images
listlengths 1
1
| problem
stringlengths 13
714
| answer
stringlengths 1
169
| id
stringlengths 1
4
| choices
listlengths 4
4
| ground_truth
stringclasses 4
values |
|---|---|---|---|---|---|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAKAAAABYCAAAAABXZaOFAAAGQUlEQVR4nMWbW2wUVRjH/19bRGOjJJoYU5BahEKMsjyhIcIGArsPZosWA0ZMSiwICaaJPBuaaKIPkqi00svWVqWCaRsvmNKN5RaFiJBsiSLQpGZRMBp4ALI+dMv282Eu2+7MnMvMxPmn7VzOd8785vvOOXPOnCkxIhKDACBfLTar+D9YXEXG5gUSqYKqIgM0CP84h7dERu9E50FDB2LGlsoTyDjDEQMWD60AAJCjKbB5JmLAI8selFhEDNjTDAAE774kWsBr5zcCcMUjs1pGCsj9TZWeaSZ2hN0MQAdGpDaRevDYwqVSm0gBu3fIbaIEvHlqk6D5mooSsL9hrvMJUq4oG0nHIQWjCD149v6YglWEgJ3bjS0J4xwdYP7oFmOHvVsKRQn4RVI2TgBxlI2k9wOACcDbQrOoPMhjt1Yaw9S9LFRUgJRuVpuuRRXiyS8vSftoANGFeGjdw0p2iiEOf/LctU2tZFIDVIuGhiZyCcWSIwpxeruqpbSRMHHY/mMq9p+x9mXGUg9upAqiBfnAVDNEOLJ8vr0vkRTwm1SWeXNdqITobFY2lQJOFWLA+8/uCcJTrmu/Pq9sKwU8/hgALB4PwONQemslWLHzEgMy+Pv1AFAXApatYl8zQIqdlxiQcHckCQC/LwkBzNJo7SJ1Y1mIr6+qBpDbtz4IUZl6d2kYywCH68DglvimIESzdfNYg4a1NyADQOGjBCNXcedEUKoZ+mzrvRrW3k8SApBJYgWAgRD9B3QPwhxLq8gTkAlAwuoJbkvnD8o6Pe9JaAw/PEM8q4TJgwGIypRu0jJXG818fcMHiav49nevaGWQAzKANp84TtHhBsnKTZnkgARc/NEvj1MdyiNBQ0oh3q82f1DR2NRKvQwqgPmhzb5g3KTrQCXA/uRDflgcYmDy2yZzT1UqgPt3hzPoJ+Dw6gfMPVVVAGBm0S2dvk+z2giU3qV7rxUASPyGruO1AESzdfnPNbpZ5CG+ObrVF4ybenQGWoasZzEDxCBrIZxhb3oaq+0TbKyrkWGtPZ8vHjznG5CYQAwwWT/m5u6BEQBVBDORidhK1r3Y4DM12oClEFtOMy9reoeOP760lGj+Jfh5G8Lo266fywYks3ciml1I507Yy9/BRFcvJfRzVZR85jqGvHqxEWG93ep91XNt01tVgIlmrMobdd9sAcRIv1QJJhRnnGYwWb86lyr2/KDPh6pSbSLHX1Cx7wzZt1BWA3XDPrq01gfgrEbi1GBsQWhvBzuava4ikgXIznAxgLbdAalK+uenjfBxsxagSzsl4Le/EyG0DwbA6Nsy109m8QvMj3eGEV+jwvZ95SuzEDA/9IuvQsvFBJyaJ1/+d5NwsNC/LpyRKgFI7/RXWYSAHW/YAQ5SFRnA7dFGf5VFBHi2sjRS9V0Vzaf455qzTVuegAy06U5w3GTeWc82+AuD4NXHjVG9dwAi/YyV8BcGQSs2Rqrh6BPna/1W4+F/UpJTUAd7wnuK5Icc04bWk0GXYzM1/jouNw25LP/HWwEArZKs3h5s2xXeGmeH+8KNygU8Aa+NNaqWIRHj8q01rusiKo3GM8SdTVWqZUhE6GxSXxcplxdg8dMzpQPj1n2vek4eDvBIp73lJ4yR//j5l81dJuAk4mayHqVRwnhW9HbM+QHwDLU6PWh6a/FC4mlzhM8Ut5P1vGhMW5bUuiWRbSOUkD+IlFwtMWK1T6P83YJ56QYiokGJkTDZ7WufFAAgPuuIBsRfCHkpNcAjyHqltgPxQovWl0cMc5V9pH7mUeGppC9XFiaSqPdKzNEYc+89j3pnZ2eICcBUITb14dpl1tHdGPbNea7aVz92YlU1WnbEXNOmkju6gNo9T3hnJ/d+8Hgc3TVzWqyj1ciN+10qmejqQtadD93/7gOAOvHqsUvYp9sBXJhZT/CevwrInLrA7R5VsFD/rkIBbq2YMmP8YukjgEyW2/U/CTAqbC7/NJrrM64W168IYmvLLcS5/HKssgeruTsxLHrEvKp6NTQshxPAX1c0vgBwyM2DwxuAN2ENV4eTQCKmy2cqswFTyflJ17Sa+gkAyHn2koYcQZ/mVJaZU1a1S11wmKjK+FeCuFdyOwZ4OrNWXIYT0PoHhax9lPVNKFEGRK9LbP4Dttn55gCYPYEAAAAASUVORK5CYII="
}
] |
<image>In order to measure the height of the school flagpole AC, a school math interest group erected a benchmark DF with a length of 1.5 at point F. As shown in the figure, the length of the shadow EF of DF is measured as 1.0, and then measure the length of the shadow BC of the flagpole AC to be 6.0, then the height of the flagpole AC is ()
|
9.0
|
149
|
[
"6米",
"7米",
"8.5米",
"9米"
] |
D
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAANQAAAB6CAAAAADioyJaAAAIJElEQVR4nN2cb2wURRjGn5ndKikkJ1ggkFZSLQqpAYR+UIxggiY0VnORGIMYqBqMekRS9YPR0rsTFY2IGGvUqLH4N0aUq5aiQcSCFIwlmAhWhKBCQREwFi2Cvd3XD7d7e7d3e7t3t399PnRuZ+dm5rcz+z67O3tlhP+TTvd9+kzzC6LX3ShZ9Pt4fdaxt146THM6ZgcXioVvj2Rl/P76K79cuOIGcdYBUFC1AbhR0jaPPzMBo1uPEH2N1qBCbZgxIz4Bt3yvbB59qgZjH/2ZiGhnUKE2zJixgailno1a3v3XP/8MPDkJY1ccSu3bhVYWwOiXiCMaBhCj6tU/YhKEwVOjHrhzkrJ311WtwQsUKhKIsHTh+q49glx/84LqjBIsaFCJxygaBjEADMCo5uazjEZkl6FgQamjxDLyRuQWCxJUeuKZKThQlpGCA1UEEiqDAVUMErA5CFAqEqXiA7GCpSVs9T+UNkosBZTLlIU5dsKvfofK8CUgH1BO7qUzN/obKp8vWZCfoYoLD6qIfAxVPBIxgBjz70iVMkrqBaFPoUqbeEo88ef0K86XMpQqeJ4PoSz4koGIAYP9vft9B2XJl1JacEF1dgY7tn1j52ngZn89o0g9e7AooH5HxuaR928NAVMb33n3rJ+gikIi+ugi4La3T0lERGe3tdUA8+77/BQRkX8evBQf8aL7j36F0XWNIPmDHzH6/kWTlR1+gSoliEcR7eredeIYgEvqwjfUpHf4I1CU6EvgN900fOJbgnBVKDPbD1Al+xIAVEycCCB7vnkPVZ4v6T8B8B6qCF/KEU9/0n3NW6gS75fM5CVUqeHBVN5BOYbkHZSDSF5BOYrkDVRZvmRF7kOV7kuW5TZUOb5kWe5COeRLerkJ5XB40OQelGtI7kG5iOQWlKtI7kA57kt6OQ/lgi/p5TSUK76kl0NQCoVLvqSXQ1AMcD08aHJu+nmG5ByUh0hOQSXuxUthR2q2JCegEnHMnRJ20Zf04uZFilTiinhszxQg5UtwPfTB/pFKxBENa89L3QcC7IZSwoM3KJrshMqIeN4uptgHlRXEvV0gsgtK50v/h5HKQFLfZfBSdkBl3S8xD3xJr/KhPLhfMpMIQJYAoUQX9uR+yUwiAM4kobTeeHS/ZKZypp+nV+KFpECRREyUJYGTRAIHSYQKqIm6X9lOkiAT54lVPkVKQzFBEsHBIYlIMiYJTJYEKAkASWBJmae2BUmqoMSqc/EmrxeMjaT2i3FJIIBoGCCAgcmgVILU+46iti0mVgqPhEnyPnjnlzpS4EkiDnABACneqVkoZW5/8rgcbRLSm/5DEwGZOADwpAAwkjmIMZmDQUkAAFp2YqWwIkwSfORLeokAZFkEwGUOQEhKqIAgSUyEmiQ5T2d3rZRiTZBlSooSJSv8BwQAIsAV3+UAwCqA9G/FlERMZ3epQZzD61cwCknrmWx61H3rS3qpULLpRUVgkDQobnLtFyAkqydGoJCsQbm+vlSuzKF8eL9kJjMoX94vmakwlE/vl8xUCCpg4UGTMVRgkYyhAoxkBBVopPxQgfMlvXKhAuhLeolA1lgE0pf0EoGMrgfUl/TKnH4pJGJ2nES+WPUgpo2SHePk6VirUJ0xFrQgbjwZUlCJOGJhl/pim4wng4jAW22uWHTo89/mTFU37TLaL3GtPRUVVix/toiRa7dqS7TlMOWs85Kj4aLAsrIIzJ1rf4tRFiNGYH0N9tcNKLXGjPZz9WD2ATa4S5+SMgID2z3nnnPl1phHg83X71M+5u8wT2X3XXPvOZTvLlpzDDh+R+PivvPLrDGfQnubrl52Um0mjzgAHL+jcck3djQf2ts0W2lOevqyqoN32VBnjghYfhB1L6obuRIBafWqpQcuKL8pBgDLF8XqnoiADo6rWjLyuXIrNVbVojXxxlqDoRJxYFzVkpHP2Renqhatib/nwlVSgfNfXXQr26BY9grd5DfXrlzaGjIuX55Oxt557P6Y4e62aHJ16KE/8/4fAbmEf1VwIhJaSxSNyfRbc9WrJVRgKplobShygigWMyjBGYQH95+sey0fMAMpw2w51j9fh4PLASKG8W9sWtdgHNK3MdaSSh60WrnSq8HLu3a0V2mruDkSAWD8G30tL+/ICX/EoN7NW5ycg7Mn7qjXyjds220YUwc6aaCmLjLQSQM1F0eMSuVVqMPE0pUVnIbtL+c2zwAkpzP2g5WBIgAIrdtcn1WDces/PIvqji41yazEXA1a//KKK3VRvuYJtPhu6mixMlCpN+IaLPfsOgC1wHUE1ALJ6TVD0Zqh7WyTpS+r3TMQT3cob0elffMwb+8Zq82w7D9m+qkJYKCfmiDuvnL9zDE7OzsOmX/L/KCpC4gGnRDDLdjycGVyes2ZtmIOpOE5nKlkVwQApK4I0Fv796w/Pn72MwtfMz9e3KTIimPs7wjE3Vd+OGvMzoSVA2mxYQBPrtOSLd9Ftgzcl9w3z2IDBcVNDqkYZk+dAXprT1s9kJa1rqEynSQTa3CofUrvxCm2VG3idG3d1DafqG0+daD/32n9Fg0yGjUt0tNO1NOtJIfn0/DMIWprt1h/YRWCkomOVA/R8LT+4Wn91NZOPfOtVmsO1QEA1UNK8mY79TxAtBDdVlsoJJORGp7WTj3VQ0UfSAsjlVYpF2OFpUY/g1NL3LiMzd1c+UUTeq+txIFlxdiI+cxPJfZf0Zu+FV/a5XvM+AGC7W3lyvQlZ+boY3HK+mjXmPHCfXb6908ZPzewsRleuDJXnvPb3oj9v3Tzgf4DtGCUD9yzIZwAAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, Xiaodong uses a bamboo pole with a length of 3.2 as a measuring tool to measure the height of the school flagpole, and moves the bamboo pole so that the shadow on the top of the pole and the flag pole falls on the same point on the ground. At this time, the distance between the bamboo pole and this point is 8.0, and the distance from the flag pole is 22.0, then the height of the flag pole is ()
|
12.0
|
150
|
[
"12m",
"10m",
"8m",
"7m"
] |
A
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAALcAAABwCAAAAAB56L5PAAALtElEQVR4nNVce4wV1R3+ztx72V0UFZi5e3ddWFgQKKKYiuIjKoEWtS2mKSVFgmLwlfggyqNVG1tCrWJaKyogL9PWUlADlqA1UbAVgyKC1UobIy61yMPtri7vhb0zc77+MTP3zr137rz2bnC/cPd33ueb3/zOb845cwZB9DToKVAop5tFWBDA0+m0NuSfKUAgebr5hIUAcO/hGY0HJuzoA6DH6BsAjEP9ce6QE0BP4W0PQlafiecuzACA6Enj8qMZX+LTvgB6ir5tvPVW6xvjTgLoYbyP9cVF6fcA9BzeBLBrHIB9DQB6Dm8B4J0RxLVV51nxHjMu94+RQPK2+Zamew7vQvQUO3GD6Jm8BXoK71Jj7hm8BXDs7slu9mF4n/6hK4HrUu8LV0oY3iK4SDdDOXLhnYsKqH6z7UTaN7ttwtyb0eHO+WavGxRAgOLDnyyeCJzjzgnmfbKmu1iFhHhx1ZoxAE64EwN56zUAT6uFP//8Y2MoAN2dGMg7hdM8MFf8akcGgkVL4RD23XJW7+7iFAL3NH8hAAhAcd/2EP5kTrbbSAVj3sl1Dtus+7YH6FsqePuCc7qJUwjMVJ460zMjQN8KPqvZ0Q18QoCAfkFmlTftYPvuvGj06fEnAgdvnHNLub6D7HvL+alRsf3JszHrWdg//aZbAGF6T5Doi51qk7bIv4gPRsauSXL/+WsLE1R3JMBOjrThv3tiaYsCaI1V08K2G94f7JPtZyenDj05HsjKON3SdrpxsfbuNwYDYNk5dPkblf14+PDD/N1wbTFlvFv9eLxqlFw8ei+zRakFdhK8nncGdBSnQtE1H7Rg487SRK3NFQl+zosiGRIiLnEKzG7eaYfKwt8P0iyIhe7bNu6nQldw15VTWzYC9NeUL29dJDDqQ0Dm2YQFAWBJhAr5mt8ZtgYwAzrz5Z0CcOS256BEXxkLEGiPXA04NG7aAgCJgGL+9t1Zhc4PLm+9L86SRwD9o9fquP5Ht4YZ02X0TetPFQBs23X/ISchGm6JWB7YPmHWPGHdrAAE+dJakovGtsRzxEZEx//myM0kyzwuCvx3GN6SL4/6IhoBGxFprx7Q7pMbmTfJ7Y1bcylmaB5PhC5Jknz8MoOnymfH4c0DQ9flkoK1KPM9hVS5Sd43s8O3SAHvsPtVmU//OM8JB4924Rn0g4I5ny+pIcBwwz8sb0V5ae9DnSELWyD6hS+rTz36l2oI2P+C+YRqthNE9cpTU9qCi+YhMD102cM3DVxp0Q3ra4PstNYVfXjy9nDWGhUHv78geCTEGpcW1o/4IO5c3A97xq4NMYC7wJvv1r0Q4WGyoHyW3YZJkh+PXpsL+6ArvMmLFwbVyFMbFlTEJMntwzaTMqK+o+3bE9i09R4z3PgRwfNBBZB/nfL3CTBFxHVJNN4C6PvKVzMxvt2/G3oGPbHm0d31ZuC0tQQx3pO8kL540O/9KdkX9SDKOmPnJMz85a/RZh1pthm4Ls60lCQtPrhStALQU0Gtl5tIW+ktmnLfl8v6hV2IFqyL47yXyr6Lsx+GtRzyhyyjFQEA5uNbbuz8Uz+IWG8ag0ZxsT8hSf5v4aQX8m6jLH7t23LrwPMeORnQghtd8CcO0j/b2PpL+32LOOXKKNzbWl1eWwDmnpQvP2Mi5rZW0FV66psk184L0JVRqKFitDSMuHULQ3luCyX7mtIEEpEVP/Vb416sLa8rigTO9qv/Ue1LTQAQ1XM77ZOU2fKX7K1vgyRbp//HX0NP++R9/QOfpY0nSp/z0XmTlGT75Dd9+tF98jpbr/XJ9YbnuDR0A1KXoK6bAHVdR05YIcOJGzoN3aChG33XbXgRRqEbWyHEHgGAvlsznPlaHOPIw+GdEEkoigKZSpEwkynFAMxkSrGctJlMCWknJ2AkkzRTSQBP7348WeAQVrzK5vvnwdqw+m25XvdPfaWrBxpIy05MndKkzGazWVPqpNQpdVI2kKTUnb9Sp8zK3I9cda97/tmMZhLNdqycjW2bFn5PwNdOhIACSgUQqVRKyc0eiq/R47pvnX7NV/mMN+cNwYpJQwBAAqZHeQBblv+5y8dHFMA0rJAhAAEJUAgTAGwBAHQlF+HS9bN25Q1lKHBnruW+xWUJADs3LMPJXCw+b0EjAUARCoCEqesCCambSSAhdVMHDCmSrmQTRu6nA0j/dtn7ufaa8dN5I/ZstljNLu5NANiw7tEq1Dix2MibjLfNlfWDLnRM3uIEJ2ESN/k9hLfOMkve3IRDmXWa6e3Dw/Amb3u2KKHcA2HLLCcr6mPH23+bepdeJK3UHyo41mLZQOn7hj+8+pRjHlVd6C7eusETGzY9UjIMteJ9oieq7gnXmhe6vG7wxA+n3nHMChFA4Y6co5uHRtxeqe4qdp6NV/W7aWk9IBUBLXXmIbQBKXsl5yw3x13WNeMo6C8A4cYlKSUPjH+PJAdbA6hBLZoPPvByyKbKoGv7Pj6QnLuEVC1XIUmVbo931+bwLXmiAus0bwj85sh8rY2ogg4BtI2Q+aXz7JsnWPe3Mn1V+Jzpg98ef1wAWYvvXQoAEOjE7O+NtcKVOjoUdHci2AlJ8t8T82GNtJ9Atzuvh7qwm9ttdgICGLnqqlZ33PogbtqVdlKl1F1R3oIABqz+xT8AuC15xpRxlezGaj0AUe2EkvtmbrSCS634lIDlc0h0mx/M44HHHA+Y5akJn7FLdu2g++w7h0f7zExZW1epthlrh6IbjgYHXWUsfZNvTyH5GHn4x1/Ha6AU3WgnLmvYca1JlYeuN70yY6Eb7cRlDWOWf3dXzb/uWJ/voKKflFVs/u2BaZuuXh+7cikK5t+CqNfRK5vSU3pKd0kjqacMoPeJ6s6qTqB3B6DIVGm5AinYuyNpKhI840RKT5qQfY6n9KQh2LsjaSTMcvVCyWwvkzzjRNJIGjWjQaqkWk+qtUUyQzbVkppGNjVY0rOcSw7OkKpaXgbVD9u+Zo3LjErWD3RJzZINGtm/wZJaHVlbXK5IDrKpDVRJtc6Rko12erl6YaXTrlpLBYB2Vhsz1Xuh9XFkKzLVe6H2akW6/z6ke7Uifc5BpEvK5SQy1XuhJdqg9TuA2lQbtH4HoVlSaEkr3ad+kLTad9pFC0Bq9SY1jdQG5KTUVFIbYFBTSa0pa6UPKimXlyqZHpC1jKHRsORgR2alqlKqjT71g6SLj9pEEuRAslG17LdYun+qR36BVG0btn9agZRU1YD6ftLhYLdXR0iSw1SLlktKVbPsus6277pa8rzScvnyacv+6jKWnddlrG7rMk669KoXSTaqknUZcuhggmSDrZnGvJSqal1l2qavaWS9VlKuRGqq1Z6mkvVF0qOfsFK64/UqCVLNSA7UyAEqc7JRtaQ61KLsUC8uV07WqeQQ1fJAaoR6ZaUqOcDhpJKEZL1kf5VsqGNOqipZnyG1Jvtn23dxuXKyyfHXKqk1hK9XTqoqpSWl5QyDz61/ck2/657829XB77TdkEpxoLKgSAYcor38hlYcHbMwFW3XU8kHOiuyRZVrxeIhoBTv5Vm5TmD8xAeAs34+LM68f4mWHqgNeTDa4b0yyF28cOiRPGZNjk/RJUlmyY+vIEnubctNoIvLlZMkubSDbH8mN/kOVa9sewtrtQbtktz5WTiEPCB5yUu5YAysJt/hrjg1vbCIx7mxyYkp8DzdQhAQnWePdt+eaODR3mgehVEV2lljDc7ApBnOJxOKNykBATBxvE/cXmCId+emr+jl3XwctAPAkN12zM9PiUTiIwDUjcidCCTxyZ7W5ZVbmq25HgDHOqPc17+KFTM+BdrnxNrcZ5+vcW7lvgV/fTRgiD1NueZ90dGgafPjjaNtr5MG/Q5MRMIykuy45HM7GqDK6n2xFbR7IpB4Znjs+oXYeiUosPTSQXY8gHfcMcXjI08BAum3YjZQhFPLn4TAxZcvdtoPmJ/Ef6l5zHZFZuSjmB5oGdde1YmqbQ25lG76/31y19vVLwNtZHsBPOo6r/V/Z8GOJQdvugIAAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, CD is a plane mirror, the light is emitted from point A, reflected by point E on CD, and irradiated to point B. If the incident angle is α, AC perpendicular CD, BD perpendicular CD, the feet of perpendicular are C, D, and AC = 3.0, BD = 6.0, CD = 10.0, then the length of the line segment ED is ()
|
\frac{20}{3}
|
151
|
[
"\\frac{20}{3}",
"\\frac{10}{3}",
"7",
"\\frac{14}{3}"
] |
A
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAF0AAABkCAAAAADBb2N6AAAFWElEQVR4nLWaT2wUdRTHP29mzBrw5moMQUzwX20NmACh/K1mK0EKSY1eWuUANNy8tBGMKBQTT42e9GRM1khRswcOVgimVapuI2G9cHBjqHhoTUhMJEghhc7O8zAzu9vuzuzs7sy3SX+Z3/zmO79585333u/9FnV0AIC9Gj8MhLODRdXpTuKHAWrf77A/354Qu8y8yPga60gC7KhqFigmYHVVA7hY1DfXJTFzDJi/2cGuVUmxT+2HoxxLiP1iRmHwiSTYmfbaRF6raCJz9mAkSe6yf3o5SfZ/er5JkJ0D73yYIHvXlXOHSkmxK+n8QuZWQuwCqdyW7j+TYlcYG9npSSe+T8BAQRFFh870u9KR2Ngtj0sQMpN9sydiY4YV32pX4dzhWKXjacZDOn87Vun4mvGQym3pvh4zezXGRnb8mhw7R758tcrrtKdOq6ZHequl05466/n3rkJcXqdu9EjnFzL/EcNHWz82pXJbts7G8NEGRb6xkV0xBKzAuOp6nTZtU6sZH5nJvtkTbdomJCeIQTphGUf7ASs0n/ECVuvGD8+WdGxk5+U2hBnOLpQDVksI1oyHzOT+1gNW4zyys41cpzG7tCGdKDlwaK4TKqhIGbZWcp2aU6GCisTuSqfuLMPV2lAzHhrlOvWfIfLao6tw7lApyMga8AzRVzZ+wFqGQRGRx+8G2aeJdVOtdJSzA0XVw8/ebZ+9Kk32LCTYSx1wetf7cbAzdKZ/3KX17jGzDuDp32NhJzN5YrR8IDDVC7A+iKXZ9WpXYeLgPdcwCvZED8D1Z2Ji13R+sdeVjsCN3auAuQ/2hLCriB01/gipXPdmXzpTTwEc3/tKCLsoZrT4485h7Hh3HgD74wzMy80LwReo6qlRJ2rVwlF1VCcfO6OqP7kM54NH+37GRkwtmaIlDAMtgYXfAFpCTO+4hNnzff+199jR0Jz+WzUxEUNQy3KUkmkZDn4DlExL/G6TkvV8/uIh21lhsWB2MR1UUMe2QUUQx28ANQRDyscmpH9c3HO7TCoB/IZ/WhxVAcOyrPLYyiW64hhSua3bqrxOoI903Cc0SwLiKKjggIHXAGhVt4/Vz22fCbBIFbs4ooCIAGbJtgXTsR0Dv7FVKt1CyfuTF8b7x8PjqgViacVIYlX++421vNtCsUCVly/tuzbaYO4emsgWBUAEOgsTB+9HYHfs8OheBypKOr8Yluv47IbVfHVPhWVep/bx26wYapXXqSPL1tkVQBSGvn59PGBM1HymFn5dRyUz2Td7qu6Y9mupAl2Fbw/ei529qq6z2HurjqTbYvffopLKdW+uU9eJpcoswNjxbfmqrqrPPxYMfeVLR/Efq3XN1CAz5XmdiuzjrL93/jaxQjqxVvcfzi/23oKKmGJl11Sue/MsFdvEyi4rpRP7vofrdTzTtKGZgICQmdp3bdQ71cbcg6JNZ6EsHSPGaruPtC8djBir7WWUA5Zr90ujzVPoNKP1d9pEWf3gpu92eOwvtTJBISiPUJDX+GXjQ4nu86n4mmntJuFXCS3NPVrqoz8/0pLeBXcNbwQvaYDSW4Kqahb2Lr3rLVyiYuC8Tofu+Z4+cMeAebmqzmcPrAkuVdSD/UcP68MGfLHxbzWw+4Y/QtaeXB+tIu6/p5ndqzg23BE4an5h06Or0ezaO6qq2SY3trOE74W/rXPDytKGT9zDJkyuqjpY1GwIfRYYVuPGVc96zfmbuX87eGPDVNDp+QXV6SexiCrf5fhhP5QnVnvvoxfgL8W3zFzIirkWjg4UdWmD+8Zqz56Eog7AMJrlvOp0c7/8cX/i0Pga3KHD/pyiwVF1ogz+HzxL/qiGtavzAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, Xiaoming designed two right angles to measure the width of the river BC, he measured AB = 2.0, BD = frac {7.0}{3.0}, CE = 9.0, then the width of the river BC is ()
|
\frac{40}{7}米
|
152
|
[
"\\frac{7}{2}米",
"\\frac{17}{2}米",
"\\frac{40}{7}米",
"11米"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAJAAAACACAAAAADB+7//AAAIiElEQVR4nM1bT2wbWRn/jWV3By5YWnXlag9MW4ScBWlnc8ErQCQI0VRC1Lkll63DJQkSSiIhZXOyc1glVRFJEajpAdkcSrMnB3FIkFbEC0gJK7U2EiKRlsXTlVACbIklQJn1uPNxmH9vPG8cT+KZ6e+Qee/7njM/f9833/vee2MBhBcKibgJdCNOQuohRxgnoY1R1SsUYoshVbySuzHjEcdmocbQw1zxAU9DsaCe2ZbrlK96FDFZqDW6khZlTPNMFL11iIiahnXkercitqBWRpsAKu+Xu+RxuKz15iFwbw4AJmrHHnXk3jqRi0RH0ikREa3Nd2ljICQXGSIWMRsxEKoT0al0ZPbm19zamILaCWYjuB1EHNTqzR0AVkgDgCRvuUZETGgSIwCwk5Ft0eId14hoCc2qVREAHkw7spzacA+KMp73jEeqLrPCap7txRLUs6+7yo4r9YzTiZBQKWPSOH7zQGQV60/X4iBU+tVu2myh5NKoV45YghGFz4p0YracpGiBTY6RWaiRlsyWy0MAun0YjYEYeGsgtnKMhlD5baftfsoNMHkgEkJVqel0xrY5I3J7VisKQtuZA6fjTooWHLNFEdRKS3Y6k7cmzNbhMbJ2RhyqZuMJaqYgKwBlW25XjqFPro0pV/fOnOjWm6vpmS2zuE6Gzeema1mhbq7VAODjtyzJTMG4ZjfnoyDUuFkeY/vHWWNp+Geb0LsfXnJ9ImRC6Ucjrr60C8Dlx5WuvB1yDEkjXPHSit2c2VFcqjAJtRY4+z8AsCU6fhRXFqIi1Br9nMjXLBeZTl5pREOoNXqrxNdsSTLbLS6zvRAtNF3iy9WF+65+HltMLzxCae92nYGNfMYtcJkoJELqrHdXw1LdW+ySyNJW2ITUcTXjp1ue9qjWlpzHMRRC6nimex/KxrE5RbCQxjbCJYQbvny8sysALN6zTRQKIXHeV3VY48V65vaq1QyB0JLSS1nkJsu3f2E9BIMnNLuT9lc2lDxXLs5ZeyADJ1TatxaoPDCzqhv2HDt4C/Xiw86qbjBzbJQVtWuNWGBrals3WAtVGj3Vzqzq5PEdq2FOIAMlVFlO91Izs6qzjbdkNew5dnAOKaebPfWPGHK2yxjZ2KBdpuxKPfUTNrV81RYyC7VtYLAuK8l9Dqy18nabSdIABkhoZ+fsMRYW2IWGk6QBDI5QY7L/sZtZmemJi8tu9UDiuZ7hbbLwYW3pFaw85MpOA7JQreyXgr3oXcJGv6VnP1YFO1OzZ8GDsJCyGWQ0p0JjTTQAQgrvBQVfNGrzHpk8ss70LuqCprQWZLjjnoIzuTLZ8eIWOpz2fmV/7Kh5jjQzzTjtohYKBuYRLzDlh7O7f0ELqQHyMwBUZJkrF4vWrH8xQur4u8HGL/uVsIVGwyGka5qmn4+P/4KQi/UJ3wXtypJDKJEUkueyVEMKxuf4QdFXNyZumS0i0jU9koieuc/2Cu6aup47ZYO6o2nQNR3U0XSAOpoG+2K3jL8djTpahzrVTlCD7vvt0ACAnNtgLaRrRNQh0og0nTSdOkaroxGRIXtu9nWtTbrWLgz/J6CBul5f6rKQmR0tCwmJDkgAkaYREQlIAOYFAEFAMmH3kwDeabwnBjsm2UK+pz4ztwT7sRfwzxbpCUBIpVKcAPfc+vj3vRaEXCz7R7SBma1jIAE87wBYuHJ5VQAE6AAJgg4A5gUABEZsfJ33gvLZyMlnjDBXr/S83dbr+DIuf0BEervdJtK1dpvsi/bcJdba7d9q7TYZyn7hPfotdMUQEcl1SgCJVEo4xHd+8K9bMFwGCMlUCvYlmXCJk6mH3/sklYKh7Bert31zooO1BZiT6+kl4JrS55ctsyeW/aIPOgDEpknoCNfWjohoZa/3vyUiOuUcK58HHJeR/di/g+/OZwDI40tnln9iXe7r254PBqHST82TvbGD4zMWWPtB6tVzgehoBAmI1kNw0tPOrhPmkFy2/0bt2/q8OmmuaNNQp3gvOgMAGlPbWT/dYJAA0niUEIsTtasLLUMmfmN01Wf4UlkOlw8AotMT8dX7VJUzdul/kFsZlGPO4TKIoH/MDqG+Z6/gsnvzHOpKK3TrmE9ZerwzrYyvSoxcxOF414GOMlqLihDmIDTxvluT/cobFTefYj4CQkambooyZXLd7jzIsXsseY7DQ4ihJACok+oiMp4jt+we26t2q8NBAgBm9+cnkFF4+spUCwBaXGVYhNYrY2tABuucY8kJDO0ArVHu7wvCAdEIVoioCuzyXL0tnZyOFQYcPz1jSJ3+273hS0j/utGucQiL5cYd3OZpLgi/Y2Jq+igiAMdCL9yvp5KAOBLPrT/+72ucuja+Hyv5wHSZ9YKRwqictvs1snBhEqoYf69WGJXTY6VhgwnqytUpxaVTplwEo4FNyEMHiIWSGdSC5GVjQtqVhAgD37LQbgEAUGRSlLFZUTjjmDAsQlK5WeCoC82yFB0ZwCYkMZQ+/ZqQfeaiEyUnd2JUlBFg84vDAICaFCURB92zm/pV3B1UhXEOeF89fekPT7+JH8ZgGQO82f7zf/nNs8iJWOCWHy+NRMyCAZdQJ8aajUvoSfblqHnY8BL6QBB+Hl9Mv/AFWqTg3tSa7eOwE/emL9yq44UnpPT/0c5bwitPgKfXX3kS7J5n3IOIiMwptiwV+58GHz2m0rf+p379sTL8SaD5syiV2Zu6wVqIW1b7Y2IYhX+f/mlo+NUv/S6giXqU6g6hgHQMZD7zVyB5/aOgn+tFybBeUwr2Hw37/vEuPbxLVLpLRIETh9TTZRKnyu8FAMCnP/6+h2M/MQQAKOxyadou86nye+JHP/ssvvAhOh9dD/pJ/9UDE9SBKf3ytZef/uT1gyd/f3ZjUHQA09KSac3mbt+GpxKAy49JuXb5cf8fIiLabZLrpi78H1mNZc77mZARAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, a student saw a tree by the lake. He visually observed that the distance between himself and the tree is 20.0, and the reflection of the top of the tree in the water is 5.0 far away from him. The student's height is 1.7, and the height of the tree is ( ).
|
5.1
|
153
|
[
"3.4",
"5.1",
"6.8",
"8.5"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAG8AAACSCAAAAABuost7AAAaCElEQVR4nLVbeVxUVfv/njtzZ2AY2RFFAQEhBEWznwtmmKm5pKXmm6+79WpmlqapaS4VlZqWmaKVmmKblluvC66ouOSupCKKbMq+gwPDzNyZ+/z+uDPMHQTs9UPPH3DuOc9ynuc855znee4dRvgHgBiQaIl4GJF54UVv6dEKyn9CHBiAy1uDi19NP7zbG2B2kf+MPAB437LX+XixJ7PPAADYP2JPWC4/dAniXXLnpO3o6jDwD+hHTDx3cE8xHzN5WJhbmcnaVzf6D8DGAJ7neZV2jX56l2w6nyEban79iu7eW1MAAGT80r+oNP/8hx8H29VrfnlrfjDWxviebud/qtRQ41K0pDB6COz7odnteb2rVq3eT9tu0Wpnz8QPeH56jX0wKbXZ5b2t4vnn04mIaHXwionqAbLVE6JSm9OexAC4Mer1fQgAYPYDhbN6QbAdYVlgQHPKYwDwysGWm9oBSM5nBuqWbVTbZ7Ot84Hm95cu7Ue1A4BFpxUW9/bpogX5ydEeAFhudT8vDdfc8tScEwDgKaPeWCa6KD2yJk7PAACsnYFwNLe8rM2ZLQAAsXPc0O+lp1S7JpUuiASAbauYP9fc++FGz7DABUSUus9AKz0P0KcqdZ9kkUSinDiipLhmOV/sp0fKZGP81cXGEaUrr46c/drJPbVXxZiNIQCjvKmHgCw0s36zPE4RxfVy0zw9emDXXeO9BrZW7xWJiJYCqTQGmNOs8m52nSsSXZ8f7LySavr2DPKeFak644jSjP6Ss+ffwn8YkLDVpNj/m/Hfmh59D2U5EYBrcuM3F9zq6db3GBGR6ZM+XnzojI1x6fQa73GT9uybaMdqtv1+583ixVPdQCyzdGnHqYikS+WXhlRCOHZt84hJdu2aK57In1C+sRsA3Jpxb15yzj3Lz74Hzl+qNIOPHD7dQ4bYTNb8wGmn1HiDd9W4xce9smHosOXhPK/yOeCA1xz+UnLOiAjtTQIAYx7MguG3fn909RG2PoCT04T+jsjNoNuN6IVEyzznXSaibW15dZ/FUfOIqGYgHxjZNtERtznkFfdznlZJsSHaFWQZoFJqz9JgtwtENFT9+QSPU0QiiXW4zeGfxcXmlBy3JQNiv2CWi+hsdkHA8Uog6Sbf36xnuC12ZPYzrxn0o096niYiKpjg5qzqdW7KT3S822HK6MMPfbBQc/5ah8Uy1Obxz6MFRESU14dXbaTRw/Wmt6/TIl51gmZq3+vRJUWG2SznGQ1oBQDwCwbToObIXR6Hz5yCiwfUpvXsxwgZarOcL9a1IXMNxCz0PJFKt350rlYMD4KZen3TSY7arPHSgWRw7Ywan00VqWQkxRg3GLlFnR1wmjVeSsiCK5Zt0OWD3PWWZ9sDZI1m/gF5xNLTAKzNrgKI9xScPwgCCALua3zsWM13/zHEXu7UqSa5EgATc/XQAiCF152R8TKs5rRnjbmjkC6AGBgJCPUB4KQ4mlgQIU/gm2X/ERFRcg9eDl8SEU3n+dD9cqRm1G/ltaD2HAEMrCylptcQAChHyOdDHbCaTb3DQfwak8loMJpMFO/L7yMiohnqzY5YT6KfbDVksDP3mYG81CzZXdkjkhgAg9Zx+z2RfzYoTijD3HAAIGDVYX5pMAMg5Hlon1TeYwKdfTfc29pmkwmFCwBArBUUeFDwN+WRQ7NBrWTyHozvYmurYamVGl0Uljsv/yhDa3D9rAskkyA1qx6KpQHeTIZin0+JarAttawqQxdrVvvyn79eMT73uPqZNCzwAGBMKYfoHOUGJN/Ym6e4Ff3eAB71tCXGdty01Jnj90tsapA0Iz/Lik7bu8jm15h+xXdSzga/2xL4YblPkPBXxznaAxcVRjdVjGHKS3HqetgMOFoU4GplKp6qfmGAdUYWiljbxcFWDW0lXeLPvXz69Gk7+vD1A72HXyorXtEr1Cd0b7mu1mDRLXH7/lGKB735BUREJBLt8nGuiznf1ux2RGxIXtnbHYf2ji02xfUJ8+gwM4OIyDTUa6/EjWhIVLqtWQfznLtes012mFJz3CZ7svpsk/LSTl+4XPNJ4DaDgUgk3QTNNuvAul/qcGI1e2xNm9C8GH6HrS8hVNUrxTY43fm4hGTDlK1f1dXM3Gt3jYZ+KX0mSibXDnpuonWJ3rEv7b/2J/X2kZbKtipbrrBWNjZXCuj9CNsgKTz1R8SB2jpMJTGr65TO+qttuwFj8osKWe6JF6TRsVbPssePDPB1+S5t+jC5w2SdFriDBj1qzR5qSjKGdahzSAV37oez7SM6yJCtcPvVkMN6SfPM6SvrrajjYn356mCfWIusY4Yzz/Mqnud5Xu2m4uPsBPNUmsDDtTJUmz23LzF/MdCqQdCXYr0NIrsuGfA+qj5fFzLWPqwzBwU61egBDtUZ1LWfvLyqnDLQgZUk9lRwUJ1P/S0YucLeNr3Cx5tMptraWoNxZ2vtHhnaFH6BwYHOql9S1ff9SnM7s3qaNA6u6fbK2G/nOvbmAR4AEsp4VxmxHoNUDnRKEANq70x6FRvj1o8gVpUR4gYquvccS/H1BnD/WIthGpR4FWWpRMYr9KQK0wJw+eWl4VYWJVuqPg6xtncfpk6+0okDAPlmdb1zXkkMwKUrbwGFpT9WkfbAnmXvovTnn173+XjcR+ziub3JimMD0pJn3lqldyZBHVhY+8MAAB3FKhuLTWcRaGvvLOXf62gXcbtExVCU9bT9AFQyACguNuDGZZy5rlM9bN0W+LYy9DNNIccyPzpnItq1r0Z4ZRB+av3wDLqVBTwNAGqljen94+jqb18A7wCZNs+FXFZkTKzaEyazJwBkCiF04CoX/NRFUTV1REXa9XPdvbLgicLcVtx9TlkJWEJGnHRVcoqkDku9AcDC2zz7mwt4pzMAMFBmIYbL0wWVK3ZdKV1kFyfJ018ZNTo7EaKit+GG2QNbvqgJmnksXntoiLtWZSFR27nU0ApJt/XEOVeGPQuAGLk4WzkUmVsEWpVjn11wHyUPIBhvWh+542nYHYgDSJz33za4mgHo8nUaZyPyK4Vp7scmrEw50cbHZCHxzcTfRniX6LStPUU8c3uNADAU6HgiAIQWeLmLlX1Ckji+p4N7VFP4Brk4cEDttN3eDzHiVSBty1UnFeDd45kT82oHapWqrCyFgoGl3DtxVX80tUMb0TjM/6MDAHD3oYIxACwvL+hNrfVE2JNLA3h5nCPm4otoydZ19sxaePwrXg/OGwHtn3f766iAf4/4fr37BtNcn57n08I4lbB6Z0tNcGDovmfuHxW+q1a7AQATzQCAqtmnV0XbmJUgyNfB/zkVPOCwlZXX37vyzSQAMGDcR1zRnSIltIf3wysjIatv2JYWgTf683949vIxHzyvTEoHp4wc0gsABifdGQYA3/4B297D3mS87vh2Cp6cHg7Bh/LQ+dgpAAAdQjmc3SlocGKXXxvVSfMzIyDMbl04tZPbzXguWKdcnJ/nXLtkvBTTjtu5b5wfgFREt7OyMv9c0E5W3CEGgOM9dFvbjpTJK42WxCHojReBobmJHfByjEZhMfK8FoPaiKEx2JT+g2WMzrOjUP3dkU7WEBoRGy6MBFCNiTb9fk/ipnazi5MMqvhz+bUP5BrPjrWepNIFIzoer/XBPno5Kp6I9rfunGrrGctrE+rjz1V7ddgvv7qUrNC2tkBNZrsW0tFTnd4FAFDlhpwaX4/a4kCgtNRZbdYFWRNkTy2A3PWlLz28yZvNSigzb6OFBvWAiQ+/csyP5vrbI5ql7uuIiIqSU6Zol6bdvJxhmjd7Vf/wkdnLI44Tzev53oxIn11W3FORv5A4h1c5u7n6+2q1Wg8vNT/toYNyItFs7atFjveRBzPaFvdSvFdXANizwqR337BNoXz2q6i1uTqh4Ovb97KBMm1Pc0Gu2TrP4+lKmHPhGqYWRMY4Zrgj+k1wTE4YYA5d0NKhTznsj+MvSB5rjGMzPO+FAi8Xfu857PrFIa8EFYRN/K6Mdb5wE3xtdpWlGM/cPd/66RYAcMu1NQ4kY/hyjQVg4A4vTv/Ps47GJAao3R37lJ3G7/5tJA8As3/fWvnCkJWe8Pvo3hWju3P0ZHy4SVtKzK1YAP9tnIdqH8t5cPT+/GgABy9OeA4ns0Je9wZAjNilbN/+cLylGQALQ4lSVt/lMLPTpFiAqpbsmOB3sDTSE7h/tKoi+Z7+SorYmc8zQiEyuLl5GbyfCQmrEaZvjAZQvspjKqrTMct6WrGSq5bXo/FIFsUU5ZdH7pLrB3hrK0p82I87Po5ZdN23ROTw44ZqIZm0t4fHjtj3B2cyV5sQGTakfPUD0cC7t/UBkP/63W/D8fWZgK42/h+dg+NJLRlURavSKUrWxaEkbfpKH6D7L+/8eP+nD76PNUBXZhRjOnaYH1K+J3FoH+IiWsOJRztDG7f8IP9KACVvX/92OPCX8a3utiSxwhzk/Yg8RnzRgejDPWDPJTn8eCmGFwSxR4dpcVG+D3XLdkMLINC3pIxvcat8zCCw9l00JgEav1o9d+XOxXLkv3Xph+HAmdsIthkwtwgTusvY2gQ+zIuZ7wuyL6sSJoVCaVZw2H0gqHKJ/v+S76OSC3fOFyoWiKPD1BdLW1XH9vSuYvlbC/gy0mNrbcfthV8PA7Az3dPFxviTs6EDbC4iA/EBPz8QYPL7iCpqGAAMahnkUat2WtsG/jPfV5toxw6uZd/cI+rv7m1XaUJdT2SEoB2naFNy5A/Xb/4FQJ+DkdEAgQFnTmN+9/prB8BsaBOMev3bnL8ik0UwCSSaLEQmk8VCZDKZxLJyMplyiojKyhKSTdX5ZWXlxRX6ivE+Gy2CyUzbg+2vFt7l1ccbOm5NgwJSiHTy8wXj951+i4fSrATjOJh5mDmYFZxF9CSzgvMjYp4YbOZc1Bxn5jhR5aruaeEhUGrmWNtFW/0AYsUj3gKAb1EkGONq3ra7Egdu8IXNABQW6TsVQSAAHBQEBg6cNfHioOQADlxxZpdWCgBcFvq5W5lsv6QM95OcpZ7DKOny9KUG+TFHRBOjLhDRw1wLkShIdhCJBCITEVk76v5+iFiThch0IAR7bBfNZF71CzUIU3if9ovKHewJ8cWzk2YMNMW5rAIYRMaIMWJgABM5m2eJHETGRK74WNirAIBDD7q1t81ZAa/QhswJRHDmVcMdFAbYa22+PpSTvXM5B0ApADyUgoUpAaVgAQ+YOV1+ewt4KIWqGYVrwsjCmXNShUnhFqlaVJGPkVENCAOQTeNfdjQwwPjne+oUV25kS0sMAvTWi5O34qxdM2Gy1rcF7s+6sH4kACg3nVHrMioYE1uEFr5/LHicY4mkDoxsWL18BQDg5IQXp83xXqCVkmesN0/yk2MVqK9eLfJrL+bkbxgNAGS8A3HlN2YFJzp1qfxT8X40GgYBTg3lR4BomVWyLmVeLyv/9buWSWmpNb1/Z2rh7yevcqMnt5Ty+c1n/NoIPu55D8EKsqDwayxdrBI55Od2lmkvu/2XBfrOyaiqrMw59YKW75Ntd6rSFzaQSLry8ro3XaP51bU1JjLodLUX+/Ad/2zYO4mmaC5m9up+18E/rcCwcMjK/1b61iCrApsLlny33Dbl/HmpgWDQSlgAcO0m/JwAqNXEEq5ab8GGQKvYd7Fobf38yAadt6Qar+Vj4PNerVC2yTIpEgDw03Ld0iEygzAIG+8F+NhmmWn0r1fDlQEzft128/ONfZ8lkkhkkvY2xXULfu/i5UuXtkVEHnFEou2t+bW2x+x+ytWNWVOkKXyk48HqoB8Ds+0BYMbQz07dYaDqrnNt85eSPOBsqXvdfvv6T//ejWoHIz7tZyetb09HCNyUb2AA16rOu+qMwsb3tHI4d8j8freGqCXQcL6OpE3W5/0e7SIGVBciRm2tcf2axerfcHJQcLUQskPsVWvH+nWDNfGKnAxD3QMDEHvsuc62diWC3ZqQZ1F46Oa8ny0X8Rio2Tiqa9CscpurENHlMH6T7el2N36j3JPqw3S3rRP942Udj5FnuDbRg+d51ZTVh+v65vBeCTbeM3jv43WCGpA3T+0W9Lu84zHvV1ZuzSMAnkdO8RP7u0hlxVK8+H/W9S+9g2FRdd+TNnCiCaJb7Ch5R9PykvfkAkC7wVd6WHZsdouLBpCVxo2yvUDckYn+UrvhYpuYjSXjHIaafr+yLxUg+H7R6cblZ35ufzMdgPjl9ZH9ILnW+S25rq3GMo4xf33DDMy+vR1n0oQ8AkpEgGH6iBHP/5Xcca5fNYDtO8VBbgAYCL/d4v4d/euY20RvPNWgQM6/pUViZY+vGwWGpD8BAMHwWvVZP3TtzINwsdK9rUTMqErp2s/ZLIQDnzy3pMHNpHLSIKtcFvA2ac/jNwEARiB85hCsOVNWyHJS0TnASnz3vjmqN/4MAIDQ2w0voaE0fth22XOT/tKzfToACJI2KdVbdqy9cg53tnQyiADP/3zS9S0fJPYHgOBLDXIwp39016/v35X30qF0wM1FCmbY0+43y+m+WV3+nYsFgMJYxQ8eBfOBDwAgM+JRcmJiUe3xPuvC8Xe/v/YFvGO7eknIixP+nKU55T7WU+8kAiphV4lmCFD4vAZAbmzCo9QMFiOe+zJcav8deYOvngoKkEpUOWL+l+aBB2+PXtDKOtui2y3aAonBAGj+oMENMhDcPo2q040YHnt+zlB3OUtEtQuDuw7qddw0iN9FJNWGDCP5/+hJiEwVKQeDGqY2DQzNtDbHAAAGPeZ9an6FZmI0gBMnC0r7Lw/eloy7DwoLf3v5OPDlYa+xzqf5lA4c8z94qEFqAkSjtf3rmFSipIim7Cmm/nBU8cUUBiDmlz92n7hcfass6MzBGioRReSf0H/8QmFM/U3nEBYykMKlSrqvzEK4eduke43bU3w4Pcon9GDdc/GODxZH8h8l9lC7qlYTLdGqztDyx6wGDYv4/V/S+7GkOIpPaOp+YLE/rLgfL9bN2OdWEpePw6kZ4W4XW6Hmuokle9dMcK0U+nZoozQRMUaMOfMixyy1gqSpqrS6YqaLlNDdf+cdpBJrXN7eba/OXqHPsHlyyfyDbfJ0rT2VYYI+whPLT4tsXYIenEhHTlULBGJgTMyvZaRAyxYWAMQUpltVgasl+kOp4eMCWBP74XxlDPRqX9vjV3u/KV/MZr2h1OtIFYiCWlXgjBgwgDMJzHoscqYtN72Ky4OmhVgAMOJ087PXDwAA5FaEo48GTeyHPa1jEieP1dsex/ZIm837S4G7SLrR/OibDVE9NJXn1Ihku+xfCs2R+uPjiIjmNRVPLAvrFRBX9/T2oDFa7ToboyVa9Y5HCB6NJ0wDQ29LrTGpRDQmril5luyroxZnp9VIjGb3iuRH2WqZxb353ra6rljvvxyMLwakCg8MlCTtDqSKTew/LjAwaPMphE/wrtF5utxPV2GItZZJa29qJ4TrH6o8IftlSgMslM7lRdsOxr5St00fEy+pyt6MWTQnsMroVFIenAdbnYFltja/Cc0j1eNHkkCujbj7cmS0vbeJ/QAAL595ul+88LGSTAt9In8NC7TyTMnLcW0Q/xEdNebv3vxUVv58TLzUvb8BQYk57UMjw+l25WRbyernS6bXmqSrAwv5T/CQn3mPOa8ttZgcHpsBmC6eU0iJAgOqzOr+TdPZQOQ+7eH4hqdpfJUCwa8l7wQ4oxAdZU0wDJXo171pOglIrObqZTONrh+BASgrnIhi487h4UpwE9tbF2jNfu9pLRujs4Nxb5pwVjQ4djYqTzJCi4TrT+uVaWfDjXhphHVEf8o4p+Hb3BHWfaNyznNyF79xmm7vbNSeBAA0Sn8KCA44vfUMuoqCNLLqPOvUGJUMxJOqDb8N41LeXXZe1tuoPAYA9Gv1U+A5tWlnCvff4dY4MqM2NKQxKtl8uVbez0VG1H54eesGe3j9iD1T0xUAoFYJvGB0/2nz9I5ZmXfQqgKix92Dz7qZ71UrM9C9RZE+CCApxc2CxmIEABe+1ghGnAvpRfDVVbf+2yPbUjC2l5CnLtO5tPQGZL+Psx4NK/YoFAQnXbm5tVJUF+e0au1Uoleb7vNtPPXw15WI7qyKBym9CJxLSaXKW4SzutDiaiFOU1zj7CbCmYoMnipScjfyw1ullXg/pallcBk1BgDIrp91k0x6kYF4NjN59FRXckpfkD1usFYjfJ6/aISJ8QUL0pb3JVeakrxogAmaqneyF/c3qsT0Lc8ONZNT1Vvpnw4wMz7x414LtaK65D3t3Ke+Tv08UA9GzM8mpMGrYZXvPINIlDveazUR0fIOK0gUSZgbuk4ksswJ+ZaIKHt06BYiooU9h98kIv301rMMRLSjb6eTRGSY1X4j0bxoW1ksHhgkfCi/j+wXyrc+S4mILB/4riYi2hb0CRGRabJmNRFRrKtU4JnCbyAimq1eeF8koinqTUREaZ3eSCcimub9ExG92026lXMwhygH6xq+/w5K3/qb9ieKRERxXxOJRJkvfkYkEu3eSyIRiZ9Lnz7OXU1EIlnGf0VERPv7SO8TF8cREb3b7RaRSELUHCKipQlUr55FRCTWuzlFvXXogaMdaiVc6ztGsVj6r8u2j1rlEcW3rSGRKD61fj3LvvNkd5YzpHTW38GzyElqt7D2WnN6rVailV67chwAmFcv0IABkxrf74/e1qyuaxxjjB1q/HMc2UhFuQlAwY26U/tJvv/8ZUyCmDTkTtNIBAJEzt3ZcQJP8j2t0LVGzEGqfC0bg4JMIiIhaj0RUU7Ck/0+IGkO0Zg5j5dmH45HAlHSIHoCeSJRPIDUv/shl3WKAOaQ+GT6jb1N8ZI5//bnYxKq+ES/f8gt74BxUYl/n8BargHYE/ln4lCg8EZd8PR4+B/ipYbgSD+YX2ob878TSi/s/kdIAoC6+sD/5jVE9P+EqkSgtvKDQgAAAABJRU5ErkJggg=="
}
] |
<image>As shown in the figure, AB is a fixed climbing ladder leaning on the wall, the distance from the foot of the ladder B to the foot of the wall C is 1.6, the distance from the point D on the ladder to the wall is 1.4, and the length of the ladder is 0.5, then the length of the ladder is ()
|
4.0
|
154
|
[
"3.5m",
"4m",
"4.5m",
"5m"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHoAAABkCAAAAABs7nvTAAAJA0lEQVR4nL2ae4xcVRnAvzt3trNTtrtp6aSAS6s8FprCQlqRplaXpLaGxx+EQGiIRR5idNVAIyXhDyTRP0ha4S+D8pDU2GgbigQUIopSqULLQwMtJS1Ql0LZsu1u9zEz987cc76ff9yZ2dnHPO64M98fe+6955z9ne873/nOaxykxWK1DRsXEafl6JLEWsgqaLn3cPjUSrQjIiLZ+5YMO61Gi4jk5NFFuTNFW4kmNHdi9/KxJaEBWoZ2QnN/ll51pi+eI7Tc4M/e0NnTLkkRp9XoXfd3dR4VEaGlbuaJeHLa7usTGRGnpeikfHzTDW5svD2QRQEiQuvkbrfjXbOxU+4MX1sYSE+mvOQHFxrHFRwv2doYrvkNyZdwrCvjnSItNPgY+y/eP28clCwA8VapnO58aPf7YhfkEo4oxJro4dM7sv2W+BtZcSUhImc4MZEWGTzLoWUvkmHYLfvYPIMTBm2/XUSSD7x+OCHzTy5OlBVoXkgJyWPteZETG+XlRE5ksZOb0rjmy2vX/xEbPrbG4FKw+fPb4tuXSez0Qpnue81V2PKge23xxZ+qdXPRdujcJY9BPmwFeeY1F50H1ALY585avh+/LK/JWiswAmS5Z9nGE6il6GRNRmd98IEJjq7q2A6YsDEz0XPu4UnJJRKBiXXs3dj56QIJ2tziEJ85AOZejAU2z7s6E75qWVZTDT4EPrx9ReKp8D2fL88tRzdnqbC73z2wWKw7IyNuJp/nPIYjEnzvztWDXYIbSE5EgopF50aC4oPP0MVdj1YqNtd9rZR8SWGH+6VXJwdyk9HlTpzfsujqTEVyU7T2YBQ4fuXCh1CrXovQAEwA7D5z6Vtgp4Tt5qIVPMC7u+vrebTYjpagAfIcWd31CH5hrtDZSzWhr9WyY9Gle2oWbYrW93b2Hq9daq7RFo6uce8tbmhaiB6CF885fz/50YpdPPdoBfCUe+Z/8xiQIVerxlxqnYcTPefeP0IesuHCqBVoVYAdiRXPAZAlW3E8zzUasHzn7LVDaG0Hm4n+/5YKOrzeW/eoSNBWZ4XypULDWivAM6nzn6K2X0+KTE5qthG0hst8azcvuepwtKqiSva7rojsa6ivNW1RY+yahbcOEcbsevRWQE5i0dv/yT75e1R0wV4j8I+F3dsxEasLgSqrPUz3p5G1Luhnt3StPF55NVIR/bnl1OGbSG+4QwWwQRDU5SmlQtlP1vbcTDhL23oHFoCgeZ4VSR0pjGutj0wI8+HpS3sfjwCcgia36VDwkpz6JBpawYfB+y9d9l7NwFURPfBtyPQ+UNruWRxX1XWwEosJViQuxUREsOkFro1ZkYScuv3Iea8lY0acmbuLKlIIO47sWW7iI+/+RopaawBYMGAUo5jCk0EBkyEofH411fswGhg0qKrgNMmCQV3U9o8zctGKtyf72hpU0SAIAlUDGlBIUNRkOIk1Ptq/svfPigYaxUNK+BSvSEpcuWag5GaAUQNqiu8aFBNADaPwp4Bja1dfNRhoJjp6NAvk3Xw4uyqkBYxRA9hAAaOgGIsaigloEMAO2f377u6t6OlGtf7DihQa+udpRcAWRnUREoAGgaGUGEWD4GVxpXfFPjBBWnNBgAmidLYHW27BJYBj4ZeyaFZdh0OJRe7C+AmKp0OR5dTaJ8LBhY/Fmtwk2lZFf7Q44abcL/y0qEFkeXLNIUBM4RSNSa1NUEkXxQe/x3XndVz912i48NhqAqC//xN8jXhklwdsj7ukc8Ob5GuWnsIF0Dzg9f0ui0/EtdkEMLGpw12zn1HqWORPET/kP335gULcbasXHYZs2BI/+7cjaLiFrltKc/kdN40C45Cnq150KNmHV4XbqWx017aGkY7zBiYAfMjOL8urdYKEJ7E3+t45R3yVZEyyUSYMVGLurqVfObKsw5NAEllJRrsFOHb5HsgogI3gZjZU85b4z8J+OgETUdxMsS+sP1A/b7rs6zlrAIAJmLBQZXCFx1BWAQM+yvU/H2qc/IJ767QvlbTWsnQUwL637oWByMA8FjJkud19bHpeTYObXDiqdq47kkeJuvAcggNLXxtZ6h6fMTFUQIe75cLLAOS/f2vECFIU6613l8/vm6XJdbiZz8TQtU80gvUwsDIZj58FdsbasRba+mB3XvFhI2QArkm5iZT7wCxTYTW0hkPX3/ItTxkufoxG7nc7utrcTYOzZFVEFzc1HNzwSOmjjUr+SVfC7fjxyVnzavb1X9YejEYrl23zE8s3D0++T2m4lH2QKdlpBdi2brTi+WoVCW9ZHnfdX45MWcZo8W/OI4XCcDgfymQBD8YA+rY2wA3vAaze3Xkf5HW4PEcnH6S0DBsvobV4F3bo3FcaURnGIMONN6cZnm07NgH44dosQ4Yxpho/GIKtVzYGBoV/9+70qo6HwS4Yh3EAHMJbZr9dcgkZ70qNiMgZmViFC7lZJuVCqh1j3Z+mREYkbiRuynaCOCISz1nX4YL/5gbPls8P96XO3/ugUFQ7BxP8B8gWzuIiy7ETpchZ4R+YAPgsdR0G2T793AxixR84RJOgTUQrrXlwRMSb5/rtorFLvrxd4NfdMRHpd+JnzHfSoiLixCreflYV2qr9gswREUm60i4Se3poG0IstUpQBu85mLFbuwfxogaukiheoGBN9X+gBHz1KUBzpEWBuyxk77qNsku6yOi7LhJJyTdqlgzkZfgI8kHMEXlnQTZHMpkWP2j0Otvh8d5XOfrO0pol312hIuflbVs8JiK7r+1IOHJ59uP2tnSDaBHp/NrpXZesr1lspfcWom08IwKZDacB84vbIN2gvVH2buf5PbXn13Eek3/5fHgRCBz/EaAjqV1EPncskVV3iqTerOYrhUb5fOCKXAdH4mLe+yKOyA8uu1Ek0mnUFNG9B1f88DKt4iuFITtPLjAiYt0LYxLffKMjo7HUk43coiMiVhDns/FzpM+JVbwmn94CV0QOh5q+PhwapTC5Fq+ja6QF8az928OAecTUV08ViPXkYAhv9aKwSWGjCj/wrZmKiEhAeyz3qw1pkU2d1FcvTAem+lbd4axwVZ8FsM+LpES65f16awP8D8mO6zgGn4pHAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, the sunlight enters the room from the windows of the classroom, the length of the shadow of the window frame AB on the ground DE = 1.8, the distance from the lower eaves of the window to the ground BC = 1.0, EC = 1.2, then the height of the window AB is ()
|
1.5
|
155
|
[
"1.5m",
"1.6m",
"1.86m",
"2.16m"
] |
A
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAE4AAACACAAAAACAIwAFAAAPrUlEQVR4nKVae3hU1bX/nXNm5iTjQOQRSfhQrkipEE2VNpWi9QVp8UGh9ZGClGstt1zKbUXa3E9uNff66FfpbfkQ+LA2VrFWpVjjVQRbFQVFJd6rsVaTIpBSwstghsmczJxz9jlr/+4fM3kRbJ1x/ZGZs/Y+v1mvvdbae8cgCiMaAABtUCwJ4smR2nSGwbdzo0ahcKCRR+yJlMC3wwiAwxVmsXAAtAn0JACnZP0HX5PEF2zrnoun53+sQBIdSkhS0+3h2+X43lVlr4m35VButGA4UqhJalLzbVi/2D3FaqaXHzMLV9WEAWgDMODHrKPjX6r+yu9s1WvZgmXLiUaSfAXW+M0ML7ZWqCKVFZKk3t5Kau1NMg2sCuXuq6VIONKjpqpuFZJhDb53M9ZR8sIxUqjl/GiMNO45Y7wJwBTj9FvL/u3tX/tSkrdrgWSbhoFHzj0MAPB6Il24+aHH/720pEhXMCu6Y+2BWTlv1ABPCDdaDV7RtiPr2bGcJBlWodL6uXYfn5sqEs4lNwBYTk1NTsSCuxI/SXNvfrRgV2j9V4d48S+KLNEvd6N2zmVf+2jVhCBapO0+uJJ0frOSZJJX2niB/O3IFmaLVLYBaNV1wHKluBEGqo44vL96R/FhTAqFip57KYB42QfCe7bwU8DlIMM2AHi+Lt7ksfPTwtFVa4CY/SZnjG/tRSsmQeXzt3FgA6D8v+ktF573anffYJGk9IOwLgLwNNkw5slP4wpNUsksXLoRVvX4Ox215pHMp4CjJtWfYK8KJuLRn2GzZtEJCr4ZhTaA9XGp/agbrXcnlsVm+vlFUbArAjvqu1Zg+u3urAlHM7C8BY/d+FTieJGu8MiMwyx/Ei/bxkaUntdJ5/H4KyzWdorU5P5RWCSsR+J0q4XS+GZ+sGBlGQBGFk+n7NkIGA3WX33DO/KNmmNF2i6MQsTu/p2c8wVEIxrj1k9bsGOkX14kXNSEEVpN/4eZY02IwBv7y7G1u2xdJBwC34ziGVU2C55ELP97L0Wff/S+93pxCnaFCL3mmDErRcpSWBVj3hBpflcX6VmHSYZ3ILGFkuHGmLV7UaIp3xoUA5chyenWhUI6+nXEmzM/m9R0PFVscmdGpR6z0SghJfs6rF+xs2lUS9HSUbKsRXm7CpWwOY5R73rZn2FLXrqCPdttlh4+jH+pNC0x0Rktveyrq0vrn4yVFutZupfHzvqAFNL7BarU0tgWksX2d3Tbo9jgKaYochcu8rho+LbC4XoTpMeF8fEdHkNScQWGb2TXreNXFlPJlJJQhTIBc1MUUhRXwEYT2Vi2O5mbUkA2DkwLtLCt3ZozDGKAFrRVPu/20865aVp8RKGuULnQlznx845Qcgvhlvh0rh/2KyZ718Unl84ygADmkT/gmxVQJbkIkx695JR/Tv/wWHnhgRKKpjwCe39OFiX6VsQ2feg1nbU2b7pP7gqhKAq7rohend/3hIorYIzaS28LdqdzswpYFaaGcfid54IFMOHDhQVh/IxfLbvfnrEvekrBynrUIeegYg+pGLKLVHca07geD4pioV2AkEzyl3Hrl6EiQzIknTp83vFuj63um/XJpXPILKtwYcgwS0VFX7LVGOd0BouHP9sRFgoXKgnfteyH6IpDekLP42dgn7lXc925LLSDcshUehlGJlMeQ1Ko6PBcVNZHN1DtU4XuKxSF7WWoE0WH9EiPWbc6dlHX/Vivvd7t8SdXNuPxPpS95pFJ0iFDBtkp1gXkzcOfp18wHHloql3DnKY58aQKo7eIPF2zoeBAoaeagM19j0J6zjSYZc+G6bU/P16odOJxNqYms/3wwuT5+NwTkzeL19e5FyBd23DcNgA+RbLOvIQrRz3Zzy1gVdxiDn/LGcDRnmpIVGW5afSSbFgonNd5Bq5j2FsyKKTi7bA2KrVj3NLeruITZxQ2Hhj9I231PXuCKP+Csxuaop/bXGpmC8woLRW4ozcccqSShz4Tv/v3la9RcX+hyv43zjqS7iuPpEuKU1naIE9WPs0088b7x7Ui1BEzG09uMr4wwpJoH7tExcxIPCXZb8SW7q5HrxX+kVQ+SXGkEXiAVAPES5OpqahszsjjwxsK2G2LkF4Npn5IpfobQ3oMM9NQef6DSj2+s5cJkqHv+3IyoBxlSb3FRgPFG8D1GDqcjDt/i4dJzxlQZy1LRT42YHy7FGI85VszQtpUdv+IEYVvVdwQv3Hff9jmoFb77wiXIUOmpuBqJULJ9E90yGy1dXEP/1h2jwzOxr4o32foC+n7AUnf95n/EM9VG1H+gk/FbtcnlS/KV/zIV6kalK1Jy7ZpTe9zMBx9kgGpSCVUwiD3LfAd8tBMXEpHskroKNL3ST+j2ZWZipopdWm27aJ7AlyoqIXa931ftE/SZ/4jyyaUP0b2PtMX0s/S9XvOw5rdF8xVLtODpSOpJCC1Yv972ifZQ+/IFbgyeSKcCP2diVG7qE6toxpwlBoGAAAzNAEDGtCGEYIGDCMEo7Afew5XlfWze0nQE4SbD0dfzvxraAd9ng3zUZcXzPcHu0JLNb60p7ufrXyfyneY9l8djfGNzHbO3ugOrbPBSQNF+CzKNg1YXH1xomRnDEsnzmNG0kPTZ3jy2FOcY1epIWgMmA12oGxva+11qn/x9UZzqD4mk1pvbreuiQZDjuYj2oxYcN3Tm1Jfs6L78y/3YkRiH5OqzD+ms0ucuH8iXwIbnq12JfjMuNo3/6mXPVS5rMv+c2t6NdZ8ZnSfth6Zy5WS8dJnIr5U5PhPm3oNNQROS8g6ABjXQ1Krp6NozAyeorxQPI/kX2P2vTNu6qSkBofxiVTXSjaMy5DkLbigK+jdBZCkKNEk6TD9XiKxJzN/pkfFjzvozVBTzdUk65aTXls5/tOj9CsrfkiSmh65DXgj482Zoz7+gsFkyDcmGAA/2wpEHz82/VoN6V8LiFiADugR6I5ZTXE06isDBIM920clRtTYNhOAMcEkmu6M/+icUh0N+gqsaUJgRs2SmOftF/nDAzHcO+qFAYtsCKmpGVLYsJy80a7cLcwMKBGhUJHs6nKc9mXxxOrK72um/87RgujcCXgHtpKjrdkuyVD6XhBSkUe3V8bLzyrDqe/vmr7Y7duwDYTTvXcbG9aSZN0s6gWI7xAq8RhSM1fUXJIeF064f1vnjaWxZnZd9N29Mg8AMGsAnM790VTVrWQHZpE8A1eHVCTDjKsCCfORQnLe5Q65FrgmTB+dfmtn9ro2csfykyi7PWfTrSR1KR5g1nVzBUdIN0PRdITutV8h06/HEL+c7PhBW3AtgweCBwY2FZLz3iWEzvv7+2781IPHSw90Tyqz/TG6yxqDY4lS2CbCsR1uadSLjfzxwa9vGHMvt1+MR8dGvjP4Fo8waPTe+gXRD2YcxHh9uLQHp8colmgzaobT4oAl/pbMooj51is4UHJZzdoEfr0IaDv7xEDRuv8reR9gGVHABpCwAcQAGxYs24oDUQB2tIXupFkdyXl/5vwMT+yg+oNfmz1yX9lpS4ISk3bXX6wxO8819yW+FH3/T/EwYtA2g4QqPfxa7KlJ8Zb6b645fg4uiQ8OY6HUAcBTKTJLh6uBh0lFR9GjUDxPSHaRQoahYqhet1BSlyXXrlqrSNYPiLsskyTrtnI72qjphnvOxjXJkENIPJISMkmuw7gnqxceIuveJzlv3QC4kCq3vA6glTxE3hrHsw6HFBBNipfLL9n6xHRv/5RrX8wbqG0AnGhNbl+uWbeM1J1Mjsf5lKFwnlACkllSLbFO72LbJfVeX/Lug1MeyYcAtFJrqtRvbawcqmnOxqQEpOaPbSxOcs/ihR1D92RayLr3uQFtJCm1OGvf0OpKkor0XCFd9X2g/HpNZ1VfH9kHpym6YxapqtdpYWabjUXkSWxHIUNP03MzrDfmvvLlqhRJducw+tKnhmlsuwr48M9nGiatZ/zhCwGbcmJ6DUxoy6Zju8f8Lu658OFLb3KOIzk8H7Z90oVU81qpqsf1kOQ4TCWP8qTqZsijT0w9t/IiK47XZP+CyW/SG5jvlHikeiWfs0jNR2A3eyEDZkJSk1nNLCWjmMtPDmdP2vRy02XApA+C5ILyFhGmM3QJ6eykygVEbzkVcjamZhk6JEOKUh7puCSFWVF0s0rfsqaLbBhePrGshbKunSRVmmIG5eXdUaAri5440A3ANXHwHVxlwErgeKChotEI3ETJ8ayYKDWj8Eui4V/NkQInPbH1h9fvw9LyY+j2osO0Gbl02AVj3hhxZncQbRl/oH3MF2/4m1HRvLMDHb+uOrUSZncmdEsip4w0u8vMeLf1t3HmMG+Y4aoY4Jx6Ssn+8Hb7slZ/VCJbJm5pNmEkeuLZeBalru0DiR4ApQk/DTsUa6SujOztQcKyRidkZKQzJsPeiX0+4iISGi/WnBaJbFYVN+v3tl48Q+kR9hd1WeoIaoFJZ5cDE3AWMLXSRqkFmIjEYIwDYFl21IA9BnFUAgnELMSR39BZNlCKOFCB0kS8EvGRww1uXLzp8tS333vztLe++9HWKf/10+idk//3CXk4/erqUdfb7/7PxZd2db7kLnaePzCv4thHL395t3es4tRuP1l++uEgbY86rGVs4mAWAMq6AXjqF/NSDpdc2cEj06Ydl5fK71RsX7gy4L0T28LgByNaKTefd4jJ2d9yyNnLnGcT9e6xt6vmu+nmRD1bFo54mLuuH9O8a2UNHtyOfUwtm9pKd8HEt5mcNsGT5hGrXa995LcyXFtxoJOLpux0szVzj0rXzJkM2yY3JLeVNaa4/7Mr5XjLqFfJb9XsYnLhFUHozl9IlP6ezk+n76Ysnt4edp5/m1JPx5bSa41/x+P8siPKW1LxGvdPn5b0jtYOb+eL5U9667CeqVdwF+XbVUdE1ZxxiKp2dkjOvhwPlrcxdUvllkzmiq+2eB8m7lC6Ob7CS+3DU8zMnPwyk0vtzZmu888+Qu+SmqQ0j1vHjbhLe6tG1lOvqGrpkQcn72dmxjVMyhy4K+Zr8ppasvOSH1Nvx+yMu7vsDiYfGruT/HrlLoY3VmUyR6af15Hyrp67j6vja5zb0ECuwm8Yfqe6k6mbJr7lcVKtsBP02BGm6KTJsJNZaX9IO0f273Ho3tHIlPP8W+TRRQ877JjbSFGLWqjWjG7lJuxV7gu1dLO3zGGKV46n6rzo2iQHl+0BXWFxlM93OdC/h3ay//n5jWFcEd42cMzMPQwG4kkejCGAB40/kY3RykETT15ePgEF1ctJsmHrQGYRV+V5ejR5FwBMOHOwYkULt44csDv6lNIdfXcChsZC8coCGBoLRcONqW4HgIPPDWYXaztuwFZyx6zBzKLhNHcAWH4C9/8BMeMJDZcueg4AAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, AB is a long ladder leaning on the wall, the foot of the ladder B is away from the wall 1.6, the point D on the ladder is away from the wall 1.4, the length of BD is 0.55, then the length of the ladder is ()
|
4.4
|
156
|
[
"3.85米",
"4.00米",
"4.40米",
"4.50米"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAJwAAABqCAAAAABsGGeVAAAJhUlEQVR4nM2ae4xcdRXHP+femX3MbrtI2drFLi2t7UKhpMtaJGu0YIKliNKghEQghppUHpEqrUUTCCoBUfDxhwUFgSCiYhsFqmFbUwImKAHaBSEpLWVbVtjWPpYu+57pvcc/7nNm7szO7M6d7Teb+f1+5/4e3z3n/N4/9OTBbfUX1rL03kDA9HHJwRPWeQLAAbVV1VZVg5MEF/w4M1MB2IAAApwk5Po69nTX2rUAi7e09bjSxDQyAkAF+NuXLntN6B8HuOOc8xcu7qxtWdoxb9rJCcDRv1+mcAoAZvvh7f/ut++R8fNPgg4x5Hi/aicAP3TFx7vM6fe5F2Z3O+ojA8C5ANg0rbSmndytF9/T7kZHAI+ioVAzLT6n4sUGLxjeu8hLJAF4tLMVQCA9LZrzuXFnW+8ilHEAGgVg+xmXvo2CwknQIXysEICbt87kL6qq2lR9s/o2HVq24pGsL4MK0Hr50ZVX1q+ZfZoOVJ+cALYB/1g191vZX0wAXiL5/Nt3vfOKcerV02RWW29kjRPxBKrLAbjOT0/XxC8/+fPtjzAQ9A3xg6Wgbnq6pq8VX12INuWJFZoDxtNC7v25XEh4RHHgpI8Fgmkw6+j5rX1uNJP1QXNzVp/ci7O193QnqsmI73Xqk6w6uacv6tjZ6jYveboCPhLf3FUnt+vuF4I2s71uJgB1AeOqd4gfGOR3BUCFOgBGBdTJUVXN7VvsNRhlT5fyXsC1bDXIeUx+v+gr2TzCEEgDwp5AVg2zukyu7trx+QnzKukgET85bxVyw4s7PlU8p8OlLhDEb1bPgrcc6rCjfc1DKldQpQ7x61dZghhR3dSFwiwga9aoCrmjF9zYM1EegSWAuEt2oDod4u2zaz44vYR8BjljTBU092pH57jHrajP1eQK4iKnQZi49yVfXNjnvFkhjLjMKu4Y8sHg2e3to/UllbC8kh5i0Jy6ax4Bdrc+AZTCDVxyIcRhVn/N0/fQkjvuQYs6Wh6XUO44e+vw/b/oWllg1RYFZ2sYMmsM5PzaG+z983OaKwqb1EiWLeMbSl6z+eX8skpYLCNecq4Nh65ZPs5QuQX3Z4sqblZnDNn3aeuf9TSWVzDFQbI6REU15+1beHzxhv7Pll3c9H49fhXVnO/55isTLN0iMeLVEeOO/82lXDupghr6iWmD89v2nZMs2RSc5zhhxTW3+pm7OyZZdBjUO7YGKk6uf1bT9ksg2DloqSMwYIkiGlqsV9isj1/xxiVA3rlbSbAUlBOBoHLkFHr4ztPzJl+Dw+UE/lgydXLeoCTvta1wYpniC96CcFwsERSeOjnPcFvmp3Y5sWRZxsyqSYKgIuRcrLzq1u7mqVWhwWmwgyn3VhXn7+JvXhkSldVLPThdYYZfx9TJifv3vbBIZTKGFaC+5mN+vAJmteHB8yKamRxGBw4GiakPwgZf/90fXDNOxpg5kNAiMAGoDcakq92/asQWV1dT54bmrITFnBw3BZTOxb0V4BTADqJTMaszKPWUuCudBDwlWpaFWgqWpW4yCPyYZVlgWWpZNpZl89+nnB1zJqLmySJ0N+GRMzERESzTtBXLMMXGCwDLMPHEJrZpqmWa+uQZPwXQiq5toiZ+w3bs5OhKMDQIQART/LQBGMot167Z6WSupNPlbw0FUbUFxDTNqFuCfJGsfeCOR/LFlUQCbIehYRuAetMRAl5AMEuFlHTmf86Ng1H23Cq25dyqCGBaYLq/XmAZEhKrjW1aB09NbcQ2YyCXvW8V15COhU3T9H+9hLgxNU0TMU2TP7Ue8vLEiMD9SlggehrfffO19y2Ih08WvEHA1tIniaNfPPJmLO6WC49cOauT/anBOKi4mOKx6/K3KsYkAiFHLoPcKLD7htP/6qQ0K6ggQrNNGeTq4aklvzl45Xog/BCkwiiXnKOecdgI8PMPK04ojHLvvhz11PJhL53A1jg4ZaHMTbWCxfucCauZWXlHC2EGpe9b/dPKhzv6lq7Z/y+euW515R0thPBVSanvtr7Gd1X1+3DnWEXfg4XwIABnBYISyR1cxbrOw6r7+EI8xFSzyDkv1yZcw47XAqx/7uX3+pvRH7E9BktmIQW+0034/1huuFNVx2o28FhMevM0tzwQ5JHznvt71Ea0d90+1RFVHdFd6DeaVFVtOytXJOzsuJ0ti6jAITevCLk8vE6Lz3TdbN3N3gmLRPKb6LvtkuOIL8obSjQntm7ZVd5rN4yt13DWsg2l+89EuxGJih8tfEkS7BkE4KaHtl4OGWcz+XLP4NMzxp/1MuS0msdEJUJcaIxUcTiJJoI8E+h873BI8igAHx9Tu5jBitmyqJ1ds/YVNquLUVT42R9ZFH4mc/3oBthzqMbZDOVNYv5kUj4U4Ayn+Cm+tNA4V4+w8b67cqR1n7vfXJy1WgpbrYRTsNBHe2Sov2Heh72jdbVjQzWDczPWyw7Pw/6BfDS5I4k6dmzcvfH23V6lo2kzqWo8jLVjwXGRzEfJ2t5d4/P602NpMQ2xDFQNSR6HZFLUSh2yG/pet+YvPdzTe8ysb/gfgCimBVCfmn08OT46luas3tCFjXPhPie4LJCbNg+kUyOngiEGcqhljpWW9OAxC2DWsaxyLQMjAAvfbU0Yw7WNRw5TX5NJnwBMyxALI5GYpUYqVWdl5qSaEpBqeN+QhJms8Q9ArBOIkppx2UgjkhhptK0TNgmR0zLjOmrNIN1QPzO4pU2cO1Qz3jzcLIIpIseWLDDSiaQ21g03JMeOzxlwidmNmXTL3IG37LbZdsbOPvSqwHFmARR6umAbhRst9MGXR2aIeHEzEcLkQnUWG8VK0NREWUpUdsmPPkpB+QYuXiI8zuXwLEY7+luJ3EKPsIqXMEIN+S7jv0XK5zCFgdaHFKrkChGRzeHW8qcUZzWzrbvYVFOR+SoPqzdrF0G7RsQ/IIqQuYWoGeoBkYsz387JX0xLpajSQ+adS2kLpSPnVkG5fd4n86s+YLyh+lhNSzktloHnP9PIurXLAkEBY2x68pzBPKOk29aqqq7fUpatSoOtqptAukOy6FWJHBjsbG7M09zD/fcDLFgYg9YE2Natv2p/PSSM/j9u1v1r84TptnsjslYOPRfltBGtuQc2yZn50g/2LIzhyCvAc5dC357QeW4kuQODql1Rh76xHpLotpVkVjavCiRR5A5cfxu8m0/lE209CBzYEgu3bcaz7VLTcjj8ri3X8Lauh279MuQ73SY2q3ZdFKvjhRHVIQqP6l1EcY4N/wfp7LERCfVKPAAAAABJRU5ErkJggg=="
}
] |
<image>As shown in the figure, the student Xiao Li whose height is 1.6 wants to measure the height of the school's flagpole. When he stands at C, the shadow of the top of his head coincides with the shadow of the top of the flagpole, and AC = 2.0, BC = 8.0, then the height of the flagpole is ()
|
8.0
|
157
|
[
"6.4米",
"7米",
"8米",
"9米"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAIgAAABoCAAAAAAPlecMAAAL50lEQVR4nMWbf2xb1RXHj9uOTMzDCBxhCYuIEhZv0SSzgmSoqS0UhkGVMVs080c1uSLEfxSt1tItmYiwprXCjLBlECOL8IcRYTNNJndbBGYrqrcFNV0QLixTxJZijwjVkG7z+irNvJj73R/v9w/bz8VRjxzlvXvPu+/zzr33nHuun20gq/Lgb4mo9wO75Qs6kh3WVX8TLgHf3X2JrLNvD8gW7yWaunOMbFcY5NRNRES3/n07MDoC+f29RES7t4ejA5CtQoiI6IOBKw3y0V47EVWeGbrSIK/dQkR0ODh8ZWcNtp79JlHFdvEUaWZN96DQVhgAFATt+fbqlym2bbHzZUgH01fVDTAWfV7pyCI48+5X93Xt1pcLAhvR3Vtnrt7n9wfE026K9a6xgd6+sHz0jtj5hO3OH5z4V5dncUddc9AXp/tv/wl9uvTnU2/d7N/r91wZkAtf/4edLtz24n1ERPT2W0vLF/f5/Xul6svsLPGyTkCO1Z4mojPDp91SyT+X/vSXs36/3++4LAYNi3WX03CvAwAyd9YhujkA4AqTgZ2ekey6osn0l3bXob2aywsHD1+b0dedWVpabvj9vr2a0o46yzqz703JBp6c8uBMNsJ6dmSQApOFWieGYECaKLj1PesgK4Py4bprTdWQutna4mSABuNz62gvwqVlGgXKlLIOciCjHL/az7XQXEpFnK7h6WUrIPzAKACMzVsGqTrrqhbiUTQdkwwA1mZHPDsDyZOtgAEg3csBQPqs1WUAkhPqssbdGaOKFo1hMz9+N3kP5SomteI5P5AST6xapOGuqM4YNlxLxqbNTFQ8ut9xY3RmxVylTMc7BJkb1hUU3JvtGGRZnY319wwli3VDTZmOi5daBfEVAYSJiHo5AGOj7Gjo9OyGRqclTDV/xEd7EgsbGuUtoWvK81ZBlr0AgHAJGOvlwA8cB0I3+O2exGLD/AozqkbxaMjedyBTUorSNA8UgpYt8p1ZAOAfYADCo+AfAPDyFwpYnvRRaGq1yY3FYm1VKXOgzx46WmwIFQUiGoVVkKqrDgAFYc4HUZ5ngPen7g0AtYWRPldsrmrtiQTZWEjsId+RE6qL2oMwAJPC3B2bB4B0EACQ9yLjE4ff2kykx3vkpBUG2TyNPybv7emPLVoGAVB3bwAAP8gBwNgoAMCbB6JxRak44e3ZPyP5fkNPMXVYkmtf7p8TlS2BZKMAgPIowKSpn/dCCX+ibOZi7r6Rhf+obt5S8t6vXS25Xksge5YAAOkUwBAWesb/a0AT/kRZnQ7t9CVPW2i1sMebT0WlMysgS7cDAPiBElCmIACGYr8wbXO3cJAWBLLpC0cGHd+eVbtio3EKPs8C4D3RCUg0C+iTzsBLYvPxqOk11ewBl+fQosGXitO56PfkAKxe25CKLYBsuNRxV5Bif0M83vJn1FXqJy9NDVEgVTK2WAz0ZQEAj4/IZRZAxieNZYGsinNJw6lxYfXFhOf6A1m1k2HLIXdWVOgrysrtQequ8+r7AACKt24pCrrwZ5CN2ahj8EhBbGMl5M5IUWHZrcSH9iCzJoNAGCGSHA21bWQl5d+5/+drKEV6M8rNEwlFoyUIAwCvcclXUj0JAxAy6TyDcPn4TT10uK5c1nCtKNVtLVLcYyyLTGvPN90FsXWjC1NK3o86Hx+YU1Wd7FedNAcR3cLwnKGm5NLPyjPuDYOWTipRZ4qr2jkhfeAPIx08mLQEAgAMFbdxvaE3CKCEv2YYMUpywEwYZXoUKFMK4WMOtVdu1zUTSUNR6Ya6dpEMANG4ceUhy0bckawBQGBuS0of8K1fedXhrw1I3WlcZxgMwmAIfzqMcWGCV+2cmD48X+Knh6fUWm1AZg8YitYMIwQAsH6DPvwJUk04fyT5mZmIkj6A+6JmXLUBGVzRnDIAsaR0pJWcKvtj0mcz4UhUZfXgnJI+IBvQXN4a5E2foWjdaZ5kM5PwtzkhYIhStV8qKzu1IU2K1gYkYux4wSBm0vBnNHaqTTjiGus/F5Eyu8o8LvRoA0MLEIaKu8F0RYJBzGeHKvwBtaRjROdcgnOq9GFmv7aypUWOHNNhALEnWugr4Y87dk2soqut2jkIy5o4AL/OUbYC4Vy6ucuajhBRxPDHpZxR4w7JcxG5GaBi1+0TtALJxAxFh9qEt9AkUJ++Prqm7j3xMKi2gbhYVbQIAM/zpq16VvRjoepok0dtun837Yr81ayq+iXZBkxIRgwg0HMIPuCk39CYegFhKp+N77yvZF41E1GdrDp008AcRJD9uU4N0si4Q+O+uvmsCqh7ZvIRvYoEwvO80EVCN/E8v+5uqDqN53kgkeB5ADx4Xg/PAGT7hpa12Z/6IeycCrCvqK+XLSL+yR8kUnK5WFbtPS9QmJFgzh0oAk3Dn6ZnhMWqxihqEB4A/ykvHHHuTS0IMJbQw4rGYEBuwCc9pDH7A3Q9YzLWlDHCa+878yh0ILXedVMQAHmPr6Cc5Qybnwwf2y8pp5rFqgLC60CEj+dtgAdTdU0yxgPMBCTv9RYAMHnTxST7m4moukKzWFWBiE0K/z4VqF67B5A8DA+A52vOdWk4C2NEvOz120WfgO/3cuAH4sBnuvAHqWfE0tgTxnml8qzSIzIACC3oNZMHjY8h5dIAgLEgABR6OV34A6Q4IzZed5gMIgVEMwvW+/QOp+Y02V8Xc2kBid6VQZg++1PPGZb3GluSQXRu/pCwoiuUgDKVACBpDDxyLg0ACAsbSTPColQIf/LDaOaMdrGqA9FKzVUDxB2RdBAMqDvPSQ8k/j8dulGFga2BeTWPNvuTeoYBwKUesyTIHGRa8I4/vJcD0vMMwLTaH4FBnUsDAMpUEnYr3xHOpewPgNIzDADTLVZbgvSvAkD6l4McwzMAUHeV1PWliCvT0LpGfmAe8rceALCsyv6CrwAAE5JH3WK1FcjiEACUnyoHpZLpiOquaw+5ppVcWiofC4rfAkk1SvZXVa+CNns2zaKiKUgoDwCHUB4VHkRjkLWoc0q6g6a9MBEpamCIxkUFjTfTL1ZbgKz1NQCkRTcJBqaMkErUmWr3ZZAkcvgLfEPcfStTybBYbQESnwJQTgEFMS2TDVKJOZJWMSBnfx/bufA8ClRCOiguVi11Ta23BlSCEDZWASArrInlXNqSMEjhbybCD3Io01mk5/GU+S6kGchUHBgj2zsIi33T6C8KGBOfWMYQJR4FEHylMAqE48AzgHfRXNMI0ujXR4KXAkD1sHPCdLS3loY/g6qdS0vjmK069bGjKUh+SN/YLcVPEpok1oqIt9twLc1EEC4hLYSiSfOFpBnIkN522bsmHInzqgLLZmEMKLjvmisHAX7gScBssdoMZFW/aPn3dfZ42x2yFjKxg0unAGEfYNndTG2X/l2B5w5pXjG4+LOnG499+cUOXjbQiW39+qfe+zFthXpDRJR7uKme7m2J//avX6O848A9+/RDey5cPgUREV31OBFR8BQRfeZ+3dtMTTKN2PFTjykn5rl053LG/aHY6ElPUyXdGGn0yXf+37Qzar4t1rHI4S+WbDrQNSAMC+K2OqtPuyKr3cGAnP3VHc0NrLUICwirmUbGHSlpET+XXPTkALC8yXa6OcjfbhUxQstduL1KhOxv+BdWQUZmIOXSXZZc/0Vw9g+tgbBNF4e5vkAz5/e5JB5Fdl+Leo1FnkzkPL5twQAa/kzoBYsgDddudS7dVWFso5dqLQbdLiL5fbETu+658fRpG6j772YSEd1xVav393YRyS8xNx4h2ISXMrfjxwB33N/q+TSxBtvzawSl/RbN7xBfF37jLBHZJMXuvwj9oM1msy200hCGCj9QEgdVF72YNE4BAOHjKKjTHr2Ib/hO3tQvGMLW/d6xERHx5+6nlj92EECe934sX7I9cmqvnQ6Pepsr7CIiqnAPXLdNPySS5NwLL1CpBYdgkalx+sr2ctAfSkjf9l4bkOfTtpsJRNien2cQEVVqXnp0oNAapMIBhd22bRmoJLqC10JEH73f6kdCO1A5OE50bhsIRLEREb1xH/HCOr6pjBGVECYa7br/UETokmBLnf8D8G5vJkEYtF0AAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, the quadrilateral ABCD and A′B′C′D′ are similar figures with the similar center at point O. If OA′: A′A = 2.0:1.0, the area of the quadrilateral A′B′C′D′ is 12.0 ^ 2, then the area of the quadrilateral ABCD is ()
|
27cm^{2}
|
158
|
[
"24cm^{2}",
"27cm^{2}",
"36cm^{2}",
"54cm^{2}"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAIUAAABTCAAAAACU1pvSAAAFYUlEQVR4nMWaX2wUVRSHv7vb2aSmPhjkQSERabElQGy1xJqaUCWmRQRJCIkhGIKSQqTQbQpqIkQfJMGEBqIWHzRRDBpNwQeSQotp8MEaHhZbQwsl7Yaa0CimiSA1pDO7e3yYP93d7rY729nZs+nO3Jl7535zfmfOnXu3SFFtM0CXUFwK2dwlPQwEKKoZ0UYqoWgUAgKX6x+mtbm6qIokpBMYFCmmIqLoHZBT1YPFUwRQ/PFvNbsre4tKAd1NMHGzvGgU3d8C9DZiNC1uKhLF8MuvjUKvOl+jQkv+LqOkCAyTH545Ug80in3ET19YnXauZKw99YyfvlAAfa2P/bzKLhSDAoiGBz/dAjiOMc0/RQSmDtfVjW1JPeYzheKbFRND74eSCWxZ/FPk1wOcX5sUD8mBUWBfOOrfeWPr/sjabNUKTGHd8PTR1ctGd2av5osi59qeGVg6VwUfKIb3TX61fu4qBVVEgMmWhm1D80AUlkIR76goHd03b8XCKtK3d1n/qhzqFZIiGh45uTGnmgVRRADuHaprGMkNwnMKATNLfFkxOdQezLGVl4qIctJUf2vpxdrcW3pJ4YwMt9uunNzqpmUB4mL68OqqG64gvH9G5Mdw3dCc6bqwFKKASNuD7+tl3rpp5qEiCv7atWFHpD71ndJnCuIdaxaN7cmnpYeKdIerrpTn19QziuHw+GeNrgPCMo8UuXeooWmk0X1AeErRWfHgRntQSJtm5GxeKNLX+ogz3bK8Ie68snCK2/uvnpiVKV1Ks1BFpo7U1I65S9feU5xeMZ403crb8lPEkj2y3zhbv2AE8vWFAriza9PeiCcQBIC4rusJtw2nP6pcOroz3zSVZiVAMGBobvNN997qq+WIcvlIzkHh3q63/vn1ekDlnS1TzYoL0XWduJ5AdD1mFZ2Ns2d+6xMtDa8OvKTrhp0pJd+cmUahNEIEVYBYKJQQDC0UMMDQQgETw9BCKmEd/rwmMXxAjJAmtieU6zSVZrYiKmhoEkREBwFF0EBQBBMAohSaWb7U/vilp5Wg4TpPz0uhCMYlpoHSyORe+0g0fP2TVwyP+p6xAMQMFBA0gqAkAaKImZEXc1ydEERNHXz2ud83ZsRcMIUSowQIEgC0mK4rtIRuaNgbPaG0mKGr01WT194pw8BQBubHIyuBYNABAhWa+bY3IVAh+ltLL9RaRefPOwrL4lkmlWYI3m77pWN7Utlbs8eRmJ7t6gqYPlpTNbrdKXsdFo4vMuTQGaxz4bqU1THPvTFHBrf7irT9c2ad1/2m2rwj+2TLhteHPIKQDHu5UMQ7VpaOzb86lqMpi0DSNc2uiCjoDi/Ld7o1F8usuMpOoYi2RM3VMS8ezqRr2LtJLsn6w+/dg48ej3n+c3ISliSco1njorPi7nVzuuVNerDfQax+PyD5gc+iSH9L2cVa23eepIc530EyUjirYwVI1hktgyJTR9bURBc83cpsWcSd7Ysfwi9cc7s6liOC9YzOfuTSKSJtD866Xx3LzexxcPZ4mKrInTc37bZWxwpDotK26RSCxD+uXDSy0wYuAIbYPaWfcBRRXAiP7XjoBMzMuArxQpPxkjO33P9TIW4/q724jlP7aLh06CQ4uaznN8+TdXZLiIjcYo/ILY6JiP1fY3rl4Mx5X0yvbBYRae8SccaRw0+YA7hfyRK++K8DYLnZr4iIdH636r5vXrBccSzJ7wGA8fvPLy7zzQsATNwsT/J7AITj7/KU6Rh/UZIp1KlO9aRZ8i8sllRGAca7xKIYvy/Ss9y3/k3TDrx3Fnp3bVMClDD+Vh8S9RkC3i5vgubLVqkdBmQzNJvR6l/CSLb/AbTjlrJMpLFxAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, in triangle ABC, angle C = 90.0, if AC = 4.0, BC = 3.0, then cosB is equal to ()
|
\frac{3}{5}
|
159
|
[
"\\frac{3}{5}",
"\\frac{3}{4}",
"\\frac{4}{5}",
"\\frac{4}{3}"
] |
A
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAJAAAABNCAAAAABsjbKVAAAF3UlEQVR4nM1abWwURRh+93rQK1ECRPhBtNFSYhSiRhKg0PSKJUCL9QMxVIJIhIiHASTRqqDSIBDBr9IqSmyKJKVWStoKwXIxAUsCtmmFIkWIgLGXpukHLdz1Pvd25vXH3i4F73Zn9nYpT3KZfWfmnX12nvl4d/YEhHsLdqsaFinYU9DG7cfvwQTat3J8eumpRn5PawhJ7VnZoa4JKx4y4IsWQGrPKEfE/oIBfl9Lekj8cfpqAHDMTeP3tYTQUFNeGgDct/keIUT7+qYYdrakh4S0yQAAxIivFYRsk8adRIDwz4NGnE2nAwD3z/umNez7qXuCEWfT5zwiYqTS4ZhYbshVuNf2Mou2DuOwjlC031DnW0UI/V84LxlxtIgQ8bj81euuG3E1eX7JiDTNr0exdoXE72rFLMNgxfHyTIBQSbqLWwELJKN9G7sbMgEgrdjdwv+85sv165ya2CX5a2EXr7vZhGigImMPVayo+7koZwMmS0b73mk9VafOd3vOk+/RkZRMbM87gORs7lDMJj0rHz9JNV3uhJmEaLAq9wIiigdXy/NdbM6uvrbg6kgRIr0bX7uJiIjB4q8JIg1U5l5B6bdC/8gQil7K36dcXy88Q0mPa20YEcOl75ORIBSsnd2mGuSis6cl74Bs+Jc3cAwjkwhRb3HRzWG2eGjmwgtKWdeCi3ebUPRSftntOcGtt/iRs84hZIUphEJHnKe1yiOV65i3WRMWRhz6rPLQHK0ao5fRatZNLXlCpPPVlPpJ2nXGbK86x9pesnKF3bNO6NciF539bO0lSYgO7Xqhl6WieJgxWktOMtL5ur9GRy4Zowomf8e2zSbTP5GmnEbmygNLmbbZJAjRodJFHo7q15ws0ZpxyYjH1d3AcWYnpG92SfrVDBMS29a8tCuVx8OeM3M3wzAyKJd/77wr3F7+pY26wwgQkRLCEyAgIulxbQhz80Ha5dSN1uQe4uQTaVZCC04wRGsGCNFA5cIOQ3xYojVlUFOKgBQAKJXN4UmsXLZp79aWmscwlsOJ1DWeozpuSg8RRKSIVDEoVRO5QsyOtBdUEERCuYWW0e/UjtZUQpQilcc3kVmoCSq0KEUMHnymlcSyDRHSi9bkwwZqA6A2FABBAABE2ZYTADVb8O288flYalM8+DUDEA+2laUkLrYBoHw7gQoAMj8BAFBQElCzpctLHtw31giLYRhdNGq/1vqISGOrkCyOvCYRQlFNSCw7dCS3jSISQtSfIVwvPJO4kH2lpt4tL3qNMbgDmtHarWGgMxvJv8vG1SUrlwzb1PVvJ/7soDy/TveH3LM1Xyz4ECwuT3Q/Nsmob1s+U6TKCv+ziaI1pplLOtek/MIUqbJizJ6S7gRFDI8TdnNEqoyIugvjn63pn8JiYO/vZUa+5mojUhb4OJ48upIRj8tfYz4fSH3rSvxtVqdrI03z682WS0aCaE2bEPV/u4g/UmWE1BQvWtOUjPZuuNyQab5cMlJm5W3///qoRUhsfXlBKdeLBR9S37gZ51AksVyBSuvkiiFOtJaQEOlxrTVnL9VAnGgtESHxnMEXCz4MO1uLhEKhUCQBIRqoyjX6YsGHkLLNepcDOKDAd4vQsOMb0rtxleVyxaBGa6GSo9g/9yt1lg1WqeNc+nvVtP3mhD76GL/rA/lLaMSTDo7sTqWHfB+q57rB2qy2OI9iFcTDK6KISDqWDPq+f2Ig1kPhQ82PxJYB38664zPuUvcAAIxa/OhuCiCdrps8xfvHBPlPceQff7YAAADS1U151ZoN8H7/0m3Dvv6Vplwh3HJ++uVC2yaZ0MCXn3z0PACA2PjpjjlhrbbI2UjSfKTm20yc+uaxzChMtWUUnVhrBwAIVGyzERsASCeLYLF2Y/YZyW8m9qzb7QcWDzzc8VQaRCWbAIgouh0OmGbgD2wmondVS+jGuxOPISBG/yxGqWNpYCT5eDMcDgdknEe0A+nY8QOIXUFxTNJSGMfYa+olDkLG+eAWBzw9spop+A9/i2c+p+wDrgAAAABJRU5ErkJggg=="
}
] |
<image>As shown in the figure, in Rttriangle ABC, angle C = 90.0, AC = 4.0, BC = 3.0, then the value of sinB is equal to ()
|
\frac{4}{5}
|
160
|
[
"\\frac{4}{3}",
"\\frac{3}{4}",
"\\frac{4}{5}",
