images
listlengths 1
1
| problem
stringlengths 13
714
| answer
stringlengths 1
169
| id
stringlengths 1
4
| choices
listlengths 4
4
| ground_truth
stringclasses 4
values |
|---|---|---|---|---|---|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAALoAAACMCAAAAADuRuydAAAPn0lEQVR4nNVcf3DV1ZX/nPOQF2gRaauNViYmbpvYnWLAjglrIT8GFBlmqzOdYjvbDDg7lLCzC4UdQWZ21dltAW1tO1UQq0LbkbW2K22nC2EYSUKFRLqQwIxL1JKkOyrBVYKA5L3wvufsH/f7fuV9f7/3YPczSd73e3O/937eueeee+69535J8f8VfLUJREeZqWveRz4EEEDF3IRv/TJSVyjI0CaIA30BC8CAAkyhyy8jdQKN191wce0NF/bSrxkO3MbrKi920GYQJILYyyl11ckn7vj5nZ/a/5un33aqmieduOMPu/cMQgBQaLGXkboQofPW8w1nf7d9H4lTBn517t5nX60RKGt4hYGWDZJSXd1qPYW+ZG2/iFOWNdeft5b0WaqqaoUtf1LRwnUFxSTVsYv/9N36jhtudxIaje/dP23o4u0EJWjo9i8jdQi/87k54/t7sf9e5wzvfO527L2bAGh4VS+rXWd0LMCrd30Sf9r4Kwf7oehYIPL2xk3GiIYGldcREFZSEKRARqLEMJ1TOBL5Mo+mDBIl0ePABBtDMe5cprAgylBSJxPkjTJKXVgYgBDo5Dd74oViHa0+ByNzimIbyyh1VgACJpUHn6rI46YARKZXHzOaFF7iQJmHJAYYAn68+a58fqQAMzd3m/pjIAAiyPwNgjIaR05/DPyyBxOEZNqgviuToGQb9uCyvAJOry7fVuHs987rFAVULYiCAJHgMi8LdUFaOwQE0S3NdwJOxk9q8GcyjhczLICJKbjil1JhjJlQqDJByciFB14+zEqQQiExGo9UMaAxCIMUpKQUWJillDqJAlAiBmWlvHxrhdt4Iw29LACJEMBEysYsBUPpqAvApBAz31GFAFD554WN7pU3d5mW+RcmooWXCI6K5YYiPdssLFEV1ZSlmrr0hGX7sH2NY+4eraXTz5qrF1do4q4VqqqpwBWWTupMAhKNAZL6+jm74MTKrRWAW+MyGnsAKFIdixBfCCCM1Euo6xYAUih4x+8/HzNpm+6ZLQLHSTUAoOF1AIR335iPXU9/OxyhElInhhAkhjf/vITMNLl/38NgVmGQE3lBa7cAwKFjn6H33p8DuKx7OKMY9c5XXFHVlIp+fPeZWYdUVa1EY5+qWq5TNyuVmD6mqpe/9YoO1zwRssJS6rrCignJIz//MPkXAMCb7q4HLrNLHQKOxasHALz7xnxUtT33YQBB51ZYNOUsCCxkPfv9yi9+rICif9/DUIl5qYA0HQBw6MufRurUzCl+FVyu49/MvJC+K6ldhzKd+tDSgzd/wlJKrNxWIcSsLtwZAJr+AKQ6FgHf/cWqqYDp7C4YnvyS7lg8LXMfWbcLFNdSFX3rro9En2k8l7J0wyZVSy1Vx3UMuw+cnW5/s+uP2skuuVX1vpdV123O3JZ6HQZ4LbkEuPm09jQGeqBqMGjRHStU9a/7MvcldL8UylAl/JYBGWv/t3S6yyijyhC0dFenEywQu2fH/oXA1vP1mfsS6joRACF7ZvSvS+vsqbIbFWIIc1MnAAUsgGJseQ+nW/9uUc7zAYYAYRl/4Kzfl7S9WrJYQfTfI1+GWRtyya62n3ah7ysMAUMYAkdZ6lfXQhj7FmHTBz/YvD4MdQDoGfNtHysGYVIBGOPtf9Pk/YAqA6TCi349ldP3gBZ6vVasqrrg8RDUHWYKEzKAYTxfANg4fb1PfgCmTe5v+yqn1S0Ugup6wHw2gZ7Oh0QBUajnhI0AzD8IMSsfkv4pgFkWiUDJY5SwC1aAGZLuY4lVO4gJYAL51jC7n9kCIGAFO3dTcmJamtUvo07CAFRiWFm/0r1/TsTYjaenGNXxVcp8lMY4GjU3ZcXQNbAyxJRhSv0RRUqlcEU1QKW+CNQydkkkY+3Ph6Iwt4cwid38S7ND6UQlEPWgEhQAwt9ZfWuYlSDc+XoBqzzk6X8OlWJ1PUel7RbvevSAxsIUMVp9lkMrOorX9RwpmCYfa9/BMcDfLmUwo/pEHpGgLRadem5z5dT2ndVV5iK45Bt684rhiUW6oDipKwBojm2Q7oGVDEACyxxA4+t5pIMSi67rQmR2LVjTF8Bo6yvVHj6XM4ZahgsKDyDSIqRuCIOVQGmfb+3qaoRafAOg1RgqpOXfbEVQF9PMQqpg0+J7RpaFL4cwu3+iaQzSVaNTZyZSqABEanaERtftiLIvpPMPSkFLOfZyzb0oppsSEcgeBVWVsXZ9ZZQCqaWTJ3xldvY4Kc3e0R+LBBYCRVMXAJg1PDqBiLh6nNnWKY76ESLafWQ3wGLJ6LqdoZYMM1CuPw4AjxER0bcBSBDDVwz1VFvbB6onllRBhJnXPvTZsMbFgNDUCQCPPLrgY028sfASmCz/TlME9dSDp499GthwexWYwbtHl0cuqqULAFKn7pmK+IuDWyGYFMCyh1wiysGLZsHq8tOqmpLTs09HL2osbqnqcO1RVb38rRVeWcdr0Weuoks91XH/HACYtAqQmK55qBIeewDeqLjtBIBDM+uySW76ck1Hc725cqQeyDZbg5/PufsVHjDFRVF2oLkTSHXcMzVbriMxBbBnETzseqCmGDmdvjoPGvnej0KSzbARAJh/EHj3SCsAHH+r1TUzARi8hm646GLXzYTKV/KVN5oIwOcvXWvRmocro/AGQAxA5vYCZ2bWAUiuNXrohsu/f1PbOhSOwWJmQuUr+fiTz34fSLV9airoJVkaLTAkXWXl5KHUU/dMBXZV3LfdM+uB5u2oAQHkZmHcV7mzGK4xy+Jyuv50+Fi/NCxVVWvZTsNswcfeGXVdX3ql2m2ROkhvqzoFAFBas6FSIgUSAXbzcsNrvqaJISzWG/UYMivVTnohAAKEd9g5lHZOWQqOEO2XW2PDHwG1cmyr8/odH2jG5Xt/CMBlliSPdwSpj0iJFOf75sXUeWM0CExrUdecaYASWezmv5DFDy2W+393/eAn3agLW2+/B3juvIEAVRM6sm7u16KRziO/4usLSJ0JZfGFSs7OHh10nUF1dYXJzhD62aynwvDMQV7vePDcfF+jpnmhG9GHJAAQ8JktPwiaeyLILgOwgMbeidONAigh16t2a58g9kIJ0MV/vzjCylUW6UXiROVIRbgn3Sr1Za4iBOBnlYuLc/rNhJxlcn0v4LdmltcsbsbRF2ZSOrL5yUAEPWCHaPLsY4Dfmhm73nikuWD5kzOCZ3aG2X5izDsY8kFSIAnEo1X7TP8z0R50wLlbznlnmNijJgGIJyMwFwaGftwf/kE3XHdLf71nhonKEKmH2ct0svyZiK3liNn94cbjNPVkMolkMgkkk+nb7Efmyv7LySSSip/WNZWINQBgfmdIN0hVNZH9zfzkfGh+ciKR0ERCE6dqx6I6uo4YrAp3TCZXYZJxpKXugHj2Ig4rDjy4vQJRY8+dUJ0cCaW/mbxxm3I87qu/liAGPFfXlNlXLw0ae0JlZ2CimF3Enk2OMYChn/y41HHY8w8iTCtOgq0otomMJxE3TZD9SMbzkpNWMo7kN34KIPQGhida29R/Xz6LHPcrgHXPjAry+EebwjLzR8VHYYxt1l8PMi5lRPLWL3u98kVEY29TCC80a9eDPiEAsHxrKQejNJo6o8T0BjAsBsIAtjTPDc3Lv2R7wTcowm8+CmPgGz0hpwXBSj7v54HlIZR5S8cILdtaEeUcty+X66r7w2QPnlUBCIOxuXWuRDnH7Y/mzhCZQ4RokjIYwMDLh4uZjHrAatgdIndADgJkAruWv1DhO3mPAAFiDa+HGE49qOeUkeulfe/ueu/nIoIhqMZQ8JI9FCanjBy97tt/AECU0BtvGB8gJ8LXF14ECmyIAIlV26YgEwtaQhAgwKzjEyt0hxeDfBsiAEOMupTU64LZRREQ0NId/KGgFkaYAaUT+zvT8YylJG9W5AioHxydAbsGYcvx6F4aQS0MAwIaa99WYS+blNqsm4AxtHRBBAwRsBB7aUxA6iwQBjYbdQFQypldLr7Ub0JsmdUv/CJobyMw0Nv9cJZweUal1m5VNVuSQuxSSfqtMx541GR5Rc2BqbH6k8XM+P1gqapemj4maqmuMVU3nnfYkLNTPLvpI3hvO1J/WwUj48eWBt4xiAIGlKbcdrzBAvBDnNll8bPvTXPop2YzxbvZU6cW4fnxJVUAoOjt2lAWyvloPAyKAYnBe/Hari/WOBM0NsKrCYfnfDC8Kt2cZVaXNP79PrVUUydrz4x9bcRz99ZT6oeOfeaWartX8GNL66Ju0oVBywFANdb15menvDPFOdJDgWGiLV7UUx1P6Iu32rt1h211KTN7mXHTABEl/mOjnqy5Vh3HD8K+eReGBr0UZrj2qP7nUdP1L836L5MYeUM9AEQt1bYXLE2dvPk1ufiEZU6BFuQar+1Tb4U5NLMOd8w5svsigI3LbjOJ5THnAKAmXrWlCxL7n5u/hE/8I4v9Too8EA401XszMaE1u9rmXwt0HV1tp5ZnEDWUhAE0dYHHH194LUGEnbf7T9UAcLEwopo5avlNy9Kx2kG73dyP7BaNdNHTzyqAf1JVtZwUVPTpFTr+lxf8w9ZEVVZunVB8WWCXfd8rlmWOe7pVNl6L68976boxTEoinSfbbSvlfhikBGBT6bwuJgEpi9sU+JoBfX+a9yzJXl8aX/VCGbxcZzC09SCIQWScawekv4/b8WFEixS9IlijKj6nfI22dc5LeBwzLjks/UqnWqZT+TsCbgaPwUCifedksJZ4NuoORktnulN51smAgr2CCtrX11DJ59GemH3C0PJBZqXXbf665yd7Pf5bFoxWnwt8zETcd+JG1z0PpEM/rhBmVPcHkZQJ1WO4NdCa9TeZF3SWkJofJNiCb5ZSgTILgD3vL3P6V3nBs05IAF8presOyqWEs3/VVWlfXjkoDbUMB6gyzdjh9UkkWLfBRBlfUbETbsFQgJ2ijLAd2PGeM8tKSiooqLGn8KBSAby63+i650rIJzAEaPhjUOPogvZHbioZnxBgBNuFdKEuAF7C0rLPop2gQP3gqH8+F+osGNnyI4J1FbxHAjA3QHyJm8Iw1qyvDHNUt3QQAA29RZzy3YUHUM5JtDsYkJaD/v3UMQhcGCP37o16cKRoCCNIhG/+l1NAhMEw6nKVwEBF9QD83gWaT53swzZ4CQ9Ar4p9sdGcmW64ouC/BAAjj20z36NMxPwxz38rr1DXhYFF/7AYEL6yM4w8mHf4eqKQGwt23rgY6aNVVwMCmXFdwSn3iXA6qzGy5TAA2KdIrgIYjJbuKp9XVRdIXSxs2TbDfsPOVdEXAQBt6iaft/iX+U3g0TFw/0mfRv8/Sl0Y1w35HEi4aibEHfZAtHncJ9//AiY2hm3i6oO1AAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, the straight line a parallel b parallel c, the straight line, n and a, b, c intersect at the points A, C, E and B, D, F respectively, if AC = 4.0, AE = 10.0, BF =frac {15.0}{2.0}, then the length of DF is ()
|
\frac{9}{2}
|
349
|
[
"\\frac{9}{2}",
"10",
"3",
"\\frac{7}{2}"
] |
A
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAJAAAACICAAAAAAtqD2SAAAMZUlEQVR4nMVbbXAV1Rl+zgkaR8OkTklFm4hCMDckWmCk4mBLapHGaSdoW8UfOipFAgjjR20DDFSslNBRR1Gi0aGFts5U0PoxnTbQ0qKVKVTbxI+Q3HzHwqhEa4HEIYnc8/TH2b37cXfv7t4P+xCS3bPvnn3O+77n7Dnve1YQPqDQ/wEoab+Q+KTE8wanVKZIVwkhvIQOfW0MyhIiwMCqckFIQAAEbt/uujCvcrPtNkuPgI1nHgiZj+ud7i584qm4Q8TkQ+ZAScLXh0wU97pchqLp2YPWqZJaRYSwVJU5/NukmaqPREnyREPgTjxtiSVrEBQ5MFoaJe9pAyDbL7XYAcYTt68/ZtFbJKQQXxrRMlkbzb+Cz+4GAHSVO8UkAFQtvcsSfKWulbxl6qciBwZLR2hD6XQA6Kp2mYEAsPHQ3qTWxsdnUT1y5X0AnbZNC4Kesl6EFAA8OfNDAEDnVEr7ndpxC5+qHxVGxX8tg5Ao7wIFEFpLgt4a9SIkAQyevPK8IgKIXyq8nnLtvLVGxdi3ECCmRiBj3Gi2k46+QA8o8k7215PkaMFpLwlyaPIbiiQ5VjVMUt1br7wFg+C6zZMQ2QSgnqRqqyKZ8KpixxxNdaCeJAewOzIRzxZ4mIzAwDDZcjEAEZ/utqsyTHPb2U0JAPjjRQRwV80NkQymjWY+zwYPQoKDSxqAPgJAZ7XrJiXNk+YHPwA4/nitwKAY2c+UuoPoKAcvEx5auxdoZZ222eKdXnrVNvzJdWSLruX5iPZK1sFT80p2zhmyin18KImZbygykfC4kuDoJS9G5+FC92UHx25eZivwJaT0r8LhNLUdOP94lnzGbtlFrt9sK5nAjekMfbLwIcOy7kFGkALnX/0dhJkxeIHiAeDNs27E+JEVtmLpN5rp8o9LjIMUMUIAC7vfh3blyO8x3cI9C4DfHpvhuOAeZUwkSHLrnelV/lzVaUs4GhRJrt+tdsBuMUpAek9iJAB0VKZv5+KyRwD7pCg8BAHU3ig/WL+u0amhdJi/L6Cdg8WDGWjHDVsVEkg3nnXF/K4QgALKNtwqgcxmitZjbQqWgI9HksCJkS/71Sb0zfLu4V9RZbYmCz39MMQF8c4lgbUWPL3mY5mbNWIAIUCgf0aaywYuX/xjv36Ra0JAu68L2fCzfa/latmKoIp6Y8GDMM95fPlYrugEayh4BBa4PrYpV3QC3kOJc04UhqnkWPWrVTnik15D8bJQfHDeg0tzQgZIR0gB3WF8GgCW29bWWcKfkAQ6YmF7s7m2zmgiEo4QAfRWh+3N5to6+9W07xMFgHfKQ9ez8eBelQsFpX/bF0eYoe4rTTfZDY90Njl6RnGIBhl/v3nNhhyoJ33Aqi/M4CIAPfn4+a4380tIoD0lupiulpLG5Yl8EFLUVlBAT3UkL7114jZ3EaGiOnoKIQkIBUAqHC6P1o2bNx1NHusBTEBaNs2QUJKDRE91FDoKsZUrkg8369X6ibIIcHc7pWgsUYYLfUJDvjhd9ZxHabLCzLq9EDCiW52VBVE0BKDgF3efcLQVCjrMEd70KYR0KJJCoTt0J0viikUNNm8RAhJgtOlkqoauE0KK31EiHrBIdEMB2PKKNRgtEkIK8Y2or7dUK9Y9zxa0Un3/2YguRFpra5KsayNblvnLBviQ1jUx3leLmABEZyazwMVljUbH4vj4zPGtVxvrFq/RiJ4X7OwUSbbUk3X15OnCkQw0xCMlHcZRSyO3RY+sWYTM9XUTgFaSfRcmOUaBemy+EXEzK4oGexJDvzT2trFpdhvQeQmQwYxLrBreKSUA7H2L353uZy6X5byW+Uqn4gZOzsQdFXuBeLUrxB4SBc1rPwaAwZGv4KoiwB6z96TjbLNNQ/rZLbXA0a5yIB6DyGhFOuemHwHAHxYC92AVADANpZQAnduGdW0cqygZJq/aH9n+BobLXqViXStVom6Ln5Cfc7oI7QEAXE2Sk45lSogvlo8a8Wu0GtFcj9eiInlqXsnBtIQs0aHijPmQi9ckGC7w2F130lng6SMCUN2VWURYtm7vBEP539/nTtSeYxakxKkpdMS2beynKpNVlg4WzK1dEhy9fgBA/9mi4vUS06vpEacWQnfT/3wxs6S3ni3MFq2hpq6jf+njDfuT9+oKvE397SzyGIpsn/RhsBD5+h3kL3e5fMg7HtdViYyz8AKoWroqWAj48xKMv3ahvVgmfzkxdmR6dvtd7m9/CQxq0GjvDAz+1zmrSGrPibYYyYxSBiZeDVxbJ3hgM0/VOAcivzh1XwWAbGKZnL8gaG0tMadDzNw9F/aXa0rnNPrW/eONtrOM8NFlv788RA30e7maDPWfgZj9LCOUbKlP+NeQVIRLwMcmfDfiDD8FCrh1YhOg4O3bwsHKVu5RRgFMPBoiFBOE/tlvTwkUCjIZAAG8V5Q9H4Wp65brg3RwqcTHZL0V7qlldDoS6p4ju/yfkWSUQkgpexsUCLRXa8HMnVoCkGfotXXwgO+cU0tHGyQE0BN9GZ0KBXx1UYN+SAAnq+E+6myPFInxgm6zaHz5H+mekwpTUCmlTXdaAcCRcmWWWteTv6FUoBmMBcK5TbdFSxXJ5F/9T02QCjg+NEUqQElprEWUlDDPFZSEkkGMDLf4XmwzonQOuyqV9nAAPR4Rc2kdyBAmoLH7hU88GY/SOazHGC2WUgLx6qxTluaaTpSuXx6lMo8OoIC+qakayJjiquHfRCNkzMN0alkqJYG3L0soCUillGasi/W5goLxEwoFzWuGIhGSDm1ICSA+rUCTlNIgLa1zKSX0T0jMuakBgBHLCIL1JrHmq1QhU5thMVL9zMKwstY4lKQD9kzOKR8UPbMs9GCUHIeSFhCQnZfmlI/Cwrkb9UF4Qg50h0/chYEEtm4/jHCjkSeheM6S3ibO27QU4faGeRPKxbveAVWPZoRSkSfpL/R4fyiRDQ7XtJWGWXh6iRxD7vmgauVqyESwX3sRiue2kxlYF38JBcEvZU9CsdwkvJ0obF49EqLe1GyQJpST/fVOzF+wwR0DDkMIRDzslo+IeOi5fwYLeSTwVGeeCJVsWRact/bo9mPFn0ZNJYYBBXBtTUOwXGpoqCqbsFBaDBYPBok48mVaW12VudviZm85gClrV0B5dzSzVMJ8CUuzsCPETrgMIADgh//e5bM/2crO2xxbO1RHiJ1wmUKaeevURKIpQajkdgghCKA3eHtnZlCAvGJRAwCkickbef4EuQ2oGV/N8cJhZhXtTI/jpfsDnFooQEAOinfJHWdegPdLipDDnZvJhht/ix9fkXY6az54vLa+WeGie8v1dtPcu7VhI4XrY5u9JrO2XiYBYPsnD0MCU8vRG0NeXmXJvvzEk/E0e2CgFEmOVTSaRly6LV/uQ5JMkI/N97uoSKm/8nq/a5qpxZ5Y2DVdRpDAquFf20tsj3Ikec2jwxX2T0XzgYLmhmO2AKb9UTrrR+CCij4qoP8FnPisNG/agcFizu13eQcwKcyXq2rC82RLDXlgdl5dSGN0yh5Xxkd1V+jvO0BjEGwR+nOpnbflm02C5J4po3Y2VAcqhrpXmoRIpcyPk3jfps+BD7l4jaPQSlJpVxaGFwuo3hm52/DvCf1N6Nbth+2fpP9r+lzjcML9Dpei+NsFb+WVDwQhADW3dolR8AAoei9O8rXoQAACJyblnQ9AitkFb+inAhDAAE5do+NsLgu3l+fZhZLonHTE6min5qFiyOZDFrqzDuEHQ/tObOVq45zAWQcY1+t3N6GOMFuQssIiUSCEEC9gXdfLMDY6mtDmtCHBm3cqPV3LF/Q+nrGqYZ+8tVNDEofLBUReVh0GxGfjs/jomTVF4NcXJLu4bVOxi2DRJ/lTjtZQyxYOGJsbhyYfStky4NLF0bPOzZ9ytIb614iLjVGn5NEfGIOj57dvINAV4vutjGHsAmxlkxlUvansYX3BO4EngHi+lkDmLkD2j8zCtGmmTpob34NzHuIyWUe+hyHRcg3xrVkmiSlrl5tbjrwJ5ThCbYeR//pTrWNP/H1Hd4PCHqVJej9JsjQwOpEd9gBoIxPWWHfo/CGHhDM+NDJpNG8asmLCOnNpGuee4zsccg56b87Mq370JNA19AyXtttPJzjYdVXkTUEAzEmgE0Wtjqi4pUcAiOeXkDecUXrpOIjnc1wMB0eaHB3/Dw054ehlYb/azD2sTUSOgXFw8hmfPxcA3ptRFBCvzONEKCQcO87zlVOIgv8Bhesl53se4ScAAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, given that a parallel b parallel c, AC = 6.0, AB = 2.0, EF = 5.0, then the value of DF is ()
|
\frac{15}{2}
|
350
|
[
"\\frac{5}{3}",
"\\frac{5}{2}",
"\\frac{10}{3}",
"\\frac{15}{2}"
] |
D
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAMsAAABiCAAAAADbg3jJAAAIzUlEQVR4nNVcbWgcxxl+5qSgktpVTAUW6dE7+S5YruXqrjZNIUoVGilSiE6oVGD/aJMUYluQgC3a80esEkETVNu4qqlKfY5La2KIRBTkug7GPhnsxgEVO7lVrcQS3otPVAGLKERxBIljS29/zN7ezn5I97G3Wj2CvX3fmZ2dZz7fmXlXjLBiQEyUh6sCgsrjaG4Kg44KGnWqlcRFAyJgTyQAoVWxFdTGRBxf16jL+wqqFzHnSaqK6CKsIC68b5DCKbYT1boIK4gLB+Ocjh/2BPVBK4zLP8/z3yRoIa4n42IuxlHp/JbnzgAAkp07gI+NT6wYjNQH+4friIiigEwRICpGWDFcEi3e14k+XZ2WF9SLChe3MQB8UgQwua2xQX4BqCifVAKYelHhdi6METDdUbsptasMAEIJ67hu5wKwmej6NfKBb/PBICSZjAkKXM9lrjv41URPBcBbVGg0E6Qn5XIu3xypSv63b60qUyhBLE1Cbze7hguZiTHflX+/8X1tsP+zO0YSClzDRWewMwAD/sHTQxsyMgDmqZEskygtTs7ygL6w39m7+mS9MVatVA8Y15iAm7iIuLx37tU2vZIYEB4BYNHMHJ6+s8PVBl+/RdBIyPIpN3IZb6s8dp8ECyVz+2XZfavnXNP3VUz9qu4nqZ0l0LYjTe9YVXXd6km3cZl+qSYg7y1TZT66aXtH7SgssOxcSHs3u7/6Abm7XBNs7OPhMatkHORibkdlMsvmXvPPXu+tWCKZkEQ8MaEUABfUi4r5o/7r7//Vy4VFdro2SgwAE0qBCw5ysbA8wHN+wj883B+gJePCiymLEIfnSrPpGsTw9v6H+x/DohxUhEa95gGO1UsrY4wx07yyC+GeP196LNuUQpJVSDEnPQGtMlHU+LoFulJXPahfui+GU+0WAc5xiRARRaJ6daLZ+3dj5MWYjQWVOHwPNqIGONbGhqsBoHpc1Ca3Pd2Uet4Ye7F+U/2/OR7nTEQmivOdWEfnlwtPAYC41Ti1fXP45u6SHFMq2TSqDNoUoOMNQQDk7Jh8uAEAbir72QRgpjNcMblnVe5JhSReccMRnAhgB9RqLKgPZIkFIjlKRCQjrsg021XeeTst5Ia+F/gzMQCyRu9AvRAYcDEIAJ2RBgBguHswODX2x7VAdlOKiFCCAQCdlSkSEN7kDJhMJKfHnPt9le03KJ8qISKi2VX3iYjkCFFMUS0QOTUmx3nxx7l0ytd8taDkfB8REcViRESaQd7R80piAE5vf/BnvsLSGah5C0Br7zqG1pYdqtoBLoINdrHr6x88UkhqjIBL8+8i/hQARkxep3mTkxipt9yTyAVDzaZqJ7mMtXmPUd49XoNUpanaufXL5LYn6uSdyGcQ1oIA+L6aNlutOcVlumPLhlu/KVs64lJggGj2k3p1hstMdP3qG6/kYa4YQQAQljK1y9SrE1zmujfcmTis7kkUNnLyejE9HSs+l7tHqiauxTJHKAX2FxCI75GR6oPhwD4MAUAseOXSmwXOjQIYGDbcmuM3mQaG4nJhwMAjbw4ObbQ7YSoLjpuo7d+H0Uzz73R969iTtr8AYAhLW4xq+7moVC53zfS02Z48h+lejAcAURGMsmtPP9txo00V7X0DaY+TNWpbrAo9brRX9lmekxSOhYwviQZF6ftTv358S+rFEsDu+lBR8VDSmHqaC3EzM+2AQsKPeqdcQbRIJqc7a76nHqEUOJmYgAAw1ErG1NNcmPJHjBFATPsDgBhDWiYQg+UibnZfDeRXy80D7QDPv1mH0bYxYlAdg6zSgOIlaFHecwf9nyV6K4rWtlSEEsY3qGMyI2EOzRH84fm+P9S9HyggmewRkoxv8BiL0KJIrUqaACXrJ/3nzr0VsIhmM/yzMwadB+lC5RXDiBjASPtDopqUAzaVHL95u/pE/7mQI0QAlNQYO0ypvjkILS0jaNS6IzZu4F14ef5ok8VZkd0gBuCHksE6KhVj5In3DnzS084HSwfAAOBHIwZ9Zn7JP20psu2XN9u1PBzYqDKzyAq2J+St3/1TEc0VK5j4khRqw0x1bN6U2pXrEYoNMPElKYzLTOemNZMHbNmTyBnKOlmDQrh80R28N95TRHNlUYQl2PZd0t0jweSYxq3TaYQ+0Gvy5TIf8195942Mx4fznzdtNEyWeXIZCAz+a0j9lsba1iwivA+kdJq81vunD3znZL12cnVkutcjJPlFRR5cLu+7c+gZCFWxHFRQK7WJipzb2H8an9v94TM2ZacghPUdJjsu6kp5/Odtv0httTVLeSOs31RemovGZJx89vG6VIftmcoT62/PiYqluaQ/BcT0S7UBW45QbIJhCZNtf2Ez+9c/KHcvj7ligbAkyllymXst+PnYoaXcOh2G3uzPisvdo1XXpWMWnoHLB8OJ0iL7rwvK5uwJb0uiWMuQQvB52T1BLl1kmuMr+YGuhwcfLWbx5o2HKieEox39vK+zRujCvpK+pmJnKl+EJYGLB4qL6jCXRSqXf7r7lWtNy2AEZwe+qZwBEVFLnOIar7J0F/qg2fsPQeE2DDUIIoiIGJEseMgREcntlX3z/NatXFIVgugBMPxbos6ounlKAPDJ9s2bb76ojNjLYgZnAd890R2ejH6LRJ/uKu+aTQturZUFovqzWoUHwFmZYsFkht4Xvwuyid+n9ySWZZ2VDVjmW5jjjLVijwdIIoAduJiO8s0h3+2x3rXaR1wD/YDKZ/4kk4l6WdADXGwBklDc4+b/4rs68rrrzBUFTGRDfFAORg8Bgeg6EEVkfk5JRHTK25xYhqafL74u+5IoBqIFopjM4o0AEDkDAEMvjz+hfGqqPY4MrcmqzAgAykO5lHPBfbHmb4+CxRT30dKGTKbPj25Vs5XRTt66lH3aqcml42QQKs/ed3VNrZl2XvrxxwgAADHBHmty2PCaTOVQM6lbhriMsDXIMqeMy/c9MjFfLq5Yxs+sFQT4P1dJpp504ze8OSKGOFE84rDfeJEw3AhED4L9H+4bwbNPW83VAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, in triangle ABC, DE parallel BC, frac {AD}{DB} = frac {1.0}{2.0}, DE = 4.0, then the length of BC is ()
|
12.0
|
351
|
[
"8",
"10",
"11",
"12"
] |
D
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAGMAAABcCAAAAABffFQxAAAF4klEQVR4nLVaXWwUVRT+ZmnaWbNaCCEspHSlIWFRSKgJsrxYlERWoXbxBWIh8GY14otJMfyJJgQeTJSnYiBxCZCYuErVUmtoiTHU1J+EYmExAiZQ47YgUrLYnXa3c3yYubMzs3NnpjOzX5ude8+cu98959575pzJCgT/yAor7G6HAqCYfs/+fhAcp+YtqjbHtw3/2Sv458g9XD2vrrocpe42NISry3HhzccWF+xV/HLkHhKNNFWVI3e4DbjjpEV+0IWmbLETOGirJQRxzh0QxBkEYDvTYDhIqDrHwJe2t/1wkOqh4dTnTop+cbPhRKRkp+CfYyx2hlb322n4Xo9Hyd3t2NxTTV9JLe8S0a8xpSdb6vg8g7Tl8dMAsKj/ab6ST1+9MZMGALSpzrKesS9P7V8rKY3zCRstXxzH4w/UVr5+vDocmdio1k6dqApHf/T3cudEWzU4Lkd/0vXGIxJv63rhkIlIppsNfQZpooc7wMPeFQAI4xuObjRs19Q3/BFerCDKr/7QJL8a5Q7xth5KBFH51FWI/cLT9nbOty05wrzGPm3ioieOjlK6UrjlK66+B0/tT0gW0mJk1EJK5GI9insgAM88KEuOxycsNbd2sSGdAICdk245qLgvS9RVJtFHEAPOJNn6F/dmiUaUxE52wyHtmSQqdrJUsD96naM4UZtXt9jUnsmpc1Pn2A3nNb9RFwZqlt5WkvPh7d1xzsLWr/tO3WJ/rAgP1NemAOWEOnMMrgeAmPI9t1rTazl6AlrZ7h3dFXprEZO64Jj+oRkAbsfCAO6+wCKIFTb1zQAASoPXpndEy89ER477q+YS8Pep9QAevfR2u41qfO4QAODexNKa5jpo+akjx+WFEFA6tjwBTLVufMdWN9UDEDC8Joy22i6tuqrhjyABoOKnHwC5V5d3hYFt/9YdsuW4+3XdIQGlwXbQzL6ntCKRy0GCAODaKmQA9G8A0FFKOSToDZMPgKurcBhAUzl8cTmUL1tZTmYOXPnevkQGCXcalSGmqTieQRVdnAiiQSaiTIvVHbcc3AhiYMnXTRgFs+HgRxAjkp9ZCO32LmmX4V3dy+3XQlXffI6twGzXw5yD8DFqVe2AiAqFAmeI4tCx2FmXFCRbVTshACJEjvkCADxK7n7N0VFsgOVTnYiIZwYRaTmISwwtq8wWBQIgiZAAUQJESBABSNAuWyKnNYH6KUoQJZPt7NhZVDtsX4nqnySKEiCJ2uX1UhqAJIpgYgmSCEmUTF5Sd1JbpbP0e1cSAUjGsQd+y8xhs9BNx2IFVTtauytrKW09ClTQlkZtFeh4fFwT6MTqvxXy9WNmUQgwGQ2pPJEvjlx4QhNXTM8Skecrk2sidjrUuSpGFQpE1L/gCrNNJy4UCqT8W+JkyizRnXPjGNlcxbjFWMScRZY5KqZ1s6GPWxrZIWEOPGxfmbYTCEoVY/vcswaLi/r1sIScbzZXMW5xdaFJwOOYXQQxwlzt8J4fahXjCea4qHEYHyodpbTHlzVkUe1YWrs/IXnYUAwlU7Vj6atPMn21HjYUw5xN5x3tYDmIZ1POJg1dCw63OQgf9yJ5e47L0SGfFEQtGX2vYj3+bE2vdXi37YzWHrvcZyx2xrcVRNej+hTIxFH5HsQb4pd0HaOvpjYn7asYt0gZjrqBPrU9CCNkmS7FOXaQ5XuQ2UMQKPHPrXJfz3HwCstBfLPMSeqdVTbJsYqZDTIt5XaZw00V4wJqANJXO1o9ONCeOhmMoxQs6NvK8lM1hST6KB8kA4A1LwssC5aVt00Xg/ATByAqdl6UR5qy3kM5H73AjoljIWDmr2ZhfqOnNMceuXVDMh1N1tcAN5bNLX38nO0vEjxhuuPF94HFOxtB1As0ZYP3E/Uq7wf7sqDi3iz1VoFk6pW02grh3sMnsWHlz4G76v7dJUqDQhheE8b9XKPaR4BXdRMJodLgs5jumGlW+wjsOj96BwByP6oi9rqXHZEgrnIvLhKN7JzUYqIcMAMR0QiUXwj8D3QaEyIWuth+AAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, in triangle ABC, the points D and E are on the edges AB and AC respectively, DE parallel BC, given that EC = 6.0, frac {AD}{DB}=frac {2.0}{3.0}, then the length of AE is ()
|
4.0
|
352
|
[
"1",
"4",
"5",
"9"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAIcAAABkCAAAAACJXHz6AAAGZElEQVR4nM2aXWgcVRTHz6zV+iBIcUO2ZO2qSc3qCi6mYKSBLKWlQeN2kWoVKm2wbosVW2mteWhJFYWAFVvJ1kDBBtqHSKIRjJLQ1EbsQ2qEtbQ1VVOzEitbIjRklHztzN+Hu7M7s58zd+/s+idh5+Peub8559wz994ZCSRWw9V+nmoOwRjL+/jqCebAkTW1RESWrSyY45PH/5KIiKTKcsTkp6ru4aopluPY27SWiCrtl5MR6UHmkYr6JSYDQw/x1V0hEKPtAtENIlg2BhERROkAUVQNEoUB1XptSXQ+JeKyiOh8SkQcUSqc4/x3nBXF+uXa+lVX/gd57M9negLtRBxpTGB/gSr7ujHrHuWqXDpHqpPON7cD6qBH5rmKwPjYJvUSEbWt7OapLcwe7c3zAADZPcJxFWHx0e2bTW6NuDk8I4pj0DOd2t61q2IcY86r6R35fuueEcMxWX1O/3Abcc/mL2sjx0xdDwCoqaDdu7MSHPONnRlHZM+gxae/AI5EaHfWsVGrnikljyWHGXtufnlH1rnX/z1d5jzW2WBMF8wdct2ApauUzNHricMYCyoAFRddM4D5ICmRQx11T+Zpbf92KxcqhUMFJlxj2mamFix5pjR7TLsLtJX0jE0c+juXfccLFT34go0cOiU2Hix4fsHbb/papeSPtvnewgUuha44tfRQZC7BywGJjnw/vLJIqbdifaYvyKtu7+0iJVQLnuHmGHTHTJQar46by2S8HOOuqKlyh0PstxgNJ0fM7GB4wXfWVDmrHOy+Zrw9Ziv8uDpuppiFeSWIklP5xWe37TBbq+GVPanKQvqLzsOhnRbGWgm/GdvxxMf+1oSVMV/UOV28EAfH8QaL86SOVjs42MDHisx4xjLHqGvCahVEXUU9Y5ojGRE/u3jWN97bKIyDKe4Z4MBAouGUUA553QnLDCoAXNP6TL6OZum5r7Q89pGF4nq9P3qu4HlLHG2zX/CtWZOkNO3cXbiMeXU0LVj2iuYc9bqz4DiBACiKYuZaPV7Lqwl6HWsuxgFTGEOmBj55pSYau0RwjLvGwfUmIaWJQp7ROBRFYf5hPlK23i0RVc0lNMSp2q+heVCBopizoVHHm4pzaP+pv2AUOFQlJ9u77T3FDqtKEpkHpCk17QoSEVEgN4cCQGFGwVKLAijBMGtuYVOHsZxiMqh0UoHJeydTIFFgKJw+mxqPOdTkr8NBRPTtGiKitb+ygy97jvLkDYMkotp3tGHc8pJ/+cSGR9NnHURqRgWViOjcJiKi5Eu/N2+fzC7Go33SCZY3zwfoVM2db+hOaZGpGZrtLT4xBwCHXlMAfOyTtfBVUiENc0knQzEnGzV0EVFUf0KXT/XXnQoDwBT1ARhYE095uGR1PZmACgSjeM4wqktzGG4v0gkAwQCAMdd1Ae2n1HwMwFQA+NBwWOMw5val+igwRQEAE1wDn/yKVU1ot7k3B4dBQyx0+gDEPZ8JxQC6GhMIRgEE9au/RZ77/zzsWy+gn+j7hXQm8CnbjPrTqyKFOZTQrafFYhCRfOaCL+tgjvf7uqWbvSt+EI5B9MiOS1kL0Dnmt2mMo5eLLDzxadeqzuyDBSKqp87CwqMVTevfGjHl4VABjLgmc58sXT3+hDkOAFdd43ZhAK0dxTlY+o55Bu3DwLQzqm8svz1mvd02YgA9fuNjMru/gAi0uCUUTm7aox3udw37efLYi2RLj9Xplv+rdfr9nFZr37hsq1egAmd9+llZTo4uH9c3CxYVOqwb0eTiGKhJL5uIGPvklhqv1iWGFEe6wbH7srKdPerVeSbbHr+5R2CnHXTayt7fqMhhj5m63nIgsLaSb/egZtlDXtdZFlMwfe5dTG5l5A8lVNPN930gn55/4AMiSJRpj92tmQ9CezXjvsg2jBydjXNl8wpraKBuIZuj166BTx4OFcD2/QCM8XF+80u15QuNpP6OXFxPbHy6RZIkqZ+Unw6XFYNZwNkRY3sAgv0YMk57y+idCFFgaZ+DiJZvbKZ6ksi+0UZ+/SFdBk7ftZrA1mVC4aLodmipPgwAB/oIQISoQl5BhH17F7lMAIJRRCoDslSvzbUdRLE5P71aP1z20CCim79oPdRB9E2L/kCZpfUMB9HwZiy3VLVUgqKm/nciQqyfiK25bEj7TC3TLwAgQn3A0AaB35/ySGVLT2EA/wFwCl9G8eopIgAAAABJRU5ErkJggg=="
}
] |
<image>As shown in the figure, in triangle ABC, D and E are points on AB and AC respectively, which satisfy AD = 3.0, AE = 2.0, EC = 1.0, DE parallel BC, then AB = ()
|
4.5
|
353
|
[
"6",
"4.5",
"2",
"1.5"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAG8AAABsCAAAAABBOrMSAAAH4UlEQVR4nLVaT2wU1x3+xvnjqmyDKtaVU1ZF0KVGcg5LUCtLLMKqiNhGkXFbJz6EQ5FcSLqHpDItHHzwASmodRKTYsuBQ3zgsA1uqVSK1oIEpPjgNhJLKxqaxC7bDChIrirK0nY93szXw/zZNzNv3swsyyfwvD+/ed973/vNm/fbN2B8mFEGU0D/6itKkw5EYp+madrX7oOa2q6q/Zl8p/NJtVWMcQ1UyNGuWoSV0XOIJEfPPuj41owcMLFzlAAVZqf/NQEAW7LKxh6N5nv/GwCw5aoGKBRde2s0BQA/AaCQPsb4Lj4DAN+MsLr1sWAR3q9ovrWLBQD4+7fUZh6KcN2j+W73pQhUX39GbbaxZxkAqnMAoYUzRnrn1HGSHPxuqIH9WE7jXbLcH9FapL+svVUCqpv7L2P8v1+W1GsEoPGvgy9vKQAHL0c0p9CTADD/+MfbNW3z2cvA7VOGxA9IALx3YQ57Sb6temLc7sXEgc6ZsKrvpX7/z3Wqx0XonxLCmmnWMhdDrGaytfyZiJYsxFnPXNpLmbvS2qX1i5wc9HWvdT7TvRR/JKtv5MfIW51RC2xsviZq2XOS0uO5Bsl4gibj48KTK0LOGngldZ2kLShNtagJ+Xh4yJM1yf/1TpAkda+gIaRJ+erbSqRpCk0e3mlXxRI0Np/T3w+773jyC6mqnbIFbROfi7Hvi7naplknKQhqBhKt89Vzs82MOSIMKo6gyfl4bYNOk1bf/5AW/DWOoC3w8dgeJ7WSPieUC4IOWItlcO+UhM+ZjMaOGTs16F1v8mdco4EKafQGl5xWxscbGyyfnM14G3QFNVcL5OsstsNfSHIiT9LUU1e8xbc679up8nHePCi7M8b+zIN9HZqmaedxAtD2v7RbfLEBG7/9OzuzfFTbvKWV918AA9fI+YNLXX/jZG/dL9fkPseqwql3Zbcn5TOepTFpTPJk30frKoFax0Nv9pPlYDXJJPsJAJi/dmS663kAe/74nV3B3ch7L70IANO1I4B0m510/paPasWtAPDUf7YCpqdOA4bmrF7tDW0goZ4DFf6gRnIx9YtcI1itd9bIMgCpmEw8fzf7yTdIrmZP8rkxiUHUGpqQb+o1kiyyWDB5p/vD4Es1ag1NyDdYITnw2qW0TrK0rR4w0CO2TYn4yvacf5ApkSSHDgdtdqkFbWk9Gx62FsaV7oVA3ZvutqltfKWM89L7bTagqN55T3Vv/P2LSVrd1rvKbun+YsBQ7aEtjK9wqJn+d+aKv1rtocn5ZrKiB5Yzfn9Ue2hivqUnFpsZkxz5MX3eoRQ0KV8j71tVapvO+5xRKWhSvuOBVfNKZsVboBQ0IZ8dm1CU8NX9PiOVoAn4TLJuxyZiGevZOe8MqgRNth88nHdZBCx2exVVCRrJJ7a9sK4qtTnqG1D+TFvWMyE28aLe68yYRXMiXND4fCZHQpuppHUxqz8eKmiC8XliE19XxgtukiTzcw/KZ3Jlw7nw6saO0+KUTQ6FGcYfny828eF6WnQlPRX2UorN549N/JjYLeZ2hgkai88kP/PHJkIdSbKRnxRKQwWNO77dkq2KF0vrP21m9FSIGiBpGEZUY5O9wa2YHyf7hKU8zENBkpF0NySxSRC7hcU1TNBYfF/kjsWg4z/S1920nrJCT/+65vAZhmHpamlreC5jfQ0rZf+lYUj7eOrppqIhgrrjs/+7/4TLYmpJLLa6JiUsjLvJEEFFPnsEfr56dspuPNAnP/T0VTcp99Dm/BnuMD18qywWhGJTycczTT+WC9oBrPkiQjdPANDe+/VpoTjiJ/EXt447Nw+VQuJN5+mzx+A6ikkaxurdTMnwFLvzJx3gSrezXdS/IhNUWF+895u2Kw+/IGs2HHNuSCEVtMknfwhL/t1eJPa/av+YJ/VQhy9kTdPTZVmxCisbL9txjcxDI9ZrMTZRwz00MM9vsnnykqNVNZ83NomLkRHrOvnDhHxL6xdV1WGoZaxJkAmq4mvskv3iEQNX7HMfiYcq+MxgbBIXRSukkHiogu9a6nqMAygp6ta5j0TQcL5AbJIEC1ZIEfRQGZ81pp/lWyUz6Zz7BAUN5fsgVZVUxUZ9W4nkZwFBw/R0YpPW5o/kn7rvkNzl91Apn0lFbBIXY89RImjI+M6Hxiax0cjNSjxUzuc9N2kRlbTuPPLNWZHzqWOTuDi2h3zTJ6iU752I2CQmGn0nA4LK+ALnJq3iRvpT/yMv44uOTeLiRJ4nvIJK+OLEJnGRn/AJGuT7KFVpGx2r6Rvel1KArxEvNomLmR1veARtnq/YRzPjXzqq/AwrIQ599fNyzbvfdWCS5GJqqZ3DI/UN20VBfXrWs1PtpSNnvy4K6uEzWSyw7dj7mODv3vFd8v4u1R7ceeyXIXx37XOTtqD5jcGBJ5oD9PAND7ePTuDVH/mpm9PYPIb8zVAx3b4nwYZG4FdfLG4Tsg7e/jzp6WpM8Knnm2lLavnpbnv0JGl/4XDWmT+j52r4He2hHTjLslbpsL4iHdu09aEo2URjuYAeokMDNEznbj9kOry/M4VXDuYeBYBq7dmu1EPmWz51CpWcdf4+cYQRX5M+OOYrnN7+F3QAmJ7W5N9WtAO0/lTv5TDScwEdQPW+yXLU57ktQwMAjRcKwO1PsuhA9cDPgWXvlwls8xXa/F6sFdIFYBSocACQfh3TLlgH6f0k/w/Shv/K0iStegAAAABJRU5ErkJggg=="
}
] |
<image>As shown in the figure, AB parallel CD parallel EF, AC and BD intersect at point E, if CE = 5.0, CF = 4.0, AE = BC, then the value of frac CDAB is ()
|
\frac{1}{4}
|
354
|
[
"\\frac{2}{3}",
"\\frac{1}{2}",
"\\frac{1}{3}",
"\\frac{1}{4}"
] |
D
