncation
import Categories.Functor.Instance.Core
import Categories.Functor.Instance.Discrete
import Categories.Functor.Instance.SetoidDiscrete
import Categories.Functor.Instance.StrictCore
import Categories.Functor.Instance.Twisted
import Categories.Functor.Limits
import Categories.Functor.Monoidal
import Categories.Functor.Monoidal.Properties
import Categories.Functor.Monoidal.Symmetric
import Categories.Functor.Power
import Categories.Functor.Power.Functorial
import Categories.Functor.Power.NaturalTransformation
import Categories.Functor.Presheaf
import Categories.Functor.Profunctor
import Categories.Functor.Properties
import Categories.Functor.Representable
import Categories.Functor.Slice
import Categories.GlobularSet
import Categories.Kan
import Categories.Kan.Duality
import Categories.Minus2-Category
import Categories.Minus2-Category.Construction.Indiscrete
import Categories.Minus2-Category.Instance.One
import Categories.Minus2-Category.Properties
import Categories.Monad
import Categories.Monad.Duality
import Categories.Monad.Idempotent
import Categories.Monad.Relative
import Categories.Monad.Strong
import Categories.Morphism
import Categories.Morphism.Cartesian
import Categories.Morphism.Duality
import Categories.Morphism.HeterogeneousIdentity
import Categories.Morphism.HeterogeneousIdentity.Properties
import Categories.Morphism.IsoEquiv
import Categories.Morphism.Isomorphism
import Categories.Morphism.Normal
import Categories.Morphism.Notation
import Categories.Morphism.Properties
import Categories.Morphism.Reasoning
import Categories.Morphism.Reasoning.Core
import Categories.Morphism.Reasoning.Iso
import Categories.Morphism.Regular
import Categories.Morphism.Universal
import Categories.Multi.Category.Indexed
import Categories.NaturalTransformation
import Categories.NaturalTransformation.Core
import Categories.NaturalTransformation.Dinatural
import Categories.NaturalTransformation.Equivalence
import Categories.NaturalTransformation.Extranatural
import Categories.NaturalTransformation.Hom
import Categories.NaturalTransformation.Monoidal
import Categories.NaturalTransformation.NaturalIsomorphism
import Categories.NaturalTransformation.NaturalIsomorphism.Equivalence
import Categories.NaturalTransformation.NaturalIsomorphism.Functors
import Categories.NaturalTransformation.NaturalIsomorphism.Monoidal
import Categories.NaturalTransformation.NaturalIsomorphism.Properties
import Categories.NaturalTransformation.Properties
import Categories.Object.Biproduct
import Categories.Object.Cokernel
import Categories.Object.Coproduct
import Categories.Object.Duality
import Categories.Object.Exponential
import Categories.Object.Initial
import Categories.Object.Kernel
import Categories.Object.Kernel.Properties
import Categories.Object.Monoid
import Categories.Object.NaturalNumber
import Categories.Object.NaturalNumber.Properties.F-Algebras
import Categories.Object.Product
import Categories.Object.Product.Construction
import Categories.Object.Product.Core
import Categories.Object.Product.Indexed
import Categories.Object.Product.Indexed.Properties
import Categories.Object.Product.Limit
import Categories.Object.Product.Morphisms
import Categories.Object.Subobject
import Categories.Object.Subobject.Properties
import Categories.Object.Terminal
import Categories.Object.Terminal.Limit
import Categories.Object.Zero
import Categories.Pseudofunctor
import Categories.Pseudofunctor.Composition
import Categories.Pseudofunctor.Hom
import Categories.Pseudofunctor.Identity
import Categories.Pseudofunctor.Instance.EnrichedUnderlying
import Categories.Tactic.Category
import Categories.Theory.Lawvere
import Categories.Utils.EqReasoning
import Categories.Utils.Product
import Categories.Yoneda
import Categories.Yoneda.Continuous
import Categories.Yoneda.Properties
| 43.906336
| 78
| 0.891454
|
1923dd637390c9ea86a47261e3d01595686d9dcd
| 570
|
agda
|
Agda
|
src/Quasigroup/Bundles.agda
|
Akshobhya1234/agda-NonAssociativeAlgebra
|
443e831e536b756acbd1afd0d6bae7bc0d288048
|
[
"MIT"
] | 2
|
2021-08-15T06:16:13.000Z
|
2021-08-17T09:14:03.000Z
|
src/Quasigroup/Bundles.agda
|
Akshobhya1234/agda-NonAssociativeAlgebra
|
443e831e536b756acbd1afd0d6bae7bc0d288048
|
[
"MIT"
] | 2
|
2021-10-04T05:30:30.000Z
|
2021-10-09T08:24:56.000Z
|
src/Quasigroup/Bundles.agda
|
Akshobhya1234/agda-NonAssociativeAlgebra
|
443e831e536b756acbd1afd0d6bae7bc0d288048
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --without-K --safe #-}
module Quasigroup.Bundles where
open import Algebra.Core
open import Quasigroup.Structures
open import Relation.Binary
open import Level
open import Algebra.Bundles
open import Algebra.Structures
record Pique c ℓ : Set (suc (c ⊔ ℓ)) where
infixl 7 _∙_
infixl 7 _\\_
infixl 7 _//_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_∙_ : Op₂ Carrier
_\\_ : Op₂ Carrier
_//_ : Op₂ Carrier
ε : Carrier
isPique : IsPique _≈_ _∙_ _\\_ _//_ ε
open IsPique isPique public
| 19.655172
| 42
| 0.647368
|
fd9b082e0f91e02e72240ee7557f367a4a9c3313
| 2,191
|
agda
|
Agda
|
src/Holes/Test/General.agda
|
bch29/agda-holes
|
b5537c29e69febd7e89580398fac38d619aab3b4
|
[
"MIT"
] | 24
|
2017-01-28T10:56:46.000Z
|
2021-11-03T15:02:41.000Z
|
src/Holes/Test/General.agda
|
bch29/agda-holes
|
b5537c29e69febd7e89580398fac38d619aab3b4
|
[
"MIT"
] | 2
|
2019-01-16T10:47:58.000Z
|
2020-08-31T20:58:33.000Z
|
src/Holes/Test/General.agda
|
bch29/agda-holes
|
b5537c29e69febd7e89580398fac38d619aab3b4
|
[
"MIT"
] | 2
|
2017-01-27T14:57:39.000Z
|
2021-02-02T18:57:17.000Z
|
module Holes.Test.General where
open import Holes.Prelude
open PropEq using (_≡_; refl; cong; sym; trans)
open import Holes.Term using (⌞_⌟)
open import Holes.Cong.Propositional
private
+-zero : ∀ x → x + 0 ≡ x
+-zero zero = refl
+-zero (suc x) = cong suc (+-zero x)
+-suc : ∀ x y → suc (x + y) ≡ x + suc y
+-suc zero y = refl
+-suc (suc x) y = cong suc (+-suc x y)
+-comm : ∀ x y → x + y ≡ y + x
+-comm zero y = sym (+-zero y)
+-comm (suc x) y = trans (cong suc (+-comm x y)) (+-suc y x)
data Fin : ℕ → Set where
zero : ∀ {n} → Fin (suc n)
suc : ∀ {n} → Fin n → Fin (suc n)
-- Expressions with free variables
test1 : ∀ x y z → ⌞ x + y ⌟ + z ≡ (y + x) + z
test1 x y z = cong! (+-comm x y)
-- NOTE: This works, but if you replace `y` by `_` in the above, there are
-- unsolved metas!
test1′ : ∀ x y z → x + y + z ≡ y + x + z
test1′ x y z = cong (λ h → h + z) (+-comm x _)
-- Multiple holes
test2 : ∀ x y z → x + ⌞ y + z ⌟ * ⌞ y + z ⌟ + y * z ≡ x + (z + y) * (z + y) + y * z
test2 x y z = cong! (+-comm y z)
-- Picking out one instance of a group of identical sub-expressions
test3 : ∀ x y z → x + ⌞ y + z ⌟ * (y + z) + y * z ≡ x + (z + y) * (y + z) + y * z
test3 x y z = cong! (+-comm y z)
-- Automatic symmetry
test4 : ∀ x y z → x + ⌞ y + z ⌟ * (y + z) + y * z ≡ x + (z + y) * (y + z) + y * z
test4 x y z = cong! (+-comm z y)
-- No hole on the LHS ⇒ hole around everything (notice automatic symmetry application)
test5 : ∀ x y → x + y ≡ y + x
test5 x y = cong! (+-comm y x)
-- Works in Π types
test6 : ∀ x y → (Fin ⌞ x + y ⌟ → ℕ) ≡ (Fin ⌞ y + x ⌟ → ℕ)
test6 x y = cong! (+-comm x y)
-- Constructors on the path
test7 : ∀ x y → ℕ.suc ⌞ x + y ⌟ ≡ suc (y + x)
test7 x y = cong! (+-comm x y)
-- -- Fails with a nice error message when holes contain different terms
-- fail1 : ∀ x y z → y ≡ x → ⌞ x ⌟ + ⌞ y ⌟ + z ≡ x + x + z
-- fail1 x y z eq = cong! eq
-- -- This is only provable in the presence of functional extensionality, so the
-- -- macro should obviously fail here. It would be nice if the error message
-- -- were improved though.
-- fail2 : ∀ (x y : ℕ) → (λ (f : ℕ → ℕ) → ⌞ f x + f y ⌟) ≡ (λ f → f y + f x)
-- fail2 x y = cong! (+-comm _ _)
| 32.220588
| 86
| 0.531264
|
21ac19de552de4a3588a86e161ea144b5a45ee72
| 330
|
agda
|
Agda
|
Cats/Category/Constructions/Mono.agda
|
alessio-b-zak/cats
|
a3b69911c4c6ec380ddf6a0f4510d3a755734b86
|
[
"MIT"
] | null | null | null |
Cats/Category/Constructions/Mono.agda
|
alessio-b-zak/cats
|
a3b69911c4c6ec380ddf6a0f4510d3a755734b86
|
[
"MIT"
] | null | null | null |
Cats/Category/Constructions/Mono.agda
|
alessio-b-zak/cats
|
a3b69911c4c6ec380ddf6a0f4510d3a755734b86
|
[
"MIT"
] | null | null | null |
module Cats.Category.Constructions.Mono where
open import Level
open import Cats.Category.Base
module Build {lo la l≈} (Cat : Category lo la l≈) where
private open module Cat = Category Cat
open Cat.≈-Reasoning
IsMono : ∀ {A B} → A ⇒ B → Set (lo ⊔ la ⊔ l≈)
IsMono {A} f = ∀ {C} {g h : C ⇒ A} → f ∘ g ≈ f ∘ h → g ≈ h
| 22
| 60
| 0.612121
|
37d2b2326533017a620ddc363c565c735dbd0a6b
| 154
|
agda
|
Agda
|
test/interaction/Issue1494/Helper.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/interaction/Issue1494/Helper.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/interaction/Issue1494/Helper.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
module Issue1494.Helper where
record Record : Set₁ where
field _≡_ : {A : Set} → A → A → Set
module Module (r : Record) where
open Record r public
| 17.111111
| 37
| 0.675325
|
0d41c817c6dd01f37c037d8d912c8399f58bfb70
| 215
|
agda
|
Agda
|
prototyping/Properties/Product.agda
|
JohnnyMorganz/luau
|
f2191b9e4da6a4bb2d9d344ebd7941ec2f00844b
|
[
"MIT"
] | 1
|
2021-12-05T21:53:03.000Z
|
2021-12-05T21:53:03.000Z
|
prototyping/Properties/Product.agda
|
JohnnyMorganz/luau
|
f2191b9e4da6a4bb2d9d344ebd7941ec2f00844b
|
[
"MIT"
] | null | null | null |
prototyping/Properties/Product.agda
|
JohnnyMorganz/luau
|
f2191b9e4da6a4bb2d9d344ebd7941ec2f00844b
|
[
"MIT"
] | null | null | null |
module Properties.Product where
infixr 5 _×_ _,_
record Σ {A : Set} (B : A → Set) : Set where
constructor _,_
field fst : A
field snd : B fst
open Σ public
_×_ : Set → Set → Set
A × B = Σ (λ (a : A) → B)
| 14.333333
| 44
| 0.586047
|
30c94aecd33299100ccbcd687356b2bcd5cc3d54
| 14,104
|
agda
|
Agda
|
Cubical/ZCohomology/KcompPrelims.agda
|
knrafto/cubical
|
f6771617374bfe65a7043d00731fed5a673aa729
|
[
"MIT"
] | null | null | null |
Cubical/ZCohomology/KcompPrelims.agda
|
knrafto/cubical
|
f6771617374bfe65a7043d00731fed5a673aa729
|
[
"MIT"
] | null | null | null |
Cubical/ZCohomology/KcompPrelims.agda
|
knrafto/cubical
|
f6771617374bfe65a7043d00731fed5a673aa729
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.ZCohomology.KcompPrelims where
open import Cubical.ZCohomology.Base
open import Cubical.Homotopy.Connected
open import Cubical.HITs.Hopf
open import Cubical.Homotopy.Freudenthal hiding (encode)
open import Cubical.HITs.Sn
open import Cubical.HITs.S1
open import Cubical.HITs.Truncation renaming (elim to trElim ; rec to trRec ; map to trMap)
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Transport
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.GroupoidLaws
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.Equiv.HalfAdjoint
open import Cubical.Data.Int renaming (_+_ to +Int)
open import Cubical.Data.Nat
open import Cubical.HITs.Susp
open import Cubical.HITs.Nullification
open import Cubical.Data.Prod.Base
open import Cubical.Homotopy.Loopspace
open import Cubical.Data.Bool
open import Cubical.Data.Sum.Base
open import Cubical.Data.Sigma hiding (_×_)
open import Cubical.Foundations.Function
open import Cubical.Foundations.Pointed
open import Cubical.HITs.S3
private
variable
ℓ ℓ' : Level
A : Type ℓ
B : Type ℓ'
{- We want to prove that Kn≃ΩKn+1. For this we use the map ϕ-}
ϕ : (pt a : A) → typ (Ω (Susp A , north))
ϕ pt a = (merid a) ∙ sym (merid pt)
{- To define the map for n=0 we use the λ k → loopᵏ map for S₊ 1. The loop is given by ϕ north south -}
loop* : Path (S₊ 1) north north
loop* = ϕ north south
looper : Int → Path (S₊ 1) north north
looper (pos zero) = refl
looper (pos (suc n)) = looper (pos n) ∙ loop*
looper (negsuc zero) = sym loop*
looper (negsuc (suc n)) = looper (negsuc n) ∙ sym loop*
private
{- The map of Kn≃ΩKn+1 is given as follows. -}
Kn→ΩKn+1 : (n : ℕ) → coHomK n → typ (Ω (coHomK-ptd (suc n)))
Kn→ΩKn+1 zero x = cong ∣_∣ (looper x)
Kn→ΩKn+1 (suc n) = trRec (isOfHLevelTrunc (2 + (suc (suc n))) ∣ north ∣ ∣ north ∣)
λ a → cong ∣_∣ ((merid a) ∙ (sym (merid north)))
{- We show that looper is a composition of intLoop with two other maps, all three being isos -}
sndcomp : ΩS¹ → Path (Susp Bool) north north
sndcomp = cong S¹→SuspBool
thrdcomp : Path (Susp Bool) north north → Path (S₊ 1) north north
thrdcomp = cong SuspBool→S1
looper2 : Int → Path (S₊ 1) north north
looper2 a = thrdcomp (sndcomp (intLoop a))
looper≡looper2 : (x : Int) → looper x ≡ looper2 x
looper≡looper2 (pos zero) = refl
looper≡looper2 (pos (suc n)) =
looper (pos n) ∙ loop* ≡⟨ (λ i → looper≡looper2 (pos n) i ∙ congFunct SuspBool→S1 (merid false) (sym (merid true)) (~ i)) ⟩
looper2 (pos n) ∙ cong SuspBool→S1 (ϕ true false) ≡⟨ sym (congFunct SuspBool→S1 (sndcomp (intLoop (pos n))) (ϕ true false)) ⟩
cong SuspBool→S1 (sndcomp (intLoop (pos n)) ∙ ϕ true false) ≡⟨ cong thrdcomp (sym (congFunct S¹→SuspBool (intLoop (pos n)) loop)) ⟩
looper2 (pos (suc n)) ∎
looper≡looper2 (negsuc zero) =
sym loop* ≡⟨ symDistr (merid south) (sym (merid north)) ⟩
merid north ∙ sym (merid south) ≡⟨ sym (congFunct SuspBool→S1 (merid true) (sym (merid false))) ⟩
cong SuspBool→S1 (merid true ∙ sym (merid false)) ≡⟨ cong thrdcomp (sym (symDistr (merid false) (sym (merid true)))) ⟩
looper2 (negsuc zero) ∎
looper≡looper2 (negsuc (suc n)) =
looper (negsuc n) ∙ sym loop* ≡⟨ ((λ i → looper≡looper2 (negsuc n) i ∙ symDistr (merid south) (sym (merid north)) i)) ⟩
looper2 (negsuc n) ∙ merid north ∙ sym (merid south) ≡⟨ cong (λ x → looper2 (negsuc n) ∙ x) (sym (congFunct SuspBool→S1 (merid true) (sym (merid false)))) ⟩
looper2 (negsuc n) ∙ cong SuspBool→S1 (ϕ false true) ≡⟨ cong (λ x → looper2 (negsuc n) ∙ x) (cong thrdcomp (sym (symDistr (merid false) (sym (merid true))))) ⟩
looper2 (negsuc n) ∙ cong SuspBool→S1 (sym (ϕ true false)) ≡⟨ sym (congFunct SuspBool→S1 (sndcomp (intLoop (negsuc n))) (sym (ϕ true false))) ⟩
thrdcomp (cong S¹→SuspBool (intLoop (negsuc n)) ∙ cong S¹→SuspBool (sym loop)) ≡⟨ cong thrdcomp (sym (congFunct S¹→SuspBool (intLoop (negsuc n)) (sym loop))) ⟩
looper2 (negsuc (suc n)) ∎
private
isolooper2 : Iso Int (Path (S₊ 1) north north)
isolooper2 = compIso (invIso ΩS¹IsoInt) (compIso iso2 iso1)
where
iso1 : Iso (Path (Susp Bool) north north) (Path (S₊ 1) north north)
iso1 = congIso SuspBoolIsoS1
iso2 : Iso ΩS¹ (Path (Susp Bool) north north)
iso2 = congIso S¹IsoSuspBool
isolooper : Iso Int (Path (S₊ 1) north north)
Iso.fun isolooper = looper
Iso.inv isolooper = Iso.inv isolooper2
Iso.rightInv isolooper a = (looper≡looper2 (Iso.inv isolooper2 a)) ∙ Iso.rightInv isolooper2 a
Iso.leftInv isolooper a = cong (Iso.inv isolooper2) (looper≡looper2 a) ∙ Iso.leftInv isolooper2 a
{- We want to show that this map is an equivalence. n ≥ 2 follows from Freudenthal, and -}
{-
We want to show that the function (looper : Int → S₊ 1) defined by λ k → loopᵏ is an equivalece. We already know that the corresponding function (intLoop : Int → S¹ is) an equivalence,
so the idea is to show that when intLoop is transported along a suitable path S₊ 1 ≡ S¹ we get looper. Instead of using S₊ 1 straight away, we begin by showing this for the equivalent Susp Bool.
-}
----------------------------------- n = 1 -----------------------------------------------------
{- We begin by stating some useful lemmas -}
S³≡SuspSuspS¹ : S³ ≡ Susp (Susp S¹)
S³≡SuspSuspS¹ = S³≡SuspS² ∙ λ i → Susp (S²≡SuspS¹ i)
S3≡SuspSuspS¹ : S₊ 3 ≡ Susp (Susp S¹)
S3≡SuspSuspS¹ = (λ i → Susp (Susp (Susp (ua Bool≃Susp⊥ (~ i))))) ∙ λ i → Susp (Susp (S¹≡SuspBool (~ i)))
sphereConnectedSpecCase : isConnected 4 (Susp (Susp S¹))
sphereConnectedSpecCase = transport (λ i → isConnected 4 (S3≡SuspSuspS¹ i)) (sphereConnected 3)
{- We give the following map and show that its truncation is an equivalence -}
d-map : typ (Ω ((Susp S¹) , north)) → S¹
d-map p = subst HopfSuspS¹ p base
d-mapId : (r : S¹) → d-map (ϕ base r) ≡ r
d-mapId r = substComposite HopfSuspS¹ (merid r) (sym (merid base)) base ∙
rotLemma r
where
rotLemma : (r : S¹) → rot r base ≡ r
rotLemma base = refl
rotLemma (loop i) = refl
d-mapComp : fiber d-map base ≡ Path (Susp (Susp S¹)) north north
d-mapComp = ΣPathTransport≡PathΣ {B = HopfSuspS¹} _ _ ∙ helper
where
helper : Path (Σ (Susp S¹) λ x → HopfSuspS¹ x) (north , base) (north , base) ≡ Path (Susp (Susp S¹)) north north
helper = (λ i → (Path (S³≡TotalHopf (~ i))
(transp (λ j → S³≡TotalHopf (~ i ∨ ~ j)) (~ i) (north , base))
((transp (λ j → S³≡TotalHopf (~ i ∨ ~ j)) (~ i) (north , base))))) ∙
(λ i → Path (S³≡SuspSuspS¹ i) (transp (λ j → S³≡SuspSuspS¹ (i ∧ j)) (~ i) base) ((transp (λ j → S³≡SuspSuspS¹ (i ∧ j)) (~ i) base)))
is1Connected-dmap : isConnectedFun 3 d-map
is1Connected-dmap = toPropElim (λ s → isPropIsOfHLevel 0) (transport (λ j → isContr (∥ d-mapComp (~ j) ∥ 3))
(transport (λ i → isContr (PathΩ {A = Susp (Susp S¹)} {a = north} 3 i))
(refl , isOfHLevelSuc 1 (isOfHLevelSuc 0 sphereConnectedSpecCase) ∣ north ∣ ∣ north ∣ (λ _ → ∣ north ∣))))
d-iso2 : Iso (hLevelTrunc 3 (typ (Ω (Susp S¹ , north)))) (hLevelTrunc 3 S¹)
d-iso2 = connectedTruncIso _ d-map is1Connected-dmap
{- We show that composing (λ a → ∣ ϕ base a ∣) and (λ x → ∣ d-map x ∣) gives us the identity function. -}
d-mapId2 : Iso.fun d-iso2 ∘ trMap (ϕ base) ≡ idfun (hLevelTrunc 3 S¹)
d-mapId2 = funExt (trElim (λ _ → isOfHLevelPath 3 (isOfHLevelTrunc 3) _ _) (λ a → cong ∣_∣ (d-mapId a)))
{- This means that (λ a → ∣ ϕ base a ∣) is an equivalence -}
Iso∣ϕ-base∣ : Iso (hLevelTrunc 3 S¹) (hLevelTrunc 3 (typ (Ω (Susp S¹ , north))))
Iso∣ϕ-base∣ = composesToId→Iso d-iso2 (trMap (ϕ base)) d-mapId2
---------------------------------
-- We cheat when n = 1 and use J to prove the following lemmma. There is an obvious dependent path between ϕ base and ϕ north. Since the first one is an iso, so is the other.
-- So far this hasn't been an issue.
pointFunIso : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ} {C : (A : Type ℓ) (a1 : A) → Type ℓ'} (p : A ≡ B) (a : A) (b : B) →
(transport p a ≡ b) →
(f : (A : Type ℓ) →
(a1 : A) (a2 : hLevelTrunc 3 A) → C A a1) →
isIso (f A a) →
isIso (f B b)
pointFunIso {ℓ = ℓ}{A = A} {B = B} {C = C} =
J (λ B p → (a : A) (b : B) →
(transport p a ≡ b) →
(f : (A : Type ℓ) →
(a1 : A) (a2 : hLevelTrunc 3 A) → C A a1) →
isIso (f A a) →
isIso (f B b))
λ a b trefl f is → transport (λ i → isIso (f A ((sym (transportRefl a) ∙ trefl) i))) is
{- By pointFunIso, this gives that λ a → ∣ ϕ north a ∣ is an iso -}
isIso∣ϕ∣ : isIso {A = hLevelTrunc 3 (S₊ 1)} {B = hLevelTrunc 3 (typ (Ω (S₊ 2 , north)))} (trMap (ϕ north))
isIso∣ϕ∣ = pointFunIso {A = S¹} (λ i → S¹≡S1 (~ i)) base north refl (λ A a1 → trMap (ϕ a1)) ((Iso.inv Iso∣ϕ-base∣) , ((Iso.rightInv Iso∣ϕ-base∣) , (Iso.leftInv Iso∣ϕ-base∣)))
Iso∣ϕ∣ : Iso (hLevelTrunc 3 (S₊ 1)) (hLevelTrunc 3 (typ (Ω (S₊ 2 , north))))
Iso.fun Iso∣ϕ∣ = trMap (ϕ north)
Iso.inv Iso∣ϕ∣ = isIso∣ϕ∣ .fst
Iso.rightInv Iso∣ϕ∣ = isIso∣ϕ∣ .snd .fst
Iso.leftInv Iso∣ϕ∣ = isIso∣ϕ∣ .snd .snd
---------------------------------------------------- Finishing up ---------------------------------
-- We need ΩTrunc. It appears to compute better when restated for this particular case --
decode-fun2 : (n : HLevel) → (x : A) → hLevelTrunc n (x ≡ x) → Path (hLevelTrunc (suc n) A) ∣ x ∣ ∣ x ∣
decode-fun2 zero x = trElim (λ _ → isOfHLevelPath 0 (∣ x ∣ , isOfHLevelTrunc 1 ∣ x ∣) ∣ x ∣ ∣ x ∣) (λ p i → ∣ p i ∣)
decode-fun2 (suc n) x = trElim (λ _ → isOfHLevelPath' (suc n) (isOfHLevelTrunc (suc (suc n))) ∣ x ∣ ∣ x ∣) (cong ∣_∣)
funsAreSame : (n : HLevel) (x : A) (b : hLevelTrunc n (x ≡ x)) → (decode-fun2 n x b) ≡ (ΩTrunc.decode-fun ∣ x ∣ ∣ x ∣ b)
funsAreSame zero x = trElim (λ a → isOfHLevelPath 0 (refl , (isOfHLevelSuc 1 (isOfHLevelTrunc 1) ∣ x ∣ ∣ x ∣ refl)) _ _) λ a → refl
funsAreSame (suc n) x = trElim (λ a → isOfHLevelPath _ (isOfHLevelPath' (suc n) (isOfHLevelTrunc (suc (suc n))) ∣ x ∣ ∣ x ∣) _ _) λ a → refl
decodeIso : (n : HLevel) (x : A) → Iso (hLevelTrunc n (x ≡ x)) (Path (hLevelTrunc (suc n) A) ∣ x ∣ ∣ x ∣)
Iso.fun (decodeIso n x) = decode-fun2 n x
Iso.inv (decodeIso n x) = ΩTrunc.encode-fun ∣ x ∣ ∣ x ∣
Iso.rightInv (decodeIso n x) b = funsAreSame n x (ΩTrunc.encode-fun ∣ x ∣ ∣ x ∣ b) ∙ ΩTrunc.P-rinv ∣ x ∣ ∣ x ∣ b
Iso.leftInv (decodeIso n x) b = cong (ΩTrunc.encode-fun ∣ x ∣ ∣ x ∣) (funsAreSame n x b) ∙ ΩTrunc.P-linv ∣ x ∣ ∣ x ∣ b
Iso-Kn-ΩKn+1 : (n : HLevel) → Iso (coHomK n) (typ (Ω (coHomK-ptd (suc n))))
Iso-Kn-ΩKn+1 zero = compIso isolooper (congIso (truncIdempotentIso _ isOfHLevelS1))
Iso-Kn-ΩKn+1 (suc zero) = compIso Iso∣ϕ∣ (decodeIso _ north)
Iso-Kn-ΩKn+1 (suc (suc n)) = compIso (connectedTruncIso2 (4 + n) _ (ϕ north) (n , helper)
(isConnectedσ (suc n) (sphereConnected _)))
(decodeIso _ north)
where
helper : n + (4 + n) ≡ 2 + (n + (2 + n))
helper = +-suc n (3 + n) ∙ (λ i → suc (+-suc n (2 + n) i))
mapId2 : (n : ℕ) → Kn→ΩKn+1 n ≡ Iso.fun (Iso-Kn-ΩKn+1 n)
mapId2 zero = refl
mapId2 (suc zero) = funExt (trElim (λ x → isOfHLevelPath 3 (isOfHLevelTrunc 4 ∣ north ∣ ∣ north ∣) _ _) λ a → refl)
mapId2 (suc (suc n)) = funExt (trElim (λ x → isOfHLevelPath (4 + n) (isOfHLevelTrunc (5 + n) ∣ north ∣ ∣ north ∣) _ _) λ a → refl)
-- Experiments with abstract definitions
Iso2-Kn-ΩKn+1 : (n : ℕ) → Iso (coHomK n) (typ (Ω (coHomK-ptd (suc n))))
Iso.fun (Iso2-Kn-ΩKn+1 n) = Kn→ΩKn+1 n
Iso.inv (Iso2-Kn-ΩKn+1 n) = Iso.inv (Iso-Kn-ΩKn+1 n)
Iso.rightInv (Iso2-Kn-ΩKn+1 n) a = rinv
where
abstract
rinv : Kn→ΩKn+1 n (Iso.inv (Iso-Kn-ΩKn+1 n) a) ≡ a
rinv = funExt⁻ (mapId2 n) _ ∙ Iso.rightInv (Iso-Kn-ΩKn+1 n) a
Iso.leftInv (Iso2-Kn-ΩKn+1 n) a = linv
where
abstract
linv : Iso.inv (Iso-Kn-ΩKn+1 n) (Kn→ΩKn+1 n a) ≡ a
linv = cong (Iso.inv (Iso-Kn-ΩKn+1 n)) (funExt⁻ (mapId2 n) a) ∙ Iso.leftInv (Iso-Kn-ΩKn+1 n) a
--- even more abstract
abstract
absInv' : (n : ℕ) → typ (Ω (coHomK-ptd (2 + n))) → coHomK (1 + n)
absInv' n = Iso.inv (Iso-Kn-ΩKn+1 (1 + n))
absSect' : (n : ℕ) (a : typ (Ω (coHomK-ptd (2 + n)))) → Kn→ΩKn+1 (1 + n) (absInv' n a) ≡ a
absSect' n a = funExt⁻ (mapId2 (1 + n)) _ ∙ Iso.rightInv (Iso-Kn-ΩKn+1 (1 + n)) a
absRetr' : (n : ℕ) (a : coHomK (1 + n)) → absInv' n (Kn→ΩKn+1 (1 + n) a) ≡ a
absRetr' n a = cong (Iso.inv (Iso-Kn-ΩKn+1 (1 + n))) (funExt⁻ (mapId2 (1 + n)) a) ∙ Iso.leftInv (Iso-Kn-ΩKn+1 (1 + n)) a
absInv : (n : ℕ) → typ (Ω (coHomK-ptd (1 + n))) → coHomK n
absInv zero = Iso.inv (Iso-Kn-ΩKn+1 zero)
absInv (suc n) = absInv' n
absSect : (n : ℕ) → section (Kn→ΩKn+1 n) (absInv n)
absSect zero a = funExt⁻ (mapId2 zero) (Iso.inv isolooper2 (Iso.inv (congIso (truncIdempotentIso _ isOfHLevelS1)) a)) ∙ Iso.rightInv (Iso-Kn-ΩKn+1 zero) a
absSect (suc n) = absSect' n
absRetr : (n : ℕ) → retract (Kn→ΩKn+1 n) (absInv n)
absRetr zero a = cong (Iso.inv (Iso-Kn-ΩKn+1 zero)) (funExt⁻ (mapId2 zero) a) ∙ Iso.leftInv (Iso-Kn-ΩKn+1 zero) a
absRetr (suc n) = absRetr' n
Iso3-Kn-ΩKn+1 : (n : ℕ) → Iso (coHomK n) (typ (Ω (coHomK-ptd (suc n))))
Iso.fun (Iso3-Kn-ΩKn+1 n) = Kn→ΩKn+1 n
Iso.inv (Iso3-Kn-ΩKn+1 n) = absInv n
Iso.rightInv (Iso3-Kn-ΩKn+1 n) = absSect n
Iso.leftInv (Iso3-Kn-ΩKn+1 n) = absRetr n
| 47.648649
| 196
| 0.59118
|
0d697237a50883761d0f55a990562f27694c173d
| 3,242
|
agda
|
Agda
|
BFFPlug.agda
|
jvoigtlaender/bidiragda
|
a5abbd177f032523d1d9d3fa4b9137aefe88dee0
|
[
"MIT"
] | null | null | null |
BFFPlug.agda
|
jvoigtlaender/bidiragda
|
a5abbd177f032523d1d9d3fa4b9137aefe88dee0
|
[
"MIT"
] | null | null | null |
BFFPlug.agda
|
jvoigtlaender/bidiragda
|
a5abbd177f032523d1d9d3fa4b9137aefe88dee0
|
[
"MIT"
] | null | null | null |
open import Level using () renaming (zero to ℓ₀)
open import Relation.Binary using (DecSetoid)
module BFFPlug (A : DecSetoid ℓ₀ ℓ₀) where
open import Data.Nat using (ℕ ; _≟_ ; _+_ ; zero ; suc ; ⌈_/2⌉)
open import Data.Maybe using (Maybe ; just ; nothing)
open import Data.Vec using (Vec)
open import Data.Product using (∃ ; _,_)
open import Relation.Binary using (module DecSetoid)
open import Relation.Binary.PropositionalEquality using (refl ; cong ; subst ; sym ; module ≡-Reasoning) renaming (setoid to PropEq)
open import Relation.Nullary using (yes ; no)
open import Function using (flip ; id ; _∘_)
open import Function.LeftInverse using (_RightInverseOf_)
import Category.Monad
open Category.Monad.RawMonad {ℓ₀} Data.Maybe.monad using (_>>=_)
open import Generic using (sequenceV ; ≡-to-Π)
import BFF
import GetTypes
import Examples
open DecSetoid A using (Carrier)
open GetTypes.PartialVecVec public using (Get)
open BFF.PartialVecBFF A public using (sbff ; bff)
bffsameshape : (G : Get) → {i : Get.I G} → Vec Carrier (Get.gl₁ G i) → Vec Carrier (Get.gl₂ G i) → Maybe (Vec Carrier (Get.gl₁ G i))
bffsameshape G {i} = sbff G i
bffplug : (G : Get) → (Get.I G → ℕ → Maybe (Get.I G)) → {i : Get.I G} → {m : ℕ} → Vec Carrier (Get.gl₁ G i) → Vec Carrier m → Maybe (∃ λ j → Vec (Maybe Carrier) (Get.gl₁ G j))
bffplug G sput {i} {m} s v with sput i m
... | nothing = nothing
... | just j with Get.gl₂ G j ≟ m
... | no gl₂j≢m = nothing
bffplug G sput {i} s v | just j | yes refl with bff G j s v
... | nothing = nothing
... | just s′ = just (j , s′)
_SimpleRightInvOf_ : {A B : Set} → (A → B) → (B → A) → Set
f SimpleRightInvOf g = ≡-to-Π f RightInverseOf ≡-to-Π g
bffinv : (G : Get) → (nelteg : ℕ → Get.I G) → nelteg SimpleRightInvOf Get.gl₂ G → {i : Get.I G} → {m : ℕ} → Vec Carrier (Get.gl₁ G i) → Vec Carrier m → Maybe (Vec (Maybe Carrier) (Get.gl₁ G (nelteg m)))
bffinv G nelteg inv {m = m} s v = bff G (nelteg m) s (subst (Vec Carrier) (sym (inv m)) v)
module InvExamples where
open Examples using (reverse' ; drop' ; sieve' ; tail' ; take')
reverse-put : {n m : ℕ} → Vec Carrier n → Vec Carrier m → Maybe (Vec Carrier m)
reverse-put s v = bffinv reverse' id (λ _ → refl) s v >>= sequenceV
drop-put : (k : ℕ) → {n m : ℕ} → Vec Carrier (k + n) → Vec Carrier m → Maybe (Vec (Maybe Carrier) (k + m))
drop-put k = bffinv (drop' k) id (λ _ → refl)
double : ℕ → ℕ
double zero = zero
double (suc n) = suc (suc (double n))
sieve-inv-len : double SimpleRightInvOf ⌈_/2⌉
sieve-inv-len zero = refl
sieve-inv-len (suc zero) = refl
sieve-inv-len (suc (suc x)) = cong (suc ∘ suc) (sieve-inv-len x)
sieve-put : {n m : ℕ} → Vec Carrier n → Vec Carrier m → Maybe (Vec (Maybe Carrier) (double m))
sieve-put = bffinv sieve' double sieve-inv-len
tail-put : {n m : ℕ} → Vec Carrier (suc n) → Vec Carrier m → Maybe (Vec (Maybe Carrier) (suc m))
tail-put = bffinv tail' id (λ _ → refl)
take-put : (k : ℕ) → {n : ℕ} → Vec Carrier (k + n) → Vec Carrier k → Maybe (Vec Carrier (k + n))
take-put k = bffsameshape (take' k)
| 45.661972
| 202
| 0.6095
|
0dee53a0240d0e12611ed56c29e8f11cac048c0b
| 306
|
agda
|
Agda
|
Chapter1/#13.agda
|
CodaFi/HoTT-Exercises
|
3411b253b0a49a5f9c3301df175ae8ecdc563b12
|
[
"MIT"
] | null | null | null |
Chapter1/#13.agda
|
CodaFi/HoTT-Exercises
|
3411b253b0a49a5f9c3301df175ae8ecdc563b12
|
[
"MIT"
] | null | null | null |
Chapter1/#13.agda
|
CodaFi/HoTT-Exercises
|
3411b253b0a49a5f9c3301df175ae8ecdc563b12
|
[
"MIT"
] | null | null | null |
module #13 where
{-
Using propositions-as-types, derive the double negation of the principle of excluded
middle, i.e. prove not (not (P or not P)).