"\\frac{3}{5}"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAG0AAACACAAAAAAkSbjWAAAGJElEQVR4nL2bf2gWdRzH35+7E/th4B9mggtp+8cibFCxoEDDPzZQS/EZ29iWgU/lcLJc5hCfbOIER0VGVo4GbaCo9UR/VKspkgunmw32JMESmiF7RkKjCCe5dvd8+uPunt977nt3368feLi7z/d797rPr7vnPs89YGXSAAADOSqoo3HDAA9hgplTrkaDMjGvrUU5AIBclULapXX3Ym/76hydOkf2gTCRq1Jo2+BEqu/RX3NU6mjJv1ejcc35u0Q7vxG4ebX8LtEG18OsKVubq1SUIkMAgBpm5j8zWmJlxgEAEwbH9qc3FeYkABCSTfOZTcU03KldmrVlqEBw+lKF11dVZw0osS0DOzPamz2gxLa0JFpHlmRvK43bbO3x3OpWaltzZGuuQqVt3TNdyC1nZbYxDX08qmcljDIaE0DJ+viK/AFlFWA17Hm2YEBZ3NpWvlGoVBW3098nkHNRUUm7tnt4CZCXI6o8ObvxaDmAgruZGlp0Yx1QaJoaT3ZPnyw+oII2fPQn3c2Q3DxR4MlkY7wMrhtznSmfZtW3FJa1MlrswQ43GwtyUnrcPo+Po7gbFdAm2767f+FRybTZF49WlhiWHLfoc3WF0cqIXNs+mu4vEi1FtOHDVxaXnCDTkzONn5WV8qNUmhVpqfaYIpEWu6cDXCpqMuP2bXy8ZIZIpU2+fG6J5yRZnpyLvFuJIldG6TQGgGjVNuBueJIA9PwyIjJVTtxGuy6XLmtHpMRtJtJbJjRRCq15u1dZy6ExAOxDp+D0kHEjAGdPjYlOD58lk9u/XiY6N3Tc5rbGKoUnh6a1Pv2a+OSwnuwZEyrrsDT7K3ei86JQWTsS2JMEADOb+yr87BQubk0NgmUtg3aYDvvbIUyWDB4f93myIWxLRuPCZe1I8Jz8b0usyu9OwXOyrcJHWTsS2Lb+UT9lHZKW2DOyGEz57RcPCejJ27WfVgDk9a1HEi0S2RxkNwNAygIM4bNkAo782xUEBgOARpYu7hICzh8f0wPT/Eqy6Qu/ZZ1HM5mMlGUQW6xrYIuxCO4CAFtMhrM91xx7Zl7TLNZ8G+jSdMuAxgTLgElk6WRZOpwFAEsnkx1120OvGmyywVZB/1GURpqlswbmeQAMgma5CwBMBMPZPnPhsgGQjsJmpyiNoJmc0gFNB8DOo0rmiSXT2/l516UHfDIyogGWZa+ZGkDMABOlAIKzcEFMlMKtxg993a0LaJQydQAaEQDdnJ8n6Kl5S4e7MJnS6uimOotNuB+fYgCalgYDtAgAyHawszAy6u4/TsGwVUGKJ7NLSiDkw59cDFbWeTQrJXA5SdafFnty8qLpAudsNbSm+5y+kx+Av3vAnpUd6fVAMD+hPvPNeCBEEBpf3y3QEPEQYU/ernn/sbAwcdui6+tCw4RpH0yfCA/zptmpPnzkiozOimfc7CenxtMPS4CJZYm1pWWt96xQtKx2XGzpXimwEnHLXC2+jI8Hu3T4oDnCNLkjfFk74p0ls5GSP1/IpSFa1SgL5u3Jnhv90mCetGHBPqeYLOhJuwBm6p0+p5xXoxakEQBYza3VWZvqaACAGDpKjvuVknEbjF92V4N9D/FDm2w6l35yUu7JO5FDlVIYQrSWqh2SYSU82ZMYAQAmSTErSUt0XVwMJpCEmKVPdyFPzrzQu0pWbni/QfzStmpJ149sKUJjAG/xIUD+m5xF4kbAYN+4vNQoTQNuRL9a5nDV0+Y2x56y10IZeJCzgmEfqViWtD3u9jnDwDp/AGcSzT5SEdt6g/Q5i8i6TpuKjI/StLTTEvtGJN6t7UMXVLer+Kf2RIXkzHcPzdDyj1y/tVp+LrJD1fKO3G36/PlCSFyIm6I/Ll8NgM/W7AzYelxQLjjZArhxY3OXzf7tbdkwrHseAPqJNpj7wcyc4oObZt333FP5r8NLkCm0M0/hmN3c6n9iOh0/ySnCAMwN7e8BZQfKNQBI3npy+X1yITly8q9DAFD+CJiZ3+SpdgX+cyQ1v+aYs6oB6H+HpDxVLyB082q5k/kakJxlHgrRUBUiurSpV3YCv6v8w8WKNdcBIDkAHAAmuIHQzqwm+5m5DwPMQzVq/yOWkSEA7cz8Pyfj3jXrL04EAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, in Rttriangle ABC, angle C = 90.0, AC = 3.0, BC = 4.0, then the value of cosA is ()
|
\frac{3}{5}
|
161
|
[
"\\frac{3}{5}",
"\\frac{5}{3}",
"\\frac{4}{5}",
"\\frac{3}{4}"
] |
A
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAFQAAACDCAAAAAA2O2OKAAAEnklEQVR4nOWavW/dVBjGf+fYFhVJYaGZqFCJKEL8AxGIpmXohLgsiCUSdKC6nXJBXZCQEAyoYu6EQCTqlaAjEnclfEQJC13KlmZAZUBVJEgYaBLbL4N9Y/v449rHpxOPdOPrY+WX9/H72k8sWQlO9QtLoN0yH34AzqE3Ti06h66fDXEN3dm78Pgpx9CjL6/y9GnH0K8/e+L8MW6h9/Zi2TwH4Dtj7lwfw73kuzjSh5zZPlyBqyKiHF9RgPPhfxTQ3UcAnYzdQ/eHgriGjv4G5Rg62Riq5Js76MFwfU7cQkVWB8vTHVeXqZps/Hay4wgqB8PxPOL2nKrRYDltPc4qzZt3ABUF7A/H87m13vYVQK7z4KjSyY93C2u9oapk3k33R0XzTrpf7LwbaGJ+OveAC/vvDZbJ5h5wUOnke9N8L2gy9tduzZeO9LCvAEavJ50vJH1P+yedd3hOS2OfqF/3S2OfqFel5bHvD60x389+Zt74L69HpTnzqnjEHnpQZ97evrD6RmXnwb5SVdf5HtBizpuytF/MeVOWlTaZt4BW5bypzvarct6UVaVmzveGVuW8KZvu19zwMll0v7nzdtCKnDfV3X5FzpvqXGlVzveA1ue8qQ7263PeVEf71TnfDzpz7BN16/7MsU/UqdLZY98d2tJ8N/u1OW+qQ6X1OW8Pbch5U23tN+a8qbaVNuZ8FTSOwGsuuTnnTWlA+/gzTkNzzptqab+L+QwaCkEceVpCtIeEEICE4Cc5v/bYcZAuh+JHorwQVVfR1LZHgNaaKAhEiPxAhxD5gY4AVgevBipOlz1C35cw8GsvgekfU17oi0LkGARR6BBJNjD5+VeFn+376aeucSlUoWOJPRJLRgn7w1tzTaewyn4UogAdKlDEIEpFoEg3jAbL+eXZ8kHFoQ/oWANeGBHghTEB6Wby0x3l55YjwmD6qYVqfVI0qCD7mWz2h+MnUb46WfZzn1r7qeIaYy1yvqJSAKJYV19UbXK+Dup5pUPtc95UwzXfPudNzbj22+V8N2jrqCuq+ZbXMudNNVba7YbXDmppvtl+65w31VBp+5xvD+2Q86bq7HfKeVN1lXbK+ZbQbjlvqsZ+t5w3VVNpH/MV0DbP87NUst/meX6WKiud9TzfGdrmeX6WqrpvecPLVNH9fp2vhrZ4np+lsn2LnDdVqtQm503lKhWA/Wvr3Tpfdf/OQe1yvuo8Gfbtcr4Z2nvsExXfRLgyd9MSk25TWv69h++e+cfuhYk4wXyU0vL27c2rfJnF4bfO+QKaQqMmP9wtHbZTBnXUecjbHw2WLW2XdDJSk9eud3sCK+jjdCtF6Bd/FPct6kJdTDsthyso1G37t3ri0goihyu3ZfPMtj01ZcdfweUH74uIhujPiywsYDud09/afWFL5OYrTwEa7pxbOPrkpSXb6Ux/6+E7Fz6H595cBBBZg/7mZe35ByIi61siQnz49ras9ab++/Kn2Y5Wv//1Im+d37Cynun+3rPZjmZr6bTc31vsCS10RB9tXOLwCpd6Is8u7ALsfJstXT7oeUpF1vhGZDMBOXtbTjZRvJt8/b++LZfqP8pO4uCdT/wCAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, it is known that in Rttriangle ABC, angle C = 90.0, AB = 10.0, AC = 8.0, then the value of tanB is ()
|
\frac{4}{3}
|
162
|
[
"\\frac{3}{5}",
"\\frac{3}{4}",
"\\frac{4}{5}",
"\\frac{4}{3}"
] |
D
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAMsAAABzCAAAAAATCan3AAAcBklEQVR4nN18e5wdRZ3vt37V1dXd55w588hMXpMnDwPhDYICvsGLSADfLuvF9aqg9/pcSdTr86q7q6Cuj10v+pFV9upe1/fyEE0CogiCcAGDCOQJJIQkJzOTM9PTp6ur61f7x5kkZyAhQ0g+Jvc3c6b7TNeprm/9nvWrXx/hccgTFz6UpRDwLEEAE6xykosIRne0o7/YCKdImQVFsUQgiSBB3GSCVZCWHgZU2tH0kMeSKDDbIkcTtiQCSWIo3Am1/nOfG6FqR9NDHgs8iFQYQUMpZNZXsZrd3V+8C3NOT3qwvaOlONT1xSgCPEMCGUWt2Jp7V7z+RNx/vMTN5vws6Wga/MUGOUUKBSwgicV4LJvXr/6MOiY4EeYY2WoOzwNxh2Ad8lgEWAEwavx7yV8lp861qvsEMMcQG5/sQdTZ9JDH4lkCm+5f/d5qV6SwcBFDKSBgL7YtILTijqaHiu5bsLEGMCkwBhiwN6PAGHzrqrvQHx+jcMlrAS2kYzhSTLdy30B+aPGFCQyQGqtp2EIobWTNcshkR/vxx4dfME/1F2n17N0+UTqWrgxTHciARBHu7uovzheaGEPN5VAByFIAQBDWrMBIsWXE6vNfUC3J7mzPE79b4y4RKciOrv7ifAEAYiYIlVZzUlBZotY/8YJsZGhr//Pn9+dqAMir3NFaQOrssURkDD60sBRSAg4mBhALQ7enL1c3DZ9WP+u4OhBbxdSsAmJnc8o18ojW7Ah5rOW4Q8QOASxSAJAUb59Wbf5u3iL/b9unn/Tu8TgXdaBVBRMiGWO0vrO9FwBaTyTai3KyihwCWACbaT1+25nTH/zHc47SV1QGUl2zEWBV4AUxci2xCwpiIDLryunKaylFZ09/cd0H4Ia3DfsV/35TdurbX6WKeQNQCqV3kKxECkFVoLlLXxjGYPRxTUUJx3Ad/Rx0LAYAA2BYA1jLvn0CwwUK4Inb4H/0kTV28JKzE3rtiTYkQAOxkCACqhCQQH3XOAma8MftkS6aYSF8h004+DKmAcuBKD0ppJQgrToX5VkvFIWb+tFYGvXOO2vWGfrUJ/vaQ90nObVmpK971Efp0OCA6rhw8PWFnVRACDhZbQEaiBA5bsbhfVe//E39L6oNVk+eH5XBbHgiqCl0KFdzP40moRlK+zpt8kGXMXZEADCClBGkVhlpNqPy6ytuwMLj647f/aY6owprAC8leF/9wWHDWE85FAZKx/Uw77hy8PkiCXAse6DBqPpm3f101RtOqU7vop73MeWR5FZFIioAR7D7nFwm8YcyHlG1IMnTZNKlg46FACYpgZEeDPfyN4r3qqJb4IwzgEY/EIFQAYzWALMnue/+0q2z4HuMF254qNoZXB50LCyEI2C4N0p/sPE9XV33bx18M7QTVqMPZEDKMQkFOBd4Ifbdob07rruIW6zyseakKwffvwgA2PrAv8bVP++o6Dd9eRZrBUkaljJoTZAoiRw4lBJin/pit/w2iRw9Sa0ccQTbcenA8aUVA0xWZTHnsUCpLGukVUd8vX719C/0NPq/oJAluwJjKCQAJKAASCgAtPe5ZVAe+dG6umf6bBlq+Ao4Cfig2GSOuZAKCnGuK95CpVWfVqu31U5qrMpPnfF3Q/0wCtJPQYr2Qj6ESLAln5cYm01zjsP+voMTjzkioZA6LfKobPYIEdj7a4uGvz130fT3pjNyNwgbA7TfWLyEYBfw3aY/z2qZpajAJM0/gFikM6yoCvgQea+/e+G0+z9/3uzey+dGqPZBVK3VclL09CyJJRMUHnl4sBzCQLUR9ZYFMtdplQ+Y7hOSKqy3TmTrK/jB396Axa+5uIYzZud5AARWRRKpUfstYu08svmT7B7X4Ui3gs0Ngkkm/MDpfhFSpoVi/Or6S3ruePn5UEvqxkfW1IE8ypQAKz15IfhsSACO8MT2ed1memNkfjLkClLVgxPzm7jIqvLHH1jFCy6q/3z7W/rNWAwVAXUglajZ0pH2U4hR9kLERGhu7B6QFSq7+mbmeVxptSb1d8Cw6PzqD6+nvsF5tOiioWtHFrR0LYQwkEihlYFSAEozhdhxL1RAYnhoQNpkaHRBnRqmGg8/WXSmkJ8FFmagRAsOGGNgm4MxaBnYFPjAZ1pyxvE9OP1DNUTF9zb1tEMloUGoQkGj7Un0Pu7xDFAix9g41B2rbGv3PEgxnpv80c4U7NT1xUniMggQc5bIClk1gFTptIrGfxz9Yte/WdN/kXVUOBiPf7YC9oDHRgKl3jo6OxzpHu2fC4SOXAk9yShPmS+SQYKB1NakJdAmoKpHvvZzmNVPNuTH/tm53jpaMKj8v2samJzoPRCkoHndaH10rDRzFjJEUgmtpUlWfurzVygpLXEVyChIK4Obbzz2hXbocTP43jkwympbagMfo7xmJcAHYytk89bYWN+ozoSAj0lkLe9dh12cMhYbEkPBmcBUseX3Z/Wsu6236P9k3WEWxiqkoQy0E67495+iv8Fp7wEGYgJxX/Po4Vg2jkg4hMslshaL/cqPlQpOAVJt3nQ67vtNdM6Lph3DrarRkFDkrK3BaIZc8/kGGqgccL5ofmxtYpuUdM30JoZwAlzm2C++aBiNP6Vn5LffHp5w3qkDjHmgBC1vaxaQUkFbKIx/+xH0NxAn++7xWVL2EMnHbGPg2AQBIJSMajEs9gcLbUoX4ebhE+OXLT7W6AGrkDAyVUXoVVASSVjFNHrn14FGf4MPuB0zjQ098cbpI8l8tGIGmzDoqsWT3BUZwKQMdt7AG1jYTQCQMQwcZ4CxwEgjw40/GsPFr4kx7Vjo9pqDqKoBEhABwbeUpyL6OHDC23vh9t8n7plc9vtav5ovgnNSo0EUxK0do7Xp6JTlIGBoDUAI5KGGMnrQGa4msBppPcnLHcGM5lfEp/GSkQhz+/d+t3iob6z2ibuBd5+89RH/HNYpk4ldIAwF8lHUxktRnhhLSd57bx3JMETnbQLpBMBWOad9aYuabvSPTINljtHoh43wLf+e+tnWqkVe5FFi9zbhLuhC5UffBS58c/f0iQz2gSDBwnspeKPUoyLUx0VeQHh4wUXhSpQdwhxAArbURKkSCgTbj2lAXrFG9zX+JXlHPC8mvIKKCRB7DXNLqfzQ5zdh8KNdZRPhAYvzRAAhyG8otdes51QhABAoseRMMZkvTsIGyrv0MWS9R6s05vGERA3Nz5361rjnxDh7HZidC30rRpRHex1jBJ9+417gr84oxh87UEAAWAlL2HZ/LI3ehgXeAwBBKJ20MHlfjCQcC4yueqI2q9bMIeV4TT582cps4NQuVN9xRitxjkgpiACAeqaVoVj5z8AJ/31UV4b6x/Y7tn8qEQHKbtwuWLoxqraToMx+rAy04km3IQAKZtvQ/FnTFker8vihq25OZyzsSppvfQ0b8hqjHiYHo52yt3u4HQDA8uPfaGDx++dnKOKGew6r4ckkwApbn+ziXOezTrQAEQHwtmTbapWT4jEHCYzRbLp50/xHVp192u83nFHFexLUDSlnlTA95UgPsgROEUoK93ZPhW+sBE54G2Zgcz9qB8wmexQRNm+b5bK+8oSFY4rbiSdfKUSetibLWCnZoXfbMb95+0cuvH7ka5dmXzvx/TdVacWvNG+4ExZb4HqsS2C1ZZ8LAsM1ASBjIHOAcQBb4E/fBxZ/Gt4gGsc0bq93YHN2yAED5wBmFEAGwEz8oAUHC+MYsLZlnoZF5hGPPJF4G7XOOBZVbgsZxLiNZkYIJ+0laYC9942+Y8df9vY3v/Col3T/+Ts/TLH1Dqd/ee2wuuHvbtLbP/VD5Lf8AvrB1RhPn/BchzdIvEUsW6ylGSHlhj9qgC/WhQghHUYtMxFnVkUkIQ0UWCIFZSGQILUaITTAiEEgpySBpYq1dWij3g0GtEH1JdrVBzzvLkXqK5qy66l74k7Cy66x0y7Z/MrzK2f2S9F9/lnB9lUvNck7zqvbRVtOwUgc2OgXs1/OP3LHhdffcunp6btPvGL4vtaZvQ+3Thaj6SyNPPruDeh/+4sTeOGTLggNAJTA6O01CgoQAqAKJEbbUlfRFF0YCzXSahaEogiRS8V5SGUI74Rsr6u88J4UsvVd3S2lZlSt270sIh15OzmCDVBKYgxmj23VspmHCjj9n6bh0foMte2RMyWOnFHlIz5hTLC0FvuLxkO5aHs/giMG0Xtn6wJ8tXUt/nXl+04f+doD9/Y39GXh+L1nyvHfNDB89/Gl0lxIjR5B0MgSMaITjNQ1lIJFHVbW4GQVMgRFMBFAwokY2B3HC4ZnMo+60I3SrOkg3s2H0WmDG4dbe4qTu/Wtt5RPtPqV0UCvF4veOFOt+9K6N6oHjm7FgNYYRLN2ii2CY49SiD4hgY9Z2Mtbrfj4bZpm925pAPjVZX+++5TK8E8fxOqPvPfV6hfmArV2x2ng+09BYoIeFGEPwGRdBKMVDMftzQorARho7VwASxKW24kBYjgaXT9LjY9VF8Qs5e6hJ3GkyWFy7oLAxIinYfbweEAa8MU446jEnfrlv04e/vZPBO5fD6QGkljGyjmgCeMtJKsTTonGXvKxswJ627+9FTBf+ac5F8uy+8RBJMc0+LHrbrPuZ19fN/a7f/lDM/3HG9H88o/QevCeVEVbnQZnOga0QWodeZ0qDXDZ3nuSQdtyeAiJpumPStUzgPFOlzB7vBHNiCblLggECwPMPuslJy2SrgXro6rImUrR53DsXz8v2vT1n7eQF9AoCE0ZgbXUhQIBMvI1hAhc37HvOR+NRz53/8LI1147E8/79Dt15V0fjMX5Fx9RXfTCmUkSxEAsOL79/67Blk98H/y9a4Gbfght7ksjPD4WkWlAgS2J3JCE8wwIghgerjvovqOAsKP8AjQ27Cqd1ZZAAOE8AKxNn3xeBI5d4K2kkPIINYHyLJjBi2W8/f1HfaAbHraOtErCughOEltFYHISEqd8Ycu9aLzzqjcGzj2K7r4smTbNCXHEYmsHXq/ZXwGO3s+OXr/2ZN9zwWlG9xBskG+cs/omOln9Av/DLt96Uf/mNaf02YYYRCbbqkG8I+3bEUfRDAcNVrsYMez8eKHJdjLGF9557/3vp+PiIf90yr3Pvd9y3bXeX/4Pfof3rmxfKLzPvS987rwr2I/7354AYPBnzj7Sj/fzHrraM2XDrXJs40O8497bh/1d77vZj37pq7n//t97d/uV3q/5+vdXPX7XnWseKUrvndv9sTV3P/yH72+yZUdPASSI4bHwuK1JL8ZqeAppMAHTz+zzQ6eFkNc8eMUsV+hCkMyFBiun2zFTMnr25z/4CDZ9vPayzY29hzpPJx1KJKpX1E82CifPqqNyrtR44QDKgSMz67ctjEeRUKRgFcGJnXzoLoJAB5OWrwE8AAKmXXkKgKdBAVAG7FQvm953WCSPFpZ/8NhFi1mIKAPyRMKVipyEEK/a9uVVePBzM6LBTd1TX78QAGjPIM1WDQI4Hg4LBhEe2Z9w5byuYTW31awbrcBC7pKpfLwsyD5l/SIAz+T4lL3cnkOw8aGITeBM9bNlkA7dexZ+e9trF8ssSVAE7bDC1VJ9qfzUetx61XQDYaeabWUQOw6FYKuILJQloPRCWdZ1EJ2ZrbaWkK5anNi8Y6rHW96HFm4SFmI/TjqQEHtcDVoJUBUY6VGInNFBs/6+18zJfvfLxYsfv+OU49MqCOxAVlZydYn5aAPXAoimHFtSW0TZSwKgvFUAazD7wGhwVk1OWPXA3BmN5pODKurIs/YZMkGGp9Tzk6zpoA1iD5yRBMuA62FyViqDylg+B8nSa5fYW37+ZxQ/+RNgoUQEEZXizf+z/alnyAs8hRiA9wCzMwYQCh7EIISSGKRTiAWVjKPpW1dbhXyXr+yuyFZz0+T1y760lAA4cAkHpUDaBhUBO6xnKfXGf7iw+Zur7zRmdQpjkHlZVD7wAaAfMONTxeKYnRfwijjQAKNkZu+4YEsWkFUj6idVR+IujDQ6U2DNzLTSbVnZOdQJpllbwlmGt5YBb22JiQNDKQgyImU/mpUEB4daEZtUL4prz3/92fSTT/6Q9QYkJBTyL7+hv4H+bLIXe6a5IuKCIdhKCWvJB9JDSo6IpeIWWc2u3gtqJXrblg4sW1OvtVCdhowmuBSIAJLIO6WcRxko4dA+EACUgUaFyloigIC8CoTTlRCgwcsXqTkXnEs3v+2alm9YROL//FegN0HLwYDB1sOCke0NiwRURCBSBCgF0Y5iAkCDKIZyXmBGz8OjcUhbtiMDAynDmLQYnFPRk/ii2pU+H77G3SwCQUqIj8ELAfI7DwA8CQRi13vZfvmJwO5Fr5mPY/7b3OCuK77tdozqz3waj6Q+ZhATnBIAF89hD4MFAVFPo3Vkz7aHRhI49lWCnJmwdQKT4zEFQAgIfnnp/fKl3l+5BwvwDKnuMYtex9PfelIwZ/5caf/2av2u52OaQQpLgAIKSeGkUGM/qNZfPNEsyK6zUNYDHPQFgAyeEltK5/C6dVj46MUECO8BLzwDAhMHoM0C3/G+8zYwLIVUfZj1sfOg5xo/PURLo+4BNFEg8LskeT/IE3mG6p7Pq8emd6cPZNAWXAAlSaUmpUgCNiHzq28Gfn2+AIASIkBQOhFg58EGIuj4dwkX7HwBVikALLwovOaRnk9uV7howXHmmuh1PeA6QlAOScVekx77ovZmeLKouiZPWnpk/TEyYC8AFxZmct46IC8lFiwXuOFLACACAUC0m0wc1M6z9l/V8QKEKzWsTQRCY1UPUE8rHyIM/VldiB8UlwI7ugWmUnq4Nygegp2kePbDWxDUy0cr8yQgmMDNsVB0ChkhaQELH8F6fyQAuAkZmvJeUCADgBKUDK3gmy1V9YCvfvUTA+bBO4bL+29FIIf3Gwrg4UkAiPqHtwQsxcaNDhCwxmauqjtFnhgxcMR1j8z7DwE4u9OvPovUtmwbVikghKjHMEQQWk2Dfs+lvfTLGzdbbEv33c3eSUgAGZ1a2T62Df3Dm1tcCEpbttQ17MlXXnfeLQDk1GWhxNOSmG3843oXV6e/AHTpR/r5tu/cCGwG0MQYUqDkFGDvmmihBXg8UzmGnFhTQL1y4XhX0KoN/ykL4Wv1IqTMT6619gCwcsmKc6cMY2LgtqMQrUMkK8h2cZVMY9Z0lZz02jPx0MevHsNG1JpVi4AiZhSybmOOYQqe0ta86z2h8kSrUekaXjcOX1iKeJvp9FvUvu/yC85Z+uFnhUVC+t0IRCeeXc89tYzqRwJbO2MOnveGl9ZGvvPlka58K0ZGA0segIIHa03PyJidVGBgIN3W1ZC9G+7PRWvHjsIMj3Q2aMczK6/y/kpx2RFY/yzQPHUuJzyR2K1rMZpKKjATDF4aup5Xqx7zw80f7BYImXXGVWayGlMxNa04LoP5IxvKAFJu3bAoy00EYTv3ttpYlq+AgF95JLDiWYB5Cu1e/Ow64zoMQVsnNZgsvxxjlTNXs/jDzy85VqUJgQgqIyX3/ZhnBEgbn+rufz4N9RRP6KyivQ2Czgk9MM+KPuOK2EkmJ1uawIUWadUq88Bdb6k3/veFJxkyWgHgKezV5hHyCMM3j86fuYWrW3psNPZk61ULO1ocmL24Dij+qZPDLTiUPqI0p2gIVTbQp12WmObI46n9yY0ZzCgox77IixK6RPfLzGjcMrpIhQJnrc4mhN3Cun8sWiZICCIhhFgGQAixcndXy4SQNRGKmNbn1SjFtFaTFCNXio740jlJ9foH6ubWW1pTKDOwOnAiaNG0JcEdUffwQGDzIAnF5Bzs7lndv63fKz1779h776+EBy7EuUKQWNm+uqKdumIgAqpAVIcmRIASlMB991Pwd/x0BPf8xAMYATgHhsEGBgC8ASYK10JAAjF4ji7SZtiCzZJaOKlI8bnUR+zUEi/87ulYdsF1AJaJc/bQEJPniyGkz5J3j85q3nvP4kVbHn0BMhU50QtCWkHGVSFhCdze8WgT2bN/O3S0jUa61I5t6Hzs9Tnpy24AYpdUXXjV5UII8cUr2xK3u+FeBFgwZhyN+t98ahFu+/v7TNQqJNCErpYgzVkAJaVSdrf7YZccJYaccszOTg48ngsWdgwYoMVgiNIzeNmr4f2OlUvY+xUCAM4VbXoaHmYmIqIqwMbVF7jhs95zMt1z2Q8sPVFHBsmRgp14Pl/a3bFKVCxYuHoHy5HtiPlpur+/ULwAs14nEimkEIrkWv7spWAo9igmRr7C+yUr/ERp3J4UMs0zp6UVsj7rnNzMfelp6k+f/WkjsUS59RVMg7MAqV25JIKhY/sa47HPsqA6KaP4XPRFEMCYV7R9g5NZIIOJygwB4ENA8edXwF+w/ByxJxEjAF5UAQtrVRHAyqj6LuQDi2d38ZV9b4tGetDolVI6lrunvBQ17jr75mZfT5qKgYGndrifRASA4MiDgVIgCoUDjLHLL3Dsl3tGeONREJc9tHJvn4ZAWrBklUCShYLJ4QcuPUNnrbna/fgHabdstmdnl4wxo+A5x8kdNoxhJ4Vx+80XJoC9ICiCDWAVg0HZ1nZWVAJYSuaWJXMAfOXItUfstZ+qJbRi5JHRjq1GHiJkV/1fzLK54c24vnLsDBDtrjcPYSInTx99IO6OWpsen9kRKO83XwgAyfbDLEpAgRAQarcs9d6vXOI9rwD0ry9QAI5YcWQ7Zt2jLVPtR1mhIUkDkURMClJZXPFZbNvyfYk/rmIAFjAOORwgrX3FMbWwIhDsXx3s1OiG902ciPXAuqvaoz/HiyXX4dk746w28MZ3YtNNozgZDyyC1zDRRLWkOfeuDVS1utLR/DnHY8tEBy1biXMAeA8hLn8lvrliV3j0FbEMgH8WcZIFIoM628EPXH6y/fFXHkT5UAoYCQ4ARhfGdNek4R+636mSxhLWc5RW0azjoUfPjG799rte4RsDsMrYKnDPH8fDV808ON+rcIBnJWHnVBiyBhLGkWfW9eJzj8lve8s1JjCqCodefmzjpFqjA8SXqW3pPZvCRas6VzVOWpVFRdTkG+edfde3Xvw3zTiE+fG6tw50RGQHSPenNshno/tOgYgtQu9YCWaJgCJX9L+FhZ47E/S+o97ZtSPt6nT8f/nvItgLRciQECkIglEBUysEy34LxcedjOZYkHQ1lmflYfK9PQl25m41IBG3XVlO0gE8+BUJntlXk0XIaRe2T8OhbMf2TpmWsIrH6hjp6fz/YYfFMQetuB3RPMWWHHZY9ky+XbV8uJMHJizk4YplT+nf/09kDMBhyJfOUBYQgoQQFwL41rLDDwu896KddQM8PHu/FsC3Lr/yMMSCdcKfSxMpKyGEEEcCyy5nfxhiWXnk1Us9r8DlAIT33vt1WAYWF607hGOYvdA5HisFlk7YLAEAS66E/7AHplwXeYgQlgJYsRbAN+G99yuWeM/eL13i/WFnkwULCKw4B4Dwy65qj38pHr5u5fLDjy/e5+N+CdYMMay/YI0f98s/tHxpuhZrDz8s+TcBYEXL5xjzFwAAlvrU45v+8MMyccAaD++vhsdyeO/xTe8PP5u80+UfJYBl6xxw7pola+nqy3AY2rHJp0uwxPu17e23/wQbINC2YFF50QAAAABJRU5ErkJggg=="
}
] |
<image>As shown in the figure, the homothetic figures are composed of a triangle ruler and its center projection under the light. If the ratio of the distance from the bulb to the vertex of the triangle ruler to the distance from the bulb to the corresponding vertex of the triangular ruler projection is 2.0:5.0, and the length of one edge of the triangle ruler is 8.0, Then the corresponding edge length of the projection triangle is ()
|
20.0
|
163
|
[
"8cm",
"20cm",
"3.2cm",
"10cm"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHEAAABpCAAAAAAokJP6AAAJ4UlEQVR4nN1abWxbVxl+7bICItqd2I1qNo+sxF08ZYiwtKLdorlj1ohEFaUiUhDLpFRqE6Eg1ahhy49UKVokAkQik5IpUGBGKiMohRTUjxuWto4UpICLHFhKUpoQM7eqS36QypXme+N7Hn7c62tf3w8fm/zi+WPfc95znvOe95z3fLzHA+LDg6XVezGi9bsg8tfTIy/69zXXcJY1wcPDeOfa+7F7LU/VH6ihp+uI6F9JehhfTy34Xw6H9+w84+rPfpcJvRwK2mTdnL8eEzu66yujhCs2J5v9/StuEssRX8vZLaZ9MPfaAACujOlITddF1+IMAM53PjawycVWhjHVK/TfK0unifY9Gkn/r4yZAXFo00LgqEh6QBzKcqnpxDjj6y3mY5Y/Vs6uOql6xg/DX1wsx2BF7NkjRiudy9kyxn3DFRAVkBusWy4rZMcYFSWgMvXymBbPV86Y6wuUb6gj4v6BShm3Wlu2tH+sKi3TzR0Z13LeUse1vy4m6A6QPJW5LyIi2rPwiYP/rMDLScJ4FXppMDQbEWIuYmbGZcGYUtX0aL7gBXGNh5EBm4HqNTRhuDHjmFdYreBRWxvGq7CcHV5/OKNXaskqjBwP9dPbO0RIP02f0Su1oqBuNLDp2BUVI+Wfgf1gIOQzFkXXlbdSxB938COGjnee5PL8/DhfZ99lBmN4ZGcJgcEOV8ZfNed2iilvvGzwigtjxh8vFt4ZzAWzNqn67PjuV/c7Debq8coXRvX5YJ0da+LWjmqnIy2mgdKe8xIRaLhP2FHtdOzpGiGy9BwApB/XVNxZMwJIi9aKvQSikRMCwdqYHVDyaz8ii5YANgXe3W3FWBMti4iXiH55tOIDEi/qW35jSQNDU4zPhNWYeSZUmkJAoq6K2njlc2KySJQB8BL9ohuVDxpe+V1d7xaJeoiIAH8FqxR/V+RPlIvBkqJeWs3ZHX/tUFFX6JKe/XfumxLIS/Mh3kr+4PF4enVqLoCIdrXEjO/ZvxGRl659mbN8/+sZKPO9xK+ph4godD3/uX2SERHBx2nGU4cB4Eqt877QHoYh8carGQCUFPkKSpQAGCSdsYLZ9HF9XZp4rzEDwLvWyNdD75xoIvLQum7F8h1rGLvhNhERJR8eqq0hIu/qPnO+A7ZvvUpERLNHa3itmK/ymVtERDT6Bj1DRORdC3ItG3dvBYiIZn//TU4+8uSrDN4mInpnwrOXiIi8q8GybCCiJxrWiGj7ZE8TL6NRNrhERMkMIH2OiMibfrJ8a4lo95EJouTu0GS+CZyEHpr3X12g5LE3ida1tIDLwUuHdlhuI6K/FpJ4wJCLBsPf/yROESXQRtQDgHxVrMa8UyMz6u+4geATpkTvw09VZphrzz73R2fDo6jH75/eu7ow3XxhV+nJv0L96okO8Mgle3wDaQBoeu9RU0YFjIwBkDxEvvKy8U7faAZgwFzjlmBmrHnIzQhgVhgJPvfpRads3cBz4UB0W08ORVN+M2NFI0cSJADng7Kb0FTTwfPG2Irty60ETdk8s6OEEOhwvpfKTtYdWSj6DkURb0bx8KamBDfhrCBpZdO+uCWTAcDWsNi9XJwQC+QQC5kEqfUiVFmWOU6PUuGy51yj3TktFdnTlzI3IRQFzplPrt7gGnkfoY/tKjsRZzt//RXSPdxr+75XmIE6Vo8dEJfH/Ya8h4iW1ruI/lGyHo4fB5iscmuoGSQlJszZC0fqxq16t78NoOOcKY3mQgCTVUVWoMoqmCznACbLCvI/jAHsUu2l/Lciq4r88+c/khWjlpmWRnO1WtsSviyAJrPRKSkCTFaZAmAb2AYUFYqKbQX6DwNwWZCMZCYrYHLrMFM0lXPRYFiyvbc/OgYUdh15RvhWwGQVqgKmgsmyrNEzBfoPgCu1EqB/MyarYPKH4geyCs1bO9whaCoumqcjiHVOatUq6naeoJRRqr1UnCyrYLJ6tvkjFfcHxeNJC5XegM4xABjpLWHEZKfCFACqrAJQVIBByYEpyP/MCldkPZkVGBH6wUav7q1toV8utE6VMv7dL8sqGKCppw2W4pEj1V4uJMuAIitMkRV2gfyjbpvX7iEAyNWUtKnopOMwQ/RpUWqmuXDgGy+48OVVLDUjCPj2kEZoz1jkabTxyABgqunQNNAy5sKoqcgiQxZGlngawLbVz2nroWC9IDS89W3BftQAhoqqWCpCDGiyv0jX1kOpNGT1n+Ha7pt60mjInFeEvkEADqdyjHU7NbREQwakIr4ib507aHexzgCkhTTAgPaoHePmYw5D3EzIgJVu37AptrkipvIcZkQiAGxvVwgAIgO2+8HZkliEnbceDhcJFJDWr4h6hyy1EgCkbC8CTRoyzLxo8tY6RW7/WbvG6iqmBWvFBLD8SDY3VRJmC0m5aPAV+1vtZTFlTczfgunEpYywve0s1jAz6u+IO23Ezxyxpg0dB2Dcdtoxor/E3RYTpk/r3tqeM2ddGh9oUSTWaRc4zd9al+yVCoRJV28NAHHLBnRIm25XA3ax7PyWfKo5V6SDQfhnbW/tjsF2s/pbmorZoK3lS6IPzEQ4Fw5EOTZ52aA5lKur6Bp9YEDKb7RIEiSAYarpYNmgsIbFPcXBlKymYtkIix5FYjqheW9d7sD4na8XfYy1A0BcLBdFMiJlkiCZ9tblwABk980Y31lfAmBapKwMIyLhHCAJktlbc1Eu+IwuHGsHkD005CRORT2WC/dBEs52+94qWID3AB7p1iWzvgSArnZHSdOBdTNwuuZLdnvr8sjUXdSaN9YO4C2XqK7O2EZENI1F8lv31nyI+TMAsB1YBGZ4Itdt05AogR/WVh27Pn4CAKKhQnTe3iL6fFQaM2yDEsDNQF+VYcGMfw7IBWLZ7kbXQ7Ae1ZV6wNp6GICt1lClUTNdF6kug+hLm80d7m5R79UJIu3+FMj1BT4oqofxj9fuvlzgJ7wvSdqWMEEJPe1dn2UDx4Ut/48bfZyvZTYOA0qDEUmu9kXQvwc/q3kqt3ZqN1iXW4nu3jJe2u2Px57/k/nMzYP5l5b+0micyB0BAGhPQGkw3bn/1vyyi6N39ZddE0SHlZMucgRAIiKiw+YM6+s1d74B8UwW2KAeYIPcIv1lXuhxXmilviVE0gCUhh4AODVdntF+DqQjNa9JhoAjLnQKA1p3TGiWmUiUZ3TC5mSzf2DFmZJhOfKZlrO6z5D14e5q9PKXnSv9AV/npG3gZ3m8QwwOFnzaBrl1pw6eF7O4e/X9+ZIXs5kbphez2suf5N7pDu3D5iVQHu6MRQUfLK2mrxOt3yEifz3tfuGpgPEqOC+2/fljbxJR8kaHa6VucDOIXd4ETQPSYZucAiq8Jmdl2iGRFmJwAdfL5x1FaWTg/5Hxv1j+D+r+45nRAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, given the angle of circumference angle BAC = 40.0, then the degree of the central angle angle BOC is ()
|
80.0
|
164
|
[
"40^\\circ",
"60^\\circ",
"80^\\circ",
"100^\\circ"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAGEAAABYCAAAAADAGMYaAAAEiUlEQVR4nNWZT2gcVRzHP2/dRxCKUdiih9qa1ENpG5rShEZa3A32IkXwENB6sA0oJQdphaxUsBCwiGB78BASMZIttdhioaFEImgx2WxoqtVE2moPdlchoMUgRtpDHJOfh/mTnd3Z7szsjOB3Ydj35u37zO/7e+/N7BskHqUB8iIixESQdF7ylERECfFICaXWYgskou9bAKaz0JttAeJyKQcURUQkhhgAYbQoudYSxOISoEq0cJB8fATyvVCiFYgrD+miiNV3LIQ8oEibhdjmg6OY8oA1LWIkTA2quAgCsHI887tdETlBAQuZG0cdXBwujXX2XGx2cMnI+18+Nj7RXlaOPIbbXYtz5YDoCNbgPLv36Jl1rhORuaQA7r42/9WWihORunSzs2m2EhApYXjf28NNll1ri1F0Y2nplYXZTVh2oZz6yGK4uuOJwiavE1HFcOrkx894n4mGsHjAmH+0xrkGXTITOtWWmawFaCgGQSmAgY8u7KndqhGCOV4WDjwylwJEebcK75I14j/r6LmUWuNVK3wMCmClf3y84/7tGsm0cHv3r3N1AA0R1Pm9fefW1WsV3CU7o3Lv9StfbqvfPngMdkZ/6HrgWx+AsC4JI/uODzf5aRpyLP11+KfC5tpzoFzhYrjW8fjsZmrPgXKFiuHUyZH9vhuHICz2/llzIfVQAJfEPMy07ZoOAPAXg5lQ8zDwwYU9/lIchLDW3Z0XHryewl+KLQUbS5/vfG4iFegXfmIwDREFK8c+vVRvnQtDcJ5Ofu558vvmwACfLglw/qlXzzUDSLC/fknAAH1/gGL5SOHyVvNrgCyDGYOuA0Bxa9fK7Fbza1D5cUkY6X7zw7q3mhqyM22ANkBjoM1iUtn+3ev7sbDRQNtlQxtoo07cjuwYtPUxtDbA0Fr/A39rrQ2u7UzNbNRJzGoDA0NjaCNgDACGdfWOFKJ4/92R/RgobQ8hbeh6Q8OTYIft/qlaevmPbzbYvFBKuK8a3OWZbTumNwBIVTO/Mu0FOwhtoO2ko98ZOtMNhnZVW3nAZ66Tlb6UebXYo79bbxXKqq1i0LGE65IE4HLbs1+sb3xzqGw+lEnBylufjO0OnV4PQmXMv7z4WJiF1EM1Vo2xrkMXH4oE4H1/WD6Sn2iPwCDAO4ZbXctft0fTvTfhbHf/aNiF1ENVLt3tu1G1+RFEAyAJUZNORWUM850PX9nSyCSYnERJ2bZGZQyDJ4aeb2wSZBgAzEM1YenQb/ZC2pBcT4QJcP64Xt2+vdAwQFHhQRKn5sRgrc2PIKrKoePS4ktyPQWBHnprMNwd2DvrUz3Jw7XahNFkZsBNuDPUcJ/lEkUm4ybEqDh2pd0XbROmS9ERFKeVyvCGm/B0dABK6qasjip7w8B8WZNNR/gaiKyISDZvlWRVRHL5CN845RBZldVc0SaISDFXTEdHIOcqJgCGDtIZXRZodY2mBHD6PdUa0U0ZAEHhepdVUiJ5PztF/tRCCaBUsClSTItILudpaSjlyItMpZ209ENR0pgjTFYb7n/VfGmZdSr+n+vSf034F4Sft3VPwoaHAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, in Rttriangle ABC, angle C = 90.0, AC = 4.0, AB = 5.0, then the value of cosA is ()
|
\frac{4}{5}
|
165
|
[
"\\frac{3}{5}",
"\\frac{4}{5}",
"\\frac{3}{4}",
"\\frac{4}{3}"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAIoAAABjCAAAAABhp8fyAAAF1klEQVR4nMWbf2iUdRzH3997vgjGoILERkJzTjeb5SxjRyO2keVWSxL/UDAIyrzT/bAxh0UZQggFShndalSIkJCpMILpDhONMX/U8DaYeWMbTdpIZYTLkY59n33643mee263u9vdc8/z/X7+2HPfZ/fs+9r7/fl873ufew6kNDYBwEnjMdSi0KafqAsRIiLyQWnMjNSiGAwAoAyFAAIuVOSheedac6wwZikEmPaoNYgYwhEKreszhipRGG7+W4Z3i8MAgZSiAJ01wPhgIYiBKUYJ12KmZkmtUUIqUcLs57VsUf6dPGPISCELABCzjoqXOIuEVOaK6QZD53EADApzxfTl5ut1QyaXWoOmDzzv/whQX0EIP9V/7UPNKhwueXarYACM7Yq2bUTMKumqxEj0g+v8AxvjfyVbFSvOB0t6n5x7Sh5KnDW4E4iEXks8K82guFVd/6x0zaBBgjg+aarYc/4aLLhSyOY/Q3qu3G669I2pCM3lkVxB+uHiVTdMEiQoI1eVnkD+tcJUv5SDYlhxe+8vX22xh4nhvUEEgIGAI2uWDW0BMM8ZM7xXxZiX9TQ8fLE07RO9RyEGYOL9zi+2xo2TeeS9QQxAqOjRoa1x46QeyUjbq/WLe0oBgFiKjAUgQ5WJYF1zt5ElzFQj+dbeOxRzvvbVi4e3J8wutYKIGfP1NvJzZalnnxMeqWLMfLeh9p3uskyv8TJXjq3E8I7M3/J5YZBRJX2N98+uz8gZM7xQhQGYbH7lzd71WV3mkUHHS6b+CKQo2lThSQVdDz7oKEc25gCuqmJpMNVate338uyvdxHF1ODEyolovZPr3TYouuvuqQpnl7qhip2dUx+8WBdxSOIKSiw7O1aODbQA5KyT5aJBI8FbP1YCjptqrqXt9P7navoqc/kLbqlyJlAxuNTaGGW3nuSMYvXzGACMNIwe3eCYwQznBhkJwQBMH/BXDWzIhQJADqrYApzZvS6yLGcQF3JlPBj9/iUXQAyDSAjhqP4IDw6W+qPukIADYFxojhKOnQ+WDLjhTQzFaYw1Rto3Lvy0TMOqICEESBAgxKw5tA+xR0IIQAgSQmD64LNrB10kianCBQdjDDqHYExoTBcc5gGA0JhO5mkudA5xrnH5lZStkpxQoAkOH0CGDAyasA8AGPlYbKzhVtPlr+tEmnedDsI0iIGBdAaAc550AmafJf3wMyVDdW5iAAAHdOIAoOkaYL3FnjUQZ2OLMTGQNe5uyr9UoGW5ic4IxacLDYYwABcABxez4LAOQmP2ae1289VDmwV0rkN3dQ/oA5hpiaEA5zz20xqwuNOfryno3wzOOTjnrgpj/18Z5WBPIL+7xL7A1bS1UHTyLfwiPdHaZbWxkOOOIElY82s8kSRRfMKR1Y8NbYVnkTLx5vn1W33eAi3GHCOlKwkkEzveaPaWJM0ubo5B7UWPRLd7CpLulTlOlt7AQxfLkGGROY4M9raTwdomo43lKUkGKN+tWDz8lqcMZiy0dPftpq7smkeOI6UqBACTzS+/fVkSSfpiPlZ0/8YOSSBpDboevH9WliJAGlUmWyu2Zdli9AjlRMndYbuNJeXWn+QGDTRMdpRTbEVL/+GJW5FMlanW6s2RcmM3S4D94YlsFDpddOvGHmtk3YokIeYZFG38+/QLiRpI0GSeKlMf+2sGKpgcGRJiriodjRWDSwFJMqRBGWn46wezsSehYOaFbdD0fn91fyWMtqsqVYgB6AyOBf77RAHBhWoTgZFB0tup7GbKajMprM6ziuRICCtX1JPEUMJ9gHFfsoJoY6x65j0TZWYPA6xuguQYZf1ERxc9bubKvr7TefIhAAAzT1e2A9jrN1RpKxtXBAJ8+89hAFhexAFg9N6rS5SJ8mVLHgDUwwcQDu3DKkjaCiTG+OAK85EPYG0hthxQfsu4Dxi9R9RVCMQtLiTv+ETxCACMngLozyoiCn1Ks4q+gxLCSaJwFRFagAhtAgLGV1MURBeAnUT0P0jNUts0qDvDAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, in triangle ABC, angle C = Rtangle , AB = 5.0, AC = 4.0, then the value of sinA is ()
|
\frac{3}{5}
|
166
|
[
"\\frac{3}{4}",
"\\frac{4}{5}",
"\\frac{3}{5}",
"\\frac{5}{3}"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAIoAAABOCAAAAADaldEaAAAE9ElEQVR4nM2aXUwcVRTH//fOsH2o0ZiUELUWP9qwTWtEA0kNGrbR2DUQUAnPSgy8lKQmxVSb1hCrArIEmrBKm7UEFx4UmtQYZBuLlkRia5pCS/pg68alWbQ1PpRCoszuzPFhZpbZj2l32ZnZ/SeTu/dyZ+6Pc885s2dmGaE4dLaMFxpBU+wAigSFjm7bXiQoXzz7Z5FYJbLyQukDxYHiO4QdxWGVz/3sSVYUKJEVotBTEAuwNLFkknemgTAAKrQOAnPUALSxAmfbM3KT/rGgviIHdrQuJHoFRFn+ZOvMN/v1HhUARfOIaLv71oXgc4kxVoAIYgDoSt+5/QtbksYKEsyY7lo8FNiUOuoUipZLiAFjXQ+/25RhilMoWlZjq1/69pyoyTjFfhQ9txID/u4fqTv/tMlE+yOIJdpwyy5x7qQZiYPBPFtfW/XHsTJmOsEpXzndJXd8l8CgTECOoKwFP97Z87JhIKNpHED558RA/eSu+8+z3VcW23femRvOgsRuq1zyzXSEH8xurq0ok71LR8aEbGfbhyKPdm95vy6HE+xCWQ701QSrcjrFHpTo8dHGX7aZZ7OMsiOCrrVUb746VJ4jiQ0o5+rr9kQ6S3M/0bIN0nL5WD8Ov7mxK1iGwgCsjvh299UCMLnL2I+iLXt7MOCdchvIclQ+vkLawQBgsbXy3/lh973PsA2FIfHfX2x+0X3DV5bHxfLcIN0hvu298954Xhh5ozAAkId7nji6L2+Q/FCIAcuDg6+MV1oAkqOvEAiGJw8M0Xb3XxeC1pDkZhUGZozS+b5pY7VpBYosA2LW5tF9dbo7kqHazBNFEKRsSUg3i1m1mSdKzlo5ZVptWoASIy7KssghgYuABLiQaADjcHTw1Os/bBfUEQulb0wJRAicI+5ykYKY6OJx6A2AmOiCOny95Xnx8km3IrtciqUk68EsxEEcpEgSgRiHqOgNoH7iBD77xmvV4Q8f1U7UWax5tCjqREJMUUSoRid1fSgAGW/3Z3rkjmYXpNSLbOA2nBklrkYyj4sAI4VD4SwuEmdgcRGcAWCKwte++mj3p6+SbMmymcQBpkgcgMA4ADEuSRwliiSL0JuYAuHWscdnp6Y8kiwihnjisFIiIAgJKoCpEaPFjdqU4OZnX791eSvIpXbXD4tRNCmmO37JN9Px+0OwyifuhxJXzLLEpC96ZEzYyJfVDaKkcRADiK1Xm7aTmCd+BuBuoPelYBU29P09bxTjmtHjo40XyxNctivljry+5rWW6s0LQ+VOMGgyscr0wNXDQ5tg49Z03guFGMDUR9/9+KApCc16nYfHDIW0zWGrI73PaNWmnU6yV+kEkoyTQNEWvT0Y8IbyqfGylZosjCNGtyXcbK38L79qM2sZSst0FPq1ucZ9ozep2rTvJWf6lbU3qsRweuDn8rdtWzlNmtv+tLczBQVyMGLoOaAfhVpiADyeVBTHlZ4mOIBGxhibcJiJIcVfCEREDeMUwlxBfgbgBzzSASIi4gBiYS8qnLWJZogIu0I07HpE6xKF2oga2khx3CRrFW1ERAcniEghqEYqzPb4S1eIiPzq4iCihjnyY955Eqmi29jlQORuJVorQs67ytL1pLerHPjeCyz9ZvrO1UYl5w8OnN2HmLfUm/43u/VYRRgAIhNaX90Yj/OeohD52ThRSF+7sL91CgFoIyIiheh/uVwJF9Q2JkoAAAAASUVORK5CYII="
}
] |
<image>In Rttriangle ABC, angle C = 90.0, AB = 2.0, BC = 1.0, then the value of sinB is ()
|
\frac{\sqrt{3}}{2}
|
167
|
[
"\\frac{1}{2}",
"\\frac{\\sqrt{2}}{2}",
"\\frac{\\sqrt{3}}{2}",
"2"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAJEAAABiCAAAAAB1tW5IAAAGEUlEQVR4nM2ba2wUVRiGnzO7nYpyiclCSWig2JaLLLGEElAolCjXBqOBBhJKiOGqYLgoIgGSBiSlEoUYUKAYJaBYgYCCNgRJIRRbYwlEi1zaSkF+gNYgSMTOdvf4Y3Z2p7htt+10z77J9EzPTGaffN8735yzZxYp5acw8feVMk6kUT3onJTbszzEibR/Xhm7G9JzUwGpmgZAO1i/CSC9L0gRD1BidM7bQjVEE2n1qfEFhBYHeWoqzfMrSKq/ksSDiQA+oVjKson3ZUB1IQoKWQYsUI1hk4iPTNmkmU3xCbUYNgWJLudkn1MLElKQiHV5s6ZdUkpiySJifk129pxbcVAAQkQkvnE91bviT4UspjTbftf8Gpm2/h5SaaBsRBI82y7Vpb1nKH3S2YgEQJ99p8vS9qh8oNizZlIMOXJo/+DDamigKZGVrJGnt74z4hSoiZQWsXfyhVXzJlSGGWOpiEQSZtbNmJZbG2saaIZIACyqyxy+4FZsaaC5rAGQuPqGx7uq3t4VC1+1QAQ9Cq7+PXjTg3BHLHzVIhEk7az8KX2HX0LMbrwWiEyCfsUlx1M+h5jdeK3ECCCjZP927zeAch8JrGfuuPLC1VnniAcfhQhyqhbPmnKxs2GAVrMWDsrsuskTZt3oZBqIykdBuZZdH5q59E7QS5ajnHdW9ETQde3lLt7195CEg+e8s9pCBJ4tF26nFBqOU9jVNiJILqqoSNkFnVcJ2kgkYdCRrw+lH+68StBGIgEw4uTOgmEnOitKbc2aqed/XPf6uB86J0rtI0JMv5Y34+UrzrKYaicRsKAmK2thJ4zo2k9E4sqaJO+KJiM6J6zVASLovvGqkZb/IIwhHbBWh4gESTuqavt/4A93dFwdIgJI3nf6u5S9ODfK7DARDDl2oGjwUXCoaDpABGPKtm149owTV8IhIph0YfncqRfV32t2zazNmZJb+0je2gPoGBGu16ozhi++04SlPcZyjgjRde3NJweuudduFlMOEgHdC67c7Vf4oENu0gC/YQQcGlnI3jvPV6Z/6IdHxuNtI3LpCCdKiQQBTx0sOZ5abOWt7dd1MmsWQ0bJ3m3DTtDOWuAOXixgoPv9bg0DzQ0G6ISa0J4BOj7p9kvNbZ4YWePKjy73bB7drsAHYyQ1dFyahk/XZQCfW3c1YjWAz60LqzuBxgQ9YOh6oIXrvnR5foRljWiCFsqaqxGpIaVhSKTUcAWsBpBCI0EL/e8Obi0hMbfuhew5thGdfZYXBZHAJQN+DTRd1yN4q8XPbkauZXWp3hVWyYza4xr4zcRojRoIGYCAEI1IjWADCGzdUUrCE/k1DFz/1yO9rRMRMNyAS2iAu9EwNBIChs+N1fgCJNi6fTSGthYkADxbq26nv99A6Iuf1iOlgSuYJwEgdF0HzL/BJkFr0p2g66GtdSUXnT2btofoK144CX5nHyih9MhBRw7tfzr6ZQ0LQxrROyQqCdvOyNNbCzJPtZFI6M2WOyc0qXLNqxMqozrV2cC0oOnXZkzLjWYSHDMiWFSXOTKKZY0YEpG4+mbvYfZljYjFKZZE0GNj1UPbskbEghBbIkjaXvlzengSHEExJpLQ74uSkymfNX9KjIkEwDPHDnzk/ba5U2KdNQDBmLJ338pq5kUVFUQAU6sWz556MdIRVUQwuzZnSqRlDXVEuJZUD81ceufRbhVEocLYde0vXbzBSXBIapwNmGCeLRfu9itssJdvhVkTgCB55/nKlF228q2QyFLqwWMH08MjOmsGWZqvBsfUmIYZGZsnBVEkSMGZUpVApsaPA0yi+FJonK2Uwi5r3q/sRbH/hSL4NrSoqIh4uPNlhsKYI4QQXwJgvl77MLtc7fu9DXnFsqxnuZTWJK1AT5VKzRS4PZ5evcDy0d6+AYSal8RMyfP9e/o2PDfKIqquH/v4Y+poAFFTJPos2U2QyPh4IX26KSMSSIzScrnlxQqL6EBh9wHWFy9KrCS4cXcIMweUBomq/5CBsv6hg0r0/ahu/FafahJVv7kIUaMGBAAJRul4/p1HNgDr6FnekKf2xwdlAEy8L6WM418exJHij+g/6LB+5OR2IC0AAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, in Rttriangle ABC, it is known that angle A = 90.0, AC = 3.0, AB = 4.0, then sinB is equal to ()
|
\frac{3}{5}
|
168
|
[
"\\frac{3}{4}",
"\\frac{3}{5}",
"\\frac{4}{5}",
"\\frac{5}{4}"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAEsAAACFCAAAAAA2x1ryAAAFVklEQVR4nK3abYhUVRjA8f+584YVrEW0aaK2GhgWbmHoB2spowIXXfBDhMImJJgoTTCrKzvabjubY7vWmtYGBWYY1AfJQLMoLUGzwg9LC7tBCFm+pBW6ReXeOzNPH+bOOOPOy733nAOzZ+7e3d+c58xz7r3zzFUCgKhRdS+azcp3yn5JVypa7Lt1mr6Vj/HIjH+0KXdcF8YXTI0hupYCMp+sUDOmoEyM64v1N02/pgm51sVxkZEmI9bFvhXwqz4FuSHVNOZsgm2i25T75p1eiBiZe5BDRzWh65YioZ0ShbyH4X2AXrpahQl7LDkBemOz3H9XDy/cpePkrXwTBl79w5AFc57pM2aR3H/GmNUY7zRmkTjxrTErln7RmMXqaweMWaF0Z9aUxZOzdxuz6O8bN2IJ0NyalsArvMRSIPQOnQ+8wstjVMzYuDUYNMkCEp8NG7Makh3GLNb9/LkxK9QfNGEnW7TdvN+Yxc7OCTOWwKIlA4GydZKlgPTgZSMWwJzVKWMWXR8GOfRXtOT2RMKUpYifPmnIgljqBWMW7dmPjFkMJH0nbKVcBWDp3Le1reIxdXvK76G/QozuyJpb/SZsBaswsvQ7Z/2dRarOPTRuTPo7i9SwSHw57IeqaTV0xfNPPEZay+L5c4e9KR6s0MDmLHg+91a1BKDt1r2lm0Gt/FgGtk6Ubga08m3Rku0eEG8WOwYvGbEEaFrjvXBRy1IA3Qd+NGEB0NDp+Vqldk4gsOGH47p5rwo/Y6/EdXP1elulPtC3CmG+3uWtEFL3fUTRcv+b2laxpdOeDv31LYH5bd3F51qWAlJ7zyDUW+GeYqQx3uXhSGEBWdu266Rj4vjp+q9oAaGoitR51Vu6PVxEeYtReO7SQc9WLmeTtXPg2BnAsW2udyhyqc6Mu+3Y4tgZ9w8rWRZRQpaFE4mK4ISjoQyFDnDCK6e9ixOOWhkiyolExY5Eb5zjYoxWBrEQsW0REUVIcDtAlKK/5y9RhAWIuA+paCkQyVpgRaPRCnOYg4Utr9Wfr2w+DMuxQEkOckplEIXbAUrloPety5maxTsLyNlhIKQsIJyxbYuI2E6YQufkCGds+55VL4vthHHEKT7KWhhCoZJwVRTc2Sh2EffX3XPXN5fMVqTSuPIt6+HQv6Xm/mL9K+ehjLlh7CiAVFlwBUtZ4boUsb4OAVSVV/W2hgptlbxfY68/i8FaV/0+rZbmGhVKnxbp/uoVSr/W/LbqFUq/Fqm9VT+m+rYa45uNWWw5+V2Vk5t/K9abqHJy82+x5srByjsCWKEdHdmKQQawWHbXUMUgfVsCDPZdrbTLt6WA5sd3GrEASO3+zZg1a22lI2yg+YLkx8OlmwGt/BvY0NNRuhnQclulCmUQS0BiqckVSv+WoEDxdGhShTJojPkKZflK8m8VZrtl8cANKyn4uNh+48fU4JbMW9lrylL07D+jl6slrTGeMJKrgLDlVFmFUsNSxFJlV/06McKav0u/nNKzQjtKV5KexbLpe4xZ7MpXKMWEteCpNLhX6rqWSg2dLaxRXYtZa5OFp9oWyeKXU3qWAA3JuLtVvBL/uhvlqzJbbNkTh1rLrEcJ/FVhKOneQxNwLBWbBRxR6tnxN4Ibmc1KKfUVyIXF23JyfvF7GjeHOJuOyUjTaHhi3RM9ML19pkZwuXMPcNtMFT52bh/A3XdC4DtOfpo7NbPrkXkszweX07kB5jA0jYpYF8uDkwB95ptR2dM6huV+QHajkyD971dns/S+77Hu+AXgwqky0lcvww9N4c/LM+FTjomMtP+nkRFdYzKx/MErgoyA0rn/aASA9n9F/gdtEvAcZReA0AAAAABJRU5ErkJggg=="
}
] |
<image>In Rttriangle ACB, angle C = 90.0, BC = 5.0, AC = 12.0, then sinA = ()
|
\frac{5}{13}
|
169
|
[
"\\frac{5}{12}",
"\\frac{12}{5}",
"\\frac{5}{13}",
"\\frac{12}{13}"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHoAAABrCAAAAACduMkGAAAGNklEQVR4nO1aXWwUVRT+zuxsupColBAKCcJWgy00aVgSwpqQ2Co2EJMWnqwP/KmhxBfA+IwSYyKQABqTUl9YeJFo2hJjf0RiqxiBmHS3aiwY2dIidk2sjZp0tzs/x4eZ3e7fzM7s3CUm8iXt3Dt3Zr77nXvuPWdnLjEswIShnYtly4sqhmTZQojtTmTKJTpo2Wfv1MDxhRMZghLclP1XIUrpMRELoebuKpt7vVgbtqqPgxZO2N3rjdlGdSwEIDBpJ9sbrFW/BQApa9m3PHOzBaJGc82MRXvro2GrWx2iSPUp6kgi2pF8bGRkBCOjwxY9nvv274mYaNVjTbO68s48MzNYt+zzUzVhZuYxAEDTrAjVWOH7lbTgEqNi7cTzA9cBIDTdMMjKtgNJ96KLqVeuuI+rO8rd17/lOaPwh7wVctsdIdQA7iWWl7vv4h6zcHX7cuDOk0vcUxePtdL17ivzRjGnsWDQ4+vME6ntg8y9GKxgrEtRZ51msbHQ3Y6cNs+MESr0shLUPJLTqJdmTq6bMc7qJ9vnK6FlLvLwe53/HMr1GMo7ZHE5vMo4mx5uq2SUS431dMOacVuTGGLD101LTDePl7aLA8j5HXncwcpMiKXCADEBl55tBgCmSqJYgZ48WC3wXd3GcboBqHysrYImEywj6tzGyUAFIguR42Z5PHYGjHSKYLZLkCwbN/Q3kNfsCIULKcNBpjla10ies6MiaoKDZ7532DOrQeba4Inw7Rrv1oZ9Hl4a3ftqBFgbFahONd4QlKS6Vj0cEpUeu6Y+K8jJALn8Jbng27+3iKJ2qZp6Dopidu5mTAB4of6n2sWqNzhWbfymjXTU5lS9weXkCp3f5J3ThCs345sBcczu3IyyM8vz2wy4MjhTInxLSKQ24EI1IfKSwSxCs0s3C47Ui5hVJtyMdX+oXsisqoD64l4xljbhwuCTrXdFMrtR/b6wmGXAuWpxOYIJ56ovtdYJZXZB3XNILLPzNTyW2iqYuqxqNse7u0sws2M3m9s4GRC4kgHOxzrSGWCBKxngXPWG/kahvHCmmoGhoHBmR9QEfHhQVKjMeawjgyeenhCYI5hw5mbde8UzgxjQNcBXqg8Z1cKXbwCGaskP2Vb9UOYnntDhdmTw7HsEYoHkmTVcAcm65pOgQPIBCuBH5hD7qwUKSDbrCmQVJBtnPCCj2g8ZkiRB9ft1hiL7JRWAcbiwF4rshw5FToSoQ1lo6/Gz6vd7tIDhSYpMui4zS6wC8JEmA4qfJQYUfyo4sUyTAbD2w56vHznb9OPMGSgyQZG9razMzJxm5rSuMusKM7OeZuY062DmNHd3ZU7Hm8f19NTx5lnmtG78eYAEaCoIgE8lgFgHmKCBCeah5xDAOqDTJ63NIPr41Vohri4BxIoPgAQJgKwpCsGvK5oMQFc0+UagSSdZUxRp4fPtiiZ/t36fChUqFKjeuBcNoBWZBMzML36UqU6HZ5nHKvrOYWFwE3ppn0nc2JUtz91EtP1cHH0D3uTmq1bTanG/wMyb157+M1PvBZpmpxvwgRDVZSPXynPXov3C3p+UUl0SYO7bxRzdFM877W1O5T7dtnFXHzPHG5MCKTOwCx9MmIzuBlC/oxsACCwydhFbjSATiI+uPQoAia23hecKLFlmuAQg1d8JAKjbGRFGOWlajuzj9aXW1cZlLaPCqCPBC0bBnjqbIwSnhFFj6kAwAi5HnX1D1zAhjhqYOhC8AOAZkc90gXXxcvNaPI4BAPbHCz+nPiDsfzPo+iuAGOJj9UBlHxa9gPHV2iccPL0K1Dlw/4mtWtSMU0Q09GCpjY+4MVrKPPZCdbi5oJQ358ycL7PjQ+S8zuxjwZpxHkP7fME2iYU3Du9kAnAnWfmWDwuYATLEfee3fcNAwVgP/PyyeYngLCwXW75InEEhtXpl83oASA0/X1slXgZWbzPndS71zKixtWbiy7YqMYOAzwJXiqnNVVXtaW+pFjUQ/e31meTl7wuoV9b9AgCfDry9pFrLWB9dfG31sqX3jT08OejFIPPJxV1IooOmnpdO5z+9F8ARq0bBfdALI0ReaiwyfBTk3ExF4aNqE5qKqv+dyPWQ+iH1/4e6qumoPXUV04Vy1MCxqlL/CxHpuoqtUPUmAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, in the rectangular coordinate system, P is the point in the first quadrant, and its coordinates are (4.0,m), and the cosine value of the angle α between OP and the positive semi-axis of the x-axis is frac {3.0}{5.0}, then the value of tanangle α is ()
|
\frac{4}{3}
|
170
|
[
"\\frac{4}{5}",
"\\frac{5}{4}",
"\\frac{3}{4}",
"\\frac{4}{3}"
] |
D
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAGQAAABRCAAAAAABPlyWAAAD0UlEQVR4nLWZsY8bRRSHvxl7VxQpOTkVUoKECwqS6ChQkDjdUSQUJwT3DyAhFyAhoQjRIFnIjRMaGl8KCkyHOLpccYkQEF1osSMqiuhcIaSk4rrZvXkU3l3bd2t7Z3f2Sb6ZHVvz3fzmvdmf10pI4lHrDUAU/kOnnegzBVAHYwb56pWrdcy/ALl/7Z/aGClk8t9bG5cAWfnh8hAB+OZLXoOatgQtCmF/X12pZfoEokBNTkWOrtYlFjSByUe/wTMysfzXisgdGMkudOS7J1JLMH/RbfTTrvUJ0Qs78fHh7RfTnlfF9MJ8l483r//hc/oMkoWg6A337tUKUQiyM36QSlYLZApq+ZfsPASB3nDvnte6vABRwPb4wXs+JbsAAVCeJcuFAL3h3t1aIQKwMz70lmV5kGl1epRsmVwAve89SbYKwrueJFsJySSrWDWrIWmWVTyTl0IkefnIsqUQBSjBS5atlmsqU2/4YbUsW7cnAOw8Pbz9vG4IrePNGxUkWw2ZpW6ls6zIngCwMz689eI82gtkPlrHbyZZ5lw1xSHQ+2EmmdNqXCBsj8v5MidI2cJ0g1DOl7lCKOPLnCFlJHOGlPFlzpAyvsxdLtx9mQbOjDHWkeN0lmmgERC4rMjZl5WRy9mXpRBjDGdWEGNiEGMMWZP1pn+NEWNiMaZb1JelkICQhlLEYWiFKAh1TNoAURAqm1wHRGFgozCwRX1ZClGNGAERYxBB0bAkDSBaEejsOkheUtCXJRBFw8qZAh2GYc4+LU2+Qr5MQxyjgEakQVkLVhGDJmlSip2/dvJlGpSNmkADDQSxMZrAmqhJ2hir5ocjIiJiIuKivmz23CCSbrfcE4dfWv2V78/0P2us+XeWxzpflkJiU+XZ0BpflkKaYbPE5AV92UK6Oq+loC9bgEj+Z4rFCl+WQWZTl96bpb4sg/h4vr3Mly0eIZLTc4llhTlfNPmjjoV5+e6FsUVIN2/UMf59+9bzc0M5J27F79M5kuVAqu1+ni+bP7m9RJ4v03Pv+QO1jjevP5nNWMrcFYje8IPZHbPa2ZUfArD91+yOqQT2P2Xr0RffgnpnC0DU110fsMFLP94UBTSZXOkIJ2Ef4PFjH5On8Yn6vf0yAKbdERG5c1Ch/pbGLsBPwmDjVERk8NQ3wIqIvH8gR4xor/YA1cK8fionjPTfr/rchnPx681LfN65BrVsRhID4E8R3X4GMPm5lpU8HMngxhgGHFh5uFXLQk62REy7L8gR0MnGvf2WZUVk0Bc54WDx9mT9/l4muyMx7Y3TSvfANXGEArUlIv8DkX8U1aQC5t8AAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, it is known that in Rttriangle ABC, angle C = 90.0, AC = 6.0, BC = 8.0, then the value of tanA is ()
|
\frac{4}{3}
|
171
|
[
"\\frac{3}{5}",
"\\frac{4}{5}",
"\\frac{3}{4}",
"\\frac{4}{3}"
] |
D
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAKkAAABQCAAAAABHIwoiAAAGPUlEQVR4nM1aXWgcVRT+Zmv0JZiXKax0NdpE0yDClhay0EpaW0i0tUZ8SIX6IMZspA8J2JKAEStGmkIK8SE1sYqgBSMttGILm1KkYgKVFjfVSCpNbSAtBgIlmha2d3bv58PsT3azMzt/O8kHu3Pv3L9vzrnnzD13Lrjm0QIAp4l0NhZfTTLm2HeGMcQDAABonQqItQntVhPqgDTT3uoaKKtLyBA/batEZ3tYZ3oifBfA2pMqAeDWF0rg4xE8AgCzS6+sr8TkDwS4diSrMNQGAGPx8InN8XAAIAa68RwQjnzVN792iOJOXz0AzP4Xxrt1YwDJIQDtJJnoVQdX2c6XobmfJDnUT97GaQaA2SUythEAHvvkl7Nbrq2qIHM4hm4AwFgTtOb1TQBv7yDl0NHMk5xSDy2tmhiXYbx6gSRjAICXSOIQcJ0tafWT5GI0eJakXCWGaSyEYgUUlKxnyln9rx3B4WqfdV2Il8NHC+4Esqmc1Tdc27n105SeXiUXO3K/LzN2TpRFMbdn02UfdGyEeGhuxfQzYEqe33Bgocx8ikKSXKqN5eUlSQaM5L/nRqh+xAc9F0IB0LarKS+vT0yTp5vaHomXV4DFMRxOFLlrwpSSJ/10rpmJeSs4U6zYUPsAFLRNLz57rpy6zh8OBPDwjcGaosWl3NBE9MmRp7ynZYyO1MniBWbakJJksl/tS2aUU/4312itwXwzm6cZzO31z7nOqHEDkVhhSp4PpZ1ruWWajAzTYCAzi8phz3SofgREuWMtflAd1VNFBrL6tFORyJRnojNCrNrYKVpmSg6rPWV2rnPBceNCa9oHAESn79Rf8EbLRcHkm13bzMrt4PKmvXMu5WaCvmazUntMmexT+5Nu2JggHY8YwQZT3XHMNj9vMplcYCFk7rTtyFRSUpJng23lWLk295iX27AoKFCgAC03qzZ96dZ8VuDY/b4SNRw9fzyy3TPnqk+qeLCUqTpjSg6r3V461+XxiAHsaD+rBoDR6bteOte2vU0l6ziXg4fOtXg8kg8XTL1zrpNq0XgkH26YkrO7vXCuiedHyZIrSvtMZV5iNNi24HbRGo1aqWXfopS8ROuNyvpvbPeRh+9//ixnNSb1XMqD5NUtjdMknQUEkjPqpKWGHjClHFR7E3ZpZuonwsPWGjjxp4VQOqdu1l202yh97amLWmxBMimEcGsVl2pb5p20ixkFzSsAkpSuiUomPlIH7LebC16xWtUjpiQ5szucG9Zah8nt/Za7zzAVQmNSSEohkqQUQjB70VNaJi+EFELT7+SzGg12LFoemSR7mgt6sMBUCpIaqZFCUkhqekrT6ej39LwUglJolGJFb4td6ikbRC+HMktyC1Sz2k9qlJJSCCGk1EgpmL6QlFrmXwpKIbO/5ZDkMudqAQvVdl7FgYzPWEemFECpqKjIfkAvfGOY7wsqALD12usvfvjQ3NuAekcH3jILmgsRAJJJKAACyXWAQv0rb0qPRVK5nevc7RLonJqqGzOroEBRAODYgyM2iAJkMu1NdT0LITIGlLnohpa9LYTI/oojVl3CuUqS4yXjkXwse5u6Xmrmpm2it2qApL4BWxxLoZLxSD5ye9KpgBcbeVT0j4U3Ov4dbjA7LrD/mcKPeCW71qEJj7dG5Cn14KKxUK3EI/nwYi1lgMVocNSoLG4lHslHGZmSV8K7ixNaqjV8BkN4seozREO8OXJkuXOdT1/f29Vqvze3ciuB+ZbaS9nMHxXReyQ5anuSsszaJ0nGqlszzrXh+GH1O3JGjTvop6xMdcNP9KqDlCQ/b0ylJhp3/bnZYjySj/LLlOR049ar5D9VE6lUKnV83auOOvGFqeS3atdi62GS5GuPLzlat5fV9jNQcGD6Qe2ZIACc+/F8pbOXoafCM8N4bVVkgsmq/Q7bl/wW7R1SA33awcnfFxyeHfSRKXDnnYv4bTMAJycdfWUKXEjtc9rUZ6YuDo36Yvs5ZIg6kI+/TE8oyk6tC46+vvvJdFa5Tn796BPOWvvIVGtuHwGefr/G2WFBH5mevHccADbWOjt54Z/tay+83e2mvX8yvftXDdycEvXTogg3R278Y7qh7m8AmD3jVLCerpdMMYTTZGyH0+a+MZX6OfJ2x7vf/wMgPKk/XZN/mQAAAABJRU5ErkJggg=="
}
] |
<image>As shown in the figure: In Rttriangle ABC, angle C = 90.0, AC = 8.0, AB = 10.0, then the value of sinB is equal to ()
|
\frac{4}{5}
|
172
|
[
"\\frac{3}{5}",
"\\frac{4}{5}",
"\\frac{3}{4}",
"\\frac{4}{3}"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAH4AAABQCAAAAAD67p4SAAADCUlEQVR4nMXav08TYRzH8c8dVSIuTQxGHaSBASZCjNHBSRR1cCiDiRPiyj/gCB38EUviJCbGBB2EwQEcxYVBFxKCzkZLjT8wMjgY0pp+n49De3dtoT/u7nmeexLSp0fD633cc+lwj0MkOdxE9YAvP0uCT3mTB0eT4L2zX1obSpAv7l5JQq/x5TvThYHk+PnHfUnggEMAG+eB4ffHEuBdAMUX5PbQkQR0uEBxJg/8+ofSasm+T6J/k3PA8GtcK9DyQP18MTNtOQCNc9sBaJ7bDdjH2w04gLcZcCBvL6AFbyugJW8noA1vI6Atbz6gA286oCNvNqAL3mRAV7y5gC55UwFd82YCQvAmAkLx5GLm5laCPLk8ltUYEJonVzQGROB1BkTi9QVE5HUFROb1BMTgdQTE4uMHxOTjBsTm4wVo4OMEaOGjB2jiowaApBIRFZePFlAlpW5uNUArHz7A40WEEEVWr4OIMHjxZyJCSvXTwe9iBPhnLyQUqbw3KnipfkAp/7D3c/CfDBPg80oIRYqIKIqfRJ8nmw+34MMEBNde2N/KCct3HwBSCRVJJSApilSU2jVQPtxwuDPfbQBIVVtDArJhjflvVNPSa7v2QgXU3WxKw40XNiAglY77PmyARyoxwncK0PaVEy3AAt8uwArfOsAS3yrAqXuI6swCQKUnZ+bJwWouMzvWdGz/Q9S/T83oyG7duj35oengvn9+IWPxEljmmwOs840BCfD1AalgFZSwdhjATmnd0NrzR/rRuxvHR++na08xq2P94lgagPp22jQPAF+/rGQbePxJ23C9sXMCjfe9Rb0y5Zx0nIk9J6mtI7nRyfKlrOvFOPMbKxb1SmEAvROfXAAoDo+Sp67b3EDw/fcIlpbvgeT2YJ5k6fKu8Rs+GC8B5EkXwPPBGQA95yw+wa+sbXL7yTxcoPz2ah+A1F2LGyikNIKBqTd7LrDz0/6emY9nq+fqAjhkfdNKZWEcyM3N9IEsXciT5CuLK28QAPo3yRTQO/Fw/AyWfljcufLZn9XdBQmM/99JoY/M2zw9AAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, in Rttriangle ABC, angle C = 90.0, AC = 1.0, BC = 2.0, then the value of cosB is ()
|
\frac{2\sqrt{5}}{5}
|
173
|
[
"\\frac{\\sqrt{5}}{5}",
"\\frac{2\\sqrt{5}}{5}",
"\\frac{1}{2}",
"2"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAI4AAACaCAAAAABa0S9ZAAAIqUlEQVR4nO2cf4xVRxXHPzP7svCH9kUBQVxDt8Gktf7RtKImhn0m6l+QKIkmNa2BNUBUfghmF0gFg2mimP6DDWiNJOwjVNvE2AZLav+S3aUaoYSELFZrukstagULu6Ymy/LeHP+Ye9+7C/vm3rl3LtVkv5vse3PvzNzvPefMzJkzMw9xwNQYMsLrIiLSFOPK66wnc84KDsip+kXFkAJAo1x5XcheULtv3vMHgV7LLS8Zn4Id6dhKPoSauMdeuAOycdCxlagRfrI6F4lYJiaZyE8nqlPVvwFwY6cvHYUAgsZIdgG56ahesZbz/YMv+vJBweglxGjlIZ6UFjpiRET++f4F99/M0cIZF+PTzsUpnc9cUqsVGL7zyMIP/tSniQgIDNZWoPxs2SGacWpijIg5s+yv1bFFV3xlMzTilr2PdAyqV06hFKhvP34X9z/8PY+XBJigp8+zSGfpGBFp2q+/eKAxWZUri8f83nRQxgd9pZNFnA+8LJNVkUMbfCpuDgHedJxjVoTfLwTg61798hsinH7dV1ed6YiKPywbunzqnej/LXizSel3Wk7FZNXPuxiA8WbNX1sqW2cytWISwLg78VvglxtIGyTaEK/cUd2jSnn6AdkeYHK5F6N9+Pol6XQkMQAKgDFkGxNPWFJh6ShQmmmllFKnAbQm20v7agrIYsqirCkbjSjI7L6M9oGnU5vBdiR+urZCyfzS5gO+bLLQSTzd+FR9Y+NTIp4Ov2fTTc/SJrD3oXV+XHANEjnRkuXZ4xf8S/t3nBnR3HxgiX+p0ugcWLY+R6ngygIwmj8dPJ+nZCnS0Yb+/T2A91S6HGXpw2yx3zw75lKUxeX9I5JrTh9cOgLIph335YswBKejgGNv7ckZfilDWVcfe97Lr04gPB2RbY+syls4PB31/Ll6wg3wQ3g6U9ufXpA7Vha+3xlc0+fniCQRXDrDL44VeMkw0mk36+mNT1YLVFSYjpC0W7Mvh8+VQGFlKZJ2e+74hRxzz4B0ZiGfz5VA0JYl+XyuBIJK588tnytnLxhWOl+LfK78KwYh6RyWLWSdv3dCtjDQ5AIARjrdNyLy5qI/2kTTM8aUQDbbMSycjsjPIU6x8+TNO++zyQISz0BHVEulMuf83F479o89yWRpdFSLlavBXN396644W34EM+Vtj34ciBeO8iJrv2ODOp3JP/dKHVJFGISORKsu0Wg0V7hpavvxBQAqV7y0jSyxQSUmmVfsMl4iA+xeUyMK/xRSf7p01K3xLh1dRRTGRsSGT44VZtKuOydUXPxGMZ8rEJ0W9j60DinUomIUGdEjZXH2+AVRqlD3FyOAspqbDyxWGMk9fUgggL9jfa4CWzQSKE4nZ5xrbhQ35f6WzxUARaUjP47jXEFQjI7Rf9/vtSKThtzKEgQ0G3fc+z9AR4xCGUz9rT0h2eRVlrLuxrU9J/LGueZGbmUZgK2PrqLYzOEW5DZljajnztWhmHMcho6IUir2uQo5XLORvSahtbwmiBZh95rVYIJOHTNKx8yKnCg0muGTF4KH8jJWqC2npJXc2PTk+whqONnpMK2U6lLJHvixB9dh6dzxltWaFNuEBl75+QWJHOaAAsomndYDxUTL+s1NBeNcxehEClFRfnNg2Xq7JSCs7WTtdxSSnNK9dvB8cCoxnUbmyEFLlkF9rgQ0UPHqmw3I4aA+VwL+g4SGv4X1uRKI6TSg0oAKjaT+2mrsblCJ042NO1fSKGUVNbaGSvTXqFQa0KgkP4DGTAWbnqHx9LXdzEQ3AiP5jo1IIM6cmut7f9XV6C6DTIJOJZJ+qg7Mtq+syr9glU7nVivoYBXx5RPnjhQKjqbRiR5kxVNpUImtOv5oVKh0N6L0f7bXuxsVZrppdIXvBhN7v1xtJdrGCOabPBXU/5uNdr3ZWu7IyR/aUnWlJsJLJ14EuHnTuZd9smo/p1cesV+GajJe897/m4qsaxJVETEiA2uXvioiMs64xIdv3i06ImeWXXmmZ0JEhnaJDPV5bfLPBC+bbG7+wZIvb/0qwEdhg+cm/yzwonNg6Qb0wDvPIlxk1+AnJkYCs8m8nlUVI68uflNE5PSyaTE1auJ/7mAONFv/RFq2Y0REOi6eiZx/j4h86pBNfO6Xs+45ikWHUOa+dTur2HZMug0ILZ/ri8+CZNnxadzGZcDAWQB0cn+2Tp8qqcv7j9qtynzppXfaRV1IyaFBM9X/+Yu0lnmiEm7pCMCmHfeitQGWLn+jVSDtPTrel+hfdWztp7dejevL1LIEsHEuO1ituNy6UexMmwLY/hofORxf/W47x9uLOvK59rPuh5eDnXTKC8sfbFcrnYu5quTtxW3R/es3/37mszDb21rUcaVOvXdm5gjQ/2FAWJu4I3R4ohJbZScssuqKzFZJtFToRNwhvMS0O2NuNEWubKkejBLpxg/AJ+9aEDJQEUEAzY9W8pdvRe3cSccAo0qpXfgeQssGBUx97IXfHVrSbqluQQ4gIgxOVotsZZgLJj4Bdib5ODcdM1gTERnhelXCexNzwOmR6tEnxgFJ9hIhMasdi2jjth32DfYCMh6aR4QEm7o6putdE25/ffhxAH100CaL7a+4Ha36ml3r+/qhqZ10LtFjNIwOH7Xp0Npq1aehF9anjFl3c1kDfQO9gXncBoH+iJcDg/tgQg08UTYbpeDoRUgbJGrAuBG5Xi27iQ8IMuKeSRhOiUivlNEjz0ZdfYGa6kk9nxUZ/9Td18vlY7TRpPU7ZPb6ikLb018Z51llhZdaEHuG0GfFpkwou6Oj9Of4YZ6OC/N0XJin40IWOomfQxGSJz/fHTrtQ7zG6xBvSXSA6MT1y+URsci2fZrkwnWZyHrEuewRPUIqHRGQeLuD32n9HEhV1u3G29qRWwKy/rSCRdk+akY6d6yz/D/sle8g5um4ME/HhXk6LszTcWGejgvzdFyYp+OCnzdoEyWFwgT4L+zJiIrW6yVaAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, in the plane rectangular coordinate system, the coordinates of point A are (2.0,3.0), then the value of tanα is ()
|
\frac{3}{2}
|
174
|
[
"\\frac{2}{3}",
"\\frac{3}{2}",
"\\frac{2\\sqrt{13}}{13}",
"\\frac{3\\sqrt{13}}{13}"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAIQAAABUCAAAAABmEcBUAAAEwUlEQVR4nM2aS2gbRxjH/6MUTyCG1NQhLg3YsdUoLaFR8SEKPTgtlCiXJKU9+tJC7dBDjAlE1k095UHbRIeEgA19EGjdhDr00PoBjXOqbop6aKxiUQmTgltRmjgFrR/79TCrfUir1WN3dvtH0uzMjnZ+mvm++WZHC/wPxEBBIwChQFs/wxhjdwFQgFJPf0s/IhtsT2wXTuFw0MPx0xvdmBiLBjscNwDkiILtiaUc3Tj6MNjhKP7zGj6MLAYL8UMceJwf9BeCTBMjmyUsnMJWfF/cXwjGqkcPjuPXRfb9Udb14p/d8NU7VC3Nxg/cBhGRqpJKRAG46Npob3qbzO36bpjlySNDxfO7LGU+Q/ybCmM1taem1FeInfTASu5aL2BdP/hqE9/0x7PiSCWLTTznWzcsTO3+cgQgBoDVnvSnFzIj4TlLgbldfyBWz/bdqiny10UJ6+PDseK4ka+TfIinyUhPKcH1fJ09yIdQrvaX85f3VrP2S3vJEDMDP2em9xsANt0AQKqL3kvuv3cMpDXNyB4B8Ng7VNPx8rHofOOavrhoNn7gttN5HyDWRnuvbzvWkDZPkPYuTx4Z+n1il17WTJ5CCMN7lgqz1VS3htDYGCVBAAClD67kPuu1YDWT1y46m3hlKdrul7yFWJja/cWJTr7omUeomZHwdy3XluOiNuG6VQgPDJMAYP3ccKw03qxqA7mAqM4ADHiSjPSUEl2dXskFBKtybF7pL+cv7W1SXQ4EtGlgpj+jh+vO5NpFRbh2K1cusRx73RSu1cYVHb3DFUSzcC0DouaHNg/XrUK0Y5gM4r4RgDVcu1UIgKIo7YAwAM9SYVTDtTcQHLxpPYt20gdXctde8AihbRclBmD24qtL0VbXCu1AKABXAA4FXMsaiX6kAF2LU3u+igFKm73nLCKqGG/9ZUrMZzJvhe9UKlSpaCc89w6FA6gxUtJTDqDwzpl3f3sPHO1akbN0CK41zrnl+syUrp8fjpU+8M4UzBC1/tnAX/9KRp4vJbgEBjFPcADgCgfAFYUDXDEnCtD19NKhcv4KVxQOBQq0l2fSzcPW0rSperrv7CN3huhkmAaEg7XPRUYy3iLY79459O2DqUr6pIdd7zgc9nITrlvtCStE3apkbbT3+nY7a5WOIKyh3PA/AqrhOiTDKy1qtJ5gwMbHIlxLZzBDkOkT2EkPPhKb4Whtk8GVbMZLJfpa3wyXpOZrzPlobFlW4zY/3sY71LrNcE8hatJ6CCKiQnt3115A1HrH+jnzZrg/skLQk2Skp5jwdMHSgphlZXXV5d11pzJBzAxod9cBPGWjGcfcYcQl2qOjYTIQiHl5E9HyjzcOQxCPOdVEUCmBU7+qSkQE3GTszc1JVG3C+JtQ45PTMfrSnQAU2S9En/M+mA1z4aG81q0iMGArPnYLGLgwaIbYmvCheSEGANN/fwoAgy8LLqGLb2+I0ZJjDrXajFw2MiGtg25G/9AgpQ8IAcDj/JCR1wyzuHF8Xzf8macYmWAAMIRE5pMEDokCn+bLlyIFRkDxrgZE4smvMSJS/TEI0eQdovkTRKTd/BQ3SHgog8N/l97qo6E4MHYfgNipKb5/HyiIc/5N3yfN404XgCydFuMRjP4D2LxLFYvxX1oAAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, it is known that in Rttriangle ABC, angle C = 90.0, AC = 4.0, tanA = frac {1.0}{2.0}, then the length of BC is ()
|
2.0
|
175
|
[
"2",
"8",
"2\\sqrt{5}",
"4\\sqrt{5}"
] |
A
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAKYAAABZCAAAAACRJwBnAAAGAklEQVR4nMWaXWhTZxjH/yca3UXBXbT0ODO7WVk6emHEi32ILDDFwKT2ogNlZUzQtlCQ7gs7EISxC2EOvFDnyEAHDiIt1Isw065iZBE7KsSxMhlrMUMnSmW0NoP0pDn/XeScpElPTs7Hm+RP2rwn78nz/vK8H8+T941E1EgTrTsAUBJizCPEioGyxyUAEENZO8yTW7cJtFYrzG8Dj0WaqxFm6vlbLU0ARI188ZgEgK9P4DVA2NAUj0kJxIUL0qtCrQrHlAAptUTGtonrcmC9MEtFpY7cBOYgrssBULg+BZLsAvoE2pTER6F84BEUfjTVALMWqlkUEqtaYVLkPK8V5q3bktB5XhvMHw/33BBsUuCqQVIlya+2z07LY0LtCl7eJSA3MHOnGZOh/z4oeMJ99wuPQunD6+Mbgc74u+l+DVDEIBXaN+STwGC+oD7sOC3OrGDMmbazhfJ8YJjaaNX+O5dYzJvyCEmdamF3vyjDQjEjm6dIqqrO+TzUu+Lek6RYzNPb75e9kunpzgjhFJd65AbvXm8pm55S7uijsSYBxoVFoXT303hLWSCXsO6Sf9+iAOuiMJ8Ft4w1Ga3k5/YGnwqw737ckOT9tjMV6850pFzbF4OZaI2QXDNZtMtwW/nUsi0hmBE5oZWMJ3XEl3TZggBM9WxVb0XlO+7aEIDZv+uJWbWqkozLP7tqwzXmUveBJZou4SpJTsvX3LTiAlMlyfld/SuW7p7xXSm8yb5cenO23XK2Ntt20Xm25MabKqdkGy5yk4C68uaoHNeLZqR63fzOYactucE8u3XG8r0qSS7sGXDYlIsM6eN4rNXmW9LvN19e56Qtx5jLhzIj9lO05d6VyEYHrTnNkJ4Fm6MOEskNkRcPpB005xBz7u0DYSe9J3kcJqCORvT05isO5wLJkwHT4GooO5iq9scxedJ2Q7oBliSgVpd6J94857O+EBkq/IqWUlkOSLYw81aHAo/svMnIyFW7Cahtb2YO7V0qtudU0dZfbd3vAZDNZq3NNgCLwRdiTfmimx2s964etLcDSpKKpU+kkpztOGXXcRVUsgNatWOqYpZYuCtfdgZlIC0BtSYdU1EUKopCKgqZvyw+6aWob0IhqVBRLPaAmWbbLtrG1P8Kj1VP+sV325J5RkUVwmkjAV2NqZBU8i5d9YJKksskP+t8UP5RXGp+h9UEtBDTvdps93q9pXNM25dePnTv9kv5KS5sd6z5VmLAmjEPUL4aGa5Oi/s3xDZphz1iDnwIYNP11Ic5Kzd7AGS9AODNegF4s1kv4M0WnwgFeLx7zw/rtJezyEJ7uJEEAE3XMj3LVhxa7P/ywbZqKZr2hd2Ow0pa+UiPamYqYlacEqoalceFIBlr8M2FqvfomMUVUtMqX4Zd71SZ62TgCVXzSFQ99VCHO93vT5rrTEeqSrisipnpfad6n7iUGt56nzQL7dUwF4K9GZFEFRR5OWlaXwXzYafjjQpbUqPylFm9OWbSZz07cCOVjJt+v6qAmR8lMTkqHqmSTI/gDTH1rX3fdA1wKsosAV2DWThw5CkBByW2ZJKArjn2139LkvsoNbXJXdS2q/bEvoUTxlWVNmcWQ9nJOlMCvl8iXxjXVMB8tDvgaOfMpZrjiQHjGsOhMFOnhWitlkK9RkcOhpiThdMREUf21qWSXO7pzqxt1QjzslzXhahMhgmoAeapjr/q7MUyGSSgazBzRy1kqTWWtgNaXMJZPtPT+xfidV+IyvVlb/BvACAkaF9kSz/Hw51Ddfacsb5v+6PkuhRzxneunjAmKjuCLzlwuXXw9f2N6GQj3fh9/A0AuDCI4MTnHgIHJUmSRoF0YkinZAN/cpzfO907lMgBKek38tKGzSDJrhHGkGzoImQsxd9Hkp+MeAhk50Lwi/2RrSCF//0GINq3g2Ssj+zqq3dktCDFr+8sguR5AMkG0lTUA4xoJQ+A8STP77zX4P41lwdIPQ/gmH+80SQG2uKfA4DUKDzATyHgnz/bG81kIO/x4VFw4kgPQHYlqfhbLOzeNUAxAMdISrEQAARvNthxVfQ/zld867coTegAAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, in ABC, AB = AC = 4.0, BC = 6.0, then cosB = ()
|
\frac{3}{4}
|
176
|
[
"\\frac{3}{4}",
"\\frac{4}{3}",
"\\frac{3}{5}",
"\\frac{4}{5}"
] |
A
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHcAAAC6CAAAAACxJI08AAAF8UlEQVR4nMVcTWhcVRT+7ryAk64CJTAuSgdFGnEzFRfJRqbawhRcpCsrkvQHRe2mCIXiSroQlQrNRmqhkkJplS7a7DI760LSFsIEQSz4w2ShzmKEgLSdkPc4LmYmeTPzfu7POXcuSeaP4ct3cnLne/d85yjCWFZhPLB7uNvXx4Ibvr81Ftw7N18cB+7m3wteYXu42xfPNg+OAferr/974hcXRES3ABxqk89VALDZJnp4YNIr3QKwee494HcAuOERmAjT6zsLwKE2YdlbnFV8f1blX4ue6A7uz+c/8QSLQb7P5r6b8YM7yLf4+cd+YIc/B2vFFT+4g3EmNI83vKTW8Od++e0vfMCO8EXn5bWSB9wRnVO88pEH2AR9Nb913wdwfPPqPmjMPpPfJxP0ZGX2G3m6I3kFYGvuB/HUStLPU+cvScMm8gUOL1eEcZOvF5bPCMOm4FYqN4Rxk+OM1pG1KVHclOuy0gfCqZV2Pfjhg42x4BY/lZU8qde/wgogJa8AtOYkxWX69X7plKQCSOeLzuHVshhuxvmGqLjMOleZ79TlgEc/9/eWoALIPEcSVAAZeQVJcZl9bia3a+Wc153e2BgLrpgCyMOVSq3svIKYAsg9jxVSALl8hcSlxvnzFYltWgO3OrXCj6sRZxEFoHPOL5FaOnwlFIBWXUNAAejVU/gVgFacgcfvrPGmlmb9aKbKvE1r8mVXALr1Mu7U0q7TnWw+4MTVjTOwcabBiKtfl+RVAPp80Tq+ypdaBnXY0qkv2WBN+LIqAKO6M6MCMMKtlr7nwjWKM6MCMKvv8ykAM77ocBWYDP0MbBdqpj6Keayw4BrGmU0BGPtGZmpLDLDmfJkUgLlPhkcBWPhzTrbuu+Oax5lHAdj4kSrVJWdcG74cCsDKf8WwTVvxZVAAln6zq67FWkvc2bKjArCMs7MCsPX1lRwtJrZ8XRWAtY/RcZu290+6FZis4ww3i4mDX7Q8v2T/Zge+TgrAxR/rYjFx8uU6WExc4uyiAAoAoiiyfLe9AlAEIApiD4yWtcXE0XdtbTHp842AIJoIA0QIAESI3+ze6/0MIgT9GNkqACKisPcNorD/FbuhwafDMKQw7L1AjYpzXTICgNQcC/buBLFHlhaTvbyKgmiCeikWBd3gB4g9EX+69yJgqwAKPZqxlUI4LQ52CkBRL5OAKFCEpLyKgoGnIyCIEPTfhs6RqxVz4L0/dThS79ZcqzWXvIqCjN8uc9kogP4WFQGBxX7VXRYKoM83CKzpWplM3T6P+stcAfD0xZgrAKZ+HPMCUzy5Lf+PiMwtJlz9R6ZVAJ68grECYOu3mrpotE3z9XmZWUwY+8uMLCaMuEapxZZXMLOYcPbxmRwvsfYPGphMWXENzgB4+yX1LSaceQUDccncH6ptMmXmq20x4e6H1U0t9j5cTQXAHWfdAhN/37GexYSfr564FOiz1qpdSvR3n36cbzERiLPW8ZJIP7uGAhDhq6EAZPr38xWADN/84yWpeQV5FhMp3DyLiVSc8xSA2FyInNQS45ujAOTmYGQrAMH5G5kWE7k4ZysAyXkjWQpAkm+WAhCdr5KRWrJzXdJNpqJxzlAAwnNsUgtMwnxTLSbSc3vSTKbSfNMUgPycomSLiTxussVEPs7JCsDDPKjEApMHvokWEx/zr5Iu1LzM3UpQAD7inFRg8jNnbNRi4ofvqALwNFdtRAEM4iqllFISwMMm04Q4y0R7SAF4m1/XVwCXlFLq2FNvfHcLTLd/vLb95iv+5vX1LCZhvYbnjiXVBx2qhNmr0iCi5qttujW9PhjnqijjZmkNuP0ucPkCJuIveJjNGNbvnth8Axd8z2P865fXcXDx+r+7uI+UUvce3ZPG/em1/Qj/ODDZww0XF9tEP78lPbQvrNeAz26e29dN3p2Fo0+IqHNUemgfAGB6naibV3fq9X0AghP7hfnuZq4iAOHZyWvCgMOrAADRny95hu3itv7xDdvFLT3/GwDg26f+gImI6CEuE+0s3BXO5nhid2+aL3TT29v6H8Douowskub6AAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, in Rttriangle ABC, angle C = 90.0, AC = 4.0, AB = 5.0, then the value of sinB is ()
|
\frac{4}{5}
|
177
|
[
"\\frac{2}{3}",
"\\frac{3}{5}",
"\\frac{3}{4}",
"\\frac{4}{5}"
] |
D
