hexsha
stringlengths
40
40
size
int64
3
1.05M
ext
stringclasses
163 values
lang
stringclasses
53 values
max_stars_repo_path
stringlengths
3
945
max_stars_repo_name
stringlengths
4
112
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
float64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
945
max_issues_repo_name
stringlengths
4
113
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
float64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
945
max_forks_repo_name
stringlengths
4
113
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
float64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.05M
avg_line_length
float64
1
966k
max_line_length
int64
1
977k
alphanum_fraction
float64
0
1
4eddabaf490104ef13b33c39b9d63b9ac12fe0a4
5,337
agda
Agda
Cubical/Data/Nat/Mod.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
1
2022-02-05T01:25:26.000Z
2022-02-05T01:25:26.000Z
Cubical/Data/Nat/Mod.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
Cubical/Data/Nat/Mod.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --safe #-} module Cubical.Data.Nat.Mod where open import Cubical.Foundations.Prelude open import Cubical.Data.Nat open import Cubical.Data.Nat.Order -- Defining x mod 0 to be 0. This way all the theorems below are true -- for n : ℕ instead of n : ℕ₊₁. ------ Preliminary definitions ------ modInd : (n : ℕ) → ℕ → ℕ modInd n = +induction n (λ _ → ℕ) (λ x _ → x) λ _ x → x modIndBase : (n m : ℕ) → m < suc n → modInd n m ≡ m modIndBase n = +inductionBase n (λ _ → ℕ) (λ x _ → x) (λ _ x → x) modIndStep : (n m : ℕ) → modInd n (suc n + m) ≡ modInd n m modIndStep n = +inductionStep n (λ _ → ℕ) (λ x _ → x) (λ _ x → x) ------------------------------------- _mod_ : (x n : ℕ) → ℕ x mod zero = 0 x mod (suc n) = modInd n x mod< : (n x : ℕ) → x mod (suc n) < (suc n) mod< n = +induction n (λ x → x mod (suc n) < suc n) (λ x base → fst base , (cong (λ x → fst base + suc x) (modIndBase n x base) ∙ snd base)) λ x ind → fst ind , cong (λ x → fst ind + suc x) (modIndStep n x) ∙ snd ind mod-rUnit : (n x : ℕ) → x mod n ≡ ((x + n) mod n) mod-rUnit zero x = refl mod-rUnit (suc n) x = sym (modIndStep n x) ∙ cong (modInd n) (+-comm (suc n) x) mod-lUnit : (n x : ℕ) → x mod n ≡ ((n + x) mod n) mod-lUnit zero _ = refl mod-lUnit (suc n) x = sym (modIndStep n x) mod+mod≡mod : (n x y : ℕ) → (x + y) mod n ≡ (((x mod n) + (y mod n)) mod n) mod+mod≡mod zero _ _ = refl mod+mod≡mod (suc n) = +induction n (λ z → (x : ℕ) → ((z + x) mod (suc n)) ≡ (((z mod (suc n)) + (x mod (suc n))) mod (suc n))) (λ x p → +induction n _ (λ y q → cong (modInd n) (sym (cong₂ _+_ (modIndBase n x p) (modIndBase n y q)))) λ y ind → cong (modInd n) (cong (x +_) (+-comm (suc n) y) ∙ (+-assoc x y (suc n))) ∙∙ sym (mod-rUnit (suc n) (x + y)) ∙∙ ind ∙ cong (λ z → modInd n ((modInd n x + z))) (mod-rUnit (suc n) y ∙ cong (modInd n) (+-comm y (suc n)))) λ x p y → cong (modInd n) (cong suc (sym (+-assoc n x y))) ∙∙ sym (mod-lUnit (suc n) (x + y)) ∙∙ p y ∙ sym (cong (modInd n) (cong (_+ modInd n y) (cong (modInd n) (+-comm (suc n) x) ∙ sym (mod-rUnit (suc n) x)))) mod-idempotent : {n : ℕ} (x : ℕ) → (x mod n) mod n ≡ x mod n mod-idempotent {n = zero} _ = refl mod-idempotent {n = suc n} = +induction n (λ x → (x mod suc n) mod (suc n) ≡ x mod (suc n)) (λ x p → cong (_mod (suc n)) (modIndBase n x p)) λ x p → cong (_mod (suc n)) (modIndStep n x) ∙∙ p ∙∙ mod-rUnit (suc n) x ∙ (cong (_mod (suc n)) (+-comm x (suc n))) mod-rCancel : (n x y : ℕ) → (x + y) mod n ≡ (x + y mod n) mod n mod-rCancel zero x y = refl mod-rCancel (suc n) x = +induction n _ (λ y p → cong (λ z → (x + z) mod (suc n)) (sym (modIndBase n y p))) λ y p → cong (_mod suc n) (+-assoc x (suc n) y ∙∙ (cong (_+ y) (+-comm x (suc n))) ∙∙ sym (+-assoc (suc n) x y)) ∙∙ sym (mod-lUnit (suc n) (x + y)) ∙∙ (p ∙ cong (λ z → (x + z) mod suc n) (mod-lUnit (suc n) y)) mod-lCancel : (n x y : ℕ) → (x + y) mod n ≡ (x mod n + y) mod n mod-lCancel n x y = cong (_mod n) (+-comm x y) ∙∙ mod-rCancel n y x ∙∙ cong (_mod n) (+-comm y (x mod n)) zero-charac : (n : ℕ) → n mod n ≡ 0 zero-charac zero = refl zero-charac (suc n) = cong (_mod suc n) (+-comm 0 (suc n)) ∙∙ modIndStep n 0 ∙∙ modIndBase n 0 (n , (+-comm n 1)) -- remainder and quotient after division by n -- Again, allowing for 0-division to get nicer syntax remainder_/_ : (x n : ℕ) → ℕ remainder x / zero = x remainder x / suc n = x mod (suc n) quotient_/_ : (x n : ℕ) → ℕ quotient x / zero = 0 quotient x / suc n = +induction n (λ _ → ℕ) (λ _ _ → 0) (λ _ → suc) x ≡remainder+quotient : (n x : ℕ) → (remainder x / n) + n · (quotient x / n) ≡ x ≡remainder+quotient zero x = +-comm x 0 ≡remainder+quotient (suc n) = +induction n (λ x → (remainder x / (suc n)) + (suc n) · (quotient x / (suc n)) ≡ x) (λ x base → cong₂ _+_ (modIndBase n x base) (cong ((suc n) ·_) (+inductionBase n _ _ _ x base)) ∙∙ cong (x +_) (·-comm n 0) ∙∙ +-comm x 0) λ x ind → cong₂ _+_ (modIndStep n x) (cong ((suc n) ·_) (+inductionStep n _ _ _ x)) ∙∙ cong (modInd n x +_) (·-suc (suc n) (+induction n _ _ _ x)) ∙∙ cong (modInd n x +_) (+-comm (suc n) ((suc n) · (+induction n _ _ _ x))) ∙∙ +-assoc (modInd n x) ((suc n) · +induction n _ _ _ x) (suc n) ∙∙ cong (_+ suc n) ind ∙ +-comm x (suc n) private test₀ : 100 mod 81 ≡ 19 test₀ = refl test₁ : ((11 + (10 mod 3)) mod 3) ≡ 0 test₁ = refl
34.655844
74
0.445569
343f4442654fe18a6fced8c3ee6d39e91c812aba
4,879
agda
Agda
F2a.agda
JacquesCarette/pi-dual
003835484facfde0b770bc2b3d781b42b76184c1
[ "BSD-2-Clause" ]
14
2015-08-18T21:40:15.000Z
2021-05-05T01:07:57.000Z
F2a.agda
JacquesCarette/pi-dual
003835484facfde0b770bc2b3d781b42b76184c1
[ "BSD-2-Clause" ]
4
2018-06-07T16:27:41.000Z
2021-10-29T20:41:23.000Z
F2a.agda
JacquesCarette/pi-dual
003835484facfde0b770bc2b3d781b42b76184c1
[ "BSD-2-Clause" ]
3
2016-05-29T01:56:33.000Z
2019-09-10T09:47:13.000Z
-- {-# OPTIONS --without-K #-} module F2a where open import Agda.Prim open import Data.Unit open import Data.Nat hiding (_⊔_) open import Data.Sum open import Data.Product open import Function open import Relation.Binary.PropositionalEquality open import Paths open import Evaluator ------------------------------------------------------------------------------ -- -- General structure and idea -- -- We have pointed types (Paths.agda) -- We have paths between pointed types (Paths.agda) -- We have functions between pointed types (that use ≡ to make sure the -- basepoint is respected) (F2a.agda) -- Then we use univalence to connect these two independently developed -- notions (F2a.agda) -- Because our paths are richer than just refl and our functions are -- more restricted than arbitrary functions, and in fact because our -- path constructors are sound and complete for the class of functions -- we consider, we hope to _prove_ univalence -- ------------------------------------------------------------------------------ ------------------------------------------------------------------------------ -- Equivalences between raw functions and types -- This is generalized below to pointed types -- Two functions are ∼ is they map each argument to related results _∼_ : ∀ {ℓ ℓ'} → {A : Set ℓ} {P : A → Set ℓ'} → (f g : (x : A) → P x) → Set (ℓ ⊔ ℓ') _∼_ {ℓ} {ℓ'} {A} {P} f g = (x : A) → f x ≡ g x -- quasi-inverses record qinv {ℓ ℓ'} {A : Set ℓ} {B : Set ℓ'} (f : A → B) : Set (ℓ ⊔ ℓ') where constructor mkqinv field g : B → A α : (f ∘ g) ∼ id β : (g ∘ f) ∼ id idqinv : ∀ {ℓ} → {A : Set ℓ} → qinv {ℓ} {ℓ} {A} {A} id idqinv = record { g = id ; α = λ b → refl ; β = λ a → refl } -- equivalences record isequiv {ℓ ℓ'} {A : Set ℓ} {B : Set ℓ'} (f : A → B) : Set (ℓ ⊔ ℓ') where constructor mkisequiv field g : B → A α : (f ∘ g) ∼ id h : B → A β : (h ∘ f) ∼ id equiv₁ : ∀ {ℓ ℓ'} → {A : Set ℓ} {B : Set ℓ'} {f : A → B} → qinv f → isequiv f equiv₁ (mkqinv qg qα qβ) = mkisequiv qg qα qg qβ _≃_ : ∀ {ℓ ℓ'} (A : Set ℓ) (B : Set ℓ') → Set (ℓ ⊔ ℓ') A ≃ B = Σ (A → B) isequiv idequiv : ∀ {ℓ} {A : Set ℓ} → A ≃ A idequiv = (id , equiv₁ idqinv) -- Function extensionality {-- happly : ∀ {ℓ} {A B : Set ℓ} {f g : A → B} → (Path f g) → (f ∼ g) happly {ℓ} {A} {B} {f} {g} p = (pathInd (λ _ → f ∼ g) -- f ∼ g (λ {AA} a x → {!!}) {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} (λ a b x → {!cong (evalB p) (eval-resp-• (p))!}) {!!} {!!} {!!} {!!} {!!} {!!} (λ a x → {!!}) (λ p₁ q x x₁ x₂ → x x₂) (λ p₁ q x x₁ x₂ → x x₂) (λ p₁ q x x₁ x₂ → x x₂) (λ p₁ q x x₁ x₂ → x₁ x₂)) {A → B} {A → B} {f} {g} p postulate funextP : {A B : Set} {f g : A → B} → isequiv {A = Path f g} {B = f ∼ g} happly funext : {A B : Set} {f g : A → B} → (f ∼ g) → (Path f g) funext = isequiv.g funextP -- Universes; univalence idtoeqv : {A B : Set} → (Path A B) → (A ≃ B) idtoeqv {A} {B} p = {!!} {-- (pathInd (λ {S₁} {S₂} {A} {B} p → {!!}) {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!}) {Set} {Set} {A} {B} p --} postulate univalence : {ℓ : Level} {A B : Set ℓ} → (Path A B) ≃ (A ≃ B) --} path2fun : {ℓ : Level} {A B : Set ℓ} → (Path A B) → (A ≃ B) path2fun p = ( {!!} , {!!}) ------------------------------------------------------------------------------ -- Functions and equivalences between pointed types -- Univalence as a postulate for now but hopefully we can actually prove it -- since the pi-combinators are sound and complete for isomorphisms between -- finite types --postulate -- univalence• : {ℓ : Level} {A• B• : Set• {ℓ}} → (Path A• B•) ≃• (A• ≃• B•) {-- record isequiv• {ℓ} {A B : Set} {A• B• : Set• {ℓ}} (f• : A• →• B•) : Set (lsuc ℓ) where constructor mkisequiv• field equi : isequiv (fun f•) path' : Path (• A•) (• B•) _≈•_ : ∀ {ℓ} {A B : Set} (A• B• : Set• {ℓ}) → Set (lsuc ℓ) _≈•_ {_} {A} {B} A• B• = Σ (A• →• B•) (isequiv• {_} {A} {B}) --} ------------------------------------------------------------------------------ -- Univalence for pointed types eval• : {ℓ : Level} {A• B• : Set• {ℓ}} → A• ⇛ B• → (A• →• B•) eval• c = record { fun = eval c ; resp• = eval-resp-• c } evalB• : {ℓ : Level} {A• B• : Set• {ℓ}} → A• ⇛ B• → (B• →• A•) evalB• c = record { fun = evalB c ; resp• = evalB-resp-• c } -- This is at the wrong level... We need to define equivalences ≃ between -- pointed sets too... {-- path2iso : {ℓ : Level} {A• B• : Set• {ℓ}} → A• ⇛ B• → ∣ A• ∣ ≃ ∣ B• ∣ path2iso {ℓ} {a} {b} p = (eval p , mkisequiv (evalB p) (λ x → {!!}) (evalB p) (λ x → {!eval∘evalB p!})) --} ------------------------------------------------------------------------------ --}
28.869822
78
0.455216
7c35e924c8c2f498294e93c591287f4179d85a8c
2,611
agda
Agda
test/Succeed/EtaContractionDefBody.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/EtaContractionDefBody.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/EtaContractionDefBody.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- 2010-11-16 -- compactification of Data.Set.Decoration.gmapAll -- -- This test case fails if we remove instantiateFull -- (and with it eta-contraction) from definition bodies in Def.hs -- see Issue 361 -- {-# OPTIONS -v tc.polarity:15 -v tc.pos:25 #-} module EtaContractionDefBody where ------------------------------------------------------------------------ -- Binary relations -- Homogeneous binary relations Rel : Set → Set1 Rel A = A → A → Set -- Generalised implication. If P ≡ Q it can be read as "f preserves -- P". _=[_]⇒_ : {A B : Set} → Rel A → (A → B) → Rel B → Set P =[ f ]⇒ Q = ∀ {x y} → P x y → Q (f x) (f y) record Σ₂ {A B : Set} (T : A → B → Set) : Set where constructor pack₂ field {x} : A {y} : B proof : T x y -- Data.Star infixr 5 _◅_ -- Reflexive transitive closure. data Star {I : Set} (T : Rel I) : Rel I where ε : ∀ {i} → Star T i i _◅_ : ∀ {i j k} (x : T i j) (xs : Star T j k) → Star T i k -- The type of _◅_ is Trans T (Star T) (Star T); I expanded -- the definition in order to be able to name the arguments (x -- and xs). -- A generalised variant of map which allows the index type to change. gmap : ∀ {I} {T : Rel I} {J} {U : Rel J} → (f : I → J) → T =[ f ]⇒ U → Star T =[ f ]⇒ Star U gmap f g ε = ε gmap f g (x ◅ xs) = g x ◅ gmap f g xs -- Data.Star.Decoration EdgePred : ∀ {I} → Rel I → Set₁ EdgePred T = ∀ {i j} → T i j → Set -- Decorating an edge with more information. data DecoratedWith {I : Set} {T : Rel I} (P : EdgePred T) : Rel (Σ₂ (Star T)) where ↦ : ∀ {i j k} {x : T i j} {xs : Star T j k} (p : P x) → DecoratedWith P (pack₂ (x ◅ xs)) (pack₂ xs) -- Star-lists decorated with extra information. All P xs means that -- all edges in xs satisfy P. All : ∀ {I} {T : Rel I} → EdgePred T → EdgePred (Star T) All P {j = j} xs = Star (DecoratedWith P) (pack₂ xs) (pack₂ {y = j} ε) -- We can map over decorated vectors. gmapAll : ∀ {I} {T : Rel I} {P : EdgePred T} {J} {U : Rel J} {Q : EdgePred U} {i j} {xs : Star T i j} (f : I → J) (g : T =[ f ]⇒ U) → (∀ {i j} {x : T i j} → P x → Q (g x)) → All P xs → All {T = U} Q (gmap f g xs) gmapAll f g h ε = ε gmapAll f g h (↦ x ◅ xs) = ↦ (h x) ◅ gmapAll f g h xs {- THIS WOULD BE THE ERROR MESSAGE: /Users/abel/cover/alfa/Agda2/test/succeed/EtaContractionDefBody.agda:76,15-16 xs != ε of type Star (λ .i' .j → T .i' .j) j j when checking that the pattern ε has type Star (DecoratedWith (λ {.i} {.j} → P)) (pack₂ xs) (pack₂ ε) -}
28.380435
77
0.532746
3dcf085852969381a79840cd62f631be7e677cbd
13,047
agda
Agda
vendor/stdlib/src/Relation/Binary/Sum.agda
isabella232/Lemmachine
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
[ "MIT" ]
56
2015-01-20T02:11:42.000Z
2021-12-21T17:02:19.000Z
vendor/stdlib/src/Relation/Binary/Sum.agda
larrytheliquid/Lemmachine
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
[ "MIT" ]
1
2022-03-12T12:17:51.000Z
2022-03-12T12:17:51.000Z
vendor/stdlib/src/Relation/Binary/Sum.agda
isabella232/Lemmachine
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
[ "MIT" ]
3
2015-07-21T16:37:58.000Z
2022-03-12T11:54:10.000Z
------------------------------------------------------------------------ -- Sums of binary relations ------------------------------------------------------------------------ module Relation.Binary.Sum where open import Data.Function open import Data.Sum as Sum open import Data.Product open import Data.Unit using (⊤) open import Data.Empty open import Relation.Nullary open import Relation.Binary infixr 1 _⊎-Rel_ _⊎-<_ ------------------------------------------------------------------------ -- Sums of relations -- Generalised sum. data ⊎ʳ (P : Set) {a₁ : Set} (_∼₁_ : Rel a₁) {a₂ : Set} (_∼₂_ : Rel a₂) : a₁ ⊎ a₂ → a₁ ⊎ a₂ → Set where ₁∼₂ : ∀ {x y} (p : P) → ⊎ʳ P _∼₁_ _∼₂_ (inj₁ x) (inj₂ y) ₁∼₁ : ∀ {x y} (x∼₁y : x ∼₁ y) → ⊎ʳ P _∼₁_ _∼₂_ (inj₁ x) (inj₁ y) ₂∼₂ : ∀ {x y} (x∼₂y : x ∼₂ y) → ⊎ʳ P _∼₁_ _∼₂_ (inj₂ x) (inj₂ y) -- Pointwise sum. _⊎-Rel_ : ∀ {a₁} (_∼₁_ : Rel a₁) → ∀ {a₂} (_∼₂_ : Rel a₂) → Rel (a₁ ⊎ a₂) _⊎-Rel_ = ⊎ʳ ⊥ -- All things to the left are smaller than (or equal to, depending on -- the underlying equality) all things to the right. _⊎-<_ : ∀ {a₁} (_∼₁_ : Rel a₁) → ∀ {a₂} (_∼₂_ : Rel a₂) → Rel (a₁ ⊎ a₂) _⊎-<_ = ⊎ʳ ⊤ ------------------------------------------------------------------------ -- Helpers private ₁≁₂ : ∀ {a₁} {∼₁ : Rel a₁} → ∀ {a₂} {∼₂ : Rel a₂} → ∀ {x y} → ¬ (inj₁ x ⟨ ∼₁ ⊎-Rel ∼₂ ⟩₁ inj₂ y) ₁≁₂ (₁∼₂ ()) drop-inj₁ : ∀ {a₁} {∼₁ : Rel a₁} → ∀ {a₂} {∼₂ : Rel a₂} → ∀ {P x y} → inj₁ x ⟨ ⊎ʳ P ∼₁ ∼₂ ⟩₁ inj₁ y → ∼₁ x y drop-inj₁ (₁∼₁ x∼y) = x∼y drop-inj₂ : ∀ {a₁} {∼₁ : Rel a₁} → ∀ {a₂} {∼₂ : Rel a₂} → ∀ {P x y} → inj₂ x ⟨ ⊎ʳ P ∼₁ ∼₂ ⟩₁ inj₂ y → ∼₂ x y drop-inj₂ (₂∼₂ x∼y) = x∼y ------------------------------------------------------------------------ -- Some properties which are preserved by the relation formers above _⊎-reflexive_ : ∀ {a₁} {≈₁ ∼₁ : Rel a₁} → ≈₁ ⇒ ∼₁ → ∀ {a₂} {≈₂ ∼₂ : Rel a₂} → ≈₂ ⇒ ∼₂ → ∀ {P} → (≈₁ ⊎-Rel ≈₂) ⇒ (⊎ʳ P ∼₁ ∼₂) refl₁ ⊎-reflexive refl₂ = refl where refl : (_ ⊎-Rel _) ⇒ (⊎ʳ _ _ _) refl (₁∼₁ x₁≈y₁) = ₁∼₁ (refl₁ x₁≈y₁) refl (₂∼₂ x₂≈y₂) = ₂∼₂ (refl₂ x₂≈y₂) refl (₁∼₂ ()) _⊎-refl_ : ∀ {a₁} {∼₁ : Rel a₁} → Reflexive ∼₁ → ∀ {a₂} {∼₂ : Rel a₂} → Reflexive ∼₂ → Reflexive (∼₁ ⊎-Rel ∼₂) refl₁ ⊎-refl refl₂ = refl where refl : Reflexive (_ ⊎-Rel _) refl {x = inj₁ _} = ₁∼₁ refl₁ refl {x = inj₂ _} = ₂∼₂ refl₂ _⊎-irreflexive_ : ∀ {a₁} {≈₁ <₁ : Rel a₁} → Irreflexive ≈₁ <₁ → ∀ {a₂} {≈₂ <₂ : Rel a₂} → Irreflexive ≈₂ <₂ → ∀ {P} → Irreflexive (≈₁ ⊎-Rel ≈₂) (⊎ʳ P <₁ <₂) irrefl₁ ⊎-irreflexive irrefl₂ = irrefl where irrefl : Irreflexive (_ ⊎-Rel _) (⊎ʳ _ _ _) irrefl (₁∼₁ x₁≈y₁) (₁∼₁ x₁<y₁) = irrefl₁ x₁≈y₁ x₁<y₁ irrefl (₂∼₂ x₂≈y₂) (₂∼₂ x₂<y₂) = irrefl₂ x₂≈y₂ x₂<y₂ irrefl (₁∼₂ ()) _ _⊎-symmetric_ : ∀ {a₁} {∼₁ : Rel a₁} → Symmetric ∼₁ → ∀ {a₂} {∼₂ : Rel a₂} → Symmetric ∼₂ → Symmetric (∼₁ ⊎-Rel ∼₂) sym₁ ⊎-symmetric sym₂ = sym where sym : Symmetric (_ ⊎-Rel _) sym (₁∼₁ x₁∼y₁) = ₁∼₁ (sym₁ x₁∼y₁) sym (₂∼₂ x₂∼y₂) = ₂∼₂ (sym₂ x₂∼y₂) sym (₁∼₂ ()) _⊎-transitive_ : ∀ {a₁} {∼₁ : Rel a₁} → Transitive ∼₁ → ∀ {a₂} {∼₂ : Rel a₂} → Transitive ∼₂ → ∀ {P} → Transitive (⊎ʳ P ∼₁ ∼₂) trans₁ ⊎-transitive trans₂ = trans where trans : Transitive (⊎ʳ _ _ _) trans (₁∼₁ x∼y) (₁∼₁ y∼z) = ₁∼₁ (trans₁ x∼y y∼z) trans (₂∼₂ x∼y) (₂∼₂ y∼z) = ₂∼₂ (trans₂ x∼y y∼z) trans (₁∼₂ p) (₂∼₂ _) = ₁∼₂ p trans (₁∼₁ _) (₁∼₂ p) = ₁∼₂ p _⊎-antisymmetric_ : ∀ {a₁} {≈₁ ≤₁ : Rel a₁} → Antisymmetric ≈₁ ≤₁ → ∀ {a₂} {≈₂ ≤₂ : Rel a₂} → Antisymmetric ≈₂ ≤₂ → ∀ {P} → Antisymmetric (≈₁ ⊎-Rel ≈₂) (⊎ʳ P ≤₁ ≤₂) antisym₁ ⊎-antisymmetric antisym₂ = antisym where antisym : Antisymmetric (_ ⊎-Rel _) (⊎ʳ _ _ _) antisym (₁∼₁ x≤y) (₁∼₁ y≤x) = ₁∼₁ (antisym₁ x≤y y≤x) antisym (₂∼₂ x≤y) (₂∼₂ y≤x) = ₂∼₂ (antisym₂ x≤y y≤x) antisym (₁∼₂ _) () _⊎-asymmetric_ : ∀ {a₁} {<₁ : Rel a₁} → Asymmetric <₁ → ∀ {a₂} {<₂ : Rel a₂} → Asymmetric <₂ → ∀ {P} → Asymmetric (⊎ʳ P <₁ <₂) asym₁ ⊎-asymmetric asym₂ = asym where asym : Asymmetric (⊎ʳ _ _ _) asym (₁∼₁ x<y) (₁∼₁ y<x) = asym₁ x<y y<x asym (₂∼₂ x<y) (₂∼₂ y<x) = asym₂ x<y y<x asym (₁∼₂ _) () _⊎-≈-respects₂_ : ∀ {a₁} {≈₁ ∼₁ : Rel a₁} → ∼₁ Respects₂ ≈₁ → ∀ {a₂} {≈₂ ∼₂ : Rel a₂} → ∼₂ Respects₂ ≈₂ → ∀ {P} → (⊎ʳ P ∼₁ ∼₂) Respects₂ (≈₁ ⊎-Rel ≈₂) _⊎-≈-respects₂_ {≈₁ = ≈₁} {∼₁ = ∼₁} resp₁ {≈₂ = ≈₂} {∼₂ = ∼₂} resp₂ {P} = (λ {_ _ _} → resp¹) , (λ {_ _ _} → resp²) where resp¹ : ∀ {x} → ((⊎ʳ P ∼₁ ∼₂) x) Respects (≈₁ ⊎-Rel ≈₂) resp¹ (₁∼₁ y≈y') (₁∼₁ x∼y) = ₁∼₁ (proj₁ resp₁ y≈y' x∼y) resp¹ (₂∼₂ y≈y') (₂∼₂ x∼y) = ₂∼₂ (proj₁ resp₂ y≈y' x∼y) resp¹ (₂∼₂ y≈y') (₁∼₂ p) = (₁∼₂ p) resp¹ (₁∼₂ ()) _ resp² : ∀ {y} → (flip₁ (⊎ʳ P ∼₁ ∼₂) y) Respects (≈₁ ⊎-Rel ≈₂) resp² (₁∼₁ x≈x') (₁∼₁ x∼y) = ₁∼₁ (proj₂ resp₁ x≈x' x∼y) resp² (₂∼₂ x≈x') (₂∼₂ x∼y) = ₂∼₂ (proj₂ resp₂ x≈x' x∼y) resp² (₁∼₁ x≈x') (₁∼₂ p) = (₁∼₂ p) resp² (₁∼₂ ()) _ _⊎-substitutive_ : ∀ {a₁} {∼₁ : Rel a₁} → Substitutive ∼₁ → ∀ {a₂} {∼₂ : Rel a₂} → Substitutive ∼₂ → Substitutive (∼₁ ⊎-Rel ∼₂) subst₁ ⊎-substitutive subst₂ = subst where subst : Substitutive (_ ⊎-Rel _) subst P (₁∼₁ x∼y) Px = subst₁ (λ z → P (inj₁ z)) x∼y Px subst P (₂∼₂ x∼y) Px = subst₂ (λ z → P (inj₂ z)) x∼y Px subst P (₁∼₂ ()) Px ⊎-decidable : ∀ {a₁} {∼₁ : Rel a₁} → Decidable ∼₁ → ∀ {a₂} {∼₂ : Rel a₂} → Decidable ∼₂ → ∀ {P} → (∀ {x y} → Dec (inj₁ x ⟨ ⊎ʳ P ∼₁ ∼₂ ⟩₁ inj₂ y)) → Decidable (⊎ʳ P ∼₁ ∼₂) ⊎-decidable {∼₁ = ∼₁} dec₁ {∼₂ = ∼₂} dec₂ {P} dec₁₂ = dec where dec : Decidable (⊎ʳ P ∼₁ ∼₂) dec (inj₁ x) (inj₁ y) with dec₁ x y ... | yes x∼y = yes (₁∼₁ x∼y) ... | no x≁y = no (x≁y ∘ drop-inj₁) dec (inj₂ x) (inj₂ y) with dec₂ x y ... | yes x∼y = yes (₂∼₂ x∼y) ... | no x≁y = no (x≁y ∘ drop-inj₂) dec (inj₁ x) (inj₂ y) = dec₁₂ dec (inj₂ x) (inj₁ y) = no (λ()) _⊎-<-total_ : ∀ {a₁} {≤₁ : Rel a₁} → Total ≤₁ → ∀ {a₂} {≤₂ : Rel a₂} → Total ≤₂ → Total (≤₁ ⊎-< ≤₂) total₁ ⊎-<-total total₂ = total where total : Total (_ ⊎-< _) total (inj₁ x) (inj₁ y) = Sum.map ₁∼₁ ₁∼₁ $ total₁ x y total (inj₂ x) (inj₂ y) = Sum.map ₂∼₂ ₂∼₂ $ total₂ x y total (inj₁ x) (inj₂ y) = inj₁ (₁∼₂ _) total (inj₂ x) (inj₁ y) = inj₂ (₁∼₂ _) _⊎-<-trichotomous_ : ∀ {a₁} {≈₁ <₁ : Rel a₁} → Trichotomous ≈₁ <₁ → ∀ {a₂} {≈₂ <₂ : Rel a₂} → Trichotomous ≈₂ <₂ → Trichotomous (≈₁ ⊎-Rel ≈₂) (<₁ ⊎-< <₂) _⊎-<-trichotomous_ {≈₁ = ≈₁} {<₁ = <₁} tri₁ {≈₂ = ≈₂} {<₂ = <₂} tri₂ = tri where tri : Trichotomous (≈₁ ⊎-Rel ≈₂) (<₁ ⊎-< <₂) tri (inj₁ x) (inj₂ y) = tri< (₁∼₂ _) ₁≁₂ (λ()) tri (inj₂ x) (inj₁ y) = tri> (λ()) (λ()) (₁∼₂ _) tri (inj₁ x) (inj₁ y) with tri₁ x y ... | tri< x<y x≉y x≯y = tri< (₁∼₁ x<y) (x≉y ∘ drop-inj₁) (x≯y ∘ drop-inj₁) ... | tri≈ x≮y x≈y x≯y = tri≈ (x≮y ∘ drop-inj₁) (₁∼₁ x≈y) (x≯y ∘ drop-inj₁) ... | tri> x≮y x≉y x>y = tri> (x≮y ∘ drop-inj₁) (x≉y ∘ drop-inj₁) (₁∼₁ x>y) tri (inj₂ x) (inj₂ y) with tri₂ x y ... | tri< x<y x≉y x≯y = tri< (₂∼₂ x<y) (x≉y ∘ drop-inj₂) (x≯y ∘ drop-inj₂) ... | tri≈ x≮y x≈y x≯y = tri≈ (x≮y ∘ drop-inj₂) (₂∼₂ x≈y) (x≯y ∘ drop-inj₂) ... | tri> x≮y x≉y x>y = tri> (x≮y ∘ drop-inj₂) (x≉y ∘ drop-inj₂) (₂∼₂ x>y) ------------------------------------------------------------------------ -- Some collections of properties which are preserved _⊎-isEquivalence_ : ∀ {a₁} {≈₁ : Rel a₁} → IsEquivalence ≈₁ → ∀ {a₂} {≈₂ : Rel a₂} → IsEquivalence ≈₂ → IsEquivalence (≈₁ ⊎-Rel ≈₂) eq₁ ⊎-isEquivalence eq₂ = record { refl = refl eq₁ ⊎-refl refl eq₂ ; sym = sym eq₁ ⊎-symmetric sym eq₂ ; trans = trans eq₁ ⊎-transitive trans eq₂ } where open IsEquivalence _⊎-isPreorder_ : ∀ {a₁} {≈₁ ∼₁ : Rel a₁} → IsPreorder ≈₁ ∼₁ → ∀ {a₂} {≈₂ ∼₂ : Rel a₂} → IsPreorder ≈₂ ∼₂ → ∀ {P} → IsPreorder (≈₁ ⊎-Rel ≈₂) (⊎ʳ P ∼₁ ∼₂) pre₁ ⊎-isPreorder pre₂ = record { isEquivalence = isEquivalence pre₁ ⊎-isEquivalence isEquivalence pre₂ ; reflexive = reflexive pre₁ ⊎-reflexive reflexive pre₂ ; trans = trans pre₁ ⊎-transitive trans pre₂ ; ∼-resp-≈ = ∼-resp-≈ pre₁ ⊎-≈-respects₂ ∼-resp-≈ pre₂ } where open IsPreorder _⊎-isDecEquivalence_ : ∀ {a₁} {≈₁ : Rel a₁} → IsDecEquivalence ≈₁ → ∀ {a₂} {≈₂ : Rel a₂} → IsDecEquivalence ≈₂ → IsDecEquivalence (≈₁ ⊎-Rel ≈₂) eq₁ ⊎-isDecEquivalence eq₂ = record { isEquivalence = isEquivalence eq₁ ⊎-isEquivalence isEquivalence eq₂ ; _≟_ = ⊎-decidable (_≟_ eq₁) (_≟_ eq₂) (no ₁≁₂) } where open IsDecEquivalence _⊎-isPartialOrder_ : ∀ {a₁} {≈₁ ≤₁ : Rel a₁} → IsPartialOrder ≈₁ ≤₁ → ∀ {a₂} {≈₂ ≤₂ : Rel a₂} → IsPartialOrder ≈₂ ≤₂ → ∀ {P} → IsPartialOrder (≈₁ ⊎-Rel ≈₂) (⊎ʳ P ≤₁ ≤₂) po₁ ⊎-isPartialOrder po₂ = record { isPreorder = isPreorder po₁ ⊎-isPreorder isPreorder po₂ ; antisym = antisym po₁ ⊎-antisymmetric antisym po₂ } where open IsPartialOrder _⊎-isStrictPartialOrder_ : ∀ {a₁} {≈₁ <₁ : Rel a₁} → IsStrictPartialOrder ≈₁ <₁ → ∀ {a₂} {≈₂ <₂ : Rel a₂} → IsStrictPartialOrder ≈₂ <₂ → ∀ {P} → IsStrictPartialOrder (≈₁ ⊎-Rel ≈₂) (⊎ʳ P <₁ <₂) spo₁ ⊎-isStrictPartialOrder spo₂ = record { isEquivalence = isEquivalence spo₁ ⊎-isEquivalence isEquivalence spo₂ ; irrefl = irrefl spo₁ ⊎-irreflexive irrefl spo₂ ; trans = trans spo₁ ⊎-transitive trans spo₂ ; <-resp-≈ = <-resp-≈ spo₁ ⊎-≈-respects₂ <-resp-≈ spo₂ } where open IsStrictPartialOrder _⊎-<-isTotalOrder_ : ∀ {a₁} {≈₁ ≤₁ : Rel a₁} → IsTotalOrder ≈₁ ≤₁ → ∀ {a₂} {≈₂ ≤₂ : Rel a₂} → IsTotalOrder ≈₂ ≤₂ → IsTotalOrder (≈₁ ⊎-Rel ≈₂) (≤₁ ⊎-< ≤₂) to₁ ⊎-<-isTotalOrder to₂ = record { isPartialOrder = isPartialOrder to₁ ⊎-isPartialOrder isPartialOrder to₂ ; total = total to₁ ⊎-<-total total to₂ } where open IsTotalOrder _⊎-<-isDecTotalOrder_ : ∀ {a₁} {≈₁ ≤₁ : Rel a₁} → IsDecTotalOrder ≈₁ ≤₁ → ∀ {a₂} {≈₂ ≤₂ : Rel a₂} → IsDecTotalOrder ≈₂ ≤₂ → IsDecTotalOrder (≈₁ ⊎-Rel ≈₂) (≤₁ ⊎-< ≤₂) to₁ ⊎-<-isDecTotalOrder to₂ = record { isTotalOrder = isTotalOrder to₁ ⊎-<-isTotalOrder isTotalOrder to₂ ; _≟_ = ⊎-decidable (_≟_ to₁) (_≟_ to₂) (no ₁≁₂) ; _≤?_ = ⊎-decidable (_≤?_ to₁) (_≤?_ to₂) (yes (₁∼₂ _)) } where open IsDecTotalOrder ------------------------------------------------------------------------ -- The game can be taken even further... _⊎-setoid_ : Setoid → Setoid → Setoid s₁ ⊎-setoid s₂ = record { isEquivalence = isEquivalence s₁ ⊎-isEquivalence isEquivalence s₂ } where open Setoid _⊎-preorder_ : Preorder → Preorder → Preorder p₁ ⊎-preorder p₂ = record { _∼_ = _∼_ p₁ ⊎-Rel _∼_ p₂ ; isPreorder = isPreorder p₁ ⊎-isPreorder isPreorder p₂ } where open Preorder _⊎-decSetoid_ : DecSetoid → DecSetoid → DecSetoid ds₁ ⊎-decSetoid ds₂ = record { isDecEquivalence = isDecEquivalence ds₁ ⊎-isDecEquivalence isDecEquivalence ds₂ } where open DecSetoid _⊎-poset_ : Poset → Poset → Poset po₁ ⊎-poset po₂ = record { _≤_ = _≤_ po₁ ⊎-Rel _≤_ po₂ ; isPartialOrder = isPartialOrder po₁ ⊎-isPartialOrder isPartialOrder po₂ } where open Poset _⊎-<-poset_ : Poset → Poset → Poset po₁ ⊎-<-poset po₂ = record { _≤_ = _≤_ po₁ ⊎-< _≤_ po₂ ; isPartialOrder = isPartialOrder po₁ ⊎-isPartialOrder isPartialOrder po₂ } where open Poset _⊎-<-strictPartialOrder_ : StrictPartialOrder → StrictPartialOrder → StrictPartialOrder spo₁ ⊎-<-strictPartialOrder spo₂ = record { _<_ = _<_ spo₁ ⊎-< _<_ spo₂ ; isStrictPartialOrder = isStrictPartialOrder spo₁ ⊎-isStrictPartialOrder isStrictPartialOrder spo₂ } where open StrictPartialOrder _⊎-<-totalOrder_ : TotalOrder → TotalOrder → TotalOrder to₁ ⊎-<-totalOrder to₂ = record { isTotalOrder = isTotalOrder to₁ ⊎-<-isTotalOrder isTotalOrder to₂ } where open TotalOrder _⊎-<-decTotalOrder_ : DecTotalOrder → DecTotalOrder → DecTotalOrder to₁ ⊎-<-decTotalOrder to₂ = record { isDecTotalOrder = isDecTotalOrder to₁ ⊎-<-isDecTotalOrder isDecTotalOrder to₂ } where open DecTotalOrder
37.277143
72
0.490994
06fc64b6bc0264c0cc1bce4a7a61b10ed348ce0e
399
agda
Agda
test/Succeed/Issue2824.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue2824.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue2824.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2017-11-01, issue #2824 -- allow built-in pragmas before top-level module header {-# OPTIONS --rewriting --confluence-check #-} open import Agda.Builtin.Equality {-# BUILTIN REWRITE _≡_ #-} module Issue2824 (A : Set) where -- This is the top-level module header. postulate P : A → Set a b : A a→b : a ≡ b {-# REWRITE a→b #-} test : P a → P b test x = x -- Should succeed.
17.347826
73
0.639098
0396163950f9e3e2d6008de7b5f961ed1e3c7b7d
880
agda
Agda
core/lib/groups/Groups.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
294
2015-01-09T16:23:23.000Z
2022-03-20T13:54:45.000Z
core/lib/groups/Groups.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
31
2015-03-05T20:09:00.000Z
2021-10-03T19:15:25.000Z
core/lib/groups/Groups.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
50
2015-01-10T01:48:08.000Z
2022-02-14T03:03:25.000Z
{-# OPTIONS --without-K --rewriting #-} module lib.groups.Groups where open import lib.groups.CommutingSquare public open import lib.groups.FreeAbelianGroup public open import lib.groups.FreeGroup public open import lib.groups.GeneratedAbelianGroup public open import lib.groups.GeneratedGroup public open import lib.groups.GroupProduct public open import lib.groups.Homomorphism public open import lib.groups.HomotopyGroup public open import lib.groups.Int public open import lib.groups.Isomorphism public open import lib.groups.Lift public open import lib.groups.LoopSpace public open import lib.groups.QuotientGroup public open import lib.groups.PullbackGroup public open import lib.groups.Subgroup public open import lib.groups.SubgroupProp public open import lib.groups.TensorProduct public open import lib.groups.TruncationGroup public open import lib.groups.Unit public
35.2
51
0.843182
7c9feeb64fc9e7ec1dfb9b8ed0f4e11ace353260
9,536
agda
Agda
src/Dijkstra/RWS.agda
LaudateCorpus1/bft-consensus-agda
a4674fc473f2457fd3fe5123af48253cfb2404ef
[ "UPL-1.0" ]
null
null
null
src/Dijkstra/RWS.agda
LaudateCorpus1/bft-consensus-agda
a4674fc473f2457fd3fe5123af48253cfb2404ef
[ "UPL-1.0" ]
null
null
null
src/Dijkstra/RWS.agda
LaudateCorpus1/bft-consensus-agda
a4674fc473f2457fd3fe5123af48253cfb2404ef
[ "UPL-1.0" ]
null
null
null
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020, 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} -- This module provides functionality for proving properties about -- programs written using this RWS monad. The main definitions are: -- - RWS-weakestPre, a large elimination that, given an RWS program and a -- post condition for the program, produces the weakest precondition needed -- to satisfy that post condition. Branches in code using the constructors -- `RWS-if` and friends are translated into products, with each component of -- the product corresponding to a possible branch taken. -- - RWS-Contract is the type of proofs that, given a stateful computation and -- a post condition, the weakest precondition suffices to prove that post -- condition. -- - RWS-contract proves RWS-Contract, i.e., for every stateful computation -- `m` and post condition `P`, given a proof over a pre-state `pre` the -- weakest precondition for `P` holds, then postcondition `P` holds for the -- post-state obtained from running `m` in state `pre`. module Dijkstra.RWS where open import Agda.Builtin.Equality using (_≡_; refl) open import Data.Product using (_×_; _,_; proj₁; proj₂) open import Haskell.Modules.RWS open import Haskell.Prelude private variable Ev Wr St : Set A B C : Set -- Preconditions are predicates over environments and prestates. RWS-Pre : (Ev St : Set) → Set₁ RWS-Pre Ev St = (ev : Ev) (pre : St) → Set -- Postconditions are predicates over a result, poststate, and list of outputs. RWS-Post : (Wr St A : Set) → Set₁ RWS-Post Wr St A = (x : A) (post : St) (outs : List Wr) → Set RWS-Post-⇒ : (P Q : RWS-Post Wr St A) → Set RWS-Post-⇒ P Q = ∀ r st outs → P r st outs → Q r st outs -- RWS-weakestPre computes a predicate transformer: it maps a RWS -- computation `m` and desired postcondition `Post` to the weakest precondition -- needed to prove `P` holds after running `m`. RWS-PredTrans : (Ev Wr St A : Set) → Set₁ RWS-PredTrans Ev Wr St A = RWS-Post Wr St A → RWS-Pre Ev St -- When RWS computations are sequenced, e.g., `RWS-bind m λ x → f x`, -- outputs are concatenated. The postcondition desired for the above sequence -- becomes a postcondition for `f x` in which the outputs of `m` are prepended -- to the outputs of `f x`. RWS-Post++ : ∀ {Wr St A} → RWS-Post Wr St A → List Wr → RWS-Post Wr St A RWS-Post++ P outs x post outs₁ = P x post (outs ++ outs₁) -- Consider again the sequence `RWS-bind m₁ λ x → f x`. We also translate a -- postcondition `P` for the sequence into a postcondition for `m` --- -- specifically, the post condition we want for `m` is that the weakest -- precondition for `RWS-Post++ P outs` holds, where `outs` are the outputs of -- `m`. RWS-weakestPre-bindPost : (ev : Ev) (f : A → RWS Ev Wr St B) → RWS-Post Wr St B → RWS-Post Wr St A RWS-weakestPre-ebindPost : (ev : Ev) (f : A → RWS Ev Wr St (Either C B)) → RWS-Post Wr St (Either C B) → RWS-Post Wr St (Either C A) RWS-weakestPre : (m : RWS Ev Wr St A) → RWS-PredTrans Ev Wr St A RWS-weakestPre (RWS-return x) P ev pre = P x pre [] RWS-weakestPre (RWS-bind m f) P ev pre = RWS-weakestPre m (RWS-weakestPre-bindPost ev f P) ev pre RWS-weakestPre (RWS-gets f) P ev pre = P (f pre) pre [] RWS-weakestPre (RWS-put post) P ev pre = P unit post [] RWS-weakestPre RWS-ask P ev pre = P ev pre [] RWS-weakestPre (RWS-tell outs) P ev pre = P unit pre outs RWS-weakestPre (RWS-if (clause (b ≔ c) gs)) P ev pre = (toBool b ≡ true → RWS-weakestPre c P ev pre) × (toBool b ≡ false → RWS-weakestPre (RWS-if gs) P ev pre) RWS-weakestPre (RWS-if (otherwise≔ c)) P ev pre = RWS-weakestPre c P ev pre RWS-weakestPre (RWS-either f₁ f₂ e) P ev pre = (∀ x → (e ≡ Left x) → RWS-weakestPre (f₁ x) P ev pre) × (∀ y → (e ≡ Right y) → RWS-weakestPre (f₂ y) P ev pre) RWS-weakestPre (RWS-ebind m f) P ev pre = RWS-weakestPre m (RWS-weakestPre-ebindPost ev f P) ev pre RWS-weakestPre (RWS-maybe f₁ f₂ m) P ev pre = (m ≡ nothing → RWS-weakestPre f₁ P ev pre) × (∀ j → m ≡ just j → RWS-weakestPre (f₂ j) P ev pre) RWS-weakestPre-ebindPost ev f Post (Left r) post outs = Post (Left r) post outs RWS-weakestPre-ebindPost ev f Post (Right r) post outs = ∀ c → c ≡ r → RWS-weakestPre (f c) (RWS-Post++ Post outs) ev post RWS-weakestPre-bindPost ev f Post x post outs = ∀ r → r ≡ x → RWS-weakestPre (f r) (RWS-Post++ Post outs) ev post -- The post condition `P` holds for `m` with environment `ev` and prestate `pre` RWS-Post-True : (P : RWS-Post Wr St A) (m : RWS Ev Wr St A) (ev : Ev) (pre : St) → Set RWS-Post-True P m ev pre = let (x , post , outs) = RWS-run m ev pre in P x post outs -- For every RWS computation `m`, `RWS-Contract m` is the type of proofs that, -- for all post conditions `P`, starting environments `ev` and prestates `pre`, -- to prove that `P` holds after running `m` in `ev` and `pre`, it suffices to -- provide a proof of the weakest precondition for `P` with respect to `m`, -- `ev`, and `pre`. RWS-Contract : (m : RWS Ev Wr St A) → Set₁ RWS-Contract{Ev}{Wr}{St}{A} m = (P : RWS-Post Wr St A) → (ev : Ev) (pre : St) → RWS-weakestPre m P ev pre → RWS-Post-True P m ev pre -- This proves that `RWS-weakestPre` gives a *sufficient* precondition for -- establishing a desired postcondition. Note thought that it does not prove -- that this precondition is the weakest such one; even though this is true, it -- is not important for our purposes. RWS-contract : (m : RWS Ev Wr St A) → RWS-Contract m RWS-contract (RWS-return x₁) P ev pre wp = wp RWS-contract (RWS-bind m f) P ev pre wp with RWS-contract m _ ev pre wp ...| con with RWS-run m ev pre ...| x₁ , st₁ , outs₁ = RWS-contract (f x₁) _ ev st₁ (con x₁ refl) RWS-contract (RWS-gets f) P ev pre wp = wp RWS-contract (RWS-put x₁) P ev pre wp = wp RWS-contract RWS-ask P ev pre wp = wp RWS-contract (RWS-tell x₁) P ev pre wp = wp RWS-contract{Ev}{Wr}{St}{A} (RWS-if gs) P ev pre wp = RWS-contract-if gs P ev pre wp where RWS-contract-if : (gs : Guards (RWS Ev Wr St A)) → RWS-Contract (RWS-if gs) RWS-contract-if (clause (b ≔ c) gs) P ev pre (wp₁ , wp₂) with toBool b ...| true = RWS-contract c _ ev pre (wp₁ refl) ...| false = RWS-contract-if gs _ ev pre (wp₂ refl) RWS-contract-if (otherwise≔ x) P ev pre wp = RWS-contract x P ev pre wp RWS-contract (RWS-either f₁ f₂ (Left x)) P ev pre (wp₁ , wp₂) = RWS-contract (f₁ x) _ ev pre (wp₁ x refl) RWS-contract (RWS-either f₁ f₂ (Right y)) P ev pre (wp₁ , wp₂) = RWS-contract (f₂ y) _ ev pre (wp₂ y refl) RWS-contract (RWS-ebind m f) P ev pre wp with RWS-contract m _ ev pre wp ...| con with RWS-run m ev pre ... | Left x , st₁ , outs₁ = con ... | Right y , st₁ , outs₁ = RWS-contract (f y) _ ev st₁ (con y refl) RWS-contract (RWS-maybe f₁ f₂ nothing) P ev pre (wp₁ , wp₂) = RWS-contract f₁ _ ev pre (wp₁ refl) RWS-contract (RWS-maybe f₁ f₂ (just x)) P ev pre (wp₁ , wp₂) = RWS-contract (f₂ x) _ ev pre (wp₂ x refl) -- This helper function is primarily used to take a proof concerning one -- computation `m` and show that that proof implies a property concerning a -- larger computation which contains `m`. RWS-⇒ : ∀ {P Q : RWS-Post Wr St A} → ∀ m (ev : Ev) st → RWS-weakestPre m P ev st → RWS-Post-⇒ P Q → RWS-weakestPre m Q ev st RWS-⇒ (RWS-return x) ev st pre pf = pf x st [] pre RWS-⇒ (RWS-bind m f) ev st pre pf = RWS-⇒ m ev st pre (λ r₁ st₁ outs₁ pf₁ x x≡ → RWS-⇒ (f x) ev st₁ (pf₁ x x≡) (λ r₂ st₂ outs₂ pf₂ → pf r₂ st₂ (outs₁ ++ outs₂) pf₂)) RWS-⇒ (RWS-gets f) ev st pre pf = pf _ _ _ pre RWS-⇒ (RWS-put x) ev st pre pf = pf _ _ _ pre RWS-⇒ RWS-ask ev st pre pf = pf _ _ _ pre RWS-⇒ (RWS-tell x) ev st pre pf = pf _ _ _ pre RWS-⇒ (RWS-if (otherwise≔ x)) ev st pre pf = RWS-⇒ x ev st pre pf RWS-⇒ (RWS-if (clause (b ≔ c) cs)) ev st (pre₁ , pre₂) pf = (λ pf' → RWS-⇒ c ev st (pre₁ pf') pf) , λ pf' → RWS-⇒ (RWS-if cs) ev st (pre₂ pf') pf proj₁ (RWS-⇒ (RWS-either f₁ f₂ (Left x)) ev st (pre₁ , pre₂) pf) x₁ x₁≡ = RWS-⇒ (f₁ x₁) ev st (pre₁ x₁ x₁≡) pf proj₂ (RWS-⇒ (RWS-either f₁ f₂ (Left x) ) ev st (pre₁ , pre₂) pf) y () proj₁ (RWS-⇒ (RWS-either f₁ f₂ (Right y)) ev st (pre₁ , pre₂) pf) y₁ () proj₂ (RWS-⇒ (RWS-either f₁ f₂ (Right y)) ev st (pre₁ , pre₂) pf) y₁ y₁≡ = RWS-⇒ (f₂ y₁) ev st (pre₂ y₁ y₁≡) pf RWS-⇒ (RWS-ebind m f) ev st pre pf = RWS-⇒ m ev st pre (λ { (Left x₁) st₁ outs x → pf _ _ _ x ; (Right y) st₁ outs x → λ c x₁ → RWS-⇒ (f c) ev st₁ (x c x₁) (λ r st₂ outs₁ x₂ → pf r st₂ (outs ++ outs₁) x₂) }) proj₁ (RWS-⇒ (RWS-maybe m f x) ev st (pre₁ , pre₂) pf) ≡nothing = RWS-⇒ m ev st (pre₁ ≡nothing) pf proj₂ (RWS-⇒ (RWS-maybe m f x) ev st (pre₁ , pre₂) pf) b b≡ = RWS-⇒ (f b) ev st (pre₂ b b≡) pf RWS-⇒-bind : ∀ {P : RWS-Post Wr St A} {Q : RWS-Post Wr St B} → {f : A → RWS Ev Wr St B} → ∀ m ev st → RWS-weakestPre m P ev st → RWS-Post-⇒ P (RWS-weakestPre-bindPost ev f Q) → RWS-weakestPre (RWS-bind m f) Q ev st RWS-⇒-bind m ev st con pf = RWS-⇒ m ev st con pf RWS-⇒-ebind : ∀ {P : RWS-Post Wr St (Either C A)} {Q : RWS-Post Wr St (Either C B)} → {f : A → RWS Ev Wr St (Either C B)} → ∀ m ev st → RWS-weakestPre m P ev st → RWS-Post-⇒ P (RWS-weakestPre-ebindPost ev f Q) → RWS-weakestPre (RWS-ebind m f) Q ev st RWS-⇒-ebind m ev st con pf = RWS-⇒ m ev st con pf
44.353488
132
0.643456
43c8ba5e0e0c62781c37f10ff73a251f918e410e
177
agda
Agda
test/Succeed/Issue2372ImportInst.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue2372ImportInst.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue2372ImportInst.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2017-01-01, issue 2372, reported by m0davis open import Issue2372Inst f : r → Set₁ f _ = Set -- WAS: No instance of type R was found in scope. -- Should succeed
16.090909
55
0.694915
0d992d54181d582e56a306e4f2beb7bc658b5489
14,347
agda
Agda
archive/agda-1/UnifyTermF.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
archive/agda-1/UnifyTermF.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
1
2019-04-29T00:35:04.000Z
2019-05-11T23:33:04.000Z
archive/agda-1/UnifyTermF.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
module UnifyTermF (FunctionName : Set) where open import Data.Fin using (Fin; suc; zero) open import Data.Nat using (ℕ; suc; zero) open import Relation.Binary.PropositionalEquality using (_≡_; refl; cong₂; cong; sym; trans) open import Function using (_∘_; flip) open import Relation.Nullary using (¬_; Dec; yes; no) open import Data.Product using (∃; _,_; _×_) open import Data.Empty using (⊥-elim) open import Data.Vec using (Vec; []; _∷_) renaming (map to mapV) data Term (n : ℕ) : Set where i : (x : Fin n) -> Term n leaf : Term n _fork_ : (s t : Term n) -> Term n function : FunctionName → ∀ {f} → Vec (Term n) f → Term n Term-function-inj-FunctionName : ∀ {fn₁ fn₂} {n N₁ N₂} {ts₁ : Vec (Term n) N₁} {ts₂ : Vec (Term n) N₂} → Term.function fn₁ ts₁ ≡ Term.function fn₂ ts₂ → fn₁ ≡ fn₂ Term-function-inj-FunctionName refl = refl Term-function-inj-VecSize : ∀ {fn₁ fn₂} {n N₁ N₂} {ts₁ : Vec (Term n) N₁} {ts₂ : Vec (Term n) N₂} → Term.function fn₁ ts₁ ≡ Term.function fn₂ ts₂ → N₁ ≡ N₂ Term-function-inj-VecSize refl = refl Term-function-inj-Vector : ∀ {fn₁ fn₂} {n N} {ts₁ : Vec (Term n) N} {ts₂ : Vec (Term n) N} → Term.function fn₁ ts₁ ≡ Term.function fn₂ ts₂ → ts₁ ≡ ts₂ Term-function-inj-Vector refl = refl Term-fork-inj-left : ∀ {n} {l₁ r₁ l₂ r₂ : Term n} → l₁ fork r₁ ≡ l₂ fork r₂ → l₁ ≡ l₂ Term-fork-inj-left refl = refl Term-fork-inj-right : ∀ {n} {l₁ r₁ l₂ r₂ : Term n} → l₁ fork r₁ ≡ l₂ fork r₂ → r₁ ≡ r₂ Term-fork-inj-right refl = refl open import Relation.Binary.HeterogeneousEquality using (_≅_; refl) Term-function-inj-HetVector : ∀ {fn₁ fn₂} {n N₁ N₂} {ts₁ : Vec (Term n) N₁} {ts₂ : Vec (Term n) N₂} → Term.function fn₁ ts₁ ≡ Term.function fn₂ ts₂ → ts₁ ≅ ts₂ Term-function-inj-HetVector refl = refl _~>_ : (m n : ℕ) -> Set m ~> n = Fin m -> Term n ▹ : ∀ {m n} -> (r : Fin m -> Fin n) -> Fin m -> Term n ▹ r = i ∘ r Property⋆ : (m : ℕ) -> Set1 Property⋆ m = ∀ {n} -> (Fin m -> Term n) -> Set record Substitution (T : ℕ → Set) : Set where field _◃_ : ∀ {m n} -> (f : m ~> n) -> T m -> T n Unifies⋆ : ∀ {m} (s t : T m) -> Property⋆ m Unifies⋆ s t f = f ◃ s ≡ f ◃ t open Substitution ⦃ … ⦄ public {-# DISPLAY Substitution._◃_ _ = _◃_ #-} mutual instance SubstitutionTerm : Substitution Term Substitution._◃_ SubstitutionTerm = _◃′_ where _◃′_ : ∀ {m n} -> (f : m ~> n) -> Term m -> Term n f ◃′ i x = f x f ◃′ leaf = leaf f ◃′ (s fork t) = (f ◃ s) fork (f ◃ t) f ◃′ (function fn ts) = function fn (f ◃ ts) instance SubstitutionVecTerm : ∀ {N} → Substitution (flip Vec N ∘ Term ) Substitution._◃_ (SubstitutionVecTerm {N}) = _◃′_ where _◃′_ : ∀ {m n} -> (f : m ~> n) -> Vec (Term m) N -> Vec (Term n) N f ◃′ [] = [] f ◃′ (t ∷ ts) = f ◃ t ∷ f ◃ ts _≐_ : {m n : ℕ} -> (Fin m -> Term n) -> (Fin m -> Term n) -> Set f ≐ g = ∀ x -> f x ≡ g x record SubstitutionExtensionality (T : ℕ → Set) ⦃ _ : Substitution T ⦄ : Set₁ where field ◃ext : ∀ {m n} {f g : Fin m -> Term n} -> f ≐ g -> (t : T m) -> f ◃ t ≡ g ◃ t open SubstitutionExtensionality ⦃ … ⦄ public mutual instance SubstitutionExtensionalityTerm : SubstitutionExtensionality Term SubstitutionExtensionality.◃ext SubstitutionExtensionalityTerm = ◃ext′ where ◃ext′ : ∀ {m n} {f g : Fin m -> Term n} -> f ≐ g -> ∀ t -> f ◃ t ≡ g ◃ t ◃ext′ p (i x) = p x ◃ext′ p leaf = refl ◃ext′ p (s fork t) = cong₂ _fork_ (◃ext p s) (◃ext p t) ◃ext′ p (function fn ts) = cong (function fn) (◃ext p ts) instance SubstitutionExtensionalityVecTerm : ∀ {N} → SubstitutionExtensionality (flip Vec N ∘ Term) SubstitutionExtensionality.◃ext (SubstitutionExtensionalityVecTerm {N}) = λ x → ◃ext′ x where ◃ext′ : ∀ {m n} {f g : Fin m -> Term n} -> f ≐ g -> ∀ {N} (t : Vec (Term m) N) -> f ◃ t ≡ g ◃ t ◃ext′ p [] = refl ◃ext′ p (t ∷ ts) = cong₂ _∷_ (◃ext p t) (◃ext p ts) _◇_ : ∀ {l m n : ℕ } -> (f : Fin m -> Term n) (g : Fin l -> Term m) -> Fin l -> Term n f ◇ g = (f ◃_) ∘ g ≐-cong : ∀ {m n o} {f : m ~> n} {g} (h : _ ~> o) -> f ≐ g -> (h ◇ f) ≐ (h ◇ g) ≐-cong h f≐g t = cong (h ◃_) (f≐g t) ≐-sym : ∀ {m n} {f : m ~> n} {g} -> f ≐ g -> g ≐ f ≐-sym f≐g = sym ∘ f≐g open import Prelude using (it) module Sub where record Fact1 (T : ℕ → Set) ⦃ _ : Substitution T ⦄ : Set where field fact1 : ∀ {n} -> (t : T n) -> i ◃ t ≡ t open Fact1 ⦃ … ⦄ public mutual instance Fact1Term : Fact1 Term Fact1.fact1 Fact1Term (i x) = refl Fact1.fact1 Fact1Term leaf = refl Fact1.fact1 Fact1Term (s fork t) = cong₂ _fork_ (fact1 s) (fact1 t) Fact1.fact1 Fact1Term (function fn ts) = cong (function fn) (fact1 ts) instance Fact1TermVec : ∀ {N} → Fact1 (flip Vec N ∘ Term) Fact1.fact1 Fact1TermVec [] = refl Fact1.fact1 Fact1TermVec (t ∷ ts) = cong₂ _∷_ (fact1 t) (fact1 ts) record Fact2 (T : ℕ → Set) ⦃ _ : Substitution T ⦄ : Set where field -- ⦃ s ⦄ : Substitution T fact2 : ∀ {l m n} -> {f : Fin m -> Term n} {g : _} (t : T l) → (f ◇ g) ◃ t ≡ f ◃ (g ◃ t) open Fact2 ⦃ … ⦄ public mutual instance Fact2Term : Fact2 Term -- Fact2.s Fact2Term = SubstitutionTerm Fact2.fact2 Fact2Term (i x) = refl Fact2.fact2 Fact2Term leaf = refl Fact2.fact2 Fact2Term (s fork t) = cong₂ _fork_ (fact2 s) (fact2 t) Fact2.fact2 Fact2Term {f = f} {g = g} (function fn ts) = cong (function fn) (fact2 {f = f} {g = g} ts) -- fact2 ts instance Fact2TermVec : ∀ {N} → Fact2 (flip Vec N ∘ Term) -- Fact2.s Fact2TermVec = SubstitutionVecTerm Fact2.fact2 Fact2TermVec [] = refl Fact2.fact2 Fact2TermVec (t ∷ ts) = cong₂ _∷_ (fact2 t) (fact2 ts) fact3 : ∀ {l m n} (f : Fin m -> Term n) (r : Fin l -> Fin m) -> (f ◇ (▹ r)) ≡ (f ∘ r) fact3 f r = refl ◃ext' : ∀ {m n o} {f : Fin m -> Term n}{g : Fin m -> Term o}{h} -> f ≐ (h ◇ g) -> ∀ (t : Term _) -> f ◃ t ≡ h ◃ (g ◃ t) ◃ext' p t = trans (◃ext p t) (Sub.fact2 t) open import Agda.Primitive Injectivity : ∀ {a} {A : Set a} {b} {B : Set b} (f : A → B) → Set (a ⊔ b) Injectivity f = ∀ {x y} → f x ≡ f y → x ≡ y Injectivity₂ : ∀ {a} {A : Set a} {b} {B : Set b} {c} {C : Set c} (f : A → B → C) → Set (a ⊔ b ⊔ c) Injectivity₂ f = ∀ {w x y z} → f w x ≡ f y z → x ≡ z record Injective {a} {A : Set a} {b} {B : Set b} (f : A → B) : Set (a ⊔ b) where field injectivity : ∀ x y → f x ≡ f y → x ≡ y open Injective public -- ⦃ … ⦄ public record Thin (T : ℕ → Set) : Set where field thin : ∀ {n} -> Fin (suc n) → T n → T (suc n) thinfact1 : ∀ {n} (f : Fin (suc n)) → Injectivity (thin f) term-i-inj : ∀ {n} → Injectivity (Term.i {n}) term-i-inj refl = refl term-fork-l-inj : ∀ {n} → Injectivity₂ (flip (_fork_ {n})) term-fork-l-inj refl = refl term-fork-r-inj : ∀ {n} → Injectivity₂ (_fork_ {n}) term-fork-r-inj refl = refl open Thin ⦃ … ⦄ public p : ∀ {n} -> Fin (suc (suc n)) -> Fin (suc n) p (suc x) = x p zero = zero instance ThinFin : Thin Fin Thin.thin ThinFin zero y = suc y Thin.thin ThinFin (suc x) zero = zero Thin.thin ThinFin (suc x) (suc y) = suc (thin x y) Thin.thinfact1 ThinFin zero refl = refl Thin.thinfact1 ThinFin (suc x) {zero} {zero} r = refl Thin.thinfact1 ThinFin (suc x) {zero} {(suc z)} () Thin.thinfact1 ThinFin (suc x) {(suc y)} {zero} () Thin.thinfact1 ThinFin (suc x) {(suc y)} {(suc z)} r = cong suc (thinfact1 x (cong p r)) {- TODO defining using the below leads to termination checker problem -} tfact1 : ∀ {n} (x : Fin (suc n)) (y : Fin _) (z : Fin n) -> thin x y ≡ thin x z -> y ≡ z tfact1 zero y .y refl = refl tfact1 (suc x) zero zero r = refl tfact1 (suc x) zero (suc z) () tfact1 (suc x) (suc y) zero () tfact1 (suc x) (suc y) (suc z) r = cong suc (tfact1 x y z (cong p r)) mutual mapTerm : ∀ {n m} → (Fin n → Fin m) → Term n → Term m mapTerm x (i x₁) = i (x x₁) mapTerm x leaf = leaf mapTerm x (x₁ fork x₂) = mapTerm x x₁ fork mapTerm x x₂ mapTerm x (function x₁ x₂) = function x₁ (mapTerms x x₂) mapTerms : ∀ {n m} → (Fin n → Fin m) → ∀ {N} → Vec (Term n) N → Vec (Term m) N mapTerms x [] = [] mapTerms x (x₁ ∷ x₂) = mapTerm x x₁ ∷ mapTerms x x₂ mutual thinfact1Term : ∀ {n} (f : Fin (suc n)) → Injectivity (mapTerm (thin f)) thinfact1Term x₁ {i x} {i x₃} x₂ = cong i (thinfact1 x₁ (term-i-inj x₂)) thinfact1Term x₁ {i x} {leaf} () thinfact1Term x₁ {i x} {y fork y₁} () thinfact1Term x₁ {i x} {function x₂ x₃} () thinfact1Term x₁ {leaf} {i x} () thinfact1Term x₁ {leaf} {leaf} x₂ = refl thinfact1Term x₁ {leaf} {y fork y₁} () thinfact1Term x₁ {leaf} {function x x₂} () thinfact1Term x₁ {x fork x₂} {i x₃} () thinfact1Term x₁ {x fork x₂} {leaf} () thinfact1Term x₁ {x fork x₂} {y fork y₁} x₃ = cong₂ _fork_ (thinfact1Term x₁ (term-fork-l-inj x₃)) ((thinfact1Term x₁ (term-fork-r-inj x₃))) thinfact1Term x₁ {x fork x₂} {function x₃ x₄} () thinfact1Term x₁ {function x x₂} {i x₃} () thinfact1Term x₁ {function x x₂} {leaf} () thinfact1Term x₁ {function x x₂} {y fork y₁} () thinfact1Term x₁ {function f1 {n} ts1} {function f2 ts2} r rewrite Term-function-inj-FunctionName r with Term-function-inj-VecSize r thinfact1Term x₁ {function f1 {n} ts1} {function f2 ts2} r | refl with Term-function-inj-Vector r thinfact1Term {m} x₁ {function f1 {n} ts1} {function f2 {.n} ts2} r | refl | w = cong (function f2) (((thinfact1Terms x₁ w))) thinfact1Terms : ∀ {N} {n} (f : Fin (suc n)) → Injectivity (mapTerms (thin f) {N}) thinfact1Terms {.0} f {[]} {[]} x₁ = refl thinfact1Terms {.(suc _)} f {x ∷ x₁} {x₂ ∷ y} x₃ = cong₂ _∷_ (thinfact1Term f (cong Data.Vec.head x₃)) (thinfact1Terms f (cong Data.Vec.tail x₃)) mutual instance ThinTerm : Thin Term Thin.thin ThinTerm = mapTerm ∘ thin Thin.thinfact1 ThinTerm = thinfact1Term instance ThinTermVec : ∀ {N} → Thin (flip Vec N ∘ Term) Thin.thin ThinTermVec x x₁ = mapTerms (thin x) x₁ Thin.thinfact1 ThinTermVec = thinfact1Terms module ThinFact where fact2 : ∀ {n} x (y : Fin n) -> ¬ thin x y ≡ x fact2 zero y () fact2 (suc x) zero () fact2 (suc x) (suc y) r = fact2 x y (cong p r) fact3 : ∀{n} x (y : Fin (suc n)) -> ¬ x ≡ y -> ∃ λ y' -> thin x y' ≡ y fact3 zero zero ne = ⊥-elim (ne refl) fact3 zero (suc y) _ = y , refl fact3 {zero} (suc ()) _ _ fact3 {suc n} (suc x) zero ne = zero , refl fact3 {suc n} (suc x) (suc y) ne with y | fact3 x y (ne ∘ cong suc) ... | .(thin x y') | y' , refl = suc y' , refl open import Data.Maybe open import Category.Functor open import Category.Monad import Level open RawMonad (Data.Maybe.monad {Level.zero}) thick : ∀ {n} -> (x y : Fin (suc n)) -> Maybe (Fin n) thick zero zero = nothing thick zero (suc y) = just y thick {zero} (suc ()) _ thick {suc _} (suc x) zero = just zero thick {suc _} (suc x) (suc y) = suc <$> (thick x y) open import Data.Sum _≡Fin_ : ∀ {n} -> (x y : Fin n) -> Dec (x ≡ y) zero ≡Fin zero = yes refl zero ≡Fin suc y = no λ () suc x ≡Fin zero = no λ () suc {suc _} x ≡Fin suc y with x ≡Fin y ... | yes r = yes (cong suc r) ... | no r = no λ e -> r (cong p e) suc {zero} () ≡Fin _ module Thick where half1 : ∀ {n} (x : Fin (suc n)) -> thick x x ≡ nothing half1 zero = refl half1 {suc _} (suc x) = cong (_<$>_ suc) (half1 x) half1 {zero} (suc ()) half2 : ∀ {n} (x : Fin (suc n)) y -> ∀ y' -> thin x y' ≡ y -> thick x y ≡ just y' half2 zero zero y' () half2 zero (suc y) .y refl = refl half2 {suc n} (suc x) zero zero refl = refl half2 {suc _} (suc _) zero (suc _) () half2 {suc n} (suc x) (suc y) zero () half2 {suc n} (suc x) (suc .(thin x y')) (suc y') refl with thick x (thin x y') | half2 x (thin x y') y' refl ... | .(just y') | refl = refl half2 {zero} (suc ()) _ _ _ fact1 : ∀ {n} (x : Fin (suc n)) y r -> thick x y ≡ r -> x ≡ y × r ≡ nothing ⊎ ∃ λ y' -> thin x y' ≡ y × r ≡ just y' fact1 x y .(thick x y) refl with x ≡Fin y fact1 x .x ._ refl | yes refl = inj₁ (refl , half1 x) ... | no el with ThinFact.fact3 x y el ... | y' , thinxy'=y = inj₂ (y' , ( thinxy'=y , half2 x y y' thinxy'=y )) record Check (T : ℕ → Set) : Set where field check : ∀{n} (x : Fin (suc n)) (t : T (suc n)) -> Maybe (T n) open Check ⦃ … ⦄ public _<*>_ = _⊛_ mutual instance CheckTerm : Check Term Check.check CheckTerm x (i y) = i <$> thick x y Check.check CheckTerm x leaf = just leaf Check.check CheckTerm x (s fork t) = _fork_ <$> check x s ⊛ check x t Check.check CheckTerm x (function fn ts) = ⦇ (function fn) (check x ts) ⦈ instance CheckTermVec : ∀ {N} → Check (flip Vec N ∘ Term) Check.check CheckTermVec x [] = just [] Check.check CheckTermVec x (t ∷ ts) = ⦇ check x t ∷ check x ts ⦈ _for_ : ∀ {n} (t' : Term n) (x : Fin (suc n)) -> Fin (suc n) -> Term n (t' for x) y = maybe′ i t' (thick x y) data AList : ℕ -> ℕ -> Set where anil : ∀ {n} -> AList n n _asnoc_/_ : ∀ {m n} (σ : AList m n) (t' : Term m) (x : Fin (suc m)) -> AList (suc m) n sub : ∀ {m n} (σ : AList m n) -> Fin m -> Term n sub anil = i sub (σ asnoc t' / x) = sub σ ◇ (t' for x) _++_ : ∀ {l m n} (ρ : AList m n) (σ : AList l m) -> AList l n ρ ++ anil = ρ ρ ++ (σ asnoc t' / x) = (ρ ++ σ) asnoc t' / x ++-assoc : ∀ {l m n o} (ρ : AList l m) (σ : AList n _) (τ : AList o _) -> ρ ++ (σ ++ τ) ≡ (ρ ++ σ) ++ τ ++-assoc ρ σ anil = refl ++-assoc ρ σ (τ asnoc t / x) = cong (λ s -> s asnoc t / x) (++-assoc ρ σ τ) module SubList where anil-id-l : ∀ {m n} (σ : AList m n) -> anil ++ σ ≡ σ anil-id-l anil = refl anil-id-l (σ asnoc t' / x) = cong (λ σ -> σ asnoc t' / x) (anil-id-l σ) fact1 : ∀ {l m n} (ρ : AList m n) (σ : AList l m) -> sub (ρ ++ σ) ≐ (sub ρ ◇ sub σ) fact1 ρ anil v = refl fact1 {suc l} {m} {n} r (s asnoc t' / x) v = trans hyp-on-terms ◃-assoc where t = (t' for x) v hyp-on-terms = ◃ext (fact1 r s) t ◃-assoc = Sub.fact2 t _∃asnoc_/_ : ∀ {m} (a : ∃ (AList m)) (t' : Term m) (x : Fin (suc m)) -> ∃ (AList (suc m)) (n , σ) ∃asnoc t' / x = n , σ asnoc t' / x flexFlex : ∀ {m} (x y : Fin m) -> ∃ (AList m) flexFlex {suc m} x y with thick x y ... | just y' = m , anil asnoc i y' / x ... | nothing = suc m , anil flexFlex {zero} () _ flexRigid : ∀ {m} (x : Fin m) (t : Term m) -> Maybe (∃(AList m)) flexRigid {suc m} x t with check x t ... | just t' = just (m , anil asnoc t' / x) ... | nothing = nothing flexRigid {zero} () _
36.693095
162
0.565484
0d65a7dff4b5863c262174378cbdf2afeaf1ae5b
639
agda
Agda
test/Succeed/Using.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Using.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Using.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Using where module Dummy where data DummySet1 : Set where ds1 : DummySet1 data DummySet2 : Set where ds2 : DummySet2 open Dummy using (DummySet1) open Dummy -- checking that newline + comment is allowed before "using" using (DummySet2) -- Andreas, 2020-06-06, issue #4704 -- Allow repetions in `using` directives, but emit warning. open Dummy using (DummySet1; DummySet1) using (DummySet1) -- EXPECTED: dead code highlighting for 2nd and 3rd occurrence and warning: -- Duplicates in using directive: DummySet1 DummySet1 -- when scope checking the declaration -- open Dummy using (DummySet1; DummySet1; DummySet1)
27.782609
75
0.752739
3f3223ca434efd65f9808da438ddbc50140fee0b
194
agda
Agda
agda/Data/Empty/Base.agda
oisdk/combinatorics-paper
3c176d4690566d81611080e9378f5a178b39b851
[ "MIT" ]
null
null
null
agda/Data/Empty/Base.agda
oisdk/combinatorics-paper
3c176d4690566d81611080e9378f5a178b39b851
[ "MIT" ]
null
null
null
agda/Data/Empty/Base.agda
oisdk/combinatorics-paper
3c176d4690566d81611080e9378f5a178b39b851
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --safe #-} module Data.Empty.Base where open import Cubical.Data.Empty using (⊥; ⊥-elim; isProp⊥) public open import Level infix 4.5 ¬_ ¬_ : Type a → Type a ¬ A = A → ⊥
17.636364
64
0.64433
a073d177a91e0b0524a18e1018799d3d3a400ebe
3,190
agda
Agda
src/Categories/Category/Construction/F-Algebras.agda
jaykru/agda-categories
a4053cf700bcefdf73b857c3352f1eae29382a60
[ "MIT" ]
279
2019-06-01T14:36:40.000Z
2022-03-22T00:40:14.000Z
src/Categories/Category/Construction/F-Algebras.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
236
2019-06-01T14:53:54.000Z
2022-03-28T14:31:43.000Z
src/Categories/Category/Construction/F-Algebras.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
64
2019-06-02T16:58:15.000Z
2022-03-14T02:00:59.000Z
{-# OPTIONS --without-K --safe #-} module Categories.Category.Construction.F-Algebras where open import Level open import Data.Product using (proj₁; proj₂) open import Categories.Category open import Categories.Functor hiding (id) open import Categories.Functor.Algebra open import Categories.Object.Initial import Categories.Morphism.Reasoning as MR import Categories.Morphism as Mor using (_≅_) private variable o ℓ e : Level 𝒞 : Category o ℓ e F-Algebras : {𝒞 : Category o ℓ e} → Endofunctor 𝒞 → Category (ℓ ⊔ o) (e ⊔ ℓ) e F-Algebras {𝒞 = 𝒞} F = record { Obj = F-Algebra F ; _⇒_ = F-Algebra-Morphism ; _≈_ = λ α₁ α₂ → f α₁ ≈ f α₂ ; _∘_ = λ α₁ α₂ → record { f = f α₁ ∘ f α₂ ; commutes = commut α₁ α₂ } ; id = record { f = id ; commutes = id-comm-sym ○ ⟺ (∘-resp-≈ʳ identity) } ; assoc = assoc ; sym-assoc = sym-assoc ; identityˡ = identityˡ ; identityʳ = identityʳ ; identity² = identity² ; equiv = record { refl = refl ; sym = sym ; trans = trans } ; ∘-resp-≈ = ∘-resp-≈ } where open Category 𝒞 open MR 𝒞 open HomReasoning open Equiv open Functor F open F-Algebra-Morphism open F-Algebra commut : {A B C : F-Algebra F} (α₁ : F-Algebra-Morphism B C) (α₂ : F-Algebra-Morphism A B) → (f α₁ ∘ f α₂) ∘ α A ≈ α C ∘ F₁ (f α₁ ∘ f α₂) commut {A} {B} {C} α₁ α₂ = begin (f α₁ ∘ f α₂) ∘ α A ≈⟨ pullʳ (commutes α₂) ⟩ f α₁ ∘ (α B ∘ F₁ (f α₂)) ≈⟨ pullˡ (commutes α₁) ⟩ (α C ∘ F₁ (f α₁)) ∘ F₁ (f α₂) ≈⟨ pullʳ (⟺ homomorphism) ⟩ α C ∘ F₁ (f α₁ ∘ f α₂) ∎ module Lambek {𝒞 : Category o ℓ e} {F : Endofunctor 𝒞} (I : Initial (F-Algebras F)) where open Category 𝒞 open Definitions 𝒞 open Functor F open F-Algebra using (α) open MR 𝒞 using (glue) open Mor 𝒞 open Initial I -- so ⊥ is an F-Algebra, which is initial -- While an expert might be able to decipher the proof at the nLab -- (https://ncatlab.org/nlab/show/initial+algebra+of+an+endofunctor) -- I (JC) have found that the notes at -- http://www.cs.ru.nl/~jrot/coalgebra/ak-algebras.pdf -- are easier to follow, and lead to the full proof below. private module ⊥ = F-Algebra ⊥ A = ⊥.A a : F₀ A ⇒ A a = ⊥.α -- The F-Algebra structure that will make things work F⊥ : F-Algebra F F⊥ = iterate ⊥ -- By initiality, we get the following morphism f : F-Algebra-Morphism ⊥ F⊥ f = ! module FAM = F-Algebra-Morphism f i : A ⇒ F₀ A i = FAM.f a∘f : F-Algebra-Morphism ⊥ ⊥ a∘f = record { f = a ∘ i ; commutes = glue triv FAM.commutes ○ ∘-resp-≈ʳ (⟺ homomorphism) } where open HomReasoning using (_○_; ⟺) triv : CommutativeSquare (α F⊥) (α F⊥) a a triv = Equiv.refl lambek : A ≅ F₀ A lambek = record { from = i ; to = a ; iso = record { isoˡ = ⊥-id a∘f ; isoʳ = begin i ∘ a ≈⟨ F-Algebra-Morphism.commutes f ⟩ F₁ a ∘ F₁ i ≈˘⟨ homomorphism ⟩ F₁ (a ∘ i) ≈⟨ F-resp-≈ (⊥-id a∘f) ⟩ F₁ id ≈⟨ identity ⟩ id ∎ } } where open HomReasoning
27.73913
96
0.566771
35c3e04559f18f4f9c2cf0bfb0d9f62dec81a580
3,101
agda
Agda
Cubical/Algebra/Lattice/Properties.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
1
2022-02-05T01:25:26.000Z
2022-02-05T01:25:26.000Z
Cubical/Algebra/Lattice/Properties.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
Cubical/Algebra/Lattice/Properties.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
{-# OPTIONS --safe #-} module Cubical.Algebra.Lattice.Properties where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Foundations.Transport open import Cubical.Foundations.SIP open import Cubical.Data.Sigma open import Cubical.Structures.Axioms open import Cubical.Structures.Auto open import Cubical.Structures.Macro open import Cubical.Algebra.Semigroup open import Cubical.Algebra.Monoid open import Cubical.Algebra.CommMonoid open import Cubical.Algebra.Semilattice open import Cubical.Algebra.Lattice.Base open import Cubical.Relation.Binary.Poset private variable ℓ : Level module LatticeTheory (L' : Lattice ℓ) where private L = fst L' open LatticeStr (snd L') 0lLeftAnnihilates∧l : ∀ (x : L) → 0l ∧l x ≡ 0l 0lLeftAnnihilates∧l x = 0l ∧l x ≡⟨ cong (0l ∧l_) (sym (∨lLid _)) ⟩ 0l ∧l (0l ∨l x) ≡⟨ ∧lAbsorb∨l _ _ ⟩ 0l ∎ 0lRightAnnihilates∧l : ∀ (x : L) → x ∧l 0l ≡ 0l 0lRightAnnihilates∧l _ = ∧lComm _ _ ∙ 0lLeftAnnihilates∧l _ 1lLeftAnnihilates∨l : ∀ (x : L) → 1l ∨l x ≡ 1l 1lLeftAnnihilates∨l x = 1l ∨l x ≡⟨ cong (1l ∨l_) (sym (∧lLid _)) ⟩ 1l ∨l (1l ∧l x) ≡⟨ ∨lAbsorb∧l _ _ ⟩ 1l ∎ 1lRightAnnihilates∨l : ∀ (x : L) → x ∨l 1l ≡ 1l 1lRightAnnihilates∨l _ = ∨lComm _ _ ∙ 1lLeftAnnihilates∨l _ module Order (L' : Lattice ℓ) where private L = fst L' open LatticeStr (snd L') open JoinSemilattice (Lattice→JoinSemilattice L') renaming (_≤_ to _≤j_ ; IndPoset to JoinPoset) open MeetSemilattice (Lattice→MeetSemilattice L') renaming (_≤_ to _≤m_ ; IndPoset to MeetPoset) ≤j→≤m : ∀ x y → x ≤j y → x ≤m y ≤j→≤m x y x∨ly≡y = x ∧l y ≡⟨ cong (x ∧l_) (sym x∨ly≡y) ⟩ x ∧l (x ∨l y) ≡⟨ ∧lAbsorb∨l _ _ ⟩ x ∎ ≤m→≤j : ∀ x y → x ≤m y → x ≤j y ≤m→≤j x y x∧ly≡x = x ∨l y ≡⟨ ∨lComm _ _ ⟩ y ∨l x ≡⟨ cong (y ∨l_) (sym x∧ly≡x) ⟩ y ∨l (x ∧l y) ≡⟨ cong (y ∨l_) (∧lComm _ _) ⟩ y ∨l (y ∧l x) ≡⟨ ∨lAbsorb∧l _ _ ⟩ y ∎ ≤Equiv : ∀ (x y : L) → (x ≤j y) ≃ (x ≤m y) ≤Equiv x y = propBiimpl→Equiv (isSetLattice L' _ _) (isSetLattice L' _ _) (≤j→≤m x y) (≤m→≤j x y) IndPosetPath : JoinPoset ≡ MeetPoset IndPosetPath = PosetPath _ _ .fst ((idEquiv _) , isposetequiv ≤Equiv ) -- transport inequalities from ≤m to ≤j ∧lIsMinJoin : ∀ x y z → z ≤j x → z ≤j y → z ≤j x ∧l y ∧lIsMinJoin _ _ _ z≤jx z≤jy = ≤m→≤j _ _ (∧lIsMin _ _ _ (≤j→≤m _ _ z≤jx) (≤j→≤m _ _ z≤jy)) ∧≤LCancelJoin : ∀ x y → x ∧l y ≤j y ∧≤LCancelJoin x y = ≤m→≤j _ _ (∧≤LCancel x y) module _ {L M : Lattice ℓ} (φ ψ : LatticeHom L M) where open LatticeStr ⦃...⦄ open IsLatticeHom private instance _ = L _ = M _ = snd L _ = snd M LatticeHom≡f : fst φ ≡ fst ψ → φ ≡ ψ LatticeHom≡f = Σ≡Prop λ f → isPropIsLatticeHom _ f _