-}
open import Data.Sum
open import Relation.Nullary
excluded-middle : (P : Set) → ¬ (¬ (P ⊎ (¬ P)))
excluded-middle P z = z (inj₂ (λ x → z (inj₁ x)))
| 23.538462
| 86
| 0.656863
|
36f51438b9fb0465105b3715bf0aadb841a967fb
| 23
|
agda
|
Agda
|
src/bstd/bash.agda
|
semenov-vladyslav/bstd
|
fe95ba440099f9cf086096469133576a9652c122
|
[
"MIT"
] | 1
|
2019-06-29T10:40:15.000Z
|
2019-06-29T10:40:15.000Z
|
src/bstd/bash.agda
|
semenov-vladyslav/bstd
|
fe95ba440099f9cf086096469133576a9652c122
|
[
"MIT"
] | null | null | null |
src/bstd/bash.agda
|
semenov-vladyslav/bstd
|
fe95ba440099f9cf086096469133576a9652c122
|
[
"MIT"
] | null | null | null |
module bstd.bash where
| 11.5
| 22
| 0.826087
|
4384d9fd3e260f6748c22b7b2c9be7590058a890
| 519
|
agda
|
Agda
|
test/Succeed/SameMeta.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Succeed/SameMeta.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Succeed/SameMeta.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
-- Andreas, 2011-04-15
-- {-# OPTIONS -v tc.meta:20 #-}
module SameMeta where
infix 10 _≡_
data _≡_ {A : Set}(a : A) : A -> Set where
refl : a ≡ a
infixr 5 _×_ _,_
data _×_ (A B : Set) : Set where
_,_ : A -> B -> A × B
postulate A : Set
same : let X : A -> A -> A -> A × A
X = _
in {x y z : A} -> X x y y ≡ (x , y)
× X x x y ≡ X x y y
same = refl , refl
-- second equation triggers pruning of second variable of X
-- which makes the first equation linear and solvable
| 21.625
| 59
| 0.526012
|
03e717d570ce2c93c6998feb759dfdffb1dbb1c5
| 1,540
|
agda
|
Agda
|
Cubical/Reflection/Base.agda
|
kiana-S/univalent-foundations
|
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
|
[
"MIT"
] | null | null | null |
Cubical/Reflection/Base.agda
|
kiana-S/univalent-foundations
|
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
|
[
"MIT"
] | null | null | null |
Cubical/Reflection/Base.agda
|
kiana-S/univalent-foundations
|
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
|
[
"MIT"
] | null | null | null |
{-
Some basic utilities for reflection
-}
{-# OPTIONS --cubical --no-exact-split --safe #-}
module Cubical.Reflection.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Data.List.Base
open import Cubical.Data.Nat.Base
import Agda.Builtin.Reflection as R
open import Agda.Builtin.String
_>>=_ = R.bindTC
_<|>_ = R.catchTC
_$_ : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} → (A → B) → A → B
f $ a = f a
_>>_ : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} → R.TC A → R.TC B → R.TC B
f >> g = f >>= λ _ → g
infixl 4 _>>=_ _>>_ _<|>_
infixr 3 _$_
liftTC : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} → (A → B) → R.TC A → R.TC B
liftTC f ta = ta >>= λ a → R.returnTC (f a)
v : ℕ → R.Term
v n = R.var n []
pattern varg t = R.arg (R.arg-info R.visible (R.modality R.relevant R.quantity-ω)) t
pattern harg t = R.arg (R.arg-info R.hidden (R.modality R.relevant R.quantity-ω)) t
pattern _v∷_ a l = varg a ∷ l
pattern _h∷_ a l = harg a ∷ l
infixr 5 _v∷_ _h∷_
vlam : String → R.Term → R.Term
vlam str t = R.lam R.visible (R.abs str t)
hlam : String → R.Term → R.Term
hlam str t = R.lam R.hidden (R.abs str t)
newMeta = R.checkType R.unknown
extend*Context : ∀ {ℓ} {A : Type ℓ} → List (R.Arg R.Type) → R.TC A → R.TC A
extend*Context [] tac = tac
extend*Context (a ∷ as) tac = R.extendContext a (extend*Context as tac)
makeAuxiliaryDef : String → R.Type → R.Term → R.TC R.Term
makeAuxiliaryDef s ty term =
R.freshName s >>= λ name →
R.declareDef (varg name) ty >>
R.defineFun name [ R.clause [] [] term ] >>
R.returnTC (R.def name [])
| 26.101695
| 84
| 0.618831
|
1937ed508e03fd865675c6bd3c795b24e3c589e2
| 8,416
|
agda
|
Agda
|
Basic/Axiomatic/Total.agda
|
AndrasKovacs/SemanticsWithApplications
|
05200d60b4a4b2c6fa37806ced9247055d24db94
|
[
"MIT"
] | 8
|
2016-09-12T04:25:39.000Z
|
2020-02-02T10:01:52.000Z
|
Basic/Axiomatic/Total.agda
|
AndrasKovacs/SemanticsWithApplications
|
05200d60b4a4b2c6fa37806ced9247055d24db94
|
[
"MIT"
] | null | null | null |
Basic/Axiomatic/Total.agda
|
AndrasKovacs/SemanticsWithApplications
|
05200d60b4a4b2c6fa37806ced9247055d24db94
|
[
"MIT"
] | null | null | null |
module Basic.Axiomatic.Total where
open import Data.Bool hiding (not; if_then_else_; _∧_)
open import Data.Vec hiding ([_]; _++_; split)
open import Function
open import Relation.Binary.PropositionalEquality
open import Data.Product renaming (map to prodMap)
open import Data.Nat
open import Relation.Nullary
open import Data.Empty
import Level as L
open import Utils.Decidable
open import Basic.AST
open import Basic.BigStep
{-
Total axiomatic correctness (The first part of chapter 6.4).
For general notes on axiomatic correctness see Partial.agda
The most interesting part is here is the proof of completeness (exercise 6.33).
-}
_∧_ :
∀ {α β γ}{A : Set α}
→ (A → Set β)
→ (A → Set γ)
→ (A → Set _)
_∧_ f g x = f x × g x
_==>_ :
∀ {α β γ}{A : Set α}
→ (A → Set β)
→ (A → Set γ)
→ Set _
_==>_ f g = ∀ {x} → f x → g x
infixr 4 _,_
data 〈_〉_〈_〉 {n} : (State n → Set) → St n → (State n → Set) → Set₁ where
skip :
∀ {P}
→ -----------------
〈 P 〉 skip 〈 P 〉
ass :
∀ {x a P}
→ ----------------------------------------------
〈 (λ s → P (s [ x ]≔ ⟦ a ⟧ᵉ s)) 〉 x := a 〈 P 〉
_,_ :
∀ {P Q R S₁ S₂} →
〈 P 〉 S₁ 〈 Q 〉 → 〈 Q 〉 S₂ 〈 R 〉
→ --------------------------------
〈 P 〉 S₁ , S₂ 〈 R 〉
if :
∀ {P Q b S₁ S₂} →
〈 (T ∘ ⟦ b ⟧ᵉ) ∧ P 〉 S₁ 〈 Q 〉 → 〈 (F ∘ ⟦ b ⟧ᵉ) ∧ P 〉 S₂ 〈 Q 〉
→ --------------------------------------------------------------
〈 P 〉 if b then S₁ else S₂ 〈 Q 〉
{-
This is the only difference between the partial and total system.
The definition is exactly the same as in the book.
-}
while :
∀ {b S}
→ (P : ℕ → State n → Set)
→ (∀ n → P (suc n) ==> (T ∘ ⟦ b ⟧ᵉ))
→ (P 0 ==> (F ∘ ⟦ b ⟧ᵉ))
→ (∀ n → 〈 P (suc n) 〉 S 〈 P n 〉)
→ ---------------------------------
〈 (λ s → ∃ λ n → P n s) 〉 while b do S 〈 P 0 〉
cons :
∀ {P' Q' P Q S} →
P ==> P' → 〈 P' 〉 S 〈 Q' 〉 → Q' ==> Q
→ -----------------------------------------
〈 P 〉 S 〈 Q 〉
-- Weakest precondition
------------------------------------------------------------
wp : ∀ {n} → St n → (State n → Set) → State n → Set
wp S Q s = ∃ λ s' → ⟨ S , s ⟩⟱ s' × Q s'
-- Soundness
------------------------------------------------------------
{-
This is more complicated than the soundess proof for the partial system,
because we have to construct an actual big-step derivation.
In the "if" case we have to evaluate the branch condition to
see whether we should return an "if-true" or an "if-false" derivation.
In the "while" case we recurse on the natural number "measure" of the loop,
building an appropriately sized derivation for the loop
-}
sound : ∀ {n}{S : St n}{P Q} → 〈 P 〉 S 〈 Q 〉 → (P ==> wp S Q)
sound skip ps = _ , skip , ps
sound ass ps = _ , ass , ps
sound (p , p₁) ps with sound p ps
... | s' , runp , qs' with sound p₁ qs'
... | s'' , runp₁ , qs'' = s'' , (runp , runp₁) , qs''
sound (if {b = b} p p₁) {s} ps with ⟦ b ⟧ᵉ s | inspect ⟦ b ⟧ᵉ s
... | true | [ b≡true ] =
let Tb = ≡true→T b≡true
in prodMap id
(λ x₁ → (if-true Tb (proj₁ x₁)) , (proj₂ x₁))
(sound p {s} (Tb , ps))
... | false | [ b≡false ] =
let Fb = ≡false→F b≡false
in prodMap id
(λ x₁ → (if-false Fb (proj₁ x₁)) , (proj₂ x₁))
(sound p₁ {s} (Fb , ps))
sound (while{b = b}{S = S} P pre post decr) {s} (start , ps) = go s start ps
where
go : ∀ s n → P n s → wp (while b do S) (P 0) s
go s zero ps = s , while-false (post ps) , ps
go s (suc n) ps with sound (decr n) ps
... | s' , runS , ps' with go s' n ps'
... | s'' , runW , ps'' = s'' , while-true (pre n ps) runS runW , ps''
sound (cons x p x₁) ps with sound p (x ps)
... | s' , runp , qs' = s' , runp , x₁ qs'
-- Completeness
------------------------------------------------------------
complete : ∀ {n}(S : St n){P Q} → (P ==> wp S Q) → 〈 P 〉 S 〈 Q 〉
complete (x := exp) {P}{Q} f = cons go ass id
where go : P ==> (λ s → Q (s [ x ]≔ ⟦ exp ⟧ᵉ s))
go {s} ps with f ps
go ps | ._ , ass , qs' = qs'
complete skip {P}{Q} f = cons go skip id
where go : P ==> Q
go {s} ps with f ps
go ps | x , skip , qs' = qs'
complete (S , S₁){P}{Q} f = complete S {P} {wp S₁ Q} go , complete S₁ id
where go : P ==> wp S (wp S₁ Q)
go {s} ps with f ps
go {s} ps | s' , (run , run₂) , qs' = _ , run , s' , run₂ , qs'
complete (if b then S else S₁){P}{Q} f =
if (complete S {(T ∘ ⟦ b ⟧ᵉ) ∧ P} {Q} go1) (complete S₁ {(F ∘ ⟦ b ⟧ᵉ) ∧ P} {Q} go2)
where go1 : ((T ∘ ⟦ b ⟧ᵉ) ∧ P) ==> wp S Q
go1 {s} (pb , ps) with f ps
go1 (pb , ps) | s' , if-true pb' run , qs' = s' , run , qs'
go1 (pb , ps) | s' , if-false pb' run , qs' with trans (sym (F→≡false pb')) (T→≡true pb)
... | ()
go2 : ((F ∘ ⟦ b ⟧ᵉ) ∧ P) ==> wp S₁ Q
go2 {s} (pb , ps) with f ps
go2 (pb , ps) | s' , if-true pb' run , qs' with trans (sym $ F→≡false pb) (T→≡true pb')
... | ()
go2 (pb , ps) | s' , if-false pb' run , qs' = s' , run , qs'
{-
This is the interesting part. I needed to do quite a bit of thinking to get this right.
So, we'd like to construct a proof of total corectness given the validity of a Hoare triple.
We're much less constrained here than in pretty much all of the other proofs, because our objective
is to construct a suitable P *predicate* for the loop body. Recall the axiom for "while"
while :
∀ {b S}
→ (P : ℕ → State n → Set)
→ (∀ n → P (suc n) ==> (T ∘ ⟦ b ⟧ᵉ))
→ (P 0 ==> (F ∘ ⟦ b ⟧ᵉ))
→ (∀ n → 〈 P (suc n) 〉 S 〈 P n 〉)
→ ---------------------------------
〈 (λ s → ∃ λ n → P n s) 〉 while b do S 〈 P 0 〉
-}
complete {n}(while b do S){P}{Q} f = cons pre-loop loop post-loop
where
{-
P must decrease on each iteration, and P 0 must imply that the loop has finished, and
P (suc n) must imply that the loop's still running.
The only sensible choice for the decreasing loop variant is the length of the derivation
of the loop:
-}
loop-size : ∀ {n b s s'}{S : St n} → ⟨ while b do S , s ⟩⟱ s' → ℕ
loop-size (while-true x runS runW) = suc (loop-size runW)
loop-size (while-false x) = zero
{- And now the loop predicate can be defined as: -}
P' : ℕ → State n → Set
P' n s = ∃₂ λ s' (runW : ⟨ while b do S , s ⟩⟱ s') → (loop-size runW ≡ n) × Q s'
{- The construction of the loop body proof is slightly complicated by the fact that if we want
to recurse on the measure "n" argument, then we have to unfold the loop derivation two layers
deep (because the successor case for indction on "n" implies "(suc (suc n))" value for the
derivation length -}
body : ∀ n → 〈 P' (suc n) 〉 S 〈 P' n 〉
body n = complete S (go n)
where
go : ∀ n → P' (suc n) ==> wp S (P' n)
go zero (x , while-false x₁ , () , qs')
go zero (s''' , while-true x₁ runW (while-true x₂ runW₁ runW₂) , () , qs')
go (suc n₂) (x , while-false x₁ , () , qs')
go (suc n₂) (s' , while-true x₁ runW (while-false x₂) , () , qs')
go zero (s' , while-true x₁ runW (while-false x₂) , psize , qs') =
s' , runW , s' , while-false x₂ , refl , qs'
go (suc n) {s1} (slast , while-true pb1 runS1 (while-true pb2 runS2 runW2) , psize1 , qslast)
with go n (slast , while-true pb2 runS2 runW2 , cong pred psize1 , qslast)
... | s2 , runS3 , s3 , runW3 , psize3 , q3 =
_ , runS1 , s3 , (while-true pb2 runS3 runW3) , cong suc psize3 , q3
pre-loop : P ==> (λ s → ∃ λ n → P' n s)
pre-loop {s} ps with f ps
... | s' , runW , qs' = loop-size runW , s' , runW , refl , qs'
post-loop : P' 0 ==> Q
post-loop (s' , while-false pb , psize , qs') = qs'
post-loop (s' , while-true pb x₁ x₂ , () , qs')
loop : 〈 (λ s → ∃ λ n → P' n s) 〉 while b do S 〈 P' 0 〉
loop = while P' pre post body
where
pre : ∀ n → P' (suc n) ==> (T ∘ ⟦ b ⟧ᵉ)
pre n (s' , while-true pb _ _ , _) = pb
pre n (s' , while-false _ , () , qs')
post : P' 0 ==> (F ∘ ⟦ b ⟧ᵉ)
post (s' , while-true pb runS runW , () , qs')
post (s' , while-false pb , refl , qs') = pb
| 33.264822
| 101
| 0.476711
|
35ec84909b70d5aef2db1c4028e71d599fe3babd
| 1,322
|
agda
|
Agda
|
src/data/lib/prim/Agda/Builtin/Float.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1
|
2016-05-20T13:58:52.000Z
|
2016-05-20T13:58:52.000Z
|
src/data/lib/prim/Agda/Builtin/Float.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1
|
2015-09-15T15:49:15.000Z
|
2015-09-15T15:49:15.000Z
|
src/data/lib/prim/Agda/Builtin/Float.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1
|
2015-09-15T14:36:15.000Z
|
2015-09-15T14:36:15.000Z
|
{-# OPTIONS --without-K --safe --no-sized-types --no-guardedness
--no-subtyping #-}
module Agda.Builtin.Float where
open import Agda.Builtin.Bool
open import Agda.Builtin.Nat
open import Agda.Builtin.Int
open import Agda.Builtin.Word
open import Agda.Builtin.String
postulate Float : Set
{-# BUILTIN FLOAT Float #-}
primitive
primFloatToWord64 : Float → Word64
primFloatEquality : Float → Float → Bool
primFloatLess : Float → Float → Bool
primFloatNumericalEquality : Float → Float → Bool
primFloatNumericalLess : Float → Float → Bool
primNatToFloat : Nat → Float
primFloatPlus : Float → Float → Float
primFloatMinus : Float → Float → Float
primFloatTimes : Float → Float → Float
primFloatNegate : Float → Float
primFloatDiv : Float → Float → Float
primFloatSqrt : Float → Float
primRound : Float → Int
primFloor : Float → Int
primCeiling : Float → Int
primExp : Float → Float
primLog : Float → Float
primSin : Float → Float
primCos : Float → Float
primTan : Float → Float
primASin : Float → Float
primACos : Float → Float
primATan : Float → Float
primATan2 : Float → Float → Float
primShowFloat : Float → String
| 32.243902
| 64
| 0.631619
|
7cba805cb6b52e05639e887f96e35e4e78639cf5
| 475
|
agda
|
Agda
|
test/succeed/InferrableFields.agda
|
asr/agda-kanso
|
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
|
[
"MIT"
] | 1
|
2018-10-10T17:08:44.000Z
|
2018-10-10T17:08:44.000Z
|
test/succeed/InferrableFields.agda
|
np/agda-git-experiment
|
20596e9dd9867166a64470dd24ea68925ff380ce
|
[
"MIT"
] | null | null | null |
test/succeed/InferrableFields.agda
|
np/agda-git-experiment
|
20596e9dd9867166a64470dd24ea68925ff380ce
|
[
"MIT"
] | null | null | null |
module InferrableFields where
data ℕ : Set where
zero : ℕ
suc : ℕ → ℕ
data Vec A : ℕ → Set where
[] : Vec A zero
_∷_ : ∀ {n} → A → Vec A n → Vec A (suc n)
record SomeVec A : Set where
field n : ℕ
unpack : Vec A n
open SomeVec using (unpack)
pack : ∀ {A n} → Vec A n -> SomeVec A
pack xs = record { unpack = xs }
data _≡_ {A : Set}(x : A) : A → Set where
refl : x ≡ x
lemPack : ∀ {A}(xs : SomeVec A) → pack (unpack xs) ≡ xs
lemPack xs = refl
| 19
| 55
| 0.557895
|
5e4a1cc95ee348a497145f02f736474e7c48a505
| 3,391
|
agda
|
Agda
|
src/MultiSorted/SyntacticCategory.agda
|
cilinder/formaltt
|
0a9d25e6e3965913d9b49a47c88cdfb94b55ffeb
|
[
"MIT"
] | 21
|
2021-02-16T14:07:06.000Z
|
2021-11-19T15:50:08.000Z
|
src/MultiSorted/SyntacticCategory.agda
|
andrejbauer/formaltt
|
2aaf850bb1a262681c5a232cdefae312f921b9d4
|
[
"MIT"
] | 1
|
2021-04-30T14:18:25.000Z
|
2021-05-14T16:15:17.000Z
|
src/MultiSorted/SyntacticCategory.agda
|
andrejbauer/formaltt
|
2aaf850bb1a262681c5a232cdefae312f921b9d4
|
[
"MIT"
] | 6
|
2021-02-16T13:43:07.000Z
|
2021-05-24T02:51:43.000Z
|
open import Agda.Primitive using (lzero; lsuc; _⊔_)
open import Relation.Binary.PropositionalEquality
import Relation.Binary.Reasoning.Setoid as SetoidR
import Categories.Category as Category
import Categories.Category.Cartesian as Cartesian
open import Categories.Object.Terminal using (Terminal)
open import Categories.Object.Product using (Product)
open import MultiSorted.AlgebraicTheory
import MultiSorted.Substitution as Substitution
import MultiSorted.Product as Product
module MultiSorted.SyntacticCategory
{ℓt}
{𝓈 ℴ}
{Σ : Signature {𝓈} {ℴ}}
(T : Theory ℓt Σ) where
open Theory T
open Substitution T
-- The syntactic category
𝒮 : Category.Category 𝓈 (lsuc ℴ) (lsuc (ℓt ⊔ 𝓈 ⊔ ℴ))
𝒮 =
record
{ Obj = Context
; _⇒_ = _⇒s_
; _≈_ = _≈s_
; id = id-s
; _∘_ = _∘s_
; assoc = λ {_ _ _ _ _ _ σ} x → subst-∘s (σ x)
; sym-assoc = λ {_ _ _ _ _ _ σ} x → eq-symm (subst-∘s (σ x))
; identityˡ = λ x → eq-refl
; identityʳ = λ {A B f} x → tm-var-id
; identity² = λ x → eq-refl
; equiv = record
{ refl = λ x → eq-refl
; sym = λ ξ y → eq-symm (ξ y)
; trans = λ ζ ξ y → eq-tran (ζ y) (ξ y)}
; ∘-resp-≈ = ∘s-resp-≈s
}
-- We use the product structure which gives back the context directly
prod-𝒮 : Context → Context
prod-𝒮 Γ = Γ
π-𝒮 : ∀ {Γ} (x : var Γ) → Γ ⇒s ctx-slot (sort-of Γ x)
π-𝒮 x _ = tm-var x
tuple-𝒮 : ∀ Γ {Δ} → (∀ (x : var Γ) → Δ ⇒s ctx-slot (sort-of Γ x)) → Δ ⇒s Γ
tuple-𝒮 Γ ts = λ x → ts x var-var
project-𝒮 : ∀ {Γ Δ} {x : var Γ} {ts : ∀ (y : var Γ) → Δ ⇒s ctx-slot (sort-of Γ y)} →
π-𝒮 x ∘s tuple-𝒮 Γ ts ≈s ts x
project-𝒮 {Γ} {Δ} {x} {ts} var-var = eq-refl
unique-𝒮 : ∀ {Γ Δ} {ts : ∀ (x : var Γ) → Δ ⇒s ctx-slot (sort-of Γ x)} {g : Δ ⇒s Γ} →
(∀ x → π-𝒮 x ∘s g ≈s ts x) → tuple-𝒮 Γ ts ≈s g
unique-𝒮 ξ x = eq-symm (ξ x var-var)
producted-𝒮 : Product.Producted 𝒮 {Σ = Σ} ctx-slot
producted-𝒮 =
record
{ prod = prod-𝒮
; π = π-𝒮
; tuple = tuple-𝒮
; project = λ {Γ Δ x ts} → project-𝒮 {ts = ts}
; unique = unique-𝒮
}
-- The terminal object is the empty context
⊤-𝒮 : Context
⊤-𝒮 = ctx-empty
!-𝒮 : ∀ {Γ} → Γ ⇒s ⊤-𝒮
!-𝒮 ()
!-unique-𝒮 : ∀ {Γ} (σ : Γ ⇒s ⊤-𝒮) → !-𝒮 ≈s σ
!-unique-𝒮 σ ()
terminal-𝒮 : Terminal 𝒮
terminal-𝒮 =
record
{ ⊤ = ⊤-𝒮
; ⊤-is-terminal =
record { ! = !-𝒮
; !-unique = !-unique-𝒮 } }
-- Binary product is context contatenation
product-𝒮 : ∀ {Γ Δ} → Product 𝒮 Γ Δ
product-𝒮 {Γ} {Δ} =
record
{ A×B = ctx-concat Γ Δ
; π₁ = λ x → tm-var (var-inl x)
; π₂ = λ x → tm-var (var-inr x)
; ⟨_,_⟩ = ⟨_,_⟩s
; project₁ = λ x → eq-refl
; project₂ = λ x → eq-refl
; unique = λ {Θ σ σ₁ σ₂} ξ₁ ξ₂ z → u Θ σ σ₁ σ₂ ξ₁ ξ₂ z
}
where u : ∀ Θ (σ : Θ ⇒s ctx-concat Γ Δ) (σ₁ : Θ ⇒s Γ) (σ₂ : Θ ⇒s Δ) →
((λ x → σ (var-inl x)) ≈s σ₁) → ((λ y → σ (var-inr y)) ≈s σ₂) → ⟨ σ₁ , σ₂ ⟩s ≈s σ
u Θ σ σ₁ σ₂ ξ₁ ξ₂ (var-inl z) = eq-symm (ξ₁ z)
u Θ σ σ₁ σ₂ ξ₁ ξ₂ (var-inr z) = eq-symm (ξ₂ z)
-- The cartesian structure of the syntactic category
cartesian-𝒮 : Cartesian.Cartesian 𝒮
cartesian-𝒮 =
record
{ terminal = terminal-𝒮
; products = record { product = product-𝒮 } }
| 29.232759
| 99
| 0.527573
|
303d8ae18477d9b9f49912bf83212655d9b3fc02
| 2,752
|
agda
|
Agda
|
Categories/Functor/Product.agda
|
copumpkin/categories
|
36f4181d751e2ecb54db219911d8c69afe8ba892
|
[
"BSD-3-Clause"
] | 98
|
2015-04-15T14:57:33.000Z
|
2022-03-08T05:20:36.000Z
|
Categories/Functor/Product.agda
|
p-pavel/categories
|
e41aef56324a9f1f8cf3cd30b2db2f73e01066f2
|
[
"BSD-3-Clause"
] | 19
|
2015-05-23T06:47:10.000Z
|
2019-08-09T16:31:40.000Z
|
Categories/Functor/Product.agda
|
p-pavel/categories
|
e41aef56324a9f1f8cf3cd30b2db2f73e01066f2
|
[
"BSD-3-Clause"
] | 23
|
2015-02-05T13:03:09.000Z
|
2021-11-11T13:50:56.000Z
|
{-# OPTIONS --universe-polymorphism #-}
module Categories.Functor.Product where
open import Categories.Category
open import Categories.Functor using (Functor)
import Categories.Object.Product as Product
import Categories.Object.BinaryProducts as BinaryProducts
-- Ugh, we should start bundling things (categories with binary products, in this case) up consistently
_[_][_×-] : ∀ {o ℓ e} → (C : Category o ℓ e) → BinaryProducts.BinaryProducts C → Category.Obj C → Functor C C
C [ P ][ O ×-] = record
{ F₀ = λ x → Product.A×B (product {O} {x})
; F₁ = λ f → ⟨ π₁ , f ∘ π₂ ⟩
; identity = λ {x} → identity′ {x}
; homomorphism = λ {x} {y} {z} {f} {g} → homomorphism′ {x} {y} {z} {f} {g}
; F-resp-≡ = λ f≡g → ⟨⟩-cong₂ refl (∘-resp-≡ˡ f≡g)
}
where
open Category C
open Equiv
open Product C
open BinaryProducts.BinaryProducts P
.identity′ : {A : Obj} → ⟨ π₁ , id ∘ π₂ ⟩ ≡ id
identity′ =
begin
⟨ π₁ , id ∘ π₂ ⟩
≈⟨ ⟨⟩-cong₂ refl identityˡ ⟩
⟨ π₁ , π₂ ⟩
≈⟨ η ⟩
id
∎
where open HomReasoning
.homomorphism′ : {X Y Z : Obj} {f : X ⇒ Y} {g : Y ⇒ Z} → ⟨ π₁ , (g ∘ f) ∘ π₂ ⟩ ≡ ⟨ π₁ , g ∘ π₂ ⟩ ∘ ⟨ π₁ , f ∘ π₂ ⟩
homomorphism′ {f = f} {g} =
begin
⟨ π₁ , (g ∘ f) ∘ π₂ ⟩
↓⟨ ⟨⟩-cong₂ refl assoc ⟩
⟨ π₁ , g ∘ (f ∘ π₂) ⟩
↑⟨ ⟨⟩-cong₂ refl (∘-resp-≡ʳ commute₂) ⟩
⟨ π₁ , g ∘ (π₂ ∘ ⟨ π₁ , f ∘ π₂ ⟩) ⟩
↑⟨ ⟨⟩-cong₂ commute₁ assoc ⟩
⟨ π₁ ∘ ⟨ π₁ , f ∘ π₂ ⟩ , (g ∘ π₂) ∘ ⟨ π₁ , f ∘ π₂ ⟩ ⟩
↑⟨ ⟨⟩∘ ⟩
⟨ π₁ , g ∘ π₂ ⟩ ∘ ⟨ π₁ , f ∘ π₂ ⟩
∎
where open HomReasoning
_[_][-×_] : ∀ {o ℓ e} → (C : Category o ℓ e) → BinaryProducts.BinaryProducts C → Category.Obj C → Functor C C
C [ P ][-× O ] = record
{ F₀ = λ x → Product.A×B (product {x} {O})
; F₁ = λ f → ⟨ f ∘ π₁ , π₂ ⟩
; identity = λ {x} → identity′ {x}
; homomorphism = λ {x} {y} {z} {f} {g} → homomorphism′ {x} {y} {z} {f} {g}
; F-resp-≡ = λ f≡g → ⟨⟩-cong₂ (∘-resp-≡ˡ f≡g) refl
}
where
open Category C
open Equiv
open Product C
open BinaryProducts.BinaryProducts P
.identity′ : {A : Obj} → ⟨ id ∘ π₁ , π₂ ⟩ ≡ id
identity′ =
begin
⟨ id ∘ π₁ , π₂ ⟩
≈⟨ ⟨⟩-cong₂ identityˡ refl ⟩
⟨ π₁ , π₂ ⟩
≈⟨ η ⟩
id
∎
where open HomReasoning
.homomorphism′ : {X Y Z : Obj} {f : X ⇒ Y} {g : Y ⇒ Z} → ⟨ (g ∘ f) ∘ π₁ , π₂ ⟩ ≡ ⟨ g ∘ π₁ , π₂ ⟩ ∘ ⟨ f ∘ π₁ , π₂ ⟩
homomorphism′ {f = f} {g} =
begin
⟨ (g ∘ f) ∘ π₁ , π₂ ⟩
↓⟨ ⟨⟩-cong₂ assoc refl ⟩
⟨ g ∘ (f ∘ π₁) , π₂ ⟩
↑⟨ ⟨⟩-cong₂ (∘-resp-≡ʳ commute₁) refl ⟩
⟨ g ∘ (π₁ ∘ ⟨ f ∘ π₁ , π₂ ⟩) , π₂ ⟩
↑⟨ ⟨⟩-cong₂ assoc commute₂ ⟩
⟨ (g ∘ π₁) ∘ ⟨ f ∘ π₁ , π₂ ⟩ , π₂ ∘ ⟨ f ∘ π₁ , π₂ ⟩ ⟩
↑⟨ ⟨⟩∘ ⟩
⟨ g ∘ π₁ , π₂ ⟩ ∘ ⟨ f ∘ π₁ , π₂ ⟩
∎
where open HomReasoning
| 30.921348
| 117
| 0.490916
|
fd70874560bc00a40c56b69fa3cce6398e73f079
| 544
|
agda
|
Agda
|
test/interaction/CaseSplitAndImplicits.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/interaction/CaseSplitAndImplicits.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/interaction/CaseSplitAndImplicits.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
open import Agda.Builtin.Equality
-- Case splitting should not remove implicit arguments
record ⊤ : Set where constructor tt
test₁ : {A : Set} → ⊤ → ⊤
test₁ {A} x = {!x!}
-- Case splitting on an implicit argument should make it visible
test₂ : {x : ⊤} → ⊤
test₂ = {!x!}
-- Implicit variables in dot patterns should be replaced by _
postulate
A B : Set
f : A → B
test₃ : {x : A} (y : B) → f x ≡ y → B
test₃ y e = {!e!}
-- .. but not if they are bound inside the dot pattern
test₄ : (f : A → A) → f ≡ (λ x → x) → Set
test₄ f e = {!e!}
| 21.76
| 64
| 0.608456
|
0d57c9422e7a15f5d563e0211aa00bb06827b162
| 2,054
|
agda
|
Agda
|
Data/Vec/Iterated.agda
|
oisdk/agda-playground
|
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
|
[
"MIT"
] | 6
|
2020-09-11T17:45:41.000Z
|
2021-11-16T08:11:34.000Z
|
Data/Vec/Iterated.agda
|
oisdk/agda-playground
|
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
|
[
"MIT"
] | null | null | null |
Data/Vec/Iterated.agda
|
oisdk/agda-playground
|
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
|
[
"MIT"
] | 1
|
2021-11-11T12:30:21.000Z
|
2021-11-11T12:30:21.000Z
|
{-# OPTIONS --without-K --safe #-}
module Data.Vec.Iterated where
open import Data.Unit.UniversePolymorphic
open import Level
open import Data.Nat.Base
open import Function
private
variable
n m : ℕ
mutual
Vec : Type a → ℕ → Type a
Vec A zero = Vec⁰
Vec A (suc n) = Vec⁺ A n
record Vec⁰ {a} : Type a where
eta-equality
constructor []
infixr 5 _∷_
record Vec⁺ {a} (A : Type a) (n : ℕ) : Type a where
eta-equality
inductive
constructor _∷_
field
head : A
tail : Vec A n
open Vec⁺ public
foldr : ∀ {p} (P : ℕ → Type p) →
(∀ {n} → A → P n → P (suc n)) →
P zero →
Vec A n → P n
foldr {n = zero} P f b _ = b
foldr {n = suc n} P f b (x ∷ xs) = f x (foldr P f b xs)
foldl : ∀ {p} (P : ℕ → Type p) →
(∀ {n} → A → P n → P (suc n)) →
P zero →
Vec A n → P n
foldl {n = zero } P f b _ = b
foldl {n = suc n} P f b (x ∷ xs) = foldl (P ∘ suc) f (f x b) xs
foldlN : ∀ {p} (P : ℕ → Type p) →
(∀ {n} → A → P (suc n) → P n) →
P n →
Vec A n → P zero
foldlN P f b xs = foldr (λ n → P n → P zero) (λ x k xs → k (f x xs)) id xs b
module _ (f : A → B → B) (e : B) where
foldr′ : Vec A n → B
foldr′ {n = zero } xs = e
foldr′ {n = suc n} (x ∷ xs) = f x (foldr′ xs)
foldl′ : (A → B → B) → B → Vec A n → B
foldl′ {n = zero} f b xs = b
foldl′ {n = suc n} f b (x ∷ xs) = foldl′ f (f x b) xs
-- vecFromList : (xs : List A) → Vec A (length xs)
-- vecFromList List.[] = []
-- vecFromList (x List.∷ xs) = x ∷ vecFromList xs
-- vecToList : Vec A n → List A
-- vecToList = foldr′ List._∷_ List.[]
open import Data.Fin.Indexed
infixl 4 lookup
lookup : Fin n → Vec A n → A
lookup f0 = head
lookup (fs i) xs = lookup i (tail xs)
syntax lookup i xs = xs [ i ]
infixl 4 replace
replace : Fin n → A → Vec A n → Vec A n
replace f0 x xs .head = x
replace f0 x xs .tail = xs .tail
replace (fs i) x xs .head = xs .head
replace (fs i) x xs .tail = replace i x (xs .tail)
syntax replace i x xs = xs [ i ]≔ x
| 23.609195
| 76
| 0.522882
|
34070f53a3f5c932abaac107e269a0ad0f93b9a9
| 1,150
|
agda
|
Agda
|
test/Succeed/Issue3052-simplified.agda
|
alex-mckenna/agda
|
78b62cd24bbd570271a7153e44ad280e52ef3e29
|
[
"BSD-3-Clause"
] | 1
|
2016-03-17T01:45:59.000Z
|
2016-03-17T01:45:59.000Z
|
test/Succeed/Issue3052-simplified.agda
|
andersk/agda
|
56928ff709dcb931cb9a48c4790e5ed3739e3032
|
[
"BSD-3-Clause"
] | null | null | null |
test/Succeed/Issue3052-simplified.agda
|
andersk/agda
|
56928ff709dcb931cb9a48c4790e5ed3739e3032
|
[
"BSD-3-Clause"
] | 1
|
2019-03-05T20:02:38.000Z
|
2019-03-05T20:02:38.000Z
|
-- Andreas & Jesper, 2018-05-11, issue #3052 reported by identicalsnowflake
--
-- The problem here was that free variable collection had the standard
-- monoid instance of IntMap, which is just "randomly" picking one variant.