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAGMAAABkCAAAAAC3VdHxAAAKZklEQVR4nLVafWwUxxV/a2gtG1UtR6h6+JpriHOGfhwtzbqRamxQOEMFqE6FaaBx1ZCjVapYVc1RNVFx+pFTqqZOpTRYRKnIpzhUlThKabwXjPBBqXKHVFEHAmUPkLgLpS17RinsrRO0v/4x+zH7ebgVT4K5nXmzb+b3m/dm5q0JPqL7Vd5U+43HiTrKLh3iFBRxIcSMTFImCnEHV+6IQszINJ6Jjt++PEmmLBE2rr/N7rFdtl+WiULMyIKUiSobZQFWFyrf9VSmFGkrdNYurTi+YNERsXapuxRpOyLWLq04Hmn7zaWjU+Jti9f8Z23t+JanMqUF5w+/f+KikrxnS61TYZpriJf6EbF2adFdeX4eYVIciIiZvIEUj5WSS8fj2QqPItesO7HSUbm7yL9Wt/8fjSdGKlxTRXRoTqUjvXyF7lR18JGRfeeQS/RPOft7NXOJDa6qzUREQ1Aysgcr3VVCSqaKbiU/+aGwqeLoOvwmPkw+C+i8DZkkT8+iKBasXhbaXs1KKrlwJOao2nIdGB6SSeJtqFLNvfLTCckxNktTcdSqmei+0X6oDqtrAWzepUpKE7fWtAlFcCy+6d47/m4sR2dDfaLG1+77LJ375uFV1MLrHFpP9PjR79Qnavw8yi4EppblPNgxcWA11ZWSAURlALg+MGDMZjMRrQVcWLkkl7RXU3D4UAbjYwAgR42KEbFiQqXrgO6MJRWxyL0rm1IC3237x674TvZjdJPZOJksAigMsd5h/tGfDho5p1lImusV/aPWgOTkGLD5XUs1CKudgyEmDKkMJAvsl27SYbxXPEBEp40WBPhHLmX+0v3wkgUJyMaf5mqipjabiRV5zgb5R6HTsdQ50Q1NRYqnFa5+tN+hVRDNF6iSwtuomXxww/C3onyvS5zinqH3j5qPbBQWEC4+TP+oJxsEKDVNj7ns2nQYUJiEBvhHam+4iVw844ZSjtqk6QB06Bv2mBU+/mHz7StTX03Jrv0DukkHtzzUaMV4KR+vWnsiJFD90VEKEBBqgxsyb7W39kQcDcLhVZ6w1vLIz82XesaZDXO+UdOtOVwAYH7Fu8DVuMGRxz+MKfpKIdlf1S1Nbl8vdvip51IAZBp3+oeiY3DYo2ts7JWBZQVb06ERMPdEEag794/6xLRQ/cOPPTQwkJ/s+uKJbtf+Ycrkvb78PfMIkTrB+6BeJgnprD9MTrd277XzFPhKKuf0Dx0ALkZVZwWTSkrk9hKX6CgmAlokEQBsrASqdpZeWdfCVbD1SvUdnVtLX+BBqHaW7PUs0EQ3+YqwplqudpZc/vHSNi8Z+5bSuftNe5YmP5IAOojoW8+1uP3DZ9LGbh0qrQF0GCHf6R8bM64TqzKYGPPrKvCcFxPB231iP43zWLXlz69mLJgh4YXlnzjRx4Nkao6L3NPBbtfRyBQQrTg13jmXq6pLZ1YQEcHoUdoW/3PMAp2X+sSdXMAqbA2ig2j17vfbDayMCMHToQwkTLf2IOH0j2A6AKXVtX/wB4VsdMT82eDqVgrwDibxKeYfDG5UdzWbU8x3XDg5ZKLqBZvzD6KD3V7CbPn0faW5NtxC65zlxiu+f/mVTsuCD5+O/WNyq5cwS7CYnP7BgFWHF+25GYycvYJk5AErlhw5QySrxwn0+tLp8oNkT89Pyk1563cpFgmBiua/at45P0yeBk5GFEx1dTV0a0DNK9Yksw+Fqr6RuMLmgSfjtxPVtfOD/duPtgcPypT6QfumMrk6VDXyr2lm4+Vl7xGRrK6f/9c+IkLI3ImI6PSvX4UJ0LFeENkry13OXD1HAFB5trIWwAtzFuhipsyyBmb2wLf8OM2BuOMsSZlosTkjU357YI/SR2XSAexAZQjAfvoVirIqXZEnUZRVqSYXvOVZVVLkl+hhFGVVUuRCto+VKMrX/cpDzM9fJKIhcFehhsKt6lTQfc6QUgJNRNVrQGExEX1wmfPeUHnP9vNjvRb6vpTI1dJcqm4bJ7pARPQpGN7rEz14gTDP8vNSLEIQnDuCo1QXRmiY6DQ2M7Bi79wESFwaBcATDwXHAx0Asmm2D+pmbB9uED4KBnP2LTuVaxBz+lz3qK/9JNzEcOw6PkgOAapUM6rCgxWAL2ed50T1ZCgPPy1VWukjv/29SvUJhXFaikXCeoCofLFG3FRlioWNqMBuqoXYNXsfDD3kA4D8SZKaiISZmRkiImqHWg0Z0u6hJUREF0igdhhplMl7G4Sdgz1Y00REzcT2v2rnl/4YqCzcOMWCX35TC1W/YvjHsd7wZU5jq9znxO7DwdqXp+4gIhzJbROotTtyE3QARMd6jXOiBmiaBk37R0TVNIA92gUATbv2uTehadeSQ7oGTYPWgA7G8lgXjHOixv7JJG14nlkEXxgPw2s1VOgH0DRNpgPQ0DhYYcMe825gvGtaujK2QtMCbLCM1GkN0FA/oEBD8L3DFCWi8nm45hmamZjuO/Pv5uYgfPdqwBIiIlIP14hApbZQ7yDa/Y0WloczsNVwiiT8Is0moHux4qYnk6RrDb1DV6MV4x5l8sqKjqOAi3MNphIDUqtD06BpDenIpqE7c69aVSyGZxmsiGDkGUKDlY5KXHHlGWaaW3oiRPdfzQeha24rMM6JpVgkxMsF+tl3I448g+0JjrtUaNh+IoAOo1M5btxfzXk0NzdTWcgTUWd8HxssEZHgP1CmWQi4BhrTffiXLYYqZ59lD/TqoqAknEszfO8oJE1VZ566RkRC28jXg1FmUj9UIzoeGqzK2/ezi7czT23tCg2TojJJzDsC+VLNXJ5PHo51snNoIRLqHVyj7s7DMSuqWHB3ckhFLIXTYaddXHk4dmoSiKjltcEy2avLI60980PvHU/PPGarevNwBsLFZKMDh0+wMtl5LeVYmYHfcaRESAJWJgmpXBDj2S7Voer1D6sxGUy8KimBe4e6Ie1S9fqHKe1vj20Lwrs+USu1+dNRvue+512qfljZV71UwFhlGnfTobMjbcGd4w70D1P2Jr1f2gxxe4cOAOpO0ZtV9fEPh7wjej4O6tBREYutNbcusOczg55Q5+cfBsbGpeXzpQe/vansAFwggVpXVmPz3Uy83jF28JkWd62Pf/gsx9F4uuKp93hHUeyyZuz6VtroOyegQ83G0860qEzLnXTkUgmJ68GVIf5h6bFvwNl4PFO061WJp2NsoMV91bHNuL7jBH13BgBMZTpaU1mJdVYeWMxqK+PbReoacX5ZdYiScf0dgLTGTRl//6y9dehvx6OxHqKrv2vvI/rnmRMfu7NntbcPL3LC+XcAwdkC/e6M8XcN6T20UWxZNi8TFR+lNwyNvLvHDruUHJyjXDCzB/rbzpLVn7Xa5QJKhoZRg5KsSldsDatUEHDw8BMIFnQWgK5Hf5mFDZe1m5emxir/r4n/wcYWoUkQxmfVJdgjgmTLn1Cgd2fRYfbzuHFmJS0OyWd6ZfY2/rKylX401DGbLrOG6kUyPo3fQqzyp/Hy0jOz6TFrG9XpJbQ5eeiW2ji0zkw53Dob+dV0Y12sZ1Z9bpo5HWCJOKK1s1sl/wVPnIF6bq21/gAAAABJRU5ErkJggg=="
}
] |
<image>As shown in the figure, the four small squares with edge length of 1.0 form a large square. A, B, and O are the vertices of the small squares, the radius of circle O is 1.0, and P is the point on circle O, and the small square is located at the upper right. , then sinangle APB is equal to ()
|
\frac{\sqrt{2}}{2}
|
178
|
[
"\\frac{\\sqrt{3}}{2}",
"\\frac{\\sqrt{2}}{2}",
"\\frac{1}{2}",
"1"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAEwAAABtCAAAAAAuDNhkAAAElklEQVR4nK3aX2wURRzA8e9cYUoaYhNT0ihoCZJAosE/EW3SByJgwKgRQiIPlKCxIuiZXmMxKEXOeMRqi7S2hQqY1MSa9KGAiQZ5MOrDJaKSKNKEhxraqNX+ebDRUjvF/nzYO7rH7d3t7c7k0tmbbD/3m5nfNDO3ZU4kDrB+SkIXRER6n5fpmt3hsQgwe+4xFj0qhC8iMrRmQnqXXLQTWfJShfp97P7wgUVg9txpGepuUeExRIbWjIvEV41b6WayuoLZwTvKHDtcZKb2tEicfhG5HDKyVCjOXB76Khy2IKNj0Z9KAAk6F5GMdwNHEVBBRy4T2/7OqAoRWiRjAlfXNQKE6Kb7Vw98nQwIpTB3bIuPRP8Liblie7q8GyFg8kZubuiKjyoCDlsWdvczTUEcb4ymzy7Yw8pbX7KHsWPhB7YmADgen7A0AcB92wLOgRfG4bM/WMOkPPGyNUxRx0dpOCwGvL9/Mg2Hx9ZuOQBFJ4jnmAFv9Q0UG1euMYOKxN7ioFwYgNRd67WGqZJjjf/YwuChzW9aw4Tmniu2MEVlU7HrIHc3ITrSZw8rOdE4Yw2jpiZuCxNoP/WLJUxB5f5oMeszbzchNnRW4XvB58kzgJLO2Ay+F3yePANgw9pmf1BeLF2OvjdsD1v2egx8jlp+TARil8/jc9TyY0pBaWfU7zoo2E3YtLrNHkbX279ZwgTujDVYwhTw2vdf2sEAStui161hbFneLj5yzR9GZ/OYj1zzid1VV4/YiUwgnkwqX5EZY/LfpITS1t2Fjy4RQKML3KWE7bd3+8LyF0lpHfFRv5gxBiMCTpfNfOWM1KxZ8ez+VLPBGLxGJo1pNBqF0dqA0e4KMFrzxhdJrbXBYDRGe2jubhpFOjKPnurFrQ1z6c/1HuUbWPqTtM6+L5UTOxad9CIysJtDyZEnBjriE4UwjHZC04A2RoM27sqkm+/d1mQ0BkPqlY1l9st5p92VvtF8+NNLTqPz8oos1Y1CmQvc0px3yzafZ4UpULs45QPzmsSMkvqb0XHwr8JY4aCc/HjwqTzHR99YuiT6f7SHVcRzz0HRGC9M5zy6FI/R1ThpD3v4iYQ9jETPgD2sMh6zh8meCe+jSxBMlXR6Hx+DYFCz7jBk7xeCYRzpuUL2fiEgVtnotWULiBH79Yw1TEraG2ayBi0gpthQncgatECYALR2Zx1dAmEKYNm+qBXMKfWDn6cvJTRW2hZLH11UaIxN97RmNoTBaGvJPLqEwqpezVwHoTBe+e68LUwoPRZzb5vDYAoeX+meAxcW6Bvo9lbXttmFBfoGesWe+vk3C4AL1dC/dGQr8k28aO163951NyKT2Z27xkV+frIK1j9SfGilh/50Lv49CaZ249ScyPTGIp8izrl+ioiY2neF1CNX0xXuMZ18zGmJnNv6AMDCF4vvobsMj9RC5OrKcIpTZvY9N1xF5I+wjgC0HP97sorIbYMI8OE1d9KK/1oUwicHK5bPCJEjJ1oUsztvLZtPWkld+q3V8JjIt0vLQIZWOA9e5wrPWI5ydfOUSO/GKeffBbLKXFE1Sy6aWlg1/j8rBRAZsWZq4gAAAABJRU5ErkJggg=="
}
] |
<image>As shown in the figure, the hypotenuse of Rttriangle ABC AB = 10.0, cosA = frac {3.0}{5.0}, then the length of BC is ()
|
8.0
|
179
|
[
"5cm",
"6cm",
"3cm",
"8cm"
] |
D
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAKsAAABjCAAAAADBOK8cAAAKRElEQVR4nM2be1AURx7Hvz27iEHy0HMjIuADEcS3nkrUi9FoNFEjeNZZlzNeJGpFPZOoMZpKYsTcWael5nG+o3WXE6JV3GGsqICJ8c5HCvFQRIkxooIPNK6vRMCV2Znf/TGzMLs7r92dFT9VC92/7p7+Tveve7t7ZxhBH9fW6QAxg1weTGcMBs4gnZ9+B4BpBeGUaqg1N7uz+YsZ9VGIaGqV6q26MtnkhbIY4zjGRtY1FrYau1YCAwDXgg3pHcxd6ANUbwS+uBLVUNhyNLUCAFauv1sbb27A8BUZVFyd+Ig1stQhHXIAJN/Qy9FIZU9nfaZTJNFc9mDQHluEKidRUbzJljpc5mh2MYqFcybQ1sqqXpsOnBN9zBrDhs9fQZVJUdYJU0O7yeEoqZ8MJDvN9E9lcgnd22RVb6vDNKcXxYiqLmzTJSZa95aPvLfTsFFD/VLTngdYYwUfZ/eosbeMad+rQwcNQfya54z7P1RX1p+zpApqyjeNuXjxVEV54R1b65jUxG6xjzHIzSS3VTMAC8zUt/QDRsCMjcFo1faBRr6bsztGCt2uKjt3/vptsUVcXK9ubZ8MpsKsQzuj7o18xNhj/DGjdf7Pm6H0Nmfl5fLrl665WrfslNqxj74f+8Jn9lwAVA1/zVQveKPtA8Q8+or/BEjeJnW7w9E/A6i7VXauPNd1192xQ3L73k9EmKvv6tE3ALQbVBG4VIOxxQCgoiZNafMMkahH4gDcun76rPNLd0VESrtu7ZMSIgGt8S5ZD8V3JRbkjGA4toD8Nu1V7QzE0KpVCoD1b0/pcvqbO3WRLZNiOqZ0jPSXQowBAJ//XAsAwvnx4dH67SithpLNrvf3/O0VAC7nxauHinbfFVonpHaPa9NKyiTlkf9VH50LACd+fDYsWqurRqn3mMd6evIT/04BiDWPj8dEiFeunb586qsbLZ6ISYpNe/LRCCg0X4tPAeCan9E3CK3G88CONfs004gB294fvjaiMeqh5sK5U2dvX3e3jIvpnpAYKxn5zJ5vMdr2hxVBzAJmtM7nP9XRKi7avvQV7cLOG5dOnD1Xx0W36Bz3fJJoAwCMCGZyhQmt/G8WpWskEcOFKeKWFMNK+OqyH6su/ZATTMd7VWjAgbQ72onZbWe5vC0NS21R9E14dVBdYOsqXwy1Ln5Vc6l/b1rqpnrzVbmGzDOfWQ1DrUO2a6WcHpVWGtCO5fsUzWuZwkjr9ynnfSweedvjF7h8cxuwNbGUiALoCm+MtK4eq+4CtXMS/xFoXffp9Z6B3p4SI61jVqqay9P6lAW6ZRWJ6Om5gZXxwkDrxd4n1czZqW8IJBIFvMMu7fW56D9HmMRAa95gFWPd7H5fBVUZkbixy8Ugi+qdDwAACnv72449dy13bJCzOZsx+vf3gyyr/V0g9VPqLr+EzbGLgm4ZInKNygx2JtD3ga/T7pLSKQW6Mi1pV+BuqqQ8dhsFdwV9H9jVNxrKvTJ3Iv3Sl2NC2z2n/mX50YZODez0U+smRCKiYdu9WkDc3Dmk/peZN7A2qHK6PnBy4Gll1DUtbndQlSgRie6NmxZUUV0fKHAo13tFz/yw94UAO9wfBjRfV/AvwPdQzwR6N5K+WhFZF/+OQEQChTa0iIhoa0JlEKX0tF7pe7whfHNy0g4iCmHl4cW8Fy4FXkjvrPhgdG9P5PuMnwrTAQAmzywMWGVbFXghnbNi7O8DABCBf44YubdjsLq8kSeptXu2BFFWk7p+e6RA7czOuR6jZT8HZP/qaKDX0tG6a5CLBCIqTRtyJhRV/ohERFMHBLr98vaBLMYYY2wHAMJX3SLBATkThx7sEnrf+7H+0fmBFvGWvmQGUf3LJUREQto6IqqbOTD0+V+dk4k5gRXwble+YhS28OMSAKC8fhKwf9Dt3NDnf3W6v7fyfGAlvJRX9nRWzpTDnw4jWtPqHWvasBHlou2tfgG5rLfWHAAr5GsO//zulIH+y1fLEAWqf/alQEp4+QCfv4JyEqXwhZuusXzOGIv6WwXGISL71Edy75oqohRemVxCR49K4UIWv1rt5qxEpD1tS81n99KaM6KWSCzKIyKaG7sznL8De1ja/47pJQaISOR5XiCi+skrRKKcZCcR3UnLC59AJRMmkWAyq9SubpGIPD4zg4hoV9dQTkjMUk9U2ePvZnMrz+CVDv7fQZFWDCADIoCExUtTBprbv3nmAcEtgNwiQXCLBBJOjvdYG9Plv4KbBLegSAsJ9tunX681l9Wj1cZsYBzHRJudALHM2UcACZydSYIEzs5ESHEbE212CDYTP+GYErsqdnZgWsEJIIBEt5uIkNs2DgCYnE5g4DjyxDn5Y83jQpFrvt5kavsla2VgIOIAZrfbOeDgaEtkmCNuXdZJwwfFAHCAKIAB4AQADCJA7Mz98QRiEOWmk80NcYtJnzLvsolsHMDIzQAwxgHgRLfAUOyIEW0MNnKLNkAQZbMUF0gk+WOV2KWPZZnUarczOQgwu90GHO5mtwGAzW4DYONksxS32W1M/lilNWLlETPbr4aZVnGAW9t3n5UzvhnyHAcM83hcWnQrfqA8ED3YqhYzS8ZLc28a5fFo5eyKgbjrqQfxpaWE8HH8IqNMalMFX5qmYg0rDFhZ8pknpjHZ+GslnLk7INyPsvpWCULiwk9OyDGN5YG/VoaC+NjwPiDsXyUY8LsXM2t0lKr7wL4Xw6hLHeIBtizhTc+RuWq3qmg9d3NYOGWpwiIAYP2xtbJI1bZV0XokJil8onRpk/XuCZ1kFa2HeoVNjAFs3KzZt7WHtb/W28UjwypIl2Xxr4G0xPpr3d/sqfDq0WX1qS0cg/rgUmqV0vf+2pqj6+CI/fCT7wD1waXQKj0siPKnH4wqVYgmDJ9To5Go0Co9LHjql6FhfwFDG8bw13Za2y8/f92T7Ajzay0GNN/wzVr1FD+thU04C0jEbvjzcdUE37F15uoznmCTMW76fNXtl1IrA3CwTZIn2HS861gMlfby9YGD/R+MHF0iV5Z8ptZe3luaWz2Mtz0Pgh2xKjp82rX48QEPqO30SZ8054af0UdrweBmD0iNAauTFvrZvLXeL05r2lElQQCWl27yNXtrPc4/FC7AAHR6+5NSH7O31m87xQb4uEz4mDRx6s/eFg6UxZj8TqN4cCgYsYdE7ZIOb/pYiChnBt0bPJ1EKu961qoHL6zget81UqAIQF5RHgfw+aOp+UgGhiPJna168MIKWq/6uBgA//IfnURl49rbgeqyj9gXawsAMT/6cj04y04qQ4Mia7r1m/ofB5957VgUsPBQgh04XObA8usAfnEcm9TUCpW4mruc/3s+t7AgCoA9ozUjPnNChvyO0v0rD8k3AQCAE/noZo/zmVEb4dm0VPZ0Ei1pfANStPChFgu4N3i5FBCJw+G01uArGl+DZU29IpTwzJs/XW14+4fj80cDy7JntWgyVep42qtNW+m1tC11stVRInoa+qH7X4QVRPWT8/Tej31oqBp+Ho6CvsD/AX57v7ad7l01AAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, in the quadrilateral ABCD, E and F are the midpoints of AB and AD respectively. If EF = 2.0, BC = 5.0, CD = 3.0, then tanC is equal to ()
|
\frac{4}{3}
|
180
|
[
"\\frac{3}{4}",
"\\frac{4}{3}",
"\\frac{3}{5}",
"\\frac{4}{5}"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHUAAABQCAAAAAACDmXlAAAGcElEQVR4nL2aX4jc1RXHP+f+FhaDtH3IgJVg2mRjFlZKS1wykqYRd01SsxNFVmpK1YgxhKYiJo4KqVppwJqRBo0PrkZUMGTXJcbUpA+dWaG0uxC3DyKBWJ3dPkQfTKEQWUkW997Th/v7zc4kOzu/+9usZ2B+9965937vPed7zu/+GTSDDEBBi1laxmIIlgmpqh6UjvCWsxI6TOsoqqoWy9apqv1u5mpe5wBAxwojQAZdAaLBLQZ2+oRK8hUswWOdYEUCX/tafNRg3VwV1A4mASYqC4IN5t8AZaflQibuJhKOqhVgISFCVcM5DOCyOUxNgps7GDm9QNAMdtXqsusGF6bgDBqeyq/64V8f3regqbYFt9h2+/cY31w9HC0ANdhCT198EXJjUz0XvkPUY4NHI4X24e78RHbUQA1/vP1QHHtLq9cfXzv7Q6AvBXHv/A19G5YsWd6tqqqV7FQOQp3ZsF9Vz9//S589s3x/RtQgxTya26eQ+1E3OAdd4+89aCHDeygE9bXRNxG8XY1hlsrBL9n0qDr67PtLfKpW1j7cnZ8MhQxC/bJ/aLmBukWLA0p7150GDVRyatTpwu9/wdsiZ9ZcTBAMwI537hxCApWcxl9VgAfW7ubtQf3it7deg9av0no+vKO6j0CPbU1zq6r6p/VWz3FWv/3JWX3mmcYK59dsn7nqnmOAU68cM4zs6eTI9Z1+sHUVcqPfBEblVGrRT7f/JYeygpk/x0UNdmx/N5DKre3qDF8XDv0MhEn+2Pv9f8/V/wur1x3PB8CmsMLM5id9Yhub3d+XfdNgVxc/fVROue1Jg1rsqwNxegWb/NDOLN9v08Km8JwjJz+azTT1y6hrfHP1cGRSeVDrKuOPf3AtrnVP5MambktJ5XlQPdKX97y1MiXV/QIjTdXmdbympvsf2ZQ+zL649+enobVmmqMKgO5atZd0YVYhjsqtp9ucTYIKL38y5nOtOSKAMz0jW6qt18rzdSaMHDzR3rpeXW9OawuMrKhMbB9aBgQsUYyQG5u6tRWV50CtQUzdub/bp4Lenu3D+Zur8zPqClT1BlJg28YHsmzeHKUnbxmdt0qTbo3A05cOZMI08NBg/1GfmVvaAHUeBkioCBwbHGvLcK5jAKSn3PfZc81ZYwAxs6C1wo9/934u47kOwE3jJ++bnn9oV4r7712HuzJDAuTGLvU2pXKCaq1DraLWKujMr3dtAbU2dj211iV5a7BWfcUmokD7cH5Ns22fqT0NYgSNIqe4PT94QsERxXt5ZyIUZyJRDCYyTiPT3Dm8ZQ48lW9C5QRVjKKgai3oG/94UxwqEeIA1AhGVMTnNe64RfCQHUf7j8z5S1syOLEQxVz+5wsfXqsNvXoyB++ieitbPntujnIDTuOBGxBn0XN3v3EDGARNlKF+4a1pA3IiXeOn5qKyAXFOgDa/V8Ne7Ht2g7MqYPzDqhhnrcR5h+DizzziFbN0dC4qG5AokjipSBQ9dMtuiSIDxI9IkCiKknzkHFEUEUXzHsN4Rkn7cP7mK6g8+36NKeJKX7wzX2fhUlq99sS6xqLETM7Ggyu/cnwhJ0mNogBux9DlVE7mapyACmd/U1561UCJLddzOZVNfUK4sPXQT68eaE26/nXyvum6V1C9Iyj23v57FwEUlo5d6v26cYqJCE/x/KKAXh6VG9aIR059BFlvS1pJ6cb8e+vjdG2uzvm9BVlvS1rKw0O/Sqhcm6vhq3veWrk4eLH6bitv+fwPMVgi03c9sinFZiFUfIdefV3jH9w/3Yi6q2MvocE9hTR0mBu72HuhvvClTw4vwkzrxAG0v5vvnpi9HRzZ9OD1iwgZi6iaY+dOrZP4xOrl/2lcnrZ9Bsg4sWR3Y+s0npr5AlTVJM0MoDWDpgN12eKImNp0fdDHlNPeHciCeF43V1A2pm23VUQkM+5WEZFKcspVTH+zWaiqFjNctMWty7ZMFbWqOlBO3Y0rqKoWgq9C4zM4VKt8bjAwyY8LafSjwEgnCp2fhurWL+crRXjs8Q4D8OpOOkmxyBbgbxtRWBUK6hnkJksiB0uKqg4QcHnsTVEMv2y2alULVR2gqgYmUC13pAzBk0UcTJRSc75uroZJVrKTEdrcf/acgMm0TljpwMBjhd5gVIBKX/yHiyJUtZCouOVBK1XVKoXasXB6ceq9DqwNc7yKP9srB0OqqmoZgIKq/h/DmlNh/LJB+wAAAABJRU5ErkJggg=="
}
] |
<image>In Rttriangle ABC, angle ACB = 90.0, CD perpendicular AB at point D, if AC = 3.0, BC = 4.0, then tanα is equal to ()
|
\frac{3}{4}
|
181
|
[
"\\frac{4}{5}",
"\\frac{3}{5}",
"\\frac{3}{4}",
"\\frac{4}{3}"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAIkAAABECAAAAACQOUl/AAAEt0lEQVR4nM2af0hVZxjHP+8tXv8RZFvDRTa9aZhjA41tJY28QZCyrTVwW0NCBfW2JmgYSDCWfwRTHIvG3Pohq7C2NhsF0TS2lkKtBi79w81CLxq6zUaMovqj1+W7P47n3nP1atd77/Hdl8t93vNwOc/nPM9z3nPOey7a1mZAtGtjIjTc3K476TVG4sHWRKCQbMwpRPLTumRqqnLNoQSz0wIGa+Oszg+9ky15fcYyEqrOyJ1cUZF9/n9A8n0h/HljhUkSbQ3Ob2Ki8OkiANu1wLLapRMAn8GG1cLM8UeQx7lx5owhCphG0vdeRtO4OZJgeTTCf2H8hW3dpkiEPRRoMveNbazLOXjXCInjnBVAUmnP1z1ZlX0mSIJJsZlyDw+9WJx/7CELOrN4InpT/EONP6btDFiUC4MTmQRNQVv/M76ib8CZNAMkAkitH/UfXd4w5nC7mZ1ZSKb0RselB3lbQxdoN7MzN4kgvXn89YaV+2+D2/0yNwnAopIrZ/tzyn8B4SrMrB3rjLrq8PC6srzW+66WZ46OdUZNrhg40O3dft09kCiqY2tN24C30HfikbWV+DJFT4JeUj+y61Ta7jFwo0zzIBHAa6d7eOnNcwnHmB+JpWUf/VXcnNF0O+H1mTcJUNJ1YThn289GSew8ZB4YK6h+7uB9cyShPk2quHbkqrfyN1MkTok1Rwae35J/7JFxEuCpmsGGjqU7bxI2v8TYynGRCNh08lrKK0Xf4XhuivERKi4SANIaRstalzf8DUzlQ8SUlvhItBXynY6uu9lbLxBs6VhmYA+glIqRRNghM/fdKqpfuf9OjPuxSSQyjj0AoEkq7Wnv95b3xEUSt7RVjtxDI2vfXd36MD4SpRRKa7AqpcJMcDT1jVI4C2rXSKT4Bz/pTt0eiIdEIpEIlJQKlHQaQEmJva1QEiVn6S1f2w2vz3cidhIAJbBzEkEyNJDM1Vmp9aO1x5fuHnX6ojitgyT2MUoZd/vClo6r/6523sZEcVp7YHoSZknKPM50DenN48V7M5puh9+aP4YEJQGkkoBUSoJUTqPC3QrF1GcWCYBFJVc6A1mll6N9OvFAeDmsLek0MtwtpcT6PEZ61aGx9RU5UT6dhDpWJaA/wiUguWLgaHda5fUokhKaTxLNYevltqGswvyvHncbE74K6sMHwIaCROOca71UVp0eHnnaT2bM9houXkwwh+bV072L1xadsSMQqXOcy8R79jhNwnW8IG3vuNMx6bCTCbkCRqmSrq7R7K2ORVbhsGIBSTRkHri1sXZly92QJ6RIfeKSBEBSRe/xX9PL+0IeK+L5vhkkbi5gWUe55suh3Lfyjj20PQKYqBEetxetnBJTsZfUDDZ2pFYHQsf9wbOZQtu3XFrQ0OVbuLcsf5x8sH7H29b48ycaL3tAf+ERGyZqBWzwuZ+gYPWX1X3o+916QzByL//JZPQwfq2HaZycOQG4oUhh3teBKs1Etl9rrXcZ/EdBC1ClPYf++RjAm+V2WaYr2Acj97TuXMHiT+uSAXZEuCa5xiAg2DD6ZvlFCAAYLIvWerIOevVmqBK0F4ezmrKe7ABoRk4RfkEyYD/jW607jb6ztoTuBKpMY2it/wOIjpogEt6U7wAAAABJRU5ErkJggg=="
}
] |
<image>As shown in the figure, in Rttriangle ABC, angle C = 90.0, sinA = frac {1.0}{3.0}, then the value of cosB is ()
|
\frac{1}{3}
|
182
|
[
"\\frac{1}{3}",
"\\frac{2}{3}",
"\\frac{\\sqrt{2}}{3}",
"\\frac{2\\sqrt{2}}{3}"
] |
A
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAFUAAAB7CAAAAAAgOJPAAAAHWElEQVR4nK2afYxcVRXAf/fuzGtLFms23bQp/QjVuBXQLhi3ksayQRApsTZBTP2Hami36ZcbXAStsN2lFGZdut227kprDIkhii7RYMBsXV1jIkbDx1I/ShGXXYGUYkspTK3dO5l7/OPNzL7dmXmfc/6Y9+a9e3/3vHPOPe/OuaMEAI4tXKVAFDUR7R5y7SigRtAi9f5lH60RsEQVBptP1RKKBtRk9vrG+ppSBXj0Pj4GXLAeiclzna8VDA6oKwFefl+ji5KMCpNZkeEVwMgT+biwWaKZ/Pp9MA7AI6+6F60kxXbAmKyHNpHO5V/+QKyI5PMSV9yeSgBEiYKu//1x010qmRGshuIsUChA5h449FrCR3dlhmaq5Sud2bgxVYFadM/dbw2JnXElAbWUqy7v750EIJ+MKuDmKkEBLbd3XrQkzV661F25D7375K9EkFpYwCP1h7rfkEJQ1I7Kmi/df9ESOxFUodJ54pl8wvCqQK3v706aw8upwg3rui8lU7aMagU6XxoWi7VIzOxd0Snz93/HtUHcQCijag187tauKas1cUOhSq/u54exVuKmgyrU+X3fPiOouDao9oQ33bQnFwvoS2Xv739H7PCqFK+A0HDgW2dBsBLDtOVUVfhYt7YrJ6ror2hon8h5aGRUBK2Lw9SEKg39Hedcc1hbM10Vt67em7OF14+KhPWxgNa9zzyHRazWEU3gOyMX7N91PgosHJUN13XnrNYI0ZJXQPboe/o5bPR5G0Bt7P/G+267mtnVWthwTU/egkRbfFalCu5U7X/yz2KjmqAqVaHqtLUsyuy4QC0t4MrGlZl8VIf5UkVr4PBPno+aE32prn4Le9ouRIOGsABsvKo3orKh3qF9P3ohWtIKpFoLSzJbc7WlAnDn0n1YgbCrukCq1mDt4GMvRnmPh1ybLOltyxF+KROqmdZsWrovQhiEoFoL2MHHXqkp1ZXFD9+ZryVVaxCtNzdkilcCFx4hdVXA4/1/x11uRKIGxM2SRzbl3UZ6egJX5msgt1K9jASrsLnh0QJmWpfKmmggPXxjc6gi2dH9J3FXXgGG0wC//nyI5CGw/IG78oXBJ5TqCaCOp9WywBSqQG9P9bvjH1ubnXjdTwUR09QmHUMinXv8KipWRPL/WnBCRMQ0veRbd9HA6A1HWBFoAYXAlZ1b8sDo2lW+bTUwsg2Ohag+KjTbUwetteMf8XeXhtwrV5nJD5qDqYBWP9w3AUyQu8bHEykYXYv6wk9DQYEV390yypZPqMbXfeqVWrjlT3OueOHakFCtduYOkz4p/6n3CcYU8LRxMOAIxsHgAAbvoXRmwEkdab1tCY5xfOZMcaXj4KBwMI5jwDjeA2CclC1+X37vVgfjGJ/fo15figKMqdxQOcUe87bmDuPg9x4rVckKSuE4TuWWJYJ2Dj/4Bvi9cTWYQimrKJWVVcYdHYSV9+xyx6m2rteAmQPgGAU4xjjgGO/BgGPMHHBMzjjkyO/I/gCMVtXeuamSlwvieD49XzyXHWz60BfXLffJnNODmSr2rNRJXb1rm2+DIrOK66v0Su/MHglBrer6KjKvb99bwdSIovnk5u2UXooidtbteFKXvvvMj2218kH8IuNlBzvfLk6v2SEWm6rrVn1tR7XJlaAgmm5/54kqGzYJqPpD/d2nXAvMzl1Jird1q756T7H4M5ObqCTsfPPfP7Nuipk5eWNTrbXo+kzXm24amynxddUanE/fsVu0Lksz8al5gLntk09amK1tfGodWKs/vPfBN6Fmdi10TLfc0WVrOGPBouGyrf/8RdlMSELVWNAL9zx0era7ku28CZBeve6B2b+Zkm2M1AFcXm6DCtSoZVy9aHfP2+Go4cnWzvnMzXtnFsFL1BLGfZhIJaH5bf94doYNStRpTMS9U63Ri+99+B3s9P6Kt1q7h0YEQexfVrdHQIvibM9/D9ZNq+npLHDmzNmz7547d/70+SjaKmjYduJZpvfcUzNu7hQtCq0iLTkA9OKOTMsitLazqKJQjYXzeeFLAYVN17nXr8n0pkuDeFWNI8VuDZv/+hs8/x/wjBsP7IKW7vre6dKXKsjoms/7bMv+qUK/GRbwoGKovWDL335bCNiysIxvBb2sre9UFWqERxdrbT6XyxkzNTV16eJFrvv4ATcmU95mLx4RBAt5vq8Kp+JWuN0CSmEHXNzTsl0UufSH226cTf1U9hQUIvDdEDsvZQ3UFRvfc088t94772ngLA6C+g4oMgCtpt1bs6h0HkU0k+q4yOPTqnndFXu73zS1iYh0PBWowFQTv2zM+rdZDzAkDLgNB8aCoJOMyfq2oFYbfi7DjNGUCVSyoMaQSEcmwNLm6qxMMKZfDa4OAXBs0e3w2i0Blh5dUy/tbc2psB4ZuVkxeKHZt40wfvQoY83opnGAyadKN6rL4I6Ayp9SI8dl4NrjMMCQyHBrYGgOQ6aDACdMtIrkmjKCDANF19qEx4GMyARDgvdiYu76MTFNjVmXWiMZBqBVRP4PMWFq0k7ZoJAAAAAASUVORK5CYII="
}
] |
<image>We know that if the sum of two acute angles is equal to a right angle, then these two angles are complementary to each other, referred to as complementary to each other. As shown in the figure, angle A and angle B are complementary, and there are: sinA = frac angle A's opposite hypotenuse = frac ac, \cosB = frac angle B's adjacent hypotenuse = frac ac, so we know sinA = \cosB, notice that in triangle ABC, angle A + angle B = 90.0, that is, angle B = 90.0-angle A, angle A = 90.0-angle B, so there is: sin( 90.0-A) = \cosA, \ cos( 90.0-A) = sinA. Try to complete the following multiple-choice questions: If α is an acute angle and \cosα = frac {4.0}{5.0}, then the value of sin(90.0-α) is equal to ()
|
\frac{4}{5}
|
183
|
[
"\\frac{9}{25}",
"\\frac{4}{5}",
"\\frac{3}{5}",
"\\frac{16}{25}"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHQAAAB2CAAAAAA8OejwAAALEElEQVR4nNVbXWxcxRX+1nGaB4xWra6VRWzlNF7jpdsiF6cqCIsNwQhXilIjTF1UQ1zF2Kocia1ikJEsDKofXNW0qUjookiVVfkhgF1TRMEoBpYGJLdO2VTdyE5xsINDvZaD6nTzsLm7O18f7t2fu/d/7SL1k7y6d+7MfOfMzJk5M3MMVgxxCABqU+5LVqFieP54KE4+vvc6ANBNyS2QIiM3AWN3DwCA58sifa8OABouulNzi6Rn7geAvS7V3BIpMzPfB4BPb3NdtHJSz+f31ABYeeGBL5EUf/oGADx5oON/R6obLJkX24AVz/V3XXMClU4NM0rx1yop63E73LcDLvp0+8RzQerZNmKXo1czDVQsQeUmc831RFRAtQuW84trMeDSFQD+es/aj/y33VlTEalu9NJT/gAAV96dja21fL3+uzXYUwfg8srZc02XVj/039fauts9qwOzWhho8HVGF0hSqEkiHYiSZOJkhxQcWnJpp7akG9F9/oEFXfIoZvOPiYiv5dTmNpImIzd1vWmQvi7tuFzyOvlD7+DG1kkFSa72eQeShp97+ndlNQmr/d6IcVYXpCRTg9LwVa0UecR9saA2hUwOSsPprZJO+/o0LVbKEY5O/0Cfnuyqm6mcVJCftTbNGdGRJCdD2dFI+QdBMhY86KRrTTSd3z1iXibdMMueqIEwZHaoLmEkphPSccmwndS6Rg+S4VmjDCQnpUlNZgekghTM9QcSFnImpSXSv2L2ed4/6FjTwlzDzbYWS1PvGSDTZRajEaq5I7/VMCHXN28i0GtYoVB/z/s2yXjQuDpBkumukPXEqGveGe8JywK8N0qyaDGGoo16Yy5ImfBamZogJ0NZkmMRa8mmJStdy0g3AlZ6CjIdmCXJvqhpDgUjIYstpJY029pvwUkq5kILiymgq90JqSAZaTUflCTJdbXZ6kwtJo/0Xc86ICU5Xm83ifUMKDVaWEweq/4/OCGdk/SLtRYf+xQLTjTacpLzktkUU0J6xW+5Rgiq5kJy2qLDipisM2m4Ehe0++iDli4cMPXFEeX50h4Hzhcefuyndo7Z6Wa7flLNheYWU4YbQeO2K5Cm/PN2dajmQicWo2A2aOhLFEgH+uxqSEpLedu3txh1mug0XJbzpEvSZkleQ6jmQjJdY28xCtYkI28NKkv3sLKWmkCQcV9hwVswWWMMENG5NSxomrRXNPzbwuP0Q45Jk9I1faJqMqM93rxdmGDq6hPM73su19lbjGobux/+lZnJXPXaOcrpwJnCs3BoMSTJJUm/3CiaTjxkt/U6HmwtPHuWGpxqCta3TJlo2hQjLTs0qVmUHVgMCxVO79elgxSM19kV73mq5MW5xZBkVlJFbAfUIyCQZORZG6exxFxI4cJiSDIyrD4cmuQM4nlSv/WSJhjWjBxna0wBc6qMcijFZcSpDKTFbNByMHimrvaUvq/scTyOAGDflXUAwHv31ODJ3iZlIIlop7WoxdVFwVEXFkOSbacFSZ4EPHGSZBXhef8+a1GPB+8vHe5YCrjSFPvf9wDAO3Ge+M55pQ7SZ92lydoyH7ZuxWavUgalU5f3k3LjKElWAZdz1l06dLhecziW+8Lv7tjqe8vXFoG32oDPL9armp4JG8onSApRbi4kF91YjNiMjXbXPp0iD8UpN9b+hySrgYvGk5pH/Yk879UmLgXLTrY0KPlyYfEfHy1eQdvR63fUvNOGN4ADiwCAaqUSE3iAqatHyqpb2kOPeft6QA9uzJ1fWPzAH/SdT/c9VY+5f+LB0g6qBhZbLeSWB1/eUZb2ybetuvTS4vzfFpfu+lbw0X1nXjo71O0FGHxdm6caWL/VQu7jwQNFHdRqH1Lk0ZX6KLEYn7s5tL+rsQm4Nn64ob9dKejf0OavBlI3m8u9PjanS1sIaGQAgPXE2QsLF5pvDz4fkgCAn/5yqv3d+vznm66X5Sd9/5JlOWc0eIvOmKCYAdBLMqtdY+bHB8Neb3hwfK5ovG+27RkrPUFYCKrGoL6DrEkJPaeCEnM5Vpui3Nhb4pVtxn7e1YzQI8Ozq6VlUifqwpPaalb92neQoClp0Rk7tp8kZ2pTnGknE5PD4Vt2hSPRD7X5BZf6pR7dvmnTq33Pn2xn4KkWuR1VzKJqB5gFdgJT//5JplqZN3//drYaFLuyWDx379nGxqanGus8umPxt6Lnjy5I5kOk2Kc1KSHnhEwyQ2ZIOUc5x2yG6cYzzGZIku29zOSEfMK/mZk9MZumkDMUslb+VDTQctqwwT7TN69vTcg55jIUOQpZluWcyJBC5uhBqjXfaHyVpJAP9QqZQs4JIeeUTimMnpV+6XA838hlKHc1QAYuCZmknMuQIkMqTEJeq13MkyoLvngLcYW0+KdSzLb7RgqbUR3pfLOO9M5zIkMyJ+dIKtLLWYrMkQE5S5EReU2F3NgrREZDqrTrqcBdEyV1inLa2L060rY3lNKyoqQsk0KWMx/fsqm8UM7x2AFZXkavLGdIWZaF+kcKrgxIXX8trVK/2E50aN+rgeCnOwEAOwDAszP/+7NhL5QPO4GxH3wF+PsdAIBqD7BTSQbei37Um9B66vpJ9ZOQbvSefIIkmSux1cLJmDXSp4LNEw584I4J7TvI2TDJrFwsLKh3xgywOiD9eM6R49JUtskHuSIZ5Ctu9U0Q65CGnF5P7Co7ylUcM528ha2+sSbp8VDTeKFp7LSdC5blqAIQ/kCz7ADAUHe9x2RUAFee8b/9cvxwYXH30PJSk7FweS0ko52iTBSNM6aF+LBLGly1V68EbeWTI0gu+Mqzhc18+Ox4U+jUDed8JJmtKe97ww3UZChrqEpySOqwPLI2xJzOZa0CgI7TmhZPD/5mR6E3i931l8ca0+deDVt1n0GHAqc79alk+abYyFyy482BUw6v0vJQ2qqwKS6idPuvIqk/f08O+9pn3YydEkyHdUkK6a+7S5J6Big0K8V8lxRZqZCSbB83Id1QjnQEqTeXieaGaAVxZHkYHemoJ2aRwYIiGnNJjvgOzlSqI0myb5g6S1BJV2uvqZ9KV5d4t7ff7SV7GZJeg2kmfwrarQpUsrpMtNSdSGmc5AoQiRiULhy91ioSjR5UWDZG/G1GN/AukTQ+es0/DPQqmZZIMtEt9WyxXZX2sTpkFmTKN0917/JKS91xV3ELppgNWB2nC/L0vizjvs2NMX9rIZxqS+NWMG13cUAeGGW4v8d7xO5GyDmGOozT86Qzca76h+B/oXh/syU1SfI1s8sglVRujJN/3vWilmxrrWt77fX0AymS4wEXASh2nKv+6dLX0m/KyfZLTesA8PjBR3Pulktz3HjkSHvJq8ZLqgKA5dTdX6sB4BnDkyC2JX7tCd9z5h9Jsp/LvYriG3ttruGdYiSUMh8TIHkSyhEGhd1FvGO8bnkRXwWspMiZvWrDh17pPLm1diWAXxyerLfMs7yf5MnRghiJQL+bewEDpLu/aRNcccyDOA8BxUvFzbbwlmbejWIYiRkpqZywqhAks9YBMzaYv3XQLotBaJAgx30VDSdBctI3mX90Q0qS876RYjkXs6ESBGVXwCzGbLUk3Ms5thbuRXJ6d5/LmTjZVTfjqFnMo17bl756+3NXndvn+jOh+osPOguFtZLoM9NgRR22K1iRJNciNV0OBvJ057aEZeYhNqLNtw5aejCJiK/llObm265fnUSnL/zu9evh+8JGlxoXYrGY9MjhevOrByM4DInXBxXj+nzFQcUu4vC14dPYeY+/obnG6l5oO0i3D1v5f5n/L9L/AnBog9dbpmoKAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, it is known that AB and AD are the chords of circle O, angle BOD = 50.0, then the degree of angle BAD is ()
|
25.0
|
184
|
[
"50^\\circ",
"40^\\circ",
"25^\\circ",
"35^\\circ"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAJcAAACWCAAAAAD2qEUAAAAK8ElEQVR4nM1cfWwcRxV/6yQEhUip1IOc26MXEou6taCmkYhBFVfRIB2yozhqhe0QEUdKcaWoahq+nFIlSFTYEUVEJYBLQD1LpD6HIFuJ2zjgoCRErZtIJBCnFwm3WJwLLkbgck65uY/58cfu3u3eze7OftyJn2Tt7sybd799M/vm7cxbK6A64tJHmiUlG2rKowKFJ6VF68rre9F7ZEXryWv4gQVp2Tryml/efOcaWeE68nphH8mO+nryGv6+8lH5X6sbr/ll4OJGafGVNaRixPzjZ4n+4qIBag0OAIeIUughOiDbSqmrv5dHzccXSLvzd5fdNKs5L4UUIiK6+fGdbprV63mcb//F1SUikh02deEFysQPPrZ9lEgznkybeiAb6wcut7loUZ/nsZuSRLRh8v9sHjr47jARUW/CRZua9V0ZQy0ZAMBcpCDdpsb2AhGND0yuJSKi6KYpFy1rC47p0Ix+keiSblc7Xlw9zDZOlYoyofdkW9euHxUigP4Z/+EjpaIPdZyUbh64nUzItA0aLy/EZBvWyn9BISIqdt49ZCr+2IWoXPta9aM63+yjH5uLd79ERFKzZOBdB861Ic+PfCZTUTcXlVRSC3sp2uR88vjptRVV0Q0X5XTU0K+e3z8ZqigC7UlItg6wA03gM6FpQXEmXNm1YtTMXvPtx7cIitdu/bVc+2CtVHLzmZYhce1kTEpNjfxX7gufHRDXFDdclnFhNerHrzRa0KIVu16SUVAbez3z2m8+YFV3Kz4noaEm9nrx9MQqIrFbR3OjjAurBa/xgcm1CqlzZBU1hXYnZJQE9RyWMX3njG39UijrrCR4e73VOdpiK7DukXEJNQEZqYTFpmTpnItFJuPOaoLmVREIClGIph1lAu7HYs8D33TqIFrRc8JRUYD+CwrRE++Mr3CWurXjTad1igDtpRAd+eOIAy1SiKh53RUnZQHyAo3+/ExlICjGHue5KIjBrmEqPCspuejowgK0183u8U2SoqGHxp1E/BqphHR0vHRu4bjKGHNyYYHxyrQMObIpoxB2cGFB9COIKNuxrU96jZJoRfcJvaUYQfmvbkpC0d6yZXC9J0VkIx/QuD+4MEyKm1Xd1g9eITv5YHi9eGZitasGCvWO2Ev4G+0AODAmMRFXYjFsu6gZhL3eePyViMsmoFDbGXsJ35gNTzkLVWOs067WPy9jIOgGxfCiTa3vfsxs29vlqWFD98s2tX79V9WKoCygXN9zzbrar72qVgRloVArrltX++R15LpjIGiNnmGbSm+DXUOySR+7LubsEtI2LsyXvQwrgi7m7BIirTYuzJOdVBhXBN3biwNJaxfmhZfGIR0d89DYiGzI6MJMt+aiH6H9aX2WiR/s9NB5Rqx+1PgiaR4Knu811l91k64x3WpV48JeOxWlQTmrx5i94YHqm3SLLdlbZBG1uri7nldxkVLqeX9MYrHIFhwABvstal3wyj94G/OU4gDH0P1yy/BOSN9T0EZCgiief6ZU4aIfX3t4DX3jQLNCpIwPnJN7sXZC5P4phYhoXvkTcHzVXV76MUGk9aJha9gvkl0AkG85AACHXi2VS/FSTd3zJhKUgudAUIhseAlAInIbABKp0uMtaS8Ono4D+ZZj3gNBMfqGNLVmSI4vhZTzHUQLNzfSstdAUAj0/ExVq13q5fJ5fOcOUaE9Eit+at1/vxMUKwW0eO13nzcU6Ceyz+MlZeQ+ZdVd6TXb/tYeFCsi0H9O9PyWwp98G0Q0f9ZYJQt1SA5sWe/+XdFa3VLz0FykgARNABfjhkmNABQYY0U5bcmmxf7nAuEFAMjGvg3EJoGLVJETSQDAmeT0OxWexWy04HO2LqOzFxbZMa54zXx4GkB8IiBW2B8vgCMTWrLkVWQshwIrgjOWBzhjDKWDepZDOnKKMWC0o8hYjjOW80xINcPgZnWS3Z2w5MU5A5AHcgDjYBx59Syv/jgrIrfU8lOOfA75jW+Dsxw480MKGI0uqCcXPmfNC4UceBGcMcaKPAdwBu0AcJ4DsrF+rfhbz3LOuPyoFGPq7lmdY3TOihcAxvMAz+nXnOkHqMVdXZyBcwY+Gyn44MVVMuWXFo7Dh0W88jmeA1BgRQCsCBTB8uA56AeAs+LB2PvaNWfxMd/2motOoNSlguwYAgpM/QGNAWPaMC8dWBH8Jy3/0q8ZO/VFxlj5ofCApfvUNAaNWOyCgJcOu/U784pgQTAgXCEbe9Z0nei15lWw6ZXKQPCwVVguie0VPKqzY3ReeZa30MGrA0E+7yLj06yKA8BT8crmXZUuzHne5qJAsP2UF14adH9qwOTDFQUS8YRoa/jMVo+cOJCMLlS9D+cjc6V6Z14cAAodfdU1hajsll6VzqnInwXF/YfN18726usQjaXnvI58cVoYUlHztSOvwTbhG6zdmpoluO5PBWgzuzAnXiNNFqvZj3p6KVpqFqaFAXxoj+nagddU+C2LmsmY28UcXu1PDVgKm2YPe14WgwEAeDQlz0dHZ5VfL6MrabxNW17p6Ji1SQa/7prW/ip/asBk3Chsw4tb5AhqWJBJSzJRE/hTA8zZMTa8TCuCVXbj6PqlG1pc6E+N6B+AlF/tcsjin3pIkpcmHnFwxal7DRfWvPpjTuFVk+zIB4CZ0BtOIm2Gh8ySl/6xCGBp/Of3ydOy9KcGHDNMeFa8HLeGOcdio/TIt/SnRhizYwS8uPqxiITTrIqarGDjT40/3FmeQ8T2Mn4sYoMLsl922flTAwzZMUJe0iuCzdekxGz9qQGG7BjR+ld5RdBuMxdE9ITUXu2R3/9KbpNyRfeJ0i8KWKuBoMykvBRedhZK6u/7zrjWrJ8JeH21XT602nXcUcTkT51utvWqJS+LQLAaHMD0ZiepmdDrEnx0HH3KipdlIChGy1WbSrv4VCyvZcfwKl7yOYIqjgleSsqs5PypEZ1aZFXB64Z1ICjGUihj00dy/lQHRzk7xswrHR1zu3a6184gmj+VVMkBFBoXeRUv+0BQoAV2W67A0/GiC1qq5P6jAMCNvLRA0JUmoNWy5wcfdL9Jya+p92nk5RQICvVgaK9FVcmfcumO5ABa/lDBS90adr0G+G/RMjck4lMLDO438zIGgq7QV7VJB5Re8dwvdapv8iVeY9G0x6yDqy2CZq78qRnxcQMvuUBQjM3VI/891Z96UjnSqfHiwOx6H1vDx3cZrzi0/SivyIb+odurHAh6ucNMuHLkS8anFug7qvHKtA36yWjhfUfNBVp86k0jx/Rmbf9RtCLoBuVwDoDT+74Emm+hgXzkCBKp4XTrHcZPzkaHXvGZ9NGbIHIRCArBgfLWJod3f2pAOlogQ46gd2TLObLq3qlPxC/TjMtAUADOse957dSHPy1rQwYE+8UfSaSa1KO+H+VbZQOtRwAfLTQ3niciYtsf61MLvOerqVyC+o7i5dNJKLTjDqmPZyWg8pL/LsMKLHIjTE/fmvCe/WuGug7gmxat7h2Wf9+3A6Afg0Eqmoz8PShlQX5X/um51zcFMSJUBMdr+fb6oFRRrb4r94+gvue7pDQoXwtIF1FgvA5/+TbPTwVILBheh678dQ2t/NHJ9wPRRhTQ/wm89N1UQI9hCf7tBdDQgXuJ3P17Qif456UohZtbFSKic1+S/recjgiiHxdubCAiujSSCkAZERFICWLchz8xB0LhyQPy/6bNHorivx9BtHLHCwq9s2rrD4LgpCkNxt/vHCFKNSOAuETH/wDAqWWEJqWaQQAAAABJRU5ErkJggg=="
}
] |
<image>As shown in the figure, in triangle ABC, the bisectors of the exterior angles of angle ABC and angle ACB intersects at point O, and angle BOC = 40.0, then angle A = ()
|
100.0
|
185
|
[
"10^\\circ",
"70^\\circ",
"100^\\circ",
"160^\\circ"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHEAAAB2CAAAAADaECO0AAALzUlEQVR4nL1bbWxb1Rl+jtNQRFP5B+5qqDu31CwuBRGUMmUjWlqaikhAGmi2IhQ0o3XNpDAaIFr9o1KG1mmeWDc6UQjqoAEBC6OQAhNNR0dTbUipgupOSpeWOtRdUhFwxwIuIvW9uc9+3Gv7Xt9z7XujjUeKdc/nc95zzns+3vcEdMBeYF1uuyVKM/70H+PXM3yQIi3+QT5/xbWWSGH8URSC84G0HbnabRrJntcc2jlP8crIuO+z3QLAyohDM+crHgAIlsosAOWmB3e4KUyR72EPsMkoAFw4s8pVYTEfaR1mzv8RC2SRy2onACD9QXsx7vOTpz8eFpy4QCC0CtW3ha6vr/Hep5JxBAA83fVaOw4njhrBqb8eGf64cfmqW2uwIgwgfR6XRicm/77s9g0bl3qmlE/hIQDbNJJadrwncs19feMyhRh7qj0Q3Znypi9SxmLxTNfVocfGy1Uw1h1s3DdjL+mNMY/p7prrFl6UNMTaute3+OMZ12KWmatTnTctOLt840t650OqCYQA7h0Yy0Ye+cTtLHJqSja+pDdDht6uK9P4Ysp0PNA760pGCaNGkoPBzgzJ2YVq3agzmbkt0x3hoXkykpxsrjtOkkxG+WRnvt5KAzUcvSvjmVGvdDS4ywgPtjETcNdbJNWd4VNeGUmS/YFC9yS6yR8MuFe2A4ED3hnVrshYIbC1jxxqcU1IjobiFXrfxjjT0jhTDDUdIdVQ2iWdRnK6vj1bNlOpPp5aGx72F4MTEaCqY79LTRMAlr5/ZcOEB30c8j9lDs4uVEmeD7uU0UDCP1wmtcCokeSY36pSyShJvW+9YDCQcsFIkpnIUwVyvWgbqZH9W7wxctca57E0M6rNXSWpie0kyezVM/SGjjbHJPPM6cGekkE+uxoAUNM+AEJfzt1h3/TPXcyc/ohtjcoP4MhaT2dUjZwMDTokFhlHAvadt6CJ0aR7Ph2jgTF5IwuMUyH7yq8rB0kmHvHKyNfC8mW9wLgxYU88oSuHRmaCqj25Ana2S6PzM+fVz3rsY3w+CgAQQKDhoOtZY0wP7Bw7XGbmZEOyfTfRnf/SBr0s5ySpaTwSle1zhoyP37lW0ppUtPB599iUNyGFwIabfyNL0UgyFbCruGZZ3bS4ZJwrYTowbY/UezXWKy0RShcn+HjEOyO7u+1x0NsiXcUKyqGRZEO5DUECzai4VCl9AJDY6pd1+PjKKmNMACDW73EgASzd/Dv7KZdkxi/pbuo7RxHZYPm9XYpUwFbIB+Dle74hbeWZFeZQTcvLXtZyPeeqxtdLE3wAXojJC5mUAyBi/V6uxPo1kT+0n1g0JsMOXVK69UfKXrKk0NRA6bHMJ/BCDKCsuyaspg5ufcG1hAVJffZjGbncoenFnYM09jzvyzlHVpfKiNNKVNY6k3LorQVCN77tTUICWDv5ibX/fDjWBPkcTEdLE2Ieu1UAqGocFpZ6fDi6HvI5eGZFaUL7yEVvlACw7miePM94rMkha8rW21X3PTcPxmMlEemA05hLzsXGidkbFloXbV9qjbxpLFUOAKi76rh3IVeftQR9p6+X5xOXMyF77Da3lx4TImesjPbRMmBVDgP3vXnJGlFxoaVdxqhDobSsKf6mwsp8WAjRWXmhFag9ZWWcXuZQ6MwKWVN+nO/WngeyzB3rrEQIIJSxMl5a7JAxFZU1ZUP6Xzph8tMaVO8ZvCTJU4JF1jy+L2scMp6Vm6xjzwDA4d27K1MZqPnSypi9yiFjKmKZFvnvbz1x8/vA09vqAKD89TvPWNoPDnpr3TlYuFtFgQbmanUvQes2FyvA535LUGpDpgD+qStH0UpcHNVZTJ2JAMBf3jrhQsYSQ7Ov5hJsWiVgvnNY8duF+CVCtSkAysPbbnHBmF1kIfDZetmAfqyyK8grsc6zqL5rL3D+iu8964IQlxZbG75qoqTbDafU1j7poOz5zlcf1JFsBZB0MYgkR+stF2zf4i9KmmQ4peTK8f4Tf7qyHieBN0nWuZEQ/LLGIqMveAFziqJo1ly2Y5WOqfaBEBDrK+RyATG1xBL2RVOoqsYCi7WMAvadg8Dltp23gbj/jct6Xa4Ycda6H/oip+x5BDC+stRiJ4CHVncBAktuP+iOS8cp637oi35IAFAVBXOKBijKHADlo6gAoCiKkU9RFDx74hlFAVQl1q+oUBTVHWOqFuAmIXxCrAeMU0dOY46kSiqkolHREtv1L1Uhqcf9bck5PZybDaVzOTLnaqpO66eO1iQ5tI2kL7zgtC6sCgqQikKSIrWaIAWqCOpOhumOl5cJVBHAFR37UQVAKyNZHqdXh/wAlFydsuf2GwD42HQMgEAVqPkAUV1d7QNwdlVhLurHzbn7f9pcqGbrcwUXbwVcbLmzGQDeW4d9y6q3A/CJdUf18RCqAAQ0gELMTUQEfGLOWBQFtK5rHxWF8KqVw3ClHZfv/snF9QAwERddxmbE8VAup5GkQpJaLpcjmcUsSeoBZY7as7f+WzPCSi7H57fkqOQqD2R7TF08bQzjvfrlFWTIuOmYd6eTJQfT0ZDVRpsNzNCFcTC+QR2JkuS5deRuPc4HfP+PAIA5swKesx6rLt7zB6uft2bzqwCEU8ca0S8efL1qYAsAvNMCPIqH9ET9xqrmLBtwwmIWURsTZnE0kiMNleQjjwTTVANpUmNrkhpbE6RuXamz203MO4fG7RKLcDRZqVdPB0fIwSbq/lPA2GxA8smYLbflzvFSVGLlSEiMQxZkwgdIra2/NN7BumJ2qiQDKYk400GV5aScbUjQbF0p5ARJdsdLs5uOVZnwn6VVtpX3ULXHSLKz15YAkpwstZKZbm1qS69cECf7p557R7NKctpvtZJpJEGNdkugyVoVl1SskRrVpZNySpLcXztDkt0SYzdIzW7tNPwcJAcijraxeIJOA3kkmCbLWjvZ02mJ/VFeOcaC447TY9zxwjy+dIQkuWWXJFHvVWaDFqu1oRzafyLlpoeT/TMT1ksdicis1vlLwEC9ec0xlENrKZ3EFvTZ9ZjM6wX51WqpJ7tw7Wj+lamMoRw773A2UmnUHOyf7UZDHLwPyA/SpMnDYvg53rC7layI7ZNExpv1peFAJQ+L2YukK0cqkGT5tXNYspz3R/VpPxoYkxeVesoS3SSzkYEyZDrCNiPiu7pecDI06NBY8/XxkWZj2Lb2kWzrqUCnkYkdJdWOB0c0kpxt6HUqJvV4Nh0hf9HkwrQ5udyaKa8X7NjkWMbMqBleXYbSHApVejChkWTLoCmo5fWCu25059XNe65nF6qpYLICoY6BtiJ7US8KnmvZSMq888lods1+zaGAFWrQ1BVxYx649M4bjRqLdKmDbVs65bnt6NZPaBq1vF7Mxm4oI2Ep41CSMy1Nvd9tdG0QL+6kxn6Rqd9c3hNjYczVniDVruXXyH08UtTr2wTHgyOk/pKkPCyMP9uYJcn+Ja4eE+no0x8MZb55gCQPBD29ltn7yposSc30IqgAx0k0E8yS/KohQVLdGR5zyleA6SCezjYsqQEgsHZ0+Jbj1uO14zVKt38+EN0BHLvx5AdrTGUcUCTv4rmi0ct42eUCQ026Xkx3hA+5e6GnGbn2AjCZ2bLxQK87znC6Pzpjer1WgbUg47kEOfRrc5HJTn+Pm0nb2xk83uXvdju/84zpdST3mk5nGsnp7pqOQxUbnb56k39HpliqIqNGko8BSbZaupUk+Wlf/bJ4pZeW/riXxzTy96tmnH7u4KWm9U0yO/2p4eHhwOYHg4sq1WFGZUYUX8x+exFWhClwPq2/mA2tb25eCmx6C8CSCSeD+3wYKYxXwcDEFIDl16H6tuWR+ryJfdPjdeh58SMni/s8GAu0ciithwBsCrqytrp+a80yxpv3wgBw/YfuanLLKIy1iyj+5tvybjMAXOeyKg/vyYXkk4BQhloA4KOIO4trRUaJ0b4keKGxBsD53RvdWVwrMlashO+sBICH17VXyumSsSLU398BpMUXRytn1eFhfZLikF6N03+CmKG5XOX+1/j6//fh62f8L/W4O6zqca21AAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, it is known that CD is the diameter of circle O, and the chord DE passing through the point D is parallel to the radius OA. If the angle D = 50.0, the degree of the angle C is ()
|
25.0
|
186
|
[
"50^\\circ",
"25^\\circ",
"30^\\circ",
"40^\\circ"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAH4AAACBCAAAAAAjjFGYAAAMOUlEQVR4nMVbf1Ac1R3/bKBi6mUujiCXevFigpNzyOhZTEMaUpIxachII45MMWNmepmmRcsfpQ1aZkwlY+lIZ1BxihVMp0lnqMaRKZk2jnREhUgaHDJCKpEoZEI8bA7RkQjGC7e8T//Y27vd27292wPSzwzH/nj7/bzve9/9vu++930SkQIoxX6jOPvF28FzwMQ5AN5cYN2KolxvKtI0kFKij8dEV/eps55VG10+INdLCWc/B04H+8+P+zZs2ZZtrPnC0BMS8Pobb13aumXj9ww3JQAn+7q7Pdt27lDPVfZEtWBSCKE5HqpyFTUNRE9NH+hvLHDXDCcXTDIF+himGr2rfjdmXUap0egBd37z9ILSTx5w+nuNTGbngmRXRXb91ILRB6uzK8cT0ZlCjPlv+s3kgtCH6rJrgypnEloNAtWuBnne9OK4pyKYMqfmOfKTUm9X2vSCpOBYaZ6ViCQ47i4PJLy5xPI9lwDg1bsKhu614x30uG84b93rCe8m0/6bX3j601ddab9eV20CC0im/cXN/z1zT/qqQwIhff+D01sm0tCeva7meaiuQcOKAbPLiekFyQ5X3/yZlfe0y2VmvpbaH/IMmctKmVRz3u8+ao++wXvRhotJimFPix36el9Sl20PQa/BkEzohfJzyJvEX9uFYMDTriMxpxck2eFJMrKmg2F3nP0Z6ZV6dbuGF7Dbo+h36X1Ygr4fdfUupNXF0Jkb0Ao2pw/5jEa6QGgo0vpf81Dz0S9fsQxQ54OdvqeTON2jeSmEaeli0t0ZOzGz/AvZA4vHTva6YqGLWePv3HBwsVoeAPBY4KhF43d4Q4upvOC0u1s9MdKHPF12osl00J6vWr8x3KgvvDcSZS0aHlzZlKjxg4phLK76Y9lTCbRvqMwFFlt9z57nzLUPOtMJ6G1jNKJ+vPaNe3MXVe8I1pQ2m2k/lZ34k2ABITjsCplo31zqvhbKS/AW/tlE+7wFiGxT0J1kZ4FeewJ4L3PDNdEdwLaJcwCWaC/ysP8asCvI2PNXQN/4cvY4F9vjRDHk0TU+iH/mfweL7XGiyL+xR9v4kPCv3deIGgDwUKeWnkB38bxl2pgm3Nqjn1ac8F2aN70NzN007ohqT6AzLeUJhO+XJKnOluoAMjZ2xRpfAt7Ymg69hNbrfkyeeKoNkr0abOnUvXjGz+mU0JpzkqTYX2g3PO69m5nRunA2aHc6HAAweuDRjUjrdV03ovV6wysz0qF/cVmVBCA8YvtJ5/UXNe/9+XXpsH/TveFmALh46ocOu8/mj2roz62xaboAgE8DeQCAlmVVtp+9/Vys7zG6KZ0OvGWlBADvPtN2s+1nvVrtL9xmnxxY+siL/wZqftD2sP1nV41ptJ9xpkOPn3ETsJtAsnUbI5bPaLze17ZNR8HPSb4MwP7L55jReL2ZZenRU/Nr70HHtKbvp6wbP6F8SfNrC5LzsoZ+xmGpQQL5V7dLD16xTw0AXDaj8fkgLSKtBDfClQCqbTp7FVNOjeU7ZhwWbWh2o2fgzPv/gcS3r3zbvtkDmF6maXzHlI0ne57fe7dUfcb3bCWIS1Uh29QA8JUjqj2l5TOWZSlFNOwZHBwc9Pl8/mIAKDrftfbUr4uOuc1WmZPRL4/SS7jBml4CcELHDADIevP5sRsPv7C+fZNaKHV87dD2/WWroicGBgcHfb67/IaI7PpvgCpf+QH7Q86Ulv628QSleow66+ivgtKm/rLTLVk26cdXZUb7i3lDtpkBAI4ZAHCffGTTMeXzOGUDGPJlqv1FeNsMzGfuijBHHJKp4AwZEoCsv/zJrgGMPASSIjw7/Qw54I3Opjf5ffD5m7oNjsLM+XRtU49Oul6w9FHxcI1lApAyQg/7gDsuzGVIPYNnBpTWNtPUVPvMsHq0sb+svyUrZf0vz3hAUoiX0EZyRZkPPn/TO7YcJznoix2H/AWpz870+pgJQBr9ZBdk6ZI8fGAPBTMACkoZlCgoKdGvcqT8zjFDcIkkuGRJnPZA1uEX1r9WlFrPo3cDQPJKSXD9SZn8Q87SnIqm92UhZMG5OTLyj6RyTTkXshz5U5QY86jqCNLOwmdJB0HBx4MfrZ0Qc7zk9t/57E/Xunc1nCKFIl/hEHMkReRcyCL6RwoGXXqpgQJ/bE7awghl5zRBtgA5qycoi7m1w83ut0SgrfJObKt7O8JBKqSkKT055YyTG/IXBFRaC/q+QhIceWpO9BROcy4sKlt4anUDBeWJ9ur1KPptZ0jMKfSCFJQFxRxFWE8fzjBIbnb1Gq4Z0FBL4uPNl8Ph1sKvSJkdxRSXtuz+ikIOy5w+Xrs5p7Cm47IsKGbDMpXLlMNy9I+k6WJcKgbg6yaBnFOzu4DVQQrOZgdIuSp/NFpE7qorRn7Vq5YTvU7tYmuktXUGYIohj67mQpCVDSR5ZEW7rmBvfUnWmn1HEq5qZputtib1ALW1pFDp5bAg2edVKpZXqyspyP7GMucte1rMUqFEguVWawOQ3cM09FtkUnVqR4nJ6vVQc0VudnksY0utmtc8P0v0qkOAGZRJ1Tj6+p9EDmrzzKc6zr/k9zhKn9ZN/foG4ksJxQSsDOCBZhP62IR6u+uIVlzslwy0VXozttdFx8PChPPQWg+gR2RCPf6l2R+N2Ufzq6KrrUYRk+3VPhQd6AyRLH7HvAyZ2AD89UJPrzwedAbVw+nyoslI3pIZBGeO1xaioKZjx3GzuxG8a+oBRrK/pJ4+guq62HGDu4/6ljf4UrnrYDFurToacwzxlTU1gOo6YU4f1Kywssv1R5Oq6yDIvU/Ul2Tdvu/IRfMSeg8gSM1Cmo5ekOSBCs2psepC8xfBvkOk6G8sc7oVx2DorOYVcQZQ0kgTeiVJy6PNr9BWPdHoVd0UORhqrnBllzcNGPoobgiILaImX0Judr2ZgFZFbYOmZiOH/B5HaUOf0NILXStaLiGTJXW60/fcDdb0Bw/GXQi0VXozttVpA+XQ3lgr1kS715R+LJo+oNR+sqjccrr2mRqTi4pjeKIzqnTUA/S6LkWbJUHyxIyOXzcGG9Gkn16Idfy04hj+PhXJ2msmkydPkKysiLtwxNWul6276beoWyRiOBpUX6OSWo2YRIkzrXFXhtbUmpZMSk9SiRjy9h352F/wiT5xxiJtSK/pVInZGEyS7CizolZzrPsbH3C61y/P0QUhiTLWul2RQTzWk4nGYB4vtaLXChmqy0kpaYo8psQw2sRn3Riskd1dnIxZlaKkjO0HAGXtI3G+Xos+YU4wMgYbja+v0IJeW4uA5ygpyNbdvPLd3aSwyFSt3LP9cmwukxKANX0TWz43fr1mhZJPqUoAPtv+WAUgIfz6fVi6VbloUeN6rzGGfNptDG1G8lLSfdgTGT5H1k5E1p+SpIq6jcbWZQwfYt+YFuTsd6mpoq0AnlQOrfN0zRJljWOw4SPPDLFE2dldbRzJeTIFenabhEqGD4hph6UMQZINrn7VZkfWTpD7V0+kQM+xgnKjt2mOS/lNmmU/WVIUjL4yrbvJ2V3JXrwIrpqliPfpx+CskHb3iFFGb64mRXx2VxtZg7bUKk4eddYZYsXJovKZ2Jlzymoqa7rWqQ2FAQDKumtquxPGSvO64uQLuWpdZAwWpDY6jZZQDxJtD4iL861gtjniiOs1VY7pN6bCHzBsjtApksq2IJJXo1tDYoh+B4v8REvfSbeGWG8PUP0lrzs4FFr3yLjOt+afHtx5GQCkb4VNH7y49+7rP3jcbF06Jie59iomaw3bgiJjcHG3vkkFSXZVZNd9mVhagq8cK0w13uH5/QWVSlD9Dt5myPy32BQltP9s0ZM8W+UqahqI6TqaXyWzrENXpr+xwF3zoY4sEezSkzxe5XWWNamDwXT55s8qXone7G0svSG/+o1UZaW/HfDDW1dtdPnA3H80F+2454vIdsA7N8ZtB7RGevQAgLOfvxM8BwQ/wjXdDKndYKgc/2rVL9NaRpyX9qkgWZ1ScDuLyJ4mva7J3pUk6W8nXjYrkrQ/0qPXiA3f758gB8pXxVUqRUuw/97rEAlbrhROpPV4ZvIKWuLwqWMOAJk/sp82A8zb8sPlN7wMpPnWYd6WL4/fDkDZdvd/oP80oB6lp/486W9ZqSSqPaeu/dtshHnSL216pQ4I33+zmnJktxHm+eJxJAfISWHdyhz/A3envw0d2aTiAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, point B is on circle O, chord AC parallel OB, angle BOC = 50.0, then angle OAB = ()
|
25.0
|
187
|
[
"25^\\circ",
"50^\\circ",
"60^\\circ",
"30^\\circ"
] |
A
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAFwAAABZCAAAAACWSRw3AAAIaUlEQVR4nM1Zb2xbVxX/Pdul6VQWJuTG1RhuJiAek+hrEMLdRF9Xoc2ZUJqNQRgbqzUhpRFCeHQIr6AgIa0uo/gTIuvUYUDZHwnhsalkXYVqU4hc8aHup7pVhltp2pwg4YgU5YX34vvjw32233t+z3ayL/ykSL7n3Pt75557z7n3niiEG1QczUs3K/gLAMSGPrZv7x0d3btA6SRv0+vF88Ur8egIHgCAa7XVK+UdCS0R6Zudvpif3J7Ill3CWi4Zic3W/UfZ4UeuZ6KJ13x0lalIsmL9Flsgfy36w2rzt8f49Vws1Yf1nuSl+GSt3RKen8hGs5snF6I2GS/1tor1VGx+s+Sc3ePna6cR5NWHJrr7poM8PaX3wy2R12rd1C5yPZmxzOoJQQqW45Uufe3kgvWJXB+0TW6SrHZbH4fl/9DmLYv6R117tS/yslZ2WNUf9MlcH+T/Uqt+vbrjs9/qTa4VtsbN66MVb0WbfGZmi9wU11Tv7dsiz0+Qm/R2G69OdiWvqn2mUW+kOhKNaJPr8fKH4aaueW13+H15k6hFHW5fO0WSARDA0hvTmzkbPRB55Fe2lvmN1fYx973sltdSQnDJbvqZkTlpOYClP04DipdB/ULB0COzrda7wRG0LLc8vlXb5bi219d+tDa6QMoFdS3GVtHaFNlbiyPLJAlBprIfzuEWap+UNp4GcPcySQYUrLx+tD+He92fbIiM/QYEFj9OFnfdBgAB4B1tR3+MvSw4/CYU/Om3XwXOWsPIZK7njKtPA+GXe/Va31knEV4wxi2/gIws9XL5mU+8vMo3w3M9yEvBrzgFYCney6LT4QVB8lj8VlcjTmh3fNMpCeDtB3u48t0fT9+n9PR6bWz1hd1/c65UAOcTPchf/Oh3AMBc7Nap+PB3MwsP3laB3YrQSmV/d2698MVdAHCzNL3Tt9NzpXNDuPgUzt1jlwaKB7tz4/33Pg0AOC0nYAcJAMSN/YPFIawXxr500aEP3RzuQX7nXaACvJWd2+VWyckrb/x0Ng7gkjpw901nh6nZnpsFCzSe9dnmgvrUYXlCzsxQ3+5QoveFwnghjPCT1320FXWWMjGqZTLquPpANrecuHJq885SH6T77hP6b7fE0gVUAKxM7yhttwTFBwDs0O19AksRwOfFaMONk0WXRAFw6dBEbqAZWG9NAIgsu0zoA/rtwdvnO7yX0ewujVZJHsnZOwT68kFBaaz+HM7wXxr797lhaw4EbmAP3Pkh1Bd5fB2KK0sUnzkx1moowPlEZ+KxyNn9ICjetyNWckieK50bcow895THuME+7ohVte64lIlqPONeAckzkbfL4Nz23ssZL5MU7T38B7XjZljQSJLaBbswtHt5WDSAUBe/TE+pAJTXx96OAMB6avlCqzLS9EpBAwAs73aMTOZIYXaL0FzS+nEhobMZ725oBUG6X57IpLuTi5LWujJlU/Z4b3YgyXpEJ8lKzKEKjfyOCoANKiFuhBQ2GAyADWIbwAbxn+n8AMAGlRBSj70y/5FSyAw1GAg0GAgC1tYuxgcAoBJzeCWgXlYAIKiEoAQViNA2QTSC24INoBHcFvz2zDCARnCbQjSOTn3+zEBQ2QiF2AiFbCnj4gEAwJXPOVdLqGUKU1BsUAgKwzAMIUxSmBRm8xkmNkhSZLQ/j96Sva2/JmIVkoJ7y06fM52hMEmaotFiMSS5wcJBk4KyQy1xXGfuaS/yapQkWYsIF3nh0IbYICkMQdIUpKDZoNggzffVD+TXTMHC6LzZoPh+1oM8lxQk+eskXeQM/9MQJGlKow2DFKZhklz78oKcE4Vx/NAHFKZh6gcXDIOm9WdhUpZonPFJoqXpOI0EU63XjIx3kqL1qBTtAULGvh5xpRK05iQ69np+ojk+r5baH7ci3Yay6q0AWYuQbBgNt/2V5qNbPzpRtys6HvKZNEkynaF7QTtdJXvoqtxeHvHuHiBTmh5116TQnpXrA81re27vVeFQkPV28USQ1Ad1UiYHp+nwsqTVlaxPHvF4jdnyDcmCRkGu7ekopoEkr3aWNKzhJbWjDijI1iaQLXmMpDMdO0LmyNQvXGJr4tb53uJsI5lrC9Qyvd+bkrwW1Z1lVe0CyVoi7fVAFSSpxy8327UIhXdpwrtq8ZMZChbUbuXUdoEmlyRZi677ktcdxbP5h0imfaudcnKytETrNei1J1rn0uV42wNVtc5q/KSNyJM9bWWEaLUVRj7ktoymayXm1ZLwo27JZeyUVa+M4CTnM023p7Iy3ruQS01t35IgsynfAlmLXDTLVLkj3ue7B0qaTh7Oexe4HJazptZIVtSX3Oe7L0Q2RX1Qb7/vXTOFTVLeW2V99OHkJqovE/mCdqSdJDvJ2crl1X3lA8N91f2bXLo69amcr975pFjZvfGF7b1eGQ6slk8ds7cd12WFAJWW7MzL+8c3Qc33frb/lwMetE29xNn7ET5z8RVyyjOf+KAQr5I8BgCP3upUS3Jj/N5LNE6GF0hm9vb6D00TtUlN7u9nH2d19HEfcmM8fovkWnyZJCuJRD9V+vWZqLX2xvgcecyHXLwYXiBJ43lLOB9Lr/Tizsdmmv5bHFm2Zu1Bboy7v6pnRnI+zxm5aQuJiSrJDZLkSwB+4OFyguTaqP2uYNU3k0PJgg97NRPVbOtijM9xMez1fwOQPho9pw1Ozrq9v5ZP3RNNO6SLI8vkMVmmdCIE4M67ZIXp91+zB8NAMrnyTvHkUnzfiLzSc7ny98rS2IG884aPC6O7YC7KMqUTCgH89cCTsztvPH/CXq1pxsT6pfL1a1Kw+zPx2HBHtJiPff0J8/ipuScAuitsJMmz9wOPlj1d7A3RTlIAgHs9a46bSiSbRX+Fhf9H8v8B3O8R3cNI0IUAAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, points A, B, and C are three points on circle O, if angle A = 40.0, then the degree of angle BOC is ()
|
80.0
|
188
|
[
"100^\\circ",
"80^\\circ",
"60^\\circ",
"40^\\circ"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAIMAAABwCAAAAAAY8JwNAAALIUlEQVR4nM1be1RUdR7//u7M8PCR1K6VpZEEsoqPXDEVgSkRNAQ1KtzYWmtbt3Kzp3Vqs3b3aJYVmy1ZluCuS7YHtVxEW0kxZTAorAk0lxAClUcWgwoMzMy9v993/5gZmDtzZ+69M9etzzlzzvwe9/4+9/v6vQnCjw7uxyYAPw0O+pCe9lAk+f9zQAREerzHnb58MiEESFBMguGAiLS1tuGL705Ovcyd130ybkzy9TPjCFHPg6j2C0a/NZmO6m+Knzlmimd2Y4eptbYvJSUljlNpZCo5MNa1Y5vVmJpynWQxdhwxVenvv+1qoooGqgAdKMkd81i9TKXjj1y3uJinyl+rggPt3zxl2QdKavJ77534Zp9iFoo50O4N8Q81Kq7d+Ogv1nUpZKGQA7N/eNMzp5UyQERkZ57/5Q6BacdBaL43R7EMBlm05t3WrEQUijgMbJ6+XS0DRES+9MZ8Qb6aAt/E7qci149S42tD6HmpsWCMbNCS/5hjc4ISguvpPUnlcvqQ5WB7J1m1JXiCtS6W04dcPLO9WXcwLjg9OEGid3StooGrBLaH/jWRL4bCAAAA+OKKLcMCVRCLRXA4HA6HW3bM8ru3Q9GDG/yuPGuAYjEH2xoAMMBKF4m+e0KwRhGJskAkvORgey7Tipa5C3sREfuf0EQKiIj8rjz/hullk/aWjGEQtaWxEABsG0c9GLItuKBfnLya+SsUc2BtdUYAbuzsJgBHcfsLWlEAMPx2+Ov+zF/MQaiJngAAgADseHG+dhQAwp+rLfNDQszBVpExDAAcLXHY/UhRuJYcIOL1V1r9FHkaB/06wYyIQsVYs/V+jVxiCMKRTGnnEMkBv4+eAMAsz+UkbI/I01QKAKCbnf4XaW14EurOy3c4+rfARto4xaa1GBDROq9aKtuTQ4/BYDAYIMvK2m8tEVQMSpWC1syVeqtkv2l/LfzqFSW92tOwrS5QyuGH+BE/FC2LuvPdNp4qGhEqBWuf0eGbK9VvOgpat/UACHs+/uiarEVTCBfCfNb71W91bghsky58n9A00vmPHnt+Rvyq/bx2Wuma7CsICTk4CizPXjs4oWYt5XvN6emZUUFMZpUKwpdqz6TTPSM9M1jX9uVXZfytWRPj6BrX753ly4Ev+TWKOSAiCgcfjZ225kte2awlAGxP+riGLwdr9kEJDohIT7w4I3pFaYguS80zvD/DhwM7FYfSHBCRtRUtvSp3W0gua72lxivHxyYdr/F/gt4hm/SBtXzPJ9dnL4oL1mX5woY3ZGyyb3qjfzm4IFQ9nRC/+nBwLsuaE7ys0psD/SIRZTkgIm3Kv+XqFSVdgnqt9C8pF2d4z3GET+Yrkih3wxMVx2d/mJBT1CIwdetJOmNFYF3037FXkRxc4Pc+EDdrrTqXpTVJ4gxvm+yddGIUBLRJbzBz6Ud96emZRPE6WN/E41EB5EA/nYtq5OB6qmnT0qh7/qnUOPpz94jSXtzplzMVC2AI3A0rd59dWJGQualBoPLGoZt+TJT2WqdlzcFOskfk5dHDZe/qMnIS5SIHF/tBQA5NmUFyAABdWhr7b/mT7RlZ8yIDGQcX2yjOEKuqN+ZcEPYgAmsrWiozBOsdPeCZFHNgZ8dhqBwQEfkPHhg369WT/lzWOqfOMynWRfDmIIY+J4eZd9wpZM9Pk3JZMvbMVE/diEvtEZpwAABuxob6fde8Me6+XRbqHUjJZRdFVcWlmu6wcTc8vu/EQql4Lo6MnrpgHGuT3hMIGuRneXlCedkrw7NzPMbn3LVnACgDAE4HIjlcLNa2fTf0izZ/sz1yRdxjZQIdWgex/zksbHhYVq+IQ8/KCwB2bef7bnAJf6w1Tfz76Lz32t1aCX9+6yqH5cKznhwcO9+PAQi3XxIOAEDGrtzdtuxQ0vxNDQIFALAdyoDINB0M2QNrtdwDAIzxAAAC8JeCR1h2NqveuUmfFk6AtX0zc+D9bWUAAIjIKKWW5WdvNqN1KjEYDAaDHgyXCDqOANGF/RzthWCAfDoUJ+nA+s76mRYUyjM1iZPSYFQY+HjNzVGL1y95Dy/eXUZPxuQjuvtufvufxkztB9A4QHgAGbWbXlp0eX7E2vOlj4+IYG1NSVzMr7Z2g8se6GnBLlS/Gs642G8ZEAIwihECAGxw59b5jwEhgMghEsIU7+oiolB3wFRzo/Gp/c6XtUULn828AmzN4yNcHFjD2q2EPyVQQq6EnigEQDuHSAA5QCQAAMgBgitNnAw4RTJDRKGusqp6/ILVKYN+z5rirIdu5x0vlZQNc1XqgXhz792jIaEL+xZ+Timyi4DIkDFEZIjo/DeYpjj0k9G/va4gd9ysp/deEOU3xfYYDAYDjDUjorPfHIlIoBgJAHDx9cEM5iS/n7ZUHqy+wphbcKVXGf166kiHR1oPgK5zA4wD0I0/BQAERgMCkMFhN2EEPNMyYMi+NZmO6iXaBwBgTRNEaT0AOL2DAADoJh1ihAAJZ4QAEIaEACABpwU60whI3D/J9jtMpqOCMWOtv/6PfZ0mSnt/mOXGxkh18wtx+92VpgqrMTU10Fiob9Z/RPSG+m7nR0Um1KYG0zwgsr4DpqoOo3GVzFiMnebEEnJzcPkg6OeY1HNAZNZKk6khI3XFFPnatDpFnOHm4I43uqTXVbcvmCqrvkpNLUhU9gStTvPK8Xbq3thOxf0Fo4LtyFpjxIJ1JkX1nfg+9oI4w+c8jGHJroeVfb87AK9LVvb9LvD7U703rr1Z0pokJicHRgXbZ68uuXLWCwfUL+87VxcCyoGbAvXTAn8/bag0HR5vXLEtmI147GjwXmXxPZukv/N9fxwQkbYcMFVfYcx9N8iDAMD/O9t7zCoRfC2zP9dLxChXADZkpKZIBWCl6J3+qffjEme0Rizdvty3fbkArBDCR7N9v0DC4ponn/OwSSo4vtvx+0nRvykM6QyCC71zfI82SciBXLuwaJCgMwDfnL5am8mwsC/GN5JKdcbYOs/S4xGAUxUEYIXoy3hHGQdwbFzXLZgqDzakphoVBmBlcBRY1ktkSymNndFNj1jwYq0G+he/91TiBYlsb3tAAUBPz45C6yU4YWp7+XGpsOLVkuNQ2PCw3TWWjvlvaT/TEA6fk948Fknl/LIEC9rWjDVj9zyz9ppIPidZIOJwcVmWFREtmRak5uRAR1iCQe9CPz28Jwd7oXPAP1CIiI6iB7Xd5h144WU/JaL97rv+4JGyrdqi5R6vY/cd/oo8bZI/4xkMwzfsO6CdXdLat97zV+bhm+xcp7NN1/A2cuvdl83SaJuZNTxT5n+ZyUMmlrkrKSIO/MNljawz06yNOuiJRQEOgHpyEA5DvsPRvbxs8NGGzGotSAgBKYh9k56MGZwMIyIi67y1NHTv4I8mBzwGK3d28fyyYgUnQQPCvjtLqpcYguxE2vbwyHXDQrHMgb9+VRh48CnbM0W8HbukNXgfZW25dKfc+FdelrQmqTRYfdgrZhyUraTkXDHrvP2u9mBMU2h/YL50N6WaAyJfMvG1PrVeyvo3TtqqpKKykYo+t+aH9DLB7+lDKUOw719w+tP7FNVV+lW07rZJym8T0IF/JWYqHQuquXfwzfKYgjYF5w0o37l5wl0yVySC44DIzjwSnbuDD7ilTIWBktzrH1JzP0DtXRihdOeRrJTk66Tu3SAi6zBVfjw7d5GqrRj193HQUlZZpUtJjE+MIEM3ohBQqGqtrbIajVlqp8TqOQAAsJbK2oZjkdMmu+8l4YX6U5aU8TcFXBPUloOz3fN19e59SnL5tPigVwRC4KAZfgr39X4KHP4HGxzRTN53slsAAAAASUVORK5CYII="
}
] |
<image>In circle O, AB is the diameter, CD is the chord, angle ABD = 28.0, then the degree of angle C is ()
|
62.0
|
189
|
[
"28^\\circ",
"56^\\circ",
"62^\\circ",
"72^\\circ"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAIMAAAB4CAAAAAD0ox5gAAANUElEQVR4nO1bf2wb5Rl+70oJdOm8Cad1i1lQ6yrpjMBNYaQ0kNKF4UKg6RZmlgXRinRGFGmdFkYkQquJMqoStKBVIyhItUQKQU1TNkJxtEykUCDt0oVJgRSSUrcBmiZIdedCnPPd9+yP72zf2Xe2z2n71x419X3ffT+ee9/3e7/fAsgMTCQI2hDHvyaPnj5J9NUYEZUuJFq2+LaFHiICSBC0CfXZzCAQCeYc0nH80LsDp35cVLm4RKAFy4no+Fmi4Yn3zx53lVfeuVRXo4b+7DmohZ3f13eoYG3lze54PBM1dX48+N67tOaOXxXGcyhzcvwugYiQAxje8hXW7wnpohQwKPyRY6zdV1gXzKU8LSgnDiy01VEViPCAAl6xHvGocHuFs3EcABSWnip/DkM+x87TabwMWPC40Db7xhEDmnlyUAD0e51t0RyK0pCKvOioOZKrGDJzYABGq4oDMiejES6TEwEFAANL/M8jo23O+04DzEBe1jgAkafsLRakqqUv77DviCZJ5cdBgdLtrJ/IhwHHeI0rmK1+Uw6qdUXq3e/nrFRD9Ln8UQDxJmzOId2VikQC0Se32AYrcnR1Jvjp0HT5CSISDCrRw5hdu6NrVjLgYHscnVwSGeVgyEHeVDY2q7oTT8NufxaTMNQF0QXvdx8unY0WVB0yRu5jZzbMiCxz8nQOOHv7DZ0Fs6GglkOiSFTQbV9zPnd7UCU4Utw6Gz2kY1vpqcy6SLEHBWPXdQJgefkmE7Q7xy1xmCh+PatbsYy20rBpoVoOXBNh90VWBMe28ojZK9KPo5go/WzVc7O3RgM8+tWbJgOrtLHcg/Pbs49C88ID17SZctDZQ2uFjFz62zwQ9QRg6K1Iw0EBO+zIYL+zAgPGrhnKzIEBDJPO3ktEAQDQ6TK0S9LZwzrPpbHHOB4Nd5rbA5dQe7l8KcUATHv2Gbg+rgvGAGDKMXxpKQAD1xpoQ6uLzYV/vqSaICJ6uOj5tGGRQESqdAYcpp7s4mHSPpymDK4LAMBNncg+/pw12irSopIcuj2XunoOV785B0/35eGwp9KAA+8cDtD6S26QRET00FeHiBGlDO4uqxiAgCqIhOnF5fA2bbg8YiB66MsPiOL10nR74vkV/+WiwMRHX4k/A7GGMI8FJueHL5cqgHFbBPH5egftV4hIFIheu8d2ueRA5FzVzbj4hVNf13E9APBYXkSaDTorAQCMTfu+WT2o+ochp2x97JT/YCtqOwkoYHhmKnTjlNou9tfOIcszbAHEskzhjIGC2jcYiSTsfbro+hkizqHPa70kRgLEvAa/wF39IiM69Q3Dkevm8bhIQT49plRHRLvyUsZEocwQ8n4L7K26wO3hnXJLJXBD6KD9wBHKy72y0o8YqGhwpo6oZIqIiDU1WS+mo2gQCrC96tt8SPif0wSISBT677SmTyIKbXtiJYlWVtu1+Y989Lo+6goM3WqpDIGIAnM3EZEQG2U5L88n8GHTuVGbmk3NLJ6ebyP+dTkj2ldpJxB9PeCdl5WCvgGf2PDLhqdv/+95nk3NLI6WakK54ewZF5FAtGfupuyJRQ2RqS0ry794+MAG1+e6bxY/K7HsahYuIkago3/8kz3HHCIR0YVnl80bfbJAeXv98s913yyOLbfqanDVY88PkbD91v0/z0GJiQQvL/v4P88XMep3OUs/1yW54nilNQZMFKiObibaDKIclCgQEQQcbFz491sYBJEO3E+lb+nTVBy22Lp1E4DsXZcCAB9VuHviOZxD6KnW+4cL37MmBxLj4mW5iIFEohMPbHh4+F41PDjHQ4URnQ7Fcz+0yCExPxQppzY99Xi5J9SQCPZUE9nO68iL4XmWOSQLMPVQCW4zzy6b++lTBUmub20gNv+cPvUcOVXHuZjETAmtzcUe2h21+pXvkE0GJu06e8htczEN9xORPxMDBgA97oqBlPjWegBhm57DnHxWPmaWCEQ3mlevAMDRytIeQL8HiqpOKDibIgfbWYv1MwAhIiIKIoMyQrWOtvg+G9+QBYBwQQTAiWIdB/EH0wRLXZZAmKh6uYTWBL29po1z6nc3lY36BYr3TSLjTz1rCokoktIWPUMW5QCEb3oBABC09RqLIbrD/thUquwABahtA4D+Sp0cqOIDyDOSZMEqplf/QS0xaDOcmQSctaMJLSlINjsWLZxgAHqqkzokIvIeABDLfbqgyF5/IhC0vZOWIOg2d//v3KoAQIcvWR8RiaVjOVsCiIjEXxe+lIi5+40He/VJBu96/Jn3V5uV8OZ9IhHR8RK9Gf2lAUCMxSQJssSAmCQDiEkSkj/qE0NMkjZ7oxKLSTHEpBgUBG29mn3o075FuzPtMS8ahgLgF68mo4iI+ioBxBhiAGQgxgMMMn+SY5wCU/81r4kgJoH/cXUE41VONtq2x+cqhiQGXPzXc0TPIWRHvDLGwCRJkhiTAMSg/gBgMQAKk5QW9zdgMcYtiG9oc8NkiD5n2zJh7vYVKGhqBADIBWHdOgyhIMwrijFZrQzpHCQALCYFXGdiQIyLJG7J3DADzppse6KKm6/KhRZoIomIUH4wxhUhMS4RMMRksBjiP4noriUhFgNiCpIcFCBoO9jnKc8+Fhqz8/6xc10qh6YmSWJIfrEkIcUmY1xH6CsaliQeGf/jJP46Z1GXKnBzMLRs5E/+nRprISJCsFyNyeKm2FFHaifIMV5v32LL2HeoqOjmPJcPaLgSESFyZQRQANmsiPjeq6PP6E24sag5wg0zyyhkspA3molC7dcSEQHlQQByNm8d+lGX2g0yDdloi80/ASRbRwbsUUeynV5tLOfQvDVzbgUAJlztQKILjuPV6+77VH08aNx3JMFq2vlDg9YcNOtRGTMDCHta0l/0lZUdRkIFXB3m3xKxnQEARG0hQN9nAfAEs1nTdMWTST7qw7C3uEsXY9KLxtGt7huo63J6DqzVl4WC7PVrWSoMGN9ob5WhaMyQZSHxyE7+69VvdKpymCzMsk7re0AbUoBzTbbmcLoNZbIJ2TECQMH49/XLXyoH1LSZ5VQAwO+VtUHEWuwNxqeWuNs21Ox7pfw37qhSOfRk3MVprohoB0NKp7PadAvQ3E/8ni97ya4Un845KFAy7V+0uMMMSQ79ZWVp+0EJKOZ+opQ72UBlysu4HPh2lmKYN+DSin242tmV2RUZ2wQbccgAILv6+cfo+24AwIpu1QemZu52hpKxE4/YWzL4Ev7K2E/sbAAABO5IzZTk0O0x+jaGvkUj8c0GhJttT4azz0yNm2h5DwBmuq/HAMDTmfKOT9ccR9T3TG4t2pjT0QQDP8EwURgFoGTc30zf51UAjDj+GQ/uK/Zm3g/XyjHdJtrXAwyT16SXoeGAhq1pr0PXq4fmlP6ysn9kZJCCFD8h494AA7CxMd3gtBw0+/6qzidc7byckWpnqqayk9D5ici8SQADTuN9/+TyQ/sqvcnHu8oJv+2FXE7UapHqJ7oqAUQ9RmcRdRzgbQIfpDIoQLSiCQAizfbGvHb9NDahoL4VCvw+ZuBZ9Bx052H4rFLeba+3fk4nzU/I9rFM52G0S0GHHeMJHfpqwdDlqhoC8txASzZRpd8NjNmHDJOlcMCLFfGBrX+djMPlnj4g71MRCT/BsLUZ0RUB42SpHODjHhXNFZGxamdHPhIw8hPFR1HrN06eziFa2QQAL7jHtth2Wm0MBuCSGHbAXy2biFPPgQHKefduILDkCVvj5OwZAOi19QI7/DvKI2qnk4UDAGCiuLPbVuS7aIfWgrZelP221Lx5U9odEAgnVk051y1Khs2WVHKEcKLrnr8tOOo0LczwHsrxlbdb22XLgrHX5o4WmzFIObu4nYho7bfAhCe9+8of0iMrMvpZ0nJgezfju9WbAVyo8kUBQDHyrRYRra6ZzpiAtOer5bfX0dVVRERXBa++7QsiEoVZm8MnK6/tvirrNkfCDYZunMLeomM80ObYl++Xq46AgQEBRwefph8hou6B/cZyoIS4O4joecQb8b9dW/LzURpXFNnkHgEASPUlU2DbiwbNOKiQ6vbj5JJdiSIu+NyHteu91tG3rCEKBYBUt/YCgOm1UwYlcQ7qfaKyKWB7yVSy0rzvoSgAMF6zNMh9o9JRdAwMkHYbJab4jQ8CfbDSDmlUPZghEhFtGCm+oYVAaUfLskEkUp5dcfMnd/MLB8rBmjISGM3dYmaaKp2Zum5gOx3QOnWGsarigPXmqchtzuovEyVNr96VFI+RHEjzSAZG0+91vmTROCOtjvXJFTzGQkt2ZRgEqBy0U9o4ksEhn2OnhS4stM2+cURXxvTq34ABeCWXsZxpsVsdVXsigHEzSXTKChBur1jcmEKYYYB2AVL9fhiJI0cOAHp8hfUBzb1Fg+tfbKzdV1hvuBATWqLq2ficeQ73N0kgAiL7+g5duXZN8v6mNonw8eChflpT+WChGqO9TKrdd0t3/hbvsbLP3nt34JS76I7FpQIWlhKE+D3Wz5b+5M41Ll1ag4s+hp2PNQ68WBw7e/T0SQGa+7yrF3jMc2Xr9mbbK/4fFxX/A8ZGDmE03utAAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, points A, B, and C are three points on circle O, if angle BOC = 80.0, then the degree of angle A is ()
|
40.0
|
190
|
[
"40^\\circ",
"60^\\circ",
"80^\\circ",
"100^\\circ"
] |
A