32.302083
98
0.599484
5eae370bf74545bbf63dc7b70068f71f24e573c3
19,896
agda
Agda
Cubical/ZCohomology/MayerVietorisUnreduced.agda
cangiuli/cubical
d103ec455d41cccf9b13a4803e7d3cf462e00067
[ "MIT" ]
null
null
null
Cubical/ZCohomology/MayerVietorisUnreduced.agda
cangiuli/cubical
d103ec455d41cccf9b13a4803e7d3cf462e00067
[ "MIT" ]
1
2022-01-27T02:07:48.000Z
2022-01-27T02:07:48.000Z
Cubical/ZCohomology/MayerVietorisUnreduced.agda
cangiuli/cubical
d103ec455d41cccf9b13a4803e7d3cf462e00067
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.ZCohomology.MayerVietorisUnreduced where open import Cubical.ZCohomology.Base open import Cubical.ZCohomology.Properties open import Cubical.ZCohomology.KcompPrelims open import Cubical.Foundations.HLevels open import Cubical.Foundations.Function open import Cubical.Foundations.Prelude open import Cubical.Foundations.Structure open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.GroupoidLaws open import Cubical.Data.Sigma open import Cubical.HITs.Pushout open import Cubical.HITs.Sn open import Cubical.HITs.S1 open import Cubical.HITs.Susp open import Cubical.HITs.SetTruncation renaming (rec to sRec ; rec2 to sRec2 ; elim to sElim ; elim2 to sElim2) open import Cubical.HITs.PropositionalTruncation renaming (rec to pRec ; elim to pElim ; elim2 to pElim2 ; ∥_∥ to ∥_∥₁ ; ∣_∣ to ∣_∣₁) open import Cubical.Data.Nat open import Cubical.Data.Prod hiding (_×_) open import Cubical.Algebra.Group open import Cubical.HITs.Truncation renaming (elim to trElim ; map to trMap ; rec to trRec ; elim3 to trElim3) open GroupHom module MV {ℓ ℓ' ℓ''} (A : Type ℓ) (B : Type ℓ') (C : Type ℓ'') (f : C → A) (g : C → B) where -- Proof from Brunerie 2016. -- We first define the three morphisms involved: i, Δ and d. private i* : (n : ℕ) → coHom n (Pushout f g) → coHom n A × coHom n B i* _ = sRec (isSet× setTruncIsSet setTruncIsSet) λ δ → ∣ (λ x → δ (inl x)) ∣₂ , ∣ (λ x → δ (inr x)) ∣₂ iIsHom : (n : ℕ) → isGroupHom (coHomGr n (Pushout f g)) (×coHomGr n A B) (i* n) iIsHom _ = sElim2 (λ _ _ → isOfHLevelPath 2 (isSet× setTruncIsSet setTruncIsSet) _ _) λ _ _ → refl i : (n : ℕ) → GroupHom (coHomGr n (Pushout f g)) (×coHomGr n A B) GroupHom.fun (i n) = i* n GroupHom.isHom (i n) = iIsHom n private distrLem : (n : ℕ) (x y z w : coHomK n) → (x +[ n ]ₖ y) -[ n ]ₖ (z +[ n ]ₖ w) ≡ (x -[ n ]ₖ z) +[ n ]ₖ (y -[ n ]ₖ w) distrLem n x y z w = cong (ΩKn+1→Kn n) (cong₂ (λ q p → q ∙ sym p) (+ₖ→∙ n x y) (+ₖ→∙ n z w) ∙∙ cong ((Kn→ΩKn+1 n x ∙ Kn→ΩKn+1 n y) ∙_) (symDistr (Kn→ΩKn+1 n z) (Kn→ΩKn+1 n w)) ∙∙ ((sym (assoc (Kn→ΩKn+1 n x) (Kn→ΩKn+1 n y) _)) ∙∙ cong (Kn→ΩKn+1 n x ∙_) (assoc (Kn→ΩKn+1 n y) (sym (Kn→ΩKn+1 n w)) (sym (Kn→ΩKn+1 n z))) ∙∙ (cong (Kn→ΩKn+1 n x ∙_) (isCommΩK (suc n) _ _) ∙∙ assoc _ _ _ ∙∙ cong₂ _∙_ (sym (Iso.rightInv (Iso-Kn-ΩKn+1 n) (Kn→ΩKn+1 n x ∙ sym (Kn→ΩKn+1 n z)))) (sym (Iso.rightInv (Iso-Kn-ΩKn+1 n) (Kn→ΩKn+1 n y ∙ sym (Kn→ΩKn+1 n w))))))) Δ' : (n : ℕ) → ⟨ ×coHomGr n A B ⟩ → ⟨ coHomGr n C ⟩ Δ' n (α , β) = coHomFun n f α -[ n ]ₕ coHomFun n g β Δ'-isMorph : (n : ℕ) → isGroupHom (×coHomGr n A B) (coHomGr n C) (Δ' n) Δ'-isMorph n = prodElim2 (λ _ _ → isOfHLevelPath 2 setTruncIsSet _ _ ) λ f' x1 g' x2 i → ∣ (λ x → distrLem n (f' (f x)) (g' (f x)) (x1 (g x)) (x2 (g x)) i) ∣₂ Δ : (n : ℕ) → GroupHom (×coHomGr n A B) (coHomGr n C) GroupHom.fun (Δ n) = Δ' n GroupHom.isHom (Δ n) = Δ'-isMorph n d-pre : (n : ℕ) → (C → coHomK n) → Pushout f g → coHomK (suc n) d-pre n γ (inl x) = 0ₖ (suc n) d-pre n γ (inr x) = 0ₖ (suc n) d-pre zero γ (push a i) = Kn→ΩKn+1 zero (γ a) i d-pre (suc n) γ (push a i) = Kn→ΩKn+1 (suc n) (γ a) i dHomHelperPath : (n : ℕ) (h l : C → coHomK n) (a : C) → I → I → coHomK (suc n) dHomHelperPath zero h l a i j = hcomp (λ k → λ { (i = i0) → lUnitₖ 1 (0ₖ 1) (~ j) ; (i = i1) → lUnitₖ 1 (0ₖ 1) (~ j) ; (j = i0) → +ₖ→∙ 0 (h a) (l a) (~ k) i ; (j = i1) → cong₂Funct (λ x y → x +[ 1 ]ₖ y) (Kn→ΩKn+1 0 (h a)) (Kn→ΩKn+1 0 (l a)) (~ k) i}) (bottom i j) where bottom : I → I → coHomK 1 bottom i j = hcomp (λ k → λ { (i = i0) → lUnitₖ 1 (0ₖ 1) (~ j) ; (i = i1) → lUnitₖ 1 (Kn→ΩKn+1 0 (l a) k) (~ j) }) (anotherbottom i j) where anotherbottom : I → I → coHomK 1 anotherbottom i j = hcomp (λ k → λ { (i = i0) → rUnitlUnit0 1 k (~ j) ; (i = i1) → rUnitlUnit0 1 k (~ j) ; (j = i0) → Kn→ΩKn+1 0 (h a) i ; (j = i1) → Kn→ΩKn+1 0 (h a) i +[ 1 ]ₖ 0ₖ 1 }) (rUnitₖ 1 (Kn→ΩKn+1 0 (h a) i) (~ j)) dHomHelperPath (suc n) h l a i j = hcomp (λ k → λ { (i = i0) → lUnitₖ (2 + n) (0ₖ (2 + n)) (~ j) ; (i = i1) → lUnitₖ (2 + n) (0ₖ (2 + n)) (~ j) ; (j = i0) → +ₖ→∙ (suc n) (h a) (l a) (~ k) i ; (j = i1) → cong₂Funct (λ x y → x +[ 2 + n ]ₖ y) (Kn→ΩKn+1 (suc n) (h a)) (Kn→ΩKn+1 (suc n) (l a)) (~ k) i}) (bottom i j) where bottom : I → I → coHomK (2 + n) bottom i j = hcomp (λ k → λ { (i = i0) → lUnitₖ (2 + n) (0ₖ (2 + n)) (~ j) ; (i = i1) → lUnitₖ (2 + n) (Kn→ΩKn+1 (suc n) (l a) k) (~ j) }) (anotherbottom i j) where anotherbottom : I → I → coHomK (2 + n) anotherbottom i j = hcomp (λ k → λ { (i = i0) → rUnitlUnit0 (2 + n) k (~ j) ; (i = i1) → rUnitlUnit0 (2 + n) k (~ j) ; (j = i0) → Kn→ΩKn+1 (suc n) (h a) i ; (j = i1) → Kn→ΩKn+1 (suc n) (h a) i +[ 2 + n ]ₖ (0ₖ (2 + n)) }) (rUnitₖ (2 + n) (Kn→ΩKn+1 (suc n) (h a) i) (~ j)) dHomHelper : (n : ℕ) (h l : C → coHomK n) (x : Pushout f g) → d-pre n (λ x → h x +[ n ]ₖ l x) x ≡ d-pre n h x +[ suc n ]ₖ d-pre n l x dHomHelper n h l (inl x) = sym (lUnitₖ (suc n) (0ₖ (suc n))) dHomHelper n h l (inr x) = sym (lUnitₖ (suc n) (0ₖ (suc n))) dHomHelper zero h l (push a i) j = dHomHelperPath zero h l a i j dHomHelper (suc n) h l (push a i) j = dHomHelperPath (suc n) h l a i j dIsHom : (n : ℕ) → isGroupHom (coHomGr n C) (coHomGr (suc n) (Pushout f g)) (sRec setTruncIsSet λ a → ∣ d-pre n a ∣₂) dIsHom zero = sElim2 (λ _ _ → isOfHLevelPath 2 setTruncIsSet _ _) λ f g i → ∣ funExt (λ x → dHomHelper zero f g x) i ∣₂ dIsHom (suc n) = sElim2 (λ _ _ → isOfHLevelPath 2 setTruncIsSet _ _) λ f g i → ∣ funExt (λ x → dHomHelper (suc n) f g x) i ∣₂ d : (n : ℕ) → GroupHom (coHomGr n C) (coHomGr (suc n) (Pushout f g)) GroupHom.fun (d n) = sRec setTruncIsSet λ a → ∣ d-pre n a ∣₂ GroupHom.isHom (d n) = dIsHom n -- The long exact sequence Im-d⊂Ker-i : (n : ℕ) (x : ⟨ (coHomGr (suc n) (Pushout f g)) ⟩) → isInIm (coHomGr n C) (coHomGr (suc n) (Pushout f g)) (d n) x → isInKer (coHomGr (suc n) (Pushout f g)) (×coHomGr (suc n) A B) (i (suc n)) x Im-d⊂Ker-i n = sElim (λ _ → isSetΠ λ _ → isOfHLevelPath 2 (isSet× setTruncIsSet setTruncIsSet) _ _) λ a → pRec (isOfHLevelPath' 1 (isSet× setTruncIsSet setTruncIsSet) _ _) (sigmaElim (λ _ → isOfHLevelPath 2 (isSet× setTruncIsSet setTruncIsSet) _ _) λ δ b i → sRec (isSet× setTruncIsSet setTruncIsSet) (λ δ → ∣ (λ x → δ (inl x)) ∣₂ , ∣ (λ x → δ (inr x)) ∣₂ ) (b (~ i))) Ker-i⊂Im-d : (n : ℕ) (x : ⟨ coHomGr (suc n) (Pushout f g) ⟩) → isInKer (coHomGr (suc n) (Pushout f g)) (×coHomGr (suc n) A B) (i (suc n)) x → isInIm (coHomGr n C) (coHomGr (suc n) (Pushout f g)) (d n) x Ker-i⊂Im-d zero = sElim (λ _ → isSetΠ λ _ → isProp→isSet propTruncIsProp) λ a p → pRec {A = (λ x → a (inl x)) ≡ λ _ → 0ₖ 1} (isProp→ propTruncIsProp) (λ p1 → pRec propTruncIsProp λ p2 → ∣ ∣ (λ c → ΩKn+1→Kn 0 (sym (cong (λ F → F (f c)) p1) ∙∙ cong a (push c) ∙∙ cong (λ F → F (g c)) p2)) ∣₂ , cong ∣_∣₂ (funExt (λ δ → helper a p1 p2 δ)) ∣₁) (Iso.fun PathIdTrunc₀Iso (cong fst p)) (Iso.fun PathIdTrunc₀Iso (cong snd p)) where helper : (F : (Pushout f g) → hLevelTrunc 3 (S₊ 1)) (p1 : Path (_ → hLevelTrunc 3 (S₊ 1)) (λ a₁ → F (inl a₁)) (λ _ → ∣ base ∣)) (p2 : Path (_ → hLevelTrunc 3 (S₊ 1)) (λ a₁ → F (inr a₁)) (λ _ → ∣ base ∣)) → (δ : Pushout f g) → d-pre 0 (λ c → ΩKn+1→Kn 0 ((λ i₁ → p1 (~ i₁) (f c)) ∙∙ cong F (push c) ∙∙ cong (λ F → F (g c)) p2)) δ ≡ F δ helper F p1 p2 (inl x) = sym (cong (λ f → f x) p1) helper F p1 p2 (inr x) = sym (cong (λ f → f x) p2) helper F p1 p2 (push a i) j = hcomp (λ k → λ { (i = i0) → p1 (~ j) (f a) ; (i = i1) → p2 (~ j) (g a) ; (j = i0) → Iso.rightInv (Iso-Kn-ΩKn+1 0) ((λ i₁ → p1 (~ i₁) (f a)) ∙∙ cong F (push a) ∙∙ cong (λ F₁ → F₁ (g a)) p2) (~ k) i ; (j = i1) → F (push a i)}) (doubleCompPath-filler (sym (cong (λ F → F (f a)) p1)) (cong F (push a)) (cong (λ F → F (g a)) p2) (~ j) i) Ker-i⊂Im-d (suc n) = sElim (λ _ → isSetΠ λ _ → isProp→isSet propTruncIsProp) λ a p → pRec {A = (λ x → a (inl x)) ≡ λ _ → 0ₖ (2 + n)} (isProp→ propTruncIsProp) (λ p1 → pRec propTruncIsProp λ p2 → ∣ ∣ (λ c → ΩKn+1→Kn (suc n) (sym (cong (λ F → F (f c)) p1) ∙∙ cong a (push c) ∙∙ cong (λ F → F (g c)) p2)) ∣₂ , cong ∣_∣₂ (funExt (λ δ → helper a p1 p2 δ)) ∣₁) (Iso.fun PathIdTrunc₀Iso (cong fst p)) (Iso.fun PathIdTrunc₀Iso (cong snd p)) where helper : (F : (Pushout f g) → hLevelTrunc (4 + n) (S₊ (2 + n))) (p1 : Path (_ → hLevelTrunc (4 + n) (S₊ (2 + n))) (λ a₁ → F (inl a₁)) (λ _ → ∣ north ∣)) (p2 : Path (_ → hLevelTrunc (4 + n) (S₊ (2 + n))) (λ a₁ → F (inr a₁)) (λ _ → ∣ north ∣)) → (δ : (Pushout f g)) → d-pre (suc n) (λ c → ΩKn+1→Kn (suc n) ((λ i₁ → p1 (~ i₁) (f c)) ∙∙ cong F (push c) ∙∙ cong (λ F → F (g c)) p2)) δ ≡ F δ helper F p1 p2 (inl x) = sym (cong (λ f → f x) p1) helper F p1 p2 (inr x) = sym (cong (λ f → f x) p2) helper F p1 p2 (push a i) j = hcomp (λ k → λ { (i = i0) → p1 (~ j) (f a) ; (i = i1) → p2 (~ j) (g a) ; (j = i0) → Iso.rightInv (Iso-Kn-ΩKn+1 (suc n)) ((λ i₁ → p1 (~ i₁) (f a)) ∙∙ cong F (push a) ∙∙ cong (λ F₁ → F₁ (g a)) p2) (~ k) i ; (j = i1) → F (push a i)}) (doubleCompPath-filler (sym (cong (λ F → F (f a)) p1)) (cong F (push a)) (cong (λ F → F (g a)) p2) (~ j) i) open GroupHom Im-i⊂Ker-Δ : (n : ℕ) (x : ⟨ ×coHomGr n A B ⟩) → isInIm (coHomGr n (Pushout f g)) (×coHomGr n A B) (i n) x → isInKer (×coHomGr n A B) (coHomGr n C) (Δ n) x Im-i⊂Ker-Δ n (Fa , Fb) = sElim {B = λ Fa → (Fb : _) → isInIm (coHomGr n (Pushout f g)) (×coHomGr n A B) (i n) (Fa , Fb) → isInKer (×coHomGr n A B) (coHomGr n C) (Δ n) (Fa , Fb)} (λ _ → isSetΠ2 λ _ _ → isOfHLevelPath 2 setTruncIsSet _ _) (λ Fa → sElim (λ _ → isSetΠ λ _ → isOfHLevelPath 2 setTruncIsSet _ _) λ Fb → pRec (setTruncIsSet _ _) (sigmaElim (λ x → isProp→isSet (setTruncIsSet _ _)) λ Fd p → helper n Fa Fb Fd p)) Fa Fb where helper : (n : ℕ) (Fa : A → coHomK n) (Fb : B → coHomK n) (Fd : (Pushout f g) → coHomK n) → (fun (i n) ∣ Fd ∣₂ ≡ (∣ Fa ∣₂ , ∣ Fb ∣₂)) → (fun (Δ n)) (∣ Fa ∣₂ , ∣ Fb ∣₂) ≡ 0ₕ n helper zero Fa Fb Fd p = cong (fun (Δ zero)) (sym p) ∙∙ (λ i → ∣ (λ x → Fd (inl (f x))) ∣₂ -[ 0 ]ₕ ∣ (λ x → Fd (push x (~ i))) ∣₂ ) ∙∙ cancelₕ 0 ∣ (λ x → Fd (inl (f x))) ∣₂ helper (suc n) Fa Fb Fd p = cong (fun (Δ (suc n))) (sym p) ∙∙ (λ i → ∣ (λ x → Fd (inl (f x))) ∣₂ -[ (suc n) ]ₕ ∣ (λ x → Fd (push x (~ i))) ∣₂) ∙∙ cancelₕ (suc n) ∣ (λ x → Fd (inl (f x))) ∣₂ Ker-Δ⊂Im-i : (n : ℕ) (a : ⟨ ×coHomGr n A B ⟩) → isInKer (×coHomGr n A B) (coHomGr n C) (Δ n) a → isInIm (coHomGr n (Pushout f g)) (×coHomGr n A B) (i n) a Ker-Δ⊂Im-i n = prodElim (λ _ → isSetΠ (λ _ → isProp→isSet propTruncIsProp)) (λ Fa Fb p → pRec propTruncIsProp (λ q → ∣ ∣ helpFun Fa Fb q ∣₂ , refl ∣₁) (helper Fa Fb p)) where helper : (Fa : A → coHomK n) (Fb : B → coHomK n) → fun (Δ n) (∣ Fa ∣₂ , ∣ Fb ∣₂) ≡ 0ₕ n → ∥ Path (_ → _) (λ c → Fa (f c)) (λ c → Fb (g c)) ∥₁ helper Fa Fb p = Iso.fun PathIdTrunc₀Iso (sym (-+cancelₕ n ∣ (λ c → Fa (f c)) ∣₂ ∣ (λ c → Fb (g c)) ∣₂) ∙∙ cong (λ x → x +[ n ]ₕ ∣ (λ c → Fb (g c)) ∣₂) p ∙∙ lUnitₕ n _) helpFun : (Fa : A → coHomK n) (Fb : B → coHomK n) → ((λ c → Fa (f c)) ≡ (λ c → Fb (g c))) → Pushout f g → coHomK n helpFun Fa Fb p (inl x) = Fa x helpFun Fa Fb p (inr x) = Fb x helpFun Fa Fb p (push a i) = p i a private distrHelper : (n : ℕ) (p q : _) → ΩKn+1→Kn n p +[ n ]ₖ (-[ n ]ₖ ΩKn+1→Kn n q) ≡ ΩKn+1→Kn n (p ∙ sym q) distrHelper n p q i = ΩKn+1→Kn n (Iso.rightInv (Iso-Kn-ΩKn+1 n) p i ∙ Iso.rightInv (Iso-Kn-ΩKn+1 n) (sym (Iso.rightInv (Iso-Kn-ΩKn+1 n) q i)) i) Ker-d⊂Im-Δ : (n : ℕ) (a : coHom n C) → isInKer (coHomGr n C) (coHomGr (suc n) (Pushout f g)) (d n) a → isInIm (×coHomGr n A B) (coHomGr n C) (Δ n) a Ker-d⊂Im-Δ zero = sElim (λ _ → isOfHLevelΠ 2 λ _ → isOfHLevelSuc 1 propTruncIsProp) λ Fc p → pRec propTruncIsProp (λ p → ∣ (∣ (λ a → ΩKn+1→Kn 0 (cong (λ f → f (inl a)) p)) ∣₂ , ∣ (λ b → ΩKn+1→Kn 0 (cong (λ f → f (inr b)) p)) ∣₂) , Iso.inv (PathIdTrunc₀Iso) ∣ funExt (λ c → helper2 Fc p c) ∣₁ ∣₁) (Iso.fun (PathIdTrunc₀Iso) p) where helper2 : (Fc : C → coHomK 0) (p : d-pre 0 Fc ≡ (λ _ → ∣ base ∣)) (c : C) → ΩKn+1→Kn 0 (λ i₁ → p i₁ (inl (f c))) -[ 0 ]ₖ (ΩKn+1→Kn 0 (λ i₁ → p i₁ (inr (g c)))) ≡ Fc c helper2 Fc p c = cong₂ (λ x y → ΩKn+1→Kn 0 (x ∙ sym y)) (Iso.rightInv (Iso-Kn-ΩKn+1 0) (λ i₁ → p i₁ (inl (f c)))) (Iso.rightInv (Iso-Kn-ΩKn+1 0) (λ i₁ → p i₁ (inr (g c)))) ∙∙ cong (ΩKn+1→Kn 0) (sym ((PathP→compPathR (cong (λ f → cong f (push c)) p)) ∙ (λ i → (λ i₁ → p i₁ (inl (f c))) ∙ (lUnit (sym (λ i₁ → p i₁ (inr (g c)))) (~ i))))) ∙∙ Iso.leftInv (Iso-Kn-ΩKn+1 zero) (Fc c) Ker-d⊂Im-Δ (suc n) = sElim (λ _ → isOfHLevelΠ 2 λ _ → isOfHLevelSuc 1 propTruncIsProp) λ Fc p → pRec propTruncIsProp (λ p → ∣ (∣ (λ a → ΩKn+1→Kn (suc n) (cong (λ f → f (inl a)) p)) ∣₂ , ∣ (λ b → ΩKn+1→Kn (suc n) (cong (λ f → f (inr b)) p)) ∣₂) , Iso.inv (PathIdTrunc₀Iso) ∣ funExt (λ c → helper2 Fc p c) ∣₁ ∣₁) (Iso.fun (PathIdTrunc₀Iso) p) where helper2 : (Fc : C → coHomK (suc n)) (p : d-pre (suc n) Fc ≡ (λ _ → ∣ north ∣)) (c : C) → ΩKn+1→Kn (suc n) (λ i₁ → p i₁ (inl (f c))) -[ (suc n) ]ₖ (ΩKn+1→Kn (suc n) (λ i₁ → p i₁ (inr (g c)))) ≡ Fc c helper2 Fc p c = cong₂ (λ x y → ΩKn+1→Kn (suc n) (x ∙ sym y)) (Iso.rightInv (Iso-Kn-ΩKn+1 (suc n)) (λ i₁ → p i₁ (inl (f c)))) (Iso.rightInv (Iso-Kn-ΩKn+1 (suc n)) (λ i₁ → p i₁ (inr (g c)))) ∙∙ cong (ΩKn+1→Kn (suc n)) (sym ((PathP→compPathR (cong (λ f → cong f (push c)) p)) ∙ (λ i → (λ i₁ → p i₁ (inl (f c))) ∙ (lUnit (sym (λ i₁ → p i₁ (inr (g c)))) (~ i))))) ∙∙ Iso.leftInv (Iso-Kn-ΩKn+1 (suc n)) (Fc c) Im-Δ⊂Ker-d : (n : ℕ) (a : coHom n C) → isInIm (×coHomGr n A B) (coHomGr n C) (Δ n) a → isInKer (coHomGr n C) (coHomGr (suc n) (Pushout f g)) (d n) a Im-Δ⊂Ker-d n = sElim (λ _ → isOfHLevelΠ 2 λ _ → isOfHLevelPath 2 setTruncIsSet _ _) λ Fc → pRec (isOfHLevelPath' 1 setTruncIsSet _ _) (sigmaProdElim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _) λ Fa Fb p → pRec (isOfHLevelPath' 1 setTruncIsSet _ _) (λ q → ((λ i → fun (d n) ∣ (q (~ i)) ∣₂) ∙ dΔ-Id n Fa Fb)) (Iso.fun (PathIdTrunc₀Iso) p)) where d-preLeftId : (n : ℕ) (Fa : A → coHomK n)(d : (Pushout f g)) → d-pre n (Fa ∘ f) d ≡ 0ₖ (suc n) d-preLeftId zero Fa (inl x) = Kn→ΩKn+1 0 (Fa x) d-preLeftId (suc n) Fa (inl x) = Kn→ΩKn+1 (suc n) (Fa x) d-preLeftId zero Fa (inr x) = refl d-preLeftId (suc n) Fa (inr x) = refl d-preLeftId zero Fa (push a i) j = Kn→ΩKn+1 zero (Fa (f a)) (j ∨ i) d-preLeftId (suc n) Fa (push a i) j = Kn→ΩKn+1 (suc n) (Fa (f a)) (j ∨ i) d-preRightId : (n : ℕ) (Fb : B → coHomK n) (d : (Pushout f g)) → d-pre n (Fb ∘ g) d ≡ 0ₖ (suc n) d-preRightId n Fb (inl x) = refl d-preRightId zero Fb (inr x) = sym (Kn→ΩKn+1 0 (Fb x)) d-preRightId (suc n) Fb (inr x) = sym (Kn→ΩKn+1 (suc n) (Fb x)) d-preRightId zero Fb (push a i) j = Kn→ΩKn+1 zero (Fb (g a)) (~ j ∧ i) d-preRightId (suc n) Fb (push a i) j = Kn→ΩKn+1 (suc n) (Fb (g a)) (~ j ∧ i) dΔ-Id : (n : ℕ) (Fa : A → coHomK n) (Fb : B → coHomK n) → fun (d n) (fun (Δ n) (∣ Fa ∣₂ , ∣ Fb ∣₂)) ≡ 0ₕ (suc n) dΔ-Id zero Fa Fb = -distrLemma 0 1 (d zero) ∣ Fa ∘ f ∣₂ ∣ Fb ∘ g ∣₂ ∙∙ (λ i → ∣ (λ x → d-preLeftId zero Fa x i) ∣₂ -[ 1 ]ₕ ∣ (λ x → d-preRightId zero Fb x i) ∣₂) ∙∙ cancelₕ 1 (0ₕ 1) dΔ-Id (suc n) Fa Fb = -distrLemma (suc n) (2 + n) (d (suc n)) ∣ Fa ∘ f ∣₂ ∣ Fb ∘ g ∣₂ ∙∙ (λ i → ∣ (λ x → d-preLeftId (suc n) Fa x i) ∣₂ -[ (2 + n) ]ₕ ∣ (λ x → d-preRightId (suc n) Fb x i) ∣₂) ∙∙ cancelₕ (2 + n) (0ₕ (2 + n))
58.175439
133
0.420889
7cfe769ed1c880c35040c143f8a2eb21663525f0
182
agda
Agda
test/Common/Char.agda
favonia/agda
8d433b967567c08afe15d04a5cb63b6f6d8884ee
[ "BSD-2-Clause" ]
null
null
null
test/Common/Char.agda
favonia/agda
8d433b967567c08afe15d04a5cb63b6f6d8884ee
[ "BSD-2-Clause" ]
6
2021-10-18T08:12:24.000Z
2021-11-24T08:31:10.000Z
test/Common/Char.agda
antoinevanmuylder/agda
bd59d5b07ffe02a43b28d186d95e1747aac5bc8c
[ "BSD-2-Clause" ]
null
null
null
{-# OPTIONS --cubical-compatible #-} module Common.Char where open import Agda.Builtin.Char public open import Common.Bool charEq : Char -> Char -> Bool charEq = primCharEquality
18.2
36
0.747253
1433e12a92d751bdd270b4fe4992b17b061d2030
5,471
agda
Agda
Cubical/HITs/SetQuotients/Properties.agda
borsiemir/cubical
cefeb3669ffdaea7b88ae0e9dd258378418819ca
[ "MIT" ]
null
null
null
Cubical/HITs/SetQuotients/Properties.agda
borsiemir/cubical
cefeb3669ffdaea7b88ae0e9dd258378418819ca
[ "MIT" ]
null
null
null
Cubical/HITs/SetQuotients/Properties.agda
borsiemir/cubical
cefeb3669ffdaea7b88ae0e9dd258378418819ca
[ "MIT" ]
null
null
null
{- Set quotients: -} {-# OPTIONS --cubical --safe #-} module Cubical.HITs.SetQuotients.Properties where open import Cubical.HITs.SetQuotients.Base open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Foundations.HAEquiv open import Cubical.Foundations.Univalence open import Cubical.Data.Sigma open import Cubical.Relation.Nullary open import Cubical.Relation.Binary.Base open import Cubical.HITs.PropositionalTruncation as PropTrunc using (∥_∥; ∣_∣; squash) open import Cubical.HITs.SetTruncation as SetTrunc using (∥_∥₀; ∣_∣₀; squash₀) -- Type quotients private variable ℓ ℓ' ℓ'' : Level A : Type ℓ R : A → A → Type ℓ' B : A / R → Type ℓ'' elimEq/ : (Bprop : (x : A / R ) → isProp (B x)) {x y : A / R} (eq : x ≡ y) (bx : B x) (by : B y) → PathP (λ i → B (eq i)) bx by elimEq/ {B = B} Bprop {x = x} = J (λ y eq → ∀ bx by → PathP (λ i → B (eq i)) bx by) (λ bx by → Bprop x bx by) elimProp : ((x : A / R ) → isProp (B x)) → (f : (a : A) → B ( [ a ])) → (x : A / R) → B x elimProp Bprop f [ x ] = f x elimProp Bprop f (squash/ x y p q i j) = isOfHLevel→isOfHLevelDep 2 (λ x → isProp→isSet (Bprop x)) (g x) (g y) (cong g p) (cong g q) (squash/ x y p q) i j where g = elimProp Bprop f elimProp Bprop f (eq/ a b r i) = elimEq/ Bprop (eq/ a b r) (f a) (f b) i -- lemma 6.10.2 in hott book -- TODO: defined truncated Sigma as ∃ []surjective : (x : A / R) → ∥ Σ[ a ∈ A ] [ a ] ≡ x ∥ []surjective = elimProp (λ x → squash) (λ a → ∣ a , refl ∣) elim : {B : A / R → Type ℓ} → (Bset : (x : A / R) → isSet (B x)) → (f : (a : A) → (B [ a ])) → (feq : (a b : A) (r : R a b) → PathP (λ i → B (eq/ a b r i)) (f a) (f b)) → (x : A / R) → B x elim Bset f feq [ a ] = f a elim Bset f feq (eq/ a b r i) = feq a b r i elim Bset f feq (squash/ x y p q i j) = isOfHLevel→isOfHLevelDep 2 Bset (g x) (g y) (cong g p) (cong g q) (squash/ x y p q) i j where g = elim Bset f feq setQuotUniversal : {B : Type ℓ} (Bset : isSet B) → (A / R → B) ≃ (Σ[ f ∈ (A → B) ] ((a b : A) → R a b → f a ≡ f b)) setQuotUniversal Bset = isoToEquiv (iso intro out outRightInv outLeftInv) where intro = λ g → (λ a → g [ a ]) , λ a b r i → g (eq/ a b r i) out = λ h → elim (λ x → Bset) (fst h) (snd h) outRightInv : ∀ h → intro (out h) ≡ h outRightInv h = refl outLeftInv : ∀ g → out (intro g) ≡ g outLeftInv = λ g → funExt (λ x → PropTrunc.elim {P = λ sur → out (intro g) x ≡ g x} (λ sur → Bset (out (intro g) x) (g x)) (λ sur → cong (out (intro g)) (sym (snd sur)) ∙ (cong g (snd sur))) ([]surjective x) ) open BinaryRelation effective : (Rprop : isPropValued R) (Requiv : isEquivRel R) (a b : A) → [ a ] ≡ [ b ] → R a b effective {A = A} {R = R} Rprop (EquivRel R/refl R/sym R/trans) a b p = transport aa≡ab (R/refl _) where helper : A / R → hProp _ helper = elim (λ _ → isSetHProp) (λ c → (R a c , Rprop a c)) (λ c d cd → ΣProp≡ (λ _ → isPropIsProp) (ua (PropEquiv→Equiv (Rprop a c) (Rprop a d) (λ ac → R/trans _ _ _ ac cd) (λ ad → R/trans _ _ _ ad (R/sym _ _ cd))))) aa≡ab : R a a ≡ R a b aa≡ab i = fst (helper (p i)) isEquivRel→isEffective : isPropValued R → isEquivRel R → isEffective R isEquivRel→isEffective {R = R} Rprop Req a b = isoToEquiv (iso intro out intro-out out-intro) where intro : [ a ] ≡ [ b ] → R a b intro = effective Rprop Req a b out : R a b → [ a ] ≡ [ b ] out = eq/ a b intro-out : ∀ x → intro (out x) ≡ x intro-out ab = Rprop a b _ _ out-intro : ∀ x → out (intro x) ≡ x out-intro eq = squash/ _ _ _ _ discreteSetQuotients : Discrete A → isPropValued R → isEquivRel R → (∀ a₀ a₁ → Dec (R a₀ a₁)) → Discrete (A / R) discreteSetQuotients {A = A} {R = R} Adis Rprop Req Rdec = elim (λ a₀ → isSetPi (λ a₁ → isProp→isSet (isPropDec (squash/ a₀ a₁)))) discreteSetQuotients' discreteSetQuotients'-eq where discreteSetQuotients' : (a : A) (y : A / R) → Dec ([ a ] ≡ y) discreteSetQuotients' a₀ = elim ((λ a₁ → isProp→isSet (isPropDec (squash/ [ a₀ ] a₁)))) dis dis-eq where dis : (a₁ : A) → Dec ([ a₀ ] ≡ [ a₁ ]) dis a₁ with Rdec a₀ a₁ ... | (yes p) = yes (eq/ a₀ a₁ p) ... | (no ¬p) = no λ eq → ¬p (effective Rprop Req a₀ a₁ eq ) dis-eq : (a b : A) (r : R a b) → PathP (λ i → Dec ([ a₀ ] ≡ eq/ a b r i)) (dis a) (dis b) dis-eq a b ab = J (λ b ab → ∀ k → PathP (λ i → Dec ([ a₀ ] ≡ ab i)) (dis a) k) (λ k → isPropDec (squash/ _ _) _ _) (eq/ a b ab) (dis b) discreteSetQuotients'-eq : (a b : A) (r : R a b) → PathP (λ i → (y : A / R) → Dec (eq/ a b r i ≡ y)) (discreteSetQuotients' a) (discreteSetQuotients' b) discreteSetQuotients'-eq a b ab = J (λ b ab → ∀ k → PathP (λ i → (y : A / R) → Dec (ab i ≡ y)) (discreteSetQuotients' a) k) (λ k → funExt (λ x → isPropDec (squash/ _ _) _ _)) (eq/ a b ab) (discreteSetQuotients' b)
36.718121
142
0.522025
0dff57d66bfc33753b25e17a77e65a75fed8c630
2,906
agda
Agda
test/succeed/Reflection.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
1
2019-11-27T04:41:05.000Z
2019-11-27T04:41:05.000Z
test/succeed/Reflection.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
test/succeed/Reflection.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
{-# OPTIONS --universe-polymorphism #-} module Reflection where open import Common.Prelude hiding (Unit; module Unit) renaming (Nat to ℕ) open import Common.Reflect data _≡_ {a}{A : Set a}(x : A) : A → Set a where refl : x ≡ x {-# BUILTIN EQUALITY _≡_ #-} {-# BUILTIN REFL refl #-} data Id {A : Set}(x : A) : (B : Set) → B → Set where course : Id x A x primitive primTrustMe : ∀{a}{A : Set a}{x y : A} → x ≡ y open import Common.Level unEl : Type → Term unEl (el _ t) = t argᵛʳ : ∀{A} → A → Arg A argᵛʳ = arg (arginfo visible relevant) argʰʳ : ∀{A} → A → Arg A argʰʳ = arg (arginfo hidden relevant) el₀ : Term → Type el₀ = el (lit 0) el₁ : Term → Type el₁ = el (lit 1) set₀ : Type set₀ = el₁ (sort (lit 0)) unCheck : Term → Term unCheck (def x (_ ∷ _ ∷ arg _ t ∷ [])) = t unCheck t = unknown mutual data Check {a}{A : Set a}(x : A) : Set where _is_of_ : (t t′ : Term) → Id (primTrustMe {x = unCheck t} {t′} ) (t′ ≡ t′) refl → Check x `Check : QName `Check = quote Check test₁ : Check ({A : Set} → A → A) test₁ = quoteGoal t in t is pi (argʰʳ set₀) (el₀ (pi (argᵛʳ (el₀ (var 0 []))) (el₀ (var 1 [])))) of course test₂ : (X : Set) → Check (λ (x : X) → x) test₂ X = quoteGoal t in t is lam visible (var 0 []) of course infixr 40 _`∷_ _`∷_ : Term → Term → Term x `∷ xs = con (quote _∷_) (argᵛʳ x ∷ argᵛʳ xs ∷ []) `[] = con (quote []) [] `true = con (quote true) [] `false = con (quote false) [] test₃ : Check (true ∷ false ∷ []) test₃ = quoteGoal t in t is `true `∷ `false `∷ `[] of course `List : Term → Term `List A = def (quote List) (argᵛʳ A ∷ []) `ℕ = def (quote ℕ) [] `Term : Term `Term = def (quote Term) [] `Type : Term `Type = def (quote Type) [] `Sort : Term `Sort = def (quote Sort) [] test₄ : Check (List ℕ) test₄ = quoteGoal t in t is `List `ℕ of course test₅ : primQNameType (quote Term) ≡ set₀ test₅ = refl -- TODO => test₆ : primQNameType (quote set₀) ≡ el unknown `Type ≢ el₀ `Type test₆ : unEl (primQNameType (quote set₀)) ≡ `Type test₆ = refl test₇ : primQNameType (quote Sort.lit) ≡ el₀ (pi (argᵛʳ (el₀ `ℕ)) (el₀ `Sort)) test₇ = refl mutual ℕdef : DataDef ℕdef = _ test₈ : dataDef ℕdef ≡ primQNameDefinition (quote ℕ) test₈ = refl test₉ : primDataConstructors ℕdef ≡ quote ℕ.zero ∷ quote ℕ.suc ∷ [] test₉ = refl test₁₀ : primQNameDefinition (quote ℕ.zero) ≡ dataConstructor test₁₀ = refl postulate a : ℕ test₁₁ : primQNameDefinition (quote a) ≡ axiom test₁₁ = refl test₁₂ : primQNameDefinition (quote primQNameDefinition) ≡ prim test₁₂ = refl record Unit : Set where mutual UnitDef : RecordDef UnitDef = _ test₁₃ : recordDef UnitDef ≡ primQNameDefinition (quote Unit) test₁₃ = refl test₁₄ : Check 1 test₁₄ = quoteGoal t in t is con ( quote ℕ.suc ) (argᵛʳ (con (quote ℕ.zero) []) ∷ []) of course
21.686567
81
0.596008
0bb0d1c6eead39753bc84bf58bd91ee47a5ffe45
1,489
agda
Agda
examples/outdated-and-incorrect/cbs/Hear.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
examples/outdated-and-incorrect/cbs/Hear.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
examples/outdated-and-incorrect/cbs/Hear.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
open import Proc module Hear (param : Param) where open import Basics private open module P = Process param open Tran hear : {a : U}{p : Proc a} -> Guard p -> LT a -> Proc a hear {p = p} g bot = p hear og (lift v) = o hear (w !g p) (lift v) = w ! p hear (>g f) (lift v) = f v hear (_ ! _ +g f) (lift v) = f v hear (g1 ||g g2) (lift v) = hear g1 (lift v) || hear g2 (lift v) hear (φ /|g g) (lift v) = φ /| hear g (downV φ v) hear (defg x g) (lift v) = hear g (lift v) sound : {a : U}{p : Proc a}(g : Guard p){w : LT a} -> p -[ w ]-> hear g w sound g {bot} = qtau sound og {lift v} = rx-o sound (>g _) {lift v} = rx-> sound (w !g p) {lift v} = rx-! sound (w ! p +g f) {lift v} = rx-+ sound (g1 ||g g2) {lift v} = rx-|| (sound g1) (sound g2) sound (φ /|g g) {lift v} = rx-/| (sound g) sound (defg x g) {lift v} = rx-def (sound g) uniq : {a : U}{p : Proc a}{w : LT a}{px py : Proc a} -> p -[ w ]-> px -> p -[ w ]-> py -> px == py uniq qtau qtau = refl uniq rx-o rx-o = refl uniq rx-> rx-> = refl uniq rx-! rx-! = refl uniq rx-+ rx-+ = refl uniq (rx-|| l1 r1) (rx-|| l2 r2) with uniq l1 l2 | uniq r1 r2 ... | refl | refl = refl uniq (rx-/| r1) (rx-/| r2) with uniq r1 r2 ... | refl = refl uniq (rx-def r1) (rx-def r2) with uniq r1 r2 ... | refl = refl complete : {a : U}{p : Proc a}(g : Guard p){w : LT a}{p' : Proc a} -> p -[ w ]-> p' -> p' == hear g w complete g r = uniq r (sound g)
30.387755
69
0.496306
7c8796a6252e050ecabd7e7bdba2a991ee112d07
8,466
agda
Agda
list-thms.agda
rfindler/ial
f3f0261904577e930bd7646934f756679a6cbba6
[ "MIT" ]
29
2019-02-06T13:09:31.000Z
2022-03-04T15:05:12.000Z
list-thms.agda
rfindler/ial
f3f0261904577e930bd7646934f756679a6cbba6
[ "MIT" ]
8
2018-07-09T22:53:38.000Z
2022-03-22T03:43:34.000Z
list-thms.agda
rfindler/ial
f3f0261904577e930bd7646934f756679a6cbba6
[ "MIT" ]
17
2018-12-03T22:38:15.000Z
2021-11-28T20:13:21.000Z
module list-thms where -- see list-thms2 for more open import bool open import bool-thms open import bool-thms2 open import functions open import list open import nat open import nat-thms open import product-thms open import logic ++[] : ∀{ℓ}{A : Set ℓ} → (l : 𝕃 A) → l ++ [] ≡ l ++[] [] = refl ++[] (x :: xs) rewrite ++[] xs = refl ++-assoc : ∀ {ℓ}{A : Set ℓ} (l1 l2 l3 : 𝕃 A) → (l1 ++ l2) ++ l3 ≡ l1 ++ (l2 ++ l3) ++-assoc [] l2 l3 = refl ++-assoc (x :: xs) l2 l3 rewrite ++-assoc xs l2 l3 = refl length-++ : ∀{ℓ}{A : Set ℓ}(l1 l2 : 𝕃 A) → length (l1 ++ l2) ≡ (length l1) + (length l2) length-++ [] l2 = refl length-++ (h :: t) l2 rewrite length-++ t l2 = refl map-append : ∀ {ℓ ℓ'} {A : Set ℓ} {B : Set ℓ'} → (f : A → B) (l1 l2 : 𝕃 A) → map f (l1 ++ l2) ≡ (map f l1) ++ (map f l2) map-append f [] l2 = refl map-append f (x :: xs) l2 rewrite map-append f xs l2 = refl map-compose : ∀ {ℓ ℓ' ℓ''} {A : Set ℓ} {B : Set ℓ'}{C : Set ℓ''} → (f : B → C) (g : A → B) (l : 𝕃 A) → map f (map g l) ≡ map (f ∘ g) l map-compose f g [] = refl map-compose f g (x :: xs) rewrite map-compose f g xs = refl foldr-append : ∀{ℓ₁ ℓ₂}{A : Set ℓ₁}{B : Set ℓ₂}{l₁ l₂ : 𝕃 (A → 𝕃 B)}{a : A} → (foldr (λ f → _++_ (f a)) [] l₁) ++ (foldr (λ f → _++_ (f a)) [] l₂) ≡ foldr (λ f → _++_ (f a)) [] (l₁ ++ l₂) foldr-append {l₁ = []}{_}{a} = refl foldr-append {l₁ = x :: l₁}{l₂}{a} rewrite ++-assoc (x a) (foldr (λ f → _++_ (f a)) [] l₁) (foldr (λ f → _++_ (f a)) [] l₂) | foldr-append {l₁ = l₁}{l₂}{a} = refl invert𝕃 : ∀{ℓ}{A : Set ℓ}{t : A}{ts : 𝕃 A} → t :: ts ≢ [] invert𝕃 () length-repeat : ∀{ℓ}{A : Set ℓ} (n : ℕ) (a : A) → length (repeat n a) ≡ n length-repeat 0 a = refl length-repeat (suc n) a rewrite length-repeat n a = refl map-repeat : ∀ {ℓ ℓ'}{A : Set ℓ}{B : Set ℓ'}(n : ℕ)(a : A)(f : A → B) → map f (repeat n a) ≡ repeat n (f a) map-repeat 0 a f = refl map-repeat (suc x) a f rewrite map-repeat x a f = refl length-map : ∀{ℓ ℓ'} {A : Set ℓ} {B : Set ℓ'} (f : A → B)(l : 𝕃 A) → length (map f l) ≡ length l length-map f [] = refl length-map f (head :: tail) rewrite length-map f tail = refl length-reverse-helper : ∀{ℓ}{A : Set ℓ}(h l : 𝕃 A) → length (reverse-helper h l) ≡ length h + length l length-reverse-helper h [] rewrite +0 (length h) = refl length-reverse-helper h (x :: xs) rewrite length-reverse-helper (x :: h) xs = sym (+suc (length h) (length xs)) length-reverse : ∀{ℓ}{A : Set ℓ}(l : 𝕃 A) → length (reverse l) ≡ length l length-reverse l = length-reverse-helper [] l reverse-++h : ∀{ℓ}{A : Set ℓ}(l1 l2 : 𝕃 A) → reverse-helper l1 l2 ≡ reverse-helper [] l2 ++ l1 reverse-++h l1 [] = refl reverse-++h l1 (x :: xs) rewrite reverse-++h (x :: l1) xs | reverse-++h (x :: []) xs | ++-assoc (reverse xs) (x :: []) l1 = refl reverse-++ : ∀{ℓ}{A : Set ℓ}(l1 l2 : 𝕃 A) → reverse(l1 ++ l2) ≡ reverse(l2) ++ reverse(l1) reverse-++ [] l2 rewrite ++[] (reverse l2) = refl reverse-++ (x :: xs) l2 rewrite reverse-++h (x :: []) (xs ++ l2) | reverse-++ xs l2 | ++-assoc (reverse l2) (reverse xs) (x :: []) | sym (reverse-++h (x :: []) xs) = refl =𝕃-refl : ∀{ℓ}{A : Set ℓ}{l1 : 𝕃 A} → (eq : A → A → 𝔹) → ((x y : A) → x ≡ y → eq x y ≡ tt) → =𝕃 eq l1 l1 ≡ tt =𝕃-refl{l1 = []} eq rise = refl =𝕃-refl{l1 = x :: xs} eq rise = &&-combo (rise x x refl) (=𝕃-refl{l1 = xs} eq rise) ≡𝕃-from-= : ∀{ℓ}{A : Set ℓ}{l1 l2 : 𝕃 A} → (eq : A → A → 𝔹) → ((x y : A) → eq x y ≡ tt → x ≡ y) → =𝕃 eq l1 l2 ≡ tt → l1 ≡ l2 ≡𝕃-from-={l1 = []}{[]} eq drop p = refl ≡𝕃-from-={l1 = x :: xs}{[]} eq drop () ≡𝕃-from-={l1 = []}{y :: ys} eq drop () ≡𝕃-from-={l1 = x :: xs}{y :: ys} eq drop p rewrite ≡𝕃-from-={l1 = xs} eq drop (&&-snd{eq x y}{=𝕃 eq xs ys} p) | drop x y (&&-fst p) = refl =𝕃-from-≡ : ∀{ℓ}{A : Set ℓ}{l1 l2 : 𝕃 A} → (eq : A → A → 𝔹) → ((x y : A) → x ≡ y → eq x y ≡ tt) → l1 ≡ l2 → =𝕃 eq l1 l2 ≡ tt =𝕃-from-≡{l2 = l2} eq rise p rewrite p = =𝕃-refl{l1 = l2} eq rise multi++-assoc : ∀{ℓ}{A : Set ℓ} → (Ls : 𝕃 (𝕃 A)) → (l0 : 𝕃 A) → (foldr _++_ [] Ls) ++ l0 ≡ (foldr _++_ [] (Ls ++ [ l0 ])) multi++-assoc [] l' rewrite ++[] l' = refl multi++-assoc (l :: ls) l' rewrite ++-assoc l (foldr _++_ [] ls) l' | multi++-assoc ls l' = refl concat-foldr : ∀{ℓ}{A : Set ℓ} → (ls : 𝕃 (𝕃 A)) → (l : 𝕃 A) → concat ls ++ l ≡ foldr _++_ l ls concat-foldr [] l = refl concat-foldr (l' :: ls) l rewrite ++-assoc l' (concat ls) l | concat-foldr ls l = refl --concat-foldr (l' :: (l'' :: ls)) l rewrite ++-assoc l' (concat (l'' :: ls)) l | concat-foldr (l'' :: ls) l = refl longer-trans : ∀{ℓ}{A : Set ℓ}(l1 l2 l3 : 𝕃 A) → l1 longer l2 ≡ tt → l2 longer l3 ≡ tt → l1 longer l3 ≡ tt longer-trans [] l2 l3 () q longer-trans (x :: l1) [] l3 p () longer-trans (x :: l1) (x₁ :: l2) [] p q = refl longer-trans (x :: l1) (x₁ :: l2) (x₂ :: l3) p q = longer-trans l1 l2 l3 p q filter-idem : ∀{ℓ}{A : Set ℓ}(p : A → 𝔹)(l : 𝕃 A) → (filter p (filter p l)) ≡ (filter p l) filter-idem p [] = refl filter-idem p (x :: l) with keep (p x) filter-idem p (x :: l) | tt , p' rewrite p' | p' | filter-idem p l = refl filter-idem p (x :: l) | ff , p' rewrite p' = filter-idem p l length-filter : ∀{ℓ}{A : Set ℓ}(p : A → 𝔹)(l : 𝕃 A) → length (filter p l) ≤ length l ≡ tt length-filter p [] = refl length-filter p (x :: l) with p x length-filter p (x :: l) | tt = length-filter p l length-filter p (x :: l) | ff = ≤-trans{length (filter p l)} (length-filter p l) (≤-suc (length l)) filter-++ : ∀{ℓ}{A : Set ℓ}(p : A → 𝔹)(l1 l2 : 𝕃 A) → filter p (l1 ++ l2) ≡ filter p l1 ++ filter p l2 filter-++ p [] l2 = refl filter-++ p (x :: l1) l2 with p x filter-++ p (x :: l1) l2 | tt rewrite (filter-++ p l1 l2) = refl filter-++ p (x :: l1) l2 | ff rewrite (filter-++ p l1 l2) = refl remove-++ : ∀{ℓ}{A : Set ℓ}(eq : A → A → 𝔹)(a : A)(l1 l2 : 𝕃 A) → remove eq a (l1 ++ l2) ≡ remove eq a l1 ++ remove eq a l2 remove-++ eq a l1 l2 = filter-++ (λ x → ~ (eq a x)) l1 l2 ::-injective : ∀{ℓ}{A : Set ℓ}{x y : A}{xs ys : 𝕃 A} → x :: xs ≡ y :: ys → x ≡ y ∧ xs ≡ ys ::-injective refl = refl , refl concat-++ : ∀{ℓ}{A : Set ℓ}(ls1 ls2 : 𝕃 (𝕃 A)) → concat (ls1 ++ ls2) ≡ (concat ls1) ++ (concat ls2) concat-++ [] ls2 = refl concat-++ (l :: ls) ls2 rewrite concat-++ ls ls2 = sym (++-assoc l (concat ls) (concat ls2)) -- This holds as long as we have the equations p₁ and p₂. We know -- that these equations are consistant to adopt, because they are -- equivalent up and an isomorphism, and hence, by univalence they are -- consistent as equations. The respective isomorphisms can be found -- in products-thms.agda. all-pred-append : ∀{X : Set}{f : X → Set}{l₁ l₂} → (p₁ : ∀{ℓ}{A : Set ℓ} → A ≡ (⊤ ∧ A)) → (p₂ : ∀{ℓ}{A B C : Set ℓ} → (A ∧ (B ∧ C)) ≡ ((A ∧ B) ∧ C)) → all-pred f (l₁ ++ l₂) ≡ ((all-pred f l₁) ∧ (all-pred f l₂)) all-pred-append {l₁ = []} {l₂} p₁ p₂ = p₁ all-pred-append {X}{f}{x :: l₁} {l₂} p₁ p₂ rewrite all-pred-append {X}{f}{l₁ = l₁} {l₂} p₁ p₂ = p₂ map-proj-⊎₁ : ∀{ℓ ℓ'}{A : Set ℓ}{B : Set ℓ'} → (l : 𝕃 A) → proj-⊎₁ {A = A}{B} (map inj₁ l) ≡ l map-proj-⊎₁ [] = refl map-proj-⊎₁ {A = A}{B} (x :: l) rewrite map-proj-⊎₁ {A = A}{B} l = refl map-proj-⊎₂ : ∀{ℓ ℓ'}{A : Set ℓ}{B : Set ℓ'} → (l : 𝕃 B) → proj-⊎₂ {A = A}{B} (map inj₂ l) ≡ l map-proj-⊎₂ [] = refl map-proj-⊎₂ {A = A}{B} (x :: l) rewrite map-proj-⊎₂ {A = A}{B} l = refl map-proj-⊎₂-[] : ∀{ℓ ℓ'}{A : Set ℓ}{B : Set ℓ'} → (l : 𝕃 A) → proj-⊎₂ {A = A}{B} (map inj₁ l) ≡ [] map-proj-⊎₂-[] [] = refl map-proj-⊎₂-[] {A = A}{B} (x :: l) rewrite map-proj-⊎₂-[] {A = A}{B} l = refl map-proj-⊎₁-[] : ∀{ℓ ℓ'}{A : Set ℓ}{B : Set ℓ'} → (l : 𝕃 B) → proj-⊎₁ {A = A}{B} (map inj₂ l) ≡ [] map-proj-⊎₁-[] [] = refl map-proj-⊎₁-[] {A = A}{B} (x :: l) rewrite map-proj-⊎₁-[] {A = A}{B} l = refl is-empty-++ : ∀{ℓ}{A : Set ℓ}(l1 l2 : 𝕃 A) → is-empty (l1 ++ l2) ≡ is-empty l1 && is-empty l2 is-empty-++ [] l2 = refl is-empty-++ (x :: l1) l2 = refl is-empty-ff-length : ∀{ℓ}{A : Set ℓ}(l : 𝕃 A) → is-empty l ≡ ff → length l =ℕ 0 ≡ ff is-empty-ff-length [] () is-empty-ff-length (x :: l) p = refl list-all-append : ∀{ℓ}{A : Set ℓ}(p : A → 𝔹)(l l' : 𝕃 A) → list-all p (l ++ l') ≡ list-all p l && list-all p l' list-all-append p [] l' = refl list-all-append p (x :: l) l' rewrite list-all-append p l l' | &&-assoc (p x) (list-all p l) (list-all p l') = refl
44.557895
171
0.504134
4ea78719c60db9cccff4c11f29c696acbc46a1f1
96
agda
Agda
test/Succeed/Issue481PonderImportMe.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue481PonderImportMe.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue481PonderImportMe.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
open import Issue481PonderBase using (List) module Issue481PonderImportMe (as bs : List) where
24
50
0.8125
7cd6cfda84361c33bacc94e3f6c69ade214e51fa
5,332
agda
Agda
Cubical/Experiments/ZCohomology/Benchmarks.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
Cubical/Experiments/ZCohomology/Benchmarks.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
Cubical/Experiments/ZCohomology/Benchmarks.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
{- Please do not move this file. Changes should only be made if necessary. This file contains benchmarks for the paper: Synthetic Cohomology Theory in Cubical Agda Command to run the benchmarks and get timings: agda -v profile.definitions:10 Benchmarks.agda This assumes that there is no Benchmarks.agdai file. If there is one, then it should be removed before the above command is run. -} {-# OPTIONS --cubical --no-import-sorts --no-exact-split --safe #-} module Cubical.Experiments.ZCohomology.Benchmarks where open import Cubical.Foundations.Everything open import Cubical.Data.Nat open import Cubical.Data.Bool open import Cubical.Data.Int open import Cubical.HITs.Sn open import Cubical.Algebra.Group open import Cubical.ZCohomology.Base open import Cubical.ZCohomology.Properties open import Cubical.ZCohomology.GroupStructure open import Cubical.ZCohomology.Groups.Sn open import Cubical.ZCohomology.Groups.Wedge open import Cubical.ZCohomology.Groups.Torus open import Cubical.ZCohomology.Groups.KleinBottle open import Cubical.ZCohomology.Groups.WedgeOfSpheres open import Cubical.ZCohomology.Groups.RP2 open import Cubical.Data.Sigma open import Cubical.HITs.KleinBottle open import Cubical.HITs.RPn.Base open GroupHom open GroupIso -- S¹ (everything fast) module S1-tests where ϕ : coHom 1 (S₊ 1) → Int ϕ = fun (map (Hⁿ-Sⁿ≅ℤ 0)) ϕ⁻¹ : Int → coHom 1 (S₊ 1) ϕ⁻¹ = inv (Hⁿ-Sⁿ≅ℤ 0) test₁ : ϕ (ϕ⁻¹ 0) ≡ 0 -- 30ms test₁ = refl test₂ : ϕ (ϕ⁻¹ 1) ≡ 1 -- <10ms test₂ = refl test₃ : ϕ (ϕ⁻¹ 0 +ₕ ϕ⁻¹ 0) ≡ 0 -- <10ms test₃ = refl test₄ : ϕ (ϕ⁻¹ 0 +ₕ ϕ⁻¹ 1) ≡ 1 -- 10ms test₄ = refl test₅ : ϕ (ϕ⁻¹ 1 +ₕ ϕ⁻¹ 0) ≡ 1 -- 11ms test₅ = refl test₆ : ϕ (ϕ⁻¹ -3 +ₕ ϕ⁻¹ 4) ≡ 1 -- 29ms test₆ = refl test₇ : ϕ (ϕ⁻¹ -5 +ₕ ϕ⁻¹ -2) ≡ -7 -- 28ms test₇ = refl -- S² module S2-tests where ϕ : coHom 2 (S₊ 2) → Int ϕ = fun (map (Hⁿ-Sⁿ≅ℤ 1)) ϕ⁻¹ : Int → coHom 2 (S₊ 2) ϕ⁻¹ = inv (Hⁿ-Sⁿ≅ℤ 1) test₁ : ϕ (ϕ⁻¹ 0) ≡ 0 -- 13ms test₁ = refl test₂ : ϕ (ϕ⁻¹ 1) ≡ 1 -- 16ms test₂ = refl test₃ : ϕ (ϕ⁻¹ 0 +ₕ ϕ⁻¹ 0) ≡ 0 -- 278ms test₃ = refl test₄ : ϕ (ϕ⁻¹ 0 +ₕ ϕ⁻¹ 1) ≡ 1 -- 290ms test₄ = refl {- test₅ : ϕ (ϕ⁻¹ 1 +ₕ ϕ⁻¹ 0) ≡ 1 -- nope test₅ = refl test₆ : ϕ (ϕ⁻¹ 1 +ₕ ϕ⁻¹ 1) ≡ 2 -- nope test₆ = refl test₇ : ϕ (ϕ⁻¹ 2 +ₕ ϕ⁻¹ 4) ≡ 6 -- nope test₇ = refl -} module S1∨S1∨S2-tests₁ where -- everything fast ϕ : coHom 1 S²⋁S¹⋁S¹ → Int × Int ϕ = fun (map H¹-S²⋁S¹⋁S¹) ϕ⁻¹ : Int × Int → coHom 1 S²⋁S¹⋁S¹ ϕ⁻¹ = inv H¹-S²⋁S¹⋁S¹ test₁ : ϕ (ϕ⁻¹ (0 , 0)) ≡ (0 , 0) -- <10ms test₁ = refl test₂ : ϕ (ϕ⁻¹ (3 , 1)) ≡ (3 , 1) -- 21ms test₂ = refl test₃ : ϕ (ϕ⁻¹ (0 , 0) +ₕ ϕ⁻¹ (0 , 0)) ≡ (0 , 0) -- 15ms test₃ = refl test₄ : ϕ (ϕ⁻¹ (0 , 1) +ₕ ϕ⁻¹ (1 , 0)) ≡ (1 , 1) -- 21ms test₄ = refl test₅ : ϕ (ϕ⁻¹ (3 , 2) +ₕ ϕ⁻¹ (-1 , 5)) ≡ (2 , 7) -- 47ms test₅ = refl module S1∨S1∨S2-tests₂ where ϕ : coHom 2 S²⋁S¹⋁S¹ → Int ϕ = fun (map H²-S²⋁S¹⋁S¹) ϕ⁻¹ : Int → coHom 2 S²⋁S¹⋁S¹ ϕ⁻¹ = inv H²-S²⋁S¹⋁S¹ test₁ : ϕ (ϕ⁻¹ 0) ≡ 0 -- 157ms test₁ = refl test₂ : ϕ (ϕ⁻¹ 3) ≡ 3 -- 119ms test₂ = refl test₃ : ϕ (ϕ⁻¹ 0 +ₕ ϕ⁻¹ 0) ≡ 0 -- 1,820ms test₃ = refl module Torus-test₁ where -- fast ϕ : coHom 1 (S₊ 1 × S₊ 1) → Int × Int ϕ = fun (map H¹-T²≅ℤ×ℤ) ϕ⁻¹ : Int × Int → coHom 1 (S₊ 1 × S₊ 1) ϕ⁻¹ = inv H¹-T²≅ℤ×ℤ test₁ : ϕ (ϕ⁻¹ (0 , 0)) ≡ (0 , 0) -- <10ms test₁ = refl test₂ : ϕ (ϕ⁻¹ (3 , 1)) ≡ (3 , 1) -- 18ms test₂ = refl test₃ : ϕ (ϕ⁻¹ (0 , 0) +ₕ ϕ⁻¹ (0 , 0)) ≡ (0 , 0) -- 15ms test₃ = refl test₄ : ϕ (ϕ⁻¹ (0 , 1) +ₕ ϕ⁻¹ (1 , 0)) ≡ (1 , 1) -- 20ms test₄ = refl test₅ : ϕ (ϕ⁻¹ (-3 , 2) +ₕ ϕ⁻¹ (-1 , 5)) ≡ (-4 , 7) -- 44ms test₅ = refl module Torus-test₂ where ϕ : coHom 2 (S₊ 1 × S₊ 1) → Int ϕ = fun (map H²-T²≅ℤ) ϕ⁻¹ : Int → coHom 2 (S₊ 1 × S₊ 1) ϕ⁻¹ = inv H²-T²≅ℤ test₁ : ϕ (ϕ⁻¹ 0) ≡ 0 -- 121ms test₁ = refl test₂ : ϕ (ϕ⁻¹ 3) ≡ 3 -- 142ms test₂ = refl test₃ : ϕ (ϕ⁻¹ 0 +ₕ ϕ⁻¹ 0) ≡ 0 -- 3,674ms test₃ = refl test₄ : ϕ (ϕ⁻¹ 0 +ₕ ϕ⁻¹ 1) ≡ 1 -- 3,772ms test₄ = refl {- test₅ : ϕ (ϕ⁻¹ 1 +ₕ ϕ⁻¹ 0) ≡ 1 -- nope test₅ = refl -} module Klein-test₁ where -- fast ϕ : coHom 1 KleinBottle → Int ϕ = fun (map H¹-𝕂²≅ℤ) ϕ⁻¹ : Int → coHom 1 KleinBottle ϕ⁻¹ = inv H¹-𝕂²≅ℤ test₁ : ϕ (ϕ⁻¹ 0) ≡ 0 -- <10ms test₁ = refl test₂ : ϕ (ϕ⁻¹ 3) ≡ 3 -- 12ms test₂ = refl test₃ : ϕ (ϕ⁻¹ 0 +ₕ ϕ⁻¹ 0) ≡ 0 -- <10ms test₃ = refl test₄ : ϕ (ϕ⁻¹ 0 +ₕ ϕ⁻¹ 1) ≡ 1 -- 11ms test₄ = refl test₅ : ϕ (ϕ⁻¹ 1 +ₕ ϕ⁻¹ 0) ≡ 1 -- 12ms test₅ = refl test₆ : ϕ (ϕ⁻¹ -3 +ₕ ϕ⁻¹ 4) ≡ 1 -- 29ms test₆ = refl test₇ : ϕ (ϕ⁻¹ -5 +ₕ ϕ⁻¹ -2) ≡ -7 -- 29ms test₇ = refl -- The example in the paper: test : ϕ (ϕ⁻¹ 1 +ₕ ϕ⁻¹ 2) ≡ 3 -- 15ms test = refl module Klein-test₂ where ϕ : coHom 2 KleinBottle → Bool ϕ = fun (map H²-𝕂²≅Bool) ϕ⁻¹ : Bool → coHom 2 KleinBottle ϕ⁻¹ = inv H²-𝕂²≅Bool {- test₀ : ϕ (0ₕ _) ≡ true -- fails already here... test₀ = refl -} module RP2-test₂ where ϕ : coHom 2 RP² → Bool ϕ = fun (map H²-RP²≅Bool) ϕ⁻¹ : Bool → coHom 2 RP² ϕ⁻¹ = inv H²-RP²≅Bool test₀ : ϕ (0ₕ _) ≡ true -- 1,210ms (unlike for Klein, this works) test₀ = refl {- test₁ : ϕ (ϕ⁻¹ true) ≡ true -- nope test₁ = refl -}
20.507692
70
0.560578
3055800aa7ad38106ec0cbeb371dcbcea77c963a
1,595
agda
Agda
extra/extra/RewriteWTF.agda
krzygorz/plfa.github.io
10a3203624f2ea937b3892176db5de825d0c46b4
[ "CC-BY-4.0" ]
1,003
2018-07-05T18:15:14.000Z
2022-03-27T07:03:28.000Z
extra/extra/RewriteWTF.agda
krzygorz/plfa.github.io
10a3203624f2ea937b3892176db5de825d0c46b4
[ "CC-BY-4.0" ]
323
2018-07-05T22:34:34.000Z
2022-03-30T07:42:57.000Z
extra/extra/RewriteWTF.agda
krzygorz/plfa.github.io
10a3203624f2ea937b3892176db5de825d0c46b4
[ "CC-BY-4.0" ]
304
2018-07-16T18:24:59.000Z
2022-03-28T11:35:02.000Z
import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl; sym; trans; cong) open Eq.≡-Reasoning open import Data.Nat using (ℕ; zero; suc; _+_; _*_) open import Data.Nat.Properties.Simple using (+-suc) open import Data.Product using (∃; ∃-syntax; _,_) data even : ℕ → Set data odd : ℕ → Set data even where even-zero : even zero even-suc : ∀ {n : ℕ} → odd n → even (suc n) data odd where odd-suc : ∀ {n : ℕ} → even n → odd (suc n) lemma : ∀ (m : ℕ) → 2 * suc m ≡ suc (suc (2 * m)) lemma m = begin 2 * suc m ≡⟨⟩ suc m + (suc m + zero) ≡⟨⟩ suc (m + (suc (m + zero))) ≡⟨ cong suc (+-suc m (m + zero)) ⟩ suc (suc (m + (m + zero))) ≡⟨⟩ suc (suc (2 * m)) ∎ ∃-even : ∀ {n : ℕ} → even n → ∃[ m ] (2 * m ≡ n) ∃-odd : ∀ {n : ℕ} → odd n → ∃[ m ] (1 + 2 * m ≡ n) ∃-even even-zero = zero , refl ∃-even (even-suc o) with ∃-odd o ... | m , refl = suc m , lemma m ∃-odd (odd-suc e) with ∃-even e ... | m , refl = m , refl ∃-even′ : ∀ {n : ℕ} → even n → ∃[ m ] (n ≡ 2 * m) ∃-odd′ : ∀ {n : ℕ} → odd n → ∃[ m ] (n ≡ 1 + 2 * m) ∃-even′ even-zero = zero , refl ∃-even′ (even-suc o) with ∃-odd′ o ... | m , eqn rewrite eqn | +-suc m (m + 0) = suc m , {!!} ∃-odd′ (odd-suc e) with ∃-even′ e ... | m , eqn rewrite eqn = m , refl data Even : ℕ → Set where ev0 : Even zero ev2 : ∀ {n} → Even n → Even (suc (suc n)) ev-ex : ∀ {n : ℕ} → Even n → ∃[ m ] (2 * m ≡ n) ev-ex ev0 = (zero , refl) ev-ex (ev2 ev) with ev-ex ev ... | (m , refl) = (suc m , lemma m)
26.147541
78
0.473354
37120dcd9255d4ede41e428d38f223e559bf5474
4,548
agda
Agda
src/plfa-code/Decidable.agda
chirsz-ever/plfa-code
ec5b359a8c22bf5268cae3c36a97e6737c75d5f3
[ "MIT" ]
null
null
null
src/plfa-code/Decidable.agda
chirsz-ever/plfa-code
ec5b359a8c22bf5268cae3c36a97e6737c75d5f3
[ "MIT" ]
null
null
null
src/plfa-code/Decidable.agda
chirsz-ever/plfa-code
ec5b359a8c22bf5268cae3c36a97e6737c75d5f3
[ "MIT" ]
null
null
null
module plfa-code.Decidable where import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl) open Eq.≡-Reasoning open import Data.Nat using (ℕ; zero; suc) open import Data.Product using (_×_) renaming (_,_ to ⟨_,_⟩) open import Data.Sum using (_⊎_; inj₁; inj₂) open import Relation.Nullary using (¬_) open import Relation.Nullary.Negation using () renaming (contradiction to ¬¬-intro) open import Data.Unit using (⊤; tt) open import Data.Empty using (⊥; ⊥-elim) open import plfa-code.Relations using (_<_; z<s; s<s) open import plfa-code.Isomorphism using (_⇔_) data Bool : Set where true : Bool false : Bool open Data.Nat using (_≤_; z≤n; s≤s) infix 4 _≤ᵇ_ _≤ᵇ_ : ℕ → ℕ → Bool zero ≤ᵇ n = true suc m ≤ᵇ zero = false suc m ≤ᵇ suc n = m ≤ᵇ n _ : (2 ≤ᵇ 4) ≡ true _ = begin 2 ≤ᵇ 4 ≡⟨⟩ 1 ≤ᵇ 3 ≡⟨⟩ 0 ≤ᵇ 2 ≡⟨⟩ true ∎ _ : (4 ≤ᵇ 2) ≡ false _ = begin 4 ≤ᵇ 2 ≡⟨⟩ 3 ≤ᵇ 1 ≡⟨⟩ 2 ≤ᵇ 0 ≡⟨⟩ false ∎ T : Bool → Set T true = ⊤ T false = ⊥ T→≡ : ∀ (b : Bool) → T b → b ≡ true T→≡ true tt = refl T→≡ false () ≡→T : ∀ {b : Bool} → b ≡ true → T b ≡→T refl = tt ≤ᵇ→≤ : ∀ (m n : ℕ) → T (m ≤ᵇ n) → m ≤ n ≤ᵇ→≤ zero n tt = z≤n ≤ᵇ→≤ (suc m) zero () ≤ᵇ→≤ (suc m) (suc n) t = s≤s (≤ᵇ→≤ m n t) ≤→≤ᵇ : ∀ {m n : ℕ} → m ≤ n → T (m ≤ᵇ n) ≤→≤ᵇ z≤n = tt ≤→≤ᵇ (s≤s m≤n) = ≤→≤ᵇ m≤n data Dec (A : Set) : Set where yes : A → Dec A no : ¬ A → Dec A ¬s≤z : ∀ {m : ℕ} → ¬ (suc m ≤ zero) ¬s≤z () ¬s≤s : ∀ {m n : ℕ} → ¬ (m ≤ n) → ¬ (suc m ≤ suc n) ¬s≤s ¬m≤n (s≤s m≤n) = ¬m≤n m≤n _≤?_ : ∀ (m n : ℕ) → Dec (m ≤ n) zero ≤? n = yes z≤n suc m ≤? zero = no ¬s≤z suc m ≤? suc n with m ≤? n ... | yes m≤n = yes (s≤s m≤n) ... | no ¬m≤n = no (¬s≤s ¬m≤n) ---------- practice ---------- open Eq using (cong) _<?_ : ∀ (m n : ℕ) → Dec (m < n) zero <? zero = no (λ ()) zero <? suc n = yes z<s suc m <? zero = no (λ ()) suc m <? suc n with m <? n ... | yes m<n = yes (s<s m<n) ... | no ¬m<n = no λ{ (s<s m<n) → ¬m<n m<n} _≡ℕ?_ : ∀ (m n : ℕ) → Dec (m ≡ n) zero ≡ℕ? zero = yes refl zero ≡ℕ? suc n = no (λ ()) suc m ≡ℕ? zero = no (λ ()) suc m ≡ℕ? suc n with m ≡ℕ? n (suc m ≡ℕ? suc n) | yes m≡n = yes (cong suc m≡n) (suc m ≡ℕ? suc n) | no ¬m≡n = no λ{ refl → ¬m≡n refl} ------------------------------ _≤?′_ : ∀ (m n : ℕ) → Dec (m ≤ n) m ≤?′ n with m ≤ᵇ n | ≤ᵇ→≤ m n | ≤→≤ᵇ {m} {n} ... | true | p | _ = yes (p tt) ... | false | _ | ¬p = no ¬p ⌊_⌋ : ∀ {A : Set} → Dec A → Bool ⌊ yes _ ⌋ = true ⌊ no _ ⌋ = false _≤ᵇ′_ : ℕ → ℕ → Bool m ≤ᵇ′ n = ⌊ m ≤? n ⌋ toWitness : ∀ {A : Set} {D : Dec A} → T ⌊ D ⌋ → A toWitness {A} {yes x} tt = x toWitness {A} {no ¬x} () fromWitness : ∀ {A : Set} {D : Dec A} → A → T ⌊ D ⌋ fromWitness {A} {yes x} _ = tt fromWitness {A} {no ¬x} x = ¬x x ≤ᵇ′→≤ : ∀ {m n : ℕ} → T (m ≤ᵇ′ n) → m ≤ n ≤ᵇ′→≤ = toWitness ≤→≤ᵇ′ : ∀ {m n : ℕ} → m ≤ n → T (m ≤ᵇ′ n) ≤→≤ᵇ′ = fromWitness infixr 6 _∧_ _∧_ : Bool → Bool → Bool true ∧ true = true false ∧ _ = false _ ∧ false = false infixr 6 _×-dec_ _×-dec_ : ∀ {A B : Set} → Dec A → Dec B → Dec (A × B) yes x ×-dec yes y = yes ⟨ x , y ⟩ no ¬x ×-dec _ = no λ{ ⟨ x , y ⟩ → ¬x x} _ ×-dec no ¬y = no λ{ ⟨ x , y ⟩ → ¬y y} infixr 5 _∨_ _∨_ : Bool → Bool → Bool true ∨ _ = true _ ∨ true = true false ∨ false = false infixr 5 _⊎-dec_ _⊎-dec_ : ∀ {A B : Set} → Dec A → Dec B → Dec (A ⊎ B) yes x ⊎-dec _ = yes (inj₁ x) _ ⊎-dec yes y = yes (inj₂ y) no ¬x ⊎-dec no ¬y = no λ{ (inj₁ x) → ¬x x ; (inj₂ y) → ¬y y } not : Bool → Bool not true = false not false = true ¬? : ∀ {A : Set} → Dec A → Dec (¬ A) ¬? (yes x) = no (¬¬-intro x) ¬? (no ¬x) = yes ¬x _⊃_ : Bool → Bool → Bool _ ⊃ true = true false ⊃ _ = true true ⊃ false = false _→-dec_ : ∀ {A B : Set} → Dec A → Dec B → Dec (A → B) _ →-dec yes y = yes (λ _ → y) no ¬x →-dec _ = yes (λ x → ⊥-elim (¬x x)) yes x →-dec no ¬y = no (λ f → ¬y (f x)) ---------- practice ---------- ∧-× : ∀ {A B : Set} (x : Dec A) (y : Dec B) → ⌊ x ⌋ ∧ ⌊ y ⌋ ≡ ⌊ x ×-dec y ⌋ ∧-× (yes x) (yes y) = refl ∧-× (yes x) (no ¬y) = refl ∧-× (no x) _ = refl -- I think there is a typo, so I write ∨-⊎ instead of the origin ∨-× ∨-⊎ : ∀ {A B : Set} (x : Dec A) (y : Dec B) → ⌊ x ⌋ ∨ ⌊ y ⌋ ≡ ⌊ x ⊎-dec y ⌋ ∨-⊎ (yes x) _ = refl ∨-⊎ (no ¬x) (yes y) = refl ∨-⊎ (no ¬x) (no ¬y) = refl not-¬ : ∀ {A : Set} (x : Dec A) → not ⌊ x ⌋ ≡ ⌊ ¬? x ⌋ not-¬ (yes x) = refl not-¬ (no ¬x) = refl
22.854271
75
0.442832
3698e70ec144bae45ba794d74b4cbc40d4e73d05
5,509
agda
Agda
Groups/FinitePermutations.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
4
2019-08-08T12:44:19.000Z
2022-01-28T06:04:15.000Z
Groups/FinitePermutations.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
14
2019-01-06T21:11:59.000Z
2020-04-11T11:03:39.000Z
Groups/FinitePermutations.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
1
2021-11-29T13:23:07.000Z
2021-11-29T13:23:07.000Z
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Numbers.Naturals.Semiring -- for length open import Lists.Lists open import Functions.Definition --open import Groups.Actions module Groups.FinitePermutations where allInsertions : {a : _} {A : Set a} (x : A) (l : List A) → List (List A) allInsertions x [] = [ x ] :: [] allInsertions x (y :: l) = (x :: (y :: l)) :: (map (λ i → y :: i) (allInsertions x l)) permutations : {a : _} {A : Set a} (l : List A) → List (List A) permutations [] = [ [] ] permutations (x :: l) = flatten (map (allInsertions x) (permutations l)) factorial : ℕ → ℕ factorial zero = 1 factorial (succ n) = (succ n) *N factorial n factCheck : factorial 5 ≡ 120 factCheck = refl allInsertionsLength : {a : _} {A : Set a} (x : A) (l : List A) → length (allInsertions x l) ≡ succ (length l) allInsertionsLength x [] = refl allInsertionsLength x (y :: l) = applyEquality succ (transitivity (equalityCommutative (lengthMap (allInsertions x l) {f = y ::_})) (allInsertionsLength x l)) allInsertionsLength' : {a : _} {A : Set a} (x : A) (l : List A) → allTrue (λ i → length i ≡ succ (length l)) (allInsertions x l) allInsertionsLength' x [] = refl ,, record {} allInsertionsLength' x (y :: l) with allInsertionsLength' x l ... | bl = refl ,, allTrueMap (λ i → length i ≡ succ (succ (length l))) (y ::_) (allInsertions x l) (allTrueExtension (λ z → length z ≡ succ (length l)) ((λ i → length i ≡ succ (succ (length l))) ∘ (y ::_)) (allInsertions x l) (λ {x} → λ p → applyEquality succ p) bl) permutationsCheck : permutations (3 :: 4 :: []) ≡ (3 :: 4 :: []) :: (4 :: 3 :: []) :: [] permutationsCheck = refl permsAllSameLength : {a : _} {A : Set a} (l : List A) → allTrue (λ i → length i ≡ length l) (permutations l) permsAllSameLength [] = refl ,, record {} permsAllSameLength (x :: l) with permsAllSameLength l ... | bl = allTrueFlatten (λ i → length i ≡ succ (length l)) (map (allInsertions x) (permutations l)) (allTrueMap (allTrue (λ i → length i ≡ succ (length l))) (allInsertions x) (permutations l) (allTrueExtension (λ z → length z ≡ length l) (allTrue (λ i → length i ≡ succ (length l)) ∘ allInsertions x) (permutations l) lemma bl)) where lemma : {m : List _} → (lenM=lenL : length m ≡ length l) → allTrue (λ i → length i ≡ succ (length l)) (allInsertions x m) lemma {m} lm=ll rewrite equalityCommutative lm=ll = allInsertionsLength' x m allTrueEqual : {a b : _} {A : Set a} {B : Set b} (f : A → B) (equalTo : B) (l : List A) → allTrue (λ i → f i ≡ equalTo) l → map f l ≡ replicate (length l) equalTo allTrueEqual f equalTo [] pr = refl allTrueEqual f equalTo (x :: l) (fst ,, snd) rewrite fst | allTrueEqual f equalTo l snd = refl totalReplicate : (l len : ℕ) → fold _+N_ 0 (replicate len l) ≡ l *N len totalReplicate l zero rewrite multiplicationNIsCommutative l 0 = refl totalReplicate l (succ len) rewrite totalReplicate l len | multiplicationNIsCommutative l (succ len) = applyEquality (l +N_) (multiplicationNIsCommutative l len) permsLen : {a : _} {A : Set a} (l : List A) → length (permutations l) ≡ factorial (length l) permsLen [] = refl permsLen (x :: l) = transitivity (lengthFlatten (map (allInsertions x) (permutations l))) (transitivity (applyEquality (fold _+N_ 0) (mapMap (permutations l))) (transitivity (applyEquality (fold _+N_ 0) (mapExtension (permutations l) (length ∘ allInsertions x) (succ ∘ length) λ {y} → allInsertionsLength x y)) (transitivity (applyEquality (fold _+N_ 0) lemma) (transitivity (totalReplicate (succ (length l)) (length (permutations l))) ans)))) where lemma : map (λ a → succ (length a)) (permutations l) ≡ replicate (length (permutations l)) (succ (length l)) lemma = allTrueEqual (λ a → succ (length a)) (succ (length l)) (permutations l) (allTrueExtension (λ z → length z ≡ length l) (λ i → succ (length i) ≡ succ (length l)) (permutations l) (λ pr → applyEquality succ pr) (permsAllSameLength l)) ans : length (permutations l) +N length l *N length (permutations l) ≡ factorial (length l) +N length l *N factorial (length l) ans rewrite permsLen l = refl --act : GroupAction (symmetricGroup (symmetricSetoid (reflSetoid (FinSet n)))) --act = ? {- TODO: show that symmetricGroup acts in the obvious way on permutations FinSet listElements : {a : _} {A : Set a} (l : List A) → Set listElements [] = False listElements (x :: l) = True || listElements l listElement : {a : _} {A : Set a} {l : List A} (elt : listElements l) → A listElement {l = []} () listElement {l = x :: l} (inl record {}) = x listElement {l = x :: l} (inr elt) = listElement {l = l} elt backwardRange : ℕ → List ℕ backwardRange zero = [] backwardRange (succ n) = n :: backwardRange n backwardRangeLength : {n : ℕ} → length (backwardRange n) ≡ n backwardRangeLength {zero} = refl backwardRangeLength {succ n} rewrite backwardRangeLength {n} = refl applyPermutation : {n : ℕ} → (f : FinSet n → FinSet n) → listElements (permutations (backwardRange n)) → listElements (permutations (backwardRange n)) applyPermutation {zero} f (inl record {}) = inl (record {}) applyPermutation {zero} f (inr ()) applyPermutation {succ n} f elt = {!!} finitePermutations : (n : ℕ) → SetoidToSet (symmetricSetoid (reflSetoid (FinSet n))) (listElements (permutations (backwardRange n))) SetoidToSet.project (finitePermutations n) (sym {f} fBij) = {!!} SetoidToSet.wellDefined (finitePermutations n) = {!!} SetoidToSet.surj (finitePermutations n) = {!!} SetoidToSet.inj (finitePermutations n) = {!!} -}
57.385417
443
0.669632
14cb484c1c4f07368809dde95f9cbfcf085d5857
2,129
agda
Agda
src/Selective/Examples/CalculatorProtocol.agda
Zalastax/singly-typed-actors
ae541df13d069df4eb1464f29fbaa9804aad439f
[ "MIT" ]
1
2019-10-29T09:30:26.000Z
2019-10-29T09:30:26.000Z
src/Selective/Examples/CalculatorProtocol.agda
Zalastax/singly-typed-actors
ae541df13d069df4eb1464f29fbaa9804aad439f
[ "MIT" ]
null
null
null
src/Selective/Examples/CalculatorProtocol.agda
Zalastax/singly-typed-actors
ae541df13d069df4eb1464f29fbaa9804aad439f
[ "MIT" ]
null
null
null
module Selective.Examples.CalculatorProtocol where open import Selective.Libraries.Call2 open import Prelude open import Debug open import Data.Nat.Show using (show) ℕ-ReplyMessage : MessageType ℕ-ReplyMessage = ValueType UniqueTag ∷ [ ValueType ℕ ]ˡ ℕ-Reply : InboxShape ℕ-Reply = [ ℕ-ReplyMessage ]ˡ ℕ×ℕ→ℕ-Message : MessageType ℕ×ℕ→ℕ-Message = ValueType UniqueTag ∷ ReferenceType ℕ-Reply ∷ ValueType ℕ ∷ [ ValueType ℕ ]ˡ Calculate : InboxShape Calculate = [ ℕ×ℕ→ℕ-Message ]ˡ CalculateProtocol : ChannelInitiation CalculateProtocol = record { request = Calculate ; response = record { channel-shape = ℕ-Reply ; all-tagged = (HasTag _) ∷ [] } ; request-tagged = [ HasTag+Ref _ ]ᵃ } ℕ×ℕ→ℕ-ci : ChannelInitiation ℕ×ℕ→ℕ-ci = record { request = Calculate ; response = record { channel-shape = ℕ-Reply ; all-tagged = (HasTag _) ∷ [] } ; request-tagged = (HasTag+Ref _) ∷ [] } Calculator : InboxShape Calculator = ℕ×ℕ→ℕ-Message ∷ [ ℕ×ℕ→ℕ-Message ]ˡ TestBox : InboxShape TestBox = ℕ-Reply calculator-test-actor : ∀{i} → ∞ActorM (↑ i) Calculator (Lift (lsuc lzero) ⊤) [] (λ _ → []) → ∞ActorM i TestBox (Lift (lsuc lzero) ℕ) [] (λ _ → []) calculator-test-actor calculator-actor = do spawn∞ calculator-actor Msg Z (_ ∷ n ∷ []) ← call CalculateProtocol (record { var = Z ; chosen-field = Z ; fields = lift 32 ∷ [ lift 10 ]ᵃ ; session = record { can-request = [ Z ]ᵐ -- Pick add method ; response-session = record { can-receive = [ Z ]ᵐ ; tag = 0 } } }) where Msg (S ()) _ Msg Z (_ ∷ m ∷ []) ← debug (show n) (call CalculateProtocol (record { var = Z ; chosen-field = Z ; fields = lift n ∷ [ lift 10 ]ᵃ ; session = record { can-request = [ S Z ]ᵐ -- Pick multiply method ; response-session = record { can-receive = [ Z ]ᵐ ; tag = 1 } } })) where Msg (S ()) _ debug (show m) (strengthen []) return m
27.294872
92
0.565054
4ee1c791b7ad13a60593407b04d130e0ebac82f9
8,231
agda
Agda
src/Categories/NaturalTransformation/Dinatural.agda
MirceaS/agda-categories
58e5ec015781be5413bdf968f7ec4fdae0ab4b21
[ "MIT" ]
null
null
null
src/Categories/NaturalTransformation/Dinatural.agda
MirceaS/agda-categories
58e5ec015781be5413bdf968f7ec4fdae0ab4b21
[ "MIT" ]
null
null
null
src/Categories/NaturalTransformation/Dinatural.agda
MirceaS/agda-categories
58e5ec015781be5413bdf968f7ec4fdae0ab4b21
