repo
stringclasses
900 values
file
stringclasses
754 values
content
stringlengths
4
215k
https://github.com/mingweii/My-Qiskit-codes
mingweii
# This code is part of Qiskit. # # (C) Copyright IBM 2021. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. #Import essential packages import matplotlib.pyplot as plt import matplotlib.axes as axes from matplotlib import cm from matplotlib.ticker import LinearLocator, FormatStrFormatter %matplotlib inline import numpy as np import networkx as nx from qiskit import Aer, IBMQ from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, transpile, assemble from qiskit.providers.ibmq import least_busy from qiskit.tools.monitor import job_monitor from qiskit.visualization import plot_histogram from qiskit.optimization.applications.ising import max_cut from qiskit.optimization.applications.ising.common import sample_most_likely # setup aqua logging #import logging #from qiskit.aqua import set_qiskit_aqua_logging # set_qiskit_aqua_logging(logging.DEBUG) # choose INFO, DEBUG to see the log # Generating a random graph with n nodes n = 12 V = range(n)#np.arange(0,n,1) E=[] edge_bool=np.random.randint(2,size=n*(n-1)) #generate a sequence of boolen numbers for all possible edges W=np.zeros([n,n]) idx=0 for i in range(n): for j in range(i): temp=np.random.randint(2) if temp==1: E.append((i,j,1.0)) W[i,j]=1 W[j,i]=1 #if edge_bool[idx]: # if the edge_bool is 1, then add an edge between i and j vertices with a weight 1.0. idx+=1 G = nx.Graph()# Generate a graph G.add_nodes_from(V) # Add the nodes G.add_weighted_edges_from(E) # Add the edges from E # Generate plot of the Graph colors = ['r' for node in G.nodes()] pos = nx.spring_layout(G) def draw_graph(G, colors, pos): default_axes = plt.axes(frameon=True) nx.draw_networkx(G, node_color=colors, node_size=600, alpha=1, ax=default_axes, pos=pos) #edge_labels = nx.get_edge_attributes(G, 'weight') #nx.draw_networkx_edge_labels(G, pos=pos, edge_labels=edge_labels) draw_graph(G, colors, pos) #nx.draw_networkx(G, node_color=colors, node_size=600, alpha=1, ax=default_axes, pos=pos) print(W) best_cost_brute = 0 for b in range(2**n): x = [int(t) for t in reversed(list(bin(b)[2:].zfill(n)))] cost = 0 for i in range(n): for j in range(n): cost = cost + W[i,j]*x[i]*(1-x[j]) if best_cost_brute < cost: best_cost_brute = cost xbest_brute = x #print('case = ' + str(x)+ ' cost = ' + str(cost)) colors = ['c' if xbest_brute[i] == 0 else 'r' for i in range(n)] draw_graph(G, colors, pos) print('\nBest solution = ' + str(xbest_brute) + ' cost = ' + str(best_cost_brute)) # Evaluate the function step_size = 0.001; a_gamma = np.arange(0, np.pi, step_size) a_beta = np.arange(0, np.pi, step_size) a_gamma, a_beta = np.meshgrid(a_gamma,a_beta) F1 = 3-(np.sin(2*a_beta)**2*np.sin(2*a_gamma)**2-0.5*np.sin(4*a_beta)*np.sin(4*a_gamma))*(1+np.cos(4*a_gamma)**2) # Grid search for the minimizing variables result = np.where(F1 == np.amax(F1)) a = list(zip(result[0],result[1]))[0] gamma = a[0]*step_size; beta = a[1]*step_size; #The smallest parameters and the expectation can be extracted print('\n --- OPTIMAL PARAMETERS --- \n') print('The maximal expectation value is: M1 = %.03f' % np.amax(F1)) print('This is attained for gamma = %.03f and beta = %.03f' % (gamma,beta)) # prepare the quantum and classical resisters QAOA = QuantumCircuit(len(V), len(V)) # apply the layer of Hadamard gates to all qubits QAOA.h(range(len(V))) QAOA.barrier() # apply the Ising type gates with angle gamma along the edges in E for edge in E: k = edge[0] l = edge[1] QAOA.cp(-2*gamma, k, l) QAOA.p(gamma, k) QAOA.p(gamma, l) # then apply the single qubit X rotations with angle beta to all qubits QAOA.barrier() QAOA.rx(2*beta, range(len(V))) # Finally measure the result in the computational basis QAOA.barrier() QAOA.measure(range(len(V)),range(len(V))) ### draw the circuit for comparison QAOA.draw(output='mpl') # Compute the value of the cost function def cost_function_C(x,G): E = G.edges() if( len(x) != len(G.nodes())): return np.nan C = 0; for index in E: e1 = index[0] e2 = index[1] w=1.0 C = C + w*x[e1]*(1-x[e2]) + w*x[e2]*(1-x[e1]) return C # run on local simulator backend = Aer.get_backend("qasm_simulator") shots = 200000 TQAOA = transpile(QAOA, backend) qobj = assemble(TQAOA) QAOA_results = backend.run(qobj).result() plot_histogram(QAOA_results.get_counts(),figsize = (12,6),bar_labels = False) # Evaluate the data from the simulator counts = QAOA_results.get_counts() avr_C = 0 max_C = [0,0] hist = {} for k in range(len(G.edges())+1): hist[str(k)] = hist.get(str(k),0) for sample in list(counts.keys()): # use sampled bit string x to compute C(x) x = [int(num) for num in list(sample)] tmp_eng = cost_function_C(x,G) # compute the expectation value and energy distribution avr_C = avr_C + counts[sample]*tmp_eng hist[str(round(tmp_eng))] = hist.get(str(round(tmp_eng)),0) + counts[sample] # save best bit string if( max_C[1] < tmp_eng): max_C[0] = sample max_C[1] = tmp_eng M1_sampled = avr_C/shots "" print('\n --- SIMULATION RESULTS ---\n') print('The sampled mean value is M1_sampled = %.02f while the true value is M1 = %.02f \n' % (M1_sampled,np.amax(F1))) print('The approximate solution is x* = %s with C(x*) = %d \n' % (max_C[0],max_C[1])) print('The cost function is distributed as: \n') plot_histogram(hist,figsize = (8,6),bar_labels = False) colors = ['r' if max_C[0][i] == '0' else 'c' for i in range(n)] draw_graph(G, colors, pos) # Use the IBMQ essex device provider = IBMQ.load_account() large_enough_devices = provider.backends(filters=lambda x: x.configuration().n_qubits >= n and not x.configuration().simulator) backend = least_busy(large_enough_devices) shots = 8192 TQAOA = transpile(QAOA, backend) qobj = assemble(TQAOA, shots=shots) job_exp = backend.run(qobj) job_monitor(job_exp) exp_results = job_exp.result() plot_histogram(exp_results.get_counts(),figsize = (10,8),bar_labels = False) # Evaluate the data from the experiment counts_exp = exp_results.get_counts() avr_C_exp = 0 max_C_exp = [0,0] hist_exp = {} for k in range(len(G.edges())+1): hist_exp[str(k)] = hist_exp.get(str(k),0) for sample in list(counts_exp.keys()): # use sampled bit string x to compute C(x) x = [int(num) for num in list(sample)] tmp_eng = cost_function_C(x,G) # compute the expectation value and energy distribution avr_C_exp = avr_C_exp + counts_exp[sample]*tmp_eng hist_exp[str(round(tmp_eng))] = hist_exp.get(str(round(tmp_eng)),0) + counts_exp[sample] # save best bit string if( max_C_exp[1] < tmp_eng): max_C_exp[0] = sample max_C_exp[1] = tmp_eng M1_sampled_exp = avr_C_exp/shots print('\n --- EXPERIMENTAL RESULTS ---\n') print('The sampled mean value is M1_sampled = %.02f while the true value is M1 = %.02f \n' % (M1_sampled_exp,np.amax(F1))) print('The approximate solution is x* = %s with C(x*) = %d \n' % (max_C_exp[0],max_C_exp[1])) print('The cost function is distributed as: \n') plot_histogram(hist_exp,figsize = (8,6),bar_labels = False) colors = ['c' if max_C_exp[0][i] == '0' else 'r' for i in range(n)] draw_graph(G, colors, pos) from qiskit import Aer from qiskit.optimization.applications.ising import max_cut from qiskit.aqua.algorithms import QAOA as QAOAlib from qiskit.aqua.components.optimizers import ADAM from qiskit.aqua import aqua_globals from qiskit.aqua import QuantumInstance from qiskit.optimization.applications.ising.common import sample_most_likely qubitOp, offset = max_cut.get_operator(W) aqua_globals.random_seed = np.random.default_rng(123) seed = 10598 backend = Aer.get_backend('statevector_simulator') quantum_instance = QuantumInstance(backend, seed_simulator=seed, seed_transpiler=seed) adam = ADAM(maxiter=500) qaoa=QAOAlib(operator=qubitOp,optimizer=adam,p=1,quantum_instance=quantum_instance) result=qaoa.run(quantum_instance) # print results x = sample_most_likely(result.eigenstate) print('energy:', result.eigenvalue.real) print('time:', result.optimizer_time) print('max-cut objective:', result.eigenvalue.real + offset) print('solution:', max_cut.get_graph_solution(x)) print('solution objective:', max_cut.max_cut_value(x, W)) # plot results colors = ['r' if max_cut.get_graph_solution(x)[i] == 0 else 'c' for i in range(n)] draw_graph(G, colors, pos)
https://github.com/Ilan-Bondarevsky/qiskit_algorithm
Ilan-Bondarevsky
from qiskit import transpile import qiskit.providers.fake_provider from qiskit_ibm_provider import IBMProvider from qiskit.transpiler.passes import RemoveBarriers from qiskit_aer import AerSimulator, Aer def run_backend(quantum_circuit, backend, *args, **kwargs): '''Run current circuit on a given backend''' if quantum_circuit is None: return None job = execute(quantum_circuit, backend=backend, *args, **kwargs) return job def get_unitary(quantum_circuit, decimals=3, *args, **kwargs): '''Get unitary matrix of current circuit''' backend = Aer.get_backend('unitary_simulator') result = run_backend(quantum_circuit, backend, *args, **kwargs).result() return result.get_unitary(quantum_circuit, decimals) def get_state_vector(quantum_circuit, *args, **kwargs): '''Get state vector of current circuit''' backend = Aer.get_backend('statevector_simulator') result = run_backend(quantum_circuit, backend, *args, **kwargs).result() return result.get_statevector(quantum_circuit) def run_simulator(quantum_circuit, simulator_backend = None, shots = 1024, *args, **kwargs): '''Run circuit on a simulation backend.''' if quantum_circuit is None: return None if simulator_backend is None: simulator_backend = AerSimulator() result = run_backend(quantum_circuit, simulator_backend, shots = shots, *args, **kwargs).result() return result def get_fake_backend_list(min_qubit=None, max_qubit = None): '''Get a list of the excisting fake backends provided by qiskit.\n Docs: https://docs.quantum.ibm.com/api/qiskit/providers_fake_provider''' output = set() backend_list = dir(qiskit.providers.fake_provider) i = 0 for backend_name in backend_list: try: backend = getattr(qiskit.providers.fake_provider, backend_name)() num_qubit = len({q for map in backend.coupling_map for q in map}) if min_qubit is None and max_qubit is None: output.add((backend_name, num_qubit)) elif max_qubit is None: output.add((backend_name, num_qubit)) if num_qubit >= min_qubit else None elif min_qubit is None: output.add((backend_name, num_qubit)) if num_qubit <= max_qubit else None else: output.add((backend_name, num_qubit)) if num_qubit >= min_qubit and num_qubit <= max_qubit else None except: pass return list(output) def get_fake_backend(name): try: backend = getattr(qiskit.providers.fake_provider, name)() return backend except: pass def get_ibm_provider(token, instance="ibm-q/open/main"): return IBMProvider(instance=instance, token=token) def get_ibm_backend_list(provider, **kwargs): '''Get backends list of the IBM provider.\n Docs: https://qiskit.org/ecosystem/ibm-provider/stubs/qiskit_ibm_provider.IBMProvider.backends.html#qiskit_ibm_provider.IBMProvider.backends''' return provider.backends(**kwargs) def get_ibm_backend(provider, backend_name='ibm_lagos'): '''Choose IBM backend with given backend name''' try: backend = provider.get_backend(backend_name, hub=None) except: print('Backend name is not in the IBM library') return backend def transpile_quantum_circuit(qc, backend_name="Aer", optimization_level=0, initial_layout = None): backend = get_fake_backend(backend_name) if backend is None: backend = AerSimulator() if initial_layout == 'Full_Range': initial_layout = list(range(len(qc.qubits))) removed_barriar_qc = RemoveBarriers()(qc) transpiled_qc = transpile(circuits=removed_barriar_qc, backend=backend,optimization_level=optimization_level, initial_layout=initial_layout) return transpiled_qc def get_transpiled_circuits_of_circuit(qc, backend_name_list:list = ['Aer'], initial_layout_list:list = [None], optimization_level_list:list = [0]): output_list = [] for backend in backend_name_list: for layout in initial_layout_list : for level in optimization_level_list: output_list.append(transpile_quantum_circuit(qc, backend_name=backend, initial_layout=layout,optimization_level=level)) output_list[-1].name = f"{backend} | {layout} | {level}" return output_list
https://github.com/Ilan-Bondarevsky/qiskit_algorithm
Ilan-Bondarevsky
from qiskit import * from oracle_generation import generate_oracle get_bin = lambda x, n: format(x, 'b').zfill(n) def gen_circuits(min,max,size): circuits = [] secrets = [] ORACLE_SIZE = size for i in range(min,max+1): cur_str = get_bin(i,ORACLE_SIZE-1) (circuit, secret) = generate_oracle(ORACLE_SIZE,False,3,cur_str) circuits.append(circuit) secrets.append(secret) return (circuits, secrets)
https://github.com/Ilan-Bondarevsky/qiskit_algorithm
Ilan-Bondarevsky
from Grover.grover_num_list_cirq import find_num, find_num_list from qiskit.visualization import plot_histogram, plot_coupling_map from backend_operation import run_simulator, get_transpiled_circuits_of_circuit, get_fake_backend_list,get_unitary, get_fake_backend, get_fake_backend_list from qiskit import transpile import qiskit.providers.fake_provider from qiskit_ibm_provider import IBMProvider from qiskit.transpiler.passes import RemoveBarriers from qiskit_aer import AerSimulator, Aer Aer.get_backend('aer_simulator') x=AerSimulator() AerSimulator.available_methods(x) 5 import qiskit_ibm_runtime.fake_provider from qiskit import QuantumCircuit, QuantumRegister, AncillaRegister from bit_functions import full_bitfield, get_qubit_list dir(qiskit_ibm_runtime.fake_provider) backend = qiskit_ibm_runtime.fake_provider.FakeAuckland() # GenericBackendV2 = Aer () backend = qiskit.providers.fake_provider.GenericBackendV2(num_qubits=5) circuit = QuantumCircuit(3) circuit.h(0) circuit.cx(0,1) circuit.cx(0,2) circuit.measure_all() circuit.draw('mpl') backend.coupling_map.draw() circuit.data # Transpile the ideal circuit to a circuit that can be directly executed by the backend transpiled_circuit = transpile(circuit, backend, optimization_level=0) transpiled_circuit.draw('mpl') transpiled_circuit.data # Run the transpiled circuit using the simulated backend job = backend.run(transpiled_circuit) counts = job.result().get_counts() plot_histogram(counts) dir(qiskit.providers.fake_provider) import random import timeit import matplotlib.colors as mcolors from itertools import combinations, permutations block_diagram = False qc_size = 4 fake_backed_name = 'FakeAuckland' #random.sample(get_fake_backend_list(min_qubit=len(experiments[0].qubits), max_qubit=len(experiments[0].qubits) + 10),1)[0][0] num_qubits = 3 num_list = list(range(2**num_qubits)) final_expermient = [] for winner in num_list: grover_num = find_num() grover_num.build_iteration([winner],circuit_nqubits=num_qubits, block_diagram=block_diagram) grover_num.create_grover(solutions = 1, block_diagram=block_diagram) final_expermient.append(grover_num.measure_qc[0]) transpiled_circuit = [ get_transpiled_circuits_of_circuit(qc, ['Aer', fake_backed_name], [None] + list(permutations(range(num_qubits))), optimization_level_list=[0,3]) for qc in final_expermient ] result_for_circuiut = [ [ run_simulator(qc,shots = 1024 * 4) for qc in qc_value ] for qc_value in transpiled_circuit ] output = [] for value, circuits in enumerate(result_for_circuiut): for index, run_circuit in enumerate(circuits): result_dict= run_circuit.to_dict() cirq_result = result_dict['results'][0] cirq_counts = cirq_result['data']['counts'] cirq_time = cirq_result['time_taken'] cirq_name = cirq_result['header']['name'] cirq_depth = transpiled_circuit[value][index].depth() output.append({'value' : value, 'name' : cirq_name, 'time_taken' :cirq_time, 'depth':cirq_depth, 'count':cirq_counts}) data = { 'Value' : [], 'Backend' : [], 'Qubit_Position' : [], 'Optimization_level' : [], 'Depth' : [], 'Time_Taken' : [], 'Counts' : [] } for cur_data in output: data['Value'].append(cur_data['value']) data['Backend'].append(cur_data['name'].split('|')[0].replace(" ","")) data['Qubit_Position'].append(cur_data['name'].split('|')[1].replace(" ","")) data['Optimization_level'].append(cur_data['name'].split('|')[2].replace(" ","")) data['Depth'].append(cur_data['depth']) data['Time_Taken'].append(cur_data['time_taken']) data['Counts'].append([cur_data['count'][f'0x{index}'] for index in range(len(cur_data['count']))]) for cur_data in output: data['Value'].append(cur_data['value']) # Assuming value is stored at index 0 in each sublist backend, qubit_position, optimization_level = cur_data['name'].split('|') data['Backend'].append(backend.strip()) data['Qubit_Position'].append(qubit_position.strip()) data['Optimization_level'].append(optimization_level.strip()) data['Depth'].append(cur_data['depth']) # Assuming depth is stored at index 2 in each sublist data['Time_Taken'].append(cur_data['time_taken']) # Assuming time_taken is stored at index 3 in each sublist counts = [cur_data['count'][f'0x{index}'] for index in range(len(cur_data['count']))] # Assuming counts is stored at index 4 in each sublist data['Counts'].append(counts) import pandas as pd data = pd.DataFrame(data) data output min_value = 5 max_value = 15 win = random.sample(range(min_value, max_value),1) print(win) grover_find_value_win_size = find_num() grover_find_value_win_size.build_iteration(win, block_diagram=block_diagram) grover_find_value_win_size.create_grover(block_diagram=block_diagram, solutions=len(list(win))) experiments = grover_find_value_win_size.measure_qc experiments[0].draw('mpl') fake_backed_name = 'FakeAuckland' #random.sample(get_fake_backend_list(min_qubit=len(experiments[0].qubits), max_qubit=len(experiments[0].qubits) + 10),1)[0][0] get_fake_backend_list() backend = get_fake_backend('FakeGuadalupeV2') print(backend.coupling_map) backend.coupling_map.draw() transpiled_qc_list = get_transpiled_circuits_of_circuit(experiments[0], ['Aer', fake_backed_name], [None, 'Full_Range'], optimization_level_list=[0,3]) plot_histogram({ qc.name : qc.depth() for qc in transpiled_qc_list }) transpiled_qc_list[0].draw('mpl') transpiled_qc_list[1].draw('mpl') transpiled_qc_list[4].draw('mpl') transpiled_qc_list[5].draw('mpl') plot_histogram([run_simulator(qc,shots = 1024 * 4).get_counts() for qc in transpiled_qc_list], legend=[qc.name for qc in transpiled_qc_list], color=list(random.choices(list(mcolors.get_named_colors_mapping().values()), k = len(transpiled_qc_list))), title="Result transpilers") num_list_num = 4 data_arr = list(range(num_list_num)) random.shuffle(data_arr) win = random.sample(data_arr, 1) print(f"Data array: {data_arr} , the winner: {win}") st = timeit.default_timer() sol = [] for i, val in enumerate(data_arr): if val in win: sol.append(i) end = timeit.default_timer() print(f"Time: {end - st} , solution : {sol}") grover_find_value_list = find_num_list() grover_find_value_list.build_iteration(win, block_diagram=block_diagram, num_array = data_arr) grover_find_value_list.create_grover(block_diagram=block_diagram, num_solutions=len(list(win))) experiments = grover_find_value_list.measure_qc print(experiments) experiments[0].draw('mpl') x = find_num_list() x.build_iteration(winner_list=[5],num_array = [0,5,3], block_diagram=False) x.create_grover(num_solutions=1,block_diagram=False) x.measure_qc[0].draw('mpl') from Grover.transpiler import * qc = remove_barriar_gate(x.measure_qc[0]) qc.draw('mpl') qc, did_remove = remove_similiar_adjacent(qc) qc.draw('mpl') transpiled_qc_list = get_transpiled_circuits_of_circuit(experiments[0], ['Aer', fake_backed_name], [None, 'Full_Range'], optimization_level_list=[0,3]) plot_histogram({ qc.name : qc.depth() for qc in transpiled_qc_list }) qc_result = [run_simulator(qc, shots = 1024 * 4) for qc in transpiled_qc_list] plot_histogram([qc.get_counts() for qc in qc_result], legend=[qc.name for qc in transpiled_qc_list], color=list(random.choices(list(mcolors.get_named_colors_mapping().values()), k = len(transpiled_qc_list))), title="Result transpilers") [{qc.name : result.time_taken} for result, qc in zip(qc_result, transpiled_qc_list)] for qc in transpiled_qc_list: print(qc.qubits) transpiled_qc_list[1].draw('mpl') transpiled_qc_list[6].draw('mpl') transpiled_qc_list[1].draw('mpl') for gate in transpiled_qc_list[1].data: print(gate) transpiled_qc_list[5].draw('mpl')
https://github.com/Ilan-Bondarevsky/qiskit_algorithm
Ilan-Bondarevsky
from qiskit import QuantumCircuit, QuantumRegister, AncillaRegister from itertools import combinations def and_gate(a = 0 , b = 0): '''Create an AND gate in qiskit\n The values of "a" and "b" are inisializing the qubits, the values (0/1)''' qc = QuantumCircuit(QuantumRegister(2), AncillaRegister(1)) if a: qc.x(0) if b: qc.x(1) qc.mcx([0,1], qc.ancillas) return qc def nand_gate(a = 0 , b = 0): '''Create an NAND gate in qiskit\n The values of "a" and "b" are inisializing the qubits, the values (0/1)''' qc = QuantumCircuit(QuantumRegister(2), AncillaRegister(1)) if a: qc.x(0) if b: qc.x(1) qc.mcx([0,1], qc.ancillas) qc.x(qc.ancillas) return qc def mand_gate(nqubits, values = []): '''Create an AND gate in qiskit with multiple qubits\n The values in the list are corresponding to the qubits, the values (0/1)''' qc = QuantumCircuit(QuantumRegister(nqubits), AncillaRegister(1)) for i, val in enumerate(values): if val: qc.x(i) qc.mcx(list(range(nqubits)), qc.ancillas) return qc def xor_gate(a = 0 , b = 0): '''Create an XOR gate in qiskit\n The values of "a" and "b" are inisializing the qubits, the values (0/1)''' qc = QuantumCircuit(QuantumRegister(2), AncillaRegister(1)) if a: qc.x(0) if b: qc.x(1) qc.cx(0, qc.ancillas) qc.cx(1, qc.ancillas) return qc def xnor_gate(a = 0 , b = 0): '''Create an XNOR gate in qiskit\n The values of "a" and "b" are inisializing the qubits, the values (0/1)''' qc = QuantumCircuit(QuantumRegister(2), AncillaRegister(1)) if a: qc.x(0) if b: qc.x(1) qc.cx(0, qc.ancillas) qc.cx(1, qc.ancillas) qc.x(qc.ancillas) return qc def mxor_gate(nqubits, values = []): '''Create an XOR gate in qiskit with multiple qubits\n The values in the list are corresponding to the qubits, the values (0/1)''' qc = QuantumCircuit(QuantumRegister(nqubits), AncillaRegister(1)) for i, val in enumerate(values): if val: qc.x(i) for i in range(nqubits): qc.cx(i, qc.ancillas) return qc def or_gate(a = 0 , b = 0): '''Create an OR gate in qiskit\n The values of "a" and "b" are inisializing the qubits, the values (0/1)''' qc = QuantumCircuit(QuantumRegister(2), AncillaRegister(1)) if a: qc.x(0) if b: qc.x(1) qc.cx(0, qc.ancillas) qc.cx(1, qc.ancillas) qc.mcx([0,1], qc.ancillas) return qc def nor_gate(a = 0 , b = 0): '''Create an NOR gate in qiskit\n The values of "a" and "b" are inisializing the qubits, the values (0/1)''' qc = QuantumCircuit(QuantumRegister(2), AncillaRegister(1)) if a: qc.x(0) if b: qc.x(1) qc.cx(0, qc.ancillas) qc.cx(1, qc.ancillas) qc.mcx([0,1], qc.ancillas) qc.x(qc.ancillas) return qc def mor_gate(nqubits, values = []): '''Create an OR gate in qiskit with multiple qubits\n The values in the list are corresponding to the qubits, the values (0/1)''' qc = QuantumCircuit(QuantumRegister(nqubits), AncillaRegister(1)) for i, val in enumerate(values): if val: qc.x(i) or_cirq = [] for i in range(1, nqubits + 1): or_cirq = or_cirq + list(combinations(list(range(nqubits)), i)) for circ in or_cirq: qc.mcx(list(circ), qc.ancillas) return qc
https://github.com/Ilan-Bondarevsky/qiskit_algorithm
Ilan-Bondarevsky
import sys sys.path.insert(0, "D:/myProjects/AfekaCodeProjects/codeProjects/FinalProject_qiskit/qiskit_algorithm/qft_results.ipynb") from shor_algorithm.shor_algo_adder_method import qft_dagger, qft, set_start_state import numpy as np import matplotlib.pyplot as plt from qiskit import BasicAer, execute from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, Aer, transpile from qiskit.tools.visualization import plot_histogram, plot_bloch_multivector import pandas as pd from qiskit.transpiler.passes import RemoveBarriers from qiskit.providers.fake_provider import FakeAuckland n = 4 number = 5 qc = QuantumCircuit(n, n) set_start_state(qc, number, 0) qc = qc.compose(qft(n, True), range(n)) qc = qc.compose(qft_dagger(n, True), range(n)) qc.measure(range(n), range(n)) qc.draw('mpl') sim = Aer.get_backend("aer_simulator") qc_init = qc.copy() qc_init.save_statevector() statevector = sim.run(qc_init).result().get_statevector() plot_bloch_multivector(statevector) aer_sim = Aer.get_backend('aer_simulator') qc_tran_aer = transpile(qc, aer_sim, optimization_level=0) counts_aer = aer_sim.run(qc_tran_aer).result().get_counts() plot_histogram(counts_aer) fake_backend = FakeAuckland() circ_no_bar = RemoveBarriers()(qc) tran0 = transpile(circ_no_bar, backend=fake_backend, optimization_level=0) # tran3 = transpile(circ_no_bar, backend=fake_backend, optimization_level=3) counts_aer = fake_backend.run(qc_tran_aer).result().get_counts() plot_histogram(counts_aer) depth_basic = circ_no_bar.depth() depth0 = tran0.depth() depth3 = qc_tran_aer.depth() plot_histogram({"basic":depth_basic, "level=0":depth0, "aer":depth3})
https://github.com/Ilan-Bondarevsky/qiskit_algorithm
Ilan-Bondarevsky
from qiskit import QuantumCircuit as QiskitQuantumCircuit from qiskit.quantum_info import Operator, Statevector, DensityMatrix, StabilizerState from qiskit import QuantumCircuit, AncillaRegister, ClassicalRegister, QuantumRegister class QuantumCircuit(QiskitQuantumCircuit): def get_unitary_matrix(self, input_dims=None, output_dims=None): return Operator(self, input_dims, output_dims).data def get_density_matrix(self, dims: int | tuple | list | None = None): return DensityMatrix(self, dims) def get_state_vector(self, dims: int | tuple | list | None = None): return Statevector(self, dims) def get_stabilizer_state(self, validate: bool = True): return StabilizerState(self, validate) @staticmethod def from_qiskit_circuit(qiskit_circuit : QiskitQuantumCircuit): custom_circuit = QuantumCircuit(qiskit_circuit.qubits) custom_circuit.add_register(qiskit_circuit.clbits) custom_circuit.data = qiskit_circuit.data.copy() # Copy the operations custom_circuit.global_phase = qiskit_circuit.global_phase # Copy the global phase custom_circuit.metadata = qiskit_circuit.metadata # Copy the metadata if any return custom_circuit if __name__ == "__main__": qc = QuantumCircuit(2) qc.x(0) qc.h(1) for func in [qc.draw, qc.get_unitary_matrix, qc.get_density_matrix, qc.get_stabilizer_state, qc.get_state_vector]: print(f"### Function : {func.__name__} ###") print(func()) print() qc = QiskitQuantumCircuit(5) print(qc.draw()) qc = QuantumCircuit.from_qiskit_circuit(qc) print(qc.draw()) # print(qc.draw()) # print(qc.get_unitary_matrix()) # print(qc.get_density_matrix()) # print(qc.get_state_vector()) # print(qc.get_stabilizer_state())
https://github.com/Ilan-Bondarevsky/qiskit_algorithm
Ilan-Bondarevsky
from qiskit import * from qiskit.visualization import plot_histogram def simon_oracle(b): n = len(b) circ = QuantumCircuit(2*n, n) for i in range(n): circ.cx(i, i+n) # for i in range(n): # if b[n-1-i] == '1': # for j in range(n): # if b[j] == '1': # circ.cx(i, j + n) # break for i in range(n): if b[n-1-i] == '1': circ.cx(i, i+n) return circ b = '1001' n = len(b) circ = QuantumCircuit(2*n, n) circ.h(range(n)) circ.barrier() circ = circ.compose(simon_oracle(b)) circ.barrier() circ.h(range(n)) circ.measure(range(n), range(n)) print("the coresponding function should saticfy") b_dex = int(b, base=2) for num in range(2**(n-1)): print(f"f({num}) = f({num ^ b_dex})") circ.draw('mpl') sim = Aer.get_backend("qasm_simulator") result = execute(circ, backend=sim).result() plot_histogram(result.get_counts()) #find b def bdotz(b, z): accum = 0 for i in range(len(b)): accum += int(b[i]) * int(z[i]) return (accum % 2) shots = 1024 for z in result.get_counts().keys(): print( '{} . {} = {} (mod 2) ({:.1f}%)'.format(b, z, bdotz(b,z), result.get_counts()[z]*100/shots)) import random import timeit import matplotlib.colors as mcolors from backend_operation import run_simulator, get_transpiled_circuits_of_circuit, get_fake_backend_list,get_unitary, get_fake_backend, get_fake_backend_list from itertools import combinations, permutations fake_backed_name = 'FakeAuckland' transpiled_circuit = get_transpiled_circuits_of_circuit(circ, ['Aer', fake_backed_name], [None, "Full_Range"], optimization_level_list=[0,3]) result_for_circuiut = [ run_simulator(qc,shots = 1024 * 4) for qc in transpiled_circuit ] output = [] for index, run_circuit in enumerate(result_for_circuiut): result_dict= run_circuit.to_dict() cirq_result = result_dict['results'][0] cirq_counts = cirq_result['data']['counts'] cirq_time = cirq_result['time_taken'] cirq_name = cirq_result['header']['name'] cirq_depth = transpiled_circuit[index].depth() output.append({'name' : cirq_name, 'time_taken' :cirq_time, 'depth':cirq_depth, 'count':cirq_counts}) print(output) import pandas as pd df = pd.DataFrame(output) df plot_histogram([run_simulator(qc,shots = 1024).get_counts() for qc in transpiled_circuit], legend=[qc.name for qc in transpiled_circuit], color=list(random.choices(list(mcolors.get_named_colors_mapping().values()), k = len(transpiled_circuit))), title="Result transpilers") plot_histogram({ qc.name : qc.depth() for qc in transpiled_circuit })
https://github.com/Ilan-Bondarevsky/qiskit_algorithm
Ilan-Bondarevsky
from qiskit import Aer, IBMQ, execute from qiskit import transpile, assemble from qiskit.tools.monitor import job_monitor from qiskit.tools.monitor import job_monitor import matplotlib.pyplot as plt from qiskit.visualization import plot_histogram, plot_state_city """ Qiskit backends to execute the quantum circuit """ def simulator(qc): """ Run on local simulator :param qc: quantum circuit :return: """ backend = Aer.get_backend("qasm_simulator") shots = 2048 tqc = transpile(qc, backend) qobj = assemble(tqc, shots=shots) job_sim = backend.run(qobj) qc_results = job_sim.result() return qc_results, shots def simulator_state_vector(qc): """ Select the StatevectorSimulator from the Aer provider :param qc: quantum circuit :return: statevector """ simulator = Aer.get_backend('statevector_simulator') # Execute and get counts result = execute(qc, simulator).result() state_vector = result.get_statevector(qc) return state_vector def real_quantum_device(qc): """ Use the IBMQ essex device :param qc: quantum circuit :return: """ provider = IBMQ.load_account() backend = provider.get_backend('ibmq_santiago') shots = 2048 TQC = transpile(qc, backend) qobj = assemble(TQC, shots=shots) job_exp = backend.run(qobj) job_monitor(job_exp) QC_results = job_exp.result() return QC_results, shots def counts(qc_results): """ Get counts representing the wave-function amplitudes :param qc_results: :return: dict keys are bit_strings and their counting values """ return qc_results.get_counts() def plot_results(qc_results): """ Visualizing wave-function amplitudes in a histogram :param qc_results: quantum circuit :return: """ plt.show(plot_histogram(qc_results.get_counts(), figsize=(8, 6), bar_labels=False)) def plot_state_vector(state_vector): """Visualizing state vector in the density matrix representation""" plt.show(plot_state_city(state_vector))
https://github.com/Ilan-Bondarevsky/qiskit_algorithm
Ilan-Bondarevsky
import sys import os current_dir = os.getcwd() sys.path.append(current_dir) from quantum_circuit import QuantumCircuit # import qiskit.providers.fake_provider from qiskit.transpiler import CouplingMap import qiskit_ibm_runtime.fake_provider from Backend.backend import Backend class FakeBackend(Backend): def __init__(self, backend_name : str) -> None: self.backend = FakeBackend.get_ibm_fake_backend(backend_name=backend_name) @staticmethod def get_ibm_fake_backend_name_list() -> list[str]: ibm_dir = dir(qiskit_ibm_runtime.fake_provider) return [val for val in ibm_dir if '__' not in val and 'Fake' in val] @staticmethod def get_ibm_fake_backend(backend_name : str): try: return getattr(qiskit_ibm_runtime.fake_provider, backend_name)() except: pass fake_backend_name = FakeBackend.get_ibm_fake_backend_name_list() for backend in fake_backend_name: backend = FakeBackend.get_ibm_fake_backend(backend) if backend is not None: try: if backend.name == backend_name: return backend except: pass return None @staticmethod def get_ibm_fake_backend_names_with_limit(min_qubit : int = 1, max_qubit: int = float('inf')) -> list[str]: limited_backend = [] fake_backend_name = FakeBackend.get_ibm_fake_backend_name_list() for backend in fake_backend_name: backend = FakeBackend.get_ibm_fake_backend(backend) if backend is not None: try: num_qubit = backend.num_qubits if num_qubit >= min_qubit and num_qubit <= max_qubit: limited_backend.append(backend.name) except: pass return limited_backend if __name__ == "__main__": print(FakeBackend.get_ibm_fake_backend_name_list()) backend = FakeBackend('fake_auckland') qc = QuantumCircuit(2) qc.x(0) qc.h(1) qc.measure_all() print(qc.draw()) job = backend.run(qc) print(job.result()) qc_transpile = backend.traspile_qiskit(qc)[0] print(qc_transpile.draw()) job = backend.run(qc_transpile) print(job.result())
https://github.com/Ilan-Bondarevsky/qiskit_algorithm
Ilan-Bondarevsky
import sys import os current_dir = os.getcwd() sys.path.append(current_dir) from qiskit import ClassicalRegister from quantum_circuit import QuantumCircuit import math from bit_functions import get_qubit_list from abc import ABC, abstractmethod from circuits import cnz, set_value_circuit class grover_circuit(ABC): def __init__(self): self.calculation_qc = None self.iteration_qc = None self.circuit = None self.measure_qc = None @staticmethod def oracle(nqubits: int, set_change_value : list=[], mode:str = 'noancilla')->QuantumCircuit: '''Building an oracle giving the value of the qubits to go into the oracle.\n Each element of the list is a tuple with the index of the qubit and its value = (index, value)''' cnz_qc = cnz(nqubits, mode=mode) value_qc = set_value_circuit(nqubits, set_change_value, rest_hadamard=False) qc = QuantumCircuit(cnz_qc.qubits) qubits = get_qubit_list(qc) qc = qc.compose(value_qc, qubits) qc.barrier(qc.qubits) qc = qc.compose(cnz_qc, cnz_qc.qubits) qc.barrier(qc.qubits) qc = qc.compose(value_qc, qubits) qc.name = 'Oracle' return qc @staticmethod def diffuser(nqubits:int, mode : str='noancilla') ->QuantumCircuit: cnz_cirq = cnz(nqubits, mode) qc = QuantumCircuit(cnz_cirq.qubits) qc.h(get_qubit_list(qc)) qc.x(get_qubit_list(qc)) qc.barrier(qc.qubits) qc = qc.compose(cnz_cirq, cnz_cirq.qubits) qc.barrier(qc.qubits) qc.x(get_qubit_list(qc)) qc.h(get_qubit_list(qc)) qc.name = f'Diffuser {nqubits}Q' return qc def __prep_qubits(self, nqubits : int, prep_value : list = []) -> tuple[QuantumCircuit, int]: '''Prepare the qubits value and returns the circuit and the size of the "world", the amount of hadamard gates on the qubits''' qc = set_value_circuit(nqubits, qubit_value_list=prep_value, rest_hadamard=True) qc.name = 'Prep Qubit' return qc, dict(qc.count_ops())['h'] @staticmethod def calculate_iterations(qubit_world : int, num_solutions : int = 1) -> None: size_N = pow(2, qubit_world) if num_solutions is not None and num_solutions: if size_N < num_solutions * 2: raise Exception("Grover won't work properly! To many solutions!") return [math.floor((math.pi * math.sqrt(size_N / num_solutions)) / 4)] return list(range(1, math.floor((math.pi * math.sqrt(size_N)) / 4) + 1)) def create_grover(self, num_solutions : int = 1, prep_value : list = [], block_diagram : bool = True) -> None: if self.iteration_qc is None: raise Exception("Iteration circuit not found!") qubits = get_qubit_list(self.iteration_qc) prep_qc, world_qubit_size = self.__prep_qubits(len(qubits), prep_value) iterations = grover_circuit.calculate_iterations(world_qubit_size, num_solutions) grover_experiments = [] for i in iterations: qc = QuantumCircuit(self.iteration_qc.qubits) if block_diagram: qc.append(prep_qc, qubits) [qc.append(self.iteration_qc, qc.qubits) for _ in range(i)] else: qc = qc.compose(prep_qc, qubits) for _ in range(i): qc = qc.compose(self.iteration_qc, qc.qubits) qc.name = f"{self.iteration_qc.name} : Iteration {i}" grover_experiments.append(qc) self.circuit = grover_experiments self.__add_qubit_measurement() def __add_qubit_measurement(self) -> None: ''' Measure the qubits of the circuits ''' if self.circuit is None: raise Exception("Circuit not found!") self.measure_qc = [] for cur_qc in self.circuit: qc = cur_qc.copy() qubits = get_qubit_list(qc) qc.add_register(ClassicalRegister(len(qubits))) qc.measure(qubits, qc.clbits) self.measure_qc.append(qc) @abstractmethod def calculation_logic(self): pass @abstractmethod def build_iteration(self): pass
https://github.com/Ilan-Bondarevsky/qiskit_algorithm
Ilan-Bondarevsky
