images
listlengths 1
1
| problem
stringlengths 13
714
| answer
stringlengths 1
169
| id
stringlengths 1
4
| choices
listlengths 4
4
| ground_truth
stringclasses 4
values |
|---|---|---|---|---|---|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHYAAABrCAAAAACHhCmIAAAK9ElEQVR4nLVab2wcxRV/cwb8gYMDZdNcxCFDfSaXhjYHBmEVBwM5ilF9YMCVW2EJUxBX1f3gSnfhkFyZSpZqGiRcyZFyzQeMlEpWa+pQBdXpXRQjiDjqtqbCYCPWxamj5oJROXAiGWU9v37Y/3u7s3sm/Un2zc68fb+ZN7Pz581jIBFKNzerCTCBlF4oFLIhJC5+gIhARCRUyBy/X5f2QLo5YBPERqsBE8kXmh8wi0GMbHZ01Ed9DGhnUWuX2c1pSwUZkc2OjMxGQi8JaOcrBGWFXy8nHFlfvLd0bpZo+SwR3fhNuvLuWEtrODibAYGRf5shOvCi+Xz2ZGn23L5Y853X4KYmIjqzQhfm5LOnb7gvldpBRPWMZIIX5AJQLICrTx9m49Hew4u1YhwL4z1SYmjZU5EbPGnlNIBCAQD42uE7YlkXShMfDEbbj1S/Dq3avByRjDRRDqgMhvuO+2ua6o3k1/TX9Z/gtA6sPhvJVvxJAWB1IDIYUNSLlgMA5+v5a/vX7JlugnqqkpeGv/JpqJBWxXT0J/c3Zqq+ikyBSl/TzNej5av7k+X1xpVMNIAibvzOJrrWhKI+tH+NjgCTKeBUU5+/IhPKUNPC1ofUhDQDoHccwHpWmgLgMT5rM6c08fpplYH4+wCU8Co4gPKurgq4PtJ8dAJzsfyWaKud7VUAmGmFSrQxLE34spmotPZ8KaqfO+1CPHMJAJAZMfLmk6mVYJwcwEbfHllgFVfamci4looumLnKqDTuJu2B0chsfbQfRPQvphy3FSy2takzc6APeVqS66FdixuNymcdZWPSqB+jiZE968FpldSA0ZrEaWfpyj3JeSGX1RB93cFpB1OKnlyMKjXFOCINbwiJTWzcNRyUdiJuzkijz7i9UulMlGsy3Xt7NTYdiJaXJcty3uaxzE5Kec9es2NOWnCtkJ2Wr8Ys034l7GXNtZ4mwddhxVTTp/60SFkH6uHH3VVxAMejA8H2MEM9/rSTrdYx1HlU8H1W+4Osh8BGwk3MRrsem7M+NX4hVDgbbD0sJVy6ynYq+OX374C60QcRvbHvWrcNrpHqWIjsfs1nN0xE+/e+JN4ny5Ktu3oP+baknOj237NVpFoZK23/sJnmUMKrQm0cHNjIRybMDA/BwUERbWV71fr6iVaRLgPzydQKuGj557piCyx9O/p0hMg8yPzxUaIAZ6rk37+791DNadAKtuOxl737di1i7wLrUuvWBjP5YVu78KQCeZtzUjNb+7vHdlir8254D4kO6ZamJd7panvRU5CImvfVjHijAslTtibkc8IGOLDSoa2H7nvL6Q5HjkE73wRtdKpIvF0PLTB+3bDLKqlBkRzbMMPIr/YTETOO2YvVNpHZiGwOBCIaWHr31ne9RBv6XvEwcmzRZh/3pVaMiUhenwe5zXJAOWEX1WkXo7q4irbj6kOQ45tB5L0eKuGKTb9Oe7jXpsF7qRVjSl8PndXtnLQ9hrSuOXWfaXdGdKyz0a9rXfH4RxcTJzQdNtx7yrVvd9g/+M6jPLB5YW/eiZjlIG5kOzpXo12RVBlNar2xDveHgxbrA24HPrtGjbbUYZOZTNXLasNs/NHzztokrTsI7bvFUovN8tPdW+pZHR0Lu255VU0afRz/yDrVhoiIwGTDywci2nzjkS1Tgoio8VcnDj50xpafkK3jTJullgxaRkSlXTEvhTCT7tBU3/XPtu8cstEuWFWFQESMKjdYRaYfdVUICupHBVHD8Owr+5bMrNiapbYspGq4cI31rde7XZXVknm1mhER3fY363p49QUXI6+HLS+pS20QuLcaenWeKx+/4z0tM3zRKqLRXrTSHuv2YCkxxg4QEejk7ttOqwyuldGrk3jrqXtf2FRpLxARPcwYY4z0Wcq2S/daanMEgHIAkCBqs32WnljpvLXMAVQjAID0MpAjEK+hXYwqrupyaQAokkkrILUsexPX5TeAzzVaAEjnQowIm0ps3bTR610NrhY+qO//ABpP3PaScECbhqYnl5ZueVMbtKUEEVFiiQCAKzHLrvEu91Nt+gAAoODrCnbBlDQwnwCAXBEcKKQ12l2mU+Wcx1JLRZW9rq2djrW+bbcAemfmchrt7f9QFHCFgyuFHwBcURQYPwC48vF2GVxR/kKyonBF2eSXlM06eC9F9wKQcwAgU1H7gL5xjhqIhRihYfoREA81ME76DxHxUJw+IR5q+N5zzSHiDSHwK0L13HQd2tlCRCfjIKKfp1NaawfH+CY4B1c+3/5fzhWAK9B+APBNIJfmikw53SjqX1BUpZ8Oc4BkQKa0sWGNLzCAGBE7sfd6lwEKohcptDMuC3f/3hh5/NMWVmIUZ6yl+CciAjY3uVLs0Cqv/GgcHAoH34T+A7VMz9ZayutorSxV7Ms8AVxR+IoEbALApdgZxTmkFK6l1P+Kohh/AdE7wt02NRzRRXVa0RzIwffHAcDL0Y3ybluW2reMOt5Uh+wxbamt965QALDs6FWz99jy9DPQ/W+rR2Odts5rYBHYaxeeZLP32TO1VmuHEYcD+bJAiZewGa7Y+k1vbeKKJSLBUrt1YDyxn+ZiO4g5d45ERD2T/yfaL0dGiSZ7iWwDRm/2fBNMB/JlHMc8mwEuOY/VZDDsnd3aqdYHH0sVYPoeR27IaPhTE4aNEWA/HBRDgzuIXv2xM9uowFrkvHqqvTwW1rSUo18BsuTmIHqYMcZK0lMvH7u1QpdrptC0ZEevIjo4EHYWA0BXEUWSV7f/vicSf3qynttLP0wlAVQiNcdWAgAGyCSjfxiYG01RMjsTeJIXQ4mXAHi4Oos5jnTOdOyW8q3UPlJ7+1E/xrrg7dgtEJEMANmMnl2dGkiEu8fEbkdfVLctArx3pLaEAKRlFEjmwPpO61q8OvFENPrEhMWrXO8Yz2YAlFpcdqKkBXZQAbBdUagUi+Pd4Xhmyt3p4wc5WhFcURQKgKztgve73ByWR1LUmi85R5l/JXpHAPyih7uIEpCWAX3aOBtz1o0DgDKTTVJqdE5/DtTucmwDmGpy/R6pREREaUNW8vJIV6cy8Uj3uL1YxN8+AcxJC66CwqvFmgCZlSN90Vj/0VWngBumkparRaec8CLVFe+PdTUmBqb97haV+Cw22oY9St2ujX/moxF4Z6Sd2oZKIpGxLuCJbi9riC/JBTbcOJ5NNnQenPcorkqLGNlzwettt9PqQuTP3nRWfDb5zE2RnsNugWHZTL0hAdYACF9w+Uiv1PT0Uce0K0cro5FT3q+5h+B90P3gb1RPgiCqzix672TpVPyBVMr0Qf8wcWbu9WbBclxTfQBA9aGOwK5d9Y23h9qofegtNau88/Ye4VAXhPLUvfysHx/c09g1Ng8kr89bqxScFpiIzgQMJ7EKnT/a3yR9K/QHn9dcaHUtc1GXhTIAlIFtr/nJiNw9q6lk2VaRQDCC0kRv+YXgZerc0J3ra5rh4CgQpXHAU0wcn9wtX7f7hc+EIjacf/7bzR89yPAvJgMvM8EX5Ff91Uyg8EoOa3il6g/NFT3FA7jyzg+G+wKEWEz3Rp7XeqRAAAcKdU6OgDVwEVg73BrLCy+kF7TQWc1fW/Croyi80ppY1AOFzbtKroUCqoHClpapGzPh8BfGnttx9mTpzf+03xi/82rSw6Ivzsn/Ph0zwqK1eXo5Xkz56ApOC0aWIHAGijXTlXfHWm6/pkaUFZ4louVPBOR+vRAA3PlQoCJ4Me0hDgQayVuoRZGIvP3OHPgfkHeOLBvVnowAAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, there are four points A, B, C, D on circle O, where angle A = 80.0, then the degree of angle C is ()
|
100.0
|
249
|
[
"40^\\circ",
"60^\\circ",
"80^\\circ",
"100^\\circ"
] |
D
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHEAAAByCAAAAABBgWGiAAAKKUlEQVR4nM1af2wcxRX+dnMhEVx8jrIm1+YSl+SSXDFVXTkIi5j8KA6NBJSrFOp/TOUgSJCitkZ1hVOBHEuhdUWlBClS0pBSR22FIwJnVdCGKi0XciYpRgKpJjbYaZPaKFfbwAUbcvFt9usfs/djf93u3blSP9l3O3Nv55v39s2b2TcDeoem/4sP/TOHXuC+yXb3VmR4h6T/U8oVcxiNDJCH7rnVvZVSGPPMNFeld246Cqx9eM3/htGkHgCcmH4WAMKrLH2x3usu4gxKuoXTzffv9XpTeTrqkLLajk97MOd8MAow9+EJPq+CV98fuRKXePFjAqE1WLgxtLbBT919Vyr/BIDRCw+5N+TpOU789XT8StPKNXf68bVaAJcuY3bw4nhixbfv3bYcAHC87cT38Xb3ySUeWis23EmSwx3hYMuRYc1GZujQDiXy9BhJJgA87j78SToyCkwdaQh1XCgmMdQebHohxXOe2FwZk0/6W1/LF+3UJMlXWmo6d8crYMw2PL470JF0YjHKju9B4N/lMwrMdCr7pt3uzvenB4u60nS2Qx5O47F/7WfDXcuKjDMar0Pbq86tf8Mm/nn01fHm+vPFNLLite2x1X+JPDjlqqJZR9Hzd+/c8t5d1s4V67+Sit79p6FvbvigLB17lVPuXTVheC2nggmeXHbSTdLKqO4JD5VMyOka8tVwmoOhzlIZU9ubUqWRadRIFSRb28lkw46ZkhiHwrvV0gh1+FPk1FcSZLq1brQExlOBQyUyZR24doxkLJwm2ROIF/HrHKNGkkOB0n1GR8MgKexKxpQxZ0GDjlPhQznyUtF8iiSnggmS2v66WU+MavOecrgEWvpIZu3K1qijYGEE6MDz7uPXCdUpAEC0sRMAjiX3eYgAvWEPMcoRnfvFw5gKJqiR46GYg2Ce8bwyXAEhf9VB4QG6XQeVIXuHyDFOhMp2U5LkC23ZK+GvfLnW3mQ5xm09FREy9gAplBT+Sj69oyhjX0N5oSaHeFOWka+uTZMa0xFbq+mMM6HBygg5VMfcSG5tJzWNpyNpZ8aO3RUSciKYv87atWW/HaNGkmNKifOFFelFBQXdX5PKFaugWJPvrHUesF6xeNovBrgE4BHlAAA8iQP2ESBZuYpkaJz5kKzbNbksZRmUMgD0PBaoWEUGriK/FFIOt10HsHzHAevqiORUIFm5imwyrspFHLi4zLIgkAH84XseEgauUKbzWgA40DcAYPWmV8xyMoDjbfNACOWz7KKZEoVdCfzgtxZG4v1PN3tYSbui+pNsKxIkANG7OiXgwQ8umxklHG8DWEkCQmf8zFRxsG8AWNBqUZJcWdEslcOvLWErFr5Gno9YPGckE6lYPwCo+sRcE23cC2yY+I+xVsaZzSglVeGIW1PmGh7oG8CCpjgNzct4cys8vYS5oWraWCYk5XDbdWz5m2RsnsH5eYy8tMqm8pF2y4PEJWV+CJny07rUnQomuMgYtOWxulJMV+R5B65p2TxoHsrhtrmvj2ZL588DkEfWlkJT7HkvnbL5Odr4VPhD/Tq9VwIgj7mPDXM7Dooq5hAAADjQd3NWx18sXg1AHom4jAxaSg6KVlsGJAAoh9/4h7g6vkoFADm5wmVkSDYl207q7wFmRL/xDgBgdHrTzYsByLNeknfFe6FDsWfE3isDAOZe3IXQEgDyF/7SyAYkKTJpq2Ngyv6Or95IAXipp2pdBgDkmZs9Eb0tSdIuAANNwIebpu1ElE8d+rjwfmB0mkzcBniyKgE88+gkr13YBZwCgA/ftJOrsfVV4PkMMNqxGxgD4ClrLQHPvDNYg8W/fMvBbgIOntMvBfDMunNDc4+0/WwXAPhnbIKTCYmacySZWD/JhARg/aTdHa9tt7lVY/2xkDHK+WddlZw7Em0EgDGAG88C68/W2Hmrva/2Y6Pf4Gi+W76E6pKg1/71IwCYO72pBtjoGDBsfVXq7pq9xVAjL/kcPpcdgfHUKgAYfONRUXaKclcNRSHVj+gXfqmwRg5+XJQNAFZWXwaRfkrYFpBoS7rUOGYETfc+TNQYauSI8FlVVaGqKqCq2WLua/HWF2dujNTfflQvq5J6A6qFcYH/qqWuX3oIo6b58NDjZIa5/9xfwRevtwI1A9lyJpNhJsOM2SlFosyI+hi54/dGX418lLOQ6kNWRyNu+l2Gk3dnSz74bFxNMoUAAkA/osDYeoOgL/yBMK9P9entlY3qaeRXARIAdHcBHF5nkJJrfRdMN9ooCYBqrudOWHbVNKv0Iwq+c1uVkZGb3xLaCSV9quoDfGrhl0r4Mjd8hE/NqD6oUKH/mXRMGbooVER8s1FKlrbEDYb0CfrCL58ELPRBAnw3+USl+DPBODwk8RSl+FYTI7acEVdqBU9QYFnKWO7uAnAjscXMGPGNwN5FdbDgsyiqjSGgH1EA74aWG2+VgYdfQs6MdrDZi7eHYmTs7gKAvhbzreR7tcXnKs8QibIsYvUkmam5ZJrYZKB+6Rn3/ntB4XRFdHeBwOu315qkZABtvfPDGCi0aj+ikIDendYF9nxlV8j0ogID1sdIjWOKbXZF2XlwXnRcxC9QMC8CEp7b44dlWU9yfD6yZNQTZXkVqSWrrA3LIBB6wCZhVwYCuQmyX4oCkHoetUm/kdq8ZDtJcqNIlGm6ikwqNg4iAxKwpu2pyjUkaoSz6hEV+HH7cjs5jSRngpVmrUnysaP6hVDxdNguay2L4eI/+MSNyrWs1t88hIrpHx5aZCOUfQtoWfpchXQEAilxKSLqs3XfsRXMnTeocIdFI3lEJMpERD3ptsNS6S4SSfaJPZX6GMlBZcj+bWbedspI8nQzqas4Hoo5vD8V7j+2N1e4rzNYTwoV041dTkJOO55l7bNeqqVQUSuy42m3q1s2Un4KFffXOe/QG/fKh6oqc9gFKmP1BTvXdpZy2p0vy6pUkqyPsScQL3J7AaPYnw/vqcB9IsOx+nRbXRENDTvXEgDUvXvxXutLmVdUf9L9k42z59eIOdh++WfJdQRev8PLkRd7BHq/3LvtZX/xtaaN3r3Bkv0nu9WJQBmnZahxMGjZqvR0wkttuMn9oI1NBknChsH4t/6etUG20tlK2Z/P3DH7Gw8ZaYeexIK7S4yyydbaUwkPcsVOr3WVwJnsVLrsZvwSGPUTel7a0Di+J9CevN4KACdETRmMGslku7/1z+7xJ9YS6Jwieb31RDaFVw6jwOSRhhWdRWfqofZg07EUSY3Xmif5UZ3NQbtSGJk7TWr9QdNPk45SN0NiF+daXY+UlnVi9vIlzA5enDgb2trcXLAiPd6Gmj82ujXmiZEScPX9kWScuDgBYOVq/VSwQWpu1xONx3/qTulq1bwRXX786Luf88t7fu4m7PWsNZ2ijrCRBGCgcQkmJtfkyvaSnk93S4ZT3JadLAJz8a1I78RW6705Sf3m0iyqGQ2WLyYAAPd97tpWRaf0y8I8nJn/v2f8L46qf1BQ2UsDAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, triangle ABC is the inscribed triangle of circle O, if angle ACB = 30.0, AB = 6.0, then the radius of circle O is ()
|
6.0
|
250
|
[
"3",
"2\\sqrt{3}",
"6",
"4\\sqrt{3}"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAIIAAABrCAAAAACeIwVrAAAJhklEQVR4nO1bbXAV1Rl+zu7KBScBJpBUnRtFSPiKEKQNCYgfbQKS0YQiQcOMFsgMsTIBBCqiYBg7oiItVp3pNEYTS38ABcHwkUCoM36QUAQZKGEIJEEglDYJBIFCE+/uvv1x796P/Ty7l47+8Plxd88575597vu+Z8973j3LCN83hO+bwI8UgpA8X/mPr8/uIDQpAMT74JuWNjbTW0fMizsqW7duVzLTR+cOpJE+AL3NuPrpidZjvhmznvDQHbnF5aUJKKjuNmvqqMhH0srrLjt0S6EqVVxy2U6gowwZGwy1lUCOsuBWUCjDzM+dpeoK8EJMRRdKiLrwZtwUlHlYwikql6Is6kL/HCKiRbXmwvyDcoWYSus5ZcUKup2t1krVve8DwNhR8bnjHszjlAxjpq8hpAQLC4TAR0HO8p9yy4DoaNIjRERd2G0rxmWIVumX7cM5bRCFzMsP+DoBgNnLcfybTWh0r4Ig6lBHctAQXRbeyGOI0sROrwyIWrCcKlFLtD/LSsSZwqQM7wSIiO6ZRg0A5lgKOPlCZ//hTe69IBpn+/2ki4g+8uoLjfhTfDogoo3AQbt2ewod3h1Rw3oh/+kCXLGRsDdEWsXE+KzwCjtys3bI/WtG2MjYUpgwuzSe+/eUsO/oLz4IePnBKd4olKEiDgJnCvuNpbWhwtZzqy0FbQK3zRuueSdweEFz5Y6o8knfZCtFWFNoKb7kmcDOBbe/My2mRmxO70hxSUEZ1TjII4Hq53L2jtZXptXd3WMubukLE9/wOBheZ/XnPzMwAKYte8wdhZ2dL3i5v7KQnZM3mmt8zd8PuKIw428eCHTPlu6kCtGqee/jbigs/VWaawJNj9z1c3rZRuBnk183rTd9Zl53v7yoz0jZZtFUXq6dmXZrroX55S41sHnQysqOGY5iZQu5teBSCW+L+S02zeWrbTs21cLC5W40sIoduVFr6zqRdes8s+d0nEromYflTjIRXzB1MjMt/LGYVwGthX0jUxEPEvI2c2kh9SifBg5lJW7ikYvSAtVnGppN5ogLHVy5CuNUxIMpx3p9uioTQ6xdwdFVdd/f1Z9yzwAoMz6ejHoTbfMHRES0BsUdPCYwGoJOD9Q3G7XQrSTZ/w9lITtrNRU5I/1bfY2RQk2BbRfds6U76X3LqcgZk3Y6Uthu95x1nIqcMX27vsZgOVi7Qn1Gysf8LmDuC3Q6SddsGJS9sHKFzQvSKj1FUrGJxfRuXbPBEMctHgp/kP588KC3WE6X2vS3OlD4eqxZL85TET/GHHegcGK84ZreEhagDfqHGj+U2OL4Iw4UDuspuJ6KDNCN4PGHHSi0D41llD3+aXo+HgIGDPuXrkI/ghKjU8g7/MPrPIzCMEL3iBmU1JLqMCivJ4RPq3890bgqcgcCDAm3pBuxZeuV9RpWf8FsVRQ3BlwFgEcZY6xWT6HhTPhUWcTOyxuT/w8EAFEBgL1Ta2n/Y2diKajFmut2z5busFkVReO7XFYgeyGituZiRNBGEbdYltNDRKATD/sqeP1NLQWwzNodg7+x7iiLRET7S4imztXckRRAED6YtJ0BAEPein++wpmhl7cD2CD2BQAyyfMGq2q0EgHAvxUAaK6qQttQIJhfYJIssq5vp6f0AYBpE4gi9mEEqFZ8VIEldgEp/QiqYJZpLgdUIcwAwb7+CwD46zdDPhjWOgwIGSKg0nzqKiEi8rfzGoGIiHp/AXzhIBM7WdPRTCLqyiFS/GuJIoHbh5+kJDNZBe5tUwHIsozIAYAsK1pZlkmWVciyCqDPp9Ty0D5LQ4W0FVNquwvAJzOA7gtjgPCIuHzpYmfDcEGAmnVCJciiJKrQDgBkUWJqqCxBkSRVkQ7fwVgpgLSO/G32FGINeSwLwJYnod6fnBtpvVzwoqg2qQCpI78CEWNgKkIHACQwCEK4LAIQFheeU+W6UgApV2ZvcNBDNA5looHV38tEf2cfAEFfWJyMb6jwNswlVTmUSaQGiCigHYhIlYnC1RRQiQKLcyig0v7kXiIiOektfl/w61bhIFIVkolIDShEFLgJUimgkKqQdiCigEJR1SrRl2gLUugJ9WuzuNVR0M+MAgBVFgAwJgAQb0vuZJBUWRWgHWQVoirLWrUMBfLv5w+VoeCkNhTbd5dw2qFFH5sKAJMkFnYLJmXvBiBJIsIHSQCTJEkrS5IEdnIGJElCTWGfUEdNzUV8FGqmGymEoE3uTzi4NwDg2qlRANCwK7KmaLyRx0XBsE7RKJCsPV8Ld3H0M8B/EoBaPDcqxqpLzuah0KhfrWkUmKSdDRL1gb4JhKLfApfEvOroyo3jON4kGlzBLGR57h3njvB2f8aS26pjKytm+R0vfLfMUGUcQ+0+mzHugPUDexwGJQwCJlkW/+BjHreEAEsGD7homxvYl2lYj5jNwy+96ZUB8MyWlAt27W+9ZKgy3cviaYOLhi8fOp0eW7Mar2qn/0k0dn0LUp86PHh0+GHLxkUmmWXTP6xIcW07a02vj3kPFaUFs9uZakF80vp9GgesA4hFxhGJW/cyIPZ6X5XpoHTxMiBhCe+8Z46EG79ZF1XUArfCNabSFv8Ddtl9HqRGAojyVcHjoURTSav4vIZv2rPG+agAInSTR/eaSlpRKExZZ9HCC0MAsSrbPFVluWo6sNz8lR4/Gm/GDM0962rN5SwpiKcncUzatqgdnBUptOa3W4hZrx3TNw2JkwI2jh+pnSoj91llrW2Wr0/NmRAvh4qiVATH5OiVlv5tt4J+j56Nl8Nrywb1QgCK7n7VUsZ24+mh/j+NaxsHgOeTBlwE3vii00bG9vnSgQNxPqGIdojPFMBuJ6jjpiLuhIslPgds37c5zUediaXxUigeaL8b1imhk3ytaVx83jDk6pUEWwHnnFJDdv8O7wTOSE9ZPBQj4NBkHJsN96CWiKYCQDANYAKu2KQFr3ljsNJ3kYiIprYRLbLiwL3x1EP8cDTp4eCJ8gARUd5cczG+/KL4VVW66zhqVvauz4JnB0YAQEazuRzvJuQplMxcxbQr2OgeLT7YUgQA91lI8u+DXiu3s6Wcssqz7AaFZwX141wAOJ4RLwWIVdTLijgCmX2F0kB6L1LuntoHQNe7Vu9gXbpY1T3ii2635VeuJSLKy7G4wsPHCUsS8XiVKQ3zjxMUfxtRJ6wYkMdPNLZso8y0jNwBNMoHoPcUhT7RKJppEG6YDACozbfqzfsi+tiRszWI/lBlzDhvHcW1jr81+AF8MfQDoPA/wnHh+Gwzgz4AAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, the line segment AB is the diameter of circle O, the chord CD 丄 AB, angle CAB = 20.0, then angle BOD is equal to ()
|
40.0
|
251
|
[
"20^\\circ",
"40^\\circ",
"80^\\circ",
"70^\\circ"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHwAAAB7CAAAAACTcLvaAAAMHklEQVR4nM1bf2wcxRX+1lyIGo6cKEdzwIUjiZMcOA0mTlRDDQfKIUyxVEu4uCFGNSXFFa6EMW5rWoOBWhCJUEVghKuoqlGhMq0r548UnOIIOwRhMGkqOHOhMYnhHOWiixqnTpDLbvbrH7t7t7u3Pw8C/f64252Zfd/Mm7czb97Mgh7QD9SKv/ZS0h/K4IoZ4X1yx/mXupf0DdfqiWvbSfLRV7+Olr/87ycAYPmyL7/hAl0KiOvvawWFL58ZgGvLj7+/HDg33O7kAOCmnXNGvmTtYQjAzGvnohquJtmPV8mxWutM+QtZu6vBAXsTQPszhqRT/zx4bBQ8PAMgugILvhtdWRUsbpebqXggN8mZ2bPnjWM1S1dsCOLKGIBPpoW5iY8z+6I3J5NLPAnzS67h4O93nk7cnIhbZE2Ojo6GG+5Z5ufN8NFFub6qy3+ediqRaovU7JglqVmDs014J8+2BZt2meRZyB5sDHXm3Hn9kMuZlsUdWQdOXWKmNdSW9cTuaZDB6V+t+6b0ad6cLLtVAJRxINr70TfWdP/Xgzl5It+5cvbDo9w9AwCgk0ylWkueTB1evbtQR9sn3FWeSV47ztHotHBxj+SlixSMxutybmXcySciPeR8fIjxobryYe/sUlcs5WLyruT94WGSnXfIbOrjrvK6jHf6wfBfnQs4kcuk1FqeInkgnCW3byHne0I98x65ZU5EO/OS/JKTs7U1sySlqn6S4xUkmamL7XIjzSO7rmHOoaQjeaq8RZJJbk2S5NzCOZIyR8rrpr1OZ/NNFVOlkQ8v7iVJToWmSZIV40q61HNJt6PudTWTt4ZGSyFPhYYVKYntSsKW7VpWpiGa172bDoYutm27PXmu/HlF7o4qSWHoayrkjsRrHfRpQE+F1u/melqTy6SUbFWuM+GUmjoeJymrIqSt4S4nY9Khqd6vtbcl1eGsvlurkHRegU0ms43RIXqZP+aru/2R95fnFLmD8YJtVY0a59PRiqQn3WeiQ37Ix8Oq0zAbGS+ktmw1FZO2hTq96H4i33UeyDNRbRBvbtUl72g0lJJlMtsUGXTkVXQ1GMspV4ZOsiSXk2oT5dGovmEHyvVvsCppX8UtKfeO72qwSLQkH6hSjW3eOJRKQctZclu4w1n3MjkfH1avXMj/E31PvWprMuZU77YUnmuODLixj8SLB8UicpnsaFGvJyKmlraaLU7DvsrEpPa4DXtjT1G+RcunworzS+nqP5qyXqq3ISd7Qx2naGFUeR86G86an7Egb+5Wi/cULdDSURtqmcxtufQl26qR5ANt7uRZreHpcJHXIgWLaq/DeFXNgUJl7AU7kLep3gere4sF1Dg7cX3hB80Euqq0dLuR50Jq43q/YyGmw/y8+emWcL9dnjwVNr2RReTbm5WaZsJWq7JXbncmJyeqrnvXLq/eVDE9uUySlW8oN3XdVo+nI27k5I5wq4XuZZJDCXtykjwQU/4HKooXCDJlLs7IdJtGZ1vDfZYZUnjakbytmySZ009mCrNCmNzpyKtioqZqojhV1qTbkUeVnt5c9E4qT7Oz0yqjGH8It5jnAVn1hWzJ0xGZJIdjNt6pPGgTGSrCbFu4+FU1jRMmg3vhhyQ5Fx2xkzkd9khOpmqqdH2n9FqtYQLSLZEpAKM3AcAjyY12i9pY4GMvi2oAqHjzwfqfnDAunm96w2GJHEmTHI/k7M251nnyNGK2I7zdkPC2odON5NNhypyPOzlGXR4tTkUqUblPf79QPwQYyV+/kWS3/bxJclfCFzk5EGnWWVnlRMH1N8Vk/rUKmHz+OaeeXP+e1z5X0XgovKYQvyw/WDAAY0yGh+I4u6Un6iTrWxemfbIHn35zeM1b6k18ShdPMpALB+PoXdjiKEqo/od3XjUSFH/98Ya7jyuXk7r4UJmhYPbyT3r6XCJYfvQuaER3HLpy9TMSgOgJy5YLAE5fuOWhuEvwdP24n7C7Jiz4m/3DlWPABXP6XINlRp6tco125YJnfdq7hqFoQzatf9GhWv1YmjK5aInFZGRGLEVttBxZbXyLXTD/SPjhy0hyEwC8qgX7papXVguAsOF77pr8y6prtMvnTyB6rzf9UwDA2V1HToYA3HX3bXsTabXPn4xdIQBvYTLnLuayjCLN34aXAADCRXdeEAIgfXQjlgMgZbJ/57ozJLloIOq+4B6pLlxW+FI7yUyUlDnWTm5qJ0iZn/ZmlGk6kh2IuYYYTy30EYI1QzG4fgBpsgwQ8FwrrgYABE83dt5y3EWBi5cd8KFuE05fAAC70+y/6iDKALz4tLBUyQrO4afNt55yEXDN/vybvlcQhId8cPNMEMDMyTg2r92DMiBzWhTHVgAAIkfBX95Wd9pZwoYDiv0Q3ZvPUBzxzk4hcwmAPXVA9v3lKMPMfa0IHFFaEp+CgKeu+cG8o4jqd5R/ofvdzCIEnvvzZ17JBUytAfD3jZBujyaARwWkxU1AO0n2biFJNjU4mtTcQsW9HEOaJMeiZ7wbXMNLHAMA1FJ1JkRSFEV+Lr6ekD8XSan+R6JIKqkKlCv1N/62SJHypnaSZL8f8kr9EKpNLAEEsAArJ88uCEg47+WjbQEJlAKBgAQAkAIB5TcgQcL1+yEFpLOTipu5+85Fnjsd6ZX6aUltOUXyczIyKYoiKc7VdImkKCt5+l+RFHubRVLMqFqH4z5fATLNq4b8lKo0MfFmIBAAEPzbrmdhu2m/fhwAImuPgJTub497m2MFAKMJfUoZIGmPCsDNewEJABbvfvF3xmelwmXlkTMAAvXPQji64NZn7GtZhNGbDbekZlQiyXREFEmZoihOxwY0A6NWSBRFmaIoVu4VKYrcBHjVuTIHS8Fj+jSdMyGSZDSdX/+mo7vsFsMt2zxSmmBaKBbcKCkAAA0D+W3I+PCWMRt9Xjuhqs2jtjUMNBrvtWaryteCA0pFi1bpJEmZ78at0h0h0yE4oAUcKvX7MSORVD5TD2mhReDDHW5hEW5v1tMN2TgX1eoa2t+BDfuAkCrnRMiwfrdxLorC/l4wFZ4zVtbotwO4+J7tepNofLjYuSBwnXnl4MX0nm4Nmuy3qH4ZU5TyqcpZFun3g5j/hmdD7uFPLfCbR2dNPnCYr4IS9vfX423ugV+5EPLWUlpri8ND1T520hVYhLyLji0IWNHcaUzpDTedNfdrtd9lOh5oKz7CY1HHuYhp0STVNylKKcAh7G8FmSPlHrY5SN0Gj4Z5bW8zDzUIK3vqdlmW5+PDxSZitcdCJrea0uZu6DKVcwz7F8P71pZuU0+jn600TWQJl/MDRgzGrDbF3LYz88jGjZHkTrMqnOBrO1PdyDVgOmYI/w24BGH1HexzI1e3hZ1HOqrX9JSHsL9aCx9b2GqVpY0/M+ekIvrp1jQ3WxPLJNlk91o6HVsoClkbnIta591j5ptROLbgnZypUNEQqjgXilCvYf+hsM8DG4r44VCveVwYik5pSUNJT9wlHlUhUytbdWEvWabeuciE3Jnl+Wb1kI7lSGhPLpOcrU2Y5+C+uDa0RSxddgNLruqOOYtkd3KS+YNZetFbK9X61LmG/fMHs2zgTC6T/RHzjKA5F491uHAPLnF5ITwexlNrouB+xbkYrnF8TuqK5ZVW0pE0UiYzyUrj2kFWIhfZoFP8wnAMsURykuRQpCWnl3C2fjOpbADaiD3WFCsMErLdrO/p9Gf9oYuueuxEwe0tGzjeCmD9fpvyxzu/Xf7RrflbQbBbQXtpOSnP3Bfq0LkPczVd5Faze6NgRj10qz7pINXfcePhvLyTlds4fJ1FsZ3acWMP8HnQOtqpjSzZq/oMYX+ZJD9QDlp79ef9kJNMd5RHGl/4kCSnYwPlB3RZqd6GcLzrYz/SfJ5vBzCzZ2T0WM3SFRtOtl95b4tyuP69qa/icL0K5bOCM/sJILoC518fXbUu6P9rl9LIVbzz/Xdilp8ueKyGD3ILicd96rl08i8f3g7X//+R3yUIgrD0M+fT9ueK/E+b0uSPV39mO3KfS3JRXA08fsMjpUv4AuTjVwgAVn34tZCPJAFgWRlQ6tdcpZNLryUA4HAcKPVrutLJszcsAjDzRLJkCSWSE8Ce5SDwi9paLeGrIhcA6bcbIcwIJ18T1IRS4G8+z0PZHMMX+1j1fwE0ExoV3EqMAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, triangle ABC is the inscribed triangle of circle O, AB is the diameter of circle O, point D is a point on circle O, if angle ACD = 40.0, then the size of angle BAD is ()
|
50.0
|
252
|
[
"35^\\circ",
"50^\\circ",
"40^\\circ",
"60^\\circ"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAGYAAABqCAAAAABrdnvFAAAKZUlEQVR4nM1abWxb1Rl+bto60mRIJxzlTjN1xTziYSbCoGsmsiV8SR5NuyBV6yaKlo0sAVoUswQpaEXpRBGRFqQytZCtSIRRibC2ChNhuFO2GkglQ5jcHykJUqqYZgyzROBi2Hwd9z77ce/1PffmXn+Q/NgjJT73fD3nvOc973nPB+gEtfivMuwCgD+VyIDS5Sul2nWCMSTd02tQElLpZAMrFyJoBN0zlKGpEH+/xYve7hsBVyq3bsaSVQjtKFBKZI5CIwis9AKoWGinkzxy47kSGRxoJEjAgS3ByhgAIPVZE7sbT1dHAwDP3PAvuAvajr9EIH34/jUlcmx0bl72rnqvXWTnl6eWk5SmLgMbbwG+e1VzQ6OW4/RvsBKp/2EJGsmxxfuPpJ78vYViMj551dZtvmaguZZS7h1iajl5IXtn2+2h0xEAaDtTgsVZ044C6DY+VM7sl0M9Y2mHjIvHf3mN/MBseVV0olkYImND+sfSkVDwUKpIKUAluRifvLfWf8NIpgyNw9gs/OIMcEELp58e/dGLN9sFIJ1fTs9efgvnLvm/UfPm/sNnX3zswf2+6oTWByS5C+gmP+r1DSwJSfH40cGe1lYg3Lpn8FA8niFzzRsyJNPR+oGlEnPZWQU0PDXc2ecDlmdwdmUuvXweLRtCcv31aBXy3HtRigMAPh4eO9DjWpUjDSUAZ3uuXgh/VphLe2/C92q/6a9rEnPoyn7wb1dv79XjZh/4fMQuX3eh6RjwT2RrayfiKbcMJHkyuHTVvPk5Jh9yyehCk22PZDje0jyqK5ez2BPy7FRYjFhq2ZOjUwFnmlR4X4HsGYoHciWsdMo/yf4BS1Su8ztO88uZZko+RpLyDDuGHZJ13s/Cx8hQwhZ92P9OZTTq8/IUSU5vIWd9rhOvEOknZ+WCnT8mn6yIJhrWRnVwH8meqBvNvh0kh7psTSQ5ExxcJefVNNFIVgs0x0g1LWqSiMNNWZIt4xYSrfpM62BZmmNhnSXtzVElB/c6sry25SLJpbqsU+JS0C43kUYlGZeNiXKsgySZbUg6VDQjT5PkaLtjGzjrmy7WuIqGZMo/ZQQ7jmm/I62rq0kHxkmSu4850zAWSFvGx0qTDRfLFbwf6YHQhL2SXLOm5zmv4yQhyeHmnDtNe6/ZnpuN0Hi4QCt2d5GkylizM4dKsnMvBaFZXI5HCk8Vw6/uMEIdvuNWM/hYZgQAJIy3u9hjACOpJ0RnQmhEPCDoTWBaa4xKJmSLAEaDxpT1z7j3hkv+aTNGoCmEhUF4TzYLcPfjYmP883r0dMCZRS94vNnUAoFmuEPIZpne8z5Tb+b9caOeQVcLobWv1dRDkybtE5cW6/SOPmiEMsHRYmzTpDsNVXJGXlL1jps00UEhx5I3W7QdJJd8uskp3PHrYq7FK+0aaEd00KiiSJOWRVs8FtH59NYc2q3Fd+0284zsKcMi1FmkiQ5S0PM9R6wFcnKCtE26yFg5GlNCBo21M4U6uwsw2kJyPKDNepUks7XlfEAy3ZCx0gxFRRsUD9tXjMtN45yWxXly8vayLFS7RrQ2GTShpLjoDzyq6uNSjIsFLwYsxm3v4fI0jOvmCFo9iSZLamhK/NKytPgt9RZ8drk6IvAeyaJNe/4nok26sLzdZqII1Hxyn7ivSjQE3Fw/ET/9IwCgRgKAy6fuEdMmInYPXsIjX+kYFvdVf767Ehbs1c0uSZWJkKWnDqr6XDibqvtIlGtiVR5HyLOkpgIqh3rElNWqqk76U2SfYOdmG8ozqCrJPSMGjb35p1rtruas/DbJS773ijF2z8mNSbcVIMmCdbHttLuahqci2PCWCaOeMpiVizTJoCVFtm0mcy2DeiAQN4idPScnyCnqCp0Kicrxtjdk1ZaurQe1QO0TfXrUa23eSvSMAIIp6McP71tONCbahUwADqaeM5LuuTxmy1MaEoDgHKD5Ap3Pir20rVYng+b2U40HC6RKxd1zWoWhKHWFbo0L0WmvZbVKWEcqcpikq+fkhFfaqY/Ncp3Q0VciGwSJfbD7eEj4xJNDlwCMd1QkMwDA5owhtIBoBdvNxZ5qNvwHQ2f1n84BuntOTkg2UVfoOmHzn61Lm4tzIdJvEBrp6bpFTlsnQGnMB6ifcnz+VbOPZ7/VAElXEvRu/C0AUIKkb+PR8FDXxU9/ULnMcOUXhtBE17OnuOdW9a2SDZkNwHVV9CZTpzMo+K8Z608WgxOBRady9ZC2VUGz5NNpWG9a5KTfCKkzstOemPzrprq3qqBJbaU2NrwiU9To08WNwL93PLtNHw99fHTc+VKhpYqx+XQztENIyftpIA948oDnlUfzHgB55O9+qAN5wKNl1kLa/53Mw5P3VEhzyQughgB8l+CBB5vg+fjCbZ48kN/k+fn1fch7PJ68xuLxAMh7Nnlel6TaXg/yekKFvamRAGydAwCseBDbrhWXHsv8zpbdAwBS/8+y/CLeg0r7otvlGgC4dg7w5Ang9R0ejwfAC2MnHI+O+//xTy82Pj3+RcUsmNOMFRWe2kFSocKCd4FUyEn/PBVSofZH/UOJIamQSqz+EyOhPFre0BRaUbTVUyEnm6go5Lx/UlFIUlEMJu27o0chFeVI/SeKHlMecooWX0AhowdIMhN6wbGAutJ4giS5q7vyO6SiL6Bqno1C3fkq3HHApciCdq1R8kLIjpEfk2QNIAFtZ/J5AHOZmwHcv/lxh+sBAvh64zyAld7upso14MxtWnGShtc53MlV5xMW9LWRC6hCZKQ8RxrGecW3qJJsPUmO+z8uUWgXytwH2TGj2Uh9DegZIpmtzXK6oYqFsQIMDIg0iSaSY7dzccuqcyATVYiqiIDmsNRog7s9dw6Y2Jnd+asd7qNZ4Q2YiDe+pruWOutQlCv18x37vkSD3aCS7BrRwvqmkGk5kwj1R8odKFRJVNyfF+8IHq5TkouJK6qXSyk8XHcQgtBUlWn5mvoP1rUv4mGDZu4lCQ13fXhuy/r2BUM9xuJfA+AZSbp1JRriyjqznH9pfzHMBXSTCxiynqetB8TztHxjN0n2nWAh/CpJ8XxrbTgubBtwtD5LkkeT5lnnutCo2lmncZ7WOGSmrOe8ybWIN1Pi2wiV7dG190QVzqEFmhNCDuFUfY2wn6prQlvQyYQ7gjUhFkhTHGQcxQky1mZ8mzcea4Fx42HSqDEI99zC/c0aUPr+RkPxNupLK3Ylt1FUo9e53HOVhdau88HBiu49R+W16EGsobKbQvIt+cvr9WH/uw6xpW5xWf3w5DpvcjxmcX6ZEkh8sPMSULWXsXzHf842OCW4PIDxvnrD9a9VRwHg5W9HXq51TnLt/1Q4kqpKarOtN9muIU2Uejg2LItPLFRHSvOQpV8eca+q5Pu0dNT6lmNV3WVzVkRDpgfknnfFWs3jKCF26n550JXEchXhCss7GyfMHwjcWOKdjdaaUi9TDJx/9tTm1lvbHDR18c14/PO99xl+srv6V0ID8w3UdgnNtYCSgPkGSiRwY6qQBtBfdAFTl4EN3ye2+ZobQuVLVU2zFqzPE8X/F5r/AWppp+4t/AL/AAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, triangle ABC is inscribed in circle O, angle C = 20.0, then the degree of angle OAB is ()
|
70.0
|
253
|
[
"50^\\circ",
"60^\\circ",
"70^\\circ",
"72^\\circ"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAGsAAABoCAAAAADTQFF+AAAKPElEQVR4nNVaf2xT1xU+TmBsw5u7Ytan8pCRMIpRNtVVYAvDJaGkqrtGkGmZgjZPSzWKK6VavSnqjISUVGLCUteNrlAFsa1MRSIrWcMm1hpBS5A8ERY6oymQMByS1qGYGk0BIzUN5n7749333n3P7z07qf/Zpyi+P8693/31zr33nOsCVYbbF8dvDBFNXAeRvJoWb5TXNLgrLMvhqoRr+v1TQzdCK1evd9MqHxF9OEV3RyayKXlzS8tD1eQa/8NfC02bmwIWWZfOnhnytneurpQMjsj3NcjdY04SozEpdGiGKRHmWJkjVy7mjpxwLM4AYKDjgXi+DE8ZrmzU032jLJEi2vXVWG7hXIW4tydfUrVt43Nxb89sma7ZcQ1KUZGJlQRK2SK+5EK4Pmp5dLhc3aUYWtuqtc+qnCXXiLRnHhQ6irt9ow7ZVlyHvUlgfl1Sccw7MB+uYpffqXFlMCLHzUlam0u4ZsKhGVVmIT3LNbQXTOXUimrMamedb8jD1Re5KlU+Ah5KfbHxmjFJq8jYhKRn/wL6ojafI+EZEtP3u1zNcy/APIajHu0TWcj4qQWPezNadJJ2ApOUMHAxIO9feK8M2FNf4KG5uijA8ItjJq5iS1d1qIBIGw8cWF4AgANpGMcw1lKsFtdsYw8AYK4uoScKXIf9Rl37uZCV3waAa3TMxMUAYNjruCfOFyPLRwFM0lsmLgCYXlFGS88XA768NoaTxwxcLQm7QgvF7nYA++kY8G4zRK6jDVVbF4z/nw0kASSJaCdEroI8ootVC6dXzxriXB++9PQ6RXNVE7npXq4HSdCHGe9M9bqjDk7C/8SXc2KCC0RwPePrrWqPiOh+9OK739r04G/FNADILZsxtKgKKLS2zebc171ixTUEosSzHgJVc7puNq8YXHIx+PD3f0OkVwwg7yl/jpwfxnz7APR046q3oKcSgH2dVaZKSf0AEO4H2g6LXAzBoep+Wf1SCgAgZYDBJpELaR+qyrXPNwaAYcoLoOid0qquIfpTJ6q3LEDPvTkcICIXDa8jotrIG1rVNUQD26uoLua+d31IUoIXvk1EtP3PWl4NjRetrowLxK2N3uPqLXr4O0RE66Zv6lxnm6pHNbHhB4dqefj+xUeIiGpDQzrX+49Xjer8Y72/5EHQlWVfJyKipjNaPqSqbf2DkngGPdTBzxYBNYWmvOUrqeyD6JMNd47oXl5uibqH1GTqy49NRes09tq5ehIsGBc28HJrr/KUmvE1fHzL4qTL5YpaZYCIPtt+6bwsturuaAPP9F9RuTIBZxWvNaL7xwXMnX3OQsRFdLtlcXKpWASX/W6eGdD7FXAeIjWz+4NP3LT41bfvWjXno8Ytb9YYirjObVCjgUucf1FuhROThpOvpO2b80Fbzw6xxXARndusxuQ856+5+5WKuF6PBomIJohK5/ZE6+93GMmJ6N8NamypNhRS+X2SAXN1ylm5bWdp9iE5XfqJzCzRzptjAf7VkLuACjBJaQBIUvp0IJjSvzgGxOunLAokG7VgVuaBcoY2jrm6AQBzdTsRIKrXm49ipKn0uMeAhH6Vm/HwgPluboPFrfuJpr7QdJCI6OotIr7l3d5y76THIMk/oNRj4rzykPtuRR3DViJKA3hnycpIWBue+riNBhO0rD6GFawNAQyRKIohfq1Oy302clkPF4eyNhQuf8ZG3BqvbphlyCor75SkGTLNfRsI6+GRBpUrmC5bP+P/GJCSswCQ9BeAI9I/bYvEBUvRUBMP1EjXCYCD7oX2fbpour1fJiJ6sn0H9fam1kOUEIsoZw0F08t5YFEgQy44mYNc0PLm2nZvVEJ7Nm1kFzy8VElZFw0f0WP/UXetGv+oLYtWUkXX2i4e+nTxhd95rMVBRONuwWx/eY3KxTU+lOM2EaBGlR/wPQKggxcOAUQEuvH4o0d+aKHx1aadDwkJmTo1NOVVjG5Mm38GISLkpKSsEmeXfK8xdHXYr6aoeNHXzgAEacxQNWNmLr4Ks75TPH5WGmDAp0G7jwtoPK2HhbMN6+hTF7WhajNXMfRrHu+Xh8EAlvGmbaiKtYJCT0Q1LvRFTFzW/YpGeDzhH4PS96N+swWU41xASA/361yXZaFmgCnE4g8D8Mf1BSUebfiEMSh/0Sgs0RcR+ujWlCABMleTTqfAEVlRZYXW1ju65Gyw31K6UzBD6tMFAn7eU5YqLyvGqnyDsScZKWNVMDCshhiL9QhcLL0K2qBZoxhS1vCYX1jLDAD6g7Ol4oVa3d5U9Oq7NjEgOFQqb0CsjYEBw9JRcw6LWEzZaX3/N99hy97NjwQKADCgXg3EESj4S6csEdW1gPFuDuQfcNwv08szALDP2leSVmzWIn+7Xn/GbHNALO4wWXnfCQCIBW0a1BecNXHJ+v4f7RHSCQCyDqavYrgHwGx7i+3ZrsM0ZTm3tjRyHrFiAhjQqdKX9i8eBjDTuKNo23XDlDHgxCYtFouJguVsev3+O0Am0OP0+aW9WZFM3/9zXsO486Not422GZXGgBHpsHWuir6QYMBl4b+ooQ6jy061wUojVpXMrB4ATkin1SbboSMuZHrUXr7nN3pL1SN2f0PRoq5wHOgzXw3MYMAdv25wH5N4QLEtW3Bxm7mRbvdTReyqz8IJSgllz1Za/bRaut0kSmqBrFziCxj052c7LK4GVkhoUxbbo1Q44DO7TPRriuLjEDqWWZaeaY4UAec9gCOsrr5Gpc0j3hI1Y++7Kfj7P6wvcXTaQt12iu48AGTlwRIRK5+U0ou27rR8qGIq4B9SFmAYCQDAZ9wnZcul+toYALan6e+S8xsHM/aGigD6OgDB12bHhVu6DzEp75MtPzkHhOMM2LEPog/Rlkv3jWakaMDqGuyIvC8F1J8DBr2WFy1rn2+hPtS4AK9HypcvLCloPl/z6jVfzUf9zxeB9oc7LM4R5dHzZCo4+5N6m+tjqY/+qaaZXUt/thAmoBj6bmdDewHWX2TpO6L7L7yVD21RDD3KxaPSJ1REruk3HvzpXrvcUptD7Yv5JauIyOUiIkJF5j4VuP2ldiOVobDaQa3TyfRUNd6KWAyicb4Y2FxdGsi2BIeNGZWYYYcCrXmAtRGR6Oq14QLw4hMFADhufNtTgfbV3/ZsPYakYr8ywjxfrz/yMRERbbv6tbW9t/T0cibfm7u+sXr8SSIiujcRpjpLISP1ZGKyWQ1no57uCo062ec9+lus5E5gq4XtzzyGXZgUpHIx94/4uDiN4fEOT1wdcAYcIMVyVUZvHCDN8awg39cgxx2cBYy/nRPTtv4LB6ymy8g1mQCSCVOLxrr9UkefJd/o/nZvYLdJI002m55SaFgkTN3UM2e4RVdcCYGXX55+7/SvPrZ869i2XzGa6LYdeidMdP2K1ZtEQQF1v0Lp4La/uZ49qC8cl/Z7++J47gzRxDTxN5wr/dobToht2/ZS8N43/3vN6n2n/VygojONLscA5akBUbOl1DwU6+dGhfbe/zuu/wHo967ogdft7AAAAABJRU5ErkJggg=="
}
] |
<image>As shown in the figure, triangle ABC is inscribed in circle O. Connect OA, OB, if angle C = 35.0, then the degree of angle OBA is ()
|
55.0
|
254
|
[
"60^\\circ",
"55^\\circ",
"50^\\circ",
"45^\\circ"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAGcAAABxCAAAAADtpeKjAAAKa0lEQVR4nM1ab2wUxxV/a5reBw6uLXv1td70WjD1kUOqyaHIEkaGxElcxQVHMTJq/cEIy5fWkbgWS7iSW0cVElZxVCJh4sqqZKkkQG3pksZpjsYo94Gorg7J0B6xCYfs9pxy7UXqOUeUNRz764f9c7t7s3+Mg9SfbN3OzNv5zbx5M/Pm7XCgNeNidb2jTNXaae4dcSG0Nh4QEQ18q/Zh83BEdGbHv8hZ+WvW22Kxwe/lHjIPiE4eo++Sc4fWqreRM9x3SFbgQ+ShxTvAxc0uBL/kqjpYtHfx8CWijLsqVgXJkDpKNIt9RFHnFzm368Hy1fnbSaJbS0RczRZ6ZJew9fENDt3VwRXP0qXpZG7Xo5uf2IBvB4noH4t0J3Ure1nY27z3m+6obHnAEdH8796807S3KWTKJiK6nnzjb0J712bn7jiNT340IvTNWRYXhY50TNg9VnAcH1ueXMzbOQXz6Otw5DlvCZjs8PXnH5xnKerry9mxIBXI118CgGyvP5YDbIQteYr9/GDe+j0JABrGMNgrp3P9/KBo3WYGj1xzPBC1UoVGPdoApIJqKtcZTKyGBwCyzfUztj0BgNymNIBAWitJbmu1HCYmz5XAceuWaejoB4CoTrQ0EExbCLN4xnkbBWhIBEUASDRA66OESX4SYI1qJU+pd2vazsgUiMF35V9vTp+dEvqZ4hU8hZbdzrMOwECH8tA2Zsi/HWkvuuC5Xhst2davdPRDPqtkjLcaBcTO8E1HnsTG07YsKpHUdEpN53zm9g/5kg48aZ8bCwAwHin3umHKXBrnM7Y8+VrH3sj4TyBVTgx1w2w3x8NFGDP1PKXmXnc06IrpEnOBSoHONlOGnifWfN8dTVL4FFK5ubUzxmIJEBtetuQZ3+q0uCsohScM6diASUACskLcgmeGnzOKWuJEizGdDDOEUrxhCdJ4skJCV7cdzaJv0ZhRMmcAACaDevWQWm3zkFP9KlqGzDkdTDP9xQGGvZ2P3HMkkF87/1jFgnGumSUuhnSTUeH5VEixRBkoBP5aQV70sJY0TIfKO6zsX+NXz+1U3B8H54iO7X/C6JgRwbv7HZb0U98bNvlVGb4ACYBkN0ASAKQCrNX8dCfzjdubtD2DJADoGrSu3oBSZFxeR43tWfSxF/mYtm4QAOT4gtZge5xqYudvr1yhdRVDGZ+hbp+iagcsHR9lF7QxBghE1S/8Rjc+eV+O2RozJLQNWhTN1Mpja9InMrxiiQTg1CGXNPGQaKXbgIUT3jZe5qlnK7cCYnDaogFAd8UiISPeJHeRgNmgm9UGQH+Hddk7jewmlHh57SMgNuiOJs3nrG2y6LvNogGODKo8j1qfbwxoGLUz/dZxVq6EmZDCMxeAq6nzWoNt8VgbmPWUNuRknlEbreuQ461cZ6XcyzyWSHj2HABU0ft7HacnEdGR7rD6+GeO46Lm8urtSdZrHO2V8y0t34ikoDX3qL+Ilboes46Ov8h+cyYkAaBF3g2NGIprNE8CQMJv3nLSAYth9hQAVGXCrO6acSLUpjxdfOUVpgTCnivsFXLbTSKqmt/qgmZ+5LS6BZ7pqSciuqXUrolw1DrFfrl2noiqMiHTCyz8eKBGWc7v3XiGiIguPu+Vay/j+bfYL4cyREQtFV64GZLea1+gWQBIyD8GlNZnK/IA4Gw7gKpcjVNvuOX+0XWqTE1dhojuHZG1Z8C6VqaXQEKeiKrubCCnHe7Y/p2azCOtI0SLX276LUPuB28yX19/h4goYL/HScBfAgW9we4jYigNAAqeIsuy50IAyMt0vfRqD5/XJ1+v23HZSrRpkpWbFQAQB4giO2Iit23I4LVPrSNiLqgSgFe7WCUFn8IDO5qy1y4BOC8EiXYwxQFkeJZ7JfN4i1Y8Mlr0/v1YcG667rGvMdUjAahjqVTWWyAHiLLuRFEEZB2K6s9ESG6iKIrAcN1HogTMBn8tstvWzwpSyHZQm5H7o/xrf/JPUXgPkpoYeDwHiBDFpcjhzxhE2uZpRCoCoMpb1Ax9xUNEKyt62/9l8251cnlemk5UExF5qOaD5f3LRDBNcI52FuYr589nXiKq+sbHSjVK/R6Ppyxy5dxJ9fH+oRvvbVSe4Tlbv+ufxGkTXKVb18JYEpb8RFRVl1kx5ZfT9188wauZBwtT3nLD6WRs1xVdT1Si/W9X8twMExGdPiyKsjmJyoCX7eDUHlEZqWLLD0sARPFz1WSQ8E8qZqhbA4reyjN7+1kANN2kpisGNqedwAuNjNB+OjisGYCGlrMwb6v1Kej37Ur76VCtNF/PDKrlI90V85LhPXkKAFQ/pGLtkdSAIZANDembWH4U25vNp7uct2TsjSTbOqFjlNVWQFTDt5ngqOWBsi9sDh1EzBGvoajMM3qQzaN67WnhdbYAAGAsYDqoDxpjUaqfSMxwE4C/8/LGlKqO29AA0wFj5HU2CIMhaH6vhR/fIKszGWCfecoNLpudDGFWd27X+fHsc8l4BAAwFZiBobkMGM1O0ge0DecS1jkrL6v9gjBrXb/2ltHsEhG9jO6cVXFulNSA4VjQ2vfWxfkgHZXNTpIAlAwBbd25kXEOTgpFAMMhVryLCdXsJADt+omiPwebz/XS56E4gIF6R1eo/KuYHWAMaBvO9YiZlpXBNgC9Da7i8iqua2b3yYayCxVVw6QEAFneUGWGz6J0qNnJ4TKhbHaNcTUv5zPEXYRWLTxCIHrpqLBy8L9veyu3EjvwHxS+v0xE+iDM0CGfVq/cgwI0hV8Il4otnfZfGdjoCy9KAOYCJQCQkONNcTH0lfeXQmCm0NgD2E/OCkiAZnYhJaDdUZ6yStyyGEipstGoxXbjBrLZ9cnvT9eW9xqCvBpdUI84M4G5kEWsxg3SwWHgchhgxmElSYkroxR+NWixIblDPtJdKvEZAAPtumx9nBwAhhuF36+FBhDbny50ngImBcUl0dYdGTP8HJD1++NrowHQF36tGSm/Gj8x8WC8No9nvA7bjTMkYKzaMyfEdZ8h5XsO+/9IRBPt9NP0Tw70fH11s5MBELf8h/U/GjRkVhHRW/smkDhwFcN0ZmDtNMRx5PNvGiQ6w3FP3Yup7MDdcBELdG0V382ccDxcxAJFgQVS5ggBSPQA+3oAIO13+R3QHnE+g7t1PQDws4kyzwgRXZOTCd8X0KOhrySBETnQNDKr8UhtsxihqwAAKV3bW1rVylYhKnaFM8DdOuOiQsDCHn12oaVpVfubGXn5u/MCGb/hVRH9qYXw8UdbFLPwTW3fef3Bje3Kjqcn1rMKgH3XcLdOH7YbDzywNUyqboKioAW1V5QgIqInodd0ytU9h0qo9xwkQBqhCeDdPWrR6u9tWEAC3g/p720kiKhHSzF4JMD2HooFmPdQtMYy7r9xRERtN7+67eVPXFzUU/Dvn2/fcuPZ8qjr61LswArZ6MY+dx+GkO31Peg9IUC+9+TC9OJru/cEAPnRSE2/0Zk3tTgdCzS6uMfleC8NNyzvpeHDZDLpf6Fri4vxW+s9u+ZqF++75SFS7w1yGd29wYg7zxjcanjWiC/gvvL/Fc//AFuApWMJvIjSAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, it is known that triangle ABC is inscribed in circle O, angle BAC = 50.0, then the degree of angle BOC is ()
|
100.0
|
255
|
[
"90^\\circ",
"100^\\circ",
"110^\\circ",
"120^\\circ"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAGYAAABgCAAAAADK7VijAAAJSklEQVR4nM1af2xT1xX+XvJo15LWVHUg7bymXUwxuNvCEoRVXFJUBlSFLWjQoBEGbIGosGp0S9dMTRe2Zi1MTOq0aAqwinQLLUjpwkRQsykTTHWaVGwN1Uxh4Gh0phvEVAWcCgdu3rc/3nv2+xnbCZX2KZLfPffHd865591737mRiAmgXwrl16EgbwqCqefy7ZQ/DSC9PLXsM6eR8Np9Il9XT8Cas5cW3n7bZ05z/dXN8N3xmdO8vvPOB0W+nfKmOfsxGbk/315ytgaUTKVYw++BmCo3V2UZJgsUKoZSE4r7R2uBTdm6WSBNaBVwM9YVuc+Nsz45+i07jT58esC//C23oU3a5OI0SpQunRyIR/n+FUjEzHvn+uZ9xXOTaSgNdXceD839/DwEvWNfPXf4e8WPXoxGFlUvL82ZJ3uUHG8IlGzqGlPDjo3LampEw+woU50bvMGmE7lFmhONMYK51xdoOJ6R9ZQmEr5Odvr2kWRkm993wLFbDjQGdM8JDxjLcd8g+Zb3AmPldSmSCo9VVvSOP0ZWmoFwWbdJSRFuIxXWryBTdRUxta7Tt3iQnLA1seqSVpNAYWMNSTLp30tyX0mXRr7LWxMfT93xaHo8zUkTB9nj1yQRzzmSUX+DUMuXGz19JKm4WeRKs8MTsYrivkH9sTFMkslV4bjmrB7Pr10VdqVRUrXBmPaYFqbCbZnn8l0kydaSY1qDqL9e5EsTr1ietAnrawyFwaIoSXLA93NNcrkqnHCNAwcahYMlzxmLKg74k8ZRWspV5S8tezyhSsTW0lPOJM7WxEva7MKYd9BUFqEmndCnv1o7ShNpzdIKKS40qYpGB2G5lTpWpI/eW9KqjVpfpc+PxXlGGi0ca5bbWVj/pE3UOjOlPcXDq9SpFFX16erRdQAw66KFRuNXWoL22VcnxorFW/V+osGvRkTCn3mjR9f3k02zhq3WkCS7vefsA8a879mFStxzLF3ovKedJHkqI7v2ravkaO0mJ5qYoas+HFPlB+0sJDt8GRtj5RtSpMLuu3U1I5tIsmlJkmRmkyYIoOHZKtvOh+/Pf9Jx91sbejr9XDYgh4Yg4YmN2zVJz2IA8EOxb2uRkpT9FTtQnqIzEvrqSZJsL+mkwk+KB1WfLR4mySYnp4X36iwZrlhJzIWF7PYmDKWof5sgd6mRemYLSZ6ZddBO0xUUNltS5Qdc1hBFIeuq9QKpraWp0qMk2f4SyVTtkqs2mrFAt80W1tfTBQrJZGm7SdZ6Ty87Kklee3SAPDNLZTHT7K2yj9XmOjEqjhWZd7QBXzPLOxlRg0ePUCON8B23jTLodZ8YFds03XQHJB5f/GbA2shAo0SC5g4kk/4DzIJU4BWLpOULxVF3GjY0WSqp1LhOTAbHi6zrf8O8FovEeIbu/ob1/dv7z19lP1BW/rB2zCyZOrvb0sZAc/pKpaXyxPOdt2anQRN2GL4XCOD+6EVXmj9+3VhBYGR1a07f/3LHjhNSmkICID1xyJXm0EpjhQTUVdfkwgIEXqwd1TupPystNJkQuOCxnEzawuMcVSyoajCWtjcni666hED/vELTMnyi5Y1Cl080i6IAO9r6TJKih94ztcnQDH3J9IU3svq3vhw4AEiA5GtdO2ISBs660ETnmCrqVi3NiYTqxK+f+4xJ/NBJF5rYbKOLdv+nRdMUANBXIEmb4fSdK2mN2g4dgaFBIOZCE/cZnNbX8nqhodVPvnuR1z7YDLwjSYGEo1Uz2uouGfS697z6q9Omg8G4QSV8bxnjpGnJVZKRWcMRAFDPKnbUriLVBbG5mUN+0x5VAEAIASD1uYxq69YtQ0abvt0/1TJOPQBw5qijOWgd2J8x55ZRU0AVAJAhAxgpSgt3jryoP0rA9bbq+QAQyxLenvat59Mt7rhqqnNKP/S98kahYbaVfy2WAFzvXTh9mSQBDy5yIiHxWO1Gt6SHTiNE8YgQAhDi0pp2nxA3JGjujF++DxDi3T99B/P/Ssx6+y4IAWtKTZKAX57bDah5nKtFjjQymJIhQ8jy+tqlQi6cIgBRKMsCvmn/hpDFj6tDQn6EN07fBSFDyA6pu1s7nhsCAALXb3ekAaZ+KmQQ4heiBfpMSgBw26JXkzhbPmdPWiPZLQ83/+kNY2qv5FRnGvmB8wAkvPub/YWWzi9Mv3PKgvY9yApi+8gudVn4yLxSFUD38hdPAcDHazumwfK23/I73hgO3chOI6Gw4+X3AQk87bdZI2QQmHNaBrBhS0gG5DEhZEAWQsiAkFAoxBRAFjeEDAEB7c+O4AsbRwFI0aCFhrIMSkDZPwDsxI9kAJDl9A8hA5IsA6A8RVaF6p8TthVtByScnmkWU18hPvIIRkqH9eKEEfNEmpuTRUnTOAWaU4WYPrv3o7X7i8GcM4vOKNu54TqOhItgHKcAo9+WJEn6Q6Fc3bXmqQWAlNOWOQ7q/X9GV7VWyKzQo7UH+XZxP08VLZuMszKI4ynPBbIdWDL8A1UkA8qFRZgxHfhwxLN9cnboCI3MnnF2xUJFOvvIelVSAPz9geLrP3s4xNjD/52kuwAABJYml6c2LtwjYebqMs1vZDtQ3K+QjHz5ZrhMIVkabVcTAq/1q0JwdH0/9xX30/nDY0LoDVxb8JJJUoAPPwliTeAogMLmhpvgNAANLecvmY/FBXgndAfiw2UAsPHikZvBsr/gm7ZJHl3fz2sLtGNEVzD386wrUr5j1Jx25pC2EKhcS/QTb3jv5Gl2LSe5TzpIRtLj2tIPoxMfX9X8sneQpBKB8ZbHekewsvL5Sc7Ms4l2B6llOXZIDeUHxwyWPdF1xLFZzjhlVDNjASx7i0LHtF2uMKbtjHC4v1nz6eGJzsvYY4E25xrFbB3JVIUtP5Artla5vHc5J4jdYNRQTxDnRsPBksYJHAfElvzS3S7J+yy4UvWImy3mZEoGvr5poaH8Zv9kReCo173ajX+HN8I8jlI9dztHsgY3GsV6TTQuLjfab3uy0mhJ/NjKe8bVMI1JXXqRHAgHDmdn6Sz92mA272a7kAyG+8dvcayiojf7FGa9xdWuV53R94zhenVSNOplcV2XbRVRL4sHtVIWe7Jdfav/djB0+M3jobm+SgS9AC6exkA8GllUveI+U6txkBsNgMQHA/EoTlwB4A1irq+y/GZf5N8ETOR/oP5/af4HvytMZVKCM4QAAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, in triangle ABC, AB = AC, angle BAC = 70.0, circle O is the circumscribed circle of triangle ABC, point D is on the minor arc arc AC, then the degree of angle D is ()
|
125.0
|
256
|
[
"55^\\circ",
"110^\\circ",
"125^\\circ",
"140^\\circ"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAGAAAABWCAAAAAAV0MxUAAAGuElEQVR4nLVZT4gbVRz+NlRM9dCltTS3HVqkwWIdBO1gsZ3KatMiOgWhKVJ3vWiQHlL1sCgSF8EogsGLsSCsPaxxPTTrQbN7mlSQ7IpLVkFSLyZ7SoTK7GVnIlv5PMwkmZnMv+yuH7tk3ps33/fe7/fevPf7zRjx/yL2P/NjX6RW1c11/NEBED8FQRDHRxAYCzPRZnW5ekcefwzJBIDuCjZa63H5vCzsicDm4s11+bycdFV3qsvV+FQ6mgb9UU8nplW/m40ZQS4HPNyDv0AzLZaMwGdVRfLVDxXQsslS6MOsyUpjRwJGXigE976HcjLTHl2gJsxokehJsigURhWYk4M75YKRzQSM1kMgOx3NOgMUU1p0AU0pjEhPUhXrUQWakSb3EPwfcwnU/bsSDE2ZiyLQlEZyrwNKOVzAkOo75vd72CHg04mI8B6+XWAmvxt+siZ7zG+bQCm9O35ybjpIwFN/RGQL/gK7cnCfJNl0V/U3/S8kMeImGIB4/rrfjmYIO18Bdgwt1N4IPppK7H4AAApDQzB12sLuPWzCvZYsAQ/37xB10UugLu3VAMhM0UPAVbkrNJLWxTww+fdbMQDoLil74mEAQDK+DgAbx26TXz6RiAFANbk3U8jE5QUA/7w8eQOYeOUYSDId4QgUHe0Eyfnjd0mytAaSHNf2UoBind3Tn1iFGIBqpPP4z2NjY69HstGLi+i0j1mFGIDq2QhPzb5yl93fIykc/N5eIimr4cN+f3KL5Kpp2UDUlUNxwzJR6weCkVyweniNkQTqivitcKLOedwiVye3CMvrwdi++hrJ/twIoi+zkkqXyFUAr5HcB7SEUKv+++dbAHBv6eyhgFbrs62cAtyc+rUFPNkLnchiJnQEreNrNkN5Q5XFMkka44Z9d98HdI6EjiDx0MbjwD9vXnrcr0V1FjkZALCYiic6gxvR4uT7n/1cx8YjJ2740Z+bzakmP25OOe9F2wu2rwK+9lFl20TXEoZjTwA5PRcuQJLMeTZ00JsebQqDcrRIHwDwzaEFQR4yTt/2FhZyrhaRt8tc2mhLzcDe01pUdhPtAw7cNbA/rPvdV4+XkCi8WokH9B7AV9MANscdI8jl9NDua7K5ZdhmeGWo96R1LlLlQQXIYiZUoCHWrKuePctiyoPe2pDtCw2kKuukruvUdZ3UddIsDn5UqWle6bouq9S5cFJZ8exJLkc64wCQ7YRO0vrv/9l+irI2qG6LjYWTyopOz2ELTdK5BYPkeNvGZw7DLpDN0GLTSeqfPvh8vXfTjZpE0nlAjQEQfwOw3zCdvn+/c0Z1L00UbcVF6ccPYqLfXFu4DADdlj3BROq5d83uOaxk/bSlMgfVZVFZId/O+40g0Sadk4gg9WW5bwC3k1dO1numI8viCys6qevPVXTdauiAxWx62uYDI6ENBBwo2wLHsqj0TKtJ3lki660m1Wx1g4OXB39B6Z+JSwN6kg1J8+C3OurcgkGSZaVnEwcy2d7VnJCuO26VFQ8Ba30VsvZKkD7xkyb3jtxzwnTTfddhZwvW9HdGUb7H92Yv4edFT6+sgJYwSNvx3S4wHIDUxEYQPWmIbkdbYbhnADK0J5RkLZCeZFPUnBWpCukXQrmDwFzaCKEnWUk5itbk8QkCHUMw0rlwepL5GXvJPF65B9AXsE0kTS5FoacrcDGX11Ag3s9V9GdvQ6wZxSj0zvyGeZIYXh+DZIg1BFW6UxAyUejpcLS5MIZTfoN0TkUxSBbPfChko6ct1FRvciQb9Fx+toRUMUNee2oUeg4sWxfp/QKxp9Sy+UcPjkbP/ht0Ju+TL+gL/LJGjp8aPadjyDWSFJrbLwHALT+B7tNr/u/5QDSlNqnKNJ5J3fKIIHrH94/vmwDGS1c2g453nhAKV7pYuIzrl+6dwZGD7tuWwNdHY2bjC62RFaTL17tLF64cefLooXvvnR0KUUiSrc9aF7dIkg1RHd1KmWvn5BLnPUMIkOT2O1utN6wKLTV6asc4PFHj9tQa54cVQJLzMENOs3Um624UhpLUJlsXt2wpij5iADbukqsP92wWL05c2BzJCe9/pyaAn849YEtR2H3QurhFztulK0I+eoqtLORIcntqjd3Tw4E6SBxe275qsxFJbUaYi0avSkrTJAKAya2hBn4f6trTYiWcvqHItZAm/p8a6yk5RKIxnSyH9iHoY6maSmTqfjeb+WRyLpSeDP7c21m80Umdl90pw251eambnnJ/BfZE6AfrztJyFUnxiGSV1zdvd1ry+VQk9igCANC5s/7XinUtHpATUckB4D/5/8KZwxb+ogAAAABJRU5ErkJggg=="
}
] |
<image>As shown in the figure, triangle ABC is inscribed in circle O, angle AOB = 80.0, then the size of angle ACB is ()
|
40.0
|
257
|
[
"20^\\circ",
"40^\\circ",
"80^\\circ",
"90^\\circ"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHAAAABpCAAAAADHUvjEAAAK30lEQVR4nL1af2xb1RX+nkPbPwhyUV31Iby5VcPiNmVzSdmi1cXpWCUzdaVoQZm0anKl0jD1DzqRjbBFpFMrzUiVCFJThXUSQevAKN3SoYol0NKEBtVTAAeRYkoCcRemJXW3uqSgvMR93/54P/ze83vPdhbxSVF8z73vfvecd8959557BcIRFIylK5nkdAoYAlAVBr67Zst6v0NTNwguhAWMDg2e9/seWBUCwlXArWEII9cuXs02NjbWuYyxYkLl8XMn+/w7IjtuL67PnTt/7tru2PfLVg8A6I6J9kDdsWmjRDY3mDm6oeZIRpVb6uzgTjjWvOpA2qlS7z3V4o1NlEfnQiiTqd1ifLbE8wpJrsPX/GE5dG4aZveJnXOGYRf/0Ioyydm475e5/4vwhK+1nA4K7FdbxEQZZnUgnGoIj5VBZ8ZIfSRbspFGaB7ZiD9eMR1JtteUHKauoZGxx3dmUXxkwndqEYStgcrNqWFEPFImoY7rD4Wz+hDKci0TprY0ubqSB8BxQdi+cFCNPJ/ev2bQp0Q99a8y+IfR8LlraJvEfvIzqLNkwttZuVYWHBKnnCsxX7ufJJ/sJUler+k0VMqLMClJPhNytiq6Vs+SZFeKJPPRxxbFYMVPmpwJa40e1xrJLwnh3H2OcxXoLRR6AqUjRXmYEvvKILzoW7z/WZF06ks16WQvOeVfbHwxQ5loJ++xtxa60CtzoJFk+OiS8Gm07VF7QvYD2E/ycGQp+ch8fcKeUEUWPYuJZC5IinbeqK/a9n72fv/WigOZWwgTHqt+zk5OkpRT4mCV98LS6pgVbRZgmkl3d0orerzDmnhpeDtijoSpu+bY0H/KO7IkRBpu+CacCHd3kgfiTHhTpLx0ZrVRUSH8SJwjE1Gyx5taMjbKzPkm7QnbniI5LnKJGcn9RYsxkJTz/jRJimmSPV7Htf0ikAzaEbK/gbJM7kyQZLfdZF40gkmLwEMAr8QgCED4PAC0tG3/2NWhy3d9ALEEaH6I5II3S1Lm2QZlEJ1LqOM/RYsAJJMq0eyKWY3xiu3TMsm/C0qsLxfBtDmMeAAMNirKVtdcUn480frAFTsbCUDrz29wfqilbLMiMmRebBoJER5UzfxkLJKxfbz1vat3YNnzfTfLJtx+3iIg895Z1VwnmnXNOwIZm1ViP1Ik2b+61D61gGnLSwTliZBWSBsqO2qmzS1lkruUt9dVAaEcyJqG7YHw4VpN2+DNq7rmh37aOAMYJrQALFzeAQAYeKS6bJMK6y6Z9gse4tOgXgobDH442jgD4wsn/nW5BgAGXvtF2Xxg7bjJcz0CxgqEW0YNVc8pjIWx4u7acQALT+wPlU8obNA1JAB4gIm1eu22QWPb56IP3jA9vGzncSCzPPJC+XxAzURhxABA1o1R881stXmpfzBkSizI3AUIqcoWBMPbTEWQgUyhaI21sdB1m4lXAR2Z0pxAecwD5FYW9De9RAAvhrbnjGVCycBVEMHvvG6yqAe4aZjj4bcs7V8M/cgYVQTg3MbvvFNmEhIAhNu/IvCwIAiCEhDN2/yRYJHBYtvMXh6E8L1KTJrzkuSTvZyvjZP0EFW3CuPZ/PmMdVv/xzUPGXRUbVqOgmqbhWUAMBnFsp2TADwCqg39VYVGrc9VJUQDo4BjwdDRspINapsvbyeQ+W81ML4OgAdYmTMMSP9gGBhfER+VNCnxYDpV0Zbg+p0C8HoUaH3/gEKoaqgMaMsoSJg/YbclqndLapvK8yhv3AFgoE0Q3puqBgAyPGhwlOlqu11+Phqdq2Si6JATG6vC5GSjLvEANRl1LAKANSvHbbys6jRUHSvCrZfWvbTpvi3A5Vpd5gE2fTQ/rxQIYOvbdvmnFae551aR1B1S19ozpw+/XVcHHH9c798DrP8Ey5UmAoD7U7ZPr/jbzeayGQng5rNrR97svbclnrknI7y2+QOtf5ATIclg9eK1soq5cFNee9MlU1TZDl9LhmR3mIFCqpAkQea9/yElSaIkSeQXmKVSLPxTfs2Gm76SJJISJYmSlcOA6Vbx4DRJTvvGitc0ZPR1kkpPlNjwuqFAtWOJlDjbuFdhs2XUdZ5qEdvVlElzG19tNjfzAGgcUkw/vxzAfP0H9u9lOar/Mr4XwHIsh/bWDVC/IZ/u3bzu48NKAnQgeQhvbbd2RCa3UiYlVaFE1F5DktIX9TFJq7G1aarZ/7zusXOBfmXlbTQBSGlh9VXKOuGEX3YwKSXmQo+5ECZ3Bk4Y4kZbMzlls7eQpFi3QQtJTFsmjURSK2dDB7V3aGU8Gwn+uaAJOeabJuMHiwnJ/gadUCZ3JtzmfC5k7UJ5rK+hvk/7raChm4U1i94lSDLvT5OSJo0/7sJH5oIFRr2bRF2k39Kuu4GOO2A+/XTB42Rtm+iE6WCrWZDvCUSHzSKZ2VVjJFvi1jUXSFJOi4aPgb5NdGY8ZOhl7pi/KVXcKHaQZM6XscoNeRodddZ9eRHjhg59dHExpm05jaoM+r+gmqcxx0EtE6WrKJMtcZdQKZMypwPPkCyETHM9yblgH10zUSYVTzQXNbN2mQkcMYTMYnTsJl1zbRxVk5syzdtEJ9LMN39XCJn6kxrSvimSV8W0XJRH0xelsV8VhNUO4zZgokn4cY72y36ZkU6S3GfnsYWMsO+SLozaJo8NSDX7Oz/xOx4a9dTn6ZQRLiy7uyP6z/Y22360/i8qITMtHrPny4rvUi6Z8zZm9fvtXF+jO9sYPKn8St/VY0uomLI9amtwA+GU/4zaxLpNNJAWQibJtGiXmE+KOZInaxzOLYwt1dMUmRvsXF/WQ6asCdK+Yh3zGxN0O5kxFvSzpz3dNk2NIVNTK+UtelHxKF3Pnkyl1kheJskXil3fEjI1xlHrKXPGmyHn6p1P10ylfHQfSXLE+lVRQ6YNUjqjsn6Mxkk2uZwfmos55YQ0r7u+MomKQ6YdI0k5UZcnO9xOSC3lCW8nZTJs+JzOGEKmnasPe8/oVTkxSXascTsDtgom1sfyZJvu+lOWkGnH6NOH19LCuaY6Fz6bc/xcNJzlqYdU+pgvXvoOyPAqlTEp5qbq3c/x7S5/tAbGlG1iqtlvuuHiiAuKjvn6kyPiEff2trdNenxn/B9ZV5mOkEn2ewdJdkYSvlOy+wjtEy7vPrLKe+XL2E4A/MZ6dYnuutse2HN66+ebH33zdJ1bKxTd+tJ6vbz51g83jlAAMHoDUK6yAdjkA4DVmwAAW28zM/72k2+d8pXgs0spDawJAUPjT8favQXhzMeAQAwvABSuTAJA/h0AQM3dAHBH/Zv/kP/0s1J0doQL9yZCFChkf3Om7fEVuthiUQqa4NI1AJz5Q/LbkXhpPpt7bb/eoU1r5daXrBzwuU69XIevucw7ABZCmcderiv40aVmn/O9Nh2plpUxZT24CzBdfShNyMnfG3IqtLu5Z8G/jwaVm3sKY6/cj9FKCA9wUjkqKJjw7F5v3RN9duEjd+pAcNU+w7Zivm6Wk8rZhhMsk+b4AWB/cUpbuX25zRdSbl/KF4D3shdnrlluX/KNv76Ah0XXlLiZMPPqUxgYfcq25ZVMcjolcEggPNuA+0Xj/VLDeFMh9yBhVPezH5DsWtyVNpLkrhS7kHKc0jJN71BuBVLcVdlpnQmTjeRCrfuAbS/SLRZdz5KTFbqFM8oY0a4U52tLHISVT1iSvR8A0GhTY0T55wFLBM/XzPf1E/4PQ+KkUE/y/BgAAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, triangle ABC is the inscribed triangle of circle O, angle C = 30.0, the radius of circle O is 5.0, if point P is a point on circle O, in triangle ABP, PB = AB, then the length of PA is ( )
|
5\sqrt{3}
|
258
|
[
"5",
"\\frac{5\\sqrt{3}}{2}",
"5\\sqrt{2}",
"5\\sqrt{3}"
] |
D
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAGkAAABkCAAAAACgd0E4AAALRklEQVR4nNVaf1Bc1RX+FqyEForWpVmb1bVmM2xDMl3F1m0hbnBImipRnKYmKpnECsZO2ko7tKEjyaaKKa10xBlUnNiWTJiaaBziCBVHnGzMRmKJJU5JEwl2EjeZQWBGfvneEh/v6x/v7dv3a5cNmXbaMzD77rnnne+ee88999x7n4NIi2Yj58988ClOjgHOQuQvLVxYkqmrpkP5T0GOdJCOhrv7AsucpVjoA4CTY9KR4dOR0rKV344rnwNFkZmLIlXOovoIKZsreuqKXFv65nw/TnMgxRrdvqZoomyCO9vg9TRLl4Gk6Wtzl/clOLKhTqXIKs8B21akhaRSjz8Q1ilJpqnbH4hoUsnhkiHJ7C/zHrAw7andXX4qKcIcSLJU42qdqz8SJDU76+eScci2/jmxbsFfctPyXdXFJ+6+em9OSqkMqzICJ791y+u5QHpAcADIe3tR4KPUc9PO0G6XeYRSk9LLba5IKiEdkjYqje7056OeIq6WNJDe7dVYW0pGZSP0HKR5d7SoLvlbUETFlRpSY8lM+iAmivlbk9apNu1YM6IyOt2j80MhZTLqCierzQAA7LleUh3k9ObXnel5nK0Pug9sOJekNgMAzozd9sUFAICxta3+hFvOqdsqUfzEndNJ3iM5s23yzI9JklJZ/bzHKE5bK+z5INkGoFqRKtd3ehpkIyUF7QMTyMEmMrKLJPtdU5dikhwXNb4ymj9kJ52BM7XVwBAAoKbxmT1j+hCUeqQcDlXAGLWcj9Xaim9Hfu/FSqBaZqdvdm9W5s3Ntk2yWpSUH3MfseHropHk76DkfT3P7/TVphGOZioBAKsnraBtJTbyGQnr2nMqkFmzZ8jt2yXdd231qzOpO+/KP27qJSOeXFpifuX0QZsXNMyYK0Iy5h7iM64OnmoqyazY/YmlZ5iwQLh/UnxOfI56nkqdXsmSESSQGpR58GQVecK3JUaOtq3LKmpKvmxHdrFtf5K6oDWqIw4suZSxGXcNk1NVywZIUuqocnlrkiw7fwbye+2rGPbaIpEke/zqQ20tSe67tlkt99X6nJsPxEhTH81s6p350QjtSCY9fbJJXkPa3KQ+DLvGSTJaUq4F9aHmksyK3cNGdYN3TfK5SU21AYesr7GxSek8p5apVjUov6HECiArg9YwoHuzbRfJmW2T9jadcptT27hN3QGNNeSOKQ8Rd71eXOrc4vZsfVtVdnFTLzlTucsGiCTpO5YEqa5RbQzJdS3q83hF4KxRvL++MK9y3zQZUeZIEpeQybrfJkEK6JrQ75XiHd/qajdrOdtShvLWKGkIWpbY1L3GxFKRpvL0/VSWUH/KXzllafJ4+/ov+W9fOJwq7E/lSUZ8KKVwmb514ZsSArEab5++TqXR5e6vebb2mNTrNQf+bmxIhhK0zixLrAVAMKtLWzGynm5e+wddnUKHlz8QvXDw6kdzN7RP6EKbPgD6/qVtGJUfBbjWGD06gvrScLAsPrXUZobcatyItpajrMXkNgo1NBjL6jhVmPrBF9F3htzg6tZBjQbX6DK1qX2VeUvrT1ic4sBmGySZRZojqTl2hb4o89jiGjEuEXY1mtvfs/UG95ZOI68vqGgCVo/8ImGTN2oUk9wDRsbURr8a1bWeM9JAgz9nffu4jlFEcrCgmhws2JVAco6bXmx+0Kyq3bWb5GhwtdpzSjauX4WUQYv3ztkbSXFFNUnW76e2amSZ9caclmEeunn9uLHnzOGanNq38Ro1Nxh3kX8qGCHJPb0k1ZMP6wHIzomntWVZddfZuucd996RTwBBm9U7Lnv0QOd0+Z1rp6+fiJXd+evEDFAgFsTMr0x4hswJ+ti6s4tWfdYHBx1D5wE4Cx2Eo8AFACuuAHiVX23U6a6X3r/7NQ7e9fi9WkOvUJTkTuSZ1OY92LLT2Np3NtSIMPCOSgDG/gEAraMAZiMA4HUTyFn12pfhgIzEdFb61+x7pBx1agFPJsmQOyKHQjax1MyIhg+Hwz/Pu/9aisW7SHLwIKn5nnk+kZQ3N+teV2ZrKERSWTKqU8KFfNG+INmG/WRk9aQO6R5zrCR5yjWraVB9TkGqLxihWKyDsuTnWwLjSoyIAHhY4amZ5eLTZh8CfIG98U7eWXlgm1a1/W99+Vjwu3dGE25l/J354YW38nB6CYBiki8oXBWpYEhVH/9xAKhrUBhjK9/rL9bUvvvCb3KRiqbLsw7mAEMFRraKtGQgrl7XxFsXvQYAh5ff8UbC4S8+XxEA4rsTGxpb4W/PBHBqsWmvonTiVJ5ks4B2F9EY50IhisUvkWSsstoqT5JnvY1xjcYK1aacpcdtjm6+N3t4rFTfcwCi4zcAwPE3H7LKEzhRUv8rAMDR72QaKzMAiKLIYNiuJ+q3L1/zhjFUXHfVxwBi2yputYo7EPl+6yalyWFLwCJJwZDv6Ui6sdNwPhgKkdtXTymLgQ11uLQUyz7fEww5rLoHK/iE5O51BulQSKnNN6shScq7Pdqq9s9FtjmsQAobG/mZIJDCZzJnNoUFob5gRBY+davBQxAEko89JpAUKAgUrEiNvnPas21eTgok/+pXEEmB4n2T5HhltUA2bZbjbSGFUIgCBcEWSt5apMsuPH00hSht97li+LiYDUAUgfezc4Erbzg3DVR1jagC2dAesnWlOM3e92H4Gq10+Au3wLSn15ByHnlS0ZOdje5SAPACQN5DTXZOaaHpcnTnJDSHaiwSGYCoPD16rFd5EGPHggAw5MkB8Eg8dRTtIZQwMLFy8b5MrYSuC4/YIUHMBoCrnggByBbFBdEl14mieP6V27NFUfT8oEUEFohiNpAtSWI2RIhQ/6D20LnAvS3xEoHZ+qcyLUi684gpf4cyisoerFJZVvhRfDtFbX0y04Bnt2H824ptFswEksBOn0SZyvnlYIEKJLMykUnbIx1zdRiAYrYZYRxJEATytjbG92COlzWR/sXaJLRF6nSbzimbbc/dDKfY/a546mCwvXxvKqR2d7+RMeq0PXgynpdvrbDbfIXjBwh2SE1eUwoqldmf72UY3OOZ6R02jhzM6bL3cAC/bO/1GDmP5jxhf1xnwJVHl+hO/zX7tO2UwSaZlB4oM+9Ndxdad6skrXc1p1z9NlKFR2ULkkzGytfFdEWSjLhtt23U955icMGLa8ds+ugp64rswMTKRa9kUX1TETi/rt3D5GfLBpIbV8RMHPJz74DFJkYLQzRRzP8CbSatyaZ4U7ctLUtYpWZMmT8xx1niw5Kf7jQxzxeveRhJL5Ns0G3uamJK9+ts6rPeHB1J667GQN3uV+OPWgZRoyKpjB7rBUab/bY0JRIHvHUmzrhrlOSOnWpxn/uErh0ySWlrYeozacs4AQAKjx+/Z1o/Vsjb0ILE1vHZbeFvag5HOICJNReO3Wg/PinGiSSlGtfzBsawa0obpzq/7lRRpnr3Oe+bY/N97uZmFUmqCpp2+pdzn0tSf0dNkkNuiTtCZKyiQj/h5MQd9fyRdPfuJFnRxlCI48EqvYQcKfO8ktalSzrfEnxMkjL7vdwZGr5JWxNk9VuC2XRw5kQiGam6pqg+QpLBjtDPPC3ayL91ad9HpPzmI37kcfTQm32BZc6vPHtT14vr6Tg59nlE+ebDZr+RlNL6ugSgfOTCmQ96ZrInle9YCr/hUr5jSfNqPn0khboW3nIJ0peDdFlkH4000u3mL250OByOl40Vl0Jp+w5nKvfzSNLbmTlpDpv0JA+XYuFXL90WlS4B6f2v5198/LuBeUOlb34bkN87/wvs9G26eKiXv7/rvXmblD7SuU8LscF36L+A9G4gF9GRxf95pIuHShF7EKXzRkrXI44CUC6k50v/M9Ho/xLp371Bdj+5W7YMAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, triangle ABC is inscribed in circle O, OC perpendicular OB, OD perpendicular AB intersects AC at point E. Knowing that the radius of circle O is 1.0, then the value of AE^ 2 + CE^ 2 is ()
|
2.0
|
259
|
[
"1",
"2",
"3",
"4"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAGcAAABvCAAAAADUeYFIAAAKYklEQVR4nK1aX2xbZxX/XadLMtHNdFLWTEDdFE1xn+pNQrsaUm8yaW0GInMlhJlAaiYhwsTDjCpB0JDHxEN4QCkgpJACciuquS9kE9KcrtPmpFAcCTRnL3NKqKOOP043lm4U5dY38ffj4f6//q59nXAe7Pv9/X3nO+c73znnXoXollY+6le7HrQv+vSrq6sbSwAeub+xDEA9eOzo4QAglUDJqVAi8bO6cLU0NDx89CHNrVuur1y/WRkdOZmKMAHBtiQEWZ1KJLPzm9J2fWEqNThZkbadAQD1jlnogMPN2VRyuta2S302lZyuSxrOPcOtR5+JglPPJvyLFfJ+1anERMtijPHfkmci4NQmEjPudonAv5/0/KFMxV+1NnyL5waudcLRX0zm9VAOJJiFVNYnxDkAObtXK441tpjKbbWDkNFMsuAWjPGL/OtAziqF8KNnxqrtWZFSPTPmsLQ2vEGeOXKrHU5NvdQ1hknFVMV6OvcMaYxL9dpmoOx07p5qqrl3xvhF8gwuUoJj0axmM9/9zpF6JkdB08wMXLOniLXaiO+sXD4AEASU1tZwy2JR/yWc+gjm+t9/3JkiuJzb2swumPDTvOoeWkFB0bpvNbW0NwxBktWHfxyoDuDU1Xc93XdNNw59ui3OplbZ0/wW1TR1AP6VenGEni7+f2BW4qyqm6S7Lz5+0vN7ml/YMLX5NFnWdA9LXr0+e/hUdD2WkKnCtWfzQ1ePA2r6+95j4UKWRlqWtgu6od0gU2+T5ETerXZx6in3Ttw9TE2rkZtxkqT+SFUiH620RwgHhvNps1RN6XZDzLYXlwZHQHRlalpp/dn8EICrx81icuxsUD56QuZJdEPC4kaQCdvsuLPaONm9WzVr08hawqmyd9DGqah3dz+/fW5GLDbyE27bWNGHY53QvShBTasJcwavPldS5rwmTjW5BwAHxn60xSNIR41NnL1LxwPjEQ8dCYGkqCdsU7TbjTNhzNFe8ZA0fY0YQGX2dL/iNVGhFBZcWOfGHH35pK/t+Z8558fR911SJeWdIH7b17gVv2vd22V1jzCOf2SCBpozBQrGAJw/3Z118W4kgZXsKwc8VaWRQJ/TF6AArYx2R8LPjeyyjG+SIMvqro+nICvah62z+ilTIGPAwold2mhC4Ur2lQd8lStDB4J6OfY6APJ4iREPjjGuQMmZUavNTXD1M9mWYbUECepxvaVFTnO4SF51XHPhl421UsvO+ChRIyytjsDPnBkDnrFDDRk31O+XrDpTYAwrx4Ao1+jffvDc4z7hBBUaALD8SH/r0NQ7iOHm4c4SB4C5+74NANs3zKIihWHpuGTo0DpiWB2OBKO/9diDAHjz2on9AEAZDJSlJyRjh68DTFY7i4bkmhXS2hGnRDZkiFLpfeyYeXH6PpojySVL3eQwLGkkA1olyME6iIiHZ27gmhtwhsBwalpanahB74sCQpLnAGTYFoaSAFqQTFZh3rLdWLh59aUwGMvhbSGttM/W0uj09a0/X2jVNADA4ihDZpLE2x1oAcBfQtquHg9bcPc420rv/u+FtC2Oho2K3dvoDmYh/+9fPD7YWk8At9dT8kF3+yOfH4uKaZ36/SFO8stfCRmVWO9y3xbOFfrR90RR7mFdeSpsHMGDXQQkr6V1ksxPyM+B1D8TJPt0UC1HhimaMAHP1iF5tSA3BhnDsYowDKMZddMAYujAiqx9SaptCvB2CjEcvhnrxb6eyDBQgPFXpDiarBbAzQRiGL7eGcILAwJfuCLrUQrDuT4MsJYgG02jYbDZ2CEbjW2SjUaD7h/Jxu/TulkWRqNpDLzPRsOIIh6S1EoEmaix0WSD5DZpkEaTRpM75tOOOZnxWvrODo2m2DHIRoMTvzHIhn+22ckQGD2uMwaOLgHAvm1QAWkYJBFDD2H9AeCVXxX29xAxpYcg9uHklR4Awrc7r4+FbNtyqh8xKNoiEEMMotkDKL29vT32KaR9Gi//2tI0wLTtJ6/dDUzGcPGUNADkBwM0SFM6NHbIJo1tCoP2H4vpj73VjSY58qb571JLPOJQqiIYAx747B97AMSUHgD7moYRwz3C2LkHNP/w2rnCfZ5qAzvYfvJ1bGPHu+q3RkLivY2NlBmXWALcCSzDti3FpyU+TGuEHpq8m56iGc9tDuokm015t3y65W2GoMSWtcYjFiWrNPN8B7RX0TSE3HSfXyr0B+91BcCpgElYPhpyly9/MgnrPj19AT29LW8ECQAXlvIShxngiTf8FQtPymHsqFSQUnfIpPMTIQ3U47pvN2XxCEnWD+kkhXmbOmklCs9vS8rBR365h0ZRVqrFurXlDLWD4eykvRxBYTu8XhIkWU9seXHmTzktpJV2ag8TMJu5nLyXnTmyvZDUirPZUTaNNPfAGSQVj2A9obs4guRyS04kP9HBG/ayECaejP3CLma95Xns2GxAHZfyHV5Km3be1P+F0T7PYXAeFj7+qlO2yE1fC7KdQrvksQDyBJ5+rGpP6EY/rm5HhPHmJ+X6mj3rPDr8CO+aOqmASYWM/SSPR7wr93i9ulameRjypyPFQ+7svr2wqZbyWFavd11T/0UygqbZ5CizZyuckbpa8XT1efEVVWfUTaOwbhbSfj/ip/TvvCV/tFB8Wo8KQ+FedjKPanLWV/TfBk/dek5byrc7NC4pQFJfHwKApVEE48UXD37LVw5cbhMffaN5fj0aEICxywCARS0Y4L743kuBru42bP2EJH+ezCQOT+Q3Ou+bIItjJFvvcD3TYlVd+RjjZmNZrdTyzw4enSx0xjLNWi3h10/7VXoQx+w0Zyfwauo8BauzmcFkdv7DlhH03h/pedGioGWfQgf5WXth3E4U6mkre/LuTDqesj6pEUGnh6Tlknnfj5B5TRYg2vZta+z9R8vOVFMZx8xXZtJxdaroMfteuFqCZOKGp+H5CennHjY/3721NnzLrS6Yr9OFIClYnh7rU6eKHgwHK1XxObwVNeTNi4UzB+DIhmelFS3jY1+Up8eg5Uq+wYKcmvZkeDezqbLbJMFZ+xF5Vb3jaywkp4N3ZCmnQZv2xc0lzXV8fpmcCZOjibP2+TvknPoff9PmVCJnW1x3aGlK7RubLjt18c34JimozyQm22QIQJIYuGaMA0c2AonAei6RlaQE9OKUGk/PVARJTryUIlnPJbK1dka+Q9Zlcyahzt6WNcxnU/H0TJX5z2X1/InBXIdsh/S7Gh/96ZvxzKz0RdTm/PPJwS8qTwxMdP5swXZpTHsbkqW7tHgZoycH1f5Ah8WNxTc/6H1hUurp+0mhgxCWCgQArC9d3ljuP3b0oF1xa/X6hjY4MpLsjGHiROhkr+D2O6t1u+6hZHLQavjDceDiofe+1n4Or3S8AoqamjXGj2yQZ+wP3UKonb7JkQK11qdautr+Fmn3XadcXs6HTAoAKvnyq/sB9HzpYKgaAVG/6wyn7S9/4mWn0Aan+3yvn3b+8bBbCIeRfS/WFf3z75G6KXvF+dRn1kgAZ//bvt9ece79aeGHCraffnB/h45ttTEKrQ0AbQ+PIMn/Aej+IpAgyz3TAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, it is known that circle O is the circumscribed circle of triangle ABC, and AB is the diameter of circle O, if OC = 5.0, AC = 6.0, then the length of BC is ()
|
8.0
|
260
|
[
"10",
"9",
"8",
"无法确定"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAIAAAABzCAAAAAB1U1WgAAAJ5klEQVR4nMVbfWwUxxX/jW3VqFx6VIFyKFdZUKc+5FQhNSqOQorBpCzFH0dFY6oShVYpjuJWBUETS0WCSlFjlKIkKk4sOVKgcpoLIJmEA58TVxwRqKZQGRSIKRDZ1K1kl0QyHFFt797++sfufd/5ZpaN+rPQ3s68efPmfczH2wF0D03AkNkEHFFpBBcFYNNhsrNVrU0JXMRzA+iPdam1KXNTgKpro712/xSSbQTdlKD5zinVJq6aQP/Hc8pt3BRAf+T3AwBAKKjVTQE2D373GgAIyDoA3HTC0cVDHs/XLi6DggfCRQ00LwbQ/P4jrcCEQv8uRwEA4OrjFyrkqV2NAgDEhNat0L/rAoi7G3YElRq4bYLGB9TmYrc1sAOdag1cXQuA16IflSo2cXM5Zq9/bNZ6M7fIRR+guND44UOqrVz0AXFzY49y/24KcFvbXa+yDFlwxQQUAOLa8pcctHXPB37231AxknyLlGsm2Hv1UMG614VYrW8HBHJN5JYAobePlxeoGhWXaL71lUUAkGen4CTcc8M56v80h8immqnaRpI7C5wWHM2EWcOguLr56JJCRN1f7AeAJZUFmDnRQDb+UxkqWDdT1ZFSWJ6Z0A0fmG56pqVg5b+vfSvle19SFGz+zgtI9JEnqkX+nt0T4Dd330j0k6enB759AwBGjxaacO7ZAbqqY7PWd+KIyUhdoWonAkSG0l7CFakVOMvHzJtdXST7AWwryExeAJPJwL6UKh1adD4vLad62yq9np6ibB1o4PknYsluxirC+UiG9tejds9grHzySxCg888po8ceOsBszd/q2erzPxOaJHl0VXF2qjMh/xn74QKP/RLfuLbN9nx7oTsbjnz8hPZCwKoPN8pwVEQbR7YlRt0apPXTJMnRrk2ewPaIkVSIMf9GcX6qAnRCJF26o3bK/mVOhdsq57V0Z2xJzTMBCYaKJhiNEf0XAYA4/MY5awW+Eun7S+26t79n2yGx7RDhoAxLpfGP1JHs7CBJDvqGmeFyKV8c6+4mycAZCZbSApg0uRMYYhPQSvKGP8oz7TWl2qvDzOg9uqt6rqeH5A2fIcHX6Z7ws0cbxyJ+TVubcRD6V98HkYr1DTXzJ7zA/stvSTByeDSb3vRT3/lhf0ZZ9ETfTW3dK37g3ce9AI7/SipXImuCTLRs5XC6hse6N3mqd0Xtty2vkpwsj+XbgGTDmQDtqwwyMGi/RXdV37cpLQQN7yjJHk2KlYIAqeEcDEySbNtDkuH0oVsYWEaTbOlyW4CkBAP+UZKM1JJk18qxbJrtu0kantkPyk4EsHF5vrUCx7zjJId9OYauOE9yYJkcN/Ut2YTWvRwA4Hk0CiCAT7IILsaXAwg3y7FTFuDuhl1B+2fDMQBoDmdRnNwAAL0NkgxlFW8r2mhoSxZZgRjSMqLNZE2E5Mc+Sb6qPtDWkBb9SwdJjnszN6VjHoNkh+yHEwUTEMBrg++kzb1rTgJYGDibQXZCKwVwTGYvomQC0iR7/ePpJVYgtrdnkK3vITnumaIclEwwOP9yxrsViNHq9EkqNmeSZHeQeU+C9ybAqH8gi6kWIml40tUSqqNJBrutt+IyKPjAbe3F+qyjV0MvgNKV0bSicBAC06dsF5BI3EuPf2pVe854hn1x0jzQkiwwDe8oTYZrpdnKa+DZRS/ljCcw7zwg6k+nSqL+CggcD0qzlRGAAPC7kYN5qur7AARwBQAJQIQ3AsB7stMgAJJxXdeLecuhylv5iq1AbN2XLKgYJPm3SmkL2FGgFyOL+nPPGCbJO95xkqF1iaIhH0n+drvbAgz7zjF/TGkhps/GL7aS5LIBdQF03WBcN0ldj5PUdZ2px3jFEV03Eu+6RW2VWBFQG7HZ1USYWA0UBaBOMk4aiRfDSD6majt00jCTxTqpW9X8xGeQbLcjdMwzRbKrpVBveZCMgpI4KEAaBkgBlBL2A5sffl4ApSLxjjIA9pq0dN4FANpxK0JPaOUAjm2Uj4FUGJYQpgBEWVmZSOS6rMeO6cRnoHyHmPo+AitvTgAAjgUB3D2lKQgA0jBokJYHUDdJk3qcpkHrcaA6ll3M1D87ELUQScbKPyN59Pum3DqUMIGgUQqgBAJAadwwBMpMwywFykzDjLzcP4cZxUbaH/DY8ATsRQEnau8HEP6R0tfrlCzxLNlMkjzvGyogemKQWojksI8mueVlkobvuvTwmb4cZ/dPkhzz501CpUtw4EmSpu8yaXg/JSmVlkgh4YRxI5967mq7NxTUna3m+o/igGgKA1H/EgByaYkkEgKUluVZluIb17cW5RCYdwHAmigQbiSAYwoLETD7fmBrUEaJbXtIjntjZsUgyetSaYlcE+TDvqtFP0MBQGM/gIVLz16aXgHgPU3t2+0sCYrDb/610GegDDw2PLEQqDv91WYACP9Sqf9ZTHDGNyypRS1EMlpdEyY56YnJT0LkLLviG9+MFqrKxoEWkobHM0XyHU1hFpxNgFsPhqQ5WWfEdT8mySfl0hKzCGD1OlW7R4FJYJBk10HKpyVSyHFCQQHg6cBeBT9a27cC0OYCiFb6i1JnIjcMBcD2z99UYdLQD6DifsinJdKQTy1dgdk/A2XDOiOSdnZGCfkE+NBKQilAsz9cXpZNS6SQYQICIK481atyEwlIbAccWSBXA2P+XuVhJLKmKyJFCHORLYAZW/aqMpNE1nTCK5uWSCErCmj+pO7XahoEYJ8R8f5qqcUjA1kCiDa8osbA+jLd2A8AJ1T24wmklE+Sf6i548AAdiBOeceLUxY2gQBw7I8n7nMwCDtrOrB0oXrLlAAEzv0i8g37pyoaeqmSlkhDmjZu+AYkU1u5GPYZ9F0uTpeDtMXodkNHvVRaKXcQAoF5F0o91Q7apgSYbm552gEDwIqE+pNCcTtsI6mLLSqH6lxEalXSEikkP9vtPR0ph9qV4Ax8sXjmc9W7jEDKBIfeHSwHnLkAAGBujddJ/4nLbG1/+vnXnXZtK+3vc6qV78bttTRAgQXPzgUoHH1Hta/PPFgOJzOIIO7B8Ck4YkGR0JkLEjhFCYD+khJR/BQsAwcWLAF2PXWHM6dbnbROoblECHFUWZEEuHMNTZP9C9Q2wjkIHmEEl4rT2UguOSX9+/dDiHsbPgD9uoYqmJKjBj4oEavxuhAX0WRdSem8Rw1EttFsKnxhK0+DOpL7SVRZVy2VGufC7AQwpNJipjrGziOk3SyCIac7AZOkyaYhdiq4AMmdh0c6SKLqMMnpqntTAEfWkDNV+4oTptDZ2kaS2FlncmSW63aS3Dpojqj9N7tRS+lgUNV6+RAc4kyVmh/b15GQvP/r9EnryiJQJ01Pkmy6SJIsS+4AnD4B/CB9FpGgB4D+uw/b08L/B00Jjf0Pz08bzTLC8i8AAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, angle XOY = 45.0, the two vertices A and B of a right triangle ABC move on OX and OY respectively, where AB = 10.0, then the maximum value of the distance from point O to vertex A is ()
|
10\sqrt{2}
|
261
|
[
"8",
"10",
"8\\sqrt{2}",
"10\\sqrt{2}"
] |
D