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} module Categories.NaturalTransformation.Dinatural where open import Level open import Data.Product open import Relation.Binary using (Rel; IsEquivalence; Setoid) open import Categories.Category open import Categories.NaturalTransformation as NT hiding (_∘ʳ_) open import Categories.Functor open import Categories.Functor.Construction.Constant open import Categories.Functor.Bifunctor open import Categories.Category.Product import Categories.Morphism.Reasoning as MR private variable o ℓ e : Level C D E : Category o ℓ e record DinaturalTransformation (F G : Bifunctor (Category.op C) C D) : Set (levelOfTerm F) where eta-equality private module C = Category C module D = Category D module F = Functor F module G = Functor G open D hiding (op) open Commutation field α : ∀ X → D [ F.F₀ (X , X) , G.F₀ (X , X) ] commute : ∀ {X Y} (f : C [ X , Y ]) → [ F.F₀ (Y , X) ⇒ G.F₀ (X , Y) ]⟨ F.F₁ (f , C.id) ⇒⟨ F.F₀ (X , X) ⟩ α X ⇒⟨ G.F₀ (X , X) ⟩ G.F₁ (C.id , f) ≈ F.F₁ (C.id , f) ⇒⟨ F.F₀ (Y , Y) ⟩ α Y ⇒⟨ G.F₀ (Y , Y) ⟩ G.F₁ (f , C.id) ⟩ -- We add this extra proof, because, again, we want to ensure the opposite of the -- opposite of dinatural transformation is definitionally equal to itself. op-commute : ∀ {X Y} (f : C [ X , Y ]) → [ F.F₀ (Y , X) ⇒ G.F₀ (X , Y) ]⟨ F.F₁ (C.id , f) ⇒⟨ F.F₀ (Y , Y) ⟩ (α Y ⇒⟨ G.F₀ (Y , Y) ⟩ G.F₁ (f , C.id)) ≈ F.F₁ (f , C.id) ⇒⟨ F.F₀ (X , X) ⟩ (α X ⇒⟨ G.F₀ (X , X) ⟩ G.F₁ (C.id , f)) ⟩ op : DinaturalTransformation G.op F.op op = record { α = α ; commute = op-commute ; op-commute = commute } -- to reduce the burden of constructing a DinaturalTransformation, we introduce -- another helper. record DTHelper (F G : Bifunctor (Category.op C) C D) : Set (levelOfTerm F) where private module C = Category C module D = Category D module F = Functor F module G = Functor G open D hiding (op) open Commutation field α : ∀ X → D [ F.F₀ (X , X) , G.F₀ (X , X) ] commute : ∀ {X Y} (f : C [ X , Y ]) → [ F.F₀ (Y , X) ⇒ G.F₀ (X , Y) ]⟨ F.F₁ (f , C.id) ⇒⟨ F.F₀ (X , X) ⟩ α X ⇒⟨ G.F₀ (X , X) ⟩ G.F₁ (C.id , f) ≈ F.F₁ (C.id , f) ⇒⟨ F.F₀ (Y , Y) ⟩ α Y ⇒⟨ G.F₀ (Y , Y) ⟩ G.F₁ (f , C.id) ⟩ dtHelper : ∀ {F G : Bifunctor (Category.op C) C D} → DTHelper F G → DinaturalTransformation F G dtHelper {D = D} θ = record { α = α ; commute = commute ; op-commute = λ f → assoc ○ ⟺ (commute f) ○ sym-assoc } where open DTHelper θ open Category D open HomReasoning module _ {F G H : Bifunctor (Category.op C) C D} where private module C = Category C open Category D open HomReasoning open Functor open MR D infixr 9 _<∘_ infixl 9 _∘>_ _<∘_ : NaturalTransformation G H → DinaturalTransformation F G → DinaturalTransformation F H θ <∘ β = dtHelper record { α = λ X → η (X , X) ∘ α X ; commute = λ {X Y} f → begin F₁ H (C.id , f) ∘ (η (X , X) ∘ α X) ∘ F₁ F (f , C.id) ≈˘⟨ pushˡ (pushˡ (θ.commute (C.id , f))) ⟩ ((η (X , Y) ∘ F₁ G (C.id , f)) ∘ α X) ∘ F₁ F (f , C.id) ≈⟨ assoc ○ pullʳ (β.commute f) ⟩ η (X , Y) ∘ F₁ G (f , C.id) ∘ α Y ∘ F₁ F (C.id , f) ≈⟨ pullˡ (θ.commute (f , C.id)) ○ pullʳ sym-assoc ⟩ F₁ H (f , C.id) ∘ (η (Y , Y) ∘ α Y) ∘ F₁ F (C.id , f) ∎ } where module θ = NaturalTransformation θ module β = DinaturalTransformation β open θ open β _∘>_ : DinaturalTransformation G H → NaturalTransformation F G → DinaturalTransformation F H β ∘> θ = dtHelper record { α = λ X → α X ∘ η (X , X) ; commute = λ {X Y} f → begin F₁ H (C.id , f) ∘ (α X ∘ η (X , X)) ∘ F₁ F (f , C.id) ≈⟨ refl⟩∘⟨ pullʳ (θ.commute (f , C.id)) ⟩ F₁ H (C.id , f) ∘ α X ∘ F₁ G (f , C.id) ∘ η (Y , X) ≈⟨ ∘-resp-≈ʳ sym-assoc ○ sym-assoc ⟩ (F₁ H (C.id , f) ∘ α X ∘ F₁ G (f , C.id)) ∘ η (Y , X) ≈⟨ β.commute f ⟩∘⟨refl ⟩ (F₁ H (f , C.id) ∘ α Y ∘ F₁ G (C.id , f)) ∘ η (Y , X) ≈˘⟨ pushʳ (assoc ○ pushʳ (θ.commute (C.id , f))) ⟩ F₁ H (f , C.id) ∘ (α Y ∘ η (Y , Y)) ∘ F₁ F (C.id , f) ∎ } where module θ = NaturalTransformation θ module β = DinaturalTransformation β open θ open β module _ {F G : Bifunctor (Category.op C) C D} where private module C = Category C open Category D open HomReasoning open Functor open MR D infixl 9 _∘ʳ_ _∘ʳ_ : ∀ {E : Category o ℓ e} → DinaturalTransformation F G → (K : Functor E C) → DinaturalTransformation (F ∘F ((Functor.op K) ⁂ K)) (G ∘F ((Functor.op K) ⁂ K)) _∘ʳ_ {E = E} β K = dtHelper record { α = λ X → α (F₀ K X) ; commute = λ {X Y} f → begin F₁ G (F₁ K E.id , F₁ K f) ∘ α (F₀ K X) ∘ F₁ F (F₁ K f , F₁ K E.id) ≈⟨ F-resp-≈ G (identity K , C.Equiv.refl) ⟩∘⟨ refl ⟩∘⟨ F-resp-≈ F (C.Equiv.refl , identity K) ⟩ F₁ G (C.id , F₁ K f) ∘ α (F₀ K X) ∘ F₁ F (F₁ K f , C.id) ≈⟨ commute (F₁ K f) ⟩ F₁ G (F₁ K f , C.id) ∘ α (F₀ K Y) ∘ F₁ F (C.id , F₁ K f) ≈˘⟨ F-resp-≈ G (C.Equiv.refl , identity K) ⟩∘⟨ refl ⟩∘⟨ F-resp-≈ F (identity K , C.Equiv.refl) ⟩ F₁ G (F₁ K f , F₁ K E.id) ∘ α (F₀ K Y) ∘ F₁ F (F₁ K E.id , F₁ K f) ∎ } where module β = DinaturalTransformation β module E = Category E open β infix 4 _≃_ _≃_ : Rel (DinaturalTransformation F G) _ β ≃ δ = ∀ {X} → α β X ≈ α δ X where open DinaturalTransformation ≃-isEquivalence : IsEquivalence _≃_ ≃-isEquivalence = record { refl = refl ; sym = λ eq → sym eq ; trans = λ eq eq′ → trans eq eq′ } ≃-setoid : Setoid _ _ ≃-setoid = record { Carrier = DinaturalTransformation F G ; _≈_ = _≃_ ; isEquivalence = ≃-isEquivalence } -- for convenience, the following are some helpers for the cases -- in which the bifunctor on the right is extranatural. Extranaturalʳ : ∀ {C : Category o ℓ e} → Category.Obj D → (F : Bifunctor (Category.op C) C D) → Set _ Extranaturalʳ A F = DinaturalTransformation (const A) F Extranaturalˡ : ∀ {C : Category o ℓ e} → (F : Bifunctor (Category.op C) C D) → Category.Obj D → Set _ Extranaturalˡ F A = DinaturalTransformation F (const A) module _ {F : Bifunctor (Category.op C) C D} where open Category D private module C = Category C variable A : Obj X Y : C.Obj f : X C.⇒ Y open Functor F open HomReasoning open MR D extranaturalʳ : (a : ∀ X → A ⇒ F₀ (X , X)) → (∀ {X X′ f} → F₁ (C.id , f) ∘ a X ≈ F₁ (f , C.id) ∘ a X′) → Extranaturalʳ A F extranaturalʳ a comm = dtHelper record { α = a ; commute = λ f → ∘-resp-≈ʳ identityʳ ○ comm ○ ∘-resp-≈ʳ (⟺ identityʳ) } open DinaturalTransformation extranatural-commʳ : (β : DinaturalTransformation (const A) F) → F₁ (C.id , f) ∘ α β X ≈ F₁ (f , C.id) ∘ α β Y extranatural-commʳ {f = f} β = ∘-resp-≈ʳ (⟺ identityʳ) ○ commute β f ○ ∘-resp-≈ʳ identityʳ -- the dual case, the bifunctor on the left is extranatural. extranaturalˡ : (a : ∀ X → F₀ (X , X) ⇒ A) → (∀ {X X′ f} → a X ∘ F₁ (f , C.id) ≈ a X′ ∘ F₁ (C.id , f)) → Extranaturalˡ F A extranaturalˡ a comm = dtHelper record { α = a ; commute = λ f → pullˡ identityˡ ○ comm ○ ⟺ (pullˡ identityˡ) } extranatural-commˡ : (β : DinaturalTransformation F (const A)) → α β X ∘ F₁ (f , C.id) ≈ α β Y ∘ F₁ (C.id , f) extranatural-commˡ {f = f} β = ⟺ (pullˡ identityˡ) ○ commute β f ○ pullˡ identityˡ
35.632035
140
0.505163
2199796768a36600c51971065d1ef153553f957e
17,074
agda
Agda
Cubical/Categories/Presheaf/Properties.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
Cubical/Categories/Presheaf/Properties.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
Cubical/Categories/Presheaf/Properties.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Categories.Presheaf.Properties where open import Cubical.Categories.Category open import Cubical.Categories.NaturalTransformation open import Cubical.Categories.Instances.Sets open import Cubical.Categories.Instances.Functors open import Cubical.Categories.Functor open import Cubical.Categories.Presheaf.Base open import Cubical.Categories.Equivalence open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv using (fiber) open import Cubical.Data.Sigma import Cubical.Categories.Morphism as Morphism import Cubical.Categories.Constructions.Slice as Slice import Cubical.Categories.Constructions.Elements as Elements import Cubical.Functions.Fibration as Fibration private variable ℓ ℓ' : Level e e' : Level -- (PreShv C) / F ≃ᶜ PreShv (∫ᴾ F) module _ (C : Precategory ℓ ℓ') (F : Functor (C ^op) (SET ℓ)) where open Precategory open Functor open _≃ᶜ_ open isEquivalence open NatTrans open NatIso open Slice (PreShv C) F ⦃ isC = isCatPreShv {C = C} ⦄ open Elements {C = C} open Fibration.ForSets -- specific case of fiber under natural transformation fibersEqIfRepsEqNatTrans : ∀ {A} (ϕ : A ⇒ F) {c x x'} {px : x ≡ x'} {a' : fiber (ϕ ⟦ c ⟧) x} {b' : fiber (ϕ ⟦ c ⟧) x'} → fst a' ≡ fst b' → PathP (λ i → fiber (ϕ ⟦ c ⟧) (px i)) a' b' fibersEqIfRepsEqNatTrans ϕ {c} {x} {x'} {px} {a , fiba} {b , fibb} p = fibersEqIfRepsEq {isSetB = snd (F ⟅ c ⟆)} (ϕ ⟦ c ⟧) p -- ======================================== -- K : Slice → PreShv -- ======================================== -- action on (slice) objects K-ob : (s : SliceCat .ob) → (PreShv (∫ᴾ F) .ob) -- we take (c , x) to the fiber in A of ϕ over x K-ob (sliceob {A} ϕ) .F-ob (c , x) = (fiber (ϕ ⟦ c ⟧) x) , isOfHLevelΣ 2 (snd (A ⟅ c ⟆)) λ _ → isSet→isGroupoid (snd (F ⟅ c ⟆)) _ _ -- for morphisms, we just apply A ⟪ h ⟫ (plus equality proof) K-ob (sliceob {A} ϕ) .F-hom {d , y} {c , x} (h , com) (b , eq) = ((A ⟪ h ⟫) b) , ((ϕ ⟦ c ⟧) ((A ⟪ h ⟫) b) ≡[ i ]⟨ (ϕ .N-hom h) i b ⟩ (F ⟪ h ⟫) ((ϕ ⟦ d ⟧) b) ≡[ i ]⟨ (F ⟪ h ⟫) (eq i) ⟩ (F ⟪ h ⟫) y ≡⟨ sym com ⟩ x ∎) -- functoriality follows from functoriality of A K-ob (sliceob {A} ϕ) .F-id {x = (c , x)} = funExt λ { (a , fibp) → fibersEqIfRepsEqNatTrans ϕ (λ i → A .F-id i a) } K-ob (sliceob {A} ϕ) .F-seq {x = (c , x)} {(d , y)} {(e , z)} (f' , eq1) (g' , eq2) = funExt λ { ( a , fibp ) → fibersEqIfRepsEqNatTrans ϕ (λ i → (A .F-seq f' g') i a) } -- action on morphisms (in this case, natural transformation) K-hom : {sA sB : SliceCat .ob} → (ε : SliceCat [ sA , sB ]) → (K-ob sA) ⇒ (K-ob sB) K-hom {sA = s1@(sliceob {A} ϕ)} {s2@(sliceob {B} ψ)} (slicehom ε com) = natTrans η-ob (λ h → funExt (η-hom h)) where P = K-ob s1 Q = K-ob s2 -- just apply the natural transformation (ε) we're given -- this ensures that we stay in the fiber over x due to the commutativity given by slicenesss η-ob : (el : (∫ᴾ F) .ob) → (fst (P ⟅ el ⟆) → fst (Q ⟅ el ⟆) ) η-ob (c , x) (a , ϕa≡x) = ((ε ⟦ c ⟧) a) , εψ≡ϕ ∙ ϕa≡x where εψ≡ϕ : (ψ ⟦ c ⟧) ((ε ⟦ c ⟧) a) ≡ (ϕ ⟦ c ⟧) a εψ≡ϕ i = ((com i) ⟦ c ⟧) a η-hom : ∀ {el1 el2} (h : (∫ᴾ F) [ el1 , el2 ]) (ae : fst (P ⟅ el2 ⟆)) → η-ob el1 ((P ⟪ h ⟫) ae) ≡ (Q ⟪ h ⟫) (η-ob el2 ae) η-hom {el1 = (c , x)} {d , y} (h , eqh) (a , eqa) = fibersEqIfRepsEqNatTrans ψ (λ i → ε .N-hom h i a) K : Functor SliceCat (PreShv (∫ᴾ F)) K .F-ob = K-ob K .F-hom = K-hom K .F-id = makeNatTransPath (funExt λ cx@(c , x) → funExt λ aeq@(a , eq) → fibersEqIfRepsEq {isSetB = snd (F ⟅ c ⟆)} _ refl) K .F-seq (slicehom α eqa) (slicehom β eqb) = makeNatTransPath (funExt λ cx@(c , x) → funExt λ aeq@(a , eq) → fibersEqIfRepsEq {isSetB = snd (F ⟅ c ⟆)} _ refl) -- ======================================== -- L : PreShv → Slice -- ======================================== -- action on objects (presheaves) L-ob : (P : PreShv (∫ᴾ F) .ob) → SliceCat .ob L-ob P = sliceob {S-ob = L-ob-ob} L-ob-hom where -- sends c to the disjoint union of all the images under P LF-ob : (c : C .ob) → (SET _) .ob LF-ob c = (Σ[ x ∈ fst (F ⟅ c ⟆) ] fst (P ⟅ c , x ⟆)) , isSetΣ (snd (F ⟅ c ⟆)) (λ x → snd (P ⟅ c , x ⟆)) -- defines a function piecewise over the fibers by applying P LF-hom : ∀ {x y} → (f : C [ y , x ]) → (SET _) [ LF-ob x , LF-ob y ] LF-hom {x = c} {d} f (x , a) = ((F ⟪ f ⟫) x) , (P ⟪ f , refl ⟫) a L-ob-ob : Functor (C ^op) (SET _) L-ob-ob .F-ob = LF-ob L-ob-ob .F-hom = LF-hom L-ob-ob .F-id {x = c} = funExt idFunExt where idFunExt : ∀ (un : fst (LF-ob c)) → (LF-hom (C .id c) un) ≡ un idFunExt (x , X) = ΣPathP (leftEq , rightEq) where leftEq : (F ⟪ C .id c ⟫) x ≡ x leftEq i = F .F-id i x rightEq : PathP (λ i → fst (P ⟅ c , leftEq i ⟆)) ((P ⟪ C .id c , refl ⟫) X) X rightEq = left ▷ right where -- the id morphism in (∫ᴾ F) ∫id = C .id c , sym (funExt⁻ (F .F-id) x ∙ refl) -- functoriality of P gives us close to what we want right : (P ⟪ ∫id ⟫) X ≡ X right i = P .F-id i X -- but need to do more work to show that (C .id c , refl) ≡ ∫id left : PathP (λ i → fst (P ⟅ c , leftEq i ⟆)) ((P ⟪ C .id c , refl ⟫) X) ((P ⟪ ∫id ⟫) X) left i = (P ⟪ ∫ᴾhomEq {F = F} (C .id c , refl) ∫id (λ i → (c , leftEq i)) refl refl i ⟫) X L-ob-ob .F-seq {x = c} {d} {e} f g = funExt seqFunEq where seqFunEq : ∀ (un : fst (LF-ob c)) → (LF-hom (g ⋆⟨ C ⟩ f) un) ≡ (LF-hom g) (LF-hom f un) seqFunEq un@(x , X) = ΣPathP (leftEq , rightEq) where -- the left component is comparing the action of F on x -- equality follows from functoriality of F -- leftEq : fst (LF-hom (g ⋆⟨ C ⟩ f) un) ≡ fst ((LF-hom g) (LF-hom f un)) leftEq : (F ⟪ g ⋆⟨ C ⟩ f ⟫) x ≡ (F ⟪ g ⟫) ((F ⟪ f ⟫) x) leftEq i = F .F-seq f g i x -- on the right, equality also follows from functoriality of P -- but it's more complicated because of heterogeneity -- since leftEq is not a definitional equality rightEq : PathP (λ i → fst (P ⟅ e , leftEq i ⟆)) ((P ⟪ g ⋆⟨ C ⟩ f , refl ⟫) X) ((P ⟪ g , refl ⟫) ((P ⟪ f , refl ⟫) X)) rightEq = left ▷ right where -- functoriality of P only gets us to this weird composition on the left right : (P ⟪ (g , refl) ⋆⟨ (∫ᴾ F) ⟩ (f , refl) ⟫) X ≡ (P ⟪ g , refl ⟫) ((P ⟪ f , refl ⟫) X) right i = P .F-seq (f , refl) (g , refl) i X -- so we need to show that this composition is actually equal to the one we want left : PathP (λ i → fst (P ⟅ e , leftEq i ⟆)) ((P ⟪ g ⋆⟨ C ⟩ f , refl ⟫) X) ((P ⟪ (g , refl) ⋆⟨ (∫ᴾ F) ⟩ (f , refl) ⟫) X) left i = (P ⟪ ∫ᴾhomEq {F = F} (g ⋆⟨ C ⟩ f , refl) ((g , refl) ⋆⟨ (∫ᴾ F) ⟩ (f , refl)) (λ i → (e , leftEq i)) refl refl i ⟫) X L-ob-hom : L-ob-ob ⇒ F L-ob-hom .N-ob c (x , _) = x L-ob-hom .N-hom f = funExt λ (x , _) → refl -- action on morphisms (aka natural transformations between presheaves) -- is essentially the identity (plus equality proofs for naturality and slice commutativity) L-hom : ∀ {P Q} → PreShv (∫ᴾ F) [ P , Q ] → SliceCat [ L-ob P , L-ob Q ] L-hom {P} {Q} η = slicehom arr com where A = S-ob (L-ob P) ϕ = S-arr (L-ob P) B = S-ob (L-ob Q) ψ = S-arr (L-ob Q) arr : A ⇒ B arr .N-ob c (x , X) = x , ((η ⟦ c , x ⟧) X) arr .N-hom {c} {d} f = funExt natu where natuType : fst (A ⟅ c ⟆) → Type _ natuType xX@(x , X) = ((F ⟪ f ⟫) x , (η ⟦ d , (F ⟪ f ⟫) x ⟧) ((P ⟪ f , refl ⟫) X)) ≡ ((F ⟪ f ⟫) x , (Q ⟪ f , refl ⟫) ((η ⟦ c , x ⟧) X)) natu : ∀ (xX : fst (A ⟅ c ⟆)) → natuType xX natu (x , X) = ΣPathP (refl , λ i → (η .N-hom (f , refl) i) X) com : arr ⋆⟨ PreShv C ⟩ ψ ≡ ϕ com = makeNatTransPath (funExt comFunExt) where comFunExt : ∀ (c : C .ob) → (arr ●ᵛ ψ) ⟦ c ⟧ ≡ ϕ ⟦ c ⟧ comFunExt c = funExt λ x → refl L : Functor (PreShv (∫ᴾ F)) SliceCat L .F-ob = L-ob L .F-hom = L-hom L .F-id {cx} = SliceHom-≡-intro' (makeNatTransPath (funExt λ c → refl)) L .F-seq {cx} {dy} P Q = SliceHom-≡-intro' (makeNatTransPath (funExt λ c → refl)) -- ======================================== -- η : 𝟙 ≅ LK -- ======================================== module _ where open Iso open Morphism renaming (isIso to isIsoC) -- the iso we need -- a type is isomorphic to the disjoint union of all its fibers typeSectionIso : ∀ {A B : Type ℓ} {isSetB : isSet B} → (ϕ : A → B) → Iso A (Σ[ b ∈ B ] fiber ϕ b) typeSectionIso ϕ .fun a = (ϕ a) , (a , refl) typeSectionIso ϕ .inv (b , (a , eq)) = a typeSectionIso {isSetB = isSetB} ϕ .rightInv (b , (a , eq)) = ΣPathP (eq , ΣPathP (refl , isOfHLevel→isOfHLevelDep 1 (λ b' → isSetB _ _) refl eq eq)) typeSectionIso ϕ .leftInv a = refl -- the natural transformation -- just applies typeSectionIso ηTrans : 𝟙⟨ SliceCat ⟩ ⇒ (L ∘F K) ηTrans .N-ob sob@(sliceob {A} ϕ) = slicehom A⇒LK comm where LKA = S-ob (L ⟅ K ⟅ sob ⟆ ⟆) ψ = S-arr (L ⟅ K ⟅ sob ⟆ ⟆) A⇒LK : A ⇒ LKA A⇒LK .N-ob c = typeSectionIso {isSetB = snd (F ⟅ c ⟆)} (ϕ ⟦ c ⟧) .fun A⇒LK .N-hom {c} {d} f = funExt homFunExt where homFunExt : (x : fst (A ⟅ c ⟆)) → (((ϕ ⟦ d ⟧) ((A ⟪ f ⟫) x)) , ((A ⟪ f ⟫) x , refl)) ≡ ((F ⟪ f ⟫) ((ϕ ⟦ c ⟧) x) , (A ⟪ f ⟫) x , _) homFunExt x = ΣPathP ((λ i → (ϕ .N-hom f i) x) , fibersEqIfRepsEqNatTrans ϕ refl) comm : (A⇒LK) ●ᵛ ψ ≡ ϕ comm = makeNatTransPath (funExt λ x → refl) ηTrans .N-hom {sliceob {A} α} {sliceob {B} β} (slicehom ϕ eq) = SliceHom-≡-intro' (makeNatTransPath (funExt (λ c → funExt λ a → natFunExt c a))) where natFunExt : ∀ (c : C .ob) (a : fst (A ⟅ c ⟆)) → ((β ⟦ c ⟧) ((ϕ ⟦ c ⟧) a) , (ϕ ⟦ c ⟧) a , _) ≡ ((α ⟦ c ⟧) a , (ϕ ⟦ c ⟧) a , _) natFunExt c a = ΣPathP ((λ i → ((eq i) ⟦ c ⟧) a) , fibersEqIfRepsEqNatTrans β refl) -- isomorphism follows from typeSectionIso ηIso : ∀ (sob : SliceCat .ob) → isIsoC {C = SliceCat} (ηTrans ⟦ sob ⟧) ηIso sob@(sliceob ϕ) = sliceIso _ _ (FUNCTORIso _ _ _ isIsoCf) where isIsoCf : ∀ (c : C .ob) → isIsoC (ηTrans .N-ob sob .S-hom ⟦ c ⟧) isIsoCf c = CatIso→isIso (Iso→CatIso (typeSectionIso {isSetB = snd (F ⟅ c ⟆)} (ϕ ⟦ c ⟧))) -- ======================================== -- ε : KL ≅ 𝟙 -- ======================================== module _ where open Iso open Morphism renaming (isIso to isIsoC) -- the iso we deserve -- says that a type family at x is isomorphic to the fiber over x of that type family packaged up typeFiberIso : ∀ {ℓ ℓ'} {A : Type ℓ} {isSetA : isSet A} {x} (B : A → Type ℓ') → Iso (B x) (fiber {A = Σ[ a ∈ A ] B a} (λ (x , _) → x) x) typeFiberIso {x = x} _ .fun b = (x , b) , refl typeFiberIso _ .inv ((a , b) , eq) = subst _ eq b typeFiberIso {isSetA = isSetA} {x = x} B .rightInv ((a , b) , eq) = fibersEqIfRepsEq {isSetB = isSetA} (λ (x , _) → x) (ΣPathP (sym eq , symP (transport-filler (λ i → B (eq i)) b))) typeFiberIso {x = x} _ .leftInv b = sym (transport-filler refl b) -- the natural isomorphism -- applies typeFiberIso (inv) εTrans : (K ∘F L) ⇒ 𝟙⟨ PreShv (∫ᴾ F) ⟩ εTrans .N-ob P = natTrans γ-ob (λ f → funExt (λ a → γ-homFunExt f a)) where KLP = K ⟅ L ⟅ P ⟆ ⟆ γ-ob : (el : (∫ᴾ F) .ob) → (fst (KLP ⟅ el ⟆) → fst (P ⟅ el ⟆) ) γ-ob el@(c , _) = typeFiberIso {isSetA = snd (F ⟅ c ⟆)} (λ x → fst (P ⟅ c , x ⟆)) .inv -- naturality -- the annoying part is all the substs γ-homFunExt : ∀ {el2 el1} → (f' : (∫ᴾ F) [ el2 , el1 ]) → (∀ (a : fst (KLP ⟅ el1 ⟆)) → γ-ob el2 ((KLP ⟪ f' ⟫) a) ≡ (P ⟪ f' ⟫) (γ-ob el1 a)) γ-homFunExt {d , y} {c , x} f'@(f , comm) a@((x' , X') , eq) i = comp (λ j → fst (P ⟅ d , eq' j ⟆)) (λ j → λ { (i = i0) → left j ; (i = i1) → right j }) ((P ⟪ f , refl ⟫) X') where -- fiber equality proof that we get from an application of KLP eq' = snd ((KLP ⟪ f' ⟫) a) -- top right of the commuting diagram -- "remove" the subst from the inside right : PathP (λ i → fst (P ⟅ d , eq' i ⟆)) ((P ⟪ f , refl ⟫) X') ((P ⟪ f , comm ⟫) (subst _ eq X')) right i = (P ⟪ f , refl≡comm i ⟫) (X'≡subst i) where refl≡comm : PathP (λ i → (eq' i) ≡ (F ⟪ f ⟫) (eq i)) refl comm refl≡comm = isOfHLevel→isOfHLevelDep 1 (λ (v , w) → snd (F ⟅ d ⟆) v ((F ⟪ f ⟫) w)) refl comm λ i → (eq' i , eq i) X'≡subst : PathP (λ i → fst (P ⟅ c , eq i ⟆)) X' (subst _ eq X') X'≡subst = transport-filler (λ i → fst (P ⟅ c , eq i ⟆)) X' -- bottom left of the commuting diagram -- "remove" the subst from the outside left : PathP (λ i → fst (P ⟅ d , eq' i ⟆)) ((P ⟪ f , refl ⟫) X') (subst (λ v → fst (P ⟅ d , v ⟆)) eq' ((P ⟪ f , refl ⟫) X')) left = transport-filler (λ i → fst (P ⟅ d , eq' i ⟆)) ((P ⟪ f , refl ⟫) X') εTrans .N-hom {P} {Q} α = makeNatTransPath (funExt λ cx → funExt λ xX' → ε-homFunExt cx xX') where KLP = K ⟅ L ⟅ P ⟆ ⟆ -- naturality of the above construction applies a similar argument as in `γ-homFunExt` ε-homFunExt : ∀ (cx@(c , x) : (∫ᴾ F) .ob) (xX'@((x' , X') , eq) : fst (KLP ⟅ cx ⟆)) → subst (λ v → fst (Q ⟅ c , v ⟆)) (snd ((K ⟪ L ⟪ α ⟫ ⟫ ⟦ cx ⟧) xX')) ((α ⟦ c , x' ⟧) X') ≡ (α ⟦ c , x ⟧) (subst _ eq X') ε-homFunExt cx@(c , x) xX'@((x' , X') , eq) i = comp (λ j → fst (Q ⟅ c , eq j ⟆)) (λ j → λ { (i = i0) → left j ; (i = i1) → right j }) ((α ⟦ c , x' ⟧) X') where eq' : x' ≡ x eq' = snd ((K ⟪ L ⟪ α ⟫ ⟫ ⟦ cx ⟧) xX') right : PathP (λ i → fst (Q ⟅ c , eq i ⟆)) ((α ⟦ c , x' ⟧) X') ((α ⟦ c , x ⟧) (subst _ eq X')) right i = (α ⟦ c , eq i ⟧) (X'≡subst i) where -- this is exactly the same as the one from before, can refactor? X'≡subst : PathP (λ i → fst (P ⟅ c , eq i ⟆)) X' (subst _ eq X') X'≡subst = transport-filler _ _ -- extracted out type since need to use in in 'left' body as well leftTy : (x' ≡ x) → Type _ leftTy eq* = PathP (λ i → fst (Q ⟅ c , eq* i ⟆)) ((α ⟦ c , x' ⟧) X') (subst (λ v → fst (Q ⟅ c , v ⟆)) eq' ((α ⟦ c , x' ⟧) X')) left : leftTy eq left = subst (λ eq* → leftTy eq*) eq'≡eq (transport-filler _ _) where eq'≡eq : eq' ≡ eq eq'≡eq = snd (F ⟅ c ⟆) _ _ eq' eq εIso : ∀ (P : PreShv (∫ᴾ F) .ob) → isIsoC {C = PreShv (∫ᴾ F)} (εTrans ⟦ P ⟧) εIso P = FUNCTORIso _ _ _ isIsoC' where isIsoC' : ∀ (cx : (∫ᴾ F) .ob) → isIsoC {C = SET _} ((εTrans ⟦ P ⟧) ⟦ cx ⟧) isIsoC' cx@(c , _) = CatIso→isIso (Iso→CatIso (invIso (typeFiberIso {isSetA = snd (F ⟅ c ⟆)} _))) -- putting it all together preshvSlice≃preshvElem : SliceCat ≃ᶜ PreShv (∫ᴾ F) preshvSlice≃preshvElem .func = K preshvSlice≃preshvElem .isEquiv .invFunc = L preshvSlice≃preshvElem .isEquiv .η .trans = ηTrans preshvSlice≃preshvElem .isEquiv .η .nIso = ηIso preshvSlice≃preshvElem .isEquiv .ε .trans = εTrans preshvSlice≃preshvElem .isEquiv .ε .nIso = εIso
43.779487
145
0.455078
36bf6eaba4c26b72ef60d6002668c154bf377e14
1,263
agda
Agda
src/fot/FOTC/Program/Division/TotalityATP.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
11
2015-09-03T20:53:42.000Z
2021-09-12T16:09:54.000Z
src/fot/FOTC/Program/Division/TotalityATP.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
2
2016-10-12T17:28:16.000Z
2017-01-01T14:34:26.000Z
src/fot/FOTC/Program/Division/TotalityATP.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
3
2016-09-19T14:18:30.000Z
2018-03-14T08:50:00.000Z
------------------------------------------------------------------------------ -- Totality properties of the division ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Program.Division.TotalityATP where open import FOTC.Base open import FOTC.Data.Nat open import FOTC.Data.Nat.Inequalities open import FOTC.Program.Division.Division open import FOTC.Program.Division.Specification ------------------------------------------------------------------------------ -- The division is total when the dividend is less than the divisor. postulate div-x<y-N : ∀ {i j} → i < j → N (div i j) {-# ATP prove div-x<y-N #-} -- The division is total when the dividend is greater or equal than -- the divisor. -- N (div (i ∸ j) j) i ≮j → div i j ≡ succ (div (i ∸ j) j) ------------------------------------------------------------------ -- N (div i j) postulate div-x≮y-N : ∀ {i j} → (divSpec (i ∸ j) j (div (i ∸ j) j)) → i ≮ j → N (div i j) {-# ATP prove div-x≮y-N #-}
36.085714
78
0.429929
0d913994c9f6e4e21cb34ea86752f4ca59a4219b
11,702
agda
Agda
src/nat.agda
shinji-kono/Galois
bf000643c139f40d5783e962bb3b63353ba3d6e4
[ "MIT" ]
1
2021-10-16T03:37:05.000Z
2021-10-16T03:37:05.000Z
src/nat.agda
shinji-kono/Galois
bf000643c139f40d5783e962bb3b63353ba3d6e4
[ "MIT" ]
null
null
null
src/nat.agda
shinji-kono/Galois
bf000643c139f40d5783e962bb3b63353ba3d6e4
[ "MIT" ]
null
null
null
{-# OPTIONS --allow-unsolved-metas #-} module nat where open import Data.Nat open import Data.Nat.Properties open import Data.Empty open import Relation.Nullary open import Relation.Binary.PropositionalEquality open import Relation.Binary.Core open import Relation.Binary.Definitions open import logic nat-<> : { x y : ℕ } → x < y → y < x → ⊥ nat-<> (s≤s x<y) (s≤s y<x) = nat-<> x<y y<x nat-≤> : { x y : ℕ } → x ≤ y → y < x → ⊥ nat-≤> (s≤s x<y) (s≤s y<x) = nat-≤> x<y y<x nat-<≡ : { x : ℕ } → x < x → ⊥ nat-<≡ (s≤s lt) = nat-<≡ lt nat-≡< : { x y : ℕ } → x ≡ y → x < y → ⊥ nat-≡< refl lt = nat-<≡ lt ¬a≤a : {la : ℕ} → suc la ≤ la → ⊥ ¬a≤a (s≤s lt) = ¬a≤a lt a<sa : {la : ℕ} → la < suc la a<sa {zero} = s≤s z≤n a<sa {suc la} = s≤s a<sa refl-≤s : {x : ℕ } → x ≤ suc x refl-≤s {zero} = z≤n refl-≤s {suc x} = s≤s (refl-≤s {x}) a≤sa : {x : ℕ } → x ≤ suc x a≤sa {zero} = z≤n a≤sa {suc x} = s≤s (a≤sa {x}) =→¬< : {x : ℕ } → ¬ ( x < x ) =→¬< {zero} () =→¬< {suc x} (s≤s lt) = =→¬< lt >→¬< : {x y : ℕ } → (x < y ) → ¬ ( y < x ) >→¬< (s≤s x<y) (s≤s y<x) = >→¬< x<y y<x <-∨ : { x y : ℕ } → x < suc y → ( (x ≡ y ) ∨ (x < y) ) <-∨ {zero} {zero} (s≤s z≤n) = case1 refl <-∨ {zero} {suc y} (s≤s lt) = case2 (s≤s z≤n) <-∨ {suc x} {zero} (s≤s ()) <-∨ {suc x} {suc y} (s≤s lt) with <-∨ {x} {y} lt <-∨ {suc x} {suc y} (s≤s lt) | case1 eq = case1 (cong (λ k → suc k ) eq) <-∨ {suc x} {suc y} (s≤s lt) | case2 lt1 = case2 (s≤s lt1) n≤n : (n : ℕ) → n Data.Nat.≤ n n≤n zero = z≤n n≤n (suc n) = s≤s (n≤n n) <→m≤n : {m n : ℕ} → m < n → m Data.Nat.≤ n <→m≤n {zero} lt = z≤n <→m≤n {suc m} {zero} () <→m≤n {suc m} {suc n} (s≤s lt) = s≤s (<→m≤n lt) max : (x y : ℕ) → ℕ max zero zero = zero max zero (suc x) = (suc x) max (suc x) zero = (suc x) max (suc x) (suc y) = suc ( max x y ) -- _*_ : ℕ → ℕ → ℕ -- _*_ zero _ = zero -- _*_ (suc n) m = m + ( n * m ) exp : ℕ → ℕ → ℕ exp _ zero = 1 exp n (suc m) = n * ( exp n m ) minus : (a b : ℕ ) → ℕ minus a zero = a minus zero (suc b) = zero minus (suc a) (suc b) = minus a b _-_ = minus m+= : {i j m : ℕ } → m + i ≡ m + j → i ≡ j m+= {i} {j} {zero} refl = refl m+= {i} {j} {suc m} eq = m+= {i} {j} {m} ( cong (λ k → pred k ) eq ) +m= : {i j m : ℕ } → i + m ≡ j + m → i ≡ j +m= {i} {j} {m} eq = m+= ( subst₂ (λ j k → j ≡ k ) (+-comm i _ ) (+-comm j _ ) eq ) less-1 : { n m : ℕ } → suc n < m → n < m less-1 {zero} {suc (suc _)} (s≤s (s≤s z≤n)) = s≤s z≤n less-1 {suc n} {suc m} (s≤s lt) = s≤s (less-1 {n} {m} lt) sa=b→a<b : { n m : ℕ } → suc n ≡ m → n < m sa=b→a<b {0} {suc zero} refl = s≤s z≤n sa=b→a<b {suc n} {suc (suc n)} refl = s≤s (sa=b→a<b refl) minus+n : {x y : ℕ } → suc x > y → minus x y + y ≡ x minus+n {x} {zero} _ = trans (sym (+-comm zero _ )) refl minus+n {zero} {suc y} (s≤s ()) minus+n {suc x} {suc y} (s≤s lt) = begin minus (suc x) (suc y) + suc y ≡⟨ +-comm _ (suc y) ⟩ suc y + minus x y ≡⟨ cong ( λ k → suc k ) ( begin y + minus x y ≡⟨ +-comm y _ ⟩ minus x y + y ≡⟨ minus+n {x} {y} lt ⟩ x ∎ ) ⟩ suc x ∎ where open ≡-Reasoning sn-m=sn-m : {m n : ℕ } → m ≤ n → suc n - m ≡ suc ( n - m ) sn-m=sn-m {0} {n} z≤n = refl sn-m=sn-m {suc m} {suc n} (s≤s m<n) = sn-m=sn-m m<n si-sn=i-n : {i n : ℕ } → n < i → suc (i - suc n) ≡ (i - n) si-sn=i-n {i} {n} n<i = begin suc (i - suc n) ≡⟨ sym (sn-m=sn-m n<i ) ⟩ suc i - suc n ≡⟨⟩ i - n ∎ where open ≡-Reasoning n-m<n : (n m : ℕ ) → n - m ≤ n n-m<n zero zero = z≤n n-m<n (suc n) zero = s≤s (n-m<n n zero) n-m<n zero (suc m) = z≤n n-m<n (suc n) (suc m) = ≤-trans (n-m<n n m ) refl-≤s n-n-m=m : {m n : ℕ } → m ≤ n → m ≡ (n - (n - m)) n-n-m=m {0} {zero} z≤n = refl n-n-m=m {0} {suc n} z≤n = n-n-m=m {0} {n} z≤n n-n-m=m {suc m} {suc n} (s≤s m≤n) = sym ( begin suc n - ( n - m ) ≡⟨ sn-m=sn-m (n-m<n n m) ⟩ suc (n - ( n - m )) ≡⟨ cong (λ k → suc k ) (sym (n-n-m=m m≤n)) ⟩ suc m ∎ ) where open ≡-Reasoning 0<s : {x : ℕ } → zero < suc x 0<s {_} = s≤s z≤n <-minus-0 : {x y z : ℕ } → z + x < z + y → x < y <-minus-0 {x} {suc _} {zero} lt = lt <-minus-0 {x} {y} {suc z} (s≤s lt) = <-minus-0 {x} {y} {z} lt <-minus : {x y z : ℕ } → x + z < y + z → x < y <-minus {x} {y} {z} lt = <-minus-0 ( subst₂ ( λ j k → j < k ) (+-comm x _) (+-comm y _ ) lt ) x≤x+y : {z y : ℕ } → z ≤ z + y x≤x+y {zero} {y} = z≤n x≤x+y {suc z} {y} = s≤s (x≤x+y {z} {y}) <-plus : {x y z : ℕ } → x < y → x + z < y + z <-plus {zero} {suc y} {z} (s≤s z≤n) = s≤s (subst (λ k → z ≤ k ) (+-comm z _ ) x≤x+y ) <-plus {suc x} {suc y} {z} (s≤s lt) = s≤s (<-plus {x} {y} {z} lt) <-plus-0 : {x y z : ℕ } → x < y → z + x < z + y <-plus-0 {x} {y} {z} lt = subst₂ (λ j k → j < k ) (+-comm _ z) (+-comm _ z) ( <-plus {x} {y} {z} lt ) ≤-plus : {x y z : ℕ } → x ≤ y → x + z ≤ y + z ≤-plus {0} {y} {zero} z≤n = z≤n ≤-plus {0} {y} {suc z} z≤n = subst (λ k → z < k ) (+-comm _ y ) x≤x+y ≤-plus {suc x} {suc y} {z} (s≤s lt) = s≤s ( ≤-plus {x} {y} {z} lt ) ≤-plus-0 : {x y z : ℕ } → x ≤ y → z + x ≤ z + y ≤-plus-0 {x} {y} {zero} lt = lt ≤-plus-0 {x} {y} {suc z} lt = s≤s ( ≤-plus-0 {x} {y} {z} lt ) x+y<z→x<z : {x y z : ℕ } → x + y < z → x < z x+y<z→x<z {zero} {y} {suc z} (s≤s lt1) = s≤s z≤n x+y<z→x<z {suc x} {y} {suc z} (s≤s lt1) = s≤s ( x+y<z→x<z {x} {y} {z} lt1 ) *≤ : {x y z : ℕ } → x ≤ y → x * z ≤ y * z *≤ lt = *-mono-≤ lt ≤-refl *< : {x y z : ℕ } → x < y → x * suc z < y * suc z *< {zero} {suc y} lt = s≤s z≤n *< {suc x} {suc y} (s≤s lt) = <-plus-0 (*< lt) <to<s : {x y : ℕ } → x < y → x < suc y <to<s {zero} {suc y} (s≤s lt) = s≤s z≤n <to<s {suc x} {suc y} (s≤s lt) = s≤s (<to<s {x} {y} lt) <tos<s : {x y : ℕ } → x < y → suc x < suc y <tos<s {zero} {suc y} (s≤s z≤n) = s≤s (s≤s z≤n) <tos<s {suc x} {suc y} (s≤s lt) = s≤s (<tos<s {x} {y} lt) ≤to< : {x y : ℕ } → x < y → x ≤ y ≤to< {zero} {suc y} (s≤s z≤n) = z≤n ≤to< {suc x} {suc y} (s≤s lt) = s≤s (≤to< {x} {y} lt) x<y→≤ : {x y : ℕ } → x < y → x ≤ suc y x<y→≤ {zero} {.(suc _)} (s≤s z≤n) = z≤n x<y→≤ {suc x} {suc y} (s≤s lt) = s≤s (x<y→≤ {x} {y} lt) open import Data.Product minus<=0 : {x y : ℕ } → x ≤ y → minus x y ≡ 0 minus<=0 {0} {zero} z≤n = refl minus<=0 {0} {suc y} z≤n = refl minus<=0 {suc x} {suc y} (s≤s le) = minus<=0 {x} {y} le minus>0 : {x y : ℕ } → x < y → 0 < minus y x minus>0 {zero} {suc _} (s≤s z≤n) = s≤s z≤n minus>0 {suc x} {suc y} (s≤s lt) = minus>0 {x} {y} lt distr-minus-* : {x y z : ℕ } → (minus x y) * z ≡ minus (x * z) (y * z) distr-minus-* {x} {zero} {z} = refl distr-minus-* {x} {suc y} {z} with <-cmp x y distr-minus-* {x} {suc y} {z} | tri< a ¬b ¬c = begin minus x (suc y) * z ≡⟨ cong (λ k → k * z ) (minus<=0 {x} {suc y} (x<y→≤ a)) ⟩ 0 * z ≡⟨ sym (minus<=0 {x * z} {z + y * z} le ) ⟩ minus (x * z) (z + y * z) ∎ where open ≡-Reasoning le : x * z ≤ z + y * z le = ≤-trans lemma (subst (λ k → y * z ≤ k ) (+-comm _ z ) (x≤x+y {y * z} {z} ) ) where lemma : x * z ≤ y * z lemma = *≤ {x} {y} {z} (≤to< a) distr-minus-* {x} {suc y} {z} | tri≈ ¬a refl ¬c = begin minus x (suc y) * z ≡⟨ cong (λ k → k * z ) (minus<=0 {x} {suc y} refl-≤s ) ⟩ 0 * z ≡⟨ sym (minus<=0 {x * z} {z + y * z} (lt {x} {z} )) ⟩ minus (x * z) (z + y * z) ∎ where open ≡-Reasoning lt : {x z : ℕ } → x * z ≤ z + x * z lt {zero} {zero} = z≤n lt {suc x} {zero} = lt {x} {zero} lt {x} {suc z} = ≤-trans lemma refl-≤s where lemma : x * suc z ≤ z + x * suc z lemma = subst (λ k → x * suc z ≤ k ) (+-comm _ z) (x≤x+y {x * suc z} {z}) distr-minus-* {x} {suc y} {z} | tri> ¬a ¬b c = +m= {_} {_} {suc y * z} ( begin minus x (suc y) * z + suc y * z ≡⟨ sym (proj₂ *-distrib-+ z (minus x (suc y) ) _) ⟩ ( minus x (suc y) + suc y ) * z ≡⟨ cong (λ k → k * z) (minus+n {x} {suc y} (s≤s c)) ⟩ x * z ≡⟨ sym (minus+n {x * z} {suc y * z} (s≤s (lt c))) ⟩ minus (x * z) (suc y * z) + suc y * z ∎ ) where open ≡-Reasoning lt : {x y z : ℕ } → suc y ≤ x → z + y * z ≤ x * z lt {x} {y} {z} le = *≤ le minus- : {x y z : ℕ } → suc x > z + y → minus (minus x y) z ≡ minus x (y + z) minus- {x} {y} {z} gt = +m= {_} {_} {z} ( begin minus (minus x y) z + z ≡⟨ minus+n {_} {z} lemma ⟩ minus x y ≡⟨ +m= {_} {_} {y} ( begin minus x y + y ≡⟨ minus+n {_} {y} lemma1 ⟩ x ≡⟨ sym ( minus+n {_} {z + y} gt ) ⟩ minus x (z + y) + (z + y) ≡⟨ sym ( +-assoc (minus x (z + y)) _ _ ) ⟩ minus x (z + y) + z + y ∎ ) ⟩ minus x (z + y) + z ≡⟨ cong (λ k → minus x k + z ) (+-comm _ y ) ⟩ minus x (y + z) + z ∎ ) where open ≡-Reasoning lemma1 : suc x > y lemma1 = x+y<z→x<z (subst (λ k → k < suc x ) (+-comm z _ ) gt ) lemma : suc (minus x y) > z lemma = <-minus {_} {_} {y} ( subst ( λ x → z + y < suc x ) (sym (minus+n {x} {y} lemma1 )) gt ) minus-* : {M k n : ℕ } → n < k → minus k (suc n) * M ≡ minus (minus k n * M ) M minus-* {zero} {k} {n} lt = begin minus k (suc n) * zero ≡⟨ *-comm (minus k (suc n)) zero ⟩ zero * minus k (suc n) ≡⟨⟩ 0 * minus k n ≡⟨ *-comm 0 (minus k n) ⟩ minus (minus k n * 0 ) 0 ∎ where open ≡-Reasoning minus-* {suc m} {k} {n} lt with <-cmp k 1 minus-* {suc m} {.0} {zero} lt | tri< (s≤s z≤n) ¬b ¬c = refl minus-* {suc m} {.0} {suc n} lt | tri< (s≤s z≤n) ¬b ¬c = refl minus-* {suc zero} {.1} {zero} lt | tri≈ ¬a refl ¬c = refl minus-* {suc (suc m)} {.1} {zero} lt | tri≈ ¬a refl ¬c = minus-* {suc m} {1} {zero} lt minus-* {suc m} {.1} {suc n} (s≤s ()) | tri≈ ¬a refl ¬c minus-* {suc m} {k} {n} lt | tri> ¬a ¬b c = begin minus k (suc n) * M ≡⟨ distr-minus-* {k} {suc n} {M} ⟩ minus (k * M ) ((suc n) * M) ≡⟨⟩ minus (k * M ) (M + n * M ) ≡⟨ cong (λ x → minus (k * M) x) (+-comm M _ ) ⟩ minus (k * M ) ((n * M) + M ) ≡⟨ sym ( minus- {k * M} {n * M} (lemma lt) ) ⟩ minus (minus (k * M ) (n * M)) M ≡⟨ cong (λ x → minus x M ) ( sym ( distr-minus-* {k} {n} )) ⟩ minus (minus k n * M ) M ∎ where M = suc m lemma : {n k m : ℕ } → n < k → suc (k * suc m) > suc m + n * suc m lemma {zero} {suc k} {m} (s≤s lt) = s≤s (s≤s (subst (λ x → x ≤ m + k * suc m) (+-comm 0 _ ) x≤x+y )) lemma {suc n} {suc k} {m} lt = begin suc (suc m + suc n * suc m) ≡⟨⟩ suc ( suc (suc n) * suc m) ≤⟨ ≤-plus-0 {_} {_} {1} (*≤ lt ) ⟩ suc (suc k * suc m) ∎ where open ≤-Reasoning open ≡-Reasoning open import Data.List ℕL-inject : {h h1 : ℕ } {x y : List ℕ } → h ∷ x ≡ h1 ∷ y → h ≡ h1 ℕL-inject refl = refl ℕL-inject-t : {h h1 : ℕ } {x y : List ℕ } → h ∷ x ≡ h1 ∷ y → x ≡ y ℕL-inject-t refl = refl ℕL-eq? : (x y : List ℕ ) → Dec (x ≡ y ) ℕL-eq? [] [] = yes refl ℕL-eq? [] (x ∷ y) = no (λ ()) ℕL-eq? (x ∷ x₁) [] = no (λ ()) ℕL-eq? (h ∷ x) (h1 ∷ y) with h ≟ h1 | ℕL-eq? x y ... | yes y1 | yes y2 = yes ( cong₂ (λ j k → j ∷ k ) y1 y2 ) ... | yes y1 | no n = no (λ e → n (ℕL-inject-t e)) ... | no n | t = no (λ e → n (ℕL-inject e))
34.316716
113
0.398223
049bc70d3796e5d20e31c486b871863d3a1dcb29
1,314
agda
Agda
src/Sigma/Renaming/Properties.agda
johnyob/agda-sigma
bb895fa8a3ccbefbd2c4a135c79744ba06895be7
[ "MIT" ]
null
null
null
src/Sigma/Renaming/Properties.agda
johnyob/agda-sigma
bb895fa8a3ccbefbd2c4a135c79744ba06895be7
[ "MIT" ]
null
null
null
src/Sigma/Renaming/Properties.agda
johnyob/agda-sigma
bb895fa8a3ccbefbd2c4a135c79744ba06895be7
[ "MIT" ]
null
null
null
module Sigma.Renaming.Properties where open import Data.Nat using (ℕ; _+_; zero; suc) open import Data.Fin using (Fin; zero; suc) open import Sigma.Subst.Core open import Sigma.Renaming.Base open import Sigma.Subst.Properties using (extensionality) open import Function using (_∘_) open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl; cong; cong₂) open Eq.≡-Reasoning -- ------------------------------------------------------------------------ ⇑-cong : ∀ { m n } { ρ₁ ρ₂ : Ren m n } → ρ₁ ≡ ρ₂ -- ----------- → ρ₁ ⇑ ≡ ρ₂ ⇑ ⇑-cong ρ₁≡ρ₂ = cong (_⇑) ρ₁≡ρ₂ ⇑✶-cong : ∀ { m n } k { ρ₁ ρ₂ : Ren m n } → ρ₁ ≡ ρ₂ -- ----------- → ρ₁ ⇑✶ k ≡ ρ₂ ⇑✶ k ⇑✶-cong k ρ₁≡ρ₂ = cong (_⇑✶ k) ρ₁≡ρ₂ -- ------------------------------------------------------------------------ ∘-⇑-distrib : ∀ { m n k } ( ρ₁ : Ren m n ) ( ρ₂ : Ren n k ) → (ρ₂ ⇑ ∘ ρ₁ ⇑) ≡ (ρ₂ ∘ ρ₁) ⇑ ∘-⇑-distrib ρ₁ ρ₂ = extensionality lemma where lemma : ∀ x → (ρ₂ ⇑ ∘ ρ₁ ⇑) x ≡ ((ρ₂ ∘ ρ₁) ⇑) x lemma zero = refl lemma (suc x) = refl -- TODO: -- generalized for ⇑✶ -- ------------------------------------------------------------------------ ⇑-id : ∀ { n } → (id { n }) ⇑ ≡ id ⇑-id = extensionality lemma where lemma : ∀ { n } x → (id { n } ⇑) x ≡ x lemma zero = refl lemma (suc x) = refl
25.269231
75
0.449772
145e7e3148dd3fa84d63fd76ba5de3209aa99bc3
6,784
agda
Agda
src/Web/Semantic/DL/Category/Properties/Tensor/AssocNatural.agda
bblfish/agda-web-semantic
38fbc3af7062ba5c3d7d289b2b4bcfb995d99057
[ "MIT" ]
1
2022-02-22T09:43:23.000Z
2022-02-22T09:43:23.000Z
src/Web/Semantic/DL/Category/Properties/Tensor/AssocNatural.agda
bblfish/agda-web-semantic
38fbc3af7062ba5c3d7d289b2b4bcfb995d99057
[ "MIT" ]
null
null
null
src/Web/Semantic/DL/Category/Properties/Tensor/AssocNatural.agda
bblfish/agda-web-semantic
38fbc3af7062ba5c3d7d289b2b4bcfb995d99057
[ "MIT" ]
null
null
null
open import Data.Product using ( proj₁ ; proj₂ ) open import Data.Sum using ( _⊎_ ; inj₁ ; inj₂ ) open import Relation.Binary.PropositionalEquality using ( refl ) open import Web.Semantic.DL.ABox.Interp using ( ⌊_⌋ ; ind ; _*_ ) open import Web.Semantic.DL.ABox.Interp.Morphism using ( _,_ ) open import Web.Semantic.DL.ABox.Model using ( _⊨a_ ; on-bnode ; bnodes ; _,_ ; ⊨a-resp-≲ ) open import Web.Semantic.DL.Category.Composition using ( _∙_ ) open import Web.Semantic.DL.Category.Properties.Composition.Lemmas using ( compose-left ; compose-right ; compose-resp-⊨a ) open import Web.Semantic.DL.Category.Properties.Tensor.Lemmas using ( tensor-up ; tensor-down ; tensor-resp-⊨a ) open import Web.Semantic.DL.Category.Object using ( Object ; IN ; fin ) open import Web.Semantic.DL.Category.Morphism using ( _⇒_ ; BN ; impl ; _⊑_ ; _≣_ ; _,_ ) open import Web.Semantic.DL.Category.Tensor using ( _⊗_ ; _⟨⊗⟩_ ) open import Web.Semantic.DL.Category.Unit using ( I ) open import Web.Semantic.DL.Category.Wiring using ( wires-≈ ; wires-≈⁻¹ ; assoc ) open import Web.Semantic.DL.Signature using ( Signature ) open import Web.Semantic.DL.TBox using ( TBox ) open import Web.Semantic.DL.TBox.Interp using ( Δ ; _⊨_≈_ ; ≈-refl ; ≈-refl′ ; ≈-sym ) open import Web.Semantic.DL.TBox.Interp.Morphism using ( ≲-refl ) open import Web.Semantic.Util using ( _∘_ ; False ; ⊎-assoc ; ⊎-assoc⁻¹ ; _⊕_⊕_ ; inode ; bnode ; enode ; left ; right ; up ; down ) module Web.Semantic.DL.Category.Properties.Tensor.AssocNatural {Σ : Signature} {S T : TBox Σ} where assoc-natural : ∀ {A₁ A₂ A₃ B₁ B₂ B₃ : Object S T} (F₁ : A₁ ⇒ B₁) (F₂ : A₂ ⇒ B₂) (F₃ : A₃ ⇒ B₃) → (((F₁ ⟨⊗⟩ F₂) ⟨⊗⟩ F₃) ∙ assoc B₁ B₂ B₃ ≣ assoc A₁ A₂ A₃ ∙ (F₁ ⟨⊗⟩ (F₂ ⟨⊗⟩ F₃))) assoc-natural {A₁} {A₂} {A₃} {B₁} {B₂} {B₃} F₁ F₂ F₃ = (LHS⊑RHS , RHS⊑LHS) where LHS⊑RHS : ((F₁ ⟨⊗⟩ F₂) ⟨⊗⟩ F₃) ∙ assoc B₁ B₂ B₃ ⊑ assoc A₁ A₂ A₃ ∙ (F₁ ⟨⊗⟩ (F₂ ⟨⊗⟩ F₃)) LHS⊑RHS J J⊨STA J⊨LHS = (f , J⊨RHS) where f : (False ⊕ (IN A₁ ⊎ (IN A₂ ⊎ IN A₃)) ⊕ (BN F₁ ⊎ (BN F₂ ⊎ BN F₃))) → Δ ⌊ J ⌋ f (inode ()) f (bnode x) = ind J (inode (⊎-assoc⁻¹ x)) f (enode v) = ind J (bnode (inode (⊎-assoc⁻¹ v))) lemma₁ : ∀ x → ⌊ J ⌋ ⊨ ind J (left (up (up x))) ≈ on-bnode {Σ} f (ind J) (right (up x)) lemma₁ (inode x) = ≈-refl ⌊ J ⌋ lemma₁ (bnode v) = ≈-refl ⌊ J ⌋ lemma₁ (enode y) = wires-≈ ⊎-assoc⁻¹ (proj₂ (fin (B₁ ⊗ (B₂ ⊗ B₃))) (inj₁ y)) (compose-right ((F₁ ⟨⊗⟩ F₂) ⟨⊗⟩ F₃) (assoc B₁ B₂ B₃) J J⊨LHS) lemma₂ : ∀ x → ⌊ J ⌋ ⊨ ind J (left (up (down x))) ≈ on-bnode {Σ} f (ind J) (right (down (up x))) lemma₂ (inode x) = ≈-refl ⌊ J ⌋ lemma₂ (bnode v) = ≈-refl ⌊ J ⌋ lemma₂ (enode y) = wires-≈ ⊎-assoc⁻¹ (proj₂ (fin (B₁ ⊗ (B₂ ⊗ B₃))) (inj₂ (inj₁ y))) (compose-right ((F₁ ⟨⊗⟩ F₂) ⟨⊗⟩ F₃) (assoc B₁ B₂ B₃) J J⊨LHS) lemma₃ : ∀ x → ⌊ J ⌋ ⊨ ind J (left (down x)) ≈ on-bnode {Σ} f (ind J) (right (down (down x))) lemma₃ (inode x) = ≈-refl ⌊ J ⌋ lemma₃ (bnode v) = ≈-refl ⌊ J ⌋ lemma₃ (enode y) = wires-≈ ⊎-assoc⁻¹ (proj₂ (fin (B₁ ⊗ (B₂ ⊗ B₃))) (inj₂ (inj₂ y))) (compose-right ((F₁ ⟨⊗⟩ F₂) ⟨⊗⟩ F₃) (assoc B₁ B₂ B₃) J J⊨LHS) J⊨RHS : bnodes J f ⊨a impl (assoc A₁ A₂ A₃ ∙ (F₁ ⟨⊗⟩ (F₂ ⟨⊗⟩ F₃))) J⊨RHS = compose-resp-⊨a (assoc A₁ A₂ A₃) (F₁ ⟨⊗⟩ (F₂ ⟨⊗⟩ F₃)) (bnodes J f) (wires-≈⁻¹ ⊎-assoc⁻¹ (λ x → ≈-refl ⌊ J ⌋) (proj₁ (fin (A₁ ⊗ (A₂ ⊗ A₃))))) (tensor-resp-⊨a F₁ (F₂ ⟨⊗⟩ F₃) (right * bnodes J f) (⊨a-resp-≲ (≲-refl ⌊ J ⌋ , lemma₁) (impl F₁) (tensor-up F₁ F₂ (up * left * J) (tensor-up (F₁ ⟨⊗⟩ F₂) F₃ (left * J) (compose-left ((F₁ ⟨⊗⟩ F₂) ⟨⊗⟩ F₃) (assoc B₁ B₂ B₃) J J⊨LHS)))) (tensor-resp-⊨a F₂ F₃ (down * right * bnodes J f) (⊨a-resp-≲ (≲-refl ⌊ J ⌋ , lemma₂) (impl F₂) (tensor-down F₁ F₂ (up * left * J) (tensor-up (F₁ ⟨⊗⟩ F₂) F₃ (left * J) (compose-left ((F₁ ⟨⊗⟩ F₂) ⟨⊗⟩ F₃) (assoc B₁ B₂ B₃) J J⊨LHS)))) (⊨a-resp-≲ (≲-refl ⌊ J ⌋ , lemma₃) (impl F₃) (tensor-down (F₁ ⟨⊗⟩ F₂) F₃ (left * J) (compose-left ((F₁ ⟨⊗⟩ F₂) ⟨⊗⟩ F₃) (assoc B₁ B₂ B₃) J J⊨LHS))))) RHS⊑LHS : assoc A₁ A₂ A₃ ∙ (F₁ ⟨⊗⟩ (F₂ ⟨⊗⟩ F₃)) ⊑ ((F₁ ⟨⊗⟩ F₂) ⟨⊗⟩ F₃) ∙ assoc B₁ B₂ B₃ RHS⊑LHS J J⊨STA J⊨RHS = (f , J⊨LHS) where f : (((BN F₁ ⊎ BN F₂) ⊎ BN F₃) ⊕ ((IN B₁ ⊎ IN B₂) ⊎ IN B₃) ⊕ False) → Δ ⌊ J ⌋ f (inode v) = ind J (bnode (enode (⊎-assoc v))) f (bnode y) = ind J (enode (⊎-assoc y)) f (enode ()) lemma₀ : ∀ x → ⌊ J ⌋ ⊨ ind J (enode (⊎-assoc (⊎-assoc⁻¹ x))) ≈ ind J (enode x) lemma₀ (inj₁ x) = ≈-refl ⌊ J ⌋ lemma₀ (inj₂ (inj₁ x)) = ≈-refl ⌊ J ⌋ lemma₀ (inj₂ (inj₂ y)) = ≈-refl ⌊ J ⌋ lemma₁ : ∀ x → ⌊ J ⌋ ⊨ ind J (right (up x)) ≈ on-bnode {Σ} f (ind J) (left (up (up x))) lemma₁ (inode x) = ≈-sym ⌊ J ⌋ (wires-≈ ⊎-assoc⁻¹ (proj₂ (fin (A₁ ⊗ (A₂ ⊗ A₃))) (inj₁ x)) (compose-left (assoc A₁ A₂ A₃) (F₁ ⟨⊗⟩ (F₂ ⟨⊗⟩ F₃)) J J⊨RHS)) lemma₁ (bnode v) = ≈-refl ⌊ J ⌋ lemma₁ (enode y) = ≈-refl ⌊ J ⌋ lemma₂ : ∀ x → ⌊ J ⌋ ⊨ ind J (right (down (up x))) ≈ on-bnode {Σ} f (ind J) (left (up (down x))) lemma₂ (inode x) = ≈-sym ⌊ J ⌋ (wires-≈ ⊎-assoc⁻¹ (proj₂ (fin (A₁ ⊗ (A₂ ⊗ A₃))) (inj₂ (inj₁ x))) (compose-left (assoc A₁ A₂ A₃) (F₁ ⟨⊗⟩ (F₂ ⟨⊗⟩ F₃)) J J⊨RHS)) lemma₂ (bnode v) = ≈-refl ⌊ J ⌋ lemma₂ (enode y) = ≈-refl ⌊ J ⌋ lemma₃ : ∀ x → ⌊ J ⌋ ⊨ ind J (right (down (down x))) ≈ on-bnode {Σ} f (ind J) (left (down x)) lemma₃ (inode x) = ≈-sym ⌊ J ⌋ (wires-≈ ⊎-assoc⁻¹ (proj₂ (fin (A₁ ⊗ (A₂ ⊗ A₃))) (inj₂ (inj₂ x))) (compose-left (assoc A₁ A₂ A₃) (F₁ ⟨⊗⟩ (F₂ ⟨⊗⟩ F₃)) J J⊨RHS)) lemma₃ (bnode v) = ≈-refl ⌊ J ⌋ lemma₃ (enode y) = ≈-refl ⌊ J ⌋ J⊨LHS : bnodes J f ⊨a impl (((F₁ ⟨⊗⟩ F₂) ⟨⊗⟩ F₃) ∙ assoc B₁ B₂ B₃) J⊨LHS = compose-resp-⊨a ((F₁ ⟨⊗⟩ F₂) ⟨⊗⟩ F₃) (assoc B₁ B₂ B₃) (bnodes J f) (tensor-resp-⊨a (F₁ ⟨⊗⟩ F₂) F₃ (left * bnodes J f) (tensor-resp-⊨a F₁ F₂ (up * left * bnodes J f) (⊨a-resp-≲ (≲-refl ⌊ J ⌋ , lemma₁) (impl F₁) (tensor-up F₁ (F₂ ⟨⊗⟩ F₃) (right * J) (compose-right (assoc A₁ A₂ A₃) (F₁ ⟨⊗⟩ (F₂ ⟨⊗⟩ F₃)) J J⊨RHS))) (⊨a-resp-≲ (≲-refl ⌊ J ⌋ , lemma₂) (impl F₂) (tensor-up F₂ F₃ (down * right * J) (tensor-down F₁ (F₂ ⟨⊗⟩ F₃) (right * J) (compose-right (assoc A₁ A₂ A₃) (F₁ ⟨⊗⟩ (F₂ ⟨⊗⟩ F₃)) J J⊨RHS))))) (⊨a-resp-≲ (≲-refl ⌊ J ⌋ , lemma₃) (impl F₃) (tensor-down F₂ F₃ (down * right * J) (tensor-down F₁ (F₂ ⟨⊗⟩ F₃) (right * J) (compose-right (assoc A₁ A₂ A₃) (F₁ ⟨⊗⟩ (F₂ ⟨⊗⟩ F₃)) J J⊨RHS))))) (wires-≈⁻¹ ⊎-assoc⁻¹ lemma₀ (proj₁ (fin (B₁ ⊗ (B₂ ⊗ B₃)))))
46.465753
82
0.512529
144cd033501a0b00fa0819346c1bc1b524194f2e
4,530
agda
Agda
Utils/Decidable.agda
AndrasKovacs/SemanticsWithApplications
05200d60b4a4b2c6fa37806ced9247055d24db94
[ "MIT" ]
8
2016-09-12T04:25:39.000Z
2020-02-02T10:01:52.000Z
Utils/Decidable.agda
AndrasKovacs/SemanticsWithApplications
05200d60b4a4b2c6fa37806ced9247055d24db94
[ "MIT" ]
null
null
null
Utils/Decidable.agda
AndrasKovacs/SemanticsWithApplications
05200d60b4a4b2c6fa37806ced9247055d24db94
[ "MIT" ]
null
null
null
module Utils.Decidable where open import Data.Nat open import Data.Char open import Data.String open import Data.Bool open import Relation.Binary.PropositionalEquality open import Relation.Nullary.Decidable hiding (True; False) open import Relation.Nullary open import Data.Product open import Data.Sum open import Function import Level as L {- A type class for decidable types. The part we actually end up using in the formal semantics proofs is mostly decidable equality (_≡⁇_). -} _=>_ : ∀ {α β} → Set α → Set β → Set (α L.⊔ β) Dict => A = ⦃ _ : Dict ⦄ → A infixr 5 _=>_ record Decidable {a}(A : Set a) : Set a where constructor rec field decide : Dec A DecRel : ∀ {a b}{A : Set a}{B : Set b} → (A → B → Set (a L.⊔ b)) → Set (a L.⊔ b) DecRel Rel = ∀ {x y} → Decidable (Rel x y) DecEq : ∀ {a} → Set a → Set a DecEq A = DecRel (_≡_ {_} {A}) _⁇ : ∀ {a} A → Decidable {a} A => Dec A _⁇ A ⦃ dict ⦄ = Decidable.decide dict _≡⁇_ : ∀ {a A} → DecEq {a} A => ((x y : A) → Dec (x ≡ y)) x ≡⁇ y = (x ≡ y) ⁇ True : ∀ {a} A → Decidable {a} A => Set True A = T ⌊ A ⁇ ⌋ F : Bool → Set F = T ∘ not False : ∀ {a} A → Decidable {a} A => Set False A = F ⌊ A ⁇ ⌋ _≤⁇_ : ∀ a b → Dec (a ≤ b) _≤⁇_ = _≤?_ _<⁇_ : ∀ a b → Dec (a < b) a <⁇ b = suc a ≤⁇ b module _ where open import Data.Nat.Properties _≤′⁇_ : ∀ a b → Dec (a ≤′ b) _≤′⁇_ a b with a ≤⁇ b ... | yes p = yes (≤⇒≤′ p) ... | no p = no (p ∘ ≤′⇒≤) _<′⁇_ : ∀ a b → Dec (a <′ b) a <′⁇ b = suc a ≤′⁇ b instance DecEqBool : DecEq Bool DecEqBool = rec (_ Data.Bool.≟ _) instance DecEqChar : DecEq Char DecEqChar = rec (_ Data.Char.≟ _) module _ where open import Data.Fin open import Data.Fin.Properties instance DecEqFin : ∀ {n} → DecEq (Fin n) DecEqFin = rec (_ Data.Fin.Properties.≟ _) instance DecEqℕ : DecEq ℕ DecEqℕ = rec (_ Data.Nat.≟ _) instance DecEqString : DecEq String DecEqString = rec (_ Data.String.≟ _) instance Decℕ≤ : DecRel _≤_ Decℕ≤ = rec (_ ≤⁇ _) instance Decℕ≤′ : DecRel _≤′_ Decℕ≤′ = rec (_ ≤′⁇ _) -- Conversions between decidable / boolean -------------------------------------------------- T→∧ : ∀ {a b} → T (a ∧ b) → T a × T b T→∧ {true} {true} x = _ T→∧ {true} {false} () T→∧ {false} () ∧→T : ∀ {a b} → T a → T b → T (a ∧ b) ∧→T {true} {true} p1 p2 = _ ∧→T {true} {false} p1 () ∧→T {false} () p2 F-not-elim : ∀ {b} → F (not b) → T b F-not-elim {true} p = p F-not-elim {false} p = p F-not-add : ∀ {b} → T b → F (not b) F-not-add {true} p = p F-not-add {false} p = p F-not-≡ : ∀ b → T b ≡ F (not b) F-not-≡ true = refl F-not-≡ false = refl TrueA→A : ∀ {a A}⦃ _ : Decidable {a} A ⦄ → True A → A TrueA→A = toWitness FalseA→¬A : ∀ {a A}⦃ _ : Decidable {a} A ⦄ → False A → ¬ A FalseA→¬A = toWitnessFalse A→TrueA : ∀ {a A}⦃ _ : Decidable {a} A ⦄ → A → True A A→TrueA = fromWitness ¬A→FalseA : ∀ {a A}⦃ _ : Decidable {a} A ⦄ → ¬ A → False A ¬A→FalseA = fromWitnessFalse T→≡true : ∀ {b} → T b → b ≡ true T→≡true {true} p = refl T→≡true {false} () ≡true→T : ∀ {b} → b ≡ true → T b ≡true→T {true} p = _ ≡true→T {false} () ≡false→F : ∀ {b} → b ≡ false → F b ≡false→F {true} () ≡false→F {false} p = _ F→≡false : ∀ {b} → F b → b ≡ false F→≡false {true} () F→≡false {false} p = refl A→≡true : ∀ {a A}{Q : Dec {a} A} → A → ⌊ Q ⌋ ≡ true A→≡true = T→≡true ∘ fromWitness ¬A→≡false : ∀ {a A}{Q : Dec {a} A} → ¬ A → ⌊ Q ⌋ ≡ false ¬A→≡false = F→≡false ∘ fromWitnessFalse ≡true→A : ∀ {a A}{Q : Dec {a} A} → ⌊ Q ⌋ ≡ true → A ≡true→A = toWitness ∘ ≡true→T ≡false→¬A : ∀ {a A}{Q : Dec {a} A} → ⌊ Q ⌋ ≡ false → ¬ A ≡false→¬A = toWitnessFalse ∘ ≡false→F ----------------------------------------------------------- instance Dec¬ : ∀ {α A} → Decidable {α} A => Decidable (¬ A) Dec¬ {_}{A} = rec dec¬ where dec¬ : Dec (¬ A) dec¬ with A ⁇ ... | yes p = no (λ z → z p) ... | no ¬p = yes ¬p instance Dec⊎ : ∀ {α β A B} → Decidable {α} A => Decidable {β} B => Decidable (A ⊎ B) Dec⊎ {_}{_}{A}{B} = rec dec⊎ where dec⊎ : Dec (A ⊎ B) dec⊎ with A ⁇ | B ⁇ ... | yes p | _ = yes (inj₁ p) ... | _ | yes p = yes (inj₂ p) ... | no ¬p₁ | no ¬p₂ = no [ ¬p₁ , ¬p₂ ]′ instance Dec× : ∀ {α β A B} → Decidable {α} A => Decidable {β} B => Decidable (A × B) Dec× {_}{_}{A}{B} = rec dec× where dec× : Dec (A × B) dec× with A ⁇ | B ⁇ ... | yes p | yes p₁ = yes (p , p₁) ... | yes p | no ¬p = no (¬p ∘ proj₂) ... | no ¬p | _ = no (¬p ∘ proj₁)
21.069767
80
0.500442
1b2c2eabec808ae507d15f48ab9fc808d32b7cd4
579
agda
Agda
test/Succeed/Issue3034.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue3034.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue3034.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --without-K #-} postulate w/e : Set data _==_ {A : Set} : A → A → Set where idp : {a : A} → a == a data Square {A : Set} {a : A} : {b c d : A} (p : a == b) (q : c == d) (r : a == c) (s : b == d) → Set where ids : Square {a = a} idp idp idp idp J1 : {A : Set} {a : A} {p : a == a} → Square p idp idp idp → Set J1 ids = w/e J2 : {A : Set} {a : A} {p : a == a} → Square idp p idp idp → Set J2 ids = w/e J3 : {A : Set} {a : A} {p : a == a} → Square idp idp p idp → Set J3 ids = w/e J4 : {A : Set} {a : A} {p : a == a} → Square idp idp idp p → Set J4 ids = w/e
26.318182
107
0.46114
1a1710042ed4982d3fa3dc25a8ca41a4a42fde6a
122
agda
Agda
test/interaction/Issue2447/Operator-error.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/interaction/Issue2447/Operator-error.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/interaction/Issue2447/Operator-error.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Issue2447.Operator-error where import Issue2447.M _+_ : Set → Set → Set A + _ = A F : Set → Set F A = A + A + A
12.2
37
0.614754
43ce18b77348f65eed7976e13d6bc81138a2db0c
554
agda
Agda
src/Ethambda/System.agda
fredefox/ethambda-agda
18e1f9271a3ce76319cdfbcffe027c2088a418aa
[ "BSD-3-Clause" ]
null
null
null
src/Ethambda/System.agda
fredefox/ethambda-agda
18e1f9271a3ce76319cdfbcffe027c2088a418aa
[ "BSD-3-Clause" ]
null
null
null
src/Ethambda/System.agda
fredefox/ethambda-agda
18e1f9271a3ce76319cdfbcffe027c2088a418aa
[ "BSD-3-Clause" ]
null
null
null
-- | The core type system. module Ethambda.System where open import Ethambda.Common using () -- ((<.>), (<.)) data Tp : Type -> Type where Var : a -> Tp a Fun : Tp a -> Tp a -> Tp a Show a => Show (Tp a) where show t = case t of -- Var a => ?foo Var a => show a Fun a0 b0 => mbrackets a0 <+> "→" <+> show b0 -- where -- brackets : String -> String -- brackets s = "(" <+> s <+> ")" -- mbrackets : Show a => Tp a -> String -- mbrackets a = case a of -- Var _ => neutral -- Fun _ _ => brackets (show a)
25.181818
53
0.509025
36d1f59755b4ed900f3566d67748c0a799c0a4ac
6,724
agda
Agda
agda-stdlib/src/Data/List/Relation/Unary/All.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Data/List/Relation/Unary/All.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Data/List/Relation/Unary/All.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- Lists where all elements satisfy a given property ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.List.Relation.Unary.All where open import Category.Applicative open import Category.Monad open import Data.Empty using (⊥) open import Data.List.Base as List using (List; []; _∷_) open import Data.List.Relation.Unary.Any as Any using (Any; here; there) open import Data.List.Membership.Propositional using (_∈_) open import Data.Product as Prod using (∃; -,_; _×_; _,_; proj₁; proj₂; uncurry) open import Function open import Level open import Relation.Nullary hiding (Irrelevant) import Relation.Nullary.Decidable as Dec open import Relation.Nullary.Product using (_×-dec_) open import Relation.Unary hiding (_∈_) open import Relation.Binary.PropositionalEquality as P private variable a b p q r : Level A : Set a B : Set b ------------------------------------------------------------------------ -- Definitions -- Given a predicate P, then All P xs means that every element in xs -- satisfies P. See `Relation.Unary` for an explanation of predicates. infixr 5 _∷_ data All {A : Set a} (P : Pred A p) : Pred (List A) (a ⊔ p) where [] : All P [] _∷_ : ∀ {x xs} (px : P x) (pxs : All P xs) → All P (x ∷ xs) -- All P xs is a finite map from indices x ∈ xs to content P x. -- Relation pxs [ i ]= px states that, in map pxs, key i : x ∈ xs points to value px. infix 4 _[_]=_ data _[_]=_ {A : Set a} {P : Pred A p} : ∀ {x xs} → All P xs → x ∈ xs → P x → Set (a ⊔ p) where here : ∀ {x xs} {px : P x} {pxs : All P xs} → px ∷ pxs [ here refl ]= px there : ∀ {x xs y} {px : P x} {pxs : All P xs} {py : P y} {i : x ∈ xs} → pxs [ i ]= px → py ∷ pxs [ there i ]= px -- A list is empty if having an element is impossible. Null : Pred (List A) _ Null = All (λ _ → ⊥) ------------------------------------------------------------------------ -- Operations on All module _ {P : Pred A p} where uncons : ∀ {x xs} → All P (x ∷ xs) → P x × All P xs uncons (px ∷ pxs) = px , pxs head : ∀ {x xs} → All P (x ∷ xs) → P x head = proj₁ ∘ uncons tail : ∀ {x xs} → All P (x ∷ xs) → All P xs tail = proj₂ ∘ uncons tabulate : ∀ {xs} → (∀ {x} → x ∈ xs → P x) → All P xs tabulate {xs = []} hyp = [] tabulate {xs = x ∷ xs} hyp = hyp (here refl) ∷ tabulate (hyp ∘ there) reduce : (f : ∀ {x} → P x → B) → ∀ {xs} → All P xs → List B reduce f [] = [] reduce f (px ∷ pxs) = f px ∷ reduce f pxs construct : (f : B → ∃ P) (xs : List B) → ∃ (All P) construct f [] = [] , [] construct f (x ∷ xs) = Prod.zip _∷_ _∷_ (f x) (construct f xs) fromList : (xs : List (∃ P)) → All P (List.map proj₁ xs) fromList [] = [] fromList ((x , p) ∷ xps) = p ∷ fromList xps toList : ∀ {xs} → All P xs → List (∃ P) toList pxs = reduce (λ {x} px → x , px) pxs module _ {P : Pred A p} {Q : Pred A q} where map : P ⊆ Q → All P ⊆ All Q map g [] = [] map g (px ∷ pxs) = g px ∷ map g pxs module _ {P : Pred A p} {Q : Pred A q} {R : Pred A r} where zipWith : P ∩ Q ⊆ R → All P ∩ All Q ⊆ All R zipWith f ([] , []) = [] zipWith f (px ∷ pxs , qx ∷ qxs) = f (px , qx) ∷ zipWith f (pxs , qxs) unzipWith : R ⊆ P ∩ Q → All R ⊆ All P ∩ All Q unzipWith f [] = [] , [] unzipWith f (rx ∷ rxs) = Prod.zip _∷_ _∷_ (f rx) (unzipWith f rxs) module _ {P : Pred A p} {Q : Pred A q} where zip : All P ∩ All Q ⊆ All (P ∩ Q) zip = zipWith id unzip : All (P ∩ Q) ⊆ All P ∩ All Q unzip = unzipWith id self : ∀ {xs : List A} → All (const A) xs self = tabulate (λ {x} _ → x) ------------------------------------------------------------------------ -- (weak) updateAt module _ {P : Pred A p} where infixl 6 _[_]%=_ _[_]≔_ updateAt : ∀ {x xs} → x ∈ xs → (P x → P x) → All P xs → All P xs updateAt () f [] updateAt (here refl) f (px ∷ pxs) = f px ∷ pxs updateAt (there i) f (px ∷ pxs) = px ∷ updateAt i f pxs _[_]%=_ : ∀ {x xs} → All P xs → x ∈ xs → (P x → P x) → All P xs pxs [ i ]%= f = updateAt i f pxs _[_]≔_ : ∀ {x xs} → All P xs → x ∈ xs → P x → All P xs pxs [ i ]≔ px = pxs [ i ]%= const px ------------------------------------------------------------------------ -- Traversable-like functions module _ (p : Level) {A : Set a} {P : Pred A (a ⊔ p)} {F : Set (a ⊔ p) → Set (a ⊔ p)} (App : RawApplicative F) where open RawApplicative App sequenceA : All (F ∘′ P) ⊆ F ∘′ All P sequenceA [] = pure [] sequenceA (x ∷ xs) = _∷_ <$> x ⊛ sequenceA xs mapA : ∀ {Q : Pred A q} → (Q ⊆ F ∘′ P) → All Q ⊆ (F ∘′ All P) mapA f = sequenceA ∘′ map f forA : ∀ {Q : Pred A q} {xs} → All Q xs → (Q ⊆ F ∘′ P) → F (All P xs) forA qxs f = mapA f qxs module _ (p : Level) {A : Set a} {P : Pred A (a ⊔ p)} {M : Set (a ⊔ p) → Set (a ⊔ p)} (Mon : RawMonad M) where private App = RawMonad.rawIApplicative Mon sequenceM : All (M ∘′ P) ⊆ M ∘′ All P sequenceM = sequenceA p App mapM : ∀ {Q : Pred A q} → (Q ⊆ M ∘′ P) → All Q ⊆ (M ∘′ All P) mapM = mapA p App forM : ∀ {Q : Pred A q} {xs} → All Q xs → (Q ⊆ M ∘′ P) → M (All P xs) forM = forA p App ------------------------------------------------------------------------ -- Generalised lookup based on a proof of Any module _ {P : Pred A p} {Q : Pred A q} where lookupAny : ∀ {xs} → All P xs → (i : Any Q xs) → (P ∩ Q) (Any.lookup i) lookupAny (px ∷ pxs) (here qx) = px , qx lookupAny (px ∷ pxs) (there i) = lookupAny pxs i module _ {P : Pred A p} {Q : Pred A q} {R : Pred A r} where lookupWith : ∀[ P ⇒ Q ⇒ R ] → ∀ {xs} → All P xs → (i : Any Q xs) → R (Any.lookup i) lookupWith f pxs i = Prod.uncurry f (lookupAny pxs i) module _ {P : Pred A p} where lookup : ∀ {xs} → All P xs → (∀ {x} → x ∈ xs → P x) lookup pxs = lookupWith (λ { px refl → px }) pxs ------------------------------------------------------------------------ -- Properties of predicates preserved by All module _ {P : Pred A p} where all : Decidable P → Decidable (All P) all p [] = yes [] all p (x ∷ xs) = Dec.map′ (uncurry _∷_) uncons (p x ×-dec all p xs) universal : Universal P → Universal (All P) universal u [] = [] universal u (x ∷ xs) = u x ∷ universal u xs irrelevant : Irrelevant P → Irrelevant (All P) irrelevant irr [] [] = P.refl irrelevant irr (px₁ ∷ pxs₁) (px₂ ∷ pxs₂) = P.cong₂ _∷_ (irr px₁ px₂) (irrelevant irr pxs₁ pxs₂) satisfiable : Satisfiable (All P) satisfiable = [] , []
30.703196
85
0.495687
4e8fc920b271e7aa581d36c35bdc387b50fbac9d
1,730
agda
Agda
test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Suffix/Heterogeneous.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Suffix/Heterogeneous.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Suffix/Heterogeneous.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- An inductive definition of the heterogeneous suffix relation ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.List.Relation.Binary.Suffix.Heterogeneous where open import Level open import Relation.Binary using (REL; _⇒_) open import Data.List.Base as List using (List; []; _∷_) open import Data.List.Relation.Binary.Pointwise as Pointwise using (Pointwise; []; _∷_) module _ {a b r} {A : Set a} {B : Set b} (R : REL A B r) where data Suffix : REL (List A) (List B) (a ⊔ b ⊔ r) where here : ∀ {as bs} → Pointwise R as bs → Suffix as bs there : ∀ {b as bs} → Suffix as bs → Suffix as (b ∷ bs) data SuffixView (as : List A) : List B → Set (a ⊔ b ⊔ r) where _++_ : ∀ cs {ds} → Pointwise R as ds → SuffixView as (cs List.++ ds) module _ {a b r} {A : Set a} {B : Set b} {R : REL A B r} where tail : ∀ {a as bs} → Suffix R (a ∷ as) bs → Suffix R as bs tail (here (_ ∷ rs)) = there (here rs) tail (there x) = there (tail x) module _ {a b r s} {A : Set a} {B : Set b} {R : REL A B r} {S : REL A B s} where map : R ⇒ S → Suffix R ⇒ Suffix S map R⇒S (here rs) = here (Pointwise.map R⇒S rs) map R⇒S (there suf) = there (map R⇒S suf) module _ {a b r} {A : Set a} {B : Set b} {R : REL A B r} where toView : ∀ {as bs} → Suffix R as bs → SuffixView R as bs toView (here rs) = [] ++ rs toView (there {c} suf) with toView suf ... | cs ++ rs = (c ∷ cs) ++ rs fromView : ∀ {as bs} → SuffixView R as bs → Suffix R as bs fromView ([] ++ rs) = here rs fromView ((c ∷ cs) ++ rs) = there (fromView (cs ++ rs))
36.041667
80
0.537572
0dbb6bb5aefee298f23f4b438814dc9404f7e283
4,518
agda
Agda
Numeral/Natural/Oper/Modulo/Proofs/Algorithm.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
Numeral/Natural/Oper/Modulo/Proofs/Algorithm.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
Numeral/Natural/Oper/Modulo/Proofs/Algorithm.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