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAGQAAABwCAAAAADNzooFAAAG/ElEQVR4nLVabWxb1Rl+jhN6mWYp/EjUTIkWWtu1s/2oGQg0MkH+QAI/zIdS1goiDSmkiE4LUiWgWtA6rdLopmmAMKUoCCRAakkkxIc2ZxFliILagnCQQEmw0zkjRaD0R5dk2nXa+NmPa997fc+5jn19eGTrnvOe4/vc877vec97jq8gNOMf23cDoHCJQro5Lv9GAICbQz/J+I93SjLdJMeS38hCzSSF1Z93hAFUW1ofCQHgz49jF+AxiT4SChDPPy92KNq0kQhAFNbIzE6vsoBWXSQAlx58H1iEV1kAqA0HgSxTwKjUInTNeGuKFw1Kw9BpEwKYflVWlU4SCGD5gS+VitGmLlBs9l8dftMTGwHoHcmTXc/MQeFbOr3r3eiqaVxRtegjybdnyZ68qkmbuopDR5JkbF7VpouEY/H9ECKeB76/sDJ59kMAjOVgxcrvY2U8PzYVBiASC7BiZXWzFqOvJU5YhaUeVbOeybj3mheswqbxX0Nu1mKT4wtnyqWWXYs/kdt12GT28NS2Sjn+laJDEyQVRa/veSViGzqy4G5qloQVD+KDQwOOODEPSM4VmMS+z5++PeISx/LKJ2oSpzu/dle/7lT0aZZkpTvDklsQviR3ata7hh8ecDRHANGcXbTRJMlR/NZVEwTiC1bR3au5yTh97NOqugB6c1J8bG4ky796vd0ru3ZRjo/NkGzue7RPEibm5I7NBMhDX7wjC//Tc0kWBvfeTHRNJW7/tuQVBVfX0shkWFpoASTmhbZNUPHu8aQyx4oWoG0TNBbfr26IyglLUJKT7034tCQUWVEgm5dynXOkZGCSZPankigASYk0kyd8m01DYg+gLgGM3PhL3+ZtnUtedwgUu45/cUa1oSo/w7X5Ho8oiOFnx6cMXw6V5QOQrO85HpHzXQe9ixpIRobuhXIalhGVQmTjNklfeL12h4icSzTqwJ7EQYEr0narUZKV7ox6DroQnfd0adQmw8MDNRzLQmKuuZXxKP6wdafovz2Cxgz/0bFPW7bulch6BA2NZHmvnDgoIPlwIySb+34tJw4qkvMeQSOJxKHZv9fX8eqL4WpBXY5bIslMz0qdfp78LIgLC4DLI2/VYxBA1lcrgCKg2E1Wj1ds7BvfXSeHtMyHABg1OQgAAmNd+1kr9rrR64leW6qrvDqdPDVBOcn1QWTe8zQkaZKmadI0TdI0SavqXMh8xznTrps0TZo1DL/SVl2vkFS+9sd1Ic2fvebUrefxZSmRbKvebrnVVTQAFIuQVT92w/2O3QwYtTxFAOh1W560Y5dRNMq3gKT6ibMfbGkH554CiM7f5GZtLQ/ABW8ds4fOGAqxDwSsxdGVz4Tsu1pDMUzTAIxisWhf1vY+FzFc9SKKKH/80Jur1oZjHtMxXAoAOlYtwX0HajiS2vDZpFVOAQD6HZIqb0llyYMda2SJL/xCeUJaE2thK9yVUlkyM1ohsWcEWSI37iTJ1GiJ/KR7q8RBhe3WjzbuZPHpjacrLmwYZbsSAjjVBQCxrwQu3jPRbYkbQsIKkaduwUTXVWNSWBEAMHM7AOwEMPzAgCOuHzFrcVx8QhyI+sSuy5lBADi/i0fXj6g6bImEdXQ7nS3d60dyoS8MoPCX2z4+NlVH4uAFK1nk0mpS9P0Q6pUx/UeSTPWvdJ8OYHSSnEuQZPopkjxAVUp0+dkTFIUd/TN3JGZmgMZPFCg2/7XZAsz8DsBdN6vUNb1t4bqQ2DH5/pOtfRAA2OiphUBL5zKmxVvXCSHeHqiVSGS66k0cZJQGM66a/8q4PHKyHWh4hpTHUg721o99STb3jfeVxx4EkZzrx74k410+Jw71IWYd4JXN6aPUE+ojoLpR6HFVfEjy7dkt9zo1cSXsiupqdRWHjiSD2aKClp684zJqkrEbmjIIAMRyjssoN0Enz55RiRtCYsEpq0i+fPR0nUmDApX8IXLWkSnUtX7PXyOBOWwdxXIumTyh7f+OmsJ3yW/8bcIX8x9p4MD2/622OTf1IBsocVDg+nO+82R9z0vdOgZStd3ykuwZul0Ph/s83UMSNHFQILYIe52o0uPWR0D145Pr7WIVyUrPP7Vx8FKbXaxS1/Ajt+pSFtD2g4uVYgiO5g7jMX0cQMT+87QVqISC6d8fOKyT5FLu5nLJFVbSKzopAPT3V0osWVuVSZbod/zeLECSqUlmMKudIQ30b4yRDBHYWBxE3PnHWBMK4nPy5W0/AgCSmVEyJb8w1Rw24qMkefANsgSSaQhkNXMw3bFGkuksLZukskxXWHTZZSP+lFMJAYXVJB6KT1tzUpddLiy43rkMAX8b9Mj0wPW4IWB6AJcHO+7QNwoA6IovAkBhCgCQAQD0azKFgzQmyYx1X43vd1WjlIH9IuH/AY3E/Q4Fyw/tAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, in triangle ABC, points D and E are on edges AB and AC respectively, DE parallel BC. If frac {AE}{AC}=frac {3.0}{4.0},AD=9.0, then AB is equal to ()
|
12.0
|
355
|
[
"10",
"11",
"12",
"16"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAGQAAABuCAAAAAD0EunuAAAJN0lEQVR4nJ2aS2wV1xnHf994CEnr4GsIKE1peRlsY/Mw6qIJqSBRGowUQdKybBddpEhEFSUgIVWRIFIXXZCojTBSq1TZZAdJu4gAtwmsqkpEscvTPGxkEhpFDbGvH23geu75upiZe+fOnXNmnM+S78x5/c/3POc7Z0RJkwqA8VCBAyv3JwrTjQqS14xRqxCgXApf02Mm3g2YeYJEUzTRv8lFzX1SQ3rguWGaQARRwEMVD+4tye7z5oEaz2jWOE4QYlGIAJQfze7XeZVwNnWs+YEkaWpxdnnvSDQbRURNDpA6yKgyYamjrKr6IsDSGdcgqprBiVFgcBhUqNIeTqVeG/1uuQToX14cqurPV8+6GbHopLIfg8DE0lpRqsOmGwakcr/P440nX503iIfhte+v9QCmF9o6dt70FM6vAKVjbL4gqngDmz4PXyaW2TquG0Hgb8+BsMa4TSyDE2F8duvSVsBuXLDxX0BlsB+F251NESEHRODYYTrDl6mSrePKL2fg7tZWhPE3nnNBZCt+YEBWRY+TbbaOLd3X4exKFHNg+555g4zPqJ5dCaBMtVt79l6j8tZOZLxl+nyO2/vpAr3zi/NwCwCpBeEM6rxydid9wMk9uZG/7pdVVVU9BMO6C/aqquorx61u/P4Ltijx6sl0dLAMYcKfn71rw6iOrrBV7bqYKrAEyJj9e1ZxeSu/mCVTF3Njq1MldZ0coRa8wx9RuPL+Baug2w88kSqRowD/jnwsMaGmvhLzoSD3H7ZisOxeZrGe6W8us6lDVbX6+Gc2wav+9pDG1tJAB08mh7DoJGGN3hclOyddo5mS4FYH0qirRKOGvUDY6IGfFm8S5Eq6EwBzYx0w+GyyKOGMDZMSQKVsd3hM16cPFmZwcm5rK4curbOANJEwucRYNwEea0c2Nxfr2Gr02OBMURCYanNsNEz31QwQ2QfC2FON87GSYlziwlt/3Vr3UUdBEMErWyM9wMYrtpq5/zUYjHvf5QjCmNC8MmnBmYZXK4gCTLrERddnD1zVBUAEjGP1BU9bOka+IYjWI6vnCMKAmO5r8bM7d8jY1Sfiiksn4K0fwYTju1WbUavwkojIqTwQNl7B05dEROQZZ8OmGFxVVd11Us/yiW75pz0Iq+pwj6rqriHVM3td7ZrF5YGpjPXTieD2E7pGqzBX6av84dluV7tMYcq5p1vZv7ePaesGElAe/t4IfLRN3/7uQ/uds8ngzlQHgCE12nLfKS7dfaqqAwhDxriaZaYO3uCwGdgyLLOPWDf1IfVe9BgcNj9ZK/PcCwPj05vk5c5Bpy8C0D3C+Oxmnmp1p3OZJnx6h3D3RgfltpxcsGeE0z+Gg/wq2f/QqXwQYXAHlZ1L+ym3O6WgdI+aweeB3cuT/W91NLVMa13DCLpdtfrBC+l9R6qpLicMEEOJ4rmN6US1aWUU+hWMB+qVS3lHKD/4/U+byu4ubk1twKUm9SMxSC1Aysdf7nRjcF62Nxa8DidmDqdaNUdhrcHq/W+5ITxZek9qc4vpdnor7DwsML8+5vQxozrUE/4mdbdrON3QGqMNSLnNqRKBtaNVEJPkZG6sg0FZljw/cGyroNzu9BOF1sfvpAc5t7WVP828O1AEBGCylMcJGy6mS8dWw3utozuKgkxlnKilqOtaumTfYWD3zOZEkXMHOemK9ABK74dkpKW7X9/c2M5uO9W2/7htS1Uv9GXkKGdhe9LexKVaV2U0+9nH/tuSxUsDuXQytchxBhCe2kXmlXW0kujqAim3u89lLOaVqCwA4t6kRtRsXs3kAUEQZNYVsGDouQ55J6oe4FsMOdeCAdZbt/aNIDZy7oRj6h6BTMVngARBEIotFF0QzMFUqS7I8Cn6TxAQVzy69A7kyCsG8aO/wPcDCHy/JaDc1uL74WCB74f//YCAwCfwY5QwFSrsJ4FPzAl4mrIuv/7gJ8PRhuvx1j4fJJ6Z39IS8i5myh2EI1p/GS8/dUjZr1Qj3r3Gy4BsM8d0Xs6dRyhqAD/wAb/i+ap+AD7lJQH4EPj4AX7IrR/rJOrmbbxZBKTRSR4CvLBscolfm0j9KX6Nu7WV7qzIAakLM6iBxZqYcmcnMXXmumPdT2pFtT1RuT3nriqkDSMU9RO/zki0v6t+3Zp3hQNAz1Xm4ScAnBB5prJfgIkiQRjovpTXogYSSmZcLmn1nYXfQWG6VARC6bkBsFtEROS97EbJZftB517V+PT4whbHCp+k8KBy15Dqg57Mm6fG47q3J44BrFkDMLEk95YypK6bQCXo480F2zOPExtAKm+9+m0F9vWhUG4DL/9+T+m5DJz7EeM35XiTnNDUQefnN9aEVlJF0MmS5i0UgIrpugzc/o2sWtU0JRGkAcQDxIgCLYAUi4+K13sDdPATHVhj6dAgric6Rz1gPEwscw5W6gP0XMLcme6LVJnEj520blpG9TinVM9sD1/32q81UvTYpzrwu8xU5uDJButSEdh3eo/IX8+H7zkHK4kJ99zk7/2ZoooS4cypGVWt9n9QjA9jXvkljQlwTJXQb7KuZUOb8sqPFeNEpNtUVftANeVY0S1HHSQOvupFPlhuK+aLaO/12u1646RPh7cc/pF4PlrfxYeXBnf/nJP8hm2NcP/jow25eUhHhdtPxtOOGfHqnwqoAF87LmgSbIjwcMsMiXUohodba6I5p/QdWWJV7y8spndV1afPZxpwpWdGB2A4fZ9hasl/uVQoPipA19XMunNbW7mmZwfTW+0YVJhsz/+4gSi4xZpP0dhqOH5o5o/2nPEfPywqrKp+uM1RfXDIPtfJUj4bMfedWeJSgBOnULGDFI0qAMvnvmwuFEBffk2Wbbbn8QVBNMwcr23LqBJkwXXUodrJxUW+e4mS68yrlMg902EgSblHqSGFA/RaLjkk0SaLyqUCi29Mvc2cFMrjiwZhAJNhXoXy+ILiCi+iM82rAMhXi9QUUr0YhA2uMwMHJ4vxcj56qY9hOsKvKrLb20GmF0luMlin3kgpmaZiH2SiyHlEbZjuK46IbQWZfaRlHiD0jDh4tlZ91Q6F9B7SiqmpbwASfjZY/GvHddnrlhvE8YFPJm28Zl9IrVF4ojQ/kHewz9jKSbFkroGsCrSClNsMxTy+RmIDsoJMlCT+PnU+lHms+n+gBJ/dDpLpzgAAAABJRU5ErkJggg=="
}
] |
<image>As shown in the figure, the straight line l_{1.0}parallel l_{2.0}parallel l_{3.0}, it is known that: AB=4.0,BC=6.0,DE=3.0, then EF = ()
|
4.5
|
356
|
[
"8",
"6",
"4.5",
"2"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAI4AAABKCAAAAABI7zN2AAAHjklEQVR4nL2ab2gb5x3Hf2dCGnuFvqiE1aJExfGwVm+JG79xWYK7RelCl1ClZPhFZaalakObwfLCpR6YOgVTPGOoC8lw5pRpTE5c8OyG/plKU+YxhypzU48QcFnkVo6Jq0UZdZa6UeV7nu9e3Em6Oz13ulMkf8H2+fn7eX73e/4fQaATRET0giiq6uLgmv8kkEAnLp6v/y5Qf75BFFlL1YkC1xefbKAt41+c2lAUmOGszO0liR7uSG4cySVJqpu+NC3CwexWP8EEtSaSu3+ZAa4c9ImqlOP7GkgC+7J5g2jWj6Q/cxG9snMbCZx9qeUyACTclzekbwHjSk25UxDhJAJrAO7+eGN6OpALFWoSvKz1Uz9rIDpb//RpxdtrKoBI4xWbSlNsJnqZKLDWQET/PL+5pjQSSNr52FeFVgusAwAcHzUQEb0UU4KqiqD5TURD9Y0PLRIR0Vvfksh3uPoDJH3b/1VTt1nudzdkkaAhYL17iptMElDZf3v/gxf/XE3L6PXhaCJ8/fFfE6X2fkHu+C4SWqcg2bOc9aZqZJibw77OGFa9q/kADmHPKmqyw3vfcyNUiw52sfvRLz+eeZaiP38gHyRRGesE4sBq4+2qG2Z11N8ezQIAtl/VxVjhJH0ygOMDVYaZj3gi8+pzfLc+zgqndwAAUt5sFVmy0Xb/aNHeByZs48ieZQBAaLQaHBwAksdcoVlNYMon28XhE0HlYb5ZNk3kSLHObcMZXcgrRkewsE4gnn+YrgJLqvehp+OGsGzjV7ZxkgVDznTcM8x00NO/XBI61mUMMcfpLRqy7W/3xJIe9O5/2xjIAbT/wzZO3pEB4FzwHmBmulzHk8KYRGtJkCnOhAZBbr4KcOh2RCLxkt+rI80dUbOeIOiypjgBrd+NhMuzCDT3K1dkwTRjxlM6oJnhXNONCNkH045Z7oy1tY7dsUgw2FMaZobTO6A2SvnTL8hqqYWjnnDCMoXsFXiUCY7WkQEg41kVJxTnju1uHsmUSTS5XxBoglN0ZHVLf2zYNkyqx9V1QclqpcD79nECcUNxi3Yn0sn93oGCoxWXuSVaME5XFjjJbSVpD0dtdK3lV70HpvUAZrnE5hbj9Jauceb8ltbnAOJdrt4l8yQ6faM4o7FEIY7RkQEAndOWLJkR3xMxu1M/x8mIMEKAw3UjcqEF8U4hhhKbCLmOLthkAQD8YM4uDhCIa4x4QllYT6EtYfKy7oz628acLRk/MlkkiHCSeqc/8QKQ676MaFCEw+cjrvA8HE4ih2P2cfSOnOuewpm1tzPGYZQDwN1oR/OokxFS0bJgujLDMThyaset1IsAgBGj+yWPe0IzjlkA9PWZRAhw9I6MGBENAQBWPWntG5kIPDKoCXDwsrJeQc8t4jDGNIUF/qotORcaQmxKqa2vr1Dtcp8nKBrlbWn8sFmMYh0tjcGRUy2XMaeeyqUb1QXDe0FPn1kDbajjgn0cw4g8HljjQGIKABAZAZAe9AUMuzVnmvObRuVxGGMKVa7pOgDGGAAwlg0NcWC85SZjAK615GZCTT3XGGP5JBUocrIsDhiU5fC5IONgHFDw3G4iInqJg3Owr3c27YlmGQMYAyrE+dpi7VR8WQzgAHsqrrKp9Sl1MgCYf851sCWPwvWv2IGGj5nHUaE2xhmAf/tkQISTVZa+e+JFFMYr4OHMZzG5EQCmdF7GAfQN5B9VE8gcABaOukKfgHH+zk+51joV8LwXsMhFANRRhwGQvdcZg8aVGYD1WGfTm/9Rg/3zeT+u0Jf3T1pEakZlBmDikIZceUz1urs0e65oyb7amZJeq0WRBocjv9nTIE0f9L6qG/Cyov2IA/VYHqYVcBgHkPTJ2veaHvCWmnbQomNYSC0367lpCweAYUS+0OXqEZzirnoylXiwqtGQZbQOR7O0yLzRvFu89OXH+yuGAVqtt6Y6nImgatRE2HP0c7MsaU+2ogMEAJhtB2CRW4ejOPKdsda2sf+ZlsgRNp9zyqlrzDpei5P0ycBCxBUWr/ILulrx2WXaVWaFr14CfDdGRGeepz89fvCHyT+2Wx/gt/onKzz6PxO+r8yNAgCOXOh3gOyKuLrKL305MNNWmXFkb0rZKEmBNXEK5QLp7LNTh253Xv1J2/fKt1AC0R8OPOzUMBKBlm69S4Rzfz+dDbSeFqbaRES0dCMk0QNPBW2VCyIKO7+SBBH5fkNEcvwQbdm3YpYMuPuLW3s0d9SVj3G2lNqRyd9Ul6qOiIZ//83tbYUmFG8pa6OLV9x1N27uMrXOOBG1lDs606uSZZf6JxeaQqppyCRVHaUyQGKrk09jXpPqJEmq2/etE6OoNpduXNkDX/db/xWn2rT04l+IFp0UTP20cpro7A3nX/dAok86XLS+uLXeBOcR9+c/OhKjXbMu24WuJ5+hSyvb64s3ynYlUe6DZ4hej02ZNcW5FyC1I5M7cquyHigREbk/NYsWfPRQVrNX3BSor6wHcuvo4sW13ctprMeHkPp+bT4LK+LYbay0MreXGh+rpLLyLTZe69uwUXqrn7Y8XwlO+RYbfadsDsgnn6zd93vOXXkzEb1cfRBl1Pg/hZ2cqvvoE9wAAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, in the parallelogram ABCD, F is a point on AB, DF intersects AC at point E, if CD = 10.0, frac {AE}{EC}=frac {2.0}{5.0}, then the length of BF is ()
|
6.0
|
357
|
[
"4",
"5",
"6",
"8"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAJkAAABUCAAAAAC0QcoMAAAF6ElEQVR4nL1az4scRRh9FRY8eBj/gEkmuzOS5G/wukGQ7Q1IcnaiEoOLkEDGuyAIRsjVDt4EUYKXpJdM0rsaZY/eohCwZ714lcxmPezBquehq39OV0/VpCuPmd3qnu6q19/7vq/r6y7QEVsAANeznBACASenYA8CwIMgISfC4TRHzERC3hEj96sPqKiCiQdbpcCEJCexi80AAHsXICjOP/NhLgC4iy9BYLTuzOzxRUBg5IMUAOCju4AArg2dmd3eBIDkfPecAAIzrOuNNceTZxMAPLwdd0yqAPV/V5vtjwDgZrDZLZ0UAhjiLwCY7TlnJiRkgsBDTGqEiMk4IN2YaQ0fe2KVjzEhKdhi3Tooyv88w4lZih+feuBRx/p7zlkDv13+A/BstaPPRivY7Oo/v/7wtg86Bfj+G3fcZw27g+Npb+rB80uIRicusalIkvP+E3LamypfrEjO+wd0zRrk1R2S9Gu18Q3SmVk0OCapUmqe7BaNTkjlyGzef6Jb/qyWaulqs/HHefOhB2qKzLR0ZLY7OC42PAkajU7STl2YFVqS9CRopqVb1hjvVPf4oJZqqehks2hwrEhS5RJ27msqevMka7cyq3hRTUuS5LT3sDNW6RgHeXuRmao2883xToPDdxwGWVw2MyujNGZUjsvi9yZfW5lpNDwpNlqYLdWSZKe+VtZyuc0yeuMdLhgj3WwWdBW7lbW0js1GLTW6Sh7R6KS8acfMqCXJOrUgnfHGrsSeV7Q0MwsAAIFWJc2xRoWqvhYkLf2aUdWypYcgIeNbaTsa/Nve67T3sOAdkCFvWTPS52kti6s3MyNDFZIk56d/XtZ9KqgiyThk4v4Ma94/qIliYhaHDDNXacyxFZTzWgggdGZW19LMLAQwS5ttcVkgpxYkxTVZoxaXJGl6FhQlw+0NABRH1ze/WlKECQDYvnTlW1AkGGJjvf2EBRxd//61+j5DJTzDEFsAIXDj0mBJv2lZvHHl3iMI/BQAm0NHZjcuv7W40yBmSFJNSEZnbLQsBA0SVyUbtWz2M6X7D8Isx1rea6a9LwA4U5v3DxpGaLRZrAWakeMdl1vgavO1xbg0MisQDV443ZxXma/p+tKBmSLn/V+cBmmer7VjXrtfZmi3Wb0msYDLfK1SX9bRarMsx1rK0zZfMyKvLxuZSSmbfm2f+xjhJKhJy8xmqkpMpRdd3C/dfNqFWlFfWjFLj43OHK9YbVj7Wrm+NDFTUpJSkUoqkkrK5/0nVFJmfUiZ/VVSKan0gc2wzWtmLUs207WlUtnngx3dyg7IPlRSf81DWoaBKS4rzLRzSSmloiSjcy8oWXU0mbPPv82wzGuV+tLAjKRSRUku07iULHNyYEYrX2vTkkQuJVMHU6SiUuNPFPmfym2md1sxs81rbVqmNtPZTFtHSpK7547I3O9VtltHgMy/bVgmaOPcp8pMo3R9K+bYGtqp1evLOpqZLakvbdHqa+1aFsyK7KTI6Kz1PLYdTXnNVF+amJVP7EZLTc0QBov15VJmdJ3HtsGc15ZpWWWm85ldfWmLZl9bEpdkk82OTnelpTmvtefYFBVm6RzTfR7bjgZBl2vZYLNutSTZQM1Cy0U/6zAuC9R8rbm+rKNmM9VdXJZRzWs2Wi7cA6LBsZfXlmVBDfVlCzN60pJkmZpNXJJ1Zp3HZYFHvUd6DCsta8wc60tblPJaS31ZB/R5ceL+rMAR097UXsvCZkjKWvp5dz/tTVvqyzoEKQB8+uw+drduvZ49RXRfLWSD2b13nv6+8NjTgJTZ3Y2LxDd/e6FTxuzed+/arsRagwAOsR4AH/plBQrg84H1YqdTAPD1NVzwSElDANtnhRB7lsczffbvb+VuBUHM2PJB7ilgBjL2t0C2sAGAB5uwfVewxsOb94FD6BcOHlcKCmBvAtycWL4tmAgkDAD7l2svgRBAYpks/a6nryP4k6Ht+wL3dY4vgRlGuIZ9u4NfITNifwuYYcPucE/3oWZs3xlCwHLEV2izPfFgJERga4r/ATsDKizc8/0JAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, E is a point on AD of the parallelogram ABCD, passing the point E to draw EF parallel AB and it intersects BD at F, if DE:EA=2.0:3.0,EF=4.0, then the length of CD is ()
|
10.0
|
358
|
[
"\\frac{16}{3}",
"8",
"10",
"16"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAJoAAACCCAAAAACbEY49AAAKpElEQVR4nM1cfXBU1RX/nezDZDA2OHUEbUgkTGcWdETEKdiZklhwZiFJDZWKC62hLVYt2gI6pYwCC6XtgFaECVM+Mk7Sig0DHeIAwRSiWcQkWGZgBLqho3w0OzYZsBQJlLBv9/SP97Hv7Xtvd997u5v9/ZF9796z5/7eueeee+69b0OMnGJgNACAKbVoQZapqJBMcOaBiwCANJjljhoB4IHqHeUKy5TIGTUwcL16aR3SMxkAyqGvRevKG2yIu7IaA4FA2h3Ev8AmSTa9LwhOaQFqz6TZQZuPBT2SbHpfcENNjQDphAK0bjx2uy319qnFeRgvknzrk2c7R9tryL6vkewrfKRXwyqV+5x74i8T03VKx9QUPtGXAKBoSFNkja9q1s+kdJ1ShhNq0sP/rqwMQNFNY/18IqKx1zUlQ9+bV5/2SHZDjQCgedIXVvXv+kPMP/beUO4Z9WMDSHsku6EGAOHBKXePlBtOhBjxAmu/s1K5p5X9jQ6acEpt82JMlBs21HWXAcA3e5X75j3vFUJ6Bjt96pDan1+nsQAAIQJDi4dngoGKmHL72vslgPQMdvrUGbXwV8zB8QBQfF1pVQGL+ytBwDnZqmf8e8odNeJoNgg/exA4rzOVJhD3V40E0Le2DWBQ2LdjaqKI8Vum8wnbxyogxH5gGce4eaGh+k8NzMx+HzMzX5vyVjJVMfaXDlrU2aYW0982GahF7g8x90FiJtYsSaGvz2dVY7tDE7sgsSeOVGICgLZZAIDF2GjW6ZqijhqrllwlRQCKBxMKpmtd8I3jnZo7AzMmQvsqK9WOqcnteCJWAkxobfikOIUOMeKFxShwQC2uJ2meRhcPvropFEr43vkL6n0AALrKZI6OqQXUq4vnoV1RXB6oAnDhXyZh/t7LEzTzk/wY4xJiXMd3sXqt7JjOqMVRtVB3+3HbGgD3mQTVy49ur0+pTdy/HGsspi/bVkvAzY8qoZuolE4emrsgNTN0Ve2e6rWYvhzOoSqXov8BOl8hubp+XCANFeffHPQCMVMBhyM0xTRNWNHfkciEEmXAVF8PWNnHbVyzQGNrt8fAxIDkD+iemlkE6VhzdFQqSaZUq0S7cyjrp9HOShOB02P+bkNZE9BmVuOEmlbvicnG0r7Sva60ynC3U0Rmo2vQ90qdK60ynFJTo0fcW5gBBqL+x3/plhUA59R0KbfEVM79fy5stL3kNEUmggfJTIkJWH+8C7aXnKZwS+0Obb5GwF+39hS6VKnAYYfOJ6KCgwCEW7ryYy8eXEpERKa5hE04GdYxZn8bBxFivlCurfis9ENmf4g5uGyYggdBPDsdFYbyy751VRAjXvHtb0+0ZR7TUocd2lV1O5Yv8+qV36pdUA90VWHnPcJP7WizGDTOjN0EIMTMHC6NFz61UFflFvatxgDQHoo1TegFUHxNrVjxZSMDaA/x/DIb+uaPvWFe4WjDFOErXlrwYIfKFAC27Wv1EDh8xYvKkTb0bXjAQtqZr3XUAP2fVihMAaB93YFiANRRw/wz/MqergxSa58Bsbq0UlNyZuHecrmKCPNt7A39bYZVjQP/DAIAZjMz839LmJk5XL5fU2VnHETmWtW4yNdiMVXBtYlJ94OSQQrOfhh3ZVzka6SGo+gcG3lQQnztmAmgeRXfucWg3236Qgw8P7DXrOrqSbPSk1egLAoCQGTaR9IAPXJqcYJgmpnHGvUJrp6QL5gk/VXouzxp1FWTL5U8ZFLID5dAE/97qnZP9QLARcO8ZzspKq9TqQEAqtZ8sP2drz1UYiGe6mTtwpsN0nR3aoNB1qn7Kij8cIzVcIwlbmGaykhoMipxfcA9Yn6L1yJ1SH4oxbIMAEbzoHenYb5ybK4YM8f4Er3tWEMcqwAYMjyXI/RW5YkBKzdzC5cdOs9blIkViincUVsx2AjOyMrOBK5WVNv29XhGXSnJkt3cUDuwrrs4M0tOU7igdnLRvlLlOq13FmzCua+F6xofUW+yYTrH1K75VlRnkogRTqlFv//4cwBMToIyBqfUFhVvlGLGCMuTILdwOAzW93aq2/DIzihwSG1XY3ehlLBJnLISQAQAHAUK7PRscMnHd2kTi6wYDQUASIDHDrPPn26Jp6QeMVtR18EwuOR7S7MCLb5uLekOiq+JgMDRggKIII90C/VDvRIBYejJRU+JgCDXUZa6M241AQKICiAKAjNEj0AilA8AokdADBGPQOLT41+OCgJEQSJtOHvKGNQR6hEFEAARYALBIwLKBwCCABDB8/LgbngAeCC5v0wsC6YTlJYJHPMgZTTZdvioIGoLWFGQcRQAUakpT5QAICadS0i1UbV9ufjAhn136BXceSWRZQapFUD0ACAUABBiokgQWBQFQGBRfIaIqGDEQVEkFo4/v6cMIkSIiEJUmQNAM9Fs8dUMUyNBIPkSgCAI6l8IgvCuP8QcefgxjwAKz906GRCEERAEQZEBAITpU47tuO3eDFOTYeHIYsSL7cLMkQQM+l4zyYMIgFi97A+g0pXGTXEXUB48yuQxFeiqQvgsrwcQnVP7nIkAA9j5n98AQMW4TFJTrOYRzJnh/Is0toIAYFHx703qC4cA8fUVIwGg3puRkcB6apZC7SFuqgCAQG+LmUjRTaD/jGKujMQQWUnyMEYIX/Vi3N0Adu3svi2JnoyFXEkRU+p8rWM2MB1A8JXOuyyFRj94jgD0nc7AoZkmAUyxUeKXNpf+MeaohcDCJmZuQhtz0MeGN++cQXoTMDm1IKTN7EvlLXKJoelFOxTBDBzmyQ1IbwIm61Am+T25odoX5unsrYGUr01nZMjfCPIpR9KtP7Ul/6TlqTQqh++ZALfPAECphgETsPTa7pQWSZOWTs0x/avtvf+WPgPRiBdIPUIJ2HzomMeq6Z6hcCQYb7O3Xxdz+3t1wkPH9BF5mv6U3jtGvugqw+q1voOW1AKy9rNf/nNyjbp5OdSjcmZJ++dFpzXa79HpmOzX3RZO0xktoSPi6fKhmeFpvLo3idWYAEye8utt98XLiqZaaU4LZLjR/hxFvhbbVnwxC5+VpYprF0rfN40ZWURwWVMoSA1J41qM+Zp3q3VlipKYqVRKNdyELczsb0i+Ax71PWKWbcQh94FF57pZbR05lXyELvp6cmbqj7zMSbgJdOcrjCFX89O1QG9zmoooU+FWaruZaHCWeYdKRmhe122dbWQfSXwt+MPO8dnaNEgH1tR6H2udalWXE1hO7wO+hm/lkogRViN0qPqFJ3NKxAirDp0zemtuiWjBmiW7AUtFwwsEuYM89sw7dNOhHotlaS6QZLHH773RnfSHH7mBztdkSx6vPXz/8LDRQedrErOLc97JB2ZaarL9rvpWW74blVMYgkd0xqMpso1cwUDtJzdakK3zE3tIHKGBc+1AFk+tbSCBWvPO7ky9J+0a+g79YMHR8cPFxACVGlMe5EE6qMGDgAHfH/OImcbX+Hr1S3XDR8QIja/VfmNrfkQNGfHZYAm2ID+ihgy1Qzcd7RzGPMgMCrXWvMiDdKAYCEBPbWdeZBtaSCdnF3/QknfMpGFw1ffb/MiDdCgAMPTE3GeGm4cJiIEfRVryKZ4pEIBAX7sSz/KKoIDmXT2FCql8YgY6MyOP8iAdiAds/mejXIH/D4mXwUUpgn1XAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, it is known that l_ 1 parallel l_ 2 parallel l_ 3, if AB:BC=2.0:3.0,DE=4.0, then the length of EF is ()
|
6.0
|
359
|
[
"\\frac{10}{3}",
"6",
"4",
"25"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAI8AAAB4CAAAAADun/7uAAAG7klEQVR4nM2bT2gUVxzHv7NtyUWUlqRGtIb6pwlemtqLpdAsIrqlsm5FkBYLkbSxh0IOHuyltx48tNCCay0GjBghEksQFCdUJIVGUgS3XppaTF1JWwQPDaaHmMzMt4f5s7MzszPvzc7L+gVx3pvZyWd+v9/7ze/NvNEIOU2u75X8hZRyksevDCnB8CTJwy82bwUAWasKS5Lnu9f/0QBAU8ECyPJUF9/qWKOIxJYcz1cnsB3As+Kv02XtVdtTz4S/qoukvkUVia3nxQ+tHr0JzNnbVGYgiuo4cJdFYFD4F2mkKYvMdJKIH177ST28BI/2zf5pdSCOJHge/j72/rS6zGNLgmd44L3R0i11KLaEI9/Y9JDU239WOLhIJvNYzv96gawBWY0OV87j/vnSGP1AXn9LeMhH65fsDbUuE47nkQ/a7KG172JJ5bAXYLZIsmfWa6u0kKi/pnb5GpPqgER5+s+S9OJXnYUEeRbaF+sGkzIgwXgeK61xikInqEedoM789pGMbJHcORPsVZSHxPxV6Qn3qXGZgL8IDH/qb9lSlIdEoJfaH0d1q7CQEM/Y4eh+BXlIiKdPb7AjewuJjK/7XcEedYlRIJ614aPBHkBTlYcSrUOjaz5mf8Z5SMBfE4XY3dm6TICndDmqt2aJTEdZMs98p5FwRJYWSo7ni0eeSzgi00ydSLxtNvGQDC2UyFNXGAakIA8l8hwZid8fAGp2wCfx/Nu+KHaijPJQJI/vbKeOiZ4p5LIiAHQIXk4cj+Xj6Z1JuNSYPFSskMclgcI8RQDQdtuN270S5wpYaLlAkkW553vh/HOlWCGvbwNAYrhf4kZZl4eIm10AsP0PqfQT5llZ7l35dvcOAJr29Eq/zIPUvaM1IA0/7gEAyefDYZ6beZzd+MIQCGAsv07kJAxNgwCs6AUA+PM1OaCQB8sA7jjbfTeknE9Sb592tqqDJPlAG5f6fUQ8V3jQGROzm2VxfEFdPkmSxbzdEk1IIZ4Huy1+7Wx//mWKxGYDWcvdd8gHyEvmxtrzcOcVwOnFEwA+OwXAfGlgrbjfvcCfm5x4G5MFAMD4Ibno8cWzQza5F8CBVwDg6strxUeXRnd+v/VCaRr7SJKWLE4wnnUA0IC7JLl/QtpZtq6nv9vXeEJu/mtTUmEYUO0MekdaIJ+/gpYb+SipMAy6DF4eulC6lXIO1OBCLbJLoDBsaKS09VDj+udGXxocTynrocY8hxMKwySlK2Eb8ix0LqXCaHJe1nC+M3KgLU04+oaF/27fXDyTZO/twOWmUAoLRdarJGfeaAbElXwM5QDQNE1/rtAAnBtI5S3H5lH1kIy/jKBbFjcssDlnpcxDDeL5h3fWoblVEc5vXQs5zeSU7djHMCxahkUahkUyP2WSFg3DdLjtbsMwScM+2ggZNVpyMeT5y6R7nzAs/tZNy95y5mKGRdNy24Zpe9iMOW/aPOT5SyMI0DJNgOePAgQ1zamKmNOQ05hz2q7x46yfNg+RtK/UsCx3arqyZZ40aZnOLqfbbRtW7Z+QJCyUA2hXdjkLgGYRwJWdG0ENGumUoXZ3rS0pGQuRlhOZtiUMw+S7E06XE8WW3e20DcP0/sUrxfMhX372rD+/WbIwTGDyAyW5uJZ/asE5/KFkYRgn2TzkXoYvOLvuZ2eemsRcFnE/1fNZYkjmoQiew6MZ4vglYqEwz+POJVWLRQQsFL6fXjzYpmrxnEgeChH2VDJftiKRh0I8M29my+JKMA8F58vWwBk1PK4S5mVB+zxpb7YwlAMKKhjPl/Y3Wxg2ilN3I+FtUIBv15RC0ziKs1CAZzZiYUT2islD9f7i98FXyUoUl4fq6IzORyqDWSAP1fOMlZSxuErIQ/U8havKeVw1yEN1PNWuDAvDJEW7zB/PPCf7xDCFkvKQj83YVF0t45CMtpCfR9+zeiwkI/OQn+fQ2CqykIyykI/ncXu6J4byislDOdANsZEj6Z4Yyitu/VCNtaeySuapUyAP1fw1E7MwQqXqgWo8/WeUlmFBNZiXeTz/dS6sIk2d/Bby8vNoQehVsgrVv7d3tEvxhwyxqlnI5YlaMatcEXnI9df5j1vgqLo89IvfX087IlfMrqL0jl9J0vk+bqLtVAvsU6cdfVO9nr0uzdqd6r7DayTfX3xxyOMJ72yR6uc7LcQ5oGk57TJAsgzknw61NpzJ4jh1VHKoanfJc20bWmcaAMDKXAHdAJa7B0nyuNwyneylHyOLx4iyvQCuXGkxTxlAhUT3yRaDOHeMYoVlVJi751tw1pJvY+0x/fBJLz7pnkTOP8Zb+LHutQLw972tyHXPAUD1MtDSdDi5DyuFjgJQxrjvFcFqVqw+6QCAPElYOlR/sy2j/wG+qTANp2+CIAAAAABJRU5ErkJggg=="
}
] |
<image>As shown in the figure DE parallel BC, AD = 3.0, DB = 4.0, AE = 1.5, then EC is equal to ()
|
2.0
|
360
|
[
"1",
"1.5",
"2",
"2.5"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHEAAAB8CAAAAAB7iwDSAAAHbElEQVR4nM1bbWgc1Rp+TnIxC10I4mrTa2j6ETGS/ggovb2YdlP0h+AWEy16QSWNVLRUsNCkFG5BReGWewutUFGpHxOskB+BpJpoxV6JmwjR/AhCJf5Id8tNL6S3+ZHLXtiRJvPcHzO7mZk9Z+bMZFJ8SHbnnPc988z7nI898+6sIBLE5P07Qn3qkiTEPhHukyjjiez2cCeRoKqDO/dqnC3BGIu4P6vhliDj+73YfUcZB/8hwgcqgD8kRVgEMVm4g4zFvgmgAGpMDyaCfqDALDAQ7prI7NCJrIpERk4UwgTH6jef32HGpUNf6jkmtsq9eHt8uV7HMakYR6cHWye0PBNiXDpiNDw1oucbb/5ZvvLBfnKmxW/3e5EkY68AlvtgqM0k2TwrpfAhtqrCdXDz2GcNAJ4cr5mYknEZj5H0nOvVw48AYM+Iy+67Lk/jdeNiu0mSXEkvyrvOgwQYFzKzztHBDzTc46naJYQQFcWOvNbhHHWPeuxd8tUlXlzZIq0Bu63RcbtSeytdqtgLZF7+0RWXkSSzA3RrSjI7vGY3aEibxlN1cjcA7P4JQN8xW1MCxIExx96HwR3olc6OyDFaJDmQJy0aWfKDh1dchvmMXTIAFBQniKeq3erEAK9n5lwXQrZNkSSzBVv3RBgtkoUBkiwgz+wZFx3Jk/0krWtZKjqRMfc5g+gF0IWJ906/5F1V/j01V7Wf+Lu0ceSRQwCH9oFFgYlrf33at4xtWf4V4Kf7CHTtUp0hMvJ2wzzZea7GePhMxa4aOnFXOYu0znXW1o88GtYyDqNlv8xl5mttpcb/hLSOsQJQAKBY7XtzZ60xvffrkOYxGIX9cqbhKPyLCoFc6CYyhqokyauZBWn9YtqsKp+UqgCA1d6/NUsNm3dNVIWQIi7j6bsPKyy5tU1kkp+Ps5l/qZS72hTcNDqjRXK1Q7lski0zge2jqyoAvNHcq7Sz55JS0NiqzjQFbdqudAQ2jsNYbr8YZF5pvB5kjjNW33rg+SBz/RNjgc2jhzi95Vaww9DjQdbojGbbsO8+x49SQ0lSW0F0VU+1P+O6tZatLem940mqOtUUoinJ888FGKMwWiTN1pFwx+uNK2pjFFUFgON7usMdt26fUhsj5uW+v3RVw0vkRgMyrRFUJUstY1p+M61qm/5+lQI8YhpaWTj+8VvV3jGCqgL4bnwOWlk48dRXSkZdVS2SpeYrmt68vCcBVYGXcUHX9bfM/OZ1xkhyvCVo8arCXve6L6js+vPxv68MpnX87G7uuaS0a6v6YuN5XVdQ3Hzwhur69ESyONJq6onvoHNEsfUKVdUWSSwdMRq0QwSB3LhiHumq+pctZ6Ml4H/df0OR4NXTaLjNDNrZy/Dgj/L6OgCmaYZc8NJRoyFaiMABVYKXJMth13uwP2qE5FSbvF6L8WK7GZQVlmNFdkPLtbFqmqatrq2w6X67edxoMH8zATivME2EdQTqc4pNZCVG57/653rLnfJUl8tllsvhXTGclVa7Gcsky+Wyn9HoWLFPb9VcVSBK6eUgVZFyZEqlUl4RbvR/6kysaGMV6U6prHWo6RFXmQBePtrhr9ZE9xeyWkGYsKMyU/aJU/bpnbeLH07fTnmqTSBlIlVppsbNVun3SmsCSztmIXOVZPTZSJJ8+HJQPzoh+tF3rN3WIiQeKXqkmZZKgGVpiOf3BOyuQzHbLKkMXsmrCds4sMiW2drq4M/HF062AYE39QEQQG60tjqQ8V1xvNI2FnhANiMDZJlvlK/F+lhJL9Ci8xeu6uqhtyTJxUiof3IcAs6fgwDGc/Wvr5MQODBaW6dUZC5zPda092D5rhLpXT8kMdrfLa72vbk17ohxTgOg8c/fAN6hJ2EUEABOp4+uhw8QIIGe0dpLkcJSJWyjYv7eFV/fKEaO9YIiYasNZ9XYed+0r28UjG83qxK2uqjw1G4ipVrMJqQpyWn/JlLKaAYlbKOiaS50dgDvbFMnbCMjN+pbmCVXNdO0aK1/8lcw5vuuScJotg0lRkey1LjoKUtUPbXr2eQ0BdL7L3sraq5pWiO5GAkXuj0jp4bRbB32V60Ti42e+/kaVU/ueSZJTQFsfuiKu+hlJH4YOuscJYdu7ybSHbDFkk7CNhIscs7zvZInRoGTnd0JBmefE23pH10V3tyjXsI2IihyY39yl10oNctuFNaPiXZXwZPPiZBcjITVe35uqRbc/fjPy2c3hBD1np2yM55ILusnbCPCGnpMqmrfJv3kYkT8L7OUriSg1hjHc/2bNoSOAvj4zHOV4hrjRwux72g08EjOHWPEhFtkULgZ6uDeEyT6Q4gqBAQwKEQXTjiM+4UQYhKIf6MYiqL4hTREO2DPjmyeeeWTWInAfux7IE/nExlkAdc2kNBwHuYrOIz5Aedpuw2CZcG1/wXJQaifbksEBUyuFeoAfFKgsaO4UYMGgGcS1AFFbEcv8mr3dWMbigBQnLTZaRj203YkrXj5t1AYyJP5LEkS9pOfSf0GQoU8qr+LcNTMbiyhG0n+FkkPyf7C6/fJ+H/nQb+QE91TVgAAAABJRU5ErkJggg=="
}
] |
<image>As shown in the figure, in triangle ABC, points D and E are on edges AB and AC respectively, DE parallel BC, and AE = 1.0, AC = 5.0, AB = 6.0, then the length of AD is ()
|
1.2
|
361
|
[
"1",
"1.2",
"2",
"2.5"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAH4AAABZCAAAAADd4c/aAAAF30lEQVR4nMWaX2hbVRzHvzcZzoeyKKYssmHdzLZicQZ8WGWOBN1YByOWMVDwwQ21IHtoxwY+rNiBghWV5iVzsod1olDXQPewuYxVnVKhT94JxTpt1wx0RHxp1w7a9OZ8fbjJTZrcm3tOehO/tDfn3nNyP+f3u+fv70YjXEWtkLixOeJeWkk+iTJF+mqvx3A5fFH9T4Wbjqd1/Dxy32u6O14rHjMPXmxtaTre0ifvYafXdHn8uXPaNs/p0vjMIpne7jl+gyT9+A/ArOd0gG4SJE8BOuNAj2tpRWkSo14DpTLsALj2nbd4eeupAfn2bOqgNQV4IHnrNQBfbUm9ds1DukTTK5MR/pHjgVShPXohJfxwlOREYMQruBp++clJQXIyMPy/4IdeNT91k++FDxTwyyG9kNJDCQ/QivhEt5X83Su+PH4+OFU6md4y4AlecsoBMHS4AyiuO9t/juJsM/v9fHDGSguSmXBfMdkM64cOl2Z7DUDbRAxDpVVwg63PPjFTdanj7TJv1Ce5KYfaSQxVXV2IRS6u03jJGe+fnX9srr668Er4a38z8HbGA1g6FBpZH1/qEc0Es/YPePGl7uW6H7z0sz/+9IBDTi6ujT1av/FS+NnOmYBT3kq3MVb/5kdqtfPhCUc6Nl597NAS6l6wuj8fMRWcr5VvHO0s5Kv3fwnrtf5+Z+MB+EfbYwtmyUZYr4dcG/fxyL/KhpOUmnC7Jeb2vvYs63G+O37S3XiSfe1/KbOl8NFLUjfqb7vXCPytHYbcnQbaquZED/BR6VX1p6Fpb/BlTWg8LGk8yYQNX9Ruj27WR0al6eSFTbpCaTt8RV3HIkp3Gw4o8u2ttyoRGVO73cimCRuHC8chobbzU2rGCzIVmCi/EAcAxBy/URNvhMeV8CQ5FkyXn8Z1Mv2OND4OAK2L5slwlFQeSq8Hyvi5LuYSOedRGyQNwyhh4jp5qnVRCNLYcUuNbGo8mLKqnB5k8jJJUevZl7q2yHUJkvEekrwUrYdOTgRSxWQSgF6jaCU+3UMKnoqRXA5N1rl/mAwWh8q4ziOLNUoWN1l5wCcA/80Deb+G7b/m4T/fuScP+K18v3X05+HP11hg77kZw5sAkFmKYG9L2fsQ2+WGYf3ndi/SIE/3kA9DevE6aRT/aNAwDBoGaw7Geug8SSYHScETzuUs/CppkHffNQyDc0iRiW6uwZeqWaqLs6ZDCdP3ZPwjCTwNGuS5j0kyvp+c3zq1Hjyntw6mCw7WnTsvClzzI7frF3IWMYMceIu0d74r3mRl2gboOmhoRL7QvPL+9CEAwOhR5BeeP/I4NR8gzDbpgwDgAwR8gPBBmFccGpQGYOHLZ39yW/uW7XLMtlxopGfvtbl8010Ph99IuJWx/LDGmdmyUEqdEhTZjhqNvuh803SrhwMATmLIi8D1g2gxAOF0t+pKk8wGsus13tT8C8dq9hD7Ha5DNKEOuQQgbPF390zZhFIawbfdYn5wwjM6WsaXDq845tpZX4omcN1xOwAr3biy0SHPzvpSNEHz4sXJxqstB5Yc8mys/y32Z839vLryr2ev2wdgKqwngDNnPKbDPxret2CfVdUV9dCKN33ekiB5LGIboEFlOalogiKbJPs67EayKuvlognqdRC97Tb8Knz0ovd0U/3hjCv+lsKGWlXvt1Xxy/CCJPcNl514rc+2VgYAKqxXiSbUITMAUWZaBT6SYkN1wXoXaIdXjCYoSrAqALEWv3uskXiS5EhwkiSZBGK53jVvsq7cuX3b4/F27QirAQjvT+9FZlsPkXlksDTlUMM302ZSa9xPOuij1tInnot+AeB0J0QhpHC54W4vU9IMYCR1kGR8lGnoDenqtlrZNVhI+QisznZh1/pfSMrr/p1nAICATwO+39uC3p5I/W9E1KUVD3SPgHiunOn8ucsEybjOZHP5SYyS6RgJci5m1adpSsP8AdgG4Nsu4G+zMTRNBwvtzAfcOIjVrtauJoEJgKVWbkZAXm6q60v6D8DPdhnbqsSyAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, D and E are points on AB and AC of triangle ABC, and DE parallel BC, if DE:BC=3.0:5.0,AD=6.0, then AB = ()