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAJgAAABZCAAAAADnHbLsAAAG70lEQVR4nM2bT2gc5xnGn292hQNRs4cGrINSxdEmCFSoDwKLYlBBlqVW2VQhatcEmeig2CaGxgGvm0CpegjUrSmVQSFeOwcnDWRtFCySONn1KqmKXWISgy9ObeqVcXAOCcrBwYEqnZ3v6WFm9s/Mzs6fb7bKA2Lnzzfv/PZ933l2Zr+VIDqhlW39ihG0WDhcGlOO0BmwIxnVhEF0opT5/jHlsJ3I2JrYllEO0gmw/D4MKAfpANjJYyItlKMkYyBp1hqIlVvKYWIHW3vhHUCdC2C8ygEVZoCcaqCO2EUcir35S5/EEyfujF349QMX++IIFDNYKZv55uan3QBVDSNesNKewsf47koxoR4q1h4rZQvjwB+7DwCb/1nZQFDKnhkHgMLVv0DZ+pUNVtS6qZQ9uxsAsOX8jv4pUA1O3fnrXGd2W4tbz/+sd0gxZ7H1mF1HAMBg4ckvFOPFBVbKnh1vaLjR3018C0DhIogJzKxjA8X+Xb8yAETvs3jArDoKUYdbuO+gUshYwEwuE6mWor9dOa4SM/JV2fCZY+ereUD3+aH0ZNToChmrf5aZfe/W1uKzVxC5/aOXsoV/OTR4avpO5PZXNtgm/3Jo8vbPP/5BxDsN1eZ3+JdDB8eeNiLmTBHM5V8O/RWHIzaZGliDf3nordXj0ZpMqccs/2p5Zmvr/e/uTP/i/9Jj7vuv1qe1tore5bl/uQ/tAJi/fzm0/bUJ604jVOLC95i/fzk0eXjqHqx8BU9a5OZv518OPT/8NKw3FDxpUcHa+5dDx/FC6I+miGB+/tWsRKGcD2uz0eyi7fXYQvd/8NOHgxbeUqSMNd5/BdND52Y/C3eOwGBB/ctDQ69OfhVmfPBStnh+DKWpzyf/uSXE+OClDO1fDj0/tCfM8NA9FsK/HHrl21yItgwLFsq/mpU49/5rwUeHtItw/tUkiu73dz4yGnR4uIz53395SwB9S3tuBB2uAZC6rgdKQnj/cmjHyYmvAw5NAtCEkfDMge/zYyg9+e/M3+8LNNK3lKHvv+haaNRvf7w3EFcNTNerkDpBXZcAdb0K60XAXPpg75kxXa8CepW6blDXjdbvxLXQpBN3XwoFlhRJaJqA0dUlCSPZJQzYLwCM5EfPvDFuridpdCWl0ZVs32wt9hJAYmn59SBgtl0IzUhQA6kDIAQ0w34BQHEhe3Y3AWgGIBLmX+vHEBuoxT4BAKni8MMj/mCafYhGSgFoXV1dLUJe2BvZv2zVDu5bDmIaGmCY1dKqGiAkAQpKQMB6AVB65o1xUID+16SVxRUhxJGmHfWraMdixt80koAwmACgSQEgWYVIIlk1RBL2i/7hnsKoLhLWehVG0v5zBzS5jhwjIPBn9x4AeOrG4//wvdOoT8QZTdNysr5YTBU95u6ke2n+DyRzGZIse885zmb9pgXrxxqyeU9ttZgq+UWpa316niyj4gNWHZl3nMULrPpfw2OEd77cVKcmEtNVyYw5jZpvM0t7d+B0+1i+M7xt6tj8br88MZKYfvMeJYkySdp87gNJstK76pmtIGBmHduGIMk7izu3ZAvfmeMqqFDWCuqlS71td/uAmfmSbcHk7cXh7pmljYagZZL0mxcvpNcjgwXor88XtqdmlqokKe3U5jJkxX++fn5kw/sdtwWz8uU94ObRwdTssr1WGygzQPs6mpqZ8d7nAgvkXyTJ6y8PPjgX+IptpY2R33vuc2fM6V+uhEmSvDY/0LNfiYqSXE8XWp6iJVidyz6v67hrL6Z7968qUdVM46LHOTzBPOt49VC697nLilQ1mFXLNAKDefjX5UM/6jv0aRxUtk4P3G253QOs0b9qdJcP9vYfvlob4+u6wTQ/ogcHa1HH1f096RevxYZjSZLMzgYGc/qXLM71DMxfJ+PmIklu7Hy5RVgHmKxz1Vbfm3tw8Oj1+IFqWk8vuTfCnYSmOp6bTf3kTwFMXEk3empXuSQpKd2llA1c1aWZ7u0LtztQvaYTUnK157ZzuwvM5toozHQPL97pKFRdrw/cdZSuEUzSruO9QnbLyOIde2xnc0aS8qXRavMWR8aKqSLvvflUYteJLzsO06zpOXspD2SYawYrpt4+PZWYONXuDq5D2hg+SpK8iRxZEXlYd08okyymhjF1ehOoSHK97xxp3/fmyoIAnvjNrpWxSn/pl8M/fCzMV97x6sbypSGcPCAB4OSoIABB3Oq/+dDCfzYNCgAgth6AyO8DAAqQLOdqj1qdv/7aq2I9+ZFJALeOHUPF/M8A9R9vxyUNwHsV5h9d22wSAEC/+TPttRWArGRIIr+ZFawrjzJlOUNqwIePA2vYttnJMr8+21ceE9qFdwBBPLHwCIT6D1djlrYi3k0Lkfm+ceF/wMm0IFMborQAAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, in triangle ABC, angle BAC = 70.0, angle ABC = 45.0, point O is the center of the circumscribed circle of triangle ABC, then angle AOB is equal to ()
|
130.0
|
262
|
[
"65^\\circ",
"90^\\circ",
"130^\\circ",
"140^\\circ"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHwAAAB8CAAAAACOdYtiAAAKmUlEQVR4nMWbf2wb5R3GnzdJiRAuroSjGmGW0qayWbrhqEyka1CMSDZXzSAbTA1bWcsoLRubmqpldKIinVZGJRKtnVpoBRN0FM2onZyiFkxbNY5IplSBJWhUSdcU3CVsCekkh3giTe179ofP57vzOfHZ5/FEsd/39b33ue/749733vu+gihUD74NoOITm/mcJQWzceKBAfInS2MwbYcF8OuzXqB91XaIrwDe9TUAWP4P8zktgJ9uBICleeQsHH495AeAT9xfBfyz1TYAkY6GrwL+zjIA2Op7uIitPduZr//hO0BEfNEFVWuncvjcF8TCFAIAgWN5ZRaF3+FUhpjs6QXVOQ1CZlRmlpc2bniiJ9oPXL0AwGsHv72o1rXM1MnyK/aprjPdF1zLahx1wKd/7N+5e3AKDF/9+OJ4dWNDvQ251oD5ZvLx9pXw7emVI02VO8t/kf6xZ1cdancN5XYmU3CJ/Ge7x9V6NiEnjK53HjhlX9+mOWom9JSz+sC41XAGG+2bwkpsstWxZzpkD7W16Y+TQhtv8r9rKTzgveutuBKbbnPsmGSPPcRMOMmZo57aoOpyCoJLAeVkEinF9zk2jZI99uM0hpMMeL0KviD43+pWhlTRo67mIcrsrHAy6G2Yq+3lBp/e4TgkByWSJ6vr+ySS/fbjJNnWprVLHWt37JopDB50bplMx3rqvMlCGLAfJUk+1zZH3vH1rrMFwOOtVX2UJNmej5sqA5TZr5OUMotdV789rl15wyMrH4oqkdH1zgPXU+wjcmL2Ok9q0l9n3OuN4ZLywaDzgJI83urYMy2Hh52vpJLng5N7nYZFP6flErmvsj8Vju5y7FCqfsi5Tzlsfjh7XK8YpBrBTw8owVbPqByaaa94fExJV7NzgXOk0uAgA/is+6MUcN3KVHW/cluz3GMlUoq49qsyzANPVt949aa4/hcD+K8a5Xqd8TfIoU5PfR8ppdpxZIkGl4vlZLS2WU/PnMm85P2XHNqAkzYA6F61e3/4nvQQfaV+427zcwB7+OrPdUkZ8Mj0qorkA+fTV46Vgxxcs6F1oBGAkOenY/Ub24Dk1Cn3qQhRfrL3eX2iTk/x0ydIkvs8UZKRdc4D2tIa9+zUZcmt2EmOVx7RxPXwgwA2k2SwcpQcfyrdsRV2q/6cOcM54lKPTvo6j0yToaUALj/R6Zp6bsWNQ89qH/onfP7f51zUGVoW2DimimrhkceeAS4DuPbQ83d2VP178EWHNvfU/TI7z+n+6tZHEqqouhi2AwN8ANjMLetedTVnDsXRuzYaFGbuxU7S/+t0OA1Xj0XHXe5kx04lJz+jXiO2OfikaoRNF7tqoj3V6vpZ+J5kkkj/GPN5X8uvtAGlohxHH7+WSjJ4XCJ2N/W1ZKbH1rgLYCvG1a96YQ64+CDQuHIxVI2KABDzO99Mx8xLybbv4HB2OH752/5G9bVCAIituTVQCk2yOSnZFu/clglPXdoRbOps0me99kOHzC5craOdenhq3Ejs2TsxVqs6lgBmm4VlbJTu+Y0eLmTbA7fVB/060LUHESy3hkwAzTilg6dsb38aYc3KkkDiYXRaxE5W/Y4XM+ACADqxNnFqLdVNWmqJWsYGAKJlLKyHAwA6duEDl0uomnRi3cS75fl2MCMJlD7TYQS/MtwMbVtPtIy/Y2Oqp1h0DY+8f9UA/tpDpehWVzk3jYVs2i5vgWz+Nw3gbz2Kib/7VAk/HQzdZA1Qo0cDzICf/3I1wnXlAOVlxMcGw/YisOEfuZgBDzwKBJsgzxYFnpTZVi4VAgBK17+pucMBQGgt0H2/krat+0zSbouqWiX/Gd0dDhOj38L5m9wpO7eFuhyW2wyQAFYPTuuKPVxXinBDqpM/HQo7Le5iAAEhANhq/qqDd90HdH5Pjuw+1rVYuVbLyl05kS+shbPbh9hAvcx+vdup5LC+zjPgs5fuxql7bSl2pfVElWoHNJMJjtxRiq4GgECHzC5Ce5NlXzimWvIWuOQBTpwFBPa3d1XKiUWT57Km2C9WYRjVAPbv7fIUjwoAIKqGNfARD040AThYfDYEPCMaeGQJuxuAI892uVO1Xbw6R1VEA48t+u+5NTiyNewRmkeVYoiwxTTwqK235uYjW8PevE+YuwRs0RIkH1QBADF7sOkvebEpn9DMOsmiaZASJSm5wmWLel6w95h45CRJnrnF2ZN6xDVcVs+iiAvqPBiym2fTA9SazkQyai8D8ODbFZMVh74vWPHWF491nUMCXAAkCJQlvwCUAXE5XoZEKZgoA5OLDP9RFaWJ9ilPo040H+IbT34EUb5825J4okRgQSIulQBlyS8AZYk4S+R4HKWJuCiLx+XhZo2jql0+oZm+IaYXlgGMf9II92QJcEP9jwhAgAKg8gX1pyq5wHF2alEJIM7V2rB18zfABdN5jp48LYTYYjJTzAZK0suowAAlibV9qiUYKXNNRpecbtrbK6Y5695sprlJDPlLIHBu8POXagYFYItCkAQESaF8yQmpOFV/Se348HMbFuwPxkzYLRCzlQBXJu/CJvdpCFRGCCEEIH+mIumQEMmP1D8A4L2OvNYFLy8pAd7xA59dXEpg+XBeTeilLV4guXiYu4ihqhLgve/iut/1XQG4L+XDvn4x+Wz33g/MuEcJjHgQghCAjyR5YXk+d6pPMUiSIQyYy+cYTa1ASiQ5g4w3ETlo1n2M5Kx7s6k7O6PlygqkAIBy9wemC51Y0HQQiNxQfxjCzKDaV6N7aPCFTcMF0H6zKLnjo8NyLFeFfTr4fV2m4QBwghK/meOxStmEfTqHjYllU/mstpm8yRMCiDkmF2ofkRff3p8H2+xETwgAvd6Fukdk+E+hqDPWtEKN0L9d6qukublQvoo7hjJe8NxzY29h0+VcSy1U5c5cjVr3pwJwzL3pvdEiMt2Trtw9btnq8hyKuUYcmZZXejr/D2z8+V4HkPk6M+gteouTGF/WRWobHIHkWripe7R5CQRcPugtl0jyaH2RzSbpPUmt5ZT7WMtn3cU1G+jEWmRYntTrtSxutcerg9RZrmgDXi2m6cC+25thbLlE9jujStg6KScbd6TeEBv6QG778uXkncq6hUeVHnHvTgWNrjDq6rfSZq3l4UrFTczYQ+h41bRhugVSv8I2KHYK4MlooAgFDgBran6nQhlqxnvI+IdCtbdONTvP5pg14hgoBrvHOaqKZfUKC1aOZvspf+lcVbK7pCWddCzVfE46Ku2otbLJS2S0eo82LaujNQVappLvby261Vxr+PphbcpcXt7XmuPBPDYFGYgCmPI7j+tmaHM515efuMU3ZQlcABOrV+jZ87mYt7otavO5uiFqpDhgFqa+nB0wSabHgaDTgntdRx6upyTJyMp1BXa5aFMWp9v5d3NUnr/Ve1616Da/dEf2rvC+vzjLkTlI62htTnM5Wue0j6X50sI7D89/mJHlHSuWjNyf/cjcNKB1rs9RinO98Www9z0NAU9t0NyMUr2toDC4RAa83kDOC3W6DRWFwUmSwQb1VpLskkIbVFtJspaX+U00blfr2Tntz30TTR57ly68Fv7Q1+BbbTjU9obCPbUNP87tVWzhG6durgGQ38Yps/D0SXnRaMuYqYnH/wATguXdfaogGgAAAABJRU5ErkJggg=="
}
] |
<image>As shown in the figure, circle O is the circumscribed circle of triangle ABD, if angle A = 135.0, then the degree of angle BDO is ()
|
45.0
|
263
|
[
"30^\\circ",
"67.5^\\circ",
"45^\\circ",
"135^\\circ"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAG8AAABxCAAAAAD+cqJXAAAKpklEQVR4nL1afWhb1xU/r2lStniosCei0Nc52ApWUdNoMSXe6iFldZlhnuetLh7U3RxIrYIZE8RjKpgpDP/hP1JqmJ25mC3uSDezutPGUuowjaksoQYNlDFnTqg8a1G2qFFZlShblVjv/vbHe096H/c9fbjs4I93z/34nXvvuffce+4htEzzRKH732uy0gPUImWFvwBn9+xvtl6LnbvfNQ4AJ1f+T/1b/PcrREQdnU3WE9AS3Pah4z8gCM1XbLF//7zWSdQCXKt4LVPTeMr4P9KVIQJlV5oGbFCvmCk9T28CqyFjprkQhxrA47eySkTj9Subqb5+NqaFjepq/fnTGgKItOnjlVJy6onf4vqrktqvhpdik3i3L1+9mYSweYOIpE7a/ZR0sLutmQaawLvxh0Ty5pekzifb6EA7Ef3jjbbO1Gbu0iPH+vr2EVFDvayLp7ax8bPf3A0eC/p0Obcfd6d2EYQryWRSHD7e0ZjUjShxYaFbmtwwc0+Eexe17/WIp3ex2EBTDeDlI22j53VpdT0mpVLKU6qxV0Zc0UI1127p18XLhV2TeSOLAUDZGwdGpwxFJ1wRU9Fm8UpRMVYwAqk0OQIg93CuxmdAPirG7jnuas54cc94wcRSW0t5CgDD1KhJkvxo+2qreLm+wBrAeJNR8Z8DAJT2p8ziJH0DZhkbw0t5pm3zYgPqx2KPVZap9vUW9GVJtA6M1sqGmNMaDyxbq66ItscoO7zKhHfdVhT0zFXlTxwoW/NTUrQ5vGJ/r8PqfbVXlxia4Qxevnv4DncR8vHWvWHZfs1mRf1ekxHNa44BKI/6M7z6XLxV15xWj0dPzxiSkTC31Iwr2SDeFZfjElrqrhjSRfGvljIMQFzMNIRX8M45weXFtIkz288vOe0vWXhWvErfhONBa9iiehWvbjz0VUeHGsCL9FUsPB3FfVb9j/v5VcpHY3XxlrwOuxFQ9FwEYNal4AK/dE6KO+OxNdFiV/XZGJuwogFpT5Hx+EiJ60aeEY/lJEfVROJRqwoAwJjdfrLSfssBD33GpWUUBihXjY2pJzddWZtaU8MOeMvdjrqCyKhdzqkRm4yyzzBiBrySZLJmJlrzcHWJASh7/mRTKWFQaAPeZBgM/IkHgLKfY3s0Wuq2kQQjejOqx8uIzie6mHX56ihwziYjr9/Q9XhjMUe49aqR5VJS4hhCAGCRCBcv73bsXqXHZlFrNGRz/GD6hnV4Ebs1pNBsCHC8wmbcdofPcIyDV3A5nlWzrvcdxQEwecJGnMxnq7tEDW/2uGNjwdP14FD0pG0Ah5aseIE/Oo3WYp2dAAAw18fns3jQgpduB7TVZ6W86HBaq1LFd94mQ9S2u+r9/fUxIhK4PiMQvRT2173YEe06PSlz83aNnjXf/6QNB9Vb4RhZ8Ib/GZujyJpP/dDwNjw2LQBAwbPG5VtLpz38NVxpU5VfG893g0Rk54L7/reOcgdQMKWJAgPT/AHtTWqlFCFHHDaP1faSsSsOvqW8yD3mYkY9pGrjuc/uGMFQMt/oTrpLmn/XStPDajUjaROo4mVFpRBPtsiYCS4EAKsS/2TxsZTkqsFDRQBMw0sE+dLCamTfEdIAcMF9x1qWATh3mNtMQDHlir7g6kHuNBPRvbE50cD4yYsBIqKMWbegqtvzu1/nteO9RgTVXwch4+MUARHRtO9ZA3P72jNERHThG3uNpQWt0qvRe5zGfO8rRZRh6LdsREz5TZtvW1uUBsBWyW5vBnsuxuGeU/SIlEqBNL9upXvJxLnf9SvG7NUTADI8y5YMggF4QCACY9uf4Y050Wzbd0yc3QNnBCG7J/gavwIRUeeLUStz711lxAEAssS3tRlX1npcGySi6nBwx7SoXNkMeRtdALT1J7vv8uqx4CxXDCDhC1yyyQKAhZCFlZP0eCTLDExmgCwzALIsA1gI3ZPV4pUaW5aZfMRNIdneoFT8cXNm0aXgMQUPMjRXkqz8MOSkK2BKPRlgTP0LWU753W5KyrClVW/FBKjhKfK4S4yBMTBZlmXGGAAZQz8CIINBRVXZSIX8vz1y5IfSoMPpv3/WNLXG8XTnDQ3LAOTlJ/6rtG9k58c6zgAysH1GGrK9LK6bD7MbPg2PMbCOjDJ7UCZFZmC3PGsyq46nxr4Tc03d1qDLM+7nbxharfXppYghA6kjVTxZRiCt9UTRFFlmo5Gq8jCwisL+ecdITpZlaL/FmGsiz9WbvNvY92RQwwOA/rd1XlMAwPl265El4e81TBkDUJh0Rbm3tJkBQ/KNYT1exDy9JcniHdoY+BzX7ZcPizGOLSwfSOibjMX0eHPjtdXEAGDCZGRRmHCdrtTyDYWzI+LpsoW7HKjoyg6f0+P9Pmgoioumc9a90+LELQuYlmZYH/K8VtE3AAA9i7qCqr01nCeqVPbFDekV6aubcKa1vvZlRZurgGv654KHPgKr4jF4DNoUfU6feq+3O2ESnUfJHr9RSozUngtM5yX1PFh1vudrqdywx2wD7eh8oCehT2dd1Rux+Ty4oPNn6I3sR1ExxrUdfFr2Bt/TJaNV/0n/shFPPc8rstSuVXPimGYZjcvTlhakgbRagaHoSSmVKm03jXiQqhO4oVyeGHDe3+fskOFReVYcyWiyLaie7jWfIkANLxLTvnpVI7ve57W5zjkSQ2naFb6uJCr+FWPrxvsmAMwpLxj5sDhvvtI28N6tlCtGxYiyySW8ZQCymGUmPBxWNrCc+DcA5WnXZCPPebaUj7imigAw8AoAzn0as8oONnAKwJI0bOfva5iun3DNlIANscD3Fyj+kHP+Ci52d18EGh8+O9oY9sxWMBHW+UOYcr5mgOLvKXhSmSFpeedYAMCQ7pcWC+K64u9hQK1/q2nkxCJGvjvpmi4b6uyMLoYe+/YxVxEYFIjoTS2eYfvQLz9Px9sPf/NTj4c+XT0TtxJQY6HNRH7gd0T09ReGL/SnH1SYU+0HiaaOCh39bl3RncBVZe3cN/c1Itre7KcuUs/z8794ogRg8tmdDyGzfCr+1tVxYHBcmb+tma0QAJQ8zW9fdSnh/RgA5okorerLBLbGAbC6/vIWSPOXD6YxT2kQgHkSNPeG03tAazQ1DAZgKwTc75rBg0TZEhMuXFYm9+wXAl/ZgZJY6a2lNAlEeLtfDerC1pcBzM+ok+v8ntM0pdyqX3Ewjftd7hLoJNFlDBKNq+pU572qOVLeqxhWiUigEEzvD8q25vwe1wyVe2JmljX+Re73/fgTmrwX7saJiCDodiqrVLr31J0t/cbeU4F11zs7gWHqz68bfC+uvofvjBp/DwfWvROW20BzVD7u5/SOE28KIiL/n//+9G0iatFEgD58qrTGD0W1kc85XqMeqfEaDcdPAMCSZ7WV4WQAVvav6JN18LQiTvE2TlSZarcfmvrxRGiyl0o8UfPxPQAQ94Sb3E1v1omXco7HHMo8/NipDxtXzA9ePtR5zdmg1ROYE+/GI4ZPJN4NAD6ItI06Rx0AAOIjrpfrD74tHtP9Lyx0S1FHO6zFK9bVLId4zKoNgUB09adqPCYEggCBSPkHgZR4zLHGItubizd991+9j3qf3KvGm2bpP6nM9UtSNd7UJOPO8CCQGk9LtHlDAEmdtOeL0sEjNq52Pv0P3KM6tFC/oOEAAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, triangle ABC is inscribed in circle O, if angle AOB = 110.0, then the degree of angle ACB is ()
|
55.0
|
264
|
[
"70^\\circ",
"60^\\circ",
"55^\\circ",
"50^\\circ"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAALcAAABrCAAAAAAQ+UwXAAAOz0lEQVR4nNVcf3AV13X+9kLsxBF+k/IUhHm2UksguaJYVppaxmmFMQk4JqpolFEzJg40gNxS25jBNXZtWloXNAnJ0IkYhElr2tCgVBSPxyDL418KwbGgA6IptuxKAjnCsVA7rtBjjKS393z9Y3+99/R+7ErrTPv98d7u3XvP/e7Ze889e+/ZBYNA50vXKYmazcDvjT8ogSrxBYUgUBCABMRNogBQXobkzAPGL8gD1841AAaqxw8TvyAAgQIMw24AAMBQAL12JPOb+Mr6fcTNm0sBGKGw9RBA3+L+MbmgAIZ35vHT+OGH3wMEJSXTpzkJRsAbKAqAqIv9Z//7Z8C7QwBiJUDNZxeWz7GvWiASi+5/ggYBA2DY+g7C2668+3jn66gsn7MUKImJwuB5mMd/1Xv6k0uWLKlwM4u6cHPbHwYbPkEQcBy/sDpS3tg6ZFmOVPMy+KP1pdE/fsU970cbE9O3HJkRhLd5auOcqv1DXsJkszjYUhHbdM46Hi/bYZJyvo0ioVvCnLy1ZYTtw6PVsSf78kt8+9F5Na+SQmlGm2b7ElIzdOJ59e1UeKii/Fl/IrW5/6bbjmhqtgPYINSSfcaaKvLytirsrKg+knSaF62VVSdpa1lTwmbts39/0BCzWPuhra08B4u+Pex2Dh26vrMaKm8mx98tLO1bZRkfH3ZNWXnu6/3Mb/09QBCiVZD5zR/ytmy0/vMDgdWhSeq+isUvJCeEibx66L+j4I3iYKoQQAFEr/nzr91xynJZwp4vs+rbVlBHtNm2hwEgpJbOL5ZV7Gy67jfq+8IflXnH5c7Zx30KElInGemTy4sPNi0nO2Z/9fqNl1Ld8jA6zWTeSULj9VUXfUtKJnNuVVGLebx4mGRfxTceiTwZp6YO06pk17fmBxVrx4JLFPY1RHeP8VLxcZLCeH3Vf6yO7janzjETcvSTkfJtU5E4uD7y9CjJ5TudlC1V8XMrYq3WidahKD077/jntzBwV5ShjZEnR0jKzuVe6rqaMXZWVVquojUIpks+M28hx5bd7537qUWTHP7zyMPD1CSPzxn2fBuzvs4kD5cuO0UzpD6eVd8Ndck90ldlI9uijYNWNxi+oZ1eeRlb1kjSbP5sw8DHzLulNB6whqtN0dXuxLp8q3MkdjtaSXL06cjG4eAkMyAL7+5INxmkFyZ2F9X3OCeyc/FE2vXjkX6SwuFNkW1xp/9o15YH9s8z8RbGS1q83pkDbrv2x1Z0e8lvzhmclLWpcswSONBQ9IN0o6j9VJaCzPpe16Dpi7iF1tKaLie3kPGS9gyZVm5x3PDuZTcdTr6ip2AbM/Lumu12Qh/cj1Tc/nJKl2p4LFO2oeg5TdsZeLmq6pXkIsHHaibeZtUB/4Jeqq48ktq4vYvHM+ZsqUk6aS1e0R027x/U+JZ1omZ+q3NssZfuG9I6tyNIVx+0jjVJms2FDYNesaDIwHsk2mNLy/dkeGp57Nn0BsZLjqVmcmnrc0VjySzj2yKbhjlF4hl4P7XGqUsz14DpqStqNklJrblhY/YSdd9POdVDG6N/E3eqCobJvEei/XnKaJIcWF3YlMFb3Hvr1ewK7C5KL9FXX9ScItmv8ifz3rY2W17xXP7Bxsi2eCZms3uZ487X7XYZOrf01N3zk42iX717vO3K4tFca1JWpqGHo1szTtfxkkM5a+suMpk6ZoTsqKzu9MU1GS5vR9qBunxFRrZGHnYWCdM0+83GPGVrjmRS6MHYinPWnO/76SK9n+iaIznz6/jTkcbJs7iFQ7d+lKe6A3UkxVowFO9Rc2J3dHU2oZmRznsgmrXJmuTYrmjDQHoiSVLI3jm94hxnQTwyzNRObOcd+Yvoo0E8xRTeQm7blCOzuW9u3bmsV68ucqagHEZhze60BHcRYKgx8rT/x9l0fVd0McugFh64acWptEqTTxrzdW6S7KhOmjPTZPXVz23xIYJkCm9Ncihqpkl0a2ldUPNaUrqQ3sqCkDyUy3K7ROORTObTQVdNuTu8clvEZH0L2dqQtv/hHB5dtKiDmkJxOHuL2kKSvbO7c1bkYEVHtiua1PpoRfUbqWn5eZNszHyjOqvLXafPntN08iOK8Oqte/MQttvXtDVPrmdjK90xJFmJp/Eu7yEnGdE3a4pbyXZgA0nWGktJshaFo0kZGxvyTdH2BHHydjJ1SS4dY7ui6wbJ3Est3rxDkiNRUqe6Sh90r4y1kBx/yBwvaxO9eSf3NJJ72mT8QU/MoZJc3daCzaLAzOxnau0Zxa2Rx0dcUrl5kyRP1KRfP/KpQmuJ7Jej5KY29hfGZbwizj1tHH/IFT14Q7cP2hbxyuyW1MlJDq2LNI3nGpmpvPevS706uDZas8ytt3kDdftSkrX/olmLwrg73S3O37ndgVF/OFced/eupy62n9kHZuq6/dvl1po4AAEvPbDwxr5XEz+01uLVqj8D1IVSAFAKz3O4AFAEgKdufMBHxIOCAQjKfwGRDJmFcDdZFFD+XOs/LjyWfX9FvHEoXHHUa+HwlsiWYWqeKTVpLXD0YYc0byBZ26bNpL7X7qNzezj4db855Wj5F0+kpHjaVxDMcJU1NM8JdLj81Pyr7363EEpuKz8IwDAoJXsGjJL/BAGqGWI49+XiusPX5dN1EmLDkj8TAMC4t+db31j1DiDWNhmTtW9vFHScodb65j5r2ok3RdbY/pnWr1Q5jXxxg+4vjEt/YTyp/RN3pj595cPJKtL/Q+VY0/WNQ3ZVyev+sLrAeNlpkiwaIsmx3dGGpIcHs8Bxd2pPU2/aweYdyZIfWx5sf7Kn3HdWEZIjWyJbR9wUl7cmTfLRZaMkeV1cky2xld1k0qPU7V0k9wA4TZJ1aPSKv1K+oDDgQuXgPL+s3RJrorvGvDgBizdJYfOPK0bts4PFXzrJVPvT2Gz5Do4kbQcKCLkAqAr4KP5hJIWUL/7nVs77UarjNBMAB0bvKZwFUYLnnnin5o5jx+x4GjtQ5p2eYQBUBFNDd2j8DzC0nUaQcJ6Jsb+EjwCg1ICeqqvf3Pmde5PG5UxAG99r7i8DlODaf6tXMOjYF5uPAVgb1jAAGIZYdRIG7mmfuQKGbcb9YfwTrsxcIABXTwbvvBOnPv37yguEsoL80EhSWDSU6aZvy7Q/lebv+kfPLVMpRVJE1xoAGoWkgjo/KuPtxQANFlyZND8JsH17SpiBBeWoxL+mLYx+ypKqHfF+YVA9v/kwxzu/A0Dh/PrHRfUDMGAUjE7KrVL+PNAKHXxRGca6QNV/NAuAAmeIvZHvE4QCLyzHNfdeAKA2lbx2Vn39wSf+1BQxi35F0xSApmnC/XOPrF/TpGlqTJgTwCPfinP8xAYo/8TfLwQA1BkzjBlt/psrBoD3PiwA+j4HACKkJEQSQpoP7U6QCWFCaJp0/uikWeeSSFASCS0Jbl5KamkvDLKH5YyW2ja2o9t3MS2k7NlJbi6Mk1QGSYCGMkH+9ltimpalUHT+ANAwMNNwz2fAijZ98fu77FBH8X+/exYBACb6v4QyiO/7pAyALz1uGGeGPw1gpj3ARAll5i3/rGYi01ibnKJo4JkNtwIwLgQKV+0tAwC8eucsPNJYFWBgAL8cdWNZZtLQUFCA0sDCt0ADNCAKBuw/i7iX7BKf6L1PQREvrSoIoO++WwAA/c88g9NV/uNpaAA9C7z5itSJhJDCBMnytxKJBCmJRILuX0LsI+s3kUgwkUjoRC/OkGQ7zvqftfWbXxCSmrWnZQ9OB9trqD1Dx0NIWffR1jqEr105IcfL2qg5VrbBp7chpFjrEJoDSzTHynbkLZOEC4ClKDL5OU0MKtz1OtyHpdwwgGvu3Qt14ZM1+2D46qYGYKBzCQiFY18G3n93vt9eAkA+R83b3FObv5nQJDlUZFJyrm6kqK8WlnMr/p8DInGKUNee5nhZ4ah/+2mtk7nZ3X5ip1Sc9BsApTkVJ6WjmiTbAQBLp+bhCGn5sQAABQiUfO3Q7yq/Zs163lM0RNGHg2cAQGsDAN7jvCIxhXBI20d1LbNAAXjvdy4Bhi/zJAo0AFEQw685uxLrna0A0BAF+or/9OpLbqV3aI3G4ornlfJDQ0RBKISy5jIfIPCvd1neie3XB6FNx1wwlbeNNf/kz7lTClDKJ2OrOgN49v5kBzNQEKeRcjDp/YYrv9n1cbz/YbkwZ78yOCMcaZP0XfAnfx2O5Aw1yfbHQqKd4X2SyyUnSwI5eP5x9p6Ba0MSNZnerI1/m7qiFRYE27eGRTvT+zuXS39WHpb4ZEjPstDUPVmvgshfPRCW9NSqvr0rNNoZ+8OGywcCufM+se8T94UoLZMH0BV11/ymH13pSBiK5t0gCYBM76fRWB9vBUI2Kl8t/26I0jLHD8ZLW0J9lULIpsopxJJnR5Z45O7ru8OshTwR8fGKWABk4C0kubc0yJ5NXgzHWvNnCoKs7182TBwOZU4mFTC2srQlDGEesvGWxMob/yGUkSlQ+o9MSwnhDfQM847l31575N83I8i6XxaIAh74r5/MyFzblDEzPcFd2Sl4rXrWdqhpKkkU1KNnfnpN2H5arveLL939hZZpzMw21Strz3cUTl1KFuRSw5yuK4svTnF13hV9/vaCN8Knne99wKboG5xqyDBJsj3anD/TFJCLtyalI9rMaUydTYUnplM8O3K+Py8K6P+DKXZyUfLR2vPPxxD0IxS+kF2kti6WdF1Z/F6Q/RtP8oXqgp/HAGP6xjQD8t4Rzd3RJ4P7RBLfEt0/nZGRG/lvoZKH3+otfS7TJQGc/TznzD348fyRt9eF/vkQD/6a576H7q7VulFc9stDqWOvtbKqK0cU3fThk7fWrRXlB0i6bz44F9IyCklzf3HVkUBR0cHhk7eI9Z2F3hx57Cb0bInVvPzxKdpGoO9xnGqcW7V/8ha+0x80ObivIrYxzOfIbAj63ZajP3lhzl13LZnjDQ8llu8l7x/vfP3yytV3fyxLXenww9vaAHRx9qedr6NywdylQEkMwMX+yd9tCf37Munwqe8UHoRhfyfnnUswOK/U/U7Orw9B+8n/Ffw6+uLHgf+vvP8XeDVyifUxgIYAAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, it is known that the angle between the diameter AB of circle O and the chord AC is 30.0, the tangent PC passing through point C and the extended line of AB intersect at point P, the radius of circle O is 2.0, then PC is ()
|
2\sqrt{3}
|
265
|
[
"4",
"4\\sqrt{3}",
"6",
"2\\sqrt{3}"
] |
D
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAI0AAABfCAAAAADwwxtdAAAICklEQVR4nO1aXWwcVxX+1nGSbUDxCtLUSKE7MhGd5oFMCg9TLMi0aslSVcqGl9hCrd0KKasIkCmVsuHFiUS0sYLk8le7/CUUVUkf2l1LCDulYh1E5Y0ls84DsVHU7lppuwsKrJESdufO7hwe9m92d37uzC7UD3ySrft37n5zzj13zpx7fYQthL6PmkAL/s/GGv3exEqp1MY6UiUACoSgLAd6wsbnYRXnE1cXJTkoQvYDWEQ2ez0lHQ0LHwGb9cTr+fCRkL+teXEu4Q+NSd3SIVfIjYjRtEXf2rQUsurjhCs2hahw2XbAvDSe+1+xmRZiRacxF4VowTsbfg9ff3gjHW1fLh0YXxs4tPjfXzdxeY1zZEGZ8agabkvFwgX+SSMRg0W1ZwDg+b/wCPJZqjT6r3iAX98zB49tNir9P39qhT7c/bV/9MpSGdnelTqRlDKNcun4PaLS8IUe6aY0OjPCrxgAgBIfzdfLNwZ2ATufvMUhxsNm9JTkkgwgTI+WasX5EADgvX/3hM15MeyaDCCfeK5aUP/0ZQDld4d29YJN4nrMAxlgRDgPAMh/9pMAPngnxCPktLDW5ILLFdxAaJ6I6LULRKQ988Q9DgknNkUx45UMFcS/EpW+tELaH0JcZBzZTE94JkP0LYhFAMAXr/AJOMR++VeWPC2aKjaxnncVPzmwmToR6ILNAzs/IbgSsGeTXUh3QSb/9uf7EmE3EvYe/p2YYwhhg6mxHWNnXUnYslnNhrsgs5qKYL882zM2rx/vggzOnvIDR+d6xsad0duFEQagpEpOAznZZEuidzKlqUkA8IcSPWLTlWpmZQkAcOSqGymbnVFJet+Gc1KuOkMh4ELKRjeb67J31UyNDVYLAWmRX8qGzYJiudm8/ahv7zm7aVdTkXrxsAs2NntxVrDoKD//3i8PvD+y80Vr2dOTjSeRfs3PxkY3Nw5adJzLvXUA+05etQ4tE/5mbCWu94TNuoV/L/90ahcA3C5aSZbOGsJFIdsTNpsB0+byT449AgC3Pn2fleSsYngQ/yA/HZt1kx80bf7gnR8AQPndI1Zht/egyEY3JQuX2h4EgD8vPA4sPHbJZEBbUBTY5KdjuRMV/ebt2aE3iej28AUiErC9c0BaahSVJLnaRK1147d43QWfffkmkocPvgjgBPZ9tcNlTrd98Vjp2JVuLAN47QVgeK5emxfb0kfxcLOsJIlIyHDrxoYN7ywx8aKhVpQMeR63bGxWsZWp2hFNXns01ai1eDcAS990aalwnPuZluRILfuYEwuGdiVJlBG4p7HTjYstXV46+NhLAMw+eay2dDPYsAlu8E+DyNLGoUVgdXGivccNGxtLuVExEVFaGclVEwEtlhpxkRezi/1E3ixoHZf3HmhNKCtJKgYcc8xN9AGoMMZ0E7WFEy50DADhweFDC21ti7IfeP+7vr0/Wo47TtAHYNt29JutH3ffQgBmH//Z/A/bNue5o8DG4dK9v+95Oug8AxGRrlZMFTfo7tCg6t3zUrRhGyVJQoayQxeIqBS+w2UpANCYhgrTQYyVAWKMAQj9jrEaZ8a0erPGdI1p1ZYWVL07tDTw8JVGW2pQwKWhkwC2HbCMhzp0ozMi0ogYEasQq5DGiH4bIo0RERGrkFZv1lWVdJWRzlofrPnuzo0o6ZpuJic5U8VEVPMpXa1QmZFeIV1V1So1nZHOPpeu/mTzv85IVyuNPyOMkUNSmigQkfKGWKiFIFyoWsrXh23QK32Ab8eOHX2oJaTo/OlWPdopORFQmhUlHTw0C+DyiUA9POMCkcZ0RkRltVI1CenENNIZEdPCcVZXXqPZXDcd6cpCRLq2f0+xkdT/I0ceEkRltTpt7XdVlUhXVUZEurr8SJWhsZmpql77M0xkkq5Mfwr9OSI6c/8cab9Y4bCUYS8um/WPX+SYhIhygsmW+3X4vkdE2itDGOYhY2BTNt1zTH/FBBGzE7KvvLAcFedNOpzYaKpmPuDyCM80hsi8iViUiNZC4YxrNtaIxjimMfsuqAfIcXGS98XJcVoWcta1MTKvIy3XORQnhXjP2BQcz1fNDiNysqEtF1a4ohOek8SMVLAfYOLdRWWppZ5s/9DxzIaS9tox8buC0mHe1g+dLtjQmpy06e307rS01DksNy6btHpgY3vi3undcSVjOrL5odMdm7YT9xZ0ePe09Un+jDjdEzY0Y2Gtdu9Oh+wO2AoTovk0LtlQWgmZLOY2786NSw7b05oStjSXq/s382Kn3Vu8uxAVLjpPE7e8OePybtKM0HY1yejdazGOCzpEREWrd6lLNlSMSYOReLPe8O6lCZFrg6siEzKzOnm405ZPXF0IHZakALB6bvUWUEplryXE4yFXJzYLp58oPxBta/QRgOeyLgnp/9y8e1ffjbtl3wDu6rv9gT2uLw7qN+/Ur1gAUH/zDdQytJNu2QAA2E28mn5wAvs/7kUaWD4FoVE5/zHA2+1DA1JdHNMg629kva78/ulj8Hwzs45uyBg0szHwIIAtcmtVvfRkJghsETYvfbNecrnfNFG9q3aS6+6IPa4DeOgOkZvbh+3of/XMm3T7xstda2YjRZT9zH1AV5YqZ4LYx3U5zBbJH38b+Fs9M+MZ2afuaTMPOaeIHID7V+hMzVRdsHkNwPd7sGwM8G6p8lsrlP1V98vGCO9sKiURwWdtjlo9wDubG1/guMDnFl5NrI2t0IdnwZ1E44JnNkOA8dCsN+jyHd5jbIn3VANbi81/ACENYEBS3jAUAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, AB cuts circle O at point B, AO intersects circle O at point C, and point D is at circle O. If angle A = 40.0, then the degree of angle BDC is ()
|
25.0
|
266
|
[
"50^\\circ",
"30^\\circ",
"25^\\circ",
"20^\\circ"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAKMAAAB1CAAAAAAHYA5uAAALNklEQVR4nNVcbWgcxxl+RjIxpUrPkCu50HUV2+da7iUgqpKI+KRzG9EqQSYKvpBAQ2w3poaqJSnVFbd18I/4h7Fl6oJCDS1YJqFViIJcqmAXyY18UkCJkiiFa+Qkyp0cGSrXLr1EKjnVu/P0x97nft3u3qnQBwvvvfPOzLPvfM+8s4KoMyiAtZnFzJufY/UdAO0bcXvbdiXa6DtFUW+O/GR8YiK762t3R4FIEMD1K8DrVzOXg91d397sK8n6cKTIP7z54qVsV9fuZovwq+MTl0Jd+1q9p147xyI/XB8+g4PdEaO47PG9187d9uO9wYKkTMc5izpBzj0ePDRXXW/mYPBxXU26TbpeHOd6m4dUUrrIOndG6Z3zknZ9OKZ6ld+apZLSmrD6QujRefep14Pj2uHgoOrCgCUFmTsVPKq6Tb8mjnqmky3xG97jLne3zhgSskPNdsz1KRf9xRwJHXZnyoba+h183P7v+e/6i7r3ykL0mjvdmjAWHKwl+vHgpAut2jgeVmbzT647u0pMB49XV6qJ4/52vbH4JEiSS63PVk3B/1hI+UR2tKn4y+WwZsKn3S1nq6j457jWu2Fko9/IZVjt+fKw87zNd7vWepvO14Mimv68+oSzhk+OZN+GKm/vGhvP3/w5HIvTZ10faF1h1cruFtnw75yCfXGUHN38iT86lqlxITThoODPjvPBlD8+dpgJLtkH+uKYax3WH+pS0iTJM1H7sdtX35NYftFn+7DHnvZf2HaxPt55Irzi32CWkOSN5hm7UE8c9aLNNk/XSMkSF8M5mxAfZZ3AyZpK1Qb8wd2/tAvyipTyrzq2lTIshxatA7yMM7rJnzm6CX4nEI6p39nfbxfkEa+01WovW6g7rHtyzxzDk+tT0iQ5+k1Lsdc5xfmvxNalpAEAveplK7FXjr9+tnYq9nj2tKXYdUFIUnImUq9ytYTabLV94d6OAhAYSNTJYtZo/Mlxi5mktz785r3X6jSxNYMCwGp4ockU4q0+vtyzbhQhAKKp44/mEG8ch5+sEyFrCOB7wxZiL2V9Nbq4fnbUsabMB40yT3Z8Kb6eFAkAG3teNrUa9xwJjMXryckIfWiIj5nGCC9lvarc3FA/SraZ/NNYWF7K+o2d608RTXfNGkUNAHYLIYQAYLkS3y2EEFMAMLl7XdnlETOP2SQZS5MJ21Fxd5JJpEm2+9yw9YbhbqNE50iSnQmbSCDTSJNqY72XWpZYChglDQCm7gOI+9+ytv1UAjiQ2AIsKuZhah2g4KZB0gDgT3sAgYhNnPRJIc6eAPDBdljX2Doj/KFB0ADgZAcA/O0+6yhn0zy3NQPgox3A+s1vS9j5kUHQAGQSBJA5ucdCn8iILXgKSRDz231l6dny266YOSYjAsCBWIeFvkByP5DGFgh8vMNXSdt2anbYuWDmuL8TSAtMWsc42wlsQweAmyEfJZ0n52U4C90oPU9lADRMCWwVYlvSmuKUuLxViJg+/7zdM8NS/fXwdl9cLT13AsCGDps3JASA8tCc5+3vqc68IT2dOnxhrfj4s9jdKBuvjVSF0GUl+YpXO051AhCgt96ATSuFx3N7LgsAGwD9NT8bvFV4NEcTAPDprzwxFBwHAHz/q56iUawtv7ELAJCBEkOBowAQiD6y5RHTG7OBKBN6qfo+e/t3x3Y2PqA//uZERu+zS8PiQviw0zgqPW+7JA0ZuMDy/uBgNqA/D0EgQVasr7e9/fZjq8bXKkEEPvVoko4kAAJ0a9LV53YoC33ZTQCIDCiTEaByjhu4eMduhwPl21fsw2xIkoTe/Nzg3PYrqecDXG0CITIH9gFpPaDS1oPFw14zwgueio1MinxhucJEJKrviM+2kTIBpBkDEizb28t7vVwMjdgl0vqeJ4YyAZJuSc73KIWMJ2OGMJCUqqpqBUEqfNQmma4L3ijGSDLpqs3c6AsMFHbs5XDccPDTAEA0ioZivYy8femxNcvqsu0DL3Vx+mS1Y+ki1k6F8fFPC6OYeD9s6ALN68IvTW7add2cEM3zOkc8l9gClGq9g+ar4cl3Bu8ojJpEuoWGCCRJTWqqRqlqpKZq8rTylqqSpKYWTsg0VRvr0n9rqtRUjVqpflgBSZJkzFgfjRvVM9GIYRe87Q1jUnmO1Ehq+j/JC8qI1J+kVlCQHyr535pKarquLdJIk8wvKO2xtDc0ZJQFjB5NRY5Sz1RVVVWjlmo+nieR50hSRZaFlyj+WUKyYEfnZp09HDxiWmua14UoUtCkLFK6xRsd+3JUKzjKXRdcciTJRIzMIEH7w1k5GNz/d7N4+CGjpAGgBAAISQCQANEgg+ONu24KWay2EkDHtIRrnIAQW9InYDsxe+3eVy6cDZnlr8dgbjNSVWXBVuQtVSWp3dJ4Sknp7ULT64C8uEvTW5Va/LM2kIN5C6Gprm1j1jFaTOevsFYkSY6GRmV58ErAtTtgFVw/FBywSeszcyYljhb+lClloOJ3u8dDYRuD5o4F+rN2xh4zbfcU52bULGbgkbk/HCgfc3pG3NdHFGticWqW//9c+L13Twbs5kIjPWaZsyVyT0bLXMoWldoLe7qtzbY0JJkLmv09qw75x5tTMh+fjLpxBXTCwqPKS44Koz1mWfVpyUgoP9+R5ODTfogVke0PHLNzSMgjbvEKDhwLtXp28+mC6B931lDY6kDwR8tVdFZCFnucbqZ3y21PF6jFTaNrdeTfdSzclTLKTDi930Loagqai0ezerK+z11no/foO9VOY7zNuWuVsi6keDSct0F01A/D5X3u/HaHLFqMe1+FkZBuhvMxd/rl5lo5sulI1lWc1kkrM7teos8qgyQpw166H0mSQ6G4g8NbOUa/YSl2w1F/t6W2QyrJEdd+KXq08UjUfjlcCbWlVr8UuRLvykryQYvbE1bkSFYsSatjYK+0bFLuOOox5eHwAplS3NQtkvqSVC3Fr4Ll0KK1prcto5dCE2R/fxWtvDVyA8E+L5ctDj5vE+DRb282dMat396IssfT5ou9357XDbule354y9H/MV9YM9HWCQuxPerl/0iSK73d2f4nLTMu/VyKm5ekVdBzzPY9fPiR9kfebx12Mkz5ktStb5qTP64fX9eh0O+d/JpfCO6rNr0x4c3gNdLujXz5NU+H+hS7oWMs0lXeZ7uz40Jo3CHUn3/4YuSBNlO7kSRTXeExC/0qyLaccQr2eRdgpVt5yFyBlg8FT6ve3SNzpo2rSvi+4/NM08MVJCU/Pxbodz0ElSHXHS8lYgX/95DO3PZArjzRISVe4fNrPfaasdL5WJUFSA13pZIbv16qk05LUgMqqWfbrZYHFajlPteHgbvy4/FC7+ZhU+7VIElyqbWvqmJNd86yWzdepr4k/dxfClPrfi+O6sONx9SBYN8yS/sE7qCrHne8N1NArXdJn29s+pbfuzTZeLurRURtd0mBIxMPfuTuQqgJr7aEpxXAxQmtTxuUFexkuHhv2ENhL3dHbCdjBvi3Y3FzLpYK7xzUAC8uCf85dc/9f73frbb7NzdiCOikPoqV32N3YUt1MNT7vmtt/20mjQSZRmEqO9fbPFRxXmN1zV4Xrf/3AApZ6ycviWRRmv+uQtkOjJGlvmN0MPi4twNc33YcEiQph8qPsZZPh1sGUhbkipg7Fm454/livt87uWJoX1kTMX/nw9x8ro5PXLrzO0+1+sjLH8fM1mQHhZEIhc5lIhvdXvpeyjzEXz7JXA52dz2oFPW8fOmjBo4Omdh/d6ZS311nVUtZA5lrJWc/yw+kmFEI8+Le5b25kKQcQpJMxvzF9gjf/WMS8OB0UhPq/o2hdUCt857/Bf4fOP4XMYKYNiSGNYsAAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, AB is the diameter of circle O, point D is on the extended line of AB, passing point D is the tangent of circle O, and the tangent point is C, if angle A = 25.0, then angle D = ()
|
40.0
|
267
|
[
"25^\\circ",
"40^\\circ",
"50^\\circ",
"65^\\circ"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAMsAAACeCAAAAAC506GrAAAN10lEQVR4nO1dW4wbVxn+vW6okxTWiLQdqtId0odOqCCzLQ+zVMKzpdE6FSgOEtThIbsRDzgFGm/ExRFC60hUTgHJG25bqConSGUTgeoND3hTUG0DxVukxI5A9ValtZdC7aJWdh7SccjOHh58G4/ncm4baMQnrdZzZs5/5pvzn8v8/3/OeBDcMBj5b98AR9xIXG5iF1GtrlxeAch1jxUfyKOqILFLJoSHqb1Uc/nVFVFURhUAtZu40oJSM19flaWAel0J0XOp5vI5UAOSYndBaTWfa6qBoEhbAikoubTOnF1VA6rodl09l18WpsN+qkKIgShQmBFmMvhXR4Qw/tUMoOCSEpVUgyiHthgUkhp5SYQg5aIlhZkKRTm1qDDXoMhHArLxpRnftVZMiRSqLCTLMD5bp8iJDyIup8ahkBQoS/LHi2MTJ1qUubGAX4VlZabBqAVaTM4yinAANhctJhU4lFdWwzUOYiyBq2O5XaNl21GRAFJ23+QpDnKsgDlWxvOLtO1kCM3Z1oKflzAjsOqlPglZblTAn9q3t8RNmhEYepjl3mDLygJniQghhKFjJ87z068uWrOtBR9voe46dvgyR/3qwrcQONDkLtWl3rTwZmgDQghl1AZniS5cGsFFzgX2UZQrfAU6c6moWb7FDUqXi1zlOXJpqHwLG5KvlHmKc+KiBbM8i7JAReE5oXHiEkpzLMgaRZ4dgEOffHgqxL3XNEP+5iF+bwH2XOK3R7iVYo/gI4e4ybLlksvHuRXihLAwz02Wje7V5E17zTBBU3m8FyE00PZbTxnSN3VgGURFbvARZNCxE83+73hA5VbzbhDnODWZPpczf7+79/t6NZY2QuI8Fzk9Lmujd/USW4cWuQjHReJsiYeYLperp/ZUxrqJx47wn+U7wZeY5SGmy2X+K72kUuS5KA/RBFDFUzzEtLuAFwHgnrcQQghpt8G9fPoVAtSkBruQdr2srSBUvXsrAAD43gN/e5LHUyKBcOQYu5ARAIDsDx8DePPf7ZT69qfvuji+wi6aCJGVErsQhBCCWy+geFfJokkUSxSVzTMvWiMdYhYxNIfRxBrSxBpalBKb7zExgv0lc2hu+WRIAF9iFsKFyxPL7NWOj7njzCJM3DSxhhBCSgEhVA6GKqzPigDMFWPmkowihBAqygghhNLS3PVTtE7R9DBzETpNPtI2i2lzYpqxBGx0VIIeJi6ZYOdHb/CqhVSuxhIHxBJs+U1cwj3TXr/Gs1KswVYIJsoSW/5BLg2h3zwMTTEhpdhKwYTC9oY52CefCfWN78n+3DWWzU9cj4nA9Gm2/PYPZsA8VlAimz8RMKoFBQa4DCpsTRyQvCAlWQrCQpjJEj+gY8tB45EwfcJ4GCmsjefYdMAVU+eZshuJmYyuQx1+cRMd2gghhCoiS+4BLv7G4MnhueuiuLkzTrHCkNmoYyXRP1hnoWbOVIvh8uXxzZxxquYCSWDkklPNZ5PHzJZrXyJzcm+VoUBnBPIMmY1c8gHzWVkZflsWM0f2DlHkBaZ6MbYXC2VtSFaNXUuIm+XGNDdZEhi4aD6L8wsRy2y18Ca5/1imMQYunXcWE+zekLJytEFfrC1YRktDe6mKVjq4cNhGs4tjEw6mp99NeG57nELld1+iyNSBgcuqZWC0Ip6xyRrNXrKbca4fjD+NLma+T34/YpU8Tw/9KppJWdacaVo2gIIyYzkRiD90BSH0zENXiPXEWtHxYOBi1+wSMYf8KcniZfDFWy8ghNAzHasuCSw7IEwYdKxuY9yPLq/aV+tM4fKunClt/Uf77wMAeOVDW4nVxMcwcmHEwvnmnGy9/kT6+P7BWN1/vhAEAFh/dWob+Q0xNBjXfgwAQrDkJELKTk/EBx7nljEAgIvLD1LfFhWwYhQTx51rPlSG8SXD8bU1APjH0W/cR3FDAn08dp+LXXMBAEl1cWL44pnTe3utauzgT16CbGD312huiKXB9HoBp/cgHDNcRo79Sk0hhBC6dhTggXN0nRFDEE6fi6N1KjXjLkpLbAGGHrUDm1EOB30dc6zcmVLJXTtiX4db3C9zQYs+pBQ3bjyFE0/wuPizQ4eb1PcCAI7N1g19Ls4du9VbmQXGi7vH56lvhhHYa0bmTjaxrosU15icnbajnDsMXJx7duFLmH4rfzI1e2BzF+3YwMDFpWfH9/TKhX2T1It2uLQX8Dcdr3Selg2CwdnJpx+THKbDAABB35KbtN7j8CcW6UxP1i+EeDBwcZ2hDlvLzDBUrZQ5sjdOrmicuLi+aouheRLRwSLsWiK9H4ZujKheYO6nRP2TL144PemiuGa8fA/Z9UaMAMCGruvIvb0A+JI2Rhk7COm5/bNNkhysOjbihREPgN/n+tSHjeVuUMtjE6cIrufUXjAqxujExEWUxNnZbDFEFHa56LoOgTwC0PWNzmH/X++X/tFPzYOuI13XDedcIKSSs4cxG9qwq4EAXS5e8IL6ew/oXi9CoI94QYfuP2j/QqCPeI/+ou6FDa8XdK93WJrNcKsUdk/OY93OsKuBAD0d8+ig/KUF0H7aHvAa/rV/eQA8cMcXnug0MgAYWjdnO3WIFNaGTE9W4FEvHhgBtOXeFQCv1+txyvDV54s05fiT6ePuM85mVaYR3sFItybAszESyAEgAASw0T670buun3zyKF1JUnaf6zJxpmqBEQAP6G2l8ah58G7ouge8SNe90P2nI2OyescvN0CH9h8R3J2d56eoiQAYbeM6phvXwVjuanioBIMOUU+MUVf98WXDAzB9CoM99luZBcTMkQP2M9RlmSlevT++gAdgBiu4JrpUpS8wWBjdZefROT1NLxcM44t3BABEMYeRxz783uV1rp07Vjg3WbI6Uy8FrZKxYbJd4EU9hVo2TXi0iZNdWJw7ZDXjNEZ80cDEJbyE9frkZix3g1ocGx+2UTGqmJmLbwbLDIZpLXNAtDjk7FwSZQCA9YMej8fz5XcohJr6NSfvpAHWMQxobo6gCzU7O4PdjYriz6LXH/gegaQOzLY+IYT1xP1H2KO8lUJg0hChVqp3Wv56ZQzu3PMKhUQzOcyKsY5hIKoXhFAjJvV2jeo5K6oPX7m2QOG2HY7nF5QlrGeAZSx3gz+RPtlxdpaqoU7iC7/ZvuXtix+gEDfEDtfDbjVfsYmecURanNOQoVquTV9A1Z0UzcVibbWszmM9BKt+mcZB13Z2/rwZ6hzrLQnGDp6n6Mcs7PyYliMuy6IA2s7OW6Y/1j289HEKT3obFnW1GMaqUk0emvLiuAKt0PDCrkb757XpC+iN4/AshRQr/0u4nsN6ngTGche03v+5PR3T0z2n7/fc8dy5/TRirAgWFbx+ecjnS1svoTRCtRmlSJe7C0u/mDx1wip5CKzTsi6WIAQgpJKMzk5rH188n8PJLAXnWcruono8BQAACquz07q6MLciML/U9pYCkcC4GUEjyrAPld2+ClkVK7upy8PMNYho0njEEGdv50dWA3GcWg1XmdfFLFWjxkM5S+/stGXZm4I7YnDGQ1EvFjtENGIy1T6l9lwwNyCKGPfBIudSUyoWqeVg0CrZBQ779lgXM3SVcbU6MRfNbkzJSDHiBR0OcRfC4v6mu46yWMugdWBOtj4TLI6SOzudiGKN/8ZHS1ovjnZO4pWdzvuPYe3dZiBAtkJSczPZZiWiOHuXfeEKOG2mPy0jWiOlhVKu1yQlgi323PbrK2P0Zn0TAQmXhoLT8dYi+CsvXPe3xNnmrmeyIOCCvcEd/spO9706G8Gk2yW9aRk+lwzBxoO4Kzsx9h3VoqGGyyXdBX/YXGJBN5FGNKJSFuMyrD2H07KbznYUEZNLTSFd3V5WQ+6Khrd/ckVNOl/QmZbhccnQ7MScdl/ZibkXtBZ1Gbc6E3cMcbUwkX71b8Fg47QG9r7WWdlxgtQxlruLS0rUK8KcnZ0ke9prCdHpubRNlm7iCmwr5jKy0xYPJPvz14LBov1ZuegqrhJmNbVoCYdqJfvWQEa2HzkLiou4YojHClOHlZ2k303Iqmra5lR40UlcNiTbZSS9BTs9Jf+eRTYkJS37+pqo2YlrLCi2j4ACSdFyxknznZFyVAhZaUsiZi0uExYivPawbKMRsRq9qb6ZglA67I+kG6ZETaoMBaFomagQXOS/f0HRYmUnJReEGgshvxwd5JMODXDRMjHFF7RWSHYMr+xk+l5SKZfPCYJyuyx14lim/nT2YQCAZmm1nm+uqgGVx7cWbNB8Yik5EKjB9u0nAFitr7xZWq37FACQnnvNe6cH6i2fsGO76FPNkToSU+iORdmzvqTYP2Tm0kFrBQBWf/zXrZ8HEDqhIC+b/Wur5gRRNCeMuV4xkLB07P7XD810DnhxaaO1rBA9+mrVLWHN9Qrwad1fm9Mwrx8S0PNdv+u/YRd7fZvnth/8OQ03wPf41gKtK//a8ekxgHe9jrWjGlqht9C7X8dO7XwUALwf2Qr8dKwd9fXFlziJw8XV305tA4CbHt8G/Ljc9NTDF9Ab7/vs25zkYaJe62/GzbHtv1eCD57YkeImDw9bDIMrNy6XRrcB3EwVwsYAYcfzAAB/eAeAI5dMe5r3Gk2cJD1u3vPdX8P609u3AfDjcvWPnwSA9Vd3UgcZ0eFb35n1qOOdzSh49fOPtnt7mvgiXuBVLy98GADWv72TbaEEGzhxufrkg7Ce/Uzt3HVWsQFwmvN7AAA+8dgjXIRR38T/v8H9P4kbict/ANBrEXFd7MASAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, in the circle O with a radius of 2.0, C is a point on the extended line of the diameter AB, CD is tangent to the circle at point D. Connect AD, given that angle DAC = 30.0, the length of the line segment CD is ()
|
2\sqrt{3}
|
268
|
[
"1",
"\\sqrt{3}",
"2",
"2\\sqrt{3}"
] |
D
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAANkAAACBCAAAAABoCEAwAAALKklEQVR4nN1cfVAV1xX/7cILxsFSq1Qy4gdCxNQ02tEZ8WOEIqlOtPjVVKvEYEzhUbROJSaZ6rR/pCbakAZHqTq0Ex2/YjB2Jpr2oaIQTf3AlmaUKiMIHSHUqtQIjfr27T39Y98n73Pv3n2P8TfK7r1v95x77rnnnL3n3l2QmWBENqDIXmEql8CQYR4IEpSyHlr0xHCQiXwCw0TJSALQmZyI2a/PgWQenyCQTO5M5bsr3zCXQzDEm0zfsnXOjV1wKjCqMFsyzG4bg114DEcjgPa0xommM/GHmb4RwO//AQzPbDGXSWCYLNmNHcDp7jnmMgkM0+yMJADKiHES0JhoFpNQMNXOnA4x+n4RiIoHiRFMtjPg8HazOQSBuTrr3V0+4u8dg7VHyCjDTJ11lKWe21u/chcAKQamZtos4sKyxPWtqqpeHmY3jUcoGNZZkNF8eHrBpFubR8uy/OzUQ0Z58EF0VzEi6tk2OvugqqpaTc0EplVHFyLtjABAQkdZ6l93n/oxZCftvAH1sXgiFiGZa0BKIKBheSZd2pcty27KZK2IRdAU7PUPv3/bah0gw/fBY+SpDKFcIoJIyXp3l48oWRpgGLz9ZSzCtTCLvVmWtOS0y2t4g9Hdgd3C2EQMUR6kYflYdvHATLkPPQIg4ZurdgliowNiRmN1xS2rdWBgd0QS2LXcjnh3KVrgV7crRD3YNmrGflVViVjQsLV4Lz8fTvBL5hSia8OQF0+pgezLGyee4+bDC24704ZV08vpvWcPZUMKQ+f7A+t4GfGCO1sgAfRpxY3irkQ5ggcMqaQ8J9pza05dM3pQlT5tb7hR6MGo65yceME7Gm9tTD1edWZZXy8fHNZyTk7c4OqPyyueXNPUV19B/KKzujsxytE6aJ+HiHPH8uY901kxrq/XCGJFzuqklZUhiQpHBJHa1/Af7t2SXFIAitPJiF3LvWnReY8hhLITp9Degv17Y2rNzs8LSNYrGOTvzNyn9x5jCD5Q8wEJH3nXXF6RsKYpbFQOhtoJfPdxIpQHyf+CKpN73MWjs0ZsuqtqHoFn8q9OO81xFzdCRGrF/hzSXYWH+zYPta6A7BycXDG3pDyH5zZeBBfatpnsmUVERNS1YciCGt5R6EFaNKN1cMlYJYBqIiJ654nSK4blYkRbig3S0IMQOlvUU7lZO6ueLobZvaRuIiIWlRRdMK9P1J6c+IJNK8zvOsOIGR/5gworCdFKhQeTTJL+nIbht3sBAPGrd4p5erBudwihEwmCP13VzIZlTiUAQCr8tD3cDCwcCIA8buZ+Y1R0cfQDIyKyAWgkG1K1eLZ2vZjBXzshamnwCDM8bZM6BohIKLOcX+UZJhIZImxsWu5OMfysFWLohEekWbnzK66JWQTIODZOAJUIEGljs771kVEfoiFqSos4k3p4e50Qhr0jm5OFEAqHiPUwv/0zYgKi9cDCKGXCI89+/+7SPiHesWVm+wDDVCJA5JL9N+2SmFWwpbNXCqETBpErYXDhDjEsrVvF0AkDHcNr7R+/Zkw1znLmoJPGiYSHDsnS5uwQs5JeUhGN9Jye9TNh0XrsJ1GI1noampV8MPJsdyhExdJ0rXke3npGCNOvR141P1rr0sH8rjohPmTAy1HYa6Bvnfr9CweEROsbM8yP1vqaWVjTIsvGHZuckWv+LjN9kg1+ZSeEeH7ru8ZphIEOyQjA6qpeJuK5eMYQ06O1DskkAGlzBc2tS0xeAiXdO13OFzRLQvKFWrQ2YVHeRVKvo8sadkgW0hpt3dqEnKqLpEQAU4G4cCK6ukJYtB7dZG60lgHI8eEFc3fF/K5TQubWAwpNitaXnEe9o5EspTsBEWvp1l0PDdMIgK8Kn28C4JFMURQwhYEURQVIURS4D+4zUhQHCuv+CVVRSVEM5ejlMbM+NGOzQdKVedNX34FHsnhYIEsyVIuFMTjiLLIDrgMAR5xFclYPfqlKtcSTwxJvsFnWcnNe8VjbgoxKQPo1oL3cQdo/AJBIgrPs9ByevyTd3/dKgnaHQde2Z+YYk15fuW27/6FTZxIAIgmAFDZcfeOpv3Gx6yPC7b98ecdVK1g6SdvwRg6F2YlItatEZFeJGNkdxBRyHYiYdzU7N0ZVHqlaJSfUmoXJb93Szg2uzvjffrs0qYJIBiRyxAGQIQOIVxVFQjxTHPFwHRQmeVc7Jj21nyQVDvBO1djuaevyOxuGSZJUbDha+92+9Wm0/Bze62eRa+DINCOdfHfTiLnHiYjKqsmeucUIKTfygWJNfffG510hImIeyXRsHrCn16oq5zp6088GrnJunljUQ7SuiIuKH/KrXWcNzqPL66uKjq2OltIdPFZPwMkf5aa0V2m55vbuRKBljG4ygSgrrXNcLZrsOuHqoZ6kJp7b9kwZ/4HzZTRGVLmZ6DWv3U/8YGTzV71uybQxuG4NReTUPJeo3W+PmnvC+7d8ADl62QdBWbVflX6dMSKim092h90z5y242rQmcZXv3qQ2UVIRkX28v+r1J6IkAEjND7sK5jWpZKeW5n77xh9c29M0M2geq5t1UHQmB3gZnbOXLo5yvlURHureaZp5Ma//RPmNnKz9wSrfIUY2X4Lc71hM2xNaKtebJPe2pPmal4Y2AF/w8u4Le2YjUVuubyW3ZEeyIrnq6tqkVdcDd4G4LS/O3WE/9a3VL1kbgCIie/qJsD6k9sVhb/0n+M8i98z5k9ItWVlyD7NnFhFtW6yqIZu2f0Z61QO/K1iQhgiHXsnKcogR2ZJ7QkdrtefdjFlHDbXMKCKWTOtlGxqJNMno9TXBrlWbf5H40mWjTTMInTrL1/bLbk/uIepIuBvQ0tTTS4b8sosoFq+He0FfpFaatZ1uxxcmAsMXB8qEswPZr+Z1bEoBYvF6uDd09UObczBqh4sjHH119r/3nnaZV0wVRnpHYxuqibS97oyIsj/w/fn6uqQVsTYvN3TaWVkOURuKnI8YR6Z4/1b/kyEburwrYqs1vV4/H65N/ERkT69RXUHtYHZ61QPPdbEei3olY9TW6F3etkBVVSLVy7z6DXTqzAYUkZbBICK6n3SZSG1dP7j/mJcbkUvGiKitiCoBaK6RiOiNUvWzZU7ziv0A9IG+5HPfJUrqHDOl682CBCk2H+sKCf60uiZM+bh5MfoGWTjwb1vR3oF/VD5VkqfmlF8T1iJRMLQU8vHG+AV5Q8ej6c6xY/Jv5wprlBAYkKx1CbZOd5dq1w6qThXRImHg9j1nh/b5yvBvUho8hdg7Sm7J6lPO9q2yDW0IdGWMwCtZi79gRLbUm4YaIxS8dva9V0sD1G46UWfEMoSC0+sfigskGN68VQOA+sfXLvlUnXEusIuwTTIwfsRCv84IwKWkrMDPHT/4qtVgTwsD34rF0YXBflxwzFBzBILPzupz/KpOaMvpeXVAdL8DEgwckhHQOcpTrH12wufAa8t7yF5fjNSbQKyTVk5wWWeCw3P+DJBFZTlEjGzJPXdSBDkAw+D9KpRn5kIAjr/X6FRUfxiHGvjsLKXLM962j5tYXlk0EQBagVspQpolAHw6G/0vz2P9rKtQmgsAADULEzvShDRLAPh0llPvU+xszgSAmk9KcDLbeJsEgcs6Gyb7FO2Z1UT0KLOYKKNFgPELAZ/OJt+74F20zKsE2hOyd6ImKT3YPVEHX4fs812lZvkAGokc448Z72xBeHxnMQZmnp6tHS70q5knd7agzjWp9gj3eGQL3Bkej2A+GZ7YQ7+duZ+rWpegYoa7ut9l5fg8iFO6jzfGLXRlUuO2vCD1qzy4we3yTX86+eg8shJ+ODdK3zOJHP8H0c8i4S7ASPAAAAAASUVORK5CYII="
}
] |
<image>circle O is a circle with a radius of 1.0, the distance from point O to line L is 3.0, draw a tangent of circle O through any point P on the straight line L , and the tangent point is Q; if PQ is taken as the edge to make the square PQRS, then the minimum area of the square PQRS is ()
|
8.0
|
269
|
[
"7",
"8",
"9",
"10"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAIMAAABTCAAAAACZyOuVAAAJlElEQVR4nM2ae2xb1R3Hv+fGDpsGRFMc1RSzoCYsqYIgzR7KICMdCyyoXR9TBwgyrTBoEBViK0gro6s0rRqdKFqRQmlXpmZaEKBGyZCq1lWzETY2zEN1mIBQaIshDEJANI2nNb6P890f9177Xvs+bCfT9vvDPo/fPedzXr/zBBcqBklpDAArc/dWl4KChYoC4r2af5AHzotXm8LCRai9m/YBl25p/t8x4InPHgGApiawms9FVV+5Rb1i41YAoKju+8Wohw9PNFMCqBJhcdrCrIGqa3QxGJa2nIIA3huukiLiHyWVIu8b03/BWx+fnUDHBZcsw7VLWq2Y2nvvbt6A5K+fqw4hrE8WOP40euj8Fctw1efr2zBx9l8v48Rr+uoNV5s6yRsEN+1Dtd0ywH5J2zE/dFNd1+5Mcfw7uzpifU/r0raXRnVmkkEMNA0x98Z79894x0/v7U4MHR23fNKoCiOEgQZHWrtSdh55rEIlyZG62i/2fyZdgYvL8EJX66FAhYHYtqcuuSiWpINvURn0zfG9JYHOjCa+0TVJGo/WXdj3CSmrgwhgkJzt6Z11Z++u7PkHGkxEOdPZ1DD832iLk82b9QBCJr90o9lVDfLcxmVNa+2OW2FteDKYaYzFB01vrg8AWmbcxZy5qTFpOD4YaLgtNmi5K6sP/3oYjKdsmtwPX5Tc1pIvNCm5N7Z13k09Ft+1ojdjVN4evgxjiUy+OP++ZY7M/eBHzI/Aya7OtBWpk9KEmIz/fUf9gK2ycIaT8ZdIux5euFOS3Hb9nJX4/M/rB1hsKSQ5lnh/srN7stIO4c0gZ5sPONLZ9gxJDl4/Z3rHm9dNu7Tzrt3tWT4S21kRgR+D3vNjkrrZv+S5nhmS3HYnSXKmb6lpkAqlzY8eY+M6MtOdb6cqGSRJ3t3rHJRv302Sb7eYtRG7P+uf3HzXVpL7Ytv9B3UZDCQ5vsRlmgZ/RTLXd/0cOdndkSbp3+LTdWmS0zdcmSrfaHoydA46fedWvki+3dI7R317bBcZ3Ot395Ikh+yhWwaIF8NIm7Mm/2quM54hn21dPe2h7pb5xudJkjMbWsfLHKMeDHqz50x5ZlXNsOkyGFS8oSstx0h8c0DPcUjpmpa/u3iVx6Luycuav3YGgDT9/mvhW8UzpmP9W9nLj5a1zC2hmo+nnV6zwJnr2lN8qaGMckmON+t2Gxxu3Dgb3hylDIOrWdyO+o6GnSR5y4MFqgDpHrFxmN0cHwntFaX2YcNQUQBTbb0ZkpRTdVN2aAmII5+BOxwh460bfNai/gzzdbNu8DP98WHb/+AtIcmRJKfiznE1/0BsyFfVmyHZYznMfI2D8bsKBiu75OVyIDpSLm9qRW/gmM4z2EXtL8yIksz0trnS239VOQy/3OrwGKS+vb50WerBQFJKkvEpFlp7Z2yH2/Br7QfLYHi9tTgk3dmdIX36c3FbvNxRcKfaexx7K7OijjWdC+nnBsnmkyXBO00zH8pgkEP9tif7k4ahfOYF/lUPO4j85GYPS/tmd+ekt7bL3inAB0ss9+hl2XduBSAhXGZx185PgLDzjvgHpfZx+XN939whvbSLbe70UgDAx9/92dP76ywF14etN/8Coecd8Q/djCQAsfnVv31lwku9qF5uGiHJXfXbfbevM/U+VeqQwf7SMEmSB+q3mVO6lIXWtBmOpM3/zhR5vKN7MmAH/fCqUIZkr3e4YXy0rtW1g7YZJGWuJW0GNk5l748dsL7wTGfsy7UHwhheb/ePG7YWgzIPYZ3D/HTi4IUAgPNG+z+6K0ZAUNDzXGXPp0jcHtwdcO7xLZ7hFAA+3Zf4fbfziCcCQBq/vSIpTBW+dLvd47wRqj4BFAQEIBh7EM9d2ggFFBRSAUBJnn7o9EqrhRL5mdHPBBxrbX8hqB2MkLYo1iUVCIld96HFok38M6zAPZPpq4PKq8BhZQJkrRCiRnwLgAIqe/bULoOqS10jEh+oBkBd0yDNPwAAdU23gqFrVDXdDPGR6UuCcpcSAJ5dc5w80gJAgcjMSe1IoxJRIjUCiU9rSRg1UaEr5h8AwKiJwgpGDfTaCIxIwNGmaenWCiHEcAkBFAUgVH2F+ui1ywEoyNy2FfKUEDqkQl70oSZBCNTA/oPpipAQGIsK5Z4IgBoEWMvppQQxuuYgD39/okhPAQgI/PkaPHFx7b0AcB+QluuATZrUKeUf+klKlZSa/cf8r8otDWeYa9tEqUlKzXfiMuesXNsc38VrdNqCgtXZAyBNkgSpaVKlpKZKki92kJKaQanR/qOZnZTqfSulRnm4IRvAUJi7k3eSazaZA8ypahKtSfN75jodkoaqSpLUJEkjkVFJqeU0klJTNTNCqqpKHsErqqR2JJHNqSo1VfWpBmsNM2CX1MVq1cO715KPmDGKgBKNCgCsEQTEqkNRQESiEeT/IgIiGo0Cj/d/NSoQOZ1DbTSKSDTq0x1G1wEAxtLysRVpFI1yxZyGD18HbME9hR5i9jspAK7/I1D8mSXqiW8DAI6uP9+vMzoZMnPt4o6WoyWxpo0++h0AaxNm1mb7aKq1jj1XN1tce1YjGqdw3CCZtLqSr0zFdVLysYckT8N7/Zm0ypkmy9njFCTXcpBkrsVjcVC8x5E0uCbNXEtDlmELv/L2erZsWUmeQn9Yqt0jJI8AAOxpqEKGoj2vS9YAOE4G7zmtPa+kUeaVRimD3Nddzof+0v6UMzWSYfcr5Z+BONMNuisZutLcLNnHljKsKco4C8pnTJJGaOvON44XB4UdH3udp6y/YKg0UBCmesg6au/y7hKDELb08gIrOhssFKhQCcFng1K6pqkAfTK/pnUwCQCbTx+qCWH3Ko5ArqfroYq/877fNHov/03JJau/FBRvmx2tGMHnflPONg+We8oqHY7d7dkqLpT87w5S9rVE+TK29H2SlItxl0SSxxIl97reYuR/J+Op/PlpJRhl3SWFiFX5Y/HhCjIOYyi6UwsXneRAPBWqVwGDJYF3i04xyPmNbVN0WNNKJGD4senVE6vPlg7EUk0Fn/TMphKwjWiFDzsC1AXqkk2t+wD3BkEp3VYYj7Z9ffQL1b/uCamn/J17wPQ33NhT1tGpn5T99sBwBLnae7yjPVnlRXd5DAZJ6XiDYbhiyOm91ySeXEj+YQyOtyg3nt81kCnGOLm748K+p11Dp6q3BxW/yflcrA0TZ7Ov4MRrxqoNVxerVSMBDGbCUsln8MbHz+PNmbkJseKCeIv5Nsl1WFQtyWK8l1uoLM5btYXJ/wPDfwA8JN+r+ENSYwAAAABJRU5ErkJggg=="
}
] |
<image>As shown in the figure, AB is the diameter of circle O, C is the point on circle O, passing point C is the tangent of circle O and intersects the extended line of AB at point E, OD perpendicular AC at point D, if angle E = 30.0, CE = 6.0, then the value of OD is ()
|
\sqrt{3}
|
270
|
[
"1",
"\\sqrt{3}",
"2",
"2\\sqrt{3}"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAIUAAABhCAAAAADdZD10AAAHs0lEQVR4nM2aX2xbVx3Hf3ed1NFWu0h1VlMMlrYwXFx1idxKkZqRVOtERjPVYdOyUKRmEiiTClLoCitiWjpUsTz0ocAewvqwIKGpnYKSaaZKtVRKioF0HaQPjmyQxyJssaxZhSc3k3f/nC8P1/b9b9977h3wffA993fPn889v/PH95wjgIIJAgTT/e3V5VKObn5MRJEkdcf2d4ltMxGCUpiR/pGZudHTHdtPyQgR3SpguZTLHjr6ePy/R/HupUxl8MjjW+pEjSr6NJPJ7Bp6oqtVUoQhBuBCLHHqhluE7Hhn7JJ7+nAogEyyd1mjsaluXEylFmzGUCmWezszLR7Xi5yJHV6xE4RFUUxHX3Et2mhQzkWeKjvlEALFvDhRZXqhjl5pqHJazDpECk4xqeXrVfOiQ70Fpah9J1n0lyLXOaZYbXcFGyLKByvLD/hLkny30H/bYgtGcfPAo2/tICIiH4OfePWhVMFiC+KOUnSKL+FkfMN0H2QE//Tg4Ukyz2Ve9Wzh6l2GhEEont58i4gPQ30kMWW85/fH2WQVrM344CKGjU5jh+WnyETWuNMCyIuLOj83RVFcDAJhfgvudjG0/6ecbaKhH330WjMDzjfJRmvBqgKoRFYaQV6K3gtBIYBzgwEp5pL1uYCnhzRS1uKNpsVHoSRa/anxrN+m6gG+eeS1XUcCNMumjqm/I/7WqcRc/+b600IiQF0si/uDVwSI6JE7q0TEObPPDvmZyV0kEIGOzvFT/P4oBRmuDCDfymgBjpcqHPogDAYiIvXzxV3EVxdvHg3BIZq2HJkjToq5oXAcQkQ0NEfE4xHc+urtLWFB0GZ0fTtPXQh/PrDF879dEMxRrem27/0LcXnkvb1EXl0ikKBVN5oGixJ/56PIJX0mEJqlO9Tg3lU+iuIenwmuCYLwXJPHokSRj6IU8xd/4tgm5IXnXJ7uLvNQgDa3e49LRBPvlLbR3b964xPdZNS9d3goBKrd4yXe1Xj3HwUiuvaz88bCbT7ZWiPimdk9JZndStQDACMnAQDTsU3niBWRd2Z3kLmm57pf6tBCyuphIiK68tS2lsl9a0e1TYT5nq5ZLCS6sgD+SXkAWNIuDirFwPG/kyGy4fJAu1zpSVzUrfK+ywDkfePGOEYVv8JDAcStX4bMcFkwMQB4cQAo0UnX3P7axUfR676OtdgXv2i1jRC5ugNAZhBcrbMzb2uZWttc6j/+zNqwNfrrABLuuRU6iWvs3LtqMQgkENH1R48/s3ZcJ7PLcR7OJfkoHsgZc6wHrj/2xJPvHdcjOc25jvNw4UEinp66LiqAub3fGIhN2YyeVN1xB3xfiD3z5tJW0tEplSMfMODiAMDROkGUnjVW7s2hx/rXxrjGYIFoNk11j6iSJPl5l3zMEH4yep5zJYMBUMR1oO4RJvnz557GZ2p+OPJyoNWUt3sA8HmEjrxJRESFpx/ufv/0Vh5fNDQ3SA2PgEmqLElQJRVMkhSASZKE5qUZ0n5l6Q8HJJkVRztebjevtRQDEM8B0D3CJAAKIAMyg8ygaCFFBqDZ1Po9k2qxd4qj4sSGKUOedZ3GykGzXagymAomSZKkMglgEuoXAEzWotXN7FysY6LitzU5qGvGRAFAZoqtuCaFBKab18bEjjeY7zZtV3NFiQBFZhIAVVIByCrAICtgMhoXgEm6uTTWcXpjdp8EJjEW3uqaKmkvVS9Pb4aNi6zq5vJ45PkPJCY//CqTJSkABFxWGj0MXOvj4vg6ACAbrQX1h+Oqq9o2141T4g81BjCkzwaEwKnRZrdqUCiSbUvNynBaPLHevGOhrsZ7nVM3fiKOlWy5BHCKr50JLWbljPhsyfrobDLA0Ol/l6YyIY467cgMDzoYvUnpGzPetqeoGhjMHqilXuClONGnGPNqR1Gd3DlsrAcTR2g7mY4UrFFcdTIynLc90rUSfZ6DQTkRt3ygtKgLVvvFzuF8625QSg1W/faUSt/BjywmNwqG2vloOtc2S9+7/cxpt9+Fginno+kVh5e0H7OY7Mj6qYz5nZ5PPihTscEVz/mKE20GDp3SxykQ5dexgWWvDLCfiHGtGuVcZNjriZhXYwNux42cxMBwvdfLRtpM3OPpIIbpeJ+vEy512U5K2YpaTKXe1o3M9NxCMR3/Os9UyQBc+KLt1JheUna8M2Zd2TBwmCguJnoXA8yTN04lot+dtXXD2sxoJPmCU4dryrAzcekl8cw3eD5t9N12y2nCDwu0XMplD6UH250mnKgHNqfv6Tee86nj+d8/+WSj/PEt+rBGRJ+7j75w7+6o/etN4z7TvL+7Edie3i3oZQqoh/xvTW2Lt3lxsq+nhHu+k1dhrf066pr1QJRXitCqBkTKD9rFcKD4tiAIwnxYFALRz7/8pVYMhsZhoHh95DKWvum1EtvrNw/9q8XumumRgUL5Wx/dT0QhuaVcTd3Xch/AmeJP/dvoxycT5HmDsLV++X36mufI+jA6TS0XrD2LNXNzX4O3yFAXV/KY3hO4WUA70lC+Ayzd7zWRTlH+d4KOJa8GpRCIiITy904Qve8pAYgaHmHA9CtAiS6H4BLgRaI8Rry7RG8XI3nI+9z22D5jaRQMS0RENPA/YQh2yjQ8faazmWf9f1D8B2uqY/bHHVmbAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, the straight line AB is tangent to circle O at point A, the radius of circle O is 1.0, if angle OBA = 30.0, then the length of OB is ()
|
2.0
|
271
|
[
"1",
"2",
"\\sqrt{3}",
"2\\sqrt{3}"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHIAAABZCAAAAADH3S9UAAAHn0lEQVR4nNVabWhb1xl+7rXjeFRD6aYShWhTMzuLOqfUJS011KuVr8bbnC6loe1YRz1oXIoHTUlGPQikYx0L1F0I1MVdAwkso+nSbYVlq828WCb6UUg3pWCThDi1TFqm4LDYqFt1P3Se/bjS1b2S7oc+8mMPCJ17znvf5z3ve869577nSIQX5m5Or/xT+vwfALYE8OCa3lCX0UBIZaKTa7s91UGqpKRF0eWZqUR7x7ejG9GzGoDyIa4unv9E69uxtaOKMu3e0/VRmvj03eNfbI3HowUzSqZcm545H3hh79ryG15O/THgTQk6IdkffC5JUljqLOW/PRsYuGCvGnunK+uorgQnymt7IidzNroKZMfDT163GLNwZCHug9GBMjMcHM2ZupxJXw3+dMkkHebCUL2U2cOhkWXhSGatX9ofOlKwbQzAPle3FCBXRndy42LqV0HJnAHlA8w6M0JHP/qocwYA0llyoqN81rgOH9O+0cgFH6ZakAyPkwtxkmNH/MiXU+YGt2RqYyTTXcP7gY/5GOAnmGXz8ubjdx9f7cc5Nnz+o9zpoH9xmwGzd/tyTSVGYvPXvaUM2Cgnwn8i6T4xHHAqFEjWQTkbTtXOVUTyK4EPa6Zcip6tn5H83bpgqkbKXG8pjnV4lhy5NzjrR640Yn+s/xaU6GsyV8dAbm46VhyVLnqKPRrtydXVNwuyXU+um/cWKzr2bCRD1ulRE+nwvmjaL+Xy11INkZGkIJPRQ9HrxQsnyEYsj27vrj+GBUjAw/eHfrDzRrVVkS2WJJkJ1vxgrdJHkvOhlf2xJXdJg/K5Q7YbG6AdPsjnu5e9KWfDy0WyRkdtJpTmYLfrEggkuedYg0QWHB4kn+rNutgOkonOXPMos+EU9b29LhpBcsfJ5jGSbzxB6gO7nDlBLgSVZlIuB5bIL/q/ozsJyOC7T7c1PCctCH7vD0D7+/99Ol+xUDPnZczne84vJnpIMtu712EEgZc6m8tIPZwhBbNbBll10slIbG+mWwG0PJIAJAT+fnEfqj34ZPxla5Mpse3PAIBgIvlS1XY90PDjtRyXwoVCJnawSjMuNjuUJEPFl+a/oocroynPb262X4Gu+UIhPHPylxXRvC2Um4uUiM68cay8tfXyToCS6/KoZtxz2SxGz21rHS6jXPgWIFUdzPVj8wcW+umewLO2HrXevBPuS8A6EFyxXMQS8dYfWvW3rtyBJvcR+PItaye6p3a0P2GzyOtdWRzkU7Hu875WDYKZqL0mGXy/0CJIAmbRAzGgx1uKJHkrWFaRCE6ULloBQPLj2Rbg01dc2i2uVHKvlDXs/v7F4qcD5DWKUe/GRgA41tX9qOQiZ7Fab7c3SOh4IVaqiCzTT4QmAQz5XQCmu6pWF26Wg8vwMWIPPpOlOvO8z6F9685KbzwuSbL0HgCgL0VdUZS8k8WCJA/ESXIi4pWiGwPi6otM7C7XIMg9ZziJFEl5wxxaVkmrHM2XAEy+fhQAqLh3Li19TJ5sW4dZS+bU+DyRoF3txzcBAHLssqnZCXxzqBsAPnFPz2j9Q28B0QMduGQZK0XF5x6+Ay8OdQOQO+YMeVVDXhWgpuYBaqoG44+AfmUnNVXD5HdXqxqgqdRUnZqq2ynf/vfrALChE3OdlQbN/0aWfv4WACDVSQpVCJWkTmqkKqgK6kZJ18gFpFRB7QNcENQ1ClUt/GxxVDeZuYZQle/ax1IcQ4okkQ9kKAzdIk+hKIqSFyopDJ1CpVA3/V4j1U1DxWth/ixYwJlCyVyIWFu3mUbJcjwBQEILKWRAbmtrK8teSqsG3iTSbX3jrqEsYWZHZd1fHyU+u9IBADIGzumQAMiaBEgUACXkjYdG3gj/6Jo2aUNq3LyuivWbrgHA4nuYHqhsndwlaf139QMAeOkbiiJIUiVJoSgqKVRFpfmn5m3VqqKaP/ukPENOxKnfVbZmFJwAABTS4JYPBMengV9MABgqfiA4oxUYPPEQAOSrJKBrwy7jKXdi0F1MIhbvu7EaumhpaZTSwEpkIeQqIAPRB08DrW2NMxqdPNXvzojb8OF+0UNCBtC32e+M84HR/vu8REgjCdMkZEJprxe5kRzdF/5Fkzr5ky+95ilj2FZIqPla6rlhPuS9rjEm49r9IwB8LvXccPBQEJ7rGoN5OZJqrHsGktGcZyctKeAbjTOmwwkfgTHT+a/1NDw5s13HzcWVC+zp/AZACbs3/tqfaBHWTYt6IEb6HXNoNhiUghSNbs2cirllRCsoDZgbUL7uLBNKRnzsV1RQmttsdeBUOOFXtGwzMVpnPF++x28fq22Zvt1ec+7gP8/k3lnjW7ps9RGaau29UWvuYPGh9Wf9M1Y5PTG63t/2tzl8kuFx304ly2MpSHIiPOh7k5dM742UBo6voW53rAQAu65G7//ZSlWXVODmSw88MN9nv792x5IUlgMbJfMru5B9NXjAY7epCpyOpczviZxQnDxl1GbHw0/VEAFPytLhGwuJFVODxuGbWmBocThiRAngZ6UjRvaZ6nTEyB9cTjVRAq/MTCXaOx75uu0g1TU9vn1rRz25RkpOlHZlczenV1KwHBf7amNZY7ezW7cJDX9u/V9Q/g+UZBoETdRVEwAAAABJRU5ErkJggg=="
}
] |
<image>As shown in the figure, it is known that BA is the tangent of circle O, and connect OB to intersect circle O at point C. If angle B = 45.0 and the length of AB is 2.0, then the length of BC is ()
|
2\sqrt{2}-2
|
272
|
[
"2\\sqrt{2}-1",
"\\sqrt{2}",
"2\\sqrt{2}-2",
"2-\\sqrt{2}"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAJIAAABjCAAAAABV3gbuAAAHjklEQVR4nO1bW4zUVBj+98JiWKETCCBK6KAPxiw4IwYVjWkVYwwmzIQnY0w6QEK8PMwSJfKgdhOJJgqZNUYeJKQTH9QHYUpIvKBhZg0PRowzEtxEhe0sEbkE6UhI3A47+/vQ6f20PbPTuiT6BbbnnP8/p1+/nlvPOdODcLOhd64JePE/JRrEQmn6725yx0EJ91zvJnsclI58NtBN9hgoTRxfML+b/NFTau7dwNxklEZfv7K0p5sCIqc0NrTi0oquSuiPiImBi3Lf15fTXRURMaXp9/cMtrbc7kysNYwQT1NGxJQObBuE1p9LjGijUqnVJ9mkEa9DMs2nk6ScMVG6cODYbXcp8uQXCzgAqBfln7j0cDJtd6nXKiONXC6QFcaEEgeCRDappQznY0JEjItShpGUALNSSImqjy0eSlKKkcJ8ClyBbIiBklpgWUliwx3FTJWUHDklVWQYCRFZicKXEwmpEVNSRQYyKiIijUyIoqB60iKlpAhMCgrtCI1MiFVOdSdFSEkRQChzVSNKJxMqVo42IqOkCCAoKqdYKXQyoSNPhJTKHAgKqo4nppQJFde7i4RSmWNEFV2MqGVy16cIKJV0QojuboZWJqxm7LGuKUks2x4a8pLbRisTSnlbpEtKEmvetpQnWGnLyZescDeU1IJFCBWO4EEtk73ZzZ6SKjL2KQZxvKKXyVadZktJFRmubIuXRKIbtUwolozQ7CgpgpMQYkolOtLLpKaM0GwoKQIIVWdSoeDjSy+TWUTnlBQBBMWdyPl508tkltHpp2WFXw1K0T2bL/J+/jko0hbNG54dKVQ2OmoXfGoS4mxqUyeUSj6EsCoE5KKvTe0KSk/JGjk8sPe9hHy0d2j3/7SUbCOHF8E3pZdJL4eKkmPk8ELJBOamlymjIFK1uMZIUh6p5/wdZN/2BgCeRjczccm3zclULc49chAghNjtMv3xwuh3H246R3YsC4ihL847chCQCnOw3vrJJ39DxNHNNwJKCqREGDmIdwxzMGWaGDqOiHhy5WRASQF1qZ5bDUoxHVhPAABqyTAPoza19qx7DABgWrtGdkzWwFqrPP/Osu0vb33eciWPHCQ0wp1GRgAA4PTRZwEA4JeFy30oNWyU7tg8/819B6feMAlleZWKEI1KhkxjC9cDALSOrVnsQ6lmowQn1yyF3uVnEQBA5rN8fSRBRQigQeGjyzS56lYAgF8/3t4XUJZBaeZLfh5o3z7RA1BMDndAiA66TItv9ABAq/DcpkDndl1vDH3e+CG7u4mYiZSLCRYRf7zzLCK+95Tq1zRF0dbiTvUtOXbx4NvzAOTwVu8qh2XEcC8oAty3e2f5xEt/HUkEs0dETdPwtR2dMkGcOfc7tq6hKJZTbDnMWe+bbozXg5xMlQZgoDm2sdM3oe7aNT6+9ekpSAJfG87mGsHuem3qv4cN9Eq2VUINT68836FE1XUVRJzaomGZQ0QlwxRoZAoGV0ajLsnvDhy5As1mE6DZBAA9aF7MUPsvNJsXtu/kAKB//QAkAACSsjzK18JlCkHCUsn8b/6zXdCZrGkaaq8+0jCfjdEvqgi+a9mUMjGI7WHXzkDTfCg5/K4MjWpmQSkjUOXYUsANw6eXKQcl1FwMAil9D8ctSrb5ksToM0MiQmXS50u9AE3X+3THSclNWGRF0hWrwtQT6ZFZ16ZKGvS6pLWft62ELpn9ojmTNU3DM0sPaRoinplB9yJaOZUqIxlhMumrL7YpnObjSEIrz19DxPFDiOiZw4lMXiVnC6lNejkWpU4YIWovPrS3+MonekQoOY0K57OrEyxTSXBQ0rTOKCFOjStG0Pu1W2Ldq9k6AmXq+Gs3CN41ATVP7KSCZJrNmoA/CpI3rcqRxuIAmaSCfo2GkrWEZkeB0TedHPdlfQsxpI7m6EIiS+pxhuuQHHWl5RIjPmUUs4l2KAKN0E8mxDKbqrpSGDVYpMh2moyK4IEIrk6KuFOJKEpGKLLNL3KjR0SFY0r2OFkm20p+ZJSco4oDJcbBlyiTbSU/ul1L33VmvZOyYiSZ7Jkj3Eglb7HrqNo/GLwyOSSOkJJnR9SBAmNudntkcu5bRrkD7t4RdVmtDwaXTK5niXRTnrDDbkeZbe+0OmVy779Ge3Sh6tlhd0A1Oim7TIq7M436NEUwJ1T0DwabTN6niPrMSRin9geDKVMp1tMUOlRBCHNgRFOmvHeuENFMwIZEMZ1tBDvIchrSowBQSyflhNcjapUQUfEZWS2ITIpRlYy7YuuI55SXmCoFOygZSLEi2RbTWTg1z0lqgL3MQl7xscV2YlAtcH7L+GrB76MKERF7YvyFhVysZXneVX8rNXmMy+Z6Du97cJly/y5CtjgpATQqlUojmTZZ1etjLM/nAACup+S1Vx9+a4s3U9THhp1IZLMAlUbNiKdzyWQ7WFtyJwwOXiVkipcSAADwkCWkfvX4IHw6vZlgiffF+aPJrb3l/IYdi0i2OFobBX6+u9Haf+9Zkmmufhpz4gGmd1v/RyTTHFFqfbMRYEZbQLLNEaXLpx4F/GD6GZLtX2hxBFSODu7vmxg4vIpknKsWF4D/yi+/usM/4t4mXYFt1VEAAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, AB is the diameter of circle O, point P is a point outside circle O, PO intersects circle O at point C. Connect BC and PA. If angle P = 36.0, PA is tangent to circle O, then angle B is equal to ()
|
27.0
|
273
|
[
"20^\\circ",
"27^\\circ",
"36^\\circ",
"42^\\circ"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHoAAAB6CAAAAABVMhg4AAAJmklEQVR4nL1bXWxUxxX+rgndqnFl0pqyVd2sg9e100VlEag4qpV1G1Q5wjhO45Q+UMlIid3IrWKEJVzVjYnCgyvRYiSbEiG1lsoDxCYLCa3WituYxmlISbt+sIIBG28EjQyW6JIl6l7/zNeHuz93d+/P3LW9n4C9d+658805c2bumTmDQgAARjb5UWAUaT+LLxeaOEXd/agXAAEWlpo44f8UABRAKSy1Eok9sbEYBVUZQBEBHD2EbwGAUliDK8CJAeUxACALbfBIjAxtBqAoBbX4Q4jsfxeY0e4KqDOAg0CYjUArydPzFCwYQJIUFCRju9fVHr1aMOqihKEVAJcefN4x9f3KA+9nW2aNXEDXjCXvGMkrndWlLecerL3WCWqtiwcD2t10X0BpOHm7INQas9DUJklGT+8t9h8Jrym1zqVFSm3t9mKbp6ztz2tHnXG35B3LHF2TR7Y9vPdP82Zv2w9FCwmkZQSpUzv1zq2TDetq+6ZtSRwjU+tctUmS8eGW0urOK2tLzcG6rIJkS8YPeEtbhuPZxatIrXNyClLoKab7atc9e2out1mrQ52rdgbmB59z+Y9MytYupNwsiSXvuE19F9vKPO2jEsT9QN1ChzS1YH9T8ioHqaJwt6947+mopcFn0UrOoleamox/PWxVYxK3Xt+DXf0R0+cLVa0keXDIATX7mmSoScbO7CvxmY25gY0xkhwIO6GOu83FczDW4XW/EFzKKV+oMre0ObW82lrvXz263dV06k6md8zijUwpOWpHapMUnBtsdm3XAhyRpB7KkJCkllI7u7al4AturzbmBFMGnx0yZTamjrvDDiaqtOiVbl/JvjMxkuQAhshQXY6MDbVsbxtUGOnfhYb+CClC0MJcUxhTp3rb4SwtSIro6X0lvu6wrbDJguP4WDCvGDO5hvjr+beXd9fvWWf2HABMqNXyUZ9z5k8mwjO3lscBIIAvxyO39pzJItdzG1JTwZGZPzrknTgXvLNj52PlypMAcAk3bv/jww2tTT6AikbJrHWVSUdES+VDIkGOtpd52sczy0iOtpV5OsazCpMwo2ZPi7yPDXt9pt/wcLfPd1F+SiHJ6MYZSeL3anwXLQWGvIF/OqFmT4sU8dWGskHSehiKfndz7ufVnFqmt8VSZ8nRuHXPCJKMHSnpyiqyoOYr+y3q0q6itc1R2/ZpmK+vj2VWYUFtorZIX0x6u4wkjLH0c19mfRbU7Gmx9vGQe1iemeSgOyPitKK26e2BMqn1iEj/O+4e1JVZUVs7eZ9/zuKpMSLVg+kbC2phqXbIM5exPpbkLkvb3JRakOShl43LyY9L5Vd/+naNuVMD3NLgnCsxMeq815mHpXHKlxxj5huEVAAcwDGjZ8tP1R12+GFL4cD029ZfLmu127UAKq+V5tKubu3ChpodRsu1sPt+PqQJzCWc19rNTNRu6NNJOMcr+6ypk+joyGEZ88SNZSUR1YJOW2oDtf2DRoIOcCwgRc2OjizLnvWvkJlL3pAUdVptrQlLFaGVUvOsfym5M2yFTft/k7jSAsrRDT/Md0gnhjPw4wcfpfJcVuj6wx39vnTw+RXmChQAzedhN6WQJNt6qPv2uVdjs/5yNYUM9XSpLgr6oHoVmEn3VYm+BioadBP5haaVmTuBZy5IGTxD7arLq6J1aKfFl0uP/Z7DiaubtZ+uitbLX71WBEBVVRvBXw3cT1y9971VYca6Jz4oAuCCy1yGAOBN9fa0xNpXypDVM7Zupg3i7qTaU5X2tUqNe+9UklpVVc3wmvHVjB+gYvfvVACqet0HqFBV2PWRHbZcB0nG039Tf3Q/goxPl94RjJOe64zH44zHubIPJ8Pb9AZXXUhqnQEFQEXDCQUAoiVwwQVaeIccvnIvRe1KULpcRrWSid5+8HCqNaYYfXxbTm4yB1/6vAg5vWbUi4pS8dQgACxnbwoZ4BdTE522QusXi5AwNFyqC4BLVV2AS9X/qIBLVbt6VZeqYj1UqKBq3ER5LK7XTaR2ftN0nGRJlLSLCEer/cnljblgxJOmtvXYsFslPeb7/s4Q9qfHta2Jttb8Hnjkv5CZrkYURWmDlej9kiS1sWNnQOnpVeGdhOkWYxqdP41x4VIbTIYCAUxWynyvk/DXnET1NMwqTFfc+a+7xVh/PPjAREIBMF3thBo9var3Y1spZeS3hmvEzPZNVUiFCik09U277aUa20imcj6GEEslc86ow+54tW2UslClZVyaWmk+ukI1UrFZwkQAttacbDpv5+C3r1UCwMj5l2DuFcEmudhMr/bfbSPShaohprJ7ZpCMSHXw+29GpyyPxBHrdw8AkS8EXreo58MN1Y60FiTHvG22aTs2AghbSvyyy2ovxQR12y995PAVA1Se3imz5srEqxeiI3KSNNfqbPEOODB4IwC0koGXVr6+rgxRSKyvUzj4Bherejnm3brSXYW+AIXM0j6FH8XIg61k4NDq7KXI93XkXjFwYzPw6rktJ6Xfyu5/ADi2y59wBkkM9JIHN8YoGHjNHc06N+IEtvtmOWhUgDpSkGPe9me1sjxSnundQmmDRz4Tgu8CChD4xvZ7hwE4PgapAEDnF19LWl8SoRfT12OVd/PfGd6S/JRKUzeGdTc1wasO9sP1kN4PT2EWullZMOhnqFzLAgg66XKpLIA1/MFU7sOJq8nmPlLIzXGIoJ/sl8v46DC+ST8PSmudqZzwB9c0z2WFoJ/kZGWXnL0FKZbbHWT3zGohSfqDJKO1z1sfv0pjvv7prAA1H60FmVCbWibXHpmZXK0KW2phcEVSU1uk89eWcJi/tkMwGTGMW2TtBUkOewNGYyF/avrfTF4Ne79tfVbB8Ele1Jrpg1vTJTknNBLFPyvzdIybjIKVHP//2k+eAzzl0DKBE+fevLujprwcAUA7l/L+lceam8x3F1dArf56MQxcmwNqXHhkK/A4Zm78b047jfOk8s2K736nzOr9vKn1R2suAXNXFU5EoV4G3FXAtpLDtjU8lAfrM28BGGpOFwQyHn8SAS7nHvvJRT4u1jjEUObKJtuRZKY4x6sPBVicqUdVTmnKJoqiKJvM9jJWojXJUCvZaL6EbQxroasd8qEeUNIhS65lF+oFLZuWhGODAxj5Nwe2TWjhfK4v/e1RBUDlddtq8qCOfObHi1UjZpHwO7sAYLN9xXlQ/6Ue+M+1CpOni+88DQI3E/8hzwrOu7oxzIWqjTGTATTbRmYfnjWGY+oQAMD86PxAL0k2/sC+phV8NA2xUDVB3rRo2ppRazaRsDYp/g/rEMDcfA6cuwAAAABJRU5ErkJggg=="
}
] |
<image>As shown in the figure, AB, AC, and BD are the tangents of circle O, and the tangent points are P, C, and D respectively. If AB = 5.0, AC = 3.0, then the length of BD is ()
|
2.0
|
274
|
[
"1.5",
"2",
"2.5",
"3"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAIIAAABrCAAAAACeIwVrAAAK20lEQVR4nMVaf2xb1RX+nh2Wihk80UCNMIRRV3JJV8zyx9Jh5FR4alg9KWhhUSCTMi0akzJGlHVTh0LDRLd1ImgZZFJGJ81oZoQpyGUNJUwpdVozOgKksHYpqtUfS7KlpKhhTlFQ3rvf/nj+8Wy/9/zsmOyT7Od3f5z7+Z7zzrv3nCsRJYMScPQGL0AJlErvnwdbGX0kQH4YICRg9QzKogDgF7W3VGL0VVB47o65Co1fLoXZpfobrv7/Uni6C7dXjEFZFJ57Urq5cgzKoTC7RE7cVjkKVaU0pgRw7qFXgHOVYwDQKoT6tQeYZhvQoxYJy/0NIRl7xwo4Pkso0zWtDYW1mgQTCmvFoPgTcSFxbO4M3lkC4PTB69q+8SYJzwc3VI6CiTkCF8diR67c/lX3FvicoHTpFE7MTp64PrAt+kr9/aG6z57CS5GD997ztYKB+N7hX37UumnhFez8RpNdx2RKNiKDh3V5nysYTurXXa6e2+93D7y3t766ef/8qv2CloJI+RlBDrk6Zwz7RJpIzrS6I/xPuKXa1zdVOQqp4cmoN3TSpE/LEElyMugbIznaVevujC7niVgFBZKxhoa4WZdlR3ryx32B4yR5sr/B3jxkPG2lUujyRM06CI76s3fD7l71x0K41bGld7ISFBabmgyMMIOOfs3Nx3e3pNuL8S7PjR0jy3p9SqCQ8Owu1kOuSeTcdtVpNDA94EfomfOroDDmihi2TFtZrC6vYsiVYzqLkXZn3a43S6AgNNIH3WbKTLXq7s2viLvCea1i3ZtrOoaLaTRNQfN7wGfFz9S+W1B0zhsuKEsMBBEcTBSUm1IYqy3CQJCCU7U6NefdcbU+6xQEmXyhvcbbHdd01vUZWQqJGkuPVG83mS9K8IhrhoXlJI/v8jrbI4tmEpHuuegZ1hNRgLqYbvGQT6P5XCnnB0MIDEwXoUAqwQIr00WiRtav6Go26ZUc6XB5usfNKTwSUq/FpqG/06CNHOgz6quuvSd31zlaIx8aUoh5ktYo+EeNahZqp0x7CnLmdyFbQ/90XnGKgi9aZOgU5p3G/ve5gAUBy9FOV23XqPa/qhRG/EZd8rC/xbhO9hkoOx9TfT5HS3hBtAFAD6sAQNkdtrjmeunbxnX2vbumrKzT/h5/59z6dZ9eqvnTpoZ75frfgiSH0tZczBKS1aZONzBcTEKsL2j3dkZS77EHrpB7ekBy2a1aiBDFKAw3mVZPegyeWJL879huP+q7RxbUsUjOfJ1k2yBI7u0sMnIGrUM0nar7B/XL50e6ffDvHsudw/AzgnvcV0DKrnkKSyu+Fce8ebPErYX15yOd3upgn45TbQPQRFYBI74NkCzt317zmWyiKAEbXX/doS07FY/Hktv9nV/R6zB7Wd3DVAHhdlCytP840GxSKQFg+x8yFN5+IxZfd9fdu283knw2Ha/ijNPi0oIrrqKv/wXHIknG9jZ9ztMZTpiqre20eoUYMvE2uYjXFTeYpshYbwC+H7xQbPUzA0B9EKukI0ELKlD1cF8RbV2Kv/F+e0Pjj/9ybXFhbpEWJvHGI14r41PCppE7jGtnJ47FP7ir0R75wIq0HEc87bKqB90lG0lyen9HrSP0qzg5vOFqVQOCDANNK48Wl1t1qsEaa+DAfXqlJ44ei8Pf+IgPAAafjH3/5AYAkGZv7iHmrho0fu+kK6pOeyxT+E1+yRvHJuLrt+94Iq3Jnx58a8Om0/cAgLyz5ynwpj1fNHY4mYoHC9ffGsSgRhhJXsgu2QS5Mt4XsNc99MJM9iFZ6QgskgNdqhbcV0gybLxkzAD1x1JC9bDHfYUrW1UOA5k3yeLorgbpyz+KLmTjESSToeZlkqNBklzZavC20KNwi8kG8LEmkpxwL5FkYFQI8uJwlw+B3vGCxdNiw0OkIKd8JDmDQ5bDDFWffN5Q+UefmFZ1JgG4NBU8G4/FZ7b7n/HrtL3Q1Po4AOCapRxVW3D8Vcl1hnVDPV4AOAsCeNF5q+xv7KrXiKSUGeNUU1+nOmz1EgC4tp4FgNl/3FuUASAZTtDK1kMkybYekgx16luWuo29MZpRyPUkyTAOkTHzFU4KJqH4GdWHT2CaZNKRFJkR8xF1Hc/8XnSq1wkAPZbsAdVJClmWlcIqdRZWtnaT5IjJHxpya4Jjs6q3LSHmZbtmGbBB0olFVzU/DcxeFfw1YLpUeHzgTU18dNmh6teCDaRRe44UepNAdWWlWsCKc97gr8nfbcjZN6sPZSmw1agZR0VRQEWAiiIAKooC4PkVWVad7+E7a5RUKyiKUBShNsSnLR/FnNq/NLe+hP8PALBtPqNeYYck2UC7nQJCstsUUNjskgAAvLzTDrVYwAbabRR2G4GPG68fqc4II4CEpVd/DoWNpwgAkk2AAKkoANNpClsqccSD98FmI2zqMFLqI2bvCj5rzwqTAJzcVDKFLyUkADZIFLQBkt1u15hmyqreum6jnoGd3vbwE3lFPLOlVAqYdglFyEzbpKyQgrJCIZOyQqGQ5KOPZYoVCjn1edM9km9aQnbMlxqEBl3/THkFWZUhy+nv9EVWPFOaYlmWKcuyEnW/XijvuLe08UlWIXB0s2bSJXv2O3Wh/dSKT3NvVz+//9lYYV6GsUDJerBh+3iqt1ETSdcv/fypuE5mSIptLyJNB6mtjJF3IknWazaEKUV/rz4/kCdI8kPHYk4zK7DBve1lAJLdOF04e0GzQpAA4NP7/53rkNIVf97p1NxZgw3oiBRp83JzHr2Pd6w74NBt+vx3rA+dASlvKLL5Ch7MvZ+vM8oYJGqtz38GFkIcC87lHN1O32q4NG2xvmjNpbDsPm3WJJy77510DRu1NA30mFLIhrt00ZyTJhl1GYf2AobkilKQPfH0RBc+TMkvaOMPEfeUoaxRX1kHKrKhT6PuUe2SbZ/HOMphOfSpS4G+qOGhkI6h7O+uejVkp9s0HCiLAaGKy4TBCyA7M4/s8reCJjGhhdqp8o622FRHFgi1GfiN2OZ0lG0p9LkxfYcEAEpLh6+8cxdpv9e//Jh+g2iL6sFw8e4tf7Sn3j86L6EfXvd4GcOrslNQE0OFuCllfwlPv259CkO+ZLkHjDTpsfVvqz80kgQnU4nRSVfEbISYq9ykuXGSMJ3w61VTVuMmDkkInnOb5votU9BNlXonSTLimtSZ5kxe8rxOqrQ8CjoJ4+lakhyoTZgpOidhvEoKatpcO9i+bkHu8l3U76y2zEubr4KCIAsPDzQcodweSGYbFEyG3FU3q1deBoWUjNwjFPM1cvKeVqOknCC56P+mxfSiITJLspRfc7668c4DGadxIHS50Ttcne9LUs5KAl7c0jjiyBGwCteUheY4TXDQs8+Ef/o4zeqgG+eJetRDRYtVNSa2PhmsGyOZd2igQhTIIVfnv8iIwzA9rB6tyjBYDUwPmHUYTLNYfNbvHihnnVgKBZIjzfbQgM4prxP9TWg1np6SUeyw4euf1G1TDxsC6cOGjY07aso2/0IYUMim7C6cic+d4btLgHSteuTSrYm6ApZivCVTWLNTryr0NrMS8IAkSdKra8RBz0AE2XYoFfn97KG7pZcgfxBgBY+9m6KQAgHgb41XSz/pKTmEWB70JycMrJEaDBQBvDbN8ObTazMJ+oqYvezFg1sPlxS0qiAFADi8E5h//7bSAmeVoyABeC0Ieac7AGlNnJSOfUwAACzllSqB/wHUPSB+n0m4oAAAAABJRU5ErkJggg=="