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAH0AAABvCAAAAADk9ZBpAAAK00lEQVR4nLVba2wc1Rk9s+PiBhaWxwJL2WRJ7AinRqrBoRgwdaIsJW2j4jROQ1NXcShVDPlRI0WJK6IaEDRRiYSRLDBNkRygJdQGpwKCUZ3EgaQYTEsqvwI4xeDU3mAjnKxDbGdmTn/Mzuy81juzuxxpNXO/+zj3fvfOd1/fgrnCfmDD5FPe8viQG4zd2k3uWBnwlitH7LO1P3wEuGbDAm/Z8nLDfuBkCwAsDHnLJjBLXgoAZtf+bEMmmXOj+S+/8KjyXLELiWdGOsxN26+46nMBwOi7XjPm6mM/SPZu+NpjtlywKyR7Afzec86sx7xZkUL6NEZ4YDcWffo/g2NdwImTAMIFQt7t4cULFnpj9siu1eDkgQOHRu+YX3CzH9dFAHw2jKmeEx/1hKPR6NXfLPtHz+2bqlheUWSojYo9T4j3vnM4WFVT4Kk8DxhvLg1vGXQed7EL1teQfXWh8j9NqgPRBVyzK4zV+atfTx1d8eeyRpJsWxfYNp5r9pFNgS2xuRI0rRqJdKpJNwfqYmqV9LplxR7/XbAhTYNi+ZPd4aHEe32w4ZwhLjv29tCm8bSJorvZUhzX6lId6aCSrv/dsI9ES7pdJNsdJesq9WBX0Sq9xlm0vSf0mAtucjx/nFK0QdHIpO2RvjRZ0rO3BDvU4tKO4+hucrywXQ8rbcG27NilzYV6A9LR746S7A8Z0veE67Nhn1xZfjoNpyFxfoxke8E49ZqeKq2KJ2rihFSrC9UA9y+NdF3s2mwG7mwFUFn9C1lf8lx19NtlJ4DkEsiDpe0INLm1mSTJPRUkycoHjbl2BrpSZpiLve+SDg/U1FTPeHGLUdoeHPLCnqj4eEGTKewCq9QcQ/O7jdke022QG3YV56ObXbNqeLFcfXZGRozi6kqnxCnYVQNZF5W89DlJMp6fYG0smzaIp8sa3LOTJFsKJ7xyk7y7kSQVsqbGKD4ZbnfHnmhvd9BpFZEWmuo5rU72WonvB/tdsasYCXeYKuMWuuqpTfYJtEWcVOnArihkdKc3VjUjyapdWkif7FVsr6K9Lc5t31sqZcBOkm2l+muL6UObLnrLntpxzMfDPfq7R/a4f1h/rzN9aJ1F07bUTnZeeOQnS/V311Zetdv+lW16YFf8YUPUiu/tcmXnh4KTHlvMpJLabkrKjJM9GQvaVqVO7DUN3sl1xP1Dyer0hYyrm7o6F6PuVHBSzezZ1JEkqx83BF4t/CIZiNl0au13AjvuC6gd7rHPE1jTagis/uV6WS/66jVPGnnM/a5NbYE5Nw1pMe03feeVv02qcChomeySbdc2hH9Z7XEjakF+5V5j8IXO5/X3ReWvWBLb6l7SlWmPJ9BerD4ThXwS7iZVC8r2CnNSG/u/I9kwk6QUMC/jDZO9FBw2RdmszfM1WekdoLhaG3fq0Frx4NqZhECsbplb8+FBMivVK3yj2CJKTvbdRaYInT3BNxDKnFeDVfWGyV7ymz4oXfOJEf92RZaKByCu3msW5Lc+eUDtBV95lzHC2u+HlmfPjmoLO8Iv1/wXACAsO2SKMOtICQ1m+b0pJKXgh1axNtmbO97S9s+lokwtbAICAHG11apgw52/IgDc8ulpg9TCPlScDbOOdVbVA7vOPgoAWPJJavbji3PCvuz0B1aR+NcX94FA4Uep2ImhIuQC4s9fNgsIBPc90C8ARSnbLuB4btixttUcFgAUP333BFDUl4odiF2bG/byGZvqEzv78IQeppV9yp8hneW4V1zzskOih/1b4J/SEwvwAaAsS0qC3f1JhRmmr5RA1V77VQ3xwj/2XHTWeDRNkoqk9A+QJP1nvNmWzqKSI3Z7o5AM2+QkORR+L2wIqtWQpepHlwCA0OC+uRSApi8R/rVj7Fu4y0l8Nq/xHCA99EcAB5cn+n3P5VfJoKxAEAQAlgcAQ1gQIAiA4DMq3GYfvzvgePJ/EWaOAnmPbz3I3vsGVTv/xv71EyRlYpKUFEoKZYnag+qbrIu1n6PmtVnCWfXKYZEkZ9Z/xdFlA3kAMHbmjsvmySKB8Fk/QECATwbVB6C+JcO+xI/CikHbVZAWqnrpNocZQ3jucgD4uPBSufEHS0Dy/NNT/9tBSZHJ6z9WSCoSSUl7aAI9LCnJX2r0hGQH6XSghKSyH1g0QPoA5a0HFl57Dj4FxIVxAhSoqApQEl+NAAVgMmxEryA4jtWl+e+YwmrOl0oDAOSjA2xaNQgfEDsjnepdBAE+AVePUZYF5CmyIgIiZUUEZAU+yrKQCMtQKEOhTAVAc81XnDlmpyeqWmH85tVeePbWKwGMT0aw4ob34cPYHypFYQSqDSgaEkURQJ4oAoAaEH0QEm+iCIiiKIiiKIh5ItDcfeRSXPD465O2DsY9r8i09vyxybxiAMduvhATXyyAr/k7bw5L2368sYGCABT0WUuZG31PbJtn0KsJS/O7bKOuubZ/MSEd/T5m75+9UVtZKbIkk2RnxVwDyYbzW9W71/03feUQu/0+qyQenLyph70AgA1f2/Yyw0FP7DM/PWishAUfBq2nP80bmW/cRVt3EyHV3rtcWY4uGyDJ3kUDjtGFnRZBSbdhVanYd1IVb6td6G5lecUlMQCzD1UvcYy+x7C8I4D3cEtXcr8g2Nfzyw/BLQhc8KM95zBWUfKIc4o1rTITxBAANNeiy7xfMCpGIQe97aTOb1WNVgoUm25OJ4NxyT9mlKTYRbpEusOdho3GUOMmdheZ0tt20FX2pXhqpDvcWfuqTK2XgOZa7F1nTm+t7ocRD203acEJSdUrPFyW/vSg5LLD7tpNk31LoYKqtqQZfLoWrxVHLIVY0VhjE2WOIf+0ppfx4DQr9esiVWZnn8jyxMyMknbtbWfdXCdmGq649yl3qneFNa8goftnNuGJzdbtgr26I5kcEqfC0EWJc/GOCsYC6U5KAYRXPWkXZoqCxW+qjW++Hzs32lwPneqby8bvqiJJjlwjxYKnrJGONyNbNuWMXBn2x0myoZ7r7E4ETrdCjId67OJMUdpGUgoPHyi034w4smdxK2QsRcWuKpLtK6eLOuz2MMUtcEY3Ys4YvjhOrmzfXuUQl+42MAcof5HD4b9FnFxmUt3DZngT6oTGStb/JtjnNBPNcQtscJ/ICiP5Z668pt2xqNT373XRrEdeArfXX9bgHJPav05eeX1Tbuzd1P2Tr6WISl3l8cKm3LT9seI4Z7cBgHXTMafXRyAnA1/1+jj/0AD5jIU+Nbuierx4hW1w7Qh0kVRmtn1NStvMm57UPuQCcNfRysGnRG+drC+x1CON2dr3/1UAQPg4fx7gu+6f5+YZEs/tyVz8wYkVZ9SyvNVBq8bEbfFu1c3zyDIAQsTMl8aPOvD6DaX9elme8cGNd7aqy5nZd24EgM8i82BsSur+UxSSCveEMh57bSHdw210B0mOlh00Jcihd58VCe8+dRjubyF5fqvFz3uOtusYiZa8653c6NnImaoBcrTM6mTu1quzNr1Xpwmx6oihw3rVYXPQmsqtR2t9sCGNj6ZRGqsPNkynTJnM4smbd8xB7kCge/OmhQc/6lidv3qO4a9VY9+6QL3bbvLsxV0/56qjry5Uvtv9etzrfweOP/f3uMGDPWk2BPR3HT5k9mC3HRZakcE/F04e6OwaK59fcPPFXLgAwOefYqrnxMiR8PJv2ntfw+ljx/V/LsxfhG+VX7u4NIMLpf8DAbzo6xVd5CkAAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, AB is the diameter of circle O, CD is the chord of circle O, angle CDB = 40.0, then the degree of angle CBA is ()
|
50.0
|
191
|
[
"60^\\circ",
"50^\\circ",
"40^\\circ",
"30^\\circ"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAG0AAACVCAAAAAB3Uiv+AAAMUUlEQVR4nO1ba3BV1RX+9r0EBFOdoZMOaCoVlUeRVyDCxNCrEhJArJQCMTBgRRHxBTo+WlGpSlHRMpSHHUURKiJgUYsK8lZRQRCoUBOxgWIDImBCMOQ+zj17f/1xzn3mnHPPuRFmnOmaSe5+rf3ttfZa+30EcRbJdzbB/o9mR2OFEGKtFw42hyrWqA9Q5b58s2TT9wfQ0Wy0K4ZmoX1yVRvxwL1dAEK448hai4pcDKBKeeDJXjYBrK/k4q77jUa74mmOJg/XdcXYHps8cDQHbdMw4Nu9hpm467ds0Qhg3UDo1+YHPLFlSx8AAAZ74hFZzQEUoIiFPFB2aNlS1v0WhebW7puPJnLQEhDFP3/BiCt3XM3S5H1H27+591z35Zs1Tq6tiw6eMxYKCLvkyNoDyANd6nvVs2yde45s0RRZW3JoZxF5pL/mmitrKwFueLrD6glRXDD+HpzxUVm9dEUBNvbIASZXbk4aJ51hs9Qk9xYxzPN1RXLnSDacWU1Gx25Gy1W/9RNA34sX5rpky1K0wB6SY5abse5HKUmSYWcu72hhkpz5YpBknxozbVcJ1Sky46LBuyZbAXj7y5tbA9Uy30wraPc3cZ5yMaV6kkuRpORXgxtIRhbdF884PrBBT5SwJU9oiqSi4pXVGkk1fBtJspEkl4x3U0EWVhKeuswIdGhINIKDPnXBmoUHvCUqEAHkvl/kAiAgJIBFo91MO65FivVITR/jV/vzDMZHyDA57x7S9ANb8qxJrUetGepwLNYC46f3wYzMnq2k/H0zUttdJpBIsqooo8N56LcQBDDj0tj68ZPuPiB52dpl4DMZHc6tUIY7vTEmnnbHklRJ6snexzPU4xqNQTIs+9RSKUnqZMHX6aUaPrwhQz3uNCkAtAZyAkvbhoXwAX58jYuA1Okst7h+5w+hSZMmLSdJnZLkgnubZEfY0PGHkM1o14pgOQD44QOwviwtW6Elcx+6t9myScOy/xVIJOmqrXXZwB6nmlyghUlqJK/eR8Y8m7tKm4z3kiS3D9HM4lbkQpOtFJADXH3/5UDbWOKrI5rsEH0E0K/TSwBystdkI6mTDz/B5GGw5wHLspIMOAxgLtAUKbn+WkZNDyfJ2s62xRePJ5VUlqOYC00KRH340wuqBfR42oZ+TYopw/eiN/oXQWgCwmpp6Uo2XraPSjJhGOWr7cvX9j+ZxJlC7rx74vMp2GR+rUWpWHOWT0gtnCBX3v16i1uT9AqgOr+tRTEfjezyA+uSC3vTJA/2kmlNnfugfemg4lcBkkEL4RzRjAWd6hFKXwNfucuJTXL6IxZQmdAM1or3qFIZG/OsKzNIJ1myy7KAfb8Z9qt8L7crgxApyds7WXaKSX4Ajz0EQDTZH9ujCQAKvh2Lnk5pggCx8XpbLoNU0aUzAJzTVARnOhRoTIoZutGurkpNSMsmyfqiBum53yKjP25SG2sd50ylSEm+O8qiOQ7+pgA8GihKUy5w7NacJ1d8aaREU9RkqFoAPnCob32CJV6B7T6ZAuFNry6LR8x/oZlrHuj21uHdO4d0bFfS9fx0lmhOrHjdFdUUacdujmdB3wz5PFEPIq0AbJ449a7TuQCwb+upqmUdOgV+WdgeAFQTLc06+WRTEWxUTzIUqEvyao3kkdJfh1SEoUS/bn1mdP55hfev/NCimkFb0lOcrGT8yrSESd1MY5RMcfjqxZMG+TuMmPV+0upVkh8PYmo5azRjVzgnbQ23esBCaezY9gG4OWFvxiha99ETAy++pPf0pYm7j/unx6GU7izbByNiixmlU9UfKanYazQkMiPvJLX8iYmWJehE1ayJhe0uG/PSjgaS7FafyNKd0MIFJ2NrJ0WG53ffEqv9qQEhKh5AyI5VHlw5ZdBPe143bctfrycV+TJwVcNcOzSpyLItSQnvBh6P532RX0kq9XnnI+mDdSod3PBMaWHLFbo6nDdF8bu8mZZoRg0PP2bIrkgemTAksY7Sh08gleTivDrqDmhKkdTzlIwU3K6R+sz37WQjV01IhOd3XR6zBEXqBe+QDHHCzYYObKmR5OPzKF9FUKeSa/ZbomlkpKFvHakaSHLnRdOM/jNrPt5xP0m1J2+HMhZGDlRVQOqd55Okikpb2QK7TQs5NLq4zjgjiZHMW08q1flGJamk9ZxqpEmO3Eieytv2PSV1aYt2yxthkrWKj/Zek35OIGeUk9/mjYuSzlYS5JoBJL/LW8swlbJB07n8biO0qfCPscTEgk6pwQBqFEPS1koUSZ0cWE0yVDibJL/Zb+NvVf1IRR6fXPpvJmtKmWgMq9gmy5GWVZCkXIG15NZrNGWNdkmQkpxTuJBMskWvJNk+SFJJuRXAZCOxKdqoLVTcVPRUPWUGk7MhpTNM8vE/GAtESUlGVSqabh7GPf28xtpRZYeMQcv94XsSSZKyNnDYwJZkiIaRECR1TdOksV0K1xSTc3u/xriPZaFEkuR9zxm/SpHR2HELSFJpsTobu4cri++kAZTpjMyJjg/4PhaMJlJBUjGOVvzRTYVfmOFmYJGDV5mBCEmlRw0dGf2mKW1/JaU2bnTnlzWdpKZpTPyQ1LRoLK5pStOiZooN7e4RC6nkPURckwX/JaflT9FITVFT1KNUxo/RHEalmUxNI7VoioqSSZIsOpiIJemoBQAIROe2+xmwadpt0ShAQQF/FEII+I3drxBoAcTiLQD4AVpfmvqA1e0vTsR8yVkKbBTbOwfDSt+86jMhcnJ8EABE0zsZlzeDCrPnyHhpJv33wRfVz/1PZZ+8Nrqv9cpHvvIBBIJGSRnHUQCT4g4UgW9GIN8fXyaLpP+gJhsjs2XkQUZJ7bvS2lMaGTFNwLQNGbMXTYsawdifFenh4hrLDBJkiEsBjKFOUn9vhL2huaVbFtrl+IBW356n1K4+0gfAX3pTGZTbK15rTQY/HWeX5wOO3j1E4ZgfCkREDBtzm8/YRHq+LSYAsNVd01vZFyHy/8nJwDjTL+Ss2c3S455C2o6u5hyQklu+3ByOPY3IkiQbyV4Or2maoIVJDq3UmRg7PZBOJl1cWaGpVDSSbOxZR7LBXON5o9Ltxq9lW30WBxGqzT+GnAZyIdxehyZowRXm6Z71+YZVS8KsGv6NeXbkkXrWOHW31S4/1BJdyp8NorVnyfDoyHzHN0LWWg7yyRmkNOcm1/ZyqFA5MvgstaxaR35/YiF8aGXmuvN0/uXOlDHYTjYrGpM4X3UjnE7u6J+hjAVavOp+B8nYhbmLRUqY5RsytMzCSuJq2D7yJKAMZbq5N1iFEictOmpSJ48XZHgJEFeHIslrHM9IbWQzyQ/kvVF2EtKYfRztRAgA8/oVZJTfuTHvTHI9eIU6BTOaU4b+uPbS5zQoV/Y//zetM/tKpibf/ko4swMosv4yF/JntLUFa9dkfFuhBDD7DkDLqICM7dFLNmZutNpTTEYy9psTmiLJKOsDNYmoTYtYscTNCODmrqPmciconYpy92BXG0tXt0YH+jlmS/KaHcYIl0E8ZysxF+Mdp5XFolbkw+K2hcZ0kcnoMsllqHDV5AaHTbjsdoSuJoqMHmBY/4gLl0Ts715fK70A7mbBzA0yJJw0PyFpGmnd7HYZ6eT+5cC4DWTSPW0STV2iXC6Y3KPJQXutMyp7ua7Dw6uIcFnSTXbSIeKot88EGitLaNFzH5a5r8HTi4/tQ9NTFPmrbe43DO5ffESBgttvTDNygTfz+wvXe0uPL4if1R5KS+m7tEvTCyM78vhW7Z4TK1ITXhx+iZc6vPSbLln3u4+SU8KFmZ+MJZG3t2qS6uh1e+JRxSnzYqEzgEZKhotrY+e/4Qb3jp0VGsmaAfE1bcXrZxxN2zHUPJqr7umR1SOacbnx91tOsIGUgUqPaB49wAcIYFifF5Ebxsd5XWFO6G6O27x6gEmNDE5eTrLvZ4k0d0aZBZpilLxyHR9/wjNrFmhBUjE0YOflxz0fdGejSUWGeTp/jnfObL/raPjJkQuhtfT4QU4WaBQgBIX0mzH3lMV7ZQEKoU0S7YUQIbef2ZmURb8ZC/BJO8kZeY0ZyyZTdl8j+AC07AJMC0z1zJcFBfGJzIXEgF1nAY1tuG0Y4Ne7e/jQCMYliXcS4HPVCJ/T4p2unviykU0BpxorxOlzdLxywxlH80Gd//qFzIV/fLeAJ3/Nrt9UaMFVApGLjq31nY1v+wyMlaO8sv0oviT8MaD9D/bwysDhlFHgAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, it is known that O is a point in the quadrilateral ABCD, OA = OB = OC, angle ABC = angle ADC = 65.0, then angle DAO + angle DCO = ()
|
165.0
|
192
|
[
"90^\\circ",
"110^\\circ",
"120^\\circ",
"165^\\circ"
] |
D
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHQAAABpCAAAAADOuVi+AAAIzklEQVR4nO1afWxT1xX/PSdWXseIAsGtaaAlZiMhHhYBJqyGasEwFJaKeUCzOaUVg1XVIkBt6EBLWdlCx8YGLWrCpIm0gikFKqWBbQ5I0IYypRvq8rGmTmBSSLIskCY4GV/Je/mwz/54duzn93XtZGx/7ESK3zn33Pt7595zz7v33MsRHj6Z/guY/wcFAASKOY7juKHgwwTFie3XiPZnDz1MUBMCT2J0z9pXpttUXUuvTaQEk5OzewMPETRQWzQOcNmB6bY0Wacs6N1tNgWD159MiSkYbLna3vdxmHPYlucuzZgu0KFVqSDhQeUJmfSD+o/uLnVuynCGBS23rla1It+1zsKMStp05ijRxKgn/35E5PVYPcc7VHR7q7dZ3TU6jUWTDuiwvZXoliVveFJyNE23Xa/Hum+qoFJPeMfCfE1WqWFzB7IqpgYqp3qHp5dBzV9q+/10gfoKXD42Tep1OxumBbQElxghiYgaXQbjwAS605IVByYRVbh1i1k+bevFhXeZpyAAYMf313QnOE8l8jmuOHzM/happTOwhq15XV0+O1n98aJSwbGEQavdRG4vZalFIQMqOZAg6JUCIp+DyGU0C9TIcyoh0F4HEbm9RB7WsCojV6O6XN97N58A2joLgVn/is99Jfrdji9U5bqg39uXC+w7CGDuzURAM95+Lm7Q1xyFQEtnIQDLQCKg+PpLxXGCftBVBqBqJwDMSah7gaLMw2pibTew+YnIP4+IiOpdiTgSEdE8lRmubelrP0wHcHAvAOCJhMYUAI7ujMPSPhsR0YBN4gasiVpKjlaFSBO0tCLyX0/PkLzKL45WYz4H0eSIEpF1IGFUt5cVVNKcNDSh4Bsi6f0ZQD91SqWTrueqTxiUNsSumjS8961XAKByyzNhQepIou4LvP4LNu+VnHWe/7wr5HvbTiZuqWJs1LcV730LACqL0tebty/JzRUunFvZk7il2HJ6H4OlritEoZBE1aWutRU9FcYLbW3qtcl5ddA0IiIZTvW2KYCSTb5OV3WkT5YBwKGyKNGC7il0L/I/lLGqoJdXA6gsSo8SpfmnAur6k5xX6w1XA8XGzNhhISKi0c8AFDN0b0xtVdA0UoZMFcWJ/Rgmsm0VjVEthqB+CxE5YjZMaQq18dfzxgIkNFuGjEGdsiWa2pi2LAfqFtvlwtmxX1RqK68KggLAuPGgLmuJ5iZBo9I213OAsr0x1eZ2y/mJwKGt2SYTuA6YjUEXXVMDDWzlOI6rAwDcmYU6W25MNcsdOc+NNW+GGcGUswVfNgadI6sdDoNJx/Hshublrdlm4As7yk7FVpsdA0r3hzPHzeNB3+kWBktn3wo9fM59LXqetq7G4/OSgghiOLXpS/bYapldcj55xowujCeLRcUOY0ykitLvqIdDFKjPMRMvr85JgQlJY2/8WFFtZuwi9JHvHgqYb2Y73zWxJNQknMCRr85HVPLqH9XVaMsBAFBf5wZFrTmtMYKkn/79EfCNdqacMSc1XJvzfuQNQDjvoxp7u8S9f1BZbX63oqEzRIJiGNRJmlV991YskuCIiGjin8+KwZGsI1L4YGsoLkojoolfUf/Lk8EhQOJfVprHB4cWjwLA3M0qMaVLJfg2OzSClYKqNwKo3cM9NghI3SuOj/Ln1yDpG7dXpgDAM4tUXnXBLaWs/CAA1OUbGyrwQP9dotZlwRAoDz75RG5ScgbNBgA81c7WZW2dhQBQu9lY1bc40L/jOUy04wEgjalARIFIX7SrZo1siiydtCpuKDDuXSq4SLB8Th5gC4W+MgKRIAgkCAKRIBDx0iOFf4hIEJyNYV4gQSAh9JHscrIkXiySUoBojCJfGT70J/K8iEWNPM+LgCj9ABB5Pm0wxIsQeYi8+OYuAH/4dlW6RpdG0QgkJRNghjyzLfIARACrr6xQVnw8vAjlRR7gMXTuBi4cTvXON8bE5TwZOxlNQiaB53m4GlQqWgflfHknx71dfpYFE/VrZGxyyMAoEvn8H6hUnClfmt2+9GAGCx4A4MOTMtaEMCov8gB4UeSRuvDPosgDvCiKPCACvCjOHwrxIkRA/OXOJGbMwYGlMj4ZkBvKA8CmuqciDHgAPB7rCfE8AH7w3A1mTNRsjBFMerUQ5eF+ld1+o1M5RxnJGZM5C4NGZiQRERUoM9mytatfbRmsRR2xyhpbRZVEAfFRz3uPxgGq6BWt7b9KTiQKNJKLYKA+Ra9ogTYos1VRwTeuEX2xmhVUJScS5Q62OHItyjyHNqhSN5JojmuHrHx77TSdfdVvYiSRLepbZWCmi2KhUqj5hopZURr22CPxGBq7EdO1FOkvvCEXpN4PPRz7Ebuh761QWS/qrFn3N9XJ+K+E1viVbiszZtO776iJ9brGKeua2lDAsLGf0fSqLyt0V+c1u6I3pY/eCxnKsFQI0QsaywrdN/VFB/keybPimKNrNc4iDfK4shiszC7pk2bcMkoe/7okRpd9RH9eolVitON6dfH6yWfbzXhGdPvgMc0ywxe+5AwHekczka2P0U6XIsxHiCE33xE+CnU1qH5n1cjn0DhmYwUlKjhORETbTpKd7Tje69K9KcB08+pCS/FNAGn3FNklVRrcXfWR7l0Wtutexzat2T2CWf1lP2FQ/llexll9DcY7ZpuuZy45bK2yGWdSqhYmXS81UmIaIyKi4VetMBzR2qwShnkcz8lSo8N2QO94pqciy810fMPFdUOy953TKc+vcqoVtXxytttdspCpmfhAAbSdqv9bfl7ugig3vtF1tenjJ9ZuzNOulRBoIOmMB0//8Ug5AODip02drY45UpG/NSszz/4d9tfWv+4VhXnbUUDozd4jsevWAWi7IzGpS+LBYwelQN43fxukR1/KjhIy5soSBg3Udv41xYRAblx35rSJaUzvOF/cxZDUZSamiDQylBPENF6TZAIdw8S0Xsplaip9ZocZHPovTxcqS9garYGXqOlphlMfJmKLvcHPADwfMFZko7jD4HTQ/9yd7f8Y/RsuwYMfjsrj1QAAAABJRU5ErkJggg=="
}
] |
<image>As shown in the figure, AB is the diameter of circle O, angle D = 33.0, then the degree of angle AOC is ()
|
114.0
|
193
|
[
"99^\\circ",
"108^\\circ",
"114^\\circ",
"127^\\circ"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHMAAAB2CAAAAADe5fOJAAALTElEQVR4nNVbf2yU5R3/PH3L2OKRo/Fqz3jYAAc9B4tl1E0n2ZUMB4kM6oZjW0osGT/MiKMMNktGdhBx1oiKC2XdlFini400aaNsaxXlGjXBleXqLGuROylrkSIYWq6aFt67z/54f9x7d+97975XNNkn4fr8ep/P8/0+3+f7/EQQzkHRVVZZwHcqigr5SFzbWjhjIZwEsOtW/5fKKYCDlR9PgbIg3Q7G7yp1fcmcTzyM+VOgLITz4EExeyqUBXAOxsnOOYUMMQ3Fjil//iYQg0hPpTAvbQ46w3YgwlXAJoffGSEK80MFCqigIM4poiDflwbnjbbNaVm1c+Xa5tSqVrnHHDOl4GisUGCsd+B8GCI6DAjfHEy72+evcuoHLW3IxCCH3zwaPr9k1tw7XDh9cDV3D54VV07Eht6etXTZsrIvgnPgUMd4sLo6oMQWhSJit1byP8e6w541dXNtk9oaxRebF/t29Kfi7ZX8XSgVTZJ99d4lz47a8wnWnEn9d2Sbq/ZIWt6d7QyFMou3rXU3XLTDaW23Qv0dfrBCir14rzGr+9IPTIr/qLXvin/bhfyqzT1WiPGdi7zRJ25SItpICe2SDEVS8DWd+urC0GRmsjNO0eG/3L/bo1Qg1H/oPlebqtVgagTKHuv7qKILeTxFLsUPLas8buhbLRhsIdX+1Do9acgPB1bm7tZccp64ozry7UxhBI6fqzXElF9hSAn2VVadzKk+6+a0lHaaptfspy6nBdo8hzP1Y4Alp7zF32eaEfFO5OVkj6/BOtNKt2Mr3z/xddOcPQ3TcysOAKp63vjxuJXxZnMSAE5WlYfdmbZHAug9/mBOSrVrve9OvzNmYbzZnAJA1931zVJ2jgD45I7cYmqY/uK6b4YtJDXRd7LPbW49JKMexakmc/cnSbLDEzVNN5s/P615dLlV8/f+wq1rwwralLS6b/Vxs7m1WCuRmrsSP12+xaqm2JEo8i729NzfDqxrNylbBIGDQiy9tk1P2oFnzPylAIC9W9xwsAR6bmS3SdkiDIr3yeen36yxvHDkZcmq2gsd2+BkpTf98KEONUj9B7hasZEkf/WK2sHHPf2mHZ8kyfp6PW7DhpJMssfTp8c0oKk0TpJN7yvxIV+XdSUj7hEm1c/zcqocbeVZDh8VjdTrIbns8RzVbEuJaUdOBbvuV/6uAoDDJKn+0dC6WLbyzIqYzjknAv9QSQ+zE73M9LfjO5ot7Qf4409usm09Bjs6sG0SAK7FVkBZNRZVxABgsA0AsOfeKuuPx5p+neWB7ZB+7/Z9APDW3S78ctPtANCEw0x2VpNMMuq5nKWalKJDdcZ027olRzznSTYBiJAkBV9fDmxuBgCsf2t2tUlDRVIAmPzDhhJDYhhmRY06EKBQvFDbPU8Dq/dUHtwSqQRQhO+TVCgvHJk/afax8uE/55eYZFpDaGuW2KFP/jKGwSuV2FjRBQBIptRXv7OlzkI95IQ3fdlgyycwyXeC/jZuCrGpkTyjjpVUkYvukbb7LSvYX5MeN+4drBFZ4XuWSUZL46sivFqh+B/DXPbX+8pmXrbS1GTj37NUlxexhncfPiJBYO78GXgVqB4AABSlVuctdbDmbL5zkQ2SNAxvXFz14VYJILEjSJLH1JyUGsrJqN9CR7I3kpGSrz/P17t3pfZpsmcwlVWkD+wX6gD3qEWbX1pYaVc8gsDYzm8g+ohbT5RqnzcW0azW10/KkoWY/nBmUracKe8R3+veMJSeczxglFMokg7IAUAqNhugwEu3BPMLqFnV5DOzP/jXn33pOVXDqU1iEdTlTXcQAEpGzWpL7N2Tn1LDc/6jb7TOFUj3xtKSsJ5QpDXw2FIAFobbZkdMBa/Me6nttUoAYPpwqj6ma0KfyxQ5Z5qe+zTW68HcM8nfFj3dHFa2cpkDuLpbD2o+4awcAICZoyY1daBGJRQ5V5ndDfG9NVaZ3zozppmxKiejCwBYDJY9ITUgrLwPAb637IGH+iwpIW47rQVVTjEwDwAwI55dWhfTGgInf1hzf+xnucr4T2VwIqosG9yZ/Ung8RBygsDZddVLBjdLOXs7kCknBioAZIwVAhCmBzNpEBcerJp7Zvt05Hb8AX2/r3GOKGM4bawoNYR2FeU01ku/qSjp353/nNF3MZNzfIbCmTVWus/VihzNHwv5Pz/12I15GQHXuMEnMJFIWHMaz5+yMPm4/6PeA2UQNlaAN3yWOgMmKZOuOEkyHMzw2T3lsqnXf+PGm9+RD3hrzDc3ZvivTwtpnMo8moxUZkwUysFMNgKAv3xFj21GctSthfS1SQJSAii5nIAEIAFIEEj8+0Srlg1J/5USADByxLYXzoAqp2uUpMzRUlImZZIykzJr9iuqlQ3JsixTPhpY8LYDIUkO+bQpVuP0fqxUCVnWK6fc653QOZlK1hvgBAP6rK2NFdfnCQBA6bhksNN92QczmoF2FQux2YlC4zdooSIgAQAu1dHOuKzEAQAfdW5IfaMmq8Nix7oxXu12QvqZ7jaKCCQkoOycJEsAvvZZQgKkRCIhAb9/yJVQLUdOJSeRwM4PPrkhMe2Z9nH7nMOlWqhYQAKA26IQFEDJmARASYsdOa1HFPuWAKBIoOuJCHK4ClNEF+pyqn/9fQlJQHO4BAjs3TLTzL0I4OCmSgCIOeHs06/6tfEZ6AAACmWhIACBC+1nYbowYOLUOgBA130u+3eRUf0OXOP090oUEMaFQuN6t/nsJIZP+QGg69WIgxu6fp1T02158YAAjBPohecbzD4lgFsqogCubVU0bA/vzXarX6fWfUFlXeYa13Ia60zvwASAaSubgMGvBP/k4O4zHNS+Tu2RmteSSbJ5sxq/ZDyYycIqaIcDdrGiVQ9C22X0e0mSrWvVeGiDoyrzQXalRCgWUDYPgeKBAFKT9pWm45ZqKuTe/IQv1VNFupbXtAKpRfVTK62vFp1SEkDrWsMeQJc4Us4k2a94/1GLY+2CVZux51VRWdItVLsFDqyc41CY3JK+tqDcGFWR5P71JOMuUjuYSVodNjpHTYshkn5WQ1KSmX0wM1VElUOabE7WN5D0XCQnyiLXl3NzyKgzI+dQ6Sjpj15/MUfcaTfdxvNb371PAe7LkPfl2RU5ReN6d1pcZ0+SMc8og2G2BK+zmJ50N5qSUwBz6h7mzMuOTixyQ/ECW+szZou0FsS9PXUvtHz3+op5dN5EekLGHV3r4q1P+sOWtwCOoFYyGehk+r1Cxl3k2pKbF9wSLOB9jgnUSh5ZuBwZPjqjcUO+TltvKWzD7E5HC6wCgNK45d1VgTjhyb4VT8m5KkJuL42zxX8dBR3ytWcn6pxXV5Dkqk1k/TKn2x9zJMmJu0ImGdqZFI7dCgDzPgT2YUqva9VBSQhgQ9lukwLamRRevwcA5gCQXu5qmgqn0H8f7X3RvFWqahfEySS3byTJHHfoTjTbbrHY0DjPbCLJMzicJMlO94Epk7LRnXW4nc7Z1EiSNdVqE/v8Wwo1JNXjTNQtsFpSqefxVysi5BlU6+mjK4KjtL4KzYtLi9fErfKUNbVyjYU2A8U1qzcuttDja7BucK63PN6CLanN25YjN9c7qR7vXjXkSMVJeVd5ThXZe5tli0oL5H2bledNYbt380XbUiZJcqS2PF+X5HmXWnO65Lbdn9p3QCM7F849ZflAJsMPWWNos3tHrq2osegWd/1IfrXYea85Uu+q7cxnSEm2K28n8/eE/TeiDTnn8pP6G9H8nLbfcA8c6hgPLg0GsjtH9HWHw541D9j+rx5O3o0Pv3n02Ijy5nf2LAicHcR4T2zoHZ/65tfu/tvpW3XlbTNiwwB8czHtO7PmLb5ub5u/QEz9ffz/B+f/AOETwcRLP1+UAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, in circle O, OA perpendicular BC, angle AOB = 48.0, D is a point on circle O, then the degree of angle ADC is ()
|
24.0
|
194
|
[
"24^\\circ",
"42^\\circ",
"48^\\circ",
"12^\\circ"
] |
A
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAG0AAABkCAAAAACpnOFCAAAJ3ElEQVR4nLVaf2gb1x3/nJIRLXWrjqhEbRUUaoWqODCnzqi3aXOyqK1G7JFSMw/iUcMSvNUbc8AqLnh4Yx5z00BD50FUE+qxjAbqzWlrqIecRMk8cOeAU+LUCTlnSZSQ21SYEnno2ir32R93Ot2dTtLJ8T4G6973/fi87/vxfe993xMIZ7hz/tLtJLB0i4C/Hl/6pn9LU53DvDoEJ2w3TyWSt8Ob6r9Wh80BgDeuYXluKTXj3xmJbFxdtktH38u27GwJ2URdPHM66W3vqndOx4pIH2ny9y1WSrHQ6wuPZhQ1oFQujRXZpN66zsmK2RWSHO94uD9dlakym5Lq9vTdrkpFkkz1PNQr3Q9btt87mC4pvKwCUr93UK6qXjm2CV+3kUsp+Sjl6wxMrYztRmTbbLXSS5F8qlWvoX0+W7Y531ANJEXkBwILFRPYsY15p8ja1CrgXe94bWz5nmDlClbEnL+/FrZMNJwpfK9EO6mpPVs2n8tqjLYHkh7drDk3STo2zribrzq0XFOekRXoo0LXaNiTLJPEzLbg0afMSlqxkPGEV6zGppDp4Mo1M2GoIWsrL644FO5FnxxZQU/Z4YfLE1qhZfutN5JfHdVIuXnQTmxgGwum7VKsDCn/BEs7HywIZ70VV02nKBDMbbCxEbpuqcerWvDaMB4obSqdLTK8umTkQHtZtneaVm2EFNpSDn1Yhi3rnzMmXB1Mh2SLRLOTv9q9HViZYSyPXV89pM0y83wTvZnSqt0/JK9EGlvMBYAY6vHYV+/+sLFzGDC1GElKG1TVVrfbSEpec8EuEBje7wGx2t0GYOOLb8CkHcm0x8nOc0UQvabFwAXiTy/UdFCpBfXhP5vCJBuTtXWZ07QKFU60qF9xoI0xF3D+Py21VdjRmQ+AAAFtF6+DuCqI5BtC0AX8oYs1DpAaEq/pfBsCgrGDQH3sCZD+2laaBICY8+SzITKu2pC4CC76HHcDFTIGkjXQ5eskIq51tQtnnPaaAAh4ZZEAEq87b8pwcglPaG2/Fqd2Oc1IAdOvi4551BzndpzeroddOPttp3kF4M1YPQAsOeOCsPRcy52z9bgKAEsngWte5z1OIkGSbKvQb4bZmO3bcHC9tC4TR4JMtJGYbqmBTIRIkgmU2Qubacd8XdJ0Ixvn9HG89tKWQgs7QD3+WQ/g2ZgDF8m5n31x4hkcjiJ4eXtEswcuMVSL+Y+9CSwJsYNVE366/7s/PvcMMLULIcPAilZ2iFj7pA1w0oyHvH0ZkpTq8jxW3HutlR53phUAQMD7TpKd/PmjyQYAQDK8Bv60KqWAtcsP1sDmCDcPzP5uj/Y90Qo8sKx+CxRcyzW7/QAYt1EWfPabrVvFAhnORoAH/qsFBKDO/qRl02UqpoONMxWiJ/ztqaL0HwGSKb8erubEK0EAaC7hKGAh0jBtDP+2m2TGo4etp/xquHQTyOoh87p6J7YjurBLbWc14uROS7vXLdeiWSowEArUzRpFurNtzLsvbfaILbuzNLekr5b9ViZ0hORxz3xp1FzT189ZZVPNJLn4ZJEtKDKXyzkjyzb/mqTCsRI6qcs3Rlo7sntIrUeRrXGedEam5KM96kaKoz7T7iJfMB0WhGZJMtlSZItOkjlnu7bvd+ifh32faFUgOR2KiHrAANGbJ2myXJrN/Axwy4AbMtwAZBh/AMjggbuTalh257rx3ExAnbE3f3Lh97v16WtEIrIGAK406BJXcAEA4Nb+ZLdbBmS38QeA7HYPffzu5263W4YM+cvo/lH4Ogh89ottzZd328+WUzsIABe3FEXTLWq/5bSfXC5nFpAkcxwJZQziHDkQkMhxf/uNcg2fr1OHe+Ncsd+ueckcFTJnKtzKdjyQMoiVHJnrC52JNJTzn1HdSZLkuuIAAn0fqyXmzFU3s33gWzSJc2Qus014rTAu7AZZf59iJCVJF1v+JrsBwC27Abhl2Q24ZeOPjI/2v7dZD8uQARlHt3zjpXfuFkyYTbclIwIAJI37VR4pjOvys27RlywqoCgkOdP0rTmyqzFTVrd03V2SZPR4UQZ+4lOTlye7HpgwhRVKXb5jJMnOcLbcVD0eJVkcKxqbeuqwtV5qOf8OjZrF+UOefm1VzLeHy62P+1TnkrHbCLJ3sEx6FdnG18yCqWBU1KuSb49YXTCarppxM5UOKvObK5HJLX2mphJb6027NDkatdKRZOHolPdeM7Ip6knYBgpJ5vd0GmXZAe9Q3qAASTnaauciG95HktpJWGcjebjLlo0kuc9QlMJxX4fFu0NSDrd/UZpRG4p7xqxs6YftVlSFJPvDhmZaCNtugJgNG32Dak3ueiSSypLZgwGS7O0vM4oPNRatTqbnkVKPupov21TSOuqyze5BkxQkmbJ3qinHgkWlR7w95d3OmcaXLJK+fpKUPOaCQSpkV6EKJh0n/fp4mmkMz5fEG+kaes0CddnutUgreAxnfAta8VKHr+JFF0kpZCpYejBP3WNoZWNfd0n+eZ82JO4NeQeqb6il0IAhNLqHJDusl4YFT69vzhIh+rVJPBlsdXIS5bXAIPWm7jhCMhG0zvvCxvx4U57GxUrarJpdsTU4pVTZIikFOt3tnveKlbzYBQ+9ov3LNBwiyeyAZ9g4uyvTir7DWrrZECt46BUy5Z8qVlQO95PkMV+XZKx9NSz6RhQqCjncrd0+WDIWjzjqzYpqHHfvIzkXbrI1HSUoFrnoUQ1V8yTnvJVuVoy3RnvbyXSP94gjLhPmPWMks+uy6q1RBTb9RqwvInPE07sip/28Z5wcb6l+I6bkIz0kOfx0dqahZaW30H/3jLN7uHOPbaTpaJoOjpCjoQvtm6qZjgqY8XwYeLnB/ha65JZ2/LE+J6ajAqbq1j9Sxh4YzrIUgL+++Pm6x3Y/ZL+vdwjhaOqPnfjeBwASEXNU8dxNYXoJz3+0PvADj9N3UGYS7ffeCflMJ/B+W4KJZ62uRaOeIslMdMd93SCln25X+wG6y68IA1usjSSZfzl4gdTnrFLbXYH+KiIRs3FjFtneShS+3/ZNOXgrY4txfSGMAxCt+XU2Mb7UpldwJa9ZFPKe4TVLm8i4YB2aOluM4it6TVKFlzo1qZYMFV/qiG0kES/DFof5TuEv5ldIDmilvYGpYsL4W+QVIWFJ41K9QksgE0HDUH3hylee+uWnpePbDgTwr1e3Bi8/X0w4+R1gCyPWpIqudzxu1iHV7elz6ChK/dSjvR5T1/kEAKCtJB1IMgaIbCu9npEO1O3VbvgrteSJDk+/sycODl79vbpYnk7hQu+j4VGn9sDJi8YTy+VeNCaTtb1odHJzx1snp42vNXH9//Na03Ancef8Jek0IN6C9hJ1U1B/iers6gLA/wCvv2osXvoPRwAAAABJRU5ErkJggg=="
}
] |
<image>As shown in the figure, the three points A, B, and C are on circle O, angle ABO = 50.0, then angle ACB = ()
|
40.0
|
195
|
[
"50^\\circ",
"40^\\circ",
"30^\\circ",
"25^\\circ"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAGcAAABxCAAAAADtpeKjAAAKlklEQVR4nM1af2ybxRl+PrdZRuvxMXCpN8xcFgMuQV0gBboRKe0IWqYWLYiw0BFpmSiKtmhalmVbmCoMUpE6DYmg5Y+iCtWVMpGNjDINSjoS6rAIZUq1VJDOieKoGU5XV9kkV0k3z5/7Pfvj/Nnfj/OPOPljj6L4u/d+PHfv3b13994pRHm4en72cgRYuETAV4Oqh3131rvLzAtAKYdn6YP3I5cbbq95wI0dfgB/X8Tq1EJ8wrevqWn7RvHMvv6HlcZ9jUFJ1IXxsxFPa0eNTUxFkpZFsXys3tcbLZZiptvbcDypi4BuiggDzdovDFlRnkS3u/2dovXQSXK47aa+ZQsHGUcPGceAES7CE+9Uey+XJBFJu27sTpijtF091HU+f5qkrhfjWenzhJYdxeryxGSizxNK5WPDvmskGc6pvBDPKW+nmUV3fDiZ2v0jxre2a8AWK+f5tOm+yVLlOhHZeWBZZInjtC3OJRvK5x7c+9eHsuO+1LA3ofGTut0XCmWR1CvsGVlrUwy86Rkmc3qL51vl5Ml0BWYqYMhiytdHkmGcJseb83IHT7K5ISm+9IpalKhvXSE5DqDbJLbzzAQ6MxWUbkKqvTaWmwK5mtp4RlT7gCwfRpmL9yNilTh4ZtTcFKhEZyTJEfWBl7bF7NI8j04uBypvjYGJm0a8i0fuWSnCk2nqWieJzil1OFlNtrcYAgcP2d20ziFATquDnK4jU3tC1ggTTzhgtZsVIOo9Tg61koz7TtHcyaARnPQUXc/KwaK3n+QLfSQ5dYtltufas3TbCNeJi/4j1MmOkyTJYb9ZPTmepqPrpbkSPEyS3DMhwodbJTxv1K93DCRrs3ZGza6sqeB7Dp4V3xS5jslJrtR1iI9l1RCNBlO56Oz68+L+3WtdbaxY/ebdJ8TXQsCQPfKVl23rT8yTrLwlJJlqajX0Hm7LSROeBCm05AJAHOlSK24JAFxv2Ty4CQABxPI7yu3tR4GslkgycYtoTqXdk3myMd8TbYP5iEROTy4QOPqsCqKy7iGAjsvvVOcEc3fnI7c/8UouHbmsWvZ4a8ahOnPvus2BmGfFaA/wm8fL3PTL8eOJyI350JXPmru6puEtoz066yLrmTmhgKENXScZabDEnmoUvyCn/VwHz1H/ojmoH++wRGc8izpJuoCTHax8hr7aP+Y3h5W5gCV+U/sJUTTpq2g9EAoIWxYTnWTLMKlndUhSnwySJMGotxIagSF12i6qtUky7oTgOdZmT1o2htVJ0tq3WvVKPqiTZPMQSbrwwdcr7BqceebdhwBr317a5lYgZm82ovGs6B9vpct1RJWswKN77RLRQVj0rKVsk4om1VO22aCTHOh05KlOknTFasvUEv+sKEpvLnj+G6+12GaDAiB2lyPjznkArtk7RSlFCMRP6DvXqI3+JCucffTVNlnihS87cgfmALhiwVKmWkSFpuI3YPOvf/dvUdy+w9+V1i9q92coCM4DQHNxB4GBcURJclycoxf9R6WGSs9UpxzCwVaSrsRthVtiwrGeIABcBABeebTj5/YEBEBl3lttj4BvGYBr9XPFCYRiMheaAABnvr0F+Nfe/S84FK0AULCwEyCtyty6CmDzagnnligv8fEdAPDhG1Hg6qONrxRKHasBFJsnyX0NgGt1a3EeAe+uiwAyP+wJjt39xS8cK5gueqepcgbPKoBSDitjBj7fnPUN3QXUF07YJDERSZVkeTwkD0JBlExtAVT5oqiTtC56Jh7FnShLcVlcf+riyg3Lf5LaECr4rzu1ySFf+moccGW1VyaeTkTmzj/3K2mcAsQCThqsurFWnu/NjbiBZ9+9UiA+JvNurm4F4HKvlE/TMxXZSqC6q9C4ju6QCK+5Abi8lwAUtaM5PPfeqAoFwPdPJuUpFmTtWdoGwBWMASix3xGVeOmN973ie/uBk/KE8xIeztcCwMChMgd2vzc/ZmN++enPKxnWbB0kidHG0hQ6yeOW9b1lMBdhQrJalrtuimLdTqfTJbejg+q0udxInWwLO32frJLVSZKgN8p0KRYOq1NWwZ6zEvfvUIskq9iHuNg4XmwICJx55t3dphEBoPeXinP0OBZTAIjsBQCXsu8sAGiaBk3TAE0zgvmfsbbfPqhpALSMBkCDpj1+8YKzyE+DkukheMC/eZkm9TTJtOnP9DOhvmMWp9NpptMDHXQobs+Es9My7kTWH++LmotNp+080+pwtgfNdUltcx4CZefC7D7eBTw5BABVmmhmVVWVtd1ze199QqL26h/0241IEo5zITmU3X5RP7cjLSprUZ2ebc+Md4BOdabJJa/d5zApWQAzHjF1XVR23fyRaFAVgCpNqwKqNC2zmdisaQv7e7s0k1irggYN0HDrY2Fb5WcDcOCPtX7RbJL9HTnt25HYESILnCodxudwyBLUqZMtYREAyeWbEgVoLgd7ZQxZtAxaw22DjiQxz2qeh919ejot4UnWFXHM6nqkziqpm3Qk6gyZ783icjfSSn2HTJzHnogl6HaUklANEUid7AgZlTTTNLSyOIabzaGE8yTVnbtiKOwXSzW3lHIxZkw3K7rdQ8GcX4w0/Hw1zn359aeUIcnmxYJN3XlHnoJ5+7Dmj7rzE1fQrXhtdp+tDXbXvQQpz5V8oO+ILXYskL8ZNLajQ/UZS+d01JegEbdDoT7mOrXlTVslgqZNsM2vbFzadNVJR6ADCZPxqZ22zmeJX1kn4z4Te2+wXI/coX7jK1Nt1UABP3nW769TJ0P+K+V6sPLGZ9FniZjyyP3+4h5DJ8mXZbv+QsgZn9FGMl87cY8h5THuZQbW5CHJGZ/sRlAQ/afIvUz2nimsRtfk9DOMT/fLJqFxzyTl4XJggMNOV1dxGMbnwKm87Eht4XszkrygvnbjxBqdmNcDM6ROBsQwIslTniL3gCTJEdU+qUtD7HxMHoqjqlClubrOe9qutV7QpDwJkrEvGcGOWkdrzPf1BD6cRe25hUeuljCfNlR39QOYvUeE/vnw6qT9YUrejpIktV1RkpmuwCemVuuluyvhTZL9Yumduq1Pmga50sgXHxOL+QnvSBnvJ0w41E929pM6f+8dlucw24O3789uGqa8axsNMX+GTSNk5rD/kwJJ8v2ztFp/a9aVsHsqcv9fjE4rAzX3DWE+gPF7z5+7t1COHONPGe/J879lfYdSQn+RutSmJdM7FCdyPGEAJh7Juxo5RAX2HL/ZE3K6+Mw8ImF8gBy33tbHO9XeMpeheOeWOxIs9gTDJc5kS892ZZ2FefiOzWUC7WdQsqPefqr2873f2g5AyZ7wJKlJkiEgyoNWxZEkl1+r9/UVWSZ0znR7Hz5eepEv513a26uF3qVFIsa7NCrin/RNGsp9Zzc2Ov4P6zu7lXPmd3aFSi+Xx5T/6vnZxFkqsUsAfDX4zNduD1jeDZaiMuu6LCMjT3QQgONRlQnlui3NJFKmg6cNX7oUrnJtS1bNuX/WfMzMNcJ+tWCGS2QryEVHMCcx51M+2rsFP+uRDUoj58YgDCBaxAxK379VgPeiDO+cLewu3CCepatBPL1rrHCCDeIZOwAkPi4yEDaI58wjyOz3NRZJsRGDQHjwmgvE6mQ5dnRjsFHj7f+F5398He8CVqS3rQAAAABJRU5ErkJggg=="
}
] |
<image>As shown in the figure, AC is the diameter of circle O, if angle OBC = 40.0, then the degree of angle AOB is ()
|
80.0
|
196
|
[
"40^\\circ",
"50^\\circ",
"80^\\circ",
"100^\\circ"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAGwAAABtCAAAAABhUdu0AAAMXUlEQVR4nN1abWxb1Rl+roubbZgFDVe5VVwCxF3MgoSrFK0bncJHNrIRShjZwkQRmQTNtDDVU8MWRFAqrdOCiEQQLcvWSRQpiLJmpBNfLhRItyIFBZZOhLmMQAxOVzN3Il2CcK7Nffbj3Ht9P47tOGN/9rSRzz3nPec573ve+97zpRBUIGAlZDh74uTpCeDdUwRC9fBfGdrYFCghL2tPscge6cFVL9w9LKs1//KLE6e3bqi/IoCL6gC8n8TS1Lup46GrW1pqShO66AXmsIOcwyA9SPRuVDtHEt4CcmZfRzDSP+vK1cltALBu0S1vkGkNO0hy15irODPSFOqVElmEMXXr/gXd4hHYNk3u8rAJMn2fKHjkr47CdCyw/ZlSTKL1sc7z+zIFIpLad0iyfYeUTGuQ2C/VXd17uiyTEO35YixtK4kLO13j6AHpAwieeruerrFcumeTOvuAah9d46/gXFYqtPfvn7ts9zJNsRe/CQCX6HD6ow9QoDhqAgAOb/wosTvoIFIAKO4+maj51cy7DS9AiOTirQDw3pfdUjpJLjcM6tT1uUOmWVqik25TlcdEpC1DkpzbQZJzOOSqbXjjPvyejF9lZE6peyrgKCDfXzdDkvsGdZLbrnKXm+9ZHIBwnhQPBONkZUqZOBQc06k1TJNz8HARnjZ3fi88swoaA1OhvrgYn0PeQrgzFjb63xQpvXLddDLd1OGJHCZ8Dm8h3toc+uItS4ZnlwrMUihAzS/+ueXdIsVOMuXI1bF7L/vmDyolseGt76+/relYkUJDe2GFmeo4E+F8a2x17kEyVTcczI8H3cFZoDBmOpkJ7yWzVVxs3L86Ki5ERhiZ5C8bpeNmJ8u39JBkdYZJ9ajBv2LoJJlt7iNj/eT2dluuhIyMteRJsvEEOanKDVGGr7OLZLyJzG4ZkAjYyA6ERbBpfYbkaDhT4ajpZm/zgTT5QWicHtMUHGQymBDp7hGS7G/OV0ZGDhsj1XaA5NQF3tBgaTZfGzdSA30kyY6uCrnG6oxP2kineMwUJWuxPp/7u0idzG4eqshFJlQxfdCZCuRJsr+jGNkTTZbV4i2CIx0aXzkVE+qEoCLZcJwks5Hn5WSLoSlLNBExyqbV6RVzpetsPesTA3E0kpWS9XYXshbWil9dfyr0wQq5FhuHbU8TUfHbaXwWzcEQZLPBBZtstfUw1OTqmxx6vqXX/pwPCFdJB9N2LoKkzq4Bu2yk4LRdHY6uFcP2W6zwSpLsGBG/sZhDDCSZvmDB3mZr3CrONfeX4SHJvuasnYr8neGI6aCjYVAnY32OzneNFJ4y4dGyXCORj1w56YDh290D9myQzFTbJpg6OWCXSKjHy3CN16VI3Wnr6FHxOxu0h38fgMdvsi1FFGD9++JLBwCIjHa8X/Jr+dqdz4YAxTnzbD0qfuu3/sHx8dQZnXB2K97qspLVO4mjzIaOSrSdjJCkrnO82ZYLcrrO3oxOTkecNWOt8piskzwdPijrQr56zkgEk4ViH/BYF202UICLTzsNNYSdUgMqwFLbHZ1QXGsAAGu+fURkrdn+qM28ZMi1/tJZteDMWWzcK1WN+baeIi/haJuRmLSZCUyoHsmInV4nmVTjHiGd5B3t8k6Q6UBedMKMJiTpw7Fmj31Cdv9TANQd3n5SYsTdMwel9iVQ03hUmG/N1gkr34eXr/GSpd05Xx2+4YxH7LEnn66yte/sX6sxC0fzK7ZeqN4lc9+A12T9W90x+ZlQUmI/8+22xso2aEgGvUMx0k0vOrqo2+f/U+pUqfict+ZnBXfzzTZ6hsI5ZiZG3/ylYpv/v3/Tgc2l1gJrWo4YqUvfMfN8Jzd6bV6bktSuenbkMCzZM617rvO8XQ60PQ0AJMJvW2SzEWvBbGH9vKx2zdM7XgeE7PINnbd71uFOXDv5MQBFQcSmWcRbpya7LKse/e1NZi9uuXw3AJbSLRg5boTyt2BYzpeulQhumJPWb4/dIJZu3fl9AFh6Bdc+LkpDGRhG8C2dJ5GrPSXv8q7obQBw/xtPrEEZKxLXviRS5y6Zeb4l2T7ehnlPQ4J9/0d3A0/+7tkym38AFGxeElEn8LFZ+5ylcz3NKpIQYqhxztim0XNTr9XYZIuj7UgEAAJLZm2JZgoQko8ZiODaD9/7/KYfvuToQhG0iIh13qKZ4ZOK1Up9H1CAc8hL01fs3HBPsVV6Ade/Yo6W4QG+wMcSsdCpoi3c+IXoUM2PZ+KLWzb/JlPIljlUYMsxAFg8zzKAmpYEtnRQkkmSzF44YSbHOtd2ujdD7dA52E3a1g5EWLqeXVNk2q0/eJMt+mZGmoLdJbaDZkIkOdVkkUWnZWJ1RZbUWXNhE58W8X+2d0NkSGYcksaMY6LZfPSpp2Q231DEQ4a2RgGAuZ0UA1H/wAfD03XbHpfGN1z/RwDz68xHX2QWgMeHa+etXVE7zg4PCun+CzdaxdeNnrl5JHjnq24mAq3PA3jH+oj5wjPI5XJuwYtFCHG/Rg+21QMAHol+aBUTCNz+55mLbr3oPudnUAFbJpeAtzYWNHsHfvjdfVJlXzR8OLybAJBc/NqXrFggOlR3b/Lx9GXf2H/W0gqAErj6CDjbYDWQDJKaZ+43Jp2jmcutHmNj1o3l0bYq5978ULd9WgCqCWqkpmnUNI3UNJJ89QqNFLkCmqYxVT2vaSQfBrBjWb4hmRqKqLHCFCqhigmPEPSx+RgA+I1/Ob8/B+TqU/4cmPP7/WI4c34/cN9Pav3+HGY/1vjcJWtz0g3J0K7E859847K9H4rHSODERHNh8DnSSY2kRvEj1MuvyZoZQjGSs8EzJJfnrtLIhwepUQ6d5FgHbj6YJ8nuwesOWkXg31RqpE7N1vYyQ0mNXHaQdQ5oJHcBb3CbsKObw4bMSOP53VNk/OuBtH0Bf0lCjI9Bpmukxi3H3Zq9rmYLFtBYVLPCePWq4T0JbCz0wwe0H/QDgD/nB+DP5f2AP3fxB37Ar+U0P5AD/Lncnr4qfy6X8yOHHIz/JRF54PTwyahyufU6AtSnL6JlKguxQeq6bhlI5/HQirZE3PhX4P7Cg49K9PxjwuGsd5pAKA1FUYy3lgDu3VMl/2qVxp82/8xoFIBPAboOAPaIpShAyB6JFSjH5rejzCxAise6cKOiKIpyjVCDmfO934jJLc7n6EGPyEowG1wUx4TxHRRbE8GuYY991KSpOwHgMDrLTIDleKAngLwWzT10zVcMzZgKLri7lK+y7xDko+OV6iS2LKsXyPgg94mDGZA6CxtlhVdTTdlqHriyUi6BWIzkPgDTJhndW4AkyS2ThfSn4Ql38YogtgDbp/ldsW0j5o31XT93W3t9spDeX+td5K8EO39aAyT/HcWVxtdP9GFRnXJbYNiyabaC7Vs7jjZkST4ySOrsKWiGwPCPPnX6mpqEAuGLI1uiq9Ere9dDVQDi1wHKjSGbZuZWe8FBDnaaqYVVKtZ/M8XxJgBlmrRO4MlUyLmJM2G91QOVniYIjIUyxQ9+xPGIVZq80EgsrFvFGRD5+roSxyOFgx+B7BrjrY7JNkXKIiU7gZAcaRkwVhzp6qKTaymEaT4pd6RlHtYZaJokdZ09MXeVlWC7dCroODo+E7btK7aPk+Rs0HNWtALsKXcMSZIz1QWX7B4mzahZ4bld+QNWkmS82tJtsI/kjDdolsdgtQilni66T+Bnwj3GFuhoJ3W2D1VMle1qLPaueI77z7Y2ixs5E1vJabXiWU6mxHG/h4z5nvCbJJmoI1uG3UcR5TBV21e80EtGPqrGdTJbxYlwpYesY+pYia7JyDil7qHOYLr5QAU8OvmpcfmkIjKmWjZNMtofqUyxiUhbpqTN5WTkU2r3t6rGC8/lxy19a513839lZFzsq1pfQfBI9wUHynpuUTLynuure1cYhFN3VRuXvEpaoARZgulYYLthmlKNHO6s7nMaoYi0lGwbYFz4yYw0hfpKXMzTORNbv3X/CmOaXLNthxg3JpZM9IaLXjncK7tyWByS+2hUcpsmA8mL/7LJ3Cidf+nosX84L1Muvr6Ky5TSy29HnvoNblz/a8cC6eyJk+lXqMyeAhCqx9qvbwiXuybqhUzdwuxcglXeJCLd964EPY5M6/s2nZB2zVyIrgoSMiX576hyZ8MRb4mx9DR3UD4LMjzXCpx6u14mThuHOTuvABLTbpum1rBu8b8YnCLwkonZufe+4GeAovc+/xeQHyL8P5D9B82NwJ+wB6t7AAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, in circle A, the known chord BC = 8.0, DE = 6.0, angle BAC + angle EAD = 180.0, then the radius of circle A is ()
|
5.0
|
197
|
[
"10",
"6",
"5",
"8"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAALsAAABzCAAAAADlQCxvAAAevElEQVR4nO1cfVzN5/t/Cx1CJyOZ5URUnspq4oxKVIfpMA5GGUcejpZvDMl3Cj2NrPZV7Wv4MsxWnlaKMg9lU9nSEzq0VaIndCrWiewc0v374/N4TrFs++5rr9fvfu3h/tz3dV/3+1yf67ru677u+1Mngr9tMfhfA/gD5f+x/2/Kq4c9qbCjlK8advWKtCEdpX3FsGfMnPKvjI4Sd/lvInnZog2/dcQMozpK/irJPX+GeYIZcEHdQfpOr87aFJu5zRoAqkQdHPDKyL1qelOCNVVN6ugY8teWpwspePrt8ZI8tt7YQV5/tdy77J0QRSosz+i2qr1zjo1hn3Z3lNmfJdCOlstIIvF6ck93Tec/ajrI6i/3kTchQ5SOg9AG3zlixm9INxuDDpU/S54dLSE2DZfh3sw15En2/05Wf72tKggJMS1gG2KkJfo0jWEd4/VX2+qzW1ZoKWcfS6c3nbLWpxFu6iCzP02iHSuUqSroJ75n5JVdHfOSf/W62gkA3FOMAEC1pm+U4I/w+i9hbz7zqPFGq4lKK3j8aKhWazbIyETopkuS8UmgW/uDqzJ8OjLHn4/9fMWNuxWGXR8IejUIhVVdBrXUiO6rX3v6sBcaTU26jrN26g0A0K5v2GH2G6x+o/yp2O9fSCsxarRtVrVKGvI8eiRMtD5mOrrh6jvNp+a0Zrw5ML118FWbB7UYOWD2/fuH5N7PZ7Q+qiPT/Wlr05PDV34wNFCPHJtgLrhg2eOasaBBYHwfAPDIGPX9hXdeH/TT4H7fSo2Oqe8ll2D1+Bcw6xD0Pwv73tO3XnvaTX7a9K2r3V6719T/ySObnlUSZ0ORsL7BZ1BfdDPppe1umfOgr3HZWzb3XU6Z9stKt3p9jdVz2GXD6S/Cfv5UnnHtrK4p79ZWT+5cPNHo5yDbfn7C7Mw9AJAAH8AWCX3jtJhW1Whd0Twy6fREiEceNKqc5TJycY/2OHYE+Z+g72VhjVXWb383YPTx18UX35jdYiVSe+QCgDrbEwAScuIAQAlbAAg3Xn0jBP3Gfley+Ebe4hslPStEy6e1wzXDSfXbO5A/uK7m+sxqfF3oXqG2/dlQbns3fKKbCMIepQAg9AQACCkPbmsLACgfmvQP3+M7CybNvzFiwMXR6OVTFf7O5rZ83TTKqtLfmvwP6czZSMNf3hn4zaRHOcuNh7sBTiohAFiU8ZZ5T3f+iJtJXZKFgHaqGaombCvzOGnhnWJzIe19P/01SuipQobVi2X/B+S+33vdyNeHDksbPqjUvs88NwBR1gBCO1WOD+3k8Zgho1FpXQoR2qnSZYCJx2PsMQNEtgkXB7/7Xddx1xYPOjzTt1mfvZlolGi79r+C/cykxJu+JremZNn4uO157xuuwyZnblNv4vqrHn1n52GlRV7vD+d1ZQyevW5rtY3Ft+/2frt4fMSTNuixQbAdz88a/E7sdesCnFskyJxRNjdOLILbbRXT06LaJb40UKvsrjfijlnxO2YHbhfyuo7NAZyixi14dEGe/t7E44vi25logzZNVfWnYt/gU7rthl2/YyunZo4BWhZ1qlExarLVOTTbwKJ2vBGAlkWdPB7THQ13t/1jWe14E4va8UbQuhRC69LNM7STx2Pb+FXDi987Jrbv8Z1HXdupBN6oK32O2f6OOPZbsUx8RCGPV1QSklpJCCHVNypiSUQDIYTEg9sYVcSSfdepjmNYrLkM92aq6+nGZvJ0YzM1aBchlenRklRJ2By7f7U7YWNtfG07zS/vZ5rX/fhe+gLl3RWd9gCgHOFZr2RGF7y9gT5Ee7XBEwC0P3UfqFV2R8LhvGeXLQkwlgDAHTMj3DEzonTLFxCJRg2OWxXnMuLgD4s9204pFM4WbN/Qpvmlsaf9pyZuq/SXawFbz7Jtua8ZMWoC1OTWFjw1EJq7C2DRd/Sl8xa14x8u6/u18PwZdcsTmzdsxwFocAIanMANgpna7qzPgenTlf861V6KQ4ANCN+klzF72XV1dVX92vixeBiBYHNfuk0bFI3cce4pRqjPza/GQNOWvK8AAKGHL/XJHef+YRwdqGfs9qq+pe4zvPOSpFm545JmUYMAAOqZR8wSTLf6Xuhc/fib3u3PrU2b0E34u7H/Mqd/3aqDltaWboBq0SHd+Ls89cbTNxzGmgOqmT9yzepNbKC+uyYC0F6+Uvr4jbf1VCPY3Beour1Vfm7Izz9HT3rO/DerdXpexkizHNZJTsjDomsJIUTjYLOYS1ao9y5cvvcmQ+jPjcmTxnPjixjq1KDFCopa41zwdCEURSFwbyakQHJStkvhGPw8BDo5qJfxkV+uXFHifWHIrO/rALSsPHfWnllnLgevvlcdtYw9sYhjKtrw0E+5PYaTLV0x9owQmGxXHNECnZ2HdTmk6WVMrVnRgZkrzttOujj/l/Yh6CxUL4E96ruIs3MK3lg1aqcQQKHru4No35K5OuHt3ZvGtJO+LZ1jvOFQu8y01zb+Z0O57+dNd8yMgFMf0cuZn1vUrQXfDRtn/FF1u8P68R867Ge0G9N3ffrehSmeAogA4NaI+EEWteONkHayp/c4AItOtxkTezraNqGpXXaNCiGGBDV9vdZgPpBb0Yd2OU6Ab5riy0mleO9z+3aG6QYIHVR1jZf4tFeiIottuAybE3Bvvrg06EY75LWEkFpZmIaQeE73Ne2kXTKw+JN/QjfPV3TG67TXJvH37fDN4+dZO+hn7q25uzZ5YrnAeLVOc8axnmvM2xPP1B9rDp2eYHH3Ie42jkCXIYBVX/tYTdv1BdAeyTL7WKelavm2LUuTXWI/mdKGON+WFyx3DHulH/yOT6xRmC2ey/Nt2t3FFYfayVMU55WVCmq6uPeCRV9k/PQPaK8DlY+an3Z7a9S4dpJJ6x90W8ZTEPX7n1rkHJh3dOq2tXJ9UqWI7+A7ojAV0hnx/vFhjYRkYTEJoV/vxaV7NTyNICSrkZAbBwMXKz5JlUxIpBt5FO6JO9fK/WIuaghJ5Q0rkpBCvwgNIRrnAhICRcD7cH+QLz8tP+aQoI+kiB/XdMRWnygM5+WIqwMFQIb7zsre5ONfjaCNfrDNFN7FPLqyIyMKOw91H2esDf91qqwNG+0DGYArBSkHBtns4b0+dTTsdx5Z5Wvf2XkYtthY90n56uPWtwKi5x39dLXJO7o8hNW899wR7LN6zs4RU1vmLblnfx2oVXbHld2TggAggqWqz8h51BJiDiA/aNaHZ9uyKe0LAPb20KadGBjlOYJpdwKA+Y7/svcwM0LozjOUuxy18Kt5n0b+s99butg1vIcO+Pd3urjkiKvF6wEAnS0MLGrHG+07GDhfh6gm6qNy365DzAFsD/3M16qiLZ98O7oikFWu7Re7+rxO75CdzUuGAVu+pSO07K8CjvrtC15SrEPVTSfC/01lnyeJ9I+PpNxeCBTkMtzvrY3RPROqDll6UENIqpyQEmkkIUTjyBBw+h60izUMGSEkJ1CRqsPkMpbk0BM0E9KoISXyM7I4BxWfRsM/aPhN7P/8INL/oO5BRM7Si7ynvJi6kKWUZWrEjfvpjLqECV047F5sMBJAndLcCFqaWhvAY6VetVFnoiKvFFnM8kf8pnhe/bd0ZsfVHg/FBYH8puIvm/ijrNIDbfdRlilwkBWfpM65BpW1YXWTOQHTZlPkIyJCflw9gkchqH/0OX+E7cIkRbrlDJ0mXv03sP9w5jWBeWow3yln7tm4N5zb/mYGWj9jfEratVbmMGDEDX1Wqs6Ma06zY2rmU7U5n3N5jPXSWITy0xqTJ30ZcGkgPxnP33e/GLv20y6DzTMXLuWNSEsJNxfuZZ6aNqQEftpC3RpRrzqeBmZXPOonfV7XBzO1b95jG8PD4uB/mXkK8Iaf7WYe+PCCKXH+d5q+5Fp0dk4vVHY/x8hdXqWkRPKtH70kXQzkW2nO8nOEkCKphhCS5xpPSGQk3VMr1tf3XUFMlzPLYlcQIaR6VQx/zouBGo1zASEVfhobuJcclJ11lbAbA5LKi4leiD1hZEyk7AdCiGpkErWn14Ues6qOEEJI0C6iCZPWEkIqnZk+x0Y97ApmpWV/BKmVUMvkXr86Pvi1Tzc2E82EpKJVJKKh6DPZuQlz2U6+n3mRzpRFvt90TfEGoF2wxOLSQK2ye2ZaGKP6VQn1K3vEmgIA/E9cnGF8ygyAyDSb7h+o1ONWwSTbT8xjmj6bRa2Sy5YFnVcdYFpdJiw3M9JKZRZKV62yu+1rU+O2lAexbHjq+yLsi9wf/TS7hwiITF93wcCidnw+Bx2i5PXLltF1s35Bn9EB5uxjdNvw63rcGugEa+kTxlcorzFWaB99zo/zILKhVeyURpj9YEr0llTmIpZ1HWcOL8Du2+/prdn/rgOwpSI2wPKtZW5HgziHk9nvPpP2r5pu3YPh6JlH14aUQ6eUGtNjj85kmrZ9yLIzbhrES5kEd4+ip1wGNF6rleyYt4XJVvJd3nOVvVg60z8lgHc+rvY+yvWmBqorJZRKx0vyqJVSR63zpLr6nsicB4uZUDBVzrELiyGHQzhTapy3j63vT08N2+c8Yz37zJKBEPLs2bN2sC93DNsn5VvmqnQvdlVLDNIQkuWlIaTRy7+RECJn1vd0L3p6R13sYTG6/UTjWsmyTlQQQhJZP1ApvbCqkDdzpH+K82TGSjlHA0IIaQ/62ZGR0a58q/7kICGMBzwYwkzJXH1hHZ/GmZYrPZjBzvw4f+b3x3BvNE+mIYTnf7NKSJ2C73rkXmcdWV/Djnsedu3SoEjX73liPxzB1RND6MrmqV6MBrCenQm5aLAMdmdKymyQxvPylVKaycW13ByFq3iTl/pLjyw5qY+RsdXW1la0trYCra0A0OrXhDOK17pSTwDKM9fSVEDW5cBWtALIz8ECZi/wYRqdgp93gjbWm3xTVWuoFTFRTBvbx76M1alXfkozcZkQyg6wt+XlJUXiwV+P2sqY63a+rT7j/qX/qZq6cOZhr6WVzDt55ldI9ZDH0sP+j8mzZ+SZJkxaopEy8SJnjLSy0KZIy50xXRmdaSiSsOLz4iW79m6Xs6kIP07lY1z3hbnO3MA8FunKHQBaDcDIfXdds/fJHTK5Ryc/hHbyeHzA2p6mFEScHNkdMMBNb+NT1oKdIcxiIbubT1VmHgUAWFXy5a4cBgBQ3aWPTgOimZ5gF96NCMnl19mz1bUhLoXI7bQCfp32JlwzdL+vZDYezJSM3MkzVvyE1I5cnjgtnjzTpB8uqIglEQUfaBi6x4riDUHkGYmZRgXqRawvYkTJhDIOGp7c6ZCdMVAuqt/PD+DzJEWrctinL92bSYh7c8XGkoiGRueIHXaM4DWUKYEBzWF/RoiXZJ/zZkKekRDTgvgkzbwPCpkeEpZInu3yKvUKe0wz4tw0jY9RAmr7QaOUUr+U1ifWGZF0Oc8k42WNfAdTMS+HkMtJ8Umaec0k3TkoxuERIZqs/UEzpazOtBoAgEGrAQCD1lYD3Lw3PmHGHMCgddO3MLC4ZzLYvrXVADBobU1ulbVCMWTBu5sEtBl72ofTrzDgEJVyk6YAAOzyeTqjsgIApSEVGIR709ZZGhPLLZThOQlCmC5ht+8N8w9pmQ0yRvnmfV/d0+Pt8TuKzdd9zekMVThPuc7ZecdnjYTZn072CmIWhJsKDSGN/v4FEi67x7lsOkKk/SD1RMmdji9p/1npSgu7UcKtTxo5vXrt3En9/zIiZjpT+9drqZFysZ0j8CU/P8Nh56CrHKYeDHKOZJ8/+SKGedfLqwlJd40npNGLuxmo8aJ/iEZSwvsx1ApKYacUi1EVZp1iBxJCKqXszptR+TCvnKVVWZH+UjtXeWT0NOlBf7vthJAKS5ge9uNh58cFSyd8KZfWshfO6pZqSK2GEYkmjFqONAFsGM6Jj9Z9KrqhogIKO2WjdDzAhgX+3M45j3O21MslmqzYIJmDoywyPo8QQuKzIp33bXEgJARR5OnCJNL+3sN1k9Q1n3sMYgRSW71ckydhNzm75GxoUSKlq7REqXhLXMtipyI06r/smsCLChJlfGUI8o+c6ewgC9iVVbeUCw1UAeKAyf+hLvkdLmgf+zmxWJHE6eENZs2pdF54WucmZqqMpWLcRYlEQwgTeHmls9hdSwghjWKeHejEkWEK2gBK0iPlErtpruJomvXBT7j5jm0WT1ZM4O6FthO///vJtNHXuT3tcSaTLPpIE1zAv4npGbKccSVuE4MBANaOBwBgXjIAWLJ5Dm2TNYAkJwEA1VEqw6bcvYfpXWy8R6DKjl01e/SKLzA3+riwr8M6GsD8knp2PiPjxT1PXJrlwDy3xd5stsDwONuP+mo27fmf+9u6T+c7Pttj2xLoqo+ACj82JagAWPfMB+BwhSGkUpGp7wJA9CIhAFSF7KS9o2pa3/rZY2fuaBKvufZdwganoyuWHu/JJPwEDsfZ6dxTbsywB3dPqy32fb9WJFujZVGnFQjt5PH4uAMzhefj05I9W0JXqDhaYUJOMF2NyMwAAIFPNAB4JgPgkpJKGwBV9U4AlEU+AKBdGSIClEnbvZ0k3TqZrzn/Y+ImbycAB6abf+cGOXsxZO4pl0Kt07D7oZ08Kj2vJhvzkLbFnlmilLocdxY19qrsTVzVhXOp5oz5PXYIgDGnpszl3WoRxJkvps+AdsWUAoBPkRLArEwtYN3AkBWPAHDYEwBCqMu+8gmnV0wZHXAWw3udS4vydaKzTdlTik/5AhhhwgjedIzZ0JUpPz/qnXprCRb2KcWu+2hZXAi0k8OuKBn/ZoPFQdXp5I/ODtQq0webAoB6U8OHP1DpN5lnjMcGLn3uO3DJDhEACHeu3GcG4OONpwAz82w3CIxLaeu4NQlA2tcA0nrZZhfU3LopMBg9xcoW2F6TzC2sVZsfRtNbbnmsB93o9PPPru+OnDiwzjqxc/g4c21zX5iecWhX7rvNRl675ASzkfV9DCxqx+dMA4D898QJp5kDFMGG48dncxkMz5CVlA2ItvhpAYwZkARgzjEA1kyu4PYoIF8oyj6wZbPSY0fTiDHi3IQNMltoV2APC10dLp+byGQLRoBJXvd97fyI+C4GFpPfMRL0Su47ZRghdbQ56ntIb5nEOZGQEOrsrdBLkUg0YdJKci6QT5UlCeAccq2M3l9TIXyts4YQjbiRcuDx/oQ0OhalRk5wtJMFzFnZSOiNLiGkVprIsdzvqpMYZ+ZLxtTJ7DlgrcxR4c4mtfWxax0c5J9ysPbGJCoOS2IIIYHndAn5U2kU9CpD+fWYMEIFlalyQj7zilS42knkEY7XmY0ek2AoknBrqY4wCCGELK0mhBASFHN5Kdd4JMDZjk3j62M/ZhcdG8Rx8SskMZISQrJuLNb/gqQxzJXL/cfQa5MikdAZgCxZY9ZWB5mDozgyMSiIfifyVEJII72+pUrZeSrlsiKiV3buTNWwIJgSGfvZ5BnMg76tXhI9zr176yNa7Wq0A6aPPSkArqf0TPQU6lAKN8k37w+hCVenzdkpAhDnLRoDQcDqueVXKyYPGg6Fa2LOBvw4Ajg5F8i/7wnggw+tASD2yje0qqvjLgS0ufGTXfzgmhNFYJ9Jn2Bqwy9pHG257Ljer53jbCfLT2fW+r3LXekPA/wO+jsqEvWI+W+6iNpdfO+60cvVztErJmtTJCHSPBLvT4ikiNIWSRFhdiismhGS6Bqj/05Lwpxl+z9gxF3NKk1igdxRIr5NP+lhfzRyZlgsG2I1Tn6frt9cTghJVDgG6H/jwKn9dckShdROMmfC6RJSJKFC9oD9JN6fEAcN2R9Ab++oaIY1b5InVegpeu1+iWtMJT+rouCO/RN3yEcyIY6ezqSaTPqVfScZESb76Nd69k0AMpk6KVTt6cXP3/vI4qau7nu95qcKw/4Vg7aMATK+SICt425fkTB/zIhigEpFJm2B+tARICMzAYBy4xbqAEe1+e4WnY+ZtGknS5woJz+NPf8fmsee7JQ9dGguout62JU9cm6KKb3WBt/Z8C3jfEuoSzBCH5+qw+8LZTJG9fNLq682h3d2eHOqowDYvtdWALey4Aj4L5plJjs6xjYJAMosUPpoDKLmmaE05msAabt3igBAG5P2oc4ZckZKnh176m9sWExDfjOdpRi4XdTnPl3XW5uu1N6zX06hmjEi4ZYNI42mNxkK0YbMLcUeK5JK07YvnjQ6NAdrThX863a5lQDAhilzVICv9gDMZn0GWbbWSgUAhfY4OhPKaz5QrdspBGKPfyMCgCQPnOdBLw1++wvxGd6J99A8ujKOO1Wd7W145fYv7cr9jeHmvwLQejiW2ixJGL6Abr5qzEsdqzR9xcqcLt3fnGtFL/lOZw/Mn+cLQGa1KNoWET5WTr5TlLZ2abJuVQDK5+L819j2oUDrt0UE7XrTgwCQHzrgOHfArjpxFPOSdS9WsOIWpCVLl3xlc+nfIe7HnkwcW3Z1Untyr+90K/99l9mf1fX+91Di9JCRdia1CGuzDwTPfmvmDoijrl3wu7f9KHtf1Ce5ZlIGANtDG5Mg2BVehcBtmHESlkoAlVbZpqI0QzesWjAGam/xJgCqFaFb9jBQtQneM2v2fOerdyfEhTkn6Gx/v8uh6qRHTxS3XC/k4D4TLrAWXOFHSMlIZzs5qQy0CSTxSZqpSypZQ89LjJRR2zDOn1XGuEr2s06ixMurhBCiUURSK6c8VeNcGxYT79/oSPzjNZISEhNGSJEkjxCiiXTm/G2qv6O/zh02tjCb7oqF6wjZ1xy/L35q835nOwd6J8fen2lZ0n0P4r4YOdpYtsZyWjeHI9Z9tjXeVe90Kq3Ov1H2WDTAcoKo7XV05aFsmxmetEJlRExYLwS234oTZH9+QCU/E9hd21z2YBzsDvxwoCYi7fhBpO3fIQLSoqcyRx7KQ9k2ktnP+UIrqp8cAFadsDM9mHtn1hHrPimrChOf/NidCpBZ7KEhij0Iz/V4eLc4uBd171JSZ15+5+Zrr2tVZmOtrGzb54+0k0WO79FJxN0J3r5AUvznZgeKo4Kbu4xytkzIifvlyg/q/DPKbQmC3TmxQihDeoVRUqg6kWw4f9pzvnJSlRXkP67PBJA77quM3cz90exLLXX3julgz03/wn0PvG++UWWSJIQ2r6z8p2oIXYaInAAcybS4VVHbf1C7ogfUaYn1LousAUAddSnYDfmhW22DBVoXCZjvPWq+FqTvN1lvHAFVdNEmJ2aUx7w2HyICQHZZ+U/VnQe82f3nfXSLTyyzYaqa3r/Lgx/52Cs/CZz8QQDeaunSw8PwWk3zIMsho2w3e4+j6Pc1rwagLCvLrW8eNNx8lGObd1x1+ijmzTIDUBqCEOuqlb7dz23qARY7cLjcd8Vsb+3u5EU+AJB0lntbvKIsK7tWox5qOWSUrRCoD2QOLlew9w7Uqx+i5EI/gPGRLZu++hzAkULT11sLxUvp7yyaLGn6ircB+nMTbd71mvMVhgPGWon466HI17f00MzB0tkC64SMFRPWf+NjHamLyuvymo/GpEVPThYC+Ucv2k+J0xWAquzSrbtV/QdZLuW+8jBFEy1ukzssdjHuqG7ysH/z4aHKycCbGDRUi2TajrTElKb/ZQA7hcDJiZro7N2q/oMsx3ATWUdEZKTEiN91c3PbPX225UZ9kY6ryNvW60sRqg6nCWXBvJhUm3e95qcKwwFjp+iIAwCMyukIcgCTzA/ONIWlQS1Y7Al3qUtIw+y0N4Z+zthOPbtuaZkfwRQzMycAyrKyL7gXDMDNTZv4RbDbIl+vDe8b6mPHrA+XeKoPJKk9v2Z/L6uGU9uqIQD0u01j78qc10RgRdFN/MJhX6BA7jh8MnmkkVuvBpO2LFr0sVOF+mYpu6z8fHXnAWMHWo8BBN7eqhMrIOnfzpdhhvKTJ69MpEOvqrJ8yvzXtGv++qU/tz92NOuR9oDDzn4P0K0X+moYCdRzonjRF7KMEuUcrur/+vAxA619fUvZTb5Osd/vvgdQK6+X36roYU7lCV5cjB6209YDXbtx2JnysD4BAl8ACA1xT3nC9L3wIyOq0EpUdf2Lew+GWpp3fbs9IkPr29tz7z4bOHzEu+2rSJvSg/7qSbvZHaEh7ilRIe4pOReBn9tiL+88FG90A1DZm3zMfaBU3yaJ85xia+sJILus4tf21xuTH63WWP2eD247O7bCJqegvjf5+Nchd1ChbYvdsJ8HuuYBVpcGapXdK55mw1EAqPOastvl+LxiZcKnb+Wqg29PQFnbi2TPLw8rS60BVOVA06I6s+rSwIzvxWYeSDNpi11Ydx44DUi7W9SON+pWvgMfjQGyDzXteCnsaOF9wzeKd+3bPrbNTazfYPRkbxSAw6d6DNgqnZnSr1vE088BqGmd0AncltP/1/3LDf/zQv1hAO6i+ZEjhJDn3Qce++r8RR2AgkN9N6XT/Mr87ZyXKU0mAPSxd3/OJyKvWGnpCkAfO7v0/i3K31JnGqgYRddWr0n+F1BeunShskWv0N/oeunyt9QZuvydsf8fvnCGGuHEbI0AAAAASUVORK5CYII="
}
] |
<image>Place the protractor on a broken piece of glass as shown in the figure, so that point A is on a semicircle, and the readings of points B and C are 105.0 and 155.0 respectively, then the size of angle BAC is ()
|
25.0
|
198
|
[
"55^\\circ",
"50^\\circ",
"27.5^\\circ",
"25^\\circ"
] |
D
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAGYAAAByCAAAAACE8/szAAALz0lEQVR4nM1abXBU1Rl+7m4gIQQsYCZBKQulAwypZpNKWR0k0SqJtIRQnabakdLOSFqdMQHrIFPFGfwBtrKldtIgnTY4bQ2VmnSqWDo6DfLRoLZcbJFYwBAFXAgSFAoX9uaepz/O/d57l106zvRNZvaez+f9Ou97zrkXzJGE/DFI8sL6XEdZFEGOpECAQAQAnvg011EW5QwDEYEiH577ywzws4KJwJz7/dN1NBE/AxiCCkFoDz/YP4UiP5iCnHsqUKhAwernR0NR8pQG+frMTgBfOPWZeZoAQODQJvLQxFF56ix3pUWoQMGR7/0ZOGXk6wH5Kg3YwxXApHy1puS+AGwNUxG5O6ikPGyjKARAQMljGZiUhzQSLQIAIl+Hzmd5AkBEAEQkXxfIVxoAlkj5UM4DXOzkvthsCl839Crm8pZ/7jv8yUWrWPK56fHKbxblCnNFpYkIgI7f7TtbOD72pVsnI7FqYMravTjS++6HZ9Ljv/Kdb+WGc4V1ZZAdM1E8e02KJCmolQ+UaWYyPba6qgg3dsqG7Mv6Cijv3hEtbFTNaQTJ9a1sSbp6vF1fWLCgz8zeoXBZYAxy7w3K7G5PpRY7yVRMs3uQ5JZqJfF2dnazSbN/lrLgmItFg2SylYLN7RaCSQO3KjccyKa4LDB3KQtOk4I07PEG4ypJNW7ryII7UR+9JwvHoTA/Hzm1zylZQF2NBkk2dru7CpI09k4q7qBPymAYl9S3j2wX9I8yhSHVuNnd075mxEJX13AYmwYnxoaC6rfVmw81PUHNx8qnBQ7LgJFMvFk8P53R0yDZ2GUWuhYFznYxMbYvsMEvjUFyY3RVME9qnNLqgvH9mc2C5EMjfntFGClL84huEbzObGFomL7g9DJMa3SM+OGVYGiQrBp7wIdrUarcZppaLEXS8HNjkLtHfZUZXMLTheTNU88HcEOSbHUHmWSrg+mloYl1GXVuaQySD5Z4UNzimDFmWJa02EcZk5mL9Vjxk6EwssfmSJ9/dptakzRcLetWhvbcG+0OgyEFqY7YEjSMgjQuxVIiU7jgOPbLwj7v4va4wODoR5nBohXUTGM41JoUIaGFXDLuoiHCYKbOy0QxC4Z0LTfZ+SCIqirkr2lJe/cggDv11+20bJNZiGyuK/fl3fLEH8MyMrDnlMze0Ywk/fzIQX8wdFGlSr8lZAANoQ+j210lB0YvWZ1lVFdjQKUTFTwkOW0ZFwhz33WhogiaGcAjjUE1HuxpBkmD4x92wRjmRO9F3wzGIEn21ARWx/dn2dO8Gj3uwFjw8xLBnSUbAeoxSCNQlQ4T830wZL/SF7oIshjbzKbBtF+x14AFM28OySANCDLU1mTH0mw7wVmLfDD9SnDWk0ipiWFN2mST4UBVvB61crYJ0zQ9bCKD5PJkWGtmCPJQ+XIvTEnSlD1IA1miitBiKREsikFyZakH5pURWcKTd8/sp8fWhjYZ1LDPDTN3dpaJtNhJko6gOwHca9ekJmfjcOZCF0w6EpxmJCVb6TLx5YbEOV6stgKT8KZuP20odMHsULJwJDOAbbMViXM0uClxzqo0NyLBNATpwREC2Dwpy+luy23lABQZ37EruX4MIhDHNScfdIcPHjfh1/LUSpKx+0Pjv2ehG7zccC9JwRWJc7JKXCEfLJDpLSIA/cMlISdqAXRPiVuJCRF80LsAgJI+NH+M5FIB4lO6EHoj1XTIHC2oIotp4vtMpoUgeWjSLpLciT2koLliAsO3YRmnnyQjULC7ONw0e4uqAEIB5P3J5Q8AaK2P3yJrIwBR++n+zIERKe246AFTF1waCxemsYuegLUicY6HSu/1Bots+aD0UVI69OzbQzvtizsaECR5+esA9vi7ZckH1XcaQu5sjleG6mzNE4AgIvKKi8DIlwWZ8PQhsOT50FuMLw5EFLk/ujg2rM/JfQvkRYgCwLzuVnx3NlSAH3SfDJvi2gvSUsDI8cMhfZ5eXiSguPdy9F/mUIEQRS0/tjr4qeyStTwzNtYWpWKaY3/DMk/QStbKQw6dXFdCStsYo0OE2fD9Iki7mHIrIF6fWrnLI44AUNS0OWSOGTIqkcRfSV3Xqes6qeukLPJi7LgsWRXUdd0oBeboOq0GU8DQ1PdylIa5hx4GCsy/4YKCYWC4oKBgGBvvvj4alWbTo1EA6YLo8DIDODGM4YJh6XuKlLR8cXuws52JIiJVMeKUrBkuADBsu8Pln62AosjArChKARDBJ/Vzfz+9+v76TwoAAcV17d28SQl0gdMjLaUVP0MKSj1IXeikke5YqpNCF3Sq1XivTqbZW31Q6KThPuI2dgVtJIxVE0gSpH7NGjmTCSP/hR5XPbg6+UpNv/l0eM423TENSVKt9Jalzbjk8yQJg/qM+6yp6HKBrkbb8BTUdXJ9/WldN4Sup6mfrm/X6aX6bRmiUHDhLFMazqt2wdhUpZr8WCw2e7dkzc2+KbsaM6QhOX0RKT2t8pjtAA7tLYwD5qpRAJytjf8UAISMbcDG+F1nXf0jYvHAfmS+czt2k+UCWyKWelzU+JL8Ndk7OKfH4tqmbYl+z5Bubz4wBEkNPZbS1Ki3O0mqVdaTIMmexEEPqqS+eI9nUOx9Fyuypzk3KJiObHC6mom3qdPFFtvrh+xmNw3Vd7jrXBtqS+iVxbSkYUWNX5hUTHNN2NqsZUKQJLWlbr/IONQLVt5CyrRGLPiH33BPtxQp1pI+u3jyxqKMBABAAEUdkxdfstd+0cNPuxsB4ODd5h6PZK/fOFYgFCT7awLPUPb9d1ei3/CPs/uo0T5HaelC31n9CafcG1ddyjICHtWEale2Jr35qHkMHRje4z6OCZeORWfNkGtchnUESX6UeMEqn/Dlg7HNkiEJ01voORMmW635Hmuy8qcIPWIa1JrWWpdpze0OOwZ7rHnN01rpd2U9ScdhDK0x/IzkQrHYIf0b6oVT6YFZVeIStrNJ/qYSXVm28F7qrBkSJIV54S4vWLVR1vcLMM9co55xhsigSbUy4BI4lP5mbgn3u8R5sth9khYk7yunpdKuRSQNdiX8F2jZSTq+YKKXlAFNK1lhNVrXDycKf2MpSLK1tjHbmdJDhtTRUGOSdG+onyw+44eR4pA01Coa1Joey1kMx3ytD2h0NtTaGFsYByZV+Lh8aOwih2o6r/i6LBOFMsRa4jQXD2bCcE1JiiTVOIVa2UvmjONG7En08ZJcD/2jfuG0WC5ApifNJcmmF7itpj9nR/aQIN9L9HB9KwV54wwXp7DZ1nbgJTIV05J1YfvhXGiorl2Lpchni91v9ezXq1TwyK/2VCy//sioZN7fNrjpUuuosVzzRsOjj7trbWlIVpX+e3Jd+/8gikEKMlk/eaB0LtkG1KZbSJKe7czoc/GSuuk7rvK9u0IACqlUXfj7LGJg6jJiYOQ6UDFffStY9CcAW3d1fyO9sVy5KhAqNnP86GO8Mv+GZc9RmfLINLnPNsVt2MrtUNlTlLnJyZ/6JrzFttJzFGSbStL2tHTFeR7FO2R7Rehbouwk7XuSJE9P28r0jHXuVjNCb19GNjRTkC11V4lDmutgqHY1eRRbvTCCJNsUQJU1LRWHryIAOPSvaatJHsWL9iSChAxKDSrb8I6s7SjbeVXzy1lfLdtKkpel0o6aMkkXOFpLqU1BQe4s23R1gpBMXveWfGjDi+T2Wrph2tZZ2hQk2V/xUNrhLw/SllTbuXA7gGVWAYIkG1SmZ5Setyc+/zUrruWFNHhL06WAamkbbgcA1HqmXTnx5byF6Sx7yny66G8K/V7gjYq6/FZqX031W9bzoZxhyJ+UrRwMqBaBj6lHylwxNx8YkWqZEAQkmGEyf8/clWYICqZWljXbmggwlaza2Vy2ejCoIQcYkwafnT7tqWxGOvyjWLw9W7oVZE5f2x3Y+Idrbqut9b/2BHCiZ8eO/3z7gRn+C7ZMyi23HHjtjddKp3y5NAEkioBLe4HdH6tHLtxRe8fMXMbnkScPfLz7jArsNoDoXPCma28un+lwHygD7JarypT5U/5ftP0/w/wX6SwtP2y3K0gAAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, points A and B are three points on circle O and AB = AC. Connect BO and CO, if angle ABC = 65.0, then the degree of angle BOC is ()
|
100.0
|
199
|
[
"50^\\circ",
"65^\\circ",
"100^\\circ",
"130^\\circ"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHAAAAB3CAAAAAD+jpsvAAAJfklEQVR4nO1af2wT1x3/3OUQHU0xaG4Jq2k6YlRDCg1LtjKRNU3JVHegjYqoKRC6ILWKNNiUpkxKt4iMCVVIZSpDkZYq2whaC+kWlkpDKZ2gJHTTwkLFqBIcRBhpHYZbR1qYHZHNF3/2x52dO9/Z90wc/upHlu783vd9P+/7ft57369EOIASAODD+31OkkKQHSU0PnW3xn4XCDW8VvjQDPtdIDz62I1ZU2VDOBYtfWDB3SQ8vAurcsMnRMijr0vLcsQnRHgjSvYtzxGh4iwy9tJ7wHXtnbMfpnTCXiDArUCjo6QQpNlP5ewgOvG/IMw5Yc66WpRQyhWtwDwEALzJh4L/6gOujUmgpwjzyh9cUZp/B4RC02LszOmTE/CUbXsADxcC+OS6FB24FvyLp7Kqakm2jI4z9fIe75Katt+Vjbf7sbljwpg11Frt9jWPpC8bZzzxkoADYbit1LPnMslInsp4WOOM06BnsKGgvH3Colf/E2cqMhKGGvJrT+plff1aDdr9+J7ZTnbVLGoK2+i2RXrCeLDetedmsra1bYn6htv92PxWxCgb3LWwITRLwkiTuyWskzFOHnpxpiUZbvfnVZs4Q03ulikRI9MRdhfUh00J/cX6i641/OsUzlBt4SmLmg7AH/sJDZ1pT/hp1dp+k3oyMj9q+h8nw+1Pmzh7fZs+nykUJ4NoIINoNaq2JRwo2G9NLO63kQy3++UZTrX54SFDZmxNI0nu7XEi7HCfMhmj4cVDdnXT+7NzSvvT5e4y6PFMkmRHwKjKSqju8g7aKW6rtSck4+F2//wajXPA05RQH1vTmqh1JsIJf3lylpls7PelIyTJJGeotDqilQxKPVYtFsJBb71qr3JqfsQ+I4FxjXOqtlhb7ILosZFKITzlarUR0lDam5mQup3v7Hf1xsl4bE0rSQZ7yLTTYtCVnErWSVx/MD1TPPkMt/vnr3eNkGQHesg+v1kSxjJhb3r7yLaaDJlGhJtXF0dIsg+QGlIyjYRq1a5Mei6uECTkVMFzmy3DU8fMJ4aEPfhlpp1z9acTgnvsfP8ToX260gwbcIc3bKmPCeveFzWxd13Q002ScYuJSBre7w44qPnBAVFCFgYG3LbLh9akEoCxLW853Rp844JgkwJ1R8vaNo7bZiWYqxyrHw94hC0c9ahsrs70iXG8NM0CY4CaL7irk6x4j7cfse6PScKIZ4C0q5AJ5XYa7NHxHHnaN2XN0KfFvo1laUaxofFRJt6JWz64hQ1rDiZKpvbhiHvCWhcrOjcJW8i6NjLkDpEp7QaScda1CCkJFIhIafpPlZNseNmSC5IMfXnCIJoBWYwa1TNKhtwWxTIIHHjJBTp1IQCs+5tQBxJAXu0RYMmWN4AUxSTDLtGKNzWLSGn2BApJjrhTd20ZxNvPih6BHrsgctjS7PEt7QOKyk9YzCdLegW6jyQ56hZsCpL8VR3J7oqUVJAXCylKSPeoOOGEO0Kq7lGzahk4WkeB8aK1Zan41Idrwwkgr/aIWbUMdD0vcp8lgQDWihMSO44AeP6d1HSx2ayjuypxbhCA6h61rvgy+iqEKw2WDUiauSLIq+0A8sp7TYkyPnhKnFDyfGlYXBrfPwKg4mwK4bknslCBsktZCJcs7gMq+8yEn6gOXxbmqZ7NMAXqOoDHr98yEY4UOxQy3+R8U2w11bG9OwqsvGoiHF4BIOOllmmElFyaFr0BI+CuPAF4rxj1yyM+sY1Cx5JFV0WFJQAvdAK+q0b98rBPZJU5J0nSKwCAdefFaqaZ9N0LY/ANGVtEDj0oUNeW7ZOMnX4FAMoGxAg1K/K2vA1P2GiRHL0PqqpmLtzy9+ACKId/PwmgJJvFDdjZgXujxkQlmg9FzXyJee7nASBxtVo6NJ0HcX/C4zjvmjSKy9F7HQu1NfoA4J+QCFz676q/wjAInIZ33W/zo8b7XQkEVAUqoKiAAhUKABUzD7X0tY1QgReW/kIFVg9j+Q4JrEge9ChlWo3H1l723sK24wB6nsHMjbCiKlBUBcnfzCP0cRFUBX3HA6oC5AGQKN3clzed0Dk+ZCAwkj8JgMpJCTiGHc+cqwj4ACV/Mtmmqm5UCgrWXPcB6o8afSqAQz+85/C3ErWxIvrRzLv6IWVK9fH7KKlXKqB7rwpCZIwkY4xRf0286Y+9fsaCaCRj8URyLCEpgICP7GsktzaSJLwjsRTCmInwfyS3AgiYkrMhHPga2QFAO+/K+RG9cbTJoaiqAihq8jEPUI+RMa/+Pw8xqNB/AJgcp+nG6+RC4P0AO1YOA4BccENRjNKKxm58KMZkCfMUBUqengIpOUPSzcyx+zH2bx+2rTkNALJvRJd2mP0pyMKPeHUVzmwCPv94OQDI3kEAgNPqNgsMrcCfN0D9judJAJB92vaot+Fc4Npt6dhKad5XggsAQBotCyMnrta0uOczl+GfXKgMIxcRCGlx/qtGPsis6Esnmhv0mldaWao8m0YyV4SVpgkqMfDUTcxhJ04rIf30qVHIWDm3nXjBlzjtahQyUN05V2QA2FmTmhK/+LDoMnwHUFOPsDKlkkVzM04JAH8qLjSnypJ2ApgryqM7LYlkeJH4fU+WsLs2Adx1h+YqIuP13RZPOEkGxe72skfIZVEsA4Rn0xszrZ4rEMCBnS5rutbUc2Kifn1pgn7c/HGkLXe2JW3ZuvqnNqkkyUjBQO4NPOO1cUMnLtk7S1XR6y9RTPnsrsgTJ4SaxQch5XTQYP+jT9s2NKl5pD3iV/ZC6Cq09SzN+J40V1DOmjWdKygbZ1c20J1dGQnZUOXsnXGE1kS317WkyTde+0z7H2nN0YDZEe1Ol2VkH8/oks0C+4vTesTTOp1ng253+iiiLNzqwjjg0hzwtiPeGjiwS53d1JiqK84QJcXUuLbij65t+M9shsv4+mh/UYZ8SyDdwpPFZYNAcpVjduvdhZJv/yFzuJuN1UcKThnjdLJBV0GXQwnxAB4nxMnp5kL79cyJkMFEiFJWBvb6NjlHm6ULwvpjShCWM3Nou00QlhXpoi+fvbp45c8MjvhMhx0C+OzVR71XbPc/gUGjI1jv2iP4hRzc7dID6RxbInOo4Mv52/VmyqTo3RpXk7H945mkBYIhXw2kZ4xzsGFpeXsWH5nO8aXDv3k3WlFZYedOGert7XVX12VaWCwQCWjljTOne2+WLyv6er4e0DqKOw5ozUxoOPnf+sdw6CwwcgOApwjz1i/zJkN2s7kg+CKSPef4P0cEI99IGW4CAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, given that the degree of the central angle angle AOB is 110.0, then the angle of circumference angle ACB is equal to ()
|
125.0
|
200
|
[
"110^\\circ",
"70^\\circ",
"55^\\circ",
"125^\\circ"
] |
D
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAI0AAABLCAAAAABohFvQAAAFvUlEQVR4nM1aXWgcVRg9M5kapZHYZtossnUbWmgklq4htXmo6WsVCgVLqyJUBC20iig+WAhpK0WKRCjah76ZhxQKlvahin2oVkgeNrF0U1vZCquNDUiIQbdNSoNz5x4fZnZ3dmd29m52Nuth2bl35tz5znzf/e7P7GpEDZB6+ZmJJdz5E+jqAhDfBFBTaFQRWk1qqOWt2ePj12dTQLId3Z3Q/rgL4O691v7tW7bucJgFHQ1T49x66vrE9amBF/o6X2wpu/ogPZG5k0o+l9y7qbbbqqspdf7Vc5e6+vp6t4c0mPo1demJPa8nvQ0DIhhoSwEyX7h9ZMPOs3Pes9I52uVNbg/2xA9dUbm5F0pqHEyf7O7+fFqdnz3d235ohrL4MNGpSe9NfJhRl+IomPm47c0sbaoKqqrGdrU8MxJw3iZp+0x5w5YbMg+k1aSoqCFtZg7Ezwpf11DEwnBsbyoqNTYz+2OnlRKiMuJ7ZutTY7v+Xzpsnloo0tR7pNeIGDLP1KXGRerZN3IkIUkplyNFUhK2nenfqZADIWokKYZiF6rRFACSPGOeEv5xSVkNmenfPadAC4fMt57dvS1dhRtm5ktzRIVWHfnW580z4cGuaEY+eGnXNOmOHlokajjTcySUWHG2nxvY8kMCAHQAqHGmr5jpqd/2LIYR/E4hJZndPBz4dPX5hhTvJGeK0Srv1BXMpOOjJeTI1JDDsclixQ4hFnC18zsV2rLU8IJ5kSQp/ekeaOZ8bNKW9A68UarhZMc3zlDvkxNkZjRRGDZlCK1GNZ51RcocL7l7mJofY/4lVaS+obxiBk8TfjPZWMD8H6EaSZKj8emgGRilLDK3eTRgvIzWNyRPdefo1+MlSpJi12C46IjU8KP+Bb+Z8h3M27mvAf+Go9Ztl0LrVx9eDhmLbZIc7n3EgMyL2Dc2SYpe/wKslDgen1G7X11q3AhlnsqGEpe6vy3hN0RNwfHydL8oI3rmcOL4tpfdQNfTS6pAl25Be/+x4Yr9hkzH5hjUaaL1jQczZroiUfSWbeAaroYjyaWSup6PEjC8/mADAxSIgxuPg4AsnCjoyph3WSFODfMN50w3r6TXNwDeG9wId925IpAAsO7wSaeilfrm2ubydGusb/LToukddAq+ODbY4olf4+E6o/3wEFDcBbiqJhMibKvTqH5D5trTft98+oHWyCEvCE4k2o+e8JwjaVlWOvaoYj411jdc6kzTm1MGjC/efbyW97pRYtXRE8h3I40AxL0d2fZQMQ1Y3+QhLfN2wi07Ej47svpfCUsIG0IAgCg5FEruN4SAQETQW/edL2QzSS51TNMiaUladD+egxP5Qt2yLFqWe6H+fkN+35Mv6QAwtjEBAKJFA0SlhzaKBcNTqxcS3HV/Ku8nALj8GmEIZ3g2jMgMKUGH1vLKuXyNtBifpk3LE5/QSHk40USKk3FRjNSYmYAOQxgADCEMwBDeg9N/C3UBAfcTEba3jdN1FIyL+zxXnEAZ3oNRetowDDifaEBg/0hxDk9kySqeb+BYTJIZ042UxE9rNoWk0oqgG78DAHQd13Zj5VOpDH2TjhrgRl8zdQAgsDOVV3Mz2WQpGtA3IQlA42I8V71NA2dNAMCi+VDTAR2/9NRjKCK0dd3QAei49XyzpQBA/w0A0OVUckVX5z44xvtTAKDrN5MruIkKgGN8a9Yp/7y1mVoACRBYOw8A+v01rc1VowMa0PEXAOi5tuaKcbHuHxuAvvhks4U4G8318wD0XGudPz4RIAgsPzM1AOiYB6AvrqnzvZoGaNAA6IBc/oM9PYtivwm5TXULY5q7bdaX/2Br5wHoC6sBhL53rGphbMBh1RVxcx6A8fDWMRVyGOkqAOCtDZX/8aNgomMOgPH3KqX5+ZOqjK8qXahh/neoof9jolaFMTYA5F+WBe/mFf8nBY3U1NkhciL5jbq+ZVTUaOr07cP/S81/QnQ46mA6+IQAAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, the cross section of a tunnel is a semicircle with a radius of 3.4, and a truck with a width of 3.2 can pass through the tunnel.