import sys import os current_dir = os.getcwd() sys.path.append(current_dir) from quantum_circuit import QuantumCircuit from qiskit import QuantumRegister, AncillaRegister from bit_functions import full_bitfield, get_qubit_list from Grover.grover_cirq import grover_circuit class find_num(grover_circuit): def __init__(self): super().__init__() @staticmethod def num_oracle(nqubits: int, winner_num : int) -> QuantumCircuit: bit_list = full_bitfield(winner_num, nqubits)[::-1] if nqubits < len(bit_list): raise Exception("The number needs more qubits!") index_list = [(index, int(not val)) for index, val in enumerate(bit_list)] qc = grover_circuit.oracle(nqubits, set_change_value=index_list) qc.name = f"Num_Oracle ({winner_num})" return qc @staticmethod def series_num_oracle(nqubits : int, winner_list :list , block_diagram = True) -> QuantumCircuit: qc = QuantumCircuit(nqubits) for num in winner_list: cur_qc = find_num.num_oracle(nqubits, num) if block_diagram: qc.append(cur_qc, qc.qubits) else: qc.barrier(qc.qubits) qc = qc.compose(cur_qc, qc.qubits) qc.barrier(qc.qubits) qc.name = f"Oracle {list(winner_list)}" return qc def calculation_logic(self) -> QuantumCircuit: pass def build_iteration(self, winner_num_list : list | int = [], circuit_nqubits : int = 0, block_diagram=True) -> None: ''' Build the iteration for the Grover circuit for the winner list :param circuit_nqubits = The number of qubits in the circuits (Minimum the vnumber needed for max value in the winner list) ''' if not isinstance(winner_num_list,list): winner_num_list = [winner_num_list] if not len(winner_num_list): raise Exception("Winner list is empty!") max_winner_qubit_needed = len(full_bitfield(max(winner_num_list))) circuit_nqubits = max(max_winner_qubit_needed, circuit_nqubits) qc = find_num.series_num_oracle(circuit_nqubits, winner_num_list, block_diagram) qubits = get_qubit_list(qc) diffuser_qc = grover_circuit.diffuser(len(qubits)) qc.add_register(diffuser_qc.ancillas) if block_diagram: qc.append(diffuser_qc, qubits + list(diffuser_qc.ancillas)) else: qc.barrier(qc.qubits) qc = qc.compose(diffuser_qc, qubits + list(diffuser_qc.ancillas)) qc.barrier(qc.qubits) qc.name = "Grover_Find_Num_Iteration" self.iteration_qc = qc class find_num_list(grover_circuit): def __init__(self): super().__init__() def __index_data_cirq(self, index : int, value : int, index_nqubits : int, value_nqubits : int) -> QuantumCircuit: ''' Build a circuit to check a specific index and its value\n For 0, It will use X gates and cx gates for every value ''' #https://arxiv.org/pdf/1502.04943.pdf qc = QuantumCircuit(QuantumRegister(index_nqubits, 'index'), AncillaRegister(value_nqubits, 'value')) index_bit_field = full_bitfield(index, index_nqubits)[::-1] value_bit_field = full_bitfield(value, value_nqubits)[::-1] for i in [i for i, _ in enumerate(index_bit_field) if not index_bit_field[i]]: qc.x(i) for bit in [i for i, _ in enumerate(value_bit_field) if value_bit_field[i]]: qc.mcx(list(range(len(index_bit_field))), qc.ancillas[bit]) for i in [i for i, _ in enumerate(index_bit_field) if not index_bit_field[i]]: qc.x(i) qc.name = f"[I = {index}, Val = {value}]" return qc def calculation_logic(self, num_array : list = [], block_diagram : bool = True) -> None: ''' Return a Calculation Circuit for the find_num_list Grover circuit. ''' if num_array is None or not len(num_array): return data_qc = QuantumCircuit( QuantumRegister(len(full_bitfield(len(num_array) - 1)), 'index'), AncillaRegister(len(full_bitfield(max(num_array))), 'data') ) value_qubit_length = len(data_qc.ancillas) index_qubit_length = len(get_qubit_list(data_qc)) for index, data in enumerate(num_array): if block_diagram: data_qc.append(self.__index_data_cirq(index, data, index_qubit_length, value_qubit_length), data_qc.qubits) else: data_qc.barrier(data_qc.qubits) data_qc = data_qc.compose(self.__index_data_cirq(index, data, index_qubit_length, value_qubit_length), data_qc.qubits) data_qc.name = f"Data {num_array}" self.calculation_qc = data_qc def build_iteration(self, winner_list = [], num_array : list = [], block_diagram=True, default_value:int = 0): ''' Build a iteration for the Find_Num_In_List Grover circuit : param default_value is the default number in winner list, can search for it ONLY when the list is the length of 2 powered by N ''' if not len(num_array): raise Exception(f"The number array is empty!") if not len(winner_list): raise Exception(f"The winner list is empty!") if default_value in winner_list and pow(2, (len(num_array) - 1).bit_length()) != len(num_array): raise Exception(f"The winner list has a value of {default_value} when the number list is not the size of 2 powered by an N") self.calculation_logic(num_array, block_diagram) qc = QuantumCircuit(self.calculation_qc.qubits) if block_diagram: qc.append(self.calculation_qc, qc.qubits) oracle = find_num.series_num_oracle(len(qc.ancillas), winner_list, block_diagram) qc.append(oracle, qc.ancillas) qc.append(self.calculation_qc.inverse(), qc.qubits) else: qc = qc.compose(self.calculation_qc, qc.qubits) qc.barrier(qc.qubits) oracle = find_num.series_num_oracle(len(qc.ancillas), winner_list, block_diagram) qc = qc.compose(oracle, qc.ancillas) qc.barrier(qc.qubits) qc = qc.compose(self.calculation_qc.inverse(), qc.qubits) qubits = get_qubit_list(qc) diffuser_qc = grover_circuit.diffuser(len(qubits)) qc.add_register(diffuser_qc.ancillas) if block_diagram: qc.append(diffuser_qc, qubits + list(diffuser_qc.ancillas)) else: qc.barrier(qc.qubits) qc = qc.compose(diffuser_qc, qubits + list(diffuser_qc.ancillas)) qc.barrier(qc.qubits) qc.name = "Grover_Find_Num_List_Iteration" self.iteration_qc = qc if __name__ == "__main__": x = find_num() x.build_iteration([5], 4, block_diagram=False) x.create_grover(num_solutions=1,block_diagram=False) print(x.measure_qc[0].draw()) x = find_num_list() x.build_iteration(winner_list=[5],num_array = [2,5,3,1], block_diagram=False) x.create_grover(num_solutions=1,block_diagram=False) print(x.measure_qc[0].draw())
https://github.com/Ilan-Bondarevsky/qiskit_algorithm
Ilan-Bondarevsky
from qiskit import QuantumCircuit, QuantumRegister, AncillaRegister, ClassicalRegister, Aer, execute from bit_functions import full_bitfield, get_qubit_list from Grover.grover_cirq import diffuser, calculate_iteration, prep_qubits_circuit, check_solution_grover, generate_grover_circuits_with_iterations, simulate_grover_qc_list from circuits import cnz from logic_gate_circuits import and_gate, or_gate, xor_gate, xnor_gate, nand_gate, nor_gate, mor_gate, mand_gate from Grover.grover_cirq import diffuser def check_same_num(num_qubit = None, max_num_value = None): '''Returns a circuit that sets the last ancilla qubit (Answer) if the numbers are the same''' if num_qubit is None and max_num_value is None: return None if num_qubit is not None: pass else: num_qubit = max_num_value.bit_length() num_a = QuantumRegister(num_qubit, 'A') num_b = QuantumRegister(num_qubit, 'B') xnor_qc = QuantumCircuit(num_a, num_b) for i in range(num_qubit): xnor_g = xnor_gate() xnor_qc.add_register(AncillaRegister(1)) xnor_qc = xnor_qc.compose(xnor_g, [num_a[i], num_b[i], xnor_qc.ancillas[-1]]) qc = QuantumCircuit(xnor_qc.qubits) qc = qc.compose(xnor_qc, xnor_qc.qubits) if len(qc.ancillas) > 1: qc.add_register(AncillaRegister(1)) qc.mcx(xnor_qc.ancillas, qc.ancillas[-1]) qc = qc.compose(xnor_qc.inverse(), xnor_qc.qubits) qc.name = 'Check_Same_Num' return qc #def prep_cnz(nqubits, set_qubit_value = [] ,mode='noancilla'): # '''Prepare cnz circuit with vgiven values of the qubits\n # Returns the prepared circuit\n # set_value_list contains a list of tuples that contains (qubit_index , 0 or 1)''' # # x_qubit = [value[0] for value in set_qubit_value if value[1] and value[0] < nqubits] # # cnz_qc = cnz(nqubits, mode) # # qc = QuantumCircuit(cnz_qc.qubits) # qc.x(x_qubit) if len(x_qubit) else None # qc.barrier(qc.qubits) # qc = qc.compose(cnz_qc, qc.qubits) # qc.barrier(qc.qubits) # qc.x(x_qubit) if len(x_qubit) else None # # qc.name = f"cnz {nqubits}" # return qc def create_sudoko_iteration(max_value = 2): max_cells = list(range(pow(max_value, 2))) qubit_num = (max_value - 1).bit_length() if not qubit_num: return None pairs = get_matrix_pairs(max_value) qubit_list = QuantumRegister(len(max_cells) * qubit_num) anc_list = AncillaRegister(qubit_num) if qubit_num > 1 else [] answer_anc_list = [] qc_pair = QuantumCircuit(qubit_list, anc_list) for p in pairs: check_equal_qc = check_same_num(qubit_num) answer_anc_list.append(check_equal_qc.ancillas[-1]) qc_pair.add_register([answer_anc_list[-1]]) qubit_connection = list(qubit_list[p[0] * qubit_num : (p[0] + 1) * qubit_num]) + list(qubit_list[p[1] * qubit_num : (p[1] + 1) * qubit_num]) + list(anc_list) + [check_equal_qc.ancillas[-1]] qc_pair = qc_pair.compose(check_equal_qc, qubit_connection) qc_pair.barrier(qc_pair.qubits) qc_z = cnz(len(answer_anc_list), [(i, 0) for i in range(len(answer_anc_list))]) diffuser_qc = diffuser(len(get_qubit_list(qc_pair))) qc = QuantumCircuit(qc_pair.qubits) qc = qc.compose(qc_pair, qc_pair.qubits) qc.barrier(qc.qubits) qc = qc.compose(qc_z, answer_anc_list) qc.barrier(qc.qubits) qc = qc.compose(qc_pair.inverse(), qc_pair.qubits) qc.barrier(qc.qubits) qc = qc.compose(diffuser_qc, get_qubit_list(qc)) return qc def create_sudoko_circuits(max_value = 2, set_qubit_value = []): qc_iter = create_sudoko_iteration(max_value) return generate_grover_circuits_with_iterations(qc_iter, set_qubit_value) def get_matrix_pairs(matrix_size = 4, start_cell = 0): output = [] if start_cell >= pow(matrix_size, 2): return output cur_index = start_cell + 1 while cur_index % matrix_size: pair = (start_cell, cur_index) output.append(pair) if pair not in output else None cur_index = cur_index + 1 cur_index = start_cell + matrix_size while cur_index < pow(matrix_size, 2): pair = (start_cell, cur_index) output.append(pair) if pair not in output else None cur_index = cur_index + matrix_size output = output + [i for i in get_matrix_pairs(matrix_size=matrix_size, start_cell= start_cell + 1) if i not in output] return output def check_under_nine(nqubits): '''Returns a circuit that calculates if the value of the qubits are under nine (0 - 8)\n The answer will be on the final ancilla bit.\n The ancillas, except the last one (Answer), can be reused''' nine_bit_size = int(9).bit_length() additional_qubits = nqubits - nine_bit_size if additional_qubits < 0: return None nand_three = mand_gate(3, [1] * 3) nand_three.x(nand_three.ancillas[-1]) nand_three.barrier(nand_three.qubits) nand_fourth = nand_gate() nine_qubit_qc = QuantumCircuit(nand_three.qubits, nand_fourth.qubits[1:]) nine_qubit_qc = nine_qubit_qc.compose(nand_three, nand_three.qubits) nine_qubit_qc = nine_qubit_qc.compose(nand_fourth, [nand_three.ancillas[-1]] + list(nand_fourth.qubits[1:])) if additional_qubits: add_qubits = QuantumRegister(additional_qubits) nine_qubit_qc.add_register(add_qubits) nine_qubit_qc.x(add_qubits) qc = QuantumCircuit(nine_qubit_qc.qubits, AncillaRegister(1)) qc = qc.compose(nine_qubit_qc, nine_qubit_qc.qubits) qc.barrier(qc.qubits) qc.mcx(list(add_qubits) + [nine_qubit_qc.ancillas[-1]], qc.ancillas[-1]) qc.barrier(qc.qubits) qc = qc.compose(nine_qubit_qc.inverse(), nine_qubit_qc.qubits) else: qc = QuantumCircuit(nine_qubit_qc.qubits) qc = qc.compose(nine_qubit_qc, nine_qubit_qc.qubits) qc = qc.compose(nand_three.inverse(), nand_three.qubits) qc.name = "Check_under_nine" return qc
https://github.com/Ilan-Bondarevsky/qiskit_algorithm
Ilan-Bondarevsky
from qiskit import QuantumCircuit, QuantumRegister, AncillaRegister, ClassicalRegister from bit_functions import full_bitfield, get_qubit_list from Grover.grover_cirq import grover_circuit from logic_gate_circuits import xnor_gate from backend_operation import run_simulator class sudoko_grover(grover_circuit): def __init__(self, max_num : int = 4): super().__init__() self.max_num = max_num self.min_num = 1 self.max_num_circuit = None def same_num_cirq(self): bit = self.max_num.bit_length() qubit_A = QuantumRegister(bit, 'A') qubit_B = QuantumRegister(bit, 'B') anc = AncillaRegister(bit + 1) qc = QuantumCircuit(qubit_A, qubit_B, anc) for i in range(bit): xnor_qc = xnor_gate() qc = qc.compose(xnor_qc, [qubit_A[i], qubit_B[i], anc[i]]) inv_qc = qc.inverse() qc.mcx(anc[:-1], anc[-1]) qc = qc.compose(inv_qc, list(qubit_A) + list(qubit_B) + list(anc)) return qc def calculation_logic(self): pass def build_iteration(self): pass if __name__ == "__main__": x = sudoko_grover() y=x.same_num_cirq() print(y.draw()) y.add_register(ClassicalRegister(1)) y.measure(y.qubits[-1],y.clbits[-1]) print(y.draw()) print(run_simulator(y).get_counts())
https://github.com/Ilan-Bondarevsky/qiskit_algorithm
Ilan-Bondarevsky
import sys import os current_dir = os.getcwd() sys.path.append(os.path.dirname(os.path.abspath(current_dir))) from Grover.grover_num_list_cirq import find_num, find_num_list from Backend.fake_backend import FakeBackend from Backend.backend import Backend from Backend.ibm_backend import IBM_backend from Result.result import ResultData from qiskit.visualization import plot_histogram, plot_coupling_map from backend_operation import run_simulator, get_transpiled_circuits_of_circuit, get_fake_backend_list,get_unitary, get_fake_backend, get_fake_backend_list from qiskit import transpile import qiskit.providers.fake_provider from qiskit_ibm_provider import IBMProvider from qiskit.transpiler.passes import RemoveBarriers from qiskit_aer import AerSimulator, Aer from itertools import permutations # Sample of Find Number Grover Circuit find_num_in_world_obj = find_num() find_num_in_world_obj.build_iteration(winner_num_list=[0], circuit_nqubits=3, block_diagram=False) find_num_in_world_obj.create_grover(num_solutions=1, prep_value=[], block_diagram=False) cur_experiments = find_num_in_world_obj.measure_qc print(f"Number of Grover circuits : {len(cur_experiments)}") cur_experiments[0].draw('mpl') backend = qiskit.providers.fake_provider.GenericBackendV2(num_qubits=3) backend.coupling_map.draw() # Transpile the ideal circuit to a circuit that can be directly executed by the backend transpiled_circuit = transpile(cur_experiments[0], backend, optimization_level=0) transpiled_circuit.draw('mpl') transpiled_circuit = transpile(cur_experiments[0], backend, optimization_level=3) transpiled_circuit.draw('mpl') find_num_obj = find_num() num_qubits = 3 qc_find_num_list = [] for value in range(2**num_qubits): find_num_obj.build_iteration(winner_num_list=[value], circuit_nqubits=num_qubits, block_diagram=False) find_num_obj.create_grover(num_solutions=1, prep_value=[], block_diagram=False) qc_find_num_list.append(find_num_obj.measure_qc[0]) generic_backend = Backend(num_qubits) backend_names = FakeBackend.get_ibm_fake_backend_names_with_limit(num_qubits) fake_auckland_backend = FakeBackend.get_ibm_fake_backend('fake_auckland') print(f"Fake Auckland number of qubits = {fake_auckland_backend.num_qubits}") fake_backend_name = 'fake_auckland' fake_backend = FakeBackend(fake_backend_name) position_layout = permutations(range(fake_backend.get_backend_qubits()), num_qubits) position_layout = permutations(range(num_qubits), num_qubits) qc_find_num_list_without_barriar = [RemoveBarriers()(qc) for qc in qc_find_num_list] # Add the Generic Aer Full Connectivity qc_transpiled_list = [ generic_backend.transpile_save_param(qc=qc, optimization_level=0, initial_layout=None, seed_transpiler=None, input_search = index) for index, qc in enumerate(qc_find_num_list_without_barriar) ] qc_transpiled_list = qc_transpiled_list + [ generic_backend.transpile_save_param(qc=qc, optimization_level=3, initial_layout=None, seed_transpiler=None, input_search = index) for index, qc in enumerate(qc_find_num_list_without_barriar) ] position_layout = list(position_layout) # Add the fake backend for layout in [None] + position_layout: qc_transpiled_list = qc_transpiled_list + [ fake_backend.transpile_save_param(qc=qc, optimization_level=0, initial_layout=layout, seed_transpiler=None, input_search = index) for index, qc in enumerate(qc_find_num_list_without_barriar) ] qc_transpiled_list = qc_transpiled_list + [ fake_backend.transpile_save_param(qc=qc, optimization_level=3, initial_layout=layout, seed_transpiler=None, input_search = index) for index, qc in enumerate(qc_find_num_list_without_barriar) ] # Sample that we entered an input value to the result parameters to save qc_transpiled_list[60].backend_name qc_res = [ qc_param.backend.run(qc_param.transpiled_qc,shots=1024) for qc_param in qc_transpiled_list ] len(qc_res) result = ResultData(qc_res[60]) result.job result.to_dict() result.to_dict().keys() result.get_result_time_taken(0) result.to_dict()['time_taken'] result.to_dict()['results'][0].keys() result.to_dict()['results'][0]['time_taken'] result.get_counts() result.get_data() result.to_dict().keys() result.to_dict()['results'][0].keys() result.to_dict()['results'][0]['time_taken'] result.to_dict()['results'][0]['header'] result.to_dict()['results'][0]['data'] result.to_dict()['results'][0]['metadata']
https://github.com/Ilan-Bondarevsky/qiskit_algorithm
Ilan-Bondarevsky
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2017, 2018. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. # pylint: disable=too-many-function-args, unexpected-keyword-arg """THIS FILE IS DEPRECATED AND WILL BE REMOVED IN RELEASE 0.9. """ import warnings from qiskit.converters import dag_to_circuit, circuit_to_dag from qiskit.transpiler import CouplingMap from qiskit import compiler from qiskit.transpiler.preset_passmanagers import (default_pass_manager_simulator, default_pass_manager) def transpile(circuits, backend=None, basis_gates=None, coupling_map=None, initial_layout=None, seed_mapper=None, pass_manager=None): """transpile one or more circuits. Args: circuits (QuantumCircuit or list[QuantumCircuit]): circuits to compile backend (BaseBackend): a backend to compile for basis_gates (list[str]): list of basis gate names supported by the target. Default: ['u1','u2','u3','cx','id'] coupling_map (list): coupling map (perhaps custom) to target in mapping initial_layout (Layout or dict or list): Initial position of virtual qubits on physical qubits. The final layout is not guaranteed to be the same, as the transpiler may permute qubits through swaps or other means. seed_mapper (int): random seed for the swap_mapper pass_manager (PassManager): a pass_manager for the transpiler stages Returns: QuantumCircuit or list[QuantumCircuit]: transpiled circuit(s). Raises: TranspilerError: in case of bad inputs to transpiler or errors in passes """ warnings.warn("qiskit.transpiler.transpile() has been deprecated and will be " "removed in the 0.9 release. Use qiskit.compiler.transpile() instead.", DeprecationWarning) return compiler.transpile(circuits=circuits, backend=backend, basis_gates=basis_gates, coupling_map=coupling_map, initial_layout=initial_layout, seed_transpiler=seed_mapper, pass_manager=pass_manager) def transpile_dag(dag, basis_gates=None, coupling_map=None, initial_layout=None, seed_mapper=None, pass_manager=None): """Deprecated - Use qiskit.compiler.transpile for transpiling from circuits to circuits. Transform a dag circuit into another dag circuit (transpile), through consecutive passes on the dag. Args: dag (DAGCircuit): dag circuit to transform via transpilation basis_gates (list[str]): list of basis gate names supported by the target. Default: ['u1','u2','u3','cx','id'] coupling_map (list): A graph of coupling:: [ [control0(int), target0(int)], [control1(int), target1(int)], ] eg. [[0, 2], [1, 2], [1, 3], [3, 4]} initial_layout (Layout or None): A layout object seed_mapper (int): random seed_mapper for the swap mapper pass_manager (PassManager): pass manager instance for the transpilation process If None, a default set of passes are run. Otherwise, the passes defined in it will run. If contains no passes in it, no dag transformations occur. Returns: DAGCircuit: transformed dag """ warnings.warn("transpile_dag has been deprecated and will be removed in the " "0.9 release. Circuits can be transpiled directly to other " "circuits with the transpile function.", DeprecationWarning) if basis_gates is None: basis_gates = ['u1', 'u2', 'u3', 'cx', 'id'] if pass_manager is None: # default set of passes # if a coupling map is given compile to the map if coupling_map: pass_manager = default_pass_manager(basis_gates, CouplingMap(coupling_map), initial_layout, seed_transpiler=seed_mapper) else: pass_manager = default_pass_manager_simulator(basis_gates) # run the passes specified by the pass manager # TODO return the property set too. See #1086 name = dag.name circuit = dag_to_circuit(dag) circuit = pass_manager.run(circuit) dag = circuit_to_dag(circuit) dag.name = name return dag
https://github.com/Ilan-Bondarevsky/qiskit_algorithm
Ilan-Bondarevsky
import numpy as np from qiskit import BasicAer, execute from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, AncillaRegister, Aer, transpile from qiskit.tools.visualization import plot_histogram from qiskit.circuit.gate import Gate import sys sys.path.insert(0, "D:/myProjects/AfekaCodeProjects/codeProjects/FinalProject_qiskit/qiskit_algorithm") import bit_functions def condition_phase_shift(k): qc = QuantumCircuit(2) #control qbit and qbit to oparate on angle = np.pi / (2**(k-1)) qc.cp(angle, 0, 1) qc.name = str(k) return qc qc = QuantumCircuit(3) def set_start_state(qc, number, start_qubit): bin_num = bin(number) for i in range(1, len(bin_num)+1): if bin_num[-i] == '1': qc.x(i+start_qubit-1) def adder(n, kind = "fixed"): #n is the number of qubits requer for one number qc = QuantumCircuit(QuantumRegister(n), AncillaRegister(n + (1 if kind == "half" else 0) )) for j in range(n): for k in range(j, n): power = k - j + 1 angle = 2*np.pi / (2**power) qc.cp(angle, j, n+k, label=str(power)) if kind == "half": for i in range(n): angle = 2*np.pi / (2**(i+2)) qc.cp(angle, n-1-i, 2*n) qc.name = f"ADD_{n}" return qc def subtracter(n): qc = adder(n, "half").inverse() qc.name = f"SUB_{n}" return qc def adder_classic_a(n, a, kind = "fixed"): #n is the number of qubits require for one number qc = QuantumCircuit(QuantumRegister(n + (1 if kind == "half" else 0))) bit_field_a = bit_functions.full_bitfield(a, n) for j in range(n): if bit_field_a[n-1-j] == 1: for k in range(j, n): power = k - j + 1 angle = 2*np.pi / (2**power) # k starts from 0 but in the article in start from 1 qc.p(angle, k) if kind == "half": for i in range(n): if bit_field_a[n-1-i] == 1: angle = 2*np.pi / (2**(n-i+1)) qc.p(angle, n) qc = qc.to_gate() qc.name = f"ɸ ADD_{a}" return qc def subtracter_classic_a(n, a): qc = adder_classic_a(n, a, "half").inverse() qc.name = f"ɸ SUB_{a}" return qc def qft(n, swap = True): """n-qubit QFT the first n qubits in circ""" qc = QuantumCircuit(n) for j in range(n-1, -1, -1): qc.h(j) for m in range(j-1, -1, -1): qc.cp(np.pi/float(2**(j-m)), j, m, label=f"{j-m+1}") # Don't forget the Swaps! if swap: for qubit in range(n//2): qc.swap(qubit, n-qubit-1) qc = qc.to_gate() qc.name = "QFT" return qc def qft_dagger(n, swap = True): """n-qubit QFTdagger the first n qubits in circ""" qc = QuantumCircuit(n) # Don't forget the Swaps! if swap: for qubit in range(n//2): qc.swap(qubit, n-qubit-1) for j in range(n): for m in range(j): qc.cp(-np.pi/float(2**(j-m)), m, j) qc.h(j) qc = qc.to_gate() qc.name = "QFT†" return qc def add_mod_n(a, N): n = bit_functions.bit_length(N) qr = QuantumRegister(n+3) ar = AncillaRegister(1) qc = QuantumCircuit(qr, ar) qc.append(adder_classic_a(n, a, "half").control(2), [0, 1] + list(range(2, n+3))) qc.append(subtracter_classic_a(n, N), range(2, n+3)) qc.append(qft_dagger(n+1, False), range(2, n+3)) qc.cx(n+2, n+3) qc.append(qft(n+1, False), range(2, n+3)) qc.append(adder_classic_a(n, N, "half").control(1), [n+3] + list(range(2, n+3))) qc.append(subtracter_classic_a(n, a).control(2), [0, 1] + list(range(2, n+3))) qc.append(qft_dagger(n+1, False), range(2, n+3)) qc.x(n+2) qc.cx(n+2, n+3) qc.x(n+2) qc.append(qft(n+1, False), range(2, n+3)) qc.append(adder_classic_a(n, a, "half").control(2), [0, 1] + list(range(2, n+3))) qc = qc.to_gate() qc.name = f"ɸ ADD_{a}_mod_{N}" return qc def c_mult_a_mod_n(a, N): n = bit_functions.bit_length(N) qr = QuantumRegister(2*n+4) qc = QuantumCircuit(qr) qc.append(qft(n+1, False), range(n+2, 2*n+3)) for i in range(n): number = (a * 2**i)%N qc.append(add_mod_n(number, N), [0, i+1] + list(range(n+2, 2*n+4))) qc.append(qft_dagger(n+1, False), range(n+2, 2*n+3)) qc.name = f"CMULT({a}) mod {N}" return qc def inverse_c_mult_a_mod_n(a, N): qc = c_mult_a_mod_n(a, N).inverse() qc.name = f"CMULT({a}) mod {N}†" return qc def U(N, a, power): a_pow = a**power n = bit_functions.bit_length(N) qc = QuantumCircuit(2*n + 4) qc.append(c_mult_a_mod_n(a_pow, N), range(2*n + 4)) for i in range(1, n+2): qc.cswap(0, i, i+n+1, label=f'{i} to {i+n}') if np.gcd(a_pow, N) != 1: raise ArithmeticError(f"inverse of {a}^{power} mod {N} doesn't exists") i_a = pow(a_pow, -1, N) qc.append(inverse_c_mult_a_mod_n(i_a, N), range(2*n+4)) qc.name = f"U{a}^{power} mod {N}" return qc def shor_circiut(N, a): """Creates the Shor's circuit and returns it Args: N (int): The number we want to factor a (int): A guess number to base the circuit on. The gdc between N and a must be 1 Returns: QuantumCircuit: circuit of Shor's algorithm """ n = bit_functions.bit_length(N) qc = QuantumCircuit(4*n+3, 2*n) qc.h(range(2*n)) qc.x(2*n) for i in range(2*n): qc.append(U(N,a,2**i), [i] + list(range(2*n, 4*n+3))) qc.append(qft_dagger(2*n, True), range(2*n)) qc.measure(range(2*n), range(2*n)) return qc if __name__ == "__main__": qc = shor_circiut(15,4) print(qc.draw())
https://github.com/Ilan-Bondarevsky/qiskit_algorithm
Ilan-Bondarevsky
import numpy as np import math from qiskit import BasicAer, execute from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, Aer, transpile from qiskit.tools.visualization import plot_histogram, plot_bloch_multivector from shor_algo_adder_method import * from qiskit.circuit.library import DraperQFTAdder, QFT n = 8 q = QuantumRegister(n, 'q') c = ClassicalRegister(math.ceil(n/2), 'c') thiers = QuantumCircuit(q, c) main = QuantumCircuit(q, c) a = 15 b = 12 set_start_state(thiers, a, 0) set_start_state(thiers, b, n//2) set_start_state(main, a, 0) set_start_state(main, b, n//2) main.append(qft(math.ceil(n/2), False), range(n//2, n)) main = main.compose(adder(n//2, kind="fixed"), qubits=range(n)) # main.append(adder(n//2, kind="fixed"), range(n)) main.append(qft_dagger(math.ceil(n/2), False), range(n//2, n)) thiers = thiers.compose(DraperQFTAdder(n//2, kind="fixed").decompose(), range(n)) # thiers.append(DraperQFTAdder(n//2, kind="fixed"), range(n)) thiers.measure(range(n//2, n), range(math.ceil(n/2))) main.measure(range(n//2, n), range(math.ceil(n/2))) thiers.draw("mpl") b = 12 a = 15 n = 4 q = QuantumRegister(n, 'q') c = ClassicalRegister(n, 'c') classic_a = QuantumCircuit(q, c) set_start_state(classic_a, b, 0) classic_a.append(qft(n, False), range(n)) classic_a = classic_a.compose(adder_classic_a(n, a, kind="fixed"), range(n)) classic_a.append(qft_dagger(n, False), range(n)) classic_a.measure(range(n), range(n)) classic_a.draw('mpl') main.draw('mpl') sim = Aer.get_backend("aer_simulator") qc_init = ft.copy() qc_init.save_statevector() statevector = sim.run(qc_init).result().get_statevector() plot_bloch_multivector(statevector) aer_sim = Aer.get_backend('aer_simulator') t_thiers = transpile(thiers, aer_sim) t_main = transpile(main, aer_sim) t_classic = transpile(classic_a, aer_sim) counts_thiers = aer_sim.run(t_thiers).result().get_counts() count_main = aer_sim.run(t_main).result().get_counts() count_cls = aer_sim.run(t_classic).result().get_counts() plot_histogram([count_main, counts_thiers, count_cls], legend=["main", "thiers", "cls"]) n = 5 q = QuantumRegister(n, 'q') c = ClassicalRegister(math.ceil(n/2), 'c') subtract = QuantumCircuit(q, c) q = QuantumRegister(math.ceil(n/2), 'q') c = ClassicalRegister(math.ceil(n/2), 'c') subtract2 = QuantumCircuit(q, c) a = 1 b = 3 set_start_state(subtract, a, 0) set_start_state(subtract, b, n//2) set_start_state(subtract2, b, 0) subtract.append(qft(math.ceil(n/2), False), range(n//2, n)) # main = main.compose(adder(n//2, kind="half"), qubits=range(n)) # subtract = subtract.compose(adder(n//2, kind="half").inverse(), range(n)) subtract.append(subtracter(n//2), range(n)) subtract.append(qft_dagger(math.ceil(n/2), False), range(n//2, n)) subtract2.append(qft(math.ceil(n/2), False), range(math.ceil(n/2))) # main = main.compose(adder(n//2, kind="half"), qubits=range(n)) # subtract = subtract.compose(adder(n//2, kind="half").inverse(), range(n)) subtract2.append(subtracter_classic_a(n//2, a), range(math.ceil(n/2))) subtract2.append(qft_dagger(math.ceil(n/2), False), range(math.ceil(n/2))) # thiers = thiers.compose(DraperQFTAdder(n//2, kind="half").decompose(), range(n)) subtract.measure(range(n//2, n), range(math.ceil(n/2))) subtract2.measure(range(math.ceil(n/2)), range(math.ceil(n/2))) subtract.draw("mpl") subtract2.draw("mpl") aer_sim = Aer.get_backend('aer_simulator') t_subtract = transpile(subtract, aer_sim) t_subtract2 = transpile(subtract2, aer_sim) counts_subtract = aer_sim.run(t_subtract).result().get_counts() counts_subtract2 = aer_sim.run(t_subtract2).result().get_counts() plot_histogram([counts_subtract, counts_subtract2], legend=["draper", "a inside"]) n = 4 N = 11 a = 2 b = 0 x = 6 a_mod_n = QuantumCircuit(2*n + 4, n+1) a_mod_n.x(0) set_start_state(a_mod_n, x, 1) set_start_state(a_mod_n, b, n+2) # a_mod_n = a_mod_n.compose(add_mod_n(a, N), range(n+3)) a_mod_n = a_mod_n.compose(U(a, N).decompose(), range(2*n + 4)) a_mod_n.measure(range(1, n+2), range(n+1)) a_mod_n.draw('mpl', fold=-1) aer_sim = Aer.get_backend('aer_simulator') t_subtract = transpile(a_mod_n, aer_sim) counts_subtract = aer_sim.run(t_subtract).result().get_counts() plot_histogram(counts_subtract)
https://github.com/Ilan-Bondarevsky/qiskit_algorithm
Ilan-Bondarevsky
import numpy as np import matplotlib.pyplot as plt # from qiskit import BasicAer, execute from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, Aer, transpile from qiskit.tools.visualization import plot_histogram import pandas as pd from fractions import Fraction from shor_algo_adder_method import shor_circiut import bit_functions N = 15 a = 13 N_COUNT = 2*bit_functions.bit_length(N) qc = shor_circiut(N, a) qc.draw('mpl', fold = -1) aer_sim = Aer.get_backend('aer_simulator') t_qc = transpile(qc, aer_sim) # counts = execute(t_qc, aer_sim).result().get_counts() counts = aer_sim.run(t_qc).result().get_counts() plot_histogram(counts) rows, measured_phases = [], [] for output in counts: decimal = int(output, 2) # Convert (base 2) string to decimal phase = decimal/(2**N_COUNT) # Find corresponding eigenvalue measured_phases.append(phase) # Add these values to the rows in our table: rows.append([f"{output}(bin) = {decimal:>3}(dec)", f"{decimal}/{2**N_COUNT} = {phase:.2f}"]) # Print the rows in a table headers=["Register Output", "Phase"] df = pd.DataFrame(rows, columns=headers) print(df) rows = [] for phase in measured_phases: frac = Fraction(phase).limit_denominator(15) rows.append([phase, f"{frac.numerator}/{frac.denominator}", frac.denominator]) # Print as a table headers=["Phase", "Fraction", "Guess for r"] df = pd.DataFrame(rows, columns=headers) print(df) guesses = {x[2] for x in rows if x[2] != 1} for curr_gess in guesses: if curr_gess % 2 == 0: num1 = int(a**(curr_gess/2)+1) num2 = int(a**(curr_gess/2)-1) q = np.gcd(num1, N) p = np.gcd(num2, N) print(f"for r = {curr_gess} factors are: {p}, {q}")
https://github.com/MetalKyubit/Quantum-Algorithms-in-Qiskit
MetalKyubit
# initialization import numpy as np # importing Qiskit from qiskit import * # import basic plot tools from qiskit.visualization import plot_histogram from qiskit.providers.fake_provider import FakeJakarta from qiskit.providers.fake_provider import FakeNairobi #defining a function to create the BV Algorithm circuit. Function takes in the oracle and number of qubits and # ouputs the quantum circuit def BV_algo(oracle,n): # n input qubits and 1 helper qubit qc = QuantumCircuit(n+1,n) # helper qubit initialised to state ket_1 qc.x(n) # creating superposition of all the inputs. and making the state of the helper qubit as ket_minus. for i in range(n+1): qc.h(i) qc.barrier() # applying the oracle that has the funciton encoded in it to the circuit qc.append(oracle, range(n+1)) qc.barrier() #applying the hadamard gates again to collapse the superposition to one state that has the final result #encoded in it. for i in range(n): qc.h(i) # measuring the input qubits to find the final result. qc.measure(range(n),range(n)) return (qc) def bv_oracle(n:int, s:str): _circuit_oracle = QuantumCircuit(n+1) #reverse the bit string because qiskit uses inverse endianness s = s[::-1] for _bit_position in range(n): if(s[_bit_position] == '1'): # phase flippping the helper qubit (as it is in ket_minus state x will phase flip it) # flipping phase _circuit_oracle.cx(_bit_position, n) else: _circuit_oracle.i(_bit_position) _gate_oracle = _circuit_oracle.to_gate() s = s[::-1] _gate_oracle.name = "Oracle\n s: "+str(s) return _gate_oracle # Testing the algorithm for n=3 and a='101') n = 3 oracle = bv_oracle(n, '101') q1 = BV_algo(oracle, n) q1.draw('mpl') # Running on non-noisy simulator backend = Aer.get_backend('aer_simulator') job = execute(q1,backend) results = job.result() counts = results.get_counts() plot_histogram(counts) # Running on noisy simulator backend = FakeJakarta() job = execute(q1,backend) results = job.result() counts = results.get_counts() plot_histogram(counts) # Running on noisy simulator backend = FakeNairobi() job = execute(q1,backend) results = job.result() counts = results.get_counts() plot_histogram(counts) # Testing the algorithm for n=3 and a='101') n = 5 oracle = bv_oracle(n, '10101') q1 = BV_algo(oracle, n) q1.draw('mpl') # Running on non-noisy simulator backend = Aer.get_backend('aer_simulator') job = execute(q1,backend) results = job.result() counts = results.get_counts() plot_histogram(counts) # Running on noisy simulator backend = FakeJakarta() job = execute(q1,backend) results = job.result() counts = results.get_counts() plot_histogram(counts) # Running on noisy simulator backend = FakeNairobi() job = execute(q1,backend) results = job.result() counts = results.get_counts() plot_histogram(counts)
https://github.com/MetalKyubit/Quantum-Algorithms-in-Qiskit
MetalKyubit
# initialization import numpy as np # importing Qiskit from qiskit import * # import basic plot tools from qiskit.visualization import plot_histogram from qiskit.providers.fake_provider import FakeJakarta from qiskit.providers.fake_provider import FakeNairobi #defining a function to create the DJ Algorithm circuit. Function takes in the oracle and number or qubits and # ouputs the circuit def DJ_algo(oracle,n): # n input qubits and 1 helper qubit qc = QuantumCircuit(n+1,n) # helper qubit initialised to state ket_1 qc.x(n) # creating superposition of all the inputs. and making the state of the helper qubit as ket_minus. for i in range(n+1): qc.h(i) qc.barrier() # applying the oracle that has the funciton encoded in it to the circuit qc.append(oracle, range(n+1)) qc.barrier() #applying the hadamard gates again to collapse the superposition to one state that has the final result #encoded in it. for i in range(n): qc.h(i) # measuring the input qubits to find the final result. qc.measure(range(n),range(n)) return (qc) # The oracle is defined below def dj_oracle(n:int, type:str): #define a quantum circuit with n input qubits and 1 helper qubits qc = QuantumCircuit(n+1) #create an oracle based on whether balanced or constant function if(type == 'balanced'): #balanced oracle flips helper when the 0th qubit is 1 half the inputs will have 0th qubit 1 rest # half will have 0th qubit 0. qc.cx(0,n) else: #apply identity on the n+1 bit qc.i(n) #convert to gate _gate_oracle = qc.to_gate() if (type == 'balanced'): _gate_oracle.name = "oracle_balanced" else: _gate_oracle.name = "oracle_constant" # return the gate return _gate_oracle # Testing the algorithm for n=3 and constant function n = 2 oracle = dj_oracle(n, 'constant') q1 = DJ_algo(oracle, n) q1.draw('mpl') backend = Aer.get_backend('aer_simulator') transpiled =transpile(q1, backend) job= execute(transpiled, backend) results= job.result() counts = results.get_counts() plot_histogram(counts) # Running on noisy simulator backend = FakeJakarta() job = execute(q1,backend) results = job.result() counts = results.get_counts() plot_histogram(counts) # Running on noisy simulator backend = FakeNairobi() job = execute(q1,backend) results = job.result() counts = results.get_counts() plot_histogram(counts) # Testing the algorithm for n=3 and constant function n = 6 oracle = dj_oracle(n, 'balanced') q1 = DJ_algo(oracle, n) q1.draw('mpl') backend = Aer.get_backend('aer_simulator') transpiled =transpile(q1, backend) job= execute(transpiled, backend) results= job.result() counts = results.get_counts() plot_histogram(counts) # Running on noisy simulator backend = FakeJakarta() job = execute(q1,backend) results = job.result() counts = results.get_counts() plot_histogram(counts) # Running on noisy simulator backend = FakeNairobi() job = execute(q1,backend) results = job.result() counts = results.get_counts() plot_histogram(counts)
https://github.com/MetalKyubit/Quantum-Algorithms-in-Qiskit
MetalKyubit