}
] |
<image>As shown in the figure, AB is the diameter of circle O, PA is tangent to circle O at point A, line segment PO intersects circle O at point C, and connect BC, if angle P = 36.0, then angle B is equal to ()
|
27.0
|
275
|
[
"27^\\circ",
"32^\\circ",
"36^\\circ",
"54^\\circ"
] |
A
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAM8AAAB1CAAAAADMu+qQAAAPkElEQVR4nM1cf1RU153/3DeTkF1JMHUU3EyKCAQMusGqq1YtmOiRVI0YScEjrNgqmGJX94Q9jUez0C5pTENq2hqKsVuHghssUIaYVIhah0RXWchCthBRIQ4HLCieBALZxTAz3/3jze8fb+6FGcnnHHhv7rvv3u/3fn/c7/ve+x4jBAjvhz8BgFig2psYpEA1NP5PDACmmJ3A8XPwm3MD1dRkECh+fpP41wC1NDkEiB/jF8tnhgIImDVOFJPnhwDgtR/jMWDqzWfy/BADoaSERQWCmslj0vwwgBlHiOrnfg20DVBz13SeWZzOicG44zzQja+BtgnwM9x2ZcAAdPcBeHQu7luhjV0UCoAh/3W0JW56B58exdTPp8y/jhDrO3fW0L/y0eh/mIbIOcTQY8Roc3fvBe3qNWtn3QMiBeCfn85/148mrU6KdyqyCaHDYDBo0rI71weJuImAFDFYukibf8X7NQsREbXvm/nA/d9vdy6aSijK59ahY5szFAefGLBc+qwn9BvPZ4RPte0Aiv66d3ecurv8uy5lJLNvHwQGGNuT0q997+bxBRv/YA4OjSLwyc/o/m9FdL0W7uaDmfzTuVCXej+0R7qepr+tidjVFBQiBeCLH/1jn18p1Pi5mQDgZCYAhP+s/f7/Kln8w9iX+wJJnjDc5h+rCdzMvlO71L8nZwBa7qy5BAAsvNzwfEzDcOny+MwtoQGnkxdu8pHZaVmc3LqUY7YnACcyVbafye2Ji8de680/G5V9znr53kdAru7OQkSk09Rz+0eT5jIVFtj9dLWmmohGdCsjD3YFxgELwnP+MeXFtPPfXx9PVFDg+N2sfZGIiIwFkcuODcll93JW8vAHwxs+bkngF29FOuzujgAsbjnz3CiAyEJj8cXIrPeAexumuvPzyZJIQxj/7aN12QBIthMGAOEXH1jWDQBYcfxWyq9n/3NnIMjkhis/1LB8b6lKps6fKRMA1CXMAeAigpDyzEWN1tNt9S3ajfOP3gkMrVxw0b72MH5PQEREKUfI1X6IiKh2hrMzaM7VpFX6aiDQtuXCz2DMEZH2LTQYMkge/FgsVJQwQhYHrabKNE1uqyfxQXAUzvpm3rruhyK2y3BirZcQgjEcWJgF5lBCVXpV+4LMeb+4bVcKWwMBhzM/L+CXgj1UZnorJeC3A4WuZeF57bWfJm48cReEoHo8h6h0MYOCwu0KHSHytB8LEfVqa+365FCr2nTNzgvCOiQCBz+XNT6e23yjINtC5MUfEBE1a7zMyhYaOrYopsgo2hE/7Pp2M60iXkmO3lCR4VtxFpeu93TTDGE7W+pHVyaXjYr2xQk7P9k/Wid6b9OXaxSubsl63vuF6Fd6XzJod/xZtDsuSLanmM9fEL63PEOldPlgewM8p2UCgKeO9yX/9NH93cJd+oesdiPaFquC88OsaZVPvNoPEZ2NH1O631gUucgWsgYMVn37yfpFAMQc6WlNonKFp54otg2Zt8vfPGD8VVNMht5pbAV69wUiIurSTGCc0otIFqgP+VhoYMaA7dSl3AljFRsi8oQdq2/I8inKE4iprRh9LxOKAmUIzzqkOJQAhWw71Tw3df6bt4T799UoEQ1ohoRjKcvxlbZTX/YjN+x5p8UjjmvNnZF20kQ0+ZBOAoBDO8XFY83rKCN8y2HPQsbchcoSS++kVUXsbglAJEREgw8NiA/EwAP26Mi3fKhLMyKfcITWg6UJ8cW94pS4QAJw4tlw8XGoTPGXnQOA6JU18omHSDzranLaa/uWPH1iTJwYByQAZdkTuLE8g6va9uP8TTLEH+7fUx+x66JruYgblwhtnyWJe/7Oq6lc9TZ29Ig1vL68Z2n+nELnu0RsSgJ+ny1qhgRUpoVwVVVlCghIRtgPLp0zJ62aYMhKpJ3IdBZ5xnGu4A+ILsVPoHUiy9lsTaZgMoOISEKnSfg5AbhoXs1Zc0mf+FRJAHvq+I01xY/+S7egJUhoTBLuz29o7QTVKoNw67L2h24/c2F6yhKxbJeE808K9wdzzTbOmoSk8+Lt2xB54PqRlnkZNfx3SGj8DldFF7mfCk/kbJ8h2cBPjRcsOzawUTd7T4ctyUleyHGC1GPmMx8G+2ojUJnFT9BS4zB/ZW9QbTv1cWzavJJbgC0JRj4dstT1uHJrzgNha2RUzzeZyph3XaCyt/4Js/Zeqf7L/M0nzXDKlHuF1Bmr3B7z8qNmWaQARbHXBCp7658BQELpYGbtjN0tVvn4gtTFpW6EBsZYjvVXxVYRiuImxY8TtlR2LdwV++pNZflw8cPys0bo7ge5AIC+D0TUDfEdIrUVocltPTW4bG3FXZ81pFuP8DSU/9HtUNz/y9pRAKj5rtDjknZQpLY/xBf37ntfu+MDH5elkQc5Gml43fm5TMfxJOcATRuF94TIRLH+910rDkQd9BroSqM8a+slOYmAvMcN6LyxQaR3Nu1LeDyRThJhOz88y5JW/VaeCZwHSxqd5l7kATJdXQsAaNgcSuce/85KvtDahgeDktuN/jdj0cWYrPfg5B3kKdc/bqCViKgerUTxwONulxXja6KhMPEwmRNjujXO278sXta33UEAHonrAjC+NycRAMNDYiMZxD0VIdvPXNJsXHi0S47wGIBpIxzj8EIy0Q3kkIXobNhM9xUcP/Lp1QqPOx+sOZXbL2kRMWwtkx78Epbx8XHlQSx+iLGo1qNgQDLeXyE2iFweZyJgBAyXbZ7VXHBb99AmxhjLJXXoaLjEzCo/DqjOfnYq6gnBbmWPEwx8WaevTtpaGg6sQ13+srTxBT+XQkf83uYiuxMKa1g+eg2OfO7+x3PTjyQPGHKtybYbKbhvw6fqiJuJAGAipraY1YzMpJJAZmJq2A7MdkZm+qL6sAkqMzGVfI0DN2cGgRl9rT7h+4e1jhLjZ6HA9W+r47tAAFRmNSRiMKthYsysYmaTGtYDALOKmYiZVezUk1oym9XyH1/f1xICvLHUUltXG5P9qmuM/6cUIP/SCSmmHQwAk0wgCUTj4wQCkxfumHU9ksCgZgSGsgwAKusfnyf+JDYQ7Nj70meFFSa0te51e2Q58yJjH90OVcdXAQCDZCGLCmBqRTr7Op4VpuT6BPJHnpDHRK/Xz97WGmMvtUveOCQTrY7pMJMKxCCZ1AADMRCDRQJgPdhuJAbLyRXiKxFXYvzX8QdiABqq9Zr0yy6jY5f81cfkozpSfS3GrGKAZGEAVCYwNVRmM1PDdjCpmK345H41zGRW2/44SGmKmsBijDsYGt+umZ5m8Lkzr+QnVn6Q9OE8+VQCAHYfYNU6+0FtL+649oy8hdb2xwFD0uTdwcXyugdSDY97tGNr2RiFdz7+e5nW1X/OAUCMp9dK7jSio0tD9iTZaSqvQ9rpRG+XmJWlOXaLVyOpEAAsFhXHq00VFcLU0IWyybxE01ZWjU3VS31XcGtajXh1Zzwg+R14YmhUieeGm7WzJryI2KGrGks9+W2RWyQgrRI8CyZMNK8jo1Iod+I0U3Tsj00eKusvFWIHIGqN5IzPx8Lava4/e39esBBZiEyaG2IPATKuFMTP3OlYLuFf9VYDiQ9zLjGcjhKJXORE4CnrhlmekbW13V1V1p/6s81Oxfy9qgFk6/j4KcsUsQSZvLId3DfIbfdUlvekFm1xL+bv1kJ3wrjW6z8P7fN+wf96PZ++WMj4RmJIZrWJq7Z3SGCYseMNHs6rF3GlHl3wWl4o9xj3lSyOu/TicPkW4TnOGUREvVzbkZJ0Pi4o7HcJ89qwF3ENlC5TpVUo7i/jggQA2g1vKLIsD9/lVOHBOrTDa+zmLq5bR5Mj6vcMVW0LmXwuiIj49ou9ku7rik/5DGj6/Y/o4LEUpOps/QdkPxLmZv/YL98VQhMjANDefRHKFTBcljKzZstg7fYwEJTW3fg7JQsRfRHR7Gd4WjU+3Y7P/ZYxyvbwhS6VJb0luulbGXK6Aw++sbtJBVLIm58Qdjt39xzxlegmhlF9Xe2yrNIJ7IRShC2oTn+4WNGtmk8KLAHLKJrvcwf0Vyczpr+ZbLyQG26P2AKUFVbbHqWPL09U2oB9QRLMiuKP5S1ey8mir9LPyy7WWkMZYgiI4chQ2wKtR6o3fKiQuNCJiqcl1+C+QY4YYNbr9ZE7rLkm5vovIHCYki5m0Kc7GAtT2LTkzR/0amuJyOZgbO3WZoclHArqi49OSYDtbVvrfdn8u1FiSae7z/0gFSDbO0AMABoqa2fb0jNBe3Xd+SG7GHt9VavIFmt2Z0QhXN57PLdr5h7t5SuF1mEJ2gtAzkka6e3lb+Z5rTV8+tf8TRLDy//t/GI6a3y7LmSrc64peF8WcOaHafQrolM8qQMqV2nBDQb94SbHmkJTeU3IZlt6hmz6FzSOXM2pfvoRb0FCkk4prnL3B6+GGWynrXlabV6z41LQXxV2SQoSW3ch9ZNfqeCmET0fvcs/nHd3N38UDQBoK6u968g1EYPVboL5HQuXpBsDEpo/fXIYbgZbsZ53SYpwZ8Xo5WgAHftjn/4/XX+pPXXmaDGY7z97JBGnv7tgsfuGm4os3miEtXxrbVUoOg/GJt850l+aPGn6hOFFB3URrhtrW2coP9H/a4H9tDqimroK4sOyJ7A1NyDwSKoTw/aEjXsOOBXp/GSt7fpjLiz/3f/M70l7JTVgwy0KD31jABY3GxY6JhBztd/YTVbHxsdq/+Z7HT8dOp7qVHiP4X3RQ3tGn7qpyBpPGtQK6XDIu6VBrG3nX+jZzWkOUU7J13h8LSqkXn94XqG887liu2ILxAD0vfp3C8d+N1KZrprib6YpfB+p7+W3d+XPYi/9fJefN2POfONOk/qpkqgAkzYhKCz6aH9z1RTzjw2dM5zYIcf2Wps6faX7z/OX9/319NeCHY7vcYWsVXxfo31fmHaDnG2a+q9xefHXzijJQ/K7s2PW/6/b99Js6DA0ntekWaOboEaZ3FCwn545OUdhjIrrRN+5c+f7V2mjl4RiTiRg/Z5d34fa1WvWhAOb3gFQtWXKeQGU+BlfkHSUGPIXyq9eDLd19jeS/L1BbbTje4MAsCkrrSGlNTH41PqHb3079tnrYMDcBNklhyXZFok8lGq8ex3igkahIHwZ1ldxhzjMz0JEVJ9D9ExuwEx6UvApn5tXo91KrHJxEQ8DgO633sLXQ9uUv6fqZlrM5eBU7Uwrvbnw4wASNQn45OeRuG4GwFgF+Akte4YSsSuuPsCETRA++bnvRy9WAw07ngMApsTRn1JAN6+5a+dUwbdp1QPI4TDBZ1rpq7iZPNue7wE4vg+rnMCofxoAks/TFEcH1s7/H1L3Xxuckdx9AAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, PA and PB are tangents of circle O, the tangent point of point A and B, AC is the diameter of circle O, given that angle P = 50.0, then the size of angle ACB is ()
|
65.0
|
276
|
[
"65^\\circ",
"60^\\circ",
"55^\\circ",
"50^\\circ"
] |
A
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAIgAAABfCAAAAAAW6tAZAAAJWUlEQVR4nM2bf2wT5xnHv6+TjqwdDUgLhIk1hK6KoRJcVAmOssYJWlHQVNXZVIVOdAlCkO2fzexXw9SGjnWN0LQwTdPQKFMyUREyiVBNU1JNU52wDBvoasM2HBRwwj8kRMxhqRY7Wfx+98edf5999tmlfUSSu/fe97nP+/x47+59XwRRpHihFqsCAGxFtCUARH5UCoziQAQAdD/25CcOAgK/f2K5JBzFgQjcut/waMUnD4Kl04ewfuWnAKT/+ON1/ysJR3EgE/fJv9ZCz5/ipLzQBhQJjh+8Q3EL0PPnoYH4H0AQALauBgC8/mbVP5858A4mTxWPAV21iUTc3tF740pljCii1m5vtJfi9oWATPb92de0rak66cYR75R39IHDuffhgUT6T0237TF8mMyMvDu6Z19tbalImEt6ato9qSUy+WRqc/XnfphTQf6SC+RCjWs6FSEFg2HnEP9Quf5PHzOIW3UGkyEyJOwcIknXZ5+b+xhBgs0OT5ZLqRxkaNcjh/UyGUc2RLcA4lGHTBrGOUhe/sLmkIV75wHS75g2LDfmIPnyY78mi2IxBOlsDZupbU6z2PmqL5uxFwyy4OzWDnKAtPemlwTs1Xoza3bJBAmqg0lnxkrjHDJRJ9TwVTVgBSELSFj1mXLs7824LEnuPWZ/NVwyEOegUbUUidkjnXKh4VK3MlIikM5s8REvkJnxEZNpNRhwtIdKAXJ2b85YkzSK04R4HGH22fsTla2CeBrCZu1dPTkuynOt5HRrs4VMTgKRvK2aaujqyn29s5vksP1EMSCZo1ThHKTiIxlyqYECfZMMMujMVVOSPNqVfGYouhKP0llYJieDKD6TPpjbg6TDTZIMdyueQoySBHLeSeZs2nU0dpRLv0/RDwJqRwGZnAAJ12SNVO2+edmDZEt8SDxpNw06A5AeV+6ave35aZQBJRxjn27OO5PjIDkNIlM4zBzvOpE4HrKfTNGUG0SS7DmcvRLztwdJBmuSTuY6Es/kXD2IW0TxGVeVqRxjAA6akeiJo4tHeSuPTI7NBoxHFMDoa1qAQN9oLwAQrx+YZXj8kMm30t5zWm1NVM/8Dq/5B5b+uRJ76hpK3B6v7Z4nOVY3m7t3oepIakFAdZllcsw1mmeMpb9VPxir8jAfkDTfkJI9Zpmsg4Qqs1cZatHTcXGfFh19piAGQ850c+s0c8SrHiMjTVm+jIHhU2crtOCRd74CAkt/aagy8feu0Yyi6mFnU1+uKR2Nx/WLrPZwxkN+4mnNM1WXTAzCcKVRnoTaHUZv15qRoB2o2b4vh1oSKsM7B0iGd5qmb9aQcyupOZHkKBshAExtMLbX8G/PJqZRVzT97iNMKPY8pqrqxg2LGz3/2RTLZAJYekUIIQ4lXGMUq5Iy2S+Skov7gKq/mdsjywNSkmRATXlReW2A4Z1vMRasNzdl0gsI/7H+iqRTfOYMOfusuT2AzTeNywm7p3LTcPx86W4TKnZNIjbPGllh1MrvGqqwOIW6dsagUGhJ0+n51f7Y5Tv3K7A0uSEOMpk8Exa7td91YXVavoncE6qZ0IbdqB52NPWBAHhJXYmfXj0I6DFi9Gz1OTJG5Xj9FK9TZo5T8de0LBJqbw6RXNwHYPc8SZYDoEQZ0/uq2SNT8phkFsyn3vMfAHfm52NLCuUAhA3RvDgo8ggZv/+a11s/FUJG3zJldm18aSNjCpyCIqs9TDDG/Zd9o4qypVX1Hk61iTHU0tvfih+XAyAq56NAGaVNUMIGBL9/+nEAlECZpkgCZfrvKGwSQkiIpKWNSf8Vj7d26/YXGwFkpqEhx8QLN4f+GJ9MJkn5/i4ZJRklo+SyDO66TRkllyVllCS5LBmV+rlcXtZ+tEucHuxyrKpxdruTBiq3gyT7gN2z38sdtrEw1yyy9p6AtFGAjAKTB05v1BwR6wiFgC1xbtN+yHs+7xU/1C1v6AsWcReM24GJFxrIW8+1GbklUSYoCKEHKzf8C0ISAhA2TO7vrclomKFq7vr7gQ8XlG3fqa9Oui70e9ysQ2R/wymIp156UqTeOd1VQjspB0hRUTdut0kbICSn9vdujFIAEGBMMSj0fwAWPrjsv/rRZsc3jm80VAxgfDcG7v8MAJ56Ir2CsZQDIG2bAnYhBChstztOb4RNi1L9T9QmbJKiDDaJi/7rV2e3PuN8s7YsmlUpxVRt5O22KgD4phlBAkSUAVv8Ldqj4MFLg7VaEeJ/ykBRBnj9l/1+R73jVX3lpixbVkLMzdgn7he2MK2PI01vaG6ea+k1WIDhNa//mlfd6viuknbHLFpHGguC0EAoAKg3/vuoAB60/FJBakf9/mu+UWW70p6+ehTPoTSzUAAXG/DFz9+mACZuvJgniZ7NDjfJkMOXnOKB/iOOFUp7jzv3SGAg9gDZhwFyTHui5SGxp+nJDpnMERzsclTaW7vdppN76SJJBuwkOQaIg3nP1cTW9OY2Ty58/YQCYMbnveJZVb+laevqrNFoIkcqOwtuE19cfPn5Mydqrrm9/6CyTVUN3wDylnUfrrMOcv7wl4IPFIdaX10UAwAMnrlgoRUXXwEgBnzre4LpfrO4DqT4rC2lLe4b4FiVJ+ntrrhFsdyzpNnEBsiZpoU1a6BsiBu0qD0HkR/3WGlmA/5eW1V+7FkVR38eifuriJ0YJ5utLY6TfYA275Fzvj9f0SYFC3cuuNjm4fEqD8m7NZbXnzSRtN4bG+7MPY11djeAdW3dMY9Yc4wAJt/7trW2NlxSV+KR2Y0A8JPrF0RcpSWJfO1ChcW2i22XGN6pT0alrixakDxWBLOIRhN/RgbVu6TFgUTmP11vBJJ27nUUEbDWhjJjkILmutPEtyNMy8Nyxj609lVHLCaN33W2AtoXhZXmmWzdTn0+orC+DToyHpqFiNFuicHGglTqy0rOjOmUokHoU9wFqgk7jxaFkW0jy7+bT5o7JqlC6g6LEoIw3JH6Qp9Twl25lhSsgsT66Vb23s5PxW9quooLD2OQhPTbXXmsDA7aO6bJYt/qjEASGsM9drO+uh3OG0USZAVJllBXZWt/4lSm9jvYVZO+QmRdTHdvnnt31NGYtmeUAhH3xffm2tpLtmXSbPcmBTAzMjIa3rBjTT1gr8blMGYC12d8TQ17lJJRmIPEvjkn73jv+YCbM2L7ClTX1VeX5L8pFALy0KS47egllE8NyP8BUjCpS0CrKa4AAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, points A, B, and C are on circle O, and the tangent line of circle O passing through point A intersects the extended line of OC at point P, angle B = 30.0, OP = 3.0, then the length of AP is ()
|
\frac{3}{2}\sqrt{3}
|
277
|
[
"3",
"\\frac{3}{2}",
"\\frac{2}{3}\\sqrt{3}",
"\\frac{3}{2}\\sqrt{3}"
] |
D
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHcAAABzCAAAAACHw8JAAAALd0lEQVR4nL1af2wcxRX+dn12qGMUUFy8EUePkEO5cGAMCcIVbm1okC7IqKiN6iSljakgLo0q3CgtpkJxKLS4VdKkJVWNQltHUDAibVAVE1c4yjkY4siRDKrNOapRDXbVo06JjR3k863n6x97d967m9ndSyLeH/bt/HjfzLz3Zt68NxpREFE7eU2osC5S0gtsr5k/JAoc6+XAxS8CAWifJ641yUOV/7500IJwNQCYmF13TenniwsAeG47b7ocsAXiHvqV9qXLAlsY7sQs2bvyc8UlgIlHtgP/0mwlF0FbNE3TjgH0TK1AjJuBHd67yGjzG+zF+5rnYVNmtizYlM073yqduC6mM83VlS59tyCBd+pK8ZMdofR8d8uhsoZDDXy58paLxz1/9W4cagRiIficB5heycnPPvrsP8BHxOhfrwevLfUvXV7wArx1Zhvw91jo0JrYah8s1rvVzd9/M9qz/Po7yqvBL7/bGEv0a+w7N/jBzL11XyvkZJr93vwH5Zg4vxpbfn085KbPw9srQk2dcQrrs60pXSHGX3o4aOyMeVXj0fB2k2THAXIcb1CKK0hSCE4eCAWfGbPXRDqzmT0ZqGqf9gLbbXSQJDfHOF/pvyDHtSj+uNE0kJ6oRcmyePbgyL4mo3XSFbbNP0CSvQCACKnGjTeXt+Tx6w/ltRPyllk0s7Emt4Fqn9xbdUXs2XJbAQGgK5LTjAAq9v3DvOX5PA6LJjh8mz9avvht/ZAOsC8csYl1camru/Nma1Gsdu2AYrLisHE4v1SK2+I/KmTlM0tmFMzJV4xnpKhsCQ5JmElwZ+ojU3IW3dXSYuvPuZqGudxicipiZ7Y4gHz5flgdOLpMLvRoXa4Mmdq2NWB5zxfu+ji3x/C6qmM2Zpq9azb1GQdlkyVJVh9TVpEU3O/PEfJhv0S0JPPXucPoUzJ2Eq9F3cZhmyzN5lVDqpaLuIIkHwuPqrkelYk3qzuHgq2ZgsmajTMkpRqaM9/miNOMmtocKlM09dU08IA/3VyGnIV7MOy4kKF+d1wxGbRE2mHk2roSN2qMKduRjJeZ7rhkbPkZ0vxBeJSqNc7BHfOrVYokOyNOtRaEEGR3ID55x8bUyokOIJL8qQPuTFhtQCSFJ/EKQXJP+IulqZUbxw5yXDsgw00tRn2zC08v4iVJHliy5Ig11PnwDpLc9UZem8x+9WNzj3yTStPHE+ucG1jbEBKNfwhcO0wAGl6efhoAgjdIGlp0IjDjpAakOPiAp8mO3/7dex6btDauZGVmgXNZwyozw11uDBvavcD2GQeaHiBfqibJcSi56tZuvf/G+1w8d/bWeljm3238y+x7ncC3l7wAAJra1SVJxsvHMueZgmKG+2RnGteOdwYnSXLI+C9Fap3H89UqZUfNra48n29wbTIabpqL+lMbfHMryQ50kSdldg+SjBvSgz6LGtrprHg8ZnQwVpE2trgxTcuBlN4fkRmbCxluHnqbf4DxwOuZb2emIIWX6Q5eq6wSZMpVnVm7f7HUmasOaB2bFH6NjbrrLS2UVGkAPqiuiJYvbP7KY5kGWkV9p5OJkAwNuk5X5FxQcuiY0UGyKXtniTq5CSD7q1xhuXBl3KH2icAAyba1c9nFgZhaEUE2tTnrKUmeCgmqtHNqQ2SKZGcgnsOnpUXNEDTLx11ARer+uct/gcnKXOChVS0kGbUU3o485HfC7Q+5T5eRTsFdEZLs9c9m1aRuITEjmt/LwfbAXzYpKzNklsXZi/ct3Av2mpbgEEnGA69IujkcJTpO3O1sQQTQs7oC7TvWkMCHdluavu/dMzcBmK1/dJOk691RNVuzzElT07NqYbLS2t03L8pXDAQszTHr5Ws2oj5LMBiky75Lsrqb44iRZC/OZkozrmpTvUkpF+NDJe6RehdMkp9eMSOSlV0kk5XNaf7m9vTdYu9aldtdI1E2i/SzQWfxAsA7VWWa74HngIni9ftSt7pzdR/3rwIAvP7brjJFvC84omKpj3iIQUXrADx1taZdF9ubKjpz2/2vLQUAnH70WIUqiBhS4qJWuRSLlB9e6DC6U+s96ndgoBYiwoOusJNlOfKb+37m2jgZdDowojWqGv3C1a7LfLymLOt74q65/lUACCTuf7hB0YsAls2qeOpTZa4h4JzwwtvrHvpTGQBowKZbH1f10gBceV7JtMj9kmddUARJ9oSqfmSLCDTXO/eeLFfVAKSZSCQW1J3t988QtNLF42v/WvWFnkKQU8tUTH2+haIiPVnsEEuO1hRZMW8NSIJhfzq6f2Tf6TJ1qF8DkCxWMfUtnXVzrk7UWVw0YOKTihXpjQOnt0Ur4Bz+v7BUWRUYI0VCzCfmaSYWKBIJkxSJxDzT/4L96V8iEZsn5xNiPpEUZ/2LVq3a3weVLpRe9ok1b60YRboOs6REEGZxiW7C+hebvRMwi0s0AbM4pJvwwSwuFvENT9+Ttaa5RADTZZIKAIBe/qnVUzdBHeT8PElo0Anr38lagJoGn54qBnxA8hvf2UpHP1UDcP4qJe7KEQCahiJyQQf0kpKS7Njhibsh8Zu3hHZDVp4hDQDUh44eGlkwrV9JHdAoAGpYADRY/3prAdiLAWDHZwcXuatpZLUSd/UoRNIHoEjTAfjM+aQG38K86QN8C/PmPxFKCq3YVpyE+Zs3XyVMmM6owOgaZdVgMK1i8q3n95L75xG/m+ubUnF1QGzRvzKlxiAkPuHA8iF314h0vKuDkU5S0ExIpyvMZXlDHvP3eMAkyXb1XV1H3QlAQ1FJkUwK2hkjN8E9HXnma25yTZGDi6yjrtfJHKJ1OSqb+Pq3tnpJnxKAQyhGx7pzEw7mEM0d8taVT8FLTlYDhn1q301H0Tf/LK0hACz01WVP7on/veA5w/7igw6VFKeq1Lp5KidB1u4coc6mgENIRIdWPfeeclQ5Eup6tlvlKkv6rnBwkXUAjYeU1T1Z4h14uMufkq0H8BcfcqqlYHyFKvKSnUHxbrgkGTfOO9Tq0FDRsA/yObx9m+0AnY486dVwAaBt21VO62INbUq+8dkjFHO1DuEKyXSVi5iaL4CKTfvkJmn3nLcaz3qZZvpdRts2Z7/NGly59OCwi7eldo7eTgOS5JDhnIoGSQrukQbTbfnP9pCnNH6Gah2TJOk4sDBvPiqpbGlJz++o3zG1lEcvVbusTTq/EA3kbESCZCh9IxkwVNlsOU36B1wkkskf7YzkHMBi8YIydt1RMpUc8kJzNdLctxQ3K39kAaQTZDNhTymNRdr6oGsTp3xZUxtJweT6Fs+KLEhyT/WcWzt5fjAFsuY0SbLRPbNA+8C6Ax4iYg750JR4W2vdR2+nWLkXHXTI/1ri7Qi5JwHslM7/FoIrmjfYgBv3kOwp0HCnals9tcvOs4tmW37fiJFDBRquLb9fCC7ZYbyV+hUzyImAbBtTkCC7Kw571HzV+w3B9gbO3FyY4ea93ygAl2PWwzA2tJvrdxaCOte41oMBKXHT73OM2EPeMr4pmqzZVIDBSd5flf2t6uYujKAz1unloE/Rq7dEXllSQHvpaPrCkZ/fGXR/vpahWO3thSm+6p3bnvLSAc/eRXzninbvrogjLuOPuL2ay7RsXu6xpRdcMv6E0eS+eN7eE3rFtY74yQOhG2zvJ/NXcvTJwK3the3fStzNAJBJTg1vN0JNnTK7LPC9aA5J3j9v2RVC6x/PliIV/BruSb+PRfUSINEPvn0R72OzKQ+X5pbXAGxZsdceaR0+13duEOhbAIpqgDvKqytC1DJh2sIp7x2ydsoPAMGBLIZh2C+kTL/lg0aHJxpOlL9fHb8XAG4ENOWtSpP+vDRc82gtAIzedClcLwI3XrcUwMTP1uc1pePnpeIeXwkAj0c25DXVHD8LpYxFWbtCsjJGjsPxSdvloJx946Q1GMlDnstM/weF/Gw1jiFnowAAAABJRU5ErkJggg=="
}
] |
<image>As shown in the figure, in circle O, AD and CD are chords. Connect OC and extend, and it intersects the tangent of point A at point B. If angle ADC = 25.0, then the degree of angle ABO is ()
|
40.0
|
278
|
[
"50^\\circ",
"40^\\circ",
"30^\\circ",
"20^\\circ"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHgAAACUCAAAAAB9ibL3AAAKiUlEQVR4nL2ccWxTxx3Hv2dgVMRgMcwSraZmYEhYuhEGbKxNRRh0RRpLqIDBWCjJ2hA6M9WIgCKVLmyjXarCVrYAWZlGMkLFRrrQFjMQIDuCtozAAqppgghNaNIRGtbaJEghDe+3P+4924mf7ffuPfON7Nyd793n7ud7997d/Z4ZQVC37aJHAgAsogeGZn1kCMxEW1ycVmUIPFLwOK8vAAAgJliAYItDj9bNFyQaAxs1tICpiQHw+gLCNpYl1GLjhhYBE0Nx2p8MtlekVzMc8wUMc0VMfSfbuKH1geX+ZLxHA/pMzble34cmcPWb2oweLQQuTqsyegoD0N+rj/kCMIOro8XEENfQAjbQaWpzejSg19TKxdAE6WqxbOgYw/IEffbWBVY3tFgn12PqY75ANEcJiHVyHS2OO3QINVkHONbQoUutN/3A9S4AjqkYmeuYNttqOtjrDlij2tZ1+pT/Zu6kqXOtcE4GcKMDfU3XO886Fix8Mh0AMSUzqX8ZpFFBR2Mk0lLmylj555ZhWSQikgJVy+1ZW9uiktSlGVzkVkI91bMdZS3xiyQp4MnI3Rc0B3zU2csD3R5roTceMRKsX2kr70mE1ggOOvxERNRVaivrjoASNJs+2WDz3BxeH91gbujecntFjxRVkio5nNZdbq/oj1diUrBEpBi6IaP0trZ6htGFzuNGWhx0+Ik6F+Wc01LJofLPWNKjmjc+WDp+WQkWuYmaMrYn6KPxdX+rM6AHLNFAZrMcPurspRr7cQEqEZFUb6+PlJoUTLTlSfkECk7yD7pdqtXWpguO8lhbxYAl+bXnzW/L4CJ38KncoDiXqHv28t7haTFLEYy/Ou58/6tWAgCvb+2cyX6b1iE9ZkgGkP7eQ/OuaxqrJXJT+zoiIgo6XrNVGWkuN2ClzT80UQ0sEe0GwMFFq22i3SoaTA32NpKiepfaHQhDey/hRDMAeE+PevkpUTOHywOw9ErBOWv0BVKtiu15RLS7koiCX/+OWy2HiAqXRsfUwJuAy5QPlBIVzVw0aBa4f15FErAiiVaPmdIjMlypF9fpaNAElig4ZvTwuwxDarJHhiHVAUTRilGFQuNzHElU7wxfMVQHEFned3KnmjM1VIpe9szzSkRlEVW57wyucT5hHpXrxcAJmaACVtq44YuDLKoepmh0laefE+IvG3vffXZOdD3M0cKZO3kgLjhUwnaaipS16/VbACg+2GPzjEsFOL3wVQAsLth7umdjKrhA+YFQghaH1n+vxGbut6sofdnrCVr8wuKTnpRgAWyu6kO8zuX1T386HTC7S3NNyX0rHji0vvbNIgAmn8Sy2Nr98cCeAtvnpqwbquvHV26og72+ytri1HExonC/Kji0vtZavyqFYKz6+1Cw/IV6Cua3DmalEjynq3sIWFmPrkRjCr9hACNyG2NNHVxfa4VvQUrByPPFgjcWzAca81IMboxZ2TvmC4A+GcxMLfi77aEoMDFQqLTOCtaWbcoifHyxGdcsQAFjjJUCDGAbC+YDaJ2WWi7gumoB3t50mAYaXwUIXl8lALTpOZlINZpkrM26ZgHQvhijlnwMsND6WisAtOoBh43DWewEY6w02dUl64oF1PG5Fbg2BYCngJ+/3Q/rAA+rQdmaXhpoLE2S19FjATu2GCj7wA0cO1XJk/vGioA5t/kzK0btauhLnC2tzwKcLGfs4mdWhErr5DXfPq1rvzE6vlPbHaL1rgUdd4jIh4ihgb40fbjTM2a9x0N7S3IAIGbdYYgIsPaNxFUXX2P3Hnl+mwLeIQf82KZ+7NCC9tzG5veJAV9eXQMAOPF0IpsxYGzvSOz5Ne8X/ZYRUZ/oUXi+QZ9edQHAiXf+k6ieTDkDmvlUbrlHmclZlcWhigpN08BTWTlniYjoy8zDRDSQuS7ZEZ2OqGlqj/2sHMroJj5f1QiOTGU35RF1oCTpER9lWcJDDNmri+7xoLVPn70jWXeMY2xy8xtJj7ibZmHy+gsYluVs5dWw9mqHDtPbRJSTPNtdqwUAY2AMAKrqzgMAMj4Vo2obpwFC10RLdL70HdzYWW1iYK1bbwzXsi1yPiIC0eqsl4gIritEBAAjRiq14glEBPCFEzlFUFemKbc+jP9Vv3WeAVk3GAMBJA3K9iDGQPI74/+ZkWt2W2bknotAwNd++8t+kKsNYDyFyZ8BjBFk8zAYmFURAGqZHgbLhf00/WXGHhnVGkk0WwyE85PHWQCK6owMe6svEJt7BsTNT+HMIMatYoL8efz2lnhzGQA8/PtfDCD3DIEBjI0Ek2tGxOvB6cqfkBj8C2ABWHQ3Yaww/XfIO8nT7g8yyOc54yHG35SXmO6fzYu6oQ9vgO/dfSlzRKtgmZp0wZEeBkedlI5Xiu+vODQkyWQdWhmZLUbbrcT+m7U1gKETNZHu1xXFWRH46y6Mb0wRFcC72ZNVwARg0o7nnqkJx0xXbTFUwAwAnrP2NNwKx0zW9TPL1MBcf9uXvysFTADAaxvS4oMf2Xb5jVBquLcObUy0bOwe7/xDak6nymIbEoBR2/5H8RugBLpVV46EYGfFQ1tSAX7Bkw4AsZshkRzOgxdMBMrj4OmLZfwymMCj/KBUZOK3zMfBexuqRvOZRwLwlFc63zcPzNuw/VF5h5Ql9IqYO7pQ00xCs+QNL4mSuGO0fOUBbvEN0Q/Hu9S9OITU6fhnJKIKzgeAfxDR4Lz5D3YbN/8wHUczEbVMeMxt1rZm0o1riQaye6mdT5t3POYy6JqgTGK3Zw9xyVBt8fF1RPmlRETS4OwXDTsnEBHREXvbkLgqeDfkZQIiCthrH5Q7hkT5zdJuppC3Lwq43PeNofuLstuGJalt43bcyWEl00/I0fIvPrh4/QeGLs63H+87NzVmKIvV7kqidhxWooEJnYNu1xXx9jY5ymMT1Uyd30wDmRN7w6dRxSKSajLiuaLFUSRvfUa9yuex4H8BAPKiUgZn7uOOZKrlJtHg1sk6Hcmi1Dyxc7jrXHIw98/yZ/1I3c8v8VitOHdtW0JE1JBRqnXklvgbdxYUACsazKkhIuotn1ih46LRXW7/lbh7JFeTvZOIiDqHOIQmVKfb5kmQVXUAUdFWZYTv3mgt1DCGNvxEdoHVAY6qQKQO/d+sU2I91bMd5a2JCg14Mp7Yl8TLT7O3cVNG2G4StWyelrGyWvXuJFC1bELEzTm+tDt2vxRoiI6GHbvHSt9wArhxg/qarnedcSxYtChdQ3Hawf2ztv5sWFLo0tX/+pn0cRcAh4tGPc5d2TVt0+nwoT9fEJggB4cVLbIhqOc5iS3th+N/qBuutXMRUX+W2miv79qhv3MRA/699EP7kATBxgJ6n/7ZePOQAENduuzT7zpi1s2uzuedzq6QjW14Z1vvM22e/x0waTddp4X6nQ1Egh3ZiKmBxlWtwr7W0dL/iOiGu/vNAOs1NVGv86hhO4uYmlhjYcAEY4s8+Lz+nmJsAx1cBNw3o2ahMFCRyA8YWGuKjC/6iT1VX4J9DxxMDKYYW7epGQBY//JsEkeP5OXoNzWBAT8fw58lfNA/2YDQtw4Yc68T/VkO2961xowt/LMcRh9FFgcHZ/iyDAxd4mCDv73yf/jEfojCunvXAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, the straight lines PA and PB are the two tangents of circle O. If angle APB = 120.0, the radius of circle O is 10.0, then the length of chord AB is ()
|
10.0
|
279
|
[
"5",
"10",
"10\\sqrt{3}",
"5\\sqrt{3}"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHYAAABzCAAAAABoAal+AAAK6ElEQVR4nL1bfXBU1RX/3d23wU5Xl45B1roaIMGsDR2XgiUqlvDhgAVSZ4gCJQhpIegEB63pDI6xiVNnoFNwyJggahjCFEfCR5ES2kRDCRLaUGA2LUsDw0YSs1owtg1m25Lsy57+sW/fvrd739du2t8fm/fO/fjdc+6959577gtoTFAMAAfN58fY0FLxAWqB33R2G8YEkZ4nkA9mOn/GtAQQcPJRJ14sf9BCsTFAlOoBCyYeGyMTQ6uf6qd3mS8yFrQMfV/5sD6/FaD/Iy1wfBHw2ZUpILODKgPahGbUuhDioglPKIeygd6ZDydqAQAUUZSXyAcz2xv8NhsZVStDZn3LkLBmj1aGsadV1Ny0z/QwBpCZkUEscOPjz6+ygUsAvnUXed1zJ3r/p7TEcLa9/eT08bPu9sL1086Xarpuovv62cFAUdGcmYal04V/g8tbcWQo9rLDu7k6njB4aENedsVfdcdymrRDO7y51UG52oDTXy3TUpSoe3NOwa5bCsFY0A5Uu9f5Fe+3fFtJQRtD51r31kGtGkyP5MQYCL/6wJfn3vUp0mqclakFZu3pvJpXM8yvzTStPAMPTx0I1HmUSWfq9tl57cxp8PfkH+dXZ9G+wQUzzinfo0RDnkYi2chJ/dhRsCSUiZFjODH7yfOqycGA5wrX8KwSwyOB2TPPZqptnbszRaX9ngFSaKsyBBERtbkbUyqyQitW+PpThP3ZLaSk5UzUoHdzssiCkW/Ov3HakyIte3qh6p3j/HM7u5aG1SJj2vjMuTzzsQPOlNTa0BuGNcD1u5zCPnVtZi3c7T7EkQZu90tPqX1LSqs35vQqhYJxWwEAXy6tWwZKNuFw6Ss+o5IMALE1kcWdCluZ7NvRklXLOP0Wd09GGycGrHt8pUJikrZiQg2QwtsRd08GexsGANvElxMSc0auP3uaIw2vrMuJPZnZqNr3z5y2yhLtiS2dqWNY6Z5MbY9dLbOnftcCbU/pB6nzFWhq95thS2DKeyV/kCoy07c/rprFkYY2NmRbo2XzKp6Hadqm4QreSP3RioUcqR4IlVc/jD3qGZkYQCxceYTXd7X9x6xxMjDY69cFxgH62jIADK8tVq10kuKXqt4fZ4k21vI5M7ZJ1eggSkQDrhscX3fLt1X5qucc1QhmDxEZrEAMQF3ZXZxWy7sn8+GKGHKX7DbSNkpEg+7rnJQOZ2+yyIS2USKioOeWgbYMwK5lE1MTwsvj7skSGADkLmiE8QRqXBf7S/IPCM89vEazgCHWNgK6Cx8xnLX7Ys9M/gFrOtmVPivmhC57maa2BDBgz8rUlNDG3Rbdk7riFXt1jMwAYHR/qbIdsd+y5Vbdk7riVY1GfXvekyMzShZGbWh7JqyAT7isQ0sA2pfGrS3LLlW9n5UZLRa369AyAtqLVA6BGIZLq3xWXUQy5urRgmH0j48mSfiHOyVMRAeKTukv8xfzVJsKYjhTF+Ac7uRkxIM32gYhhonj+3SHVE+e6pUhvELHPTHOEz/XpKAu7cXkoIv6cKfFarhAeAP62k5Wvze17wK0uk+StjLGyvVZMemqLm1QrW1oY8OdBC1dYtLK1UM0/PEGfVrvFT3niEH1NrVs+UK9sQIAlRe+cCKr9khYMxsAOMOaI5kBCLuUktpQMwx24q3bTe1hxw/pbmqcygBPwOnXydqW7e4gKi4nIqL6CUO6632vR5cWirO5vHtKgpTjfqCQRvJjN1DF5dqRZCKiQZcBbQKbZ4tRzboCG+xAIV2L3Y7o30NFDWmdCVtxdk9xDLxd4N1xMNvdIWk7kl+uVykR9XtAROLIyAhXEU9/XByLPfHQvDx73TmStnAvFRFdg4GJKRooEADYbaJDY6DHh62Ge+pp2OdduzexT//lkwzw+4y8VPh23aVg/E3pgXu4Cx9u+LSsI0c5o9hRfT4p16BToiURTBiNCoxE2OwgEXAAeVe+AweA0MZfuSJMkMQRCCJY5+62uTXzAWKqqWzqJiiYL9EyQRRgB8OoAxE7iQITRQFTPnGIogCULZ8vMDFqEx0QRUEQxRvv7bljwxtOBwBmaRGQaKfGjcxsokA2EEUAAmOwR0DTfgO7CNT2NzMGAcQAewSjh/b/afnhApBohoJLu0TuW3sEUTvABGKISg5/8hUAuFR1OmsUQMztdr/166JnjqZPCQDBPAEQYWcAbBEBYEQMZBsdtYOBTesNf50Nl1b5iGJd+MWRN7H+L3fyx71p3BjMsQGMRAGAHQyAII5E2A+yBGb7ZhjjHvp4VKhxbiImiJEIa14948LuwKY7MQIRERIRSY+2/XuwAXZHrPU2AGCOLAeOFvuJnpkSZnNOC2fq9t3GwByf/uzeHUuD78wCHI4sOBwO5nCkqfXJeYqDpphwIyOLiIiK11NnQdjTSERDjbMnVWt6RyIyfawmIvJ0y0cvUXnk/P19ADD1AmaGSgvX4ExD86Ka+elpxkGX6JU3rCpv9dHjADDlAuwPfXDxFw2uZ3e4UgqnAcmVvLeWH6mJtNQAwCf3I9T2tcdXHDNzaWcG8UvID/m0nz3iBKhv+0GUVRw95hsj0jhO3eMlxqP9bS4AtmleSW2o+d6GOgAmfa0p7F0LxguZjOT7ia5hHgWc/ug/uSGTDEayVsikNevKdMYmHzwx/MMqHxtfvtXKdbAxXq8cB+gFiF6eLRLRdZc5dU2HwwaJq20cZ97cZwcwcX31WCr7yguxuajVLHn3NHjvOa081rVtz4ld6mpqK++e7tjyvFYeyxitqB8HAjdkQgCoqf0t6ZWtEuoTCemDAGybvFiaihxLRBM3d0REdFW6UMzYyG2efmkvyzMyS4o95e0rCclRqQzQU3rII3lIft/WhrYpjTN/89KReIPSR3jRNvnOgUt76ZX3b5NfGICKWaW8fJYw+lSJfA3EpR0ufdWXJKofqMmUtlLYknjhLQWc2JP90MPfXpYmX+ymo+GjToWMQ8uNPWU3F8Ear7xmMQBs7+unlBEJISWrRuwp/+SSrp9boVUNv43tp1SV2lKyasWevBdOPyVHQqzNpJtP9HWqVUkZUgdk96QGkevExMdCivaZRk/h9GPOpJYmORKVe0pBnba/0vZSbe7GlGN2Mu2CCh1WojZ3nVXarcqmxvltCa0BGIbG53ccmnneioHPFJw6x7sPVbVMP/YUa2+Te8N1Sv2so7qaohSVgjnxxP5Sz3FuLaohNVxa5TNqPnv66jemvRhSBfLjSWCMIRGV7Ht2em7w+9xalLRkGBoHADi3XHY9tL4rQabilr1EZ1nh5GCN1rWnQnOd2FMyhnZ486qDSkNX1yjTuzfnFOz6j3Z5Be2QJ3WgcxAlIopGpU/wwjJtdfwp9gled3IRFeQPDomtvnXQhImVUHxw+OBrqPF/hct/OzsYKCoqmgH9g0TiO8fDJRXp3KEN/Kvvq7/j3wMACrLhdc+96wETpRLavvt5ZieduXPkR72bETVt60Rf+oxASljMANIEimzKiHMnY/MiL1j4MFWirbovD/GP9S2jl/2ZaE/W3Rb/r4Cw0/c5kBLIMweKLCp/G5j0k1wLhWwAWO/QwxOcSHMbzN79x3YAyM0zyqlElIgq6Fq55sw2wkg+/xJBFzYG7Kxnk4HY2mfdyJ9dUVjXwv8V9A4RtUwBwDL8NBvmWy2gt+wk0BObdOl4i3vyewCg93yJlVIvAX4qBsrT61ki2okDRC1FlsqMxX/ItEBqtUlEif4L+ygNFe7M560AAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, AC is the tangent of circle O, the tangent point is C, BC is the diameter of circle O, AB intersects circle O at point D. Connect OD, if angle BAC = 50.0, then the size of angle COD is ()
|
80.0
|
280
|
[
"100^\\circ",
"80^\\circ",
"50^\\circ",
"40^\\circ"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAALQAAABqCAAAAAAwkiSxAAANXklEQVR4nNVbf2wcx3X+ZkjKhOCEJWCFlAvrRMoWT1EQHZ2gPtmITraV6KQ/JLIpYCUxHLmIRLdWIMpGEiktZDkFQiVIyTSuzNhoq6SBKwWxRLkN9SNGdKyD+KSg9rFIYFKxdDy6lY525JMd2znq7na+/jG7d3t3e3tLikc2H8jb3Zk3O9+8ffN25u2MILziTEvAs2xtIT1LZncDgPc21hDeSf/tstsBiNpR8Y6qpGn+Px248v9Cy4AH0kL/J95fu+RDVtpCs/dmHsR3voqVNabiHd5Ii6cPiTZ9Siy8YXsjnXiPPN0OQkFg4c2j3otQ4uEIcAkQkADFgmsaLIUqu3gciHEL0FNIN8qKzSdExUetJAAwr1UKJUF6d+y1QxlpFj97QoCChc6nZJEgF8JUKmsamtF48nwab/+0+8No8wWa542XK5xJU2jCJ47+t79l7SJOnrr+ybWXJ0anu8Jbm5XUprKAqGjt0V6ff29Mn0dWb9rvO0Kmj2xvCvXHSZIGqRaoR5aR1s4j1dsa/Pt4PvHsulvjyQeCL5NkpNfXcXhhvYejptN9vv6k5q9IGoyE9n+NjAZ3JkmSY9v9x13vqlxzbxglpA3S4KBvX0qfWYiEki1pRQ76v5kmSY51hyLFLJVVfh5Qrulhf0+yNC0S4gM/JMnU3lXHraStYyVSzwEbrvbOPccyFJE2SPZuHCt/uJGQ8dJdOv9S17qYTjwe/KldJtG+gyrR/m19VVMDsZNWZKqrv/CMFcmcSZpcHVU652xg52WSZGpjf6Fw+p4dJPnEUK0Zs/itLDCx+aE9hZGfAFAHmKO6XU8JnXNvrPP+g9MAmk6/8bm0VXjoah8ArLwNUKj1QNDegkhgzFlPkRD5Xstb+evUPv8wSfJIKKnF0/d8u2aKLYOd9OFQqlxAkYqREKke7bMlx8PhMZKMBrU3T7QfM6XnASg4qeFwRalIiIqv+zL2tGF/b4pkPPA2SU60H5sfwqTdpsf/7t/czEjgdv8Ze8LmsWWd/VBt3/3CNICWpXEBIDFcExsuhcU+FYhXfrqREEn+x8ZCikGDTO32D5ODO0nyORxTPL/hg9rptwDQdHHhYRcpTTrje928NqzWjW3a+Jqxu58kzwPYUSOWJQBJGlS9A26dSJNm36PlQsMdu1OuDa4BJABInEj0Vp2uEl96/gMBAEr7YgBAeHxZ57rHp7TAPE3TpQKA6T2D1UUFbrn/R7oQIC1+Eo/F3nr3y1pgvuZeJMl+PcypaCCmeTC6ujBgteN8XUfc/Q5zCgmAU8/uN3VZBcGbf2EF9ywoAPgzPzd//ZqeVKoKZecQEoD41g6vM9ZdhxwSCbwvf/jhu78PAUDOg2WTxlggXeV5WObBdEuy3AIMZm56KchkT2dkfmYBEpD79jd6bWLj9sFyG5L439Z7WoZav/8vB7on51SjlUCmWqspWo89SJITt2Yc8k+uMw5vp0HjeMfe6yRr3CMlcCa0yEPjhDbV5Z3HUD5anlwut566LiG7R5tWHtXiNYQEXujyGKQGADz6FMopTaxCsz8KAIv2njux9txcMnSAxPTIxpkU2PTmb8oTL/mAzx2FAgRajw7s2TY1V/wcIXF2jbO/q+C42PuP5YkX24DPnIYEBBSC0a7gE9NWXg38tsS/dznnVAhNii+cuFaUQACJFUDb0nOA0p5/2zhWHdXZtQj6SbywpUJWhb7U3PVcqdg7WALgMycBqQgFoPHJqGnagjXQ9dtNLr7Fclz5lwtJ/rq9VOxXa0jyeFdxavSu7UmyFlEn+dtVQEUDdlT26tZTJSmXlgPAqnF7GhE8F1p/cBqQgJrbV7sc8+twf6GyahBfPlQiNLECgPKPm6UVoP369ui7nUMAKOfWb8vEsmKFCmV+Wj4vhNhJJ3v8bCxhuyIweQcACd+EvpPZ9QTQ3HfyX9ePQsyxVcvf/0lxAqXW+5Nf/B3/8FqPQ99nw5eesV0KYNwHKKD53XLhtqEDD/dMzbEHke9oL2174AIAD/zi1VvY2P/SVQBA5r0iln/1g+nCJYFEGyCBJgfSwLpY570Hp51yZk86b4I2ysCvnv7WYggC+m/Hq3vshVrXP19gLJCZareuHOxA4pGX3+0cAovnljdEOt1Y/OwIALnvdX0CgLwIAQhMp3ClSORR660oAOBya37EJR36sdKmfUHPLeeE9OKSJ0cQyE2GBYDscOgWKKDxG+3/YBMR+NT79jHR+HJ7XikoAbQNHdj62LWyvNmSXlRCWlKAb171AQqjL+7Uuum8rbVYatdTtotJnz5ed5xLmM1Yf+G2zgEr7Qa9tmxJKgCq6Dai5ZZJQqb3dN9ZodiDP/9d/pyJj+qTZItrVXtib6w6aVYwW7oacumbAoAs3EYAaNwwmObkxz76TKW73/wX/1wocNHU9NRS97qa+4ee2jTuLuMNw2EWT44UqZj5PLDkv/JBjqKxB1kS910TJUkmW10HDIo0lBUgvrHpmLxzVDGbyxZckSCAhufItz6RX8FUCjPua9pUYgUA4NWAq3YEIAU2jy3rHHC+qXfIj1zLigbU5V0R89Etd5e665BV8zUsAQBe8HuqcU/sjVX/qWsq/M4MUnYNFSUUlvu4R102jl00zy4u18effdqtIpWn2Dww9ET3hDJHObNRuUT4FEDksjkwq4Bs1qBANptToMhmc2ZT9Fk2mwNyWZXL5hoe+a6Zd0kvyboevd9NbxIAlKa4cuShzX9zjXK2ViKx9cw0BOpFPYSUyDU0KCJX1yAURLauQWhmsq4BCrm6BpFDPVR9A3N/+cL70CMP/RI/Eb6pGglK6xl2x5rufoaY5Wtdosl/HgDqcoAAmM0AoEQdCEj9HRGERL3MX0sAcsmnjii9zvAOAOCpsLt5qnwsWBFo3DsyeufIbF/r5GAPs1TMGjmSWdL8zeYP5Nn77MkZg8wYjH7cIEkjdJIk060O3/PcEQt1xatLObk84NMvAhCoM6woPwlDt8g8QEBPDQx7c4M3/RIAZKINAM51NKNEoBoCIw9t3vfODAsBgIRq/9NfSgBCSAD1RjYnRL3K5uoB85BTUEY2J8zrHJT+3zUIgNmpFYDC0W2A+VXaO7pjTWt/MNNCAJifRrvMmkvfiBrpliTJuI+kuuyrGsV0RnJ7MFq48jZzlwC6r0XM+fLMPH3j9n8iMN4GQHxjn5copgNaDw/0WlE0eu2XJBkLMJfJuTTNWdOM35qhMfgQyVhgNtENq8wR3/4ZPScJAIGOH9c1zNyy0NZ5DDKxCsCT+2fju6wy28bRcRQAvT5pkuQV3zTp4etWKU7eTX72CDlSId8VVm0GSSYfsJt2FZjfxnv76TZcrESaK37NNVEyEPNcoR1FFUaD28rWTlXomCbpdDBWUYSVSCuyv4dNb7Fvr0eW7jji6yszbUdK1iqEeDBp2BpeovRKmjZSLYkmHu8mDW4BgCXvzYatxS+913/cS4eGNTt5eV2atoYVs65oHuz5yppXg2mDJLfEyMdvhDXJeFcoRhaIuJoHySMPzNQ8SMXfLA2bC4IyYUVyy84ZEy2pKlC+LLAUMj863NZ2sOC2PPoegdUNrwzo8fTZZQLAHb/16LVKocxq18cCVaNotqBP37mBPFvhgbYCgNTK7wX1+YsbAKB9tiEkqacxCjqK5jrOlvlc4sQbj0yXxPQqgrqxE3/+19t0ldkXN4FA/HbMbt6nx+aQ0AHie0dda7djMHS52GbN/lgWQjDTR7SDViQnekhyAj+ZhR07YCTQW3l8DpqRDo1oMGbxyv/QqSMqkhwMF2586CBJbrnvxrja0O8bqJRVstaU8eCg9iF2r+3sPVI9PYV3QaZjlIxj/Y3QLIaR6vVXWBtVthT5Dz2Bk2VSmrSye+90n2+wcHVa29oc2YZlfWPhTWOGg7MukDbMf8bCoaiml5cu1/Rh394ZzwlnASuKVowCaZsWf35X16WipFLSx/1fTNZwOYqycen39RdlkeU2bbHyBfUmC20SdtIq0uvrGiunXKsVHgXTztfgsJFBkYZRtGOEkZBpK+mh/J6RGpE0itwWFcmxcLh4LVrFzTkAxk/8+Nry0FI/gANHxyHOTl0YvXfr1uaCzHxsgqKgOPVY11dtayWKSJfzmJiMvDkOMeIg7IBq+TeCm39f2MXkoZ6F3fFkQz7E6oHQwnMmFBQgLCOozmirEEI8X1WsVlDQO06lOQ7TP1Wx5Sc8jdhce4kZQqnrnweAHYoeNnIyeymMjpoqsyoFAEIs+tETx5h+7Tvwstn97D03Y/fOQM2puVAAAND4n3Vo3HARXnYzX3r2WcTW1JhXZZgumEJcubIYmdcD8NIRz8R4qHO0psTcIEClnd3L9y3GN195GIA5CdDGXnzUh4n1ZKbjoEP+vB1pUJHXHwSgd3fUozAdLDnqw6kwcOXCCof8eTsqAQEkr36w2ExwMw8CwOmNyG5cEnYRqzFofrifum1xIc3VO+oZyRxOomYMa/9x5sFX8mm1HOPMHSgm74svOflJ89Kd9ILsvy+nkKehJChsi45Kj8UhF5blz9dRgAXNmh+m/zjMowQLP+6cBf4oSf8fb/L/8PuFgZAAAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, AB is the diameter of circle O, BP is the tangent of circle O, AP and circle O intersect at point G, point D is the point on arc BC, if angle P = 40.0, then angle ADC is equal to ()
|
40.0
|
281
|
[
"20^\\circ",
"25^\\circ",
"40^\\circ",
"50^\\circ"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAMEAAAByCAAAAADPd+qbAAAlnklEQVR4nNV8+59lV1Xn2uc+qrq6+pV0hYR0SNIordPaYmNmWmMkRGwF+YSAiSiCII7hY1BABcJAiLxFhCA4osFI+GgwPEajGCPDIIYwwZhAICEhpElDJ6lOddfj1n2dxz577+93ftiPc27j/AHe/nRV3XvPWXs9vmvttfdaZysoEaEoEYqiglJCBcmEiqKowpciwvY7KkEmFDHSE2Yyxbay19X5aUpESKX8Nf7GQEBEyIzKv/cU0otCJUqgKBkVlVAJRZRQiVAJlb838CIiChmViCIj84yszYyb3gcZEpEgokCJ7dN1pouaW2TlLD9ikF6a8fwoiSUqqMSPEv9FZJnqVE7iwJFA81IQKiVCShbGCKMxawSZZTyNISIUIz3Tzei6x7Zu7wXTCSRjUl/LgvCDIAsUG/NQeYukT8KIFBGJl0JJI3UwZqYkE4qoLBOhUlRKKREqpSgCoVLwNk4jCRiE9Hf0RGprS3k+rBQrIkqJKCWKVJDEoYISYeY5VKJEUUGUpyYeQkKKUqQwcBhsoqAoSgk9b+LhpUQpEemKaksdwOUNEbSoPPWgHSVUUXdeLYrsdKX7iRfVW3X/SSJeUwxcJrNl8f4Gm5mIiMdSCzZhVFEJEIEOFQOtAAuhEsmYNBw/U5R4b+bFpRJGbxcRFTQVxHGOPfDL5912etXvDJQwi+AJUUJUtCGD2EqEXlEM1CXYLtgaFGFgzes/yOI/p0BiRMiUlzagXykFUUzhx4vlVeLVKWCCpgcHkUGODb7/UK+vy9OZzCkNcx5WSjIvP6MuBQmdEuEhQgnI9nQYNReZzqiYpTCQMSlHhMo7tFIUIRk9kUIPTlHCLPNsZWE4ZNLLBg//vHlq13Z7eTCRR1+wFhnVH2RXilkIPR5xCQVRl0p5A/sQG8MivZ08SeXJZcknKT5+iKfrOBEMlaN1UAJra+tACHUtymipjRMRQkbsTXn/czoHHqm6qBaU13JEM70LSsSmD+TBHRQyIQOfjEbyrLGFRBUxlcJoBISIdIOjeHWrJmKb+W0nd+2wojpKqjqb/8aJh7+1MpVuZrPTn/K0/XuWuqKctd0515EtX8koX1/t5wv9aoFUKrkfFRQVM0Hmra7EoxqZt5FSDLpUQmYxyiTXVnE+C++DkSAqyuNnNBEh4wRJhYzCo+f2TTef70h14r7bv3TvwdN+8PvPmRd2lBs++tDDy3r/z/70gTmB7ZzY1nnPO1znM2sv2mqmu6RNDtnM7AHVzEdx4vPqi3qDavQcyMS5WaRFyVsghCgC9P8IAg4kSU5y1uAmHnzXgaVnf/Br6yAAgnQsxjX0o59/84Gli282o3X3Z7L0cHGtyO/W1k3CVXSkJ0kC4ScQPiFI/7d/F0Z19N8FFugIECAdIpeE/xLxGkqk6AfxF/rPNLHyiUv2vf4BUmvUDqQtxhNLgtQE3ODvr1h68x0vfZgnxw6rzN0KIn+kS4w0orTeMwjk2t+ChGOULtAAZmidohg/ScTo2ErBZLoAd/2Hn/Hi5zpx6EhPRGLOVSKDs1u2iLDSf/FHc/KC1zy17HVUJarnunGGjL4V87LgbTPJScwbVEwXkEWozGR9isyECplP5lLUCihybKzbvEq+ael1x2rovCTopsZ6wcvSBdAZXRvjKB89tEde9GUyt4D2FvcKwgzJaP5kjcYq/i8ACcuNLdNdbhY9CSuS7jrF6P+w9Dq3MeU6CaM1SDrjf2lYXbIyhAP4R9es4Z6LLzz0I38BYmDqaN7AA6KxE5BbrLnwKUnQAY0TJP4athr3SjANEkTSeU0aL+sIDx1+wf0clihbl864CbhK2gHMviOO4Ef3vO0VS9eOqEuWBamB0oK2rqMAOMXOwCy8k38nN/T8O0aHjjJ7IzV3ZT7qQmFBapNZPcgqvXjzr139Vz8s2bzUIVILQlKpYizmbqntzvIzz9itqon82j0n87vV/l86On98fn59s2cxn5m1otuzSsWc009wDNFfqZi7kYyJop9wfTLsYZ4JJYOEzEYyEf/GJ01KRCQaxNHmJGu6Sl/7otWS1YkJnPaqcESyN+kIRw2nS+aX3gwShSHed9GREzfsv+ShFdbgELQExmtFG7rBHI5tazChJwUgnnJB/N8AoGU4icFL01miph6WL/29wuHEhARYtYi0HQXYrIn8oUObHNesppr84iXfJG46sO9vuemwWaNYG5Mu8ZPC/ylOPkO1LVRLdDfDOZopJkgAEDAkTVnTPnLhxw0HGmCtiXXSxeid9AiSOO7A4vfe41CWLEEWg5ULbiDw4CuWfn9tQONATqeY0dcMq3CNGzdzVUs6tIQ6NdSk6ynpckPWZHH34TtWuVIB42Fe0rngQC7NNi5MMyNWOLbv5NRQo5wOMCTcy976BHOuX7v35d9iOdFO6zCsi9J7BuGa0BRiTFvracpq2eoU70aypCT4TS0MhzcdGGoeAzdYA9RlW/Q0PglqcGLf+UpQ63VHkiPwJK++Iuejq1z/0/3P+3TNMVkHA7oIp8CTA+HlSKHx/xOYIuNw0WVi9PekhDERyoGcd1xkV+iYk5rlsKbRDZFkZYJEAVdyz8kRSxTMqwLYsBzx08+ZcMKSxa2XHvjgGCMmJn04aHEUeGzp3Xn9+vCZYq1D0l3bH+NbiSwZVjm/dcGg0bdLsPte7RAVK9z04qoNb4LkH7yK2Ky1HpojV+59wwmNAoQl3cSymtA2EI4seQaifBEorsVoa4TEQBJeonQb3OTagaOj5romdqTL2yFuAH3gwbLtYiCJ6YturUoukxxM1l+379ePgSem1MOhsRtDogi3t9TTGgt0KfDEjBXBXoh/NDcEFEUWhhWf/b82WtoE4IBoy7blCYIjfedBskrmCpchP3BEo+LqCjBy6zfuOfx3pHXGkUS+afxFQEtutEZEygAaThAB0Z7GEbAWs2vSjfD6a4iygXwrAMd8wjsdHElrx1d8doiiMVX4Y/nRAxNq6yZD/9k/Xrj/Qys1NMdDOJ3SPtdk+k3i5GJGNTM1tDK3IGfbeIKgww387RWaq601iEsEGhMkoVzBB/4LWNdpsvHBhWsY3vZz1O4I9Rq4Tjvhoy/ee+26IzVN3gCogX1j40bzSBfCNXbCzI3RD4JU7oEDBoWOV8a1WlJVK3r4d/aqD6DWdHRoLgJZcPzul0NjROYlK/LEY8h/f89v3kFo46pECjNaibQdXYhKSajEvEsOHqapFIs8xYP/SGddGUPYf6ikRkeO9x8szckEggZjzO3oubdwYqwBacqcrDTrD194wafI6QyReF87CjV5dZwA0vI0TQRtImF9AOL6FzEvLSYJqK1IfapnEWT9kVfVFpy0/YUgYcbkHRfSkLC6BllNAdLwzsN7r6uaKBQYRjNCtGPQM1qobVymDQlvg8K6MVCMDxyj4ZDDRk7AJWsk9YDlhJslrN67UmGjDIG2CbUaWlu+9HpXDlnqOgYRjJG75Vfs/e3Hp4QljSaNBcuwCGplcTGWuKh0BOMyRZn2akk0Bxw6/PZ1muSUeYOaWWPBE2fFiSk44UdeOSFNClzJ5+0ULOwDe8AJSrJOPgeWmzx+3dLv3D01YDkpyU0fG20LG2gP3Tgwoj6JuP6Plwk5NC5f+cE1wrGwzi/9gkrj5NKaSnLqmhjxoi9YVoROi1vnaVvDkmt8ybvgoMNUCxL18YJGY8IPHbjkY6sgx0NwcLwiSAcXg4FLS9QIrHbMTZBroU5oqor1a9/OysI504R+12i39ZMOcCx5x7MnRE7ULUvB473YdIXe2LvmnK5bNHRNPa3N0Yr//sv73mJOQG+Qub/TGqDFbQhWIeokA6XsKEGJJMVxQL26b82ugzauARrgsBXUfEQrnTa6vvwTs1Gh0djYcURtfuf9xhnHKkV/Qw7Ak+DY8PG3LL31fujNqh4HyrYN2BSF2lyAs8qPb4QTC/2hVzqnybKFvrAH01yddMnSuHv3aQ0NnbhHtAELCzPk6OS+oYHxJAFis9Iwa6s8MiErbcbv2v/C+0BX69omfmZcL3j4rIpagSwmJsJVDvRF940I0tRo5R2J0AxRf+er38nSTTmmaVP0JA24WpCH/plMKxxyg+Uy3WZFZ8hak+u3HD5wPVylTWs8wDWgSdt3LUO0UeQJC43mg/sNLafgtKob/j1o2kgBSYsxzbEllI650zBJPcFjnaZZg655w69PLMeIpuHAcVSwKixrRxrLXH/18oN/WOg4n8XY6X07mX0mDQoLtBlPdkbjd9/uXartuckGttaOYEEWFQGWBvpDbynaM1NCW/RAkLqWCWHRXOEvcOlPPQHveuPSGx8hSk1OK0diCh8ddFQaWkT95lFUVniJReX2Pli24/GMfxpjQZKl1RbQxth1cOkxM3vVbBAhSWsv+j9whq0MJy0yHIhNjbKszRTv2Hv4c3BrGiSHU5Ko85Z/zYbDmdw1zQd4cA/SjNesPMK63FgSCLOO1pxyVPzd4dlNnQhRNzMhve9V1KZtgFMDOkzuOIH+zCV734uaHBfQk9G4pEM5ZJPTBwJhEdI4ChOKbny5pm6CZrB24MVZOlPXrqCZlqVmTe0OPDSIGp9ZqMx6/737jXG2pcOZtb7LRyAqj8Y7X6z+cJkjsIZjDbq6TiE98BSz0bRIiWQzdup/+5le2Qtb5qIEIiIqVLigOgKqLOuJ6s7PyaC33j8i5y4KSRGlFJWvR6pU04YvGdkfGq10MqtiSVEkC8UwRSFdf6up0Z03GQbjn/j4OD/0yp4a9wajCRVtpxfqZGSqH1JJUy3IUoVXOOSeRzDBjKWC6I4ErVfjlKyMBTjlhX9fzaT1EeNt/NHUvPifgkemiRJBewA1aIralJoETLFe4r1Ll95VB3r1sA0UNssItJK64AduQwty2va1bb+h05a0BVGC5cANedcSOarTsqC1XRJ9lSCN4zXXsj39N+wQ5LDUBnRVZMsS5rYL9v9lQejSfx4WxUlHcZgYZD0qM33aFy+2SoyEmrEKMPKNKN5gtNOByp7y9vX57Yq88e11ubUXyuxUSimmMrsoIcO+s/nhRyrnq8G+8uwvCi0U2+d7osemXznnRKmyM1XdZ93913c87a3H+x0tc0oYSsVK2C4ueUiG7WwREZQfewU1yxB047I3TCykK4cc8bq9m3p48LWFtXbz7Cm/y9J/aaoSgDMMRoRLO4oVvrUXdZyoZsJ0/B3S2eSYdOCJN+3/9fuIGrmGLYzfvkCzOLCAg4UDAOdIZpI9toeZ9IJMTYdMKOFvzvfqrX/yb//S7W795MfzgVPXvyxz59ZzZWmtZN3+vJDSpevAGONU5ivyVNJTuybwNfhYgw1UEWoFzELXEyVT0exL7/q/P/TSn7m1Vyx0R535bk6lCk1zQkKJOYNS0glViGDbl36MtsJMnE3rAjqt682jS/eT4++uLa0Zp/c9Tk6KMWnKaVU5o4vaY93VLqYFIJ2jWxrVDXRBtFAcfSLNP3HBPEEN96lLlv7sOI0uK6KwhHbpNuecg3POOuecJZmJHD+TWcdXzxGgpWJJRVTPdOT6V+4pzdw535bepPz0hWdXRT6/bWq68wtzfXR7W7qsrHNOupnAhiYEybRkst41Cb+hV0FmYM0sdkTEnoKthbjqin+5/euXvHbcz+bW1BY70H210lQwM0VR0lFZQEzNC79Ah4oknYNfZscQA5JrxL577cg6d+Vr3OTI3m+TlpMxqSfDsfUbHyB1XbsG0CQndD/wVeZs7aok7SenaPK0cCNOkCOYAUaTNy5d+fWcThMwTTSzIGy7apiJ1POSeaVnvlwVKmZ+8nhid/nEdqUWMb37ltfbH3na5MHN2k4Xt1n0F3csKFGsDYV1v9tTMBJa2yjSFe4spBPwqxR8h4ynGsyALHURZcEsT1oeb5fhgtqev3v1Gb/ygo9K19FU2vneHd+94IvKzt/R7blil+nVPfG9NMxCG0owvZy1vnv3uBJbbf+dX13611qGv/Wr2FX+ZF+ffs6urGOq+U5HLDr94UJPiXK+AURRMK/neoa9WNJWWejiUwLfcebjhoKKzSBUQjU8G5NtuzFc3DZRv3Hl5/7i99/4q1uzRTlxZggQzIBMnArFc5GuoFw0vfHpjFFDfNeMb48Syi7i9X/yV53snF9+U++Hl8X8WFeV8m6Y4eqaLJ1z5vLe87Zz8annjJ501q5uN1bclegt055BvhhK+bFtiEp8swdje1zoy/S9Q5Qd7Gwzdm5nsSCV6z7rWWtvffrzXv3U+vTUJYcs1PvRESqRLmTvty/i7tgOJiJklgWNiIjtmvlfeKQr8tWDlmdd+sALr95d9bJ8UVyHMvnOid2Pfjfnxj2PnrVybE2Wzti2fXxoh+sePL3u7jntzC6EG6dL2c9cp+r2xaIv2m2RKRedz3xUEkGgRGUippv16NSCsE921c6PHP/g4UOvPSgizs2hnqvmrO0rKeaGS3VfRJTDz77hcOrlil0QkqaFujfoL6rRDihtFoenDcwZU7NTFQtgJkoqvcO5rCPMKErMcG08mbvPDrtHv7KUHX9Yls46A5Cf6nW2P6Oe27l7u2KWb2eRzSvdddKXspbtSkRge6arFI2zvXkps77StjsnIoJ8UVF99C/VG37idCW1m8sG/a0qp9oqZuM0zoko07nsJVeItDmP3X2+V0NsMU+dLapa9f706AdExvP9utouIkBHpO5lUrteV6ColJhenXVGW+0WySeXH/nsjqO9hYe/2Vl8oDrZG6ysyd6zn/Sd7T95xhM7D26fbjt/ydNApujqfpcV5zJkIsyIDqyWfl/JaE70NvelD4ye8/KzRt1u3/TXt2ddanb6buMMEVX3rtz/GmSM3Zm+mSz2pVB037vGYGc1L2d+U8niHA16ipkS47KsK0Jklv1aVCZgd/VJup+xqt918/U/74anOXani4O5rYJJd0Ede3h8/vjLa2cO74XJV5dF9u07dtp/XVrfdmB32X/yeVl94ikWfSlkoej1qMSI7nS7ioru0es++4v/Y7sQncIN9hQLneFcT3VEusT3HdFmKzPflRU6GCW0vonMua7kMl+fxi5uuWCXUiK23JZVmVLS6zmbGVF96VH6IlTOypl5PTdd/Kt3/vfHH9qTLdB0p1tXl6RyW7fDdM89T6iepUSgoHs9WX9k+dzxXU8sjT5su/l3l2XpnK3Y9eTdC9t2PW3KJ5+/pTPYTdFmAWtPnv+T+i3f98zf+vFeWexeXPvTty/NLV9z9aKIstk/v//WfujRC42RIVQLFZW2CwpUXN/V44FbzmdPqz5tx3V9wHLSEamRZRArnO9wPD9X97/1a4fesmv6tQ/+9RY9L3//gr1nf/5TL3Em64nNd9B1lWVvbUmq6db52H0mUrHTU6Pxd9VkZVWPJvfs6B1/WOTAaVX9AxcM86efsXPYfyY/dqP89nMXNqqzso/uuWDHeR+4XKTbkR88olTG0Mka+ml936OikrleXXe6fZxRu4cXzsqy0s2LWPZFlGPHJ7tdJcp2+0KnzXY1Wbzqa3/w3+Y3dt99ZqbmN57+K+Mt+sB7ioUOq3Jhp6hMpEvZLjI/p1yZqY7LOsr150Wgts6f2ROtusr0pep1WG0+sb5l5d6dp3922cxNjq2JXPiLcutznO1Nn7Fj+uZvi4hAV5LTVkXFoqjAqiTJKvwqiylg6PT6ZBWX31QVA7LacFXJPHUsGUuY3MJWNcAKtx14e0Fqbr75j2HH+68qkeP6O1GOLGChQWNI+GK5C6UWnyUYbchSA1Xh975o6hFsTjeBJosKtrr9Szc7h+rEa9zAXnMjSXFwh26v3KQkWZElWAIl6PxfLEBrdA5UKzLAMitWZeXKkmVoDBiDZU5QQ5es9COHL33YVnCF5d4Tk417xbj13N71WKqxpsw0Fp5mU9aYRMG5ZqPCMe1DgROUpvzfN7vyY0sDkkLDt13DZVZECbCqypIsSZRkRbKCI1kS+qob1kcoK7IASqIk4IjS6QK0Y5Rr0Nr88cF/dFq7cQm3uWdoHjvw6fUTtR3GrgQXdlDQLjzN7PKeuu0GIhRD/Oeb3BzwO3ijiFy2YUlm7PKZX85Pl36llFLCufk5oe+CEvhlIUSUKfQXn7+4oICwHBElSilRc2Vvy3gF2/L53Sf7//D0ldueW2/0OD9nNm//gW3ujJXzFpdU0eVQKb/5kXIJ3wBMhidGfPLN2CUusVHYp5xUMSPcoXfsMOc9Xmhd37yzEJEuVb7vSDY32RbboqWa9/sm/hkKKEXbsb2t1z1zO7v1vFGxFct7fN1T2LYdT8wfP7u4Ap/cp2TuLKmwtbPrcy/0+dnxxe3ZaJdfCaT0yAcOUol/bib0iHuqbAK6b7Kl8r3OouSJ0+TkmaIX+2Zz6cHzRUSYl+W+B3MLFgQcyxIki7IiyKosK7LQFmW1515MRuMSrMrSFSWLiiRRsCqoxySvPvSJik7bk48CE+fc/m/keu3CT9nCuuNfH8Smnmb3wXcMhHCAUxYQaY+jvbQDCQwcdf3ebx9H7cxJkuII3vB8+urBzMaG/1mRMCBuei4xoW7t64W9gFXHtRHHX9j7hvGIzDElUJS6vH1/qVl9Rr6Uu3teMY1uG8u8YNzLby3805bobA1mJgAYMxxzr8jjGH3HgaTULGtKMWEZ96RmF1U1aYF6/eJ7OCw5DUy4wAtYTMAJHv7NCx+uC5bI3YapHgOHePV7DJZrPCQi73BrXumez9QoNOu3oHONJRpjNVscDuRjxACVo0buRgOSggo1L705L6ukkUYBJElTE8OH9uEkchtbUxoFbXJ9wPdd8D9tQV1zwpKw2Fjmyf0rYz7hRjCwpYN2QGgPC+wjAShZpW1dJDHY7m4Gp5XWVQ2A2oCksKB2D+6lgV5jvtbiz8e9ITfJKZ73+WXYijQpxBWOTmuLTf7LwZc/zsjUCNrUNXHby6uBQ26d39oJuGnaHWf2D+OIIP3lkVyzHI5Ks87GNghYR1I2kW9ycPln7Rj2EbJsfMFX0LFCt87NvasAal8f9svzVXI0yuv6iasuuwNcSe5nKussuf/zzgxR1EGhaDb4m09axvabX0zTA5t9caCRL34cFGNJZnNid3LxFz/stsGdM5W5uM4MeZKSrnCHvPuXlpRCRskoKqOIFEuVzPcXpjc+/7yP/yjlTPFNsVQqU6hw8znPmnZ6ZA+K4tI2DsNM4p/r8StCUfB70XF14ntsVbyg9byHX0mCzFR4mE9EaCYYYvXw1zbICXW7KkqCrDgGl8/LTVWBgI060mNiwvsO/cZRB7eKaZz9DbiudXXBUTvRgLawiM1aTRQLBm75XXtWdjPvTvFKwKPIAs6jaEg9JKrPPJejqQ4wb/t0jYHhda/2CLHaJv/a0LZ+zdJXqDkgllNsyS0G5Mcv5dCVmhxbODiX2nxckiGxFkGF0KDWuIYj0VSLkD50ziKqk6LptHWsD9/CKTbrFItd7MJ3mvW+Bw3pLGqbRtDUf37onaiHPKk5RhVEcNZp8NHn3TnA1DKvtHV+iyoxy0aQmQDEJvdrb9mj7TUAnQMd4GDpqQpH4Ikp8fhectlVTdSOtjXEPx0uaWpd6NbUOfzWs696fIApS3JodXQyurzm4M1vYI3HDcbTMHEE9kIBqtUpFMJPEqU9A7Qmu8a/nSWcc46WhCUpBSs6WuJDr6xGHEfxwTCDYGL0obswCkabRLS84+DfsKChQVkT0HFEt+Z4dL+mKdxYG5fDtXsMfFDyle6mFJbgwZaK0kM58RmdKAKcDbEUZOhS86516PMcccOR1hpfA3Ak7Rhf3e8q6qqqNKipacG/O/DnR8DKUadHhrBpOSY4hd3/wJAgHB2diwpupGhVrGaUH2YMMj5NMZsrsYmwaAkvCB00I5YHj25q2tpaY5ppv2L9kk+WJQDHem2Dx0jcd/jnvrIB5qVzDTcjsgRXOM4Pf7TiRhgObUZne9+iw81MarNFy9mqO1oSNwaU5nbef8Gw0qhrwujGffKHDq5TmzIPm/iPbr5r/020RFXDljaqYoQNi2XNVbzvzazzPIURRGU26WbcHk+Bs1UwSwy6MKO2I2vbNeJH0gTdZX7uMGvoig61SUKbq/9gAOMLm3o8Km8/dBW5Vo6LEqinCQyWpLZ8BDddPiJPcuYVakmhaz2peQYOaCEKzV1sL0+Jpks+Nt8IIzDXLYt3vNPBFLWJeCQ4xr7vIieJqiIwuezyezl1BppWa1NFvcBoDMENfnUP1zfAaQw2LSdosBv/gqPvKE9unoxFtAs8EVeu7QH+JcmwJY+Al/2xJqlb0cy990oCLJeJygzev+dvNkk+URcWGBk6HZW5ycesG/D4oY0h7WiiW+7ahNOI7ZmMLvF8KtbDhW5WCc29npYkfdhVZ8Z49j98h6wN6uhP5YFH3JRauxWH2y56tcGonpSsMK2tJo2OyCByjuu1i28/weGm4yAynIZO2Snbn37PsxPJx1tGa2zZxIH0h++YdWDlLODKjcMfWaMBi4i6Wy+zOadTDvjAZYdvd8MhCUsODWjqQjc94xN+jd/Yf7tx9ZiTEdISpXHihpGQ7Lu2zl1iuXVjg77W0xZNQCKjH7RWe3jblevIS2CTKyiQX3rbBrlmwWsPfWgaGmTbhq9Y5bSeqU9efELH4BN1N7Pnw/Zk3+j51EdKYwxiWhEFTLpZGUi2n8OJI1afuug+1sxJluXwgQtOcDyt8E/7rvlmpIwkPwiOyArOgsvvv/h4K69MP2c4bmU4bVdoxafWJNIWj63PXPvCGQkIomR5xyV3mnqZGJO44i/5uMbG5RffmcNshi6e9tiO3x2j4sTVr3ijwfoEMba1uU8z08y3Da9NZ2iARIOapm0pTofReOEOCVfFSMYCFt+55FPGmWnO6si+VXJw494bQFu13KhRb6Ex0VzFo0ufKqcnY3coGvZT/tbcPGMAD7oGH6cquzViyzlc6nuUGExTi8oaqoov23f3pMLy9G1vG0+/dOjqRzixZDEY67o9hGek0BOUr9p/v6uJk2sNV5xN1iLs2uEpOlNbQLQuY1Kta2QCZghL0kqQsGJJV02PXPKqsWG+53G+7sC3h7rmaGwaD2rNK3pqyE9e9IbHOWKRb7DZMGnprK3XFH8aHUQrkaE5on0R0DzM0fzwszUYounMMKjG5RDrw/ct/eby21596763DkbktAQN8pM5T3lGCmR9y8GfexAccXMTtB5HUUdw35P7+w0jeu9F7MyNUG45T3i52LrdgmT7GknRgT4d1qDTHAID+549ew+88LhmicnUjSwNwGlyGAQoXn/oef9Kozm0pE9XZoFwyuuUOMr4nFpKRNuaTjgjW32eMw4T86K2c4V3mpufX1q6+JOPYIpJYVHnZW2JyhC0jiVYEbe/Rl5xl6NzpnHU9KMVGdk0E7e+PyWsRSBFryDjA4wpVQLp4JD2DUkqxP4GX30KD8JDbZyuigWT//sN9/7Qzz7z+3qjHRkpdS9Tbqq29MT06uKBm24/+2detnOL1H3GyjxaBTklcQccTY9Reny/XbeW5kSHdFhAfBQ/7MWnKmU8SSWeTqGgkEEpMktP+ftirNVbbL5LuHLXJ75a//jBp559/pmirO3bvshj9x1Z+8Kx/S/+6bPnKGBXZLLYnMETDvvIogzxtKegoplDBNIN6Zyk9iFFUZ6wSd++XkK1UhTiyTWNkKJEJJ930idG0z3syEN3PrTxjXtl37nZcD4rjq7JJT92xoU/2it7fRn2O+CWFvVZ5TYKjQOEE6FiccJ/1xxv5Q/fiBZDtGhTDmmOUWDsQknCzlb1KUKrt6MolozqODunRk9s2PlhtnPP2cLpQqaMyjLbFaoym2t4jL/S4UXpmIfWPwkta60zJtjYIDW6tM78SqRbxEOLTzu6o8kBnnDD14uI3GGq6XhcTf035YQEisJyVJGoagwrS9D5jC7sycbHyTDjlZyNTjFXCD9nXDrNYZ6QC8+dxoQx8OgppHNbZmBAIcoF9aZfONc9+ej5022o+3mvo1wny2qw2yPMPIt6botMF8Ui62QJm42TxoM2GoOHBiMG4zdWQ0aFLFoD2aknmSmqU/hr2jezxv3imTuiKJJlHccv7tk1OUDMFxpuWy/r9rv1qD+3pedUNkds3TlfVttEdfs9hXBEEaNPRe7DqQZh5DBW5mtmYZM53kQqEcDzpPzJQZTmNB2KL0zGTlNGCRqfY+z1oVBMptaecUbnw887XWU9LhhkShTnt4V6v5KOqGxhzjcIqXB4g++p9iQj3FVslY4tG6HOB5Egtz9ty58W5VubQuORatxUfIEVWTgCScUOw+bEK29Mb0RkpEh9z0+JjEZnD/rbyy224w0cDg5r4gf8CUTxCJbUkpFCR3M8n2/VaHViqVlspDCQOjtiXErByXe5qQA23z6R5ol47AUyZmBWHul/6Shu36HYWWBluv7ILaUio/H0r0z5w6mCgpNdAwwkHEwmIpJR0oFmEFFZGwxxKoIfhCIZ48FyASAMb7J4MJrv1QuoUVSZFzjgauFp3+ntnjz9wFcmuzLMdV0z7SSlhd+NwzXBGJJgE+RRUW5v+WZSC0eq+Xp4JiJEajZLhKO+gKiOxpOVSgZiixxOyqNPXdiu9FMWaOwWVQbooTG1ajEhQt/LPXM4WnTAKC/FZzFeyZSGGRXRwUyoEm6EaDTlTR6vR0tDlHDmWXxcIaNS8qT6zoNm/KyHn6ak2xH2/VF3kiFU10W8J1Hg+0hVyyDMmE7XSlL4pqsscB6OG2MSLRw4GDvlfZFJqeisEs5Ki+rI0ojJ9MmJvBMeO1+W1uSXbyq4KFLJfGoibKVmM6dttl8pqjXWaibiVv7SOpApwnqG3CyaErVmbm5nFf9pX9+TJv6ne/3nl+D/Af+Y1e2OfG9KAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, AB is the diameter of circle O, PA is tangent to circle O at point A, OP intersects circle O at point C, and connect BC. If angle P = 20.0, then the degree of angle B is ()
|
35.0
|
282
|
[
"20^\\circ",
"25^\\circ",
"30^\\circ",
"35^\\circ"
] |
D
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAKwAAAB3CAAAAAC7o/ToAAAMy0lEQVR4nL1cfXAU5Rn/LQcGy+mVepRzOBqHHGZpVC5eGIKmTahxSBVC1NgwI1Y6ImGMDlhijVNq0OLkdLDVkdAw0IJT1FjQUGvrnXMORwn2MHEujIm5DIkJE6jHRzXxjjGQzT79Y+9j727v9vbj+A3k9n3ed5/97fM+77vvx7PLEK4eTucDAIgRyRISMpimL52MeKf0HACAAQCKWEkB16tCNkJr9zNH5saFjBKWEUzXh08iIlUbrWHh53cdndbkEimnZEZOyMZIxilMbew9bkopkXxDMsgJ2RhiFC6vgTcvOZcYZS6bC7LEAHDPtYtS4ysX/ckgpMdODvzXCwydAWAtwIw7rQsdxiy7BCY3Xdfkre2L4wTO3bWqBQCd/djj/apsfsESI27KB3B6BOGuodFO6/LKyrlpdYlAOcFv7g7FE/35O4mov9FmqWvrlyrdu7P2BnbroKzW3JBtfeu2ONkuyzt0oc1hbewnPv0pvZstZXvGMqvNCdlh53AFUYSay+IJbjY+9IH8aYfqTE0XMhXICdkGGtoQPT5g+aje1BjMfELU4qMNps1BUToJuSDbCiBKdseCenNzRnMlIthkbp5Il5mDx+1IiMi1QDh+elcY/dvMsUeuLOa29A4VutLlarRiCvjhCiJqdRIRcffPvtWXkJmVBi+7UroudCe7BfBTNbCBKFSW1yxbnhf9jUq4rfm9UmVz1M8SEY3l57nUnnvIfFBCmhOyPBHRl7N/0JtlxUuc3mVtSj01Z5b15dlkuvi04ImIgo7aUPKt5mLwTQAO3Lk8YJItKQ0GAOYen1k6lDxy0WjANHgOT2lX4jQdTRTkhuwL2K3l9Gjtd5gTBzf6k+WJnpvxgj66theFxMlcWLbeuF4vVWtrxCn9B9+XH/EVuHWYgBAD4HLFim1imRZUAwAqIimeiCh0d2mBgoGLHEatHfGEBrI8EVX7iVwbRKKg/RdmydmAWnxq7osda+hnGWDyin3ytZ/9OC4aKlv1yQFWvc5EEIAlbff8Ly7QApeTWg+J0n7rgcqXNGmUwNba6JE2sq0A/PGk1/JBu4PTpDGG+JN2gnVHjtSTjbjs/aGY6naLL2TtUs8vRX0EHjYyd9Bk2S8riF6Jpdry++np+qQLaYSgac12IaWJrDAfaBASW4tGadCsdqSVEUGzMOHUNOpyrwCwej4ATD3mOW7F9ga1I62MmLvWCQBaLBud1vmJaKKmZoIomBvDxhTr87gdX8m2GYCnZrbooU0CGy3bAD3GszwFi5qIiC6YZNYy1GPQHCKNPivUChMoebwFAN66L6ulQDXXKCh7D9BmWaFj+XTO28KB3avZgmmv8145abQsAwDu6vu9DEDo+aZcsx3TXqe677TG3RoC8OY614MnCWDwxjp9qEnCsHYfNDewV/MHaewajojIquvQMBk+VvO0ptEeJCKbn4gCFh0opQdnDGrz2amHuzrnEuDoAuDNlccKMJR5NflsuGbCPQsMUPwZgCPL9eIljYojWsiOV8w7KOxtlZwEcDS3lkXFUQ0NbITdTiT0tWN5HJ026+Wd6ZA3ptqyfWVbfgsIfa1p/uc4VQRkv8CtBotOqSXru+v1R+MpRzcGFgIKdzcVomBAJdnD9/2tRkSsuBunVMxpldWDWsvufdLzU3G65CQGVJBVVg9sn6p1npf3deYnCJb4p76ap0aTElgvqCG7sfuYGRAHNFw///PwdbqxSoNZYeVkLz8y7jUCiNYiMQAc3eHrlITmqIHxkmKfDa+c8Q+jWMAAQHF3+HvKuH68qPi4sisbw0ofChfskuvvnlKliligVNkZ49crtOzQsjV/kBBTiV+ZHjUgRplB/NYDUmKeyHZtSConPTyL7J1E5GLim9IyGLUqIuu1pI0aqLtO1cx2y5wwXSnMjm0/K+sGoqfMO2s67k0SxcoUM2EVNdv42flZmPFaR1bnhmfJdl3xNr675QibJIqjhAtlSVAE9ytKXP2SMfsGtvX1zvgTNdG4DFDy3aiC60awa4MdBAylRHxJ4sycaQCmpqbkiz728XHJ6LwIbdP1x5TQBABMDlQCDOC+xyhfGDhVNB2AYcqQuRjhyhruyMy4gEk9LPiPMqYAzgrDSvf72TlD3+qs3ID5ttJ8OG1dCba9fSirK4oxr3AQwOSmentWxQdZEBFxRBzHEcdxRBxHJCSJaFL4CRY1cZNcTMwRxxFHxBO1AhVXNhERvWlQ0XFVEA1n281S3liUbPR/7J/o54v8nWKxcF/ERS40DCcR0Ri+UM62GpENlCwW9n0siclGbJdMtsvSznNERHzSDV0p3MAT0RYhQsS4Vb+tBCk46+OLHIZIj2AwJLU296oDdUIrSu5f93z9CgNggQ0AUOjWMETMYoLjXQ4QcSS4aaInEMcTR0RvWvyU6h0cEXel0Emi6KFfX6vCstmfwhmDhGiTEqgkNjCe417LH4y4R0wc8dnJIcQjhHgizzX9ufQDH0s0DUisdyElOANjaNp3ogAGANPiYoPBAIMB06clVl/J1NuMwvmqktLtdRCtyEhsY3JryzMM/AQ3oOGofeffqKclE8Fz5pH4kifHpZIN3VubNoaRiKgVB4lcFdHKr5ufq2V6Iuoop0zrs/yYo15GgwvCyFmg67xjnV7UUrhQzRuUiWxk4S17eBymoI7btlHwRNGtpbRke617FGody9vUpIVVJtQ/R5SerM/SIWuk5AILP8rZdqhpjCjt1tLhmvYa2QdScoHbT698VUFnpAAtvzIh7UbzHqtk/GoiUiz/Un1utvD56BY+eIk24WRH1Cj1lFKjXAeiEAK3ugzBEQ2OC6pa9VgeF7LoHXbCE3ls8bCTJF4TdZUK1ytiWm1+EgJ6dOjARAE9ha5Ialr0xbeoL4dXznBlNX9LBgNydKNu9g7oslofV7H91hXRVNINXbBvVm8NZz3xo1aXbhE9PBHRofzz0XQS2UGbU4NyTykR+fQN7+syfx47RiT6UZi1pVl4yxZjeRwR7bflMnByy0G6UthCxHuNjRmHWbKw+YmINlfqETXHExFNlDaLRNMADFdhxr3DABN4qGvmTT/f9m5f3M9J8jAdHN0AsAObtDcwYdFnvRDIE8F04PTXRmDwDgD1AIYCXfsHA2WsrdRuguTaSwYUd68HYHh7WWuDVrIMiMGLfl+CkKdWJ9GWOSESN2Jv2+byWZby5gNSfTwvcSTAE1l57zWpfvdDfB2JAPVqxIOLExiNepofsMNR1+xNs1Cc0kON5wkLDOQy7dRO1mlKmnqAhlOJJhDx7W+qMJvKt+zpTMyX7EuFFkZEfbbHOW297cS6ouS3Ghlyv7db2mti65rE4GJfZ2DQV3TzbcvYH6XxXWIArKl8NJI9vua7v6sLTCQwAC5WLfhLypOUqqPGEI8dpOFvby6fl1fesNObrm9yxkddXIMti3FmKoSrd1klZh1AQmwxSY0YExHy7lhfDltVc0cgNdMj3tvab1H/ipXlkIRUceBkxDn6B3pODA5W2NgSh7iyxiyXDPFl8e5VTz4r1+EJpcVbqcRMbfvrP4skymqK8pzq7P2izze7sGJRoT0iWnjQLipwdt3FtqUS3DKC/r3Rts8snaUZI65tNUUoefj33vM81bUlZnZYNohHCll0EMG1+R+mydJg2UQjHe8f6OqBfRnLLk3IDL+494knbsha6blX9zY8m35HQAuSDRX0Ntfdjltqmz2j8TKj9abGc9npGW34fqaXhJVbVt7rugcCxwa+KS1m2Uio1znn3pqHqmQ1H253bWyUdlYBKtwguyCI8R5fYLDTxjqWFLDAxXf3nFv7y0UZyvftbbc98mDmx4gOMd/ERP6sfh8AcLBWRKG/90T/6XJ2kd1x5s8dl8qXl0vF/fR5vUfm1K4rkLuSfu+DEYPVz9sxWXI8+Sl52ddzqveolb1z3rmBjB9jkKszPV9em6z+EH986omd0rlDga6TgUDpglnG6Z+KP3Mx72aHMQuiepN19zwz0iKMitJe+mj/UNdnM4t+UrhwaZoSGaAn2V0NgPMZ2WLEnBk4Fhg4ubiQXV5gJSZ+a1fTDe5rtu/6YW2qnBhJFicCg8f6JhxLbNEeThY6fppl5Fs7CqTeVGDAINJXHHwg/iWcpUsBXOzr9O33seziJewC+TVW/Sy7K5TZBVY/XOuu6lmcKBSY9wT6Pwl8VXZLmrYZhY6WdT+f8tUjMSaHqlCYQBGITpntdgDh7r7UsxKhdliQDBcSR/EpD37XBqLqbLfrpZGjL/RIYFcD4LdrUnH1Pi7m9lNrcY8mFVeN7Mi3i/FYoVuDBtKRrIw//auKwdkB2bFKBjA6kmUoI1/3CkxWzZEf1GaCbmQp0vdLw8W8X8xcc+N5VRsAMfwf4UPLFk4MhYIAAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, PA and PB are tangent to circle O at points A and B respectively, the tangent EF of circle O intersects PA and PB at points E and F respectively, and the tangent point C is on the arc AB. If the length of PA is 2.0, then the perimeter of triangle PEF is ()
|
4.0
|
283
|
[
"8",
"6",
"4",
"2"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAKEAAACLCAAAAAAsDaY6AAAP8ElEQVR4nM1cfZBU1ZX/nXPf6+kZmE8QBoEJI5R8WOBodoVojJCNWbNmFUzVSnY3Gq2tlKy1cUmZjZNajVi7ymaNaNUmGLey6rrZmOyWo6SiGBMcYpABPxhwg8Cow0DBfIkMwwz98d49Z//o7pmB6df9ugdoTtVQdN/T5/36d+4999xzXj/ohSDJm0DAX5/MNsYotSgA96VvPacf7f3XbOOlR0gAkPyoEY0rOrKNO+cXTpAcOrbEe6xle7ah0nMIANjyRmXkWPu0bEMXBkLvlW3a8cyjWccuDIR+fDHm3fbroWxjFwbCt6+qDB4836FvnIhqcuU27boX/5V1nPT8MRUo0/oBXNb8V1kHLwiE+1pvrYVS9sELIR7Glp1ofxIBAC+IlUKxnKMXgJd7FtfuqA0cLTlCJdwxfcfrwQol9zKhfdcNuWgqMUIFcMcz6f9kl5JziGeamoDAlVzyaEOaeLAtt0qpOaR1d9VrLieXmkN0trSDcjm55ByufSSaR6PECFsHVuULyCX28tqnQcg5DUvIoQLYsLwJQM5pWEIOCTj+1OtBOdeolNTLD32jPr9SKVdKe9uaEFqlRNj8QL5IA5QUYUv0S2HUSjcP4w/9LJRe6TjcuHxBKL2ScdjzxL5wiiXj8MH7wiwTlA7h7h13Abm3u7SUCKHetRFA7u0uLaVBqC/WLwurW5qVkljbln9DTktpOHz49noKNQlRIg57/nMfEGoSokQcrtkQMtIApUCoaOtZVYB+Kby85ulCtM8/h/TkVU2F6J9/DuPr8xQZzpDzz2HzPSFS/zFy3jnc17odGjLQACgBwuYHooXgOwteLrCG+0q8kEgDnAUOC+ID8Yc2FnqBs7JSwvO4cVlTSj38R87KPAzNY89Tb6bVw1N/NjjU0Iz8yzeCuxJBUgSHPhPFj58YikmkfHJ1lcsUlpH21l2FX65ghD5Tsv/jwU+OD8XELa+sraq6aErZqCdyJqb3bCgcYIEIVUH9nfvf6076vi9gNsaJzFy06JI6BkSJg9lUQkvd8nOJUEBidfDQ7re7474AYAg7kuBk3/u/rL9q6awKsFgigmSd24T4d18uAmBohJbUInbgN+8dT0LSkIEkw4cM8cBHW6++enY5FG56NIs8vrLxHCFUAkAKc/i1Hb0xEfAoiBRfwsmuY+9+6eoKMsJZw4MSep4MWWQoHCFBoGyH3vlVZzxOYAgsYMBgQITFugCG9vfuu/5SRwPjV/ODBaT+hSEErOP7x1777VGoYRHAkqgaASCABwNIxMfAb7puXhbV8SQqgdDeXlBmXSBC42nfy1t7lQArFgCxrzAkgIUBBOyDIR3Pxz9TNZ5EAqB3FAkwHEJf+n/x5iCpNSoWDBEGYJlYzci2JGAc/Z/4tXWcbTU/29R0LhFS9y9/PwgVIM2gCJgJBr6QsS6JEBhgOfayWV5lzTgL8Xz9xWAJsS9b7/jm3w2rVZC1gCGkQg3YgMiwISLDDGYBf7x591CWsL3ursJS/zESZi3LtrZBMMGKMigVaxhQUSI2TBDmdAwH926pmc9nktj5YhEbcmiEknjr1V7yVQABESyBDAwAB+yAmBVsfBFAHEd4f2vVnDNtfOvh4iJNOIR6eOtREasgkKYaraQGsEZhjSMgppRbBfBZEm9fXDMFMnb+tB4vNPUvCGFi94EkqxGxrEwksEatuNGI8ZKeVdexKgxObSYCxtDOhdWnmdW1xUaacAgP7DyW2viYGAIDUMXMhbNqK00yHju4/7CNwNMyAMwMARiHflc7zRkzFR9P9xfPCUJFYnenqAgUBAKYtHz2p5vmVLgkzP7Q0f27Ok9FrEQYwuKIgOHvXVznjtroeXbzBADmR3joD8OWwKlpaFlQ88fXzp8UZUCJDU9qWLKrta9MqEysMAz74sjA+5fMHLWx/vaiI00GofqAyR4Y+cSubjLCKixGFeDaL3++3iGwwAjIdaMVU6e9egQszD4YIEV5rKO/fsRe+471p31nCnqRAyE5loMid98fPlGjIAiDGDzjc9dNd5igLGAQKTmVS3XLMZuwxgAQ9uE5J47MG/nKzfefFmloLKow55s8Xvb6+nwWFjAUgFP72evrSYhA6WhCIEevTO782PFhVKxVwHdO7Jl/SVqhJfpnp5tMowpdac8g9JWN+obVqmGoVXIAtbFDgwDAYBEBlV1+Tb2rBF+ZrcIFABYz6cpYe0J98a1JJgEGHR5MeyWwvxj6wJxBaKwBMUMc+GDLLNao5cTRYQizkggYzuxr5ziOWDhqxVGbIgMsNYuPd2vS9zzfuAIVZ7A3XgHgzP5iy6bOE+3X4YpbM92UEExmEJKxRgkqAkCJQQIQD34MTs9AiBNZNCcKq8xpDoQBVfWM2zDn5CnXuHFYJSsgr2e4Aji9vxh/5IkVN99e09SKXWu7168Oy2QaIYNUwAAbAJquISgGhsEAMwvgo2pWpVHw2AqDksKwF6nvSpL1CGQECtLeoYsA6IPNI8uk9eu3ddYQgOVYvraz+Yn/DnmucgBRJgDGNwCpMDS1ckGQE8M+MwAWRjQ5fVY5yKS9m+YeDANGfYM/FAOM4xsla8xwEgB273gyo7hxU9tIWFRqfL7tlg3LQyFkgMQSACIGYKznE4x41gDGH4inEmpxIixl0+tgDazKyN8IkRV1lQ4xKwOiUPESPoA1I7W4J3e21I9UvAjA0i0PtoblkNwRsJkXlHI+6UkPgDBDBHDqqso4NTEyf0ifk5hjwx6xgWVmA1FrATz/qaVpla0vtURx2rSj2pbPvxDG0aPxMFv9yj9lU4dOsIDYzbb00m/5iZiyMQLPWhHxPCB2X1tqkHruenN8glj79C1h8tpM5Bcv2899NJWsAA4YxMxBZThLEYZNeoAIICpQHbMhZ6/KNc1/PgTCDIdB2x4jdXRjARljOCCAGStJFc/3ACZiATF6ns1Emp6W7OWGR1aszo8w90nKOMySotFxjOeJBAcw3/N9z08KM7PCcXi0v7h5RTTrJJozI8QJMDdCpzoCMDMTERsejtuAupHvJcWzsFaFjCECOzvS/UUFfv4X2TcP+uIrE0VoaqNgsJOqPNujn/gBE5FjA6d864EISqpkyb07FWmUgPcXBGweTXsmiFC0erIjPkOhYIcOd8SCStYf7j+pApNKgYgw+X+XNgFILfWeGQEXmNGTH2Hu7EurK5IcAYgBgIc/vLJas2ZPw/t6BQSFWgVgTd33d44qJYLOotO78yPMU3OoqHQAwDHMDKauHpv5QOraGUY/6EpaqwpRFRHV8t/ePXX0W5TFA8z3BpEbEqEyV82sZghgiIiMe/y9frHjV4v38YFBJiN+EiKq4ltv798xRm5xrQ+iqnuCd0gSuLyhKgLHwCoAciPtW48mkdmPFYB41npD2/8vbgyImAyrAnbPNys4YwRYEFR9bV8yMYSAOvXVAJhAbFxDkWTb9uM+YAEoCKKAeP7Od06QEhHEE0jC0mDlV8eaWf2LgPW1KUQtIjdCwkWNk1zyFYZAYM/Et+0eTNjUGMCsIrHfbx8AoAJNB3S7/5vRsSnazZsTWc23o2lCCBUA11x+EQBRC2OsuJaHX9t8cMhPq4iI1/XrNwZdxzFEFmwgwui89JqyseWv2tXjO6IKYN39+QHmijYEQLmx4YhHwoD6xiXHmORbnfOvnF1GAKDJI3sP9icdUiiIFNa3isSHP5l6eoT+zoqvn5k6ENB+8JaJIUxJ9ZKObgAKkAE5bE1ZbGfXvOq62kjyRPyTD/qJXPVJCUYBAyaz95rFYwOgEuo3/mVLGY2GHyUl7V3zQgiA+RAS3EUdAzHyM3kXRVjdSbE2Gymv8IZspYkIWZ9JBWp8qyyR/oHvzhibKhGA5T1f/Vl09DhPIPSu3hjqpJKvSkyovnKOC6Qr1wwG2YRfWTvJ9WnyFCdpwY4xjsMgcoy1ht+5szE6zuzqW2/owdgku23V401hAIaoztHcZQN9AhABDAdQEAkrgRjiCokwiTAUUDjomHLbFKXT2wFKWD1n2e1/PzIZO5u7Cjjr5Rafo5/p2RajVPWLwA4gRtUwkRUjrKkCDom1CpbEnn9rYLYsdEZ9Zum+RxpXrPxUTVMr2n/evf7WQqsiORRo0meP7U0YAojIccAMEEFYwMoixAY+lK0CbDuWfyGSKnOPSqozGF23rmVT58Du63DFhiJqDrlEZv6J18FQJcdJN+SJCSke2QBsRVSNVTeuB56rPaMToKNsrlo15l2gkJpDTjE038pBNRxRtWAlJmaGEjOzBfmeVVEIc7z83QdmndmqyI4i825eFsN0b+GYhc6WDkWyDAqoEBOB2GHxQalCIqyApGrqyTuRpSWVQ/IW68J0fFwfZQvc6P5kRC2nfaZQVrFKTBYEAhlfplx1z3+UUVG3n+T4RWEKfPBXUGIwQHOr33rrpDFqySFSAZFaUjasBpaswkYbLt95xR+d9ZvxnEyQDxICwAJ2pn1hdtthz0CErWGASFWYmFV8axXVi5dMXrmjSBg5ZmO4+xwYYHEW1+/d0+8TMYRZBUQOIKwWqhWzFzRUP3D3xXkvmF2y6aeNhLwTQwksbn3t3K593b4l11qOuCRiGAJyp86YdXG1e2ikv1gowADUSgCcnmVDjzXk11akWra2obK7J2ZFCQe2X/znUDZlU+tq3GOf8D+8vaot83UKEv3b/ffdMP7t5N39Ly4H6Ok7sGB6QUbF961voQdP4VLXMcY4TADF21B3Wfh1Ipz6+bkSEm24aNF4jcFdeGAdgNinm2KiUsSjIravfOy014+t3F6EFVUJ+uSNjd2qSvo9rAvP31mUvG7TZ7c+jaLv7tORf8a8Lkzyzqu0AhdjHCDAu5mJ6Cu7UieEFMjYD4qwFQyAUgiLjQzu89ds066qm/owGvTvHywcXeff0LR/euOnAaNpLxf5TIfKJWj40bQfjr7xk85LCzRB+GBp8mTftK8EJ9ypBkAx+PB27WSgfPTxTfpBTeE3x3Vcvea5yfjaZfMCNSaw0b90IwCgM/Nkn/gPb/qwsQB3KAD8eO63ATgLKwLVikcY23Y9AK+jcXL6av/cjILcQYDGXv/iZADujyafA4RH5k0DcHD7jemrvfHw9MieYGdlB3nk8Px8OsUj3HIJAO/euTcDAPSDraIdM8sLtVI2J59G0QjjP/5TeL9a0fdayj8vr/9HoNsrdM3NmvYqAGzO+pSqCSIsf/cainznzu3pCfTlTW/i3s+1Xd5XmJXoio0/hbehKngaFn/XvY5/+eijhYfWR6av/dqip66ecI4dKEpnpACFutm999t5PjbBg09hP0IIspBNRh6HUvy+fI6FMuCLzG3OvYzA4kJ/0HK+ZMS1DoYsztLh7GzL8AAA0PsL8e8F7lXnSYZW2hdWAU4n8IPpBZ/Az4ecsmhfBZCujzUHtS5LLM/s/l7NBfDMtLxS6ucs5ZcLH+H/A59CPgmqLIWMAAAAAElFTkSuQmCC"