-- Thus, if we have both irrelevant and relevant occurrences of a variable,
-- we get whatever.
-- Now we keep the stronger information (relevant, see maxVarOcc).
{-# OPTIONS --show-irrelevant #-}
-- {-# OPTIONS -v tc.meta.assign:100 -v tc.meta.occurs:45 #-}
-- {-# OPTIONS -v tc.lhs:100 #-}
postulate
A : Set
B : A → Set
record Σ : Set where
constructor _,_
field
proj₁ : A
proj₂ : B proj₁
open Σ public
record Foo : Set where
constructor foo
field
.theFoo : Σ
test : Foo → Foo
test (foo (a , b)) = foo (a , thm a b) -- Error at b
-- Constraint: a, b ⊢ ?0 .a .b a = B a : Set
-- Note the irrelevant occurrence .a and the relevant occurrence a
-- on the lhs of this constraint!
where
-- Meta ?0 : [.a, .b, x] Set
postulate thm : (x : A) (y : _) → B x
-- Underscore should solved by B x
-- thm x y = y -- WAS: Worked only if definition is given (which
-- Should succeed.
| 28.04878
| 75
| 0.646087
|
19a1a01616e4514f971bdf3298f40a5f75a272d3
| 577
|
agda
|
Agda
|
test/succeed/RewriteAndUniversePolymorphism.agda
|
asr/agda-kanso
|
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
|
[
"MIT"
] | 1
|
2019-11-27T07:26:06.000Z
|
2019-11-27T07:26:06.000Z
|
test/succeed/RewriteAndUniversePolymorphism.agda
|
np/agda-git-experiment
|
20596e9dd9867166a64470dd24ea68925ff380ce
|
[
"MIT"
] | null | null | null |
test/succeed/RewriteAndUniversePolymorphism.agda
|
np/agda-git-experiment
|
20596e9dd9867166a64470dd24ea68925ff380ce
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --universe-polymorphism #-}
module RewriteAndUniversePolymorphism where
postulate
Level : Set
lzero : Level
lsuc : (i : Level) → Level
_⊔_ : Level -> Level -> Level
{-# BUILTIN LEVEL Level #-}
{-# BUILTIN LEVELZERO lzero #-}
{-# BUILTIN LEVELSUC lsuc #-}
{-# BUILTIN LEVELMAX _⊔_ #-}
infixl 6 _⊔_
data ℕ : Set where
zero : ℕ
suc : ℕ → ℕ
infix 4 _≡_
data _≡_ {a}{A : Set a} (x : A) : A → Set a where
refl : x ≡ x
{-# BUILTIN EQUALITY _≡_ #-}
{-# BUILTIN REFL refl #-}
test : (a b : ℕ) → a ≡ b → b ≡ a
test a b eq rewrite eq = refl
| 18.03125
| 49
| 0.580589
|
7cb9d2ff6f2263b28b72f312a8982a610d0d1907
| 118
|
agda
|
Agda
|
test/Fail/Issue4638-1.agda
|
cagix/agda
|
cc026a6a97a3e517bb94bafa9d49233b067c7559
|
[
"BSD-2-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Fail/Issue4638-1.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Fail/Issue4638-1.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
open import Agda.Builtin.Unit
data D : Set where
c₁ c₂ : D
@0 c₃ : D
f : @0 D → ⊤
f c₁ = tt
f c₂ = tt
f c₃ = tt
| 10.727273
| 29
| 0.550847
|
7caa042aede0d5fb2f2811146f9e0bab2a3fc5ba
| 2,493
|
agda
|
Agda
|
BasicIPC/Metatheory/Hilbert-TarskiGluedClosedHilbert.agda
|
mietek/hilbert-gentzen
|
fcd187db70f0a39b894fe44fad0107f61849405c
|
[
"X11"
] | 29
|
2016-07-03T18:51:56.000Z
|
2022-01-01T10:29:18.000Z
|
BasicIPC/Metatheory/Hilbert-TarskiGluedClosedHilbert.agda
|
mietek/hilbert-gentzen
|
fcd187db70f0a39b894fe44fad0107f61849405c
|
[
"X11"
] | 1
|
2018-06-10T09:11:22.000Z
|
2018-06-10T09:11:22.000Z
|
BasicIPC/Metatheory/Hilbert-TarskiGluedClosedHilbert.agda
|
mietek/hilbert-gentzen
|
fcd187db70f0a39b894fe44fad0107f61849405c
|
[
"X11"
] | null | null | null |
module BasicIPC.Metatheory.Hilbert-TarskiGluedClosedHilbert where
open import BasicIPC.Syntax.Hilbert public
open import BasicIPC.Semantics.TarskiGluedClosedHilbert public
-- Internalisation of syntax as syntax representation in a particular model, for closed terms only.
module _ {{_ : Model}} where
[_]₀ : ∀ {A} → ∅ ⊢ A → [⊢] A
[ var () ]₀
[ app t u ]₀ = [app] [ t ]₀ [ u ]₀
[ ci ]₀ = [ci]
[ ck ]₀ = [ck]
[ cs ]₀ = [cs]
[ cpair ]₀ = [cpair]
[ cfst ]₀ = [cfst]
[ csnd ]₀ = [csnd]
[ unit ]₀ = [unit]
-- Soundness with respect to all models, or evaluation.
eval : ∀ {A Γ} → Γ ⊢ A → Γ ⊨ A
eval (var i) γ = lookup i γ
eval (app t u) γ = eval t γ ⟪$⟫ eval u γ
eval ci γ = [ci] ⅋ I
eval ck γ = [ck] ⅋ ⟪K⟫
eval cs γ = [cs] ⅋ ⟪S⟫′
eval cpair γ = [cpair] ⅋ _⟪,⟫′_
eval cfst γ = [cfst] ⅋ π₁
eval csnd γ = [csnd] ⅋ π₂
eval unit γ = ∙
-- Correctness of evaluation with respect to conversion.
eval✓ : ∀ {{_ : Model}} {A Γ} {t t′ : Γ ⊢ A} → t ⋙ t′ → eval t ≡ eval t′
eval✓ refl⋙ = refl
eval✓ (trans⋙ p q) = trans (eval✓ p) (eval✓ q)
eval✓ (sym⋙ p) = sym (eval✓ p)
eval✓ (congapp⋙ p q) = cong² _⟦$⟧_ (eval✓ p) (eval✓ q)
eval✓ (congi⋙ p) = cong I (eval✓ p)
eval✓ (congk⋙ p q) = cong² K (eval✓ p) (eval✓ q)
eval✓ (congs⋙ p q r) = cong³ ⟦S⟧ (eval✓ p) (eval✓ q) (eval✓ r)
eval✓ (congpair⋙ {A} {B} p q) = cong² (_⟦,⟧_ {A} {B}) (eval✓ p) (eval✓ q)
eval✓ (congfst⋙ {A} {B} p) = cong (⟦π₁⟧ {A} {B}) (eval✓ p)
eval✓ (congsnd⋙ {A} {B} p) = cong (⟦π₂⟧ {A} {B}) (eval✓ p)
eval✓ beta▻ₖ⋙ = refl
eval✓ beta▻ₛ⋙ = refl
eval✓ beta∧₁⋙ = refl
eval✓ beta∧₂⋙ = refl
eval✓ eta∧⋙ = refl
eval✓ eta⊤⋙ = refl
-- The canonical model.
private
instance
canon : Model
canon = record
{ ⊩ᵅ_ = λ P → ∅ ⊢ α P
; [⊢]_ = ∅ ⊢_
; [app] = app
; [ci] = ci
; [ck] = ck
; [cs] = cs
; [cpair] = cpair
; [cfst] = cfst
; [csnd] = csnd
; [unit] = unit
}
-- Completeness with respect to all models, or quotation, for closed terms only.
quot₀ : ∀ {A} → ∅ ⊨ A → ∅ ⊢ A
quot₀ t = reifyʳ (t ∙)
-- Normalisation by evaluation, for closed terms only.
norm₀ : ∀ {A} → ∅ ⊢ A → ∅ ⊢ A
norm₀ = quot₀ ∘ eval
-- TODO: Correctness of normalisation with respect to conversion.
| 28.011236
| 99
| 0.490172
|
21e86a57b65ec3e64990676d6c847b0568a64d94
| 5,772
|
agda
|
Agda
|
Globular-TT/Disks.agda
|
thibautbenjamin/catt-formalization
|
3a02010a869697f4833c9bc6047d66ca27b87cf2
|
[
"MIT"
] | null | null | null |
Globular-TT/Disks.agda
|
thibautbenjamin/catt-formalization
|
3a02010a869697f4833c9bc6047d66ca27b87cf2
|
[
"MIT"
] | null | null | null |
Globular-TT/Disks.agda
|
thibautbenjamin/catt-formalization
|
3a02010a869697f4833c9bc6047d66ca27b87cf2
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --rewriting --without-K #-}
open import Agda.Primitive
open import Prelude
import GSeTT.Typed-Syntax
import Globular-TT.Syntax
{- Disk and Sphere contexts - properties -}
module Globular-TT.Disks {l} (index : Set l) (rule : index → GSeTT.Typed-Syntax.Ctx × (Globular-TT.Syntax.Pre-Ty index)) (eqdec-index : eqdec index) where
open import Globular-TT.Syntax index
open import Globular-TT.Rules index rule
open import Globular-TT.CwF-Structure index rule
open import Globular-TT.Uniqueness-Derivations index rule eqdec-index
open import Globular-TT.Typed-Syntax index rule eqdec-index
{- Definition of "universal source and target variables" -}
n-src : ℕ → ℕ
n-tgt : ℕ → ℕ
n⇒ : ℕ → Pre-Ty
n-src O = O
n-src (S n) = S (n-tgt n)
n-tgt n = S (n-src n)
n⇒ O = ∗
n⇒ (S n) = ⇒ (n⇒ n) (Var (n-src n)) (Var (n-tgt n))
dim⇒ : ∀ (n : ℕ) → dim (n⇒ n) == n
dim⇒ O = idp
dim⇒ (S n) = S= (dim⇒ n)
{- Syntactic definition of disks and spheres -}
Pre-𝕊 : ℕ → Pre-Ctx
Pre-𝔻 : ℕ → Pre-Ctx
Pre-𝕊 O = ⊘
Pre-𝕊 (S n) = (Pre-𝔻 n) ∙ C-length (Pre-𝔻 n) # n⇒ n
Pre-𝔻 n = (Pre-𝕊 n) ∙ C-length (Pre-𝕊 n) # n⇒ n
𝕊-length : ∀ n → C-length (Pre-𝕊 n) == n-src n
𝕊-length O = idp
𝕊-length (S n) = S= (S= (𝕊-length n))
{-# REWRITE 𝕊-length #-}
{- Disk and Sphere context are valid -}
𝕊⊢ : ∀ n → Pre-𝕊 n ⊢C
𝔻⊢ : ∀ n → Pre-𝔻 n ⊢C
𝕊⊢⇒ : ∀ n → Pre-𝕊 n ⊢T n⇒ n
𝕊⊢ O = ec
𝕊⊢ (S n) = cc (𝔻⊢ n) (wkT (𝕊⊢⇒ n) (𝔻⊢ n)) idp
𝔻⊢ n = cc (𝕊⊢ n) (𝕊⊢⇒ n) idp
𝕊⊢⇒ O = ob ec
𝕊⊢⇒ (S n) = ar (wkT (wkT (𝕊⊢⇒ n) (𝔻⊢ n)) (𝕊⊢ (S n))) (wkt (var (𝔻⊢ n) (inr (((𝕊-length n) ^) , idp))) (𝕊⊢ (S n))) (var (𝕊⊢ (S n)) (inr ((S= (𝕊-length n) ^) , idp)))
𝕊 : ℕ → Ctx
𝕊 n = Pre-𝕊 n , 𝕊⊢ n
𝔻 : ℕ → Ctx
𝔻 n = Pre-𝔻 n , 𝔻⊢ n
Ty-n : ∀ {Γ} → Σ ℕ (λ n → Sub Γ (𝕊 n)) → Ty Γ
Ty-n {Γ} (n , (γ , Γ⊢γ:Sn) ) = ((n⇒ n)[ γ ]Pre-Ty) , ([]T (𝕊⊢⇒ n) Γ⊢γ:Sn)
private
Pre-χ : Pre-Ty → Pre-Sub
Pre-χ ∗ = <>
Pre-χ (⇒ A t u) = < < Pre-χ A , n-src (dim A) ↦ t > , n-tgt (dim A) ↦ u >
χ_⊢ : ∀ {Γ A} → (Γ⊢A : Γ ⊢T A) → Γ ⊢S (Pre-χ A) > Pre-𝕊 (dim A)
⇒[χ_] : ∀ {Γ A} → (Γ⊢A : Γ ⊢T A) → A == ((n⇒ (dim A))[ Pre-χ A ]Pre-Ty)
χ ob Γ⊢ ⊢ = es Γ⊢
χ_⊢ {Γ} {⇒ A t u} (ar Γ⊢A Γ⊢t:A Γ⊢u:A) =
let Γ⊢χt = sc χ Γ⊢A ⊢ (𝔻⊢ (dim A)) (trT (⇒[χ Γ⊢A ]) Γ⊢t:A) idp in
sc Γ⊢χt (𝕊⊢ (S (dim A))) (trT (⇒[χ Γ⊢A ] >> (wk[]T (𝕊⊢⇒ (dim A)) Γ⊢χt ^)) Γ⊢u:A) idp
⇒[χ_] {Γ} {.∗} (ob _) = idp
⇒[χ_] {Γ} {(⇒ A t u)} (ar Γ⊢A Γ⊢t:A Γ⊢u:A) with eqdecℕ (n-src (dim A)) (n-tgt (dim A)) | eqdecℕ (n-src (dim A)) (n-src (dim A)) | eqdecℕ (S (n-src (dim A))) (S (n-src (dim A)))
... | inl contra | _ | _ = ⊥-elim (n≠Sn _ contra)
... | inr _ | inr n≠n | _ = ⊥-elim (n≠n idp)
... | inr _ | inl _ | inr n≠n = ⊥-elim (n≠n idp)
... | inr _ | inl _ | inl _ =
let Γ⊢χt = (sc χ Γ⊢A ⊢ (𝔻⊢(dim A)) (trT ⇒[χ Γ⊢A ] Γ⊢t:A) idp) in
let A=⇒[γt] = ⇒[χ Γ⊢A ] >> (wk[]T (𝕊⊢⇒ (dim A)) Γ⊢χt ^) in
⇒= (A=⇒[γt] >> (wk[]T (wkT (𝕊⊢⇒ (dim A)) (𝔻⊢ (dim A))) (sc Γ⊢χt (𝕊⊢ (S (dim A))) (trT A=⇒[γt] Γ⊢u:A) idp) ^)) idp idp
χ : ∀ {Γ} → Ty Γ → Σ ℕ λ n → Sub Γ (𝕊 n)
χ (A , Γ⊢A) = dim A , (Pre-χ A , χ Γ⊢A ⊢)
dim-Ty-n : ∀ {Γ} (n : ℕ) → (γ : Sub Γ (𝕊 n)) → dim (fst (Ty-n {Γ} (n , γ))) == n
dim-Ty-n n (γ , Γ⊢γ:Sn) = dim[] (n⇒ n) γ >> (dim⇒ n)
trS-sph : ∀ {Γ n m} → (p : n == m) → {γ : Sub Γ (𝕊 n)} → {δ : Sub Γ (𝕊 m)} → fst γ == fst δ → transport p γ == δ
trS-sph {Γ} {n} {m} idp {γ} {δ} x = eqS {Γ} {𝕊 m} γ δ x
lemma1 : ∀ t u γ n → (if n-src n ≡ S (n-src n) then u else (if n-src n ≡ n-src n then t else (Var (n-src n) [ γ ]Pre-Tm))) == t
lemma1 t u γ n with eqdecℕ (n-src n) (S (n-src n))
... | inl n=Sn = ⊥-elim (n≠Sn _ (n=Sn))
... | inr _ with eqdecℕ (n-src n) (n-src n)
... | inl _ = idp
... | inr n≠n = ⊥-elim (n≠n idp)
lemma2 : ∀ t u γ n → (if S (n-src n) ≡ S (n-src n) then u else (if S (n-src n) ≡ n-src n then t else (Var (S (n-src n)) [ γ ]Pre-Tm))) == u
lemma2 t u γ n with eqdecℕ (S (n-src n)) (S (n-src n))
... | inl _ = idp
... | inr n≠n = ⊥-elim (n≠n idp)
Pre-χTy-n : ∀ {Γ} (n : ℕ) → (γ : Sub Γ (𝕊 n)) → Pre-χ (fst (Ty-n {Γ} (n , γ))) == fst γ
Pre-χTy-n O (.<> , (es _)) = idp
Pre-χTy-n {Γ} (S n) (< < γ , _ ↦ t > , _ ↦ u > , (sc (sc Γ⊢γ:Sn _ Γ⊢t:A idp) _ Γ⊢u:A idp)) with eqdecℕ (n-src n) (S (n-src n)) | eqdecℕ (n-src n) (n-src n) | eqdecℕ (S (n-src n)) (S (n-src n))
... | inl contra | _ | _ = ⊥-elim (n≠Sn _ contra)
... | inr _ | inr n≠n | _ = ⊥-elim (n≠n idp)
... | inr _ | inl _ | inr n≠n = ⊥-elim (n≠n idp)
... | inr _ | inl _ | inl _ =
let χTm-n = (sc Γ⊢γ:Sn (𝔻⊢ n) Γ⊢t:A idp) in
<,>= (<,>= (ap Pre-χ (wk[]T (wkT (𝕊⊢⇒ n) (𝔻⊢ n)) (sc χTm-n (𝕊⊢ (S n)) Γ⊢u:A idp) >> wk[]T (𝕊⊢⇒ n) χTm-n) >> Pre-χTy-n {Γ} n (γ , Γ⊢γ:Sn))
(ap n-src (dim[] (n⇒ n) _ >> (dim⇒ n))) (lemma1 t u γ n))
(S= (ap n-src (dim[] (n⇒ n) _ >> (dim⇒ n))))
(lemma2 t u γ n)
χTy-n : ∀ {Γ} (n : ℕ) → (γ : Sub Γ (𝕊 n)) → χ {Γ} (Ty-n {Γ} (n , γ)) == (n , γ)
χTy-n {Γ} n γ = Σ= (dim-Ty-n {Γ} n γ) (trS-sph {Γ} (dim-Ty-n {Γ} n γ) {snd (χ {Γ} (Ty-n {Γ} (n , γ)))} {γ} (Pre-χTy-n {Γ} n γ))
Ty-classifier : ∀ Γ → is-equiv (Ty-n {Γ})
is-equiv.g (Ty-classifier Γ) (A , Γ⊢A) = χ {Γ} (A , Γ⊢A)
is-equiv.f-g (Ty-classifier Γ) (A , Γ⊢A) = Σ= (⇒[χ Γ⊢A ] ^) (has-all-paths-⊢T _ _)
is-equiv.g-f (Ty-classifier Γ) (n , γ) = χTy-n {Γ} n γ
is-equiv.adj (Ty-classifier Γ) (n , γ) = (is-prop-has-all-paths (is-set-Ty Γ _ _)) _ _
| 42.755556
| 196
| 0.437976
|
35077b0bf60002b445a1c6cc16fd55efa3d8140d
| 2,974
|
agda
|
Agda
|
src/plfa/working/Naturals.agda
|
kaychaks/plfa.github.io
|
5365a4ba8ba0dc80cb77ab73aee92c645d0787d9
|
[
"CC-BY-4.0"
] | null | null | null |
src/plfa/working/Naturals.agda
|
kaychaks/plfa.github.io
|
5365a4ba8ba0dc80cb77ab73aee92c645d0787d9
|
[
"CC-BY-4.0"
] | null | null | null |
src/plfa/working/Naturals.agda
|
kaychaks/plfa.github.io
|
5365a4ba8ba0dc80cb77ab73aee92c645d0787d9
|
[
"CC-BY-4.0"
] | null | null | null |
module plfa.working.Naturals where
data ℕ : Set where
zero : ℕ
suc : ℕ → ℕ
seven : ℕ
seven = suc(suc(suc(suc(suc(suc(suc(zero)))))))
{-# BUILTIN NATURAL ℕ #-}
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl)
open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; _∎)
_+_ : ℕ → ℕ → ℕ
zero + n = n
(suc m) + n = suc(m + n)
_ : 2 + 3 ≡ 5
_ =
begin
2 + 3
≡⟨⟩
(suc (suc zero)) + (suc (suc (suc zero)))
≡⟨⟩
suc( (suc zero) + (suc (suc (suc zero))))
≡⟨⟩
(suc(suc (zero + (suc (suc (suc zero))))))
≡⟨⟩
(suc (suc (suc (suc (suc zero)))))
≡⟨⟩
5
∎
_ : 2 + 3 ≡ 5
_ =
begin
2 + 3
≡⟨⟩
suc (1 + 3)
≡⟨⟩
suc (suc (0 + 3))
≡⟨⟩
suc (suc 3)
≡⟨⟩
5
∎
_ : 3 + 4 ≡ 7
_ =
begin
3 + 4
≡⟨⟩
suc (2 + 4)
≡⟨⟩
suc (2 + (suc 3))
≡⟨⟩
suc (suc (2 + 3))
≡⟨⟩
suc (suc 5)
≡⟨⟩
7
∎
_*_ : ℕ → ℕ → ℕ
zero * n = zero
(suc m) * n = n + (n * m)
_ : 3 * 4 ≡ 12
_ =
begin
3 * 4
≡⟨⟩
(suc 2) * 4
≡⟨⟩
4 + (4 * 2)
≡⟨⟩
4 + ((suc 3) * 2)
≡⟨⟩
4 + (2 + (2 * 3))
≡⟨⟩
4 + (2 + (suc 1 * 3))
≡⟨⟩
4 + (2 + (3 + (3 * 1)))
≡⟨⟩
4 + (2 + (3 + (suc 2 * 1)))
≡⟨⟩
4 + (2 + (3 + (1 + (1 * 2))))
≡⟨⟩
12
∎
_^_ : ℕ → ℕ → ℕ
n ^ zero = suc zero
n ^ (suc m) = n * (n ^ m)
_ : 3 ^ 4 ≡ 81
_ =
begin
3 ^ 4
≡⟨⟩
3 ^ (1 + 3)
≡⟨⟩
3 * (3 ^ 3)
≡⟨⟩
3 * (3 * (3 ^ 2))
≡⟨⟩
3 * (3 * (3 * (3 ^ 1)))
≡⟨⟩
3 * (3 * (3 * 3))
≡⟨⟩
81
∎
_∸_ : ℕ → ℕ → ℕ
m ∸ zero = m
zero ∸ suc n = zero
suc m ∸ suc n = m ∸ n
_ : 5 ∸ 3 ≡ 2
_ =
begin
5 ∸ 3
≡⟨⟩
(1 + 4) ∸ (1 + 2)
≡⟨⟩
4 ∸ 2
≡⟨⟩
3 ∸ 1
≡⟨⟩
2 ∸ 0
≡⟨⟩
2
∎
_ : 2 ∸ 5 ≡ 0
_ =
begin
2 ∸ 5
≡⟨⟩
1 ∸ 4
≡⟨⟩
0 ∸ 3
≡⟨⟩
0
∎
data Bin : Set where
⟨⟩ : Bin
_O : Bin → Bin
_I : Bin → Bin
inc : Bin → Bin
inc ⟨⟩ = ⟨⟩ I
inc (p O) = p I
inc (p I) = (inc p) O
_ : inc (⟨⟩ O O O O) ≡ ⟨⟩ O O O I
_ = refl
_ : inc (⟨⟩ O O O I) ≡ ⟨⟩ O O I O
_ = refl
_ : inc (⟨⟩ O O I O) ≡ ⟨⟩ O O I I
_ = refl
_ : inc (⟨⟩ O O I I) ≡ ⟨⟩ O I O O
_ = refl
_ : inc (⟨⟩ I O I I) ≡ ⟨⟩ I I O O
_ = refl
to : ℕ → Bin
to zero = ⟨⟩ O
to (suc n) = inc (to n)
from : Bin → ℕ
from ⟨⟩ = zero
from (p O) = from p * 2
from (p I) = suc ((from p) * 2)
_ : to 3 ≡ ⟨⟩ I I
_ = refl
_ : from (⟨⟩ I I) ≡ 3
_ = refl
| 15.570681
| 54
| 0.284129
|
36d44bc9addbd662f4bc0d951e44b84078e4fcfc
| 334
|
agda
|
Agda
|
test/Common/Coinduction.agda
|
asr/agda-kanso
|
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
|
[
"MIT"
] | 1
|
2018-10-10T17:08:44.000Z
|
2018-10-10T17:08:44.000Z
|
test/Common/Coinduction.agda
|
np/agda-git-experiment
|
20596e9dd9867166a64470dd24ea68925ff380ce
|
[
"MIT"
] | null | null | null |
test/Common/Coinduction.agda
|
np/agda-git-experiment
|
20596e9dd9867166a64470dd24ea68925ff380ce
|
[
"MIT"
] | 1
|
2022-03-12T11:35:18.000Z
|
2022-03-12T11:35:18.000Z
|
module Common.Coinduction where
open import Common.Level
infix 1000 ♯_
postulate
∞ : ∀ {a} (A : Set a) → Set a
♯_ : ∀ {a} {A : Set a} → A → ∞ A
♭ : ∀ {a} {A : Set a} → ∞ A → A
{-# BUILTIN INFINITY ∞ #-}
{-# BUILTIN SHARP ♯_ #-}
{-# BUILTIN FLAT ♭ #-}
private
my-♯ : ∀ {a} {A : Set a} → A → ∞ A
my-♯ x = ♯ x
| 16.7
| 36
| 0.464072
|
372e0990b099f4a09925de0a0d17c09b9a334b5b
| 5,732
|
agda
|
Agda
|
src/Linear.agda
|
zaklogician/linear-constructive
|
168d99745260049051bf0a53f2f6627e652e6ace
|
[
"BSD-3-Clause"
] | 16
|
2018-05-22T23:36:18.000Z
|
2022-03-10T17:31:57.000Z
|
src/Linear.agda
|
zaklogician/linear-constructive
|
168d99745260049051bf0a53f2f6627e652e6ace
|
[
"BSD-3-Clause"
] | 1
|
2019-07-02T13:25:58.000Z
|
2019-07-02T13:25:58.000Z
|
src/Linear.agda
|
zaklogician/linear-constructive
|
168d99745260049051bf0a53f2f6627e652e6ace
|
[
"BSD-3-Clause"
] | 1
|
2019-06-27T15:40:16.000Z
|
2019-06-27T15:40:16.000Z
|
module Linear where
open import Data.Product
open import Data.Sum
open import Data.Empty
-- 1. PROPOSITIONAL FRAGMENT
infixr 0 _⊸_
infixr 1 _⊕_ _⅋_
infixr 2 _&_ _⊗_
-- Linear propositions consist of a positive part (affirmation, φ₊) and a negative
-- part (refutation, φ₋). We prove a linear proposition by proving its affirmation.
-- If we have a refutation then we cannot have an affirmation, on pain of contra-
-- diction.
data LProp : Set₁ where
lprop : (φ₊ : Set) → (φ₋ : Set) → (φ₋ → φ₊ → ⊥) → LProp
-- Linear negation exchanges affirmations and refutations.
~ : LProp → LProp
~ (lprop φ₊ φ₋ p) = lprop φ₋ φ₊ (λ a b → p b a)
-- Additive conjunction
_&_ : LProp → LProp → LProp
(lprop φ₊ φ₋ p) & (lprop ψ₊ ψ₋ q) = lprop (φ₊ × ψ₊) (φ₋ ⊎ ψ₋) pq where
pq : (φ₋ ⊎ ψ₋) → (φ₊ × ψ₊) → ⊥
pq (inj₁ ~a) (a , b) = p ~a a
pq (inj₂ ~b) (a , b) = q ~b b
-- Additive disjunction: notice the symmetry between the proofs `pq` between
-- additive conjunctions and additive disjunctions.
_⊕_ : LProp → LProp → LProp
(lprop φ₊ φ₋ p) ⊕ (lprop ψ₊ ψ₋ q) = lprop (φ₊ ⊎ ψ₊) (φ₋ × ψ₋) pq where
pq : (φ₋ × ψ₋) → (φ₊ ⊎ ψ₊) → ⊥
pq (~a , ~b) (inj₁ a) = p ~a a
pq (~a , ~b) (inj₂ b) = q ~b b
-- Multiplicative conjunction
_⊗_ : LProp → LProp → LProp
(lprop φ₊ φ₋ p) ⊗ (lprop ψ₊ ψ₋ q) = lprop (φ₊ × ψ₊) ((φ₊ → ψ₋) × (ψ₊ → φ₋)) pq where
pq : ((φ₊ → ψ₋) × (ψ₊ → φ₋)) → (φ₊ × ψ₊) → ⊥
pq (f , g) (a , b) = q (f a) b
-- Multiplicative disjunction
_⅋_ : LProp → LProp → LProp
(lprop φ₊ φ₋ p) ⅋ (lprop ψ₊ ψ₋ q) = lprop ((ψ₋ → φ₊) × (φ₋ → ψ₊)) (φ₋ × ψ₋) pq where
pq : (φ₋ × ψ₋) → ((ψ₋ → φ₊) × (φ₋ → ψ₊)) → ⊥
pq (~a , ~b) (f , g) = q ~b (g ~a)
-- Linear implication
_⊸_ : LProp → LProp → LProp
p ⊸ q = (~ p) ⅋ q
⟦_⟧ : LProp → Set
⟦ lprop φ₊ _ _ ⟧ = φ₊
_⊢_ : LProp → LProp → Set
Γ ⊢ P = ⟦ Γ ⊸ P ⟧
----------
-- Here we prove that these connectives satisfy Hesselink's axioms and rules
-- for the multiplicative fragment of linear logic. See also:
-- W. H. Hesselink: Axioms and models of linear logic, in Formal Aspects of Computing, 1990
-- Identity axiom.
axiom-1 : (P : LProp) → ⟦ P ⊸ P ⟧
axiom-1 (lprop φ₊ φ₋ p) =
(λ x → x) ,
(λ x → x)
-- Commutativity of ⅋.
axiom-2 : (P Q : LProp) → ⟦ (P ⅋ Q) ⊸ (Q ⅋ P) ⟧
axiom-2 (lprop φ₊ φ₋ p) (lprop ψ₊ ψ₋ q) =
(λ x → proj₂ x , proj₁ x) ,
(λ x → proj₂ x , proj₁ x)
-- Associativity of ⅋: the proof looks ugly, but we really just re-associate ×.
axiom-3 : (P Q R : LProp) → ⟦ ((P ⅋ Q) ⅋ R) ⊸ (P ⅋ (Q ⅋ R)) ⟧
axiom-3
(lprop φ₊ φ₋ p)
(lprop ψ₊ ψ₋ q)
(lprop ρ₊ ρ₋ r) =
(λ x → (proj₁ x , proj₁ (proj₂ x)) , proj₂ (proj₂ x)) ,
(λ x → (λ y → proj₁ (proj₁ x (proj₂ y)) (proj₁ y)) ,
(λ y → (λ (z : ρ₋) → proj₂ (proj₁ x z) y) ,
(λ z → proj₂ x (y , z))))
-- Finally, the analogues of the rules of inferece work as expected.
mp-rule : (P Q : LProp) → ⟦ P ⟧ → ⟦ P ⊸ Q ⟧ → ⟦ Q ⟧
mp-rule
(lprop φ₊ φ₋ p)
(lprop ψ₊ ψ₋ q) a ab =
proj₂ ab a
mp-rule-ctx : (Γ P Q : LProp) → ⟦ Γ ⅋ P ⟧ → ⟦ P ⊸ Q ⟧ → ⟦ Γ ⅋ Q ⟧
mp-rule-ctx
(lprop γ₊ γ₋ g)
(lprop φ₊ φ₋ p)
(lprop ψ₊ ψ₋ q) a ab =
(λ x → proj₁ a (proj₁ ab x)) ,
(λ x → proj₂ ab (proj₂ a x))
-- A deduction-like variant of the same result.
deduction : (Γ P Q : LProp) → (Γ ⅋ P) ⊢ Q → Γ ⊢ (P ⊸ Q)
deduction
(lprop γ₊ γ₋ _)
(lprop φ₊ φ₋ _)
(lprop ψ₊ ψ₋ _) gpq =
(λ pq → helper1 (proj₂ pq)) ,
(λ g → helper2 ,
(λ p → helper3 (λ _ → g) (λ _ → p))) where
helper1 : ψ₋ → γ₋
helper1 x = proj₁ (proj₁ gpq x)
helper2 : ψ₋ → φ₋
helper2 x = proj₂ (proj₁ gpq x)
helper3 : (φ₋ → γ₊) → (γ₋ → φ₊) → ψ₊
helper3 x y = proj₂ gpq (x , y)
----------
-- We verify the usual dualities, along with the involutive property of negation.
tensor-par-duality : (P Q : LProp) → ⟦ (~ (P ⊗ Q)) ⊸ ((~ P) ⅋ (~ Q)) ⟧
tensor-par-duality
(lprop φ₊ φ₋ x)
(lprop ψ₊ ψ₋ y) = (λ z → z) , λ z → proj₂ z , proj₁ z
par-tensor-duality : (P Q : LProp) → ⟦ ~ (P ⅋ Q) ⊸ (~ P ⊗ ~ Q) ⟧
par-tensor-duality
(lprop φ₊ φ₋ x)
(lprop ψ₊ ψ₋ y) = (λ z → proj₂ z , proj₁ z) , λ z → z
plus-with-duality : (P Q : LProp) → ⟦ ~ (P ⊕ Q) ⊸ (~ P & ~ Q) ⟧
plus-with-duality
(lprop φ₊ φ₋ p)
(lprop ψ₊ ψ₋ q) = (λ z → z) , λ z → z
with-plus-duality : (P Q : LProp) → ⟦ ~ (P & Q) ⊸ (~ P ⊕ ~ Q) ⟧
with-plus-duality
(lprop φ₊ φ₋ x)
(lprop ψ₊ ψ₋ y) = (λ z → z) , λ z → z
open import Relation.Binary.PropositionalEquality
-- The involutive property holds up to equality.
involutive-negation : (P : LProp) → ~ (~ P) ≡ P
involutive-negation (lprop φ₊ φ₋ x) = refl
-- 2. PROPOSITIONAL-EXPONENTIAL FRAGMENT
-- The "of course!" modality
! : LProp → LProp
! (lprop φ₊ φ₋ _) = lprop φ₊ (φ₊ → ⊥) λ z → z
-- The "why not?" modality
⁇ : LProp → LProp
⁇ (lprop φ₊ φ₋ _) = lprop (φ₋ → ⊥) φ₋ λ x y → y x
----------
-- Here we verify that the H-CLL axioms hold for the modalities.