|
10.0
|
362
|
[
"9",
"10",
"6",
"15"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAJoAAABsCAAAAAC3X/TPAAAIdUlEQVR4nM1bYWwUxxX+5gy1GtG6Eg7epJeggNMcHMEmdxZucApqkTgkR+KHpWBSVXZFRSW3CiJNZNQq/ChtaRqhKnIk0lTFbmhKhSsqhdomKcKmdrjGJjZg56jkJFS+SqZ2W6yDxqn39uuP3b3bvdu5O+f2bvvJ9u68eTP3+b03b2bnZgXhGSiAS2sCAAUosqp9HlAyIQD1uwAhgGxmnlID8OO1DzqxAuA1tZ66v8srPaUWvxNac4+01lNqL3dgo7zWS2o9PxMP5Kj2kFr8Djm0Tl6/onxUMhA/8Efgo1wa9AgvADG2AgelGsLD2SAPvM1rl36fo9JTaj/d/naOWg+pLTx5rvdKjnjyjtpUeNOfd13/bw6NMg5KG7qVMyQfico1yp3XjHXZJ88ODq8H8OWxrVLVcjtUZxbfthBdDwCNUblqWamZMf9WQ/vrqwAA9WO51MsJjSR5zD9qFhcrE1Ll8saaALCw9+PxarNYuenKdply2ZPH1XD9YHW6GJYHW7ljrSfy4k9gybPh8RzqZYNGLu7fOG0XTa6V6pfRagLxbep7620iBv55S6ZfToeeb2g7WWkXCV/9hEy9jNR+tP/N72QJRVia2UpAbZ8QQjzwnwzpwu7B98IZMgJojEKy+igBtTdaY+Q3H7FzG6urf/veTE0BoG5M+vju/kBcaiHJ1kPGqCRJdisDmkS/akZS4f5sIN55EAAefte0C/DJtyeG10vU+fhf/M417juUF3YCgOUB82/boK8z6BBWok42DlylRgBIntsOAh+mtgzON37LyBnCKay2Tki7cxszh0hyBn1GpB3xj+XWr5JUuBhrxgL2wjoAeD6yGxDAwl6MV+ds5v/sjYBjhYsO1Zmpx78GxMW/+wECY4+G+3MzA8JXJRWuOpMc0nvt00uv3TeQv8lRyd5CaVYeGklOL7aFptOpTYqBRmd5aeZQASDe+CWMrHfcQLYjPJl0lJeEGgFgSgh1qRDt1coNR7mb1FL5VAA4fKDvr1WNHxTSLnTZUewmNd11BMD53RNXw5VdzzX9oYB2WyTzgbvxb2DUf0S/Ga/tzD8OBkOOYteoaUwPxhPKgFm6Hdk5xzzDNFG5WFJq6c9fbAvdtEiPmg/EcgQcN2Xcj7UPQitG1lqk3//lk6/mbsdG52BzxV4WnFN6SLsHb4baHD1mQOOJNie529Q6ax3cp08LckQDTlJ3Y21uZ+Q2nYL+F4p8MpVtyrhCzaCives/KlMZ9f/AqYlxH7ro0MQFaqlP6TJM45gpFiKR29IuDhxzaFP0CCUEAAKJ9pOjuywjNQOf76+XPgWgYdypTbE2o2Go6eCBRdNk2SbQSHJAOSlpPlnrICyems7jrNKdX3U6uH/R0iYNddVctrZLVuusHS9EbbEt5PhArDU5DGBXZoP5HRNj9ZDtXViCp/Jke8N5hwrnTZmijKUj6j9WuPKoo/LpZv1q9TRIqqpaBDF2KX9ajvpcU/PtTBaMKdmKIMlimCW+HprJvySz4XDtZFaLqhlmjo5iqU0HO3JN3Q7QyN7s4Rw5m6VoUlNVVXes7lzVdkndGX+pqlSpkTxTSM7IxnSwYynNlNTYeVhKzfxN/VgutIv1/4IqqXY6uKYgJJ56zJ5FendbmGZTM+wioZZNf27bHvm0mAsayS5l2Cpy2JRJx5qawSQvteEvLiNnZGO4xtZcueFATc2gls+hxs8r9w0Ww4yce6IlQVLTrdh8OuVM4+oDkKwAgIpkBYCKZLICqEhaL0mr2IckksTC3tej0i++CgFRfdG/5X2Yh9cao6kVi3lN/xfLSSGxYEdRadpAr9Jr3g5sy6xMU1vOR/Uqp4rjZGIy0KFnIc6tUpk9UZHLm6zU7z38KXNGNhItTbP63dpJQ9QKAIikVh4VFRWFRsn8jpujQXNtWyxWndlTPwIAaLxsdPhGa4wc2rj87RiOPNp8pkq/F26Qe7a35WVA35QRAKAuBdRfPb5x+Yuin9cM51daHmaaWhLkkLkpM9TFnj4WsMrVbLeJlidmMqQuYKkjGGOi0oj2bgCxQqiR1FJMJt3JGdk4VdObOinTGuO+u4VR01J/e5XTJSFGcnJd5zdOkCRnIuSrLIyaCfVg7WR+rU+L23vW7SNJdr9Cks9RK3iEcn5HfDxYijOCep9VZ3f/7hYA9H8VwL61EAVbbVixLRRcHAdmV4ufSZCDBt9Y4Q59SXE9Z2QhZF/KFPb12Z322Yk1aQ/k/ZZimTA6DI1tt3ZfUKxNNdQM1qT5uM3M7LBh1N59AYa2LF1KioxNmVzU9FSrdgSul5RRCurnbJsyuRwqIID4jlujm9z2oDMqglesxTyxxpGGljOrSsnHCvsmfR5qL7b0PlO+o9j2k5M5k8ed9tnr1e4PSCnqDlpLuaw2tcU/uFq/LY/lAh//w1p0HJkkqZ0qU86wYNdZS8HJoQIAks8MXnQ+5FBCbInuSRd8ElfFm25Fy84s41yFs2WHla5yODATtk2ZDGrGAuWYMky3HwAKgmL5mi0j1gQosNA2f+1elGAaz4/wWPowmQ/GCcL+FLmpcGCw2qNXXmzzAUm2nuMQYoYdu8ufM9IYaErfg+TSY3c5g/c1klQ7gjm/VS0x9E0ZHT4A7+y4B88f2iAAxLfOR3O8EFZyVK9On5RZAeCj48cRCwDAUMsXAi95xEoQ9HHl5SDQ04bIm0d8AM7H+OsNNwDMX+x4Wh+XHgxOAoJ8+iHExTXytZX3Q39cXgp6kmIdoC1tPqSRfKHPB1xoBmanvIwwK8Rv/vVDAWDdQyBbY1za7L+rc/bWZCSXNpv+810Sv90gVt4/o79460GMWUFg9prpvxVf+X961dFmGY9fLs+GsvlDAIj3e/dinBTd6COHIqU6YVoUhgAcIvk/dgbKq05WqmoAAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, triangle ABC similar triangle AED, angle ADE = 80.0, angle A = 60.0, then angle B is equal to ()
|
40.0
|
363
|
[
"40^\\circ",
"60^\\circ",
"80^\\circ",
"100^\\circ"
] |
A
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAJ8AAABWCAAAAAD0lxtAAAAGj0lEQVR4nM1abWhbVRh+7+gP2Qf9c1OjRudGRyZVF7dBw+wsSJWJs+tYcRsKK1IcsolC6+hgtIhTNqysYoVVf1hc0QrDZDK1G3V0s6XCBp1QSWcKm6tCugwWzGhvk+w8/rgfuUnux0lyc+dD2+S89z03T5/znvO+59wIIFcBEujX54iGHrv5Go//skoTyoMgpHa0zQNTu9YQEZGdPILL+lG69db5VUSLz5+p4XGvqjQfPSAQfTUZXkVEVa9w0XNdv3Trim+0BgRbf7fjL/P3umzDnp7r/P6Zs50SOXCbn+/RqEBEdOIun7/b/B7o+7aHKL2jZiWfv+vrC81uiZMnvIXT231+xcHt8S0WrvIrYaxc5Sevd+fOF9PF7fi7ffAX3xS/u9vxN/zEmusULqIDXAMDYtsCvwGhAH+niuuXjR+B+v31V+qJWooRsHJ6ZcEAAJHGYERuFyGgK/EnENG941t3Tq6X2y1CmLtvJfQywFSg6QZUJYsQ0B1+Upc4CEDjhw0hzp6u8Bvzt8ZzLdwCusAvecAbgiwd04yBEF/nys+PkXVLMy0kT5JsQd/zPmf3CgimR3z36jHDC5wCOsCPAR1ERLS38Nqw2HVXdcoFZwQ6pF9HMImFjcGk3saUdGYMxidg+fwYgFRzN4CopztHqP7qnox5vzCXgM7o96dvAkCqWT/CkcbgjGUnLgGdmb9jvqfzLPeOb9056bfsxDWFHeGXPvviSlLOBuR65erm0SvvWPYBtVCYozguY1Q1RH0TAHDJMwEAYItqOrNGKGAwr/PgCL9LwSSAhY1y+LGx9fnpzAQcEegEP3n2DlA3AC2d8YBjDXSCn5y1lMVvxNue4O4ZCNt5OJzf4ntWj9kHlYZQwM7VsfoARETf1T4+3ch1riejhc7YeDjGTyCaf+mD5TMJucm5rbZdAx2srz731/9+fcOTHy4RcUtov5UrM+A0qLuzue21Z4voZjeFHeKXOSaeUN+P1r48y9/TZg10hB+7Ku/O5AYyxzxHklb+etgIWBY/ZXGQCtLZfKsvxHsPawEd0E9OZ3kL2VhdU4RvIbSuA8vmZ5rOesX3/uW6g6WABECSpGJZaRh5qD1holKszXuK5xaWEUgAUDK9+O7VF00uMQDjmxqm7W7BgEDIPA5K5CffcFjsspmn/eK7crXALELRqg5U+UmSJI+zPNZSzov2TvkLSYJkuTvTEN8vfmnrZBGBmn7Kr/aje0GueVGSIEn4tLonwzNDLweDl21cLCJQz09RyIRf7v8QaXw2As5KalDcH4els3kdmI0/KY+OFb/MR2Iff9CyRGd1v6WHeR1IKrEsP7vxhTT1TNON4ibVdENg3Oq6aQSSOiM0JoXzQ8o1Jw55BuUQtIVOlWFvW8zc0TQCdfmDUxBtd8byGFiCIdklfmJ+3GEmYJYfDz1WzO6sAJGmulGza2YCqvzscpyi04i3/U4JzNRbhHytMV1TDxMBeesDxpjFYSPPDQAA0hHx6D3D6yYC8vFT09nhZI6hFNzYXjti+BHGAvLXV1zpjAdna7fPGZiN60Aufgz6w8bStVMgHRV7lgrNhgJy6pd9dgYHCGKu1Ve4yTOMQC5+mWNiX7mU9GDA6Pqm2XybUR1ox49Be3bmLDK91fmbPKM60F4/qUscLH9EDRB73XtaazDAMALN+SmcuA8biwRjwHhd4x96m0EE2uhXTjrjQV91p/60sLAOtOb3s3LYaLV7KA/xdq9ub19YB1rxu11GOuPH5U0N2fq/IAJN+TGO3Vm5UMQ6KR5Q99AFEWjKz7F0ZgUlbhIHxZOKJV9AMswGDJ9V92QqFnR5nwVgqmGzrIZeQAYD/RiQl87cwZB3XxxQBdSkMRpfp9MZHxKdYh/0AjIAIG3t0ChXJJ3xYLqpbhwIfK+3EQAwLHysGgoPG13Eae/umCJgBxFRMLmMiEhI70kqx+UXA7Mz+0o6vi8ZukcRu6Lr/NcQJiLqHdiLhdSbcvwN0BDAKp/OOBDd9vBTAFiqeQjo3FtFRDR7s5mIBDrXduetqav6/+0+fH223ncq3EL017UX6IveiSoiWnz7621riGhmcn9WbPmpH7TvyLv1SvRI1xKRcOHag9QNIgCH5qP++fs8rFnI60iqeQhRTzcIGCCitf8ffjKi/nmgY21sGc3eAi7VLFeHtcSocRoXNtYgHa1ZUTX7xk9EEc3O/Wi0skj/+CoJh38YWknkGU81FwywllTuyyuTR9EzAfwHHiC89X1fuxAAAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, in Rttriangle ABC, angle C = 90.0, BC = 3.0, AC = 4.0, if triangle ABC similar triangle BDC, then CD = ()
|
\frac{9}{4}
|
364
|
[
"2",
"\\frac{3}{2}",
"\\frac{4}{3}",
"\\frac{9}{4}"
] |
D
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAATAAAABoCAAAAABTOvMBAAAKsklEQVR4nOVdf2wT1x3/XIFFk6Kmm4K4CYus4I2oKeAt1UpFkDMIxa2y1IhI6aRMhI1fGu0aBBlhTRUkqJpWYWUbYamyjWjNKlDCQsuPOgs/1aClSlUng47QhdYU2IJAm4ORMMnlvvvDPsdO7Lt3954TsD+CxL77fr/v3ee+973ve+97F4mQfnjhAwBAa6kF3UfEduXhwPslXqLhPJcV3bQkbGTYgV/PKMy0opuWhJ0uhO8y9lnSTUvCvqiWHp9rUTctCfN4qWGeRd3pQnvycMB3ZxHmzbKonI6EnXBJWGlVOR0vyY6VgOX0U0q7xLXDBfQttKyefoSBJB7tNLwkufhKR8Jw7hyHchreJY9UPP7JNMva6edhf365K7PFunraBf09jSdzPnb7Mqzqp76HxXrEjpbzOXja+YZlcynvYbFJxPr+44+CpK8WXrY6NEp5wqJx/yf32kLXYtXtAxbzsdQnbIyXu6vk5vDtcSj3Q4c1c6kfwyJ8DRXOf1dLJ7JqqiyaS33CNFxfvCpqjnXT9ePWBuBpQ1h/wZZfhT8SCNPe2D5qKYalC2G9K97coMVrCRLgzv6DJUOpH/QBAOdL//h87Bbqe64/y4Kl9PCw46Vtz4/f5nDVWTGVuh42lk7Qe9VHHRMFbjx5wWY+GUtdwsbQ8NbpufF4ec33rnljaUDYa+2nwuOgce509ztHnzJtLfUJ29TnSRTc3zl4xrS5VA/6oz++2pnwZrju1hHTBlOcsLvFdCxxzcm0PVWjZi2mHmHRMWZoRc5BvdnolXbTFSkpF8OiA/vN5at26cv2rhgwmb2mHGFjoK+KXnrFSGj9N94yZzX1CIu42Geu3WvIaBXy5pPd5up4Uo8wDR+7f+9mENv5Wasps2III4lv/T0J6Kg46IRBXQBJwP1vv/8DM3ZF3CUbpEd+qGwRYEggDlV86AQM6gIkgDLqXgGI3W34CfNJ/yA68DWZ25BIvLP9jINJUMKa4CFIJq4P4sTw/A1ERFtbeQ0JgKp9eD33OrvWyZygiTa4Pazpv3sAYK6d15AAaH7y0l+7Z7NrLV9gJnvlDfojC9Zu57MgEKEIP1ox2G6qBL9/6aVsZmFeD7txOap+eypTFELYw+67gzrDx3jIfXEnuzB/0I+Kl1OZ1GnduFskt5qtNKk5dIVZlpew2fOvAICvDeAthhSC20ufbjKtNGvbNvZTbeIGERcNaCXyFIa/qbqyyYcvt85KH4I5Z1lFuQlTPQA28FoRhEu2JmuKLQ5WSQFhZ+ovRK0Hn/xo32qLJvJfrmATfOgH3yRF+DpV3rLcqpnzLw6w3SpEjCW5qpJ5IUVukIfLj1rmC0ueqmd0HWvXfDSaspgDQDKgxfgm2yUeMwNZg0xyfB5GAKr29uHw1Cdgb+7pyuUxM29tLZsgz1khomBpkZ9O2hVOM1xQVaJtjlvW9YmIyD/zIoswZwy7veQxTxaWz/4Tnxk+SBLW9nzEPhycoA+AkPXqNiZpIlIUqw5yMaeeiIh6ZDMzJMIRLC0W0H7Q7mGQAhGRSb5UVQ25sUduC29y15szIQ4q0Z2iciEhoc2hGA8TrBCmodHWo328lO2fslGRP3+zIEsF4XGC3qFohCmKEro0Q5enEvMr8in8kxSFFKrMu0aRBipqBHXaNK7l7hZlqlsOEBkMiCMeFv4f+Rf1i2I3h7gNlLoCUXYGs/4jqtvmcGlOo7gxf1mtoUg0YWEfSkBYjJwymP9z7YIP/awUdV2Yg1c+KNCaL+umkchYDFPG8aNL2EXb3tjAp/qzB0R1mxEqEZ2RWe5s7KiqMJKAxtQYYUaXJCnkmds+4U5RWy6060xol7uF2lP92V4DEWhhPkLNxKCvxG5WlP22HoXGJ2/3vmXUllioRM02puTcDPY5DQSihkbMycVmx7V4m/cWsxoQhHq7T3Quoyr2Y/oSY4Sx8KUSUaC4OBB3p2JnnucVghoH2/yCKajtufpEaGPJUabaRQm4vjTnaNxVLJpWU8M0GBOETSfPWn1IVAeSe1ajvoQ5/slr+12iXUSOdlPWeKCUueL7OQ9UIiKv7NeTMTm90y4f19v7vcma5gm4yhjGfdZQUa231xRh6l6D25Kz2Yw56xhavDF5xq9lXdXZy0yYSqRszB8kIpXURCe3yz4p0zyDeTVan5KBmjKdnSY8LOBy64cNVSX3XnZ7ljGQsy/UXpLsB+SexDvZCbv2RCUZdtJrEx+Kx0H12lqS3ERjAamU4FiZCeuxNbKIVdQSJWqLD9pIv0s2SC35oeQdjmk0GqyEtTGOcgfkW8mdSTwqdxElu4jDk3hVx5CwUM/qc1hHbZWVST2WFps3meY1FCWMxUwepqz7/q0Qc8ZkDGbHHWiKgErUOGdyJpE+zU6UvbLUVgyVPtaSwVx0svPqASY5K3i9pdOG5Je/kIT1mW8naMWYbV/eNjMnxy9zLdnrYXN+6LxPwnrLYFYCVzYmrEdmqrlSI0ex183YKZNQyovuJJ8szX5tafz9hoS1ySdNNhm06eR91hEsLp3M1eJg6G48AQaEqbvt5ic1m51hZdOaOvAXrBNpzhjN+XE369dWjP702N/zTAZMoPzmKQC87/+Mxc3CAvPFvlxYM/qXuNv1SPY7y4JW3KRdeMGYzz75tQjxH6nR87Ari5cezLDiJu6vHwo/5CCobuyfBTVbxVgygeUL3o63OTHD3bLl2a2zYgvGuuV2Ipr0ovb+7DiLBokJa5E51jRcAtfvycPTEx5sjLOan5CwWvsAxzF75aAwxtpkrxhDpjGYPTEHT0BYsLxAdynAEGV1XOpRXDfZ+rlM8aCueMJZj0+Yv6CcM0kcyPbTeB8z8jg1nlhdro9BNUm4l9MZ/hTpQDzC1AF7LXdbG+OtvbAcd6zMNkeS59f0MfGRGhCFx4Fav1TqkgXMAQ9mDWprJSUA0Mpw3BNcTKlwJn3KWx/5zeN6pXmYxxuRaZbPi2hqx9hKWEkreeBNLBqLMb6CbvdUFhurRPTRuHJnNUzY8HxvWIJqcgdiVKxiKFIwNpwXoC+NCSuRAMyM8qiAs2JK6/+JiMhdG/VFjXjYL58NhL4Hy5z+GAHrqNOW9zwbiEoYVl7dXqKtMyNTOLcdpubhkoR/aY/UlAAACkOENby3MHRmby0WcFLDNAe1/KkBQJ+x2rCLiMitPXvpy+XLTLgRPoxKbZakxEvk2fgIAPgCz3wzEwD6nyk+YP2vP2gIDz8zdu0IDb46vdSwqM9Q7fQcAJj7eehbf8HW7VP7aGL4MHYe6QUAjAw7Rn6z7InpAFC/z/ddADj3gn1kp7gWRzvPOQFc9Tuw/reeRUbinSsAYN6nAIDe5/atFjo/ZBmPVld1AsDpQjTNnvGL6QD2N+ynDQCGuiqFNjWt5n8AcMIFuvG54Uunhj07AeCL0KkrdF64ILQz1jFy5m/PArhSXQ0vMB3wBVSpoxdA1qtJabBjFxRXtuEfQ/v3kkwAvj2tAO53Mz6LNxmYETrvHb2LVtuB6fD97BTA/t4Gs+hw4QNgWb+h4Im5ALClsBRAxnbgQXiYPAKSfHcWYUkmgK1AL5Uk/8UARhnK8Hwv0ZdYluRuWIJKRA11RESb+V/DwI/Qg3GhM/kgvCMqPkq8RFRSJ+I1DPquHO+jvuCDiI7wX2z2Ov4Pk8R5XAkT0MkAAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, triangle ABC similar triangle DEF, the scale factor of similarity is 1.0:2.0, if EF = 2.0, the length of BC is ()
|
1.0
|
365
|
[
"1",
"2",
"3",
"4"
] |
A
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAFsAAABXCAAAAABOn2Y+AAAE60lEQVR4nLWZz2ucRRjHvxNkI9mjUnvYuHZViFJjqV6sYA96SErRHnrZVMENeApCWdpSEHIRvHhQZHsQe0hAqJ6CuNkQMJiN0T+gFLcnPWSFQqomJsG875b36+GdeX//mNl9fcjmnZ153+8883mfmXnedwWhbRTA1okpt6BhY/rSEMCjDwFCT9pIG8An1ad1lU21l1/+w+BsI+3+4SsnJv4n7S8W8KLB6Sbay5+KSRNXDLT7h2S3ZqD9mL70B2vA7wC04xvUtEXgPusCTd0LSKE/Lylch3W9NuEtIscitU1kh9DG+s8mnhisg8D+6cfvjWsDN9LmfHn/ic/doo6+fkiR7erB7slt7dNNtPcqm+TKc8e655swmZ9oAXjvyc+0Geab437a1QOS1Keiz2SvskmHNKCixYQC4Hy5Jb9qU9F1WxIh9ano8t6rbPoVmlR042R+ohWYLppUtEbHdvUf90a6pkdFTztEhCRXntWgosekMXErUqNFRcftVRkjiopDPtSgoqMdI0K6seLEq4OWz4Si4c0atWVqUsl3u109SHIwP1YStUNSiUTI+AyKOZDIhCKwsTTKrZRdJpdKsk++D4F1JGq7J7fV+ptoebxTiZCSSlxZ1fhM1LjD42+UWxkbb4BKUsqV7XYGETISK3UAwIxf4Wk7XnPlyBtVJhEyEiv1HrkVyEUjftd75GLlSDF7f8HrNsXeveqdMLjMwe3Bbf+CsPbgMknWVd/fZxMhyd2KR6Xb4lIn2BbW7jbpkIuSWS4RMkhlCcCvwaZQrsmNtyCAmqy8+s757LkBAJdeuylL6z3OVUNTMYTk7BFJLrpM2tXDfLf9WOnPkF+GWkLaO02S3EHHoaNHhCRXasckudQiyetpTDZqAHDjwqyAoBYRgLh07iYArL8JYK4aaBIEbKAEAINXv51Cf3JmDQBWF+rjOtoA/73zzbmfzrszvDcV1oZdAoAt18/OLADsn/76x0xFuVgIAjhz/V6SHwHtkIXzkTxLWW1J0iIty6JlWaRlkeR3tT/puLWuuSX5n5ZFK3DTUvYgpa0+7t9uZVOWpIbXQku6ERZPzFeCcWKXANg2gGtvx2Ok5BdKgW+u+TMogQlp+W6u1g5IizwO+h0dW8DvlHwFStTXtvYqP5DpTOLaZGK+IghbDtCNFpvjjXJLhrwlUHIb3JNsoAQbKNkoycuy8hW/G+VISj6SZ/FY8bWVtPY6ErVYxq/2YptC3vr0fCTPYlSivefsvlkWzVei2kMTIWP5SjRny85HDKmEex6BCBmNlbD2SETISKyEmbhZ/NBIFBUv/VPmkO1nRiJChqkEc7aRiZAhKkEmjbLJXpNJxWMSfj8yqvlUfN77kwUQIQNUBCHvq/+kVxgV1VtBREifiuJdSIwok1QEiybiU5ExuHrxWhmA6TvUNHt4a/t1T+srk99WcowCwPNXivIz2QzfURtrzwkhxFqRqstCzD76CHTIeoeb6BUWgjtokjtogQ4HZ4+4U5z2YLpJkoudMQj88sYEbjSn8oeqZ3f++hgAaqdA98GwOCKD6ZYsjQFY73HphfuBnglw6OODu+p3sTGg//cUrkxvyHYAEPLXlmGOFN72MgZsXAQe3D3lzSPVxXBH8dRLvwFAfxVwWO9xMF2Rz8DDZLARW0KH7M6Q6AICuDC6pDKHXQBNkv8BOsV9KgPiVvsAAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, DE is the perpendicular bisector of triangle ABC. Given that the area of triangle ABC is 8.0^2, then the area of triangle ADE is ()^2.
|
2.0
|
366
|
[
"2",
"4",
"6",
"8"
] |
A
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAMwAAAB+CAAAAABNS6FQAAAJkElEQVR4nN1ce1AdVxn/ncsaOorijCTUKZohqEHRCUyIUG8YaEMlsSVJJ2DSMZXcAQoWIomAgAanDLEhQ9qSBBIYbybBx2gL2CCtcCuxVHINndxKnJSZ6IjSKVVxcJSWTKUs+fxj9z65j32cu0v7Y4bdPXvOd87vfo/z7e7ZZQRz4UhM5ybLwk2SNizXcBRmMhlq/nQKAPCxD5PJnN/ydwYAjIs0c8nMvHPv+jh+4swlc6oBnwXwgTCzc10sWTKw97+ZzbxDNLKJo0CBoyyVmLG9DExzFUlmoRaYpN3AY3SHl0hmXgZAfBzFByb6jA8XTr+o2emMBE46MpsMwWbjJszEaAYAYF2XEv53Fydh5mmGAGDFdvHohhZeIs0jwwDM573r/NjX7Dc4iTSBjDd0uTIe+sU6fORU6cr7NjeTQxdhoNDeAAaUfLSDTzgzLwCwpv4rX5B2e7cUbeQh0njNyBa1WPyaS+aCjc0lXEQbT0ayqOnsxOF4T9mRxV5INHU5jxnRjADn9vrOGG9JjL1uTqKpy3nMIMPQVdTvb1jpZdUcBJtBZqX84nWrbwEBT7x+Wb9gE8jM5/7XmeRXwoDY7sMLuiUbR8bt2lMZhX2xq0/m7mzQPXMaR0Z27YH8sw1+5QQAjHBq8Hd6uzB00iSGH/x8NM2/0H17Jv585Y1VGlMHQ32GLRaPu9JCnd2belynfEPJvJGVOBofpFx2lu6eKX3yjSTjzD7qO1N6IbtT4pMlK7o6MJBMZ1F/WbjzhLK4Tl09GBYAVmqc15PC1mDAha179aTPRmlm/r658fBcACClKazuIsEgMlNbH+xT8uyi7j+9OnoxhszAA083RK4FQkx345z2bowgQz9s/M0+JRUZkHlIx0NOA8jc/vrItZAz5So8MTGouafok5nNShxLkHaVZJKxvdWLWruKFhnPuJ3bDntmSkWXkbn5dVo7jRYZBolQT1F/hbqW1DH4e8++uqZRmDTJmwmv1IxFmClXg8V3lrrTZ6buGU40NMPcI1jIm5tQywXAPjl9JrX3N6IZAKYy7++LU3/5SDjbPQUAqp/qRYGM+9ccyG9r0XLviCHpeNmKrySliJ5mTn5nVNFMGQwVsZrSZ+4BQHbZRds/XkvwL1KD7hwt6TN3zTAQgNm8T7yS4C1SjdS6Sg19cyUjOSwDObfZumOg585x3Zsa0meuZBgAEPDjov4qb4EmxFxq/LfqRnzNjACwler2q1bPoVZkHqhSLYAvGQZgYcfcqyneQ81om3hRrQDuAWAqM6fvwzwExV6oXFSpG95kXsxva+W04GJHfqNK5XImc7JyWPNM6YZHGe0Dr6pryXXSXDr4zz+s1y3Fo4yEjkPq7j7r14zXqmetHx/Tz8UH+1NPAKTccfST8fyQzm22H3G22rMdU2DKHYdf773FA1W818MlnVR1U5AXmZXq9vGv8Fo3JoEAVNBpFeGZRwAghoUDd01wXG0NQDauSzn7khT/RDw0wzCVueV53lwkpFaVK6/Mxcwc+W1tPOQEQ/ObP1NclweZk2VDumfKkIi5UDuvtK5eMoSlR1+YzNQpJRyyHjmqtKoFgCiKmrtis1ZhNCFyPR1oHXcorGkBIOiIaa5ttos6H3hHQlxPmcK7zzrNrLfwp1X6JEQEoSC/WVlVt05EQBABASIE+dC78ezJ/wURgigAqB67moJoLIT3AQO1f/7Al5V04daMIP+JgiACouC7ASAKAtzHIkQBoiBiYdcbEylSf7wWwAcFS+gsfU9JRV8zEwUAIYOB4N0RAAG4lZk+5Jkpo6kbYH/yk0qqecjIKoAgKIwGo/cdP6F+WFpAwPlzShZvWIBAVYRQTUDxyfKh/VpGpgEMSDqmJH22QDYv2aUFURQAQfTdiP7FIkQslV6+nh5NAoGowZnIlSyAv11JR4LvRvAvFgRhNvfO2N2GLe4gAGRvnXXvh4Q3AIjKB+e6N+ozpQfyEyeWVvUtIEKgcZNRkdFQb6G9CiAy5A0v98NRNP3t2Uh1hYCtAnx3+GoKoh2M/cAAINZeuCNCEqg6nVnY9bozRduYdCL7YH2EGkrIkM/eX7Zu8Vn2bixaRyOkz0rISAZFAJgjpyVq15QREWevkNPnEN6q3MwYgNNlQ9/QPyjNKMiR0udQiW1ExyfmabxUedOVyG9oGvDMlw5kIXTsiagZL5c5K5wmciEACW2l4ZakKvcZV+ajhs2UwUdBQMmnWsNUUewzvYX2muhetkQEA6i781boCkony6bLRs+UQcE2NtuuhQwAYTTjo4WFXTcmUkzWi4xqdGkJAIzco5+2fnE4HubrBQBi7N9/K9S5cD7D5NE7tte3A2tDMUBaTXWogSgIAF1lQ9ILYmtBMQC+d+u5EGfCBQBiAJYqb15Lgt/kaS4o9tLeEOlzeDMD5q2QXhDT/d4hLzBk7asPbvIRzMyV8cjF2LXhKzIIQNvolaC/a3gyzxbaa9eIQtxgAOK6S5eCnQtLpunYWEFURqQDBAAPZjcGOxc8ABADsFgMl1nXYZFwOv3g1tWlwTXDAExnpw7Hryl3AeC2+cQTh4KkzyHN7Mr2+mfWmLv44tDdQa54g5IhoOvgEJ939KMFe/vq9Dmoz7Clypuql70bjI0t5eOBZcE0Q/P5onONcwGq3+0JLFpFhgBXxkM/WWfMiHQgprdhNqBoFRmGgd3SR0eMhJZbvWmHDweUWADsYYyxfkkcoalx1ISZUsuPd+xWwN1nC4DB3f00UvxHgIDbD98I/Sp19KDJEGLtR/w/iGABsDxdgM3SIrXp7HteWKuz/mpY9xzxO2YEOH7Zg4c39AB4ZU9SEQy+bhlDnpZmjAAsdIzlAueqcP9IfYdUdq4KmEwHsNApyp6zZmf+QCSXzCRXdGMmua0BABHtnqQuTBLx+9KgYbhDS5sfIyKq7SMiCzDzdjrKNzuwhjOxkGCw334KIGz6DAAB+PVO4K0/mfMASTeWz1THAQyPA4AFcBRgeef6nQaPQp4l91gYYxs0vzPrrwWLg/0qg6375L+is8QyNOQnWIOFk0Tf3LTI5cLJUkBERC/zkKUBbFlMB05Za7W66z2bpwFgph8IzM2Mv7D8bRIApPxZa/sPfbuxHxixFQGBZIwPZy/lA4COTwM/PlLM2POSZZn8Hc1lRwsA/PVzmloTA1BA7j2zv3A6a40DMPPUA6pbEnwNSdozmcxwCgDU5BWpbhnMI8wl896ZrwIz7G1OwZR5Lc747UvSVeBzxeAjz8SPT/OH2Z845ooPFJn/AySoKfr+DbPaAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, D is a point on BC of triangle ABC, it is known that AB = 6.0, AD = 3.0, AC = 4.0, angle DAC = angle B, then the length of BD is ()
|
6.0
|
367
|
[
"4",
"6",
"8",
"9"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAALsAAAB/CAAAAACSguwUAAAJ10lEQVR4nM1cbWwU1xU9z0vlFFmllSw8bUwNOFU3sR0veKkXdSmOQAoIR0WVI+KQqG5DlR+oauWgCClpSJu0pSpOQUoUJPrDKBD44YhKtYAoIBkbiI2NvKEmDoqdBGEaW3Ibu6bFiNm5/TEzO7Oz783X7uzOkb0ze9/Hnr1z5r43d94OI4QV/cuj9hXKisPDPTK+lH/pVDV03Jm+84eaFQ5VQ8ddAx1tvM0c6oSV++07TcuXOtQJI3cCcGg3HnGqF0buDHjnQJmqdrswGEbuwNR/SLmwmmA6dTlYUiw6XjD1izPA57a8AQAUPrwCjFM70OlQj4V3XHVEOPUOALjwnoNfw8v91ZYPHAQfVu6zLUM9Iw51Qsq9r2HrmcfH7jnUKkrk8Ip9D14kouigfa0wxXfS9D3b9vVUJYDESLNt/TBphgEg4ELD1jOVAJAYdGhQFA24h0KvV1/U9gej9nXDNjbNtuNEpbaffuCrCru6YdIMgEsNLR/o1BGJD9lWDhf337f1vGR622gf4cMUZ2bb8Q/d6cQArO+1rR8iv6t60c4/BgDNDoEm8MjhFvuli1aTXDFt1yIsmpl99m5GLxlEYqnHbdqERDOX1jT35VAHEh/aNSold4J+Lf2ntmOv8mrEbQUfhrFp9tm7PblOJwZMbvinTbuSakb1m0AvDEDt/Zs2zUt6rjIA2H/o5EZOGTEAFB+sETcvJXdiwPxTnPgCaN+LxVM7xO1LqRkGDNXHeXrJIHHZroPgBhsX6JLOCcsUIqLpClncupSamd85n6qCqh3i5wSqln0qvvlRQs0M1a8Z0Klz8neqZb3NNLh03Lu2d78GwD5dirjNNLhUmpl/Zi5V5ViLWPxv2g6ntPh+JwAYaawfcKYOhvhoWt3hdlUKHJTOGm8Uu5pKdFhYVgrNzHfMXjHdw7PVO2u8GheVFUczlHkBMNIY7XO6/Whgvc3JWjAduEWWXpwxWCfUVFHmwMQygWK+Y/ZEtXAo4uBO5awoSRO0ZggAWEbUI/Fo34Nw0HgWKh5OiYqC4/40Y4ytuAvzfca3njj4x4h73gCAxBAEtyqD4/5u+7hCP//+/wwnzz15fHib535iwxAcp+C4y/ejDL/d8BvoXhuJrxyo9n56NV8VlQTH/fJ3AeB7H5PmtbeeOPTniAeh62iYnheUBMf9/GYAtFpjO//kMR96AYBIvShZUHjumirk3o0A2GfqioaRtSsvVvvsMJESflRAuNVJRHQLp4mI3pZ6/fd0fLugoPDzGW3YOb8aAF7cshW4s2vS7nLfCWtfEBQEpXf5jU3AFJs/A6Qav50PdUTvzAhK/B9LO/SrnZ8mosPSqTw72yzoIJA5MLENehz/73MTmtPdT2GsiA/9uHhjk/FJo7GlQzVWo1c0pQRt8zyeOciasR6R/iod0G2K7QWSDW4t49uDnL8vPNM0QdPJ1jmH6zpHSONcc1BjEwHX1y27VIuqgVj9FUMwvi4X4h8JPioYKHRE6tH2z0kH8uvs9T3c4xYU94WdTRNEelYx2TqXT2dnk1xzQGPT9XXfvFQLaNGlaiBWPwTyqRggnkpz7fn4Q4jujF6IVN+fk7ry6K/mOs8aRIxc6FgzkWPPSzc7jvCsBdSMKgiG64nyD2tzSlXd+Ox4LT9JQ0SybJOg94xu6STXruQRb/qaeFYQERWQ+kJHbIK4Y5FCNONPNwotlC9y7AWOM9cT5YO14E5eGLA8oxtPAYehYlWKV0BEJKu6kWWZSNWPnLXJ7GmvJMucY6WI9WLAp2463uQYM5rR/jN/pg1lm9WvaSWvkLIo1IsJ08nWOU/TG4WI6PBOTolZM+kIgDR/GAAixk7E9M44sDealoj0YkLVQKz+ipf5MAOAGDdJo/ud5Gw35/idd2zMOCa949KPPnQjly8oamMToJM2uDtpxvgz9XRvVx1/osqDj3Eq0ZdrK4OmFUTSEQCRdDoCRNLmTTrbnEYa6p9x6D9ZixGHX4FZdONxnGrkJZiMr5FHlD8mHfPYwuv8pntHrs3g7pW6knld9KIXHR50oxDRWE2uXY8zwvAiBNNfJxPyVVUvXkYcD7phAKL/msnt37PDrB45KXWTQn4uSV3FG/3wJnPvUuXFXSFafL5uzHf76R+6jzd79uWY8prPMEwm7g3Wwe8FUdXFmDBBbUUTR2C+nUak6sU3FCKi80a8sc/fTEg5pny4332+bkzJN/fiOt5UfmG1+NYMYTJ5b7BOvf3oRzJaG0u8EffEWY3i22HvSdyLSO9Q3M1vXt5rtfjjrtDi7qj/+GKFK930brZa/GmGTSbnh+t8NeVhuZv8DWd9rS9H9UhH8j1HM1C7cTG/qR7PnQN7xuLu6FiBiBtw1k2bdb7nQzOTyfnhOv93AgRwnt/EcxaUu/eM5upThYovOd07xJuzCYvBq2bSv35o1GMTl3DM38yVW6bpHjVz8wdfjsa8NXELx/zNslWjFosn35ySDvvwqBfY6eYpy4d74S7/Kii9mGCTvzm4K/u9B83cbJ4OSi8m2ORvEtYZjStnKERKb+B60T9LoBtloXwhy+CGu0JE8gsPiReIFhqicSqW/UNiN5phwFTy5ohwfWjBIRqnrL+Rc+EGhXolXh42SHDmNwodzk7S2HLXTnd5T+2wxRQ8eLoZzf4hsa1m1NN9KvmFsZ644PMYEXi6afg8e9mbw9c36aVoLtdhjTcKJbKSNA7cFXmvHl+KTp2Tv9m93/zOIc7cbhkf1vRSNLUYyMnfrFff6bOdnC9r9u9Z6WAgDnUFa/6GiMazkjR2mrm/t6Z445EIWfFGqfjSVGSjmanHPrlWvPEoB7z8DUtcNdbnCNaLEYD317Wd+kbQBG2QOb9+1729CwBAoPigkTsXx8i9K0uvFx2Gbnq2mMwCzcwkx1Il1IsFxvVU8whgE2eILKOCvxsDBYOev1HX+0mTRglyqxG9VO3w1JoSQNNNq+mmf5n5qlY9DWY2fDRm/9CaUqBqoLF+yHLtRERPA+rSXSLKd3VUkDgnHcha9gYiovbT1A/tNuPLIdSLjulk66cVcubcKwNBvrERq9SDMNtyNYR60VE1EHvsWzcygX8JGC63LMWLnVEA/W0PPPcXIJ9F08Ei8pPey48ARzuw5e/7GAFHf0YYjwKYebvU3BzAQNiwaWpFZxemVrwJImofp258XNIg7gX3H+0kInrldBkw9VUUOx89X5IZuh8c//drALB61RLgfCswfS13RWNIIb+xdykA/BRlwPubIG+rNj8TQ7/zE8rt9LXVGs2yfnbiYfa179xaahpg9d9shnFLzIiRP9I5M+gPH9EKw7llVQ2fAcCta9vC86wo1+jGaaILW8L3TDpnEOvfCHR2Af8Hg5iDNR/ceScAAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, if triangle ABC similar triangle ACD, angle A = 60.0, angle ACD = 40.0, then the degree of angle BCD is ()
|
40.0
|
368
|
[
"30^\\circ",
"40^\\circ",
"50^\\circ",
"30^\\circ或50^\\circ"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAKoAAAB5CAAAAACMt+XfAAAJXElEQVR4nNWcfYwUZx3HvwM9MHqRP7yTpW48gdO7ujTBQuJpW7nqNRDEhbaaXuMLJQGO5DC0ASwaTdfYyBJRr4ZtjlwaIKGy6WEO07MuodUzOYTmaraYlZeUc7e9tjl6TXOypCxzd/P1j5md3dmd12dmF/2klJlnnufZ7zzP73n7Pc8gEQY+aEIdoeQh8jw9FQDg7/fPBS3HDonOcXTmGW+/+rmDKMr+X6PyvcY70uHbo8SRqir42ZvJ2yLEmSqpt9oOr70tShwps1USABYe2nWrHj98zXOKMqmS2nNs+EJfQGrsuLjiLc9pWEVuUU6pDlWxfOCRifCQ5zQmUvnMJuv4wWjNRw55T2QmtdCaqgoLqjhJkrNd+wRSmY4Xp3dmFlqYi5eR0JItN0U6xHkmYVy7Yr9F9ACUErHsMbGUZry9KOeviu0YuGtaKJ2JVEUh4xt86rFEGQ4LFoN5qfJm+1Apc5JMXRDLv4qx0JhgSgupPNNSKF4qJOU2YalRAECndpcLD4t2JlZS+ehPy+/2PpgX/AEymiZT29Xr6fZ+4XzMegAAwMH+f5dunvvSe0JtFgBmZlfOPPv1LwIA5I3f7hHOyFJqeE8voM2yc/mvNDeK/sJfvoaBOxt2AQB+sPQXPubtluU9GzlJRbWrXma3C9dbAkBavdzXNSucjY2tkiPhQunHxKVG03xYNfT+yA09VKBtWRoAsObeGEAglydTy0RrLXd9Je5tBIBT+1Of0INFhj2b15hsukQy20nyUFx0xpKIk2Qvef5TGaEMdOyksu9BcjeQVjZpFuBFrRY3miYZjfNq6BWf0zNbqbORpK/MyZRWd+mp1iM+s7KXytGweM9voNDxtHhirTLs/BuUsKXpVwL2X81DTQO+57rS07aPP0o83uzvBwBKOP1ht6TfCBGzGa1UPv7AnwiAAs4hXZSE1955pHQjjoOBzK06bhLqjaFl10SSVWLfrEieW1yasyuetBajjoYueVVlirPbcFvjb31UGnD5geQaXxnoOL7MVJPgKKOQpDLZkgxoZe4slf0dopkrZH51XDR1JQ49AAD2zByj2CRTwtxjq54SSmqWmwsRr3/r8iLB7HdcOzlfMGkVrrzxO9AvlvuBUyMWbhoR3FjJ9BKxBXGydUoonTmupHJAqGWNhK+KJLPCnVR+ecAs1KQTUorDhMJM6FygHkSXUsdCnqtSxNtri9tNrp2zFS3LdIpUFnijY9su8RZkhlup03e9tNoYosqymtTNrYv0+ZBlhuutw2O/+4eXfLdMD4FSMJ5jDefRSmPzgsPuIhIAYuNJQPK2h+qcswNK8f+ZpqnK5mzZvI+2i3l7bXHuAXQ9T2zVbqMA8KLhGYvOSQySyislb2/9OyuSnA6dL6oaZArpShXRNClH8mSmWdTba4sHqUyuVL1jciSvZIsuM52Z9eSv2UvmwsNBqTPgRSrXHKJC1a8b3V5Zuak4sz0sensD3edS8SQ10zRJGtyQZSQAxMnCGpHtMze47qwAIPL4PgA4k2binjcqH55JM7Ec2Bz6Za0OaXh6sXx4VHUNym2V65BsJ5lKK/vWFMia1D/v8PRejQd7Lsx7eR3w7pXlFY9eXgesxeGXzi4EAtk1rMb1S6kF1dXHaJpyW3Ol3y2aJjnc8k555GDxZgDkRfUFOyuCUwDSHGv26e21xfMo/eOs1a4z377v6Dd81K8jXt+tEB6pDlRIcqrtqP+is8GzVJ6MmO/oFDpifsXY4+BfNaAZywufvd/sYfJjG4Op52piADzMV6Gb9fpz100en5ajNemhStwRcx1VX6F88s3fVD189voF4a1N1wJIWZY9GU1hWdUxnKHwRFAmaQlI0ptScri9YAx4bUkw3l5bPE1Xinyztc9wP/7IifYgatgBkpRVI5BlmVSNQTb8pV/JskyFMsebJ8pqYqrV706cK3QD0P7o/5X9RWPwLVlm7OGS1eRXBebttaXcAGYaAMzMWBR/Q/FiARqw95+ni7dzj60OzNtriy61QZPY0NBgFbeMhkM7Ze2yF4n6HHmeB1QWo0WxasGaqLUrDqoXB14/Mb9G89NKig1Jt8rqZiUbg9UWONE8TpLJlsm6GCoN0xWPvWt8A8mR8EX1rhZz6QpKUr2OAzfbhnlJ92LUgaJUr4MryVTLWy1DwaqxxY+v7jtnnwrY22uL0MCqMjv14YbghDjjo1S3THeM/Fm7DtTna4F4qcYuJ/dM/EG9rodS78vAIkdbp8iRcKEOvZSGqAG8+r3R5QC6l+6vV5mKlmomdI5k8YBbmRu+hohJnWhRvb0K+7qCVGOLiFQlH+kvFqD5AbeaFK+ArVJZt7r03cDZ7ks1X6qqiDSrbpS7rb4f1nQbWlctmpr3itC8vUUmDcdwEkCnvMtfTVvgfQjoP/VHw8mJxbFefRGQky6QRxYsCaIMq7F6h7KWsRtA+kea77f6Y4nZlcWWJbdtI8ndg/XfYVFIMoseqps/pPnHEudD2jZlQvVlJ9IBCizhaKvaBkVWXUDnwimTEtv6hPZJRk1X2Y5Sd3eWSZsuenuNaqeaMqTCLAaDFWfEqVnNDK8rLUdvbezerF4Z+7imZ3aUFq01W2c7SX33ynICz0mS9AaweWmsGG7sNrfePAbgM23jBKTcycBVqjiUulapqU5S2dM1azUvGQtNk0zgRTVqTXCSKrfFSYWJONkXySs0kamQZE8vqe4JiX+X4YBjs0phkGQ0zaHwhE1nOSX8xZdrnAfWLAB08rzDMVaxA25ecHsg5GroVYd4HQNKbafWEvlzF43vo+c77wasJkwSIfG9EzsDPFWpE9OvXE1XpLnf33O3emX6nABwZ9sZv7IcVLjqsR9a3O88Bf1Pe+UBt2BxVapPziXg/FaL4jsCEGSNG6kHRl+YDzj7ezc3uDzgJohzy0u2TLqcfmaagjwFXImzrf6t+6+uN6WevDHgr+BscXqXSyGT/X9zlNIBt9txIGSyxdP22fFVfj7/tMehWd1Y/8NHvdTRdxsFj+W7wN5W5zZ9vno/3RpK+FdnZrFPSVbYS+15f8hrhns/OCKuxh476zjQUbB7bEo+PCpsjfbYST0u9LFE0uIYjm9spGZCQh9LKF19rElvZWer739ayKSu3Bd0y1InSsGeMVcz/onlATdf1EAqbrWmIsHmSAnOUj37SSnV6t+aq0Wp1ggfG5f15v9I6n8Brv5/oNSYosQAAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, two straight lines are intercepted by three parallel lines, AB = 2.0, BC = 3.0, then frac EFEG is equal to ()