}
] |
<image>Put the ruler, the triangle ruler and the round nut on the desktop as shown in the figure, angle CAB = 60.0, if AD = 6.0, then the outer diameter of the round nut is ()
|
12\sqrt{3}cm
|
284
|
[
"12cm",
"24cm",
"6\\sqrt{3}cm",
"12\\sqrt{3}cm"
] |
D
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAJQAAABnCAAAAADDUTS/AAAIDElEQVR4nM2bXWwcVxXHjzfxaJMiZKClWxHkIaHNlgcYkNoMVE02yIiteOgiHrCgaVcVKoaXmL6wEULrUAkT+rCtBHKDQBMptAaqxkUgNhSJBCRkO5K724fKrgrMWijsUhyNEQqzs19/HvZrvu8d713MeZmde8/c+c/v3Lkzc+/ZCdD/n8X2W4CfjUXUxuujHT8OUdY3RmxgHKIuTE6P1sAYRL10dNRGxYva3nlYOjRaE8JFtX70FZIPj9aGcFG/+O4dcmvENkSL2t4B1u8dsZGDQqQMbPvrLxP9edRWxIo6v3DX1kefvExvXxyW1dfoOq3XieRpSiaSCY5mJsb67Nu6vl7eUukUqXGiSoXeqm2RciKV2j9Raz9/NZ46oSjO0lp57Q/l9Gdn42GHYiym3fsdWS3oAbXGclbOG8FHj0WU9sGPHJnXQ12qeTlXDaocgyhNfvDItw2mm7EoBwkXPnhe+tDKez710q+mmI5Tuc3p0+fqvnVCIUGTv/Q1ZRXIrPD5L6qbPqVCRWly9lJyEQBKCuchJVXzFgoUpclZPZfu9V5eVDCyWcNdJkyUJmd1ZBf7u9yoAE0tuUoEidLkrA4zrQ1LuFEBm2rRWSBElCZndcBI29uOgApmalW0qK4kVFPXHMURUMFIley7I4vqSYLu7hlRUMFQdNveiKL6kmAqngEnCiroKX24M5KogSRgvuCpjYQKumIMfo8gyiYJxbSPQyRUKKlm/+eeRdkloar4PfGjoUI+3/+1R1EOSYDrxutbNFRmst/knkS5JKEw7+8XEdWgD+xBlFuSvTe4LBoqzC53t1FFmUtuSWGnjoiqKpt7EGUW5Dm3pNAzR0TV6wdRRJkFed7nLvMZogYWERWUEhBFVICkAXN/i4hKy0YRFSQpHFRkVKZc5RYVLIkBKjKq3CKnqBBJLFCRUekyl6hQSYCsM46PiEpdZYtiSOIAETy0+tpijvUxWn/u/u3VQtjszauPsj46FfUFlovdZn8W/jHKogR0aTOMdSu4TCmFkGJTIqJ6WWVeeyITCZVSDiTFQwnAqspx7dFQLc0FkOKiRES0xgYVFZW65kuKkxIAZDUeLweqdSJ6KsTZjPuQ4qZERLSV5PGyozr/+A7qb3412DmeqLhJRaAEcAydblQLM7cBrB/fCXZWV52kIlEiIqrIXG4DVDd+eIG5RJKo2UVFlkQ1XudvPl8nImr94POfIGJM/9tFRZdEtDvF6Zg4+eDpc0Ttv6aJiFpXT70v2Pfu2qBP6aET2yJMBirHNwBg/a6NkA6Yz8eIqN1oNDqcXdZpZyeLbCcAQI4oQ5S4c5uIrKe7QQw2AIDV2YMiAPqRdFrnc/31PSa6N1/laNgw1Sc1gh0snn1kwX/a2WWf++ILRPSte+6YeODli6GeVpwAoPEYEdFTLasNWFYTgGVZGG4AWFajv29ZHctqwrKaMOOAmU9yxZD7CZjVeuFbeMWqP/T9JtAAGh00Omg20d+gW9bu71sWfko0c+tpYMoAoPPFkPXi3LfUtW742n87deDAZ96OEdBoAKAJOtih3oaIMDFBk7HB/t+P/dHq/PiB94MSNSKS+WLYG6uYVpG7om5WDx1o/uXDMaKYJEkx6q23DZfdYN+3Hpu5SDT9+DHqiiJKl+jjV1kn431ZqCUIaDZx+Vlg4fg7AKw20IHVRKeJ/sZdfPn4DqwOltc7tpBwxJCvV5UUENCy/nOGiGZ2AaDT7dvdft3v3m1H8b8f/h4sy4JlWb0v2q4Vk3nGSbl6lZZFjOiA9M6t28Dv3kVENCFJEhFJ0iQNNlLMUXzr5n0kSRJJkkRKeYidHUOuXvXGx7opAP84cpiovZchS6nsDnfiC8XnH6mEeHP1qjWVCEDziQ00rSYHWgBA/aFnAaDyGwBIu8ao8Bhy9CpjCiCgcpRCH5Aee5GuAOsztwE4OhUA1ljK7lVado9znrbXbCPhufaw+5CNanZZwDKIO35AaAxZqMyEIUDU8qxf04ExZKEqzEOAqO40l8cCYxiOKsqkWZgNFwqcFhDDcFRd7qOLCjyLmVf8YhiKKupEbKDlFoNqNtMZb2zDUK1kIEjUcE3F5yzyokdC8EX0QAlZQ+5dn6+ZOU8MA24NDKcFhSxsh05remMYtL40WF0VIoox+LhjGIRqMIUjJAEncfZcWHVm81+ftL/TxM9e8HO7RNn+TxGkYHqSMFzmjKEvKtsisqAMDsdiua85YujTq+wJE6JyXUopg+Fhvw99UNnHVGEJOGxV9hh6UDney8SlKhUz7G+VQQzdqJYc74oC86d4VA1i6ESVn3N4icw002Y5vut6MXSgms87fYSmvy33nl3h1o2hDVW24PIQmyi4qbrb9zMzpxSHqKqzmttBcPaiOZ8xONw205lqD9VSctlTLTz5dCXJXtcCsCI/M10FSuqc4a0UnxFbVT3ZFH5m5j6QMXKK7xWMI3dYk2dLHG7lO9/9jH/NeLKsl5XMNYaLuSRnXgmoG1PqN1ZSqZWQUas0L8/paJ4hIrryPxMFXMtMZZb83uaM4lxCKVQBoHnmit9Mv+A/Xtgslapf/e35unJKmUr0FuB2y/W1t9Z21UfzvdWWdvUk3f1ez6Hj/Y8D0W75+hu7ta3uzpQSP5FU5WHtjZ9cbD15yDutPrbw8diL5DsLta9/Omy9toHn0t4/A+6rqJv/TNIX7vu9p3xfRf3p9GGqVY95yvdTVOu1T5P15cmTnopx330hduMEEdHML72Lyv8FhHYTbRjJ4kYAAAAASUVORK5CYII="
}
] |
<image>AB is the diameter of circle O, PA is tangent to circle O at point A, and PO intersects circle O at point C; connect BC, if angle P = 40.0, then angle B is equal to ()
|
25.0
|
285
|
[
"20^\\circ",
"25^\\circ",
"30^\\circ",
"40^\\circ"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAIkAAABhCAAAAADHWN36AAAJF0lEQVR4nM1aXWwcVxk9kyA1NCZG6iI26oLrZClW1ypr3AQDdsZIQY1Uh26FkBHKgwORXMFLEN7ID6FOpSCZJFKDFKQIP3gjRSitTDcl+xDUPGzWQbg1yK1wZEOTNchF2tRCrHEB++7sPTzM7N/snb81AY609syde7975nx37u+nET5BzfwBf12cW13ku+sAQjH0RJ6Jt/s14gLNDxOTgIn7mZn5vp7IM4iFADxYxtzq73/9lcRQx3+FSRW/fe1Gcei5oztt/LYymcwnX/h6nNDsxAOA/jEV6RqbJ0lKK0XWHt45GY1cC2CsCf6Z3Ij1z7nnyPb23nr4TN7qj2acnsnqn5nI4YWHy+ReInzJ5XHNScaF0PDqQ2Rys31iw7FyW3pxvP3OQ2MyGcz2zY/b9ZNOvIMx2TwWuxeECLn4mVGjQTQdAG5vl8lq75DdM54o6v1rZJ0L9Rxntfz2mCyEx+ncKpxgfK9jyVZLHi0zkSS5Gr4ckISFH3essfoGuSSpJz1KuGuy2TseWA8r/6huVJNSgKWIizF3JsNDAWnUYOij1T5PzzPl5Rx3JmdjgRtrDWvRysec10kitQ0mmdCfWidCLrVnzYtUisxrObq3fBUTK/+9iqVWUXkTPU96D/ouGRJnt0dEcmxkjcwBAHTP7AomliR3wlvbY0IW25+c953ZWZP+qe0SIV/aGV732w04MknHDKdHvnHhsUf3+87sxKTUlSFl8H6+DnPxw/eufjS9PU0kp/TWKZAki6PhayQ7OxrtBmVCIzLvVNLzFSVJXg2NFkny1iPp7bWTOzF/xZsYmP+X9Hhl9v1Yl8/iO9RrjzdeCL5e0WCunbStMwNHF75gpX6z+Br8ranUBLtc+gFZ+WeX3Rrv3ow+X6il3Xoq6u8jVDNZCtfX6R+SLAx33Ky/N9q+5DX2mVB75/rzIADnVeWspmmnVA76SXfnH54FYHpEA3Y+13e23Lp3+m4qk6tIgiRONYk239u/aFfp1SO6L1GUTAp73F2b1EkyZy/74VjIPkJIyY22m75aitI7vzm4003G2fPTquTr0eLSd+zu0tDWvevxqz6c8xFV4v1u1zI/THYCQL4h8c8vrs58WZm9672XTxxzfTUAgFKTxZhrmdtHAQDTyVpS+UefG3xXTQTdd/XoJU8izS1WkhxwXX1aK5cc8tUhMtt1xHmimRniQnjTs50oW2yH+/wVOZJEdQGzdjycdsm+ECcTF1tjElpzLZPUybxFRJJToR+4LQHkvSj9iKJk0uaxuNCB6vJlsb9vwT33aoR+RFEy8bnRNKsB46HLpHLjrYpiO01R3AePlplIa9JecKZQz8RbFOVX3Pah68cGENBwAwDwRzPVZeNz42MA8NLkP9w/YiWTXZsuJTTNqvdtd8tVbO0CgJ7D5wG3mYqSyW4P+gDwVs8GAGDAM+dGGwDgzE/XXaVrYkIAn37fy/r6i4nx3+Xg+pIVe3+JAAD2D73imr+JiQZg/5KH+Z9HsTyMAZKV6hyhYTlqXp12F0Xpne67rjyWB89nLjccX7hu1FdGMVMUZ6g+qPRhl69tcyJ0weODbERfZcvhvdDfXLKpZ0rtDlMbSd6KJh4EIrJR67FHJlz6nYCzx8LwEx4TyyZcO1K9vB8qOFNRfjtIpJsaIQHgYnfn8rOuzm5GOlG93Hds0qVJkTSEEOUGfksRkk1dePN82QeMPYWapUJ7wTEjSFIKW51SsfL6e/N82Q9u9dXbPnnSqqA5o3q9ow290eAVAOkni0snAjoGANJD9f4Yn35gVqD2DqWQQggaokwpRImU2QOCpBRCmIRXjjydJctCCFIIKUTJzOiNjkaHVkRpRoWJFCQNUpBCUpQicyVSlGmUSBpnPzFpiDKFpFFiWQhKISiFDyJv2rYKnFtKtZ0YJcoypRBClKXglG5WJQWZ7Tpy38xGSkEpZPXnifiMLeHk9x1KoVIFhTRIWbLujc/+0qr5g5Fw2nz9Fphc7bWnFEIOp0UgjZLpGlEmKcqkpCjx9acNihLlz0LJDcpqsiwFYbLZkSVtX8rEiHqGB9IQpknrvYUgy1tCDExRincG+96h2ZBF5aEQovrzwAXFCUTRQZS63t421syGNzes+XKrKIYWaBdAcmLEg4lRXyKXJxPfigw7d4l+MKas00GUChOjsXdAnpzb+an0tog4nYWoRVGPxeYGSabtqfg2uCw5nYWoRVEySVmbNGdjr8Zb5lI7aWrCxLA/JjKfyuvm5fAQ0y1yMfRRx2eb4QV/TE4xnzRb/GbvaTLd0wqX75onkuou55UEaT9aVzBJAdUdCfOUNrgucrLDbb9BJUoDE0lK5lNkrrpbuLB3nMG52E+um3Ax0SRWkyZ5nWTqSvW+cpofhEtR719z3xlQiFJjYpZMAnnq0Gon3v+qRDhc98tlcf+o57bnxYQzE2dMhqx9t3S8xweXX4XcomZIkrIiSp1wviNhpMWlWZdGN6z7jIS5ZF/dBY4Ocm8v/qODjKitBzZnSt4F5/q7KhFT6Xg83XhEWL36RcdXF3zxIJnSFUx8IVOLIjN1sY/2zH4+SBSZXRT4PsWRdZF1zT6SwSPrUnpD1UFi/Mj5sa7wibRhcXm9QnFzZiQUO71Q4+wLNlGCxT0CzGdm5r8Yf/wAYndeRnZzGXOrd2dbi8C8Mp2tu6swOeO7vMZ/rr2//gEKWwB2h7B3z969jyhyedmhxkvfuFy7V56quFvAox3eAnhLrUH79u76e9YHkQaLJ6XWYvypwhKwA9BqbxDMsBYwvwKDmqZppp0dLTCowxVNG4TikNQPCCA7mCeTGiwmJrHB4LZWtLvktOZ+QuYIM764Ezinn7KYZPU8mTvop5k1Yl/yHNCZ3NcaEwCYPQAAB99GxTuduDIQC+ykKzgHErEIgr+EhRtfAwhTVJK5FFO5QH2tCc8QNR8mSJJjSesyBXhG4CmQRyv0G00kKSuGdgCYzlPvDK4s6/62iFwMGnD80ACAHcAKOnG8BTP7zLPrlVzrTEYOASsabgMAzGBAMhk8xiOFHJnTW/aN9QqWj0HqKyT9xUMoTHmFvfqGljtkDpsrTwQT9j815FQRdH7y8OAQMfU/wP8Pk38D/p9x4OGTh9EAAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, AB is the diameter of circle O, DB and DC are respectively tangent to circle O at points B and C. If angle ACE = 25.0, then the degree of angle D is ()
|
50.0
|
286
|
[
"50^\\circ",
"55^\\circ",
"60^\\circ",
"65^\\circ"
] |
A
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAH4AAABNCAAAAABFpo9XAAAHrElEQVR4nN2Zf2hb1xXHz7OXGDo3GvSJKEyt40SrzRSoh/ZHsjo4LCnVFpOp4OIMnM0FJy7zIKLxCIU4CsxlhnnMbHbmRYUm4HRmduduTZlMneJuKktxi/KHqBlTsFIZklYt86IMdJ+k+90f7+npSnpPlvTUf3ZAftf33fs+95x77q9zJVAFgXQ3dO+/a3T7P7KbDrXsOe7M56s/yyKV4YXP3n5j6VPv/h3d5JaTH1M4c+etvc8/980GUAWamST9Tpc/XJJ5c6StbXTLtE7NYoDnAJAat/ljhjXWh22Tab1c4/EAMOPoM4YDQLTXebUBaFN8zN1davWCshzAisfzyZeGD8vTlStxYNz54ZeEf00OFTBmeCzaFysVqR4vfIED3H/AvNdFiboCYnPqxoOL1f3eVJVVt3oC25apAs9niI4oZ9X/gweqpQNJ1yIsmp+wQcPABk0AAFYd1Vlelai8ZoUNgDIdwwAwugAAMcc7NdVecias+R7N2FMAMBMBkHVP1Vg9cNASHdQxkU9yTPfUVpkDXXN6si48LejplLP2rlxxpesDq9IkLH6TT3/bbFk0XTCPumYtLbgdE+DAxgJwX67k9SEiOmOQH3FYWX9phv4IhI4A8PvVLMNufMmZgtJhxB+8YAWvq5Vz/Mq82LkjABCyG8xJEZclfF5utbXYR9aNynCEKAIAy06jKdG5Xv/YL7jemz/09bQ/d+D3n5e5h0SXz3QREcWYkfcc/7OFTafekM5bScci1obl/qXSNiod6ug8YdT3CFmYenR8zAG8Ld8Hz871OvzF9txQba91Qalkbfes44ODHBjyAQASk66uWXU8cSCvvdJx2vgbvvm68Xrf32mTiH4duUZE5Dz3r+CHrpNvE5FERLSj93dE8Z09V4z7b2/cet8PBgFgtTWR1zk953X8LD8SThAZWx4AJv11a6/jveoGz39MeJmYcHmC/wbAtbnIeITN91vHuyMAgHTndBEnfNo2cKPSBziw2m0dLyfV51prrFjH9Nwx5/P7usIwXVVj9c97Ol7KJy4czJYWStiJ9m3BrAFbtrrxuuc/lp/tLqUnS93T+RhRynVqWRsIpfK53brnu6PqkyNqi5Q2ckXeHU5fPea8YLAkc4Tr73td+8c31U2FRO6XX2AlG4yjP33x6ZYfvxNuPnr41Ycl7Zdo8+t1K6/jHQndsqOtr5BUvMVR022X4uPvt5+6WbL52dxjHb97U/9o89XffECG/QzqeW3jmZ+3j90twjus4/ffLeD2v3Iqv7SCRDNIRPTVH62+Rz2HrxU6Ib63wmZwG8k7QcwhetMxv/rMSyBQ6oyDXxtcVZNZ2/26XU9c74XshG21qFjgUnFzAKSudLcF4rC23hd2O743BZs4ZwYeFpm+3Lqtp/9+M9d95NrDJV+9lheMj1vuIgV9g6KyZcZXS3KsDMiPvC5mCG+rEAKQZYzlkHHExRdJ+YbwGQN8XsL2g23jQtWa9p1NRNS8k3Y00VdOTok2loNDSTKZZUnsj1fP/GPlYfcz15mWVdu+EwDAOIBP7cVT6kBfIW2uvXbKCQ3YhsqjYdtKHs+Ygov9OYCxDADGGLac1xljGn6MKVo2GOOMKZwxBQC8+TP5VtDjGk+gNuvr2jMgZV+Dov7DkVWwYv8EWQUAMHYRSk7LBmMAUwAGYOUbwgk3Nur0Xq/pxKvjswr4b3s4Y4zluAKAgf/EqzLALwYAaNlgvPDrmuMQNb7RLw/dKqNshwfAeCbjnlIAgDMV/8W+oIYfCxSyC/gcAofEj3EA2Jr1uCYS1eOzChQAWZZDzB7KcXCwDDgD2N9sG5rxx6BlK6L2f3Iactb9u3vncmU+YOAUBGQZ43kTrNrXGYPmYwA7fxiqlmNatqK+U38Ru2lkdalfHqoiViIEVbMAeNBddIhNuycBmAw8Na5XIpxraiZnu1yT2y1GBXxWtU1JVDPSum6G3z6quT7i6J3PCU0zxWdZRkuNuGNi8XFP1hgfdRmGNXjxc7HfNhwxb6BBRPuKHtEGgKwnYIhflOdRzRTDk7Puzqn7JkUN4/m7xHj+euuaAX7cUUMQLjoi++bLTg9F+ELjOGLubmHqmHKnS/GrHk+N0+tinzwcrYAvlmnxLqdntBhf311Ocrqzc1obCXq7zS7SxJuseGtYwOs3WbUJBxAdlvvmhf/N8UX3eEHXyxp+ZeQJa/d48z55ROiE8ltMdRcgERVuMfGLL757HO9n7rzV3udzW7g9hUT02R9mm188KasZJnhd1DvcyIMWBz3e/OiTu1BFnYp0IpLuffTx9+daqsFrVV7apSbRBEgNuD3Gd54lSPVq0pDbayLhkFWOqBBHl+o/VRER/UCSJGlBpZiLPjpDEQu+biQnFrBMERRfJ5TrqErmrBVVDSQTf5aeJKJKxi/IhSdcjcW/e/BROqtGqStbngO4/Lq7+qvFqmSG8kFKU+2l/N/4g0P21sZqvxzBzLdug6ox/i/Pa/3UMIk/6MKZjmVpGzyIiC5fltobS6e/ekna/Od+2gYvEVE8BYT2NRYf+h5lvHYvEVFTfv4ofaoSf+E80R2j9/U+aVn6y1PSzj2fqf5U0UXPEUVwwvgCryFS9+rVGKlm2vn/xf8PE4oKi9Q2MzQAAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, AB is the tangent of circle O, A is the tangent point, the extended line of BO intersects circle O at point C, angle OAC = 35.0, then the degree of angle B is ()
|
20.0
|
287
|
[
"15^\\circ",
"20^\\circ",
"25^\\circ",
"35^\\circ"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAKMAAAB2CAAAAACB9HzAAAALx0lEQVR4nNVcbWxb1Rl+r9M002LIpjmqUV3cUY+4eBuG9EcmjJJWRXMhRJkIciUCCygf1VoJpkQi0zJl0zIpjKCVyek8BQ13ZMIjRdlGkVwWhBFBy5R1LiOd6ZpQRwkQmmpKud0abOc8++GP3Ht9vx2E90jOvefjPec5X+95z7nnhAOVL8Cd2eElsnzePNTApR8nKmeOIKKBm11Uzhw5ohPeD4nKmSNRkv9WrZXKm+PTT9KtRGXN8cQJ7qtEVM4ckzwQvQVEtO3zpqKE5KNvEC0QR0SE8kQvUZy1EHUD4Mp5nsmhfPvjJsqYI64+1/UpUXmOGXBERK++cGojVkVUnhw5ovO/etnaye9sJKLybOvLo+6mzOmLvr8/nfPQVgMs9zMEIwJMGHt9vJnaIgDW3ZM5Lx26J9s9BNiYXr54lqfkIhE5d9MN9V9z+CoMyKvg7XDk1u4HbETgfjQ3mfM0qh8/jr0Ru+Cze7xfpt1OIlr4AFfefWdlxtO0v9FmLCkiInCCEiyEX2CBI3uyjvNNczsKsQxgaaSuwj8ym29LJmjSmacOkuf4ipEGFmNtzGftmCo4Mw1jhXed/RFAZvz+GzuiSlkAwGS7tS2SMUCNFf5MBCoOhnlB0PHGzXe99ciP2AP5/Jkkg02sj7c6RtfFfi1ERLU8lDF31O4eWSoQZwCStnmjHNcGbR3JQiKCZ3F1JgL2YTGhljhDryLJpZG9tp5ZsR+Df1iQiS6OIVvHonIokzwTAfu4IDh1LwC0dMuJro83VwROFfuHvcIuo4NjvMEX146VBwMwU9+YKHhEuwGgr6kQXqj7Nzus9aFVmTRW7bPCBtLgyIABW1g/wzyCtqEcX/ROAMDoAUm/mB9wOgbmiyUBINAncmrVI+/3rxmnCKz62rJjJ+XhwRh6u4Sha6F666OvK8lGndeNcLzoecIMQwCZzvolMOBSFwBcoolCCDsVqPCPrytK8o6Y2EOd47T9+Vy6JlgGHbMARocBoKUpn8pcz1eyikYxySc6JB6qHEP2aXP0skJR+zhSdXHgfcqNmKURt61nTl10xi7tXCocM0e9S8qhejBfF8hOuC8BwPXxg7KKRox1T1EUZY4Zf5va5KAJBuCqvzXvnOq4oX5srTiKFIOtRV7KHI+2mWUnQMY/AADzP3Q4lRSNGAn7EnLzYQGKHINe5ZGnic0ZnXeNr/683toREwYoi6AhVBykxHHKUUJfZIKpPFhFVSHdxQ36ZDwVOM47po1TK8bsEZu7c9exVkCffliyJWR85Tny7rA5nSPKcMRlPzoHHL/zrhD0cbxvSC6WLMe0v0/O2wj48D0Vgcnse+d9jrimAGPA7z0ZubLIcuz3a1jTqpkBmOqo9uUUDQPWfY+49Kix1R2zsv5yHGcdpsyIPBJ9jpvFimbF3hWQ6BM5dCjYBnIc68dlPBUhNscvh+prOovGW/CAN6RJccqpMPylHBkQ8sHkLI1IGzXLWTQZ77O2uIbs+u4phZDielyzaUz6MmAAMNtjcweLVq9Zu/sv9pNaXbLI3ClAuAeQXZD/ePE3BjYW8rsQyyfD1x444uGUtiUe9CU2xtTS+Nv97yruIRRX47x27xZXIPjwwYr206oR4/ZPvBGVdDOeiGJYEcdhxSpXwlR7lW9sjWn04dbQvF3FqhhuVg6Tclx36DJPCkj0OZyDSSk/CVsGIO7KRJTMFIaETcU8IEFEAAgH9PNjqyFPTee0zp7h/wM6e5QCG4MqktJ6bJzUIpZ/yUTaqDmyoU0uh3AreFcEslUealCTlHBM2nTOgrOdNZ5iRaMGvmYVcZtsT1qyJ9QaQ8Jx8Iie7JJDLvv3/6mbXQ6HjwMh2S7ZOqgqKOHojuUKpFwuPtxYpaFoZMEmGwAW6C9O/ZRHvfHEHFesarEZwE63b/eNmVuL8VU8wLuiUv81x4y6oJhj5FCOizwSfXbXUFJLEyqiIQogXrQI6dTaChFz7BlRyp1hJei5sVOjxGpgGOgHgJBP3FaxnVrNIubolh1fDEhH2qgtImsl68dMVsO09gs9rxc3virH1Rr5SNOGFY0s0hXrALDqELLqf1hTTsiRxeRUaXLItatPbrlmHO44AGDavlzwmrXLbZKKIarHsY78Lmu+Sfmxu6oefmVLCDKgNbeVM+zLr8Ezemx+0ffCC24uezgg9/fVh23jXVd+25w14gwYlXLgiNzvZV+ftD5FHEdE3PHah3SICgk3TwociaN211ASW4lwO7JNtOrMLnmStmVVgSxEHL3x/NtHQU+N9ItE6Yg1ZhdoDNPOVQag8bgeMQKwkUqlGMDgys74mfFmansxI+maW4DZ+sLrsB9AWNXcEXEEUlki9hUwTHd+yRu6vHXEBEi4N999w1jRuboj5L6WTQCw8slBp0O3oplye43tXC05BO/2+cCgPjEORGhtb4vee/bOT2rufouaGol0fjI+sUqOxwysIZH6Rf+m6z/rf/7Hdl1y24gos3AP7a22LEbowIFcarpljSxzxXGrq1/UR5EIQLQ7xVq6MmC1PEulUinG0gBSyD0AsAyAgjvFgBQDe63O+5b+hmZM1NYGQABGqZreQZplaj/OkUllOaYKHNMC7zzH/EjTvxwXjhkAwChRU+pxaCgPC9HG6/G10dvPWTJcDc8xEIEjRrBQ7kFEHATeRU2ou735apEzyb0D9vz2m4q6gQQWosVPPBVddWc4zvJFnrZl0mmOKjfSGxWUf6Qh8k5TJvc7w3Fcj16CRPRfq9CV8nf/mrjdvXu0ur+FKHqwkvvgwh6y0M1J4iorK4mosnIbFR6VnMi7srIy+/vBIzxSbxogmXQIXc/9+xkioltcWgPPAjpziNL+Wj9x5FrQnx9R39nLVqp8dvKabol5l8CR/mWvlYjoe14tMctr3J9u57bf9FEVOLptzgDFM888ayA2EYHOf0Pg/PBfe3QKbvs2CMSBqyCiW39jIMsT3d8kItJf9RwlhKyg29izEBGXtxo9M7ozpMyFe4iI6Mx3qjViFrBxca/AtbNugYgoeYqINGYNkSZy6998uERxBiBKcd0iMw0iRRikCSB6QFtOunbVnWGqbgJAqk72vIk8BvrF7igRp0dcsgfg159jbxNwiQxQzO4BmICAI9PaS5GghchAQ+f2UsxAMLVxRDsc03oHANEfAXi1oxVGw9QdVnMrN8n0G4iYSEMVhc8MiBwmY7ZcHhJjdnHfSoWRM5UGcM0xb+KAJJG0HuH0vGKqqCrIV8LL+20m1+hijhw9Gil5sS9BvsiR75pr6aK2RnpPTO80agznHnxP5cyuKiRjhtt+bIiISt85KcJP+sxSLF4AXnXNfBYVee5QssqsbJHpX3N0qDQ28vhZv2mKMueazXwb1sRfb7pmXljmHEBI7oxNach4I4DpraPiZR56rv+uhEaVRag2QGRW9cieYZ/dVdKZDwkYsGIvaa9a7t7HvocOZ8zXmRQcffrgMXdJKcgpwo3mrz8t420WXWsvFVrZlDEgW7u8+2QpjSPG8foSTgACymfidpXwRUuMKWeJp1EVOLLSzhYKMW8vubSfzRnNLHJnNEtNRvEeErhjK6dMjhEBNpr3/ZRMjpQClDeVN5qtz1uVAnXi6uEvTGrH0oKcfszStpzecfdyaYkvNHi3gKL6Xalgaf19ym7iNoYMZDkW5v5YKbkE7Vv0oUzjTsW85wmYsVdY9k7F1kDjnuaetxOHruq2VzbHH3elaS3mUIlqBGocAaKa6D7XSRkSsuAKcUb3+idKVQpCIlqIN/jOGWucmTsbt+bgQBYqHDcv54VsHUn9fVJy56x0qLQ1V/jTPe/c99iivvXse4f333Gx8HF/a5bAOssivAOpBIb18VZHsOR5Xgr9910z44dqOtR2Odlku7VVUI4t+zhv7E7usLvCPzIrl/vMcPZO7haeGihA/93mrO3ycSz2ZsK3052724z3l+nKu+eXZ27bb+pusy4YvX8Njijz9vLFszxdWgKR08ndUO/a5bN8NpuWRGSc4+eBcvyfBVL8P3D8H+j5Bsc8TfQaAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, in triangle ABC, angle B = 20.0, point O is a point on the edge of BC, take O as the center and OB as the radius to make a circle, intersect the AB edge at point D, connect CD, if CD happens to be tangent of circle O , then the degree of angle DCB is ()
|
50.0
|
288
|
[
"30^\\circ",
"40^\\circ",
"45^\\circ",
"50^\\circ"
] |
D
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAM8AAAB1CAAAAADMu+qQAAAPl0lEQVR4nM1cf1RU153/3DeTkF1JxtRRcDMpIiAYdINVV61aMNEjqRqxkqJHWLFVMdWu7gl7Go9mpV3SmIbUtDUUY7cOBTe4wM4QkwpR65joqgtZzBYiKsThgBXFk0AguxrnzXf/eDPMz/fmXpiRfM6B9+a+++79fu/3x/2+773vMUKY8H7MkwCIhau94UEKV0P3/oEBwCizEz5+dn9zcriaGgnCxc9v0/4SppZGhjDxY/9i3vhoAGGzxuFi5PwQALz2E0wBRt98Rs4PMRBKS1l8OKgZOUbMDwOYfYCofvLXQNsAPXdN75nF65wY7BtOAR34GmibAD/9Fy/12ICObgCPT8YD801JM6MBMBS+jotpK9/Bpwcw+vMpC60jxLpPnrDdWPB4wt+NQdwkYui0Y7Cxo+uMadHiJRPuA5ECCM1P279aB9MXpad4FbmF0Gqz2YzZ+W3LIkTccECa6C2baSq8FPyak4iIWnaMf+jBH7R4F40mNOVzc+/BVWs0B58YME/6rDP6G8+viRlt2wE0/XXXlmR9R8V3fcpIYX9oEBhgb0nPufL964emr/h3OTI0ikCVn8Gd34ptfy3Gzwcz5ad3oTnrQZj2tz9Df10bu+lCRIgUgBo/1imfXyoyhriZAOBILgDE/Lzlwf8qnfWjpJe7w0meMPzmH5cJXM+/bZkT2pMzAE23F58DABZTYXs+saG/bF5K7urosNPJCz/5KOw0zcponsMx2xOAw7k698+MlrRZd17rKjwRn3/Sdfn+R0C+7s5JRGQ21nP7R4fxPBXtGfLTNcYaIhowL4jb3R4eByyIwPnHsTWxhf/++hSiPXs8vxtNLxIRkX1P3NyDfUrZ/ZyVAvxB//KPm1L5xVuZgyF3RwBmNR1/bhBAXJG95Gxc3nvA/Q1T/fn5ZHaczcB/+2BdPgBS7IQBQMzZh+Z2AADmH7qZ+ZuJ/9gWDjK54csPNczbXqZTqAtlygQAdamTAPiIIKoid+Zp1+m6+ibTimkHboeHVi74aF+Lgd8TEBFR5n7ytR8iIrKM83YGjQXG7Cq1BsJtWz789CbuF2nfSb1RvRTAj9NJxakD5PTQ6qjKNhY0BxIfAUfhrW/y2qU/ErFdhsNLgoQQjGHXjDwwjxLqcqpbpudO/eWtIaVwNxB2ePPzAn4l2ENVbrBSAn7XU+RbFrO1xfJp2orDd0GIqMfziMqc2Cso3PboAaJA+3ESUZfJMqRPHrWy5Bg3nhHWIRF4+DlvVHluU8eefCdREH9ARNRoDDIrO6nv4MzEYrtoR/wY0rfr2ZUpWnIMhso16oozq2xZoJtmMGxsqh9ckFE+KNoXJ4b4yf/xUtF7L3y5WOPq6rzng19IeKXrJZtpw59Eu+OC5H6K+fwF4Xsr1ui0Lu9uaUDgtEwA8PSh7oyfPb6zQ7jL0FDUbsDU5FJwfsjGZuUkqP0Q0YmUO1r324vjZrpD1rDBpW8/XTYTgJgjPWZM067w9JMl7iELdvmbu+y/vpC4xuo1tgK9q4GIiNqNwxinnGJSBKoiHyf1jOtxn/qUe+FO5fLYrcKOVR2KfIq3CsTULgy+lwtNgTLE5O3VHEqAotYdbZycNe3Nm8L9qzVKRD3GPuFYynlogftUzX6UhgPvdAbEcc0F47KPOIhGHtJJALB3o7h4XHkdbcSs3hdYyJi/UFla2e3s6tgtTWGIhIio95Ee8YHoeWgoOlKXD7UbB5QTjtC6tyw1paRLnBIfSAAOfy9GfByqMkNl5wAgYUGtchIgksC6xs0tlu7Zzxy+I06MBxKA8vxh3Fixhqva+kP8TTKk7LuxrT5201nfchE3LhEufpYu7vnbLmdx1VvR2inW8LKKzjmFk4q87xKxKQn4Q76oGRJQlR3FVVWXKyAgBYYfnjsppy8cZshKZBrOdBZ33HOu4Q+IzqUMo3Ui54l8Y65gMoOISEKbQ/g5ATgrL+KsObtbfKokgD196Nriksf/qUPQEiScThfuL2Ro7QXdQptw64r2R68/fmZs5myxbJeEU08J9we5dh1nTUL6KfH23YjbdXV/09Q1tfx3SDj9Ha6KPnI/GpPG2T5Dho2fmiCYe7BnhXnitlZ3kpOCkOMFqVPmMx+GodVGoCqPn6A59n7+ysGgW3f046TsqaU3AXcSjFQdstT+hHZr3gPhbmTQyjeZKph6VaBysP4JE7ZfqvnztFVHZHhlyoNCakvSbo8F+VE7N06AoqQrApWD9c8AILWsN9cybkuTSz5qkNq51I3QwBjb7PpVuVaEouQR8eOF1VXtMzYlvXpdWz5c/LDCvAG6+0EBAKD7AxF1Q0qrSG1NGAuaj/bOXVJ5V7WGdPMxnoYKP7oVjQd/ZRkEgNrvCj0umXpFaodCSknXjvdNGz5QuSwNPMzRSMPr3s9lZo4nOQ9ozCCCJ0SGi2V/aJ+/K3530EBXGuRZWy/dnAYoe9yAtmvLRXpnY75EwBPpCGHY+OEJlr7wd8pM4D1Y0uAY/6IAkOPyEgBAw6poOvnEdxbwhdZuPByR3G7Cv9iLzybmvQcv76BMuaFxDc1ERPVoJkoBnvC7rBlfE/UZxMNkTtwxL/be/uUMsr7tDwLwWHI7gHvbN6cBYHhEbCQjuKciav3xc8YVMw60KxEeAzBmgGMcXsgguobN5CQ6YRjvv4ITQj5dJuFx54Mrp3LrJRNi+11l0sNfQnY4HNqDWPIIY/HNB8CADLw/X2wQuTzOcMAI6C9fNaFxzy3zIysZY6yA9NGDMTqSQ22LrRs6Oxr/pGC3iseJBL6ss9akry2LAZairnBu9r3pv5CiB0Le5iO7wxprWCq9RkY+d//tubH7M3psBa5k27VMPLD8U33s9TQAJIPpZNIxkiFJIBnQw31grusgGf01+xzQyWCSDMb3jHp9fASYsVqsqT/YZ/KU2D+LBq5+W5/SDgKYTtZBJzM49XBIkPWQZZ37AEDWw0FM1uPoUyaSZT3JTj1xbq+8khrmjaVOS50lMf9V3xj/j5lA4bnDUmILGADGZJAEIocDRAyQCK4DlG1+ekYMKF8DZRMgb/4A+CQpHOwMKb01z1CUerF5u98jy/EXGfvoVrQ+pVr5rXPAqYOiQ6TyUEvottUIU3J1GPmjQChjYrVaJ65rTvRQ5B4qe59CrD6xVYbEiIE5dAAjYiAGpwQG1wEA3MVHssYKU3IpMXSdUCAGoKHGasw57zM6Q5K/PEU56uP0l6fIegA6BwOgkwE9dLKT6eA+OHTMXXxkpw4yHHqZHHoZDp63Hy7ED2Mxxh8Mp9+uHZttU92ZV/pTFz9IP+PKIEgAwPSe/+6Dfqi49cqzivW4/zhgSx+5OzhbUfdQlu2JgHbcLdvj8c7Hf6vQuuhPmwEQc3K8ClTFnUb0dGnLHyE7FyrqkH0sLdgl5mJp0pCl65FeBADO0JEpgMpKYWroTPlIXqK5WF6DlTVz1Cv4Na1Hir4tBZBCdkkMp3XiueFG04RhLyK2mqvvZB35tsgtEpBdBZ4FEyaa11FQJZQ78ZohWncmZfSV3ygTYgcgao7jjM/vGFqCrj8Hf15wEjmJHMZrYg8BCi7tSRm/0bNcwr/qrQfSHuVcYjgWLxK5KInAo64Nszwj6267o7r8RtbPV3kV8/eqB5Bv5uOnPFfEEhTyyjdw36C03VlV0ZlVvNq/mL9bJ902cK3Xfx7dHfxC6PV6Pn1xkv2NtKjcGgdX7eCQwDBuwxs8nNfM5Eo9+uC1rdHcY9xdOiv53Iv9FauF5zhvEBF1cW1HSjerXNDY72II2nAQcfWUzdVlV2ruL+OCBACm5W9osqwM3/ks4cHauyFo7OYvrpsHMmLrt/VVr4saeS6IiPj2i72So3ZFVT49xhuhR7T3YCayzO7+w7IfCZPzfxKS70qhiREAaPuOWO0K6C/PHF+7utey3gCC1robf6fkJKIvYhtDDE+zUdXtqO63TNS2hy/MWSz9LdFN39pQ0h14+I0tF3Qgjbz5YWG3c3fbfrVENzEMWussc/PKhrETShPuqDrn0RJNtyofEVgCVlA8TXUH9FdH1ox9M8N+piBmKGILU1ZYr3yRgeHQvDStDdhnJMGsKP6joiloOTmt1dap+SUmVyhDDGExHAV6d6D1WM3yDzUSF2ZR8TQV2Pw3yBEDZKvVGrfBlWtivv/CAo8pmRN7Vd3BHYPGpqVg/qDLZCEit4Nxt2vJN6TujeiLj15JgPUX19ar2fy78WJJp7vP/TALIPc7QAwAGqosE93pmYi9uu79lF2C7WrVKvPFmt0YWwSf9x5Pbhq/zXT+UpFrWCL2ApB3kkZ6e96bW4PW6j/2G/4mieHl//Z+MZ2dfrsuaq13rilyXxbw5ocZrfMTMgOpA6oWmsANBuu+C541hQsVtVGr3OkZcutfxDjyNaf6sfuDBQnpZq24yt8fvGqwuU+bt5pMWxs9lyL+qrBPUpDY0jNZn/xaBz+N6PzoXf7hvLul8aMEAMDFcstdT66JGFx2E8nvWPhk3RiQ2vjpU/3wM9jKZbxLUoTb8wfPJwBo3Zn0zP+Zb5QNpc48LUby/eeALOLYd6fP8t9wU5nHG42wpm8tqY5G2+6kjNv7b5RljJg+YQTRQXOs78ba5nHaT/T/vGfotCa2htr3pBjyh7E1NywISKoTw/rUFdt2eRWZQ2Sth/RHLqr4/f9M68x+JStswy2KAH1jAGY12mZ4JhC5JmTspqjj6SmWv/p+68/6DmV5Fd5nBF/0MB23Zq0sdsWTNr1GOhzKbmkQu7jxz/S9VdkeUY7K13jUVhWyrj46tUjZ+Vy5XrMFYgC6X/2bGXd+P1CVoxvlb6ZpfB+p++W3NxVOYC/9YlOIN2OOf+P2Bf3TpfFhJm1Y0Fj1Mf32siPx7xvaxnmxQ57ttW51+sr8n6fO7/jLsa8FOxzf44paovm+RssOg2m5km0a/a9xBfHX3ijdiox3JyYu+1+/76W50Wo7fcqY7YpuIhplckPDfjonbT4Ae3xyG7pPnjx1Y6EpYXY0JsUBru/ZdX9oWrR4cQyw8h0A1atHnRdAi59709MPEEPhDOXVi/6LbTdOk/K9QVOC53uDALAyL7shszkt8tSGhrq+HfzsdTBgcqrikg3p7kWiAKW617EUyRGjUBBqhvVV8l4O83MSEdVvJnq2IGwmPSKoyuf65QS/EpdcfMTDAKDjrbfw9dA27e+p+pkW8zl4VTveTG/O+DiMRI0Aqvw8ltzBANirgRChZWdfGjYl14eZsGFClZ8HfvxiDdCw4TkAYFoc/TETdP2Kv3aOFtRNqx7AZg4TfLaZvkoez7Pt+T6A4/uw2gmM+mcAIOMUjXJ04Or8/wErAltuFnN+3QAAAABJRU5ErkJggg=="
}
] |
<image>As shown in the figure, PA and PB are the tangents of circle O, points A and B are the tangent points, and AC is the diameter of circle O. Given that angle P = 50.0, the size of angle ACB is ()
|
65.0
|
289
|
[
"60^\\circ",
"65^\\circ",
"70^\\circ",
"75^\\circ"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAJsAAABmCAAAAAD5BryXAAAK7ElEQVR4nLVbf2wbVx3/XrxRNNLdoI5qMRdXi0dcMoG3bCKCsJSRUU9MabYVZWidFqSSDPpHXZqxTIrmIhXhiUl0UjIiddIyGkFEAqlEYR4LYKSiBaWay0iblTrE1EH1lollc9GS7vw+/HF39v2+dxfv84fP973vvfe57/u+X9/3ngDiBITar6uaAa9sj/Nmo0EDt6ag+aXaFxm/zYrah4c8spJxna+3qPz6xStZAUsrRBRupuu/HL617RO2Jh3+TNRPJgJ3mVax8sfZ7JWOHc13NVJkJxH9u0BX5/91+Uz4q11d22UVfcE+/6ljc41+yMEbLgxGQ71ji1aPFkb2BWPDeQBgWvlyenm3x1xkeOK2OtYWHrTkpWIhGeo4saYTsYNY7vfBzBO3UrJx/2l3telecWhVcz9KRN9htuoO4K6nK4+3XJc/+Q13xYcmz5ejh99SbwtlINPs1vJYwpFbrZ5cfer2UP4n27mSxM0jFz/eenRDpvbtJ4mW/DAjl7qgFsVMaGBVL3F7rbQ/nAHwfaIcuol8OZwjN4VIsSv+mkeHYUA2dv+qu6ITHMtUICLQ2bt259oFcw/g8mbnQvzO8z4Lk6dMAWA8mPH74VPBw7N+34V7G1I5GF0AoJSvx5KdjHyssbfkhxYAV25riY41Zw0TqvwnW9ozpTs+u+24D1oAnLkxLEQHJItceTAeac8A2NgfvaMt54uas90y4ghvOkz/ZzzSmVUEafGJ4GC53twWRM+1gAGAdCLSmdU0jsGzB0Iz9eGmprka5bMaY1qjMWlsRyKrUzjWWj4TSxTqwU2B1HWQLwmdG0pjOxJzxgf7e/DhMfGYZP0KPzemvnq4SzJpu3Hb+Gloz5xZY709BRQSsSzAPFQoW7uNR982ZOyK9eOhB3KWT1bCpwD8JrTfS69sy20uuAh4+szys1bMlGKYDy4AKA+KY9zp2XIrhnmrqEK+nA725rQS9asUctORVQB4vf2Luc1y6/qxCxc9yultvYvOJh5+SL6OiYPv++bGADbZZl8PzBTeTYm9jrMIAFiPKSWxuj90yj4tR24MQDk875ZVDWspsY+n7ZqNrav/oomCKzErbgAwOMDN7O1hhZl7pek9Jl8ZNlLaxs4Tt3yQd+yxOiQeKFS934VhKVgbLuW7Ymd8cetLcTMbKOokzsZLJjU3k6EDbkN2C24lPrOVko2emAGlbdqE15LbXvDMLTnExUxMehrRMgADKWi/YL6tY8Ebt1XRPc/iQZWZp/FmPmgYxx1vGnIY2Zm5He8zZGjKvjggPuFvFrB3XE1QSbTUE9aGMZjm14pbXD/4MlErDujjHV4w02kSvRy5v2hWBJiBGwOQizimXujb+qT/KbHUZG6l14fFtH5SwrqJiPrNdkumVJaWzMSUrhJ7jQ8dSlkIL3S2ntEndWQK11rSJm432/eMi0Zm3jEXk696x8JEUN/YPVgGjvQ36Of49GYlZhMAePPhr0QLR8XNRRHuXJGDX7rANtEj+YZdJ2pahf82El26xWi3sV6DQPm2C73BtK+JnAH3Tdo8mIvXGrvRNHCkqaxyU83bqxmY1jwg1xN8ph7MgLT9MCJ9k9rYdRPRPeY2JLRo5AXkekLPrWPTYEDN4YxyAOzy/ZHTAKCGrkmvUwiaqM31hI5/4L1G2hHcsmbftGfEWQAs0y9LDXabNUbb5/aER+pgsxriFsNWhd4ZJY7QfU6+N3AbOaC7/VsiPMY5S+UAYwD2TdhRmxenwIBlIsoBAOQ1IwgQIBBRXtuC/CW1NHw6sLlGQwuBiCh2yVpO57tG95FAtBMQlJUdACNEu68dAgAkaj1vtjMybviyeuDkPmv5YuiEQcIIy9QPLFMaDEA8p9DIaJhpCG6eZLbTMpVC2BxCpGst/QBwZAoAEM3LzNpjRmb1wnyblbQYOWYW0mhTGQBGcwCAUAkMmfZYtfWuY2nKWDQ3cEBp17CFlFrS2tvGMmbisV9y5zQbi7vPl3Qohs2ytXjSLASIfqW7nYnHZ7QCF7vFiNq9cVsTTaJy22OWqtfpFrFP0Q9TPRb1+yPFxn3RccsHDS1LRESFaSKijfeEd86tEPGvwYzE4s96Y1LeaqTWE/qFje4oTTEp83Wl7Lb/9XFx74ylhesEY12Qeu6z6xOJZYjoe6pbRfNYf6k9nCoCrP51FDC3Ifs6bbtruT+tqDTiOQBYHDAZz7LhzQjeVx+znbUEAfR12I8LVW4VSQKTWOJ3klQB8MHPd4dTRUiS2tPL/yRJAioSq0gVSNJgUxlK082PCV2flYw7TEDU+UKDECChQYgtBQIEYlse/dMfSnd887eBBkZERKwhIIBYQ6CBUQOxhgAqgSffeLuRrn9u5qqnupBv1dw8lcmKDhVPsRtYBWAY/a4kSQwSgArWX2oPH70MAKwiGw9ARfaACstQjgHINHEP1uUx0smaIHWrY3hAsZtAAoEJ1HIxEAiobdqWR1579cqXHjhlvcPl+YHPExEt8Tc4gmEU9tyLr24ncrQbq6ACgEkMKIQZAFRk61QqwP/GO8KpolQTK3bbaJmSGIBub/7GtlQd7IVQ3lmXACYpOQNA+ELN6dXLpWTwwVPauiChIi1RTpKAjDJG5aEFAHO7lP9sIrhoeGbBTfe8d8xKTzrZGX5aH1K51jIFeK+m6QEl/elgzk3XyM00d1aRTwb3zuhiFruZPC71BHXunAnOccfJmVQBGMNiyFZVmugMpzTG6ybiL1A1jcYrAIDsTRxDKy+xGmDpULBnxiMdHZSp85nq3gkn43mJcTGYjecRh1JgQC44w7OI5zE2yADkk1XjeVkNBdTY4GLQLmDjwA2AOaZqlYVf4810AsiHOOdJHLFoCzB2yZfn7R0HCjt5N4z4i+EDivEueyAmx/BLsbS7ogy/ax9yXskmK+PZmn3gaazFUtw+asGtyLvUxgBp4m5jh2GP0o1rNrM9a2xmrU2GjfEscDhZ7uBf/bRbo3zXQwqy53EYrxS83NXnJV3Lvcc/eH+Mc0imYmlkouOxHmedhz/3WuOkp5CZFeFyiH9NXPVsaeLucKro4OezzQ8mvMUZrfc5OO0lsIemwzBjveWernV4Cv543oPhjMmEnecN3+Iw27PGpveuGFEYClkZb1ps9bxAUb89PzVMJpTetrpygPkbomtayaa4+dkrheoLRuMVxU/7WAyuwx4za0wmar3tekQsVhPfBLcquPfm2aFmvPYt3jcNoi57Gh0ge963AjlfMak67wVVUGNSGNr+BeI49WCFeu2h1UFnpGducNmiYgvnfdEL0YN+9x4r+KCv1SWyYA/ncx+tZ5e+tla944tLQ3t5p+PqXLOX7l0LlzMp4unb7jpfy4snYiRoLmdvv3eqkfYKgiBM+yDnatnxUMZv4PfXoWkAQPc0MnTO8+vOe90BAPOhH2lvuSENR/4BALjWWsay8HfPCbifSWEo3hu32FDsCAb8uXomJdPvOUzHyQ3wd5YnUm0cR8l7UAdwPS+jOH9P/pO7jr6j8XRHDybhradamy/uUQWv5jB6+xsfRV1QUBy4cZBzLFE8KB6qqjIs7wauqcuNXnyO+1xb+Gf/lKKPvqKaxh6nHr5ta/549ZiZQL9PEP3nYrN6+xHYDZDPKg5Zx+cUe1icVUR3Dh+28Ef6a/B6xnOR64ynBi8TEZG67cRLkbLNnI3dip0RsjwbWx/44EZE9N65N69kiZZWiGjHLfKZ4trRXNcD23z4P3bv/QaKJlOiAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, PA and PB are tangent to circle O at two points A and B respectively, point C is on the major arc arc ACB, angle P = 80.0, then the degree of angle C is ()
|
50.0
|
290
|
[
"50^\\circ",
"60^\\circ",
"70^\\circ",
"80^\\circ"
] |
A
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAJ4AAABwCAAAAADKoJZVAAALW0lEQVR4nO1cf2wcxRX+LgFSqKnV9iwv6lUu+IINhmIIEUYJsgOOaoqVBtXItHVVt5hYqlFjiiWMlCqhdSuXOiKoNk2aohgVJEMijpaoOgunvqhBtTDNRaoTx42NnTopFxy151woJtmbr3/s7fl+7N7O7F3U/tFPzt3t7rw3376ZN/PmVzyEDOhJ/8ZieOqDEDBzBoCvHFev861eUySlSh4ewCNHLw1nR0ZCH6z/YvnaIk9ZGYDTp3lxfGb+iG9DfX3pf4meabeTL715sXZDbaVFkhOjoZC3qbU8aeL86YEqWNi9xtc1afwWGc8ESYqJztL1e6NKSm0BNXqRzqKWg87J9jcXdy+Q2S+gCil6Zibz7cVdEZtcRfrHfEdxZyRPbrL0DMS6vdsXUhhks0tDpLtk+1Je3KhATwS0dpXyEmSkpSzompgBWXrzG6vH1LWHKhoX8qp+AFY4ODcBvLe2NnyPertQe7z67hPqYhn522D5vQe9rkvpgPcASeHShrnomdA7/BPutJPkuK/bffnCsdfghUcvHizOo3DOPXTjPrd9scex7p24uyyUDzuUvvOpmpk85HOaN1jcn5fvCZLsLQ65k3aiN1EcTMlGFUmhgHfajbwTvQV/vyu1mRA9VbHkbwU55HSNeENFfx61JhUtHwVcSOV2jS684CJWtcRLkR10p8vWtIP+hfxjIlPDvC+gLmpFzyQ05p3Mg1QWxr3qjXsO68378o03MnCgbEFVBPausbH+aXfVLKvymAOPH53cryhqN9YQHFqjF6DepWGpMqioEjb0GPONF4JROkYqFeNn2DUszz50t+vStAHxwB19ylKWdW+mZjqvOMAG56qOK43S7Zrlno4rwQ6l3+5VFbGyXuT2K2I84NxtSoptrPfztivAjgBKv/68opSF9c77pwo5kZOKmZr3r5dPbW29Vx++IuwIoHz9G2pCWfSIwdbC8MmABwC+s49mNnJCWemObZ5Tzlp2yowsfa9MWqtl4b7cCumXS1Ekl25Fyz417VldiU86kBIMAtii0E0JjlWSJDcBwH7nTi2L3qQmn9tTJTFxqUKanyCpFxkza5v2M4hw7hgBFoV7uFba8F1/+bDIc/ULgYuS6T0AVt4XIoDLMw2okBDJoje6QZbd8M5dqnUUQO2oB8Af1xVha3u1c6XNtKgmXfU2GaU6UBJzSJgGo/INAAjTYSyDbOv9Xbeac7fC5amNAIDhh4tUfPGe2UUAw2EO3HnM2eUz6Z2qMr6d8zs75QeA4be+D/mWBcAtp4i5C9V4vGLYJkVK3pn0Tq6WNcUXKqYBXN76+B3y1ADAP+XBH74CnJ26ySZFSlexAgBShsjTtximcDbH1Y0DwOw1tXuo5iCVp4C3G6A3lDxolyQl80Q1DIaN74aD8mPvTYAnrOIWJMlXmoIAgLpceoGSWEqzfKniqEHrDvX8FEd0oVpH2U1h8oclMQBXGTbcVrbasOm/FeIxw/oexRW061JbcUvZS3o1sHO6C6ZrvFgdSTyKKsy00jaDXLj+Iwfn46gPAFZPmfTmYvd+LkFr4dPJnB0rvAfAoVvuPCJPjQCKLjq8k+ftegC4CUgUbl//3M1G0PYa+mB6tlQQN3Ae33hMlp2HAD5Z2GHzBIvPA8Dl4A4AeP/mkGG9FwdW3AjjlZox/OzvEnbzJD8KBQLgJaS1RDQ/iaO/OQcAZ9cVAZjbuREAyNlewWBvwmmKYiO1VUPyfjhSWX1EzXPvKrF50FU1R5Ic6CXJTfcbRTh7f/IWSS1CjjWUDepOubidIApVVlreX2qqj1KQvFQRpphFndFXPAUc46Zk0OufJslwk2933uud1mj82RrLFdY1bYZFjDYb+2kZLVcfNb4nW7W+nIGSS+tN+A/VWkhP+HZlp0V2SKD9w/iu3Dd2avWOxUI6BgCgr/ODEmR53HD9L7caTpLRmqXSI4DKafOqbPf4ov+ZBbt83Ln0mWCbGbKlYE/bW5utW4pUeh4A/onla9/zk/jyk2eB5WY635WEne2rjq/OvPnEL/9sO52YUd4jtenX0Z7StrmCzeP+S4uy2px4TSiNNTZetE6doCd0XTcJzHkzE8X6tG8Vag2hp5NcFU0yEyTnqzvsUpvWE7pIGihzKCTIpd2+pnAh2C35ps1xuKl73Ge/bpdKjzRW1Zt3W6Uc9Dcodg5W2NtC9ran3gloQdo2Uin0dD3OuC4o9rSIZHELXU/0HkJ/7a66oHGt60LXhViuELKI+8Nkw1CK2Au+iRz1OoWe0I23iE+W6IK6YFzQ/CKpC+qBmvsCjAsKXafQ4xSOHV8G3qxfnsSgIPX2NZFcr5hW94w/Xa84LkScQugUcSY4CEFSiJG6qiHdSJ34p4SaUXKsInkZfXBz7gE8ku2eBx5BeIAVKx983QMazeNyK0cAHtSNvjRY9XLcZZt3eKkOGHrUvDy97raAc2hOxoWI0/QPXYR9pGFN8yvp2rqgCDf5frW0bEF524nGIVL3zpIUFBzX9jpJG/TMSm4Uo66vDVHousFYj9Ngpeu6eX3isZt2RnWdSb9xJEZScMKvk4HaxL0D2oijXHqvYbaVu1qd5Obate1G46pgvdZ+kpsHjYseY+9ObvE0euZWIrFQ7Lz3bn6rt1t+fVaQnL9hiZz2xkhSb62REV52DYi4GSx4vN/dZVNNl3/6dk3i9ifPSDqFB8DOLauAXzxRBGDxgY9DXklRK9N4pTZ/Rn+qtc3JGi+qRclIcZTkdOU2GSn79dzW7ZTaNxbr01oko4WeTpKdnaQ4og3KiVjTE+S0nPlIIRstLPmmyYg3Qr6ivSPJzn41vKvd8rYlpKKFvS0km3vI7f4Zac229C5oKov1Q1W1Dts2dP9RcqR86ePm9Qp7mm3pcWiNUn8fqKkJ5HxeTy5VBhdqWlXU2tATJOt7LR7YQJDMPbdQEyK3NU36exTISWyzce5UkzuZRebcgiCZaHxD1eSBst/fMJQi456eII1NSjJ7Uo0OlYLZcwsiWjIhSLJxSLzr/bE2libkmp6BQb/yrqLMuYXm6zpiJCf8+rxvc5VUEy5LT7CzXjUcZjJaIEkeLDvbWhYiW/uX1t5aH1Uejea0HvV62yGeFZJb/zu93QuCglHfYYphreOUttRU/JiLV81Nz/XmzIVurXOebO0gyWjrZ7p/sPI5N3oc6C1vbVVFtEdrC5TFKEix+PmnYTk4dYQDPcFgcT/dzZXF+rRHjGihp9zzazfkZDalT/g7LrvTbc4tXFh5jRkDqL6mMz1GG2pVTv6kMxj0N7xx7bUf2j53gAQ9xjv8x1V0puMZ4F3XwjL0yEFt2UEUy+c5z1fvcidJSp92GdfUunIT+iMr9zBGcgCou7RVWV6GniDFfH31mPrrHy5ZdUSQnMUWchYKIZACPQOBG9oVe+DIN4tWR0gysdHlqf1uPNfprFACm//22Vt3nJcc/AE498yt724IlwLA3n/uBIAb/a5my2VeQ5AUyWN0zpjvKP5eZZfx+1JFr6lCFbL0Eoh0FrVI9HKB5uLuQ9rexNUsXnfBjKQiPUHjCGf3pHmV9ZjkRKe2fm80ZYJnNrGT68o1LGmY7PJrzbstB98T/U0lldumyd4v/TV5M1G4s6+rc4S748NnDmUcH57DxfGZM39KHB+Ot518K2UK5cWO/U0Y7h01Vq9Vzu66Od2c0L947KTV4Wt6sPg17eVVqRLDDcCWPYrZuKWXyTPTIDONTT9xqzIDyqebnSE/weMM5E9PpHyS/K32To76r+i9SG6zyasAlpc5d7x6pDxH56DebeRLLxWftM29V+Dt7JJ9rgzO1101UujN9oWjd/Lexn2r8l6PzoD7hiUDp2t2NRdIlYm82r1MnC4r1P/mYKLA6v6P/zH8BwsAWIuby3g4AAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, circle O is the circumscribed circle of Rttriangle ABC, angle ACB = 90.0, angle A = 25.0, crossing point C to draw the tangent of circle O, and intersects the extended line of AB at point D, then the degree of angle D is ()
|
40.0
|
291
|
[
"25^\\circ",
"30^\\circ",
"40^\\circ",
"55^\\circ"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAKEAAABkCAAAAADLHw9tAAAL50lEQVR4nL1bbXBU1Rl+zg1ZGItEZWmWNs5SE5rFWLpAGcPAGBBsM0qBfqCOYqEtsEyZcZBCxZGRccAhHRGYShSH6UhHnU4BO2MFE2sqoa5tBAfQBhMlgdA4uiRUQ9aO2U3uefrj3rt79+N+bO7W58feu+e85z3Pfc/Xe74EUWxIhQJY+hcAky6M96xOKShvAETeb5LmPwLAK0tOU33gpvjoqekoiKECQEBkBkojSmcuFQkAwyMzoDw1Z/NXy1BDlhUVGsGGRgUA3qwAgKrzHrgZ+goCkWtFAUCekiIz9K93AJA3ZZT+qDCmMHEBnLsS7T8LRFUIZR4w219bHkL/8hlPV2giFABF8vXHQaFcqP5qGcqOltaWiVNmT/4RcOs4MNkGRGPbuuN3zH/11ZrfbBoLAIICAp/MHQ+Bnt2HPTMU7nubc88eueG2BfPLc2M+PtHa+sXS7vONdwGaEdEY3yKFWDp43DND0Baq8dL39LSqJ3psJLu2BisDiy7o/xLVp8luzLfX7goODHXEtgQiJx1kJKOR8WM3xCXJJu3rD0vP/OwZavpVxjb4t/S50nZ59Vg8bw5QLQQLgL0NVZLcNVnnZ2URacRJdt0+AVPbi0fPkSHJv9fU21W/DMS3ljWMfPDtkhUDxSFH0pGh3FJxzFmJbtwjFffESPLAuGsOeuWVhj3D+OL6zzNKy6bqty+qieqvfeGJs09S2km7hw1DlT03rx9xoUOSHNjk35sO+XLllBsifaQsAkc7G0YDB1xwI0m+FFjVnxGzd/IDZftIqp4NacPwYOBtl0rOzJvVlhki2RzYPT8cpXeO1gw31HS7UzGw3r/fzE1He9VjRwIrYvTa6+TzvggAD3W23QQ3vtNzVeiIpBOmfLBp7554//yU6t1qyoMs7rh8oCbu6gtPzZp3Kst4KfRNPcKu+lDLKI2nw4Jha0Drph0KqH91wLLnk2SH/yR5LLis10tJ52fYc6PRtdnW8r1lmwbIdMeXI9wcjJFDO8q2D42aYH6G8RqnboYko+G69txQmfohKXfVDpHsXRY8Okp+JoaGUpXkXRucCyW2IvCyXbyub9UKkmRLqL4rrX90DE1FtOkHjiPJyK6yrY5NSSU5NO8JSaklGExnUUAXmaeUW4NWeaf0toQWdTnnopJU+ys011fGVgSOmCI8MBypcagzsvenFcfoaAcj+sVaIyQarmtXCx5gchnuWmavZGiHf5vLpqnZ6rZ0s9tXtmmg0HEwh2HMf9E2wdGqxbpH6zab9kB6CtEX8R8ssLHkMNzwmKWsJHsWT20uSH9KpUHrZG3tqYJSZzOMBa7SsiUPbfXvSEU6mVBNPWOBAXPEwYkRd/MyDWbPgQB2rp2AEosh/JXKzvZHU5HCQsqAknqW37vHHLGy+9qpjab/Tu5JlgknD+T/ErJrYc1ofYBYQJtaSd2uantdOEqaysGmQLIYNjyUJW2MufEt/qfczAjyY7XhQKYayeHAipi7xpbFMHQ2g10KfwqsjHlwlVtrc4LiW8t2aZ+s0rYPz2T4TjibGkmyfV44Sk8IdmRolSTZVR9qMZY1bJDJcG1DHpHPN5ft88aP3LIlX+jRKct6HUs6g+GIv9d4TX/WQX9Em8Z5mRC1V+QNHtpetsNpfEp7X6rKtpA5SpLkqdpZhXWwFgh8oClU06pJSf5bdx2tCzrDhg0RlSb3k+xf53fjy7rAPfutYlpC9d12jSVjrnd8gWLqigUap43rWu3Qn7rEAqvFWLmwfdHMbV/YrPmb2I6Mj5nJR2fNy+PljwaS7AhIazPF7k+5jqkEKZgZnq0y/elfFXixOPw06JPHfM1Nqox+1zznyRBK21biwrT0vs3uaf7z96cN7aWAtcRTewDkHc0pFMw9u3zu5qtGSIaQYnr7qNKIPHFL01tPpjcNKbxw1FRWdtJChxa/vite9Yd80eb62TkNAIHLy1fseCOUqcPJk3FEqNNiY8QI9e9/bf+cU/YML1YDEOpvbwl1LMss2SJs8VZ3WbTWdPnM/ue6O9f152NomP/KBIBvhqJt28cj02qeLQhcP2AZlda+skt3Hc0m0duNSsngJfbe6WF1wBZn8jslJmh9ke46pjsmaGlUUnJS7zbnYXK06Ao6EEzhSOABrV/WRhpQkpJsOk0pgst67ROb8UYo/FYBDPv8Rqa2UEnGt5Y9mRYUqgIAyel/nAGxZrK2behqP/KZK6j4hft6mNzzsDtBCsGB1wZW79T/j1Eo1GHl0RunAiWTjVpLOrcN6vpcMlSt5mcpYvqLAHHdfZ+UpoJUScrfvVQzSE74rJAllZZQOFqAeE+wAP/SvCoxRgiKnsG7Jl0LXD94vdb7uLLLgg4Ucgjh8xsEpL14Ol/F6IEIoQgIPLUZU5NJXNMnwWRyRIDJZBIwHqk3JpNJymSSyeQwR5LDrukBuPo1x+8RACCNJkA8I8Ttww8qAJ5pHFsp4MPXBxWM+HySGC71KcMwHgCGS31Cav+VMXK4tJTDvtKCRprPrgOwVAghDtsOUYrQq/gl8T75/NhvKmDPoEy89q2SYUw5D8pkEiQESgj9AYBCoFQhBEoAoZQKoLRZGSsiLukR+KgKwCtLjrD57jNO4gJAsj7yLDBlY6WCS798GLiIErL6Q0Dx+Xx5CiP3qzf9bDCROLHODTtKAXSGACS7v49qQDiP9Pz9Z7sEgMpKbAROyWVAZGToz4vJhEpKJoYpkzQepDQHy4RU5YPzKROyaZK7XReSc4+TbIqQSyJ0GFskyUT1Tl0I5EgiIUkycbqKlIlEwvg1HgnVHKwmEgkew0kmvkw0u2MoSQZ6KNkI4IwRYouLqUMSClji8wkCENNjlyF8Ph/0X+PhU8zBis83Bs9FZsE3ztftXMgAAIlOBAm8fpr7ZjhWQ6OgtZqg6MMcoJaUzGt1l1RJfrhQAYA3fuzq9J5QcKIOQvQMzuCa6tcBCLslOQL4RnWXIoBLh1NzveHEMNWGNW7KjJQXtLJqwml3Cch79lOysUHKizjkKkEjDpNN87Nm9G0hFzVESjJRfYiSieqIc076uFjeQZVLzjBRPSlON16Y2gQgIq3XbawJqiTlxtvJi3BBUEd7BdkMAIUdY5KUGQwlIw1U00uldkmXAHjPzeaISpXpta+CvAcNJoaSalvYOaV5H1Rar8pnItiRkbd0dopSSxSm8UNAuXXoPTgufVOXhgQsV+Uz5Vsnmye3CoSzUyRIBZQ57saqg3ByQfSzmtRycuE9COClVdqr1L/Pjc8hBCCUbH+ffeHOMjj5cUABvjUAXA53lmWmcJNcl8nkIsrv3Q3pZnpc0Ay6YW1ZVgo3yXWZ7DnT5XBnWSGZ20Kfm3jTmb0nVX7v7qKdcqfejBrWevro7FYem+j6MJ9zf0FS2xv1cCgop02UP7LBywenoQoQkMD67ZOgeDiXncN55OYirtyo5Au1RT/31Roc9KTSBJXsq3jX21ZMdikTqFt+t+qpfFOQCoZ+sm6mt9W9vCs0P6zakyd0FJDKz0deKKx3z0U+w8ZrDhTlhKikdmbJEyzOfVVkrjKOFs3BmLOQAyzOzp0I9BSBYIf/He/ndXMZqqR0f/7QGir7qvSdJk8cc1qKVDSvYmPHYY+3sK4urXvcrHWUyEmpAFJAYndoTrfzOQ4bnPtemuBoLjulkGNV45S/PBgoZAUzG83mzUQvxWx7Hrv8QJqhsWVghzQRdW+F020Rt7BkKEn21Lg6056LoVUzPx0to2xYVhABMNjWs/iqlYAN+hf99+2Ah5qXAUuGEhAYfzR8y7HMQFto8Yem1x8a5y6BGzgZOarfT5EO9T1VRTvqZp4s4vUUN/ekdgVc3kEiyU83BfYX6XKPDhcd1a/PDt38SM6mar7SkJcf+k7J+5HiXud1YEgAKN/zL0xf9y7sq5UU//hVeMIHOydBKDAczGKQdWnrvn2hyu09Nj1i19ZgeL/l0UAPKOjO48vX1Wl3HrOG2Y9bT7R+cd+aUP50HlEAQwDn/na8ZeKU2RPnALVjgUQbEL1ypjt+x/yF/x96BTMEgHNXov85TRFVgZLU3VvAk/9ih/8BaIlZqJnORMgAAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, AB is the diameter of circle O, point C is on the extended line of AB, CD is tangent to circle O, and the tangent point is D. If angle A = 35.0, then angle C = ()
|
20.0
|
292
|
[
"55^\\circ",
"35^\\circ",
"30^\\circ",
"20^\\circ"
] |
D
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAJwAAABpCAAAAADqjBU7AAAKE0lEQVR4nLVbf2wUxxX+5gyhAsOFcMFHOOwIX8q5No7JOZUTLAzFFDchkqsgGVJTGRVKFRrJsYyUNA44jdsiQQpNkWqVVj2iNjiVVSdKISBwsUPTUOwGtzqwDTYx3EWY2C0gm8rUe/P6x96Pvb293dm95ZPsvdl9b+bbN29mZ9++YQRRENO/PpxvVTMdHOKi0RYo9l91W+Hyn6SyIqWmaTBxy6U2zZJ+/nvT9Hs51mvTgAnLJRC9IYVBGIAFp54rOZYskSnITvR466fU5wIMVf/7kaXqZli6ozt9Aze6gKshMPLkY+ZKz2P+bIBKP3ux7KhPKRle0sARfuCQpWbM+1z4dGfXjfIl+U9m49E8ANc+Z5M9w6G/etasW7uQ4Q+Nb25LCEv+bxwAsKfsW5bYmTN0f6N3UU1rf7zME5eChzYu8DUN0ZC/diLRp567RESBhIYZGJJTND/W6vc0Xko5rcDF+kXlh7+s9/ZEJaaLD1liJUoujtH67NpjxmLtNc5Xjrr3y4UQjlvkRUTi5EI7nI2jgqI7ndufrhwjypic2Dw3+eoK99C+hWJevPjQ4ILLvKgTgLvwKgCEjlsaDmIDosO9Y0xATOGHN2oXPdwoEQ/gOFF3lUXLCZALVZacU48A7fGgRNeyR0qGiLoBNFjkJkCuZ1FLChVjbkRS0wJXmwl5DRiSC7hOCFbFVUdqd+Zum0gjLAQDctJObzC5RWFwop5HVvj6rLCKQme0EnBnwz97Cy2ONAaUfuZ4aP0vLOpDd8nEcLE098y8eFMWkPPJUuc7z41b0gV0p5ITzowePjL2OuvcXRZ1dcgFnYmhYHG4ERF1uNo8TdZU05Mb89pgNyKilsLwhvKQFc205KbX7bTOJxm11XTQ3UFkugPSkquvlDJipMBU2R664NuRsoA3RDpyAa/I01QQ1z0dNLGtMKg4JWTDNOTOuQZsIBVHjytI1OZuNammTS7kEX1mCaI9d4xopKz6timv0yZXuTeTyUMLTRuJSGrynDOjpEWOt/ltGwwxTPlOEBGdcreYUNIiN+Hpjf/O2ICxCk777hERjVVWCK72SfvB/8az/vhvqzGYlArWPr4PAFynNsRjFsZI5Tvsup1649YRq2HUFTVZT35qzEIbGpZ7c6cz9catI1ZDTu1e+Udp33jZgJhuCt1Rl7nxLoxR163Yz9+7D4topMZKXv7Kz8gGg2ngB+7mWEhvuKbgV9nGGmq2Y07x0WQSQ67EG8WUHLPQRwq5g3V2z79RcKLqgKJ8zL2fx69oQ0mOEycqsbpsFUBHhbK10YrKMX1DqC13Ic9uRgpIrpEkO7W4T+uyU08lR+rsiudqIKv2d0lj7bUPvreL6zWnIuvRjb8lw3yo4Zwvqcjp9ib/UHpxFbkBt1H9XCbOiXZ77tJ0sQl2nKTs0URBNsBhd5tSQo9ca41wS7uriIi65biqKKra1Gd4sDBtzELlc2dWi/rP2R8fiH/LEcfqM1Ediqmywn9kPdkn5HNuscgyJ9os92fAnOXO+dTOzDnRn9wHNaWTyY24Eq3rY7r4GBERf6FBRDqBWbe1zobKN4xrnE7u1uFo1Mb4M9/Nfy0FgLPvbofw0oUAFFxROQIBwOKz/qLuVIVkcv1e+WjcWk7x5wCklxp84l7HAHgHVbUz+V9ze+3rBuSGCgTbwYzqt4HQzMq3YO4r0LLLaS6sDPatCqvJRSv+eBAABnwQxRvzGcvtfwuAqRVpwaV0hnZ++PzXP1Cdi/l3PxFRyYX7syJJoKuCiNINIXXMItqtP83LBYC7c00YwdIzeM4kgHS2LumR/BcV1ToAAo48/gUAYEJgdRqHsgFhotn/1b36m9crf51EDghN+hfOBoDJOSbIAegsWPEJQCa8LntC/3rNp4Fv34mXiIh2UUie781+t/aBlZl7fbzt1L/OSWryxFYHMwC8Ewjgu8QAsGZxqzEiNg4Km1ABcG+q2WiKz3o+lsbgAEITX95oX8pAwJx74s0QGJ5xudfFSoLkZhn7wIOJNkJVRFLgEBEnyrH45iXesf0+Y5k4sJuhn7bg4cYIcWnZEEkSJyJJkihxICJJisTKksQlKULSdMREOzH0+IkosdTUACeizQDQEB0CEieJiHjJBU4U4RThFIlQ7EDxc3JZkoikCJGkqtIQXJ6EBWR3H6fp4kPxZ6uDg+D+gkciBAKDI36I+peDxcsOyI6jcDSBuYTAgJALYC8wxthHen46VIEZ1VcdsboZCMw3zLKyslhMTa2tWZvw/MsAwlARgHc3H6fuZwY1b4hAQPg/s4ErSx0A52AAGAe8QSKAGAgk85WHPVOeTm1TGAzBxwBIgxVYmuauGBjQ+Syw5+xWB8AowgAwxuAbdPBIhCGLR8iB2CFCUJ6OgMf/TGN4GYC/rZ6NxoZ0KyACTr7E2PnQbMUzgRONLBDx60ww6xYRBQD0xxtNRSiaFOBQEkbuTMGonlX8femDAE72U6BAbknTKa5+TT7GyPEIGMAqNFbydqJrFYDwLR++U9yZXqp1ezI5RxYDQKv/cp/JrQHQuQEYlV+QtBBmR6NmVa1D+g3DERlBDkds7qfpYpH33ZRAjrV8LQFwkgM5suMI5cEkvX0RsLENtiU1JoMBeK8GWEVERB8JqaiI9FWPyNPt/QhZR9y9eWbk1cHDkvndALPj+4MGPiw0xS01daMuYBcVNQhHtprTSHlbH/cO2pvsm8DwU1fNvN1pWM5Vd9AuMmrse9EcN404R3jF8Dy76CTh5rJrTmMpJVI/zHk2/NwmNirs3WqSm1aEaPipK2ZrEcHNoqBZZ9YKX+2aaL0P89ym5a+Z1tF4aky6e+z4CpyM016bkl7sTkDgnKYKLCSDaObP1czfn3EvKsEYtRSut6CoSfl6NOnFtr5tz7OSfZQ2XaifyD5yva6glco0yHEimxOtQp4OS3ppI+EvB09kZeJnCtxbvb5ZdiGT81NacpGqZda2f6Riy2SHRc20NrUhLVL2spbCSYv6xgmlmQ6K9106n3v1oZ+K+0ur1cbB9zqtZzTohqiD3h9m+KiYqiuybDeDzRqFvUNr7+gJGGFs5d1P0748G0N/J8m8PxeVXrReee8T6/6Yncnyxsi0AfcJq2Oi3d1uTTGGtOTihLQ2a4hguikvaCyli7TdGu+N0vNdT5xXWTueQpB8UomPl/dZ3q0g3K3EiTrc3x+LF7RFVBitzbMhmdd4axUDqq88VNA8Hi1oiyTh5qtF+YPfzNRsEN5rGNoxT3BTGr++01lvTw6e6OZbT+tlybvlZNJtaQq+v3n53KEDOboywjC2RPzXWKvf84pu/C5Yn1N+WDNzxBJM7m8d+G3H3Yo1FRpRerrU1dXl2lin3JKe6fulCDliyobCnae7bpQvyS+di7xHAVwbQXTzbWWlzSEga7vR7/QNjJ4hNhwG4MnHA08v/qrfZJBGBP8HaCh4jIyGeHsAAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, point P is a point on the extended line AB of the diameter of circle O, passing point P to draw the tangent PC of circle O, and the tangent point is C. If AO = OB = PB = 1.0, then the length of PC is ()
|
\sqrt{3}
|
293
|
[
"1",
"\\sqrt{3}",
"2",
"\\sqrt{5}"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHwAAABmCAAAAAAsOKqfAAAKE0lEQVR4nLVaf2wcxRX+9mxIk5oayNm3NEcM4dIcMhUmtOJauRyoQT2paUBKwAlJpdCmdaUg1RUWuFIwrRpKJAIENX8YjBSauo0laJCatApVUkziiMRUGJCjS2vTXjA05yMojuyEmN2Zr3/s7d6vvd1Z2zxZ3tuZ2fe99+bNm5k3oxEBiVpZwcing+eGgeMmUNMKfKMhEYnnq2SIGqw/N9ICg5fQqcMDR6694fbGBJBYAMycAAY/eXf04j3JVXEP1HkAP9Xz6jV33n1XBKXmoIaPBt4cuLjxx3kDyFA1DgxKwnrkfhePPZkpFMvydmPbmm7rmfRkFRycJJnt0ttPSkeSUrkcGmzXu3MVUs0RPNsR7spVYpWQLG45j+DP6F0TBQxbhCqiZDv1nvkDP3pLKlNaUoB1NXE6uXLI3fYq4CU6dX31oMInxSTZr293rQk41KY3iH31HmPHlaT2ydolv18AQIRKxr0/GwlI++eZRNOBepWPSiikNR5Z+O0JADVlMUfBasLuy8FIb0CTkySFIOWu6BDLx2YQh9sTGWQVp/KCzj8P6a+WVwUA72geC4hbIEnyVKy7bDyqgUuSHampWWNbNJnsLi1Q6XOSZG/zlGdE8+dA5m4qtbyq2Qf0TPDurqB0eKhYA39wQZKZ6OBcgSkFeagpGwicJKeaZzXGXGhn4rIlCaka4X4Qew4AtYChrZKoPWT+wVleKHF71NwJAHPEJgANPZknATvQKZhqoOmC83u2Hl+gT6JD9k8FcLP54NwhWRgrfQm7RMGQu2LfL7Saw3pTy89PGxe85HDzEzS7OFO1zaxIjOg5i311zZn/v2Pr9XPR14WaN+zO+5yfnBMR7+VvUJIks7rF07fPn2qvn1e1NQCR9c9aL15SCsHsdfOruMU3r7qn5qEQ9rRZikuvdgFJhiKr+301Jxkfnn/FSTmQ8NUcOLmwBQAg5lFxAFrybBoesZ0EBPa0WW81ynwVR+WDey2QKiRIivC4vwnt/0cB9B3tUzP8SNTT7CEAb4ejvjpo1nRl3Lt5gnJ47Y1q1mk2035T6kBSgRU0AMa63HuN0H5zU8zh7/1B8k1f8LtVwAFgz1vP1AGoXd1Y4O9Jdw/AJ8jUnVXrQX6+ZoNiS5vSEe+hJt/XdRWtCZgfLVefbiUAxLUznmYP/XeFEjMN+HgcCqa2+QIEYhkvcOLfMUV2WHL9KADguWm19hoQO+0FruH0zSqMCGLhrn1PAMa9DXVq4ADip70dLjmg6j6Sow1Aw/EAHvfaatZ6CXdOeSrXEMsp62zRNZPe43z6Wv+ptMTFg0y89dPe4JML/TcVJVueIJuKr5z31dyfnAF25ObbjgcAv+qit8OpbGecbfMrcSDh1bKMJuu9FxM1CmsIS3ECa1VjTJ4+v9LL7BJfVgwZgAZcXFpz5aMBfO7SIi/wEK6eVOUEnLztirO/fXYGoKIA56/x1vyq8ypcCAJPfK/zQMMj0YcR0hSd/kKdt+bhCypcNGiZbx18qx3Ann++ANXZ7dOrvYW88bQSG+z9+qqhmwHgSwd+ddzyQX/Lj8ZQC4CiMisKwIr9/nRhy4mDd2rWKUu0f93bUUDF8qcTCAHQat2x8bUxBRMejdeM3OnEmuS2e2egojjH4vkgY7hn2IZj1TNv+RrRVb+3tGLzD9WCjJ6hDW4YJqUhScMQJA3DIGk0fGzkmxqGaRcbM9IwhNUw3dJanjq4fPsulXRhOiIccBokBWlaL5LSkDRS/VLYDUyrWJCGQRomaXB33fZKnPHoYQX0njYWwKUgJWkYhiFpkjRIc0c7LdUtEfLFhiQNKXk2FRty4zt4Xcb6oqoEkmzrccBJGlI4KEYe5UQ8D26WFEvSkDwY/UmVPHRPy2feaktST5MgpaBJWj1OQ5KShiAFacyEP3TMXlQsyZnP2hv+LN10EyTb20QBxpWcvZo0QwA0aABqhWlqqJWmCAG1ofv3hQCTJcUmBMyROz54d40opBILYygE4PmPn86/uQxhAkDfJqB4PnfL9J1ocdWMO+p2edp1vOmQZz2b0ixeL0hXC8WHadmu2MTjyZYRb948EfE6E8lnJmxwabinOHf8wvnA+d9f33HZg7PFqLfZ61RkS08xeDWa0MuzUZOb9MM+H5Ekt95Xvc4/GyVBoHHDs6WlJ2+dfv+7KquF5889WbXZjp9aOwJv8aWTLbTIfLyul9I/gAmSuWi1U9esfp6kygK1o7uA9cEdiTH19PdQ2NXpBDueoCJ4NuxMHS/WdZvK0CT/GHN1uhE9J1TAJcmdec/J3dekdsRk20mwI+VWn7RPixQO9cxbDpDkYX1T4DSsuepxVjhIX8Iu8QK3e3egaYoznfX9xWVqJHNN+8vLcopnLPZqpTP1/q13+acD3eidsBULHV+53Fq4RaB0qCear9gxK2iS+2KTtNUQJDdvKpivepCRtKegiZSxdLFCWHGl9evWC/sCUQh45nRv0dLWX/b94fapOZylmqnHCi+v35AVdCzhCz69JXyQ+VPkoO5mTYWTy/vtT9PhknWXH/hQPGXd8PGepbxIjISHrV+5mH1+7qF5wTLb63bbhcU3BwKeML7alCMD3BwwSTLTemvaKZFzuDOxLWmSI7HuALdF+q7uLAnlL+uW1wW9QCDJVEew2yKTbXp5DnAw0jurY2TJqdiD0bcryquACx6L3n++ojDTvDXQtGZ9RfLS2pq/V1ZVATe31b1MllpYkpxanZrNIV+utW1/NFvhqO7g6ZWJsmHtSNFVdX1Snfqv2052t1YYzQVcsKe+bEw42JIcbE5lggw2kU6uPEmS97VXglf4bm510wkvbnKn3pUrvgNYpZn1yHbqL1ivU/H8IkJKUSXIyNfDm71imaTXzUbJUqNkO8KP5eyKsUhZSrwc/HJH/Sse0A7TLr29fHssK94Gf6Z3Fwt5aMm4sCulJFG6TRpuThZf4fGg3O748uJ7rxU0tm1pS8+kI5MkBZ9KXM7vvUjmNZe89DQpyZ31O1V8Kd9iZKseb+/PWQUFDFKO922J6Z12aC7Sbt0WkhSPQAMSU1a63FjX8mtgou1cXwtcrlK7kXWR+dThN44svuGb4YTGOxZomDlJDH76zgdT9yRXxUta5/fK09/ZshUAet/402etKyzwF9v7NuK1h8TDV1JTu/6sMf9P47lLH146C5wBgCaNSxZFFzW4s9CI//QdawWMdQ9sROf/agFg7MM1wJl3fw5AU8xeEtBIAEQYS8slclhYitjqEFjW/V4rcOZf97B372sgeSmVW3msrFtlSW/N61OSLwDothzu0YnRFRMVvvEF0udr+jja0C1hibFsogzaTkbM+1OSHF2RJR9ZNhHCWJY82rgIKMneaLBSRPP+1CTwj5URGKONi2rHfvQ3IG27kUbNHhVfFIVg/PUB4Jd/6asDcHxmTcHu8gvysuJOBWAdff4fS/QShjSDys8AAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, in triangle ABC, AB = 5.0, BC = 3.0, AC = 4.0, the circle with point C as the center is tangent to AB, then the radius of circle C is ()
|
2.4
|
294
|
[
"2.6",
"2.5",
"2.4",
"2.3"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAG4AAACQCAAAAADMqAFOAAAMA0lEQVR4nL1bcWwb1Rn/LmVkGoF04qIa1SWldYlZ2EhJUbM1yGGkqytKVlRPQVqQUoklk7ypmdoNS4uUTeo0IxWtmtIsUG0LWhBBDUs3deCKQMNWRFAYLluGC0tJilMwGKYUR8JnX95vf9w7++7sO99d0/6kqOd333u/+9573/fe+75XAWQPl8+d/2iK6MIlEHk305d2eLc019isW4Rgh27xlZemPmrdsPmeGtpYT0QXF2h55kLyrPe+9vZ1q0x3/vd/yQTuC/jLvPrPq2emxFD3Zgd8sER6uNl7KGElMdvnaT2+xJQfzLo1wJIu1VfTdcqyOgOA8c61kXRlqgp0yd7aQx9V5FJEwzf1pa6ILhMRB9IlrZuqkIqIA9nKCprRTXh6tWSs5KGUsKs+5pLug/at05WaL8XUHXsKn2hSryzdjOewA5Yi5P76WWuJcnQjYgxwppiKE+K4Qzo57KvwiVaY8UYc0S0FW5eUJ+ZKv1RzKGNer8rol7bVT9Vy/0aCA++kYt3ZL7e8b9eJxWoHXWikoKBTtHbKTEZPN1tbMB03HalWPCnOVaRjQNrnXjcdDjdmyr8oLkAQVoINgy5GqxweWZ7gjZqPXV+7vDrKAdmWgbLlGroRX7qsiCskvRMoMwEIaum0aLmMOsXMzeWcRUG7xfWV/bkjjNeX6awCXXt0ddmA/pA53bPNqzZN1AHL+l80o8t4Z7SSq4NJf9ZYxH3mLx/YRkSunKQ57r/rCDc2g93NiUurqhdHSkwBhT5jXDvQ4XDtqurFsa4rSlToM0HVLnXzEjSfsZrqGRquIhBFf1BLoNUeOiJat+83RcWIa5eutbUldYM5Ub80VBHRMw85O8Y4wObW5zW/Tp8jMDRNXYVh45hoKz7nGuIExOtx9ehkcb7w/LOdmSqip7txFWYJx5quEfVxqOlDqiIaf/hqcHFPgoef4wULmW/W1RASHpv94q6/5Ro+7cOY70EVvRqw+bnO+wBEtKZ1ioiIho4JtxFV0SvftldXIDotCEKvAzqBiKjtJSKihQwQ20QEj+09w8G6DHINPQ57809fOQvMt4HhWBS0INpmawOAWJ3JFrI80p1eWsJBojg6iHpoMmCzYozedk43LkZ6b5kp/r7u/BZlVCtOhKGebxARXXAwdh93J081btn27rZCSdWc395iIL+7k4iITj90Q2UexeiebNz+9vZndm79r+ZN0DpwUsA8xRmAGMWt5QrWuRBomQXQPD0aKr6rSq231zHrG+YEovyBniZrOYHr9vhdu19vJHqDtnvTqsYCkc/sbGTEwTZgnmyawVstgQUAYF3DmGkulpPH9tLaQVSpJzlWBsRh5SntySDRoKGrcWRGwKS/6YUKIq83BtUd2JEwkPRq6CqE/IxgfqLqkt1q4S2ATEQT7PAlgKXaooAxFFBpggsCUU2/xTz5+52LiX3E58vp9X51mnDULDtT789r7vibZ8ZsNVp61KM9SO0Zg6Ez7U8VBbt/xTDaKAPlFsBTnrB2Y5n0ygASfg2dbUNQMNwqA3hgoOQFA9Ih35SGjKG/H4DeEJriTtjiniQALIqzJaqxUTHyha5E9iYBYCqgoeNOzN7OINs0pggeb5YNNVLBphmD9NgeAMCo5lhZ5Z9T55QNHNjWqQg+WnNUraHMumN3bn9zm04W9LsfERHRe42a0sFHbekFBiDmK/iEhdo5jXqJQEvpnuAdn/JvaLRYZn95BZKemSL10UCRLioeKSMe5oXaTuabBxtDxxDURgvklmE+AeNbuTvWy2c8PPJQrTmqOtgaRQMFYoBhVkwCgDQgjkDzovA83KU8TGvMDsQ6h+2xxb1JfYsDewBM+/ea+IlmHjyP9mrpMNxpiy3rm9CzQW4czfSZxp6nVeMOjuno3vEANgavt7ekaOart3abhhC6eKcVNu2cDl47gzdeGiNZ6q4JmMqnPRkeatMOHaqIvjdW2b4X+56tJn3u7Xn/DR9cOkkmCbmn99UormOsU2/8LL7RWjEGoPWo8ev3+c8ynPUsmQyDj3eZLC5oi4kBTaaRahXRoKHRkbpIFgDC3TCOOwOA0wH+ayKge0kAjnZXYJtepybWGMDALgbviiu/M97JsgmHPep03DuiKycA6bUWSywDMr5Y8QeAQTGqhgdZrD6D0nn9gZcLGAMdBAB9EUs76Apr2RMtOnfcfaCMFf28nwv3DuhfEAAkLSNwzzZpbGDlsKgP/qc908YKjK+rQKrW0DABDOhWP6KMlkmxEFRmiDcFFwzvy1gkX1eBvj7Dm4oBRrm16FOzEXGkRIB9t99YFOBjzQOMJXQ4VOqiOAbULwU76w+VC/2nxLi+IMHXVdZZknUkALIkfVZn3GhwvFaIl2fCngnejKHTR5plXYG6rr7sK0n+KtpJbMxQReXYMMmfYl4Td8yAdp0W6rqa9ZemClQ6Htg3MnbyXOMn3fWT5saS1GU8nuTrqnlgX2LSvDcmSyuAJOUBSJLEAPzh7s8BAON1Bz7LKcWAJDFJynNBBYMtmibvngaDZdpCYshNi4k8kAMkBolBzgOJujk5D6T2NvyDIb+iFksSIOWAXLEZjQvn6+qMaJ6UkRjk/MimFJgkSdIKywHIIX/PMJBjI+LAF3kA4MWQWPEPABiQKDp+ZV1VUk4mdDkAEjvQLjOlXQlADpFOAHNtd7+lFKjFejpOGW3nxGlPBpYJNTmPHABZyrWHIa0ADFIeLP+a98M8jtRFAWiLS7UDALl5RGE+EgaArr1l2UCArEwL5PCpb5BJkgQwScp9Un8W/97R9g4grUAphiTllPmi/hUR5x7El4BFMlRzVpZ1qV6EIvKAkzxz/14AiAUATNhI9coMPJHNAGC45Y2moK2jJu/SrH8cyrqqJrLLGKpKJ3MrmvWFZQCYu7lXHC0Vt8K0J42kV852N5qfUMtcQggsAVnfOr07rrAPZQDwk27096ebQ5+bS5e/YrG0tdpFajRT/1fvC96I1cdp0vQFmZG6m25cdM7GMFW31fM8fy6PsvfE3rz3aw8qm1Cb4W7eCp5anm60FNSHcUBDQtV9+dHvv/XbS0REQiEdYH17TXl7ceiGGyt9mE7XeeoB5imKeN3aHidTBfxqU5CI6IS5kI6Oh9EPngASt+4yXtyyJouIA1kAHeOICXFTMV1nHv/fE0REm3xE/tcu7k/5fvpxpc5RsPjjhuzsL6qJ8hd20e1WHV9kZrkGzeGbXW4Op/pqHuEGYdWZJztrI7wjYj1AR48tu2Pz+l5fbu+S0082eyMW5z+G2b5bWo8XdjHHiChuy+6AeTqhO15kO4MZIHHI5+kcLks5OxgS/f1al9VxDsesQrpau5Pv3P8YEc3/M8T7Wfjhv168SSBafHnSeB0082a566AL+89Q/uv7HzMdOp2ZD4VPhOh09EyxpP/ky7y9y+fOp85AmLtERN7NdP23NvhKL7sOZR6jhdtOhGxMFSVLQIZY+uBGo3u3mjR748g1WGVtKoaiRzfEjVxmhDEiImozeWuPDqc8JmdpN9lKG4H2afVsgNLjgZHS+N4FHWa9pccsl7CVRljwlQsguoGta9j0cTD4aztyFVGZDgIEWnrQf9xNbtkxHeeQQtc9d/0Vs1HFpAzXqPrk2u8sE5mFwFaNTsWaP95z76dXfjfCwbR6vMEY5HAMR/m047ZCn6tGh3GPSYDi6tBh0uNid+2eDnHPWGWh1aNDon74Cq4KOaZD0u/uwjsAuz5Th8v3t7i+8ess1UsEUO2Zdx9ZuUZ0gkB046n8A8vXho6IiKrHNu68fO3oiIbbd3ziqqLbOTZY7ywlrcAVHQMDRr3xa0SnwHRHeHXodDvCa0CHWe+IQ3d2RXTOd4QunJgWqd3OdoRXRgfh8p47nrpmdEQkha4bq7Yt7dKrcICo+uTaXfYd6JXRCVTYEdqEyznZQURUx/8/U9S/YNMgXNApLXfElQubABzsCF1qx3JBAOhQD/LjNq8suR27V24lItryHv+5b9rexXGXdMJL7UREm0g9pNTbq+eSTo7tJiJ6/3aHhxSXdMkdNUS08MROh/Vc0sU2EREdaLOID5WHq4mZa4gD8zxi42QNckX3ovKlajhSd+fHuub/Adz4uDYoPKYNAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, points A, B, and C are three points on circle O, and the straight line CD and circle O are tangent to point C. If angle DCB = 40.0, then the degree of angle CAB is ()
|
40.0
|
295
|
[
"40^\\circ",
"50^\\circ",
"80^\\circ",
"100^\\circ"
] |
A
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHoAAABiCAAAAAC6t5jOAAAGm0lEQVR4nNWaT2zbVBzHv/YaFuCwCBgULljjXxgHzATMFWJzJ9AMl6WAtCK0LUjAOg7QcSETgqwXql4ISEDZLuk4UAYSHaeUgUgqgdIO2pTD1CEhkh6mVKzI5QAJduIfhyRt0jj2e7Fh4ie1zrN//n38e+/3np9/7wmEqyXiVSOjh02tPFv/EVT+Q3QhM3dpsdwglmclSdmthnxAC85tPX02A3V3WG5CFQqzcxlJPRr2zKbOko/1asm87aVcIiyP6w73MkhndHFIGi063JkbkkZL/wZaj0vjbvfqMSnpPzoRjrN4VIzKKX/RKWnYqaqbJaepSz6iE1qew0JaSfuFLg0O85nQ1URX6LaBtNB/IMHXPUPp5WNlH/p1Vsl14cC4qvPftAmdVFnjq1Wyct4jOqV1O0jkFe5nbkEvKXqXZKI091M3o3Wl2y5KRDQ+xHlDc4Q/G/fyNhrCR11H+HDCg89EVNLSXPob6MlBb2QinS/M19FFydMbkIiIUhqP9npbj70a9NDQNdGC57po65zs2WdeKw2vR+KefQYgyxPcXmcVP5zmi5i618fG/XAa6I1wdG4iIpqK+OM0kR5mHstrXo+97o/TQCgyweV1XvLLaZ4gFwFg4ohfTgMyFhk1RQA4E/UPjYNnOdAFSD6itWkO9LTmIxnyygo7+qv9fqKZ3RYBZFRf0bvnmNErwZCvaHmRGV2QfCUjfIkZvSi7q10QBOEoIzqENVb0z/e4ao0cXqXyRVY2o9sisBZyJX+3cCO2vjPzOxs6yPYFxpK8uvDB9HVs0JpIBSY1EVjpdVapvD+wCwB+4cGzocsu88HqrxoAVKZvvuI32k1WVm8HgIXpLU+e7Oo7ujO612XM7b1pGcDfrw1IJ9CX8RXtFpBbH//wLyzvvO8UAicnR553fzm4d5kG2lXeuPV64aHPTwFAOL23f8I/9D0/u+j0fEz02656IZqd6XMZMty6zAaadcytmwwlEwMnHNvoEtu3Mg+60QuVpW0POLyTGckQmQefZoml3hvoGG4c6ODOH03T4mNLqSP973a4tng/Mxp7vkMP9xpIJLvcN2t7ZUZlNEFEadWwWObsarq1nFVieruWHuL4BFAulqlimrBMC2SaVYBM08T6YeOXaZpAxbQqZoVM88Hstr5zbb4wz/REAMFHvha2IABRFFENBIhQ7QmIFTQOAKo9AcGql7eg2tNDlUAPIZY+88TmcPvyACMaRERTT1lUNcmqkmUYhlG1DCLLoPqBiCyTiGjfN/XT1vofUUoabanGUoj1C1sEgP0X1iCCLBEQAoGATch1XhfSlv64tzncPo2w5mREoFoJPnMGECsCIMACSBCqgID6AQBgAbQa2ihvSHB06vixtfXi2YOMZICoahiXpRKRSURkGYbR+N84mLWGIOlXwzCITMOw6n+NuhsPJ+u/OPJX9VxKbJSo6qYr5TteKka1Wn5VzvGiS1Kx6tq3HdBEKTle4suM1EMq+MoYtbUil2hZ9GXKx3nSQfVHKMnuCWlHr4loSX34RXanN3KkDFXlhib91juT7Oj1PhxZy3iqcAA48dYPrlOY9gpnSSm7eT05SERZOcY4nDWl4nOKyz0u6KxaIiIqjYbZ1jmb1z7cmjukO10tyo08YV4bZEkZtqz4xOPsupulpGY3CpPhBCeaIlNdo6PJ5pI+7L5K2GqupDixndDD8U0nsrLdFMbBnB4ZtddzRuuRRPtJt3BrMxcb7BjnHdF5+8oqappTuLWbm1TynOh0x0F48xTGzVxOzrafdEA7rSCXYp2M2ZvTlahtRdmis6rzWmZOGerwZPaeJCW78LTRzUfcdyqMhyc50FQalRKbw619bl8clqbcwERUHNTsgqFj1OrD4WQrfPMyRTHOMmYREVFKttm44zBM5KO9Q80x0oqejPTGdUYyUSkmpznQRPq4IkXXN0BtoHOJSGhwiplLRERLalRvPeOy6QuFzEymHJZvUYCV45NAeXa5MBtW93ax42xiJB61nyoQkcptzoOobl7/i3IVtzX+f9DzC95wlcOCIAhTtQJXDyk/Os/XpdrEPPQFzW2fJ7LZeeUoY4HbvXmNanEPbrkBAGeFf7LDc2j8tOPGypt7d/Gil1cfveZaj+hfTgu3DZ8CJ7py+gVIXIsgNjbOz9O72gIv+rO3r5cq3si4fCWMp+/+lhO9vEo0d5dH9Pf912GleAcfevnlF7wv+lTO78PfzwX21EqM/fEkts+bh4CXvHTq2hLvY3/WSv8ASuVexvi4238AAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, the straight line AB and circle O are tangent to point A, the radius of circle O is 2.0, if angle OBA = 30.0, then the length of AB is ()
|
2\sqrt{3}
|
296
|
[
"4\\sqrt{3}",
"4",
"2\\sqrt{3}",
"2"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAG8AAABvCAAAAADHrsG8AAAKIklEQVR4nLVae1BU1xn/ncsCOl1dm64NjjQmsso22LpIZsRHCo7riIqGTslIZuyMZiw6Q4214kgmUHyQjpnqVDvBR+xMdaIzVG0xLaaYgbBW09JBg46k0GGJOPggQgwE2uDd5X79497d+9j7QpbfH3vPdx77O993vvM+oAmCIAerwXL57WIMhwkCA0AAcJfdIuFU0gwwAMBE6RcBn15MRLTznChOmH4R/P7xIQCYPUfUjtHE0oV+sGm3Up5o/e7/J00h0YTzqcEmnG9mehcA3D0PyV3j6oxCbFQ1zhHV50bECegPGtJ6AMVRKX7+SQwkdWkmBXQQv/ZjQAFjjH1vmMGQLr7+8sG6VqL1s4e18ZfOTgxfKOwDfrPol+rYrlX5nRPCR02pANicTmXkcEV2brksxpOPfbQCAGYr4y5+v7Ntd4LslI448oXq9wDA53OjMR1vPDiTAyj8Z5z6qXrT/SVOAN2HVkjy8K6XV7blqAuMky86qwLAh7MB0PbcQlE8N6e/bae2gD17GvdfyMYK/a4G6H4htwkA8NnW4QuLpf4/Zr7IuAH0f9bxMADcGAacWUhckurJdIl5LuchE4zOFwLAYNV7vy7RVsgmX1S5LxubPuafXzB1L5DlBAZvInz15pnuycuX+V3ASoUap3e90uXWFpdEm+g7vtS9/mS3TkrweKHLf/IreahuWZrVospRWRkN2uSrfTV5Y4MU1pl0qG5D8vp6MWmgxH1Mk8k+n1isxuc7PWRMRkREAye92bXUR8fdJQPaXGPTr9abXWtZJbFa890vLm2NzTIWvqA/o95YKzVhXwbm9+jkUPBZ9He+YoH/1sqoR+tOziwSXe25V1sw7+1Rc283Q1+WX1VfIz0FIrrmy3k7hyiYkzNgop8pX0tqmZJIEIzt2rsxpSbsaSKicImn7en4LrhOmdVGgfBBd9nXdDhPlN511T8N35tuZa81Vk2gQIa/nWgkpVWKCUw7MGa+ocIsPVfT0AtE1FuYWktEdLggmhrM2Diiz6fjnwQAwy8jkGrgkKJTSmmj78zzthcAeHKgMpqa9o/e5U90y+nwMQB4zXPeCZgs7MQ01ugNNO93AsDxbJ9c3al1Uzbrl9I3VHnWiDZBL2NPwaw6SRxw31akCTTkPahnT/32q0npkYgN3UQgGqlyVX4T/c+NmioHp0W91IqvZdo/1WV1UefJ74nkEL5yB7XpDa4Oe3w9qWeMWSK4s8bTIEtC5abYLO96+uzwjWRXmA/QRDRS7q4KK+QBd5BijVHiD2v5VP4pevge1z5TvwRwydPR9laCIqKqIE3Hm4+EDhr7Z8Q/2l1m/ZyIKOjPaFDHPHT16uZsd/UIRPQrPf2Y9LutItVUt+GKrLxby9Vx72x6Vi8rebftYBq9tVWqyQhroxQQ6ELKhhhdenXUE801MqueTP0l5AmY0FGbP+NabOyOXxgWqPURUeWeqCdpx7M/ztQs+GVDgAZ35ebfXhKT0vV+maH1C3AJyjWolu/gLqOSjM56+9vfYLFj+P4S3dYTUapxUR319dG6NKtZlgT52+WOWUAoEPYEjPofASeMLDO4Y0XR9YUKbeXv/hKXsXpIKD1mrF+fSzEtKAfs99xb+wwUCJqqRzQwbUjR/9T7lbM/TtaqwABc34a/vWSkwFum6gGu3D8Z9r9svc7Qv8V9UmeikCJaU6xmytqVRuPnF92azkAAqr2Tg5t1ZnopYm9ZsjZFg7XNvCyo7Bn4Ucx//qtkciDD5M9uNtdY0CFhUY98BhrVjwA0rdZk7X+9YMdVmU5n9bT3TSv1gLxuhaBsjhT1MCgcdpcOGTaLQETUYtl6RNTulsezqD0ZcNepGic+2TLDzJQMAJXut1YP3v+NyK2vqEdDvqLT9W5IuWBZ84Bn1Fo9ouc2R+xBHIBRnucFgDo8Ua8bPZT+QudPLGteWW7r/OaZx4j8swNAAhdycAALeiIZPv556o00g8IKXLm/wQ4dnvlSmiIuPwsiIuHJKBFRnrRg7ClMrdM3jBrCUpv7p8IXxS+ffjNiD57n8eDbAoj/Zn+mt3MFzwMgnpe6qhgSf3le4PkQ8fyfh22oRwC+9V8xXP5cWoQvEUl4/B2GcNO85pZ9nCOJCwEh8QMg5EiCIMmJCCclUigpcV9Fgi6FCgzAJHHvctT3IDq+MC6U+MTJerZ2HFrtADgkhEDiBwAxDkmy7ADgwAcosKYDACTzANA9tHq6kwPwCpecwC6S0Dd1T9bCfxck6Sw+SSNQU0ZmWYVNOiSPAMDB3ZgLRggLr75WVL/qxrzk1HubUzhGYKOMI+IgfQASOAYSoxkEjtGxPqCcs1gWAwAYoeH6CHC0BCg+4QBYqGsNvOA+xeuMCQIxB3HCKBIA6TPKMU4AEiR5FAInAEiFYKP9QMQWt4HuDhEu3wSIqL6YaF0xhab3EVltwyJoSF9wzUY2EZ0eupNLRNUHCERUDeAWhUdn3bFXXIZNvlbfTuBTWgcUg4gKblE1WkK0oNU+k3QrZI8wkBMNckD3wA/xs/RGB777hY4z6jQIgNKffk38lS1W+ygJvdOjQQ74ME+6hvQGJY8yL82A0huPpsBxpDbm5kYfQXla4wiXVyGUNz0P8HSalFHi8qHfArB/tRacI/N9xP4ynyXNeOQEvF32itPRYh8AfG5jrhX50hWFiQRBbPdujz1f4dPPExHRumKLjBEoVsSq9WfKQ1vF76CViKhe/Fij3SuHVfPz2kYr3wQAmpkeBBDaLlrVGo35cljFt/yvdhycJeZXA91JOSfs0aHOrxCUivem2DMQFQB2jUkUdikWldr9g80RaiyozVOcC6vXV0WnJHvG59Za/JfTRUxuJXWn7fc8SooLkwKDs+45ZUmtn3tRbbzpUJPnVIoaWxvv358SYfUBi2Z9LB5fxFU9zQGLpjpncuKsn6+OiATD856i+1fiqR1dxBoATHd/RERW52djhCCenykQs79ZP/1I/NRjVZkrtRpr0RY9/xz/WNPu0l7A6pwnl+aNm0dCOKdKG6V3fr2wPE58JStitr+G5/M2171miJ7PW/BRi6tZL3psEBpc7bH1Nb5fGa+7BLW3gCZ84v3RuAiV90cKGC0i1046/xT9TT43Dq91v6/3zMOIbygn7Q9O02chphgsGm7QXZ0anZ9M+Tty7z01XdeSFH063ftwqd3K5PtbWy0pTwIB1wGjTEb3twKN5X5ajZj7aRt8RKS8fx8DxPt3I4uY8QmK9wW2+4be+wIFzM7bGNyfvDTvwKgYtoUne7JyGyPn57qub1Xfdn9GbGsYPWyom5Ov9wJIARvvXy6YvX8RFIEan8/ynM/We6Ian++U0cGyIP2I73usINh9v1Q4aaPmTlPlQtL7JZ0UDaz5pMJW77MGYkrowv6mn1h/Y1Nj6PnMqcs4ynICg60sfLX/9t1J/mV+8ysdBSz55Ge5AGLe1y1Oneuzy0UMwP8BRd0jpCMNWNQAAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, AB is the diameter of circle O, AC is tangent to circle O at A, BC intersects circle O at point D, if angle C = 70.0, then the degree of angle AOD is ()