|
3.0
|
201
|
[
"3m",
"3.4m",
"4m",
"2.8m"
] |
A
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHMAAAB7CAAAAABie+BXAAAK+ElEQVR4nL1bf1AU1x3/vIPIZjx/pD0CxlPQ4+dAI1YcayEFEg3OiL8KBjPqoBMVIk7FiKM2OpKq1ak4agoG48/WOAMFq7Ym4aKVo+qoBUU7ECBCRSXxLNhoOCeLIK9/7O3e7t7e3d7e4WeG27dv33uf9/2+7/v9hVB4DUrsAXNIgve5AZ2GPDxl32otjNo4eWwaG/FiOKnw+0nCd5ooveck/G/HD1OD9S+GU8Cu9YjSllMLJwWA/fvJOG2Umu22o4fS6vHaOAM9JRA6owQdSy8A7dooAeoBA/Y/CdYCDXQ2sEJIMyAk9gyiZhwSy6ost+t4BajiFOHJzZYHFqC9E4DRRAKTjJGTvO0x3nB2nj9f+13S2IjJeoSHFaHobgdsde33LxnTpk0LGQzOlsOnbSlpKTEABQElRSjiPzVZLJbgzCUmtZzq7Lb75MGHC/4WC4CCEDiGeQBAXFw+mg4lR+TMH6GOVIWdWQv0i87KI7dskcdUZY/Y0KXGbj2PCZ150YFtx2d6rn1meWNPxAcPPSd0w0kBwLZxYkjbLpUWYixpDYov6vWBEwBOR37f/JFBHSMAhPy+sT3a7CGRkg1RAlACgs6l3aenqCcEABJyvDYv4qjbairJyRtm/eTUBi8pASClcUJiEwCAuuiISobFDZvHDNXCm/NAKrfbAT7JAKUDVYYqN3ar2D8JgOerv7LEScR2D0LBtQqhhGSGzavf4TKpkm4pgCcZt+riPBLJK0r4QGL9ufk2bzgJ0JQYZlE5qCgj5DLzC35+lbeqcl8xJxeUBSik9gJBxxdPquWC8oZRbM+m7Ip0xdReYX1U1lXFcV+Js3vudo7Si3lYCfO+nnNVaW5V0O3zd9PzuZBvlMCHExcrRStwFmKfj1wCDlmLFGKddfuns1cC/MUZVDl1wjynFnLivFZ40Ysx3ROMp2dExcntQifrEJ1Zn8X4jxKYVDazG0TKoQOIYyimWLoq3Z+UQObi9+UdQAfQT3Qkra8AAEjF94U+jQTOoJsazZDrtkP3b0qPDhkFALbCsgDfu4gEJOiPBfzKYQ4hhJA0Xf+M3DIgvNAEUHw0M9GffBymTSi2h87MbqC0Oirw0/8VA8C4CIC0H2vzOyMl2Be/jFtQ9T1L6Nu/skX38Vo9AKxMALAt36e5xBVCFu3kAhdScXD0S6uBSmH+tgY/VrM8VV4nuIPVwBVcCqBBur7d+d6giAmEZO4BAJgb6K8jAF10OyjQUQV0H10zOJTAulIbgI4fJiBJD+h+s6GSwLw0Czgx79XB4jQlnwTwxQyCNVgF3crqdwj5aw2APQv8PByIkHMUgDkdIHPGiNaal4KCsquo2v25VzZEab/hbrWdvkFkQ1Ubvpm8KTjvGjcK+VnggEVH0jn2gQTRnF21YOzaZktgVvjmdvhz/KMAUGT7iyNG4GzpjwEQV3L/cGdCfKmKHZ13eO2+lQsQEWdtij3w1pHHmy2hs/4sWRL7oGr7AWFyrRAjcNakCYkCsiu7Mg4aFn8uz+gL0mqcOGltCkTiGHIvtsYUBOfVi3L5ZlYpIjkpV9a9/mhIxQn77W1L4KzIzZpP2KSYcueJwEk4orY4J/URxJU8KLmfkHjAan/3CbHfCJz2Z0ukcsr0Y91rqkfNOtELX5Ub4cTZzq32nIqlCFp4qitjj2Hx5z4KGnObL5znbOY4FRQMwJBbfyumYNSq675wxjbxhevACWcd7T7H+A9v/x0ZkdvvyeLV63t0Fx/SgduW24Z5zJRY8mBvS1TigW4xn/rReagwyOjAZbSpOhCdefzJmrPB809wi0fv2lf/lA/x+xXbUHU5gxYufFi1Jy8rpjRwehIXRYkqdr1UTqiVEwAQkl9/07i527rS/q5S3GE9ck7vYNpqAppit9/VlJvn1Ls8WZHBTAjJBUoMobU7WqLeOMRZlAoj6hGsVOB86iKpDIWLe+iz2ly8lZ+bNPf4o2Ung+dXPFelX0fr6QCwLIth6uQsvP5fPV7ad8qeWp/zpTVt68il5xWSykV3WKkOAAMGQ3ugAubde+RRISsbbxqXGdc0yZnkoj+VyAkAod+q4dy/IgGQXyBR09aOih9TY3d3KjA50Bks54xqYcGyLMCyAKdux4MP9bWmsRSUNc8OxHOJQEllXdvqwt84JMyRgFy7t4XjQ4HzawYMGLAMwwIsI34AYBmGAndaY5he9P7j7CqwAc8hRWb542UVP5lfIa2MA03CbMlzxrQDLANeTgW8DLwW3QYgYO2yBDAKKfQ55+6mbjUsr1X4BrRFyzkjm+xcDKNUHIfAjFKgY0jyAZfd0ZjfeGVkzph1LfZ3UcLmSP5NB7CgwJhAYRp3ISgLoHg4GTquoUR++MKDAkDMro7yx1N/trsTEKv36rjh/JsOAPsyQFKusAwAhmUZgGHFD9YRXfHjcxoDFuhVqhvPkHSwu6gufLrEoiy/Evh1AKdMfv3JvTHiByONZhgGDIMA120ABGSWP8qu+OmCk0JMbRqvCMcYn3IxyE0ZGjBi2bmOyZtGLr8MABi4lAZeETwnGx7Q6k9GSgEY1zZfHflu+MZm4IHRcRfFczJMZrmf2AAAxH7JGbPr3uHuqfH1N97hTqRetUG0570RRtXveN3teZ2L6C+PxS9ZOvsWpWuDe0R73omv/BN+2XeKi+CEDch+fewHQX3PXgeKpxaK1wlLjvrOJwUV+Ht/l4kLYwEgslXMufDUQz9v6QlP3X4pEzj3NgCMl6yHDEv2+vdI00G9K1+Pvup0APhPlOSO7r5hcM7eBqwjHlN6ZwWllN5BpeTszZjhtArwj5w7l44AvhwPAKtTs6R3kW2coKr6ixdyWg1WSp9FN9CBO0ilsjt005L1nP79i9UFITAPaZ1IdOMqawDZnWtPaJ3aQUG9nOdNLKVUpD7pOl6/N2/A30d+vatKudlDPJeJkT2y2G+atVd+W7z89kR0j0QJgGNTE/x1wcJV/uRn/5J/0MnSGKsWtcjTaIJdyvr3zwbLP8n3ZXRKccYjf3ByUnbO+9T5VlzCSQGCnFkL5EtXjaDonf/eXOd4CSdXt2Kq0Q/TGctDixRiFfa8AeXmEr8wku03jivFO9+5UmI4nRTpB+OlZ/by19lO94Ly2gFxFdmlfEbRr5f4w5Iq3ulQ2ueVfbPSL89t/ljnSK1hnOjNq7tuUq6rizOMuOvtbz5R/uQRFAC6kmxXTS7q6urcZPjZeLtDjlCMWhAK1P98eqXeZS7X88Gx0Go+qDDZuJ1XqkLd+fK44ByglNK60G2uvIfccvZvCmsUFeMEd2dSiXWWidfUeQ+JURt/s94+4Lny7XSLU6G5Llz2XMn5cFFYtQcnVZdycgYw9/YrsUXdrr9LQ8DDjXGm1nQPHcwlpz2HfkeDNWKdwrUSkYS424vOVdFs4xaPe0rPZ4zGspb+iEUefPYICM4siB/WtifExb5fDNdtKWqPrrJJxg3Nkq9F0vZsLAhNPqhySe7RLxUAYMjNbTkyy+4La3c6dHxtstTWGLIujZdsyNzYuhv/Wyo3g87zF2oeJI8xTdaT8LEvwufXjic3m60W3rc5YmDIYPg2O7tv++gkBs92S5zCjtsNratvTefxcwjRkSrt+xp15i3D7EpajQZZh1INTXL2tc/g/6dDi6yaOC8k6VHAHVlrghbV2v1jtEKTnOYGWjrxpmYxtXB22BKwPPorANr6ixbOL94Gvm0dD/Gh02BzmtPRNyN4BjRZLYUGG+L8Y1K1mxD9P7EW3/16tbJNAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, AB and CD are the two diameters of circle O, the chord DE parallel AB, if the arc DE is the arc of 40.0, then angle BOC = ()
|
110.0
|
202
|
[
"110^\\circ",
"80^\\circ",
"40^\\circ",
"70^\\circ"
] |
A
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAG4AAAB6CAAAAAB7dzmqAAAKHklEQVR4nL1af2wT1x3/vAtyppFgNNzl0DwFGle4C2hhBI0O1gQJihkxDRpT2BrUTgqkFX/QSTHjD9pkUjXS0gpadWpSqBpGqnoqLKxJNLOE1axGykQg2RqaVLW7MPJHkEPrEKPFbrjv/rg7+86+O985Sb9RfPfefd/7fL/f932/vu8xgkkiBkxEhqc+Bqb/RUCFHah2rHN/l5mtAQAzDXel70qIX7Nx1VoRCdPDjIbHb3w6tcWz9ScLAEdpsScu9Hy0sbpqa6EGW6I/+NHI1pq9JVmlNCvNSbHTjzsaAwmtTwIJREQ009Ng93TMiFlGlBPuRl3BXv9cNk4mzXbWFNaP5gLMATdQy7dGc0kk02Szo27ImMUQ7prH+eascXlBpcvMq3ytIaABXLSR7zDG0qC5Nocvpm9QTteH2h8t/vxpQy/TooLGz++53wMDoOnzOmKEN224Zlk1iUI/2Hxb55MO3HlHa75gRDTX7AhYgJs95MpbNZFCzqNZnYdIq+0ItzZPDVVabjUVbR4Zqb5jru0+dbaRkOni1qnVNZ6dmQ13jb9AJLvyfCA7nCO54fr5/nlAqKiLH8gFF1g5tFBoRCFHyBhugBddcp7tJlOQH1FXpoYbXThLitTlHFdJroIbd54nogXTjYjotGtSD2624s2Fw5Krad2i7O/KxcOzMf/8Orcm7aw4rlhSpJH9rvgCWjGlYdSpGD/TcGHH8EI2WhoyxKfnB8iZcxvmMwcY0tGqTDiitk2LhUZz5X6SVm0yXNQxtGhwFCqZkd4YEQMxHFh6ahG8UqZfO04oPVMYcM7oCzdfEoQo/4n4KhmzqoPSa+JFoFO1SrigS3OqXzia5YeISF48vNpUsIgtB6Dw8GvptrvB51grz48EIoo5wintfn9Uaye1YMQA2A+1AgQQUbQotpjKierdts8QEUfAn3ctW0zlRPWcj/UC4Bhwbp+V7bV1IgCEfZ0EMMKtyslF9ksAQNwZXsE4oLP+m0BD0Z73GDigx/NNoAGeAMAo/tDUUhPMOSIKJuiOK1bA0dX1ZtAsBGD0qMQ5CI4Fq8xxK7XLD7oqSByC1dYL52fYrUGGuQLTM51ARNQHwJff4DJpJ4RLLRXxgYjyxbNHubF1Jk1BAHBkjAD0ncjBq0PrPlsSXmPSxxmA/hPh/IBEcoe50XUWGv4NXxkAfJEn3Nox7pbbAn/3EwCAHl9+cO4wF7Mws0awGgD6exrzg/tWnJv5jnn2MvwHALY3leXXz+1xbvrbFvh9bwAR5nsl3dyWcIu/hH2GLGwhdwMIE/W7KzI3+WbodqmZ6HA2uYF8djAxu36A0YiSQAIAWbMlMXBFCetoE/eKlt2NA8zaWM3+V7xk+UyhxamT7nuOfYX7tZcsrznidq7ovtX5RNjjPQw6UXzIKhrixdzyuNVCB1YcB2PwD75mGW75EstwLV9cAggo7K0sq7UIV8SVjgHmeqvIc/ZPf7GJ6ZLAs4PW4MZc3KMjMLnMYgDh0rGAXWYuP7t3whLciJtzfQbzvsIGn+kqTSd3+Dzmm4JAYy7O/W8kk0mTRW7tOaMKUh/a/ssHZuEY2CdruFUTcRts5kpMe47tUuecRJNZOGASDq5gY8gMKwFIPFnbqM4B3g++bhruymPgUH0FAJLJpGhU0bBJ5YMAfJ1M4mn+d8kkgCSSQFJs76Luk70m0ejv1eBQHSQANukvabMlgaRN+WBA0mbD0S/P2Gy2JJJI2gCb1N7O8w03zXUk9o9qcNg8dF9KJ22QtdOgd7u7bACJkknyAkDlO547plz7zkQlOBStvwqAZGltNm2/6T1+aSkyuoyY+FnTLlPdIbilAByoJqCuJlM9AoDBhg+d2TWINjxcud8MXGAHAKKwUwwZiYe5iYT4q3gkiMYfDqTSiUSCmpslRhKIaM7TlGsiF2jGHiXigLJV3QoZRFvalA8bpra/uCOVTn0DJLMUfPDX9hyqMVz4qYPAAdjvByRH0aaE91fG55RFvS9dzoEHfz2YFMb5SraeNj35TGZOc3NGxjWH/iG2QJQK4wBweM7qOiQA/Ob+mVyio/K0Zwo6Yz0DgDO/KALEdd+QYQjuVHn2hjNTO4GodZNRJcoQXEXlOX25L54MFOVUjgG/dddDf3h5x1MGWTuj8OkAP6qRm9V2RPRg2wu6yonhU0EKn1Z9r1NHrMhev9kdGXf+g7N6397aVCHaQNJBI/QtEFHU5deUVks7ojAf1MgViKK8dC4qLdp/7HlBqz0S3oY6k7oBQNnFfZHsXAby1ZdLCUmEqGMou9fM1Tbq7I20tSPyu7Tuf4R42XbylmTFS89ly3Vo7g8WAzZ1T+3N3nM8aDwl+zYnuS5r+PrlzOXfy9ffl7cBpnc6LasbsvKOOdItkrJgOPMUyF+aOsfMMqmeMYlmq1qyTPnf1Ht6Nyn4XSrvDGp2OAM4QfyJuvwq8aLOQDqp3Lw21qWKCTSq6dRGcDKF+Y+VSc9RRSL7qFfEm1xleMhsBEdBZzidUB/1qg+yvy9ikDCz4XWD+oiaXzT62uGelgWVD7IFDTgaXSke08/VPE9Krmy4ZkNpjm2TVOpyqq91aF9CaKw1rC0nHNWJE3KQz7jUkXXFgh9KTV0G0RYDOIFIoNlNrWTiigVRP9/foTkSmYUTKVraRV38QKbI6gB6/+oyDD4Re0qaCvVHsCCqDYYWYsDYxSPvBsp3dwPo25aqi1ONUNsBrD9YHBNTTAFnLYACwP14W6gcH3r7qG97JF1eqarPS0RE4xvq7qUbwqQxBTV7rGbTJBERiCIIp/KVQarTT3SDAJReXf4ji5t8SfyUDa6udYdKAPT7gOd9ZWnbpK8whdvDXlkKv71VpVmmljquIrHNNS/rEd/aASiGGOJYSrb2g0gtS+quX6y8blVBWburP7x8U9pU94Sp3aUMl6eA2wAodxZtjib966TZg5ggs8Ya+XNyTthLRGhXaAfJMyOMqO8RhRyNo/FHzkLPJ7Nymfj/oN1VPFYv51yuASJ4OFu7yG4iapflEARBIKJrO51ts5r6abSdQEQzp1aqroN6wySonB/izQMfECZvxumOQPTPWr41mgkn6LhK5mXXPgCAV8mSMzY8JF7lVUEKMpwid7bTW7jfYP4XySA4LA42Ff67O97in/ubcoHF0i8iU7z3QEnnz6f+mHPBnXHoqDNMitewq6sLZaYWtMjf1NewcwTzVHDENLnFzCv9wRC/pnL1WqDC3oKW6WFgePzGzbtbdlZt1sDRrMrEkSqxVGH5Cv0wpCv0D611l+SswBqcCtZUpgaT5gSUxaeSTIvD9NEfUnD6RfS+vM3YbhyxcmjB0nBWKcLCRCeZK58D5lwdU4PEscfXl0fRPLR7G6+AANdq60XzuVvA2g/mASSSZe0ogjIg33sIluGYhJTfPQTrbVcmnmNHLiMfFa17Vzv6iPq8uRk1KJ+OkOctC4GI/g9sFfk9C/lQpwAAAABJRU5ErkJggg=="
}
] |
<image>As shown in the figure, in circle O, if point C is the midpoint of arc AB, angle A = 50.0, then angle BOC = ()
|
40.0
|
203
|
[
"40^\\circ",
"45^\\circ",
"50^\\circ",
"60^\\circ"
] |
A
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAIYAAABwCAAAAAD+2VdJAAAHI0lEQVR4nM2bW2gUZxTH/99kFx9qzUMjrjRW4wWK8cHWS9N6maBCaVFQ+tA+VHSLhZQo9cEVS4W20AerfRC6grbSrL1AoQuFWlGphXSTgDbSSqsomOzGGsRSHwymJe7Mzr8PM7M7uzszm935Zu0flpn5ksz323POnPNdJmDjUgEBqAHuUJSCxtWvZg1mVge4Q1GNYxBAB06t65SBIdgohcBAdsephetkUDRuDQFkd4qd7VIoAjgF6Msa6zvMUzZq1OAYOXTgDetciEeGkYlD7MB+M1gDKgBG33oA3UuBgJYAAjwpA+vNY7YjOERjGLS+/uRMGQQAGnOK7YTuoUeKYenglcXSMCJ1/4Xlkoc9Zz6YIw2jfmuYFONr8spuaRQNWAMAcHnbgalZrfIw0NDwIBU7x8VXSdKQMdogG7FG4e3+wUXnY52AlNQFNOSUic2xS48huVcOgKW67Xd1yXskb83X5bjDVF0YBsl0LE2S+z6USVEfBg0eMCNzqu1uEUyG6ouNf7ZPXW6lAL7caKYuSRFaX/oa7Xryh1YIAMf3SOrf1nS9QfLc3JR1eXGFJGfYqiM2DrUP26evfyYZo+Z4wx5cPOy5cbrNavtr2fgMuT6pGRsWxfga9NsUOLlzhoTxZ5mmYzKDg7Fk6VJvH5H2pFqaHsbJ2KDjMr1ZLsM0MfTezjHn9aZz0jGmkb7ubYtddA5+b4y9KDkwppO+Lj+z+duyIfjRHukUtUM0Hatwwf22+9J9UtMp76QvdJaSBwB8tbW17FqK/DEmXsPlVpRXsGRaXkUryjc2rq9cfrZy3PtTm5TlnUr5OOzcnG+qG7e6tAWXD4ajlJU01q5LTqAkfUJ0Mn73t7bq5uPxljB84moNg7y9vFenUfXFp2J3Q7BF2bpoqWgKDK3alVTKl5IIgGlV3rzV3RrOb56MDdKgy4i3a7CyRY5KsSHMLEWBwpu/D7dDoDo/XHrwQjjGcOYNmj3f6/53yH25k8k90hOXfetKDc875GW6v2MPwvFJZd4wmDJLmWtyOLSv9HuhYnBv54hnF/r8keK5ZI5IWbWceFVYIxy3Gnp66aLiubwYoQCgOPu7turZszO9uznWK61vh8yeHJaxJuseMq7LXUsok41hkB/Nv8rSVbV6Pw6NgoJWGEzG735XLGVukTG55IbMNbcKz1iVZPT5BS/ZfdMtNPjrnS3hIVhZ9NbaNS8XuxaKy/aIuLgiHAqzpFrBUJwPeSWEC13hRUap0P+ZtdC8EsLx3fZAQPYsGg5rIOuPe7tdJ1XzTzKSTKBCWDczLIyE6vW7lpPePUgaVLOsd9XOlyNjZMzvD4M08n39Ne491X6bJFUyxYS0ggIya2IoAhDjmKd6ew0A0l3tAAbiyF3DYVkFZSABxPd3FGMjkR9NmHxe37PrAkmmAJySZAnrdtmiXZjCbOzPazTyBVLLF0hq+TxLBw53anmN7L6Z78tQyxe0vE4tH7TEqFmmLA4FyIF3MktFBEJRoEeihgFdibYUYB+AT3crUWHklIXRhXMREYVIlHokGvDJzaEDO0QGABDBWLwfGBUthRYIgBoAQIGilw4TZw8raEFmu4L1OoAWmOnXCLK1jkwcyNHaP00AWW4AElqhQBqmofMkteKBh/ZoJLnhpnmtFUqfYD6hnbdAFnRqpBkZ1AqkQa1A6rQP+lM3NJ0/A7NHis2BMUxnqNaVIKijRQGFHgEADYgCOkUE9uHM0R+dzToRtT9BnOJUBBBRgEJYxTZqN5cOyd6y5ojjE0iO+iUMa7YGz/d8RjeOBO6xBgUVAUIAhuZFweRbYVAQAsVqLWq/KjC55A/HOof0xTdTtZ/8rzc6V1tCmsPWtsayz6W82eUvP2sQAIYebwKFL4YAgE8kvhDg01UNp4yvGpO8keSqWiF6Qv5GkptqWKOwYHB+EyhqWSO9sikUtTCSTQnQWhhX7m38H2DwWJOM4ReiFBOLR8JbSyiTtzUocPKVJlH4WIMCS04/3SQMT2tQ4PyCZlF4Y4iQdjo9eqt0SmlcM9o9Fs4WjouqrFHiOt7TEtKaSrW8Q/ThgishbeG4yPuB/WJT8yh8JhsnjjWPwtsaQ3iuSXHhi5HsCWsU7iavEJX/FpGvvKxxclczKbysUXgiHlpVM2fM4n3nDNDDGhfmzAqVonJ71Ss2JmeGNFutJvLDaLJcnXJKiG7sRzgVxfWeLhg5cY3sE8sQzvxddAshqjZsqhfHkCDJRIbyd31NqVkygbKbV2OkzKbUKMPiUElS3edsqi5tO1MAgB2mBeU5w34sOLQaAFb/4vxhVWzkxEJ5XTtlP5Pi+y0A2Ak4wrU6REN7gm3LHlkHQFxb7WiqxuhAFgByA2HR5BIAkDtSvp3qEqIZ8mfVvJAcogbJVIokVbXsB1UYBjMAEnK7L+sxS2Yr/2+02ck8Y+6mZdaWP4P/AVzUaWvMUEQZAAAAAElFTkSuQmCC"
}
] |
<image>If AB parallel CD, angle C = 60.0, then angle A + angle E is equal to ()
|
60.0
|
204
|
[
"20^\\circ",
"30^\\circ",
"40^\\circ",
"60^\\circ"
] |
D
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHcAAACMCAAAAABjB2mMAAAOIUlEQVR4nMVbf2wbVx3/vNBdPNaps1Bbl2mx3W31BRB1JmDXSqvTaSwOoCXhR9MMbXMBLVRCLAOkpUis7SZhQNBOCJG2SKQabEkr0bST1rRDWpKONB4g7IKY7anUdhlKWljc8svmMvzlj3d3vjvfne+SAl9Fyt33vXuf977v+973+33va0bwTMQwy7Z6/05PLcv4hqH65ZWhLg8X+Abu+n/gHrlTWCHssnAvXn3gpnf/73GXDgwhuPp/jzs6cuvd/14h7DJwL/6Z6NzdK8Vd5bomMQ77udNAdqWwAHmgGtFXsHZWfggYsCr0QMzrfqUM2yXbljzj3iBa3n6FFffWi17pZHkl/5tr7EIZALBFwJZA1COudzkvvnK2+NoqqWMNRf0AMaQq+OVCJhra1i3+13BTp84UPvZg6Ee/KAEwaFOmcO5MufvBuN9lS24XEBEVhoNSMk1E1LvGstr8aH+g/3TzhojIGbem+z8eDyYvKe/RWxdtvqiMxYPJ+QaYhmZtcU2f/DioH0jrh+fs618aDg7Nm4vNNR3Hq7U1Gkxc0vHnN/SPOfSzVvmeLbJazXH9KlqTap+ZGg3r+OnNHRds6gIA830l1yZ9y6rFpV7GGHvBjV4tDklZE+vQ4Fi/s4CIKsNSw1wQkfzQT+jc2lnn8QLA5Na2OfO6zEXEXENFMg7alzz45J5qQ613rj6IDa1NxlujymB8nmo1HYeIKH56cU1TOdWIkh1mSdG5AZIfGmi2juZjI1YtijkKOGmsRjlpQtcNIqLDwNpZaoI7JVpNEVVaiWJTTewtL17sHTJw5d5ZOrx21lmfn9t3XrLiF8NAe66JweXF/hNtnWUdt/T2B/HIHWcd7dHev05bF2RFYFPeGVYhYkMdfRP1PfvV7avxpz9ucrK/e3HQpuRNEQgVXeEysM7n+rQRL73cjUr/rR+FvT4nvmE7dYMjRFnReXr1lI4qm905AID0N7LWqxrVKDFq344057SxW9ClbZfMLCs5M7A9kYS98IohBljsHHY0NdN+T9nEs9arQ+WkXSOE65UAgFDBhXcxXSzMFEuxtl994eEJn8HntMSdPDNu2xRDrh0AxFy3A2A1xRHDbfvaNlYHDnQf3T2q30UtcTPfnvA5tFkMAsQ2NVgkFTFXmsuXpXDbvmCYGIDqwOPdSBT27tdXs8Ct7hpzdJIuRAGG0EtmfuX1XGkud00SQ/vEAGdpsMD+7dOdzri7n4g4waLQSwzoyEDz68oX0pfTRsT6XCZ28gkZ6z6z3gl34lrCERZ5kQEIlKs+YuUL6cuZDEU72npURE4a7K54P+9D4OkvTujKzX7sQvdkwDnc8V3zAVi4r28pnUG0o60jehtg+ET3uCuWsHxuWP5xRz+UqDa/dio5GGtdv7b7wJSdV6lZbMP2UwnOax4JiOgwIF39PH8/0cs/tGxufio5GBOE2PDIVIWGk84dbIDVGiciWoWLWx8g+sP7d3Odf2YMIAazmAulqcuFlD+yJbrzd78fYQCw+aT9VFgJFkDfd1KqYV1V6b//RbC7Ht3EAGCkU4QRtFCaulyYCYZi2x6TfMSAUyIDQCxURJOwd1fnYybOyK60ivuTa98HgPYwiGHhyPl6pdyCghh7dLvCYgCK2/hTJAc0yMU4WjMsotGjCaWlez6xH1rHn2x7EgByhVS+9PqmQCwU7kS9lFP7BN+YyV+w216IoVHIAICFLVm+FbK1Bz+rcauB6flUvpSKhD/SHpJshMhIaXnLQbsqALE9a4atCnbFEiBm2jei1x8OfqQ3pM691qZ+aeZFtUjMSXYTTGyvYAmLJ3YlwACsuuNNALh44VNA9S+PPG9ZWR+DZDXzF8nbzi/bi/0NXQYAREMTfQDQMvjMC8Brj3QBmPzQz6npyUUxpDTIFcuaNNjGjj2qDI3OAeDRjjQXmyKHbYOIiB7XPPl01K7a03sd9hIxS0TUgvuIaBwACgtSzymll/ajzmtyFrM2Ut6LfbafAzvG+HjrvXyaLgUdOsppfT1ACZq9tZrajhNxjBYAxEd3fADhDSmHngJAuVo3d+3mCWZ8tPvhROENKeJ+O2MEQsYnAqqgbakUqh+aBUsWWtgMFthxjAEtAAEMDMf6AfSebPJRTt2/CYjkG9X10JVmsBgYB9CiqfqZOABRPeK1U6ys6gNZu9BHXz/UDBaBQFoXH5ULUQDYMQ5FApZE+fb6S7iocjXYmdFmqAR0TgNQtVCxyW80iXuiad1La8VYOJpw/lihE71EmpxntgEA2isFx+4WggCpI1QHrDBcjBYA0Dmlk/NMJ/8/cNzpkys3+wGm9lVUlIEz3MLCH86ghXcX1WwHZ/acdNqhNbUCARD1wffRmVG3Z6z3pvj6BagYBt9ApPmidWUC+DLixAAEdVWPzoy6PtwNlVQ5c/PGGID4WevKDATkjePNabrMhezqkoEQyWnzq5o3YKdtLMh4TKa96Czw5HGXcwuAIVzU7MJg/aDK6WhKNB6ErVEc99M9FYvKtlRp1eL9UpvWn64z9iKqzy8AIMyP3SePjDsFrg3k8y+o9ihb34f6j1lCAnq1AkAg7nJMHhnzBAuEitweGZjbM+bDCECZRwMuA4tkFViPtyOtVVXO1/zaLuuLWxtD0msfp/a8ImSPt2X+cgvxFq/fVv/2IWtcpl9GnMQ8Jo+MtXoDBXDb9VUMDcuue1fVZr5yOw2v9Erm/tXHPc4tJ0XOhaCO54uftKpKeqcOAFB8FlPv86mFHqitYHk+aeV1EBjKFcNZAkrvAv7AH71NMEMLAFmWNyzo2V3TjQf0DEApbOR13rPmPc+aeueKFja0ABAg+GQ9298xZVk9FzE1/Or0W0bJuxz2v3wtSkOCYYT9xy06TihuNDcc9QHAa4yxh90hcqr41Pm9/Y8yZFkmyDKAnpeXZACQZVUOsiwzZN4vywBkyDJ0Avpa4gr9M/8w3GvXwvoWZQDvQIAAgcmCIAO3vO+8IAOyIAi8fVkQALx1pyDIkCELkAUN+GuzF9bh5oOvX3WvXaTZwfdeAWQB4OPlPq6RBODNCH8QAEEb3WvPf2+11/v9UljFFS8q/RcEATZxw0Kr8WCBAcDSdx/YCoBlAfdyLoVawGcqUneVZACByLS5rqwz+jp6562PAaCll+9d51rOOZFawOUbKgiyAECQZQEQ5K4zAkGQZVkAZIWd+YAsywJkyFD+APzp6kYALDX3JZdjBVAIsRZAEKC6hgQSBAAQdo6DqUIXwCtdDgmCwJn8DwBuX1cAUB16wEMCWl7U9CpYkAUen3GyikizVufDN2//wd9xsS3ygntYlIIa7i3vKRnLHpxsqJ5rb2ABSK67lW09+aIXfU5HVb/OcHFTI7K8IPI5Om8u83NqRJU1FVLsPkNsRusOAwCRmaPMXMjR0rocMANSUR9aVLsfM5uCz4yZGIWQQ3PkwQRPxXRxWZhMgWDfS0p7Kpl8WCMxDyZ4Zrv+XvL+GWNptFyAobF85MbkLlUzkh53h9ltHjAxSsEbkzR1Mu6D/vzKGJ/UaE4yaqK7q/XmFD9N+mvN2uAPTRWMQJXWGwO7GKiQ/j6UJcyHsUaj5KhWHuhYjw+G+25p3qTROw0r6Ubhju+EERdPfN9Yo9MQKBVNzuQyKX09ZsZNjFf5glXVtu+Ubv1mNt8Q3MNfZAZcAvw7R/iCZQrcjmO69VsK3QjYhbPKJYte1eYDRtWrBHQXcTy295ad2UjDSd6GIU4JSBOGzvm66ho9f7Mf8BqPNFB1LMHbMMZHe5/RvxHi9SOHUmjlSZPAcwNqhGUUw9AB7bFG3FIqNDK4QglTjWghqLZnigefOqItHQZDRLpytWLAnn0+ZbWYcAODekmT7hAt53z57orS6QRUFTHIgagSzWrPpG6mVCOKNKRwuRevehF9bz2tquG+ey5m8KK062/zWfMy6MCQdd6m+RqmRvWjbC95QDaUjeq6bhgvBzbkAapbyen4SmErUlr3ZtAr7k+8uFtnDgLiNFcr0bh1e6ev74jqPjfqMwMB4ad2awCEfh6RXg7yc+pl71eT2Seh3+6sRJIcNgu61iy9wpFqRL+RjHppnb7FT4X1093WkLnliQqSyTmzxq301oeXHKYVO1eLsbSJY5Oupqt4KUhE6ehKYCu9p8320y5NbjF2Xn3cnDZkmnint3sblcMuj9F/Yo8aiPZMNBxMuiJ1zZQ/+bhFapptL7U5zrY3JNp4oca5JXJMR6zElcwfMUuWuczNqUY0Z7hR1MghP9Y3eZ1nevadtD5iaE4Mh4ZPRK1nwbqbnE5IaSKak95es5yhElUSgzZmrEne9RtSkoiCP5OcqtnSXHTUrqhJummtMiylafjT7i52jbT4VENivGtcIpqLDp+9w0VumZlOi0kHd9tNeu03xZtGvaKme+OO4bKrtN7C1rZxT6jZ3ugJ58jCAVf/4aX+6KhrB2suIZ5oVsd1GnM6EUi42Tzmk+K9o82reTgqKZ86fK23xzLTXtkKWOHsK3OJx8Q6w35H8eQw5U6eeuP+ri7LCLw8fXamEu/qc9eS56Oh8vTZMyUpGIn6sZkfv6eqSF1JZ1hnV6d7q9UUd+nTLwHYeH69KjZiQKqY/W0ZmesAAKkV0vqOzX5vXl9TDZB7Z4m+uvGKkWu9StxH5c1/P/hO9YOE5AeGNO+ZALv42/14m+P+2r+a4aa7C/+A7ayQxdOKcU99HAA21X9gxAwQxp8duR5wU9zq7EcB4M3wagbdeEiFWGYA0QSX8NZd6wBcfP7jRpQVnq844Crq8+pGAEtfvbNnhUCucbkOVQ53ARdvv/rzW24cJl8VjsR/QYOful6Xbuk/Fmp5UgMRtZAAAAAASUVORK5CYII="
}
] |
<image>Known: As shown in the figure, in circle O, OA perpendicular BC, angle AOB = 70.0, then the degree of angle ADC is ()
|
35.0
|
205
|
[
"30^\\circ",
"35^\\circ",
"45^\\circ",
"70^\\circ"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAJgAAACRCAAAAAAapi41AAAPzElEQVR4nMVcf2wb133/0unqonWgDTnF5/lWOpUcsWG2cFWDMLM8yhhnq5sasJhXBpjaaog9ZfOGKpuKCpgSZo1bKKu2qoOGKVPQ0Y2AyrA2BauKsqsA07Fcy1VddoVspg6d0mO2MqaDMqYBUfb5ffbH8e7e3T3+OOpHPv/w7sv343Pvfe+97/d77z3C5mOtj4hoBgBrPBNtGh0Oa30nsdh63lWebbQFYPkDdP/97vJsCbGLD7Te/tK+oLtMm9R7JhgQJ3LZkVvRlR66fXoJf//Ekrtsm08MdO2XD9GTD552l20rWuwHwXspd6ONiIjQaDZ3xKoXW6PC26cPUPkpOkBERJ5Gq/I0/AjVcOPS6784d4foxmUQ+SWiX9m3y+eXoFM410VEdHD2XnfFNklMq/ZSMlk4s6Nz7+7HP0AkPeQh+sm7ROXz135+8VaoNRzyWZNvBTGiq6cXzmw/0L0nuF34962L2YUkdYe7vU2W3zgx/qmvTcfvHOg+8OE66a4mk8kdRz+tNMXM1UgJACjFw/JfrjjE9usKlgek3umyy9EVTUzi6f4d0VkHGSYkpYnU50I7+rObR4yBMVyIyONFrl6G+rbMbEuoMCpFf7xZxAAshLyTqgubCgAwpaT9S1j9utKzuEn2WGq/b9qVrQcAeNGXRTwCQI17w+lNIFYakqbckgIw9EgBUNtTAIDx+0Yafg0aIMYA4D92HSlYBA1B7Q+VAGhNxoB81JtoMHcjLcaQ7/EvNszGzFeORNY0gkqmIltojxQaerSGunJeHlXd80Ix1K9nG+/XheWYnGwkcwPE1CHlQhO0kA8MG9dlJWO0U1KKbQixTGdvsW4iAbJ7xypXDMDogNl/hVBXbv3E5lrH6iVxggErSpy7Q1HOc//H7ltYL7G4tOSeF4ClXXNWFY8N8ncL0mydAuoQG9vjYkzkkLBouLPJWEqeWg+xYX/OLNoFZuSUI9tgzGAFAFfbR5sndiSoq707YhNeSztrM31eLlpKyQeGmiV25FATdhSAEX9eJH4mZr0vdddiVoPYcFdzvAaC4uElK1nLY6VAjd6sTmzM39TwpUZ7Smbd4C/7x2G5R76t+hsgJsaAKW/9QVCQr9QTVe2czlfiFhmlbGWKzM6qo0a1FpuTmxonio8NOGSr+89XePaN2/9LSdVGWhExBmRamrAmgPzDI1whleZ5rud6RfbjdoctsCBV6Rhxi5VrqWV1pL0TTuE3Xg7rxBCJO/4e7hIbLmJif/MJ/crNAJaSZ6wCBuDK2JUnjLch5WwyteuFxoklFN1adcMrKSecwrUv3rzy5+ZtaMaR4i1ZqDUiYjlx0jqYk0XTfZyIjgK6+5kMOFKwhHJDkFEUhjo6uM+9R3/irxYec0rfuMGwuIeIyEME8oRaXrUn8RzqO1Y/RMAAzPibsKPH2rKCjr8SuQnEv2K0GJDodOYtewU64OzKkrwEt7M2Gw7o0yOfcYRaz6/1VfqygoDA4k+0Oyc/R7QHf7066bYbfxi7Nd/yzTfzTwfoxJsffLqFC/g4ImOvjiedBTzpe94ucujYxZkv16HBP8qll64RhXp++o0WAn38ASLy5H9Bnse7P1PQEnjsuSI3zjiLHPvn1x3hMGuXAJ0n6nec9lMEoo8MplEyvTQdxeR0CegdEugO4r0C4XjYrjt2Hfu2830WInVEjmskC1UNvjOxsAq1ZJPq8QKb0B5xsRMTjIBO5IHERGWOy/pqzF7zy0hvj9raLR4RpJy0C23Eku136rEqTfpC5l1aEZtUDEC21yunof7bKCdkgCqvOBOXK15CNWKCWZavCgDKfdwLvyzP2v/XUT4uHVdPKVoo8Vhf1kxnxgs4jPdbo5IcMQaklGpjq5alMJyySBNyVcd1of2TOQCTvgIAFF+UMuajKVed6cv3ZSzPZm2xqMOSs2C6ZZBzM5jQS9OQi+ij+fGP3dQqBtS3KklHRU0Ws5qYlhYrSvZXiAfD/+S4G2DSK7JyGaCOSjFjLB8K65fLUiXaUJTyzuhtweqrWFpsMlqVE7J/UrAJj/tyBkdLJUnfJzJcur7D+lUmVFHh2OcFlfTM8KVYiHWJBkQN07J9VDjWKfKiGPKfVub5e6i9A5YE0OMFNg2YsYy8PLFsVdUHlmyBerUvbO12vZavSiN2fSh3jZg3Gd8KgEHBoLwm8X3CE4t9sYpNsahaKwdKvYdF3jA75xdFpot+zheYakkw5OUiHE028LUqxLw/EfMaVayhFYZi0OmlAbjeb7f6K8h/eNq8WSkwsMHnAGYjlgxwXE1iLO0T85rpspi+DMj7R0QJJ6Sham91Rvm2kRtAMZuVbBrKAPCRKq7FJgcatA4zFi9Nz7TU2WWfajikJN6P+Bdvtn8M9r5kUa69OWJRSzfoto3T4Ewp0w4ZCgOSQMohKa9wPMa8lxWnkk5yCsIR2ykIHhUDz9lFi/K8M92UNPhuFUY6mzmFf7EzgngBLnPKZBJbFqgYi8TsonmBb5cKBlP1vYSpduPJGYBUq21wYoBsDswmsVHni8bgGEOnlZRdVHxGqpg+9tfMhhcD/LuR3u405KKTAmKRaftDF51aMNaesYumpQH7ZGUBV+hwiC/xhXsu25NNmLO7ScyfshVYfMQRIjG9NB0rXZ0u4u1HIrodygD85kuwvZjJLicxdXulnfX+KAcGzTIq5XbZurY0JAniO9WhRp4yrhmSfvv/OclJLKtUKBmGpH1GLx/uXbVKZuX+mr1oAwPKoWFOEHrlczZt2WE8uUEsEapTZincZ32N0mH/WRe0NJQC3BegRCBie+N+29ALw+HN+HSnFERE5/7d4n166N3ujlfu4RzXW88Ge1a66vjGTkd5R2Lym4bkEH128Rp4V/fBjMPhHRw3tYkh7zVGK034c99xy6PNK1GLld04ssqccT0XsmWPxfQrg1iEjx+zw7YxxualZQ75jKnK9YfyFe47k98248WN8cIgFrb4O0WVq5BhWebXgJRjkuWLr1tqi1LKIBLCRIwrZNYwww1iwRrD0YLFS0t4I8JIc+P85g3/TW1P5STDKGFI9DiI+TjLc9Qa7JqVl83ac73tQl9ykajjuugPJximvXoN8QjiMfOvpaCD2G6zFRK+Mv/8U4rBmd09Lh0XfmFaJGqcGTD2UGXAUnemNK4aLhljLgFQVRXYUTL+9S3wCjbqM82VhbbeKquHRoiI6GSjxDCif0Ebt7iMOYUnBhUWw8yiQYMBY3DPH1YEplgzxBgw0Ku9P2Ulg3ljXiu21CLGQfPSGACoY1KNBTAuuxLA4T7td7QfWTmvOwMOYmrrL7UuVV8roNK7wK0nohUu6mu/Fc5UxCpUFXYX1IXyayiHhwAGFKWM+Vla0JUfyQEqmFpWLmoCFXhn31GoYAD73z55TherqpCZ6+Gs1KmN4rFBFPXCVizKDxWAP63VO/6UCqhgUJF/dFi7xLgyXNLSMVVrYPDEFskaMm8QBd8UoIVYdNiGCxXAx89rdObTFYGabftHjchSIPTf0NMJiI10XGer+5pgllVmAWBwEEhoKpMIc8S0XgkvWOtlP1XiKgC1cESe4bg4iY0cvAlgseNt98xelxcA5FuK6NGsfcuUpOl5ZFarSbtT1dfkOUBV1cmWL7xjiG+rKgwdqzA7p62IP+dO9StYkpcZ8PkY5jXlEkzig+MqgFywMnt/R/PSlju7Ulw5Av1e69P6MN5x3b2hASTkNJCVitAifQKzZ/wvgEq8kVW8NFY8JvHWDhO5Z6v7TgLA2mea0DEAmPHmgH6dT9QITuvE1EQYYKgsrJvwZgDEpWP1Vzhc8Z8H4HqviokJXxGZ3asAGBAwbBzeGTEw4s8Dqa7OH3L5q3XT6r4ZAE29lHptj5cQHcfxRQidEXV7ZRZnGAgWURxqmRQUIir34E1c6WieF3CsR03J5a8dBctJ0JvA6vBmAahP9pQwIx+5DjQ0mq/1NbFVxYpoFJHJnKQiuc+QWUIEb8sqSuGomg4FXLjX6wXD3Z5jqXY1zYcImPm9MniWTofuKXZ3vDyy/1MpwfftzYKHPKcufmf3tA90NmgKDeJLH8XUqZzv+Jzc18QYvk4Ufc+0q0Dr64aEM8PkPNLeF8L+pCtDoYlBVYS3vP64Ig7cITqT2vkpaayZpbgbQC/9ax9R/m5A21jYcV37WH+inw5Oj/7DS/95mrX9wQctX9cb27nRxF4VJ/5v6mPvH4ze/rOng/TsqbPSNnrDdw6Y2C/RY8mHPnv4Q9Y6GttRshG86NeHvnC1m9gdP9Gzj/6t533lP/3dfyXa+8dtFGh9ObARNTSNM7vvx48+dC8873/gQmnbyRtfJhDt9RL1n3xPedG3+j2e74XhIXqAPLTvK4b+ZZW769bhdWBNuo5Vba3ZyFFsu9FmaJJ3z3+9lw02F2yl3IOtRPTGqd+nbeQxlbcv/h7yongf0Q8UIrrzJW8PVbryyqsA6nx63mQUpDJWu88DVzoO3gQoTjPA4kHti/qTtT/WbypiA5o7TzTDAJDFKUztbmrcXzcYUJYylSsNtqH9k4c/t+W6peHrP3rFKrASTzqXXW4NHEtoTHsMRB4K7Z7d4pYiEBEoHgzY5cxiGsw3uExrg6G2n7NJtpHHMgf/4T0ntq6xTEzs+R27yM59eaebz0MbhJx02S5yGlzPuF88uW7oiyfhMU07B/uScAXwpiLRXnaYwILQK79Ad4Ms+tooe7/rFAqWNEd/Y8y43hDbtB6eD/YIpIInaG4ReNMw18LzEEbRvydMuknIycK9vWI3aPBn393k7jNwt/v3nhf+IXyKJrdmNAN3WzOa3cziHt+X+PWEHKpu/9mVdqw93BhYCkxJ36+SrOpOLsuGqQ1kZykqs8v1hinbFrPNGWjz7W63mAFoflNeHXALHWu9YrWiJkffelV8ysbG4Fbvo1+t/m+tw16mlO53N5yOgbf31+JV5yAOY6vsxiPT/FZZBmDMe9m82Uisc3Nx89uxq6HygOvYjm2sedSXlG8kYlW3VRqoG8vEm9Fd0y0bqPRE7/zR3W8pRLVDpFXfSp2wp+1Cx8MXLEu41okzvu6z2ok5Nc3Qek3KYDlWYt0vwWpMPt1IUXWJaYurjYM41ktMO4ijATRADAAwJx9Zv1XL8lHRxkAhah7zhUpggYgib/zqR19er3b908N7f3ao0cSNP2+qy2dd5+2uWzfreBwASIS8kxZDmNW84gXlcaVHsLNyg4gBS/wRTPUYmSiMStGUu5pcENMqTvfviM45xVUzMWDm8KYeWmWgFA/Lx1bEnJySZo/5au7ENu1gNOtpbIL55erpM8kdR6JKtf9roWFi8FiLvnp6IfkB8VFyIM9WHiXHP3Plij98z3NfjcP3zFwNt9vGHFe4qBLduETacYXv69rl80vrLfb/ATBYket+1VnxAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, CD is the chord of circle O, O is the center of the circle, fold the minor arc of circle O in half along CD, A is a point on the minor arc after folding in half, angle CAD = 110.0, then the degree of angle B is ()
|
70.0
|
206
|
[
"110^\\circ",
"70^\\circ",
"60^\\circ",
"55^\\circ"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHgAAABkCAAAAABoG6vuAAAJCElEQVR4nLVabWwUxxl+1gtColYvlCNcq6PXiCMcuZS6mIRWWHIhruoWSyGKGxfVSKYiQsKNdHKMShq3jiq3RS1VkeJKlqxIR0VU1DoyFYiPym3PlEooRiIKB2cS0xDWbS4xlSA+2qPe3ac/9j72+2YP55Hhdj52n5l33pn3nXdGIgLj7lvT/5oEbswCiK7F0q3Rdc2N1WJKIh+RAhIrf5nI5LeuWftEoxSLAXj/JgpTN5QL0W1tbQ9LNk5KPq2gAHTd+M31xyNdIzm3Ktnhb4cTAzPml0r/mAbaF35of0GImCR5e2RTtN+VtEKeirSM3rFlKugjFQzXS5xPNXafKj3r5gLdkh7rCh38yJyxsLGPJH90uj5iZV+oPy/WQqU3lPqwmkxHCySZdoiqJrFOzv9g5eCcGC1J5g+GXymWnhc2OmQsSkyOR/bN6eVG+DexTN0dO2s8KZJDxqLESlvTxdqNsyOT6JgjSQWn7a0qoaHGvL30xNcubwm+yLRmmzZfAxDZ+A+AmD3jnM7+LU+HzwTvroGxlWPUmZZOk5PtzmJfYrU3nq2Xl5yKHsyTkwD6XEr9iO+0t9iXg0DIP7bUe8HxGeOrm2OZTwNAHXYEAAq/vb782RuexZ5NOhvymoJi3e1fGdnPQ6GMR7kn8ZXQ2Rrz1g/ZnsjLXd0kx1fNuNfwIp6LP0B/T7XFR4tDW4okOZScD0K80LZflMUuluLourZT5Hhszijq3um65HkQp9pUUWIr8gOf7cmSnAqXFbq4ZdCtojtxOj5X1wBneyIDeZ2kEj1byVSi46LEF8O5wLQ6eaotNlw07FmTWUPeDLssQy7Eurm5wvjvaLxlrPyFjlS5MSTJsZjTqrr1uO3ngWnzA+HuqUoq1W7TkIHO2sQ6jzerrGV7rcj2hPuVanI0WbBVuJ9wyNDZ4/nolC+po3CiIzZsnqsT0ZuOlyYSRVuOk7h/n9vXvaCmky1jluq5iMVxKBV1DXkTG1VmwgEs0txQZPeULSt+3K1mPmxzFh097hlkzQ6Ximf2Rg4oVveWxdZB93dSKX/ivHCHLUNb4e7p9mh1PnzXg9ionzooxKqmH2seszAaGPrqfa9X9g16EJMk50Iifvvc0OrOC24F41/w8L91cmaVxUzZiI/01Kad2RvudU4Y0mwZ3LAzTZOEbMRNXg6DAZ36REf08B17roEaS+14qzllJb4c8yIs4VhT8zGvD1stgxNq2CwnK3Fq0I/1zuFo54VSWneWd9gmjAOWr1uJoz5jdLM34jG0BnXqm7V8h4sJL+JcxPOlC52OobVi1MO3MkFtNE0ZC/FIl8crx5qbX/f/qJtlcKDdtJpa1uquEbfqdw5Hn3GdteXX6LAMHji0z5WYjLgM8Xu94b0ernEVHpbBDvMgV4h16jfDjqoXOlcP1Q4GeFoGO5ZV1QSszoeJ1mojSJLHmh9Pi7i5Pd1ivGyq2tAlACQA5x9O4Pqjpf2UBAkovHa46RfbRXZnP53OCO3iKMWvby4nSrtF9QUA764HyntD5cC6bOZkbV4CJ0ZPLhMilpB4p5JoMJh+Fvs8MJ0wioFLu5986Mro2tqkkHjp+bNhoZ0sicS1youGcqVPbLpHNl02xD/WkkxXHc0a3sitIE54ppXcBQCnDa1WhpV2kvEZkvPDsY4JW30f7o+bhgN4wlPNJHed5nlMgyQPUOkjGclT6Y/snQniVNe0DBbkEtQXNt2jghxIpmHERxr/1r1qQDBySFL/U6LpOfuewR9KlJzsI3f1USJm/7hfOn+lF3cf+szWL8lC+mngN7chHxBTaBiR8fu/LuJoD5BLYAlmnz8DvA8ghBcqNUSxSpjXUOX7wLlc4uiGXAI/BnLcBfTpbPw4iNjIifXJkvEQ1QklylvfMkKrZiMRER/fQHTl6jpzCaaHjQhnAwBN0wAAjQVxGQPGUiMOShIKy3HuKag7oq1oACDDUKnGeeuA1ML5Bkl6MVAz76nS7zZISz+nLIc5shf5Z4VQRMEGv1vgwoQ4M4DZR0mSZ1AxEtA0DckZTYIhdk3XyrnV8sr/0DRog28qy7Hk1d//JwDxO8nK45LSr6zJeORtGVr5z/QDI4FSWpU0WdP+/pMcUB4TsTMuIPd0paZZ1InrACp9tKOytCyhDMgjLyYA8CYAcTUzDK+VWNbwSBaELNdcvCQA6tvbAUA699xyQVIAzK2rNpFUqZKkSjWSo8rSn+mnklBJ/s94UnCNJM/D9wjMBrOz14DyMMqa3DoJWdNkQNbMPxpM2UuhQQNWbXxPA9Tv9yXEO4xMa/W5AajKdttfyynZ/CPDki3LMuRlO1+VMbt0+68C8CKzzSz3MlTfLUx14Ss/7AICydljC6OqKv03bQ8Oy6atrNWGUDuPB5FcUBzvMqcsbfLamC8KrBtz6ylM04rJes9cauNkMmZKVYkJAD1HAxq7ADj6PUvSIg29HG6q//zFEzNhi4NjFjUhhfccARDUxgvhl72NlmG0tetWkBhqEORD1g/bj/jW7DgCfhL6dWhPyJphb1mgsHGADtvDxk4f58D8yKJ21TD93/niy/Z8O+YjU468B4AxPybiRd06VVxOYYzDkEVF0XkY4nJ+3LXi8KLKGsDQ499wDoETdR14+UB/Q/DAixd9486BMSV2xKfTONRcNIgeahqh2HqPcZ0ofmXQLdtjr6K1rx9eJMXaXRh39fc92jkXDxJU8cFQ0n3X7XaMS5K8GloU1R4PB7yc8MDXMQzUcR2DzMZ7H0TDdLLYk/SMOPvcfEleuvHU3fqVSsLtrYWLnmFJv2tVoVPJzabgo+XBDbbCS1/++h8a3WsCfteqdJLpSN0q9kZkzG9e+N/n0jkVGaomAkAdiGV9X/iErs5NJnbUWHQFLwuKhZDLqF4W9EatO3sAdr67YsMr/wYg6PV++FJy7XWn/RVXLhOMC6FC/VV6QymRCGGQK7ACCj7eFXrpI6EPil/6nRtpjh60OAh2CVQu/YqIJtD96unXThRat7Vawh4lk3c1k8mEn91T6/ykiqAXu2f/PJH5oGXN2ic/Vb7YLc2XL3avDvKhoMQAcPet6Q8y7lfZKYmG+f4Px66EpdcbPcgAAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, AB is the diameter of circle O, point C is a point on circle O, angle C = 20.0, then the degree of angle BOC is ()
|
40.0
|
207
|
[
"20^\\circ",
"30^\\circ",
"40^\\circ",
"60^\\circ"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAF0AAABiCAAAAAAXNoBnAAAHm0lEQVR4nNWaX2hb1x3Hv7cpi9d4VbcIrBBlileNKlOzOihj3upUWWvW0LklHR4uzA9+SPG27CEwy9XoWB+WQULzUKgHhhSsssBS5uCUuqsf0iLLNnUrNm2zPQemyKF2wMVms6ckV22V+93DPffqXOn+keX0od8H+Z5zf+dzf+d3zj33/LFCfI665/OEf6Hp93rcpyIu1hfeX5nH3zcB+KM4FDzc5vOmK7atajJF6tr4aLb9UPAwon4AH1/F7Mrc9A+Od4W88PRUdiASODFWrs4ujfb5o7/JuRb1pL8WjAxkpbQm35w+FQ5ebJw+Hu2YteWaSsdiVzQnA1f6bEd43I2sazTYmaO2VXr+eGDI7dkmrnzO37Nsa+BE1zjxwEtFG5StNpK+6XromvF7xt7eSRO+IePxkhsOvpd6o3k3Z2s1H+4v19TPnr4c6yra3nDRRrxjvTqvlq5RywWSWwLrLpdPhhZpbR8735cDw1uCm084E1qzxsaGXoolZZfqp2vsj39mybSOYlQAPHfrLe/Rz153nogMW8bAmuqdjha37LiptbDlBayJzLj/ekNcocUH0i70vC/NbWncv1RJVMf92cMvNhp0ocT6CEBFj771ydOB0nYc10hu+HNmuorecX47cF3nuuzp2li03FhfkVXabzadhV6OvL1tNskLMePKMp8ZaXlqm00KAPhp+ZJxKbsezNp40oDejWi1vs/6DgNwn7ZS/LhaPX7zX/qFTL/8Y+9aK+JHcbV65k3DmYoidykw5JV2/a9EXwzcLbhWbl4laYn7m894BwbwahgAUHb86DIAS9zrCTumFOWeQW+zZy8LT0RluOr7zLmuhhIgiYQo4hyaYnNRjoyC97/jNZcHBj8kgMzLooijlOaDfwXkyFx72BOeeXnE00Yo8m8rfS7qWeS3iVYAKNRBjy5Y6dcOeBaZfBoAMJLwpkfygLxuWg56lVhCEACmJuuIz94VQPb91i6vEq1YAYDH9Pi46/5bAKSRoNl75piIkwXRHz20HCTlkcBjjaORZBxAQUo7a8NHynMC+7Vlo9oMbUCOe/PNekrNzNRHL34FFnpTqY5Cf+juPlsX/dMvW+m7brmaE8Cd50eyc+/8cB3eA+X/dlnp+1ZczRVi/ejmTHB3On5w0uvbBNwIWukPLrrbKwuHut7YCQUvjva+5On81bCVfnDB3f5S56sv6B4/mvvbkY89nF/QRy2zh451unbg0+F5qZOfa5lw7+/fS5P6O6SqKslVX802RkXF7qoF3WwoeccFLn09mtAEoOXAFcdYrhxpSe+25Hz3H1cfveFkTvylo9mMjKqvrvvp8IJP6xsGVfeGAmOOvvfoq0aDrqrqYlBVydsqaQRL/EkFpsWV+KWqUiVz4VMOs/2yb9VCp0pGZkiVmmpmqCTV8sloXiQMtIEv9sbytnRjtiTP9J56B2DpE2sMN7tufPAgADQZOU1oAnYCQPMff9b+hl3gx7qMFhC+U+V7beJS8n3uoaRpIWWLilCbj54o1bZVaJ5GZFSq1MjbLAazlhBQ1SYCfzK4tyW6ET2SxeejizWBibBCF3Yqz8eNlGjV3wdnDJcr2UbcVdGLLgRSVRtXbaMVunFDZTkyLrug9rWv2bWZJI0k8229lq9mZWUD00olORYtV0qtxvo8lpeGt6WTkVwltxRKG3eMcUaEQlpRZoOveDguPeSSuemiiRWlJtOFKqvhC4EJq4Pu/Oux7g39+r+7c2Y+JAuSPH5aTyXD9u+Jo8oD+7OkRv6qr8Kz34UoHju2uTU4NY4HXmHVHolMnyyIu/noKTawQ7Pc0bWx6EszDgAZ0rrHoRRaAXT/89WevT+xHVkVwnHeoxDA0JeUX/8SOPq7I1OPFVotK5vBeCuAm8r1p8MPWwcbGoOGlKhi6xsmJ7H3OQCTRxCsjDMkqaUy4rp04PFOxJJXamKjeUVr7Zs7/0MykyDjCTPuGslCqhA34hcYLk8MPLLjyXM5O4bm9IiL9/k+IskUgCWadJJMsGBObnN7kiTXLp7Y7+95bamGbs9efdK/56o+ly0wpU9mDXoKUAZNS3OnNj/c7Qv3j244Qw0N+ULf10elQlwjkZLoSykyk6rYlnqjecPR7BnRDC5ajH/76/1ijEqlyILeIyEeJ3KFNPKsf6pSuDwx8MiOY/bNQLJ8xt/vNzci4wVS9BaQZAIoMA55lVu7u79+8UTI33P+OknNGqZcW/zn5m59BgAQZ4VuL5uTifzw8WbRDKZKyd09VScT5rM9TlWsnxOS1GZPd8jNkH6ofV9nzgFg9nd72Z8IlcZPfUtvhuIvvhaO1Ta4VvX1cNR5+TRLq7xJqxf6gv4n7rt/zzZOs0gyOxBpsT+J+2qgN1eVaw2DZcQzN85ZNTu/9vafq04RP5qfkU4Rq+0tA6e7ia71hdmVOfMEtG2f9QTUoex2VqkG0tmtxs+GCQWvK8pRDDrXuXG6giVlgRxR3PZ1vPtMrYzePEiSiYyzYUO+66F4HWcJIOq2r9OI78L1lKiG86veeNyX8A1RjbveqnX24wbpCtCKAgEsTbl60bBSyFDLxF2bpnE6JwEMONzTW/ru7ldV64v8Pyj/B4uLzDmwa+jMAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, circle O is the circumscribed circle of triangle ABC, if angle AOB = 130.0, then the degree of angle ACB is ()
|
115.0
|
208
|
[
"115^\\circ",
"120^\\circ",
"125^\\circ",
"130^\\circ"
] |
A
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAGsAAAB1CAAAAABsCEA7AAAMFElEQVR4nM1afVBU1xX/3RW9Tlyl04Bsmk1QgYBiRhzJaJV0JdVCivLRkIgTG3FiNKmZKpFGaW0hjZ3IJI6aUdHRVuykjcgmGKN2NwkGaqaxFWfJZAkygkLBUaL5IOB0H+A7/eO9t/ve7nu7by1/9MzAvnvvufd3zr3n3HO/QGNI+QBQb1iMscSi/HpywSMalFowZkQY6cpFKsBIn2EMsRjOLrJi47oMMCNpxpD2AfAYF49pH7o94r65rYYMY9mH3d9lsOdS3QajNaZYOJMLXOtIMhotQ5sBAGLqHwADrZeuNwFdfQDsyTRhoT1lnjXAX/BKxsjDX1+ZZAQWDktDfY2NH1/PeiDpkck0LRHEeroxdKGr9xN79pIlCQDgzgXAHB8bNxEGK6APLv3p3duObEeqjsRtTU1NccWlSWbkjWzJNw/Ms5e3h+PwbrJlHfpWSYnyXwhFxOrfZF11yqBM1aJzRezWm6ocPbDwWGLv+tjy/uB6+vNd74Ypm26EbS2czdPQr+faOl+fGjxKQWl5xO0vxAizqwRVTjCFw3ov5Zv2qrjQVoMak82rJy93qrcr2R0qTKC+Udf0Lsn4NGyXaCt+k3agspKoKW3ZTRN9qEgjidnyyGLPgjBKqxUDMFxYvB4AObwZmW1GjLo6EdXGucwpJVNhKVFlJREROeOc+jwxEiCDxndHN7mbZ5HhxBZKZcIhAIwYgCcSi1peU5pTNyL1IdvPWPboJkXVgeWftcwyHGEdqv778ZhAw5ktHzw5JFdXN2IBgG72mUhHJtwnD9UXmYlNU8wDAXU1Zyap0wn/mLigS4ePRBpOXUdEtPm41K2u2L1RDRV9ZO8kIv94ERHRjtimED4Q0f74QSKifR4iIvLGRmcV5I07T34sUbGzhrjOYIsD0XDqDlXGzeQotepOPCUGsAK0Pf07IhU4kQW41qEEBALurMzZEM1QYeDxijxdK/rN3GcAgAXsQzNHMaAce6KCEgqfWG9QdPhGlTbDAtyf2kUAup0Ajp58e1xUWCXTXjWKtrz+jye0MycR7cNxkVyLieh8fNiYGEqbckcDCe14EdGFOK/yKZIcv1wA1hHRv+0uJd8c7Zg3qEqFYJFzmnoi1sTKGY+aRiGRiI5N0wTHUCzaVqxKqG2jbvCcnrfrEwMayz9KiMC1zeuWh0oeL5kG7c8VJ4eP4hry+3AYvejDtP/o6fVK3g/S1+YNmVWsJ692fmSuJXN2+r8DWF211cCWBSvvkNF6QUMDuRV5ZkTas7tfCb8WAFLj2zfEAtgb8zwDM1yeAJDKhAJDH9bS1FU7lJnDAgIDA/pPlwEMOOatAhkvTxQqmf6qKSiwrW8NyJ8WpdUdz8YSiMBddYcjADGgzBeJyU8JT+ySv2Lk31tHOkiaJmNdWfdFGonqc03mp7JfLSiXNjOKbfy1KEERNPH9tS3h6hKO15y2mjIgAEBS1jvQYNWWBgoz3ioK59OscXNjQuQRDdDqIxqs1q8ccgEBeGx77i3jqm0lziTTSgHA8rYeNdbRNUoBA8BWr11u6NM9ebXzo1ljAZZVR9RYzhJofGrLnJV39Cua9WEVsZI6Pxbh0mgatCOwD/pLgeGCYnM+rKbMvn4Ji8DQ7AieKcY5P/tDSB0CVpj1YU1jWU0SFgPwcXaIXfH3jxwNFoChzHc4eihA2rFL49XsCC4lxDVuawwWoPpcfXTLEZmym/1YPaNpwUbMgMSGVUE+XVdzxoq7oflXBxSsznRdI848XCQ5htyVjeVnp94VFDDzsoLVnqLLQHmKTzMAaCtxzrhLKCR3ALAQAVfSdBkYVq9YLigpc3HYgNIuA7AwBrTrY4FQNadE/r4LH1a1k+aF3Ic37tfnYcC+0ecBAMLd+HCgHfstBWtosq4wAGjc2xeqgSjisD5NGoIcK4f0LJlJ/6yuhfan79aH/WS97ceapMsgbX/jXY/aWrRxuPHFe95cFA0UWSW9iJGuXv5ZK6kh5x6PhmNDB8o/jeaYgE0ZhDQfRqo0FEM+bVWGaOIyABGQbcMadrHbVnK6KmdAnbM3NeMNl4UxM5YpTTlDk/1Yt8Ow9uTVzl9fsmxYlfnjdk/DMwM03GwCTFJ/yCpjCbFfG/MO5Fb8FKhKXqEJMOUXv5yM8XsazK7+hybJWJwLhkzDBcXrGYDDvjLVCLl37jKsoUu3Fb1gu2bIpPjwuPpz1YHc/esyAMD8bq0vXsGa2QlBECCIIiAIACDIP2W+wwWMMcayxzfU1MnZwmhHNgQA7iIT4YwA0OV0BWuGFxwcHBYInAsggXMuAMLuc/WjJ/I9RKce4vGN5R9yzgUIuNKR5OMC3CdfMKESA8DaUhSs1MsAAMECSS9lYJw1p60YFeeM7HHMwsQk59NtAMAxPbVrIjCyUepJM9SZqtKLFPvgnCsMjVsbE4CzWezQ/eM3Aphfk9cHEDB+2UGgZ4LjoFkoak8BEAMI/MHxlwIRjIY5AGJoK2lIAtC1dSs8AASOZTeXnp/IALxRwACPaa3wr+mxsl4CdzQDXOAAuDDMAS4MCzfyarMEQeBuj+9nyVwQOMDX5BcCAgTU+cg30zQUmhyQsDhHduDGhXMAxLkvtyIPnPPu7zL4IquUDV5tXw3OOTjHBK7fri5WtowFwo+aASFQl1ggDp/JBV7CiwBABNTeKiNoTs9M0J1PFitYDDNjPldPHUwVh905AAoeAKTpfdyJpjcDMpnEarEnKFgAit/hKrXgj8NudnIuY+xkjr/Q6tpVp6CYVe3YUwD8++XVhVWBIhbYD+eEip7gyrY5ogpeo29J62eLNAwZ32tGoE/qak77J59QsDRnSUc0UDiVnqhgMQZgTS2kWxgCGssblTMt0uunRTVL+qLBUjatyt786YZ+yObVVuL03wjKt6NBlQsrcpXAZcI8uj4p1mLFrdktf+mspUN0+8XyIsGgKITo9Q2TFCxZss2HB8CgWkuHPQJ77d7VEUFk+vJYGST9/WdE9mW7QOq1dJj1FQFHv6owibVjTSwk/WP8edsWlAFUMu33kaszYrxhgW2jGaj+v3yufAawkkq32PCSr96M6zBiVtfCxMKIjISNG/3ntKqrpMqU5Ve/iXymRUwCs3+QHR95oX324p9VVcXAsfSMRPm419Spudhka9dw65z3+tJUF0GKbXzQCsy+9lRCFBMdc+x9vD8C9/bZOSpzloQaSfUQkcdu7jrKr/aeWYOqLtC5C0jUuQt4eekgEdH5+C9Mgflp05LRAFi4Ow4i5cx8f0Y/AGD+60VhDvN0aNe9pcY92Fd0KF2dtgDA1cEffl+a2Fc/bnS+ZkBHew19Wnjy2UJNhgUAdm7BQ3L6DZjyUP+ky99732DlRmttVcFZ0lOjdUqnRn2H2JvYoDte29MHgzhjgO5BgrsVIEYMiDuxKOUn5lSTyH568X06hywndp8P3oVb0L1mi7TjkO8b0uue2hcFFCHdWXxJnQYAVJc6k0Le12xm8FC+qhOJvMkbRikaqpPmG6UPRfKVpneGzj4gIhIDuSIR0be5jm8pMgVqSfd7EpZIdHNe8ZAOvwWQVxwSMQCYcurhTG/k7gvUevnRJxVXIYaWuUvrdU9MDGSutbmiuLcUqbCUROVNhc3gTYU+lkh0wbbdNBQR+Ry/pd9VEtHotkSvAY/OexvpRirzQtPcf0buR6UGf6/+IAPQPLu1Jd2Qz5gabOsN386EUrd9ZeWNVQ+6jTl0sALDNLg1rjISmuj/894zL67SF4Y1wruv3vWx5Te0AhjgUe8GPv+GJieYIrw/tB/oGEn+uTtM7JV3YydKZk/+Za5/GaPPHl4vIqIvD8yzV7Qbayaq3s7lA0B88KQrk7m3qe3lybYVB9rFUEDRu7c4LnVbp5LO9xBtjh/UlSyKt44fNV3PeiDpEStNTwTQ00NDF7r6zvnfOgLEMJL/NwAFNt2YZgbLfwI60HrpejPJbziTMGGhPTlTe0rkfvcggPKLuq8rY/Qyg+VRPmIdIXc8QRJ9uBQAZlzU5bjLd7AUuvNiAEZcOQBw5aHQGlFgBbWsPXMg5d+1rMkAuncu/Z+wdB2G1IUMwJnpALBxcbGBwGNGIg2nthJdxWMGDGP59tslSW/4WN+0f40BjeV77P8nrP8CCPTZcFdWXsAAAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, in circle O, chord AB and CD intersect at point E, BE = DE, angle B = 40.0, then the degree of angle A is ()
|
40.0
|
209
|
[
"20^\\circ",
"30^\\circ",
"40^\\circ",
"80^\\circ"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAIIAAACDCAAAAABkNJyEAAAOMElEQVR4nN1bbWwcxRl+j9S1VA6MxEVexJFrqEvOOIgrThXTGNl8RBzFMqaYukjQGsnEqtyWtHHLUaVx1VriIhwpFDsyTVX5B7RX4sr9cOEoBoxIhOkFLpWcOrROfMWpcskF6cilwtxd9umP2Y+Z3dnbPScSUp8f9s7MzsyzM++9877vzPhAq8F9fyKitSf8q6pswWWrq/bHzjTwzevP0+q+4FJQKBUjRCO37iDfp0bh9XVERF/858UTWDWFV7cSEV1/KRiskkIpGSUiOnHDp0fhP61+Isrs2frpUXhpPRHR4+3dnwYFEBGVfhElyvjOvXEpGBCheiRZzQOrqCqD76J0C3z2J2vCFZ9ZXY9ERHT07BvZYz6cPkZEYQW46ZrW+jARwVcVh6pGwWz59Mzs20eD67coEaL6MBEWzqq+w9nU8ZORzbffGaiizSopaPjLyzPZG77y0GbpgB96543Z0Nbo3VW0V63wzA8orXvTiAZzzu+kRm4JDi54bbE6CvmRcGg4AyAT+mGUy1dtby7uDDY9W7jkFHI763oPssehWLk17vL6qz2B4fwlosC+Mbs90L+sahmhBSwrB90qZnoDsQrzVQUFAFgZCsSyRmq2FUCykjhoWN6uxMtm0j5h3ilMh3qyXAO9EwAQi0qbtJDoCL9W+Q1XCiqATEfDDJ+XVwoAUN7iJg4AgOngAx/oLcnGwcsoJOqGVoyqKoDxXpb0IA4AUIjVTVcodqfw8UAoZclqmdUeksEzXjjgoBIrw0EU3Clkmru4X5YKqFhoMNKxqKSKBLm7Wk85lTlTYJQPKqO2kpgpAuXbdjt9nAVxJS2ku4i09d5lFKaUOVvehdCymWDi4IXEjCKINDoPIElpVwr7Q/MSWsLge9EODKlggksVmwpYcqcQ35ABNAEw0ZUQcryKA3AsNG4mktuAzm1woTAckan4M4EVIV1ujXuTBhXZsClYY0SUhguFXzbm9M/lulD3bheaBZaVt7xxAJZDk/qrnWmMMQ7OFKZCGWl+JM2nVLUaccBCcIZRWGoHihviFSnMKnKbY+5mWHSt6lEcVABIKSmoAMbiwAnpj9IY0EW77mVl/Xvtue62g4mksgwV6EyjuGFtwUKB/7SVyLi9NgCsBHISNaAvFl5EIt5a1jyRdpbBj4JqtrDt65LKKoBEj6QvtRpxQDQmpolvzxD+3zaYZp8q/I8m5e3G7vFMIRdMCr0RVCNtIBNIW+tpv85MqGwtYWDi4O23eVBJ8LKjT0SS7zS6i+vZIKwCGIqJBSY82g4AkGuica4+sefSBo7CVJjXf52G6KhAyNk78CwOk4Ef0AR7VAFjFH601Zz8lZBlSUsDyX4Amtlqg/ZF3sQhG715LlvbxFkwLL6wL3La9K+GW+7k3a1SMVJ65o4bCUQ00SdzyDS3bvj8bnfnbSyy+d3NRzZdt9esRwBwIr7UbtA8rWTBz3UyjjEtlKCZrU5YVg6aFdn8Mf1nKry2ln8AGBrMBPKqnk0AMIClbcar24eE4eWWNIz3Vh5kQRw608wo4PBUgK2U0YTRi0ZhjIi26RnZuqxAHJ1H8LUCyzHMVic8aS4WxSiwBwNcYToSXWbtKBksBgxD4DKiTAFIGiHEkUfr2fxqXn/m3M20xU9EPjp2ts1lpn9misPr7ZR5n0b1JD558p7Bl4JE5KPjtI6+0GEUEZbawRYuAEA+YBiGbCBYyQAgmK1OMLXDPiLi3p8N9xiTlIgCWFD0Xz7t8FEandpMZE8NW6e7Mw2gMw6gzJutTnhZF4fOtCHFQH5ASZrfNTgEAF2j2kcSoK9PKoDRz/2kwGs+LbhGaVjNVidotsNSO5B8T29FGWAzzzpqTQLAy81aqcVemFtX5+/lNJNotnpZAjTbwZhZFbnusCDGZX8WAMrBBSmF/t2LTbWh4M5Fe9s5i9nqBCYOnWmNACaUmFhxvoGVxGIyCuXAspqPRqd7/c3781oTOgSztRKSwVySiI4AADLRyHuW8vEejco6OwUVU20A1MGmxZXnO9b0TAk1I2mvizFnSu4NPGUr7h/RW5y1UQD6mbk2ocyoWB4JXzNgOFPqOxHG0gPKt2mCsNDSJpnRyCHtIR6TUGjUJCSlPAsA6f5A0ygL76hWs7USmDiUdwXGJYGNQi1T2qo612KnkFWMRpr7mHk02U1dibJmtnpGMpjD3MaoHpwSxm6uSX8q1xVUK4UJ02hd6W7V+jwz3lzXl5ru8dy/CiC2dfDqSfm07e03HqNTsFLo4S33uOlVLwwGG3Z5UI0mh7/W3pKzZVo6URHvt1EQXflJZdKsmXy49q6Jc/JGbQzyvaEXFIkgAgDCaePxYMRKYaVWMI/V+XX8ulSYaLu8VzTpHDAZ2F5A1qEw579gPOf9VgrpBsun5Vq7DcWmAsgMN+iK0z4EuuhnO8L2yIyJZAuXCGSg244Mxzea9hyBiAKzV205qaV9RBT68b8S2eZNv/oIkl1aH/vz3Mbm+c1mrnWvAYdbuFTTIpGwGTA8aCc9qnnC5seWEvdaFaeJTFsLL08Scengoz19oxAnone/pNEZZcLW2KnRDcqANQqlAogH4nxSBkFMR7ZbKLTNyCouNg3qDXKl8wOKrjgNHGluy9giUxaWHwR4hpNdFgrN1igrQz4azcua/UPPmq6E+Rta2RmYcOiaQ0Kwe2bugiiO/5WeiEDdyxu3HJfI332JD7/69NWPHWapQ5Fj899yP85wZBMvo/7zFnEMnpQzVzGhyBWCisWdwYbhZRQG1k55Wkbbplk9hvkmiBPhP2eroSMliQPrmLmb/Ff3edkCMow2HcvXahSKxSKAStE3VV86VWs+AIR9dKMnAsBCSEh+VAcmCzVUY9chnDAQ+Sh4KN9+lqwS4dPfuNJNBjS808KLAnsyxNFHdHlBWo31U3ugo/mojRsREY2GI097pPD2LcR/R+EKIiaORTYZwcwnAJuUovmPDXaxWMSk8mKxCKCIYhFFYS4A5nNsQ2UYXimrNh+GNv+sXYTnGRsjQ/tnJP4e2o0iikWBg44da8+huKEyh5VawdNmppupF0BXfExEpZLDGNYQNR7+84OfUA3VgGqsxYPpM1dQzTNT5yuJ1ZEGQfX4zvuJk4WaMl3xERHV1NhaNxGYveqOk2SVShDRK3v2mC071k/dKqbzlzMKxmevYwuzwzCUiIjW7H/ky4etJT4i2rctAiI67tg7QETvbBIzT65nFKhUQ0RUU2qYJ6oplWqIakr8v5KZXSx99/n7f1MiKolUS+9vJR8RvXK/07E3n4+IDjeLmfMNjJ2O4mSXizwzLDbZ7Qq2xaMm9ZCQHIVaS+C0bQacRlSLSIfdemc/pfzd0bxFTRY3HABcfxC80aaqABTecCuViRqXLjhOpTnrRHXJjVtOiAU1944RZT7b9lzF6mnOaPP5iD46HxInwmrEV4KxdBqj0UlER1zWyvt/J6bfshnxoitTGSllzOuGlAnrRg9zZYTTXfd4PK4Fok2pXz92wUh5w+mPw2LGLDt0w7My3VoPWOluzakW67pyDWuwqlxXsI1C/VXHvH4RUe2Bjk0L5nJNVEktEhHR3yJi+nCjn8h6zK7tTe/HnEBP7Lnz91rCxxFxRHqLmJ5t11oShqqtipmAivlQ3NMUMPgtRr800FMOuLrwYme81+lGZSEopudD7H1xItY88ILb+IvzfTXnddpLRbxrWSaff0h7X2Q256qjbYMyqqS8KYgBMYTtFPpEQyXHXA7N63RFy6tCMukQAIYtDF4J2k6jbOm0o+wvCKPVpXsm1j3rvLtA2sG8ToOVHHONQtLcDBDFEb663j1UFWB4nS7yeGSzkNz9nVrSNImVbLYuW/36A0ev00TvOO/3cxtDdifu+0NV968CSNWPVX6Ji0CpsG6PicgqWa/xbgFGwFYO0WjLmIMA21Fs1Pc9LotmuULzOp1E5t1b1nDJb8fquDIbrBvG3hGvYHbFB7ihneQ3jGUOvbhtXg0mlUlAHgLoed7MKAT5nSJpTCE6tEoK+tIpEaUgZ7QN9vBnlSQUVNkRCnew9qxLp16S9ZvpQ4qwassjK4kG55iPC8p9zTL9Oh016OgHSXTILyf03PlY9T8JhjX7H7V5nSDMRdijj+iRhy1HxeXf4nioyAtmlAnVKg1s9wMA4lss6sMpxHXc+9EUO/ilU+MS0Kc/qSxDlFepOEJ1PmDmCfloNC8Eghd09yBlN3CqP2bnDYNNwq5M4n6NyrV2tWenYJB8rrGaTTmxCWvAdjsz2pZDCbvSqP7IpVfoAVsVAFpmAAhHLr1RwHDjxcwFt3SW/QUAC6FRmd50OX57nWd3XwJzrzMdBpBSEtLXKlNQp+qrt6g56Evn+MP2Q8geKQBvVgjBu0LVl86+UcQV+YaLpwPp3cZJhuptKZUtnU2vRFudNi49XE5YsR/Lr4ZDrrV7pUD1sQtw+oSKFLQqibpdq7VhAJT7vnTfGmEvphoKOqxXNKrD9JX0cKVyFwo68enQNxznsjKWO8Izs5PYR9Re/N5qKBhY+Sl/Xcc7ge1r42VgibapWKK49B2vFLRLS66/CqH439qlJS0qu+OAtLp3CkAuVtd7yLnYuqM70xMYYovMGDtzPZaW1vNMQQWA/Ej48z/PWHMl/7G4M9g0qp1R1M6+O6GaUQBgXOMTVZVleFMjzfw1viV6sVKLq7vM+Nqp29tbNksL2WXGu6NcVmb9ge4KV009UxBbOD0z+/bR0PoWJeJDfZjgO/oh6N1T8iudpZsefYKIMoflF5JXd7eW8Tl69o3sMaLTx4iosR600bjYanl938CLD9IrcacId7WyYId8ARPM+IpbmBd3w/iSYJXX/v/PKPwPaGIApBBvuvsAAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, points A, B, C, D are on circle O, DE perpendicular OA, DF perpendicular OB, and the feet of perpendicular are E, F respectively. If angle EDF = 50.0, then the degree of angle C is ()
|
65.0
|
210
|
[
"40^\\circ",
"50^\\circ",
"65^\\circ",
"130^\\circ"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHEAAACACAAAAAAZ29mwAAAMWElEQVR4nNVbf3BUxR3/7AHJczhJ2zlMKAdhksMLTaxHExSFMWFASQsmqOlQW9BkxFBNOqQFS6hxCCOMcQgDVuKgTkeo0FETxqhUL2OAC6PjD1IvTJMmkYOECWgyYTSY0L6Q5L79Y9+7e+/de+/eXWJn+v3j3n737e7n+/3u7ne/b3cPFCsFiYiCdUDejS0xVyYiG2IlBqDXdo7otYQ5MVcGgHjEvOEuJSLa2vC/0RHAq9/sA4C09HgqM4q9zthtJdvjweIUj45XutMRh6CTQMQk8OJDnOu+CAb0NsQHGX1wBSNy6lBP5M2LZ6QSWZ8dQcVvE4DS+AApnrEqGYepn1Yppn4MSXcV3PfEAWhpPkY0OpGxMqU6RqCYEMN0ra3rax+xFgBwumjGsnmubPv3hni5+aTv6+Xz0pfYr5c0NaL6Ui9Gzl7o+8i5YtWqW2IwrUXErr80Xr9nRW4GAKD60mvVqJaN3XG6xecoKrbuY80nAxERDR7Kdm7rDLH9SZdo505V4Y6KlOWvDunX1lL0+fh1hX3DCWVjm7ZRUINIRA3rf1A5GA3NCmLf5qRt/aqcTscQaXXkRcuSKvojs7VkPh9HdixODuxNliYiASDsqEzSL+w82CVkVYvRutEUsXHht527HJBnOwPAWvzlEUNBTqQ8134hoykapIlBV3k+JSJNxyw9TKRvVU6+jLWDcVq19Y68L+4EmtgKBvQytgIA4bj4KEzXx9x2T06H6QJqJMphh5cnbrj9RNTDl4pxVzNpdQxqntTgMAu5pku4GqcxsaXJlykzTR6g+wkQAw4tWBkhM9M88VDqutbn9NVjKh29/pCsQ/nLQ/PZ+3nmMNE+ChLR0BypjHE/EhFRf3bRMAWVehcAwFtEyn4c2xKStSNnvi80BTqW5HsxNg0MwP7VHpMOClPyx8LSC0yp9zsF9eRd3wbl7Kia75KtuKzi5WkhQabhvg9xai4AGjhQbQkQSHx9Y3YLEB5jYxfy4ZamtWTJur9lDvN0e5JXMRZ66okK/H8cJiLatE02UxSrEhE1OgIKzltKVFCqGDmsd/jns+0gBlxdt2d1yL5A02+I5Tcl2wF0NQZgfVkqbC/8NLx2XnjlFfg9UFi1dju7FWDA+K9XlykrXp/J8IvK+QCM/ZuWuDt8evHGcFaTn+oWtymsWgc5OKtYNa4wRh1QQ0QPDhORL3U0lG/BqkTi0p1S11BPHtEN9/Nhq/YOE5raAODIiU+mKaR98kkAxI4DQOWuBFAMZkVC/V2edXymv58PXPkyDQBYkAE9m04CdSPbgc+Wls0OqhoNBQmdZzaHOR/yrGB+dax4NqoBFO66ffy26512ADYGeirtVBsKyys343LRBkdQNY9Cw5ua74OOQzVX+cdrj/0bQBN7d7EtYU4fH0iqhWFVDX+ql/EgEdHBVcoXO3cSkRfSh4AXNUZ9WVWkzVF58jeyx7XvZRpK8StZPnK8zmEiolF3vVE1Et1eTY5ytRrZdsimNKTSrvvzPZFG61kEAPjlnCJDuybUVYyqc5SI1WtymE7fMAIk/0YKGQC03xQA8NK8fDJcENnK2/epc6aHk4EjAYNaoKrHUxWyMAAgNnarEPCgd/imdGYygl7IeixZySt03FNm6FK6G5/RkePUPWkBGnviDx/kG8IBSN5Qo+LDiAMnfm9kGtpROUsnu8MDxqrqTy0z//SoPDqkj1izKcmoN85Exm8AxqYh/WJdjv3De00BkfzQAVXD8qAdTDKObnn8pp0dXj/1oIZuyKucIQUcyhIhHY89kGxkVB6/aakwf3EbSre/lNCRNmKmIiF9+XFVBhFRkMjjMxJRjt+0Olqnt3MjdGRo+zbXSEi9+C0kvyW6v+NSmJGteqTYqPq13XsN27a4dE3b8Fq4vozYsF6a1xHF9+d74thfUNOv3gzXl3xO9zh3kcpliicHDpybLCCxnMsDIb8j6eiL7EUJpOrx1MlqyDBtuS/ESTqezjMo3dV4wXJ3mVDe6fUAj1kkHVuMEPX9W+yILQSAMcg6Xhrnuxha+9EZ/xuTNCmnO3u+k5cJrmMgUxcQrHJX4uQBCcCi8/I84IhdLs5qW9f3b7ESA+DqllvnVg0s0h0dE5WHIgVmZqwhZZyXU1zHzgzdYmbfpxzPwjDmEUlGh8xzHQfm6pUd2v2BjgrKLKbN0CEekTgHZZ7rOHKzXtkD+R6dxiKCZ0t2nRla0STEyLiBYOH71MsY22wFEDeH11AiIrLrLeObthkueM2OlI+IaOvsYflEKRpdnienoPhVU+fsIdLb1gsSUQawlGhrHhGRd3a0qIOIaChJThnsrgDYsX0W9DoplNO0r82SQbVERBqrcrV8qaKxxM2O5I+kz3qqs6Rj31y1jvbriqHDldi+K9FYzJXltGysm390Nz0QbaecmHI2SIgjyZpSDaOm/o2AK90uAGh61x9tSjIAIzNlzgZAFGcNawpN7KiNIjjmugMAxraUeqx4nvD8swEQkPyVpoBJ/CbP/Blr64DehLyXLbmAK7fIKW5V93n1+2u7PzCpLSHUFjLg3E8twAE4/xM1ossvAoIICBAhENt/b4YoABABgZfjKelXECemiwLeiSHk6linRsyoF0QBgihAFCAKAy+dTWScgSgAgChA5GkxcRSigHFBFGKJ8QJujY7tUrOACKBqY2pkHUlZMEEUAL7pYz0+6FyoRpw/o4ubERCArsYO/Wrx02dpoa9hGyACLLcl/FbUj9+iHiuYke8eKOMcUaC8UxBEAYAgip/5ywVRFAVAeoiAoOBFiMBEbCL4ViB8YklERJ0pRP+RHN/SI9HdZGxfczRu7w/tYUsRcsb0LqkfcVx8ZDL20xIRgFZncmjvTd4yevAYf2K8Mqp/i4kYA/Dm+nCGDRy75HWuIr28YOXkbhjo0MTrJRpEAJ4ftgAM+G73XkzFp42K3stUzO/QzkPxYQD8fGGKNSQcKVHxxAcR313pT+olinpoGeNYDczW7K4UMmZjmx0lLxDwjGr/bYpo75OqKIGIttbTDXdNn2OIn59aoVh07E9SNWoD0JNPM9ZedN6/nyyfL8RCNSWqRqcDvd/YgfN34+nsO/xvTD3gwNF2FW8D3s8Hbf2kDPZrD5SaxG/x0pYKTdTGD+ryiIhOsJll5ieycfRjs0sT99rQ+x0RnQaANa8shGvfxNSpR8Do7w4mSkmJbOi+NcRscsz7h29R45QhMtDuzNVSMixHgT+scZ/TS82Zyz+XWGNHYNWqDakR3QQA58Lsp45OohcdxQNRWrKI2Opoj5DbRkFShJx31hZcRXnAmbVHc0oRF11e92pmhAOzgfFFk5sYj655eBxJz37RtuDIpB36aNFj66RmVYjSogkAYEAtVQBw1je8uOTjSSJumlMdalZBEbYfdB3kiaPOor74+pH33O7MEb2XOt/joZNrcY9jm8azq87mzImfXEcOd517HZlvrj8IAEj8U/tVV52qEywvY/T8ow3p+hX0xGt3lcvHgmdzM5uDkaJG01EszgoYvNK9u5LZGlh5jSdzfM//tqADLLZQZHDZ9U/SDN7p35aZdSIrpwN8WK/pyl1WfjWmsKD1Z/e+ZTesYGSXwynhw9HBsqRa9emrqVUbUsxuy0QghnrsbMrucG5gretti4jjVantJoCR/RgyRs5Z3+LPZSb9vUNVy1v1jaRmz2S1tWbqFoxmVSKit1NKB8OaH3QUy8d30n25yMnWvyFVe1IdVUclrTv/o0XVV2XNy7iDp7AhtINjYEdWevd9pgpGu79qf87fn/7UgMQlPetvW/BXozFIfeVusb066k5+tBuzzkNfjrs2ynfgnPXH/5yj7+AbH77t5sB+OYiK5y6ZopMGD2U7Kztl/qizqE87Vv9Zkay+aWlC1m+TjuSuyHUzAKO1B4qnJ1bLEv/L5/M5HipR3iY13XQxQ+R3zeTal0+ePM1vzGJm3Vt5f1femNXuI5pRHLeCwQKXATjTWMLdoVvB1veS4r7dfXZJnBXjv0+OOA9CY/tfgCReIWM2dstI2APEInZsiBLEOwX+ID1ifg1gihAlGhv3EGrv2irf3Y2pZ6wjhpulU04wYOGX8t1dFkt/WkcMBx6M3x1J0wgy5YjhpWLMmw8AF93KzO8FUaYry+wg9O5bFUfd+BDfTwOALXlF8c1law5fSTfcfqIe/iEfdaspkmJH9HJJja/IGZAs3KS8XFwU3/+t/r8Q/wtEzvujSrERRQAAAABJRU5ErkJggg=="
}
] |
<image>As shown in the figure, CD is the diameter of circle O, chord AB intersects CD at point M, M is the midpoint of AB, point P is at arc AD, PC and AB intersect at point N, angle PNA = 60.0, then angle PDC is equal to ( )
|
60.0
|
211
|
[
"40^\\circ",
"50^\\circ",
"60^\\circ",
"70^\\circ"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHwAAABtCAAAAABG/1pcAAALTElEQVR4nN1bf1BU1xX+LqA8x222aZdAJmtUWMIanAYGOmolEYypTIO/Bi12how4ScUUOpIJTnAkAzPBCRmxwQaMacxI0qRDBhw0iRWiJkuqDa2bogkEnCwCA6lYnCZkN8MisKd/vP3x3r53375daP/oNwO7797z7nfPuefde9+5Z0FceDYDQJyTiMijKqBaoiqqjihwwc5s7iZ6ItEFgAEghYC3kPxVzPunExrkmL6TBhxZU+5tW7VVkU5epeglDzEadR8tBYDkz8S2yc8wcbX/pg0YGAVgTmIxa83JGYYANdOtuxb5+UcBIPEz8UpscvTiBdvNrCWJ+w1Ydj8DhgeZ60rn25fMORs2xEvkdIFxbUQz6V0GAOXO4772+t847VqXs84aJMgA9No6PzZtL0rSzwwAfF8c3ENENIgW8XL8eIa5vE/LmXvKErJe/1a/s5MGecOLRESbs4mIaKzMUPiBdlMeImotMFaMzwP5nZRuokGsJyIaKf5h+Zi+BkdKjGU6Rfnk7eKotBCRs8JUpV8dGjtgqpqaG7kIDxG1/ag4DGoiorHCpe3+2yMh9903siHurg09+onF+2zWvPHQ9NwZzvt42ddk/6Zsa87uW9A5c4kT0rqetMxeUKinXluPJlM7VVXRtweNlU69K4ZXrtXUGkpSi9wzU2LpJaqqIqKRIlODTnIf7OaKEBJaC8t3edfsD3rNYz557nTyWd1LBgBk2M/vcGlKaJD3Zi61GcWvjAGZ5+ufe+RKOOzxl4XVA9DyFa5N2o1eO1dV+cteTSgY0Wl0ceRrjTYNGS55j7GdpORiY84qU3k4sze1mRz8Sp7Zb289tFFWID4zhuoeZ1LdrH7Tby3bwh93DvnsrzaWqNfEH++8aDmln/1g+hNhkBMAlNNRrp+knjtRs+ZyKFL/3SfGqvlCamiySGbzgMMFppmmJds1xlKOEXMbp0aVvMsk3TRIvD0A9wtxZZrLjWQ+vGLirA1+s0uMPLr9bWuorVhs5ZfTD740xReQ3J95/PHbqjJ+cr8wYXfpRlVZOUwNn16yvKNDEMh/4mn1CqUxmjNnZNeqZhdxKSPjQsDC/JXHbW1XE1GSO81X5AUa5ESt5rx+jWofLlrdKqXKR6368UxdthSdJH8oe1XprZDC6x+q02N2hyl4+tTUnMjzbbmxxhlK9TGTyq5SoXlNiVGX4n4w4+Evriaf0BIhIL6wNrTmYwrFtTX3elBXVmoHae7YVBpWaF77lNHXWX16ix+r/lJT8liv90r13vj8l5Xl8r6MG28q+h9izH2YaTAVab0tOEwKxwjS/J1tCWG9Z0oQXeIwpzzv4mmOpKxTwRVB5E1FERGLML7QM7q80bd7VvSi6GSwVnLyq9+smwM5IG4zAahFSPJ6h4O6Iyd/s2hO3AAyz9dXPGwXvwdZObrwZFB35OStO/UHVHh4/IvCTTtHAaXv7Hw3qEC2pF6fCQo6RIbir6zp+yegUD1zNGgeli2ptnWRuroUBEN1j9NyZBZMTh+dZeOQA8DHOXNmhtj9e47bLiSd8ofqvH3I/liDvHNuvi7rQOq5N2rW/NXbGa85szv9AhRMPjw/Q+7Do917C3YMSEtWDU4EehdE7kidT24Auxxpq5+Rbt9WfCWrl3p7f/I8kyP2YN/0CnGbSQBgua5OzgDHivkmB0wNXeI2kwGAlaM5gP6UeeEj+eOd9H7zy5kXxe/WXnht0HEtiHzsvlAN6YIi8LvWfqBoUz8AmMe9RdP7KIjcdZcypD73OQcA8oeyV5feAhY7IQ7AwfstXvItjLGoVsC1WP1WmvuEH/3s8KKUQy7DpHh5LP2f8JKf2dxC53Zcg2uxetA+OJjvw8UV6SFfVv3tGA/3XE0+6wQADDnXxBkAxAA0M5CLFAAu1b01bDy9X/k3dj6ph92LVGP96IQRQF3D0AMAEAWwj35mwL7ih8CLvqvrTbPfhEFMDIC5cKERwLFGtlws9RA1AugmIrhU9n0e7gayMseadknX3tKPETMRDdYStdcSEUUxoKObGtOvEuKk0ZMtjDHGcvhHEcOvvNXXvTYM5QG4DMDQ7ucABwAgChj6Lg2/TvmQwfi9RO7M5m6i9gf4C3zpATPQwRjbEwb5Yuxfbvsc20orikXyPz/mdn99PRG46zvJMzV9J2366PoHFff7JM46yoD9TznpzifFengJAL434DDRT9BG9JpI3vELROfG5QL3fC1R86Ns/OG+BfsUjTCxnamyo7Eot48YsOBom3aQ038fMBonK4tqZ++lL1p4778MgNUh6eVABSvlnBUxAHUrf46OIy/rYJXiK/miHZPrYXDHMjcgLPvcLcANAQxunOtOy092A4IoJ37z/hfco4f/DhwrTgN8zqMLPdtkl1He3b0AAStvCHALghtwC2OuFGTFCILgFrkFQfwvuOHGpHDgtw+4Z65vAAB8uM0AnRiQr5uBhYWwpBeAW2Q7m8vwDEolkkLgy6KOf1QCI9ctANDxHifao4I++XbFTy5M4X70A4IgAMCHGwHsWKLSAAEzZUdiAXOKA8D0vj1pern/tlweeIgC3P6L9Z0A4AYusPfSFzH2wUbJs+cTY8DvluUCWLCpERha+MhrerlhC94dE01OinPfJL1a4LualHxUVZKseHI4zjE5SZOTtBnivKwXuc3cUNgk9SUo5D0qwYGCUGcnqvDQjCEoeBBwOLcAa0x/sKVUJtfOy9WizXy202dzBrs5Xl7kIxedfHtz6KZmS+pjZf3SvdNq3hlU4CMXBIGAXU2hm2q4N18vmxyzbxdxyAEwIO3uT0I1cevQK9J3P+gPXL2fupRPDgBFJ6VXas1W7LJK3/2g3+xv7lYUyR1y3KiMZklPl6grIWSkkwOHSbFRkmnOYNpdz+m3qN/s3nrdE3kQDpcoduaSbBFixPBsegUn9koMxE4YCiLkvtU8LMl2ESFzOAaY83hrNAPY7Ur9c2kQancblftB5dBohLyLSyis5KcA9IW8k4qeAzjPj/3MIUQYMtpXFq9SquiOM4F7zJHRFInSREQXLPqOOQz1ezlnpSdidkWiNAFTpQ2xKjUqZ6kFd0vf2QL2n3i+IRJuMKBmpephmVpi1snVaQHZwAgf3KLv5CcYxE790c6pUkGXqY+IPF6/9o55d8I4RebqV0y96hWqR9ir6jbdVryWP11tQkSuPrrtdeWLDwDe+fmuvJ3BTvfOdBjvZFJM7XhyK2fhUyUn1LF9kisAE+WNEYZnnkqo5tlLlZwh+k8djf6oCANQk7cqMu5D3W9x63hpiHGn11pElycQ0NvUA8W6oAen67t+wK3k5smkvlvQCMDrYiXV8RE520tFrRqZifwEzI2Xt375+2hxxJsn9oZPDEzttX+mlRWpkSGUar/x6AQYA1z7G6LDZibcXuv6VDMjUys3yvjBysxeADiUHU7sxeuozJ72WItBUqAmqommhHaqKlFbi0OiNWFOKWlERPaEmqqkuvCpZyqXhk4fDEVOIxssidNhc9usebdDS4UkJ2qLCycB00OSBMwQ0HI4HGMsZ7ps6427V1SrJ7oovAxguFWxMum6nmQXLW8fYteITi68F4YXu8cs+7WzMvwnx1+Xpkz1VKvtW1TAtcmdlGIiomdbiYg8Y2WGwuDEBA9R8ALfNk/pxo3iDwoau73X469lmA/0aTTlmb9E6zsptYFmvZ995Zb4Xx5X7UBPQ/6PrQcdREQe3bsdblB5MLFlu2KIGEYvXLTdfNic9FMDli0FMDwE15WBEUlyfRjgkg8tVyUHfD8roBujAMyJbEHWfdKfFYSDEGYfbAltPY/ii07wHe4YWojas8Nsb57IqR3Anv8mN9/h/hfQnF7/r8n/A9N5nLjwwaAsAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, AB is the diameter of circle O, chord CD perpendicular AB at E. Connect OC and AD, and angle A = 35.0, then angle AOC = ()
|
110.0
|
212
|
[
"70^\\circ",
"105^\\circ",
"110^\\circ",
"140^\\circ"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAGkAAACGCAAAAAD7+/uxAAAJU0lEQVR4nN1bf2gb1x3/nt3ispmKrjcid0o1JwpT5tApuCGGujlDAw3UYxp4mIBZFGrwQgpx2ikzbKvDtizuGoizFaLNGbl4SeuRjBjqMQ9cosj+w5nL1LEUh9WR1HkQF/WHXKVMWXX32R+nO92d73T3LhKDfcH23b33fZ/3+b73/d73vXvmQB4EHBHNb/4qi06TFyDiiIj2sHWSGQlECsIxoZ1JkfNkPSK6sKXRnCqSpa/0EBOUV6SzB7hdynA1GOnCq9wWRpUHPAFlCTSfUSZ7Q5GyB5NEGWKzHoFd4kQZCERxJi3Ps5ykZrb67DOi0rXpWUY9z5yebL/MpuDVn5JS8kM2Da+cvhm7tu0Im4qHuQcgHSqnw2wqHq13Zrg58sUbDeYkA1gNlIDEIJOet3F68eHjROuhbGtDOQEobCoAwIDIouRpnE7v9xGBBhPE8oryQKkUyCkXweUGcxL3BpWLQxdY1NgplUPpytVq2+cN5TQdihARgSjwjZlGcpI7k9r11X3u9diRkp3V67J/1bUei/VAIKKxH1WfNA9caoT1ZABAOlTWPVsONoKTkp+cijerDIko3Ha9AZwAALlAyXB/od+tJmuEPcr/0HB/t33F1xBOBb4AdcQUGUy4VGWbe3R6wEfGjHIw4VqdRUptqyZKQDgtW1f2zAlEdO7ZAJmT5MFzLpNmFkpS6CZkM6k8X7Kp7pUTEV0OdxBnJsV3T8PVBGbhFElaDcmsUG9OSD4kWA3J3tvvu1FniUYnfmD5vHngnCt9N8TV2GpT/H6gbFPCbD2OiEBj1pSIHt8yVy9OAICVgO1snupzoe8cYZVlM7ijfjtOdC+wzDtSch3LP9zxj4ft+kKHtr3k2IC7uQei1/bbARHHfc/N7HMzRDJQ4u/UqhFZdGzE7dxL9Ppr1Rh0QcoNJ0AK1U7BC3yxLpxAb+wI1yom3zNTdeIUSTpUmOuqCyd6q1WoQYiI6Jk7txzacIf005dgtyZTo3vst3pgyz65kHQIkM35g0lW/Q5h1hWnEz82dN9SApE3HZaiLii9Zx9bdXLFYYXjJu690O4c1YikwFKgVrkLpLWdt3xuNkLNiTQ70vHPXnWsQ0R0a1+uZrmj/Uv+NRejBABdNd3bee4l9m1yRYkQO3tfnMrBFZeUUOQL98Pp4s6t7igRtfbWDLO2fahEhMiCu6UEACxEPHFSpvWffU+5339/qvQ3+0In650cdo0DogNnPUfYv4QdAqtR1mqscBw4/XyE6evFpqenPXJaCUgKI7e8rgq2RQRAkiSb0qEzDCgAUFY3Ga2RYABS3uMCANzxrzOgAIA8MmJXxIGIZMNo9Zxvp/k3f0FEL/9nbIO1b5SIrhE90M3RQ7s3DsbtnlwzkTn0g6t+6ZKJmmSiJpKJ2mlyICc30d2JtKy6gUyEhXfe/ftixEcPdrXgsxNlrL/TtSOyQzA0vHXr3LMEjjPjVGaEVP2RkJqEmAIgYfyQZllp/VwvdR56bQESJEmCJEECkByPRSh6Xp9VilGncZIqf6RJIroNQCoH36uUFS/ub+67WNTVk6qDWxCjzf1Tmh+V+LwDEqRKQ0IGggRAEqPKg8Kor3eyAABlKyQA+Yl9/EmV2NAp9bFgcCNSIVSkjCBBlABIHYsSgE+O87GcrnEdkn76Lw/wY0UAMha3aw+FDBCnip8QoHqT8mdyEgBGJGlGAKRPf+I/vKpYFah4njpOkqzDkpEb9P+sBFm/whEAQIhrSKpIWj8giIDwRyAZHPrAZG5tN6f6S5XVgfAigPFYpWIqDgBxQbOeHihVmZgZLHagePhxp8TfJLP+kXvI83eVu2MpABD3GJEkSTL2MComg4fvMqDIgIxCLLyI/gl92/G4EUmvAAArwV8GGAkpMusXZ7sAGcjEIQMZSlkiaawGhY5/MSFomitbX1a+4YgiIEMQUBPpny1P18pzakq+c+uLAEAZIEMqkM3XhkLb1xWnl1leGRWgsTb+wY/VuZXSnlshyaXOL7jNW82yFOOHc58HnjAspoz+pO/9t3YOeYIpi50dEyUAr385tqHQitOI8JibvNVs2NURfqCSHJb8T4y5QEp87axd5LcHlef6/KOayeWjI8GpGkhKfxYCufASI1Ixsa37ov5BOrjctmSkvYFTKTR3tYcNZ2WIH7yp3Smtd81diRiX2BuQhgchzLpoXuvulb3B8Y2+l+hH36gtkgxgIVismcebJD8W6J2xStQKvkI+kK6B9O/QNURdf+Reij161Dq/kxH7Fa4a7Gey3ugQVoJ2eaZRJLGz4zeGNNzALBkB+sdtkQr+D+TYOCzE0nlq9iSUNm4SG5FGh7Hmr73NIQOAwXls5OQQoPRayQIMSAX/HXx/1KEFFBMhxXlqR99V/p6BlAFp9HmsO+0JGJ2nlkQvAX3VodAjFfkVnDpsqykDsrXzWFe/KgDp6g6ZHulSL0qba8TW/FjguZkqrJOU/TnI3aqCYU34Rh9N7bbdE3j74Pa1+ZnnKncuForNsQRxfVPa7qKuy61FhP9q0z+xs2PintE6jqSWA2Ws+dQsWoeUiNotHp2dx1q6ZwBBfXvokIQr6J4zV5ZlV85jLWIUmFDfdVWkYksxWY2tqm005/EiRV8e+ZayGSnZiW+b23TvPNYy9AqgnnqpIp0auqU/+iDbvXlYZDEMLXeuzvKlJ8de0B1o/OiVzeJw7ohyUMDrccLddIN2vU2mWb79+qPVILUU4y3fPKyJ5pmYvFD5DqEhFVuPjFYutbTNQ9OmfuV9xWKrZMws09v9ylJ4dYQfmL+f9qs4APoTCCrG0cbp03v7eSJ66zu7Wm7+rtvz2VWdcEREB0V65BPjOF1uWZHvy3mspRxYFq4BALTTxH96jA79ITrdUQcyeml+/tePFDROMgB8yR88Yz6jUg/J8d8VDZymS5ujH5+u2rgeA1WRj9YNTf5+uX5NmyQSNSA1Xkz7sA3EbSKiHq6J4+aJNmwA1kMucFwPHasgJYXrcmpPllgPwbuQLPcucJ7rIFI8l4AMZeo8vQEAyrn6eEoBQSoOCGxH7V2KqIQgMVNBEokawwikWyA1EdH5DMQt2XoPERFluS2kzecmoiy10wEuVVPHo+idpokodZAoC9Z/KXEj7ZQhIi47r8BCyABez847iEgpICUoY6ZYTWgIEHCdtH8g+Z/Fvf8LpP8ChMXaDoDCxZMAAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, in triangle ABC, AB = AC, draw a semicircle with BC as the diameter to intersect AB at E, and it intersects AC at D, the degree of arc CD is 40.0, then the degree of angle A is ()
|
40.0
|
213
|
[
"40^\\circ",
"70^\\circ",
"50^\\circ",
"20^\\circ"
] |
A