-- A weakening axiom
axiom-1! : (P Q : LProp) → ⟦ P ⊸ (! Q ⊸ P) ⟧
axiom-1!
(lprop φ₊ φ₋ p)
(lprop ψ₊ ψ₋ q) =
proj₂ ,
λ y → (λ x _ → p x y) , (λ _ → y)
axiom-2! : (P Q : LProp) → ⟦ ! (P ⊸ Q) ⊸ (! P ⊸ ! Q) ⟧
axiom-2!
(lprop φ₊ φ₋ p)
(lprop ψ₊ ψ₋ q) =
(λ x y → proj₂ x (proj₂ y (proj₁ x))) ,
(λ x → (λ y z → y (proj₂ x z)) , proj₂ x)
axiom-3! : (P : LProp) → ⟦ ! P ⊸ P ⟧
axiom-3! (lprop φ₊ φ₋ p) = p , (λ x → x)
axiom-4! : (P : LProp) → ⟦ ! P ⊸ ! (! P) ⟧
axiom-4! (lprop φ₊ φ₋ p) = (λ x → x) , (λ x → x)
-- A contraction axiom
axiom-5! : (P Q : LProp) → ⟦ (! P ⊸ (! P ⊸ Q)) ⊸ (! P ⊸ Q) ⟧
axiom-5!
(lprop φ₊ φ₋ p)
(lprop ψ₊ ψ₋ q) =
(λ pq → proj₁ pq , proj₁ pq , proj₂ pq) ,
(λ x → (λ y z → proj₁ x (z , y) z) ,
(λ y → proj₂ (proj₂ x y) y))
-- Fortunately, the modal inference rule is trivially verified.
modal-rule : (P : LProp) → ⟦ P ⟧ → ⟦ ! P ⟧
modal-rule (lprop φ₊ φ₋ p) x = x
| 26.785047
| 91
| 0.520412
|
8b10379c64f7c196751bb45a1e5384869199ac8d
| 182
|
agda
|
Agda
|
test/Succeed/Issue3694.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 2
|
2019-10-29T09:40:30.000Z
|
2020-09-20T00:28:57.000Z
|
test/Succeed/Issue3694.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 3
|
2018-11-14T15:31:44.000Z
|
2019-04-01T19:39:26.000Z
|
test/Succeed/Issue3694.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1
|
2021-06-14T11:07:38.000Z
|
2021-06-14T11:07:38.000Z
|
import Agda.Builtin.Size
postulate
F : (A : Set) (B : A → Set) → ((x : A) → B x) → Set
variable
A : Set
P : A → Set
postulate
f : (r : (x : _) → P x) → F _ P (λ x → r x)
| 14
| 53
| 0.472527
|
03d316118abfec781b83d461bc01c1ecc86f4cae
| 9,885
|
agda
|
Agda
|
Cubical/Foundations/RelationalStructure.agda
|
kiana-S/univalent-foundations
|
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
|
[
"MIT"
] | null | null | null |
Cubical/Foundations/RelationalStructure.agda
|
kiana-S/univalent-foundations
|
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
|
[
"MIT"
] | null | null | null |
Cubical/Foundations/RelationalStructure.agda
|
kiana-S/univalent-foundations
|
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
|
[
"MIT"
] | null | null | null |
{-
Definition of what it means to be a notion of relational structure
-}
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Foundations.RelationalStructure where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Function
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Structure
open import Cubical.Foundations.Univalence
open import Cubical.Functions.FunExtEquiv
open import Cubical.Data.Sigma
open import Cubical.HITs.PropositionalTruncation as Trunc
open import Cubical.HITs.SetQuotients
open import Cubical.Relation.Binary.Base
open import Cubical.Relation.ZigZag.Base
open BinaryRelation
open isEquivRel
open isQuasiEquivRel
private
variable
ℓ ℓ' ℓ'' ℓ''' : Level
-- A notion of structured relation for a structure S assigns a relation on S X and S Y to every relation on X
-- and Y. We require the output to be proposition-valued when the input is proposition-valued.
StrRel : (S : Type ℓ → Type ℓ') (ℓ'' : Level) → Type (ℓ-max (ℓ-suc (ℓ-max ℓ ℓ'')) ℓ')
StrRel {ℓ = ℓ} S ℓ'' = ∀ {A B} (R : Rel A B ℓ) → Rel (S A) (S B) ℓ''
-- Given a type A and relation R, a quotient structure is a structure on the set quotient A/R such that
-- the graph of [_] : A → A/R is a structured relation
InducedQuotientStr : (S : Type ℓ → Type ℓ') (ρ : StrRel S ℓ'')
(A : TypeWithStr ℓ S) (R : Rel (typ A) (typ A) ℓ)
→ Type (ℓ-max ℓ' ℓ'')
InducedQuotientStr S ρ A R =
Σ[ s ∈ S (typ A / R) ] ρ (graphRel [_]) (A .snd) s
-- A structured equivalence relation R on a structured type A should induce a structure on A/R
InducesQuotientStr : (S : Type ℓ → Type ℓ') (ρ : StrRel S ℓ'') → Type _
InducesQuotientStr {ℓ = ℓ} S ρ =
(A : TypeWithStr ℓ S) (R : EquivPropRel (typ A) ℓ)
→ ρ (R .fst .fst) (A .snd) (A .snd)
→ ∃![ s ∈ S (typ A / R .fst .fst) ] ρ (graphRel [_]) (A .snd) s
-- The identity should be a structured relation
isReflexiveStrRel : {S : Type ℓ → Type ℓ'} (ρ : StrRel S ℓ'') → Type _
isReflexiveStrRel {ℓ = ℓ} {S = S} ρ =
{X : Type ℓ} → (s : S X) → ρ (idPropRel X .fst) s s
-- The inverse of a structured relation should be structured
isSymmetricStrRel : {S : Type ℓ → Type ℓ'} (ρ : StrRel S ℓ'') → Type _
isSymmetricStrRel {ℓ = ℓ} {S = S} ρ =
{X Y : Type ℓ} (R : PropRel X Y ℓ)
{sx : S X} {sy : S Y}
→ ρ (R .fst) sx sy
→ ρ (invPropRel R .fst) sy sx
-- The composite of structured relations should be structured
isTransitiveStrRel : {S : Type ℓ → Type ℓ'} (ρ : StrRel S ℓ'') → Type _
isTransitiveStrRel {ℓ = ℓ} {S = S} ρ =
{X Y Z : Type ℓ}
(R : PropRel X Y ℓ) (R' : PropRel Y Z ℓ)
{sx : S X} {sy : S Y} {sz : S Z}
→ ρ (R .fst) sx sy
→ ρ (R' .fst) sy sz
→ ρ (compPropRel R R' .fst) sx sz
-- The type of structures on a set should be a set
preservesSetsStr : (S : Type ℓ → Type ℓ') → Type (ℓ-max (ℓ-suc ℓ) ℓ')
preservesSetsStr S = ∀ {X} → isSet X → isSet (S X)
-- The type of structures on a prop-valued relation should be a prop
preservesPropsStrRel : {S : Type ℓ → Type ℓ'} (ρ : StrRel S ℓ'') → Type _
preservesPropsStrRel {ℓ = ℓ} {S = S} ρ =
{X Y : Type ℓ} {R : Rel X Y ℓ}
→ (∀ x y → isProp (R x y))
→ (sx : S X) (sy : S Y)
→ isProp (ρ R sx sy)
record SuitableStrRel (S : Type ℓ → Type ℓ') (ρ : StrRel S ℓ'') : Type (ℓ-max (ℓ-max (ℓ-suc ℓ) ℓ') ℓ'')
where
field
quo : InducesQuotientStr S ρ
symmetric : isSymmetricStrRel ρ
transitive : isTransitiveStrRel ρ
set : preservesSetsStr S
prop : preservesPropsStrRel ρ
open SuitableStrRel public
quotientPropRel : ∀ {ℓ} {A : Type ℓ} (R : Rel A A ℓ) → PropRel A (A / R) ℓ
quotientPropRel R .fst a t = [ a ] ≡ t
quotientPropRel R .snd _ _ = squash/ _ _
-- We can also ask for a notion of structured relations to agree with some notion of structured equivalences.
StrRelMatchesEquiv : {S : Type ℓ → Type ℓ'}
→ StrRel S ℓ'' → StrEquiv S ℓ''' → Type _
StrRelMatchesEquiv {S = S} ρ ι =
(A B : TypeWithStr _ S) (e : typ A ≃ typ B) →
ρ (graphRel (e .fst)) (A .snd) (B .snd) ≃ ι A B e
-- Additional conditions for a "positive" notion of structured relation
isDetransitiveStrRel : {S : Type ℓ → Type ℓ'} (ρ : StrRel S ℓ'') → Type _
isDetransitiveStrRel {ℓ = ℓ} {S = S} ρ =
{X Y Z : Type ℓ}
(R : PropRel X Y ℓ) (R' : PropRel Y Z ℓ)
{sx : S X} {sz : S Z}
→ ρ (compPropRel R R' .fst) sx sz
→ ∃[ sy ∈ S Y ] ρ (R .fst) sx sy × ρ (R' .fst) sy sz
record StrRelAction {S : Type ℓ → Type ℓ'} (ρ : StrRel S ℓ'')
: Type (ℓ-max (ℓ-suc ℓ) (ℓ-max ℓ' ℓ''))
where
field
actStr : ∀ {X Y} → (X → Y) → S X → S Y
actStrId : ∀ {X} (s : S X) → actStr (idfun X) s ≡ s
actRel : ∀ {X₀ Y₀ X₁ Y₁} {f : X₀ → X₁} {g : Y₀ → Y₁}
{R₀ : X₀ → Y₀ → Type ℓ} {R₁ : X₁ → Y₁ → Type ℓ}
→ (∀ x y → R₀ x y → R₁ (f x) (g y))
→ ∀ sx sy → ρ R₀ sx sy → ρ R₁ (actStr f sx) (actStr g sy)
open StrRelAction public
strRelQuotientComparison : {S : Type ℓ → Type ℓ'} {ρ : StrRel S ℓ''}
(θ : SuitableStrRel S ρ) (α : StrRelAction ρ)
{X : Type ℓ} (R : EquivPropRel X ℓ)
→ (S X / ρ (R .fst .fst)) → S (X / R .fst .fst)
strRelQuotientComparison θ α R [ s ] = α .actStr [_] s
strRelQuotientComparison {ρ = ρ} θ α R (eq/ s t r i) =
(sym leftEq ∙ rightEq) i
where
ρs : ρ (R .fst .fst) s s
ρs =
subst (λ R' → ρ R' s s)
(funExt₂ λ x x' →
hPropExt squash (R .fst .snd x x')
(Trunc.rec (R .fst .snd x x')
(λ {(_ , r , r') → R .snd .transitive _ _ _ r (R .snd .symmetric _ _ r')}))
(λ r → ∣ x' , r , R .snd .reflexive x' ∣))
(θ .transitive (R .fst) (invPropRel (R .fst)) r (θ .symmetric (R .fst) r))
leftEq : θ .quo (_ , s) R ρs .fst .fst ≡ α .actStr [_] s
leftEq =
cong fst
(θ .quo (_ , s) R ρs .snd
( α .actStr [_] s
, subst
(λ s' → ρ (graphRel [_]) s' (α .actStr [_] s))
(α .actStrId s)
(α .actRel eq/ s s ρs)
))
rightEq : θ .quo (_ , s) R ρs .fst .fst ≡ α .actStr [_] t
rightEq =
cong fst
(θ .quo (_ , s) R ρs .snd
( α .actStr [_] t
, subst
(λ s' → ρ (graphRel [_]) s' (α .actStr [_] t))
(α .actStrId s)
(α .actRel eq/ s t r)
))
strRelQuotientComparison θ α R (squash/ _ _ p q i j) =
θ .set squash/ _ _
(cong (strRelQuotientComparison θ α R) p)
(cong (strRelQuotientComparison θ α R) q)
i j
record PositiveStrRel {S : Type ℓ → Type ℓ'} {ρ : StrRel S ℓ''} (θ : SuitableStrRel S ρ)
: Type (ℓ-max (ℓ-suc ℓ) (ℓ-max ℓ' ℓ''))
where
field
act : StrRelAction ρ
reflexive : isReflexiveStrRel ρ
detransitive : isDetransitiveStrRel ρ
quo : {X : Type ℓ} (R : EquivPropRel X ℓ) → isEquiv (strRelQuotientComparison θ act R)
open PositiveStrRel public
posRelReflexive : {S : Type ℓ → Type ℓ'} {ρ : StrRel S ℓ''} {θ : SuitableStrRel S ρ}
→ PositiveStrRel θ
→ {X : Type ℓ} (R : EquivPropRel X ℓ)
→ (s : S X) → ρ (R .fst .fst) s s
posRelReflexive {ρ = ρ} σ R s =
subst
(uncurry (ρ (R .fst .fst)))
(ΣPathP (σ .act .actStrId s , σ .act .actStrId s))
(σ .act .actRel
(λ x y →
Trunc.rec (R .fst .snd _ _)
(λ p → subst (R .fst .fst x) p (R .snd .reflexive x)))
s s
(σ .reflexive s))
-- Given a suitable notion of structured relation, if we have a structured quasi equivalence relation R
-- between structured types A and B, we get induced structures on the quotients A/(R ∙ R⁻¹) and B/(R⁻¹ ∙ R),
-- and the induced equivalence e : A/(R ∙ R⁻¹) ≃ B/(R⁻¹ ∙ R) is structured with respect to those quotient
-- structures.
record QERDescends (S : Type ℓ → Type ℓ') (ρ : StrRel S ℓ'')
(A B : TypeWithStr ℓ S) (R : QuasiEquivRel (typ A) (typ B) ℓ) : Type (ℓ-max ℓ' ℓ'')
where
private
module E = QER→Equiv R
field
quoᴸ : InducedQuotientStr S ρ A E.Rᴸ
quoᴿ : InducedQuotientStr S ρ B E.Rᴿ
rel : ρ (graphRel (E.Thm .fst)) (quoᴸ .fst) (quoᴿ .fst)
open QERDescends
structuredQER→structuredEquiv : {S : Type ℓ → Type ℓ'} {ρ : StrRel S ℓ''}
(θ : SuitableStrRel S ρ)
(A B : TypeWithStr ℓ S) (R : QuasiEquivRel (typ A) (typ B) ℓ)
→ ρ (R .fst .fst) (A .snd) (B .snd)
→ QERDescends S ρ A B R
structuredQER→structuredEquiv {ρ = ρ} θ (X , s) (Y , t) R r .quoᴸ =
θ .quo (X , s) (QER→EquivRel R)
(θ .transitive (R .fst) (invPropRel (R .fst)) r (θ .symmetric (R .fst) r))
.fst
structuredQER→structuredEquiv {ρ = ρ} θ (X , s) (Y , t) R r .quoᴿ =
θ .quo (Y , t) (QER→EquivRel (invQER R))
(θ .transitive (invPropRel (R .fst)) (R .fst) (θ .symmetric (R .fst) r) r)
.fst
structuredQER→structuredEquiv {ρ = ρ} θ (X , s) (Y , t) R r .rel =
subst (λ R' → ρ R' (quol .fst) (quor .fst)) correction
(θ .transitive (compPropRel (invPropRel (quotientPropRel E.Rᴸ)) (R .fst)) (quotientPropRel E.Rᴿ)
(θ .transitive (invPropRel (quotientPropRel E.Rᴸ)) (R .fst)
(θ .symmetric (quotientPropRel E.Rᴸ) (quol .snd))
r)
(quor .snd))
where
module E = QER→Equiv R
quol = structuredQER→structuredEquiv {ρ = ρ} θ (X , s) (Y , t) R r .quoᴸ
quor = structuredQER→structuredEquiv {ρ = ρ} θ (X , s) (Y , t) R r .quoᴿ
[R] = compPropRel (compPropRel (invPropRel (quotientPropRel E.Rᴸ)) (R .fst)) (quotientPropRel E.Rᴿ)
correction : [R] .fst ≡ graphRel (E.Thm .fst)
correction =
funExt₂ λ qx qy →
(hPropExt squash (squash/ _ _)
(Trunc.rec (squash/ _ _)
(λ {(y , qr , py) →
Trunc.rec
(squash/ _ _)
(λ {(x , px , r) →
(cong (E.Thm .fst) (sym px)
∙ E.relToFwd≡ r)
∙ py})
qr}))
(elimProp {B = λ qx → E.Thm .fst qx ≡ qy → [R] .fst qx qy}
(λ _ → isPropΠ λ _ → squash)
(λ x →
elimProp {B = λ qy → E.Thm .fst [ x ] ≡ qy → [R] .fst [ x ] qy}
(λ _ → isPropΠ λ _ → squash)
(λ y p → ∣ _ , ∣ _ , refl , E.fwd≡ToRel p ∣ , refl ∣)
qy)
qx))
| 36.747212
| 109
| 0.582398
|
1b0280427b861381b4e19af707ee83599f900707
| 5,266
|
agda
|
Agda
|
prototyping/Luau/StrictMode.agda
|
saga/luau
|
5bb9f379b07e378db0a170e7c4030e3a943b2f14
|
[
"MIT"
] | null | null | null |
prototyping/Luau/StrictMode.agda
|
saga/luau
|
5bb9f379b07e378db0a170e7c4030e3a943b2f14
|
[
"MIT"
] | null | null | null |
prototyping/Luau/StrictMode.agda
|
saga/luau
|
5bb9f379b07e378db0a170e7c4030e3a943b2f14
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --rewriting #-}
module Luau.StrictMode where
open import Agda.Builtin.Equality using (_≡_)
open import FFI.Data.Maybe using (just; nothing)
open import Luau.Syntax using (Expr; Stat; Block; BinaryOperator; yes; nil; addr; var; binexp; var_∈_; _⟨_⟩∈_; function_is_end; _$_; block_is_end; local_←_; _∙_; done; return; name; +; -; *; /; <; >; <=; >=; ··)
open import Luau.Type using (Type; nil; number; string; boolean; _⇒_; _∪_; _∩_; src; tgt)
open import Luau.Subtyping using (_≮:_)
open import Luau.Heap using (Heap; function_is_end) renaming (_[_] to _[_]ᴴ)
open import Luau.VarCtxt using (VarCtxt; ∅; _⋒_; _↦_; _⊕_↦_; _⊝_) renaming (_[_] to _[_]ⱽ)
open import Luau.TypeCheck using (_⊢ᴮ_∈_; _⊢ᴱ_∈_; ⊢ᴴ_; ⊢ᴼ_; _⊢ᴴᴱ_▷_∈_; _⊢ᴴᴮ_▷_∈_; var; addr; app; binexp; block; return; local; function; srcBinOp)
open import Properties.Contradiction using (¬)
open import Properties.TypeCheck using (typeCheckᴮ)
open import Properties.Product using (_,_)
data Warningᴱ (H : Heap yes) {Γ} : ∀ {M T} → (Γ ⊢ᴱ M ∈ T) → Set
data Warningᴮ (H : Heap yes) {Γ} : ∀ {B T} → (Γ ⊢ᴮ B ∈ T) → Set
data Warningᴱ H {Γ} where
UnallocatedAddress : ∀ {a T} →
(H [ a ]ᴴ ≡ nothing) →
---------------------
Warningᴱ H (addr {a} T)
UnboundVariable : ∀ {x T p} →
(Γ [ x ]ⱽ ≡ nothing) →
------------------------
Warningᴱ H (var {x} {T} p)
FunctionCallMismatch : ∀ {M N T U} {D₁ : Γ ⊢ᴱ M ∈ T} {D₂ : Γ ⊢ᴱ N ∈ U} →
(U ≮: src T) →
-----------------
Warningᴱ H (app D₁ D₂)
app₁ : ∀ {M N T U} {D₁ : Γ ⊢ᴱ M ∈ T} {D₂ : Γ ⊢ᴱ N ∈ U} →
Warningᴱ H D₁ →
-----------------
Warningᴱ H (app D₁ D₂)
app₂ : ∀ {M N T U} {D₁ : Γ ⊢ᴱ M ∈ T} {D₂ : Γ ⊢ᴱ N ∈ U} →
Warningᴱ H D₂ →
-----------------
Warningᴱ H (app D₁ D₂)
BinOpMismatch₁ : ∀ {op M N T U} {D₁ : Γ ⊢ᴱ M ∈ T} {D₂ : Γ ⊢ᴱ N ∈ U} →
(T ≮: srcBinOp op) →
------------------------------
Warningᴱ H (binexp {op} D₁ D₂)
BinOpMismatch₂ : ∀ {op M N T U} {D₁ : Γ ⊢ᴱ M ∈ T} {D₂ : Γ ⊢ᴱ N ∈ U} →
(U ≮: srcBinOp op) →
------------------------------
Warningᴱ H (binexp {op} D₁ D₂)
bin₁ : ∀ {op M N T U} {D₁ : Γ ⊢ᴱ M ∈ T} {D₂ : Γ ⊢ᴱ N ∈ U} →
Warningᴱ H D₁ →
------------------------------
Warningᴱ H (binexp {op} D₁ D₂)
bin₂ : ∀ {op M N T U} {D₁ : Γ ⊢ᴱ M ∈ T} {D₂ : Γ ⊢ᴱ N ∈ U} →
Warningᴱ H D₂ →
------------------------------
Warningᴱ H (binexp {op} D₁ D₂)
FunctionDefnMismatch : ∀ {f x B T U V} {D : (Γ ⊕ x ↦ T) ⊢ᴮ B ∈ V} →
(V ≮: U) →
-------------------------
Warningᴱ H (function {f} {U = U} D)
function₁ : ∀ {f x B T U V} {D : (Γ ⊕ x ↦ T) ⊢ᴮ B ∈ V} →
Warningᴮ H D →
-------------------------
Warningᴱ H (function {f} {U = U} D)
BlockMismatch : ∀ {b B T U} {D : Γ ⊢ᴮ B ∈ U} →
(U ≮: T) →
------------------------------
Warningᴱ H (block {b} {T = T} D)
block₁ : ∀ {b B T U} {D : Γ ⊢ᴮ B ∈ U} →
Warningᴮ H D →
------------------------------
Warningᴱ H (block {b} {T = T} D)
data Warningᴮ H {Γ} where
return : ∀ {M B T U} {D₁ : Γ ⊢ᴱ M ∈ T} {D₂ : Γ ⊢ᴮ B ∈ U} →
Warningᴱ H D₁ →
------------------
Warningᴮ H (return D₁ D₂)
LocalVarMismatch : ∀ {x M B T U V} {D₁ : Γ ⊢ᴱ M ∈ U} {D₂ : (Γ ⊕ x ↦ T) ⊢ᴮ B ∈ V} →
(U ≮: T) →
--------------------
Warningᴮ H (local D₁ D₂)
local₁ : ∀ {x M B T U V} {D₁ : Γ ⊢ᴱ M ∈ U} {D₂ : (Γ ⊕ x ↦ T) ⊢ᴮ B ∈ V} →
Warningᴱ H D₁ →
--------------------
Warningᴮ H (local D₁ D₂)
local₂ : ∀ {x M B T U V} {D₁ : Γ ⊢ᴱ M ∈ U} {D₂ : (Γ ⊕ x ↦ T) ⊢ᴮ B ∈ V} →
Warningᴮ H D₂ →
--------------------
Warningᴮ H (local D₁ D₂)
FunctionDefnMismatch : ∀ {f x B C T U V W} {D₁ : (Γ ⊕ x ↦ T) ⊢ᴮ C ∈ V} {D₂ : (Γ ⊕ f ↦ (T ⇒ U)) ⊢ᴮ B ∈ W} →
(V ≮: U) →
-------------------------------------
Warningᴮ H (function D₁ D₂)
function₁ : ∀ {f x B C T U V W} {D₁ : (Γ ⊕ x ↦ T) ⊢ᴮ C ∈ V} {D₂ : (Γ ⊕ f ↦ (T ⇒ U)) ⊢ᴮ B ∈ W} →
Warningᴮ H D₁ →
--------------------
Warningᴮ H (function D₁ D₂)
function₂ : ∀ {f x B C T U V W} {D₁ : (Γ ⊕ x ↦ T) ⊢ᴮ C ∈ V} {D₂ : (Γ ⊕ f ↦ (T ⇒ U)) ⊢ᴮ B ∈ W} →
Warningᴮ H D₂ →
--------------------
Warningᴮ H (function D₁ D₂)
data Warningᴼ (H : Heap yes) : ∀ {V} → (⊢ᴼ V) → Set where
FunctionDefnMismatch : ∀ {f x B T U V} {D : (x ↦ T) ⊢ᴮ B ∈ V} →
(V ≮: U) →
---------------------------------
Warningᴼ H (function {f} {U = U} D)
function₁ : ∀ {f x B T U V} {D : (x ↦ T) ⊢ᴮ B ∈ V} →
Warningᴮ H D →
---------------------------------
Warningᴼ H (function {f} {U = U} D)
data Warningᴴ H (D : ⊢ᴴ H) : Set where
addr : ∀ a {O} →
(p : H [ a ]ᴴ ≡ O) →
Warningᴼ H (D a p) →
---------------
Warningᴴ H D
data Warningᴴᴱ H {Γ M T} : (Γ ⊢ᴴᴱ H ▷ M ∈ T) → Set where
heap : ∀ {D₁ : ⊢ᴴ H} {D₂ : Γ ⊢ᴱ M ∈ T} →
Warningᴴ H D₁ →
-----------------
Warningᴴᴱ H (D₁ , D₂)
expr : ∀ {D₁ : ⊢ᴴ H} {D₂ : Γ ⊢ᴱ M ∈ T} →
Warningᴱ H D₂ →
---------------------
Warningᴴᴱ H (D₁ , D₂)
data Warningᴴᴮ H {Γ B T} : (Γ ⊢ᴴᴮ H ▷ B ∈ T) → Set where
heap : ∀ {D₁ : ⊢ᴴ H} {D₂ : Γ ⊢ᴮ B ∈ T} →
Warningᴴ H D₁ →
-----------------
Warningᴴᴮ H (D₁ , D₂)
block : ∀ {D₁ : ⊢ᴴ H} {D₂ : Γ ⊢ᴮ B ∈ T} →
Warningᴮ H D₂ →
---------------------
Warningᴴᴮ H (D₁ , D₂)
| 27.14433
| 211
| 0.430308
|
4bd4ace5a4c41a4c34215bbaf70a484a50a7f6a6
| 7,054
|
agda
|
Agda
|
Cubical/Categories/TypesOfCategories/TypeCategory.agda
|
hyleIndex/cubical
|
ce5c2820ecb2e0fd8dce74fb0247856cdbf034c4
|
[
"MIT"
] | 301
|
2018-10-17T18:00:24.000Z
|
2022-03-24T02:10:47.000Z
|
Cubical/Categories/TypesOfCategories/TypeCategory.agda
|
hyleIndex/cubical
|
ce5c2820ecb2e0fd8dce74fb0247856cdbf034c4
|
[
"MIT"
] | 584
|
2018-10-15T09:49:02.000Z
|
2022-03-30T12:09:17.000Z
|
Cubical/Categories/TypesOfCategories/TypeCategory.agda
|
hyleIndex/cubical
|
ce5c2820ecb2e0fd8dce74fb0247856cdbf034c4
|
[
"MIT"
] | 134
|
2018-11-16T06:11:03.000Z
|
2022-03-23T16:22:13.000Z
|
{-# OPTIONS --postfix-projections --safe #-}
module Cubical.Categories.TypesOfCategories.TypeCategory where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Equiv
open import Cubical.Data.Sigma
import Cubical.Functions.Fibration as Fibration
open import Cubical.Categories.Category
open import Cubical.Categories.Functor
open import Cubical.Categories.Presheaf
open import Cubical.Categories.Limits.Pullback
open import Cubical.Categories.NaturalTransformation
open import Cubical.Categories.Instances.Sets
open Fibration.ForSets
record isTypeCategory {ℓ ℓ' ℓ''} (C : Precategory ℓ ℓ')
: Type (ℓ-max ℓ (ℓ-max ℓ' (ℓ-suc ℓ''))) where
open Precategory C
open Cospan
open PullbackLegs
open isPullback
field
-- a Type of types over a context
Ty[_] : ob → Type ℓ''
-- extend a context with a type
cext : ∀ (Γ : _) → (A : Ty[ Γ ]) → Σ[ ΓA ∈ ob ] (C [ ΓA , Γ ])
-- the new object from a context extension
_⍮_ : (Γ : _) → (A : Ty[ Γ ]) → ob
Γ ⍮ A = fst (cext Γ A)
-- the projection from the extended context to the original
π : (Γ : _) → (A : Ty[ Γ ]) → C [ Γ ⍮ A , Γ ]
π Γ A = snd (cext Γ A)
field
-- pullback over context extentions
reindex : ∀ {Γ' Γ}
→ C [ Γ' , Γ ]
→ (Ty[ Γ ] → Ty[ Γ' ])
q⟨_,_⟩ : ∀ {Γ' Γ}
→ (f : C [ Γ' , Γ ])
→ (A : Ty[ Γ ])
→ C [ Γ' ⍮ (reindex f A) , Γ ⍮ A ]
isPB : ∀ {Γ' Γ : ob} (f : C [ Γ' , Γ ]) (A : Ty[ Γ ])
→ isPullback {C = C} (cospan Γ' Γ (Γ ⍮ A) f (π Γ A))
(pblegs (π Γ' (reindex f A)) q⟨ f , A ⟩)
-- presheaves are type contexts
module _ {ℓ ℓ' ℓ'' : Level} (C : Precategory ℓ ℓ') where
open isTypeCategory
open Precategory
open Functor
open NatTrans
open isPullback
private
-- types over Γ are types with a "projection" (aka surjection) to Γ
PSTy[_] : PreShv C ℓ'' .ob → Type _
PSTy[ Γ ] = Σ[ ΓA ∈ PreShv C ℓ'' .ob ]
Σ[ π ∈ ΓA ⇒ Γ ]
(∀ (c : C .ob)
→ isSurjSET {A = ΓA ⟅ c ⟆} {Γ ⟅ c ⟆} (π ⟦ c ⟧))
-- just directly use types from above as context extensions
PSCext : (Γ : _) → PSTy[ Γ ] → Σ[ ΓA ∈ PreShv C ℓ'' .ob ] ΓA ⇒ Γ
PSCext Γ (ΓA , π , _) = ΓA , π
-- the pullback or reindexed set is the disjoint union of the fibers
-- from the projection
module _ {Δ Γ : PreShv C ℓ'' .ob} (γ : Δ ⇒ Γ)
(A'@(ΓA , π , isSurjπ) : PSTy[ Γ ]) where
ΔA : PreShv C ℓ'' .ob
ΔA .F-ob c = ΔATy , isSetΔA
where
ΔATy = (Σ[ x ∈ fst (Δ ⟅ c ⟆) ] fiber (π ⟦ c ⟧) ((γ ⟦ c ⟧) x))
isSetΔA : isSet ΔATy
isSetΔA = isOfHLevelΣ 2 (snd (Δ ⟅ c ⟆)) λ Γc → isOfHLevelΣ 2 (snd (ΓA ⟅ c ⟆)) λ ΓAc → isProp→isSet (snd (Γ ⟅ c ⟆) _ _)
-- for morphisms, we apply Δ ⟪ f ⟫ to the first component
-- and ΓA ⟪ f ⟫ to the second
-- the fiber rule
ΔA .F-hom {c} {d} f (δax , γax , eq)
= ((Δ ⟪ f ⟫) δax)
, (((ΓA ⟪ f ⟫) γax)
, ((π ⟦ d ⟧) ((ΓA ⟪ f ⟫) γax)
≡[ i ]⟨ π .N-hom f i γax ⟩
(Γ ⟪ f ⟫) ((π ⟦ c ⟧) γax)
≡[ i ]⟨ (Γ ⟪ f ⟫) (eq i) ⟩
(Γ ⟪ f ⟫) ((γ ⟦ c ⟧) δax)
≡[ i ]⟨ γ .N-hom f (~ i) δax ⟩
(γ ⟦ d ⟧) ((Δ ⟪ f ⟫) δax)
∎))
ΔA .F-id {x = c}
= funExt λ (δax , γax , eq)
→ ΣPathP ((λ i → Δ .F-id i δax)
, fibersEqIfRepsEq {isSetB = snd (Γ ⟅ c ⟆)} _
(λ i → ΓA .F-id i γax))
ΔA .F-seq {a} {b} {c} f g
= funExt λ (δax , γax , eq)
→ ΣPathP ((λ i → Δ .F-seq f g i δax)
, fibersEqIfRepsEq {isSetB = snd (Γ ⟅ c ⟆)} _
λ i → ΓA .F-seq f g i γax)
π' : ΔA ⇒ Δ
π' .N-ob c (x , snd) = x
π' .N-hom f = refl
PSReindex : PSTy[ Δ ]
PSReindex = ΔA , (π' , isSurj)
where
isSurj : ∀ (c : C .ob) → isSurjSET {A = ΔA ⟅ c ⟆} {B = Δ ⟅ c ⟆} (π' ⟦ c ⟧)
isSurj c δx = (δx , isSurjπ c ((γ ⟦ c ⟧) δx)) , refl
PSq : ΔA ⇒ ΓA
PSq .N-ob c (δax , γax , eq) = γax
PSq .N-hom {c} {d} f = funExt λ (δax , γax , eq) → refl
PSIsPB : isPullback {C = PreShv C ℓ''}
(cospan Δ Γ (fst (PSCext Γ A')) γ (snd (PSCext Γ A')))
(pblegs (snd (PSCext Δ PSReindex)) (PSq))
PSIsPB .sq = makeNatTransPath (funExt sqExt)
where
sqExt : ∀ (c : C .ob) → _
sqExt c = funExt λ (δax , γax , eq) → sym eq
PSIsPB .up {Θ} (cone (pblegs p₁ p₂) sq)
= ((α , eq)
, unique)
where
α : Θ ⇒ ΔA
α .N-ob c t = ((p₁ ⟦ c ⟧) t)
, (((p₂ ⟦ c ⟧) t)
, (λ i → (sq (~ i) ⟦ c ⟧) t))
α .N-hom {d} {c} f = funExt αHomExt
where
αHomExt : ∀ (t : fst (Θ ⟅ d ⟆))
→ ((p₁ ⟦ c ⟧) ((Θ ⟪ f ⟫) t) , (p₂ ⟦ c ⟧) ((Θ ⟪ f ⟫) t), _)
≡ ((Δ ⟪ f ⟫) ((p₁ ⟦ d ⟧) t) , (ΓA ⟪ f ⟫) ((p₂ ⟦ d ⟧) t) , _)
αHomExt t = ΣPathP ((λ i → p₁ .N-hom f i t)
, fibersEqIfRepsEq {isSetB = snd (Γ ⟅ c ⟆)} _
(λ i → p₂ .N-hom f i t))
eq : _
eq = makeNatTransPath (funExt (λ _ → funExt λ _ → refl))
, makeNatTransPath (funExt (λ _ → funExt λ _ → refl))
unique : ∀ (βeq : Σ[ β ∈ Θ ⇒ ΔA ] _)
→ (α , eq) ≡ βeq
unique (β , eqβ) = ΣPathP (α≡β , eq≡eqβ)
where
α≡β : α ≡ β
α≡β = makeNatTransPath (funExt λ c → funExt λ t → eqExt c t)
where
eqβ1 = eqβ .fst
eqβ2 = eqβ .snd
eqExt : ∀ (c : C .ob)
→ (t : fst (Θ ⟅ c ⟆))
→ (α ⟦ c ⟧) t ≡ (β ⟦ c ⟧) t
eqExt c t = ΣPathP ((λ i → (eqβ1 i ⟦ c ⟧) t)
, fibersEqIfRepsEq {isSetB = snd (Γ ⟅ c ⟆)} _
(λ i → (eqβ2 i ⟦ c ⟧) t))
eq≡eqβ : PathP (λ i
→ (p₁ ≡ (α≡β i) ●ᵛ π')
× (p₂ ≡ (α≡β i) ●ᵛ PSq)) eq eqβ
eq≡eqβ = ΣPathP ( isPropNatP1 (eq .fst) (eqβ .fst) α≡β
, isPropNatP2 (eq .snd) (eqβ .snd) α≡β)
where
isPropNatP1 : isOfHLevelDep 1 (λ γ → p₁ ≡ γ ●ᵛ π')
isPropNatP1 = isOfHLevel→isOfHLevelDep 1 (λ _ → isSetNat _ _)
isPropNatP2 : isOfHLevelDep 1 (λ γ → p₂ ≡ γ ●ᵛ PSq)
isPropNatP2 = isOfHLevel→isOfHLevelDep 1 (λ _ → isSetNat _ _)
-- putting everything together
isTypeCategoryPresheaf : isTypeCategory (PreShv C ℓ'')
isTypeCategoryPresheaf .Ty[_] Γ = PSTy[ Γ ]
isTypeCategoryPresheaf .cext = PSCext
isTypeCategoryPresheaf .reindex = PSReindex
isTypeCategoryPresheaf .q⟨_,_⟩ = PSq
isTypeCategoryPresheaf .isPB = PSIsPB
| 37.521277
| 128
| 0.44939
|
2fd544c333ac3d344d816ff501483389687d6405
| 651
|
agda
|
Agda
|
agda-stdlib/src/Data/List/Relation/Permutation/Inductive/Properties.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | 5
|
2020-10-07T12:07:53.000Z
|
2020-10-10T21:41:32.000Z
|
agda-stdlib/src/Data/List/Relation/Permutation/Inductive/Properties.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | null | null | null |
agda-stdlib/src/Data/List/Relation/Permutation/Inductive/Properties.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | 1
|
2021-11-04T06:54:45.000Z
|
2021-11-04T06:54:45.000Z
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- This module is DEPRECATED. Please use
-- Data.List.Relation.Binary.Permutation.Inductive.Properties directly.