|
\frac{2}{5}
|
369
|
[
"\\frac{2}{3}",
"\\frac{2}{5}",
"\\frac{3}{2}",
"\\frac{5}{6}"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHUAAABwCAAAAAAFomDTAAAHB0lEQVR4nM1bXWwUVRg9t0W6CUv0ocg+VBsQZBFJS2jiNq2xRWv3QVqiNJhUH3ywJrSKSf3hgSehWhOJf21T4oMkYNJYCDwQ3UpLi9Gwpku2PLUNIE0AA6kYmq7ZTdvd48PMzs7szOzO7M40nrDM3O9+zJl77p3v3vnuIAi3MLKx2qyqxDXS5UPmde6xHnlyy+qxUv4NVP+VPl0FViH95hZrN6yXi6vACgAgvvgYT5vXu8MqBvrFphz17rDOLZKhzeb1a1whfWscvJnLg87jAyDKFuAdUw/hfGyi8bhVw4V+FQDGhgCzh9UdVhCRfRMAILhaUQKAmNnbfVk6M4kSboym2xVDK2UPc3m40NaFpsMHSneF5UYZujjNSsSC+zuBhgmp7H4cJgCRbKs6CqBmSjEZwPHn9fXkMADc3/Kw1NzJUYUJdD04DQDYWBHN4egoq8Cn4XNlkq5VV1eLFSdOhbzyaeN4LkcnH9QzFXPKeXRLDkcnWUd905nCiveeuaeDCkfeOOfPlErrf9dIqnF1iJXAzN6TAbWpJqIuCS25M+KmUrcrh0gypZhCAXN3p/r1ob9PxUiSi6Urpt7OKMxY8LXOrJjr3aqSmBp9HerXVFvVMZ3xhYkMkVD97RQr272DOhtqoxJRqxBCiEZtrQPofClhYJ32ySctUTLUUWS/slUIIR6PIb0q6gmfKzPw80NaEi8vVS9/veeZotvaEiW7NyzKpUH/PLPGr4TgEEky1Mv+YW1NIaxLQZJskRfZw6rgq0Wv5NEPIKqtKWQ0XaoEgK2zAIDRd3+pNPGrkx6dkSm+mvUCXQjrxRcBQHp5irx5fjtMVirVV2MA5mJVqPNmVdnWN7W0Y5EkuztITvtCZm4kA6Mk+3tJsrNIhcXdOi+AueNNxJ3mr5rN3ADsjgAYaQbY+kSRbWXfZyTZ0kAu+PsyDTPAUJAhmSZKtaf9NeLyzqFqzG3aM4ZY09rGnK7/fpswrrCt8Mja2V1CbBoeQ7KtKjcp1j0yY1xh+129WZmYDYJvNmYu+w3thWcI3ntwIa9PrcmiuOA5p+eKYfDVIvCrSYX9MUySqRP++RyDN12z4p03rCyQ9Yxp8NWi3jiIFKbwWNdFs+CrxfMThuaCWCfbz2+z5lkXMbbbkDXdiebBV4d765NGZhusKZlVXvlag3/SyGpDYSEt8RaaPjpg/R8FpBfKrLhru19jwf0HbbgHpBfKrPSE3eiffKUybxxUgbPBOQOzXVY57WAZycdubIQut2hT4XTawQKk5pTWTwA6he2x9oTP5w++MmSi+imDOlusJ06H1tnxB4CaCSOrtUeVpPXgq8FimcHbCEjG43ErrGO+afMpxhw7wnpbCQAPPHlkEgAi7ef9+bPcetQbSGy5X2f2nnyuAE6g0WgCIMm4pHI8HiclteOaA8nrFaeUcpzxOPN1ioJpn37yT7Omf8of1YHkPX+fUpZu0Dqt74ZuOKgVTngAJIyWsLF9bZ1K33vgQd6RoEIgohsOCqtHZvN49BdMtu38xDqLjlWfUSwBshunb2y79xsjszWw4Q+dTRAJWa6ER+L0SMyZw8HrF8pU5gTgScCTsKpyrPxvb/bOUqaLzYZHz+5FkxqLCOgWPJnRlDC5dVXOt0DoJ4A0q+HQBYCzx0LlxZGi5rLOlEedi+qcb4G478225GGd9Mmxu5C4r6Ai+85zx+FM8C0k7iuoy5Y4J+ud4JfNOfYzLYIGE4CZKikp5+sIwv4sQ45+XQwckfmL6lQavFCaKyxvuOXYRLWM0t1ZW0rmrBbSDtZAonbCImt65Vv87qEQaLiiuxNDHCs2+Gowv16782DCOuifZ4pFBgcV/FKwSV9OrzABnj0aKqf89Y4jkCeA9OX0rAIY7xq1lnawBAKoGdfurRjIMekLO6ethOkKTdGANZ12cJA3xUc1O5R6he8E5ZyvgNmnHbYlFllPrI51oelDJe1QfFSSLwM0aCaADKvULOlrB0dBAKj+TXMfWg1tph2sI1a+UJbJE6gVJtG+zhVSwvvsFCBA6liF6HrwgxukEOl3djlnpRlNqg03xz/xagyrr6p6qAalnK/DAULGDZ+qoGItKO1gHeolbibvP9be+r3SD44KLEAA3muZnQelX5NTh7crVmd7VRq47eUYEKJx+X3JtFq4hbdT/BO9dPaLlNxY2tZBkt0/Uor+rUIIccZRUQ3w3T/HAWDz1rTCLcMMZW8HO9/UzzOFEgDLN4OwuHtQOO7Oqr6xLQFwqc6LQx3VbvNCG5v6AVxzV19yaVsvydSt4RSlMdwS5QCiShxMuXPsxzAZaiAl1lsNTEl34i5vCID8hcga4KcgxN3Zp1TyC1eOL2ciXgkw0ozl4IZgQcPDDtRrsJ8BAHu4qnDhC20LcO//cfz/WP8DQI+fftbNlDgAAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, in triangle ABC, DE parallel BC, if frac {AD}{AB}=frac {1.0}{3.0}
|
\frac{1}{3}
|
370
|
[
"\\frac{1}{2}",
"\\frac{1}{3}",
"\\frac{2}{3}",
"\\frac{1}{4}"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAANsAAAATCAAAAAA8UydFAAACKElEQVR4nNWWP2sUURTFf3dMobBtkCBB3BhTCGYFuzQbIbBaxCb5ABaukCbigjYWaxcLLZQkmHyETWMjswgh32AjaCFsnG0UbCxcsMjIHIs3WSNZkJl5mnhg3j/eOXPPncebawKgSRNPkB0SdJNieKxmPmKQ9h5iGKbkQ1a5WM3mwFs+gZON1Jt3azoByTIXQ5WqX90d34LZA9gZSYce02waNvzXqB7r2/86gj9v+W9x4K296136+E7ELTOzrQNv8bIv3bbNpoPgSTEll5s1s9n4Xjbmq/mWwsVdJEl6MNeXlEiJiiIc7UvS/lTLg1pEXYpYySKUaP9yXxGdABBrlc8A5qOQiCoAWhhbKK4W1+ov4XyjnEXI2J4psVyvjAD0vt8cK+Gn+uPdmW4F1sfHKa64+fUpYOVL2Wh7Gxt0KgQCe9agDGAeLoB4crILUf/0BIWtxc8bJYCl6Sws0e4kq1d3CQzWXpy9AK5OKvzltqvlPeKl+2GNwmqfPkzkYFnvW8XuTLUJoNfXl/CiBAjkBq4e1KAsPLQsofQZgvfToEet7ZlSLjsDOPFcJ+l1zaUloHf7IewlgGHIDJAZGnTpwsHcbXIrRxCf0sTH9WulN3N5TaUw4NxUF4zeVjZq+wY/aqM1aEAnWYS77ppNkiT9E/zqfmsPLQ+7mMOOIlvR/pV+jhv/CFZpKQmvZ+KEAFTljpYLOEnbdJ7P2zy8jepahVEv5kKgnpf8Ey4CAKcWpsVmAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, C and M are two points on the line segment AB, and the point M is the midpoint of the line segment AC. If AB = 8.0, BC = 2.0, then the length of AM is ()
|
3.0
|
371
|
[
"2cm",
"3cm",
"4cm",
"6cm"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAK8AAAAXCAAAAABYYECxAAAB9klEQVR4nMWWTW7UQBCFv7LwLbKZ9XACpMS+AGdIwhlitpgtl8A5AwfIxMMtkNrnwI38WLTHeAxB3R7JeRq5q8p+Xa/6pzQmgJqaFMhOj2jU+pyU4hyfrA5GhlbQjbomSS6pn79Azi6bZ3Nka5Z3HS7I9IdqAigp48km4EA5saNwSEnxD/YhGG/SuZpUJsi9SO2MnZJywtgZ0hrEOsaSZFo5yyshI73TbHdF/0Y2jt+7eI5RmpltWebEPem9jp9OcCichipJcGNZqY8pjBnKzMyOIbskqSoUiUGSdCNpKKpYkpxVkqOJJixQtGpxkoLepmWSEoO2klKKFIHQxitc8CWHk5QBdFwVpNy7b+8B9jEEATzyBWB/lXYMJhwruK92AJL6h97Fb+1YrqQqmrT+IEiShq+AO2UeHoEkvaG6jtjtdeHLIf7ALVA4NUFwBp16tW9Tuk27B7grrpNalMxWNrWOHbe0ABndh1twwy+P9x68B4I5DZM1Pu/eeX4YByLz73CAdceV/4Kf74NmgMpwfQEPknoNvRR+s2Fygv8UJnlK2N2GVmqLlBa0OA4aOy+S9HMmr+9f0KuTP6spGs8kXpEZWgBugmMCfA743OejyWidB+bh8eX2yMAvQkv//+GNYcITVmpcQ3LAMxt8fhb2kHvyE21b/AbvpFUYAJlA0QAAAABJRU5ErkJggg=="
}
] |
<image>As shown in the figure, C and D are two points on the line segment AB. If CB = 4.0, DB = 7.0, and D is the midpoint of AC, then the length of AC is equal to ()
|
6.0
|
372
|
[
"14cm",
"11cm",
"6cm",
"3cm"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAIwAAAAWCAAAAAA3VivHAAACKElEQVR4nMWUv2/TQBzFP2dFZMlaBpCQiIAMLGFEXcwQ0SkszGzNAEMrRWL22KUDSOnEwB4WFpSChPoXkLIiVUkHGFkSKVdH8mOwU8f5aTupeLJ0vu/5+/0+v3d3RgAeHv8VMgDONkp53qbZBojIaGM6y5pkgwNgzNaZ5EIBAJ15mxQ5W7jlzmTSSq7IJiHw3NxEBLiL01NzibZMmKAbsSntEY27p2efsuAmmBzt0/N8+S+MY8zt4RwXseaQTi2eGOfZ+DAmMz7Ix4XP9R/Sq/JwhqFxzCdWqmUmhC7NTwUfb90BkCTpbW0gKZACZYO/J0n1RjJab6tDV0pRz680JKnZluQA4qT6J2Kb1fvv9wAe/koExxd7PIoFWIkPf48Byg8IbTL9wdOdErlu4m81gPIMw90Sh41qmvzxu2YJ4HUVIJD0Rr2Jzhlt8h8PJKmZtKkFoUnr0aMdTxwD71vmPoCU2abfuyWgf1xLRE+7aj05z1YJwIH+yKpTBkz2S+dLGeDAfTkd7A+r7Fe+Auudv1u5ALhsh1/3XFm1jpLqBWvHQJL8Slfq4SbzWkcz8q+q0zJtqRNWoAldW4d9K2utZK2kwForSaNwUBCuRfORRlZWUif8u7hteDfUu/IrO4OU/9YBoi2HpMBKsuF4/UwNSoattbI2WphHyNBdsroYEbkC8ab1i8DVMneL1y9XxanZHJ7nuCAiBoVEC1Z1uXk481os0WapZNvDPwrP5sBeGts6AAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, BC=frac {1.0}{2.0}AB, D is the midpoint of AC, if DC = 3.0, then the length of AB is ()
|
4.0
|
373
|
[
"3",
"4",
"5",
"6"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAGoAAABFCAAAAACHsCyoAAAELklEQVR4nL2YX2gcVRTGv7tdEWwhSDcYJBKtCy4GAk3BttBiHiJuoIoPEQwopkJT/zwZUmhR2GoFBTGmWDAo4ooRAj4EUbGCNREJpqSlWBe2JSWRJlCDMU1cC+3Zu+fzYXbWbDZ2Z3ZnctjZnZ2ZM78553733LkXDNuUPQDQT0OEb6k9XXZXXyR0DoErjyL61Gz4KIOF5buImR2howicOQCT+vkgQpcF2QMgSUbDjgpYuE4aAOG3FeYehsHmoD485PzW3a9obn9+4T4gmwBNfV24EuMe2egBNqVaOPRNaKuiGe9iP17+SQ3+sbW4zzfw1ftAB80E0AFMGHbAjHesc6k5KvPgpdLu9P7XAMAAdL9L2xqruQZkW0iSyoXupmFqdQe/qDRwsf0fKmm3rJDkykDs9ZwnV5+odJLzB/qd/WfeI+1Q7PlrHn39oeaRZb4t6/yZitux+GMZz84+yi0NzvQn8MW9CaeL7r6jvXDqce/+3hVIAHgAdhAADLDw9NLLGR8kHyhjAMzhROfey98BqwPtidnDPkDwK/YeJPlT843CUKx3kfQi8f+spn41Fu/M+MPUiJre13rav1cNqPnupuFaQPRb2VeP7Hxops+fj2u+UIWT8aXMW9uqjLv/a55idyQwFu/MlB/xZZ5QqnTUoLUgfKFYjxpK5q2tVo/sTMz4rA0V5gVVOBn/K3NiW50k3L6y0wCY7L1/orVeDuBBgd83jdXZSEWrhjq96+6XgiFVlcW5zu2DQSSvmEArIhv1l6lR6p9NZwMKihEAW6KIVhabxa7uKMyh3keCCgokqRsFZUescqT1ZlBB0UWJ5GlFqSJWOffsl0JS55qnnMtUJE+qiJAiKmJVxNaGUiFpyTwpOtrY+Le1pDyZss79RJlXitJaqghV8lSpDUVrqUoVyYkuX+9JqVA/arPO/dSSpOZJFapoaasBRVLUknptoGmFKouNGeF8c6b46Jp3L6sDFQEKBRgAERsBzGH7awMNtr+b/B0H+xJukSQBGhTqmjyTttirJJdxW15FhhuP7cnLrTxJRy3iikNESpvvBJIkc2/HUmtO6CAmfd3JB2q5L0stzmpukNx3lDWN69VQ6XPFXpJO6tUn+kkO7Q+Q4qKUEy3J4vvJVXdWk41dCQFFZqe0mKt0P5lOknbvqaBJjCx2rSKx28BZB8IOZ1bzztZX6q6u6y16z9GGtf9n8WZnw+XxoQuBkyoGfGdW0/Zx4OnjxmtMx89/XXWZyr9VvDHR4Pwnv7hNFyiwIk692ToSQvoqE0iDY5fGAg7HsfUJNDj72UW4+QvUKsYEee6DWPAYYN3SIw3w6tLn4ZDKE2iAydHfQiKtV2Cu5ZtQ1LeBAl+89WloQZUlkD9+mw2NVJ7AXPMPoaWvPIF84c7hEINam8Dp8Ux4IJoyWSzFQqhHJfsXUrQA8HGs5tkAAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, after Xiaolin walks straight in the direction of west from point P 12.0, turns left, the angle of rotation is α, and then walks 12.0, repeating this, Xiaolin has walked 108.0 and returned to point P, then the value of α-5.0 is ()
|
35.0
|
374
|
[
"35^\\circ",
"40^\\circ",
"50^\\circ",
"不存在"
] |
A
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAJIAAACMCAAAAACyzK+5AAAKDklEQVR4nM1cYWgcxxX+RnJPLVkqt1HqQk5JbcmVitLojAMllosVbMcKSWWHWJFEpJRCYmGs4kICSsElheaHVdpCUjs12AVD5VqKpbqlSSohE7vgNj+cViesYAx38RXHbRqpRc0pVLeS9/XHzN3u3c7uzuzdVv6QufXMzux3772Z9+bN7DFCtJjakNBsURUFDQdWDms3iZgS/eC+BgDQ0UXElH7R+ncGAEyjTbSUMtmH7zF0G0VL6SdD2AzgDlLc68fZRq6yO0VxmSzR5CbtZusioCKQ+c5FIB2iIUUE6wWGGeoEDui2ZJHO3qRjQ3lEO+JsRhrfPFJKu54rXGqIK0pKCxevh2kWJaVn2JWFEM0ipDT8UfM3fwtAb+6OhBJxBslj397SfQYAwNbYvIkxAFjqOvVBouvdf4rSNTVv8fCDO/fMJmofGw3RQxQzNxGNJpYtY57ObNdvGhGlVF2KUvUWZY0MEZGl0zaaEXe7+5UGJFsZjMdHAb3YJKJJ4EjjAJBMAOgRxqQzD0Shtsl4loieGCei5dpruq2jkNLCc6MGuJSo5kn9MVd5GVHHUSKieYOIiCabdZtHIKXhpSEANJsAAOxaSGq2rzAlAs0cPwsALNkKAKjuHltbSgyfPn0yDkAMOIC6zq4pJQIO7tzDr2c4Jbbj9p/WkhLD2Puv8ctc6uuicP85zV4qNs4sIu5IOK605CuufHl1jUYcg3AkHLNb8hUPGZe1Oqqs4o40DuQvZzglAtAzotdLxRRHeUfCVbj9QqF47vNamqskpfn4Zfs/xrx93fKmTjeVVFzfYFvhOrW+zvb+vaM6kUAF0xTDnw7lL4nNJkQMDgB9Dyx/Vr2fykkpeawwTRNDMuEI2+7/6lsaHVWM0lLXqTjAhxgruBMOelYnQqlY5qT/rhOAnSup/6Mz1/Xh1/6hkbKs0GgbTSyLK4soHyxZhZL20//vEUfpwfEafsVDfx4sCYkxoGdcvbPKULIKjkSwEMFSAU9NzwOktiqoDCWHIxGUEuLpgkPdI78DmOLqqRKGJByJAy1XSgpO71DurRKUihwJEREt1yyXlGSNm6qL3vIVR9Q/uK2k7GpjjUNrAGDsmlCdccqmROzHS0OlJpLkkYmzuG8UiqZUNiU283N3vF80d3PsmfubYo9lU8o+/cu4q1Cs4Zww9ik7lXJtu29AUmgsuMveTCj2WC4l25E4kLpXcueqasKiDMURgIIjKUJyi2Saru5S1FwZlFjRiqSIUkI2tnrOREyJAOFIyCURsdAtQftSUqnn0IEuAzA1cg2SyYYkcwCIVfeckZRLEN6yrfn6UkfCITJLLly+X6nfcmyp/1CbtEIyKwEA2qCUsAhPiY4uDclrSoMlfjuAXrW8TiiVERHNxG96VPed9KiY2aCy7A0lJQZ7RSKBfMABSHzhkkLvoRVXSG2VgnKpB70C2m6l2TKM4ojorMyRcNiZJReu1SpoLqSU0t+dkDgSDjuz5ELzxsngvsNRut39yiZ4rTc8TQkikPNsKaCrMYuI6KVunzscmSUXMsYngU8IZUvuFYkTzsySC9vHAxcF+oojsUdStE5zIF1b592U9o8EBuD6lBj6B9uQ97bu/pPe1s3Aei5kg9a8Icx72MuRCEoJv9oN3/hNUP/6lJypLS1K/O6e8cC1k65pZxsn/W+Ip3yrF2v8rJ+Im7dpmupC8nQkAvOLstDXRu3uiYAnVAGIIaZGhwhjc696VfIPr2CpgJ6gCEXLlhhLH5KtSHiloCQLlpzYm/xQjZJpmlyBXIlm0Ufh6r+9P2ogmDBNSHRNQNCAA2AEao6IKGf/K/w5PuyaoW4rR7lcjnI5UeFCy3sB1mudf9h/AndSyhFRLpfzoEREb8WzxbTdWK5ZDvIYy7UZ31RTwZZiQhOxmKetLwyMBqaKrzbWBE07NU+O+E5NVXBZhXxGIBNeKxInfNxJAd0Tvj6lCoAZA4CYGQMQM80YEDOdHyYQM1diw0svmaYZgwkT4k9CKRFMaffN930laevQw17zmKn3WpE4sX1a4aaBl/1qbUoBjAIdCYdvsJTHpUa/WnteCpD2wZ2PBmqEkF7vGSw5sGM56VObT1MEuZSxuXeDc59MmFLgOdj9fgkLRYeSHhxX2uRLJsTmlz+e8VvPqVHySG3JKIkDi/5LkIeqfRIWapSONBxQuo8rjiFAUAx9fuGAyjDyX5E44JVZKoZFNJc/YSFxLCpSEqe2gkGBwVIeLXdf5BcSaapQcm62e9OBfWYpAAxAr3cuVYGSY7M9CCruhKP//G3PukDNe6e23HBtw3lj63mvmkAp+aS2XN8ul35A9Vbqn/CcKIK+Td+A+nFWn8ySCzcNr1HsKSXxFcbmXlU/zqoSLOUR3zrlUeNJifNID3qntiSUlAacQK/nqSZf6a5uPUFkKZ9E9sssuTB/16Km4gCIPRLVvXRNKdWJFwv0pGQ7EiUxpeIaQiI63SEv96P0sWuz3R/jT2jdvmh8LC33U9yzKo7EAfW5GwBQu0ueavKhFJDacsMvlSuDV4TiFpzFDUfHkRCRRVZAZsmFrCF9gltK9nskcZ1DdQz/CsgsuWDskyYs3JTs90gApkNKOVgq4KlfqVHiyKe2NN6NSLZqvryEb6VkJyw8KMk32wMoSfe9/VDdJXUqUsNb3XpCz1KJtIKlPC7ITljIz+98/8ao9nuSudr/1Gi2Iat+usVVKlXc1MgpbkU6tnF1c2BmqRSsWrZnKKNkr0h0HqE5d3PIDn3IKPVrOhKOUJS2rbznKpNQ0nYkHPrTEgB0SV4JKbZ2i6y/KqW23JCdWQrGTFw810aJlBzvkWgitf7uMM0Sxp/5c20UU6LgPRIvhNMb0P3r0pJiSo73SHQRyroB9IyVLnttSgQA6cFzils85VPik15z/FLJ7FcFYC9jjI2XvEeiTUljDcch7KdnhF+8ztgjK98DACKyOt+gP2CGAjbb5RBjpeiAtxYytatEdAMDRDdwlIjWAVhNP4ZmAJg6+uIPw0iIEW58MVRLAPjM7/dhpeP5E8BXXmwAz+i+02bg8IEEkHo5VJ8E4KMNYRnh0OeAk//+GQBsbAQAIjoOYDaEyCsHs2mYKK/3KgDTs3S8NRn6W5YPunV9E5A3+Cogs/ggnm/yymModlpWa1bURRXwdgdw63pDGR3vZVWMfWkpPKd7m9JgQIa/3GdR5yyZTfcoppHl6EwSvVBOF8dwjmiynYiIwM84tYfvzSIyO4iIOrV/0cSBKRR+EWXdHgKV9c4OA965DwA2/yV8J3jUZlAFgLH85E4hzImA6d0AYVO5Vu6gZIPpBvQAGFYmOwCGD5pCtA6gFPY73tpmAMj8dGcF+KCYUtjv+HYDABxu76qM5kqXAyH6XHltD5Bhn1xE+G9V9PgyBi6HOCn5hpgQwiPfONofOwqFqH+qLgTuQEr/AzJSiQRJsfKuAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, it is known that AD is the midline of triangle ABC, and the perimeter of triangle ABD is 3.0 larger than the perimeter of triangle ACD, then the difference between AB and AC is ()
|
3.0
|
375
|
[
"2cm",
"3cm",
"4cm",
"6cm"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAIcAAACZCAAAAAAgUHY9AAAKGklEQVR4nO2cf3AU5RnHvwshhiASJoIHRIgBklDaEFJLdaAQAkiqIwIqTVUKLT8K+cOgDTWtyo+iUgYoMm1qf9BScEKwKrGjeFTROIUWAw1JGGbIVCSXTuFiDRztlG7WhH77x94ll7t933139yCO4zvZSS737ruf+z7P+zzv++57qxGfitKvrwHC5XOO3iUxHPUnvbaQEA7jMc9NJIRjy4AxnwaOfVneW0kAR2v715IH9j1H16+WIzO17zl+/9ygzC7PrXjmaG0n68Z75kjyilH6MnDWMwZAbwXD6jsXAys9NkPt83zbq3yGODI+8t5GAjieOV+aAA7vfjrukWc7vXN41uNU+8bJz3jn8Bo/OK0fa8Z6bcR7/Licft6HfnVf8SqHV7usu9cH7Zkyrxie7TLyGMFgWsirXTzq8VLqHRrhu+JZEI/5dsdqjYDWcJdXDm92CQ0ESZDj9nq0i7f+cv/rn5ihUMtp9iaHN/9443gYQ794qg85ns/LNzGYsrTcG4cn/xhfw7B/EGm6J//wosepULGpBqBxysY+02PO091qkLU3edLDA4eeFoVBjK3xwuHBLhuvdBsF0FjuLfu7/whp/ig1SF1r6xM93ryxOEoNYODqRz3I4T6//OixXhgam6d54HBtl9DgUC83Jdl/Sx/YpezBob3UALRXdrmXw3WeG/5xLAYx/KDr8aFbPV68FI+Bi993i+HaPzKqe/sGSCI02HWScanHqY75cWpoTHvA9QKmS/+431cZjwFovqBLDpd6vLPWEoMj97rkcOcf6+bE+YZ51Nzq0j/c2WXch5ZqAFp6vbulZVd2OXFOhMHHv+sKw51d8rdbGoUgg/3ddV03elwOPCRQAxhxz3Ou5HDjH6svV4swNDbefcEViAsNb2kQGIUg2e/wdbLLS4MnC9UAtN/88Drp8WWZGqB+c+C66PHRSV2iBpFyaZ0LOZz76X0ZlTIMaMHsf7sAcaxg+hmJUUiQs3/i3C6OObZMs8MgxjvncOwfu74nNQoBjVePX3O7NA2xVYPcfqdjPZz66ezaq3ZqANqQQJpDORxydAw677PH4Oqkn15bjvKzrylgoHmy7pDDoX+MrrXvLSQxa7dD/3DGUTNWDYM1k64px1e3q2GQ/ZoTylGH2VfMP8ioZVv7Y9v8hHKwLqedJDumkuTDSaoYDN0UGR+aHyWQFflE1sUunp4bBQBdKwYCwMsnFGKHeaT9J7JMNaXDaAbGvFv6tmwzgg1H18mUVgCvDJgLYNeX8lUxoNW/2N3I/94F0L5MeiEbjqvZU1qB1n+OHgtg+1PqGMxPfyvcxukf//Ei0JjrheN0wfgPYTzxyNHpwKn2YnUMoCEyPmwsmPYnGJRvEbHhaMwFsK3ybFY6ULF6oAMMTf97GwDAYOrXD6EpXX4hOYfB1HEf7PtCur8YwJFNTjCYUmbeX24bhQLj5NvTvXCcLsAthy8sMI5OB9Z3OMIAnvoLAODEFCTd5R9qo4c0fizGsPpAKauAnHbOym5RjB3hY/qgIMnOSpKBrAM2cUo5rgd9R3IdYfw2e3MFSWAr2bmsXYHDMAx7jorNPJLrQJFgxvFgpvqcGySpgKFnBkknisxbQZZUJ5yjuoSkA0VqxpA8dodjDsMwTPuYNjJ6/SJZeNggadROBGnAMOzSnO84SeY3OOWIHN0/Ub9InsgPvz4yscWAQQOUopQsJEm+sMoNh2EqYMWxZkekXm02DBKkIcHw32i2rvtCTjloRF02lkMfpnf/+2Du3xhGER16/8gaiMmvxmHEcFjosWNN1OuDE0FDinLDvEjzZ3IdcIR9MSxFvJ8azG+Iem1U5YUM0BAbZkRP3Cj2K3NEirj31hb2fr0/T9pbsmp6qtYojlN7OCRBJC4e7c8LiTEenxtd1Rd0xCGL7RbxWaJIw8hQdM3NFY44ZMWqqb0iRfQJvbeCKCYZFQ5LaSsnWSuyaUZMRbUko8AhcLXKSVaKnImLXGpJRoFD1PUsFfliZVw9pSRjzyEORRaKVFosjSklGXsOSWiOU6QlKRRfSynJ2HLomZIAsH6m3kuRAZZ3tFWSjC3H7qWydzfMjMbon2dZSSXJ2HLYeFlZUZQiwwPWlebX2HLYzfcbkS99//mCe7rnLHNWjbGutGSPzVVs5i8kl+62+yTdilRNENbJbLFrxYZDJSqXF4Ekgrc2CavsWOORw74BRhRZVCquYf9xbDhyzyhwsLwI9Es3B9uaV87hL1bBIJfPCt0stgrJhnybFuT95ZeKd4V/Peq2uXmyCvlolLcg5Wh7f74aB4r/1S6vULZT/r50ff0HQyrUMDrSXnuv8ZC0xoRjPmkTEptJU0uvMuMhMmWutIpNkpFxmHNrhfLqyBDBJ6QgLZmuOQpr1TD0EX6CdorIk4zETxsvF6p5x4JCc0FTn3SfpJZNkhEjqs5N3xgRimTc5Acl9aRJRsyhK+701Uf6e8YgayUg0hwh5lBKLSTv/Wb0UEiiiDTJiP1jzxIl53jnr9XR66ZG5iJRTV/hfhf+ETu3FhQ9I3byIFZElmSEeiimlofbY1eSxYpIk4yAT3FaejgpFD+5TBZ5lmTMLdLjdyUpKnLMfz0tfm3d+Idg32XJe21O9VBbtlhYYr34kLzWur44JAk41JZxjowQLcc8YA0iTjICDrVlrQy/cFVIoIgwyVj7R3OgWME5vj1VfKPMaLH0EXGSsaRTSi3HfSGRGmJFRANvSw61AdBovwwDXLje4iRRtrDkkM+tw2XpN+QY5IBN8WeFfNZxyZJDZQWnyWeHAS60AFn1gjKH7WSDJDPtMSwVETRu1V92ltn3lZUXVO5aftIQ92WU/JT3o17t07Q5l8q7+0vnYgAI31NUSS1NVnnF4tCTfx57atToO5C1kgxkbWW3XToXH2DdsHqSagOgdL8SBqHPiAXp6YwdU1eS5IYDPRwds9sZyDE5FObWKxYpYpB60p6Ykys2h/+oMveWVNf3cNStZOdi82EACnPrJmFesVQkBiToC3/2qVt7/hnmqALCVlFZzBovziuWPhIDEr5Cr5vc5vy2a/mjBfvWHCoA0DbZ9qsB5XtLN64HlI+Kyp99K/r8Qzv9ANBatG1Bzz9NtLuvRGQK3W7faT2W8DwxfMHAmz12qdqqshcg0aUKB8g6c/sSSLJzST07pubY7QVIeKlD95MyQNJcApFuq+ouZsRzgGyeYNu6YDwmaXdJPbnBCciSerLO7gEhjvfjXu3IBZ6cor5J/WpHrrFrkt0XuBxzNA1JBZLGnvuv8gm3p76afsPyRHP4iwHAwYNpzq7V1gjW3T1wGEenA8AHWapPDOp6q75zXuI52rLTAbTuVRnPAwDOf5ybdKf945accvz5NgBdT2fNVT5hZiqWJT9p504OOYxfFAGtOcE/qJulCOj6zlDb+s6ih3mOgwRgnhDJ5eLidP/6tSqfoef2JKT8Hw0uGILChVo7AAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, in triangle ABC, AB = AC, M and N are the midpoints of AB and AC respectively, D and E are points on BC. Connect DN, EM. If AB = 13.0, BC = 10.0, DE = 5.0, the area of the shaded part in the figure is 2.0. ()
|
30.0
|
376
|
[
"25",
"35",
"30",
"42"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAPUAAACbCAAAAACfJIKTAAAT1klEQVR4nM1df3BcxX3/PgwhP9QoMzyFY0ZwBAQ+j5RyrUN9xm5OLQZfiyNrsBg3g6jFxLbCqC2iVlKlVUbMRNMerWnURjIGM0UM/sPEMiKtSc7BgEiUyYEpZyYy5ySCOyOSEZzbyhwZn0/HfvrHe+/u3d37sbvvHuPPgPxu3+5+97v73d3vfve7+xSQn9j6n0TU8naTr0TEcYm/2f+gKwX85XUfkr+VKwqfuV4phon2rt9Dir90BOEz1y9eQ0R0w6/8pSIMn7l+/jYiouv8JSIOf7leScSIiN6+0Vcq4vCX699sbCKi7MO3+UpFHP5y/cMvEBHd39njKxVx+Mr1yr/HiLLKBy/5SUQGio8T6bEYEREdvtha2l+uL174PHP9hEAXmV5G5CPXIKKzt0Z/q9BFppcR+ci1QvTkmpvv+Ue/8veES33L+czX/uf58LmOu6K+UZCHb239z1+6/USYmvfvuNjWW0S+jeEn77v8PzTt+97PTPhCwRvgAwoj6gH9kS23zvpBwhv8kPCXw/OndurPSvP+HR/6QMMbGi/h5/7hyCPd5oCLUMYb19Z69T0XKp3eWvVi/NkXGkakUWhsh1nqaZsFwMCMEAYcb803lopnNLZfP9nRNh8lIoUUo/EVoltjDzSUinc0rl9DObPjw8fDVm9+t2bq1kaRaQhE2tq5gpSHfv/PXgtbvmqa6ru4xnHRtoZS/0QEhd7oa34yaJtsl/KYcNH8hOeRgQFAYVidcoqUbz3umVADwS3hx5Q/MR4eqnqhENHLHQvpHU6pLzYZ566fREseAC6s/j4q8xIAYHln4GhtWB36+8SbxDfwj2aZMBER7rrqrho7wbOhy395h+sIsXf2OYk28Qn86+v5Ty2EiR65+moiMo1l73399JFbiMjeZKJFbZrqnW+WLWWjwd3WKzfcuECUzX/yeiLSWAQRPdrRcfIWrgyiWwclyucTeLvCj1KTcRRjxXazdrnQGUlxpmfIB48KdT4fwd3Wb4aJaOTwSxsqO/ClhyJbfh7mTK9Q05NfP0cXh8XUlWu9kCurqO3tfTc3/fi2cqlfu/n4a3tEaGkyflFYTDllIpFChuIotucreskTooJ10cg4F9cMXUSpzG7sI2rJgwGYDW7PiVObbZVI5APE9HBjvjo3mJjaLCNZD5x9SiZZo8HbrzUoWsiRts+8utkhmj3iyWc5C+YrJNbX7+/81ZOlvvnLKyFQwDtG/aznF6owxYaDd+aqVM6+9j88tW7D+mFTqMI/MG/4C//sKgINKDgOpDdG5gEgF5iTG0gKbTOuKxXfIcZ1aUwdBwMYMHN9QY7iXCDnC9tdWitO88Tl5ForZfKm2GI5qHdQsuyDvVLJXNGVgqFPuBVMoK3zQ+pB009pGb/Q9qxcQmcUY8DDGOCK68p1udqOB3tzVSEzbbIyfqUfukoijsxurXCuMsjb1rm+YKI2rHdQsGAGhnokEzphgojiOr8NkvBD6uAHdYFnpcfx0BG5hE7oSmGSayiDK9dapS1tbk9avZWVcZYMNFzGM51AIsUZ2VlL0VSuyY51b6yzetsdGeZXDExQ1vXeJ5XQAT+MEW0O88Z2rZd0JJK2e5cLzMnNvYUQrzDyoislUBIHrhkAlEabJxySS4/jPw+8X6bRACSIKMUf3WH1AYXola9dPXWl/Wuie9TvCgliGd/IHpZL6ADuNZCjhOcH1WmX5shdNQeItxlDof2gezSBDIVK4MR1orXPcahlgIdx/ERgSSqhNV4Xim3Pda43yLUjJ6OrMAD4drd4Qhvktl/3tkj8Mte1EnJQHc5zSa78mrNBMs4wrQ4fDxW0Zy7YtHU2FrbUS6ww01bgVH9r0CAZX4q1J4HuUYEk1VwbY8J4y1iJPw8pfZwBGPEk43pZ96ujJQYsqmn+eieAaevxPy2HzUeitnqJFaRknIHhgiHj8tN2NqrZdoDxKH8qAjS9JrFLDymMqk56iRXKMi5afF3G5ZmON8ehEy6tdfSWqAKBofjnrDheHNcCkqEtSxDl4W7ZNefIFsmEAIBUJJqt/DoRyImMZol4eY32zsBVMgqyrD7OSuEp6aYujaqPGPmAARjsFejXmCRDif0vumdZkDYDwDRdRab0KXXRPZIlkqFYzRRQuLbO8GEDAtCVYnfqu9J36KIqzIA2jkvwPSon4/lhtV4oE0FOPZG09fjD+s9cgHuaroa0rlIKTwHC9TUb7D1bF8iwfZgvJwImHwJgGBcPtUuq1dL2cQkZX94VSFhy9546z5XBJUTHbieirddoS7DtN4xpSzHBRZ7SvX5Yzg0hPCBqV3ku9Ilfby57xpjx+bGdVgnqkdD/PalXw5KaEq16DR5k/AmeaEbb5nraZi01YAYAkUct3tShRiMFMLVWQBk1Q9quIiTjU+qwiUwde/Mqj25vsfrYNMZfhipI28e/s4k35lIsfAJwaszh7c7vAVhwzTQ9XhAMkLWPM6C09oB7PACYUEerBNGCufP1uxX1sFppTkS0DMWsMvAg4/PqInPvjemovbW2gsqknaBOAG8TddbGsVxfbxyXWksweRkf22RkYY+4Os6V1/Zh46m4OgUgs7suiiXXC81Zq2B3SNvHDRm3T5v6g02chVoqT9rF1XEwqx0Ra1vK3ijkzCMeZdwWhRFnr/sqHDBmocSr7fmK3mmC9Y7P4IVHNVcTAUdAEBHJ7gFR++C9DrSS4VPzO7iVoJ1N+rG5UzfHjlFxlUUUu6p/h7tqqyBpHwdKa/fbvcoPqGJ7oGlNASiOI7EbicP1EewswzJLITn7uDF4v6na9Nvjwb5lc2yOHEe7ASBzGOhOfdPiCJ0d1/pSSAKi43iZj71Rq9fLFu4CriiEZgA8kgebjFt0axCAYrFY/0LabCutj38UsbDXTQcG8hDvMY+16sNYlr5v8ZoAwIJpYFjWjYLXPl7nTZGuk/GlnpDMej/fp351cFKhOBjutKo0e64LoWlJgxa3jLOah71R47cW8ETVSoMbyWu3nM1ddcIhhsF1sVjUJF2T9mKxiGQgV5F97Un/i2LRuqY0yK85I98DYFRCdlM4pb/grn4GlEZ/bz/MS0eLxOW21v8v/4ciBnfAkANzsFZBTmy72cdtde431Wz5xbgaF1nyGn3qrUhkAQAQddBfFRDRymVEK5dp/xCR/nRp8aaH76CVy0iPYY6nx7ZDb4vLXv5PmHLqPYXWfwoUMnsFPHxUvynq9L2XHggRiezEExHR4w/s+bamlpz+41SrXawy17Rymc4Uldl7cUe6SYrrs1+c3mBRXih05rWTP/3vD2nDpdShEv1shejU2eAX164PBYkIykedPX+jEH0UH39wwPogrCPO7ko9/UeKHv/BN2ZsIwK6sBarhZwVgeLOnRYSbvphI2k29vHkaLRZjY0er3UFmD808mW1KRpfALDQvMCQMvurCuCY2mfafS6smbGLSMb4Ve7B5dEMwP9e9wKAIqsKNvq1Q8c2jeNGGeaHgm1Dz9gzs3R0p9oxlsb4xsK31Ck4dH47FAaaq2eduYCh01nOXBqsuDgaLAhrCACAXGDOlG5hLNQ66Gq0ZbP9raHRG1t66k3dHHg9FF2qKWp/v03cCtfWTSdrJ2AmfTwZC/QnAa7mm71JWfU8jI4igHjT3rqw5YBBtgYG15ZaKYCzspsh6B3U6CVjrfu5p6BEoO+dr6zqdtIwLPFutDy3m/F0+0eW0V19C6dDBTkVTdNVXhHhOdcXnAVwy7bWTbNCTf1085C1EheLWwY7ca2R7R7hp16Fmbbz6djVBs8cPEyrQ3kAWPjcr6faajcsHbDcG7C7aylrbQtzbGsGAEsBYXnT0XuLOu6gFtZgaUsoqUf77sZSaZTbZDQb7LHbfmaIx6woc/iHT4XFN0MYgOwtn3iBP8UBzdStlTG6F0iFuZq7NNzkUD2s1P60w2jmhC2jHJEqhPR/D6jjXE7gDACy0aqD3Fk1DTg3t04mHY5kHO32yYCFILhzzbCozosMLQwAcjEei72BuGqMOhNEncX7MREpAUiFt7rcoDTRNFomaYP+fkctxRoMwP6ImIwzpIMCm2XzkeiCRilDu4EMxTUZB0p9YQttrsxDLtbmPq8uW8y9fOc+vmxoAO5NzgAgGTik/egiIqrfezCjVPH0Kq7eDQB/exjIqmkGgI1dnbJNeVTt1wwlzqU61F7XZnxcZ5sXuOIZxanc2rfnMIqrrSdNDUnToDWpXcky+TqgyTgDDql1J9U1NvP99W+sEauTO84zPiKOezjQmio/35kH9tg3dmFYPaQ/skr1MMCQcSBp7fR3IhQrD5aObc1Y/SYtJ9crkUm+iADia7LlsmQ6AXTZtnX1if0smQ32WfUX2sNCqLqtGACMNgk4QNa1Ge8ptjS3P0E8rE8VDMBkHBhqsRmIl/sDVabuTBXXle2qpWD1DMZYJhIW2WOvc7bkPqc5FnONou19BM26RReVd4/rxDAR6D9XFaBLeMbgvew0kVar/fOnmobFJpUTNefHuLnm2AxhAJIV3ycGvNVZZraW6VxPsE55nqTDQKK8x75Yzitp9qha7hG/4nSw+u4p/jO5qStcFEQGYCFQ1SoJu3GMHVS/ZeG8n6ie58oyjmda3zUCZwPbxba9ACDfqu0P7iGi1DfzAieRXXzYGYBcW/XGZFeq+r2BJdujBtUG5Ypj0PfalxkAFIaaD9VFdwYDsPzVa5Z1JQhdu0XOXxfaD7nEKG0cMv/MkOaVW1e0CfNKo66QpuB3NclmDBjsBQPmw9FFI46AYe14YCCvjxsMmbjQDQOuZ0rHouAoyUI0cpqX5IG1hjGkEJoGxpucFB475AcCs2DAnk6jeEL3KrjcDZBWz3Bk8k9qvYFLg0V9sdvGjFcnAvPRUEoLzrjquSbMXqvtf2tTBAMT5Lpw/YzT63W1eywWbKTWmt333bHYkjIeB1cN6GaiPS15Q2d3RX7AUAoydBhMc4YX4hqzrQ5O8+MbXYW7MKpy+tOVUbFplNboafd0gpXvUXTBbMXRIaNtZSc6Bdpa46h/Z20Dlnehs82uvVU7UyKILQ8aT2k1CzAktIMLP+bgujBs0v50JWgyLnpfCvKtz9u9ilq5QlSlHbJw33fHu2rKqOh4NwB0aaI9acd1pVmSq7eZx98EHQbQlWJMkGskgja0Zlysa2w26HzW1RZPlHMuBFJAcbWmsXbtso5eZrowrB6pFswM6QqyKNfos7mRJDLjmGy5r9W00hCzsFfsduPdQEbTARJup8yToZ5KLTNTV4QE1/8XmLMq9Ms3ODb1jOZUU1cGLiyqKX3GKQRS+srMbQgvjajTtVQ01YZBgmvMrLHaZohOOfCR6wlJ+mxomAqXdFeE8W5N2cjYT9eMAUiFY07dSZxr9AzVh822rdgnmPpcrVON6B7SFmP/pRBIactXK3+qMkqjLVOONCS4zllshnTbukMiG7PceBPCUuBVnYvxbiCbsuNIC0+FY+855yfBNZ7SjI6mlfN8wErqGQA2oX7HfqUhQFIncL5pMaFpo3faTdcce0UyXJsUBx1Do5XnKv5Ob1gnfpzCCt0jetZ9f78bk0REb1TTMkbIdOQ2d01IiuvF2sNiwarf5bKU4sKHmu2wFHhVe0iE6+mYfukUXURLimuTkQMAcKLdMlYqHJM8U2CCUf6DuoyXVAfFNx3hW9vIcV02Vmv4Rq3EgzHt0nyP3dkMYx99YLSKjBlxdYJvBJHgmkHfdCwTCFo42syF7mrkfSiVffS562wiZDdGM5x5SbY1xjdWni0EPD8QkPW9tcUh7XIQBHWTW03+Eyq/nUX22y7307+Vn4/01B7JOLbmd6e3KQ2+NHt7xwgREW3RnC5hPp6KM50Hf/p3/HnJ1rzJmTtSY+9c7gsKOCnwQz8cftDCVjtxhZBBTZprxI3DlaXmahVlWh3UFIhGizimQwUA6UBt+BLXoT4T5LkurX1ce0i3w8ThUreU+z4ftCVAc80wOaWOCVaxPNeYv0Lb8Dt4txHCgCl19Lzx3PjGzgVeARCbMQgAYEuxcEqUkvyXqtD+V39NREQnw0aQcqZz/PkHP6k9kw+X4asTOy4QfekVU9BTHeteCwtT8lDz+qVV0bIpba/A5CGJbXuAxKayKC3pCzrBtvbANcOJwPsAmvX1e1rw+iQp5AJzeFeFzue0fh5btDt5aWtgaDuwqA2pJfHrk6Qw01YordK9u7aFknJDhzeuC23PIB0CgBPhzVIKqHipewfRvAwA0+rwBRmS8Mo15gLLyQhQGK66btpX5AJzbQtArme1ZEPD89cGN2wbXG6ilzsW0nd7y4gf6iN9nz1Lx9a0vbFO/qOBXqqdAfngyNYBm5tqXJAgkhvye4NH+urdO0Tg+RuLL2w733H75e7x6sD254ju+7xwOoWd/9dVu+JN7jHt4eX711CI6NYbz32FSPwTGqJH+U1UP33Tp71+g9aLoAAAG/6sYVMQlHJpCfeu6HqScCjHrgzT2Y/rsyWChxcd4GkMV1buJ6KP7VstChHRVkVRLpn2mJOH1QcRjVzT5pG+MH7QdRg/uuukt0zkuVaI9oV/6426AKD/XXkrRqu9ZuZFwrP59S2eJhARKPrfFzc00f27w94y8zJz/ctk9kZv1CXw1mOP0cmbPGbioa337VO+4JG6GEBEdCyFyfBJjznJc53NA4nrPs4vJipElP0gTLtWH/OYk7iE67Nm9t6XiN76OL+YCIWInosRfvPL6z3nJYc9RCl0Cfg1Nghdr6O4uiUvr54xQFI3a5ySJIhjMSKizpe85vP/fOoQGwDaAJEAAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, C is a point on the semicircle O with AB as the diameter, connect AC and BC, and make square ACDE and BCFG with AC and BC as the edges respectively. The midpoints of DE, FG, arc \athrAC, arc \athrBC are M, N, P, Q respectively. If MP + NQ = 14.0, AC + BC = 18.0, then the length of AB is ()