# initialization import numpy as np # importing Qiskit from qiskit import * # import basic plot tools from qiskit.visualization import plot_histogram from qiskit.providers.fake_provider import FakeJakarta from qiskit.providers.fake_provider import FakeNairobi #defining a function to create the Grovers Algorithm circuit. Function takes in the oracle and number or qubits # and ouputs the circuit def Grover_function(oracle,n): # n input qubits qc = QuantumCircuit(n,n) # creating superposition of all the inputs for i in range(n): qc.h(i) qc.barrier() # Grovers function is implemented for m times as it is basically a rotation function applied for m times. # m calculated by finding approximately the angle of the total superposition with the "B" set and the number #of times the superposition has to be rotated by twice of that angle to reach the "A" state. m=int(np.round(np.pi*np.sqrt(2**n)/4 - 0.5)) for i in range(m): # applying the oracle that has the funciton encoded in it to the circuit qc.append(oracle, range(n)) qc.barrier() # applying the second set of hadamard gates for i in range(n): qc.h(i) # implementing the Z_0 gate (all x followed by one hadamard followed by mcx #followed by hadamard followed by all x) for i in range(n): qc.x(i) qc.h(0) qubit=[] for i in range(n-1): qubit.append(i+1) qc.mcx(qubit, 0) qc.h(0) for i in range(n): qc.x(i) #applying the hadamard gates again to collapse the superposition to one state that has the final result #encoded in it. for i in range(n): qc.h(i) # measuring the input qubits to find the final result. qc.measure(range(n),range(n)) return (qc) # Function for generating a general grover's oracle (Zf) for n qubits and # inp: input string such that f(inp) = 1 def Grover_oracle(n, inp): cir = QuantumCircuit(n) # Applying X gate where ever the string is zero to convert the whole string to n 1's and then applying # controlled z gate to phase flip the particular state for i in range(n): if inp[i]=='0': cir.x(n-i-1) # Multiple controlled Z gate using MCX cir.h(0) cir.mcx([i for i in range(1,n)], 0) cir.h(0) # Applying X gates to reverse the effect of above applied X gates for i in range(len(inp)): if inp[i]=='0': cir.x(n-i-1) return cir # Testing the algorithm for n=3 and f('101') = 1 n = 3 oracle = Grover_oracle(n, '101') oracle.draw('mpl') q1 = Grover_function(oracle, n) q1.draw('mpl') # Running on non-noisy simulator backend = Aer.get_backend('aer_simulator') job = execute(q1,backend) results = job.result() counts = results.get_counts() plot_histogram(counts) # Running on noisy simulator backend = FakeJakarta() job = execute(q1,backend) results = job.result() counts = results.get_counts() plot_histogram(counts) # Running on noisy simulator backend = FakeNairobi() job = execute(q1,backend) results = job.result() counts = results.get_counts() plot_histogram(counts) # Testing the algorithm n = 5 oracle = Grover_oracle(n, '10101') oracle.draw('mpl') q1 = Grover_function(oracle, n) q1.draw('mpl') # Running on non-noisy simulator backend = Aer.get_backend('aer_simulator') job = execute(q1,backend) results = job.result() counts = results.get_counts() plot_histogram(counts) # Running on noisy simulator backend = FakeJakarta() job = execute(q1,backend) results = job.result() counts = results.get_counts() plot_histogram(counts) # Running on noisy simulator backend = FakeNairobi() job = execute(q1,backend) results = job.result() counts = results.get_counts() plot_histogram(counts)
https://github.com/MetalKyubit/Quantum-Algorithms-in-Qiskit
MetalKyubit
# initialization import numpy as np # importing Qiskit from qiskit import * # import basic plot tools from qiskit.visualization import plot_histogram from qiskit_textbook.tools import simon_oracle from qiskit.providers.fake_provider import FakeJakarta from qiskit.providers.fake_provider import FakeNairobi #defining a function to create the Simon's Algorithm circuit. Function takes in the oracle and number of qubits # and ouputs the quantum circuit def Simons_algo(oracle,n): # n input qubits and n helper qubit qc = QuantumCircuit(2*n,n) # creating superposition of all the inputs for i in range(n): qc.h(i) qc.barrier() # applying the oracle that has the funciton and the secret string encoded in it to the circuit qc.append(oracle, range(2*n)) qc.barrier() #applying the hadamard gates again to collapse the superposition to one state that has the final result #encoded in it. for i in range(n): qc.h(i) # measuring the input qubits to find the final result. qc.measure(range(n),range(n)) return (qc) a = '10' n = len(a) ora = simon_oracle(a) ora.draw('mpl') q1 = Simons_algo(ora, n) q1.draw('mpl') # Running on non-noisy simulator backend = Aer.get_backend('aer_simulator') job = execute(q1,backend, shots=1024) results = job.result() counts = results.get_counts() plot_histogram(counts) # Running on noisy simulator backend = FakeJakarta() job = execute(q1,backend) results = job.result() counts = results.get_counts() plot_histogram(counts) # Running on noisy simulator backend = FakeNairobi() job = execute(q1,backend) results = job.result() counts = results.get_counts() plot_histogram(counts) a = '101' n = len(a) ora = simon_oracle(a) ora.draw('mpl') q1 = Simons_algo(ora, n) q1.draw('mpl') # Running on non-noisy simulator backend = Aer.get_backend('aer_simulator') job = execute(q1,backend, shots=1024) results = job.result() counts = results.get_counts() plot_histogram(counts) # Running on noisy simulator backend = FakeJakarta() job = execute(q1,backend) results = job.result() counts = results.get_counts() plot_histogram(counts) # Running on noisy simulator backend = FakeNairobi() job = execute(q1,backend) results = job.result() counts = results.get_counts() plot_histogram(counts)
https://github.com/soccertes123/QiskitGroverDinnerParty
soccertes123
from qiskit import BasicAer from qiskit.aqua.algorithms import Grover from qiskit.aqua.components.oracles import LogicalExpressionOracle from qiskit.tools.visualization import plot_histogram log_expr = '[(Olivia & Abe) | (Jin & Amira)] & -(Abe & Amira)' algorithm = Grover(LogicalExpressionOracle(log_expr)) backend = BasicAer.get_backend('qasm_simulator') result = algorithm.run(backend) plot_histogram(result['measurement'], title='Possible Party Combinations', bar_labels=True)
https://github.com/soccertes123/QiskitGroverDinnerParty
soccertes123
#initialization import matplotlib.pyplot as plt import numpy as np # importing Qiskit from qiskit import IBMQ, Aer, assemble, transpile from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister from qiskit.providers.ibmq import least_busy # import basic plot tools from qiskit.visualization import plot_histogram # general diffuser copied from https://qiskit.org/textbook/ch-algorithms/grover.html#2qubits-simulation def diffuser(nqubits): qc = QuantumCircuit(nqubits) # Apply transformation |s> -> |00..0> (H-gates) for qubit in range(nqubits): qc.h(qubit) # Apply transformation |00..0> -> |11..1> (X-gates) for qubit in range(nqubits): qc.x(qubit) # Do multi-controlled-Z gate qc.h(nqubits-1) qc.mct(list(range(nqubits-1)), nqubits-1) # multi-controlled-toffoli qc.h(nqubits-1) # Apply transformation |11..1> -> |00..0> for qubit in range(nqubits): qc.x(qubit) # Apply transformation |00..0> -> |s> for qubit in range(nqubits): qc.h(qubit) return qc # THIS IS THE MAIN IMPORTANT PART OF THE IMPLEMENTATION # we made lots of stubs for unimportant but time-consuming functions # After putting around 10-15 hours in to the project, we realized it would take way too much time to hammer in every # single function. def oracle(nqubits, expressions): # iterate over expressions and define circuit qc = QuantumCircuit(nqubits + len(expressions)) x_reset_target_indices = [] # list of target qubits which have x gates that need to be reversed for i, exp in enumerate(expressions): # if OR: apply X gates if (exp[0] == "OR"): for variable in exp[1:]: qubit_index = int(variable[1]) # each variable is in format xi where i is the qubit index qc.x(qubit_index) # apply multi qubit toffoli control_indices = [] x_reset_input_indices = [] # indices to be reset if we apply x gates for variable in exp[1:]: if (variable[0] == "x"): qubit_index = int(variable[1]) control_indices.append(qubit_index) else: # variable[0] = "e" -> the qubit index is the target qubit from the prior expression ei qubit_index = nqubits + int(variable[1]) # this references the target qubit after evaluating expression ei control_indices.append(qubit_index) if (variable[len(variable-1)] == "~"): qc.x(qubit_index) x_reset_indices.append(qubit_index) target_index = nqubits + i qc = multi_qubit_toffoli(qc, control_indices, target_index) for index in x_reset_input_indices: # reset the inputs if we applied x gates qc.x(index) # if OR: apply X gate on target qubit for logic and X gates on control qubits to reset input if (exp[0] == "OR"): qc.x(target_index) x_reset_target_indices.append(i) # append to this list so that we can reset the circuit at end of oracle for variable in exp[1:]: qubit_index = int(variable[1]) qc.x(qubit_index) for index in x_reset_target_indices: # reset the rest of the circuit qc.x(index) return qc def multi_qubit_toffoli(qc, control_indices, target_index): # perform the multi qubit toffoli gate on the quantum circuit and return the circuit return qc def init(nqubits): qc = QuantumCircuit(nqubits) for i in range(nqubits): qc.h(i) return qc def parse_exp(exp): # returns something like [e1=["OR", "x0", "x1~"], e2=["AND", "e1", "x2"], e3=[...], ...] # where each expression ei is connected by a series of ANDs # make sure that any negations get distributed # We will write our expressions as ei=["AND", "x0", "x1~"] so that the last character is "~" if the variable has negation li = [] return li def check_solution(boolean_list, expression): # boolean list would represent the variables in the expression by index return false expression = "((x0 & x1) & (x1 & ~x2) & x3)" nqubits = 2 circuit = init(nqubits) oracle_qc = oracle(nqubits, expression) diffuser_qc = diffuser(nqubits) # now join the circuits together solved = false boolean_list while (solved): # add oracle and diffuser on our circuit circuit = circuit + oracle_qc + diffuser_qc # measure result results = circuit.measure_all().counts() boolean_list = results # check solution with expression solved = checks_solution(boolean_list, expression) print(boolean_list)
https://github.com/soccertes123/QiskitGroverDinnerParty
soccertes123
#initialization import matplotlib.pyplot as plt import numpy as np # importing Qiskit from qiskit import IBMQ, Aer, assemble, transpile from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister from qiskit.providers.ibmq import least_busy # import basic plot tools from qiskit.visualization import plot_histogram # general diffuser copied from https://qiskit.org/textbook/ch-algorithms/grover.html#2qubits-simulation def diffuser(nqubits): qc = QuantumCircuit(nqubits) # Apply transformation |s> -> |00..0> (H-gates) for qubit in range(nqubits): qc.h(qubit) # Apply transformation |00..0> -> |11..1> (X-gates) for qubit in range(nqubits): qc.x(qubit) # Do multi-controlled-Z gate qc.h(nqubits-1) qc.mct(list(range(nqubits-1)), nqubits-1) # multi-controlled-toffoli qc.h(nqubits-1) # Apply transformation |11..1> -> |00..0> for qubit in range(nqubits): qc.x(qubit) # Apply transformation |00..0> -> |s> for qubit in range(nqubits): qc.h(qubit) return qc # THIS IS THE MAIN IMPORTANT PART OF THE IMPLEMENTATION # we made lots of stubs for unimportant but time-consuming functions # After putting around 10-15 hours in to the project, we realized it would take way too much time to hammer in every # single function. def oracle(nqubits, expressions): # iterate over expressions and define circuit qc = QuantumCircuit(nqubits + len(expressions)) x_reset_target_indices = [] # list of target qubits which have x gates that need to be reversed for i, exp in enumerate(expressions): # if OR: apply X gates if (exp[0] == "OR"): for variable in exp[1:]: qubit_index = int(variable[1]) # each variable is in format xi where i is the qubit index qc.x(qubit_index) # apply multi qubit toffoli control_indices = [] x_reset_input_indices = [] # indices to be reset if we apply x gates for variable in exp[1:]: if (variable[0] == "x"): qubit_index = int(variable[1]) control_indices.append(qubit_index) else: # variable[0] = "e" -> the qubit index is the target qubit from the prior expression ei qubit_index = nqubits + int(variable[1]) # this references the target qubit after evaluating expression ei control_indices.append(qubit_index) if (variable[len(variable-1)] == "~"): qc.x(qubit_index) x_reset_indices.append(qubit_index) target_index = nqubits + i qc = multi_qubit_toffoli(qc, control_indices, target_index) for index in x_reset_input_indices: # reset the inputs if we applied x gates qc.x(index) # if OR: apply X gate on target qubit for logic and X gates on control qubits to reset input if (exp[0] == "OR"): qc.x(target_index) x_reset_target_indices.append(i) # append to this list so that we can reset the circuit at end of oracle for variable in exp[1:]: qubit_index = int(variable[1]) qc.x(qubit_index) for index in x_reset_target_indices: # reset the rest of the circuit qc.x(index) return qc def multi_qubit_toffoli(qc, control_indices, target_index): # perform the multi qubit toffoli gate on the quantum circuit and return the circuit return qc def init(nqubits): qc = QuantumCircuit(nqubits) for i in range(nqubits): qc.h(i) return qc def parse_exp(exp): # returns something like [e1=["OR", "x0", "x1~"], e2=["AND", "e1", "x2"], e3=[...], ...] # where each expression ei is connected by a series of ANDs # make sure that any negations get distributed # We will write our expressions as ei=["AND", "x0", "x1~"] so that the last character is "~" if the variable has negation li = [] return li def check_solution(boolean_list, expression): # boolean list would represent the variables in the expression by index return false expression = "((x0 & x1) & (x1 & ~x2) & x3)" nqubits = 2 circuit = init(nqubits) oracle_qc = oracle(nqubits, expression) diffuser_qc = diffuser(nqubits) # now join the circuits together solved = false boolean_list while (solved): # add oracle and diffuser on our circuit circuit = circuit + oracle_qc + diffuser_qc # measure result results = circuit.measure_all().counts() boolean_list = results # check solution with expression solved = checks_solution(boolean_list, expression) print(boolean_list)
https://github.com/mousepad01/qiskit_POCs
mousepad01
import numpy as np import random from copy import deepcopy import matplotlib.pyplot as plt from qiskit import * from qiskit.visualization import plot_state_city, plot_histogram from qiskit.providers.ibmq import least_busy from qiskit.quantum_info import random_statevector from qiskit.quantum_info.operators import Operator from qiskit.circuit.library import XGate backend_statevector = Aer.get_backend('statevector_simulator') backend_sim = Aer.get_backend('qasm_simulator') with open('t.txt', "r") as token_f: TOKEN = token_f.read() # =========================== # convert "endianess" of qubit order def qiskit_tensor_conversion(t: np.array, n: int): def _conv(x: int): x_ = 0 for i in range(n): x_ |= ((x >> i) & 0x01) << (n - i - 1) return x_ if type(t) == list: t = np.array(t) t_ = deepcopy(t) for i in range(t.shape[0]): for j in range(t.shape[1]): t_[i][j] = t[_conv(i)][_conv(j)] return t_ # simulation for state vector def get_statevector(circuit: QuantumCircuit): return backend_statevector.run(circuit).result().get_statevector(circuit, decimals=2) def plot_statevector(circuit: QuantumCircuit): plot_state_city(get_statevector(circuit)) # simulation for measurement outputs def simulate_runs(circuit: QuantumCircuit, runs: int = 1024): return backend_sim.run(transpile(circuit, backend_sim), shots=runs).result().get_counts() def plot_simulated_runs(circuit: QuantumCircuit, runs: int = 1024): plot_histogram(simulate_runs(circuit, runs)) # real run on IBM 5 qubit quantum computers (measurement outputs) def real_runs(circuit: QuantumCircuit, runs: int = 1024): IBMQ.enable_account(TOKEN) provider = IBMQ.get_provider(hub='ibm-q') backend_q = least_busy(provider.backends(filters = lambda x: x.configuration().n_qubits == 5 and not x.configuration().simulator and x.status().operational == True)) return backend_q.run(transpile(circuit, backend_q, optimization_level=3), shots=runs).result().get_counts() def plot_runs(circuit: QuantumCircuit, runs: int = 1024): plot_histogram(real_runs(circuit, runs)) # =========================== def example(): c = QuantumCircuit(3, 3) c.h(0) c.cx(0, 1) c.cx(1, 2) mes = QuantumCircuit(3, 3) mes.measure(range(3), range(3)) cmes = c.compose(mes) plot_statevector(c) plot_simulated_runs(cmes) plt.show() def superdense_coding_v0(a, b): a = [0, 1] if a == 1 else [1, 0] b = [0, 1] if b == 1 else [1, 0] qc_init = QuantumCircuit(4, 2) qc_alicebob = QuantumCircuit(4, 2) qc_init.h(2) qc_init.cx(2, 3) qc_init.initialize(a, 0) qc_init.initialize(b, 1) qc_alicebob.cx(1, 2) qc_alicebob.cz(0, 2) qc_alicebob.cx(2, 3) qc_alicebob.h(2) qc_alicebob.measure(2, 0) qc_alicebob.measure(3, 1) superdense_coding_qc = qc_init.compose(qc_alicebob) #superdense_coding_qc.draw('mpl') plot_simulated_runs(superdense_coding_qc) plt.show() def superdense_coding(a, b): def _init_bell_pair(): bell_state = QuantumCircuit(2) bell_state.h(0) bell_state.cx(0, 1) return bell_state def _encode(qc, qubit, b0, b1): if b0 not in [0, 1] or b1 not in [0, 1]: raise RuntimeError(f'invalid bytes {b0} {b1}') if b0 == 1: qc.x(qubit) if b1 == 1: qc.z(qubit) return qc def _decode(qc): qc.cx(0, 1) qc.h(0) qc.measure_all() return qc bell_pair = _init_bell_pair() bell_pair = _encode(bell_pair, 0, a, b) bell_pair = _decode(bell_pair) plot_simulated_runs(bell_pair) bell_pair.draw('mpl') plt.show() def superdense_coding_real(a, b): def _init_bell_pair(): bell_state = QuantumCircuit(2) bell_state.h(0) bell_state.cx(0, 1) return bell_state def _encode(qc, qubit, b0, b1): if b0 not in [0, 1] or b1 not in [0, 1]: raise RuntimeError(f'invalid bytes {b0} {b1}') if b0 == 1: qc.x(qubit) if b1 == 1: qc.z(qubit) return qc def _decode(qc): qc.cx(0, 1) qc.h(0) qc.measure_all() return qc bell_pair = _init_bell_pair() bell_pair = _encode(bell_pair, 0, a, b) bell_pair = _decode(bell_pair) plot_runs(bell_pair) bell_pair.draw('mpl') plt.show() def quantum_teleportation(p0, p1): qc = QuantumRegister(3) a, b, psi_measured = ClassicalRegister(1), ClassicalRegister(1), ClassicalRegister(1) qc_teleportation = QuantumCircuit(qc, a, b, psi_measured) def _init_psi(): qc_teleportation.initialize([p0, p1], 0) def _init_bell_state(): qc_teleportation.h(1) qc_teleportation.cx(1, 2) qc_teleportation.barrier() def _entangle_psi(): qc_teleportation.cx(0, 1) qc_teleportation.h(0) qc_teleportation.barrier() def _measure(): qc_teleportation.measure(0, a) qc_teleportation.measure(1, b) qc_teleportation.barrier() def _apply_xz(): qc_teleportation.x(2).c_if(b, 1) qc_teleportation.z(2).c_if(a, 1) qc_teleportation.barrier() def _measure_psi(): qc_teleportation.measure(2, psi_measured) _init_psi() _init_bell_state() _entangle_psi() _measure() _apply_xz() _measure_psi() qc_teleportation.draw('mpl') psi_cnts = {'0': 0, '1': 0} cnts = simulate_runs(qc_teleportation) for state, fr in cnts.items(): psi_cnts[state[0]] += fr plot_histogram(psi_cnts) plt.show() def equiv_test(): def _test(a, b, c, d): q0_init_state = random_statevector(2) q1_init_state = random_statevector(2) qc_fst = QuantumCircuit(2) qc_fst.initialize(q0_init_state, 0) qc_fst.initialize(q1_init_state, 0) qc_fst.cx(0, 1) if a == 1: qc_fst.x(0) if b == 1: qc_fst.z(0) if c == 1: qc_fst.x(1) if d == 1: qc_fst.z(1) qc_fst.cx(0, 1) qc_fst.barrier() qc_fst.measure_all() qc_snd = QuantumCircuit(2) qc_snd.initialize(q0_init_state, 0) qc_snd.initialize(q1_init_state, 0) a_ = a d_ = d c_ = (1 - a) * c + a * (1 - c) b_ = (1 - d) * b + d * (1 - b) if a_ == 1: qc_snd.x(0) if b_ == 1: qc_snd.z(0) if c_ == 1: qc_snd.x(1) if d_ == 1: qc_snd.z(1) qc_snd.barrier() qc_snd.measure_all() plot_simulated_runs(qc_fst) plot_simulated_runs(qc_snd) plt.show() for a in [0, 1]: for b in [0, 1]: for c in [0, 1]: for d in [0, 1]: _test(a, b, c, d) def deutsch_josza(): ''' n = 4 uses random generated functions that are either constant or balanced ''' # build the Uf operator n = 4 ct = random.randint(0, 1) Uf = [[0 for _ in range(1 << (n + 1))] for _ in range(1 << (n + 1))] if random.randint(0, 1) == 1: constant = True for x in range(1 << (n + 1)): Uf[x][x] = 1 else: constant = False f = {x: (ct if x < (1 << (n - 1)) else 1 - ct) for x in range(1 << n)} for x in range((1 << n) - 1): x_ = random.randint(x + 1, (1 << n) - 1) aux = f[x] f[x] = f[x_] f[x_] = aux #print(f) cnt_ = 0 for x in range(1 << n): if f[x] == 1: cnt_ += 1 assert(cnt_ == (1 << (n - 1))) for x in range(1 << (n + 1)): Uf[x ^ f[x >> 1]][x] = 1 print(f'function is constant? {constant}') #print(Uf) #q_uf = Operator(Uf) #print(q_uf) Uf = qiskit_tensor_conversion(Uf, n + 1) #print(Uf) q_uf = Operator(Uf) #print(q_uf) qc = QuantumCircuit(n + 1, n) for x in range(n): qc.initialize([1, 0], x) qc.h(x) qc.initialize([0, 1], n) qc.h(n) qc.append(q_uf, [x for x in range(n + 1)]) for x in range(n): qc.h(x) qc.measure(x, x) qc.draw('mpl') plot_simulated_runs(qc, runs=128) #print(get_statevector(qc)) plt.show() def simon_alg(): ''' n = 4 probabilistic version (ends after n + 3 runs) it only checks for orthogonality of the returned values wrt s ''' # build the Uf operator n = 4 s = random.randint(1, (1 << n) - 1) f_values = [x for x in range(1 << n)] f = {x: None for x in range(1 << n)} for x in range(1 << n): if f[x] is None: f[x] = random.choice(f_values) f[x ^ s] = f[x] f_values.remove(f[x]) print(f"secret {s}, f {f}") Uf = [[0 for _ in range(1 << (n * 2))] for _ in range(1 << (n * 2))] for k in range(1 << (n * 2)): Uf[k ^ f[k >> n]][k] = 1 Uf = qiskit_tensor_conversion(Uf, n * 2) q_uf = Operator(Uf) qc = QuantumCircuit(n * 2, n * 2) for x in range(n * 2): qc.initialize([1, 0], x) for x in range(n): qc.h(x) qc.append(q_uf, [x for x in range(n * 2)]) # sanity check v = get_statevector(qc).to_dict() for k, _ in v.items(): x, fx = k[n: 2 * n], k[:n] x, fx = int(x[::-1], 2), int(fx[::-1], 2) assert(fx == f[x]) # -------- for x in range(n, n * 2): qc.measure(x, x) #v = get_statevector(qc).to_dict() #print(v) for x in range(n): qc.h(x) qc.measure(x, x) qc.draw('mpl') for _ in range(n + 3): for res in simulate_runs(qc, runs = 1).keys(): w = res[n: 2 * n] w = int(w[::-1], 2) break # solving the system manually # here just checking for s * w = 0 dot_prod = s & w s_ = 0 while dot_prod > 0: s_ ^= dot_prod & 0x01 dot_prod >>= 1 assert(s_ == 0) plot_simulated_runs(qc, runs=128) #print(get_statevector(qc)) plt.show() def grover_alg(): ''' n = 4\n generates random f: {0, 1}^n -> {0, 1} with exactly one x s.t. f(x) = 1 ''' n = 4 def _init_uniform_superposition(): # also adds ancilla qubit initialized to |-> unif = QuantumCircuit(n + 1) unif.initialize([0, 1], n) unif.h([qb for qb in range(n + 1)]) return unif def _get_random_Uf(): x_1 = random.randint(0, (1 << n) - 1) f = {x: 0 for x in range(1 << n)} f[x_1] = 1 print(f"f({x_1}) = 1") Uf = [[0 for _ in range(1 << (n + 1))] for _ in range(1 << (n + 1))] for k in range(1 << (n + 1)): Uf[k ^ f[k >> 1]][k] = 1 Uf = qiskit_tensor_conversion(Uf, n + 1) q_uf = Operator(Uf) return q_uf def _get_U0(): U0 = [[0 for _ in range(1 << n)] for _ in range(1 << n)] for k in range(1 << n): U0[k][k] = -1 U0[0][0] = 1 U0 = qiskit_tensor_conversion(U0, n) q_u0 = Operator(U0) return q_u0 def _get_grover_iterate(q_uf, q_u0): g = QuantumCircuit(n + 1) g.append(q_uf, [qb for qb in range(n + 1)]) g.h([qb for qb in range(n)]) g.append(q_u0, [qb for qb in range(n)]) g.h([qb for qb in range(n)]) return g def _measure_output(qc: QuantumCircuit): qc.add_register(ClassicalRegister(n)) for qb in range(n): qc.measure(qb, qb) plot_simulated_runs(qc) qc = _init_uniform_superposition() q_uf = _get_random_Uf() q_u0 = _get_U0() for _ in range(int(np.floor(np.sqrt(n)))): qc.append(_get_grover_iterate(q_uf, q_u0), [qb for qb in range(n + 1)]) #qc.draw('mpl') _measure_output(qc) plt.show() def start(): #example() #superdense_coding_real(1, 1) #quantum_teleportation(np.sqrt(3) / 2, 0.5) #equiv_test() #deutsch_josza() #simon_alg() grover_alg() return if __name__ == "__main__": start()
https://github.com/WerWojtas/Quantum_algorithms
WerWojtas
from qiskit.circuit.library import PhaseOracle from qiskit import QuantumCircuit from qiskit.circuit.library import GroverOperator from qiskit import Aer, transpile sat_problem = [ [1], [4,5,6], [7], [-3,-6], [-2,4,-5]] def save_to_dimacs(file_path, clauses,number_of_bits,number_of_clauses): with open(file_path, 'w') as file: file.write("p cnf " + str(number_of_bits) + " " + str(number_of_clauses) + "\n") for clause in clauses: file.write(" ".join(map(str, clause)) + " 0\n") save_to_dimacs("formula.dimacs", sat_problem,7,len(sat_problem) def Grovers_algorithm(number_of_qubits): oracle = PhaseOracle.from_dimacs_file('formula.dimacs') circuit = QuantumCircuit(number_of_qubits) for i in range(number_of_qubits): circuit.h(i) grover = GroverOperator(oracle) qc = circuit.compose(grover_operator) qc.measure_all() sim = Aer.get_backend('aer_simulator') transpile_qc = transpile(qc, sim) sim.run(transpile_qc).result().get_counts() Grovers_algorithm(7)
https://github.com/Fabiha-Noshin/Quantum-Algorithms-with-Qiskit
Fabiha-Noshin
# Importing necessary libraries: import qiskit as q from random import getrandbits %matplotlib inline # Importing standard Qiskit libraries from qiskit import QuantumCircuit, execute, Aer, IBMQ from qiskit.compiler import transpile, assemble from qiskit.tools.jupyter import * from qiskit.visualization import * from ibm_quantum_widgets import * # Loading your IBM Q account(s) provider = IBMQ.load_account() # Defining the constant and balanced oracle: def constant_oraclen(n, x, qc): if x == '0': pass elif x == '1': for i in range(int(n)): qc.x(i+1) def balanced_oraclen(n, x, qc): if x == '0': for i in range(int(n)): qc.cx(i, int(n)) elif x == '1': for i in range(int(n)): qc.x(i) qc.cx(i, int(n)) # Testing oracles: qc= QuantumCircuit(3,1) constant_oraclen(2, '1', qc) qc.draw() def random_oraclen(n, qc): # Selectiong type of oracle if str(getrandbits(1)) == '0': constant_oraclen(n, str(getrandbits(1)), qc) elif str(getrandbits(1)) == '1': balanced_oraclen(n, str(getrandbits(1)), qc) def make_circuitn(n): # Constructiong function to produce n qubit circuit qc= QuantumCircuit(int(n+1),1) # with required oracle (constant/balanced) for i in range(int(n+1)): if i > 0: qc.x(i) for i in range(int(n+1)): qc.h(i) qc.barrier() random_oraclen(n, qc) qc.barrier() for i in range(int(n+1)): qc.h(i) qc.measure(0,0) return qc # An example of 5 qubit circuit: q1= QuantumCircuit() q1= make_circuitn(5) q1.draw('mpl') # Running in qasm simulator: backend= Aer.get_backend('qasm_simulator') job= execute(q1, backend, shots= 3000) results= job.result() counts= results.get_counts() graph= plot_histogram(counts) display(graph) print(counts)
https://github.com/Fabiha-Noshin/Quantum-Algorithms-with-Qiskit
Fabiha-Noshin
import numpy as np # Importing standard Qiskit libraries from qiskit import QuantumCircuit, transpile, Aer, IBMQ, execute, assemble from qiskit.providers.ibmq import least_busy from qiskit.tools.jupyter import * from qiskit.visualization import * from ibm_quantum_widgets import * # Loading your IBM Quantum account(s) provider = IBMQ.load_account() ## Creating function for Equal Superposition states of two qubits: def initialize(qc): qc.h(0) # Applying H gates to both qubits qc.h(1) # and initializing grover circuit qc.barrier() grover_circuit = QuantumCircuit(2) initialize(grover_circuit) grover_circuit.draw('mpl') # Let's try to find the position of |11>: def oracle_11(qc): # Apply a controlled Z gate qc.cz(0,1) qc.barrier() oracle_11(grover_circuit) grover_circuit.draw('mpl') # Creating Grover's Diffusion operator: def u_g(qc): qc.h(0) qc.h(1) qc.x(0) qc.x(1) qc.h(1) qc.cx(0,1) qc.x(0) qc.h(1) qc.h(0) qc.x(1) qc.h(1) qc.barrier() u_g(grover_circuit) # temporary circuit just to see what U_s looks like grover_circuit.draw('mpl') # Finally we measure the circuit: grover_circuit.measure_all() grover_circuit.draw('mpl') # Simulating the Circuit: backend = Aer.get_backend('qasm_simulator') job = execute(grover_circuit, backend, shots = 1024) result = job.result() counts = result.get_counts() plot_histogram(counts) # Experimenting with real device: IBMQ.load_account() # Getting the least busy backend provider = IBMQ.get_provider(hub='ibm-q') backend = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= 2 and not x.configuration().simulator and x.status().operational==True)) print("least busy backend: ", backend) # Running the circuit on the least busy backend. Monitor the execution of the job in the queue from qiskit.tools.monitor import job_monitor transpiled_grover_circuit = transpile(grover_circuit, backend, optimization_level=3) qobj = assemble(transpiled_grover_circuit) job = backend.run(qobj) job_monitor(job, interval=2) # Getting the results from the computation results = job.result() answer = results.get_counts(grover_circuit) plot_histogram(answer)
https://github.com/Fabiha-Noshin/Quantum-Algorithms-with-Qiskit
Fabiha-Noshin
import numpy as np # Importing standard Qiskit libraries from qiskit import QuantumCircuit, transpile, Aer, IBMQ, QuantumRegister from qiskit.tools.jupyter import * from qiskit.visualization import * from ibm_quantum_widgets import * # Loading your IBM Q account(s) provider = IBMQ.load_account() from qiskit.aqua.algorithms import Grover from qiskit.aqua import QuantumInstance from qiskit.quantum_info.operators import Operator required_state = ['00100'] # The state that I want to find # Creating oracle for 5 qubits and according to required state oracle_matrix = np.array([[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]]) controls = QuantumRegister(5) oracle = QuantumCircuit(controls) oracle_circuit = Operator(oracle_matrix) oracle.unitary(oracle_circuit, [0,1,2,3,4], label='oracle') oracle.draw('mpl') # Applying the required oracle to the grover circuit: grover_circuit = Grover(oracle=oracle, good_state=required_state) grover_circuit.grover_operator.draw('mpl') # Running the whole circuit in a similator: simulator = Aer.get_backend('qasm_simulator') result = grover_circuit.run(quantum_instance=simulator) print('Result type: ',type(result)) print('Success!' if result.oracle_evaluation else 'Failure!') print('Top measurement: ', result.top_measurement) # Running the whole circuit in a real quantum device: from qiskit import IBMQ from qiskit.providers.ibmq import least_busy shots = 256 # Load local account information IBMQ.load_account() # Get the least busy backend provider = IBMQ.get_provider(hub='ibm-q') backend = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= 5 and not x.configuration().simulator and x.status().operational==True)) print("least busy backend: ", backend) result = grover_circuit.run(quantum_instance=backend, shots=8000) print('Result type: ',type(result)) print('Success!' if result.oracle_evaluation else 'Failure!') print('Top measurement: ', result.top_measurement)
https://github.com/rainmaker29/QuantumComputing-qiskit
rainmaker29
import qiskit as q %matplotlib inline # Creating a quantum circuit with 3 qbits circuit = q.QuantumCircuit(2,2) #Adding a NOT gate to 0th qbit which flips the input circuit.x(0) #Adding a 'Controlled NOT' gate between 0th,1st qbits #CNOT Gate operation : The second bit is flipped if the first bit is 1 circuit.cx(0,1) #Mapping the value of qbit to classical bits (collapse) circuit.measure([0,1],[0,1]) circuit.draw() circuit.draw(output="mpl") from qiskit import IBMQ IBMQ.save_account("e870e2997e01a21385263381f81495beff826d71a12d646658a7a15ffc5400dbbefa30e9ce0d2e65b872b30170038db21cdf8482e422510d62ef16297ad5c8a2") IBMQ.load_account() IBMQ.providers() provider = IBMQ.get_provider("ibm-q") # In QC practice,a simulator or a quantum computer is referred to as 'backend' for backend in provider.backends(): try: qubit_count = len(backend.properties().qubits) except : qubit_count = "simulated" print(backend.name(),"has",backend.status().pending_jobs," queued and ",qubit_count,"qubits") from qiskit.tools.monitor import job_monitor backend = provider.get_backend("ibmqx2") #Since it has0 queued job = q.execute(circuit,backend=backend,shots=500) job_monitor(job) # Now our circuit has been successfully run on IBM Cloud's IBMQX2 machine from qiskit.visualization import plot_histogram result = job.result() counts = result.get_counts(circuit) plot_histogram([counts],legend=['Device']) circuit = q.QuantumCircuit(2,2) # Hadamard gate to the first qbit circuit.h(0) # The same good old CNOT gate circuit.cx(0,1) circuit.measure([0,1],[0,1]) circuit.draw(output="mpl") # Let's execute this circuit # This cell isn't much needed yet we'll use it as a revision cell for backend in provider.backends(): try: qubit_count = len(backend.properties().qubits) except: qubit_count = "simulated" print(backend.name(),"has ",backend.status().pending_jobs,"queued and",qubit_count,"qubits") # let's choose ibmqx2 backend = provider.get_backend("ibmqx2") job = q.execute(circuit,backend = backend,shots=500) job_monitor(job) # Gives the status of our job result = job.result() counts = result.get_counts(circuit) plot_histogram([counts],legend=['Device ']) from qiskit import Aer for backend in Aer.backends(): print(backend) #Let's use qasm_simulator sim_backend = Aer.get_backend('qasm_simulator') job = q.execute(circuit,backend=sim_backend,shots=500) job_monitor(job) result = job.result() counts = result.get_counts(circuit) plot_histogram([counts],legend=['Device']) import qiskit as q from qiskit.tools.visualization import plot_bloch_multivector %matplotlib inline statevec_simulator = q.Aer.get_backend("statevector_simulator") qasm_sim = q.Aer.get_backend('qasm_simulator') def do_job(circuit): job = q.execute(circuit,backend=statevec_simulator) result = job.result() statevec = result.get_statevector() n_qubits = circuit.n_qubits circuit.measure([i for i in range(n_qubits)],[i for i in range(n_qubits)]) qasm_job = q.execute(circuit,backend=qasm_sim,shots=1024).result() counts = qasm_job.get_counts() return statevec,counts circuit = q.QuantumCircuit(2,2) statevec,counts=do_job(circuit) plot_bloch_multivector(statevec) # Let's see how superposition looks like in bloch sphere circuit = q.QuantumCircuit(2,2) circuit.h(0) statevec,counts = do_job(circuit) plot_bloch_multivector(statevec) # The qubit 0 is under superposition . So, it lies between 1 and 0 states in the space #Let's entangle the qubits circuit = q.QuantumCircuit(2,2) circuit.h(0) circuit.cx(0,1) statevec,counts = do_job(circuit) plot_bloch_multivector(statevec) from qiskit.visualization import plot_histogram plot_histogram([counts],legend=['Device']) #Let's take 3 qubits and control the last qubit by the first two qubits circuit = q.QuantumCircuit(3,3) circuit.h(0) circuit.h(1) circuit.cx(0,2) circuit.cx(1,2) circuit.draw(output="mpl") statevec,counts = do_job(circuit) plot_bloch_multivector(statevec) plot_histogram([counts],legend=['Device']) circuit = q.QuantumCircuit(3,3) circuit.h(0) circuit.h(1) circuit.ccx(0,1,2) circuit.draw(output="mpl") statevec,counts = do_job(circuit) plot_bloch_multivector(statevec) plot_histogram([counts],legend=['Device']) circuit = q.QuantumCircuit(3,1) circuit.h(0) circuit.h(1) circuit.ccx(0,1,2) circuit.measure([2],[0]) result = q.execute(circuit,backend=qasm_sim,shots=1024).result() counts = result.get_counts() plot_histogram([counts],legend=['Device']) import math circuit = q.QuantumCircuit(3,1) circuit.h(0) circuit.h(1) circuit.ccx(0,1,2) circuit.rx(math.pi/2,2) circuit.draw(output="mpl") circuit.measure([2],[0]) result = q.execute(circuit,backend=qasm_sim,shots=1024).result() counts = result.get_counts() plot_histogram([counts],legend=['output']) #Rotate X by 45 deg circuit = q.QuantumCircuit(3,3) circuit.h(0) circuit.h(1) circuit.ccx(0,1,2) circuit.rx(math.pi/4,2) statevec,counts = do_job(circuit) plot_bloch_multivector(statevec) plot_histogram([counts],legend=['output']) circuit = q.QuantumCircuit(3,3) circuit.h(0) circuit.h(1) circuit.ccx(0,1,2) circuit.rx(math.pi/4, 2) circuit.rz(math.pi, 2) circuit.ry(math.pi, 2) statevec, counts = do_job(circuit) plot_bloch_multivector(statevec) circuit = q.QuantumCircuit(3,3) circuit.h(0) circuit.h(1) circuit.x(2) circuit.crz(math.pi,1,2) circuit.draw(output="mpl") statevec,counts = do_job(circuit) plot_bloch_multivector(statevec)
https://github.com/rainmaker29/QuantumComputing-qiskit
rainmaker29