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.List.Relation.Permutation.Inductive.Properties where
open import Data.List.Relation.Binary.Permutation.Inductive.Properties
public
{-# WARNING_ON_IMPORT
"Data.List.Relation.Permutation.Inductive.Properties was deprecated in v1.0.
Use Data.List.Relation.Binary.Permutation.Inductive.Properties instead."
#-}
| 34.263158
| 76
| 0.614439
|
2e124e727dbab591acc5c9bd88eee2f76a81254d
| 220
|
agda
|
Agda
|
test/Fail/Issue2927.agda
|
cagix/agda
|
cc026a6a97a3e517bb94bafa9d49233b067c7559
|
[
"BSD-2-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Fail/Issue2927.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Fail/Issue2927.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
{-# OPTIONS --sized-types #-}
open import Agda.Builtin.Equality
open import Agda.Builtin.Size
postulate
P : (A : Set₁) → A → Set₁
p : (i : Size) (f : {_ : Size< i} → Set) (x : _) →
P ({_ : Size< i} → Set) f
| 20
| 52
| 0.545455
|
38bb94518fce804cb7ef45c3a1e14e1ce5c39657
| 19,943
|
agda
|
Agda
|
Categories/Category/Construction/Graphs.agda
|
rei1024/agda-categories
|
89d163f72caa7deeac9413f27bc1b4ed7f9e025b
|
[
"MIT"
] | null | null | null |
Categories/Category/Construction/Graphs.agda
|
rei1024/agda-categories
|
89d163f72caa7deeac9413f27bc1b4ed7f9e025b
|
[
"MIT"
] | null | null | null |
Categories/Category/Construction/Graphs.agda
|
rei1024/agda-categories
|
89d163f72caa7deeac9413f27bc1b4ed7f9e025b
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --without-K --safe #-}
module Categories.Category.Construction.Graphs where
-- The "Underlying Graph" <-> "Free Category on a Graph" Adjunction.
-- Lots of surprises here, of various level of surprisingness
-- 1. The Free Category rises universe levels of arrows (and equivalences); the Underlying Graph does not
-- (due to the Transitive Closure "Star" construction)
-- 2. As a consequence of (1), the eventual Adjunction will be for all Levels being the same
-- 3. If you want a Functor Categories Graph, then the object/hom levels are straightforward,
-- but if you use "Categories" with NaturalIsomorphism, then the 2-point Groupoid is contractible
-- (thus equivalent to the 1-point Category), and yet those two Graphs shouldn't be considered to
-- be the same! So _≡F_ must be used so that we have no wiggle room when mapping Graphs around.
-- Interestingly, this only shows up when trying to prove that the Underlying Functor respects
-- _≈_, which is not traditionally a requirement of a Functor! This requirement is usually left
-- implicit. If we were to allow Functor to not respect _≈_, things would be fine. But of course
-- we couldn't do any reasonable equational reasoning anymore. Of course, if _≈_ were the global
-- _≡_, this isn't an issue, but that is definitely not wanted here.
-- 4. A lot of weird little lemmas about _≡_ and subst/transport are needed, because we're in a mixed
-- reasoning situation with both ≡ and ≈ present. These could probably be generalized and factored
-- into a separate module (or into the standard library).
open import Level
open import Function using (_$_; flip) renaming (id to idFun; _∘_ to _⊚_)
open import Relation.Binary hiding (_⇒_)
open import Relation.Binary.PropositionalEquality as ≡ using (_≡_)
import Relation.Binary.EqReasoning as EqR
open import Relation.Binary.Construct.Closure.ReflexiveTransitive
open import Relation.Binary.Construct.Closure.ReflexiveTransitive.Properties hiding (trans)
open import Data.Product using (proj₁; proj₂; _,_)
open import Categories.Category
open import Categories.Functor using (Functor)
open import Categories.Functor.Equivalence
open import Categories.Category.Instance.StrictCats
open import Categories.Utils.EqReasoning
open import Categories.NaturalTransformation hiding (id)
open import Categories.NaturalTransformation.NaturalIsomorphism hiding (refl; sym; trans; isEquivalence)
open import Categories.Adjoint
import Categories.Morphism.HeterogeneousIdentity as HId
-- a graph has vertices Obj and edges _⇒_, where edges form a setoid over _≈_.
record Graph o ℓ e : Set (suc (o ⊔ ℓ ⊔ e)) where
infix 4 _≈_ _⇒_
field
Obj : Set o
_⇒_ : Rel Obj ℓ
_≈_ : ∀ {A B} → Rel (A ⇒ B) e
equiv : ∀ {A B} → IsEquivalence (_≈_ {A} {B})
setoid : {A B : Obj} → Setoid _ _
setoid {A} {B} = record
{ Carrier = A ⇒ B
; _≈_ = _≈_
; isEquivalence = equiv
}
module Equiv {A} {B} = IsEquivalence (equiv {A} {B})
module EdgeReasoning {A B : Obj} = EqR (setoid {A} {B})
private
variable
o o′ ℓ ℓ′ e e′ : Level
-- This doesn't belong here... but will do for now
module PathEquiv {o ℓ e : Level} {Obj : Set o} {_⇒_ : Obj → Obj → Set ℓ} (_≈_ : {A B : Obj} → Rel (A ⇒ B) e)
(equiv : {A B : Obj} → IsEquivalence ( _≈_ {A} {B})) where
private
module E {A} {B} = IsEquivalence (equiv {A} {B})
open E renaming (refl to ≈refl; sym to ≈sym; trans to ≈trans)
infix 4 _≈*_
data _≈*_ : {A B : Obj} (p q : Star _⇒_ A B) → Set (o ⊔ ℓ ⊔ e) where
ε : {A : Obj} → _≈*_ {A} ε ε
_◅_ : {A B C : Obj} {x y : A ⇒ B} {p q : Star _⇒_ B C} (x≈y : x ≈ y) (p≈q : p ≈* q) → x ◅ p ≈* y ◅ q
refl : {A B : Obj} {p : Star _⇒_ A B} → p ≈* p
refl {p = ε} = ε
refl {p = x ◅ p} = ≈refl ◅ refl
sym : {A B : Obj} {p q : Star _⇒_ A B} → p ≈* q → q ≈* p
sym ε = ε
sym (x≈y ◅ eq) = ≈sym x≈y ◅ sym eq
≡⇒≈* : {A B : Obj} {p q : Star _⇒_ A B} → p ≡ q → p ≈* q
≡⇒≈* ≡.refl = refl
≡⇒≈ : {A B : Obj} → {p q : A ⇒ B} → p ≡ q → p ≈ q
≡⇒≈ ≡.refl = ≈refl
trans : {A B : Obj} {p q r : Star _⇒_ A B} → p ≈* q → q ≈* r → p ≈* r
trans ε ε = ε
trans (x≈y ◅ ss) (y≈z ◅ tt) = ≈trans x≈y y≈z ◅ trans ss tt
isEquivalence : {A B : Obj} → IsEquivalence (λ (p q : Star _⇒_ A B) → p ≈* q)
isEquivalence = record { refl = refl ; sym = sym ; trans = trans }
setoid : Obj → Obj → Setoid (o ⊔ ℓ) (o ⊔ ℓ ⊔ e)
setoid A B = record { _≈_ = _≈*_ ; isEquivalence = isEquivalence {A} {B} }
-- convenient to define here
--
-- FIXME: this should go into the standard library at
-- Relation.Binary.Construct.Closure.ReflexiveTransitive.Properties
◅◅-identityʳ : {A B : Obj} → (f : Star _⇒_ A B) → f ◅◅ ε ≈* f
◅◅-identityʳ ε = ε
◅◅-identityʳ (x ◅ f) = ≈refl ◅ ◅◅-identityʳ f
module PathEqualityReasoning {A B} where
open EqR (setoid A B) public
module _ (G : Graph o ℓ e) where
open Graph G
private module P = PathEquiv {o} {ℓ} {e} {Obj} {_⇒_} _≈_ equiv
open P
Free : Category o (o ⊔ ℓ) (o ⊔ ℓ ⊔ e)
Free = record
{ Obj = Obj
; _⇒_ = Star _⇒_
; _≈_ = _≈*_
; id = ε
; _∘_ = _▻▻_
; assoc = λ {_ _ _ _} {f g h} → sym $ ≡⇒≈* $ ◅◅-assoc f g h
; sym-assoc = λ {_ _ _ _} {f g h} → ≡⇒≈* $ ◅◅-assoc f g h
; identityˡ = λ {_ _ f} → ◅◅-identityʳ f
; identityʳ = refl
; identity² = refl
; equiv = isEquivalence
; ∘-resp-≈ = resp
}
where resp : ∀ {A B C} {f h : Star _⇒_ B C} {g i : Star _⇒_ A B} →
f ≈* h → g ≈* i → (f ▻▻ g) ≈* (h ▻▻ i)
resp eq ε = eq
resp eq (eq₁ ◅ eq₂) = eq₁ ◅ (resp eq eq₂)
open P public renaming (_≈*_ to [_]_≈*_)
record GraphMorphism (G : Graph o ℓ e) (G′ : Graph o′ ℓ′ e′) : Set (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′) where
private
module G = Graph G
module G′ = Graph G′
field
M₀ : G.Obj → G′.Obj
M₁ : ∀ {A B} → A G.⇒ B → M₀ A G′.⇒ M₀ B
M-resp-≈ : ∀ {A B} {f g : A G.⇒ B} → f G.≈ g → M₁ f G′.≈ M₁ g
idGHom : {G : Graph o ℓ e} → GraphMorphism G G
idGHom = record { M₀ = idFun ; M₁ = idFun ; M-resp-≈ = idFun }
_∘GM_ : {G₁ G₂ G₃ : Graph o ℓ e} (m₁ : GraphMorphism G₂ G₃) (m₂ : GraphMorphism G₁ G₂) → GraphMorphism G₁ G₃
m₁ ∘GM m₂ = record
{ M₀ = M₀ m₁ ⊚ M₀ m₂
; M₁ = M₁ m₁ ⊚ M₁ m₂
; M-resp-≈ = M-resp-≈ m₁ ⊚ M-resp-≈ m₂
}
where open GraphMorphism
module Trsp (G : Graph o ℓ e) where
open Graph G
-- Two shorthands that will be useful for the definition of morphism
-- equality: transport the domain or codomain of an edge along an
-- equality.
infixr 9 _◂_
infixl 9 _▸_
_◂_ : ∀ {A B C} → A ≡ B → B ⇒ C → A ⇒ C
p ◂ f = ≡.subst (_⇒ _) (≡.sym p) f
_▸_ : ∀ {A B C} → A ⇒ B → B ≡ C → A ⇒ C
f ▸ p = ≡.subst (_ ⇒_) p f
-- Some simple properties of transports
◂-▸-comm : ∀ {A B C D} (p : A ≡ B) (f : B ⇒ C) (q : C ≡ D) →
p ◂ (f ▸ q) ≡ (p ◂ f) ▸ q
◂-▸-comm ≡.refl f ≡.refl = ≡.refl
◂-trans : ∀ {A B C D} (p : A ≡ B) (q : B ≡ C) (f : C ⇒ D) →
p ◂ q ◂ f ≡ (≡.trans p q) ◂ f
◂-trans ≡.refl ≡.refl f = ≡.refl
▸-trans : ∀ {A B C D} (f : A ⇒ B) (p : B ≡ C) (q : C ≡ D) →
f ▸ p ▸ q ≡ f ▸ ≡.trans p q
▸-trans f ≡.refl ≡.refl = ≡.refl
◂-resp-≈ : ∀ {A B C} (p : A ≡ B) {f g : B ⇒ C} → f ≈ g → p ◂ f ≈ p ◂ g
◂-resp-≈ ≡.refl f≈g = f≈g
▸-resp-≈ : ∀ {A B C} {f g : A ⇒ B} → f ≈ g → (p : B ≡ C) → f ▸ p ≈ g ▸ p
▸-resp-≈ f≈g ≡.refl = f≈g
module TrspGM {G : Graph o ℓ e} {H : Graph o′ ℓ′ e′}
(m : GraphMorphism G H) where
module G = Graph G
module H = Graph H
open GraphMorphism m
open Trsp G
open Trsp H using () renaming (_◂_ to _◃_; _▸_ to _▹_)
M-resp-▸ : ∀ {A B C} (f : A G.⇒ B) (p : B ≡ C) →
M₁ (f ▸ p) ≡ M₁ f ▹ ≡.cong M₀ p
M-resp-▸ f ≡.refl = ≡.refl
M-resp-◂ : ∀ {A B C} (p : A ≡ B) (f : B G.⇒ C) →
M₁ (p ◂ f) ≡ ≡.cong M₀ p ◃ M₁ f
M-resp-◂ ≡.refl f = ≡.refl
record GraphMorphism≈ {G : Graph o ℓ e} {G′ : Graph o′ ℓ′ e′}
(M M′ : GraphMorphism G G′) : Set (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′) where
private
module G = Graph G
module G′ = Graph G′
module M = GraphMorphism M
module M′ = GraphMorphism M′
open Trsp G′
-- Pick a presentation of equivalence for graph morphisms that works
-- well with functor equality.
field
M₀≡ : ∀ {X} → M.M₀ X ≡ M′.M₀ X
M₁≡ : ∀ {A B} {f : A G.⇒ B} → M.M₁ f ▸ M₀≡ G′.≈ M₀≡ ◂ M′.M₁ f
Graphs : ∀ o ℓ e → Category (suc (o ⊔ ℓ ⊔ e)) (o ⊔ ℓ ⊔ e) (o ⊔ ℓ ⊔ e)
Graphs o ℓ e = record
{ Obj = Graph o ℓ e
; _⇒_ = GraphMorphism
; _≈_ = GraphMorphism≈
; id = idGHom
; _∘_ = _∘GM_
; assoc = λ {_ _ _ G} → record { M₀≡ = ≡.refl ; M₁≡ = Equiv.refl G }
; sym-assoc = λ {_ _ _ G} → record { M₀≡ = ≡.refl ; M₁≡ = Equiv.refl G }
; identityˡ = λ {_ G} → record { M₀≡ = ≡.refl ; M₁≡ = Equiv.refl G }
; identityʳ = λ {_ G} → record { M₀≡ = ≡.refl ; M₁≡ = Equiv.refl G }
; identity² = λ {G} → record { M₀≡ = ≡.refl ; M₁≡ = Equiv.refl G }
; equiv = λ {_ G} → record
{ refl = record { M₀≡ = ≡.refl ; M₁≡ = Equiv.refl G }
; sym = λ {i j} eq → record
{ M₀≡ = ≡.sym (M₀≡ eq)
; M₁≡ = λ {_ _ f} →
let open EdgeReasoning G
open Trsp G
in begin
M₁ j f ▸ ≡.sym (M₀≡ eq)
≡˘⟨ ≡.cong (_◂ (M₁ j f ▸ _)) (≡.trans-symˡ (M₀≡ eq)) ⟩
≡.trans (≡.sym $ M₀≡ eq) (M₀≡ eq) ◂ (M₁ j f ▸ ≡.sym (M₀≡ eq))
≡˘⟨ ◂-trans (≡.sym $ M₀≡ eq) (M₀≡ eq) _ ⟩
≡.sym (M₀≡ eq) ◂ M₀≡ eq ◂ (M₁ j f ▸ ≡.sym (M₀≡ eq))
≡⟨ ≡.cong (≡.sym (M₀≡ eq) ◂_)
(◂-▸-comm (M₀≡ eq) (M₁ j f) (≡.sym $ M₀≡ eq)) ⟩
≡.sym (M₀≡ eq) ◂ ((M₀≡ eq ◂ M₁ j f) ▸ ≡.sym (M₀≡ eq))
≈˘⟨ ◂-resp-≈ (≡.sym (M₀≡ eq)) (▸-resp-≈ (M₁≡ eq) (≡.sym (M₀≡ eq))) ⟩
≡.sym (M₀≡ eq) ◂ (M₁ i f ▸ M₀≡ eq ▸ ≡.sym (M₀≡ eq))
≡⟨ ≡.cong (≡.sym (M₀≡ eq) ◂_)
(▸-trans (M₁ i f) (M₀≡ eq) (≡.sym (M₀≡ eq))) ⟩
≡.sym (M₀≡ eq) ◂ (M₁ i f ▸ ≡.trans (M₀≡ eq) (≡.sym (M₀≡ eq)))
≡⟨ ≡.cong (λ p → ≡.sym (M₀≡ eq) ◂ (M₁ i f ▸ p)) (≡.trans-symʳ (M₀≡ eq)) ⟩
≡.sym (M₀≡ eq) ◂ M₁ i f
∎
}
; trans = λ {i j k} eq eq′ → record
{ M₀≡ = ≡.trans (M₀≡ eq) (M₀≡ eq′)
; M₁≡ = λ {_ _ f} →
let open EdgeReasoning G
open Trsp G
in begin
M₁ i f ▸ ≡.trans (M₀≡ eq) (M₀≡ eq′)
≡˘⟨ ▸-trans (M₁ i f) (M₀≡ eq) (M₀≡ eq′) ⟩
(M₁ i f ▸ M₀≡ eq) ▸ M₀≡ eq′
≈⟨ ▸-resp-≈ (M₁≡ eq) (M₀≡ eq′) ⟩
(M₀≡ eq ◂ M₁ j f) ▸ M₀≡ eq′
≡˘⟨ ◂-▸-comm (M₀≡ eq) (M₁ j f) (M₀≡ eq′) ⟩
M₀≡ eq ◂ (M₁ j f ▸ M₀≡ eq′)
≈⟨ ◂-resp-≈ (M₀≡ eq) (M₁≡ eq′) ⟩
M₀≡ eq ◂ (M₀≡ eq′ ◂ M₁ k f)
≡⟨ ◂-trans (M₀≡ eq) (M₀≡ eq′) (M₁ k f) ⟩
≡.trans (M₀≡ eq) (M₀≡ eq′) ◂ M₁ k f
∎
}
}
; ∘-resp-≈ = λ {_ G H} {f g h i} eq eq′ → record
{ M₀≡ = ≡.trans (≡.cong (M₀ f) (M₀≡ eq′)) (M₀≡ eq)
; M₁≡ = λ {_ _ j} →
let open EdgeReasoning H
open Trsp H
open Trsp G using () renaming (_▸_ to _▹_; _◂_ to _◃_)
open TrspGM
in begin
M₁ (f ∘GM h) j ▸ ≡.trans (≡.cong (M₀ f) (M₀≡ eq′)) (M₀≡ eq)
≡˘⟨ ▸-trans (M₁ f (M₁ h j)) (≡.cong (M₀ f) (M₀≡ eq′)) (M₀≡ eq) ⟩
M₁ f (M₁ h j) ▸ ≡.cong (M₀ f) (M₀≡ eq′) ▸ M₀≡ eq
≡˘⟨ ≡.cong (_▸ M₀≡ eq) (M-resp-▸ f (M₁ h j) (M₀≡ eq′)) ⟩
M₁ f (M₁ h j ▹ M₀≡ eq′) ▸ M₀≡ eq
≈⟨ M₁≡ eq ⟩
M₀≡ eq ◂ M₁ g (M₁ h j ▹ M₀≡ eq′)
≈⟨ ◂-resp-≈ (M₀≡ eq) (M-resp-≈ g (M₁≡ eq′)) ⟩
M₀≡ eq ◂ M₁ g (M₀≡ eq′ ◃ M₁ i j)
≡⟨ ≡.cong (M₀≡ eq ◂_) (M-resp-◂ g (M₀≡ eq′) (M₁ i j)) ⟩
M₀≡ eq ◂ ≡.cong (M₀ g) (M₀≡ eq′) ◂ M₁ g (M₁ i j)
≡⟨ ◂-trans (M₀≡ eq) (≡.cong (M₀ g) (M₀≡ eq′)) (M₁ g (M₁ i j)) ⟩
≡.trans (M₀≡ eq) (≡.cong (M₀ g) (M₀≡ eq′)) ◂ M₁ g (M₁ i j)
≡˘⟨ ≡.cong (_◂ M₁ g (M₁ i j)) (≡.naturality (λ _ → M₀≡ eq)) ⟩
≡.trans (≡.cong (M₀ f) (M₀≡ eq′)) (M₀≡ eq) ◂ M₁ g (M₁ i j)
∎
}
}
where
open Graph
open GraphMorphism
open GraphMorphism≈
open _≡F_
-- Put the rest of the Graph stuff here too:
Underlying₀ : Category o ℓ e → Graph o ℓ e
Underlying₀ C = record { Obj = C.Obj ; _⇒_ = C._⇒_ ; _≈_ = C._≈_ ; equiv = C.equiv }
where module C = Category C
Underlying₁ : {C : Category o ℓ e} {D : Category o′ ℓ′ e′} → Functor C D → GraphMorphism (Underlying₀ C) (Underlying₀ D)
Underlying₁ F = record { M₀ = F.F₀ ; M₁ = F.F₁ ; M-resp-≈ = F.F-resp-≈ }
where module F = Functor F
Underlying : Functor (Cats o ℓ e) (Graphs o ℓ e)
Underlying = record
{ F₀ = Underlying₀
; F₁ = Underlying₁
; identity = λ {A} → record { M₀≡ = ≡.refl ; M₁≡ = Category.Equiv.refl A }
; homomorphism = λ where {Z = Z} → record { M₀≡ = ≡.refl ; M₁≡ = Category.Equiv.refl Z }
; F-resp-≈ = λ {A} {B} {F} {G} F≈G → record
{ M₀≡ = λ {X} → eq₀ F≈G X
; M₁≡ = λ {x} {y} {f} →
let open Category B
open HId B
open Trsp (Underlying₀ B)
open Functor
open Graph.EdgeReasoning (Underlying₀ B)
in begin
F₁ F f ▸ eq₀ F≈G y ≈⟨ hid-subst-cod (F₁ F f) (eq₀ F≈G y) ⟩
hid (eq₀ F≈G y) ∘ F₁ F f ≈⟨ eq₁ F≈G f ⟩
F₁ G f ∘ hid (eq₀ F≈G x) ≈˘⟨ hid-subst-dom (eq₀ F≈G x) (F₁ G f) ⟩
eq₀ F≈G x ◂ F₁ G f ∎
}
}
where
open NaturalTransformation
open NaturalIsomorphism
-- Transports on paths
module TrspStar (G : Graph o ℓ e) where
open Graph G
open Trsp (Underlying₀ (Free G)) public using () renaming
( _◂_ to _◂*_
; _▸_ to _▸*_
)
open Trsp G
-- Lemmas relating transports to path operations.
◂*-▸*-ε : ∀ {A B : Obj} (p : A ≡ B) → ε ▸* p ≡ p ◂* ε
◂*-▸*-ε ≡.refl = ≡.refl
◂*-◅ : ∀ {A B C D : Obj} (p : A ≡ B) (f : B ⇒ C) (fs : Star _⇒_ C D) →
p ◂* (f ◅ fs) ≡ (p ◂ f) ◅ fs
◂*-◅ ≡.refl f fs = ≡.refl
◅-▸* : ∀ {A B C D : Obj} (f : A ⇒ B) (fs : Star _⇒_ B C) (p : C ≡ D) →
(f ◅ fs) ▸* p ≡ f ◅ (fs ▸* p)
◅-▸* f fs ≡.refl = ≡.refl
◅-◂*-▸ : ∀ {A B C D : Obj} (f : A ⇒ B) (p : B ≡ C) (fs : Star _⇒_ C D) →
_≡_ {_} {Star _⇒_ A D} (f ◅ (p ◂* fs)) ((f ▸ p) ◅ fs)
◅-◂*-▸ f ≡.refl fs = ≡.refl
-- define these ahead of time
module _ {G₁ G₂ : Graph o ℓ e} (G⇒ : GraphMorphism G₁ G₂) where
open Graph G₁ renaming (_⇒_ to _⇒₁_; Obj to Obj₁)
open Graph G₂ renaming (_⇒_ to _⇒₂_; Obj to Obj₂; module Equiv to Equiv₂)
open GraphMorphism G⇒
mapGraph : {A B : Obj₁} → Star _⇒₁_ A B → Star _⇒₂_ (M₀ A) (M₀ B)
mapGraph ε = ε
mapGraph (x ◅ y) = M₁ x ◅ mapGraph y
map-hom : {X Y Z : Graph.Obj G₁} (f : Star _⇒₁_ X Y) {g : Star _⇒₁_ Y Z} →
[ G₂ ] mapGraph (f ◅◅ g) ≈* (mapGraph f ◅◅ mapGraph g)
map-hom ε {g} = refl G₂
map-hom (x ◅ f) {g} = Equiv₂.refl ◅ map-hom f
map-resp : {A B : Obj₁} (f : Star _⇒₁_ A B) {g : Star _⇒₁_ A B} →
[ G₁ ] f ≈* g → [ G₂ ] mapGraph f ≈* mapGraph g
map-resp ε ε = ε
map-resp (x ◅ f) (f≈* ◅ eq) = M-resp-≈ f≈* ◅ map-resp f eq
-- don't want a single global GraphMorphism
module _ {G : Graph o ℓ e} where
open Graph G
map-id : {A B : Obj} (f : Star _⇒_ A B) → [ G ] mapGraph (idGHom {G = G}) f ≈* f
map-id ε = ε
map-id (fs ◅ f) = Equiv.refl ◅ map-id f
module _ {X Y Z : Graph o ℓ e} {G₁ : GraphMorphism X Y} {G₂ : GraphMorphism Y Z} where
open Graph X
map-∘ : {A B : Obj} (f : Star _⇒_ A B) → [ Z ] (mapGraph (G₂ ∘GM G₁) f) ≈* mapGraph G₂ (mapGraph G₁ f)
map-∘ ε = ε
map-∘ (fs ◅ f) = Graph.Equiv.refl Z ◅ map-∘ f
module _ {G H : Graph o ℓ e} {f g : GraphMorphism G H}
(f≈g : GraphMorphism≈ f g) where
open Graph G
open GraphMorphism
open GraphMorphism≈ f≈g
open TrspStar H
open Trsp H
map-M₁≡ : {A B : Obj} (hs : Star _⇒_ A B) →
[ H ] mapGraph f hs ▸* M₀≡ ≈* M₀≡ ◂* mapGraph g hs
map-M₁≡ ε = ≡⇒≈* H (◂*-▸*-ε M₀≡)
map-M₁≡ (hs ◅ h) = begin
(M₁ f hs ◅ mapGraph f h) ▸* M₀≡ ≡⟨ ◅-▸* (M₁ f hs) _ M₀≡ ⟩
M₁ f hs ◅ (mapGraph f h ▸* M₀≡) ≈⟨ Graph.Equiv.refl H ◅ map-M₁≡ h ⟩
M₁ f hs ◅ (M₀≡ ◂* mapGraph g h) ≡⟨ ◅-◂*-▸ (M₁ f hs) M₀≡ _ ⟩
(M₁ f hs ▸ M₀≡) ◅ mapGraph g h ≈⟨ M₁≡ ◅ (refl H) ⟩
(M₀≡ ◂ M₁ g hs) ◅ mapGraph g h ≡˘⟨ ◂*-◅ M₀≡ (M₁ g hs) _ ⟩
M₀≡ ◂* (M₁ g hs ◅ mapGraph g h) ∎
where open PathEqualityReasoning H
module _ (C : Category o ℓ e) where
open Category C
open HomReasoning
-- A helper that should probably go into Categories.Morphism.Reasoning...
toSquare : ∀ {A B} {f g : A ⇒ B} → f ≈ g → CommutativeSquare f id id g
toSquare {_} {_} {f} {g} f≈g = begin
id ∘ f ≈⟨ identityˡ ⟩
f ≈⟨ f≈g ⟩
g ≈˘⟨ identityʳ ⟩
g ∘ id ∎
CatF : Functor (Graphs o ℓ e) (Cats o (o ⊔ ℓ) (o ⊔ ℓ ⊔ e))
CatF = record
{ F₀ = Free
; F₁ = λ {G₁} {G₂} G⇒ → record
{ F₀ = M₀ G⇒
; F₁ = mapGraph G⇒
; identity = refl G₂
; homomorphism = λ {_} {_} {_} {f} → map-hom G⇒ f
; F-resp-≈ = λ { {f = f} → map-resp G⇒ f}
}
; identity = λ {G} → record
{ eq₀ = λ _ → ≡.refl
; eq₁ = λ f → toSquare (Free G) (map-id f)
}
; homomorphism = λ {_} {_} {G} → record
{ eq₀ = λ _ → ≡.refl
; eq₁ = λ h → toSquare (Free G) (map-∘ h)
}
; F-resp-≈ = λ {_} {G} {f} {g} f≈g → record
{ eq₀ = λ _ → M₀≡ f≈g
; eq₁ = λ h →
let open Category (Free G)
open HId (Free G)
open TrspStar G
open HomReasoning
in begin
mapGraph f h ◅◅ (hid $ M₀≡ f≈g)
≈˘⟨ hid-subst-cod (mapGraph f h) (M₀≡ f≈g) ⟩
mapGraph f h ▸* M₀≡ f≈g
≈⟨ map-M₁≡ f≈g h ⟩
M₀≡ f≈g ◂* mapGraph g h
≈⟨ hid-subst-dom (M₀≡ f≈g) (mapGraph g h) ⟩
(hid $ M₀≡ f≈g) ◅◅ mapGraph g h
∎
}
}
where
open GraphMorphism
open GraphMorphism≈
-- Because of the Level changes in CatF, sizes must all be same:
CatF-is-Free : (o : Level) → Adjoint (CatF {o} {o} {o}) (Underlying)
CatF-is-Free o = record
{ unit = ntHelper record
{ η = GM
; commute = λ {X} {Y} f → record { M₀≡ = ≡.refl ; M₁≡ = Graph.Equiv.refl Y ◅ ε }
}
; counit = ntHelper record
{ η = λ X → record
{ F₀ = idFun
; F₁ = unwind X
; identity = Category.Equiv.refl X
; homomorphism = λ { {f = f} {g} → unwind-◅◅ X {f = f} {g} }
; F-resp-≈ = unwind-resp-≈ X
}
; commute = λ {_} {Y} F → record
{ eq₀ = λ _ → ≡.refl
; eq₁ = λ f → toSquare Y (comm F f)
}
}
; zig = λ {G} → record
{ eq₀ = λ _ → ≡.refl
; eq₁ = λ f → toSquare (Free G) (zig′ G f)
}
; zag = λ {B} → record { M₀≡ = ≡.refl ; M₁≡ = Category.identityˡ B }
}
where
GM : (X : Graph o o o) → GraphMorphism X (Underlying₀ (Free X))
GM _ = record { M₀ = idFun ; M₁ = return ; M-resp-≈ = λ f≈g → f≈g ◅ ε }
module _ (X : Category o o o) where
open Category X
open HomReasoning
unwind : {A B : Obj} → Star _⇒_ A B → A ⇒ B
unwind = fold _⇒_ (flip _∘_) id
unwind-◅◅ : {A B C : Obj} {f : Star _⇒_ A B} {g : Star _⇒_ B C} →
unwind (f ◅◅ g) ≈ (unwind g) ∘ (unwind f)
unwind-◅◅ {f = ε} {g} = Equiv.sym identityʳ
unwind-◅◅ {f = x ◅ f} {g} = ∘-resp-≈ˡ (unwind-◅◅ {f = f} {g}) ○ assoc
unwind-resp-≈ : {A B : Obj} {f g : Star _⇒_ A B} → [ Underlying₀ X ] f ≈* g → unwind f ≈ unwind g
unwind-resp-≈ ε = Equiv.refl
unwind-resp-≈ (x ◅ eq) = ∘-resp-≈ (unwind-resp-≈ eq) x
zig′ : (X : Graph o o o) → {A B : Graph.Obj X} → (f : Star (Graph._⇒_ X) A B) →
let Y = Free X in [ X ] (unwind Y) (mapGraph (GM X) f) ≈* f
zig′ A ε = ε
zig′ A (fs ◅ f) = Graph.Equiv.refl A ◅ zig′ A f
module _ {X Y : Category o o o} (F : Functor X Y) where
open Category X renaming (Obj to Obj₁; _⇒_ to _⇒₁_)
open Category Y renaming (_≈_ to _≈₂_; module Equiv to EY)
open Category.HomReasoning Y
open Functor F
comm : {A B : Obj₁} (f : Star _⇒₁_ A B) → unwind Y (mapGraph (Underlying₁ F) f) ≈₂ F₁ (unwind X f)
comm ε = EY.sym identity
comm (x ◅ f) = EY.sym (homomorphism ○ Category.∘-resp-≈ˡ Y (EY.sym (comm f)))
| 36.592661
| 120
| 0.511959
|
0db9815b03eaa345c56133957f13c28b77c61950
| 3,194
|
agda
|
Agda
|
agda-stdlib/src/Data/Fin/Substitution/Example.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | 5
|
2020-10-07T12:07:53.000Z
|
2020-10-10T21:41:32.000Z
|
agda-stdlib/src/Data/Fin/Substitution/Example.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | null | null | null |
agda-stdlib/src/Data/Fin/Substitution/Example.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | 1
|
2021-11-04T06:54:45.000Z
|
2021-11-04T06:54:45.000Z
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- An example of how Data.Fin.Substitution can be used: a definition
-- of substitution for the untyped λ-calculus, along with some lemmas
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Fin.Substitution.Example where
open import Data.Fin.Substitution
open import Data.Fin.Substitution.Lemmas
open import Data.Nat.Base
open import Data.Fin.Base using (Fin)
open import Data.Vec.Base
open import Relation.Binary.PropositionalEquality as PropEq
using (_≡_; refl; sym; cong; cong₂)
open PropEq.≡-Reasoning
open import Relation.Binary.Construct.Closure.ReflexiveTransitive
using (Star; ε; _◅_)
-- A representation of the untyped λ-calculus. Uses de Bruijn indices.
infixl 9 _·_
data Tm (n : ℕ) : Set where
var : (x : Fin n) → Tm n
ƛ : (t : Tm (suc n)) → Tm n
_·_ : (t₁ t₂ : Tm n) → Tm n
-- Code for applying substitutions.
module TmApp {ℓ} {T : ℕ → Set ℓ} (l : Lift T Tm) where
open Lift l hiding (var)
-- Applies a substitution to a term.
infix 8 _/_
_/_ : ∀ {m n} → Tm m → Sub T m n → Tm n
var x / ρ = lift (lookup ρ x)
ƛ t / ρ = ƛ (t / ρ ↑)
t₁ · t₂ / ρ = (t₁ / ρ) · (t₂ / ρ)
open Application (record { _/_ = _/_ }) using (_/✶_)
-- Some lemmas about _/_.