|
40.0
|
297
|
[
"70^\\circ",
"35^\\circ",
"20^\\circ",
"40^\\circ"
] |
D
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAJ4AAACOCAAAAADlOO48AAAPh0lEQVR4nM1cbXBc1Xl+78rBEyN7abweX/CKNfY6WiJwVaUGIdvITpciQICcGtYJ8kR0TGWqtgijFKXYSzpAImaYwQRlIo87kSDOWGFkkRSHyK0cVka0sjSDnKmkNVgyK9aG9botMpLpWr73PP1xP/br3t37sWLy/Ni993w+55z3PR/vOedyIMuY9liPaxAOqxEZTVe+SUQ2imcAi6xGdJCnvybeSJz0Cq5QjNLA2Sg9ztfc9XLhqGjBDj2iuW1fe31xoahowbLsERFRcd81/ksFYqIJO/RAVPSLb1VOF4yMVh52cdB9ktlORA/26aGPP6o+i1oBRFjmXwB6GC05mDeMJu/8sKe5Mqbve+BHRETgCt392aYHjog+f6Ckq0g/CCwroL2OhUgaNZYdu/oX+h0MZz0T2/QkLO6u2nhOz5OR9aHZmshqoMM9qukeCgOWVbdw9HB0Zb+G6/z6CcAyv9yqkaWIl06FPx0gmjpHRCVr6CtVJeu+WawEHXmg7XvJWLIaPzdy+FrrupGbHnOkPJw73h/6dFPJmtuKabWHiKYjNDd8Nvreqq1+/0oiIpqqffifFX7giJgDrzufe3eJVkENwkgVi0C4xcsHOsJavmPt212+ZyYB4H8rdwkQU5py+tVoDdhCyF5KPx/vqHC3aFJTMN7Mbzo4AyS2+2eV2CKA74vRPRBFy/xy1p6UZqy5+JGjWT5y/smcewLO1jjE5vIY1LJ1EdEe6yOuAc2NNi5riUGngZj6AwDRJueTMbzsHldco+3AiVetk8tL7/NWV/BiKhctekkxiLW6gonelSGZbg2Arv1gCzVj6eUb40raaVmkvIhp/7F6T98QfwiAuI9oAgGiPVa56dBT8o76y4cMJ8QgSlFDvtoRbxssz6Hy0pMxfP3zlpIU9noGKxoFi4TSkUVPVArd5eqzmmiP65cP1s5a5pQCvVGD/cOxX5cxh/HenjlSHke+Xf/ZyDGX/dW5Dr1LO+beus5KeuAIHLH/vmdNxYE+nx1mcnpaGPPalZ2P7+Jf4Y0rlh406fU520XRquZF33l+V/ViZ3WV8xW+2w41QJvefzlVpTBFMRIKNlQXLa9ueTU0w4Be17/fuN8mPY7JqyumzusvVjU3yYIu/UlzI+Zg2bM2WfRPnz9xNjLIf71qtU+e/jEH6EeH3/r2xnZboseBQJSqX2JNqU6S4KSfVO7jkeEPpoc8qzd71m0qygy+8/Lr31nUbcdGlKa54IioebyvKMNJqTZlGkxERKc+OjVx9v11nqo1ni06iSe2/mVw99i/rrDBDwDuJCLi7oQIoGttPN/sbPhIsPZPyVcTPDSoOGXIqPIadffiBe+kddmTVOPOKWCghQnA0Ap52pnFUAQw2B2s8VFZbbDnPyUK2uVIzmGGXWM4xA/bpQd0opOBRd2ZI5mcU+hQ0O+lirpg72jeNEVRVGn3eOLo53ut0uNARCfONnSt3UxEdJf/aUUBJDAMnokORKYrV91ym6csU07TXpJKk+q5L9xD4zV7H7O4VgMYOoloCgC6vykNFgwAEqGO1mo3baoP/i6c3ojJ+WV2vyhmvCR8fUC07ElrtSepxhQ2A8CsW5KS2VB7S7WLqhuCIRtiLaP/5gTwuX/H/6VwNgwORGcfHaCuBgL3/dnnJk5F3v/D3KZ1qzevcWt0w1Za57u3PkMkNkSOOi1FR2cnALQkdhYtKa5ubAvFbNdYGmKuGAAEfRHzcQlSt4I7O3HrV9/I9C6I1bi5GQBw8IZhyHJruH0JA3I1Tl1YPsgfKgSdTMRcMwDSjdAGQYBSR82tbNLTXkheChqD0r8RI3Q6khMq5owBsbJWACy55ChI6066PgcAiJGyVmv0GPY3AMDMpl2FIJQKEajrkp9nquvnzcQlVUrLpbV9orZO7qEKuJnSW608JQLVMyYiKvTEUY/sIjxara4BC7GSBgDBFYFS3tayKADBWNIOuet1vPY9WYOLfr5h8wV5Flggwzgr2vlzUia9P/77O04RFTmIGeyWAQDulInUS14LPWhOnPQB6hTsKH/caDySJWyCT3Xt1LGyWwMDhOLkUCRimO8yuM+m1N7PAnJUCUf5Qc3glvnd3Q2AKavTydKgsZiKdA1sTRO2+3oeerMwckdEBKKt70jCJ2Ww9uS/PXbVWFQJKzNNx2PuLssr8YyaA4AhX7pbYrt/1kD7yvQiriyfiLfNPrkkrplBelfaXP5J/lgyvf7qTA+GeHlLvtiiHNQAyoczw+13j+WNJQtbeF1mo3O04t2RnSLpd08w1S96PyQufefviZ/4B/L1fXIGUxq2LhQfu1J3RZ8Cl/WQC74Ps4Ju+/WOw8bondagx9HiN/gt0jatthUQkDyYge1Q30S22+2DP3zREL3YKm3vg/6NFySqWWBExBFHIY4raslPz31Rw3Htf7zRyHJt9sr05pbq+D/3+O2ndWNyRPTszsuY738qL70lsxkOjIhoxUD8wblc0iFpCK+//OnmR/X6PwYEaxjAQu68hu6wT2cC1FgR148l0yvOkXwf35/VdfT71g8CwAmaAICQ+3I+elG3ns9LnjCgY0WiNJZaEDHM96TFAeAjqgSAwBMAgK789Gacul7dKzON0Go+JL3l3rsKuzsyXGR68+vfBsAQyL8xNeNkmvumDBBDfHeSE4OyxQS12pbO5Uw76svYIOr3lQ8CLEphgCEkNXHuJHQbF8DEjfuT/MAAxtLoXZ/HMjBT0ZjhwiAqtTe/vjn/uBb25ZpgfFrelPIWICLaw6AOatfO5e4WnAPTO8Q0F44cRF+p+wnR+Wv8L+c/TDS7JNcQyJ+Y3naFiIgxIuoOvo2r/T8ltd8rzuyVMlF8lGo0ivBDJ8e5J15C/oHti2U5j9os7XVtuUhEDgcR4Uw1Lar7KEmPP58ndRR1l27JPofEdTPgZs7AqHvOlbsIRQfvq1JmwOc/W0L0wU0SPUaMfJOyj94UgiNq33bHdHYAo3t6H96sOXgxUheFjy17aIoIjOj4/UTPvvcoETlADnKQd8zAsu6ZPRtPWz4wM1GqWZRkcq+U1obXEuMcRL9r4rjh6LVEtIgjAqPSXkdm8EwwB+36ky2/ud0ivamvazpDFoyR3UuHfFL++ORSspoZACZ8tDxfxyB1HSG+DwCYaHIVwrA423aRTGO2xdWVdA0lO3nJgHaV8ROpLPQxyv/CHDEZQz6dxEUAvfyueEr2gWQnL9ETWH2HCCYwMEFgABMEAeqf9CSCMUEQJt0/E5ggMClgfsjj04uNyKpxeSUYrS0NScd1GABEibgJhSkBIpjAOuolFxEQGAQGxqD8ARAYRNk5VvaMACaIYGZ2pO/R3dptcwUFiYuGwCi1F3YzMAYmCILAmAgwAfIflCFQfv/sW38jV7RxE5tsxEghIG8cnSz3T2YwYynvMj3APcHUoZgJEj1BpSeqzlfBvnig7guBwWDrAgBLrsKVaQsDRMw0uXJbsx1EAHFEf/UrRgSOQTquQOQgLrlWhOpcRHTNkevuvSz5MENWMOIOP6w8Oog4Ju9w9fiEyUdynyuFrA3vu6V6EgRB1gT1T9IY1VkQBPEfK89DmDcsfJL5Ua5JuenESE3ZoNqoOh1Vch76ZyGjmQHAS96IaLxtk8ZbFUKbs01I9jU6aSXpvfLXgAlzbZcZE6Bq+lYxWFYTYdl9TSZUy7wQc5rYrGJgvzVuApx0Zay0Zhr5IwAYS53B56IHoPlp4+QA4D2+12BlP5ZqbGTAIVfTTLqLHlLoRV1mTPoAxks6DYWLOdPITJo4d5dCjzUohTQqgBFvm3Roj+XSEvZkc0qyV4MuE3bD1BXk5IoZE9wAIF7+VP5A8oaphHd8939s4rRm2gK3pdHsXtBsdb1e58eU30ByERrfZfLUQxq9WV7ecTXOMbG9NqFfJlEEjnsTin+Xq8XkoUOVHgMgdleYPxe3q1JHoyQpSfj65KdwdcWwWVt6Wu0x+C2Yu/eVxXJI7N7t0n8i6LRwHC3DuJJ9zEYfKqN2j/6B9R5PHABY/7oHL5jlhmzT1JArv7kEQPox8G5+VCfUsGsMAOL17reS8mmihbNMU53eHNZATYjaJkAAiN7wJgB0OFstnsPNtpw1+1PVI29JJVoaJkAAicogII5tqnzfGjkteoK/ycI+eNjdkV2U+jogsXe5jeMTGnbHuNdketICK8MEyIAXymbR5wnEbOz7Z9NjGHMaV1+ZCdMwAfa6JmMBj+Wj4wB0jvT3Oa20x2xNYD6lgducoXbX3oRlZgD0bN5j3r81MXwoi1QhkLyJk2goO1q5aSzfZN0CPQZgpmaLyckfAKCpQo4Vr6h70tlh/7CJjkleFJrWSduZTL6GYQzP+yIA2LD7IXe92f7TKD1pmd7FW5HqgzeEGY6s2FBq+LBFTuTY0DjJPy9XmxlzWQ9/ft+K4uAVmJh06kOTnpxs8jKOmXwO3+isCjMo+yf2oFN78lK+9/pGoxIk79t/Gli2NGtRax15LoLNti4PmhDx2A+Kix+NF/BsmIFrdM4Wg+vzaNOy1d4QgABxRG8DsN26Bq5wxpqL6w0ocW/AWf21oABAwHd+y0I0UQDlMHTD9OKBipKnw6kfGBDVHwAMGGvmN/3gVv8kADBxvmIOH9NEys7igtIDEG7xXv9wR/rpb9mSONb+0HLf3lHZksgAhJ4CAnvsXHxVYOLif8r1Yc9qUq8Pv1uy1e9feeTvHnxRPTb9WgNRuJQrwHcKzHyXABxdOnX6kwFwU+eIyL1WvXwdeTx6YGMy3CP7fK83jH+DCvAVGZu1zwBclSyJKqL3AvNlti6+KrD4sR21Vjii9xpLRm9K9Tx+D9GF8bU2603OyDA0lFAEZhrTb6MxIDCB+fXuy2BMhM3beIbpZR7mk3VSsiSmKmiIiIjuBZhowlajA3uf7Jjc/T8HbiMicAW5PJENO6mKL9xx1+htRPLBgoWA5e9QEQ3s9o66Ke3qa+FhRSJEqJbEAs5OtGCp5A7Qa9+47sw2IoJ0FmGhYK1xTz8++/YGIiJyEDkWSvDIkmrgyrNV949skA9l/NF9ou33u8tOrySSi7ZA32ZTYEQPUuU/Xr/qrYVThUzkb1z5EKYs/v+ybtXp2hynhQsMc407vvtqqJyoYBc58iJvPsp+t4Poyr4tO4bKF5hQOvLSSwY4VnpmrGlByWTD8JTgwhNDB+6WHgv/LTFd5K09mf5Pb7npg7tVpy+LXX7V4IgIf3h80Tu3qE5fll4YzGrun7Y0DNySP9wCwEDHcuHPt56xc3ffGqRpmhHVGNmw0Fx0UZDPAy4cvkQxt4I/cnr/DxHn/vvhd13zAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, PA and PB are tangent to circle O at points A and B respectively, point E is a point on circle O, and angle AEB = 60.0, then angle P = ()
|
60.0
|
298
|
[
"90^\\circ",
"60^\\circ",
"45^\\circ",
"30^\\circ"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAIwAAABjCAAAAABsube1AAAJ6klEQVR4nL1bXWwcVxX+xqq6JjRsLOTEqC2bn9JsX5JNAGUSUNaGEBwJnH0ATNVKOEKKGyqUBYO0kWCbSBAjUDZVJXCTFzeSU1eVsg9ItREPWTttsi6IrAVSHeTETtLSsXmwG1IyuzaZj4f52fn/2TUcP+zO3Xu/+e45556595yxQEQUCu4N1d8ORIWyS0vkEQIA0N6A1d5/NculATImAmZ57fdPA1aW/y8ysN/45p0eAm4s15yM+3xNN5Z/ePyDrc3wiEAmcL4nL9z797amyQhhjHxjYepeWfvetmPL5p1ttg7n+4Gt5Y3NknkkqMNEaXIyuWlv/KR2vTw9+VqlrSud3lLvc/OfxDs/XdcsF4B+MtYX25+fcLbPDfclkoOSdjX7pfvkOfG+L1QY8SCjkFzKJ7qHq54jZ3Id3UUVo7280iNg6+L/goxCknJhc34uYPBYZn/JPGbNyWiow4nsUojhpXRmZq2oeGlmLHVEcvnBTYrb+8J2bYSM8l66uxIBYjjRM6mNXHsyJbEUDeN826dPN0nDi0whvRwwRjE0oJCktAN/bP9qGA8LEvvjoHrk7sSGgNAkGE8HAQBeOoavvfv+56eaj3k2zUjp4ZCzMLRTFgly6eBThaY1YyVTTk2FHaiTkcWKCvLi099s1lQWMmUx+iodzKkgCkd3pcpaY4PLqk5GoSQGhVynzG2XDZDC99PNmcqkGbmzzMiTyhRJQhvVeyGbacZUJjL9v6t/D0upmKFSB5HT5aJhqqbIFLLRucgJyQIipaS5dKHhQGzglNINjM4WLCAKy2lZbtxUUEE4n2oAoZIygagyfIQsJhs0lY6TKUYeqlAsO8gwUyQl8VfNkBnrjk6FQ/1WEJKKpq1cdyOmUnGUVKV+j7AiJfUbWiJn7yhJjifL0WOfilPMRKai39VGRqGUkMnGTAWSlJPRQ6/ZstYH3I8K6qSimwokWchGf5rIqfrm10rGMN941FUFGqErrKgE8nkriEmM8CmJg2pvfaoBUwatsTeszKRkTzJyh2GfXPeShYI/G1BhciZ6AE+XTOj2vWv/kPF1zGYq3zuBLIuRqXC01wZikWsmRGnPYGhUWOYRVpaSFi+zkFFIJmdMDbl0WJcEGV+OTMbG33HEMHs3WUqVwpJR43ckr7Eb1kZGYanTfEWpM88w0oJSp3HoCCvHhnx/FiBWqvrhAwLQUULnQqijSuTnteIIBc6TYGdJU4ouE2FMBcaDg7bFhor28PEko5DMOZaQtP/ngfdpWVhnT9A55T+HBUHI60b4wdnWACsBO6ftrR2TQrCpQkSZcxghr+CielXMOJzdaSYrqjYgcFVhuC+QS/tVkvyxmrSTEx86QRwtS3E3pKBV1fL37QGqu/mzY/t07QM49cJngpQNog3LLu1Bq6plIQj71fUvAsDqLABgeiIbnDkWiA0uZAicOnlowodMUOlBLu3ZSAB3ygcfI3DsbGuIkCRg81319jTgCQFA5/hLJ7zJzG/2x/3H+5+DAFVBAl7dIQZTqRMQ7LkcoGMyvtfLVIEZ8sefBAC8fWZkY/XAVbwXzAUCgI5Fz59znV2FQwBc6mj6xsRnMb1DDmCEK88DOPCxSxfzalLUhdw37IWnkEvdOesOUF9NCCpYHf3FlwXhQz6Hh/P6tP3VIgDAgmdVQwDaxuN7F13AWtqWsVKr+bIh+TqA1i4AWz8RQEaTqmdZgyCQO9s17tRCy4Z7iCEW6gYtnTh6TghX+vtog9cvqurEa6+c0BRTh2tplUMRATj/5hjPgeG2G8txLxjts21cX1UCfiIIgrDxGlDIklWyWq2yWq2S1SqpXtY/qFCWq91j2nWV1SrN5RaXzDZ0Z3V3YZJkOTmmfRsQ73NAvN+y+TYIIKb91WKxGlCLmT8Aodba+mb8UC32aKyGGmox1GI+fkbcSGqTdtOM3ipee0UNgKuzBx/D4Vt/bXnmhtGvFgPg5cwfnX5ZQ48hBm8vIwgB3qHUzK9tPL5XAnDn+teBmfXbWjbPq3VKfaaxmPt9Th7t8MK33UwAdM148TVcJ3tg7zRw+YkdeLv/+U2PxJ758xet2qw52FDA9GSkdPzf9vvy1RS0/PKFrslPYfWtqfVov7oP4PFfa76ofrg4cJXk7j+p17Lu61pHDwdOeKY16j4939+Rl0hy9omrOs6ljNbBuxwZdBx3kJlL+HUnSZa/kxjS9tJGrRXapkzx5eLcg/uTCdw+FkXRSDWt9Oj7P2hn+GrVj0zAccZxiPPvLw8lMnqSTSEBaGygcLgv6DgZlH60a8ZXkQv5RL+HR4GU4742ULNsQakMi9g8zDx2rj+R98wDgH57D1WcJ7IAMkbu1C7ljOG1HjhKZafvrSqiHJzkMcv1lOVS0d2juEcM4Xv+/ha4F7STSV136WP2Wl+ciuiju+BTno2MnlQ2i+TttQ6crHcFTUpJgckbK5lUhTYNzH3Px2ttOIrfWgzybgcZo6KgSymTGLbAe85NwznupZrynhBZLTOZB4kFy2+jYjp0AkjDcclLqy+uiJXwICRNMUYhKQ8leiNkyXUch3JVGcwZvMKRkXbWZyXlO16IVJTQKnGKqUZikrlkQHC2k5G7S8bYvkQ+YiVDw1FYTbvos3vM2eZLxsjJOrw2Eo4ipRxuo0YMJbyZzmgO4/TaUKldk7nLadlac3BLUvmBKOrTXS4kvttYxdS8EKwFAd9Q6AoyIy6RUq4jO2c+1UdId1viVS6vDVVIctrxvLOJ0QJSobIkznCmLzHY+AsI1kjeb2xEFJ+NgIMOSHJGrJQyyehe60FGIQtpY15D/aEVDJJj4plU+lITTOh4+rO0S6vO1AvFoUB+k/xsb8VoaPr9GU3mtA1Q7xvhMXF7x7rsrcYI+JLhUmaQEV8BwKPfWouX0Wi8D2xK9p34w+muXWNbrGdSCpi+Z00TLcwAAB5OXbkSIgcaQlxfTp4+8ZfYNmDS1pyyJYA6tgPAu1NfuLhpTbi4vg+skJee+sobl40ry09WKW7NrtmrnU6fuQJg5MoIR5PZpcCKdCmVuUWSA4CA5t9OtpFZ6dm6SA60XyXlQry3qPjEdGkw2VnRvp97lg92P7u2ZFZ6xPsK+UBcpEIqo5mObNF9nVQK3ZtyM/VxI+TAWpJRjNLSyi/1NqmQiaeyhZJ5w1Yq5g/HU1nzVmd2+6I+thmxrKaVb3/y9bpn62t9unS3cvsO0gCAxRtIt+1IdbZZupzvB/Inm/pvDMBWyHj4wTfqFwZ0KgUAmAAAbEqabilobFbfGnnu5j6capaMxWdm2wOK4W7VB81KHGj+7XrL+8CPP6mW285+7MFcsKjMkMu7N2J1dmPz/wVhoXYFeXKl52K0CalrCSPNKsYeZ2bbgfarEXcAAIDm1xL5X10aczqjrniAAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, PA and PB are the tangents of circle O, AC is the diameter of circle O, angle c = 55.0, then angle APB is equal to ()
|
70.0
|
299
|
[
"55^\\circ",
"60^\\circ",
"65^\\circ",
"70^\\circ"
] |
D
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAJsAAABwCAAAAAAsiV0RAAALs0lEQVR4nMVcf2wb5Rl+L23pGIZo22V1hamBmdWQTnUXpIYRloylIoyuRGpEKs2IMEFMiVCjJWiZFuEiRcOITqu0pAtCgkyLtkDCglg3nCkdjpqJoHQkaOnc0pQYJQNTo83gItKze8/+ON/57nzn+84+xqPEvnu/H/d8P+/73vf9zIGcA7ipLQGdxOBGIyyBKkdI5cFlD6mpEJGGBZcXM1JzkBuIqH+bT0+lCKzMnOTGER0LvK8SGPUWmMgN4WSbJjK31bgKt5yGBxQZc8U5ye2Zn9I3dSKOCAVWNsE5N06PdRF1PqsTfrx45oMY0fk14uC5kdt0u+emuqsYiW50jFoiA5paVM8PayemYx80XOd73EU3bCOi997DxfmZ0VnP95qbt7BkiUohSl8rTQCGIoo4/rjPfeDZuFGKpcE23v/zZbOclMvKuUnoIVoQ9xF1AgBSw3We3jOl4i91uxueSxsGKRQd4aYqMKJHY+92u4J/0kqNEk20V/elSsVwgJuo+koFvfdvpSu/0/dczCBUn3Ctq7o7KerDh4iahEMAHJhD8vMYR4SXb/na/tc6U/FfbJ7p467fc/jFU/KQ5DQzXX5auXbw7Jd2PHlJzoQIRAnubeCFK7Y6MhYKZU62+p92h5RmWpoMt9ZSoDV8PK6LqL5KBr1RVV7C9k4A6BmHc2MBwEjNT+4MzOk5z42GG73UEAzHVk3Sxfx7C91uqCYDAMfedpJbojnwB/eASf/PxYZ7G6uvaAwdiRXGphI3179tKX8pbC/MQo5xG+Qjz9dES8f5OHYk1LiBb+odjuW0IRP8hMR1hV5ylJsIxBvq//Wob8k6LoBE7IngbvI2h0dV7T/v6QM03ESH6i3CD33c0mA8k5pAGii1reFXpBIl69oyUNp0ZRxwhNvCzsbEku+RnNVkawBpoNQHw9OJ9WDtOQDHaByINsERbrkwP4Jo9aCdNKJmrpUGyobG3VfGAERJfvFVzG3OvzeJf1ZH2SvNJGJ6YvNTvPb9Xxm3TB8/AaR8gwzMRAAQzSO2d2OgNqPmXhG3mLc9BeSauzTPt+JnLJvwfwYEW9WyCrj9t8sdBYDuPTmrqNZIut8AsF4fVsnK4SaVKuoOpQFgxFdyocOI1n4AwKpnsiArt95SQa+0Cprj49ZtaYmRwLp0Mc+fVoRlcpvgezIAgFWPxYuKCav8gpKzNyWXtCxuyVa//L5pjpSMyYjmAaXqxf79srQcbiM14XUAEIGxWx0YBxjeLeUiAsC6f6psbonmwIJ8nfHMV84MCV6zHZv25/uebW6DfCSndP7eUMXERKDhqHY0tQ/Y4FZIGL+9XlXGZd7W2sMkz2fu0AUl+SQ7NwVP8Zp3escT5fHSIM4n9KLubgD2uC0EGjXZJCuoNgWX64aLZPmM2bnlwvyIdCU3R3dfxcyAgeYikYjQYcAGtzf9e5OF1CKAVHXSPDorFnij7dcyn2HnJi2GZGbS19GOiplhPTBiKG8dASu3mLc9JUI70sVAzCw6O/pbYfg2nmxk5JbOL4ZkUtLXordSYsDcFpNukeMT5voQlTrzr/7cmbt0+g8iGumoSIsCIrrUccxER7gh+IKhPkRbxakfeY3bzmOo97OF7nYjqaSq2G7UplpqE3xvxjBK3F0xtVnPBdOwnOsDi/6WvNc/ZxI0fF8FrAAAmeuPlwhtGTPXv4GIfrtj5+Juk/C/3VlRdyOi3uZ7Sijpm14vpX9LNAfeyl8ajPIt8QoX4tOe4s6iwht+8zYVB/lICTVCgq9wl5D2mEyPcq6b00X2hbyBIN6ZO+kvYU05X1uWqaWA7nsbjQPkXG8+VwVD29fT3z3whr9U1vGbpG9Wsw50N6/M/tIive/sRk5XfI6IFh+85pS39KOW/YXoLNAZUj96bGwzEYEzT+8/V1VM/fLhPYdmSlMj7kzJWrXEwQO3W0W5+fTGfJHAyR9vdviWrK1NH15rn1DB1vVifJSIStf6tSnSDQ/NYqgEfMsVjNKk+5R16vk6Ze6VijCzYyW+n6UOPnUx9jSjzv5wqI4zC1Pg+pSAfUR5VWG6a6teg2BWPlfJibMY0/7ArJzdSOAyQ4pVDwHoGZd0wNGaUFpHx7TqOXvU4Ceqlx/KMynU09VVRLTSQpvueZeINqpMSxIqml6JiKY4jgtp2y7YW8uWtorovf+4iJZvJLrrnat8L+flVnPqVReZsu+9PwNh5hGiQf/OI5Jo6HIvU9LM1SRiKAL0SGYkzNW2sG2etlpGEwH0NAFAVP1WX64uNjgbIu7Pj4UmuWvlnuCZ1PG+ZYZXfZQWACBaU+CWa2DV9s/XVVHiEwh4Xe5aG548OXbbaes2vTrD0BePdQaIiM5vLoiObuxialGiT11VdFbn0+E/GWw6fMnqwVvet+afPdtMRERTP1A8Wk5HfsdIjda+XkXHDhIRZbNZymazhGyWupb+UXcyK0vzz8lmC5+UFfznrAfx2tmbiIimXj0oSy4/8JRHurJev5y7hYhoQQCQ/78ECIAw4e76SJFJn4J8LwgChF8/JFj2GGH7S5AtyVLnDO8F85J0/yihwEsAIAiCIEJAOuQ5ruWmiSecaLTmhp4mYIXrlG/FBbeZ7dkAgXmFGwQdlRP+tjVzbgleYKiAfUT0lnK3XjvKwKmwJieZVIGbAFEAIKz3e4aN2lT622L94tFxF/vaGKjJkPYyQr518iwkooIAYOGOO5cgt7UiFgQBgnDfbywbVdRezLntGHAiIfU+S3mWSmN0hB8wUdKz7Z1VVbfum7RBDS1jKm4G1SACK3cHinf2ZekcuoN2Yqt1DoJg1kRjfG/GqNvb1NXEPKzKYUVXI697N23apJ/88tNjezy1Y8pgmm0bs5w+Vbj4wEg1Y1SOiGjsADH4/IjAtLc9VTTsFrx2qu0he1aSHJ9g1almfibryAsQd9rQqb7mvcgcV4TIqlOVqms+0Jwo3AGwoYsWkfb8nZkaAFu6aACXI7zOHHmBXYcf7M5fML5LbenwASDRWLeguhXZbR+TsmWPFaEwwN6mACCO8H2fqUJWGW1GKfecPX3Yh9VpgMVvUPHoI+6B+PLNM4UQz95fMU0KBx/ebW/DFnlQmm+YClIoddTdUagsNhvlaMBmi5ZnowSQ6VIUJiJ6Q9ZtpfITYIQt264Wqn1ixm1tE28ZsJn/tK9cmziAXFjZJ5byJZCq9Llv2/Q2WPfLOpny/EPiDfX5pWUpHwwRRX4CDOhvk7t3WdxEYJCX/DDWLHxXGo/YyRUQJ7wp+aZsX6nkD/2zgJXPz9EGW8yA+ZrCWr9sbiIm3I+mUdpXaln2E2CcesXKfKVUT0mH3Mdh7mMmIltf7CdQEnkfs0r6m4IZf1tS8c0rrpvI9xnzkf3dZd88J7hhvZ8fxkc+tW6oQHHJzlYZgOTTWEDFfqqL9Y3xpWqjwZoz8RMwxaSjvqAAgCP8wJ+NfGjDrcWyUohU6xbSTvhFJ+4O/N7Xpdd9z1urNtVY76g9pxM54+s+xj+2p1G7JlmvHbeTQ0ry2dagwnMfyj4x8841t55Wh/TvaLORz6lde15yFUkrrDEFJ7bVq88IzF6XYptvRQDihNvIUOXcuY9MX02Nshxa9x1XnmwJ1dkKDRw8k4L52q/W5pUnXTZ8lTRnUtRwkhtyEZcrlAIwU8JPQHcoSneW53PjBiTuqKkJX8h4phnjJ/vyay0jOMwNGPnKrupv/Rhg6WurhmfHFDjODam2mmu+HMy3Uyl+k/+HM3cK9hERjQPR2dRwnaev5GJ86ZDpWcXPhRv2jcsmLCDe63O3lzjj2W9tcnPw3C5ld825EjcsBOR7+WzsreqzsedXmc/GOslt6o/P0r1u7aniSs4UO9mmQ0Ryi6o1PGU7RDh5TnxqAUO7FqX3v/zzCERcQdljEw5yS3wSoIe3TykNpv3NhALDL+Ls/19aiP599hs6Nlp8UWf/p+6ibEtNi1IvJvXD3riOcZviXt3FXbH1gkupF+1vJig3HDO7/wEcEUBtk45V2gAAAABJRU5ErkJggg=="
}
] |
<image>As shown in the figure, PA and PB are tangent to circle O at A and B respectively, angle P = 70.0, then angle C is ()
|
55.0
|
300
|
[
"55^\\circ",
"70^\\circ",
"110^\\circ",
"140^\\circ"
] |
A
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAJAAAABuCAAAAADttcUNAAAL8UlEQVR4nL1bf2xbxR3/PoII0gyG4a7eZjBdjGpINQKhLEMpr0C0BghSp2V1tYUt1TL5jzLhSXEwI5r5oxIZTCJMRYoUsbpbEGGLyCSCcLSgOk4kIjIpleYuQXWdVEaqS5AW5FRK7Of32R/v9y/7PTvaR0p8d+/ue59397277933HgOqCTDqHyL6+uLatRTRlS+IyBfALY/57mt3GQspBRyAsUFIgy8++eTCtc67Ww7fhnv9BObqBm0vX8kv+p7o6tqv5V0XbBBS1bD25w9usE+wB03qvJRKpTy9/S2NEiLYxuZYu29wtVqOTMTbOb5VJQNfuxbbhK5HXH0zteuZCrljmxYUbNCxS4jPh92D1/UCzSvIn3ZHCrq0BBGLqK2qbrLTq9u/e8ibfeNbeuXQxUVt9J39/NZD8V3Vg3XmEnCOObRnOjTtDW9qEnhDQBcr9PmTShpFASCa3iMdyne1fVpbjh6pYM+myCgh1JHI2SpYhZDwOsveM87pAOCG/RmxinN6mXUSAgAkPMm6+ACY8kwBQI4W7I0vO4TKpwOXnEgTIZZY9sUA5Citf1AvIX6ru7PaNFcThYd7iwAlACCXrpW7NqFMIMw5bx41dvpas0hQGkizNotUIZR0n22IDQBgxJ1CmoiG7BawJpRx163OAoTGnfZkHWmhJaHNwB60D8DjTPMrTgpYEeK6Tu8BHWA1chfdYrUom8FqLRukt+wtPdWwff6Hz3nfPnzwZ++QvNTVuZYlApvmD+yCB5YGPP0pIDKc934nbrugOaElz1qdLCRsjgYfFGy14KdY/ub3f801QijvS+rkO0Qy5A5nePAA1t0cMOV/pqdor+jNZt146oVjRAZ7x54GMHT13DvB/nebRAGz3U1EP7m4dtfRpKdeHZpst9u+BvDcRLcvtqFK6UkAwM79yZFA1o4EE0JF33K9fFZP7wtNi9SEH84lmLNzwZ0Jrx25JoQGw/WxKY4/HHhTb00n28VA6AyS3pnaimkklPXUtcIv9d/ev6RN4sEjFhMjBU8By96JmnLUhIRh0R+3PbrkjIXR+9rHi2avH1yUckYiQDYwoi9qTUjMUnDeQNMhz2nTDSSPvEseHwXPFrDZXksfDF0WiZlls8ZGzNc9wYGH6VuPhZRwOA6g2HN8xxGhTbdeLS3BA9y7Xb74hhI34Pi4kv2Kpwjw3EBH1S7QE3qr3y4fIBN2h2bNmMgJ0qAX2Z0DAMSDG7CGntBDKUMWc/3bGm8Ljn5ZRTIApFrVsWlW+B33rVgL1hFaucdUMK+PpPo9A0umWTWIaRSS82wIpWc8c5ZFdIQi8dq1oPBaoCNR1PM0Ad96QRONxMVCSx7LCUlHyLdqUY+SNt3riaxKk1Z1SgWXdlFcCkqhVf+IIbeREI9VrxUXseZszPvspEyjVguN/1gbV+l4oS1iXkYxYUEMzbMm9gAj/ds9f/Sp5uWZkGyX1LJP5o5p402dKSm4fyFzcpfMoKEXGrN+3ZWw5+f6jVH1JuJceV3Ka2GlFNfHmk1IWkJeqyPErbHWg2NOzezFoD5FUiIe4IFYa974Rpq1bMOjiqgw/7x7YNmYXAuxmKFEs6ZRxnwZQ3WkjsyxJmLzI/7ORPX1xwLtxq1vm2yj8QAw7U3p35HU9M4OQJMfwHvHvYOX62FjHPQA0Kubf1LeSV2Om9VjJRtUDS0wdGVsouPkdI2hZInk0SZDWvCyNv74XHfhRc3ZvGbnuhZURUrnjzzlWZ4OqZKcuSE+7tGngIIZbQLT+un4b7X+BHUHPbgiRfjlAXefZp11vEnj3CaLeoo1SNxiT6i7VmghscVu3CZEvhp7oP+Rq3/VzJKON2n/+rbfmPiNbZ1EwJ1kulWpUpelN4ho20VENPv8Axffy4TdThnoMPO0SaLrhi6BYejWyUNHrispYktRDoCriHzczyZ27PQPD8wF2xYtH3eYbcfzPmMagFG/PCOL6jT0WYqImMmJmeafttj2eb39Ffl+ZfHsxp+GjIOMdt+MSU2jGSEz2dkfCLXeTESEvzz3BhFdp9X2djDENOyDY0C5e5p0iURExd3/3ikEtSO2hy60NQu18gByiRwLocscoVqXma7T3OHbTbtMBQKAKHJRANgvmyvO94r6qr1mJ0yDzwQBgCUiSutKs0TE0OMEIEHEDAGAvfMJW1g6aEL3vUBa2OqzaT5NkjNGysTmgPTgTUQbBMw/QETkKjrQlAWGYYYsn37cRaSfvK785u+84LyeP8L45Gdy4ACdP3KIkGMBJBIA0O3guDRKkDxhZuj42NCZOw9NYKIXABaiAKsvmk4gkQYoSpQDSxQFEBm1z4cFD6QZUx3isSmND9Xz/jAQjwNAgiG5w+RMCSJa11mMKvOjBkQNSJscL/EAMNltSB9r25HMDzaHhIYReIDNgYWwlqFcLvNERuPAGr+PHiAQ5YxPhDlspluffnF4qpkoe5CI1ukA/ZLSYn4IerROB+gUkTAPoVQBoDZha0H0gRkUQYJonCsdVrzvI0A0YRMJrRcNAJA4BwBRsctEQtZGvg45qccs/KhLAegIHY8BkpHP5gBG39lsDgB7TiZULpXAlUJjKJU4AKVSCcqPHCqVSkC5VCnvu4BSqWw5yEaE7Q4vExrp5KR0oatYbQGx/yintFAZADcWKgPlCsoVcEKIKwOQ0sR4qYTokyVk91kP+hnt6FvcL+zQuvUWtAQlu0yILwOVVV+pVCpVUAJQhvQj/5eSK8CTRHS5YiF+q7momaQ3/cKSpz0uMgfJ9ZUrHOC7pKlZQ0VDSPozhW7Qc13iycKSYedoxE1EFY6IiJoqDFHv33giEFMRJvWKPGrVyTWR7JInASKi4aaXhNjkCRuFAb4kvGoZwMr3VNor/ZQrOqUuyX/m0A7WpE/cg5c91c7yRKhGH8cDeDCFRtxAAIAVn1pE/u4VMSQd6VWF6jiGYYjoVILquAemxeyzqsju8VfaxOD5U3ZKS81TEjZHDo6FLdE5LYV4ICyfVGc92zYKN3xwbkSxWWUJvx+QInw4bqe0wbWQr8/3ooCfYhVpWa9shBbcW7ChnooOiYab79k3G1IgMP98WpQG2u4ZbZEejJxyk50NsOEF63RPKfBm5GBIcbUU9tlTzj104InIKCe5Y+3SQRfPh2zeizJzcdpyRVpiRH6fFZ986MnPBXbrJtSIExhAl7Sib/qVI72doN2bLaZ+e2kxrAfKoO9WTSDDvXbnf/OLBN+t/6bOB50AAB5/YBVjYMpv+0jZ6qqFTVvWiLDYuosqDsuejEVum4T4Bi6jiL6wvFc5hsj7pu2XN85DQl9HuupTbNF9w3WOiNKAnY64AwEm94cYIqI/0ot1TdQfCRuy4TtekmRhwPuqEwmmNPm6r3wJZvxsQFlfz7Q6OnWy0CEAGfesUzY8is1bAJ/1rEgOFkx7so7svT2+NvhhBw/stCmnZyPulDMLtPrFytNONTs8AiAsu9p3+luzDi1ik1GmYKvb1MdWBYElYLJNWlI323sdnlrWuJzLcy8E/u1E2qoXWPFkAYCXLufuJSEACW/SQZOP9qEYkBbXKe+Ucz41CPH2L3jzAPju93FC9DYrF7z3jJBkZHe12bjDAAAougtnhWMO5Qr8HhKSYfhIwArJjkVvHgAKfX7Hk5iIKp9RyLvF45fvvP/Vr2zM+h8eOZnwga6/fKjl8x85WS5qLh0G5MPuwQJQY04JdsR1H5o435Tb/hSn8KKrr4bZtuo6hukT7pcaukbr4GOlL8fafS+vVnnp4eaw9LFS/ccVzs4V1t75xzb7BHvQ6MDCf1Kp1B0n+1tMyzlAHR+8zaWudd7dctiFA34iunoV28tXvliQP3gjIjTgcXNCSK7l64tr1+YhfhLYQrc85gs84lK7IRvwADZ4FKTG0Xkip759I+x8zlUFUDFIsetAtMEPAh0T0jUAoznPuJfodXZI8l/8fwiZNoBQ/8KjIKJHPyNiGmimBrtMgFD/zHMMEbU2KmvvlFoQNUSvNyTF9E5+XViPEhGtvzHfmJg9aCFx0jnP/IKIjlKqMWl7oEOiBvd3Eq0zjfLZMx1aeJwYEKWPCNH6p+r/AfPLRWoH3+WLAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, the line segment AB is the diameter of circle O, points C and D are points on circle O, and the tangent of circle O passing through point C intersects the extended line of AB at point E. If angle E = 50.0, then angle CDB is equal to ( )
|
20.0
|
301
|
[
"20^\\circ",
"25^\\circ",
"30^\\circ",
"40^\\circ"
] |
A
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAGYAAABxCAAAAAACZ4mdAAAI5klEQVR4nLVaf2wUxxX+Zu58ROKISTnkizjktj7is0yLE6ggxY2huI1bTGIUR5DGLUYJuCqtcAUpICHZlajiKq5IVRyR0ihBKaor3LqoVNhKALslkolBppKpjbATE0M5ZKqanJHgfN6vf+zu3d7v2bP7SfbOzr6Zb957c/PjzQhCDfeuDN/uAUZvEfAVIW+tb9lKt2JZQKjQ3Dz3Qc/t8qVFX3Pji4UAboxhqn90/IJvfWVlwRzRDL9zKlSxviKQ4tPV3vM9ntr6IgUeZsTE0ZW+vUOZJAYbveXHJjX9RUsnlZEm2OiuO52xGRpJdmxZuH8iPUUWmvGG/L23s3LoorsebQzmRBPa72maSKo1bZOD+z1ND9IrlI6m09tgJdGSEslEdYVdNmk+q3yyL1u1yegpqY42LaFcSpp+7yEbtccQOVg4mPpLKpr3PF0pGqSEk54ORZrILn+aJqmg37dfiWayqnxST2k56RNcWRtKLicTx49VhT35xjgEoTCKJKLgwiNrPsk22HTlH8lBAx1RHVryexK/xdMM5ke7fi4GMwv+xTOSlkYjJ/y56xKHQ6Wh+IzYREAxU1V8JAdvpML3pzqNSpN901gZmRtlyAdrmuLeLTTv+eOHyllh3NdJi4NB863Pk3H6sov+RdYfeVSbm0vSj685oaPQYpwoTWXL3LKQB2uTaf6wcs7cbzrkQeBMIk3I12+VmBt8GHhgJo0x7ecbVwHIaRBLjw0rWqNpkuSIZ3JO9TAQ9ARJUtO1IQ7typ9TPQwU1LUAuo1IMrhIV2ZuXUMyaFhJkyDQsiMfxFy7BkDBC4eh60NyIj/jUm42GPHoQ7UEcGKz2rI+BxSV/0lPUGNZj6JbcvBdZwVJEuRAYW41KCHiGdNISuB4PW15v1sI0aAq7Kh7VwAA6VOaAKLq7lkcYri4QVFe6wuQJDjktWWFPetIsmtxKJuggYg7SFKit8JO1+n+1WF1YQJwlPcAkDj3TTs0bzWUAcCoWUtGCACoOA9A4u/P2Gjc9LUNAIAPNrtVu836XgAY89jxzKcYoEZ2iQH1MvMmSTlSqqoMACwpHoHA9O5Xy9TLlFwH5PAy0yAqyKtuA8ZcFb9VJiH81wDnSAAU6j/P1ucFMFCmzAKBwHVADgfsjf+nSNpgARAYBGRwia0yyuaNwXcXkFMLbBIIu0zzpwA5pRqtstRtb5Z13wfk1HxFaWOPeLbkyY9sscA9BWQLQSWhGFhjr8RkfvIWV0GpHEDpvm+vxJHFy1qzS1kRWgAhdcupY8OP/rvIXokpN2CbBiisumOrT0/NB5zukF2ajV/Y0Oe24aL7CwDpvQXATuuE2F216aGNZt30ADIwohdWLkWgtWCbOguvlwLSP2ijYSZO/OenyrLi6jJABq7nQOPo/Mcv9ZSCsUeKAaf/KmZmwDx7v1P338qX1AEqxubQMkAWOocdeVBnMZpf0HWgW63Ax1/KByQrelUZAMSaX9RZf1mpQM86AFKsPw8A4fA0ZsIaGA5HAIbDYUQfemrafNfCWjgc4Vd/951RVRpKPNMLAHnIg0NKRFwuaog4XTIC8wEg4nTBzJaIuPK0iOu7b3z7TnaWmQvrACFR4hwGIBwRUIIMhwlCwqGZDwAUEnky+u4E4ABe2rEx+0h1yVcAQAIvtgMSDmozEpAul0uafo71Via86/jZNzbPZCYh27cAgARffh8CgIxIQGgaoAlEAAnjAQC0ZFtweNH3MtMI7ffbAUBSlC086wDgEBJAXiQclsjTwhEnzEdYE9ZsDRFMG3/H77yWSs0Y/lpaCABOAccPTlTqigEQrth/8+GKz5YuwKVnY97pNd49aX6kFBQ4vt20HicWBklGZtSm9qamuNdgYXsG4RHPFEl9LeCpf5ORsM1lgWmngq7Gs+ml3tg1n6Y2HLcTGYppo+n7yz7vQDrZYL5RsQQIX7W507O1nhS6S1a/s+lGGomW7WbIyTChujoJviHNmG/y0YUR6KK5Tiuq32dHjURsq6+aSnF0wd2N0SiNzhby9s9CG7KhKkWo9Kw/eqhndC/3mz+csb+liOHoI/VJeQ93HZln6mf24i2PtdrfUhgggPabBxKzDy1/1iJDkho57lMMd6cymkZOlh4xUgZSh7uN4H32SFRK35Ac98Wd3vV7UgbvlY8i0tFwyNtjOT72dVq/WUaYbdUvZZk9MiPQUfsv07cPa1+psX6zDmSt2D0bGqw9VvWZkXz18ea4T1YaR3t3W+4kBGoOVt0FQPxi4P3Er1ZYjvDs+4Ykm9aESK0zwxEeSaUDyYw0bNg0HT2QtPRaZ7xuz35UM/RrOYuwd1vNTn58Wb/dYakmcS4rvTy64fNZjDqOt/948WLyHZKkKfPR08tXXQVgWUTZYb20uoEnUuSnsO+73q4Mtx0y+qbD28Gx+F8myVyuJaSj0cgZ/VrCoDfpTDrlOmNVf89TF02TqUKgt/TKpVIApe1bryoYjST/HH9lxGK8dNoEX45dGenwjStoA2Dz9cdKmu9a25oZdw4s91+Lzi8v7PvWvbjPaRdn7tcHgv7XFHYWAHDzJ8UPBpvnIWrlH9dUx+3pM6wBfUevRfx1xtYvk5NObV3uHjmsry5MrV/3b52xlknjGwMTb6/07Y8/qojzjcbBxsfLj6VYfk1X70w8+s6Iob1+75ajMSoLzeCRWk/gYOIwaeBz61m+2jW4sx/2/tu8BteMZrVrcHef3hs95slMw1gHu3dlOHieYuQWIJYUIW/tUn/0Uh9T98Mb5b+pUaJJhebedYzVnbH8P8/0rtZTzgxSKUCB+SXRQDGyDBMrVvQZNLa1mf5Ke1kSdVZk2zsx8fXgUn+CSEaW54UQoiMrTUId4q2y21lKxOPUcyfZ9eIVmwHisdDTi912Bu7p0SoUZzdaAlr34QnYiSWe+7obu3eW2QuqtwHYaaeA1gZgwGZUfSxEnvmyojABUHQPsO2pK7aMNvbKPuAT1V2QACDGpsqw44luOycRe4ABPmfPam0t5Kc4qTBCzwo1AwwXLw79/2g0kl0AgHUk/wdm1cz8u0+X7AAAAABJRU5ErkJggg=="
}
] |
<image>The straight line AB and circle O are tangent to point A, as shown in the figure, if angle OBA = 60.0, AB = 1.0, then the radius of circle O is ()
|
\sqrt{3}
|
302
|
[
"\\sqrt{5}",
"\\sqrt{3}",
"1",
"2"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAIcAAACMCAAAAABzS+UVAAAMRUlEQVR4nM2cf3BU1RXHv+8lmlCCi9PNJNW1UYjj0jCYClPQRLIIkYWEMZZ0QgRLHKPoiAUDFFRIMpUOWHSgM+sYG9BgQaHCiCWQpEmGDT80DFLQYlfHOMRuOl0EatIECW8379s/9u3vX+9tEpYzJLx999fnnnvuffe8czcgSbIcAA4zcQLl//LD7IAtcRwiAACur2ZiAgAQiRGF44RpLH5bZQSEBHEo49IA4MvEjYp3XFpsbDB+mShdwDMuPd8bsXhKe8I52hcAjs8nJJyj5SE4iwwFAK4lkOOo8P4k4ebb7GNAbEvQ4CRTwExl0RAg4GpJcx4TMHlFIWjtmlx0NhFriAhC8AeZ+8dZiZi/yRA8iygFUACWDsw6YkwAh1c8QM8NmjuyEsjhlVX9ps6MG4ADtVdMx/TXl0MMe/cPBYV913cLEJ5DqMs1D1zX6RueA9humHddl/hIHEl7xpdcT5AQDkGxi6R9WDSUQA6vdaZ8cGlxAjl8W9S0pq4nEsnhlbT2Uy/cCBzQtTe/dJ04wq6nXslozb+5NvEcFAwd+beuSDiHAGS1zhpbmWgOADC25Y25DvM3JgdyrKbUhTcAB3IPFaXNHW2OqPNWkby9i9qUy1HbC8TmIDB3V+kJAMToeRSxOQQCRTuKzrr9m9ESFfYhAFg4YOoc1U28Cg4AwNJBk3U0QdRy4OlBs/XOG4BDWPG96eToeROqOYDaKybrqIGoWT88smX2vL4bgQOWXPPAjcCBt2+fJ90IHNirf2R0vAmNHEl7Rsmb0MiBlAOXFiWcgwBSms6PhjehiUMAgLT2z0bBmxARuKlQ8UTVNTWtG/GNSHJg21RTf0bH9NTaUeBwEwgABXUbjIyOgvErR4lDgIbgS1bzrDHLRodDmxiPzEhdOpIcIoDHBEEQhHnaQDpW7AdGbuMsAniv3EZ2/ExbwXsPPdmCkYujiQBcTqNrxwMaOZC3v2wEYxMigI9N2H1b8pOAT81B6mbIBYDZexeeCM0RpyQDOL98OWyA/7z1U/eJrvMnr/adBYBc3bipd2dPd2cF5u4osuaGFoibo8VmXPxTpbJAT2ngUONBw6ScZbfqcgHg9MDlz/fZLhcXLUgRAAq/HCz4OAcerOEJaTeTb3nilzU1nivZXlcMs6U7JMTZta0gqaTeQZKsyxyhGDjIBgspc00Ah8zOAv2SPf0epqBSvbvKdHPOkDK3ZXWHJsfHUW6jLJdb3O0pHLaSzHpf9SHtyKTLkl7WTbImyxEuh2aOo2678JwxqKkhaa/UbR4MbDaM9NfonnOQ64yO4UKQFB9U2vE5jX0v5ozvWpviZ0PhjXBs7Ve8p3Zgk9k8At6E/z6IICB8M63riy1qoi8CMt44fXpGz9bc2SPgTQTpp2aJ3qJJoZv1x1mWf224JhLMMedHxzXW0Ky3OEvMg7EzauAYLP3JC+6exe6dN0dXTsUP5hLX8DgC9smOPDyZpHZL5M0xsdPx8LvD9ib8mK5OXcdnb/lnHL1ZVtA3o2JYBuKvj8cnbULGw/MuaO9M3biq5rPPD0cdfhy1PdsB5jxvvqKqZMCT/v3Ohtb2NcPg8OxPKexvOJkCUFjlePRgStQybgmwoLRD+UZr/tja+EFIuiRJkk/pz5FkdS1ZVuYeM00D3plu687a6i4Xh6WAJGVJvmhoJOl+vrjmrPYka6hxV3avLbMujoIkfXZau6jIq6KkD9tepzJaqlQKAFhses14ZO3OcKOmclxkWfo6/aKTLklm9QbJRf5nwnsSSVmSJKV7kuT0fJYkWZKc7jt+nZcdOgfP6PdpVIQiyriUbJFIOsnqGkoypa7MFid5TabT3ZgkK/+cTsqSRFlyUpaCRmB9BXlc1xgfh0xStk4YdDkpy5Q3VEuSLDvZmX6KspNKY7LT81uWKEuy9ydAeg1nSKuuLS4OkhzK20VKspOUa2robrxxQrcsBXFI0TloMZNs0mt9UiocTucH95F0STLJDTWkTMlFuSH7O8nlJZA9t51ROFzZbST3687ExeGS7mklSYkkq6slSTHLzTP63LYoyYqFum1TkiTvT5Dsm0qSu3TnNE9ckLTmuHtD+vsN5LJil8bqhrLOkGR9pk0riAig4SkAGAp5VVaXXKlxHRArdgJA5brCb7WuIGS/7iLplNwbGX998GrBOpJautatd1ImufFOjd6ECLTcrweTb0oKZUz96MBbhPrFkcjKbYMA8OUlpguanE0RaDVFbEnXuvEjpQU1IgBzOtwXr2j0JkTgqCl8QwRgaH3mqNKCOjFZlYut02ar28d4OL6zTwvfkAAAxv1lWo4bcprN48vUZ8/TACLi4xlR3ynnvVnYo746QTSe9lzvzixVH5sQ8c3k6Ep/ZH2hhpEWJn3tuUzahVLVsQkR53Kim6GwrLRYZb8IYPIX3o8pB/oX+SdF5+iaFMsMX8lW6ZwIAIxdvs8pjY4nFIhYhi7Cboieg8B21zPqQADc3uMtRqQ1nl0OVbNNxA9jo+cQgKT3P/u9Wo5xA95iAqCzqvQmknF1TOxcaQcf7DuYaslTUWHKYMA6qrPmj60Jef8XjmMghj4AAPrmiUNY/YmKnOP6A4cho63glipAiAGi+FExHwVZhm9VQISrLKs9P+3pmDYiIu0K1FjSjjtu+o0aiP5x3qOSikw88vLOSLn9OFKvxspDAJj9rz+/qMYDv5YKBJAQxtbV+2MVS8bYK7FehiljW9ZjPpYWk6M/DRT8FSwAuY1zU4uilAEg4o4Yjw/fIrRqzqOxF9Z/GwIHmQAw/aPFLbE4sm3Rc/jVuuXHsWNQX2Z7W/crXrB3yYnA+yEcfg+EmLL7csxV6VyOr3U/mVs3/ywYeT6ImHhOffAk6cO21yOlKZXY7vb74CcL601fRJuVdKQN+e1XA/bJISLTkbUn6n7XNb4/UlJDpi3y3jkZGYZT09XqQ0BGe376Q1FyfGqMOKWW9hYeuzPSyIhAgVUtBgBMPLD4bJRkqyly2orlpohzUwQKNXFg+vYFkZd4tkXhwNrHCyMuhYofpdY+SLIh+2KkDN366O+VV+b0hk8QgbRHd2uINxJYWrkgUoDhnSVJUWvaev/sAYRrTQRQUa/WQVEW7LX3loffAA+9szRGTfWT5g+Ea00EUHCtXVP4lahLrmS4Xh1Iz41VuCHjV+EeDiIAbFqtyTkXgD3nX3L3KoBlaN2rMQsn7QnrTYgAUJq6WwsHgJS/HviTh8knddmzYxdNOjAY7sgVZZLHswZlNfOFvvXQbvgwOKnXcCZGYXcF/fkVYeaLACAv16J2ZDz5DK3PdgQlvTYnV1UFijcRpA+SZJe+V6U+fHIi0xbwtHDoHGpfvPQa13iU49UHAGBi2UaV+vDJA28W9vi0SKx/XtWpUALQWQ/WKsoJ1AcvGhpljfog64x+q+Ou7D4NRbuzXgv47I2LKXEPTRxcnz/oCSp26rWdOOjOVOKzciAH92U5fPF9tVJR4qnW0KypIGnLbKCPRFTGjFhYUXJNc7TC44EPFK3W+tUDY5PHmxDc9uEN15YuIWu16YP9MzaSZHGlRm2QlE96YxMdNv+46eB967zjovrV50VjA7msIK4w8nGdezCdObaA7wBfKLrLeLxAo3773jb/XXosBRoP51AAYD3d8gCA353aG/COLsOKv/xcQ1UAAF3xBzf/OgXQGAsTAcC06pMhYOe9FzzzpQEwO1+izM36YxqV26zfFM+Y+MRusc93c9ixkrTD4q5W47mL9OPDPHOxhvYqgqRzShVJVrv/Doktu9ROqqy7qzjH/0BVPDzvAqiiCGD3f18BgAl3AQCMn2ZPXnMJgd9iDzULALiwfNrUzizPQUmhKfjNhxrp+Z/MjrsA0jnF4umJ0h97pe5V38ESv04G9Fc5p0SS5TaZzvuuaFWFLNNuJuUGC0HahcMhjQSe2wpKlknS9Ya+7FvlhrOUfMtzAk2TVAM2lgMrQdqD/kCNu8GAc2zBI+8+x+a912FhT1UcFH4CytIUC0naDwe1F/5cn8yubQVJj9T7HRqTGwD3ZIt/4ggEdlYcNgtHNzWFGpFyzjFXOef46ZVL//jMdrm4uDjwYMZjGybtTJ+v1UI9QgHKrDg2E6iK9GIj+Nzn3b8IMfmnmnAs3QiNK7sfRZTZqaGinQPPDbcSiAEzXg1UcB4Bf5vtvR93rwSq1mWEjMdmArZhf6Xt/2X2umTUk5ExAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, in Rttriangle ABC, AC = 4.0, AB = 5.0, angle C = 90.0, the circle passing through point C which is tangent to the edge AB intersects the edges CB and CA of triangle ABC at points E, F. The minimum length of the line segment EF is ()
|
2.4
|
303
|
[
"2.4",
"2",
"2.5",
"2\\sqrt{2}"
] |
A
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAGYAAABmCAAAAAActLu+AAAH8UlEQVR4nL2abWwUxxnH/7trwsFRgo2OJvbxUidATHBak5qgOI1JwCA5H2hrlBipdQnOBxLJioOqSJTKKqoqOUhuiQXiS1zSSIVUjSuSKG0xMSURipENtlJjKrVwUN9RKzS2eU0PtLv/fri3nZ3Zu707wiP7bp9n5+Y38+zM7MwzoxH3QvR7QkFJHmlPDUU+ACIAgErM3Lj8O2v8/lTz57Tbhw4fQ+XSqo3zsHIOgBtjuHp07PxFNDb/SPOTAXPLRGsJ1nZPqG5Fu+oQaJvKmUVuTPd8tCoRaVQLFu8vDmO3oOHPOUvC3npsLxwT34xWKzeEJOPNaLG9b2dr0C8HFvItny1+5mFrtv5aAU3gfTT5q0ha7Ab0e9zywvyvquxsnhSSA7Nq1Dc8fPKPWd+ffNSfu5yy5quntJh/p/V41j6nvIdehVWJaTZihVLIMVXbVg021Tcu5e8vh39Cj5x02+RnEytZXhQF2pez51yV2C7pR1fhDktJBwayOy22sP9Zz3LGjo9ox7764hbK5t1fjyfWPuCZ8oNNU6VCDV2YGW/s8PjlyN53sPpJPBMKPYzIlS9O4LNBY+uOFR6pd715U9DFylU1q73QvwnB9qjbemH7fWgaUKUnG1Y7NRHTUqX8yUh5sOuGOrfJTqNyTHmnot0L02Oo0k/U4LCakZAD+J6qDHEcUWNGoXh92U3ozAYhyQ78WGEdQ8bLDkxcNcL8DW25ICT5IoZlY28mcwemqkNO2QWf4/QAemRjW52MOTRfTtc4P+6PQk4FFY000CdhIDeY8ka/EJKsWyGZPp3lxrRK70obv8yHQrbdJ5nqd4qYSfmNUJ4nhXxV6nY2bAHT2O5O0diQL4WskRp2S4sTY0uV6SzPn0IG3e0tmXEy+xb3G68fvtuYU6ak/tPU7sDAPZXDaCEU8hO3W6aQwXS6W678qPxK8mFkZPVv05hS12ge9bNQUIsN1zh6pDKFueDOteaNgjFsd7dQ3EhiWlwuGlC+EPwKLoh6S3sS434BlKpmdL7lQKWojwYSmAmXz/5aVgyFNFxPGjZ1AH+sF6cLXbs8Zyy+5KdvivrKPwAkn97nohfUMzPibqc/byIoPZqTihdPfmKI75TRADXi5jfEudqWxZ3FOQ0vze4WdI0gT7paBqT5WL4yHBT10jEdGKgW0OeMcJGVQc2taUFfcUYHRr8r2Po3FksB6o4K6qphHRgWMZFFxWMe+Leg1g7pwOVlgi26tHjMw+OCunRCB64LSwRElxSPWXJJUOde0wFrnmCLiZXzltOaprWqby0Ta1N2C9Iq1/2+kGQ3sJdke+gOrfA2ZZILYouOQ4HJ1SsAgNxRS5KDoTuqJO4ZTF7RQacM/TqauFCG/aRIniLKcTsHYTewFz/bFgaAMTlHAIgF3TmSsEzTzMSzyj/P5TWSVjgxCV+vfjb9KwV1IlACGNfm2VqmVuGLj+WoDoDrsUcB4PTHUeXtS2IXnwrqwFxxAFp0KTcFc8NjAOwfbFOPfxdFzPX7daDinwAsywItG7QWRQBaloX0V/oq8WlZtsXnd1nWpLGhR12K80sE9V8P6sCqzwHoMKBpOmhURmzYmqHZSH0BsDUDKbMOGvqe0pKSqnEPCsYXC+pwLciuTbZp0U78mebfQ5ZtkrbJ5BdJ2yLJtNlK/3sIxJBx3Ts6UDsK6NBoUwc0o/q//5GLl99OwkhQHCbPPa4DjyXC8ToBaLSxZZ8GG9CQ/Ep4DaBTzyr7XxL16RUg7VDMIsmEe0zzRIi2aZoJxSRpWsmrxKdpmul/tchTDpCs7050ubRn7/IEqqOJOoCmXtH9DfvzehKS7GsW9T9tBkheBmk5ms1fSourjWJyew+n6vdq4SEvo4qId+70XEbd3UXhNdGQWRR+vUvcnjRGWrDbhS7YP822YP86ww+vOTBxOZhSUQjGK5iSikM/t+w3rr78HD7Ku/8/8cjvXJYX7YQlXVupZPkHutpyBrrY+kM5Sb5hu4Bkcoft7kYQUo6Vn0wNJ5mJ06GnJVdfxoK438cyPWfhOcm4vi91lUEvVwaI1ZF5SXwHiBnHx3LKfn/h7lYMykZ1uNszeP+rXJAOuEcY0jN4T/boqkxyb0XU5bUVQf5EvbEy7L2xMtWpe2yslL/qUNzbRFvUuXlsE70S8Nwm2ihsE7k3vUr2eG567XkXq5/E2m8uqETkypUT/GzQeOr5VQCg26lEQxGNAKjN6hY2vRRbeB8m74yPOLIgNMSl6WjFTCcDQM2iRMFHPpksw7rjAPoaVBgcX/ftZxJXlbUAnZPMOSs9KirJL3YPrAHQ8HrD6dpYBeDewjsVZdTw2MbzL43BKZK0wnc4mWjV4trT3gyEzbMP+S21WhZcu1kKAGc2zMALyYWWUIzXH79Dki8Y41nKmuMcyhheSV4dBFI9VMC8/WH4NknyrcI38nvxXupyfZRvJzlOzNWu6dp0kXYWRmnLjDDTtaQV7pIwrZxOr7/jVWUFzG0GAo5DFge7yGn0uTEHAWzNqEfyPzKyTvD1hhitcDLYkmlp01+Sg4545CaGtCwnWiThy3o1M7vzQ1pfWDMevDIDQkubrk3W0yHxJrRmOaMjJM1+nCeFaQeifFbwGknaW7HOR6N7v6jDSSTJ7jJsz3nU6kCOTPwdHDNQX9zBMb/H4H7/7jFUfqs6dQzu5llcPXo2EvF7DM4nBgBw6sz5zKE+BvI51Pd/DrDWB6A6C4cAAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, the radii of the two concentric circles are 3.0 and 5.0 respectively, and a chord AB of the great circle is tangent to the small circle, then the length of the chord AB is ()
|
8.0
|
304
|
[
"3cm",
"4cm",
"6cm",
"8cm"
] |
D
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAJUAAAC0CAAAAAC4OTEAAAAS0ElEQVR4nM1cfWxc1ZU/z5PEahk0aTvZTMoEEzKpBwxl2ITF2TgZQxzVCJO4xTSpMCtHzcYrwm5MCV0kXAYJV+sKU6zKpmZNwQgjDPHWanHKhDUwLk5jcMTA4mCjOPVEDrtJHakTJgjPeHx/+8f7mPdm7vuYmRfUn2Trvftx3m/uPffcr3MvwUbsJCKi24sXVEI24nf1UcbCvuIF2ccKRIsLgfSvbr+eUKws+1gJRG9XU+9Vyw+SUKwsW2vw9CPCARvqz2ZWR6P4wd8cq9jnAWxx2iHJNlYg+kMtCT+hB+hvRttBAtHRWhDtWkvFazsVb/IAIAaEJYFRG8QJRZc2EdGZys7d8q8svqCI7GGF6Z33Pm4LHxH2sCK6eNe3XyxVeBVL0K426Hrna1suCCS1v2JLzbY26HjhR5tOwo72R2RDG2TK06AnXLQ0ETZZBhET3i57BNml7SLO7rql22GDdbC1dybv6Pm6izbolq2jPiLn0A3/eNoOYXajzzNWtAz7WCltcWxNf7Gy7NV2Eadr9zxRnAQ7WYlNDwJd3LWqv7QYSXa2QUH+73pr5ZbzRFTw+M9eyyDD8Z+Nm6Kk6n/yZVesYurhiGe48MyXjRWi3s6C816ONijh/J039zgKy3p59IqIiFYfi2+/WFjWy8NKrIAVh7dWFtj92KhJCjJDrr7VBXU/l0/bRRzz9EFN0xrs0nbdIdXpXXc8mbc0O1hBIBWtbH4XG1Y+f2WeEu3QdoFI/nlANim4wt+67exXzkoubJFbTkUK5OjZu/lEvkLtBV+vw57BvKRchlEfD5NXd5gnyqB4bYdw4uJYPEpEn80QkX81Ed3sus0V0KS6UHvjc9a7H8usIHAa/4XRdyZPn61wb125iYi864lo+jwRnbhw/Pz01dfcsOM2l5x0oemzYVeOALX8Qljl4NLoSGTqtupK73qdBNPnx0feCdxWUy0NSx9/+XW/VeHW9YaJisEAIN4bLL2jfdxcVcbaahw1LyYAAAOeiJF81XMh2p4eaHA2DqqlsIxQhuyH9Cu7nbsHAWDc02vtC/mzmmxy1fQl1IS0JNRg0l+8t8q9bwaIVbToJy6YFcNYnadtzlgoL5YhFnI3TODz79VdsvCdPFgxYKjS17tkUC6G5Ba6yoJhPBCY40UWzArD1201MNFWDORLGwMjXd4JXlQ4WhCrmZqKSP4jJQVSxrCvrl/qfpg6IlX+QQGs4ofcTxZKSIN0m7v52rac4J/uSKjeLI4ZXvafnzxk1QQawvFo9PyXL9+XlKylFPpM4H81U1lLBVXvL3r1R131I+vXVc6rI2fbZ6vV71ZYHfM2LxRLSotE4ze9H6veD2D2n/NkFXIN2csJAPq/7swsOHcTCfvVsaZ6dXbrWyfrbdEoWWWIiOje/1m765dSSCwBvHGtNpExTnpbVW8F2wUlu9wHAel9K+4DAMxWA+huN+2dmTI2iLiLXk3Ux6+WVyYYfkIUxU6xCmVmxmU14B65XJQYgKHSspjqNQNDVp2eqFqI/Tj+tdLDyovqE0asQv6YQWzBkEaP88OtQcca2pPNCODMJjLj56eei6y2s/GpcOK98fHZqq2V8y2rP39iHyeB7k/q9cYuR73ND7cGl/kauyYADLjGnBNuZRyS+Zouq8FVU7Yzmuhq9DmCrcNSb9PnGj/rQdSVu3+Xw0oecbii6teioS4iCb2uKEaCwJgrp5PVYfWBu/jNGAVZRSSh0xMFOg8AOOqaMWMFAEj4eoojIhfx/HBr0OFr7Ho/J0WHZwrAvi4AaA9k9f58VrubiyMFQCmiI/O8yFDZJwCwVZwh/lD5HtNn1ZPN3RwsIxLAheGfBR1aLWIaHW0tmwXA4BIpJ3yvaqTxWI17suvZEicJYhE9Ojxv0FRaJPs855YCop5JE1YJb6Fb7aIW3ds9oVDN5cXAcMB/TnyJVMlpBvxfqhJzVj8e/LInY2MtbyFPvC+a61vdJLkY6QrZ+2FY6jS6P+yVA/f4Hzey7SfWxgsqIo0WGSDdFIjLxXagUy4rnPOorHYOq/TGV/JhNNHduD7XFhmRaqjM/OqgaqDUEzRg1VlnIlap/fnh1qBjQ2PXCauEAGChoerzjAj3nEps1Yu6rOZWz8EC+ObaHMnaGmU2yjDvUsdNrZ2X+WazanpKV6I8Lnq9NehYn22LrCFRW6u2hJFKTeyjTfJTFqsZr6H9lIvoglUaWaSq6pPikzgt6G1Sx7K4W7aTy7SNtu1hvb31C++Nv3vsmsrKg5us2oocfH6nZ8Ah2wqBiE7eoDYGgutA2ws8yzDj5haVvhblM9CJBxrT2pAdWVvT8SulwlKsKAQi2lumNmXqIrp1k+pHaVJAsGZsL+wIvJAVdPW7ZdqABy8+r5TVTiKiwwBm3BoDWmhD4+LcdTnjkPgVOYmcYmERALbzNbxBHzE0K/Nk/XFRgZjzP5gTNrZRrQIMAB44pLBKVSQwSx8g6YoBJuOigsBYrOyR3ODexpygqDcNiG3w7S1OOth8Mw1tvuLI+Ltj6zQNDUKRrmcQSPjz7U2PS88qfJq7VRHw/netpFfdRPQR0LtmtaRF9k64GKY87eKDNrxuKDdxz25ArMH6j9BNUQzQg5Az28pr0sP3AinjDC4vuv4qspqtBlLl7Wi/J2sV1SZqURd/apIo1Zov8XO7e0RW3e3ALB1Gxfh8ZaPNS40AJlx9OhEBXmi4igHEsPMjpMpXJc55gIXGKvtanogxl94KWN9uXmjalQBK3hR+f5OwYs1fnOEgUelL2zdPF9PgcjB652/u1Yma5u4WlmweEdsgY2BShQIDa0YAeTewaIRXDunG1fO3X9qb1SMZedw87nlODiqa2TBnZUMR7pvkho/7VaymvPJTrCK3cygMgy6DBcyF0jT3d6dd51BCREupVIoduVOu2bJjU9+/ZIdOvfrjI9uJSMerb8rn4G57O2pfpxIiciyn5SXjm5Vw1/Dqrfn6kHDwYvObW8Qnbo918jqdfJvfy3ikzPiJIDF39OwTfUiKcXZ47mDkH4wEiE2QQ/i6U+JYlCVZiuaRTi4xlkwuAiz5e+8QwJJJeZydTKbk91SSpZIpMUQfqvVnPur17NisBzKr2VUAFoEUkGJIMXx0bQdSDIvip1MMqSXpnSWTYMkUWBLQbacdaz4xJoUKXdalcZlVeGsKbAksmUwml1gKYHN//+MvIX86Jf9nSbAkU/4UMOU/A4BQ2ZSJyUuX6nZugXFJr4Tp7xKWSoiEFStWlBCI6O/+dPGOv4qxytheX0sUb18SiOhnfaN+jteTGlNr9WZTuGG6hCi9SAKd2lCyWEIkECNaEoQ0kVB6+JbNp6UPgRFBDM4Vc1QQSppVUunBwdEys9/x6Q16McL60yVEAhaX0WdlDqGEiJalUykHLWOp9HKiX/x08x+XEy0yYXk6lRKk4DQtKn9EoEP3JZAczdASHgjLpAzOKnxcrkt63Zxs24MjSHOqeMyjMwzJ4KFqAAivUtYP9gbOqVRNDw0v8sMZMFgvz50vOZd4G5hbxmpPten+XiKio09FVW8QlvZ9GHGZlBMR0anr+eECkfOSTOXS1/lzhvUnxu5JGkl/Zv9NRCDJh1ZY2jMdMXKzIiIAREv8cQwREa1UWH3xjWX8JK63nFsu6H9i8dMdApFAR7/vJCJK7jk34jLpEgRBIMQ8+kdFnQlZr5wJfjUDQId3Uqlzdf0DwKx4ijFMUQAj36GNBnLUGDJYvJvzyqwMdy8PSwe4cvSXIVX+GgNS5fsB4DtEt1gakzG0HdJvDXGXJd+Phtebuom4+ru87hmBYiuCzxLRpTkih2ClSxdoupwEA3Mm8TOqQQBzNx3gGQ5AXDuJggHxqm0bbra6KRUwSJipQa/JcmiirjaXt6YO4oHGJW5ELhhQarB8Plkh16DTZPTpfN1feSa7mNU1Ol8deKmExEox80IV6MwqA/ORuFJmdcUXxqwIT/9rZZY3cYYU6Py2W19QAgXTU3GT+tYK9IVTKau4iRyBmvvvelVHP4Wz1bU9YjGZiJEwrds3k0BxhdU3Euaito+0/pxfCGeq6p8mErL2b/gAkWFZEV1aWSKlvCpbaXjCKo4P38frfk5va/oPIrJ2nFEgIvpYlxWIZr0lUsoNp6wIc0eoZh7ZtTRddf/jFuio8WmFwXdO+2TLEA5anCm3+aayWv7kmnwOKTEw1W4lF4FxmVXMY3UCP+DRTojVy1NWlwBGgkax0mxCfLQqc0LjTTzh0hm+6YAxAJ33G6SIeTK+atdNWz16u+m9zhbl5dj27n/KS6MEgYgmrzeavpZn5s4+y+tWuHr80x+IXQFG73z+Xsp/jj3tNyiB6Q0ZVpuOWyUlkHP42+JCxJu7+u4myveAM8SphB6ObyLOSpEldHknjJenjDDnMohMu85xVtUsIuwZMlyeMkKkyiDyuF+9Pxgc9efjKfC9kW1fvLVFrtP8YNjfjAbVZ5dq3qG8FORE+pq+JUJ+mUR8ot83E0V2kGrX8pwnr1rodUUXGoLxgpZOgwYHadOuhGYWUTFu5RNSGnF5qtWfr0cNAOBbBl6M4i5A5v0Xebg3dUhtQzrKn1+JzTu5ObQ7JjLO8jedeQiVyQ3WwkJEDiIb9eOU3SUFtQMWxbaWZapgxt+ab1lpHQa0yOzEyRioNREnfbzFf0YVGN/WkOeWVEuH/s+ofCOb1YLLki/t/bL3FESe6X0b89uSqhnSZSXt8KrnzqV7njM1NaCmP2W53Dp6f3TzyXzM1fSNPBMHIqLf7JHcMDJgWZ4DHDDRe0rjpMeAoTxukmHxUr1puMZzQJLNgKaQiUiN95QKJ/K4SWaMu1sJAGjZCy0rALoeKSIYsNBQdQncJjcXOKDaLDJskxyHAQmKR4p2TWZ93bP66iBQsj7+xhUkTvyy4P3jZ3WXlAijhRlwHAYkvXr6bvmEpJatoadTorb2S4MyaLnemjs8z2EA0Hg65eEVlqiqNzZMvR5L/oZl/N1KA68wAw+6eFVDOttFVoQSMOIZMDfzCYdOEzTwoNP1Nsz1nuIJ9uWeK8vG+xXcYENvQz3PzPmAQeelSlbVmDRJ0tfADzf0zMSEN46cPfr/8/+LhT6YWfGIeOSx3Fww82IFWrLGWQyY87eYMVI+0Oab0rxnQ8dhYHdIlcGSdzTXe0qPFlMvRHBobYjm5gEG/Or2zVtnH8vyJJ8pC1mrPun/hNGx5gXubmVU2g/WLyvg1xqv+6k17WaMsnCmQr/Coz5OoAWve6Y9oaDnPWWERG19Qqd0++s5gT9sVs676bECkFj/a/kx6npWomqOTKL0gYCONW5tzQ2zeJoDUfeYpCOuPt6mkjl0jjVLDgMaMVZPviinhMZc/dqyVcOYYdgzxMnCJIcBJS+zdEpIxqB7iiGy6rA6TEvDrNgmvR25xZx2ZG+8fGjlRJWCXu9ss/MVWSDvWIYZ5jfuy+k6J8tEaUruKTfHqvJZMQDoWLf8uw5PsLWXe9eDGSkGYKEhGNckZhjM6vxjV/NsG4fVTiKiVQkgdG0MsZFQYyX5akOD0byJAWj1n9IGPHZI8/pJWSdPFK+sdkaBh1YlVB44k78N1flpY0MofIqT3gjqOwUZgIY+9du4m98LcFilagFg535Ip2WV3zHWHwp6KbivPfIX67SyFiICanvxW7fOkhGHVXg/mOw8EVkl+yPJ3dzCaFdL0OkMtnSNLsCKes34VXYzXapStB73hI4EDquHBgGgSzxuP8k/hT0fad8XFLzBUL/5lm48mFmImPEqItItPt3Fr1xWqYoEADwkHWyfq6o6q4lX/baZo6GGjeSvCw3pTRAAAEuZhYihGiXvxhr94WEuq9n9gOgCLMHsdH90MHSHjyobQyOxHJ8r6bRMh/ek+P5zeTDR7+pQ4s1ZMTzTDgA7VffoG96EIMuN9LYG15Rsa+4Y5U355YWIRrHNJRp9hpO0nLJKlUfBZqlaHWZ+a4TELRHpPBAsdQcP9USyrLp0pa3oMDDiazR2VFCxYoByW/bhrGT9nvvOgY/cSpiLtDVVUVnNYwMTmTTiQkRpHJirXzuklzWXlf5nkP9tJAxTw6H6CqqoDw2Ls4tEfW0i5ka6zd2aMCFV8M0t5gcGxNgTA6GaMqpqaovMoeX6rmDYd9dZw2wA8ruV68jD7oN366+16G9RLI1Nz0ycTFQue9vtfXK7lU9ZLiuwIm8Emj/4zcDDepFa5MEKQMG3J0G6PQlAN1F16t/sZAXkf9MUkLlpCpil/cCfBZO5XP6s8r+Va2C3c/d/ia+p8mYAeOg1u1gVeIPZE5kbzAB0iw6c3VHjb32Ft70R0eKNe/+dLGxzfmU34xERUWzd4QYrH/uqbhGUWQ3ebWVDWMdLNA8ItIm2k7Xd56vKZyAIdOb9e0wSWtb2vKDXBLrpMBCutteKmhMwO110lIj2GycB8P/Bqfi+RV8joAAAAABJRU5ErkJggg=="
}
] |
<image>As shown in the figure, circle O is the circumscribed circle of triangle ABC, AD is the diameter of circle O, and EA is the tangent of circle O. If angle EAC = 120.0, then the degree of angle ABC is ()
|
60.0
|
305
|
[
"80^\\circ",
"70^\\circ",
"60^\\circ",
"50^\\circ"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAKsAAACBCAAAAACatBWVAAAMRElEQVR4nM1cfWwUxxX/rU1wWo5cmhzxVRw5qI/axKQxNVGcYMuQOI1FDD5aUpDqqKAmOBGRcBRHIRUSSKWVqyQKUU1EBCpuoBIIJ2c+azcmHAppSOzWrmLHdjmD0Rn5wKSxuUM1cDuvf+ze+T72Y3b3EvwT+GZv3+z89s2bNzNvZk4gmAYJiR8Axrv7R/zA4DAAl4emP+aaX2xLzzSZwRgEC1yTMHzy5KmR0jl5D8+kuW6QcHEIkY7B4BnXsoqKXJmkRVjgmlB4/58/vF6+rDxfgU6v3+93rF6XlwGuIMsY3VXsqu/Tkuipc5buHrNckGWul+tsNcdU7rHJZPMa++ZR5VvcsMaVBWvt9ZdTy1XmEdxorwtZKi3LivlEfrvIGXjjvlRDTLmWW4SrceDOhVtvWCjPil59ztrRpC9YWiLlKlTjblWS4IN5rsGKos+M5/IXVI3qSynDhA1Iddr58NKuEuOZy3uKFvcazyaXbA5Njlaz6ml2NJvLaI7rrY2eXhMmJ+focG2OXxh5iJl+i66tjRyzm61IAJeX/2hv6jiBA2Z81leL3f67TOSLI/cfd5YMmshnuCKp1d5oPFMqGux+w3mMc+2xm25VEiQT9TkCRi1enavKg0Y9GdAqEdH2wmtyMbyUjbYtsTK/0YSlKeHZiM9YBqNtqx7vGMyhij2hbQZzaGo9rXaaPKZ7yHQEXT5DJqvXtlYCwKHY1VlHvzlayuhw9MSSPJx1/cDKQ9SKf0npoKuV97l8aJ5rpJr0uN4sDNMFdEkXFQ0mOaliy2oDwnpcWzcQeTdI6QPFUbOc1DBRYGA8q8d1JxDTatjVYYGVCj4q+B+3rJbPIgBtXbRzUTcAYNvTi014Jh1UPPQWv7D2q1xYSnQzv4GIKOAYy2CriiPkCPG2Vp2+4EQlcGnAA5zG9o321FlfJnBfTUPabFIN2q+ysotu5s8K09iSAtt4BrSogJCDN8qhqdc24cgiYfoPr9iw9sUHyywNWdWR+4u3eUW53iicc94eItpSby0YoYyAI8wnyDd2OV52ZFUu8NK0hWaG8zrIK/2AU5LrjdY0FknD+DBR9IxZBarBV84nx8U1avu7m2KeJeAuSZgYZMKLRR1DXHI8NkDt+SfWIRarzRt6KWi2upWRVbOXS45rXvDCnF0fFSR/9fzcWodxVir4fF0fj5iuXgnA8cJoClXU9bsum6GliMXDXM/S5SoAndmXy1O/Ltw3nItItwliCsgu9fOI8djr4VWnllGarTgIg8ufPG2UlyLKT/FI8XD1eU+XC0pd9kPBmqvGSKlgGd8r67uKgOO8Q+v+msbEfsecE8vhGRNw6LVlxflCrfsv++cnRNbNDcUWnOMQ4uG6sn++1v1HDn2Zg8v9nKyU4RngENLnerW7IpDqsVJwL9BdtnYyXG08TlqQGb0eX2rr1+EK4KkLZZO9mVE7IBT0cIjpc22pxshsbU0JAGwbnwLWH+Qjl5bfxeNPdLlGPl6B6zN5NCUAz+5ZJHJIpmNGhENomp5A+09yEeENmD/++NfZuArjIwXbdQ4hXb0e9gKRGVwFEoB7gZMLns5b9Kk0YxcEoRb6jY1sPHrV6wuijoDh4PeoAyghInplVphu5m/gyDJu5xDS0+tZh/GVf4cDENfeQP0/r9hwxzs+Dp0xnudq2CsJAFq8gDCDw2ClF5L+rjhX8HY0p+2tLg4CUo7ITA5RDa4CALTsBzDjuj5XYfLvtqMDeQDe3VAEAIM5HPm4Wq+OH+iNPAJgZiSX41Eybvzm4lk7gFsDNQCAtuUcPLharw7XlmoAsIU5niRX53j1/e05AHBpYD4AtB3hsQSOitPzWfShFwQ4L3E8SarO8yVl70uVPjs/AODWJskSdDA8i0NIm+ul/zwJASgIcDwJAND52Obfyck7qnYCQ9PL34O2fyUAdE5z1ClDm+vxqmwA8GiOLBKIfLDir7+Of/nmXYIwr+s9QHswIwAQejVHnfGStFC5n4iI2ss5PDUR2+Hu0ZdSRBFPyFyVKyOicI4Uxxy6l2dqEq1dPBmaY4kfupmZtTmMAOC4HMd039GvWotxC4h4Q6cmXZuQ8KHf730xj2c7gqa9fuiVE+Xq88wYj+Gy+1uUHA/xDL39afEHJWhxjZ6olrW2TGv+TiCg99HndqbfAOccwb+MR0qrbbUWx4zuK6eOKbU6fXHbMz7tjtq4YtBaevWtkj4FLJimPk0lAHueO+qNXQvGp92dLq4+XIvr8afjydUHVKUE4NUdZywtfR34JZ+cuso73JPpLreaFNGNNU9Y2y96y0CsmBhjCr3g4VWxtwGK7j4Nxa6ScLX8e212S7uTjxW6ueSyAAhZUAqt+bwSA0EAsL4JioFlIfBo1d5sa4t0f1nPKUhERKJC0w04Ele1R+0KTZURfeLcb6LWUwqK8AnG2hZjDMRISgCMsZaqbPkCAO55/k+yFBgjxhgYYwIOPtP8KysqBUBvbOSbJk/qVSQiUfrHSGTElvpIZMQklYss6PpGuiYSY//Zdo/mPm0uhOxjxBcKjfssgUl9TEyTXweekHylPJFyPbEj7jsF6b9Ye+wz/UiXHhrW28HZvUl6JSKRMTnFSCRq+jnFdE1EIrGAYyyme0YkMhpb/syE9fWt0CzuddMsgCRNyo1cGmswHFmOxGk7CXnrX0uaxg8vefBgjtVVeqJNm/jnnURMlG2SiIiiokhE4rhrhIhE6YIRiaJ4zdkhSqYqkih2uHaLolWlEmv33OAWTui3kqrTV5oum7g355jT4g5ICfG9OTyY5MqSuK57U0F4cs9To6tLymSMWhq2rDbwjBhXllyhUUdAQTg4W9ZCXVHQLLskNLszsJfsTIH0mfLOZx19RBT2VoYVbhpHwh49Hqhwrd+s/H2TZ5RGi2szs6cs6PIZklfh6jmrIl9X8W+3kimbwETJVmMZlLn2qM5Zoj/9fjNRJvY4sBqvwRzKsTcp5KaE/cF7QoDZ5cFE/KHrrNEsim9QrOb1thYELO8tl+BzBIzWTTpXRhSyKTeeiZrSMat79mWCDXa/YUNS1Osu5V2p35TXTBAR9Xg2WupdGU2sKwwYt3nFeWxLtdLUavDRsn05AFDYOfj4uFFbmzQ6CFeXRD7PM2HzCvzDipGwL5xNccVEX/J8aVAp8byxszvGocT1QEVi9cjJQ872RJkmZ6tZv9XszOCZqLUKbWfH3MTukBF1OLebKjC6xXSQVoFr1BZM1Vi0tjgttBqsKFLr3DRg5QyfAtdYyG0S4Sqv0lbKtLORmmBEFKpxt/HnSIWCHzhalfLFcJnblxBajbsI77kfLNjGvZFIQOj1hXkDPzPa+BOQTl8eRsfR42qMN6NU4wjW2qU9sfrtLOksr6lmmc610518nRBaVUJok62Go9P1pZyRNoNEroyIGG2pSxLYPVtvieTKrmLX633qqmLxs+cWB2fpei1MOlxXX8gTb+yr9zjX7OpTCGmznsbVjvwtSjMiw0gL/Q2WhLLjFxPrvm7mPLA5fLLdP1I6J+9hG81zA7h4kSIdg8OfxH8rwTrSuL7Vs5cEeZ3n6oqCPdnQXfSJ3x7v7h85TfJvUORh+mMuz2ITZ0vVC0pBeXN8/Szg2f5tnNQwjVSuo7a41z/j3Gf6sQZOPPIjdQ5zYmms0g7WNS9RqGe16km+LySN+DLwUxlA+l4HX2ym9fumUwUJpeiVpng/ljtDx2hS2lZ4zkAuSID4Qs/RzO0dzxBS9HrywVxAwPjqu/3aW2puB1LGLi1eABheUnRo6lFN8VlRZx8Rdbh2ZbwNZwLJXM8UUMZCq5lHsr22eIGdDX8rui01rItEriS07MfL/s9ct42NNhK5Cr2RwlUTn0idQYb8dyaR5AdaKstzj8mLeFOPanJfsPDKa69MQX3Gu7+t8SSN7H7mgdvHSB9Zk7UtjMx/YErWPQhEoLgNxJU7FbnKyNjvvX0HsPL7Wd8Rqu+TN3zHuFYLgpBVC8DMaZZvF+8UysP/GNfDrxyim6f/CEy91nWiUk5kxdR4oRLTqi7cNkIaaHtKTmRBABEw9F8bMDjvtpJSxq2bRXJqGgAIkqJf/XTfFHRZH98fS2VBMtC2zYLQecU2BV3YR0/GUvI4a+iaTHLK6fVW67ZYUvIDNPDjqadQCR+Xvt8tJyWuwrsvTjmFyhh8L1wkJwUCMDRPoK4idfkpgv8DENQOUfJcJLYAAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, the radius of circle O is 2.0, the distance from point O to line l is 3.0, and point P is a moving point on line l. If PB is tangent to circle O at point B, then the minimum value of PB is ()
|
\sqrt{5}
|
306
|
[
"\\sqrt{13}",
"\\sqrt{5}",
"3",
"2"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHcAAADLCAAAAABxWlNYAAAOpElEQVR4nL1cf3Bc1XX+nmSigBcvnqyjNV5ng7QZrxAY1XKLJhYjU4lBTtypMhaRBWYwxIxJZWYUDe54GscmUxLclk6cIFplgFYNJpaLNIIxke2JHVZBtAZ5xg7IrKklsNlNLCNN/UMyyNXu+/rHe2/37e57b+/dXenMyH73vnvvd8+55/445563oCy1AkCHdLU0KoIs/XrXAGePviBdL5XkcfFxHRY0fTzvuNHJm4Cz5fOOe2w9sPvtzfONyyPbFOW9yE154i6QrfCnS8wTEkAO/I7dDiB/aGncrscBKHnjKnJdjy4HwsG8USVwqRj/ANOuvHGF5awk/gF6juSNKylnje778sH5xdXkPLnEF8p3vZIbX41eOLr68j/mq9I57GF1vePemXnfBxH9w/2lDa8Y3c6R3Rxw+xpc2LZXR8xV3Dng9j4E3H3zO3kOsOzAqOdcMyT3Nc/z+Cq9TV8C0DwUzYtdeTnvb1EAlGz5ZV640nIedcdIkpH8ppI0vz3fKQYA+Gp755FfVa06qj++s2oe+VU+jK7VH795/d082JWV82sbNDETaO/MA1dWr4KhxOOMd5xU50fOpy6vSTyXbHop93VSct//0fTPkonzdWPFOcLKju++DUjuQf4785hKUqMy7EtJHq3NcXRlx/dAa0qyfvJUrhuwHG7Pd1PT217IWbFkhDPkT8u47L08H3LubU3LcG/oQo5nHYk+xrynzElVJcP+2bnnd8h1lzmpKECwIkfTQQZ3/0OZedv2AshF1BJi9oxYZAbOzLWcQ6WVmZnFTzwvzSogZac8GvihRf6VwKgbKWaMEInbofH+jVb57g37gBz2JeEROVhlnT8SmNvxPbDJOr/Sm9NUEu3gjOuczZve9TkcO4T5PXSH3+ZN06kx+eEVxn3VUqsAoPiJLllU8Xk0vTTss35DZfLO81+SxRXl98gqG1go8DT8u9YDGWBBPWjqpGqrPcOV0noliDvlGnd6XRNyemtFInIm8EZ1qZMot3Xqb8RFLda9b7/o+Drmi0hOYRF9pnKlNOpxLPKj2T2SW0PWnqkkuxuzFIh4Z+QWrezjqxDcZ7to6Dugr65Hck/K3jWVEyVZj6tD1QbrheIXCvrWubMVWhN/FzIcC61X+5uzl2mTs8JF9Pmz8gv2DnZDi6/7RkqpCCu1CL/7Gx38+gZOyZaXoUhIWkAH1vSKaMo5X0xYq4T0KvqH+0UY8K+WscIFcA80CV2fcJuMZgng7t8g1JJSP3mikLjnR9cJtrVNwlWaHXffd0oE23rkzUnhjTA7bp/AoqGRa8PLhZtHH7rFp8eoP16weXTggWKIniPKK/pF2c3Kb+XRbCVM9GaDaEknXJXkSY+w6EgyEDYqZiEnOSsA+lqkPD7f32tUzFPO5XInVGGHlj03JIAT12tl2IX7r7vFCtrjKgqAA82Snt4nBRfpLKP3WjPk7J7KZZoVnq2OEy7xDtZAcC83gJ7cCwjUcdbn3gekHWJNI2MixRzlHO9tEV5vjYLFgtuwk7KHcnHVTHin8ppHIHodzARb8jS+mie/Mc/JHPjlcGV+/CJUWpUDv1h987Hs2uiE2yO846dSe5eANjqI2T2S2y3crM/OxSYk5yO3VeZwWUJgwSPZHVp29hEVWPt9M4pZ0MWqcyVZLCU7fhVct/b7phezotK6VwBFXzvtGMsgVVVJsr/acmCEhnwos25aPSt+FQUA+tIviwwOCQAPKoqiKNYnemKNMpRMWEvGjqMpW7+vRq1hcrDDjvsXN2aRiAW/Ws8OV9n5fQEAsdlg7OVv3m6nlg+HLjrVdlg3DjgvGv+1Fq/euuB7dvtsyeZ/BeC0/duM/5Qr4iinbgBhh/fnk1Z4KwDFd83UuIWc+asiZV3sh3ij2s7vq9GRMB9c7sDR12peMx5/3Rqm+tiKazArVxputOh9lS/ecCt6H3CEjV4Kom4hYH+geeIXxlNsNgj8+J5dqZ1Mkc7syg6S3DVwuWTCWcydJLndqUhwWH8Y7KBK7vpWyhQ280u8+r9/DwBlt71+j8dOiCSBI/UAHvTbFAEAtP+L/nCsAQDK1FTRJHqgkrOVnXpinaPfd1CvG6bD+jXl1UQ2u+oaqXJXakh8ipyjGNAeBBySJrKBbt9Dkox0kGREGUh5aR3//Jj/Z5b5howUEUef+tPPfwzgrTIA+Nv71yWqAmlx16UrPwaA6AfvV9m2dn18cmqsGJeuAli0GMXLF31lqfUtzuKvngEQe+4AEF3eeEjLNMZYoWaBFQEAf7V5YB1+/2x3IGrpgI0eO/rWeO3y8j934et+AOfOY3p4LDK07C/r7yvNLH74n3/Lt+sAAAMZOwhJMm6M0iCADnY2WQxe+KmAt6UrrFoM6Ehnsye4czRjrAMWF+Q6JXFNVLsvvdhEV7XvqQ9tWyE50u6tfTGhjRr83q1ZcdW4qqpxkvE4P3VdjcdVktT/G//BkscGVCOtxqnGVeOdCamvxb1jIomqWeEqVSt9T/CragEZKqn+vFnVTh1aXmSr+6kLWkIrE9f/TO3pj5E2d7v5gmvrc9n4NXoVj8fjNX1GD0he3eF5elJvVx/bOJN/6TS+w7M7GeAYDthNbpga1Js955rRn1Syv2zrBI1eWeEmXiSQN/kPJxINb9rzq+qIRjN7Hk4IOdKw6rghEDF+STIUXG/sKr2Nab0y48Y1RFVXpZp+Q6HeK3vWmDZahq5XauLPmmI7/af1J/+oLb80eNGaGU04JLs9h62qiFCvp0972NNGS4ZT9iOS5O7NelfbHKZ9Vhr27SBJfqZZ4RnIBq5qDJZaeYgkebmxNteYLqokx6ubp0lyS5dlkYxz3QeeGEmOBLbKXI9Y0MymylGSw0Ex3J1bSPKwuzOzrCz9gztEstbSoZuBGwiR/MCds0aZqd8zRrWnyepVOu5Jb4ycCHSSuce+0qisPlN5lXFLK9x8bKACbP/8BcQbV+QV6muih6f78ZPpZy3epPXDHyLbG/JUqSR9UbOb454vMkWRhnvcp7I74Hx2FieVjCzrZ0vG4VRNWa9ItrfzuMfJ7pGmYc/IcYvIrTR+fcc/9RVElZPU65+oHkrPVFNxh/xs2FNYWHJnc3dLRmYqbtv2nuqC6RRJUiVnVhz0XkxktALAQCpuzPvfy4YzquaNfDS4fWcy3fobDiKcYocOufrWry7QzE2Qgvq72B03krGP1qJMAWhal7a0eXLeg5xo3LN+n4Ez2EG2diTkPBimGlvS9PRcwJLtzTXag8puAB8m9Gp2ZZg8HJwLdlWS454KQ29aw+xGmEWa5fxT/9eAnlsezxqXksv4AqUbyn+upaKXgnho5e/09bn79VXXGFvkHFSWD41+pVRbfLs7yQgGND9DdLr6qzfhoGuDhVFXGCq/Z5V2+X+kHrFv++o0frcz0kFuWiodJSdO/Xf7ZsnfKwCURmp61Q2ggzM3+rJVNlNadGGWM4Ia89SnRL0UEdFpcrAMb7q+J3MTqGieBjt3a3rpok1LnzcVR5ESffxvgE+Anv/bKBnmqiTwsvdX2Xjij6fN3dsFhNkKPHnjEhkxk4ZzQGhMyNjCZ81WOIyBeaUsc7Nypl2+a4aDT4Qa/828KhUZnPe575USMna/F7kJC57/z88FJb323ZaXTEkd/5JL8ngziDMk1UHNwStAx4PhQHJvN/bBN+6A3GfqXR0rACifCFe4+5OlXz+cSBm4vTWVlLlRj52uBwAe+a7wLyZUnG3rTM4j7b/J3976DZnoOFx8vwwA3t7/uHCV8o/+KvxRCi7x+j1/khNz6cpPAMSebA9qDQhQxdni7yfskCIAUHBg0xkZXGJB0y+A6A0Nmv9USE4Vp/FE35VEEyQ5XnK56iTlLLFWxflmI4NCdeQWw7yFFu+7ngEbB0jhaHgVeTJIkipZBAXAI/uFf3NB13qmZomQ6wvgLo8eRqvrswvTC8Vq61qvHKu4651klhDuFKAculvvqiEF6Q9UgRq5GlfcpkQO39HnSikX0Qlc17RcK53BqufkakwtNKlC4n7BNe2S+mqqPiyHCkzfbFKFBL8LP0cuX/NKnIymzfwmcG++Ko0JSPX0msuKX+8f5QDlvxiMLjElErjBUblW5IfkrPkzwARu4LR0Q5J0+htWuMH/KcjvDznQ6ApTIuGvO796Ym5heeNni5KpBL/+BWfmFva920ywSVzWDVqULiCF6sypBK6y9q05hVVCKefzpD/2zL0X5hI3fsuo2bpO7kfBuR3gE75S84Qx7YMP7J9L3J4Wm7gCnvRLbv1CpN9LxZacSzk0mvitWjwXGq2fiw7enhpmZD5vbO6eA1yd/uPRtBXdxPuEe+78SJ604FUzv55H984Vu//Uln5MNnciMjduUXLcnd5wynnSt94xXCRXIvY8muGATHZBJUcLx3DKFbgnQ3HSwl22T2mhnrKf4zvTxjszI0BTOzjlLbifnzwayPwppXTzpND3GiS/qLC4GUq3U1oWS1oBWYjATyqtvoszOmDoQWQO7q0scjPNwMLf01llW5ifBb2X/NTXbxe/kUEFvIedqdlt/cIqXM1875znRH542u7LL6vO6Pfs+ZAW5/JMpd03FNbuhZFF+Sh1Yjz7PaNpOVlwk3EU+cQW7LnF/qLELu56JNCWb9zI5srRRAhTBtnFXVeeGKu/kvlOnCbXTB8v19TSSjVt/Tnu39yxOjfTlABw4s/ue83lZCU7SKrbK61dhkh7vVm+kXbAVTnsfcauYUfc2E5/thAqZzddpKHquBigmRJxbg51srkH+71bJVfrlLg+W8rmJ2w6u7ji6Ulxpbr4d3eUf3R/Ur9y0SudIlvdTwkd6FUjblNgTLLiqiTHf+DadCh7c/1GnKoAibh/VfKzruplOxzPAyPt3tqXLidrZCHx3wk88/Lr03X31mVef1A5HQqFPM2PBAS3TbFwcRNFjx0NXahdXv4XC7W46/PntLhr370NDeJX9NraKestu3LqzIUQMBYFsLwMN6xZHqjO4eeg/x85zodawMDK9wAAAABJRU5ErkJggg=="
}
] |
<image>As shown in the figure, PA, PB, and CD are the tangents of circle O, A, B, and E are the tangent points, and CD intersects the line segments PA and PB at C and D respectively. If angle APB = 40.0, then the degree of angle COD is ( )
|
70.0
|
307
|
[
"50^\\circ",
"60^\\circ",
"70^\\circ",
"75^\\circ"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAKUAAACBCAAAAACEfSUmAAANIklEQVR4nMVcfVBU1xX/3ccqtm5KnKxhM6zByioYabOMpJpgB4ym0NGgSUxjGgjQKmq0BSMZMZphM9XBTnTEjEQzmBGq1hg0YvNRqFoxY2Y0klkyXaIGiFiw4kcTEZIoPPf0j/f24+2+t/s+FvvTYfede+95v3fux957z7kPpAmeXACoJ4+2YkYBrQVy66kRrmFgEg4ctGGwMwfJGssYh1aWxzPMWFnsoGEhowim8X7VK4DWh4eHizK02vKoi6odrcPBJBw0suy64cDi5Kbh4aIM9SwJAD7OAS6dTxo2OgpQzZIYADRlYyhnbA4BIu27Aw01Tmhif0tjIx+4amYAwIaLUyi09nEBdBcZAprbJQCiu2pGAFpYMpEn81Oku9U41fcegAXzYnfLqqpZMu/f/wJ3tX8DgEltxr7Wc5ebgc4eAOMmYORjtolTzXerF6nq4z3HjjZfnjEu6REzxiemjfjsYhcGznR2n0x4fNYT8cNOEYDi/NI3zz1bZrc+t+Os77r8J83er+5tCywp6zok2YcFEWbB13ZMtZV9KRFV5Cf0B1y6S60zam54r4aJbNgav/LnmvkL5/jNzgDAiUuoQaDw/fcal62yDOdQL9PHvbx7libHdPzFT9I36mxpPObPy4Cn33X321deGcaeJMNSuNvAmrQHOt+Il7u1ubawTyQpJtu2nR+V6rw9PBShPF42TPz2bMV9CgPjrHmlwQnxle7OYZx3yrbW7tmOU6FSoWtUVHioP/FDmVLNKXOvRbHLBCDIloKFWh7Jck0LfSDm+zTXLbkemp7pdqR/GV0b+niFotbSGOa5KiqIyFOaRyQz8BywHIiO9aQIZckvt7vDlaio8BDRLfsh2dQztvJhGDRDek/f3C9apoQ3PwMQW7sstM4JSG858ux30apnH4JZtqUnNseFL8IAEDLylonEpCnxn46a3hlFggBCWDZllO6IiVCEBD4b3AchN7+M3Z0/9US06PnuKcJDROSOC9dvBAjtkohOWZXGnUOWDuNtMRA+WzIA1+dvyIbqKe60wsUKKfNL5w0YNl8gAmv8zvPZy4HIqwRvurN9r0KOtWn5RolJEMiyDFs1lY2tLetRSKrpdeplJIcAlnUf7ovUcYKQvmSZrJwwqv6dBv2kQuBnebrsA4vW0q/11MmJGWA7tLgtems4H8tLC/akaC4ds0uxztO3z7ketRmnj2XRimwdxR0ri5SSFuTLNwc98LLc/02ZtoLittvqb2vkkwnr3NGbbwrDZr/tjNoRtqJCcum2dMtm83joaMot3eO4FKItX5+TrvMpp5TlycoZw6yHN+lUGgIPEVGH5Uakx/EhyJbET9+mlLXX0qvPdsHgGACsXx5hHhQGMbucFxWS4vM26lYrAQcAVz5caUBFSrlsnROA8j19URk0OQDYuEi/KQGswlYZKgxA/DNborN3SETX4rQ0n+B2SUQdce0KmTss/QopmsAB2PvU/caeNOn1ojshTy+kzDhoTLUADkBdoVEtJTEhsylhA4oKdhnVDQAcofWbTMNtp67yXHA3EXQ+2aY0AGgBx1BXKDgejCDRWeSRe1TG5UXDmBxwcKHE8aADBCwfXSm7FGEL3zOiWQSHc0PaZ2zBVECorWoLGXQIQHr3FeMjJocTmTDuc2CwVRaE9HMGIGZGMzN8Aw7HZyIqbptFY/8kSybrOAzfQLRlNFCzrVVOnBWFLQTuIm+4WYoGtG0uuiNjsmkX+ozeAFxHhK0rBUqB8FIrGOeUKzG5XdsdZMCdm6giF/kH1HANrGZni4zUfl47rSBwHWoq/B+M44ojZ4vfVBjiAaDo2DIl8iBRlt9Ptz9ZElnbCxOdwSKG5DY9xCTgehMiDhJln181Y+TWQwPe+yqjpvZ0iMx2TS85H0wD94TPQKxps0sqCRMRYdlW2BobJBttfP+N+84cPgPDjmIHAHRKhEp4JnVtsMgchR1s880I8+TB5HoiIsotJiKioxbryXDZr1lPktR50W0zMEsXoOx69uKCEMfYBJeHPEQpwHTySGhIfRKH7D9IFfTFGSWpIrIxIbkdwNAfix1MrGlX9U0EziCk9T9/+hqpgmj4es39IdYIwqosogsoFq+OWqx/XWRdFLBx7gkqfc3WLLnuTjDsN4f1Mg0NDYbNkwvARX4/JNGNqgdnKzvJPkiULBzPphijSETc6O9hwoiw5j5MRA5vzRIAxJVcLN05frOMLxIA5j4u2b8bGG14/srdc1NFLmkMEQDQnL8f+3ryYvmflTc/Oua/oO/MhuevnPUSAIDnefA8D/C891L8EJxQgkD8iyGe8UiqvvDI/F/ul1Fqri30j+SsZ6wxigC4lA4AgEn8x5tMPMCb/B8MIPAmE7xiDvwI8CYeGF3cvu7dcRtCK35WTsDGU7vGuaEcS7u/0ngTvLaUggnPIcIDk3jFgOxDJ69PLgqcsBEAbDnykU/QNskn1s0y5SuhvElkZzKpDtcSkLilOyP/sb2+pRkDQOa6pb4Zesckr1g3V87eFrz0kzFmGDGAUYvOVjbYnFf8HBgy55V6L1oD5tk6exGXaGrnTQBg4k0ATDxvAkx84AcvFXPgIf73IbP+zO3U/M8CJBtPNghfTqfEAW8xNnOoFHrBUeYnkioWKtwU+GGSij0mE4T/gbBV9sxemlbnqxiz183fnIkL7AuiXSMf0M+SCetlse8YQWyBa9tR65pL4mXG8ysJAJpnDv26+G3C+JeToLdhcuJ6Wa5rq4Lkthm73ab0heICvPLU+wDunMyq+WYzGJBkh+6GSWQ7q+k3VWYvWAJ+z9QpNbfJI7r5T6cMJm/0JeqcdXDAs/t0mlEeMS+01H6a8Mq/gWl5y4B9z3mj8MOtRCKAA16U9csaQfou970znjqG9W377+z1OSoNRBFzgGNM1INBEL+2e4FzYu3bpbsfSkxI7iQQug4Y0EdEVYVa2kikdinCQ+QutE4dW0tUjXqixiwd7dGLqHhSFHHtFfz8FlEjwIoj51YGB8BSVBWlig7GfX1Luq4C2R7yvC1WnS49JgBYlVZuyHmmiKv7L1pf+iCw1+jrPxwIsM3dEi1eUmwsilMI7dAIIo8xz3MQAsftXksvkcvSbTiIkAMYkFS4OgoPDEBapSWl8YCjtMjwgpwT2nPFYbn9UYM49nkZAJR/u9OoJk54eHPV0hA/iFHc+sO2WACIqV1j1Mvn3YF5bswbBjVJQcCGKWLsT2p5gUFtnHcA21Ud1ThuhoO7t3svSm9XG1Tn60enLOpmcCp/e85Y3P6ufXassYBM/57btE1PKuyoaH9yoPupmoBleMraQkMKA3YGC+Y+H6UexHD7N7+fHzgolWgMmgxC4P7lJpT4vhvcflpkdUoFtU4jIc2BLGP2Nflaud6BmAAQNrh2B8mT1ucZqCjJXrCl4VUjHV0MvgZrqDps9knEv8tjq6C/iqSdqTFODAdT/umN3Mc33tscIvNQl+Vfmvp1IAJsSQCyP61acQcwsuF4u2h3S6ZY834wPFhZqLvOA1gyAJjS0jnLkKf4esbAqSSx5iUJbNEY3VFvIT6KuI9S0/U5DgkAWtKeqDfLyAFgV1WrLsWQPzljjXhyJrTZCThgDXdyptbBq22JUsiw9NAZ63olGmFZ8usSwx66oblyZVVA9nRc+pnmNK9vlrzCsDXNAOBEaqtw6EZxvNle3SpVa6DGiYgOWZconOVQGol68xIjHxXZM0VXqLCSh29++5jJTg2zjyuvpiadz45kJvrtxPXqdfqh6Ic0V7p67a9cUaOD0LMi+Qe3M1Y8Bq+YDYztkA3tiARFlgTbjvO8Pb8xchs6vDD1no4t8ZF+ChgAxFfl6zncGb5BXN0xNaFcOjsOjlcvtc7Y6V0nR1rSeohoQZmWFikg8vnxc+80DGTOzPSFyjjh9H5ta25utiwosGvamLz+s4ZpxKCijD+DylPuR05cnjEu6RejMT6xgjm9p9xtM2fP1n7K/WC5Ozi0IxJUv2+jr/VcbzMJbwywTaDYjHH2qRFCPpSQb9ki2kltFbAKtbqlGoP0a9qK/n57gZqTRMQAsXWpdZ8QY367M48/9pU0vm2FEX780o9U5ZQUUgt1TV4jwuvzpqp73wYB/mdrag1M0L5GmMcYY/erCPTyp0ZkKSEIMAyWBKR6w2K0kD2c6yJ6cYKqiK15jDHGZkZkGfKwrz1ol2GloSEMDTpAmx5dFT6XcIPDuS6ixkla3khFAFDt+I9GVsH45ziAYeJX4XMJI9XgoGNo6+MPaXnzDwPQNfDoWJ3DpKgFR34FABPU5GbHs1CTMKJEy5t/AGDTaqgJfg2jZagxBwC+nqQme2c5W27X/A6yt6rZTw2ORZcyzAC6Nj+hJnOTi57WzPJCP1GjqrpSxscTAKAka4GKvF03Hcgwa2TZ9bvV0jhMHRh6MxvoYgPH1WT+OAd4GSsiBzYGYBXgolxAp7POQ0TUKNy+Xl2RXBcR5W5UMb/8/6EpR/h0Of4H3EQ2XZbwT7IAAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, AB is the diameter of circle O, point C is on circle O, AE is the tangent of circle O, A is the tangent point, connect BC and extend to intersect AE at point D. If angle AOC = 80.0, then the degree of angle ADB is ()