module Numeral.Natural.Oper.Modulo.Proofs.Algorithm where import Lvl open import Logic open import Numeral.Natural open import Numeral.Natural.Oper open import Numeral.Natural.Oper.Modulo open import Numeral.Natural.Oper.Proofs open import Numeral.Natural.Oper.Proofs.Order open import Numeral.Natural.Relation open import Numeral.Natural.Relation.Order open import Numeral.Natural.Relation.Order.Proofs open import Relator.Equals open import Relator.Equals.Proofs open import Structure.Function open import Structure.Operator.Properties open import Structure.Relator.Properties open import Syntax.Function open import Syntax.Transitivity open import Type -- The many steps variant of: `[ r , b ] 𝐒(a') mod' 𝐒(b') = [ 𝐒(r) , b ] a' mod' b'` from the definition. mod'-ind-step : ∀{r b' a b c} → [ r , b' ] (a + c) mod' (b + c) ≡ [ (r + c) , b' ] a mod' b mod'-ind-step {_}{_} {_}{_}{𝟎} = [≡]-intro mod'-ind-step {r}{b'}{a}{b}{𝐒 c} = mod'-ind-step {𝐒 r}{b'}{a}{b}{c = c} -- The many steps variant of: `[ r , b ] 𝐒(a') mod' 𝐒(b') = [ 𝐒(r) , b ] a' mod' b'` from the definition when the dividend is greater than the modulus. mod'-ind-step-modulo : ∀{r m' a m} → [ r , m' ] (a + m) mod' m ≡ [ (r + m) , m' ] a mod' 𝟎 mod'-ind-step-modulo {r}{m'}{a}{𝟎} = [ r , m' ] (a + 𝟎) mod' 𝟎 🝖[ _≡_ ]-[] [ (r + 𝟎) , m' ] a mod' 𝟎 🝖-end mod'-ind-step-modulo {r}{m'}{a}{𝐒 m} = [ r , m' ] (a + 𝐒(m)) mod' 𝐒(m) 🝖[ _≡_ ]-[] [ r , m' ] 𝐒(a + m) mod' 𝐒(m) 🝖[ _≡_ ]-[] [ 𝐒(r) , m' ] (a + m) mod' m 🝖[ _≡_ ]-[ mod'-ind-step-modulo {𝐒 r}{m'}{a}{m} ] [ 𝐒(r + m) , m' ] a mod' 𝟎 🝖[ _≡_ ]-[] [ (r + 𝐒(m)) , m' ] a mod' 𝟎 🝖-end -- When states and modulus is zero, the result is zero. mod'-zero-all-except-dividend : ∀{a} → ([ 0 , 0 ] a mod' 0 ≡ 0) mod'-zero-all-except-dividend {𝟎} = [≡]-intro mod'-zero-all-except-dividend {𝐒(a)} = mod'-zero-all-except-dividend {a} mod'-greater-dividend : ∀{r b' a b} → (a > b) → ([ r , b' ] a mod' b ≡ [ 𝟎 , b' ] (a −₀ 𝐒(b)) mod' b') mod'-greater-dividend {r} {b'} {.(𝐒 _)} {𝟎} (succ ab) = [≡]-intro mod'-greater-dividend {r} {b'} {.(𝐒 _)} {𝐒 b} (succ ab) = mod'-greater-dividend ab mod'-zero-modulo-greater-dividend : ∀{r a b} → (a > b) → ([ r , 𝟎 ] a mod' b ≡ 𝟎) mod'-zero-modulo-greater-dividend {r} {.𝟏} {𝟎} (succ {y = 𝟎} ab) = [≡]-intro mod'-zero-modulo-greater-dividend {r} {.(𝐒 (𝐒 a))} {𝟎} (succ {y = 𝐒 a} ab) = mod'-zero-all-except-dividend {a} mod'-zero-modulo-greater-dividend {r} {.(𝐒 _)} {𝐒 b} (succ ab) = mod'-zero-modulo-greater-dividend ab mod'-lesser-dividend : ∀{r b' a b} → (a ≤ b) → ([ r , b' ] a mod' b ≡ r + a) mod'-lesser-dividend {r} {b'} min = [≡]-intro mod'-lesser-dividend {r} {b'} (succ ab) = mod'-lesser-dividend {𝐒 r} {b'} ab -- When the number is the temporary modulus, the result is zero. mod'-equal-dividend : ∀{r b' b} → ([ r , b' ] 𝐒(b) mod' b) ≡ 𝟎 mod'-equal-dividend {r}{b'}{b} = mod'-greater-dividend {r}{b'} (reflexivity(_≤_) {𝐒 b}) mod'-sumᵣ-modulo : ∀{r b' a b} → ([ r , b' ] (a + 𝐒(b)) mod' b) ≡ ([ 𝟎 , b' ] a mod' b') mod'-sumᵣ-modulo {r}{b'}{a}{b} = mod'-greater-dividend {r}{b'}{a + 𝐒(b)}{b} (succ([≤]-of-[+]ᵣ {a}{b})) 🝖 congruence₁(a ↦ [ 𝟎 , b' ] a mod' b') (inverseOperᵣ(_+_)(_−₀_) {a}{b}) -- When the mod'-sumₗ-modulo : ∀{r b' a b} → ([ r , b' ] (𝐒(b) + a) mod' b) ≡ ([ 𝟎 , b' ] a mod' b') mod'-sumₗ-modulo {r}{b'}{a}{b} = congruence₁(a ↦ [ r , b' ] a mod' b) (commutativity(_+_) {𝐒(b)}{a}) 🝖 mod'-sumᵣ-modulo {r}{b'}{a}{b} mod'-maxᵣ : ∀{r b a b'} → ⦃ _ : (b' ≤ b) ⦄ → (([ r , r + b ] a mod' b') ≤ r + b) mod'-maxᵣ {r} {b} {𝟎} {b'} ⦃ b'b ⦄ = [≤]-of-[+]ₗ mod'-maxᵣ {r} {𝟎} {𝐒 a} {.0} ⦃ min ⦄ = mod'-maxᵣ {𝟎} {r} {a} {r} ⦃ reflexivity(_≤_) ⦄ mod'-maxᵣ {r} {𝐒 b} {𝐒 a} {.0} ⦃ min ⦄ = mod'-maxᵣ {𝟎} {𝐒(r + b)} {a} {𝐒(r + b)} ⦃ reflexivity(_≤_) ⦄ mod'-maxᵣ {r} {𝐒 b} {𝐒 a} {𝐒 b'} ⦃ succ {b'} p ⦄ = mod'-maxᵣ {𝐒 r} {b} {a} {b'} ⦃ p ⦄ mod'-maxₗ : ∀{r b a b'} → (([ r , b ] a mod' b') ≤ r + a) mod'-maxₗ {𝟎} {_} {𝟎} {_} = min mod'-maxₗ {𝐒 r}{b} {𝟎} {𝐒 b'} = mod'-maxₗ {𝐒 r}{𝟎}{𝟎}{b'} mod'-maxₗ {𝐒 r}{𝐒 b}{𝟎} {b'} = mod'-maxₗ {𝐒 r}{b}{𝟎}{b'} mod'-maxₗ {𝐒 r}{b} {𝐒 a}{𝟎} = mod'-maxₗ {𝟎} {b} {a} {b} 🝖 [≤]-successor ([≤]-successor ([≤]-of-[+]ᵣ {r})) mod'-maxₗ {r} {b} {𝐒 a}{𝐒 b'} = mod'-maxₗ {𝐒 r} {b} {a} {b'} mod'-maxₗ {𝟎} {𝟎} {𝐒 a}{𝟎} = [≤]-successor(mod'-maxₗ {𝟎} {𝟎} {a} {𝟎}) mod'-maxₗ {𝟎} {𝐒 b}{𝐒 a}{𝟎} = [≤]-successor(mod'-maxₗ {0} {𝐒 b} {a} {𝐒 b}) mod'-maxₗ {𝐒 r}{𝟎} {𝟎} {𝟎} = succ(mod'-maxₗ {r}{𝟎}{𝟎}{𝟎})
54.433735
175
0.519699
21ccd0a4aabac35e51b1689421f4572fc266d4e5
174
agda
Agda
thesisExamples/TooFewArgsWrongType.agda
JoeyEremondi/lambda-pi-constraint
64a1b4c6632153d75cba540f7c91f40b49375e2f
[ "BSD-3-Clause" ]
16
2017-03-16T11:14:56.000Z
2021-02-05T20:21:46.000Z
thesisExamples/TooFewArgsWrongType.agda
JoeyEremondi/lambda-pi-constraint
64a1b4c6632153d75cba540f7c91f40b49375e2f
[ "BSD-3-Clause" ]
null
null
null
thesisExamples/TooFewArgsWrongType.agda
JoeyEremondi/lambda-pi-constraint
64a1b4c6632153d75cba540f7c91f40b49375e2f
[ "BSD-3-Clause" ]
null
null
null
{-# OPTIONS --type-in-type #-} module TooFewArgsWrongType where open import AgdaPrelude myFun : Vec Nat Zero -> Nat -> Nat myFun x y = y myApp : Nat myApp = (myFun Zero)
15.818182
34
0.683908
1bcd733d3adefd605ef6c9dccaea9680ca66cc96
4,973
agda
Agda
agda-stdlib/src/Data/Rational/Base.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Data/Rational/Base.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Data/Rational/Base.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- Rational numbers ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Rational.Base where open import Function using (id) open import Data.Integer.Base as ℤ using (ℤ; ∣_∣; +_; -[1+_]) import Data.Integer.GCD as ℤ import Data.Integer.DivMod as ℤ open import Data.Nat.GCD open import Data.Nat.Divisibility as ℕDiv using (divides; 0∣⇒≡0) open import Data.Nat.Coprimality as C using (Coprime; Bézout-coprime; coprime-/gcd) open import Data.Nat.Base as ℕ using (ℕ; zero; suc) hiding (module ℕ) import Data.Nat.DivMod as ℕ open import Data.Rational.Unnormalised using (ℚᵘ; mkℚᵘ; _≢0) open import Data.Product open import Data.Sum.Base using (inj₂) open import Level using (0ℓ) open import Relation.Nullary using (¬_) open import Relation.Nullary.Decidable using (False; fromWitnessFalse; toWitnessFalse) open import Relation.Nullary.Negation using (contradiction) open import Relation.Binary using (Rel) open import Relation.Binary.PropositionalEquality using (_≡_; _≢_; refl; subst; cong; cong₂; module ≡-Reasoning) open ≡-Reasoning -- Note, these are re-exported publicly to maintain backwards -- compatability. Although we are unable (?) to put a warning on them, -- using these from `Data.Rational` should be viewed as a deprecated -- feature. open import Data.Integer public using (+0; +[1+_]) ------------------------------------------------------------------------ -- Rational numbers in reduced form. Note that there is exactly one -- way to represent every rational number. record ℚ : Set where constructor mkℚ field numerator : ℤ denominator-1 : ℕ .isCoprime : Coprime ∣ numerator ∣ (suc denominator-1) denominatorℕ : ℕ denominatorℕ = suc denominator-1 denominator : ℤ denominator = + denominatorℕ open ℚ public using () renaming ( numerator to ↥_ ; denominator to ↧_ ; denominatorℕ to ↧ₙ_ ) mkℚ+ : ∀ n d → .{d≢0 : d ≢0} → .(Coprime n d) → ℚ mkℚ+ n (suc d) coprime = mkℚ (+ n) d coprime ------------------------------------------------------------------------ -- Equality of rational numbers (coincides with _≡_) infix 4 _≃_ _≃_ : Rel ℚ 0ℓ p ≃ q = (↥ p ℤ.* ↧ q) ≡ (↥ q ℤ.* ↧ p) ------------------------------------------------------------------------ -- Ordering of rationals infix 4 _≤_ _<_ _≥_ _>_ _≰_ _≱_ _≮_ _≯_ data _≤_ : Rel ℚ 0ℓ where *≤* : ∀ {p q} → (↥ p ℤ.* ↧ q) ℤ.≤ (↥ q ℤ.* ↧ p) → p ≤ q data _<_ : Rel ℚ 0ℓ where *<* : ∀ {p q} → (↥ p ℤ.* ↧ q) ℤ.< (↥ q ℤ.* ↧ p) → p < q _≥_ : Rel ℚ 0ℓ x ≥ y = y ≤ x _>_ : Rel ℚ 0ℓ x > y = y < x _≰_ : Rel ℚ 0ℓ x ≰ y = ¬ (x ≤ y) _≱_ : Rel ℚ 0ℓ x ≱ y = ¬ (x ≥ y) _≮_ : Rel ℚ 0ℓ x ≮ y = ¬ (x < y) _≯_ : Rel ℚ 0ℓ x ≯ y = ¬ (x > y) ------------------------------------------------------------------------ -- Negation -_ : ℚ → ℚ - mkℚ -[1+ n ] d prf = mkℚ +[1+ n ] d prf - mkℚ +0 d prf = mkℚ +0 d prf - mkℚ +[1+ n ] d prf = mkℚ -[1+ n ] d prf ------------------------------------------------------------------------ -- Constructing rationals -- A constructor for ℚ that takes two natural numbers, say 6 and 21, -- and returns them in a normalized form, e.g. say 2 and 7 normalize : ∀ (m n : ℕ) {n≢0 : n ≢0} → ℚ normalize m n {n≢0} = mkℚ+ (m ℕ./ gcd m n) (n ℕ./ gcd m n) {n/g≢0} (coprime-/gcd m n {g≢0}) where g≢0 = fromWitnessFalse (gcd[m,n]≢0 m n (inj₂ (toWitnessFalse n≢0))) n/g≢0 = fromWitnessFalse (n/gcd[m,n]≢0 m n {n≢0} {g≢0}) -- A constructor for ℚ that (unlike mkℚ) automatically normalises it's -- arguments. See the constants section below for how to use this operator. infixl 7 _/_ _/_ : (n : ℤ) (d : ℕ) → {d≢0 : d ≢0} → ℚ (+ n / d) {d≢0} = normalize n d {d≢0} (-[1+ n ] / d) {d≢0} = - normalize (suc n) d {d≢0} ------------------------------------------------------------------------------ -- Some constants 0ℚ : ℚ 0ℚ = + 0 / 1 1ℚ : ℚ 1ℚ = + 1 / 1 ½ : ℚ ½ = + 1 / 2 -½ : ℚ -½ = - ½ ------------------------------------------------------------------------------ -- Operations on rationals infix 8 -_ 1/_ infixl 7 _*_ _÷_ infixl 6 _-_ _+_ -- addition _+_ : ℚ → ℚ → ℚ p + q = (↥ p ℤ.* ↧ q ℤ.+ ↥ q ℤ.* ↧ p) / (↧ₙ p ℕ.* ↧ₙ q) -- multiplication _*_ : ℚ → ℚ → ℚ p * q = (↥ p ℤ.* ↥ q) / (↧ₙ p ℕ.* ↧ₙ q) -- subtraction _-_ : ℚ → ℚ → ℚ p - q = p + (- q) -- reciprocal: requires a proof that the numerator is not zero 1/_ : (p : ℚ) → .{n≢0 : ∣ ↥ p ∣ ≢0} → ℚ 1/ mkℚ +[1+ n ] d prf = mkℚ +[1+ d ] n (C.sym prf) 1/ mkℚ -[1+ n ] d prf = mkℚ -[1+ d ] n (C.sym prf) -- division: requires a proof that the denominator is not zero _÷_ : (p q : ℚ) → .{n≢0 : ∣ ↥ q ∣ ≢0} → ℚ (p ÷ q) {n≢0} = p * (1/ q) {n≢0} ------------------------------------------------------------------------ -- Conversion to and from unnormalized rationals toℚᵘ : ℚ → ℚᵘ toℚᵘ (mkℚ n d-1 _) = mkℚᵘ n d-1 fromℚᵘ : ℚᵘ → ℚ fromℚᵘ (mkℚᵘ n d-1) = n / suc d-1
26.173684
86
0.509149
7c347bbcde4ba3259ecc12ce4c6cac3ed55b24eb
4,156
agda
Agda
agda/sn-calculus-compatconf/pot.agda
florence/esterel-calculus
4340bef3f8df42ab8167735d35a4cf56243a45cd
[ "MIT" ]
3
2020-04-16T10:58:53.000Z
2020-07-01T03:59:31.000Z
agda/sn-calculus-compatconf/pot.agda
florence/esterel-calculus
4340bef3f8df42ab8167735d35a4cf56243a45cd
[ "MIT" ]
null
null
null
agda/sn-calculus-compatconf/pot.agda
florence/esterel-calculus
4340bef3f8df42ab8167735d35a4cf56243a45cd
[ "MIT" ]
1
2020-04-15T20:02:49.000Z
2020-04-15T20:02:49.000Z
module sn-calculus-compatconf.pot where open import can-function-preserve using (canₖ-monotonic ; canₛ-monotonic ; canₛₕ-monotonic) open import sn-calculus open import utility renaming (_U̬_ to _∪_) open import context-properties using (->pot-view) open import Esterel.Lang open import Esterel.Lang.Binding open import Esterel.Lang.CanFunction using (Can ; Canₛ ; Canₛₕ ; Canₖ ; Canθ ; Canθₛ ; Canθₛₕ ; Canθₖ) open import Esterel.Lang.CanFunction.Properties open import Esterel.Environment as Env using (Env ; Θ ; _←_ ; Dom ; module SigMap ; module ShrMap ; module VarMap) open import Esterel.Context using (Context ; Context1 ; _⟦_⟧c ; _≐_⟦_⟧c) open import Esterel.Context.Properties using (unplugc) open import Esterel.CompletionCode as Code using () renaming (CompletionCode to Code) open import Esterel.Variable.Signal as Signal using (Signal ; _ₛ) open import Esterel.Variable.Shared as SharedVar using (SharedVar ; _ₛₕ) open import Esterel.Variable.Sequential as SeqVar using (SeqVar ; _ᵥ) open import Relation.Nullary using (¬_ ; Dec ; yes ; no) open import Relation.Binary.PropositionalEquality using (_≡_ ; refl ; sym ; cong ; trans ; subst ; module ≡-Reasoning) open import Data.Bool using (Bool ; if_then_else_) open import Data.Empty using (⊥ ; ⊥-elim) open import Data.List using (List ; _∷_ ; [] ; _++_) open import Data.List.Any using (Any ; any ; here ; there) open import Data.List.Any.Properties using () renaming (++⁺ˡ to ++ˡ ; ++⁺ʳ to ++ʳ) open import Data.Maybe using (Maybe ; just ; nothing) open import Data.Nat using (ℕ ; zero ; suc ; _+_) renaming (_⊔_ to _⊔ℕ_) open import Data.Product using (Σ-syntax ; Σ ; _,_ ; _,′_ ; proj₁ ; proj₂ ; _×_ ; ∃) open import Data.Sum using (_⊎_ ; inj₁ ; inj₂) open import Function using (_∘_ ; id ; _∋_) open import Data.OrderedListMap Signal Signal.unwrap Signal.Status as SigM open import Data.OrderedListMap SharedVar SharedVar.unwrap (Σ SharedVar.Status (λ _ → ℕ)) as ShrM open import Data.OrderedListMap SeqVar SeqVar.unwrap ℕ as SeqM open ->pot-view open Context1 open _≐_⟦_⟧c {- (p) ρθ. C⟦pin⟧ -- sn⟶₁ -> ρθ' C⟦pin⟧ (ρθ) C⟦pin⟧ -- sn⟶₁ -> (ρθ) C⟦qin⟧ -} 1-steplρ-pot-lemma : ∀{C θ p pin qin θ' BV FV A} → {ρθpsn⟶₁ρθ'p : ρ⟨ θ , A ⟩· p sn⟶₁ ρ⟨ θ' , A ⟩· p} → ->pot-view ρθpsn⟶₁ρθ'p refl refl → CorrectBinding pin BV FV → p ≐ C ⟦ pin ⟧c → pin sn⟶₁ qin → ρ⟨ θ , A ⟩· C ⟦ qin ⟧c sn⟶₁ ρ⟨ θ' , A ⟩· C ⟦ qin ⟧c 1-steplρ-pot-lemma {C} {θ} {_} {pin} {qin} {ρθpsn⟶₁ρθ'p = .(rabsence {S = S} S∈ θS≡unknown S∉can-p-θ)} (vabsence S S∈ θS≡unknown S∉can-p-θ) cb p≐C⟦pin⟧ pinsn⟶₁qin with sym (unplugc p≐C⟦pin⟧) ... | refl = rabsence {S = S} S∈ θS≡unknown (λ S∈can-q-θ → S∉can-p-θ (canθₛ-plug 0 (Env.sig θ) C pin qin (λ θ* → canₛ-monotonic θ* _ _ cb pinsn⟶₁qin ∘ _ₛ) (λ θ* → canₖ-monotonic θ* _ _ cb pinsn⟶₁qin) Env.[]env (Signal.unwrap S) S∈can-q-θ)) 1-steplρ-pot-lemma {C} {θ} {_} {pin} {qin} {ρθpsn⟶₁ρθ'p = .(rreadyness {s = s} s∈ θs≡old⊎θs≡new s∉can-p-θ)} (vreadyness {θ = .θ} s s∈ θs≡old⊎θs≡new s∉can-p-θ) cb p≐C⟦pin⟧ pinsn⟶₁qin with sym (unplugc p≐C⟦pin⟧) ... | refl = rreadyness {s = s} s∈ θs≡old⊎θs≡new (λ s∈can-q-θ → s∉can-p-θ (canθₛₕ-plug 0 (Env.sig θ) C pin qin (λ θ* → canₛₕ-monotonic θ* _ _ cb pinsn⟶₁qin ∘ _ₛₕ) (λ θ* → canₖ-monotonic θ* _ _ cb pinsn⟶₁qin) (λ θ* → canₛ-monotonic θ* _ _ cb pinsn⟶₁qin ∘ _ₛ) Env.[]env (SharedVar.unwrap s) s∈can-q-θ)) -- Wrapper around 1-steplρ-pot-lemma. 1-steplρ-pot : ∀{p q θ θ' BV FV A} → {ρθpsn⟶₁ρθ'p : ρ⟨ θ , A ⟩· p sn⟶₁ ρ⟨ θ' , A ⟩· p} → CorrectBinding (ρ⟨ θ , A ⟩· p) BV FV → ->pot-view ρθpsn⟶₁ρθ'p refl refl → p sn⟶ q → (ρ⟨ θ' , A ⟩· p sn⟶* ρ⟨ θ' , A ⟩· q × ρ⟨ θ , A ⟩· q sn⟶* ρ⟨ θ' , A ⟩· q) 1-steplρ-pot cb@(CBρ cb') pot psn⟶q@(rcontext _ p≐C⟦pin⟧ pinsn⟶₁qin) = sn⟶*-inclusion (rcontext _ (dcenv p≐C⟦pin⟧) pinsn⟶₁qin) ,′ sn⟶*-inclusion (sn⟶-inclusion (1-steplρ-pot-lemma pot (proj₂ (binding-extractc' cb' p≐C⟦pin⟧)) p≐C⟦pin⟧ pinsn⟶₁qin))
32.217054
97
0.616939
d19502dafbabc2237efa745859b7e56e4f902021
161
agda
Agda
Cubical/Data/List.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
1
2020-03-23T23:52:11.000Z
2020-03-23T23:52:11.000Z
Cubical/Data/List.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
null
null
null
Cubical/Data/List.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --safe #-} module Cubical.Data.List where open import Cubical.Data.List.Base public open import Cubical.Data.List.Properties public
26.833333
47
0.745342
296c825fabd87bd9dd909fc33bdeeab2016a36a3
264
agda
Agda
intro/intro.agda
KMx404/selfev.agda
b2cf336215025de01b3b3f4b2296f9afd7c2d295
[ "MIT" ]
2
2020-08-18T11:22:21.000Z
2020-09-12T15:57:18.000Z
intro/intro.agda
KMx404/selfev.agda
b2cf336215025de01b3b3f4b2296f9afd7c2d295
[ "MIT" ]
null
null
null
intro/intro.agda
KMx404/selfev.agda
b2cf336215025de01b3b3f4b2296f9afd7c2d295
[ "MIT" ]
null
null
null
-- Let's play with agda. -- Am i having fun doing this? @KMx404 module intro where --load the file with C-c - like that data Bool: Set where true : Bool false : Bool data Empty: Set Empty Empty : Empty -- I'm gonna leave this here. Moving to tests
17.6
62
0.670455
38fef0777b93adc285a90c4fdba5fdc9b7305c74
7,977
agda
Agda
nicolai/thesis/Pointed.agda
nicolaikraus/HoTT-Agda
939a2d83e090fcc924f69f7dfa5b65b3b79fe633
[ "MIT" ]
1
2021-06-30T00:17:55.000Z
2021-06-30T00:17:55.000Z
nicolai/thesis/Pointed.agda
nicolaikraus/HoTT-Agda
939a2d83e090fcc924f69f7dfa5b65b3b79fe633
[ "MIT" ]
null
null
null
nicolai/thesis/Pointed.agda
nicolaikraus/HoTT-Agda
939a2d83e090fcc924f69f7dfa5b65b3b79fe633
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} {- This module serves to develop some basic theory about pointed types. After defining the usual notions of pointed types, pointed equivalences, and loop spaces, we derive a version of univalence for pointed equivalences and observe that univalence between identical types is a pointed equivalence. We define pointed versions of dependent sums and products using the usual notion of pointed families and observe that they commute in a certain sense with taking loop spaces. -} module Pointed where open import lib.Basics hiding (_⊔_) open import lib.NType2 open import lib.types.Nat hiding (_+_) open import lib.types.Pi open import lib.types.Sigma open import lib.types.TLevel open import Preliminaries open import UniverseOfNTypes {- This file contains 2.2.15: Fam• and 2.2.17: has-level-equiv-contr-loops (see end of file) -} {- Pointed types. A pointed type is a type (base) together with a chosen element (pt). The loop space construction Ω takes a pointed type and returns the type of all loops at the given basepoint. The trivial loop is taken as canonical element, thus forming a new pointed type. -} Type• : (i : ULevel) → Type (lsucc i) Type• i = Σ (Type i) (idf _) module _ {i} (X : Type• i) where base = fst X pt = snd X -- Definition 2.2.15 {- Pointed families. A pointed family over a pointed type is a family over the base together with a inhabitant of the family at the point. Note that pointed types are equivalent to pointed families over the pointed unit type (not shown here). -} Fam• : ∀ {i} (X : Type• i) (j : ULevel) → Type (i ⊔ lsucc j) Fam• X j = Σ (base X → Type j) (λ P → P (pt X)) -- Alternate definition: Σ (n -Type i) ⟦_⟧ _-Type•_ : (n : ℕ₋₂) (i : ULevel) → Type (lsucc i) n -Type• i = Σ (Type• i) (has-level n ∘ base) -- For alternate definition: Σ-≤ (n -Type-≤ i) raise _-Type•-≤_ : (n : ℕ₋₂) (i : ULevel) → S n -Type lsucc i n -Type•-≤ i = ((n -Type• i) , equiv-preserves-level Σ-comm-snd (snd (Σ-≤ (n -Type-≤ i) raise))) {- Pointed equivalences. An equivalence of pointed types is an equivalences of the bases that preserves the points -} _≃•_ : ∀ {i j} → Type• i → Type• j → Set (i ⊔ j) A ≃• B = Σ (base A ≃ base B) (λ f → –> f (pt A) == pt B) ide• : ∀ {i} (X : Type• i) → X ≃• X ide• _ = ide _ , idp _∘e•_ : ∀ {i j k} {X : Type• i} {Y : Type• j} {Z : Type• k} → Y ≃• Z → X ≃• Y → X ≃• Z (u , p) ∘e• (v , q) = (u ∘e v , ap (–> u) q ∙ p) _⁻¹• : ∀ {i j} {X : Type• i} {Y : Type• j} → X ≃• Y → Y ≃• X (u , p) ⁻¹• = u ⁻¹ , ap (<– u) (! p) ∙ <–-inv-l u _ -- Equational reasoning for pointed equivalences. infix 2 _≃•∎ infixr 2 _≃•⟨_⟩_ _≃•⟨_⟩_ : ∀ {i j k} (X : Type• i) {Y : Type• j} {Z : Type• k} → X ≃• Y → Y ≃• Z → X ≃• Z _ ≃•⟨ u ⟩ v = v ∘e• u _≃•∎ : ∀ {i} (X : Type• i) → X ≃• X _≃•∎ = ide• -- The loop space construction. Ω : ∀ {i} → Type• i → Type• i Ω (A , a) = ((a == a) , idp) Ω-≤ : ∀ {i} {n : ℕ₋₂} → (S n) -Type• i → n -Type• i Ω-≤ ((A , a) , t) = (Ω (A , a) , t a a) -- Loop spaces are preserved by pointed equivalences. equiv-Ω : ∀ {i j} {X : Type• i} {Y : Type• j} → X ≃• Y → Ω X ≃• Ω Y equiv-Ω (u , p) = split u p where split : ∀ u {a} {b} → –> u a == b → Ω (_ , a) ≃• Ω (_ , b) split u idp = (equiv-ap u _ _ , idp) equiv-Ω^ : ∀ {i j} {X : Type• i} {Y : Type• j} (n : ℕ) → X ≃• Y → (Ω ^ n) X ≃• (Ω ^ n) Y equiv-Ω^ 0 e = e equiv-Ω^ (S n) e = equiv-Ω^ n (equiv-Ω e) {- We call a pointed type n-truncated if its base is. Constructing the loop space decrements the truncation level. -} has-level• : ∀ {i} → ℕ₋₂ → Type• i → Type i has-level• n = has-level n ∘ base trunc-many : ∀ {i} {X : Type• i} {k : ℕ} (n : ℕ) → has-level• ((k + n) -2) X → has-level• (k -2) ((Ω ^ n) X) trunc-many 0 t = t trunc-many (S n) t = trunc-many n (t _ _) --Ω^-≤ : ∀ {i} {k : ℕ} (n : ℕ) → (k + n -2) -Type• i → (k -2) -Type• i --Ω^-≤ O X = X --Ω^-≤ (S n) X = Ω^-≤ n (Ω-≤ X) Ω^-≤ : ∀ {i} {k : ℕ} (n : ℕ) → ((k + n) -2) -Type• i → (k -2) -Type• i Ω^-≤ n (X , t) = ((Ω ^ n) X , trunc-many n t) Ω^-≤' : ∀ {i} {k : ℕ} (n : ℕ) → ((n + k) -2) -Type• i → (k -2) -Type• i Ω^-≤' n (X , t) = ((Ω ^ n) X , trunc-many n (transport (λ z → has-level• (z -2) X) (+-comm _ n) t)) {- Pointedness allows for a more direct notion of contractibility. Beware that is-contr• will be equivalent --- not definitionally equal --- to has-level∙ ⟨-2⟩. -} module _ {i} (X : Type• i) where is-contr• : Type i is-contr• = ∀ a → pt X == a {- Since pointed types are always inhabited, being contractible and propositional is equivalent. -} module _ {i} {X : Type• i} where contr•-equiv-contr : is-contr• X ≃ is-contr (base X) contr•-equiv-contr = prop-equiv' (λ c → Π-level (λ a → raise-level-<T (ltSR ltS) c _ _)) (cst is-contr-is-prop) (λ x → (pt X , x)) (λ y _ → prop-has-all-paths (contr-is-prop y) _ _) is-contr•-is-prop : is-prop (is-contr• X) is-contr•-is-prop = equiv-preserves-level (contr•-equiv-contr ⁻¹) is-contr-is-prop prop-equiv-contr : is-prop (base X) ≃ is-contr (base X) prop-equiv-contr = prop-equiv is-prop-is-prop is-contr-is-prop (inhab-prop-is-contr (pt X)) contr-is-prop contr•-equiv-prop : is-contr• X ≃ is-prop (base X) contr•-equiv-prop = prop-equiv-contr ⁻¹ ∘e contr•-equiv-contr -- Pointed equivalences preserve (pointed) contractibility. equiv-is-contr• : ∀ {i j} {X : Type• i} {Y : Type• j} → X ≃• Y → is-contr• X ≃ is-contr• Y equiv-is-contr• (u , p) = contr•-equiv-contr ⁻¹ ∘e equiv-level u ∘e contr•-equiv-contr -- Univalence for pointed equivalences. module _ {i} {A B : Type• i} where ua•-equiv : (A ≃• B) ≃ (A == B) ua•-equiv = A ≃• B ≃⟨ ide _ ⟩ Σ (base A ≃ base B) (λ f → –> f (pt A) == pt B) ≃⟨ equiv-Σ-fst _ (snd (ua-equiv ⁻¹)) ⁻¹ ⟩ Σ (base A == base B) (λ q → coe q (pt A) == pt B) ≃⟨ equiv-Σ-snd (λ q → coe-equiv (ap (λ f → coe f (pt A) == pt B) (! (ap-idf q)))) ⟩ Σ (base A == base B) (λ q → coe (ap (idf _) q) (pt A) == pt B) ≃⟨ equiv-Σ-snd (λ q → to-transp-equiv _ q ⁻¹) ⟩ Σ (base A == base B) (λ q → pt A == pt B [ idf _ ↓ q ]) ≃⟨ =Σ-eqv _ _ ⟩ A == B ≃∎ ua• : A ≃• B → A == B ua• = –> ua•-equiv coe•-equiv : A == B → A ≃• B coe•-equiv = <– ua•-equiv -- Normal univalence can be made pointed in the endo-setting. module _ {i} {A : Type i} where ua-equiv• : ((A ≃ A) , ide _) ≃• ((A == A) , idp) ua-equiv• = ((ua-equiv ⁻¹) , idp) ⁻¹• -- Lemma 2.2.17 {- The induction step for Lemma 7.2.9 in the HoTT Book is more complicated than necesarry. Associating iterated loop spaces in the reverse order, we can do it with the prerequisites 7.2.7 and 7.2.8 (of the book) as well as further auxiliary steps. -} has-level-equiv-contr-loops : ∀ {i} {n : ℕ} {A : Type i} → has-level (n -1) A ≃ ((a : A) → is-contr• ((Ω ^ n) (A , a))) has-level-equiv-contr-loops {n = O} {A} = is-prop A ≃⟨ prop-equiv-inhab-to-contr ⟩ (A → is-contr A) ≃⟨ equiv-Π-r (λ _ → contr•-equiv-contr ⁻¹) ⟩ ((a : A) → is-contr• (A , a)) ≃∎ has-level-equiv-contr-loops {n = S n} {A} = equiv-Π-r lem where lem = λ a → (((b : A) → has-level (n -1) (a == b))) ≃⟨ equiv-Π-r (λ _ → has-level-equiv-contr-loops) ⟩ (((b : A) (p : a == b) → is-contr• ((Ω ^ n) ((a == b) , p)))) ≃⟨ Π₁-contr (pathfrom-is-contr _) ∘e curry-equiv ⁻¹ ⟩ is-contr• ((Ω ^ n) ((a == a) , idp)) ≃∎
35.453333
80
0.519619
0d5e62ac1c9bb4e10d78b05430b8bac399a4750f
809
agda
Agda
agda-stdlib/src/Category/Functor/Predicate.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Category/Functor/Predicate.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Category/Functor/Predicate.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- Functors on indexed sets (predicates) ------------------------------------------------------------------------ -- Note that currently the functor laws are not included here. {-# OPTIONS --without-K --safe #-} module Category.Functor.Predicate where open import Function open import Level open import Relation.Unary open import Relation.Unary.PredicateTransformer using (PT) private variable i j ℓ₁ ℓ₂ : Level record RawPFunctor {I : Set i} {J : Set j} (F : PT I J ℓ₁ ℓ₂) : Set (i ⊔ j ⊔ suc ℓ₁ ⊔ suc ℓ₂) where infixl 4 _<$>_ _<$_ field _<$>_ : ∀ {P Q} → P ⊆ Q → F P ⊆ F Q _<$_ : ∀ {P Q} → (∀ {i} → P i) → F Q ⊆ F P x <$ y = const x <$> y
25.28125
72
0.482077
3f8f337ce9f29d37c14648c697750edf28095c97
2,922
agda
Agda
test/asset/agda-stdlib-1.0/Data/List/Relation/Unary/Any.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Data/List/Relation/Unary/Any.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Data/List/Relation/Unary/Any.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- The Agda standard library -- -- Lists where at least one element satisfies a given property ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.List.Relation.Unary.Any {a} {A : Set a} where open import Data.Empty open import Data.Fin open import Data.List.Base as List using (List; []; [_]; _∷_) open import Data.Product as Prod using (∃; _,_) open import Data.Sum as Sum using (_⊎_; inj₁; inj₂) open import Level using (_⊔_) open import Relation.Nullary using (¬_; yes; no) import Relation.Nullary.Decidable as Dec open import Relation.Nullary.Negation using (contradiction) open import Relation.Unary hiding (_∈_) ------------------------------------------------------------------------ -- Any P xs means that at least one element in xs satisfies P. data Any {p} (P : A → Set p) : List A → Set (a ⊔ p) where here : ∀ {x xs} (px : P x) → Any P (x ∷ xs) there : ∀ {x xs} (pxs : Any P xs) → Any P (x ∷ xs) ------------------------------------------------------------------------ -- Operations on Any module _ {p} {P : A → Set p} {x xs} where head : ¬ Any P xs → Any P (x ∷ xs) → P x head ¬pxs (here px) = px head ¬pxs (there pxs) = contradiction pxs ¬pxs tail : ¬ P x → Any P (x ∷ xs) → Any P xs tail ¬px (here px) = ⊥-elim (¬px px) tail ¬px (there pxs) = pxs map : ∀ {p q} {P : A → Set p} {Q : A → Set q} → P ⊆ Q → Any P ⊆ Any Q map g (here px) = here (g px) map g (there pxs) = there (map g pxs) module _ {p} {P : A → Set p} where -- `index x∈xs` is the list position (zero-based) which `x∈xs` points to. index : ∀ {xs} → Any P xs → Fin (List.length xs) index (here px) = zero index (there pxs) = suc (index pxs) lookup : ∀ {xs} → Any P xs → A lookup {xs} p = List.lookup xs (index p) _∷=_ : ∀ {xs} → Any P xs → A → List A _∷=_ {xs} x∈xs v = xs List.[ index x∈xs ]∷= v infixl 4 _─_ _─_ : ∀ xs → Any P xs → List A xs ─ x∈xs = xs List.─ index x∈xs -- If any element satisfies P, then P is satisfied. satisfied : ∀ {p} {P : A → Set p} {xs} → Any P xs → ∃ P satisfied (here px) = _ , px satisfied (there pxs) = satisfied pxs module _ {p} {P : A → Set p} {x xs} where toSum : Any P (x ∷ xs) → P x ⊎ Any P xs toSum (here px) = inj₁ px toSum (there pxs) = inj₂ pxs fromSum : P x ⊎ Any P xs → Any P (x ∷ xs) fromSum (inj₁ px) = here px fromSum (inj₂ pxs) = there pxs ------------------------------------------------------------------------ -- Properties of predicates preserved by Any module _ {p} {P : A → Set p} where any : Decidable P → Decidable (Any P) any P? [] = no λ() any P? (x ∷ xs) with P? x ... | yes px = yes (here px) ... | no ¬px = Dec.map′ there (tail ¬px) (any P? xs) satisfiable : Satisfiable P → Satisfiable (Any P) satisfiable (x , Px) = [ x ] , here Px
32.10989
75
0.517796
fd01c8ac1b18aaa6b7c8902a982753e94e1a8a1a
2,981
agda
Agda
src/Categories/Category/Restriction/Properties.agda
yourboynico/agda-categories
6a087c592dbe58fc4bd9d02e1be9b94a9e138aca
[ "MIT" ]
279
2019-06-01T14:36:40.000Z
2022-03-22T00:40:14.000Z
src/Categories/Category/Restriction/Properties.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
236
2019-06-01T14:53:54.000Z
2022-03-28T14:31:43.000Z
src/Categories/Category/Restriction/Properties.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
64
2019-06-02T16:58:15.000Z
2022-03-14T02:00:59.000Z
{-# OPTIONS --without-K --safe #-} -- Some properties of Restriction Categories -- The first few lemmas are from Cocket & Lack, Lemma 2.1 and 2.2 module Categories.Category.Restriction.Properties where open import Data.Product using (Σ; _,_) open import Level using (Level; _⊔_) open import Categories.Category.Core using (Category) open import Categories.Category.Restriction using (Restriction) open import Categories.Category.SubCategory open import Categories.Morphism using (Mono) open import Categories.Morphism.Idempotent using (Idempotent) open import Categories.Morphism.Properties using (Mono-id) import Categories.Morphism.Reasoning as MR module _ {o ℓ e : Level} {𝒞 : Category o ℓ e} (R : Restriction 𝒞) where open Category 𝒞 open Restriction R open HomReasoning open MR 𝒞 using (elimˡ; introʳ) private variable A B C : Obj f : A ⇒ B g : B ⇒ C ↓f-idempotent : (A ⇒ B) → Idempotent 𝒞 A ↓f-idempotent f = record { idem = f ↓ ; idempotent = ⟺ ↓-denestʳ ○ ↓-cong pidʳ } -- a special version of ↓ being a partial left identity ↓-pidˡ-gf : f ↓ ∘ (g ∘ f) ↓ ≈ (g ∘ f) ↓ ↓-pidˡ-gf {f = f} {g = g} = begin f ↓ ∘ (g ∘ f) ↓ ≈⟨ ↓-comm ⟩ (g ∘ f) ↓ ∘ f ↓ ≈˘⟨ ↓-denestʳ ⟩ ((g ∘ f) ∘ f ↓) ↓ ≈⟨ ↓-cong assoc ⟩ (g ∘ (f ∘ f ↓)) ↓ ≈⟨ ↓-cong (∘-resp-≈ʳ pidʳ) ⟩ (g ∘ f) ↓ ∎ -- left denesting looks different in its conclusion ↓-denestˡ : (g ↓ ∘ f) ↓ ≈ (g ∘ f) ↓ ↓-denestˡ {g = g} {f = f} = begin (g ↓ ∘ f) ↓ ≈⟨ ↓-cong ↓-skew-comm ⟩ (f ∘ (g ∘ f) ↓) ↓ ≈⟨ ↓-denestʳ ⟩ f ↓ ∘ (g ∘ f) ↓ ≈⟨ ↓-pidˡ-gf ⟩ (g ∘ f) ↓ ∎ ↓-idempotent : f ↓ ↓ ≈ f ↓ ↓-idempotent {f = f} = begin f ↓ ↓ ≈˘⟨ ↓-cong identityʳ ⟩ (f ↓ ∘ id) ↓ ≈⟨ ↓-denestˡ ⟩ (f ∘ id) ↓ ≈⟨ ↓-cong identityʳ ⟩ f ↓ ∎ ↓↓denest : (g ↓ ∘ f ↓) ↓ ≈ g ↓ ∘ f ↓ ↓↓denest {g = g} {f = f} = begin (g ↓ ∘ f ↓) ↓ ≈⟨ ↓-denestʳ ⟩ g ↓ ↓ ∘ f ↓ ≈⟨ (↓-idempotent ⟩∘⟨refl) ⟩ g ↓ ∘ f ↓ ∎ Mono⇒f↓≈id : Mono 𝒞 f → f ↓ ≈ id Mono⇒f↓≈id {f = f} mono = mono (f ↓) id (pidʳ ○ ⟺ identityʳ) -- if the domain of g is at least that of f, then the restriction coincides ↓⊃⇒≈ : f ∘ g ↓ ≈ f → f ↓ ≈ f ↓ ∘ g ↓ ↓⊃⇒≈ {f = f} {g = g} fg↓≈f = ⟺ (↓-cong fg↓≈f) ○ ↓-denestʳ Mono⇒Total : Mono 𝒞 f → total f Mono⇒Total = Mono⇒f↓≈id ∘-pres-total : {A B C : Obj} {f : B ⇒ C} {g : A ⇒ B} → total f → total g → total (f ∘ g) ∘-pres-total {f = f} {g = g} tf tg = begin (f ∘ g) ↓ ≈˘⟨ ↓-denestˡ ⟩ (f ↓ ∘ g) ↓ ≈⟨ ↓-cong (elimˡ tf) ⟩ g ↓ ≈⟨ tg ⟩ id ∎ total-gf⇒total-f : total (g ∘ f) → total f total-gf⇒total-f {g = g} {f = f} tgf = begin f ↓ ≈⟨ introʳ tgf ⟩ f ↓ ∘ (g ∘ f) ↓ ≈⟨ ↓-pidˡ-gf ⟩ (g ∘ f) ↓ ≈⟨ tgf ⟩ id ∎ total-SubCat : SubCat 𝒞 Obj total-SubCat = record { U = λ x → x ; R = total ; Rid = Mono⇒Total (Mono-id 𝒞) ; _∘R_ = ∘-pres-total } Total : Category o (ℓ ⊔ e) e Total = SubCategory 𝒞 total-SubCat
30.418367
90
0.515599
1b3c544c607aa13455a68b8824cab1f92abdb252
21,417
agda
Agda
src/to-string.agda
mb64/cedille
d0f69cc6fbfb69d7ef83a436b623d612328eb016
[ "MIT" ]
328
2018-09-14T20:06:09.000Z
2022-03-26T10:33:07.000Z
src/to-string.agda
mb64/cedille
d0f69cc6fbfb69d7ef83a436b623d612328eb016
[ "MIT" ]
123
2018-09-17T10:53:20.000Z
2022-01-12T03:51:28.000Z
src/to-string.agda
mb64/cedille
d0f69cc6fbfb69d7ef83a436b623d612328eb016
[ "MIT" ]
34
2018-09-17T11:51:36.000Z
2022-02-20T18:33:16.000Z
import cedille-options module to-string (options : cedille-options.options) where open import cedille-types open import constants open import syntax-util open import ctxt open import rename open import general-util open import datatype-util open import type-util open import free-vars open import json data expr-side : Set where left : expr-side right : expr-side neither : expr-side is-left : expr-side → 𝔹 is-left left = tt is-left _ = ff is-right : expr-side → 𝔹 is-right right = tt is-right _ = ff exprd-eq : exprd → exprd → 𝔹 exprd-eq TERM TERM = tt exprd-eq TYPE TYPE = tt exprd-eq KIND KIND = tt exprd-eq _ _ = ff is-eq-op : {ed : exprd} → ⟦ ed ⟧ → 𝔹 is-eq-op{TERM} (VarSigma _) = tt is-eq-op{TERM} (Rho _ _ _ _) = tt is-eq-op{TERM} (Phi _ _ _) = tt is-eq-op{TERM} (Delta _ _ _) = tt is-eq-op _ = ff pattern arrow-var = "_arrow_" pattern TpArrow tp me tp' = TpAbs me arrow-var (Tkt tp) tp' pattern KdArrow tk kd = KdAbs arrow-var tk kd is-arrow : {ed : exprd} → ⟦ ed ⟧ → 𝔹 is-arrow {TYPE} (TpArrow _ _ _) = tt is-arrow {KIND} (KdArrow _ _) = tt is-arrow _ = ff is-type-level-app : ∀ {ed} → ⟦ ed ⟧ → 𝔹 is-type-level-app {TYPE} (TpApp T tT) = tt is-type-level-app _ = ff {- need-parens e1 e2 s returns tt iff we need parens when e1 occurs as the given side s of parent expression e2. -} need-parens : {ed : exprd} → {ed' : exprd} → ⟦ ed ⟧ → ⟦ ed' ⟧ → expr-side → 𝔹 need-parens {TYPE} {TYPE} (TpAbs _ _ _ _) (TpArrow _ _ _) left = tt need-parens {TYPE} {TYPE} (TpIota _ _ _) (TpArrow _ _ _) left = tt need-parens {KIND} {KIND} (KdAbs _ _ _) (KdArrow _ _) left = tt need-parens {TYPE} {KIND} (TpAbs _ _ _ _) (KdArrow _ _) left = tt need-parens {TYPE} {KIND} (TpIota _ _ _) (KdArrow _ _) left = tt need-parens {TERM} {_} (Var x) p lr = ff need-parens {TERM} {_} (Hole pi) p lr = ff need-parens {TERM} {_} (IotaPair t₁ t₂ x Tₓ) p lr = ff need-parens {TERM} {_} (IotaProj t n) p lr = ff need-parens {TYPE} {_} (TpVar x) p lr = ff need-parens {TYPE} {_} (TpEq t₁ t₂) p lr = ff need-parens {TYPE} {_} (TpHole pi) p lr = ff need-parens {KIND} {_} (KdHole pi) p lr = ff need-parens {KIND} {_} KdStar p lr = ff need-parens {_} {TERM} _ (IotaPair t₁ t₂ x Tₓ) lr = ff need-parens {_} {TYPE} _ (TpEq t₁ t₂) lr = ff need-parens {_} {TERM} _ (Beta ot ot') lr = ff need-parens {_} {TERM} _ (Phi tₑ t₁ t₂) lr = is-left lr need-parens {_} {TERM} _ (Rho _ _ _ _) right = ff need-parens {_} {TERM} _ (Delta _ _ _) right = ff need-parens {_} {TERM} _ (LetTm _ _ _ _ _) lr = ff need-parens {_} {TERM} _ (LetTp _ _ _ _) lr = ff need-parens {_} {TERM} _ (Lam _ _ _ _) lr = ff need-parens {_} {TERM} _ (Mu _ _ _ _ _) right = ff need-parens {_} {TYPE} _ (TpLam _ _ _) lr = ff need-parens {_} {TYPE} _ (TpAbs _ _ _ _) lr = ff need-parens {_} {KIND} _ (KdAbs _ _ _) neither = ff need-parens {_} {TYPE} _ (TpIota _ _ _) lr = ff need-parens {TERM} {_} (App t t') p lr = tt need-parens {TERM} {_} (AppE t tT) p lr = tt need-parens {TERM} {_} (Beta ot ot') p lr = ff need-parens {TERM} {_} (Delta _ T t) p lr = tt need-parens {TERM} {_} (Lam me x tk? t) p lr = tt need-parens {TERM} {_} (LetTm me x T t t') p lr = tt need-parens {TERM} {_} (LetTp x T t t') p lr = tt need-parens {TERM} {_} (Phi tₑ t₁ t₂) p lr = tt need-parens {TERM} {_} (Rho tₑ x Tₓ t) p lr = tt need-parens {TERM} {_} (VarSigma t) p lr = ~ is-eq-op p need-parens {TERM} {_} (Mu _ _ _ _ _) p lr = tt need-parens {TERM} {_} (Sigma _ _ _ _ _) p lr = tt need-parens {TYPE} {e} (TpAbs me x tk T) p lr = ~ exprd-eq e TYPE || ~ is-arrow p || is-left lr need-parens {TYPE} {_} (TpIota x T₁ T₂) p lr = tt need-parens {TYPE} {_} (TpApp T tT) p lr = ~ is-arrow p && (~ is-type-level-app p || is-right lr) need-parens {TYPE} {_} (TpLam x tk T) p lr = tt need-parens {KIND} {_} (KdAbs x tk k) p lr = ~ is-arrow p || is-left lr pattern ced-ops-drop-spine = cedille-options.options.mk-options _ _ _ _ ff _ _ _ ff _ _ _ pattern ced-ops-conv-arr = cedille-options.options.mk-options _ _ _ _ _ _ _ _ ff _ _ _ pattern ced-ops-conv-abs = cedille-options.options.mk-options _ _ _ _ _ _ _ _ tt _ _ _ drop-spine : cedille-options.options → {ed : exprd} → ctxt → ⟦ ed ⟧ → ⟦ ed ⟧ drop-spine ops @ ced-ops-drop-spine = h where drop-mod-argse : (mod : args) → (actual : args) → args drop-mod-argse (ArgE _ :: asₘ) (ArgE _ :: asₐ) = drop-mod-argse asₘ asₐ drop-mod-argse (Arg _ :: asₘ) (Arg t :: asₐ) = drop-mod-argse asₘ asₐ drop-mod-argse (_ :: asₘ) asₐ@(Arg t :: _) = drop-mod-argse asₘ asₐ -- ^ Relevant term arg, so wait until we find its corresponding relevant module arg ^ drop-mod-argse _ asₐ = asₐ drop-mod-args-term : ctxt → var × args → term drop-mod-args-term Γ (v , as) = let uqv = unqual-all (ctxt.qual Γ) v in flip recompose-apps (Var uqv) $ maybe-else' (ifMaybe (~ v =string uqv) $ ctxt-get-qi Γ uqv) as λ qi → drop-mod-argse (snd qi) as drop-mod-args-type : ctxt → var × 𝕃 tmtp → type drop-mod-args-type Γ (v , as) = let uqv = unqual-all (ctxt.qual Γ) v in flip recompose-tpapps (TpVar uqv) $ maybe-else' (ifMaybe (~ v =string uqv) $ ctxt-qualif-args-length Γ Erased uqv) as λ n → drop n as h : {ed : exprd} → ctxt → ⟦ ed ⟧ → ⟦ ed ⟧ h {TERM} Γ t = maybe-else' (decompose-var-headed t) t (drop-mod-args-term Γ) h {TYPE} Γ T = maybe-else' (decompose-tpvar-headed T) T (drop-mod-args-type Γ) h Γ x = x drop-spine ops Γ x = x to-string-rewrite : {ed : exprd} → ctxt → cedille-options.options → ⟦ ed ⟧ → Σi exprd ⟦_⟧ to-string-rewrite{TYPE} Γ ced-ops-conv-arr (TpAbs me x (Tkt T) T') = , TpAbs me (if is-free-in x T' then x else arrow-var) (Tkt T) T' to-string-rewrite{KIND} Γ ced-ops-conv-arr (KdAbs x tk k) = , KdAbs (if is-free-in x k then x else arrow-var) tk k to-string-rewrite{TERM} Γ ops (VarSigma t) with to-string-rewrite Γ ops t ...| ,_ {TERM} (VarSigma t') = , t' ...| t? = , VarSigma t to-string-rewrite Γ ops x = , drop-spine ops Γ x ------------------------------- open import pretty use-newlines : 𝔹 use-newlines = ~ iszero (cedille-options.options.pretty-print-columns options) && cedille-options.options.pretty-print options doc-to-rope : DOC → rope doc-to-rope = if use-newlines then pretty (cedille-options.options.pretty-print-columns options) else flatten-out strM : Set strM = {ed : exprd} → DOC → ℕ → 𝕃 tag → ctxt → maybe ⟦ ed ⟧ → expr-side → DOC × ℕ × 𝕃 tag strEmpty : strM strEmpty s n ts Γ pe lr = s , n , ts to-stringh : {ed : exprd} → ⟦ ed ⟧ → strM strM-Γ : (ctxt → strM) → strM strM-Γ f s n ts Γ = f Γ s n ts Γ infixr 2 _>>str_ _>>str_ : strM → strM → strM (m >>str m') s n ts Γ pe lr with m s n ts Γ pe lr (m >>str m') s n ts Γ pe lr | s' , n' , ts' = m' s' n' ts' Γ pe lr strAdd : string → strM strAdd s s' n ts Γ pe lr = s' <> TEXT [[ s ]] , n + string-length s , ts strLine : strM strLine s n ts Γ pe lr = s <> LINE , suc n , ts strNest : ℕ → strM → strM strNest i m s n ts Γ pe lr with m nil n ts Γ pe lr ...| s' , n' , ts' = s <> nest i s' , n' , ts' strFold' : (ℕ → ℕ) → {ed : exprd} → 𝕃 (ℕ × strM) → ℕ → 𝕃 tag → ctxt → maybe ⟦ ed ⟧ → expr-side → 𝕃 (ℕ × DOC) × ℕ × 𝕃 tag strFold' l [] n ts Γ pe lr = [] , n , ts strFold' l ((i , x) :: []) n ts Γ pe lr with x nil n ts Γ pe lr ...| sₓ , nₓ , tsₓ = [ i , sₓ ] , nₓ , tsₓ strFold' l ((i , x) :: xs) n ts Γ pe lr with x nil n ts Γ pe lr ...| sₓ , nₓ , tsₓ with strFold' l xs (l nₓ) tsₓ Γ pe lr ...| sₓₛ , nₓₛ , tsₓₛ = (i , sₓ) :: sₓₛ , nₓₛ , tsₓₛ strFold : (ℕ → ℕ) → (𝕃 (ℕ × DOC) → DOC) → 𝕃 (ℕ × strM) → strM strFold l f ms s n ts Γ pe lr with strFold' l ms n ts Γ pe lr ...| s' , n' , ts' = s <> f s' , n' , ts' strFoldi : ℕ → (ℕ → ℕ) → (𝕃 DOC → DOC) → 𝕃 strM → strM strFoldi i l f = strNest i ∘' strFold suc (f ∘' map snd) ∘' map (_,_ 0) -- Either fit all args on one line, or give each their own line strList : ℕ → 𝕃 strM → strM strList i = strFoldi i suc λ ms → flatten (spread ms) :<|> stack ms -- Fit as many args on each line as possible -- (n = number of strM args) -- (𝕃 strM so that optional args (nil) are possible) strBreak : (n : ℕ) → fold n strM λ X → ℕ → 𝕃 strM → X strBreak = h [] where h : 𝕃 (ℕ × strM) → (n : ℕ) → fold n strM λ X → ℕ → 𝕃 strM → X h ms (suc n) i m = h (map (_,_ i) m ++ ms) n h ms zero = strFold suc filln $ reverse ms strBracket : char → strM → char → strM strBracket l m r s n ts Γ pe lr with m nil (suc (suc n)) ts Γ pe lr ...| s' , n' , ts' = s <> bracket (char-to-string l) s' (char-to-string r) , suc (suc n') , ts' strΓ' : defScope → var → strM → strM strΓ' ds v m s n ts Γ = let gl = ds iff globalScope v' = if gl then (ctxt.mn Γ # v) else v in m s n ts (record Γ { qual = qualif-insert-params (ctxt.qual Γ) v' (unqual-local v) (if gl then ctxt.ps Γ else []); i = trie-insert (ctxt.i Γ) v' (var-decl , missing-location) }) strΓ : var → strM → strM strΓ x m s n ts Γ = m s n ts (ctxt-var-decl x Γ) ctxt-get-file-id : ctxt → (filename : string) → ℕ ctxt-get-file-id = trie-lookup-else 0 ∘ ctxt.id-map make-loc-tag : ctxt → (filename start-to end-to : string) → (start-from end-from : ℕ) → tag make-loc-tag Γ fn s e = make-tag "loc" (("fn" , json-nat (ctxt-get-file-id Γ fn)) :: ("s" , json-raw [[ s ]]) :: ("e" , json-raw [[ e ]]) :: []) var-loc-tag : ctxt → location → var → 𝕃 (string × 𝕃 tag) var-loc-tag Γ ("missing" , "missing") x = [] var-loc-tag Γ ("" , _) x = [] var-loc-tag Γ (_ , "") x = [] var-loc-tag Γ (fn , pi) x = let fn-tag = "fn" , json-nat (ctxt-get-file-id Γ fn) s-tag = "s" , json-raw [[ pi ]] e-tag = "e" , json-raw [[ posinfo-plus-str pi x ]] in [ "loc" , fn-tag :: s-tag :: e-tag :: [] ] var-tags : ctxt → var → var → 𝕃 (string × 𝕃 tag) var-tags Γ qv uqv = (if qv =string qualif-var Γ uqv then id else ("shadowed" , []) ::_) (var-loc-tag Γ (ctxt-var-location Γ qv) uqv) strAddTags : string → 𝕃 (string × 𝕃 tag) → strM strAddTags sₙ tsₙ sₒ n tsₒ Γ pe lr = let n' = n + string-length sₙ in sₒ <> TEXT [[ sₙ ]] , n' , map (uncurry λ k vs → make-tag k vs n n') tsₙ ++ tsₒ strVar : var → strM strVar v = strM-Γ λ Γ → let uqv = unqual-local v -- $ unqual-all (ctxt-get-qualif Γ) v uqv' = if cedille-options.options.show-qualified-vars options then v else uqv in strAddTags uqv' (var-tags Γ (qualif-var Γ v) uqv) strKvar : var → strM strKvar v = strM-Γ λ Γ → strVar (unqual-all (ctxt.qual Γ) v) -- Only necessary to unqual-local because of module parameters strBvar : var → (class body : strM) → strM strBvar v cm bm = strAdd (unqual-local v) >>str cm >>str strΓ' localScope v bm strMetaVar : var → span-location → strM strMetaVar x (fn , pi , pi') s n ts Γ pe lr = let n' = n + string-length x in s <> TEXT [[ x ]] , n' , make-loc-tag Γ fn pi pi' n n' :: ts {-# TERMINATING #-} term-to-stringh : term → strM type-to-stringh : type → strM kind-to-stringh : kind → strM ctr-to-string : ctr → strM case-to-string : case → strM cases-to-string : cases → strM caseArgs-to-string : case-args → strM → strM params-to-string : params → strM params-to-string' : strM → params → strM params-to-string'' : params → strM → strM optTerm-to-string : maybe term → char → char → 𝕃 strM optClass-to-string : maybe tpkd → strM optType-to-string : maybe char → maybe type → 𝕃 strM arg-to-string : arg → strM args-to-string : args → strM binder-to-string : erased? → string lam-to-string : erased? → string arrowtype-to-string : erased? → string vars-to-string : 𝕃 var → strM bracketL : erased? → string bracketR : erased? → string braceL : erased? → string braceR : erased? → string opacity-to-string : opacity → string hole-to-string : posinfo → strM to-string-ed : {ed : exprd} → ⟦ ed ⟧ → strM to-string-ed{TERM} = term-to-stringh to-string-ed{TYPE} = type-to-stringh to-string-ed{KIND} = kind-to-stringh to-stringh' : {ed : exprd} → expr-side → ⟦ ed ⟧ → strM to-stringh' {ed} lr t {ed'} s n ts Γ mp lr' = elim-Σi (to-string-rewrite Γ options t) λ t' → parens-if (maybe𝔹 mp (λ pe → need-parens t' pe lr)) (to-string-ed t') s n ts Γ (just t') lr where parens-if : 𝔹 → strM → strM parens-if p s = if p then (strAdd "(" >>str strNest 1 s >>str strAdd ")") else s to-stringl : {ed : exprd} → ⟦ ed ⟧ → strM to-stringr : {ed : exprd} → ⟦ ed ⟧ → strM to-stringl = to-stringh' left to-stringr = to-stringh' right to-stringh = to-stringh' neither set-parent : ∀ {ed} → ⟦ ed ⟧ → strM → strM set-parent t m s n ts Γ _ lr = m s n ts Γ (just t) lr apps-to-string : ∀ {ll : 𝔹} → (if ll then term else type) → strM apps-to-string {tt} t with decompose-apps t ...| tₕ , as = set-parent t $ strList 2 (to-stringl tₕ :: map arg-to-string as) apps-to-string {ff} T with decompose-tpapps T ...| Tₕ , as = set-parent T $ strList 2 (to-stringl Tₕ :: map arg-to-string (tmtps-to-args ff as)) lams-to-string : term → strM lams-to-string t = elim-pair (decompose-lams-pretty t) λ xs b → set-parent t $ strFold suc filln $ foldr {B = 𝕃 (ℕ × strM)} (λ {(x , me , oc) r → (1 , (strAdd (lam-to-string me) >>str strAdd " " >>str strBvar x (strNest 4 (optClass-to-string oc)) (strAdd " ."))) :: map (map-snd $ strΓ' localScope x) r}) [ 2 , to-stringr b ] xs where decompose-lams-pretty : term → 𝕃 (var × erased? × maybe tpkd) × term decompose-lams-pretty = h [] where h : 𝕃 (var × erased? × maybe tpkd) → term → 𝕃 (var × erased? × maybe tpkd) × term h acc (Lam me x oc t) = h ((x , me , oc) :: acc) t h acc t = reverse acc , t term-to-stringh (App t t') = apps-to-string (App t t') term-to-stringh (AppE t tT) = apps-to-string (AppE t tT) term-to-stringh (Beta t t') = strBreak 3 0 [ strAdd "β" ] 2 [ strAdd "<" >>str to-stringh (erase t ) >>str strAdd ">" ] 2 [ strAdd "{|" >>str to-stringh (erase t') >>str strAdd "|}" ] term-to-stringh (Delta _ T t) = strBreak 3 0 [ strAdd "δ" ] 2 [ to-stringl T >>str strAdd " -" ] 1 [ to-stringr t ] term-to-stringh (Hole pi) = hole-to-string pi term-to-stringh (IotaPair t₁ t₂ x Tₓ) = strBreak 3 1 [ strAdd "[ " >>str to-stringh t₁ >>str strAdd "," ] 1 [ to-stringh t₂ ] 1 [ strAdd "@ " >>str strBvar x (strAdd " . ") (strNest (5 + string-length x) (to-stringh Tₓ)) >>str strAdd " ]" ] term-to-stringh (IotaProj t n) = to-stringh t >>str strAdd (if n iff ι1 then ".1" else ".2") term-to-stringh (Lam me x oc t) = lams-to-string (Lam me x oc t) term-to-stringh (LetTm me x T t t') = strBreak 4 1 [ strAdd (bracketL me) >>str strAdd (unqual-local x) ] 5 ( optType-to-string (just ':') T ) 3 [ strAdd "= " >>str to-stringh t >>str strAdd (bracketR me) ] 1 [ strΓ' localScope x (to-stringr t') ] term-to-stringh (LetTp x k T t) = strBreak 4 1 [ strAdd (bracketL NotErased) >>str strAdd (unqual-local x) ] 5 [ strAdd ": " >>str to-stringh k ] 3 [ strAdd "= " >>str to-stringh T >>str strAdd (bracketR NotErased) ] 1 [ strΓ' localScope x (to-stringr t) ] term-to-stringh (Phi tₑ t₁ t₂) = strBreak 3 0 [ strAdd "φ " >>str to-stringl tₑ >>str strAdd " -" ] 2 [ to-stringh t₁ ] 2 [ strAdd "{| " >>str to-stringr (erase t₂) >>str strAdd " |}" ] term-to-stringh (Rho tₑ x Tₓ t) = strBreak 3 0 [ strAdd "ρ " >>str to-stringl tₑ ] 1 [ strAdd "@ " >>str strBvar x (strAdd " . ") (to-stringh (erase Tₓ)) ] 1 [ strAdd "- " >>str strNest 2 (to-stringr t) ] term-to-stringh (VarSigma t) = strAdd "ς " >>str to-stringh t term-to-stringh (Var x) = strVar x term-to-stringh (Mu x t ot t~ cs) = strAdd "μ " >>str strBvar x (strAdd " . " >>str strBreak 2 2 [ to-stringl t ] 3 ( optType-to-string (just '@') ot )) (strAdd " " >>str strBracket '{' (cases-to-string cs) '}') term-to-stringh (Sigma ot t oT t~ cs) = strAdd "σ " >>str strBreak 3 2 (maybe-else' {B = 𝕃 strM} ot [] λ t → [ strAdd "<" >>str to-stringh t >>str strAdd ">" ]) 2 [ to-stringl t ] 3 ( optType-to-string (just '@') oT ) >>str strAdd " " >>str strBracket '{' (cases-to-string cs) '}' type-to-stringh (TpArrow T a T') = strBreak 2 2 [ to-stringl T >>str strAdd (arrowtype-to-string a) ] 2 [ to-stringr T' ] type-to-stringh (TpAbs me x tk T) = strBreak 2 3 [ strAdd (binder-to-string me ^ " ") >>str strBvar x (strAdd " : " >>str to-stringl -tk' tk >>str strAdd " .") strEmpty ] 1 [ strΓ' localScope x (to-stringh T) ] type-to-stringh (TpIota x T₁ T₂) = strBreak 2 2 [ strAdd "ι " >>str strBvar x (strAdd " : " >>str to-stringh T₁ >>str strAdd " .") strEmpty ] 2 [ strΓ' localScope x (to-stringh T₂) ] type-to-stringh (TpApp T tT) = apps-to-string (TpApp T tT) type-to-stringh (TpEq t₁ t₂) = strBreak 2 2 [ strAdd "{ " >>str to-stringh (erase t₁) ] 2 [ strAdd "≃ " >>str to-stringh (erase t₂) >>str strAdd " }" ] type-to-stringh (TpHole pi) = hole-to-string pi type-to-stringh (TpLam x tk T) = strBreak 2 3 [ strAdd "λ " >>str strBvar x (strAdd " : " >>str to-stringh -tk' tk >>str strAdd " .") strEmpty ] 1 [ strΓ' localScope x (to-stringr T) ] type-to-stringh (TpVar x) = strVar x kind-to-stringh (KdArrow k k') = strBreak 2 2 [ to-stringl -tk' k >>str strAdd " ➔" ] 2 [ to-stringr k' ] kind-to-stringh (KdAbs x tk k) = strBreak 2 4 [ strAdd "Π " >>str strBvar x (strAdd " : " >>str to-stringl -tk' tk >>str strAdd " .") strEmpty ] 1 [ strΓ' localScope x (to-stringh k) ] kind-to-stringh (KdHole pi) = hole-to-string pi kind-to-stringh KdStar = strAdd "★" hole-to-string pi = strM-Γ λ Γ → strAddTags "●" (var-loc-tag Γ (split-var pi) "●") optTerm-to-string nothing c1 c2 = [] optTerm-to-string (just t) c1 c2 = [ strAdd (𝕃char-to-string (c1 :: [ ' ' ])) >>str to-stringh t >>str strAdd (𝕃char-to-string (' ' :: [ c2 ])) ] optClass-to-string nothing = strEmpty optClass-to-string (just atk) = strAdd " : " >>str to-stringh -tk' atk optType-to-string pfx nothing = [] optType-to-string pfx (just T) = [ maybe-else strEmpty (λ pfx → strAdd (𝕃char-to-string (pfx :: [ ' ' ]))) pfx >>str to-stringh T ] arg-to-string (Arg t) = to-stringr t arg-to-string (ArgE (Ttm t)) = strAdd "-" >>str strNest 1 (to-stringr t) arg-to-string (ArgE (Ttp T)) = strAdd "·" >>str strNest 2 (to-stringr T) args-to-string = set-parent (App (Hole pi-gen) (Hole pi-gen)) ∘ foldr' strEmpty λ t x → strAdd " " >>str arg-to-string t >>str x binder-to-string tt = "∀" binder-to-string ff = "Π" lam-to-string tt = "Λ" lam-to-string ff = "λ" arrowtype-to-string ff = " ➔" arrowtype-to-string tt = " ➾" opacity-to-string opacity-open = "" opacity-to-string opacity-closed = "opaque " vars-to-string [] = strEmpty vars-to-string (v :: []) = strVar v vars-to-string (v :: vs) = strVar v >>str strAdd " " >>str vars-to-string vs ctr-to-string (Ctr x T) = strAdd x >>str strAdd " : " >>str to-stringh T case-to-string (Case x as t _) = strM-Γ λ Γ → let as-f = λ x as → strVar x >>str caseArgs-to-string as (strAdd " ➔ " >>str to-stringr t) in case (env-lookup Γ x , options) of uncurry λ where (just (ctr-def mps T _ _ _ , _ , _)) ced-ops-drop-spine → as-f (unqual-all (ctxt.qual Γ) x) as _ _ → as-f x as cases-to-string = h use-newlines where h : 𝔹 → cases → strM h _ [] = strEmpty h tt (m :: []) = strAdd "| " >>str case-to-string m h tt (m :: ms) = strAdd "| " >>str case-to-string m >>str strLine >>str h tt ms h ff (m :: []) = case-to-string m h ff (m :: ms) = case-to-string m >>str strAdd " | " >>str h ff ms caseArgs-to-string [] m = m caseArgs-to-string (CaseArg _ x (just (Tkk _)) :: as) m = strAdd " ·" >>str strBvar x strEmpty (caseArgs-to-string as m) caseArgs-to-string (CaseArg ff x _ :: as) m = strAdd " " >>str strBvar x strEmpty (caseArgs-to-string as m) caseArgs-to-string (CaseArg tt x _ :: as) m = strAdd " -" >>str strBvar x strEmpty (caseArgs-to-string as m) braceL me = if me then "{" else "(" braceR me = if me then "}" else ")" bracketL me = if me then "{ " else "[ " bracketR me = if me then " } -" else " ] -" param-to-string : param → (strM → strM) × strM param-to-string (Param me v atk) = strΓ' localScope v , (strAdd (braceL me) >>str strAdd (unqual-local v) >>str strAdd " : " >>str to-stringh -tk' atk >>str strAdd (braceR me)) params-to-string'' ps f = elim-pair (foldr (λ p → uncurry λ g ms → elim-pair (param-to-string p) λ h m → g ∘ h , m :: map h ms) (id , []) ps) λ g ms → strList 2 (strEmpty :: ms) >>str g f params-to-string' f [] = f params-to-string' f (p :: []) = elim-pair (param-to-string p) λ g m → m >>str g f params-to-string' f (p :: ps) = elim-pair (param-to-string p) λ g m → m >>str strAdd " " >>str params-to-string' (g f) ps params-to-string = params-to-string' strEmpty strRun : ctxt → strM → rope strRun Γ m = doc-to-rope $ fst $ m {TERM} NIL 0 [] Γ nothing neither strRunTag : (name : string) → ctxt → strM → tagged-val strRunTag name Γ m with m {TERM} NIL 0 [] Γ nothing neither ...| s , n , ts = name , doc-to-rope s , ts to-stringe : {ed : exprd} → ⟦ ed ⟧ → strM to-stringe = to-stringh ∘' (if cedille-options.options.erase-types options then erase else id) to-string-tag : {ed : exprd} → string → ctxt → ⟦ ed ⟧ → tagged-val to-string-tag name Γ t = strRunTag name Γ (to-stringe t) to-string : {ed : exprd} → ctxt → ⟦ ed ⟧ → rope to-string Γ t = strRun Γ (to-stringh t) tpkd-to-stringe : tpkd → strM tpkd-to-stringe = to-stringe -tk'_ tpkd-to-string : ctxt → tpkd → rope tpkd-to-string Γ atk = strRun Γ (tpkd-to-stringe atk) params-to-string-tag : string → ctxt → params → tagged-val params-to-string-tag name Γ ps = strRunTag name Γ (params-to-string ps)
36.989637
187
0.607415
7cddaf75e4e9b84a95b171918939bbfa26b5ea6c
222
agda
Agda
test/interaction/Issue3161.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/interaction/Issue3161.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/interaction/Issue3161.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2018-07-21, issue #3161 -- Insert space before brace if preceeded by `-`. -- (Symmetric case was already fixed in #269). data Pol : Set where + - : Pol f : {x : Pol} → Set f {x} = {!x!} -- Split on x here
22.2
49
0.599099
30e2e1725fb4bd4d1e22d6351e484dfc2193293e
511
agda
Agda
test/Compiler/simple/QNameOrder.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Compiler/simple/QNameOrder.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Compiler/simple/QNameOrder.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module _ where open import Agda.Builtin.Reflection open import Agda.Builtin.Bool open import Agda.Builtin.Unit open import Agda.Builtin.String open import Common.Prelude _<_ = primQNameLess True : Bool → Set True true = ⊤ True false = ⊥ zzz aaa : ⊤ zzz = _ aaa = _ ⊥-elim : {A : Set} → ⊥ → A ⊥-elim () check : (x y : Name) → True (x < y) → String check x y prf with x < y check x y prf | true = "A-ok" check x y prf | false = ⊥-elim prf main : IO Unit main = putStrLn (check (quote zzz) (quote aaa) _)
17.033333
49
0.655577
14fee3485ff6b9c9fc75f29a7f15e59f90a64158
17,063
agda
Agda
Cubical/Foundations/Prelude.agda
ByteBucket123/cubical
aeaa15fb846a3e8bda73635dc7462ae3813b4b1b
[ "MIT" ]
null
null
null
Cubical/Foundations/Prelude.agda
ByteBucket123/cubical
aeaa15fb846a3e8bda73635dc7462ae3813b4b1b
[ "MIT" ]
null
null
null
Cubical/Foundations/Prelude.agda
ByteBucket123/cubical
aeaa15fb846a3e8bda73635dc7462ae3813b4b1b
[ "MIT" ]
1
2021-03-12T20:08:45.000Z
2021-03-12T20:08:45.000Z