import qiskit as q %matplotlib inline # Creating a quantum circuit with 3 qbits circuit = q.QuantumCircuit(2,2) #Adding a NOT gate to 0th qbit which flips the input circuit.x(0) #Adding a 'Controlled NOT' gate between 0th,1st qbits #CNOT Gate operation : The second bit is flipped if the first bit is 1 circuit.cx(0,1) #Mapping the value of qbit to classical bits (collapse) circuit.measure([0,1],[0,1]) circuit.draw() circuit.draw(output="mpl") from qiskit import IBMQ IBMQ.save_account("e870e2997e01a21385263381f81495beff826d71a12d646658a7a15ffc5400dbbefa30e9ce0d2e65b872b30170038db21cdf8482e422510d62ef16297ad5c8a2") IBMQ.load_account() IBMQ.providers() provider = IBMQ.get_provider("ibm-q") # In QC practice,a simulator or a quantum computer is referred to as 'backend' for backend in provider.backends(): try: qubit_count = len(backend.properties().qubits) except : qubit_count = "simulated" print(backend.name(),"has",backend.status().pending_jobs," queued and ",qubit_count,"qubits") from qiskit.tools.monitor import job_monitor backend = provider.get_backend("ibmqx2") #Since it has0 queued job = q.execute(circuit,backend=backend,shots=500) job_monitor(job) # Now our circuit has been successfully run on IBM Cloud's IBMQX2 machine from qiskit.visualization import plot_histogram result = job.result() counts = result.get_counts(circuit) plot_histogram([counts],legend=['Device']) circuit = q.QuantumCircuit(2,2) # Hadamard gate to the first qbit circuit.h(0) # The same good old CNOT gate circuit.cx(0,1) circuit.measure([0,1],[0,1]) circuit.draw(output="mpl") # Let's execute this circuit # This cell isn't much needed yet we'll use it as a revision cell for backend in provider.backends(): try: qubit_count = len(backend.properties().qubits) except: qubit_count = "simulated" print(backend.name(),"has ",backend.status().pending_jobs,"queued and",qubit_count,"qubits") # let's choose ibmqx2 backend = provider.get_backend("ibmqx2") job = q.execute(circuit,backend = backend,shots=500) job_monitor(job) # Gives the status of our job result = job.result() counts = result.get_counts(circuit) plot_histogram([counts],legend=['Device ']) from qiskit import Aer for backend in Aer.backends(): print(backend) #Let's use qasm_simulator sim_backend = Aer.get_backend('qasm_simulator') job = q.execute(circuit,backend=sim_backend,shots=500) job_monitor(job) result = job.result() counts = result.get_counts(circuit) plot_histogram([counts],legend=['Device']) import qiskit as q from qiskit.tools.visualization import plot_bloch_multivector %matplotlib inline statevec_simulator = q.Aer.get_backend("statevector_simulator") qasm_sim = q.Aer.get_backend('qasm_simulator') def do_job(circuit): job = q.execute(circuit,backend=statevec_simulator) result = job.result() statevec = result.get_statevector() n_qubits = circuit.n_qubits circuit.measure([i for i in range(n_qubits)],[i for i in range(n_qubits)]) qasm_job = q.execute(circuit,backend=qasm_sim,shots=1024).result() counts = qasm_job.get_counts() return statevec,counts circuit = q.QuantumCircuit(2,2) statevec,counts=do_job(circuit) plot_bloch_multivector(statevec) # Let's see how superposition looks like in bloch sphere circuit = q.QuantumCircuit(2,2) circuit.h(0) statevec,counts = do_job(circuit) plot_bloch_multivector(statevec) # The qubit 0 is under superposition . So, it lies between 1 and 0 states in the space #Let's entangle the qubits circuit = q.QuantumCircuit(2,2) circuit.h(0) circuit.cx(0,1) statevec,counts = do_job(circuit) plot_bloch_multivector(statevec) from qiskit.visualization import plot_histogram plot_histogram([counts],legend=['Device']) #Let's take 3 qubits and control the last qubit by the first two qubits circuit = q.QuantumCircuit(3,3) circuit.h(0) circuit.h(1) circuit.cx(0,2) circuit.cx(1,2) circuit.draw(output="mpl") statevec,counts = do_job(circuit) plot_bloch_multivector(statevec) plot_histogram([counts],legend=['Device']) circuit = q.QuantumCircuit(3,3) circuit.h(0) circuit.h(1) circuit.ccx(0,1,2) circuit.draw(output="mpl") statevec,counts = do_job(circuit) plot_bloch_multivector(statevec) plot_histogram([counts],legend=['Device']) circuit = q.QuantumCircuit(3,1) circuit.h(0) circuit.h(1) circuit.ccx(0,1,2) circuit.measure([2],[0]) result = q.execute(circuit,backend=qasm_sim,shots=1024).result() counts = result.get_counts() plot_histogram([counts],legend=['Device']) import math circuit = q.QuantumCircuit(3,1) circuit.h(0) circuit.h(1) circuit.ccx(0,1,2) circuit.rx(math.pi/2,2) circuit.draw(output="mpl") circuit.measure([2],[0]) result = q.execute(circuit,backend=qasm_sim,shots=1024).result() counts = result.get_counts() plot_histogram([counts],legend=['output']) #Rotate X by 45 deg circuit = q.QuantumCircuit(3,3) circuit.h(0) circuit.h(1) circuit.ccx(0,1,2) circuit.rx(math.pi/4,2) statevec,counts = do_job(circuit) plot_bloch_multivector(statevec) plot_histogram([counts],legend=['output']) circuit = q.QuantumCircuit(3,3) circuit.h(0) circuit.h(1) circuit.ccx(0,1,2) circuit.rx(math.pi/4, 2) circuit.rz(math.pi, 2) circuit.ry(math.pi, 2) statevec, counts = do_job(circuit) plot_bloch_multivector(statevec) circuit = q.QuantumCircuit(3,3) circuit.h(0) circuit.h(1) circuit.x(2) circuit.crz(math.pi,1,2) circuit.draw(output="mpl") statevec,counts = do_job(circuit) plot_bloch_multivector(statevec)
https://github.com/riachakraborty/Algorithms-
riachakraborty
# useful additional packages #%% import numpy as np import matplotlib.pyplot as plt import matplotlib as mpl %matplotlib inline # importing Qiskit from qiskit import Aer, IBMQ from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister from qiskit import execute, compile #from qiskit.tools.monitor import job_monitor, backend_monitor, backend_overview backend = Aer.get_backend('statevector_simulator') # import basic plot tools from qiskit.tools.visualization import plot_histogram # Load our saved IBMQ accounts IBMQ.load_accounts() n = 12 # the length of the first register for querying the oracle # Choose a type of oracle at random. With probability half it is constant, # and with the same probability it is balanced oracleType, oracleValue = np.random.randint(2), np.random.randint(2) if oracleType == 0: print("The oracle returns a constant value ", oracleValue) else: print("The oracle returns a balanced function") a = np.random.randint(1,2**n) # this is a hidden parameter for balanced oracle. # Creating registers # n qubits for querying the oracle and one qubit for storing the answer qr = QuantumRegister(n+1) #all qubits are initialized to zero # for recording the measurement on the first register cr = ClassicalRegister(n) circuitName = "DeutschJozsa" djCircuit = QuantumCircuit(qr, cr) # Create the superposition of all input queries in the first register by applying the Hadamard gate to each qubit. for i in range(n): djCircuit.h(qr[i]) # Flip the second register and apply the Hadamard gate. djCircuit.x(qr[n]) djCircuit.h(qr[n]) # Apply barrier to mark the beginning of the oracle djCircuit.barrier() if oracleType == 0:#If the oracleType is "0", the oracle returns oracleValue for all input. if oracleValue == 1: djCircuit.x(qr[n]) else: djCircuit.iden(qr[n]) else: # Otherwise, it returns the inner product of the input with a (non-zero bitstring) for i in range(n): if (a & (1 << i)): djCircuit.cx(qr[i], qr[n]) # Apply barrier to mark the end of the oracle djCircuit.barrier() # Apply Hadamard gates after querying the oracle for i in range(n): djCircuit.h(qr[i]) # Measurement djCircuit.barrier() for i in range(n): djCircuit.measure(qr[i], cr[i]) #draw the circuit #djCircuit.draw(output='mpl') backend = Aer.get_backend('qasm_simulator') shots = 1000 job = execute(djCircuit, backend=backend, shots=shots) results = job.result() answer = results.get_counts() plot_histogram(answer)
https://github.com/samihatashin/QC-Algorithms-with-Qiskit
samihatashin
# Importing standard Qiskit libraries: from qiskit import * from qiskit.providers.ibmq import least_busy from qiskit.tools.jupyter import * from qiskit.visualization import * %matplotlib inline circuit = QuantumCircuit(7+1,7) circuit.draw("mpl") circuit.h([0,1,2,3,4,5,6]) circuit.x(7) circuit.h(7) circuit.barrier() circuit.draw("mpl") circuit.cx(6,7) circuit.cx(3,7) circuit.cx(2,7) circuit.cx(0,7) circuit.barrier() circuit.draw("mpl") circuit.h([0,1,2,3,4,5,6]) circuit.barrier() circuit.measure([0,1,2,3,4,5,6],[0,1,2,3,4,5,6]) circuit.draw("mpl") simulator = Aer.get_backend('qasm_simulator') result = execute(circuit, backend = simulator, shots = 1).result() counts = result.get_counts() print(counts) plot_histogram(counts) secret_number = input("Input a Binary String of your choice ") ## Not more than 4 bits if you want to run on a real quantum device later on bv_circ = QuantumCircuit(len(secret_number)+1,len(secret_number)) bv_circ.h(range(len(secret_number))) bv_circ.x(len(secret_number)) bv_circ.h(len(secret_number)) bv_circ.barrier() bv_circ.draw("mpl") for digit, query in enumerate(reversed(secret_number)): if query == "1": bv_circ.cx(digit, len(secret_number)) bv_circ.barrier() bv_circ.draw("mpl") bv_circ.h(range(len(secret_number))) bv_circ.barrier() bv_circ.measure(range(len(secret_number)),range(len(secret_number))) bv_circ.draw("mpl") simulator = Aer.get_backend("qasm_simulator") result = execute(bv_circ, backend = simulator, shots = 1).result() counts = result.get_counts() print(counts) plot_histogram(counts) # Enabling our IBMQ accounts to get the least busy backend device with less than or equal to 5 qubits IBMQ.enable_account('IBM Q API Token') provider = IBMQ.get_provider(hub='ibm-q') provider.backends() backend = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits <= 5 and x.configuration().n_qubits >= 2 and not x.configuration().simulator and x.status().operational==True)) print("least busy backend: ", backend) exp = execute(bv_circ, backend, shots = 1024) result_exp = exp.result() counts_exp = result_exp.get_counts() plot_histogram([counts_exp,counts])
https://github.com/samihatashin/QC-Algorithms-with-Qiskit
samihatashin
my_list = [1,3,5,2,4,2,5,8,0,7,6] #classical computation method def oracle(my_input): winner =7 if my_input is winner: response = True else: response = False return response for index, trial_number in enumerate(my_list): if oracle(trial_number) is True: print("Winner is found at index %i" %index) print("%i calls to the oracle used " %(index +1)) break #quantum implemenation from qiskit import * import matplotlib.pyplot as plt import numpy as np from qiskit.tools import job_monitor # oracle circuit oracle = QuantumCircuit(2, name='oracle') oracle.cz(0,1) oracle.to_gate() oracle.draw(output='mpl') backend = Aer.get_backend('statevector_simulator') grover_circuit = QuantumCircuit(2,2) grover_circuit.h([0,1]) grover_circuit.append(oracle,[0,1]) grover_circuit.draw(output='mpl') job= execute(grover_circuit, backend=backend) result= job.result() sv= result.get_statevector() np.around(sv,2) #amplitude amplification reflection = QuantumCircuit(2, name='reflection') reflection.h([0,1]) reflection.z([0,1]) reflection.cz(0,1) reflection.h([0,1]) reflection.to_gate() reflection.draw(output='mpl') #testing circuit on simulator simulator = Aer.get_backend('qasm_simulator') grover_circuit = QuantumCircuit(2,2) grover_circuit.h([0,1]) grover_circuit.append(oracle,[0,1]) grover_circuit.append(reflection, [0,1]) grover_circuit.barrier() grover_circuit.measure([0,1],[0,1]) grover_circuit.draw(output='mpl') job= execute(grover_circuit,backend=simulator,shots=1) result=job.result() result.get_counts() #testing on real backend system IBMQ.load_account() provider= IBMQ.get_provider('ibm-q') qcomp= provider.get_backend('ibmq_manila') job = execute(grover_circuit,backend=qcomp) job_monitor(job) result=job.result() counts=result.get_counts(grover_circuit) from qiskit.visualization import plot_histogram plot_histogram(counts) counts['11']
https://github.com/PayalSolanki2906/Quantum_algorithms_using_Qiskit
PayalSolanki2906
from qiskit import QuantumCircuit qc=QuantumCircuit() from qiskit import QuantumRegister qr = QuantumRegister(2,'a') qc.add_register(qr) qc.qregs ## qc.qregs is for displaying qc.draw() qc.h(qr[0]) ## applying Hadamard gate on the first qubit qc.draw() #qc.x(qr[0]) ## applying Hadamard gate on the first qubit #qc.draw() qc.cx(qr[1], qr[0]) qc.draw() from qiskit import Aer sv_sim = Aer.get_backend('aer_simulator') ##it is simulator for showing output for backend in Aer.backends(): print(backend) from qiskit import assemble qc.save_statevector() ## this converts output in to state vector qobj = assemble(qc) ## this assembles quantum circuit job = sv_sim.run(qobj) ## this is for running the job ket = job.result().get_statevector() for amplitude in ket: print(amplitude) new_qc = QuantumCircuit(qr) new_qc.initialize(ket, qr) new_qc.x(qr[0]) from qiskit import assemble new_qc.save_statevector() ## this converts output in to state vector qobj = assemble(new_qc) ## this assembles quantum circuit job = sv_sim.run(qobj) ket = job.result().get_statevector() for amplitude in ket: print(amplitude) from qiskit import ClassicalRegister cr = ClassicalRegister(2,'creg') qc.add_register(cr) qc.measure(qr[0],cr[0]) ##measuring first quibit on first classical register qc.measure(qr[1],cr[1]) ##measuring second quibit on second classical register qc.draw() aer_sim = Aer.get_backend('aer_simulator') qobj = assemble(qc, shots=100) ##shots is the number of experiments job = aer_sim.run(qobj, memory=True) ##.run is for running the experiments hist = job.result().get_counts() print(hist) from qiskit.visualization import plot_histogram plot_histogram(hist) samples = job.result().get_memory() #to get result of each experiment as a result print(samples) qubit = QuantumRegister(8) bit = ClassicalRegister(8) qc_2 = QuantumCircuit(qubit,bit) qc_2.x(qubit[7]) qc_2.measure(qubit,bit) # this is a way to do all the qc.measure(qr8[j],cr8[j]) at once qobj = assemble(qc_2, shots=8192) aer_sim.run(qobj).result().get_counts() qc = QuantumCircuit(2,1) ## where first arguments is corresponding to number of quantum regsiter and second ##argument is corresponding to the number of classical register. qc.h(0) qc.cx(0,1) qc.measure(1,0) qc.draw() sub_circuit = QuantumCircuit(3, name='toggle_cx') sub_circuit.cx(0,1) sub_circuit.cx(1,2) sub_circuit.cx(0,1) sub_circuit.cx(1,2) sub_circuit.draw() toggle_cx = sub_circuit.to_instruction() ##we convert this circuit to the custom gate qr = QuantumRegister(4) new_qc = QuantumCircuit(qr) new_qc.append(toggle_cx, [qr[1],qr[2],qr[3] ]) new_qc.draw()
https://github.com/PayalSolanki2906/Quantum_algorithms_using_Qiskit
PayalSolanki2906
from qiskit import QuantumCircuit, Aer, assemble import numpy as np from qiskit.visualization import plot_histogram, plot_bloch_multivector from qiskit.visualization import array_to_latex qc = QuantumCircuit(3) # Apply H-gate to each qubit: for qubit in range(3): qc.h(qubit) # See the circuit: qc.draw() # Let's see the result svsim = Aer.get_backend('aer_simulator') qc.save_statevector() qobj = assemble(qc) final_state = svsim.run(qobj).result().get_statevector() # In Jupyter Notebooks we can display this nicely using Latex. # If not using Jupyter Notebooks you may need to remove the # array_to_latex function and use print(final_state) instead. array_to_latex(final_state, prefix="\\text{Statevector} = ") qc = QuantumCircuit(2) qc.x(0) qc.draw() svsim = Aer.get_backend('aer_simulator') qc.save_statevector() qobj = assemble(qc) final_state = svsim.run(qobj).result().get_statevector() array_to_latex(final_state, prefix="\\text{Statevector} = ") qc = QuantumCircuit(2) qc.h(0) qc.draw() svsim = Aer.get_backend('aer_simulator') qc.save_statevector() qobj = assemble(qc) final_state = svsim.run(qobj).result().get_statevector() array_to_latex(final_state, prefix="\\text{Statevector} = ") qc = QuantumCircuit(2) qc.x(0) qc.h(1) qc.draw() svsim = Aer.get_backend('aer_simulator') qc.save_statevector() qobj = assemble(qc) final_state = svsim.run(qobj).result().get_statevector() array_to_latex(final_state, prefix="\\text{Statevector} = ") qc = QuantumCircuit(2) qc.h(0) qc.x(1) qc.h(1) qc.draw() svsim = Aer.get_backend('aer_simulator') qc.save_statevector() qobj = assemble(qc) final_state = svsim.run(qobj).result().get_statevector() array_to_latex(final_state, prefix="\\text{Statevector} = ") qc = QuantumCircuit(2) qc.h(0) qc.x(1) qc.draw() usim = Aer.get_backend('aer_simulator') qc.save_unitary() qobj = assemble(qc) unitary = usim.run(qobj).result().get_unitary() array_to_latex(unitary, prefix="\\text{Circuit = }\n") qc = QuantumCircuit(1) qc.x(0) qc.z(0) qc.h(0) qc.draw() usim = Aer.get_backend('aer_simulator') qc.save_unitary() qobj = assemble(qc) unitary = usim.run(qobj).result().get_unitary() array_to_latex(unitary, prefix="\\text{Circuit = }\n") qc = QuantumCircuit(3) qc.x(2) qc.z(1) qc.h(0) qc.draw() usim = Aer.get_backend('aer_simulator') qc.save_unitary() qobj = assemble(qc) unitary = usim.run(qobj).result().get_unitary() array_to_latex(unitary, prefix="\\text{Circuit = }\n") qc = QuantumCircuit(2) # Apply H-gate to the first: qc.h(0) # Apply a CNOT: qc.cx(0,1) qc.draw() # Let's get the result: qc.save_statevector() qobj = assemble(qc) result = svsim.run(qobj).result() # Print the statevector neatly: final_state = result.get_statevector() array_to_latex(final_state, prefix="\\text{Statevector = }") plot_bloch_multivector(final_state) qc = QuantumCircuit(2) # Apply H-gate to the first: qc.h(0) qc.draw() # Let's get the result: qc.save_statevector() qobj = assemble(qc) result = svsim.run(qobj).result() # Print the statevector neatly: final_state = result.get_statevector() array_to_latex(final_state, prefix="\\text{Statevector = }") plot_bloch_multivector(final_state) qc = QuantumCircuit(2) # Apply H-gate to the first: qc.x(0) qc.h(1) qc.cx(1,0) qc.draw() # Let's get the result: qc.save_statevector() qobj = assemble(qc) result = svsim.run(qobj).result() # Print the statevector neatly: final_state = result.get_statevector() array_to_latex(final_state, prefix="\\text{Statevector = }") qc = QuantumCircuit(2) # Apply H-gate to the first: qc.x(0) qc.h(1) qc.cx(1,0) usim = Aer.get_backend('aer_simulator') qc.save_unitary() qobj = assemble(qc) unitary = usim.run(qobj).result().get_unitary() array_to_latex(unitary, prefix="\\text{Circuit = }\n")
https://github.com/PayalSolanki2906/Quantum_algorithms_using_Qiskit
PayalSolanki2906
from qiskit import QuantumCircuit import numpy as np from qiskit import QuantumCircuit, assemble, Aer def deutsch_problem(seed=None): """Returns a circuit that carries out the function from Deutsch's problem. Args: seed (int): If set, then returned circuit will always be the same for the same seed. Returns: QuantumCircuit """ np.random.seed(seed) problem = QuantumCircuit(2) if np.random.randint(2): print("Function is balanced.") problem.cx(0, 1) else: print("Function is constant.") if np.random.randint(2): problem.x(1) return problem def deutsch(problem): """Implements Deutsch's algorithm. Args: function (QuantumCircuit): Deutsch function to solve. Must be a 2-qubit circuit, and either balanced, or constant. Returns: bool: True if the circuit is balanced, otherwise False. """ qc=QuantumCircuit(2,1) qc.x(1) qc.h([0,1]) qc.draw() qc.append(problem.to_gate(label='f'),[0,1]) qc.h(0) qc.measure(0,0) qc = qc.decompose('f') display(qc.draw()) sim = Aer.get_backend('aer_simulator') state = sim.run(qc).result().get_counts() # Execute the circuit and get the count state=list(state.keys())[0] ## fetch the bit from the Dictionary if state=='1': return('balanced') if state=='0': return('constant') problem=deutsch_problem() print(deutsch(problem))
https://github.com/PayalSolanki2906/Quantum_algorithms_using_Qiskit
PayalSolanki2906
from qiskit import QuantumCircuit from qiskit.visualization import plot_histogram qc=QuantumCircuit(4,2) ## for adder we need four quantum register and 2 classical register qc.barrier() # use cnots to write the XOR of the inputs on qubit 2 qc.cx(0,2) qc.cx(1,2) qc.ccx(0,1,3) qc.barrier() # extract outputs qc.measure(2,0) # extract XOR value qc.measure(3,1) qc.draw() from qiskit import Aer sim = Aer.get_backend('aer_simulator') from qiskit import assemble qobj = assemble(qc) counts = sim.run(qobj).result().get_counts() plot_histogram(counts) from qiskit import QuantumCircuit qc1=QuantumCircuit(4,2) ## for adder we need four quantum register and 2 classical register qc1.x(1) qc1.barrier() # use cnots to write the XOR of the inputs on qubit 2 qc1.cx(0,2) qc1.cx(1,2) qc1.ccx(0,1,3) qc1.barrier() # extract outputs qc1.measure(2,0) # extract XOR value qc1.measure(3,1) qc1.draw() from qiskit import Aer sim = Aer.get_backend('aer_simulator') from qiskit import assemble qobj = assemble(qc1) counts = sim.run(qobj).result().get_counts() plot_histogram(counts) from qiskit import QuantumCircuit qc2=QuantumCircuit(4,2) ## for adder we need four quantum register and 2 classical register qc2.x(0) qc2.barrier() # use cnots to write the XOR of the inputs on qubit 2 qc2.cx(0,2) qc2.cx(1,2) qc2.ccx(0,1,3) qc2.barrier() # extract outputs qc2.measure(2,0) # extract XOR value qc2.measure(3,1) qc2.draw() from qiskit import Aer sim = Aer.get_backend('aer_simulator') from qiskit import assemble qobj = assemble(qc2) counts = sim.run(qobj).result().get_counts() plot_histogram(counts) from qiskit import QuantumCircuit qc3=QuantumCircuit(4,2) ## for adder we need four quantum register and 2 classical register qc3.x(0) qc3.x(1) qc3.barrier() # use cnots to write the XOR of the inputs on qubit 2 qc3.cx(0,2) qc3.cx(1,2) qc3.ccx(0,1,3) qc3.barrier() # extract outputs qc3.measure(2,0) # extract XOR value qc3.measure(3,1) qc3.draw() from qiskit import Aer sim = Aer.get_backend('aer_simulator') from qiskit import assemble qobj = assemble(qc3) counts = sim.run(qobj).result().get_counts() plot_histogram(counts)
https://github.com/PayalSolanki2906/Quantum_algorithms_using_Qiskit
PayalSolanki2906
from qiskit import QuantumCircuit, assemble, Aer from qiskit.visualization import plot_histogram, plot_bloch_vector from cmath import sqrt, pi, exp sim = Aer.get_backend('aer_simulator') qc = QuantumCircuit(1) # Create a quantum circuit with one qubit initial_state = [0,1] qc.initialize(initial_state, 0) sim = Aer.get_backend('aer_simulator') qc.save_statevector() ## this converts output in to state vector qobj = assemble(qc) ## this assembles quantum circuit job = sim.run(qobj) ## this is for running the job ket = job.result().get_statevector() print(ket) qc.measure_all() qc.draw() qobj = assemble(qc) counts = sim.run(qobj).result().get_counts() plot_histogram(counts) qc1 = QuantumCircuit(1) # Create a quantum circuit with one qubit initial_state = [1/sqrt(2),1/sqrt(2)] # Define initial_state as |1> qc1.initialize(initial_state, 0) # Apply initialisation operation to the 0th qubit qc1.draw() # Let's view our circuit sim = Aer.get_backend('aer_simulator') qc1.save_statevector() ## this converts output in to state vector qobj = assemble(qc1) ## this assembles quantum circuit job = sim.run(qobj) ## this is for running the job ket = job.result().get_statevector() print(ket) qc1.measure_all() qc1.draw() qobj = assemble(qc1) counts = sim.run(qobj).result().get_counts() plot_histogram(counts) state1 = [1/sqrt(3),sqrt(2/3)] i=complex(0,1) state2 = [exp(-i*pi)*1/sqrt(3),exp(-i*pi)*sqrt(2/3)] ## adding a global phase never changes the probabilities. initial_state = state1 # Define state |q_0> qc = QuantumCircuit(1) # Must redefine qc qc.initialize(initial_state, 0) # Initialize the 0th qubit in the state `initial_state` qc.save_statevector() # Save statevector qobj = assemble(qc) results = sim.run(qobj).result().get_counts() plot_histogram(results) initial_state = state2 # Define state |q_0> qc = QuantumCircuit(1) # Must redefine qc qc.initialize(initial_state, 0) # Initialize the 0th qubit in the state `initial_state` qc.save_statevector() # Save statevector qobj = assemble(qc) state = sim.run(qobj).result().get_statevector() # Execute the circuit print(state) # Print the result qobj = assemble(qc) results = sim.run(qobj).result().get_counts() plot_histogram(results) from qiskit_textbook.widgets import plot_bloch_vector_spherical coords = [pi/2,0,1] # [Theta, Phi, Radius] plot_bloch_vector_spherical(coords) # Bloch Vector with spherical coordinates from qiskit_textbook.widgets import plot_bloch_vector_spherical coords = [2*pi,0,1] # [Theta, Phi, Radius] plot_bloch_vector_spherical(coords) # Bloch Vector with spherical coordinates from qiskit_textbook.widgets import plot_bloch_vector_spherical coords = [pi,0,1] # [Theta, Phi, Radius] plot_bloch_vector_spherical(coords) # Bloch Vector with spherical coordinates from qiskit_textbook.widgets import plot_bloch_vector_spherical coords = [pi/2,0,1] # [Theta, Phi, Radius] plot_bloch_vector_spherical(coords) # Bloch Vector with spherical coordinates from qiskit_textbook.widgets import plot_bloch_vector_spherical coords = [pi/2,-pi/2,1] # [Theta, Phi, Radius] plot_bloch_vector_spherical(coords) # Bloch Vector with spherical coordinates
https://github.com/PayalSolanki2906/Quantum_algorithms_using_Qiskit
PayalSolanki2906
from qiskit import QuantumCircuit, assemble, Aer from math import pi, sqrt, exp from qiskit.visualization import plot_bloch_multivector, plot_histogram sim = Aer.get_backend('aer_simulator') qc = QuantumCircuit(1) qc.x(0) qc.draw() qc.save_statevector() qobj = assemble(qc) state = sim.run(qobj).result().get_statevector() plot_bloch_multivector(state) qc = QuantumCircuit(1) qc.y(0) qc.draw() qc.save_statevector() qobj = assemble(qc) state = sim.run(qobj).result().get_statevector() plot_bloch_multivector(state) qc = QuantumCircuit(1) qc.z(0) qc.draw() qc.save_statevector() qobj = assemble(qc) state = sim.run(qobj).result().get_statevector() plot_bloch_multivector(state) qc = QuantumCircuit(1) qc.h(0) qc.draw() qc.save_statevector() qobj = assemble(qc) state = sim.run(qobj).result().get_statevector() plot_bloch_multivector(state) qc = QuantumCircuit(1) qc.p(pi/4, 0) qc.draw() qc = QuantumCircuit(1) qc.s(0) # Apply S-gate to qubit 0 qc.sdg(0) # Apply Sdg-gate to qubit 0 qc.draw() qc = QuantumCircuit(1) qc.t(0) # Apply T-gate to qubit 0 qc.tdg(0) # Apply Tdg-gate to qubit 0 qc.draw() qc = QuantumCircuit(1) qc.u(pi/2, 0, pi, 0) qc.draw() qc.save_statevector() qobj = assemble(qc) state = sim.run(qobj).result().get_statevector() plot_bloch_multivector(state) initial_state =[1/sqrt(2), -1/sqrt(2)] # Define state |q_0> qc = QuantumCircuit(1) # Must redefine qc qc.initialize(initial_state, 0) # Initialize the 0th qubit in the state `initial_state` qc.save_statevector() # Save statevector qobj = assemble(qc) state = sim.run(qobj).result().get_statevector() # Execute the circuit print(state) # Print the result qobj = assemble(qc) results = sim.run(qobj).result().get_counts() plot_histogram(results) initial_state =[1/sqrt(2), 1/sqrt(2)] # Define state |q_0> qc = QuantumCircuit(1) # Must redefine qc qc.initialize(initial_state, 0) # Initialize the 0th qubit in the state `initial_state` qc.save_statevector() # Save statevector qobj = assemble(qc) state = sim.run(qobj).result().get_statevector() # Execute the circuit print(state) # Print the result qobj = assemble(qc) results = sim.run(qobj).result().get_counts() plot_histogram(results) # Create the Y-measurement function: def x_measurement(qc, qubit, cbit): """Measure 'qubit' in the X-basis, and store the result in 'cbit'""" qc.s(qubit) qc.h(qubit) qc.measure(qubit, cbit) return qc initial_state = [1/sqrt(2), -complex(0,1)/sqrt(2)] # Initialize our qubit and measure it qc = QuantumCircuit(1,1) qc.initialize(initial_state, 0) x_measurement(qc, 0, 0) # measure qubit 0 to classical bit 0 qc.draw() qobj = assemble(qc) # Assemble circuit into a Qobj that can be run counts = sim.run(qobj).result().get_counts() # Do the simulation, returning the state vector plot_histogram(counts) # Display the output on measurement of state vector
https://github.com/aniket1905-del/Quantum_computation
aniket1905-del
import cirq import numpy as np from qiskit import QuantumCircuit, execute, Aer import seaborn as sns import matplotlib.pyplot as plt plt.rcParams['figure.figsize'] = (15,10) q0, q1, q2 = [cirq.LineQubit(i) for i in range(3)] circuit = cirq.Circuit() #entagling the 2 quibits in different laboratories #and preparing the qubit to send circuit.append(cirq.H(q0)) circuit.append(cirq.H(q1)) circuit.append(cirq.CNOT(q1, q2)) #entangling the qubit we want to send to the one in the first laboratory circuit.append(cirq.CNOT(q0, q1)) circuit.append(cirq.H(q0)) #measurements circuit.append(cirq.measure(q0, q1)) #last transformations to obtain the qubit information circuit.append(cirq.CNOT(q1, q2)) circuit.append(cirq.CZ(q0, q2)) #measure of the qubit in the receiving laboratory along z axis circuit.append(cirq.measure(q2, key = 'Z')) circuit #starting simulation sim = cirq.Simulator() results = sim.run(circuit, repetitions=100) sns.histplot(results.measurements['Z'], discrete = True) 100 - np.count_nonzero(results.measurements['Z']), np.count_nonzero(results.measurements['Z']) #in qiskit the qubits are integrated in the circuit qc = QuantumCircuit(3, 1) #entangling qc.h(0) qc.h(1) qc.cx(1, 2) qc.cx(0, 1) #setting for measurment qc.h(0) qc.measure([0,1], [0,0]) #transformation to obtain qubit sent qc.cx(1, 2) qc.cz(0, 2) qc.measure(2, 0) print(qc) #simulation simulator = Aer.get_backend('qasm_simulator') job = execute(qc, simulator, shots=100) res = job.result().get_counts(qc) plt.bar(res.keys(), res.values()) res
https://github.com/chinsu70802/quantum_teleportation
chinsu70802
!pip install qiskit !pip install pylatexenc !pip install qiskit-aer from qiskit import QuantumCircuit mycircuit = QuantumCircuit(1) mycircuit.draw('mpl') from qiskit.quantum_info import Statevector sv = Statevector.from_label('0') sv sv.data new_sv = sv.evolve(mycircuit) new_sv from qiskit.quantum_info import state_fidelity state_fidelity(sv, new_sv) from qiskit.visualization import plot_state_qsphere plot_state_qsphere(sv.data) mycircuit = QuantumCircuit(1) mycircuit.x(0) mycircuit.draw('mpl') sv = Statevector.from_label('0') new_sv = sv.evolve(mycircuit) new_sv state_fidelity(sv, new_sv) plot_state_qsphere(new_sv.data) sv = Statevector.from_label('0') mycircuit = QuantumCircuit(1) mycircuit.h(0) mycircuit.draw('mpl') new_sv = sv.evolve(mycircuit) print(new_sv) plot_state_qsphere(new_sv.data) sv = Statevector.from_label('1') mycircuit = QuantumCircuit(1) mycircuit.h(0) new_sv = sv.evolve(mycircuit) print(new_sv) plot_state_qsphere(new_sv.data) sv = Statevector.from_label('00') plot_state_qsphere(sv.data) mycircuit = QuantumCircuit(2) mycircuit.h(0) mycircuit.cx(0,1) mycircuit.draw('mpl') new_sv = sv.evolve(mycircuit) print(new_sv) plot_state_qsphere(new_sv.data) counts = new_sv.sample_counts(shots=1000) from qiskit.visualization import plot_histogram plot_histogram(counts) sv = Statevector.from_label('10') mycircuit.draw('mpl') new_sv = sv.evolve(mycircuit) new_sv sv = Statevector.from_label('11') mycircuit.draw('mpl') new_sv = sv.evolve(mycircuit) new_sv mycircuit = QuantumCircuit(2, 2) mycircuit.h(0) mycircuit.cx(0,1) mycircuit.measure([0,1], [0,1]) mycircuit.draw('mpl') from qiskit import Aer, execute simulator = Aer.get_backend('qasm_simulator') result = execute(mycircuit, simulator, shots=10000).result() counts = result.get_counts(mycircuit) plot_histogram(counts) def initialize_qubit(given_circuit, qubit_index): import numpy as np ### WRITE YOUR CODE BETWEEN THESE LINES - START given_circuit.initialize([np.sqrt(0.7),np.sqrt(0.3)],qubit_index) ### WRITE YOUR CODE BETWEEN THESE LINES - END return given_circuit def entangle_qubits(given_circuit, qubit_Alice, qubit_Bob): ### WRITE YOUR CODE BETWEEN THESE LINES - START given_circuit.h(qubit_Alice) given_circuit.cx(qubit_Alice, qubit_Bob) ### WRITE YOUR CODE BETWEEN THESE LINES - END return given_circuit def bell_meas_Alice_qubits(given_circuit, qubit1_Alice, qubit2_Alice, clbit1_Alice, clbit2_Alice): ### WRITE YOUR CODE BETWEEN THESE LINES - START given_circuit.cx(qubit1_Alice,qubit2_Alice) given_circuit.h(qubit1_Alice) given_circuit.barrier() given_circuit.measure([qubit1_Alice,qubit2_Alice],[clbit1_Alice,clbit2_Alice]) ### WRITE YOUR CODE BETWEEN THESE LINES - END return given_circuit def controlled_ops_Bob_qubit(given_circuit, qubit_Bob, clbit1_Alice, clbit2_Alice): ### WRITE YOUR CODE BETWEEN THESE LINES - START if clbit1_Alice == 1 and clbit2_Alice == 0: given_circuit.z(qubit_Bob) elif clbit1_Alice == 0 and clbit2_Alice == 1: given_circuit.x(qubit_Bob) elif clbit1_Alice == 1 and clbit2_Alice == 1: given_circuit.x(qubit_Bob) given_circuit.z(qubit_Bob) ### WRITE YOUR CODE BETWEEN THESE LINES - END return given_circuit ### imports from qiskit import QuantumRegister, ClassicalRegister ### set up the qubits and classical bits all_qubits_Alice = QuantumRegister(2) all_qubits_Bob = QuantumRegister(1) creg1_Alice = ClassicalRegister(1) creg2_Alice = ClassicalRegister(1) ### quantum teleportation circuit here # Initialize mycircuit = QuantumCircuit(all_qubits_Alice, all_qubits_Bob, creg1_Alice, creg2_Alice) initialize_qubit(mycircuit, 0) mycircuit.barrier() # Entangle entangle_qubits(mycircuit, 1, 2) mycircuit.barrier() # Do a Bell measurement bell_meas_Alice_qubits(mycircuit, all_qubits_Alice[0], all_qubits_Alice[1], creg1_Alice[0], creg2_Alice[0]) mycircuit.barrier() # Apply classically controlled quantum gates controlled_ops_Bob_qubit(mycircuit, all_qubits_Bob[0], creg1_Alice, creg2_Alice) ### Look at the complete circuit mycircuit.draw('mpl') mycircuit.measure_all() from qiskit import Aer, execute simulator = Aer.get_backend('qasm_simulator') result = execute(mycircuit, simulator, shots=10000).result() counts = result.get_counts(mycircuit) plot_histogram(counts)
https://github.com/108mk/Quantum_Algorithms_and_Qiskit
108mk
import qiskit qiskit.__qiskit_version__ #initialization import matplotlib.pyplot as plt %matplotlib inline import numpy as np # importing Qiskit from qiskit import IBMQ, BasicAer from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute from qiskit.compiler import transpile from qiskit.tools.monitor import job_monitor # import basic plot tools from qiskit.tools.visualization import plot_histogram # Load our saved IBMQ accounts. IBMQ.load_account() nQubits = 14 # number of physical qubits a = 101 # the hidden integer whose bitstring is 1100101 # make sure that a can be represented with nQubits a = a % 2**(nQubits) # Creating registers # qubits for querying the oracle and finding the hidden integer qr = QuantumRegister(nQubits) # for recording the measurement on qr cr = ClassicalRegister(nQubits) circuitName = "BernsteinVazirani" bvCircuit = QuantumCircuit(qr, cr) # Apply Hadamard gates before querying the oracle for i in range(nQubits): bvCircuit.h(qr[i]) # Apply barrier so that it is not optimized by the compiler bvCircuit.barrier() # Apply the inner-product oracle for i in range(nQubits): if (a & (1 << i)): bvCircuit.z(qr[i]) else: bvCircuit.iden(qr[i]) # Apply barrier bvCircuit.barrier() #Apply Hadamard gates after querying the oracle for i in range(nQubits): bvCircuit.h(qr[i]) # Measurement bvCircuit.barrier(qr) bvCircuit.measure(qr, cr) bvCircuit.draw(output='mpl') # use local simulator backend = BasicAer.get_backend('qasm_simulator') shots = 1000 results = execute(bvCircuit, backend=backend, shots=shots).result() answer = results.get_counts() plot_histogram(answer) backend = IBMQ.get_backend('ibmq_16_melbourne') shots = 1000 bvCompiled = transpile(bvCircuit, backend=backend, optimization_level=1) job_exp = execute(bvCircuit, backend=backend, shots=shots) job_monitor(job_exp) results = job_exp.result() answer = results.get_counts(bvCircuit) threshold = int(0.01 * shots) #the threshold of plotting significant measurements filteredAnswer = {k: v for k,v in answer.items() if v >= threshold} #filter the answer for better view of plots removedCounts = np.sum([ v for k,v in answer.items() if v < threshold ]) #number of counts removed filteredAnswer['other_bitstrings'] = removedCounts #the removed counts is assigned to a new index plot_histogram(filteredAnswer) print(filteredAnswer)
https://github.com/108mk/Quantum_Algorithms_and_Qiskit
108mk
# initialization import numpy as np # importing Qiskit from qiskit import IBMQ, Aer from qiskit.providers.ibmq import least_busy from qiskit import QuantumCircuit, assemble, transpile # import basic plot tools from qiskit.visualization import plot_histogram import matplotlib as mpl # set the length of the n-bit input string. n = 2 #----------This was the original case considered by David Duetzch-----------# # set the length of the n-bit input string. const_oracle = QuantumCircuit(n+1) output = np.random.randint(2) if output == 1: const_oracle.x(n) const_oracle.draw("mpl") balanced_oracle = QuantumCircuit(n+1) #------input a 2-bit string as of your choice!!!!!!!! b_str = "11" balanced_oracle = QuantumCircuit(n+1) # Place X-gates for qubit in range(len(b_str)): if b_str[qubit] == '1': balanced_oracle.x(qubit) balanced_oracle.draw("mpl") # Use barrier as divider balanced_oracle.barrier() # Controlled-NOT gates for qubit in range(n): balanced_oracle.cx(qubit, n) balanced_oracle.barrier() balanced_oracle.draw("mpl") # Place X-gates for qubit in range(len(b_str)): if b_str[qubit] == '1': balanced_oracle.x(qubit) # Show oracle balanced_oracle.draw("mpl") dj_circuit = QuantumCircuit(n+1, n) # Apply H-gates for qubit in range(n): dj_circuit.h(qubit) # Put qubit in state |-> dj_circuit.x(n) dj_circuit.h(n) dj_circuit.draw("mpl") # Add oracle dj_circuit = QuantumCircuit.compose(dj_circuit,balanced_oracle) dj_circuit.draw("mpl") # Repeat H-gates for qubit in range(n): dj_circuit.h(qubit) dj_circuit.barrier() # Measure for i in range(n): dj_circuit.measure(i, i) # Display circuit dj_circuit.draw("mpl") # use local simulator aer_sim = Aer.get_backend('aer_simulator') qobj = assemble(dj_circuit, aer_sim) results = aer_sim.run(qobj).result() answer = results.get_counts() plot_histogram(answer) #---------CONCLUDING REMARKS---------------- ###--------THE ABOVE ALGORITHM CAN BE EXTENDED TO N-VARAIBLE CASE. IT IS CALLED DUETZCH-JOZSA ALGORITHM-----
https://github.com/108mk/Quantum_Algorithms_and_Qiskit
108mk
#!conda deactivate !conda update anaconda-navigator !conda update conda !conda update conda !conda update anaconda import numpy as np a = np.array([[ 1., 0., 0., 0.], [ 0., 1., 0., 0.], [ 0., 0., 0., 1.], [ 0., 0., 1., 0.]]) p = q =r= s = 1 b = np.array([[ p, 0., q, 0.], [ 0., 0., 0., 0.], [ r, 0., s, 0.], [ 0., 0., 0., 0.]]) a@b a@b@a
https://github.com/108mk/Quantum_Algorithms_and_Qiskit
108mk