|
50.0
|
308
|
[
"40^\\circ",
"50^\\circ",
"60^\\circ",
"20^\\circ"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHYAAABzCAAAAABoAal+AAAKkklEQVR4nL1bfWwUxxX/jb2YVLr0qDBwaS4xYBNf6lQ5BClOAsV8CVLAjYQToDgFt2CCTETSuBIRjuyokaAqVLZiUxCOMJIRGIxIBLR2AsUEuzUCeq44apDPxa4vFOq0NfjaYrzc6x/7cbt3s193bn9CZufzN+/Nmzezb/ZAY4JCADhuvz7GhpYKj1ELArarp2FMMNr7CnLBbNdPmZYAAs6/7MI7pc87aDYGiFId4EDFY6NkYmgNUN3MLvtNxoKWof++H5tyWwH6P9ICZ5YBX96cDrJrVCnQxiSj1qUQl016RWvKFnKnbk7UAgAooCivkA9mdzb4Y7ZSqlGF1OaWIabNXqMKY0+r6bmp0bYZA0hNySAWvPvF7R42eB3AtyaTz7Ngiu9/SksMl9razs+cMOcJH9w/7Xy3quseuu9cGgoWFMyfbdk6WQQ2u31lJ4elRLVve6VSMNS8OSez7E+mtpwk7XC1L7sypHYbdAUqVVqKEnVvz8rb90CTMRa0g5WejQFN+oF/F2loJXRu8OwaMurBtiXHbCDy/rNfXT7g15RVucoTG8w52NmTUzXC7802rboCT8wYDNZ6tUUdtY3pvHFm1Qd6c8/wu3Oo39DiWZe16SjRsLeBSFVy3Dy2560Ip6JkCefmvnpFtzgYsCV/PU8rEl4Kzp19KVVpaz2dCSId9Q6SRlqdIoiI6KynIaEjJ7RimX8gIXMgs4W0tJyFGvJtj89yoOR7i+5e9Cbklry+VJfmOP/szq6VEX2WNa2ycm7MnnfMlVBaE/6lZQ9w/yYrv1/fm10Nd3uaObnBxwPyU+LcklbrDVl92kzBeqwAgK9W1q4CxatwpHiH36olA0Bs/ejyTo2ubM7to6J1qzjzprgnq4MTAzYuWavJsUlbNqkKSOBtV9yTxdmGAcBu8b1Yjj0l1126yMmNrK3Nkp7sHFTTj85+bp0j2nM7OxNtWOuebB2P3S1zZ3zHAW1v8SeJ6xVoagvYYYth+uGi38kd2ZnbH1fM4eSGt9ZnOqNlC8vegm3appEynqX+aM1STq4ZCOU9n0mPZkomBhCLlJ/kzV3NwClnnAwM6XUbg+MBc2kZAIYPlut2Olnw6xVHxjuilUY+f9ZuuRsTRIlo0H2X4+se+Hdpk2bOUY9Q5jCRxQ7EANSWTOaMWj092Q9XSMhe8bGVtFEiGvLc4ZS0u/ris2xIGyUiCnkfWEjLAOxbNSWxILJacU+OwAAge3EDrBdQw0bpf1L/gLDlxfWGDSyxoQEw3fiI4VK6X3pm6h+wpvNdybNifviGjxlKSwADDq5NLAlv/dihe9J3vOaQiZIZADw6Wqwdh/S3ZLVT96TveF2D1dxe8WapjLKGURPekwor4BdumNASgLaVirbVvOsVRzJSo8XyNhNaRkBbgc4hEMNIcYXfqYuIxwIzWjA8+v3LcTn8lzstbEQHCi6Yb/PXcnSHCmLoqA1yXu7UYijBG2OFEMOUCf2mJtWbo0syRNaYuCfGeeLXmhoypb0WH3TRv9wZsVpuEL6gubTT9Ommtn2A0fTJua2MsVJzVkztMaUN6aUNb62fSDCSRcotf2OYRr7YbE7ru2nmHDGkP6aWrF5qZisAUH71by5k1JyMGFYDAFfE0JIZgIhbm1MTPg2Lk3jrHltn2AnDpocalzbAE3QFTKqezfS0ExWWEhFR3aRh0/2+z2tKC827uXp6ioNc4xkgnx7mSjdQhaXGkWQioiG3BW0M2+eKUcO+gpvTgXy6Jd2OmN9DRS1pXTFdcU5PCgb35/mqj2d62mVpH+aWmnVKRANeENHo6Ci/2DugyCfFnng4vTpz42WSj3DvFhDdgoWKKRrMEwAIooE9uyKK2Rq4p976Rt+GQ7Fz+i9eZUDAb+WlIo+bbgUT7skP3Je7yIn6v5S0Z2lXFPvUnE+uNeRSaEVAEAEBIgQ5CeSEZkEAEN7aOEGEoGSLggih/ePTy6oWAcR0S9nWTVAoV6EVRAGCKED9B1HAjB7psWT1onQmEhNlTvHO0YbHtlS7AYA52gRk2hlaJYuynCryPgEA1AycAVN2ZgI7fvjKumafkUHYoV2htlXsStCoaXo3AFyvuJgRG8yNuubFG06lwAkglCPIQsbAYum8UMSFkeIKPyBV++rER9h0fWJKnMDdoaw0KLySuII4KuD74xhj34wgY16HKFS53gEEURRwunjmHw4Gt03EKCCCRPPOjdH2XaQBgm7wwjjg08IA0Q+nRzCvTeiobcwAIPS/91T1ytD+FwBBGAdBwLikZT6/UPOiqfFUD5cRERVuos68iLeBiIYb5k6tNPSORGT7tZqIyNtNmnUbw2+fBoAZVzE7XJy/Hh310hIdI3SJPvXAqtPY50sAYPpVpL/wybWf17vfrHYnNE4C8ho5vIEfqRltqQKAPz+D8NmvLVlzys6lnR0ol5Cf8Wm/fMkFUP+e4ygp+/SUf4xIFVx40keMR/vrbABs28KimvDpp+prAdj0tbZwaAMYL2TyMDdAdAsLKegKRP/JDZmkYMlGIZPWjJszGZt2/NzIDyr8bELpLifXwdb4sHw8YBYgem+uSER33PbEtR0OGyKutAo6PmpMBzBlU+VYCrvjbWktGg1LPT0NPXXZqI5zaduypEtdQ2nV09PXd75lVMcxHpXVjQeBGzIhANTU9is5ydYJdbGC5EEAdk9bLi9FjiaisZs7IiLqkS8UU1byWe+AfJblKZnFxZ5yGovCalQqBfQWN3tlD8mf25rwbq1yFm1f+VAZUPKILNut3jlwaa/vOPKYmmAAyuYU8+o5wqPXitRrIC7tSPH7/risusGqVGnLhZ2xBG8r4MSe0ptf/PaqJPmkm476zzs1eRxabuwp83QBnPGqexYDwA59eEEbkRASqhrEnnLPr+j6mRNanfltbbug6zQtoapR7Ml39eJraiTE2Uq690p/p16UBJM6pronPYjc56bMC2vGZxu9+TNPueJGGudIdO4pAbXG/srYS531NCS8ZsfTLi4zYSU666l1SrtLO1SFPy0mNQDL0Pii9ubZV5wouCPvwmXefahuZOaxJ2m8TZ7Ndyjxs47KSopSVA7mKIUDxd4z3F50JqW83JmBvd7zjefeCesC+UoRGGOIRSX735yZHfoetxctLVmGxgEArp033C9s6oqR6bhVL9FZkj8tVGV07amR3CT2FI/hal9OZUir6MoqbXn39qy8ff8xbq+hHfYmGjoHUSKiaFT+BC+i0lYqT9IneN3xTXRQPzgk9saD4zZUrIXmg8PnP0BV4D5u/PXSULCgoGAWzF8kYt85nigqS+YObfBf/ff/jn8PAsjLhM+zYPKzNlrFpD1wO7U3nQXz1UezmxE9besUf/KMQEJYzALyAhrdlhLnXsYWjr7t4MNUmbbi6RwoH+s7Rh/7I9HBjCcc/q6AsNd/G0gI5NkDjS4r3Q9M/Um2g0ZpAFjf8IuTXEjyGMwO/GMPAGTnWNXUIkpEZXSr1HBlW+FhLv8SwRRpDNhbx6YB0t7nXMlf3tRo18HvCvqGiVqmA2ApfpoN+6MW0FdyHuiVFl0y3uLJ3F4A6LtS5KTVu0CACoHS5GaWiPbiGFFLgaM2Y/ELmRbIo7aJKNF/ASFC6BTXuwYHAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, AC is the tangent of circle O, the tangent point is C, BC is the diameter of circle O, AB intersects circle O at point D, and connect OD. If angle BAC = 55.0, then the size of angle COD is ()
|
70.0
|
309
|
[
"70^\\circ",
"60^\\circ",
"55^\\circ",
"35^\\circ"
] |
A
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAH0AAABYCAAAAAD9iqd8AAAFkUlEQVR4nMVaTUwbRxT+1lqpJk2LLAEhUkvqSC3cauUEjYrxoSqkKj9q1RD1QnIqh6pBrSq4EG70Ujj0AOmFCCHg5IRIKfSSNVQN3JxLa1IQKH8CIxWnVRtT1vLrYXbtXXvG7JpZ88ns7oxn/c18773ZN8MqBC4ICn5pBWYannzObyEDPkG9ohx29SWJ4p8Ejd54AhLgsLP5byJ62ZwUtZAAldsjBZhavfMaAPXjOm9GDQBQBJLqn746a+uNJxDZPfPs7XzBK3Ih+/OnXjmaE/Y33txQAGD8n5Ng94/P3QD0rrrTXrILI442aoHaXz0MNyIS+XxlIFLeCu866ITds4ArzV7zg2e8R7Ov1/z2xcGJsS+2T4Yi257Sl4iHnihRPBTNnkjEHQR/DwCpa02jng29hPJrjQEAgdvVbS9ydZKDrwS7FmbnwZGWNbNOdvCJjRLWiChLRLQTHjMr5TqB2O6p4Auzg8rB0M5EQPKwgVLKxyLmlQL/ePel9Yqyr7RaS723rs7LZxcr/5YWhDWlS/WfHfWzS2l5Hm/sBADbCAIWJ6fAfEP7LrtWpIWeyB2n+orrVps0ua4vZL88x6HYD49K5CYqVt7QdOlDjlCB2F89KZlzjqBX8ZDgi2goLmvkvLEz/Nwu0KQn2j8pbehF7MRoFouENx09qD3sl5Zz8CVJV6eJhO410bwlR3kBu9Za8q54KCqFnaM8ACx05685CN2fHpIhfBE7i6ZYBCUn1MDt6rZdCTMeV5H9ajpyTtFCq8dWns8+1edgPrPkHOWCH++xsIP5rH7pSW/KC+XPOYyouebEscbOZU80Ob09EZo7DjtX+cWiaVaEptWFgWNMfFx2e1JVEv7ZXM5RDniCVO+7kc+Sc7h98PPYtbC739gPD7tkNcFT3lzEOEVAU3pSVNbMx+lRWHPQbbvIZeYcICJd161V+/Vp97+z1TxRBrsPgArbXnGs2e9exaD28Kr70OPYfaUVZSSO/olwGfscREQ6U1/XdSJdb0oQHTJj5G3Crowj6TrpxTrG342Su3TbZDf/dNpqJNKzRoEMFt1SZh3l0e93D7qgJnvEZVQAmeWLfOHV/IUKcP+rYOQczp0mx65mjPPy+07vLQQBgyMda26chsgQkZ307Ot7FjPwlLcUONh1k3P4YCgONaMCUOONtYCayWTU3CkDqJZyBhkYHw7OuMk5fICqmroBwPJFAFBZJTupMBupqsoO7MOFf7zr0rpT2+dU0ImIssY0e7xVquOcw9y7yBhufFC/63eqmxjpq2dHX3Hge6bPq6oKArAWkkCOqvmG9qSDdtZ4V4i3di0PA99FYg6aFVhC3urcSc5R8JRJbYfkjB0IxNBzZOjZOzN3WdbQiRzkHFb2LFHflDzubD7nEAVwwW4h2yKUh4Pr/02UCCK73bcVeeQEAP7JcGSbSDjx2ZQYuy5PeBOWfY4iA9jHvlL201UMyz5H0exnZ9cihd9LgJlz8GAVwu0ixjFE+xy2sbtdxJSCzdHaFgfHeI1s7MsShc/bmADULz3l5hwWHf4sZxHjGIX7HFkigiUMot3e8BoMidBsvsSOvpxE5GbToBwjND1YGDhgJTK2An2WNksd3rCbLlg139DB0n1FMarzMmyd80Z4qw0eNGoWc2R97HWy9PdyPV4ApWV15AYAfKP4FKXlX+bzh53DRPWekzPUpIno5hV6eeEKs/utu+8A417GmwXTO4B+7yNURVgavfm4E6T0VmjsHQAeP/oAP07f8QFIf/nVs6B3L5bwcP/RGeX53nsgom+TG43mO3wevuZgwWHnDP1RO0wgugngfLKC3EQbjUmir88nfdjcI1qpOwXAy/d6CoS/UAd9o+6UunntJyBRIVYD+r3PgKG7M6eB2tXDzpz0lQEA9v7a/8sHszRo9F3xAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, in triangle ABC, AB = 3.0, AC = 2.0. When angle B is the largest, the length of BC is ()
|
\sqrt{5}
|
310
|
[
"1",
"\\sqrt{5}",
"\\sqrt{13}",
"5"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAKkAAABJCAAAAABj+llxAAAGLElEQVR4nNWaX2hbVRzHvynzLs6HBucwKrhLx2wYyC4D9ZYxcyN9SH1Zhw8LSF0HY6sDZxWEioy2LxtDMBPU4hBjH1y3gUt9yvDBJjBJV+iS+tIKm0kfpAUz0j2M5GYZPx9u/twk997cc25S9UNp7rnn/H7ne3/n/M49ubkuwv+Enn9bgG22QWn5PZfL5fI9cOhmB7/pVhrpLe1QFCG7Tbv4vufcIUwfXuPvCuBVmo7/sbboliD1auXELBY9PrlfEY1aPyn6gM/u80qswK40HU/EReXg8eYgbq4tJqah+FvVrvTuAnbs45VYgVFp9tqsWzkR8RhUeb0KkI0npr0nQo31sSAA7OfSp4PsU4go4sRq22bJMU8oqisXB3NERFMMPRlhX2khLI4u2Gw7NyxFa4XsWSKibB+DKiPsKi2ExfENBr+putYfPyeixyODTLpasal0jk0nEVFqWEoSERWPLBNl+wYfMdo3Y0vpqhJi1UlElJJHN6hyt77JYd+IDaWFCd8Cp/fI/r3tM9Am7e+ma4HeVYVzYRld8r8R5rRtod2lzMkpR6H42SPnHTmo4rLe9RU/2prxOAvFZuDBDcWZCw3L68gHZzoQjQ+8Ex3wYqk0ryx0oAuiyIHXM46dWCnNSCnH/jWi8qsRpz4s5unayTmxE/MLAOLnXxbCHmc+TK8ho2SchkFHUrkiJx15MFWalzu2ZhMRUWw4rVx04sBs5S8OzficDVYTwaOXYw8Dmw48mFxBMObk+g0Jj9OCj9+tidLJSW6P5gxHKR8cL3BaGytdUPj1mJOXMkRh3vlvqHRD4tnktSepFIhSEt99z1Bph25NrYTHiagwNpznsDVSOjPmTI8F2poa9XEsrQZKuzX2REQpSetCnmQ2NVhPp894Hax61kjKZQDwJjGQZbU1u+wukfdVBiwpzbFZtirt2AbKmPB45SAfGmVaWluURoc7IsiUgljLgojEklgtSrscUl1QiVZZ9izNGTUvSs7zxpKx+do2xRd7OGR/z9KkvOshbQgqUUyyu2dpUtrdxNcoePSZtBGcsJdYTaN//XjHRtkUd3BeV/LGegP2nqsTkaqqVeHe7t2e6sSCjeWUFLFhBSKimtBmH12iOR6F0VC+rVHj6G/H4AMIXWssuyNHA4ttrYiIVG0GqOqePGkzQW34qB1V/pOq1seBA4ONeqbtnqUaUwEChN9f8pQEoQSUBP0HgJIgoFouoSSgVKngQk4Xm0+JSQxYL6360S/dVoCSmQKhfiDoSjy4JYOxngoH5q2MakqFEpDwA4LgSIQ9/HGDk3Jy9mRLrOv0APUgxhVAX27AwWi3oCSMznqi/oG0uRFRNWvUlERklFFq42kt+Uh1kFMFt0nFqhy2yKjacK/5UC0J+g+h8bQgCND+uHGLJrcl38L60JZxVT2jSsLKQf6+GfGZ3UDd4Q8HbhnWVJWWSkBW7IYoQ0yVAsGFLz81SqzaeioI2uhvDwdXzOu8sd4howvRzVk37yMjdtrsLpNypOWcfuUvmr720HE8W5bVcixxsrmFTuk2TtO2eCL+lj1LPbwZscNDbIHpglonIzd+HdTFdBsHH26L22YFMdn4CFundLN7D3n4uDip37M4fl8q/dY5py5MUZKz79eDX58IUtd6dEZl261TyvfI/Jjbk+KxY0b/G19a4rji4g8yjxk7bX41/29w9V0MXq9l1PJdfk9LLpfrDIuB9lJi1F7j9X0Jou9eq87T4pFl7hk01Z+j4uHTLCaPR27SnT22uqx4nqrG9NJTexkDWWP69t3d2PmF4RcOM55svInnn7XV9KfcBQDoryi92se9sC59fWkXs9FK3+7yef8hGy3Vb07tBoCQJnA9d0R4mrk7AED5q2OHAOAek9W9K64Xx7+103Jzo/KSZQ8AlK+cgsgeGADAkz+DAFC+5WcwKv+yTJeDbDncAwA3LjwjlpnM6mzm9gLA3Vssyf/X3z6888qvdpp6X7gPAOuxHgDrOaI7vK+Hep9bB6B+fMzOpKvyW2BXfVit2Xn2kyiwdMoPouzbjyovNHIxNfiIsn1sa9SJZSoe7s/Za30HwGkiEGHP8uMRgKkvfbcjgL2VsQYAgPXlyX8AfRllAFyYBjMAAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, AB is the diameter of the semicircle, point O is the center of the circle, point C is a point on the extended line of AB, and CD is tangent to the semicircle at point D. If AB = 6.0, CD = 4.0, then the value of sinangle C is ()
|
\frac{3}{5}
|
311
|
[
"\\frac{3}{4}",
"\\frac{3}{5}",
"\\frac{4}{5}",
"\\frac{2}{3}"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHAAAACRCAAAAAA+k2OwAAAJuklEQVR4nL1bXWxUxxX+rnGFRakMDzZLS1ljkWR5CQsP9YJaLYnaYFrVrB9aYyoh00ohVtQG4lTFSLUNreo0SoG+xDiq4qZxYhQJO0TCeWiDjSNnyQt2pap2amIDAdbLgw01Zbe+2/v14d79n7m/eI9Au3tn7nxzzpxz5pwzY4VwQok32hz1L6YyR73VA//2iOcMkH0fPllSwC++bPCK5wgw8fNf3N5SSsCutx/8Z6tXQNA2vQmgNm6/v5jsc3g9Tm2seo1XBsvtdpz52TCUKa9wsC9SVI0vN+gy1byIVHHmabyTM09TasDkuTnviE7kP4rd1LwtoQOzAPD06iQUKJ4YdAS43pecBOBJzxwqzW9bAW8sOgQM+oa8oDkHROdrydICBnf1eAN0ZBb0zzLmf1Q6swAA36FXS8OhpukcMrE5VhIOlbQxVLz0ey8MunDeL49OlhYQHV0lBmyMX3Xv35wDEnijFVBcQjoHVIAdNUMA3AUL7nb80yeScOnEHQMSBGrqz7kB0wdwQv5Z3Qkw5k/oX1bO8HNJge+ldv2LY3IbtbUOzcOVbbgFrOhqR0k5RMvkpKv33AfCvz5ZYsDG5EelBVS6T5QWEMGnzrt5zY3hG3RXt/4SGL5BGyMuIjhP6Vr7X+ZLC7jh0GulBUTroGMWvQGuPtMK3aPa9qreAJXGG5O6R7XtVb3m+L9rd/iCV8B9FYX5m4VwPVcxOk9lUV5RFEXZ8OnKAgbrziEdNL7eFlriobaHKwqIrleTAKgAUGeeW4v9X/xjZQF9jT0wtPTmtb3A1NdqTft7cN4GJfzp/K03tMQxdJgO8RgAefqo/rncAKBq3HwIz4Aamdg+RZKc2WQBRnrbngB98So6dev/eNPT1v0fSzWx8cYkAHX4ubU2OnsVKUkyGiIJWOgLSdJ2CdqU6h7UTKy3t2E8ngLt/Ts3Z2x29QxIAJ89+8emcdsveF/D7tBsOn+zJu8iXdz3ILoFvhfsRv4uOcykotHAMMlcB2dO3kSqsSOUxkk7OAvyJtL4HkR9hqSOjU6spEhJkiPBkZxfgxE7Q3gBPB7OWTaNDI/QmlyLlPO7Kkd92ZhJIc4eW0mRDgeiOczpFBm0HsIlYOJX9QvFzbMB6/K0WKRWfniuft1H64sfb7FToHLD4WAwKm6PBQR82+HQlO3ksXcuh8RdfM+fKugs5FBV1dw56Dqw3IDiDbVmlpyqOy2eu0Y7Dg4kqRY/70U/OYb+/Kf+WQ6EJszG62txB/hm1Tg1si20lA84daTJYpV2mM4nu4apVAqpVApIpQBeP9X6LSigsiqV0w78ryl4fj1SSKWQEq+QdYEqzaHxXyVVaq/UxqmSjxpCSzr3ekvf6r9R1VRV5bIqWgeSZOSCLQ4BIFUOncPk5bpqALgVzQn8ypOHP/HVAihHORR58NX5G1MGM4DlhozKy8tx594TAIA/rX4RSKv49K5wLxTr5NqqQEUa0lGzUn20s4NU2Yt+jWmR9uycouqfNWSuClVbp5g/aSJSkGkrNIZWSfZWfaKyDe8sq8YkFg62JkjWzqi62er/JHRUYqhpwDTlDtAGoJmZjWAiNEDjdM1GXX0hYGL92dOOVK4eqJciOb/OvP/nJz9LTsfifXtC2KNsF/jtPDpz64y0LQ2Yyrt4kvj2taoPduP6yXcALP60ZvfHF2tWB3y+kydvK1cwGTwQ8ZkBJgNXN0h1S8T2WG18pgpAaIlk9IlnKyM98yRJ/5xGkqMv+MI9ZkI1CW8st6f2qh19GW+W3fFHj2yTbe8ayeCEC8AlkvNbK9/OeZQbRE1HwtJRORLOYNsHJCcqVx1M5r6VH7WNBOX5oDS8EQBqmZl9Bz/Kn2jm7Mno2dEkS2EmgvYB0yPGajFc8LwoexoIy3arIxKtkosUQLxwEYrTtWhQkoXL8jdpTNO16WVWm3hq6gYcGjwoLgr7ms9CGNoIp6HdDe0XxQoi1xYNJ4TqmPDfFQ0tBhwOnA+KJCLMgE8fFZ9civM3IeDxvfPBKVGDOOWWmEAi+E97gLFQN5sGhGMIAbWEeHZiB1cMeGFbVGpFksKQzHWKHFwWUF+GxNHIAlknCeVllSiJ6xTNO2sWCgDM1W8eWo+hjXVScxBShzg2DNYIblDlcfhe8FOTCcs55HbxG9dCRbqeAdTIhBFW5yyJpacxSLaKxeFNjtJMhXp0iJY+ybByQK1S6FO19A2q7MSR+dVXN2E8E79sCsjDkkl2Hy94kOYw0XJ4wYA2Nk9ngANN4nDOyN+yjYaWTu8Kv7XO0NSRsDMVJQDsvbIsbKw43gXkheskqfXl+gp5PGLCobxIUzBcGYDF5ivRQGYGyamgMw512nVV0lBgo2XA5PcjfRXZrStmGnKKiARQHZe0Ni6O5gOea+1rArJivlnjFFBRAHw9BsF+S0AvUGVaytonRwJ5+/piYSBvr3i+IQ5BKqcADNYMZVqI8s6Kgj7xasFLin58ZkJ+2X1lBT2hfRXG+ZuC8kK8wjWkAipGHjp9q3mvDHDi5k+2AoJ5KcTyuskAfnmaQOivZUCB0JT8BwqgjCmK8u7Yu7jPJRkeHuJB+u0iWvffJPD6uWY+Wn6+eAPuOVLwYLmhNk62YZw0yftmN8vbuEByuaGfbGsuBhw4UIgXWiL5KGT+lw+jYdNmcuapefZWjZfpF9VyyBfLl8db0T98FcCqHxYqUz5ZmS8vf+4ru3Nvd1nRTXH/jbw1VIe/u1sB8JUT5gZyf50EyPhMXernv3o6BUdBG+fzlj51Wy+hWF1HiG0QP8/4k8+/h62H+u8VA1Zsmc7l5c6Xme+mHuDKMyaNBC7vrIY6U71GkFtEPsjl5RvfvA4AOPvQlMHkpKSECgBQoF76AdD+4YtrBYFwwQY8hg5DpyWkkeSF/eY6qk92XBzqF4QYM1XZs2tplUYeBxWQCFAS55uSz+5dbFF+2PS+yeKL6WqNmRky95toFsFr0glKZGrniEQnIeBgxOFd1WuyEoJNQLM4ymv/4jUksoGPzatVQzVBex0B2cmMrZO5NCXMTxbyqQhQX7tYsCBgNiPTgqwloEHRsO2LjpZnI1aAOls2z5DJiZBZidsOoEEtphXRDMVkpSjHgImW3ExLy/vI0oShMLbN1qx82d0iWse8oYf3zElm4gaQffULGgv/PE7L+dUjOpj1AMgRv5nGT4SP0PF9fYua98JR46qFMW7O6LGmvGsDjwmQnKqvHxRwMX3c72LXtANIDkcqW/J3n6mOQKA7X6FsC9bW36EsXrw4sn1b9ZoQcGMOV+L4cXPA+i0xWQJSAUBl8e/TseUosGUznvG5RgPwfyQNpg4cRZXMAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, in Rttriangle ABC, angle C = 90.0, angle A = 30.0, BC = 2.0, the radius of circle C is 1.0, point P is the point on the hypotenuse AB, passing point P is a tangent PQ of circle C (Point Q is the tangent point), then the minimum value of the line segment PQ is ()
|
\sqrt{2}
|
312
|
[
"2",
"\\sqrt{3}",
"\\sqrt{2}",
"2-\\frac{\\sqrt{3}}{3}"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAKgAAACCCAAAAAD3F9w4AAANeElEQVR4nL1cbXBUVxl+bhJNgdSlGstaFtaWZbqYNl1Iq0G3JJZVUt1xYg2m6WQsjlSo6BgRP8ZGAhpHnIYRLR2jdMZlJuhWsEmHUFKbDku7bcMABjW4Swka3DgNhBkSkiwbs9nHH/fuZj/u3b177w3PQPZ+nPOe577v+X7POQKhCAqyj2f9wxf/egPomwZKKoA7HlhlrpKLQUFRRv4QshBNSi+OUz7fmcia5SvuLwUqSoDxfgEjgeBI3x0PVlc9aBAnWaggGsflI70nVrlc1cVyL6d7e1+7XL2+zmIYs3RQAbGkvyQnDjhLNnlHlUKTJEc6GotdnumsYTRDkWgK+hqL6zoyGMQyA0543CWb+vWSkoMaoj6XZX92XZJM8B5pW+Luk/sIfchGVEysx2n1RJOZZAtMkoy0W1w+3czSkEujl1z2F+Wex5R5x0h6PuoO6eKVgexEp58pbdMkNhZtLW2NaoqqgKxEe6xfHtEoN8aQ2+6LXxuALESjTdZeXbK7Lc0GsSRZoFy/f3z4b+s11s3iz+f7zzx8xagmVFGjXeZ2A/TQZpaMoluxMkRjJNli69crmiTZZ9VWGjMg39bPbh3oMek3lgDwak31L2FAL0qW6GRD9HCJTsEJjLuXHpTtx+QHucJ0o2pRt2E8Yeqd2jCpX4wM0clHyr2F+iVLIIu7St3TEOsC9Z3KdCRMn8hEs18sPqyTXDpm3SavXhkJjSYy++YZL/R8ugwKu/77Hb0yM0z/4+DhQiTxNgTF3a/t1Sszrbry2sZI4xq+BK5YevQJSCM6WNqvT54i/GZ9/b5UohGHEe2mPPY4dXX7Uiv8rWO6S6cyHnX8XE/0ZNY9tgl9WsuKUYtfR95PJhqxGj7SSUKMnWUz2qMnV0+7Kqt0WjcbBNQu26sj/hzngFnruEMthkq1l/wkjW5tvlO32rLD2vQt7ZETlDsdho4aZRGxaS4Fc0QrOo2gkgMel9aYIBljjPTZDOSjiKi5n6SWJroAgAAB2NUMGNxpkkHhD3YD0NQ/kT7PZ5vnHBoT/0ckleYNUaPgb3YUzq82BfF/cdPzGuOTAoDxZSH9o05VGL7viqahXoE4GPGuvyU8CSx1dGkqCgWiUTxPGs1JFgIgfNUDCPlTFbt5wUpt9tCCcUtAi0dCbEJf3njLeMJU83LSnWrNikR9NUbTyYINbybdqK5QBQKY/dCwcTMjOXH1gfc0xCoAgLOrbiFP3Lk4KF0dFIRHo88AanJAAQCcqM4rJb0tQ9VJAMCw8HfywPvuAtTkAJHop/NKSO/kxCMnCCJas30vYNl5j8pYJGmazzFdJkasJOmxTJGMeQLqIoHkqCWvdHwAtudHLQ2mCDlTvj+vOAUALqxQazQCaGmc4kzvdzWYPIG7B4GRv98DNdk9HqIAQGCl2hQEYOeZ0EIUPfensDaOAABbvNiryO7xEEUALtjUyacAvPHTgAZmabAFAXP5vygAw/94VF2cAgCD96oLKwBo324HgH9rYyjBHgSKtn+zB3jzqVw8k01/7Q7VScycdwEAXv3yQoBaK1TTdQBPnvycIHQdzxW2QRAEYVkYIOnoV132QgiS5EmorFTk4auKX6kY5DUEyJ2WyQIA19Vr1Fz+LwDRb4kZQCtM43FbiEUlm2WiM3Zg97qdBQSmFqlOoqh2PzD8PpeeSSTg9jR3Tray//ZyELAFC4S8NIrdJkFYHmgDALy+avVb+bMEYBq78qLasK+7IAD3xAQCBTFNye16/hosX9MQ8fo/ewvv3ZgrlEDg+q+in/QtBNAyWQSgYNY4/1cGJP9VYmb7vYF3w3e//4dZrE1BCk3fuR/NPLwQwPBPXgHJ0qvaCm+v3eHPL0b3Fovt2/7YoKrpo6HK2jF6nifJhhqCpHUob44aMOmtL3G0DpBkv0NFeK+5nfxfeYAMoUbsPeVRj2pFqN0NV3uI0vzRupwRIlvKBkixh41XSBYBuH18/rIoAAS7Dw1+/vEOcYpDAHj9A7minK9f+87twLq5GrYIwIeuzxtH4K0j3ZPultrkR8KNxcrhKYDCb3ftq0++B1AE0HZBBxHFpQ0UMHv0WPdit7ci/VVArl2jAIAQgImvXOmzxh8LUntQAAj2izqIpvJMagxvHNq4qHXVicCzGTzlu2sCAAgCcKrc7l+e+Z7JfQRdSO5gDO13wf2Ckpcla+ltNcuuttIwZspEah8odr61zNTonVQOb4oovhqpcskvrATJsEljjZ+glnTt22a1bOlRfE3GR6GygnrNSquPQJKf1elLjyNyZFOpvbk/VyfTW6/wIrrD2qcUqQgA1/k26ChOEq4d6zq6tq5ZxYhWab7jUr3tb8rzyYyRJ9cyHA4zHA6T4TBJ8TLxk7iS/jIcZjjlewf3OQtrPdfUqJ20B2R13mE+IF7IvgVJTpgmKDKY+5f0I93EGGeZxrS/2V765J8jksMqJ0bMqfdinInNZVmHNwUAULj2VQC4uQDAzZsKql8QrzEXYAGwIP74L1uX1V5vH/U8VgwIaha28WiaD1sAgHMfLzyTdXhTBACo7vnSgpsLCIALcyeVwOSx7qNLn+gpS00zB4RXqzMf/vrnv6nNEY8MMxww3WQ41fqZpmdqgKHfueHan38Pcawk7gtP5JOxWmco5YEMIBafys4EpczCFJYex6TiNhXmuT0Vtz3WMTYnR71z82BN+hO/pTm321DyLrfXinxUpXd6h928uTOqcYFIlTctmRazGt+4RHSsZCycPWAcnZvNtqY8RyDJCKW1nyGnW8VmhDl//cbnwozlUFFsrKO+xNEmW4uo1u6ezSm3x8z71AmAFCq3dznU7oK7Xe82gFTvcqTJdlpMPycSKyCqPAohYiR5vtVxe73XgBn0fbVJN0FHY5Y+VioSRH22uc9K+sAYY/Q32SxbuvUuLIyRcysgSJId5kPqo8+tKVnTKfc+emRTqX3HaU3UZJC0pmSi0ZHPlCAS+hNX6aQ016Oeutsq9w0aQpFkyiqd07amRPFXY6ukBVpVz6W8GdpfVVh7wNg1W62JHPqsuVu8UJuh4kRPBlJWkvU3l5ka/xgxeL3rUGlI3GA06nbmqwGJ6Ex5gPyh1PPu3Wa1btO3n0UeNXvEL/eZW6Qn6jUhEd39hSkyYvEx4m00lTX3x8XICNKu5c6yKElGf2zx5y9EJOrpWjNFxrwfdhc6NXSIckBidc3iJ8lQZe1YttAKKKIADE+uv3Mh8D+z/V3nmcHDD1tXrotvkjVip6zUn25s/BSArqebt2mSQpLf57Do3Iw42vmer3WTE7aaliP9CqqhJvvvcUbJyBZ7hlR1AEkPEl7YxKrxQE9LnQMVdS3HDapG/eYQOVC2WWszDDK0nzwpunpj9NrGknpRZ7wtn7GiavMeX2pXLH+Fjlh6yANmr0aaZBGGnzoO/FvMjALqB2pem1u3saYCwKw/ONRyPlKx2nZfpbSYJ++MO+5q2jD+9Ut+1X7sTOwEAmwQbR8jyU01iQ5fsuLGfG1bqoqWVu/q0NBrjjib2GfdoWedYubGq9na2/4kOdQyFXf50hvBy312W4VjZVnGS0XMuk3eX+zr0LjVUITMDrHJT9/3e+lSoXI6f/Hc2YsX1q5Y8bDNKhsgFbOPj/7hyejhUu0sIb+VbXy97ZAKz9Nbg4NvXhj91KqVDzpM2erb6bqJ723+5jM6SAJKe+6emDm8KCPlBJdkUtN9A4P9Z28re8hmdxZCzgbj7qV3vfTiJ/S2HcbsYrwS9A8O+q0rP/mxFWnnK/BqzZp/Wl6IC9NONpOo2HLuPnTYkY8cCkDw8jvnB8+VrXzgoRWJaaRTjzt7d23Ryi4JimdAdD2dS76onQwdnbkUePvdy06bzWlbir3PVvzHm0f9oAzlwyqG6u5+Qa35M9jO+oND75yfWCTc8civi5UC5QflKnYmsRtcbYuZFq77I58oOZKfBGXk2F9fP5KSkKr0pEAh90pn5RBzzr+ohPK2dQAbgivvExdlSFZTZTwBAGZ/ttocrvZbRR+XERsRcmhm0GX3ajCcx+r+ntlHMsYGAOjWqsgEch//0VMZP1VDLSLtlqqX5hxbDa/oXX5Eqj2nZKmac0okjLSZ3X3dS9pI0Sgza6YYujVEpZNfIsxdmsSTX6LSJB1J8uR2smH7fJxYkIEY8zlLJ8JLFfUT8XjiQEe3PtVqlCQ51Lah2LGjR5wxiqWN9KaPNZWVuPf9h7E5x5aI+gA9BjDN4xglUBDPe6pYNnfe0zmknfc0+fTAH5MdRsNPHUfU8Y1v6K2d8iEqYdYfGjw7AfRNQ1hUAXywXDpBiwJwrmH93mIktZcHJ7dhePkxlatEs0C3TVIK2D5zZ9rbhgBnyi1TulPJh2jOkjvqdobEUPGg4nqgDM+SBhipUX9ikm4eYADROFqW6NlEnQtFeeRmIfU3FcMNiwdKITesMgZZe0+pENJ+U9D1UN3R0sywxiEPjWbB9HdfP+6YDz3OIQ+NKoEIVo6fdmA+9JicjA5IReeAucOI4pIdukwvAMDk13RN0qmFbtOfWX3XqVvAU3cTutesf5ShCvpK/bWGmXNLDNJYDmg3PYHh+6t9t4inlm5eHBRw6ZbkTgDA/wHbXRBhenmDiQAAAABJRU5ErkJggg=="
}
] |
<image>As shown in the figure, AB and AC are the two chords of circle O. The tangent passing point B and the extended line of OC intersect at point D. If angle D = 36.0, then the degree of angle CAB is ()
|
27.0
|
313
|
[
"54^\\circ",
"44^\\circ",
"27^\\circ",
"22^\\circ"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAG4AAABtCAAAAABlpAuJAAAKFElEQVR4nLVabWxT1xl+7s2loMXMbDPDFLeWtkw4cgqGIJGu0RK0SA2FatmGhhiR5mqd9oMfyyom8SMb0kQF05jGpExDoz88qVrDhGqmRl0QqTAlVKnSNSACNmuY6JyqYaEi4CBMfXOf/bj32vfcD3/E3qMo9nnPued53/ccn3vO+x6J8AIlh2D231N3LwH3rwCI+YHutW2RdZ4duEDyphPx+YXU+Hg00P3kRiD2RQl4MEVpeu7SnUxnd3eX4q1kDXTms7cS56/s6O7e7tpo/GLqwrO9/eGqGFkBGudPtocOTpTKbhgfCHaeWvCuN1GOTiPJqb3++FglnUhypN/fny6jUXk6/ZlUb/hk3rMLTew99/tQ34RbuyroSHKsI/I6qek9auXcZNSpiXDX+DLp5va0JIXOKkBvdToUn/duI3tNIfU3bZszfcb0LTd7i9Bb/WAm1PqH2mamRn4Y2Z2tyiYX3OqJZQSLS3B3pjYUHHbRQSh5elgjE8GEe50r3UJfx22vzsoqUUQ61p9zq3IbuyttbeNhFzlcViC3VYlAZCKw5WZ1YzcWGKnStLIYDrj8Bp3a/e1nZ93XRgC4nrl29d7CVQBo962NxiIRz6Z4p/+1XRWd8ccjY1HDbvv8v3zmTal1e2tw1XYAeD8/+6/3Mqv69m5zWZMJCZh84fiPHBUCtKGn3SdJ/kw8sPXYtEM+dTgWfDmpkrZlRyPJdPB1W3Mb3XDQjU2bP+jfc2rOVQ8ye7LPN7jgWpUOjIjzU6QbDTj018j8seAh9+5M3B0InlDdKiYC4hIK90qrTqeC8SwrLZy394QcCwPpMMBKNx9y+QWMRnumK5KR5GRne8ql4estOXc6teuQs5PBlqrerSTJkdBvLSWT96e73ekOdarWhhrJ3J5Or0GzW6GRnGuP5x0N87FjpbYlutGA9RWgkdRmogdUTz+6LdL5ePt/HA/M+EvTBWbnC8FRu+7jIY91vQyGwpMO2XA4b+4HitYNxG26MxEsuw/wwLngGYd9fYeNLot0k4E5W6NUqNqXkIh00GHf7TVp45tJ13HS1mQmtBzbSHI07NgHHOsV6RLbLZUayVz0tWWykb/rsM/PpWhS71enU1tSdncPLJNLIxmP2wRMxvQC9FnRVazQMdjjugRWoDGR7zhul8eSJh3JlpT47GjLvKOPWviyYfvAJ9tLdGdjYp0asdHXDKP3ki6qbhFIsiMpVv55N+tF5xkbX6LXpEs/JQ5UPuR8a9eKiRbb4OcDWeobv+H+JmE/cbwn6r3hqQh987O97aQoWvn9N/W9ivb0lKDHfNBrm1A1NHImlBNlqZhu3btfjgnqvfryOtcdbA2QgK/3HRf76Lp3FQB54ISgRS5Qfl9ShWUkyTm/bfQO/5KUgXeeF7Q4921/PYYV95zrnk2JNTvPAzLvLEQsviPOvlgPW+ksyF1JsWZbehFgYq+wdqiBMofPmnA7ZBM8n6SMf+yQTMMAIBUJ1GVdCWH/B6JgxyhkXO4yuPTjQnJ3ibpOvPh3sdw9Diz4KCyvoTQbAo2ciIqi/EpV/mgjrGf9K6sijbFOArZ99rEgWvnUbfnmM/p3g+BqTG/cCG82tU2JgraM/FFbURsAyESFYn1oE87LRNuMnImUigAyzzSCBwBIRDPWUZHQmpbnNpSKADJlTr+1QZLQelP00oY78v1VQqNFn6FbIxibH4jlVfdks38DD9YYujWC7kuLYtmXkxdWAyhZ81Bkrw/ND0Un+R7IOR+BkjVLTTpzQ5y5omBxEoHmRflxk2TtvGlJZ26IMwsrLAUJWPFIXil27ls0NGkA+LDZJvmCvPq+IFj9QKSvB5J1GhLAQrO8JgdVVYtS+9ytA4QxDXVuAIt+2fc5FJSyDq2ZhtFJSNvWjEerZb9oTuRaowYOwHUb3cM1cvATAICqqlBVFZGMKhnF0kfxm/EfqgoV5SEBmN4oymbXyRHde01QoEDBMx8qKqAqiuUDgKooMMsqVAWqUokPWJreIpqbaZW/MV1URlWATUs3PLyplL4ollIZfPCVsKUvCZhukTde07lNbXe+pTTmZwCc/Z7tJ3W9FQu+AgskqX8UxjoL1L8VP4qFgvVboeJ2JWoLQeRXqmDouvGg/pEPzZMsFHQVCiajpVwoFKj/lYdjnzkRpYxvXhLG4YnucwAURUHxQwFgKSuKAv2vPEa+Y1sNU52Q8UJKL6j641LfW2jMojnyXdvQpXoBzgVLbiPrPwGZ+NR+AlL9OcpYtyZTdBsA+PqPN8A04MhAk+ijD1p9Lue7Rpxe6XJ65eFBEsYp1oojLzWArm/ILglP6ZGH8JQo/79EHsyzORE/bXUxsfLwobpH7uDRJpvkjTgAaGQ6ZPvF1hc10kgmt9mFelwFJDV71KgYE1sunDExPWqkgXRGsMjBHrWW8JsN1oifiZZUkc4R8aNmxjNrJ9XIeNwSh9c/rRE/Jr5lfygXPVUzkdn/8Q5nZl+IZ6oO8xobi2ZyCy10THQ4WgiR9hp8mg5OOhJ5ajQp0LHdHmmvPo8gDtLoujPOJsd6KNBpkwHnQlldlkQ0xS1Lwtt+IY+gkTwQdzabiR5YqoLQZNSYj7fPutT3DZpNYDZeCI46R6hMhsvJ5pHh0nNALNIZGA04k1PkYMv5ynwGxPxdEc4MF0nyUKfLZkczspOV4ZGdZH7zsZK0UnaSxdxreXjlXr2zk+65V1aTWZ7XM8tuv07P3Ksz7Vzqbpl587KZ5Ytpl7w5daXzZ+Jr24/acsyaeSvA8+diN8ASa1PbT0dO/+THfsDjZln2xg1p7Ya1PmUDKOET9cFn2btKJPpkaSMglbqTCODu6cQu4IdvQOLbOwFY6X79z782Y9fll8pFvufn7/z30eM5AFj/RPPaYCCga+aMEFIC7v7l5H4A2N+/890u/ShbtDNxdutDjdpQ0O7PKi5suWMyoC+Cha0PmUWatIxddiirZyyHg2WultXyth1bb0z0iwPU9r1CFt/mJH/B7CtGs0bfxkkASOuamnnzBACDjlOhwSVdamAZWcP8z1uKQe19aSagX+WS9WGdXSTf/Zox3rHp6ec+BlCMXtVynNXbZjrmp8yww+y9CPZvGjNmEElme0kmLNvsE+s9lqTqzEsETxXvBjIxRGbxNknDmb8CbnBfyZskp+q4BTfTE7thKe5Ls7AptCjcCnBAPRp4tcbssj5s+cHACYvgIgBItjS928PmDcbatprDoZdKO3D7HknzpiM51hG1X4UqDzXR0i0ukjZdK9ytTfWG/+S2H3BF7kR9t09JcnKvP+62f3C4eKTfv7/ie78iHfWbw+/bKUS68YH1nacWKg9zdcmeW4mxKf1etO3NRAm4nLLdiy63CFQbQXmcuvDepWige30E0mY/Jdy/At749NKdzHM7unY0USp/3btWOgDA7K0rxp12icad9tavVvksJQD/A4fOvQ2okZ/bAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, the diameters of the two concentric circles are 6.0 and 10.0, and a chord AB of the great circle is tangent to the small circle, so the length of the chord AB is ()
|
8.0
|
314
|
[
"4cm",
"6cm",
"8cm",
"10cm"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAJ0AAAB7CAAAAABLUN2VAAANiklEQVR4nL1cW2wc1Rn+J6SNg0CBByeblnoSHsjQSjBEpR1SNWtXallUyUxoJSdUousg4VRIZEMk4vRhA5Fap1KzoTx0E1RlXJTGSaVuIgprnrKJpbAuEhqHB+zWsIZEZGNENqKpPI4zPl8f5rIzu3PdXfgke2fPbb4557+cc/4zy4GiYvL0voR1DS6kcGiBSFgRvajY88jgjHkdeu+OkCMuet8R0egfhN29rpTO9JEf4rEjOvOnWy9tCynTQcaIi7LMK1pwkYU/xm7VGzHkjogIRNKZ0gXh0I2AIre3/7fNLrMQgx3IFPaNyuSXj+yZ8ynG0fE3H2ifGBHFYueQpsSI2tM3OOVd7qMr/W1RcqJ1oVDEVMkjeSH1+eaLrbfqQhvsgGJSHGtKfGl+dtM8WDvt2miLHaAO8HlLgQ1Cx4jo/vn2WrURU2eJDO2wIJ4qTQkHDAXmiIhmPwcm1t7ZAZEjiqUVFjPORXDj0Un6rq3AHz2bIUx3iFssX2G7gKmr74HeW+CIkkTieolu/fm13t0iERHXffbRX75J95fXft3siIhmzp+/NCOuf5RIWk1EJaIPrk3yQm9q6si39vW6H+JrZYdbZ8+ev6e3VxSciRwRzc1MvDPXt/G9/w1v7xwxs/2IKKTXDIxVfbNrhfSax7f05EM8cEwEsmPWfy2XkBUtzIj95Xt3PdCTrXk00SoCddaQIG4xJ1xWz6S7gqeU1/Yf/MVDEi5s2uX0wO0JYbhFwahwZfJIwivH/kc0t0daM7Vt4a+XknfO922faouT8xYh41qW0ld9x4iZf5U0n9OAoTyA2rAwLCaLbY2ohRCt0DJS2c3WA6rMKwBwPWHoxHRq4J8pUQmu1AF2tWQutIWSLBaMq1zGShuTplWjO9tDIDtVLIc9/NvJ5D+sa75iXjDMSCVUMomsvwlqm11BqnikOukWnFO8guzIriUPA7UsP/SxR7W22JkNZWUfC2clKrysOpLlgqtUJq0BWp4fsMvEJ+jbd9pANrCiluPTrq6t8A0llGQVABsTk8VWtcOPXU0aQ0CbtRE+0zDsmSYFKksVBgAlS4E7xW7Ba8lgc61m+eGrDZlaosbcpYCKaLq1VhXYh91Q3r9KNcMfqDWl5ofQ3NellMWpkklkr3WIXd1yNcF0C01EHlbtS0dWfsi+rGUbBLVVdsWUX3E13aMsemWUku7vFkOnNC4ovFxGHDjZWS1OS80DBwAoy77i3WBO6kiNwyGPBSlZYO5uZwH67NF3NdF7AEpJyY8Cqhv8hL4mTbtbkQXFMfjBlqaJHdOeKHkVLIi9nunGHYZHfO8wJ9YcBQFMDyZyPoMTyg4jw/WGbCiCrPo9JgM0PsChjg00NljN8MORPLCLHQNQERYay2h5Pj1dL+FLwA/JktW+Xb020uNWYO+Gm/ou1Thv1I7wQxWrvncjTApURVXyEEpN4Z8MVeBGdlYvWDRq2XWZ0EFQH7ErNNNntllh7lQUpGTBv54XO1F1frua4bO1+gTdD2klIBNAlffR6HOyoAQ13MDOmKOZqAzxh6MoV7UnyIcyAJnDnskAPkwHKbDLGjNn102n+bynW2hCgN8zUeX9F8NBCkwAJojoxMQJ2F3HAFUWlEjUACTCrUPz9MoGQ20kkZ7xYbfUf/88sLf7IgBL90pJayUTAS5p8EE1EZDJAEWQzzlS9hIRdV8ELfVLNwEsSPPAtAAAOCPVLVQEdk02yOv+ZiHm22DB5Sf3SjexV7pJx7ovAsDS7wC2fwTAmCiX61oaTk99OLQIvOw1a/hEeRt/3FSvpf4sMNF9kfp31PP5ChTHKiUaAkTKAW2N5ubiNROopPmRGgDM3neR4dj987S5vrgpbc11pysxFyjWbcNg2sTGxlmDBx7uKQN4XbqJCcpi5RUia7/yxKXNHySIuFi7l/nBrkjlkhfSRM17Upw7KTHy/SWi229N3k3dF7cQbd4BAMjdRPm+U7F6zYDbufijaUHpjYKsMTZ7nxmOoQuUBZb6/wZcu4s/GptcfZIf5u6E6YBMC4qsMbBj0k2THWa7ibovAijI1SGxFJOd74y9CVG05/dpwNRYk539wMOHALVXjvKINgKtrBsnA+eABoNhgxORQY85/OzAGAAUhEzEaXXdvbOlfrtFX5SlsAbTTdN/BzvRnJvn+JEoRoIBzJyxH6MTwASdCCxfWxMsl5qsNKU52K2yONWGhYjSpKQBwHQ3ey1Z9kHwZKHWJMHMyW76wfqzVWR7Lh5om0UVwGy3MaZh7Gzn7UnOc6d5pW0I59fWDePGM5N7+FcTDvPpaaEnV4tEdPTu50Ec3Z4NsccbP/HPm3s6L3rcox4RcOdJZVna7zia4Ok+Xn2BCFrp0bUcR/Rp+Wd3BdPzd0GfDCqiV36d3fw6d872mTVbjhK547EuXJuUibjPrhhnFI7e/XwgNySqflmXtimCZ0adnbba5mF8dg2Xph4cD3jk0R1dRPTt73AgoonDB4Ojntw3NZ+c0u5zG32ybAk09M+GuauQSql+gqzxVQaYKrs3xJ4AyGa9dayY8jWwK91U6/1kXAnj44M/fNkrDEWUTxjpz9GPiHaAwIXHZj3mP6Onz/jOctxxMo/Gn1DFvkOLXlXTD4waF88BOEkUgZzHHY5cGPefgq0gIiwvL4PWXfMpsuvdL4XTHun3vjExGnJrF+bXExEalOzAZSWgygoi4lbQCo5W+wkt3Tsyefax80RN6nv8wmhzaV/c6qKmoR2kI4HBdQBgOgPKko9bYABQTspee47pSIsKA82TLW1ACa5isdP1L7qZzsB0nQFM13XYH8ZVYVPmuq7rgK6z2/oy028vA8iEzEwcMGcZ9T7QZPMkkK+3tNgxHYkqA9MBnUFnWF6G9QEjbSG3KQd9GUy/DabrYDpg2IloWNUw87n+WDGEnM0ObDn1NgPTdV1nTAeYcXuDAlsGAPbFi0JBN0qbfxa9COs4cylvo9Kr1r/41DctCkcc+MscEXfHHXd4qJ4huvccPvNGaqoh6xXagyjh/7kNLvmfGzwi2g37maIVRIwZV5tmiTiACByBiCPzw6IHjiAUfju402l6QPRKz85wboQZwUlh6qnjIpF9MMK3lqkIwPsPwVIEt1YYymInK5te1nRdh35bN9dhDU7QGy6VLSVrgUNqwjE3ZryXzfCAdoB3htFC6Jn319Y4NgOLj0dbu9TZMZZWosZRm5aWSrppp74BzlCVkoq2u2GzW9YZlF9HqwMAatK9tByVQ25YtzwsF0UQXOyAgM1nTxSEPc7hKcpekcc66jsa2d311JChcu1qR9gndMK9tCzKfrvMDE5rNxTdu7jZBYdsmmEtLQ3VLcoBom4F0rR0PmoIr5Gdloi4DWA3Xl9aMqCY9K9uLmYX7CV1JPVzxyt2x5hymHhXGqha+0+qLz1z59t71RqVXTy9MDHG77NI+dIzdKKajBfaboz1RNsEboA2IuSBoN4zuq4iqTFbboiAGp0Xb+cYQHVIMIdM9QyMiyoA1Tye0io7mEc9YrNzLC0ryWZ6BRlAORn/yFYju6pwPT41AEBRHKoCBj3342mSGqzQkdkhv6s1cgDLCyMagEpvQ+/lMoAS5uk80XwuQCq3fOKwNsyPAai49+Gr/CLLp1s6KdjMzoiTt8ivOiCVgFpSdaTJBWSHfMqHwOM8Slx/5kY5KVdc9Eb2xXKtLjSfRwk8XBIFBSFTs+gxnJG1dMCRr2B4sYsRhPCEluNzls9SpZrHbnVUeJ7S0iQVrYmeWaeWEU7IRQZUJTVZbFGG/dihIlVbpGfhQ3lrXxFa8q24rtUFn9OB5a1tnBU2nqr0UM/Jgddiu1YXvNkxjLVkPd3d/fo3tibnWmnFhvcpfI62D/T57ecFwblsvlHcyZQNLTTigC9vVXRITAsi+HEyK9WAF4mIQuIsvgg4q11NjrXKjAHnxENPagzAsR1YMEPUsRHwfkXinbMZ+83KeODo6MFn1VNdHNHtt39Oq/tYawMb9PZH1yn+Kf83UX0AIiJt19SP3z/VRUT0yb9/Sq+/8ULn2RFlnvnJeMwGOSIq94mrOXO3uvSfBPfZ51taIhf6TlQllYoV7AZYdUBS7f3kpf4TdhAyPsLf2BoXw48HOnAjK4xpKcX8xmY3XQPb2+prl+FvHaXKPVLGsn1w/HcOgHVx44BI7z6+7YW0Nc7nNq8jfbbl1y6jPIKW44dUoy8Cy00P89kabjjCxEv9JyLF0HwQ8V08LS/yWacAsqarSk4QRmoN83biyDxP0hLC32O0dpznRv9Oyd5ez4je4vjE+RvbhgQimsqMbvCo3RpivQM6c/78hXse3iSul+o3nqr+69MZ9YmtfSIREU1llMZYaxsE4/7WAs1MTX9wbZJIWkVEF4jExA82PCgZDMCNHyzea1LqxJuqsdlZmFzkQL0NiadOn1zdJiEXWmZH1Dxmo++MrvLpsdZ6cmV4EX803PHA5VNRi0ZEC++8+2E/KQEHMFpC59gNrnmFOvWrLRbaGlkHFp/uT3eoKQc6xO7GzmfCftOlFXRmZG9se+6rINeZvqv8Ki8aVx3+mZ722YGb2aUIZDj8Dv+GUFvW2MDUb05u+Ip+2aj9vpscNl1rZwGOOtF3i9pXQc7A/wHGylyX98TerQAAAABJRU5ErkJggg=="
}
] |
<image>As shown in the figure, AP and BP are tangent to circle O at points A and B respectively, angle P = 60.0, point C is on the major arc AB, then the degree of angle C is ()
|
60.0
|
315
|
[
"30^\\circ",
"60^\\circ",
"40^\\circ",
"72^\\circ"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHEAAABzCAAAAACK3bIHAAAKyElEQVR4nKVaX2xbVxn/XdtNpzXDgAx4wuB287SEgBaRigY1w0XNND8EkYdIeVgeMlGUTp20TKpLkDJlmoIIrJMilLFOBZqhTMtERCYW1EykKHVTli4dHVK3dMJxPKWoLp0gW8rmGzvnx8O9177/77X3e7DPPec753e+c79z7vm+c8A68RKQZLr2eiKAesB16Sp5RmqppVJSkiTphIT6NESaJNOZGnRTxHGmZh0JAC/hFwDwjZj/ehLw1oNA+r2aGSUA6J+UAKJ/Xy011wHgrZZQrYxK3Xs07hqQeRQ4cX6xPsupC2f6Jektoi7GfcgBwPoF1lBpnSQX4YuRAGhofLL/AnDh0QddBpbm9L8OaE91IQNIuukv7KeDAcmc8i/VMjAO2riakFq6fg+Q2wcA9TJeOlut604J4AtP6IRcZ4exqXduvrm2we1LhMT21T1fDscbv+TOJBGg9I+FBVTmEiV/OsqLi4vL7ZG2+2K44wAA/PaZ3+fXL916u+PQoUNBa+f0uPb9qcNGPTyWQ8HCRHsgdXLFYA39p5T/N8c6kTx1y6WBfGzWmOHBKMrTXeEjC+bsQrRYfZjrb+yZcWqgkJg05bgz3hqO9L5atuaPHjc8Fqd6IqObdh3ebBk357kxbgyGB67bFZRjeYvsQGSoYJmDt9uHLZWdGbfSuwc27Iumemwyrw80DheNWcXUMaucI+NstMeBj2xftM3Od8Xn9WqWe/pspBwY86kmi7lUsNzqVDIX775JUjXqI102JmBlFCQ5c/dY2X61JMne046dKY5G57X08WTRTsROx+KxxIpjm6apYcHF2E8VzUbbtmwFbBizbd12ll7BU8N01p+81dmxQfJUk2FdqMpbGVcililkQDG64UxHkhyJXeV03MnuLIwLkWn39iZ73ctJcTryXCzr1C0z41R4wUODB5ZJCnehn8N5nEyMU59zsxmSXGrzECB5JToRnvXH+EbYi5A9Ux4CgqvReS6Gl/wwrkScp72KfMxuVhtF4jMUnI2sejEKZiOOH50KhkYUWWcUmpQF4nTM3lp1OhZbx93bIlmMFrT+OWCrdUwtHO2wHQ4d44Cn2ZOn7NZmQ5c6hirp1JDWM33/qozTCftVyYAWD8sqpQZIJgEgw1sxdY01DEiFMR/5uzfhuQ4PgV7ly5nMMIMcl6IF6+hXGFMnvQnZ5bEeDaRKWqs55MjhXlpeucb4Soun1ZPZuLvQ0EHlq5JJk8k0yWL8DYuQyrgZtf+sGzE45lp8slW1hEkAipcxGy/S/j0O+rBTbkXdNqY83XRTTSVzPKNSpkbMYgpjtrHgg3HiiNt8nYlrG7xcUpCYdGhZYRx80gchE1dcCudj17Tk5KTgupQhKcj+ETvGQtiPivNJlwVpKVrtTnKNrLgX2YhpQwGSHB70QciU86orrkYrn4oMACBZKes3TTuQ3Ire8EG4Gi85lmVjcy5lxikFklNehipI8pjzErERn3YxqdScZXakZj0YSXIzsulkqR81nXKradoYgdyI+lhuxMkBp6KP20Zdq24ZbQfkmI07YiEsJxw+6ZS/p7h2Bv1F5U+QfS+YGNuddiT6FmY7DU1VUe4+4lV5LmVk3Aq7DqpK0fm6Q3lfj7MJqzAyBHDxu0HXeAUA4N18l33x4x9OeQYTG5sv6+IbASx2etUAMP44AGPoCwDw9OU/7LbLN+KhRX0khO1OJqHDZtTe9xlvcfWJNCzrXySKES954WjOUwk/6zFZbtQzXvGxqy/HsnbZs9YAhAMSOsHA+82erwGvtd5r8xrPPfaXuP3bNYFoulZ9Cqze6yEPanZjjFNf7nu9ySbbFgk947vNXlWkyx8+bM299oOp/fTWDwQkNF3VMeY8dcTzg9a8Dx564TAkH/pJAHBfXpfT/B49vI1C1LxZFywkvJw6A5bbq+nQJ3diZwcIOi88v+lrNPf7o8OPPwL4iOWqQrs/1T2HN0kh7zj3zyYIt9U+UouGZD5eTQdumxUwY3p/3Ggg5+6/+6tP+9BNhz3/MyhNCnlHlrdZlssUslwihSzLVP5E+6KS2tay7wcOyttKjk9shnU6BncIALuwC8FAEDsNDUKgFGoIlIBSqCHw5lYSYCnUIO1Qyf4PsLOL5YZdhI/ZAQAo76qmQ423wwAgBUu7KIFiGyClAIIlUAog+KsnKBFSACHluZT+2hf3nASCAETA5+HV7Tt1D7E8KWSS8k6JFNuk8ixkCpm8EStS6LOfaduSd3geQNrN3oy40lJNhxo/LTMkAQiWg4DEnSBEAOUQJEgoh55/ZDckoJL94qsX95Rw4lk5FJDEL33OD8h36R7aVsqy0lmZ1IxDNQshfxzbIBWDkkkhv3zPDcpyOinLMv8K2a+OC506Hfet7VcnfxAApAbtlxKkhlcOxoCGSvbCTxajaLjwbK4BQAgNvl4igOzeajrUsqqmdkzjIwHA+IQ+6+KPFu4F8NSJfYB6ZuoP175ZTQea1wAA5W3aHAxeDB7Umf87Pa+1AMD5LhDA7477YiOAbJMuw3EPIGgKwq3G5kkKrinub0b1gv1Avwdw2+eIfEwXn84nNG8OGVI7oPcF4z7HbS83NFL9jBXur8Tj00kyVwOhaS/HIUcvrRipbNXEVmtFTDAJLZbhFcdTMKyPkYDzKSfBF/sqbRY7rMdB/tG+bGB09juqQbhyqurL+dLKALPf0di8bG/W5+7aryUfCZ+qZNd68QA4b/BsAkD3K/aC409qqcc+edlOwO8R9HS3sZqTj7xWCcINdbgd4jhDHf+PjT5yAIi1ztv1d+LH6lg8N392t09tjFDH/0+Hw4bW6XBmUgnCnW76sC4NK3h41vAIUmxFbVykCdXZVsJttRtoJVydjZUM9R1jVmoQbj6+Wq1fF+xiViyEb+rzBMmzShBOH26rD1lzHEiNPVqUVIJwunBbHRCkEnu0ieiumaOgq18vk8zG5vkZYWnZKYZ87DmShbhHIN4HnGLI5jj5ZmST3HQPt/mCEie3Y+S04SxgfIDcanOPw/tBMa69FptTXf15RzmxymKn8SZFXRjudTlhyUeuCK0nc51+wm3eWPqKYjb2p0jVcyvBzjn22V2kqA3C49yqejYnriY4mKrvc2FAasguV3cHST7w6BMAgKPN/z13dk/tX14Tfja/aOvq69jVM9bN6OgDvsJttqiMoI8zVu0ceSzqM9zmSjkbec9++Teelc+HV1iO+w63uWDx80sOXxzzfYDwyozTIXdNhOHXSHtK652Hb3teCfDGH8OzDnwmxkyO4tfhz7x8i9ORZedSHaMg1sii190Vb4zErrqU6m4giHSSJJlt+2H9k4P8t3I/x5NRkJMZ9cHmDpLXPqdavhQbcj8iquqYm8wltcoz0TEfJ0s2rMXR6FkPsSrjceaqLqFyl0zruauG+sI/x7s9Fw9olSYBgxPqdl/OAfmuygfYpZMBdbu+DjLTonkDBLr/uTdx9Lr/+7S8fvRbre9r4W23wJJCnEuSnJw09m1jcM9Rv3puDISHdAPq8h4UxjSQYxIm317w1nCkd6bs3oQgi9M9kdFN3RGgG7xuzJZf7gofcb/sNdff2GNZp5xr+LjdXZhoD6p3dC1YHuvEIdc7uhb4v4d86UD0gftiuOM7EoCLZXyQe/tG9R6yf9Rwu/udm3/LbUBeBoD23di798FoC/zGO6v4Pw5w0oC8jXPiAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, P is a point on the AB extended line of the diameter of circle O, PC is tangent to circle O at C, angle P = 50.0, angle A is ()
|
20.0
|
316
|
[
"40^\\circ",
"35^\\circ",
"25^\\circ",
"20^\\circ"
] |
D
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAKcAAABwCAAAAABeRj+nAAAMqUlEQVR4nL1cf2wb1R3/nmtIKQZTcVBDXUxbBwypittUNJPC3GpBSkUmshEoZalqtJSAAltWgshYUMooLFIbNWyRFhSkplBEkIKC1ECLFlaHBuEuMCMtnZGagsGpSGVQw5Jujny5z/64O/t+2b47X/hEsu99773v+/j9fu/7fWFAS4HTNwTsVeiwV50I7km7NS4Nz5d9t9iscUl4vhG8YLfKpeA5/Z/NN66wWedS8PxzC91pt84l4Hn0ILPGdqW288T0PDC2zm61TuNRP7/4yfkkLZwBEf3kSlrru8dToY4D5sLeE2C+spGhAMbQOL8QiUSiVWzlbatp+VYioo85Snx1JvVZ9bZt25YRGAIjxOz8I8UDj7xF+7p/dJ4XhgYn7q0JbSHKssniTGR0NPRgw6rcGzB68UoHCmO2v+baplEpxGve88BI2FU3MJc3hj0owJMHvmm5Zufbi0VU8Egfa3C1zdjKS41C5RkPl7UazT3ZXNaUwIQUtL1Y8/NMhV3tqWxIkbEui5nWK3evrTtvFzEV8o6fr/jLvvoTS0TKjgYCEaOUCFh1+Bv8cNXmZ36wvQsJ2egiGqyc0H9TEOMVm3/O/mUpelOOJ4+c/kPuPov6nnc/V10RKZWVFnrlOVsXnLKoLskOr9z05uqGpBi2rWB12uenG3zR9RZbUWNj/SPOzuHgpufniUjVkkuCmjg/cv2Q5aLoqkijtWeAjcyEPQOlFqECGp6vsVHLymLuGNDag1F2EBOVlR+XQkwFGU8eALp8ccu60oFDAFp7eMQ8fcCAJ9tMS4eqPA8EVBOQmdp/vAbg0dQPIFHeC8x1XNuZLpWgCCXPPp+1WZoHgBNskgcQHgCAhGcQQLLBO1QaPwkKnsPehHVNKc8QAPDhowCAuGcUAMYrqyfsGJ3k7XPcM1mCprom4VvkiagnBgAY8Oz5tgS1ImQ8U75xazp4AOjzi0vQsDgg8R+Ikrk294EFRVwLoFziHV0WdQDAlOsTkUfjMUnWvlN6WVdyM82VZ9c9nCUNPABwd70kheuHJXE6+Kok/FtFqJQ2lePJRz1JWKwWHmiv5qRnkScATLGTkJT2si0pbVLDEHny3IahEnrluCu3cJHxRH9V7nm2je22VmNArjy7aq0VJg8As17ZZC7niSr5+nCqzn8cFutM5JlwW58ugYd2ygISTx4AJtiZ7DOAEX/NZC5khjAJ8Ws7zCfleTH2Ma+85YUUq+QW+U8AuEPulpQsF8P5CeUZ8ViYh6U8klcrmIVOyePMumNKQqkWttcMQRECz7rDJpPJsuaq2xViZXmis1EeGQAmaypGTRMlAIhZKU4JXcG0gofEU5TMsto9zHF/3ZRJogQA9YctMQQATLji4PV4SujcA0BVftwhd9usqWwIQLKE1jnn71ORUG+oL7n1GM2E2V4z2TmI6M2Hy8zvq8QdWpu/WbVdW1QdqV73i0FSn1YQrTpyYnDDmIn8eCAQszgV8RhmNQvrYEwlOFWljiKmHvKKGxMD2RMQDZqkl0OSHdHINDxxS745JH2A7Zgz1qEcREfCZus8i70P3Cc+FTruffRonhdlz01Olx+V0hY+MQY8lneFPX6dDlihWcDFAwV0TFRWGlmeU2EtBTHpigFQnkyB92n2WPxNervD7GA24GmYzorywUFjIYsm44XGjiARCb092+N1TmqYn57SSc5IcfecC1TsX8iTVoKDTm23eAjU4XrWYMztEX05hA/Xi5Nn/e8U0QHPTMESz1aqOsqoO6mbTlvvRprWeGV1wQNXSvmK6lBAYpZaM6gfQYcnWAMT3oAnXKDEHGfLi9WasvlKjeTx0E796LPXaWW3xov3gT3n2NtfWsjXRh2TtxdTIKX8iGGYpyXha9G/Fs05h8BZA33AdfCf0bzN1DFVXmyEFbH/V5eRGX1aiHu+7e2rjSUjIqL15wxFW3d8oHPbWSI9RjUnjbRKoLMWAMa8cwDAVbXnjai3PBpqMJYJ8u6fHd+vMvRTT79wWHhwEBG9uHjAUCoJbCr/OygfWqauuqN7URvNZ8xksGsfAOB172UA4+4CiZapN+k8MFF8qcNLnzym6vya5Q15DJ14Zja+n6MrrI3zQX2SzsPQAKrAe+U1qlUCueaNJExSHAA/RnFg1O0utHLQs/QkvYYpChD2zwJ4AChq2BYglGdm4z4ANxPlWfkCyGORcpvgKCDVcn0vAOwiItoHhkCcAfeL/WdO0PSafd1EdM08eX+dP+YLnQo/ATBwYOFwe7EMtEidnNtxlKizqpbb8pjDNQ9nYZoAEe1fyTBr4t0Ewi/Lyu4tEJshlZcEA1qwsAGj/2bKHEQ0FWKuuP9L8swAmeLVIJ9251a/lT+ibhVbWONO1vmHACBZC/C7eh1lgoGP4zjiOI6I46Rg7ouIFjmOiDguQ0TL337ma+J0SiAv5pebLMvp3TX3nXuAiOjDOqLO0486Vs4REZFT/OOcTo6Ic8q/iIhzOoXPKzjiaOvDj3FOM0Tn3WZI4rtnNgXOPS4EPniKYT5LrnCwF7PvOSdJ5akDZ+7BeWDmVVObgO9vMMyRaP7lOyj+B5cQnr60CLwHcmz4Qsxd5Od0GnC9KjvS/qUZnv/SOGTlA0O9t30RO8hK4S/vFHY1Dv85dQHmKVCFeGN7o84cTKS//KTzRRe5Et4p/2D0dS8RiS4efXvFF5GajGjcEXp9JiN8yr4ySnEmk0EmXfWS/iiR8OkIK2MGejgPRCqrItIzACSJSDikoJRPGnIMjE4yTLn09zMJn87egf2fEZWxWv+wSsSDF+dNXlqImKLJA30B3U2PTnnyhobP5MOePuUPlJ8LOJjQGKhAN9cHQ9R8a7uRFT2ImLFQ0Tjf/W5TMNGs3J3IzwUctP3vDBns5kr0HxvT2fXMu7QkItsL/yJmfv+dzviz6slVkQbxgFXr6KB3Tps0prMk1lnjypNxvZ5wsTOuks7BdjZqc40FoSZfpHkO+uqK2z4dRPcXOzLJi96ImFRd/8rwYH0BHR9u6XnzuIFpoKRz2pNKcxsAxO7SxLo1v61voibwrqGcCEAgZoKaBIFb832anCvVkkhVPnfHxIOefoPZOYgonO+8txCEqn3li9dU8suq/g4aCKsaghi4+OSWykST0dMKWLTLiDij3iJHQsowP3utrqVorpM1Y0JyEJG3qs98eYq4+6lwngWJVHiHH3BrfEhp8ZW1F2IHzaxKgdLshlxQ6VYyFlK+v6RjN8Sgt+7fwpPRkVu0w/aYIyfHpDsmz01e7zyydlg5pZPB6tNmcynBri3hYDAtIzF8v+LlJffnqugTocCI+QlQPBWQ/ATMgwdC8sO74XrFa5WfAKYavEaHIgWyfhdWPWgBJK+WneMoecaUdsWZZndXGrCwoJD7sVjGEd9c9lnJs6qPzxkhZjtuaFcNRSb9LgCuohSPrfqm7KOCp+QXxANId7NNM0Yc8XWR9VuLWl82AamcPfZYo0SBl/ysAB54w1tfikuPzG+tOmf7M63mXY90CjgQznmOBLPnpCMV1RadDEXI/OdrS/EDDEvVPRDOytofEhQjGqoYKdEHVNev0oLOOZ/oEpbjeVL0q4zXy93FLEJ+H6EkP9Vxl9C+szxFP9WZZrY7O4nwlktVcW9i2JuwrqktBADoF7u+4Pc72+5WDkUl+almdVj1owaAdEUPAPS0AhD9qNMH3c02XZ/K8hR+qMYv3QRirjgkngl/L9Bf2lCkgPrUvxQ//xeDnMgz5unDSCD0SUnUFNBYJ/rZKKy5PoKr6gB6WnmMsoPj1RVaV5wSoLWijLBDVlv7lDuKnt9igH2jzit6U9t1sUfH2jOxusXqarRvfbrz9+F19ewhQQNvG0+9e6Y/NE4PWbyAtGM9Bm/8vrnN1Hm8IeiyF+6d8eaKgweQXOFc1jyzBJdNbb7Hd9Oydb9RSOyirHPvDES0Nba75onvTHgsEBFdfDB0zce7V9IjDMMwJwSZbRfP1MRzjsSPyu+ZFsdMa1mzeBF51/v4iGwb4gEYu7ercc/mtbJkc1nT16Iws/myaAj/cXgC37S4dg5xeRuZJE8PKu5Bj+3L+j/YhuL3yn/mzt0r1wEv3CuXexsMEFHcth4kwICbQLKnalntIXn3z1GIdtVQqFe1dtkVx+s2V7vuOK/FQiRy6h9bVwXLvbT8boaIxhcpkfj0W/H/HigxvfcEccEnWoRualOHN8aTiLL/RyLKgKiqjNb6qm9SnleDAUNER+dbaHrN+zvsIZhVnhfaWxi85q2qEfIAsCuOzEbvZTtqO4cC/z+EkT9BKZGeGRL9MrLCj5i37mCuuDm5ggz6wxnD/wFMfJzczdnfeAAAAABJRU5ErkJggg=="
}
] |
<image>As shown in the figure, PA and PB are the tangents of circle O, and the tangent points are A and B. If angle OAB = 30.0, then the degree of angle P is ()
|
60.0
|
317
|
[
"60^\\circ",
"90^\\circ",
"120^\\circ",
"无法确定"
] |
A
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAK0AAAB1CAAAAAAZqT7dAAAPYUlEQVR4nMVcf3QV1Z3/3AkwaAOpx0hy4EmCiZ5AemKCP4pKoVbcchasZAFFl5Zgl0UFm4C40l37EMQtVouRHxrdtsbSWiyaoOWXh6gJpSsiNXSFkEqQYAImYY+CiZoHmfvZP2bmvZn3ZubNhJezn3OSN3fuj/nc7/3e7/3eO3euIIKgYZKwBqUSF08IDCDiH+cBAp0V42stwbjcREPzgJIFGAw1xcU1+pWMj9J4rqgpYHEBEZStlS9JzRa1cvqXF0zIE8HZGnx10doEXF07foDZBtDbKEobw6tKtkIDbH3qZPc1Iy5KkX66oZ+1rCm+usauBnyIbUsvWHreCMjWQtCmv6SsBjDQbAclkXy0qc8ebD7VABw7SSCUh8E3Xl7ZsWpVuNSMb+8mGj4cKA0wIPyMDu1v767/dOLoMdenIzcHwIlW9Oz/uG1vKO/o8Md0vu0Ldgi81L14QMm66a2M9fYjy67MnlN1xCnV4Q2z0tWsKpJhoIl3ARUDogBRuOmtQbaranxomSNTM8mh29IuWnQm9cQc4cjWlGtHRfrcP3nn1yT5cAYKHkoxL2c4y1aSZNu/Ziz71COrlKSmJ80Hbuugw2icYjiMDgQE0P3TkuyjT2Zb7kvjz4QAoEAAeH/wihn7Rt0ZQTCHLjgc2AoCqL3q86aVmdGnE4QCQImnCxBYV86irl/vHrqiPyNjIDhK/JMpJe+RpIxzWxygkZ1ZveEwycfV4ZsSIlMKR2kcuP67H1yvSy+ptBTg2fkqAODfv/yHH4+tNVUm0f9NARxqUJ25K4hgvg61MhzWr19NH11cS9oMdgqRWHtt8eqG7yOAYF6bkBO9nlkv81aW1AJC12rpmqtfSKB0dvrfDowDAUifz1pbYVxIQI4/cDx/+aqSWsM8pHjiE8/28LU59Rm6XVD8SfcvuAmmOYMisv576GNbwquKE/3fVMCuGLsyNhhXvtVudjXJcJgyqulPZNQ7+b8pgJ3toYxd5qXfR7WFesloL9NRk9mS4P+mBDG2Gtl15QaPpHaYtVkeJm1sJcnVhd2kTOR7odK2su2bsihw/t7MTkoZJ1ty7gySdvmmwqLFOpKCZXgmsNpXT82ESOxLv+pYAQCljStWldQmxPYfUd6yOr8reG0L3yMZr7ck20I1JKl5rj8EBkijkfZlunjdXqibqP8msOX+zEPmpdv6Q3BEZds2cpdXOhdM20ySmgNbvprTFZVkTXFxDfv6w8+OKNspa4JVXJLksZBBIbwiMcUjsyyB1Nhfk+0fxven6hVrDFW0ytasdG+BrbVSYX+hF98d2k8G7QTamWxz+uigCWTd2F5b+MLtrwJAECunXQcE80cllOrpGV4pbil6CtDnHQCA0r+GV5Z4rP/6AEmyJTPwHFsjmR/t9o6yZUdmh12CfV7rvz6gAJBYfb+nkJygADtyC73TZM1dg6gECSANMxrDxnjRL/+XJD+99Ezg6kpyyvZoKFG2kiQ7jII1WiXcf/urgMATCzIgEcwbFTjc+n3PeABZs9bClG5MR13Wf33KtiujI1gVdSx8OiYuZ70lWzK7beGoLPtnfxUAL5dmBawiAHz++nxvMQBA3sTXojdsrVfauGLVNYH9HQVEdVl/pnsvzBzuaYB0Yj960fIoG0qj/S2GpCzID3JIGbhV+ka1WEIumiDZl9nqPlnXaq4O5v8qwG/nSQjfdtpcbNpakpc8sUDa3N8I176k/OBgony9n85QQE9Rb4aJddZ7ibI1GkvbV+BSjGnCgvi/Cpr7CgJUDob+vf+/twD0UDSjsZRr2ztdxAQAEKb++lp/UNAwORhZGMuKiC7IuEICSJtY7/ZkE/7tr4K3vxeEKACA6KzTzZd36QpATH7HsyQAOt/iN5LbJQV7Jvklacn0bNkQ+FxbvrnBJaI/9rc1M6by7pCxpVxJsndkqz3ebSwjSdWvf+fq/0ojoCnHCoHk47W+zCUBQEjg1RtzkmSwYOxHPhO6+L/SYKdAUZquBJG8VblHCOUhM110WTE5JPL9snWxv4IGOUI5VgAiuXAfndstI3UPQhCKsazokwEKPvKl4O7+r8GNhNJc4Ge+sWJ/W7oYvO6PX0EAqPxJkLc3BU0CTN7fXexvTLAQUDpG+SimYdVaS5Ht784J4piGTsPPyO5if4UwrboQUHqGecuJFMBzS8cCYKueb+OP1QCi5cXdARLH+Br2V78zRyhCPAhk+/DEzxVtJyk5eylJ9mYmZvGyYEcK/E3F49LY7dnPdvBc0Xql5xvJa9z5P2MAiIYtC4C3xuaPD+a8p/f4m4rHpbm9MfxYSa3piRybhEEzjis96clKIbKKWgGc/8nSAmBxc/vJIL47MSyAJligoPSD8KqS1wEA7Z9dLPH3MT4qLTC4dB1wcsiUX+paNMwcKPzggl5ElTaGH807C/CtaVAe/UuZkv5l0jzEoxmKCB15ChBYf1HaAwi0yvLFsMBrMtJ4LnBO++ZQUOx8QBH729KV9J6keQWwWZIFAgByR/xiT7BHf5lU12wgpVE7ob2U+7vnDwyBaD9LyZ2Akt6DSCSSpAAZbUpuvG/+1tOBHt99caDkwrDN7H0mZ8fWP90EAMfGQQCQSno3VKhJClCiTfnF5nsy5jwf6PFfDQuU3LCwZ38ROtjwSjEgBPDcvwAAFSX7JACvfmAfCDZNv0wpf643yNPbLwtEFgBw+j8Kjje+aMxT28Qr444AEFAKWgAA5yIRXSN0rYjEfvRhL9IbARCJbFhCjLzh9xH43+jx0bhgTAXalxTJg1WXmzcuJzkWAKDkHwIADIUKFSoiqhoBIqr1B0BEHQogotaNzhMRlK9HRI34dRWargrG9sSC64Y3/6fjCKQUHI1eR1SYsnWACgCV9wEqvjP07SSabkWLf7Ykmn84oeDoyuHOolDyD4MAYQgRqupBpPn4DwAAyzaYxScngCPJ2Mrof3GgdOrEEw+mu7l4Ss6gD4XdGXcRbgRA5QNpIIDbm5v1m8m1Qbw3JtlKtmL+b7j1R7d/vHCIuwgGycl/vkoFADWiAlAjUAE1AstPRIUawWCgt+ZQREUEkSH3Pf28rjjJUe93vWL76t5HZlJIRSTunjfrpdy8x/ZUXRFU648KQFUVoOqOESqgqqq45/XTXhpjY3uzr2SvFK95tHGmse/IdaRmU7buXNrfFjmhL6eFlPqEufwxRq89/du+dG8HWiPJc9X5U/fq4bi1AntQwdhBfwdwPsngCwlsLcojDCUvf64XED4U90DI0xumAkQ25m7bstOYmMYVaA8qwOyXkcQUGAkr74fQjOCYGzcn4wkAUm6+I/6W9UcK9DyRe+CtLcV+SgOoNeYk1QGS5H7b2ua7V1tDrprQl3nCs9CucNbCVt+vdhSpFF/itlJlx7MV1tCEoXWAh8E1It4oHJ0YF3XpOpcUffW3qhzfM2hFIcqq/aTs3FVmY7KsEvDQW6Gv7v424VWKBAyX7sS9hcM/fDIr0LzJ7xuo8DLSOjE9l2NZU/f7Boo0urnGI2XZaxIjvaEAuGx+ZfLqab9ZLGGxhBxcXplcFk/enzhxEADw19m3Tmh9OB0AGGDeRpLtPl5K/25W/J3PsmL7cFxk25HhULAmWT81r1oPBHt1qgASo6av1evoXEkJgInLit+8K+kc4on5Fh/BLFvZ/Z2KspZ5FkH7B0k/b/z3FpPU7AsqH4/82rx0e+PfmSjZ14onbgskUAt0Pcwr+7cklVpXro87VlmMuWGzp8coy8tHxN97qfCFyj9PCyZQa5Ekye7s/Z6Vagt97aBjsRHC8Y3/W/m9Gmlpj96q0Iz90ej+yFYXVvrT92qQ7sZ+4/yhDjpmjBCOEIgs2qAqgG5HJNDzy9y9u2uvNaP7A9MizbnkKf2FkSMiv1pkXNm6IfURwgWrv2XuXyCgnF1x5dF9mwoucEcujbZqC+10b4H/+qHz/egI4bx7LdreWsey7IpOUv+ko/+I7WPcd+kRui20Frpp9dqF+q/nzkB+sjD7EZO6diF72Cy7hd12XUrWTXDLbo4QVrYaaey61Pm1lGWvSdFnR7E5BedNv1tz0FspUFnhpkeXGKtMlnxUAERm3zND70oH50y69vjDgbdEucDC3G23cEuO+65BY4SI38do7Bbm3qk51SnYbWnCOl9L+8ObG50qtOG+NFe3Y8wN+hzC3iiPN24CgF2TF5a1zku7YInGYONu2eUew5lsr13E+ggR01uNZE3mUZK14ydsY2q/4nL9giCGDQucd90YNL69m3E2YU1GPVldMKU+RRxjiP9O51D+oj7NLpD8Q9Q8XiFtmUYb296ywpa+qtEz9pk3UijcmHet/xQeOHZLt+1cge25hZ6fldx+6Ig1ePqmnne2jdq7o/bbuqeZ0u9JoizMMjO2feu6w/qlXoHKRfF57Bhc/oylj70/flJx0aH3NhUaZaf40xcHeb+YvUuLfSCbn8wCfTaii+GwnuHVy2ZkLmlLXdPHwamFy94o+7kwbVbl4mQW6JK7qgwhyooyjG1aG0qpOG1wrEPblJJ9ujE642PK9vHIr8Nhkpsz1PCZlH9daIVz7wnt/tmMe08rAKru0AdNr1mpPkK8nfvPc86uTNUQ6wK3avQszwx38XxOi0Yms0LvXh2+Ow+3fWXu1hkwuJ9IINvuzVi2eXqyAjSSzL8IU/u1hzcgPM9P6KhIv/PNpEXIn14qZumD88B8uxlDktMeup6/JrTcY1em5IdT0zIqzpCGlAeyj5GJ5ycYBzxEz3lo/vXWnsk3Ty4wb5oRUsHh+nfejOSu+af4vAMGx9MeKEDxUhmmvhH+OSh4qq6u4dTEy69IOO1hxLFJj4+L0aQYYL5OJ2lIBTwVWkq0D1kPCIhR8+bhi8bmjicpjp4S1E/SmDxy8guFW4w9d2LOKwC2/+PAHlzkaME08lzRUkkyvMNVhbqWZy9qM1KT5J07WI8BPgrIcXRQgJc/WyUAXJEbF2UOEm1LinBwQwjGNAw4f3QyrxgwkUaRwF+j5Pmi9WYgCottal2Qvfpz466xkle/lJxdMcAmwcWCtWMbHa2RRmqH7siu7IkGDVQDaPr/OJsCUj/aQSqJ9kLBuzOnfa+9/Btm0MTOJlaPG+jzthznBAqyio4BCk7utEdINNx6z6zWhTYfUt/a2D0Wdxe5r+GlCs4ir8YOsn5qnDtzZsL4xI8FNUqyeh35CdwtSIrgNvLugdOpSfV0fBEreWcTzxWFelLNLh4JY5lUIIUINi41fBcApu4QAz3y/h/4K+PX+g1/5wAAAABJRU5ErkJggg=="
}
] |
<image>As shown in the figure, PA, PB are circle O is tangent, AC is the diameter of circle O, if angle BAC = 25.0, then angle P is ()
|
50.0
|
318
|
[
"25^\\circ",
"50^\\circ",
"30^\\circ",
"65^\\circ"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHwAAABwCAAAAAD5t0sZAAAKmElEQVR4nL1bfUxUVxb/XeThZqUdTYdA46xUBztscFMMtKXBLHTVlkTKYqURI42a7aJZzGpWt7VJG2nWppjV1CZobbQR026qCwY3tQ2z0TBmIcVAM2y2VmyZdVqwOxSySocmyIN39o83M+9j7vsaxv2FOPe++/G759zzzj3v3isjWICY9heTg0P/CQChUQAeL4Ryz8qSbKteuGCW5BqMXrkciJT/zPt4Nh7JB/BNGFP9oZEez9Pr1uUmhpdIpJF86P2LP/7y6YpC3WNixK5f7Q6467Z77XcmN7WJ8ZMlnv03zGp8sTdvzam7dvsjIrJJHtm7qOGSdbWOza4D40REUvrIR3a69kfIVqcjTa69EVvM9sijB9wHx+31JpFEkQPug9Ppkrwzb6dtahmRhnx/Wsi/XVf8mT1qNQKF1eoBG+nBgrw/75BzaiKaey3/C+tahuQSSURt7q6UuImo3d2eOjkRzTYV2Bi+Efo9B4gornOu5k083OSW6CWXQ5elcnsY27D8jLnPzzAsuV66LPBgqtxgQG7vT8pC5rWMtNa1uDWRtvfWciq3uAJm7Y3Ir7u6UiBOQmdOyKTUgHy8oJVf4BSHiqLGhXyDm6vytaY83Vq8ONVpWMY3uP14J03cOB1pNi7kqaOtwKY3twFpxNNpVMYj73MPpY2biPrdRq6KQz7iSdmn8tGR/z2/gGNw69e9opoVm7GgKV4farc55+dKZpXM/N7yOKZ9/PU9iTzq6U8baQKXC6d5fWpfNQLe2FAKIB3KVmHtY0e4feoG87XbUfBrE1LEzYsq9U7mzaaUV1ETsNyGt3jPtWOJuO/cB8GJKMLTqE7ylpcW3wfBAeRuettK8nGX7YDfKYbdycubVvK/bMxNt8hxJ+Zdc8FC8uLA/RKcpM6KWKoGAHKipHMywfw0Oxc1Zt3hWO81QaJ9OVGN2glnt6XZuaixoOGM3Ls4UwwceWqfJphg6Nhy/7iB+vPy/HcvA4CVw9pIZmhWv+mQVjw++j0A4O/rAcArkYb8asX95EbGmgAAiF1VABB6lGnIu5++r+So7AaA2+XZAMJH1+P/KXnv5BUA+NQLAHsq66B+z8MPmb0pEs1jlQ+e2lmGok34F9GML0h0C5VERJnKyIZXmY2bwf4qr+wbEgsNDH7W43m8dEuZWLZsGv4qrAbQsQkAVORDK60jNpMKqiIm58cGP+vtzyp54tUSNwDUV47dLH1WHTOqJS+0jhYZAH8V0Pger4gSurnX1zMwMF721K7T+fGhNd/paP46PsoYkzIxVTY22kh2jDO+Ro0xaNBzrKEQZU1t2mi9M3+cPqzT1lSRFwdtcVcSEflzosm0Usywtrf2aQYmEdGN3CBRoELbQKX2qQeslA7AfzQIxBZKZZKIQTGshdpZAhgw+dyJx4gtmkpUB6CZ8yk7+9YndhYTA0JKF8TGBvt6+rNKnowZFgdz9fXPA8ieSoxJbqwoIdvkSzquxRlfOxGRVNNIdLmwuHc68Kdaz8KKAx1h04b7q4mIaMSjfawih2TtRcIIEhF1YZCoEFgYNyxOQ9WjDwtkuSZdxuS6JjzIkou+RiIqBIqsBktERP3uYTlx16Xt35HaiegPlUS30EhEdNmd12OHO5L46jVRe56tyLUGkFVPdPBg7JmpumbXHI4nbxRqi1TWnj1lJ3T9m+LGiMWM1tQx/m7py/Hk1CJtkZo8aoNbzcQSXtyk+nvXriUq/Kh7mVXred5tW+Rmw0lGb/OlhYkKozmG5IXDKZKbYLSuw6PkvioyJC+4nnbue8+9Vq7KfrnSkLzwK2cHfDawrbRJnR32aYszAYiAAKDgero/GQ7fvqLJ3+BILkAAgPzMIaRVdv+7HVnq/LXluo0HdfRacTWtezGhbRe0jiOgj47j5KIoovKqCIhiPKv8JFKxfyGKEGGBqeqjJYkMAUBA/10QJxcgoPIfAkRBEAFRUP8AEAUB8bwIUYAoWLFvqd6qTCIDMNdTaUAOAF4MxSXnQFASgirHAQHA69MtYIDKigY8evedIM8UgbpzgCCY9WsLDMCFcx8tSGRknNsMnUFnIDZ7DMC2NgBGs2k5yWpc333RrWOa+3CH3hNnABAFABBEoXhJQJgRBZAgiqIAxH5EQFDlRYiI/Rlhovbdolgkn8DHRfn6NzkDiOuZgO1nkSUALK58+UdAvJIgCPI/8p8R5rZsrZVTKknP7gCYll4xODGLsLVzDPqJSQH7s5uTnoV6nteNRv2eAwzuHcf0FZyCgLauD5Kf/7mJ81mgDWxG3HetwiIFiTBKi7684eSHEZf19qen+u15iU7AyOY2zqWRlh28DWXdYIYdbHlzJZ9ec0SnOYmI7G15r9j+CtF8bG73I/u0miMGYM9ebnCqHqJERNG8/vlI3loyTclGc7lgmteBWnLGAGQf2zWXqtSEqy0XFyLJaO7tbs2Sy7VIPs7cvORIquTsm/pzHs6cHSp6hhvfZ+orAmfKip9NjXxqY3M5h+PCBwP894dzkLv0QsOQc2ICsOOJnfGkCgM7P3HzTZhDzp488twEJXq0CQYcjhyPJ1UY3Xi6KOmhITmwrXqLxOnGAv7WzgX64RLuvfCbWqMW/PPzI9gDpy97qOFjt2a4BIDhpbxmwyYccgIWfOQ/4URuAqaqWou1DxkAvBnkLDJxcKydAeS+WO51YPIMeKFuM+dz9eKxPpNtJr7aGYrObz5uizc2N6/iEEdVh7d3eGE8fxzJZTzbW3vjnQXW5DLh+fbPMwDdp/q9Xf2fe5U6yTC+IVQ0EFo7aU0OABjc/YkryYdNlP/Y5zW1WmNyuC4VlcpfzdxlTtkewUTt2UeTygdWr/9rtoXVmq5bbXlm1yeaY6vabAXn0lx7Xodp10TzuIwnKUtqU11S6ayty3gmageA0v7A6mvcEkWdp3rPQDsvdHXV4EBRUhOHaici6szbZXBlR5a8x6OPF21fwLSQHEDt14t/3jzBHTcAGqlv82qscezVVStuPmNDbFNrjxNkvxWMFPxxLLmMAZjZuH+t2qJHd/umv3hjYez9sFgdrMgZAHhO3pwteNHPK9/1iz2q3MX6VQ8Mv52b2B+0PC+yiYmTJZ4D6ovWEh08SMfKpmMZkpxftHZ4xXyqQr5iTgxAM6vb0CPv8X3ZHUjhirlM3my3+g+3/h2OLnMtWZpFS1wBVH4nYub2nclvH1y+YsUi6+YKYyxJzDa53O5eZCIaBu78ACDnp1iw7IGHHs5y+D8EAAAqtVuc6CnFqkM553yafWrF2i260x5Wyjn/YFLfFmAMOMHYr8S9cfJfswzGOmyHbIl6ohLokX6Ehgizf0p0JuthuRkR1bRTV/zswgKS6kPs5fX6UxnLD3spdhC6r51Idq9iqAo+8/EqelPEO7H6O722rA+CT/33KACsKJA9IFFXI1FNo+mIOQi33Kp0Ul8iIprxtagegYiOI3Fg5OByQBPdcjxgugV1iJEBwB+k46sH9YezFjhxnC23W1cN9URlAOEfivFbn9/Zt1E4StS1wjG1xxcCgHAHACAT+LQKuH3TgVsmhvCObpDF5XUeMn/f5K2Dv6U71hPVBGnGlxN1chdkHxCUagDnk05dkJtJRIQuAIAju50PNBL+Dz7JqFgonvmfAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, the straight line BC is tangent to circle O at point A, AD is the chord of circle O. Connect OD, if angle DAC = 50.0, then the degree of angle ODA is ()
|
40.0
|
319
|
[
"30^\\circ",
"40^\\circ",
"50^\\circ",
"60^\\circ"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAGAAAABUCAAAAABYGG1fAAAMcUlEQVR4nK1Za3Bd1XX+1j736G3rYVtvGUvCFrbBGNv4CYlJIoodAjXjySRtUpIAg6cMM03TDqXTYSYzmc6UzjRTMkkmY4dAgMYkrottDBhKQwiOH7IB4ZcetiVZsixZ1vt1r8496+uPc4/uudKRrLTZ47Hu2nuf9e312GuvvbYQ/4emhBBi5jA18sdzpwoAiIDyJwWIOQDADAMKIFD86SRwrvY53WNDBMp0fqw4K2thuhJmDgJAbm6DsatXr59quySVGcRKIt4TrZxfk1W+MGtOa7sZQLSls/1UXdkXNuVVAwqjCjPe2lZ/1VmXu2JJzhwAdDY5nXOnj56r2bG6EgCogIBilCKDR988U3nPso2Z/x8AXjj14eDjyxd7hAopEKMQCACM1O0d/LOVq9NuAjCzilo/fq/zqbvzPfYkRWgADbj/xKc/yVjzpQp7Fv6cEWD8+Fv1u+4p9NkLKQIKRYIixz76ccWW+/NmYq86I8DQgX07asvg8weEAtLIVI2OvvX2ikcXzcA/PqOKun5z5vH1PnsVAAICMo0/gJbd8/58efj6VSQcoOm/2v/mVsBbuUKEhhSEsQdw48XunRtCdjWhEqoi/WxP4a5CQF1aIlDAkMKZN+7o3k8e3hpiairDQoWefmnVkwDVhQA0AqjMGjqzv130ZmybNa1fBAwBaNy/5jEAhAhAqIEmlB8lI6Fubx603s2+b7oEgEwH6DgUeQwADCEkjFAMZbxneHygM6bz5VY7PyQM1fYfzF89lb+akGg6uL/9nxICQr1lyMSVa00n68bn3eqK9nSlr19XvLw0O/WzyIO9B/JvSe0TA6NTjTyx9+j3liV+KwljVJvrDl26Y/uqpWIBoHvj9+99Wlp757qM1C879w18bwoqwKlexKO//NZmfwyEEVw+udfatSx1cYOfvNbz8NqVqWY9958l3wkxdCrAxRdLnvax1IDinHi992sPTXfQ2Cc/ytlWm7riw7/76rppE1NtED/R/NQktAVw5MCBRz5fOu0rIH3jqiMH2v+yINh39+WDq6Y5Wap3n/94R1mA5NDPP3j662H8AWTt+IeWH18M9hTepe9Pm5YCMHG884Eg3fVC2zOfC2cPADXP2Hsagx2ryw85swJcaP5KUOaBX/U/s3Rm/kDRUxUvXwnQOSvy/ns2gJHfDwQFmDjQtKt4Nv7AvJ1lu0cC9Nrid3pnAWhp2h4QgMdOfrNmdv5AUW3WS/Ekmb02+9jMALx+eVNg5MzBTVtCmY5cbGiJ+sSyLR2/DYxVl84CMNhYHtCIc6x7eyj/zhceeOivfj7uk2tK3r6RHCy2WwZnBOhuC664oeHhAoS0i89dOv7p377+iibonM/nHw4ML634eEaArqbNSWL42PDOMP6NP73j+YVZX77/rUnb3l74QV9yvLrsDzMBjFzMqQ4IcPaRsANs7I2GnQsAMSpuoityd9WR5ITFuecDRgfdJEB368bAwMXL08MKwM/aHykDMDKQlV7vdy5ZcDI5QxYt8gcIgEwC9LWvSs4bHKooDAGQKy0bAOD80IPNa/zOgpL+68kpRQXJzU03mOKP9wRCcuflUBfluJULYPz9y1Urk73FJSeSxMLsFn816lKSAOyJLk5O6w0aPCBBjl4Hoq+8++3gcPnCgOcU5HXCSzUpEjyTx4ZLAivtuVYVBoAtF96xc97Zv+trwc4FC84miXnWACGiKkaEgbQlPhY4yZ2x8CA0kv7gv/5C7v1ZVYqHZZpgPIoOqqgQpIgJAIyPLExOGh8vCmGvjc/3PvpT0bQplwLJyhiel5SnrLuIhBCuMRrMiwKrig6H7eK2f/612zfv/ukDkeyuJIBaaQIaglQDhudrbjws579WN+G2ngwZsCPDiV9UoiaWOOiFLkwAICCBnR7Uqt8qts7PWnFvyEDcWeTzVy02aYlU3AiY9CKZ3PsAMnL7pjIBUP6PBR3fCAOIjS4AAFIByGdfd0W8tBCBrCIzJ3C8ZtpTDyYAkMXf17SQCBUfczIJAgoRDlzLJ4SgURhJ5sx27lDyk0h2T+i9wU4PjYDxPABUCEC1thjQvyh6O9lxHCBzXpcmvymoPB8GEN56+6pFXYAAORqfLwJ6gOKFaxs2gLy8tuQ3xbcdnTvAlbxaCCCEAOPjeTQGBGCMBM+D7OLm5DdFxXVz5s9L16tUhAQEGIgWeUHIWEaQBHCc3CX1jgM4DgBkVfd1IqG8xLiT/B+Og8QAqcMLC7I9ngLBjYEqdSFivBuX+gA2FlceVRuObTuAY1csPwI4tm17jBzbhk87cGw4to+gV7rv8G9aionBiQoQxkuz6WpSRXZFRjN8CVBd9T+BZMFbwuQP26cIYaxx5C4B6Om9Z6RKxIDegQaNJN3UKVv+WwC2bQNAZNMth3GzRnUVzdfuzQBUIRDh1RurxBggceUV18DXJgpL6wj4dM1tR1pSuE1LawGQHGvVO0GSniN1jVRYgLiJXW15+8AGANteNtoM23FswHYc996VrxvHcWzAQbLbseHAQeKfZVjf8cWEQUWIHrcyE0IYVYCEWAawE9qV4poPfcq27Vu2XX8jYtsJ7U92A7ZtM2LRtiFimppur/FKAkoRdPWXAhAVqrpQBPeBY1cufS+QHmD11nePz6R9VS+UtJ8u2OxVOUEVa/y4sxlQV2FgARaC+wBI21AZNKy5f+Mr0wMGSdL/23FqYlsEXqVEjOBE63ILroi6MLAEAQDbtoHb7kwxbMYjNT88plMABABcgBQ0/ejsDlu96G+MQVd9xlbXpRgjCfZTbjhm4+37gnTuE1v3HJziPeqqKihQ9+Tu9X+Xn3BHSwSou/woDOiqsSb5pt4yK5e/2rokQGftzP9ly7algdsvAUIMhf3HGx7aEAEAilfK6IytW0wjIsFlT7knt72c/vcpQun5l858Y2tpAoKiKhRAxxoO5n1xlVCM0ogQAu7r+vItghjimpYhoQAD7bm9ex74SqpOButeu/bNu6oiEc8TFXDdkbMfpm1em2FIWAmzUE40p+902f4fuy2z5dkaCQN468AzS9448q07GcjALYlfrT90uuTRNfkLQAMz3H7+TGf1xoqyDFWhGjeCOGBL1+vzn7Bd6nt/2Fr1cvMLfhkvaIOuhtJMsz32rNsddB0rbf0HvdEreW9bBgrLxOOxCXegMc3ECYtq4SiwWTRSmPNYhBYwFqtFAScziABA77lom4WM7a3N/1IWlAE5EQBKHb3WzQUleRESEFW4sIAxIIvE2NHBv7ABYCizfPh89wOFoFqpKoo29A+df3wRgB9Gn001A5XeVBeWMXQBMX5yBShVzAfnHq4QAOj9yc8yap+umqz1TLqM23ShMKe4AAC+e+kH7UH23nOBABKxJvsoXr2QqpTRww1fWuydYE25+34t/zbGaQCxD7/70HNxj8GeiX9vCCzfpbEA0EsWKEaM//gh6row/UfaNyUqpxPDmWvXrG3rmHRT3wYTHeWf9LT6xv3rV59/YlNiqQrQKEEQIomLhTGqXu5A4dXDVq1f0xiUKlsH7WRVJyHB2Pu/u7ukIsMPC8VPfuHF/XGSVEWiQOvXZVUhIi5FKeIa41w4EN2Z4M/Y2YslY/ufLwkUhUiSfd8v/1zrme+UbfwVEy365lefa5pwNe64GneUbtyJq+M4TjweV3WduDpOnBp3ru998rUR/6vY7orC6qXLf9DGyeY5g9sTs4riva7m5U9qvvE3g+s3LgYgSmNIFRAGAohLS0lLLemq+8hs3zCpEPaNIO6mlwTqXjOW94nRjo8ubF1bRAiNobiEl+3HLbiiFhVj77x66333hFYcbgZAhRjtbz5+dUtNlRExEFWIBYIqlgu4sb7Tn+aV37fwJk9R4QBUQgwVN5rrG+27Vt4OY6BiRNVS0OJo56mz0Zolq4pv+pQWCqDqvQaRxOBAd8OZ6IqypZGlEIlDONTReaV54rbClYvyZntcmQbgbR3/IkEhjHEJEQ4P3Gjo7j+0JrO0/g4d7IsUZi/TLTnzpxdh5ySBqojvXJYSMKQxg2NjkehQpzEZWmnS09LnpVzp5gQw+Y6iXkgQEBYJQmgJSVGJg7ZrLIHO8BYS0rxQoSQMJtUkiScbGELpRR6FwEQIi5Q5vZJOApBUwpLg2614V3UvZIr4t0ZxxQL/uBdoceglNSQNIeKFN6GnPAsQV0hYBJSROWtmshnvLDEkBEaYMJ53j4NA4IpSBIZqZtz2szTfBka8J5cAcOLRjBRRQ4jFuXpOsP0vmK3zQb5y2LgAAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, a torus carpet is to be laid in the lobby of a hotel. The worker only measures the length of the chord AB of the great circle that is tangent to the small circle, and then calculates the area of the torus. If the measured length of AB is 8.0, the area of the torus is ()