{- This file proves a variety of basic results about paths: - refl, sym, cong and composition of paths. This is used to set up equational reasoning. - Transport, subst and functional extensionality - J and its computation rule (up to a path) - Σ-types and contractibility of singletons - Converting PathP to and from a homogeneous path with transp - Direct definitions of lower h-levels - Export natural numbers - Export universe lifting -} {-# OPTIONS --safe #-} module Cubical.Foundations.Prelude where open import Cubical.Core.Primitives public infixr 30 _∙_ infix 3 _∎ infixr 2 _≡⟨_⟩_ infixr 2.5 _≡⟨_⟩≡⟨_⟩_ -- Basic theory about paths. These proofs should typically be -- inlined. This module also makes equational reasoning work with -- (non-dependent) paths. private variable ℓ ℓ' : Level A : Type ℓ B : A → Type ℓ x y z w : A refl : x ≡ x refl {x = x} = λ _ → x {-# INLINE refl #-} sym : x ≡ y → y ≡ x sym p i = p (~ i) {-# INLINE sym #-} symP : {A : I → Type ℓ} → {x : A i0} → {y : A i1} → (p : PathP A x y) → PathP (λ i → A (~ i)) y x symP p j = p (~ j) cong : ∀ (f : (a : A) → B a) (p : x ≡ y) → PathP (λ i → B (p i)) (f x) (f y) cong f p i = f (p i) {-# INLINE cong #-} cong₂ : ∀ {C : (a : A) → (b : B a) → Type ℓ} → (f : (a : A) → (b : B a) → C a b) → (p : x ≡ y) → {u : B x} {v : B y} (q : PathP (λ i → B (p i)) u v) → PathP (λ i → C (p i) (q i)) (f x u) (f y v) cong₂ f p q i = f (p i) (q i) {-# INLINE cong₂ #-} {- The most natural notion of homogenous path composition in a cubical setting is double composition: x ∙ ∙ ∙ > w ^ ^ p⁻¹ | | r ^ | | j | y — — — > z ∙ — > q i `p ∙∙ q ∙∙ r` gives the line at the top, `doubleCompPath-filler p q r` gives the whole square -} doubleComp-faces : {x y z w : A } (p : x ≡ y) (r : z ≡ w) → (i : I) (j : I) → Partial (i ∨ ~ i) A doubleComp-faces p r i j (i = i0) = p (~ j) doubleComp-faces p r i j (i = i1) = r j _∙∙_∙∙_ : w ≡ x → x ≡ y → y ≡ z → w ≡ z (p ∙∙ q ∙∙ r) i = hcomp (doubleComp-faces p r i) (q i) doubleCompPath-filler : (p : x ≡ y) (q : y ≡ z) (r : z ≡ w) → PathP (λ j → p (~ j) ≡ r j) q (p ∙∙ q ∙∙ r) doubleCompPath-filler p q r j i = hfill (doubleComp-faces p r i) (inS (q i)) j -- any two definitions of double composition are equal compPath-unique : ∀ (p : x ≡ y) (q : y ≡ z) (r : z ≡ w) → (α β : Σ[ s ∈ x ≡ w ] PathP (λ j → p (~ j) ≡ r j) q s) → α ≡ β compPath-unique p q r (α , α-filler) (β , β-filler) t = (λ i → cb i1 i) , (λ j i → cb j i) where cb : I → I → _ cb j i = hfill (λ j → λ { (t = i0) → α-filler j i ; (t = i1) → β-filler j i ; (i = i0) → p (~ j) ; (i = i1) → r j }) (inS (q i)) j {- For single homogenous path composition, we take `p = refl`: x ∙ ∙ ∙ > z ‖ ^ ‖ | r ^ ‖ | j | x — — — > y ∙ — > q i `q ∙ r` gives the line at the top, `compPath-filler q r` gives the whole square -} _∙_ : x ≡ y → y ≡ z → x ≡ z p ∙ q = refl ∙∙ p ∙∙ q compPath-filler : (p : x ≡ y) (q : y ≡ z) → PathP (λ j → x ≡ q j) p (p ∙ q) compPath-filler p q = doubleCompPath-filler refl p q -- We could have also defined single composition by taking `r = refl`: _∙'_ : x ≡ y → y ≡ z → x ≡ z p ∙' q = p ∙∙ q ∙∙ refl compPath'-filler : (p : x ≡ y) (q : y ≡ z) → PathP (λ j → p (~ j) ≡ z) q (p ∙' q) compPath'-filler p q = doubleCompPath-filler p q refl -- It's easy to show that `p ∙ q` also has such a filler: compPath-filler' : (p : x ≡ y) (q : y ≡ z) → PathP (λ j → p (~ j) ≡ z) q (p ∙ q) compPath-filler' {z = z} p q j i = hcomp (λ k → λ { (i = i0) → p (~ j) ; (i = i1) → q k ; (j = i0) → q (i ∧ k) }) (p (i ∨ ~ j)) -- Note: We can omit a (j = i1) case here since when (j = i1), the whole expression is -- definitionally equal to `p ∙ q`. (Notice that `p ∙ q` is also an hcomp.) Nevertheless, -- we could have given `compPath-filler p q k i` as the (j = i1) case. -- From this, we can show that these two notions of composition are the same compPath≡compPath' : (p : x ≡ y) (q : y ≡ z) → p ∙ q ≡ p ∙' q compPath≡compPath' p q j = compPath-unique p q refl (p ∙ q , compPath-filler' p q) (p ∙' q , compPath'-filler p q) j .fst -- Heterogeneous path composition and its filler: compPathP : ∀ {A : I → Type ℓ} {x : A i0} {y : A i1} {B_i1 : Type ℓ} {B : (A i1) ≡ B_i1} {z : B i1} → PathP A x y → PathP (λ i → B i) y z → PathP (λ j → ((λ i → A i) ∙ B) j) x z compPathP {A = A} {x = x} {B = B} p q i = comp (λ j → compPath-filler (λ i → A i) B j i) (λ j → λ { (i = i0) → x ; (i = i1) → q j }) (p i) compPathP' : ∀ {ℓ ℓ'} {A : Type ℓ} {B : A → Type ℓ'} {x y z : A} {x' : B x} {y' : B y} {z' : B z} {p : x ≡ y} {q : y ≡ z} (P : PathP (λ i → B (p i)) x' y') (Q : PathP (λ i → B (q i)) y' z') → PathP (λ i → B ((p ∙ q) i)) x' z' compPathP' {B = B} {x' = x'} {p = p} {q = q} P Q i = comp (λ j → B (compPath-filler p q j i)) (λ j → λ { (i = i0) → x' ; (i = i1) → Q j }) (P i) compPathP-filler : ∀ {A : I → Type ℓ} {x : A i0} {y : A i1} {B_i1 : Type ℓ} {B : A i1 ≡ B_i1} {z : B i1} → (p : PathP A x y) (q : PathP (λ i → B i) y z) → PathP (λ j → PathP (λ k → (compPath-filler (λ i → A i) B j k)) x (q j)) p (compPathP p q) compPathP-filler {A = A} {x = x} {B = B} p q j i = fill (λ j → compPath-filler (λ i → A i) B j i) (λ j → λ { (i = i0) → x ; (i = i1) → q j }) (inS (p i)) j compPathP'-filler : ∀ {ℓ ℓ'} {A : Type ℓ} {B : A → Type ℓ'} {x y z : A} {x' : B x} {y' : B y} {z' : B z} {p : x ≡ y} {q : y ≡ z} (P : PathP (λ i → B (p i)) x' y') (Q : PathP (λ i → B (q i)) y' z') → PathP (λ j → PathP (λ i → B (compPath-filler p q j i)) x' (Q j)) P (compPathP' {x = x} {y = y} {x' = x'} {y' = y'} P Q) compPathP'-filler {B = B} {x' = x'} {p = p} {q = q} P Q j i = fill (λ j → B (compPath-filler p q j i)) (λ j → λ { (i = i0) → x' ; (i = i1) → Q j }) (inS (P i)) j _≡⟨_⟩_ : (x : A) → x ≡ y → y ≡ z → x ≡ z _ ≡⟨ x≡y ⟩ y≡z = x≡y ∙ y≡z ≡⟨⟩-syntax : (x : A) → x ≡ y → y ≡ z → x ≡ z ≡⟨⟩-syntax = _≡⟨_⟩_ infixr 2 ≡⟨⟩-syntax syntax ≡⟨⟩-syntax x (λ i → B) y = x ≡[ i ]⟨ B ⟩ y ≡⟨⟩⟨⟩-syntax : (x y : A) → x ≡ y → y ≡ z → z ≡ w → x ≡ w ≡⟨⟩⟨⟩-syntax x y p q r = p ∙∙ q ∙∙ r infixr 3 ≡⟨⟩⟨⟩-syntax syntax ≡⟨⟩⟨⟩-syntax x y B C = x ≡⟨ B ⟩≡ y ≡⟨ C ⟩≡ _≡⟨_⟩≡⟨_⟩_ : (x : A) → x ≡ y → y ≡ z → z ≡ w → x ≡ w _ ≡⟨ x≡y ⟩≡⟨ y≡z ⟩ z≡w = x≡y ∙∙ y≡z ∙∙ z≡w _∎ : (x : A) → x ≡ x _ ∎ = refl -- Transport, subst and functional extensionality -- transport is a special case of transp transport : {A B : Type ℓ} → A ≡ B → A → B transport p a = transp (λ i → p i) i0 a -- Transporting in a constant family is the identity function (up to a -- path). If we would have regularity this would be definitional. transportRefl : (x : A) → transport refl x ≡ x transportRefl {A = A} x i = transp (λ _ → A) i x transport-filler : ∀ {ℓ} {A B : Type ℓ} (p : A ≡ B) (x : A) → PathP (λ i → p i) x (transport p x) transport-filler p x i = transp (λ j → p (i ∧ j)) (~ i) x -- We want B to be explicit in subst subst : (B : A → Type ℓ') (p : x ≡ y) → B x → B y subst B p pa = transport (λ i → B (p i)) pa subst2 : ∀ {ℓ' ℓ''} {B : Type ℓ'} {z w : B} (C : A → B → Type ℓ'') (p : x ≡ y) (q : z ≡ w) → C x z → C y w subst2 B p q b = transport (λ i → B (p i) (q i)) b substRefl : (px : B x) → subst B refl px ≡ px substRefl px = transportRefl px subst-filler : (B : A → Type ℓ') (p : x ≡ y) (b : B x) → PathP (λ i → B (p i)) b (subst B p b) subst-filler B p = transport-filler (cong B p) funExt : {B : A → I → Type ℓ'} {f : (x : A) → B x i0} {g : (x : A) → B x i1} → ((x : A) → PathP (B x) (f x) (g x)) → PathP (λ i → (x : A) → B x i) f g funExt p i x = p x i implicitFunExt : {B : A → I → Type ℓ'} {f : {x : A} → B x i0} {g : {x : A} → B x i1} → ({x : A} → PathP (B x) (f {x}) (g {x})) → PathP (λ i → {x : A} → B x i) f g implicitFunExt p i {x} = p {x} i -- the inverse to funExt (see Functions.FunExtEquiv), converting paths -- between functions to homotopies; `funExt⁻` is called `happly` and -- defined by path induction in the HoTT book (see function 2.9.2 in -- section 2.9) funExt⁻ : {B : A → I → Type ℓ'} {f : (x : A) → B x i0} {g : (x : A) → B x i1} → PathP (λ i → (x : A) → B x i) f g → ((x : A) → PathP (B x) (f x) (g x)) funExt⁻ eq x i = eq i x -- J for paths and its computation rule module _ (P : ∀ y → x ≡ y → Type ℓ') (d : P x refl) where J : (p : x ≡ y) → P y p J p = transport (λ i → P (p i) (λ j → p (i ∧ j))) d JRefl : J refl ≡ d JRefl = transportRefl d J-∙ : (p : x ≡ y) (q : y ≡ z) → J (p ∙ q) ≡ transport (λ i → P (q i) (λ j → compPath-filler p q i j)) (J p) J-∙ p q k = transp (λ i → P (q (i ∨ ~ k)) (λ j → compPath-filler p q (i ∨ ~ k) j)) (~ k) (J (λ j → compPath-filler p q (~ k) j)) -- Converting to and from a PathP module _ {A : I → Type ℓ} {x : A i0} {y : A i1} where toPathP : transp (\ i → A i) i0 x ≡ y → PathP A x y toPathP p i = hcomp (λ j → λ { (i = i0) → x ; (i = i1) → p j }) (transp (λ j → A (i ∧ j)) (~ i) x) fromPathP : PathP A x y → transp (\ i → A i) i0 x ≡ y fromPathP p i = transp (λ j → A (i ∨ j)) i (p i) -- Whiskering a dependent path by a path _◁_ : ∀ {ℓ} {A : I → Type ℓ} {a₀ a₀' : A i0} {a₁ : A i1} → a₀ ≡ a₀' → PathP A a₀' a₁ → PathP A a₀ a₁ (p ◁ q) i = hcomp (λ j → λ {(i = i0) → p (~ j); (i = i1) → q i1}) (q i) _▷_ : ∀ {ℓ} {A : I → Type ℓ} {a₀ : A i0} {a₁ a₁' : A i1} → PathP A a₀ a₁ → a₁ ≡ a₁' → PathP A a₀ a₁' (p ▷ q) i = hcomp (λ j → λ {(i = i0) → p i0; (i = i1) → q j}) (p i) -- Direct definitions of lower h-levels isContr : Type ℓ → Type ℓ isContr A = Σ[ x ∈ A ] (∀ y → x ≡ y) isProp : Type ℓ → Type ℓ isProp A = (x y : A) → x ≡ y isSet : Type ℓ → Type ℓ isSet A = (x y : A) → isProp (x ≡ y) isGroupoid : Type ℓ → Type ℓ isGroupoid A = ∀ a b → isSet (Path A a b) is2Groupoid : Type ℓ → Type ℓ is2Groupoid A = ∀ a b → isGroupoid (Path A a b) -- Contractibility of singletons singlP : (A : I → Type ℓ) (a : A i0) → Type _ singlP A a = Σ[ x ∈ A i1 ] PathP A a x singl : (a : A) → Type _ singl {A = A} a = singlP (λ _ → A) a isContrSingl : (a : A) → isContr (singl a) isContrSingl a = (a , refl) , λ p i → p .snd i , λ j → p .snd (i ∧ j) isContrSinglP : (A : I → Type ℓ) (a : A i0) → isContr (singlP A a) isContrSinglP A a .fst = _ , transport-filler (λ i → A i) a isContrSinglP A a .snd (x , p) i = _ , λ j → fill (\ i → A i) (λ j → λ {(i = i0) → transport-filler (λ i → A i) a j; (i = i1) → p j}) (inS a) j SquareP : (A : I → I → Type ℓ) {a₀₀ : A i0 i0} {a₀₁ : A i0 i1} (a₀₋ : PathP (λ j → A i0 j) a₀₀ a₀₁) {a₁₀ : A i1 i0} {a₁₁ : A i1 i1} (a₁₋ : PathP (λ j → A i1 j) a₁₀ a₁₁) (a₋₀ : PathP (λ i → A i i0) a₀₀ a₁₀) (a₋₁ : PathP (λ i → A i i1) a₀₁ a₁₁) → Type ℓ SquareP A a₀₋ a₁₋ a₋₀ a₋₁ = PathP (λ i → PathP (λ j → A i j) (a₋₀ i) (a₋₁ i)) a₀₋ a₁₋ Square : {a₀₀ a₀₁ : A} (a₀₋ : a₀₀ ≡ a₀₁) {a₁₀ a₁₁ : A} (a₁₋ : a₁₀ ≡ a₁₁) (a₋₀ : a₀₀ ≡ a₁₀) (a₋₁ : a₀₁ ≡ a₁₁) → Type _ Square a₀₋ a₁₋ a₋₀ a₋₁ = PathP (λ i → a₋₀ i ≡ a₋₁ i) a₀₋ a₁₋ isSet' : Type ℓ → Type ℓ isSet' A = {a₀₀ a₀₁ : A} (a₀₋ : a₀₀ ≡ a₀₁) {a₁₀ a₁₁ : A} (a₁₋ : a₁₀ ≡ a₁₁) (a₋₀ : a₀₀ ≡ a₁₀) (a₋₁ : a₀₁ ≡ a₁₁) → Square a₀₋ a₁₋ a₋₀ a₋₁ Cube : {a₀₀₀ a₀₀₁ : A} {a₀₀₋ : a₀₀₀ ≡ a₀₀₁} {a₀₁₀ a₀₁₁ : A} {a₀₁₋ : a₀₁₀ ≡ a₀₁₁} {a₀₋₀ : a₀₀₀ ≡ a₀₁₀} {a₀₋₁ : a₀₀₁ ≡ a₀₁₁} (a₀₋₋ : Square a₀₀₋ a₀₁₋ a₀₋₀ a₀₋₁) {a₁₀₀ a₁₀₁ : A} {a₁₀₋ : a₁₀₀ ≡ a₁₀₁} {a₁₁₀ a₁₁₁ : A} {a₁₁₋ : a₁₁₀ ≡ a₁₁₁} {a₁₋₀ : a₁₀₀ ≡ a₁₁₀} {a₁₋₁ : a₁₀₁ ≡ a₁₁₁} (a₁₋₋ : Square a₁₀₋ a₁₁₋ a₁₋₀ a₁₋₁) {a₋₀₀ : a₀₀₀ ≡ a₁₀₀} {a₋₀₁ : a₀₀₁ ≡ a₁₀₁} (a₋₀₋ : Square a₀₀₋ a₁₀₋ a₋₀₀ a₋₀₁) {a₋₁₀ : a₀₁₀ ≡ a₁₁₀} {a₋₁₁ : a₀₁₁ ≡ a₁₁₁} (a₋₁₋ : Square a₀₁₋ a₁₁₋ a₋₁₀ a₋₁₁) (a₋₋₀ : Square a₀₋₀ a₁₋₀ a₋₀₀ a₋₁₀) (a₋₋₁ : Square a₀₋₁ a₁₋₁ a₋₀₁ a₋₁₁) → Type _ Cube a₀₋₋ a₁₋₋ a₋₀₋ a₋₁₋ a₋₋₀ a₋₋₁ = PathP (λ i → Square (a₋₀₋ i) (a₋₁₋ i) (a₋₋₀ i) (a₋₋₁ i)) a₀₋₋ a₁₋₋ isGroupoid' : Type ℓ → Type ℓ isGroupoid' A = {a₀₀₀ a₀₀₁ : A} {a₀₀₋ : a₀₀₀ ≡ a₀₀₁} {a₀₁₀ a₀₁₁ : A} {a₀₁₋ : a₀₁₀ ≡ a₀₁₁} {a₀₋₀ : a₀₀₀ ≡ a₀₁₀} {a₀₋₁ : a₀₀₁ ≡ a₀₁₁} (a₀₋₋ : Square a₀₀₋ a₀₁₋ a₀₋₀ a₀₋₁) {a₁₀₀ a₁₀₁ : A} {a₁₀₋ : a₁₀₀ ≡ a₁₀₁} {a₁₁₀ a₁₁₁ : A} {a₁₁₋ : a₁₁₀ ≡ a₁₁₁} {a₁₋₀ : a₁₀₀ ≡ a₁₁₀} {a₁₋₁ : a₁₀₁ ≡ a₁₁₁} (a₁₋₋ : Square a₁₀₋ a₁₁₋ a₁₋₀ a₁₋₁) {a₋₀₀ : a₀₀₀ ≡ a₁₀₀} {a₋₀₁ : a₀₀₁ ≡ a₁₀₁} (a₋₀₋ : Square a₀₀₋ a₁₀₋ a₋₀₀ a₋₀₁) {a₋₁₀ : a₀₁₀ ≡ a₁₁₀} {a₋₁₁ : a₀₁₁ ≡ a₁₁₁} (a₋₁₋ : Square a₀₁₋ a₁₁₋ a₋₁₀ a₋₁₁) (a₋₋₀ : Square a₀₋₀ a₁₋₀ a₋₀₀ a₋₁₀) (a₋₋₁ : Square a₀₋₁ a₁₋₁ a₋₀₁ a₋₁₁) → Cube a₀₋₋ a₁₋₋ a₋₀₋ a₋₁₋ a₋₋₀ a₋₋₁ -- Essential consequences of isProp and isContr isProp→PathP : ∀ {B : I → Type ℓ} → ((i : I) → isProp (B i)) → (b0 : B i0) (b1 : B i1) → PathP (λ i → B i) b0 b1 isProp→PathP hB b0 b1 = toPathP (hB _ _ _) isPropIsContr : isProp (isContr A) isPropIsContr (c0 , h0) (c1 , h1) j = h0 c1 j , λ y i → hcomp (λ k → λ { (i = i0) → h0 (h0 c1 j) k; (i = i1) → h0 y k; (j = i0) → h0 (h0 y i) k; (j = i1) → h0 (h1 y i) k}) c0 isContr→isProp : isContr A → isProp A isContr→isProp (x , p) a b i = hcomp (λ j → λ { (i = i0) → p a j ; (i = i1) → p b j }) x isProp→isSet : isProp A → isSet A isProp→isSet h a b p q j i = hcomp (λ k → λ { (i = i0) → h a a k ; (i = i1) → h a b k ; (j = i0) → h a (p i) k ; (j = i1) → h a (q i) k }) a isProp→isSet' : isProp A → isSet' A isProp→isSet' h {a} p q r s i j = hcomp (λ k → λ { (i = i0) → h a (p j) k ; (i = i1) → h a (q j) k ; (j = i0) → h a (r i) k ; (j = i1) → h a (s i) k}) a isPropIsProp : isProp (isProp A) isPropIsProp f g i a b = isProp→isSet f a b (f a b) (g a b) i isPropSingl : {a : A} → isProp (singl a) isPropSingl = isContr→isProp (isContrSingl _) isPropSinglP : {A : I → Type ℓ} {a : A i0} → isProp (singlP A a) isPropSinglP = isContr→isProp (isContrSinglP _ _) -- Universe lifting record Lift {i j} (A : Type i) : Type (ℓ-max i j) where constructor lift field lower : A open Lift public liftExt : ∀ {A : Type ℓ} {a b : Lift {ℓ} {ℓ'} A} → (lower a ≡ lower b) → a ≡ b liftExt x i = lift (x i) doubleCompPath-filler∙ : {a b c d : A} (p : a ≡ b) (q : b ≡ c) (r : c ≡ d) → PathP (λ i → p i ≡ r (~ i)) (p ∙ q ∙ r) q doubleCompPath-filler∙ {A = A} {b = b} p q r j i = hcomp (λ k → λ { (i = i0) → p j ; (i = i1) → side j k ; (j = i1) → q (i ∧ k)}) (p (j ∨ i)) where side : I → I → A side i j = hcomp (λ k → λ { (i = i1) → q j ; (j = i0) → b ; (j = i1) → r (~ i ∧ k)}) (q j) PathP→compPathL : {a b c d : A} {p : a ≡ c} {q : b ≡ d} {r : a ≡ b} {s : c ≡ d} → PathP (λ i → p i ≡ q i) r s → sym p ∙ r ∙ q ≡ s PathP→compPathL {p = p} {q = q} {r = r} {s = s} P j i = hcomp (λ k → λ { (i = i0) → p (j ∨ k) ; (i = i1) → q (j ∨ k) ; (j = i0) → doubleCompPath-filler∙ (sym p) r q (~ k) i ; (j = i1) → s i }) (P j i) PathP→compPathR : {a b c d : A} {p : a ≡ c} {q : b ≡ d} {r : a ≡ b} {s : c ≡ d} → PathP (λ i → p i ≡ q i) r s → r ≡ p ∙ s ∙ sym q PathP→compPathR {p = p} {q = q} {r = r} {s = s} P j i = hcomp (λ k → λ { (i = i0) → p (j ∧ (~ k)) ; (i = i1) → q (j ∧ (~ k)) ; (j = i0) → r i ; (j = i1) → doubleCompPath-filler∙ p s (sym q) (~ k) i}) (P j i) -- otherdir compPathL→PathP : {a b c d : A} {p : a ≡ c} {q : b ≡ d} {r : a ≡ b} {s : c ≡ d} → sym p ∙ r ∙ q ≡ s → PathP (λ i → p i ≡ q i) r s compPathL→PathP {p = p} {q = q} {r = r} {s = s} P j i = hcomp (λ k → λ { (i = i0) → p (~ k ∨ j) ; (i = i1) → q (~ k ∨ j) ; (j = i0) → doubleCompPath-filler∙ (sym p) r q k i ; (j = i1) → s i}) (P j i) compPathR→PathP : {a b c d : A} {p : a ≡ c} {q : b ≡ d} {r : a ≡ b} {s : c ≡ d} → r ≡ p ∙ s ∙ sym q → PathP (λ i → p i ≡ q i) r s compPathR→PathP {p = p} {q = q} {r = r} {s = s} P j i = hcomp (λ k → λ { (i = i0) → p (k ∧ j) ; (i = i1) → q (k ∧ j) ; (j = i0) → r i ; (j = i1) → doubleCompPath-filler∙ p s (sym q) k i}) (P j i)
33.456863
131
0.453203
a17f9c4231aa19389b592c608c779b7b68dc98c4
5,125
agda
Agda
Cubical/HITs/Colimit/Base.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
Cubical/HITs/Colimit/Base.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
1
2022-01-27T02:07:48.000Z
2022-01-27T02:07:48.000Z
Cubical/HITs/Colimit/Base.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
{- Homotopy colimits of graphs -} {-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.Colimit.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.HLevels open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Data.Graph -- Cones under a diagram record Cocone ℓ {ℓd ℓv ℓe} {I : Graph ℓv ℓe} (F : Diag ℓd I) (X : Type ℓ) : Type (ℓ-suc (ℓ-max ℓ (ℓ-max (ℓ-max ℓv ℓe) (ℓ-suc ℓd)))) where field leg : ∀ (j : Obj I) → F $ j → X com : ∀ {j k} (f : Hom I j k) → leg k ∘ F <$> f ≡ leg j postcomp : ∀ {ℓ'} {Y : Type ℓ'} → (X → Y) → Cocone ℓ' F Y leg (postcomp h) j = h ∘ leg j com (postcomp h) f = cong (h ∘_) (com f) open Cocone public -- Σ (Type ℓ) (Cocone ℓ F) forms a category: module _ {ℓd ℓv ℓe} {I : Graph ℓv ℓe} {F : Diag ℓd I} where private -- the "lower star" functor _* : ∀ {ℓ ℓ'} {X : Type ℓ} {Y : Type ℓ'} → (X → Y) → Cocone _ F X → Cocone _ F Y (h *) C = postcomp C h CoconeMor : ∀ {ℓ ℓ'} → Σ (Type ℓ) (Cocone ℓ F) → Σ (Type ℓ') (Cocone ℓ' F) → Type _ CoconeMor (X , C) (Y , D) = Σ[ h ∈ (X → Y) ] (h *) C ≡ D idCoconeMor : ∀ {ℓ} (Cp : Σ (Type ℓ) (Cocone ℓ F)) → CoconeMor Cp Cp idCoconeMor Cp = (λ x → x) , refl compCoconeMor : ∀ {ℓ ℓ' ℓ''} {C : Σ (Type ℓ) (Cocone ℓ F)} {D : Σ (Type ℓ') (Cocone ℓ' F)} {E : Σ (Type ℓ'') (Cocone ℓ'' F)} → CoconeMor D E → CoconeMor C D → CoconeMor C E compCoconeMor (g , q) (f , p) = g ∘ f , (cong (g *) p) ∙ q -- Universal cocones are initial objects in the category Σ (Type ℓ) (Cocone ℓ F) module _ {ℓ ℓd ℓv ℓe} {I : Graph ℓv ℓe} {F : Diag ℓd I} {X : Type ℓ} where isUniversalAt : ∀ ℓq → Cocone ℓ F X → Type (ℓ-max ℓ (ℓ-suc (ℓ-max ℓq (ℓ-max (ℓ-max ℓv ℓe) (ℓ-suc ℓd))))) isUniversalAt ℓq C = ∀ (Y : Type ℓq) → isEquiv {A = (X → Y)} {B = Cocone ℓq F Y} (postcomp C) -- (unfolding isEquiv, this ^ is equivalent to what one might expect:) -- ∀ (Y : Type ℓ) (D : Cocone ℓ F Y) → ∃![ h ∈ (X → Y) ] (h *) C ≡ D -- (≡ isContr (CoconeMor (X , C) (Y , D))) isPropIsUniversalAt : ∀ ℓq (C : Cocone ℓ F X) → isProp (isUniversalAt ℓq C) isPropIsUniversalAt ℓq C = isPropΠ (λ Y → isPropIsEquiv (postcomp C)) isUniversal : Cocone ℓ F X → Typeω isUniversal C = ∀ ℓq → isUniversalAt ℓq C -- Colimits are universal cocones record isColimit {ℓ ℓd ℓv ℓe} {I : Graph ℓv ℓe} (F : Diag ℓd I) (X : Type ℓ) : Typeω where field cone : Cocone ℓ F X univ : isUniversal cone open isColimit public module _ {ℓ ℓ' ℓd ℓv ℓe} {I : Graph ℓv ℓe} {F : Diag ℓd I} {X : Type ℓ} {Y : Type ℓ'} where postcomp⁻¹ : isColimit F X → Cocone ℓ' F Y → (X → Y) postcomp⁻¹ cl = invEq (_ , univ cl _ Y) postcomp⁻¹-inv : (cl : isColimit F X) (D : Cocone ℓ' F Y) → (postcomp (cone cl) (postcomp⁻¹ cl D)) ≡ D postcomp⁻¹-inv cl D = retEq (_ , univ cl _ Y) D postcomp⁻¹-mor : (cl : isColimit F X) (D : Cocone ℓ' F Y) → CoconeMor (X , cone cl) (Y , D) postcomp⁻¹-mor cl D = (postcomp⁻¹ cl D) , (postcomp⁻¹-inv cl D) -- Colimits are unique module _ {ℓ ℓ' ℓd ℓv ℓe} {I : Graph ℓv ℓe} {F : Diag ℓd I} {X : Type ℓ} {Y : Type ℓ'} where uniqColimit : isColimit F X → isColimit F Y → X ≃ Y uniqColimit cl cl' = isoToEquiv (iso (fst fwd) (fst bwd) (λ x i → fst (isContr→isProp (equiv-proof (univ cl' ℓ' Y) (cone cl')) (compCoconeMor fwd bwd) (idCoconeMor (Y , cone cl')) i) x) (λ x i → fst (isContr→isProp (equiv-proof (univ cl ℓ X) (cone cl)) (compCoconeMor bwd fwd) (idCoconeMor (X , cone cl)) i) x)) where fwd : CoconeMor (X , cone cl ) (Y , cone cl') bwd : CoconeMor (Y , cone cl') (X , cone cl ) fwd = postcomp⁻¹-mor cl (cone cl') bwd = postcomp⁻¹-mor cl' (cone cl) -- Colimits always exist data colim {ℓd ℓe ℓv} {I : Graph ℓv ℓe} (F : Diag ℓd I) : Type (ℓ-suc (ℓ-max (ℓ-max ℓv ℓe) (ℓ-suc ℓd))) where colim-leg : ∀ (j : Obj I) → F $ j → colim F colim-com : ∀ {j k} (f : Hom I j k) → colim-leg k ∘ F <$> f ≡ colim-leg j module _ {ℓd ℓv ℓe} {I : Graph ℓv ℓe} {F : Diag ℓd I} where colimCone : Cocone _ F (colim F) leg colimCone = colim-leg com colimCone = colim-com rec : ∀ {ℓ} {X : Type ℓ} → Cocone ℓ F X → (colim F → X) rec C (colim-leg j A) = leg C j A rec C (colim-com f i A) = com C f i A colimIsColimit : isColimit F (colim F) cone colimIsColimit = colimCone univ colimIsColimit ℓq Y = isoToIsEquiv record { fun = postcomp colimCone ; inv = rec ; rightInv = λ C → refl ; leftInv = λ h → funExt (eq h) } where eq : ∀ h (x : colim _) → rec (postcomp colimCone h) x ≡ h x eq h (colim-leg j A) = refl eq h (colim-com f i A) = refl
38.533835
109
0.534829
7c0afb15c2cf8e76936a053dfeabf98846a453b9
65
agda
Agda
test/Fail/Issue1078/A.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue1078/A.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue1078/A.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Issue1078.A where open import Common.Level using (Level)
16.25
38
0.8
3541e266a567b7ad17c7fa8a234aeda066824bd8
1,376
agda
Agda
examples/outdated-and-incorrect/Alonzo/AlonzoPrelude.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
1
2018-10-10T17:08:44.000Z
2018-10-10T17:08:44.000Z
examples/outdated-and-incorrect/Alonzo/AlonzoPrelude.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
examples/outdated-and-incorrect/Alonzo/AlonzoPrelude.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
module AlonzoPrelude where open import RTN public import RTP -- magic module - Run Time Primitives Int : Set Int = RTP.Int Float : Set Float = RTP.Float String : Set String = RTP.String Char : Set Char = RTP.Char data True : Set where tt : True {- record True : Set where tt : True tt = record{} -} data False : Set where elim-False : {A : Set} -> False -> A elim-False () -- _∘_ : {A,B,C:Set} -> (B -> C) -> (A -> B) -> A -> C -- f ∘ g = \x -> f (g x) id : {A : Set} -> A -> A id x = x infixr 90 _○_ _○_ : {A B C : Set} -> (B -> C) -> (A -> B) -> A -> C (f ○ g) x = f (g x) infixr 0 _$_ _$_ : {A B : Set} -> (A -> B) -> A -> B f $ x = f x flip : {A B C : Set} -> (A -> B -> C) -> B -> A -> C flip f x y = f y x const : {A B : Set} -> A -> B -> A const x _ = x typeOf : {A : Set} -> A -> Set typeOf {A} _ = A data _×_ (A B : Set) : Set where <_,_> : A -> B -> A × B fst : {A B : Set} -> A × B -> A fst < x , y > = x snd : {A B : Set} -> A × B -> B snd < x , y > = y {- infixr 10 _::_ data List (A:Set) : Set where nil : List A _::_ : A -> List A -> List A [_] : {A:Set} -> A -> List A [ x ] = x :: nil -} {-# BUILTIN INTEGER Int #-} -- {-# BUILTIN STRING String #-} -- {-# BUILTIN FLOAT Float #-} {-# BUILTIN CHAR Char #-}
17.2
56
0.441134
4e98801b39ea5719cac4fe22a97dcc147386add2
2,880
agda
Agda
agda/Singleton.agda
JacquesCarette/pi-dual
003835484facfde0b770bc2b3d781b42b76184c1
[ "BSD-2-Clause" ]
14
2015-08-18T21:40:15.000Z
2021-05-05T01:07:57.000Z
agda/Singleton.agda
JacquesCarette/pi-dual
003835484facfde0b770bc2b3d781b42b76184c1
[ "BSD-2-Clause" ]
4
2018-06-07T16:27:41.000Z
2021-10-29T20:41:23.000Z
agda/Singleton.agda
JacquesCarette/pi-dual
003835484facfde0b770bc2b3d781b42b76184c1
[ "BSD-2-Clause" ]
3
2016-05-29T01:56:33.000Z
2019-09-10T09:47:13.000Z
module Singleton where open import Level open import Data.Unit open import Data.Product open import Function open import Relation.Binary open import Function.Inverse open import Function.Equality as FE open import Relation.Binary.PropositionalEquality as P open import Pi using (⟦_⟧; _⟷_ ) embed₁ : Set → Set embed₁ b = Σ b (λ _ → ⊤) B-to-Σ⊤ : {B : Set} → B → embed₁ B B-to-Σ⊤ v = (v , tt) Σ⊤-to-B : {B : Set} → embed₁ B → B Σ⊤-to-B (v , _) = v BΣ₁ : ∀ {b} → Inverse (P.setoid b) (P.setoid (embed₁ b)) BΣ₁ = record { to = record { _⟨$⟩_ = B-to-Σ⊤; cong = P.cong B-to-Σ⊤ } ; from = record { _⟨$⟩_ = Σ⊤-to-B; cong = P.cong Σ⊤-to-B } ; inverse-of = record { left-inverse-of = λ _ → refl ; right-inverse-of = λ x → refl } } data Singleton {c : Level} {A : Set c} : A → Set c where singleton : (x : A) -> Singleton x -- That a Singleton type is a setoid is not needed, but here is the proof anyways. data _∼_ {c : Level} {A : Set c} {v : A} (x : Singleton v) (y : Singleton v) : Set c where uniq : x ∼ y ∼Equiv : {c : Level} {A : Set c} {v : A} → IsEquivalence {_} {_} {Singleton v} _∼_ ∼Equiv {v = v } = record { refl = uniq ; sym = λ _ → uniq ; trans = λ _ _ → uniq } SingSetoid : {c c : Level} → (A : Setoid c c) → (Setoid.Carrier A) → Setoid c c SingSetoid A v = record { Carrier = Singleton v ; _≈_ = _∼_ ; isEquivalence = ∼Equiv } -- We can map a type to its Σ of Singletons and back. embed₂ : Set → Set embed₂ b = Σ b Singleton B-to-ΣS : {B : Set} → B → embed₂ B B-to-ΣS v = (v , singleton v) ΣS-to-B : {B : Set} → embed₂ B → B ΣS-to-B x = proj₁ x right-inverse : ∀ {c} {b : Set c} → (x : Σ b (Singleton {A = b})) → (proj₁ x , singleton (proj₁ x)) ≡ x right-inverse (v , singleton .v) = refl BΣ₂ : ∀ {b} → Inverse (P.setoid b) (P.setoid (embed₂ b)) BΣ₂ = record { to = record { _⟨$⟩_ = B-to-ΣS; cong = P.cong B-to-ΣS } ; from = record { _⟨$⟩_ = ΣS-to-B; cong = P.cong ΣS-to-B } ; inverse-of = record { left-inverse-of = λ x → refl ; right-inverse-of = right-inverse } } -- A generalized idea of a permutation: a bijection between any two types Permutation : Set → Set -> Set Permutation a b = Inverse (P.setoid a) (P.setoid b) -- Now, what we really want is to interpret Pi combinators as -- permutations. We need a refined version of embed₂ which -- allows us to use a permutation to transport things. embed₃ : {l : Level} → (S T : Setoid l l) → Inverse S T → Setoid l l embed₃ S T f = record { Carrier = Σ A (λ b → Singleton (to f ⟨$⟩ b)) ; _≈_ = _≡_ ; isEquivalence = P.isEquivalence } where open Inverse {From = S} {T} A = Setoid.Carrier S
34.285714
103
0.553819
2e11f899608fb43a5e00ea0af4620cb9bb71e5b0
8,683
agda
Agda
agda-stdlib/src/Data/List/Countdown.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Data/List/Countdown.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Data/List/Countdown.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- A data structure which keeps track of an upper bound on the number -- of elements /not/ in a given list ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Level using (0ℓ) open import Relation.Binary module Data.List.Countdown (D : DecSetoid 0ℓ 0ℓ) where open import Data.Empty open import Data.Fin.Base using (Fin; zero; suc; punchOut) open import Data.Fin.Properties using (suc-injective; punchOut-injective) open import Function.Base open import Function.Equality using (_⟨$⟩_) open import Function.Injection using (Injection; module Injection) open import Data.Bool.Base using (true; false) open import Data.List hiding (lookup) open import Data.List.Relation.Unary.Any as Any using (here; there) open import Data.Nat.Base using (ℕ; zero; suc) open import Data.Product open import Data.Sum.Base open import Data.Sum.Properties open import Relation.Nullary.Reflects using (invert) open import Relation.Nullary open import Relation.Nullary.Decidable using (dec-true; dec-false) open import Relation.Binary.PropositionalEquality as PropEq using (_≡_; _≢_; refl; cong) open PropEq.≡-Reasoning private open module D = DecSetoid D hiding (refl) renaming (Carrier to Elem) open import Data.List.Membership.Setoid D.setoid ------------------------------------------------------------------------ -- Helper functions private -- The /first/ occurrence of x in xs. first-occurrence : ∀ {xs} x → x ∈ xs → x ∈ xs first-occurrence x (here x≈y) = here x≈y first-occurrence x (there {x = y} x∈xs) with x ≟ y ... | true because [x≈y] = here (invert [x≈y]) ... | false because _ = there $ first-occurrence x x∈xs -- The index of the first occurrence of x in xs. first-index : ∀ {xs} x → x ∈ xs → Fin (length xs) first-index x x∈xs = Any.index $ first-occurrence x x∈xs -- first-index preserves equality of its first argument. first-index-cong : ∀ {x₁ x₂ xs} (x₁∈xs : x₁ ∈ xs) (x₂∈xs : x₂ ∈ xs) → x₁ ≈ x₂ → first-index x₁ x₁∈xs ≡ first-index x₂ x₂∈xs first-index-cong {x₁} {x₂} x₁∈xs x₂∈xs x₁≈x₂ = helper x₁∈xs x₂∈xs where helper : ∀ {xs} (x₁∈xs : x₁ ∈ xs) (x₂∈xs : x₂ ∈ xs) → first-index x₁ x₁∈xs ≡ first-index x₂ x₂∈xs helper (here x₁≈x) (here x₂≈x) = refl helper (here x₁≈x) (there {x = x} x₂∈xs) with x₂ ≟ x | dec-true (x₂ ≟ x) (trans (sym x₁≈x₂) x₁≈x) ... | _ | refl = refl helper (there {x = x} x₁∈xs) (here x₂≈x) with x₁ ≟ x | dec-true (x₁ ≟ x) (trans x₁≈x₂ x₂≈x) ... | _ | refl = refl helper (there {x = x} x₁∈xs) (there x₂∈xs) with x₁ ≟ x | x₂ ≟ x ... | true because _ | true because _ = refl ... | false because _ | false because _ = cong suc $ helper x₁∈xs x₂∈xs ... | yes x₁≈x | no x₂≉x = ⊥-elim (x₂≉x (trans (sym x₁≈x₂) x₁≈x)) ... | no x₁≉x | yes x₂≈x = ⊥-elim (x₁≉x (trans x₁≈x₂ x₂≈x)) -- first-index is injective in its first argument. first-index-injective : ∀ {x₁ x₂ xs} (x₁∈xs : x₁ ∈ xs) (x₂∈xs : x₂ ∈ xs) → first-index x₁ x₁∈xs ≡ first-index x₂ x₂∈xs → x₁ ≈ x₂ first-index-injective {x₁} {x₂} = helper where helper : ∀ {xs} (x₁∈xs : x₁ ∈ xs) (x₂∈xs : x₂ ∈ xs) → first-index x₁ x₁∈xs ≡ first-index x₂ x₂∈xs → x₁ ≈ x₂ helper (here x₁≈x) (here x₂≈x) _ = trans x₁≈x (sym x₂≈x) helper (here x₁≈x) (there {x = x} x₂∈xs) _ with x₂ ≟ x helper (here x₁≈x) (there {x = x} x₂∈xs) _ | yes x₂≈x = trans x₁≈x (sym x₂≈x) helper (here x₁≈x) (there {x = x} x₂∈xs) () | no x₂≉x helper (there {x = x} x₁∈xs) (here x₂≈x) _ with x₁ ≟ x helper (there {x = x} x₁∈xs) (here x₂≈x) _ | yes x₁≈x = trans x₁≈x (sym x₂≈x) helper (there {x = x} x₁∈xs) (here x₂≈x) () | no x₁≉x helper (there {x = x} x₁∈xs) (there x₂∈xs) _ with x₁ ≟ x | x₂ ≟ x helper (there {x = x} x₁∈xs) (there x₂∈xs) _ | yes x₁≈x | yes x₂≈x = trans x₁≈x (sym x₂≈x) helper (there {x = x} x₁∈xs) (there x₂∈xs) () | yes x₁≈x | no x₂≉x helper (there {x = x} x₁∈xs) (there x₂∈xs) () | no x₁≉x | yes x₂≈x helper (there {x = x} x₁∈xs) (there x₂∈xs) eq | no x₁≉x | no x₂≉x = helper x₁∈xs x₂∈xs (suc-injective eq) ------------------------------------------------------------------------ -- The countdown data structure -- If counted ⊕ n is inhabited then there are at most n values of type -- Elem which are not members of counted (up to _≈_). You can read the -- symbol _⊕_ as partitioning Elem into two parts: counted and -- uncounted. infix 4 _⊕_ record _⊕_ (counted : List Elem) (n : ℕ) : Set where field -- An element can be of two kinds: -- ⑴ It is provably in counted. -- ⑵ It is one of at most n elements which may or may not be in -- counted. The "at most n" part is guaranteed by the field -- "injective". kind : ∀ x → x ∈ counted ⊎ Fin n injective : ∀ {x y i} → kind x ≡ inj₂ i → kind y ≡ inj₂ i → x ≈ y -- A countdown can be initialised by proving that Elem is finite. empty : ∀ {n} → Injection D.setoid (PropEq.setoid (Fin n)) → [] ⊕ n empty inj = record { kind = inj₂ ∘ _⟨$⟩_ to ; injective = λ {x} {y} {i} eq₁ eq₂ → injective (begin to ⟨$⟩ x ≡⟨ inj₂-injective eq₁ ⟩ i ≡⟨ PropEq.sym $ inj₂-injective eq₂ ⟩ to ⟨$⟩ y ∎) } where open Injection inj -- A countdown can also be initialised by proving that Elem is finite. emptyFromList : (counted : List Elem) → (∀ x → x ∈ counted) → [] ⊕ length counted emptyFromList counted complete = empty record { to = record { _⟨$⟩_ = λ x → first-index x (complete x) ; cong = first-index-cong (complete _) (complete _) } ; injective = first-index-injective (complete _) (complete _) } -- Finds out if an element has been counted yet. lookup : ∀ {counted n} → counted ⊕ n → ∀ x → Dec (x ∈ counted) lookup {counted} _ x = Any.any (_≟_ x) counted -- When no element remains to be counted all elements have been -- counted. lookup! : ∀ {counted} → counted ⊕ zero → ∀ x → x ∈ counted lookup! counted⊕0 x with _⊕_.kind counted⊕0 x ... | inj₁ x∈counted = x∈counted ... | inj₂ () private -- A variant of lookup!. lookup‼ : ∀ {m counted} → counted ⊕ m → ∀ x → x ∉ counted → ∃ λ n → m ≡ suc n lookup‼ {suc m} counted⊕n x x∉counted = (m , refl) lookup‼ {zero} counted⊕n x x∉counted = ⊥-elim (x∉counted $ lookup! counted⊕n x) -- Counts a previously uncounted element. insert : ∀ {counted n} → counted ⊕ suc n → ∀ x → x ∉ counted → x ∷ counted ⊕ n insert {counted} {n} counted⊕1+n x x∉counted = record { kind = kind′; injective = inj } where open _⊕_ counted⊕1+n helper : ∀ x y i {j} → kind x ≡ inj₂ i → kind y ≡ inj₂ j → i ≡ j → x ≈ y helper _ _ _ eq₁ eq₂ refl = injective eq₁ eq₂ kind′ : ∀ y → y ∈ x ∷ counted ⊎ Fin n kind′ y with y ≟ x | kind x | kind y | helper x y kind′ y | yes y≈x | _ | _ | _ = inj₁ (here y≈x) kind′ y | _ | inj₁ x∈counted | _ | _ = ⊥-elim (x∉counted x∈counted) kind′ y | _ | _ | inj₁ y∈counted | _ = inj₁ (there y∈counted) kind′ y | no y≉x | inj₂ i | inj₂ j | hlp = inj₂ (punchOut (y≉x ∘ sym ∘ hlp _ refl refl)) inj : ∀ {y z i} → kind′ y ≡ inj₂ i → kind′ z ≡ inj₂ i → y ≈ z inj {y} {z} eq₁ eq₂ with y ≟ x | z ≟ x | kind x | kind y | kind z | helper x y | helper x z | helper y z inj () _ | yes _ | _ | _ | _ | _ | _ | _ | _ inj _ () | _ | yes _ | _ | _ | _ | _ | _ | _ inj _ _ | no _ | no _ | inj₁ x∈counted | _ | _ | _ | _ | _ = ⊥-elim (x∉counted x∈counted) inj () _ | no _ | no _ | inj₂ _ | inj₁ _ | _ | _ | _ | _ inj _ () | no _ | no _ | inj₂ _ | _ | inj₁ _ | _ | _ | _ inj eq₁ eq₂ | no _ | no _ | inj₂ i | inj₂ _ | inj₂ _ | _ | _ | hlp = hlp _ refl refl $ punchOut-injective {i = i} _ _ $ (PropEq.trans (inj₂-injective eq₁) (PropEq.sym (inj₂-injective eq₂))) -- Counts an element if it has not already been counted. lookupOrInsert : ∀ {counted m} → counted ⊕ m → ∀ x → x ∈ counted ⊎ ∃ λ n → m ≡ suc n × x ∷ counted ⊕ n lookupOrInsert counted⊕n x with lookup counted⊕n x ... | yes x∈counted = inj₁ x∈counted ... | no x∉counted with lookup‼ counted⊕n x x∉counted ... | (n , refl) = inj₂ (n , refl , insert counted⊕n x x∉counted)
40.199074
107
0.551883
4ed3dbb6e9c7c535e87a4e6f42af8a16412010c5
32
agda
Agda
Categories/Pushout.agda
copumpkin/categories
36f4181d751e2ecb54db219911d8c69afe8ba892
[ "BSD-3-Clause" ]
98
2015-04-15T14:57:33.000Z
2022-03-08T05:20:36.000Z
Categories/Pushout.agda
p-pavel/categories
e41aef56324a9f1f8cf3cd30b2db2f73e01066f2
[ "BSD-3-Clause" ]
19
2015-05-23T06:47:10.000Z
2019-08-09T16:31:40.000Z
Categories/Pushout.agda
p-pavel/categories
e41aef56324a9f1f8cf3cd30b2db2f73e01066f2
[ "BSD-3-Clause" ]
23
2015-02-05T13:03:09.000Z
2021-11-11T13:50:56.000Z
module Categories.Pushout where
16
31
0.875
367a1fc1faa311b4aa7539c2ad9197a23b65c122
4,083
agda
Agda
LibraBFT/Base/Types.agda
haroldcarr/bft-consensus-agda
34e4627855fb198665d0c98f377403a906ba75d7
[ "UPL-1.0" ]
null
null
null
LibraBFT/Base/Types.agda
haroldcarr/bft-consensus-agda
34e4627855fb198665d0c98f377403a906ba75d7
[ "UPL-1.0" ]
null
null
null
LibraBFT/Base/Types.agda
haroldcarr/bft-consensus-agda
34e4627855fb198665d0c98f377403a906ba75d7
[ "UPL-1.0" ]
null
null
null
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020, 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Prelude open import LibraBFT.Hash open import LibraBFT.Base.PKCS open import LibraBFT.Base.Encode -- The ground types that are common across Abstract, Concrete and Impl -- and some utility types module LibraBFT.Base.Types where EpochId : Set EpochId = ℕ Round : Set Round = ℕ -- This was intended to be a simple way to flag meta-information without having it -- getting in the way. It's important to ensure that an implementation does not -- use various information, such as who is honest. However, we found this got in -- the way too much during development, so for now we get a similar effect by using -- a naming convention and enforcement via grep and eyeballs. Maybe one day... Meta : ∀{ℓ} → Set ℓ → Set ℓ Meta x = x -- An EPRound is a 'compound round'; that is, -- is a round coupled with an epoch id. As most of our -- proofs are per-epoch so far, these are not used, but -- they may be in future. EpRound : Set EpRound = EpochId × Round sucr : EpRound → EpRound sucr (e , r) = (e , suc r) epr-epoch : EpRound → EpochId epr-epoch = proj₁ epr-round : EpRound → Round epr-round = proj₂ epr₀ : EpRound epr₀ = (0 , 0) -- Compound rounds admit a total order data _<ER_ : EpRound → EpRound → Set where ince : ∀{e₀ e₁ r₀ r₁} → e₀ < e₁ → (e₀ , r₀) <ER (e₁ , r₁) incr : ∀{e r₀ r₁} → r₀ < r₁ → (e , r₀) <ER (e , r₁) <ER-irrelevant : Irrelevant _<ER_ <ER-irrelevant (ince x) (ince x₁) = cong ince (<-irrelevant x x₁) <ER-irrelevant (ince x) (incr x₁) = ⊥-elim (<-irrefl refl x) <ER-irrelevant (incr x) (ince x₁) = ⊥-elim (<-irrefl refl x₁) <ER-irrelevant (incr x) (incr x₁) = cong incr (<-irrelevant x x₁) <ER-asym : Asymmetric _<ER_ <ER-asym (ince x) (ince x₁) = <-asym x x₁ <ER-asym (ince x) (incr x₁) = <-irrefl refl x <ER-asym (incr x) (ince x₁) = <-irrefl refl x₁ <ER-asym (incr x) (incr x₁) = <-asym x x₁ <ER-trans : Transitive _<ER_ <ER-trans (ince x) (ince x₁) = ince (<-trans x x₁) <ER-trans (ince x) (incr x₁) = ince x <ER-trans (incr x) (ince x₁) = ince x₁ <ER-trans (incr x) (incr x₁) = incr (<-trans x x₁) <ER-irrefl : Irreflexive _≡_ _<ER_ <ER-irrefl refl (ince x) = <-irrefl refl x <ER-irrefl refl (incr x) = <-irrefl refl x postulate -- prove, if needed/used <ER-cmp : Trichotomous _≡_ _<ER_ {- This <ER relation is not currently used. If it turns out to be used: TODO-1: finish this proof <ER-cmp (e₀ , r₀) (e₁ , r₁) with <-cmp e₀ e₁ ...| tri≈ e₀≮e₁ refl e₁≮e₀ = {!!} {!!} {!!} ...| tri< e₀<e₁ e₀≢e₁ e₁≮e₀ = tri< (ince e₀<e₁) {!!} {!!} ...| tri> e₀≮e₁ e₀≢e₁ e₁<e₀ = {!!} -} ep≮epr₀ : ∀{ep} → ¬ (ep <ER epr₀) ep≮epr₀ (ince ()) ep≮epr₀ (incr ()) _≤ER_ : EpRound → EpRound → Set er₀ ≤ER er₁ = er₀ ≡ er₁ ⊎ er₀ <ER er₁ ≤ER⇒epoch≤ : ∀{er₀ er₁} → er₀ ≤ER er₁ → epr-epoch er₀ ≤ epr-epoch er₁ ≤ER⇒epoch≤ (inj₁ refl) = ≤-refl ≤ER⇒epoch≤ (inj₂ (ince x)) = <⇒≤ x ≤ER⇒epoch≤ (inj₂ (incr x)) = ≤-refl ≤ER⇒round≤ : ∀{er₀ er₁} → er₀ ≤ER er₁ → epr-epoch er₀ ≡ epr-epoch er₁ → epr-round er₀ ≤ epr-round er₁ ≤ER⇒round≤ (inj₁ refl) hyp1 = ≤-refl ≤ER⇒round≤ (inj₂ (ince x)) refl = ⊥-elim (<-irrefl refl x) ≤ER⇒round≤ (inj₂ (incr x)) hyp1 = <⇒≤ x ≤ER-intro : ∀{e₀ e₁ r₀ r₁} → e₀ ≤ e₁ → r₀ ≤ r₁ → (e₀ , r₀) ≤ER (e₁ , r₁) ≤ER-intro {e0} {e1} {r0} {r1} e r with e0 ≟ℕ e1 ...| no le = inj₂ (ince (≤∧≢⇒< e le)) ...| yes refl with r0 ≟ℕ r1 ...| no le = inj₂ (incr (≤∧≢⇒< r le)) ...| yes refl = inj₁ refl er≤0⇒er≡0 : ∀{er} → er ≤ER epr₀ → er ≡ epr₀ er≤0⇒er≡0 (inj₁ x) = x er≤0⇒er≡0 (inj₂ (ince ())) er≤0⇒er≡0 (inj₂ (incr ())) <⇒≤ER : ∀{er₀ er₁} → er₀ <ER er₁ → er₀ ≤ER er₁ <⇒≤ER = inj₂ ≤ER-refl : Reflexive _≤ER_ ≤ER-refl = inj₁ refl postulate -- prove, if needed/used ≤ER-trans : Transitive _≤ER_
32.927419
111
0.605682
7cd7654b58328c39d0085354770a0f64ed44ef57
382
agda
Agda
src/Definitions/Semiring.agda
Akshobhya1234/Agda-Algebra
72030f78934877ad67bf4e36e74e43845cabbf55
[ "MIT" ]
2
2021-08-15T06:16:13.000Z
2021-08-17T09:14:03.000Z
src/Definitions/Semiring.agda
Akshobhya1234/Agda-Algebra
72030f78934877ad67bf4e36e74e43845cabbf55
[ "MIT" ]
3
2022-01-02T20:50:34.000Z
2022-01-31T18:19:52.000Z
src/Definitions/Semiring.agda
Akshobhya1234/agda-NonAssociativeAlgebra
443e831e536b756acbd1afd0d6bae7bc0d288048
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} open import Algebra.Bundles using (Semiring) -- Credit: This definition is taken from the stdlib issue #1175 -- As given by @MatthewDaggitt and @mechvel module Definitions.Semiring {α α≈} (R : Semiring α α≈) where open Semiring R record NonZero (x : Carrier) : Set α≈ where constructor mkNonZero field nonZero : x ≉ 0#
23.875
63
0.675393
7c102e8cfabc63a931abd4b95569682dcaa75022
4,648
agda
Agda
Core.agda
esoeylemez/agda-simple
d9245e5a8b2e902781736de09bd17e81022f6f13
[ "BSD-3-Clause" ]
1
2019-10-07T17:36:42.000Z
2019-10-07T17:36:42.000Z
Core.agda
esoeylemez/agda-simple
d9245e5a8b2e902781736de09bd17e81022f6f13
[ "BSD-3-Clause" ]
null
null
null
Core.agda
esoeylemez/agda-simple
d9245e5a8b2e902781736de09bd17e81022f6f13
[ "BSD-3-Clause" ]
null
null
null
-- Copyright: (c) 2016 Ertugrul Söylemez -- License: BSD3 -- Maintainer: Ertugrul Söylemez <esz@posteo.de> -- -- This module contains definitions that are fundamental and/or used -- everywhere. module Core where open import Agda.Builtin.Equality public renaming (refl to ≡-refl) using (_≡_) open import Agda.Builtin.FromNat public open import Agda.Builtin.FromNeg public open import Agda.Builtin.FromString public open import Agda.Builtin.Unit using (⊤; tt) public open import Agda.Primitive using (Level; lsuc; lzero; _⊔_) public -- An empty type (or a false hypothesis). data ⊥ : Set where -- Dependent sums (or existential quantification). record Σ {a b} (A : Set a) (B : A → Set b) : Set (a ⊔ b) where constructor _,_ field fst : A snd : B fst open Σ public infixr 4 _,_ infixr 0 _because_ _because:_ ∃ : ∀ {a b} {A : Set a} (B : A → Set b) → Set (a ⊔ b) ∃ = Σ _ _because_ : ∀ {a b} {A : Set a} {B : A → Set b} → (x : A) → B x → Σ A B _because_ = _,_ _because:_ : ∀ {a b} {A : Set a} {B : A → Set b} → (x : A) → B x → Σ A B _because:_ = _,_ _×_ : ∀ {a b} (A : Set a) (B : Set b) → Set (a ⊔ b) A × B = Σ A (λ _ → B) infixr 7 _×_ -- Tagged unions. data Either {a} {b} (A : Set a) (B : Set b) : Set (a ⊔ b) where Left : A → Either A B Right : B → Either A B -- Equivalence relations. record Equiv {a r} (A : Set a) : Set (a ⊔ lsuc r) where field _≈_ : A → A → Set r refl : ∀ {x} → x ≈ x sym : ∀ {x y} → x ≈ y → y ≈ x trans : ∀ {x y z} → x ≈ y → y ≈ z → x ≈ z infix 4 _≈_ -- Helper functions for equational reasoning. begin_ : ∀ {x y} → x ≈ y → x ≈ y begin_ p = p _≈[_]_ : ∀ x {y z} → x ≈ y → y ≈ z → x ≈ z _ ≈[ x≈y ] y≈z = trans x≈y y≈z _≈[]_ : ∀ x {y} → x ≈ y → x ≈ y _ ≈[] p = p _qed : ∀ (x : A) → x ≈ x _qed _ = refl infix 1 begin_ infixr 2 _≈[_]_ _≈[]_ infix 3 _qed PropEq : ∀ {a} → (A : Set a) → Equiv A PropEq A = record { _≈_ = _≡_; refl = ≡-refl; sym = sym'; trans = trans' } where sym' : ∀ {x y} → x ≡ y → y ≡ x sym' ≡-refl = ≡-refl trans' : ∀ {x y z} → x ≡ y → y ≡ z → x ≡ z trans' ≡-refl q = q module PropEq {a} {A : Set a} = Equiv (PropEq A) FuncEq : ∀ {a b} (A : Set a) (B : Set b) → Equiv (A → B) FuncEq A B = record { _≈_ = λ f g → ∀ x → f x ≡ g x; refl = λ _ → ≡-refl; sym = λ p x → PropEq.sym (p x); trans = λ p q x → PropEq.trans (p x) (q x) } module FuncEq {a b} {A : Set a} {B : Set b} = Equiv (FuncEq A B) cong : ∀ {a b} {A : Set a} {B : Set b} (f : A → B) {x y} → x ≡ y → f x ≡ f y cong _ ≡-refl = ≡-refl cong2 : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} (f : A → B → C) → ∀ {x1 x2 : A} {y1 y2 : B} → x1 ≡ x2 → y1 ≡ y2 → f x1 y1 ≡ f x2 y2 cong2 _ ≡-refl ≡-refl = ≡-refl -- Partial orders. record PartialOrder {a re rl} (A : Set a) : Set (a ⊔ lsuc (re ⊔ rl)) where field Eq : Equiv {r = re} A module ≈ = Equiv Eq open ≈ public using (_≈_) field _≤_ : (x : A) → (y : A) → Set rl antisym : ∀ {x y} → x ≤ y → y ≤ x → x ≈ y refl' : ∀ {x y} → x ≈ y → x ≤ y trans : ∀ {x y z} → x ≤ y → y ≤ z → x ≤ z infix 4 _≤_ refl : ∀ {x} → x ≤ x refl = refl' ≈.refl -- Helper functions for transitivity reasoning. begin_ : ∀ {x y} → x ≤ y → x ≤ y begin_ p = p _≤[_]_ : ∀ x {y z} → x ≤ y → y ≤ z → x ≤ z _ ≤[ x≤y ] y≤z = trans x≤y y≤z _≤[]_ : ∀ x {y} → x ≤ y → x ≤ y _ ≤[] p = p _qed : ∀ (x : A) → x ≤ x _qed _ = refl infix 1 begin_ infixr 2 _≤[_]_ _≤[]_ infix 3 _qed -- Total orders. record TotalOrder {a re rl} (A : Set a) : Set (a ⊔ lsuc (re ⊔ rl)) where field partialOrder : PartialOrder {a} {re} {rl} A open PartialOrder partialOrder public field total : ∀ x y → Either (x ≤ y) (y ≤ x) -- Low-priority function application. _$_ : ∀ {a} {A : Set a} → A → A _$_ f = f infixr 0 _$_ -- Given two predicates, this is the predicate that requires both. _and_ : ∀ {a r1 r2} {A : Set a} → (A → Set r1) → (A → Set r2) → A → Set (r1 ⊔ r2) (P and Q) x = P x × Q x infixr 6 _and_ -- Use instance resolution to find a value of the target type. it : ∀ {a} {A : Set a} {{_ : A}} → A it {{x}} = x -- Not. not : ∀ {a} → Set a → Set a not A = A → ⊥ -- Given two predicates, this is the predicate that requires at least -- one of them. _or_ : ∀ {a r1 r2} {A : Set a} → (A → Set r1) → (A → Set r2) → A → Set (r1 ⊔ r2) (P or Q) x = Either (P x) (Q x) -- Values with inline type signatures. the : ∀ {a} (A : Set a) → A → A the _ x = x -- Decidable properties. data Decision {a} (P : Set a) : Set a where yes : (p : P) → Decision P no : (np : not P) → Decision P
20.936937
81
0.516351
363435c89ebab9d0e8ebd48948e9a888bd2ac8d8
11,421
agda
Agda
fracGC/PiMemSem.agda
JacquesCarette/pi-dual
003835484facfde0b770bc2b3d781b42b76184c1
[ "BSD-2-Clause" ]
14
2015-08-18T21:40:15.000Z
2021-05-05T01:07:57.000Z
fracGC/PiMemSem.agda
JacquesCarette/pi-dual
003835484facfde0b770bc2b3d781b42b76184c1
[ "BSD-2-Clause" ]
4
2018-06-07T16:27:41.000Z
2021-10-29T20:41:23.000Z
fracGC/PiMemSem.agda
JacquesCarette/pi-dual
003835484facfde0b770bc2b3d781b42b76184c1
[ "BSD-2-Clause" ]
3
2016-05-29T01:56:33.000Z
2019-09-10T09:47:13.000Z
{-# OPTIONS --without-K --safe #-} module PiMemSem where open import Function open import Data.Nat open import Data.Nat.Properties open import Data.Fin as Fin using (Fin; zero; suc) open import Data.Vec open import Data.Vec.Relation.Unary.Any.Properties open import Data.Vec.Any hiding (map) open import Data.Empty using (⊥) open import Data.Unit using (⊤; tt) open import Data.Sum using (_⊎_; inj₁; inj₂) open import Data.Product using (_×_; _,_; proj₁; proj₂; Σ-syntax) open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans; cong; cong₂; subst) infixr 70 _×ᵤ_ infixr 60 _+ᵤ_ infixr 50 _⊚_ infix 80 ∣_∣ infix 100 !_ data 𝕌 : Set where 𝟘 : 𝕌 𝟙 : 𝕌 _+ᵤ_ : 𝕌 → 𝕌 → 𝕌 _×ᵤ_ : 𝕌 → 𝕌 → 𝕌 ⟦_⟧ : (A : 𝕌) → Set ⟦ 𝟘 ⟧ = ⊥ ⟦ 𝟙 ⟧ = ⊤ ⟦ t₁ +ᵤ t₂ ⟧ = ⟦ t₁ ⟧ ⊎ ⟦ t₂ ⟧ ⟦ t₁ ×ᵤ t₂ ⟧ = ⟦ t₁ ⟧ × ⟦ t₂ ⟧ data _⟷_ : 𝕌 → 𝕌 → Set where unite₊l : {t : 𝕌} → 𝟘 +ᵤ t ⟷ t uniti₊l : {t : 𝕌} → t ⟷ 𝟘 +ᵤ t unite₊r : {t : 𝕌} → t +ᵤ 𝟘 ⟷ t uniti₊r : {t : 𝕌} → t ⟷ t +ᵤ 𝟘 swap₊ : {t₁ t₂ : 𝕌} → t₁ +ᵤ t₂ ⟷ t₂ +ᵤ t₁ assocl₊ : {t₁ t₂ t₃ : 𝕌} → t₁ +ᵤ (t₂ +ᵤ t₃) ⟷ (t₁ +ᵤ t₂) +ᵤ t₃ assocr₊ : {t₁ t₂ t₃ : 𝕌} → (t₁ +ᵤ t₂) +ᵤ t₃ ⟷ t₁ +ᵤ (t₂ +ᵤ t₃) unite⋆l : {t : 𝕌} → 𝟙 ×ᵤ t ⟷ t uniti⋆l : {t : 𝕌} → t ⟷ 𝟙 ×ᵤ t unite⋆r : {t : 𝕌} → t ×ᵤ 𝟙 ⟷ t uniti⋆r : {t : 𝕌} → t ⟷ t ×ᵤ 𝟙 swap⋆ : {t₁ t₂ : 𝕌} → t₁ ×ᵤ t₂ ⟷ t₂ ×ᵤ t₁ assocl⋆ : {t₁ t₂ t₃ : 𝕌} → t₁ ×ᵤ (t₂ ×ᵤ t₃) ⟷ (t₁ ×ᵤ t₂) ×ᵤ t₃ assocr⋆ : {t₁ t₂ t₃ : 𝕌} → (t₁ ×ᵤ t₂) ×ᵤ t₃ ⟷ t₁ ×ᵤ (t₂ ×ᵤ t₃) absorbr : {t : 𝕌} → 𝟘 ×ᵤ t ⟷ 𝟘 absorbl : {t : 𝕌} → t ×ᵤ 𝟘 ⟷ 𝟘 factorzr : {t : 𝕌} → 𝟘 ⟷ t ×ᵤ 𝟘 factorzl : {t : 𝕌} → 𝟘 ⟷ 𝟘 ×ᵤ t dist : {t₁ t₂ t₃ : 𝕌} → (t₁ +ᵤ t₂) ×ᵤ t₃ ⟷ (t₁ ×ᵤ t₃) +ᵤ (t₂ ×ᵤ t₃) factor : {t₁ t₂ t₃ : 𝕌} → (t₁ ×ᵤ t₃) +ᵤ (t₂ ×ᵤ t₃) ⟷ (t₁ +ᵤ t₂) ×ᵤ t₃ distl : {t₁ t₂ t₃ : 𝕌} → t₁ ×ᵤ (t₂ +ᵤ t₃) ⟷ (t₁ ×ᵤ t₂) +ᵤ (t₁ ×ᵤ t₃) factorl : {t₁ t₂ t₃ : 𝕌 } → (t₁ ×ᵤ t₂) +ᵤ (t₁ ×ᵤ t₃) ⟷ t₁ ×ᵤ (t₂ +ᵤ t₃) id⟷ : {t : 𝕌} → t ⟷ t _⊚_ : {t₁ t₂ t₃ : 𝕌} → (t₁ ⟷ t₂) → (t₂ ⟷ t₃) → (t₁ ⟷ t₃) _⊕_ : {t₁ t₂ t₃ t₄ : 𝕌} → (t₁ ⟷ t₃) → (t₂ ⟷ t₄) → (t₁ +ᵤ t₂ ⟷ t₃ +ᵤ t₄) _⊗_ : {t₁ t₂ t₃ t₄ : 𝕌} → (t₁ ⟷ t₃) → (t₂ ⟷ t₄) → (t₁ ×ᵤ t₂ ⟷ t₃ ×ᵤ t₄) !_ : {A B : 𝕌} → A ⟷ B → B ⟷ A ! unite₊l = uniti₊l ! uniti₊l = unite₊l ! unite₊r = uniti₊r ! uniti₊r = unite₊r ! swap₊ = swap₊ ! assocl₊ = assocr₊ ! assocr₊ = assocl₊ ! unite⋆l = uniti⋆l ! uniti⋆l = unite⋆l ! unite⋆r = uniti⋆r ! uniti⋆r = unite⋆r ! swap⋆ = swap⋆ ! assocl⋆ = assocr⋆ ! assocr⋆ = assocl⋆ ! absorbr = factorzl ! absorbl = factorzr ! factorzr = absorbl ! factorzl = absorbr ! dist = factor ! factor = dist ! distl = factorl ! factorl = distl ! id⟷ = id⟷ ! (c₁ ⊚ c₂) = (! c₂) ⊚ (! c₁) ! (c₁ ⊕ c₂) = (! c₁) ⊕ (! c₂) ! (c₁ ⊗ c₂) = (! c₁) ⊗ (! c₂) ∣_∣ : (A : 𝕌) → ℕ ∣ 𝟘 ∣ = 0 ∣ 𝟙 ∣ = 1 ∣ A₁ +ᵤ A₂ ∣ = ∣ A₁ ∣ + ∣ A₂ ∣ ∣ A₁ ×ᵤ A₂ ∣ = ∣ A₁ ∣ * ∣ A₂ ∣ Vec× : ∀ {n m} {A B : Set} → Vec A n → Vec B m → Vec (A × B) (n * m) Vec× va vb = concat (map (λ a₁ → map (a₁ ,_) vb) va) ∈map : ∀ {ℓ₁ ℓ₂} {n} {A : Set ℓ₁} {B : Set ℓ₂} {v : Vec A n} → (f : A → B) → (a : A) → Any (a ≡_) v → Any (f a ≡_) (map f v) ∈map f a (here refl) = here refl ∈map f a (there a∈v) = there (∈map f a a∈v) inVec× : ∀ {n m} {A B : Set} → (va : Vec A n) → (vb : Vec B m) → (a : A) (b : B) → Any (a ≡_) va → Any (b ≡_) vb → Any ((a , b) ≡_) (Vec× va vb) inVec× (a ∷ va) vb .a b (here refl) b∈vb = ++⁺ˡ {xs = map (a ,_) vb} (∈map _ _ b∈vb) inVec× (x ∷ va) vb a b (there a∈va) b∈vb = ++⁺ʳ (map (x ,_) vb) (inVec× va vb a b a∈va b∈vb) any≡← : ∀ {ℓ} {A : Set ℓ} {n} {a} → (v : Vec A n) → (i : Fin n) → a ≡ lookup v i → Any (a ≡_) v any≡← (_ ∷ _) Fin.0F refl = here refl any≡← (_ ∷ v) (suc i) refl = there (any≡← v i refl) Enum : (A : 𝕌) → Vec ⟦ A ⟧ ∣ A ∣ Enum 𝟘 = [] Enum 𝟙 = tt ∷ [] Enum (A₁ +ᵤ A₂) = map inj₁ (Enum A₁) ++ map inj₂ (Enum A₂) Enum (A₁ ×ᵤ A₂) = Vec× (Enum A₁) (Enum A₂) Find : {A : 𝕌} (x : ⟦ A ⟧) → Σ[ i ∈ Fin ∣ A ∣ ] (x ≡ lookup (Enum A) i) Find {𝟘} () Find {𝟙} tt = index tt∈𝟙 , lookup-index tt∈𝟙 where tt∈𝟙 : Any (tt ≡_) (Enum 𝟙) tt∈𝟙 = here refl Find {A₁ +ᵤ A₂} (inj₁ x) = let i , p₁ = Find x in let x∈A₁ : Any ((inj₁ x) ≡_) (Enum (A₁ +ᵤ A₂)) x∈A₁ = ++⁺ˡ {xs = map inj₁ (Enum A₁)} (∈map inj₁ x (any≡← _ i p₁)) in index x∈A₁ , lookup-index x∈A₁ Find {A₁ +ᵤ A₂} (inj₂ y) = let j , p₂ = Find y in let y∈A₂ : Any ((inj₂ y) ≡_) (Enum (A₁ +ᵤ A₂)) y∈A₂ = ++⁺ʳ (map inj₁ (Enum A₁)) (∈map inj₂ y (any≡← _ j p₂)) in index y∈A₂ , lookup-index y∈A₂ Find {A₁ ×ᵤ A₂} (x , y) = let i , p₁ = Find x j , p₂ = Find y in let xy∈A₁×A₂ : Any ((x , y) ≡_) (Enum (A₁ ×ᵤ A₂)) xy∈A₁×A₂ = inVec× (Enum A₁) (Enum A₂) x y (any≡← (Enum A₁) i p₁) (any≡← (Enum A₂) j p₂) in index xy∈A₁×A₂ , lookup-index xy∈A₁×A₂ Find' : {A : 𝕌} (x : ⟦ A ⟧) → Fin ∣ A ∣ Find' = proj₁ ∘ Find card= : {t₁ t₂ : 𝕌} (C : t₁ ⟷ t₂) → (∣ t₁ ∣ ≡ ∣ t₂ ∣) card= unite₊l = refl card= uniti₊l = refl card= unite₊r = +-identityʳ _ card= uniti₊r = sym $ +-identityʳ _ card= {t₁ +ᵤ t₂} swap₊ = +-comm ∣ t₁ ∣ ∣ t₂ ∣ card= {t₁ +ᵤ t₂ +ᵤ t₃} assocl₊ = sym $ +-assoc ∣ t₁ ∣ _ _ card= {(t₁ +ᵤ t₂) +ᵤ t₃} assocr₊ = +-assoc ∣ t₁ ∣ ∣ t₂ ∣ _ card= {_} {t₂} unite⋆l rewrite +-identityʳ ∣ t₂ ∣ = refl card= {t₁} {_} uniti⋆l rewrite +-identityʳ ∣ t₁ ∣ = refl card= {_} {t₂} unite⋆r rewrite *-identityʳ ∣ t₂ ∣ = refl card= {t₁} {_} uniti⋆r rewrite *-identityʳ ∣ t₁ ∣ = refl card= {t₁ ×ᵤ t₂} {_} swap⋆ rewrite *-comm ∣ t₁ ∣ ∣ t₂ ∣ = refl card= {t₁ ×ᵤ t₂ ×ᵤ t₃} {_} assocl⋆ rewrite *-assoc ∣ t₁ ∣ ∣ t₂ ∣ (∣ t₃ ∣) = refl card= {(t₁ ×ᵤ t₂) ×ᵤ t₃} {_} assocr⋆ rewrite *-assoc ∣ t₁ ∣ ∣ t₂ ∣ (∣ t₃ ∣) = refl card= absorbr = refl card= {t ×ᵤ 𝟘} {_} absorbl rewrite *-zeroʳ ∣ t ∣ = refl card= {_} {t ×ᵤ 𝟘} factorzr rewrite *-zeroʳ ∣ t ∣ = refl card= factorzl = refl card= {(t₁ +ᵤ t₂) ×ᵤ t₃} {_} dist rewrite *-distribʳ-+ ∣ t₃ ∣ ∣ t₁ ∣ (∣ t₂ ∣) = refl card= {_} {(t₁ +ᵤ t₂) ×ᵤ t₃} factor rewrite *-distribʳ-+ ∣ t₃ ∣ ∣ t₁ ∣ (∣ t₂ ∣) = refl card= {t₃ ×ᵤ (t₁ +ᵤ t₂)} {_} distl rewrite *-distribˡ-+ ∣ t₃ ∣ ∣ t₁ ∣ (∣ t₂ ∣) = refl card= {_} {t₃ ×ᵤ (t₁ +ᵤ t₂)} factorl rewrite *-distribˡ-+ ∣ t₃ ∣ ∣ t₁ ∣ (∣ t₂ ∣) = refl card= id⟷ = refl card= (c₁ ⊚ c₂) = trans (card= c₁) (card= c₂) card= (c₁ ⊕ c₂) = cong₂ _+_ (card= c₁) (card= c₂) card= (c₁ ⊗ c₂) = cong₂ _*_ (card= c₁) (card= c₂) data State (A : 𝕌) : Set where ⟪_[_]⟫ : Vec ⟦ A ⟧ ∣ A ∣ → Fin ∣ A ∣ → State A resolve : {A : 𝕌} → State A → ⟦ A ⟧ resolve ⟪ v [ i ]⟫ = lookup v i st : {A B : 𝕌} → ⟦ A ⟧ → (c : A ⟷ B) → Σ[ C ∈ 𝕌 ] (C ⟷ B × State C) st (inj₂ y) (unite₊l {t}) = _ , id⟷ , ⟪ Enum t [ Find' y ]⟫ st a (uniti₊l {t}) = _ , id⟷ , ⟪ (Enum (𝟘 +ᵤ t)) [ Find' a ]⟫ st (inj₁ x) (unite₊r {t}) = _ , id⟷ , ⟪ Enum t [ Find' x ]⟫ st a (uniti₊r {t}) = _ , id⟷ , ⟪ (Enum (t +ᵤ 𝟘)) [ Find' {t +ᵤ 𝟘} (inj₁ a) ]⟫ st (inj₁ x) (swap₊ {t₁} {t₂}) = _ , id⟷ , ⟪ Enum _ [ Find' {t₂ +ᵤ t₁} (inj₂ x) ]⟫ st (inj₂ y) (swap₊ {t₁} {t₂}) = _ , id⟷ , ⟪ Enum _ [ Find' {t₂ +ᵤ t₁} (inj₁ y) ]⟫ st (inj₁ x) (assocl₊ {t₁} {t₂} {t₃}) = _ , id⟷ , ⟪ Enum _ [ Find' {(t₁ +ᵤ t₂) +ᵤ t₃} (inj₁ (inj₁ x)) ]⟫ st (inj₂ (inj₁ x)) (assocl₊ {t₁} {t₂} {t₃}) = _ , id⟷ , ⟪ Enum _ [ Find' {(t₁ +ᵤ t₂) +ᵤ t₃} (inj₁ (inj₂ x)) ]⟫ st (inj₂ (inj₂ y)) (assocl₊ {t₁} {t₂} {t₃}) = _ , id⟷ , ⟪ Enum _ [ Find' {(t₁ +ᵤ t₂) +ᵤ t₃} (inj₂ y) ]⟫ st (inj₁ (inj₁ x)) (assocr₊ {t₁} {t₂} {t₃}) = _ , id⟷ , ⟪ Enum _ [ Find' {t₁ +ᵤ t₂ +ᵤ t₃} (inj₁ x) ]⟫ st (inj₁ (inj₂ y)) (assocr₊ {t₁} {t₂} {t₃}) = _ , id⟷ , ⟪ Enum _ [ Find' {t₁ +ᵤ t₂ +ᵤ t₃} (inj₂ (inj₁ y)) ]⟫ st (inj₂ y) (assocr₊ {t₁} {t₂} {t₃}) = _ , id⟷ , ⟪ Enum _ [ Find' {t₁ +ᵤ t₂ +ᵤ t₃} (inj₂ (inj₂ y)) ]⟫ st (tt , y) unite⋆l = _ , id⟷ , ⟪ Enum _ [ Find' y ]⟫ st a uniti⋆l = _ , id⟷ , ⟪ Enum _ [ Find' (tt , a) ]⟫ st (x , tt) unite⋆r = _ , id⟷ , ⟪ Enum _ [ Find' x ]⟫ st a uniti⋆r = _ , id⟷ , ⟪ Enum _ [ Find' (a , tt) ]⟫ st (x , y) swap⋆ = _ , id⟷ , ⟪ Enum _ [ Find' (y , x) ]⟫ st (x , y , z) assocl⋆ = _ , id⟷ , ⟪ Enum _ [ Find' ((x , y) , z) ]⟫ st ((x , y) , z) assocr⋆ = _ , id⟷ , ⟪ Enum _ [ Find' (x , y , z) ]⟫ st (inj₁ x , y) (dist {t₁} {t₂} {t₃}) = _ , id⟷ , ⟪ Enum _ [ Find' {t₁ ×ᵤ t₃ +ᵤ t₂ ×ᵤ t₃} (inj₁ (x , y)) ]⟫ st (inj₂ x , y) (dist {t₁} {t₂} {t₃}) = _ , id⟷ , ⟪ Enum _ [ Find' {t₁ ×ᵤ t₃ +ᵤ t₂ ×ᵤ t₃} (inj₂ (x , y)) ]⟫ st (inj₁ (x , y)) (factor {t₁} {t₂} {t₃}) = _ , id⟷ , ⟪ Enum _ [ Find' {(t₁ +ᵤ t₂) ×ᵤ t₃} (inj₁ x , y) ]⟫ st (inj₂ (y , z)) (factor {t₁} {t₂} {t₃}) = _ , id⟷ , ⟪ Enum _ [ Find' {(t₁ +ᵤ t₂) ×ᵤ t₃} (inj₂ y , z) ]⟫ st (x , inj₁ y) (distl {t₁} {t₂} {t₃}) = _ , id⟷ , ⟪ Enum _ [ Find' {(t₁ ×ᵤ t₂) +ᵤ (t₁ ×ᵤ t₃)} (inj₁ (x , y)) ]⟫ st (x , inj₂ y) (distl {t₁} {t₂} {t₃}) = _ , id⟷ , ⟪ Enum _ [ Find' {(t₁ ×ᵤ t₂) +ᵤ (t₁ ×ᵤ t₃)} (inj₂ (x , y)) ]⟫ st (inj₁ (x , y)) (factorl {t₁} {t₂} {t₃}) = _ , id⟷ , ⟪ Enum _ [ Find' {t₁ ×ᵤ (t₂ +ᵤ t₃)} (x , inj₁ y) ]⟫ st (inj₂ (x , z)) (factorl {t₁} {t₂} {t₃}) = _ , id⟷ , ⟪ Enum _ [ Find' {t₁ ×ᵤ (t₂ +ᵤ t₃)} (x , inj₂ z) ]⟫ st a id⟷ = _ , id⟷ , ⟪ Enum _ [ Find' a ]⟫ st a (id⟷ ⊚ c) = _ , c , ⟪ Enum _ [ Find' a ]⟫ st a (c₁ ⊚ c₂) = let _ , c , st' = st a c₁ in _ , c ⊚ c₂ , st' st (inj₁ x) (_⊕_ {t₁} {t₂} {_} {t₄} id⟷ c₂) = _ , id⟷ , ⟪ Enum _ [ Find' {_ +ᵤ t₄} (inj₁ x) ]⟫ st (inj₁ x) (_⊕_ {t₁} {t₂} c₁ c₂) = let _ , c , st' = st x c₁ in _ , c ⊕ c₂ , ⟪ Enum _ [ Find' {_ +ᵤ t₂} (inj₁ $ resolve st') ]⟫ st (inj₂ y) (_⊕_ {t₁} {t₂} {t₃} {_} c₁ id⟷) = _ , id⟷ , ⟪ Enum _ [ Find' {t₃ +ᵤ _} (inj₂ y) ]⟫ st (inj₂ y) (_⊕_ {t₁} c₁ c₂) = let _ , c , st' = st y c₂ in _ , c₁ ⊕ c , ⟪ Enum _ [ Find' {t₁ +ᵤ _} (inj₂ $ resolve st') ]⟫ st (x , y) (id⟷ ⊗ id⟷) = _ , id⟷ , ⟪ Enum _ [ Find' (x , y) ]⟫ st (x , y) (id⟷ ⊗ c₂) = let _ , c , st' = st y c₂ in _ , id⟷ ⊗ c , ⟪ Enum _ [ Find' (x , resolve st') ]⟫ st (x , y) (c₁ ⊗ c₂) = let _ , c , st' = st x c₁ in _ , c ⊗ c₂ , ⟪ Enum _ [ Find' (resolve st' , y) ]⟫ step : {A B : 𝕌} (c : A ⟷ B) → State A → Σ[ C ∈ 𝕌 ] (C ⟷ B × State C) step c ⟪ v [ i ]⟫ = st (lookup v i) c data State' : ℕ → Set where ⟪_∥_[_]⟫ : {A B : 𝕌} → A ⟷ B → Vec ⟦ A ⟧ ∣ A ∣ → Fin ∣ A ∣ → State' ∣ A ∣ step' : ∀ {n} → State' n → State' n step' (⟪_∥_[_]⟫ {A} {B} c v i) with step c ⟪ v [ i ]⟫ ... | A' , c' , ⟪ v' [ i' ]⟫ rewrite card= (c ⊚ ! c') = ⟪ c' ∥ v' [ i' ]⟫ run : (sz n : ℕ) → (st : State' sz) → Vec (State' sz) (suc n) run sz 0 st = [ st ] run sz (suc n) st with run sz n st ... | sts with last sts ... | ⟪_∥_[_]⟫ {A} {B} cx vx ix rewrite +-comm 1 (suc n) = sts ++ [ step' ⟪ cx ∥ vx [ ix ]⟫ ] 𝔹 : 𝕌 𝔹 = 𝟙 +ᵤ 𝟙 pattern 𝔽 = inj₁ tt pattern 𝕋 = inj₂ tt CNOT : 𝔹 ×ᵤ 𝔹 ⟷ 𝔹 ×ᵤ 𝔹 CNOT = dist ⊚ (id⟷ ⊕ (id⟷ ⊗ swap₊)) ⊚ factor ex₁ : Vec (State' ∣ 𝔹 ×ᵤ 𝔹 ∣) 8 ex₁ = run ∣ 𝔹 ×ᵤ 𝔹 ∣ 7 ⟪ CNOT ∥ Enum (𝔹 ×ᵤ 𝔹) [ Fin.fromℕ 3 ]⟫
44.964567
117
0.435338
5e9d0d01f978a72e36610da8e2d7f93474598338
8,931
agda
Agda
src/Data/PropFormula/Theorems/Biimplication.agda
jonaprieto/agda-prop
a1730062a6aaced2bb74878c1071db06477044ae
[ "MIT" ]
13
2017-05-01T16:45:41.000Z
2022-01-17T03:33:12.000Z
src/Data/PropFormula/Theorems/Biimplication.agda
jonaprieto/agda-prop
a1730062a6aaced2bb74878c1071db06477044ae
[ "MIT" ]
18
2017-03-08T14:33:10.000Z
2017-12-18T16:34:21.000Z
src/Data/PropFormula/Theorems/Biimplication.agda
jonaprieto/agda-prop
a1730062a6aaced2bb74878c1071db06477044ae
[ "MIT" ]
2
2017-03-30T16:41:56.000Z
2017-12-01T17:01:25.000Z
------------------------------------------------------------------------------ -- Agda-Prop Library. -- Theorems of ⇔ connective. ------------------------------------------------------------------------------ open import Data.Nat using ( ℕ ) module Data.PropFormula.Theorems.Biimplication ( n : ℕ ) where ------------------------------------------------------------------------------ open import Data.PropFormula.Theorems.Classical n open import Data.PropFormula.Theorems.Implication n using ( ⊃-to-¬∨; ⊃⊃-to-∧⊃; ∧⊃-to-⊃⊃ ) open import Data.PropFormula.Theorems.Negation n using ( ¬-equiv₁ ; ¬-equiv₂; ¬∨-to-⊃; ¬¬-equiv₁; ¬¬-equiv₂ ) open import Data.PropFormula.Syntax n open import Function using ( _$_ ) ------------------------------------------------------------------------------ -- Theorem. ⇔-equiv₁ : ∀ {Γ} {φ ψ} → Γ ⊢ φ ⇔ ψ → Γ ⊢ (φ ⊃ ψ) ∧ (ψ ⊃ φ) -- Proof. ⇔-equiv₁ {Γ}{φ}{ψ} Γ⊢φ⇔ψ = ∧-intro (⊃-intro (⇔-elim₁ (assume φ) (weaken φ Γ⊢φ⇔ψ))) (⊃-intro (⇔-elim₂ (assume ψ) (weaken ψ Γ⊢φ⇔ψ))) -------------------------------------------------------------------------- ∎ -- Theorem. ⇔-equiv₂ : ∀ {Γ} {φ ψ} → Γ ⊢ (φ ⊃ ψ) ∧ (ψ ⊃ φ) → Γ ⊢ φ ⇔ ψ -- Proof. ⇔-equiv₂ {φ = φ}{ψ} Γ⊢⟪φ⊃ψ⟫∧⟪ψ⊃φ⟫ = ⇔-intro (⊃-elim (weaken φ (∧-proj₁ Γ⊢⟪φ⊃ψ⟫∧⟪ψ⊃φ⟫)) (assume φ)) (⊃-elim (weaken ψ (∧-proj₂ Γ⊢⟪φ⊃ψ⟫∧⟪ψ⊃φ⟫)) (assume ψ)) -------------------------------------------------------------------------- ∎ -- Theorem. ⇔-equiv : ∀ {Γ} {φ ψ} → Γ ⊢ (φ ⇔ ψ) ⇔ ((φ ⊃ ψ) ∧ (ψ ⊃ φ)) -- Proof. ⇔-equiv {Γ}{φ}{ψ} = ⇔-intro (⇔-equiv₁ (assume (φ ⇔ ψ))) (⇔-equiv₂ (assume ((φ ⊃ ψ) ∧ (ψ ⊃ φ)))) -------------------------------------------------------------------------- ∎ -- Theorem. ⇔-assoc₁ : ∀ {Γ} {φ ψ γ} → Γ ⊢ φ ⇔ (ψ ⇔ γ) → Γ ⊢ (φ ⇔ ψ) ⇔ γ -- Proof. ⇔-assoc₁ {Γ}{φ = φ}{ψ}{γ} thm = ⇔-intro (RAA (¬-elim (¬-intro (¬-elim (¬-intro (¬-elim (weaken φ $ weaken (ψ ⇔ γ) $ assume {Γ = Γ , φ ⇔ ψ} (¬ γ)) (⇔-elim₁ (⇔-elim₁ (assume {Γ = Γ , φ ⇔ ψ , ¬ γ , ψ ⇔ γ} φ) (weaken φ $ weaken (ψ ⇔ γ) (weaken (¬ γ) $ assume (φ ⇔ ψ)))) (⇔-elim₁ (assume {Γ = Γ , φ ⇔ ψ , ¬ γ , ψ ⇔ γ} φ) (weaken φ $ weaken (ψ ⇔ γ) $ weaken (¬ γ) $ weaken (φ ⇔ ψ) thm))))) (⇔-elim₂ (assume {Γ = Γ , φ ⇔ ψ , ¬ γ} (ψ ⇔ γ)) (weaken (ψ ⇔ γ) $ weaken (¬ γ) $ weaken (φ ⇔ ψ) thm)))) (⇔-intro (⊥-elim γ (¬-elim (⊥-elim (¬ ψ) (¬-elim (¬-intro -- ¬ φ (¬-elim (weaken φ $ weaken ψ $ assume {Γ = Γ , φ ⇔ ψ} (¬ γ)) (⇔-elim₁ (⇔-elim₁ (assume {Γ = Γ , φ ⇔ ψ , ¬ γ , ψ} φ) (weaken φ (weaken ψ (weaken (¬ γ) (assume (φ ⇔ ψ)))))) (⇔-elim₁ (assume {Γ = Γ , φ ⇔ ψ , ¬ γ , ψ} φ) (weaken φ $ weaken ψ $ weaken (¬ γ) $ weaken (φ ⇔ ψ) thm))))) (⇔-elim₂ -- φ (assume {Γ = Γ , φ ⇔ ψ , ¬ γ} ψ) (weaken ψ (weaken (¬ γ) (assume (φ ⇔ ψ))))))) (assume {Γ = Γ , φ ⇔ ψ , ¬ γ} ψ))) (⊥-elim ψ (¬-elim (weaken γ $ assume {Γ = Γ , φ ⇔ ψ} (¬ γ)) (assume {Γ = Γ , φ ⇔ ψ , ¬ γ} γ)))))) (⇔-intro (⇔-elim₂ (weaken φ $ assume γ) (⇔-elim₁ (assume {Γ = Γ , γ} φ) (weaken φ $ weaken γ thm))) (⇔-elim₂ (⇔-intro (weaken ψ $ weaken ψ $ assume γ) (weaken γ $ assume {Γ = Γ , γ} ψ)) (weaken ψ $ weaken γ thm))) -------------------------------------------------------------------------- ∎ -- Theorem. ⇔-assoc₂ : ∀ {Γ} {φ ψ γ} → Γ ⊢ (φ ⇔ ψ) ⇔ γ → Γ ⊢ φ ⇔ (ψ ⇔ γ) -- Proof. ⇔-assoc₂ {Γ}{φ}{ψ}{γ} thm = ⇔-intro (⇔-intro (⇔-elim₁ (⇔-intro (weaken φ (assume {Γ = Γ , φ} ψ)) (weaken ψ (weaken ψ (assume φ)))) (weaken ψ (weaken φ thm))) (⇔-elim₁ (weaken γ (assume φ)) (⇔-elim₂ (assume {Γ = Γ , φ} γ) (weaken γ (weaken φ thm))))) (RAA (¬-elim (¬-intro (¬-elim (¬-intro (¬-elim (weaken γ $ weaken (φ ⇔ ψ) $ assume {Γ = Γ , ψ ⇔ γ} (¬ φ)) (⇔-elim₂ (⇔-elim₂ (assume {Γ = Γ , ψ ⇔ γ , ¬ φ , (φ ⇔ ψ)} γ) (weaken γ $ weaken (φ ⇔ ψ) $ weaken (¬ φ) $ assume (ψ ⇔ γ))) (⇔-elim₂ (assume {Γ = Γ , ψ ⇔ γ , ¬ φ , (φ ⇔ ψ)} γ) (weaken γ $ weaken (φ ⇔ ψ) $ weaken (¬ φ) $ weaken (ψ ⇔ γ) thm))))) (⇔-elim₁ (assume {Γ = Γ , ψ ⇔ γ , ¬ φ} (φ ⇔ ψ)) (weaken (φ ⇔ ψ) (weaken (¬ φ) (weaken (ψ ⇔ γ) thm)))))) (⇔-intro (⊥-elim ψ (¬-elim (weaken φ $ assume {Γ = Γ , ψ ⇔ γ} (¬ φ)) (assume {Γ = Γ , ψ ⇔ γ , ¬ φ} φ))) (⊥-elim φ (¬-elim (⊥-elim (¬ ψ) (¬-elim (¬-intro (¬-elim (weaken γ $ weaken ψ $ assume {Γ = Γ , ψ ⇔ γ} (¬ φ)) (⇔-elim₂ (weaken γ $ assume {Γ = Γ , ψ ⇔ γ , ¬ φ} ψ) (⇔-elim₂ (assume {Γ = Γ , ψ ⇔ γ , ¬ φ , ψ} γ) (weaken γ $ weaken ψ $ weaken (¬ φ) $ weaken (ψ ⇔ γ) thm))))) (⇔-elim₁ (assume {Γ = Γ , ψ ⇔ γ , ¬ φ} ψ) (weaken ψ (weaken (¬ φ) (assume (ψ ⇔ γ))))))) (assume {Γ = Γ , ψ ⇔ γ , ¬ φ} ψ)))))) -------------------------------------------------------------------------- ∎ -- Theorem. ⇔-assoc : ∀ {Γ} {φ ψ γ} → Γ ⊢ (φ ⇔ (ψ ⇔ γ)) ⇔ ((φ ⇔ ψ) ⇔ γ) -- Proof. ⇔-assoc {φ = φ}{ψ}{γ} = ⇔-intro (⇔-assoc₁ (assume (φ ⇔ ψ ⇔ γ))) (⇔-assoc₂ (assume ((φ ⇔ ψ) ⇔ γ))) -------------------------------------------------------------------------- ∎ -- Theorem. ⇔-comm : ∀ {Γ} {φ ψ} → Γ ⊢ φ ⇔ ψ → Γ ⊢ ψ ⇔ φ -- Proof. ⇔-comm {Γ}{φ}{ψ} Γ⊢φ⇔ψ = ⇔-intro (⇔-elim₂ (assume ψ) (weaken ψ Γ⊢φ⇔ψ)) (⇔-elim₁ (assume φ) (weaken φ Γ⊢φ⇔ψ)) -------------------------------------------------------------------------- ∎ -- Theorem. ⊃-⇔-¬∨ : ∀ {Γ} {φ ψ} → Γ ⊢ (φ ⊃ ψ) ⇔ (¬ φ ∨ ψ) -- Proof. ⊃-⇔-¬∨ {Γ}{φ}{ψ} = ⇔-intro (⊃-to-¬∨ (assume (φ ⊃ ψ))) (¬∨-to-⊃ (assume (¬ φ ∨ ψ))) -------------------------------------------------------------------------- ∎ -- Theorem. bicon₀-thm : ∀ {Γ} {φ ψ} → Γ ⊢ φ ⇔ ψ → Γ ⊢ ¬ φ → Γ ⊢ ¬ ψ ⇔-¬-to-¬ = bicon₀-thm -- Proof. bicon₀-thm {Γ}{φ}{ψ} Γ⊢φ⇔ψ Γ⊢¬ψ = ¬-equiv₂ (⊃-intro (¬-elim (weaken ψ Γ⊢¬ψ) (⇔-elim₂ (assume ψ) (weaken ψ Γ⊢φ⇔ψ)))) -------------------------------------------------------------------------- ∎ -- Theorem. bicon₁-thm : ∀ {Γ} {φ ψ} → Γ ⊢ ¬ φ ⇔ ψ → Γ ⊢ φ → Γ ⊢ ¬ ψ ¬⇔-to-¬ = bicon₁-thm -- Proof. bicon₁-thm {Γ}{φ}{ψ} Γ⊢¬φ⇔ψ Γ⊢φ = ¬-equiv₂ (⊃-intro (¬-elim (⇔-elim₂ (assume ψ) (weaken ψ Γ⊢¬φ⇔ψ)) (weaken ψ Γ⊢φ))) -------------------------------------------------------------------------- ∎ -- Theorem. ¬-equiv : ∀ {Γ} {φ} → Γ ⊢ ¬ φ ⇔ (φ ⊃ ⊥) -- Proof. ¬-equiv {Γ}{φ} = ⇔-intro (¬-equiv₁ (assume (¬ φ))) (¬-equiv₂ (assume (φ ⊃ ⊥))) -------------------------------------------------------------------------- ∎ -- Theorem. ¬¬-equiv : ∀ {Γ} {φ} → Γ ⊢ ¬ (¬ φ) ⇔ φ -- Proof. ¬¬-equiv {Γ}{φ} = ⇔-intro (¬¬-equiv₁ (assume (¬ (¬ φ)))) (¬¬-equiv₂ (assume φ)) -------------------------------------------------------------------------- ∎ -- Theorem. ⊃⊃-⇔-∧⊃ : ∀ {Γ} {φ ψ γ} → Γ ⊢ (φ ⊃ (ψ ⊃ γ)) ⇔ ((φ ∧ ψ) ⊃ γ) -- Proof. ⊃⊃-⇔-∧⊃ {φ = φ}{ψ}{γ} = ⇔-intro (⊃⊃-to-∧⊃ (assume (φ ⊃ ψ ⊃ γ))) (∧⊃-to-⊃⊃ (assume (φ ∧ ψ ⊃ γ))) -------------------------------------------------------------------------- ∎ -- Theorem. ⇔-trans : ∀ {Γ} {φ ψ γ} → Γ ⊢ γ ⇔ φ → Γ ⊢ φ ⇔ ψ → Γ ⊢ γ ⇔ ψ subst⊢⇔₁ = ⇔-trans -- Proof. ⇔-trans {φ = φ}{ψ}{γ} Γ⊢γ⇔φ Γ⊢φ⇔ψ = ⇔-intro (⇔-elim₁ (⇔-elim₁ (assume γ) (weaken γ Γ⊢γ⇔φ)) (weaken γ Γ⊢φ⇔ψ)) (⇔-elim₂ (⇔-elim₂ (assume ψ) (weaken ψ Γ⊢φ⇔ψ)) (weaken ψ Γ⊢γ⇔φ)) -------------------------------------------------------------------------- ∎
26.580357
78
0.285074
2facd10a82fdc951a0525739f9b040747c529a68
12,831
agda
Agda