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHkAAAB/CAAAAADuyDKIAAANLElEQVR4nL1bf2wcxRV+l4DdpoYDed0cygWX5FwMpuFqg2o1DgbiqlZ7OMFx66p1JINC3NaoHKotWapbg+rKloiKSx0wWBWu6gpTGQ5c13HFoZrKImkuwqkwcX8crcm5xOFCMbk47F4u8/WP3dud3Zu9860pT+Dsvp2Z783Mmzdv3psjrIP6iXad3g8AYHlX3kCO6cT248DP7ywmIiJX3tWdI19s879AdFtdmcP6zpGfWHmCiGj7Vof1XXBY8eKuOx53WFUlx30+tcINsxPx16FhLuHj/x/55mv+QUT0xrDTBsjxYu6jJ4GpXeec1s8fWbcZU0TU6BQXcKzb66a1zzMomw7n34G1I2fX3/y129Fof3jyb2f+5KK3l4jIu52u3OktqyoiQl7weSMvvRqeOVOzdfvtRfS5lh/upXcW6ULk7Xde995VV7c5r5by0uqFzjJP89CC9r64ca/xcX5wX3F5d3TtrWVFZsYSYkB8qMrbucB97gu4E6bS80FPzfDKx4HM03KwqGXSzPKHaseZLphK4990d8U/TuRYm7vjrJnFFtzyQAv3ni7a7g4uf1zIiS6pJ57h8PS0IlakINMTWu6SfiLndJBskbl6oc1togH0hYHqScEHhuWW0iPZcdfS51id/5hAHESkFHDovgxZGQCGmfJAjunO2eeIp1dcINgOYNGd0gubRzfVXTrvDFmjEWna5ot3FgD8YQvbwB+Xxp0jp9p9b9l8mikFAPQesFeliLcrH2QGY/BW6msy7YKGc1BtdcFzyb7x5aqmhO3HbH2e97WlxF8YUtKc+lgxA7teM8gtFbb2NIuGTbsH7aWaLNceHmm3LwSg3z2TLzLm3ULd0rrX0pMu5hFXZ1rRlySbXouRGRD3DWaxQnKR3p5v1rYUAKC3QjzXdn2+/JWso/hClf7YHbQtpUreslf40Q75oTob5QLAGLt3QN9BI6XZRAQgV/fkgTziy2r7VgpjxktpJMfmEPO+aHpnzBaZHZMWRHydnq3lsDqy2QsAQEQSGFIhcsxrZzKhTl7dEMeY9eVCxnhp5hAKkev6szcUL+AbYt65LGXVwelu0hlyAxHRYSHyWJW9doEBGAyYOO092QUFIJdP61LIgcOYKpkQIJ/3RnK0UzNqep2pyFZYhQuXy2nGavUSIjeKkDvaYL//AMBiodk2pDzZd2IAQLO+zU81Qm5oFIx2VMrutzL0N1lYbTbOA0/LUtot7CMqmbBoGAOA1p5cjfhDFkbYz/vlNhTUbJ3cMIG+kgkOWduUz+boMrDgli2clN2uwFO64cjd57BaGcQG/QDqUv/0HXDnOA89d2+h5TC2MfBStvOT+uez+9RYUnhHsRresQxR3L2cy1H2WV0vYLJKUE4nrb1fl1yAOtirlduW9NE+MqH+O9BqESWDIpJptTOAIVUUsyuuNbUycH39PSNqiINo5zldw1Zvn1DL+O1cCJ2Cou2zZSBrnWi79G1pIVTL8zTk7+1aAgDMleYC1rxdC4Vq7IozIBzwHlppCSIlLXKDqSL3PVqtIgd7cgHPfE7ETbjtDnHy8PaaMWB8m2xpnQAg0hmpU+Na12XfHQHWJt4Tv2F4i7ySxDo8rREwxD3HABwr5z4RAPn+eKQZAPCQKyFswKCUNCf8Ml4pYM62eLrVsdjbBQCpIm5kiAF9pIXUEpVUFJzMslFx3q6JWGiH619WGUerKkZSag9GK1TjUz/GIYNFOoGpIACG5sEb76ncWD9g7ADM8m/1wwLg0Bf9ob3DpqGI93qadFWMebTdr7+NR47UvQ/0qUbVsxD1RONjrV5v65jQEfvvhk0VHZaF98qt/hAw+lVOxvlWqWPRKBHo0R74iaaDVDIhB4gaAbYoAcN+GcD84/Ubq7pmzf0FMF6F1zpuLmrizVioFABWCnV7/0Ktb4jfR4f9+gQWfsD1mWs3XAugWVPeS9PBiqKmIU50AHsHACDmM4UK1L0rMAIAWBkorZ80SRwrNibPbzgdpl1y8AEAiVLD/YsNN7vL2kN60EPzdud8Ji0M+cGA4b0Aou3SgfS+le5SHbd7NxnejAk5+BgAzHr1KWYAIr3VdEf/HMCAkVoAwIEB86LzhwDEr0qEA95DGXvsYPVl46W7R4xc/wcAQH89z2RAYvy7pSUto8uoewoA4h5L8yE/APmmzTVjyKCo7rozAKOGO2NCvvUNAECqhrf/Wueig4HCio0vAkB/xp7hD8U6rmuNcMV1MrWFmTsFyAzwaVO0tPWkMOrSuc1fGBg85TV5IAxA37VpY2UWFxioMQeUjI3c1GfPslZt3Gd1eFRKYHm05dpPHxjnF01qtKri+j8Ly2PB4ictGAvahFyUSMvb1gZ7Onqolqp7I0C43D/7Xq+naRYrAD5qICIiPafCgFS1JewQ84qRjRe54jmDzeQAEZF3yWApoXbf1c2fJyrRjBUD2EcNE8BUIxcg/mmdRegVdy5kzHl4/0ZumAAOblvSMFRaHC0juoEb99WvnVvtXv2RwZiXjEZYVuQirpmhmpRRYzVwDpAbrDmi8FY/76BMBdF/mBMt5R+2VLAdbQ+vn/U9XJuNAHBwpzktZl1A2uFB/9QTyNjJTxkatoGIksmk6hkXXeDc5N+MzOq++Mu7iYhusDjSLjricrn2pV+VoxPyrkq1iouITjw9ZE6pgGj1M/rbBiIqoAINOcGVk371rQ+1ZNDFv+4hIvr35mIzdNuDS1hd3KcJ+ObFLxeWF+r5I6X10BZzHstFtFpkQtbJ8y4v4O79baqgdKp0CxGdCO82t9S2cHwLbeo9+R81XRS+pZh+dtV97xOIQPRI2XcoI4+1VJKBnEwmkSz/O5E68snkJaLe6FAy6SKi8HWUTCYe3dKcTF4ioiQlk6TQkVBnsd4ZIuXo3URK0zXF5CJy0V9GRFnaf1ZwfQOgaP//4gAUaP9BAU55olCA1coJhUW27TqnshVFgaLgfKARYAx96mJTDw9U8ntVf2SfMMRs3SU1ICVcC0VRDGRlzC8r6TafBBQwQ7QPKg8DgBxoFGl6cL8IOMMzUNQ/ymKJ+qgjozloMDg2FODojRMAMJVeSCaa3Sx045jhMoEARUeGZ4EbbQYFCc3vMU0C3+cLO5qs3WVAolSUWTF7gBuIKFlARFSQLKDa1wqSyQKigmQyeaWLCpIFzx44S0kig11ASUoSJWnTbWPv04kdvt9ZtchF1HHX1wXqRTRTy70YQijAU80ZYpodFJ7khrTNspqqV7w2oXyzp88BY0EQrK61DcvZnbLPe18Rf0gVnclEVhQFALyZJ7rTW07aQdtQq93mnnGiSxOznDO1ZMqkzzYNIuz1ZKm4PBOcYg3iT+7pfABra7VDFlHcYxfkT0n8scEaiRNFK2S/wJu1pf22MX5htALpkRsQ9W9eE5bZKpVBds4jgD0jYmSV4leLwg5pByU3qcEBIUUl0/xbb3VI9w8ILMBBqVtoGXhS988HWr9kV+Cx9iJTBM8qWUwYfYyXzq7ppt9vteCAoPCy29xwZqxXHHHljnlZSA8OCCho0bw1R5m7rKFlEenBgUxalpbNA2GxJABYp9AEpWqGRGwTDfsv235rtsbABTH9hDZklrmKSm/Zrap0cECUHNIo7PvI0mQeGZTn/bYrVaU6+9C+XD5tFVqY+bbJGrWKExxpzmC1/aL/caaW5MiUmXASvmkBN01R27weW3umDOLsIDMf8yxU87idTHlkB4UZUQag33oqNWjAPs4c84YEbAEyA4CgOAtcb+egWIMDHOWXBUZq9/dFbM1IZQxqqvqXdsD5Zr4RLxs0QWhP02IHpVc4DQzIP9tve8Mh2CzoMh8csCCHpKh4X89yn+SP7sMCrshBSfmfscF1dKsDmPe1G2qmSx2VotYe9AQgJrnVwU0WAGyl/g7BvjVktVXHPTHxQo47vb0DpNp9AhvQ3MXhMMgVo5llAOB4fjeWjBYBACOeTD2Le01z13WvuIVxzzpuaQGIeHr5FC8DgFneDB/zCL2Vy+u9mQbG38ZLU3dAXyk2wYGZmxzfxuMo5Gl7D9B9FgCpmqfTH4MtghrLLaXT2fOqa7x1eb5L6jH3IOaZUx9mubFOIy13ST05nIi1Iqs3TU1HgLEKGWDp4ADfu9MPuoNnYOU6RlZv1xpqzrQ4NHfYU3FCzdrtWvaxIas3irt0jyHhCwFhrx4RB4D54GbtRvEajgV5IANY6PRpt6gZ5ryxhFfPmLH5wSapvDttWNeAvI6b488f/0LhkHZzPDa79U715jhc6avryH6F3vFt+ZmN7PUkEXl9dMVOb1nlVfk2sp5fRZy7+eh257UdIBs/BDib38X8dSPbCpIfreO3Rho5BF4XsrLHtUHNJnzCv6+iwpcPDmJ18eFP+PdVRETKuT206bbTziqvC/nN858i5d3rnVW+Yj3Ir95STD84NeSwdl52myOmpSsd/6jMcZ9d5HpTjktOq69vnuNXS+pycmSNnCNDeaZVW04uR9hO5xmRbXpyyhH9Dw81TcdtUEaqAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, the points A, B, C, and P are on circle O, CD perpendicular OA, CE perpendicular OB, and the feet of perpendicular are D, E, angle DCE = 36.0, then the degree of angle P is ()
|
72.0
|
214
|
[
"144^\\circ",
"72^\\circ",
"60^\\circ",
"36^\\circ"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAIUAAACMCAAAAAB3vjUoAAANP0lEQVR4nM1cXWwc1RU+G4iSUKMQVTaLApk4ILJQlUyoFEYgsg7iZxEoXku026gR2agPW14ap26LkcqGPllIsJSHdgmqWAe5+M1RKrEprcTGAXf9gLIWD2yCybqhwCapWKMaecKsNF8fZmb3zsy9d3bHi+iRE8/c3++ec+655557xxFQKGo+9VfKPvzpz8LV9tK6cNU+2aqa2Lp3sDcgiBCCzMX+LIBV7UqY2hwKxYvIa7f/hoiu331Dj1hxfZhKeunJPiKs/1OPQITTi8//fScRRXqFIax2buiZWq4BxdaBd4iIJq9+pyg27cv/k+j1pYFWSkir064fio4TUdaatU6SKSwcTJHuR4GI/D0EdSMRG3DEI4CIOzuMcLrjhXvY5y8vL9itRGM0FKL3cCgculKqnj1/eWd0yz1Ownmaje6MqfFYKPF0j2L5nTOzX8XvfOiXt/047cq4fP78wuxX8fi+WPcwutTmt1PRVL4KoKboatWfX38rE9PyjS5b7QpFbTyamNYBwET2eZTjOngztJyJporfFopKWpmo288mlBqQG+UUMwHo0wm1wCasHYXVSilptWu3WYoDwFBJWOtcWsnrwY13jAIA6sn4SVdCugAAdfWyuE4tE2vJJYAfnaGYUGbcrek3WeM8nZD1UUsk6j1DUY6Ne3k7nbJbHs1JqxaViQ466ATFhOafkQmH19zpytDqeLwuLdAZikZi3M/PerT1WFV1k8dx00kqqaU1oTABlGO8mT8x3n5+LRMg9fpQdi0oAEzb/PT0E2PFkJwJ6iSbCpizchQFfvWyxr41YnLJm8B0Ug5DiiKb5qd7JoZlwaRU1KRLiwxFRiBPXfEMfjx4OlbiMhgSFFmRUs0kvbDi5UAYC3slMMQomKXKo5sjPnWsxYKXDGsF7hJF4XD72Y2irvibKwg0iKWiWEW53i+ITp9iNqFuL+5UYqOv/CE6EehPPT78DNuD8wCer2WNu6aKpajxlKCh1oK54Vt0HCbzJeKom+kziyaqMbZ+i9w2hE9CLeZL5LlhzRaFWxigCJ045BcSEbRHs4Ey2Tj5zLKnPeeBQ85U9C5TJgBERZYyXgrmBjPJ2ZZ5KKQmuZgQ5dTU5WAYP5nmpfJQjOYkq2S6wM00wbFmHOJNcy6Kiuo06+8I+madn2sjDKS2MTT2R4hIW+GiMNWKpBHbPPHZEeR4mQDAND82hdV7s+DNkeP3qRI1nzxEvClipW3M/+KasCbsWq8940yN5sVB2rRvkTtHrDkgUIyaIvenc6PSbBNg5tLigys4vuMKjxcn74uKBmuzQrTBBoiOVs5E7IHzKEJEdORVmzfvvndj5POLAzxeqBXZaGNywQP1XUEut56/7m0AgJGcgxVEdmunGTTbOjDTp4X2BADQyCqPqcMAgNXECjCmrcAjkQjo1SOymNDkocCAUSL2iriFpaN30/yVwsISEdEHe/oYabJUU2QD0aMSf6m1eVSrAplW0kpOR+4IslmYMJJlYIymAJ+9yB6ToXgrJct16COV682UEuobsJzWmgKgn4iofw4cFMqSrP1EZ7GRfMafNq3Gi4Bpe7PMwmc6KNrsk/v0/DWAQ8kZV6vQ80pqgW3D6yC6eSHfgXNDNzxqxNiwRmNCybQcsSM5AGhslqFQz8kaly4wLirFW5yojyrPtk2ItVL6mrJRrL7Eg+imioqOo93WPslENX1zjp1Xzp7Ww3TbXjz/XyKi0j6ZJTjxNHV8NHPsb/NENDsysvfy0S0to0BnlkcsU7L3PXd5AMDxH0wBwFGpWkTrXcT9azF9Rot7t0/W8mACjZv8vPjkaoIIRFMrC+Lhnd4dDeZEy2je8sDNb75yZsSde3L7Ltuj3rLd3ROA1cSXyTIAXLdDJS2T57vrKcZjlPPERGNie7riS3d22aanNeB6Inph8kYyiWhp60GqzC8snJjXYvfsHnKPY3l2sv3C54lzYnDl1ekD5agvmfIj0VbtnVVXFnCWiHZcAVBMOPv0cmE0TmpqotQ2UzyDyKVaWpngLjd19Yv2y7RrMSAsHrS8HssqHS60sirT4/ENsVS21ACA+1pykoqjnFTecKLjY9Y4p+xX1+x0DIeNYvHBFeCstuIUa/nRVmfV6Wx8s5LMTt8m69uhmbg2w6Acm7J8GQBe+2+ZptY+lfrnMGaJxOIDZ8mqzWR/tDmaOFaU7ojNQixZYhOMp64gt1KwD+M9QTjXAsZa8KESTEBP2jBMky2IejGbUDbHszN8KI1cNG27g06dxYNYPOjkV1S3JLexzbAo7PVW1yq+PpwWGqVsUtkQH5/2+J/1cWX0C2+l9nEn/LtYRYRip910I16R6uBqaSIV2zA0WjhnI6xlbp1Y9hUzku/j+JT9ctLrz2plpgcWRQteQ10SIWhV1Uu59L00lMmXKyn+SciqdhkFZ4l3FtFWfRdvuChQi3thCFhTymfuVbjbcGD2AAD8eQ4AXvG5Jh2g8EWUjP1E9s62UzL2T8GxAfo23y5FiCL2Ufv5nCdKaiTngLEdl/1cESlQv2WzskA7dMqUdUXHOHPEoormkvVqYgX2BttFZ4nogAQLAKCurPrSXHNEeM6uZn/K7r8/2NJH9gab2fI0h3+7gtULxwK8nxePbJJlu0/7B//FdvF4ZoTsPkF06gkiIlr6mu0Qz139Rx9tyvz9a17TcP5fOHPUn3tpkCm0joiazSYREd207BpTInWYrIQI6XOPEFFzcbCPben9N1/uIyK6usrZEtqrdoTo91l/9vJmcrJtFOtpPRER7bzgKhhJxw87z5/dMUBEl8pPsAWaLz18PxHRxwM3+AXSvp5wZnkk4tu5XriLfWMlEjvvKZrelrV5VtpBRM2xh1035mxQzcVH+/yDbeM6+gfy681515UAB0Wz2aQ7LjaJLOnYQvrduhcoQkT68UeazU+2Xv1js0lETWo2qUnOVaX58mMy5Ty5fRcn9cJO1ysAGPa//gYM2D/2L8vdsIr+xYAJA4ZhwDBgYLF/CiZv+rJkOZu+4K17nWdRGGrFNAyDRWHi5wWnBAvO+hnTVrDYf0AGgrOtNGG2d4GmGwUMGKM5X3cwEkU7wfShMPYT0ZwURF2t88ytZxe4jqjZks7eswT23ZLr66ctzfEr+vpTAO4XqwQRvfh01K+aETrj2QUChjV+GGhsdt4M5pf+QKWd/A1aemFImWCzghdsMH37VGYdMQC1wlsQluOVDjrkEu/E14Rozw7gG5jWVtuPo7G71m6gG3L7+21izuldKCwRiALxtaEOzqM4JDoy8U4cT7xTFCi5qDa65QOAmWFBhrebFgqrk9xRXiXTDDgb7rAzhyq7PAmeGJ+t05xxVzS9W7V4WRQH84XP3ChMyTWG1qFsp1h8x/FObX+GNxoviXQXH++we5uyWQFev1H3oDBlJ0WFtH2q2BE3xNFRfyTRdzIh1GsAk2kbQAAME5DETjnHDt6TCfFkBSSXIfxUUUVgd/s7aKNwqvh2lN3D8DsQDPFOYBheODCkMff0JFtUTMKIuh7jmGHOeWqVf7LgghFIQrlyuck7Wz4mZXtHxxPCgy/+EHko9NiSpAN9hIEhEA2X7TDRGoOnHvfOQTkus9a6di5IMURnGKY/giBGETAVGkFej/DSQnW3f9ssRhFwl6Kuyd2N0RyfV7r6ET9DgKKuSg9n/bEeV+VtgkmWLoCvSqKbUqXENZnsZbeHPJH2NomD2CIUZvExCQjpjbhzXGfT9IS+O0IReBGsHL/mNO9hmsCgFIdD3F0DJp6F0w+3Vf9VNBMQGCzTG6HqGIWZlR9GCGSmVsABXgx7pxHIyy+HFtJMZ86jpYJeFIVhqfMsv+s6k2i4uvAQo/ROCb6zmUuv4a4rUOLcwmboedbGmoD7XrJDeiboUFqKwgSq7a8O+DBMBgLf2axqeQS4JIH3wfV0RupuFFzNW86mK2mGc9DRNQogr5atdrnDcd0UY6ajXbiRTnawqevkO4GqlvaoHIPHcTdMgHMXN68U0AEFojABoBATufWAnnzbKerdUpW1TGe72w6/H2mMKgVmg+iSja45sRe3szmf1MresuFRWM3U0kpO5+uH4/W4Lm+W4tqM/6pseBQO1UeV8Sq3WcvrYZzNRl6T+0nhUQD1ibu0/DInoxavMc5mMRXNBF9TD4fC4kI5E01M+LuoqQ3L2azmU+2vwVw1ZdT9t3fXSrOzlX17Brdr7LXwhdG7v/dQ+eN3vx8fGooK64oo3HeI10rzny7Nb1Rp0x4iitClJVr69Idb99wVAkF4FBYtfwh9nogiGNxOt+wMLN9jFOLvYhEJ9dHsWnjR7nmt1P3X0z7YPfiuvXsUvrv5awcR9m8+tLtuyePXkUgkcnu4T9xDooj4n1761RQwMsw9Wv2WUHCoWRskGv5s9btFcenLe4iqt4b6YxSh/vIEl+q39tF7mam+4JLfIgqc+jBC/WUtVOWeobg29+5A64S/WxPSM734YHCAnBnTtR3rGYpTTwSXEVKvJDLwH6LwfzynB6tZD6h39mIt9P+B4n912ZbQSKQYKAAAAABJRU5ErkJggg=="
}
] |
<image>As shown in the figure, points A, B, C, and P are on circle O, CD perpendicular OA, CE perpendicular OB, and the feet of perpendicular are D, E, angle DCE = 40.0, then the degree of angle P is ()
|
70.0
|
215
|
[
"70^\\circ",
"60^\\circ",
"40^\\circ",
"35^\\circ"
] |
A
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAIIAAAB4CAAAAAAbYXVeAAAK50lEQVR4nN1bX2wUxxn/zgIBLa3hAbiIiMOoUpZWShbUwqYIzq5IOYconFupJikq16rFzks4MC3XSLlCI+VSqbXz0HLQSrWRaEylxoWH2ihSc0BlzkFV133JOXI4QC1ZkypniFuvY3rz68Pu3u7szt5fm0j9Pdzezs7O/Oabb775vplZQoOYf5aISPm4/hKaqEEs/UN0FNghf0ios4SGKdB/5x4nemXVryhQJ4fGKfx19UqiFW2TRIFPi8LFvUREdPPf9RbQMIW50aeI6MFky8pPjcI/v7CWiG5n99ZdQsMU3t5ERA96dn+7/iJqHcWMv9W3jgKTa5SZMnkqoN6RZMEYBecakEHdg5mIiManA4SVX2mgBCKiJeUe6qd6nLewBv7YxM3rU+NE8ucD7N67RSJlrbxZkheDwsuf5W4DRETjl65k5M0bXnzEqHHs+J9ffmv5mDZ+4b2bbbvaJY5qlSijJ2e+dM6VkomtkhPDuq11+ScKGOw0bgtDcSnYpdakigBQhsLkKz0chYlEKNxfsO4YABTkPICjvaUELS1LqTyraUj4UmCzkY+io/Z9Jiql8q48s4oKAAhnHIm5RCj2t4YoMOvyo7vzNoWhcPiP3kztw8bVEIaNfjnqJFXBTvhK4SoRbboLMDBklehlQXmH0tZdTtb5t4fCEbfIaqYweQCY3DkDBhS6lKwoSzLpqDLqfjosJXV3WtUUGBgmd84AV5UZMPSH0sI3+2P2C0AiZf83MJuUhsGqMNY+UqA1o+gh2nS30BkrCHMMR3Wuk6NDfDMA5CNxHZVnjDKDkgHIyoPih2q4YNcFAAUl53kbva7EWigw46ftiz5KlVc0d+NyikBcquLThMoUDPyAPIptVOxuMgBTJd3ECp2pBijo0a4ohqWEV7H1SEb0Quq4KDURr5tCIfJmdAjQUyFTlnYDedWDN52TRW9n+dHpR4EVwhktCABM69ylcs/iveJXoMtC7RvsKMvBj4IeySCVMMd1Ru5yqNqrCfFAY0Be9qokQ2kurY1CdAiQcmBGGUiHSi0vW14mLKSX7qqdQncayCqOhEJczhiVRHylygD0CpSP8ca8Ogq9cQBdpxxFA2q4UwPU8Ecoa/A6xYYg1l8TBZaJ6MBc0N2vg6FUrvWGf+0AAD3sndMY/DTVj4ImawAT9Lke/8wvKzAA8oomSvbM52UpGE5QZNidzvToQCSSqzDxMB9tsWfWyhQM1TGNAvekcxAYkRLTVmU+ZYpUEv7q4KWQl3QG4LWEnWTWZfoEKcmnrFLmLqGHocnCHhJQMK2s5FGf0uDWYmI3qoRZgUrCtys8FEwXbExxpTOnb5ZVDolbZJEUN5jztH0p6CFNLMtsmPOS0pt74acNzMztgSpXQ8FUJb3ZVYRl/W0vKS5lhAQMiIUunGJdFPSQJixBU7zuUy68r5TIPBIRTqfqlooUmDWeXL2mm2GTC0NlHHWPW8MAIDrk7TyewpwphPwG7k09+iefepIhH+/FG2IBEGsDT8Eyyq6Jrcwco+3b5WP82bjCiciY9wXDmadgGGWGENeA5E/ALMfBi4wUF0caQs9C4DlwFLTQLMAMx8NGf6zCrNArieMtHPaqZCHo0R6OgqWMnOCH95Sr3lhV8Ik63VMdA9A56G4PR0HJGnO70yioiq/SWwzAkFU6RfaQV0kGAMMRdyYnhXzIuDqNQn67BgCV100GpZTu7TDDS+BSm92a46TQf9C4OoxCQc5bwV0lFBKyKXZn3jc9Ub/HQjopmCpgCIMBYi/MH7mIYF0jmXTR93gTTgrmUDxuR4F+YZMARke7wz/mLSMn+VFgJcsV1KwSxa5HOdjhX6lYTwgccomqtBIfoLHtREQ0Iq8zlzlfW91d2xom0fLE2IXWcW65dPUbz01zebaME7eP5dgMuL2RiIjOxozFU5xXU7UyIKLg+RPf7ebqbHn1ea5O6T3XHpItEKPTSuZrOFrlcpVL8ADSoT4ukY/63XbbQUHKAWDpLit48rH81aBw2Az/THAhVtblE9oU9GUAYE1l+XDV64ZCqK1Oc8n5G4VmPwqGOcg9ZmQLq6gXpikbDKXsnuSi/iBvy211vL/aUEYC0dzzJ+Q6VNFAAEQUoP0T97eMlFSyr8POsEznXyiRMWZog6HRdzWtp4uQj0RyViGWUWTARr6PXTt0I3KQiI5s20+oe/fVxsaRFztemgaIiI7c6zdkRBS6zeWyKWhBIjp7kIj66OgC1E9EAWp/t3nHWaOo9MCYmezeDgNQLBYBDMQALaSDeSe3hvBBTMmCoTTve9zzJiJqoiaT22DHcrrym/MNbhzyCPb3Hem+S0Qtr++fE+awzkDMZMKArCL3ZAMmyQ9pqQ8ATneBiaSw9GLPG9DnewPExpfKU4fOrSYixhjZl9I/85cYIyZskA+6r93efJmoi04HiGgqyD9lbD56Deg5kFVwrLewW0WRoQigCOtSujHui8UiikXzQdXIhaN56O0ZAI/yg5KAyZ33cWbT1I2N/3n0VnSkWLTr5ijAmVxErRSM8O8DJW9GKfPPEiWvngPQRPT2X5oDd26sWzX91pdP7HuqqanJO2wWBB1qQBrr+94nc1MthPfXy8D6b24kIsL8N0aLk2uSKAaf6UxyEvfpiHqlAECLhlMxVQYm1yQBzCp3ARD0Zz4Gjikz2E3fB1AsApapMC9FPtnShTo4MGQk+UAU6FFmAMy/MANgCV3f+jlD8h/S+621bjfXjnVT575GembvSiJaeoqIaMmDvh8SHfvF71ayPaGjDR4mqAp46Vt05x+P2QlL1v/rImjNqMLo6euti109ERHNbSda1uIkVYLePFuHhtUMLQjMbk0CwG/vAtxkvbzt0sMQwqU9RCvafnqN6Ne31hLxJ3p2XX0YFK60EtHPz+wIBO6cNFIcIhIvCy403MGU0RHmKJCnphZfCBMrWlyDronI9pBiA4tP4exBj0PmFMnD6ImgZzWGc19lGl9sIYzIQfckyHvQnb9fvMqNis9+x+sZczLRQnOL1wUMhn8MV4TCSQHBjlOLJ4YAgX52eLnx11cKFsvFkkKpeKcYXNFUsCO9iFKwhOCakF1UDZ4NR5NiiGXsPvUZ7D5JCxPNCXAisVyU7Obks/uxEHAvr5jwbhLyy/ALCH27Kuxi7/Hb1uD5RekFvN4mi7vY4mLTK607LyzE+4ZwdoRdq2/mRuB/esDuCHuoKvt+vPD98MJhyeeJQxfsborfukC0QGGdWcgAxfyziFAIq97Nz0ZQbinX5ziNcJOxfpRdyvU7VNTo6isH4Qm8ihQaW4N2MSjfHN8DZlC3LJAc1CfLF1TmpF9+QWYLNlxJnOXOO2rhscYpDO6r1KFlg/npp79+sjGrMBe/NyCcoB0o+5XI6mygtaEAa6JNPl+JQcWvRDKSc9u5RmPVL6tV5Kr4oUqhtP9Znb20TxmoSqyq6a6Kb2WGpeSsXXy1KMTlKnd6q/hiqF2lrQOfENXiUt7r+2pIVarMXBXRm7ENvdX7EKyQ3Bgve/SKQ4XT4CVo8XWJKk52A4DaFUzWYtyr/26qkJLk03bbeL0wj1Iw5FOSnK7N6appnXH89MVQtNW/i0euXpp+7qBEtX2xU+tS59jFy2rbNuWRJyjAVTSm/f3ylciudrm24uqhQERzmXfemRqX1q3YRkSEAF2hW7eV4ONtrbVXXycFo+0TU7PXzXfbKNTieV5dKXVSWGg0/lXp/wOF/wFvit467EcB8QAAAABJRU5ErkJggg=="
}
] |
<image>As shown in the figure, the three points A, B, and C are on the circle. In triangle ABC, angle ABC = 70.0, angle ACB = 30.0, D is the midpoint of the arc BAC. Connect DB and DC, then the degree of angle DBC is ()
|
50.0
|
216
|
[
"70^\\circ",
"50^\\circ",
"45^\\circ",
"30^\\circ"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHIAAABqCAAAAABFM1pXAAAKIklEQVR4nK1af2wcxRX+Nr4oUmK4Ui7NUS51IBf1EtP4GjslUixMxAlcNa1CcXGsGmREVLd1EZZxRWjSOKiR6qogkHBLIK04VNoY1dRIRcFITnOmSZvIUDvBzpnGQY7OwKXOH6ZnVw672a9/zO7d3t7+dPzJ8uz82P1m3sy8e2/mSYQfUALw2ejEpyng4jSAyHos3x7ZUF1uauMAyR8lMn8bTGW3r12/tVz6yjoAl6YwN3wxczKyI5H4kmTDVlzsiZIQ70z8/s25uh11MYsm46lUKtTQst5Lt+kVVw5viXSmnVqMtYdrj8y6fsgrZba9vPkt7Vk1VqhF+b7G4N7/FDcohuqVMtMa7Mx661umLdh+2VzYBACReVUlPVCqKnNP3tw1442QJLN7QwcXzJxp8kBkjp4oyf5w64wQlYPAimqzzRUDRVXyd0myqcMbZSYRP+3eLTNSsZ1GuQx1kOSBepLkMpcF/d7Wu0fu9LN3Rdu7xuI14/kcjicA4HZPmyQZetv/EAX6Qn26sOUt8yT58w6SqrNglbbo2GIZyeHIXu1puoMkM9IxklSdKGfra903thW0hZStbsiRJJM9JNkoptKJcizaqjivUTfShebKSVKVN6fJDOq1OnvKgWDP9dCJtDv4Fw6JRXNMr7el/CA44LIPPeFBHDcX2VHORBc5xmIsVN5UmTOV2exLpeneNh+b0RaPb5CrHi5sV6d92Z5QlmKQvbFc5Ny2ruJCa8pkdGYpJjIdvshdr2Ui/e6Up0PpJSBkLtqrsquTw6EihWJBqWYiA6Wli8Dun5DsT5B9FUYdbzXKxC+XhPH5WoVkJkhyf4MTpcreaoVuv40ecDKcIUmGpsiFmEFupaPMRYavk04lyZmKQZFL9JMcjBXshNJ9+fTOGgk+rdtiSACUhh/dI3I17wO4p+oZi30pbCFOhhb362Ea6F5dibN3J0lmQ3lzrUSwLV1cgokciOY7no6QJNvb7SizSzLIydBI/lkpz1I1frgwl2L6uvcEr2caxZeuNhyK53Nl8VFKwJoHniuZS5LkTNCjheyI1j3GXFu3GPnqnHmUAIA/3r/mugeJl870GLPxEQDA+u1vgGDJKOOpxY9NX3Mjocmi8pGoSPvrRFpMOVKxeEYdsxtMGlopExJVQlMkzYJ9tcWPAK31xe4H7i2uWPa1swCAsuZXtPeMiDj6j57QXVfy477neZGejpE0CTYdvm7GwXUzJXqkp0WkSnmWNAl2qM6fXN+VJOmJorKPm18LlZwXxEdFWlabAgADJXFihx9Kqev785QHjZzXdnduL21Ylb4qHu4+IYgMCPuaSuG7DWmOKqmS7Y2WLWPDIhWTaaScCvlhHMJ5kkxF5vNFvVGzzSrw4BHtYcUsi+dystKPXA93bCSBqULJxfY3yy2bbnlPe9h4Aca5JCY2+GBUxhOQJOCdB1dqr8/tfM6mzzVntSbRDwEE8uUSJmNuZ2EGZM/dBgDvHk3rr++5e7dN26qxa2UAJMT+jaIVi4mN3hkR3vwRAOWx9q9qBS99/DxsNFLoCxcAkIidN1Fe/rJ3RgR2vQBML088p3Xz1MGjK2h3ZFjzPgBJQmTGRJm7wQclnr5Jktamn9VyV3YnI5BgI6aqUZGumjNRzvmixJ9I5k8QH/rhfQ5Ndf1TPm+mXGn362CN4xu/fkp7fAr7bJsRqBnWKOeAgvbxfJ5XQAzYJp4GbnU5cFstfipng0ZV4GOxluDSnrdC9rUEUDVSyBsFK4btHT2x+DMAcXXX/rhDMwlAzb8AALkbaFQFQPm8tb6ywz1p8cXH72h1axp/DQAwVy5d3yg1vHrmd65tqkYBAnOrYBplzj8fpdHO0ytcm22YvbxGAubLUTzK8Cf+KaW5773s4Qy/TOzM6ZBGqSgKACB2wT8lHmq430MrCv1z4Q4KyoAm3uiYf8ZfXTkEDwpEEib7eNS0fBYxylMvHhU/S26oeR8AJmO6gyCTsizzYkRWKcukyBaS/JP2n7JMmSQzkZMeNdW1shw1Q0SnpEwykqZM7c+Q5DM6n86p1HZ7cn9VkvGTurllFKyyfQjQllIpAoWHgJbbH35SE6rDZFLTP+8BqTrAMJcBBdhxAggEArZvm/B63ys6lcNkalXxUSAl7GRSmxeZcjrsRbD6n9E7d8fJOGXhIIDUl4gsJrN0+YiFk8/Ln8uUZc5t6fXByNyKhTPCDVoGBB6WJEk6BgANvRByDRiTAGAsDiwPIBDAo1sbvc4AAJTf9sFR7QWSbDrGIYzTl0t7OL7g76ym8beaSysRUO78+8pL68Y3AbjF8j60aDWIFfPJ64/eCLjfAhswkU0BECv2H3etxFMdmwgg2ncF9oYaoG0H6X+vf+dG0QPPjDj3iP4JMglA87lmVt5yyYu86vf7kSlJcjJkOIR5J83kxgkAQOgHVfddce/5QfyC/qxB4Ndtus2hMlNPypu1O4rp0L7qOTctNrDWxw2qhmxQHKgNTSyTcHyn7tQQuHVnYNuuq7A5HhWF03v+7GDQ2aD7kSAIKI8RZFOan2/WHVN1MjTb2ODQW3Jh22HfY8wfjj797XmIG6n6QmVnq1Lf6iTYVmvv3A7iU42HSJLJN7fMw1hOksyFh3PbLBak1kTt3WTtnTsyDkYXSKqZnky9ySlQSbK3WpmN/cbu5ZHwZGmVG/Tj/J8y00GjT6Ij0c1MRa/FslXJXNSXMtegXVokAXRYuD4qM5EBpsOW1zNq4xP+D8HVN8TVTKaHHOqxvYDicPi06EARumtlqxecMbx6jCQz9SSTVpQqxTXbYPh8SY1+3eIL2jXbAeA8m4AOa0q2J2T2RaZMVdkKrwZd4UtcMFwmOsWIKIk28sWYQa+pmkHnG827TLPjeDF8qDq/BVWSe+ttGjvhUOV/TSVWl4kkybHgANmWMIS0/NXmhM4R/aGSbex0yf8CaVC3F30ZdBq6g6X3A46hDG2KUt9KMe6F+BF/O1IlF1oqLVSVc8BG3Wxe3ba0moOmXDGjB2zoXXCnpPLj6Phs7AVSGHRufKbqQlhKMRwoVZLJ8ECmopcciUyKAu+jfCPcZ93a+XhJ5XD4UDo8MFNhqXEdoOyvGLPpnpdAqmS4zlpEllBJcij2LVvzyFO42Ja6a4bPuaMkXMwvJf8Z/KK/oLibu8xBcX4pmdVC/7wMMtMWbHe+A/V4Oqlm28ubPSyh/sbgU24CcaNUk0C9/DOSM4erI3uNsSOqOR4wH8bpLA0Xygw6yAw0Uz7dGQ03Hra8MhrraQjF9nmyxJzjY5XqxLMAurZ9Uy+ZPj6Y+rR27fpvrMK6CgCXpqScHpK7RvP8XBxAZ8pX93+4EsAfthZ5nZ+dTX+aomQXeOwK2/GrpFzpP4DLXSvax1RKwOXx2wtdM/XU3HPDay5+rlsYJ8wnOyzOAtb5xVKu2fwRJGD6be/f8wJHsSdxjBxajJXlAMflQw4B6FhaRvX/AqoWFZHViDMAAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, AB and CD are the two chords of circle O. Connect AD and BC, if angle BCD = 50.0, then the degree of angle BAD is ()
|
50.0
|
217
|
[
"70^\\circ",
"60^\\circ",
"50^\\circ",
"40^\\circ"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHEAAAB1CAAAAABchFEaAAAKmElEQVR4nNVba2wU1xU+A0tJ1UXbhnE9iCVu8CbeyAiZOBGucGsaTLAqSqli1VKBylEdO6ojsRGOcFU38MOVSEQrWtmRKxKFKo5EwMiRSlvTGmJUR7VkknVVkwXZFhutEy8xatbYNIbZvV9/zMzOY+8d76xRpH6S2Zn7+s6de859nHsgeAQzHrol2n7voNfqwAryCEn7iUv/YnjzK+vgtT6RdyEB4F5ZMwAcOvMl9FET8+R/fkNEtPER73WlAj4LUXrTs4cLqUdE5L2PIML09dJCCQtglLLa82UxEhGtL5siIor3FVLZm6IZ1thNZ4CB7fbE/OCB0dbwBSJqLoAPKExXiVDwWHoYR5tskvnqUWaPfSy8a1l41FWT8NylAhl9HsvPjcWSl0FT00QULKVV1esfqfyaJwP18lWnLw4OzVRvKH1yDb715tWZA3VxWhidSgwHv1dbW5x/M262YFX8WFtIaeiJ6W/xQCKqzOkv4131cviXk3lah5s9moSzPZXBtpglq74TaGy3JIxHlOqTqeUyGqTJg/59523JgyWLQDJg6xbrawi0zy6bEUCiOdCWtCepj70LAJ31DvGmWwORJDNFLYjx9mH5yKyzjeN1AIDF4LCzeLJdPrLo3uISjP3rWnL4kJT1IX2rEjm9Se4vGSicMVG7ZcTyarTd1GakVJ3i1BoK73YbTjfGUaXTnqBRjihZnRxRvsgVCOmOh8a9MGYrnpL5n6ey13xu6OAW6ZP7HI25MepIt4Z4gjKcrLK8JgIJbsujwXYIwGFkAJCqq+bZM0NKuWJN6NjPb3emsn4+b0YAGA+1pPk21dpie51XRpwlGBiAxX3l/HmPzzgQ6OJLgnE5q4eaQLaPbMOxwFDejOOBXJ3RZ/babuegVZw26e3oX8vrJY9xNtSVJXHgdHnamToUFE4yvy7njCWHMb2jlUvH9HmNOVLrO7nCMQD79+bFGNmZ5osMdDRwEidly0Rvp16sOuLKqJU+FRLOUXHd+hxoaxJVYIlgvxsjAGBEjgnXmt2vcJNTSpRDpv2MyleXYEwExTP/QEigIz01vFQGAKyvZNYuv5Ox9piQMB0+L8op7xPWYh3P2BPsjOydSqHWMH0d5uGCqPcAFsMXXBjng6PCmkn5I/FmYvdxYT0Mhm3i2Bnb7JOmDfuFqwGAmJwUZzbYllkb46Qs3v+NKIK1QEOri6xJmzg2xsaXhbXS1nWYg5TssuxHIgLGpEsXe6pdCYETteINo61hK2NEPFJcI7dBbDtgaDmq/ToYZwPi0XcbJh3nw0LDwqQ8n6W0MJ5oFNaIKnls73eKVnEAe09lLctkZBXcJRsAUP2HJfkYoi5q0F+TfTQZx0pETbHTFeIPZsHzEWFWWo7nMkaOOIiymM89X3CRLIoJ88zWTcYgvzgD2gU7xBwc2y1oARgpszEyADFF1M6k2wxmw2JoUJSV9s/oTyuINA/G5e+Kzu2Rtm/m6SxYfSySFmStrL6se36y3pVLTwnKXrgWkfL1ZTzz9TdEWdvfM3wzRreLY/xZajE0APEq5URUEVnIP8P6g8EYlwXN8rVBiMacmdJodXXKznixht9CUs7Xa6KXD4jKV+iLvTGOMd3H7tSRSBPfPw2BB7D4pXbBQIaua786IybD2oNDR94fPsqvb/FdX5AkqTmb0TbyPr9GeMIQVkMdd61Ja8cYVxwqmjeuPwAAvRX8cm/X27/qzfU5QoHodX+D4BuZfYp+5qdVv+tfMD7zvgf+yC24/pa9j6FJjqbOyuNL2cUARQFgIGgugIId0Wil2Uek0+lFP8fKOxrKjdESeYxfa64gIpq6S0REEhFoa82rvD7671j6yFTm58gVVVJC2x8MbxkGcK/sLABgT7MlL8E9ECU2WHYdTGUSp0xVj/bLIw0TVQG4oX9U7ccA99CXCsDGWKSqYCoDU9UMwFRVRe/jTFVVnVRVVYCp91RAVZl6qYiKvpMB7padBWyqCgDz63LcERzGFIAMkAZUxlSGTEoZURkyGQCAypBm0N6Z+kHdxl9t3jysAji0HbhBzn0Xzx2RWG9nXPdpBoyBqaqqMbL2/RkVYCoAsIxWDGAqbvwk2KWqDExlAPYQUTTnw+t2bE2+FtbedUaEJlWWsTYdC84wkzH7L/uktajztiaTKtAqxnVHWKyDMSJaM78yIxFJDESQiNGLEUUiZk6DWvLcy1u/evWww5KcE6xEVFN13Gkdd/xZ62CqylD3Z6gMpoqc36waL9AUSgX+ezzYnICqqtk/a79sz7lblV5zlpN8PgnhCVopEZHk8/mIpEzkVZ/xQj5Je3r90eG/9wTJ5/Nl/6z9sj2XNjrXkIlyywwAoKuJMYuQnT/KGZ3+cM2ItT8st3NWzClj9oR6/XBmMA4+lbHkJgJxe3EMVVW4O6Nz4DyNGSsyf9fR0GEXfqyuZOlly4F0eR/AxLsOFGc3yMzQbaNsvEHpzusYYIfdGZPdWWV3jzWXswOfaT2x2tSGmy88sWni5ys5VrAEdoVPWN4u1xhPhgw9P86K01VripbqkF+ahVhB3GBzR9Sdtp4f7aeAWfNIv3hcbuK64vKD5ZxrngI4J50m/VDGcDK4V3xaWhostXYc/JMOAPO8Nap8rj2YBlgoI05kx4d3mvuwRPutOgmgEAPkIB0+r/WRe2JFxRAD0FvJGBDVDTAvhXEpZLgjuKdyzfOQUkaAeIPSVYAB8lB7AoDmeYB1fWQA8FlREmhrQrJV7uTt/1ghJhItSgFM964AMPs4EAUi7bgmT3TIbXm4UvIEQ0srgOePmNLqjPfKokBCTj39A7lp2lphuYRIyjF8GkjtISLpLJCN6zg8ds5P9Oy/P3j06bXaXKQ8xpm4HtjqbaIjInpl+E8v0m+lHx6ov1AXrTAiEF6rGCCim/+I//Rhvdyd046KkCRI47eIg6rVnMSwoj/c/es7veOSOlVHZUSkM8bnv/+gn6j47XO3j3rvxNwYL3XscyIikLS64/eRYrq0zU8HtRMDALTiRjMAsAVF7LUuGIOhL4BuIn3fTgC6SdKje3D68ftkhyYWwwMA9kTRrVGuIIrPMzawUfsWDQ/m7PqWi85Nu4jityvoubK/ERH5KP6zi0RTRv6b367YdV8Jz711hYj+Ukf0yXWtW4eIxrCH6Dn9I7jdInHhUpYBo0VXAYY9H+JeWdE8wLubc7kp886r3ZQNEBGRHnnm7TbQKxy3gQzgxpJldoW7lhlRpVWGdGChn5OZC+NWd9nozPNWl39zXQD6uR42r7fzHuDldh4YD72wTPVZbCyf4GZw4uVAROVXJnfMFRigSEREt7YtjIS4ORxGiYgocH7TEx8VTnhly84zfkFeTq/NaBmlEP1hAFifIr7m9RQRlCe8RgRZ4Ih6yhPLiHoC0L+u5dYSBI7T+ZKRXUvEdu69/o3wUe7mJgvJ+nPzF5tKry+x3C3RAyDRkhOhJyx6HyL0tCjEyJr9eaht//KjEO2Rlu2uK/X4wXwjLV3jV40VCxLRtTfeXajZvj3MKXZ1aGhIrm/MM4zeW8TsxfdmqjeUPumnhx8ioo8/hh4xu2Nn/hGzXqO758ZiySGiqWmSECylVduCeUcF61+s0HjywlHY/wv4/2L8H1pWzy7B0UNhAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, triangle ABC is inscribed in circle O, if angle OAB = 26.0, then the size of angle C is ()
|
64.0
|
218
|
[
"26^\\circ",
"52^\\circ",
"60^\\circ",
"64^\\circ"
] |
D
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAF4AAABjCAAAAAA3XejBAAAJRUlEQVR4nLVZXWxcRxX+rtskfajiGCmKI5VuHEV4USXnpi/cAOrdPNAsEvIPD9mWCmWphA1PMVBgK9BWvNQtUhwhkSx9YUFCOMXSpgmq4/DQdUBoIyRYh4dsgsiuGyndRKibpJZyfe+u5+Ph/uzcn/1xmn6yrJ1zZ745c+bMzDkzCvFYcGmPGiUeeDzszRPR8sdE//NnDwAgEDDG46E/o34EAAqgfAb0a+tf3vM0Qqo/LvqTP+UBAFA+E+Oc+bUyAgDk4zfOJtbWyeX9ABQlZJ0nt0ZW+xBAwitSwRNr3ykCN+2yEqzfkZ6K/PPeyuqttfIDxPYBuAyog/quIyoU4LWTWFUn/szqO1Es4fGE6a+cX6kcGRvZNzbkyVbvFz9ZuaMnk8Od1OtBb3dA5frvzw6PH9GiPt9ZuXTxcGryqUidXElXFLTRuWpAJnwVDmG23rl916n93dvxU2G9FYCKq+gXn9z5jLbWmaJzz0vxdKWb4iTZ0K4dXTLysdlGNEdH+noqWaGg/ReidTFRELkZkvPxhS3R5+MLUdpKECSzWbI+bGtztCF96EE/m+4wWh+WkiSpleyCWg50Hqa3pY3kfB/krKoN0h4CSd7UCqEqQe0FyYq21A+7odozX1ZdwWS2K72te1GrCHa3O0lyokBSCDJWc0XZl4wu9BQk5/V+zE7OZdxfMzmv9YJW81WS6G1152b6UJxkUffa2TNso6zVKRHI2guS5yYpf+7YkTOtJMmHw9J4S7psn8DUVg4aXVndPg2tLAlS8prKpzvSN9RaV+JoQj8jZyWv9tEbyaKrXnfMz/q1Gmz/FmRyibZLBegdF+jFLorJgP/pRV9vX/K2Qpl+flb0w86aJu3wgpSdlKQ87xJ9RTX6Iaehl/y1BCtxfxVnMoRM7x9hZ6TzbV6nHxGvSDKJqx3nnB1OdDu5PPxmR1o6jOwzS5l4TzrLAPwqsyGdVoI0YvW+lqt/2bhor2EHjnd6xgn4WifUD/oWvYfBwEZ1J2bI9Easy3nfhqGXoj+0J8TpfPaUTN+n8vKK9GEhFRDUY4bkOcP1XoYXDK7+tqpkY9jwi8RMjoKww4DQ1ESilIiaVpsu5NZFnZ5xZNNFQ5B1LRiwScjNBCWxqktvDEaq5YeRXHE7ikA1FvyUzbr0oYmR4bbxTWu4D18cQpKVuL1qiUvJLsvUiXrP1n8AeMlTKBTG+LmAIG7UnFUbu9lT+bL20JX8L7JeSfMNSZDH87ZxqrHO7A4aqm9aRYR5hoMLM5+2t7TLR3puZFOn9snFvyjKwHSgSnLZl3cSetHODK+O9WJ/PZlQnEYA8Nq314X11wD/sXd9U6Jg5P49kE681Q2FKV/xRwmSXN697pOGvVstg77DIBr2OeZhGWWb/hN/tclCIEJKLQwAMGvxrpa593LBS88I4My0CgA3/d5JTFyQrKMAUK8OAKjv7W74V7MjkkXRvPE1AMClqaflWgqSFwMN994ZAPBgV1f2N8amIPvE7RsHAODShe8HKg6PXPELdj4YAHB/sBv7uX//wlHbwTOj/yXQPGGbSMaLAfWHGgMAHu6wLBGs6mjL67/My5LTg1Otb+QUrG1PvIPg/crLf/JzPGWCZD5tdjxKGprfq3Zie47jgO08QcT8O3Y1NiCrFjGAV38cl4vXTWXznzhPUgXAYLOp9wIUAwD2rQFNq4lNSwCW1QJgWRagwHrzC9+061lWUwFOvvLum4XPfbVqWU1bEtg4J877ih/uA8liwhQ0STZJizQFTcGWRZrvJ1sWSUFT0Nqsv3jCaFnk357P07RIM2QcXyJBFnWQvDZq04lNCtM0zU1hkTQp/jPWsDmERbIweoEUpqD58fHJu4IMzpggU2fba5ZcSIFkfbdJ0hRNh4fCpBAmHz5/jR59Iz35sUnSJE3BwnPvh+kphRKCJHMzIFvW7rskW+YmSXOTFDSbFBZTf2hS2BYw/x7Pu2KagryVnDEi6OV4hJydHyDAz98G8AQGAGxrWZbC7cJqbTu19xVhtbYDlth44yeXvqVgu7Ba22ChCWvPefUr/2iGnG1o9IrkiWv7QLqZUkuyIX2hT0Wdk7+4Ui2UhPuiPcF4BRROctHyD1XKLOfUiA1bkMxq14Liaqytg7FDwFG0ZTZ9yrdj1bqe8R8Tov2/pOaD/NLZUdTtozwiijrutsvHi2HVPRjppBOQuzpn5rzf2SwRHSC6Jmwc63WxczHuuz4RxRe833qR8G6VZNMXv24PZ6nDHZaMRtKvwfBHzg9j0HCCwKIusQtW7czSyCT7yinyh0tumkwKLxr+QPci5FiVbf2dzLLkumNPVLSM4fEXJhyidN6jb1tHuMn5nN4jfqBb31/Z9RNj0PDonTDQ2SlIVrXX+4jJ2yip8y5D0p7rfJrt3GrqnMte0g0yr5b6uzXyYMwm63YDJ5FQV116IewtQJCsq/WQM/QH181qMdLdU7y89mCZJLmRLHIp3tdNYAiNlK2V+i/aIZtEX5ikIDk77yzER4K9xLNZ7/axfWWhlUjm0yX1t1uyuR91PWOwrHrz26YvawZL+s8OVx6dXZCcG6swVnWTNZAcB4BFzs434oeybrVHIydZGZubmY/X2/RifFEso2zE9h8o+Wo+GoxMfG+Op4GEdQIkrefWWcNV9k6BesELe2rKNFnDWyC5PE2OT7NHets/Svr66DRJ/nARJE9DcULGTL+bWDdUtfrp3euk4OkySI6Xedrhn+yVZfXGRqJkjb7lFEDWEqQr2NBWPy19aoE1LDqFAWApCdy+sR8AsOOP37vz6Wb37ZGX5CI5XqY1unvdexzocqvSG/NperaoLRLLAIBEu0JZLfKRPF+QRsoOAc5gkVxORL78NJK5rXOTJOu6e/IvA/guox+WjBn5BSLqdiIaZTV0TRj9bpXr8/3E1/NZLbyRR9ILFtWtniiNmVTE4Ryid+7Yq8nUlg6VhXiOEa+LnV88F+JzD3uY3f0oynoHZTrQC0E2Ms/O9ZgCZ6lMqsUOFbq+NtczsUyvWMpYeEEvOD2Fh9rjMbsxF1dz0eMWJFlM70190KV9D3qS5ZlhNRP0I0Gymjs2qOcbrjNEostLfxury5eX1UF91yFgOL5xBbi3equ2OnQ0cXQIUc/7bfRFDwCr91celIG713dowNDB2P6Du3o1oYL/A0j/I5fgFaiYAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, circle O is the circumscribed circle of triangle ABC, angle A = 70.0, then the size of angle BOC is ()
|
140.0
|
219
|
[
"30^\\circ",
"35^\\circ",
"70^\\circ",
"140^\\circ"
] |
D
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAIEAAACICAAAAADlxNdEAAANSElEQVR4nMVbfWwbZx1+LvHIVjI8Ca91wcP9yFQXt1mKi5bRDHfMjFR0rNOqZWUdBCkjhYAIVYBUFFJgQCsykUGnpeoEGSssoEgZUtd6WiacNlMDKWQbKe5YSp0lFSmpNmdOIeUu9/DHffhsn893rlMeKfHde+/H8/7e3+/3fgtEUfjH5B8mzgu8MA4gsAy4dUXdCn9ROQnOGcwNRF8/5Vv9Mf8aAcsCAM5eBMYSp89O1922JVIBgMIiMnj1heipe+7eWFeuh6SLuzI8/PJLkcjWYM6Xq2SQzujSb57C1kik3CL3KwMDRyu++pDbTtla/rYR3eluGrYTcbDR3Rizna1tBv01ocMpu5Hf6Q7WRkvL4Hhoo5ajbBHN8O35YJ09OdhiMFwb6LeVWwaLXn949KoZyCSZavEcsV1+Bp5yt88rmcj5RVdmbSkAXlx7ZfxhB6qtaTiAXePn1w9CACAgv2UWqEayoSpm1fKFEPU16fory2Y5WcsAZz56y1jYiYfLxj3x8tpz6rNgnpFlDY54+0hr9S+MHm+/LgWTz1YMpJaqsasqW8WIr93iq4VXntt6Q68bAAVHPU2ulIVL99/UV5Hvc349mN2y8rgbsNZjq4K1BwGe2PXb5rJCCzOY3Rz8ZTEF6zDSLn/Os2UuJ9SCAYF/1Ua6r4pAJlzPBu6czfPNXD1mAh2l0EEjWmvetaeJFABc2Vz3kxJKQMGjiWi5SbCpLXDHlf7SlaxZ0kL9atOGNRPM3tD8VXohU6QCnSahZgx6/NMkZaVPKyUSae9oySDuHi1puUxXZPimSRsMpJquUhNIo6NOpZMWbi6D9sjiEaBUuz87SGegkRry5gqqhBj3jOZjoHKY9/cuJgGyOyhlBhi8sgAAP6puKJ0nMMMXPQct/cG0+83FFQE56klmvGf5xEd8P3Y27ywCu1yZUjDSkUeW254WOYem6zOeeH5rDBc5MXCGg9uMbxkMYsFrQYDSh0YNbxkjlM5vLK4GqCjf/XgePRhblmWqi4WUZ8JcBp1fNxtBLAIqm36afjFY49SG8fctsiFCHa9cXDOhr7IYZHCowcnaS7EQAGDZvU8bOOmoGrk2WkCSAyETPTgtbrwGIgAAApsntOmsoRV+/blrRAACUN7wbJqQCslXkllqYSj+eCiQ0wpD7qAp4cWQAIBNc6+q7zqD6L1m08rFw6df1BgQAAjENptNKxcHBHBXTH3RPNKc51LlNSofAAVcXD2reOAyVfavbLiGBCAAS285TY2BAAKnNheXF4vVHSE8LGgMAAH4Y5EMitedu04BYNoWThdhi4OCILQpj0WI4rY/Q0tLkslK557lu77Lsli9u1jPNP8eyeiR3qxS6Diow74/TS4RXD//3b8d115BxfIEAMClvJ5TGDho1BPfjwNX5cSqxlcDuh7EqxwmZ/fuAEAkroLBWegMiImAQwLSmQgAAS8+uKRYBmsTAPRWmPI5Sy1cfH0lAJx4Ll4sAfhiAHR/MPdeh8m91ecBSl/d7VB4BlTOKwwUVUrd6DC5676fEReuizxeOGpeBsoqq0tR/znHvcL3P1sGxAPFT3P5XnWdlxQA3DThYJxcosl1YnMCAMoUH+BIBkYCL6/9yCtEUX6hcg6EPj4oYgNcwbozCBRpDrP+JKB7pPKFojIh3gbO3zFYVGLxOhgYqHppXVpu0K9uvcm3/L6vfP6Tf8yMaUuil1UPoHRU/oT9PlF7kHr8m2Pk0Qilbt+2Uced42gNSX0FI+h4siAd8kVilMmEj+R8l6dh3GEOQ3eS1HvnGy/bkVsaV55c0d/30schEP7kLFDxtfMbQo9OOspD9cOaHqQclf/EioH+47dDAARgzRgAVn5rwrv+6xe1KDY0Ye56AwP6puyXf/mAL3a8Pz3NXR8HIIDuH4xzzZ5LSoY2nNaFFQYGgv+s3fJnD6wYPdlfYwhZd4YgIICerr+/s3bfHGwNdfi3NANZkgLnbZa/z3/2ZG8ARjEHxtQdSQFY2n363MoDV+xkJZxTu1WSpPinGjvae6nd3Zhrtglf5nt8u/eguiRmuUXjV4xHZfCO6Vg5M4OZdnezqduoTGYFjNb7eqzKJknOV0hGBrIvIXJBlElRXCApiiJl5UeBOLX75ua3RFEkRVEWRYmiqK39hYZysh8OV/UW2KSKVym/2oxl3d9cKBMELLhcMiGVuwRJgFTuEpQOY6J1g/xa9/Jyl7AAFySXi5LLpanC+tyu6fZYd9eGY5Z68GpI+dUY3H5iASwDKUkAIaBc+SkjgKldH73hrz9dTggoJ5TBZXlaG9eNmRRw96l9e+942cItxO6AURMZrRVliZQlkpRFkqL2k/iCu/2iIZiiTFmUSVHdszpqujMlk71V4WHtOQcB9XQVSEmixHcrZkWZSq4yxQXKEikuUP57o7sjmRUsp//IXGMwlHj4lntHzdVgulLSGSyIokzWRkWlnqJIXQXFMztu7kiKMmXxv3qwKIr6n4Ibk5m1lNP/pZ97t581Y9Bbr0bT19La2xdy6jH6oGd/KqtWZjAxhjTmD3gaTbbvmvdT2dfVGcSC2YWMbvN22dtyaTxs+TnV8f5d09mBvlH1QWEgU/rPqjG9ojLJ4Xpv17yt8smftBaIMNPubpvJCBlaoz2pPRPKr/9Mr96fCHhly/ZtF75WoRlTgb527V+tv8Pz4zekW/cZD2H0PqQ/6qxG/HozxML+wxmbHQW24CdyjMEEk02KUskyScmjj6gMa+t+dW09Wud/JiOt+WkuI3J6BmNq/Wm8wdulmI88kO4JNQYn4tzbQpLR2sCz2UkLInTSMrL+cWybT1Hah9NnIaB8F6vjnPQk2V8T7M2T2goFjMGQzXC9v5ecdif1QFUG3/vMZbLxkeqafjsF5qCzkDEYEKsL9re3ktwBAMeorGA8c9vvAbTVvV869ppsHGHZnKS+Oexgh+rucx1nfgHgN3hky4lwXOn75kJLlwDBO/euf+53SSWeAGXwVxAEuPRSwYiGzFb5K1YDkN4IYxUUa/wmp3aTZCzI+cc8LdPOz79YGUM2Ug9UDJLk4G6ZO3YTJHsAKAuT4SPkTJt7r8P9b9m6Z8jEWPDj95EkeyAgToKcPEgOHiRJjvhSlDm509PlcPe1sDFo1tDn7b45TpLcEWcP4izD1KMtgDpY37j5MQjwPftSdPVvbWsWAKw7UzCKogV79gyMPhgAgKl3Ani4+mXgu0CcO7RmmHafU6gOhkIDDmTwgr0DPJfC9UntDEbPQXISx3JOA3Vs1Z76qiL2t0ATPmvXpXwc8XXIDKvHnXbEKVb7LucwMJzFkZ70NiSMGVDO7yLtGEOPN0p2f1giyUEAAupZ4DxSqsPdOlPYNGUqwyTrmPONwTfJcc9fssLLMhUF2NT4BV15KveNo+pHBRd4BChzBsFqIDG1SRquwsLOtg3ZX7LqQko1TxgpJhr0WaAVCvUMMe9BUjmXxkxp5TLIOZs3Eqnqy4qSkUiWyTxzBh37PUMyyWH3VM6n/OcTDUUO1IQK3UXInTMYkNpeN0naP59I7q3NHqP2+ust1rpkWhrDWLBFIslUMPuMppyPARu2GaKQpCx1eXamjUTOfdqY0zNoY7s+T49MkguRZrOyzBnM12afNJeZ2psecZvYXd6eob1qRInfHDHVaCfnladb3D/MO4XIM2eYCderzdNaY97j5ju7/8+1bekXvcrj273deRKYG0P62H5TTR5FyXt7IFnzZZNQeSSsXqrJbghTY+hZrkSm1FiXb8xhykAmydm6RtMU0WCt6XAk1xjmG9ep8xJp+6dS+Xy2GQM1bkpvwiwcuWWriWnmzBkmQw+klLxm6rbmn4LmaQVl7p/nDoc83+lpeiu7IbKNIebVrH/E127Radm6x2KkpSD5HXd7loDSPYNMytzvGVJfdGUohgHHqtr+Y0KA5HSze3+GaDOMYW57SPVf7zYHrZf9LRnIZLIhkK9LiGuTQAVGYxgLNqvsoiuaCgy8LRiodY56m8wUUiY5VBc8mpaMbgxyn6dHiTDT4C94vc7GzbpUi/dIBicDjgY36Vce9TnDHp86wOz2tBdehrF7t+95Zl2P0x4Pf3CbMvzn558mSc6Ew0r30esPj1pdqSvEIDNhNBTKvTGpRJk/4G6eJsnOVplpP9xf0vuNZPYdT9n4kGxz702qxtDj6SOZPFTyO56kcs/1lPmnt5o8nVLCx/nGtWNkbHHuuZLkzBOBQFvUtJcf2+o7UhkPbX/7aOuqYLeDmbQzBpQ5+lhd2ZbOmAmLk7UVS+oj+MR+h1uXxd35fm3Yt/qOFQEY73yPvDH9gfu3RCqcHg5wxICCvq5zLnHirfPAhXEAa7zArR+861rce7dXO4cyKHDLNDPrPJMyQ+gzgvDphW8vDgMCgtlFVXWFigAxJbxOHrruA44YOLMFa4jVrST5nWN0siDrpBUK4ddv/xAAVq+EkxNuRR9AyYW44UstRRzTKaEMLp5ZpRFwUq1StgIMWyT/Fwbe6n8AxNRxh+lKaAs9OEaeqHeYqpQMOAhtXdIB/gejWJqV43midgAAAABJRU5ErkJggg=="
}
] |
<image>As shown in the figure, in circle O, chord AC parallel radius OB, angle BOC = 50.0, then the degree of angle OBA is ()
|
25.0
|
220
|
[
"25^\\circ",
"50^\\circ",
"60^\\circ",
"30^\\circ"
] |
A
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAG4AAABwCAAAAADa7BrMAAAKw0lEQVR4nL1aXWwc1Rk9Y4daFRF+wGmmZSULshEbGQmDU7E0i5wKt2zFmm4lI6eSqzpSmiCFqkbyIqtK5T6gNlBLRNSoNq4Ut/jBqAa3wlVW2AinNcXICebB1Kas0yDTZsGoLNpUOMrMPX2Yvzs7MzuzcdIj2Tv399zv3vvdn+9+ChEMKtLH258urW/gyiIUIlWP25vvv3V/lbL+ULx0Nokd0Ofm3jjf8tXUbXtx0/0KgLPA2qX5T1bv+2bHg54iVcFKiIpwaawDyYE5T6ogtXx/GzLj5coiwfDSuaBPdtd3vVSukqM0kWnomboudNpvYm0jm6F1FIdbYyPadum0kVh6MVIl5Hx7NMJguj/Esst2IHx03nqoeUaE5vPQmQX+3tG2GIVFwnxL5mJYHn/ptIGm4VqYzFJDTSdqoxMkKTZTXeETxA/FdLpUCx1JciU+eE1kJNnXUohGZ42TyKuR1cgH4+pCJDqL8VRsaRts5II6FpGOpNbb9vG22MiLLccD0+rcK+jnB7U3v+JaUqOv9haaF//1ncsBaQ4dAVzJpF5scLFFXupB+2/ndPOjun8m9wZ0WP995OqrojP+rH9T5Z4dSm5tc9xMiHKLPV9cK5NMNxMr1rRq+TMZPxfVeb9UiW5FXd42mYOFmJ++O3SbzdvRbi/GEper0G2lfn5d2ci+tLwDGp1sz8zcP6eAmmZ+GPTMAz8NmpnvqZs1bm/h2Ghy9r9OAJg1OlNQtI9cXyqS5MmsJYFg5yxnUTClm2y7AWzUEnk6o8aCRbelnrsRdJyPW7Nltp/szJkz81T2RpAJwfZxU7hRAAVTEbTY8o2gI4Ut3iMFjqJgbEAT+1uvYaOJAKX9ton3PgSwzj04itcBklr8Hbs511u++a99lyRHR8kCZlkHYO62e+zmXG/5Vv6dAoCZB4E4OgAKHqpyuNgetGOI91LMAgA6SYIsNVY/G5oQno+QfORmKqu+0liWouqAyW81Rhr2iB3uJL93fzp73/f2/0kuQaamI3eOCBfOwbQ6pcWXOZ6RhAbLDT77UgBVLTgZW+F4lizulPYhMJ+ssZ5I2OpObVKLL5NMSJfEOsw9HH1aA3OKojwZnu2jA18+24SJu1oBZOakBCbeqqHROZBELizbUmyYFFvG2ih1n0CpIdqtWpBkrpMkZ0PsB5xQ86S98JfrHQaca43ERpJ8DR+E0glyIF4gyS+sk12zcybbsRaPPnC/zsUBYD0wAxUol7+vnWsEgNFkqxG3d22PlaHug0Q0KgJ49dsAgD/ngrIoQCHZfKYRAK4MDZlxdxbsLHVrEekUYB23A8Drrx4LzII3H8gNG6GRjj1m3L5VJ0/bYnQFxixZdWKKEfvuumWeogVFvsOpIbESkUsI5jrJQhU27XjLhvV9qleYdFxwNAHNobYQCRkABQZdk0rtXbb1rBQr2Ove8j0OXWMp+mJo5JwJ2B5X4j+zGcRgr5Nwsdmhq78amc3AK/W3+toWXAaLUpN0/9lscujCVggPbgF8FnXxtMtgMfhDqc9Kjfbnjnq9PpommHj5C6Di4k0FVx5be2eXE/P584uKqYcArt5kJ9TtDDISVMA8GX7642cTNx9yJyn4+ADmJTY8270HgGLu4v+92UmpaWaSXf3k8ZMVkUuxU65wSS3KwXecZTm63pEkJxNbgpNpd+SUsQE4GOxzBWW9a4tqkCUpiruXSBZUV+xAvKLFn7uEE5RWlbp4AZGhPHZkP4A9WHMG9PKj5861wGVeGjy02zWyBXtDwI7EGiKCyu8uTgIAkufvVKgAVPDhwwcn6wFAsa/ZH59+311wdZ/9Wbd3zWpnGJSP+k8bFqzkXxUoABS8mewbrrekMPHLw7vd9b0vbalLrRSapkVZydKD5mCcte66Yz7Gy+ItxYqY5oK96eCzL2mkHoVtbL+13pUbyiSpHW/x0aI+97SkcJ1VmFiMRvdRkzMBWxdIltJZYwMQcumiWmnGziedM3EdMvMAIHQB6gR0XcD6b/0A0PXe/hYjLAS/8TeB1QP3ThvLhSLfGk4ebaoY8/mMNLDMJ0ldCJ2kIHVSF9QFhfEldJKkLoYfuGqFNW0iq53ZNan79EFRLVWeDvZJmg2WG8pWPYLUNE0T1GkQGz8k9Q+bVu2wLlZjz92x5DsEPxq0vqzEijsCU9NGPUKq3UOXGpKixRbuvUThQ1do8twVxx+WAiBHu6mTFJqgNWl0g8v8IfncQZLUNSP6k2RsQvhOsN5Bz1WpY0KmE/ws9h9hiURqmm7/N390Udj1D02nMML6+TtP/qJfF/pVz+D5CLfRKL/+gWS3cfgIVgYt+TydLFPqjHnN8JQ4POgKCpJDPXIukMy3kxXa48ZQu1TDYHyFLDf4Hce8wgm25uVWGXaVZQrNb1obWJEMheVHUyVB9x3RRu/TEo8Bxypm03G8qklMaxuz27dx9+NG8WND9HRmISaJbKa1j7uyGDaxKkZvwac6aBkBFlTrWW/0kJPBYu05VVmY83H34i9b/PwH792mDStNer1ajdE+lFuHZdU7nu3j7kote2bgq5bWanfH4/bbnKC2s3KbYdYlnCA9I2db2icDzQ+DGfOjlM7IGpR+qSKjj3DaXXmb2UUn2v0O/oJcUs07TSEx4LSa5ImBisxu4Qyd80xB68y+ovoaxrbuMpegvOqeYh5zjI9wl5o8u699Rejv8qMbMNs37Hmy3Nypubop65mWWvopT33SK8mgJ1EsGluz1tu24Unc51L0ZUPn5HnYl/aegOQ3oJdZUWIrMUWSm6lunyWrx/XykDX72lkKf5vw8cyo8sIl2NdNkiuxyjsBSXKkWwp4ZrwIe+ESnIkVrU+S5IK6SXJKnfZj43JcClSsVVHe75zXSYNuKz5NIU42B9xZZEX3CCe9TgbQCZK9PVLS8R7yi67UZtDG1D7jfFYKl3nCv4z7rryVcnR5PlbiRtuRYAPdgK3olQsxj6UDirnpRCnVY/ZnuXmGS2o1v45p+x4lCyfIcjYd5C5UQUett61ICvLIEZ5W5wJKkZROdG+4R66aV4DX8GD4PMzFyv3VnTPIvcvGr3vkFtSx4HOPj50jr06xFJsJcz0huw1Fz1tXb0GSp6N7dJhYiQ/2/qClzyfFjWHDMtQ6LcVF9leRsHl3w67xcFP+YoIk/yiZe4vpdHWbV4Cv0U92jTDUL0prKJG8+xU7Ykit0dfIxmpHW7iXTPIMOW0Lt9CSuViz4xZJMVsgORXLLofIN3DCHDlBLqabZwzHqFrpiAIZ5gUnSE6mLeHm22OjWhhXAJ3xWmAQto18IhO4UdzJ1mnLxy+SWdTHT2xEeifQJrt2dE0GejCqL7aWJjIN3VNRX6S80hVGC51yuDTWgeSJOfrUqLU/1IrMeDV/ygp4vU+ffPrC6DNwOVuY3qcHYnux4wAA/IVYu3S2uJY82PGg2yU2BB66F44BuWfccVQAvH3pXcO3FjB8a7++u3bf2h0V4XUQcxcqGqsAwH3I1ly7B7bjliHl+hNHgQsSSVXHYuAFRXkEEd7znDIyckCBnUBOPsFJ19rKCx1yZAGj0adKzYZ2V+F+ksy9Fr1EXbj8gXgBvwKA+B3RffN83LCjgnWjR2stsw3pLuAOi/j/QCdxRHfMuHY6ZY+hMetztXhVXvO0FBzFLDnbGZ7VwbYUYRYIf0N34X+Ce+KIQgOjogAAAABJRU5ErkJggg=="
}
] |
<image>As shown in the figure, if angle ABC = 30.0, then the degree of angle AOC is ()
|
60.0
|
221
|
[
"30^\\circ",
"45^\\circ",
"60^\\circ",
"70^\\circ"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAH8AAABsCAAAAABmlDL6AAAKgElEQVR4nLVbb2xb1RX/vdd2BWHhCdzVFS6BJpWtpdM8pWxB7XA7UojUKJQ1DD4ELRWsYWTayhqJaCqKkPohm5gGmsNA7UaQgAU1LIwhlowCRqJa1hTcaYnSrknrLpnqKgjSxUihte9vH97z83vP78+1m54Ptt+9953fOeeee+69514rRDV06eRUNgXMzAFYvwGrtkQ2NgSqYaRI4VMx/Zh772jqwtb1tXcEcFsNgPMZ5MZnZj+KbG9qWmt/y3jzqvBLDE/9/s1cYnsi5lA7mUqlQrv31BZx/aB1nn4kSj/nX2iIdE95NZ58Irz10Oe+PEvkj29Qdl+g/W1bmaDQJCxJOfSDYM/88uPPdQa7s3JNZ7uC+7IkhfBtKou/2BPqLSrlxtUEl+0J9S5JMZbDHw53+ppUWL6y7TV/XS782ab4mAwvqzipWMu8RaRq8cfXHawYnSTzB2omfBu54hu9ORAaqQqe5FBoyFt7f/3zXXUTPiw8aDzS49PCJ/5deuiLt2+sIELa6eLO218KeEVh1fP1yc01H1wNPNYeu77xLOARib2MMxJMClG99TXqC6Y8ar3wJ4KG51UjQ/Gd4dB0Vfjzdcmr1V2jg/WLZnks5O5/heZo8mq63kQP54bdqsr9ryjQfjy3TPA4nH3atc7RYoIcqJWfRL1JkLORYZdKB3xBCo6FPNcZlYowHnIJxS7+NxupOug601CNszmd/I8KdjQ9uVydr9NTp47I9/9gQ55kdcPemcRSzNGijviLkfFlAzboaMxpReQY/5/eubm6bYkX3f3NZyTtP71mYfnVJ7OhbHmPOul/8PHgsmsPYG17X/lM6OD/FzdNXxN8R8YO+vc9em3guXb3bxxK7TQfdOim5aHp0KK9qFz/1+5fS68Fy1VQ7dY3XPU3NI57LVeukoYT9hI7vkjXXDt45kPnbSWG/XWLKy93XBPTa7Ze0f4HN/sXKVLFvCvvrf+Iuemv06m8U2rDh+S9tWHuYmmFBZSP/1RCs4ocu78pivKYNDiAFVtTVnHL8LcDkNWou32RV1KdkJWXwLYP7GVWClfQ/fu/R5Kja8qCigeNRa3OAlrcJxOSZzWKNCk4UhE+r7PMrUIFoJTMN10vZUgAQP+P4oCCGfk3ACB6xtQbUFQApnA7tVGa0ZXTOwAAo/dXlPjceFqHfl5Vtl/Zp+lv0Iz86Pvv6Y0EMPrWjyuBR+wMAAUZ5Z/kS19Zp+q+q/fAKXn8W6JnFODyz/bGK8OfBIArzXtfBG7bX6sCyn2KoqpfywFA9hZpRqtangcyqxMvQjpcAEBkHgAOffZrANhQB5JsTZP71yySjHpslW0k2AogrWeKpEPweAMFL0f79EeQ4nIzSbbuJblOMsVZEkIuzVmiqRjJcziii6wCyvu3AsDGfwO4cIO8JQHinWj8mFLJYoWBnP4qFIBYCeDdHQCw4WMAcFyju9PBAh56RCbPb9CXcwBuiZ4FgMyJNhW4MtIMAmejle85vigA2viVtsHFIIBVP+0ZAkb2tAHkub0kxTkcIRmoKJaKZOPNaz6q5I2F9jXrSEGOANhLEmR/H0m2biPJ8IWK8BMDc2G5PLdGR8Nt41HtVb0EvBxNk+ewjSRZJz/+SGZXL7DtFenmuceDgxxvoFkAjGjdckR7jKcrwU+2kEcbZVuP1TVnyVTCNFyFff99j/2AxZMSAxSMjUtFn/yBQJIkX9ltKV5Z8kwqVL4+bTxIuPLYn6HgJy9u9vZ+KlRwcs91EzUAcGaTpVIFACEEAQUK6iYqGIRDO24E2P7mJe9mChT8cttDf68BAExaZ3hV+yjGsNiZ4j5AAv9ImwIowd2H/Rqev3MwpeWTiJmotY4kWSh2oPz6SzC7WltKTdZ5t2My0JM3nldbcxtF/EKhQBYEI1MFQbJQKLD0ZfzSWmmtC79r1eu+65mryzbXmU6PxmwbkOL6W4UKKAruSqkkhKKqAsUvAEJRlWKxCqoqhPp6m/5ul1ee+I1obfrbpcdUArS4mK4/WRAU5KH2QkGwQLLA4pfls1BsncVneq/lIxk32y+0hY9aiu593VF/BdDG3Jajqio3lwy1FNMkKzpecF4BKaOx607dbS4pHEsAlvUSyYKmntbxG6aK9jC+inWWYpF42fDaWcskYASjxcdCQzaL2Ltf018ohhHU7w8JQKUQqvElCJXCKBYgBLIfthor18jWIZNKRfMd25SZ2G2zyOCDdhvZ5f7kNue+tFNyp+lBmwQsUXip54ZDZS/lQ3ZPKcOXzb8kBkwPImZP2KbjiUz5rOCRfzE689kOkzCulLXGkeSj1uqDAX2Ba+Wza4A2csm/+ZBgssVS8PnNZnGmGuNTThpI5d9CexyyhBaHARQcabMUfrXtcGlY9d9x78cxpxnkV13lW8VyKWdDXulnTS2b+ckJYxLIJmIup/XZYDljh/xrpKVoAKegoqk1tMOWo60Pj2o/Xo1uOvkdZ8v17XFI7DrIqeXfPT0wUeZIgy0kOd8WcR0+2ZCDYzmef3R3emELB/Prk8BIqMO97x50usbgiJ8L+5y/mL2/aKcDPYsdoT85txeCfLfOaaXuiC+K509uVGZ+Qc7edGuL4xmbJqB+/mTvVZfzv6Y+53KNHMzPpe5VnSX25c5z4AFHVlWdP9qCD0mRjiZebTTh2gVwO390O3/3PH9NvGwryPcGniPLJoESVXr+Sr5U53r+XGb+qcbGKZZPAiWaXT/sUuN+/+CJJrMPmu2ZbLFa99lAb54kF8yB09xkqbHXDcUdP9/U5VJj9f5MwrB75zPOL7TvckXxuX9RTsJm/oFgtzGuJ5x3Avr9i0rxzfdPzNRvWvl8uqvGHG+3jDq0Hw5Nu8dyv/s3DqUm8w+HOiyqDZYNTIrq79+QE3VdZYGwZP6FjtDb1oGeX29Z3wlyqaPeM6Xhff+p/sTM3fbdrTH1frgpN7XTWGaQAFb88AXrXP3pltxYreeW2lN/inzXRlvk0M3/5b5g2RxMzoaXzAY57nv/zO/+m+BA2DJx6OYfiyWyTkuEB14xFQ6F7fuPivFJHg8fNAnw2xaS+V7dMy0SCFrSQfmnav7ly9wTX+f+H/P9y8QAORVvdJ0dYuP6W6X7l1XjG0KU7p9mVy+wL9Brkc/SOPmI1q69RuoGT6X3b5Mtmbvq066C6pPAct+/JTnbGezOUiQeDfR4chadzxTvH5eEcqcK7p9f7Du869JfgrvXF0euZYdhPB1/7/rHfx6SZeqPb4L59NAv0NgQcqxUCCic/2Tiptwf75HOxvvjm1iNro2fWPnqm7nE9kTUAWAylUqF2jpqc5Wcx1Vg/yvfGIwDxf8f3LrB+f8H970F2HeHy4P/5Mk3dM2oXDp56kKKyswcgEgdzf+/uO/httHmdFyWq6z/s/81j2VEiS7XL/Ic0rJcvec/E2UW71zj07EEgPe3BFDJmaSsoF3aOQ39hnQ/IK+9vP79/crt+k/HsWW40Wia/d86Ka2+FD6RyZEjt3s0KQqV+V8ce6Oj0vgr/ZsASmbPB8BZmaDyTjMwd7pWGl+q//crSLNVOzDzodY0L0clb0QIVvT/G4ljHu0wa1sFB8L/B73/PkYZH22cAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, in circle O, CD is the diameter, point A, point B on circle O, connect OA, OB, AC, AB, if angle AOB = 40.0, CD parallel AB, then the size of angle BAC is ()
|
35.0
|
222
|
[
"30^\\circ",
"35^\\circ",
"40^\\circ",
"70^\\circ"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAGAAAABlCAAAAACXPrlXAAAKKElEQVR4nL2ae3DU1RXHP+dusuEd0AQDASMPeSQgDIKgCGUUEFB0sCiKncpYbCvWOsrYWkcNEa044INWqiJVCT6hg/iiaAV1oBRBQXmKgDBAMJKgJryS3ew9/eP32/fubzd07Hcms7v3nnO+555z7/2de3+RkOEnhbd5zdCS3J+EHM9eAVCB/Yc/2rtncyDSUTRk4i9aZmMfyRyiDV8s/ahL8XUthnfuCJgHgePf1O6uYdT9l//vBIf/+G6HS+4cigoAqr7ycFfVnvXB0Y9clIHAO0Rv3Bl8bEF7sEZcf57qBYgCWlw8ireG5s+99YxH8FD5lEVtoj9VgBEdBsULfbmCR+7zIPAwX3hMX4+xj6CwLs6+wIDyGbNyFmVHEDspNnZs2DE/UVj4tFNcgwIU3nfHrV1JN2djcyBuJoHh323onkr8tU6JLSqQX75S5s2MzOl4pxJzEMyFxmEPTUzpDgW/S9UqytHFPbam1Igzr0AuHOi8PKV9hWPJxp2Ojve0LUxJkJMoDAsXJZtxu99LilA08mPy5cf8pAilmKaz170f1Y6X1+vLUlMDiFKxozSpOdF8/UW5q6K+JfgjH6e3j0J5WWVSc8JKPjF+3khwXE8aLcFaDwKA8t/W3ZHQlDCC4U+PdHxNqT/XI0JOMibe+z7xKyI+Bw9zv5eDF/Tq59UNsOPNfSVxDXEhqvziH57a267NZJ+yI+cpYCNuxxLseuY/Hqoq2/0Z7cOYqqLq2MjHBmiil32Ep7z3fnEyN+301NjWGIILV+EBhVe9cgyKgsL01xanJJg6s6e3fzWnz/bsD3+0HT/tSAqCPWunJuok4JNuXo+/mKk5sGhwHIHTNfDTDPZ5uWc2VQTgn/LtE5Ef4XUwu35uJr32V3dP3u5T4187fgx/DYdo/p8yKR2t65luhSdCx9Q9mkBQPvWsTFrL+tqsrAPC2Egd4IRI/UGXO72LJZeVZBkggIryWc4XZwSLwjPIw8KhTkhW1SgAoytcUQOgsxdm1Ph3jt/bgQgEYDiVEiU4aPIyqi0cAZ4hDEMdz/vfRpTg+emZ/aockFkGiAxy5KlQlODJezKG9nRL7yo2CW3bPBAhONSYl3Hky4pbQPY5hryBzlIwAstmZJZ/rreBbBcaAG4RaxQ+nJxZfP3gzDLxaM86cEK0JrNyDeBu99lCSua5BKdsKy9BVeC5QYCAL3sC+r3lEqwc5e2JAK+UOc6HsjYvONWFgX1ZHOV2Fzv5zT7JSmGYYGfKk0AcPj4781JPQojNDsHGjNUU8y9ovn1yfasdgj2dM8qu6N+M6eNC5LzPHIJQWzLMvxO0b8YKCyN01l6HACFD9lac03zzKHl1MQSeeO7iMyAAGsl02+JiXe/mbEIulMbTWRJs75LXnD3ChVA3OEuCF886gxSjTuluIK8+g+jfvYveNBC+a+kQnHPEW7Kxrv+Z2Ffq+gNG6VLlvQxeLGxs1pPGgQpMAoxw4fZAIOhRtb00gGY9CKLoBxh05Ho/uR7J3tzjTIyDM2yD9Nvl6d4PwYIzJQDIgT7bBAJIbiiUYwhgciAAfpyPuZdYwKoYsIoPq0bViFWTITGDXAK6HG2PP5CLTw1BPwGVQK40BXMJ5EpTcM25frBirIoVoyrGWh9WDdaboOJtAIMybgXgC6IG1UAAVRFyFOfj0zJABCMgzn1geAPLkPmJDoFw4yIEn2rIgPj9fhPWtMBnaMRUc6ZSwx7n00DTiE0C+IIGRC2o0IQKIk3o4mFh24okX8CkRYt1k8MEomXbAB8GyG0KBAS/DTTlgN8Gmt7sh1WMDYUEoyErWLWRPw8cvC1M4PM/8Bi4NY/4/X7A788VBb//WE0xRhCfzwcYnwHj80X+0mOL77IwAUxZCiRdfQnAJ+eEI9RMfDLeUXKs3vJSUyD12eLJi2ObE2/AUig4Vb45WfeOW0mFjAo7JxxI7Yeacpy7apXIBblrN91pR1RUX2/zeYRQoG/ZG1NSCh92TAESubYVmhbWFFxfmG4+qSjy9YdhOif0X03eniiGAA+sHeX+Pv4E5XBy71va6ZatLUp3HroijX0A3j7uLgM3ZNpn2OKbEwYKwLM/R6wAKzfdCdB6y58boOYKSjd72WfL2vA3A9YizJ6VqvpvOtZaVYBDm+5t2x6o6tUAtKukvrjJuatOaf+1MZdGHFVVEOH2HncnC35w+1QBaKg8Wc81A4S/fk85sOQb7ihsSptkKmoKwpNA1GIsBs79skOS7C/3TDjtB6oWTT5/39IJQ/CF3tx6XSmN2iK1cQdPjVkaITcWg8HC2gFOKRaLJQNCeYC/mm7+vgQhxKSr/gn+Fu57FoCQBXemOQ2H6pZFOjHOc00sJc9eScIp4KivCAWO/1jUivBdc7+uP0T3agF8iefPF3bF2DDhk4u1E0orOR5HsKqLc8Oc16s6APkdLQr789xQOiwRV91J0tL30vQ+MXw5JhIqnTu0YHwcwfNnu1r5rV69ubau2AAt82Pf68Q4LiB2b1XdF72eiBOIeGDBdN5aANFNoP2w4q6OSOhheBChAi4dG38SdIXrc144lhvsNmjbpNm5BHOTCVQs1PWtjtHZcmHXg7T8gytQ3w7AH1ST8Bg4fvL7fV+dYsj4G0paMX/P3JZxm1TkikMw2PxNPfdGx/3GyCsaWzQ83nqa8QPtUIEAWHKanLBSe/BYVVWAS28ad77j88b3PgCJ3QglbimqfnzX8kid1bv3kBCwcf3vI48KFcCEBPj8u9319B86ekCfqP6CJRtIQDwBltp+q8O1rpQDiD1QWR4WVYET39Ye3X26sHTs2MQriBt6PpxoP/ENiLEFRzu+eCUq6KpC1+luJZsHYTFI3VcHqurpNfjqcbHlZDgel0+/McV7tMTdysKYYY8AXNMwLCxd8avzPjt+cC/8bNjUzgXxZsOvCmpLV6a6VEkiwKo8vvIjQGb5T5lQDj90WL3JBntdMG50SQoDYa4103a2SfWMy4mTAjCWmT+TleN3YWurq2trvqVsyl2lvWN1Ew0JR2aeOAiS6jGqMbDORygUarq2y6x2+MpGPLMyticdHurxSrquGAK7IEo7R/fRZX8KeZvEZXWJ79703DHFkOhvVPVvc1T1bmx3/Uu3qSfA3TbDqZKkWuV5eT3wKGkRJdDYbQMsk3RkYe/leF0U6ZYZsqnqXc+zcMxo4kJkQ6qqa69l0urEkISx7/b8/hWh9NFJzIEu+LWqLpijqjPnqIZcS++MaX3u9OVfx6t9v+bRMno+fTSJNAnp73ONVQxw1VVUr67cUE13f7eLGory1u62h2sZMvHlgVFZj5o+BYGK8/bdWKxBBYpuugk4FNy/vmB/6LreJzqcn6TQ/ByoqoZCmSKcGbGziGgO3Cg5p6ioQJxnXm5HEQ2RMCMy4nlumxMlYt4vxzxJsiNIMYVjNY1xxtBcs46naQgSPYjUVc2FWzqegWZz8BP/A9b/geC/q3vlMbaFF00AAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, it is a circular exhibition hall. In order to monitor the entire exhibition hall, two monitors A and B are installed on the circular edge. If the monitoring angle of monitor A is 65.0, the monitoring angle of monitor B is at least ( )
|
115.0
|
223
|
[
"25^\\circ",
"65^\\circ",
"115^\\circ",
"130^\\circ"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHEAAABtCAAAAACzAdHsAAAKfElEQVR4nL1abWhb1xl+JbfNoF5VFoWIRkVprWAV70PFKctWEzldBh4LqbO5mDF3KNBEEG1UZe7QIKAN/EOFrHXBCd68Ea+kW2i8qi3OalOnUbb8MGhD7ebWNlVmt0oWbWJDqVxQcq7Psx/3Q/dT917H2fPn3nPuOed53/ec+55z3nM8oP8z7nJe9MZ7S9fzRFeugSjYQXc/HtzV3e6e0eNMx6vvvpO/3vNgx2PttDNERB+v0lrhSvlycN/+/ds3n3HpN2/WY/tiEZNPH1y6mPcPxDvcUMIG1fHu4PBiqxILqUDPRI2LCW7XHmwYK6n2oemWJTgATA3en646YLNlLCd8w9dt6cSiyftSldtlrKf9maqBwFKRStqfaThQ05oxF0io+bjhxcg5FJrZOOMn+x+dt2MwIv/IAUVKq3oWjIXAiAuiJoTjoQWbIuaMk/4ZwJ16Ms75p9wzCsmwnaAtUAim3TLW+npq4hvfkJaV7oF6i3peo+PaHcr7JBdIHjfuS8L2y5/b8w8XXm7GN7YBvUQommV9ectCesYFn/JLbcSicsU3/CUnjByohjeuoQYjXXWLL+rZCp71vs6xDfScGZ5ey0mN6j6oR46HhunlTSKkX1d+JjWqh1rhyXDVwhQbQDmYg9lgkBg5AMz7W868blHYaupHVDpe3eHA87vBVMjMZCrG/dnNJQSOD7Rk/H23sFlMcuc1Im+3YKwHC+rCm4O5SMOQp/wdP//2bvPBfDv4xldOSH+E8e8o+Wubqp2Eir8CaC3nlUQYSfo2VTsJ24eyRDrLSbJsFVXc3G4EUPHrG/aKRs4e8RH0wmyKkt99iXRaAgCqPmer2w2g5NdNImI/vnrI5QbJOTp6/qDLAcARzd+BLpSQi2nTBADFEO4co+Bf1TTtJSL6bRx3YNBIaBs6rW0aAIKbOkvJkHeU8xFNtpeIlgSz7e9tQ9LMs/vqv9TZXiK6FLsThEQk+tO2nrye8d0n7hijh4godlHP+Ke9d4yRiIj2XdIkgVW/uxExQ0RHXdXYop6XvESlLsfSgoiGn67j1qWEm1jXIx+pEl6ipV1Ka3bwEA3/9d/tdPfLuc9ciBleViXvIipFCB6nHmD2F0UiItrimJA8FNHrGHHhb04djRIRXbnpnJEo8gE1beglquxwXpct7ycC0ewhNzHAYJWaNryLaO3zzuteW95F5KHZt4ouCOneNVXCS7TmQtwdnSUiYs8mom4Y2z9TDUwv0dq9DiuC6O4DJ4lW74mNuyFE+xqRh+iUx7OPpcg2GKjDQSIq2syl+s81H4AVSgArlPXAaVBXjXrLrtdtUuFZ+eJnxL6091dE9PxXvaKV3eGV77T8rCVce+XQw+s3aeK/LxIRPRQmIOByHcdHHggVnZVE4+xgW8+L2x7itzqzkr29RO1rppJa4T99+fePZ52UxJs/8Ge/tvrnvz3xBc/V5Q5ZfSDqTGAJ88EM0AhaBk8U/eae8UVGSgCmQzO9WKFz0oAioG9aMoETjG6bA4ATyRZcAOYTgVD6QwActWD+zAAkq668BgJSLzHGnPHVBnrK4kvgurWUC6lQ8IdFOXU4iUwGOEXngJlegICxZ7gTQg4Uw8PyPjqdsQgTLmbC/oQqRjYdqmPgDIBZEidyAuZiDhknAzklVQmYxaRWT3Tdd1hzdlAL5oFoQZVDwKqfM85uMgiMgzO2DnDGGJSH+LYWj37EGAPYLc6YcGSUKXEDzgGgMta9ZXBKzpR0iB+DbtVBAAIfMs4ZAAEQAMbBOJj0JrbAeOnLRxuMgzFwxsDZclCWBgBQnYjRwKuGXf/5UB3QLpEJ4IPjjEMQwDk4Y0yk5wzyA+DCVGBSSTMOznj/pNIX9cl+6pusAVw3mGrBPIBsQseI8UEGgHEB4IJoQzUjAPajzgXoGAsRkfHm2cG2nvGKyTjiiCcBoO+sjpF9sE0AIDAOgHGAg62DC5AfKHd/74aUvS7IjOh9nQO577c/OlrW8iiYDtU5INyrdqOcAIE9/CEAMFE9xvQj53xwTJ3NGOOMMbzdO3tEcivmEG2q60ZxcnwuAwDrFhXToYLZrzefaAukzTZlSlnRpkhlDIy8uBPAuvk/WY31qce2VGghFQoee6HfQkYR06E6AKz7V/WMHIjmGTNX8XLAGB9czIT9Ry8CQstjEcmm5rtyjMYtqmUDl3U5qye6fHHJrYwdbsEo2RT9k2aM1ftNZ+XagZ6qxtZat4JGsGysJEG0KTdGV6RlVSpt0ouFkOY8qDoRo4EzilvhADIpK0LZpjia0X2RGMsmgcCxgCqmrLgVbbuW8UPZphWfvgRJ4sYz0Hqo+mC3bDLekNyKEbqRL5UHpndKtkwZrGAe7eRY6ErKgzc31B4dteiwcqBh+Fe5yqZStNOMEcMJddVXA5IvnDvi6xy5Yk4HAPFR09yk2BgfNB6cNqPWgea0eTPRtQgA84nAzvSSNR2AhbCgElQ62pb+feBC2HiW3dwCnFUi86Xu+KeiW0kWW9IBQP8ZQ9aNByWbNiIm5xkmpw+5wERztWK7w7gc5Zo0muO09ekDB8rBGQDCcPiPKrdij169HopNbU9YML91EeXHolG1W1EEN6akl9xe7TdlnBb8NqdIHJgM/5QUt6IbENboKmiSh4+JT/GkrBUjZt5Hcts26svk111RTmomLdmmjT0Z8+JNxludRQj7k5+cTe2m7tTZq61INBDUmxDFpkNWk6fs5YCffLMOVDvHAC7kM33tocGxAnTqmes6GlfN+8fEUtanuoqOJ3/XVUfz5JqjOD7UsSWWmTOePOlRb+5Az0s2zdmdXHOsZFd6Acin85LMldzwHoomz6yiZV9mhqUX2aby6bxZHVnHJFakeOJCONn8NziA/MiB+wMDo/OWrPx6oCYWjicB8Ea8q2Qtn8R4kpoRzFpfTLllIWNxIh5p23t8xnQ65EiJ7kpcn1a7B6z6sMm4kgVmszKDkAz/XUUoL+2r0+kYdSUmTXqoFGwAXLRpYYeDmyQrvQBOqhZtpwMzFneOLmf7t/r7X9Cvt4YmAB5PApgKTLV2GATgx0RFHNQEhlveCCqdTnRRb3pa5TWLYQHTobrLG0Ea0cryrScLgWszx3vbIvEJeVH+rdyNYB4XIwdsL7Gp5g5d+69rb3aJ3altbX50IOA7MJIHkI/Gk5Whnbdxswtmt9fMsHomGaU9w7ld25/bmrH3FgYdtSgnfMOWAS3erNZ4J7OnjSLXHPBJJ2XKORlIE6EPji8L4aFZUr4Zom9itS1rS4vPX0g/oI5XtQhl2aD6y+6g6aZNUXXh2UDPRA0t/aAKzm6TvrFmdZs0n89vfUq6TWq4imMKpzdmL8xd+qf2xmz9L6obs/A8+RYRnRuwZ7VjVLVw472lykV4SteIKNhB93z9wbByKxgeenLoqdm+YtReeke213edSc6trjpWqGjfmcb7cnYSEnnMxu3Fx9vpuaNRB4c1G9DRVNmTRFR0UsleRxiSSo5H+QyaLeLko+/Ztqa9S2YOjyHpMX72fPxplI50zm4Koz1AROf7iK4tO7rlfTv9qMLBIm51bmu12gDEjt8cxhkiIup1VPZ/l6VZwp2z+HAAAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, circle O is the circumscribed circle of triangle ABC. Connect OA and OB, angle AOB = 50.0, then the degree of angle C is ()
|
25.0
|
224
|
[
"25^\\circ",
"40^\\circ",
"50^\\circ",
"80^\\circ"
] |
A
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHwAAAB7CAAAAACTcLvaAAAMN0lEQVR4nM1bf2wcxRV+e7GxGo6cKJvmgA1HEic+cBpMnKhOazhoDmGKpVrCxQ0xkikurrhWGOO2pnUwUAsiESqrMcJSVNVV08q0rpw/0nABp9gQVINJXcElFxoTDGeUiy5qHC6hZr2er3/s7t3u3v48CPT7w96dmX3f/Hgz8+bNO4ILDBLVLfzSTUlv8JEjZrm3gT2XXOlc0jMcq7ewoQMAHjvwZbT8j/95koho9arPv+EcHAosbHogRuA+f2Yicmz56bdXE10cbmdyIiKn3rlo5Cs2nCSOaPbFi1ENR5UcpAPAeJ15JvtM2u6ocESvRog6ntUlnfvX8VNjhJOzRCSsodJvCWur/YXtclIVF+QGObOHDr1yqnblms1+ujZERB/McNnJ91KHhVuj0RWuhHklV3H8t/vOR26NhE2yjo6NjfGN963yMjM8DFFmoPrqnybtSiTag7V75gCo2mCvE+7J0+3+5v0GeSayh5sCXRlnXi/kLNW2rDNtw6lJTMUC7WlX7K4WGTr/i41flT7MqZPpsHJE8jog9L/7lfU9n7pQJ1fk+9bOHfsIB2eJiAh2MuVqrXgqcbLiYL6Oll84d3kqeuMExoQZ7opeyc0QyRgL12ecyjiTTwZ7gfnwCMIj9eVx9+xSdyjhoPKO5IN8HEDXXQzNA9hfXp9yTz/M/9W+gB05A6RYeQLAFJ8G+lqB+d5A77xLboZJoSsnySs5MFdXOwdAqh4EMFEJAKn60H4n0hzSGxuzNiVtyRPlbRIDsDMKANmyLACG0fL6Gbfb2Xxz5XRx5PFl/QCA6cAMAKByQk6Xepf32Pa9pmZsZ2CsGPJEIC5LifTJCa19alaqUcj1vVMfjFxh2XZr8kz5c7LcPdWSzDDQnM8dDdfZ9KcOvZXquBvraU7OACkak59TfEJJnQgDYIoIaSffbadMGjQ3eNX29qiynDX0qBWSluTZGJBuEkbgZv+Yr+nxRj5YnpHlDofzulU9pt9Pxyqjrvo+JYx4IZ/gFaNhLjiRT23baSgm7Qp0uen7ydzQuSBPCeoi3hLTJO9p0pViDEg3B4dteeW+Gg5l5CfdIJmSs6jSRDYmaBs2Va6dwYqkw5W3JZwHvrvRJNGUfKhaUbZ5/VIq+U13yV18p33fM2A+HFeeHMg/Ft5Sntqb9Tk1B02FZ1qCQ07so+HCRbGAnAGdbcrzZNDQ0phR41QcroocVT+3YG/qLcg3afk0Lxu/kK7/gyFrb4MFOdAf6DwHE6XK2dBpPm38xoS8pUcp3ltwQEsKFtQMyLReudeyagDwULszeVpteJIvsFokf0HtNZiorp3KV8ZasA15u2J9oKa/UECtvRE3wD9sJNBUpa3HiTwTUBrX/w0TMZ3G741ft/GDVnlsmjfMyALyvha5pine7FT2wp325MBk9ZY3rfIaDBXTkjMAqHpFfqnvMfs8GXQiB/bwMZO+ZwBGItbkADAVkv8PVRYeEBgYlqUYnLbRuRg/YJoh8TO25O09AICMdjOTmWXC6D5bXgWTtdWThalMlW5FLsgjvb1gTspfo6vLLKMQv+PbjPsAU2whS/JkkAFAPGRhnbJhC89QAeba+cKpalgnDAr3/PcBICuMWsmc4V2SA4naas3YyaNWp9uANEdkcERjtxAR7YhutTrUhkrec3OoJiKqfO3hhh+e0R+eb3nF5ogcTAKYCGas1bnOfvPUY66T79Ml/EM36HryGR4M82E7w6jbpcYpSESqDmvfy7RLgJ785ZsB9FjvmwD2RzyRA0PBFo2WVU3mTX+DT+bf64iOPrfbbiQ3veV2zBU0neDX5/2X5cfzCqD3yeBEmBZbewU7WV+7LOmR3f/Ma/H1rysv4WmNP0lHzh0PU39Zm60oruaf7nkVT1D45Sca7z0tPx7V+Id8uoLpqz/oHXDwYHnpd04luuvEtRXPSkQknDFtOUdE5y9rfSTs4DzdNOHF7a4K8//qSLxqnOjSrDZXp5nB31Q7ersy/kWP+q5iRGhMJ7UTnRStH0+CAUtXmGxGRoQSUFfL0Qr9LHbA/A7+0asAYBsR0QHV2S9Vv1DBEXGbv+Pck39Zd4P6+NwZEu531//giAhz+98/GyCie+6949VIUhnzp0LXcESv09GMs5irUrI0bxdeHBERd/ndlwaISHr3ZlpNRAADBvdtvAAAS4cE5wP3aE3+sdJTtwNICQDDeAewrQMEMHzYn5K36WB6KOToYjxX5sEFa4SscINElAR8RBztjtH1RETkP9/Uddtphw5ctmrKQ3cbcP5SIqKDSQxed5x8RPT7Z7iVcpY/Sz9quf2cg4AbjuRm+qscxz3igRsX/EQ0ezZM2zccIh9R6mNR/PsaIiIKfkT4+R315+0lbJ6S9QfUs/0CFkbds4NLLSeiQ/VE6bdXk49mH/hJCX0otyQ8TRw9fcP35m1F1Lwh/+d63kwtpZLdf/7ELTlH0+uJ6KWtJN0pRIge4yjJthF1AEB/KwCgudFWpbJlsnk5TkkAGBcuuFe4xr0YJyKiOijGBBOZKIqQxJciTBQlSA3NogiAiaIofyM/yX9FseJ1cYGJn27rAAAMeiGv0i6h6sZSQqW0hFt3bLG0lGHJ3vTDPokglZT6JCIikkpKOUbyewltmSqBVModlc3Mg3cvdT3olFyr3ZaUlkNagLSI5e+IorjIxI9ru0UwkYGJAMAW5GIAE8HE3S1MZEjRMU3nO4PBeGrwqZqwBICPvn24tLTUR3TZ3w70EVndD22aICJaseF9AqQHO8Lu9liOiMYiuiRAWmAiAyRxERhoWgQYRAnpygGIUq7NajJbABP/W5YVGdiOOiAla6pb6A1vAiRRZAAgAkguF0URjImiOBMaUhROXNQoHIMoihvGRRHip9uI3Pa5vAdL/lMGchUSAAjJ3Pk3Key3Ogy37XJJaYDhoJg3oxZ9RESNQ7lryHC8ddwiVOPGSTNVcMZQk/5dbbYoryuqc0CuaMEpHQDA8GbYLN0WDDbOAdXhUKW9jxkNJnKZWkhlJo4PZzi5RdDXoqUbsTAuapQztLeADWuHkCLnTEB3frcwLgrc/m4wzWf1ldXb7UR0xX19WpVoerTQuADRFuPJwY3qPRPzG/S3oH4pg5fy6ao5FPTvOyHvDU8HnN2fquM3h67anOMwVwXZ7e9txNudHb8s7/JWU2J1he6hGg836TJMXN4FYQscrWnp0qf0882LxnGt8XpMp4faC0N4TOqYDRoOTVJDs9wpedi4/c3AMFru4poD0FzwqJiPxgxFFCcsczXsjLH5cLxQRczuWIDoTkNa9qZuQzlbt38h3F9taS71VPq5KsNGFnGIH9BjOGR2KeZ0nZlDOqz3JHcZu8IOnq4zlYtcHWZCOitkyMEJqx1gjxe5mivsHJKCtqenXbj9lVp4uMJWqixt/bExJxHUbreGvdmcmAFAs9W0tAtbKHBZ64yLOvvbY+SakQ9bcE+ORKBgCZWNC1moW7f/CO8xYEMWHw/0G9eFEWFaTRqJuuIuMlQFSKyNadxejEFrXKQCzsxsvkUJ0jFdCa3JGYC5uohxDx4Iq0tb0NRk17Fkqu/KmiQ7kwPIBWZpRe+sUupT7+j2zwVmWcCenAGDQeOOoBoXj3c6cA+vcJgQLoPxlJrIeFA2LuK1tt9J3aFcpxUVkgYwIBWt0p8dmOy5SPvt/Be6MMQiyQEAI8G2jFbCYsN2QL4AtBB7qjmUXySY1a7vKvqz4cTl1z1+Jm/2+oZOx4ho0xGL8qe7vl7+7u25V46z8pO6aTnAZh8IdGrMh2xtN7DTaN7ImFWCbpUvbaR6CzeO5+SdrdqF+BaTYvvUcGMX8BhoLXSpK0v6ugGd258BwDtyoLVbe94LOYBkZ3mw6fljADATGiqf0mQl+hv5cPd7XqR5jG8notlDo2Onaleu2Xy249r72+Tg+remv4jgegXyzwouHAERCWvokm8K6zb6vf/apThyBW98942Q6U8XXFbDA7mJxNMe+7l48s8f7oLr///I7+E4jlv5iX20/cUi/9O2JPCDik8sV+6LSb6wUEH0xE07ipfwGcgnruGIaN2xL4V8NEpEtMpHVOyvuYonl16MEBGdDBMV+2u64snTNy0lotkno0VLKJIcRHRoNYHoZ3V1asIXRc4RSb/eStwsd/ZFTkkoBt728xzkyzH6bD9W/R/PsHzo+s1BkgAAAABJRU5ErkJggg=="
}
] |
<image>It is known that: as shown in the figure, AB is the diameter of circle O, CD is the chord,. Connect AD, AC, angle CAB = 55.0, then angle D = ()
|
35.0
|
225
|
[
"55^\\circ",
"50^\\circ",
"35^\\circ",