#initialization import matplotlib.pyplot as plt %matplotlib inline import numpy as np # importing Qiskit from qiskit import IBMQ, BasicAer from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute from qiskit.compiler import transpile from qiskit.tools.monitor import job_monitor # import basic plot tools from qiskit.tools.visualization import plot_histogram nQubits = 4 # number of physical qubits a = 11 #DECIMAL----the hidden integer whose bitstring is 1011 in BINARY # make sure that a can be represented with nQubits a = a % 2**(nQubits) # Creating registers # qubits for querying the oracle and finding the hidden integer qr = QuantumRegister(nQubits) # for recording the measurement on qr cr = ClassicalRegister(nQubits) circuitName = "BernsteinVazirani" bvCircuit = QuantumCircuit(qr, cr) # Apply Hadamard gates before querying the oracle for i in range(nQubits): bvCircuit.h(qr[i]) # Apply barrier so that it is not optimized by the compiler bvCircuit.barrier() # Apply the inner-product oracle for i in range(nQubits): if (a & (1 << i)): bvCircuit.z(qr[i]) else: bvCircuit.id(qr[i]) # Apply barrier bvCircuit.barrier() #Apply Hadamard gates after querying the oracle for i in range(nQubits): bvCircuit.h(qr[i]) # Measurement bvCircuit.barrier(qr) bvCircuit.measure(qr, cr) bvCircuit.draw(output='mpl') # use local simulator backend = BasicAer.get_backend('qasm_simulator') shots = 1000 results = execute(bvCircuit, backend=backend, shots=shots).result() answer = results.get_counts() plot_histogram(answer) from qiskit import IBMQ IBMQ.save_account('87e81a3de8a45f8a9ee4b2ccdb65b7b1d60dceec51f8541ac31f74fcec029dc63ec26a70a3d6ee88184bfe4719aa82eed0eca8a396e364c28b727ea8f42c4ec3', overwrite=True) IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q', group='open', project='main') provider.backends() provider = IBMQ.get_provider(hub='ibm-q', group='open', project='main') backend = provider.get_backend('ibm_oslo') shots = 1000 bvCompiled = transpile(bvCircuit, backend=backend, optimization_level=1) job_exp = execute(bvCircuit, backend=backend, shots=shots) job_monitor(job_exp) results = job_exp.result() answer = results.get_counts(bvCircuit) threshold = int(0.01 * shots) #the threshold of plotting significant measurements filteredAnswer = {k: v for k,v in answer.items() if v >= threshold} #filter the answer for better view of plots removedCounts = np.sum([ v for k,v in answer.items() if v < threshold ]) #number of counts removed filteredAnswer['other_bitstrings'] = removedCounts #the removed counts is assigned to a new index plot_histogram(filteredAnswer) print(filteredAnswer) #-----unable to run on actual IBMQ device-----
https://github.com/108mk/Quantum_Algorithms_and_Qiskit
108mk
import qiskit qiskit.__qiskit_version__ import qiskit qiskit.__qiskit_version__ # useful additional packages import numpy as np import matplotlib.pyplot as plt %matplotlib inline # importing Qiskit from qiskit import BasicAer, IBMQ from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute from qiskit.compiler import transpile from qiskit.tools.monitor import job_monitor # import basic plot tools from qiskit.tools.visualization import plot_histogram '''# Load our saved IBMQ accounts IBMQ.load_account()''' n = 13 # the length of the first register for querying the oracle # Choose a type of oracle at random. With probability half it is constant, # and with the same probability it is balanced oracleType, oracleValue = np.random.randint(2), np.random.randint(2) if oracleType == 0: print("The oracle returns a constant value ", oracleValue) else: print("The oracle returns a balanced function") a = np.random.randint(1,2**n) # this is a hidden parameter for balanced oracle. # Creating registers # n qubits for querying the oracle and one qubit for storing the answer qr = QuantumRegister(n+1) #all qubits are initialized to zero # for recording the measurement on the first register cr = ClassicalRegister(n) circuitName = "DeutschJozsa" djCircuit = QuantumCircuit(qr, cr) # Create the superposition of all input queries in the first register by applying the Hadamard gate to each qubit. for i in range(n): djCircuit.h(qr[i]) # Flip the second register and apply the Hadamard gate. djCircuit.x(qr[n]) djCircuit.h(qr[n]) # Apply barrier to mark the beginning of the oracle djCircuit.barrier() if oracleType == 0:#If the oracleType is "0", the oracle returns oracleValue for all input. if oracleValue == 1: djCircuit.x(qr[n]) else: djCircuit.iden(qr[n]) else: # Otherwise, it returns the inner product of the input with a (non-zero bitstring) for i in range(n): if (a & (1 << i)): djCircuit.cx(qr[i], qr[n]) # Apply barrier to mark the end of the oracle djCircuit.barrier() # Apply Hadamard gates after querying the oracle for i in range(n): djCircuit.h(qr[i]) # Measurement djCircuit.barrier() for i in range(n): djCircuit.measure(qr[i], cr[i]) #draw the circuit djCircuit.draw(output='mpl',scale=0.5) backend = BasicAer.get_backend('qasm_simulator') shots = 1000 job = execute(djCircuit, backend=backend, shots=shots) results = job.result() answer = results.get_counts() plot_histogram(answer) backend = IBMQ.get_backend('ibmq_16_melbourne') djCompiled = transpile(djCircuit, backend=backend, optimization_level=1) djCompiled.draw(output='mpl',scale=0.5) job = execute(djCompiled, backend=backend, shots=1024) job_monitor(job) results = job.result() answer = results.get_counts() threshold = int(0.01 * shots) # the threshold of plotting significant measurements filteredAnswer = {k: v for k,v in answer.items() if v >= threshold} # filter the answer for better view of plots removedCounts = np.sum([ v for k,v in answer.items() if v < threshold ]) # number of counts removed filteredAnswer['other_bitstrings'] = removedCounts # the removed counts are assigned to a new index plot_histogram(filteredAnswer) print(filteredAnswer)
https://github.com/108mk/Quantum_Algorithms_and_Qiskit
108mk
# initialization import numpy as np # importing Qiskit from qiskit import IBMQ, Aer from qiskit.providers.ibmq import least_busy from qiskit import QuantumCircuit, assemble, transpile # import basic plot tools from qiskit.visualization import plot_histogram import matplotlib as mpl # set the length of the n-bit input string. n = 2 #----------This was the original case considered by David Duetzch-----------# # set the length of the n-bit input string. const_oracle = QuantumCircuit(n+1) output = np.random.randint(2) if output == 1: const_oracle.x(n) const_oracle.draw("mpl") balanced_oracle = QuantumCircuit(n+1) #------input a 2-bit string as of your choice!!!!!!!! b_str = "11" balanced_oracle = QuantumCircuit(n+1) # Place X-gates for qubit in range(len(b_str)): if b_str[qubit] == '1': balanced_oracle.x(qubit) balanced_oracle.draw("mpl") # Use barrier as divider balanced_oracle.barrier() # Controlled-NOT gates for qubit in range(n): balanced_oracle.cx(qubit, n) balanced_oracle.barrier() balanced_oracle.draw("mpl") # Place X-gates for qubit in range(len(b_str)): if b_str[qubit] == '1': balanced_oracle.x(qubit) # Show oracle balanced_oracle.draw("mpl") dj_circuit = QuantumCircuit(n+1, n) # Apply H-gates for qubit in range(n): dj_circuit.h(qubit) # Put qubit in state |-> dj_circuit.x(n) dj_circuit.h(n) dj_circuit.draw("mpl") # Add oracle dj_circuit = QuantumCircuit.compose(dj_circuit,balanced_oracle) dj_circuit.draw("mpl") # Repeat H-gates for qubit in range(n): dj_circuit.h(qubit) dj_circuit.barrier() # Measure for i in range(n): dj_circuit.measure(i, i) # Display circuit dj_circuit.draw("mpl") # use local simulator aer_sim = Aer.get_backend('aer_simulator') qobj = assemble(dj_circuit, aer_sim) results = aer_sim.run(qobj).result() answer = results.get_counts() plot_histogram(answer) #---------CONCLUDING REMARKS---------------- ###--------THE ABOVE ALGORITHM CAN BE EXTENDED TO N-VARAIBLE CASE. IT IS CALLED DUETZCH-JOZSA ALGORITHM-----
https://github.com/Raunak-Singh-Inventor/quantum_algorithms_in_qiskit
Raunak-Singh-Inventor
from qiskit import * %matplotlib inline from qiskit.tools.visualization import plot_histogram secretnumber = "101001" circuit = QuantumCircuit(6+1, 6) circuit.h([0, 1, 2, 3, 4, 5]) circuit.x(6) circuit.h(6) circuit.barrier() circuit.cx(5, 6) circuit.cx(3, 6) circuit.cx(0, 6) circuit.barrier() circuit.h([0, 1, 2, 3, 4, 5]) circuit.barrier() circuit.measure([0,1,2,3,4,5], [0,1,2,3,4,5]) circuit.draw("mpl") simulator = Aer.get_backend("qasm_simulator") result = execute(circuit, backend = simulator, shots = 1).result() counts = result.get_counts() print(counts)
https://github.com/Raunak-Singh-Inventor/quantum_algorithms_in_qiskit
Raunak-Singh-Inventor
import numpy as np def grovers_dist(num_qubits, marked_item, n_iterations): dist = {} for i in range(2**num_qubits): key = bin(i)[2:].zfill(num_qubits) theta = np.arcsin(1/np.sqrt(2 ** num_qubits)) if i == marked_item: dist[key] = np.sin((2*n_iterations+1)*theta)**2 else: dist[key] = (np.cos((2*n_iterations+1)*theta)/(np.sqrt(2 ** num_qubits - 1)))**2 return dist num_qubits = 4 marked_item = 6 n_iterations = int(np.pi * np.sqrt(2 ** num_qubits) / 4) grovers_dist(num_qubits, marked_item, n_iterations)
https://github.com/Raunak-Singh-Inventor/quantum_algorithms_in_qiskit
Raunak-Singh-Inventor
from qiskit import * %matplotlib inline from qiskit.tools.visualization import plot_histogram secretnumber = "101001" circuit = QuantumCircuit(6+1, 6) circuit.h([0, 1, 2, 3, 4, 5, 6]) circuit.draw("mpl")
https://github.com/Raunak-Singh-Inventor/quantum_algorithms_in_qiskit
Raunak-Singh-Inventor
my_list = [1, 3, 5, 6, 7, 9, 10, 3] def the_oracle(my_input): winner = 7 return my_input is winner for index, trial_number in enumerate(my_list): if the_oracle(trial_number) is True: print("Winner found at index: %i"%index) print("%i calls to the Oracle used"%(index+1)) break from qiskit import * import matplotlib.pyplot as plt import numpy as np # define the oracle circuit oracle = QuantumCircuit(2, name="oracle") oracle.cz(0,1) oracle.to_gate() oracle.draw() backend = Aer.get_backend("statevector_simulator") grover_circ = QuantumCircuit(2, 2) grover_circ.h([0, 1]) grover_circ.append(oracle, [0, 1]) grover_circ.draw() job = execute(grover_circ, backend) result = job.result() sv = result.get_statevector() np.around(sv, 2) reflection = QuantumCircuit(2, name="reflection") reflection.h([0, 1]) reflection.z([0, 1]) reflection.cz(0, 1) reflection.h([0, 1]) reflection.to_gate() reflection.draw() backend = Aer.get_backend("qasm_simulator") grover_circ = QuantumCircuit(2,2) grover_circ.h([0, 1]) grover_circ.append(oracle, [0, 1]) grover_circ.append(reflection, [0, 1]) grover_circ.measure([0, 1], [0, 1]) grover_circ.draw() job = execute(grover_circ, backend, shots = 10000) result = job.result() result.get_counts()
https://github.com/PAYAL980/Four-Algorithms-in-Qiskit
PAYAL980
# Importing libraries from qiskit import * import numpy as np import math import random from qiskit.visualization import plot_histogram from qiskit.providers.fake_provider import FakeJakarta, FakeNairobi """ Defining a general oracle for the algorithm Input: secret_num - the secret string(to be encoded as black box) which is to be deteremined from the Bernstein-Vazirani algorithm""" def oracle(secret_num): qc = QuantumCircuit(len(secret_num)+1) for iz, val in enumerate(reversed(secret_num)): # Reversing the secret number to match the order of # qiskit's qubits if(val=='1'): qc.cx(iz, len(secret_num)) # Applying cx to the qubit corresponding to 1 in secret number return qc # Checking the oracle function for bitstring '1101' secret_num = '1101' cir = oracle(secret_num) cir.draw('mpl') """ Defining a function for Bernstein-Vazirani algorithm Input: N - Length of the secret bitstring to be determined oracle1- black box encoding the secret number Output: qc - the quantum circuit to be run on a simulator to get the final output """ def bv_algo_gen(N, oracle): # Creating a quantum circuit of 'N+1' qubits where N is the number of bits in the input bitstring qc = QuantumCircuit(N+1, N) # Applying X gate on the helper qubit to change it's state from 0 to 1 qc.x(N) qc.barrier() # Barrier for better visualization # Applying Hadamard gates on all qubits to create superposition and access all the possible cases at same time qc.h(range(0,N+1)) qc.barrier() # Barrier for better visualization # Applying the oracle for the funtion to the quantum circuit qc.append(oracle, range(N+1)) qc.barrier() # Barrier for better visualization # Applying Hadamard gates to all qubits qc.h(range(N+1)) qc.barrier() # Barrier for better visualization # Measuring first N qubits to find if the function is constant or balanced qc.measure(range(N), range(N)) return qc # Testing the algorithm for '1101' secret_num = '1101' ora = oracle(secret_num) N = len(secret_num) q1 = bv_algo_gen(N, ora) q1.draw('mpl') # Running on non-noisy simulator 1 backend = Aer.get_backend('aer_simulator') job = execute(q1,backend) results = job.result() counts = results.get_counts() plot_histogram(counts) # Running on non-noisy simulator 2 backend = Aer.get_backend('qasm_simulator') job = execute(q1,backend) results = job.result() counts = results.get_counts() plot_histogram(counts) # Running on noisy simulator 1 backend = FakeJakarta() job = execute(q1,backend) results = job.result() counts = results.get_counts() plot_histogram(counts) # Running on noisy simulator 2 backend = FakeNairobi() job = execute(q1,backend) results = job.result() counts = results.get_counts() plot_histogram(counts) # Defining a function that gives the output directly without running many cells # secret_num - the secret string(to be encoded as black box) # sim: simulator on which you want to run the algorithm #. - 1: non-noisy aer simulator # 2: non-noisy qasm simulator # 3: noisy simulator FakeJakarta # 4: noisy simulator FakeNairobi # Output: counts, maximum number of counts are obtained for the secret string def run(secret_num, sim): oracle_1 = oracle(secret_num) N = len(secret_num) q1 = bv_algo_gen(N, oracle_1) count = 0 if sim==1: backend = Aer.get_backend('aer_simulator') job = execute(q1,backend) results = job.result() counts = results.get_counts() count = counts elif sim == 2: backend = Aer.get_backend('qasm_simulator') job = execute(q1,backend) results = job.result() counts = results.get_counts() count = counts elif sim == 3: backend = FakeJakarta() job = execute(q1,backend) results = job.result() counts = results.get_counts() count = counts else: backend = FakeNairobi() job = execute(q1,backend) results = job.result() counts = results.get_counts() count = counts return count # Testing the algorithm for '10101' on all 4 simulators plot_histogram(run('10101', 1)) plot_histogram(run('10101', 2)) plot_histogram(run('10101', 3)) plot_histogram(run('10101', 4)) # Testing the algorithm for '10101001' on all 4 simulators plot_histogram(run('10101001', 1)) plot_histogram(run('10101001', 2)) plot_histogram(run('10101001', 3)) plot_histogram(run('10101001', 4))
https://github.com/PAYAL980/Four-Algorithms-in-Qiskit
PAYAL980
# Importing libraries and necessary tools from qiskit import * import numpy as np import math import random from qiskit.visualization import plot_histogram from qiskit.providers.fake_provider import FakeJakarta, FakeBelem """ Defining an almost general oracle for the algorithm""" def oracle(N, case): # Creating a quantum circuit with N input qubits and 1 helper qubits qc = QuantumCircuit(N+1) # Create an oracle based on the type of the function m = random.randint(0,1) # Creating a random bit to make the decision process random if(case == 'balanced') and (m == 0): for iz in range(N): qc.cx(iz,N) # Balanced function type 1 elif (case == 'balanced') and (m == 1): qc.x(0) for iz in range(N): qc.cx(iz,N) # Balanced oracle flips helper qubit when the 0th qubit is 0 qc.x(0) # Balanced function type 2 elif (case == 'constant') and (m == 0): qc.x(N) # Applying X gate on the (N+1)th qubit # Constant function type 1 else: qc.i(N) # Applying identity on the (N+1)th qubit # Constant function type 1 return qc # Checking the oracle function for 2 bits and type of function equal to balanced cir = oracle(2, 'balanced') cir.draw('mpl') """ Defining a function for Deutsch-Jozsa algorithm Input: N - Number of bits in the input string for the function to be determined oracle1- black box encoding the function to be determined Output: qc - the quantum circuit to be run on a simulator to get the final output """ def DJ_algo_gen(N, oracle1): # Create a quantum circuit of 'N+1' qubits where N is the number of bits in the input bitstring qc = QuantumCircuit(N+1, N) # Apply X gate on the helper qubit to change it's state from 0 to 1 qc.x(N) qc.barrier() # Barrier for better visualization # Apply Hadamard gates on all qubits to create superposition and access all the possible cases at same time qc.h(range(0,N+1)) qc.barrier() # Barrier for better visualization # Apply the oracle for the funtion to the quantum circuit qc.append(oracle1, range(N+1)) qc.barrier() # Barrier for better visualization # Apply Hadamard gates to all qubits qc.h(range(N+1)) qc.barrier() # Barrier for better visualization # Measure first N qubits to find if the function is constant or balanced qc.measure(range(N), range(N)) return qc # Testing the algorithm for n=2 and constant function ora = oracle(2, 'constant') q1 = DJ_algo_gen(2, ora) q1.draw('mpl') # Running on non-noisy simulator 1 backend = Aer.get_backend('aer_simulator') job = execute(q1,backend) results = job.result() counts = results.get_counts() plot_histogram(counts) # Running on non-noisy simulator 2 backend = Aer.get_backend('qasm_simulator') job = execute(q1,backend) results = job.result() counts = results.get_counts() plot_histogram(counts) # Running on noisy simulator 1 backend = FakeJakarta() job = execute(q1,backend) results = job.result() counts = results.get_counts() plot_histogram(counts) # Running on noisy simulator 2 backend = FakeBelem() job = execute(q1,backend) results = job.result() counts = results.get_counts() plot_histogram(counts) # Defining a function that gives the output directly without running many cells # N - number of bits in input bit string # case - type of function to be given as a string either 'constant' or 'balanced' # sim: simulator on which you want to run the algorithm #. - 1: non-noisy aer simulator # 2: non-noisy qasm simulator # 3: noisy simulator FakeJakarta # 4: noisy simulator FakeBelem # Output: counts, if maximum counts is for '0'*N, the function is constant # if maximum counts is for '1'*N, the function is balanced def run(N, case, sim): oracle_1 = oracle(N, case) q1 = DJ_algo_gen(N, oracle_1) count = 0 if sim==1: backend = Aer.get_backend('aer_simulator') job = execute(q1,backend) results = job.result() counts = results.get_counts() count = counts elif sim == 2: backend = Aer.get_backend('qasm_simulator') job = execute(q1,backend) results = job.result() counts = results.get_counts() count = counts elif sim == 3: backend = FakeJakarta() job = execute(q1,backend) results = job.result() counts = results.get_counts() count = counts else: backend = FakeBelem() job = execute(q1,backend) results = job.result() counts = results.get_counts() count = counts return count # Testing the algorithm for N=3 and balanced function on all 4 simulators plot_histogram(run(3, 'balanced', 1)) plot_histogram(run(3, 'balanced', 2)) plot_histogram(run(3, 'balanced', 3)) plot_histogram(run(3, 'balanced', 4)) # Testing the algorithm for N=6 and Balanced functon on noisy simulator plot_histogram(run(6, 'balanced', 3)) # Testing the algorithm for N=6 and Balanced functon on non - noisy simulator plot_histogram(run(6, 'balanced', 2)) plot_histogram(run(6, 'balanced', 4)) plot_histogram(run(8, 'balanced', 3)) plot_histogram(run(8, 'balanced', 1)) plot_histogram(run(1000, 'balanced', 1)) plot_histogram(run(1000, 'balanced', 2))
https://github.com/PAYAL980/Four-Algorithms-in-Qiskit
PAYAL980
# Import libraries and necessary tools from qiskit import * import numpy as np import math from qiskit.visualization import plot_histogram from qiskit.providers.fake_provider import FakeJakarta, FakeNairobi """ Defining Diffuser (Z0) for N qubits""" def diffuser(N): cir = QuantumCircuit(N) # Applying anti controlled Z gate cir.x(range(N)) cir.h(0) cir.mcx([iz for iz in range(1,N)], 0) cir.h(0) cir.x(range(N)) return cir # Checking the diffuser function for 3 qubits q2 = diffuser(3) q2.draw('mpl') """ Defining the oracle(Zf) for N qubits and inp: input string such that f(inp) = 1""" def oracle(N, inp): cir = QuantumCircuit(N) # Checking the positions of '0' in the input string and applying X gate for the application of # anti-controlled Z gate for iz in range(N): if inp[iz]=='0': cir.x(N-iz-1) # Multiple controlled Z gate cir.h(0) cir.mcx([iz for iz in range(1,N)], 0) cir.h(0) # Applying X gates to reverse the effect of above applied X gates for iz in range(len(inp)): if inp[iz]=='0': cir.x(N-iz-1) return cir # Checking the oracle function for 3 qubits and input string '001' q2 = oracle(3, '001') q2.draw('mpl') """ Defining Grover's Algorithm """ def grovers_algo_gen(N, oracle_1): # calculating number of iterations for the Grover's operator m = int(np.round(np.pi*np.sqrt(2**N)/4 - 0.5)) # Creating a quantum circuit of 'N' qubits qc = QuantumCircuit(N, N) # Applying Hadamard gates to all qubits to create superposition qc.h(range(N)) qc.barrier() # Barrier for better visualization # Iterating the Grover's operator 'm' times for iz in range(m): # Appending the oracle qc.append(oracle_1, range(N)) qc.barrier() # Barrier for better visualization # Applying Hadamard gates on all qubits qc.h(range(N)) qc.barrier() # Barrier for better visualization # Appending the diffuser to the quantum circuit qc.append(diffuser(N), range(N)) qc.barrier() # Barrier for better visualization # Applying Hadamard gates to all qubits qc.h(range(N)) qc.barrier() # Barrier for better visualization # Measuring all N qubits to find the desired output qc.measure(range(N), range(N)) return qc # Testing the algorithm for N=3 and f('101') = 1 N = 3 ora = oracle(N, '101') ora.draw('mpl') q1 = grovers_algo_gen(N, ora) q1.draw('mpl') # Running on non-noisy simulator 1 backend = Aer.get_backend('aer_simulator') job = execute(q1,backend) results = job.result() counts = results.get_counts() plot_histogram(counts) # Running on non-noisy simulator 2 backend = Aer.get_backend('qasm_simulator') job = execute(q1,backend) results = job.result() counts = results.get_counts() plot_histogram(counts) # Running on noisy simulator 1 backend = FakeJakarta() job = execute(q1,backend) results = job.result() counts = results.get_counts() plot_histogram(counts) # Running on noisy simulator 1 backend = FakeNairobi() job = execute(q1,backend) results = job.result() counts = results.get_counts() plot_histogram(counts) # Defining a function that gives the output directly without running many cells # inp_str - the input string corresponding to f(x) = 1 # sim: simulator on which you want to run the algorithm #. - 1: non-noisy aer simulator # 2: non-noisy qasm simulator # 3: noisy simulator FakeJakarta # 4: noisy simulator FakeBelem # Output: counts, maximum number of counts are obtained for the secret string def run(inp_str, sim): N = len(inp_str) oracle_1 = oracle(N, inp_str) q1 = grovers_algo_gen(N, oracle_1) count = 0 if sim==1: backend = Aer.get_backend('aer_simulator') job = execute(q1,backend) results = job.result() counts = results.get_counts() count = counts elif sim == 2: backend = Aer.get_backend('qasm_simulator') job = execute(q1,backend) results = job.result() counts = results.get_counts() count = counts elif sim == 3: backend = FakeJakarta() job = execute(q1,backend) results = job.result() counts = results.get_counts() count = counts else: backend = FakeNairobi() job = execute(q1,backend) results = job.result() counts = results.get_counts() count = counts return counts # Testing the algorithm for '10' on all 4 simulators plot_histogram(run('10', 1)) plot_histogram(run('10', 2)) plot_histogram(run('10', 3)) plot_histogram(run('10', 4)) # Testing the algorithm for '1010' on all 4 simulators plot_histogram(run('1010', 1)) plot_histogram(run('1010', 2)) plot_histogram(run('1010', 3)) plot_histogram(run('1010', 4)) # Testing the algorithm for a string of 6 bits on noisy simulator plot_histogram(run('101011', 4))
https://github.com/PAYAL980/Four-Algorithms-in-Qiskit
PAYAL980
# Importing libraries and necessary tools from qiskit import * import numpy as np import math import random from qiskit.visualization import plot_histogram from qiskit.providers.fake_provider import FakeJakarta, FakeNairobi from qiskit_textbook.tools import simon_oracle """ Simon oracle has been imported from qiskit textbook to be used in the algorithm""" oracle = simon_oracle('00') oracle.draw('mpl') oracle = simon_oracle('01') oracle.draw('mpl') oracle = simon_oracle('10') oracle.draw('mpl') oracle = simon_oracle('11') oracle.draw('mpl') """ Defining a function for Simon's algorithm Input: N - Length of the bitstring 'a' oracle1- black box encoding the function Output: qc - the quantum circuit to be run on a simulator to get the final output """ def Simon(oracle, N): # Creating the quantum circuit of '2N' qubits where N is the number of bits in the input bitstring qc = QuantumCircuit(N*2, N) # Applying Hadamard gates on all qubits to create superposition qc.h(range(N)) qc.barrier() # Barrier for better visualization # Appending the oracle for the funtion to the quantum circuit qc.append(oracle, range(2*N)) qc.barrier() # Barrier for better visualization # Applying Hadamard gates to all the input qubits qc.h(range(N)) qc.barrier() # Barrier for better visualization # Measuring input qubits to find the linearly independent strings qc.measure(range(N), range(N)) return qc # Testing the algorithm for a = '10' a = '10' N = len(a) ora = simon_oracle(a) q1 = Simon(ora, N) q1.draw('mpl') # Running on non-noisy simulator 1 backend = Aer.get_backend('aer_simulator') job = execute(q1,backend, shots=1024) results = job.result() counts = results.get_counts() plot_histogram(counts) """ Getting the output strings in form of a list to find 'a' classically""" res = list(counts.keys()) res # Running on non-noisy simulator 2 backend = Aer.get_backend('qasm_simulator') job = execute(q1,backend, shots=1024) results = job.result() counts = results.get_counts() plot_histogram(counts) # Running on noisy simulator 1 backend = FakeJakarta() job = execute(q1,backend) results = job.result() counts = results.get_counts() plot_histogram(counts) # Running on noisy simulator 2 backend = FakeNairobi() job = execute(q1,backend) results = job.result() counts = results.get_counts() plot_histogram(counts) # Defining a function that gives the output directly without running many cells # a - the bitstring(to be encoded as black box) # sim: simulator on which you want to run the algorithm #. - 1: non-noisy aer simulator # 2: non-noisy qasm simulator # 3: noisy simulator FakeJakarta # 4: noisy simulator FakeNairobi # Output: counts, maximum number of counts are obtained for the linearly independent strings def run(a, sim): oracle_1 = simon_oracle(a) N = len(a) q1 = Simon(oracle_1, N) count = 0 if sim==1: backend = Aer.get_backend('aer_simulator') job = execute(q1,backend) results = job.result() counts = results.get_counts() count = counts elif sim == 2: backend = Aer.get_backend('qasm_simulator') job = execute(q1,backend) results = job.result() counts = results.get_counts() count = counts elif sim == 3: backend = FakeJakarta() job = execute(q1,backend) results = job.result() counts = results.get_counts() count = counts else: backend = FakeNairobi() job = execute(q1,backend) results = job.result() counts = results.get_counts() count = counts return count # Testing the algorithm for '110' on all 4 simulators a = '110' plot_histogram(run(a, 1)) plot_histogram(run(a, 2)) plot_histogram(run(a, 3)) plot_histogram(run(a, 4)) # Testing the algorithm for '1101' on all 4 simulators a = '1101' plot_histogram(run(a, 1)) plot_histogram(run(a, 2)) plot_histogram(run(a, 3)) plot_histogram(run(a, 4))
https://github.com/deveshq/QC-with-qiskit
deveshq
# Importing some important libraries import numpy as np from numpy import math from qiskit import * from numpy import pi as pi from math import asin, sqrt import qiskit.quantum_info as qi from qiskit import QuantumCircuit, transpile, Aer, IBMQ, execute from qiskit.tools.jupyter import * from qiskit.visualization import plot_histogram, plot_bloch_multivector from numpy.random import seed import IPython from IPython.display import display,Latex,Markdown # Defining a function which flip the sign of the marked state, in the superpositon of all the states. def orc(d): op = np.identity(2**n) for i in d: op[i][i] = op[i][i]*(-1) display(i) return op # Defining another function which flip all the states about the average. def dif(): op = np.identity(2**n) for i in range(2**n): if ( i != 0): op[i][i] = op[i][i]*(-1) #display(op) return op # Taking vector of integer number as input. display(Latex(r'Expected a vector of length $2^n$ as input!')) n = int(input('Enter n: ')) a = [] print('Enter the vector:') for i in range(2**n): a.append(int(input())) print(f'a = {a}') #Extracting the indices of the input for which two adjacent bits will always have different values. d = [] b_d = [] c = len('{0:b}'.format(max(a))) #number of bits in binary form of highest number in a. def cd(x): b = '{0:0{d}b}'.format(x,d=c) return all(b[i] != b[i+1] for i in range(c-1) ) for i in range(len(a)): if cd(a[i]) is True: d.append(i) b_d.append('{0:0{d}b}'.format(a[i],d=c)) print(f'Indices: {d}, Numbers: {b_d}') if (n<3): if (len(d)>1): n = 3 #Because this program requires atleast three qubits to deal with more than one targets. else: n = n #Initiating a quantum circuit qc = QuantumCircuit(n,n) qc.h(range(n)) qc.draw() #To find the number of repetition. theta = asin(1/sqrt(2**n)) t = int((pi/(2*theta) - 1)/2) #Finally applying all the component on the circuit. for i in range(t): qc.unitary(orc(d), range(n)) qc.h(range(n)) qc.unitary(dif(), range(n)) qc.h(range(n)) qc.draw() #To print the statevector. s_qc = qi.Statevector.from_instruction(qc) #s_qc.draw('latex', prefix='State = ') print(s_qc) #Applying the measurements. qc.measure(range(n),range(n)) qc.draw() #Simulating the circuit qasm_sim = Aer.get_backend('aer_simulator') tqc = transpile(qc, basis_gates=['u', 'cx'], optimization_level=3) print(f"circuit depth: {tqc.depth()}") print(f"circuit contains {tqc.count_ops()['cx']} CNOTs") #Getting final state probabilities. counts = qasm_sim.run(tqc).result().get_counts() print(counts) plot_histogram(counts)
https://github.com/deveshq/QC-with-qiskit
deveshq
import numpy as np # Importing standard Qiskit libraries from qiskit import * from qiskit.tools.jupyter import * from qiskit.visualization import * from ibm_quantum_widgets import * from qiskit.providers.aer import QasmSimulator # Loading your IBM Quantum account(s) provider = IBMQ.load_account() from qiskit.quantum_info import Statevector #Defining Quantum circuit bell0 = QuantumCircuit(2) #Creating Bell state bell0.h(0) bell0.cx(0,1) #Extracting statevector sv = Statevector.from_label('00') sv_ev = sv.evolve(bell0) sv_ev.draw('latex') sv_ev.draw('qsphere') #Defining Quantum circuit bell1 = QuantumCircuit(2) #Creating Bell state bell1.h(0) bell1.cx(0,1) #Extracting statevector sv1 = Statevector.from_label('01') sv_ev1 = sv1.evolve(bell1) sv_ev1.draw('latex') sv_ev1.draw('qsphere') #Defining Quantum circuit bell2 = QuantumCircuit(2) #Creating Bell state bell2.x(1) bell2.h(0) bell2.cx(0,1) #Extracting statevector sv_ev2 = sv.evolve(bell2) sv_ev2.draw('latex') sv_ev2.draw('qsphere') #Defining Quantum circuit bell3 = QuantumCircuit(2) #Creating Bell state bell3.x(0) bell3.x(1) bell3.h(0) bell3.cx(0,1) #Extracting statevector sv_ev3 = sv.evolve(bell3) sv_ev3.draw('latex') sv_ev3.draw('qsphere') bell3.draw('text') qc_ghz = QuantumCircuit(3) qc_ghz.h(0) qc_ghz.cx([0,0],[1,2]) qc_ghz.draw('text') qc_ghz.draw() sv = Statevector.from_label('000') sv_ev = sv.evolve(qc_ghz) sv_ev.draw('latex') sv = Statevector.from_int(0,2**3) sv_ev = sv.evolve(qc_ghz) sv_ev.draw('latex') BasicAer.backends() ghz_backend = Aer.get_backend('statevector_simulator') job = execute(qc_ghz, ghz_backend, shots = 1000) result = job.result() sv_ghz2 = result.get_statevector(qc_ghz) plot_state_qsphere(sv_ghz2) plot_state_city(sv_ghz2, title = 'GHZ') plot_state_hinton(sv_ghz2, title = 'GHZ') plot_state_paulivec(sv_ghz2, title = 'GHZ') plot_bloch_multivector(sv_ghz2, title = 'GHZ') plot_bloch_vector([0,0.5,1]) q_a = QuantumRegister(1, 'q_a') q_b = QuantumRegister(1, 'q_b') qc = QuantumCircuit(q_a,q_b) qc.h(0) qc.z(0) backend = Aer.get_backend('statevector_simulator') job = execute(qc, backend, shots = 1000) res = job.result() sv = res.get_statevector() #sv.draw('latex') plot_bloch_multivector(sv) plot_state_city(sv, color = ['orange', 'black']) qc.measure_all() backend = Aer.get_backend('qasm_simulator') res = execute(qc, backend, shots = 1000).result() counts = res.get_counts() plot_histogram(counts) meas = QuantumCircuit(3,3) meas.barrier() meas.measure([0,1,2],[0,1,2]) circ = meas.compose(qc_ghz, range(3), front = True ) circ.draw() backend = Aer.get_backend('qasm_simulator') res = backend.run(circ, shots = 1000).result() counts = res.get_counts() print(counts) res2 = execute(circ, backend, shots = 1000).result() counts2 = res2.get_counts() print(counts2) legend = ['Count-1', 'Count-2'] colour = ['teal', 'black'] plot_histogram([counts,counts2], legend=legend, sort='asc', color=colour) #, bar_labels = False) provider.backends() from qiskit.tools import job_monitor import qiskit.tools.jupyter #%qiskit_job_watcher quito = provider.get_backend('ibmq_quito') job = execute(circ, quito, shots = 1000) job_monitor(job) counts3 = job.result().get_counts() plot_histogram(counts3) from qiskit.quantum_info import Operator U = Operator(qc_ghz) U.data np.around(U.data, 3) uni_backend = Aer.get_backend('unitary_simulator') U = execute(qc_ghz, uni_backend).result().get_unitary(decimals=3) U q = QuantumRegister(2, 'q_reg') c = ClassicalRegister(2, 'c_reg') qc = QuantumCircuit(q,c) qc.h([0,1]) qc.cx(q[0],q[1]) qc.draw('mpl') U_bell = Operator(qc) np.around(U_bell, 3) uni_backend = Aer.get_backend('unitary_simulator') U = execute(qc, uni_backend).result().get_unitary(decimals=3) U a = 1/np.sqrt(3) desired_state = [a, np.sqrt(1-a**2)] q = QuantumRegister(1, 'q') qc = QuantumCircuit(q) qc.initialize(desired_state,0) qc.draw('mpl') qc.decompose().draw() qc.measure_all() qc.draw() backend = Aer.get_backend('qasm_simulator') counts = execute(qc, backend, shots=1000).result().get_counts() plot_histogram(counts) back_sv = BasicAer.get_backend('statevector_simulator') result = execute(qc, back_sv).result() qc_sv = result.get_statevector() qc_sv from qiskit.quantum_info import state_fidelity state_fidelity(desired_state, qc_sv) # Gate and prrocess fidility from qiskit.circuit.library import XGate from qiskit.quantum_info import Operator, average_gate_fidelity, process_fidelity op_a = Operator(XGate()) op_b = np.exp(1j / 2) * op_a #these differ only by a phase so the gate and process #fidelities are expected to be 1 a = average_gate_fidelity(op_a,op_b) a b = process_fidelity(op_a, op_b) a == b back = Aer.get_backend('unitary_simulator') result = execute(qc, back).result() U_qc = result.get_unitary(decimals = 3) U_qc qc = QuantumCircuit(3) qc.h(0) qc.cx(0,1) qc.cx(1,2) qc.draw() qc_gate = qc.to_gate() qc_gate.name = 'Bell State Gate' circ = QuantumCircuit(3) circ.append(qc_gate, [0,1,2]) circ.draw() circ.decompose().draw() c_qc_gate = qc.to_gate().control(2) c_qc_gate.name = 'C-Bell State Gate' circ2 = QuantumCircuit(5) circ2.append(c_qc_gate, [0,4,1,2,3]) circ2.draw() circ2.decompose().draw() #going back to our simpler circuit! qc = QuantumCircuit(3) qc.mct([0,1],2) qc.cx(0,2) qc.h(1) qc.z(0) qc.draw(scale = 1.5, style = {'backgroundcolor': 'lightpink'}) trans = transpile(qc, basis_gates = ['u3','cx','s']) trans.draw('mpl') from qiskit.tools.visualization import circuit_drawer circuit_drawer(qc, output='text') qc.measure_all() qasm_str = qc.qasm() #returning a qasm string, THIS SIMPLE qasm_str circ = QuantumCircuit.from_qasm_str(qasm_str) #you got to be kidding! circ.draw() qc.depth() qiskit.__version__ #this is your tool to get all the information on all the hardware available, check it for yourself! import qiskit.tools.jupyter %qiskit_backend_overview #that's not a problem! from qiskit.visualization import plot_gate_map backend = provider.get_backend('ibmq_manila') plot_gate_map(backend, plot_directed=True) #check other things you can do in this within docs! plot_error_map(backend) qc = QuantumCircuit(3) qc.h([0,1,2]) qc.measure_all() sim = BasicAer.get_backend('qasm_simulator') couple_map = [[0,2],[1,2]] #specify some linear connection job = execute(qc, sim, shots=1000, coupling_map=couple_map) #here is how you take that in execute also! result = job.result() counts = result.get_counts() print(counts)
https://github.com/deveshq/QC-with-qiskit
deveshq