|
13.0
|
377
|
[
"9\\sqrt{2}",
"\\frac{90}{7}",
"13",
"16"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAJIAAABfCAAAAAAmZsE4AAAKjElEQVR4nL1bf2xb1RX+XtulElh4G67qDlfu0qyJKBBX2YQRZg4jAqNFacSCwtSgdVraMCot6RptmVSR/VGJSAMpTE0XyBBBKlpQOoVNoU1GR7PNFYZufWFqZWBp6y6wpUrFDEZb7Drv2x/vh9/z+2H7JeHLHy/33nPv+94555177n3X4OcCqbg8BDTmui1l1+FzgWAspta9S75UtcVS9nOiZMSN2P7ngW2Haixb14wSsVsQBEEQTpjbRj5+BgCqt9t0XTv3aZklczszppZc7YBTx7UznHAjX49nv9DoMbV89P520L7jGvrSm99E6gMctWpyILSmlC71CV+ttmq4rfYyBCBl4WUA1tCX2CJyaNxYJcnxaQjj5FSjTb8VUSoOgIamK43k9HlruSkA++26bnBtFwrFAVAPASdjwIOW/d6Lh5ycyT0lBz4AgDf69aJUxM/G42/fFNgy7jSwo/O7AgUA0zFADBnqr8ffjsfD4UhkczaQ9K0NJZZSVAEX3zqb+DBy9/2R9QCAg/6frgGl3b8HsOmyORCa8Kezb/3li/dF7g7pGLYlHR7I9evWIpK9AfN0oSFDLkz0hhHuObFQ3Hb3jH0/15RyMZJsKbzKUtH1WMPeGk+sfyZv6iqRIx32I7t84yi8GQSAr/1NqxIK1+V4PB6XbuzpDll0BQTgsZ994rUb2+WEIuCNJgCoNk1X13578J4Nfdc753bEbrJmBACe1jH7wd3abWeGlHhIM5xEUjy6J6jaKr/xjbB1dJdIMhGyDf5uKV3ZT5JXoE5i+Zn+Jk+wY1hUBc7fzm1JIw0Dr53v2A3tNnqfrAaA7sY2AB+eTfz5fDj8xPHNOoG/34nvvfy0WjK98MK+F7+xaoaTSDJXK5JX0Ei+0B70xPpnbhQJsGeAqaDDMGn/Z5bqc2u4aflxxslXEH1Hz0RD9BQZdYg+bB+1aXDrSwqB+C3Ho3eIVm2+BXJ0r0MCczq8ypRkiN4T5C+8z5hbPvRTYsbvENwZTFrXu6AkSeqTJ28dJUmxLqrOGJpOJptIcq+dcUhyoIer5UvaKFe3DpKUKC0d8E0UCR3pJSVpKmrsYcC8f9myfgWUFoL9Wt2Ur1O2karBtuMkmQ+kHAZqHVvFN44kF+t69aXmmoT+BnUXSErs63dw8ImYZbVrSulQl/FmRz1HCoWMR04AkkGHIWx0WDElhUbmvo7i+mQokiIlSiQTDYpgOGHoZuzSd9jqDhVnAvLUkH301tHi+rq/Rupfgbxumb0TAgBi70s2MwoA4YnR5VWZUEgy3xpbsnr4GX/7JyTJrkGlJu1fslMSyaZJSqbWyvMlAthzfXwjYFoQMPre8l1nAeBiSKnyRl+zUxKAH7yoX1CtREv7dtlH5VHP4Tx5c1otT8YctLTkmzdXuqHUW5e2bpBIialwQ3IuqNXl/fPWvi2R5EGLnSYXlPqDpgVH4S4Sme/3/LC5UNvzNK20JNdcqNEVXFMadIzIJMnELTsWtYJY5yQaNucvFVMa8dtM4Ho037/ltFYInbP0JNlyI+1KJHNJSSLHvKLDFo6K4NyYt2dJKQwetBmLJDO+dLFVK9TS5C2JMqT+4yHno6ELcmnRr6wupRbAtK/UOcgiVEbptPc0adK0ARLJMxGSHPAod2udUBsPjTNX+7QqRpJM7FwRpbh3siy5wS6SpFjXtCBJ5ESrSveRDHlov8JHYbWzWO+VRO/Z5he/XZbgu7sAAKFz2+84KQAt8ety/dWPPcA/qo2xfN+vi7uXr6Okzylt1aNBe/BJX1dGmfEk8tgAeWhTRlGQkjCnfRljYCqf0tWA7BqlX7i8R51vJC7G6s5pq+0WAMX7uBLbR4w1ZVO6pktrS0AJyQoGPUdYK5Lk5UaLr2Dm1VO5vnQ9+mh/aSkZsyF96UeJ8cZHXgCAD3aYUwIBeODfF934UjrUxXJsRpLsPWIsL/V68AHlfTsrDPQYiiCZzWZL3CQTcdg1M+GB4lCRv3P9g+krAM5byv/Tt6QvrgNQhSpnS2Qf9Y0qOi3HcBfriwxxeHvq5vprJHdZym+NTJgM56QkSZfWlme5BV9RxVRNhhzx9Jt3LRW8FtWXVErZbFY2oGzErP7SHskwm81SUspZZrMOj3EqaizPB2ZJci4cnrN5qOXAnK6kvnFVyl+uqioH5Kp0l33vn/LkqqoAQS7nkKtCripnZ7d3Q4bi8ncP14PA9nhTaMQiCSew7nFDBFe0xKxykVWlq+itS6umLVRnHazdYQzyXe2aZuLBNusUORXQGbXgS1n1jtq9pSzJp4ILrIzSTlFfGqvJFIz1Scdm612wpolCfgGVS4GSQUvPVadISsXVDpSWNuZ1DjPnKxCUSP7G27tk6kKO6ZJ1qA6tacLg3s8H3lMNqlXLbwLtgtm5kJ5faLioORUJaZlyIfHSr5500dviFq96Rev7OsDwLaKrQ532C3VHPEeNPSSSPUe0dW+BkgWjSW9C61M2DjxDZUVHjoWsrHSuLrZYXHchqP2rUrKaVOS0tlJEtU7SnH/OUuTTTp8pPb1nqpiSBeLe110wolfWgET+LzRmJzThe7JIfyPtpSmJ3hOawSqwXCqgSXd02YstNNWJhZJEZryqMW0plZ/WGjGhbUsM77JyJA2DngGND6lbPVlQkkgyFXjOFSP29yn/zPqsHUmDeLuyNy1zektdqNtoaSH488rZSCTZpvhPpsbWkVRke7wndMXbE7aUpOLd2opQowTCdgdH0u5z2r+3sFM1uNeWEpne1aX1qhDqVu5wxDY70lHiYvM2bYGV9qVtKX0qp7WO62w7xBtIkmJgvnBfR1rD3qdUqfZhO0pLsdaST2g1OCmRRztJMlNzqgw+MpINYWXD6o9fJ2m1aFp+DK+ut0vP7CHnZpQXTI+3xQp1tpAT+bq3m+54GQDwrcVZLYUz4LGI0xcrZzWR4TjJgdKOZMBMoD1NkgNdpIXhOkPuGMmk8p7PyPgWi31aR6TbAzMk531LFpRsd2vLQzJILgamSsqZcNzbl6e0e7SIkuSwW1smxlrJWF9pOTNS4VCSE1EWa6mM3VonSOzr50DMxftKkv3e4fzWZBGlF/xJN7FIh+aJeHBRcjlGoqa5u09HSd6tXREfkgExGHfRTdkpzHR+6ct56o5Uvb774YbK45EB//3l1m33VthHYSBf/vXar76zAeqXnuyFw6joMJkFrm3EvfII5Y9D/eUrT65fxeN5FIAfP3/V4dxdmRAojza95a6VswKubS4tUwLyHCfgRre04rEAYEWMdguCIJwQIK+4fvKg62lkFdEyzimI6wRAwLHQRytWkHoM/n7XI9y4FEOtchYulblnUxkHJJ0h4HctIjm1w/UIb97rQff+EEjyAC/bniuuALkYc4NZ05ejsjEEQJRTuGNDQnWZO6POT9mIkduqul0PND3LoV0i1gGpDKWp6pInk0vjUp9woKb0EWc7pD6tx77aP2ADUt8/A+HSCsM2AGBarG+z/mlJWTgZk3/pgEOAyBZgv5slkgFXGslnV9C/RWSudlNmhQfPDBgaoEQecNl7CoD8HWoVf2Ex/RAE7N7qsvdDJMkzAASughMB8jF4wHQUviJQAAX8H1OAmLum6LhqAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, in the quadrilateral ABCD, point P is the midpoint of the diagonal BD, points E and F are the midpoints of AB and CD respectively, AD = BC, angle FPE = 136.0, then the degree of angle PFE is ()
|
22.0
|
378
|
[
"15^\\circ",
"20^\\circ",
"22^\\circ",
"44^\\circ"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAKUAAACMCAAAAAA44zb4AAAIjUlEQVR4nO1cXWgcVRQ+G4NdFaRQAltEsk2RbFHptihEfXCrUYMKrk+mSEz6Yre+WJ8UQbKiUCUPpU+x+JBWSSuKTXyxsSBRoaQVYlIQU39gtw+aipHWh5i9O7tzfJidnb+7955758ah0A/C/J2ZfHNmzrnnu3fuphBuAHQlTYCEmyzNITGW36dSM2Tj7k0kIsKpqfUfvyNbp5KJcfbsJ9sUzBN64p8/pUIyKZa/7lQyT4jlPXNw5Zl/yeZJvZePnx/84nayeUIsFXEzq5vDTZbmcJOlOSTK8lCNaJgoy/QHRMNEs/rVPas0w0R9mRmYpRkm20IuH1gi2SUb43lYJtklnInG3yaZJV0TbV/KEKySzuqvv0+x0vMle/yXub06J0ZQ276allvp+XLL9IM5rRMjSI9RMrvmEz+/jy4HxHj1GMFIk+VvXanc33qnhpDNz8qN9Fiycz/jfnrXhBCU+NFjeene43CP1plRDNSWpTZ6LOcOQuNcr9apURAyuxZL9lMOfv/LUJTD0PJVmYkWy0sP3M5G3jEV5elX5W8masAagf41nRP5uJbZkFho+bL7I7y8DUBBEgixdViW2eO142RJIMbB4xKDeDURWRJI8PxoUXg8ni/JkkACaTMZ78Vfysc730V+SXg4Zn1JlQQyyJrJKPHaIz2n91ITzUxR2W88bGRXRYejLKv9i9bIy+TrZ4SXJ+PoYdHRyBNvvHVkb/dOeilBkwRSDM+KUm+E5Q+3PQ+NymPky5dOGMnsmaIo9UZYnh0C+PR3eiVBkwRyCDM7L8ZPvfiUQiVBkgRy5HKzgqPhF/UiwEQZJhRe/OKMaqhwcXao87GYWR0RcWEg/jUQhZndQK8BRRJQIHp1DDhh8zO7iR4YgiSgIH2Q48zaiQMARnwpaTjIWM2Ga/Zr49mxChqJHookoOHw0cBmpZQZd14CIyzDl9dFoA5cGM5OujcvYFmiO2glp8UqAi/1zhQGTnv7BdGjIGrEDQcdoycBAKB2YsfJ8YVh34HON7aaoTthvqDhOQ7yS17I+CDwpYqoKVxf1nJeGAePVw/tgoWpbGi/4MZURM3pYQ3PRfHtHXdPcsJBqHT3TOWpTqjtWqB044sxe6x2131l3hHRnak0fbEz+8ZUtjjPyeyIsnypIGr4lyejHTKlSc5RMUsVB8XJ7F4rww8GMcuNrf9HZve3MvyiWtJCqjhIs2Z3WxlrBGDi4hluMEhYVrL0fyeSBJ3ghAwiYrVvAnG6Z5Fbs8uqDRUHSTp7ovC1MtW+CUSsDa5xg0HGUkXUTI3RbTEQMojlwXVEtN5c59bs0spNwUGSzp4ggiFTe8SnWt84EjaWslTJ7EfeoFoGCzPEat8ZbyOaegERG4yxZqfrqTiImNm9kGmj2r/o2xqbCp0BiIh2Z5LmMzunMGs/8c+cDslIZpezVBE18ioqEDI+lHsWEafdl3PobPCoy5KxOjZYE23GLESbMYbu4vBRRJuxurvNWJOxurMnDEniCoZMANMAXr9POBhcljZDRAuxjsiayJpoOWtWHVdyiKyJdXe3zRjarI42i/4vYayFQ0aA3AqXJTbqaDfRZoyxpl1HtBm2FlicseuI6G7brNn+i6Bj4uKEjAChYGixRETWtBwizrbN3AXOF0K7BSwnS9z/yg0ZAUKZpQugYUEKAG5pdAGk0AawU9AASEFrAYXry/7dQozNcXpj+FpGhHTxk1Ct3mhly5a/GHODxV2wU8P+3Ywxu/XH8cL4eHiPIGQ6I5h6fW1Po+MpcTK7QsgEMOw/y2PZMJTZ/ZJALWQCCKRel6XFLMEpKqLGu7xqyARRmPfW3V6D7ltFM33E4xxB5LOzmiETRKBrmHZjKqJmpoiaIROEL7NTewbVanbdkAnAFwxUlgqiZmP/nbohE7xO5pq7Su1XH7q6TDO8Xt7VfedkQe0d5CI9fKK9Tr0zmqhxCrOoJNCCl1nILCmZ3Q2ZmL0xbbSDgd6vLhU1vpCJSAI9tFMvnaXYQcFWxtTnHAMLzlJhjEIgaiKtTFgSaMItqhVYdnRQW8tYIwAAg+vGBv0wW0FEtfEefmYPtDLlMy05GJIEumhldpVxyNY4RwCz+157rlJyP5NuVHphyxO/AuGjMBpKc85S5c7CoiZSmFWfXsfp/jVU7I2RQmlMN+ig6+Vd387PFPy7zn95R+qPy9sgKgliQuWW/A7iyX9rdLHVxWcusyOioi/To26ZeWH/vt2VcnjspFnLQe9LX/0LYO5DPQdK99RyUKfC7OIEuj2R5jI7ovLIc2lSoGWs0UXEMrh9fAW+lQ4UWS7dL9AyfQAAPe0uPlOZHVVZVkrpF+gZxlBmR7XoubB/3+6PGH240VBmB1CInlbIqPSze5IgJoi+9Eb/ec1kB/glQUxQbsVfmG1CP7scBF8G5b+KgzL5OR3HcSC7jYj81+uNiQcJy0ArU/sQEdVEjSsJYkLEMtzKlJ06QsVBhjJ7Z5YRLTP9cKvtUxE12YrUhIBO0RPtMbuy9mRrTSVbG/oel8ud02NWe+GfUbeJVmj6Nox8W8ZjyS3M3l2z2iwNfclIh8ey2tfvrBR4hdlFAG9+lFlRQ4D3XvaeftRZCWkZAAC4chKxuvO21pZhUSOHL3rODnW0uvLKBMCf9fb268eMfPBPh+NSawQ+Huw8DwV6FrHse+TBcY7Nh8Oy2r+IZfo8FLOihoAuAGceCihNac1v/WZTnmwHdAE481DY1/R5KGAsWxPRBeDEzXtblGa0Fi9f3hxCXLgx/vY5lXkoYFTUEICIWO2DM56OpsGcqCFAf9bma72HDTpLDH2WVx9aIfy6gxnoz/YwJ2rkiDFPl/pTMwYQY+ZMPn3BHA8x4szvMTQVkoBYM7N3zGdN8RAj1lyp/62ZjOXL2p4VY0SESPr3iWhI+veJaLgxWP4Hq+R472Z/29cAAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, it is known that the straight line a parallel b parallel c and the straight line d are perpendicular to them and intersect at the three points A, B and C. If AB = 3.0 and AC = 8.0, the distance between the parallel lines b and c is ( )
|
5.0
|
379
|
[
"3",
"5",
"8",
"11"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAGQAAAAvCAAAAAAwFjAnAAAFAElEQVR4nLWXW1ATZxTH/wkBCgIqVeoAUhw13goiEjqxiuBUpGADQiBAuFoK7bRTZzp9cZy+2HamY33yrcWqSAIkxAvhKhcdB4WOFWlF0EFBURAQSPACKCF7+hCsXLK7AfH/tv+ze37fd+bst2cFREzKrR93L8G70UQTIwUYot5ftseX0TvRxRzJ70QCRgDggbbS+fMUlwXexZCudGBbghSTEKBbVyhSprouIOJ+XpWDTCYG3kCAJxq1Y5LMc2EIY83qRi/lp8uA6RDgaYnmWYRizdsjhqt094MSdwonL6dBgHHt6X7ZF76ca9S3R0g4Ed3akokwhd8bYwYEGCk/NRiexY4x1zxprzj9EWucaT11dUl0lM9Uj8DM7LoXdcmSb5rYetLcT5R0iS36tCplS2LF8AyXmbkTAEDd8ZshaVKWtU7UPchwtBrpq9QOfJIaNMufVa5J1ebd2ZpuHfPwu4fqDVb8du0FUUSctbaxUq5JXTuwNaHGZCUw2rbtwCxzvDE7QFbUbz2V9XJZ1JJ7SfzlTqfZgcPjP01/aLBe1RmYFrSIJRFbuSxqO35llTL8vanWaL7P0uq4TVOtDn3pq9DU9expuCFAp7rCLVkpemOMHXvhH7h6yh3NBZfcY2M9uJLwQYCOYu2SjDiWSow15N1clxzmxp2CHwL05Fc6JYZ7AoCpx0BCuHpbKthTrRnaofRz4EvABzHdcF8LjKh0wugYzz79xd6XH2CIPD+O2oi71QXCyDQvPgI/ZCi3vvfb/QBM+8pDA1oWS9d7ryBjV/u1Hom5XHAwZrENCK73hIiI/tHeOup7g4gKpBfOh7kefjbpn/d2+f43aQcREb389xFXCiJiOCHMS6I+/2qiZj8t0ejlJP8fbhN1HAvdfuQhUdIhhojor415fBAR1z4FjkCbfzAYVUA84BQSUq7J3mXX4JYQvwzADp3RHYD4/TG+enFCADy/nL0Yw80Ky1WUa+YREv+6GQAgfvXUHYC9o5D9cdsglXukIAcXAwAY9MXGjHizKmtDTrA94ChgAICIj8EDMar7faoWSV32/pnm2Xr2gmivYiXwc+wfX23O2i7qYWwdb7ghN0udWvG1CFlN6ev+XpET5wwAdhLJDdVBcXRlhAcACIV2vBTOFh7u7es2Eo1oorxyaqZFWg/5ORwjIqLHgUf5usuGY6Vbd8YUm+A7075bWuixf7cb2vSrIrnnNf6zq6m4dqk8bpm1UJe2wl4e4wGzgLu/eCDmMt2dtfJo1qIbT2mEyhS+w4UTYtSeGwiVsw0UFg0UFdrJU93nCaEOTZlon4x/nuyvUxv2ZH44D4ipUX3dJ/Eznq/RpEbLTvTFJK2bI2SkpLgrUBlmE8GSRps3GJ60iS1qBdKrqhjfvW+z7QgAGK8tvB2cHWAbxNSWf3mpPNJ7bggAGL+a2yLN3mKlE2dAXtQXtojTwpznjgAAc0Pu7a0p22a9NNMgg2fOGkIUwfMjWNR88sqajEh2yL38aoe9MWvfBgEATaoacdZ0zGvIaJP6uldyGOeMZqtu5dWvTN8x5RiwQAy1BV1BmRL7hUAAwOMTepdM2f8YEjCCR8X6sfBka38D81fvyTNuqYnOryHXSyqXR0euXFAEADwqLrOLlS+3QKSrlVLbZrS56kmZ6rki2RMgwT1f/q/nfDVadHokTrHKloH7bTRRdM4QnmAZa96hXlVrOv8DI7HEH5YURccAAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, it is known that angle 1 + angle 2 = 100.0, then angle 3 = ().
|
130.0
|
380
|
[
"50^\\circ",
"80^\\circ",
"130^\\circ",
"120^\\circ"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAIAAAABkCAAAAABrgGeDAAALxUlEQVR4nL1aeXyM1xp+vplJIrEFde2lobV1u9TtXK7ey50yCUFD6+IXtEVLrtrqKrWrrUmotfzaW0tb2lqKtqr0alGUILZYKkKCiCyIJJOZ+b7vPPePWWSZyXwzwfPH5DvnvOd9n3PO+57vPeeLRJQBpbI1bqjnnQ8S/3PG+eBJbkWEW65RLa/aXCI+BAAAhT8CADJ2ukkufrasTAniIy67H5/tCEgMbteknJAPAoRT9MgBAHcuAgBeeE8L21L46RNAYqrtTaD6Ww4KbtUVE5AAoGhBoSIAtH/Db8ulcH2JBRKDgs1d7+v2QQAAply+dWVC5JOVs13C2qJjv3a3zX2idLvOSz95Q1dTwz4m9dAlyANN04E5pv5WfGcyncUVk+lLcKhpEhBviinAbpPpOK6/bPoMGG4aCyw19byNfSbTYeREmj6WEGcaCaw2mXPGj7q5tm68abjsMCGoKB5m4FZKu3Bg/6TMmFc7AqeKmjUUybbarXAxL/jP+qw0PF3DcpJNG+OENbwNUrMN7QzZqWgTXpyMxk2kk5YaTyMtS9c+KO8iWtW2JYuGzXC6sOpzuJoptQspTJdaX86+mdBlehVKuRNPhGBgHOiEoCBJrhxRTO4ccuW6ygcN4fx7JWF8Ial8a/49qe029xJIkADw7O6mIdi3ZW2zRmUXx6Oz+FXp8oZmE1otyoWOL75YB6GG0mI5R5oXSYj7eqOteWdszKnXHweS9YOrp32PyCcta5VnumBz5mMDcTgJg8MztsHUxrrO1vplbMsIH4ykwxj4WOZmdHlGXmdpEYXvrlQbok8+gP71sr/C39qJdQXNeuHHS6FDgrNqJjwfLZ9PWVkY9/cyBE6YamUDA+OT8tYCaRkWICslSEFBCjpBuWB7DLiS2hjITpHsKEpBB6gXi2oAV8/Xo5STAhssKXgO4o/8KsC1lNpEXgqKYU1BazA1VwKup9QIyp+wAWG4l1Fzj0gIQalV+rVtbNS3ZP5Ec59dD9wFXEjpDcRm8uAIim7D7aVmIP/sVNvxGkDoyIhqe7+I9rSUlceOOccQu6K6ON8eqKHqShCQM+cP6pyTdlcOCno8+eKU2CaftJVCgpBv09eWLIWoFaTcRrUw5KnB4bhn1dWRrPcQHqzmoWpV3FaCw1FQLNXR2fIRHqzeZlg13JGDaqHQ4qisGUILQ/UFSxfWT5aeqC6n73sj+8t9q/WuJRDkqV4RBwqGt+15liR5zIin6oZGnrw3r9sg8huj8TQvGo3rqcYYx5Izjd0LuMNoPMarRuMn5ADj2+R8Y9fb3GM0HuTNzsYl5BDj6+RHxs5ZPNStWxItTauNPP8qml8jyTPmlkZjh60KS2xEqk0fJFklBDsC8OoMQ3KoXKXrM4pUvaXj/VqI4GBYhD4UVkUKk2QbQvXC4q60yVKYpFhRxcAiBofAInRhDtXWPZYqhrxhbU89PvXQ5CedxhQGhVT4LrgzyzalCdbskJiVPk0PlfVjygtVkD0AAFJ/1lHF0R86qwyr0+LoEHNZgYpeRvb45HeNAJA/vQgADDUB6Ob5MOnGV8mQaC0CgKDoKOB6fPGk5k7ODt6UUGIJSo+FEihhzabhr9yvs80HgHTZkzUPA2kYBoldX3IVt3/WKa6qy9B9YyU6uitLUNm5PHpkGb1b8j0R8ICY8BIF+5KDQ/uUUe6NeSmcnNvm3erlOfqLtHkc97RnNb72rcw3R9yo7N4n9vSck++lzScBFk3+16nK2b+3JHKr8NbomwD5UdSeyti/NHrQmfvJgH8EnL02dfvCWfA6EO/Y0/d9b9Pvm4ALB3rG20sQ8gPqsh6fVyigjQDPDRyX67dxkplxA45WzNtbVuyIEPdT60SOS4WXbMs7fhsdvqgDUGHwahmHIFk0r89hP4df/Gm3z62+hDQuAUl1fdR2v+zfmBhzzLeUdgLk7sgVMkmNvvj7a2O1uI0/BHjslakVRVQprIn8WJOctuO5C1fn6KY30SKYm3Dp3100qawwCkqBAJol1Bt3RoNs8ig5UZt9bVFQArZlUf8rV1dgKeUWYqN5VZFWhf4SoNhi/lIpWaEcf8PYf/9a2c3h7ow+v2jX5zcB8mD0wgLSFQvqh2133brQab67+WRsXDq179oBEOD5QWNvugt7I3aSXLDDZfKbyES7P8oCIcCcdwZddB7oLf1HCJLHr5EU5N1Zvb8n/XlzBkSA1nm9DzqezkX8UKL+3OvD/3A+Co1rEBgBco15K0nySMTe+5Xboz+8568ig+9A9RS70tAGy2+9DaBe6HUAN6+0D4Ft8eE3ewegK1Cc6De1kJSndth95fCYU2TqsNdTAlATOAFmDBt2g7Qt6WCMTSF3Rc8pDERLJQiwYGq/ZJKyXWXBoh5bAlNSGQLk0p6Oi5TUkbGnGVDKWkkC3GReQ3J3n6n59y/6HikB7n9lsXWVj8S3QviXD3jA5Q9Ot5nwfOD9tecDXpCfl1NcD4DfGfODIVC8Zsrgs38deQjwkXx7R6U8IGNi36MkP4vaFFgIkAQpVDXAzgdfm5BNktwVvTTQu22Qwm4PjMCnkatcjyf7Tg1oH3REgaILxBPuzL88xn0BhPQPMKthIC7gNK3IgrJMyCoAVVYACFl2+LUqK86SEEKm6uhxcoRIvG8fTRfWHX0qEAIgKatUbULIMmVVlSkrQpWpKELIJCmrqp2qIoQs7DbVblNlkvI35RLf4qWRPwWwBE4CQqYqk3a7XaasUtipKKSdJO2CdJZUmbJKO5k7o/fecqrEFvN6pVytLxgc+4ekV3QAYPC4M5a81ZIQhFMJ1Zc3RtlLMymm4YKsUVX9XgLVpghSKKpKKqqqUpUVVXH+CkFFVRQKRVUVynZhl8mveyTKnodzecD4LD9nQCJVnQ6AEAY4A0IIxy8MIHWOFiFgoAo9pHuJp4dHeRtO7qz8ya39nAEnZI17wbnBIy/Qve+V61Q0N3q/XzPgJCDbtJwmBLk9MsHbCd15UlrbfVMABIS2NL54Yc8dPgX3RK3w4iKe4Fc+kBovT2rpY0Ul4OzMthNqOL+R09dLUhsBR7ztXN1hfJgW8ZvT9e+77jF83m9rmCXHpBctit5CH29dV2Phe/2SS1V4h+Z8IHXUID/urMXSyN3aGGglsCtmmqarUrfBrea1mhRrI6AsidzoR8YhSPJgr3laQlsTgcy4ASe1m3dNw6XYMRomTUsqcnBUzRXPafF+FxyO32KxNDbNt7BPisX/NX/u/1uWJGld2Puwr6sKnwTSHYmvn0mvS3qdebOjHPAnm/39xt3yy7STgMvizqilFU+fDwKfRq4WAaX87iEff3VyQUWCFW7FtxdcHdPJ6Sr+n3ucXdIXKLMbeJfyFAV0kkqOE4lO+4Gcu5xdms5v8E5F98te58a+odtqi/9z7wG2lebdXhu9Erg1PfrXB2KeJLd0W+ctRfBGIDn2rWtkwEfOsjgQPceLK3oh8HV0YoCbjxdcGDQ622ODxygojD873AxKAX8s94DcuXkzmmt0wguD3774QIdPkiye1+c3D9UeCGyPir/74O2TyhqzK18u4VnlCBQs6PX9g13++9jVY5mtbF1ZHzi/SJlSyf+hrACn5zafWAul9tUyBH5c9Zd3Qx6afSBrOqaV/u4nERk7LcWs8sI/AOvKX4b2fWjGKQEonntpUrsyBNLGXX8p5EibFbi6oHhCuX8XfuBYtuud7qV4kes3M+3Mev7cb/ZD8f6y2BG9vkTJANzNa/bb5dcabZvZtP5220OfAOhC6s9mraU2PV6eLAEGIH/fhpvLQ0NfHJmboz58+4D0VFCtjhs7vJQ9g+/pYQCOt1i+pBnQ4K1HMHwHdHo2iWkK28J/GmGA/dJTjfo0T2+iw8OMvzJIMlQBWgbdAHS4be2NjslrxaOzDuCnJ2oDIXWDAUPS7HOZBn63MLDvdwFCznspCDh8uxVgqGrqUSSkmZGPzjolZNRtCtxa3ikCMLRp8+hMOyABm+/9CUlx7SbrAQj3l+ZH84ekbRrQuHHEumKS/D9KADfpkWPSQgAAAABJRU5ErkJggg=="
}
] |
<image>As shown in the figure, there is a pond. To measure the distance between A and B at both ends of the pond, firstly take a point C on the flat ground that can directly reach points A and B without passing through the pond, connect AC and extend to D, so that CD = CA , Connect BC and extend to E, make CE = CB, connect ED. If DE = 58.0 is measured, then the distance between A and B is ()
|
58.0
|
381
|
[
"29米",
"58米",
"60米",
".116米A120^\\circ"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAJ0AAABuCAAAAAAYS069AAAGY0lEQVR4nO1bf4gUVRz/vGkbMc7znzsqupLcE4STuK0/FDzl/jgj8zYSAsVOUBAFM9DLtROkH3LSmYEIZ3lH4ELJKWGWJqm70l1oKFSrdnRFs2V4hJxF6Uk6e7fz7Y+Z3Zu5nbt9M/Pe7D992NudefudeZ/5/nrvfd8eI1QM2Xr0bJxWQgmJSQkI6XpD06YXYpXTHdOi5UQqpjukd5QlV0HL/lqeXOXYMWgAKydUQb8DynVeQXYcqFxU8OB/di4Y5hOrBDvCcOxHLsnQo4IYgOXRbi7hiFwupWAADmqfcQpXIKNosdQiPsnQdQeDVrVzkqtAVCi78QavbPiWvdxydS6vbNiWpVxbFze5kHVnKNiS/dI84EF4ujMUQMHZYxnzgAvhsVMA4NaG7jrAysnlEXJUrH7wIy/i4UbFkYuDnuTl685mxOEFny/xlGBDsywxoDm23zzhDNnwxgoCDtzsAijLslAM3qtCQJ6I8jRYlSGiFKBxXyhddwTTQEq+raMRMFq8uJJ0dsV14a6qhNUfX64DQskoZghc/OA71Wrg114IUaEAwN11e+2VCc6oCCtmt8/f5KPbkMaK08dtgwSBd6ANR3e3NqzBhL8x8EZGOOw2LvtjbmzPHQKQZahP8/odrGQpFcknRvM00FZ7YNxjV2GMFb9VXSAiosHW+ddNenkyuK4EcQoGQNP2wlHy0SFPV4KIgBQTzciGrti9ogKO1mS8aAP0CzSKJ2TQMpGZnbGdHZ1334PvKWhPRTG/Xto0T1+/s7F4YmDVwg7ONEEAkNpBRPGsYIWZGCei7U3kyAojjwxxubpBRMQSz7ag94uTAN7kXip5wI0jm6udd703EwDjmAq8DSgE9G6KSzIsjX36fDWYo7w+EwCIs8NzQE8CPVIsS7TuxcnWynMmf9OyUlc9JzZfqwVKPYbHg4hJXpONNCRXuLXzLsnksos/dijYDWTO73qG+gLeQaLuss+cXhzwFvLY5Zub9gSdPcqbfXbd7QT38mYKCNddIR6vLLnUgKCjj3DdWTfU2zobAC8razfI8rutV7/izmpTQ0ZGIYaB5A9Qgs8pZEQFw+01Bx8PalXAtGwOUMtLesHasaNC7hMBoOYEkzvWnxEzVZThd8NbPq4RYFZYMZtTkQPUHKAiBxVFY0/Y3Dyy3tXctPpePueQgHgFYFZm9Ym/4sv2Qc5mXddJ160vXGaN3fPu+5mousFu2ZylLncUdaXm1GnCiGkd6Rm2hxczVqgWLVXlD5E0Yzsmt+VXtS/ExPgazP0ilspsmMKjSpu1c5Stj25yNu7GLhATlUeJdMuDLA/TzXfbh+5sLvidniKinrjTUy5XmfV+MXWtyGQXUm3vthNbs3WqogWgST9T09u65hoKRI1BE1HhJyUTy7YWjgAA7dFXxGS6QgeWWfUpMkQZtDrOztTcEFqr9F9dNIiInLWrkbo+x7eBEWx+1/vkMvupx73h8vA9zhoKkMYypNFSaPK6N8wBIi+bfg70mDcwLFPemJ0WYk4bGCG79ZT/Z2MAcPsKahrQHNsvusIWAc7H/V/OkN3Xd6cuips/R/88JTSZAEAE0Obx1Prccbxbe1WrBQwls/i1WUKZAQCIkKBEypdbjL7U2Edm9hh/upPE78tEkE68C46fTbtgON54aYble2891AEJayhKaERxP1F7vS5ZzLoXZkupizN64SSy26yqtjeMVhfcdexQU0ys0gAQQyTdaij1Zf7NwQ2MMIusA5ytFU8ODADFfe4zFsrTeaJTNTcFm9QC499odsJQCuUm46+n3l8pVGtFBJgFFJ9pZfVhSWXAiKMfTyhclPx2SFaNMniF7PcFZxZ7KPJzQ8x+xdKF+0SQcUXgR9472imChzuC6u5Kc3+jECKuCMhOX7T6dQn7pgX4ZmdS2vn1BWnUEFR3F58bnCOKiRsCRcXdl7vnIOiOyXQINFas/+eEQCouCFCZZSfOXCsc5x8QQaa0C/+6G2lIrpAwRtjhnZ2VP4jFH/5QOJ1J8G5ZK4Ow3p+C7g1z9OXdsqbyzL1heYkYgH+/yy9d+o5YJm7w7tTm47z37x7RVFzgU3dC9obLw19CELM3XB6edWcoALZl+iVwKYXnjKIAGDg8KDcLWyDv+Y7Y320H6yRwKQXzY9m19z+RQqYU3i1L3/R/L4OJG/xklOFw7ArgPzen98+HeYbMAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, the parallel lines a and b are intercepted by the straight line c. If angle 1 = 50.0, then the degree of angle 2 is ()
|
130.0
|
382
|
[
"150^\\circ",
"130^\\circ",
"110^\\circ",
"100^\\circ"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHMAAABpCAAAAAAsZUPHAAALC0lEQVR4nL2aaVwUxxLAa2b2QEAlcggCghjUGLwvUAElISAiiIAoHlHjEWMgMZpoPPJMfC8SL3xJNIrhmYdBCCqHghxqAMlPUAREBCOgXAkox3IsLOw1nQ+7wLI7O3vp1qfp6qr5z0z1VHfXDIYQ6FsYCNM7E9fQvuqRzkjE0MyePDZqqs5QDe8zJpqL+nRlanaf1bfNDVBMnZPzOL0xBRnBbAzvutZ63XHWu4b6YeaW+/wogFUd61oeJGVOnj6H9fqZ/KsWz7lcsDFNOLiwtSYncswsF9thr5fJu9B9pt2krMHWd1/NODOz2V13sq7aObuOfZ3MpoZp0DTeqsrWYeLV3QDYyGXLyu6kp9u7LWZqxsRItfMQT8Rk8YEhHgYFEScd+pUPikvFbwZOlpylq8egrWe4DX2ckQbMQSEPWH806PayML3PcvIiSwLg2aHaD1Dman96poZ5SCL4ym+93hxojfb1aUrPThvrPXWUVZORf8+DlyrctbpPgDD7XXKae/mXp58uXnmuo3HqiBm0vkjTHC8V/5wmOc28T83NoLI2/by1Oz1S83lFKh7jE6RHZL/qjMPn6L4Ty8BbpbOWTDy4XAwAwnuHK6SatAfhxi25q8KdVOdELZkwx/o+AIjLzjVK2pUxW+2humGm6Xo1LlhLJmvBOQ6Agb+9CAAAeo57OENXIg7MCa+PCfPwdAAQEzgAAIoQbgAgF59/S53VlVbvJwDA8BWXvU1BJGFmVB9hA5gsVc9V6/sEj9EPAUwIAwCovx5ur4Gn9kxDjxwR1DeWCaH39GwXTTy1Z4JrzQ1BcQCrFU7CWo0ctY4ngNGK00VF9rMNr5Wc0GzBoGW+BQAAQQDbs+9vTtMXizVyQ0AirYWM/xyhv+ad0dRNh3gCtqgmA1J8tmjqp0M8AUYvzUYP92t8Cl3iCdC+oyZqiqZO2s6fUjHqttEYqdP7CYCOjR5bo2dmTP6BSef0y3yUssfO668SfTJbI0NcYax7gmrLV8f8wTwYANyqHuuPGf1yFw4AE6ckizV11Tb3/e5VKjl4urxMT7mvLmantLAwYcoNDX21ZKLIWV79x5tLn+iF+ZvFpoHjsVNi9cHMSV8ns3QO/PPp0G5EAp1oxWy8stZWpjneKV7OgH7eYADwM4veGPNi/my1kb0REz1l27j/4SpHdZDdFX8LiCkTcAB28feW7je39ajNjDEMG6qYMSNDLUdG8tfkrWjEABA8nrsKHB4OxoAvwoQsMUnyMaZQyBCJMAOiT0wiHERiAkdGd38+8VyAE3wRA4kJhri3D2MYJFhaC0AkIEDEJwgSEYSAhxvy+YBhGEIACAGDxXQd+cLfRSwEBkBD+cLuxtpg46wMQwYX8Ucx6whetwXDuK+ZZcrlDsNI3ILfJjDESYKBEMZqL7G4IhThbB6OCcGQFPB7cVODtq/fJXmk0Jgh5hsQgmHD2T0cMBcAEg3DgAkCEjeqiF3gwnkyPcHHGmMAPH5hWpjxPAJruzhyl2dfL47NZvJJtoGRmE+wSQQsAhh8EmNiJE7gYrzj660reACAIQZJ4rgYMByxDN85t22UCMMJDMNwhBgMDJGIwAkQExjggGE9WYXh282KXl6w/wIQA6DE/CNzXmw7BDtdLLZyf0NFTL4fH04xRHxv3ttAZS2t4txPbNrki0Gpg6cAAIAUvRNGol9YBQghdDd8dUwnbbJMDXxOqb8bwlHqU7pvdVQ7QgjtDnuWUotIIFNYx7i3nDdxJfk3bX1ovFA58k/vG9QdwvCflbi0H/XcX40QQojrcQhFf4dIrPmXYifHeit/Y+nT6Mj+zTDIw4D6wXZ97PSFkmeec/qUNYW6LyXObOtcAABAMd8scrsdshRhAhFTKCZkS4VdaYkm6xdQJqiIih9HKGH27HRdp6AU5Sc2+y1nSxpkQyfBYNsS1HuH5hPv7S6h0F/3eaL8sd/e1iavKgwLiFZQIlLJnP30m6DjDfLKWv8s5UjEW5M2VFF/zPdf1RSGpNJ1fHn8o7kfWMpquJ84fqnkwQIAwK/5kTJ7Qs7VazNXvk1lR1NjFJVF9fjPtxo0jag7bqzEVnJNn28emCc4dxItg2ZKdzJoaNKnr2vmxnatfGektJF6IVJFefj8o/9KRh4vJ7MvaHDq0YgJgozUPu8gFgBA/f7QJfRIaN73visACJJyRyxyNlFqprJ+y/njKjvExRB4ex3DaA0BAM6Xn4K+/NiuYC9lb5RaTABOxh/kmln/qzqhep/ZcChoxMW2JQH0OVutOnVnUiH3xVkHlXYABy/NdQsyV2GkZm383g6rGX4qFy93bj8uil2g8mTqMTln5kxKznPcSFc/FJdmNkzzSO08SLwSJvoGHQKovfxgesAkZTbFCRXeIabQvP3bia+EmRB3xgoAoDSufvZyyrCWZFVMXDsWACBi+A6VTDX2SIVLCvoPH/07+FiTgkH1oZUn+2fyhrBSVedTnm8HhPOxx+bBVl5s87Kg4bL9tZcrJixzGmgexg6ouk+VTNFh/IDssOA/SBLN8zTrb9Yn5c0LtpfpL4vaY6MrM/r6WcuhGjI7WRCwmA0AUJeeb716aLVGcMQxVAVTVTwL1z1SVIqTPvwgBaGm71bsyVPoLNpQo1s8W3cHUxa8W+5mMw2f2votVPRGn07eRn+f9Psy0RFrH8oOc3ebrNSGJa4UF4ytL2mnPamKveBPLVQLaABO9I7mqNz3z+7Ko+icxbxAz6SNZ8ayp1TqjotbPryGEEL1pzfuLFLsL/B+oXU868I3LlfUcpOzjf1cjCSN2ri7MzfbylkIDzrRFejp3hX+bqt9CsrO3xNFm+YbDSqq46pdPe2GGt2JiqSZ0OiY50uOyq+5eJkZnSsC5D5fl1xqcAkeM8Rs7xzF9fUgU3k889f8Ka9KXRUa30VhemdHwKUh+rQ1rdrEs/LwymVDFII/rr1wD7SgNO7Lvl/tHjKYhnm7/b0oDQFonq043HavbJssjm9z9zWjtJVQ4/mBSwZicS0zUuk3F6XMxOL9svume5m17n70S6ueK+nma5z7L+GjbfM0Zd6N2SPz60zh1eduvva0RACAjivZjsHS7UJczhllixQlY+hJyK3BRsUhz8M0+zFZqYrecqQSIYRQa8AtZUbUY4j3mcPA1rbyZt7bIWp8vJVK3aUC51A7ADhXeVTJjVI/2+PPTkjLec9v5NltfEttIgBA9f+rXAMtoW7vJ87UBpTMmyd/HA8AAF1JWVYbnBT6VUnulRbvNcyjvQepJxAqZs2+tUsBADqu5JqvmK9NEVKYFTfC3+bUvnHPkrmEZYjc5oWCKf7KZjsAtGYnGwcu1PYHrI706zaVc7/k+zd/9a3Hf4budCjG7fmwdoQ4SVu3p4rUG6zU0vnDtKlcjtuXKNLxL7lxq7DZupF11ESQmWXs561yE0ArIz72KWfeb/WFiUS3XNcgk8/CAKDqly12aZfFoW5GoKs4OEC50BZqe+WLTf3M4kv8N+zmTBWdWmC0titoqfLEqomQD6dawT1nhXlBEs+CcaFpOy3S0UnL0C1Ryit3GkrDzJ/QQ/skOa20PtTh91YL6vjsWc6k9842I4R0+MgtK78SKQ9D1svfgjT3FXie2AriRsucNi9VtVQNpPL4s/d6xqweKaeWviunbB4jhBDS6e1QkO6Xna0timrJu9KbO02yitLt9ZAXIyVjHwcAwMlRxtCY1ftKicoFBwBgh5ZnVf5Qq9N/AxqIZAyJk7gmRu5s/SAHcjyJXm0s1WHqUxig///j/wGdxssEiLIFaAAAAABJRU5ErkJggg=="