test/asset/agda-stdlib-1.0/Data/Container/Relation/Unary/Any/Properties.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Data/Container/Relation/Unary/Any/Properties.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Data/Container/Relation/Unary/Any/Properties.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- The Agda standard library -- -- Propertiers of any for containers ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Container.Relation.Unary.Any.Properties where open import Level open import Algebra open import Data.Product as Prod using (∃; _×_; ∃₂; _,_; proj₂) open import Data.Product.Function.NonDependent.Propositional using (_×-cong_) import Data.Product.Function.Dependent.Propositional as Σ open import Data.Sum using (_⊎_; inj₁; inj₂; [_,_]) open import Function open import Function.Equality using (_⟨$⟩_) open import Function.Equivalence using (equivalence) open import Function.HalfAdjointEquivalence using (_≃_; ↔→≃) open import Function.Inverse as Inv using (_↔_; inverse; module Inverse) open import Function.Related as Related using (Related; SK-sym) open import Function.Related.TypeIsomorphisms open import Relation.Unary using (Pred ; _∪_ ; _∩_) open import Relation.Binary using (REL) open import Relation.Binary.PropositionalEquality as P using (_≡_; _≗_; refl) open Related.EquationalReasoning hiding (_≡⟨_⟩_) private module ×⊎ {k ℓ} = CommutativeSemiring (×-⊎-commutativeSemiring k ℓ) open import Data.Container.Core import Data.Container.Combinator as C open import Data.Container.Combinator.Properties open import Data.Container.Related open import Data.Container.Relation.Unary.Any as Any using (◇; any) open import Data.Container.Membership module _ {s p} (C : Container s p) {x} {X : Set x} {ℓ} {P : Pred X ℓ} where -- ◇ can be unwrapped to reveal the Σ type ↔Σ : ∀ {xs : ⟦ C ⟧ X} → ◇ C P xs ↔ ∃ λ p → P (proj₂ xs p) ↔Σ {xs} = inverse ◇.proof any (λ _ → P.refl) (λ _ → P.refl) -- ◇ can be expressed using _∈_. ↔∈ : ∀ {xs : ⟦ C ⟧ X} → ◇ C P xs ↔ (∃ λ x → x ∈ xs × P x) ↔∈ {xs} = inverse to from (λ _ → P.refl) (to∘from) where to : ◇ C P xs → ∃ λ x → x ∈ xs × P x to (any (p , Px)) = (proj₂ xs p , (any (p , P.refl)) , Px) from : (∃ λ x → x ∈ xs × P x) → ◇ C P xs from (.(proj₂ xs p) , (any (p , refl)) , Px) = any (p , Px) to∘from : to ∘ from ≗ id to∘from (.(proj₂ xs p) , any (p , refl) , Px) = P.refl module _ {s p} {C : Container s p} {x} {X : Set x} {ℓ₁ ℓ₂} {P₁ : Pred X ℓ₁} {P₂ : Pred X ℓ₂} where -- ◇ is a congruence for bag and set equality and related preorders. cong : ∀ {k} {xs₁ xs₂ : ⟦ C ⟧ X} → (∀ x → Related k (P₁ x) (P₂ x)) → xs₁ ∼[ k ] xs₂ → Related k (◇ C P₁ xs₁) (◇ C P₂ xs₂) cong {k} {xs₁} {xs₂} P₁↔P₂ xs₁≈xs₂ = ◇ C P₁ xs₁ ↔⟨ ↔∈ C ⟩ (∃ λ x → x ∈ xs₁ × P₁ x) ∼⟨ Σ.cong Inv.id (xs₁≈xs₂ ×-cong P₁↔P₂ _) ⟩ (∃ λ x → x ∈ xs₂ × P₂ x) ↔⟨ SK-sym (↔∈ C) ⟩ ◇ C P₂ xs₂ ∎ -- Nested occurrences of ◇ can sometimes be swapped. module _ {s₁ s₂ p₁ p₂} {C₁ : Container s₁ p₁} {C₂ : Container s₂ p₂} {x y} {X : Set x} {Y : Set y} {r} {P : REL X Y r} where swap : {xs : ⟦ C₁ ⟧ X} {ys : ⟦ C₂ ⟧ Y} → let ◈ : ∀ {s p} {C : Container s p} {x} {X : Set x} {ℓ} → ⟦ C ⟧ X → Pred X ℓ → Set (p ⊔ ℓ) ◈ = λ {_} {_} → flip (◇ _) in ◈ xs (◈ ys ∘ P) ↔ ◈ ys (◈ xs ∘ flip P) swap {xs} {ys} = ◇ _ (λ x → ◇ _ (P x) ys) xs ↔⟨ ↔∈ C₁ ⟩ (∃ λ x → x ∈ xs × ◇ _ (P x) ys) ↔⟨ Σ.cong Inv.id $ Σ.cong Inv.id $ ↔∈ C₂ ⟩ (∃ λ x → x ∈ xs × ∃ λ y → y ∈ ys × P x y) ↔⟨ Σ.cong Inv.id (λ {x} → ∃∃↔∃∃ (λ _ y → y ∈ ys × P x y)) ⟩ (∃₂ λ x y → x ∈ xs × y ∈ ys × P x y) ↔⟨ ∃∃↔∃∃ (λ x y → x ∈ xs × y ∈ ys × P x y) ⟩ (∃₂ λ y x → x ∈ xs × y ∈ ys × P x y) ↔⟨ Σ.cong Inv.id (λ {y} → Σ.cong Inv.id (λ {x} → (x ∈ xs × y ∈ ys × P x y) ↔⟨ SK-sym Σ-assoc ⟩ ((x ∈ xs × y ∈ ys) × P x y) ↔⟨ Σ.cong (×-comm _ _) Inv.id ⟩ ((y ∈ ys × x ∈ xs) × P x y) ↔⟨ Σ-assoc ⟩ (y ∈ ys × x ∈ xs × P x y) ∎)) ⟩ (∃₂ λ y x → y ∈ ys × x ∈ xs × P x y) ↔⟨ Σ.cong Inv.id (λ {y} → ∃∃↔∃∃ {B = y ∈ ys} (λ x _ → x ∈ xs × P x y)) ⟩ (∃ λ y → y ∈ ys × ∃ λ x → x ∈ xs × P x y) ↔⟨ Σ.cong Inv.id (Σ.cong Inv.id (SK-sym (↔∈ C₁))) ⟩ (∃ λ y → y ∈ ys × ◇ _ (flip P y) xs) ↔⟨ SK-sym (↔∈ C₂) ⟩ ◇ _ (λ y → ◇ _ (flip P y) xs) ys ∎ -- Nested occurrences of ◇ can sometimes be flattened. module _ {s₁ s₂ p₁ p₂} {C₁ : Container s₁ p₁} {C₂ : Container s₂ p₂} {x} {X : Set x} {ℓ} (P : Pred X ℓ) where flatten : ∀ (xss : ⟦ C₁ ⟧ (⟦ C₂ ⟧ X)) → ◇ C₁ (◇ C₂ P) xss ↔ ◇ (C₁ C.∘ C₂) P (Inverse.from (Composition.correct C₁ C₂) ⟨$⟩ xss) flatten xss = inverse t f (λ _ → P.refl) (λ _ → P.refl) where ◇₁ = ◇ C₁; ◇₂ = ◇ C₂; ◇₁₂ = ◇ (C₁ C.∘ C₂) open Inverse t : ◇₁ (◇₂ P) xss → ◇₁₂ P (from (Composition.correct C₁ C₂) ⟨$⟩ xss) t (any (p₁ , (any (p₂ , p)))) = any (any (p₁ , p₂) , p) f : ◇₁₂ P (from (Composition.correct C₁ C₂) ⟨$⟩ xss) → ◇₁ (◇₂ P) xss f (any (any (p₁ , p₂) , p)) = any (p₁ , any (p₂ , p)) -- Sums commute with ◇ (for a fixed instance of a given container). module _ {s p} {C : Container s p} {x} {X : Set x} {ℓ ℓ′} {P : Pred X ℓ} {Q : Pred X ℓ′} where ◇⊎↔⊎◇ : ∀ {xs : ⟦ C ⟧ X} → ◇ C (P ∪ Q) xs ↔ (◇ C P xs ⊎ ◇ C Q xs) ◇⊎↔⊎◇ {xs} = inverse to from from∘to to∘from where to : ◇ C (λ x → P x ⊎ Q x) xs → ◇ C P xs ⊎ ◇ C Q xs to (any (pos , inj₁ p)) = inj₁ (any (pos , p)) to (any (pos , inj₂ q)) = inj₂ (any (pos , q)) from : ◇ C P xs ⊎ ◇ C Q xs → ◇ C (λ x → P x ⊎ Q x) xs from = [ Any.map₂ inj₁ , Any.map₂ inj₂ ] from∘to : from ∘ to ≗ id from∘to (any (pos , inj₁ p)) = P.refl from∘to (any (pos , inj₂ q)) = P.refl to∘from : to ∘ from ≗ id to∘from = [ (λ _ → P.refl) , (λ _ → P.refl) ] -- Products "commute" with ◇. module _ {s₁ s₂ p₁ p₂} {C₁ : Container s₁ p₁} {C₂ : Container s₂ p₂} {x y} {X : Set x} {Y : Set y} {ℓ ℓ′} {P : Pred X ℓ} {Q : Pred Y ℓ′} where ×◇↔◇◇× : ∀ {xs : ⟦ C₁ ⟧ X} {ys : ⟦ C₂ ⟧ Y} → ◇ C₁ (λ x → ◇ C₂ (λ y → P x × Q y) ys) xs ↔ (◇ C₁ P xs × ◇ C₂ Q ys) ×◇↔◇◇× {xs} {ys} = inverse to from (λ _ → P.refl) (λ _ → P.refl) where ◇₁ = ◇ C₁; ◇₂ = ◇ C₂ to : ◇₁ (λ x → ◇₂ (λ y → P x × Q y) ys) xs → ◇₁ P xs × ◇₂ Q ys to (any (p₁ , any (p₂ , p , q))) = (any (p₁ , p) , any (p₂ , q)) from : ◇₁ P xs × ◇₂ Q ys → ◇₁ (λ x → ◇₂ (λ y → P x × Q y) ys) xs from (any (p₁ , p) , any (p₂ , q)) = any (p₁ , any (p₂ , p , q)) -- map can be absorbed by the predicate. module _ {s p} (C : Container s p) {x y} {X : Set x} {Y : Set y} {ℓ} (P : Pred Y ℓ) where map↔∘ : ∀ {xs : ⟦ C ⟧ X} (f : X → Y) → ◇ C P (map f xs) ↔ ◇ C (P ∘′ f) xs map↔∘ {xs} f = ◇ C P (map f xs) ↔⟨ ↔Σ C ⟩ ∃ (P ∘′ proj₂ (map f xs)) ↔⟨⟩ ∃ (P ∘′ f ∘′ proj₂ xs) ↔⟨ SK-sym (↔Σ C) ⟩ ◇ C (P ∘′ f) xs ∎ -- Membership in a mapped container can be expressed without reference -- to map. module _ {s p} (C : Container s p) {x y} {X : Set x} {Y : Set y} {ℓ} (P : Pred Y ℓ) where ∈map↔∈×≡ : ∀ {f : X → Y} {xs : ⟦ C ⟧ X} {y} → y ∈ map f xs ↔ (∃ λ x → x ∈ xs × y ≡ f x) ∈map↔∈×≡ {f = f} {xs} {y} = y ∈ map f xs ↔⟨ map↔∘ C (y ≡_) f ⟩ ◇ C (λ x → y ≡ f x) xs ↔⟨ ↔∈ C ⟩ ∃ (λ x → x ∈ xs × y ≡ f x) ∎ -- map is a congruence for bag and set equality and related preorders. module _ {s p} (C : Container s p) {x y} {X : Set x} {Y : Set y} {ℓ} (P : Pred Y ℓ) where map-cong : ∀ {k} {f₁ f₂ : X → Y} {xs₁ xs₂ : ⟦ C ⟧ X} → f₁ ≗ f₂ → xs₁ ∼[ k ] xs₂ → map f₁ xs₁ ∼[ k ] map f₂ xs₂ map-cong {f₁ = f₁} {f₂} {xs₁} {xs₂} f₁≗f₂ xs₁≈xs₂ {x} = x ∈ map f₁ xs₁ ↔⟨ map↔∘ C (_≡_ x) f₁ ⟩ ◇ C (λ y → x ≡ f₁ y) xs₁ ∼⟨ cong (Related.↔⇒ ∘ helper) xs₁≈xs₂ ⟩ ◇ C (λ y → x ≡ f₂ y) xs₂ ↔⟨ SK-sym (map↔∘ C (_≡_ x) f₂) ⟩ x ∈ map f₂ xs₂ ∎ where helper : ∀ y → (x ≡ f₁ y) ↔ (x ≡ f₂ y) helper y rewrite f₁≗f₂ y = Inv.id -- Uses of linear morphisms can be removed. module _ {s₁ s₂ p₁ p₂} {C₁ : Container s₁ p₁} {C₂ : Container s₂ p₂} {x} {X : Set x} {ℓ} (P : Pred X ℓ) where remove-linear : ∀ {xs : ⟦ C₁ ⟧ X} (m : C₁ ⊸ C₂) → ◇ C₂ P (⟪ m ⟫⊸ xs) ↔ ◇ C₁ P xs remove-linear {xs} m = Inv.inverse t f f∘t t∘f where open _≃_ open P.≡-Reasoning renaming (_∎ to _∎′) position⊸m : ∀ {s} → Position C₂ (shape⊸ m s) ≃ Position C₁ s position⊸m = ↔→≃ (position⊸ m) ◇₁ = ◇ C₁; ◇₂ = ◇ C₂ t : ◇₂ P (⟪ m ⟫⊸ xs) → ◇₁ P xs t = Any.map₁ (_⊸_.morphism m) f : ◇₁ P xs → ◇₂ P (⟪ m ⟫⊸ xs) f (any (x , p)) = any $ from position⊸m x , P.subst (P ∘′ proj₂ xs) (P.sym (right-inverse-of position⊸m _)) p f∘t : f ∘ t ≗ id f∘t (any (p₂ , p)) = P.cong any $ Inverse.to Σ-≡,≡↔≡ ⟨$⟩ ( left-inverse-of position⊸m p₂ , (P.subst (P ∘ proj₂ xs ∘ to position⊸m) (left-inverse-of position⊸m p₂) (P.subst (P ∘ proj₂ xs) (P.sym (right-inverse-of position⊸m (to position⊸m p₂))) p) ≡⟨ P.subst-∘ (left-inverse-of position⊸m _) ⟩ P.subst (P ∘ proj₂ xs) (P.cong (to position⊸m) (left-inverse-of position⊸m p₂)) (P.subst (P ∘ proj₂ xs) (P.sym (right-inverse-of position⊸m (to position⊸m p₂))) p) ≡⟨ P.cong (λ eq → P.subst (P ∘ proj₂ xs) eq (P.subst (P ∘ proj₂ xs) (P.sym (right-inverse-of position⊸m _)) _)) (_≃_.left-right position⊸m _) ⟩ P.subst (P ∘ proj₂ xs) (right-inverse-of position⊸m (to position⊸m p₂)) (P.subst (P ∘ proj₂ xs) (P.sym (right-inverse-of position⊸m (to position⊸m p₂))) p) ≡⟨ P.subst-subst (P.sym (right-inverse-of position⊸m _)) ⟩ P.subst (P ∘ proj₂ xs) (P.trans (P.sym (right-inverse-of position⊸m (to position⊸m p₂))) (right-inverse-of position⊸m (to position⊸m p₂))) p ≡⟨ P.cong (λ eq → P.subst (P ∘ proj₂ xs) eq p) (P.trans-symˡ (right-inverse-of position⊸m _)) ⟩ P.subst (P ∘ proj₂ xs) P.refl p ≡⟨⟩ p ∎′) ) t∘f : t ∘ f ≗ id t∘f (any (p₁ , p)) = P.cong any $ Inverse.to Σ-≡,≡↔≡ ⟨$⟩ ( right-inverse-of position⊸m p₁ , (P.subst (P ∘ proj₂ xs) (right-inverse-of position⊸m p₁) (P.subst (P ∘ proj₂ xs) (P.sym (right-inverse-of position⊸m p₁)) p) ≡⟨ P.subst-subst (P.sym (right-inverse-of position⊸m _)) ⟩ P.subst (P ∘ proj₂ xs) (P.trans (P.sym (right-inverse-of position⊸m p₁)) (right-inverse-of position⊸m p₁)) p ≡⟨ P.cong (λ eq → P.subst (P ∘ proj₂ xs) eq p) (P.trans-symˡ (right-inverse-of position⊸m _)) ⟩ P.subst (P ∘ proj₂ xs) P.refl p ≡⟨⟩ p ∎′) ) -- Linear endomorphisms are identity functions if bag equality is used. module _ {s p} {C : Container s p} {x} {X : Set x} where linear-identity : ∀ {xs : ⟦ C ⟧ X} (m : C ⊸ C) → ⟪ m ⟫⊸ xs ∼[ bag ] xs linear-identity {xs} m {x} = x ∈ ⟪ m ⟫⊸ xs ↔⟨ remove-linear (_≡_ x) m ⟩ x ∈ xs ∎ -- If join can be expressed using a linear morphism (in a certain -- way), then it can be absorbed by the predicate. module _ {s₁ s₂ s₃ p₁ p₂ p₃} {C₁ : Container s₁ p₁} {C₂ : Container s₂ p₂} {C₃ : Container s₃ p₃} {x} {X : Set x} {ℓ} (P : Pred X ℓ) where join↔◇ : (join′ : (C₁ C.∘ C₂) ⊸ C₃) (xss : ⟦ C₁ ⟧ (⟦ C₂ ⟧ X)) → let join : ∀ {X} → ⟦ C₁ ⟧ (⟦ C₂ ⟧ X) → ⟦ C₃ ⟧ X join = λ {_} → ⟪ join′ ⟫⊸ ∘ _⟨$⟩_ (Inverse.from (Composition.correct C₁ C₂)) in ◇ C₃ P (join xss) ↔ ◇ C₁ (◇ C₂ P) xss join↔◇ join xss = ◇ C₃ P (⟪ join ⟫⊸ xss′) ↔⟨ remove-linear P join ⟩ ◇ (C₁ C.∘ C₂) P xss′ ↔⟨ SK-sym $ flatten P xss ⟩ ◇ C₁ (◇ C₂ P) xss ∎ where xss′ = Inverse.from (Composition.correct C₁ C₂) ⟨$⟩ xss
41.257235
130
0.446107
0d8fa65c284151ee79b0304ce020a846e37fa492
6,758
agda
Agda
main/NielsenSchreier.agda
awswan/nielsenschreier-hott
84be713b8a8e41ea6f01f8ccf7251ebbbd73ad5d
[ "MIT" ]
null
null
null
main/NielsenSchreier.agda
awswan/nielsenschreier-hott
84be713b8a8e41ea6f01f8ccf7251ebbbd73ad5d
[ "MIT" ]
null
null
null
main/NielsenSchreier.agda
awswan/nielsenschreier-hott
84be713b8a8e41ea6f01f8ccf7251ebbbd73ad5d
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --exact-split --rewriting --overlapping-instances #-} open import lib.Basics open import lib.NConnected open import lib.NType2 open import lib.types.Truncation open import lib.types.Sigma open import lib.Equivalence open import lib.types.Fin open import lib.types.Coproduct open import Graphs.Definition open import Graphs.Properties open import Coequalizers.Definition open import Coequalizers.Misc open import Groups.Definition open import Coequalizers.PullbackStability open import Coequalizers.PreserveEquivalence open import Coequalizers.EdgeCoproduct open import Graphs.SpanningTreeFinite open import Graphs.SubTrees open import Util.Misc open import Util.DecEq module NielsenSchreier {i : ULevel} where {- We build towards the proof of the finite index Nielsen-Schreier theorem in several steps. -} {- We will first show that subgroups of free higher groups are free higher groupoids. That is, we will show that for any family of types X over ⊤ / A, the total space Σ (⊤ / A) X is equivalent to the coequalizer of a graph. Moveover, we can give an explicit description of the graph. -} module SubgroupsOfFreeHigherGroups (A : Type i) (X : (⊤ / A) → Type i) where instance {- Whenever we need a pair of maps (A × X fhg-base) ⇉ (X fhg-base) we will use the definition below. This applies in this module and wherever it is imported. -} higher-subgp-gph : Graph (A × X fhg-base) (X fhg-base) higher-subgp-gph = record { π₀ = snd ; π₁ = λ {(a , x) → transport X (quot a) x} } to-free-higher-gpd : Σ (⊤ / A) X ≃ (X fhg-base) / (A × X fhg-base) to-free-higher-gpd = Σ (⊤ / A) X ≃⟨ pb-equiv ⁻¹ ⟩ -- coequalizers are stable under pullback (Σ ⊤ (X ∘ c[_])) / (Σ A (X ∘ c[_] ∘ π₀)) ≃⟨ Coeq-emap Σ₁-Unit (ide _) (λ _ → idp) (λ _ → idp) ⟩ (X fhg-base) / (A × X fhg-base) ≃∎ where open PullbackStability A ⊤ X -- contains definition of (Σ ⊤ (X ∘ c[_])) / (Σ A (X ∘ c[_] ∘ π₀)) {- We now show that subgroups of free groups are free groupoids. This is a 1-truncated version of the result above. -} module SubGroupsOfFreeGroups (A : Type i) (X : ∥ ⊤ / A ∥₁ → Type i) ⦃ Xset : {z : ∥ ⊤ / A ∥₁} → is-set (X z) ⦄ where -- we now need to assume X is 0-truncated. open SubgroupsOfFreeHigherGroups A (X ∘ [_]) public -- also defines instance for (X fhg-base) / (A × X fhg-base) to-free-gpd : Σ ∥ ⊤ / A ∥₁ X ≃ ∥ X base / (A × X base) ∥₁ to-free-gpd = Σ ∥ ⊤ / A ∥₁ X ≃⟨ Σ-emap-r (Trunc-elim λ z → ide _) ⟩ Σ ∥ ⊤ / A ∥₁ X' ≃⟨ TruncRecType.flattening-Trunc _ ⟩ ∥ Σ (⊤ / A) (X ∘ [_]) ∥₁ ≃⟨ Trunc-emap to-free-higher-gpd ⟩ ∥ X base / (A × X base) ∥₁ ≃∎ where X'-set : ∥ ⊤ / A ∥₁ → hSet i X'-set = Trunc-rec (λ z → ((X [ z ]) , Xset)) X' = fst ∘ X'-set instance X-≃-gpd : {z : ∥ ⊤ / A ∥₁} → is-gpd (X z ≃ X' z) X-≃-gpd {z} = raise-level 0 (≃-level Xset (snd (X'-set z))) {- A free groupoid with vertex set a definitionally finite set is merely equivalent to a free group. -} strict-fin-free-gpd-is-free-gp : (n : ℕ) → (E : Type i) → (Edec : has-dec-eq E) → ⦃ gph : Graph E (Fin (S n)) ⦄ ⦃ conn : gph-is-connected gph ⦄ → ∥ Σ (Type i) (λ B → ∥ Coeq gph ∥₁ ≃ FreeGroup B) ∥ strict-fin-free-gpd-is-free-gp n E Edec = Trunc-fmap from-spanning-tree-fin (spanning-tree E Edec n) where from-spanning-tree-fin : SpanningTree E (Fin (S n)) (Fin n) (Fin (S n)) → Σ (Type i) (λ B → ∥ Fin (S n) / E ∥₁ ≃ FreeGroup B) from-spanning-tree-fin st = ¬E' , Trunc-emap eq where open SpanningTree st open ExtendSpanningTree E (Fin (S n)) (Fin n) (Fin (S n)) st open CoeqCoprodEquiv (Fin (S n)) (Fin n) ¬E' eq : Fin (S n) / E ≃ ⊤ / ¬E' eq = Fin (S n) / E ≃⟨ spantree-equiv ⟩ Fin (S n) / ((Fin n) ⊔ ¬E') ≃⟨ edge-coproduct-expand ⟩ (Fin (S n) / (Fin n)) / ¬E' ≃⟨ Coeq-emap (contr-equiv-Unit ⟨⟩) (ide _) (λ _ → idp) (λ _ → idp) ⟩ ⊤ / ¬E' ≃∎ {- We generalise the above so that the vertex set only needs to be equivalent to a definitionally finite set. -} fin-free-gpd-is-free-gp : (n : ℕ) → (E : Type i) → (Edec : has-dec-eq E) → (V : Type i) → (Vfin : V ≃ Fin (S n)) → ⦃ gph : Graph E V ⦄ ⦃ conn : gph-is-connected gph ⦄ → ∥ Σ (Type i) (λ B → ∥ Coeq gph ∥₁ ≃ FreeGroup B) ∥ fin-free-gpd-is-free-gp n E Edec V Vfin = Trunc-fmap (λ {(B , e) → B , (e ∘e Trunc-emap coeq-equiv)}) (strict-fin-free-gpd-is-free-gp n E Edec) where instance gph' : Graph E (Fin (S n)) gph' = record { π₀ = (–> Vfin) ∘ π₀ ; π₁ = (–> Vfin) ∘ π₁ } coeq-equiv : (V / E) ≃ (Fin (S n) / E) coeq-equiv = Coeq-emap Vfin (ide E) (λ _ → idp) λ _ → idp instance conn' : gph-is-connected gph' conn' = equiv-preserves-level (Trunc-emap coeq-equiv ) {- We can now prove the finite index version of the Nielsen-Schreier theorem. -} nielsen-schreier-finite-index : (A : Type i) (Adec : has-dec-eq A) -- we are given a type A with decidable equality (X : (FreeGroup A) → Type i) -- together with a covering space over the free group on A, that is a family of types X ... ⦃ conn : is-connected 0 (Σ (FreeGroup A) X) ⦄ -- such that the total space is connected (n : ℕ) (Xfin : X (base) ≃ Fin (S n)) → -- here we do the finite index case ∥ Σ (Type i) (λ B → Σ (FreeGroup A) X ≃ FreeGroup B) ∥ -- then the total space is a free group nielsen-schreier-finite-index A Adec X n Xfin = Trunc-fmap (λ {(B , e) → B , e ∘e to-free-gpd}) -- we compose the two equivalences from earlier (fin-free-gpd-is-free-gp n (A × X base) (×-has-dec-eq Adec (equiv-preserves-dec-eq Xfin Fin-has-dec-eq)) (X base) Xfin) -- earlier we showed that free groupoids with finite vertex set are merely equivalent to free groups where open SubGroupsOfFreeGroups A X -- contains our proof that the subgroup is a free groupoid instance -- we use that X is a set and the free groupoid is connected Xset : {z : (FreeGroup A)} → is-set (X z) Xset {z} = Trunc-elim {P = λ z → is-set (X z)} (Coeq-elim (λ z → is-set (X [ z ])) (λ {unit → equiv-preserves-level (Xfin ⁻¹) ⦃ Fin-is-set ⦄}) λ _ → prop-has-all-paths-↓) z conn2 : is-connected 0 (X base / (A × X base)) conn2 = equiv-preserves-level e where e : ∥ Σ (FreeGroup A) X ∥₀ ≃ ∥ X base / (A × X base) ∥₀ e = ∥ Σ (FreeGroup A) X ∥₀ ≃⟨ Trunc-emap (to-free-gpd ) ⟩ ∥ ∥ X base / (A × X base) ∥₁ ∥₀ ≃⟨ Trunc-fuse _ 0 1 ⟩ ∥ X base / (A × X base) ∥₀ ≃∎
41.207317
132
0.583605
21451e6ecf64d5e88603d75ecedd51f7ebc46eed
2,164
agda
Agda
test/epic/Prelude/IO.agda
larrytheliquid/agda
477c8c37f948e6038b773409358fd8f38395f827
[ "MIT" ]
null
null
null
test/epic/Prelude/IO.agda
larrytheliquid/agda
477c8c37f948e6038b773409358fd8f38395f827
[ "MIT" ]
null
null
null
test/epic/Prelude/IO.agda
larrytheliquid/agda
477c8c37f948e6038b773409358fd8f38395f827
[ "MIT" ]
1
2022-03-12T11:35:18.000Z
2022-03-12T11:35:18.000Z
module Prelude.IO where open import Prelude.Bool open import Prelude.Char open import Prelude.Nat open import Prelude.String open import Prelude.Unit open import Prelude.Vec open import Prelude.Float postulate IO : Set → Set {-# COMPILED_TYPE IO IO #-} infixl 1 _>>=_ postulate return : ∀ {A} → A → IO A _>>=_ : ∀ {A B} → IO A → (A → IO B) → IO B numArgs : Nat getArg : Nat -> String args : Vec String numArgs args = buildArgs numArgs where buildArgs : (n : Nat) -> Vec String n buildArgs Z = [] buildArgs (S n) = snoc (buildArgs n) (getArg n) {-# COMPILED_EPIC return (u1 : Unit, a : Any) -> Any = ioreturn(a) #-} {-# COMPILED_EPIC _>>=_ (u1 : Unit, u2 : Unit, x : Any, f : Any) -> Any = iobind(x,f) #-} {-# COMPILED_EPIC numArgs () -> BigInt = foreign BigInt "numArgsBig" () #-} {-# COMPILED_EPIC getArg (n : BigInt) -> Any = foreign Any "getArgBig" (n : BigInt) #-} postulate natToString : Nat -> String readNat : IO Nat readStr : IO String putStr : String -> IO Unit printChar : Char -> IO Unit putStrLn : String -> IO Unit putStrLn s = putStr s >>= \_ -> putStr "\n" printFloat : Float -> IO Unit printFloat f = putStr (floatToString f) printNat : Nat -> IO Unit printNat n = putStr (natToString n) printBool : Bool -> IO Unit printBool true = putStr "true" printBool false = putStr "false" {-# COMPILED_EPIC natToString (n : Any) -> String = bigToStr(n) #-} {-# COMPILED_EPIC readNat (u : Unit) -> Any = strToBig(readStr(u)) #-} {-# COMPILED_EPIC putStr (a : String, u : Unit) -> Unit = foreign Int "wputStr" (a : String); primUnit #-} -- {-# COMPILED_EPIC putStrLn (a : String, u : Unit) -> Unit = putStrLn (a) #-} {-# COMPILED_EPIC readStr (u : Unit) -> Data = readStr(u) #-} {-# COMPILED_EPIC printChar (c : Int, u : Unit) -> Unit = printChar(c) #-} infixr 2 _<$>_ _<$>_ : {A B : Set}(f : A -> B)(m : IO A) -> IO B f <$> x = x >>= λ y -> return (f y) infixr 0 bind bind : ∀ {A B} → IO A → (A → IO B) → IO B bind m f = m >>= f infixr 0 then then : ∀ {A B} -> IO A -> IO B -> IO B then m f = m >>= λ _ -> f syntax bind e (\ x -> f) = x <- e , f syntax then e f = e ,, f
27.392405
106
0.597505
301c2131654ace3b2c9bb83fea497455df3fbb01
1,647
agda
Agda
src/Categories/Diagram/Equalizer/Properties.agda
maxsnew/agda-categories
8f3c844d929508040dfa21f681fa260056214b73
[ "MIT" ]
null
null
null
src/Categories/Diagram/Equalizer/Properties.agda
maxsnew/agda-categories
8f3c844d929508040dfa21f681fa260056214b73
[ "MIT" ]
null
null
null
src/Categories/Diagram/Equalizer/Properties.agda
maxsnew/agda-categories
8f3c844d929508040dfa21f681fa260056214b73
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} open import Categories.Category module Categories.Diagram.Equalizer.Properties {o ℓ e} (C : Category o ℓ e) where open import Categories.Diagram.Equalizer C open import Categories.Morphism C open import Categories.Morphism.Reasoning C private module C = Category C open C variable X Y Z : Obj f g : X ⇒ Y module _ (equalizer : Equalizer f g) where open Equalizer equalizer open HomReasoning equalizer-≈⇒≈ : ∀ {h} → arr ∘ h ≈ id → f ≈ g equalizer-≈⇒≈ {h} eq = begin f ≈⟨ introʳ eq ⟩ f ∘ arr ∘ h ≈⟨ pullˡ equality ⟩ (g ∘ arr) ∘ h ≈⟨ cancelʳ eq ⟩ g ∎ section-equalizer : ∀ {X Y} {f : Y ⇒ X} {g : X ⇒ Y} → f SectionOf g → IsEqualizer f (f ∘ g) id section-equalizer {X = X} {Y = Y} {f = f} {g = g} g∘f≈id = record { equality = equality ; equalize = equalize ; universal = λ {_} {_} {eq} → universal {eq = eq} ; unique = unique } where open HomReasoning equality : (f ∘ g) ∘ f ≈ id ∘ f equality = begin (f ∘ g) ∘ f ≈⟨ pullʳ g∘f≈id ⟩ f ∘ id ≈⟨ id-comm ⟩ id ∘ f ∎ equalize : ∀ {Z} {h : Z ⇒ X} → (f ∘ g) ∘ h ≈ id ∘ h → Z ⇒ Y equalize {h = h} _ = g ∘ h universal : ∀ {Z} {h : Z ⇒ X} {eq : (f ∘ g) ∘ h ≈ id ∘ h} → h ≈ f ∘ g ∘ h universal {h = h} {eq = eq} = begin h ≈˘⟨ identityˡ ⟩ id ∘ h ≈˘⟨ eq ⟩ (f ∘ g) ∘ h ≈⟨ assoc ⟩ f ∘ g ∘ h ∎ unique : ∀ {Z} {h : Z ⇒ X} {i : Z ⇒ Y} → h ≈ f ∘ i → i ≈ g ∘ h unique {h = h} {i = i} h≈g∘i = begin i ≈⟨ introˡ g∘f≈id ⟩ (g ∘ f) ∘ i ≈⟨ pullʳ (⟺ h≈g∘i) ⟩ g ∘ h ∎
27
94
0.485124
0de069db55154cbb7b8037390226be58b124a29f
308
agda
Agda
Function.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
Function.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
Function.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
module Function where import Lvl open import Type -- The domain type of a function. domain : ∀{ℓ₁ ℓ₂} {A : Type{ℓ₁}}{B : Type{ℓ₂}} → (A → B) → Type{ℓ₁} domain{A = A} _ = A -- The codomain type of a function. codomain : ∀{ℓ₁ ℓ₂} {A : Type{ℓ₁}}{B : Type{ℓ₂}} → (A → B) → Type{ℓ₂} codomain{B = B} _ = B
23.692308
69
0.584416
376420dd166388c340d950976b5563351711c068
4,972
agda
Agda
Codata/Segments.agda
oisdk/agda-playground
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
[ "MIT" ]
6
2020-09-11T17:45:41.000Z
2021-11-16T08:11:34.000Z
Codata/Segments.agda
oisdk/agda-playground
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
[ "MIT" ]
null
null
null
Codata/Segments.agda
oisdk/agda-playground
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
[ "MIT" ]
1
2021-11-11T12:30:21.000Z
2021-11-11T12:30:21.000Z
open import Prelude open import Algebra open import Algebra.Monus module Codata.Segments {ℓ} (mon : CTMAPOM ℓ) where open CTMAPOM mon private variable i j : 𝑆 -- This is a type which contains some finite and some infinite lists. -- The idea is that each entry contains a parameter (w) which says -- how much coinductive "fuel" it uses. -- The Colist′ A i type represents a colist which is defined down to depth -- i; the Colist A type represents a "true" colist, i.e. a colist defined for -- any given depth. infixr 5 _◃_ data Colist′ {a} (A : Type a) (i : 𝑆) : Type (a ℓ⊔ ℓ) where _◃_ : ∀ w → -- Segment size ( (w<i : w < i) → -- If there is enough fuel left (i is the fuel) -- (also the _<_ type is a proposition) A × Colist′ A (i ∸ w) -- Produce an element followed by the rest of -- the list, with w taken out of the fuel. ) → Colist′ A i Colist : Type a → Type (a ℓ⊔ ℓ) Colist A = ∀ {i} → Colist′ A i -- The main interesting things tyhis type can do are the following: -- * Infinite lists. -- * The "fuel" parameter can be an arbitrary monoid, not just ℕ -- * Finite lists can also be specified, and the way we say something is -- finite is by taking no fuel. -- * Everything seems to correspond correctly to the monus axioms. -------------------------------------------------------------------------------- -- Finite colists -------------------------------------------------------------------------------- -- By adding a finite prefix you don't have to use any of the fuel. _∹_ : A → Colist A → Colist A x ∹ xs = ε ◃ λ _ → x , xs -------------------------------------------------------------------------------- -- Empty colists -------------------------------------------------------------------------------- -- To terminate computation you use all the fuel, making an empty list. -- (I'm not sure how principled this is: semantically I don't know if I like -- that the size of a segment can depend on the supplied size parameter). empty : Colist A empty {i = i} = i ◃ λ i<i → ⊥-elim (irrefl i<i) -------------------------------------------------------------------------------- -- Finite derived colists -------------------------------------------------------------------------------- -- singleton pure : A → Colist A pure x = x ∹ empty replicate : ℕ → A → Colist A replicate zero x = empty replicate (suc n) x = x ∹ replicate n x -------------------------------------------------------------------------------- -- Infinite colists -------------------------------------------------------------------------------- -- This unfold function produces an infinite list; it needs every size segment -- be non empty so that each step uses some fuel. This is what provides the -- termination argument. module _ (B : 𝑆 → Type b) -- The seed type (ϕ : ∀ {i} → -- At depth i B i → -- With this seed ∃ w × -- Produce a segment of size w (w ≢ ε) × -- w can't be ε, so that we use some of the fuel to prove -- termination ((w<i : w < i) → A × B (i ∸ w)) -- And produce the cons constructor. ) -- ^ The step function where unfold′ : Acc _<_ i → B i → Colist′ A i unfold′ a = uncurry _◃_ ∘ map₂ (λ { (w≢ε , xs′) w<i → map₂ (case a of λ { (acc wf) → unfold′ (wf _ (∸‿<-< _ _ w<i w≢ε)) }) (xs′ w<i) }) ∘ ϕ unfold : (fdc : WellFounded _<_) (B : 𝑆 → Type b) (ϕ : ∀ {i} → B i → ∃ w × (w ≢ ε) × ((w<i : w < i) → A × B (i ∸ w))) → (∀ {i} → B i) → Colist A unfold fdc B ϕ xs {i} = unfold′ B ϕ (fdc i) xs -- Here's a simple example using the unfold function: this produces infinitely -- repeated values, with segment size s. repeat : (fdc : WellFounded _<_) (s : 𝑆) (s≢ε : s ≢ ε) (x : A) → Colist A repeat fdc s s≢ε x = unfold fdc (const ⊤) (λ _ → s , s≢ε , const (x , tt)) tt -------------------------------------------------------------------------------- -- Manipulating colists -------------------------------------------------------------------------------- -- One important thing to note about the Colist type: it is inductive! -- Although it does technically represent "coinduction", the constructors and -- type itself are inductive as far as Agda can see. For that reason functions -- like map pass the termination checker with no extra ceremony. map : (A → B) → Colist′ A i → Colist′ B i map f (w ◃ xs) = w ◃ λ w<i → case xs w<i of λ { (y , ys) → f y , map f ys } -- You can extract a finite prefix of the colist. open import Data.List using (List; _∷_; []) take′ : ∀ i → Colist′ A i → List A take′ i (w ◃ xs) with w <? i ... | no _ = [] ... | yes w<i with xs w<i ... | y , ys = y ∷ take′ _ ys take : 𝑆 → Colist A → List A take x xs = take′ x xs
37.383459
80
0.483709
a0fd7a74499065d427271b8dc4591c0d9d012b3e
5,078
agda
Agda
agda/book/Programming_Language_Foundations_in_Agda/x02-842Induction.agda
haroldcarr/learn-haskell-coq-ml-etc
3dc7abca7ad868316bb08f31c77fbba0d3910225
[ "Unlicense" ]
36
2015-01-29T14:37:15.000Z
2021-07-30T06:55:03.000Z
agda/book/Programming_Language_Foundations_in_Agda/x02-842Induction.agda
haroldcarr/learn-haskell-coq-ml-etc
3dc7abca7ad868316bb08f31c77fbba0d3910225
[ "Unlicense" ]
null
null
null
agda/book/Programming_Language_Foundations_in_Agda/x02-842Induction.agda
haroldcarr/learn-haskell-coq-ml-etc
3dc7abca7ad868316bb08f31c77fbba0d3910225
[ "Unlicense" ]
8
2015-04-13T21:40:15.000Z
2021-09-21T15:58:10.000Z
module x02-842Induction where -- Library import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl; cong; sym) open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; _≡⟨_⟩_; _∎) open import Data.Nat using (ℕ; zero; suc; _+_; _*_; _∸_) -- PLFA coverage of identity, associativity, commutativity, distributivity. -- An example of the associative law for addition. _ : (3 + 4) + 5 ≡ 3 + (4 + 5) _ = begin (3 + 4) + 5 ≡⟨⟩ 7 + 5 ≡⟨⟩ 12 ≡⟨⟩ 3 + 9 ≡⟨⟩ 3 + (4 + 5) ∎ -- A theorem easy to prove. +-identityᴸ : ∀ (m : ℕ) → zero + m ≡ m +-identityᴸ m = {!!} -- A first nontrivial theorem. -- An equational proof is shown in PLFA. -- It uses helpers cong and sym imported from the standard library, -- and a form of equational reasoning that allows more elaborate justification. -- Instead we will use 'rewrite'. +-identityʳ : ∀ (m : ℕ) → m + zero ≡ m +-identityʳ m = {!!} -- Associativity of addition. -- (Done first in PLFA.) +-assoc : ∀ (m n p : ℕ) → (m + n) + p ≡ m + (n + p) +-assoc m n p = {!!} -- A useful lemma about addition. -- Equational proof shown in PLFA. +-suc : ∀ (m n : ℕ) → m + suc n ≡ suc (m + n) +-suc m n = {!!} -- Commutativity of addition. -- Equational proof shown in PLFA. +-comm : ∀ (m n : ℕ) → m + n ≡ n + m +-comm m n = {!!} -- 842 exercise: AddSwap (1 point) -- Please do this without using induction/recursion. +-swap : ∀ (m n p : ℕ) → (m + n) + p ≡ n + (m + p) +-swap m n p = {!!} -- 842 exercise: AddDistMult (2 points) -- Show that addition distributes over multiplication. *-+-rdistrib : ∀ (m n p : ℕ) → (m + n) * p ≡ m * p + n * p *-+-rdistrib m n p = {!!} -- 842 exercise: MultAssoc (2 points) -- Show that multiplication is associative. *-assoc : ∀ (m n p : ℕ) → (m * n) * p ≡ m * (n * p) *-assoc m n p = {!!} -- 842 exercise: MultComm (3 points) -- Show that multiplication is commutative. -- As with the addition proof above, helper lemmas will be needed. *-comm : ∀ (m n : ℕ) → m * n ≡ n * m *-comm m n = {!!} -- 842 exercise: LeftMonusZero (1 point) -- PLFA asks "Did your proof require induction?" -- (which should give you an indication of the expected answer). 0∸n≡0 : ∀ (m : ℕ) → zero ∸ m ≡ zero 0∸n≡0 m = {!!} -- 842 exercise: MonusAssocish (2 points) -- Show a form of associativity for monus. ∸-+-assoc : ∀ (m n p : ℕ) → m ∸ n ∸ p ≡ m ∸ (n + p) ∸-+-assoc m n p = {!!} -- 842 extended exercise: properties of binary representation. -- This is based on the PLFA Bin-laws exercise. -- Copied from 842Naturals. data Bin-ℕ : Set where bits : Bin-ℕ _x0 : Bin-ℕ → Bin-ℕ _x1 : Bin-ℕ → Bin-ℕ dbl : ℕ → ℕ dbl zero = zero dbl (suc n) = suc (suc (dbl n)) -- Copy your versions of 'inc', 'to', 'from', 'bin-+' over from 842Naturals. -- You may choose to change them here to make proofs easier. -- But make sure to test them if you do! inc : Bin-ℕ → Bin-ℕ inc m = {!!} tob : ℕ → Bin-ℕ tob m = {!!} fromb : Bin-ℕ → ℕ fromb m = {!!} _bin-+_ : Bin-ℕ → Bin-ℕ → Bin-ℕ m bin-+ n = {!!} -- 842 exercise: DoubleB (1 point) -- Write the Bin-ℕ version of dbl, here called dblb. -- As with the other Bin-ℕ operations, don't use tob/fromb. dblb : Bin-ℕ → Bin-ℕ dblb m = {!!} -- Here are some properties of tob/fromb/inc suggested by PLFA Induction. -- Please complete the proofs. -- 842 exercise: FromInc (1 point) from∘inc : ∀ (m : Bin-ℕ) → fromb (inc m) ≡ suc (fromb m) from∘inc m = {!!} -- 842 exercise: FromToB (1 point) from∘tob : ∀ (m : ℕ) → fromb (tob m) ≡ m from∘tob m = {!!} -- 842 exercise: ToFromB (2 points) -- The property ∀ (m : Bin-ℕ) → tob (fromb m) ≡ m cannot be proved. -- Can you see why? -- However, this restriction of it can be proved. to/from-corr : ∀ (m : Bin-ℕ) (n : ℕ) → m ≡ tob n → fromb m ≡ n to/from-corr m n m≡tn = {!!} -- Here are a few more properties for you to prove. -- 842 exercise: DblBInc (1 point) dblb∘inc : ∀ (m : Bin-ℕ) → dblb (inc m) ≡ inc (inc (dblb m)) dblb∘inc m = {!!} -- 842 exercise: ToDbl (1 point) to∘dbl : ∀ (m : ℕ) → tob (dbl m) ≡ dblb (tob m) to∘dbl m = {!!} -- 842 exercise: FromDblB (1 point) from∘dblb : ∀ (m : Bin-ℕ) → fromb (dblb m) ≡ dbl (fromb m) from∘dblb m = {!!} -- 842 exercise: BinPlusLInc (2 points) -- This helper function translates the second case for unary addition -- suc m + n = suc (m + n) -- into the binary setting. It's useful in the next proof. -- Hint: induction on both m and n is needed. bin-+-linc : ∀ (m n : Bin-ℕ) → (inc m) bin-+ n ≡ inc (m bin-+ n) bin-+-linc m n = {!!} -- 842 exercise: PlusUnaryBinary (2 points) -- This theorem relates unary and binary addition. to∘+ : ∀ (m n : ℕ) → tob (m + n) ≡ tob m bin-+ tob n to∘+ m n = {!!} -- This ends the extended exercise. -- The following theorems proved in PLFA can be found in the standard library. -- import Data.Nat.Properties using (+-assoc; +-identityʳ; +-suc; +-comm) -- Unicode used in this chapter: {- ∀ U+2200 FOR ALL (\forall, \all) ʳ U+02B3 MODIFIER LETTER SMALL R (\^r) ′ U+2032 PRIME (\') ″ U+2033 DOUBLE PRIME (\') ‴ U+2034 TRIPLE PRIME (\') ⁗ U+2057 QUADRUPLE PRIME (\') -}
24.531401
79
0.596298
36ebcec936f5bc8501c9b996726730703d471900
866
agda
Agda
test/Succeed/Issue1783.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue1783.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue1783.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2016-01-19, issue raised by Twey -- {-# OPTIONS -v 10 #-} {-# OPTIONS --allow-unsolved-metas #-} Rel : Set → Set₁ Rel A = A → A → Set record Category : Set₁ where field Obj : Set _⇒_ : Rel Obj -- unfolding the definition of Rel removes the error record Product (C : Category) (A B : Category.Obj C) : Set where field A×B : Category.Obj C postulate anything : ∀{a}{A : Set a} → A trivial : ∀ {C} → Category.Obj C → Set trivial _ = anything map-obj : ∀ {P : _} → trivial (Product.A×B P) -- Note: hole _ cannot be filled map-obj = anything {- Error thrown during printing open metas: piApply t = Rel _24 Def Issue1783.Rel [Apply []r(MetaV (MetaId 24) [])]} args = @0 [[]r{Var 0 []}] An internal error has occurred. Please report this as a bug. Location of the error: src/full/Agda/TypeChecking/Substitute.hs:382 -}
25.470588
78
0.639723
34d5f2708262349bb2ec6938bd7ff357927f5f20
1,731
agda
Agda
Groups/Groups.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
4
2019-08-08T12:44:19.000Z
2022-01-28T06:04:15.000Z
Groups/Groups.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
14
2019-01-06T21:11:59.000Z
2020-04-11T11:03:39.000Z
Groups/Groups.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
1
2021-11-29T13:23:07.000Z
2021-11-29T13:23:07.000Z
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Setoids.Setoids open import Groups.Definition open import Sets.EquivalenceRelations module Groups.Groups where reflGroupWellDefined : {lvl : _} {A : Set lvl} {m n x y : A} {op : A → A → A} → m ≡ x → n ≡ y → (op m n) ≡ (op x y) reflGroupWellDefined {lvl} {A} {m} {n} {.m} {.n} {op} refl refl = refl fourWay+Associative : {a b : _} → {A : Set a} → {S : Setoid {a} {b} A} → {_·_ : A → A → A} → (G : Group S _·_) → {r s t u : A} → (Setoid._∼_ S) (r · ((s · t) · u)) ((r · s) · (t · u)) fourWay+Associative {S = S} {_·_} G {r} {s} {t} {u} = transitive p1 (transitive p2 p3) where open Group G renaming (inverse to _^-1) open Setoid S open Equivalence eq p1 : r · ((s · t) · u) ∼ (r · (s · t)) · u p2 : (r · (s · t)) · u ∼ ((r · s) · t) · u p3 : ((r · s) · t) · u ∼ (r · s) · (t · u) p1 = Group.+Associative G p2 = Group.+WellDefined G (Group.+Associative G) reflexive p3 = symmetric (Group.+Associative G) fourWay+Associative' : {m n : _} {A : Set m} {S : Setoid {m} {n} A} {_·_ : A → A → A} (G : Group S _·_) {a b c d : A} → (Setoid._∼_ S (((a · b) · c) · d) (a · ((b · c) · d))) fourWay+Associative' {S = S} G = transitive (symmetric +Associative) (symmetric (fourWay+Associative G)) where open Group G open Setoid S open Equivalence eq fourWay+Associative'' : {m n : _} {A : Set m} {S : Setoid {m} {n} A} {_·_ : A → A → A} (G : Group S _·_) {a b c d : A} → (Setoid._∼_ S (a · (b · (c · d))) (a · ((b · c) · d))) fourWay+Associative'' {S = S} {_·_ = _·_} G = transitive +Associative (symmetric (fourWay+Associative G)) where open Group G open Setoid S open Equivalence eq
45.552632
183
0.548816
21d3429bc17d0c0c77bc2b93c7b46847b1d513ba
5,432
agda
Agda
Categories/NaturalTransformation/Core.agda
p-pavel/categories
e41aef56324a9f1f8cf3cd30b2db2f73e01066f2
[ "BSD-3-Clause" ]
1
2018-12-29T21:51:57.000Z
2018-12-29T21:51:57.000Z
Categories/NaturalTransformation/Core.agda
p-pavel/categories
e41aef56324a9f1f8cf3cd30b2db2f73e01066f2
[ "BSD-3-Clause" ]
null
null
null
Categories/NaturalTransformation/Core.agda
p-pavel/categories
e41aef56324a9f1f8cf3cd30b2db2f73e01066f2
[ "BSD-3-Clause" ]
null
null
null
{-# OPTIONS --universe-polymorphism #-} module Categories.NaturalTransformation.Core where open import Level open import Relation.Binary using (Rel; IsEquivalence) open import Categories.Support.Equivalence open import Categories.Category open import Categories.Functor.Core renaming (id to idF; _∘_ to _∘F_) record NaturalTransformation {o ℓ e o′ ℓ′ e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} (F G : Functor C D) : Set (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′) where private module C = Category C private module D = Category D private module F = Functor F private module G = Functor G open F using (F₀; F₁) open G using () renaming (F₀ to G₀; F₁ to G₁) field η : ∀ X → D [ F₀ X , G₀ X ] .commute : ∀ {X Y} (f : C [ X , Y ]) → D.CommutativeSquare (F₁ f) (η X) (η Y) (G₁ f) op : NaturalTransformation G.op F.op op = record { η = η ; commute = λ f → D.Equiv.sym (commute f) } id : ∀ {o ℓ e o′ ℓ′ e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} {F : Functor C D} → NaturalTransformation F F id {C = C} {D} {F} = record { η = λ _ → D.id ; commute = commute′ } where module C = Category C module D = Category D module F = Functor F open F .commute′ : ∀ {X Y} (f : C [ X , Y ]) → D [ D [ D.id ∘ F₁ f ] ≡ D [ F₁ f ∘ D.id ] ] commute′ f = begin D [ D.id ∘ F₁ f ] ↓⟨ D.identityˡ ⟩ F₁ f ↑⟨ D.identityʳ ⟩ D [ F₁ f ∘ D.id ] ∎ where open D.HomReasoning infixr 9 _∘₁_ _∘₀_ -- "Vertical composition" _∘₁_ : ∀ {o₀ ℓ₀ e₀ o₁ ℓ₁ e₁} {C : Category o₀ ℓ₀ e₀} {D : Category o₁ ℓ₁ e₁} {F G H : Functor C D} → NaturalTransformation G H → NaturalTransformation F G → NaturalTransformation F H _∘₁_ {C = C} {D} {F} {G} {H} X Y = record { η = λ q → D [ X.η q ∘ Y.η q ] ; commute = commute′ } where module C = Category C module D = Category D module F = Functor F module G = Functor G module H = Functor H module X = NaturalTransformation X module Y = NaturalTransformation Y open F open G renaming (F₀ to G₀; F₁ to G₁) open H renaming (F₀ to H₀; F₁ to H₁) .commute′ : ∀ {A B} (f : C [ A , B ]) → D [ D [ D [ X.η B ∘ Y.η B ] ∘ F₁ f ] ≡ D [ H₁ f ∘ D [ X.η A ∘ Y.η A ] ] ] commute′ {A} {B} f = begin D [ D [ X.η B ∘ Y.η B ] ∘ F₁ f ] ↓⟨ D.assoc ⟩ D [ X.η B ∘ D [ Y.η B ∘ F₁ f ] ] ↓⟨ D.∘-resp-≡ʳ (Y.commute f) ⟩ D [ X.η B ∘ D [ G₁ f ∘ Y.η A ] ] ↑⟨ D.assoc ⟩ D [ D [ X.η B ∘ G₁ f ] ∘ Y.η A ] ↓⟨ D.∘-resp-≡ˡ (X.commute f) ⟩ D [ D [ H₁ f ∘ X.η A ] ∘ Y.η A ] ↓⟨ D.assoc ⟩ D [ H₁ f ∘ D [ X.η A ∘ Y.η A ] ] ∎ where open D.HomReasoning -- "Horizontal composition" _∘₀_ : ∀ {o₀ ℓ₀ e₀ o₁ ℓ₁ e₁ o₂ ℓ₂ e₂} {C : Category o₀ ℓ₀ e₀} {D : Category o₁ ℓ₁ e₁} {E : Category o₂ ℓ₂ e₂} {F G : Functor C D} {H I : Functor D E} → NaturalTransformation H I → NaturalTransformation F G → NaturalTransformation (H ∘F F) (I ∘F G) _∘₀_ {C = C} {D} {E} {F} {G} {H} {I} Y X = record { η = λ q → E [ I₁ (X.η q) ∘ Y.η (F₀ q) ] ; commute = commute′ } where module C = Category C module D = Category D module E = Category E module F = Functor F module G = Functor G module H = Functor H module I = Functor I module X = NaturalTransformation X module Y = NaturalTransformation Y open F open G renaming (F₀ to G₀; F₁ to G₁; F-resp-≡ to G-resp-≡) open H renaming (F₀ to H₀; F₁ to H₁; F-resp-≡ to H-resp-≡) open I renaming (F₀ to I₀; F₁ to I₁; F-resp-≡ to I-resp-≡) .commute′ : ∀ {A B} (f : C [ A , B ]) → E [ E [ E [ I₁ (X.η B) ∘ Y.η (F₀ B) ] ∘ H₁ (F₁ f) ] ≡ E [ I₁ (G₁ f) ∘ E [ I₁ (X.η A) ∘ Y.η (F₀ A) ] ] ] commute′ {A} {B} f = begin E [ E [ I₁ (X.η B) ∘ Y.η (F₀ B) ] ∘ H₁ (F₁ f) ] ↓⟨ E.assoc ⟩ E [ I₁ (X.η B) ∘ E [ Y.η (F₀ B) ∘ H₁ (F₁ f) ] ] ↓⟨ E.∘-resp-≡ʳ (Y.commute (F₁ f)) ⟩ E [ I₁ (X.η B) ∘ E [ I₁ (F₁ f) ∘ Y.η (F₀ A) ] ] ↑⟨ E.assoc ⟩ E [ E [ I₁ (X.η B) ∘ I₁ (F₁ f) ] ∘ Y.η (F₀ A) ] ↑⟨ E.∘-resp-≡ˡ I.homomorphism ⟩ E [ I₁ (D [ X.η B ∘ F₁ f ]) ∘ Y.η (F₀ A) ] ↓⟨ E.∘-resp-≡ˡ (I-resp-≡ (X.commute f)) ⟩ E [ I₁ (D [ G₁ f ∘ X.η A ]) ∘ Y.η (F₀ A) ] ↓⟨ E.∘-resp-≡ˡ I.homomorphism ⟩ E [ E [ I₁ (G₁ f) ∘ I₁ (X.η A) ] ∘ Y.η (F₀ A) ] ↓⟨ E.assoc ⟩ E [ I₁ (G₁ f) ∘ E [ I₁ (X.η A) ∘ Y.η (F₀ A) ] ] ∎ where open E.HomReasoning infix 4 _≡_ _≡_ : ∀ {o ℓ e o′ ℓ′ e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} {F G : Functor C D} → Rel (NaturalTransformation F G) (o ⊔ e′) _≡_ {D = D} X Y = ∀ {x} → D [ NaturalTransformation.η X x ≡ NaturalTransformation.η Y x ] .equiv : ∀ {o ℓ e o′ ℓ′ e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} {F G : Functor C D} → IsEquivalence (_≡_ {F = F} {G}) equiv {C = C} {D} {F} {G} = record { refl = refl ; sym = λ f → sym f ; trans = λ f g → trans f g } where open Category.Equiv D setoid : ∀ {o ℓ e o′ ℓ′ e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} {F G : Functor C D} → Setoid _ _ setoid {F = F} {G} = record { Carrier = NaturalTransformation F G ; _≈_ = _≡_ ; isEquivalence = equiv {F = F} }
33.325153
145
0.486561
34ad8d8792d936a15386732c37502f9d635be633
94
agda
Agda
test/Fail/Issue309b.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue309b.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue309b.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Issue309b where data D : Set where d : D → D syntax d x = f g : D → D g (d x) = f
9.4
22
0.553191
038f7ece6286d4ccd4c5cfc0520c49c174ca684f
13,523
agda
Agda
Cubical/Homotopy/Connected.agda
jorge-jbs/cubical
ebbe824fda41ab6524b62a42959665be4e67b847
[ "MIT" ]
null
null
null
Cubical/Homotopy/Connected.agda
jorge-jbs/cubical
ebbe824fda41ab6524b62a42959665be4e67b847
[ "MIT" ]
1
2022-01-27T02:07:48.000Z
2022-01-27T02:07:48.000Z
Cubical/Homotopy/Connected.agda
jorge-jbs/cubical
ebbe824fda41ab6524b62a42959665be4e67b847
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Homotopy.Connected where open import Cubical.Core.Everything open import Cubical.Foundations.Everything open import Cubical.Foundations.Function open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.Path open import Cubical.Foundations.Univalence open import Cubical.Functions.Fibration open import Cubical.Data.Nat open import Cubical.Data.Prod hiding (map) open import Cubical.Data.Sigma hiding (_×_) open import Cubical.HITs.Nullification open import Cubical.HITs.Susp open import Cubical.HITs.SmashProduct open import Cubical.HITs.Truncation as Trunc renaming (rec to trRec) open import Cubical.Homotopy.Loopspace open import Cubical.HITs.Pushout open import Cubical.HITs.Sn open import Cubical.HITs.S1 open import Cubical.Data.Bool open import Cubical.Data.Unit -- Note that relative to most sources, this notation is off by +2 isConnected : ∀ {ℓ} (n : HLevel) (A : Type ℓ) → Type ℓ isConnected n A = isContr (hLevelTrunc n A) isConnectedFun : ∀ {ℓ ℓ'} (n : HLevel) {A : Type ℓ} {B : Type ℓ'} (f : A → B) → Type (ℓ-max ℓ ℓ') isConnectedFun n f = ∀ b → isConnected n (fiber f b) isTruncatedFun : ∀ {ℓ ℓ'} (n : HLevel) {A : Type ℓ} {B : Type ℓ'} (f : A → B) → Type (ℓ-max ℓ ℓ') isTruncatedFun n f = ∀ b → isOfHLevel n (fiber f b) isConnectedSubtr : ∀ {ℓ} {A : Type ℓ} (n m : HLevel) → isConnected (m + n) A → isConnected n A isConnectedSubtr {A = A} n m iscon = isOfHLevelRetractFromIso 0 (truncOfTruncIso n m) (helper n iscon) where helper : (n : ℕ) → isConnected (m + n) A → isContr (hLevelTrunc n (hLevelTrunc (m + n) A)) helper zero iscon = isContrUnit* helper (suc n) iscon = ∣ iscon .fst ∣ , (Trunc.elim (λ _ → isOfHLevelPath (suc n) (isOfHLevelTrunc (suc n)) _ _) λ a → cong ∣_∣ (iscon .snd a)) isConnectedFunSubtr : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} (n m : HLevel) (f : A → B) → isConnectedFun (m + n) f → isConnectedFun n f isConnectedFunSubtr n m f iscon b = isConnectedSubtr n m (iscon b) private typeToFiberIso : ∀ {ℓ} (A : Type ℓ) → Iso A (fiber (λ (x : A) → tt) tt) Iso.fun (typeToFiberIso A) x = x , refl Iso.inv (typeToFiberIso A) = fst Iso.rightInv (typeToFiberIso A) b i = fst b , (isOfHLevelSuc 1 (isPropUnit) tt tt (snd b) refl) i Iso.leftInv (typeToFiberIso A) a = refl typeToFiber : ∀ {ℓ} (A : Type ℓ) → A ≡ fiber (λ (x : A) → tt) tt typeToFiber A = isoToPath (typeToFiberIso A) module elim {ℓ ℓ' : Level} {A : Type ℓ} {B : Type ℓ'} (f : A → B) where private inv : ∀ {ℓ'''} (n : HLevel) (P : B → TypeOfHLevel ℓ''' (suc n)) → ((a : A) → P (f a) .fst) → (b : B) → hLevelTrunc (suc n) (fiber f b) → P b .fst inv n P t b = Trunc.rec (P b .snd) (λ {(a , p) → subst (fst ∘ P) p (t a)}) isIsoPrecompose : ∀ {ℓ'''} (n : ℕ) (P : B → TypeOfHLevel ℓ''' n) → isConnectedFun n f → Iso ((b : B) → P b .fst) ((a : A) → P (f a) .fst) isIsoPrecompose zero P fConn = isContr→Iso (isOfHLevelΠ _ (λ b → P b .snd)) (isOfHLevelΠ _ λ a → P (f a) .snd) Iso.fun (isIsoPrecompose (suc n) P fConn) = _∘ f Iso.inv (isIsoPrecompose (suc n) P fConn) t b = inv n P t b (fConn b .fst) Iso.rightInv (isIsoPrecompose (suc n) P fConn) t = funExt λ a → cong (inv n P t (f a)) (fConn (f a) .snd ∣ a , refl ∣) ∙ substRefl {B = fst ∘ P} (t a) Iso.leftInv (isIsoPrecompose (suc n) P fConn) s = funExt λ b → Trunc.elim {B = λ d → inv n P (s ∘ f) b d ≡ s b} (λ _ → isOfHLevelPath (suc n) (P b .snd) _ _) (λ {(a , p) i → transp (λ j → P (p (j ∨ i)) .fst) i (s (p i))}) (fConn b .fst) isEquivPrecompose : ∀ {ℓ'''} (n : ℕ) (P : B → TypeOfHLevel ℓ''' n) → isConnectedFun n f → isEquiv (λ(s : (b : B) → P b .fst) → s ∘ f) isEquivPrecompose zero P fConn = isoToIsEquiv theIso where theIso : Iso ((b : B) → P b .fst) ((a : A) → P (f a) .fst) Iso.fun theIso = λ(s : (b : B) → P b .fst) → s ∘ f Iso.inv theIso = λ _ b → P b .snd .fst Iso.rightInv theIso g = funExt λ x → P (f x) .snd .snd (g x) Iso.leftInv theIso g = funExt λ x → P x .snd .snd (g x) isEquivPrecompose (suc n) P fConn = isoToIsEquiv (isIsoPrecompose (suc n) P fConn) isConnectedPrecompose : (n : ℕ) → ((P : B → TypeOfHLevel (ℓ-max ℓ ℓ') n) → hasSection (λ(s : (b : B) → P b .fst) → s ∘ f)) → isConnectedFun n f isConnectedPrecompose zero P→sect b = isContrUnit* isConnectedPrecompose (suc n) P→sect b = c n P→sect b , λ y → sym (fun n P→sect b y) where P : (n : HLevel) → ((P : B → TypeOfHLevel ℓ (suc n)) → hasSection (λ(s : (b : B) → P b .fst) → s ∘ f)) → B → Type _ P n s b = hLevelTrunc (suc n) (fiber f b) c : (n : HLevel) → ((P : B → TypeOfHLevel (ℓ-max ℓ ℓ') (suc n)) → hasSection (λ(s : (b : B) → P b .fst) → s ∘ f)) → (b : B) → hLevelTrunc (suc n) (fiber f b) c n s = (s λ b → (hLevelTrunc (suc n) (fiber f b) , isOfHLevelTrunc _)) .fst λ a → ∣ a , refl ∣ fun : (n : HLevel) (P→sect : ((P : B → TypeOfHLevel (ℓ-max ℓ ℓ') (suc n)) → hasSection λ(s : (b : B) → P b .fst) → s ∘ f)) → (b : B) (w : (hLevelTrunc (suc n) (fiber f b))) → w ≡ c n P→sect b fun n P→sect b = Trunc.elim (λ x → isOfHLevelPath (suc n) (isOfHLevelTrunc _) _ _) λ a → J (λ b p → ∣ (fst a) , p ∣ ≡ c n P→sect b) (c* (fst a)) (snd a) where c* : ((a : A) → ∣ (a , refl {x = f a}) ∣ ≡ c n P→sect (f a)) c* a = sym (cong (λ x → x a) (P→sect (λ b → hLevelTrunc (suc n) (fiber f b) , isOfHLevelTrunc _) .snd λ a → ∣ a , refl ∣)) isOfHLevelPrecomposeConnected : ∀ {ℓ ℓ' ℓ''} (k : HLevel) (n : HLevel) {A : Type ℓ} {B : Type ℓ'} (P : B → TypeOfHLevel ℓ'' (k + n)) (f : A → B) → isConnectedFun n f → isOfHLevelFun k (λ(s : (b : B) → P b .fst) → s ∘ f) isOfHLevelPrecomposeConnected zero n P f fConn = elim.isEquivPrecompose f n P fConn .equiv-proof isOfHLevelPrecomposeConnected (suc k) n P f fConn t = isOfHLevelPath'⁻ k λ {(s₀ , p₀) (s₁ , p₁) → isOfHLevelRetractFromIso k (invIso ΣPathIsoPathΣ) (subst (isOfHLevel k) (sym (fiberPath (s₀ , p₀) (s₁ , p₁))) (isOfHLevelRetract k (λ {(q , α) → (funExt⁻ q) , (cong funExt⁻ α)}) (λ {(h , β) → (funExt h) , (cong funExt β)}) (λ _ → refl) (isOfHLevelPrecomposeConnected k n (λ b → (s₀ b ≡ s₁ b) , isOfHLevelPath' (k + n) (P b .snd) _ _) f fConn (funExt⁻ (p₀ ∙∙ refl ∙∙ sym p₁)))))} indMapEquiv→conType : ∀ {ℓ} {A : Type ℓ} (n : HLevel) → ((B : TypeOfHLevel ℓ n) → isEquiv (λ (b : (fst B)) → λ (a : A) → b)) → isConnected n A indMapEquiv→conType {A = A} zero BEq = isContrUnit* indMapEquiv→conType {A = A} (suc n) BEq = isOfHLevelRetractFromIso 0 (mapCompIso {n = (suc n)} (typeToFiberIso A)) (elim.isConnectedPrecompose (λ _ → tt) (suc n) (λ P → ((λ a _ → a) ∘ invIsEq (BEq (P tt))) , λ a → equiv-proof (BEq (P tt)) a .fst .snd) tt) isConnectedPath : ∀ {ℓ} (n : HLevel) {A : Type ℓ} → isConnected (suc n) A → (a₀ a₁ : A) → isConnected n (a₀ ≡ a₁) isConnectedPath zero connA a₀ a₁ = isContrUnit* isConnectedPath (suc n) connA a₀ a₁ = isOfHLevelRetractFromIso 0 (invIso (PathIdTruncIso (suc n))) (isContr→isContrPath connA _ _) isConnectedRetract : ∀ {ℓ ℓ'} (n : HLevel) {A : Type ℓ} {B : Type ℓ'} (f : A → B) (g : B → A) (h : (x : A) → g (f x) ≡ x) → isConnected n B → isConnected n A isConnectedRetract zero _ _ _ _ = isContrUnit* isConnectedRetract (suc n) f g h = isContrRetract (Trunc.map f) (Trunc.map g) (Trunc.elim (λ _ → isOfHLevelPath (suc n) (isOfHLevelTrunc (suc n)) _ _) (λ a → cong ∣_∣ (h a))) isConnectedRetractFromIso : ∀ {ℓ ℓ'} (n : HLevel) {A : Type ℓ} {B : Type ℓ'} → Iso A B → isConnected n B → isConnected n A isConnectedRetractFromIso n e = isConnectedRetract n (Iso.fun e) (Iso.inv e) (Iso.leftInv e) isConnectedPoint : ∀ {ℓ} (n : HLevel) {A : Type ℓ} → isConnected (suc n) A → (a : A) → isConnectedFun n (λ(_ : Unit) → a) isConnectedPoint n connA a₀ a = isConnectedRetract n snd (_ ,_) (λ _ → refl) (isConnectedPath n connA a₀ a) isConnectedPoint2 : ∀ {ℓ} (n : HLevel) {A : Type ℓ} (a : A) → isConnectedFun n (λ(_ : Unit) → a) → isConnected (suc n) A isConnectedPoint2 n {A = A} a connMap = indMapEquiv→conType _ λ B → isoToIsEquiv (theIso B) where module _ {ℓ' : Level} (B : TypeOfHLevel ℓ' (suc n)) where helper : (f : A → fst B) → (a2 : A) → f a2 ≡ f a helper f = equiv-proof (elim.isEquivPrecompose (λ _ → a) n (λ a2 → (f a2 ≡ f a) , isOfHLevelPath' n (snd B) (f a2) (f a)) connMap) (λ _ → refl) .fst .fst theIso : Iso (fst B) (A → fst B) Iso.fun theIso b a = b Iso.inv theIso f = f a Iso.rightInv theIso f = funExt λ y → sym (helper f y) Iso.leftInv theIso _ = refl connectedTruncIso : ∀ {ℓ} {A B : Type ℓ} (n : HLevel) (f : A → B) → isConnectedFun n f → Iso (hLevelTrunc n A) (hLevelTrunc n B) connectedTruncIso {A = A} {B = B} zero f con = isContr→Iso isContrUnit* isContrUnit* connectedTruncIso {A = A} {B = B} (suc n) f con = g where back : B → hLevelTrunc (suc n) A back y = map fst ((con y) .fst) backSection : (b : B) → Path (hLevelTrunc (suc n) B) (Trunc.rec (isOfHLevelTrunc (suc n)) (λ a → ∣ f a ∣) (Trunc.rec {n = n} {B = hLevelTrunc (suc n) A} (isOfHLevelTrunc (suc n)) back ∣ b ∣)) ∣ b ∣ backSection b = helper (λ p → map f p ≡ ∣ b ∣) (λ x → (isOfHLevelSuc (suc n) (isOfHLevelTrunc (suc n))) (map f (map fst x)) ∣ b ∣) (λ a p → cong ∣_∣ p) (fst (con b)) where helper : ∀ {ℓ ℓ' ℓ''} {A : Type ℓ} {B : A → Type ℓ'} (P : hLevelTrunc (suc n) A → Type ℓ'') → ((x : hLevelTrunc (suc n) (Σ A B)) → isOfHLevel (suc n) (P (map fst x))) → ((a : A) (b : B a) → P ∣ a ∣) → (p : hLevelTrunc (suc n) (Σ A B)) → P (map fst p) helper P hlev pf = Trunc.elim hlev λ pair → pf (fst pair) (snd pair) g : Iso (hLevelTrunc (suc n) A) (hLevelTrunc (suc n) B) Iso.fun g = map f Iso.inv g = Trunc.rec (isOfHLevelTrunc _) back Iso.leftInv g = Trunc.elim (λ x → isOfHLevelPath (suc n) (isOfHLevelTrunc _) _ _) λ a → cong (map fst) (con (f a) .snd ∣ a , refl ∣) Iso.rightInv g = Trunc.elim (λ x → isOfHLevelPath (suc n) (isOfHLevelTrunc _) _ _) backSection connectedTruncIso2 : ∀ {ℓ} {A B : Type ℓ} (n m : HLevel) (f : A → B) → Σ[ x ∈ ℕ ] x + n ≡ m → isConnectedFun m f → Iso (hLevelTrunc n A) (hLevelTrunc n B) connectedTruncIso2 {A = A} {B = B} n m f (x , pf) con = connectedTruncIso n f (isConnectedFunSubtr n x f (transport (λ i → isConnectedFun (pf (~ i)) f) con)) connectedTruncEquiv : ∀ {ℓ} {A B : Type ℓ} (n : HLevel) (f : A → B) → isConnectedFun n f → hLevelTrunc n A ≃ hLevelTrunc n B connectedTruncEquiv {A = A} {B = B} n f con = isoToEquiv (connectedTruncIso n f con) -- TODO : Reorganise the following proofs. inrConnected : ∀ {ℓ ℓ' ℓ''} {A : Type ℓ} {B : Type ℓ'} {C : Type ℓ''} (n : HLevel) → (f : C → A) (g : C → B) → isConnectedFun n f → isConnectedFun n {A = B} {B = Pushout f g} inr inrConnected {A = A} {B = B} {C = C} n f g iscon = elim.isConnectedPrecompose inr n λ P → (k P) , λ b → refl where module _ {ℓ : Level} (P : (Pushout f g) → TypeOfHLevel ℓ n) (h : (b : B) → typ (P (inr b))) where Q : A → TypeOfHLevel _ n Q a = (P (inl a)) fun : (c : C) → typ (Q (f c)) fun c = transport (λ i → typ (P (push c (~ i)))) (h (g c)) k : (d : Pushout f g) → typ (P d) k (inl x) = equiv-proof (elim.isEquivPrecompose f n Q iscon) fun .fst .fst x k (inr x) = h x k (push a i) = hcomp (λ k → λ { (i = i0) → equiv-proof (elim.isEquivPrecompose f n Q iscon) fun .fst .snd i0 a ; (i = i1) → transportTransport⁻ (λ j → typ (P (push a j))) (h (g a)) k }) (transp (λ j → typ (P (push a (i ∧ j)))) (~ i) (equiv-proof (elim.isEquivPrecompose f n Q iscon) fun .fst .snd i a)) sphereConnected : (n : HLevel) → isConnected (suc n) (S₊ n) sphereConnected n = ∣ ptSn n ∣ , (Trunc.elim (λ _ → isOfHLevelPath (suc n) (isOfHLevelTrunc (suc n)) _ _) (λ a → sym (spoke ∣_∣ (ptSn n)) ∙ spoke ∣_∣ a))
43.905844
145
0.527915
0d9bc13cb139754ba743eb6f29bf112982319402
207
agda
Agda
Cubical/HITs/Rationals/HITQ.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/HITs/Rationals/HITQ.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
1
2022-01-27T02:07:48.000Z
2022-01-27T02:07:48.000Z
Cubical/HITs/Rationals/HITQ.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
1
2021-11-22T02:02:01.000Z
2021-11-22T02:02:01.000Z
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.Rationals.HITQ where open import Cubical.HITs.Rationals.HITQ.Base public -- open import Cubical.HITs.Rationals.HITQ.Properties public
29.571429
60
0.772947
211b68ce180683116c4e779d53f69678b1fb4452
2,744
agda
Agda
src/FOmegaInt/Undecidable.agda
sstucki/f-omega-int-agda
ae648c9520895a8428a7ad80f47bb55ecf4d50ea
[ "MIT" ]
12
2017-06-13T16:05:35.000Z
2021-09-27T05:53:06.000Z
src/FOmegaInt/Undecidable.agda
sstucki/f-omega-int-agda
ae648c9520895a8428a7ad80f47bb55ecf4d50ea
[ "MIT" ]
1
2021-05-14T08:09:40.000Z
2021-05-14T08:54:39.000Z
src/FOmegaInt/Undecidable.agda
sstucki/f-omega-int-agda
ae648c9520895a8428a7ad80f47bb55ecf4d50ea
[ "MIT" ]
2
2021-05-13T22:29:48.000Z
2021-05-14T10:25:05.000Z
------------------------------------------------------------------------ -- Undecidability of subtyping in Fω with interval kinds ------------------------------------------------------------------------ {-# OPTIONS --safe --without-K #-} module FOmegaInt.Undecidable where open import Function.Equivalence using (_⇔_; equivalence) open import Relation.Binary.PropositionalEquality open import Relation.Nullary open import Relation.Nullary.Decidable open import FOmegaInt.Syntax open import FOmegaInt.Typing as Declarative open import FOmegaInt.Kinding.Canonical as Canonical open import FOmegaInt.Kinding.Canonical.Equivalence open import FOmegaInt.Undecidable.SK open import FOmegaInt.Undecidable.Encoding open import FOmegaInt.Undecidable.Decoding open Syntax open ContextConversions using (⌞_⌟Ctx) open Canonical.Kinding using (_⊢_<:_⇇_) open Declarative.Typing using (_⊢_<:_∈_) open Encoding module T = TermCtx module E = ElimCtx ------------------------------------------------------------------------ -- SK combinator term equality checking reduces to subtype checking in -- Fω with interval kinds. -- -- We do not proof undecidability of subtyping directly, but give a -- reduction from undecidability of checking the equivalence of two SK -- combinator terms, which is well-known to be undecidable. In other -- words, if we could check subtyping, we could also check the -- equality of two SK combinator terms, which we cannot. -- -- The following types characterize the decision procedures involved. SKEqualityCheck : Set SKEqualityCheck = (s t : SKTerm) → Dec (s ≡SK t) CanoncialSubtypeCheck : Set CanoncialSubtypeCheck = ∀ {n} (Γ : E.Ctx n) a b k → Dec (Γ ⊢ a <: b ⇇ k) DeclarativeSubtypeCheck : Set DeclarativeSubtypeCheck = ∀ {n} (Γ : T.Ctx n) a b k → Dec (Γ ⊢ a <: b ∈ k) -- The reduction from SK equality checking to canonical subtype checking. canonicalEquivalence : ∀ s t → Γ-SK? ⊢ encode s <: encode t ⇇ ⌜*⌝ ⇔ s ≡SK t canonicalEquivalence s t = equivalence decode-<:⇇-encode <:⇇-encode canonicalReduction : CanoncialSubtypeCheck → SKEqualityCheck canonicalReduction check-<:⇇ s t = map (canonicalEquivalence s t) (check-<:⇇ Γ-SK? (encode s) (encode t) ⌜*⌝) -- The reduction from SK equality checking to declarative subtype checking. declarativeEquivalence : ∀ s t → ⌞Γ-SK?⌟ ⊢ ⌞ encode s ⌟ <: ⌞ encode t ⌟ ∈ * ⇔ s ≡SK t declarativeEquivalence s t = equivalence (λ es<:et∈* → decode-<:⇇-encode (subst₂ (_ ⊢_<:_⇇ _) (nf-encode s) (nf-encode t) (complete-<: es<:et∈*))) (λ s≡t → sound-<:⇇ (<:⇇-encode s≡t)) declarativeReduction : DeclarativeSubtypeCheck → SKEqualityCheck declarativeReduction check-<:∈ s t = map (declarativeEquivalence s t) (check-<:∈ ⌞Γ-SK?⌟ ⌞ encode s ⌟ ⌞ encode t ⌟ *)
37.081081
79
0.672012
3640040682ba360de18c265bf3c8befd7fbc98f1
12,700
agda
Agda
Cubical/Homotopy/HopfInvariant/Base.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
1
2021-10-31T17:32:49.000Z
2021-10-31T17:32:49.000Z
Cubical/Homotopy/HopfInvariant/Base.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
Cubical/Homotopy/HopfInvariant/Base.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