#some necessary imports libraries import numpy as np from numpy import pi import qiskit from qiskit import * from qiskit.tools.monitor import job_monitor from qiskit.visualization import plot_histogram, plot_gate_map, plot_circuit_layout, array_to_latex from qiskit.providers.aer import noise from qiskit.quantum_info import Operator import matplotlib.pyplot as plt %matplotlib inline IBMQ.load_account() backend = Aer.get_backend('qasm_simulator') # Creating circuit def ev_circ(qc,J,t): #qc.h(qr[0]) #qc.barrier() psi = J*t for i in range(1): #sigma_x sigma_x term qc.ry(pi/2, qr[i]) qc.ry(pi/2, qr[i+1]) qc.cx(qr[i],qr[i+1]) qc.rz(2*psi, qr[i+1]) qc.cx(qr[i],qr[i+1]) qc.ry(-pi/2, qr[i+1]) qc.ry(-pi/2, qr[i]) qc.barrier() #sigma_y sigma_y term qc.rx(pi/2, qr[i]) qc.rx(pi/2, qr[i+1]) qc.cx(qr[i],qr[i+1]) qc.rz(2*psi, qr[i+1]) qc.cx(qr[i],qr[i+1]) qc.rx(-pi/2, qr[i+1]) qc.rx(-pi/2, qr[i]) qc.barrier() #sigma_z sigma_z term qc.cx(qr[i],qr[i+1]) qc.rz(2*psi, qr[i+1]) qc.cx(qr[i],qr[i+1]) return qc #Simulating circuit def sim(i): [circ2[j].measure(qr[i],cr[0]) for j in range(len(circ2))] result_sim = execute(circ2, backend, shots=1024).result() a = result_sim.get_counts() p0 = [] p1 = [] for k in range(len(a)): if '0' in a[k]: p0.append(a[k]['0']) else: p0.append(0) if '1' in a[k]: p1.append(a[k]['1']) else: p1.append(0) p = (np.array(p0)-np.array(p1))/(2*1024) return p qc = QuantumCircuit(qr,cr) t = 1 circ = ev_circ(qc,J,t) circ.draw('mpl') J = 0.01183898*2 total_t = 100 del_t = 1 num_steps = int(total_t/del_t) qr = QuantumRegister(2, 'q') cr = ClassicalRegister(1, 'c') circ2 = [] d = [] for step in range(0, num_steps+1): qc = QuantumCircuit(qr,cr) t = (step)*del_t d.append(J*t) circ2.append(ev_circ(qc,J,t)) circ2[2].draw('mpl') prob = {} for i in range(2): p = sim(i) prob['q'+str(i)] = p fig = plt.figure(figsize=[10,6]) plt.plot(d,prob['q0']) plt.plot(d,prob['q1']) #plt.title('') plt.xlabel(rf'Jt $\longrightarrow$',fontsize=15) plt.ylabel(rf'Magnetisation $\longrightarrow$',fontsize=15) plt.legend(['q0','q1']) plt.show()
https://github.com/deveshq/QC-with-qiskit
deveshq
import numpy as np from numpy import pi # importing Qiskit from qiskit import QuantumCircuit, transpile, assemble, Aer from qiskit.visualization import plot_histogram, plot_bloch_multivector qc = QuantumCircuit(3) qc.h(2) qc.cp(pi/2, 1, 2) qc.cp(pi/4, 0, 2) qc.h(1) qc.cp(pi/2, 0, 1) qc.h(0) qc.swap(0, 2) qc.draw() def qft_rotations(circuit, n): if n == 0: return circuit n -= 1 circuit.h(n) for qubit in range(n): circuit.cp(pi/2**(n-qubit), qubit, n) qft_rotations(circuit, n) def swap_registers(circuit, n): for qubit in range(n//2): circuit.swap(qubit, n-qubit-1) return circuit def qft(circuit, n): qft_rotations(circuit, n) swap_registers(circuit, n) return circuit qc = QuantumCircuit(4) qft(qc,4) qc.draw() # Create the circuit qc = QuantumCircuit(3) # Encode the state 5 (101 in binary) qc.x(0) qc.x(2) qc.draw() sim = Aer.get_backend("aer_simulator") qc_init = qc.copy() qc_init.save_statevector() statevector = sim.run(qc_init).result().get_statevector() plot_bloch_multivector(statevector) qft(qc, 3) qc.draw() qc.save_statevector() statevector = sim.run(qc).result().get_statevector() plot_bloch_multivector(statevector)
https://github.com/deveshq/QC-with-qiskit
deveshq
#initialization import matplotlib.pyplot as plt import numpy as np import math # importing Qiskit from qiskit import IBMQ, Aer, transpile, assemble from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister # import basic plot tools from qiskit.visualization import plot_histogram qpe = QuantumCircuit(4, 3) qpe.x(3) #Apply Hadamard gate for qubit in range(3): qpe.h(qubit) qpe.draw() repetitions = 1 for counting_qubit in range(3): for i in range(repetitions): qpe.cp(math.pi/4, counting_qubit, 3); # This is CU # we use 2*pi*(1/theta) repetitions *= 2 qpe.draw() def qft_dagger(qc, n): """n-qubit QFTdagger the first n qubits in circ""" # Don't forget the Swaps! for qubit in range(n//2): qc.swap(qubit, n-qubit-1) for j in range(n): for m in range(j): qc.cp(-math.pi/float(2**(j-m)), m, j) qc.h(j) qpe.barrier() # Apply inverse QFT qft_dagger(qpe, 3) # Measure qpe.barrier() for n in range(3): qpe.measure(n,n) qpe.draw() aer_sim = Aer.get_backend('aer_simulator') shots = 2048 t_qpe = transpile(qpe, aer_sim) qobj = assemble(t_qpe, shots=shots) results = aer_sim.run(qobj).result() answer = results.get_counts() plot_histogram(answer) # Create and set up circuit qpe2 = QuantumCircuit(4, 3) # Apply H-Gates to counting qubits: for qubit in range(3): qpe2.h(qubit) # Prepare our eigenstate |psi>: qpe2.x(3) # Do the controlled-U operations: angle = 2*math.pi/3 repetitions = 1 for counting_qubit in range(3): for i in range(repetitions): qpe2.cp(angle, counting_qubit, 3); repetitions *= 2 # Do the inverse QFT: qft_dagger(qpe2, 3) # Measure of course! for n in range(3): qpe2.measure(n,n) qpe2.draw() # Let's see the results! aer_sim = Aer.get_backend('aer_simulator') shots = 4096 t_qpe2 = transpile(qpe2, aer_sim) qobj = assemble(t_qpe2, shots=shots) results = aer_sim.run(qobj).result() answer = results.get_counts() plot_histogram(answer) # Create and set up circuit qpe3 = QuantumCircuit(6, 5) # Apply H-Gates to counting qubits: for qubit in range(5): qpe3.h(qubit) # Prepare our eigenstate |psi>: qpe3.x(5) # Do the controlled-U operations: angle = 2*math.pi/3 repetitions = 1 for counting_qubit in range(5): for i in range(repetitions): qpe3.cp(angle, counting_qubit, 5); repetitions *= 2 # Do the inverse QFT: qft_dagger(qpe3, 5) # Measure of course! qpe3.barrier() for n in range(5): qpe3.measure(n,n) qpe3.draw() # Let's see the results! aer_sim = Aer.get_backend('aer_simulator') shots = 4096 t_qpe3 = transpile(qpe3, aer_sim) qobj = assemble(t_qpe3, shots=shots) results = aer_sim.run(qobj).result() answer = results.get_counts() plot_histogram(answer)
https://github.com/deveshq/QC-with-qiskit
deveshq
import numpy as np #Importing standard Qiskit libraries from qiskit import * from qiskit.tools.jupyter import * from qiskit.visualization import * from qiskit.providers import * from qiskit.circuit import Parameter import matplotlib.pyplot as plt #Loading IBM Quantum account(s) provider = IBMQ.load_account() q = QuantumRegister(1,'q') e = QuantumRegister(1,'e') c = ClassicalRegister(1,'c') def damp_M(steps): qc = QuantumCircuit(q,e,c) theta = np.pi/8 qc.x(q) qc.barrier() for i in range(steps): if (i>0): qc.reset(e) qc.cry(theta,q,e) qc.cx(e,q) qc.measure(e,c) qc.barrier() qc.measure(q,c) sim = Aer.get_backend('qasm_simulator') job = execute(qc, sim, shots=1024) res = job.result() counts = res.get_counts() return counts qc = damp_M(1) qc.draw('mpl') steps = np.linspace(0,150,51) prob0 = [] for st in steps: co = damp_M(int(st)) if '1' in co: prob0.append(co['1']/1024) else: prob0.append(0) fig = plt.figure(figsize=(8,5)) plt.scatter(steps,prob0) plt.plot(steps,prob0) plt.xticks(size=12) plt.yticks(size=12) plt.title('\nMarkovian amplitude damping of a qubit', size=14) plt.xlabel(r'Steps $\longrightarrow$', size=13) plt.ylabel(r'Population density $\longrightarrow$', size=13) plt.show() q = QuantumRegister(1,'q') e = QuantumRegister(3,'e') c = ClassicalRegister(1,'c') def damp_NM(steps): qc = QuantumCircuit(q,e,c) t1 = np.pi/8 t2 = 5*np.pi/6 t3 = np.pi qc.x(q) qc.barrier() for i in range(steps): qc.cry(t1,q,e[0]) qc.cry(t2,q,e[1]) qc.cry(t3,q,e[2]) qc.cx(e[0],q[0]) qc.measure(e[0],c) qc.reset(e[0]) qc.swap(e[0],e[1]) qc.swap(e[1],e[2]) qc.barrier() qc.measure(q,c) sim = Aer.get_backend('qasm_simulator') job = execute(qc, sim, shots=1024) res = job.result() counts = res.get_counts() return counts qc = damp_NM(1) qc.draw('mpl') steps = np.linspace(0,150,51) prob0_NM = [] for st in steps: co = damp_NM(int(st)) if '1' in co: prob0_NM.append(co['1']/1024) else: prob0_NM.append(0) fig = plt.figure(figsize=(8,5)) plt.scatter(steps,prob0_NM) plt.plot(steps,prob0_NM) plt.xticks(size=12) plt.yticks(size=12) plt.title('\nNon-Markovian amplitude damping of a qubit', size=14) plt.xlabel(r'Steps $\longrightarrow$', size=13) plt.ylabel(r'Population density $\longrightarrow$', size=13) plt.show() fig = plt.figure(figsize=(8,5)) plt.plot(steps,prob0) #plt.scatter(steps,prob0) plt.plot(steps,prob0_NM) #plt.scatter(steps,prob0_NM) plt.xticks(size=12) plt.yticks(size=12) plt.legend(['Markovian','Non-Markovian']) plt.title('\nDamping of a qubit', size=14) plt.xlabel(r'Steps $\longrightarrow$', size=13) plt.ylabel(r'Population density $\longrightarrow$', size=13) plt.show()
https://github.com/deveshq/QC-with-qiskit
deveshq
import numpy as np #Importing standard Qiskit libraries from qiskit import * from qiskit.tools.jupyter import * from qiskit.visualization import * from qiskit.providers import * from qiskit.circuit import Parameter import matplotlib.pyplot as plt #Loading IBM Quantum account(s) provider = IBMQ.load_account() q = QuantumRegister(1,'q') #System register e = QuantumRegister(1,'e') #Environment register c = ClassicalRegister(1,'c') def dephasing_M(steps): qc = QuantumCircuit(q,e,c) theta = np.pi/5 qc.h(0) qc.barrier() for i in range(steps): if (i>0): qc.reset(e) qc.ry(theta,1) qc.cz(0,1) qc.measure(e,c) qc.barrier() qc.h(q) qc.measure(q,c) sim = Aer.get_backend('qasm_simulator') job = execute(qc, sim, shots=1024) res = job.result() counts = res.get_counts()['0']/1024 return counts qc = dephasing_M(1) qc.draw('mpl') steps = np.linspace(0,100,21) prob0 = [] for st in steps: prob0.append(dephasing_M(int(st))) fig = plt.figure(figsize=(8,5)) plt.scatter(steps,prob0) plt.plot(steps,prob0) plt.xticks(size=12) plt.yticks(size=12) plt.title('\nDephasing of a qubit', size=14) plt.xlabel(r'Steps $\longrightarrow$', size=13) plt.ylabel(r'Population in Hadamard basis $\longrightarrow$', size=13) plt.show() q = QuantumRegister(1,'q') #System register e = QuantumRegister(3,'e') #Environment register c = ClassicalRegister(1,'c') def dephasingNM(steps): qc = QuantumCircuit(q,e,c) t1 = np.pi/5 t2 = np.pi/4 t3 = np.pi/2 qc.h(0) qc.barrier() for i in range(steps): qc.ry(t1,e[0]) qc.ry(t2,e[1]) qc.ry(t3,e[2]) qc.cz(q[0],e[0]) qc.measure(e[0],c) qc.reset(e[0]) qc.swap(e[0],e[1]) qc.swap(e[1],e[2]) qc.barrier() qc.h(q) qc.measure(q,c) sim = Aer.get_backend('qasm_simulator') job = execute(qc, sim, shots=1024) res = job.result() counts = res.get_counts()['0']/1024 return counts qc = dephasingNM(1) qc.draw('mpl') steps = np.linspace(0,100,21) prob0_NM = [] for st in steps: prob0_NM.append(dephasingNM(int(st))) fig = plt.figure(figsize=(8,5)) plt.scatter(steps,prob0_NM) plt.plot(steps,prob0_NM) plt.xticks(size=12) plt.yticks(size=12) plt.title('\nDephasing of a qubit', size=14) plt.xlabel(r'Steps $\longrightarrow$', size=13) plt.ylabel(r'Population in Hadamard basis $\longrightarrow$', size=13) plt.show() fig = plt.figure(figsize=(8,5)) plt.plot(steps,prob0) plt.plot(steps,prob0_NM) plt.xticks(size=12) plt.yticks(size=12) plt.legend(['Markovian','Non-Markovian']) plt.title('\nDephasing of a qubit', size=14) plt.xlabel(r'Steps $\longrightarrow$', size=13) plt.ylabel(r'Population in Hadamard basis $\longrightarrow$', size=13) plt.show()
https://github.com/AllenGabrielMarchen/HHL_implementation
AllenGabrielMarchen
#setup.py import numpy as np from scipy.linalg import expm from qiskit.extensions import UnitaryGate from qiskit.circuit.add_control import add_control from qiskit import Aer import circuit import hhl import tools #참고 논문 :Low Complexity Quantum Matrix Inversion A기gorithm for non-Hermitian Matrices def main(A,b,backend,shots,t,n_l,delta): #Check if Hermitian if np.allclose(A,A.T) == False: print("Given A matrice is not Hermitian.") print("Given Matrices will be transformed into Hermitian formation.") A = np.vstack((np.hstack((np.zeros_like(A),A)),np.hstack((A.T, np.zeros_like(A))))) # Hermitian의 꼴로 바꿈 b = np.hstack((b,np.zeros_like((np.shape(A)[0]-np.shape(b)[0],1)))) #A의 shape와 동일한 zero array를 생성하고, A의 왼쪽에 배치, horizontal 방향도 마찬가지. i = complex(0,1) #complex(real part, imaginary part) U = expm(i*A*t) #여기서 A가 행렬로 주어졌기 때문에, 행렬을 exp에 올리기 위해서는 expm이라는 scipy 패키지가 필요함. U_gate = UnitaryGate(U) #위에서 구성한 U라는 행렬로써 Unitary gate를 구성할 수 있음. (4*4) 행렬 CU = add_control(U_gate,1,ctrl_state=None, label="CU") #CU라는 게이트 이름을 label에 저장 #control 되는 경우의 state를 지정 -> 해당사항 없음 #두번째 인자는 컨트롤 큐빗의 개수를 지정함. n_b = int(np.log2(U.shape[0])) #Ax =b의 꼴이고, b는 4*1의 shape이므로, A의 행의 개수와 동일함. 따라서, U의 행렬의 행의 개수와 동일함. #행의 개수에 log2를 취하면 필요한 n_b의 값을 구할 수 있음. My_HHL_result = hhl.My_HHL(CU,b,n_l,n_b,backend,delta,shots,A,details = True,chevyshev = False) print("\n") qiskit_result = hhl.qiskit_HHL(A,b,backend) print("\n") classical_result = hhl.classical_HHL(A,b) print("\n") #For normalized answer print("<Un - normalized Case Comparision>") print('Qiskit Error : {0}'.format(np.linalg.norm(qiskit_result[1]-classical_result[1]))) print('My HHL Error : {0}'.format(np.linalg.norm(My_HHL_result[1]-classical_result[1]))) print("\n") print("<Normalized Case Comparision>") print('Qiskit Error : {0}'.format(np.linalg.norm(qiskit_result[0]-classical_result[0]))) print('My HHL Error : {0}'.format(np.linalg.norm(My_HHL_result[0]-classical_result[0]))) if __name__ == "__main__": #setups A = np.array([[2,-1],[1,4]]) #non-Hermitian인 경우의 행렬에 대한 저장 b = np.array([1,1]) backend = Aer.get_backend('aer_simulator') shots = 8192 t = np.pi*2/16 n_l = 3 #QPE 상에서 n_ㅣ는 하다마드로 초기화 되는 부분 delta = 1/16*(2**(n_l-1)) main(A,b,backend,shots,t,n_l,delta)
https://github.com/AllenGabrielMarchen/HHL_implementation
AllenGabrielMarchen
#circuit_parts.py from qiskit.circuit.library.arithmetic.exact_reciprocal import ExactReciprocal from qiskit.circuit.library.arithmetic.piecewise_chebyshev import PiecewiseChebyshev from qiskit import QuantumCircuit, QuantumRegister,Aer import numpy as np def qft_dagger(n_l): # <qft를 구현하는 과정에 있어서 SWAP gate에 대한 참고사항> # SWAP 게이트를 걸어주는 목적은 qiskit은 qubit을 반대방향으로 읽기 때문임. # 하지만, SWAP 게이트를 위와 같은 이유로 걸어주게 된다고 하면, # HHL 알고리즘 상에서 Eigeninversion 단계에서 문제가 생기게 됨. # 즉, Eigeninversion에서는 SWAP이 된 상태를 인지하지 못하고 연산을 실시하여 잘못된 연산이 나오게 됨. """n-qubit QFTdagger the first n qubits in circ""" nl_rg = QuantumRegister(n_l, "l") qc = QuantumCircuit(nl_rg) # Don't forget the Swaps! #QFT의 역연산은 곧 QFT_dagger임을 기억하자. for j in reversed(range(n_l)): qc.h(j) for m in reversed(range(j)): qc.cp(-np.pi/float(2**(j-m)), m, j) qc.name = "QFT†" #display(qc.draw(output = 'mpl')) return qc def QPE(n_l,n_b,CU): #circuit initialization for HHL nl_rg = QuantumRegister(n_l, "l") nb_rg = QuantumRegister(n_b, "b") #QuantumRegister(size=None, name=None, bits=None) qc = QuantumCircuit(nl_rg,nb_rg) #display(qc.draw(output = 'mpl')) qc.h(nl_rg) qc.barrier(nl_rg[:]+nb_rg[:]) for l in range(n_l): for power in range(2**(l)): qc.append(CU, [nl_rg[l],nb_rg[0],nb_rg[1]]) #첫번째 큐비트는 2^0번, 이후 2^n꼴로 돌아가게 설계됨. #https://qiskit.org/documentation/stubs/qiskit.circuit.ControlledGate.html append의 예제. #즉, append의 첫번째 인자는 gate, 두번쨰 인자의 첫번째 요소는 control qubit, 이후 인자의 요소는 target qubit. qc.barrier(nl_rg[:]+nb_rg[:]) qc.append(qft_dagger(n_l),nl_rg[:]) qc.barrier(nl_rg[:]+nb_rg[:]) qc.name = "QPE" #display(qc.draw(output = 'mpl')) return qc def QPE_dagger(n_l,n_b,CU): qc = QPE(n_l,n_b,CU) qc = qc.inverse() #여기서 inverse함수는 모든 rotation 각도까지도 반대로 입력해줌을 확인하였음. #QPE dagger는 그저, QPE의 역과정이라고 생각하면 된다. 단, 각도는 반대방향이어야 함. #따라서 여기서 inverse함수를 이용하여 QPE의 역과정, 즉, QPE dagger를 실시하였음 qc.name = 'QPE†' return qc def Eigenvalue_inversion(n_l,delta,chevyshev = False): #Chevyshev 근사를 이용한 풀이방법. #Qiskit에서 제공한 HHL 알고리즘 상에서는 Chevyshev 근사를 이용한 부분이 있었다. #일단 Chevyshev 근사를 이용하는 경우, 기존 Taylor 근사보다 훨씬 빠르게 급수에 수렴한다는 장점이 있다. #참고 문헌 : https://freshrimpsushi.github.io/posts/chebyshev-expansion/ #여기서는 위의 표현한 cos(theta)에 대한 표현을 Chevyshev근사를 이용해 theta값을 알아내겠다는 접근방법이다. #하지만, 근사결과가 좋지 못하다는 점 때문에 Chevyshev 근사를 이용하는 대신에 직접 exact한 theta값을 알아내는 ExactReciprocal을 이용하였다. if chevyshev == True: print("Maybe using Chevyshev approximation is not accurate.") #Using Chebychev Approx. (not recommended!) nl_rg = QuantumRegister(n_l, "l") na_rg = QuantumRegister(n_l, "a") nf_rg = QuantumRegister(1, "f") qc = QuantumCircuit(nl_rg, na_rg, nf_rg) f_x, degree, breakpoints, num_state_qubits = lambda x: np.arcsin(1 / x), 2, [1,2,3,4], n_l #degree : 함수를 polynomial로 근사할 떄, 최고차항 정의 #breakpoints는 구간을 나누는 느낌. : 근사를 할 떄, 다항식을 어떤 구간에서 나눠서 사용할 지 #l : eigenvalue를 표현 #f : rotation #a : ancila pw_approximation = PiecewiseChebyshev(f_x, degree, breakpoints, num_state_qubits) pw_approximation._build() qc.append(pw_approximation,nl_rg[:]+[nf_rg[0]]+na_rg[:]) #range(nl*2+1)) qc.name = 'Chevyshev_inversion' return qc else: qc = ExactReciprocal(n_l, delta, neg_vals = True) qc.name = 'Reciprocal_inversion' return qc
https://github.com/AllenGabrielMarchen/HHL_implementation
AllenGabrielMarchen
#measurement.py from qiskit import QuantumCircuit, transpile, assemble from qiskit.visualization import plot_histogram def measurement(qc,n_l,n_b,CU,backend,shots): t = transpile(qc, backend) qobj = assemble(t, shots=shots) results = backend.run(qobj).result() answer = results.get_counts() plot_histogram(answer, title="Output Histogram").savefig('./outputs/output_histogram.png',facecolor='#eeeeee') return answer
https://github.com/AllenGabrielMarchen/HHL_implementation
AllenGabrielMarchen
#run.py ''' 참고 논문 :Low Complexity Quantum Matrix Inversion A기gorithm for non-Hermitian Matrices 해당 논문에서, non-Hermitian인 경우에 Hermitian으로 바꾸기 위해서 2*2의 행렬을 4*4 행렬로 바꾸었다. 밑의 주어진 코드를 통해 이해해보도록하자. A = np.array([[2,-1],[1,4]])의 꼴로 주어진 A는 non-Hermitian의 꼴이다. 그러므로, 이를 def main - #Check if Hermitian 파트에서 다음과 같은 코드로 아래와 같은 Hermitian으로 바꾸게 된다. (코드) A = np.vstack((np.hstack((np.zeros_like(A),A)),np.hstack((A.T, np.zeros_like(A))))) 이에 맞게 나머지 x와 b의 행렬의 형태도 4*1의 형태로 바꾸어주어야 한다. 즉, x = [ 0, 0, x1, x2]의 꼴로, 그리고 b는 [1 1 0 0]의 꼴로 바꾸어야 한다. (결과) [[ 0 0 2 -1] [ 0 0 1 4] [ 2 1 0 0] [-1 4 0 0]] ''' import numpy as np from scipy.linalg import expm from qiskit.extensions import UnitaryGate from qiskit.circuit.add_control import add_control from qiskit import Aer import circuit import hhl import tools def main(A,b,backend,shots,t,n_l,delta): #Check if Hermitian #위에서 언급한 바대로 non-Hermitian matrice인 A에 대해서 Hermitian으로 바꿔주는 과정 if np.allclose(A,A.T) == False: print("Given A matrice is not Hermitian.") print("Given Matrices will be transformed into Hermitian formation.") A = np.vstack((np.hstack((np.zeros_like(A),A)),np.hstack((A.T, np.zeros_like(A))))) # Hermitian의 꼴로 바꿈 #A의 shape와 동일한 zero array를 생성하고, A의 왼쪽에 배치, horizontal 방향도 마찬가지. b = np.hstack((b,np.zeros_like((np.shape(A)[0]-np.shape(b)[0],1)))) i = complex(0,1) #complex(real part, imaginary part) U = expm(i*A*t) #여기서 A가 행렬로 주어졌기 때문에, 행렬을 exp에 올리기 위해서는 expm이라는 scipy 패키지가 필요함. U_gate = UnitaryGate(U) #위에서 구성한 U라는 행렬로써 Unitary gate를 구성할 수 있음. (4*4) 행렬 CU = add_control(U_gate,1,ctrl_state=None, label="CU") #CU라는 게이트 이름을 label에 저장 #control 되는 경우의 state를 지정 -> 해당사항 없음 #두번째 인자는 컨트롤 큐빗의 개수를 지정함. n_b = int(np.log2(U.shape[0])) #Ax =b의 꼴이고, b는 4*1의 shape이므로, A의 행의 개수와 동일함. 따라서, U의 행렬의 행의 개수와 동일함. #행의 개수에 log2를 취하면 필요한 n_b의 값을 구할 수 있음. #각각 HHL 알고리즘이 구현된 방식으로 결과를 얻는다 My_HHL_result = hhl.My_HHL(CU,b,n_l,n_b,backend,delta,shots,A,details = True,chevyshev = False) print("\n") qiskit_result = hhl.qiskit_HHL(A,b) print("\n") classical_result = hhl.classical_HHL(A,b) print("\n") #For normalized answer print("<Un - normalized Case Comparision>") print('Qiskit Error : {0}'.format(np.linalg.norm(qiskit_result[1]-classical_result[1]))) print('My HHL Error : {0}'.format(np.linalg.norm(My_HHL_result[1]-classical_result[1]))) print("\n") print("<Normalized Case Comparision>") print('Qiskit Error : {0}'.format(np.linalg.norm(qiskit_result[0]-classical_result[0]))) print('My HHL Error : {0}'.format(np.linalg.norm(My_HHL_result[0]-classical_result[0]))) if __name__ == "__main__": #setups A = np.array([[2,-1],[1,4]]) #non-Hermitian인 경우의 행렬에 대한 저장 b = np.array([1,1]) backend = Aer.get_backend('aer_simulator') shots = 8192 t = np.pi*2/16 n_l = 3 #QPE 상에서 n_ㅣ는 하다마드로 초기화 되는 부분 delta = 1/16*(2**(n_l-1)) main(A,b,backend,shots,t,n_l,delta) #my_hhl.py from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister import numpy as np import circuit as circ import tools def My_HHL(CU,b,n_l,n_b,backend,delta,shots,A,details = True,chevyshev = False): #circuit initialization #qubit의 개수들을 정의한다. n_f = 1 nb = int(np.log2(b.shape)) #정의된 qubit의 개수들을 기반으로 양자 레지스터들을 생성한다. nl_rg = QuantumRegister(n_l, "l") nb_rg = QuantumRegister(n_b, "b") na_rg = QuantumRegister(n_l, "a") nf_rg = QuantumRegister(n_f, "f") #고전 레지스터들을 생성한다. cf = ClassicalRegister(n_f, "classical_f") cb = ClassicalRegister(n_b, "classical_b") #생성된 레지스터들을 기반으로 비어있는 양자회로를 설치한다. qc = QuantumCircuit(nf_rg,nl_rg, nb_rg, na_rg, cf, cb) #isometry 패키지를 이용해서 normalized 된 b 행렬을 양자회로에 인코딩한다. #즉. isometry라는 메서드는 어떤 행렬을 양자회로에 업로드 해주는 역할을 한다. qc.isometry(b/np.linalg.norm(b), list(range(nb)), None) qc.barrier(nf_rg,nl_rg,nb_rg) #details는 양자 회로의 어떠한 instruction들을 세부적으로 표현할 것인지 아닌지에 대한 설정이다. if details == True: #compose를 이용해서 위에서 생성한 레지스터에 붙이는 경우, instruction 내의 모든 회로가 다 보임. #또한, 더 많은 register들이 있는 회로에 적은 register들이 있는 회로를 가져다 붙이기 위해서는 compose에 인자로써 register가 적용될 순서를 명시해주어야함. #구성한 circ 패키지 내에 있는 회로들을 compose를 이용해 가져다 붙이는 과정 #QPE -> Eigenvalue_inversion -> QPE_dagger 순으로 회로를 가져다 붙임 qc = qc.compose(circ.QPE(n_l,n_b,CU),nl_rg[:]+nb_rg[:]) qc = qc.compose(circ.Eigenvalue_inversion(n_l,delta,chevyshev),[nl_rg[2]]+[nl_rg[1]]+[nl_rg[0]]+nf_rg[:]) qc = qc.compose(circ.QPE_dagger(n_l,n_b,CU),nl_rg[:]+nb_rg[:]) else: qc.append(circ.QPE(n_l,n_b,CU),nl_rg[:]+nb_rg[:]) qc.append(circ.Eigenvalue_inversion(n_l),[nl_rg[2]]+[nl_rg[1]]+[nl_rg[0]]+nf_rg[:]) qc.append(circ.QPE_dagger(n_l,n_b,CU),nl_rg[:]+nb_rg[:]) qc.barrier(nf_rg[:]+nl_rg[:]+nb_rg[:]) #레지스터의 이름과 그 안에 있는 큐비트들의 순서들을 조합하여 한번에 barrier를 세울 수 있음. #측정 실시 파트 qc.measure(nf_rg,cf) qc.measure(nb_rg,cb) answer = circ.measurement(qc,n_l,n_b,CU,backend,shots) qc.draw(output = 'mpl').savefig('./outputs/qc_HHL') #Obtaining Normalized answer normalized_result = tools.normalize_vector(answer, n_b) #Obtaining Real Answer ''' 즉, normalized된 x값을 집어넣고, Ax = b 꼴에서 좌변을 계산한 후에 b와 몇배 차이인가를 알아내는 과정 여기서 몇배 차이를 나타내는게 constant임. constant는 b와 같은 shape를 갖게 되고, ensemble로 얻어지는 양자회로의 특성상 explicit한 결과가 주어지지 않는다. 따라서, constant 벡터의 모든 요소들의 평균으로서 몇배 차이인지를 나타낸다. ''' constant = b/(A @ normalized_result) constant = (constant[0]+constant[1])/2 constant = np.mean(constant) #결과 출력 파트 print('<My_HHL>') print('Normalized Answer : {0}'.format(normalized_result)) print('Un-normalized Answer : {0}'.format(normalized_result * constant)) print('Normalize Constant: ' ,constant) return [normalized_result,normalized_result * constant] #classical_hhl.py from qiskit.algorithms.linear_solvers.numpy_linear_solver import NumPyLinearSolver import numpy as np def classical_HHL(A,b): #NumpyLinearSolver를 이용해서 주어진 행렬방정식을 풀어낸다. ''' 참고로, 여기선 un-normalized된 해로써 결과값이 나온다는 사실은 자명하다. 하지만 여기서 나온 해를 normalize를 통해서 my_hhl과 qiskit_hhl에서 내놓은 normalized된 해와의 차이를 분석하기 위해서 normalized Answer 또한 작성했다. ''' sol = NumPyLinearSolver().solve(A, b) sol_state = sol.state norm_state = sol_state/np.linalg.norm(sol_state) print('<Classical case using Numpy>') if np.shape(b)[0] == 2: sol_state = np.pad(sol_state,(2,0)) norm_state = np.pad(norm_state,(2,0)) print('Un-normalized Classical Numpy answer : {0}'.format(sol_state,(2,0))) print('Normalized Classical Numpy answer : {0}'.format(norm_state,(2,0))) return [norm_state,sol_state] #qiskit_hhl.py from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, Aer from qiskit.quantum_info import Statevector from qiskit.algorithms.linear_solvers.hhl import HHL import numpy as np def qiskit_HHL(A,b): #해당 내용은 https://qiskit.org/textbook/ch-applications/hhl_tutorial.html의 solving 과정을 참고하였음 backend = Aer.get_backend('aer_simulator') #qiskit HHL 코드를 불러옴 hhl = HHL(quantum_instance=backend) #A, b에 대해서 HHL 회로를 구성 solution = hhl.solve(A, b) #만들어진 회로를 그림으로 저장 solution.state.draw("mpl").savefig("./outputs/HHL_circuit_qiskit.png") #연산된 상태를 상태 벡터의 형태로 결과를 얻음 naive_sv = Statevector(solution.state).data #qubit수를 확인 num_qubit = solution.state.num_qubits #상태 벡터에서 필요한 상태만을 골라서 저장함 naive_full_vector = np.array([naive_sv[2**(num_qubit-1)+i] for i in range(len(b))]) #실수 부분만 취함 naive_full_vector = np.real(naive_full_vector) #얻어진 벡터를 normalize하여 반환 normalized_result = naive_full_vector/np.linalg.norm(naive_full_vector) #마찬가지로 주어진 해를 통해 constant를 구함. constant = b/(A @ normalized_result) constant = (constant[0]+constant[1])/2 constant = np.mean(constant) print('<Qiskit_HHL>') print('Normalized Qiskit Answer : {0}'.format(normalized_result)) print('Un-normalized Qiskit Answer : {0}'.format(normalized_result * constant)) print('Normalize Constant: ' ,constant) return [normalized_result,normalized_result * constant] #circuit_parts.py from qiskit.circuit.library.arithmetic.exact_reciprocal import ExactReciprocal from qiskit.circuit.library.arithmetic.piecewise_chebyshev import PiecewiseChebyshev from qiskit import QuantumCircuit, QuantumRegister,Aer import numpy as np def qft_dagger(n_l): # <qft를 구현하는 과정에 있어서 SWAP gate에 대한 참고사항> - issue 해결에 대한 report 2022-09-02 # SWAP 게이트를 걸어주는 목적은 qiskit은 qubit을 반대방향으로 읽기 때문임. # 하지만, SWAP 게이트를 위와 같은 이유로 걸어주게 된다고 하면, # HHL 알고리즘 상에서 Eigeninversion 단계에서 문제가 생기게 됨. # 즉, Eigeninversion에서는 SWAP이 된 상태를 인지하지 못하고 연산을 실시하여 잘못된 연산이 나오게 됨. """n-qubit QFTdagger the first n qubits in circ""" nl_rg = QuantumRegister(n_l, "l") qc = QuantumCircuit(nl_rg) # Don't forget the Swaps! #QFT의 역연산은 곧 QFT_dagger임을 기억하자. for j in reversed(range(n_l)): qc.h(j) for m in reversed(range(j)): qc.cp(-np.pi/float(2**(j-m)), m, j) qc.name = "QFT†" #display(qc.draw(output = 'mpl')) return qc def QPE(n_l,n_b,CU): #circuit initialization for HHL nl_rg = QuantumRegister(n_l, "l") nb_rg = QuantumRegister(n_b, "b") #QuantumRegister(size=None, name=None, bits=None) qc = QuantumCircuit(nl_rg,nb_rg) #display(qc.draw(output = 'mpl')) qc.h(nl_rg) qc.barrier(nl_rg[:]+nb_rg[:]) for l in range(n_l): for power in range(2**(l)): qc.append(CU, [nl_rg[l],nb_rg[0],nb_rg[1]]) #첫번째 큐비트는 2^0번, 이후 2^n꼴로 돌아가게 설계됨. #https://qiskit.org/documentation/stubs/qiskit.circuit.ControlledGate.html append의 예제. #즉, append의 첫번째 인자는 gate, 두번쨰 인자의 첫번째 요소는 control qubit, 이후 인자의 요소는 target qubit. qc.barrier(nl_rg[:]+nb_rg[:]) qc.append(qft_dagger(n_l),nl_rg[:]) qc.barrier(nl_rg[:]+nb_rg[:]) qc.name = "QPE" #display(qc.draw(output = 'mpl')) return qc def QPE_dagger(n_l,n_b,CU): qc = QPE(n_l,n_b,CU) qc = qc.inverse() #여기서 inverse함수는 모든 rotation 각도까지도 반대로 입력해줌을 확인하였음. #QPE dagger는 그저, QPE의 역과정이라고 생각하면 된다. 단, 각도는 반대방향이어야 함. #따라서 여기서 inverse함수를 이용하여 QPE의 역과정, 즉, QPE dagger를 실시하였음 qc.name = 'QPE†' return qc def Eigenvalue_inversion(n_l,delta,chevyshev = False): #Chevyshev 근사를 이용한 풀이방법. #Qiskit에서 제공한 HHL 알고리즘 상에서는 Chevyshev 근사를 이용한 부분이 있었다. #일단 Chevyshev 근사를 이용하는 경우, 기존 Taylor 근사보다 훨씬 빠르게 급수에 수렴한다는 장점이 있다. #참고 문헌 : https://freshrimpsushi.github.io/posts/chebyshev-expansion/ #여기서는 위의 표현한 cos(theta)에 대한 표현을 Chevyshev근사를 이용해 theta값을 알아내겠다는 접근방법이다. #하지만, 근사결과가 좋지 못하다는 점 때문에 Chevyshev 근사를 이용하는 대신에 직접 exact한 theta값을 알아내는 ExactReciprocal을 이용하였다. if chevyshev == True: print("Maybe using Chevyshev approximation is not accurate.") #Using Chebychev Approx. (not recommended!) nl_rg = QuantumRegister(n_l, "l") na_rg = QuantumRegister(n_l, "a") nf_rg = QuantumRegister(1, "f") qc = QuantumCircuit(nl_rg, na_rg, nf_rg) f_x, degree, breakpoints, num_state_qubits = lambda x: np.arcsin(1 / x), 2, [1,2,3,4], n_l #degree : 함수를 polynomial로 근사할 떄, 최고차항 정의 #breakpoints는 구간을 나누는 느낌. : 근사를 할 떄, 다항식을 어떤 구간에서 나눠서 사용할 지 #l : eigenvalue를 표현 #f : rotation #a : ancila pw_approximation = PiecewiseChebyshev(f_x, degree, breakpoints, num_state_qubits) pw_approximation._build() qc.append(pw_approximation,nl_rg[:]+[nf_rg[0]]+na_rg[:]) #range(nl*2+1)) qc.name = 'Chevyshev_inversion' return qc else: qc = ExactReciprocal(n_l, delta, neg_vals = True) qc.name = 'Reciprocal_inversion' return qc #measurement.py ''' 주어진 회로에 대해 backend를 가지고서 시뮬레이션을 하기 위한 모듈 ''' from qiskit import QuantumCircuit, transpile, assemble from qiskit.visualization import plot_histogram def measurement(qc,n_l,n_b,CU,backend,shots): t = transpile(qc, backend) qobj = assemble(t, shots=shots) results = backend.run(qobj).result() answer = results.get_counts() plot_histogram(answer, title="Output Histogram").savefig('./outputs/output_histogram.png',facecolor='#eeeeee') return answer #normalization.py import numpy as np #양자 회로를 통해서 얻어진 결과(dictionary)를 통해서 normalize된 결과 벡터 x를 구하는 함수 def normalize_vector(answer, nb): #nb register에서 얻어질 수 있는 상태들을 dictionary의 key의 형태로 만들어 저장한다. possible_states = [] #가능한 모든 상태들을 저장하기 위한 list for s in range(2**(nb)): possible_states.append(format(s, "b").zfill(nb)) #nb만큼의 자릿수에 대해서 binary의 형태로 모든 경우의 수를 생성. #print(answer) #flag register를 측정한 결과가 1이 나온 경우에 대해서 nb register의 결과를 순서대로 추가한다. available_result = [] for i in possible_states: for key in answer.keys(): #정답의 key 즉, 상태들을 받아옴. if key[0:2] == i: #얻은 상태들이 가능한 상태에 존재한다면, if int(key[-1]) == 1: #그리고 마지막 자릿수, f_register가 1의 값을 갖는다면, available_result.append(answer[key]) #avaliable_result에 f가 1인 상태들이 나온 횟수를 append 하자. else: pass else: pass #확률 분포를 상태 벡터의 형식으로 바꾸기 위해서 제곱근을 취한다. available_result = np.sqrt(np.array(available_result)) #확률 진폭은 계수의 제곱의 형태로 나오기 때문. #벡터의 크기가 1이 되도록 normalize해준다. normalized_result = available_result/np.linalg.norm(available_result) return normalized_result
https://github.com/AllenGabrielMarchen/HHL_implementation
AllenGabrielMarchen
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister import numpy as np import circuit as circ import tools def My_HHL(CU,b,n_l,n_b,backend,delta,shots,A,details = True,chevyshev = False): #b_sol = np.hstack((b,np.zeros_like((np.shape(A)[0]-np.shape(b)[0],1)))) #circuit initialization n_f = 1 nb = int(np.log2(b.shape)) nl_rg = QuantumRegister(n_l, "l") nb_rg = QuantumRegister(n_b, "b") na_rg = QuantumRegister(n_l, "a") nf_rg = QuantumRegister(n_f, "f") cf = ClassicalRegister(n_f, "classical_f") cb = ClassicalRegister(n_b, "classical_b") qc = QuantumCircuit(nf_rg,nl_rg, nb_rg, na_rg, cf, cb) qc.isometry(b/np.linalg.norm(b), list(range(nb)), None) #qc.h(nb_rg[0]) qc.barrier(nf_rg,nl_rg,nb_rg) if details == True: qc = qc.compose(circ.QPE(n_l,n_b,CU),nl_rg[:]+nb_rg[:]) qc = qc.compose(circ.Eigenvalue_inversion(n_l,delta,chevyshev),[nl_rg[2]]+[nl_rg[1]]+[nl_rg[0]]+nf_rg[:]) qc = qc.compose(circ.QPE_dagger(n_l,n_b,CU),nl_rg[:]+nb_rg[:]) qc.barrier(nf_rg[:]+nl_rg[:]+nb_rg[:]) qc.measure(nf_rg,cf) qc.measure(nb_rg,cb) answer = circ.measurement(qc,n_l,n_b,CU,backend,shots) qc.draw(output = 'mpl').savefig('./outputs/qc_HHL') else: qc.append(circ.QPE(n_l,n_b,CU),nl_rg[:]+nb_rg[:]) qc.append(circ.Eigenvalue_inversion(n_l),[nl_rg[2]]+[nl_rg[1]]+[nl_rg[0]]+nf_rg[:]) qc.append(circ.QPE_dagger(n_l,n_b,CU),nl_rg[:]+nb_rg[:]) qc.barrier(nf_rg[:]+nl_rg[:]+nb_rg[:]) qc.measure(nf_rg,cf) qc.measure(nb_rg,cb) answer = circ.measurement(qc,n_l,n_b,CU,backend,shots) qc.draw(output = 'mpl').savefig('./outputs/qc_HHL') #Obtaining Normalized answer normalized_result = tools.normalize_vector(answer, n_b) #Obtaining Real Answer constant = b/(A @ normalized_result) constant = (constant[0]+constant[1])/2 constant = np.mean(constant) print('<My_HHL>') print('Normalized Answer : {0}'.format(normalized_result)) print('Un-normalized Answer : {0}'.format(normalized_result * constant)) print('Normalize Constant: ' ,constant) return [normalized_result,normalized_result * constant]
https://github.com/AllenGabrielMarchen/HHL_implementation
AllenGabrielMarchen
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, Aer from qiskit.quantum_info import Statevector from qiskit.algorithms.linear_solvers.hhl import HHL import numpy as np def qiskit_HHL(A,b): backend = Aer.get_backend('aer_simulator') #qiskit HHL 코드를 불러옴 hhl = HHL(quantum_instance=backend) #A, b에 대해서 HHL 회로를 구성 solution = hhl.solve(A, b) #만들어진 회로를 그림으로 저장 solution.state.draw("mpl").savefig("./outputs/HHL_circuit_qiskit.png") #연산된 상태를 상태 벡터의 형태로 결과를 얻음 naive_sv = Statevector(solution.state).data #qubit수를 확인 num_qubit = solution.state.num_qubits #상태 벡터에서 필요한 상태만을 골라서 저장함 naive_full_vector = np.array([naive_sv[2**(num_qubit-1)+i] for i in range(len(b))]) #실수 부분만 취함 naive_full_vector = np.real(naive_full_vector) #얻어진 벡터를 normalize하여 반환 normalized_result = naive_full_vector/np.linalg.norm(naive_full_vector) constant = b/(A @ normalized_result) constant = (constant[0]+constant[1])/2 constant = np.mean(constant) print('<Qiskit_HHL>') print('Normalized Qiskit Answer : {0}'.format(normalized_result)) print('Un-normalized Qiskit Answer : {0}'.format(normalized_result * constant)) print('Normalize Constant: ' ,constant) return [normalized_result,normalized_result * constant]
https://github.com/klebermagno/Quantum-Algorithm
klebermagno
from qiskit import ClassicalRegister, QuantumRegister from qiskit import QuantumCircuit, execute q = QuantumRegister(2) c = ClassicalRegister(2) qc = QuantumCircuit(q, c) qc.h(q[0]) qc.cx(q[0], q[1]) qc.measure(q, c) job_sim = execute(qc, "local_qasm_simulator") sim_result = job_sim.result() print(sim_result.get_counts(qc))
https://github.com/dnnagy/qintro
dnnagy
import math import numpy as np import matplotlib as mpl from matplotlib import pyplot as plt import qiskit from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit import Aer, execute from qiskit.visualization import plot_bloch_multivector from qiskit.visualization import plot_bloch_vector from qiskit.visualization import plot_histogram qbackend = Aer.get_backend('qasm_simulator') sbackend = Aer.get_backend('statevector_simulator') ubackend = Aer.get_backend('unitary_simulator') qiskit.__version__ import torch torch.__version__ import strawberryfields as sf sf.__version__ help(sf) import cirq cirq.__version__
https://github.com/dnnagy/qintro
dnnagy
import numpy as np from qiskit import * import matplotlib qr = QuantumRegister(2) #measurements from quantum bits = use classical register cr = ClassicalRegister(2) circuit = QuantumCircuit(qr, cr) circuit.draw() # adding quantum gates to create entanglement (Hadamart gate) circuit.h(qr[0]) %matplotlib inline circuit.draw(output='mpl') #two qubit operation control X (logical if) circuit.cx(qr[0], qr[1]) circuit.draw(output='mpl') #entanglement achieved #measurement, storing measurements into computational register circuit.measure(qr,cr) circuit.draw(output='mpl') #performance simulations simulator = Aer.get_backend('qasm_simulator') execute(circuit, backend = simulator) result = execute(circuit, backend = simulator).result() #plotting results from qiskit.tools.visualization import plot_histogram plot_histogram(result.get_counts(circuit)) #running circuit on quantum computer IBMQ.load_account() provider= IBMQ.get_provider('ibm-q') qcomp = provider.get_backend('ibmq_manila') job= execute(circuit, backend=qcomp) from qiskit.tools import job_monitor job_monitor(job) result = job.result() from qiskit.tools.visualization import plot_histogram plot_histogram(result.get_counts(circuit), title='Performance metric on Quantum Computer')
https://github.com/dnnagy/qintro
dnnagy
import math import numpy as np import matplotlib as mpl from matplotlib import pyplot as plt import qiskit from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit import Aer, execute from qiskit.visualization import plot_bloch_multivector from qiskit.visualization import plot_bloch_vector from qiskit.visualization import plot_histogram qbackend = Aer.get_backend('qasm_simulator') sbackend = Aer.get_backend('statevector_simulator') ubackend = Aer.get_backend('unitary_simulator') qiskit.__version__ import torch torch.__version__ import strawberryfields as sf sf.__version__ help(sf) import cirq cirq.__version__
https://github.com/dnnagy/qintro
dnnagy