|
16\pi平方米
|
320
|
[
"16平方米",
"8\\pi平方米",
"64平方米",
"16\\pi平方米"
] |
D
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHgAAAByCAAAAAC9lEpoAAAKqElEQVR4nK1af2wcRxX+9loSKqy6la71Vr3UjXuAg9X22muoK7lZV7VQBA64wpWLFBFHMrhShUglX/gnqikEyaQVGGFRQ/7oBYwwIuKKmoogDDlfUhrVqFepDo6Us530kHBwKs49i17o7Xz8sXt7e7uze3vnfHLTm5k375uZnR9v3huFaB782+VLb36M5X8Cyt334ZZHd937qK1U8aurBCV2qtk4M5e+2BOJ7m7Bve0ArlzG5sJy/tz92hf2tARS2BCE8b/8S/GWgaklmcTiZP/27qm1ehrYIDFJlmb2to6c81JIkn8ebhmYLTsyHWiYuDgR7p8p+wgIkiwlnwxPFOUCmZWGiQWLE+Hhy8GEl4Y8qJXGiTkVmFYY1El3SUJjo8QLcU06n7yR7e654MhKZtAgcXFU1v56mGodK9nTK8llrTHibHT/euO85NpAl32YElxJkKQIRCzI463HfdaGLyZbZ63fJwAcJhm0x6XhzsUmaSn4dvuouahXkmTG+GChILvbZn9hoSvg1uqCgt3vLg9eBxWsHjwArATfMjfiw5Udo8nhLg1qRTKhYIWaggQZaKjXOseaoHTIfyNWqC2sT1yMjXtpa4R5rKdmWbH+sfjMtl82+3ltoLLvU7O1OXXaPREv1REJiJ/jW/akN7ExVKfV/I3hPXLPZ8L2s7ROj3Oq6+BtHIIsDWk9qdORfPXL+xMXY9NW3a2g0D38TpSc6PnIyvInHhq5AbSCl6IvcOAEycHRYMQv99yQiXVOnRG59jLJYux4EOJ8OOCp748Z9Rw5PEmSXFQrR5wXsSA5dPRG8B6N5si1cMnQOWYMtvA7Fufu2epAC1If7l4neWjczPqPumD88Cb+uDO1RV6SBW2oRHJD3ai0Jfmw8UN2LBIA+Ou2gS3tkQBwpfvx2e0AfvTMrWa2ckBPGYWeje06teX+Lqi/IEmWwv+qZs70kJQPtaAgU7Gt7ho8qc4ZPyaHbbnlaNqLmCQZm/UqCYqX201zqdyeI2ntQ9OalNgsPd/ud00JgPJofN3UlXyqpqQUXqRkcpm30VeHb0KQGywr/ziEN/uvpsOmrqMv1BRv3z8Dz8lVbnrTMnqZ7zpk5aQ0h8g77fT8xqk9TfIayEamq4l42nnMxNJexGKwidtKFafU16uJdNxVPjkiIxYkyy1XAzHIF9xUJGtLaSmXQE71WsdvdW5hET8Xy9sqvxOViKhL0i1TwbwGX5eNDzafunI2Yqv8vSMSIW0e8itM+olgLGcVRTkMgNZyudrb9ocWwFo/y9n9rqVGPHFGupxEucXba2NHAiSNG4n5vRcjk7Uiw460gSVVfh7n2oPx9pJkxqZiTk3ViqyFXWe6IMnWf0u3zFN9QXgzWKkSC5LieOWUt2AZAA48cu5m52dTAOQ+G+QDH0nsBCrXTgXA4T+eb68V2ZhdktfdlZNOrkufDkKc2QcCeHXMSF5/+t03a3mJHz9zm7OWMdE6ctJv3Hc6wEivYNUY6WWS5Hp8xHWelcJek/TkoLTH19oCdHgn8gCwJ9EBABcfe/r4TU6R6X5LUXVFEQDC69Iemwd3HYztIZfNxZRWZ2u3OkFS99azEJMSq8GWsQYYE5tJ9by7WCQHPKv+o1NK3LIZiNhQT/Lr23bJLpXRrGetfERKHNjrZnhq998CdLsLXQaArV7htkDuJk8oADb6sENaePRFme1EAFQgP49bPDzNMuSi45zb9ZB7qNNx4XW0Cq+hVoOYAYbW8+qMR7nEAKhiSTq5RLDlRJK/UdOUGyJZmQFg4e2Ya68GoNxeDPiNf5A80wlIjYYXZQaAhf+2yogRvupLV4kE6c8uvhX2KF/OnvSrfO0O6azuuOhLbPIW9hbSMl4oAL7/vGsDtVd+Lyol/lzOl9jAlZ7Y77Z7FV5941nfysudUuKof48BAH/vPvSSd+nEc55tIgAsRUFS1/XaOedr+hhTOKXOeUxnkiy0FUxZD4lW43Ry8FKva+xNRnw99uOH/ErJJZVSYu79rWcdQbI8GvdtmbcBYOKVIcugF0JACAEIAaA3I0Qlt1oOCCEUYGPgg7+0CZe5XMV0/53+EyTdC6vH5n86qQue7yR1ISr5lWwj/f7ub1PX3cNkDUm57s531xLtxDpJXdd18nrLmpVRIa7IZSM/s6Tl8DEAjJZZlzbd+MfGM5j0In5DPaXXIY5m6/hdzWuq7iDWST2luYiNv+mOLOsQ+xgAZpfNi3llFZsUOklej6waCevzG40beyBPXddp/MkRT9e54mbbBRkCQjW7l5Ha9qWkkQgBCAEIhQhsfvW9NyMIhUIw/qSYh1bninviawpst8XaDsjcTWvxUTPTr0u+BgBJlsIXWLXrXNum28G22C69cjqQva+ehIeDrdKbVMzRsTn1ZABePlXPbeN0KQobKckaJ6og6b6C1sKseqmuR9DHiWrghGZPfafrsl2/J/OBup8j9vtaYlOjBgAZkizbHOUfDWmFQH6gtTvqefWTptvL1eM9Gc4bN8+59oqS9e7hgC7VQ+N1Nq1Cm1doAOSKeRUbOmooWYoaURH/LguShbZCnXEZGzX1OInnE6Rm+nHM8M855xXUG+PP1xGwwj8ur08SlasnzYDXTPDwYl0DoPigZ8BLW2Gyyjw0IsajOQYN8tWEACQQ3iG+FY0UsPaA4oOP9hQYFD4eAAMTtpCh4yaROQhcRkclqX/y3dOt9d6imaDyq4fu85X409RbNqO3tk3aKlnNy3UeOa2+H7jHPh4AkszJA9eCZAYAlN5K1nk1SU48EjTQl9J8Z0Kxc9qe9PE6nFTnSXJof8C5FU/7Fu8brUl6E1fCRvbnGH6Yd4cA7HA+x/AiLo/E10lSCK7tGgtC7G8AjMQcq8ODuNg3WG3gxsN1t2rh7wEwntwYgn7EwgobGXKbfV+pdcdIvvmAjwFQ6BtwzVAp8UJkujbDeFZlo6thFiRzPgbAQvs3y66myohTquW9teSPt1q7rHSOS0MAhqDtIZmtppNYkFOyK6iwP51zM6+FP3LkVGRqns75ENvCRg71xdGwh0tLeIcA+EprolRRJISM2Mwr9vfL55EgF+KaxylQ8QA4sdjd43WBd/Q4H3vOb5/yehAq9wCYD0Kl40fYu8TFyJQnKUmy+MPwQTd1Kbzm1mw8gfXsRE2PT6uv+fPSePQ7W6401dD7E7sBIEjy+kxfeOJDPz124unIQpDjoDSzt3XUfsK5PABzI+Yz52DEh7ryAWhJkvmXrYfdwuEBWJzs39790/qxBevN3vX9hVSgJ+gmPvzrXPpiz47oIy048FrM9pS998neIHoUYZg11x64q7+xyK1CIF/44H1RuqYDuPV2fOLuO1vvNgptxtJ35dVvVqgAuPDF+x8LRFV97k8AO3YAwP+21QgYvxRnA5wgSXE5wBVU0GOFGw6AIFPDDpBkEtCYsNQ3it4VM5TcCELAqnKBfFVp+lUvuBM4ph2Gj6/PjRDQkTgG7DRChIEsaAfO7gaAz78NeYzAk/gEjgFAV6RJXrz+ZRBodMAUKskDTbDVqACAwzjWULtvXkVHU/20sJoAgNWXMg2NNEJoTN6NTBcAHNQeb6xaaKcR5F892yzx8B5gVcGZRusxiQyZ0ZpYv6R53TLdNQ0BRt1Ek7zN4/8xrVYfZkG1YgAAAABJRU5ErkJggg=="
}
] |
<image>As shown in the figure, AB is the diameter of circle O, CD is tangent to circle O at point D, and the extended line of AB intersects CD at point C, if angle ACD = 40.0, then angle A = ()
|
25.0
|
321
|
[
"45^\\circ",
"40^\\circ",
"30^\\circ",
"25^\\circ"
] |
D
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAJoAAABvCAAAAAAxy4ZhAAALMElEQVR4nLVbfVAc5Rn/LcbY0bPbaTfNTXvxDJzDRVKDgnoq0zPt2Z7G6eDIhMSSKdNGscM4ImVa2sGgFVusqV/lD5zYBttoqaUlnWYwVNIcMVYqaclkLjkYDwNzqMdAKwmkktnNPv3jvnaX/Xh37/hNjuz7/Xuf93nf99n3fZYj5A3ilP8BOHdy/OMIMDkDwOOjtbd7rqtwrSyUK6ALrgDUVJg5cuTox1UbSm6+mq71grjpKSyNTiaOe7aGQuvVPbBAAagp2hr/zZ8vBLcGS3VaPx2JRISa+hJ2aqCCYa67wtMSM8sRbXJX7Vtgra9g1GabXHWHDNLk3GNfLd86p5+kRWGoyYkGvmVW24x+s4lGvinJUmkhqMmLrUL7nHW2zEOyVdizbF1tIaj1uxvUxOQVD5pQss57WC9HgaklQuXv2i8V8d9rJeeiPBYNAMCJm+8cC9gvHIyWV562aiA/9AiHnRbtE/pM0/OjJjb6TpupiwHSJUY9rdmATiX57AZ0fsfSId55eczeU7xfu7fmkIeu4UylN/LZPMpj/T8+E5g0TnY+mof5LueFM+jkI0ZJzqlFeccTIIWUevULcQNtdUxtzlcAmRERdZSdJyKSV0wFp9PgUri0y1nJFdi11K8b73QatOBF52TUeCX5hH6Cs1Ho8Vlv58xIePr11M0ZtRFhPE86KowK0cyjgqIjagnPYU01eaLvWp1BcDQN7gr9KB/l0sHj439cGemgj70VUt5y0mDZv9J+c0Bt0TNaGD5KvOX/VBvlYPF4cltl/iOoRWjLL7VR9nVtMhDPx9owwuzm6Hr1O6odqREIQEdjXtaGEb5Y1wmo3p7ZpZbu0ezmVRGaTsXsUkv3qHP36jDD+vuf1zRoU9fmfRPrC0dHhcnAWZXJa3eGvn7fajFDSdWfVGEFNUP5KRN+XW+vPTKrWIPv7FcFswPKdrZ0snqKmZVtXHKf8CqCRblOUfaPMV6tZ23Hwd5cVKcWm739ZEOMCmlxaDDiV4aKmLpHD3Acx72JcdEPzcJogmGO4x6zI7bKmVmN1HYCgOeCaYd2DtAwYt21NmSwx3OBxBua7Ygt3KuSGvDazhjRd0v/Z9IfaSKIYuDoVnYRtL+XuJLWdL1hVq0WwaMaqYk1RCTvNOvfcDPRA83kNj2qVZdAjIho2LNkQ2oqZVsD4N1rAHDXnTDpztnnnkPMPy35LTtOXOrX3ewHgLNgXJeIA3Dr2XO5bbAIwFAIAIplw1LAYIx6No3Hy6yb4FI/8VQIADC4/Sq2aZNaYDe9n5uVRYB0KAgAH1xv3FriEz++fcOR8eusm6DUkjZ7uhgAjv3+QRZeqVYA+CYy/Tg2UQQk77wSwMxPQ8br5N+3AclTxfFSphY4AO6yDwASH2ny21p7/fH0g/QIFQFHigHgh+G7jVesN0OQtnmC45uY21hz/0vAh2tDzzOvgilqUQAA4Wfea0DiDTGiBMLG8+YYACBMVH6SfbLJOwHEZCJbu0ckmMrdc/CmCxhO0R1IV6hXTTbOF2dvRFHcBrXRCiIiSnQlwrTmq5QWIUCcvvSzkUvGp5smYBxR4gC45gEAL/1i5nqsAQA89CVre5c4fPLiWlukzg6suWeDnQLTg/PneODVZ59Fc8qUnP7t4CXLbZ4DLtpjhoH55N+YM3P46Hf9t1zJAzMXiIaL00ZRMlg2xqAJsGkP+YEAc+Z4jbtLWuCJEmEi6unKtrbXtde6tGvRFjMaKi0/zpg12cB3LJKc8NAeIEY7geasKTnmD1leBbqZLguzYBfxQmv6lnS8NBdZBKSmZ/nJ0s0HLdTBdcGWqrEuthef8X4y8XMBAM4r1wBFDw8L3zMdMbl8zJbU2CB1ue+fzAQid2qklu7hN2Mf3mhmGXHuD23IjIjp3eUPvoN/7StOF8GMkEtRvSILbzZtfdqkmuzmywKOYxjSwRuffeWtyjQvcPS+0uxSDxnFyqumlPqrUuWu3YUcSZlGgn7NvWPNgdwziEgUxVzEcgvfazS1hoKFpBar9uzTxpUrDjxBRCSqkiPuOgNfjKkvFO4dNFEv7F0mzeYvX6FoecVxDFFwfGnLO7qa4b183Jb1ZYz5xzZ74j+4AimVRGbCvLdRcUKWoSZJEiRJAi5dAt/fdt+ei5nYXDrwtWEJgARJggTnWHrCJ048pTqnSxGMBJVxmQFN/9L/4oHARC4+G91dSyKJokiiqNECdsjii8L2qWxIpSKqV2QlNZGIRFEUiUSS9qzbp6ZGJItn3Ar6Dqkd8Nwb1cal6Uku5U6Ymwaihsmxa6r/o6ZGInliDqgp5dJfVmW842uPY1ZoTTp82ynXlmHKLegSANT0OlCt3NSJ3Pb4M2/fYZixd7sqSJRZ1dKSSYlQFEmm3nUtS3JmoImIxH8VU1bX7IyoTCTTWNhzwCyTKEwpg4rdQKep6ary3CmHLBPRlgg5PGCbqhVeML/b6g+qgjlq+kLocKmv2F+oJ7vcZCKiZKPQYWWIVvfoUhO145NuXR71h5V3lXO8PXMyhYU2ocXy2jkuqA+VrA9MF3cLSm++plbbxD7t5HcnVDG6b7sN7eoIhrNcuV9oXM5WlxCYnR3T6HZXZxTWTBGS/II6B9MxczLkH8sG6tttEesrCY4wZWxq0kQwnoArXrjiFmJT+ZIMVVQw+tAk12mVmPVwfqwsmCna0sBYht4L+frYJrMs13Zo45jvDZab+LRFuuhmu+COVbtfZq1dHvJd1MbZuNI4LOxOrUxMbgGJ3XwngxtpGlm3AAVYqGUOyebu9Y0QkUyhTpPMMhHRXAvfamcmt9WsnL7sUpOJqJtvJ8q6oBjmPN8hNNhamfu8OguyPWp0pjwwRUQjgskFgtTlrp0yTtaBwnHHETUiIpKlVv4Ambo7HfCGx+xVmvD060XbdUGR5aOe2gWiplBmKqhV5FBZwNDD0ADLgXbdePveMfK5Gs9xkkKNOmnHq/z9dm0mua5aP8EWtUybPa42ScchMbot885rh1xHmYGx5Mx/bSpQEdO6cSbqrExFXfQLcYOOOPT6k9pd3VnnV5mIkk18u7L3lnJLZ+jkI0aZHXuYjlxbfdzXmBbTQhvfNMdGScVuub4sbljGGTWZiBbr3X8JBxeI6OJeoS6hTGIiKBPNVdSY3Jbm457eu+7R7/uitE/nndcacsY93RB5ec4ngjc9vc7DaCquQJ97NZ36qdPV/PkVhhYTpDavhazz/cTrxC7hsoWXb7Vdbvhh337BIo+jLhNRDxAWf0LyYoPQpv3sxhQyESXrvIOWGR06Ws9wp4j2Xf5lcK7unu5tV216cp61KIfkjzeXTHzDOqcjkaU9S/YMEBHJc1/3DzTwLcmMTMyh+sTLLLszqb3236cAoHgjAHDC0MPbN06Ivl2D1sfxB3dsvjr+fNYHzjS7fZHJJJZ1ZZ9TiJYHE3PdFZ5Wk5dhOfs5IduW4cwHPHMfniOx/CjfSxRr8bm3d+tZwHK0q0YobbNzQ2578SAOmNkwcPeKhCN14V+5gJkjQ5GPqzaU3OyijV4A09O0NDo583b201VmOFrXxMqHGgEkogqCxM0/OPbGLcQBOHdy/KNjlP7gtwRrb/f4Kh1c2zsZUOrBANFwmHJqIxMRdV/d7qg6fThccocBpD23ZIW1caYioH6XWvkxzapTy7SrhdTm2m+rgAkK/gX3OzsC+z6nVRpH10f5fBinizuil31lWBPn8GLL3hgy4TW+VcqMXx43gQUfUACY3nHx9bR/oLOxBLAKAwoQvO9+K/ByKpDHJeWqSA3AP3eVWpqK5sjnW2RT3PpvYROzCacLbpWkRhxwIs+vc/4Pfw1zDFCFtdUAAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, AB is the diameter of circle O, point D is on the extended line of AB, and DC is tangent to circle O at point C, if angle A = 26.0, then angle D is equal to ()
|
38.0
|
322
|
[
"38^\\circ",
"50^\\circ",
"60^\\circ",
"570^\\circ"
] |
A
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAIUAAACECAAAAACb7bdFAAAN2UlEQVR4nMVbf3AcZRl+9krIDJwc6gmHPbz+iPRqsb2hzBCH0KMaJbVVow200TANUiZFYGxj1ToWUhQVtWpr4xgsyJUGJmggZahtOrQ0hwFS40w6Y9urQyopF2aukwrBpHq9u+7jH3v7+9u9Ta7KM21u9/2+791n3+/3t+8rEeXilaui5arwTbegxr7wQLkcymAhqRc/jlz7/rEogrsWvS2VzvY/ZvH25OKrLntfWRDA9vvwibJJlMVCAnZv9V2rMXp/WACj/6KcnEMYGuu0cMm0S1LC6D37gTfLer6qbGqQDX8fBFJsBFqnqMMOqbwKLVyovBimKLOn7txT/gwAYKq2oITjo6+fSkMaHgUA/w3S7MgtM8ucSabG4tTh5NDxxdcsnj0bDM+ldHzJO7+84Y3RI5mjsevjS+f+H1iceTHZ548vvWmWQbbu48+kXosBwKmBvr7z8Xh9kNPqs946RrZzeWBtV8YiHw+Od0WCKbXTvNW51t/QlVe70BTgicWhJv8Ku3aZ7WuZ9X8vlNJl2afrAs39xjwXi8X+6si2jFBfdJBsbtsWHjEK39oajvd5e7h3Fj2xaMIh6eCnKPNghG0RnYZMsrBzVnXvxWTRv2hRt2NiQxfJQniAm6MZnQNJsjNaPXixWIw1hZw5MB0ukOTGFsrro2PW1M5gy3sXhUV7cNOES/LmzSTJoWCBbImNW5Pf2xB0qkrvLOTh6tqUWxsvhNPKxYIeUm6OFQkbSgzVxNNlsui+ZoemUcila2Xx4tFVlMlVNRP23I+GvLVSBxbZlvBgic5+y6HiRbpygmShIZ61Z+oPbizYuHllMRyre9eVAnksqimPJ0jKhbplAhpjNZ/yUCsiFvJQ8JGSBVvatcudtSTJbF19QfDKG8Mnp8WiL9DpXkgm3w2Na9fjfuV1J2saCgLTdwQG9XKeWXSHDrqTIMn2FsNNw8+V34maJlHenpJt1M4iET7mYQ6ad8z4mFjxYjzWrMpk7Q85GOomKU/BFn8szk3uTA7VGO8KAZXT+IL1orKpEtawsngpeEyYzwi5OIXoaNmkXmXmrRcVGQgOaGVLsxgMvlSSBMmRcMHIif0R7TZT1SYq0RM84aLPyELmcKjLMacRmzZbBBFtRSGPRITdvCOSdq5mky2ysdLjBCkzG7KORJvX6tenQ9tFxTbWFERiO4uWOg8kSHY2WCWpgDpuymQq9Jh2raNQs4lOMLLoiox5WyhW2weUxT2Gm2MB0ZyeDh3wwGI4OOSFAjkYtcu21RtffSggaF9yfygtl+ojhcUd3khw7W/ssozftMwZuKK4SNOeKpP8adxBo86i3WOj4HjQ+ED1MXUdxmeyPyAap6p3u7CQSWZCKY/bh60tImkibr7vNdNQNA+GbQtDnQVJNjm3YAuqjoukE/4Rs6A3oO6ODLXScp8ri8PhrLmEI3prxPKmRy2C7kC/Tdt4SLhBUFnEXJb8ZqxwGF57r7dKugNDtlyJGgpetciiJ+ZxSykbpxATCvaOntDmWk15oarPiYXMWI8nDhRMIRrWb7CJOow76SKzuKCoYgttmVIS9ilEw6DASttC5i1s0RhiFrFOr5v8zlXOaVHBSvGRjxm6jkyS7XH7s0CSvVXO051JA1nd75ylrVkg3PIx89mL/J+QXQVIctW2kiSKGPyES+KIX7Ah4cZoRnsHmSQfso96IDnht+24nbDWda6peVYkXb/APGCOBGyWB8lEvVcS4yHHTbxMsmOFMGmNZUMf7xGxsEudsFU8AKsYqxQbtbnaRN7+1iDTodJts4gqW/fXIJPkl9qFaYWGGiONiaB1TvORf/rSDI+nkgdmqWe89lNSCQDu7BSWm9EVvP28XtL/mV5LBp8kHV7qjQPR3mJ6ph0rUqcdaKD+gl5y6cs23QxZD1OdMBJxqzqZJJvbHJKy8ZUFNRNT1iWjD6krr/ZmC3Tc41Z1EgA0Py1MIir3nlmtZCIQHT9jzuDDK3GPJM4n1pbME88ecaDh3//mXRrbeJ+Vhddmge64B6M1dVklVGkcOnqvKlt62Jop4vEcjotdphANQ0HntjM2b32xZaQscziyQW8c5IEF7unF39gB5+k5Ey0uTgoBc4IvFfFWH1K7+1d9te+u/r29H6ujy9UHdm8BAMz4iKVHP9vkbWExFpqgl0XIaMBhqpFJciSylZTJFebdiu/EXA8fdwg8sdIPLx9vP7qoW6xCAoDI/q3bIQFVJ82pd3g7sShE7OeFYsPsct/jpYIJkh3KSUMjAITPEfE+R31G7K0tmaWIcX/GVd1QIEH2FKfVxhT5UPic773LPRl6x7qSWYqWDyzvclUX6/vm87jiHQBAIR8FHr7lQd/kB73oPnW83iMLCasTcPVBiP3p63uuOAcCeG0mAHz8hG/Sj3w+X0p3xzqvsz/4xdGTIuvqvG5+ofkHpyEBOPRZAJjjg3+CzLlWtExmgxl74zkYjYlH0xbxxslQvrfyMpLM33COJB9qBViChUxyp2gXEgWqhSUGIu7aSPm+SpJMt5JkGvvUr/35fF6pGaV28toPJQAdDyiC4l/k8sgDwAWrsQEAN+FVx/pSakr6gEQAh+YA4Hfqlmk1Uvyv/TP8cGCBUZw7n2MuJ593rBG2Cc9ZjNhwBWXmF6bINOpIhDLmh+ZydhZNO5U6szF1QCqQL8HiviDlpGKZfSR9/knFVBXFflJRUWG14tmDdzpaWIjo/L3uGZirgLREaSXLAPj871q7qa3bPtFUqYsJtR38WZKkb4mfslq48NMhnb9U5aMoi/flckrLLVo9p/zVf/Jzhk3iXC7HXI4Phc8xv1DkkyNzzG/dcViwyrz+9V2dqagwjjFKhVQYfg5cNxc03FdUVKCiou0v6ctwyY4//NvSRQhICNbscTfGObO/m29+qniVt7WHItrvFwyFr/zwV4anGo0NAGh+0un5CuWzV8HI3jf/lMLBcRA/laoTSDs2RAHgTeWptllj+dFRB3UKy3eCMLL3zVNsIegaRfUd9wqmkMLxWgDAgTsu01UbSvm/7N4+zwbN99mAazOSsyHRPjyNEyTlJJy2z72uJ2WFS9vMrbPySifbASCk3bVBQUJo4QiAC99odXKRqs0cdTHFGx8y3/tQ7TzoQwI67hdwwyX1vwZGK277hUNBzlj9rAuL5Ewri08fdluTHMFNIm54+IOSdG3qF05FJazpdFH78mwriyVJuPhYOa70niEZhXCxSACI+ZOOSvHKLCuL6PgZZxJnD9mmEJZ0KVXUNSUcl7Mnr7zcysK2gTbisSabz6Lk0aW0qee8U1JyiUXgo30DreNCh9eltx2RmOPEevjTVhYSlr9wwSn7nuun7yGIRvEhFzBxyDoa+4DwvBcFWQkAv7V3U+9Yvf89ccLzNQE7C9y1S5BVAnDyDdEU4hWBZbYTFQVPrrFKfABWHjwrzt7+jRnluLKuEVfJ6aNfELHwLxdPPZPP3V2Wh/WyvwnPHX+/2jY9+gDgrnZh+3y6NliWV2/l7SJjZH9nX8X6AOA2f5doKNpxf5nO5k0WFgSAJ+bdLGaBtq20P/DVSvsUMjXE/zNk4iABuLDtYXtGHwCwHi/Yk3bca5dNEaufUglAHXE7Z8Y1iYEhSeGXzMyHs9Pw4DXjmO1zQ6GqT6bMNssqR+FSj+esNfL4XZXlBCEQABaEDlrEnaG4JDpWUGD7wl0ID5dnB5kktzeblGpfuMW2wK23boFeeQD2xOaW53wvAcBXeiYNSonvNtwozKxytXo+1E7Nf9jJHLWmI0TN80FkCwnA1Zs3GJtBauS2siyhmqMpYVwVPfAT6zymQI+ZWDf2mEH+m3UoN0wHALCy/5/KyxHAzyqbHLLpZjF6B02ESmx3PUP/Ymz0DnJonQDmttefVV//6RVi000Fiqo7u9Sbtxt2hSVx1zdGsayqu1NtGTtahLmnBEVV3fAp5eZCY/PnnLKaYmm2Z36kXLz6gRtxEZoFAcxYtVu52YRHXHLq0L0JV3WWO3Yr+kjt3NHsTWhpFzbPyj6SmZDIeWC6qBogudfsWencOkHgxq6G48DjzZc62m7q+Npu4Ejz3vkA9UMx5xohKbM7fLpgiMQoDzJJngoWUqFekyOw1RaW2DsJKydvbj3/JABKZcWi6Xvf5MSK/s+//rr2CALow5Ythiy2CECu8d/9ZYVQWX3Ep5XmdYdvVzdXLGq9VXmC/lQ7DpbySp8aOgIDDilalzGzaASAffTioe8ZG8POThtiFmzcx6SU4huloxU8Yqym2vrtWlZeFoavfOaeWvj7EswhUDUQ+eRfL8aU+ur86v4wsEuSlhW+r0mfaUzJTBpjfE00k61kYyspe4hicYQtiiWNVjKNdi01/xXmH88/ruczs0gA6tlhyYie0hyKET35ha2UyQf3aQnJdib2GVVbWmeKCf0Is0R0Uwlo0U2J8DnKZEJvpE8pL6vzMLFI15H5hbqfkXuklzu0SC+jQgVyY4pfnTRKTCwS7WQa+wwS16g3Nw561JuqUH/zdB1p9oEzzeyNKeYXhs+ZMrhEADrBHAH4lum1SOVlyW8bmBlYJLVebG6TztGQQlijIYs1kta5NKZINhrrqYzIUDtkZjvtkaEJ7COT2hilHsZqYa1eWcjMdq4QRMlakHaIkk2iVLT5lCOGq0UeNJSGj/T1ZW+dbsTwNKKnbwwtnj0LCM+RgJNngP9r9LQCSjh65rV/pIGR0xJRNROYHbkltEBNnt5Zw38B51qyyL6pt3MAAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, in triangle ABC, AB = AC, angle BAO = 45.0, triangle ABC is inscribed in circle O, D is a point on circle O, passing point D is the tangent of circle O and the extended line of BC at E, if DE perpendicular BC, AD = 2.0\sqrt{2.0}, then the length of DE is ()
|
\sqrt{2}
|
323
|
[
"2",
"1",
"\\frac{3}{2}",
"\\sqrt{2}"
] |
D
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAIMAAAByCAAAAABVOD0GAAAKB0lEQVR4nL1bf2wUxxX+ZqGiFQeXqlv5Ii51wGdxlqkwwi1UcWrT2CkIO20FlZHiFKO2OJKReml81EgkRxWkGIIa2poKOz/AUqIi4dQEXEFiE84NagE7wlLt+gp3xImdcsj8Yce2ZKTzvv6xu/dzd2d2ufaTtXveffPm2zdvZnbevGUEMcwMR+6GgdgXBHiL8JUnvMUbXYJlOWAiHCY/6gvfrXis6DsuPF4I4LNxzA3GJq56t1RXF/w/OETeen+2ckul3+DW6MCVsLyzsehhSZAlpk5u9LaMWUmMBDwVb0wr6j+KtTYTWHKIB1wNvZbFFSKi7vpHWqcc1s/hMNHkbrnLJaCKNq8MxPPPYbZVDk3lVGn6sPFWObTg0BRmHHo8TekMlJwfuSwaCi/lk8Pn1Ruu8erMRbikNsnbTjlDDoOewzZUpJA4WDjioJgRh9PyJSJnHe2s3J0PDolmn5OH0TDobbVdJmecnNk11+tWRy9GzP6Yd2/76lPL7ZWTsv4fLS8MqxTA4IACCq5+dfMdm2UyzXLJ3e64GZL+0+YO2yqYyWHEnezijodeheicHHXGQSGa8jm3QgYOl87akE75JLHFrWvbHXiAEZ6b69GUCginfJKhBb/PEwW8GT+kKRVByiSnfVPm9rKLCW8PiToVSBe9Jlu+q9jF4DeER7qkHSZXOZz1zNBdKGrWpE/WVP8mX86g4aXIWUFJjcufNybyZQDdCRb8F8UKaBxmvYPpxfODfv+CkJzWN3+7vRwQ7UqieGr9Mc3WIm0RlafzagENcTlOxLeuBIBwuNmdVwtoKGhoA/jWZQTgXmnMDQiOrHZwb11UQLEEAtp+6QYh3+4AoGDH6wBfMRFNuZ2vTziIygITqATg3Z/kYfFsjKKK9wSkSKGycL5HhhR6KvkyILpZSDY4KPb4JuRxrrgEdDWSDXdk9lx3ScMpvjiRN69ztg49InHNzxWVEEkYhVgeGtrTs/LJezxRCQOV/wsKANR5YklFmM/hox+IqrzMGNtvhwMDgMorXDnyiLpDC4gIwfTWFgHfITAuC+oK1ilE1McJohlgGW9OXhotFbNr/2vRVCezNbmV3C63FpAixapWCxkCgD8GiwBAXc7aoEDw/ZsjIkX9YlPm+RoAQG+Q+1aUCQb/bR6HiJ//jgHgDtYAQP+FJtszvH8U1naW4quEFK3BpwChJmg/MOydgrWdpbkVYpqCfwDusODRrgG7HJbPcQSkOc4GAGnHo2DMFz2KT6v28XRmwTXPebOW5pZba2D68TwRFQEIzG+4bo/DHMfluXbIgfvtttoDD2wUWDHLEciOiQmA7RiLlt0gO13UWlZyzdtnIZ89vP1lhatbw+wKTneWXDY9TMWOseHyYcHxktvaTjgQAPlCoCa0KCTO83pILp7H5EJ9+t0jN8pHRcTnuXbwfAFAsGUzUXAxUHVEQG7ymzwO/igAh8u83UMXvxfJvGTwLLd4bweSb8RJ7VptheGGJzNNYfAs/yrmceDOrGZQa2v+5OKTn1kLRtfyOPhGAUfuoBX5VvjH5ScsBce4dihcGiFyEnhIFnnx43e3WJji+mpefEWiygFnGxUp+P++tfxN07th7vpFYlv47//m0Bpk/9UT28yWU+EtXA74/gAAKGqYEFDnIso4JX9pRxBptTP1zNYObVrXZVjB4tUqPoeSpREAEhgYGIgxAoilnwAQY+qRLQWBGJIBXq0ZlxzqP77tfkpv0smHvAUGV7M44KdndAkG3Q4GYKkfhuv/9UObvv1etjTRmXojHZkg5ebjChGRkrahrf3KvKAeXwlpd7KWewoRXffvzI6TJ+Rx7kJMIrb+kb9lsjIha2KftEf87rCvJCv+dKG00LocAIkBPz8NAOpuJiNiAKP0E6VfToBA0P6ysezV3oPPzSRJE9C1BwA6GXsGpkt2CWC7zqX1K8bUY9qJZV5mjEH9M8CmYbf/A00TGGJXdwAxFiN6nfksOEBuPE75CdISsKz9TNOeaf3Ca80ugi94BCgKrjEvRkQT8rSiCIYUQiHL2woRzTYXaJuscfc00UmQQkSdpnueIFKIGnXFfCIcDqqS8KrmWSKiQICI0MmRlwAGHDwxo7dhHsBQOTq/bgC4904rEMNqjry6vihqzPNmlvtUx659D34WEApCa2uc0PtDeapdX5/+MPL5yst7ARSpcZNYv+kQo3FwHX9+0cmLTC709elk0+DXlv/uAYCO5/uB/heqTYvoa736rx8Dc/Q+ZYiZAxuKd1fHomXXgb0fPs3Yh+dh7m16d5jwiu2xCvQLSrTLjfHuwimibjnE37NMhfrUvWZu5xTg0OurHlEG5X8qRDRVW3ZTu2yq2vaeey4HJfM8WFF6Sd9zJyI6nTSF2TCYHvIMVAvs9WZzyNI7Ue/pUIgWNqfE4lvLIpYq0+MPx/Ar+96X4WczBzYU397LgF94DiUvFlwMVByxDoCm4b5ALoqFPyy2y43q7lx2Lsp45WaLqLhpTo59Dr2+ai3loSc3J6ddPibIQSA3yYSDoroiEZHS5g7nJjqOV1aZvdVlh+FHfM0Jy/5pxEGhyXrPSe2fhcbSbCuoCo/JJs+XHRMr/ST21Jd2R8svD5QV325Sf99/YvZadixX9dsXP36nynBNmBOXW9m7rjx9GWzw4phKZyIAWDzhi4++ogVbhspqus3iLv5/bNtsuBAysM0pzyXzvNGctki5IhF1e7otW3KsbKu+r52Ss53DqXHQNdyoKP0gqXPRModTUYiUREjuyr5hvDU0oeey5j5Uhh0m6j0n1S6gEFHYXyuQ4nxzfW3WnGC2PfWXzJzelOo0DtOt8kupsSj+rGBObyJUkJlsaiO3WcXLOodEclQk0nKbhSgQ0bXMNaFpvNr16s24L5gbVNDnh7+WnAufKtC6yeS+tQsjh5bB6iUo7c6mYV/JOet+kXq4gOtZffDTr4VCCukTtIaeendrbjo4zxSNyS1HXs5/x0Zva8Z0EwpprqhVNhJ4tOINB1lFC80e/Sn4W6ZjLT5P/ckkj9Ch6Vb5oOqKI+07Zf9BWzmjaQgX7lG5i30Dcrl/4D/aNyBvD92obZ6n+Tx8AzLX2nu6CrxvQNLWwTPDkfgVRrfuQvsW5jFf8lsYx8vlgYYftbnEvoVJp7T3VpVaRq3YVvlczPzp0a5K2zoGHiaUaIg9D/kcgOOWIKYX5e2pCVB06Ax6hKfvDo9DWr4BAOAZxhjrd1arEQhPK8IpFfrQV9dHfXA6JBggWCc2PqTRZowQ80Uf+pMsHZ1rasznLGOw/iDwgkV4ywYIQAyr6wTG6kx0gCFKIrOSEPZTNGjXDuiNKh2+WL5SLTuPMp/t/e4YirAXl/NCAIiBqM+HpfZKXa7VAm35iKjGfn1OTfKx1351UVLsljFDCxClOiBoR5/SBwCoyw8FVSWRQv8FRq78KwJR5IIAAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, AB is the tangent of circle O, B is the tangent point, AO and circle O intersect at point C, if angle BAO = 40.0, then the degree of angle OCB is ()
|
65.0
|
324
|
[
"40^\\circ",
"50^\\circ",
"65^\\circ",
"75^\\circ"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHsAAAB1CAAAAABLpsHTAAALqUlEQVR4nK1bbWxb1Rl+bzIwWr0ahLO4qsGsMYpZkJYqTDJrRpKRDiNVpYxCfiyDIHWNphQ1qNkwUlCqKZOClo4gNSyoQgStm4IS5A6h4WyFuNBunVJkNqWkUd0mNGV1MRplTsV1Yu6zH/f73nPuvc72RMo993w957zve8/nawHkhofeJKKai35OMgTXGjiocs/yx51Z4PEtK5xkgUhvP4hA7t3xzL222kg0vO0AP4dgDAnkVRBfc88yczsRUd0H5tgvPjx35QTowmUiCtfRDdtuizbx1LJ+7j9vN3BDIKLL7xzPXGm+ra7Pj29FiOjSIq3MZo6+H25rb6/1zi24Kmdt62k/EfUVX5at6twrx67f19YSY2Q9m8lkgo8+UeeVHG5Y3AsAizQJAIWxpnDfR07Z53pDzUeuudYKAO7co88DwM5WAPle6nzLnCoBkrXEVEfgmcL/gVtarc8Ci9QKLHcH+vIeqgSw3BPo1bPaGufOLQFAWtbMJIrJ4ICXzijIJ4MDojO1B5nLSIW6C9ZaeJXK8Vc7I2nnOr1wS1huv/0X8x5yAoAkqQ3IxHYUWPZQCTdmawbHAqFQx+E5j/wyN77qj8xhXfrWMB5MS/MhzI91hoO7D2f5HbFjKjilN6Vy7nJPdA5AaB4Ackc6I4FdI7OeyWfDSW6aK/fnieZrANA5psYsvdoV9e8YPu2NPN/0aHE93BIwF+0uAwAmOowpy0f3xHyJoVMeyMUfN+Q0mRtEL7n1O33zYSV/PlS2pOUnuhuq2wfd+YcCGabCnbnnAm9r4RhLyIWpnm9Ty0BGj7FySABSwZw1VnLhlgrRw/pb95CxPkknuZZ6upGa+4+XJR43BhtYOnfiLrf3GN4mEnpdNhTf6ruH4sm0yMnRuatC7t52o4rzAeWN93mL6WScmvresnVRAsT4gPa6k4iIWh25x6MFE829zK/K3JLyO/3N1NR7zDaBL4dTOnkWSO91sHPpdNAygicHmBltKGcGWqix541PTbGzQXVAXk1gdWR1xKHfy2HrLJSOe+MGAGQG26sbul83zPdTEWUKTj+P0Un2960IsX3ImlD08QYoDk4NJXyxPUeXldf+3fJzlIiyAL/fE01lqy6luMt8zMLp4R3+6J7xJQClmFx+ZxY/+o8DdzEsTxcm9gH+tGCGZA7NDu8KRLqO5I7HREhYbAWGweOWIPV1s/oQr2D2tLQkO7I7GI48DnXt2cMdz3NB1iq3HPC4VORg9usb8/IXhp1DANh7gycjB1nRDz75mNdlv7r6N+7Nnju/CQ8m5HC2kbM3yDO7DQyxNOEZ54P5fPALQwRzHzq0J8DsRduJCrttwlPJ2tpHfmOSihUSPmPrVUI5+D8oPNVQBnJBwxhh77dARx9mbiYFqr4/s64eg4hKvaPVRHXNbzj1G2jMMCIBAGOPrbvb/fKaK9WiRzG4sxFuBfOh9VLnglcBAOXgohbHsLXXurjCi9G5dQmdaF/ymwQiqu58zUnm4XmwFwgS0DHGiPeAVIO6DDkd0yLt3I5yHa9Y4RIAiBHNhMr+q2rH7DI/0cIVHCjx3lcVClsgIvpVXKu0unlGPYiyc8+0OdRTe/OZCrmJiHK/fVF/aZ1RQxX0G0RELRmvJ3cGPJWs1Uu16oOjVT9LQV1NDN0pK+WKoBsaAOAmdbKwcR9vcawn75frSRPRXm/UBkMDADSqu1ibzM9FHcVXW3+GiKjvJ0Wsnuj2JPHBuFmL0QUlYOPO3eVc0/a3QdT3wad+umEkxTvfNeLC2IvmiNh5Hvc51oGhAa3TAk0feoGI2POvDU8lLTNT7CyPO7/Zuarm7HV6aW8jEQk5LZJv+zh2qdcSFS7wuFe+4cy9YevJtYXtRET0l4fVg2P+qfVq72i1pWUbVE3ZzpFX3A6iW2fqF6IQiNLHsi5ZiWgw3gLL1YL/uhqyfhEb3DYfJ+Or9ZMAVuv3AsDxWONJfuZc8IotbjmsBGzcroc/5Y35A63AIv0UABAjctinJeRdgGmo+jygBDyc3VtQ/b3M8EOCssrVwL6xObbcK6cYU/WwtaX+orWdVhhXypKjzK0jmgy+zEN5t3NDw+zvDKm/gxX9kVreJnP/Sq3LPc89l696uxS5ODbHUsX1DUrA9n37i25VVicynqhpX5LVDVxXRxAbd+gT1zrbU56oU8u9rGjhcpDHHctZY2xo8bQ1Kj09Ws1MON/A447OgZwGaPK4UoZ16tRw9k6l+ioiKpVKhorPC+R2beal4xetU6eGXL3yiVcRkY98ekpUnuEcbb1txilVxj7r1Klh/k61YwAgmj5wt4sRiXGmbIOyRmMMFX+7Sw2p+i6VSrLsSy3vkaYGXRtySPlfG/griY69lnedDPGBTtynhlVun/JX8rW9S1Ty+Xwl7UFEJZ+P1PdVElvfL91UslZrBNfQBDqhr/9VmYvKQ/xnjTkCMP0XARETCUCEJPFG3xz/kKDs15J0fYtq1eF5V+48lcE5rpYAdepktswwG1QRmYUHemSCrUJDuLaBuzUSSJ46ifOtTHQYuCAqZi4/vhSzEeBLOVIU1a4b3kVRxM/7tWJ2sKdOReTBJS1smEO1urbyi0K9onU6U2ZPnTLYZx56N0a6nLgBGM6UGTp1MDRg17idWzSIsBBwXT8gPs3lVtdoLGhnXBL0scXn08fVYNeIqx+EOqxq9qTlP8aeOmX8usdvKMdq3XLwmlvHuQov3e6wZM4HjIelFZ3lGvDVrQvsueK5pd/xSz1NLxCRtqrlqIXrqaFebCYmmKLJhRwMLV+TN1bC3kvWdT3Da7rSYqF1hjl28KdOItq/v1burvLObmGx9oyxlwz83bZSlmA73jDjeNQ8HDne1bAht8cwJ+go3eFgaGIsDVNvePv3jlsOOUu9ujVjX9X9snkbX+KDdz9A5kGe18rLtrs5C8ZsI6fkaGja3ZwG/rbTdidpwXzIZg0PjvCz63eSHrgxHnX247Et7HiGJsF8F+uBG/vbHZeEHWPmjosRjqFZ7qA1OJ0VHaL9TqN6m+ULH/z+NlZ2kEC0J3SQleSAQvSww7CeM6+UuYYmSRhsKBq9FBS4+Vo4GbvZ+yLBN7TUrVZfCw/cUjqgeVvYJWDwvnAc0YYCM8x4t6Ods9F93DpfN5wpi5GTtubJr2JXA7PXHo6VriVaeHOaeqYMAP2dOpsJhabd6/IpAqD5UrGgK5xraLOb1+1LJQHAeIhjcT0DaohhaBIATIWm+JV7850LDTLjp+MKCcfQyrLv3Dq5FQVebv/OaYYy1ZUyZ0TL1O8oOC37PPtKbuouwGZMiveFbmiG9Cudd+iqYjbBKzfDR1QCks8CmqGZ6s8/q/mIcuGZG7hk9419Ow6wDO1ST6DXfX9h5Hb14sj3buhU5SgBQDGQB1INa8ZMkpTqCCQdp1/Jzu0BhbGmcHJerUBCYsJqaBX4Qrv7gFux8EpqpaWtJUYEgZ5fHDNsBs5mMjM1u5+Iamt/55PZyrlJ933/rn9+eLr5w9qPl2hl9sLyqc1t2+9fl+/7wcraUsp/Vlwi+lgA0cZbqPq2jbduulFwl6OS4SDZ72q4RQWoEpSfvkhEANHvv/iZQbD231jY2gJz2vp/IUL08t0OK3IHQCCq6BszQsksVl5S8ViclEgpms5WVtzSkErJJ5GmbBURkUBr+9cluZcEoW21l0ioTGtrFxJUT1QFIhD1R5yvnplYEv4BvOoLVVzw3W1+2r+3Udb36B+YjrPOclYuBg9MVlpS9VisIiJaKt5bo5zBeB9qhCP/PkREtCVaWTkims5idOuHsp334KLiP1CBzazW2zw5PWLxB3LpKiJ6aVTYonZGbRpcn58sGH67A2vA6fmnHxL9a6GOqoiWikB6izmPeQzjP1Wor57KTSdo7YGaBFXR4pPPEF2wVCKQ63Nz/QUioqUpVhscntPCm43CjZs+9RMdIMpip8FhRPL4xChNAunWistpqHDtYEIFPi42SAD+C0Nk1xizOGe0AAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, circle O ia tangent to AB at point C, angle BCE = 60.0, DC = 6.0, DE = 4.0, then S_triangle CDE is ()
|
6\sqrt{3}
|
325
|
[
"6\\sqrt{5}",
"6\\sqrt{3}",
"6\\sqrt{2}",
"6"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAIYAAABwCAAAAAD+2VdJAAAKzklEQVR4nLWbf2gb5xnHv2c1S7coVcMuRF2VqW0UR7U38HBCPNqgZsiuxwJzV29JmUttWjDk8odW/Ic6AiqsG+mos4w5raGMenSFlJrKsEKd1hCFrdSZCi7Mst3GGerUrmqVMSdymcpO990fJ51O0v2UtYfEuve9e5/3c8/7vM+9977vCUQrQqH+FzeWPvg0BVz7GEBgH7bdF9jf63WuT2gNo04+WVhIfXr/3n2HvEIwCOCjj7iZvpb7S+BoNLrn/4xRtcPa7+c2I0cjYYNLVi6lUuLw6D7NZFbqtiKF6d7AxKp6rDScU0hSWY7tuf/FDVtFW8HIx7wjb9hf9tpxX7yggbULo6osN+6byJtoV+r/5CRfLG+ptFVrFONioqCryZC0Jvn47kSp7RhK0j9uZ+e668n8SHC+zRi5/p5F96VSB44VzLA73PZTAO8diiwddlkOQCTTc3DFSJ+bDlu7jxnRwrrWMivOklRquvorDK4bRZZCy61SkOlAvL5d+jOkBLqMorx5YvMNn/sG0eSzH9z9kv5ZM/AWgIFOl76xcjCY2goF9rxza9+1WnKuEwA6P3SHcfG+2AueLUAQ2P7yo72XtYyFKADc7e6ZsuyrOKfDcFEvWqGkuF49VKs/KbnBKISmWqm+WZ7pLqoHGYmkkkHShYuWBw9MbaFB9PLoZhIAcBZPAhjAWy6sEYvKLTVGkygs9SWokESGzKDfTdyYCRVadAoDyQWSpGoRJOkAo1rxorjaJgSSZHr3clqXdGqNXKDlCN4kCkn+4Wu7C+4xomfaRkGSvOjv+qEu6QhD4YVeuW1+QbL4hDhbCuvs68waxUDa/iLnkgoOfk4uhGvjMWcYE+NthChN+F4iFfL4M+4w1kX7Ib5DUbgYjuTU4/zXtXGyI4zRRHsISMoJ75SWiMXcYHzaPmMs9fRdraXymmInD/pnn9jSEEOv6ciJd0PqIQHsefg31TP2d1DwWb/qOJbV7/Ys1eesizcdW+OVhxy+ltvI+UMD7/VoQ3EQwL77X3doDYU9qXaYIvtA+N3m3GRE/bVvlKXgVgkUhcqML27w8qiUxaziDCOW4JYf8PnBoIlJYwk6wwhs/QE/K46ro77mOZDFsDOMVb/TyswsVhj2Gw8SFJLyzjzpoKdcjjjtCfVTS1qPuPjtW9ceNC3guS8FALYYl446pJgTBOFUE9Tm2MjUy1bR74FLBOw7rN+ha0ggCakhNxUcMp1MUEV1DjuMrOiQop8kk/XqSpJvxrbk9g2St9iY+mq3+mszqTh3PtOQQwFXRgMf2Afge68etPeND/frvM1cnpe6AODvtRyh/FRUetvBYyD0AQBba9yrepu5MSgAePskAOBNSct+f+zW5aA9BBC+CntrrB2wsQYFACvoBIC5hZPV3F8eOfGuIwoeyMDeGvk7rSwBQKAAdOHDLgAPnepSM9fGSukDTiAAYe912Ftjc6etHgCQXgBWhVO/U7N+e/DB98IOJsoBADuKgG3c8Dsc8vQDyKiH2Uh4yVkhkuRqmPZxY0fRhUaSC+G9X42X3DyScwEqit38htuFjv3r6F52VeJGcMPBM8VW9Jx89RpwowUddhjeTTsVQg3kXz+J/TrsH3CHUNwJCHYYO76wj6LVPnEx7F2bWB3f6yjuarLphX2j7LS1BgCAxI2xn774kg/YdcMm0jRi7LDHoLfoyE0FIfWtzbWhaikXFPhipw0GAcH/CZzc3OapoV+8JmpQbjA+FmEfzMPrDjTxryMh7ZG+w1kzanK1G9bWEACEHASBL38ejb2pPdK3ye4wMvvhwBqvmZ6qjoTeH7v9b3fVsl21CID1TqjWKJfLpheFGkdVjfWVnz7yyCUdhetGWemEag1P2WBVoHKvwVvWjBacAVCgAKyNIV1/gcd5o1AArtzjg4VvCABIIHLZ7AoCOHPowXcMMR31WQFAKgLUfKMMeMqAB2V4KklQKANHL41Xz2t/PWXVgh89dv3PPY261YDn1EOYGlV/Scq1/9o/Rf3hip/6M5QpyzJlmTKnvc2PdIWpiItxgSJ782T9C0K5YgfNYADQWXUO1X9YcSUPPnt8feFw03277CdCOrAHYM03PJX6PZ4Gfx1+1bCaV3r2GS/G7vjCDcerxwEIAkiZsmr3unbRfpaCBtn54cAltQ2aZKnHRaPIYpak+kav9le123rKZQ/gKZfLHeqPp2dXqpJNT7lc9qCM8txB3/KRMtzHqjoh+KfuyluEjsyE+NxoQ8bGqGixbWM17MIaQ5V33BqGCYVSm5BU1DZY8A8XtJPNkg06Hw6v7y6qaqoYstyM8RzQT4mMxXWZRcl3wVK1G4zxROXA/AUhA4nMYJL8h7ih3fhicDCvbVRRjCrMO56lYt5Xnaw2xVBwkiSlJMnRRKW+/8S9L9rp3vA5ektRSMZ+Vk2ZYpxVz0xmWFvIWApHsrb6N26zZ1AlL+arvKYYmNQlJsZJygnvcw6Ul7Y7QVDoaFkngzldiaI/zdXv9K05qcDxmupCqKQ1njlGUt/CF8K/8iaaFLWIoUopPF9TZFpGmCTJTFJNpYVtz9dRWIBst9pZVZPTw7qEKcYkkmSyX02c90q77og4XEnQeqGlzAZ1q8EWHTYJVKY589HwIhfFM8HIYsUIlo1ih6GQZFqs2yFk2ZBqbTM+qURyJlSYDgym7UHE69YYJJm7M1mXNsTQ11EYCqbUdCwqy9P+oSU7jmDWLn4ppb5EfY6dW8+KY1Uby1GJLJ3zD9tMX99lH+JGhhoyrDE2Rv3z6o0pJD8PTZEsPSueWLcqFLpqdZbUbaqxwKhVy3n/wwVdXnWLUfEZ32MWd9y4vNikX7fFyBxDk6K0e7Yha96nbjLaSPjGcy1i8IyvuecbYygkU8HB5snI5ZCkjksKT/mkPA19sddyd0NptNugSc16SinuNVyD2Ph+ZEO9pDBhsiU2ctmCotA7XDRgN2mUxXDEpNuVpVBlGlbJx8R4ofkKq2ibDsQN8w0xqtsKjGWmtoKXG/edboqZ0QWTggpn/Y3eZo6hLPf0WYaGtF8bKCi5UV+iAWQoaQBAkvLpoNkeTwOMM94zurIGGpVcVLeJNzsiPlsXBgwwSJKp8LGCnsoQo3pqva/W4cxDcvKO8ZpXrB4Xz5WqiI0Y1WGzbkuz0qy60RpT3tNmr011om7wrsrykP+cVmzUoIvl42Ki1Fy7CUYuEnayZVrdw17d7k6SXDoWmJbNMFxud5/xxUouliDyMe9Ibdn7ymBgxhDj9ermf02s4oZSOHaXVeBpFIVkYbp3b1zrValI8I8kY+d0Vy3H/O4+hciKj7tcwiFJrk6E/MenKyipvvCFGsby1I/FA6ctn8ZVqc2HP/3Pb7Q4QXAzey1b/KZv151fwe3XU/+97ZHvwfVnMopQmXpMdLT4xYwAAl/mrxezwL9vAth22KN+NOTk+5iKjq1/NFSpjBAqh1cOaxluMeY6u9rF04p0QJ1K/dGWIdQZqAFBEIQ592VVT5X6lTbtBx1IMllZkXWhUG2Us/c81IYPywBQ6FCw0p1x28IdALCC/f1topg7CcQk935GkpK6/b0dMgltkdyNdAA4e17obosxAMxnONnd9E2OrXQAqyCT97QBgcAKuvAk5l0XvQUrsYvabpgt9HwAAjA/CKyghXuSgAz70bRVqjXpz5CtfMBYV2SrkUP9qCDaQsn/AXvSqKl+E4LRAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, AB is tangent to circle O at B, and the secant ACD passes through the center O, if angle BCD = 70.0, then the degree of angle A is ()
|
50.0
|
326
|
[
"20^\\circ",
"50^\\circ",
"40^\\circ",
"80^\\circ"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHcAAABeCAAAAAA88dSoAAAJQ0lEQVR4nMVaa2wU1xX+Zu3G03Ql07KOl2IgkSGY2IZFQOwWCKaAWFL8SO2GRjUvCXAIqaAFBBEEOwpUrgrCSDghBQkjnNaAFQgh1E54NYDiAGVxwqsEwvISJpDK4EQ7gD1ff8zs7Iw9M7v2et1Pq537mHu/c84998ydewck8wBgF3sUICnn7WQdfD3K6wDQemUKBsOBnoQDwKHRTiycO7RHeUGyEkBjj1qZdBD4tJGVw84AeO9gj6nrEOBvHoq5g+sB3J74x4c9xQvs9wK3/pMKQJh7Jvt8D/ES9VPw2JvkBcCfHy7KqgSoVtKuZZS8nwh7hwlP9Pn2J0p+xeGK3HsCGENKhXcyKcs8BEEtGOlzZx6EIADQymLBC0AQqGNwbq4oXBp0r5iprUQpQWFQWaadbci+iGBFLHlVhiBLytGi7PdixdiO14gV9Wtfuvd/4EWWz5n5rxhOJB2vkcS5vSL/DTnGvATU0dWRT2s8lnUxtrwht9U7cP+jU7O3xJRXg8HWAsrqV790PyaD7ACAfEEQBGE8Os7XrEZnxmcx4/0wz0fWPWtWn7i9PP/NGLiXAwAfP/I83vCr5wwVmnV/33jg+Ssx4RUO5WBz3x8tpH54BY19wOe5nm3dTkx1geUjWVpqsRpqGDCtOZSTu2F9FQ8A9T5P4UCDMML9fV+3HcX5u650jI0blN9YklEz2miK6BAPwP/Ag9FOXeHNj2sP5w2NewsZve9cbD0q1BZPzR/rXVQW1w2EQZCsLCfJBbJq52qPc3qNZLBKS/U0MXNQtr+bjEzlPSXPR7KgXBnfYyPSa81ubK1J7f/j6u4hJQnWq4r7yNKyxt+6t2p1sk47mTI39noyt9mkj67x6lA6GstabG5u/kOcq6F7LA2ZIa2yf1ZQYnqXrNwh0/fThNLuoNXpK7cU9F/aknLAxnVk8npm71F+Ldd11UPPo29znDOedFbNum89PwWg3/ExTcN2AASEaGayxvvQO2V7HDAh/3X7Bs49hf3/NOP7aGOHxjtz8NsAgHUNe+yWzRSwvq83kPFFN/FuuLRNoXuiar7dQlIAsPOzqSsnlwFRLesVVz3m9lOJGzKXFIVziguu05dHjLnRZaeiOo/Y7D5ABp9HUnrYsLS7n9S6PHFHNLwkyeWLGOLlSbeJKsYpM7ucPOKe9SA63tuJTXpelnrNuPS47GommwsGnrQXzxoOACibn2wY8zfvbSFAm+mZWlgOJO5eNnGNsZwRz6+g8Dp9ZZ5N8oeRt6lXE2XyvGdc19zLQWLNa4kGUQSkL5thJyqA5FlvA8CQU6MyaiNVsZ2+rYl3adCXZOvYijAC+93qUB5xz7F7hlnpCxzIdHWQJm7rqiuabqYY0PuEkhj35b3nT3VaXQdQN9WkPPXPxW2AeeRXZMn9p5pN2r1w/F+6wptvVrHAWQ7bQFhQpyVLTtbk3Oks70Wkmfa/teKMxYNOKcy6FqJKaxiVsQewF7Qd7zEvTPtPWTu7TcuY7Wd5j4TSCX+tmf/qD+YdWfBeSZEkyaxqZkpZKGMmmF+fm/DVrZFnIiQF4EBTiogEU/Ns2XIqWG6mRkqTIevauyhnXWd43VC359ojuWL6I5umybdhGE+h5Hj1pEjdy4EbTwGgJEmQWlsBxeaK6adlLg2OgFKg/kOSIKHPrfYhPL0hI/3jCInpamaAZIDkilIGqP4YIAMfxA06SJKG4kAgwECAgWsD9QFIjV4HXCXGVxzLeHVPC85SPIL6qjKtaPt6eXALUQyWihABEUi8C52jq4pPOH9rxJmI7Oy6DxAQVT5R1AggEPArFxMHaE6CiWckfTQ3Z0MkvMnXlJ416BTemDYUB1V9O8y1Jrd5kFh4fPMkdWloHUUc6HdHEiEAoiQCECVJBERJuYz2ffGPWfcfChAfhoolSIAEXO9rESTS/50xRHnbs44iDri/E/UFiplF7TIh/3XRWCyKIkQR4n/7WHWasL66OMwJiQPuW0pKEttVqUZa17DHvOlNt3W3ky+cG3nOnjf1Jmh0YxWqkRIsFvK8+bRNv65P5oy2dS9eSNMmlcl+jkxyaZHpMtHdZD9FT2dMvWtZ6UAaLDZdtU3a1RfeN3GQE08ndyzUY/ipAUMsD+AcgPdD8yqN64mqJTc7Vu+ebE8LJGys+p2VezkA7z7b1gRGlsxFh8n40ZRwvMCvvzqbbW5NBzDhS9uTBAHAyrvaPnSQ/dp3WeF54f60OPtv7ZuqvPG/qQzXPH7bG37V7kHrVxRGQAtg8ZH1uapeBidhx/cFM6wdF/RuBU29wnhzCIES9xETfwZSC8MvQxe1bTBIXPpqGG8OQdz0btHStvalJNnU7n3QDJcTL+tzrk5toN0Z57nQUV8kzy+3Flf1htQ1xW0h11i9JNGygQmeOlKc1e4AjiTZrIyAnb7kxNVacl9KRIsKPXxpBXoTQXGWY+4bJFeV2r0333D5SJIyL6upTqFFdS85yEuSrPBIZGmp7et6ladN6WFgVedpSe5OXN4aTDvUIVs4eA4g2C/3Z6aUAgBemTizM4OroeDS51naCUlQAMmzIsz4kk3ukyQXjWm1v80KMlnea7OSgmbZphHFK1eFaVmTJrUUjIlmD/pEWlEzSQrUtkK+n346ZVIYU9Um3E7Kc0SzOfnDpl7vv2BcSfLlQ6/0tu2T16tGvRgFqYr5yTDst8ubnCtt99uXODexe442FN5KIOfRQpKXi9wWc0QmN7qKb+iyXURo/l7FPPIqykmSx0Y8Z3GeMnBMh925rgOUHw2eR5KLg1+6VXucxTUPDXe1VL+cMMJUnE5DJsk6n0C8U/aNE8A7v/QEx/3G/trDuUOF8Uh33bnYehSNe6bm5wafe/l7AQC7irruV48zdwh8nDl7GYB2e4vK+eC5e+r5oP4UL/8tDx4Pb3C2bxI5lvk+AK+GPiWUtT8bPHqRXMcFUZi68u/pLYbzfdOPgaj+qxOdB1+A/xI2dklRAIC/5RdJTgf6Dr4CAH6r7c3gck79zEL4ZrnwzDNdIlQlX7sMzwJkJXaRdTmRWinvNCt3RmNlAPMYD7yW6gXmHY7USg+GIzXiNZ1RXwGAv4WoP4N4AJM7cxyz3wuEfUMxhwDAP/swcAX6+BxZ6MvzRROeFwM+5gHzNF5db7LFlWQdEPqQ1uo+m/Ya/geCjmiw1X5l6wAAAABJRU5ErkJggg=="
}
] |
<image>As shown in the figure, in triangle ABC, AB = 15.0, AC = 12.0, BC = 9.0, the moving circle passing through point C and tangent to AB intersects CB and CA at points E and F respectively, then the minimum value the length of the line segment EF is ()
|
\frac{36}{5}
|
327
|
[
"\\frac{12}{5}",
"\\frac{36}{5}",
"\\frac{15}{2}",
"8"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAI4AAABsCAAAAACZGtVdAAAKAElEQVR4nLVbX2wUxxn/xgqxkRKBqzq5pA0HbhIvqlrWSJWXVOWMRKWTKpEjrWSo2mKqqDYv5Qip4jz0oFGVQ61yQerDNTzUISGYPmDThxxqHnrGxZxpqh6pVNmp6UHTNGeosmBZYo33sl8fZv/M/r2ZvctPlndvd+ab33zzzTfzzcwShCZA4n+2Ogfbuv3JgpKKgTSlw2Ju4cZf7s4BdCpwbRlA3pB6TBq0SbTOpgkdtoC56enpfmnTwBcU++0Hd8u3Fi6lUrsG28CEg46NhdNnHx/cuasr6N10+dK1fcMKAJLWFYQhMJj7cVnK16ISqEUlmVfDRAkglI4NrZAYrpqFG0EJ6MPaWDJX//zp5JNZdymG68ZwGKrHkmOtaqgJnYo85q9yoI4QEbW8NPk50lFHlKqALAOxnkm31GJRdOaVorjAklSO0F8sOlRaSZmPI1dNFWOzwXC/8/p7Z7vD3kX4DQIwCic7Y/qfDr9AAABY3ffRxW77Fz8IAPxWTt+KxybMDdaUidgKR8SKXImXMZhOVa7G54KIWE+VYuULpFNTYvVWg7lqqVj6cdOhAjUhbxOCuuIb5QToXJ51nmVadK0UVUUTz2T2rNWfOp3o2Nf3xu0XLOSf7RfPZNL5OTxpTX2m/v6LdrABeG5gLCadU195EKjPgGu/mgBxdxOIsZu/j0Xn+u3d69bT30uHznZZzFrGm8U50SyIuHZoZfEHpi0NteT+fOY8IGjOHQgwXnz4qc8ouYvL+9qiF1pTkHedFMvSQeD6bcSZpwAAYHVvzyorriUuQBCOnb4hJKYDrv84CzBPC3/lu+9L52wepBVGBAAIdL36gpgdHoWe2bU9APsRsZ7UMuNDSszhLxjm6Mc5BXINEoUszstaRRn6pH10JjMiqcGKCBBRS9YRswXEiWQuhoMPwbaqGB2LDRaylJOBWi45gS1MeVmMD8ekQ5uZZq+3zYS0Dav8FWNspyrTTHLVQESsKEOtR5WIiMPj/GkZOtmCSWub+UDEhCKqX07FoaMlLWUM/84Ub5pQaJFGNA8LSf6JmEPHqUQ9aSvFa0KxjDtb4M7mBDblQesucfhlyx8nzp3M7lty+1rLVf+ZEPJ9Hre9c4bfMdvEUmX7VpNY9YaY0NHeW3hv+36OKqsbeZXjNJaaYMp0u1LtWHLC10xHlRVEnOm9xVEIv8+wG2tOZlba9moXGQV2HZ+7sOOqpU16ufzWaw9xN8DgNG9Sm86CZJeGACdeWWVTJc6dPHKQmhA1A/3Xu58BAJznKYMkbwrT+WiTXRoBkJWizQ4AAAYqqV0nVu0njY+/AwDQeHfgEY5C5A946di2k3ZHsar0iddc1DFpit4ZuPjlChqIMz1cVlFP8NqOTSfBjggGYnHEn7iWSVXp3b3tZxA5OxYibuBdM7QmGP5g3bdqYCBiWR6htF9UVnCxh5MNv18G1w3bPBXFm9ZARCxKeQ0R1/YA9FzmKMBAdPm0aFimvJSwDNmCkjznMTMCADB6Zbl/CmHdHxBvf5PDJwtGbCatWpKpDlUSM3S561rLpA4+LzRd5F6EsLRzf71THaQhRGLUH6wTAIAtU8++Nf4GAAByhhoblzmV02HKe1ADNqABAgDZCzf8GRAA4FDf+t+cWAUgnG2hrW+ehtIhDgUvul59wV95AgDQ9Y+V95f7p7jDsKVHORO6e5YX6agVPscLNQV3z4qm02QFqyyP1LlmVtI8Jx17zNpwJ0B18kAxylwHqzIdyCLVDwB3N4o21oB39DEQEVWpSTShjknnm9ZZ6+RUDnZY/WnrgocnAQDoPnw8oLIMuvOltwevNanywlZem++wOlXfh0GlwehVT1mEYYUAAFumjh8cXYIoLPTx+mbbdvoW2NIcFA8F5iNMYo8JOUwt3OzlZAMdANBoNADkanACJTHVXMroleX+CxYLlinF1W/w0gFERB0RMXkj2LqChq4ARHghLcG9RerEWZkQLSQO5Jt6X6QmNBJsQnN93BtjFp1GY+elRqMB0GjQn87l5dNL1gPzPzQa0GClEACAwWp/sBcqp3jZOI2lq49qOqL9x1wmM67Huq6jrtMWRkR20nZnzL9VbAiEWejQoUvKuq776GCqTMt2HpsvbTo2owATcqZSAnQMffJ7aBXioVOVI+m4Nvf9A1kuJ0TH1Luu9dYNf2OtISIeed3z2EPHDXM6bUFgPQUBUTcF69kCWr909qJjXf7Y+W3ZTjgflTUhkdUmdl6hh3oYAwtZzqUlM1Vtr21Ce0U26xw6euQMW3iv1orIqv0iuSw6+pqOWJVDFSCkcjYiE9vJtNzgA+seAJA3T4UNvYPdFwC49yiciOzaTbGdTBe5mhQ2PhmcQ5cb/8p88RTNzrk66D70sOVA2D4oSRzIC1UTAAB6h75aOHIHAAjvhMepPyLdQg+piLPQyw9VqmMhWWAfRavJG0BUUqthScX2XhDRwJEiIqpZqeR9wUsncF3HBHe0ZBVpyZpPpzkjG394RfcCgipQlcXWuctp2/pLUtY1BQsTExDtpS+Gyc8Wwt4EoSazDDwmxE9HVcI0W98mYM1eMZ9SExIwZTOpu1rs60KWnw4T35v7iRwmFBiaM43OiDQM1HZUedl4GpYyKklZ1dns5KWDb2ZC5v6lNCs+AodD5lyv2SYUKCHk7NckbXh/Fr4RUU2F2q16hHqh4PqEHWOcV8qBz2uS1ryvh2U230aYkJ+OOc9iK8gSeCnflM1kaNeksgzTCwXUK+KQZ3ZEY8mYl7Chy5FdCDM8pvgwLxR1fLqY8k+6DZwYCsuCaCDeGWriDCgp/0AWQoepQ0XK3fNnCYniaL6iazM3CoEmFH1eWctJ7/oe/k0OTX9FGRE4QO0dyJrSQaylZV/XHgk5clvOiJ5MKGz2mFDzs+7VjDTuLr4uqW7zRgMRS6mU+HlDNSuVWOHN6SDOD2/4iava/qFrfiyZLguTQfSaEA8d+uHBWMkeyDynQKdzcl++Fvs8S0nK3uGiwxZQy6c7lZfGyxoiM3SVJ3Ip2Jmr+rIKwfFC/N/YIIG56Q9vVIgCsH6x6zMNSP1+8qGeTZvFIwwv7l+6fn4nABKxT34AAO/PEdTeq2zuBHiss3UmJtQXkwCiXyBFoD0f/fjPuvMV7nvSnmOhMem06fsnCqZuseicImTH/573SIoPAqA/Swgh74R/EBWOxZ79iIs9ufYcnDOxtueMcalnVlw72tDudwCe/NHTbW2xxu1vk8c7YzTW23dPEgDcuqWNZAD+uuUR/ei3nhFurHvbBdZl+fEGQM+sd32HA//9z9NtVQuFfnEWf5m5Erejtxv//vRr8MMn/mhv6wPv9UtP/BMB4Pp5wXxhV4o/7XqY6j1GK59BnFFW2mk5a5lZvLe995Y5wWBndU2vM0APWzMQyu+/zgAAgLKC+H8Zuw/CiIdgJgAAAABJRU5ErkJggg=="
}
] |
<image>As shown in the figure, BC is tangent to circle O at point C, and the extended line of BO intersects circle O at point A, connect AC, if angle ACB = 120.0, then the degree of angle A is equal to ()
|
30.0
|
328
|
[
"30^\\circ",
"40^\\circ",
"50^\\circ",
"60^\\circ"
] |
A
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHoAAABkCAAAAABs7nvTAAAR6ElEQVR4nNWaf5BcVZXHz7uvX/9KzwwTEiBApIBkNiS6JKECAQNZAX9FqYWgS/kD/AXFaraiUiBShdESWfyBEZWlNKsoq+yy4YcKKvIjiEH5ETaAgAYkwQgZSHqSnjf95r1737n33O/+0TMJmZluktTo1p6qqe7pvu9++px7z7nnnPcC0OQIAk8SERct+UiRpcibKtkIpmLKE14RTBaayJOiwd6hLuWJqUxElHuJst7+IyYeP6norKp0WIiLdz58z2aqnTx/xVFe+aQ7mHi8mjQyEdUyKhXVb959z3F3AS99snr6Z7YPqp5gsM1wTJp434Az8T+dvdEBRgMaXzl6ozaNNuMnES2Crdh02G0G0KmDdejHwCmr4PhvgLZZvOwJjgHDEM6014zzr4f+G6ANzr1ZAM0i2gDMRlifsokBv39oEWgDjlvvhXOHBNxAOm4cMwDDwH1LARbnBwANYBiS+nuXtJm/IzoBYiA2ECdeAI14FxzMuJ8Ik2iIxvyN0gCbBEgEicYupGyWbphIZ6Cjc5UGbNdgo6dkKXBOrAmk1ps0UBo7LpFSrSwo1uvHqRqpUoFMTdmwTFN0lUpLfzKxYxc6oaPpSVcv2ax82307d8XHnXn2lK5sShe5sRd15c1y2VP0wBJIZMPG1GTKUFdBmbA0WAmGz/zCxLN3RCfFLuOi4t0fe88ZU6cd9Kd1V8+9eRrpyrhrdKWEIITk1arQcO/UZ1964kf5L2eXKe+1VJy+vc30HbeZYWDrnAucMYZZEK8/+mtALGPHaUiz4ZFeeX3j1/9x1QI65rzL1xUhqUMqSLfOPIBtFuts+92zf88OcCLOCHatmK8xDg3TFOhH/n15SKdf9KX7ICL8lvWMDDuA+KkFB4C2iDf1aREn3gkAZzR+tmg8Wq9ffdHfl+auvPAtcE3gS4yB7rXnGycpUMf3LthvNAC3+aQdDtAwQAxmA5988UpAYHIADDQevGpZX8/iT/34GQ2H6RdsAYm4Uob6rCaAnDO89yYRJzJu8s5o/uj3NDzMDs6AJhiINfoecYkB9ON3fnFZrbTk6l89ngqcAyAfOS+IYUI4Jv/uWzlJADRmNkREZJxzd0ZvmmUEYGZkDgPAgAOat1zceOlXn1nUM3v5Z+9oAMMGHjAZm0TqS3u4CiNkEqz5lMAxGituiJ2IiPdj4B3RvHoFDJgdN2MYxAmMWb/2/J6p8/7hc481jAHSxAikoVvmzJI1fdfIziJiTG+mtWaCrfLkuSYVmUjvjujsrHXGuFwEiBlYv2bFKVP6zr3gmHsZAoHEBmgFUrAxxgC48DRy4ArHWPPBW9HE5tnPA36EvR9oM/9xgfGCl1OsfCe9/YLrnv+yfrX2vtuBOEkg8KKZ2UBE4AG8DKxY9DAJQI5/+N6s//L5A9DaY7/RPO8xgQYb4NYFrwJYlDTQ0/2x7zOcMGAcnOHWoQXHnIGBXx8+/zthBjnOVm9e9HWjsatlmv1Fv5CAxaCO89ayBGykaMy8JbdDgEQ8IICIAOIhgKTgBLhi5uELg/f3nUSnDCQCA54Y3Tkjffulb81VIQ9KA8dvC0HmoETKwdG9Pz6sl/JCSISJzyS74RdPhm+cf8Tn77e2ZkOEE4/rpLW76aNIHBiNS1Y3AQI3SmhSTwpAMPbc3ksE0Lv6khiZhpkwSXkdv350jga2AjjMNGc0AELmKu+8WCAsQJt0D8gchEXkrNtzNA3cxKM6olNceF3qwPLZlbfCxcUm6kXMqibG6MxhbCx/rQhrB/zqdCSAmTg1ex2tzY4TXoQAhzRcHAFcg756/s1pa3NJG20AIwDgUhzZn4z+t59o3oX1C15B+sPlmOoMCHFSmve+DCzAhCfCbvEsAPij30HKyA4ADdR5/Zu+jZN+twM4NOG4dknfMqBujBFx7cgexjkWiIkfO90lLAdSArBG6urvWbIg+6+eRiLBt+jYOzJmAM6N+OmEqygY9fSpr7p2FUBntCBNIdlJM+Yc/4aAyjPDlVsAnhg3kRh88lpwu+3YMaR4LiMuq7mP/vnRh/8ybdEbT+sJc6kGPC4bbiPinvnEo22r2c7RzEukK6vkaiIiKzKFSALl7b6irZSPWDdHwgNBky5E5g0vViVHoaQoKZbI22ifa3Kv6LLuK9uWGZ3WyjkwvnXxyMKzaR0X3DaKvVY8AEiyeZ5vF806ap2XchUd9Ug3CkqFRMReFYNAfLSvaiflaNadc9tYvL3xQBSRDe6ddXjUVYlIhIJytWxTE+4zmQoRfeCH1KaX0t7gHoABjtugIc55AGIEDmjrqOMuZyTon4k23t9e6wBEhjZVFjmoMAyISJUUhUQ0cRts7OVEFNmIDp/2EPlgmCjP/d4jOuzWgGyPXH2prrQz2OuKj0jo3Lss+RpZVRjD6oAGkbz09NJK6NuP6Swg7/1592cQ8nk4drN11JqCGz8w5UC5RBRQENEx3c/5nFSkyO0zmsjI2g/1ZAfe1lMSEdTy70cloRL5MX7ccdqub5x2KEVEdKDdTB/mns75eRY5IVHR3tN0RNubP+OHI+/beubrkokUz+y7nxQRk997mo7ou2bPzmu2c6unkwRko4Dpg/fkYeCFZMzXEzm7MJgFeOvjTQOGFgeBCKPkhCpUIkjGcBFQYhgDB6ICUSGoErHsSZIFgBeTTjdi3Lg8aUKNEOlCpPINeXdXIcuoTD5XWtkoMAFxhgYNqUJEmcsoD0lF1llKbAy7I40Dr/Y+UwNS6s3rqKSpMtZJJ9KakUByXHxdBguGcSIGSZOAyBWpWgyBxOtel8kMGIKDVJtUqVGx4kpgfk2gFQDCt50FjO8PT4h2cDCN+vExUgacBnQTBmFIDQY0ClvhUS8CoMxXGhxnRbDbAfR7Gim1R6K2eACSTDMu9WOLlYnX2gDsrloB0c5mDM0CzfWmBCCKIprW41xjJjUNCAQwQES1GUTTA8LQazPQkeJ32S0QGdtbJQAY12tgwGd9W1OIcyLw4CwGMDWWWoKSqdccT++vQBqlEPUEKQggHYrl6XvXQ61c3dz7DhEeV+RaC4wlezDwo+UAnKDVbgUam2s0nXTFEAIDNFFNpZtgAEFCMGESIQQlAj1qbt8yvAzzghcwAXoCgxsYZEvXGySmlRclLAAyFjCICAk4BxVJSBsB59xjCEIt+w+MWz+45TdBxq51YSTCgCggBESggDzp4nM7T81pCkEporRmA8mrKjyKnpiHmVsP2eKiXB/zJ6tKYeQD2Cgpw0akyEcD06blo97l0y7ySlcQfOS6LQe9Up25ZE4eSaRLykZECkTOWRInRM4RBYGVaPAg/sI1TigIiIhcKZGgEW0vH7bl5XkvNbepLd0FFIdfNGXJh70iz7aQkH0FXnZiOgZ3+7Wt0g41VKFg7UVPP58dwk8tXvxnle2sCEVERBbAyJ8FrPfsgVi/+HfQyAEAFk0r0Axwf2aPpOnbhmyjDhBMPGMq1chIHBWou0p0MIUMHnrtJhtCvGYWLVv9g2TAAOuO/0fApHvWuoUFs229Y84/sRoZ7AgaaMImjWYT2BHnBvlOyCC8tl62QgMawu5VzZzCJPU9q5mYJgtW1taAzzobyAcYfNPUTSLOtNAesLCAtwA8LGAMenZaNjz6QeqxjZHmg9pgILVgnQIJkAJJ6jluImntTwGgk1G0BjCwZHlDCKDtTQi0QeOodUA2orX3do/NPXuIXX3ZsDix3nvA+jw1jn3dDHo3vBWc1mOfa5N7K/3waAIaKRoZBsBAvNuxgAHhlZe4UoZ04VVfR50Ns3PZ/KdhsDuatcIAW8DDWtuYNZTqZPc2SD1MHFsLaG0xmCG23qAfKZB4STCAFAYuBWI26SgcyIS3HhXEDEpw/2nbAIYYaaxducPtQe/t3eZny5pAsueDJHOAdkhEYBxiGINhGDAjgxjAAA3TYroUe0JK/I5vGISxB2Hmy8jADshw5LPYjbatgMZoAk0I5j/Yet1PMSM30wQAxDlw/eBUgUGG8enP82i/8iurshG0taNKs3htDP/2dKCOfSvr9hbvLDvHzE4gLsEtBI0gA9f6Xzit2Wr+CJ7pE4w5uVwCdmCccZvWMJ3aNO1ERptLAgCMFV/jiFuUrO/Z3V+Rw95ZCnyV8tCqbZvPzXIaUvudk4knRaSUCkISa7kwzJfREM0aYnry59epawnUqoh6GrT3fa4gIh+K6frCpXaqDB1iad9LyhFR5F2gfB5FikKi4VrfudGG2avX3L0pOmbp104dzWylVbXtZa+mRSbJ4XWH1OzxkX0WB/Bouy5OjGDTNfQ2mvGOK+6LBRoY3WZJTQDs0RoBkSuQUjee2xXqvFfva8dkbykRaSqG6pWH1z/7xIx/mfHxn5YU+Z09BMoqIw2UhxarvQweEFGNTGSveaqsKyVyNbu/Bg+JQqLtL6975vH6kSef8c8nkxnecLYY29XjmaRKaB3OP/1QXmr9iqRYyhEpjlRWpeFf33xTJFFecrb0mn3mxUeKSHyoyEZeQkXCFRsqbyNlVUhCIVH/M3986LHw2BP7TphdI6/I05Z3PaMiCSQiCRH3Ii/ndvj03/USUSA2UuRFhUk1IIny0qmfexu4mJfzPQYf7WF4RWRtKbRE4qOIdCVPD1I5Reyo+ewDT2ycMvuUE489ouaKIPFKCVfVvz2/apqVclbFrp6Itld6bHTOORcQEQWgvFSfRtj4zM/MfYfPnXHCTRsDGqZqVghoD9xbBISy8VXyXgohkbceVV0MifxT/U8+8MfCglPnntBT8YXADveSeBWSV1kpbHzoyjldarhqpeqtimi4toq/7CUiIsA4DODLC5ff8wvu//lnD51+U1IHkr07JuIcAOM8nHGApBkABp7+7sfndR9/1qp1dXYCBkyG1j05AKwBzuIzb0h2AAlMihimfvnyLWg6AMTGCD825/IGRIC4/0aatTjRprETw7v7XSkDEMeAZAzkTQMMPbL6ornV2Rd+eyMzAGHDDpxogUk9AHECNAHoxoqFT6WCJhtBtm7hN+swBgBIEvA3l2xGPRHTTLAYiEt0OwDZc3w4EecEiI0TQfbK+u++f9a0RZ/+3mMGDBMjSUzLrVkAx8i0EycAg80uMF5Y9OYbNorBL26c/bZXMvS3DgcC447FXkzrhsLWz4NEm/ARJ5zsieHCAi8aaPx21ZK+eSdffMsWAzHMQIORA3BpYiRjwCRu90UZIC4ZxKtYd/GSgIrv+sizaCKGgAGQkf752QC8NgaZXbMQGmQ2HddvXrPY3lnwi3d8ZdmM2luuvnNT1jK/dXBZDjGjNwQcgxmQBGDDAkCMAcMhZskEEHY5GhhuFSUB7MfOPC9SRF55peevP7SUqbxy7YN3ZVWvtJuirC899+JD6zZ3LXzT6TOPLI342CRI0Hz1ov8+OCLxISG4df2WW7qlKDunHfo/R8WVZBo98cjmJx7rXvj2pcd2KRquKvJEst/HyoRSUHfPOsyT96SI6IaP/2tPIKBFT09N6Pfbf/+T5+adMeec43uIrOOQauStmhwuEZGc/5/iRJwH8IejUUKCS+Pf3Dh9Pi388OqnkO0CmLm149gYPoD8oY0U7MDRVoXKByT85Svs0OM/8A9df+KJC054uOIV55VKU9UsOYACpUJF5Alt2vr7KYVoy0EqDECetF6bXPunM5eHn5o93HNJN1fEqiKhmwhBsWUhIvISdHyMZj/QqhxHRB4BFdT57zlkga4M16gnz0tlopJILuVQiuThPQVFDkIKJu2ZQKy8XtB6wMIA0B7IXIz5f8gycO4AwLeiIqT1OlmrreitDxAZ42HzUoOoHFgquZ6BbXMLiqJiSEQUkAoVEanW62Rprcw/rLc2nxI5VaKpdRoeivKgYNeePxhFw5PEaCOBC7+0/Xqb9ZAVUMVGpCumTIc8fng02PvXRRMSnPJLiE5TAMYY4QbMBdf78b2PyRYyME+fch8AbgwaeAc05asfBrPu+EDAZKAFdf/k4iv7GQngINv5lYWX4WVg8K+OhkPTZF897kbsgolTMZfN25BqYcRI2twlmiQJml26IqHddsWd7zvKHLzzwb9ctCpQXlFWVvmBFQH7KgEIATlE/i8bnq2kvScfX/OTFKP3Af1/JZP6kPb/G/T/Aj2ZV0+rRLJ9AAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, a quadrilateral green garden, with circular fountains with a radius of 2.0 on all four corners, then the area of the green garden occupied by these four fountains is ()
|
4\pi
|
329
|
[
"4\\pi",
"8\\pi",
"16\\pi",
"不能确定"
] |
A
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAIUAAACBCAAAAADLICb2AAAJ3klEQVR4nM2be3AV1RnAf2dvKk0NI9qEtIK8MYnSEJBnYBqioCIvrYgRgwMdO+j0IVOwOqNop9N2fHSqM5ZJUWcURYlDYHAAwUkwQUigLYNRqVwI2lIjNYhFjBpJzH79Y3dvbu7de+/unk3ajwl7z2PP+e13vvPt2fNQgiUd69bwPxMDC6Oror2fa16jlFJqqRUQERFT1rNR+llWT2uXryZOaxcRAwDV8q+F/awKulquzSH7lfcfByyKjl/c0zrSUk2/UZw8fB0wfHpLjOLXG859OQYA1W8Ubwwtjv02AJ5+LH/sl/1WvSVdO6/NAb5pHWtTnDgt8ubQ7/QvhdUgHPrwOiALTvz4NThqJ0pyk7hEhSAfDy0GOlZdXQpgCnmNnQthVFt/dtPOhQ+JyHoeEhER5dIp+ubhe4tVxbTaHCtkqoQU62ff9Vglyf4gK/65hbYo0vjvI81fl88u6wAQFb5qigfFlyuq90PH/T6zt76htbxicWNfNM7IyxJ1kYIC4Mzrm/bfsvKr8DnyijJQJGi/rabq/Nrbm0KmGDA1sSIjAap3MP+nRzZvH3F4omtiYGlPKstwz9gjJZtrm0c0lYJl2WGQJI9kMlJA4XOH9o938oXRgz8LQoEM3/7YbS8UhVC/JckvTi8UCm54L/cHJkqF0iJnA1EA5Py+pmKPmPotooLqwjLL0ncb116hywBiWWfvp/FEoQBUbu2cCQP1MeAkvntqvDzw1JzOECwjmhSTxoO7yd5F64bpQpReeD6xIl+6gLKGNYd1XVfLZUlRninEMqiS+kdO6XUUFR0TnMJxFYW7VnbqQCAfFAaniCmg5NWKS5SOOqKjk1rUO4VyUMqemVegYxrHk4YXPq3Tuv3Gu+8IzgDHNOwCAGWp4D5iAx//LVN8drgmhSMvVjn3+W+Z6LjkuGAUuS9VFGfO5S51c8KikBmLfyUBu8mOWclxPj24xaDgi6KaYG5jQu6ZnKSKguhCATlP3T09kCtvnJCTHOmfwn6OG/PXBxqFNpS5RPqncJ7/T49M8c8ADeVuZQawC1uWTZroJ7soQK4Y0zYguaJgfQSA1etK/RiGApTaM32AS5oGRcmVG/0ahlA/yy1eg4IHHvd7h2L3NWFTTPqW38GwGNmTwqag4nm/d7x4q0WTEK3RR6B1cquPWQVRTMl/e7hbRVq6GDpuu79Osqsk+a2uRSEAldX+1Leh0j2/VovQVrLZvsfTFFzRyNaLXCvSahHyB+XZvzy1zJZ5F7kn6FFIWZ3XrAp4flmKxOAUAqjyHeJRDwJDTlwfOoUCmHFAgXh8nTy1PJKqLC3rhEHHjnvNennBsfwUFenZBRTZ0wAZH0DxyIr8VPmyNCkKWwoAMDJhyPgFx0hlQ7q6KPy7XUmaPNa31B8r81Pm09VFwf7MeQSg+EcHoa90cbE9kZuxlzwxf3Rqfenq4qJz1jVlDbZrn7Jkv6RebNGlGJhpeV5ZJH++fnQsGD7FgPNkcDRKUBQvSWs/unYxMHkKNUEE4L7K0eny6OoCvPjc7J1H06brUrQPBNflUEdEwYwpf3D5OI0T3RY5P4AMLgt4Nu/W9KVkAdKtUAFx2jN9DCjh8iX1GTIZgIpgBNXJOXv0lNJribDmzuQZzt6iaxdnbV2k8VrmvmczleJQdIuK8I1hiIkyEBMM5VwAMSFih7vFEFGRb5QyXKcNe4uactU6tw/kXuK0RERFwDCQiCGCaUSUiXPB+WX9H0EiEbqzIgJEr8xUwz3j5mXK0tNHjG7yQMxuExEUhjWSs9IFhWE4YWXYNwpEx2LnSCGn9jyTEcJpEYVCMEBFAGf6LrFoSQ4dLTxuF+Aul95U5+GTOgtMiSjA6P4EFKaBKGUaorAvJETHs7RyHNJ4z9JJa0syQ2CAotuaZwEwpLtbEZFu08C5dJu9os24f43TBdKsEDz4vXs8QJBlNwJYG8jsgD1kjwXioyNxf/XXq3Su86uNb3mB0PwqYu916bKMXL4p11NZjr8wxa8PV0DbZ584TC7mOaNs1cxUae4UwXSyOzaF6lbR0kH3xdLSk+h58OqVaRK3flTbE0ivDq03e2vzgqQ4pzrVVLvj214L0tLFKxXJ01pWh1HyftVfUkxWuIjW1/KE51KOwD+/q2FUylZIqkhHF4e6UkEotbw27XA3Mb+GLm66cVSKzYd55dVuCxApK9KwzuYjlW6mr+CSOVXpINJj+dTFHVelWJm4YNG6mz1Xqknx/qwTf3VN+Hx5TVl6JxUChVPB3PlJi5migA/u31WSoYgQ7MKG2Na2MskjKpCmh+szQaTH0lrJtCf6ttbuyfdVKRDMXyhErb3hfIImFMiMFS2N3j2mHgWoxpoj7ySiwaiZubU5QTalBvMXZ26vToBAwefj5m/PCbQzI5gult1t2r9iTy6l91fvnBGoNL8Utgk+SqkToxyYYVO//1Zu0D3CQXaBbKt6wWbqSfh00m3bcwPvofLeU0XZ+t+7uOGsxEJKgNJ7t9a4Lg5mrhTw0yLK/mtetOU/zkPb30jG+KK3g3RQ/xSirDaPzl1/QYxLARTdW1c1X4fB/66x5vL7L7UG1XYs7xUNPaoJ4benWrsJe7YhS/ZdF++zZmp0ttD76yPbFm8ZFl9Z8dYF99ba00U6Wwx9UAiP/rz2glj/FKYcHpMVzTB7FyKFAMinc3e/FTfcndg0omnf41pdwx+FAmiaMPU3PTO4xXuGRPe/kmnuzqt4tc4vfruh2gD7oMXYJxfc8o77knkg8bQrHV674tN3rZksBcO2FLQfeSZECE+6UCd/9o9N5lEARfHmDdFKZ0kyrBMuHnQRXTFp5tsmIHB63XfrVn3yRGxQF9Ixioxvs+bfHVxz52EAsp/dMvwnN3ubnfFcaXxEz+uxl7TVVJ1/sLIJKHmzbkfXsuV+Pj79U7glnnm9et8tKzuArvq6gzOvme/j3R2MwtJFz6kv53RThEN76upLymfPGhA3wtCnSCgqoUXaotB46kjz1+WzCwYePPO3f54svGZ2eTgOMp4CYN8PYeOwD5cCiKwGmNaeuGu0Dw/gKRHpXDjqY5HVeQecE4BPN7zcMbPgZRSF+cDkC2Fy7tS+PQjYtfh0bQ50XP3qYCALunYuIbv8VM9o1h5WhWUFrvLcgW0XAlkLBltVSktBm6zPaxQRMeNOTZrSh9K58Lb4oAFvHMtXH50uhThbcHbb9Awmwr1aR3RjYtC18yVpqXq4d7bYrGUfXT/6MB4Cg5PHZjNm2cbTsWz2GY0+uwIMuawFgCe+sCnemDiYrhODe44tO2c0+uoqQPaTmx6GrkWD7TXnzoUbRX7Z/yf7W/LA6hIidlfM21bqddNVGJLkAPrwaLAP0V3tD0f+Pyj+C/rANG1LI2eQAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, in the square ABCD with edge length 4.0, first draw the arc with point A as the center, the length of AD as the radius, and then draw the arc with the midpoint of the AB side as the center, and half of the AB length as the radius, then the area of the shaded part between the two arcs is () (results remain N_1)
|
2\pi
|
330
|
[
"\\pi",
"2\\pi",
"3\\pi",
"4\\pi"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAH0AAAB+CAAAAAAsf0FXAAAHwklEQVR4nNVbXWwUVRT+7paBB5cosdCaVgi02BoebAMJJNR0K5qWlxJjSYuA0YSCxJqCmKBJHzCSSBOIYFqFWCIJICXFB30gWwmlTVp+IsmWQIJogZoWLFIN0hrb2XaPDzOzOztzZ/bO7N0Sv3Tn756Zb8757rl37p0pI2QAnTklQnaBTJBHGwUNM8LetLDwybF/WXpf0DID7INjq+YHnxQ77d+NFwRt5bN/1coWk2AmSWcfHCMKFzAx41mSyX975wJwW9icZCK2C4hQNbB1SsieZaStQ+fgNhGzjLQ2GN0UEbKT5zsxkFHZ1gav3xSpePJ8Z4BB2Iz2ew+ETpJa6zT05g5RVbuIZQZ0H994LB+hCyKmctkJALZsqARCPWInSELM2Di8fIqIpoIjyYe5kK77jewBIiIx4WXrPrmppQAAxISXzd64slbbEBNeVsRjFCOi9sIJfdcQfmYiz8CA4YaOOfp+Vll36pOkRn56w94SaHnHhISXyt6Uuw0wGlwh4WXpTkTh/IemPRHhJfo+uu1UtqnHFBFeCrvGuXl7GczdamiG2BkANP+7O/moALs03X/KHbYcmQqOpGjmpek+vuFYnuVQVlk3UjzgyGKvr6m0HRPIeM8h5gbzcMmEveRysaO9Dv+6x0zrgewBDs1U8HGKa/iPPEusJ2taChIPtPGoZpVdTHENKbo3rqjVyc3P58yac/aH9/TYtet9d/5zIxRJ/lNpMjsnAdKRXMNQfsTBamzOGMc+Xd2TnJiuayoxR8Jk9VRpX9yeO2byxb6OBRhbMK7tNM0zBoy2yDJd+HUswAKsgnMlP5Gn6n6iXfPHiGLUndStWkIfXqXbR2IU3mq38NXaqFVERNX1RPTHol4XW114tYomD6oH7eXeI8+AroUAsPRXAG/Vr3YZBevCd4XQlqdwphC9sxNw7jUAWAKg+Z+P3XoSXfjbH7EG7vyhH9+j4SoAuFOE/pZvA8YtcaGxd0bodf7spWfdie7WExHdRcfYkrBeE1yFvxsiOsC18zNndbYAABpDNXULLl1M0YOX9lXibBXwARpa7KY+8j36RSUwyB5faLv1Kphz1AFooT9XCWDd87xiz3EPa+d10EDugKthjIgovEq3xzVjtGWC//59okRkjGw09Xz47+Mai2rdiklbBPWmng/f7GfPt7lKzvSFlnNOhl4Dris37NCt2mA09Vz41H2qrEXQ8rEhPK9V8Bn5T4LvCVrOLe2jhBQW+GPvO3lc2DZ0yblB8sIerzqjG49nC59VccW5zNcs8doVn4obj+f/meVU5ifyh8b3eLAOvnjVsUyYneLL/v2nHJ3hwWUkLcwef14fX9+W74VcY+cL7F332nmHvZ3woPCRU6w81/nTvxzyRo6cfEfhvbAzAHd2nJntkR3l3TLYAUy+sU/0TV8CFd1O8nrUvWG0XduwjZcdQWxkqaPwRKSqqmCXES50e1ZwRPFlh4IAAAWKmBtDWzqMV9ueQuYovBfdp99sKDG2PYlf4cTOCEBUQRRQooCCKBQAUZhX+tbevh8ABYgqUShRwXgBbhlPRKQmfvE/04qIVIqpvYt+JyKVVFUlVSXRuuImvDnyUQVANOoQpL/rTj4LAKSQAtGaosNJ+Di7orMqiv3CBACbN63WbsOb5gCACod5wwBgddbuPANwZGKvZ9I4Qn3T+pYlV4iMbNcVVrWlaaUS0dUlQ8a+obsE4WdZJVRMy8TOeF1znrGvaD9B5bVGsbx7Ja8wUetcU+j9NTXe1QZgNAxOGa/HwLW1jbWXTNhGgJ4wMpd7WGg0kWq0KoDim7y7F2lpJ2v2FMRD5S/+KO/hJaoI+56ixAckPtV3yvjUQfPZrSZjJJd3NLXvw2+3C34xxoemVc4zP3PKUrNv2LE8HXJDq3Lei9GU7M3B3alMhMAXPoVevYu0SeB0kl0X3nvGjdYd1Uarfus6SP8twC17vqZg375pjV9aHcz4lffYfXBnPzKSRrdqAVd4N60iuUPpyp3ATU7Gu/k+vv6gt9GqK4phz3g39g/XuM4HegRxMt6F/fQVr6NVVzCe8I46DWTfSD/LUwjv6Pt07d5lEr88BFd4R/amwm1Io5GxgXhNvRP7j2faQL6fJThgwCtd9nviYihHf80mU3m78A6+1+9cHb9labALz2dvJjndqgXlPRYpue+k+g5e9zI3IoyKiO37BDse5Yclqm0WvthygJfRtUs+k+62huf6c5L2ObofuS+vW7XAOo63s/c3ncjyP2pwh+37H6s2E8va5TbvduFjZLQjNt3fhcdJYE+wCJ8cecLpXqndatK1YRM+wU4EsNsNJ+YgI9CaD2sfH9ckRkRTZYdJbtvOFT5OkfCdAWjKk9ut2lD86EGcDJY56s61jU9njhkAcHS/+Vkxib31YYa5AbycNDwhomoA6EhvYsYTWoGQ2qjr/n31GQqvv5ZJvc3uDrJrRN/MztV9V5eN0V30z5DjatFWIqJdHbrvXauD2Ln1pRnxHPj6rwMAsLhQ970VQCSjaZ7k+r7ETgBAZ4RaS/tnSPZ7twoSOwFg8HEJ6os6Z4TbggDobBUwbL6jRO+egXVe0W0AGDyjHaDqCKlF8yXMyYmhFR1EnSEiIoL2KVBoprhJ+1hJ/84wQ/+dJ4jM/Hfe/4P9P+Zp+b/N0CGtAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, in triangle ABC, DE parallel BC, AE = 3.0, AC = 9.0, AD = 4.0, then the value of AB is ()
|
12.0
|
331
|
[
"6",
"8",
"9",
"12"
] |
D
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAIMAAABkCAAAAACAt9yAAAAF+UlEQVR4nO1bT0gcVxj/jbjUBkqmJMKGElwCRQuFbKWHBWmzFoPryd1Tk4OpHmprDm2k0DaHtvZkggFTitiDoDmIgYKrp7WnjQcxCnbtoTXQprseEqUYdksxmc5s+HqYmd3Z3fnz3sxL7CE/1Hnz3vft/ub73vfN+6dEOHI0HTUBvOBgIjCHf2eOnEP5w5JPzW8lSZLOPwYACoZ5LPpWHSala5iIAtph9+GAX9XySgIvnUdgOyjvP3pny6duofOA5lu3AtvhxtQ/h20+ddd+Pik9/KszqB3mAbQf+NPVBhapcGaCAtph94Bo4/TL/pQf/Pou2i7NPALQHIDC5R+BP/xqr719AuX7+hP49wRat7SBqjOmmL76uMUVNKYHdtD8UEU+4i2TiefNBwCAVj2mxHGgaM5LYjZZtKsW+M7qX/IQuLa6INvVC+SQ+Mm9fejv2Rb7FnG+INnW0gaKiVmnJpHjh+SSc9t+6tNBpzaRHHqdnXEvNZlwVhToi2L4iUNLNpZ30RNpB7njrn3D7euZiIue0PFk/7Jt9c3ltOymJomcXxS68za1Iy2T7mpC7RBpuddQp6TOelAQPLZvjM5S3wcfe6oJjAuibLyuIh9d99YSy6E+VeaieQYlwfOsWmcsjWQjDEqCOdSkyh9uZWUWJaGxCZTeyFfejVdL02xKgu1QTZXKxeOMFITPu81UWUr1f8msJDYuzFFlPpZl1xHNgTp2iCgX2+FQEb4GklwCVkbTHQCA8iVJkm48b19QNk6ziaJensci0Ybn6oBwDiR/MWiU9Fk1jfUcumsEmOvZQzl5b0kv7X71eSeTimgOpaFzT43iXGgIAMr3PZXEOmIvninKelFf5yFzgu8CsXGxnZpMyNE7AID9vdet5nCBUA53RheilfdW+BQAYHNs/ISXnkBHLOgxudOh3863blWm964QyGH8gjG9iOQNEgCGGRTFvbtH5HGjNNp2hUtTVH9QUmdNCk7TDGeI8UMxlq7ePAkXuZTF2KHQPZ2s3rXEV7i0hXC4m0pHrfcuE3BbCHBEOl5nezNVPj9f3LyVkWtrzFTJiCYAmqYFoDC6m25YZuJzRhOAEEK+GSgX22ymtG6rQvYcAqDU13/FprpDKfjgoGma7hPdL1rNpVIy/kLToAFAoW/8gu3H8hmCiEit/lZ+LBeqrVZVlVSVVLfhc8ME3A1WDioRqarqwKGRZya25/SxXKmy0h9ChtVDIdYOOvddNuzUxpUqm4D6wHQI1Prqr1czDku/AF90SgTNCE0tpH9VSP/C6kUL1VRrQEhTPmn/zM1g+2/tsZOoukXl6EbF5KyHRIxhEai+PxhmYEMh9dGgh0gvR4cwjaBymCEXz3nLRJk/zs97M1vZEXKDOar0ho9cPXc9HWEQSzA7g5/DtVX31WcT7KNK7nH1UHjcWwgAlFN7LvnDCk47KH3nGClwpEo+DvvdzjtCDWB3Bk9A7MRyHNJ7YUZBHg7rrjtCjWBNlRy+uH3VdUeoEcypkvmpJi847Zg5gTVVMq8FjWKBywgAoqVChEWO0RdKym747AXWVMlkrWI8zekHIiLKJJjEmDjkOQYDVjyRmboQC4dclGf12YpkmkWKoT+sjGQ7+PsCAOZU6clyOsEbk1WwnE9hsMPVX9yGzx6IyNsMUh4cOHaEbOF5PgWAhy+KiQXffiAiovUYg5Arh3w8G4wCUdhxOlhFxRebkiSlN9NWE21fnIwHcQTAmCp1KtpA+wHRWKv1IGImzvAMXkgnq+UxAHYrtzAo9BwSkdJjOQTocKCKEzWpcqznkJSuhm0dnYOx66NNVRu+GfSfFqxIZCpFbWCC7PYzmgCgvJLqBIDmyxUXDcHpQBUnLKnyweZ7AF7r+r1OpBkAnv6ZrK0tvflKoVsIBSi/VRLM2mn7nN8MAPv183T5+1fFMADw2CyUV3qPweaB9bgwt55mPDYBg6HQvkVEtNFafwpY75MbmDCOVT5DbOix19UQnEZ+KJypnKh8VtCjYh6Nu3yCz2C4QAIA9Cwfa2x58T8gAP4fHP4D+pskvF5Yh+oAAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, AB parallel CD, AD and BC intersect at point O, if AO = 2.0, DO = 4.0, BO = 3.0, then the length of BC is ()
|
9.0
|
332
|
[
"6",
"9",
"12",