"45^\\circ"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHMAAABpCAAAAAAsZUPHAAAKb0lEQVR4nNVabWxbVxl+r9suaIrmSbtV7zQPd41LPIVuLulExIycjsAsVqKMZcoQGcu0LpkUBpaaaQYiZUARATpRpGTK6NCC6CAonVKkClwtax2RaYFMc0EpaWlKDe6omSfNwx1Yp9fn4ce91x/3+2bZD54/99zz9Zz3fL/vewSQO7x35tyVNNHFt0AUaKEtdwd2tje7LKuD4Ibz8qlX0leit7bc1Uzbg0T09yxdXb6YWwzs7era9mFwnvvZb0qxvbGwSdLZhdNpsXegxSspbFGYag+MrNrlWElI0SNFrvxw+9pU2HLmE839J2yLcwA41ndjsuCSz4EzN+QfueJIqGQdviGR/+CcpaQ4VjBQWAqTT4pjZZeiWnHOSUP1jNwQMLL2B1MfhPMfXbuXnDiMSN++r9pOu3KmnMvSQQ9UNcijwRUX2cw4p8UU4E1EDbPisfVwysMhN421wHIg6Z2zGI8WlRBfl6T59t6SQzmffjvbE0z71W2RBK+bGhFtW/xIx9887X0p/8Q6ZFNQlW7cn7bN2Mi54q8usfX0q1bwuLjmjpMDhdD6pWzAwbaSTWrtLINQibdOrGMEzfDw1Tm1UpPE2hwSaIR+skGU9EL+GbVSM9REng4VrPvDK3KBOVhNCoKWtCTans1esXyT5c5SlfPyLS5PBbc4FrTqtipn1/jGUgKjvQ6cv2qXN4pLG8Ry+He2nKXAcn32jcF8uGwar66Vb9+3x3pqrxefufOQujbM1sqaWNxQCVXkxTxg7D0fEYEODvs3VEIV2/rHiUx6DwDyNylibuxwAsiLZhX7CETjj/sJZg36wII+8GMykRRAwe/+PuwRa6LJAeMjopfuX4dy5Q4t0ZdNYsERSbsZyvUN9lysGpwk6mRfB+Aj4cy7MTdNXt9gf+FsVglkhT8BL153MxH5iH4+gA9h+qjY1D9NIKJr8cHnibYfCBERAYENPcM0aBrpUisHgMmtJQCYzAAgrEqeK/ICuTkPgLWO10r7aMHVaCrwOAIgok3RNBG9db6lVtpHp+7xVpEHCEREu04b2yK5Hc4UEQ167tuxrSEArPX7AMelWQCgrOiy8IGt/wZr9UbKC7F4+5Z3AUzSLJDqBADQfMwl5T0AkNpa8jKT0tJ4tvmOZaChlzaf26l0sc30gEB08tlM4zC5wfemZqPPPPD++T1EdG/t4N68FiYI9vUIRPTcYAQC0UW3dBDonS9RRqSXJhYv6NJ858Ju2n3t/GdJIKKT97u08Qn02q7OV0T6w9Wu8Fl9YiTjZmAuUQYAT5Fjbm2wx6VFABhOIB3TZaGQrdqmgbXOAh6mbSEeKwCALL6J5XZdou+qq87act8kUfa62POuOhav7f5kWiQiSom7qfn9uhQiImq20xTr0E1EZwDM72xbdMo7LmmKdt84kAvokp0MmzpwfIzoLutUgKO4L6ppKqWmLFD067LpbRiOeJfIwkQBEohI+OPHI78X1aiXO4J1XVpF81VPghZvuO2OtimbDIek+ZrcnVMw61vJ250vMQRcEDNW21+xJ6rUxwEg11wEsBrWc7pbKxrWxDyAmTvNlR8sB5OaescBHOoBYFwrLvcEba33HuQA8MQTpnkOS6mGAyByHIDJnhA/Ac4Yc6d9Lt6iCFgOzRgTiz2fzjVEZPwyABzV676+8BoJm2nTJleT9ms/aAIRUdNs4rI+7Y094dOBhphfP7SJiOivbfqsE/sBziqOInIOHG2v9txUVNczE5LeWyAHlJ2h96gugeZjAGcVxhg4q4AzVgE4YwzVjxYq7zjFGMBYhTH5wafrx6PY25HT1YyFoPKNLOs5syLAWYUzADJwDWAVsAoqMrQP1LjxL1ZQkcEZA2dXAvOsWksm9JRsWD4Do8qEatLr0wRpVRFQBq+AM8aUBnAG9QOAywDyW8+r0RVwVlnccUUbkSlpTmGs5y37lcvdkn55wofYAhH5SOCc+4h8W7ZsMdkPORF958u31UfdPfiYErj60AtLPcZz/3hIcXelDfdnn7B3oUICEW2uCEQC50QQiBP5SP2opOdmv1n3T0QH/vNDIqKzu29+PahG1TPPPKx803sNzcFfAoxVwAFWnSy6OaRMre5D6j9jjDPGOMsG3gSOSMdMb4KFpjwHNN1BN55VHclmvXAgHTLud6mdbz/cvmZuuZ+Mw2I44SN6cEYR2DiK9Uh8t8mQ696OHTe81mJuuf9Fv5J1ps9YF3hmO4CKzbbAAUx3VIM1TG8LTlucMFn1/iGLWUMacSBib7IHgLL0ekMTAKA0EFlbky6YNhFjA8q3TrevcQI4PGBPyIGxPkPsSttQ2fpYC6mW2Z5pc87CjU7ndl68YOhXSTla+kyvn0uSsn+Z2moIABJJB7Vn/4guory/TT3rSyEzW/NwAgAHhsZMEgkAcg4mxoykS19t21+GUisyAcPuDlnMAADyfrOKCeDAgNYcM3k54ocbY45K9cfTodqxphU/oS7KRMJMBDe21FSo4awsD7U1qubxMejQpxjaVVuqOSdGhqwp5ba5+t+1yKO6eVEILtb1D+fKVRrgfeauW802LukP1moVOBKr/5+RppXoOiwG3q7mBsCnlRKvhsy96prqMNMuW+jsJemN2k95uG3FJFtyX4NXPzYFAOWwhfdE5+swqW+0XwtxrLX3l7RwPeToVP1rheYi4Ojr4EAuYN6qnD9XrW1W+qlFNblAptaQZ3sAVz4d1XdldqtRIX81bO3oPhaqTaw75wAsi86+KwsfXW07yLb32amqQ49Xi/hl4HJgzjJrvfqZ6NLf5rkyHTiAOclOGwPKEe1qnxwCyh1j1lnrOeWuYX3yXJvSDDkRythSAquKQ5nLgTTQ32OTs0HNfkfnW+ZyWLmc5+z7VcFURAYH0kEn37KlDx0AMNEFgOOE5MrP3ZcEgIFRzLn1oQPQvxUoShkOyCOhZVcmvlIoBZT9q9pbAatCehPGSmi4pgUkBwDkOnrdOtMWpRxmPjHQ5qBGG8wm78Vj2uuurD8PpNz1q4LxOD5/a6/T0BtNNdeqb1z6xricDC4DnLs1n8b305OOmQycHJiWUgCwJJVz0R4PTkrO+Yt0u3M+mzdL0el56bBZsiXk0e0LLsxqRk4OINcVWUpHvhVYgher9OnwPlcvHMxNb6nMnPSV3fs8OX+v9AdTQLdARA5vpUw5WWsGa9dfP+bhXUb+G+JYGQC6Z+Fk5TW1941+NEQtfz6fDz31L3vFScPlJ1v/u/JMExFduxinVnKwIuobwYHJX6rbZT7R3O/idcbxPn+yoA78yUGg28GybNK3l8YvdWrhwlR7ILmqtsUEHCuJm6NHagM/SeRoPzfhHMalwTqK1ZGQ1Ddl6mxamegVw6PVnY4D6M5g0onU+P72uWGiwQYbON569ZUF3Zvf0hsNb34190z2sVfp2q5Hn7Ydzs36iGwJdPKMxiYQEQmBRx6h986cy/+I6OJlIgq00HWf6gxV3zZD0PTs336O6J/nd9hPIX3fXroHwKT2xsZuPzBN686AtW512It0nAeIMui29v9x25akiIio0ypZg6s33BsMzz6A/1PO/wEBof38kn/PZQAAAABJRU5ErkJggg=="
}
] |
<image>As shown in the figure, points A, B, and C are on circle O, if angle C = 35.0, then angle AOB = ()
|
70.0
|
226
|
[
"17.5^\\circ",
"35^\\circ",
"60^\\circ",
"70^\\circ"
] |
D
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAH4AAAB1CAAAAACtjwqXAAALH0lEQVR4nMVba2wc1RX+7j5EVRbcSIuyKpuaxGswSh9BBmGEkZPWFEvNRlG1klvVFKeK6lahwgjbNZJRUjUtgVhAWhBxeQWVCtMauSX8cLGjrCVHWHIqV8LISbPmZdMsLD8Mdltjr+/XH/PYmdmZ2ZlxIk4Uz71zH9+95545995zzgoiKO05CQDB2wNAKHjT19I5slt8QfAEaoBH0z1fDLwYqwOAunNfDDze+C5A1GwEHSK46ChNe/DoBuAjgVvOdQPA3NHRDaBvgPmnUgB4f7p5I/BgUEKOzIm0npeBOgkIrrJ8NGBzjTYgeir3hFPGCwVYe/OAhWPmMsErGPzYf8tLAq+gv1P//iWAD7j2n07uu3VR4t15AMkaRG9P1tZfGWD3CQC/cGps/N+bVnb+LIatXwPw/ntYnnrng4nkrubmzZcXnuefH15u2tU0mJ0dr7OUzYxns/HMvq2+mODp81RVSuF4ffKBWZLD1bMxW0Uz05lofGaRpPSmhnyonXxnrO11SpIzienBFic9N9Ra1Vvw2qdn+PmOqu6LSrKQGmLXQZeqB6o68/Skhj3CL/XGDxbU/orNfWTDiFv1fG/80IqXfr3BDyc6Svzs3E0Ww0vuLfJt1a4D9AE/37xjspR7qW6JnKxzqiw1lmfrvldZBCrDy6nEYcMqTiVyJPs7bKuacsW+6pnA8HpXL8SNXMxfNyJJth6v1DFJDsWHbAfmAV6l4oHUDKnzdOX2fpJkYtYDuuRUste9SgX4xZbGRWN+fxtJMh/zgE6S+fqMq4y673hv31KdrTLkn5p+FgCQvcOjTt185ksNc0GV7kjVk6Z8dsu8knBTOlZ6pCrrXOgGP3O1+dN9LzGhpm7z8k1rNByfCwJfqDHPfWnH02qqotIx0+HtjtWd4YvNB8wvMvq37qx0ykiSZNtep2Jn0evCMUU41MPlb/JPaUUTOz1KnnowfDZ/yLPoKR+4PJEqGPN8PfkxtW3cm9IxdDmfHCaljfZxYv7kNWbFMhufLg3Fk9LRoEmSU/EZW83nAD+fNMv2UmqwlPGsdAw0VG27/zjAf+eIOd/Sq49d8uUW3+iSfRm76duL3iuLD8Aodw/iYf0AKfCPWz1LXqlR38zf7c6gdmNdSk5pgyZJOZhaKomNrHDScaKxupXy6dvCd3XQKKXT8VypTPpVOjq1Hi5/Zwc/Fzftcp9ca56tD6Vjonw8Xzb98rUnfn3AuMut7/3FXaYKE02+lx4AsLntSPnq241y0cj6joyl3K/SMXZsnb4NfOcvjbnjO5YsX8xmH0rHSJIdB63vyuELVXm9PjmReM9SHkTpqJSLW4W2fO3/9H3tmiqAhcxgtaU82xhs6QHUNL5qudGWw5+4B9D0zefph5oUASmVn/WvdHT68QtW4bMyaLrakGndr6+CTsGUjkLFuGUpy2b/Ynsp/diHTwJQNm1t/utTtweffbjthQqzT86q+7LkSLVJTyhpi9LxYUyU5a3LJH82oSdziamyzqX99crzIIqxvCmvM19l7niTllre3X+zyWQIAIJTNxlqa+TZnhJuzBrRSpKvGnlO79L6+uHuH9lACGV8gV0oTacNnaFs7fVzVF9L0Y57mtIpsfsNAF1emc83zYtvgX8/riaGUou2KzpoPel0gyS6PeNfYdpNNeaPKTexC9uV7D/v/WsVhFnfADAqHaWk5xwBjB71zP0bLxhzIbX/O5XHuVoQwCd7n1bGIUqLpPyduE3LCAAYO/q4Z2CFUucBlkRP6b8nrbiEcnUQwHqmfa+1mVJPKkpHH9TvumsA4B3v8HUXAAGxRwghRhXRkwOjoCSlbHmdJA/YX4qkojakmiZJ1Z+Q9r72L2WUxulRjiIXUQa/NQ0BCOSvBfBsdtJ24EI56YjS/OewFQDGTnpfgi0FpfHJ17AVCAHEwE9xg1K4fBVw5ld/i5VbepX1UpSOTjV4FwDu7PbuzfvyMgFgrBu4v7sGJI8D2peTyHO+esxWh0pSll2vutNkzsdnR55TPvwBADkS5NyAXH1jQCmMfbbS8IRz2/KTTlrpxjvNJ5V2OQ4gR3AuTbk6oMKD7e0ubcuUjn9arCLJXJokBmSk5yjmtmVeQ+63kXUZwbELI+thsAhEoT0AsAgRAc/eshbFGiJFhMQ6QmEAwEd+fQgATu0GctgmBAGwGEExCqyHQtfcfbUUoAAFtAe0FJ/fuU2AQEhCgAwTwH+f/skmHy60z577FMCex1IIkfqOJ0LrYEggE5NqXxTqQ/0jQCxsUZLKh6E8hhs2wccWuHoFMCZO1gqxm1DVziolV+Uaue1fap5yVXuQlGskKSduUF5LylXJ9c8lySPNJH0cOKbqjbkIsK5o3lAxQhH7VGHzehghqA8AIAVk6M1vQ5YOh0IAOPPElJLxOvv/xIy5EABZDEMgDCHw1Y+Ka2uCEbm2HgbUxxpFpLi2FsLZb64xjKLh33L7iaRXYIUWrrHAh6NRoY2kLheNRiFENBoBoD6iAiIajQLjO6MRIBqN6v/3Z+6ygXAjbUsvzV6h9RCI1IxLy4+Wrb6zgfOH/YbOvF0LQG+kwa+vQUBYDgMWKrtezfUNhf2e+3LK7qI20oInwsrGX/O2S0vlpFPSBJ9nfu8/cGS21pgrnXQBANURlzgY5aQj9Pr33fwD3y7Yya1G00VZ6MjOMt+oTtbr1aunpv0fuLNm04j1jrfztGPLs7WmT3ah8y9X+gUHxncBMIirRSkZLllW6u8w6rbiHUFsLI6XLJXqnBd/6iYjr/uu7PA5cQI4mzRvjyFrjczLTs1Ny3bmpT/6RIcAMNhqHZOFTOYFI+Wv0lKSLFRPOFRz531F88KOTeMOk9flXgB3twcyMpzcbrEUldt22k/YNzXadI4tPxQEHS/us74pY1DJsGamkk1HTifng7DexrBmZ1a0dXwqhmRJkkupgNYlL2ZFzpstyioZrDKttu7rypSvKuvYxp2Q3P2YzbKVDMmvnD9WWjo/K//IvqqydzajzNlNv1XzIeYSvq4VhsnH82VnQjt4aXEnkJJMzCpvVnY8EzA2z6s7gUsJkzOFNFyv7m8NAk1yLGUTTGLvyRqsLxrwJfXrlRxJBfOkcKXO7nOx82QRrZv6laR+lz/bAAD4sP3PMZsWFYk4/HXbQ6n9WD/Q3Ygq/1Wl03jEvn5FUt2IHrwZkixzohbDS6TkkSAORFJxohqybvAK6S5kkprSmbD3hFYewnxy2L7E2X/f2Wwwa/Z3kCwkRw1hQT5opeGgQ4mz/74f96nCAdWm8/O2ZqOlzzvtTxxylEkHkiykSsETm2fJ4422Vt7KdHi71Rmmk1voyFtf0cQ/HyOn48F2WQ7Hc44L5i1wZrCFK6lBBtK2R64+7VzoHrU0kzpQJMmug+wItsuutG+/4FJcMWiqaZGSDSOD31oJMvVChaApTyFjxfBb8Wn/2JQbDRkjeSIxMnl9o/8rjSSHEkMVKnmIVpxKtNzU6onzlzBc0EDzt0az/oX+EgVLkuQJLVTU8xguegsVdY/X+4MQe9AD3HNh042HPoFnQ8rHD34jdd6L0ckNfk7kyMdFCkDs4el8bVfeG/jCvdf/b+bgFZ6OwS6cQTcl2a39/iLfGWvzwNDh1qregtdFcoEfUMoGtHO1ZOF4fbLXNXRCDxH3KCYu8BiwCTKb7UolWo/bDuGtJzPxuj5/lwDn+Py51Kj9L34WTo1lLzZuqbklhuuqcbl+HuAIDwCfTZ+7mAXmFqD+OOLa6wP9OMKd+SRzLr/88fgbABdyFb1RcjTtXOESkNuHNwqg57IhS5L8P1ohNfrHEGdKAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, AB is the diameter of circle O, and the degree of angle ADC is 35.0, then the degree of angle BOC is ()
|
110.0
|
227
|
[
"120^\\circ",
"110^\\circ",
"100^\\circ",
"70^\\circ"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHsAAABuCAAAAAAitzOLAAAJwElEQVR4nL1bf2wUxxl9c5ggJVauSEdYyqUu+BIfOhK5chIR2ZVN4ghHdS1HcQtSTWWaxE7rP2KpRrVUJLcSlVxBVKLiBEKVGqmVrNqpCdBiEgJHBRKp3bitjGyaMzY5HC6YqpC7Nhe429c/9n7s7u2tZ49znrS+nZmdeTPffDPzzcxnQRQLbD4KYNXlUtkMrqJRQ7zTNEF+f30MAGSaVERu3LldCex9shsAxJfMfboMAB66JNXoInO/9zQArJdrdFG5eWf0WQC4/LBsjuJxi/nqUgBzrz7z5XPjT+sA4JWnWorGbaU3lrp059cNwBURe1+WGmCRMKoVN+QgS4l8LXX4bGL6WhCYuQrA6+Py6gd91c4nSOE4y9X3TwWvVX+t/PFSfL0MwJU5xMYuf3y2bMMTP1rtrChJ+ahUSXKq26dsOzCVjtOjy73iXv+uj5ZA5gICN94+9Om2Y35dXBa3Wm+FsOOTT75Z3vad+yXnFnldi3SVth7TycGACV8PSe5TBoe3uXsW5EqU4lbJjzvc3RELUg0Dyoj2Mhloi4Y73V0Ry88K4Wa0x9O7YE1LMv5iYCZdx3iHb4yRHk9v3PJTQxFS3H9c05FXjCrnqtrimQB5XOkjI61lo7a8i3OrJBmur7xg88mo8oYxQ6S2NkKe8Tcu1u2Lt3tM2Z2/XuQu75gWUrOxfcoImdhVNmnI0A/U3X5FklslyQFPjvB01AsNDTctEsd9L8fJYc9wNmoW7eQs+mS4tbITnb7JfF+QHPP2WidE2wIT5Ji3Jx1xu6KdJH+sn+/zt1slebOh5qYpSo/9ilEm+vRBZZ/KSFVLVAv2r4qS5Ov/kOImOenrSFiSkiSjbVVh6zqrJNW5JxsWGG8NhEjydkVf7pc53DqaE+79NhULBV62HsMZ9HpOqfylO0hyFn+Q4M7iovtE3jRVHVYGTFXNxTlvV5wjq0LkrNXCnodbJRd8/flLTfQ8ZKeD6Vrd3Fo5xd0bP0vLfNZQAwvulIbXd+Yvd6Gm2WpoWeCQcoCtzWQ/hsjROkNaXpl31SesE1TynNLHRcSdwVRV8/VNvZpN1W7MlI97wJd/7dinnJei1QpIdCvvekeskq251QueqXwFRltqwtmSZXCoacxjpR3W3GGv9URKctLfmZRizFYtroSHyywWFmvueouZQCtuUBnOrBvS6P4Fdz0vyT1YlUfPkp2ByUw15DFdloj7cyVpxR3VlsVcXN2Unp4donaUp/w5s6AVd3eHPqRmGhlU7OZYOww2k1tzzAAL7pDHNG+o2tPnPZcNO0NcCTPiiZiyWuwFd3e69Ta0ZoeLW98+PlGt7QJlze9MAVjRehirW/vMWXPq+Km52STJifKedK2dN5ucKkswYi44l7urJycqbYCrhRGTZO0JsqN3Ee4F97WcjPGXNAugMKhUycFGMuQxjpKc/v79c4o56kr1nb+VO+pjQ3cLCKB5/CrKa942pZlQecYcM6ocKFjUWXT3kiO1higDt0p1oizzmorUDPC7Jp/yJpjwzOqjDDIXEIfbMq8ggH8/Oz75GJyOK7PYAfjLR7GsdcBO5l7j2pkxwO+i3SkRDjaSF/z6BBP31GpD0GyA3w3iSpiJUv0gMun52TpdILbjt2NbinbGvaL1EJbVnNXFmLjPPJU9PJvZtOK896462ogX3kqg7ow+xiiYNdnuThngRUTtcX6g73Aj95wn/Zbosd0EFoTBRnKFbk43yjwUSL3cqJseD6DIeG78CjZ8lA0buacf0n7PP9I44kZxQdzT+hv4/mXBTQAI+QGAr7W8/ZMiMwMC+MFA0q/jLtElAdP1AGI7ImPeolNTABt8x/xHslFGmV9bC1x8YnXQmxlpRRveAgBfPuhdAMBUsQZN9IU4uGaYS4a4cryKZBMADGXG2OiHJKnMZwzwokMlye4f+kmyaYijmADJZCIRD/ydpHrv484M8FP+ynOOKjC15qskbweinMVECQAX1N615QD+8r//fGuPk0m0/wa2veDgCJ744nMAp6tL+Up7paZrb1bOA7hxBt9LTTZOVIzytRWiXQCYeVO4fn5Q07XZPbP1iSTVxKqYmkyoJJOJJLM/mbdkIkkmk0wmtCcrc4n1XTsg9ZJsmmA/PiRIlZ3J2Y4kSVW5ppJJMkmq2R9qb9no9EOq6fME6Q6vIGfrtEMvFyBe71fWUaiAKI2pyaQm75Qgs/IU2b8u7SEgdm6P8ouzHdJSj90H/LkBmL9UDhcwF2VkdL0AiNKYWLZsmXTvAd3j10txz2sjMdk8/70POLkFdxpWNaAEcy+dBGYIkRR4YP5R7ZOU/pjVyBw++eqELGkq+9XVJxtwFKibBkp27sU/H33+CGYPChc2hFxJCBdcqipcSP+oLuijVaqu1HOgvRIAZiS5BRAKbGGmCQY93P+ivNaQvF0xRJUqm+SVreV32ffsHRUF4B9yJMD5Sz4IiHePyks+VKEvItXoRJJ6m0m63ZmjcTlY2UximQtAWcm0fMOB5Y39wNw9tQelp8EP1unMoez6TQCoPZvzuR323i/EuomDqf2TBIK1ukCWWwDA5jPmr+3xDsnKTG4J7s26gGkRmq6LOCOXBwVF8ish3VWxaV/iX+6ow51AQHDcq7+lNp87tAwuFTcAMfhdQ1g/AAx7/yVAwjOnD5r3/pUrg6nXJcCxQJk+mHPW03Z4KVg1pA810jDLxeqMq0gIeaL2Z5qeHa8tVbP3dJYaujLXyJyvDBV7GwgA4PWKK0ZPiNyz3LWNv1oKaoi+HW6zKWLRLZJ3X84Q8ZidIKwM+53RN5ZgiG175KfmKIsaRtfkubO4G5zySd1Z5L+rKRQqre5qLH3Itq7cWzRRp24adm/ckrvTsqynzd1cYXBwN2d3J1kInNxJ2t/FOkbYyV0sbe6gnSO+qdeyGRbjW9s1JBsq9hdJ3bbHRvLooSUW8zlwgt0b85yjFOhr4QAjnnx3THY+JqO2PiaS6HMH8yUt4lvTmShc21WSn7fZ3KzZ+sYGxmeevqVbVpwdMgrgRk3sQnnenPZ+ue7jGx+7mM3qdHUb/8YzQ6U2OReT3EDh1zXDiv3xaOG+c/mQ1o8c37kCuBfxGcyHoM5nMI+6SvlKjij5fSWtEdme6yuZA3tdS+lY80crN/zshryaf9qzcf2lLVh0YMi0QiXDtr6xBoQ73V0RmWKd+QRLqPzI1uL6BKewcKDK22NrU0x2KTWHblJyGyt7+J06jpt660isdnOtXx+XwsVgMOhpaSuXPtOW4Tadb149/V7wWs2DOt93EfvrTPicd3N9/QOOZj6ZdlOY25Ly+b8chqC3HMur1z5cJf0vTBn8H4rUUskHPHUwAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, the quadrilateral ABCD is inscribed in circle O, AB is the diameter of circle O, and point C is the midpoint of arc BD. If angle DAB = 50.0, then the size of angle ABC is ()
|
65.0
|
228
|
[
"55^\\circ",
"60^\\circ",
"65^\\circ",
"70^\\circ"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHQAAAByCAAAAACnqKrmAAALR0lEQVR4nNVabWxT1xl+bgI1W0NNV9MYYeq4BOEqZQ2EqnSkOKxZiyaqsTVdKjUVoaKiUn4saDHL1HQgjWkUtpVN+UHLJkxbVhBp062tGlZaHBNWutBB12REbeIkTSrMgtYgB8nYzn32437b1869Jv2xR7Lvvee89zznPe/5eO85r0DYw9ULA5fCwNCXBDxLMXetZ1lVic0yBDuk4x+8F75UvWTpvSUo8wIYHcFU79BYj2d9bW3p10I68Ke/xAPrA36TrP7uU2FXXeNSy6y0hIkDVZ6Wi/kk+prd1QcnRelBzF+aJdJYc0nD23klRJLsqF/QOjEToUXSsW3OlkszMkqiTbc0x2aBNN7q2jmRxZFTnVira2diJmVnIu10b9NTilk32bQN3q4bIv2iduXZmUiyEb5ro1pR0/fykva6d9vg0pBu8/bly89HGnJ1kfaUVHDc1VEQabqpPG9186PX01oA6eSG6knpTixI11hVXTzXe0U5Jqr+1d6wU54pIVie3zSU9sxbE7U3DXY52wvQToKq3x5n2FzCnLTPqQ61QppWefFN16BFUpGcKC9cTwN2V8QzCo8Mkcxe2ihMb1jeXoAVzfDkVKdcqFx4UdRnbtPm2vTsKEom1uw0PAcDpKlNQ+UT2YmFYszTSVKU+0YogixSkSTPuvIu1nbRe5s2xURD0UAWKUmOL55pjbCJDq/acEExGjQlrd0zu5xkW518EwIQJLNnpKNftcxSx4UyLtr6ugAAwyAjFVKWAXFPL3kDM4IpTvoTpBgNkAyFyKzmbdk2q3SU6l//KzIIRBmQ2tdIOuianG1Skoy5FG9NasIigxF2Nzlny6J6lDbske8EydKGGt02qavPLOKysQU1TQnsedoJAgWtn3lx+p4XDM+6Ckw4LTjK9hFv95b80qVfbvQ2PfJDO59eFjG+w3funepV1a+baiqyMnxj5hSz73obXG0xiv7znQGdoK55z3tpl3QG6Y7qilCKJB2TadeIJqwjbd5pg1GMQJ5IcyHe7t14UrqdcJLNO7UsHanHzpIWBEkhN+tYi3ur6iCdryTP+s1IL7otM4rcESDJSC6vufdJ926dJ/DGJjJdog2NOWqP6g5Y7pHC6b05XVoAR15IBA8VQ/OMvlgMFFeH6xUBbch88F3LpHwu6AMAM+arv1vy2vN9m4sBQJDXt5ElAAKndAUocNswKSIkyUAws/+ONLk0U6p5m47SYFSVdMRlnTOKKEl2I2ocNT11pbvNnLqqsyTpUOdflfRkwDqprKlhyIg8UlURMvdd3TGSrOzNIm3fKr9rBcEAGdU4RXLyN55NJ3NIJxwkRda9qiSovXfQDwpWF5i9NQIQ9SmPwui+1x89c0cu6WEfAAH+z5UEtfcO+O2saGGSPsXzOvNYtW+gPScnvpDWEX8/5N6sahpbbJ1ShlTJIy9g+/G8csNSk3gmlHdUTafm2yLkaaFIIK78dsmbvz/3RH7ZkTIAwM1TSoJGamv/lD3rQBQ9fddwz/G1MwnHJNKSa4ovrDbv1M12SIW3AAA3Dd1iQXi4USKdUixSoKYyHrfCSbl558e1pMwBawUTu79leDkvposTJMlJpzILqJqWXLOs39DWuy79MwJAtCQ+ttABAIjPVwalRjpl+kY23n/kwRWD7d4HSFoZ2MRwmXSnGVDtSCVTVlzB6Vf33dr8qMXqAQAEXPbKpGpX1Ujj2S9k4sqL7bWh1XYoAWBEni6vqZqqzev+EoD2UWmCoadXTPa+vNogY+XYQWne8YVZpP5BAHkm/HceebBycJ9HMMpYseqoR7p+VqGkqM1bfiHPe9df3rvoJ7ZMqcOIPKv/e5OapIymk4GcAy3W5mroLdz1d3wlXU0WccldMSm6r9HVMlYwI8UJp0JucFfSyWRSzOGYvVXrbY+bZVjGhUrpqnPM5gAoLkrPERjoNp5oUcD1V54v3V6oKRUonTes+dVq7xXWnzIKC5efKztzvOdGOdV+FF6fRZpKVX8wnSLEVGoaYCr1ry2VOP9SRUrKZiqVUv5TKaZS00ylpi2Rji4BAEz31GhppEgxKYpJei6myRSZEpn6a+2dLyWYEpmWnMqUyKQoP4vJpPyzZNMfHM00KYvk00yhaLrutSKQqRQTB+/+Q/Ngo4MUWCSCAAUBcwVSQJEIaXDPgbX5CONlBICj9bo0kgEAiKQ+9pBimmMt7s2fiKKYpJgUZXW0fzVZ+llAaYwk064RLQlkOh0IM4LB5KpT5JsNrrZLTKYppqlcSDGZJkX52R5pwkGSzPz8TychMopoav/mjlXYGE+SYjKZpHpJihSvJ9XkZDKp/mbGRcmWm0K6tDlA8d+DArYEfdNPtC36fvrd+a6KJUuXeSqdgDAXADAXEG4ClOe5up+FzlsKgNGeV3RpAikcbgSivukiYfu8X+NE/cHbR4YHYheurnHUfOO+BZWWis6NF88eAvCMe5eBFKg55Dvc+NmdxRhfOXQLTtQfexiggI8Sp671Xul3L1+2eMXCVYU4iwDwc8cu4PLyUf2mo0AMbwkDQmgzgKfu2AX+rf7Yw2o+hfGhz8c/+epscu28tbeuvD378D+/p8SnajYD22HYphOIw9iM4TsjDwAYWjPohKyrvkQKQHfiw6vnvxz0lvndlQvud5gRmNGv3xXAfyr6DA6YQNQc8ilbogjGD8DAqi+PAoCh8b6Jj+PdxQ+UVC2825MV2pBFXBa5A4+veNaQJkTWARDWhaXHqWVvrc5gNW++62f/+0lsYGS0fPFK5/3zAmaSFABMO6453n+mz9gwAo3Cx/b+oxgUTtQfe8jS52r/lXPxM4kex323fXuRf6kHoGAob3TNpeuV+zPazXDWRgF46MGfAWYtnBdXL8QujkY/i1W47v3munm677ju1g+fG8j8fM064Bu//48P61m1atPM98to0gtXexKnpz52Vrr9vjJ/KXCs87Gf9i7MeClLU3y0sWe5njXPmMiZc6Vfml8qnfC9Ha7IEs2eLZUDvi6n7gCsMGfwnV9sd3VmJ+c7yuxydilkhXAO7q92/Oi+naQoKmWIuUnTtU1UWe1Brdz5ZytcWzoSDZvk5Rr6ept+115Rjqfts5IkTzZ5vU0nqRxPB6Ly/nBeUu0gvsvZZbNlEx2Nroq2T0mSna4hkgyQZEC3pzdTyIE9XSdCdY7q/YpjIoccRIKkfDCdx6Yk2VfepPUmaxhpry3edFDdBU00VkibsMEISYZqNMk8YSSBSRus/bsrnQ1HE1rCRFVdXNJMotih2xvOGzDzaS7WDDv3NJd7tp0wJGkBM9KJdBQRK6TkIbfUi7qcJ/RcRsZ051a3v/V8xqsd7g5FLBSiSAYCulxLQVA5W3jy1fqSqv2DhpqI5LQ+CApRMoqAvrr595/Gald+pGc1hJiNHdgobDxociYY9mvhXhFpso0YBGba9HpDCmzrWpCh68XfVJXUHzX7co09YQxsMwm+sxrCZ2jh3ha/e6t59GKs1bVT14cLCGyTMLZtQUtMY337GU95S6+JnEiONTnlYEUxM0t/tRyW2dXlfJfxow3Oe/YN5BDrrHe25o/do37kzgRx4sBqz49LNhRvODBmWqDIvuZF1Qctxg7YCbX987Xa75mH2obDtkJt7QUVv/9etxRULHjloOL4ua81qFiGEj49DsCzFDd9Z0n51xs+bYCl3V5z5IobzMZhQajBDu1ZsLblcCOkw0X9Ig8JFfo0JVjNPqu1Ti4ffwcjWQPd5GFGWNT0MPcCQIVH2+I1mNSefS12JOmbebZgTdNh+GYWmm1S9Uy94A5bAKkPUUDA8OlZChqy1t9CiJCRgK0+mhtWh0w3ZghVsYPCp8EbgPVp8P+d9H9H05fEye7YfgAAAABJRU5ErkJggg=="
}
] |
<image>As shown in the figure, the quadrilateral ABCD is the inscribed quadrilateral of circle O, AB is the diameter of circle O. Connect BD. If angle BCD = 120.0, then the size of angle ABD is ()
|
30.0
|
229
|
[
"60^\\circ",
"50^\\circ",
"40^\\circ",
"30^\\circ"
] |
D
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHsAAABoCAAAAAD07tCWAAAK0klEQVR4nN1bf2xb1RX+3otDkDAYRLq4qzsn1KyODJurMhFEwe7I1ExkIdsyFUQnBanEW4NEUYuIprJoW/8IEkhBS1hYNRFENLI1UoAVLdmC6q6p2q6lBlFIt7rYXVpIlzEc3G0l7/l9++P5x3t+7/nZLmXSzj/xO/fe891z7o9z7zk3AlGaphuCNjWqJtGmXHr0SiHbYvPJL60BADvrXAnsX3z1AwEAhM8fO5m+Y4XzSsCWgf30E7gZwP/C5s8NC02qtT93myfT5NRNVwJVJYeRxaySyYf2A2fKlMNqLEMr2gHE2AH0WNa4XBLKmEUH6hcOnj+Nf7wLILCCzQ0bG/x6favSGqWwKQA4Gp2Zuaq5c6UfriCAt5Zw6oM/p06Gw6HbNODVkYktlPyvExGXv3ey4dft3pH/6KqkJiK+Gx+Z09atnKzHm+lBv+/HcTLeQJ7c4h5IKXqkuT5voKhLnxH2Yv/KrTGS5HgbSf6tt37nQnGlI93ugdRnjZ3eVd87n/0dGcj2Zpd7a7xQRbVBcmt9/6XLxdaaU5lwRwo6BmfzPRpc3XWsUFX9O7/Fu6/QvpLx1+qdaxdvXX+swE3XpQsfmRf8rVPFMg4GvjWfE6DDtumIic1n3EPaz6kW6ibZZEtwvLjJgPuIQYy9BYzYQ+4juma7txcLnW33jhSN8Yx7tGJoA7a8LTiv57QZtMwuOR0n7u8rD9AaOxXqSus5stOwskhyXrPkFCrkUlt7ugjbrid67DnfruIKJ73677zAoiVH9gaSmq8OAFhRpEgJ7Dn3RHG5MrK5CLPQifSgp0uzIDjq1YHHyJ2eUuBa7EWfEZqbR0q0ll9Ul5zaMWVPoAC13EaSHaU8sAZbDvXrUFWJ/mOlB26yJfgb5uAfa8/zp3tIcke4POyeLpPyD52ZEq1JkocKS05u68txd+wlyeGysJXhdWZjM/FNO2jmvJxChSnfSyrr00CaVLjjYTtsheSMZ96svK/PjFug7HBkl5zCeIO6wyV6SDKBvXbYJOMWu2KLYfe2oNySy+owPECSnaVMnscODZkWyzUlV6iO1CWnDHSSXF4bIxMoCZ3DHm8haZzQyhF/Oai5ZvKov3VKDkxxSj2PTZTe2aCQZNpzzKxQ4UCkHGwNTbYEn/TZHCZyPVL13mkF0TlWITY5669tL+8kA5JcdJn5C4Wke65ibI6G6hpUL2fjTEQAGH6owezoDpyC36TAhho/fWDbvO/xC/Y3SJIpt6mbJDnWWbnaPOuNey5pvJylYxVBjHz3CxYdO9hSudpYtdDYOnrjz07fEv7ecaBYe+0XSX/MSgW/ccMpg9zJaAtJyqP+b5TamkAeCVgVpuuqOnq3ROnJzlGTg2UHACBMUgReeMDKeofW1VVhc3gXeP+LAAh0Hh4aa3z+U23pqx1vk1NrAYjIjG+xEhINVwONprPCg6PIDu2dv3t9tvGppULp8vJXpGe/3gxAxPHVXishb91WFbbnfQQdp/KX68BLx9QlBwDg/jD2fLH2UQAiDrRbycjMbqgKe9VZ4N4DmgntGZq7OviwGj4RzvQJvWrwSsT+sJWMmMdsy7GnxnkgvF/Hqv9pfslNx5Tv+NSgmXydpZfMHVErI4UpF7ngNhTIo/7WS0yEyWdUBmLrLaWUPKKWImeK9CdNdvNo7lDRS5LiGZ+l7Q5XN9zAqgTgjZvs5iFgehOA+1YDgPiOpbe48FEVjgQA0HQeaH7XrGRaeG2dIAivbQIAx5lWKwnRDTVVYnvPAU1/NSvZpA1rifG1VhKOV+NIAACNSWCtAdsQTRNT11pJmL3DwConnExgZQK8Jl3MN4y/eNFlIeNi7E4Dr5w4ngA0noVwQzG2sa213m83F0ft32hed6gMcKLxQ8D5iYFtUtWCio6oCumH0FLW+pbrZKZcttVEAIq0LCmGPkU36j4Fq76baFNzw7ly6onOixAdgsMYwy9yYgSGAsGn7YEBAY1JpK+17ajj+lTxsKoT8hTW6LgCcM9JW+SsfbwXsGQ1hwskOtMAQEmSoEgKKEkEKEl/CmW5yJeDkrQ8LQhCRJJkSpJsKbUpgfR1totCvP4TABAcqIUoisjU1mYI2VF7IgjIjlpRBZAdtYIC2eH40ffTyr8PPOKgXOuwNqongaVr7PX2xQEAQo0MCiAlCSQEHLgLhECRAEBBgEMkhMffPOeE49nJi3DAYtkA4KqzsN4v8+RYc1qdHmKGSg0gqDL50Ue3AYW0QvbP9DMn7CwpAEDjPOI32+t965lMBgKAGlkABCoABfDNL9dAgJLfjlT2SE9QAFg6eUQITecQv8V2notr5gTKNQBEiAAcGUkS4Mjsv8sBODKS7AAkRVDZnLtHdkAW/vjtqyFDhvlkEwBXZinus9+AZVda3bVYCCgpZOh1YyCACcRIKr9HzG7L8r9hPDMZ97WaOw6pfVUK/RSQeXO9YfMXsGptHIC8PRK006jxDyHAbh8UEY4CQEbSYR03HlEJ1LYPA8mrQiN20PAe3qh2tySZX8eGu83N1AHYG5xcHFcvZMNAePlRq1qg7Eoa2fdXe0QlOT8UqmltIJlAD5nAgFVFETWbx4zWiIZsrGVVcOqpdc1Hf/ivYDcgtfU8DzTuWGNZmTxsNPqCk7QIlyi0LGKsz+/euo8kPXPk0Io0SWU4ZqW3+d1/vK3yXOPsNq+3N5vOit5OLq/NG9tCmANA969+nreCOjOj4ZIz1Hjse2Xfq/WdrwRzYzH6EHD+L3knbCWMVLSxHrWLLTPl6aqQ5KXxB53Bp09r2HHPJTKBieKaRQSS7H9Mz9Sl40rT4mhXTWioKATdPUgqWZsnrCPJIMkLrgu6Hs7YHwkVkpwfaa3p3LOo4ZAk4/UpkhzGXnKqRDjXNKY58ANbbDI+uN65+eWcM9DS5t3q32mUfrGgYqf0sVyzdJyeTu4K1HdPysYChYx6y4xOQe31mM7KLtMUQp6ObPd6tlnORjmwrzzofOx+gyZ2P1fK/01F3L6dMR1Ln34euNdkTpuu8Bz2GU3OQhPr0LRRqFya2OIK7C4RWlYs8y5W2Aqpa9M9ZNbNpbGuug1DJn5HR2Z5l1LYKg0Fc1PEEEVVlIU97WjfYxVuLlRM+yoI9muugpFsbm7BKesHKDnYUtc19nEewAKXutxcOdgFv5TLSe67W1thbnfA1T2hW03WfmZ7u2WRGbZG5KJvQqEuHXdsp88dKTdDRv4yUH5Gi6Y56Fw6biay2rfdbOYoNE1JqznoCpxvfp6TJN/z7aLsXCTlye76QP/Jil6O6HPvZWIXSEmFu6L+9Nhm5/rBuEWLXNWiHx+3tVdkcAM2KfeuXI1NI2XvDzlS31pcHjY55Jqp/HWW8Y1JZdgdAPBbw9uacsjsbU1F2OzYyykhRsZD603To1Y0G9g0X807Ng32ciCtqLc9vuyOLNgbPveWyrNPx6gGe6qn8C4j/UT99rLmWzLyGbwhozIM7V3r7/3uh2PG+noyvJ2rSHPtXDvBYQ24kh70+/pNVnlO/lyfN1D8pqoiKmAnwrq7BEkyFnH5eyd1e4aKnJqI+Op7q0hQa6nwRvS59BNINu3tKrqBHI3uj667/vbcG9G3U8Lch0eX3gmH7/5aqatLOVTAvu8nQenWf75v9uT73YWD509j8T0AgXr43Rsb/JfzLDVPWSuqryPMDvKK6U/T76pt/vmT3f86/L9i/xfCV/yZgM9p9AAAAABJRU5ErkJggg=="
}
] |
<image>As shown in the figure, points A, B, C, and D are on circle O, and point E is on the extended line of AD. If angle ABC = 60.0, then the degree of angle CDE is ()
|
60.0
|
230
|
[
"30^\\circ",
"45^\\circ",
"60^\\circ",
"70^\\circ"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAJgAAABbCAAAAACq1RPnAAAKvUlEQVR4nMVaf2wbVx3/ugkNjGzutNvqale8VZ7mka31SKcWsAhTCwTWCpe5itJV1BXZggiTTJaJoHV1hzJkRCYZFqGMTsJl7ZaNFK+iP7JRqXEXRGgGHquZMxpIVmfUw4E6c6JeiXsf/rg7++58F/vuPPGR4tz7ce993vf7fd/ve+8e4SNAlKh16QlrbaygmmPW9jZwcOUaa63Unljhge5niNgn11lrpvbEjvznh0RE62631owNtSAjw9LGR7oINsvt1FxiH7y9jsg6r49AlURUCy3UnNjq9f8gG9HsKSKyRNGsn+H1CqJ0Eny81Wy7EkwT00eciLqlhC7/SrAyK7XmnpQn/jc/Pa3YWLFTlOdZnpc1MX4lC6hLTCmlZg72g0miK+NEN99N5B1mtlhtzzqx+bfGz6f+TA43bB/fRJSZpOw7RJ/wfu5+j53MW5k1YvEzv09mvfc23bOpROFQeNWBp/efeP7u+j+w926437vCJDMTM5kXfkY7HU37YlPKsqiz5TQPJoNMwBFNRIPNjYHj5S6jCidi1o+Ndjo8kSlVL4VBZ8sogKwdAMaavRNAesDj+PaE8Q5MEcsEHS0DafmweYAvDLKtYxAoCbnR1YEMgJmw29mb/qiIlWjMdDAHMmXlXGRt67j4HA2ID7kepr8AAJP7HJ3GqBmW2PndTDgnJ8sLtBy+RLFOT1/xcWqb6zgAIB92dKYNRCiDxMZ9jginyuORDzO+hKxT37CMwCnXNsEWF8KrO9OoNnwaIjbnXztYKGs3H2baUoocd1KeKvQzPTmxpqNzHqiKnBFiw0wvxwPg5c3mQvbdKWVfhYar4pOYlw04okLiwwPsSHWdVU8s63ePq7J4zIXse2bUw085VbWAN73NwoTFhDuQUxUKDzwUgqya2LAjdFWdl+21B2bKq8a2a2jqBUdAmMpcj6MaoVVJLOv3JNR5md4btF1Af1CWKHLM72P6OB4A4k6F0JTVjBFLsqGCqpFM0N6l45kCg9r56e2S6+hwqK2inYiIXTRIbIT5jWpI6S57sNzJivCO6pWcbtp6HgAQY46rmaXA75cxq4bYoDQ+iVz6EXuPLi2A0SnjAURE1zHhOKgoWfIDQHtxr1CZGI+ga0qWAmY67L1ZrU5FCCFcD9kuZgAAUs6w/L14Nw9gf2lzVZFY3rc5K1fjdMAeyi7rIcc26pMGgKTXM8YDlzydpQr8vhMAENUmptVZrnmHMJWE0tRueygHfllihwL6ZQKOsjvTQH5rWzG6Ld23CABP6qqynYjoZCl91SvvJdXGhC9X6lUewvXA9a3q41DY3SrN9XQ3AKRlXSuI8UD7ScSpFPl820puIuFnwvmKffL4+nClGgDSfnYYfJs07OgAALTL9u8qiS19ZpFPl4gFm/OS1hIa6wptKEO4LsY8LUluc0jodn2KR5rk5wolYoJT7pbP2YhLmn3jrTJa/LKLg0JDFfx58MCzTNcF1xCAuLBfOSmvoZJYlKgkr6HVUxItdlDt+XWhCuHLIddjD7E63lht/ClEJWajjLCHGG1xymlVQmxb9XWR3HL7TUJ36tEqVZluBZbWD4AHkBWixu9anFGNFvWlpgjhFcH3NbvKvHU5seiz4pzlAX8QwMhmV7QCETX0QrgO0g3f98t4ahADgPYUv7ReiKTDbg7HN7uHoPXWctAP4Tr1o02/1uhDTixOREStwqrGMRHzeIaqplOCXgjXQ2THODtXnq13drGj4V0K+UwcOcy5csZemHXNPZX5lfK8j+TnYwqGR6a3uKaeevLNUjbKK2niXZfBYxr2vmN948fEhOwARhKdTGM8MrcmAZwOupmHhspWwcsjWjGEl+nShzF2Xp2rvezZExYfZga2120K/xVAtcZWRQhXId2QR9eeqohdYLkSj0Ks08l2DHNVMvNVCOEa8B5G3pHQIMZxqugWiKhqpfpbqDWiOgqTo8RZDOFG5nLEB0TaNIhBwYvHFKsRhheGAmvu6FJvIcq4VRXCVbi4Mo/LN6uGXU4M8KkFJiERam7wPTcj41HiJKYNhPASvC8AIdWkkYhxHCeolOMSjiuSdktKFp447v0jbfamntc5cTC8WmWGQriEiA/IMcpdalFi4h8H+CKyBDgAvJgQ0twbjzVRW/SiZh/9QROfadKNefBBZfCXExNkcu5mTk1M/svx4IC//8JHzaHi0WqJisEQLsI7DGTsGXlLRc/fcFX8/+J3GpSuGdIPSs751odj3NNz7Wv2vjyvrDzlNub3hWb9Q0Sr9/YrXD8g2osopwL7NjQldkWeLaQxNdBK3n5pjc8DYC6ZUCWfbswD51l5HgGSgQv/Xr8PgNL4BRUX08I8kV7jYh0s2xkT21h+F64P7zCApjElMQmCmXdEjI842e+lbQNTEA/SpfcNtBPxg0dIbv4lYsKYCw6jB/ICci8FGFdwxHgIB8ADs415IMnKthYSMcljHW8x3qqEiZCn7q6Daa2iihB0KVv8qheK3/zCt8x+A4WN6Gvr5k44v+rfZPjln469YqMDcwOy5hTg7AaXXyq4k8Boj9vedvhfVcpMPKBJN+aBpKOgueYHMNZijpDYnhTCpwd9dc19CSPveocBfLqkS9Wn57HPmtYigeiCQ3DOt3XGrj51aeeavS8vVH5ZMB3/EBF9+Y1irmrNn/CYImYTfybvKWbVPTBw4Yzn0PVffGZS/z2ZgT84skC08S+yMgVYjWN7A9os34XnhztY5yOxKo4YvDEg6dRR5QcFpymJSUiWRcrGbxxMv7ruxw3bf/4eyqSkgP8o0Z3/LoVexZBNrabkoy7bhUtfkw7vZtzBEV5VIJ+1FxuvAJuLDcgkZiP642ZLAqNJhcRAxdUC89AL2WhD7w07n58t9aa8sLHWM0K04S0pqVTlxEZLvOaWVsuTqpssm8KJ1Fdeu+veH5zTftt/lGjjm8WkQvBGzx1UkL6FL4vTQTez+7DG0dPFRg4TTVJKSazOwAGdBiqGcNGmZgYeqNsUTqhLPx9DoU5KrCDZPJlvrLOkyqSrQgVRuc6u317tnfatefiowv/uPEp19Ytaqpy6w5LAjOzCeQCpn7TQ1kjp7D7dyMEhGZPC+HPXm5cWiGjyzqqr24jI3TOa73jr/tu+e+IaERGxnlO06rJYQUFs7hbzxIjo2vQd1VVE0Xga23556VVmf8OO594jIv9R+qSg3LN/U0rMbp6VDcUQXrmuYsnnOfCnjP/Mhru+F3/wVe7GeSKiwqN8PRHteomIqPUUzTEHzDMjmlxp6HUbZFe43O73zx2Zv7b3nzkioh/dtraeiF6k/W46e4wod6MVXnT5JkPVobypdyv7pQ+n/rtygWA7tOGYrZ6ICkvuwqE9F4iesMSrFkB3DrbZhS23XEcA4gOIntSa0/8nPI50NwiyD0imL62qLr+ag9R7lIi6sYKIXkth16cIRDbTd5BDDy1i6fRjltQoWtz7C0B8Ha0gmr3sppbrxHxze7fQufR1VP/sK1Ws8CthtqMLNE1EwtdVHo9b0ONZwRLi7KIVawAA7Cd6B+1E3SRcxeDbByyYmPjpNcouWuQlv3R0VtRfSr96JSw1CXO63ZL1q8ZUi9vpaVsKAB+3MrgyWL9rDXLcM01E1x7tNn6aqA/rxGxU7/sZ0ezHtj5TAz6lZmtyCXzXS0SpWsqL6H+qVdrEsvFEUAAAAABJRU5ErkJggg=="
}
] |
<image>As shown in the figure, the quadrilateral ABCD is inscribed in the semicircle O, and it is known that angle ADC = 140.0, then the size of angle AOC is ()
|
80.0
|
231
|
[
"40^\\circ",
"60^\\circ",
"70^\\circ",
"80^\\circ"
] |
D
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAIwAAABuCAAAAADQJ6RrAAANmUlEQVR4nO1bbXhU5Zm+35MQKI6d0k5MdjsQYgIkSi0grLgLBAuVIKyCiwYUFfqxUOEqAaJNL9gAFktBxCjYC8W1wVpLlSVtRaM16kTFUmALiyGEEpA4EUJoSWgSyUyY994f52POOZmZnDPkuvbP3hfkfL3nOfd7P8953o/zjiAskErNdfkU+mF079KR+rM1wKnPCfhz0O+fBw+72YMeiN7gFgIQBhlSoQC6R+8eIWwmm957J3BuwpDsf/JgaBaAxjPoOHD6s33+26ZOzQAIcbVM7GQ0PHZw1zUUjPKp/8/ftU+eXJAX4/5jgUDAN2dBzlVQsJABdURIkhWVYzoZRcv2Mf6S40yA2uLMCc+3Rcw2kgPMZEhKBrcGC6PHzcWe+a8ntBAhyd1F3tIWXrkKInYykiT5CD9boR8G/91bcq5XJiTJ4JIvFzf3IRmSZIUAlpGUlH8v9ZW19Hh2XD+cK/WVdV2NlwhAMcdQU7tkIBeAYOXw1rp1vuirBkIBoMg44Ze5ofb0iHeuNohN3IKFZKTiGTLSNHXMfmquk47rFsifaWjpXiRrzJQBdSwCVshNg9Y7pxA1wCurs2pd3xebjIGKgRgfYMQ9H/I13+6+IGPgysPDHi77TW7BRySjjJzKfsBfmjyZaABroXnpX48e9Il7Ty64f/p+QFEJ2wI9AcYd+sM9Hfas7hSKbe/Y2MEBLwgsODX7ntlH1LNumpyMfQNu/TRJMjY3vZW+jWRZGUkyXJ55T71znQ2X/swbSM5NlrZJfuJ9i1KyrEwLka7N6UUNTq1Jw06lz/FNFjKWWPjr3Y9PgxAAFDWE+q88PXrMwkZTEWn6a4MwNrOK7+pIxktmMpH7bl9iv+D5UeOQsYubbKcThbMAsGr0A+pBvITdGxkFJXg6RomvrKsbNHLFeVdW8ULzGpt5d2S4c+8rKeZLRq3SN5xMGfHIBa2YI7P9X3uxEm6FUckQAA6UvJ5uvUZjk/7EiSvDfnyJAARAB4T8e75/zK0w0TzSdPfL1p4lQbViAgAynqptzV3bBgJqiPeGcc/NaHFHxcR94Q+nWSsshGJcJAD/9kPBYRs7HVu++4ElDn3ag8yuiyX2RCsAQIKgZjTrxf2Hs58M9WZSYyBW11a5HS2o2ardf0BLWKSRgWOltLpZmeVOe7vV+V3uk54g1s0YZ9YpPvIrq6qHPhdxVM8pN21WlXLsLZJkg6/NTDKWMiZ19hdm7XTUAWz2NZNOux+aFhLrH/Y6IS4IELjljZ0vDntVSuiJJF7NM+b/DHDzgpPkua+1mWseVxkTqsfn7bEJZoUkyWbNsBNtACggsPH7Xkj00m+xZtMpfyxfP/oNTbCYKgJAxpwtcKMNyRavbQAWWxm7AJE9o8a/1Ut1G3ztDkSJKgO8MjvDCW11ZK6pRECZfXhZ8cSauLUEgJwJ/+VQFEB1U8UCx02a1hIommvmHl/84OQ/xYpffZrkwV+4IiMOtxa4zdvGE3F/4/w5dxzseUloBe481ug8zyjASw9JCJftK6IB/71PZ905+0jsQgIp818Ujjv0CrB7nmsmML9CqYvOTJo+t149METQ/C7nvurcpoL6K7EmpVyQAfovPzl64gONAKRxWqugMrbJeSdRQU1BMlxsaXfgjz69/psLm2wJRQJImRBwQea9byVHRpj5KPCsa/SPXPy5zTiIgvddkPlgUnJkYE+93p80DBq1vIdTboubiXqSabySB6fd7EQgAN+GWoz48QXzaYFbPr2kFqC1cCwyp25U77laqBYynjrROmz1JcuV/L+oBaLPiNejV+qGgegLaTRkbK89n7VGG1BKQCJXJcPoc+JlNeVUHrQRSF/Bv+N/Tmdv7AAABVCQ9xeVAQSMjnXs5kepz3M7ukkAqgJk/fLDw8Oe1nvueXUClGCUhBKn8krz1/uMijr/DwEgb1dVYOizalfZfwEQCucJkSIGd6mU45DpuLbv4sUAgVGVv9879HkAHNgOAGJXUV2E3xnxRYKQUDo8fRkvGgQAjKva/crQnRDXfgFIoLs7X8Haf/kPxO+vKB3XOLMvNf325I/5OIGWNO/dEqh4Ie83ng5AAT4eCgkxvE6b3o5NJsYXrJgFBQCi9d9OHF6ZQEthMBIAMPnDp8u/fREA8N5UKEBOohfX3Zsk8MggomkNgEAgoMlA44+Zke6KaX8sC39zH9i9twAATt8A9CivI9XT6dBPACjgfXnl324ngLVAQEAAFB0z4dmLrg34Uim69yFlImCu5YTMC10Q5ycPBOTZx95MYD/V4zRoAAjgSUxXZQ4A0Pov/dciBQAVAKG18ExE61fhbUPHTHj2MrTxon8K8G42AOXRwukUABnTI6meDkdDAxVNfpvLBQCkTgaAAY+BgCcAAIMIAP3XMQVCdly+HejesgsIDimsogBFnBmeVE+7cy671x+JdVr02AEAin4FADnwUuZWfDgJN0Bw73Q1L8aBkqn2h5wMVVoWb68RQqyMPi9RafWRQpyqvhmYoI4CZygJW2Ulr8F0ayxE7/zbqqr5nQxXr4T57Y0PCQmIklvHmI0YrWUsMrm1vZCJfnDPbzsU/BJSn3k1UUo324YCfPDna4c7zSBK3kmEw2EHJVs7ax7bbAzOHGPZxlPDnZZNzT2Gft1pDr7VL809sSIfgDjj8Ms+BYCdA+YucExGyUqtTxTgumFUfvzI8SkAgLfvdZaZBIBQ6VN/ynY0EQUAiiyoAYBwOKy6S3VZ2LIBRLhzR9vR7HA4jJpfP8SuMJ14FvhpwfhAgXTsV24vYojU/4fIEMtWGwcMkdpB+KbfMyI7blwWCvGLkHYhPiQpm71nWLjLxfzMpBpAzTPhNOjKWOgCCAJp/e7aBvG5Z1q5TIOS1mstBSBKf5AV+ahAN+JAGfrrQ2rlDSF6KHPR/4kkZZEAjpCXjYu94LCvjfvznAmjzVzNecVKL0Y0FN89UoQhXpJkvtOkQaB4nRe77nVUWrsncuB6lZoWHSGyrCwUUtUKhUiGwqsuhy6Tkl+EQupJ9V8v2Dv8SuSKr9G5MqlSGfdl80REmumvcbAeACA4AIIijQJpRpH46C7ZkoLKG4c4F0ZRiAUVgBa+MdGsDweFEAlbXSt2+GcALy10zsWYeg2ZVbdOve4Zru9F3KxJaMs8nMzUa/rCcpmWFkcYti59Tt9X1G65M6yfOUriiSUO+/uGMmyyfsewKnN6iz4dLU2y9DoB3+A7RzZ723orZ1NG4uszt0DNS7Y+FgFkL9fbRXNnMf7rLdUhdenyTGDDQsftkqFMgk88Fx373IqP/F3GJx43ygDIWfBoD5LqZukmuOq+qNoSP1zfH1hW7KKzDwBqHLRnHrArI0lyT9blpIR5eRTJ6ly3nwXVOPA8tTgCa1MvAKCrYoC7ugGEZGhVuZShpdv6u7tVD8S5gzarM6VWzJvslgsEFFE+ukBR1o+c5uRzvBkkyQgZ9FdZ3UQymJSLyOb0BvK1rJbeS9rcpOvj3z2/HtZ3u/WWI651ASCx5v4cHPzBG+lu10KYVhZV5OpV0ZR5cJGLihlZULLW18agf0+i0omUAQA+NPO+iNnH3ZmbXVRK0esmULLae/me7852Pz0XJSOwGcvMTU+/ja7aFc2KwNsNS/HdzLUx1ho7JwOk/PrtZwH9lWqKVdwBIis3pTx+9JeA+8llSxvj++2qt/Wvi9XJffkhXvDNriz/XRKiosfSOO9WNYDb//F9lwGooS3zvzdqS+PcLTYFkGqlNm3frPqnBQQulExOqm7YfNszh/58PQDX64pMN2jBduOhU1PaQWQvh7sGUp2qR3Drsc79Q92ysJMRWsLzvjFy7F+7W/VzJp69QO0cL4rc8ZrHjSQW4yavSc3Jv/Bkr0guYLgJv0ryTsKWC/Qu3Z2vTypw9bsG3Upg36SJLlQxsA6AsMbMvYoQogrEmMVNO84CoLOFZ7rWn/389Fcnmk+4hlmpeW8ygDpSknsyF7WYX824QxTjwrn5WW/RXUOtI6K5yRxr3ScKkAOAArzr5KAb1l2wzgvGhHbhfOk3ck5MQ3q8YgkhjPWJUQSWRVhUrFdXBhd5Sxx2qINLvrK8j38EUQGgTttXVykVe+Zry3USZdPKud7SFuOmpBCxk5FFdaww2Ki48NzN/tIEP5yJsLb4HybsaNPoJsMmUgQAKLSSCRaS4Zu2asyM08dLcjOLth+3nlV3arfN8eWtNq2KrgAKw6VufwEx7xgZWAFz28R3ZwDnj+YYMaWF5ognNp2trn787ITB1+s/tjrTiPaDp4Mf+W+btU0dGVFQoGnwCqIpbSsU6SYHd4du6H7pwQZYkt7ctXndYy/WX0Nh5DqT0b8frm9+n+LkWQD+HKTdavsZGkX32KlPAlgzvtBNP4ai5pOlO6+bbvmxVQAAUCh7TS6xfCBJssLfSZIVdTEKJEIFgLoeb5P+bBk/DiPx6JjCzWKrV0jOO877OnskPV1d8xIKWHcV40+PGYvmo9nU11xI5z1O0dSah4KBMBm2P1zfClsONq9iUKyEhLqCVsSwmgh89w7ge3jUfJu+oti2tbNU9I/S0WP9esZNpwTApjdj3Rdry4gEIKqmAuK+IfaYuUpUiDcZ+aDQYchoJQIaubo+JhMJAHDcK7PkzwjdThH8P/7v8L/xCZqtkdf8hwAAAABJRU5ErkJggg=="
}
] |
<image>As shown in the figure, the quadrilateral ABCD is inscribed in circle O. If angle BOD = 138.0, then the degree of one of its exterior angles angle DCE is ()
|
69.0
|
232
|
[
"138^\\circ",
"69^\\circ",
"52^\\circ",
"42^\\circ"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHEAAACFCAAAAABJFkgDAAAL+0lEQVR4nL1af2wcxRX+1jmUlli6VrooJ7rhQnyIS9xGbgxqRAI2tVtcZBVXuBgHV3LBitO6ElYagWmtOEWp5D/SKgUjjJyIAxJkJFdOlZA4wilnZCDUSInoxRcU0xouNIccCVuOwWSP/frH7t7t7s3+OMfKU6Lzzrx537w3b97MvBlwOakZAFDnylOC5aTXmlPk2EZXnuVFzCox5dDdNxLx3Wq8dkvgcXemZR3HVyQg5cGzvDqenGTLWg+eZUVMz8Vwz6obifjPB4AdePKGIF4FAJyqAbB9nQfvsnjMsXqSY5AA6K6jOvJKXA4Vv1n3nuyXd3msuqL1Rd+8y6MjP7v7vyt88i6PjpJcOeSXd7lmx86+G4eoDcv9mfOmr+tD9JKhTQnsfM785ca/LJ4DYC52sdQXo2+revUsWH/En6Bl0xEftCbpbVPfOvro153fescPoF9EP7J2PuenY74iudoMAPKCS3gmycXQjJ+o70dH6bXmFPnYHV+6a7qy9ZAfFX3oqFJpJMnmXR6MU5Gshxl86ijh3VsB4PZJD8ayDSM+BtyX55yuBYD1rjwEsMNPcPWDmD1eBRD/2ejmihKAnyc/Xh7EzL03A9KlZ2pdTUZgxc4XvKX5iTkvX+0AsP2Lk+5slPB5xfRKL2k+dMz+tQa4JHkBQgLWVP3dW56nN49pfCe8pxHJ8S2eLEVGckustgZu7WvjK3d6iPBEzImdO3fhcmJuce4yALkMga1rb68sXBGfPzdQ0JciEQEAl06PJi5vu3X9XbuU/z348EP4ZBpXJz5Oj8v31fxkDSjlEeaiU0ETovaHzRhOpBob69TuaLipP0WSExFO74+F2sdVjSPZ1xiKdU+ZY1v7AY9I5+U5M/2V8u5J42tHL0kmO+VIt3FMVJOd4W0Ds7kGyZiHRHfETGdpy/H853wwo/81+utgeZ/xwaGm73TlVqpto2YJrwB1yh/8Iqbbg7szNJ1a+hvzldnBRtTG5w3WjmCn3oFBE1Mau8g0+vwhzneFeixLrMrK0fzfVDk7sG1l05BekukK7V1USS6G0waXsmkXqXLPG46Iqkmf4XC7DY/vRQu6pfmRjtkSGSHJrj8atXF5QSUZnzQ3KdBRg0zXVpwpqGnrLUAkmXxCjnRrMhOx+hlyOpLVXFkpN8xp9l6hVdV/hfcVls4GnfYxo626H2W7I0myXrd0WhgahYjx0IigtL/JAZAmPxoKDakjtVq/03hDwJpDzCuudESTIqkVo6LSHOl+NCF3MapNVmVTH0mmrZoW6jhbd8+sausESZ5xn9qqqvvRscrGZ36rlcVxghyzJQYLEJPR9qxQZNt+AUxBSbJTjpSvX63P0zEA9h2g3aojQct0zcvU/EYVVdl6Mdq6Ej/OiCtp11FNBkccxPW5+I29j9ntQO2iKu6WFXEm2lfAoVP5uE9EkuQtkSNOVRbEbG2HE9+ZGKn62HHrNHBbg1OVZWe1G8/mlk3bmty/E5B8HbEAAI98md7rVGdCj0cdD0ezwVmnKjF1PC0Pi2tMiO+HnJOxfS3FATIVeX+1MI6YENOyKLTptGGcbtk9AdWODEWuuCPWaiuDKpI8vtH4yxtV5xiqZ3ejqD6HOFgpDjUkyRbHSeNI2cj0YkxkNehazcsTzq2L9huS7HmKo7FFcQRQSe5ud2l8oLV4QKbDi2wSLLO6VadCblrECvYDfqjxMDOhwviqI7b2aL9CxxgvXwogR7eSnZ0OiJnVbio29S8JkbEkM4W2A0mqnU8Z3wIlZ1wt7kJ97eSOHiHiTPCyC+L+tuLmfo5mw7OcCs3bSksA4MgvwkaYFcTqg22QBLHdgwgE6w+jbFvBqZkkKxKiLuqKJTYvSUGSnIiRw1W2QpDq2Yhbs6X6DUluSTC7etpaVgJIL7e6WOfK6UctpiqKOl7AikdfKrSq7LRKqSR7200fxbiQdurJqPZdJ8iUrCjODaMu8dabuvYxW2qNOyXg2DYExM4G4HTQlLt4W5Kk3xdl1rYXvlmxLWEZjRJIb1ULmbV5MrAzX9Lz6AKV0aIgy35wFNVvwZZ5CKcUUlEUKopCahZW9J+MrE/ga4qy5wEqijImLyhUFLoMhJmO19qPD+B0iApp/M/903562zXJCpnApELyLXnuWhGQ2cgUV35B5p2uBFPlhrrZAIBs1myBg3mjvti5AQA+RUAKQDjyIlrxm35smALz0awEF24HAAR0pEDAJOxUqEIzPaCc/ykA4M2Hb/YFZTjL44e/jn6kwxEgApjaYOPN5iFNKn7+4W0A8PbhlL8wYKgUqn41djFfJgGsO66PiD5iJs/JyFcVktdUlcpX5SdI5avNu6go11RFodsk1kklyfHKw5Y9XQky37OMiWZUzbbxB1cFANwkSQisfOhZIPPt6r8gELhJCgQQ8B5KCQC2fjU/AwDYLkmSdBJgdMqsooUi/zbHtWZ43oMLqb+hUhdwgmNIgeFM3oxWGnFMzxaFOR+6g6RKZfMC00iV4OqqvBmtdPB3IlOd3vBDf1diBpVWZABIeK/6Zjy5KwbnPFk6tCgqjgGeqWmTDaa6wlUaRBzABbIEoIO7v9zimdd3It0GVI9U15RO/GPFOwBwKsV47COAq+xbH52yEfGyORqr8HlAT3WGmkZIpmWVZLpOy/AEULogvv8dXRsTltekfKn59WD/lbbkGgC4WioBOF0PZj5cZ5oddmoY9KeJWL32UEtuuzZRqZJsTlHZJC8QrDgrbJMOC/3GD80PVEQPGAd8lUxUG7cmdSQDCH9WIbKKl98Y+f2CG5Bzzx+t7/9RrkgCLoWAe3PuGUBsSiRP7X/TfZwk269Gc4MH0Lk/aGW9WG7+KkE0KZI3Uib2G1d6/7HoB6+mdtgAcf52y6c6WiUai/qi/WbmQKxiQDjTKizbQXA6JGBKr3HJCpjJiC6JllD7WQeelZazGVSGBTO9p8sfoEaZ3uiW+KIptlki/ZmYpSQgoWqsYMi+OZTwP3qnXhr95bEYDCeiZHOnRBUomUqo9jcVLD7Ha3zpppKf7otUHXYfgTqrS4CcDBcseHVD9EXDDaFOh5BlSFTtpwCQlCdtkNOyp9+o5HS3XOft0QUnnRIAja/bLH+wxfNhmPT6A1uy4yebnDn0ICMN2nlI2k6sala2HTILaKor3KAZXvXagGRDNmGFp3KVw+4PibOHq+SedI7bgYwK4ancngWrGxIK0m9cO0NNx3xurVSSDfFCRHImaHan6XWOfrMY3xLpdb5YEFBhdkXb9HSaQ0xXt0PrVPvqFpesr5Dae+wlGmJaS0upJJmVPxE1nR+oiP7N1yMjM2WCs7QNtpEJ3JsrGbL7jUrybJtpF1EEOWYCzdnOnw3beWb7Y7H+JeXmtGyn1c2M/XEuo1sQb860BluN/GqRyRW3jC7nw/qy2dVjlmxZZtXiMMnR6GJhIxifg5VZlWRWTufrEy3BtrPWXhdDjpl5XVptL1Wqg/VGTaY3uiU+vwSgHHU3ihrbb1hq9ScOI48E21NFXI0JaCginEymk9WZUIpTkSzJS3+OVMUXyetQUOVEyOsWiYyvn+na57rMFkFpj5syTZfOmjXj3XJtbhdxHTZd3NLjUGPo+HaKZLYc4aenrxNLo181OEnR73SUTSmS3LPGckG1dNx95Q6n0pyOf6pfIEmeDxa7OAhpOOTsCPoR/ehmDTF/O389du0NJpxlgCTTfek6I4glox0+DwBOtNha7ubqJQDwbIe0UdvOSSj/YKpmbmnPobVWV7YunClzZdPSHqa3EFmHlyS+SJ2QPY4sINN95JjJR1XGw8X6T27EhsJe23kwXUcybr22nQjvE94ne5H2IsgDcQ+QYjMk6/bgkuDVkyep2qsnL0SnCvvLLhcg/TfTEhnxsdo4vl9tuPjdDXuv+HFR7cjy+dPfL/vofj8PMVxuh4wXej60THcEn7jsJMdKLm8CVe0V4oghyFnacFOwa8bvNsjPS8uuSTcO20tLT/LxfvXCoaNXq+6rEuR3OJlIJEKNrWXub2Rtw+6OqAvSXsyuLburFOsiAD/NvZitrV0j4L8OREMIIc2du3A5AXx8CYBchpu2ysarYNOLXB+I/webIEmTK8NqZQAAAABJRU5ErkJggg=="
}
] |
<image>As shown in the figure, the quadrilateral ABCD is inscribed in circle O, E is a point on the BC extended line, angle A = 50.0, then the degree of angle DCE is ()
|
50.0
|
233
|
[
"40^\\circ",
"50^\\circ",
"60^\\circ",
"130^\\circ"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAKMAAACECAAAAADZrsTSAAAQ/klEQVR4nL1cfXBUVZY/jwaCYzRaxk3P0kMr6ZV2GrUhTE27tNvRCUu7FTEOcWOVuEJtljAbLDMFLlRtqmLVMmssgpstE4kbHDMjVoUi2O4Sl6aM0rsGjRPYxjIOoGHTTJjdYJyxsTNlk7x+v/3jffR7r+/7ysf+qgLv3nc/fu/ce889995zmwM5wMmyoJPk84RFThLPPLtQNEzhiGPzCt9C8TCDE46vrPmfBeNhBgccU5nQ7cULx8QY9jmibQ/dtYBMjGGf48FO7k440gLzBdscUxkgXs4tJBcjLLaZ7vK2U+AuGb4Gp/yP+f8O2IGwiyiJTUTb1ZG6NOzoeQDntIctgJis4ICjit2Fq4PpYU743WdEFCwh/OktIU85K+G8wJqjtou9syzz3qlfLy9fUxomKgkS0blr4BKTIxcnAhuqIjcuiJQd9YyR3UvJv2+Q/XKwOUw/bD6Pee+SDjiOt/m/9xQ9E2jkDZNk443u7798dR54qWFbP769YfWFrt9855GioavRa/q2IEm5F23s+N+XzpY/fHI+W9puWx8JBntzQLq0tQnY6xtRXrCa9dvD/lAMpkkcwRbHXrnOjvqDDQD6yvqsctwXjOVDc2RpxlEqOhmuiEsxq5I9TwPAiLcVgnndsWDV+blRU2Apx292l3bJzwNhHN4CAJgM12aspNNW2pydGzkJVmPm7bsy5xvkQNdOunGKiIhKE2Wh31hk3TWSKn9vjqNFhOkX8E2+oXxo3MMLsRo51O020JOA0gsGPc1zkqAIU46pitq0KtjcDCQiSvCDsg7DnILEcnJjeGJO/ABzjjG3hsSMZ1zDEeMV9cbqXEare2CW1BSYcGz3DktP4hDurQUwvE6VIlsbnrSsYdDTPReCYHBURmuTf1z7JjwAIBnUpHrRMwwrjHpbZk0PgLEcs3UVaW3Mp34AOO9XIgQAiLut1DlwNVDPw0qfOueYjVZldEU2dADAZa8u5Yhvr2Ul6VCNdcc1hgHHuo1ZiaFMNO1OA8CEu4BA9GFLdZ4NN8yWIIx0+HOX+4oka1U2Wl97tISIaNm3+rQlJwIh48WYiKLjgz8jIprl0pdFvN2fhr4DSbZO5iZG+h53nBGrwYS3Z1YyBNhtHfOqRrREMx6WglTwCsCwp92qolGP5XcYgcFxtDRZ2L+qe4V8hsLXkxVbreyHQfe4RQojFHLMBru0EQIgpDwzUqgkXZADApDdVjGujSlAa3iGEeuYowCgoY5Rwx7FNmBxBAB0WKrz6N7ZacgCOR7zZQpTZfPt5DFssQG3PCwMmEx6Zjd16zmmmdI4XKvU602xCxKAUbMlIwTglHdWRq9ePz5fvY6hoDp2KHryhm8N1Vz50NVqccnISsARVYZemLN+FDBcxupuw/588wX/S9uS2q0o9ZKRIcmJ0tmscXRtHWLZUUK9aqRXmI+MPnfMzHZoe9g+NQVajj0hVpq0WzWMIgnzAke8rSZv+UDMJjEVNBx5H5NAW6NKMlYcMRmuFT+JKc23go7oAdCNmd7lEVaX7dpJ+e2wW7+26N+lCfcDV6RBUojH6B2HA4a0YybYz/qMeJU6VBOz/nBxycjulYcjgOFLNtQcY0Fm1mqNpb3lsI3yB90vF0aK2Xhfwulko+b4AMvsF1IreDWrrT2qCg0xXmGozrurnXLM90dcPl/D6Atc1/ZF6q5VlCXDzpbH8g+vVn5V0K2IiOiJD37nsDvmOXKvb3YxElzvqdfwuSFrp1hu6dHqNed0DMVyiqNvzpojHXmKlaAvUqYJL+ZtWvx7Dj1yTB1WvvSpXvv0RCitPuTV90QAQMWgtvu1tNjuRwZLRr70gjMbLS/HXr0YOSKij7PrNUJw8PEUOHPukanCF64th52Vl+cYr2a973hGrE/BrfrNcCNwRCUn/KwlY3TAPj8iyrf1RDGvWQhK+17uKZ3g25vgRANLS0ZNhkwRw4y209aJsItTt6n49NrmG3Xf9J0pctL0Tx+v79RlQPHa047EqHA89SDjbe7gTlIdbRARLeXtFQzpb13y9W1adcVRJDE7jv/BMCcQ/xM/EXHE5eVQuFHBBif9UelpLnxV+67SGUe5P2ZdrLkr2lfQ8/KbzfbR4R2WuqRYXHqpwbkyGzLHkXLGy1FPIfET0VksQOUloyBlLdUuLi0KXERit/niblGqefkSUdeOwtnxhm9noSx/dHr/T4mg9Jm7L2n0mUWBi6QkF3261BzR9Z76wgyLc44ZEtHKoSsPX1MKR/mFfFXWM6s8Zkb9+jegN6Jl+kiSD2icAVR8NLjuMznI+UeJQPQox3FcmWWBMsfUHfpiOeraaVChY3BE9I+tVcpxrC9FxBH966Yk8FcrrUgukmqdukVXPUcf0w8ZGW792ml3lArlNg9sf1GKKRZpzUwHidru32WHI0eULhYfVCw7djgkYwDlmwJn+x+fIiLiitNERPT+CiKiuz63w5GIpkqkAhWSkwNPsVr1xj/IT/JMYheg0kRZ5RUiolsyRET07gYiojutMsoc0zdJD7IzEf38ySJWqy6ZURqP6L171tifejkiV8eOHwwSUfE1IqKZeJSI6L8tvdgkPanfPxN47yhToWaLVIFVRMydDRMMuruAdAkAjG0HgDE6apFFswegHjLxu8v1n0NEREXTatFwUjb7bb7+TPdOScX++0oiomcfqrUpx5umAM2kFGXuBwBYpJofB/xBkwNiA2Qff+BTD4DpVUlgjB6yzEAAeJ6HZ1w7aY56jdbHhpvNNiDZFa3f9QJxUUbWR3liP+QBv3ZjUGhqzRdqwDFOWh85++AfpEP50i1NFBJEjqEhdayQcRse+npTYqm7bs9getVsSI5WREK+vfmDeCueiyT9cks6R7lcjiiXIyLuzY23EpEYQ/kn6V8ux9Pfnf2ymJb8c2zK9niR0x0K73jGc+bc41NcXr2bur3J49qTcpGLXJRzuXKE3Ms/ceWIci6XSySZc7lIChdniHdxJ/e/pJRvkyIHIsK1uq4P6kfvKDlxh2bJaFaIzNH3BVHORaIcuY+WFU7Vsim5hMdiole230tEdInIruLhiCPQh/et+NhHF3xE+58Lq7xW7Mhx1UVRYHC5XKBXTabqZdc5opmLG4iI6N0fFztZJXLP1/5iv0uyBJ8+/tedqi8wgQAePDDi48GLw4fHhCcrPYl/coAHwEcSPHCJPuEBnOCSTgbLeLhaHIrSWmFyreUpozxmeBeRb0xsalcu56JDTyzO5VxErlwu5yLKSdHkyuVyi5bMIEd/vOpzytFM098EbcuQ6Mi62uOlRETXMh4iItz2Ia0v2AFkQCbrH+JlBZBbzp6qRTwaA4BdlcCYI/WYqQ/IZzfx/CTf4R2GlYpU5uvIf7rkyTd2D3uqFiH2nP03c9ydyVftC/HMD1xnA9LQSFQq0Y2vPfILyx4tceV7qxXeVf1mH7bV8YG+AKDNrZr/Q3FV+V8EdsvpDGpV70lJT+d9pjU65whMVkVULl26PalMbdTcBFDausxzRnqyWCPMYmH4zr2VCdUS8/QazfWR4qPBdRfMsit3ARDtF/X21DHTDLSEJ3D2XcDBXd/b/2+aw9x4lS7FC+s2HNooFsksWJGovNfcVW8+yva2OtlLETAS3JLRjFy+9HzBSJYcU9lQrRH8orn6fQuXAwcb4gDQ5e7NBwQA6NcuL6TN2HCdoTpXrRXqfklEdPpm1iG7Cjdct9vMRPTVYz1DdVKDkaRj3qjTJBEbt/RU6forRqXk6V4u5QHUHbYQTPtP7Qsx4X6e17dr5mYD09TQMVW9Hgz3ARNuqxm0s9H8fd4xgG/2MGrtri6MEzHofp055ejONLHP0guvZ6tNiqOhRxl6z+CMHAAwvpZ5yqhZV9/Xzxu5ndjmqOCw+1+Y0RGTPNnN4UnxM9XiJACbiIiOAngz0mvYEArettxsFgCktwTZ7h3sM3IFrQynEQKATUcRpyTA+15yW850tjbEh7y7C/q1IACIrTHLJgBxT8FqlgBMBzIYoyQE9IQuWbqFDlRZJACwz8iZmV8dk7gwCQLAiE/vU76IiN5fX0zPbg8SR0/T++IZn8nyYvGMlVL8bWXi0x+xX7V7avI6UQdO3JQJnDnzuG6xCaCTiD4RKQ+703xjwMzExZDVLlTM3a4RjAo2fZB2axkQINQk0UnnxHDTDgsvf9n7Og+dim7wJw3f1rXYoQj0lKkVFAFjlcD0KslzKO0ZBgbdirtUoSxGAmalJ/0NxgeWCds+cb/yqlz8CehshTDGHZUY9fkywGjAeDJJeTVBrdfuP7ljxhU78S1UO6YSsOkTTK+6Xfn6hjoAmWrJNi6UY8qri84/T0bD4+xMAIComcrQ58luVe4ZkLjFptoEzAYPAsBev8HIEfdgWRhw7zMh4dTXla8VXTEF/R6zAGC0NAkAPQY6zohjdrdX2XtjCXLQPW73cH5ioKXGT+EGyV2Q5Xv9luh7PeTuYBXJu5jlng8+abpysul7PdLbEiktiTT3JiFN0lSpcFTTEX3YcWXNDkszREb3d83tThs+7Imuxgj5qlvi+UPZTUkg3sC+r7A7lAGATG3468KXReKAU2/CpmtCl0zrTwfMumo6sa8uwFVsbUtoddN0FNPt0+0MjgKAJ6Ji6uZCM0Qo3BAf9DTzecKFpTHvVIiJR2MtVe6iyO6eoYIEQLwVnUfN76YAQF/hVYRSna3Pt7jZZqtCOR16jC+IxFB3U6TIE22JjbLyABA6iShp445P4VUEnRmcCtVYXJiaCCj3vkQK3yRat66jQN3PTplvUGw6hx9nzO5zyXelJvRXEWSOYn297i51UO8ghPxdKQEAUvGWai9FGrv0JgGjn4w9BByACUcB7d5fAQCyT2pvlgWT+efMlqCJszUA4KPvSZN/8vDeSPFtf9bSa5VDRmcrADRa3N17VXxo9aiLFTkKADDsa7KyEtrcA+AT7fUh8tW0DLAvGwqsLTMBm5IANrWayRFIra3LABDQp75Ztl5pplZ3v8CeuWWkNwR2P+anUH17gjdLx4B0DkZJizu5yl3SEU/e61v2vp6IVCliYdU60tuyhlsS2dtjfb3PHFb3hmPu7ZMA8GV4S1bkIkRFbdTvbjPMlehqjHCeB++97c050rPFERnpbnN2a4UktZoYgGyDnymedGJf3WoKbmlNZA7M191mG/fY5Tvi7dK1lbojwEigvsDcHo21VLldkSZRrfx/3BFX9zDprr10J3NrDzrkDTvJCh/qboosc0da+s5L2XqD8l170XaxcwTsnKOWcG8w2MtjpLwZQH17dViZajKJ1q0V5K9tSeR1aPYN9W8WbEqKK/iF5gjgraqS+kQ6UptBfXELAHnKCDd0JDQWXHxbcVQ1x0//BXAAfzsHik5+0+XKke4/bE6l+g8U/8O5z0Y+Orv4vvtXB4LKOp0jouuJ48du+0mt2gXs5Lk9qRccnOOw4OiLRnZV0NK1q8mrWKKqbjv492EKNf8a2vhOInpxLlIE7P7GkIhAG107ePz3lMtcO7PsEpUEiaNz18Cdmhz5fCKwYc8J5VBD2S15Nxl85Y/mJkZnHOmVRnoo8Vz7hS8/SLcQfSX9Ng7dv+IvPezzu9Q3QSpnuP85ghOhj9F2YIyUadHGvNs5x3YGHPymCxHNRLe/SnTHLkVieadLzX9qnPzzWUtPgROO3b8/QES0suAH7cApRxtatie547rbH7OBA90zc8+2PRpaxpjfX2tyIMffXlyZDxiSgOnbWcHR7xZyeRaG4l+AH5RywHH5qktERKljC0TFGA50QCcdBeKVc1cmDuFIP56g2XrBzQn/B9JyUHloZ2sgAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, the quadrilateral ABCD is inscribed in circle O, F is a point on arc CD, and arc DF = arc BC, connect CF and extend to intersects the extended line of AD at point E, connect AC. If angle ABC = 105.0, angle BAC = 25.0, then the degree of angle E is ()
|
50.0
|
234
|
[
"45^\\circ",
"50^\\circ",
"55^\\circ",
"60^\\circ"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAGQAAAB8CAAAAAC6DEp+AAANCElEQVR4nJ1ae2yb1RU/titKHcDtt7qYYjAznVuCiFbWoCaEsWpNaEpg0aQM0bkQDReIWKaVpdLyRzOtmyKRQjbCI0zR6FbaZhLVijt1NEA3NVu6PgAPM8igBgzCDDMwxGWY0O/e3/643/tlm6PWuY9z7++ce++599zzXULNxAHsJFo7/wMlUzP5qWbyUc7/EvDEwouJyFd7OyKqQ6D5eBIA7tpTjxb1acJp7MwjREQrEqhLjbo0mY8PAQB4fRNSlyb0zpsrQETkq3NCiGoGARH5fbzO7usE8dGl8deYn5DbS3VDVRtPptvE/fQEkF6rlNrYYJkxriVqnngOIE1ESZFU+rKBOZqpr7blCMNcc78xK5J6AXzcr5ZwPxHIRzWCELdMntartcJJvNomHiY+Ds41yUWFeSlwIoIivQ9UmybcT/TxqVcK05TnH5GPll5G57TEEi3n1yRhjSBvP/3M3z9cc/GK8lNz8zd9d3PgzRydOZ4rPH/hdR0bl9eCUnVZvdwXlbpGs6iMhDdMIz98ebAnzcTKenGkMxS7998AZGurDiKi3UqG1CXnvB8VRxvDfVkA7w9KPa+KsuyPo1LvjMqRuUO6+qESTAYFcHTswUE6JdIWTTi4YfEXUgu79wNAPiWl3jYIPNMrRbZm1TZ7uoL9RajthBXNr5zjp+mkqokRwUT5ZLCvAA7M9kgDRWv9oZ5F8eG8ytrbkHrXWMsObgLrSCoKChDeQUQUngMHU0T6pH/xQBEAZjrDI2UHywZ7vMu3+sGiYC/0hwYqBnl3Egk9OJiiCUfHSfC7wnMAEwM2KSWLjAPp1tijls4Nk1h+rI3aJ0Tnhe5IWt/B1p/kO+kUN2jCMf8tAOhIquq3rppmAHYlvj7poIOR3hu9ItC9DwAwFVunjmpuLTAf/5nCQwI8LU7vtaJwRhoEcHYs0jalrxpVSmbRBsgNxkK3HgEgb41kFK9mO+TTpDoDysQL52CnABlfnAbKO6TuDNyWtg4nfjN94XAqw7EnJDpefxLz8fCc0pwAMMyvnAOAu5IAWG80g8I9UjJXZaAsdCQZig3mjoX7xZFAtFarEsZ4OgkAp2k3UGq7upRLLukv1AcBBmCyO9C4PbHxdVGijwEBDNg5xACsXwtkoskXuqWhUp0QKlUmOukCetZSSgD4fPwk8DqtBdK0ZV1kTGaadE4G4kZC9Gm6PjhlAWHAQbFV7gYyFF2160sqoQC9FQ7Lk6FZblwWhm2Fo7j0Eko7SVc7leLr+zgG42VjYxWEcw65tTf8aMNB6CLUS7zcNBg7AfDudqOAAoRxANhyrTzUmw6m65cfitxyW+/0SgCoNA0AYIpXZBiuR6PvoySV0sG01qj27sWfm7qQHAYA5MOG/UgH+VsoCyA5DA2lLiAASLbJlVBRpGdCGTtIPpwGgMwlMtINB74EAsPWpjL2tKvZvZGiDaR1u/jbMglNl9omX+UaiZWADn2UtnZaQXZdqRyt+1sB04jVQhzArkgeKEq6S1GJqZ0oIJ+GZ1TrWf4igAPBtGlPr67KQSkLYDilednAoa9WTMbYl1TYOe67FQDSDU/VpcdR6QQAJE4YK24cNGgiz4b0HbEkFQHgQEM9I5aVDgPAiYSptBAqGEB6BgxVKXE1TAcPiMGqNmIcyEUmAQakdhhLgVQKADgxAIXFxq19NqIcycE0uLGJKxVjYwAAWcobShlQCJW40IQj9UNTm3W/g4JyUHHVvKm8Uln+k23WquQABAiKi8zH4KEmLgSpYi9c4Fea+5SC9l1WltlQGeL4He6xNI7PMFWXA14qcACQ27uVXDFUsXKw9nFFk8RhYzHAxrrVHtLV7WXTOtX+RpLWOobJZgFyImIuByrSuxAOpqe9cADoX62J3zRt55BDOYCA1E/sLbdq+Sr28ouvaQszG3NSNzUAEBDO2mrykj66nvYyES2IKg70b3eSYjoGRshKDu27xvW03V60TfDJcA7q4pMjRiPRSF5YAOGBLlOh4tckoDj48LCXI1JGSTGOtM1IBLXtArGuUaeqxinV63K3lxPSX6A75F3jzuY0lARByuoK6ImJjZoiMNuLWNEMmA3vV5owAKVQ2XmdT8dAuZAjvqyNtoO9cAAoRCb0yyhnoz1OygJA4CM61Gwr5wDYT/v0rM1eGFCK7+BahgNNFtdUp8QMjWxyripIZVPeaC8MqKz+kUgq9+XsRW4Y6Jzwn15JeiDEQJFvP2bKd++79SlS2PzENq56UCSVYOHu71sDLBpd8Rq1PekiwImYpcBoL9/ptFRG3K9ME52UOA6AOa2+Zut+otoL0Neq7QhiJUw1u2Jgqpmiszqvmfa0mYoN9jJ0ZdlYzoCecbjSzBUkud7b5IhtUxP2MhZTfENNhLJllRiJZ2O00L16R6+JWaAMxS4K5ax6j/d4eJv5pSSuv44ilL5SMvYm7IWIzH4PGNCcdsdAKegnInKOKfuWdD5sypOf6OblROeaA2Z+eiN/o5+8onMew4VsxCwg4xyH4onnjKozANv63fsA8mGSCpg/awu8Ke3bJpWtCYZYsoGUIvsKMYka8wfn6BxfwFFJP20bVUcK8CkBVPzJ5/NtJiKCiODTM8uu8oqslxv8wTNulZzo5g9OQXSkT9s9d8xh/thmIvIpweEnej1Dv/9r8C97h4iIGGPEGCNiTM36iVj/r5W9iREjApPluzMfNMA/OvUxkRK7/vzPve4IRPTO0gWrThMRUYAFKMACpP9jAWKBOy/7z0XE/cQCJBPxAB38zSnGaQFRgPl9ROQj+kPrEk+Q16/0J17WcixAqiZEYprOv+URdShEwUO3r/H7ApTTRhD02zs9MehfK+nQNYr3IUOG6ogoKRnIRWW1AEzGfHw3IHNsSGouSz7yhdfaAhIz9EZItoDIRhBsmICh+DQdBzuLNJ2ErDgwQ33u/QMAAiWC9NJZaOIDskDU/hxuggyOeZH/LL6Hn5Ur8c2yYORA7IRTzzpNx+CnliMLjCMYCIhf9c8NlWkf+egckV90w8O+wFuLWncHBKOPphde4z0lz11HhNEufWycaMzs/HUQ0UnDObN52EsNLpw7ZCXD+DhQRcqb9mlu+AUqi4vuGzAHIJ9b4H66KvCyPj4OdO7tD2oGDeW/+u0X9MfmZe7G7iOiYxcuJxLOveMhr1BBdfE1HqbqwdC+z6iXXRGWGgCI4XjEkUWn7jEAjKkg3IBYlL7wDMEw9RKEhKvzJ+ho3LE9AAxv8WjHAO06h+HveUFw4KpDblWJKkYC7WJaDFaJNO9qdy5nljCHnWYXlxUQpDyPT0COzDoVc9yxw6ncQMkBcAUkf4FXRJsDgylncMnxBqe3LARLnKmhKFMAx4G56Oy82cMcRmJqAEcBMYaibAgAsGnEqar9cU/ZUAgVwFQQjrttwQQzZaIOhQ5hDiMxdA0KGZXIXVma8eIH1uy3Rz9Gkt6h0EPRiqjXAp2Nsq0TI022AjBt1RxNRx0Y9TueLdAJtAx5CQUWzVqv8v+MOTHqm/TWTli+OvC3wgc9UYZts9bvLdbeSFHVW4DI4JgOeTqbJesC/CKS94pQzSzOaGnDB4HxaNHOqxADeofMXaZbXXg5Y0B+6STUDzWmb7+pFtlJNOW78eyF5rOzy+MGh8+atgFMXSjanACQW2/zaId1e4250mKPOwe6TVuq6VN5MbrTo2F6NQDtiBp1PR84MBj/xBFEBoBMQxruJ11sRj0UGdB02IULwORi865t+eifDjpuUoIU4TkAzLqHOTBk+wSopYT8mWivm2+EiuE6PuC6b1d64q9aBsP2EKPU1uy6I/frPathDtvQFhs32FaE/bWHfFs04wKSC6vb7tQ1LizHwv32R2Y6iP6J/THJLUrbOQEhvBrmsHTH9yxxepBn0URoLz76W9ozAEcaRaYsnXGSQd4ayTiZs224OADkWxPTjk/rGv/KAWC829YE2vOFGkAUmpSSReXbg3FyxzsBgDcrEUnjtBe6I26jbAdRGpb7Q9vMwSAGoBLOA8iFZRMvbE9KqoFwtWU+GewrMOOgcWCgH8qPESXf25AqGAWqBmJgLGxZ2H3A2B3jhdDn4JYwx76uYP8HXn53lVdRxdHGcP8rxpLuURxpMkiSSUlXj2nm6wzkCqJtLtm+qHTTrzTZZ+JIPqA+JLmvMxTb6ujCmsjxERksTzbffnpq5sM1F69oOY8uv/wb993y7Id05nju3ReWfbP9xuVVX93V+FKNiKj0/CvvHSXK/5eIwpfRgmsvXdlyfvX+6wMx0KfnEdnV9aA6HsAqBDpyiqiuZ8n1g/i+uFd7A0mo6Zlq7SDauN4bSWiNfTW1rx1EFf/+1R/V3KZuEIVyZ65fckGdj3nrAQER8V/+HCuEWrUD1QPiI6LR3/sSXCRrb1qnJrkykF5BnuFsOy2ozqIi+HyU2/wP4q9RvW/363jyztFHdAodRFUumDb6PztdelmyuDTwAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, the quadrilateral ABCD is the inscribed quadrilateral of circle O, if angle C = 140.0, then the degree of angle BOD is ()
|
80.0
|
235
|
[
"70^\\circ",
"80^\\circ",
"90^\\circ",
"100^\\circ"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAGkAAABwCAAAAAA4MAG1AAAL90lEQVR4nK1abXBU1Rl+zs1KOhLcOi5NKguBZAMLSZCBjtJKG6mxxhEtCkNEaUXrAAoOyMQ2ndL4o7TSGeu0JRYUa9ePUjoi1ilCbCmsKC2C01rYbALZQHAjXULVYEKF5N7z9Me5X5uPzX7kmWTvueeee57znvPe9z3nvEcQw0Bq9pUCAC580Hr2bYr2TgD+UlzxtYllcwqGe3swxLBMSej8277wf+ZNLLm+AJOLAZzpQO+RU/F3J3yzurrQapPduKyZWn/7p4vfmF81TSRnU0itORwO+xYvLwVMwVOAI+D81tn+upYUBWRkXdG8bd3mzfDlRmBKPHblst1J9SazSJWxs9Zb30WSRpZM8RXeugRHqMEsutq7NpGyRAqmnnpfwzkyZZeYMGgwUe9ruJSVTLuKVnalql0OSiWWFb+VBtOA1nx4y6x/pOIZGuHgAnfrkuqENFtlGJRO844Ubcych6SxoTgyVDYpoSo3SGmlDDLka8qKiOSrvleHfgAqQQ5GnTx9dWCohqWJI/56kmbjXR0IUhpk38yo3XXdt83rttIjq90AGGRi9uIeV440fzVCaMDPJhUDypw0f2VSeJxtrEa2VcnQgMK/f2Fuu5Mj7hFCiCbTGoVen33RbEKTt9Fqxcjf6wBpbGzyhu0sydo9DCMKSjK+OV4jVeXHvXsHv5gx5K7x7fZN3+xexhEFSX6fnetVblegMRcGBxvL7bEKr6OsXU9IMgRAMenVq0eHiLx3oZUKAYiSmkBnDxmeAgmgDr/KVAWGwwuJJ1RCvtXC0IwWgPEaSYY2k2SoJKWlywxx/+vqWkP2zdxMNABR1gLrycO+VB4vTdhfoDxyTYSmEHHstiysJBm/tinzLzUV5WvFXZKsjbJvpv+i22vc8qSrXE5KbmHDYoYBADUkBaUGQGq4Llanpi+CSHvONBjm24IAjKce+YVtZTRo6tLbagiCAiBg/mQD820CQN5Vr10GpPWElDTIuqV5HVlY1GFhSJLehRtJs1ZrnNp8n+Y9Pmo0Jrq8ifH2NMaadf70kS8Gfnc52y4bBtHKwvs2Of1Kkkz4urlo7sujLNO25Uz4LF9nyvTkQ16Uz3hmNAWSQHMFChc/bTk5qTr0HI1XFpcfGV2ZFrxOxnymUdcEAGy/60tAefTRX4+uTMcrgdJ5r5kZJMlZYZKX8z8rtC3saNiIS/k6yV1VpkwA8MGnXwcwpqhr8QtWi1KthNJFSyAPwJ3NZ6waJV66XwMkph9bs8UYBQYL7WUAkLfsBVAxaXh1KQANwVPBsibK7C3RAByrAAAs3QEBCQ1Aqx4kQJRH8Fij0DKfeg2D02UAIOec7bLs69tVEIBAWStubW0f4fUMcHw6AGh58w5AqpE/MB8AwBktyFu1BQAg5bDvp4/YVHW96QA0ACSLLKfui7Or6NIo6DdJssNv2qHDQUpSA870B81GBNsxvjo0CtIokUrNEb/h9AUBaECsAlAeLBgB1mxGDn7QjeOV0qw42AZAA1rLINVuQkUMuCH/EEdH+2IBDQAEUHZCMbUFpanZgQiIhzcL6bjkHBBRnxMkgicV04mgZXoqTkDgO/vPaaNijdoDahQ0GWxWTIkJ1rPirl4i/3vP584C4EJ3sVSjoPk/Vky940wNkJjeIoBV20bF+J0M2B1z5WcmU4GpARoqowCKK98YjWGKKpWWAMb9TzH1jDWVWqIkJiGxZssoDJM8WQJICA1AQa9iujhWKBE0VB7XoOHWjtaciaBFZ9p6Na5HMUFAM7ur9AQAYNXTuTOhLQDrYxGABMgCZ01/KV8nDXaP787Z6un5l+10fCJJDSy4aLcjf2IroMF75ys5i9RROMZO944FoEEU9DrPgycBACsac2Y6NtNJ914JQAPG9riYogCA6737cmU6FXDSF8cppi9/5ORVxNT1sWdzZYqUO+nO8YopGLNyiMAxlbr7cGeOTLEyJ31yBggNCESsHIEKNU64YnmuQh2fAdBU8+hUCGhAsE3Ccn7egk6VXhnKyfjxPMYDAmrmGpsKQAMD7VIHBCgBTmsFIAD/3B25MIlopboCAFqmAtAoivWTHgIQGiAqms2yq7JVdOXS2wLOFOG9KV4AmgCq3nHceVmbmbi5+2h2TMqlN1dQWMYofJOVP/8goOs6dF1HRYsOALqur3kOUtd1832VMn+h69AHMiTJhNgUAUADbSaQbPGT7Ff/7UXsVzcf+7rNPPXbb5Xp7+9nf7/5YCgYkiyOORawIEGqVU1wjPISugeYZHxitu2q2mQv73ESHtfdUP0ncDlRYt++7y8EAU2CWPgHIM/sjonNViVrtqaobQS0BJyJ3I4lAAFNg4F7X3T2dmecUpREcPJf3C8POzBDIeZYPfnKg+biCdDnXB2G9Oh5EvBMb/ZAenTd8GDVFl3XPYAOeHTdA3h0XfdAhw7zbxgQxyvtmzfKi+2VmofLX4SmPihMjwIaPHkeYOHxMx4P1Jh4PADg8XjUj/obDsJtyV96ABCQgCQNdnkT7Fer6EjA2T3aWJeNtzVIXnfUuov5PlMJc49lXX1/v+WVnWVNwud46MxQYE8PVjYwiSnu6zZbw6mumEbttuyIOvxWKuG1OM15kn/B0zANyYxWZ4Pv0S1ANquBWKnlHDY94DWT1hTyR7+5YFrEimNCjSqAG+V7Wc1mIxWAkADO/b7eqstiKln+A0pAEoHTrspXN7rKpI+2MjOMvHZtob3uI2kYJHuKzO2pI9e5OvxSUVY76FX7SJJyX8BRL2dvecdsnZRkd777nbqfZ7Nj6u9Q7Qw2GaSpaa5d7OpNScUUQ6xYz5you0BdNywynKpcTPFrVXDw5qSgdM1Ou1Vp4/1ZJMmdxe6u12CP2LW7lrUC5qzM1gpl0bWMVvNqhXt05ZvjXRWptQYAUFz/1B3/BTE94ta3mrZWIKMwHhErBRC/e1u5uyJHg4UQ99++1BCsbHXvR+Q9nOnURSBSAVxe8uDCAS1wQ69eTdl5jXTpm9FV1MMMUf4vctnCAZkOk6Qku0oaSe/5JAV4aGuGRHr+5/xJ+cD2JckkychVTZz7blKRI+WUGelerJi7fLGBuTaTNIOfTd7G5QMs+A3vZMJD7lrgjrJacEV/7vkjAP+J0wuvvi05KhQ5sSgjjTh0VrxROijbZT131LaQD06b8v6nL/YlhZ/Kz/QMei8FTh6dcbhkCFfjiNd/N2nIpetprA5EDKmkN2iQ9RvMIgYHdYrd+yR5eMtDs3FFpU6GgJq+encBtW0JADg0GRCirBXa5g3Vf1WTXbVTuypkqCLWXoyCdC98/v38mq+K74aDdxXuOJbXKY5RPjdmAtxwSBv2kGSohqQccBJjwY5UGtDycl0VJi/aeOAS9R/7I2Rf+XqnQguwT3r0qSB/w1qS5IfVsw47vbJ3ntltcoAPie38YVV+0YKGfWq2EA7ecV6SIX8vSYaaBzKpryW+niQ7sdsksE/MGCSDg45mGPHdDVVeX3VDU8JqT2JZcROp4sR0HJPNZCG0mTS4tMbO6Kn3NVhmv3EF6Xy/XXufqCkqqNqwq8NVU6Le16A8bBx7hog42kx9M6OScSgiqcrFV1onm7qLPlEN7Ak3LPRrVfU7XOFsSTK+2rsuYR6qiGMPSWnVYjOp27DSjz8nvU4m1hUsayLJlc/w8/Cm2gDmrQtFpFNCybnLOq1Fu/fID/ckcY14Aq1r6+yJ9S18r6Acc1dsdYJuht1BkXWF9gk0hRD2kAdrkuoZmYlky+OlRUt8DYMfGIw0LvYFNyRbU6l6aL15tsRCelFv+dH+ve8mBp8UPDRhfnV1ISC1Qaf3BmWkwUQIQGrq9CPgnH6cFJhTMKhC+1ziwCdZR/KTzzo6IehhjyamMxOuE0IIIbaneFXYN8NObVKtwS08hbPbqS+ZnJTpOlqaBIphDnamI1N/2+345eVvB5JiOJp5M7ACYWcN9FBpaHnbtETbspwPNKQj0/4TRWUlEACYQ3AgDab+Nxv4rAr5iRwiU2kwnfnnrSifotIjHq8dHmno3n7/TNyIg/H7kMUpOwcjy9T35rcKgGcfuAW5xQ9HthGmGEu3I6fOy9QapTxtnRr/B1cIQAvE355lAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, in circle O, AB parallel CD, angle BCD = 100.0, E is any point on arc DC, A, B, C, and D are the four points on circle O, then the angle of angle AEC is ()
|
100.0
|
236
|
[
"110^\\circ",
"70^\\circ",
"80^\\circ",
"100^\\circ"
] |
D