import math import numpy as np import matplotlib as mpl from matplotlib import pyplot as plt import qiskit from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit import Aer, execute from qiskit.visualization import plot_bloch_multivector from qiskit.visualization import plot_bloch_vector from qiskit.visualization import plot_histogram qbackend = Aer.get_backend('qasm_simulator') sbackend = Aer.get_backend('statevector_simulator') ubackend = Aer.get_backend('unitary_simulator') qiskit.__version__ qreg = QuantumRegister(1) creg = ClassicalRegister(1) circ = QuantumCircuit(qreg,creg) circ.measure(0,0) circ.draw(output='mpl') job = execute( circ, qbackend, shots=1000 ) counts = job.result().get_counts() fig, ax = plt.subplots() plot_histogram(counts, ax = ax) n_shots=1000 measure_psi = QuantumCircuit(1,1) amps_psi = (1.0/np.sqrt(2))*np.array([1.0+0.0j, 0.0+1.0j]) measure_psi.initialize(amps_psi, 0) measure_psi.measure(0,0) job_psi = execute( measure_psi, qbackend, shots=n_shots ) counts_psi = job_psi.result().get_counts() print("counts_psi =", counts_psi) measure_phi = QuantumCircuit(1,1) amps_phi = (1.0/np.sqrt(2))*np.array([0.0+1.0j, -1.0+0.0j]) measure_phi.initialize(amps_phi, 0) measure_phi.measure(0,0) job_phi = execute( measure_phi, qbackend, shots=n_shots ) counts_phi = job_phi.result().get_counts() print("counts_phi =", counts_phi) fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(12,5), dpi=96) plot_histogram(counts_psi, ax=axes[0]) axes[0].set_title(r'$\psi$') plot_histogram(counts_phi, ax=axes[1]) axes[1].set_title(r'$\phi$'); n_shots=10000 measure_psi = QuantumCircuit(1,1) amps_psi = [np.sqrt(0.45), np.sqrt(0.55)] measure_psi.initialize(amps_psi, 0) measure_psi.measure(0,0) job_psi = execute( measure_psi, qbackend, shots=n_shots ) counts_psi = job_psi.result().get_counts() print("counts_psi =", counts_psi) measure_phi = QuantumCircuit(1,1) amps_phi = [np.sqrt(0.5), np.sqrt(0.5)] measure_phi.initialize(amps_phi, 0) measure_phi.measure(0,0) job_phi = execute( measure_phi, qbackend, shots=n_shots ) counts_phi = job_phi.result().get_counts() print("counts_phi =", counts_phi) fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(12,5), dpi=96) plot_histogram(counts_psi, ax=axes[0]) axes[0].set_title(r'$\psi$') plot_histogram(counts_phi, ax=axes[1]) axes[1].set_title(r'$\phi$'); qreg = QuantumRegister(1) creg = ClassicalRegister(1) circ = QuantumCircuit(qreg,creg) # Apply gates circ.x(0) # Measure circ.barrier(qreg) circ.measure(0,0) circ.draw(output='mpl') job = execute( circ, qbackend, shots=10000 ) state = job.result().get_counts() print("Counts:", state) plot_histogram(state) qreg = QuantumRegister(1) creg = ClassicalRegister(1) circ = QuantumCircuit(qreg,creg) # Apply gates circ.h(0) # Measure circ.barrier(qreg) circ.measure(0,0) circ.draw(output='mpl') job = execute( circ, qbackend, shots=10000 ) state = job.result().get_counts() print("Counts:", state) plot_histogram(state) qreg = QuantumRegister(1) creg = ClassicalRegister(1) circ = QuantumCircuit(qreg,creg) # Apply gates circ.z(0) circ.x(0) circ.h(0) # Measure circ.barrier(qreg) circ.measure(0,0) circ.draw(output='mpl') job = execute( circ, qbackend, shots=10000 ) state = job.result().get_counts() print("Counts:", state) plot_histogram(state) ps = np.array([0.1, 0.2, .5, .2]) amplitudes = np.sqrt(ps) qreg = QuantumRegister(2) creg = ClassicalRegister(2) circ = QuantumCircuit(qreg,creg) circ.initialize(amplitudes, qreg) circ.measure(qreg,creg) circ.draw(output='mpl') job = execute( circ, qbackend, shots=10000 ) state = job.result().get_counts() print("Counts:", state) plot_histogram(state) # Random 4-qubit state ps = np.random.randint(0, 255, 16) ps = ps/ps.sum() amplitudes = np.sqrt(ps) # Setup qreg = QuantumRegister(4) creg = ClassicalRegister(4) circ = QuantumCircuit(qreg,creg) circ.initialize(amplitudes, qreg) # Measure m = QuantumCircuit(qreg, creg) m.measure(qreg, creg) job = execute( circ+m, qbackend, shots=10000 ) counts = job.result().get_counts() m.draw(output='mpl') plot_histogram(counts) qreg = QuantumRegister(2) creg = ClassicalRegister(2) circ = QuantumCircuit(qreg,creg) circ.x(0) circ.h(0) circ.cx(0,1) circ.barrier(qreg) circ.measure(qreg,creg) circ.draw(output='mpl') job = execute( circ, qbackend, shots=10000 ) counts = job.result().get_counts() plot_histogram(counts) # Create the quantum circuit with 2 qubits and 2 classical bits qc = QuantumCircuit(2, 2) qc.barrier() # First generate the entangled pair between Alice and Bob (Remember: Hadamard followed by CX generates a Bell pair) # At this point, qubit 1 goes to Bob and qubit 2 goes to Alice qc.h(0) qc.cx(0, 1) qc.barrier() # Next, Alice encodes her message. First, we need to prepare the state Alice will like to send, # In this tutorial, Alice is sending 11: qc.x(0) qc.z(0) qc.barrier() # Alice then sends her qubit to Bob. # After recieving qubit 0, Bob applies the recovery protocol: qc.cx(0, 1) qc.h(0) # Let's take a measurement to see which classical bit of information Bob receives: qc.barrier() qc.measure(0, 0) qc.measure(1, 1) # Draw our output qc.draw(output = "mpl") job = execute( qc, qbackend, shots=10000 ) counts = job.result().get_counts() plot_histogram(counts) q1 = QuantumCircuit(1,1) q1.x(0) q1.measure(0,0) q1.draw(output = 'mpl') q2 = QuantumCircuit(1,1) q2.h(0) q2.measure(0,0) q2.draw(output = 'mpl') q = q1 + q2 q.draw(output = 'mpl')
https://github.com/AlphaMiyaL/Qiskit-Quantum-Journey
AlphaMiyaL
from qiskit import * from qiskit.tools.visualization import plot_histogram %matplotlib inline secretnumber = '11100011' circuit = QuantumCircuit(len(secretnumber)+1,len(secretnumber)) circuit.h(range(len(secretnumber))) circuit.x(len(secretnumber)) circuit.h(len(secretnumber)) circuit.barrier() for ii, yesno in enumerate(reversed(secretnumber)): if yesno == '1': circuit.cx(ii,len(secretnumber)) circuit.barrier() circuit.h(range(len(secretnumber))) circuit.barrier() circuit.measure(range(len(secretnumber)),range(len(secretnumber))) circuit.draw(output = 'mpl')
https://github.com/AlphaMiyaL/Qiskit-Quantum-Journey
AlphaMiyaL
#Qiskit Categories #Terra - Foundation, where we build and test our circuit #Aer - Simulator, simulation of circuit theoretically #Ignis - Masks noise, helps understand/mitigate error #energy relaxation - scenario - leave qbit in energized state, will eventually relax to zero state #Measurement error mitigation from qiskit import * nqubits = 3 circuit = QuantumCircuit(nqubits, nqubits) circuit.h(0) circuit.cx(0,1) circuit.cx(1,2) circuit.measure([0,1,2], [0,1,2]) %matplotlib inline circuit.draw(output='mpl') #Aer Simulaton simulator = Aer.get_backend('qasm_simulator') sim_result = execute(circuit, backend=simulator, shots=1024).result() from qiskit.visualization import plot_histogram plot_histogram(sim_result.get_counts(circuit)) #Terra Real Hardware Execution IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q') device = provider.get_backend('ibm_oslo') job = execute(circuit, backend=device, shots=1024) print(job.job_id()) from qiskit.tools.monitor import job_monitor job_monitor(job) device_result = job.result() plot_histogram(device_result.get_counts(circuit)) #Ignis Error Mitigation from qiskit.ignis.mitigation.measurement import (complete_meas_cal, CompleteMeasFitter) cal_circuits, state_labels = complete_meas_cal(qr = circuit.qregs[0], circlabel='measerrormitigationcal') cal_circuits[2].draw(output='mpl') len(cal_circuits) cal_job = execute(cal_circuits, backend = device, shots = 1024, optimization_level = 0 ) print(cal_job.job_id()) job_monitor(cal_job) cal_results = cal_job.result() plot_histogram( cal_results.get_counts(cal_circuits[3]) ) meas_fitter = CompleteMeasFitter(cal_results, state_labels) meas_fitter.plot_calibration() meas_filter = meas_fitter.filter mitigated_result = meas_filter.apply(device_result) device_counts = device_result.get_counts(circuit) mitigated_counts = mitigated_result.get_counts(circuit) plot_histogram([device_counts, mitigated_counts], legend =['device, noisy', 'device, mitigated']) #Another example using a different circuit circuit2 = QuantumCircuit(3,3) circuit2.x(1) circuit2.h(0) circuit2.cx(0,1) circuit2.cx(1,2) circuit2.measure([0,1,2],[0,1,2]) circuit2.draw(output = 'mpl') plot_histogram( execute(circuit2, backend=simulator, shots = 1024).result().get_counts(circuit2) ) device_counts_2 = execute(circuit2, backend = device, shots=1024).result().get_counts(circuit2) plot_histogram(device_counts_2) device_mitigated_counts_2 = meas_filter.apply(device_counts_2) plot_histogram(device_mitigated_counts_2)
https://github.com/AlphaMiyaL/Qiskit-Quantum-Journey
AlphaMiyaL
#Building our first Algorithm #Data to input #Circuit for calcs #Output #Fourier Checking Algorithm (built-in) #checks how related the Fourier transform of the f function is related with the g function import qiskit.quantum_info as qi from qiskit.circuit.library import FourierChecking from qiskit.visualization import plot_histogram f=[1,-1,-1,-1] g=[1,1,-1,-1] circ = FourierChecking(f=f, g=g) circ.draw() zero = qi.Statevector.from_label('00') sv = zero.evolve(circ) probs = sv.probabilities_dict() plot_histogram(probs)
https://github.com/AlphaMiyaL/Qiskit-Quantum-Journey
AlphaMiyaL
# X gate # X|0> = |1> # X|1> = |0> # moving from q0 to q1 from qiskit import * from qiskit.tools.visualization import plot_bloch_multivector circuit = QuantumCircuit(1,1) circuit.x(0) simulator = Aer.get_backend('statevector_simulator') result = execute(circuit, backend=simulator).result() statevector = result.get_statevector() print(statevector) %matplotlib inline circuit.draw(output='mpl') plot_bloch_multivector(statevector) circuit.measure([0], [0]) backend = Aer.get_backend('qasm_simulator') result = execute(circuit,backend=backend, shots = 1024).result() counts = result.get_counts() from qiskit.tools.visualization import plot_histogram plot_histogram(counts) circuit = QuantumCircuit(1,1) circuit.x(0) simulator = Aer.get_backend('unitary_simulator') result = execute(circuit, backend=simulator).result() unitary = result.get_unitary() print(unitary)
https://github.com/AlphaMiyaL/Qiskit-Quantum-Journey
AlphaMiyaL
my_list = [1,3,5,2,4,2,5,8,0,7,6] #classical computation method def oracle(my_input): winner =7 if my_input is winner: response = True else: response = False return response for index, trial_number in enumerate(my_list): if oracle(trial_number) is True: print("Winner is found at index %i" %index) print("%i calls to the oracle used " %(index +1)) break #quantum implemenation from qiskit import * import matplotlib.pyplot as plt import numpy as np from qiskit.tools import job_monitor # oracle circuit oracle = QuantumCircuit(2, name='oracle') oracle.cz(0,1) oracle.to_gate() oracle.draw(output='mpl') backend = Aer.get_backend('statevector_simulator') grover_circuit = QuantumCircuit(2,2) grover_circuit.h([0,1]) grover_circuit.append(oracle,[0,1]) grover_circuit.draw(output='mpl') job= execute(grover_circuit, backend=backend) result= job.result() sv= result.get_statevector() np.around(sv,2) #amplitude amplification reflection = QuantumCircuit(2, name='reflection') reflection.h([0,1]) reflection.z([0,1]) reflection.cz(0,1) reflection.h([0,1]) reflection.to_gate() reflection.draw(output='mpl') #testing circuit on simulator simulator = Aer.get_backend('qasm_simulator') grover_circuit = QuantumCircuit(2,2) grover_circuit.h([0,1]) grover_circuit.append(oracle,[0,1]) grover_circuit.append(reflection, [0,1]) grover_circuit.barrier() grover_circuit.measure([0,1],[0,1]) grover_circuit.draw(output='mpl') job= execute(grover_circuit,backend=simulator,shots=1) result=job.result() result.get_counts() #testing on real backend system IBMQ.load_account() provider= IBMQ.get_provider('ibm-q') qcomp= provider.get_backend('ibmq_manila') job = execute(grover_circuit,backend=qcomp) job_monitor(job) result=job.result() counts=result.get_counts(grover_circuit) from qiskit.visualization import plot_histogram plot_histogram(counts) counts['11']
https://github.com/AlphaMiyaL/Qiskit-Quantum-Journey
AlphaMiyaL
#Extending Grover's Algorithm to cover the Satisfiability Problem #Satifiability Problem Ex #Ordering food # Satisfiability Constraints # Open, Nearby, Deliver, Thai Food #For a reasonable # of resturants, classical comp is fine #However for big datasets, we can use a quantum speedup #recast problem into search problem #Grover's Dinner Party #Invite as many friends over as possible while everyone gets along #Grover's search can be used for boolean satisfiability problems #((Olivia & Abe) | (Jin & Amira)) & ~(Abe & Amira) #((A & B) | (C & D)) & ~(A & D) from qiskit import BasicAer #Deprecation of Aqua #from qiskit.aqua.algorithms import Grover #from qiskit.aqua.components.oracles import LogicalExpressionOracle from qiskit.circuit.library import PhaseOracle from qiskit.algorithms import Grover, AmplificationProblem from qiskit.utils import QuantumInstance from qiskit.tools.visualization import plot_histogram log_expr = '((Olivia & Abe) | (Jin & Amira)) & ~(Abe & Amira)' oracle = PhaseOracle(log_expr) problem = AmplificationProblem(oracle=oracle) backend = BasicAer.get_backend('qasm_simulator') qinstance = QuantumInstance(backend, shots = 1000) grover = Grover(quantum_instance = qinstance) #algorithm = Grover(oracle) result = grover.amplify(problem) print('Top measurement:', result.top_measurement)
https://github.com/AlphaMiyaL/Qiskit-Quantum-Journey
AlphaMiyaL
import qiskit qiskit.__qiskit_version__ from qiskit import IBMQ IBMQ.save_account('46fd3c15ef48cd5f5d6e4a8ae48748af512d2a57b1647282d61d7e98fda97a54d4be4ab8ff433fccd6613f9e30b3819a1aef9d6262f4980804cb2cd3952f7850') IBMQ.load_account() from qiskit import * qr = QuantumRegister(2) cr = ClassicalRegister(2) circuit = QuantumCircuit(qr,cr) %matplotlib inline circuit.draw() circuit.h(qr[0]) #hadamard gate circuit.draw(output = 'mpl') circuit.cx(qr[0],qr[1]) #controlled X gate circuit.draw(output = 'mpl') circuit.measure(qr,cr) circuit.draw(output = 'mpl') #setting up simulator simulator = Aer.get_backend('qasm_simulator') result = execute(circuit, backend = simulator).result() from qiskit.tools.visualization import plot_histogram plot_histogram(result.get_counts(circuit)) provider = IBMQ.get_provider('ibm-q') # Get a list of available backends backends = provider.backends() # Print the names of available backends print("Available Backends:", [backend.name() for backend in backends]) qcomp = provider.get_backend('ibm_osaka') job = execute(circuit, backend = qcomp) from qiskit.tools.monitor import job_monitor job_monitor(job) results = job.result() plot_histogram(results.get_counts(circuit))
https://github.com/AlphaMiyaL/Qiskit-Quantum-Journey
AlphaMiyaL
import qiskit qiskit.__qiskit_version__ from qiskit import IBMQ IBMQ.save_account('d3d29913a9b505c699f877ab1ade9d7729ee46bf49670047e44a106ff692c5efec8ff03873c1fe6f1d4e76e090e6177ab37bd7c5beb08c2fa1096316c0dc1006') IBMQ.load_account()
https://github.com/AlphaMiyaL/Qiskit-Quantum-Journey
AlphaMiyaL
# Do the necessary imports import numpy as np from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute, BasicAer, IBMQ from qiskit.visualization import plot_histogram, plot_bloch_multivector ### Creating 3 qubit and 2 classical bits in each separate register qr = QuantumRegister(3) crz = ClassicalRegister(1) crx = ClassicalRegister(1) teleportation_circuit = QuantumCircuit(qr, crz, crx) ### A third party eve helps to create an entangled state def create_bell_pair(qc, a, b): qc.h(a) qc.cx(a, b) create_bell_pair(teleportation_circuit, 1, 2) teleportation_circuit.draw() def alice_gates(qc, a, b): qc.cx(a, b) qc.h(a) teleportation_circuit.barrier() alice_gates(teleportation_circuit, 0, 1) teleportation_circuit.draw() def measure_and_send(qc, a, b): qc.barrier() qc.measure(a,0) qc.measure(b,1) teleportation_circuit.barrier() measure_and_send(teleportation_circuit, 0, 1) teleportation_circuit.draw() def bob_gates(qc, qubit, crz, crx): qc.x(qubit).c_if(crx, 1) qc.z(qubit).c_if(crz, 1) teleportation_circuit.barrier() bob_gates(teleportation_circuit, 2, crz, crx) teleportation_circuit.draw() from qiskit.extensions import Initialize import math qc = QuantumCircuit(1) initial_state = [0,1] init_gate = Initialize(initial_state) # qc.append(initialize_qubit, [0]) qr = QuantumRegister(3) # Protocol uses 3 qubits crz = ClassicalRegister(1) # and 2 classical registers crx = ClassicalRegister(1) qc = QuantumCircuit(qr, crz, crx) # First, let's initialise Alice's q0 qc.append(init_gate, [0]) qc.barrier() # Now begins the teleportation protocol create_bell_pair(qc, 1, 2) qc.barrier() # Send q1 to Alice and q2 to Bob alice_gates(qc, 0, 1) # Alice then sends her classical bits to Bob measure_and_send(qc, 0, 1) # Bob decodes qubits bob_gates(qc, 2, crz, crx) qc.draw() backend = BasicAer.get_backend('statevector_simulator') out_vector = execute(qc, backend).result().get_statevector() plot_bloch_multivector(out_vector) inverse_init_gate = init_gate.gates_to_uncompute() qc.append(inverse_init_gate, [2]) qc.draw() cr_result = ClassicalRegister(1) qc.add_register(cr_result) qc.measure(2,2) qc.draw() backend = BasicAer.get_backend('qasm_simulator') counts = execute(qc, backend, shots=1024).result().get_counts() plot_histogram(counts) def bob_gates(qc, a, b, c): qc.cz(a, c) qc.cx(b, c) qc = QuantumCircuit(3,1) # First, let's initialise Alice's q0 qc.append(init_gate, [0]) qc.barrier() # Now begins the teleportation protocol create_bell_pair(qc, 1, 2) qc.barrier() # Send q1 to Alice and q2 to Bob alice_gates(qc, 0, 1) qc.barrier() # Alice sends classical bits to Bob bob_gates(qc, 0, 1, 2) # We undo the initialisation process qc.append(inverse_init_gate, [2]) # See the results, we only care about the state of qubit 2 qc.measure(2,0) # View the results: qc.draw() from qiskit import IBMQ IBMQ.save_account('### IMB TOKEN ') IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q') provider.backends() from qiskit.providers.ibmq import least_busy backend = least_busy(provider.backends(filters=lambda b: b.configuration().n_qubits >= 3 and not b.configuration().simulator and b.status().operational==True)) job_exp = execute(qc, backend=backend, shots=8192) exp_result = job_exp.result() exp_measurement_result = exp_result.get_counts(qc) print(exp_measurement_result) plot_histogram(exp_measurement_result) error_rate_percent = sum([exp_measurement_result[result] for result in exp_measurement_result.keys() if result[0]=='1']) \ * 100./ sum(list(exp_measurement_result.values())) print("The experimental error rate : ", error_rate_percent, "%")
https://github.com/AlphaMiyaL/Qiskit-Quantum-Journey
AlphaMiyaL
# initialization import numpy as np # importing Qiskit from qiskit import IBMQ, BasicAer from qiskit.providers.ibmq import least_busy from qiskit import QuantumCircuit, execute, Aer from qiskit.tools.jupyter import * provider = IBMQ.load_account() # import basic plot tools from qiskit.visualization import plot_histogram def initialize(circuit, n, m): circuit.h(range(n)) # Hadamard transform on measurment register circuit.x(n+m-1) # X gate on last qubit def c_amod15(a, x): if a not in [2,7,8,11,13]: raise ValueError("'a' must be 2,7,8,11 or 13") # remember that a needs to be co-prime with N unitary = QuantumCircuit(4) for iteration in range(x): # bitwise arithmetic to represent modular exponentiation function if a in [2,13]: unitary.swap(0,1) unitary.swap(1,2) unitary.swap(2,3) if a in [7,8]: unitary.swap(2,3) unitary.swap(1,2) unitary.swap(0,1) if a == 11: unitary.swap(1,3) unitary.swap(0,2) if a in [7,11,13]: for q in range(4): unitary.x(q) unitary = unitary.to_gate() unitary.name = "%i^%i mod 15" % (a, x) # But we need to make it a controlled operation for phase kickback c_unitary = unitary.control() return c_unitary def modular_exponentiation(circuit, n, m, a): for exp in range(n): exponent = 2**exp circuit.append(a_x_mod15(a, exponent), [exp] + list(range(n, n+m))) from qiskit.circuit.library import QFT def apply_iqft(circuit, measurement_qubits): circuit.append(QFT( len(measurement_qubits), do_swaps=False).inverse(), measurement_qubits) def shor_algo(n, m, a): # set up the circuit circ = QuantumCircuit(n+m, n) # initialize the registers initialize(circ, n, m) circ.barrier() # map modular exponentiation problem onto qubits modular_exponentiation(circ, n, m, a) circ.barrier() # apply inverse QFT -- expose period apply_iqft(circ, range(n)) # measure the measurement register circ.measure(range(n), range(n)) return circ n = 4; m = 4; a = 11 mycircuit = shor_algo(n, m, a) mycircuit.draw('mpl') simulator = Aer.get_backend('qasm_simulator') counts = execute(mycircuit, backend=simulator, shots=1024).result().get_counts(mycircuit) plot_histogram(counts) for measured_value in counts: print(f"Measured {int(measured_value[::-1], 2)}") from math import gcd from math import sqrt from itertools import count, islice for measured_value in counts: measured_value_decimal = int(measured_value[::-1], 2) print(f"Measured {measured_value_decimal}") if measured_value_decimal % 2 != 0: print("Failed. Measured value is not an even number") continue x = int((a ** (measured_value_decimal/2)) % 15) if (x + 1) % 15 == 0: print("Failed. x + 1 = 0 (mod N) where x = a^(r/2) (mod N)") continue guesses = gcd(x + 1, 15), gcd(x - 1, 15) print(guesses) def is_prime(n): return n > 1 and all(n % i for i in islice(count(2), int(sqrt(n)-1))) if is_prime(guesses[0]) and is_prime(guesses[1]): print(f"**The prime factors are {guesses[0]} and {guesses[1]}**")
https://github.com/AlphaMiyaL/Qiskit-Quantum-Journey
AlphaMiyaL
#imports import matplotlib.pyplot as plt import numpy as np from qiskit import * from qiskit.providers.ibmq import least_busy from qiskit.quantum_info import Statevector from qiskit.visualization import plot_histogram from qiskit.tools.monitor import job_monitor clause_list = [[0,1], [0,2], [1,3], [2,3]] def XOR(qc, a, b, output): qc.cx(a, output) qc.cx(b, output) # We will use separate registers to name the bits in_qubits = QuantumRegister(2, name='input') out_qubit = QuantumRegister(1, name='output') qc = QuantumCircuit(in_qubits, out_qubit) XOR(qc, in_qubits[0], in_qubits[1], out_qubit) qc.draw() # Create separate registers to name bits var_qubits = QuantumRegister(4, name='v') # variable bits clause_qubits = QuantumRegister(4, name='c') # bits to store clause-checks # Create quantum circuit qc = QuantumCircuit(var_qubits, clause_qubits) # Use XOR gate to check each clause i = 0 for clause in clause_list: XOR(qc, clause[0], clause[1], clause_qubits[i]) i += 1 qc.draw() # Create separate registers to name bits var_qubits = QuantumRegister(4, name='v') clause_qubits = QuantumRegister(4, name='c') output_qubit = QuantumRegister(1, name='out') qc = QuantumCircuit(var_qubits, clause_qubits, output_qubit) # Compute clauses i = 0 for clause in clause_list: XOR(qc, clause[0], clause[1], clause_qubits[i]) i += 1 # Flip 'output' bit if all clauses are satisfied qc.mct(clause_qubits, output_qubit) qc.draw() var_qubits = QuantumRegister(4, name='v') clause_qubits = QuantumRegister(4, name='c') output_qubit = QuantumRegister(1, name='out') cbits = ClassicalRegister(4, name='cbits') qc = QuantumCircuit(var_qubits, clause_qubits, output_qubit, cbits) def diffuser(nqubits): qc = QuantumCircuit(nqubits) # Apply transformation |s> -> |00..0> (H-gates) for qubit in range(nqubits): qc.h(qubit) # Apply transformation |00..0> -> |11..1> (X-gates) for qubit in range(nqubits): qc.x(qubit) # Do multi-controlled-Z gate qc.h(nqubits-1) qc.mct(list(range(nqubits-1)), nqubits-1) # multi-controlled-toffoli qc.h(nqubits-1) # Apply transformation |11..1> -> |00..0> for qubit in range(nqubits): qc.x(qubit) # Apply transformation |00..0> -> |s> for qubit in range(nqubits): qc.h(qubit) # We will return the diffuser as a gate U_s = qc.to_gate() U_s.name = "U$_s$" return U_s def sudoku_oracle(qc, clause_list, clause_qubits): # Compute clauses i = 0 for clause in clause_list: XOR(qc, clause[0], clause[1], clause_qubits[i]) i += 1 # Flip 'output' bit if all clauses are satisfied qc.mct(clause_qubits, output_qubit) # Uncompute clauses to reset clause-checking bits to 0 i = 0 for clause in clause_list: XOR(qc, clause[0], clause[1], clause_qubits[i]) i += 1 sudoku_oracle(qc, clause_list, clause_qubits) qc.draw() var_qubits = QuantumRegister(4, name='v') clause_qubits = QuantumRegister(4, name='c') output_qubit = QuantumRegister(1, name='out') cbits = ClassicalRegister(4, name='cbits') qc = QuantumCircuit(var_qubits, clause_qubits, output_qubit, cbits) # Initialize 'out0' in state |-> qc.initialize([1, -1]/np.sqrt(2), output_qubit) # Initialize qubits in state |s> qc.h(var_qubits) qc.barrier() # for visual separation ## First Iteration # Apply our oracle sudoku_oracle(qc, clause_list, clause_qubits) qc.barrier() # for visual separation # Apply our diffuser qc.append(diffuser(4), [0,1,2,3]) ## Second Iteration sudoku_oracle(qc, clause_list, clause_qubits) qc.barrier() # for visual separation # Apply our diffuser qc.append(diffuser(4), [0,1,2,3]) # Measure the variable qubits qc.measure(var_qubits, cbits) qc.draw(fold=-1) # Simulate and plot results backend = Aer.get_backend('aer_simulator') #provider = IBMQ.load_account() #backend = provider.get_backend('ibm_oslo') job = execute(qc, backend=backend, shots=1024) print("job id:", job.job_id()) job_monitor(job) result = job.result() plot_histogram(result.get_counts())
https://github.com/AlphaMiyaL/Qiskit-Quantum-Journey
AlphaMiyaL
%matplotlib inline #Imports from qiskit import QuantumCircuit, execute, Aer, IBMQ, ClassicalRegister, QuantumRegister from qiskit.compiler import transpile, assemble import numpy as np from qiskit.tools.jupyter import * from qiskit.visualization import * import json from qiskit.transpiler import PassManager from qiskit.transpiler.passes import Unroller from qiskit.tools.monitor import job_monitor def block_idx(x, y): if x<2 and y<2: return 0 if x<2: return 1 if y<2: return 2 return 3 def apply_cands(matrix): cands = [] for i in range(len(matrix)): for j in range(len(matrix[0])): if matrix[i][j] != 0: continue temp = [] for k in range(4): f = True for row in range(4): if matrix[row][j] == k + 1: f = False for col in range(4): if matrix[i][col] == k + 1: f = False for x in range(4): for y in range(4): if block_idx(i, j) != block_idx(x, y): continue if matrix[x][y] == k + 1: f = False if f: temp.append(k+1) cands.append(temp) return cands def one_cand_op(qc, q0, q1, cands): #print(q0, q1) if cands[0] == 1: pass elif cands[0] == 2: qc.x(q1) elif cands[0] == 3: qc.x(q0) else: qc.x(q0) qc.x(q1) def one_cand_op_inverse(qc, q0, q1, cands): if cands[0] == 1: pass elif cands[0] == 2: qc.x(q1) elif cands[0] == 3: qc.x(q0) else: qc.x(q1) qc.x(q0) def two_cand_op(qc, q0, q1, cands): #print(q0, q1, cands[0], cands[1]) product = cands[0]*cands[1] #1 + 2 if product == 2: qc.h(q1) #1 + 3 elif product == 3: qc.h(q0) #1 + 4 elif product == 4: qc.h(q0) qc.cx(q0, q1) #2 + 3 elif product == 6: qc.x(q1) qc.h(q0) qc.cx(q0, q1) #2 + 4 elif product == 8: qc.x(q1) qc.h(q0) #3 + 4 else: qc.h(q1) qc.x(q0) def two_cand_op_inverse(qc, q0, q1, cands): product = cands[0]*cands[1] #1 + 2 if product == 2: qc.h(q1) #1 + 3 elif product == 3: qc.h(q0) #1 + 4 elif product == 4: qc.cx(q0, q1) qc.h(q0) #2 + 3 elif product == 6: qc.cx(q0, q1) qc.h(q0) qc.x(q1) #2 + 4 elif product == 8: qc.h(q0) qc.x(q1) #3 + 4 else: qc.h(q1) qc.x(q0) def init_blanks(qc, qr, matrix): cands = apply_cands(matrix) # print(cands) for i in range(len(cands)): if len(cands[i]) == 1: one_cand_op(qc, qr[2*i], qr[2*i+1], cands[i]) else: two_cand_op(qc, qr[2*i], qr[2*i+1], cands[i]) def init_blanks_inverse(qc, qr, matrix): cands = apply_cands(matrix) for i in range(len(cands)-1, -1, -1): if len(cands[i]) == 1: one_cand_op_inverse(qc, qr[2*i], qr[2*i+1], cands[i]) else: two_cand_op_inverse(qc, qr[2*i], qr[2*i+1], cands[i]) # if v1 != v2 (number) then target = 1 else target = 0 def compare_vertex(qc, qr, v1, v2, target): qc.x(qr[2*v2]) qc.x(qr[2*v2+1]) qc.ccx(qr[2*v1], qr[2*v1+1], target) qc.ccx(qr[2*v1+1], qr[2*v2], target) qc.ccx(qr[2*v2], qr[2*v2+1], target) qc.ccx(qr[2*v1], qr[2*v2+1], target) qc.x(qr[2*v2+1]) qc.x(qr[2*v2]) qc.x(qr[target]) def compare_vertex_inverse(qc, qr, v1, v2, target): qc.x(qr[target]) qc.x(qr[2*v2]) qc.x(qr[2*v2+1]) qc.ccx(qr[2*v1], qr[2*v2+1], target) qc.ccx(qr[2*v2], qr[2*v2+1], target) qc.ccx(qr[2*v1+1], qr[2*v2], target) qc.ccx(qr[2*v1], qr[2*v1+1], target) qc.x(qr[2*v2+1]) qc.x(qr[2*v2]) # Edge constraint oracle def oracle(qc, qr): # vs = [0, 1, 2, 3, 4, 5, 6, 7] list1 = [[0, 1], [2, 3], [4, 5], [6, 7], [2, 6], [0, 4]] list2 = [[1, 5], [3, 7], [0, 2], [1, 3], [4, 6], [5, 7]] target = 16 temp1 = 30 temp2 = 31 for elm in list1: assert(len(elm)==2) compare_vertex(qc, qr, elm[0], elm[1], target) target+=1 qc.mct(qr[16:target], qr[temp1], qr[22:29], mode='basic') for elm in (reversed(list1)): target-=1 compare_vertex_inverse(qc, qr, elm[0], elm[1], target) for elm in list2: assert(len(elm)==2) compare_vertex(qc, qr, elm[0], elm[1], target) target+=1 qc.mct(qr[16:target], qr[temp2], qr[22:29], mode='basic') for elm in (reversed(list2)): target-=1 compare_vertex_inverse(qc, qr, elm[0], elm[1], target) dest = 29 qc.ccx(qr[temp1], qr[temp2], qr[dest]) for elm in list2: assert(len(elm)==2) compare_vertex(qc, qr, elm[0], elm[1], target) target+=1 qc.mct(qr[16:target], qr[temp2], qr[22:29], mode='basic') for elm in (reversed(list2)): target-=1 compare_vertex_inverse(qc, qr, elm[0], elm[1], target) for elm in list1: assert(len(elm)==2) compare_vertex(qc, qr, elm[0], elm[1], target) target+=1 qc.mct(qr[16:target], qr[temp1], qr[22:29], mode='basic') for elm in (reversed(list1)): target-=1 compare_vertex_inverse(qc, qr, elm[0], elm[1], target) """ diffusion (inversion about the mean) circuit. """ def diffusion(circuit, qr, matrix): # circuit.h(qr) init_blanks_inverse(circuit, qr[:16], matrix) # inverse of unitary op of initial state preparation circuit.x(qr[:16]) # apply multi-control CZ circuit.h(qr[15]) # circuit.mct(qr[:-1], qr[-1], anc, mode='basic') circuit.mct(qr[:15], qr[15], qr[16:29], mode='basic') circuit.h(qr[15]) circuit.x(qr[:16]) # circuit.h(qr) init_blanks(circuit, qr[:16], matrix) qr = QuantumRegister(32) cr = ClassicalRegister(16) qc = QuantumCircuit(qr, cr) matrix = np.array([4, 0, 2, 0, 0, 1, 0, 4, 1, 0, 4, 0, 0, 4, 0, 2]).reshape(4, 4) print(matrix) print(apply_cands(matrix)) def grover(iter): init_blanks(qc, qr, matrix) for _ in range(iter): oracle(qc, qr) print("oracle done") diffusion(qc, qr, matrix) print("diffusion done") qc.measure(qr[0:16], cr[0:16]) print("measure done") #print("drawing start") #qc.draw() grover(3) # Unroll the circuit pass_ = Unroller(['u3', 'cx']) pm = PassManager(pass_) new_circuit = pm.run(qc) # obtain gates gates=new_circuit.count_ops() print(gates) cost=gates['u3'] + 10*gates['cx'] print(cost) # shots = 8000 shots = 1024 print("shots:", shots) ## Run on Aer Simulator backend = Aer.get_backend('qasm_simulator') ## Run on Quantum Hardware(does not techically work however since we need 32 qbits but free only give 7) ## Can run the 2x2 to show that the Sudoku solving does work on a Quantum Computer however #provider = IBMQ.load_account() #backend = provider.get_backend('ibm_oslo') print("execute start") job = execute(qc, backend=backend, shots=shots, seed_simulator=12345, backend_options={"fusion_enable":True}) print("job id:", job.job_id()) job_monitor(job) result = job.result() count = result.get_counts() print(count) print(len(count)) score_sorted = sorted(count.items(), key=lambda x:x[1], reverse=True) final_score = score_sorted[0:15] final_score count_sorted = sorted(count.items(), key=lambda x:x[1], reverse=True) # collect answers with Top 7 probability ans_list = count_sorted[:12] # reverse ans_list ans_reversed = [] for i in ans_list: ans_temp=[i[0][::-1],i[1]] ans_reversed.append(ans_temp) # convert each 2 bits into corresponding color. Add node0(0),node3(1),node8(2) and node11(3) ans_shaped = [] for j in ans_reversed: ans_temp=j[0] node0 = int(ans_temp[0] + ans_temp[1], 2) node1 = int(ans_temp[2] + ans_temp[3], 2) node2 = int(ans_temp[4] + ans_temp[5], 2) node3 = int(ans_temp[6] + ans_temp[7], 2) node4 = int(ans_temp[8] + ans_temp[9], 2) node5 = int(ans_temp[10] + ans_temp[11], 2) node6 = int(ans_temp[12] + ans_temp[13], 2) node7 = int(ans_temp[14] + ans_temp[15], 2) nodes_color = str(node0) + str(node1) + str(node2) + str(node3) + str(node4) + str(node5) + str(node6) + str(node7) ans_shaped.append([nodes_color,j[1]]) sorted(ans_shaped) # Converting to decimal, 1-4 (since this is a 4x4 matrix) def convert_to_decimal(str_bin): str_bin = ''.join(list(reversed(str_bin))) # cbitに格納されるときに順番逆になっていることに注意 list_dec = [str(int(str_bin[2*i:2*i+2], 2)+1) for i in range(len(str_bin)//2)] str_dec = ''.join(list_dec) return str_dec # histogram plot (decimal representation) count_decimal = {} for key, value in count.items(): count_decimal[convert_to_decimal(key)] = value print(count_decimal) plot_histogram(count_decimal) def replace_matrix_vals(matrix): new_matrix = [] replace_idx = 0 #first sol from above replacements = [int(x) for x in str(convert_to_decimal(next(iter(count.items()))[0]))] for list in matrix: for num in list: if num == 0: new_matrix.append(replacements[replace_idx]) replace_idx+=1 else: new_matrix.append(num) return np.array(new_matrix).reshape(4,4) filled_sudoku = replace_matrix_vals(matrix) print(filled_sudoku)
https://github.com/Rishwi/Beyond-Classical-a-quantum-computing-crash-course-using-qiskit
Rishwi
#pip install qiskit from qiskit import * from qiskit.tools.visualization import plot_histogram stt="Hello world" res = ''.join(format(ord(i), 'b') for i in stt) print(res) s = res n = len(s) circuit = QuantumCircuit(n+1,n) circuit.x(n) circuit.barrier() circuit.h(range(n+1)) circuit.barrier() for i, tf in enumerate(reversed(s)): if tf == '1': circuit.cx(i, n) circuit.barrier() circuit.h(range(n+1)) circuit.barrier() circuit.measure(range(n), range(n)) %matplotlib inline circuit.draw(output='mpl') simulator = Aer.get_backend('qasm_simulator') result = execute(circuit, backend=simulator, shots=1).result() from qiskit.visualization import plot_histogram plot_histogram(result.get_counts(circuit)) kk=result.get_counts() kkk=list(kk.keys()) strrr=kkk[0] print(strrr) res=strrr #i'm changing res variable, so, now i don't know what's in res i=0 mainstr=[] while i<len(res): if res[i:i+6] != '100000': sk=res[i:i+7] i=i+7 ssk=int(sk, base=2) print(ssk) mainstr.append(chr(ssk)) elif res[i:i+6] == '100000': i=i+6 mainstr.append(" ") print(''.join(mainstr))
https://github.com/Rishwi/Beyond-Classical-a-quantum-computing-crash-course-using-qiskit
Rishwi
# -*- coding: utf-8 -*- """Bernstein_Vazirani_forStrings.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/14Uww12SEbmiNPfWr5udfr3tL-393ge7N """ #pip install qiskit # Commented out IPython magic to ensure Python compatibility. from qiskit import * from qiskit.tools.visualization import plot_histogram stt="Hello world" res = ''.join(format(ord(i), 'b') for i in stt) print(res) s = res n = len(s) circuit = QuantumCircuit(n+1,n) circuit.x(n) circuit.barrier() circuit.h(range(n+1)) circuit.barrier() for i, tf in enumerate(reversed(s)): if tf == '1': circuit.cx(i, n) circuit.barrier() circuit.h(range(n+1)) circuit.barrier() circuit.measure(range(n), range(n)) # %matplotlib inline circuit.draw(output='mpl') simulator = Aer.get_backend('qasm_simulator') result = execute(circuit, backend=simulator, shots=1).result() plot_histogram(result.get_counts(circuit)) kk=result.get_counts() kkk=list(kk.keys()) strrr=kkk[0] print(strrr) res=strrr #i'm changing res variable, so, now i don't know what's in res i=0 mainstr=[] while i<len(res): if res[i:i+6] != '100000': sk=res[i:i+7] i=i+7 ssk=int(sk, base=2) print(ssk) mainstr.append(chr(ssk)) elif res[i:i+6] == '100000': i=i+6 mainstr.append(" ") print(''.join(mainstr))
https://github.com/Rishwi/Beyond-Classical-a-quantum-computing-crash-course-using-qiskit
Rishwi
pip install qiskit from qiskit import * qr = QuantumRegister(2) cr = ClassicalRegister(2) circuit = QuantumCircuit(qr , cr) circuit.h(qr[0]) circuit.cx(qr[0], qr[1]) circuit.measure(qr,cr) circuit.draw(output='mpl') from qiskit.visualization import plot_histogram backend=Aer.get_backend('qasm_simulator') counts = execute(circuit, backend= backend, shots= 1024).result().get_counts() plot_histogram(counts) IBMQ.save_account('copy your token here') IBMQ.load_account() from qiskit.visualization import plot_histogram from qiskit.tools.monitor import job_monitor #used to monitor the job process provider = IBMQ.get_provider('ibm-q') qcomp = provider.get_backend('ibmq_16_melbourne') job=execute(circuit, backend=qcomp) job_monitor(job) rishwi=job.result() plot_histogram(rishwi.get_counts(circuit))
https://github.com/Soumyo2121/Basic-Quantum-Algorithms
Soumyo2121
from qiskit import * from qiskit.tools.visualization import plot_histogram %matplotlib inline secretnumber = '11100011' circuit = QuantumCircuit(len(secretnumber)+1,len(secretnumber)) circuit.h(range(len(secretnumber))) circuit.x(len(secretnumber)) circuit.h(len(secretnumber)) circuit.barrier() for ii, yesno in enumerate(reversed(secretnumber)): if yesno == '1': circuit.cx(ii,len(secretnumber)) circuit.barrier() circuit.h(range(len(secretnumber))) circuit.barrier() circuit.measure(range(len(secretnumber)),range(len(secretnumber))) circuit.draw(output = 'mpl')
https://github.com/Soumyo2121/Basic-Quantum-Algorithms
Soumyo2121
import numpy as np import math from qiskit.circuit import Parameter from qiskit import * from math import pi,cos,sin,tan,atan from qiskit import QuantumCircuit, transpile, Aer, IBMQ from qiskit.tools.jupyter import * from qiskit.visualization import * from qiskit.providers.aer import QasmSimulator def execute_circuit_sv(quantum_circuit): statevector_simulator = Aer.get_backend('statevector_simulator') result = execute(quantum_circuit, statevector_simulator).result() statevector_results = result.get_statevector(quantum_circuit) circuit_diagram = quantum_circuit.draw('mpl') b_sphere = plot_bloch_multivector(statevector_results) return statevector_results, circuit_diagram, b_sphere param_theta = Parameter('θ') n = int(input("Enter the number of qubits(Max no. 5): ")) bell = QuantumCircuit(n, name='entanglement') rot = int(input("Press 1 to select RX gate, 2 for RY gate")) if rot==1: bell.rx(param_theta,0) elif rot==2: bell.ry(param_theta,0) else: print("Please Enter the correct option") control = int(input("Press 1 to use CNOT gate and 2 for CY gate")) if control==1: for i in range (0,n-1): bell.cx(i,i+1) elif control==2: for j in range(0,n-1): bell.cy(j,j+1) else: print("Please press the correct option") import numpy as np from math import pi,cos,sin,tan,atan x = float(input("Enter the angle multiplier: ")) bell = bell.bind_parameters({param_theta: (x * np.pi)}) result, img, bsphere = execute_circuit_sv(bell) img bsphere print(result) from qiskit.quantum_info import DensityMatrix D = DensityMatrix(bell) print(D) from qiskit.quantum_info import entropy vn_entropy = entropy(D, base=2) print(vn_entropy) r = x / 0.5 if x % 0.5 == 0 and r % 2 != 0: print("Maximal Entanglement") else: print("Partial Entanglement")
https://github.com/Soumyo2121/Basic-Quantum-Algorithms
Soumyo2121