ƛ-/✶-↑✶ : ∀ k {m n t} (ρs : Subs T m n) →
ƛ t /✶ ρs ↑✶ k ≡ ƛ (t /✶ ρs ↑✶ suc k)
ƛ-/✶-↑✶ k ε = refl
ƛ-/✶-↑✶ k (ρ ◅ ρs) = cong₂ _/_ (ƛ-/✶-↑✶ k ρs) refl
·-/✶-↑✶ : ∀ k {m n t₁ t₂} (ρs : Subs T m n) →
t₁ · t₂ /✶ ρs ↑✶ k ≡ (t₁ /✶ ρs ↑✶ k) · (t₂ /✶ ρs ↑✶ k)
·-/✶-↑✶ k ε = refl
·-/✶-↑✶ k (ρ ◅ ρs) = cong₂ _/_ (·-/✶-↑✶ k ρs) refl
tmSubst : TermSubst Tm
tmSubst = record { var = var; app = TmApp._/_ }
open TermSubst tmSubst hiding (var)
-- Substitution lemmas.
tmLemmas : TermLemmas Tm
tmLemmas = record
{ termSubst = tmSubst
; app-var = refl
; /✶-↑✶ = Lemma./✶-↑✶
}
where
module Lemma {T₁ T₂} {lift₁ : Lift T₁ Tm} {lift₂ : Lift T₂ Tm} where
open Lifted lift₁ using () renaming (_↑✶_ to _↑✶₁_; _/✶_ to _/✶₁_)
open Lifted lift₂ using () renaming (_↑✶_ to _↑✶₂_; _/✶_ to _/✶₂_)
/✶-↑✶ : ∀ {m n} (ρs₁ : Subs T₁ m n) (ρs₂ : Subs T₂ m n) →
(∀ k x → var x /✶₁ ρs₁ ↑✶₁ k ≡ var x /✶₂ ρs₂ ↑✶₂ k) →
∀ k t → t /✶₁ ρs₁ ↑✶₁ k ≡ t /✶₂ ρs₂ ↑✶₂ k
/✶-↑✶ ρs₁ ρs₂ hyp k (var x) = hyp k x
/✶-↑✶ ρs₁ ρs₂ hyp k (ƛ t) = begin
ƛ t /✶₁ ρs₁ ↑✶₁ k ≡⟨ TmApp.ƛ-/✶-↑✶ _ k ρs₁ ⟩
ƛ (t /✶₁ ρs₁ ↑✶₁ suc k) ≡⟨ cong ƛ (/✶-↑✶ ρs₁ ρs₂ hyp (suc k) t) ⟩
ƛ (t /✶₂ ρs₂ ↑✶₂ suc k) ≡⟨ sym (TmApp.ƛ-/✶-↑✶ _ k ρs₂) ⟩
ƛ t /✶₂ ρs₂ ↑✶₂ k ∎
/✶-↑✶ ρs₁ ρs₂ hyp k (t₁ · t₂) = begin
t₁ · t₂ /✶₁ ρs₁ ↑✶₁ k ≡⟨ TmApp.·-/✶-↑✶ _ k ρs₁ ⟩
(t₁ /✶₁ ρs₁ ↑✶₁ k) · (t₂ /✶₁ ρs₁ ↑✶₁ k) ≡⟨ cong₂ _·_ (/✶-↑✶ ρs₁ ρs₂ hyp k t₁)
(/✶-↑✶ ρs₁ ρs₂ hyp k t₂) ⟩
(t₁ /✶₂ ρs₂ ↑✶₂ k) · (t₂ /✶₂ ρs₂ ↑✶₂ k) ≡⟨ sym (TmApp.·-/✶-↑✶ _ k ρs₂) ⟩
t₁ · t₂ /✶₂ ρs₂ ↑✶₂ k ∎
open TermLemmas tmLemmas public hiding (var)
| 33.270833
| 86
| 0.488103
|
8be305ca0b36255f7e57d9ad7a689688614b00af
| 201
|
agda
|
Agda
|
test/Succeed/Issue1337.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Succeed/Issue1337.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Succeed/Issue1337.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
-- Andreas, 2014-11-01, reported by Andrea Vezzosi
-- Non-printable characters in line comments
-- Soft hyphen in comment creates lexical error:
-- (SOFT HYPHEN \- 0xAD)
-- Or parse error:
-- A
| 20.1
| 50
| 0.691542
|
4e83f102543c445b0bbc437a1ee4cf429a955af1
| 836
|
agda
|
Agda
|
test/epic/tests/Nat.agda
|
pthariensflame/agda
|
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
|
[
"BSD-3-Clause"
] | null | null | null |
test/epic/tests/Nat.agda
|
pthariensflame/agda
|
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
|
[
"BSD-3-Clause"
] | null | null | null |
test/epic/tests/Nat.agda
|
pthariensflame/agda
|
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
|
[
"BSD-3-Clause"
] | null | null | null |
-- Moved from the successfull test-suite. See Issue 1481.
module tests.Nat where
data Nat : Set where
Z : Nat
S : Nat → Nat
{-# BUILTIN NATURAL Nat #-}
_+_ : Nat → Nat → Nat
Z + m = m
S n + m = S (n + m)
{-# BUILTIN NATPLUS _+_ #-}
_*_ : Nat → Nat → Nat
Z * m = Z
S n * m = m + (n * m)
{-# BUILTIN NATTIMES _*_ #-}
data Unit : Set where
unit : Unit
postulate
IO : Set → Set
String : Set
natToString : Nat → String
putStr : String → IO Unit
printNat : Nat → IO Unit
printNat n = putStr (natToString n)
{-# COMPILED_TYPE IO IO #-}
{-# COMPILED_EPIC natToString (n : Any) -> String = bigToStr(n) #-}
{-# COMPILED_EPIC putStr (a : String, u : Unit) ->
Unit = foreign Int "wputStr" (a : String); primUnit #-}
main : IO Unit
main = printNat (7 * 191)
-- should print 1337
| 18.173913
| 73
| 0.572967
|
0dff71551a8f703241ea80b3564e09232bf02802
| 6,564
|
agda
|
Agda
|
benchmark/monad/Monad.agda
|
asr/agda-kanso
|
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
|
[
"MIT"
] | 1
|
2018-10-10T17:08:44.000Z
|
2018-10-10T17:08:44.000Z
|
benchmark/monad/Monad.agda
|
np/agda-git-experiment
|
20596e9dd9867166a64470dd24ea68925ff380ce
|
[
"MIT"
] | null | null | null |
benchmark/monad/Monad.agda
|
np/agda-git-experiment
|
20596e9dd9867166a64470dd24ea68925ff380ce
|
[
"MIT"
] | 1
|
2022-03-12T11:35:18.000Z
|
2022-03-12T11:35:18.000Z
|
------------------------------------------------------------------------
-- Parser monad
------------------------------------------------------------------------
open import Relation.Binary
open import Relation.Binary.OrderMorphism
open import Relation.Binary.PropositionalEquality
import Relation.Binary.Props.StrictTotalOrder as STOProps
open import Data.Product
open import Level
module Monad
-- Input string positions.
{Position : Set} {_<P_ : Rel Position zero}
(posOrdered : IsStrictTotalOrder _≡_ _<P_)
-- Input strings.
(Input : Position -> Set)
-- In order to be able to store results in a memo table (and avoid
-- having to lift the table code to Set1) the result types have to
-- come from the following universe:
{Result : Set} (⟦_⟧ : Result -> Set)
-- Memoisation keys. These keys must uniquely identify the
-- computation that they are associated with, when paired up with
-- the current input string position.
{Key : let PosPoset = STOProps.poset
(record { Carrier = _ ; _≈_ = _; _<_ = _
; isStrictTotalOrder = posOrdered })
MonoFun = PosPoset ⇒-Poset PosPoset in
MonoFun -> Result -> Set}
{_≈_ _<_ : Rel (∃₂ Key) zero}
(keyOrdered : IsStrictTotalOrder _≈_ _<_)
-- Furthermore the underlying equality needs to be strong enough.
(funsEqual : _≈_ =[ proj₁ ]⇒ _≡_)
(resultsEqual : _≈_ =[ (\rfk -> proj₁ (proj₂ rfk)) ]⇒ _≡_)
where
open _⇒-Poset_
open STOProps (record { Carrier = _ ; _≈_ = _; _<_ = _
; isStrictTotalOrder = posOrdered })
import IndexedMap as Map -- renaming (Map to MemoTable)
open import Category.Monad
open import Category.Monad.State
import Data.List as List; open List using (List)
open import Data.Unit hiding (poset; _≤_)
open import Function
open import Data.Maybe hiding (Eq)
open import Relation.Binary.Product.StrictLex
open import Relation.Binary.Product.Pointwise
import Relation.Binary.On as On
------------------------------------------------------------------------
-- Monotone functions
MonoFun : Set
MonoFun = poset ⇒-Poset poset
------------------------------------------------------------------------
-- Memo tables
-- Indices and keys used by the memo table.
Index : Set
Index = Position × MonoFun × Result
data MemoTableKey : Index -> Set where
key : forall {f r} (key : Key f r) pos -> MemoTableKey (pos , f , r)
-- Input strings of a certain maximum length.
Input≤ : Position -> Set
Input≤ pos = ∃ \pos′ -> pos′ ≤ pos × Input pos′
-- Memo table values.
Value : Index -> Set
Value (pos , f , r) = List (⟦ r ⟧ × Input≤ (fun f pos))
-- Shuffles the elements to simplify defining equality and order
-- relations for the keys.
shuffle : ∃ MemoTableKey -> Position × ∃₂ Key
shuffle ((pos , f , r) , key k .pos) = (pos , f , r , k)
-- Equality and order.
Eq : Rel (∃ MemoTableKey) _
Eq = _≡_ ×-Rel _≈_ on shuffle
Lt : Rel (∃ MemoTableKey) _
Lt = ×-Lex _≡_ _<P_ _<_ on shuffle
isOrdered : IsStrictTotalOrder Eq Lt
isOrdered = On.isStrictTotalOrder shuffle
(posOrdered ×-isStrictTotalOrder keyOrdered)
indicesEqual′ : Eq =[ proj₁ ]⇒ _≡_
indicesEqual′ {((_ , _ , _) , key _ ._)}
{((_ , _ , _) , key _ ._)} (eq₁ , eq₂) =
cong₂ _,_ eq₁ (cong₂ _,_ (funsEqual eq₂) (resultsEqual eq₂))
open Map isOrdered (\{k₁} {k₂} -> indicesEqual′ {k₁} {k₂}) Value
{-
------------------------------------------------------------------------
-- Parser monad
-- The parser monad is built upon a list monad, for backtracking, and
-- two state monads. One of the state monads stores a memo table, and
-- is unaffected by backtracking. The other state monad, which /is/
-- affected by backtracking, stores the remaining input string.
-- The memo table state monad.
module MemoState = RawMonadState (StateMonadState MemoTable)
-- The list monad.
module List = RawMonadPlus List.ListMonadPlus
-- The inner monad (memo table plus list).
module IM where
Inner : Set -> Set
Inner R = State MemoTable (List R)
InnerMonadPlus : RawMonadPlus Inner
InnerMonadPlus = record
{ monadZero = record
{ monad = record
{ return = \x -> return (List.return x)
; _>>=_ = \m f -> List.concat <$> (List.mapM monad f =<< m)
}
; ∅ = return List.∅
}
; _∣_ = \m₁ m₂ -> List._∣_ <$> m₁ ⊛ m₂
}
where
open MemoState
InnerMonadState : RawMonadState MemoTable Inner
InnerMonadState = record
{ monad = RawMonadPlus.monad InnerMonadPlus
; get = List.return <$> get
; put = \s -> List.return <$> put s
}
where open MemoState
open RawMonadPlus InnerMonadPlus public
open RawMonadState InnerMonadState public
using (get; put; modify)
-- The complete parser monad.
module PM where
P : MonoFun -> Set -> Set
P f A = forall {n} -> Input n -> IM.Inner (A × Input≤ (fun f n))
-- Memoises the computation, assuming that the key is sufficiently
-- unique.
memoise : forall {f r} -> Key f r -> P f ⟦ r ⟧ -> P f ⟦ r ⟧
memoise k p {pos} xs =
let open IM in helper =<< lookup k′ <$> get
where
i = (pos , _)
k′ : MemoTableKey i
k′ = key k pos
helper : Maybe (Value i) -> State MemoTable (Value i)
helper (just ris) = return ris where open MemoState
helper nothing = p xs >>= \ris ->
modify (insert k′ ris) >>
return ris
where open MemoState
-- Other monadic operations.
return : forall {A} -> A -> P idM A
return a = \xs -> IM.return (a , _ , refl , xs)
_>>=_ : forall {A B f g} -> P f A -> (A -> P g B) -> P (g ∘M f) B
_>>=_ {g = g} m₁ m₂ xs =
m₁ xs ⟨ IM._>>=_ ⟩ \ays ->
let a = proj₁ ays
le = proj₁ $ proj₂ $ proj₂ ays
ys = proj₂ $ proj₂ $ proj₂ ays in
fix le ⟨ IM._<$>_ ⟩ m₂ a ys
where
lemma : forall {i j k} -> j ≤ k -> i ≤ fun g j -> i ≤ fun g k
lemma j≤k i≤gj = trans i≤gj (monotone g j≤k)
fix : forall {A i j} -> i ≤ j ->
A × Input≤ (fun g i) ->
A × Input≤ (fun g j)
fix le = map-× id (map-Σ id (map-× (lemma le) id))
∅ : forall {A} -> P idM A
∅ = const IM.∅
_∣_ : forall {A f} -> P f A -> P f A -> P f A
m₁ ∣ m₂ = \xs -> IM._∣_ (m₁ xs) (m₂ xs)
put : forall {n} -> Input n -> P (constM n) ⊤
put xs = \_ -> IM.return (_ , _ , refl , xs)
modify : forall {A f} ->
(forall {n} -> Input n -> A × Input (fun f n)) ->
P f A
modify g xs = IM.return (proj₁ gxs , _ , refl , proj₂ gxs)
where gxs = g xs
-}
| 28.9163
| 72
| 0.573278
|
d16e8a77750c9c89f39b03ea7940dbb574d1cb43
| 1,448
|
agda
|
Agda
|
src/Loop/Bundles.agda
|
Akshobhya1234/agda-NonAssociativeAlgebra
|
443e831e536b756acbd1afd0d6bae7bc0d288048
|
[
"MIT"
] | 2
|
2021-08-15T06:16:13.000Z
|
2021-08-17T09:14:03.000Z
|
src/Loop/Bundles.agda
|
Akshobhya1234/agda-NonAssociativeAlgebra
|
443e831e536b756acbd1afd0d6bae7bc0d288048
|
[
"MIT"
] | 2
|
2021-10-04T05:30:30.000Z
|
2021-10-09T08:24:56.000Z
|
src/Loop/Bundles.agda
|
Akshobhya1234/agda-NonAssociativeAlgebra
|
443e831e536b756acbd1afd0d6bae7bc0d288048
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --without-K --safe #-}
module Loop.Bundles where
open import Algebra.Core
open import Relation.Binary
open import Level
open import Loop.Structures
open import Algebra.Bundles
open import Algebra.Structures
record LeftBolLoop c ℓ : Set (suc (c ⊔ ℓ)) where
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_∙_ : Op₂ Carrier
_\\_ : Op₂ Carrier
_//_ : Op₂ Carrier
ε : Carrier
isLeftBolLoop : IsLeftBolLoop _≈_ _∙_ _\\_ _//_ ε
open IsLeftBolLoop isLeftBolLoop public
loop : Loop _ _
loop = record { isLoop = isLoop }
open Loop loop public
using (quasigroup)
record RightBolLoop c ℓ : Set (suc (c ⊔ ℓ)) where
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_∙_ : Op₂ Carrier
_\\_ : Op₂ Carrier
_//_ : Op₂ Carrier
ε : Carrier
isRightBolLoop : IsRightBolLoop _≈_ _∙_ _\\_ _//_ ε
open IsRightBolLoop isRightBolLoop public
loop : Loop _ _
loop = record { isLoop = isLoop }
open Loop loop public
using (quasigroup)
record MoufangLoop c ℓ : Set (suc (c ⊔ ℓ)) where
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_∙_ : Op₂ Carrier
_\\_ : Op₂ Carrier
_//_ : Op₂ Carrier
ε : Carrier
isMoufangLoop : IsMoufangLoop _≈_ _∙_ _\\_ _//_ ε
open IsMoufangLoop isMoufangLoop public
loop : Loop _ _
loop = record { isLoop = isLoop }
open Loop loop public
using (quasigroup)
| 21.939394
| 56
| 0.624309
|
367511754563ec9c403a496b57ef44096870a8b5
| 3,300
|
agda
|
Agda
|
src/Categories/Category/Monoidal/Instance/StrictCats.agda
|
glittershark/agda-categories
|
2128fab9e8d341364cbf784bb17c547bf73891de
|
[
"MIT"
] | null | null | null |
src/Categories/Category/Monoidal/Instance/StrictCats.agda
|
glittershark/agda-categories
|
2128fab9e8d341364cbf784bb17c547bf73891de
|
[
"MIT"
] | null | null | null |
src/Categories/Category/Monoidal/Instance/StrictCats.agda
|
glittershark/agda-categories
|
2128fab9e8d341364cbf784bb17c547bf73891de
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --without-K --safe #-}
-- The category of Cats is Monoidal
module Categories.Category.Monoidal.Instance.StrictCats where
open import Level
open import Data.Product using (Σ; _×_; _,_; proj₁; proj₂; uncurry)
open import Relation.Binary.PropositionalEquality as ≡
using (_≡_; refl; cong₂; sym; module ≡-Reasoning; subst₂; cong)
open import Function using (_$_)
open import Data.Unit using (⊤; tt)
open import Categories.Category
open import Categories.Functor using (Functor; _∘F_) renaming (id to idF)
open import Categories.Category.Instance.StrictCats
open import Categories.Category.Instance.One using (One)
open import Categories.Category.Monoidal
open import Categories.Functor.Bifunctor
open import Categories.Functor.Construction.Constant
open import Categories.Functor.Equivalence
open import Categories.Category.Product
open import Categories.Category.Product.Properties
import Categories.Category.Cartesian as Cartesian
import Categories.Morphism.HeterogeneousIdentity as HId
import Categories.Morphism.HeterogeneousIdentity.Properties as HIdProps
import Categories.Morphism.Reasoning as MR
open import Categories.Object.Terminal
open import Categories.Utils.Product using (zipWith)
open import Categories.Utils.EqReasoning
-- (Strict) Cats is a (strict) Monoidal Category with Product as Bifunctor
module Product {o ℓ e : Level} where
private
C = Cats o ℓ e
open Cartesian C
open _≡F_
Cats-has-all : BinaryProducts
Cats-has-all = record { product = λ {A} {B} → record
{ A×B = Product A B
; π₁ = πˡ
; π₂ = πʳ
; ⟨_,_⟩ = _※_
; project₁ = record { eq₀ = λ _ → ≡.refl ; eq₁ = λ _ → MR.id-comm-sym A }
; project₂ = record { eq₀ = λ _ → ≡.refl ; eq₁ = λ _ → MR.id-comm-sym B }
; unique = λ {hA} {h} {i} {j} left right →
let unique-eq₀ X = cong₂ _,_ (≡.sym $ eq₀ left X) (≡.sym $ eq₀ right X)
in record
{ eq₀ = unique-eq₀
; eq₁ = λ {a} {b} f →
let module A = Category A
module B = Category B
module C = Category C
module A×B = Category (Product A B)
open A×B.HomReasoning
open HId
open HIdProps
open Functor
leq a = ≡.sym $ eq₀ left a
req a = ≡.sym $ eq₀ right a
in begin
hid (Product A B) (unique-eq₀ b) A×B.∘ F₁ (i ※ j) f
≈˘⟨ A×B.∘-resp-≈ˡ (×-hid A B (leq b) (req b)) ⟩
(hid A (leq b) A.∘ F₁ i f , hid B (req b) B.∘ F₁ j f)
≈⟨ eq₁⁻¹ left f , eq₁⁻¹ right f ⟩
F₁ (πˡ C.∘ h) f A.∘ hid A (leq a) ,
F₁ (πʳ C.∘ h) f B.∘ hid B (req a)
≈⟨ A×B.∘-resp-≈ʳ (×-hid A B (leq a) (req a)) ⟩
(F₁ h f) A×B.∘ (hid (Product A B) (unique-eq₀ a))
∎
}
} }
private
unique-One : {l : Level} (x : Lift l ⊤) → lift tt ≡ x
unique-One (lift tt) = refl
One-⊤ : Terminal C
One-⊤ = record
{ ⊤ = One
; ! = const (lift tt)
; !-unique = λ f → record { eq₀ = λ _ → unique-One _ ; eq₁ = λ _ → lift tt }
}
Cats-is : Cartesian
Cats-is = record { terminal = One-⊤ ; products = Cats-has-all }
private
module Cart = Cartesian.Cartesian Cats-is
Cats-Monoidal : Monoidal C
Cats-Monoidal = Cart.monoidal
| 35.106383
| 80
| 0.607879
|
142abe1c55651a113c9f37d52e2bfa1147ebb0a4
| 175
|
agda
|
Agda
|
agda/PLRTree/Compound.agda
|
bgbianchi/sorting
|
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
|
[
"MIT"
] | 6
|
2015-05-21T12:50:35.000Z
|
2021-08-24T22:11:15.000Z
|
agda/PLRTree/Compound.agda
|
bgbianchi/sorting
|
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
|
[
"MIT"
] | null | null | null |
agda/PLRTree/Compound.agda
|
bgbianchi/sorting
|
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
|
[
"MIT"
] | null | null | null |
module PLRTree.Compound {A : Set} where
open import PLRTree {A}
data Compound : PLRTree → Set where
compound : {t : Tag}{x : A}{l r : PLRTree} → Compound (node t x l r)
| 25
| 70
| 0.651429
|
4e5ca69ac85377ebe74c629cc27caa542b5d5ce6
| 11,142
|
agda
|
Agda
|
Univalence/Obsolete/CauchyProofs.agda
|
JacquesCarette/pi-dual
|
003835484facfde0b770bc2b3d781b42b76184c1
|
[
"BSD-2-Clause"
] | 14
|
2015-08-18T21:40:15.000Z
|
2021-05-05T01:07:57.000Z
|
Univalence/Obsolete/CauchyProofs.agda
|
JacquesCarette/pi-dual
|
003835484facfde0b770bc2b3d781b42b76184c1
|
[
"BSD-2-Clause"
] | 4
|
2018-06-07T16:27:41.000Z
|
2021-10-29T20:41:23.000Z
|
Univalence/Obsolete/CauchyProofs.agda
|
JacquesCarette/pi-dual
|
003835484facfde0b770bc2b3d781b42b76184c1
|
[
"BSD-2-Clause"
] | 3
|
2016-05-29T01:56:33.000Z
|
2019-09-10T09:47:13.000Z
|
{-# OPTIONS --without-K #-}
module CauchyProofs where
-- Proofs about permutations defined in module Cauchy (everything
-- except the multiplicative ones which are defined in CauchyProofsT and
-- CauchyProofsS
open import Relation.Binary.PropositionalEquality
using (_≡_; refl; sym; trans; subst; subst₂; cong; cong₂; setoid;
proof-irrelevance; module ≡-Reasoning)
open import Data.Nat.Properties
using (m≤m+n; n≤m+n; n≤1+n; cancel-*-right-≤; ≰⇒>; ¬i+1+j≤i)
open import Data.Nat.Properties.Simple
using (+-right-identity; +-suc; +-assoc; +-comm;
*-assoc; *-comm; *-right-zero; distribʳ-*-+; +-*-suc)
open import Data.Nat using (ℕ; suc; _+_; _∸_; _*_; _<_; _≮_; _≤_; _≰_;
_≥_; z≤n; s≤s; _≟_; _≤?_; ≤-pred; module ≤-Reasoning)
open import Data.Fin
using (Fin; zero; suc; toℕ; fromℕ; fromℕ≤; _ℕ-_; _≺_; reduce≥;
raise; inject+; inject₁; inject≤; _≻toℕ_)
renaming (_+_ to _F+_)
open import Data.Fin.Properties using (bounded; inject+-lemma; to-from)
open import Data.Vec.Properties
using (lookup∘tabulate; tabulate∘lookup; lookup-allFin; tabulate-∘;
tabulate-allFin; allFin-map; lookup-++-inject+; lookup-++-≥)
open import Data.Vec
using (Vec; tabulate; []; _∷_; tail; lookup; zip; zipWith; splitAt;
_[_]≔_; allFin; toList)
renaming (_++_ to _++V_; map to mapV; concat to concatV)
open import Function using (id; _∘_; _$_; _∋_; flip)
open import Proofs
open import Cauchy
------------------------------------------------------------------------------
-- Proofs about sequential composition
-- sequential composition with id on the right is identity
scomprid : ∀ {n} → (perm : Cauchy n) → scompcauchy perm (idcauchy n) ≡ perm
scomprid {n} perm =
begin (scompcauchy perm (idcauchy n)
≡⟨ refl ⟩
tabulate (λ i → lookup (lookup i perm) (allFin n))
≡⟨ finext (λ i → lookup-allFin (lookup i perm)) ⟩
tabulate (λ i → lookup i perm)
≡⟨ tabulate∘lookup perm ⟩
perm ∎)
where open ≡-Reasoning
-- sequential composition with id on the left is identity
scomplid : ∀ {n} → (perm : Cauchy n) → scompcauchy (idcauchy n) perm ≡ perm
scomplid {n} perm =
trans (finext (λ i → cong (λ x → lookup x perm) (lookup-allFin i)))
(tabulate∘lookup perm)
-- sequential composition is associative
scompassoc : ∀ {n} → (π₁ π₂ π₃ : Cauchy n) →
scompcauchy π₁ (scompcauchy π₂ π₃) ≡ scompcauchy (scompcauchy π₁ π₂) π₃
scompassoc π₁ π₂ π₃ = finext (lookupassoc π₁ π₂ π₃)
------------------------------------------------------------------------------
-- Proofs about additive permutations
lookup-subst2 : ∀ {m m'}
(i : Fin m) (xs : Vec (Fin m) m) (eq : m ≡ m') →
lookup (subst Fin eq i)
(subst Cauchy eq xs) ≡ subst Fin eq (lookup i xs)
lookup-subst2 i xs refl = refl
allFin+ : (m n : ℕ) → allFin (m + n) ≡
mapV (inject+ n) (allFin m) ++V mapV (raise m) (allFin n)
allFin+ m n = trans (tabulate-split {m} {n})
(cong₂ _++V_ (tabulate-allFin {m} (inject+ n)) (tabulate-allFin {n} (raise m)))
-- swap+ is idempotent
--
-- outline of swap+idemp proof
--
-- allFin (m + n) ≡ mapV (inject+ n) (allFin m) ++V mapV (raise m) (allFin n)
-- zero-m : Vec (Fin (m + n)) m ≡ mapV (inject+ n) (allFin m)
-- m-sum : Vec (Fin (m + n)) n ≡ mapV (raise m) (allFin n)
-- allFin (n + m) ≡ mapV (inject+ m) (allFin n) ++V mapV (raise n) (allFin m)
-- zero-n : Vec (Fin (n + m)) n ≡ mapV (inject+ m) (allFin n)
-- n-sum : Vec (Fin (n + m)) m ≡ mapV (raise n) (allFin m)
--
-- first swap re-arranges allFin (n + m) to n-sum ++V zero-n
-- second swap re-arranges allfin (m + n) to m-sum ++V zero-m
--
-- for i = 0, ..., m-1, we have inject+ n i : Fin (m + n)
-- lookup (lookup (inject+ n i) (n-sum ++V zero-n)) (m-sum ++V zero-m) ==>
-- lookup (lookup i n-sum) (m-sum ++V zero-m) ==>
-- lookup (raise n i) (m-sum ++V zero-m) ==>
-- lookup i zero-m ==>
-- inject+ n i
--
-- for i = m, ..., m+n-1, we have raise m i : Fin (m + n)
-- lookup (lookup (raise m i) (n-sum ++V zero-n)) (m-sum ++V zero-m) ==>
-- lookup (lookup i zero-n) (m-sum ++V zero-m) ==>
-- lookup (inject+ m i) (m-sum ++V zero-m) ==>
-- lookup i m-sum ==>
-- raise m i
swap+-left : (m n : ℕ) → ∀ (i : Fin m) →
let q = subst Cauchy (+-comm n m) (swap+cauchy n m) in
lookup (lookup (inject+ n i) (swap+cauchy m n)) q ≡ inject+ n i
swap+-left m n i =
let q = subst Cauchy (+-comm n m) (swap+cauchy n m) in
begin (
lookup (lookup (inject+ n i) (swap+cauchy m n)) q
≡⟨ cong (flip lookup q) ( (lookup-++-inject+ (tabulate {m} (id+ {m} {n} ∘ raise n))
(tabulate {n} (id+ {m} {n} ∘ inject+ m)) i)) ⟩
lookup (lookup i (tabulate (λ x → subst Fin (+-comm n m) (raise n x)))) q
≡⟨ cong (flip lookup q) (lookup∘tabulate (λ x → subst Fin (+-comm n m) (raise n x)) i) ⟩
lookup (subst Fin (+-comm n m) (raise n i)) q
≡⟨ lookup-subst2 (raise n i) (swap+cauchy n m) (+-comm n m) ⟩
subst Fin (+-comm n m) (lookup (raise n i) (swap+cauchy n m))
≡⟨ cong (subst Fin (+-comm n m))
(lookup-++-raise (tabulate {n} (id+ {n} ∘ raise m)) (tabulate {m} (id+ {n} ∘ inject+ n)) i) ⟩
subst Fin (+-comm n m)
(lookup i (tabulate (λ z → subst Fin (+-comm m n) (inject+ n z))))
≡⟨ subst-lookup-tabulate-inject+ i ⟩
inject+ n i ∎)
where open ≡-Reasoning
swap+-right : (m n : ℕ) → (i : Fin n) →
let q = subst Cauchy (+-comm n m) (swap+cauchy n m) in
lookup (lookup (raise m i) (swap+cauchy m n)) q ≡ raise m i
swap+-right m n i =
let q = subst Cauchy (+-comm n m) (swap+cauchy n m) in
begin (
lookup (lookup (raise m i) (swap+cauchy m n)) q
≡⟨ cong (flip lookup q) ( (lookup-++-raise (tabulate {m} (id+ {m} {n} ∘ raise n))
(tabulate {n} (id+ {m} {n} ∘ inject+ m)) i)) ⟩
lookup (lookup i (tabulate (λ x → subst Fin (+-comm n m) (inject+ m x)))) q
≡⟨ cong (flip lookup q) (lookup∘tabulate (λ x → subst Fin (+-comm n m) (inject+ m x)) i) ⟩
lookup (subst Fin (+-comm n m) (inject+ m i)) q
≡⟨ lookup-subst2 (inject+ m i) (swap+cauchy n m) (+-comm n m) ⟩
subst Fin (+-comm n m) (lookup (inject+ m i) (swap+cauchy n m))
≡⟨ cong (subst Fin (+-comm n m))
(lookup-++-inject+ (tabulate {n} (id+ {n} ∘ raise m)) (tabulate {m} (id+ {n} ∘ inject+ n)) i) ⟩
subst Fin (+-comm n m)
(lookup i (tabulate (λ z → subst Fin (+-comm m n) (raise m z))))
≡⟨ subst-lookup-tabulate-raise i ⟩
raise m i ∎)
where open ≡-Reasoning
swap+idemp : (m n : ℕ) →
scompcauchy
(swap+cauchy m n)
(subst Cauchy (+-comm n m) (swap+cauchy n m))
≡
allFin (m + n)
swap+idemp m n =
let q = subst Cauchy (+-comm n m) (swap+cauchy n m) in
begin
(tabulate (λ i → lookup (lookup i (swap+cauchy m n)) q)
≡⟨ tabulate-split {m} {n} ⟩
tabulate {m} (λ i → lookup (lookup (inject+ n i) (swap+cauchy m n)) q)
++V
tabulate {n} (λ i → lookup (lookup (raise m i) (swap+cauchy m n)) q)
≡⟨ cong₂ _++V_ (finext (swap+-left m n))
(finext (swap+-right m n)) ⟩
tabulate {m} (inject+ n) ++V tabulate {n} (raise m)