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHoAAAB6CAAAAABVMhg4AAAK90lEQVR4nL1bfWxb1RX/PafsdcWrmeYphrl4JQFe51LSRhNBDXOrpWqAMAUWlpZmW6ZlbbRMapdmo9tSCl2luVMQ2YhYUIcIgmlhFGUSWcimVk2oK4VlKB2k2FNdNcGpcEi1OnMCfsR5Z3+8Dz/b79Nx+SmR77vv3vM7536ce9/9ANmDoBHSQx/wwKe/1E3sgD0wAJESMkhIM8y7JDz/uVvkxBpJ7NtrKcXSpnYioieGdHNatzpP8Tybs1L86b9HAeC29TomA4xRoaloMtn/NTs+fRm4EgXAlQK3f+Xe0oq8DOnKvW06AmxSi4iMnhmb9ru33XIHg1IOQGQWmIyfnY2UVwW2l6kpZtYN3W8izTL1/GunR7DjG/f6Nd+ef/vM6dXbAruccoQFaovNbLCxpK4nbJxmsruW/e6w0sp6iIhiQxotUEIetZAbFoSpAx5/T9yKhrEuztsRIyKiPgwRjdYaJM6mHtUwLNzs6ojoZRfynibbXC1TRESjANqN9FRRC8LSpjzqiQb3sYSRgHzMdbqaTOoml5roqYcWs9/ONni6k3ZoBYFIoETQ3TRnmlbtUl66+0qm9QFYPu73T+136vUBrXiGARi4Hr/s3fA7swausjrWE8tqFae4uikLdmpFJkZGnr2tPGTsfVdllPj9b2e+lnniDw721JkqrvaS59I4g+WzWHgHX9qIWx957uEfHisxyqkU20vNQPvTYkkwiD1c/kfFP6i8YI5DjMzi/DW8k8QYjwBWVWNtJdZuFt+93hBYHnDrUytWzywQ3npPFA/8vblT5YKZrOBsBDMXMX0Zl2bgd2Ozi2l1ojrfvm/3dXzvrpNbDamJAWZ+9CZwmZHEH375jcosO5dD+GQMi+O4egFuP9aVYVszlXv1TQKA7yeCPQ0dB42oGdCTRxHhHvszLj0NYLn58r9dAM7PYyxF5z5l3iJsoxu2wvMUs7ZCrZEJ9qcOvvmD6B903mYNH6K4a/eU3PURLlwVSxNfd9J9Rq3FUI/DJ4f2Ol92ar/Ma/Mx/wPsoZGRmHm/soID/o8aK7XdSx51zHeIBrzqDp3bN4VMpNmkSSBqqUzu4+asjFxJ/6+IqK9cPVBp5TOfqcmpGquTbVUpc+pUTYtARNTtTxgIt8YrYamhNvVofdqUurE+LQrurLI1bBhASNXWf1yzz4y6M6CUTFttyqZ5ukhVNyYru2RNNKmF4fL5zFNjQ1F4iYiSVS1zvpDy+BgADGVRT3knVE/pupaicScqDoR8mZa7e4jeQlhFnarolUJioaSqO4rGHec6g9VpSfjSlkWKZVHva8xJ/7/NwSJUtiAQEcV9wdpDUsxoO9HudlWBD/vy2vQc15sbVTCmvMc9Y2KwjwHCqmaW4oaJctv0lO/kijlliRFPa+USERHtDlMfwhnqYL1Wvvc9w1rRBWHS5e8lIvqgVvxCgKRWzHVZU9/znlBevE3IZgvjzrVzRNTXQxTDoGJ1wzGdjCHPRHEcCwkU+vxOItodpqVN3kWZesKT0iMY9EapWH5tAP2jAIAHSGlm9d366ft9Kxy7BVnxU1WeHVKMQp0xWsu6njttfvpoY7zG9+q8O6pwiNRNXbq8RCQcq1z5MBZu8PQSUWebEgNBIIq6r+nlELU5ENAa620g1uIKpoiI4i7FlTsYBuhpdelN+MT53jPrdy2bzAxzp3zqh6s/3+yZfpwFAaVNz6mnhekvR820TtfvUZeCITKtRgwlj9zUFlfyjfvkEIiEgSpzeamaA+aJcpQTiIjS3e6mKfWbDSMZaqq3Mkgkt+g5HUOc8NZNZscEmzPUc6z5ZzgRJbge28QDXCBEornyP005k2IQRL31plUoDbmv2CM+VVWhNfgE+mWXIjRaHZSj6wZtEI/XlPdr2CQIQWl2CiKPyZpLJvcFz4hBuqzU74seRAtjnEwd9piKUxDyTBhwZnSMtbiDKdKpx2VnXKLubdZ6ryGZiGjYE9aTmMFch7vTyOvX90vUjf2WqCWc9Jkt7SSPuNrihur1tkrUXjNZ2TjBxYn0Jae73U3iGKvPPSFWNhLssmG6PAQrDIaxfA+SB4GSJUtERBi/2zqriF9Uaw1jAhENcIEx8/wC+S4SEeGVBtuzn5Y6jU/WjAdR/JYuagaJiBwXOdPNm1ycWL0nP3J8R2vHxE6Sxlkmb+BU484oADgi5QB0t0a08cp8qxIW5Uce/VbDxUdyxOjKvD0MAI74V+2QimBfu3BYLX9m731VU/vAWCw78s0CgGPxRvvUcA4OdCkPV3+2uTR6kAWs7qQwX1gAAEfCaa+iRbhOP/+SGFp4sjw9+eu1NvISnNcAAJ4CJ9nT3gFSexC5bZtDoEmOiAjOQue5L5aUhU546ydVy2hWEVtHRATYziiBA1i1B7EsRKCEi0hairfVs1RYfyZ7udoeHM4F8DxvJ8tZhmEOAj1cxQuF6EwMkuJ6rSdOZOvT4gnvIi1tai/421MgCnNERA7nNdjqXUf+GVuDVc/+5WPGXj4FDGj+RgBY5VoAwNCnAMsDLHiwAHiofwDwhNUAj9DRMHiWX0JqDQptJMzCFwFg1Y2LAMCwPAuWZ6H8qX4gPgA8ixf2czzx7DRWp1YXxAtAqmvHzVOQC45nAeg1OWIBIH3hm2AZFv/4zppCuwWA6VIAWMVFATAAK5onF3AeRKb4uz4AOPtquHBi4OIGAHDcEck1U8dsHgBKN00DSP9kP7cS6v+UidRR4lmQbDbL8yzA8uofPhMtPPQc+Cs31BzndVW0ANFqJNi01EOt9e7dAKxsERsgWZIWP/fkybAZc5FWz0iZDDuwdQzQb9gZSC26EC+Sg7cDAAAHtg8DAMvqNW1tDVaC4e2iJIps/9BajswWHjFWthX1sHxTtBQAHOAQsZYlM2VmVmT7O95SiNQIjFquvyKUNnBGrGo4gO3DRZFoCQTgTbGqwRCuemcM9taLTv7Bxg/FmYIDcN//+mfHDKa/Qd5TJiIrS3bFA6desku7L11/RtkZjvvkkANAyZ4XP4OCln77mjPugYii7nltVYuPuCuuthpltSeuv9kieppKs6ymCc8Kl9qtIqFqVuLxp4qqXlGP62syofvB2zI09FmanXSrFv0dogYV1V36yhYPRx8sUxeCiJjL3spdQZh0z6mOlch7mnRcczu1qBACWYvFyk7uJ3cOF3P+pYX+LVnrbaqt81uLdRxEB3Py1rlkoWrNpzXRfz2aljSXIub+it/kvFGQOSZxXSAfk1CQdzjkelV3yDebE5N1Gme4vChbtlpQH4nRoqbObbo7FitDcktXXlzO0uIu/qTZibpCwNeV9eZFqqiJAfidXK+1c4PWQQx2Lf5Vw6LckvF3Fr/Ef3yPhaNuRDFfZ5GJqY3T3DTVOtZYlBNXSsml9Y415l++8IYuPqx88RY+d5Cby0Lt4ohbU47GvY+bTjt3zhdMmYOr28recNq57dLpGy9GoROFPPn9WYbODYhhj/19cg0ES2UfptFpNKjF41CVjSseQxN11UbnATTqmgEA7zn3xr+trJpf33jXiOEnrL5WpzZYOZBPpFWaAoVrKkyOixnddkkH3UfUh0ltnKdNHnIbHKgypyaK27x8IWlg7fKF2R2fiQZ30Oj4cD63MHekgCsnmog0uzrCslxzKBdtikBNNPVTq9eLZro4b0fMYiEZUKslWL1U1ZR7BsZADRtXyU6NoiZgfpXM8qJiQRfobuaQuUD33mworlygszO/sUEtibV2bdCCuP8DJ9Jkbc6yCxwAAAAASUVORK5CYII="
}
] |
<image>As shown in the figure. Given that the three points A, B, and C are on circle O, point C is on the minor arc AB, and angle AOB = 130.0, then the degree of angle ACB is ()
|
115.0
|
237
|
[
"130^\\circ",
"125^\\circ",
"120^\\circ",
"115^\\circ"
] |
D
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHUAAACGCAAAAADGaZrXAAANHklEQVR4nMWbeXwURRbHfz0z6ZmYOybgh0OWgMspoHKonC6CugoSiAZ0kSiHrkY/HIIo8lHRD+BniYLHsnLIIeASCAIq98oVAkEgEIKAIXcC5JiEzCSZme6Zrv1jjvTMdHdVIOu+P6C7+nV9p6req6p+9cIR/B/E0Go1iRIAXQiTrq61oOb5JlOU6UUrmzZpLan/5ztS/sNzmXRbra2wnB7JRQ5hq6/VxlUsKe5j3rI3nUm51dpqO32kU4+Q8z3/WKol94B115er2ZRbiyqWlA4I+fMT6+r+UKotd0A0aSy9L/SPpJKa7CGOG8vOpJiY1LnWmRELewJw9EpnM6bWorZQbtNfCQE8v5cDxwHEJenY62o5VZJAnOarxJILAIZ72+vv6czhxsdZYz64639DlSTSdPxUWWFeRHcusi8AiIcrXDfKe95tyXaa26dyXKtTJanxeGZm3vBHnkzoZ/R7IuRdXSSidnWHh+P1TE7Bak1Esp9fndlr6LCBio8bN6VK7RJvnH9o4shQPUODmVYmyVG49P4hm6pVFapmvtptPyFN25O6zz0tuGj1sVAlR/6cvgsKNDQaNk+vSDxJCCGu8rRhSZk0Lp0q2XNn9F5h0VIRf32m+sbk/Z47285RSZmCdEdUZ9l7A9bbtXXKJmSTqr9v893bdo5KvuLUeIFicsSa8WLs8SlGTaW6Lf0HQh9T4yswPbs7eUZag6T6hjZVzJ2+c90cbSYc2WdnARzvkJWZxqU3PnPUqfqOVs9Zt476mTYCxHX1qQJCiGVlwEZNPJP4vlVldDXaSqo+2b3lr9rtBFDz9ZQEBLYVgOGh9TGTf1fuZXWqmDO1w6Y4KrRhrysZAPQx1YGPIlNT5/zkUnxLrePsv4zNpvYuIeLpJ9xO5TjwjELvX3t5uajwlhq1ad+EcgYoKZvg+W1i1jCl57UfLFTAqvRww46169pTexeo3fCoZ2JW6GEAiJkd/15jUKky1fL9ye8iGKD2E1fe8FxyRjiUVCJTEt4Oxip1i/X7NyizkVs8TuOWkkfLlLWa0l8J7GSlttoO70mjzAxuqVo+PcF3owu3KGuFPjloQYAlK1Dtx7d+zQS1/hiaKKtJjYqI52M/88cGU8Wc9Z+yjCnE3B8/lN3KJ+IAiZ5u/cZ/uggaq/yk8yxjSkjpBD+Hli86QXL9uUz55BjUVvM3Y/qytBTmNSP8djOGNhXqym3eW3pTdhtIbdhje4kJajtxNdWvgOMFdW1992lzZUMbQBUvZCxhgrqufZMWUHGs4jThEdOwbl80bwwDqDeXfsxkSaheOS1g7tKFqdkwACDmlYN5KlTL7vvZBtWSEZ0YUKTuOW6Jn93stX5UZ/7e2UxQ8eL+dwPLQtpqWBMA/oGe67197Eet3TCZvqACkEqXBw9E0LIeKDEv/btSgeo4V5rMAkXdxuHBA6GPVZ0lPKh7X1hMgqm1m99kgjYdLk5VKKaYExA+MqcsiOq4YB3JAnUVrF+sVE4zJyAq0TOyMmr9ziksUFSteF1xwdd2WACIHHuoMoDqLLlK3xACsOxoo6xHNSdw8eNWBVBvbU1hWd+EMwc/UH5Ccx0AEaP32PyoxJz9NANUKlv5kcqP43g77W1dmz4H/ahNp/qw+Grt2tFqs5c+muI6ACJG/UDkVOuh8QzQpiMV09We6cLpIenQgb9VyajOsrIhdKjztw1pqg/pngMgYnSGjNp0YjiDLVV9OVN9GAx0awLCh++RU88Opb9Sn56gMY/o6NYE8F3L65uptouDqG8IZ4/M13issV2TSWjfUz6q4/dO1NVcKvliqdYoMI0rTH1O+6j2XHpTzavGd9d6rgu3MgSvQvtm+6i2XOXolUwaD9ZT9nFMXcx3La/3Up2VtC845+XvFVcamdAnYgDgu1z2UoXyBG1dVKbNo81dhrblLNSOBR6qyxxF8dZbm/tSXYutrSEdijxURwEldC6cy5pFrc9AXWABwHBPuSdSSxtWqXjZV/Spi81hZT1cpz1mnugORRh7uGMhG9Ub3aEI00QMgCPuHpYErf5zXtm+jqk2prZCH1PjbqvUGKmhdnPpQuWukPy/wFXCMAo/ztPWBg1qc3QnQBp2mydHy6kMyzoAXbiFftpgP3FljeIDUj4tLCLFvzomapjVAECAqK4jla5UcRoueljtA/ICxh4mgtEAgBdC1I86qj+fruY09+wL+Bm8QBjON1x1cW5rUrf5hn36wA9VnxDB4RDkkWdG1yGcm8rBKQgQBAEQBADuS0BoPOuJGLgLPP9CECDAWZIcZeogD+mwuY6zsr2bqo+pAw8ePASeFwCB9/xX++X8CAAQeB7eYgECD4GvWjH0dbtt1VJZN9O/dNxN9cxNbusTeHjb6hHzmhH9vdd88wUP8Jbv1u0fBdPQ5I22ZirLROyqjfdQQzoWeuM2PO+rHrasIrU9t3hh9cyegO881P3jWXaJYmUH6AABCJGvx77Gugr/tcQYXAwAsGyLSQIAW7Gu2Ww1A12+egp6QAdA4EM6FhFe4AHwgsADvCAIPKpXvxwv8IDgXyxAAKk6MeQuAGLRpb80H6VrBrq84qxsDx3A8+DuivE21t3BPM/DkhGdxPNwj2hzMXieh66usSsP4NZWd5PdwmRNQlkX7/lrSMeCtrz/U/Hi/s2qrxraxDkJh4Yju76Nbi6lRibc1ATvbs3U7Vzg0xufaoTZuLbJK887ri+Y/e0oWSnLRCzVWRO8bQ3tlx7QVLP6hyoARKSQRxA5tcyv0MDgObYLg3wn3MYel+1+CRZNh4s/0nw74q23gso4I91zbLmDfHt/LiIhR/5MLbqjLYa216k6dhnV/anVLGrRHYrQzUmqMXdvpoY9+otsllGN7tCoVHNqzBqNZirfXbzkeyTm/qQS3aEI3WEthxJlVESM3uG9lEpXaH6oqgt1qROL6gbKqeEj/uNdPDSiOxShBrqsByZATtW373zMfaUV3aEINdBl+SXRj4pwdwAKrmur1KM7FKEFuhqP9mvvTw0bXpIHAJVp7zAFxJWEFuiq3eIOLMsitTF/+5rQojtUqqbnOC6Fdg+khg3Lv0aL7lCEsoXxBdvlEfjIp7fYi27XaQDQrEkWbPed2DkJKYyL7J3GdjSoLOIJxcN1j5RPPBZwOijd2Iamo42WgjO331LKuFr3tPOGNrzUijn1EItdcPx2Z1T1QJdUscl38uShWjKO/wnhY6JD+fDaO8kV1DAn85qpPo90U8Wihsc56PtlLU4Nf0Uli4RJ1Cdi28ny5tCcDgCkirXPXm8P6LvMnNe519yTt49VDXT5z3g6ADBnzKsV2gEA4uaee23ZFvUUIYqotrVy2SzZNkEHwLJ5QccRnkwKrsPb367IXqTxGa0pBpXDulv+M54OEIpi7bbdCZ7NGt9/8MZFMSm3aVMqWxh79km/GU8H4cznSaSpUPJ+LESlkA0znpt2ezalTBXOrQnIwCAF6JVXnmTE4DrvHFKVmm4/PjaTmlWoIPUr3g8uFLImBeQPKebBVM7YJV4Z951SZhJFrGvfCipz5iVfDihSpEolKXtd1akLhRZTm3ZMCiwSg6EqWVVSyZR0Z/1nL5g1cxkVJDijy3FiXBBUNZer6rXlzqYfEq+0cHCDMrrshycqpIqq5q3VfriowdFim5Iu9/C7b9ilmIimno94a8nEopbbVEEX2aBIVQufV0xQ1ciCtP88aq+zpTYlz+gS8sar7BG0ci9d+ZMWWW+1zKZKR1zzXEn1G0ccU9HSyjPVdV3JjT47Lakl85Qvgum48OqRbarHIto/3XlxzJTiIy2wKU8asbP6o2EaKaqUTF59762jx/86/9MtThCm9UAXVg+4bq0fb/hJ41uUno1OKj8/+Hhlx3evh7XVU6Gk4s2oZYaMtb1nax4ksuTASxWrM+6+bIt69zUOAAjU37k5+SSiOvfVZrJm3pObH62WuLtnGDgAUu0VNTXJmiNxbZek0OpjzPcXjydauNDe97Uz6XT6uB4KGpJEHJfPnKq063rso4Y0WP/KwDw/I3YO93NOwpChQ3gdx3Fw734IcbuB/XRmZu6DTzxVNkv3yVhqbSxUUQIAzh4JCDnHjmYaH7y3U49ImPoD4jUz7BdqzpWaHx42dJB3v+BygjNoZUQzUM2LPwOMkS/Na+O+J5azxUWXLbCfBkLui4PpgbiHOsk6lTTse94YvzxWHK1eJ4Pn18yeZJPyBzxnZZonpOKxg+tIzexuebc9SwAAbDcfM3GdluduYtAFymeGH4pG7Ou9NGyKgSoW5w8GQjr1KWSBWrbnLzABXExS9B1RbTld3edITH/yYz35dE8AiJ2kocRAtZx6zASQprKuDFDSVMZwPkyniqX5gwHYz1sHM1Cd1XVur1DO82emumq6JgBi0T/GsPyxnKFNzDUnQGq3a8a7qI5QMOkru706rcNqJr8hth/iv7Lbi6Ye0FKiUguMRqPRGP+CjQ1KiJCVYESvS5o6/wUxUG8GJ+VpFAAAAABJRU5ErkJggg=="
}
] |
<image>As shown in the figure, the quadrilateral ABCD is inscribed in circle O, if angle ABC = 40.0, then the degree of angle ADC is ()
|
140.0
|
238
|
[
"90^\\circ",
"100^\\circ",
"120^\\circ",
"140^\\circ"
] |
D
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAIUAAABgCAAAAAAWOO7RAAAMXElEQVR4nL1ae3CVxRX/7X6IkhFSbudSHrGBCMYm5SFpqijYUJmCSlPQpm8rnaE42qEziNOWaUun1NIaOrRlOk3UsUyddrBTROKIYjCt2oZqq4RcLddoCjcorak1SDKaBO+eX//Y77v3e9wbbm6iS5i7r+/sb8+e3bN7zlFEzkRlf0Xnbh/fFBlEAAHwRAKAvE8goigUqIGzGwGB5vsAQoDoMAoKwPdmVUCDCvKeo9CAik6WAO5e3Ovm1HuOAmAOuVBAz8CS+IVEHsEd96SiKDTAxjtQCUCr94MXRA7pBHD3r9Vs2vHlveeHyo2i522ydR4ACDTwfizMhCiIm542znEFGEcD0UV5T44QhtLtQCfrgQ0kjVdpDCXbxa0WjltSYX4bxz2+abnQ0/Xkq11IvQFMvwjVH75q3hyPGxw/yY2gIDWVKGoAZv+jbcNzl1TNnLQMgDk8ePKlv70yeeWq1eO+KGHmZFYh/cJXSq7Ynoi0d2yrKV2fHN81iaCwMITfrCjbdirnJ4bHt0xf3DZeCEZAkVwObM+Uou3cW3HdidztxSQdXB2AGtJ325XXVuzZe91pQEf0mf3ixpevqLl9AFDjc56E5kiSjaXr+gad/vStZc9GG7M1vQ1Tm4zXkB4TL6IrcnxebYewvZzkntiuEQTQsH3B/N7cGMeIwnTEt5KUplWkYbKqYXCEQcRsLEuOFUEURdo8XnovSXL9FpLk4BcrkvnZYcidU/46Dhs2i0JI8nelB2yp9o/GEm+K/Z552SHkntIWM2YYQV7snOrJY2k3haQRdpSvG1H0nnK5N24otpR324zpKbG/pOFbq6tSI3G9Y3rjuKAQkmLYEs8clntrvZyIYWOsJT8FYSo21oMUGW1gUlPbjIdp6zq3WoQk2+Ob3E45BaQl3ju2zZpdkfRlW5nRIqt3Bbv1La3tTeffsxuXmjEdGlkUNy/PZIXz2kP9zPdjbflRpGs3CUkpVs1m5GJ32ZksiUGnn/QGdYdui23NT6Y3vp/+zsWgINk9+RlfbXt5lpohybSQvZctfzMvnbZYqngQGZ26ZfPlGf0GJKpCtymHwLQjH13YDiKkRW3hkzffkVW4RelUIZPxQT+29Vt8K+yb397YTpNnxn1TksXLJ+w4DT8J1C55MNzPHaG7ak1/GIaFa+5oKP4gt3KRnD4oLnFDkqXduSAY0ryzrqIjhM9FcTpWvHq1KD7X5CKwFFMl4W5uiyG5O5ZHb2xvYPE71ZDJcu9EStPQsKU2Sy5t3KbMudRRsW7QbXXZYAuD8aKZoaGBrd/xHoIOFDSeq7ZFAnDsVVSgvafhoqNv1Ry3WfsusvVywaatRV9BadgX96luIblml5czpFhmCI3J8GNnbK9vJp44DcUGx3Bq7b4+VFnRnhU6Gh6CfbaKhUSS7WXfCF86DLl0BNV7ThRrdgenMOT0W41OQ6HZHB/gUOUGCq3ckCT7Vlz2Gn2aQ0hy59eKPDLAdDp2Kvjx38uZoSzcXEdDHooPhOR/W/ZWYdzuiVnFgSDIpxYEagybrqVrLBCyFQnSsDU+ICEYbbEf+L8iacojz9rCkgb2L0PwAfb8IsDaGRX5qw3zAeC4Z4OE3TsEPpl8dFmf940GAL1sf3FbRAOPfz6khY7VANa2BvVu1yoAGo+uvRAEKEDGwDPtmdpLD/t2G9BwsDgU4Knzw9Je2s3MUXQcCYqwFQlvOQLL0hLz33zNgNNP75Y4mgTuuTIk2KmSzO1SOFy5j+Rw5S2khA4DIcnUguv6fdULDnoHLSkMS1LepHEifJforNYaAEWgMPHaXQY953+iWSLGUQUA5Uc+tCBhy0Kg8gQUSKjRveQ1jl0SXCF2VgOAKGgQ+PmUCWp2osmO6Sft5p3f3HlNs0WlgLnHoKAUsv8KRNFVHdgiSh1ZLAJou0vAFpLzXXp+opn8l9t3fOmfbkX1S2GwBaJ4vSKwRQSdNdq1nShY8xupMFijrn4nN41Lj/Uv/JbNzjklABQ/o5RS0wYKtqUzngrKXNo5k5G9rHS9ezOAhrzi9VNn0WmS7JjjSmd9Qszt8YHChJMab0825qwP1fNlUzw+AAp2OjSnAJg8zAC+/Vz3rHaAk4egAcP00Hzony3ZXBgnoOWdmIOJWc6pI1WBhVWiACh9MYDZk/LSWXSm6dNboWJnRABHPTUHCpj7coFOHu0KWUbWVGJRUAqtzJz3yxW44UcjiLz66ott15wGtAaIR1eSUPMKfRloe6eiMQbGGMAka4Q2C++HgJlwkA+W2LKBMTBhFJj5lyvnpABC1PChFQqCV+YVBgJgSR/TpPc/zdKXfQXPeJf2ldPpNNPpnFa9pgtLDYVMbTCGTGFfgXcvjUn9nhwYB8BrEyuIXDvMyWYcXykwo5VyphcgHrtYa/CbdWsLPLY0Jg0CCnBcFh+Z7bDwQy+Y1O3x6TOo1Lu/WAWc1P1/LvS80JhxPNC1s9royKIDyFkXSmeffXMGaA6d37VQqfJ9f0ahnlCNyqSZIAAc4wBwEjUOMNEY4wCO/TGA4ysbGLh/ofRE9cSroJ1rRCjkWgAS9UXlRlH1kuPfUEcWQwDHcQDvxwHgKzuOA/sXTMQ99bOrYfe2q/wK3amYc8zm0g4AmJPzoYuzsKs3nll2toKA5/sp3AGpcdXzIoAxAkDw/KzJQJFu1Pu+cEFyiQIIIQhoXSgMjYsubtcCR08EoJGoLt61vvvrr14+GYCC1hK5CYyMAiv3wrosIcCRhUX7UJ+e+sH7V9kpiGh3LoXuEax90u0sCuissQtbBIr71uEva9z3c+ZpXZh4amDJa6egAYFW4EuLivNPEqcfn/WGme99PToDlwb01a2Z7/4zdDEgRUiGwh+mfeiJFR6kUSYN4DMtmeLRaoHoIix1RDM+/shaupBGOw+SffGMh+NH6wq8o0VSx/kHBmOeobDgh4inUwWYWnePXU6R5xaPng023Tnlup+vuMAtjFobkq5diyR5yeFRM8HadwbP2zEGuxYMSd7YZG8jaWeAo7LTZS4xzeelt+e/op8TBUkyOWOIJPlseQEIMvY93z3KfOW7fbFjhQ4aGcRuh0uX7hQASFTlWzdf3pUh79lKAHj9wOYfX/ORQqUgKDR05YLGtYPfuiX3ekiurJ8Vd6zv+8AYPKsuCjZsI8kle0fsHEme5XEwltr02SDG/ClHH7gN3ZOfJRnr5n9HppDD4S5k45onYscLAOCCCFtCrAWapOwu6ze9JbwrRMzaZTK3fskY7P0HkylrjbdIxvV3bhzhuSijAYAKXzvZduCHt235V4kVPo3ckTcv/McnV6r9HQB4vY0zl2vjRKN8commCUZbKJV2st9J7eoJT/7pkrkfAxX1wZMAVRkA/O8EfPE7tX4SzlIL+LEzn1dQ6RxRgblggKDvSQqaCYC54WEAD96wb/EDGJK3Ts1SUP2XzAOAmwB1wbJIjJaNYbJ0COqHfvviNKDQUC7RYS4LaMj6felWJMzD8VdzLWOuR17AuZeKtZHNQN3ZjQW9CKPRARCR4eoBk0KC3FJmbYxRl1lun7JtemH6XezBBpoUdhSAoV4BQJ2vRggKW28hV2+gEdkZ82IOzAjjZgGmST5dei/PVm4gyc37zg1CWN8p0rohQAlG2AwgITQ0vL/0ALPW9fCggYyb31P6ENlsbUdNnedG8e7wpzi8a/hXgUrQsL6TTXDt6I9noymyKPx4Av5mcme8nRyu3GEK9W9LayObwy5KkKk68mzlDtozycblBIfKnzbOSJI8gQet+7kQGM0Awq4DTRy8Hvh3VwUgShOL/vHA5UftBtKg96DI/dg7vPCpo5cCgNIQh66vIF8iAAEeSUj97EgbVyd4tjI+IMabS2PpujdNNJQhPM/XG2JNJI1wuLKRJHv2nYMVhoapOppfRPRIKwCgztgoHOum67vVM/ULaQL7xYNq0tumbuqn3cOmCQ/RtNblgBqchKFpbqSQtwX7gfaACCnL5PKqA1Eqfo97xfV+a20rgFvOJUfGGMP6F0muvivYkom/8MZynbhyYMFMG9PoOZWzEa4mFYxpFM/pObJ0iosWUfGEMcHNkKWTuKnkyu1H/XMhSXZsW1y6PukCKzxUy7esEtnTioBoUeJYMc5qGdEw+w8eGp57RfXMScuogKeHTnYdfmXyyms/bTsoJTqrwET7S6NLihA9UgRvT9eTPV069QYwfZau/vBVleX+cMzwlzLiMznvOP8H9vfU0GGB0c4AAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, an exterior angle of the quadrilateral ABCD angle DCE = 70.0, then the degree of angle BAD is ()
|
70.0
|
239
|
[
"70^\\circ",
"110^\\circ",
"140^\\circ",
"120^\\circ"
] |
A
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHEAAAByCAAAAABBgWGiAAALTklEQVR4nL1acXAcVRn/ttUB9eDQXsjVLh7QA66kaEygHBonrQS9SoWSdrg6BCfjtJ4a/zhKZoxOx8BMZ7iORSNEcrY4hLEOmTFwOFOSaAM9pEgwkKCEXhmuErhgD1LlykW57N69n3+83bvdu9273ST4+yPZfbfv/b7ve+9933vfewLICiCU/kOgc6+cOhMnOj1HROJ6+viXxSubHOXfmkCwxqjB3DPH4mdaLll/nYMu9RDRW29hYfJ06oS4+aa2+jIZjcgtMGqrnfrNkwutW1p9Bp+dPB6P1+3oXF+7vZpg6sN8tFnsTlT7dCbsbjmU0daphAVGBemwo+OoTgzDZoeDzp75au1YZUyFLuxOq1QaVqNPuy4Mp82/scaY7XH1agSvYjMAQLrH1Zsz+9ESY8wdes+chhm8pTs8o0tnTLU1TliRS4+4b9u8oZC1GSfd++3zAcjv+9yMbUYGYNA1VrPfTDDsGi42Y4mRASh0eQ0FtQAGTIo9leXVrZoJtGSWSAgASDfvzJaXrTL1RUT02nWeuLOm16qC+ufP95+24eXGnP0Aak+/qog44/qCKowzzrHlUAFc1pgraZFx3tu/XEKO/Q26vjSNVoXAVf3L6UIN7lyIad4MRg6XoZt+uUKE9HD6Xm3LJqYY9FYNOfaQWhcrvRgxMrAJ10n1eSUw6Sr5EWMdU+Kyh6kew555gMtvyMjaIitLCOzbqT4ZMg415VeaMXeVGhCMGLPi5EoTAuO+HABm7FfvvfnalZoYJdz4hYNEJBjMDoaka1nxwgzpNXy5VaGjQPu7lhUvzFB/Z4Q/VMry0agIpjRc2Y+RPR+JiiTU7/gFwUDHeWe6Ur6VQdKVNdLxd7fVE6lOd2WxvuVxKulY9J+NcWMBNWAmzzURawX3AGotBmDaY6cJG2AA8nWz3KoCEaKjfHoOdtqxqA3bC0S0+o5HilbNiSP8Qay6P8Qyw9eErzhyOtZsIiKiU3mj7W+5rEvGtXPvKquOu675Fy96ttWypQYEQdhqk3F1S5wzTv1nm3MNEREd32JViR29Z5Gb+bpNys3HiQCGm/FygBvaXasbVbQ3AMBDdWdtd+QqIuHup4RmPu7eKgzusiRr9ImfES2hU69/M7OKaCoLPHQJERElr/j98AtWaj4a2EpE9IZdRtqQXEVT3z5ElOTynrr6tHjzbadq1luc20JERH9pXmOT0fv6x3Y8QaNbb5ig1ChBeGMDdb7n8e+6t756vdfmriEiir74lE1C8iX1seNrRzEtItPj7KkeIz8UIwByYsDeuAFwZKc+dry3jhrpFed9r7/vObBYRdLzN/2WaOr8jaN2VSRxXs+4cAHRLU8S1UcnJi79dZWKj18gCM0j9ghBRPSpBb1V3WlgrFmZOq2+WC0b2XeyCZ+e0ZEFCo6U8jbW6K8RLMd9jc/bY0yJJUYGQACA4ECxbEgMTENVxUAhH9H1VrkYwICMs9SPfPFKRN/8Q7Hs9tnATbvmuGspz87C5sJEUF2UTg5HFkDmvA80RdleZ9jUeR7zftEoSVRFzZSoH6uO/xKR0/8nbdE9SVp/z4Kx3GKm/4d/VA1kSc0Fh15HbxIA+jrKZJu73dVntNtKe2KYdg9Z0k/RcbJZz9g4DQCzzormpwNiWcMMLNccAZDwRG1MkuOtesYAT0tfHa/smLi/sXzfvD0EAEg17LPOeGSHvh99SSIQ2p+s7JjWF3rDm1/Ulty18CsiIlr3/Pj3LHUjEdEbG/U69u8GAEx4jQWMureX1gjRhqw6RrOBoGmSugw7j+gZj7Xy/26TFGcu4gylOc9RMVUqz3e0VeQYjdE4qWecXcP/h0wzD2okm3Hrd+5dzdb2gOdlCACTJKnAC5SV1VG/eZ10yBnJpcSjZcX7fbMWCCd8PPPAZIVQ9ak5R8WWTnOkkth+sdgHlHmaQ7WW8wxAJFTOGA3yX7YfrlYv/yXRF2MKY5F22D1Z090FhpjKKEsymFRIiLKUB9jgLRIAJkuSwiNLMn9nkKWuWz4cafrKM+V+4ml31UwXA/KOdFFHJgMoAJefhFyAfMaZyQNyAXnerFxAvgC5gEIerM//AZPlx8RvTJW1OF3/WHUVJ3woWZXlwQpg4V5JKjCZtcRkMAlgMgCwPP8MYDJil78NJhcg99UFU/oWT3miVRnDvUVGAHKhALCXPACYxA526hj5Xwlg8l/FvxW4jPK5Xme4mBRlAJC6uprHy7tmAQIKeZYHwKQCALkpDga5kBAXAa66YgQwyAWw0+KorDIWMB929urmfsYfMmdUd+WMz0ZFj77vSACTpM8/BzB5kWsPJkkSGJOl9zdG5UWJyZKkDKtUUB/JsoFdph5v+yB0mUA+Q+YvehcA0GNwHAPk27oB6OdFWSQz93hJV5ZpGZkyJ8M9DABO+CqrMOzeXllWEcl+0GTs8b7bC5QYC4uqE0jxZFZ+baIyjxLxm1gs5mt9sfS23zdr4AnSzoyWUYPOXv7voJYLADDsMc9nqZGMAcBhI48XDsOEUcl2xlrK5ZyouoNWIpkimy60MABIu3icM8ohd4cAIOuY15s16R6vQgjGMj3OH6s9OL5W27MMQFA5ODXMWnMBtw3qSjO+QYNv9TgTckaUnp6uH4JW4nFvzpwRQ815ANGdpRKGXKul9VPiNrfi6BKqx2MAkPONKU/G5x1tEQBpx4co1ekMml460GOi1RdjADCnXePVOH1QTlj8R0scvS1W104Mo8qeLHNDSBVYOWExGzkMmFiTAA6EioRH7B1jKXuybCC4CMDKKRI/KZtxqyLE1yVNvjMCA/J9rmCKqR4vJcaKv1Qyqj0VvikPr3LzILm2dpq3HFkeybqaMsj5f6r5wfSMtdDWhTDv+rNe65sZDXgk2++bvUPnjE11ZPPe/ngDAOT8vfaoigM6FXT15R+mK7LaQlMdGWacTzlnAQQ77RFqMR1Y1+1wneENmp+UqRhzbuoDelqXdVC3R/C+qiuoeudhpl7MD25YzhHP242rv/qsvsj4xFO1+jvCZXVWFvcmGL919ZUJwE8kUJ06oY0Y/UREfK9zo5O2le8wLCLzoLfhMz/iDY4A7Wry11BHfwQDpBwO3O9Y6+6aAZi9/NR0p2v3A26eCMk1gQF+JW1odOK5OLebNpGSSNsbR3t+84afv2MtnQEiosVHr/2W/x/u+8d3EBHRIxeTQPTZlPpJORgGAopEXK1UW+PEcHB122DWPHmlRTLs6jih3npiANoPAEC4gf9sZNW9RKpNOWLu0HzmcMt5pfty5qRDAU8kjXSHp7gGyIlnGYD2gGl8ZP4R7NVT8ttrb+73uruqXEliSPeK22Llt9f4OcPLylg0Yny5ASwn7impwQCkQs7uNDAZcvkOpirrAAAbD7p6ZoFUlzOsXfPt3QMA1ylGNWLcu0cjUZES6bCjYwyA0qXlyPSv9x/JA7HgRT26JVlOHAFeIpXQiNE/gpxYZxCB56PNYk8CTN+l/BCx07U7wW9aHs7oenmAD9D7igUVjPyLokRlQyTR7XUHownMars0N9jki2Zf7d9Z59tXO3Iv4cbs0+PH0y2i99NP/9n1/aBIzz1wrOkyKXVC3NLWVq/c4a0GE0azWuDps3OvvP7POAl//zcRrfa4P9my7opmh3GN2ow1JCz77Ny4o/bxnL5J+1Y1axSGue1KmN7Qs0akPghEAoGsJJPNGY2ULy/Tt2/NXuaMRtKWl90tCBtzt1atYoOxNqaEk8Cjn6i3d0NiGYyLtwZGiZrbL7N31roMxp8sHiEiurTR3nBf+uxY9G49pD5bnMREtBwdZ+ZKF/L/P1YVlnilZumMDeJpgYimDtglrhldTHE3RYCBhtof6rEMRgwQkf2z6/8BVBVLS0MO3RgAAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, the quadrilateral ABCD is inscribed in circle O, angle BOD = 70.0, then the degree of angle BCD is ()
|
145.0
|
240
|
[
"70^\\circ",
"100^\\circ",
"145^\\circ",
"150^\\circ"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHUAAABjCAAAAACA4BDmAAAJnElEQVR4nN1aXUwc1xX+Zk1qK3W8WCoOlV2WjVJ3/VBn8UsniexZrKimSmWvq6jYdZTiVjJypaqbUrXug9dYquQ8tFiq2mCsKqtKVomqFpJKwVErZQGL4qpSFl6KCbAL/TGQqgsSEUthZ74+3NnZmZ2/XeCpR8Dcn3PPd8/Pvdx7ZiTCkwpvdnkzbIvqfPqvfxqUdh014N199/2j2H1QH9TZj9v0ko8jdhO18N3vzIVFcXcV9kTt/vVTorC7mgKgK2mjAJ5ZJqm5M22PPHSdu0vOHH5yt9UEHFaOsU5mvzUELG4BZafu3hpytQIaxtilm9gwerm0I6tLVQXKRHYSmF6SogeA1lB4x6r6ouZGRiYmos3HgWONyKwCI/MLSsup2EEYFq/d8I6ohphHlxc+1apEoxX9w5nRdLgz3rh9T7sbv9B7PPKZSMbmUkGZK0/HB7brV3fU/siVTD74WHYXPRBXxncXdTjaniUH4izEe9xHp+V4dvdQM4qSIaklekgmOl3GaiQHQp2LtS8iJ9R8ezQtStEMSfaeyTvtinpLbyhZ2bQd1Klofwk+KJ7vxbLOQjWSLNyIr1SJ5oCqyxyQDVcNnNMLGTnjNFjT/w7IU05zqgpV0PV43pCQMAJp0S2UBeOUnC5XakTVyEI8aaopaUNU4bxjKJdw8opHpHujklmLSoVgwSTcNZRFf6LDMo0aUPMiZkuUViysb7blvSSlOmpGFcH4lbSlL5m08t5XPLeEa7eoVQlr1rWz19qnWCchQlmjm2St+n3ZhNqTsMgwudUg11AmSRaiU6WxVaMOtVV0pWMOgr12ZWajnp53QJ2Sy+tUUKVbBSU6PVRJt9nM44laiGRZgerkJo3s9ZJ860c1oVqdSpIMVppLj9Ah+bGbNI3WteeKKrTLRxYrezJRN8kuuzJJciBeFap4JOxB4qB9ibLKUGkGNnr+z1WjLobsvvJaffm2XreuD6Nu87GhOqjKYN5raKebJbRzVewVIO0u1BzaKjl64ht0VCkb8V89IJ2N2ZPwtJLGgS/ZAlD0OBnOAXUxVLAjdKT8hrqF8rjsj6q5RGuz1/8XMUcjlCsoMuWLSlIetzsoG/IbSddQdt5KzRQAHq3K9rzDSGsVt5X6+xOvOzRf/K3flS0A3G9zaB9RrPUHkiRdqGSScKfp/IZtbKQw74MKl+0gZHHr5ll5jesnkg5hPSCLUDb3+EYiHHZ5mtwqhHXJayT75DUHCUYol3HFEcoT1XE7MMZpJDnaMEaSfUeWHVgddmXfUAwg0+Jg98njhuuArZ++9AIATB9xTMiEB39+x+AVLasr3m4NYPqo1c8AgGFzCC+MvwwAW7Nf3u8o4+D9TEUoH/vIF/ULlgYJAFZyUXPb3jAIPPzDGft4Mcm+z13cKNeAUM4HlfMOKZVh62r9bw4SConkC3ZO3arfP9e2Uq4hOumDKq0E7Wt69JS59uxrv/gEs6HP3/SQc+GN04/Kuj695I0Kx3tzxeln8ywgwtiDsnLaCGK/peOImj/gf5DWbOV8W6rUkD5FMVfAcY0HciFQVVXNrP/waad8MCf/aBiOkEz5W8F8cHDkx+aWJ34XHyNffO5ju6gAAGkPAubcKSeOmypGaf61Gy37Yp1vDC8BEggLMADsSwUvbJgGqhvHgZ/U/9KOWvfZZVubNNJtqpQKucvvNmPj4aP57ukVOdwk0okVJrn2dttgvVQa+NeD+4F9rTMOqHvF7DRKAWpSACqkzQlZBfYA0B8A1PkrbzVDfeJkDBo3/7Iwf3Mx/8WmpspU5oXm0/0RYKkRAN59WUz3k/221B8bF8mixiJJVfx8EFM1aiqpPzRSnYvNqaV6sUgWVTKdSiohKB3JdM4SymSqQyPX5WWSm2cv2kOzDvWrjQAQ0AIAQBUYViBB0gD9IQG5b6fCRl0EA3BSkQAMz+e65xeUcFNrYwRAeOgb8x0r9RLwz2cPAVgYv20PzTo05yKABIlEAJAClEa69SAxYiV35a0wXF46xABQGp7PdS8/kkNHnw8PXp3OtwBIPwNgq+ulSw6DmLitUiWpFVWSqspCQ0HVba2SRVLLxmZVUqPeXNTKvxbjaeP9ybYI5Of2p8n1E2PkRw3ymsPSB3uvFosahVdJFotphSwWVVFRSc6ezrJYLJJasaiSarFo/DrSeP+T09Ttcs+RA+VMS2lOlQfVrHcSxKyr/szXO7ebUEvpB+P9QcU5Kqtka32j43udRCmDJkxKVp6jqte0TBV3DvuUA4CSBiDtKe2JE+GDpmDLXU7V/kpjuNUS7fY9PQC2jlha0rGdgi4tRn1eQgQgxeYt543RkzsExTtxXxaS126ZbW5ya0bJ1exTkkraL/pA8m8RU4PpeJwpBVJtEZwL+bIEAByrf1jWfSJa2vgmE4PbeuX79kX/t3CkdX11pHTdMkqV6bkKKoSc7/BmEqemtvL1t3StysS2B8rEz/x5BGrZmaUrynY1FUkkv0DQT4jGLqifKbcNWkU+o4w6FS2YB20P1D9hZEHVyO/dFvXQ3LZBSepGqzorref0sqGdgQ6dqYrNOPmL1fP7+I5As3Jp1fjkEY3uW9dIJnqsoLXtSgWPFK4VtVxs7yejmYyyUhOSmc5X+5LDhFqIjeeDOzCvsFa1qMbd67Hc11o7qOEEY1/1f5ckEcAPWi5tvPjVm5hola7sBaXqPqKooOX3vrmHkuunEBIBSGxVJIhj/NZcWFyCoifrNvT7WtVU4p1+/1Kd7ZZXyUesiFmRnDm5xr5nlkmNU9HhWi0s6Hr8P5tngeSDe3Sxr7kxACD94CnpX3OHAAmRD27crkHREm1cCAzmD0fJw19zuF8KsjSSm/ExzjQY2dVEe3Xvn0yUlfs1IUHc45xJ/9jvHkmQ621rpUwhSbK/xhOwlm7JUBMCNq/qYpyM3HVPqEiC2miSFlSOR16vYf1MnY3lyfUTvqnozVeW2bOWWiYJgd5luQYVekJJbzMbqix2RAZIcqbB+R5loplXOfOqKIINkOzZpHwy1Fsh36iaWvLXQild5BG/fBT7AOl6CdWFFjsjv/ERk+8J3drQywVh4dSSK/dmfIx37vmgklPtBzrNL93Mampkf3swYXJ/V8MYedfDuevyElPLvqhkvlcOdaTsEa1leuLB9n5rYx8Ar4gavUiSvxojS9+tuX+SlRsZSa9GW5paJEYaMbEKpP+eG4nGTrUGazubb73y9UvAgx/+aT+q+G4NwMpk5h8fAtNLiAaBWHNzzI2T7teEQ/8GACRvokrU3SefL3n/r1D/B5ywiz1AdTSIAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, the quadrilateral ABCD is inscribed in circle O, if one of its exterior angles angle DCE = 64.0, then angle BOD = ()
|
128.0
|
241
|
[
"128^\\circ",
"100^\\circ",
"64^\\circ",
"32^\\circ"
] |
A
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAH0AAABuCAAAAAAvqUPMAAAMOklEQVR4nL1bbVBc1Rl+zt2NVCiswRCRYGiIEiQttrH4QcDvxGBQscpUGuxQh7RqSsakqVPHKR3TabQyZTraKW1TJ9Gm4rRVgzWmaHCUFDT4QUJqVjOJEslqsBqdzQfG3Hue/rj37u6999xlN8v0Ydg9n+9zznvOec+957wriCmD1NKtkXaFpEi3K1PILjUpzNBjQtTp9/1/2TVL2EExQrl+WlEqquBUQUpSkjxZuZok259Poc7U9V2AEAD+eviXAFA6J5U6UzfnCQgK/cIfrjCjYvIqUzjuAgLAoZFSOzr17FSE4vT0z8yUnSZDnMtLIgQKK98DIA5uTUVkMHX2OPFnr7/94SvA6H8BzJiDadWz510cAkBBEVzdUlqH/ge2IoWhT2PWmYb0wNbegU++PXvOJbmYOxfA/v048tq+yBtn1S66bhYogP7LgdW/Sa1DKbKb1Lu7/nm8+qprvuHMkRqA4W0vvTr9xjvKU+4MgNSsjSRJOd55fsEduxJSPBhuzV/wyOFUJFpI2dZFWrMa/jF5sZ/XZ7d9RCNFoSnO+Q9uO2/ae8/cnESFAIhn5/8+Z8/nZ7ceYooDmkoToytDa8aTF5Gk7Kuas2l7qWSkLbRmwkr0GSMLydjtit35zePuNG98R82MhyWjgSjJSENhDxP079eESfsuR6vL+n1zYwQjdfnrdJKs+BdJ8oWSKxO15UM/Kftg/r2TMBvkaGN2e9SMNbeb31+uKhxOrvYU2LtCm5MXMMhIS/aqw3ZzuursnE2hTZMIn4Rdb5k1nCxfkvy0LdSaoOSR/FhwoKAtE/bDNQts2+Gnw+i92ctGYzGDZFYkVjpSUff5KbMPn3ObHper4j++7oz6faTDutQk6HuioXSPGVK3XsFui+rJfsiZ4ZHQWXDNsKd628rEWHt2r5LXhz1G8VbOsz5L1krcUFitWoo9Cxw1ukNh+lpeteYNcry4w7/Nkuwurdyi1GckS6dhxAveW+o/9mp2Sb26xZVkPzGTJLdUlnb7iSzeEWMmSaNhUXrsklx+qa7KMdFfVfiYf259p0VrtWCick067JLsKh63Ql4MX1nQ6c9NrmtyJYzO8NOTl90g2R8a8ZO9b2neuuPJyNlfYouxWi8HQsMprzhytKDHDsZrGZLkgebs+6JJuckJzVNiU+EhH3ZJaW3EMaZL212lrCn80fLQisPuVnlRucWTdHedopy67xsqEmdcjOfwqtNbI0lIY2hu97Tti5IeVclY383uGSSjMwadtCTJaHt20wF/u5GIPymW2JaSCYXQhL7bGXc2Jwy2laqvm17nOxFdMBK2uTjqVY8JiZqXNEiGQ4c9inu4oGaHIyHZsEuG9nnLRvLGkrOb5Rot2xAf+8eKq/qSsHlRs0GR2No6CbshyUjI9TrQU1bRY3fASGhlEqy5Mx6WdrVI6NPk7JTkcufzSO+Cku6YGmzbORl6Kh1Rs81ymdfgulfceHZ8UUkO1BSuT4HNAUmOZ6k2iXAo6m46XAnrbokFjZFF+Z1J9hpfcrJkQJW1qMvD7lSlLIs9iuxrCK2dSJCYDpYqt6Enq9wpMIXb8l8/m+Y4RZqz10xm0H1hPNSoSJWGcyWS1AAuE0IT5knHH5dJQMPHK87Le78jN7U3QQUuGfKmSaE1/sH9ckmSTc+zH3tIsmCE5OGfZDdHDEsdaQ88SepCqTdz700ASJ6sOsoxhEnuOtPgRHuoYV9sa057zM3yld5NxSD1LNcupQEYrM3BPavLAbRPY+esV7c/NRcQgLTP4NKBgARwsVf1GhCoesGlepIbAYQlSV4lCmuUiyU9GNxQ41CFjfZmZ0GQbApzI8KURkScdn/aq8sNaZAMn6nMcw+8Bhz8rBzLKvsgtONsez9dTXtADRLlfAcA3ceJtQc/c49GX719uvpuVeOWTMmhARpQMUTVrJm7x12292roS4svA7Cn9GIMSUCmeujjj9rtqpNUzA072ftF9/liWtFYDoC9FVj6dw3QRMb6v2gIcJ5TEwDKXeyXkZI0LV14Pm6yVC8zZL8ibLhSBAhUuNjtFhKQn56Dpe8fiKWfKkjgjKJBT7oAZn/qYbeztKN5CFzzVPoXW24WAeBbb6myvnpUzQ5AHs8DbtwMmdGoSwAELtsGRTfyjnnYpa7rBKAdywVuHjyS2W2JNZYX7YbidiT3uHSX1QIICAA4kQtMX7A5I3Iblxw6pEjNO+bomquflLjpaYAZz3kE5g0Bk00hm13XdciCqBD6zQMGoEsdAHVdt1ql67r9qevUdYO67l5TTizcDnh0H83xaB4AAghCw1EYwbL8bTACQWHA/gJgBIKgFQ/ACAZoBAM+/SIACVz0miLvSLZS80IzwKwooetLnyIAjSAENAIAhUBQxOIB619NL0yxtbsVedEcR1Sza2iSMicKEQw2bPVO1lOwAHMDTnoCwFEPu2EqN2BoBWOCRO2JXfZjjYy1gwAT4ynggjcdUQEAH8xwswsaAQAaRPleBAxdv/aZgNSNAGB96RQBQ9eFFTcS/pKhts+b9u58N7sWDAozWLYLIhgMNmwWwWAQgPUVFFbI/AwGg7H/ZLh4xJv29jw3uwUpMP89AMDSdz9kxusdqA1/4Unbf76S3TgJgXl7IQF8pfZpMQV307lFr3sm6/4KJXtgmgbM1XZrAHDz05lzA6geSGQngO3F05XsJhZuAwjcsOPIVLBXDSRKFwC21TpLONmv6gMEUFT+fObcxELPFv/S1d63iTj+cyZJSq5VvYOmDeeLk9+bVBzzhbkr39CXfCmnBjH/jYSYBgwWFjlLONglbnwcAHBBaDuQ8ROWtvBlh3A83qh6g45jqND8XmldrmT2XhV7mzNleU8P3KdGZb0GSfaVZERrIXK6I+o9OXFblZY/a4TE5UdU+2N6IIpOd0h59HbPUMYVQ9I+MTPYuHYK+i7ruhJiihOzeN/NrXPmsgcBaPjO5owtPSGqBhLiv1qeK9wz2d3eUfOkNJo1yXV/SuitiIcj2V6PDO/tgHVKfGWXJyd9RANHYmHrlNhxwO9lD5ud71TfZaSJ0lfsUCQU8Z5/eXfS8u+thAS++5J3d05v2CWA6lfs6I/uKkIA7pdjb3uj+f8mycoU/Fsmg+ysNwPGluIJhROI/61Qe3NqtzBJMWzZzonYrZCDXnEHbbC6neSw6nYlXdi72qolcfnJ2En7NrDY39UkFZg01d0kualQvX69s04CJU99fzew5JmMZp1pvS4cBDC4YutM5cRMcgvcWzoFA99dTY4WPKmUI/1vwBfqerZ7QzwFRLL0ico1ft1QPjkLooutgcV/y0j1AICivD23ntVBn1MotXef1PDxhSsL1g+oMtPD9cdHd6quGShU7DFfyJ01jzb9OCtj9ndebJ6u7GIHFOdywraF33zi9ty9mXKLwa03TPfLpNq/zrIIw8UtX9pJam+fpDDIicbSsFq8eeernnVW70f2L7RPtLVUX9zjShYYv/DoToWbpwBsN9Gkzddbit+Up/pkKwdmtilqSlJyMQDgkiTsL4dJdk2fxMPNn3xT/l8k2QQAxcdc/Fw8JNnT7O/pdHJ+mCQHfL37kkNfVThMkmwKk+3F8WccSVKeuIInHjzxgH/f77/ebHBSz0Zf9FqejfLkLSRl093xLINkTzs7NiXxcNvYs+CY7aiVxKtTjbGGQns/7zd/SbDEWaADwJC/P+3Y0QUzs63D6ltH88t++rFjOSTFh21fP3f0BstubLuGAEpdRV4c4pJ5pv21ro4cBumRFaiwm8bc3+46NOeug/YVEy3fXVrHks70Az84b2LPr7MADSD05y4XAN6riPMA2BetQnWejK04ScfK2giB1fYgkSQjrWhIuN507lnxit31p7eNxwpIjq0myTE87yjd0U4p2SK1hB7H3d0PHqPxSikgLd0ALFo/ftnPZq7cLR0jIGnFCAA7l8/suDby8EzAGlKBvlIAuGdJnc0BQMgX6yHEtbPV1mbsOpIbf0fpnGPSGLmrOL++M8HxJq6C4YfqQiV3x+2qqcqTlWFyDM4512O1ZIj29kMR7/kv1iJcvuwJtQu+6b0/61yn9/4Hw2fVLr6uyP1Lqf7LAQDPLY0JT/w5AYWgRe39lQEFYAQAkBppXtGZ5T7bEf7wZYH3PwFQ8DWcdunssuoczc6XmlXOIZJ2ffMHF2bW/wAz6h07riJU9AAAAABJRU5ErkJggg=="
}
] |
<image>As shown in the figure, the quadrilateral ABCD is a quadrilateral inscribed in the circle, and E is a point on the extended line of AD. If angle CBA = 120.0, then the size of angle EDC is ()
|
120.0
|
242
|
[
"60^\\circ",
"120^\\circ",
"150^\\circ",
"130^\\circ"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAGYAAACCCAAAAACRYeIqAAALgUlEQVR4nM1bb2xb1RU/zx1CbGHmgzMe4xVvNB1mkSKjgKi0MIeRMU8UkUnZQkUkjARkIx8woSAzlbplTOsmpGUjiExMqttVWyXC3G1VSKVUdaDaIkVaEDO4qOnw+jLVyJNw5mZY5Pn89uH98fP76xet0s6H1u/ec+/vnnP/nHPPPSEEoj1ERNJGsEYAQhSIfrunBDxyy3+CtSIKCLO5GSN64a7nrzDMX24iItr5/hWGOT1ERHRzUJSAMMrJBBHR32NXFqYy+FkiWnvh3isGAyKi0zcTET2b/HZQGAqy+jf7SoBMSfWLA7QMArOoDmwuyMg0EhBY/q1QwAVNRNo0XTkYvXvBVNAh5P+x0rZAn+mUcf2dc5cKAi6sEZF0s7DtLmlnfxcE33YqdaS0tdMLZyoD23fcfi196fu7f/3Xi2W6vHxBPnvjN+755vWd4bitdGPzlfb2iKMzJe1LjirxvF5VnB6JxPattrE7k8/2rM70S3vfNxVkMzgRN3MU0+LAazXb4ILAVJ7qGjvZXhQtgW/LmwoYeGM0nKl6gTjC6MzyeHhvxdLyzC7ALI5WLU+E0xWvAbtKU89EDvzLVpp6FQDaxFGpkolkG8Fh8uK4gx7qYh0A8nGtwlxbGYvOB4SRh+JLliIGgFxK/WgtNjMVYrurncGow1sWX3RgZWCwoP7Ixx3qAWVf9L2OYAAAuYiD9AygFNW/VHHsK2s2MtshjDLRU3QeEjJZHdMQx4q0LGWc1rUNppYcqNnZAAYUqWx8Oc4OA6j0j9T9YYo944oTCgDMJ1q/83G3vdgY6131g5kPT7uBAKPH0dJSPO+65w+FC64wDADFsPvSR01smFhdFhsAIB+xytMmTbVn2ujGSoyZ8baqeN79DHux1zI/ZhhlaMJ9hEB/+441jgInGht2gNG400Ousw9g5VZLgfNRoNInu7J2GJVyPW5HhTqIQ5YC99lhQJbaBtGCWYqUrOxmUkTZWuQlDpYjRZNODZg1yWORgZHfbSv0WmzA61GTcgyYIatOLDR8wl7mKQ72jbTWiA5zvN9r+oGq6FDvIQ4zGrGWfjSYurTsiYKX0vaePMVhxkLMsKcazN5xbxTEVhx68pkdjBpmixgAViOOp3KLllz6c7M7KlUiuh+iSpPKeqPw+JRzuavdUSmtq5pUVE9hGA3RZec62x0D2OiYACCd8UIBcHzUrcbd7gAAxrMtmGrY05UDkLRv3Q7sDoDVyGUDZirl42ivRRW9azOnp93RGIePGDC3FXxgshm9qQOjm91R/cX8oArDWIl6gwDRErsPxNPusBIpA0BIoCMpInjdphZviAnu17JhOkGutUJo7LB6FcZ2TwMAIDXjWe19FCzdCgCEkuiDovnn7uS6dxiA0lVhIESLCfK+3r+R7PK+V2YPuqmMiLYNFASiEJ25m8hduUR0OOUTZBimEx61g2eIQBB9pqbln7uS5+wsxQCE/qH4hPqOprzrCd7i3PnhOhEtJLxHqkhlr32hidPn0UN8GQid2+k91oUdUfepeyskCE8T0XDohCqXE/V8QBRa9dHZ4R+412Uf2sCnC08TUfYAEZHggASKnSei5EnPA21ddL8fZ5MAsChtwNMrODYChCo3eoZ3fvfA1W5Vbx38uT5gouxB10UvVYlCl6/1AAG99ohr1cxkjIjoQxKIaJj+4IbzuctEoQ2vLS68s3GnW5Xy3hAREZ363jVEoOxBN610bRBR17+9puZJd19UphIAXhS07e1635ElwDsQ7eCfA8/TZJmBzd45AJt9k1qxq91ZD/vBtPnnrBppmYi6cwD2JwGZJk1egXMntesA6vI65YftLfk3AtGp3icU9WnKdCC6nWzyjQCJl+AsLDv75wvhMZpEfWTA7rm5iFOKAbTjArjZbDoyOPjnZ8N/Un8csjv3LuIs9wMUXwHYGQWxFauYb4f1mAzP35Cz8juHPgoJgJInXWHs/vlK2BT5We2dsOjUWZxjI0AotkpERMwgMBGYiQjMTHQ4xczanmcG0Tv3vvwdImZqMsA3/eyjwfW2c8HZ7pzvJaLpxwBuqgKpXmUTaALMje6PAM1BawKMknSLdFAGN5vgZjkjJT/e31M0WFzFGTkG0EKCwU2A1W3RbDabYAa4eXwP6/pkBlCSfom/PSZ1Dz58YGxQ6h5fbQKvi2/AvFCd7jvxZYDKEa2vJlgfGTcBVpLzTTNMWfxFE+BmuXD0QK5QBrjJQLGn7TbhcN/hq9fBBPF9ZobeYdPQkRxVmibcsvRjXWgNXW1QSyZrpn5ti41VlwOJtwGBdEMsMDORwExH9mwTmEkgYhIE+VuPP0fqN/75hXNMDBATUfjN+O3vGc3tdkcoJIiI8KrLFSlqnCMMVGIZ42OR6Fwb5+z1sy1W230neRxm59ZSW9hl+qjE0kY9qw+GZjJPkHWxKV0VAARIJTjs0NRMC7gWb4uAWWAYqA2N1PXbj8XuLMXAAAFP7Yed6je0br3r8VRbnU0aQJkwApwWcdJZqNK0X6O0keRaPdd3PdLe56d952z8yInz2u94HuoKZQBKd1mDQdwWAQUSBb2L+sCI5ehykAbA8nbNoP/eLE4+AR1mKmVtgtWo/qvxdSsKPu0rOVmo6oAWgTbvneGcAeNwYTfi541k0mba7EtAJX2CTO87q5G6AWMJP5jj50oyafM6L5Lru3ROnG8Xxxx+gGwNpqjxc4YykmjA5aLuSMvSyzCJUwmbgym20NDoMQ3lLp9rJ4xB6M9f/Q839EgOt4WG2Bbo0v3z1K4OUCzUSPXLus9Wiehvc5awnVr6K/UrFfeJsjnTtHhWmx1T2E7bHKLZT9m1BAATW0Jh4Kw4nY8DWOhpADmi5OYPnUKqKzEASMcqgfIoTCT3p/ryaMTmIdMkcJGmnQLE6UMAMjG/6JcHNVI9vdj3Xd3D3j9HxmOqEe5WRBmcjcqA17usD01vey5aRU66DAC5kkPwPp8EXoyWt4yg0vFwEZt92qMT258ieDiPKbHs1DQAHbnqyzXIwhxUjZjvHemhTTCqojIlltgWC3Qhdvo5f8c1owBk41Ayw2wOTQCYSue6/UJf3sCFRGzgAQaw2TsNAPKc9dHrFSD2o/DKFvsHACwNRY9oj16cozlgMWl9KSzS/NL14ZUAZ6WVVpLSDPKR89rnIhFNwuFB8ivCF6fr5tF1RipvcVicVjwfJDWapfvffTQyYX8g7YBKo5GpBhop/+dVnLwvmahVX5J2n7Sx+lA5FflpHaiaHosdHr2AxRIA1JUneorAbKJnut6p3hi4OB7O1tD+9M36f2yCaVl41dQW23TngcdA5YlwpgYAs6LfQ/7B+zf0ZlpaQqe6q6Y//0wVAJR9UZccAON59egf72gln2pJFqzrTh+1I0hGz0opxO6vunDq0sjTctJcr6eM6LpzxmDUspHH1YDLpU5SRp6BPNnWWT0TyVbBcNKdwXb5UDilHrKmBBinEWkwOW23mkkeD+/VTJuhu7YuGi9FRlcZMNJ53NeJOjfyK8CiPSGhku4a0xRRfDQycd5UxVCmxGF1beb15CR3IoAhJwHknPIeqjP9UkbtrE13rMxIu1cAoPikkWrlsegJwH6iEkbtWlPJlDjWWne5aHJJTxw779isnTpNgytcGti+446u8punR5/a8cpPuh/85IJ8Vrp7aKizNLiOYCBoSX1EF9aI6KqvXnfV16Sd/T4vIW1dtFMnh9jL9iK/Zpo0ENR/XHMOIehV6v8GY2dZiv+jvE4/sEB5ne5D8hMp5JfOaq4W3Jl9egn5DUSwfT0oCILwpiebwzCC0545LKoh9Y6bbCHnVvkgoeXed5oKu6XU3j8PXkPPTgZMvg+usxwJFNT73YI0p0qcu/VcsDbBYdY+jtFDfaevNMzp3USVdwP+/UVAGBCduoeU+6REsHZBl4D6twTJIE0YwH8BZyHgGaWLmzgAAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, in the circle inscribed in the quadrilateral ABCD, the central angle angle 1 = 100.0, then the angle of circumference angle ABC is equal to ()
|
130.0
|
243
|
[
"100^\\circ",
"120^\\circ",
"130^\\circ",
"150^\\circ"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAJ4AAABuCAAAAADzfPW+AAALB0lEQVR4nL1bbUxk1Rl+DjNm0y5mYncoY50VldkyytiwwW23EYWtGPmxIdtKww9XyyYbaILNstlt5AcpmxSzNK6RRFCb2oiJTYmwQRNNxmR12ZRGI6az1kFQR8GCymaaOnYwInvnPv1xP2aGuXPn3jPQhzDn3Hvf857nfH+9RxAu8Fp1gxvx8lHhRvjqiZ2iUQyu6A3cGNopHkXght5T+z/fMR5F4ILecvpgVeXOMbGEc3o89wh+uINMLOGc3tNj4ma6aufbAMf0ltNktFbsJBcLeB3KLR+7CHxsI8CdYU4HUHkKiLEd6M559/+AKFmb8rIl9e7iFzOCH68CCNbimjuD+xp3sjWXpmdi9fULM1807a09UImamwB8uoz1uU/+NRs81HpPQBPZ9hJ2Sm/xzy+tN1cfOGrxaX5mZsbf0VWLnaiATmpA8unG4OkFDvvqM0WqXLwv0PSn1HbWOg0O6K31VR59hWq6oynZdq642FSnrz+5fcQ0lKS30uM7fYVkor5X4YJ/zUZ0tdfXZ/ddApb0siWY7vf/LkmSU4HnSJX9R4urUsm1/j2DG0VUbR89U+n09T1aefUH51SSTAdn7fWtHa2Jbg+z4vR0xSutDW9RJZlqazJq1USDYqdOJWfCh7evCtrUvbnAkMY0HurNcmoZZYmMUQZq4ts1qBSn95xfL6WpwITmUUky7i+dN1P+8+UzI1mcXqY3FNd8/YZHR99xe40qybngIztY98hUW1NK97SlmBdVKjBXlJaJtcaO9Daws6SnMh7quUqSjIf6Cz6PNzrQu/FgfaI8ZiSt6KlUo75RzTfun7IIc/AZJwU37JvJ0blt9Mi4L0qSqtJbG7f4zFjA0eg67S8//0DmJE4lyWRolCSZbGpLWSe7p0c1pIvmi0oO1Zdd/wpzT2ntJUnOBYeLBUoFYgYv22I7eqQcamQePT2mvlaFJMcDUSt5Dc8cLEmNJDcODubrdo0CeuO1SZJKr33Da3zBkfaV4LQkLx0g2Q4AkyRVlW/6F0gmm4p2W1oi5gJbesMimPNbNi7n9FSS7ZOMIkaqXAlGSc4Fz+aRsWB4vK+UZpWqSk7VJMsZPkBysz7NJcRIsnWY5KjfptrpSO6Jm1RtMXC/PDmNXrSbbO8hyYlGhRtdDU76q9FmZxFshEuntThAcgxATCWZ3vs2Vxp/tVEqEEkqDRPOCu1C2JG+4vTaYxxDjOTpHs4GRh2GnA067HQ7h+SokSTIpRZys26YTFSlRgMlJutZqEcLZwuWWLNdP9lDEE+lH8HyzZMdOBZcfe+loOMV8pWGi2FHgifxhNQSHADI9hg366rSXLtuf9eGm17gXJszubU90gt0RAEALSQ7MeYurFJvNd2yQM+gW1oGsoNactdDbgNfuNFZo0z4ZacuFeYW0F/udrXvTgD3/HRI85RA7Z3njSBud39Nog1TfteJW/Et6z77Kjvd7Fq1BpNerIY+98vn4cOlJFSSVPzLpeSsYW59P9+F2+Mucx7oS7xWQkIAgOeB51yr1mDwDC6wd8R98qIhR63jrbDmup28aLlHLCph3Bp3XXNxX2QEDir8HatXAOh56QIVeqhLzUBk0WVwAhw5u8rSwTx3zbgklqVHABcPAQ2XXQYWgKjpO+kkTc0XXVMDAOjVIbBAcq9M+9qoed1eQCWzlc8lKrSC+fRqGECd+6YL7HqiN2MrIADgx0tfSehGhVa2iQgANMjQw89vcjAhEbd+JKO7Qkvd4j4QiEjRw+gfrth+JwGEPpBRrXfLiTAA1MvRqz1+2va7EADCsrkHAIthCCCcsK9FRcAzM38vKVQ3L6Nap3flBgCsDCzK6BC7zvWUTNfepPvpikkvfS0AgYgUPaDz+j+WEtm97n7MMOmta6eekfdcK9Dw5KB96wAqv5bRWwEgoyiZ7wIAGt6V0QEg3DVQQqJyXUoxSapX9YlLvFaqbyeZrn7LXiDlk1Gbb+oQXv1WKo1A5eO9kiFtYdBLKQoySsWt/1SUDEBFUWA6pk/7VRQqSoaKktdaH/iOfetIX1sGvaoNeOERIjLv9ZLIeLwiA8MBkPF4Ybz2IOP1MOP15PQTJJ4882+7iNalTA50et/7WmSQqUDdvKIAhEAFDQcAhYBXmM8e/V/nR0AINNw/YNexre8ug97utIeEwP73vV6vRfdk26Hq8o+++o5Nx/a1XO4RmQzw/c8gMhVAZFEFKJABBHTH4MfcZwv4Bn9jE9FqlRQ9ATDjCSfggQBqPvmPogh4qGQ8MByFwpPJvs7k/OXhOJ8vHlGiXooe4PF6RSiuLRh48AOvlxBerxcwHK/Qfdqv1+s1//Mx2m855yQBxKUsE/W1RvgjkakAICKXZYZGTQnuOHLG8OZCCBhTNhl6Agi9r2isIgsyWqDb6/z+hXlYJ48L+2TpAajxJDwAjBmpjJmeAOAf+rUFMwB4+xafjGJj1Gi+pLm3v2tEJYXj30wUvBMAMHM3KKHYoHdIX4dWe1fkiGn54hk7aT0zuXRIKs0VAECauYf6DyFVuHrkP2l7FBYKMn9rkSCn0xMCYY8+UY5chnzhEjj77CIKdzXeCVYbAu7pAcAvJ7TgcmtdHQIIDJy0SN1fO00BdzAmfrEazZ11YshgDZUqCzbEte3HKsntx5zNW80yIVVpa4XkADPBgi0/6c3b7Gy5axwE4NuzLFu0OprvHNr6avwYUObWd9KnnS0dnpZMKUmtLNe2mmCUcXBg8vQfGwEAhKWW8wYEgOrTfbp5uJ5Xjz0sbZ2bZbriT5HkCx2SKc1CCb+a+7jmkz60ylmpBQ8/AQD1C3Jjbg48IydyV3zDXT5pVTlUE/4vSW7sKrfpUmVHzhluOQemeWY2v+0hyXCMZVu3mcdFatnHzVmkA3MkO5zZqNhjyKzBF5ydfFgj30hpolEhBwfk1ZnYCOkWDuWZOuRvYnRe9xjwo8vSFTmLXSN92kJpKHJfOXry2a4Eo0zUlJHcLA4PkyqngmWZ4W61QHvTv6Ds2ha7yoR/jepc1XxZSgoM5MZDyYYSe2EOMdDJVRkTr5xOQy28EHEy/oNvbiunuhh4ffahi7e0lKPhjDEdzblCdQ7/vU1+LZQDT/PM7hbZwMbsJpuTY0DL5gkyGRrdBpPjbTTOVEl1SXSrXMIwTdPWcjHtT2yxSpWmp27WdZPkqUmS1A2Dy8Ow76JmuFglk4ftAIAWo3DHNCVjMZJbjPilUv5NV32C5JEYecqpLVg+vxgZ7dbPczfr8s1sU23NX7rUl2eKm9SM0jfbSLK9u1iY4ths47cjmyP6ee5nH+Tvb/leiRyYN5uQo/mfyHHe2X/vZCWAN24EgH0fum+5b7Tg2RuuOaEX7hImt/IfD0RlG/D5gL6WPPUiST7V4lqDOgbgH+aocVUr3KVJ0iymucCjzHl0DGWg5j3Nt6n1LKdcFa5mS94e4y/S2UFtDJNktCVPbOVe18Nb/mWcpW7SsmRKYuln5OPMGXOjyF7QNPNrOqBfZXKchTlXmcixYZJsd1+2eshek96W6I3H9X7/oNMZUcFFsM26GPkJJNjxSIxk+1ln1+jW9NgNHoZ3i1n/ysN51+g0w0W86JKZaoZEzOElxAfzRrn8nDbvtBW9hCjRARhBHF/h7F+wkyi8wpmXw9JTDKEaxz5FXN2z+OzL682HmsNb7rhS6Bdg7z9WuyXcFhTTXxBfHlxcH15548LMF3cFaw9U4qYa6NeHP16ZDR5qba12QMwhKHLClKSXr/yry4ufXwKKX77OFS//MjH/B1PkU0yJ+VuqAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, in the inscribed quadrilateral ABCD of the circle, angle ABC = 120.0, then the degree of the exterior angle of the quadrilateral ABCD angle ADE is ()
|
120.0
|
244
|
[
"130^\\circ",
"120^\\circ",
"110^\\circ",
"100^\\circ"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAH0AAACOCAAAAAA57VhOAAANuElEQVR4nMVbf2xb1RU+L9XWqYowiBd4bAYX5qqGsBLINlIp4CIy5rFMzUSHBavUMDGFLZsWSgAzQk1pJoIWjUzLtkiZhJE2KZOyBW2hTTWXpiUDr0ELQgkuwwxrzhZ3RuCSlXqKfb/98X6/d997tpOOT2qa3F/fvefee+65551L2AjcQ0Tk/0/N9RponQAR0W+iaeBboY9qrbxudoGIqLIWIjp4yxP/d3YiInr1KhDRtjc/HvbkHQIRXVNzvQ1hL0+HiYj+ft3Hwp7ftYWIlp/q+FjYj11NRPRI5CsXlh3c1PJPvkS0LHxwpFZyopo1BLP8jxNyQ4dNidVB4A+nil4L1Sa6oO5553a71rHUP++CJQOGxGo7UXVvdaFCIFp67/jKW0RnThNR6PL32a4r2i8PWQtuILuGM8nZV5cCW3dKN0K4LERES8t7L/pufv6d5Zabb7tdrKmtGtlfPHJs5bZdbTebEr937vWBu4joz6mXTm7tiHy5hvaq3F8AsNgrtY8s2Iq8KhVngmXlj/nhVv/DaZdGTKh6vxeHQ4HBLCej3DwBhBN6QuZxf/PoalWNOrObOlx4wtc9Z0rUfot3AkhJJWNiMioOFqvQPFWNPf+g2JNz6GO6KQcAu0fM6dl9Yqxg6mWt7ErFUvzS2BnHEmGZdkEsWvJyfdJQ2V6lanaZfjoQzVs7pP3FxlsVhn1xW/VcZyipFaydHUC2M3iM1yultby4qKRlxLypAABg2r/HYcY82RmACV+8xMtRm4/GtMS+Pk4bH8Z80/WxA6XewLxbPqYDet/yvgyvyNwVMefZt7PrM5Rt7bIuJTNW/bOGv+Ld3EKFjvY8N4PLrmFOGnXlBvpMfEVtDVgwJC2Av/U47EqxKSnlxsyAlFRgxoSRrzuUTUpJfoaNXW1vPOAwEg3l5gnzgEpSymFnzfsnLM07sCsYupan081FItaU8TCvHAOQDozxshzYB1vc1xvAMj5b/8pBnoQZAKyEeIuIzz4eKnieEeERe9pki2PxXGCySvapgKfYkWjlbeMWDoWCN/12wZjYlfEel6zmgR15iauHZoIVxyrz9ioauy7pjDTnSW5UsSaEx51qMDYjWZW+XfKlFu7yNGMmwFH/gGZm8DHUvubAzpR/6Lnbm3w1MOOUZTUzTIhYJGYb+0SwCpOsj6/SAeB18axzvYJ/hhkn2cqeFRe8yeelAi9ZbpVjZuiYk0wnjpU94lZXQbn1eZfcjC/vZMoA6I+CccfOALwQKrkZgvLiGOpwVUVcM0Nt1Hwom8d+PpD0voNn7SrWBAczQ8Fks0FLGdY8AwaizuRaeseQR/cczAwFkWEOOwCckfIKicv4+SrWiGLTAi9ZaTNrsL1N7H1xj3YBFPgq1oSRLhd2I4uRPe9zNMD0ut3cNWUsyFDimkVMWewZ8QMee3+fmYiHI4Fq7od8M0NF9yCHvXhpzmu3oeSsYvVyDJWgUzEGIK2dBQb2QdelKqM/6l0GACZvcMvtUu0cA/tnXW1YMDiqWE5Z1czgynKm1caeCnnqmXJrwqOEhqNBl31Z9ivmi+4xe66bvLxNo437PN08iu/sjs885+Q3A23a+7zFb1Nucr1tAkDWVYVa4GpmLAYsY//jdX6vYT3wWA3+/y+2jTp4DUHUfMkJ89h7fuk1molmZ4uRA7s3w4Ah2cjR2ENedmzh8lRtHujuuHPeX9pM7HnJuahMylexmjloR8ZFcZd9q4A+7zNh5ykUQEQnk4e4eUROW+Wz9w05+os37UwS9HmPupvRrBSYNsjBecBG5Bs5e0Sp98wDgC75qzzuyzGuinXtAkP8Pse8uRaFnQEobXY3GRbFvH2OZ4nI9bwtOhvIxUaFHQAWgq7k5dZx+zCf8J/D2o79TnUYnMwMAICYZTI7AyadiwHASNgu5QMRgLET/nMu9UrOV8JwEvKaF4hOBxUtxFVNyz8as63sk089SyR4nAybDz3Oa4+IaNtp0r7LZLYTOWwdgejbPwiZKoOIxvaHiIjedae/759HOe0REW3P6OzvXu3SxG9zMXNlgWhtSf7sefTuLW7sm56O6Z024ZoskbzfGVpdDNWiyUZUpj9HaQA4QV4KumWCn57sAJiy5t20fHcvJ3Gt+TCAtR1eFi5mgmWuizrVBm3H+Z0P91k/14o9cCeQo/3eOu9WvjdjqVlnb3S0k0uhKX7GPUSUToZavNwsDmZGzq+zO7trB1w1QYhoJwAnncsAoGuYl1X0VcG+1ORyv8HiFqImj3XH+GZG8WJ4S77N5ewr9IrfD+3oFXs9XIvdA5zEnJ9p7DZfloKRW6wpGlF5WOwvAkCxXxxytiCZyczQu7kYApP1fKVyE098DDnRUazTwU7t9M7s8Tv7KMH3Zhh2XOUmvrbpiju0t9jRnIRhKHOtbYa1b50InpmR7FDGDlR2cd33kyG+RAu9os3jPOHf4+xQie+zt90Fza7b+i/GCAxEjIGIGGPA2b7EJ5iilhlj6s+1kesa//YdJYVUNR7NtOx4+CxH1YOIHnzhdWvy8lbSTpltb1ADCYJAaGggIjQ0CBAe3X2zIMgUrKFBAKGhQWAvfu7lV4YuIdZgDFsQiDY//s754E8rNnaBiHwHD1qTF7cppwxD5XddrAIwoFKpVBgqACovXfM+APkGof1curM5WZF/ZXKi6Rt5JPgiV/R2MyOchLbq/hpSjgKd7KPtUxUwNYEBQOXfvU2/kHMrWlkz/nR9mLOAGcbDlrUoZWV2VgErbS6zMtNpGHCwCxWmDrDCGFB+1t//QcWdHRiTuldkRiPWgtN6GjNYlaxSAQKLSlalUgFQqSw2LWt/yDMyHex8u1KWE9V/PKwO+AbsqnOyxWQSaxY1AM5twqpilR1eFXLdkv1YvcFkZjzdY2RPRM2SGmsz/cnb4W6Yb7f1VY7NUFkiUwZ2tnKNiT1n+qpZ/rGi0quD/Nk+GFk0z33YIE3lFmm5QavFTSp2Otj5NpfBFeVhsbdgLDtnMDNSphs0Q49xnqdC/9V+lyfcYppVdZMv9vsGjap6t25mDMXAYBj7VNhQTXei1zrhhg4yIHOX+gGWAVgQtTiUFplA9xqJqqeSoadHTRyuacI5mGtt1bWcZmaoXiPdpOrR3O4pqSj33XiG1wMGABP+PWojmUbFzIjFrOypkPLL+WZZWsYdXmPMoAnnB32qAPvkq4HmLdTZWTAl88S7AKDQ21TnhNtR6BWHywCQb3wbAGY+Dys7BmVPQ1rMAeVh8SGlv+sZttbCYmTbNKB+NOn6uZ29KOYAoH3EaLStn1tBsrl9HihetACc5nnI8VAfgLG2mlR6lWAAxqS9OQx3OXwdQL4pj7w4W/cO98LqgG+g0DSb0W8XAgiCGgr5oO/Jb6RK3QM+jnm2IVg+cCS46Ubfk1qCKhcAyEtP0fp2uCdOtdOWIoAEUWTth2RaVr3CnetTbd6Y+dTmInK0H8jRqHrKnEgDwD8Cu6WpC8k92/7pK8slxc924LDCvrZD1j5T24+HuvIbts0sSN0e+JV/FkjIDzwSaYX94NcUt1skXhoQHWMn1oWFTv8Y+qPA2g7zN6nEH75wDgAYsuICFlrD3hEvtSIdlUZKmJPOAMt0mBnYl0dzWtTSRHAVGPJ5fWf2hNkcyXaLQ6tA4coZADk52l1lfxg53d3aE2VA9tbWBb2d9SLf44sXATXqQ5F87jAIQIKIdPbzcsRLomlAt4rq7QADAwp9vkdlA++ZdtkTnqDDwIkIQEBuFDhhUK5KtE9+T6iKqB9PFAcu7lVsCj3a56RAtJ8BhOUIgIRRtc8qkU5TUm9RGUK9+HDw4vtVynnplDWbDhClca/Zza9GeRXvlzw/OTuDoTQsRrXdY4/yYqYzTsdYSPnaezywp7rvvhyUx6Qu/U6SC3Actjx2BhxSo/tKMfG5+kSf8Ef0uzRTo/uqi2wcDKkiO9USydbOPxEMG9ds+iquzeDopBz3K1Jj5SFxpBZ6Bky1tJkWzGsS30/u7KA1RLSmwzu94/10JNtu+L05oeqIVg1s1hDNOyrGvaJsoMhnLhy0DHTIMUjGmR3Itu7RLl75yHb3wAgFpyJ+S3xCIVJXJLMlintS7HN/dsmAdJc0ZpHRnPRYLVHcJhgj2AvdHuEu2ag4XFI7ImPVGsFe3Y7TWuw0ROjOBLqddU/uft+hVQuDLXrfsnO82M0vF1b7RaszWmkv3+eLWQ1S/eWCE7zZUYqLsbzKk2qOrNjZCzFfn1Uq6361oSLfJ/aovoVyXPwZzCIsxsUe47JmALLdyouV9bMDhZj8WgcA0m3tpw1Zq0OX7rOagcmoGK/mYlAdOzO/VBoRB1WZlp+VomlzyczABrxU0ptTf+qvtLKRFlkRjPk7F0zFXxtu9fe/WRV1NexmTPeGfF0jKSAhxkr4daDDqABfHu5sbO47aum4G6p5HwfB+OJPeZ3XcnLlk75H9hLR0ntEr+VPvZu74K/zVCy9d3wlRZeceQtE115GdL3+MvGCsstCUEUBgWp7CblO9g3FxrxAV1HrUOplv1cQBMH28LnmKahtx+m453AVYQ9eqHnsinDLb4XreOtvRc3sinBf2bWFHtkfWu+arVNmCSJKr/t2Xe+qO5JG4trTtS8z88jrZF8+G6Jv7ji2Lm4ioU72Y51E+TfWvezqZD96O5W/6neJhqwS9SwWORjW9jyudvwPdBcQIb09CekAAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, ABCD is the inscribed quadrilateral of circle O, and angle ABC = 115.0, then angle AOC is equal to ()
|
130.0
|
245
|
[
"115^\\circ",
"120^\\circ",
"130^\\circ",
"135^\\circ"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAGwAAAB5CAAAAAD5Fps5AAALWElEQVR4nLVbf2xb1RU+zx4UqY4M45l6q4sHNYtZNNVaYC1rOxcWBtOyEEShIDI1lVoCdBquEolIZDJM0ci0TlSjQSntRJDKFJSMdFslXCkorqhERmgNImmKSBoPp6vBRXNxkNzs+X774z0/v59+19b6SY7fu++++91z7rnX595zIoBqxYk1kZrfkeGq+Y3/PlMnVT1kfTeHrjoZlM8rkX+XL68emSB/0oW7fA3K7dUjIyIi0P5n6bv18NRBJrwyKNxSN1eNZOkCkLi1brJv1MS1a5JoQbEN1DFs4Ec30Rm0EXWVCxg0V0xzawOhBhtWZCm5axdJRi1kRER0+U+frU0Snc8QUWA9XbN5XajZczXIlt6ZSF689oY9d3roO0Ei+myRlqcXlt4N3N3Ssub/Snbuz8eWo3f/+P2XZ5ZEw6PZZDIpPrxzvWMbfLaRG/pBoOccAOnW5E8PWdWYifm3HM5Xb4WL7GLM03EcABiGoxjeLNudyfjGdnifzdVNJjeXedLbk1VaLgZO4atVabsXMnu9sazhdV4yACj0ivFydxkOtDNg+4B99WyvGC/acDmSveXv0mim+K0UgPGIdV259c87ggmbxqqTZVoiU9q2DrQDgOSdsaJi5VrJcGuO1SzZtL9fd5/3pxgA7O6zf4cBKPUFZ1DjmA2LBn3EO+Xvk8FqXQSAMXGsws1BJj0dmtWX5MV55VHgn05s04Fec6EtWf7+LYYpysqCAbFnnMiQbX64wEXGgJlQl2SkF+eh6GVaND40o/h407yqRmZPBiSuP2ga31hX5TpsZ91aDHiT+kGzJpvxvm0qy3orawPiO52YGIDx8iBXIWO50EFz6b6Ypsa8p8hBhv4m3bhZkUkte/XvMVQEU9bg5jEHMhkd7U5ksRbz8LPdPbr7A+2mKuZ3gOKmeHWy4VDOvNLMi9qJwJDxOPx2KcgExquQsSlxzuKlzjj0lhUd5iLDtFhZSE1kmYDeqmUCWTAt2eEWPjKMBVVFVciUkhbLH6uOuLEk78la1LPCc9vLV0bJRpoli+U65S/AWNx+gJOsqK4ABrJCYBowtWvZ8FgzHxfDRLhoJmNgPV1W9VP+K2DGLhRXz1vVtcKOfjOZ0cBVWGusM85LlhWzFmTW708Gr1gVJ8K8ZIjFzGRZa8Giw1b7EyaJKV4ypWHdZnBgt9fCZz554XGrrZjg3vEGr+u+5qGX9O43wyWvceowWTCb/k4FeCXDvFjQSSbQ0QeNWxEBRCcudNj0d6PrJIdUICJav+WvOsmASNIoFABExm37+5su592mgvEomNZAUkHLWjbuLwDMeJ1dEXkHDElc1BnI651WWnghbq+hplv+4axGgUggcne8rlNjYA7mZXG0imDAi484S6ZgKqydZ3N+iypSaAIWXYBSmG4w+YZ2KHmyGjWejFro4OjanyiqsNRPcMPfnPUow7UlqTnhmbzbXKPU/0L1JjpGeMlo26RmzPwW3sBw1F4vDAByq77gtf6pcGXM0mKliXJrxcAppyZah/ioAFyXV9U430REhtEZumOzk3Ie/Qu3HsOfqmTnTIexwpWB5x1beODMEhFxnayGPqlIdrv+EYiGNm1wbMHz86Nyz5zJtJKF9Y8EujxQZfFQ8dibHJVkslmVLLvW+PCl+zfYKgfqV+vSLCdZIKeSLTcYWrs82CcIxrFICILQRarWBCL3Q7xTbfWyavp+4w9nZVNbmQzdvgJWGp/QlSWDnKY/F1bJVhtWufyN84BhVezeBgAJXwHARDiiTMLAFLiQCahk6oXSfOxJU+0EpQAwmSxMtEku7omZalriP14zmYysyR8Ba5P1N6glY0DKL3EtWXmvaiCeZY2VEQ3sMh2NSp/cCyKiEw96QHQwHNkvm0jkhiRXAKPQQACYJEnMn9V2TxZM399FSgFAglIGOSxMyQpnZQNhEkNI57kbNrUAgJXGUcBojACQXu20mwcATDdX1FjQSLww3mdWwzW/GCRKXxs9ZFwJg98/zrE04uuGMlkpcIFQAkEqgaj/154SEaFUKik1SyVGf7j+ppt+mDpUKoGVgFJJZXj0KMeYCUtiOTziapwnwSUQ3ELJdX7iYzeDQMwlMDlyIF+NuQQmkIsxFzHBDVaOJjzad9nKbzfg06ayZMItZwEigJWIXthzPQmMIAgkMCIiuARyCeq9i+QFqxy1W7PpmDMXzd6mkAkUPi+HP9xu90eT++TSykhAf6/RmkBE1HGUY9DmGwkoMVYC0gGJAZAY0H5AYmAMUL5kcwVT7plU+SjIN3Ds5lflCWCSxAD4zsrNSmd8RSZJJfmmJHeASZL8twRIkqR+yuDYzb8XhotIcLsFIrrnXSIiwe3+7XOrBLfbJd+4iMgtkOB2y39dRG63W/2UlbzT6XcGdDKqceWGHpO/k0GuKVqGrMqi1zawUMbPRtT1tySdVdxv3nMiPTrjNk56GZInC+PGAskQxzbIjAmn3fx7Yd2WafsIEVG8r/bAH4i25T+sXufNHaTdMqVuBpAISabjFS7ELJZuDSQxrf/NjCSrbmqrQ9nN2/VyPAr90UTnMB2j9pqVKGOj+ySRvbP6+i7SqRFf+C7WLRgQ76qie/loQhfz3Jc5f0a5rD3kfW5r1t60nvQ/r0jWRkTCKICM13e8bskQOW47YllvHlAMpG0UCfoIDJ17/IfrJtvfYfuoclDGVpoKWKQPAcz7UqF4vWQZj91uPuurHAEm9gCKT9jTlWvezecGmhE9avNAOdxkxIBBItlLA77yTxdaW7nPG/QYarWeZxMhzbFtWwqDsmcNjDRL0u5mvgCBEflVllFq+UCayWSL24CVxgG5gLUMAPGw/INRqzbbLXfzfdqj9sEBYJFGlcYzgQRwOJCqkQcAMLLNonAsqMpLQFsKK40+dZymxDnguGh/jGSPgidjKtOFR94mIiJtl4ZDOWBKtDOtaujYr72TFTVeKaDygb1GiFiLBMwFqwT1rcAAHN9gKHEMaSnBuuyGJ2qebpImQsUAx2AdU8OQhZZHanJ9AKBLE5tnDP1NBW0ikVkyBmDGmwAg/TJa64Q7FdTejd/oHGAFWMJ7EAB6m8zmZQOl+0HNbn7AO6mvYxeBnw09LQEYClglSFQh7I1BScEqdjYZI0NVwv3RPIBxf5JzusmVUn7FE8w1b+cL9wMApL2hGQBJ/wgvEQCgaQIA8P5a/kQGBgDD/gSAmUD180uD2P2dADDmt4pjcySfZJosOmmLtLcISU4+4SVTuptpibwH5KMdvC75dHLMO54Mt1pnRDlllB176oF+8crOL8er5cN98PWlj4UPCpdmKeK9IXR64dX7ys6Z3klzTF8r/O7I3l+J+5InbjK+/cHylx/T6ULuLDV7fN8TNnzTGyH6/MCRvb3X2bTFkSu31D+yp/vNlxJhVQo6Xbg0K2xcteZ2uqNBbFKFwIUX39jVa5+ix5WYl/39kfZ1r3WdXs7N0lbXuvV013VrwuZqx0YST3WLRA/8nYh85y0UzzfwuaFm39bXkrbBYqZLzGtLAd2BQjkVSwV/muhcT6N/x5A+rKE0NvPydvH2PrUnK/cDqnOohbMaNSax9M5E8uLWwPo7PUIwSET/StPy9ELmlCGZ8sRbh4io5/RkHWMGQWvAlz88dzFJtLBEcproj9bdpk0ThUDUs/FhInpl1ETGo8ZBom0rz5iUZ4BauiIn7nSb1eictJwWPgJeu/bbGm1Y1lNLL2z2gCj9x3stlFQFDOphZvcohwoURQwAQJuFD+mkRiYfP2Mwxcu10pgCFukei0dOZLJfXgMSssIsFeGU+730SY155fdVMW8nAxHq+zeA+sjWNi4QEaXHlPtaUsUtihwwSKNAwmp7Ygtb/8h5UieIyDw/68L/AOOqCp9LXWtmAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, given the angle of circumference angle BAD = 50.0, then the degree of the angle of circumference angle BCD is ()
|
130.0
|
246
|
[
"130^\\circ",
"100^\\circ",
"50^\\circ",
"40^\\circ"
] |
A
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHwAAACACAAAAADsJVIAAAANPUlEQVR4nNVbbVBc1Rl+LqBQ3XTRLmYd18EWlFWwopgGhQiamOAYKx2TEkecYJtIx4xj1HTEKTaOWiWdOI0zdAaNqZsxHckYJ50xVjJNG6ibgia6tKKQhFQoVjHESrJoYD/u0x/3++69e+8SqtPnx+457/l4znnPe8/3AecCM40AUHI8w2RZmAucvW11L7ly0fHMkp05OQFAjJcCjy1o/brJAQDvnjsPOPuS0eg3Qd61BACKM0x15uQCgem+GwFguHDe10wOARi7rADA0Vdvzizl3Kj9bwEAM08U1n395DwduhE4etXxXZlpHZiDLiYs5bQz44QCZ1FTwdZrCnLAbMjnDJm3OTFn5f0/q/kcIifTBBSAj4/1n3gLOPl3At/Pz2JtQVlwILEsY/KM1d6zrzvsL1lwSWkWy70ATvYD/R/1v/+f7GueWayUbq7I9Xl9/Nqe/Qtqa2tzU6Pd8ukP9o7jpuUr5lsntcncLSa31viau6atAzdXX3OAoXNW3uOteynqOku35O81ZK/oTCg+0RQaCYx5JsmRmtJ3dizPbfzQIsrsyfvq/W0TqcSi7IkWd44ESJKbPRs5vtHXEHGVrRvyd+oC7UZ1i8ZiNDdzzxLJOVhx3SCjm/31780J+USzP2TgTEFncZSb18uexEZPO5l4/jsbJh0170je4dsQlZkNCtd8Y4EI2bRVDTsYrBmjONns33GG5MOVFQcdckhUbyJZEdYk0xu8IZLh0uoxtag0u2zIdbXa5WtzoCbb6kjSM6mXdRfWT5CJjb4umVAlNbCnq/n0umKnapNh/xhJ2dhVRJt8u0mGA4+on6fZStOTj1Q0TDkwi4wWd5HkniVqtvLfXl/TSXJyefWnxiQhYOnxhyS3/ag2tGht57kO3aOANYuXgcBQmdqZyn9LB6dKe+B9ffmiUa03xdHgAbJ9kc+hez3o3+VQbZLsLJc6AJ2xa9jhXTdNhgIDquR01VqSbJWne3bk+/z7XHSRwz45Y72xaxhfEuwjd/v7FEFIWshu701L3uWPGAWW5YhXd8iBnknR2BHIaPdsTDDsk4t2uuppFwbX57c1c33iluWywGzsGo5Vlg+we76koCMl2vRatCMf9O+zy0xfinDhhJyN0rNblFN8xtPG3ReNmMlpSS5yJODG1ngioBbx2QfTxIuUV49sLRqnpHaSR/5gS87p8nY33GxoUZ2Wxq4i0eLpaKtOkAxhJxleeoqimKJ2qT2bG1xxd5Qn1EQWxq7vz8S+4robW0hpZbVWjZNa887iU264h33DmsfYs1sguu7b57+ZIjWTi8O+iBvu6XKdpu2NXcO+8/Ghw6gmJio2ueHmBn3bWBu7iWmy9Ow+U6C55h0LnTs2kewKRHUEmx9wKitJJs5fYRx7zOQT7pQ+ETBY2D0vuEnEn3hMo6RpVHu0sRxwXobe/dMqvfcfVzglAABcXPy4SWIoSl/AecYvku3VCdVNujB2CU895B8wfING8ppQapJU7ohvTPPQnbGT5Jb1z9UbBAa193zSCKfVv4CZxvaArDRJNBB0pXUAzW/3670G8s0PZwMQkH6B98CCBrkcghRxqMwtee4DzwKaTenX5/2HXnVOzz/+OQIYlqADVbaxDcg7jebL/vk9daZlqPmvWvKcV+v/XvOKB6BeO+9f7pJ8Bvn3PaOXaM0/4cpol6TO5Oe5M3aGmsgxr+570tX8tVu9zqXfFH8EJpsc9bpIpyBw3RuaRyUndqxyTntoyw7AZJOujd07BWDVDgtyYXToNsfkU3e+GIC5BxwqdUmOBIAVb51IJcfLjdmOqe9ffCsA06c44PpLA4Bzf/R7tfQa+RvO+9U7Dz5nIX3/crW7SY+zAAB1XVrpFcuL5joszESOWQ95Lnt2kd01pMjPPOraUa35gasdFmZC8s7Hyy3ko/nujF2Qfy8IHFJEKnl3LZB+MH3Ss85K7L5nl3FDt56cALC/ViueJQ5se9lSnkHPPgMAuMlALgBIHrLtoCVtTK160Ucr1Qy4/tLypgEAtb16cgAYDXjs0kjaWLNqGQQr1bjt2VXMh/KlS6MahcEr08WnsP3wdtllDjuc0WcOAFceljcHpJoLGA4ijbkJx1p25VKKaYJbYwcwTz7sDA5DTw4Mlkk5W/MnGx4vsjHGDIw9JyH9lw2ZyEeD0lBlzdB6abNJohbSvbGrCB5VSgOpHb/ItZk+UQB6dkSsMqEA0O00Rpcq70vZqXxqU+fZxBWAE6s7fRZiCgCEDIw9f1JK6VUOunMAJEXw5LmmuZEO99xZZQqSeAEAh8syPMkD5k3KjiwA2TnIieYBgnUmz08+ZQ7SfKP5XofJbipyp2STyYFkPCdt+5gPWvtsBnoKkrG7rXleUoo6b1Iur9LmiMeRjItgPJ4AGI/HIf3NNLYXKQLpNx4T4/EeQRCaAQwF0g4I+qIid8p8nkSKFGNJREnGyTgZSzKWZFxyxdc1kJJLEYuxGFtLPuFXVWvJcKBhnO5OVEhIET8LaH5SjCUvOh6nmKQYi8ViSTFGijGKMbKr5BRJMS6SVMXJ1qWfJyl2l3xGRlt8W0hlYzt9IeSZy3CpkZzBj2LJOCnGqWfheEFYEejEfy3ojSUpdpccF0kOVFe8o01XbCGSHmmjtn+hLMoCEgkA+V9lJbMAgSJAAQlAgMBE00MLpdbRiRHrqF8IAMek5i596/5bHjwpRUvT/AKQLY2pUaVPyQIEMZGN/Gg2sgDkJONxATmMJ3KIs37z5cM5QFwU9OJEcnRxAknx9P4bCqRMVh87HdypmJUzvlRvN8gaaA4xkaKpSEBZiBv0eaS0lyTDBb2arO+qmqG07U2SXmmquUXZPVQGlssHkilj2szKLQGd0lRcnP8vANOP1FeqKbiw/7aFj007VDlf6lfVgVAhLxpilrnJ1i++wzKPvBu3RXG0/IoXtEIJwMOHB4J701ETSAIADhcrlZR1OlyYoqRdxTantpxpBPQ6V9BVWD+eTu2XjEjaV05G5TYXE9nq0lX+WscCkXQZWWK61bc5TfClIyQ57lX8stqFrAUHFPUIEEDgzvXlDk2Yitwn+968+m2DpvXwfAEA3dcpfqXNhdpufTQBmzwPZ8hMACja11L/M3UdKljEoLRCkASUvqO9lYqLJBn2T7jtsWWokSfX+6y230WyPEKSQXULVlsonq3f/4teqhxEzgYHKxYNWMmrD5Ect1goeq45oKiGwJpblyHNbDad4gFce+iO2kenUsOzpwB0V6vTA219vrxLaSYBOw+30bLV0kOL/MDAR5e/YQijEt5Vp5VT1cmIT1XHsG9wlgrXYV/wtjFTy9V0k1H1K9fvRhUGX5ddyaanMl32WmDxwMKrNyUNmjvvNPDaIm0mrNsKa+yUHa0+8xJhVsj+xaHuq3oMommws1HnV3UgKpuA4cKJWdu5BimH3f67Tmiy+t0cy9cdH2k1F3x1IQA4sWp7yhJhFpD0ffvRC4ueV2U5wLYV+quKusJG/NM0nNXNSfUjlZURWRFNO076hnVGqN/4Lb/2ZeD54afmoN5SvSAAKO9tunnDlKSIxNa6Iv0XqS9od1Fi2D/MOcfEGv9ukmza6u/Xy03HHFvLHS+3zArh0roRsrnBeMxhOuDxrPyfcJOJNt/G6WaPscs3rl/21l2j7v5+q9K6JefPsgP6+L7BrIv+YhApxxy9vB7A2M9/u8AP6Yrem29aX9Trsbm/F5wPWC0ar8uVM6xA1xpjBJl8+pFfA8AaFL3UB9gv1SVYLkt7bNLtl+SA2Hf7DaaRiqRI/nKp/B4hWeF8IWmWaKkhqbx/2EkqBhd6cclx+dt3OsKedccr3WMiOdP4irzgyAKAoydqzsmTFVLUvlLeMrE+3Mt0G0LJ68SqkLwCEcdvwgUXAEAWiNi2exmYp1D9ePHaMyOygoC7G5dJ80e++90LYk9cXyl5GBK0iwyi+wsbbiGSZFu1OlUJqSsOUDyymQw/rYvt8qpKJtha/JninFndy1BBr3Rz4MgPT5EhPTkHL1RuwJz5uE6S3B0YUd1H6k8pF2bQioLembv1F0iY9npSphBJdvt13ervniaPlHSS2lpN90taXMw6E/qwL6zlPbO6l6erpNthaa+kzQ10V9LItwAAS6W5FOxa1d1lPBfQXcYzc9nfgRwKdMwFd1vxiG1Y+guY7i9sGyCq/5PLK8cNIgPSPCsoPJB/9SH74LT9GQACwoGyYHi+9fEI5B7OvgKdXneXlawrn9jo3WNUhQlO140XOl43tmCVoF03toP7i9YZ8k82z3eci9q2uTKcNg9FL92uF7hq8mRH8bzDd0Edl20Su6jJwbpAh92umCWiW/z1ERfxnMlFGp8VOEJ7ViA6jExuH1REGrJXdqbuzqZg+uXluY3Ou7CZkUtPSe61e0oiIbpnjfeWkHv7zOgFj/yIpibPImxmX/f+942PaJwtM+PnQ3/qCftLFlxSBlyVD+BkP4X+kcgHn1fV1VYhs+dys3oypjyc6gdQ7gVqC8rs1itzTz5X+Ebfq32j5P8F1qoBnmIZSl8AAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, circle O is the circumscribed circle of the quadrilateral ABCD, if angle O = 110.0, then the degree of angle C is ()
|
125.0
|
247
|
[
"125^\\circ",
"120^\\circ",
"105^\\circ",
"90^\\circ"
] |
A
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAFoAAABgCAAAAAC4IjoVAAAIo0lEQVR4nKVZXWwU1xX+7iyJ11ZVcFsLu1JqQ9J4qdQwIg8ZlMLilNIlaoOdPhiQKQYpdugLdiUI0NYxUQSEFBxVTTFRVUNU26Cqa9EHUJuqa6O0Nm3NOvTBTtXahgfWCLEGUjL+m/n6MLOzM+v5WS+ftDt377n3u2fPOffOvecKwh0Uzt9To9dmjLZ8+ms1Hp0cEHRnsmOmf2BwqLRaKTJ/35oYqFwT3aQEcdMFuq2cPqMUxY4nVKds/PIbSlFtr6NlLlyps4jXL28edB1dpxqvX96czNHElXoIQHwobhcORmt7fUdOd65tTHmRZ6hnG6rvku1lw1m9RmuVhENR23cWXZWH0r5azzVsfkRS3Xw3I0g1R+J2SucANqgnKo+rbnqb1N1lw9TJufcz9W1VZ1xVcfvr6UOVcZdqkKQ+19Dk6JXe1qZ6EbkhVdu2uFICAKFNPGMPyPGXdx8NA4BPsDtQ3oe6GSOWHXGtk5OrT9qGS8ij3v/eC3FlPKfGsLX64mskyV8/Inkmll46M/WkkjMBTDcO4SQ51xAn2dKsFsBMMhV1ToJMXE+uBsqGSba0FUZMUo05AiV3op9pXjqlpYmqJL2p+2MzhVEbGFdSXtRvR9JZHQrBYNRaIp3UV79wrFDODHrqraJkj/y3ix7mOUc8sWPViUxR2KbP4eUj//xoVYGc5muKYlP7pkxVFpWfN/7UZqsCkZRdDLK/GE837gOcK8FSIVf1GYUs9cj6fQAaV3SAeS9Lrjh9RHVS8+jBMAB0XOp/LGJg1dZOk9LEdZlkYxeZlnOXsKUiValSt9l6b5dZKO3aOWP9lYLULt9/GCJrkL4qOSOR9zdmigWZhtjXNwVAMlX7cFdWtr2ioxDKrD7hul7AsLXOVKVK09YkGbtMnY+xlCRlWrbuqQvb/1LPkQlj/AKtLWPEtLXAH7YZLAaTKO19ddYYpMBAfKUv48aZEcXps0jbDph6F4SagQz1kGzaw6Kqqz7h2idPrB9RTepEdJHwxLW+x6Aukq+Z1AMu2/zfnBzz7El/7xKIJkzqkbWL5aVde6Y9+kH4+0AA8g2Deqq41KVB5OBej355YM2YMRtHZFdx3do3F9XN7xJCvBtMHRmfkQCB0Yi7vP1G1pWGdXuefJUcOujnYdMN3xiTAOD+Fz2a9b5luVIAQE/LcB3wQvuvPg+cpcvvS77ycHyH3ZU3f3ZgnX0kV1gSCQAervBqt+rYTrNEAF1P7AGA+f/46mOgdNowiFuAGNgaPWyVZ/4c/TIA3P7blpJA6hUP/A0C4NDEBQKAAO6kvi4A4JyhfBCWAUD5lKvMWPbO1URk4/fKCgLAtfb4V4KJp1ZKAFCkukoFCCDcvWcaIMDwj969DrylxOvy0FktXgZ4rPcUprdXd9T1G6WdeB5oyu/tIIwIqbjjKstg07ZWs2InybN5MWOqXAIA+RP/Zq2pC/nxZTEzEZEAoHo0oOG5ziXxEhhbYxikNOweIhbCXeunkP87WABj1ZAAUNsw6NuLqDq+Z2ZJb8prLxhah7511beXgNi05XDe+wYC6K+BBEBgw9XA9q3q2Uy3IAhgekI2X2Dy5D1NAzUJ0DQdgKZpyD4AaNqpC0OGUNeoa5pN5oKBGms7ufGqCEEIHXooBEKXQkJD5gFAl6Ti3ubbUkhokKBLIWihkI8RBzZa1PUXhQYIgppGgAKSsB4AKIRUcXb3LCQBCMn4eMxiALiwHZAMce3AfUEdAgh5a6P8oMVbTwsCwBW5ApAEdI0Ib7sodCEyhz2hA7Qeli5N6Mwvts/vBgBSX1jQmZSpkY3nuLCwQJrf5kPTM6VH3/sLqS0s6ObH68RRpRqbYBEKCcjPXhAAiFAoBJjf5kMSmVLJB0cmIIVCwvx4KN3+RtjQ2tihp1ar2a27NwbzOLOah1LJNLxeVnsmHysqxpnVF0fbAGSPSVLowIcBa5SBxhUdgO+s7J+uc1AD5T98xygExEDHpX54r1QEWt/LlC2olVPBtqYedGaN15oFe2ahtz4PapJJRaXn8Sw7MMg3AWDz/0geXvcT90xqDnrrvWWxK6QxsAS0dzdRVX8M8NjD2ZHtrvt1J7ZXdGRckuuY1i0xwMhNSMD8lRjC3wEg8K+Pm2tf9j5nZF35pyvmsS/HnZ1qa7aWnHzuLrvLhkmdHFdSo3IeBnd1pc7E1pmsD0B2A3gn45bBqKo2NvrOOJ0kR2WXNuOyPQEPzjXE7ZngnpjKLmU0UG8rxuzMjm7g5HN3yfZqK5MfV8aZVPyvH0jy0PGcioSTmWB3k3VVYOC6Msh0fYsalFnY5sziW7lpi3puV5xsR5y0qFLRXvJ0dNyfWk87zGblprPUEDDTy1mo9S3koHyZ/oqPKpae6eipReLMRLdR6NR5KppkOnYowCZ9tWaDuJxYLPW6qErI9eM8Hk15iE20tZFkQql1W7DgUNcGvbe6JZVw08aO2jiT341alwQOBp/rNfV0pG0y2uZnksE/fvX78mUPqwm/hX/6vfMx3OnNpKWsbNHE5J2x2UEM4NnpR1+6YT8Z2hNKvtTA1KXOe3u2GpeWnB1CAn9XP52qrCqvLl43cvui4ndYD6AGMHa+P/n8E0/e/2ysSEEUSnGkHP2Tn/Yna7bsXAkAONoOAE25h5xgagAzv7icfnDLuoC9eXNjVcR+/3r040vFs5uLL5U4LJIXtYGhTKq1MiczP7/3mweBmy+9fsBZ7x9cJNUPglpMVg+TnGtocoZK4Bl9/rX7Nj1cm/z1qQgAiJx3TiD1735ruy903X3MX9lSQkAbf8ZZH0R963ZD0OC3//FtCOCTf+dm9AIMXX9vw3BAQnjopUck1RebcuoDtP75Lz97UO5/XJx/P1YC9BS/sujw7qtQN4Dsq80dBo3tLZWX1jfvkkNPlQB+e0wj4j5anDJa5sf8+u+B/xplH6N4ivz+atnwXEOwRbzwf4P1Q1CXVEgJAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, the quadrilateral ABCD is inscribed in circle O, if angle C = 36.0, then the degree of angle A is ()
|
144.0
|
248
|
[
"36^\\circ",
"56^\\circ",
"72^\\circ",
"144^\\circ"
] |
D
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.