}
] |
<image>As shown in the figure, it is known that angle 1 = 60.0, angle A + angle B + angle C + angle D + angle E + angle F = ()
|
240.0
|
383
|
[
"360^\\circ",
"540^\\circ",
"240^\\circ",
"280^\\circ"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAKoAAAEWCAAAAADTYlPkAAAXPklEQVR4nO2dx3OjyXXAX38AiJwziESQBDNndmbDrLySLcuy1tJB1m65fPFFLpf/Dh98c5V989VVLkll6SCXJEslr1ZZ8q42zAwzABJEJHLO6fvaB4IcBoQvNDhU1b7L1Hz40P3jQ/fr1+91QE34YxHqZQOwFzEoXjYCW/kj0upnqLOQz1BnIZ+hzkLEMywbAwAgYsXNEnVQouXKOWLFzRK1/RGszf1xoFb/U79EsC/MsFulPk6BmqAqZqZVphf4UO83Eix/Zlqtf1qzpBIEDcCsUHG/coq9kj4mWOaMGgCuFSm1dMtLUhMzQkXhs21TwWm6/6j90odRdSMOKoJNdUaopd/97KOfUHMPH5AsdCao3VJhe4GudixykqXOABX3kmn9W34cOSrI73kDYPL/S789LwHUQRIRwXKJo3ZjoZ2fL3xDUTv4/S5TkC5piZVMHLX1h//5oKXKO4o/+EUU4khzj1Hlj3R/gRxOZPjqgwboPCZyJaPmbKIrmGSHOpfZ2FWSQ/+lzAIV92kskRAvliAqvpjzMZUGMkounhHzA2eh1cFpUrGhIV7sTFBDuyarBzCQ7V1kXWuMMQDuHX+8UwQAjElOAkhqFV30/MbpbqVy/uCeT1haqTZdKTVphBAiqdUZoOYChjVNIdknXS5ZVIQQQObQ8NjXivWIlgwEUTHG+PzfzJHxjY32SZdUyRdCvgHQ2Yjx1Y1G4P6j9hMFpdm93gu3SHsCxFE7B1W/SeWRlMqk+xUx1AvL1D1qbhqR3KaJ5+6vVs/7VeuotWUEkcseTaPhI0JC0AIAAABTjTErOkBeZyxFquihkNZqIS42G8VAOW3RNOGJAMluhRBA6sTslSFAVlsx22aIjqwEUREA4ETIvYQAQOegylmyNoCgBQAAQPGge5kCQGKNfRDvkCocAEjbVbqRLs7PUwAI5MsQIruCgyxqO1S3mKUIAEC1Dvt1ooWTbKsINQ8Hfh2FAACUK1SoSXRsJalVDPV99FANAICxzDuXrdP3FRWgsYu3hlNVkdYoS+UZgoUT1WorX1QuDMO/aM5mS6XurVYzcY3dcBlSdSxk4vcVlYklXPOic/uKAOzuZJRg6WQbQDi27HmhR4snl+jdR88KAJhw3O958V+Dt1+oEuxXBFG72QLj0l/6J1iiNdExggMWOX8Vmsc9i+nFSgUEc0uyQJlU+US1Wj6Ur8uven2ydXXwnqLuKLau5NQQSJcVoSq5sZUcKlMMKNdkV59IXPJEhbl/qEwl0zQ6r4XVxWYjypeI2QBiqPRZ1mhVX8v+UXKzsZiiSdVADLUfyq/bbj40LFRi9GU4S6CQawBH2Q3HzYcWfyE0IFUDKVSmHan6LTefmv3lcA8AiCiWFGo3XRR71Def6hdaZ21CNRBDLYbmnFoxXI2zYgxzBh2dahAKtJNCzeybN0YkAGULmlCeUBWkUHOHxtURqGKfMVyAF3FCISIM9fLX7mUTFp8YLqEwPnevRT7Dcf76u7yFTN5qUMp1rLYRf7bYrTvNE8q0kWkAvZOaxyQeASSyWlvFGgNAQKuCUC+r7uzXto1XdXfRNimVUV1J98/fFdhcBWp1CNvZq20aR7+h8bUI5YWINACmdkpv6EZ/pl/rhLoABIyAQNTzypuZpspzYw3MRdPUr3eOu3AxKgipS5AFuNDS2bHdJxmjMs1SN9GGK3lt3kKkASSCzjHrvzGWWhXtbPOeOIGYSYadPgpgpEFCSoc2lr8nPgDunKWc3pswF70IiZzWZPbikZB6CAysvVRZYtWNLgghQB5HlEgKi4BWmwf9Ff34j5HLfpIkMWMhgNrYHWxoYBgAvP0bU/b5Uo5ErkUYKkIIoLaPt8evqsJIY5HUcgRSWMK1iithycatqcpVUfoGRw3B9QhHxYXUnNk0cSRRrUKQQLJFMCoTjvo8k9cpK1dFJ/dCq5HYgnuCvUQIFEtMsCW0HgKo9GlicRIqAEidimqp89IbAG4kiovzk98RGy2KTOGlo9ZP+xazdPI7SGy1poWnsASgYowxVPbFK+pp0zxs96ZigoOXQrVa3pWty6a+5VpORV96AyjuX4uqjxZs9eSSgiOCAj2rbiGjXZzSVAGQ1kpXKkJZBaAihOhY2mRTTS8Dqb1UoMq/KgAQqtXBSXbJLprqMCOQL8pCLxk1mLsdqh4l0kXZyUtGDWRXbyUARonULz0Qmm0ThNorFrBXx+ZNiUedKgncKioItXIsmjewiiSITSaqWBGWFxKEmjtUL8lYzUKR2OQoxISZK0GomX3z2lSlDmMDJn8x/BK1mj20bLLd/2/1VyIvDXVQynctVhYbFTHGAOalyqmw4KUA1H6kaDWxa6qAQevqZWuC1CoAtXNYXzdNj+2g8xigSG8VJ2r8a+OOeiWA1tuvbZuARdwEIQSA5C5VpHirEA7CX6u4fdxZM7Cvm/LqTgq8awMhqK10XXkzVD1azsNDkiVDIMe7NuAetb5InwEUTuV2nZh9SkrkNcULNMV/ExZ/rcYDjkUu3xZZjI1Sm+EfZRGAeuheufg2m+wJmjNYqxEBW5v4ouL+WcK1QHHqyrrVxpGA6CUPVIQQgn6mAA49t0an83cjAoKXfLXaDrVdxjkEmION1K20QgLGVr55q/oufqgGAMRhq6rG18s2Gd6pC75abe3TmxpAiL3lQTBn1eNM444tAB6UopIVFZw3XLawlNKmjhfuWKu4lmpqPVNDFbfEaTk9zwvxcQL4oTLJhHVezvm71IIrmuZVIQBvrZ5G/V4elXmdyRTvbQ08UcOxJS/3ryG7JZfmnRrmhco0EwWfjXv/QFKjrn3WBX7pVl6ovUxF5OB1Solmhf/WJl6o5QPJGp9DlRAoF5kTvskWfqg78i05L69TuYIDd4iKcWlftsnvUCXlCjqu80xj80Ht52Nq//QEwCiROlUNviksHqhMMQtGC79zVURqkyrNM4XFA3VwnPU7eI/k8954BLOZkt8SPloNZNan5P8miMObSdyVVnHvOL9m51UZAGC7N5fkFw/iodV6vOk386oMAMDmzib4TQW4o9ZifcO0rOp4QUqztJnt8lnGxB01d6DjaakAAABp3KLTOh+PlTtqdt+wxv/8V4RkC+JQhc9XuUcCMwHjmpDDqqTLcn6JQa6oTC+bMC0KWZ8pXVMdV+7CrvZjZZNFISSDMOdWZUp9zN1j5Vpp77C6Zha0FFWs11OFMo+FDFxRu4e1TaEH6lmX8yc8UlhcUVuHzW2hqKalEp+8EEfUQTkFgs9+NPnKd4Caj8jtWkrgCn+rvxDmERHkiHoWsvrmhK5GVs9TlTL3mDA3VJwIuPzjVlWzLQNTOqsozv2cC45ajYfmlwWvzUNzbmWA+y4sTvUOSvm23SoE9TxyLFrUh7insFjVe/FrtwItl/XFXgXe44Bk2Rwtztazah32V4dnlfC3AQiByGtM5jgvD+GAiqF5wGxOXKrMUkQmQ5f78hBOWq3v0Q+EHas5DHJTRk8zytW0skId7vdr5Bpql+zKQ451vSgP9IvNMFfLyqUBpGMGh5rMDj3tYuOY62SQC+rp6YKHInOWlmGjHZylVsORpQWOxY8TlQ8yNY6OIHtU3I+nFl0ckUaXhLHEpBlkmphTMpE9avesPDevIXSWGppzmU6z3L7DHrVxPJg3CPaqLrSIvM4Ix61N7FHLB7INcofqI5ctMTOtVnakW+ROFqfctugZwy3vyfI9TBePlSsCAkA367Vayrk6p3krW1SmnOkb7cKPAL/UosTk6HE7nY8tKh3L2Gzcs6oj5XyJmNo34JbCYo0aSG/yD1WPEsXy4GhGqJl1VgvAWYt6DYU4pbBYotL1RHOZf6j6tiBQLosTVZrDZmyWqK1kXe5SCkADgBvT3Ll5RTnX5jAVYIlaCsk8KpLXfwBQMqs5k+VgrliiZveN01dVcxXnYprL6XwsUXP7hnVyt6oNxTafjJ07BKxGLFaoTDubNvuEa/X6KIrmvWfEtTrI5ZHVTPDsMwAAwDZvOd1l31hZ1d8LlhdNhKYqV0Rq1HSS7MfW6agYQ++gtmUieqMCAACiVC50zD7MxkaruBNobJpInqY9FNmK7KjC+m0WqJiuxJk1cnf/XAgCqV9+wn79PYvNcqh21tfaid6qNRTpkiLK/nQ+Ng3gLOBYnsmFPXNuZTLP+jBRFqgoGXAsCY3/j65cZdSUcmzDbCwsAHN26vCRHf8vBNmXS1GCqK1UxuUhbf8BAAAh82L+hC3q9DbYjVfVZtVMroECUOj2tGzHq+mojZ3uxtBSEbxXCQOm6X691EnqeixXa09Hbe4zWzryQxVUjo+PQz2qVMso2c3Zp6FiqActW4RvgKLLxXKlkEimM2annYqaL1HpVLZFYwwIWVdv9Y6RqMMfGgMgoEvx+RUVWdTe7s9+m5Yu+t/2u+nvxU68lwdMDn7538EOAgD89j/f2h8xTatMOqGy6YamilQrQBo6svaW2+1yKnvr5dDDyw8o/8OobV0t6u4e/cvfPOKAigEQjkS8XlJD1UW3FC8saP/qH1QiAGDc+3uFy9P5JE+UZ9vvmiTN9/7r23bf9dNcp3eraNTnJkR6KSKNXdOpKAEAxIvmRJ5+wUSB2iwG5Re61aNffOm6izTStA8nFgghoE/ji15SiJfBVYnB2Yh0AGNMaU1zlcLg/ENgqkWZUgwARr+vcDNZMGUUYqqpqtdOrI1ezq20/maoCwAYgd5ZvcwLMcmE6fy8KYmJqd0YGyahIoRqQdqpn8GgalhrH/cAgEJIY8kHL/JCOJHzWAEAQG6RDW6MkFMwKruSDRW5nv9Cqyv9aBtQL/Xs/Q/ayZM+DJvbQXCIikSKm0ukJnYrDOU9+fYsnGqVi8rlHYPs898/bekzse752IoH+xGHAQAwNNJzlhve3GQLgIqHb23M4r5Oyjgf/fWHuQpSftGi/lY6b5UCAAzqdplaBAC4f/Kbdd+NGMlkrbbyVa2beFQFoN0odgfP+g3x8quveHsfP0+d7zJqZ11eKWAETGQn9tYiF9RBNGMnFaq+Kv3o86e/rTqfrDt1KqWY9uSTWRMAQOWYtogAMGq9t7P22H0jnD8RlT7JLDoI+/+4FAmfVdvMnxrc/gUDAAByxsPLGwAAqZ9srWgA9T98/7n2Sw9v+luTtRrKPiYZqmb63XYltvssZlx98sgDFMIIAJD75OMURnSn9vFPtd1T8aD0o+8vvP3OLRdpImqfcFR9cLrzabTvfe0dq1Gvv6xZtHjy/QxAZffbv8p87wMxYvquf3zkv71HZhJqJ1uRuHi4queD503MUiaVKpVqat3Wg2X11XeRwUqXSlpKanjl9QGNAdCTr48KO05CLQVlDi2vTnV9CoIxM6BzwadPT5yPv7pmF4tF1z+ntJb26ar2tW166HqJpaM6yCTU/IFuRcprpLr+JdQJ7+3kke7xl+3zDuNt24fUK3TIo6amJPAmoeb2F9f55P+ugfYr5WI2EY0wztVHa7cHvvMLplYPg38ytdjxqBjyodf8/FKV+GLCw0D26af7KdvDv/ca5LJxuwlUS/vHzRunX9+eHY9HpYs5ZJl8rOIUQfXY0UkRg/9Vx+LypKC3YlGUqE6dYo9H6YWLDsukae/53z06NoBwv9Wopo/3DtDWgwdryskcUpu6XWgqp7BOQA1U18acVT1VENDZnQ8OOvb1LzqMWpVimhspddjTqaUphY5H7e5V3+CZqiylzhK5Vs2u8m2zy3ZSDmc8tghw5bLs23/cWFSmcaJYN3A+6Z2h+71WaG8/QD9885FDTlHsSnC4D6PTYldjUetnPfv8RK965F8/SO08DSO9902byWpmvyjDufCLJO9ulTvRuNSiKQHA630KV/LZbC591nasbI47kn20IKOrm6/oxROjImNRkwGnn8OPjxlmUAt+8mFK/spfrluUXG+Pl5qUjahs8oLT8ahHn18WsW+pvWgwGMXy1SdWt8vGfTUOpfD1Tp28UJleOmN3TXNVht110KzWMpFwtOBcfc1vBMA8bmKXrpwcP5i843AMai9ZlDhYBgD65cM/fFQ2rH590ahSygAA8QhxSxei07JtY1DbwY7PKMZ4YjsHBNCJReLpBu1cm19adopfPOcmCGSrH51UJp82Mga1uUc/nOZU40G31ckc7J5UPG888WkpAIb/jHHOq6uUuuNO8geA8ai7qo2pqcrCwSe7TZvzXafBaFBSwu4DQBKjJRdbmPS3jo5a90vJ7RXlpB+ylUmmc4WyxOlfv7iAT1ASBoFlIR+5OZ++JqNRqynacH4D2AjHCdP0oJHa+SAAS28+dsskIh4dfoRY/WeRif71aNR4xOkeda0KAACgZCAUrOjtD0xWp+3KgiaBwObF3chEN+A2KgaEw6fLC9ceXYDgZrFYjsXTeYn99W0L0QyR3ttKNZUTAiSjtIqZSOQ1762nABjXor//8MS49OqmWyrnvZl5tCjn56pp7YRY3ihUppauD8OcF78qAkA4GQqkGiLHksPtcSuH9OQUK1I68nE7N1TUSTZUtqtZVQR0u1UvRg73y7rXn2zqZrI4AES+QXhpwtg6qtbynnj9xvq/2tHzZyH9ylc9Nq1aNRtSEPtSh69M+nzEs8pzycaV6VAvG43lKy3phmt9zXXN2SabeJUsH31UgPGzhhGoTPlofX2IRPd77cLRJ592PA8eb2lEiMIIAyLaRl+geM35cn/8ec4jjFU3n3pzdehy1vd2gjmF8xs2q8msHzc/IySUXK8onNnHBslvozK5jMKqB4B2MZvPpDJVqfPxg/nRBRBcIACAkMFTOzWNtYG3UelQetXOMEwnufvRs+7aw60ltUTCcuIpUIybtfDDsZ+OQA1mtpylwH64IdF+xeh0OQwAN3yRWVHrFn8VGL+16RYq7kbiG7HISTCt9L/+cP7yKMiR3ybMrFv6aaQ11vm5hcpUc8eKnwz8j9ZsWpX8Dn71K6JcEKcq9Dizfet5JVjqN0Euwe1SlWGYGfb4G4IBRM1K63TeOuYF8ZU3AQBQJUZZjVY1lR/uNL4zvWIAUa+jzpSmol4E8EXKDbtSDgzGGDAQulaMjWCAAbMs1451A281APWquXWhYqJmk5UguUk39rPm0O26aAAMPYM1tewFIdG43/FSqxfao+7sF+cqM3LoOAuLtnZvdXhb7otWWfTe66jVUpsGDMhomLt/6r6O+vS7h3WMQfTuOwvkdixyk/Hxj+uoOvfTpsdKFZ7Rf+sbG7KYkTSOn+eRYfX1XNo/OrB3HXXbku28uy1+/m/ffdV5l60YQ68e/r8fRKiFL+pCMSsbVJEorNmwMm5pc8An9MxfBsF/L6x9UwtU/J80nxszZbmO2s7PWSyoFhT5DXf6+6O9H344v/ZlMwze/9aChRVqMb7iqcvCP5O/4SUc5pkouP+D//jcu19RAhYtvK0xjHFYbmj17NlvfyMxPXLOm+5Sqc3gbvtLn9MAIFA4NPoxveSGXT3rtQJ117bvch/AnThXxfcKD96Yx4AAZAtqIwtUDInU321L9n7+r5lv6oVvr2YrGFLfV70zTBvr3xDNsWgATLvUXXkVrKUf7kQUd4cKvXz6oX8YeRKPT5a8GD8x9DNtjQpji09RyxK46ZOt4G7j9grQEXJVq+0wXtUgptfA6su45B30LowZjFjsPHyBimBwjB+YAX7544rFNYPllSMFA6A5JdMZ7mjut5qqcU3gxYx10E3uW5SNfu07P5Itu+/QsUIyk7aRWFFQiOnnCi3nVNRW+MfvBxQfyCj67K2//sJstleNEWT/2u++Y/i8FvrHv+69bRj32hWtNgeruNcF8eM/f+fuPEAEAGD+WvPZe1kr1a+VTbaxmfbLGSvTa3TO8xASOYubAIkK3Tn51bcyIuT8s69sqqfHASjZy3KmAUTKlTl5HoNhZVU3/q1Lrd5/uX9TqLHyGeos5DPUWchnqLOQ/weIieKnmPkYaAAAAABJRU5ErkJggg=="
}
] |
<image>As shown in the figure, in the isosceles triangle ABC, AB = AC, BD is the height on AC, if angle A = 36.0, then the size of angle DBC is ()
|
18.0
|
384
|
[
"18^\\circ",
"36^\\circ",
"54^\\circ",
"72^\\circ"
] |
A
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAJYAAABPCAAAAAAsW2PZAAAE+0lEQVR4nM2ab2hWVRzHP+fZqUEOBjWdwhPLkTkp9HkhKFgITUNLycA/G66UKHpRkBEFvVFfSb0QDGbpm9rYM5zkUxNTiNmLocZglQXakoqSDdJcmDRhsrPn14v757nPn3ufB9q5d1/G7jn3Odv5PN/f75577zkHqU35kqMFOf96ZiVD6bspIjRVKCokquVcSAFM3HdSPtn5gI5quGJdGyDuX1iGEjgI755bzrJFRLl1/a9Wx6MYqNxgXGjeDL+0E+VW385DAOJQbXxll1e0p/PPoHpvt0mUW/0dgOfV5Og2u7Z5udu7dwsqAuuHyU2BWu6FeotMgAKh/Vk1tf+Nj1BhF5iofabbjyBTy86sth7CQnehWMw+cmpNofbejU9tIwUVnvIX69aAx3/p42sUavYVnlu9LwJull/ddnKRTKifI8ydY4XdBKYbx/JebXTxgMgwjNm785SoApbDciojHuH7TTkRkZmV8WFVzi0F2b1uBAc/0N+2APZvigGFpfyRr7qBeyMXswve2eWciinbgYpYomAqd38aqHvyqWPr43TJUwUsBTTUfbgnWI9bIUGcGDkdL0eJQsatk1sb483xUlUeIDJflJ0bB3XO8rjgq/KwfXXdTcvPC1VUOYjZHclShWCd6PJKCeVXRaxLs+u9YhKjAyFYfR1xY5SqPOVFzS4eyiSAElS5W4ozzZn4QYpVjiUMdCYAUqwK49bUkistCZAUqcwtIZdJnKocSzHQValhvCoP4s2W8YVJkBSpPOUHNi4k2acHKmJ1QWKju6eyIP6W+bMhEZIiBdwSBOjb3pB0BCnCUiiQ/o7EI0iJW8B3dzYkhRJUkVtA/+66pFCCKkn52fTgmpCWsap4gJDzDfOCqgRLDexOiKNESsD4b7H3mkbbkuVxlQK0/249+Nj8oCoJ4sBLCWGUSglgNAa0mVxyo9mg8eNaCK9Tcn9rgzaRyzL/V55bGo0+vaHZaG3A6OABMFrj1Q1GY9wPLGMBmBNdYMK604WCjpqhnhMVOjP6+shZ6/3VqBT49uS2LYBAvVhWg1aqFOBkrzZ9HVBnjAZtggcDOlA3GNwfawrcE79/+u95cZuGYMqbzzrmDZWf4Qay2URJiuSPW/pS3frIlrGqEMRs8jMPBfkpP/vgcMY7GdfyXLh8t860ZvyTsS3PhcrH6g/OAMawGSNanjF3mn9NJ0tSJM+twbUFqgtKvZ0MjS9v3Mp2+ok+MSgTD7e+nhgSAM4C63j9P/7CxpCI9GyKaxmlslKORZ9vbgT3xXoDsDQ5nwBIgcDxo4FlfEB+32Ktx9qucRGR6edV42tjgS1jM9sTC5+jFEB9Zs+1pVtfveuzHuq141TtEhGRlq9Fpve1XXZQ8z3uuqGVHXczK2vYT0Fe8jKSNiKS/3LxYRHJy3C3yLC9Fc3xGq5yRETe2udUbqw9IiI9AOm71rB6jtaGZZpG3dp4+rL3gb0tk/uPV//SKeB802qcCzd9bMc9N+WUrUlwk7smLw9XaZQCsrvAHbOea3/TOa+wNYX6zcbDtFZtJfJvwx8F96ZbxmxueRXJHxgT6ax2Labg7BOBpaf6vcftTjTPXm1j4vby6m5tORLkHH/I+VK23BrulpnHf6rWivyt+lseR15E5FHLu7Q6SU9FNsiLiDrw45Wi+VLJLVtl8WH+oNdNVKaI0qxaEahCajtxrI9F5q/iP9yfaUgidoheAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, if a parallel b, angle 1 = 115.0, then angle 2 = ()
|
65.0
|
385
|
[
"55^\\circ",
"60^\\circ",
"65^\\circ",
"75^\\circ"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAALoAAABsCAAAAAD4AvcfAAAQKElEQVR4nNVceZxV1ZGuOsu9t99rNtlkU1AQRCESdjeMa0aNk6AikZAIQVQUUcRBRcFx+Y2ocTJGHaOMG4LLqHFcUKMoyrggI4gKiiDLoNKN0HT3e+8uZ6v5g0UE237d/W6Pfn/1636vznfrVdWpqlOnkaBpsBxiyRwzEh6CkVkSTZRXPFiTJRBJhgASNj8c5YCXgFORaDJ1DsiRECG8eX2//XlsS8GqKJRA6wBWI8Q3tNq/wAmxBKSKQ0moG46wUQznHSCUTRdYLEph68AZbLrh5E4HSWCxKwGp4tD0gGAZcqxZ9PF4251AsObTetOpEwHC6uUPd376vf2ANx/zphsM+dblX5925oDWyZYqV9ClIFXs0k1ErF31P/Vs+Yi+eP8up22yrqnyigc2dTd1xsrtkcy22FpVzjPluvlCTJOp5zKWfACwHAAI4CcU17PMyxkyzlqoqMXm20tLQN3Grg2HmKR6+5xXgZqRe5OpC4rAQIbjltlD/nWFdD+hLSnxGQmXZL6aMmi8mdu2685fU/o232StK8ScY5mtV+5/QddLP3rNgnWkNSXpW07T3RTDLIvy1+93WUfqNublDYBhzAR66cfIJq8Q6UAQv7pich9L/B9gbq0NOFoXpW/zTaaekQhw67qZvYnnww5T//62ZZJZ4OnbepPdFA3/4N1X/9wf0JZxGHLqo4e3KpMA/k/ATVHmrpgx8MBYqypWVbtt7MoHOBlPqabu0kWs3PQlnvy3Y7atlUf2PLDNG+6DjzpueGgg564ENUx9aAL1HaFbr5g+ZnThq40ff1otu7Xp07/j7OobOykT/KipFwKGAKvHjbpQCKB8QdusFOWwedR54zCXaYZ+TGOz5chaU2tp3a9m1ZDTioiIkogcuQUn/A9ZlX7i3ujv1VPAM2ztpO6TWxYcF4klS4KRdnBs77kVjNJ300ZTNx4jnrvhoKvamsApAoeqFjzF2fayq5e9Sc1QcTR6Balc9M11cGVn4JY756H2yhGUJQ+7jnpkHf6Id1NEK67ZfFX3BMgBF7HIW16AFlxnID9OPJT7EWtd+/y+zVP7aptzfs4ZiFpyym4PtYyszM54dXEpSdaBxnv4vw95n7b9ulef+xJrJvYavs5RNKlX73dNYq25bfTG0oWSOtBgrZPVBJEDWDB3+mC4CO4687aN7Potfx12QwXciw8/89h6ScjPzT8dQcEC2BQjTQMf1VVrFVtL9HLfv9uwZthMWt7jnSUHv0xbD32O7pxaSZM/JDKKFh3132SUDU0qCieihmsdyxPuRQyeu23GsdbzD3txw6Kjuq3iPaBl70+iMetP7j2sD4BN4Oh+D1ZqYKn2Nhr6rLEma5PPT/1zNdkC/W//rqO+ULecsZaSkZd8RZsWLy1QEhlraOtJ9ydkrU5vV224rXOwrOriYye0VODbbod/ubhKUkjgCULVdcggP+ScMU1tz5q3AYBYempvMHU/drJycs/xWRDo3IyDlw2a/uWBWxLIJyIQEdMQcGZJ2WTs4fdsYWnWeQ3Xus82T+0wo70j5sRn80YMuO/rF7uXV0DVp0NbhSA4Z6AQy5gsu3z5a+SnuDM1WDSywu3BtC7AmEqwY9ncbUu2df95r8cqnu13JPheDI4AARCZPuj3f1sp00zDivQJF1oVObKGtl139mdEsVXWJu6JHj0PuLWKNpxx8Onv2Fi5yBKRc+SInNl24bVbKTJkYpuGmxYdYUzeWCJN7qaRK0ITGgot1Vr90dJ387mI1rz/gTLbNYXfknQJvTVioTbum9goZ0ofaYouZljiE+RbwJyFt/RzuKO4yxqvHwBYdD0BIA7EHtbhGMLw4U/27EwB5+hSiDRF27rLMGRZ+59PzBhCCZTFzrcRSooUxIxposj4vrF79jCEFVO3/lfEss4wl4LJF00dGXKI3r1/4ggwnsFAoTAJoA9aIng6khxNwpjeFQ1RA4P25z21BpxMEgGl5140dS3IwsrLzh4pqlCEliFg1rN5JThPEhS+cFaUMRC7BKIgAHPKYXdXIAUylY2peDdN6KOjHooLiUpCVW0cRZqcsVHeWkta5UNLpJI9vNHEoaF1Rz/iIktppGFFU7chVZ40u4pMYp1NVOLIOuMo0cY5HRlnLMXa7REFQ2MTS/TYiaucSXTpmdefw1BMEDowWFZ5waETWydcIjIhJQJDhiAER+QeR85ActxDnM+YxwBGdppfzW0aflovdRSViQ85QD2p7fTWKAERdiWzuPPzOxl/NwDufOVNf+tNCFCVPpmpX+uiDSWQEeG15TM6a9vw8YVDfjdnDZoUmhv1SrTgGxlze+uqa3rYBBucT0XinOzT1eL/Y0tCKgQyMHe8M6N3BBls8IAUB3nJ68vSCI71Umd5j9fCvDcuHwYygpxq6AJeNTtq4PyvStAM34dZfW9AxrDFgnsmngLbqCwKGtzAVVnBJla+lE9B7/VFT5cQPX/KY5pysatKqMH5q7Wu2i0ctKSRwfsHwOr6AxhyMUFCDJbMPnOUoMCHrCSBez1yfaphiNod87O534ADZ0ppNnUajGJI3II0YvVVY39fsCgIvL1jdxEg61rH4vpVTysGjmEJhwnrpE6gmFQJ87ZcfOxYz2dE0KjszzItkLqe8dRGZxBdCSes6pTE0AIYDhUTBkwpi73dyi7WUHYBmYw9Fo/v8mAlt6RKGN/rok4WfFfIiE3XdZ62H/nU6K4ET4As6RbTX3sfAXgJy+y6qCMDZgLxxd3h9I7VRKrxGTeizzET9j3r0TUe4yX00zoNRijLeeXj66/pEZaFOd7gyLIbUqEogB9Nys8rQClr1Dqpo0URPrH4ssMIvCDLc66xa2oOETIrgutffw94CSet96GOCNrVOETfwFMvzBhOEICQEOzayXEnil5BCPTKUEgYOmLOJiRjyBEoU3rqpAgdyzqdJPKlOZceYwkQiKDxts4AOAJTHKaEj+SQcQRHogTa35s6CqiVOmJCBktuPO/02l2DUE12LwGm3UVPrQBEYLYkDeB9tG6JMVHG8mz1tDPH6tK1OxnW6JNGPLwZdUwSqAQpwT5aZ7YsRGkyS6eecRFDKtmxhLXlAq/97EXHjcWSnDDto1XuwFeVbO09fS/IEMeS5dkskolrN/HJZUwimMYf8O8hca/XFAsnZOv85S2mtQJOstDooLgXsCxkojCqzVNbfSjNtYh9DEbGWM1ocuepncCCxaBUarcuUDbgs95ZDEhip8k0STbbFadRKUCHyNFlkyuTGd0BGHIU377h+1H0QlwEjGPf0fO/YE4QJA5UQlA17v7tQPDMCQNPWAVw+zHHrAIFtwwa+Gb9EncVbKRQIDiHNmBwRcWVPQAASzkFhQgCgMOYRc9e6LvI80gztC/dvugACQaXntZLdob5r5z9xb9c1/O5Led3Xdimf7HUgSTTXBA4Ft3y6S39XVqHQK0u+OehRztHHJAc6z9je8ZP5LIuf2hBWHHvry/N/3LZIatwTPkrVfVK2t2Y9ZiKAZF5MP+t6f3TO3hTIwbf/SV4qC1jTnc9sf2WWLBHZo/cgOqz9X2hvOPiqrHRkQP7/bxo6sCAlzFSDuY9M3M4qdSOO52YXv1E5HEOyglBlN/PoJ1wvzh9vtx4SJmD7rntXabcNPM3LeuVtNtgDAhwTLIF91wwgKPU6bTEAby4w/Qrhh6NxjFERyBjEdv+/fve/OCwSGcQcpsN9O5dzCj2t1o3RDGwJXeOGZ0xlom01M5AHTf40QpA5gwhQDYkL1BJt/FiU/u4FoF1LIcaXSjia/+WugPk8MlNJ42XHiIkaVm7EgauW/O85sgFEULMSQjrUdtyMaA2hM2fHNEOMk6y+kM+0wBAAJRwBH/1jUecHxBIhmnZCwjnUZdxz6wG4IljyDwZEBCyV7r36D786a+WdxroayFdMRuGJdLKWm1cGBZGX/516btUe8Fa62omT60gZQxtGwvtb66pPm/w0HOWJ3bTuL5HPVGg2oTiIg5wkJxjgEBMoZ2iZx2YkrJ3wzHtPHz76mtrHI/oZzmjOnT3l25zPfsj4cdr2gxqYZTPTRF3+dAaJgAILItmfz7r0CaU/kVSJwRg6s4P29gM+zrKDj7+MNgRT6ggAgCI0GNgi6hF0DmGZIhzmL3wjsN33IxKExT5HArZmrF9RrdM7JZ1mz7qM6EXJJIVgAuhGdOcK1tUiUPklLKWwj+d9k5sC+mP4oYmMjqipcPfIyKiyrcuP/HemFwYaXJkIktEsSJXPxF0SEoyqHn2gVkjnChkU5/2d6zgi4j5l9DMjjFKBl8/uaj7tK5GaJLaSOaQA0Ixxq6INNG2V4a/QCbWOpfK/MceSCwZq7ShiuP/FBrnrCa15JSZVeTi0BptndWOjCpikgOcJWdo8XH3E2ljoiRl5mQdEVkiomcGvUuJo8haWjnsL9GeNuL2VaA2lsgmlhwlhkJNBNYqog/P+esugc2ISVds3/XjguPfLuIDiYoTR2RdHMWGhJZcP/dFWPa3KEYfitrFSgHMU7b1PD2I+7m4ranu1vHlDcDIsTprPtKScqceAAA2CUgQAFowub8U2mwMjJBacZH+yPwOMN+KDVEvXVaVybc0umNtIhgRQh25E0kryfyxXy5QXIQyQAAkcHqTDgrcBNxYxprr5qL1I2xRk7Fo/HwgCyR3ZoJ1qY6HWAZ++8AxACCsDgIsBHGmmdh+F4QAoCWAYxAH9b8dMPEN3rlIhSRvHpYPBMOd8/0JOE1gm+Eq1E4ggAKMrLHGogotOIIfaG9YFyuT00duN2MnBn9YWC4AbWKmr/e2Zy8ZUe6YtV5zMX/pgYryBxcN6Mm0dKCFE8wRwx+KE5rxiPkXHTkWNv+O33UIMBTBLz5X57a56Y0E807otLUeu8iCqbn46uETTr70PyxHDoxx7jFAhgB1MldO5uIyf2VlO6BOv1y2FkA4xn5z28zhB5y2laEn0hjq+y4Ecqa865+dNRHgrZYtNQoAkACwe8Tm+8EjP6A4eFV2BcIu+4UAgpF5vs0geO64oRI8l5SlzBwEeE4snnfh+Zbh0EgWnajyxLZ0Dt4b3ENJqMpmAYSRydLlx3cYMuGQRFpI39SVNMLd3e1cRMPP5G2L7lSZDHcottoe5c7kXhNdARiH7evP+u3a11syg5yL1G/ncqtw/Ye9WrgYsNcBtUX/jw0mLCVqhWwHebngxbN6OWAxVG2cNum+5ffkAmDMpl0kAeceGO0YSoahLv6CJDKZSO+x1kcA3nTFlPMDBCHix7vtn3TxazhXjDuZJm0AAC1keGDrKgZSVy4b0MUVe2tfy7y/5K7HO65sVVU5+fKs4lx4hZWjMvDHL3+byXvkuEn7UjQDEt5xc+ZOgxX3ndKCTLG9Kh4x0eVX/2hDgIOHlQEB4At3vN6/nVs0Z6ynPAJMrcP7LciKjbe92FW2O250G8OKjsZa7I6cjjgh4MpFrYyCzqelRfR7kKC3fdE3uucvvKTx56dG7DpvyadflO5AQh7QTpeKuYxkI68DO5bCJFxz4f8A1c6b1A9AKuEAAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, in triangle ABC, angle A = 80.0. Point D is a point on the extended line of BC, angle ACD = 150.0, then angle B = ()
|
70.0
|
386
|
[
"60^\\circ",
"50^\\circ",
"70^\\circ",
"165^\\circ"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAK0AAABjCAAAAADMJt9bAAAI8ElEQVR4nO2bb0xdZx3Hv89hXRtDd9+MclnoiIiFBE0K2pU6JqhbADXYJmiraQzLKn3hC7tq1i0xEBN1NVOsEVgn0zDXWAZIp/bPZd0sMzRijdBFLJvpn9t1qR3q2nKJQrnn+fri/L3cc7j3nHPvBZN9Q7jPOed5fs/nPud5fs/fK4j/IykrDeBJ79P6EjFy3gy6Vc9VQysWv2EGIVwirQ5aAvj2/WUp460OWgH0bL6eOt7qoAWisW0F+fYb0inWaqF95gA2wWxdV13AVgltT4/4IABBQAIvbZ1ZzWUbjZGRUgICUPDTA6Mbli/bHqF8anGfq6PLrqKPHgAuaWGJp577U4VbTJJkFG1kFAeZc0mS3wTeYDPQRpLx1rpbVLUHSRIEsPjRuucAfKumBXT1zLnR3Ffy+te41k8FAJ5/70cAUFoGiJWFvf3wfcfWKu6NiSTLV6AKOOvD7VbYoS7cBQBvfShnhedWZvorfeIx657DW155D0YAECBwtujYY8K46e5vyy8BwNXB3OAligIAAYFjuwZ2GC5UQIGTOyXJbgySkXp7DXF0IFnV4eIpUk3KV9pxNH8bAdD2du7IkoBUtldcs2G5CGbor6Gz2YVylKp/7qm5SfUkxF7tUpKUalJsWE8HQ+dywbdUkuT89s/Pk1faeMXWnzoUM2zhI6FJM5z8vbIijeh27Z44yWFSdtfrBWs8TGCGPVlf6E3tSiUpc9bSrlU+aQRVq60b5bVQjuGCmBa2ly1lV3jaCGYX0K43Sw5bF91PJwBRXsEEm9v0ayQ846HiaPbxEjVe2KO1KJVUFxoTcEhuHyT3GZU5oWwp2V5y2R43+zoe/lV40rx6IpaIIyNtJJuNCIm0JNvLbuSoiUmS7C2e5Eh4Qr/RPSil0b5Ubew7SHabdTmJlvsqbuQEliR5cFOU5NC9UyQlI98nTw3SerFS7h9gF8y6nEzLfZU3jaA0/jIpm7m91f+kSvJwHSnZDQAFsyStycMpiKf3mbiJtJrnat18K7N8jsgq/7uzUa+m8bLTtJWoBUOq9mrpULbk7tqYlS5rzS1WtztucPVttviW5GlncBzf9hU1zQH6HC1bU593H9ryYp4WVLB77jXYBttCWuNFO4OwDyI7KPTrgfguRQsyS7S3Xtj2gB6kABbXaCyCAKiYqFIh8B2DIrFsBfXbLeiHNh/OyOSC5j/jxvVffGarvfTW6BG0mYQZVXv31kTcsUqpnK9rWcxivX01/KqH2GZ9TqbV6WK1Lfo4OUOS5ofKI+E/+7LhXLYkOVv9qC+LLrIP6X5YdtGfEeG68iVj9R97PhOV1rAnDAf0+JmRQn82nGilbvV2TeOP/VldTmrrjeH1PtMu1+RDo5GnfJp1FWONi7/zC7uEVi9oqS89FJ4+2uE4rfevf9WX969LyMyTlq/W0RLbElkAX2YkjZYFWnJzpdU918XCQ0HM2yRJThb3BfKJ7mUb13K4EO4ljbGxf6kkORo+HsjIMrRSx5u8py9YFqaOFo0HtJCi3pLkZGgoYCaauu6fDtqNp6CVJDl2z5AatAOWfLLyRuAxRxplS46FIgGz4WJrXQYmJMv0DtJ0iw++tHMkmNud23HrlRBc9kM9KI1vJMlIaMwI+tGtmr3+Ei5RSlqd79c6ri9FK9pTR0pHdlq3liRJcsi2AJm2VJKUU8W93pM6Ks2aQLLPDy5JjhUN+0uYrLR8glboPyua9lNth4sC1KElSotW109K/+49g8Mbp7wncpMHWlUeLL/idUxi2/zIwHT0Lg/OThz4T93YfZ7849emxkMAMrWM4oGWQMdi0ysecOe/HB9d651pab7W1/SwuCEklO890nQz7R5p9pF7Xw4Oa38nHmgVqio7t372PVWhVFNEJvDOJ2p78/SwH9FY47Gl91bNJdlaHUsdj+R0yeGADcvYNLWseKSllGypTQd3vLCfDDStSbG7J+Np2JaMt9TNp4ik8njhqBcyRxtmjqa8la2WMN7QkAq3t3jSk2HnzJJ21N1XltwlF7evG8pbLsYP+iIl3u0uVfLSsTdaCm3Zaa4p3J+39In12faXSIFvRmeTmtL3YCSAK+INAMg/db018VCvrRgWdl17vQCB13ikAIg7FeK8ZSp9WiGASKmOlX/yb19K7Eul1mcIzDXcfTwfgbcAqIAQuDtSX2Vl5G2hvmmhXO/IQs8OtyU8UnRT7z605Zd5GncQVggtH55o1K71TNJKa33o8853dr4w9njiu5YAcHHrV58JgqlLAIICgLi8RmyYW37fwdmhkFwo1zxTvPJZ/qPMnG0Z7kqeCx8J4rSSs1wo38v9A8YND/5WqpIL5RNUSXZtl2S0pEN70rm2U4thbn5kYLdC3zltI7sHDL/rsefVy3Ze26SPFh8iyc7K8cpOquSR8LnMkFraP0E2TxhXnmknSPK7rdrldLhLys7KqBqt7Ayw+eEmyYVG8vKnzRteRuPmwo48ru1HyIozNev//fMTG7HxxOfw9utnN2SggVn5QeD39bjTdNTOkPY3VXkJwCA5EzJX8Sbz8/6oqpL8A7bEsnAMoxkFs5TG0TCvI0aSKvsbrVML59ZuvErywgeqUo10AmjZPXSXF6P7XQUXPk7T+295bab2qpyo2jyRgUlNYoZadpJWH59Aa24LJ4MCAISeTCo6qgTw4MjMJ1/e9vDZDLNqXb0EFNuB66QxWIcT7ZJedFTUmSYpeLGfH9mhHaF1jO5fVAiIDtNeWj5B2L6TjmKwEcSGdXUP2AdkmYKlEBQUti/vZzSuWTJ3WCmulmTp1IV2lFiY5xP80tpxsyMKSIUCFFY2vvMTWuIvCEWIoYzgJWegQOiHsnX5oqX1/zfN/Yx8cdK6m1X5ohWAAXfnUhM2aW0uwxXX6cv7r3kUkMCZ2vXYv3dzFs5hOVn03cr0ZtDzdWCiKnsHsRIVoFULSAUjE7K7+nyufosUyAcpiM5WiT3lIyLwtl26GQbSyQbw+lulkEpOfkgXjJYjDVhsLGikkpu6EIj2tPLbarG2aGa9+6+bM6sAPmEFtPK/2PKi92mzp/8BI26kFiAjcu0AAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, a parallel b, point B is on the straight line a, and AB perpendicular BC, angle 1 = 35.0, then angle 2 = ()
|
55.0
|
387
|
[
"45^\\circ",
"50^\\circ",
"55^\\circ",
"60^\\circ"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAJMAAABzCAAAAAC5ym9LAAAGdUlEQVR4nOVbTWxUVRT+7rOkEbQLwitMAsGkLBSwtDRUYprwBpOJit00xjRkBkJdAAtpTCkmJAY2xs1gaDUpJNIpqUpw0VWJqQumWjfYSPuGgJsaIzEUZyqmmM4Mkc7nYn76Zjp/7913nSZ+m7l/57zv3nN/zpt7niBqDe8kAP0Pkc0LrXZcsggbUfLw5pXBWQOcsKQDF3cdzeXXAKc7LwJAs5krWAOcPu8BgNaVgjXAaewAAMzszRXU1YxKFgmvAJAYDOdKaj9O11sB4M1mI1ciar4/Nd7VkVhvmeI1358iItYoxPqwaSmr/TitQs3HKYsblvRa4PTDu0IMWvK15vR4cId4Z0eME9ZC1hDjnUB3uLC0dpzu9Tag/cpykRqL7e4s/GcGSw2/IvbjFm/1FJ86OXr6gkSvDQBAczVNw91A53iZBiuc+nanJDjRiJJmoFKr2EceNA08NoEyTXOcRr7ZKsVpH3mJl8o2ueYDeqZI8jiphytyigfjVQ18KZhBhko/hZw+ocE7msn8kyJ7K3M6xnjFgS+HEIBoibrkQAtgzOe3r2y7EMpauDKMKA8Wtf1EF9A9MV+w5RhFn2YAQDjDKR4kzQsSlBLN5KerSn/r24iWoSTJnrMFVXEEi5EK00QUILnUTDJUrFG1SAv3WItGO1B/cjaTWb0zDxcbqK0pxtOcTgFRGlLGM6IkjVyvpvyAb2yleueZVRKRIk8zA6QRcOdsyfpjUZJcDDZhezBmrT+zfbWMUWRFZBaKy+fdWCfgv1lQmCx8xjCAGFfDiDKEKPP9zPP2T670gSUI3J75HVprm8dSK4gUNCxsWi2RTaw8/3xivwk0ftAnCt+lKGAHWlr3/duzALpeXnng389rKW1ZgwZgU4GE9VGWIbl+BEjE2uCG7cLdQNc4l62qCjekamBESV1PSc+n+XMe7BxIkiSx4gwtYraURCmkF8peSs7xa15oPdO57KGhbGocYQm1jjlN92jwXssrmmjJJLwNixKUnHFKDuyE59w8SeKeVRlJzvlQeJAo5zT+ttWvX7RaSfzqbwJGWd5lc5nTXH8D2ofy/PplDOTSvf1DcyTjASYgcaLb4HSlA/W9RZZTBy5nUrMekuQUyZCEh1glp/ARoHOsROViB06NzZF8gI+zZaZaTrHgdjQFy66kxXMdHgAaXs2WDEt4PpU4jfkA/1S12oL+bGqfc0plOc2crEfHaOl6kvF8J3xeyyT6ZN6BSv2H8eRSq3jtuTlO+cudwJH1+fktqfTvyFv2TvJCkCRDQDOPZ4lOdANdE1X1Sc/3g9KvS2aQNMPOxwkk4wiQcXxCkg/PbkTLxWS18nq+uzjqY9pdhO7cegBJPUCSp26SXuDkdAWRfE7547TshtuKOmAEVwGgdTfw3k3bps/LaXhSLzWTsvNJl9hLCmxHv8wbWQbQkIy1udC1DAJfuKBEAyG3cPPgm3VBiYZn9Z8AIDFpXzghYo0FM7DhZxdIkSGE5Q5NK/r7pVUAJCOQ/FfFgoy/IgP37zbkFbp/t9HyrbQK1zn5R6VVuG67qGdZUoNw/65MWqOCuzKf9FbuPqeA9IRy33ZP10mqVGC7Ou2hpAYFd4qHv5RUoICTtL+i4t5cUqeSe/MtZuU25aCCU0ByQqmwnfn6vIy4grMFsh1VE4ch6a8o4STpryix3YIuo1XNfIJYlhh/RXE9vq9kpNVwkvNXFMVkyahVFZMl5a8o4iTlryjidHRYQlhVjJ+EXmUxfh4Jf0UVJ7/EhFJlu192JZ2KKjpbINNZdTGje5z7K8o4BUKORZXZLvWMU83qbKfhqXNRVfBddyqpjtOJwcptikNh/LhT1Srjx7WoU0FXaeTh8BWHggptZ77xwJGcurMFjvur9HsEp/6KSk7HLjuTU2m7hx5HypXOJ4cdzo87PO8KEwsOfOdESul3ZR86m63/w2+TvEIIIcSkLSHV4+T9Wge23bdzNS804I7Yk85ExAXXOS3p+Aw+m9ECJM10wEuqzLcUTmEGuWT3+hsagMhmAMDBbYbrw3T7tNjQYleoDkB404IOhJpecp0Srkb1kRfsCmkA2pvvAolHG1yMW8kg8UjH3l12pQQR8dz46320/2hvdVSFkT/77AsJDfheRwqnb0W8rlPC1SNOpDRgHdrMkUNi+JjbjCJisjHmRJBmNB1LJ/cNl4sADCAWDzAkFZbnKly2ljv4F3is+U0xOw+7AAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, the line AB and CD intersect at E, and there is a point F on the bisector of angle CEB, FM parallel AB. When angle 3 = 10.0, the degree of angle F is ()