≡⟨ unSplit {m} {n} id ⟩
allFin (m + n) ∎)
where open ≡-Reasoning
-- Behaviour of parallel additive composition wrt sequential
-- a direct proof is hard, but this is really a statement about vectors
lookup-left : ∀ {m n} → (i : Fin m) → (pm : Cauchy m) → (pn : Cauchy n) →
lookup (inject+ n i) (mapV (inject+ n) pm ++V mapV (raise m) pn)
≡ inject+ n (lookup i pm)
lookup-left {m} {n} i pm pn = look-left i (inject+ n) (raise m) pm pn
-- as is this
lookup-right : ∀ {m n} → (i : Fin n) → (pm : Cauchy m) → (pn : Cauchy n) →
lookup (raise m i) (mapV (inject+ n) pm ++V mapV (raise m) pn)
≡ raise m (lookup i pn)
lookup-right {m} {n} i pm pn = look-right i (inject+ n) (raise m) pm pn
--- find a better name
look-left' : ∀ {m n} → (pm qm : Cauchy m) → (pn qn : Cauchy n) →
(i : Fin m) →
(lookup (lookup (inject+ n i) (pcompcauchy pm pn)) (pcompcauchy qm qn))
≡ inject+ n (lookup (lookup i pm) qm)
look-left' {m} {n} pm qm pn qn i =
let pp = pcompcauchy pm pn in
let qq = pcompcauchy qm qn in
begin (
lookup (lookup (inject+ n i) pp) qq
≡⟨ cong (flip lookup qq) (lookup-++-inject+ (mapV (inject+ n) pm) (mapV (raise m) pn) i) ⟩
lookup (lookup i (mapV (inject+ n) pm)) qq
≡⟨ cong (flip lookup qq) (lookup-map i (inject+ n) pm) ⟩
lookup (inject+ n (lookup i pm)) qq
≡⟨ lookup-left (lookup i pm) qm qn ⟩
inject+ n (lookup (lookup i pm) qm) ∎)
where open ≡-Reasoning
look-right' : ∀ {m n} → (pm qm : Cauchy m) → (pn qn : Cauchy n) →
(i : Fin n) →
(lookup (lookup (raise m i) (pcompcauchy pm pn)) (pcompcauchy qm qn))
≡ raise m (lookup (lookup i pn) qn)
look-right' {m} {n} pm qm pn qn i =
let pp = pcompcauchy pm pn in
let qq = pcompcauchy qm qn in
begin (
lookup (lookup (raise m i) pp) qq
≡⟨ cong (flip lookup qq) (lookup-++-raise (mapV (inject+ n) pm) (mapV (raise m) pn) i) ⟩
lookup (lookup i (mapV (raise m) pn)) qq
≡⟨ cong (flip lookup qq) (lookup-map i (raise m) pn) ⟩
lookup (raise m (lookup i pn)) qq
≡⟨ lookup-right (lookup i pn) qm qn ⟩
raise m (lookup (lookup i pn) qn) ∎)
where open ≡-Reasoning
pcomp-dist : ∀ {m n} → (pm qm : Cauchy m) → (pn qn : Cauchy n) →
scompcauchy (pcompcauchy pm pn) (pcompcauchy qm qn) ≡
pcompcauchy (scompcauchy pm qm) (scompcauchy pn qn)
pcomp-dist {m} {n} pm qm pn qn =
let pp = pcompcauchy pm pn in
let qq = pcompcauchy qm qn in
let look = λ i → lookup (lookup i pp) qq in
begin (scompcauchy pp qq
≡⟨ refl ⟩
tabulate look
≡⟨ tabulate-split {m} {n} ⟩
splitV+ {m} {n} {f = look}
≡⟨ cong₂ _++V_ (finext {m} (look-left' pm qm pn qn))
(finext {n} (look-right' pm qm pn qn)) ⟩
tabulate (λ i → (inject+ n) (lookup (lookup i pm) qm)) ++V
tabulate (λ i → (raise m) (lookup (lookup i pn) qn))
≡⟨ cong₂ _++V_
(tabulate-∘ (inject+ n) (λ i → lookup (lookup i pm) qm))
(tabulate-∘ (raise m) (λ i → lookup (lookup i pn) qn)) ⟩
mapV (inject+ n) (tabulate (λ i → lookup (lookup i pm) qm)) ++V
mapV (raise m) (tabulate (λ i → lookup (lookup i pn) qn))
≡⟨ refl ⟩
pcompcauchy (scompcauchy pm qm) (scompcauchy pn qn) ∎)
where open ≡-Reasoning
pcomp-id : ∀ {m n} → pcompcauchy (idcauchy m) (idcauchy n) ≡ idcauchy (m + n)
pcomp-id {m} {n} =
begin (mapV (inject+ n) (idcauchy m) ++V (mapV (raise m) (idcauchy n))
≡⟨ refl ⟩
mapV (inject+ n) (allFin m) ++V mapV (raise m) (allFin n)
≡⟨ cong₂ _++V_
(sym (tabulate-allFin {m} (inject+ n)))
(sym (tabulate-allFin (raise m))) ⟩
tabulate {m} (inject+ n) ++V tabulate {n} (raise m)
≡⟨ unSplit {m} {n} id ⟩
idcauchy (m + n) ∎)
where open ≡-Reasoning
------------------------------------------------------------------------------
| 42.365019
| 120
| 0.551786
|
292c830abb899876b30072a04e35ddcba3c72600
| 752
|
agda
|
Agda
|
HoTT/Homotopy.agda
|
michaelforney/hott
|
ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508
|
[
"0BSD"
] | null | null | null |
HoTT/Homotopy.agda
|
michaelforney/hott
|
ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508
|
[
"0BSD"
] | null | null | null |
HoTT/Homotopy.agda
|
michaelforney/hott
|
ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508
|
[
"0BSD"
] | null | null | null |
{-# OPTIONS --without-K #-}
open import HoTT.Base
open import HoTT.Identity
module HoTT.Homotopy where
open variables
private variable f g : A → B
-- Lemma 2.4.3
~-natural : (α : f ~ g) {x y : A} (p : x == y) → α x ∙ ap g p == ap f p ∙ α y
~-natural α {x} refl rewrite α x = refl
~-natural-id : (α : f ~ id) {x y : A} (p : x == y) → α x ∙ p == ap f p ∙ α y
~-natural-id α {x} refl rewrite α x = refl
-- Corollary 2.4.4
~-natural-comm : {f : A → A} (α : f ~ id) → α ∘ f ~ ap f ∘ α
~-natural-comm {f = f} α x = cancelᵣ (α (f x) ∙ₗ ap-id (α x) ⁻¹ ∙ ~-natural α (α x))
module ~-Reasoning where
_~⟨_⟩_ : (f : Π A P) {g h : Π A P} → f ~ g → g ~ h → f ~ h
x ~⟨ α ⟩ β = α ∙ₕ β
infixr 2 _~⟨_⟩_
_∎ : (f : Π A P) → f ~ f
_ ∎ = reflₕ
infix 3 _∎
| 25.931034
| 84
| 0.506649
|
a009141f1fdee63453fe067d4d1394dd86a5b39f
| 12,499
|
agda
|
Agda
|
Lecture5.agda
|
glangmead/hott_cmu80818
|
af64d808630f4f1498a75201b6ca4d74d662516b
|
[
"Unlicense"
] | 4
|
2018-05-03T20:32:19.000Z
|
2018-09-04T02:52:25.000Z
|
Lecture5.agda
|
glangmead/hott_cmu80818
|
af64d808630f4f1498a75201b6ca4d74d662516b
|
[
"Unlicense"
] | 3
|
2018-02-22T21:01:16.000Z
|
2018-03-25T14:44:31.000Z
|
Lecture5.agda
|
glangmead/hott_cmu80818
|
af64d808630f4f1498a75201b6ca4d74d662516b
|
[
"Unlicense"
] | 2
|
2018-02-22T19:58:46.000Z
|
2018-06-25T15:05:21.000Z
|
{-# OPTIONS --without-K #-}
module Lecture5 where
open import Lecture4 public
-- Section 5.1 Homotopies
_~_ : {i j : Level} {A : UU i} {B : A → UU j} (f g : (x : A) → B x) → UU (i ⊔ j)
f ~ g = (x : _) → Id (f x) (g x)
htpy-refl : {i j : Level} {A : UU i} {B : A → UU j} (f : (x : A) → B x) → f ~ f
htpy-refl f x = refl
htpy-inv : {i j : Level} {A : UU i} {B : A → UU j} {f g : (x : A) → B x} → (f ~ g) → (g ~ f)
htpy-inv H x = inv (H x)
htpy-concat : {i j : Level} {A : UU i} {B : A → UU j} {f : (x : A) → B x} (g : (x : A) → B x) {h : (x : A) → B x} → (f ~ g) → (g ~ h) → (f ~ h)
htpy-concat g H K x = concat _ (H x) (K x)
htpy-assoc : {i j : Level} {A : UU i} {B : A → UU j} {f g h k : (x : A) → B x} → (H : f ~ g) → (K : g ~ h) → (L : h ~ k) → htpy-concat _ H (htpy-concat _ K L) ~ htpy-concat _ (htpy-concat _ H K) L
htpy-assoc H K L x = assoc (H x) (K x) (L x)
htpy-left-unit : {i j : Level} {A : UU i} {B : A → UU j} {f g : (x : A) → B x} (H : f ~ g) → (htpy-concat _ (htpy-refl f) H) ~ H
htpy-left-unit H x = left-unit (H x)
htpy-right-unit : {i j : Level} {A : UU i} {B : A → UU j} {f g : (x : A) → B x} (H : f ~ g) → (htpy-concat _ H (htpy-refl g)) ~ H
htpy-right-unit H x = right-unit (H x)
htpy-left-inv : {i j : Level} {A : UU i} {B : A → UU j} {f g : (x : A) → B x} (H : f ~ g) → htpy-concat _ (htpy-inv H) H ~ htpy-refl g
htpy-left-inv H x = left-inv (H x)
htpy-right-inv : {i j : Level} {A : UU i} {B : A → UU j} {f g : (x : A) → B x} (H : f ~ g) → htpy-concat _ H (htpy-inv H) ~ htpy-refl f
htpy-right-inv H x = right-inv (H x)
htpy-left-whisk : {i j k : Level} {A : UU i} {B : UU j} {C : UU k} (h : B → C) {f g : A → B} → (f ~ g) → ((h ∘ f) ~ (h ∘ g))
htpy-left-whisk h H x = ap h (H x)
htpy-right-whisk : {i j k : Level} {A : UU i} {B : UU j} {C : UU k} {g h : B → C} (H : g ~ h) (f : A → B) → ((g ∘ f) ~ (h ∘ f))
htpy-right-whisk H f x = H (f x)
-- Section 5.2 Bi-invertible maps
sec : {i j : Level} {A : UU i} {B : UU j} (f : A → B) → UU (i ⊔ j)
sec {_} {_} {A} {B} f = Σ (B → A) (λ g → (f ∘ g) ~ id)
retr : {i j : Level} {A : UU i} {B : UU j} (f : A → B) → UU (i ⊔ j)
retr {_} {_} {A} {B} f = Σ (B → A) (λ g → (g ∘ f) ~ id)
_retract-of_ : {i j : Level} → UU i → UU j → UU (i ⊔ j)
A retract-of B = Σ (A → B) retr
is-equiv : {i j : Level} {A : UU i} {B : UU j} (f : A → B) → UU (i ⊔ j)
is-equiv f = sec f × retr f
-- this equivalence symbol is \simeq
_≃_ : {i j : Level} (A : UU i) (B : UU j) → UU (i ⊔ j)
A ≃ B = Σ (A → B) (λ f → is-equiv f)
eqv-sec : {i j : Level} {A : UU i} {B : UU j} {f : A → B} → is-equiv f → sec f
eqv-sec e = pr1 e
eqv-secf : {i j : Level} {A : UU i} {B : UU j} {f : A → B} → is-equiv f → B → A
eqv-secf e = pr1 (eqv-sec e)
eqv-sech : {i j : Level} {A : UU i} {B : UU j} {f : A → B} → (e : is-equiv f) → ((f ∘ eqv-secf e) ~ id)
eqv-sech e = pr2 (eqv-sec e)
eqv-retr : {i j : Level} {A : UU i} {B : UU j} {f : A → B} → is-equiv f → retr f
eqv-retr e = pr2 e
eqv-retrf : {i j : Level} {A : UU i} {B : UU j} {f : A → B} → is-equiv f → B → A
eqv-retrf e = pr1 (eqv-retr e)
eqv-retrh : {i j : Level} {A : UU i} {B : UU j} {f : A → B} → (e : is-equiv f) → (((eqv-retrf e) ∘ f) ~ id)
eqv-retrh e = pr2 (eqv-retr e)
is-invertible : {i j : Level} {A : UU i} {B : UU j} (f : A → B) → UU (i ⊔ j)
is-invertible {_} {_} {A} {B} f = Σ (B → A) (λ g → ((f ∘ g) ~ id) × ((g ∘ f) ~ id))
is-equiv-is-invertible : {i j : Level} {A : UU i} {B : UU j} {f : A → B} → is-invertible f → is-equiv f
is-equiv-is-invertible (dpair g (dpair H K)) = pair (dpair g H) (dpair g K)
htpy-secf-retrf : {i j : Level} {A : UU i} {B : UU j} {f : A → B} (e : is-equiv f) → (eqv-secf e ~ eqv-retrf e)
htpy-secf-retrf {_} {_} {_} {_} {f} (dpair (dpair g issec) (dpair h isretr)) =
htpy-concat (h ∘ (f ∘ g)) (htpy-inv (htpy-right-whisk isretr g)) (htpy-left-whisk h issec)
is-invertible-is-equiv : {i j : Level} {A : UU i} {B : UU j} {f : A → B} → is-equiv f → is-invertible f
is-invertible-is-equiv {_} {_} {_} {_} {f} (dpair (dpair g issec) (dpair h isretr)) = dpair g (pair issec (htpy-concat (h ∘ f) (htpy-right-whisk (htpy-secf-retrf (dpair (dpair g issec) (dpair h isretr))) f) isretr))
inv-is-equiv : {i j : Level} {A : UU i} {B : UU j} {f : A → B} → is-equiv f → B → A
inv-is-equiv E = pr1 (is-invertible-is-equiv E)
issec-inv-is-equiv : {i j : Level} {A : UU i} {B : UU j} {f : A → B} → (E : is-equiv f) → (f ∘ (inv-is-equiv E)) ~ id
issec-inv-is-equiv E = pr1 (pr2 (is-invertible-is-equiv E))
isretr-inv-is-equiv : {i j : Level} {A : UU i} {B : UU j} {f : A → B} → (E : is-equiv f) → ((inv-is-equiv E) ∘ f) ~ id
isretr-inv-is-equiv E = pr2 (pr2 (is-invertible-is-equiv E))
is-equiv-inv-is-equiv : {i j : Level} {A : UU i} {B : UU j} {f : A → B} → (E : is-equiv f) → is-equiv (inv-is-equiv E)
is-equiv-inv-is-equiv {_} {_} {_} {_} {f} E =
pair (dpair f (isretr-inv-is-equiv E)) (dpair f (issec-inv-is-equiv E))
is-equiv-id : {i : Level} (A : UU i) → is-equiv (id {_} {A})
is-equiv-id A = pair (dpair id (htpy-refl id)) (dpair id (htpy-refl id))
inv-Pi-swap : {i j k : Level} {A : UU i} {B : UU j} (C : A → B → UU k) →
((y : B) (x : A) → C x y) → ((x : A) (y : B) → C x y)
inv-Pi-swap C g x y = g y x
is-equiv-swap : {i j k : Level} {A : UU i} {B : UU j} (C : A → B → UU k) → is-equiv (Pi-swap {_} {_} {_} {A} {B} {C})
is-equiv-swap C = pair (dpair (inv-Pi-swap C) (htpy-refl id)) (dpair (inv-Pi-swap C) (htpy-refl id))
-- Section 5.3 The identity type of a Σ-type
eq-pair' : {i j : Level} {A : UU i} {B : A → UU j} (s t : Σ A B) → (Σ (Id (pr1 s) (pr1 t)) (λ α → Id (tr B α (pr2 s)) (pr2 t))) → Id s t
eq-pair' (dpair x y) (dpair x' y') (dpair refl refl) = refl
eq-pair : {i j : Level} {A : UU i} {B : A → UU j} {s t : Σ A B} → (Σ (Id (pr1 s) (pr1 t)) (λ α → Id (tr B α (pr2 s)) (pr2 t))) → Id s t
eq-pair {i} {j} {A} {B} {s} {t} = eq-pair' s t
pair-eq' : {i j : Level} {A : UU i} {B : A → UU j} (s t : Σ A B) → (Id s t) → Σ (Id (pr1 s) (pr1 t)) (λ α → Id (tr B α (pr2 s)) (pr2 t))
pair-eq' s t refl = dpair refl refl
pair-eq : {i j : Level} {A : UU i} {B : A → UU j} {s t : Σ A B} → (Id s t) → Σ (Id (pr1 s) (pr1 t)) (λ α → Id (tr B α (pr2 s)) (pr2 t))
pair-eq {i} {j} {A} {B} {s} {t} = pair-eq' s t
isretr-pair-eq : {i j : Level} {A : UU i} {B : A → UU j} (s t : Σ A B) → (((pair-eq' s t) ∘ (eq-pair' s t)) ~ id)
isretr-pair-eq (dpair x y) (dpair x' y') (dpair refl refl) = refl
issec-pair-eq : {i j : Level} {A : UU i} {B : A → UU j} (s t : Σ A B) → (((eq-pair' s t) ∘ (pair-eq' s t)) ~ id)
issec-pair-eq (dpair x y) .(dpair x y) refl = refl
is-equiv-eq-pair' : {i j : Level} {A : UU i} {B : A → UU j} (s t : Σ A B) → is-equiv (eq-pair' s t)
is-equiv-eq-pair' s t = pair (dpair (pair-eq' s t) (issec-pair-eq s t)) (dpair (pair-eq' s t) (isretr-pair-eq s t))
is-equiv-eq-pair : {i j : Level} {A : UU i} {B : A → UU j} (s t : Σ A B) → is-equiv (eq-pair {i} {j} {A} {B} {s} {t})
is-equiv-eq-pair = is-equiv-eq-pair'
-- Exercises below
-- Exercise 5.1
singleton-ind-const-htpy : {i : Level} {A : UU i} (a : A) → (const 𝟙 A a) ~ (ind-unit a)
singleton-ind-const-htpy a star = refl
-- Exercise 5.2
ap-const-is-const-refl : {i j : Level} {A : UU i} {B : UU j} (b : B) {x y : A} → (ap (const A B b)) ~ (const (Id x y) (Id b b) refl)
ap-const-is-const-refl b refl = refl
-- Exercise 5.3
inv-inv-htpy : {i : Level} {A : UU i} {x y : A} (p : Id x y) → Id (inv (inv p)) p
inv-inv-htpy refl = refl
is-equiv-inv : {i : Level} {A : UU i} (x y : A) →
is-equiv (λ (p : Id x y) → inv p)
is-equiv-inv x y = pair (dpair inv inv-inv-htpy) (dpair inv inv-inv-htpy)
concat-inv-left-htpy : {i : Level} {A : UU i} {x y z : A} (p : Id x y) → (q : Id y z) → Id ((inv p) · (p · q)) q
concat-inv-left-htpy refl q = refl
concat-inv-right-htpy : {i : Level} {A : UU i} {x y z : A} (p : Id x y) → (r : Id x z) → Id (p · ((inv p) · r)) r
concat-inv-right-htpy refl r = refl
is-equiv-concat : {i : Level} {A : UU i} (x y z : A) (p : Id x y) → (is-equiv λ (q : Id y z) → p · q)
is-equiv-concat x y z p = pair (dpair (λ (r : Id x z) → ((inv p) · r)) (λ (r : Id x z) → concat-inv-right-htpy p r)) (dpair (λ (r : Id x z) → (inv p) · r) (λ (q : Id y z) → concat-inv-left-htpy p q))
tr-inv-htpy : {i j : Level} {A : UU i} {B : A → UU j} {x y : A} (p : Id x y) (b : B x) → Id (tr B (inv p) (tr B p b)) b
tr-inv-htpy refl b = refl
tr-inv-htpy' : {i j : Level} {A : UU i} {B : A → UU j} {x y : A} (p : Id x y) (b : B y) → Id (tr B p (tr B (inv p) b)) b
tr-inv-htpy' refl b = refl
is-equiv-tr : {i j : Level} {A : UU i} (B : A → UU j) {x y : A} (p : Id x y) → is-equiv (λ b → (tr B p b))
is-equiv-tr B p = pair (dpair (tr B (inv p)) (tr-inv-htpy' p)) (dpair (tr B (inv p)) (tr-inv-htpy p))
-- Exercise 5.4
is-equiv-htpy : {i j : Level} {A : UU i} {B : UU j} {f g : A → B} →
f ~ g → is-equiv g → is-equiv f
is-equiv-htpy H (dpair (dpair gs issec) (dpair gr isretr)) =
pair
(dpair gs (htpy-concat _ (htpy-right-whisk H gs) issec))
(dpair gr (htpy-concat (gr ∘ _) (htpy-left-whisk gr H) isretr))
-- Exercise 5.5
is-equiv-comp : {i j k : Level} {A : UU i} {B : UU j} {X : UU k} {f : A → X} {g : B → X} {h : A → B} (H : f ~ (g ∘ h)) → is-equiv h → is-equiv g → is-equiv f
is-equiv-comp {i} {j} {k} {A} {B} {X} {f} {g} {h} H (dpair (dpair hs hs-issec) (dpair hr hr-isretr))
(dpair (dpair gs gs-issec) (dpair gr gr-isretr)) =
is-equiv-htpy H
(pair
(dpair (hs ∘ gs)
(htpy-concat (g ∘ gs)
(htpy-left-whisk g (htpy-right-whisk hs-issec gs)) gs-issec))
(dpair (hr ∘ gr)
(htpy-concat (hr ∘ h)
(htpy-left-whisk hr (htpy-right-whisk gr-isretr h)) hr-isretr)))
-- Exercise 5.6
not-not-x-is-x : (x : bool) → Id (not (not x)) x
not-not-x-is-x true = refl
not-not-x-is-x false = refl
is-equiv-not : is-equiv not
is-equiv-not = pair (dpair not not-not-x-is-x) (dpair not not-not-x-is-x)
path-true-to-false-is-contra : (Id true false) → 𝟘
path-true-to-false-is-contra p = tr (ind-bool 𝟙 𝟘) p star
same-image-not-equiv : (f : bool → bool) → (p : Id (f true) (f false)) → (is-equiv f) → 𝟘
same-image-not-equiv f p (dpair f-is-sec (dpair g htpy)) = path-true-to-false-is-contra (true ==⟨ inv (htpy true) ⟩ g(f(true)) ==⟨ (ap g p) ⟩ g(f(false)) ==⟨ htpy false ⟩ false ==∎)
-- NOTE: ap g p is a path from g(f(true)) to g(f(false))
-- Exercise 5.7
zpred-zsucc-x-is-x : (x : ℤ) → Id (Zpred (Zsucc x)) x
zpred-zsucc-x-is-x (inl Nzero) = refl
zpred-zsucc-x-is-x (inl (Nsucc x)) = refl
zpred-zsucc-x-is-x (inr (inl star)) = refl
zpred-zsucc-x-is-x (inr (inr x)) = refl
zsucc-zpred-x-is-x : (x : ℤ) → Id (Zsucc (Zpred x)) x
zsucc-zpred-x-is-x (inl x) = refl
zsucc-zpred-x-is-x (inr (inl star)) = refl
zsucc-zpred-x-is-x (inr (inr Nzero)) = refl
zsucc-zpred-x-is-x (inr (inr (Nsucc x))) = refl
is-equiv-zsucc : is-equiv Zsucc
is-equiv-zsucc = dpair (dpair Zpred zsucc-zpred-x-is-x) (dpair Zpred zpred-zsucc-x-is-x)
-- Exercise 5.8
-- construct equivalences A + B <-> B + A and A x B <-> B x A
coprod-rev : {i j : Level} (A : UU i) (B : UU j) → (coprod A B) → (coprod B A)
coprod-rev A B (inl a) = inr a
coprod-rev A B (inr b) = inl b
coprod-rev-squared-is-id : {i j : Level} (A : UU i) (B : UU j) → (coprod-rev B A ∘ coprod-rev A B) ~ id
coprod-rev-squared-is-id A B (inl a) = refl
coprod-rev-squared-is-id A B (inr b) = refl
is-equiv-coprod-rev : {i j : Level} (A : UU i) (B : UU j) → is-equiv (coprod-rev A B)
is-equiv-coprod-rev A B = dpair (dpair (coprod-rev B A) (coprod-rev-squared-is-id B A)) (dpair (coprod-rev B A) (coprod-rev-squared-is-id A B))
prod-rev : {i j : Level} (A : UU i) (B : UU j) → (prod A B) → (prod B A)
prod-rev A B x = pair (pr2 x) (pr1 x)
prod-rev-squared-is-id : {i j : Level} (A : UU i) (B : UU j) → (prod-rev B A ∘ prod-rev A B) ~ id
prod-rev-squared-is-id A B (dpair a b) = refl
is-equiv-prod-rev : {i j : Level} (A : UU i) (B : UU j) → is-equiv (prod-rev A B)
is-equiv-prod-rev A B = dpair (dpair (prod-rev B A) (prod-rev-squared-is-id B A)) (dpair (prod-rev B A) (prod-rev-squared-is-id A B))
-- Exercise 5.9
-- i r
-- Consider a sec/retr pair A ---> B ---> A with H : r ∘ i ~ id. Show that x = y is a retr of i(x) = i(y)
-- path-is-retr-of-apsec : {j k : Level} {A : UU j} {B : UU k} (x : A) (y : A) → (i : A → B) → (r : B → A) → ((r ∘ i) ~ id) → ((Id x y) retract-of (Id (i x) (i y)))
-- path-is-retr-of-apsec x y i r H = dpair (ap i) ((dpair (( λ p → x ==⟨ inv (H x) ⟩ r (i x) ==⟨ (ap r p) ⟩ r (i y) ==⟨ (H y) ⟩ y ==∎ )) λ p → {! !})
-- Exercise 5.10
-- Exercise 5.11
-- Exercise 5.12
-- Exercise 5.13
| 42.084175
| 215
| 0.521002
|
7c3e5f2d3ff69f0d7ba9811b9ef629e08b4947a6
| 1,509
|
agda
|
Agda
|
src/Tactic/Reflection/Meta.agda
|
t-more/agda-prelude
|
da4fca7744d317b8843f2bc80a923972f65548d3
|
[
"MIT"
] | null | null | null |
src/Tactic/Reflection/Meta.agda
|
t-more/agda-prelude
|
da4fca7744d317b8843f2bc80a923972f65548d3
|
[
"MIT"
] | null | null | null |
src/Tactic/Reflection/Meta.agda
|
t-more/agda-prelude
|
da4fca7744d317b8843f2bc80a923972f65548d3
|
[
"MIT"
] | null | null | null |
module Tactic.Reflection.Meta where
open import Prelude
open import Builtin.Reflection
open import Tactic.Reflection.DeBruijn
ensureNoMetas : Term → TC ⊤
noMetaArg : Arg Term → TC ⊤
noMetaArg (arg _ v) = ensureNoMetas v
noMetaArgs : List (Arg Term) → TC ⊤
noMetaArgs [] = pure _
noMetaArgs (v ∷ vs) = noMetaArg v *> noMetaArgs vs
noMetaTel : List (String × Arg Type) → TC ⊤
noMetaTel [] = pure _
noMetaTel ((x , arg _ a) ∷ tel) = ensureNoMetas a *> noMetaTel tel
noMetaClause : Clause → TC ⊤
noMetaClause (clause tel ps t) = noMetaTel tel *> ensureNoMetas t
noMetaClause (absurd-clause tel ps) = pure _
noMetaClauses : List Clause → TC ⊤
noMetaClauses [] = pure _
noMetaClauses (c ∷ cs) = noMetaClause c *> noMetaClauses cs
noMetaAbs : Abs Term → TC ⊤
noMetaAbs (abs _ v) = ensureNoMetas v
noMetaSort : Sort → TC ⊤
noMetaSort (set t) = ensureNoMetas t
noMetaSort (lit n) = pure _
noMetaSort unknown = pure _
ensureNoMetas (var x args) = noMetaArgs args
ensureNoMetas (con c args) = noMetaArgs args
ensureNoMetas (def f args) = noMetaArgs args
ensureNoMetas (lam v (abs _ t)) = ensureNoMetas t
ensureNoMetas (pat-lam cs args) = noMetaClauses cs *> noMetaArgs args
ensureNoMetas (pi a b) = noMetaArg a *> noMetaAbs b
ensureNoMetas (agda-sort s) = noMetaSort s
ensureNoMetas (lit l) = pure _
ensureNoMetas (meta x x₁) = blockOnMeta x
ensureNoMetas unknown = pure _
normaliseNoMetas : Term → TC Term
normaliseNoMetas a = do a ← normalise a
stripBoundNames a <$ ensureNoMetas a
| 29.588235
| 69
| 0.719019
|
5ec00190515975ad679243188b2b5aaf2e76a26a
| 5,252
|
agda
|
Agda
|
Function/DomainRaise.agda
|
Lolirofle/stuff-in-agda
|
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
|
[
"MIT"
] | 6
|
2020-04-07T17:58:13.000Z
|
2022-02-05T06:53:22.000Z
|
Function/DomainRaise.agda
|
Lolirofle/stuff-in-agda
|
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
|
[
"MIT"
] | null | null | null |
Function/DomainRaise.agda
|
Lolirofle/stuff-in-agda
|
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
|
[
"MIT"
] | null | null | null |
module Function.DomainRaise where
open import Data
open import Data.Boolean
import Functional as Fn
import Lvl
open import Numeral.Natural
open import Numeral.Natural.Oper.Comparisons
open import Syntax.Number
open import Type
private variable ℓ ℓ₁ ℓ₂ : Lvl.Level
private variable T X Y Z : Type{ℓ}
private variable n : ℕ
-- Repeated function type like an n-ary operator.
-- Examples:
-- (a →̂ b)(0) = (b)
-- (a →̂ b)(1) = (a → b)
-- (a →̂ b)(2) = (a → a → b)
-- (a →̂ b)(3) = (a → a → a → b)
-- (a →̂ b)(4) = (a → a → a → a → b)
_→̂_ : Type{ℓ₁} → Type{ℓ₂} → (n : ℕ) → Type{if positive?(n) then (ℓ₁ Lvl.⊔ ℓ₂) else ℓ₂} -- TODO: Is the level thing really working?
(A →̂ B)(𝟎) = B
(A →̂ B)(𝐒(𝟎)) = A → B
(A →̂ B)(𝐒(𝐒(n))) = A → (A →̂ B)(𝐒(n))
open import Data.Tuple
open import Data.Tuple.Raise
apply₁ : let _ = n in X → (X →̂ Y)(𝐒(n)) → (X →̂ Y)(n)
apply₁ {𝟎} = Fn.apply
apply₁ {𝐒 _} = Fn.apply
apply₊ : let _ = n in (X ^ n) → (X →̂ Y)(n) → Y
apply₊ {𝟎} <> f = f
apply₊ {𝐒(𝟎)} x f = f(x)
apply₊ {𝐒(𝐒(n))} (x , xs) f = apply₊ {𝐒(n)} xs (f(x))
-- Applies the same argument on all arguments.
-- Examples:
-- f : (a →̂ b)(5)
-- applyRepeated{0} f(x) = f
-- applyRepeated{1} f(x) = f(x)
-- applyRepeated{2} f(x) = f(x)(x)
-- applyRepeated{3} f(x) = f(x)(x)(x)
-- applyRepeated{2}(applyRepeated{3} f(x)) (y) = f(x)(x)(y)(y)(y)
applyRepeated : let _ = n in (X →̂ Y)(n) → (X → Y)
applyRepeated{𝟎} f(x) = f
applyRepeated{𝐒(𝟎)} f(x) = f(x)
applyRepeated{𝐒(𝐒(n))} f(x) = applyRepeated{𝐒(n)} (f(x)) (x)
{-
-- Applies arguments from a function.
-- Almost (not really) like a composition operation.
-- Examples:
-- f : (a →̂ b)(3)
-- applyFn f g = f (g(2)) (g(1)) (g(0))
applyFn : ∀{n}{T₁}{T₂} → (T₁ →̂ T₂)(n) → (𝕟(n) → T₁) → T₂
applyFn{𝟎} f g = f
applyFn{𝐒(n)} f g = applyFn{n} (f(g(ℕ-to-𝕟 (n) {𝐒(n)} ⦃ [<?]-𝐒 {n} ⦄))) (g ∘ (bound-𝐒{n}))
-- TODO: Examples:
-- swapReverse {3} f (y₂) (y₁) (y₀)
-- = swapReverse {2} (f(y₂)) (y₁) (y₀)
-- = swapReverse {1} (f(y₂) (y₁)) (y₀)
-- = swapReverse {0} (f(y₂) (y₁) (y₀))
-- = f(y₂) (y₁) (y₀)
-- swapReverse : ∀{n}{T₁}{T₂} → (T₁ →̂ T₂)(n) → (T₁ →̂ T₂)(n)
-- swapReverse {𝟎} y₀ = y₀
-- swapReverse {𝐒(n)} f(yₙ) = (swapReverse {n} f) ∘ (f(yₙ))
-- directOp : ∀{n}{X}{Y} → ((X → Y) →̂ ((X ^ n) → (Y ^ n)))(n)
-}
-- Function composition on a multi-argument function (Like PrimitiveRecursion.Composition).
-- Examples:
-- (f ∘₄ g) x₁ x₂ x₃ x₄
-- = (f ∘₃ g x₁) x₂ x₃ x₄
-- = (f ∘₂ g x₁ x₂) x₃ x₄
-- = (f ∘₁ g x₁ x₂ x₃) x₄
-- = (f ∘ g x₁ x₂ x₃) x₄
-- = f(g x₁ x₂ x₃ x₄)
_∘_ : let _ = n ; _ = X ; _ = Y ; _ = Z in (Y → Z) → (X →̂ Y)(n) → (X →̂ Z)(n)
_∘_ {𝟎} = Fn.id
_∘_ {𝐒(𝟎)} = Fn._∘_
_∘_ {𝐒(𝐒(n))} = Fn._∘_ Fn.∘ (_∘_) -- (f ∘ₙ₊₂ g)(x) = f ∘ₙ₊₁ g(x)
_∘[_]_ : let _ = X ; _ = Y ; _ = Z in (Y → Z) → (n : ℕ) → (X →̂ Y)(n) → (X →̂ Z)(n)
f ∘[ n ] g = _∘_ {n = n} f g
_∘₀_ = _∘_ {0}
_∘₁_ = _∘_ {1}
_∘₂_ = _∘_ {2}
_∘₃_ = _∘_ {3}
_∘₄_ = _∘_ {4}
_∘₅_ = _∘_ {5}
_∘₆_ = _∘_ {6}
_∘₇_ = _∘_ {7}
_∘₈_ = _∘_ {8}
_∘₉_ = _∘_ {9}
-- TODO: Flip the arguments and make n explicit
-- Single function composition on every argument.
-- (f on g)(y₁)(y₂).. = g (f(y₁)) (f(y₂)) ..