from qiskit import * from qiskit.visualization import plot_histogram qc = QuantumCircuit(3,3) qc.h(0) qc.cx(0,1) qc.cx(1,2) qc.measure([0,1,2],[0,1,2]) qc.draw('mpl') simulator = Aer.get_backend('qasm_simulator') result = execute(qc, backend = simulator, shots = 1024).result() plot_histogram(result.get_counts(qc)) from qiskit import IBMQ IBMQ.save_account('a9783f33a64e88d038689c3d3a67cb4235d7715268ca95f986cf1e3e514cd601c77d52d8d8cffda397c63ad4f4cd488a6e907452415bf854dd028ae21c78c927') IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q') device = provider.get_backend('ibmqx2') job = execute(qc, backend = device, shots = 1024) print(job.job_id()) from qiskit.tools.monitor import job_monitor job_monitor(job) device_result = job.result() plot_histogram(device_result.get_counts(qc)) from qiskit.ignis.mitigation.measurement import (complete_meas_cal, CompleteMeasFitter) cal_circuits, state_labels = complete_meas_cal(qr = qc.qregs[0], circlabel = 'measerrormitigationcal') cal_circuits[2].draw('mpl') len(cal_circuits) cal_job = execute(cal_circuits, backend = device, shots = 1024, optimization_level = 0) print(cal_job.job_id()) job_monitor(cal_job) cal_results = cal_job.result() plot_histogram(cal_results.get_counts(cal_circuits[3])) meas_fitter = CompleteMeasFitter(cal_results, state_labels) meas_fitter.plot_calibration() meas_filter = meas_fitter.filter mitigated_result = meas_filter.apply(device_result) device_counts = device_result.get_counts(qc) mitigated_counts = mitigated_result.get_counts(qc) plot_histogram([device_counts,mitigated_counts], legend = ['device, noisy', 'device,mitigated']) circuit = QuantumCircuit(3,3) circuit.x(1) circuit.h(0) circuit.cx(0,1) circuit.cx(1,2) circuit.measure([0,1,2],[0,1,2]) circuit.draw('mpl') plot_histogram(execute(circuit, backend = simulator, shots = 1024).result().get_counts(circuit)) device_counts_1 = execute(circuit, backend = device,shots = 1024).result().get_counts(circuit) plot_histogram(device_counts_1) device_mitigated_counts_1 = meas_filter.apply(device_counts_1) plot_histogram(device_mitigated_counts_1)
https://github.com/Soumyo2121/Basic-Quantum-Algorithms
Soumyo2121
# Do the necessary imports import numpy as np from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute, BasicAer, IBMQ from qiskit.visualization import plot_histogram, plot_bloch_multivector ### Creating 3 qubit and 2 classical bits in each separate register qr = QuantumRegister(3) crz = ClassicalRegister(1) crx = ClassicalRegister(1) teleportation_circuit = QuantumCircuit(qr, crz, crx) ### A third party eve helps to create an entangled state def create_bell_pair(qc, a, b): qc.h(a) qc.cx(a, b) create_bell_pair(teleportation_circuit, 1, 2) teleportation_circuit.draw() def alice_gates(qc, a, b): qc.cx(a, b) qc.h(a) teleportation_circuit.barrier() alice_gates(teleportation_circuit, 0, 1) teleportation_circuit.draw() def measure_and_send(qc, a, b): qc.barrier() qc.measure(a,0) qc.measure(b,1) teleportation_circuit.barrier() measure_and_send(teleportation_circuit, 0, 1) teleportation_circuit.draw() def bob_gates(qc, qubit, crz, crx): qc.x(qubit).c_if(crx, 1) qc.z(qubit).c_if(crz, 1) teleportation_circuit.barrier() bob_gates(teleportation_circuit, 2, crz, crx) teleportation_circuit.draw() from qiskit.extensions import Initialize import math qc = QuantumCircuit(1) initial_state = [0,1] init_gate = Initialize(initial_state) # qc.append(initialize_qubit, [0]) qr = QuantumRegister(3) # Protocol uses 3 qubits crz = ClassicalRegister(1) # and 2 classical registers crx = ClassicalRegister(1) qc = QuantumCircuit(qr, crz, crx) # First, let's initialise Alice's q0 qc.append(init_gate, [0]) qc.barrier() # Now begins the teleportation protocol create_bell_pair(qc, 1, 2) qc.barrier() # Send q1 to Alice and q2 to Bob alice_gates(qc, 0, 1) # Alice then sends her classical bits to Bob measure_and_send(qc, 0, 1) # Bob decodes qubits bob_gates(qc, 2, crz, crx) qc.draw() backend = BasicAer.get_backend('statevector_simulator') out_vector = execute(qc, backend).result().get_statevector() plot_bloch_multivector(out_vector) inverse_init_gate = init_gate.gates_to_uncompute() qc.append(inverse_init_gate, [2]) qc.draw() cr_result = ClassicalRegister(1) qc.add_register(cr_result) qc.measure(2,2) qc.draw() backend = BasicAer.get_backend('qasm_simulator') counts = execute(qc, backend, shots=1024).result().get_counts() plot_histogram(counts) def bob_gates(qc, a, b, c): qc.cz(a, c) qc.cx(b, c) qc = QuantumCircuit(3,1) # First, let's initialise Alice's q0 qc.append(init_gate, [0]) qc.barrier() # Now begins the teleportation protocol create_bell_pair(qc, 1, 2) qc.barrier() # Send q1 to Alice and q2 to Bob alice_gates(qc, 0, 1) qc.barrier() # Alice sends classical bits to Bob bob_gates(qc, 0, 1, 2) # We undo the initialisation process qc.append(inverse_init_gate, [2]) # See the results, we only care about the state of qubit 2 qc.measure(2,0) # View the results: qc.draw() from qiskit import IBMQ IBMQ.save_account('### IMB TOKEN ') IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q') provider.backends() from qiskit.providers.ibmq import least_busy backend = least_busy(provider.backends(filters=lambda b: b.configuration().n_qubits >= 3 and not b.configuration().simulator and b.status().operational==True)) job_exp = execute(qc, backend=backend, shots=8192) exp_result = job_exp.result() exp_measurement_result = exp_result.get_counts(qc) print(exp_measurement_result) plot_histogram(exp_measurement_result) error_rate_percent = sum([exp_measurement_result[result] for result in exp_measurement_result.keys() if result[0]=='1']) \ * 100./ sum(list(exp_measurement_result.values())) print("The experimental error rate : ", error_rate_percent, "%")
https://github.com/Soumyo2121/Basic-Quantum-Algorithms
Soumyo2121
import qiskit from qiskit import * n = int(input("Enter the length of binry string: ")) n_q = n n_c = n qc = QuantumCircuit(n_q,n_c) for i in range(n): qc.h(i) qc.measure(i,i) qc.draw('mpl') simulator = Aer.get_backend('qasm_simulator') result = execute(qc, backend = simulator, shots = 1).result() counts = result.get_counts() print(counts)
https://github.com/Soumyo2121/Basic-Quantum-Algorithms
Soumyo2121
from qiskit.aqua.algorithms import VQE, NumPyMinimumEigensolver import numpy as np import pylab import copy from qiskit import BasicAer from qiskit.chemistry.components.variational_forms import UCCSD from qiskit.chemistry.components.initial_states import HartreeFock from qiskit.aqua.components.optimizers import COBYLA, SPSA, SLSQP from qiskit.aqua.operators import Z2Symmetries from qiskit.chemistry.drivers import PySCFDriver, UnitsType from qiskit.chemistry import FermionicOperator from qiskit.chemistry.core import Hamiltonian,QubitMappingType from qiskit.aqua import QuantumInstance, aqua_globals molecule = 'H .0 .0 -{0}; Li .0 .0 {0}' distances = np.arange(0.5,4.25,0.25) vqe_energies = [] hf_energies = [] # initial guess from Hartree-Fock exact_energies = [] for i,d in enumerate(distances): print('step',i) # set up experiment driver = PySCFDriver(molecule.format(d/2), basis = 'sto3g') qmolecule = driver.run() operator = Hamiltonian(qubit_mapping=QubitMappingType.PARITY, two_qubit_reduction=True, freeze_core=True, orbital_reduction=[-3,-2]) qubit_op, aux_ops = operator.run(qmolecule) # exact classical result exact_result = NumPyMinimumEigensolver(qubit_op, aux_operators=aux_ops).run() exact_result = operator.process_algorithm_result(exact_result) # VQE optimizer = SLSQP(maxiter=1000) initial_state = HartreeFock(operator.molecule_info['num_orbitals'], operator.molecule_info['num_particles'], qubit_mapping=operator._qubit_mapping, two_qubit_reduction=operator._two_qubit_reduction) var_form = UCCSD(num_orbitals=operator.molecule_info['num_orbitals'], num_particles=operator.molecule_info['num_particles'], initial_state=initial_state, qubit_mapping=operator._qubit_mapping, two_qubit_reduction=operator._two_qubit_reduction) algo=VQE(qubit_op, var_form, optimizer, aux_operators=aux_ops) vqe_result=algo.run(QuantumInstance(BasicAer.get_backend('statevector_simulator'))) vqe_result=operator.process_algorithm_result(vqe_result) exact_energies.append(exact_result.energy) vqe_energies.append(vqe_result.energy) hf_energies.append(vqe_result.hartree_fock_energy) pylab.plot(distances,hf_energies, label='Hartree_Fock') pylab.plot(distances, vqe_energies, 'o', label='VQE') pylab.plot(distances, exact_energies, '^', label='Exact') pylab.xlabel('Interatomic Distance') pylab.ylabel('Energy') pylab.title('LiH Ground State Energy') pylab.legend()
https://github.com/Glebegor/Quantum-programming-algorithms
Glebegor
import numpy as np import networkx as nx import qiskit from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute, Aer, assemble from qiskit.quantum_info import Statevector from qiskit.aqua.algorithms import NumPyEigensolver from qiskit.quantum_info import Pauli from qiskit.aqua.operators import op_converter from qiskit.aqua.operators import WeightedPauliOperator from qiskit.visualization import plot_histogram from qiskit.providers.aer.extensions.snapshot_statevector import * from thirdParty.classical import rand_graph, classical, bitstring_to_path, calc_cost from utils import mapeo_grafo from collections import defaultdict from operator import itemgetter from scipy.optimize import minimize import matplotlib.pyplot as plt LAMBDA = 10 SEED = 10 SHOTS = 10000 # returns the bit index for an alpha and j def bit(i_city, l_time, num_cities): return i_city * num_cities + l_time # e^(cZZ) def append_zz_term(qc, q_i, q_j, gamma, constant_term): qc.cx(q_i, q_j) qc.rz(2*gamma*constant_term,q_j) qc.cx(q_i, q_j) # e^(cZ) def append_z_term(qc, q_i, gamma, constant_term): qc.rz(2*gamma*constant_term, q_i) # e^(cX) def append_x_term(qc,qi,beta): qc.rx(-2*beta, qi) def get_not_edge_in(G): N = G.number_of_nodes() not_edge = [] for i in range(N): for j in range(N): if i != j: buffer_tupla = (i,j) in_edges = False for edge_i, edge_j in G.edges(): if ( buffer_tupla == (edge_i, edge_j) or buffer_tupla == (edge_j, edge_i)): in_edges = True if in_edges == False: not_edge.append((i, j)) return not_edge def get_classical_simplified_z_term(G, _lambda): # recorrer la formula Z con datos grafo se va guardando en diccionario que acumula si coinciden los terminos N = G.number_of_nodes() E = G.edges() # z term # z_classic_term = [0] * N**2 # first term for l in range(N): for i in range(N): z_il_index = bit(i, l, N) z_classic_term[z_il_index] += -1 * _lambda # second term for l in range(N): for j in range(N): for i in range(N): if i < j: # z_il z_il_index = bit(i, l, N) z_classic_term[z_il_index] += _lambda / 2 # z_jl z_jl_index = bit(j, l, N) z_classic_term[z_jl_index] += _lambda / 2 # third term for i in range(N): for l in range(N): for j in range(N): if l < j: # z_il z_il_index = bit(i, l, N) z_classic_term[z_il_index] += _lambda / 2 # z_ij z_ij_index = bit(i, j, N) z_classic_term[z_ij_index] += _lambda / 2 # fourth term not_edge = get_not_edge_in(G) # include order tuples ej = (1,0), (0,1) for edge in not_edge: for l in range(N): i = edge[0] j = edge[1] # z_il z_il_index = bit(i, l, N) z_classic_term[z_il_index] += _lambda / 4 # z_j(l+1) l_plus = (l+1) % N z_jlplus_index = bit(j, l_plus, N) z_classic_term[z_jlplus_index] += _lambda / 4 # fifthy term weights = nx.get_edge_attributes(G,'weight') for edge_i, edge_j in G.edges(): weight_ij = weights.get((edge_i,edge_j)) weight_ji = weight_ij for l in range(N): # z_il z_il_index = bit(edge_i, l, N) z_classic_term[z_il_index] += weight_ij / 4 # z_jlplus l_plus = (l+1) % N z_jlplus_index = bit(edge_j, l_plus, N) z_classic_term[z_jlplus_index] += weight_ij / 4 # add order term because G.edges() do not include order tuples # # z_i'l z_il_index = bit(edge_j, l, N) z_classic_term[z_il_index] += weight_ji / 4 # z_j'lplus l_plus = (l+1) % N z_jlplus_index = bit(edge_i, l_plus, N) z_classic_term[z_jlplus_index] += weight_ji / 4 return z_classic_term def tsp_obj_2(x, G,_lambda): # obtenemos el valor evaluado en f(x_1, x_2,... x_n) not_edge = get_not_edge_in(G) N = G.number_of_nodes() tsp_cost=0 #Distancia weights = nx.get_edge_attributes(G,'weight') for edge_i, edge_j in G.edges(): weight_ij = weights.get((edge_i,edge_j)) weight_ji = weight_ij for l in range(N): # x_il x_il_index = bit(edge_i, l, N) # x_jlplus l_plus = (l+1) % N x_jlplus_index = bit(edge_j, l_plus, N) tsp_cost+= int(x[x_il_index]) * int(x[x_jlplus_index]) * weight_ij # add order term because G.edges() do not include order tuples # # x_i'l x_il_index = bit(edge_j, l, N) # x_j'lplus x_jlplus_index = bit(edge_i, l_plus, N) tsp_cost += int(x[x_il_index]) * int(x[x_jlplus_index]) * weight_ji #Constraint 1 for l in range(N): penal1 = 1 for i in range(N): x_il_index = bit(i, l, N) penal1 -= int(x[x_il_index]) tsp_cost += _lambda * penal1**2 #Contstraint 2 for i in range(N): penal2 = 1 for l in range(N): x_il_index = bit(i, l, N) penal2 -= int(x[x_il_index]) tsp_cost += _lambda*penal2**2 #Constraint 3 for edge in not_edge: for l in range(N): i = edge[0] j = edge[1] # x_il x_il_index = bit(i, l, N) # x_j(l+1) l_plus = (l+1) % N x_jlplus_index = bit(j, l_plus, N) tsp_cost += int(x[x_il_index]) * int(x[x_jlplus_index]) * _lambda return tsp_cost def get_classical_simplified_zz_term(G, _lambda): # recorrer la formula Z con datos grafo se va guardando en diccionario que acumula si coinciden los terminos N = G.number_of_nodes() E = G.edges() # zz term # zz_classic_term = [[0] * N**2 for i in range(N**2) ] # first term for l in range(N): for j in range(N): for i in range(N): if i < j: # z_il z_il_index = bit(i, l, N) # z_jl z_jl_index = bit(j, l, N) zz_classic_term[z_il_index][z_jl_index] += _lambda / 2 # second term for i in range(N): for l in range(N): for j in range(N): if l < j: # z_il z_il_index = bit(i, l, N) # z_ij z_ij_index = bit(i, j, N) zz_classic_term[z_il_index][z_ij_index] += _lambda / 2 # third term not_edge = get_not_edge_in(G) for edge in not_edge: for l in range(N): i = edge[0] j = edge[1] # z_il z_il_index = bit(i, l, N) # z_j(l+1) l_plus = (l+1) % N z_jlplus_index = bit(j, l_plus, N) zz_classic_term[z_il_index][z_jlplus_index] += _lambda / 4 # fourth term weights = nx.get_edge_attributes(G,'weight') for edge_i, edge_j in G.edges(): weight_ij = weights.get((edge_i,edge_j)) weight_ji = weight_ij for l in range(N): # z_il z_il_index = bit(edge_i, l, N) # z_jlplus l_plus = (l+1) % N z_jlplus_index = bit(edge_j, l_plus, N) zz_classic_term[z_il_index][z_jlplus_index] += weight_ij / 4 # add order term because G.edges() do not include order tuples # # z_i'l z_il_index = bit(edge_j, l, N) # z_j'lplus l_plus = (l+1) % N z_jlplus_index = bit(edge_i, l_plus, N) zz_classic_term[z_il_index][z_jlplus_index] += weight_ji / 4 return zz_classic_term def get_classical_simplified_hamiltonian(G, _lambda): # z term # z_classic_term = get_classical_simplified_z_term(G, _lambda) # zz term # zz_classic_term = get_classical_simplified_zz_term(G, _lambda) return z_classic_term, zz_classic_term def get_cost_circuit(G, gamma, _lambda): N = G.number_of_nodes() N_square = N**2 qc = QuantumCircuit(N_square,N_square) z_classic_term, zz_classic_term = get_classical_simplified_hamiltonian(G, _lambda) # z term for i in range(N_square): if z_classic_term[i] != 0: append_z_term(qc, i, gamma, z_classic_term[i]) # zz term for i in range(N_square): for j in range(N_square): if zz_classic_term[i][j] != 0: append_zz_term(qc, i, j, gamma, zz_classic_term[i][j]) return qc def get_mixer_operator(G,beta): N = G.number_of_nodes() qc = QuantumCircuit(N**2,N**2) for n in range(N**2): append_x_term(qc, n, beta) return qc def get_QAOA_circuit(G, beta, gamma, _lambda): assert(len(beta)==len(gamma)) N = G.number_of_nodes() qc = QuantumCircuit(N**2,N**2) # init min mix state qc.h(range(N**2)) p = len(beta) for i in range(p): qc = qc.compose(get_cost_circuit(G, gamma[i], _lambda)) qc = qc.compose(get_mixer_operator(G, beta[i])) qc.barrier(range(N**2)) qc.snapshot_statevector("final_state") qc.measure(range(N**2),range(N**2)) return qc def invert_counts(counts): return {k[::-1] :v for k,v in counts.items()} # Sample expectation value def compute_tsp_energy_2(counts, G): energy = 0 get_counts = 0 total_counts = 0 for meas, meas_count in counts.items(): obj_for_meas = tsp_obj_2(meas, G, LAMBDA) energy += obj_for_meas*meas_count total_counts += meas_count mean = energy/total_counts return mean def get_black_box_objective_2(G,p): backend = Aer.get_backend('qasm_simulator') sim = Aer.get_backend('aer_simulator') # function f costo def f(theta): beta = theta[:p] gamma = theta[p:] # Anzats qc = get_QAOA_circuit(G, beta, gamma, LAMBDA) result = execute(qc, backend, seed_simulator=SEED, shots= SHOTS).result() final_state_vector = result.data()["snapshots"]["statevector"]["final_state"][0] state_vector = Statevector(final_state_vector) probabilities = state_vector.probabilities() probabilities_states = invert_counts(state_vector.probabilities_dict()) expected_value = 0 for state,probability in probabilities_states.items(): cost = tsp_obj_2(state, G, LAMBDA) expected_value += cost*probability counts = result.get_counts() mean = compute_tsp_energy_2(invert_counts(counts),G) return mean return f def crear_grafo(cantidad_ciudades): pesos, conexiones = None, None mejor_camino = None while not mejor_camino: pesos, conexiones = rand_graph(cantidad_ciudades) mejor_costo, mejor_camino = classical(pesos, conexiones, loop=False) G = mapeo_grafo(conexiones, pesos) return G, mejor_costo, mejor_camino def run_QAOA(p,ciudades, grafo): if grafo == None: G, mejor_costo, mejor_camino = crear_grafo(ciudades) print("Mejor Costo") print(mejor_costo) print("Mejor Camino") print(mejor_camino) print("Bordes del grafo") print(G.edges()) print("Nodos") print(G.nodes()) print("Pesos") labels = nx.get_edge_attributes(G,'weight') print(labels) else: G = grafo intial_random = [] # beta, mixer Hammiltonian for i in range(p): intial_random.append(np.random.uniform(0,np.pi)) # gamma, cost Hammiltonian for i in range(p): intial_random.append(np.random.uniform(0,2*np.pi)) init_point = np.array(intial_random) obj = get_black_box_objective_2(G,p) res_sample = minimize(obj, init_point,method="COBYLA",options={"maxiter":2500,"disp":True}) print(res_sample) if __name__ == '__main__': # Run QAOA parametros: profundidad p, numero d ciudades, run_QAOA(5, 3, None)
https://github.com/Glebegor/Quantum-programming-algorithms
Glebegor
import numpy as np import networkx as nx import qiskit from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute, Aer, assemble from qiskit.quantum_info import Statevector from qiskit.aqua.algorithms import NumPyEigensolver from qiskit.quantum_info import Pauli from qiskit.aqua.operators import op_converter from qiskit.aqua.operators import WeightedPauliOperator from qiskit.visualization import plot_histogram from qiskit.providers.aer.extensions.snapshot_statevector import * from thirdParty.classical import rand_graph, classical, bitstring_to_path, calc_cost from utils import mapeo_grafo from collections import defaultdict from operator import itemgetter from scipy.optimize import minimize import matplotlib.pyplot as plt LAMBDA = 10 SEED = 10 SHOTS = 10000 # returns the bit index for an alpha and j def bit(i_city, l_time, num_cities): return i_city * num_cities + l_time # e^(cZZ) def append_zz_term(qc, q_i, q_j, gamma, constant_term): qc.cx(q_i, q_j) qc.rz(2*gamma*constant_term,q_j) qc.cx(q_i, q_j) # e^(cZ) def append_z_term(qc, q_i, gamma, constant_term): qc.rz(2*gamma*constant_term, q_i) # e^(cX) def append_x_term(qc,qi,beta): qc.rx(-2*beta, qi) def get_not_edge_in(G): N = G.number_of_nodes() not_edge = [] for i in range(N): for j in range(N): if i != j: buffer_tupla = (i,j) in_edges = False for edge_i, edge_j in G.edges(): if ( buffer_tupla == (edge_i, edge_j) or buffer_tupla == (edge_j, edge_i)): in_edges = True if in_edges == False: not_edge.append((i, j)) return not_edge def get_classical_simplified_z_term(G, _lambda): # recorrer la formula Z con datos grafo se va guardando en diccionario que acumula si coinciden los terminos N = G.number_of_nodes() E = G.edges() # z term # z_classic_term = [0] * N**2 # first term for l in range(N): for i in range(N): z_il_index = bit(i, l, N) z_classic_term[z_il_index] += -1 * _lambda # second term for l in range(N): for j in range(N): for i in range(N): if i < j: # z_il z_il_index = bit(i, l, N) z_classic_term[z_il_index] += _lambda / 2 # z_jl z_jl_index = bit(j, l, N) z_classic_term[z_jl_index] += _lambda / 2 # third term for i in range(N): for l in range(N): for j in range(N): if l < j: # z_il z_il_index = bit(i, l, N) z_classic_term[z_il_index] += _lambda / 2 # z_ij z_ij_index = bit(i, j, N) z_classic_term[z_ij_index] += _lambda / 2 # fourth term not_edge = get_not_edge_in(G) # include order tuples ej = (1,0), (0,1) for edge in not_edge: for l in range(N): i = edge[0] j = edge[1] # z_il z_il_index = bit(i, l, N) z_classic_term[z_il_index] += _lambda / 4 # z_j(l+1) l_plus = (l+1) % N z_jlplus_index = bit(j, l_plus, N) z_classic_term[z_jlplus_index] += _lambda / 4 # fifthy term weights = nx.get_edge_attributes(G,'weight') for edge_i, edge_j in G.edges(): weight_ij = weights.get((edge_i,edge_j)) weight_ji = weight_ij for l in range(N): # z_il z_il_index = bit(edge_i, l, N) z_classic_term[z_il_index] += weight_ij / 4 # z_jlplus l_plus = (l+1) % N z_jlplus_index = bit(edge_j, l_plus, N) z_classic_term[z_jlplus_index] += weight_ij / 4 # add order term because G.edges() do not include order tuples # # z_i'l z_il_index = bit(edge_j, l, N) z_classic_term[z_il_index] += weight_ji / 4 # z_j'lplus l_plus = (l+1) % N z_jlplus_index = bit(edge_i, l_plus, N) z_classic_term[z_jlplus_index] += weight_ji / 4 return z_classic_term def tsp_obj_2(x, G,_lambda): # obtenemos el valor evaluado en f(x_1, x_2,... x_n) not_edge = get_not_edge_in(G) N = G.number_of_nodes() tsp_cost=0 #Distancia weights = nx.get_edge_attributes(G,'weight') for edge_i, edge_j in G.edges(): weight_ij = weights.get((edge_i,edge_j)) weight_ji = weight_ij for l in range(N): # x_il x_il_index = bit(edge_i, l, N) # x_jlplus l_plus = (l+1) % N x_jlplus_index = bit(edge_j, l_plus, N) tsp_cost+= int(x[x_il_index]) * int(x[x_jlplus_index]) * weight_ij # add order term because G.edges() do not include order tuples # # x_i'l x_il_index = bit(edge_j, l, N) # x_j'lplus x_jlplus_index = bit(edge_i, l_plus, N) tsp_cost += int(x[x_il_index]) * int(x[x_jlplus_index]) * weight_ji #Constraint 1 for l in range(N): penal1 = 1 for i in range(N): x_il_index = bit(i, l, N) penal1 -= int(x[x_il_index]) tsp_cost += _lambda * penal1**2 #Contstraint 2 for i in range(N): penal2 = 1 for l in range(N): x_il_index = bit(i, l, N) penal2 -= int(x[x_il_index]) tsp_cost += _lambda*penal2**2 #Constraint 3 for edge in not_edge: for l in range(N): i = edge[0] j = edge[1] # x_il x_il_index = bit(i, l, N) # x_j(l+1) l_plus = (l+1) % N x_jlplus_index = bit(j, l_plus, N) tsp_cost += int(x[x_il_index]) * int(x[x_jlplus_index]) * _lambda return tsp_cost def get_classical_simplified_zz_term(G, _lambda): # recorrer la formula Z con datos grafo se va guardando en diccionario que acumula si coinciden los terminos N = G.number_of_nodes() E = G.edges() # zz term # zz_classic_term = [[0] * N**2 for i in range(N**2) ] # first term for l in range(N): for j in range(N): for i in range(N): if i < j: # z_il z_il_index = bit(i, l, N) # z_jl z_jl_index = bit(j, l, N) zz_classic_term[z_il_index][z_jl_index] += _lambda / 2 # second term for i in range(N): for l in range(N): for j in range(N): if l < j: # z_il z_il_index = bit(i, l, N) # z_ij z_ij_index = bit(i, j, N) zz_classic_term[z_il_index][z_ij_index] += _lambda / 2 # third term not_edge = get_not_edge_in(G) for edge in not_edge: for l in range(N): i = edge[0] j = edge[1] # z_il z_il_index = bit(i, l, N) # z_j(l+1) l_plus = (l+1) % N z_jlplus_index = bit(j, l_plus, N) zz_classic_term[z_il_index][z_jlplus_index] += _lambda / 4 # fourth term weights = nx.get_edge_attributes(G,'weight') for edge_i, edge_j in G.edges(): weight_ij = weights.get((edge_i,edge_j)) weight_ji = weight_ij for l in range(N): # z_il z_il_index = bit(edge_i, l, N) # z_jlplus l_plus = (l+1) % N z_jlplus_index = bit(edge_j, l_plus, N) zz_classic_term[z_il_index][z_jlplus_index] += weight_ij / 4 # add order term because G.edges() do not include order tuples # # z_i'l z_il_index = bit(edge_j, l, N) # z_j'lplus l_plus = (l+1) % N z_jlplus_index = bit(edge_i, l_plus, N) zz_classic_term[z_il_index][z_jlplus_index] += weight_ji / 4 return zz_classic_term def get_classical_simplified_hamiltonian(G, _lambda): # z term # z_classic_term = get_classical_simplified_z_term(G, _lambda) # zz term # zz_classic_term = get_classical_simplified_zz_term(G, _lambda) return z_classic_term, zz_classic_term def get_cost_circuit(G, gamma, _lambda): N = G.number_of_nodes() N_square = N**2 qc = QuantumCircuit(N_square,N_square) z_classic_term, zz_classic_term = get_classical_simplified_hamiltonian(G, _lambda) # z term for i in range(N_square): if z_classic_term[i] != 0: append_z_term(qc, i, gamma, z_classic_term[i]) # zz term for i in range(N_square): for j in range(N_square): if zz_classic_term[i][j] != 0: append_zz_term(qc, i, j, gamma, zz_classic_term[i][j]) return qc def get_mixer_operator(G,beta): N = G.number_of_nodes() qc = QuantumCircuit(N**2,N**2) for n in range(N**2): append_x_term(qc, n, beta) return qc def get_QAOA_circuit(G, beta, gamma, _lambda): assert(len(beta)==len(gamma)) N = G.number_of_nodes() qc = QuantumCircuit(N**2,N**2) # init min mix state qc.h(range(N**2)) p = len(beta) for i in range(p): qc = qc.compose(get_cost_circuit(G, gamma[i], _lambda)) qc = qc.compose(get_mixer_operator(G, beta[i])) qc.barrier(range(N**2)) qc.snapshot_statevector("final_state") qc.measure(range(N**2),range(N**2)) return qc def invert_counts(counts): return {k[::-1] :v for k,v in counts.items()} # Sample expectation value def compute_tsp_energy_2(counts, G): energy = 0 get_counts = 0 total_counts = 0 for meas, meas_count in counts.items(): obj_for_meas = tsp_obj_2(meas, G, LAMBDA) energy += obj_for_meas*meas_count total_counts += meas_count mean = energy/total_counts return mean def get_black_box_objective_2(G,p): backend = Aer.get_backend('qasm_simulator') sim = Aer.get_backend('aer_simulator') # function f costo def f(theta): beta = theta[:p] gamma = theta[p:] # Anzats qc = get_QAOA_circuit(G, beta, gamma, LAMBDA) result = execute(qc, backend, seed_simulator=SEED, shots= SHOTS).result() final_state_vector = result.data()["snapshots"]["statevector"]["final_state"][0] state_vector = Statevector(final_state_vector) probabilities = state_vector.probabilities() probabilities_states = invert_counts(state_vector.probabilities_dict()) expected_value = 0 for state,probability in probabilities_states.items(): cost = tsp_obj_2(state, G, LAMBDA) expected_value += cost*probability counts = result.get_counts() mean = compute_tsp_energy_2(invert_counts(counts),G) return mean return f def crear_grafo(cantidad_ciudades): pesos, conexiones = None, None mejor_camino = None while not mejor_camino: pesos, conexiones = rand_graph(cantidad_ciudades) mejor_costo, mejor_camino = classical(pesos, conexiones, loop=False) G = mapeo_grafo(conexiones, pesos) return G, mejor_costo, mejor_camino def run_QAOA(p,ciudades, grafo): if grafo == None: G, mejor_costo, mejor_camino = crear_grafo(ciudades) print("Mejor Costo") print(mejor_costo) print("Mejor Camino") print(mejor_camino) print("Bordes del grafo") print(G.edges()) print("Nodos") print(G.nodes()) print("Pesos") labels = nx.get_edge_attributes(G,'weight') print(labels) else: G = grafo intial_random = [] # beta, mixer Hammiltonian for i in range(p): intial_random.append(np.random.uniform(0,np.pi)) # gamma, cost Hammiltonian for i in range(p): intial_random.append(np.random.uniform(0,2*np.pi)) init_point = np.array(intial_random) obj = get_black_box_objective_2(G,p) res_sample = minimize(obj, init_point,method="COBYLA",options={"maxiter":2500,"disp":True}) print(res_sample) if __name__ == '__main__': # Run QAOA parametros: profundidad p, numero d ciudades, run_QAOA(5, 3, None)
https://github.com/Glebegor/Quantum-programming-algorithms
Glebegor
import numpy as np import networkx as nx import qiskit from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute, Aer, assemble from qiskit.quantum_info import Statevector from qiskit.aqua.algorithms import NumPyEigensolver from qiskit.quantum_info import Pauli from qiskit.aqua.operators import op_converter from qiskit.aqua.operators import WeightedPauliOperator from qiskit.visualization import plot_histogram from qiskit.providers.aer.extensions.snapshot_statevector import * from thirdParty.classical import rand_graph, classical, bitstring_to_path, calc_cost from utils import mapeo_grafo from collections import defaultdict from operator import itemgetter from scipy.optimize import minimize import matplotlib.pyplot as plt LAMBDA = 10 SEED = 10 SHOTS = 10000 # returns the bit index for an alpha and j def bit(i_city, l_time, num_cities): return i_city * num_cities + l_time # e^(cZZ) def append_zz_term(qc, q_i, q_j, gamma, constant_term): qc.cx(q_i, q_j) qc.rz(2*gamma*constant_term,q_j) qc.cx(q_i, q_j) # e^(cZ) def append_z_term(qc, q_i, gamma, constant_term): qc.rz(2*gamma*constant_term, q_i) # e^(cX) def append_x_term(qc,qi,beta): qc.rx(-2*beta, qi) def get_not_edge_in(G): N = G.number_of_nodes() not_edge = [] for i in range(N): for j in range(N): if i != j: buffer_tupla = (i,j) in_edges = False for edge_i, edge_j in G.edges(): if ( buffer_tupla == (edge_i, edge_j) or buffer_tupla == (edge_j, edge_i)): in_edges = True if in_edges == False: not_edge.append((i, j)) return not_edge def get_classical_simplified_z_term(G, _lambda): # recorrer la formula Z con datos grafo se va guardando en diccionario que acumula si coinciden los terminos N = G.number_of_nodes() E = G.edges() # z term # z_classic_term = [0] * N**2 # first term for l in range(N): for i in range(N): z_il_index = bit(i, l, N) z_classic_term[z_il_index] += -1 * _lambda # second term for l in range(N): for j in range(N): for i in range(N): if i < j: # z_il z_il_index = bit(i, l, N) z_classic_term[z_il_index] += _lambda / 2 # z_jl z_jl_index = bit(j, l, N) z_classic_term[z_jl_index] += _lambda / 2 # third term for i in range(N): for l in range(N): for j in range(N): if l < j: # z_il z_il_index = bit(i, l, N) z_classic_term[z_il_index] += _lambda / 2 # z_ij z_ij_index = bit(i, j, N) z_classic_term[z_ij_index] += _lambda / 2 # fourth term not_edge = get_not_edge_in(G) # include order tuples ej = (1,0), (0,1) for edge in not_edge: for l in range(N): i = edge[0] j = edge[1] # z_il z_il_index = bit(i, l, N) z_classic_term[z_il_index] += _lambda / 4 # z_j(l+1) l_plus = (l+1) % N z_jlplus_index = bit(j, l_plus, N) z_classic_term[z_jlplus_index] += _lambda / 4 # fifthy term weights = nx.get_edge_attributes(G,'weight') for edge_i, edge_j in G.edges(): weight_ij = weights.get((edge_i,edge_j)) weight_ji = weight_ij for l in range(N): # z_il z_il_index = bit(edge_i, l, N) z_classic_term[z_il_index] += weight_ij / 4 # z_jlplus l_plus = (l+1) % N z_jlplus_index = bit(edge_j, l_plus, N) z_classic_term[z_jlplus_index] += weight_ij / 4 # add order term because G.edges() do not include order tuples # # z_i'l z_il_index = bit(edge_j, l, N) z_classic_term[z_il_index] += weight_ji / 4 # z_j'lplus l_plus = (l+1) % N z_jlplus_index = bit(edge_i, l_plus, N) z_classic_term[z_jlplus_index] += weight_ji / 4 return z_classic_term def tsp_obj_2(x, G,_lambda): # obtenemos el valor evaluado en f(x_1, x_2,... x_n) not_edge = get_not_edge_in(G) N = G.number_of_nodes() tsp_cost=0 #Distancia weights = nx.get_edge_attributes(G,'weight') for edge_i, edge_j in G.edges(): weight_ij = weights.get((edge_i,edge_j)) weight_ji = weight_ij for l in range(N): # x_il x_il_index = bit(edge_i, l, N) # x_jlplus l_plus = (l+1) % N x_jlplus_index = bit(edge_j, l_plus, N) tsp_cost+= int(x[x_il_index]) * int(x[x_jlplus_index]) * weight_ij # add order term because G.edges() do not include order tuples # # x_i'l x_il_index = bit(edge_j, l, N) # x_j'lplus x_jlplus_index = bit(edge_i, l_plus, N) tsp_cost += int(x[x_il_index]) * int(x[x_jlplus_index]) * weight_ji #Constraint 1 for l in range(N): penal1 = 1 for i in range(N): x_il_index = bit(i, l, N) penal1 -= int(x[x_il_index]) tsp_cost += _lambda * penal1**2 #Contstraint 2 for i in range(N): penal2 = 1 for l in range(N): x_il_index = bit(i, l, N) penal2 -= int(x[x_il_index]) tsp_cost += _lambda*penal2**2 #Constraint 3 for edge in not_edge: for l in range(N): i = edge[0] j = edge[1] # x_il x_il_index = bit(i, l, N) # x_j(l+1) l_plus = (l+1) % N x_jlplus_index = bit(j, l_plus, N) tsp_cost += int(x[x_il_index]) * int(x[x_jlplus_index]) * _lambda return tsp_cost def get_classical_simplified_zz_term(G, _lambda): # recorrer la formula Z con datos grafo se va guardando en diccionario que acumula si coinciden los terminos N = G.number_of_nodes() E = G.edges() # zz term # zz_classic_term = [[0] * N**2 for i in range(N**2) ] # first term for l in range(N): for j in range(N): for i in range(N): if i < j: # z_il z_il_index = bit(i, l, N) # z_jl z_jl_index = bit(j, l, N) zz_classic_term[z_il_index][z_jl_index] += _lambda / 2 # second term for i in range(N): for l in range(N): for j in range(N): if l < j: # z_il z_il_index = bit(i, l, N) # z_ij z_ij_index = bit(i, j, N) zz_classic_term[z_il_index][z_ij_index] += _lambda / 2 # third term not_edge = get_not_edge_in(G) for edge in not_edge: for l in range(N): i = edge[0] j = edge[1] # z_il z_il_index = bit(i, l, N) # z_j(l+1) l_plus = (l+1) % N z_jlplus_index = bit(j, l_plus, N) zz_classic_term[z_il_index][z_jlplus_index] += _lambda / 4 # fourth term weights = nx.get_edge_attributes(G,'weight') for edge_i, edge_j in G.edges(): weight_ij = weights.get((edge_i,edge_j)) weight_ji = weight_ij for l in range(N): # z_il z_il_index = bit(edge_i, l, N) # z_jlplus l_plus = (l+1) % N z_jlplus_index = bit(edge_j, l_plus, N) zz_classic_term[z_il_index][z_jlplus_index] += weight_ij / 4 # add order term because G.edges() do not include order tuples # # z_i'l z_il_index = bit(edge_j, l, N) # z_j'lplus l_plus = (l+1) % N z_jlplus_index = bit(edge_i, l_plus, N) zz_classic_term[z_il_index][z_jlplus_index] += weight_ji / 4 return zz_classic_term def get_classical_simplified_hamiltonian(G, _lambda): # z term # z_classic_term = get_classical_simplified_z_term(G, _lambda) # zz term # zz_classic_term = get_classical_simplified_zz_term(G, _lambda) return z_classic_term, zz_classic_term def get_cost_circuit(G, gamma, _lambda): N = G.number_of_nodes() N_square = N**2 qc = QuantumCircuit(N_square,N_square) z_classic_term, zz_classic_term = get_classical_simplified_hamiltonian(G, _lambda) # z term for i in range(N_square): if z_classic_term[i] != 0: append_z_term(qc, i, gamma, z_classic_term[i]) # zz term for i in range(N_square): for j in range(N_square): if zz_classic_term[i][j] != 0: append_zz_term(qc, i, j, gamma, zz_classic_term[i][j]) return qc def get_mixer_operator(G,beta): N = G.number_of_nodes() qc = QuantumCircuit(N**2,N**2) for n in range(N**2): append_x_term(qc, n, beta) return qc def get_QAOA_circuit(G, beta, gamma, _lambda): assert(len(beta)==len(gamma)) N = G.number_of_nodes() qc = QuantumCircuit(N**2,N**2) # init min mix state qc.h(range(N**2)) p = len(beta) for i in range(p): qc = qc.compose(get_cost_circuit(G, gamma[i], _lambda)) qc = qc.compose(get_mixer_operator(G, beta[i])) qc.barrier(range(N**2)) qc.snapshot_statevector("final_state") qc.measure(range(N**2),range(N**2)) return qc def invert_counts(counts): return {k[::-1] :v for k,v in counts.items()} # Sample expectation value def compute_tsp_energy_2(counts, G): energy = 0 get_counts = 0 total_counts = 0 for meas, meas_count in counts.items(): obj_for_meas = tsp_obj_2(meas, G, LAMBDA) energy += obj_for_meas*meas_count total_counts += meas_count mean = energy/total_counts return mean def get_black_box_objective_2(G,p): backend = Aer.get_backend('qasm_simulator') sim = Aer.get_backend('aer_simulator') # function f costo def f(theta): beta = theta[:p] gamma = theta[p:] # Anzats qc = get_QAOA_circuit(G, beta, gamma, LAMBDA) result = execute(qc, backend, seed_simulator=SEED, shots= SHOTS).result() final_state_vector = result.data()["snapshots"]["statevector"]["final_state"][0] state_vector = Statevector(final_state_vector) probabilities = state_vector.probabilities() probabilities_states = invert_counts(state_vector.probabilities_dict()) expected_value = 0 for state,probability in probabilities_states.items(): cost = tsp_obj_2(state, G, LAMBDA) expected_value += cost*probability counts = result.get_counts() mean = compute_tsp_energy_2(invert_counts(counts),G) return mean return f def crear_grafo(cantidad_ciudades): pesos, conexiones = None, None mejor_camino = None while not mejor_camino: pesos, conexiones = rand_graph(cantidad_ciudades) mejor_costo, mejor_camino = classical(pesos, conexiones, loop=False) G = mapeo_grafo(conexiones, pesos) return G, mejor_costo, mejor_camino def run_QAOA(p,ciudades, grafo): if grafo == None: G, mejor_costo, mejor_camino = crear_grafo(ciudades) print("Mejor Costo") print(mejor_costo) print("Mejor Camino") print(mejor_camino) print("Bordes del grafo") print(G.edges()) print("Nodos") print(G.nodes()) print("Pesos") labels = nx.get_edge_attributes(G,'weight') print(labels) else: G = grafo intial_random = [] # beta, mixer Hammiltonian for i in range(p): intial_random.append(np.random.uniform(0,np.pi)) # gamma, cost Hammiltonian for i in range(p): intial_random.append(np.random.uniform(0,2*np.pi)) init_point = np.array(intial_random) obj = get_black_box_objective_2(G,p) res_sample = minimize(obj, init_point,method="COBYLA",options={"maxiter":2500,"disp":True}) print(res_sample) if __name__ == '__main__': # Run QAOA parametros: profundidad p, numero d ciudades, run_QAOA(5, 3, None)