|
85.0
|
388
|
[
"80^\\circ",
".82^\\circ",
"83^\\circ",
"85^\\circ"
] |
D
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAALAAAACDCAAAAAAIMs6BAAAHRklEQVR4nO1cbWwURRh+RnT50z+mB9bQBFsklhjtNmmBWCP9gxBBU9MSagxIAlj8iMWA8qfGS0qkjYAhFkKliRBDbGzRmoD2ALEmJVohtpoYJfbL9CoamphAid4WbvyxX7d3t3e787FbEp+0vbnZm7mn78y888w7s0so7izcFTYBv/ifsGzkJjxBSFtARLwiJ+HY8hvjY0Ex8QiSw0vMPtKlBkbEK9wtTPHVKjU4Il7hTphgrBQA5pijztmHxzBbPkOCouINufvwlQVjBcBf9wXHJy/cCVPTtMNPD0UCYuMBufqwgfKtmwKh4g0eZjoSxRyaPXL1YQvTFcfWSmfiEZ4I42L9pWLZTDzCG2Ec6P1mjsgkj4TRUPqOXCJe4YEwJQBuqq11tqcLEV4tjOHV3y2RysQjPPdMdW99wkiGqi48WxjYgaNzoE/4GPuHBk+Q8LWbDwtjdOU5VRoRr/DjXUvf3zADADRMM/uxMPDGZJcsIl7hw8IUaJ06LI+KN/izMOJVPdWSmHiET4VQfLxh2noTSlf2aWEgOvglEOIk7VuDRdFG9eVIOL7Ct4XDVvP+CYes5hkI40Bv/zzxTDyChTAaSvaFNur8ETZozlS01klh4wFMFg5TzbMtLVPUfNBgXAs3rnhNLI80GO0+W0Z6F844rrAu3g99f1zmxKGPlQmli374bIHjyt2MNc7vWamqfKTyo6lbxdIFzjzm8MiS9g0z+T/FhbNF9cBva5yZjIQpsLF2Gz+nnDi7GjhyXXVmMhImkK3mKQCKI69k6BbKjsmiAY7S+dEHtO5Ca9KRyTZxGIhts2PzlACIIpoqlbnmb5fCOuGo7+r0cv1Tzzsy+2mN75pcEc2ay+ol9IapoRdhby5wtZZXcH7JdEVnqtt5m0TtN3IEHUeYmgKIdG2J24sl+sOylItyBCh3M6aq+duFI4WCaLo2D/vEYbzsWtRs5Z5fFiEAECOkka1eCyTlWxxg1BLEfumsqDTVfN96AMDEp3SipHQPfy/OWpzXuyfpUGRET45E/qSUUvoZpbS9hrdiF3DvDRGUm2r+1d36pnQtgAd563WDiM2sxhVNAHDm99123qi02IWIZvpHPU7pQKSfUnPe154SUW82CCFMRyNDA5E+SnXGSUrfvCGk3ixgXXE4Udpe+29vNaAPbIIjywvylGAGN2HddW28fCUlbhy78TJiM5JCF4Ja6tbj7Vb6MAAskNQphCmseOWp6rSZQor6EbZHX3yiYTptapKifgRqWD02LxsCT0EEc9JG5CphuqJzTUrHlSPghS5rrNg8JdL2bYQSpgc//3oe5O4xCV44NpTsA6QyFkxYfmzeIqwBioD6rNi8rFWo5dYUIXyh7q3T1TyR1CvsLqEJIQzswFE9IdutaQo0QNEABRoUWL3E7ix6yviraFAy/klKkFi58wUZTK2vMJGwf62flBfqzE4kEjSRMC44MVI4LEeoUUqzLEI1BYCmufx7ip1Q3EbpksP1RmxeRqzNSVgxiCoKT4feuM6IzcuUl+kmdTGxm+WdODjVwUwoH8xBpxntqw+jLINOUxzZ+vhUtCzdghLEKz99TDJhE4KcW2psXizSCItyxnjrsiQ17xh0rs7BP1r41TydLSM/ZckWCSOMQmmSXlvcx13deJaIotiD4sT4BUHk5JY4hx+mAPBFlgCdvJPt1TufS7JPHQQUGLuHLEzfH5Z4FH/Poma+qWP29BW6uS8tU+a9A509vRylCS6s6kApTWslmYQLeraPspemOPcSEFuaplKl3p1Rbqp5FpDZn1VMXFfTepVUwvTFqib20hdqcGvte5mVSkVC/Yi5bPIZkiUEyro5nhdG1/v72OYipsJRl0tyugSxtPC967o1U8l7d8o5vKGkHfi4fZz09asfm98vYlkqx8KjVRfNJN0/9YGZFrIC4RlS7hgoOm+lJ4sG7P0wr3D9vCwvcanIFmt9xddycshEjo9Kc2tDkWbLJzWvFVevtIlD/WViaVtcT7eg5QwgZtkv85zO5Y5PHq0sK8OvV899+0RsvphKJR8s6h/+cRwli9WCTZeKxQTbAjkJBaDttKBz80ERNmPz3JA16CbIcMo7yqvmbUgifLbESlJQEKCge/uoiNaURPhJ7SFA92PEmJHVvXVm2IOHuBzCpjpz3EPaaKl5Hm8hS16aEYqUo65oHzzJX7WYEymZyGx1gvmnVjys8lYc2CMCKIDS9g03eesJjLB+0mb9Vt56An4Iw37+2Lw44ZeKcQDd9tuk9Xfyfs5z89KmZrcTCLFtw4U89QamJSxwxuYD9RIAgBa08RgpeAtjurJjTf5PuSEEwnx3wYbxbJnqpobbAKMGCsPCQMMDraxxoHAIz1S8W8tYNBzCHHfBBt2HDfuozLH5kCwMbJ93lKlcaE+gah88eQd5CYD5mTbhPeOL8S7Y8CzsiM17R5hPUdv/R341n2HPkCysz3LxqoH83jhtQgyzS5hP1PQ1R/8H1ZXmHooA07UAAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, it is known that straight lines a and b are intercepted by straight line c. If a parallel b, angle 1 = 120.0, then the degree of angle 2 is ()
|
60.0
|
389
|
[
"50^\\circ",
"60^\\circ",
"120^\\circ",
"130^\\circ"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAIgAAAB1CAAAAACw3fZJAAAa0ElEQVR4nK17d5icxZH+W939fTOzSdJKC4qrHFAWylkgDAIDRsLmsE3GIIcDnzE2nA1n7HPGNjbJ5sBk2xiD0YlwIloEgQUKCCQUrZzF5glf6K76/TG7s4t2Ryvx/Op5FGbm6/7ertRV1dUkODESAgCwYitGQwCBAmLSJKD87wxVeJ4Vk1v71U3ZG8/dNa8663lF5lVFvi9KLBDHAgvPVxwHDkqJwNNkw9CKAGKZpLA+jm1806Xf2b13xuLavhlVDAcgJ0wsImGjFba50HEQs4tCK84ys8TpxliYbRhx89NuT3Dr8OetleCCP7nasOisJwzEWhFm5pg7+pWdE2Hn2LX83Bi9NuhHTlwsyzYIO9vhMBExJyoaKHDOlSkDANbGcLE2bDlhlAYrZcAgcDbVPHOperHsHOWgstNKhKioSp4wEA2oUiCLoP7wob27azJNYSLhAlde1q1n/wEDUyrpg50upebnLQ5N6gqdpmRSBeLr/29ARBTiul37Vh44XOsqTuo21MUliTiEq9v3YUCGx44ZO7wkQdxiBV79B5UJcInKNHRLIJ1IFJm3OK/avJtQMFsgbvrwjbVHqGf1iBF9yw3pWPsER7DO2sObtm/cX186bu6k7ikCBATwlzY+NsKo8LURA9IJExbjSedAhMMU4FhpECS3/q1/7Dhpxuwhlb7fgSmyTef2rXxzb0X1glnddU77ADZcOeC2k/GguqifIyWg9qOOC4g0JBKUQYqgApV57cn1fWfOGlVewsUdkHW5HW++u7XyrPP6+RDk/LqvrinN/fuFPX0nGp8aiCMKOKEUMs6+8fihcZ8f3CPFcTFJo1mGUbD1lSXBonP6VGrW6kAmEZ9UCjgxRWAcDxCNyIhNxOGb925b8OUhZQYQoaITRsoICLDZxuX3H77yispcKiglAGJVUZM5HiCRkSCpJfvao1vPv6xnwgOcU0q42NqYJBYN8chK/ctPHb56YRfrEge7lDjRBC6+gk49aW3Mabv9hmnXv56WyLLkHWsxByl1WWZ2joVZJF52KhYtrXcch5aZhYs6VumMI5L1WNvH/1h19fST4UhxZAzYkSqmrEyOPQJb8qTmuSX738OoOdedEpOGMB1DNp1bTZTY8tvV53ylN8GJKC0AQTpW/ryvEZAQgKalf60/88prXzg97v4fM40IQMeSTVGZBJEwi4hdPv/0l3KSF0lxETpmG8T5vVlEJFpx6ZjvbMrIdVVnvvjtMXc1SDbkKC4+vigQti6uDziou2/sN3daKS7clufjnGN2NmaJnGQ3fXfUl1Y3NTi57fNjbzvw51GL94pkI1d8KcWAcMYejmKW2l8MuquhMZbOcEg6Zrac55rb/dtJZz1d12StkycW/fqspfzG+fPXCLPkivKkKEdcJgpEPv7alJcjiZtspxxxbHMRS+CcZB6fM/POPSzWhVneduZzl13zsWy7ZuprIpZDe6JAxAm7/Vee84ZIk3MZ1wkOERc5DkKR8OUvTL5tayjpSNKRa/z4/Ac2TH5E5MDNM59hkdyJAuEsW7f7onPXSRg7yWU7BZKzHLNI43vfGP21D7M2Zx3nIs5F7spvNf3o/A9FMv858ikprmvF4hFKkDr4/dq7RjSUaIJRkd9JmJ1ANurKH73w8IQ7xyQV+QyGwBc1ZMvOK1e8NBzJ73u/LDvzRD0ri/DBGy5aLWEUMVvpXFkl49yhOxbMemynFedEOIyYbcTy/Ly35O4z3uasZG8+459FZ2oHhHNOrGtyEl4/Z71ItqjBuTBmEXEiIs5aJ9ELF07/ybaCDJnzC9o053luuOS6j8VK+utnrJNM7OIOdLY9R1jiIB2lo99NXy5SW9TcspaZrY2YnbOxiN18/chvrKpv/2Cw8Kc5eWr2Cgk52PP1CzdyzI5bo/ziQEQsO+G/DfuLiDtSFEjOiQ2dcH7p6fU/GHXW8gYn7V4g8s1Ld0lw2Ve3Sy6U1fO/epA79EodiIZFRNac+f2MNGZsUMxc2EVBJCLick7qH5wx44F9ItzeOmP30IXviLw17iHh2LoXpv8yJznbHm97jsTigjhz4RUHrc0ewyVLGDix2YAth89MG3/XDivSkG5vnSxrz3uarbvxvM0SWbH3TlgugZXo6AV2IBqX4/jWOR9E9kgsNcX8j0jsRGInUfzO58f/eHNdmHXiXEcO68C8hwMrW2fcU28jK03XL1wjx6OszE1OVo17VDiIuCE8htlyEIk0bvzWyMtWZEWcdQFL3I4lLJkLf1YjIf/+s+9ILE72zf5mo6Tb6d7RbkpCSajG783/nEB5VOoXDVecEDxs+9MVu/7r1zOSkZBj38ZKH+2wCKkx2+qg6OLMs1kDJb2vWvcmSsCdObSQJfe7matbF3QUWZFc2omwsGQfPue0B7c5cXHeeDrUKCdPzfunsMiSOf8rwuKCxRdsE8v5qW2LrrRz3B5h99MXD2td0FGkAD+lbCBR/Pa19824Y+FgBRhiIUJH/tsSBqAWgD1z6NL9cFDq0szbkSJhFkBR67xHURg/6i0ss8VkwjYMBSYhh29d3O32r4zrCjAAV+RxOOFBFdsigk5dsuFlaBGaNuvprSQinI8ei4jGuS1jHxcpqqWOnYuDTPrO0+Y/UiOSc+Iie4xdNeKQv/bvByVrrb1xwSaJs7Fsm3KniHzSu7bjiHIPDjoTYdGUTJFThl744oNn3f/lSrY+O6VUGxYfTYaYhu+vgYHS12WWxEaTDD5v2YcAqbaRe3vRrHv9iqq4aLYAF3ny4hX3DHj4+oHM4kgpaBIpnko6wujMIXiastX/9uR7AIVyTf0LeVm2Imn3wvjv1TMRFk9AlLfj1h/ghh+O8xxY+VFenYviAEhhiOwB4AwurXqu0YO4kxf8c30eRAFJOyD73prTFSVUVPmi+y579yu/ObebKGW0zWrF1h0LhyOFSu9gYJ3ybcXVb7xBzlPRFQfXwkrbFbQpiDoHhl3qfZZEha1TMwPiJG9Gda9/+e9n3H1594wjRUQmZaD0MWM3Eo2y4XuOaBU4hc8NXHLQy1nTb+Ir200cCBf8WmESIYpFudx7U09SQKuDjKHCnCOnOAKvvf1bPW+8YRipVMwAQAro0HscBWbgx40kHrH4V73/KkpMgIUfbyDtKW4vGiaygN36r88myYlXmNxE7DmlFGt/388Xb7rl1s+Uw5Ju58qLkQIcRh45DDJKAp4z/aGN2iUxM/l2ndZQroUlheBZQB6AV8uGEYjgmu1R6sspk1LpEhMtu6/28vOqEdtEIqDE8QIBwHp0sAvkYCgouelzLw0yKl02/oP93Ria2nlWJYFHCF6bVwFoFtvC1fIoTGopVWsX3zz+wWt6CJQGJfzjx0GAVFVuz4EEBrbvl/+2TlsP85u2AbYD81UQcrJt/5mKAUWF703SN0048IOvJH9/8wjfB7QvolS7zbMYCYkiOmXXfigFJBQuTz3VpD2cWrYhVJoKomnVeJcgciv69NcEK220VTUgdf8FK75509xyERNxHCmK4+PmiAgrYPKBg4BykSJ0v3bNclJB6ejN+6HQXjQSk1Px2lOMIomkzfcof/niP5577yUDWBTBi5UhMcWLcu2AgAVuWGMjAtYajvG5nkuPwMOpNfsgKNh+4YWUEIrSW6eVC1NSAYhjAQNuw03f7Xb3d4Y1g1eeVqDOLbZAKlIQNaLbzsAnAohi/+p1b4MxJrsfMUs7q4ESkgOunwFBQThboiJPxdFf7uv6oxnd4VTzy0/0gIcEAPm99mWSEEA1JXnO7MdOGYp+Pf4Vesq2Fw0IelNFb1jLACSlyCe8fNbdl99/Xvds/bG8eCcsIQEwbGcNwIok5ZFevOt5IDFg22FlC2W1VtEIwBu7lUNrAkgrC1p78S2nPbq4v0UyecInXW2AQIAx+w/lX+M1xtlhFz73ATCgrgZR62OF/xFgd/T0QOQCB1Letm9fVXLXd8ZqVjWcdCd69td2XgDDeG9z0OIpX67VT6TRL26A18Z9FIhhjwzwhJ1VGmi884sbvv+LGRWhMFVwzacXTV6z+1XtyoEAihKGufLK5SvQ1x2G51zz8V+b+oigvmmATyQJwoENv7VfWDQEAg1NRiqOVb3uBAiIYJMD9tb0hVUwCkGSFj2/ZMJAOgy0HIy22fQEqMucRABR+P5d3x5yy/VDHFOslWKnvPjTi4YBWJxUVw9YccwoBSeuWL28a6LBxlDNvsBYAzjnC4mW7akKsML+h5YM+sW0rnBCDBBIAx14MAFBWDQ5BatV/qSgg4KuAuBjyrO7R1vPKU3QCpg75dnpXYK67nGU0HDOh9G2yUv62TdmVER+j5SC4iUPpK84p48PUZQPNj7BuVYcogBSzokiFgIB3Oag62gw1b61YjWJAAT2rvn6Mz0VQ5lXfnOwSwb3KKKylNl3w0oFE22xldGr194+/g+LBxpnHYu4ovlN8y5BhrWG8skyEVH7lLOF+vV+t95LaK2UUkQK4y54c3kjOXHjv1h+2t3Db1cSs47e+HuPZKiornL7b27pdvf3Rho4bYwm0sfYVJp/IYUDNWCjjhlCwwzenQFFLeEF4mvMe6KM1ic3TLx2+lm1RpTBvr3TS+IEnNl8VeKyOT3/lS5PhQ4A2MUNRTb8SIQ0iZggu+Ht/ueU54Aok+Ni+Q3Fq4/8oU9jl5xtPgnUvMc1CelA3jmtz4f3n21Ep8MnRr/S21do2LoBVc+8WlGSqw0TngjA1qaLyMYo5Sd8g9gv+2jVh02sEhznIqfQ8fPSBdtoeLZ7Y5zIpxF+07DDmQDWf2f7inunfW+6odi8MrOyrofO+FQ+efzqFUMmjx3X3YWGGUSu6BIdlJ9UBNayZUOviRqKABEqAgRGXT/3CySFACSny35CGmzeHfmflT9ecYZR6k8/SdlMEgldOqDbd7H5w1V/Xzl7/oSOp+uQhs1LFW+CaKXuQd9PPpY6koXXuHL2Qmz8r9ONqz/yP1j1dJlV1i8zpb0GzT60ceUrT/uzT51YBScGgBAkC88jcFxwKJT/I0ygCsRQRBJ66hjJxYiPNo8KvYKLtiZQSdC+pgEAwGb/j6+dCCzTTGIqosZeqqJi8Nx9W7a/+lLXU2ZProLTEKtVEnBWaQ+tnSEEIRApzvgwzgalylibLL4XnLKytk2TQtpHzYgesfe3URPwj3tmTTGfiRc33nv/9ssf7wlU5ZqErE106TKy/tz9K995qXLi+JlVSaUiSQBOaY3g6LyOQL5/+99CfONyJs9kSopISWhU7ghMYXRSQ2dt4lv3d1tGhz97Yxfz34P6+POm+bkyp6QqqpNIJShkv2vXoRMv2vPRqj88NOL06Sf5DtmkRqg972hnEZH/+k+n/Ldaf2fmWg82UeyUgfUgtSPyW+sGdOjAXARXXdhIftPEfjBfANtJBhALlJceYk9YeaLAVF4+8NTPfLxi1Q/N2LmzBpYA5CvVrghn8OZP51x8Ck7btez00ThW547pvbOhqoCDUZ+rKJExAIAw9gwaTJIyvgci+FV74xQsa8QRjEdSVjZ4/KFD61c88HCv+eNGJlVWCqFai7Dj6Ofx1dWZpO76sZAt3gWigLFvHq4q6LKH+pISxS72I0qYyDNMPjWmojgpUOizN/RIQ1gnoJSLxDO6unry2bs/3PJItt+cBcM/gQEAoJ9572e9JZEzur4BiEwxZVWRP+G5PaMKgo0Sm/wq5JLiPMp6CRhX6myKPOUYkMoNQZe8NSglMfmimJySnj0nNuzZsOrlJytnnjEpb7WFF9glJ81Ssfab3h7SO6a4+Pl/ZAbH+1s/GuzsU8me82tLSq3yYAwRFCtwDPij32rqCUmXKibkE+TmJhZdWTluwYH1q996ZuAps2akxBmH/FF/uHVcV1FsXlr22ACmJBcrYnGSep28u7GCm3/X2NGzkvxYddEoJcAQFKAAZYRKRmR2DNIgtBZNm/0WwKqyctTZu/a8u+65qikzxvY04KxvKPYSXROwyS33XL4g0nSM1MtAVx9qrCgAi2pHdiXW8AGNtjGrF3uqt/fRXIUUxe21nwSEijFjZh/6aPWGtyt6nndqVSkcjP7SQ+/MS/35p31u6hFqV1xZCaxGPFvTt/B5c26gZlsIM1pGijUaSI3ZHCacbl8oz/OFnePy8iHzD25evf6Xts/8BX2A7NXRzQnX95bJgyITeLpo7Q1gNe7Bg+MK071hBoNa3WNhCQwlok6780iFCOn2IR8BIK3EKSodPHh2zf41q57+e9X0M6pLvzUj5O7jPUdsvPCYlaSh/m4pbFUr+/UX0a6lANIChDyIKD2x9oOBmmCIO5hQGNAgjowpLx8w+cId69Y99T/Thp09F0CcTgiMK64iBELX/v9q6NpscIcOLKqMSRV6lQocUU4xodvot07vgnwo/EmypElBrFLkEwPi9Tp5Uv3utSuXLu0+Y351WVJlfYqNRTH7FS006v2DXZs//iM5gZxpfX+rdhFx5MuCR2q7COsOTiVIhIgIDA2AmAn+SSdNOrv2/VUvP9Vr6uxJZS4yuni1QMiZga/Wt/Dnje4D4ClXiLsK+7IAIsoduWjxxaCc73c4Vf7B1n+EALi6g5ve3dDQa9S8yaWA1QTh5tp8pAzALTFK6O++6MYvREqUtocuOfc/HHlSiADb2hsRTI/xb51dyYkOi+vU5u9C5Zuhe/QYPX/PxvXrXi8fcdrsMgCkQM6Krwy5mDwiCJxSmnpX7AmNVRD9f8kp2pFrUwNowxEAJC/+8M7JQsLHm+wKiGOjgaYDG9dsqpXx06b3gRVPGDoSjyxpYlEUw4Dk3/V3+zoNqxcNuq1cKGyt1x7lgYSmVL02JmnN8ddDCMqQi1V5+bD5+7ZtX3HvQ0NPm1EFUWI1EQyBrSIYJidm5Csf92aGWV5zdXmktWq1snausNvF9y4cpt3xZ//MWkM8EnZlw4fbBXs3/fMnicnT5p5MylqjYmXIEGKjIc4M/2sDsXH00IhpgMBQa+9i4RSxmeTw1F+H1nbcwNsRseMwE0nMbEVcRiTa9fpdl0+beuVf9ufnFXYi1rKwlW2z/yJO5B+nPp5vBG49iD5KRwCyv/+/O/ql3PEW2xkKzEoxkbAS1gQgPLT3wzUb7NCpc8fEZDjUHlmlAASXjr6x1MbfDH5czcqRsoXuxXaiEXXR00uuyyaPt0JENvKV4shnVqo5veJEdfWMgzt3vPvkn/rPnTIylQJYkVOIktVbakr1K6u/3U8IrNF+0yuIypqTL3tgYS+KPIo5cazmwuZxRhFAprlEpYF8DcP17DntrH99sGXZn7vOOHuUpwAH7WHg+kPV9MSIeQTOecpq4aP2mgKpMHHBS7+6XRkKfJUusZ3mcKQBUPOm0ApbibjKyskHDm5bsXxpl8nzppX6CCgx+cVaPLHhh725MeHbWLW2o7YPIDRXLv7aaxeECY9Nm8OBEyUC4DR69Zpwxt6dq99/sef4WdMqgJHYe+T+OfNASWNUrFtdWrteRVbM/PO3fztUkYWy3vHqytGUV04XeQZAdsfOdat2dZk6f0Tfr/RvOvy9YZHWkdbibKEA0w6IpEtjXXPJyF8mGktypSd+paGwIIKDhst5CUcaCHbvW/fPPSWTdq3J3LuArGfJD7SX0Ymj/UiBMjZjZcnUP8aNLj5+b9IBudiKSGzFsXBWROJtL//26rG4JS357hEXpMP2fqQFV5CkptJQ/WzZXZOClIQncmT2yYkAEJxjbQAmDj3yrOEDV5g/9H/hoTqdi0/9zoC6EkXNWno068njMBmYxNeH/iidSMP79OVVIhImbWBBCibhMYvF/5qb+9lR3V8df/0N731xYwVa46j2LttKLCJbZt3aGKc5lxNhsblPJyMWERsyx05E7MeR/HHsw5FY+dWizSKrR11zyBWE314ZScMAGPqr1+9QyTrl1afh6FNWnptPSqEoiG2U8l557KoLVdrJ2yP6uWDCeVt3UEeHAp8kmXrd0vtUGXMyEcV03Me87SiGYVFkDHkl7/5y4pd91mbNodEp8tD1SGPrtEUzIuGFjb9RizldgaxPwQmcr36SiJQTJybje6u+W31dD5dN2FeqR8OJ7KjqhVibToCgturS2keD60prdakRc4zGjGOTkVhpCa3nLb+t+sb+0ImwdGN1H6do9+axfdAqm6KKlokke8e4P2TCQCxL0Q69TimM8z2VK6cv2ipBpiYM985+1HFaftj3uVyu0FVTtLE2YMdy+L6Zt9dKGHLnrcbFiAMnDVmJX5xyzQ5mG2etPLxovcjWK6Y91hQ2BJ0BEcu5yEr0lwk3bBT+9PwQycYSSPzH8TcdEM64iOXGqqrJp8+e9oM3Y8nlCpfGjtGgbxUU8MLvUt+fzFGCGAqR+C0DOlOZlmA0UJ4zex9Z9vmryoWsElIv1Xihk+S5pY6cbg0cOl3R2i9Nvl8kZ5mtjW1rbNsJhTZ/eyIMA9l68dRHWjpMWwc62/b22nFcj9t126Rv7xARYSc23QKls1HOhk7CXCwif5266GUnjpt7fq11VtjlgRTm6fzqk9Ph8/eoqy9G1jfgQlDdqWgsPDhorLtjw2cvGdKSwEFIJN+bIUKiWsuunQEJE5bN+qeXTrhqFkLyW6P9TsYxURplOPLk0qp/m91VQAUorekztXFOnQKJbcoq1bjigey4hVMRwjtOjsBBTMOzT6TPP3+IWJDJ5/kgEqE8ZwDQ8XME1oalUGrHc8/GZy4aftwcySVUdsmT9RMumOGlU7ohmQAgguaTSCWihAnUmtR3egdLcexpAUWbXn2pbu5FE9ES9HRC+555sfbU86Z2EXFaLDwF5O/YsJBoEcVC0noQSJ316HC+3UEUYD94dWXNoOln9QOsUsykIS7feyPOAOJAiiCiULfm1bVNU86e0E2LIwVWDNWcTTYraQsLWnB0CqSFZfmLaBvfe2tvrteczwwGALE2AShnobW45ow6TKDxzZVb9/cbO2VSGUJPtby+ZT60XoUUKljtMa6bHkVCcNYnHNix7r2dul//kYOGlbcwTQrxXpDb+MH7OzMVYyaNGmqQ9U2nmeLRCz4uLE7BeYgPbVv/0b76VI/u3fv0ruyTKkkBmUabPrx//4F9NZZ7njq6X99uiIMUkTru6OFEgLQhd/Dg4d1767PZXI5NIsGZbInnl3Tp3qO8z8nVFZ2Pb0//DxhFA/nMuF5SAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, C and D are two points on circle O with the line segment AB as the diameter. If CA = CD, and angle CAB = 25.0, then the degree of angle ACD is ()
|
50.0
|
390
|
[
"25^\\circ",
"30^\\circ",
"40^\\circ",
"50^\\circ"
] |
D
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAFsAAABFCAAAAAAAgcWuAAAGbUlEQVR4nN2Ya4xVVxXH/2vtvc+9dx5MZ2AYHqXT16S8bJWhAtZUjMmQVtHEaKQmdTQRtUltIqIf/GLTpOkntTEtBppYbMSEtClCDNGQYMegIT6oEMDAgANTpkMHpoPO4957zt5r+WEeToc7956510+uT+fe7PPLP2utvfZ/HyoaDwuOD69dUzSWUUsk/xwpuLXNABQgWDIGAM4e32pyVBMZiI4dXF7f+S0HEABwAhGR/l8X6yUuao3wtRv2fO1X56Z+CANeJfSvX1xEghqF++uNY5ceXTn902YAcYdOrV6ao6jWnMjQX09t3NWsUxz2sG74b1ePSA5eamQPDDz/3KkeMy3RMtB3dMf63/XnI8pUTY0lC6Cv5UHmyzrDBs4/e+OJP/04tHflqlccCSD9x+4f3vfuJ2b6mGI3cmHRqtH3dDnGo2rbW5XU2IOH7siMPP04T+kWip0w8hkGjv4256pEk48aL656yhWKDYsFNAkXm7iE1Xgivmd7ttr+NokZOX5Xs1VCTHb6XxqvQyhmA7FolaonRb5Q2N0UECh2dlo3Z6CUBRHDh1ANNagExD8Z2tkk8KZAdmYHksxsGK1q62gexuDVP+9+oGAsaBZEZnVGVWjRDJw99IdvPOBFhD4AqW2oAhI0xz2Hv/xwQTJzxdXKNqR0ev/2xxIYz3NgtbJBbuDlj35JCprcNo1sqfUpQ0FQM/jCfd3qM6Q24Q9mpXq2Imbn7fCL9TvrvCNA3ZyEV5+TULQc27E9+V0to0QAiP9nbMMqkrxy+dtt3sYlh0X1bCVw9vW3v9Ph1ZWmVM1WL9YcPfLNh0Tjoi2576pmEwX0vLbzkZig4ksuSdsnIoYkOA2wAMRbdu7Mq5/+FKxahSk5i1Ky1XsycZSoqhJxIoGyl360ZUeAAaJ5XkqrW0GJiwBAggpziAb33fsVl590ZTWxYx8pRxMnhja0hqWioOytl9wz2YIp9346tpLznDl3YDRc1M8uC8a7wt6J7zbH6rWM70jXJxQhb6/svvnsngevNIO80f1nn7lT2VqUOWLT1pIawsH4hy3+4dwSVctv/HHXPQJG2RMldQ9mrr21fWWCZUuiQPz7N7s/okRAOdlp2QkweutOkIVViU784vPbPBmUl50y3wpGU91F2PjMFRud2/OxLxRT+NJ0usnEvOSxY+3LL0/sGOvdu7G74FP40lkeolwEESSHfmM6d6x8bV/X93I+0bpK70jqWhIantweGmz8XttXc0I2hb1LySYmA70DSMySLa2AuhRWyYpJYzDJQRVKcGI0gDmNVUo7v3VSgc48pYia/cn/IXtB3keVJgeIKqUopuUFeGMhAlQUAqRgLygnTB6kgBr1KS66C8oJiUI5YhJilDkoq2GDDKDMYCCpvHpBbAGD5PzhpqRwbcPW9GwFqOwpMkVH/O7ZiG721G+db/FMjafZKqJEFSpLlIihTd0RvUN3zy9k1rcCAFDPRiTMdedzQsmwmsblDlha6myYMxqnlQZ4tRU/znghcLEIFMeLFZb+V7encuZrthJu/LcDrMlU3hpTbCNXEwVXqqUaE18d6q3j/lsDffPc0KW5depp+rzMv3zD+rkXltvQ5DT0SYdS4XJr2+2mWwGisa2f0wDLEIrdaDEkyF2YyHiqxEaWLOl4QpGWOiIEBISJk8MR8JkutcDbL+WXDbc/11ieOwl/518FWbGq/KKbb2Yeifd/CLCMNbnNH+89PdIYdO6l+bZIjvzyLh77/qMFdSXXqrDyom2b2nqfXgNYMfTJbdc3djbEqPg1VqMPn3lq0YGftqwOnks0lnqDwEMnT5qHvmgBFlx76+s/a1y9SKGV5g+J7Vx3X/f4cVP62qegQLgQZwfacgxYxumOdTdWwGeCr9ixt3rWM1o6xshQqboTgVj+3vnEX1YpQ63N93dtOv++XyxM89sDAoRA4wOPWwyOdMGVam5SYaXB7Ja6zdYbIpYrboWv2ztoSHn+rRmCBBDeX9MOeaOwCV5LjCoNQnzh+QPn44wxCrEnXrnUF/3j7ntBqjpvUggw0Bv7Vo5c//npH7QqpNRVmKngqKO9SYIEw6CLvcEHXbcWIuXSzUAoHnyxrXVixZObvZrElEi4CGKXgSbKYJ3tkUOlLS/XCmEsur8eYb7kCUMhTAFGSUkgBGWhSYcwT5DqzNxTBSuVKDuJEkMmL0Ji8B8QbchdBquUPgAAAABJRU5ErkJggg=="
}
] |
<image>As shown in the figure, AB parallel EF, CD perpendicular EF at point D, if angle BCD = 140.0, then the degree of angle ABC is ()
|
50.0
|
391
|
[
"60^\\circ",
"50^\\circ",
"40^\\circ",
"30^\\circ"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAL4AAABvCAAAAAB3fSXLAAAIYUlEQVR4nO1cf2wT1x3/POjChqLRagS8zS0lMTNdNsmZsi0MOkJXCVMgZIJNldZ2IK1ZNKYlW1qVPzLRakhDKhOtlmRpqZZsYm1HggIqrIapNFJTkY5OTtVUNCVpwqBTI6otaVItZ4f77A/f+e5sxz7feyaiykeJ79f3x+fe+753733v2YK4mbFovgnIYYH+fGKB/nxigf58YoH+fOLTQp87hBBixfR8kskfSfriZE2UfKh0GgBumoGQFTzxWAg4tO4RABDK7BNAmxCb4o3KTNph0T+3CgDWDKkteoEx8RbZUfRFlVaTsOj//XsAUKqy6AEgHq57BrizqUypVRMmfcYjWwDg/a8odnDkP78DwNJAYdoTDYzWkeQouqgUseBv1Rp0Ihk8p1cDQMM9u9QWzgdDAWNPqV0TJv3478PAmJh+RZFdJvha7UgUhL9B/0zRUIUQq7tUsYcwmH85OAIAY92KewQTamNRN/4ttKKLPFut1k0St9hv5XEV5ZEaJZEwUPeqCssZcEtukTxBiE+WInEbFJeWbi7oCMSqdCXQSfYHZpLHoS90KrWfAqPpKmtXAsC3N+wzy+aVz77x5KNU/SS3wVlwzh2vmFjVaext7OFEODwla3BOqOp5dNsnOXx7N0myN0SSjeXDirykoQAdJ0lGlzfPkqw9SpLs9L1WoOBXQX8UiJKtQDXJWlEyRfLatlCE0cBsQqLP167ATwYooN+CKMlYA0mytUs39rrLq3aaTYBXyvfOFqICZKfqxNknpkIAzu02zpidzM7BX7zxgCnm7x8PfyzpKrN/WdTuBY6RNbiHJFmDErOj2f2UXW5f4KK0rzRI0x8teZ5tJVOk3oSo48oV/4zj+EVfRNZZGqTpR6rJWLCbJFvrHFca9qeI/sPfIustFUrSVJ+5iwBw33v2k+N//WWK2DfPd+y5rsKfBWn6wXemAT0xpbLmyQRafvL5VFn/6/+r/kjWoROy1afX1DGSGM7/Kmo7/1/fh5mkD64aNDtQFR2pfM8TC6JkiqMAjtkZ7W90ipmXun090i4tKB002NjP+P41h9Cg/6A6j0ozzLZhcfuW2zNFKoDy6Kn7NetQ0mNh5kJaoDc9rUbj9rT6t0/41fgpUH7/haoMSUGzcpZ07Fn3T0WO1MWhDbOBaHaBl30vKnFUGPpHa3NJXAzsU+GoMLFf8dTGXCKTu277Y7G0o4LE/slbv5tTZllkRdVV+bJTUYWpqOp1JfYHX5+sp0LMdRMTdBfo83VKDh0KUfobe3LLJFgPlzfajjygALH/5ke1uYUEALC0/+KWSUhksQpA/8CjbiWFKI58bcNI4oCeBhFeq21ODARm8wqGTl+v9+BRT393e55k+n3e55DKH1sjmy4tyVPl6vb1Ty8GrDGdeyiP/d805cOeAOB/bbx6Et7y0J7rLTM+9HlKJzcHBj25U02/cb83vePLPSWBFNO/5pvwqHnBf8iDltV0Y0BR/rGXgscnD3tVHd/69fZ8G719shiTZz+5dmClR1UKrf7dl5bnqaW252nfucKrqsCSjtqKgcSB+97ciiON1DSNmqaRmkYmDq1Ncs/4pKZRs9R1csYv+RbolC/PFSFO+uZ/8s+2ofN04k7t/MnDP5agTpIcDBxgPgPQdPpG+c5Bnxlu0cTsKulXcPq1DbtmcoslkRL7RTFjW+ShHR+tKM1fyRHIEMt7b11/NR8VA0YcaM7CnTt40kpfz5kdcYkW/wXXshZ9g4hmO3I0Xc152oz9hLxOsicsT53UyYjvqFvptKeulknKFULuJujZoZPksOskUGq/7/3ZdXpZztyOCwgALHtz4PvulvM66cdi3h0/6XqOmAsCy059qeoykHh+ZX2GKahwknlkR3JDJ8kjrpJAyujf26PKkoE+3xGSOZ5hqugnly+ow3D53uu5ZFQN2Z5oXqzIEsxoL+u/vHUS2WNfEf13ow/kFnINAYBA8UuhypEcM2Al9aw7ly94t5N6onNl9jmkCvo6h/35jLPmMJLx+IK/JVvrlQ4eAgKHf573NC8VAvG1AwB2iE0AsGNR4nsolec7Hr4+d/hI0xcAxo/Xy5oBsG8IwCPf4Q/qwbYH+UEzAMD/+oS1kCCtFStpugfrl8kbOVMZBMb+vBcP900LWkSXdIXXvQMgcx5LNmZJTnjOjtgQa9CC0cTqiJouc1WTsT6x23dqDi0Vi4AP3y9d+BTNBwSAkTUAFhE4CcAsbbGzbPvP7qrNpCdLnwKfPBOVNAKIM5XFcSBBWE+Lkdu2/rpk8+cy6MnGvgCe2+aTNAKg7YeiaOgbXWXvZbr4dOXSt8N3WyuBbC1YOmhn/JekbZAkY8EoR0umOFbizPJeC1ddJnnImkNazwH5nqfz3oC0jSTufKgVp5scr6sn7q48fweApue2HzdO2VKDsmWmaoJOxoMD1FkD54K+mY37zd3BQHOqjvTblT+d6JG0kB0PLu409igmt/k6UhYSyJbZWvdZjdxIH9z0OuYRsz8NXXFcli39E7sb5QxYMN9sUdhecnWsW2tJCOIvE6e/ZdOR7fe1RsOuPIS1TbIf1W3sQeBHfPWr9viRqOpIVELZJTK+KasBgGOk1Hg/Fox6V5ZDzTFGEKVUv998h8IO3z0IxEe2IAhAZtDQFvq3KkZ5QQDn1hezoS4EiaY7NnXfymIP78FVYPjZZxENARKlf+gxrCng97Gy4myUrRVvAd7pt7WK1Tfk9wQyOBn7OIS6YARw0qeLrbE/NkW+vDoPPc9bkX7+b2Hg6lBZKn1hCGTbJqJlbM9jwPsiDz2V2zObEQ+XhBO35AFNQFSvQcrY8AYhAiDxFTEWahnqDcOn5SdWbk4s0J9PLNCfTyzQn0/8HxO/u9bFR81fAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, in triangle ABC, angle B = 40.0, passing point C to draw CD parallel AB, angle ACD = 65.0, then the degree of angle ACB is ()
|
75.0
|
392
|
[
"60^\\circ",
"65^\\circ",
"70^\\circ",
"75^\\circ"
] |
D