{-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.Homotopy.HopfInvariant.Base where open import Cubical.Homotopy.Connected open import Cubical.Homotopy.Group.Base open import Cubical.Homotopy.Group.SuspensionMap open import Cubical.Relation.Nullary open import Cubical.ZCohomology.Base open import Cubical.ZCohomology.GroupStructure open import Cubical.ZCohomology.Properties open import Cubical.ZCohomology.MayerVietorisUnreduced open import Cubical.ZCohomology.Groups.Unit open import Cubical.ZCohomology.Groups.Wedge open import Cubical.ZCohomology.Groups.Sn open import Cubical.ZCohomology.RingStructure.CupProduct open import Cubical.ZCohomology.RingStructure.GradedCommutativity open import Cubical.ZCohomology.Gysin open import Cubical.Foundations.Path open import Cubical.Foundations.HLevels open import Cubical.Foundations.Transport open import Cubical.Foundations.Function open import Cubical.Foundations.Prelude open import Cubical.Foundations.Pointed open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.Equiv open import Cubical.Data.Sigma open import Cubical.Data.Int hiding (_+'_) open import Cubical.Data.Nat renaming (_+_ to _+ℕ_ ; _·_ to _·ℕ_) open import Cubical.Data.Unit open import Cubical.Algebra.Group open import Cubical.Algebra.Group.ZAction open import Cubical.Algebra.Group.Exact open import Cubical.Algebra.Group.Morphisms open import Cubical.Algebra.Group.MorphismProperties open import Cubical.Algebra.Group.Instances.Int open import Cubical.Algebra.Group.Instances.Unit open import Cubical.HITs.Pushout open import Cubical.HITs.Sn open import Cubical.HITs.Susp open import Cubical.HITs.Wedge open import Cubical.HITs.Truncation renaming (rec to trRec) open import Cubical.HITs.SetTruncation renaming (rec to sRec ; elim to sElim ; elim2 to sElim2 ; map to sMap) open import Cubical.HITs.PropositionalTruncation renaming (rec to pRec) -- The pushout of the hopf invariant HopfInvariantPush : (n : ℕ) → (f : S₊ (3 +ℕ n +ℕ n) → S₊ (2 +ℕ n)) → Type _ HopfInvariantPush n f = Pushout (λ _ → tt) f Hopfα : (n : ℕ) → (f : S₊∙ (3 +ℕ n +ℕ n) →∙ S₊∙ (2 +ℕ n)) → coHom (2 +ℕ n) (HopfInvariantPush n (fst f)) Hopfα n f = ∣ (λ { (inl x) → 0ₖ _ ; (inr x) → ∣ x ∣ ; (push a i) → help a (~ i)}) ∣₂ where help : (a : S₊ (3 +ℕ n +ℕ n)) → ∣ fst f a ∣ ≡ 0ₖ (2 +ℕ n) help = sphereElim _ (λ _ → isOfHLevelPlus' {n = n} (3 +ℕ n) (isOfHLevelPath' (3 +ℕ n) (isOfHLevelTrunc (4 +ℕ n)) _ _)) (cong ∣_∣ₕ (snd f)) Hopfβ : (n : ℕ) → (f : S₊∙ (3 +ℕ n +ℕ n) →∙ S₊∙ (2 +ℕ n)) → coHom (4 +ℕ (n +ℕ n)) (HopfInvariantPush n (fst f)) Hopfβ n f = fst (MV.d _ _ _ (λ _ → tt) (fst f) (3 +ℕ n +ℕ n)) ∣ ∣_∣ ∣₂ -- To define the Hopf invariant, we need to establish the -- non-trivial isos of Hⁿ(HopfInvariant). module _ (n : ℕ) (f : S₊∙ (3 +ℕ n +ℕ n) →∙ S₊∙ (2 +ℕ n)) where module M = MV _ _ _ (λ _ → tt) (fst f) ¬lemHopf : (n m : ℕ) → ¬ suc (suc (m +ℕ n)) ≡ suc n ¬lemHopf zero zero p = snotz (cong predℕ p) ¬lemHopf (suc n) zero p = ¬lemHopf n zero (cong predℕ p) ¬lemHopf zero (suc m) p = snotz (cong predℕ p) ¬lemHopf (suc n) (suc m) p = ¬lemHopf n (suc m) (cong (suc ∘ suc ) (sym (+-suc m n)) ∙ (cong predℕ p)) SphereHopfCohomIso : GroupEquiv (coHomGr (3 +ℕ n +ℕ n) (S₊ (3 +ℕ n +ℕ n))) ((coHomGr (suc (3 +ℕ n +ℕ n)) (HopfInvariantPush _ (fst f)))) fst (fst SphereHopfCohomIso) = fst (MV.d _ _ _ (λ _ → tt) (fst f) (3 +ℕ n +ℕ n)) snd (fst SphereHopfCohomIso) = help where abstract help : isEquiv (fst (MV.d _ _ _ (λ _ → tt) (fst f) (3 +ℕ n +ℕ n))) help = SES→isEquiv (isContr→≡UnitGroup (isContrΣ (GroupIsoUnitGroup→isContr (invGroupIso (Hⁿ-Unit≅0 _))) λ _ → GroupIsoUnitGroup→isContr (invGroupIso (Hⁿ-Sᵐ≅0 _ _ (¬lemHopf n n))))) (isContr→≡UnitGroup (isContrΣ (GroupIsoUnitGroup→isContr (invGroupIso (Hⁿ-Unit≅0 _))) λ _ → GroupIsoUnitGroup→isContr (invGroupIso (Hⁿ-Sᵐ≅0 _ _ (¬lemHopf n (suc n)))))) (M.Δ (3 +ℕ n +ℕ n)) (M.d (3 +ℕ n +ℕ n)) (M.i (4 +ℕ n +ℕ n)) (M.Ker-d⊂Im-Δ _) (M.Ker-i⊂Im-d _) snd SphereHopfCohomIso = d-inv where -- Currently, type checking is very slow without the abstract flag. -- TODO : Remove abstract abstract d-inv : IsGroupHom (snd (coHomGr (3 +ℕ n +ℕ n) (S₊ (3 +ℕ n +ℕ n)))) (fst (MV.d _ _ _ (λ _ → tt) (fst f) (3 +ℕ n +ℕ n))) (snd (coHomGr (suc (3 +ℕ n +ℕ n)) (Pushout (λ _ → tt) (fst f)))) d-inv = snd (MV.d _ _ _ (λ _ → tt) (fst f) (3 +ℕ n +ℕ n)) Hopfβ-Iso : GroupIso (coHomGr (suc (3 +ℕ n +ℕ n)) (HopfInvariantPush _ (fst f))) ℤGroup fst Hopfβ-Iso = compIso (invIso (equivToIso (fst SphereHopfCohomIso))) (fst (Hⁿ-Sⁿ≅ℤ (suc (suc (n +ℕ n))))) snd Hopfβ-Iso = grHom where abstract grHom : IsGroupHom (coHomGr (suc (3 +ℕ n +ℕ n)) (Pushout (λ _ → tt) (fst f)) .snd) (λ x → Iso.fun (fst ((Hⁿ-Sⁿ≅ℤ (suc (suc (n +ℕ n)))))) (invEq (fst SphereHopfCohomIso) x)) (ℤGroup .snd) grHom = snd (compGroupIso (GroupEquiv→GroupIso (invGroupEquiv (SphereHopfCohomIso))) (Hⁿ-Sⁿ≅ℤ (suc (suc (n +ℕ n))))) Hⁿ-Sⁿ≅ℤ-nice-generator : (n : ℕ) → Iso.inv (fst (Hⁿ-Sⁿ≅ℤ (suc n))) 1 ≡ ∣ ∣_∣ ∣₂ Hⁿ-Sⁿ≅ℤ-nice-generator zero = Iso.leftInv (fst (Hⁿ-Sⁿ≅ℤ (suc zero))) _ Hⁿ-Sⁿ≅ℤ-nice-generator (suc n) = (λ i → Iso.inv (fst (suspensionAx-Sn (suc n) (suc n))) (Hⁿ-Sⁿ≅ℤ-nice-generator n i)) ∙ cong ∣_∣₂ (funExt λ { north → refl ; south → cong ∣_∣ₕ (merid north) ; (merid a i) j → ∣ compPath-filler (merid a) (sym (merid north)) (~ j) i ∣ₕ}) Hopfβ↦1 : (n : ℕ) (f : S₊∙ (3 +ℕ n +ℕ n) →∙ S₊∙ (2 +ℕ n)) → Iso.fun (fst (Hopfβ-Iso n f)) (Hopfβ n f) ≡ 1 Hopfβ↦1 n f = sym (cong (Iso.fun (fst (Hopfβ-Iso n f))) lem) ∙ Iso.rightInv (fst (Hopfβ-Iso n f)) (pos 1) where lem : Iso.inv (fst (Hopfβ-Iso n f)) (pos 1) ≡ Hopfβ n f lem = (λ i → fst (MV.d _ _ _ (λ _ → tt) (fst f) (3 +ℕ n +ℕ n)) (Hⁿ-Sⁿ≅ℤ-nice-generator _ i)) ∙ cong ∣_∣₂ (funExt (λ { (inl x) → refl ; (inr x) → refl ; (push a i) → refl})) module _ (n : ℕ) (f : S₊∙ (3 +ℕ n +ℕ n) →∙ S₊∙ (2 +ℕ n)) where private 2+n = 2 +ℕ n H = HopfInvariantPush n (fst f) H→Sphere : coHom 2+n H → coHom 2+n (S₊ (suc (suc n))) H→Sphere = sMap (_∘ inr) grHom : IsGroupHom (snd (coHomGr 2+n H)) H→Sphere (snd (coHomGr 2+n (S₊ (suc (suc n))))) grHom = makeIsGroupHom (sElim2 (λ _ _ → isOfHLevelPath 2 squash₂ _ _) λ f g → refl) preSphere→H : (g : (S₊ (suc (suc n)) → coHomK 2+n)) → H → coHomK (2 +ℕ n) preSphere→H g (inl x) = 0ₖ _ preSphere→H g (inr x) = g x -ₖ g north preSphere→H g (push a i) = lem a i where lem : (a : S₊ (suc (suc (suc (n +ℕ n))))) → 0ₖ (suc (suc n)) ≡ g (fst f a) -ₖ g north lem = sphereElim _ (λ x → isOfHLevelPlus' {n = n} (3 +ℕ n) (isOfHLevelTrunc (4 +ℕ n) _ _)) (sym (rCancelₖ _ (g north)) ∙ cong (λ x → g x -ₖ g north) (sym (snd f))) Sphere→H : coHom 2+n (S₊ (suc (suc n))) → coHom 2+n H Sphere→H = sMap preSphere→H conCohom2+n : (x : _) → ∥ x ≡ 0ₖ (suc (suc n)) ∥₁ conCohom2+n = coHomK-elim _ (λ _ → isProp→isOfHLevelSuc (suc n) squash₁) ∣ refl ∣₁ HIPSphereCohomIso : Iso (coHom (2 +ℕ n) (HopfInvariantPush n (fst f))) (coHom (2 +ℕ n) (S₊ (2 +ℕ n))) Iso.fun HIPSphereCohomIso = H→Sphere Iso.inv HIPSphereCohomIso = Sphere→H Iso.rightInv HIPSphereCohomIso = sElim (λ _ → isOfHLevelPath 2 squash₂ _ _) λ g → pRec (squash₂ _ _) (λ p → cong ∣_∣₂ (funExt λ x → cong (g x +ₖ_) (cong (-ₖ_) p) ∙ rUnitₖ _ (g x))) (conCohom2+n (g north)) Iso.leftInv HIPSphereCohomIso = sElim (λ _ → isOfHLevelPath 2 squash₂ _ _) λ g → pRec (squash₂ _ _) (pRec (isPropΠ (λ _ → squash₂ _ _)) (λ gn gtt → trRec (isProp→isOfHLevelSuc n (squash₂ _ _)) (λ r → cong ∣_∣₂ (funExt λ { (inl x) → sym gtt ; (inr x) → (λ i → g (inr x) -ₖ gn i) ∙ rUnitₖ _ (g (inr x)) ; (push a i) → sphereElim _ {A = λ a → PathP (λ i → preSphere→H (λ x → g (inr x)) (push a i) ≡ g (push a i)) (sym gtt) ((λ i → g (inr (fst f a)) -ₖ gn i) ∙ rUnitₖ _ (g (inr (fst f a))))} (λ _ → isOfHLevelPathP' (suc (suc (suc (n +ℕ n)))) (isOfHLevelPath (suc (suc (suc (suc (n +ℕ n))))) (isOfHLevelPlus' {n = n} (suc (suc (suc (suc n)))) (isOfHLevelTrunc (suc (suc (suc (suc n)))))) _ _) _ _) r a i})) (push-helper g gtt gn)) (conCohom2+n (g (inr north)))) (conCohom2+n (g (inl tt))) where push-helper : (g : HopfInvariantPush n (fst f) → coHomK (suc (suc n))) → (gtt : g (inl tt) ≡ 0ₖ (suc (suc n))) → (gn : g (inr north) ≡ 0ₖ (suc (suc n))) → hLevelTrunc (suc n) (PathP (λ i → preSphere→H (λ x → g (inr x)) (push north i) ≡ g (push north i)) (sym gtt) ((λ i → g (inr (fst f north)) -ₖ gn i) ∙ rUnitₖ _ (g (inr (fst f north))))) push-helper g gtt gn = isConnectedPathP _ (isConnectedPath _ (isConnectedKn _) _ _) _ _ .fst Hopfα-Iso : GroupIso (coHomGr (2 +ℕ n) (HopfInvariantPush n (fst f))) ℤGroup Hopfα-Iso = compGroupIso (HIPSphereCohomIso , grHom) (Hⁿ-Sⁿ≅ℤ (suc n)) Hopfα-Iso-α : (n : ℕ) (f : _) → Iso.fun (fst (Hopfα-Iso n f)) (Hopfα n f) ≡ 1 Hopfα-Iso-α n f = sym (cong (Iso.fun (fst (Hⁿ-Sⁿ≅ℤ (suc n)))) (Hⁿ-Sⁿ≅ℤ-nice-generator n)) ∙ Iso.rightInv (fst (Hⁿ-Sⁿ≅ℤ (suc n))) (pos 1) where hz : Iso.fun (HIPSphereCohomIso n f) (Hopfα n f) ≡ ∣ ∣_∣ ∣₂ hz = refl ⌣-α : (n : ℕ) → (f : S₊∙ (3 +ℕ (n +ℕ n)) →∙ S₊∙ (2 +ℕ n)) → _ ⌣-α n f = Hopfα n f ⌣ Hopfα n f HopfInvariant : (n : ℕ) → (f : S₊∙ (3 +ℕ (n +ℕ n)) →∙ S₊∙ (2 +ℕ n)) → ℤ HopfInvariant n f = Iso.fun (fst (Hopfβ-Iso n f)) (subst (λ x → coHom x (HopfInvariantPush n (fst f))) (λ i → suc (suc (suc (+-suc n n i)))) (⌣-α n f)) HopfInvariant-π' : (n : ℕ) → π' (3 +ℕ (n +ℕ n)) (S₊∙ (2 +ℕ n)) → ℤ HopfInvariant-π' n = sRec isSetℤ (HopfInvariant n) HopfInvariant-π : (n : ℕ) → π (3 +ℕ (n +ℕ n)) (S₊∙ (2 +ℕ n)) → ℤ HopfInvariant-π n = sRec isSetℤ λ x → HopfInvariant-π' n ∣ Ω→SphereMap _ x ∣₂ -- Elimination principle for the pushout defining the Hopf Invariant HopfInvariantPushElim : ∀ {ℓ} n → (f : _) → {P : HopfInvariantPush n f → Type ℓ} → (isOfHLevel (suc (suc (suc (suc (n +ℕ n))))) (P (inl tt))) → (e : P (inl tt)) (g : (x : _) → P (inr x)) (r : PathP (λ i → P (push north i)) e (g (f north))) → (x : _) → P x HopfInvariantPushElim n f {P = P} hlev e g r (inl x) = e HopfInvariantPushElim n f {P = P} hlev e g r (inr x) = g x HopfInvariantPushElim n f {P = P} hlev e g r (push a i₁) = help a i₁ where help : (a : Susp (Susp (S₊ (suc (n +ℕ n))))) → PathP (λ i → P (push a i)) e (g (f a)) help = sphereElim _ (sphereElim _ (λ _ → isProp→isOfHLevelSuc (suc (suc (n +ℕ n))) (isPropIsOfHLevel _)) (isOfHLevelPathP' (suc (suc (suc (n +ℕ n)))) (subst (isOfHLevel (suc (suc (suc (suc (n +ℕ n)))))) (cong P (push north)) hlev) _ _)) r
40.063091
80
0.512913
368ad3e944d0dc42486f6757ac6dbfdfefc10190
8,591
agda
Agda
Cubical/Foundations/Equiv/Properties.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/Foundations/Equiv/Properties.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/Foundations/Equiv/Properties.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
{- A couple of general facts about equivalences: - if f is an equivalence then (cong f) is an equivalence ([equivCong]) - if f is an equivalence then pre- and postcomposition with f are equivalences ([preCompEquiv], [postCompEquiv]) - if f is an equivalence then (Σ[ g ] section f g) and (Σ[ g ] retract f g) are contractible ([isContr-section], [isContr-retract]) - isHAEquiv is a proposition [isPropIsHAEquiv] (these are not in 'Equiv.agda' because they need Univalence.agda (which imports Equiv.agda)) -} {-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Foundations.Equiv.Properties where open import Cubical.Core.Everything open import Cubical.Data.Sigma open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Equiv open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Foundations.Univalence open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Path open import Cubical.Foundations.HLevels open import Cubical.Functions.FunExtEquiv open import Cubical.Relation.Binary.Reasoning.Equality private variable ℓ ℓ′ : Level A B C : Type ℓ isEquivCong : {x y : A} (e : A ≃ B) → isEquiv (λ (p : x ≡ y) → cong (e .fst) p) isEquivCong e = isoToIsEquiv (congIso (equivToIso e)) congEquiv : {x y : A} (e : A ≃ B) → (x ≡ y) ≃ (e .fst x ≡ e .fst y) congEquiv e = isoToEquiv (congIso (equivToIso e)) equivAdjointEquiv : (e : A ≃ B) → ∀ {a b} → (a ≡ invEq e b) ≃ (equivFun e a ≡ b) equivAdjointEquiv e = compEquiv (congEquiv e) (compPathrEquiv (retEq e _)) invEq≡→equivFun≡ : (e : A ≃ B) → ∀ {a b} → invEq e b ≡ a → equivFun e a ≡ b invEq≡→equivFun≡ e = equivAdjointEquiv e .fst ∘ sym isEquivPreComp : {A B : Type ℓ} {C : Type ℓ′} (e : A ≃ B) → isEquiv (λ (φ : B → C) → φ ∘ e .fst) isEquivPreComp {A = A} {B} {C} e = EquivJ (λ (A : Type _) (e' : A ≃ B) → isEquiv (λ (φ : B → C) → φ ∘ e' .fst)) (idIsEquiv (B → C)) e preCompEquiv : {A B : Type ℓ} {C : Type ℓ′} (e : A ≃ B) → (B → C) ≃ (A → C) preCompEquiv e = (λ φ → φ ∘ fst e) , isEquivPreComp e depPostCompEquiv : {A : C → Type ℓ} {B : C → Type ℓ′} (e : ∀ c → A c ≃ B c) → (∀ c → A c) ≃ (∀ c → B c) depPostCompEquiv {A = A} {B} e = isoToEquiv pcIso where eIso : ∀ c → Iso (A c) (B c) eIso c = equivToIso (e c) pcIso : Iso (∀ c → A c) (∀ c → B c) Iso.fun pcIso f c = Iso.fun (eIso c) (f c) Iso.inv pcIso g c = Iso.inv (eIso c) (g c) Iso.rightInv pcIso f i c = Iso.rightInv (eIso c) (f c) i Iso.leftInv pcIso g i c = Iso.leftInv (eIso c) (g c) i isEquivPostComp :(e : A ≃ B) → isEquiv (λ (φ : C → A) → e .fst ∘ φ) isEquivPostComp {A = A} {B} {C} e = snd (depPostCompEquiv (λ _ → e)) postCompEquiv : (e : A ≃ B) → (C → A) ≃ (C → B) postCompEquiv e = _ , isEquivPostComp e hasSection : (A → B) → Type _ hasSection {A = A} {B = B} f = Σ[ g ∈ (B → A) ] section f g hasRetract : (A → B) → Type _ hasRetract {A = A} {B = B} f = Σ[ g ∈ (B → A) ] retract f g isEquiv→isContrHasSection : {f : A → B} → isEquiv f → isContr (hasSection f) fst (isEquiv→isContrHasSection isEq) = invIsEq isEq , secIsEq isEq snd (isEquiv→isContrHasSection isEq) (f , ε) i = (λ b → fst (p b i)) , (λ b → snd (p b i)) where p : ∀ b → (invIsEq isEq b , secIsEq isEq b) ≡ (f b , ε b) p b = isEq .equiv-proof b .snd (f b , ε b) isEquiv→hasSection : {f : A → B} → isEquiv f → hasSection f isEquiv→hasSection = fst ∘ isEquiv→isContrHasSection isContr-hasSection : (e : A ≃ B) → isContr (hasSection (fst e)) isContr-hasSection e = isEquiv→isContrHasSection (snd e) isEquiv→isContrHasRetract : {f : A → B} → isEquiv f → isContr (hasRetract f) fst (isEquiv→isContrHasRetract isEq) = invIsEq isEq , retIsEq isEq snd (isEquiv→isContrHasRetract {f = f} isEq) (g , η) = λ i → (λ b → p b i) , (λ a → q a i) where p : ∀ b → invIsEq isEq b ≡ g b p b = sym (η (invIsEq isEq b)) ∙' cong g (secIsEq isEq b) -- one square from the definition of invIsEq ieSq : ∀ a → Square (cong g (secIsEq isEq (f a))) refl (cong (g ∘ f) (retIsEq isEq a)) refl ieSq a k j = g (commSqIsEq isEq a k j) -- one square from η ηSq : ∀ a → Square (η (invIsEq isEq (f a))) (η a) (cong (g ∘ f) (retIsEq isEq a)) (retIsEq isEq a) ηSq a i j = η (retIsEq isEq a i) j -- and one last square from the definition of p pSq : ∀ b → Square (η (invIsEq isEq b)) refl (cong g (secIsEq isEq b)) (p b) pSq b i j = compPath'-filler (sym (η (invIsEq isEq b))) (cong g (secIsEq isEq b)) j i q : ∀ a → Square (retIsEq isEq a) (η a) (p (f a)) refl q a i j = hcomp (λ k → λ { (i = i0) → ηSq a j k ; (i = i1) → η a (j ∧ k) ; (j = i0) → pSq (f a) i k ; (j = i1) → η a k }) (ieSq a j i) isEquiv→hasRetract : {f : A → B} → isEquiv f → hasRetract f isEquiv→hasRetract = fst ∘ isEquiv→isContrHasRetract isContr-hasRetract : (e : A ≃ B) → isContr (hasRetract (fst e)) isContr-hasRetract e = isEquiv→isContrHasRetract (snd e) -- there is a (much slower) alternate proof that also works for retract isContr-hasSection' : {A B : Type ℓ} (e : A ≃ B) → isContr (hasSection (fst e)) isContr-hasSection' {_} {A} {B} e = transport (λ i → ∃![ g ∈ (B → A) ] eq g i) (equiv-proof (isEquivPostComp e) (idfun _)) where eq : ∀ (g : B → A) → ((fst e) ∘ g ≡ idfun _) ≡ (section (fst e) g) eq g = sym (funExtPath {f = (fst e) ∘ g} {g = idfun _}) isContr-hasRetract' : {A B : Type ℓ} (e : A ≃ B) → isContr (hasRetract (fst e)) isContr-hasRetract' {_} {A} {B} e = transport (λ i → ∃![ g ∈ (B → A) ] eq g i) (equiv-proof (isEquivPreComp e) (idfun _)) where eq : ∀ (g : B → A) → (g ∘ (fst e) ≡ idfun _) ≡ (retract (fst e) g) eq g = sym (funExtPath {f = g ∘ (fst e)} {g = idfun _}) cong≃ : (F : Type ℓ → Type ℓ′) → (A ≃ B) → F A ≃ F B cong≃ F e = pathToEquiv (cong F (ua e)) cong≃-char : (F : Type ℓ → Type ℓ′) {A B : Type ℓ} (e : A ≃ B) → ua (cong≃ F e) ≡ cong F (ua e) cong≃-char F e = ua-pathToEquiv (cong F (ua e)) cong≃-idEquiv : (F : Type ℓ → Type ℓ′) (A : Type ℓ) → cong≃ F (idEquiv A) ≡ idEquiv (F A) cong≃-idEquiv F A = cong≃ F (idEquiv A) ≡⟨ cong (λ p → pathToEquiv (cong F p)) uaIdEquiv ⟩ pathToEquiv refl ≡⟨ pathToEquivRefl ⟩ idEquiv (F A) ∎ isPropIsHAEquiv : {f : A → B} → isProp (isHAEquiv f) isPropIsHAEquiv {f = f} ishaef = goal ishaef where equivF : isEquiv f equivF = isHAEquiv→isEquiv ishaef rCoh1 : (sec : hasSection f) → Type _ rCoh1 (g , ε) = Σ[ η ∈ retract f g ] ∀ x → cong f (η x) ≡ ε (f x) rCoh2 : (sec : hasSection f) → Type _ rCoh2 (g , ε) = Σ[ η ∈ retract f g ] ∀ x → Square (ε (f x)) refl (cong f (η x)) refl rCoh3 : (sec : hasSection f) → Type _ rCoh3 (g , ε) = ∀ x → Σ[ ηx ∈ g (f x) ≡ x ] Square (ε (f x)) refl (cong f ηx) refl rCoh4 : (sec : hasSection f) → Type _ rCoh4 (g , ε) = ∀ x → Path (fiber f (f x)) (g (f x) , ε (f x)) (x , refl) characterization : isHAEquiv f ≃ Σ _ rCoh4 characterization = isHAEquiv f -- first convert between Σ and record ≃⟨ isoToEquiv (iso (λ e → (e .g , e .ret) , (e .sec , e .com)) (λ e → record { g = e .fst .fst ; ret = e .fst .snd ; sec = e .snd .fst ; com = e .snd .snd }) (λ _ → refl) (λ _ → refl)) ⟩ Σ _ rCoh1 -- secondly, convert the path into a dependent path for later convenience ≃⟨ Σ-cong-equiv-snd (λ s → Σ-cong-equiv-snd λ η → depPostCompEquiv λ x → compEquiv (flipSquareEquiv {a₀₀ = f x}) (invEquiv slideSquareEquiv)) ⟩ Σ _ rCoh2 ≃⟨ Σ-cong-equiv-snd (λ s → invEquiv Σ-Π-≃) ⟩ Σ _ rCoh3 ≃⟨ Σ-cong-equiv-snd (λ s → depPostCompEquiv λ x → ΣPath≃PathΣ) ⟩ Σ _ rCoh4 ■ where open isHAEquiv goal : isProp (isHAEquiv f) goal = subst isProp (sym (ua characterization)) (isPropΣ (isContr→isProp (isEquiv→isContrHasSection equivF)) λ s → isPropΠ λ x → isProp→isSet (isContr→isProp (equivF .equiv-proof (f x))) _ _)
42.955
131
0.548481
1bb0c5782ae14689e56d95066bc438e717bdee4d
3,908
agda
Agda
Formalization/PredicateLogic/Syntax/Tree.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
Formalization/PredicateLogic/Syntax/Tree.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
Formalization/PredicateLogic/Syntax/Tree.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
open import Formalization.PredicateLogic.Signature module Formalization.PredicateLogic.Syntax.Tree (𝔏 : Signature) where open Signature(𝔏) open import Data.DependentWidthTree as Tree hiding (height) import Functional.Dependent import Lvl open import Formalization.PredicateLogic.Syntax(𝔏) open import Formalization.PredicateLogic.Syntax.Substitution(𝔏) open import Functional using (_∘_ ; _∘₂_ ; _∘₃_ ; _∘₄_ ; swap ; _←_ ; _on₂_) open import Numeral.Finite open import Numeral.Natural.Function.Proofs open import Numeral.Natural.Inductions open import Numeral.Natural.Relation.Order open import Numeral.Natural.Relation.Order.Proofs open import Numeral.Natural open import Relator.Equals open import Structure.Relator open import Structure.Relator.Ordering open import Structure.Relator.Ordering.Proofs open import Type.Dependent open import Type private variable ℓ : Lvl.Level private variable vars vars₁ vars₂ : ℕ private variable φ ψ : Formula(vars) tree : Formula(vars) → FiniteTreeStructure tree (_ $ _) = Node 0 \() tree ⊤ = Node 0 \() tree ⊥ = Node 0 \() tree (φ ∧ ψ) = Node 2 \{𝟎 → tree φ; (𝐒 𝟎) → tree ψ} tree (φ ∨ ψ) = Node 2 \{𝟎 → tree φ; (𝐒 𝟎) → tree ψ} tree (φ ⟶ ψ) = Node 2 \{𝟎 → tree φ; (𝐒 𝟎) → tree ψ} tree (Ɐ φ) = Node 1 \{𝟎 → tree φ} tree (∃ φ) = Node 1 \{𝟎 → tree φ} height : Formula(vars) → ℕ height = Tree.height ∘ tree -- Ordering on formulas based on the height of their tree representation. _<↑_ : (Σ ℕ Formula) → (Σ ℕ Formula) → Type _<↑_ = (_<_) on₂ (height Functional.Dependent.∘ Σ.right) substitute-height : ∀{t} → (height(substitute{vars₁ = vars₁}{vars₂ = vars₂} t φ) ≡ height φ) substitute-height {φ = f $ x} = [≡]-intro substitute-height {φ = ⊤} = [≡]-intro substitute-height {φ = ⊥} = [≡]-intro substitute-height {φ = φ ∧ ψ} {t} rewrite substitute-height {φ = φ}{t} rewrite substitute-height {φ = ψ}{t} = [≡]-intro substitute-height {φ = φ ∨ ψ} {t} rewrite substitute-height {φ = φ}{t} rewrite substitute-height {φ = ψ}{t} = [≡]-intro substitute-height {φ = φ ⟶ ψ} {t} rewrite substitute-height {φ = φ}{t} rewrite substitute-height {φ = ψ}{t} = [≡]-intro substitute-height {φ = Ɐ φ} {t} rewrite substitute-height {φ = φ}{termMapper𝐒 t} = [≡]-intro substitute-height {φ = ∃ φ} {t} rewrite substitute-height {φ = φ}{termMapper𝐒 t} = [≡]-intro instance [<↑]-wellfounded : Strict.Properties.WellFounded(_<↑_) [<↑]-wellfounded = wellfounded-image-by-trans {f = height Functional.Dependent.∘ Σ.right} induction-on-height : (P : ∀{vars} → Formula(vars) → Type{ℓ}) → (∀{vars}{φ : Formula(vars)} → (∀{vars}{ψ : Formula(vars)} → (height ψ < height φ) → P(ψ)) → P(φ)) → ∀{vars}{φ : Formula(vars)} → P(φ) induction-on-height P step {vars}{φ} = Strict.Properties.wellfounded-induction(_<↑_) (\{ {intro vars φ} p → step{vars}{φ} \{vars}{ψ} ph → p{intro vars ψ} ⦃ ph ⦄}) {intro vars φ} ⊤-height-order : (height{vars} ⊤ ≤ height φ) ⊤-height-order = [≤]-minimum ⊥-height-order : (height{vars} ⊥ ≤ height φ) ⊥-height-order = [≤]-minimum ∧-height-orderₗ : (height φ < height(φ ∧ ψ)) ∧-height-orderₗ = [≤]-with-[𝐒] ∧-height-orderᵣ : (height ψ < height(φ ∧ ψ)) ∧-height-orderᵣ = [≤]-with-[𝐒] ∨-height-orderₗ : (height φ < height(φ ∨ ψ)) ∨-height-orderₗ = [≤]-with-[𝐒] ∨-height-orderᵣ : (height ψ < height(φ ∨ ψ)) ∨-height-orderᵣ = [≤]-with-[𝐒] ⟶-height-orderₗ : (height φ < height(φ ⟶ ψ)) ⟶-height-orderₗ = [≤]-with-[𝐒] ⟶-height-orderᵣ : (height ψ < height(φ ⟶ ψ)) ⟶-height-orderᵣ = [≤]-with-[𝐒] Ɐ-height-order : (height φ < height(Ɐ φ)) Ɐ-height-order = [<]-of-[𝐒] ∃-height-order : (height φ < height(∃ φ)) ∃-height-order = [<]-of-[𝐒] -- induction-on-height : ∀{P : ∀{vars} → Formula(vars) → Type{ℓ}} → (∀{vars} → P{vars}(⊤)) → (∀{vars} → P{vars}(⊥)) → ((∀{vars}{ψ : Formula(vars)} → (height ψ < height φ) → P(ψ)) → P(φ)) → P(φ) -- induction-on-height {φ = φ} base⊤ base⊥ step = step {!Strict.Properties.wellfounded-induction(_<↑_)!}
41.136842
197
0.649437
1164873c4326f6d5bd4b1f1b4bdafe9661eb6979
6,401
agda
Agda
src/Bisimilarity/Step.agda
nad/up-to
b936ff85411baf3401ad85ce85d5ff2e9aa0ca14
[ "MIT" ]
null
null
null
src/Bisimilarity/Step.agda
nad/up-to
b936ff85411baf3401ad85ce85d5ff2e9aa0ca14
[ "MIT" ]
null
null
null
src/Bisimilarity/Step.agda
nad/up-to
b936ff85411baf3401ad85ce85d5ff2e9aa0ca14
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- The Step function, used to define strong and weak bisimilarity as -- well as expansion ------------------------------------------------------------------------ {-# OPTIONS --sized-types #-} open import Prelude open import Labelled-transition-system module Bisimilarity.Step {ℓ} (lts : LTS ℓ) (open LTS lts) (_[_]↝₁_ _[_]↝₂_ : Proc → Label → Proc → Type ℓ) where open import Equality.Propositional open import Logical-equivalence using (_⇔_) open import Bijection equality-with-J using (_↔_) import Equivalence equality-with-J as Eq open import Function-universe equality-with-J as F hiding (_∘_) open import H-level.Closure equality-with-J import Similarity.Step lts as One-sided open import Indexed-container hiding (⟨_⟩) open import Indexed-container.Combinators hiding (_∘_) open import Relation private module Temporarily-private where -- If _[_]↝₁_ and _[_]↝₂_ are instantiated with _[_]⟶_, then this is -- basically the function from Definition 6.3.1 in Pous and -- Sangiorgi's "Enhancements of the bisimulation proof method", -- except that clause (3) is omitted. -- -- Similarly, if the relations are instantiated with _[_]⇒̂_, then -- this is basically the function wb₁, again with the exception that -- clause (3) is omitted. -- -- Finally, if _[_]↝₁_ is instantiated with _[_]⟶̂_ and _[_]↝₂_ is -- instantiated with _[_]⇒_, then we get the expansion relation's -- "step" function. record Step {r} (R : Rel₂ r Proc) (pq : Proc × Proc) : Type (ℓ ⊔ r) where constructor ⟨_,_⟩ private p = proj₁ pq q = proj₂ pq field left-to-right : ∀ {p′ μ} → p [ μ ]⟶ p′ → ∃ λ q′ → q [ μ ]↝₁ q′ × R (p′ , q′) right-to-left : ∀ {q′ μ} → q [ μ ]⟶ q′ → ∃ λ p′ → p [ μ ]↝₂ p′ × R (p′ , q′) open Temporarily-private using (Step) -- The Step function, expressed as an indexed container. StepC : Container (Proc × Proc) (Proc × Proc) StepC = One-sided.StepC _[_]↝₁_ ⟷ One-sided.StepC _[_]↝₂_ -- The strong bisimilarity container presented in the paper, -- generalised to use _[_]↝₁_ and _[_]↝₂_. StepC′ : Container (Proc × Proc) (Proc × Proc) StepC′ = (λ { (p , q) → (∀ {p′ μ} → p [ μ ]⟶ p′ → ∃ λ q′ → q [ μ ]↝₁ q′) × (∀ {q′ μ} → q [ μ ]⟶ q′ → ∃ λ p′ → p [ μ ]↝₂ p′) }) ◁ (λ { {(p , q)} (lr , rl) (p′ , q′) → (∃ λ μ → ∃ λ (p⟶p′ : p [ μ ]⟶ p′) → proj₁ (lr p⟶p′) ≡ q′) ⊎ (∃ λ μ → ∃ λ (q⟶q′ : q [ μ ]⟶ q′) → proj₁ (rl q⟶q′) ≡ p′) }) -- The interpretations of the two containers above are pointwise -- logically equivalent, and in the presence of extensionality they -- are pointwise isomorphic. StepC↔StepC′ : ∀ {k r} {R : Rel₂ r Proc} {pq} → Extensionality? k ℓ (ℓ ⊔ r) → ⟦ StepC ⟧ R pq ↝[ k ] ⟦ StepC′ ⟧ R pq StepC↔StepC′ {pq = p , q} = inverse-ext? λ {k} ext → Σ-cong (inverse $ drop-⊤-left-Σ (One-sided.Magic↔⊤ _) ×-cong drop-⊤-left-Σ (One-sided.Magic↔⊤ _)) λ { (lr , rl) → implicit-∀-cong ext λ { {p′ , q′} → Π-cong (lower-extensionality? k lzero ℓ ext) (F.id ⊎-cong ( (∃ λ μ → ∃ λ (q⟶q′ : q [ μ ]⟶ q′) → proj₁ (rl q⟶q′) ≡ p′) ↝⟨ inverse $ drop-⊤-left-Σ (_⇔_.to contractible⇔↔⊤ (singleton-contractible _)) ⟩ (∃ λ (q′p′≡ : ∃ λ q′p′ → q′p′ ≡ (q′ , p′)) → ∃ λ μ → ∃ λ (q⟶q′ : q [ μ ]⟶ proj₁ (proj₁ q′p′≡)) → proj₁ (rl q⟶q′) ≡ proj₂ (proj₁ q′p′≡)) ↝⟨ inverse Σ-assoc ⟩ (∃ λ q′p′ → q′p′ ≡ (q′ , p′) × ∃ λ μ → ∃ λ (q⟶q′ : q [ μ ]⟶ proj₁ q′p′) → proj₁ (rl q⟶q′) ≡ proj₂ q′p′) ↔⟨ (∃-cong λ _ → (inverse $ Eq.≃-≡ (Eq.↔⇒≃ ×-comm)) ×-cong F.id) ⟩□ (∃ λ q′p′ → swap q′p′ ≡ (p′ , q′) × ∃ λ μ → ∃ λ (q⟶q′ : q [ μ ]⟶ proj₁ q′p′) → proj₁ (rl q⟶q′) ≡ proj₂ q′p′) □)) (λ _ → F.id) }} -- The definition of Step in terms of a container is pointwise -- logically equivalent to the direct definition, and in the presence -- of extensionality it is pointwise isomorphic to the direct -- definition. Step↔StepC : ∀ {k r} {R : Rel₂ r Proc} {pq} → Extensionality? k ℓ (ℓ ⊔ r) → Step R pq ↝[ k ] ⟦ StepC ⟧ R pq Step↔StepC {R = R} {pq} ext = Step R pq ↔⟨ lemma ⟩ One-sided.Step _[_]↝₁_ R pq × One-sided.Step _[_]↝₂_ (R ⁻¹) (swap pq) ↝⟨ One-sided.Step↔StepC _ ext ×-cong One-sided.Step↔StepC _ ext ⟩ ⟦ One-sided.StepC _[_]↝₁_ ⟧ R pq × ⟦ One-sided.StepC _[_]↝₂_ ⟧ (R ⁻¹) (swap pq) ↝⟨ inverse-ext? (λ ext → ⟦⟷⟧↔ ext (One-sided.StepC _[_]↝₁_) (One-sided.StepC _[_]↝₂_)) ext ⟩□ ⟦ StepC ⟧ R pq □ where lemma : _ ↔ _ lemma = record { surjection = record { logical-equivalence = record { to = λ s → One-sided.⟨ Step.left-to-right s ⟩ , One-sided.⟨ Step.right-to-left s ⟩ ; from = λ { (lr , rl) → Temporarily-private.⟨ One-sided.Step.challenge lr , One-sided.Step.challenge rl ⟩ } } ; right-inverse-of = λ _ → refl } ; left-inverse-of = λ _ → refl } -- A variant of the previous lemma, stated for StepC′ instead of -- StepC. Step↔StepC′ : ∀ {k r} {R : Rel₂ r Proc} {pq} → Extensionality? k ℓ (ℓ ⊔ r) → Step R pq ↝[ k ] ⟦ StepC′ ⟧ R pq Step↔StepC′ {R = R} {pq} ext = Step R pq ↝⟨ Step↔StepC ext ⟩ ⟦ StepC ⟧ R pq ↝⟨ StepC↔StepC′ ext ⟩□ ⟦ StepC′ ⟧ R pq □ module StepC {r} {R : Rel₂ r Proc} {p q} where -- A "constructor". ⟨_,_⟩ : (∀ {p′ μ} → p [ μ ]⟶ p′ → ∃ λ q′ → q [ μ ]↝₁ q′ × R (p′ , q′)) → (∀ {q′ μ} → q [ μ ]⟶ q′ → ∃ λ p′ → p [ μ ]↝₂ p′ × R (p′ , q′)) → ⟦ StepC ⟧ R (p , q) ⟨ lr , rl ⟩ = _⇔_.to (Step↔StepC _) Temporarily-private.⟨ lr , rl ⟩ -- Some "projections". left-to-right : ⟦ StepC ⟧ R (p , q) → ∀ {p′ μ} → p [ μ ]⟶ p′ → ∃ λ q′ → q [ μ ]↝₁ q′ × R (p′ , q′) left-to-right = Step.left-to-right ∘ _⇔_.from (Step↔StepC _) right-to-left : ⟦ StepC ⟧ R (p , q) → ∀ {q′ μ} → q [ μ ]⟶ q′ → ∃ λ p′ → p [ μ ]↝₂ p′ × R (p′ , q′) right-to-left = Step.right-to-left ∘ _⇔_.from (Step↔StepC _) open Temporarily-private public
33.338542
141
0.499297
52ad02ddc85e80600e4f619e391d499ce986f5b7
1,053
agda
Agda
src/PathOperations.agda
vituscze/HoTT-lectures
7730385adfdbdda38ee8b124be3cdeebb7312c65
[ "BSD-3-Clause" ]
null
null
null
src/PathOperations.agda
vituscze/HoTT-lectures
7730385adfdbdda38ee8b124be3cdeebb7312c65
[ "BSD-3-Clause" ]
null
null
null
src/PathOperations.agda
vituscze/HoTT-lectures
7730385adfdbdda38ee8b124be3cdeebb7312c65
[ "BSD-3-Clause" ]
null
null
null
{-# OPTIONS --without-K #-} module PathOperations where open import Types infixr 4 _·_ infix 9 _⁻¹ _⁻¹ : ∀ {a} {A : Set a} {x y : A} → x ≡ y → y ≡ x _⁻¹ = J (λ x y _ → y ≡ x) (λ _ → refl) _ _ _·_ : ∀ {a} {A : Set a} {x y z : A} → x ≡ y → y ≡ z → x ≡ z _·_ {z = z} = J (λ x y _ → y ≡ z → x ≡ z) (λ _ p′ → p′) _ _ tr : ∀ {a p} {A : Set a} (P : A → Set p) {x y : A} (p : x ≡ y) → P x → P y tr P = J (λ x y _ → P x → P y) (λ _ x → x) _ _ ap : ∀ {a b} {A : Set a} {B : Set b} {x y : A} (f : A → B) → x ≡ y → f x ≡ f y ap f = J (λ x y _ → f x ≡ f y) (λ _ → refl) _ _ ap₂ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} {x x′ y y′} (f : A → B → C) (p : x ≡ x′) (q : y ≡ y′) → f x y ≡ f x′ y′ ap₂ f p q = ap (λ _ → f _ _) p · ap (f _) q apd : ∀ {a b} {A : Set a} {B : A → Set b} {x y : A} (f : ∀ a → B a) (p : x ≡ y) → tr B p (f x) ≡ f y apd {B = B} f = J (λ x y p → tr B p (f x) ≡ f y) (λ _ → refl) _ _ happly : ∀ {a b} {A : Set a} {B : A → Set b} {f g : (x : A) → B x} → f ≡ g → ∀ x → f x ≡ g x happly p x = ap (λ f → f x) p
26.325
68
0.377968
219e51b894ccb1f1ff1f536302a42d526f729935
2,547
agda
Agda
test/SetQuotientTest.agda
mchristianl/synthetic-reals
10206b5c3eaef99ece5d18bf703c9e8b2371bde4
[ "MIT" ]
3
2020-07-31T18:15:26.000Z
2022-02-19T12:15:21.000Z
test/SetQuotientTest.agda
mchristianl/synthetic-reals
10206b5c3eaef99ece5d18bf703c9e8b2371bde4
[ "MIT" ]
null
null
null
test/SetQuotientTest.agda
mchristianl/synthetic-reals
10206b5c3eaef99ece5d18bf703c9e8b2371bde4
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts #-} module SetQuotientTest where open import Cubical.Foundations.Everything renaming (_⁻¹ to _⁻¹ᵖ; assoc to ∙-assoc) open import Cubical.Foundations.Logic renaming (inl to inlᵖ; inr to inrᵖ) open import Cubical.Data.Empty renaming (elim to ⊥-elim; ⊥ to ⊥⊥) open import Cubical.Relation.Nullary.Base renaming (¬_ to ¬ᵗ_) open import Cubical.Data.Sigma.Base renaming (_×_ to infixr 4 _×_) open import Cubical.Data.Sum.Base renaming (_⊎_ to infixr 4 _⊎_) open import Cubical.Data.NatPlusOne using (HasFromNat; 1+_; ℕ₊₁; ℕ₊₁→ℕ) open import Cubical.HITs.Ints.QuoInt using (HasFromNat; signed) renaming ( abs to absᶻ ; pos to pos ; neg to neg ) open import Cubical.HITs.Ints.QuoInt hiding (_+_; -_; +-assoc; +-comm) open import Cubical.HITs.Rationals.QuoQ using ( ℚ ; onCommonDenom ; onCommonDenomSym ; eq/ ; _//_ ; _∼_ ; isSetℚ ) renaming ( [_] to [_]ᶠ ; ℕ₊₁→ℤ to [1+_ⁿ]ᶻ ) open import Cubical.HITs.SetQuotients as SetQuotient using () renaming (_/_ to _//_) postulate _<ᶻ_ : ℤ → ℤ → hProp ℓ-zero _<'_ : ℤ × ℕ₊₁ → ℤ × ℕ₊₁ → hProp ℓ-zero (aᶻ , aⁿ) <' (bᶻ , bⁿ) = let aⁿᶻ = [1+ aⁿ ⁿ]ᶻ bⁿᶻ = [1+ bⁿ ⁿ]ᶻ in (aᶻ * bⁿᶻ) <ᶻ (bᶻ * aⁿᶻ) postulate <'-respects-∼ˡ : ∀ a b x → a ∼ b → a <' x ≡ b <' x <'-respects-∼ʳ : ∀ x a b → a ∼ b → x <' a ≡ x <' b _<_ : ℚ → ℚ → hProp ℓ-zero a < b = SetQuotient.rec2 {R = _∼_} {B = hProp ℓ-zero} isSetHProp _<'_ <'-respects-∼ˡ <'-respects-∼ʳ a b isProp⊎ˡ : ∀{ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} → isProp A → isProp B → (A → ¬ᵗ B) → isProp (A ⊎ B) isProp⊎ˡ pA pB A⇒¬B (inl x) (inl y) = cong inl (pA x y) isProp⊎ˡ pA pB A⇒¬B (inr x) (inr y) = cong inr (pB x y) isProp⊎ˡ pA pB A⇒¬B (inl x) (inr y) = ⊥-elim (A⇒¬B x y) isProp⊎ˡ pA pB A⇒¬B (inr x) (inl y) = ⊥-elim (A⇒¬B y x) ⊎ᵖ-syntax : ∀{ℓ ℓ'} (P : hProp ℓ) (Q : hProp ℓ') → {[ P ] → [ ¬ Q ]} → hProp _ ⊎ᵖ-syntax P Q {P⇒¬Q} = ([ P ] ⊎ [ Q ]) , isProp⊎ˡ (isProp[] P) (isProp[] Q) P⇒¬Q syntax ⊎ᵖ-syntax P Q {P⇒¬Q} = [ P⇒¬Q ] P ⊎ᵖ Q postulate <-asym : ∀ x y → [ x < y ] → [ ¬(y < x) ] _#_ : ℚ → ℚ → hProp ℓ-zero x # y = [ <-asym x y ] (x < y) ⊎ᵖ (y < x) _⁻¹''' : (x : ℚ) → [ x # 0 ] → ℚ _⁻¹''' = SetQuotient.elim {R = _∼_} {B = λ x → [ x # 0 ] → ℚ} φ _⁻¹'' ⁻¹''-respects-∼ where φ : ∀ x → isSet ([ x # 0 ] → ℚ) φ x = isSetΠ (λ _ → isSetℚ) _⁻¹'' : (a : ℤ × ℕ₊₁) → [ [ a ]ᶠ # 0 ] → ℚ x ⁻¹'' = {!!} ⁻¹''-respects-∼ : (a b : ℤ × ℕ₊₁) (r : a ∼ b) → PathP (λ i → [ eq/ a b r i # 0 ] → ℚ) (a ⁻¹'') (b ⁻¹'') ⁻¹''-respects-∼ a b r = {!!}
33.96
103
0.537888
14f7bb99556a4e68323b4b8a39a4382b135db707
71
agda
Agda
test/Fail/Polarity-pragma-in-safe-mode.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Polarity-pragma-in-safe-mode.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Polarity-pragma-in-safe-mode.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --safe #-} postulate F : Set → Set {-# POLARITY F ++ #-}
11.833333
23
0.507042
0dcafef2870545554ebb21e5efb1a4bc36e37798
1,896
agda
Agda
src/Control/Monad/KleisliTriple.agda
andreasabel/cubical
914f655c7c0417754c2ffe494d3f6ea7a357b1c3
[ "MIT" ]
null
null
null
src/Control/Monad/KleisliTriple.agda
andreasabel/cubical
914f655c7c0417754c2ffe494d3f6ea7a357b1c3
[ "MIT" ]
null
null
null
src/Control/Monad/KleisliTriple.agda
andreasabel/cubical
914f655c7c0417754c2ffe494d3f6ea7a357b1c3
[ "MIT" ]
null
null
null
-- Non-indexed (plain) monads in form of Kleisli triple, presented in point-free style. module Control.Monad.KleisliTriple where open import Function using (id) renaming (_∘′_ to _∘_) open import Relation.Binary.PropositionalEquality open ≡-Reasoning open import Axiom.FunctionExtensionality open import Control.Functor record IsKleisliTriple (M : Set → Set) : Set₁ where -- Methods. field return : ∀ {A } → A → M A bind′ : ∀ {A B} → (A → M B) → M A → M B -- Laws. field bind′-β : ∀ {A B} {k : A → M B} → bind′ k ∘ return ≡ k bind′-η : ∀ {A} → bind′ {A = A} return ≡ id bind′-∘ : ∀ {A B C} {k : A → M B} {l : B → M C} → bind′ (bind′ l ∘ k) ≡ bind′ l ∘ bind′ k -- Notations for bind′. -- Postfix category-theoretical notation. _✶ = bind′ -- Infix Haskell notation. infixl 6 _=<<_ _=<<_ = bind′ -- Kleisli composition. infixl 6 _<=<_ _<=<_ : ∀ {A B C : Set} (l : B → M C) (k : A → M B) → (A → M C) l <=< k = bind′ l ∘ k -- Functoriality. isFunctor : IsFunctor M isFunctor = record { ops = record { map = map } ; laws = record { map-id = bind′-η ; map-∘ = sym (map-∘-sym _ _) } } where map : ∀ {A B} → (A → B) → M A → M B map f = bind′ (return ∘ f) map-∘-sym : ∀ {A B C} (f : A → B) (g : B → C) → map g ∘ map f ≡ map (g ∘ f) map-∘-sym f g = begin map g ∘ map f ≡⟨⟩ bind′ (return ∘ g) ∘ bind′ (return ∘ f) ≡⟨ sym bind′-∘ ⟩ bind′ (bind′ (return ∘ g) ∘ return ∘ f) ≡⟨ cong (λ z → bind′ (z ∘ f)) bind′-β ⟩ bind′ (return ∘ g ∘ f) ≡⟨⟩ map (g ∘ f) ∎ open IsFunctor isFunctor public -- Monads in Kleisli Triple presentation. record KleisliTriple : Set₁ where field M : Set → Set M! : IsKleisliTriple M open IsKleisliTriple M! public
23.407407
88
0.511076
7cb04e2fc37d62f221199ba3358cf986151d6a93
11,288
agda
Agda
LibraBFT/Concrete/Properties/VotesOnce.agda
oracle/bft-consensus-agda
49f8b1b70823be805d84ffc3157c3b880edb1e92
[ "UPL-1.0" ]
4
2020-12-16T19:43:41.000Z
2021-12-18T19:24:05.000Z
LibraBFT/Concrete/Properties/VotesOnce.agda
oracle/bft-consensus-agda
49f8b1b70823be805d84ffc3157c3b880edb1e92
[ "UPL-1.0" ]
72
2021-02-04T05:04:33.000Z
2022-03-25T05:36:11.000Z
LibraBFT/Concrete/Properties/VotesOnce.agda
oracle/bft-consensus-agda
49f8b1b70823be805d84ffc3157c3b880edb1e92
[ "UPL-1.0" ]
6
2020-12-16T19:43:52.000Z
2022-02-18T01:04:32.000Z
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020, 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.ImplShared.Base.Types open import LibraBFT.Abstract.Types.EpochConfig UID NodeId open import LibraBFT.Base.KVMap open import LibraBFT.Base.PKCS open import LibraBFT.Concrete.System open import LibraBFT.Concrete.System.Parameters open import LibraBFT.ImplShared.Base.Types open import LibraBFT.ImplShared.Consensus.Types open import LibraBFT.ImplShared.Consensus.Types.EpochDep open import LibraBFT.ImplShared.Util.Crypto open import LibraBFT.Lemmas open import LibraBFT.Prelude open import LibraBFT.Yasm.Base open import Optics.All open EpochConfig -- In this module, we define two "implementation obligations" -- (ImplObligationᵢ for i ∈ {1 , 2}), which are predicates over -- reachable states of a system defined by -- 'LibraBFT.Concrete.System.Parameters'. These two properties relate -- votes sent by the same sender, ensuring that if they are for the -- same epoch and round, then they vote for the same blockID; the -- first relates a vote output by the handler to a vote sent -- previously, and the second relates two votes both sent by the -- handler. -- -- We then prove that, if an implementation satisfies these two -- semantic obligations, along with a structural one about messages -- sent by honest peers in the implementation, then the implemenation -- satisfies the LibraBFT.Abstract.Properties.VotesOnce invariant. -- It is not actually necessary to provide an EpochConfig to define -- these implementation obligations, but it is needed below to state -- the goal of the proof (voo). In contrast, the PreferredRound rule -- requires and EpochConfig to state the obligations, because they -- are defined in terms of abstract Records, which are defined for an -- EpochConfig. We introduce the EpochConfig at the top of this -- module for consistency with the PreferredRound rule so that the -- order of parameters to invoke the respective proofs is consistent. module LibraBFT.Concrete.Properties.VotesOnce (iiah : SystemInitAndHandlers ℓ-RoundManager ConcSysParms) (𝓔 : EpochConfig) where open SystemTypeParameters ConcSysParms open SystemInitAndHandlers iiah open ParamsWithInitAndHandlers iiah open import LibraBFT.ImplShared.Util.HashCollisions iiah open import LibraBFT.Yasm.Yasm ℓ-RoundManager ℓ-VSFP ConcSysParms iiah PeerCanSignForPK PeerCanSignForPK-stable open import LibraBFT.Concrete.Properties.Common iiah 𝓔 -- TODO-3: This may not be the best way to state the implementation obligation. Why not reduce -- this as much as possible before giving the obligation to the implementation? For example, this -- will still require the implementation to deal with hash collisons (v and v' could be different, -- but yield the same bytestring and therefore same signature). Also, avoid the need for the -- implementation to reason about messages sent by step-cheat, or give it something to make this -- case easy to eliminate. ImplObligation₂ : Set (ℓ+1 ℓ-RoundManager) ImplObligation₂ = ∀{pid s' outs pk}{pre : SystemState} → ReachableSystemState pre -- For any honest call to /handle/ or /init/, → (sps : StepPeerState pid (msgPool pre) (initialised pre) (peerStates pre pid) (s' , outs)) → ∀{v m v' m'} → Meta-Honest-PK pk -- For every vote v represented in a message output by the call → v ⊂Msg m → send m ∈ outs → (sig : WithVerSig pk v) → ¬ (∈BootstrapInfo bootstrapInfo (ver-signature sig)) → ¬ (MsgWithSig∈ pk (ver-signature sig) (msgPool pre)) → PeerCanSignForPK (StepPeer-post {pre = pre} (step-honest sps)) v pid pk -- And if there exists another v' that is also new and valid → v' ⊂Msg m' → send m' ∈ outs → (sig' : WithVerSig pk v') → ¬ (∈BootstrapInfo bootstrapInfo (ver-signature sig')) → ¬ (MsgWithSig∈ pk (ver-signature sig') (msgPool pre)) → PeerCanSignForPK (StepPeer-post {pre = pre} (step-honest sps)) v' pid pk -- If v and v' share the same epoch and round → v ^∙ vEpoch ≡ v' ^∙ vEpoch → v ^∙ vRound ≡ v' ^∙ vRound ---------------------------------------------------------- -- Then, an honest implemenation promises v and v' vote for the same blockId. → v ^∙ vProposedId ≡ v' ^∙ vProposedId -- Next, we prove that, given the necessary obligations, module Proof (sps-corr : StepPeerState-AllValidParts) (Impl-bsvc : ImplObl-bootstrapVotesConsistent) (Impl-bsvr : ImplObl-bootstrapVotesRound≡0) (Impl-nvr≢0 : ImplObl-NewVoteRound≢0) (Impl-∈BI? : (sig : Signature) → Dec (∈BootstrapInfo bootstrapInfo sig)) (Impl-IRO : IncreasingRoundObligation) (Impl-VO2 : ImplObligation₂) where -- Any reachable state satisfies the VO rule for any epoch in the system. module _ {st : SystemState}(r : ReachableSystemState st) where open Structural sps-corr -- Bring in intSystemState open PerEpoch 𝓔 open PerState st open PerReachableState r open ConcreteCommonProperties st r sps-corr Impl-bsvr Impl-nvr≢0 open WithEC open import LibraBFT.Concrete.Obligations.VotesOnce 𝓔 (ConcreteVoteEvidence 𝓔) as VO -- The VO proof is done by induction on the execution trace leading to 'st'. In -- Agda, this is 'r : RechableSystemState st' above. private -- From this point onwards, it might be easier to read this proof starting at 'voo' -- at the end of the file. Next, we provide an overview the proof. -- -- We wish to prove that, for any two votes v and v' cast by an honest α in the message -- pool of a state st, if v and v' have equal rounds and epochs, then they vote for the -- same block. -- -- The base case and the case for a new epoch in the system are trivial. For the base case -- we get to a contradiction because it's not possible to have any message in the msgpool. -- -- Regarding the PeerStep case. The induction hypothesis tells us that the property holds -- in the pre-state. Next, we reason about the post-state. We start by analyzing whether -- v and v' have been sent as outputs of the PeerStep under scrutiny or were already in -- the pool before. -- -- There are four possibilities: -- -- i) v and v' were aleady present in the msgPool before: use induction hypothesis. -- ii) v and v' are both in the output produced by the PeerStep under scrutiny. -- iii) v was present before, but v' is new. -- iv) v' was present before, but v is new. -- -- In order to obtain this four possiblities we invoke newMsg⊎msgSent4 lemma, which -- receives proof that some vote is in a message that is in the msgPool of the post state -- and returns evidence that either the vote is new or that some message with the same -- signature was sent before. -- -- Case (i) is trivial; cases (iii) and (iv) are symmetric and reduce to an implementation -- obligation (Impl-VO1) and case (ii) reduces to a different implementation obligation -- (Impl-VO2). VotesOnceProof : ∀ {pk round epoch blockId₁ blockId₂} {st : SystemState} → ReachableSystemState st → Meta-Honest-PK pk → (m₁ : VoteForRound∈ pk round epoch blockId₁ (msgPool st)) → (m₂ : VoteForRound∈ pk round epoch blockId₂ (msgPool st)) → blockId₁ ≡ blockId₂ VotesOnceProof step-0 _ m₁ = ⊥-elim (¬Any[] (msg∈pool m₁)) VotesOnceProof step@(step-s r theStep) pkH m₁ m₂ with msgRound≡ m₁ | msgEpoch≡ m₁ | msgBId≡ m₁ | msgRound≡ m₂ | msgEpoch≡ m₂ | msgBId≡ m₂ ...| refl | refl | refl | refl | refl | refl with Impl-∈BI? (_vSignature (msgVote m₁)) | Impl-∈BI? (_vSignature (msgVote m₂)) ...| yes init₁ | yes init₂ = Impl-bsvc (msgVote m₁) (msgVote m₂) init₁ init₂ ...| yes init₁ | no ¬init₂ = ⊥-elim (NewVoteRound≢0 step pkH m₂ ¬init₂ (Impl-bsvr (msgSigned m₁) init₁)) ...| no ¬init₁ | yes init₂ = ⊥-elim (NewVoteRound≢0 step pkH m₁ ¬init₁ (Impl-bsvr (msgSigned m₂) init₂)) ...| no ¬init₁ | no ¬init₂ with theStep ...| step-peer cheat@(step-cheat c) = let m₁sb4 = ¬cheatForgeNewSig r cheat unit pkH (msgSigned m₁) (msg⊆ m₁) (msg∈pool m₁) ¬init₁ m₂sb4 = ¬cheatForgeNewSig r cheat unit pkH (msgSigned m₂) (msg⊆ m₂) (msg∈pool m₂) ¬init₂ v₁sb4 = msgSentB4⇒VoteRound∈ (msgSigned m₁) m₁sb4 v₂sb4 = msgSentB4⇒VoteRound∈ (msgSigned m₂) m₂sb4 in VotesOnceProof r pkH (proj₁ v₁sb4) (proj₁ v₂sb4) ...| step-peer (step-honest stP) with ⊎-map₂ (msgSentB4⇒VoteRound∈ (msgSigned m₁)) (newMsg⊎msgSentB4 r stP pkH (msgSigned m₁) ¬init₁ (msg⊆ m₁) (msg∈pool m₁)) | ⊎-map₂ (msgSentB4⇒VoteRound∈ (msgSigned m₂)) (newMsg⊎msgSentB4 r stP pkH (msgSigned m₂) ¬init₂ (msg⊆ m₂) (msg∈pool m₂)) ...| inj₂ (v₁sb4 , refl) | inj₂ (v₂sb4 , refl) = VotesOnceProof r pkH v₁sb4 v₂sb4 ...| inj₁ (m₁∈outs , v₁pk , v₁New) | inj₁ (m₂∈outs , v₂pk , v₂New) = Impl-VO2 r stP pkH (msg⊆ m₁) m₁∈outs (msgSigned m₁) ¬init₁ v₁New v₁pk (msg⊆ m₂) m₂∈outs (msgSigned m₂) ¬init₂ v₂New v₂pk refl refl ...| inj₁ (m₁∈outs , v₁pk , v₁New) | inj₂ (v₂sb4 , refl) = let round≡ = trans (msgRound≡ v₂sb4) (msgRound≡ m₂) ¬bootstrapV₂ = ¬Bootstrap∧Round≡⇒¬Bootstrap step pkH m₂ ¬init₂ (msgSigned v₂sb4) round≡ epoch≡ = sym (msgEpoch≡ v₂sb4) in either (λ v₂<v₁ → ⊥-elim (<⇒≢ v₂<v₁ (msgRound≡ v₂sb4))) (λ v₁sb4 → VotesOnceProof r pkH v₁sb4 v₂sb4) (Impl-IRO r stP pkH (msg⊆ m₁) m₁∈outs (msgSigned m₁) ¬init₁ v₁New v₁pk (msg⊆ v₂sb4) (msg∈pool v₂sb4) (msgSigned v₂sb4) ¬bootstrapV₂ epoch≡) ...| inj₂ (v₁sb4 , refl) | inj₁ (m₂∈outs , v₂pk , v₂New) = let round≡ = trans (msgRound≡ v₁sb4) (msgRound≡ m₁) ¬bootstrapV₁ = ¬Bootstrap∧Round≡⇒¬Bootstrap step pkH m₁ ¬init₁ (msgSigned v₁sb4) round≡ in either (λ v₁<v₂ → ⊥-elim (<⇒≢ v₁<v₂ (msgRound≡ v₁sb4))) (λ v₂sb4 → VotesOnceProof r pkH v₁sb4 v₂sb4) (Impl-IRO r stP pkH (msg⊆ m₂) m₂∈outs (msgSigned m₂) ¬init₂ v₂New v₂pk (msg⊆ v₁sb4) (msg∈pool v₁sb4) (msgSigned v₁sb4) ¬bootstrapV₁ (sym (msgEpoch≡ v₁sb4))) voo : VO.Type intSystemState voo hpk refl sv refl sv' refl with vmsg≈v (vmFor sv) | vmsg≈v (vmFor sv') ...| refl | refl with vmsgEpoch (vmFor sv) | vmsgEpoch (vmFor sv') ...| refl | refl = let vfr = mkVoteForRound∈ (nm (vmFor sv)) (cv ((vmFor sv))) (cv∈nm (vmFor sv)) (vmSender sv) (nmSentByAuth sv) (vmsgSigned (vmFor sv)) (vmsgEpoch (vmFor sv)) refl refl vfr' = mkVoteForRound∈ (nm (vmFor sv')) (cv (vmFor sv')) (cv∈nm (vmFor sv')) (vmSender sv') (nmSentByAuth sv') (vmsgSigned (vmFor sv')) (vmsgEpoch (vmFor sv')) refl refl in VotesOnceProof r hpk vfr vfr'
52.502326
128
0.66203
1116444ee12c2092ee13cde6524f1ae55385e0ab
646
agda
Agda
agda-stdlib/src/Data/List/Relation/Subset/Propositional/Properties.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Data/List/Relation/Subset/Propositional/Properties.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Data/List/Relation/Subset/Propositional/Properties.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- This module is DEPRECATED. Please use -- Data.List.Relation.Binary.Subset.Propositional.Properties directly. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.List.Relation.Subset.Propositional.Properties where open import Data.List.Relation.Binary.Subset.Propositional.Properties public {-# WARNING_ON_IMPORT "Data.List.Relation.Subset.Propositional.Properties was deprecated in v1.0. Use Data.List.Relation.Binary.Subset.Propositional.Properties instead." #-}
34
75
0.611455
36d529693dc9ac6a423c03b8795149b789c17298
158
agda
Agda
Task/Reverse-a-string/Agda/reverse-a-string.agda
mullikine/RosettaCodeData
4f0027c6ce83daa36118ee8b67915a13cd23ab67
[ "Info-ZIP" ]
1
2018-11-09T22:08:38.000Z
2018-11-09T22:08:38.000Z
Task/Reverse-a-string/Agda/reverse-a-string.agda
mullikine/RosettaCodeData
4f0027c6ce83daa36118ee8b67915a13cd23ab67
[ "Info-ZIP" ]
null
null
null
Task/Reverse-a-string/Agda/reverse-a-string.agda
mullikine/RosettaCodeData
4f0027c6ce83daa36118ee8b67915a13cd23ab67
[ "Info-ZIP" ]
1
2018-11-09T22:08:40.000Z
2018-11-09T22:08:40.000Z
module reverse_string where open import Data.String open import Data.List reverse_string : String → String reverse_string s = fromList (reverse (toList s))
19.75
48
0.797468
360da3588805192a112c0137c419b040f8961055
34
agda
Agda
test/Fail/NoSuchModule.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/NoSuchModule.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/NoSuchModule.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module NoSuchModule where open X
8.5
25
0.823529
14079419f605046cefb0f8b7264c84130b3f04f2
4,484
agda
Agda
vendor/stdlib/src/Relation/Binary/Core.agda
isabella232/Lemmachine
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
[ "MIT" ]
56
2015-01-20T02:11:42.000Z
2021-12-21T17:02:19.000Z
vendor/stdlib/src/Relation/Binary/Core.agda
larrytheliquid/Lemmachine
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
[ "MIT" ]
1
2022-03-12T12:17:51.000Z
2022-03-12T12:17:51.000Z
vendor/stdlib/src/Relation/Binary/Core.agda
isabella232/Lemmachine
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
[ "MIT" ]
3
2015-07-21T16:37:58.000Z
2022-03-12T11:54:10.000Z
------------------------------------------------------------------------ -- Properties of homogeneous binary relations ------------------------------------------------------------------------ -- This file contains some core definitions which are reexported by -- Relation.Binary or Relation.Binary.PropositionalEquality. module Relation.Binary.Core where open import Data.Product open import Data.Sum open import Data.Function open import Relation.Nullary.Core ------------------------------------------------------------------------ -- Homogeneous binary relations Rel : Set → Set₁ Rel a = a → a → Set ------------------------------------------------------------------------ -- Simple properties of binary relations infixr 4 _⇒_ _=[_]⇒_ -- Implication/containment. Could also be written ⊆. _⇒_ : ∀ {a} → Rel a → Rel a → Set P ⇒ Q = ∀ {i j} → P i j → Q i j -- Generalised implication. If P ≡ Q it can be read as "f preserves -- P". _=[_]⇒_ : ∀ {a b} → Rel a → (a → b) → Rel b → Set P =[ f ]⇒ Q = P ⇒ (Q on₁ f) -- A synonym, along with a binary variant. _Preserves_⟶_ : ∀ {a₁ a₂} → (a₁ → a₂) → Rel a₁ → Rel a₂ → Set f Preserves P ⟶ Q = P =[ f ]⇒ Q _Preserves₂_⟶_⟶_ : ∀ {a₁ a₂ a₃} → (a₁ → a₂ → a₃) → Rel a₁ → Rel a₂ → Rel a₃ → Set _+_ Preserves₂ P ⟶ Q ⟶ R = ∀ {x y u v} → P x y → Q u v → R (x + u) (y + v) -- Reflexivity of _∼_ can be expressed as _≈_ ⇒ _∼_, for some -- underlying equality _≈_. However, the following variant is often -- easier to use. Reflexive : {a : Set} → (_∼_ : Rel a) → Set Reflexive _∼_ = ∀ {x} → x ∼ x -- Irreflexivity is defined using an underlying equality. Irreflexive : {a : Set} → (_≈_ _<_ : Rel a) → Set Irreflexive _≈_ _<_ = ∀ {x y} → x ≈ y → ¬ (x < y) -- Generalised symmetry. Sym : ∀ {a} → Rel a → Rel a → Set Sym P Q = P ⇒ flip₁ Q Symmetric : {a : Set} → Rel a → Set Symmetric _∼_ = Sym _∼_ _∼_ -- Generalised transitivity. Trans : ∀ {a} → Rel a → Rel a → Rel a → Set Trans P Q R = ∀ {i j k} → P i j → Q j k → R i k Transitive : {a : Set} → Rel a → Set Transitive _∼_ = Trans _∼_ _∼_ _∼_ Antisymmetric : {a : Set} → (_≈_ _≤_ : Rel a) → Set Antisymmetric _≈_ _≤_ = ∀ {x y} → x ≤ y → y ≤ x → x ≈ y Asymmetric : {a : Set} → (_<_ : Rel a) → Set Asymmetric _<_ = ∀ {x y} → x < y → ¬ (y < x) _Respects_ : {a : Set} → (a → Set) → Rel a → Set P Respects _∼_ = ∀ {x y} → x ∼ y → P x → P y _Respects₂_ : {a : Set} → Rel a → Rel a → Set P Respects₂ _∼_ = (∀ {x} → P x Respects _∼_) × (∀ {y} → flip₁ P y Respects _∼_) Substitutive : {a : Set} → Rel a → Set₁ Substitutive _∼_ = ∀ P → P Respects _∼_ Congruential : ({a : Set} → Rel a) → Set₁ Congruential ∼ = ∀ {a b} → (f : a → b) → f Preserves ∼ ⟶ ∼ Congruential₂ : ({a : Set} → Rel a) → Set₁ Congruential₂ ∼ = ∀ {a b c} → (f : a → b → c) → f Preserves₂ ∼ ⟶ ∼ ⟶ ∼ Decidable : {a : Set} → Rel a → Set Decidable _∼_ = ∀ x y → Dec (x ∼ y) Total : {a : Set} → Rel a → Set Total _∼_ = ∀ x y → (x ∼ y) ⊎ (y ∼ x) data Tri (A B C : Set) : Set where tri< : ( a : A) (¬b : ¬ B) (¬c : ¬ C) → Tri A B C tri≈ : (¬a : ¬ A) ( b : B) (¬c : ¬ C) → Tri A B C tri> : (¬a : ¬ A) (¬b : ¬ B) ( c : C) → Tri A B C Trichotomous : {a : Set} → Rel a → Rel a → Set Trichotomous _≈_ _<_ = ∀ x y → Tri (x < y) (x ≈ y) (x > y) where _>_ = flip₁ _<_ record NonEmpty {I : Set} (T : Rel I) : Set where field i : I j : I proof : T i j nonEmpty : ∀ {I} {T : Rel I} {i j} → T i j → NonEmpty T nonEmpty p = record { i = _; j = _; proof = p } ------------------------------------------------------------------------ -- Propositional equality -- This dummy module is used to avoid shadowing of the field named -- refl defined in IsEquivalence below. The module is opened publicly -- at the end of this file. private module Dummy where infix 4 _≡_ _≢_ data _≡_ {a : Set} (x : a) : a → Set where refl : x ≡ x {-# BUILTIN EQUALITY _≡_ #-} {-# BUILTIN REFL refl #-} -- Nonequality. _≢_ : {a : Set} → a → a → Set x ≢ y = ¬ x ≡ y ------------------------------------------------------------------------ -- Equivalence relations -- The preorders of this library are defined in terms of an underlying -- equivalence relation, and hence equivalence relations are not -- defined in terms of preorders. record IsEquivalence {a : Set} (_≈_ : Rel a) : Set where field refl : Reflexive _≈_ sym : Symmetric _≈_ trans : Transitive _≈_ reflexive : Dummy._≡_ ⇒ _≈_ reflexive Dummy.refl = refl open Dummy public
27.509202
72
0.513381
388c63ee516ccecf4a778dd77eb11fceaefdddee
850
agda
Agda
examples/simple-lib/Lib/Bool.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
examples/simple-lib/Lib/Bool.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
examples/simple-lib/Lib/Bool.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Lib.Bool where open import Lib.Logic data Bool : Set where true : Bool false : Bool {-# BUILTIN BOOL Bool #-} {-# BUILTIN TRUE true #-} {-# BUILTIN FALSE false #-} isTrue : Bool -> Set isTrue true = True isTrue false = False isFalse : Bool -> Set isFalse true = False isFalse false = True data Inspect (b : Bool) : Set where itsTrue : .(isTrue b) -> Inspect b itsFalse : .(isFalse b) -> Inspect b inspect : (b : Bool) -> Inspect b inspect true = itsTrue _ inspect false = itsFalse _ infix 5 if_then_else_ if_then_else_ : {A : Set} -> Bool -> A -> A -> A if true then x else y = x if false then x else y = y not : Bool -> Bool not true = false not false = true infixr 25 _&&_ infixr 22 _||_ _&&_ : Bool -> Bool -> Bool false && y = false true && y = y _||_ : Bool -> Bool -> Bool false || y = y true || y = true
17
48
0.622353
3f83f2e55d1cc66a568fe980c25220ae53a88255
16,008
agda
Agda
Cubical/Functions/Embedding.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
301
2018-10-17T18:00:24.000Z
2022-03-24T02:10:47.000Z
Cubical/Functions/Embedding.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
584
2018-10-15T09:49:02.000Z
2022-03-30T12:09:17.000Z
Cubical/Functions/Embedding.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
134
2018-11-16T06:11:03.000Z
2022-03-23T16:22:13.000Z