-- Examples:
-- _on_ {3} f g (y₂) (y₁) (y₀)
-- = _on_ {2} f (g (f(y₂))) (y₁) (y₀)
-- = _on_ {1} f (g (f(y₂)) (f(y₁))) (y₀)
-- = _on_ {0} f (g (f(y₂)) (f(y₁)) (f(y₀)))
-- = g (f(y₂)) (f(y₁)) (f(y₀))
on : let _ = n ; _ = X ; _ = Y ; _ = Z in (Y →̂ Z)(n) → (X → Y) → (X →̂ Z)(n)
on {n = 𝟎} = Fn.const
on {n = 𝐒(𝟎)} = Fn._∘_
on {n = 𝐒(𝐒(n))} f g(yₙ) = on {n = 𝐒(n)} (f(g(yₙ))) g
-- applyOnFn : ∀{n}{X}{Y} → (Y →̂ Y)(n) → ((X → Y) →̂ (X → Y))(n)
-- applyOnFn
-- Constructs a left-associated n-ary operator from a binary operator.
-- Example:
-- naryₗ{3} (_▫_) x₁ x₂ x₃ x₄ x₅
-- = ((naryₗ{2} (_▫_)) Fn.∘ (x₁ ▫_)) x₂ x₃ x₄
-- = (naryₗ{2} (_▫_) (x₁ ▫ x₂)) x₃ x₄ x₅
-- = ((naryₗ{1} (_▫_)) Fn.∘ ((x₁ ▫ x₂) ▫_)) x₃ x₄ x₅
-- = (naryₗ{1} (_▫_) ((x₁ ▫ x₂) ▫ x₃)) x₄ x₅
-- = ((naryₗ{0} (_▫_)) Fn.∘ (((x₁ ▫ x₂) ▫ x₃) ▫_)) x₃ x₄ x₅
-- = (naryₗ{0} (_▫_) (((x₁ ▫ x₂) ▫ x₃) ▫ x₄)) x₅
-- = ((_▫_) (((x₁ ▫ x₂) ▫ x₃) ▫ x₄)) x₅
-- = ((((x₁ ▫ x₂) ▫ x₃) ▫ x₄) ▫_) x₅
-- = (((x₁ ▫ x₂) ▫ x₃) ▫ x₄) x₅
naryₗ : (n : ℕ) → (X → X → X) → (X →̂ X)(𝐒(𝐒(n)))
naryₗ(𝟎) (_▫_) = (_▫_)
naryₗ(𝐒(n)) (_▫_) x = (naryₗ(n) (_▫_)) Fn.∘ (x ▫_)
-- Constructs a right-associated n-ary operator from a binary operator.
-- Example:
-- naryᵣ{3} (_▫_) x₁ x₂ x₃ x₄ x₅
-- = ((x₁ ▫_) ∘[ 4 ] (naryᵣ{2} (_▫_))) x₂ x₃ x₄ x₅
-- = x₁ ▫ (naryᵣ{2} (_▫_) x₂ x₃ x₄ x₅)
-- = x₁ ▫ (((x₂ ▫_) ∘[ 3 ] (naryᵣ{1} (_▫_))) x₃ x₄ x₅)
-- = x₁ ▫ (x₂ ▫ (naryᵣ{1} (_▫_) x₃ x₄ x₅))
-- = x₁ ▫ (x₂ ▫ (((x₃ ▫_) ∘[ 2 ] (naryᵣ{0} (_▫_))) x₄ x₅))
-- = x₁ ▫ (x₂ ▫ (x₃ ▫ (naryᵣ{0} (_▫_) x₄ x₅)))
-- = x₁ ▫ (x₂ ▫ (x₃ ▫ ((_▫_) x₄ x₅)))
-- = x₁ ▫ (x₂ ▫ (x₃ ▫ (x₄ ▫ x₅)))
naryᵣ : (n : ℕ) → (X → X → X) → (X →̂ X)(𝐒(𝐒(n)))
naryᵣ(𝟎) (_▫_) = (_▫_)
naryᵣ(𝐒(n)) (_▫_) x = (x ▫_) ∘[ 𝐒(𝐒(n)) ] (naryᵣ(n) (_▫_))
{-
[→̂]-to-[⇉] : (n : ℕ) → ∀{X : Type{ℓ₁}}{Y : Type{ℓ₂}} → (X →̂ Y)(n) → (RaiseType.repeat(n) X ⇉ Y)
[→̂]-to-[⇉] 0 f = f
[→̂]-to-[⇉] 1 f = f
[→̂]-to-[⇉] (𝐒(𝐒(n))) f = [→̂]-to-[⇉] (𝐒(n)) ∘ f
-}
| 33.452229
| 131
| 0.450876
|
0d80a72c3e331c3d1ecefcfb36b263056abfbb00
| 3,197
|
agda
|
Agda
|
Numeral/Natural/Sequence.agda
|
Lolirofle/stuff-in-agda
|
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
|
[
"MIT"
] | 6
|
2020-04-07T17:58:13.000Z
|
2022-02-05T06:53:22.000Z
|
Numeral/Natural/Sequence.agda
|
Lolirofle/stuff-in-agda
|
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
|
[
"MIT"
] | null | null | null |
Numeral/Natural/Sequence.agda
|
Lolirofle/stuff-in-agda
|
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
|
[
"MIT"
] | null | null | null |
module Numeral.Natural.Sequence where
import Lvl
open import Data
open import Data.Either as Either using (_‖_)
open import Data.Tuple as Tuple using (_⨯_ ; _,_)
import Data.Tuple.Raise as Tuple
open import Functional
open import Numeral.Natural
open import Numeral.Natural.Oper
open import Numeral.Natural.Oper.FlooredDivision
open import Type
private variable ℓ ℓ₁ ℓ₂ : Lvl.Level
private variable n : ℕ
private variable A : Type{ℓ}
private variable B : Type{ℓ}
-- Alternates between the two sides, starting with the left.
-- A countable bijection for the Either type.
-- Examples:
-- alternate₂(0) = Left(0)
-- alternate₂(2) = Left(1)
-- alternate₂(4) = Left(2)
-- alternate₂(6) = Left(3)
-- alternate₂(1) = Right(0)
-- alternate₂(3) = Right(1)
-- alternate₂(5) = Right(2)
-- alternate₂(7) = Right(3)
alternate₂ : ℕ → (ℕ ‖ ℕ)
alternate₂(0) = Either.Left 0
alternate₂(1) = Either.Right 0
alternate₂(𝐒(𝐒(n))) = Either.map 𝐒 𝐒 (alternate₂ n)
-- The inverse of `alternate₂`.
unalternate₂ : (ℕ ‖ ℕ) → ℕ
unalternate₂(Either.Left n) = n ⋅ 2
unalternate₂(Either.Right n) = 𝐒(n ⋅ 2)
-- Maps two natural numbers to a single one without overlaps by following the inverse diagonals downwards.
-- A countable bijection for the tuple pairing type.
-- Alternative forms:
-- pairIndexing a b = a + (∑(𝕟(a + b)) (i ↦ 𝕟-to-ℕ(i)))
-- pairIndexing a b = a + ((a + b) * (a + b + 1) / 2)
-- Example:
-- Horizontal axis is `a` starting from 0.
-- Vertical axis is `b` starting from 0.
-- Cells are `pairIndexing a b`.
-- 0, 1, 3, 6,10,15
-- 2, 4, 7,11,16,..
-- 5, 8,12,17, ..
-- 9,13,18, ..
-- 14,19, ..
-- 20,.. .. .. .. ..
-- Termination:
-- Decreases `a` until 0 while at the same time increases `b` (So `b` is at most `a`).
-- Then the arguments is swapped, but using the predecessor of `b`.
-- This means that `b` will eventually reach 0.
{-# TERMINATING #-}
pairIndexing : ℕ → ℕ → ℕ
pairIndexing 𝟎 𝟎 = 𝟎
pairIndexing (𝐒 a) 𝟎 = 𝐒(pairIndexing 𝟎 a)
{-# CATCHALL #-}
pairIndexing a (𝐒 b) = 𝐒(pairIndexing (𝐒 a) b)
-- A sequence which fills a discrete two dimensional grid (a space bounded in two directions and infinite in the other two).
-- It is the inverse of an uncurried `pairIndexing`.
-- Example:
-- •-→-• ↗→• ↗→•
-- ↙ ↗ ↙ ↗ ↙
-- •→↗ • ↗ • •
-- ↙ ↗ ↙
-- •→↗ • • •
diagonalFilling : ℕ → (ℕ ⨯ ℕ)
diagonalFilling 𝟎 = (𝟎 , 𝟎)
diagonalFilling (𝐒(n)) with diagonalFilling n
... | (𝟎 , b) = (𝐒(b) , 0)
... | (𝐒(a) , b) = (a , 𝐒(b))
tupleIndexing : (ℕ Tuple.^ n) → ℕ
tupleIndexing {𝟎} <> = 𝟎
tupleIndexing {𝐒(𝟎)} x = x
tupleIndexing {𝐒(𝐒(n))} (x , y) = pairIndexing x (tupleIndexing {𝐒(n)} y)
spaceFilling : ℕ → (ℕ Tuple.^ n)
spaceFilling {𝟎} _ = <>
spaceFilling {𝐒(𝟎)} i = i
spaceFilling {𝐒(𝐒(n))} i = Tuple.mapRight (spaceFilling {𝐒(n)}) (diagonalFilling i)
-- Interleaves two sequences into one, alternating between the elements from each sequence.
interleave : (ℕ → A) → (ℕ → B) → (ℕ → (A ‖ B))
interleave af bf = Either.map af bf ∘ alternate₂
pair : (ℕ → A) → (ℕ → B) → (ℕ → (A ⨯ B))
pair af bf = Tuple.map af bf ∘ diagonalFilling
| 32.622449
| 124
| 0.611198
|
2ee421578a38b40ded6688817307ecd0a91916ab
| 19,340
|
agda
|
Agda
|
src/Rices-theorem.agda
|
nad/chi
|
30966769b8cbd46aa490b6964a4aa0e67a7f9ab1
|
[
"MIT"
] | 2
|
2020-05-21T22:58:07.000Z
|
2020-10-20T16:27:00.000Z
|
src/Rices-theorem.agda
|
nad/chi
|
30966769b8cbd46aa490b6964a4aa0e67a7f9ab1
|
[
"MIT"
] | 1
|
2020-05-21T23:29:54.000Z
|
2020-06-08T11:08:25.000Z
|
src/Rices-theorem.agda
|
nad/chi
|
30966769b8cbd46aa490b6964a4aa0e67a7f9ab1
|
[
"MIT"
] | null | null | null |
------------------------------------------------------------------------
-- Rice's theorem
------------------------------------------------------------------------
open import Equality.Propositional
open import Prelude hiding (const; Decidable)
-- To simplify the development, let's work with actual natural numbers
-- as variables and constants (see
-- Atom.one-can-restrict-attention-to-χ-ℕ-atoms).
open import Atom
open import Chi χ-ℕ-atoms
open import Coding χ-ℕ-atoms
open import Free-variables χ-ℕ-atoms
import Coding.Instances.Nat
-- The theorem is stated and proved under the assumption that a
-- correct self-interpreter can be implemented.
module Rices-theorem
(eval : Exp)
(cl-eval : Closed eval)
(eval₁ : ∀ p v → Closed p → p ⇓ v → apply eval ⌜ p ⌝ ⇓ ⌜ v ⌝)
(eval₂ : ∀ p v → Closed p → apply eval ⌜ p ⌝ ⇓ v →
∃ λ v′ → p ⇓ v′ × v ≡ ⌜ v′ ⌝)
where
open import H-level.Truncation.Propositional as Trunc hiding (rec)
open import Logical-equivalence using (_⇔_)
open import Tactic.By.Propositional
open import Double-negation equality-with-J
open import Equality.Decision-procedures equality-with-J
open import Function-universe equality-with-J as F hiding (id; _∘_)
open import H-level equality-with-J
open import H-level.Closure equality-with-J
open import Monad equality-with-J
open import Cancellation χ-ℕ-atoms
open import Compatibility χ-ℕ-atoms
open import Computability χ-ℕ-atoms hiding (_∘_)
open import Constants χ-ℕ-atoms
open import Deterministic χ-ℕ-atoms
open import Propositional χ-ℕ-atoms
open import Reasoning χ-ℕ-atoms
open import Termination χ-ℕ-atoms
open import Values χ-ℕ-atoms
open χ-atoms χ-ℕ-atoms
open import Combinators as χ hiding (id; if_then_else_)
open import Halting-problem
open import Internal-coding
------------------------------------------------------------------------
-- The theorem
-- Definition of "pointwise semantically equivalent".
Pointwise-semantically-equivalent : Closed-exp → Closed-exp → Type
Pointwise-semantically-equivalent e₁ e₂ =
∀ e v → semantics [ apply-cl e₁ e ]= v ⇔
semantics [ apply-cl e₂ e ]= v
-- This relation is symmetric.
symmetric :
∀ e₁ e₂ →
Pointwise-semantically-equivalent e₁ e₂ →
Pointwise-semantically-equivalent e₂ e₁
symmetric _ _ eq = λ e v → inverse (eq e v)
-- Rice's theorem.
module _
(P : Closed-exp →Bool)
(let P′ = proj₁ P)
(e∈ : Closed-exp)
(Pe∈ : P′ [ e∈ ]= true)
(e∉ : Closed-exp)
(¬Pe∉ : P′ [ e∉ ]= false)
(resp : ∀ e₁ e₂ {b} →
Pointwise-semantically-equivalent e₁ e₂ →
P′ [ e₁ ]= b → P′ [ e₂ ]= b)
where
private
module Helper
(p : Exp) (cl-p : Closed p)
(hyp : ∀ e b → P′ [ e ]= b → apply p ⌜ e ⌝ ⇓ ⌜ b ⌝)
where
arg : Closed-exp → Closed-exp → Closed-exp
arg e p =
lambda v-x
(apply (lambda v-underscore (apply (proj₁ e) (var v-x)))
(apply eval (proj₁ p)))
, (Closed′-closed-under-lambda $
Closed′-closed-under-apply
(Closed′-closed-under-lambda $
Closed′-closed-under-apply
(Closed→Closed′ $ proj₂ e)
(Closed′-closed-under-var (inj₂ (inj₁ refl))))
(Closed′-closed-under-apply
(Closed→Closed′ cl-eval)
(Closed→Closed′ (proj₂ p))))
coded-arg : Closed-exp → Exp
coded-arg e =
const c-lambda (⌜ v-x ⌝ ∷
const c-apply (
⌜ Exp.lambda v-underscore (apply (proj₁ e) (var v-x)) ⌝ ∷
const c-apply (
⌜ eval ⌝ ∷
apply internal-code (var v-p) ∷
[]) ∷ []) ∷ [])
branches : List Br
branches =
branch c-false [] (apply p (coded-arg e∈)) ∷
branch c-true [] (χ.not (apply p (coded-arg e∉))) ∷
[]
const-loop : Closed-exp
const-loop =
lambda v-underscore loop
, (Closed′-closed-under-lambda $
Closed→Closed′ loop-closed)
⌜const-loop⌝ : Closed-exp
⌜const-loop⌝ = ⌜ proj₁ const-loop ⌝
halts : Exp
halts =
lambda v-p (case (apply p (proj₁ ⌜const-loop⌝)) branches)
cl-coded-arg : ∀ e → Closed′ (v-p ∷ []) (coded-arg e)
cl-coded-arg e =
Closed′-closed-under-const λ where
_ (inj₂ (inj₂ ()))
_ (inj₁ refl) →
Closed→Closed′ (rep-closed v-x)
_ (inj₂ (inj₁ refl)) →
Closed′-closed-under-const λ where
_ (inj₂ (inj₂ ()))
_ (inj₁ refl) →
Closed→Closed′ $
rep-closed (Exp.lambda v-underscore (apply (proj₁ e) (var v-x)))
_ (inj₂ (inj₁ refl)) →
Closed′-closed-under-const λ where
_ (inj₂ (inj₂ ()))
_ (inj₁ refl) →
Closed→Closed′ $
rep-closed eval
_ (inj₂ (inj₁ refl)) →
Closed′-closed-under-apply
(Closed→Closed′ internal-code-closed)
(Closed′-closed-under-var (inj₁ refl))
cl-halts : Closed halts
cl-halts =
Closed′-closed-under-lambda $
Closed′-closed-under-case
(Closed′-closed-under-apply
(Closed→Closed′ cl-p)
(Closed→Closed′ $ proj₂ ⌜const-loop⌝))
(λ where
(inj₁ refl) →
Closed′-closed-under-apply
(Closed→Closed′ cl-p)
(cl-coded-arg e∈)
(inj₂ (inj₁ refl)) →
not-closed $
Closed′-closed-under-apply
(Closed→Closed′ cl-p)
(cl-coded-arg e∉)
(inj₂ (inj₂ ())))
coded-arg⇓⌜arg⌝ :
(e p : Closed-exp) →
coded-arg e [ v-p ← ⌜ p ⌝ ] ⇓ ⌜ arg e ⌜ p ⌝ ⌝
coded-arg⇓⌜arg⌝ e p =
coded-arg e [ v-p ← ⌜ p ⌝ ] ⟶⟨⟩
const c-lambda (⌜ v-x ⌝ ∷
const c-apply (
⌜ Exp.lambda v-underscore (apply (proj₁ e) (var v-x)) ⌝
[ v-p ← ⌜ p ⌝ ] ∷
const c-apply (
⌜ eval ⌝ [ v-p ← ⌜ p ⌝ ] ∷
apply (internal-code [ v-p ← ⌜ p ⌝ ]) ⌜ p ⌝ ∷
[]) ∷ []) ∷ []) ≡⟨ cong (λ e → const _ (_ ∷ const _ (const _ (_ ∷
const _ (e ∷ _) ∷ _) ∷ _) ∷ _))
(subst-rep (proj₁ e)) ⟩⟶
const c-lambda (⌜ v-x ⌝ ∷
const c-apply (
⌜ Exp.lambda v-underscore (apply (proj₁ e) (var v-x)) ⌝ ∷
const c-apply (
⟨ ⌜ eval ⌝ [ v-p ← ⌜ p ⌝ ] ⟩ ∷
apply (internal-code [ v-p ← ⌜ p ⌝ ]) ⌜ p ⌝ ∷
[]) ∷ []) ∷ []) ≡⟨ ⟨by⟩ (subst-rep eval) ⟩⟶
const c-lambda (⌜ v-x ⌝ ∷
const c-apply (
⌜ Exp.lambda v-underscore (apply (proj₁ e) (var v-x)) ⌝ ∷
const c-apply (
⌜ eval ⌝ ∷
apply ⟨ internal-code [ v-p ← ⌜ p ⌝ ] ⟩ ⌜ p ⌝ ∷
[]) ∷ []) ∷ []) ≡⟨ ⟨by⟩ (subst-closed _ _ internal-code-closed) ⟩⟶
const c-lambda (⌜ v-x ⌝ ∷
const c-apply (
⌜ Exp.lambda v-underscore (apply (proj₁ e) (var v-x)) ⌝ ∷
const c-apply (
⌜ eval ⌝ ∷
apply internal-code ⌜ p ⌝ ∷
[]) ∷ []) ∷ []) ⟶⟨ []⇓ (const (there (here (const (there (here
(const (there (here ∙)))))))))
(internal-code-correct (proj₁ p)) ⟩
const c-lambda (⌜ v-x ⌝ ∷
const c-apply (
⌜ Exp.lambda v-underscore (apply (proj₁ e) (var v-x)) ⌝ ∷
const c-apply (
⌜ eval ⌝ ∷
⌜ ⌜ p ⌝ ⦂ Exp ⌝ ∷
[]) ∷ []) ∷ []) ⟶⟨⟩
⌜ arg e ⌜ p ⌝ ⌝ ■⟨ rep-value (arg e ⌜ p ⌝) ⟩
arg-lemma-⇓ :
(e p : Closed-exp) →
Terminates (proj₁ p) →
Pointwise-semantically-equivalent (arg e ⌜ p ⌝) e
arg-lemma-⇓ (e , cl-e) (p , cl-p) (vp , p⇓vp)
(e′ , cl-e′) (v , _) = record
{ to = λ where
(apply {v₂ = ve′} lambda q₁
(apply {v₂ = vp} lambda _
(apply {x = x} {e = e-body} {v₂ = ve″} q₂ q₃ q₄))) →
apply ⟨ e ⟩ e′ ≡⟨ ⟨by⟩ (substs-closed e cl-e ((v-underscore , vp) ∷ (v-x , ve′) ∷ [])) ⟩⟶
apply (e [ v-x ← ve′ ] [ v-underscore ← vp ]) e′ ⟶⟨ apply q₂ q₁ ⟩
e-body [ x ← ⟨ ve′ ⟩ ] ≡⟨ ⟨by⟩ (values-only-compute-to-themselves (⇓-Value q₁) (
ve′ ≡⟨ sym $ subst-closed _ _ (closed⇓closed q₁ cl-e′) ⟩⟶
ve′ [ v-underscore ← vp ] ⇓⟨ q₃ ⟩■
ve″ )) ⟩⟶
e-body [ x ← ve″ ] ⇓⟨ q₄ ⟩■
v
; from = λ where
(apply {v₂ = ve′} q₁ q₂ q₃) →
proj₁ (apply-cl (arg (e , cl-e) ⌜ p ⌝) (e′ , cl-e′)) ⟶⟨ apply lambda q₂ ⟩
apply (lambda v-underscore (apply ⟨ e [ v-x ← ve′ ] ⟩ ve′))
(apply eval ⌜ p ⌝ [ v-x ← ve′ ]) ≡⟨ ⟨by⟩ (subst-closed _ _ cl-e) ⟩⟶
apply (lambda v-underscore (apply e ve′))
⟨ apply eval ⌜ p ⌝ [ v-x ← ve′ ] ⟩ ≡⟨ ⟨by⟩ (subst-closed _ _ $
Closed′-closed-under-apply cl-eval (rep-closed p)) ⟩⟶
apply (lambda v-underscore (apply e ve′))
(apply eval ⌜ p ⌝) ⟶⟨ apply lambda (eval₁ p _ cl-p p⇓vp) ⟩
apply e ve′ [ v-underscore ← ⌜ vp ⌝ ] ≡⟨ subst-closed _ _ $
Closed′-closed-under-apply cl-e (closed⇓closed q₂ cl-e′) ⟩⟶
apply e ve′ ⇓⟨ apply q₁ (values-compute-to-themselves (⇓-Value q₂)) q₃ ⟩■
v
}
arg-lemma-⇓-true :
(e : Closed-exp) →
Terminates (proj₁ e) →
P′ [ arg e∈ ⌜ e ⌝ ]= true
arg-lemma-⇓-true e e⇓ = $⟨ Pe∈ ⟩
P′ [ e∈ ]= true ↝⟨ resp _ _ (symmetric (arg e∈ ⌜ e ⌝) e∈ (arg-lemma-⇓ e∈ e e⇓)) ⟩□
P′ [ arg e∈ ⌜ e ⌝ ]= true □
arg-lemma-⇓-false :
(e : Closed-exp) →
Terminates (proj₁ e) →
P′ [ arg e∉ ⌜ e ⌝ ]= false
arg-lemma-⇓-false e e⇓ = $⟨ ¬Pe∉ ⟩
P′ [ e∉ ]= false ↝⟨ resp _ _ (symmetric (arg e∉ ⌜ e ⌝) e∉ (arg-lemma-⇓ e∉ e e⇓)) ⟩□
P′ [ arg e∉ ⌜ e ⌝ ]= false □
arg-lemma-¬⇓′ :
(e p : Closed-exp) →
¬ Terminates (proj₁ p) →
Pointwise-semantically-equivalent (arg e ⌜ p ⌝) const-loop
arg-lemma-¬⇓′ (e , cl-e) (p , cl-p) ¬p⇓
(e′ , cl-e′) (v , _) = record
{ to = λ where
(apply {v₂ = ve′} lambda _ (apply {v₂ = vp} _ q _)) →
⊥-elim $ ¬p⇓ $ Σ-map id proj₁ $
eval₂ p vp cl-p (
apply eval ⌜ p ⌝ ≡⟨ sym $ subst-closed _ _ $ Closed′-closed-under-apply cl-eval (rep-closed p) ⟩⟶
apply eval ⌜ p ⌝ [ v-x ← ve′ ] ⇓⟨ q ⟩■
vp)
; from = λ where
(apply lambda _ loop⇓) → ⊥-elim $ ¬loop⇓ (_ , loop⇓)
}
arg-lemma-¬⇓ :
∀ {b} (e₀ e : Closed-exp) →
¬ Terminates (proj₁ e) →
P′ [ const-loop ]= b →
P′ [ arg e₀ ⌜ e ⌝ ]= b
arg-lemma-¬⇓ {b} e₀ e ¬e⇓ =
P′ [ const-loop ]= b ↝⟨ resp _ _ (symmetric (arg e₀ ⌜ e ⌝) const-loop (arg-lemma-¬⇓′ e₀ e ¬e⇓)) ⟩□
P′ [ arg e₀ ⌜ e ⌝ ]= b □
∃Bool : Type
∃Bool = ∃ λ (b : Bool) →
apply p (proj₁ ⌜const-loop⌝) ⇓ ⌜ b ⌝
×
P′ [ const-loop ]= b
¬¬∃ : ¬¬ ∃Bool
¬¬∃ =
excluded-middle {A = P′ [ const-loop ]= true} >>= λ where
(inj₁ P-const-loop) → return ( true
, hyp const-loop true
P-const-loop
, P-const-loop
)
(inj₂ ¬P-const-loop) →
proj₂ P const-loop >>= λ where
(true , P-const-loop) → ⊥-elim (¬P-const-loop
P-const-loop)
(false , ¬P-const-loop) →
return ( false
, hyp const-loop false ¬P-const-loop
, ¬P-const-loop
)
halts⇓-lemma :
∀ {v} →
∃Bool →
(e : Closed-exp) →
(P′ [ const-loop ]= false →
apply p (⌜ arg e∈ ⌜ e ⌝ ⌝) ⇓ v) →
(P′ [ const-loop ]= true →
χ.not (apply p (⌜ arg e∉ ⌜ e ⌝ ⌝)) ⇓ v) →
apply halts ⌜ e ⌝ ⇓ v
halts⇓-lemma {v} ∃bool e e∈⇓v e∉⇓v =
apply halts ⌜ e ⌝ ⟶⟨ apply lambda (rep⇓rep e) ⟩
case (apply ⟨ p [ v-p ← ⌜ e ⌝ ] ⟩ (proj₁ ⌜const-loop⌝))
(branches [ v-p ← ⌜ e ⌝ ]B⋆) ≡⟨ ⟨by⟩ (subst-closed _ _ cl-p) ⟩⟶
case (apply p (proj₁ ⌜const-loop⌝)) (branches [ v-p ← ⌜ e ⌝ ]B⋆) ⇓⟨ lemma ∃bool ⟩■
v
where
lemma : ∃Bool → _
lemma (true , p⌜const-loop⌝⇓true , P-const-loop) =
case (apply p (proj₁ ⌜const-loop⌝)) (branches [ v-p ← ⌜ e ⌝ ]B⋆) ⟶⟨ case p⌜const-loop⌝⇓true (there (λ ()) here) [] ⟩
χ.not (apply ⟨ p [ v-p ← ⌜ e ⌝ ] ⟩ (coded-arg e∉ [ v-p ← ⌜ e ⌝ ])) ≡⟨ ⟨by⟩ (subst-closed _ _ cl-p) ⟩⟶
χ.not (apply p (coded-arg e∉ [ v-p ← ⌜ e ⌝ ])) ⟶⟨ []⇓ (case (apply→ ∙)) (coded-arg⇓⌜arg⌝ e∉ e) ⟩
χ.not (apply p (⌜ arg e∉ ⌜ e ⌝ ⌝)) ⇓⟨ e∉⇓v P-const-loop ⟩■
v
lemma (false , p⌜const-loop⌝⇓false , ¬P-const-loop) =
case (apply p (proj₁ ⌜const-loop⌝)) (branches [ v-p ← ⌜ e ⌝ ]B⋆) ⟶⟨ case p⌜const-loop⌝⇓false here [] ⟩
apply ⟨ p [ v-p ← ⌜ e ⌝ ] ⟩ (coded-arg e∈ [ v-p ← ⌜ e ⌝ ]) ≡⟨ ⟨by⟩ (subst-closed _ _ cl-p) ⟩⟶
apply p (coded-arg e∈ [ v-p ← ⌜ e ⌝ ]) ⟶⟨ []⇓ (apply→ ∙) (coded-arg⇓⌜arg⌝ e∈ e) ⟩
apply p (⌜ arg e∈ ⌜ e ⌝ ⌝) ⇓⟨ e∈⇓v ¬P-const-loop ⟩■
v
⇓-lemma :
∃Bool →
(e : Closed-exp) →
Terminates (proj₁ e) →
apply halts ⌜ e ⌝ ⇓ ⌜ true ⦂ Bool ⌝
⇓-lemma ∃bool e e⇓ = halts⇓-lemma ∃bool e
(λ _ →
apply p (⌜ arg e∈ ⌜ e ⌝ ⌝) ⇓⟨ hyp (arg e∈ ⌜ e ⌝) true (arg-lemma-⇓-true e e⇓) ⟩■
⌜ true ⦂ Bool ⌝)
(λ _ →
χ.not (apply p (⌜ arg e∉ ⌜ e ⌝ ⌝)) ⟶⟨ []⇓ (case ∙) (hyp (arg e∉ ⌜ e ⌝) false (arg-lemma-⇓-false e e⇓)) ⟩
χ.not ⌜ false ⦂ Bool ⌝ ⇓⟨ not-correct false (rep⇓rep (false ⦂ Bool)) ⟩■
⌜ true ⦂ Bool ⌝)
¬⇓-lemma :
∃Bool →
(e : Closed-exp) →
¬ Terminates (proj₁ e) →
apply halts ⌜ e ⌝ ⇓ ⌜ false ⦂ Bool ⌝
¬⇓-lemma ∃bool e ¬e⇓ = halts⇓-lemma ∃bool e
(λ ¬P-const-loop →
apply p (⌜ arg e∈ ⌜ e ⌝ ⌝) ⇓⟨ hyp (arg e∈ ⌜ e ⌝) false (arg-lemma-¬⇓ e∈ e ¬e⇓ ¬P-const-loop) ⟩■
⌜ false ⦂ Bool ⌝)
(λ P-const-loop →
χ.not (apply p (⌜ arg e∉ ⌜ e ⌝ ⌝)) ⟶⟨ []⇓ (case ∙) (hyp (arg e∉ ⌜ e ⌝) true (arg-lemma-¬⇓ e∉ e ¬e⇓ P-const-loop)) ⟩
χ.not ⌜ true ⦂ Bool ⌝ ⇓⟨ not-correct true (rep⇓rep (true ⦂ Bool)) ⟩■
⌜ false ⦂ Bool ⌝)
rice's-theorem : ¬ Decidable P
rice's-theorem (p , cl-p , hyp , _) = ¬¬¬⊥ $
¬¬∃ >>= λ ∃bool →
return (intensional-halting-problem₀
( halts
, cl-halts
, λ e cl-e → ⇓-lemma ∃bool (e , cl-e)
, ¬⇓-lemma ∃bool (e , cl-e)
))
where
open Helper p cl-p hyp
-- A variant of the theorem.
rice's-theorem′ :
(P : Closed-exp → Type)
(e∈ : Closed-exp) →
P e∈ →
(e∉ : Closed-exp) →
¬ P e∉ →
(∀ e₁ e₂ →
Pointwise-semantically-equivalent e₁ e₂ →
P e₁ → P e₂) →
¬ Decidable (as-function-to-Bool₁ P)
rice's-theorem′ P e∈ Pe∈ e∉ ¬Pe∉ resp =
rice's-theorem
(as-function-to-Bool₁ P)
e∈
((λ _ → refl) , ⊥-elim ∘ (_$ Pe∈))
e∉
(⊥-elim ∘ ¬Pe∉ , (λ _ → refl))
(λ e₁ e₂ eq →
Σ-map (_∘ resp e₂ e₁ (symmetric e₁ e₂ eq))
(_∘ (_∘ resp e₁ e₂ eq)))
------------------------------------------------------------------------
-- Examples
-- The problem of deciding whether an expression implements the
-- successor function is undecidable.
Equal-to-suc : Closed-exp →Bool
Equal-to-suc =
as-function-to-Bool₁ λ e →
(n : ℕ) → apply (proj₁ e) ⌜ n ⌝ ⇓ ⌜ suc n ⌝
equal-to-suc-not-decidable : ¬ Decidable Equal-to-suc
equal-to-suc-not-decidable =
rice's-theorem′
_
(s , from-⊎ (closed? s))
(λ n → apply lambda (rep⇓rep n) (rep⇓rep (suc n)))
(z , from-⊎ (closed? z))
(λ z⌜n⌝⇓ → case z⌜n⌝⇓ 0 of λ { (apply () _ _) })
(λ e₁ e₂ e₁∼e₂ Pe₁ n →
apply (proj₁ e₂) ⌜ n ⌝ ⇓⟨ _⇔_.to (e₁∼e₂ ⌜ n ⌝ ⌜ suc n ⌝) (Pe₁ n) ⟩■
⌜ suc n ⌝)
where
z = const c-zero []
s = lambda v-n (const c-suc (var v-n ∷ []))
-- The problem of deciding whether an expression always terminates
-- with the same value when applied to an arbitrary argument is
-- undecidable.
Is-constant : Closed-exp →Bool
Is-constant = as-function-to-Bool₁ λ e →
∃ λ v → (n : ℕ) → apply (proj₁ e) ⌜ n ⌝ ⇓ v
is-constant-not-decidable : ¬ Decidable Is-constant
is-constant-not-decidable =
rice's-theorem′
_
(c , from-⊎ (closed? c))
((⌜ 0 ⌝ ⦂ Exp) , λ n →
apply c ⌜ n ⌝ ⇓⟨ apply lambda (rep⇓rep n) (const []) ⟩■
⌜ 0 ⌝)
(f , from-⊎ (closed? f))
not-constant
(λ e₁ e₂ e₁∼e₂ → Σ-map id λ {v} ⇓v n →
let v-closed : Closed v
v-closed = closed⇓closed (⇓v n) $
Closed′-closed-under-apply
(proj₂ e₁)
(rep-closed n)
in
apply (proj₁ e₂) ⌜ n ⌝ ⇓⟨ _⇔_.to (e₁∼e₂ ⌜ n ⌝ (v , v-closed)) (⇓v n) ⟩■
v)
where
c = lambda v-underscore ⌜ 0 ⌝
f = lambda v-n (var v-n)
not-constant : ¬ ∃ λ v → (n : ℕ) → apply f ⌜ n ⌝ ⇓ v
not-constant (v , constant) = impossible
where
v≡0 : v ≡ ⌜ 0 ⌝
v≡0 with constant 0
... | apply lambda (const []) (const []) = refl
v≡1 : v ≡ ⌜ 1 ⌝
v≡1 with constant 1
... | apply lambda (const (const [] ∷ [])) (const (const [] ∷ [])) =
refl
0≡1 =
⌜ 0 ⌝ ≡⟨ sym v≡0 ⟩
v ≡⟨ v≡1 ⟩∎
⌜ 1 ⌝ ∎
impossible : ⊥
impossible with 0≡1
... | ()
| 36.908397
| 138
| 0.422544
|
Subsets and Splits
HTML Code Excluding Scripts
The query retrieves a limited set of HTML content entries that are longer than 8 characters and do not contain script tags, offering only basic filtering with minimal analytical value.