"15"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAALkAAABtCAAAAADYaZ+5AAAJfklEQVR4nNWce2xT1x3Hv8ehxIADYzixo7oKAYckI3RhMGGgiKKW1yAh25gCK9PYFhWmMpUqPNZVQLaiQgURVKITodCKkmxhYkIqQe1UtoRCB6w8VilbCDZrQrJigyMGCbETQ3774/ra5z4SXzv2tfnI8r3n3Ovjr8/9nfM7TzOCFGJA0fGpSHkM8ggGoMucBCXRwuR5DgAj+tJ0FxI1ijwH4B2fBrUflFoolRO8ZsFoUhulcgbPk2DmqtbituouIwZU7XyC7jJiQKI8WCzdmZDGEn81VZAoF4ol3bWSNJZxV1MGFWthXWa5yBTLbgCDlFBF3ZJi2Q1gkBJq0V1GDKgql5TQTYwxxn6skx7thJVfEk8ee828Xe+tdDyg3tbZPXrK0kBIuWftvM+FM685jbNrCjgXZWDU8Zt79JYWgZByS8tPV5U0A4DXzFcmrP3qYgA5s536ixsSzs4r2l5csKpdqFq4TP+b7Vn9ZWmAL6Fpr35V+O0Nbq+k2RI4vcgE0KO2PJ2VRUJat5h2uEZNOzI2HEEQjIVdvr1YX2GRITmdxem7/QNERDRARJ85uomo9zurFTcmGWV9/vSsLZcn/v4xADAgsHeRCTg0evkfdM/TSCh/zMp6+uKFnHohAIABjm5981MLKsrnNhFRk6O4QXcxUaGivKCFiIhOFjx3nkgw9jADyvuTxAgAQBVvP7feHw1ixMq//J51gbRjpzrGoR9VfGCE4jL5RgMMjFHxs/84lrtwLCMGCINfKdVOVzwFt5ULdO80r3PrZwHRoKwVvRO4rDX9piUj//X7emalVpTK3dng7IKZ9zTfy3k72MRNJWsxAIIgAgBfNeCdIFTiIZW2g1eu5L0ruqaUwQAIghiAwKoHgNes6OpP/tOphsnHk6BuKDhrIbz/0RTAnS0EJMz8+Oj+otOKTyfTejjlzNVRCuCuGVCxi/kXdm6dd1YSRUm1Hk6571evduYOMexf1rx+zdJ/chHJtXpOedXR/z20E9zWQW3gpbYlS1e36yFLC6GGSA2ASZ5Qs2UQHuwclyKuySA+ctcdorNZo+Ud6DAEAJTxhisj//X7KVCxi9bi/PlG4DqAx/fMIDULZsE3857WezlvpcDoSzDvkfn3/lJgkkfSbJERsixXufXAowRbQyQULa7mqZo+d22J7RgXTEKzXdFu6czW5F+KP659d1rYNSWhglQo907QKGP+hd1bZ5+NfF+iUChXDp4PyrLmDVLXlMjmgCJlZZ5nR/HtL7UtX/qjmwBAwqcSZzVMrl2pXDHVokIokbRXnMUz1nsAxijRdbxMl4q1aFDAJWJ6o318/mYvwHQupYwg7VMfWfSMlo9IeNjYPHfWSHUHFkeqJCFFnveOipSA8pmMWf5Lz65L4hCBXnkvdyamu7E5hmtLbLXSlBKM/NH3jXkUax6c3eZ9q2yY+RgNsl/SYRlGNjRMdTQNJxuHRvYo5XYewwoRYdqR1QHLmjeuXXo5PjkqR9F1lK9Y8GZHnebeytVE/WW5AFDuWl4iuKZ4oyj3ovJKxhib0xPLCpGAcxn29a2wAwDSXnHOnLG+U4dRAVF5dU059fa/rM0RSaD21oWuq6a1WcGwaWv7+KLNXXHUqI6ovP/0coxaAHizo62OWWOrJW8S/3vH7rrRXViV6F6TAYDf78et1kU49OEGeKMuoYGG7VQzhY9hyDp4+XruO4/jplINAwAjjGi8YWH/vTMn2MiNxmLary7F1NzwkxIGKXPqPz0z8Wh8tcogIvJRf2ktOTO3EzkuRlvN1ji6ieizWuWV888VnIyl4tZGUPmN/Fs+2jjpFtn/3UtE5PP5uEPoLPhOPh+JF/pLtxNRzSSPWuoNxY7GBCuvWe2j/lJHN6GHfESCPvEQCoiyeenBBlZ4olfq6upzXvwiUcoHiHz9pbU+qkQt+eHzDaKc+GgfhTI9Ao8OWlcOOWoWu3Ii8gEAMpuIOmwyiRqVD0gOUvxvf6OiI/7KDYA/WEzvzBIGz/3qRXmQaAEmOUhqAKRvaTNP3+KNvRJRxwDAbwQAoz8d8E7w+42A0c8f/ICRC/vhR/ClAQZg3K7mXnu8XZMBMBrDX9JlFkJG/mCEeJPRaBTehJd2LAe+jLdrCrcV/UYkcjFxTn3TmYmH45igqNzvh7j0PFFM/ai+rvBk3JITlRuNRoAlYBl0uCFBbG7j/t/N/GucEpb1idzRdywiwCRni69t/sXC+PSaZMoTaS0C5W0rS75/PQ4J6a4cWNfmcFR0SqJi6UHJrSVL/ba4kr61PbvoNd41xTK4JFXeF8gYliatjHuzNWDfMTzXJFUuXQWdGITND5YDzf/Jre4bRjpS5Z06rDwXNz/YPjzbZD8MxDpdEFJOgD55HoJ969SJ2sI/xzpdEFLOAOC2znugZjXt3xmra5JaS5fue6AWX9u8fsGlyPcpkZdQ/afFy52rygTXFN13S5W7v5mMlR/r2ufO+1lntPYuy/O4N1s0MXKTyyZ1TRqQKr+brF2K495shb0qqtWFMmuJejw0blj2Nd+0V/dpN3aZtViSuMLJdqzpfF4NI63i+aGH7vT4Dy5ExcDF+XknNN4rmSdy2RKgJko+mTHjE003sh3cBMzXDS8nyhSioOVMxsKng+cMxAZC+qr420bw84oPx+giLQKFhVcOF7wg1HIENujMNv8A3luTGkv6B/x7zWu4AT1VVZK6pcuaIkuG0ytdk4te84hBVVUGvrmgRy9UCwwYV+WCddtQrskAsHOMsbpzdYA7hTadk3lfR6d9iF6TAYEVaz1E136YC3gjLRDRg02MMQNjc3pg++Dc+YmHpFc5L9VfKmwvc7iJvpug6YWoGKgsJ6Ka7ULo4nz7IK7J8MGFahOAESUW4Otk/7kCAXjkLMG5usIpQmhW08Fd0/8iuUGklNvKl65xBiWhOPM9/Ssl82UnCuZzM4ZiFWnozIM4h9nzVDRD4omisdUysnM0H/ODljUrS/4lhsQq0tARDnn0GOCKRKBhG92wm0ChlYRgqHA9//xPwgN6BACGZ5xEAPb1MHizUmDfTfvVJWQrDu9aEUiv/Gpy0QYPuFWRhv1/rGIIrMgyITX+cea2bRobVQlApsVU5Xoqf9sDLoacmUDm50RE71XoVgzVGCASp7QHoaPCvNsv3sq3uHb/Ovm7KAEMIZ1ayqwHg6d8iysVmi1E9NshLhecPHViorAni1futqaAnUdi5qdH9ky/j6TvVR0Gav8l8mTw5Cr/P5qQjixcv5YhAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, given that a parallel b parallel c, AB = 1.0, BC = 2.0, EF = 4.0, then DE = ()
|
2.0
|
333
|
[
"1",
"2",
"3",
"4"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAKEAAAB8CAAAAAAkmo+bAAAKcElEQVR4nMVcXWwU1xX+roUHHFzJVILdzQ/+AWOqUMs4FTVIyKCm0DQSNlWk4qRRnagScV5i161UXkyCqkAfqIlUyYDU2KUUmopitlVk2ii22WRro/ohVR9wsWFtCvLutmDaIO8yLnv6MDuzM7szd+78kU/A7tw5995vzzn3zL3n3gHkI5aa61K9dakYO+tjo2XwERWfbhrcWBU9ffI6+deorwwxtWL5+fTl9z4E869NfxlG/9398cPeitt7rUUo89wz6U/YYeE2fWWYGTteOdO1Y0pqtJZhFZ9uuToQmxFu1FeGd1Y3ZuJvIrqnkic11RA9F60XbnSFZ1o6jO6ujNWGlmf+sOkVjlT0jxPLN34s3qqPcYGIKGcrsdQcp5mdnwu36O9Ige0gJtypaKTR3Vw/MMBXK/NBDADDx9+oxPXjeEe0GvMxthq5eLhvQCAMfYXffggA/v7oIBgyIHvI7AYBPY5bC4IhgK4Gs1IGnHDcVDAMh6jT4k51wqkXuGdIun+LMDl00qpWzbx9zDTCfTxkgEXcWOy6uMqqVjjptB8PViaYq4Ne76u1rBRecNqNB4ZWxnq7cb91pXDaaTe+PfU0e4+PX+GIhf+hiGrixGyeMB7HcmGgqN0ke37Hq1CTUEQ1VszuseZxLMf/UlSaPTAQsgwnBFTP5b8vtzHG2IY07Ma2e4aMgMxbxaWH2lq4XUbUsVx+oT1OtH972i4+ehspfdhoLBue4z3WGLBq1WL+4n/ZRuDolm7lB5mzJG8MgdMbJGN700fO29WJpPJkptZUAuX1iQeWYUsp9cJwJv18+RP69rId5y1DtYraRJ5M9NsAUG/JToUHhsv93ag2zOa73tpsWyuUUiyaie8BgJla3nrAo5UHB75U/0jfXH9Vp32t9QlFZ7fr1gGYPfOiDUEPDGfTRDH9svdq9KhAtUhK+RzbCGC5d0MbR5Z58sPZ17uBaV3B/a5BWycEEFIYZk7tBWafSn+02kae3K6Xf4i1cXkf0KGVtI4JLJaJJlqIiGJK97ws3lLz2tMNqZxrhiXo6xOTWwiLyc08HZf3dRCR9czB0ZIR41fGxWoIThCXe4/tQP1q8PzQEcFEz7BoDe3JzMXk6lewfGMv+bVOyb42sEZUNiI0h730IjCYbGTwKW9zqK1FWFbMzAw4fXBPJcB4IyXX6pqyCAMOWikG9PWij4j8yIpMd0xK4l577D8igR0AQAzEeFYWJJ/tOL/SwbBysNpjAOOOFMFuO/rs5ws61CRMCjnK8D5S+ms4SzsThFMmhRxleF7rXY1edlYhZBptrKO9+5GitJl8YSTssOKq+4YZBjFwH2AeVlIAgAP9DgkS1c6pXwvtcKzs0Q/fbt3lsAZjIXUwi41Eb344/LdhwOkkQ9NhHkHmHBJH3gfgNN2W16HcxhhjbPsDm9pCDJX8wG+Ki53MF3QIpwACpAvtcaIYdyUlzLD8wr6zdKWnKANCXZ0tbrLq4QVF64+yjdnjX3vOTlzMyo/S38STK4sKf4XvOzUwAKDmFhEA/HVb5ZlwRa+tvNCUPNZBD/d1EBHltK27a00Zsfl8MW5WK5+ngLVxe3ExhkWN5YjoXtNNx9wMfcrtcfmlpP3qS2ykjMTpp+2T2jUDkE8Fu/BDUjLF83cby3estncTIYbzdxvxamREX6TOF1z4IVPmDqO7K9Gz8s0HPjAkjO6uxJ2FTbqy8Wg/XG+PhRcALI/sBS2/tNZ+G1fAb+T2OC0116UKfrjQlHTrhER0cIAon+sWGCoWDPX+q+QHWvS76q1jHggKLf6XmlXyFlbWu9dOIiKa0Jmjp22XK/PmUXvL3j8qPticP3Di5rnMTwXbI5QE4+66AcCYetDAnCHxfmPiyC9dkwOIlGx7fkZTHAu0jq/n2IY0wWpFz6yDCGW/c/7LHhiCKas9ix6U3UIgM3qD9n/EAO5qVM+r0IRIKphLEOF7WTsZmmo4h3x4Mx1JASYbjEyK0UpERDmiH8VJbo/nSPS5XMBEq8v5gkEBY3YSS9/6XD02tAKADEilP7AUBLbYdXGVw0l/aTPMPu0wta0y891fVBJTxrIkRhCMKfMFj4cLGSILdvGw5TO2ZWQ7GJyupA7zto6FQaEU50cSA1Ae1a5UhjIgyYAEGRI0wxfsLwMSxmN/kiVAlmRIspjezQiwmkscASN5puWxJVmCJEvQ/ug+oFwg2fuhBFmSIUuy7JYig7PDDoZ4KEsAZNlCVMoeOBEG8m7rUoMKBFLZpH1qfqjqxLrrQ21f90JLhwhfh8QAlo8YjMqAYqWZKZEIFzzOF3QobDKbwvDEZiugupqiREmGpA4a9UMuZyvl6+/GtbFUcFaXiKTFUwEriu1qsHXhIvfq+Yr8taT89eKJNTdNz4WZojBS+CrxOF8ogmke1gK6eGgFYkD/mk4vjIqx3iyXbQEtHlqLMGAyetk+WeoAkc/EZYWeeotvDKuJXX8O/IccWFloBvvy0VrwDp04RnGSkwcRhoe3vaB+9emdCSePPZ2VrVxs/Mq4JzomcMJQp0Om2LDYkInuYR84FaFaP5hFT1WR+cZB9rWTblLBliCACidGoPTI41hgaLH3c6itxdfz1YzA9Ec5CeC7t2GknGZs+79+YLj/24UeP18pQl4TNXPapZ28juGNdeNEv372Ka2AgOmfDfnJDsgPyJBy2FTZZGDsHLeCikxzBxFRr/4MTKbpmsgrJ84x2Kl8yu3xHC21pDiimg7pzP0TAPCVGh39jr7NvsVAA9RN5kfZRtaf2fqEqZAyqDQdLjWrWb2Czn7eHYD6ckRE1zYrF7E+mvkeX1bT4e1/qllgTWeTQkfNnIIBhU3ma0dYfR1f1vSpp4SXZI/QUTOHUNquwiKgbDKcqifworbG8OlnrgPA7O+hbR0frfX5VRNADc8skgJA83e/imfrDKefS6HZ/BTOEsVa/qteix41cwcluXTqsL2kLvcVg/6w3sV2CibQEBHlqHOQiB62e9g1u9l0z0dGxcjRT44SxXS7Fea6mFmLvjJzV3O5dSwKhnUpYCdReodWYoJPdv99ZtZChwcHglGehovt9jJLzRM5q/2UoYdvBKW+PCJJkF2kmGpoYRYrqen3JoJgpUdoAczmeUrT9YB5xF7ssH6LyC/UztuKMJpBZnsajyntX9Q572ZrwQ9RlzI7f9h/qz8wagVsHWwyv0FF/EutPP7ndwMgVALTQ34AShRcMlKSPSMV/vMphWXaodgDSnTo+KiZS5gf8jOBgSERetp2BTChMUHtLUFBA0PGLs31gPjrV58QSkIsDWT0w8Q7o/nzsYHjSc4WrgEGHWZffj8/XwheicJJTgPDroNbA+BijjVZm01mFXqGQ+hUvz4GM4dttx8VlAGqTSeHBoLjU4qaeaenTHlvHQcBm40pDWVA3qa8t46DgOibzJofHmvwY+vYAdYLhmzVyuMjvLeOg0DkqphcnmGy2+HZee8I684F8aBYOXvg5OOZL+hQPQehqKbMYA9X+bYzK4xslVjIZgRidD/IxbEVqhJCvZYBDOyLICiymAIC+39FRCAYEL9Ahu1ilvs/mcjh0D5qaTsAAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, straight lines a, b, and c intersect straight lines and n at points A, B, C, D, E, and F respectively. Given the straight line a parallel b parallel c, if AB = 2.0, BC = 3.0, then the value of frac DEEF is ()
|
\frac{2}{3}
|
334
|
[
"\\frac{2}{3}",
"\\frac{3}{2}",
"\\frac{2}{5}",
"\\frac{3}{5}"
] |
A
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAH4AAAB7CAAAAACXhWvnAAAHf0lEQVR4nM1bW2gcVRj+zq5DQBciaM1qQ0NLbBafdm20aZuSpChdkK61akGagiIGxIeKLaYrBS9PeVCU0uSlLbXig5AVUp822PSCrUk0ZSMNZoXW5KFIaxfddCs0mXR/H+aycz07Mzsz+u3DzJw5M9+c/3L+M/8/ywiBYrwlyTsdCZZdPMA/HzD9kXXtAAiwEXKQ9ISR5B8AwAAWPj1brGxZE4Pt0IOkJwCfDmIjALDwhc+AkWG2HgCI/gvhL1aI8hsAMGYr/QeCY3/jPHAdxGA7dgAUEA4CBcoAA0REVbte9nLxAxOlvQySAKwR6LRTfO48X/SB0pfShy7W6RKg8O/17T7UVI6BJ/0AR78/MRh55jLAk35w9NnyCbDeS/xOgdGfHstFgORMnW4Buf3Z+CIR0a3YqnRs4/kB0c/HpyTCtjluv2CEX0of2yzZWxdf+YHQL+96+2V5t29KirVhBtz+xKCym5yWphYb3wti2snO5KPK/v2Hr7WEO+2cHsup7IgmZ8OddiYO55s1h90XeJ19pScAxf6xNm1b96R6yvISf3G7LadvuKlMPGH4vcblZLS08uZdn+k1LqegczY0+mz5pKmt+zzvCj8V/2WibG6ca+dc4Se9HOUMWI3dtL/Ek/CtvajYf6bNojnazYk6nujVWUz7HKX0sWcte3dyTL8x02PyA5CVyyngzXv+hBxitDd2yia0LLX8E7VqB3xwPAIBDB+UT9qFlub19tJvjJ4ABgZlYWmDHnvb80ZPL7EIY4/dVYZbi3JmXRKlfubcyROqmQLRwTUV6Wi+ZYrXeT5ue8oj/UqaiCgzQEQWUc6I5lvSNgMA2KE541H359YBwJPXAJ7LKQLeckHaObO7UK3m2zWnPNJ//zwAbKgCllFOD9Y7CYAA8V5y9eiOpzQG4o1ezKcB4PeNkN7leCAgOQmAAed6cXytcEDroJ5UvzBARLSAUZsoZ0Cl6S4REQ0DKOjOeKKvDg8REWV22EU5I5KSZ2QKtKeiO+FJ+KtHdwKL7M4Eiq+NWUU5IzZfAIDFO0naFjOoxj3ykvJGiW635og4iSsFX79CVSJJZu9o+3vJ6+1ULHd5V+LqVSdXlPIffQiMfwLgxa3a2OA9rUgM/QknkqcIPYq/2Xga3wHAx9pz3ukZsuVvbCOpAVe2KjLTB+UGIp7uXa4OastdQ1D2YHpERFQ9G190YHQyLm0i0vRWdzzTz8enHJMTVZoqMqv+Gq/CL6WPbeZlSw2IpaZBMGdYXdNLBiRHOecLxc4Zy4d1TS/dRI5yzodvs9z1Jvx6Uc6MbbP+0btxORmtKFqpygu9IX3iCNTzExhM1uKenn7rdxTl9GCpH+U3AsPd3OJ2W86Fw6uYTli1un7JWu7dXWdpZxiePN77D5Vi5sKCa+HvS7zv6okVvmjqsoXsIwBEUXR8t+zSCebc27XonbRojAAQIDi9hweXU5CctnpsIqIVp/bjbGFpjZsxi0ZF96IoSkqQFCHqNspe8fVvnwBBhCjCub5ktDxShK3fC/JPFAQREAXtBoAoCEDphS+2CitMhChAFFzzd12Eyfa0li8KUEZvAWF518AegEmm4thaauizyDKo9MpoBMHuzvsS73mzeRlJiyxDBCYtWg+fsktqlPOWD+q8UbKil4QOQRQACKIoAIKo3YiAIH41lotKxyJWAdHuMe0RTV4xN9acgOt+jbicgsOHTbGiZnoiz5qMRQL3IKB71mw7ytBXeIOvmz5xBIvKgur3tgaPWvqkwRRkS6vphdBRxFPSJw35HYDOaS/02fKJhkcOwLKyUF9lTtInzjBnWvHUp/fD5WSYKwtc4VvV5RpBtNu45ODSM/ldzjeYbK+O6dXNWDoHATDVVeqsdF+NnfKJHQCw1FrWr9X4o7eqyzWCZmNJk0vPLRK4BQGEHhf0Xt7l7MEAhtQPxoeyxXx82i+Hl1Gl+VZ9iz29P1HOiGb9xGMtfG5driEolQUZdrqn/sSgL2HGcNueGd1NTfT163KNgKUu6W9qrSL/opwOVao0rUo7Eqzpa1HOQyKBx65WFmRY6r64T41yvsqfQaksKDDSE4BSetjHKGfA9oKez4R7XUN+StyAX3UlTYuI53OUM+LxKc3yRRU+KRv3GUt36JzSHKj0so2xBtInztCtizqKFmQP83FhaYNLXZoDg+nNx7mlcD8gVRZk6B1PXlgG+tl4LPVL7aBGr4ly/s/1WmzSrDdr9MxBKdwXbJfoCZBXunKmNTuTjwQ7cADAjaf/VPcjgCLs02O5aAjsaI0WVfOqVTEn3tz/eQjkAB68klDMq6b7uSO+vctxwbA/PsJYn/guAJD8QckoVX2O7rZYwADRAoaICFUiyoxS3vBVQ4BY6RggIjo4SkQRBojX0+gIRfAAgON/fQYAG9pl4ecH1C+AQhm8ZjkB0n9QErz2F5CrqkwRAOMFGk7NytNQCNKXZjkGABFg8U4Sb3WMh8IMYG3HdQBYHJUehYaH5C+AQsIIRonyvVUiIhBlCrTSsaYSktMTUR7yP8WIkAcA9IZFbUCw/0iri4D/CPs/p/8XvGVfCxnZuT4AAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, in triangle ABC, DE parallel BC, if AD = 1.0, DB = 2.0, then the value of frac AEAC is ()
|
\frac{1}{3}
|
335
|
[
"\\frac{2}{3}",
"\\frac{1}{3}",
"\\frac{1}{4}",
"\\frac{1}{2}"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHAAAABwCAAAAADji6uXAAAISUlEQVR4nNVbf2wcRxX+xhdsKg4ZxTE+ojMO1JEMl7Su4yTXJK3zhysuKSJO1SqRcMBSkrrIVBjHVQxEFJQUDpUQS41kg4uSIEcylSVHanpxIEiuSpJrUv8AuTgIBww2klun9MwVfOte9+OP3bvbvR+7O3eJJZ7su52Zff7me+/NzNvZsSAkpbdql6yKUYpkFZQXCoGTB2Tz6i0rCti58V8F4ckCjkW/XLp6ZQC14Pr+L1ApVgZQAMC3XxObDPD3FBAAxv5DtacyCZ+XrJLB+9okxF/yhtKFjuUJIEQ/EHCukkWEpDc+ulNRGEHZcfjqhcLwpAF/OJ5/gAKQCxoAr0+7tABl3nHq3N0qyUf7XfGCYoYSJhXAtehX14/nS00TOR+++C08MFoYoGMfUlBMTA5iy0oxFBA42eWC/83CAGUG/l8bpksQLV8sKQRQxofHO0uAT35uAihguZAAfGf4IADUTwAFLBcSgMFWNwjUv5UvliaOR2zE8z5JMuxboYF/av+nAJC+6Q9WhGHEM69f+cIrwvDlPfpCyM0FOdES8GEhRJHYAADL3c/plaKwqLEEvO4PJbKmvsb7oY+++jAKSdus7B2r41JbrI1kvHpSW59IKsUf3CMf8sxD+F5lyWkA/Rt8ycFe/MWJvOlZMVTJDgiESJI1Nw0th7rvCUMBXAup/i0AcMFTn+phgXONRWdGfSpbSZIPjqRok+GapD/lxQqw4zBJPk6O+E0AH7qi+cJZB821vQAeXgs8f9S0OqyqLSDNyA3YK8K7hRDhvbj6/kPmpoKc6MAKTSc9w6aK3n33xockqZLj1fFxz4Cx8mZNvnAWgCkKzX3kVFWvoS5eErn7gEnQaW+M5GzNCUOD/wrVPI1qOXkLADzeWULAGx76Zqrhwbcg8sxqbNfDdy8fhCBYOvLnAx8lKuuN2bDcwmELGGx1a1mw+2KsSdErN2kDsVdbK4Fe8bRjRBuTRzyRlLMObdULcfcCSbKn/A5VMuYN3h0fAjy1vzTlrL7Htr8LAHD5RgECt9cCAthZetQxQRvAf/+8y1g8/o2ttwFo2bAApu67AeBI2TbHeHaAv9xj3kNoe2HnBABoiZSybu0fgbFoSbVzQGsfxrzT6VUXPW+QnKwiqfaEjhxmrO6/3juOXWjtQ77ceH963eODT70G1Lz3DiAmdhE48JtzG8qcE7QEVLs7MwfZ9kvP9MNVOwEoq7B+9khd2W93OsezNunZpqzV01XdbD9B9oQ4isNckrGo9VxqSp0MMl/b1d9EPxC6GWAHUL5wdwCHGnI0qJEdT3nJvDIbK8Bk6pQpsd2uf8iD2QCO+C304hW1hkxKgqlFlD5vNV+5Dnxs52KyJLFU5Qa8uthkpVjv2eufc46Tkpzcm85ammbKw96qKfm4AUlFUTIbxqs/tNZ0z3PAkxw3jnFBkpl4qtrcZ6PZOERe8VxxCmQDqKdOVtJ1jOTNzwxK2jQBqCiKZlrNvMrXf0Yaja1d6Z9UFMYGAiQ55e2jlCOTDPVf/WfeE1VS9YYWKnrfOOUhqfLvNc7TC9I8DpeLASwvA0DwaXd6OBenLoqBYnx+aQ4Q+OwbA89JZW4JhlQ0AipJLngiTGeYboVYYFDrc7ShJa5Z1UlyXAQsmzogsAy+tL80o2fLaWVRqz9DuS9HmhQIwFlynAiTJIsYGfHM6rGjJN2bKus+VH6tv6JRyUM7Ik4jxzDTpAZHd6sT1b+tSV131c7nvjEHYAovS+qUVdbMpK5/Wj1DRyQTgMbp7XSLIzwGEg+NKsmz3klHSlkm73j1uDOHHOsyloY8jnYZswDmSJ0yRB1qNJVHjA/mOTucDqiSvhypU4bMlprL455+eyUzoEpy6FGHeKRn2sxkuuq08S85ACRVPXVyNKi+NGAuq/O+Y3Y66SmGeH1VgzbhOJDNaQ/CouLqlWfsZxqzDRqGnHDT5GJDGkMyGthn/b4v3aRv1kosbvPuzLr4voDlTly6SX/cLpHzVbhvmUwKAK6BqscWLVarNMCJyWaZTYn6P6Suk/3sbdz+T1MfcgISONlZJLP/sinrLt/xZ3fc0vuQBdJkYPvUySzDO7LVqhyoGM+lYgY82K0pOJV5d47kddiT60HIOCzUeY/sVq93KkdDuGIoe0PShwIQwdZPSDgQAOqz7A0TALb+7tlz2VUM4JE10ruSJ9pzNs1Uv2jJEMCp5szUyY5hOCs/AKj6/fnvWDNMvbBzKCq54LaYyCINLZmtBobn9lRIJLTanWvKbpl5GaX0cuRJJaM2Ce00dTLLk7mfIlUy3tIQpXmcpRhm2XVywLP+Rs42AbjObH5kIW2tSyDHq8fzIMhhq50HlSp/UjNjqksCnm3K611EpMTuuEuf909ZAR2nTrqo+sf6cbvbBk3RnziLcaGlHXmdA3ppex2FteJi6Q9ShUTQKO26n6VEABtXwwYPpcZW2WNm+QixLQygfKoMGsNCMJ3oCnHdHyIf+cJ7AECVfgCQe1JPRA2PAL6lr9jdG6sjSX+AZBEErvuD7Om6JMlNABgTb5O/us/uMB/PfBoA1s4CKAKhzB1CXudwlT2BS0DdE9ZTFCG0Tep1AFAEgTMbytAWCOitEvJdpR8A1j1giSeg3DgIADOVAECyA9Bf18tNNjHvYWc3jgZIchRBapP3tRA7dmsuFEaWdt9vz5ltmes+nK8EgDbfUQBFxFh0F37kHUopCiffBNQ04+W6X3llLzAmopMAUCR4fltmZ+1ZCmCj9zYAjAWt9Xo/PrdbiE3BSb2G/hCXvOUy7x4S0oEg2SN3Rgo9AIA8D1b1IHGC13G0rcRcahLpfw74vwP8H/LvOZ01IrgwAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, in triangle ABC, M is the midpoint of AC, E is a point on AB, AE=frac {1.0}{4.0}AB, connect EM and extend, and it intersects the extended line of BC at D, then frac {BC}{CD} = ()
|
2.0
|
336
|
[
"\\frac{1}{2}",
"2",
"\\frac{2}{3}",
"\\frac{3}{2}"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHMAAAB7CAAAAABie+BXAAAHo0lEQVR4nNWbb2gcxxnGn7lzrU1RuQTuqnNt1cGWJaeCRIGYmirGarHD0aayaBRkUSW4VD1D86FOXfo3tFAM0Qc3+IPlpLjgFMnoGsmJTdP6lATHH5y24ISzQSaYSuga18V/UqrkVLI+Wfv0w+ytVnezd3u3s4E+xtLu3Or97fvM7OzM3K4gbE0nH0J4opD/ASBSKlz6Ab2OD6w9QkTEFIRzArZ+vLvA0NQ7ySxyJGmRLOX5Yte/QksTS3MptMtNAcfb/MdfSTSHgSMAnOtuxoF010qhRZLf53w6PGtHAemsFCzS4iiANEn9zUhWZ46jLmhEACJfILObAHyEaP+4qSc5y8khv9iF73W84XgdAZD/zk+AOQCIId/zQuypU1hJuOHUS1cG8efHgOtXN62UkgeBHHuluSCZf/6B2L6snmRBkr05FjsSBWtVYdkx5PvPtSX3/42kRYtBBDILAOhxFQo6XRIACMfKS787g/7hzkadrYjnXbhq952xU/d+e+CBgEx3SraU3jp6fV+s83A+kLeVtbMKYlUwybtTA03bj94IwHSCK5mVeZIkC+P92HV8QXHG/pjlf+aHaZELx3ehb7zKncfjdJTx/DClbry0vWlg7O4KwE/WAZkk84fjePj39o4vo4MzWVz73e1i7dfP+8HpYh5Hgfz1F6Kx/Tl/DmtgtneRJCeS+5NtP3u/+rGamPNrJkiSP3zeYnY4tnWkZm8RmGnt/4y8WhK3SJJTQ01dRz+oam9gZvGzXybJ5RMDpZI7mf41O4/ftqEWK/ir41lW3czCusTOE8vLyzvfdoVZeDmFx18ueGQbOM/Z5k9e3XPfs5l290mT1u2XHo0OZJRDmlI8y/lRJ/PQEMlrv2h5ofKja0e6modeW9l3ha/Mvx5m5+vyt7rbnT20NT78lip8I328rZnY8sqOsvZmfnp/8pmLNePVwfzVPpLMoofkvHuE4+ZffCa58UczZfGypYOzGKmPueUt0iKLHTmS82nP6/L8cHzrodmVeBaZTRRIstgxqYBUYebidyn/cIRk9nKVs+NrQ5/70pFrdOrzRTnp65XpRhQDJ7X+0BcFAJwbG1sErjzodRwB9I3955d/vX/Hb28CIARm7pkFcKw1BcA1560mAsDEkNy5si2VxVLU82A5zIsOZBaGzyZRhACWtmyZBfIFY7Mdz6e3F5NyiFA8wuk0s5OeB1qurdt2G7o8OsJiqthZqM/bk09ECUBcX4/Hblw6l6qRp9yK29Y8COC5yXPdcorrm3lqEAIEplNEarqlngnyUhSb545ta35jl13g09sLG+yN31hkHo61NUZFIGllc5zHCIudHyshnsxnD5AkjwIjJL9VsIG1BmIg2Qvk5tMcBeRVymrzFZeWN/zxEUA196guZTyf9Xmh6RHA3T6CyOf1OTGohSblz9vl5JtdOsJL+fP2/L0PAQHWFhphju8VhK7q9OftcvxCg5P8xr3Nrg+6rlA/M9OvE+nL2zuJ3GY94aX85Hl2c6NItfwwM3u1Iv14u7huZqOm8FI+8pxubxiplg/m+NN6kbW95X/jf29t4C7mFQ8+8hRntrVCW7fnj4nMkxpxAHx4+1HLP1oatrZBb09vb4Fea2szM4OAtjunVC1vP9zwzzjw6bbb0zvimrOszRwfAiH0VqggYAKGa9etmxtvxhpvtVW8NRykWwSAqd0xaG611bwVgD1C0P0tmiAA04AJGCZwD00YcOye3XIrIY+TBfZPw4RhqrxRhy9XKU/D/mcahgmYhvz1p77EJwAI0zBQKjZhGjANs+E83d6aBgDTHWtsLwRsm528DBhQtgC/WuNEss1ygpHig6vfCBDaUxGg3CR7XwCnU80VxRokCNPOzTQAsaoNPfzzb8o2A7iKZXMzTD/+1vqOTjJdn811fdgUJB8v5kobqmj8zPStDYhUq8Q0y6uLEBN7NXdAtjzvZRRXuv/tvdrVWHgpz75PYLIvMFKtKveykzrXEPwxcwu7PD/Tz5R18EpfVPsdxZspuZkh7TfOKkwBAO+aj4YC9GACgHjliZBareu+Uq6JTFhIzzzfQfenzpzSu1SySh59n712qju8lDJPltZOw5GSKTChfdLpDq/0tuG10xrhpdRt6HxMD1ItNXN8MLwHKT28te77i6aFTP/enm3VunbqixlmhwC1t3fiubZwwkup8jzbpguploqZCWsgZEvhbZC10xrhpRR5Tnd8URdSLQVzfNDrmzpNqvR2MT67IazwUpV5ntmmD6lWJTPkDgEKb+Xaqc7wzopWxTP5Jcm1U50S5RsRYvWiU9gdAiq9vdV6LRFeeKlyb0/v0Iks6ZgQX106AMoHySMA9gghxOcXAQAnB/T3B3lxmTyxdh2EkFVKkr058mCiQBJNCzWeOKhPIFnsSFskD06uKkyRZG+aJB7XhrNK4UfloxCjl9zMbJokD/ZQ+7sHAqVnnNxaA+DN3QCw6T0ghBcecP1qW9k6dwRYyqYAYL49jHk14V5aZ4l5vbsZQP5wKEsWAus75gAgPwUnJ3J0hBbZ+zVtradMxzBJZnvcDavYkSPnS0/gBXu9Qa0s7LdjbEG+AgHv57t0SmYU8jBEKf/P9/1/M/8HpMVGq6eW5G8AAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, in the rectangle ABCD, AB = 3.0, BC = 4.0, point M is on BC, and satisfies BM = 1.0, cross D to make DN perpendicular AM which intersects AM at point N, then the length of DN is ()
|
\frac{6}{5}\sqrt{10}
|
337
|
[
"\\frac{7}{2}\\sqrt{5}",
"\\frac{3}{5}\\sqrt{5}",
"\\frac{3}{2}\\sqrt{10}",
"\\frac{6}{5}\\sqrt{10}"
] |
D
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAMQAAAB0CAAAAAD/B8LCAAALfUlEQVR4nN1cfVBU1xX/XXFDOsGylkVYXcUYjA8X6xJsxUArtGnASSqbShqdJBOdRs2UtCY1E5o2mWo6nTZTM62NGC2ZMZ3YkQiZkKTTQNMRrFixYljrbvdtKw0UEtaIEQKZgbzI7R/73nLv27ewe93y3B4H37vnfv7uOed+nfuWUCQ/zTK7AYmgJAXR4mFDyQlC2cEFkxPE04ty2WBSgaDq337XB9orgCQDQUJ/PSNrMueoQQBJBgIAQLGnBrdyrOQDQfbXkpt5VvKB6BmhtHkJx5ptUlM0oiTOuJ4tx4BufUoTaSL+LDuBc3Q9sJ1lkiRZO00lMbNsopIQQuaNRk+g79swhk+P7z2tT2yOTdA3Kp9diSeW/DstWgqu41UxdMtnTvt71w4GV+sTm6NOyvq3AVRmH4yWgBJOgdoCcle7XSp2SRIOdtbpEpskiWOLAGDp2ai6TjRZ9AdO+LxykbRsd6EqNscf9InNAUHe+QYALDkLGNmsyjkty39990bnV9w/drGxmR/o05sDQmneBQDvLQXRqT8AgAz62gPnPSsl6VmnjYuhBJj/oT69OSA+KE4D0LPnaGSUJ+BvC4wWfumr1asNhEQAZA7o85hj2PtHnwRQ+XEryxw92ynL7ZL0xdulHI1naDKZcgbPMEUSym/qgZ6bS1tBCSgBZNlz2t9fku96oCSFS2loLrbgdQCipQIFABqqAEL/4vX7TjjyVm+XpGjpWXEQAFlBJ5/ADBDlIRXub+44J8tF+dK9hWlTLit0UTRbbxTmGPbp84EzZ290IuOIS+VEYogKi9j1w9NMgxj0tcoBz23Lpd1OG2r9Li5SbXfoEV00miTCMBMPImoPegLeE76xwjXrHtfWPtZBPgXhHlEp26tLl0gQUXvwk85Or9whSSufWeZg+dZhoXqyddgTB4Jqqx1eErLsOSkPlOQXbV4bmcd2RaiqrD4dI0EgKAk3XXu52u77u3w8Z/mXH5NuUdNABzH9slBl8y/rCkrwjB0quidw6pz3Qkme01WUOlXqwbxLk5lip6up4ylcroSAYMo76Q+c6Zi7rDQv38nHGLX06myx2u2eLK64hKgTAYCLcqvs9RXmSbtd6XyM9kaZPwBASvogv0iNjegX+rK4LkkIiM6AfMID15p1T6wyrjVUpR4DkDlsi1uZALJIZ0uxgdDVPUnDng5Z7nDmOZ9ZMW+KWrk3ppz0K5SQ+FHYdMNTbCB0dQMAfPL5k/Lg6oKih0rjbUSY5l4mQPwoHB/Ra1an8Q6PXz6eKxVqgyfiH2FClDEETD9DR5Ctnx+t4wTR6/vbWfnCWknapBs8hTDAKjZROM7wVRqCCGNk56eT5wNdHdYVxZsl55R54qHMjwQyAbYgHzYEwc++5MPzJ3x+X+EKaXfB56MWLCQKa78Q+gUX+XB0daIEQKdPPuWBq8RdYzx4hhOKkc0jhN6m2xVFBTHs6fDKnc58abeUpYsyaLUgkPQhoWy2sfFUtkojED75fOs/rxQVrH2k2LB1JDIoKIzMIcF8wRy2Sh2I4x6v3J4rFf5IOzUh16It05J+VxQrZQVz2KAGovJNgBytcvUMtt9ddRezovlfYoBtSCyfflukeVvWN9BmeCilI4erUirqgtfsBoqFxlLE8n3nABdUnSxU6a7AMgCgN93fMPTQn3PKfntRjz/xlPq50Qh3Siw0n5eECoIcuz0NO7atBAgB0jbWDz9yIndNbf+1t3NKotbLQmOCfoNKKaUTlNYC6OJl9lnj5vTCX/eICTxGyu+aNokRNVRNsF7LWQBAgJYuWlvg4eClbDg09LRnVcFzeodrAilDbPFk7yesBFV16vnYha3LWgBQxulH4T506RcXivJ/Joc54ZeEbM4FJ4psQ5v4YwXwfkBdWPNLp/K6S7V9ZXm7fDTEoWpUQoZewYkiq4/zr6ogWsqhVGRWwHjuXXtg4KXLFbc+5QEYHIkgm9jxWZplNEKdmsmbBeQG+4dRHbJA8Qt9R8bcix/3AMKLDAOyXhLLl30xQhIVE5TSidbIHqYahwJY9aueptlVCx+N8IVfA4lN2RS2YKRhq2u4iB4On+sRABRw/fJC85zNCx85jgTplHVIpCQCR5DNN821CLb8ECDnz/3vZFfbt7YkzrAFSsoIsvmmAWFYvrTL2567M3NrU/yVRzRG0CYWBtnuFbygckuNtzN/t3VL0wQQVR+mVxMqODohI8h2r/gtm5wdXedWPZf+4GvjuojwaDCtmlAiNk9QLOSOCq7pqlBO9Sl/0QvpGxvG2RmcxKzjBGlU3wWx5eN32bMAKIoiUFLoZqqjuq237NBN9x4ZFTP0uWJGwZ93zAJggUWgnPDWet72t4PlR6z3/C6s33GMmYIer0wOewJunhHA9vBbl91N1m++NKhxYiXBDWrqHNaYNBCKooTUKqRaCvcIv6n/Q1Gg18D0h14f2diSvS7ODaHousNmBMKi/lMsFgVQLOwDgGKxQAsrUCxQLJF2lHZ/wyebj+WUHuyLXaNsYhsKzHvfAESopdAkYUCWyRcLollR6n31w99rX76m9j8xNkb0vMNuJAloPWuxiFg5Q6kbXhl6onNlwd5eGAuE4wluKKid3f7PQoR2RxFFHMNwyoZDQz/xrFrxXLeRiXM8QVc24fZ2s6GqESyKBYBFgSUklsmHYuHYqk2o2XiaPGpzu/GnhpKMqo2S6iwzPoUTPI2ldi8Pgm+LhfmfCTBsNWgIgbCBO+9EW32Z1f2AM/qoO1fQsLMMbcKwY+MkEhEoPTDw8kjF0ic90TzmGYLqlMUunibnCaHCYqDV+/qOKO7Fj3caCkNUEnYWxExdZPTUvzZWuak4gj/sGBEq7+pNn0zeFpwhEJQAvvrGocpNuss21DKewqSJvTi7Z9L3M0O39gkA50/9rdnfzdzawu15515h08ReXAazGJ/ZTw+kXb6O3J3ztjRNsgS9wFjErNFm/PuJW2q8na5nrQ++djUUFl13ZDCWPUMgOMvL+f673qI91gdfHYe27ojfMh0zD4LoQo7qU/6SF9M3HR0NSSLObSHlHfLmfaLm2N7WW3rIeqpZYG9HAIdphh2i8KFC1va3gzVD1nteFsDBbkTMAMG6BWxb3xpyv2Fb91J4LUR1zyi0gPV4JcJpJUjrAQCllNLRw1UpdxxgPbbTfoJ3yTaZxNSPBdd3Udq8LfQ+Vn9fasm+vhhzTkzQ1LFwyMxvT5VPXcrery0PedhuuK9++LGO5Wv29nJpoigVIeypjZkgjpWibr5lR9ipkLrhlSs1npW37Y3J05nFHBUkXEdiJwO3M6WUvv6wzfkLP8Mwto+73wq/mimJli76Le63BkK646679PyFsrxdssYzngntk5IwBwQFQm7nYs5NGG5ted3AgWDZ0qd8U8zlzAbVHBAECLmdf4BHDaIpgLUHBg6PVOSGPJ36SICC+SjHRHVqKQdQudAgRu391fv6Gol7sc7Tqd12zmbW4om11dipWa2/K1oCzZy7fpjrqG7j+ROU0vaSMOt6+Kh82n2pr75xaP23v85n6K74lxY2F0T05usP2wKNRy66q8qZPKP28BGD2ZKI43Sgu7H+vXsq3eHwnAFtaDMVRDz3CykBJb1NL19wu92h85GlzdpNdVN/t2MaDFz/EoAgZ0eXv2iPdeOr42D3dtfzj48YYlxQfeofZS+mb/z9qCMpQBgSARZub+u943D6yfAy1mzDFqfBJvtd2nc+SQgiYjxIOnWCga0kIwiN9s8iZZ89hmQG0UvOTdBDFjuSDAR7mqOUbzsILN65BCoI/VHP9frUiACo++h5AFiyFOzopNl8cjyVFVtqwsFJdSJJ9eRuIieVOkXOaSGOduEdMFtB4nhS0AXLugGgt1HlJCNN0H04SmlzKaX0+tieilFLBbAt9CNXyQuCoaSa7KLR/wWI/wJAysWd8bueqwAAAABJRU5ErkJggg=="
}
] |
<image>As shown in the figure, in triangle ABC, point D and point E are on AB and BC respectively, and DE parallel AC, BE = 2.0, CE = 1.0, the area of triangle BDE is 4.0, then the area of triangle ABC is ( )
|
9.0
|
338
|
[
"5",
"6",
"8",
"9"
] |
D
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAALUAAABiCAAAAAAzA83iAAAF9UlEQVR4nO2bX2hbVRzHv7nrbJY9bNAN+6D2bgNbBSEdgtXh1sKGUYakUHAvs62If4aw7HEopivKph2mDyI+bLZT5vrUVlE7p6yIVIeQpX0YCuKSbnats1tE6JKtuffnQ5I2t8nN+ZNzm1vwW0iac3+/k+/53F/uufdwr4ewBqVV24CU/ne9enKP67un+GNrnLMhqBMb+WNdw3ro2g7+YLe4nt70kEC0S1zfHdwXb+APd4nr/jeEwj2umBt/eQJonKjjjncF6+lLRIkdG/gT3HDkG//6JPDXPZEUqr6wNUo9QOM8d4Y76lpUrqhrYbnD9fm2QaF4d1TI/Tdr0yLxbmA92rwFjUIZ1Xc92nxm4Erq3zmhJAePaDwa8QdjRESRkEhWdV3nPROl9FmBvGq6XvZMgrCr59riWRB2tVyPWT2TGOzquB5vDcRWtqVaippsVQ3X462t4yWaR4LcPay+axvPROSP8fax2q7tPYvAVu568SAAvHSl5MZynkkAtnrW6eeidCNU6hSf4VkAtgOuX1ggSu/qW9nO9Ez8sNVfN05t8gG1+363tk4eTYdbmbnHj45xfYf6c76xAADg6p2Ctsn27sPjrezcgHeU70tEC4Cl9N55Ilo8+MpyUyzoH+HMjvm5wpSznnu4DsDMRCDfMNne3RkLcmb79VGuOFGWLJ3tI6LFg3sXcvD4OWfjuWCrdp1+OkqLFwM506KeiSjIk6DaNQDgqSEikvLMCdu5Gf1XGc/EB9uZlYX067d8U8eDUrmJZ2NeZpAMDqb6gA7p5FCEGeKE63jXg3XrvpdOn9VTrBD1c2Oiu23PtfmTX0l3UB/8mBkjjaS04l36AJHoSoFVbNhqWSe62/bEuwDAe/g96V44YEsTKVaeMxE5DFsd67kjec4AKoR9oJ8RIQ1kBZ6QHrG2pJri0r2xdpQa17MhPVK0UwVWCorEWNJR4bqkZxJZKSgSA3blru08OwkbRGQYhnTv9p7JQdggIpI2Xdazg7ArcZ0s75mcg513bRhGtlKy1WJY3pb+y72SYZCRDLM8Vwb73AH7bflZRsv9mZpmAqZW+AbA1DTkP5swNdzubUEsxDoRDmJUeqo58Ntk+VnGyPHO0jSsDUSWV4PIoGSvHr7FA4xzpaCkyuyopRk9BxWaxpzk/+lpRqxnMw8w3pWCUgomJm23ERlZkkYB4VKs85+T4cZw0uD9CTsDO1uuAKCZGgDNNDVAMwvfzILm273N6356ezNMwKwi7OUBcMBLhvVwUgyYI7CXi9hk1nO6n7uel1UR7LlLNlty7tmzeiqih5ISwOJNzItXW9ntqKXjNePQke5/ZPrnyGYJYHqAffFqJ9sdxTXmVEQPSV9QcawU2MoGNs8VWJZzvSwwnpUCO9nBZg63Is5E5ARsFusKOQNwBHb5oVbMmYgcgF2W9eC2ijkDAOo7T0jn+ltK7Sj7UQ7oXXFpRFapXtKxZT247YfxAV0akVXK189KD1AhZyJSDrska6WcAaiHXTw21ZyJSDXsFazPt72snDMAwBt8Uvo4Uu9/bHBFk3UQekXWnJO3LOtX8Zr0jiyvAW9AOvc4uqw23XFPMJ/+jHyw9a2WmXY33F3Lrek96YWbW/Y3ALm6zt6sdGhBVTk4ocT2PiJKB+cpX9c1n/YM0/Wpj6pIkqnB7YcArHt0A5YqJBNvwAMr7/pxle5+94wPQM27Piw9LzPzd1Pm1LmJatpiaG624Jm8HOuJbzauv3WZ/5EmCR3zeDwej2dENn99wdNtWdeZC1FKfOJsWYd7hokWOwWerLOofstFAPjxDpB3baSb0PDit3fKZFWszPXdOH1vv6zr2n3vf4nM6Y0+IO966nGfKnO2mqmtm77s65CuwjffOeJpbd6Z/UBEtNgZpRvHMOzo8fYsgKIbKiVVAwCNV88Au754XglTG2UuRHd+LvAwYFnVAMAfijorJ2OmAfftVtTZqp2HTG2vQ0fd0GUlna2W68yHASAzdLpJSW+r9Sxp49XPAKBPzbFqLZ1fL2sNnV8XaG26/g9hyI1S4eweFwAAAABJRU5ErkJggg=="
}
] |
<image>As shown in the figure, in triangle ABC, DE parallel BC, if AB = 7.0, AC = 5.0, AD = 3.0, then DE = ()
|
\frac{20}{7}cm
|
339
|
[
"\\frac{15}{4}cm",
"\\frac{20}{3}cm",
"\\frac{15}{7}cm",
"\\frac{20}{7}cm"
] |
D
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAM0AAABjCAAAAAAdwdsrAAAHz0lEQVR4nO2cb2gbdRjHn5iurd2LBrrpDYZNW9mivjCCQrCyVXAYVDSC0LxaMydrNwdrEWS+0LYvpLoOWmWsBjbTIDPXN20maOuEpTJLN6Fr98YOZEvq7BKn0oBsua4XHl/cJb0kl8vv+fXSldEPXdde7ul9n3t+9/v97nt/LAgPEY88aAGmspnNxmWDZtNrsVgsFssYMYwjm+Uz9Bgq3T2jiCtt9cQwjmw+S9JjqMi39sDZ+2+UPxvxjyZyDJnFqrqFqzXv1BHDyNks1D5BDeFg6rTF3kAPo2azPLwvSq0/HfnCDJ7jaALUbAaP0rdBJ71YD5V7OAKRxBUA2P0PLYaDK4cQEUMz1DhabRYuI8aaHuXYaSTkU24AWTzroAZWUFaOfH8S4K/71G2Q2X3zGwCA/hpyJKWQsH0Ge9alqXFi2TwjmHh52GQZHFvQW4WrNvYFjiDzqU7lL+GqjQM6ynwA9BlvYSnQYm8EHwCAvN9isVgO/qYo49hU1JHiFMnMks3gwzGv4ItkRUivzeDtTqVn4snGPc4RRCNqL/bJfKfgCaU0IqTWu4hScz8iImm8URBtbp7mSSJp012cEP3QPivkiLhWWwNQte93AOLoqWyoN8IpkbIRW+EySRyZ84458kWMK2ndvFfD0wv0tgt8CikUZjN5YMfPx+IDjnwRy7/sAQD5RmMNcNRmbnKWXyQzedlcD4r2tqFqPRGJXXUAsDh1EoAjmwMBXoUUtNkkwn6pLWIvImKqAQDkjxtfBaBnM9ji5NNHI1mb+UkcuewJ5G1TI2L5q0GQL52QzyszVFrPGbeXfahBRMTOAUREnO6weccMRQAAwIui+huxNocHqkuvZALJZwFiw0Ghrc9mLCJ3YkbLZkLycEijE7tYKQUTeQcLiwhK/VOOKGfLIfISgHeaQwRpvOlt091ZJjN3eMd/sCPg4hFB2GOzrvJ3AdE+h3MojjujXCIo2biKFd8sUgG3/fg8ImJ1UcmGIgjZBHzs6/Iw7rP5MhNjVVaP0n4OsYpgzybujFP1EZjvFNyBbEHigvpDzyginutnFcHeQ390rGyzzUTYLykTfRVJHVDkW0dh5s6TqwZeKRGsOy/SQtzbrKRCHqFjNnfZtEv5P3YEVw5q/K5SIlizSTnnWeWRiPgEnblLRvU5AHjlLrsI1vFm0E22UUsT62no3Tsf8hR8kFDak3xhBmO7Vh3PkiIYj5tY0PSzmqRYdO6SOW7Si/UgPEcQwZiN6bNN8fyEd6DYcJ+pzbXGOqh6jyCCLRuTjY05v+h+K2SwglQFACCfepsqguVQXXKYONRE+xzOoSXjdTqGEBEbYbvmCg6LCKbamGdsJMPBWMZ3MUA5bm6QRbBkY5qxMRGcdHe3MKyYKBTOJoKhbThnGVYqyXyn4A4xTsJbInwiGGpjhrGxalKyrV6wJqOIkvmu3dhIBdxCJ2kqYY/yiSidjWeMoqOQiE/wUW34AlWMIkq2tLUZG9eDor1twLaGv0ATUSLbtRgbS0NORx9PeP71DmYRFQCQBrAWS5bf2BDPT3jzTUpO2EUgIspFk+U1NqY7bN4QVyRiwWkMu4gS2XAZG9Fuu6vU3MWQvGzYRWR6gTSANQ1ghTRYIdv4gs+8oPk8+92aBmu6SONMhoOxYhN9VmI54cOOonPtAhCV2qj/sl8oIy4642rdtItlWUZZ1i/omFfwRbjqoSXHmKG4K9oeOq1WJcsnWk8hWwtr2qrfbcz5w67WgAknQjHtHXAUdyWbTabpaGROLhDuR02I/ur2bvNtnckY4fJXhVoSDZnfpa5v9Rbrob3AagILe1f/cpfRWV0+FZDRqRTHmgar2iH0u5/KHPXaxZCGtFX9UpgYCXuOlemqO9FdWT2E8g5rxjs25o9rTUpzWD0hIN42stoL5LckFmMjEfZLbewTfTpEd0Uz3uRS2lOQwjoXWE0hO96Q3ZUiNSvpKUzrmpTmIMQZReRT7P60rvpOo503HBTaPTbafmMnI8pYhA5Fzm+MPAUjk9IUMlcIONwV/ZIV9xTGvLaOMl9jy5ze0N0V/doU8xTm/GFXK2U440KtDY+7opeivqegXmAtP8oJAY+7olsbnV5eEplMSlNQasNj5OtlU+gpTIyEPUwmpSkkBF0RDOhkI3WN5/x+3S86W4dMmOizIlUXimBDJ5scT4FoUppC4nFed6Uwm7nJ7C2TUnjk8nodLBqWa7UiSBT0C1lPQf8C6zrgC/DeNlJQG9VTMMmk5EKqphgbWvKzSXwxDpAUg8myzl2MSVR+ztMFABS0NF8AQ+Wfuxjjej3AGZmbzbizfk0mpSmMVzbxhuaeETTE1t5OTKBymTMw916O9rI/isJAH7zLuxs2n/TauGxmU37+/MDy2Je/Ut+VkMlGefjr/Xtmq+JkYa9098428tsFIDt69ozireZ+w75m3Yg19iOi5KE/JKu2NDlaDzuVp6UePMONRwDA+jT9eWx1nrb4t0M+E5oyVxUnyz95agCg4lN6qFqbqR+2bvn3KvXFEeUhEed+VYbaC1yYwdjXp00TtDa2cL9cQskmLTmgfv+PG6NPE7ZdBAC4xKFGyeba8/RH+ctG1b4T34F8diuPJETElbYZvN0Lo2Z3tZys+BuhmfwWC0T1jKDpJgA0f/imyTt5/dmcQ29cHq5s/gcDxSSBlulHmgAAAABJRU5ErkJggg=="
}
] |
<image>As shown in the figure, in parallelogram ABCD, point E is on the edge AD, CE intersects BD at point F, if EF = frac {1.0}{3.0}FC, then frac {AE}{ED} = ()
|
2.0
|
340
|
[
"\\frac{3}{2}",
"2",
"\\frac{5}{3}",
"3"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAJcAAABZCAAAAAAWFulhAAALY0lEQVR4nL1bf1QVdRb/fKEncRb1pGKlkitQsGHyUFwlCjQzKNdfhbntptDRbFcTMM4q0Etx1bSkwFJysx9q1qJCoSsrHNPtZJ40swed9GiG74E/WhQrg6LH9N7dP+bHm5k3773vCOw9HJi5c+/9fubeO3fu9ztfGIGHpu8FEHkugku4W0QMABDCJ71nmp1obnQH+G7jOiERASIsXlxClxUoTSmQ1XqFGFOsEyeuQ7cBwO1f9w4gX2KcuA5MBoDoXkSiJEgFYxOFfD5cQl0mAJy7o5dAQckrJ2skervPrSAecjxFROTAbi7pblBX3AIiooLdfP769wgAyJuQ1WvukmjLdy8BQHQsh7881BVnJ3JgQq+5yaO4a510zhPHOvFelCB6Agl3i7yZcgOHczNIrsJNMcTQCzWMwIBWYRiDXPB5cEGBkj9ghKjGer7uNx//CkPimsAA5+dZXHkvg3Ad234+RMPpOfpoaw5gyS2sAurnZYGvTki0bnyfiE96Ia2IrtyDSCISc/kpIq68JynV/xt5PDwvwu5l9BgdiXwUu7xGPcTzfiRI+WXLTh44fG56A5RupCeIgFVTF3tiZnkfKMaV97J0w74zSHSkIf1YPFjPAWNtj119gdbs13I539sAkF/SD+MdSJuVdrona8WRuwYu6/tBwkQtl7NOAKhumw8kVQGT3WmfxvQYrLUvLboTlw+e0LGD4iKp1rkKN4cCiU0AMt3pR4arrnaDrv3x/AsRQGVKgu5C0Dgy6VdZ/CQAw268DGBK6j3NqqvXT8fiI57rC7Sc+EAypNRF3ji2vnQMAJDoGAywh5F+7ObuQQKAsjULE0DAWzNukjjKffLisuVEA8SQfGYcQHjEde/h7gK79rhj9QACcLLlS5GjygrO57Fxn40IDBh7XrTwp7i0a91CRZ+P7GO7iQDgjYUWkafKCk5ceSX9xclKklNUp8djUrsFbGPmnEdFHEd+etH3Mh+u6rb50lG063upl8i++V4vMDPvcQJwbeZrqxPBADDascrg6eHC9UvhhlD5eFSzjGFB5IM/yVwzzyUDGhJp+U0iQtp/Yy58b4wL14b4ScpxskM5XBByf4cJV3kFX7v/0ceYhLHz/Q0SWNO4WkvLZKuE3zd7Z8VPh/zBxe8qWbBjVvnKMTJWqh0yy0iYB5ctJ1a2ymBtJrHBIIA9/ctUFy8smU4m/bxykHLWvudtQykOXA37bKqz+GsdgNSRIyT36lQ3NyKxKKRPnSvfI4Cqu+6GUS5w4Mpf2V9lNzTeqTIUWnA1y82ZYsSAjjnrl49TcgK48lGVAtEkrqq2edKRqJ10Tm0otOBsljtwismoGXAyuW3FYECcUxGArRNGGCsFxeUq8tYIAEDKBc1p6NKzTwS24EW9bUJmTgiTwTKC46sqP0pBcZWragQAILFZMxiFLT2erb7uN6iueSuWpzCVbxnemt3Xj3CwiWDrXboekLr6bQnTGuhcPXGLobKmOzs9MyonVMtufPVqHz/jBvOXLVvXmrKw25vVsSEg3HYoVys0nTHG2EQ1rJ33TJ4nJYTC3rrYH6xguMQaofEpjXbqgxVeXPOMzCEAqJlmJ9of5+W4niwqTtUb/7jreb8DB8GVX9If+sd4nFMrQ0DEc1Ul0hkDgF9/tQobJv1OBMmApjHnSobqq4H73ZX+kygwruq2+aTXZdYWXxN9n3tjhUrwUBq2DLXkyUiqx6c/FcYUlNKf+t8s8l9gAvar4lxDT4ktbg2XALB+xasj/qawmgoLYVesLKktGkpy6MU/jNC5szLA0AH95VMjAAARUS0G3EG2l8uUcevtlBUrXWgef2rVUL00AXtGzAgwdCB/tZYeNeQnOY2K9KCileF/EePU/KMVKdK3kZr5D/vcHCPgx9rPAk3yAvnLlmM8fU12GrJvtj27VTyqzQSewdMAuXMXLfP1OQF4d7Q10OsrgL/s+04bcIkhebvxfHaILZ9lA8CBFQCm3w1cnBG2NsxAErj06TcBJ8UB/LWkpL8BlwGJDj8WhzybXw3Us5okxtjeDNQmWXMlWKSxAGx/ICpgR+nfX965hp4GDrzkk8giRRXPwyMZEgb30ncLlERUYSAQazrzcQBQEi4BsPhcMK4R4hijnMN8KyIxELttaXZEhvgGvJDF1oRLCjpphq1/7ouAqxshACwGsFAeP8lva5DiMLgiNlWxy2bXi1Uz6c78cBmyXvbEt5sllUC4jKi1tNyvHiWdN+QzAHRHQdZBAornFGT4HZTeecZfLBRbBECwQAAsAmCBAAsAYVH/9cRUERaPpN+tUe+FePw+MY0VtbEz3AvD/V0HPt51JQgsJe8tggUWwQLp5+S/TotHECxQkIvnXWzwoMuDfYDJScSsC6dg+kMBHOHevjEYLE0cBQsAQQDkPkJDSg72QZ/EFl9vKY0OXQlBipanIg/D/gHZvnx/uCyC+PcGiwWo8VsjRPJT8QEA7tc//3JVmTh7M0hQRp27NweFhRBA0OpBgGvlBt+8VIuNNU58AGhfHXl02OLUTUrfoCeqin2QC5eUQhbBAsAiCBYqH5EmCBbAIgiClO2qcwGC1ekBPLr7AQA4iudUhgFbQmpEEL4e++HDSo4Jp3JDxAQ5g1pHHg223tx3vbLyqBnj8M4dYnloS3psjF5JpI04HBSV6j3EupQ5gL8+QiJiwCinjEuZtRKAnV98IjX1g+omRN6mdxcj4OKJbzhgKXkvCIoJ7XqELzEYJT4BnS+2N8bJ5wlb13fo854A7MgYYgaXxSJHkQxqhA+Na/aFdak4/YBKc8qSMrf6iRT7+1Nn3uOBZfAeer9tPoKutiU2k6YKMMYa16x9WSNTNPJNtR0CYwzbsgO8B1Tk8yC7Rm42auq95hkAuPu9ottDtO/gnrF6U6kJ+rJ/4h/fBXsziuTjr/I4/30EIDspNF4VSALcFV/Z9bAQVnOoUcuht5eFyirmcLWWbuBaxR3d5LXO8H3J8KMGnxmG1VRc0jA+Ci2SVUzisuXEcC2zjbsoKxPwdeFftxu28WPeLO1UnbrfKeVdjVVwiWAa9tm43EWJTkiLmQyHy3YuMRABgEeyXyHv0tLeWx7nhKX3Vx5HjQBAbNS3Lmlw2n7wuFELKKJ5fugOZSWhc6/xclRAXAwAqq8G7iMAeZEhLFZK/I5VXUdjAkT+n84P5cOdsfeZx0UAXIUGfYSO5KCMdgIALi6fcqC/UeRlqBG1NafEk7b/7OKGpfVXeTz/DY13AsCxv79s8NFJtgcAGF7z2mUGAJXj468DF4DW0nL+7zzWFgBVlR/OBhC4HqW+WOYC0PLZbn5YGlxKH8FTKBJbPK5XLnyZrNpf4Y9ypm4kYNvMSBO4VPtN7LdcM7NHJDpvxNxf+Lad/DppWuVy/GzGugpX+mYzipQV+iq3bPuwxVG5pqx739vVs4tCuTdQEaMvBv6WPyrfbw7/wUwURRzEAGxzBJPVKgVlaa42pT1pHtf/g0zuADGxP8ffgHxiJneAhMgrtQ3XgUW98B1YfCZjjPn7RmWsQ0Qk7gTlpzp5z2gd1gURlSrJtN1UBzv/fjYJ19LJ7WRmE1xdZDsRUVfcLg5hD1FXQjs5YOe2L+2Xq7C2coZEIoeVACDrVsOP5jpiwKHUCOQtsPKH8QYAcLY/NMDcvyKcDG+yAhVRUZzyTa+/DrsJWOLzWLrMc4epeiHE3n4W5PzxRt79afV22pTUADO7LYg2AVjgIfJwJ1idfdM66srsSmjnk3feRyTEBXtEdPnlbCeqi2YA406wk1YAtt2HUjmjX/sAcOGMmc1/IeR8YhnQZEIFEEIRc65ibIT4XwwcVJ9BQmZkppkxCgA7TRMDyUv77eTAOuINo7gfXax4JuuXKZoG2B0LaBMQyZlf5ul/kOkSIM1F658AAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, given that the point M is the midpoint of edge AB of the parallelogram ABCD, the line segment CM intersects BD at the point E, Striangle BEM = 2.0, then the area of the shaded part in the figure is ()
|
8.0
|
341
|
[
"5",
"4",
"8",
"6"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAIoAAABtCAAAAABbraaCAAAJE0lEQVR4nM1bb2wcRxV/awxxIOmlSE4VESV2WoGDUbuOVLKoavaChHCFlFwAESoV5UwRjvgSFwOyP5AICeQIiPMBtfYH4KIqwREVjoJSpwqSz050OB9KLiARF5ycFRBcGuQtaiKvdZvOjw/7b3Z3dvd272zzk+zbnZ2d+e2b9+bNe7NLCMfyzyMuBlE7QET05RuJbuLQQuH44fsRF4P48PnnSrj72FfvJ7rLRSgV0K8WP5mwsc1P047XtrzabCrS7S27Erb19uObiDbuX2g2Ff3VA7c7k7V18UtERNLiwyZT+clw0qZWSl8gIuPvnZvSUaEQdb4qEe26B5bAAhZeAgNbaD/bXAu6PcuwsO1jJCV4qOldJNGjwScPphSKWCqXXgZwVXkAoG7BLO8poXbpOfOmNBBTofYSBol2vZukJSKi7l/Wz90PCdFCu/A4ERHFVdv9RNpRcdEqKIMEW0e+/XrPhjpaubXlb0m0SoyYxz2077ev9US3AIkuvL5FzdtnkMzC5Igev4xWVSbjRr/apeldFW9ZCoUJpcIAsLIM6LnRmKbVInBdSd63D+E+iIikYpao7cI/jiJqgjmhZon2Zk+aQib+p4kDlPsdAGCsVwtes+VUVAEAulJOb8cAIgYIYAwZi8KUWuF757HUVTWL52V91agAZdk56pkLqZObtCmODjRCJIbKyJBz+J46IazC968WV4+K3TYDoB8e8V9mQFnR7QpAtUugUs2homd0vt+h/LJfXXR5nj8t5FeLimUbDplCwJDyBe/5YfEoNk7l+HEvFUwr3jm10OeroHVVV4eKo4bOqMzLvCFVZM1vvj5BNouKR1UsaOp5p3ddFRj4K6Op55YIKsIn5Azp2Kj/IgsochJERIdF1XUnjk9pO//fvhUiIpq5+Yrgpraxoytp/E+0D+JnLF7qBVUDUJUFGsoQUPb6EU5FoCoWoTl5HsgWw25U5tL5onAqU72e04ufovYfWMd3lOLIkLmi8d7DAKCyO6jujVEZ4LWydqD7Bip7bNlrSpfu9u1Hykk3XG1n9nMnw/ev91Bn/xU7HF7+zI+IyFxgeZdJIMrfu9w0tWUAtIxzwnC1vQQA49utwOjwBEYOhw+DUKVjETpAkzn3uHbgRQDAoPI+AGsEJlRurvUN1GSOCUrTUuFVxQrJawdMXXlH1gHLkAI9mid+P9kAFQa57HaxsL0EANeoBHATakUphj243rUYIJmOCnNVBbClYhtQ/5hdrn1xDEEwwPUaCciEDRCvKgyDyp9wqf2lwBW9P3Q9OxRY9KWl4plVUPsmUfdvAJgrAzhPy0ZzOhM+efJgRECFAYBcFlZngWl9Uqma9/i7vSUnnHRDpFLZGVI/6OzKe8viqkmDkRAqhSPictEappK9LK6cMBgJoRIyL1TlqkABtF6xIVlq1SCVnRVhcW5SXF1sSCyZXxS7w0XqEBWf7jgkdmTjOw6tBNMHUl4/36g75Nw872Wuq+E2YRqSH4mCkSAVBiBfsNwZ44p1+VZEQ2WB+bNEwYhYKkJViXFxVWVSMKP1izQ6ARXhrBKrg3rulHXEUdKfiRJlPBVRr5Wu+MlzoJ87sdfkEQrmhdCCZrKBopW+QlusCZyWX3jPtR8CEUFRRxqxoG3BLQ+vexTAvGFKXQxc2RuWsPJBRMXNeznd8CuDSDJl5aa/vJ6hDaMS9GN1rZut1JMSmJHH+gN166VyMNBYdrquxgDYKWfwdtQ7lZZKxu/FEobBA/3eEWGmUOPWUQTAMAy+KKAqc59LxMSbcmYAMJkThbUCKvAwweiA9yatR+ymI1D0ZcpwpBB/k4CKfyWQE03oMeAzZQyAJsc/jk3FMAxzoAwjozljZhiGpf9mgfUfhuGjH4DmSzkXs3VTsf8MVn4WzD4B8FdZd05sHvVwcTJllo+PD0b4if9RKxF9UHye33FZyU+0mUsiZ2uvlVrFG338HO5myiTz34mLNylmc8aWCgzrodUiYIBZUjBXBswUgSssw69gIhR6NbhB0nxcMEI2B5uKnnnAUZnMOSSMxFQw4zEkbvMilIrVqPkz/XkAzFLbhWf/Y11w1djRlTq4cIbEAHUmjooNs2l+ZhUmiRNhSS3YRBAXjLhqa5iaOLufHPUaySrR2hmpuEREH39rdthUWxB1HhNler1qC0v0zEyR+nYFGwSfKYvcGfG6Q26JzlJm1IKYUJfsw8hgxO+ZOVVpcP/NxZyb9/clgyOpuP03uitpgwF3FKfViGCEo8LAZ9P/qOoN7htz0HoL1pH+TOjOiE8q06p9cx2uNAH0/DAAgGFOXTYPAnCNGUREv7ffDvrusYSvf0WjrfDY11eISCJl30nTukON2YId+P66ob1RISZUy3qUkHnTS8VOkdquq1m6AgCYU8qexqOpWOGObt3ULC5WK4vZNwGEBiPeQPXqPiIQDX9Nhqk9jb82xClGx4VfjBMRHb0r3hnxEJPLDM76vMnjAwY7Uyaexz1UtAxDw68WRONUTmcQx70eKmaN8F3BZsDMlOXPxFAZOAWGE2l3ROtEWSkDmrwYGH4PFbncrJVBFCrqFDAT7IanomWaPuF7YItB6x0T7YzwVAr58CRxc9E/AF254Svk55VZNTxJ3DyAiMZ3vKCPf8f/xgBHa2clNlZpGt5UK/5ghKNS2dnAaxaJUVbKvmUi9zrnmVlS86new0yFe4f6xooZrjuOSt+HPiikeyU0HVZe3LihwBe4Atr+6SWsLQaesoMRBsDNCLxzf+gvayYREwf1b+0xv6CQiE9O/HvbG2+s4fAQJCI88Qf3Y464l65XG9zDR30JsxaQFl+Wtv742jkiaiHjoCRJ0jdSfqjRKG7vrT24v/UrnUREAAbPYnHPKi8NQrDQfhzAcvZdAC1Exp1OdKT+lKYxjD/5fSJq3f1RUyoLzz+onUz0IUPTsMwPRgvR9LXNH1n689b1EMq//sl9mNVCxuUSFs78bD2YEG3oINgZ1BZ6tPI0PXXkykNK+cp7I/jE1iskkfTWQ5PK25/dZJNYw7nWxMb9Y+fIOL3Z/M6qlivh7vfoLOAuPtfqF6j9tJ26S+YxtRMRdZ9bDx4+rLcP4rDePojD/xGV/wHQ8rAyoC0MTAAAAABJRU5ErkJggg=="
}
] |
<image>As shown in the figure, in the quadrilateral ABCD, AD ‖ BC, diagonal AC and BD intersect at O, if \\ frac {s {\triangle ADO} {s {\triangle DOC}} = \frac {1}{3}
|
\frac{1}{3}
|
342
|
[
"\\frac{1}{2}",
"\\frac{1}{3}",
"\\frac{1}{9}",
"\\frac{\\sqrt{3}}{3}"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAANQAAABqCAAAAADhdSDBAAAIOUlEQVR4nO2cXWgUVxTHT0z8aMQmkFS2tDRrLHXpQ7sVoWvFdBWDWykYS8EVqgkq7TbYNqEv8aEkLZSV+hDbgkGs7GqRzUMxtQ9d+4FB2jRWiIsvriC6SdVuKob1RTeaCacPs7M7Mztz5965Z00N/aHszszdc+Z/Z+aeOWdupgph/rFgrnegEvwv6nGBRtSDb0jMUFFDYuXAUhIzVJAcqcG/VlKYIYNC1ETdcwRWCCEQ9SDemmmSN0MIgahD++Rt0CIv6kJP48Lzc36klF1VVVVVey4DAIGoifOI4yufkN4rSWqObhnDv598awpAXtTw1x8C/POQYLdkWeaDpw80xgDkRW08cRE+ffXX1VMEuyXFpbpagMWtVwHkReHt1dCLeKWBYL+kSIYAAOD6fZg/934Pfm8BAOVacy3MH1GTLzQAwK2REAChqDMb4lSm3DgeWQEAyifNmwEAAImYw0i1BHF6/RjOnA1tuoeIiGSiXoYWKlMCJMOe5RBBtSbx2mBhbRVRjeLQxPbuURpT3IwfifvbJyf6y7cQ9VgI0ZemscVJIuSNZjEZsthEIyrjzyFGe0hscZGO1IeTmuMySETlAmlEzHoobPG4iwV8A7mS4zJIRLUNISJiKElhzInRDk/HqNGxGQpRPVH1MxEmMMYmO+ALxPJmx2YIRA21Fb7kPTl5ayySYU9Ed74VHZuRF5UKFHsuMiBtzZ5M1BtK2Dg2IS0q588Uv48GZK3Zkgh5ezKGNXrHJmRF5UPDuqUKhap0lydsHoSMjo3I3tDu3xzULbUflzRnwXR87bamVCLEdGxCrg8HIoZF+lA1GikN4AzHRuREjQZN1yptqMoN+AJqlHV0bEBKVCaQNa2hDFXJDsMAznZsQEZUPlh2YpCFqmzUG4rZHQ0LxwZkRIUT5etoQlWizWMawB0d65EQ1d9lsTLld2+wQKbHEx4SdqzHvajhoOVqf8q1RUTEfCzojTIvGDvHOlyLss5kOLqRRTri6Rh26ViHW1F5v83AlPWyBlsWuQG/z3oA53Ksw60om0yGuYXJaIcnkpJyXMKlqN5e2022CQGDbNQbsB3AeR2XcCeKteN5L/s6LycZZg7gvI5LuBKV9rN6tatfxFamxxNyCDu8jou4EcXIZBD1oapPvWd+176tWuciclzEjajgMHt7KVT1nULEkwdt2ml1LjLHGi4mh3RvZWQyAADtx/3qF+XGPhi7/bzls9O73x+5+1G0ntRxEZGeQkTEWIdTi2KoGu/EmT13rJro61x0jjWERbEzGRUtlpwEgMKDCD3GOhel4wKiorJ+juu6MPDOtI/heKd5o6nOReq4gKAop0ym0EoNVdOb7uD0UcOWsjoXreMCgqI6YlzN1FD1p3ksL69zUTtWERPFewue8iPizM5T+nVWdS5yxypCopwzGQ1/CrEZnhrTlvOxgK9f9PbJjWNEFBPFkcloGCtYdnWuCjhGRCFR+UCKu23OUxx/7etclXCMiKooRVF4mgolSlpthFHn4kY4QwNERC5NYk8/kyF0qHNxI/7YlVuUaO637IMT7DoXLy6STk2UoijqaaieiorhAxEvr58qLiuoKE4dEQdYMyS8NxakAznh3xSPVOF/8Z/uAxGn/JnisqqfpSofCz4DQFJW502hDOgf5cxWA8DsrNW9fHvUW619r4ZqgGqrVipX3l9xrvdm9pV6zjyByY6o18WvEAtHQ9EdGPOR6jpkWq3YXYilOhfzYQsvYqUBDdDUlESVn36JsHm1jSh9nUsXqlzj8iEKaEND8SCVDxR/BPP61do1ZVZlrnM5lfGdEUihDOjuKOyu/Gwgw2GovM5lOW1IBD7HFpRE2WniyWSs61we93ewvI6t0UY/60EPAKB7e8BhrBl8Y0NdKhkuW98RdzFwiTi2xUm1UybDqHOlfW66mdcxAydRwyHWtVqaz2VJQCLfYDtm4yCKmck41rkkQpVoCmWALYqRyfDUufL1bntbOIUywBZlG2o461xC5RIux1wwRdlkMvx1LsHagpNjXliirKOnUJ3Ly93S2TE/DFFWmYxonYvrwR+PYyHsRZVPunVR58p4xXfJZravAPaizHOn3NW5eB8pMRyLY/sXBPvrenRLdwe/rG8P14vfsMTPxQR/YXTsDhuxhkxGos4lHKoo5qHZiNJNupWscwmGKvvZvgJYiyplMg7zuZwRC1WuUygDlqK0SbeO87l4EAlVrNm+AlhODO7eGgSYjm/YUJdKtMletO1x/rb8j6rZICLizE4AgM7C49mBCN98Lj4EQhVJAQpLp1/fKbyxTp3wMBya5JrPxQt3qJJJoQwUTj8l0wTPtl4FgDNr36nzX4qlI/UkJwIArN4R52l2Zu3e2BIil6q28S33ZgZW3UFEL5FdFyyiOU7FIzXy49KFUxcbAOA9IDqxi0T5LEZhN1n3IGJhxkOz3Ryixw71SM1O+6Bp10/3ybpqblFFXVpTO8f7UeLmx1XLv7owJGNiAQCAcngjZD/r6/wvKJt4ffre7cY35f7AGxGxGQBg3enKnOB9qp9Tzi0RsXBlT7dZzj3jpQYA4Jpc57LphZe2gbKXs+vjzZ0AUP2i1PtVKv/qBuVGCxx7yHk+Pfhlcy0A1HwudSVUXtStxQ0TF2vf5nu1yGSW4l1ZlRc1crjKu4K79UKKV0BUXJTy8xie5O5+T+NZAIDf5CJmxUXN3mqCRS28rRe3fvEDKMeWSgYXmaGTB3UmY2LMqV2BmSPNsI63sR1UL9mwQ9m9bRso3x07/SgDO81LC+1Zdf1bAICDj/RmpdJHak6YL+9NMjAvRf0LJbZOY63k1UwAAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, in parallelogram ABCD, angle C = 120.0, AB = AE = 5.0, AE and BD intersect at point F, AF = 2 EF. Then the length of BC is ()
|
10.0
|
343
|
[
"12",
"10",
"8",
"6"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHUAAABWCAAAAADUV4b4AAAFzklEQVR4nL2aXWwUVRTH/9PsA+CGlUhLG2sqTbEiBmt9WTVmIQHamLC0xlA2GlyEyBMI6YsvFkgfjIkiTzYtJitmY1cf/CB2fSuwTe2LshhjmmZN2QJawLBFq92608zfh5nZzs7O7MxObzkpmZl7z+xvzrnnfp2LRIiW/Me9Tio1wqHygb8ddQRSNa/FLrY+SKoEAMjcCDs3mlAPE8gff/vWZkes6HY9feGvf1skRzUKlUEAzbcVJzWxtv52l0zVPeRoq08o9M0kMOlGU6R/UTteCAPNt50UJfFjk2pMRS+LH5tUMyo3rWjqon/KhZZYKuda1/3ywKn3n9o3+LmbSBEZw9mN/cw3zzoreqAqFncqNHCW5Imzq0BVrHgkyWuBYZJMtykGXcVSVYyHFZIpf0J9aLvqqC8mmiRgbG+yR33o+dIieoRGk6L7L7E2pRs9W0+SLFR4zQtVXYxFjEWJQFaHkp3JEkXEhVAXeoPzXGgPzusFSr8K1WS4p/h9EbLQNS6EWgi/SzJT26cx2d9ghDJfn9MV4/xwPnanLI6rpyrMNI6TLIR1Hx9ryJWqHB1Qr5nWO5nXrbpZ9TEsYbRxuzE6j3z764bSAI1eUG9GpzZtaVbnn9Ig9tBz5JE9fgBLt7YAgNR9ZaYUCil4fxIACiN9HHxCBZbOfB6oM1c7AODHmx0AsGMmQ5ht2Z8ggBtXO7Bts9VU62HdNNu4HUD+xK4XgNmX/OcumxUkbj12BsBo43a8iLEbrwmgyh/s8QNDR/vOANiaf/50aTUlAJyD3hJD7/9g8SNVx7D6mtpZWw5bRzljUVJrzIiFxkpGxFytJZQk84G88SPMfafqaFoOm7ltxz+xU1jTnSgWSBZrN8+WZtf3V6i9FKr0rmdqNnDevlIhm6YrvOx1fh17ZvCIfStIwBufVnrdm6Wp9QkHjcknK1R6oiqJQMpRKTghmOoCqnDgqFjq+UCW1stEo+Tq87Z1HqilCwd76RkWSO1vuOdOMdlp65CqqYc35pyVVNlku/eotr8eufLnBqB8gWvVJ6P2XbY6SztaqlBOt4mxte5WpgrtNlyzqakBsLS05O5nTj43VlUa4+AFuxqSlN15LOpij1gis002Xda9hxcPhE5WYyiA+me/r2yrLMuUZZmUZVJ9XL6QlOdfGdafZcqyO/981aXdmPpt0cPav+Kf4UJSznWNkDKpyNoHusLmm6y7rNHDSz4A5sgiAeJ+91svAwAkwAef27Xlmu7hih4mZaNpJlvv7UqXFssuQ3AiaFkMHbdMLffwdNtPpmK3VLZO0mI0hh4/RTPLoykTmjYW6+3qgFVR771jY6sudr+SDk5bfa+jKGQxXWBLtYWGXKSt7KWYLrCiynYOuxTKkV5M1WQ5XWBBtZNk55xXnirFdIFRHEbExNDXD7vqmfZddt8XNv3VVmIH7FdcbsVq71GROhBdMZOWe49KHj6Vjq3Mu6pY7D0qnDacwhkRUFzfmTWfPljYqn3HIUFQbH78soscjKpwKCQICkTLFzJlLa2QZL4rxhUMDaViTBfYRZMEYDFyMAqnQxm3QmO6wM5WkjnLwdO7lHVZK2oudEkolKw3TSBlHiaud5/bIcS1y1K29yj7rulQmqSwUCJZni7QqMuIyVCl5IlXMaULzLaqCwfhYkoXlNiqMB1yvTutSkzpglIPjwRXB2pIFygatRfQcqDJrpVPpzaS7CRJpgDEU3GQHIxwoT1CxrryelSJDGCS5GLTLFkIN98he2vHfYA8sh9rd/6Bp2+2d0JarZP2he4J+dW7P/uB/vEWHzAztRtDn32Dww2basQT1YmV0uQjiE1c9APw7a0DOQSgz3TAafa0iGshHNELaiB/F2dm4DQAwyQjrcJ1KbtFL6jBzNRutByM3wVX6b9O6PL7bPG2BqPtdZAzdesoFS2ltooRe330sQwA4qN/gEI4TvZanFaKlxT6yP/Ccd2pteWHlashmVoN9T8/qAK6gMtrxgAAAABJRU5ErkJggg=="
}
] |
<image>As shown in the figure, D and E are the points on the edges AB and AC of triangle ABC, DE parallel BC, if AD:DB=1.0:3.0, AE = 2.0, then the length of AC is ()
|
8.0
|
344
|
[
"10",
"8",
"6",
"4"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAJ4AAABvCAAAAAA4ICYbAAAI90lEQVR4nM1bUWxbVxn+TkQUZ0pJjORihKYupW2cDiVOHxrHE0uDBomFlEaj06g0DUfiAXgYdBUi8BAQICUS04wiBHTa6opOyx5GWaUqHkJryCrnJtOEkyERm061Coi6RY0TFZIsae/Pw/G9vte+tu85Pq74lPheX/scf+c75z/nv//5LyMAAIiBGIqwvamN6e96rG8FS1dGU+HIAKNKApDUhGr5+Mce7J1kjO0/b9SmCOtvkgHdPNs6liQRpHqJ6OPR1+myT6xgLTS1vhPJmQpSoat/+clDQm1cCgF4cOdLONoCLr8iNHnOvzB0gZ8TGO+V14I7YrVkugB80Lk/+70TYZVdiyawyOJCJAsUq/3o1mPNjwjVsjQAYG2W9T9zUR01AAAREc0Fpor9vfute9efExsi7etEu2NJOqd46BG33JHU5kDaIBz/9b7DD4SamP6MF7h5twfPP/oHteJxeswzFTs9za989Cmia4eFhvdaN4CrQ2345z+ONIIegJDGBbxy4RTwV7Hh/f5xYC8xjGx031Nq6cHS0VpwcudF+JK7o8Bpt6NDJ6KxS/QnAMDTf1Y79AjW2Xh7MqjJVOL/lzI+JWD2QbY2PvQjj4PGVbF+cIN3BFO21hposr/tXuoYWBKtY3mAH5nKCblQ5Vi+eE4A8N/0/RaxOjZ9RwHTTWEEoPUNrxp6qY2SK8R+ce2ZLpE6Lo58GQAjS9d6QvVT42wccGskui4wfoMpNXbgAEd6RPHAnOsqtlsUcXGAEz2dhARMBa2Tk1o0lXU291z8icHwm4X3NbDUr9SHsqGMnvlD0fm3TUe1KjJCdiSIatLOBeIuOiCkNa5zWdXOy7+Yi/trNbAjq2aOc4QjaV03BJnrjtdo4I0DSvWyo2zsAQCYeV8ZSS4UHVVHrPQpl6wIZ3oWeOOx09PVDHi1RykhO2rS445qhgEVOK4GlRIqgashoAWnqJJ5HrihcKyVwoV64AKugMFBwPxGp2rFrKjF35BMC05sO30+f6Jxs54L9YxVJJRqd3RUU8HGLWluTMPszonZMz8sD278pVctITtq0ytKE9D2lQuYCiqN+ZT+uFjV6fHeKdsStuPPCd86CcCd5QIAiICAFgwnrGqlOxvJToQej659c35mfINfIAArQeWUrBBRjx/8icFwAgAfGA1d0sTUKxwpOj8znitcSTXSIRCiZ4DBnxg0IqorvQ20Wyl6ABBdXBjJAch2eBs4KUvTgzf+naELDXb2IE8PFFlciORWGmsZ+IR8UW88MdT0M3VUnCC4athALN958I2AOjLlkO5c8JnmVzwk3SjrrYcesBoMaZsDmYcYJRBCqg+eqdjXphWRKUd99D7sJSCkbXYLR1TdQtC7tvvtwRV+XAs5e/q7owBwTD5eL6oew97P97Ov/vsbALCTLUR/Apqzp9/81miSdr946s7DUo+u+57O6Nd9k0Q8smfo6Szg1sg9ot1R17skdalHwPazT/3uCDv09SNAwdljRQETZSU+8LYBzYez/5EUT4geAy5uxAAg0AmUOnsTs6ajauLyVwCgjo02Eal12jo2aZ7rNDhPdmMpDUlvhW4TEZ2V7lzBsXfd97rlXXtZ+JmHpE3GfF/YXkgIwvOeZX3Idnhhrmf84E8MPpEofufdgwD2zn7upGzfCtL77KNpAMimAGC1z8LXoBS9OmOGpLdfGcbelaE7f2yTpVerc0vDJ+d8rxFd+SkREU1Oln+fiGgucJ6IiK4BALpevSfbtXzs6XqlGE75df1VH3ycHY1dqlBsPTp8S56SFXBm4QqPVY7szXXFyVKzdAhL2DQIhhnk85UjexFtIZJG2cAUR6Fxuq7zTuYdrdsO5lnhlXSddJofrNrwueBU1c9dwezcwr/5R7+VbnERzEk7BlyVoVfQR7dfILK+6sUmROMVay1ovtRTr4Dm2DPuiRirOlAsH1aJ/hS+1b9czN4hudsRvnqScdCtstnU00sHQIujB1oCLfh9N1+rph7fZOdpFHzLnZH1QPbLBAIIH/a5STkIaRK5E0U0GXE7A/wdsx6Y/TJjDIxh7QBzc//omZg98wPBfDsbvQJEc1Bc7zJX8vRdodDJlRe2Shh2n21Aa6EJkdyJIszU1uoG64AlgVyQgNYeLvf0XUA6xpILutjJJ2a84HbU/7JXOIlJ8jacoA24+BozX/DpxGA4Ibz2StJjyAhHpqLzM9E8xMJF0kGMpePCRfyJE+ELYu6LNL1MN8TjZtH5BXfJJyak7J3obrt4GZ3IbfKJAVn1/iYbFI0siggoS0+TyIDjg84bf2HoN26LyNITN9wiIosrNZJPihAfQkRUd86eFpx2dYMkq95at2RBjpC2UUg+qWH9Mm3XeWSvLuha8VapsoyS6qXrTIojYiFt0/CzKi/8UvQYlvuN35Epzx8M8UzFDEe14kIiq55huFI32GbySU1HVdKhUpazlx4/US3NXE69XKtXxTYVAYHF6gJKmd2lsar2Joa1UHS9UmVu1bOLlQlA3T5aQKvsqAokKVmwLO7sVUN0fmY87/hDNekZifqWK0C6W+0eqd/w9EsrlbBcYvmuO4Wz+pkZ1eTGO2L+8ssuxu7LSkjUhq2xfNV0qZ5FJ2KI/T2mlhhH/uyt0ixpl5bLbKeZrr2TjDHGBmT3yhzhLT4PaUBqWl4ONb81liS63Cm/YWFDobVsffG9Ek9fZiJt2aatkXtbL229JFPaCbtjSaIbodtEcwesEVUZ9VaOevD+8baL/tazSrQj4P5OD2LtfY8AkfTmQLo4w0g0dfZZolcAX1LNwqYT0XuTVHxs1OKoyqi33I+9ueTu4CE1CxsDYe0nTYcPGpIZz0NCzjTSAdy829McFnuGtxrBvYT24NwRs7Geqdjp6R2SokfQQvTuUBvOtHxbwbxCAHDz7ufZ49Y9ppC2ObAqRY/lWr333xkGsqd8CuYVBvCHZ58IW1dcz9Ts7wEZ07g0tsCrVfYo8+5YpZokEuQygScVeivEcO1JJN8OO34qQW/5+ToZ2cCIfaFyayUsNx+UJ+OAyg+qoL70woeA+jLQGo7/c3r/A2kbmtk+aOQmAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, given that AB parallel CD parallel EF, AD:AF=3.0:5.0,BE=15.0, then the length of CE is equal to ()
|
9.0
|
345
|
[
"9",
"6",
"\\frac{15}{2}",
"\\frac{9}{2}"
] |
A
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAGQAAABzCAAAAABLWvirAAAH+UlEQVR4nLVabWgc1xU9T3abQEWVllW0gXXlSkqkItouiY3cymAV3Ggh7sapBfpRQ2OsyjYOpEFKY4ighrpUAYuoxJuqlUIoqI0TOaQ/ZLMiitqCQtW4ycogUNNI0RLV1I5CWbwKSDPLO/0xs7uz8/lm5R5W7L737sy55943b97ckSDuHgYP9ACgAEVFf02F0ZWdUBAftQCAACo5KkkMo2oh9KzH8VYSfXVHJLj51doAEgI36z2MFHEtYTmZK4kAriXso+HwcbPlZK4khpFtNBw8U2ol+ejBnVBAX23BjLh/0xmNMgn11WZg5ntGIyzDZ8BcZy1+l59MOaNRJhFznbUYHHkIwGbosG3vW+THTcCbtSvdTi93F39QrDYBF2fywNWJt+zXbBAu7o/jDAA8/t244XLFMC2QZCpDFqLrDAPJ9bqs8TN5w80AtvYP85I8dyEUCWXvkPFjBugKJtETJLkSK4QimY9t+Y7blRhIXA1FEr8sfcdrHDkEgL7fhMn6xL29tjzbLVypC7Gsuo5c9HqAhbuSXU9OqF+QF47sCzJx8kqS2Ua11EtyOXI7yMpFiQDQ+I0/KakQwDPn7g808yCfTlAaogIw3Ras2YukEMsqcWy1pBlo6J54YNfJMaV4jbZ1w3GTUg2X/CSqkvpbkRUFKy8lYs+BKwqzeLCvOcjERwmZ/n6wiwsNeQUhnoknC43LfgdKUvKRSRUOz3ABu8684hcBAYg/4EcqwfIJF29Ft/wnZz66oCSEgjjvxT/V+k3fufnOnSeUdJz3DJcA9r3vy5H74FElDvjNrkW2+Kb+yLBasDxmlySptWY4fNbnyHTLVhIA6vOBy4+HEsmfPZrnp1HXe7ckyULbNJnMkAP1gdeKe04oXo7fBOoPXfZIFzC69zHoWhy42DkQlBJ3EpHNf6e+FjjjuUre/tWLwNzXAKD5X9WR4OJzeAjAoVzGbf0i8PyJNuLtwyDQFMThMbtSAPpJcrTfPcrXozlSa8+TkgMeNmW4kqwNk+lhksxF77iMSx4YJ7n2E5Jcw1QQiVu4sieeA1YBAHWH/1iKUBni9a0+ANeaAeDprp7Q4ZIcADJMAv2k5MIjLp5txeZJaq2LkmvCbfNrg88CaaDdZec21CvJtOFkYKxUSC6dcnRl6z6xXuTB241AklxDzt7VE/LJwkli90v2jVFWdM42+j8oKJDY6eRCvLK70H4lJIfP7ReCACA6av5e0T32wLHyrFbclLv5XxmysSetrY3IUuW4wjZTBPuy+fWVunLr9O5Lat6XVAi/jUQJpy6Vvc5EHZPNH5Kk4HkvD2qkMBy5feVsqffVbz0cvv7inXhh1AsE0HDverF2sKw97DNVPBGUOUly/LjZ2GqcDRcsAyieyPX0RwFgilvRDaPrQk81HEHLytEpppHh2RFWVDfuKonWfodryHCplSTZO0QyCcC9ulElSbqfTPaTPDhL8l2jupG8Qaada3PVJCkAGZKc7CUL8cskuZ2gNqqN3j2S5AdMYZGUW/UbHDtIkjI9zNQbYSgCSNa6SK31BZIcHM5FMyQt6tSxG4AOfMH1GrqaAG5+2AQAJxPrj8cBADOZb/e0hKzskaTmRi8pkxlqreZWd/+XN0rqRsIJoTeJuVMoztV2896VGiZJv+2+E8WVSNd16LoO6Hqx2U1qmvZnY3wan/0b0HV9phs6ntgDvZpwmX+lT+lLkuRmy8y5C9SK+yC8r3nI9w9X8ZyaZiMhSb7wA640FhyOhCWhZjmnneRWbJVMTFdLUgNHdF2iPXi8CXqfWknHPSea6ZMpwpBl/dIWonlNoxZb39Y0o9P4hAqXlcQNZnVjaEg9Qh4k3hzjHcZ3NmRN2kGieavPRd8zfyXe2hmJDwb7ijfo6cT/g0SSXI7cKjZD1aQt8N/gCADPnGuguectFibDvCeiMYX9kW6xZHu9utQHkRTapq3No5erIQnaD7649zFrcE6/Us2rSPFz3+HPXz4RKVpSEPz1j78SnsRPCYm5eKTcICD2/wMI/4bQN5jXbQ8K0ihMhoWTxNghGs/nB8bto7LnNZNuRyRMZszaDCddyhGzB8Oc3otES5AjfIq2kmwK6NKeJs3CZCglzsTPdSH7IV4C8MvDHcW8ZcUN8tUvPgDg5G+B4PcMAYlPARgmJVfKi5bW2k+SA1MkN6LbYVS4K3l7kalmQOCngw3FyTr+3xEAbHoQYOTQa6FUuClZ6yLTGUnOtpQmq9ZqLQH/pSOsEgdJatjIqbW6YSvOtS7JUHm3hMu8ime6BQhLdcOJMy+Ffcqu5EzDfC74NLJULoGY4VozteWiSq9myrCQVITgVMWWOoUpMt1VtDnuWAhUSSo4KqobZi2wXJl1LUwqkVSgc8z3qPb3fIftcF/q3/i8z5o2Z+p930QFJd7Admze37VcuFqRq5JfdHb6e1Z35PWdKlmrC/xvj7/FjYmidlG6KOGzz8aCXOvYvSBA5cXYyTu/R+EOW1mYDICTpBC/rBCFfCRE6p3hmqjthQjcj3zp2KRapFzDZVY3ArVk2tRvwQ4lzxvVjcCMxu97V6Hc665kKbKh6F6pMBkMK4kkefiSl6UdpcJkMKzhEsBf/3NaNQT3HPu9qqk9XMrekUttoZWYSYx4OeNE+33vKFpa/w8yLJ6aUDR0TMMQJbnt2LKacEviDTp1Dt5zXPHepX5BueCfiaySXTXvEEpo2zuvZLcjJdisVUrh/wCtwUDgNX9+fwAAAABJRU5ErkJggg=="
}
] |
<image>As shown in the figure, AD parallel BE parallel CF, straight line l2.0, l3.0 and these three parallel lines intersect at points A, B, C, D, E, F, frac {AB}{BC}=frac {2.0}{3.0},DE=6.0, then the value of EF is ( )
|
9.0
|
346
|
[
"4",
"6",
"9",
"12"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAANcAAACmCAAAAABsaEUNAAAJKElEQVR4nO2dbUwcxxnH/0sh+IgqI50TWf3CBZpwaiWHUsvKB4qpG8dWFclxG6lxKtlcYyk9f0iNFMlBagRUTW2KK3CV2qaqazuVManzUvdDwERuSeRTCRKEU9OWym93irCvja3wJbe36dLph3thF3a5nZmdmb3KP9vArndm9s/z3Nw+N88+qxH8X1Kl+gQEcU9XZaFEl9EWvdu3PTutvS1sCCW6ai+3/LTJ+OPZ3usuBxht0bvT2lGOIdT4YbLmiW/UXDl8vcnl/2svt3x46oOrHCOo0TWW2Zr46w8+/Vu72wHJ5vHhsYc5RlDz+royet/4cGtic9jtiLHXu82b2ziGUKIr2Rheut2OqzvdDjAuj4QXPolyDKFE17WHkWwMG+9+x20+zHwxisQ363jGIEHk3AAhvRjg6EG7d31YUdzTVVko0jUnegA1ujJ7FssckcvxjaBG154T9WWOGBriG6GarzkbJ6Md5Q7hNJcSXfPDfxE+hgo/jJ1YJ3wMBbqOdDwmfhD5fjh38c8SRpFur1xcghcq0NW3q0XGMLL9cGpS/FwISNeVi5+XM5BkP+x6nie4p0Cursn5H0oaSaofLsZlTPEAJNur69BGWUPJ1DWa65Q2lkQ/zPSPyRtMor3iPdK8UKauM/VPSRtLoh+mjkmbCwGJ9ooN1ssaCpCny0Po7yuS/FBG6G9DmL2M31i3ZIT+NoTpOrJo2ejdwRj6m3s1TdO2Z6kbitI1MmFZO5679BJjN9Wv9b5Fcvpx6oaCdKXvPLG8kYudZvZC82YDarfTr6CL0WUc6rzZUNrq+x570LXwSRQj539G3U6MrqO/sqyhTk2yeiGAxDv3a7fmXdfXXRGia/rHG2qmivbKxThCf3NihqROMCSoiNCVPktIqilU2Or6UYS9q6VcFA17L9HPhwLel9MHLgD/+rywNZ46wdFXcjNrUoBva/gl8MAM6QWa7xBCyKfR20yd9PQQQsh/9s0Q0ou36NuLzgeIbe1kateLXgBNNwA8MN5K317wdS9n6H+dEEL+TSHLaHtw9Ot3IVpXpn9QaP8rST/6y1vvbA5D9PV87LDE0B8wXz7ciqb7AcH2OrPRNbNLCLOh3SikwXmyV2aeaZjMK4OTTA0BpEDRtKPwfWwn8PuFKOBR17EpyrPKMxf5BVM7AEghTXF0R+mnke8P5N/xmN5dPDF4kKNx/v2Lkg+AgUIanLh5Y/6s5NAf2EIA9AAQOG9IWm91Q9znAFslrPq7I8oP5y5J/Rh0FYJ05WLnVXqhMD/kCf19QYy9JqfUeqEgXbm4xJUuZ4T4IVfo7w8idI2nZK36uyPADxe7VL+4IMReUtdb3fBf1yie8b1Penz3w0yf9MtdJ3y3l+T1Vjf81iU79HfDZz9M9X/ob4es+Gwv6eutbvir68hjHb72x46vfjj/eiDmQsBfeykO/W34qUtx6G/DRz+cek95dLKMf7pyccWhvw1mPzT3atrRacsNyN37/A/9mdNSmHWlmzcR8qUnl5MZJucOMna1BtW/3TdDSFvrXeqWjLrS2+IvAt99tKQrFz/N1tPaLOWiwEsb6Ptm1HWm8QCAL2wpLvojfijC1tPaJNfXgTnfRtd1ylbGuzvqAFS/UlytH890Ug/thbH8VfQN6ldYFYAQQmWPs5O5ba8IkukW4oUwrrQDMK83Umc7MPphTYNtU1TCf+aRMICFBH3sU9Sl63reH/M+qdu+lX4qfMX6DX/SAbxRmKeEhf6JhwCYLz++m7plUVeo8EcPhXRAD1m/AdBDIRS3dej1237+Dx0jqXw+VqaPJ6VmDYyT24B08+3ySQVG24Oz9j2EEJLN/8sSQrLZbNa+gxDb1/zu7DmgVB9j5xjHwqQLPT2EFFJmPGXbpL79mW27dB0V0vOTh8cp5Nln9eKRJyOiQn+KXKCV1VWqgJWTvMuk7/ZekDomN/fEmWtVWtR6VVIFIP+bzxsspOshIKRbv+n23Tp0FP4CAQn9jYl/kj3vW3ZUr/Q8mzcub1h2FzYLhwQj9E9+dRi2clPL+Wz6qldWbqh89YE7bz4nZKlp0pKTsRYtTwEAfvJkq7n/BUuC2PL71+o268o7mHlxl5KKECXqAQDG36Ow15vizD/MpwkKgK7j6fdfNLYPWfP5+H7bU5eC8QFU66tac8KWtM31uY2goIue6tfIilx0Ll0iQn+f4NElJPT3CY7X12KXuDKa3HDYKwCr/u6w6xIV+vsDsx9mugP06e5qmO0l8V5/Flh1nVkXhFV/dxj9MNMfjAsNVxjtVb7AmmLYdMm+y5oeJj9MHQvIqr87TPbaw35/qyxYdEkpsMYJgx/KKbDGCb29grTq7w69riM7Wvw/Dd+h9sOghP5loNUlrcAaJ7R+KK3AGieUuuQVWOOEzg8lFljjhM5eAQ+6LFDp+sNip6DT8B0aP8z0BTr0t0Fjr0Ak/HuEQpfcAmucePfDwIf+NrzbK/Chvw3PuoIf+tvw6ofSC6xx4tVegVj1p8CjrkoI/W1488OKCP1teLJXZYT+NjzpklRb3U+8+KGs2up+4mSvPk3TNK30sEKuAmv8FM7mebpWTvbqwabdMPcXU10Vr7f2YNNuYOQWXSsne5kft+PU58Wcf9Whv/lxO6bf/rLboxNdcLLXQm04Pfvc0/kN5aH/Qm3Y/HU/bQVEJ3sljmuRh4obykP/xHGtJk2bCO+ky5yYIeeKZpdZW90Rc2KGpB6hzp938MOlhQbcV3hiptTa6o4sLTRg49eomznYK9kYxtPh0VkgCKF/sjGM2v3UzVbrMl/dCWD6VBRBCP3zZ0PPaj9svvE7ABiok15b3YnmG+MNDGUdHXRZnh0cgHv93Z5kXI61rnuHWjoYe5XPtGZ/SPUa170KCqwxM3L6s4+s6fNr6aqg0N84PVq3ZYt1j7sfMtdWV8CbO1ZeZ1UDwNzi6kOvXWAvNukDXutVRiIAcHXTyv0aARBLrTr+v7Nf4Xr8MS8pRDwdt+sgAIy8N5w+cMF6wm73BXSv5yhC7gN09wUY30o8ftFmB5d5o8JC/9orK/c468rFVF/u8uI8HwY61doTjrqCUGCNEyc/DESBNU6c7DU+qDro4sfJXkHItI4s8rUXXVdfFfee215Z/A/zdZ4QCIFQcgAAAABJRU5ErkJggg=="
}
] |
<image>As shown in the figure, it is known that a straight line a parallel b parallel c, a straight line, n and a, b, c intersect at points A, C, E, B, D, F, if AC = 4.0, AE = 10.0, BD = 3.0, then the value of DF is ()
|
4.5
|
347
|
[
"4",
"4.5",
"5",
"5.5"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAIQAAAB2CAAAAAAsdWRpAAAHuklEQVR4nMVbf2wTVRz/vDcMBmYwkbCqhSlCbMAsGI1ClHQTjDUbcUojjEGQgAaChIlgjBE0osYoikSMGmYcOAQiigkMRmRhJYBLRDGIdhoQkRJK0KCuEpe17+sfd1fvej/e3e1u+6zZvZ/tp+/74737fq+MECqIHRoVkw3i4XIAyy8jyL5o2CTwamUl2KCRUL7+5qrz8qHhkWAAkMndOWrYIJIAALyzlCbIR4VLYvPrbIyLYaGSyOSIUjfLxw0Jk8Pj+4AzMtMAAAoNa4A0NQArpCNZyB7TFcJ2Vh07gMH2mKdn7gIG0WMCwF+JZSkX8g6VRCE5ey1+GmQSS8rXIt45uCQ2fLsdVOOCRIh+or3yNyJKR4iIhOPI8Eikr/uaiIgiaenQ0MTx+4wP7gRAiKekY4MnoZhkIdk4EwAYag5Kp4Tlthdc2aGWumsuyAaHJI43u7doxRi6B4dE29tfDC1W5EoRCokfFu2u+L/24EHpDhacTQrt8vtNn+vbsyPyzm4iSBNV90rWW7/wYX17xfXHJNtoCOJYdNPzxiOEdPsImgThlV+boT9CEOTbR3A6oWBX5aXSpmx53nlO0CSOR06aG2NdzpMCFsfFGc0TYTpUxjudjTRIEoTe+qZawHSorDnofMwMdu9ouPojq+aL4y473mQFKo4XLzRbtldEv3GcFySJz7buLLPukXiKAEl8s3j3SJuu+51JBGei5yrbbft6Rjh6isBWorf+qQdsviZQPuGw09zASMy+fblNDwNQ3T4QJFbn3nfqNmmm0TP0TxG0g0LruD8dh/UM7TFOMZwwfJEwnVG6IqckUybba61PxWxkjLHRV4r1TLL1Fufdgao1ecxhjDFWW9LtfRkENaSJ1kT/UVt6Jm2U3ehR+2St1JAmShlDSL7E0ZckImrQ3ql+qXxKUSn6HhF9zX3Nhk5f4vhqDACM/1Gprfr3bfmU8tuPKIWj97GtNwxZaOj0Q4IOTAeAsUpt8+5Ph6gm56QWilIQzjzJHru5ZKAfEoV9cRDwSwwAjjzfNhzqCcLp0KCQYNifpjljmJGvn2BqduowMJx/aS+As8nEx+6Yp3PlADKXY4gPK+HrZyU6xgLAqsSDQK52baW7SWV3HwGAjjrgCTxT0unDNqrSJM4hQUT5uibX015bSUQ0K01EDRuNXd5JpJSV3ENE1FSnbNESJ0FERF0xohQAMKAkeNOvvWPTxB75IA2F4Vk7sv3ZRVOr28rdj+ZTOw33Zfou/xxOz93pUikVVOvjRkZr9i2LnliLtwldMbse3/cdhbrb3vA449pTFWTpz3yLY/nVHjmg7N5OG5/qiwQB7x79WBoEKkW1bdzIn0IciJ7zPslWKfyROBWR3OxbIj8ya93BAQghvK3r34l1d3sUBQCUTeu07uAAuEfNKMyc3eiDA2wjzH4Uc/E1a31xsA2raiSEEIpYFNEIw6VYEkIAG9LbhIBHCQIAYn9aR5h58ar8Cc4FILj+AkBwBrW+/71tV3EI7oeFzVLoxSEULbWez7hi5D/Pbb2R+3VydkpBRFRQ/hW0olYyNhAViC5V7VR7Ct7sUxARpSOWmzmHSbrWS0GCABSSyZm+1kBx2DZpBw5VDOCCA+BCcIAL/UUAXBBj4GLJ6NUQEFBfnhE/ZEOCG+Sr1Lj+wgFwzgCs/75ZaVRenkCArVIUBWMnY50U90Rt/K5rdEesWjUShYJc0U5GjveTA1FUOeMa9bPoJ+Sr+0fte5O8ScBCIrUpi+3cvWB76x+v7x8HsGKE2Xi4cX+8mwd393vOuDjpAgBihnOe65V45Yx1yNgbqOLabgDM373oF5t0SUb/YIi3mVtdkvhuSZtdyNgLiFBzwLLdBbLRPf02Tu2tLHJRjiuhKi1puZQgUBE9ZmpzJKFlOuff+nRQHLSQjXsSKl7MfhgcBysS9jpRDP/uHGdKMgasFHLF/Hqk/HkUTzAnKJ3FQUAm2Sp92tgb6kwJSmfrYGouRf7AsQdMN90Xy/aOh0du0vgEhVz0j5J8ncQ6irmU4DigfEKpp7AlQQCwdbtdkrEfIHOC0kmP5bkUX2ifXtLgROJc9EAYHCg3tCTy6KATuRnPTgtcFiBguJZ20OBAYt49S4vzgjNRBrPntiexqneD7pMDsw6CVYLSBi0xDyFjj+gpUQo7EoejoRiGipIEpY04ziZbbwlKABZ4oEQelkx7Jm4KcR2IuiYbqpZ7R+Gh8etVigG6a90XF9dl9PkBS3GsZOvUUigcwMqmGDyFFYnmLz8pC+8RfwJMnsIssM7Ir0TuUkp+IMxKAdPHnYoeDo1AEfkROV2No+Rgk6t7+Z6QVEGHsil7dDUOGNSv8Gjd/AB3ClsY4kYcwGzGGNun1JcPfQNhGYUe1YZgCRHRnL2UQloQ0TuTwtsxihBElEeWiKgFSPQ9NwRAvjuOsWAM6GhasM6Oe8CIds5CZvQKQuaqjYyAQ7veYnMq1gPYcHkgPl9xw1On5e+Y/iaAF+6CsialieMBEcmW6D9EglrSIKKGNLUoKjGg6KvS8vZceaShsapD9RaazoZ9BS6e0H4sx5VHGrInxqp2qVln2FeAimUO7J+GfCIax0AjUvULAGT2AUouJjHQCkFE1IK9RJ2JMH9u4wIpKL8c/A8M1SEAqtJZLgAAAABJRU5ErkJggg=="
}
] |
<image>As shown in the figure, in triangle ABC, DE parallel BC, if AD = 1.0, DB = 2.0, then the value of frac ADAB is ()
|
\frac{1}{3}
|
348
|
[
"\\frac{2}{3}",
"\\frac{1}{4}",
"\\frac{1}{3}",
"\\frac{1}{2}"
] |
C
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.