{-# OPTIONS --safe #-} module Cubical.Functions.Embedding where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Equiv open import Cubical.Foundations.Equiv.Properties open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Foundations.HLevels open import Cubical.Foundations.Transport open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Path open import Cubical.Foundations.Powerset open import Cubical.Foundations.Prelude open import Cubical.Foundations.Univalence using (ua; univalence) open import Cubical.Functions.Fibration open import Cubical.Data.Sigma open import Cubical.Functions.Fibration open import Cubical.Functions.FunExtEquiv open import Cubical.Relation.Nullary using (Discrete; yes; no) open import Cubical.Structures.Axioms open import Cubical.Reflection.StrictEquiv open import Cubical.Data.Nat using (ℕ; zero; suc) open import Cubical.Data.Sigma private variable ℓ ℓ₁ ℓ₂ : Level A B : Type ℓ f h : A → B w x : A y z : B -- Embeddings are generalizations of injections. The usual -- definition of injection as: -- -- f x ≡ f y → x ≡ y -- -- is not well-behaved with higher h-levels, while embeddings -- are. isEmbedding : (A → B) → Type _ isEmbedding f = ∀ w x → isEquiv {A = w ≡ x} (cong f) isPropIsEmbedding : isProp (isEmbedding f) isPropIsEmbedding {f = f} = isPropΠ2 λ _ _ → isPropIsEquiv (cong f) -- If A and B are h-sets, then injective functions between -- them are embeddings. -- -- Note: It doesn't appear to be possible to omit either of -- the `isSet` hypotheses. injEmbedding : {f : A → B} → isSet A → isSet B → (∀{w x} → f w ≡ f x → w ≡ x) → isEmbedding f injEmbedding {f = f} iSA iSB inj w x = isoToIsEquiv (iso (cong f) inj sect retr) where sect : section (cong f) inj sect p = iSB (f w) (f x) _ p retr : retract (cong f) inj retr p = iSA w x _ p -- If `f` is an embedding, we'd expect the fibers of `f` to be -- propositions, like an injective function. hasPropFibers : (A → B) → Type _ hasPropFibers f = ∀ y → isProp (fiber f y) -- This can be relaxed to having all prop fibers over the image, see [hasPropFibersOfImage→isEmbedding] hasPropFibersOfImage : (A → B) → Type _ hasPropFibersOfImage f = ∀ x → isProp (fiber f (f x)) -- some notation _↪_ : Type ℓ₁ → Type ℓ₂ → Type (ℓ-max ℓ₁ ℓ₂) A ↪ B = Σ[ f ∈ (A → B) ] isEmbedding f hasPropFibersIsProp : isProp (hasPropFibers f) hasPropFibersIsProp = isPropΠ (λ _ → isPropIsProp) private lemma₀ : (p : y ≡ z) → fiber f y ≡ fiber f z lemma₀ {f = f} p = λ i → fiber f (p i) lemma₁ : isEmbedding f → ∀ x → isContr (fiber f (f x)) lemma₁ {f = f} iE x = value , path where value : fiber f (f x) value = (x , refl) path : ∀(fi : fiber f (f x)) → value ≡ fi path (w , p) i = case equiv-proof (iE w x) p of λ { ((q , sq) , _) → hfill (λ j → λ { (i = i0) → (x , refl) ; (i = i1) → (w , sq j) }) (inS (q (~ i) , λ j → f (q (~ i ∨ j)))) i1 } isEmbedding→hasPropFibers : isEmbedding f → hasPropFibers f isEmbedding→hasPropFibers iE y (x , p) = subst (λ f → isProp f) (lemma₀ p) (isContr→isProp (lemma₁ iE x)) (x , p) private fibCong→PathP : {f : A → B} → (p : f w ≡ f x) → (fi : fiber (cong f) p) → PathP (λ i → fiber f (p i)) (w , refl) (x , refl) fibCong→PathP p (q , r) i = q i , λ j → r j i PathP→fibCong : {f : A → B} → (p : f w ≡ f x) → (pp : PathP (λ i → fiber f (p i)) (w , refl) (x , refl)) → fiber (cong f) p PathP→fibCong p pp = (λ i → fst (pp i)) , (λ j i → snd (pp i) j) PathP≡fibCong : {f : A → B} → (p : f w ≡ f x) → PathP (λ i → fiber f (p i)) (w , refl) (x , refl) ≡ fiber (cong f) p PathP≡fibCong p = isoToPath (iso (PathP→fibCong p) (fibCong→PathP p) (λ _ → refl) (λ _ → refl)) hasPropFibers→isEmbedding : hasPropFibers f → isEmbedding f hasPropFibers→isEmbedding {f = f} iP w x .equiv-proof p = subst isContr (PathP≡fibCong p) (isProp→isContrPathP (λ i → iP (p i)) fw fx) where fw : fiber f (f w) fw = (w , refl) fx : fiber f (f x) fx = (x , refl) hasPropFibersOfImage→hasPropFibers : hasPropFibersOfImage f → hasPropFibers f hasPropFibersOfImage→hasPropFibers {f = f} fibImg y a b = subst (λ y → isProp (fiber f y)) (snd a) (fibImg (fst a)) a b hasPropFibersOfImage→isEmbedding : hasPropFibersOfImage f → isEmbedding f hasPropFibersOfImage→isEmbedding = hasPropFibers→isEmbedding ∘ hasPropFibersOfImage→hasPropFibers isEmbedding≡hasPropFibers : isEmbedding f ≡ hasPropFibers f isEmbedding≡hasPropFibers = isoToPath (iso isEmbedding→hasPropFibers hasPropFibers→isEmbedding (λ _ → hasPropFibersIsProp _ _) (λ _ → isPropIsEmbedding _ _)) isEquiv→hasPropFibers : isEquiv f → hasPropFibers f isEquiv→hasPropFibers e b = isContr→isProp (equiv-proof e b) isEquiv→isEmbedding : isEquiv f → isEmbedding f isEquiv→isEmbedding e = λ _ _ → congEquiv (_ , e) .snd Equiv→Embedding : A ≃ B → A ↪ B Equiv→Embedding (f , isEquivF) = (f , isEquiv→isEmbedding isEquivF) iso→isEmbedding : ∀ {ℓ} {A B : Type ℓ} → (isom : Iso A B) ------------------------------- → isEmbedding (Iso.fun isom) iso→isEmbedding {A = A} {B} isom = (isEquiv→isEmbedding (equivIsEquiv (isoToEquiv isom))) isEmbedding→Injection : ∀ {ℓ} {A B C : Type ℓ} → (a : A → B) → (e : isEmbedding a) ---------------------- → ∀ {f g : C → A} → ∀ x → (a (f x) ≡ a (g x)) ≡ (f x ≡ g x) isEmbedding→Injection a e {f = f} {g} x = sym (ua (cong a , e (f x) (g x))) -- if `f` has a retract, then `cong f` has, as well. If `B` is a set, then `cong f` -- further has a section, making `f` an embedding. module _ {f : A → B} (retf : hasRetract f) where open Σ retf renaming (fst to g ; snd to ϕ) congRetract : f w ≡ f x → w ≡ x congRetract {w = w} {x = x} p = sym (ϕ w) ∙∙ cong g p ∙∙ ϕ x isRetractCongRetract : retract (cong {x = w} {y = x} f) congRetract isRetractCongRetract p = transport (PathP≡doubleCompPathˡ _ _ _ _) (λ i j → ϕ (p j) i) hasRetract→hasRetractCong : hasRetract (cong {x = w} {y = x} f) hasRetract→hasRetractCong = congRetract , isRetractCongRetract retractableIntoSet→isEmbedding : isSet B → isEmbedding f retractableIntoSet→isEmbedding setB w x = isoToIsEquiv (iso (cong f) congRetract (λ _ → setB _ _ _ _) (hasRetract→hasRetractCong .snd)) Embedding-into-Discrete→Discrete : A ↪ B → Discrete B → Discrete A Embedding-into-Discrete→Discrete (f , isEmbeddingF) _≟_ x y with f x ≟ f y ... | yes p = yes (invIsEq (isEmbeddingF x y) p) ... | no ¬p = no (¬p ∘ cong f) Embedding-into-isProp→isProp : A ↪ B → isProp B → isProp A Embedding-into-isProp→isProp (f , isEmbeddingF) isProp-B x y = invIsEq (isEmbeddingF x y) (isProp-B (f x) (f y)) Embedding-into-isSet→isSet : A ↪ B → isSet B → isSet A Embedding-into-isSet→isSet (f , isEmbeddingF) isSet-B x y p q = p ≡⟨ sym (retIsEq isEquiv-cong-f p) ⟩ cong-f⁻¹ (cong f p) ≡⟨ cong cong-f⁻¹ cong-f-p≡cong-f-q ⟩ cong-f⁻¹ (cong f q) ≡⟨ retIsEq isEquiv-cong-f q ⟩ q ∎ where cong-f-p≡cong-f-q = isSet-B (f x) (f y) (cong f p) (cong f q) isEquiv-cong-f = isEmbeddingF x y cong-f⁻¹ = invIsEq isEquiv-cong-f Embedding-into-hLevel→hLevel : ∀ n → A ↪ B → isOfHLevel (suc n) B → isOfHLevel (suc n) A Embedding-into-hLevel→hLevel zero = Embedding-into-isProp→isProp Embedding-into-hLevel→hLevel (suc n) (f , isEmbeddingF) Blvl x y = isOfHLevelRespectEquiv (suc n) (invEquiv equiv) subLvl where equiv : (x ≡ y) ≃ (f x ≡ f y) equiv .fst = cong f equiv .snd = isEmbeddingF x y subLvl : isOfHLevel (suc n) (f x ≡ f y) subLvl = Blvl (f x) (f y) -- We now show that the powerset is the subtype classifier -- i.e. ℙ X ≃ Σ[A ∈ Type ℓ] (A ↪ X) Embedding→Subset : {X : Type ℓ} → Σ[ A ∈ Type ℓ ] (A ↪ X) → ℙ X Embedding→Subset (_ , f , isEmbeddingF) x = fiber f x , isEmbedding→hasPropFibers isEmbeddingF x Subset→Embedding : {X : Type ℓ} → ℙ X → Σ[ A ∈ Type ℓ ] (A ↪ X) Subset→Embedding {X = X} A = D , fst , Ψ where D = Σ[ x ∈ X ] x ∈ A Ψ : isEmbedding fst Ψ w x = isEmbeddingFstΣProp (∈-isProp A) Subset→Embedding→Subset : {X : Type ℓ} → section (Embedding→Subset {ℓ} {X}) (Subset→Embedding {ℓ} {X}) Subset→Embedding→Subset _ = funExt λ x → Σ≡Prop (λ _ → isPropIsProp) (ua (FiberIso.fiberEquiv _ x)) Embedding→Subset→Embedding : {X : Type ℓ} → retract (Embedding→Subset {ℓ} {X}) (Subset→Embedding {ℓ} {X}) Embedding→Subset→Embedding {ℓ = ℓ} {X = X} (A , f , ψ) = cong (equivFun Σ-assoc-≃) (Σ≡Prop (λ _ → isPropIsEmbedding) (retEq (fibrationEquiv X ℓ) (A , f))) Subset≃Embedding : {X : Type ℓ} → ℙ X ≃ (Σ[ A ∈ Type ℓ ] (A ↪ X)) Subset≃Embedding = isoToEquiv (iso Subset→Embedding Embedding→Subset Embedding→Subset→Embedding Subset→Embedding→Subset) Subset≡Embedding : {X : Type ℓ} → ℙ X ≡ (Σ[ A ∈ Type ℓ ] (A ↪ X)) Subset≡Embedding = ua Subset≃Embedding isEmbedding-∘ : isEmbedding f → isEmbedding h → isEmbedding (f ∘ h) isEmbedding-∘ {f = f} {h = h} Embf Embh w x = compEquiv (cong h , Embh w x) (cong f , Embf (h w) (h x)) .snd isEmbedding→embedsFibersIntoSingl : isEmbedding f → ∀ z → fiber f z ↪ singl z isEmbedding→embedsFibersIntoSingl {f = f} isE z = e , isEmbE where e : fiber f z → singl z e x = f (fst x) , sym (snd x) isEmbE : isEmbedding e isEmbE u v = goal where -- "adjust" ΣeqCf by trivial equivalences that hold judgementally, which should save compositions Dom′ : ∀ u v → Type _ Dom′ u v = Σ[ p ∈ fst u ≡ fst v ] PathP (λ i → f (p i) ≡ z) (snd u) (snd v) Cod′ : ∀ u v → Type _ Cod′ u v = Σ[ p ∈ f (fst u) ≡ f (fst v) ] PathP (λ i → p i ≡ z) (snd u) (snd v) ΣeqCf : Dom′ u v ≃ Cod′ u v ΣeqCf = Σ-cong-equiv-fst (_ , isE _ _) dom→ : u ≡ v → Dom′ u v dom→ p = cong fst p , cong snd p dom← : Dom′ u v → u ≡ v dom← p i = p .fst i , p .snd i cod→ : e u ≡ e v → Cod′ u v cod→ p = cong fst p , cong (sym ∘ snd) p cod← : Cod′ u v → e u ≡ e v cod← p i = p .fst i , sym (p .snd i) goal : isEquiv (cong e) goal .equiv-proof x .fst .fst = dom← (equivCtr ΣeqCf (cod→ x) .fst) goal .equiv-proof x .fst .snd j = cod← (equivCtr ΣeqCf (cod→ x) .snd j) goal .equiv-proof x .snd (g , p) i .fst = dom← (equivCtrPath ΣeqCf (cod→ x) (dom→ g , cong cod→ p) i .fst) goal .equiv-proof x .snd (g , p) i .snd j = cod← (equivCtrPath ΣeqCf (cod→ x) (dom→ g , cong cod→ p) i .snd j) isEmbedding→hasPropFibers′ : isEmbedding f → hasPropFibers f isEmbedding→hasPropFibers′ {f = f} iE z = Embedding-into-isProp→isProp (isEmbedding→embedsFibersIntoSingl iE z) isPropSingl universeEmbedding : ∀ {ℓ ℓ₁ : Level} → (F : Type ℓ → Type ℓ₁) → (∀ X → F X ≃ X) → isEmbedding F universeEmbedding F liftingEquiv = hasPropFibersOfImage→isEmbedding propFibersF where lemma : ∀ A B → (F A ≡ F B) ≃ (B ≡ A) lemma A B = (F A ≡ F B) ≃⟨ univalence ⟩ (F A ≃ F B) ≃⟨ equivComp (liftingEquiv A) (liftingEquiv B) ⟩ (A ≃ B) ≃⟨ invEquivEquiv ⟩ (B ≃ A) ≃⟨ invEquiv univalence ⟩ (B ≡ A) ■ fiberSingl : ∀ X → fiber F (F X) ≃ singl X fiberSingl X = Σ-cong-equiv-snd (λ _ → lemma _ _) propFibersF : hasPropFibersOfImage F propFibersF X = Embedding-into-isProp→isProp (Equiv→Embedding (fiberSingl X)) isPropSingl liftEmbedding : (ℓ ℓ₁ : Level) → isEmbedding (Lift {i = ℓ} {j = ℓ₁}) liftEmbedding ℓ ℓ₁ = universeEmbedding (Lift {j = ℓ₁}) (λ _ → invEquiv LiftEquiv) module FibrationIdentityPrinciple {B : Type ℓ} {ℓ₁} where -- note that fibrationEquiv (for good reason) uses ℓ₁ = ℓ-max ℓ ℓ₁, so we have to work -- some universe magic to achieve good universe polymorphism -- First, prove it for the case that's dealt with in fibrationEquiv Fibration′ = Fibration B (ℓ-max ℓ ℓ₁) module Lifted (f g : Fibration′) where f≃g′ : Type (ℓ-max ℓ ℓ₁) f≃g′ = ∀ b → fiber (f .snd) b ≃ fiber (g .snd) b Fibration′IP : f≃g′ ≃ (f ≡ g) Fibration′IP = f≃g′ ≃⟨ equivΠCod (λ _ → invEquiv univalence) ⟩ (∀ b → fiber (f .snd) b ≡ fiber (g .snd) b) ≃⟨ funExtEquiv ⟩ fiber (f .snd) ≡ fiber (g .snd) ≃⟨ invEquiv (congEquiv (fibrationEquiv B ℓ₁)) ⟩ f ≡ g ■ -- Then embed into the above case by lifting the type L : Type _ → Type _ -- local synonym fixing the levels of Lift L = Lift {i = ℓ₁} {j = ℓ} liftFibration : Fibration B ℓ₁ → Fibration′ liftFibration (A , f) = L A , f ∘ lower hasPropFibersLiftFibration : hasPropFibers liftFibration hasPropFibersLiftFibration (A , f) = Embedding-into-isProp→isProp (Equiv→Embedding fiberChar) (isPropΣ (isEmbedding→hasPropFibers (liftEmbedding _ _) A) λ _ → isEquiv→hasPropFibers (snd (invEquiv (preCompEquiv LiftEquiv))) _) where fiberChar : fiber liftFibration (A , f) ≃ (Σ[ (E , eq) ∈ fiber L A ] fiber (_∘ lower) (transport⁻ (λ i → eq i → B) f)) fiberChar = fiber liftFibration (A , f) ≃⟨ Σ-cong-equiv-snd (λ _ → invEquiv ΣPath≃PathΣ) ⟩ (Σ[ (E , g) ∈ Fibration B ℓ₁ ] Σ[ eq ∈ (L E ≡ A) ] PathP (λ i → eq i → B) (g ∘ lower) f) ≃⟨ boringSwap ⟩ (Σ[ (E , eq) ∈ fiber L A ] Σ[ g ∈ (E → B) ] PathP (λ i → eq i → B) (g ∘ lower) f) ≃⟨ Σ-cong-equiv-snd (λ _ → Σ-cong-equiv-snd λ _ → transportEquiv (PathP≡Path⁻ _ _ _)) ⟩ (Σ[ (E , eq) ∈ fiber L A ] fiber (_∘ lower) (transport⁻ (λ i → eq i → B) f)) ■ where unquoteDecl boringSwap = declStrictEquiv boringSwap (λ ((E , g) , (eq , p)) → ((E , eq) , (g , p))) (λ ((E , g) , (eq , p)) → ((E , eq) , (g , p))) isEmbeddingLiftFibration : isEmbedding liftFibration isEmbeddingLiftFibration = hasPropFibers→isEmbedding hasPropFibersLiftFibration -- and finish off module _ (f g : Fibration B ℓ₁) where open Lifted (liftFibration f) (liftFibration g) f≃g : Type (ℓ-max ℓ ℓ₁) f≃g = ∀ b → fiber (f .snd) b ≃ fiber (g .snd) b FibrationIP : f≃g ≃ (f ≡ g) FibrationIP = f≃g ≃⟨ equivΠCod (λ b → equivComp (Σ-cong-equiv-fst LiftEquiv) (Σ-cong-equiv-fst LiftEquiv)) ⟩ f≃g′ ≃⟨ Fibration′IP ⟩ (liftFibration f ≡ liftFibration g) ≃⟨ invEquiv (_ , isEmbeddingLiftFibration _ _) ⟩ (f ≡ g) ■ open FibrationIdentityPrinciple renaming (f≃g to _≃Fib_) using (FibrationIP) public Embedding : (B : Type ℓ₁) → (ℓ : Level) → Type (ℓ-max ℓ₁ (ℓ-suc ℓ)) Embedding B ℓ = Σ[ A ∈ Type ℓ ] A ↪ B module EmbeddingIdentityPrinciple {B : Type ℓ} {ℓ₁} (f g : Embedding B ℓ₁) where module _ where open Σ f renaming (fst to F) public open Σ g renaming (fst to G) public open Σ (f .snd) renaming (fst to ffun; snd to isEmbF) public open Σ (g .snd) renaming (fst to gfun; snd to isEmbG) public f≃g : Type _ f≃g = (∀ b → fiber ffun b → fiber gfun b) × (∀ b → fiber gfun b → fiber ffun b) toFibr : Embedding B ℓ₁ → Fibration B ℓ₁ toFibr (A , (f , _)) = (A , f) isEmbeddingToFibr : isEmbedding toFibr isEmbeddingToFibr w x = fullEquiv .snd where -- carefully managed such that (cong toFibr) is the equivalence fullEquiv : (w ≡ x) ≃ (toFibr w ≡ toFibr x) fullEquiv = compEquiv (congEquiv (invEquiv Σ-assoc-≃)) (invEquiv (Σ≡PropEquiv (λ _ → isPropIsEmbedding))) EmbeddingIP : f≃g ≃ (f ≡ g) EmbeddingIP = f≃g ≃⟨ strictIsoToEquiv (invIso toProdIso) ⟩ (∀ b → (fiber ffun b → fiber gfun b) × (fiber gfun b → fiber ffun b)) ≃⟨ equivΠCod (λ _ → isEquivPropBiimpl→Equiv (isEmbedding→hasPropFibers isEmbF _) (isEmbedding→hasPropFibers isEmbG _)) ⟩ (∀ b → (fiber (f .snd .fst) b) ≃ (fiber (g .snd .fst) b)) ≃⟨ FibrationIP (toFibr f) (toFibr g) ⟩ (toFibr f ≡ toFibr g) ≃⟨ invEquiv (_ , isEmbeddingToFibr _ _) ⟩ f ≡ g ■ open EmbeddingIdentityPrinciple renaming (f≃g to _≃Emb_) using (EmbeddingIP) public
37.401869
109
0.61488
380b21d657fefc305b5b999bf062a89221a4c0dd
7,300
agda
Agda
Cubical/Papers/Synthetic.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
Cubical/Papers/Synthetic.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
1
2022-01-27T02:07:48.000Z
2022-01-27T02:07:48.000Z
Cubical/Papers/Synthetic.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Papers.Synthetic where -- Cubical synthetic homotopy theory -- Mörtberg and Pujet, „Cubical synthetic homotopy theory“. -- https://dl.acm.org/doi/abs/10.1145/3372885.3373825 -- 2.1 import Agda.Builtin.Cubical.Path as Path import Cubical.Foundations.Prelude as Prelude -- 2.2 import Agda.Primitive.Cubical as PrimitiveCubical import Cubical.Data.Bool as Bool import Cubical.Core.Primitives as CorePrimitives -- 2.3 import Cubical.HITs.S1 as S1 -- 2.4 import Cubical.Foundations.Equiv as Equiv import Cubical.Core.Glue as CoreGlue import Cubical.Foundations.Univalence as Univalence -- 3. import Cubical.HITs.Torus as T2 -- 3.1 import Cubical.Data.Int as Int import Cubical.Data.Int.Properties as IntProp import Cubical.Foundations.Isomorphism as Isomorphism -- 4.1 import Cubical.HITs.Susp as Suspension import Cubical.HITs.Sn as Sn import Agda.Builtin.Nat as BNat import Agda.Builtin.Bool as BBool import Cubical.Foundations.GroupoidLaws as GroupoidLaws import Cubical.HITs.S2 as S2 import Cubical.HITs.S3 as S3 -- 4.2 import Cubical.HITs.Pushout as Push import Cubical.HITs.Pushout.Properties as PushProp -- 4.3 import Cubical.HITs.Join as Join import Cubical.HITs.Join.Properties as JoinProp -- 5. import Cubical.HITs.Hopf as Hopf -------------------------------------------------------------------------------- -- 2. Cubical Agda -- 2.1 The Interval and Path Types -- 2.2 Transport and Composition -- 2.3 Higher Inductive Types -- 2.4 Glue Types and Univalence -------------------------------------------------------------------------------- -- 2.1 The Interval and Path Types open Path using (PathP) public open Prelude using (_≡_ ; refl ; funExt) public open Prelude renaming (sym to _⁻¹) public -- 2.2 Transport and Composition open Prelude using (transport ; subst ; J ; JRefl) public open PrimitiveCubical using (Partial) public open Bool using (Bool ; true ; false) public partialBool : ∀ i → Partial (i ∨ ~ i) Bool partialBool i = λ {(i = i1) → true ; (i = i0) → false} open CorePrimitives using (inS ; outS ; hcomp) public open Prelude using (_∙_) public -- 2.3 Higher Inductive Types open S1 using (S¹ ; base ; loop) public double : S¹ → S¹ double base = base double (loop i) = (loop ∙ loop) i -- 2.4 Glue Types and Univalence open Equiv using (idEquiv) public open CoreGlue using (Glue) public open Univalence using (ua) public -------------------------------------------------------------------------------- -- 3. The Circle and Torus -- 3.1 The Loop Spaces of the Circle and Torus -------------------------------------------------------------------------------- open T2 using ( Torus ; point ; line1 ; line2 ; square ; t2c ; c2t ; c2t-t2c ; t2c-c2t ; Torus≡S¹×S¹) -- 3.1 The Loop Spaces of the Circle and Torus open S1 using (ΩS¹) public open T2 using (ΩTorus) public open Int using (Int ; pos ; negsuc) public open IntProp using (sucPathInt) public open S1 using (helix ; winding) public -- Examples computing the winding numbers of the circle _ : winding (loop ∙ loop ∙ loop) ≡ pos 3 _ = refl _ : winding ((loop ⁻¹) ∙ loop ∙ (loop ⁻¹)) ≡ negsuc 0 _ = refl open S1 renaming (intLoop to loopn) public open S1 renaming (windingIntLoop to winding-loopn) public open S1 using (encode ; decode ; decodeEncode ; ΩS¹≡Int) public open Isomorphism using (isoToPath ; iso) public -- Notation of the paper, current notation under ΩS¹≡Int ΩS¹≡Int' : ΩS¹ ≡ Int ΩS¹≡Int' = isoToPath (iso winding loopn winding-loopn (decodeEncode base)) open T2 using (ΩTorus≡Int×Int ; windingTorus) public -- Examples at the end of section 3. _ : windingTorus (line1 ∙ line2) ≡ (pos 1 , pos 1) _ = refl _ : windingTorus ((line1 ⁻¹) ∙ line2 ∙ line1) ≡ (pos 0 , pos 1) _ = refl -------------------------------------------------------------------------------- -- 4. Suspension, Spheres and Pushouts -- 4.1 Suspension -- 4.2 Pushouts and the 3 × 3 Lemma -- 4.3 The Join and S³ -------------------------------------------------------------------------------- -- 4.1 Suspension open Suspension using (Susp ; north ; south ; merid) public open Sn using (S₊) public open Suspension using ( SuspBool→S¹ ; S¹→SuspBool ; SuspBool→S¹→SuspBool ; S¹→SuspBool→S¹) public -- Deprecated version of S₊ open BNat renaming (Nat to ℕ) hiding (_*_) public open CorePrimitives renaming (Type to Set) public open BBool using (Bool) public -- At the time the paper was published, Set was used instead of Type _-sphere : ℕ → Set 0 -sphere = Bool (suc n) -sphere = Susp (n -sphere) -- Lemma 4.1. The (1)-sphere is equal to the circle S1. open BBool using (true ; false) public -- Deprecated version of SuspBool→S¹ s2c : 1 -sphere → S¹ s2c north = base s2c south = base s2c (merid true i) = loop i s2c (merid false i) = base -- (loop ⁻¹) i -- Deprecated version of S¹→SuspBool c2s : S¹ → 1 -sphere c2s base = north c2s (loop i) = (merid true ∙ (merid false ⁻¹)) i open GroupoidLaws using (rUnit) public -- Deprecated version of SuspBool→S¹→SuspBool s2c-c2s : ∀ (p : S¹) → s2c (c2s p) ≡ p s2c-c2s base = refl s2c-c2s (loop i) j = rUnit loop (~ j) i h1 : I → I → 1 -sphere h1 i j = merid false (i ∧ j) h2 : I → I → 1 -sphere h2 i j = hcomp (λ k → λ { (i = i0) → north ; (i = i1) → merid false (j ∨ ~ k) ; (j = i1) → merid true i }) (merid true i) -- Deprecated version of S¹→SuspBool→S¹ c2s-s2c : ∀ (t : 1 -sphere) → c2s (s2c t) ≡ t c2s-s2c north j = north c2s-s2c south j = merid false j c2s-s2c (merid true i) j = h2 i j c2s-s2c (merid false i) j = merid false (i ∧ j) -- Notation of the paper, current notation under S¹≡SuspBool -- Proof of Lemma 4.1 1-sphere≡S¹ : 1 -sphere ≡ S¹ 1-sphere≡S¹ = isoToPath (iso s2c c2s s2c-c2s c2s-s2c) -- Definitions of S2 and S3 open S2 using (S²) public open S3 using (S³) public -- 4.2 Pushouts and the 3 × 3 Lemma open Push using (Pushout) public -- 3x3-span is implemented as a record open PushProp using (3x3-span) public open 3x3-span using (f□1) public -- The rest of the definitions inside the 3x3-lemma -- A□0-A○□ , A□○-A○□ ... open 3x3-span using (3x3-lemma) public -- 4.3 The Join and S³ open Join renaming (join to Join) using (S³≡joinS¹S¹) public open JoinProp using (join-assoc) public -------------------------------------------------------------------------------- -- 5. The Hopf Fibration -------------------------------------------------------------------------------- -- rot (denoted by _·_ here) in the paper is substituted by a rot and rotLoop in S1 open S1 using (_·_ ; rotLoop) public open Hopf renaming ( HopfSuspS¹ to Hopf ; JoinS¹S¹→TotalHopf to j2h ; TotalHopf→JoinS¹S¹ to h2j) using (HopfS²) public open S1 renaming (rotInv-1 to lem-rot-inv) public
33.953488
83
0.589178
1417e8e6f3e4e16788183d379aaf4fdd597bde54
4,816
agda
Agda
examples/outdated-and-incorrect/tait/Subst.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
examples/outdated-and-incorrect/tait/Subst.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
examples/outdated-and-incorrect/tait/Subst.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Subst where open import Prelude open import Lambda infix 100 _[_] _[_:=_] _↑ infixl 100 _↑_ _↑ˢ_ _↑ˣ_ _↓ˣ_ infixl 60 _-_ {- _-_ : {τ : Type}(Γ : Ctx) -> Var Γ τ -> Ctx ε - () Γ , τ - vz = Γ Γ , τ - vs x = (Γ - x) , τ wkˣ : {Γ : Ctx}{σ τ : Type} (x : Var Γ σ) -> Var (Γ - x) τ -> Var Γ τ wkˣ vz y = vs y wkˣ (vs x) vz = vz wkˣ (vs x) (vs y) = vs (wkˣ x y) wk : {Γ : Ctx}{σ τ : Type} (x : Var Γ σ) -> Term (Γ - x) τ -> Term Γ τ wk x (var y) = var (wkˣ x y) wk x (s • t) = wk x s • wk x t wk x (ƛ t) = ƛ wk (vs x) t _↑ : {Γ : Ctx}{σ τ : Type} -> Term Γ τ -> Term (Γ , σ) τ t ↑ = wk vz t _↑_ : {Γ : Ctx}{τ : Type} -> Term Γ τ -> (Δ : Ctx) -> Term (Γ ++ Δ) τ t ↑ ε = t t ↑ (Δ , σ) = (t ↑ Δ) ↑ data Cmpˣ {Γ : Ctx}{τ : Type}(x : Var Γ τ) : {σ : Type} -> Var Γ σ -> Set where same : Cmpˣ x x diff : {σ : Type}(y : Var (Γ - x) σ) -> Cmpˣ x (wkˣ x y) _≟_ : {Γ : Ctx}{σ τ : Type}(x : Var Γ σ)(y : Var Γ τ) -> Cmpˣ x y vz ≟ vz = same vz ≟ vs y = diff y vs x ≟ vz = diff vz vs x ≟ vs y with x ≟ y vs x ≟ vs .x | same = same vs x ≟ vs .(wkˣ x y) | diff y = diff (vs y) _[_:=_] : {Γ : Ctx}{σ τ : Type} -> Term Γ σ -> (x : Var Γ τ) -> Term (Γ - x) τ -> Term (Γ - x) σ var y [ x := u ] with x ≟ y var .x [ x := u ] | same = u var .(wkˣ x y) [ x := u ] | diff y = var y (s • t) [ x := u ] = s [ x := u ] • t [ x := u ] (ƛ t) [ x := u ] = ƛ t [ vs x := u ↑ ] -} infix 30 _─⟶_ infixl 90 _/_ _─⟶_ : Ctx -> Ctx -> Set Γ ─⟶ Δ = Terms Γ Δ idS : forall {Γ} -> Γ ─⟶ Γ idS = tabulate var infixr 80 _∘ˢ_ [_] : forall {Γ σ } -> Term Γ σ -> Γ ─⟶ Γ , σ [ t ] = idS ◄ t wkS : forall {Γ Δ τ} -> Γ ─⟶ Δ -> Γ , τ ─⟶ Δ wkS ∅ = ∅ wkS (θ ◄ t) = wkS θ ◄ wk t _↑ : forall {Γ Δ τ} -> (Γ ─⟶ Δ) -> Γ , τ ─⟶ Δ , τ θ ↑ = wkS θ ◄ vz _/_ : forall {Γ Δ τ} -> Term Δ τ -> Γ ─⟶ Δ -> Term Γ τ vz / (θ ◄ u) = u wk t / (θ ◄ u) = t / θ (s • t) / θ = s / θ • t / θ (ƛ t) / θ = ƛ t / θ ↑ _∘ˢ_ : forall {Γ Δ Θ} -> Δ ─⟶ Θ -> Γ ─⟶ Δ -> Γ ─⟶ Θ ∅ ∘ˢ θ = ∅ (δ ◄ t) ∘ˢ θ = δ ∘ˢ θ ◄ t / θ inj : forall {Γ Δ τ} Θ -> Term Γ τ -> Γ ─⟶ Δ ++ Θ -> Γ ─⟶ Δ , τ ++ Θ inj ε t θ = θ ◄ t inj (Θ , σ) t (θ ◄ u) = inj Θ t θ ◄ u [_⟵_] : forall {Γ τ} Δ -> Term (Γ ++ Δ) τ -> Γ ++ Δ ─⟶ Γ , τ ++ Δ [ Δ ⟵ t ] = inj Δ t idS _↑_ : forall {Γ σ} -> Term Γ σ -> (Δ : Ctx) -> Term (Γ ++ Δ) σ t ↑ ε = t t ↑ (Δ , τ) = wk (t ↑ Δ) _↑ˢ_ : forall {Γ Δ} -> Terms Γ Δ -> (Θ : Ctx) -> Terms (Γ ++ Θ) Δ ∅ ↑ˢ Θ = ∅ (ts ◄ t) ↑ˢ Θ = ts ↑ˢ Θ ◄ t ↑ Θ _↑ˣ_ : forall {Γ τ} -> Var Γ τ -> (Δ : Ctx) -> Var (Γ ++ Δ) τ x ↑ˣ ε = x x ↑ˣ (Δ , σ) = vsuc (x ↑ˣ Δ) lem-var-↑ˣ : forall {Γ τ}(x : Var Γ τ)(Δ : Ctx) -> var (x ↑ˣ Δ) ≡ var x ↑ Δ lem-var-↑ˣ x ε = refl lem-var-↑ˣ x (Δ , σ) = cong wk (lem-var-↑ˣ x Δ) {- Not true! lem-•-↑ : forall {Γ σ τ}(t : Term Γ (σ ⟶ τ))(u : Term Γ σ) Δ -> (t ↑ Δ) • (u ↑ Δ) ≡ (t • u) ↑ Δ lem-•-↑ t u ε = refl lem-•-↑ t u (Δ , δ) = {! !} lem-•ˢ-↑ : forall {Γ Θ τ}(t : Term Γ (Θ ⇒ τ))(ts : Terms Γ Θ) Δ -> (t ↑ Δ) •ˢ (ts ↑ˢ Δ) ≡ (t •ˢ ts) ↑ Δ lem-•ˢ-↑ t ∅ Δ = refl lem-•ˢ-↑ t (u ◄ us) Δ = {! !} -} {- _[_] : {Γ : Ctx}{σ τ : Type} -> Term (Γ , τ) σ -> Term Γ τ -> Term Γ σ t [ u ] = t / [ u ] -} {- vz [ u ] = u wk t [ u ] = {! !} (s • t) [ u ] = {! !} (ƛ_ {τ = ρ} t) [ u ] = ƛ {! !} -} {- _↓ˣ_ : {Γ : Ctx}{σ τ : Type} (y : Var Γ σ)(x : Var (Γ - y) τ) -> Var (Γ - wkˣ y x) σ vz ↓ˣ x = vz vs y ↓ˣ vz = y vs y ↓ˣ vs x = vs (y ↓ˣ x) lem-commute-minus : {Γ : Ctx}{σ τ : Type}(y : Var Γ σ)(x : Var (Γ - y) τ) -> Γ - y - x ≡ Γ - wkˣ y x - (y ↓ˣ x) lem-commute-minus vz x = refl lem-commute-minus (vs y) vz = refl lem-commute-minus (vs {Γ} y) (vs x) with Γ - y - x | lem-commute-minus y x ... | ._ | refl = refl Lem-wk-[] : {Γ : Ctx}{τ σ ρ : Type} (y : Var Γ τ) (x : Var (Γ - y) σ) (t : Term (Γ - wkˣ y x) ρ) (u : Term (Γ - y - x) τ) -> Set Lem-wk-[] {Γ}{τ}{σ}{ρ} y x t u = wk (wkˣ y x) t [ y := wk x u ] ≡ wk x t[u']' where u' : Term (Γ - wkˣ y x - y ↓ˣ x) τ u' = subst (\Δ -> Term Δ τ) (sym (lem-commute-minus y x)) u t[u']' : Term (Γ - y - x) ρ t[u']' = subst (\Δ -> Term Δ ρ) (lem-commute-minus y x) (t [ y ↓ˣ x := u' ]) postulate lem-wk-[] : {Γ : Ctx}{σ τ ρ : Type} (y : Var Γ τ)(x : Var (Γ - y) σ) (t : Term (Γ - wkˣ y x) ρ){u : Term (Γ - y - x) τ} -> Lem-wk-[] y x t u {- lem-wk-[] y x (var z) = {! !} lem-wk-[] y x (t • u) = {! !} lem-wk-[] y x (ƛ t) = {! !} -} lem-wk-[]' : {Γ : Ctx}{σ τ ρ : Type} (x : Var Γ σ)(t : Term (Γ - x , ρ) τ){u : Term (Γ - x) ρ} -> wk x (t [ vz := u ]) ≡ wk (vs x) t [ vz := wk x u ] lem-wk-[]' x t = sym (lem-wk-[] vz x t) -}
25.481481
74
0.387666
117337f24827294f582c8be9cf555968abf3ad9f
90
agda
Agda
test/fail/Negative3.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
1
2018-10-10T17:08:44.000Z
2018-10-10T17:08:44.000Z
test/fail/Negative3.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
test/fail/Negative3.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
module Negative3 where data Mu (F : Set -> Set) : Set where inn : F (Mu F) -> Mu F
12.857143
36
0.566667
1e83559beba85c7dcd839d11e1c84127d2140792
4,599
agda
Agda
Functions/Lemmas.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
4
2019-08-08T12:44:19.000Z
2022-01-28T06:04:15.000Z
Functions/Lemmas.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
14
2019-01-06T21:11:59.000Z
2020-04-11T11:03:39.000Z
Functions/Lemmas.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
1
2021-11-29T13:23:07.000Z
2021-11-29T13:23:07.000Z
{-# OPTIONS --safe --warning=error --without-K #-} open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) open import LogicalFormulae open import Functions.Definition module Functions.Lemmas where invertibleImpliesBijection : {a b : _} {A : Set a} {B : Set b} {f : A → B} → Invertible f → Bijection f Bijection.inj (invertibleImpliesBijection {a} {b} {A} {B} {f} record { inverse = inverse ; isLeft = isLeft ; isRight = isRight }) {x} {y} fx=fy = ans where bl : inverse (f x) ≡ inverse (f y) bl = applyEquality inverse fx=fy ans : x ≡ y ans rewrite equalityCommutative (isRight x) | equalityCommutative (isRight y) = bl Bijection.surj (invertibleImpliesBijection {a} {b} {A} {B} {f} record { inverse = inverse ; isLeft = isLeft ; isRight = isRight }) y = (inverse y , isLeft y) bijectionImpliesInvertible : {a b : _} {A : Set a} {B : Set b} {f : A → B} → Bijection f → Invertible f Invertible.inverse (bijectionImpliesInvertible record { inj = inj ; surj = surj }) b = underlying (surj b) Invertible.isLeft (bijectionImpliesInvertible {f = f} record { inj = inj ; surj = surj }) b with surj b Invertible.isLeft (bijectionImpliesInvertible {f = f} record { inj = inj ; surj = surj }) b | a , prop = prop Invertible.isRight (bijectionImpliesInvertible {f = f} record { inj = inj ; surj = surj }) a with surj (f a) Invertible.isRight (bijectionImpliesInvertible {f = f} record { inj = property ; surj = surj }) a | a₁ , b = property b injComp : {a b c : _} {A : Set a} {B : Set b} {C : Set c} {f : A → B} {g : B → C} → Injection f → Injection g → Injection (g ∘ f) injComp {f = f} {g} propF propG pr = propF (propG pr) surjComp : {a b c : _} {A : Set a} {B : Set b} {C : Set c} {f : A → B} {g : B → C} → Surjection f → Surjection g → Surjection (g ∘ f) surjComp {f = f} {g} propF propG c with propG c surjComp {f = f} {g} propF propG c | b , pr with propF b surjComp {f = f} {g} propF propG c | b , pr | a , pr2 = a , pr' where pr' : g (f a) ≡ c pr' rewrite pr2 = pr bijectionComp : {a b c : _} {A : Set a} {B : Set b} {C : Set c} {f : A → B} {g : B → C} → Bijection f → Bijection g → Bijection (g ∘ f) Bijection.inj (bijectionComp bijF bijG) = injComp (Bijection.inj bijF) (Bijection.inj bijG) Bijection.surj (bijectionComp bijF bijG) = surjComp (Bijection.surj bijF) (Bijection.surj bijG) compInjRightInj : {a b c : _} {A : Set a} {B : Set b} {C : Set c} {f : A → B} {g : B → C} → Injection (g ∘ f) → Injection f compInjRightInj {f = f} {g} property {x} {y} fx=fy = property (applyEquality g fx=fy) compSurjLeftSurj : {a b c : _} {A : Set a} {B : Set b} {C : Set c} {f : A → B} {g : B → C} → Surjection (g ∘ f) → Surjection g compSurjLeftSurj {f = f} {g} property b with property b compSurjLeftSurj {f = f} {g} property b | a , b1 = f a , b1 injectionPreservedUnderExtensionalEq : {a b : _} {A : Set a} {B : Set b} {f g : A → B} → Injection f → ({x : A} → f x ≡ g x) → Injection g injectionPreservedUnderExtensionalEq {A = A} {B} {f} {g} property prop {x} {y} gx=gy = property (transitivity (prop {x}) (transitivity gx=gy (equalityCommutative (prop {y})))) surjectionPreservedUnderExtensionalEq : {a b : _} {A : Set a} {B : Set b} {f g : A → B} → Surjection f → ({x : A} → f x ≡ g x) → Surjection g surjectionPreservedUnderExtensionalEq {f = f} {g} surj ext b with surj b surjectionPreservedUnderExtensionalEq {f = f} {g} surj ext b | a , pr = a , transitivity (equalityCommutative ext) pr bijectionPreservedUnderExtensionalEq : {a b : _} {A : Set a} {B : Set b} {f g : A → B} → Bijection f → ({x : A} → f x ≡ g x) → Bijection g Bijection.inj (bijectionPreservedUnderExtensionalEq record { inj = inj ; surj = surj } ext) = injectionPreservedUnderExtensionalEq inj ext Bijection.surj (bijectionPreservedUnderExtensionalEq record { inj = inj ; surj = surj } ext) = surjectionPreservedUnderExtensionalEq surj ext inverseIsInvertible : {a b : _} {A : Set a} {B : Set b} {f : A → B} → (inv : Invertible f) → Invertible (Invertible.inverse inv) Invertible.inverse (inverseIsInvertible {f = f} inv) = f Invertible.isLeft (inverseIsInvertible {f = f} inv) b = Invertible.isRight inv b Invertible.isRight (inverseIsInvertible {f = f} inv) a = Invertible.isLeft inv a idIsBijective : {a : _} {A : Set a} → Bijection (id {a} {A}) Bijection.inj idIsBijective pr = pr Bijection.surj idIsBijective b = b , refl functionCompositionExtensionallyAssociative : {a b c d : _} {A : Set a} {B : Set b} {C : Set c} {D : Set d} → (f : A → B) → (g : B → C) → (h : C → D) → (x : A) → (h ∘ (g ∘ f)) x ≡ ((h ∘ g) ∘ f) x functionCompositionExtensionallyAssociative f g h x = refl
65.7
195
0.646227
1b54de3c75a99b560f2685b2469e75acf8c92b87
2,587
agda
Agda
src/agda/FRP/JS/Float.agda
agda/agda-frp-js
c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72
[ "MIT", "BSD-3-Clause" ]
63
2015-04-20T21:47:00.000Z
2022-02-28T09:46:14.000Z
src/agda/FRP/JS/Float.agda
agda/agda-frp-js
c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72
[ "MIT", "BSD-3-Clause" ]
null
null
null
src/agda/FRP/JS/Float.agda
agda/agda-frp-js
c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72
[ "MIT", "BSD-3-Clause" ]
7
2016-11-07T21:50:58.000Z
2022-03-12T11:39:38.000Z
open import FRP.JS.Bool using ( Bool ; true ; false ; not ; _∨_ ) open import FRP.JS.True using ( True ) open import FRP.JS.Maybe using ( Maybe ; just ; nothing ) open import FRP.JS.Primitive using ( ℤ ; String ) module FRP.JS.Float where infixr 4 _≤_ _<_ _≟_ _≠_ infixl 6 _+_ _-_ infixl 7 _*_ _/_ _/?_ open import FRP.JS.Primitive public using ( ℝ ) primitive primFloatPlus : ℝ -> ℝ -> ℝ primFloatMinus : ℝ -> ℝ -> ℝ primFloatTimes : ℝ -> ℝ -> ℝ primFloatDiv : ℝ -> ℝ -> ℝ primFloatLess : ℝ -> ℝ -> Bool primFloor : ℝ -> ℤ primCeiling : ℝ -> ℤ primExp : ℝ -> ℝ primLog : ℝ -> ℝ primSin : ℝ -> ℝ primShowFloat : ℝ -> String primShowInteger : ℤ → String primIntegerToFloat : ℤ → ℝ _+_ = primFloatPlus _-_ = primFloatMinus _*_ = primFloatTimes _<_ = primFloatLess ⌊_⌋ = primFloor ⌈_⌉ = primCeiling exp = primExp log = primLog sin = primSin {-# COMPILED_JS _+_ function(x) { return function(y) { return x + y; }; } #-} {-# COMPILED_JS _-_ function(x) { return function(y) { return x - y; }; } #-} {-# COMPILED_JS _*_ function(x) { return function(y) { return x * y; }; } #-} {-# COMPILED_JS _<_ function(x) { return function(y) { return x < y; }; } #-} {-# COMPILED_JS ⌊_⌋ Math.floor #-} {-# COMPILED_JS ⌈_⌉ Math.ceil #-} {-# COMPILED_JS exp Math.exp #-} {-# COMPILED_JS log Math.log #-} {-# COMPILED_JS sin Math.sin #-} -_ : ℝ → ℝ - x = 0.0 - x _≠_ : ℝ → ℝ → Bool (x ≠ y) = (x < y) ∨ (y < x) _≟_ : ℝ → ℝ → Bool (x ≟ y) = not (x ≠ y) _≤_ : ℝ → ℝ → Bool (x ≤ y) = not (y < x) -- Some hoop-jumping to avoid division by zero, so we don't end up with -- Infinity, -Infinity or NaN. _/_ : (x y : ℝ) → {y≠0 : True (y ≠ 0.0)} → ℝ x / y = primFloatDiv x y _/?_ : ℝ → ℝ → Maybe ℝ x /? 0.0 = nothing x /? y = just (primFloatDiv x y) show : ℝ → String show x with (x ≟ primIntegerToFloat ⌊ x ⌋) ... | true = primShowInteger ⌊ x ⌋ ... | false = primShowFloat x {-# COMPILED_JS -_ function(x) { return -x; } #-} {-# COMPILED_JS _≠_ function(x) { return function(y) { return x !== y; }; } #-} {-# COMPILED_JS _≟_ function(x) { return function(y) { return x === y; }; } #-} {-# COMPILED_JS _≤_ function(x) { return function(y) { return x <= y; }; } #-} {-# COMPILED_JS _/_ function(x) { return function(y) { return function() { return x / y; }; }; } #-} {-# COMPILED_JS _/?_ function(x) { return function(y) { if (y === 0) { return null; } else { return x / y; } }; } #-} {-# COMPILED_JS show function(x) { return x.toString(); } #-}
30.081395
118
0.558949
14e2c120f0897cfc11a061ca54bc649c9014b5a8
17,002
agda
Agda
Cubical/Data/Int/Properties.agda
hyleIndex/cubical
ce5c2820ecb2e0fd8dce74fb0247856cdbf034c4
[ "MIT" ]
301
2018-10-17T18:00:24.000Z
2022-03-24T02:10:47.000Z
Cubical/Data/Int/Properties.agda
hyleIndex/cubical
ce5c2820ecb2e0fd8dce74fb0247856cdbf034c4
[ "MIT" ]
584
2018-10-15T09:49:02.000Z
2022-03-30T12:09:17.000Z
Cubical/Data/Int/Properties.agda
hyleIndex/cubical
ce5c2820ecb2e0fd8dce74fb0247856cdbf034c4
[ "MIT" ]
134
2018-11-16T06:11:03.000Z
2022-03-23T16:22:13.000Z
{-# OPTIONS --safe #-} module Cubical.Data.Int.Properties where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Transport open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Data.Empty open import Cubical.Data.Nat hiding (+-assoc ; +-comm ; ·-comm) renaming (_·_ to _·ℕ_; _+_ to _+ℕ_ ; ·-assoc to ·ℕ-assoc) open import Cubical.Data.Bool open import Cubical.Data.Sum open import Cubical.Data.Int.Base open import Cubical.Relation.Nullary open import Cubical.Relation.Nullary.DecidableEq sucPred : ∀ i → sucℤ (predℤ i) ≡ i sucPred (pos zero) = refl sucPred (pos (suc n)) = refl sucPred (negsuc n) = refl predSuc : ∀ i → predℤ (sucℤ i) ≡ i predSuc (pos n) = refl predSuc (negsuc zero) = refl predSuc (negsuc (suc n)) = refl injPos : ∀ {a b : ℕ} → pos a ≡ pos b → a ≡ b injPos {a} h = subst T h refl where T : ℤ → Type₀ T (pos x) = a ≡ x T (negsuc _) = ⊥ injNegsuc : ∀ {a b : ℕ} → negsuc a ≡ negsuc b → a ≡ b injNegsuc {a} h = subst T h refl where T : ℤ → Type₀ T (pos _) = ⊥ T (negsuc x) = a ≡ x posNotnegsuc : ∀ (a b : ℕ) → ¬ (pos a ≡ negsuc b) posNotnegsuc a b h = subst T h 0 where T : ℤ → Type₀ T (pos _) = ℕ T (negsuc _) = ⊥ negsucNotpos : ∀ (a b : ℕ) → ¬ (negsuc a ≡ pos b) negsucNotpos a b h = subst T h 0 where T : ℤ → Type₀ T (pos _) = ⊥ T (negsuc _) = ℕ discreteℤ : Discrete ℤ discreteℤ (pos n) (pos m) with discreteℕ n m ... | yes p = yes (cong pos p) ... | no p = no (λ x → p (injPos x)) discreteℤ (pos n) (negsuc m) = no (posNotnegsuc n m) discreteℤ (negsuc n) (pos m) = no (negsucNotpos n m) discreteℤ (negsuc n) (negsuc m) with discreteℕ n m ... | yes p = yes (cong negsuc p) ... | no p = no (λ x → p (injNegsuc x)) isSetℤ : isSet ℤ isSetℤ = Discrete→isSet discreteℤ -pos : ∀ n → - (pos n) ≡ neg n -pos zero = refl -pos (suc n) = refl -neg : ∀ n → - (neg n) ≡ pos n -neg zero = refl -neg (suc n) = refl -Involutive : ∀ z → - (- z) ≡ z -Involutive (pos n) = cong -_ (-pos n) ∙ -neg n -Involutive (negsuc n) = refl sucℤ+pos : ∀ n m → sucℤ (m +pos n) ≡ (sucℤ m) +pos n sucℤ+pos zero m = refl sucℤ+pos (suc n) m = cong sucℤ (sucℤ+pos n m) predℤ+negsuc : ∀ n m → predℤ (m +negsuc n) ≡ (predℤ m) +negsuc n predℤ+negsuc zero m = refl predℤ+negsuc (suc n) m = cong predℤ (predℤ+negsuc n m) sucℤ+negsuc : ∀ n m → sucℤ (m +negsuc n) ≡ (sucℤ m) +negsuc n sucℤ+negsuc zero m = (sucPred _) ∙ (sym (predSuc _)) sucℤ+negsuc (suc n) m = _ ≡⟨ sucPred _ ⟩ m +negsuc n ≡[ i ]⟨ predSuc m (~ i) +negsuc n ⟩ (predℤ (sucℤ m)) +negsuc n ≡⟨ sym (predℤ+negsuc n (sucℤ m)) ⟩ predℤ (sucℤ m +negsuc n) ∎ predℤ+pos : ∀ n m → predℤ (m +pos n) ≡ (predℤ m) +pos n predℤ+pos zero m = refl predℤ+pos (suc n) m = _ ≡⟨ predSuc _ ⟩ m +pos n ≡[ i ]⟨ sucPred m (~ i) + pos n ⟩ (sucℤ (predℤ m)) +pos n ≡⟨ sym (sucℤ+pos n (predℤ m))⟩ (predℤ m) +pos (suc n) ∎ predℤ-pos : ∀ n → predℤ(- (pos n)) ≡ negsuc n predℤ-pos zero = refl predℤ-pos (suc n) = refl predℤ+ : ∀ m n → predℤ (m + n) ≡ (predℤ m) + n predℤ+ m (pos n) = predℤ+pos n m predℤ+ m (negsuc n) = predℤ+negsuc n m +predℤ : ∀ m n → predℤ (m + n) ≡ m + (predℤ n) +predℤ m (pos zero) = refl +predℤ m (pos (suc n)) = (predSuc (m + pos n)) ∙ (cong (_+_ m) (sym (predSuc (pos n)))) +predℤ m (negsuc n) = refl sucℤ+ : ∀ m n → sucℤ (m + n) ≡ (sucℤ m) + n sucℤ+ m (pos n) = sucℤ+pos n m sucℤ+ m (negsuc n) = sucℤ+negsuc n m +sucℤ : ∀ m n → sucℤ (m + n) ≡ m + (sucℤ n) +sucℤ m (pos n) = refl +sucℤ m (negsuc zero) = sucPred _ +sucℤ m (negsuc (suc n)) = (sucPred (m +negsuc n)) ∙ (cong (_+_ m) (sym (sucPred (negsuc n)))) pos0+ : ∀ z → z ≡ pos 0 + z pos0+ (pos zero) = refl pos0+ (pos (suc n)) = cong sucℤ (pos0+ (pos n)) pos0+ (negsuc zero) = refl pos0+ (negsuc (suc n)) = cong predℤ (pos0+ (negsuc n)) negsuc0+ : ∀ z → predℤ z ≡ negsuc 0 + z negsuc0+ (pos zero) = refl negsuc0+ (pos (suc n)) = (sym (sucPred (pos n))) ∙ (cong sucℤ (negsuc0+ _)) negsuc0+ (negsuc zero) = refl negsuc0+ (negsuc (suc n)) = cong predℤ (negsuc0+ (negsuc n)) ind-comm : {A : Type₀} (_∙_ : A → A → A) (f : ℕ → A) (g : A → A) (p : ∀ {n} → f (suc n) ≡ g (f n)) (g∙ : ∀ a b → g (a ∙ b) ≡ g a ∙ b) (∙g : ∀ a b → g (a ∙ b) ≡ a ∙ g b) (base : ∀ z → z ∙ f 0 ≡ f 0 ∙ z) → ∀ z n → z ∙ f n ≡ f n ∙ z ind-comm _∙_ f g p g∙ ∙g base z 0 = base z ind-comm _∙_ f g p g∙ ∙g base z (suc n) = z ∙ f (suc n) ≡[ i ]⟨ z ∙ p {n} i ⟩ z ∙ g (f n) ≡⟨ sym ( ∙g z (f n)) ⟩ g (z ∙ f n) ≡⟨ cong g IH ⟩ g (f n ∙ z) ≡⟨ g∙ (f n) z ⟩ g (f n) ∙ z ≡[ i ]⟨ p {n} (~ i) ∙ z ⟩ f (suc n) ∙ z ∎ where IH = ind-comm _∙_ f g p g∙ ∙g base z n ind-assoc : {A : Type₀} (_·_ : A → A → A) (f : ℕ → A) (g : A → A) (p : ∀ a b → g (a · b) ≡ a · (g b)) (q : ∀ {c} → f (suc c) ≡ g (f c)) (base : ∀ m n → (m · n) · (f 0) ≡ m · (n · (f 0))) (m n : A) (o : ℕ) → m · (n · (f o)) ≡ (m · n) · (f o) ind-assoc _·_ f g p q base m n 0 = sym (base m n) ind-assoc _·_ f g p q base m n (suc o) = m · (n · (f (suc o))) ≡[ i ]⟨ m · (n · q {o} i) ⟩ m · (n · (g (f o))) ≡[ i ]⟨ m · (p n (f o) (~ i)) ⟩ m · (g (n · (f o))) ≡⟨ sym (p m (n · (f o)))⟩ g (m · (n · (f o))) ≡⟨ cong g IH ⟩ g ((m · n) · (f o)) ≡⟨ p (m · n) (f o) ⟩ (m · n) · (g (f o)) ≡[ i ]⟨ (m · n) · q {o} (~ i) ⟩ (m · n) · (f (suc o)) ∎ where IH = ind-assoc _·_ f g p q base m n o +Comm : ∀ m n → m + n ≡ n + m +Comm m (pos n) = ind-comm _+_ pos sucℤ refl sucℤ+ +sucℤ pos0+ m n +Comm m (negsuc n) = ind-comm _+_ negsuc predℤ refl predℤ+ +predℤ negsuc0+ m n +Assoc : ∀ m n o → m + (n + o) ≡ (m + n) + o +Assoc m n (pos o) = ind-assoc _+_ pos sucℤ +sucℤ refl (λ _ _ → refl) m n o +Assoc m n (negsuc o) = ind-assoc _+_ negsuc predℤ +predℤ refl +predℤ m n o -- Compose sucPathℤ with itself n times. Transporting along this -- will be addition, transporting with it backwards will be subtraction. -- Use this to define _+'_ for which is easier to prove -- isEquiv (λ n → n +' m) since _+'_ is defined by transport sucPathℤ : ℤ ≡ ℤ sucPathℤ = ua (sucℤ , isoToIsEquiv (iso sucℤ predℤ sucPred predSuc)) addEq : ℕ → ℤ ≡ ℤ addEq zero = refl addEq (suc n) = (addEq n) ∙ sucPathℤ predPathℤ : ℤ ≡ ℤ predPathℤ = ua (predℤ , isoToIsEquiv (iso predℤ sucℤ predSuc sucPred)) subEq : ℕ → ℤ ≡ ℤ subEq zero = refl subEq (suc n) = (subEq n) ∙ predPathℤ _+'_ : ℤ → ℤ → ℤ m +' pos n = transport (addEq n) m m +' negsuc n = transport (subEq (suc n)) m +'≡+ : _+'_ ≡ _+_ +'≡+ i m (pos zero) = m +'≡+ i m (pos (suc n)) = sucℤ (+'≡+ i m (pos n)) +'≡+ i m (negsuc zero) = predℤ m +'≡+ i m (negsuc (suc n)) = predℤ (+'≡+ i m (negsuc n)) -- -- compPath (λ i → (+'≡+ i (predℤ m) (negsuc n))) (sym (predℤ+negsuc n m)) i isEquivAddℤ' : (m : ℤ) → isEquiv (λ n → n +' m) isEquivAddℤ' (pos n) = isEquivTransport (addEq n) isEquivAddℤ' (negsuc n) = isEquivTransport (subEq (suc n)) isEquivAddℤ : (m : ℤ) → isEquiv (λ n → n + m) isEquivAddℤ = subst (λ add → (m : ℤ) → isEquiv (λ n → add n m)) +'≡+ isEquivAddℤ' -- below is an alternate proof of isEquivAddℤ for comparison -- We also have two useful lemma here. minusPlus : ∀ m n → (n - m) + m ≡ n minusPlus (pos zero) n = refl minusPlus (pos 1) = sucPred minusPlus (pos (suc (suc m))) n = sucℤ ((n +negsuc (suc m)) +pos (suc m)) ≡⟨ sucℤ+pos (suc m) _ ⟩ sucℤ (n +negsuc (suc m)) +pos (suc m) ≡[ i ]⟨ sucPred (n +negsuc m) i +pos (suc m) ⟩ (n - pos (suc m)) +pos (suc m) ≡⟨ minusPlus (pos (suc m)) n ⟩ n ∎ minusPlus (negsuc zero) = predSuc minusPlus (negsuc (suc m)) n = predℤ (sucℤ (sucℤ (n +pos m)) +negsuc m) ≡⟨ predℤ+negsuc m _ ⟩ predℤ (sucℤ (sucℤ (n +pos m))) +negsuc m ≡[ i ]⟨ predSuc (sucℤ (n +pos m)) i +negsuc m ⟩ sucℤ (n +pos m) +negsuc m ≡⟨ minusPlus (negsuc m) n ⟩ n ∎ plusMinus : ∀ m n → (n + m) - m ≡ n plusMinus (pos zero) n = refl plusMinus (pos (suc m)) = minusPlus (negsuc m) plusMinus (negsuc m) = minusPlus (pos (suc m)) private alternateProof : (m : ℤ) → isEquiv (λ n → n + m) alternateProof m = isoToIsEquiv (iso (λ n → n + m) (λ n → n - m) (minusPlus m) (plusMinus m)) -Cancel : ∀ z → z - z ≡ 0 -Cancel z = cong (_- z) (pos0+ z) ∙ plusMinus z (pos zero) pos+ : ∀ m n → pos (m +ℕ n) ≡ pos m + pos n pos+ zero zero = refl pos+ zero (suc n) = pos (zero +ℕ suc n) ≡⟨ +Comm (pos (suc n)) (pos zero) ⟩ pos zero + pos (suc n) ∎ pos+ (suc m) zero = pos (suc (m +ℕ zero)) ≡⟨ cong pos (cong suc (+-zero m)) ⟩ pos (suc m) + pos zero ∎ pos+ (suc m) (suc n) = pos (suc m +ℕ suc n) ≡⟨ cong pos (cong suc (+-suc m n)) ⟩ sucℤ (pos (suc (m +ℕ n))) ≡⟨ cong sucℤ (cong sucℤ (pos+ m n)) ⟩ sucℤ (sucℤ (pos m + pos n)) ≡⟨ sucℤ+ (pos m) (sucℤ (pos n)) ⟩ pos (suc m) + pos (suc n) ∎ negsuc+ : ∀ m n → negsuc (m +ℕ n) ≡ negsuc m - pos n negsuc+ zero zero = refl negsuc+ zero (suc n) = negsuc (zero +ℕ suc n) ≡⟨ negsuc0+ (negsuc n) ⟩ negsuc zero + negsuc n ≡⟨ cong (negsuc zero +_) (-pos (suc n)) ⟩ negsuc zero - pos (suc n) ∎ negsuc+ (suc m) zero = negsuc (suc m +ℕ zero) ≡⟨ cong negsuc (cong suc (+-zero m)) ⟩ negsuc (suc m) - pos zero ∎ negsuc+ (suc m) (suc n) = negsuc (suc m +ℕ suc n) ≡⟨ cong negsuc (sym (+-suc m (suc n))) ⟩ negsuc (m +ℕ suc (suc n)) ≡⟨ negsuc+ m (suc (suc n)) ⟩ negsuc m - pos (suc (suc n)) ≡⟨ sym (+predℤ (negsuc m) (negsuc n)) ⟩ predℤ (negsuc m + negsuc n ) ≡⟨ predℤ+ (negsuc m) (negsuc n) ⟩ negsuc (suc m) - pos (suc n) ∎ neg+ : ∀ m n → neg (m +ℕ n) ≡ neg m + neg n neg+ zero zero = refl neg+ zero (suc n) = neg (zero +ℕ suc n) ≡⟨ +Comm (neg (suc n)) (pos zero) ⟩ neg zero + neg (suc n) ∎ neg+ (suc m) zero = neg (suc (m +ℕ zero)) ≡⟨ cong neg (cong suc (+-zero m)) ⟩ neg (suc m) + neg zero ∎ neg+ (suc m) (suc n) = neg (suc m +ℕ suc n) ≡⟨ negsuc+ m (suc n) ⟩ neg (suc m) + neg (suc n) ∎ ℕ-AntiComm : ∀ m n → m ℕ- n ≡ - (n ℕ- m) ℕ-AntiComm zero zero = refl ℕ-AntiComm zero (suc n) = refl ℕ-AntiComm (suc m) zero = refl ℕ-AntiComm (suc m) (suc n) = suc m ℕ- suc n ≡⟨ ℕ-AntiComm m n ⟩ - (suc n ℕ- suc m) ∎ pos- : ∀ m n → m ℕ- n ≡ pos m - pos n pos- zero zero = refl pos- zero (suc n) = zero ℕ- suc n ≡⟨ +Comm (negsuc n) (pos zero) ⟩ pos zero - pos (suc n) ∎ pos- (suc m) zero = refl pos- (suc m) (suc n) = suc m ℕ- suc n ≡⟨ pos- m n ⟩ pos m - pos n ≡⟨ sym (sucPred (pos m - pos n)) ⟩ sucℤ (predℤ (pos m - pos n)) ≡⟨ cong sucℤ (+predℤ (pos m) (- pos n)) ⟩ sucℤ (pos m + predℤ (- (pos n))) ≡⟨ cong sucℤ (cong (pos m +_) (predℤ-pos n)) ⟩ sucℤ (pos m + negsuc n) ≡⟨ sucℤ+negsuc n (pos m) ⟩ pos (suc m) - pos (suc n) ∎ -AntiComm : ∀ m n → m - n ≡ - (n - m) -AntiComm (pos n) (pos m) = pos n - pos m ≡⟨ sym (pos- n m) ⟩ n ℕ- m ≡⟨ ℕ-AntiComm n m ⟩ - (m ℕ- n) ≡⟨ cong -_ (pos- m n) ⟩ - (pos m - pos n) ∎ -AntiComm (pos n) (negsuc m) = pos n - negsuc m ≡⟨ +Comm (pos n) (pos (suc m)) ⟩ pos (suc m) + pos n ≡⟨ sym (pos+ (suc m) n) ⟩ pos (suc m +ℕ n) ≡⟨ sym (-neg (suc m +ℕ n)) ⟩ - neg (suc m +ℕ n) ≡⟨ cong -_ (neg+ (suc m) n) ⟩ - (neg (suc m) + neg n) ≡⟨ cong -_ (cong (negsuc m +_) (sym (-pos n))) ⟩ - (negsuc m - pos n) ∎ -AntiComm (negsuc n) (pos m) = negsuc n - pos m ≡⟨ sym (negsuc+ n m) ⟩ negsuc (n +ℕ m) ≡⟨ cong -_ (pos+ (suc n) m) ⟩ - (pos (suc n) + pos m) ≡⟨ cong -_ (+Comm (pos (suc n)) (pos m)) ⟩ - (pos m - negsuc n) ∎ -AntiComm (negsuc n) (negsuc m) = negsuc n - negsuc m ≡⟨ +Comm (negsuc n) (pos (suc m)) ⟩ pos (suc m) + negsuc n ≡⟨ sym (pos- (suc m) (suc n)) ⟩ suc m ℕ- suc n ≡⟨ ℕ-AntiComm (suc m) (suc n) ⟩ - (suc n ℕ- suc m) ≡⟨ cong -_ (pos- (suc n) (suc m)) ⟩ - (pos (suc n) - pos (suc m)) ≡⟨ cong -_ (+Comm (pos (suc n)) (negsuc m)) ⟩ - (negsuc m - negsuc n) ∎ -Dist+ : ∀ m n → - (m + n) ≡ (- m) + (- n) -Dist+ (pos n) (pos m) = - (pos n + pos m) ≡⟨ cong -_ (sym (pos+ n m)) ⟩ - pos (n +ℕ m) ≡⟨ -pos (n +ℕ m) ⟩ neg (n +ℕ m) ≡⟨ neg+ n m ⟩ neg n + neg m ≡⟨ cong (neg n +_) (sym (-pos m)) ⟩ neg n + (- pos m) ≡⟨ cong (_+ (- pos m)) (sym (-pos n)) ⟩ (- pos n) + (- pos m) ∎ -Dist+ (pos n) (negsuc m) = - (pos n + negsuc m) ≡⟨ sym (-AntiComm (pos (suc m)) (pos n)) ⟩ pos (suc m) - pos n ≡⟨ +Comm (pos (suc m)) (- pos n) ⟩ (- pos n) + (- negsuc m) ∎ -Dist+ (negsuc n) (pos m) = - (negsuc n + pos m) ≡⟨ cong -_ (+Comm (negsuc n) (pos m)) ⟩ - (pos m + negsuc n) ≡⟨ sym (-AntiComm (- negsuc n) (pos m)) ⟩ (- negsuc n) + (- pos m) ∎ -Dist+ (negsuc n) (negsuc m) = - (negsuc n + negsuc m) ≡⟨ cong -_ (sym (neg+ (suc n) (suc m))) ⟩ - neg (suc n +ℕ suc m) ≡⟨ pos+ (suc n) (suc m) ⟩ (- negsuc n) + (- negsuc m) ∎ -- multiplication pos·negsuc : (n m : ℕ) → pos n · negsuc m ≡ - (pos n · pos (suc m)) pos·negsuc zero m = refl pos·negsuc (suc n) m = (λ i → negsuc m + (pos·negsuc n m i)) ∙ sym (-Dist+ (pos (suc m)) (pos n · pos (suc m))) negsuc·pos : (n m : ℕ) → negsuc n · pos m ≡ - (pos (suc n) · pos m) negsuc·pos zero m = refl negsuc·pos (suc n) m = cong ((- pos m) +_) (negsuc·pos n m) ∙ sym (-Dist+ (pos m) (pos m + (pos n · pos m))) negsuc·negsuc : (n m : ℕ) → negsuc n · negsuc m ≡ pos (suc n) · pos (suc m) negsuc·negsuc zero m = refl negsuc·negsuc (suc n) m = cong (pos (suc m) +_) (negsuc·negsuc n m) ·Comm : (x y : ℤ) → x · y ≡ y · x ·Comm (pos n) (pos m) = lem n m where lem : (n m : ℕ) → (pos n · pos m) ≡ (pos m · pos n) lem zero zero = refl lem zero (suc m) i = +Comm (lem zero m i) (pos zero) i lem (suc n) zero i = +Comm (pos zero) (lem n zero i) i lem (suc n) (suc m) = (λ i → pos (suc m) + (lem n (suc m) i)) ∙∙ +Assoc (pos (suc m)) (pos n) (pos m · pos n) ∙∙ (λ i → sucℤ+ (pos m) (pos n) (~ i) + (pos m · pos n)) ∙∙ (λ i → +Comm (pos m) (pos (suc n)) i + (pos m · pos n)) ∙∙ sym (+Assoc (pos (suc n)) (pos m) (pos m · pos n)) ∙∙ (λ i → pos (suc n) + (pos m + (lem n m (~ i)))) ∙∙ λ i → pos (suc n) + (lem (suc n) m i) ·Comm (pos n) (negsuc m) = pos·negsuc n m ∙∙ cong -_ (·Comm (pos n) (pos (suc m))) ∙∙ sym (negsuc·pos m n) ·Comm (negsuc n) (pos m) = sym (pos·negsuc m n ∙∙ cong -_ (·Comm (pos m) (pos (suc n))) ∙∙ sym (negsuc·pos n m)) ·Comm (negsuc n) (negsuc m) = negsuc·negsuc n m ∙∙ ·Comm (pos (suc n)) (pos (suc m)) ∙∙ sym (negsuc·negsuc m n) ·Rid : (x : ℤ) → x · 1 ≡ x ·Rid x = ·Comm x 1 private distrHelper : (x y z w : ℤ) → (x + y) + (z + w) ≡ ((x + z) + (y + w)) distrHelper x y z w = +Assoc (x + y) z w ∙∙ cong (_+ w) (sym (+Assoc x y z) ∙∙ cong (x +_) (+Comm y z) ∙∙ +Assoc x z y) ∙∙ sym (+Assoc (x + z) y w) ·DistR+ : (x y z : ℤ) → x · (y + z) ≡ x · y + x · z ·DistR+ (pos zero) y z = refl ·DistR+ (pos (suc n)) y z = cong ((y + z) +_) (·DistR+ (pos n) y z) ∙ distrHelper y z (pos n · y) (pos n · z) ·DistR+ (negsuc zero) y z = -Dist+ y z ·DistR+ (negsuc (suc n)) y z = cong₂ _+_ (-Dist+ y z) (·DistR+ (negsuc n) y z) ∙ distrHelper (- y) (- z) (negsuc n · y) (negsuc n · z) ·DistL+ : (x y z : ℤ) → (x + y) · z ≡ x · z + y · z ·DistL+ x y z = ·Comm (x + y) z ∙∙ ·DistR+ z x y ∙∙ cong₂ _+_ (·Comm z x) (·Comm z y) -DistL· : (b c : ℤ) → - (b · c) ≡ - b · c -DistL· (pos zero) c = refl -DistL· (pos (suc n)) (pos m) = sym (negsuc·pos n m) -DistL· (pos (suc zero)) (negsuc m) = -Dist+ (negsuc m) (pos zero · negsuc m) ∙ cong (pos (suc m) +_) (-DistL· (pos zero) (negsuc m)) -DistL· (pos (suc (suc n))) (negsuc m) = -Dist+ (negsuc m) (pos (suc n) · negsuc m) ∙ cong (pos (suc m) +_) (-DistL· (pos (suc n)) (negsuc m)) -DistL· (negsuc zero) c = -Involutive c -DistL· (negsuc (suc n)) c = -Dist+ (- c) (negsuc n · c) ∙∙ cong (_+ (- (negsuc n · c))) (-Involutive c) ∙∙ cong (c +_) (-DistL· (negsuc n) c) -DistR· : (b c : ℤ) → - (b · c) ≡ b · - c -DistR· b c = cong (-_) (·Comm b c) ∙∙ -DistL· c b ∙∙ ·Comm (- c) b ·Assoc : (a b c : ℤ) → (a · (b · c)) ≡ ((a · b) · c) ·Assoc (pos zero) b c = refl ·Assoc (pos (suc n)) b c = cong ((b · c) +_) (·Assoc (pos n) b c) ∙∙ cong₂ _+_ (·Comm b c) (·Comm (pos n · b) c) ∙∙ sym (·DistR+ c b (pos n · b)) ∙ sym (·Comm _ c) ·Assoc (negsuc zero) = -DistL· ·Assoc (negsuc (suc n)) b c = cong ((- (b · c)) +_) (·Assoc (negsuc n) b c) ∙∙ cong (_+ ((negsuc n · b) · c)) (-DistL· b c) ∙∙ sym (·DistL+ (- b) (negsuc n · b) c)
37.041394
94
0.499882
0dcabe57d0c2204d4b90565a9220a916955eebeb
5,877
agda
Agda
Cubical/Algebra/Semigroup/Construct/Free.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/Algebra/Semigroup/Construct/Free.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/Algebra/Semigroup/Construct/Free.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe #-} open import Cubical.Core.Everything open import Cubical.Foundations.HLevels module Cubical.Algebra.Semigroup.Construct.Free {ℓ} (Aˢ : hSet ℓ) where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Foundations.Path open import Cubical.Algebra.Semigroup open import Cubical.Data.Empty.Polymorphic open import Cubical.Data.Prod open import Cubical.Relation.Binary.Reasoning.Equality A = ⟨ Aˢ ⟩ isSetA = Aˢ .snd ------------------------------------------------------------------------ -- The direct free semigroup type data FreeS′ : Type ℓ where inj : A → FreeS′ _•_ : Op₂ FreeS′ •-assoc : Associative _•_ squash : isSet FreeS′ elim : ∀ {ℓ′} {B : FreeS′ → Type ℓ′} → (∀ x → isSet (B x)) → (∀ x → B (inj x)) → (op : ∀ x y → B x → B y → B (x • y)) → (∀ x y z (a : B x) (b : B y) (c : B z) → PathP (λ i → B (•-assoc x y z i)) (op _ _ (op _ _ a b) c) (op _ _ a (op _ _ b c))) → (x : FreeS′) → B x elim isSetB f op assc (inj x) = f x elim isSetB f op assc (x • y) = op x y (elim isSetB f op assc x) (elim isSetB f op assc y) elim isSetB f op assc (•-assoc x y z i) = assc x y z (elim isSetB f op assc x) (elim isSetB f op assc y) (elim isSetB f op assc z) i elim isSetB f op assc (squash x y p q i j) = isOfHLevel→isOfHLevelDep 2 isSetB (elim isSetB f op assc x) (elim isSetB f op assc y) (cong (elim isSetB f op assc) p) (cong (elim isSetB f op assc) q) (squash x y p q) i j ------------------------------------------------------------------------ -- The simplified free semigroup type infixl 5 _□ infixr 4 _∶_ data FreeS : Type ℓ where _□ : A → FreeS _∶_ : A → FreeS → FreeS module FreeSPath where Cover : FreeS → FreeS → Type ℓ Cover (x □) (y □) = x ≡ y Cover (x □) (y ∶ ys) = ⊥ Cover (x ∶ xs) (y □) = ⊥ Cover (x ∶ xs) (y ∶ ys) = (x ≡ y) × Cover xs ys isPropCover : ∀ xs ys → isProp (Cover xs ys) isPropCover (x □) (y □) = isSetA x y isPropCover (x □) (y ∶ ys) = isProp⊥ isPropCover (x ∶ xs) (y □) = isProp⊥ isPropCover (x ∶ xs) (y ∶ ys) = isPropProd (isSetA x y) (isPropCover xs ys) reflCover : ∀ xs → Cover xs xs reflCover (x □) = refl reflCover (x ∶ xs) = refl , reflCover xs encode : ∀ xs ys → xs ≡ ys → Cover xs ys encode xs _ = J (λ ys _ → Cover xs ys) (reflCover xs) encodeRefl : ∀ xs → encode xs xs refl ≡ reflCover xs encodeRefl xs = JRefl (λ ys _ → Cover xs ys) (reflCover xs) decode : ∀ xs ys → Cover xs ys → xs ≡ ys decode (x □) (y □) p = cong _□ p decode (x □) (y ∶ ys) () decode (x ∶ xs) (y □) () decode (x ∶ xs) (y ∶ ys) (p , q) = cong₂ _∶_ p (decode xs ys q) decodeRefl : ∀ xs → decode xs xs (reflCover xs) ≡ refl decodeRefl (x □) = refl decodeRefl (x ∶ xs) = cong (cong₂ _∶_ refl) (decodeRefl xs) decodeEncode : ∀ xs ys → (p : xs ≡ ys) → decode xs ys (encode xs ys p) ≡ p decodeEncode xs _ = J (λ ys p → decode xs ys (encode xs ys p) ≡ p) (cong (decode xs xs) (encodeRefl xs) ∙ decodeRefl xs) isSetFreeS : isSet FreeS isSetFreeS x y = isOfHLevelRetract 1 (FreeSPath.encode x y) (FreeSPath.decode x y) (FreeSPath.decodeEncode x y) (FreeSPath.isPropCover x y) _++_ : Op₂ FreeS (x □) ++ ys = x ∶ ys (x ∶ xs) ++ ys = x ∶ xs ++ ys ++-assoc : Associative _++_ ++-assoc (x □) ys zs = refl ++-assoc (x ∶ xs) ys zs = cong (x ∶_) (++-assoc xs ys zs) ------------------------------------------------------------------------ -- Proving the two types are equivalent FreeS→FreeS′ : FreeS → FreeS′ FreeS→FreeS′ (x □) = inj x FreeS→FreeS′ (x ∶ xs) = inj x • FreeS→FreeS′ xs FreeS′→FreeS : FreeS′ → FreeS FreeS′→FreeS = elim (λ _ → isSetFreeS) _□ (λ _ _ → _++_) (λ _ _ _ → ++-assoc) FreeS→FreeS′→FreeS : retract FreeS→FreeS′ FreeS′→FreeS FreeS→FreeS′→FreeS (x □) = refl FreeS→FreeS′→FreeS (x ∶ xs) = cong (x ∶_) (FreeS→FreeS′→FreeS xs) ++-hom : Homomorphic₂ FreeS→FreeS′ _++_ _•_ ++-hom (x □) ys = refl ++-hom (x ∶ xs) ys = cong (inj x •_) (++-hom xs ys) ∙ sym (•-assoc (inj x) (FreeS→FreeS′ xs) (FreeS→FreeS′ ys)) FreeS′→FreeS→FreeS′ : section FreeS→FreeS′ FreeS′→FreeS FreeS′→FreeS→FreeS′ = elim (λ _ → isSet→isGroupoid squash _ _) (λ _ → refl) sectionOp (λ _ _ _ _ _ _ → isOfHLevelPathP' 0 (squash _ _) _ _ .fst) where sectionOp : ∀ x y → FreeS→FreeS′ (FreeS′→FreeS x) ≡ x → FreeS→FreeS′ (FreeS′→FreeS y) ≡ y → FreeS→FreeS′ (FreeS′→FreeS (x • y)) ≡ (x • y) sectionOp x y p q = FreeS→FreeS′ (FreeS′→FreeS (x • y)) ≡⟨⟩ FreeS→FreeS′ (FreeS′→FreeS x ++ FreeS′→FreeS y) ≡⟨ ++-hom (FreeS′→FreeS x) (FreeS′→FreeS y) ⟩ FreeS→FreeS′ (FreeS′→FreeS x) • FreeS→FreeS′ (FreeS′→FreeS y) ≡⟨ cong₂ _•_ p q ⟩ x • y ∎ FreeS≃FreeS′ : FreeS ≃ FreeS′ FreeS≃FreeS′ = isoToEquiv (iso FreeS→FreeS′ FreeS′→FreeS FreeS′→FreeS→FreeS′ FreeS→FreeS′→FreeS) FreeS≡FreeS′ : FreeS ≡ FreeS′ FreeS≡FreeS′ = ua FreeS≃FreeS′ ------------------------------------------------------------------------ -- Semigroup Algebra FreeS′-isSemigroup : IsSemigroup FreeS′ _•_ FreeS′-isSemigroup = record { isMagma = record { is-set = squash } ; assoc = •-assoc } FreeS-isSemigroup : IsSemigroup FreeS _++_ FreeS-isSemigroup = record { isMagma = record { is-set = isSetFreeS } ; assoc = ++-assoc } FreeSemigroup′ : Semigroup ℓ FreeSemigroup′ = record { isSemigroup = FreeS′-isSemigroup } FreeSemigroup : Semigroup ℓ FreeSemigroup = record { isSemigroup = FreeS-isSemigroup } EquivFreeS : SemigroupEquiv FreeSemigroup FreeSemigroup′ EquivFreeS = record { eq = FreeS≃FreeS′ ; isHom = ++-hom } FreeSemigroup≡ : FreeSemigroup ≡ FreeSemigroup′ FreeSemigroup≡ = uaSemigroup EquivFreeS
31.940217
144
0.572401
412db4c2ac19d31f1b8450c5a382ea28282f8149
2,690
agda
Agda
Cubical/Data/Nat/Properties.agda
borsiemir/cubical
cefeb3669ffdaea7b88ae0e9dd258378418819ca
[ "MIT" ]
null
null
null
Cubical/Data/Nat/Properties.agda
borsiemir/cubical
cefeb3669ffdaea7b88ae0e9dd258378418819ca
[ "MIT" ]
null
null
null
Cubical/Data/Nat/Properties.agda
borsiemir/cubical
cefeb3669ffdaea7b88ae0e9dd258378418819ca
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-exact-split --safe #-} module Cubical.Data.Nat.Properties where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Data.Nat.Base open import Cubical.Data.Empty as ⊥ open import Cubical.Data.Prod.Base open import Cubical.Relation.Nullary open import Cubical.Relation.Nullary.DecidableEq +-zero : ∀ m → m + 0 ≡ m +-zero zero = refl +-zero (suc m) = cong suc (+-zero m) +-suc : ∀ m n → m + suc n ≡ suc (m + n) +-suc zero n = refl +-suc (suc m) n = cong suc (+-suc m n) +-comm : ∀ m n → m + n ≡ n + m +-comm m zero = +-zero m +-comm m (suc n) = (+-suc m n) ∙ (cong suc (+-comm m n)) -- Addition is associative +-assoc : ∀ m n o → m + (n + o) ≡ (m + n) + o +-assoc zero _ _ = refl +-assoc (suc m) n o = cong suc (+-assoc m n o) private variable l m n : ℕ znots : ¬ (0 ≡ suc n) znots eq = subst (caseNat ℕ ⊥) eq 0 snotz : ¬ (suc n ≡ 0) snotz eq = subst (caseNat ⊥ ℕ) eq 0 injSuc : suc m ≡ suc n → m ≡ n injSuc p = cong predℕ p inj-m+ : m + l ≡ m + n → l ≡ n inj-m+ {zero} p = p inj-m+ {suc m} p = inj-m+ (injSuc p) inj-+m : l + m ≡ n + m → l ≡ n inj-+m {l} {m} {n} p = inj-m+ ((+-comm m l) ∙ (p ∙ (+-comm n m))) m+n≡n→m≡0 : m + n ≡ n → m ≡ 0 m+n≡n→m≡0 {n = zero} = λ p → (sym (+-zero _)) ∙ p m+n≡n→m≡0 {n = suc n} p = m+n≡n→m≡0 (injSuc ((sym (+-suc _ n)) ∙ p)) m+n≡0→m≡0×n≡0 : m + n ≡ 0 → (m ≡ 0) × (n ≡ 0) m+n≡0→m≡0×n≡0 {zero} = refl ,_ m+n≡0→m≡0×n≡0 {suc m} p = ⊥.rec (snotz p) discreteℕ : Discrete ℕ discreteℕ zero zero = yes refl discreteℕ zero (suc n) = no znots discreteℕ (suc m) zero = no snotz discreteℕ (suc m) (suc n) with discreteℕ m n ... | yes p = yes (cong suc p) ... | no p = no (λ x → p (injSuc x)) isSetℕ : isSet ℕ isSetℕ = Discrete→isSet discreteℕ 0≡m*0 : ∀ m → 0 ≡ m * 0 0≡m*0 zero = refl 0≡m*0 (suc m) = 0≡m*0 m *-suc : ∀ m n → m * suc n ≡ m + m * n *-suc zero n = refl *-suc (suc m) n = cong suc ( n + m * suc n ≡⟨ cong (n +_) (*-suc m n) ⟩ n + (m + m * n) ≡⟨ +-assoc n m (m * n) ⟩ (n + m) + m * n ≡⟨ cong (_+ m * n) (+-comm n m) ⟩ (m + n) + m * n ≡⟨ sym (+-assoc m n (m * n)) ⟩ m + (n + m * n) ∎ ) *-comm : ∀ m n → m * n ≡ n * m *-comm zero n = 0≡m*0 n *-comm (suc m) n = cong (n +_) (*-comm m n) ∙ sym (*-suc n m) 0≡n*sm→0≡n : 0 ≡ n * suc m → 0 ≡ n 0≡n*sm→0≡n {n = zero} p = refl 0≡n*sm→0≡n {n = suc n} p = ⊥.rec (znots p) inj-*sm : l * suc m ≡ n * suc m → l ≡ n inj-*sm {zero} {m} {n} p = 0≡n*sm→0≡n p inj-*sm {l} {m} {zero} p = sym (0≡n*sm→0≡n (sym p)) inj-*sm {suc l} {m} {suc n} p = cong suc (inj-*sm (inj-m+ {m = suc m} p)) inj-sm* : suc m * l ≡ suc m * n → l ≡ n inj-sm* {m} {l} {n} p = inj-*sm (*-comm l (suc m) ∙ p ∙ *-comm (suc m) n)
26.633663
73
0.516729
4eaf4fe677865067372b7e04e61dcee1a5d572e1
3,104
agda
Agda
src/Categories/Category/Equivalence.agda
jaykru/agda-categories
a4053cf700bcefdf73b857c3352f1eae29382a60
[ "MIT" ]
279
2019-06-01T14:36:40.000Z
2022-03-22T00:40:14.000Z
src/Categories/Category/Equivalence.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
236
2019-06-01T14:53:54.000Z
2022-03-28T14:31:43.000Z
src/Categories/Category/Equivalence.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
64
2019-06-02T16:58:15.000Z
2022-03-14T02:00:59.000Z
{-# OPTIONS --without-K --safe #-} module Categories.Category.Equivalence where -- Strong equivalence of categories. Same as ordinary equivalence in Cat. -- May not include everything we'd like to think of as equivalences, namely -- the full, faithful functors that are essentially surjective on objects. open import Level open import Relation.Binary using (IsEquivalence; Setoid) open import Categories.Category.Core using (Category) open import Categories.Functor renaming (id to idF) open import Categories.NaturalTransformation.NaturalIsomorphism as ≃ using (NaturalIsomorphism ; unitorˡ; unitorʳ; associator; _ⓘᵥ_; _ⓘˡ_; _ⓘʳ_) private variable o ℓ e : Level C D E : Category o ℓ e record WeakInverse (F : Functor C D) (G : Functor D C) : Set (levelOfTerm F ⊔ levelOfTerm G) where field F∘G≈id : NaturalIsomorphism (F ∘F G) idF G∘F≈id : NaturalIsomorphism (G ∘F F) idF module F∘G≈id = NaturalIsomorphism F∘G≈id module G∘F≈id = NaturalIsomorphism G∘F≈id record StrongEquivalence {o ℓ e o′ ℓ′ e′} (C : Category o ℓ e) (D : Category o′ ℓ′ e′) : Set (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′) where field F : Functor C D G : Functor D C weak-inverse : WeakInverse F G open WeakInverse weak-inverse public op : StrongEquivalence (Category.op C) (Category.op D) op = record { F = Functor.op F ; G = Functor.op G ; weak-inverse = record { F∘G≈id = NaturalIsomorphism.op′ F∘G≈id ; G∘F≈id = NaturalIsomorphism.op′ G∘F≈id } } refl : StrongEquivalence C C refl = record { F = idF ; G = idF ; weak-inverse = record { F∘G≈id = unitorˡ ; G∘F≈id = unitorˡ } } sym : StrongEquivalence C D → StrongEquivalence D C sym e = record { F = G ; G = F ; weak-inverse = record { F∘G≈id = G∘F≈id ; G∘F≈id = F∘G≈id } } where open StrongEquivalence e trans : StrongEquivalence C D → StrongEquivalence D E → StrongEquivalence C E trans {C = C} {D = D} {E = E} e e′ = record { F = e′.F ∘F e.F ; G = e.G ∘F e′.G ; weak-inverse = record { F∘G≈id = let module S = Setoid (≃.Functor-NI-setoid E E) in S.trans (S.trans (associator (e.G ∘F e′.G) e.F e′.F) (e′.F ⓘˡ (unitorˡ ⓘᵥ (e.F∘G≈id ⓘʳ e′.G) ⓘᵥ ≃.sym (associator e′.G e.G e.F)))) e′.F∘G≈id ; G∘F≈id = let module S = Setoid (≃.Functor-NI-setoid C C) in S.trans (S.trans (associator (e′.F ∘F e.F) e′.G e.G) (e.G ⓘˡ (unitorˡ ⓘᵥ (e′.G∘F≈id ⓘʳ e.F) ⓘᵥ ≃.sym (associator e.F e′.F e′.G)))) e.G∘F≈id } } where module e = StrongEquivalence e module e′ = StrongEquivalence e′ isEquivalence : ∀ {o ℓ e} → IsEquivalence (StrongEquivalence {o} {ℓ} {e}) isEquivalence = record { refl = refl ; sym = sym ; trans = trans } setoid : ∀ o ℓ e → Setoid _ _ setoid o ℓ e = record { Carrier = Category o ℓ e ; _≈_ = StrongEquivalence ; isEquivalence = isEquivalence }
31.04
125
0.580541