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAIUAAAB4CAAAAAD5vW4nAAAPyUlEQVR4nMVbeXQUZbb/qrN0k+6QDQhJ2CcsQdRBUZRNMewqDgO4C6M8HJ2n6EOZ89BBnacyjOjMIG6c5zyXUZSRQdlUFhGi4CiyySZLkITO0um9q7q71vt7f3S6052uTrpIwHtOzumq+qrqV3f5fffe7wsHZlR8O4qutBm+q00xGQeRv2LidxpjZ8CY9rOh6Cra35xapbr7c4w1GdekvsCYkBsby6VvLf+nBrwGb21DMg2C5gppwz3i0G9nSvOpk/RwHroAUHSWvPisz1sqAOocXRhHsb/AC4Roi/kjCWjqHBiGvVPedbuNsTCbuH/BcpV1534mi1R8pgEagJ29liveztGFUe+UebkfFwnw6/b9kl/CMcaYktVBVRi2SFXZgKgVcnb9c7nqEhnzdJQ2jOoi+9NJGdHfth7bxopLMr35xYzP7RgMgxbUyg/GuYLrzBWP8oDS0VgxiuLAADH+UD5U/rQCr9ohDIYjlTZNSYjNrKHrVt9tz8tINT5NMYTCz5SqGaHE++2BjxYrHQRhzC/ccBaFEjxAW9Nr+4fmX0kdtIghFF5smJjwQmXzoI0h2m4bHm4+4Tw/LzWEIoy5K5S4Y/VDy2YVoM35IyMw+PMMFWMx4ht0RGs5EtaXfK4CgLbOMsENAI6LguKbwXEGCa8zf68FAQC0tdvoJkLt+bKGsUjdOa5lvH/tf+3pzskh5gHjJqw9USmx3t7zpXIjkMNjt8cMor5v/koFonwlfpk/kCdUaylubVuMoCCnLUactHLI7gTGpKriS2rpYvjFi/cKzb/Uly/dpgLwtLyWjudXeKMHBindEIqpb2kAagPAm0O2qQAQjrtKJ7sWnyK1jgCcM6YUIyiUkjMEzQ3Ir+Xv0vlazdGvfw0BEIySlwEU0u4rZQCqjKX99up4oeilxh6lZ0iqMewdRnTx8BIVALx/7nNMLxRIhny6b55XMu6iRlAMrSIAjucvO+7Vu3yGAHIP7CoIelc7C8WRCheA8LKik5qsd12rI0B29OpyKmAURfrcKR3om8cYe2Ltjl/4Ijk3MUmMfAVjjDFTT46xrB7/HjCu0XDxmDZecfZ7IvjH+tc3R0cY1UunDLZklU989iTFKUfiy/MPRY9D6T07fRSBXDv4Pw63Az8RXISjN1l/98VhQT60+YHCGYdVeFxRr+SvyN6nRRDUpeep6aIg99Zhcv3CUUcoUiK7Hx66NKSeVQDNo8hLBi/0AE0CAJwleIZbv5fhJtSmOa2kr4t5LwgPXX5cA6AC9l/PPaa0lOzqqXune5vZnCBCGJtzpJHSL+nTR9Hr68WDHCqAoIvE2+4LBaMXwl5CSFwwO8bajWGIIwo3GphL0rbIrmFzrvY1RQ5qHp+b5Hbq5NcawgCgOjUA8oj+W9KHkTaKt8svP0WoI9QSfT3sbJKuffX9j0ZOKkAtQRpl/SRtGGmjKOxVFzE0wX3Tm4rOkKWVsRmWAMizct/VG9YRFBMtDTFXrLoqrDdELT8UXz2SMsuyKc1CJU3unOq/qmu0NMyoGq3Ljdzo3fGVoo9bPW/26kBaj28fhcaY+07fgJvNsTM7KnX7DaYJO+O7sAUa/9c7fveJmhaMdrXVBN+MW2uG7Iv5o9qzWp8H9l3ub3Um9Iecd/hOsUg35Z7Q23XhwbFaPcNbrN9TK3a2rt0tJV0ePJFGLd0+Cm5m5vvSN5PMcaf0G0BSlpbwNNTj5Xf+sWrqXqF9GO0pS50+3uPBqM/jZoTeP+lGIO27Ij52vETLyzfLof35W9VgY9tc3h4KGnebH9q5PGcLCrFym/4kteZWNyFu8lhy9e4Q4NnY/2NFNy1qkXa6a2LlkKe6Mu67q/JblG2esOF6HUNK5l2X5XKMab5CjjHGwm9ueOkq3sLlTgstNlVymYypqV/WJkZxym8dAiD8x6oWMlaVqlENkW9ziwAgR1qvTVSxPwAAFGm1PdntlAoCGoPql/l7PBrgTmmWtlDU8zfOPqMB8JXFxaYH2uWfRFA0n6SAmwDt9etDAEAnVADh+0c1Rd5KgHdP93dlgFLapQ0UYXHMbDsBwOEhvpbTBNozsBUxEOrDNaMjc3mNBgCzR/7k17zRmVc7XPGSL6GeTBuFd8xckQQAWPxUojtqD9zR+rMI0xaJzb8AcdpNbhfFJTnStsGrAyB3ijw0NQrXlXODQCMA9NsT9xEeQq101VN2QhCoIzSoaArBt2hmLBr5wKyb61qV7+q3pa9JnlQJYCoUYc/V94keAQSgrtQVd0UDSKkdP9dBjSIEyC5CEPZZNxyPvkJtmDgrQA5qSGAV7Vi/V6VUSwgpUIihKx5oaK7//WumKM5W1ym48JIXZPBAkPwSll36mD/6Au3c+Lv8ALVOOrW9Vz8lQl+SUagA4KxYVEdRFxz/oeZLGib/a/qV89bVCO6j6x4afsumcKwVfmbMAv0JTNs//PkUxWMyCrcEHK18vJoQsYPouuSIniJVae/SyQO69y2ftuxrvxYL24NlT/qBoM4NCPqLFunmR8koFEKopvIeFwGROOB3jEwR57IsCn5HQAjG5ZdfjX46BKBe1wHqgtf8NqRXH7RGoXkRrr5mXjiuU/T7J9rKYhMntu+GPBuhLt2xpJ6onB+EI+l5Sbogb/3QhQn547AD+mqE6PWEAHhbguG7/L+nGNssvGPSfB+5WoNMQqHVDHo4wZVPlKRMYSOcEGMG+qZwg9ROPab+NHpOUxJttEYhnBrzpDdh3nl1VpplBa0ZtM6toKmeALiS3qQCADm18LVz/AIlXm+Fwneu93JHglmD97wjpldWvHrpB5IaVU0yS3qa5zZqnH6rU0nUWCsUjd3+Ekw0AG9zq440MITXlG1tM5eJ4aKauTfXtYXisPXNZgzND5T5j0eKoPZX52iVzeFpJ6OKjW24d6Q9WuAnoFAdslM5Wvq+gw8CgOoRAUKjCw//VQRgbwcFPT602p1uPdikBe67+ZQGgHepCShAoB9KXqml1Uv9oNweRdU4kGtdp4kVhwlAO0WF8j/X75PDqfOHBFEV0Ln/HBOQkaQLKLXHer4ua75ezzqFgzuaBHIuqw6+Kh0tTp5CWolTw/wRP6iAkEwEeuImNKrCYwO9auzbYmlspjBx+eQs0wu35xdaH71xXxZXFDRnNGV+NrOdjUDwFppuO7F1sA8sFCwItj2YMcZYAcd6ZFif/tUEpxotH6Mo+E3jF97QT2vsN7CGef9+YNamkDr96tKK4LZe7ext4HLUu/gPc7MLOWaxhYJpLNNwjHGM5T43YYwQq+UAqEDjzi4LJT/Cj8rLVso8KXuvlaB5fEIopyJ15hwR6ZZJLorGkJHms/jcmEPN4WtyM4Vn8t65j3/+vzb5y19nkcRZucyhvYLMVJBn/tfkJ9S2lSFPy/mo0F7Exb4zbTEvmvLggeYqnwCSd/Z+W/q6bDdu6ZJvy37vHEFpntDufEYi0ZEqRQJwetij+5PSqrSEAP5vA6u8hMYQA4Cqsk/9Hm177qmwILyypIGgbHomoquB+1U9No7JjxN/Hzi/pTI4NEB6ccT3ikRgAHYUv2OHjMCTizSEn12pbMm1NmeIu4a2oQYAh4ctDp7v6jYBgLxy2Fd2LcwQ/LLPOoUASKdzQ4Akg+edtZGRCx5pcz49WP6KJ02qSiXSu+WnyMnEqsJ/SACJIHp8AbnCQghQCWowHNambPGDCMEgVGqW2O0e5Vj5ykZZJQQFWU0bSstzKBAkEsKrSr+Qub3Xjb+8RyDQPbMxXzx55JaS433gshz2VlrCFgRe+u/cELjGn3IHd412ZKKNtfyA4+1pfYtYwCqaCmUhR0wzMqIE5RzAZ5lrs0o0bb33b5mbnrHn1KPYo5XVWoevHSN+UnajLYu5pUw5Q6wulwWNs/XM7prrsrDEWGw6u/v6vrmeLpliplZvzohdb0+itFZ2soj8hbKLTON9hzmRI44xDpy7MGi994aZTfPZM6NJNTPJzGZPujcTjAM4LsaJaoZJsDFX0Y45b0z1dJcs57umzVHkezglS82MzmbkIbjhlogalw2etD0cBrTg4DO6IULwaB8MXiMjzXyifYl9JDgGzp/VRbCp9VXvHi2bnqGMXXAwufsS0AoYo9UvLr8umzFfXufsoOMSNEqcYOOIUxTx5BdZjqLQYp0JNdyF8WtXPDc5izEmpusN7UmcXoI+L2mS5AIAj09yXLNLv93Aryo9oHjTXBJLS+JREEnaj92PURAAAX6rW/eWwF/6n5ZAsKeb4RlD4QGt784dVJsAQHQumaToMae8+JIaBdRAHd2YlAIF8arcUPJtMz9SznItllu09DH5+248JKHNKc64xDcuOStTi1VO4xhjTHVb7xQLoiHgbf5j/H3+P16Szc5n83QbEvcweGWTRTRzkTQss7F3gYWTGWOMCayAt6NAEllovum14Q0d36uWGgWXbxZ4i5Sp2SXGGHt5gvm7Hr3u0hhTf1NQaSnlpAf6543Jea5bqLSjm0rbQsE4ZrXJZi9XYha8LLxnjrJm9+mq96jpqRsOzJgfFN+o/PbawEsD/Kop3NkoEsmRN5kks4kTbWBNR/vUPt1VndVT87/+fZ/pqzIspQ239y/PNeUzQbUYSjCNoshlnNnP5LCFc398f05PK/dGwwiPZ1CJqU/ZlnGjK0L134BxzAbOXtapMOIt4uO5HcX2h15j+YwVbh0pmbhbnyvOKzw8UgxJXXh1/GPOnd2yGGOMY6X+ztwZn8DgFITs8Z6TAJCn5CxRyPtv9if+rbtDwMRXS1cKsc2CrvPdmJVCWvdyqJkSN1znBvy89uc56hdDFGBU8aq4jlWnUhaSV+84LpsxxtjmWwIay7XRL62sxOPEBwf+MDVu5axTKauVReIkOPArleolNE37Sg7Pe2Fzn+nBzrVBoqRA8XWF5Fbf7ps39BsRCI3OndJ6pbRzJcVS1saxKODumBGyMjPP77e/M8na2TZIwyI0ci15CSBQA23uur3TEswUoo/ixyHntGgv4N2+R52dmVfpia5FlOquPeVISokVy77ob+lcvk4W3ZjD0pE7q8EYY7R44/oh2oUG0SoHbxbFNpKJpx+5q0/WHz59axiF8i80Cj2L8I1XrM9k7hVTrnEFd+SZDP93h3HRsQhsa39hy+3Cnv+sIWON1XQBmFLnnUniRflmAjTcPdPhucDBkTpGurr5cRwjZZptZfcLrwXGmK62TRtGdGHMP67fe71D/p8LhcrWzzDxrgnXr7C6c/J+LhQCqxrL2Sf/Zp7NlM1dcKZoliRPobWXKVXX/Kmho/8r1DHv5H6YdPKR+2f0uFhqYEzPIspHvW94cPZFBaFjkQO20te95G273XqhLSId55bPzOY6qVWUpiShMP9zS4W5ttdFYO04SZ5TjwzM5ujigmD/D0RJnv3lE5SuAAAAAElFTkSuQmCC"
}
] |
<image>Place a pair of right triangle plates as shown in the figure, so that the leg of the triangle plate with angle 30.0 and the leg of the triangle plate with angle 45.0 are on the same straight line, then the degree of angle 1 is ()
|
75.0
|
393
|
[
"75^\\circ",
"65^\\circ",
"45^\\circ",
"30^\\circ"
] |
A
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAIQAAACFCAAAAAC/cw/eAAAaPElEQVR4nMWceXSdxZXg763l2973Nr2nfbFkSba8G9tg8AIYMBiwA4QEwhKamYTMSWYy3cnMSZ9k5pw56fSck+5Jk24YSJqGDDCBBIjtsDgEzGIMGBuIMRgveLdsS9bTk570tm+tqvnDls3gZ/sJ7OT+qVf11e+7devWrXvrEyo4z6IkQaUQA4quLiip0KTS384tgwAElIHk6BDYucuv0AbPvyZCQgGUoIJuzj125F9mnNqEnW8GQK6Eoiiot/vZ/fuXNlVoct4hAkqQSgE6rFpraMbS1F8CgoBShBAIdv/BmFWM2JXanHcICoHQSJB/6o+009l459S/CIRSjEPw7rtvarM7D9VOYbLCejxvEAokoiTHnMDRB/bN7lje/aOv9ohKPuG8QRR1DkDBRU1l9jwmb2+emAyITQL654SIoPIoR46qd/X6C3oaJunaTmYB/lmng0g0QFI6An/fP/eSBlaO4QOLp5VZpQHPm9v2FSJSkL13hItqE0aKuOuOdjNZse150wQHFWhw6I1VkSu8bj2Ntvv8V6c4ETesMOJ5gxCKaXLPs6vaLpwb2G0lLAQwOSWVjhXannsIhQAKgSocffOZA60XLZ1gSN9w+rd0NQBCxf3ynNuE8oWSgQQkxZ8/evjSmxk9mMNNr420bJjZHqLCP4smXC5LEY4Ah599/QrCFln/WnNrb2ZSy4ELJxEVkIovfc41YVCwiATn1f/0s+Ve7XQgswe3ZfuidFUiFSpCZKX5OOdBjQwpKZvOml8GMzLX3uD7fp0Ca9sG1ff1qQolcRg/tc85nw4i0TNG/21b2+C8OaFfW9SGmSrtXed/qxsEFZVXxznXhAp5OPTKox21TTdED0rdtq3+zWp0weplkxXlWNEuz70minbw1ub9E9qXi0x/AgyNgzUjNbIzWceAA4Yhr7CDnXOIqH/f65NGoLHWK2iNOilwZg/1d/7bnHqC4HGoxHAupkMCAQBXA0kIBNm/+8BsvHr2WzMuVswvMe5kGXN2D105AY75sUpyjmxCKkVDQiF46HkjO235kiJd336B0xsdzpiUdlsvR+cbZ+j9hadDEgCQEtDVitHhH29LecsXzzB0uch/56XMPS0NOdFqlTcsPRPDF3dWCAAKKCUgo/6zu/RwypH63iEu60trNyZ3H91PSHng7XwNVN7Ej8kX1gQCKEUAfDPY+vajfOqii0lCxXKR3KrLkouMgc54OUx/sqAbTmMO5wYCQCoCAFx+8vBhY9Id01KqHMnrpV71gndJqk4ZUZURM61KUd3JF/nChikFoSBE76pX5UzzaxM1kDmb7waM9MdrElSKUfI/597GPVZpbR6Xc+EnCIAoPP18T/dFbFS6GbumF1k0qbc6nBULxZjxyTLusEqaGFuyDAJKlKRnNBwAAE+jUhFUY5pDBKUQAQJAgKPPvGxMviqWeEgsqGO8sV/KDM/5jXU8lSoevK4ddDXWkSh0OAMFWNYcrgNIJCg8ztQZzeaYSJSSSuppn34lKakvTHAP/2orW3ZjuuiP1uqHiFWMF/SE7jJpirJd/N7XLw3oCU0oSQSR0kfgDEhJ41JwhpyCIBCws3AQGQIrR9hYgKYC5AgAXCvv3bwydvnr8xoKEZ2rdY8bUxbURz1TmjzrYX+08YIGRk7GdagUAjKmUBAvBKdocmDIAAhRUHl/Oykh1QB0PGleGiAQBNd6kL3eoF1728ux1mymbpt14dvz5iIP855jjBhckb9d0hH4BuCYKigKERCjoGvuMw8O/4fCrOsoEYEEADybIoAioqcHJ7I9CtF3Acv8za2bWPxbjerqgosN9R+4+Zu6pL+f0kQCIzFzUnRf1OQReYLBC4ByUwOLq58+9+PVb2+bzoEBEQokqIpx16dFgqSSyvA4bcgQiAT1zyunh/OWJzVjqKa/IZq7OYxayUyoFcqNESU8J/rON2a7DAv0eGICKQjl6UxSeHzfd5ZAY8JyTfZGb4HLAE+3wZ0QIgKs2dmquSeYCEdnpPhOZmvdRqX7mtSktHIm9URZ6jVDNB2iT0ts7ZReXQw00pI8NkJgChmZP1kTxdcXXw5ZZ2mdBNZWlBYGSM+2RKURhJFNdbWR47RmWVjOkX1F/65aNrCvoV2TOazNtiNx6VCx1ovWjA6nzHSwffKMdNaa5omaMQ3G3bKe4EDe5/NQPJytJwBsYosgcAbP6VEGgqAgIbLCP18+NeAgAspQMLV7/a7AvvHmhqPBh53NQiRkXqv1jqZoPpYpkTQITAjcdvViXRAIyQmLJkqCgYAfu4H3d/d9u2YkDoyccZMFMAEckwKAQsg0Jk0DQSKCYzsHHj8w0Dp3RTPvDhN0T0B4Il7O2YLEPbONu6bjyYjTm0snoHI0c+MfbtH/+vbHJ99RhdtWuYhGpN/bZkA5lw4BBUH0iaHu+zjZt7RnoyadkVjrPV9y3vyPdbuS3uEYEOYkCSlSuzw4/OSyCwBAKnIKRTn9cC+f5nw3KvHsECKKUmxftfaJiaBZOQRFJAEO8pENo15HouU7nLMRDb//6NYfRj+cEO2zml035hYcZhxVdp9ZaDEATq7PT4kBra0KtbQKq9AE9TgJO+avCUCxdG8AgkHZwt5X1ozWXDvDairGcLgWB7Z6F80IO8BtDZiLMQhG2UjtcP/EYjMDkIgVJoSUZAQgBEargBA8CK14UxOHkEftMlBBLNz1/NryFX7nBCoDcSjJsmr2It+x9ezQpqW1NhPK8lxJjY7k/5k3WSogAHDq9mQAGTF0AKhGE4CGJDwvAIAt3dBjKwy2PPsBGBPpG5adjJl1EoNU7QFM9OXJCwPz6xJDLgtA497++vz+JdqxWPzUMNKXOtiEgKr042dFAjAqPIbAAK97ox9Y/vcPvG82Lr5sgf0JS1JHyp3RYrGmfqi85/9uuL7Tcw5kw2yWJUg6+lLPBEdQBCVOdQBcQx8IBIGQZ9dESDTwDOmqgCJ0zfzFj4IHNslpPWYzFze4NcMvdV64J/SV8LXaZ/rcG+eUDqbTkDMsJ2WooQ/vqBEUAPDUxQGIwOH4TJwVQnMVYUqkKAPPtb7/g3siQ409AzO7o0cMPS13Zo90xkeIG7ech1O3/qxjiCTFSGBYEcNXbe7CZjz2/Mp7Ao79ctbpQKSUbX/2vd/nkESU9dfO+qZLLv+bmfWBL3LP7n7FW8Dq40GtPPTIlJuHNMV5OFjQO1LxuBEx/ynRDIE42wDVaAJ0H1nLPXdGbY+Q8mPrSkY2lrDdgcYuHPrI2DavIdhSVwO7f3nTIus318wqp0LlyNwoa3Ftc/dVrKRVc7A5K4SvccRYHAAc7ciz60Cff2szHpwU6oO682W6bFa708m8Vz7+q3kSBjBFpNXkZQPPH4wMbrhtFpAK1vA5IBiAq9FAIDd+vcpro/MSnZrT4Om5bM3w1MOzvD2iy3j3xRsvkfT+dKc3aMU0w2BNhbwovfCfk8Lw4Ayh/pic3SakJAiM64V3nzlskUtv7XooaMkdhV3I48Pxydre+Pr/OvQ/loVY3HWdlWUJS/P9ouvikT0Lm8ER/JxoAhWlPui0+MaT1qSJy2qCCZcHnxzSZbKBxTKU1djZP151WdQDHJE+s8KRco0WKTulSPcLFzb6uuBfyCYEwWNpUfS1wIQ17/9poGnO8iabDM7INqf+1y2TgyFa1x/aL71956XUYcT9+cwLo3m7yCPhYOjKYFNqJgHFT5uT+LScFpSgEkKJUCIRNn3tV6vN5TfZ6SNuPsVqmyz+UZjjuDVNX9zwlcvoKOUkd6A9mXVFOu6bNgrU9iRtn3FSwVeOQxMIigISIkum6/7rK3y5ftlMh3YNp3Ij/zifzm3+sJVHmg786vK/nejoEQWlld3TwDJK+bDQJfNBXBvsioeKnCZ7Wi2EVBQAAIklvL9f22Et6glow0HJRlV+Zt9Vdgfbm2ebHvrekojPCQiwtl+t3m6yckG+nJaktn53pJMSJWQVa+NMp3KFIEJKHfORdQfm1Gy5t90foKnwIzk1m8jwZooY3Dt88yI3sDj4rDD80sKBkekl0R7ocR/M8P5J14aMKQhoFRinXx0IoWIEtR9sNq5smrNwza2H6kgmERnJJuqSGT0jjZ933t1c0jWWtziKX14VaZppC6FrNPBQ7TtwNfOYxNMkLquFkEQBJdD/k+2Nsn/5nKNy9TyiYnprmxvNlBtUcccT31hsSwaetAIvEhmwaoywnKSl0WKJaNruJe1SZ8JnZz3ZnRFCARIChza+30AXLu5GOadJTz5VN5+W7XyWOO7TB7+9RPnECHRwdQVPz4ra7nD6sIxG8/GaILPpa1FBS5rmV+e2T5yWT4yuiERPA4CQZf/x4Gw/mmwRXryYEMU3WqaC6fTVwcjv+N/MAMkQedkwKWzZdOtk4ZPhssLAEQV1VOlA0CCoVcNwqiYEISrQ0NVzCbHhvg5/yuy6+GiM2HRg1Zav6plufaC2afPv5i1JHfMxaJCiwbfVd+slxw0p12iSFnHV9V0KgVabHDwFgmAADDVBo69++Gbz0SvnXGCXD4Ff1jKZFfPNw0ykdjwTzF9wovhPHWRDO6bHhetLzlAOtZWN7fVT9KpGPx0EBEihaMniW28emHbwmgXWaC6ftlmWJm+YFxbCo77zwY67Zn6q+K8hbo9crHuKUJSIbtkW26/R3LMc7M4CwRB8Ruj//rBxRm3nqxOmhyw0hR7lHROP8FI6tf7RJd+bTME9Ea1QWdw4oUkQPZQBWLYR5XTfZYmqbOG0EAih0PDQtpfb9Qn1Ry5dWT8Z7WE64hi6Z2daijtX3j2pjTieNTaKQpLrbzlQB9KKBC5BTeT2RqyqHOVpIZSrU6pG790xQ5t3wZGOrk7zSDZhmiN5Qx7VW0pPZr62mIaosU/nuPo6EiVeloYpSbkQ9tc/ddMEt2JJoVoI1Igs/2mg9y6NTcFItFDb9/rh6ctdgV5Zg0/eO/q1eQDKNdwTwQqG/b+f0Z1kcc9zlC+oK/z6dn62bMdnIBCUAsQTeUzHJm/9uuErFwQacWnWSD8cu/25Ie6bYqBmeHXkW5OUAoKSU5SSIkgCtOhoYVjUVWgrNxaajasnNgBR1cQRp9MEmAef259MzvBdmwR2bbmvp+191lgeqXXT77437ap6dQyZKSkAABBG4utHE3lLBTWWdKNmH92zaynztCoyoxUgjnfC3IMFUjupPQxpkcUiSpsI5pUj9iSW/U3hxkn2WD5SgQCCIBWN9G64sT3pRtFXBamVedi50OSqYFaoPFarCVQ79tbPrU+7GnOxXjt6BLsOzmvhBi090XZJjQXUG7u3xo5hK9J3yYUNLHDCsixSf7Sp/qeL24Zt64tMh8KJ2HhRbHhHa4yLghmL6ZCNeGExd+/kyxtDGubNMfeAACCJQvnkLQ3+IA0/1pvLVnMy8rZsMIhfVZB9KsRYr4a710nfrNWjXki1ocNlI22D9/Keu2bXgKBUIyf9gwQEhKcvm8awJgxazGiIgRh+8s6JnjIwpOPAOHWHuWbhvdjRUENLI8KwYo21ClmqZ9tjEoFLYpwIXJUCBQDuFrQDWs4XI36/UccjupEuh7wQVCwtVA/Bll3/42zZzcYa/UJqYtROl8qs879E97tAiJQn9EyQEARvhDdzd2feGchrdjJui/Ur2k2dRioX5k8nDD6TWpcQXv/Bc4ux0FjyhKMnFZVmMdMz8ylnMQKWrJPUgpQsvrk5liNOmGjTIBjMm/77XzUlAa2q48bpNYFlYv671aN1TQpbkyUzO6DQ0ZKRS4N394ECFoy9oScdYYTkjbYmZTandFEekvUDIwda43JcSqgIoUY1Q3b94P6jdjw6mE2D8gV6XoxNuXPnhiwKemLLYMSkodwTbyPZDMQSUWIny+01WybWAkGAE4WezwWBBiUErrjtF725IXO45Lc15WnsSKnYP/Obr+11yMl6Bx11kemvRVss5hYyeUmSpVycZCIWIeNlOHU6DFAlCZdN+yDanO5Gr0hHiiI0qBvOvesXuwj1xvYYaXKXPpG/NiZjUTZ0YGdfxqxjv5oyc+xlvpBNSCI5+ubtztZ41jT79xRtf7gpZTSqwgWpBzeffDbRqBZqmOYskWya2NnM9z5/YPhQPYTHEMblrE6xiQBcLiWPX//Y06Rvj2/qqaSZEj6x+ka/vX/HDjXWwZHo9L0+3/SVNzAwEkhjwpSoU5vU6PgVcWo8wYq6IprE5jv+wbgqF01bxUSy1Gfu1Vtp8WcviuaxCFYrRI0XZkxw/LhB3bwmY3azt66nXUlaTW3xzJoAamiIBBGv+uZvjkTMfH8QlL0oJwa4+uQFm550iiGAK4EqIHu6aocPDxRBn1Cj64MF8fuWOJJxaqEiBHDAYzvJill/HDGowYb6vUQ84YlQ4bRrX3xNIxAyJYNo8KKRHLa70sgMk9l92ugDl0+rfKNs/BDHxVfWHX0f9JqJWNwIciMlQ0UKHlk6/50+WUZGUFK2elZtxrXDPBruiNeY0N6aGhHji3DPBiHBq//669uzn/QWgBCrzqKRtCK5W+pf2Eapr5CL3eVOHs1ki6EVMQ3T3rvlS2moUF35IhBanug9d7+5uyHilJRGvDCaE0Xk9VeRlaPAPEnI49MCvT5iJmtIQG1z0PntvCYg53Y6UGcBWXrFds+uqUtZTIODxcEjYQ2fvOTDNS7RZCh75zVZNOF6cnRwtJCLhjalcvxGeUaIUEcQ7Eupj7LJNBnMen1brdo2PSdI56w/vVegqN67uKs1CHgum3dCEB48taJLIY7PX58NgiHoWmheu/Z363f0lzU7mOOLetcte+S27tUlQfiaqYliWY/bYjjnhlpC35a2IRRVZeuqhkB321NbCTT91YuDfNhOq/okyQ9AlFN38rWN7+TxaAaA1BAnFTPaURwe/iPqEJBzbBNy5ZqNP3kfYM5/f/JQm9sXGq5h6xFDG8D+lpv/sB7eaau1pD9aGE7G+22r1nritu5AEr8aozgJeny3PS1E1vrSd+ChHKgr5q7pF5ojADQ9KJTilpYPvrxm5TsLOnRQPG5kB9M4mNjPF3GlCRhPfHtCTgsRv7Kne2kLljz45ubfWMTQwrLnFsui8B5PJGcaL4gef8hjnPjRDgdh6He31LmchOxzuczT+4lYefTdFYRx9dup+XVM+UEokGpm0GK5TH29b06sVAyc8qgdC+Na8zY52zbzAa18B/dscoa0svbGsqnc07e99JPRtQvzBkOUMnBN9MwgbP6Hhj7DCnM6etmkdrTZqPOQUqTyc/mJ00GosvkBWaEBFHcs6tGjj0yby0GEwnNNDP2kW9YPD7XrpZFGPpAIoIa8090gShYDGlaVzP6MnK4LanszF6v9OcY2XYBszrYNJKYjTTQ3R5PS3T7k5DK2YVAjGUuloyocKvVYxPADCMc5HcdaM5AKgIL4/zsjDj+yb43Tdk9S9UVZwP/bfbtVrYp7BdNwKFLmtnkmYU3gG7Uw6o++PLMVQEOUgGe7sBUS5jOC8Mwz7IczhK8xAGAhA3B985QtOLqMoErWAasfpUTN+cE/fZ+WQzPqD7vAGoRtdJjMV9qAXTfg1g7sudIABA5ATlcDPSFcACNhoM3ekJFAua84AGMKoVK6z7r8eKe5A8O1AFPvfOArUxLhANZHy3EACAUVnuR2nHLdq5lQe+aRPyXIFAWuSHfrvJ5AEUYBgD238WPfMIj/mTdQQSLIRpjSi6XB52xjiJvPbm6iMh/TXDfui5rBkJAAIp5VMPWQ7H7ZrNYY3IS1z/rRfL+0c64OcCzdgdv35Q1GRPiZaER5BhWUhELGS4bnK4OSp7yLk9FBMx+J5COJUtk1PMEDkgwHnI+uSclqU2XEEYxflOKvbv54D//pAo9RADZlSpW9oev++fOHCGTaTNcAKA9aIVo6ZX24rvvL1T7juEhJtj9003VPPtfegADAPMG5UOzUU7QItJArLFhAXJ2CgK5bNmS745QUCCk5kaAErvJiAKHxp7s8SqqdjgAYBF5k6MCd36kvf1hEwQAI5QSAQfBZn+8DIoVA6pQix5IEgIXsAS9pxAZzYiA3qlnxmnQiYlotzsVNDKupywMAACWurzHcbv37etjVUA8EAAjjFAjAKRUaSjUkyIiOAJxoSKgKbl7wL3lbE7kDuZippU1L2cIpZB6cXKOw6iibUEoDjhumJWB458Q4EjjuMbHSIQgQECgeO9JxlEqGTXfD2n7ZGk121scR88Lp7wvUJpYigOOJqBBpeXdzvPjNKUshlHCGXfSzIiTRVcs3/JeoZZhk7x6PBsT2MRFfv6QeCITVQiiQiqGa+bNLV1z03VQICOO4o8sUYsm8sPP+9y82hyCPoRXxeGM5DIr1VEpa8ZOJSuIzDQHMFWk/fp3usRCrueI0JiQIdM216pb8trXLopYX5PQh0uwWt8+rF4RWV4QFACBIQARaRwcAeEARYTzTQRlwFcDitqf2pcyAhMNSCwrEeGF6miisriYOAMCIlIQBCNcrg+bI8UEQFihGgHzjwAdlP4xykzW2aOkipAiG44hlMJCIjEjFdcbwmC1VfXlcenrAgYRIP34l1dEKelIa6Bo/n7HAICGS6nMSPmEeaIAgiK80OLFEqxHCkSMBQmH6pCdkQyQmFfZv2fhhp4XAqvaXAMApMIYIgMjYsTis+hvsx9L6JPCtSwff6YlwQrJ6595MeSydUa0gHL9mQ05ctxl3REi5tG8feA55KWfWFJ+5q228D6gg44ZQGsnze3a/knF0b+8f6m+I/iUgwAcTpqxYuZKRIt94tTm+kts5gqBE8YKz8MJX3ne03ZyNO1NXScb9aUXZUEoj7h1Nv443rFrYdk4gxq0JhsrXeZi8aebarZum68E5YAAc/5wqQVEQsuuHhcu+q1dzZeYsj5Psc0AAKkAF4dqRa5Pw+Q6fn36YT9jn/uZHIYBy9S/+vWlJq+pqXGVxAggonhKbjlt09mf4TxxVyP8Da92wRtr2JqQAAAAASUVORK5CYII="
}
] |
<image>Given the straight line a parallel b, a right triangle plate is placed as shown in the figure, if angle 1 = 37.0, then the degree of angle 2 is ()
|
53.0
|
394
|
[
"37^\\circ",
"53^\\circ",
"63^\\circ",
"27^\\circ"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHsAAAB2CAAAAADNMrN9AAAS3UlEQVR4nL1ad5wW1dV+zi0z85ZlWZcqVVBhBQFFWERAEJBiLygBsSaACKKg2GJiomg0igpRMZpobB+KIGJDjdgNRg3WxGBJPo1gpC67b5mZe+/5/qAEt77v4pfzz+5vd+Y+85xz77mnkUPzxDoN4tmLtM/mwEcPZMXFvU9MqpnQUDCxH16/efgp+U+XCBmSKHqJ4t/YKYyspkCVH7nPuh6HJ2Ipi1+i2bwzQZqyyXfbmIfCjhO90C9S5cBe8E7FCH16/6Fj58guCVGstfcOmxRciK8uffXUg8nGsiam/x42EAfJLe/17TSstYWyaV088+ZjKyvopeHdMKHN4s+FMq543s3ea1a4KLvsGLvF3MRA1hfF86bm+hYn3AdzP0p4OvXP+44BoVjaxNRsbMrlg03C4d9lsrwEOan/m9iOZT4AkEkZIWzR+2ZvsCNBW8v4fdVln+2+Z6xXrL33BhsskF28fNuRl+9bHfhZvxl3SbPPWCyq10179bqVmP5MEFDS2OLPWHN5E8IXf3XEBZ1o+/1LppzaGsyCuRj4YnRODgJgYgJbyWLzdZ9NPK4URkWvPODNPIQiUllfWhR6nxWFDWtJkcmkZU4r88od5WcNlqGHfALrF645f/Q+X5aV5qRXMPVisGMNQwoWAlQtH3tg3MROVsCyzCRl9R8X95m5r4azThe634vClhJgx4Ii/7vLNk86Nh3m07I6wZRPwK6/7ttLhrJwXLCPLuqMMZHLuaSM+fmbDp/WNetrhmPNDCtFdfjEg6PPb4XYqQJPTlH2NlYKKwU23/7W9GGthIVVTMS5QIaanMx+eEv5pZ0UCnXsxWA7YaxPqPrwdzTzEMGhjG1ShiYBm09wJq1gN9y6dvr4NP4f7G0U8gFteOPOo89uj1jBEoWeyPvMgomNksD2J5f1nNkRDKDpo14ItpVkJMVO07YWct1vPv7ZwCTABAY5AhNAO36NbcL8adVfrhgiAJf1BSTYUYPbviDeRoo4DpBR/qb3b+5zXk9mCdTVbCaQWeV/+dxDk86zvuZtKQ8EOCMb2HsF8RaxRnUqDOQ3S5ecMbnMWUVAXf8ZaREKjcx789v8vDNpIyKjNDWs+kKwc1JtEyUmMH+d7804lD0CAcxch07oApHjJL7+zZorR6oaX4IohqIGlF4INmNbUjHhiRuPO69jVUIKAsBc5yhFiuAErBTVy+4eOb2DZQ0w75W9nXAio8PLP58zNJWTehffOkvGSkTOE5GUMGuv0VcOIJunQDQYvhZyf1NW5Lx3J/i3jEo534t2/7n2c5qs8m2kcnEuN+CeARcuycukMLCNcGuSd6wps/iFUWe0B8eaIYAd+q5DnIlgIV2oRD4I35x/0NzusKLBk96YzilSguEE6OM7vpkxHFoWFhuQI7KQWHf351OO82OZ82XWU7GUtT62MWwmx5FNCbf09iOmt08Wm3YQtj7wxMipbZkJnMuVeHUeaGyvxcpIqjILP5gwqr3d0qLOy00JR2tuL/vpfrQpSBun8rpWwtYYdt6TNptaN8e/8lDpNrXwi4V2ILH+ztemTA6IEG1NJ2v9vzFsZz3kFy87fmLLlMgLr/hUzxKZ7Lu/rriirZV5xL5XOG+E/j9v2TCr0mOxPaWzovBIbIdECo5U+NdFm+YOi2SodK33G8EmNk8uPuiC/TRTLJhlI565fmEnwVtF2cb/WXHyWQGcVPXy3rnsnv8jZH+95rgJra0gIwDk/WKTCCaKQRQm8y/dn5rTx9W+AIiJIs15L2IlpZFWhj4ygWLitVd3nTTAgzMKBMAVzRsAQ8AKwlcL35t6qnYikkZo5ISHnFJEIBNX37LCtd5Uct/BRoReTdRSOfAj9x47vjfyVPTJqiOUVSb3p2tGzO5oHGTIARNZtSWZMApso3cGLfnL6h8N+8SZ0MURs9k0beSTWWaTC01s3V4JV+Vs7MK1Z5zyTJ5dPg4NZ7NsasKNGUac58z07cxfD79wo3NZZzhaPW76+8xhzjkXZvcS2xmXM9bwhtuHLqpmyxwbw+Hz43oO++hZJYV7R+dd6b6Hfcix1iSrfrvszNNaRUoQgZVqhp2/J3Kb7zJJavfjg6/99Ko2VkpQ9eyvZnaSvxQCovrF/VMJ5DoBCiE+nfXGbee1ghJKw4R1w5OizZ1gpKNsLjn43uRJLwiEBlevmXFi/34VveGy3475jG02e9WZWzIc33vElf9gznMmz8xsrOO9lIg5jh1z3vLWpcN/sZ35rT7XW87EK95UpLMdWyFMfLp8rva3Xv3FnBFleaWqPeHIkIDZW+IyK5UhYQim5Yktlp730z4LWp0kclIOSynwmm6+S+R+6Y9MfnvyB/LrIIpJCJvMOuFIcLNrIruUziCfQivgGeh/bX37xs2tSmE8KoPC9rt/4vF7c+IHu1D+424Ly2oke2RFzJ6wFlzbDzdDYiulACKpRXzf4i26ZYnxa2wSavXcD9ffwPlJZ++3uVWqzZELTztNA2HRV2bD4sx/HNSLd5e127ftus1d0PLfH3SnzR+2rJHW71bOsasZvPRfd/NPRiuSDjBWS26OL/2ekHViu580lrx1t/194pgpF7Q749yLSv9x4zFjd4TuoY9MIN3Wylc6fvnKb/vdUFaTiDwCWaddcyrje2LHSuWljilzz8qBE/up4VPOefXn3+oeU/u0U5v2ySWdjFUCNWkKtnTsVnroQ0dNukAmkLVpypPcS+LkEQRDPX1Xeu6QckbaiRH7VEuvUympUvK3lUproQILR4halnca+vu3ph1eGmx3MrW3Oqe8Z6KEeOvWzWeM7IK8UjkF9LVxYGp8JY1OxzaBSCoORRrKoPyEPsuvqZxeUQqgoXSqUGEvlMn1d7096KSKBEIpIRiwjqxIQUGydhLQ5ISKCCSFE/vNOOoPF4yf5ccy1mSdorhg1TuQgCNyBBBgpG+WLyy5rLIEjpQgOAdAM5OGIoBJMQgM4RgQIEbikI5vPnLKj8c7xZEnnCi8xC+A2Ely0goYxQrv3vbdGaO7WqMIAjujI+b/9ObqJjhoPa7v83f9ccZBkFaJDKcKrZsxEQsJm0kYqYi+WbzqqHkVHlDP+w0Scl7b04f84fzTTm+FqmSCo0LjVENSgyASpCIlH7uj3fwBvoyovjy8QWxhdCKY9+bvnrlgfIkxquDgSRurEVo/70TqnRvC6UM6I7Yq49ezQMOGdJpU6xN7vn79w9d2z5Er9D4jGRsppExiy/yXxpzeQ+G7dCKr6mthNYjNViNXVd6z7aGP/vj0M0XBbQEnlBEameiJJe2vG1QCplLmoMqk6tqsQWzSjGSAuGX/7k+veHXisbLAol3kyZiR+eC2eMKYznDE8OOcLqnPRykwGATakVzTbgQWYKlYELeYPOixu5+adyAhT56RgkP4ZEStxZiInaBQCePTXx9+/eSRPTxYlgBLn+r98kYPLjOIjRD7zRr+9Oxjp7TwOVIUQXNW14khrSQWBC22p81vlvf75YAU4CwEAaS4Xp016TRiSJctGdzltaeem35M3iNWECCbC2oVEhSzsJYEWqxa4M0cui+YmHe27BqwVtMOS1qRquEOEw9bcdPLVyQResjEgSdrn1fKSt8JhXW3vT9uQk8AxI5Uo/dBk0dHM5gTiRo6YNbNVWNvj3yCn9KIahdfjNSk1cZFZ9GvL9nfgdlZpsZvwaZ1rijvSedXU3pghzdWPnf+iBYymxBeHd6+IbHk3vYXDW8L46xiJiI4V3tPFoWtHUQm0yrJ1akOp/d+4Vdvn7t/EEPU7gdFgf7ozq+PH9nL1CQVOK8UgevfYwVjB9sTfuipLFIJa3WvA4bde+Zp5/thbWdDCbPowSOu7ZEEaSfiWAsmdo2bVH2/fVy3TioSSmhBkqEcmLz+bV5d+sZ5YynSmYQMc2mV9ZRjVi/fkb9kTHkMSOtYRkIyo4mgp0ne7DELsNpRtma4tpMHrLhh+ZyeoaKqRAoZDQhs+Nnnw0/t9fnUdXLgdW0MYp93xg6NSdNXxA7d7racs9zjwpvLz72VA5dEtdNaYdutx/jz5/RaflzlLdd/eeXflZOqkPZg0TMHUnGGBrY77P7X5g3O6rSUyLx4n7jsqNZYfuuscwPEM4/rISjrFdAXLho7Hwjfmc6dez1zUcU1+4UCH93+z+PH9MhmM78aOdVGXo9yAjJUu3z6g2B7YVyiTC6o6Dro8Wljp3mLH+l/bZ8UlLsrmKwoFJ9slIZ1Hbf3g2ALrUJoHcepwQeuXTJlQ6fLKvchw8J7aWBHbCxR/2jTVjrpooZ6NHuD7RQkS7CI0Kb7p19sL+3VKhOobenvNrdPozT420OnV8Qq6xWy7u6vayoUJI4tEREx2DhYeFt/MXPok28dOv0mlnESfiofIUHXe6NSjr2okGJJwbxDrYgdOw0YIapLcO/D7WYNKkeH15dNPvN4hdLKZ3/UbevcdVf2QSQ8U8iSBWMzkYuVFDHFnkLJn28NTx7f3VUFbU/o9+LvXpzZ215+0bHttw2+s6+KpURBEVbB2B4ZRxLQzpP46p53Dj5xkKgKkuRUp4mVj846adK+N79vvL6dkKWEKCxtLxhbxCyFDcl4vl3yUJdpI1oak/CMEBalvTu8/vCq2WM6A8hpJUVoCxpvKnyfkxRgT/jiz3dsPPnoLrCGEAqC9QhtT6145YaHr6hwQggFZi1tAcwLx5YIhSLz5ZLX+s/s68EJn5kFwTHF1WW9enZbNW/0NF8jhvIJpoCCZMHYRrLVtGX17ftfOrAMsCzZSom8p8CeRKzHDXzlwTfPHgcyLKwtZPSgaexQKkcCRggtXlngzTi8K5yAYECAoSABrcFGtTil4olFS+f01oitJhBi1mQa6Tw2iU2aIGwYCMLGu14bPWoQmARA2BEZKAbAgEDMOKhz5fOXHn1eCyWtEDEEhaIx1TeJbWFYSSIv/v3TneYMKWcnsUf/e/d2ds5DdcmonqtfWH3OySEplhDQLtQNX6ZNYgsrAZJYM98/tbInNpd42DnnUus5WBXUqI5nVq5Y9Nrl7dhoZCMvEI1caE1iR1oA+Pu9b4w9oS/lVEphjyBmDyEnwZ6oSfa4eOj9J5xyYQD2lCAjGz7pTWIrsd3HH5Z2vWpU4EiKnaOBdecTYy2NUPBznB7cZfXzJ04dm1RZn1QjzrVJbJlP/+WWjVNGdLauJuVVJTxwfdAIExQHuarywNUEHab0e3bBmundfGOpkcCtMWxigPD5gx/3u3ggLCJfZD25I2emOnSC0POMbGFs0nexOrjiiEfPOXHG9+L4Opavhb3TITkmFrFJELL3L+164eElnPMlK9Zqx/fUo0gFISA8a6EdA2pI15dWvnnWsZTzJFuSkXKxJx3tGbPXwmYok1ceBHEsBeG5++ncoa1TMXuCFUM3nOSwYhZgIZmJwHDtzuq/csGKi3vHhoS0MjaeADvhsPvL6/DOBL4UIAORT3166/rKI4dim1Gby4i5wUR652fv+QMcUe8Dhj19/knnlDFtUymlpHNEsA3qnOErZJByNUlP3fNoz4sHJXOuheCSMCiyqCsTyPGQrn1Xvnr2SfA9kjBGSew5U1iHN2LlwcpSWrUIZ49ui7xUBp6fLWoQEqCcJ7WNO/6o3+qFj9/UoUY7oT2KbbCHe6/DW8Kxh+iL2749Ykx/5K3yYCnPXpH9ItZRlPZt3qvo3OeZiaMv8h2zVTLe85k6vC1BoeqRB/rPGOGhxlPKCgoV2UZy+HpFaBHHWhnjDe399ONTzh2ZdjUp34PbAVMvbwGJxx9IXTiqNRx8nSUwqWY0D5xSzkkwIS6b0v+pBU/NPrgFM0NgR+IN2o3NRkhYFhD0wd3rRo7vCwagWYEA7Vg2XkKoh7cjkgxoS44OOmDQyssqLyplAUvAw4/XRGLST3ZhkxROSlQje+eqiquGaEMAYKGYsfOKLlZ2nzYw9JEVK5654JRjPJBB3O/30eT1izv9B3t70ghVumxxu2lHts1ngqB4sEalzdShzy1cNa97kiF7HXDoVDy7drfOI19xLjPbnzymPfCDIwNARcWIpVeN/SYBsTXVB8tU/11zHpxNfFFGnXPBED9r4dtizdukOGl0+rO/AY9NyL17RaZd5dH9dus84S4567gHgJosBRRyseMsTQpDgKUQ6LGp7J0B/d5+45Akds0l8IKjPrF72+wuRKoz+SnLOVt5fKiIdwx5vrwJKWJnhYJ1in5wnbMTRkmw8by16XZIlEqpqtPGeeQ2fDz0bRBLSEDKJktjzRAiHwCkw8uHHY5Fr14tlV+TUDD0+snmoDTyvtyx935o1sCuCJP+9677Wz0er511FlQuUI6wcl6PuIcHhfAH6LU3KrE84hCbx/mjS6A84lyq5pNrwo+6ozpNheRweyWiY9edH6GV51wqs3hcf7z2mdQIi56ZKlYUslKT3TViu/zofdfzjZW97vlvHLE95P8AA/E3ir37wFAAAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, the diagonal AC and BD of the rectangle ABCD intersect at point O, CE parallel BD, DE parallel AC, if AB = 4.0, BC = 3.0, then the perimeter of the quadrilateral CODE is ()
|
10.0
|
395
|
[
"10",
"12",
"18",
"24"
] |
A
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAIwAAABwCAAAAADp+8eAAAAHQklEQVR4nMWaeWzVVRbHPz9+1ClMK1tYEppYxBmXKnGhyQQzqWPMAEljLCKTSogNMZoQko5RyZBGNDHMQoaYdIjbEE0l0cZqRAK2wzDBUYakw6JJUbDYdOi0SodOSxcK9fX3zvzxFt5vv7/tzfnn3XvOPef3ffeeu517NKGo9Nd5K92FM4qHA+APv2zxkGpF7Zl1H9H9E3dxMcGkF1zmhimPBkUcpvP6ZXjes4kUiw7AERj1alK0nvntw3Qthxu92swsEpY1f2G8bD37PBsVyYFvHK86Q1rH+2tFGaYRbXzTGehgoU/DIrhuJ7wmIvIop70bFgHMHjghIjLq+8+Td+D1HzK4COAotX5tE+6W0bncksoUNzHs0zhhMD3wdLY46P/Hk51Nny6n5fVs+TN2+rZPsl9+D1/mKyv8P5XkolffyuSsXGVkvs+KR6LbQdmVuSPXa4d9tgJIcDuYKOfRDwrqC4YNX/9MyoFPlvNKIZbp4cUKn0rGdffCIRPjNfb7ayUDZgOcs3yHIX+1RBx46XcV3bMsvOoF/noJ+MxF7btN/7ZgeZ4mFdXYh+g4tNiYMKigGjuYlsJVN0ejrFbRjRvMZkjZuQ+qzKXYt4PKC4Wrbp40Rj2vBVmK1YEvahfqnLCcpEEFS6wOfBx2OgrKaVcyECOYZtw8AwwlC/EtevWt9NzsKHmbjWreEJsD39pdfulHLt/gqzuUbMTkwBNa98NjLlhGQA1LTGAGymn52E24g0ZVO3G4biscd5f6xEEKW8aA5TnodZeeVv/D0WfT1P2nSi+7uAvATppVTUWeTQMVrO7wkPvGQQoopANf/CRb+KKC415YOM/P1c3eFA5Nhsr9Ai6BKBKUBCjQxLlrJPP7Dl+KSB0L/RR6qVU2zgyuquP+ROv6Y6Y0RSdoHz34Hz+VzfxJ1frVYA68EGZnSrWcHNF46W9+GhePUhnkC5MBRmmMplyXAh/6K7TxlLLxyYBT+3y+/Z3w1Tp/hV3sDmA+GJjZuQXs/jOs892Khe9PUBbAfLDtYCrTfmQ+v3hR5VjwT14NZD+QzwzQLCJnYYejuNd6U7tJ8byZ9ZkgYNITjzCzX97H5XzdkHfvLI1Sqo4lIBg5C7z3G5er6mFsoYcDane3cGDSInKvy5pdBzYJjIvIdv2JJMCIXIFqJ/4xoJGNZuYEd4vIG8CSHxIA0w2/duJvgCaBHjP3d7SL9Nb8WeCd+MEchDZJZ8rp6+weoE/6HUZpWKS3S+QIj8cOphG6HNhbYIuI7GCzmf9fNmVLb2aeeOIEUwOX7NxBsi84ujVqV8/RbKnknrGYwcAKB+5O2CoiIj0Oo5SF8OxdfSofUAfzPTTauX2gdeZQbTXLunKj9MGSo4UeFh3MIacDg7EHtucqi7lmli7ngIhI+iArjz372EB8YF62TVsROUcB12mU7hMRuQDAEwp7lBoYYyPWvy0y1GLaLvdY98424BkRSQ/29Xb3TPtjkUn7Em6na8usS6uIyG6zZrXVjk6q1usG7kDMZNEcIwXoM9IG6CVGCkp0UgZ6CUZKn5G+AF03pzJMvcRIlxjoKaMfbeWQoRugY5AapNIA0I3MwWS+we2wqmoU3dCNPNuddMMrf+T/QQrdV0erY68W6G602iklJSL5ZU9xnFQa3eAQgBfZl5kuIiLD1j/VGyrwo6QziWPiwIr82ekw75pFDbwcAoxaSGSggmv2EMxEee6ysPKU5c1PMSRuIbWrytJ2Su3csr1kHpGmT1ns/AMtBBbloW3ibgfu7ewWETnGPjN/rZWhRsp+9jMa7MzJTPCwin6L1XChQmUtA5rt3BYQEetusZ+fJgtGDOi0c1fwnJzgDTOzxuH9K14wMuwY0IXRasvE98/acaEAF/95f2eOndvOnBPcZmIdYkOYqaQ+m0REZJfTU2MdvGXm1Phm7bhQsA59iG0OJiwnhb7QbwAB9ebSZuN1NpuvBQfYFRJM0Ai55plDC5B+4PNUyEeAoGD+tcwv+j5QoR6ft1DQcH3lfjTvFh0cC4klhK9to8pT/uPwr0YhNKuddqk8DbGsmGAMjb3u0lecNg1FCvPeNF3C6XvchBrjQaKtJgrz3jSzn3udsgwAxngoNJZwj19L25nvItrGC6GxhF25t1+/GZiJsPuSSPjX2xqecWL3Od2EEwcjuuOjyiqORAAT/vVWo7fSgRl+LkVJP+hnmY33KQ0RsEQAs/SQfZeq5ckIWCLlQjTZouXoAV5R7BQpF2K1Jai4xxpkDEjR0g802tabql13RjIXCczV2Zy7NV+bLgl9rMpQtGSeWd3cNpavNbItkrXIWSLvPX49WKIxPC+SsahpTvWN5E4T30A0LDGkOdXk4vi1XmcuJYohNS43pbSI7htLNprw2NdAB4ujWoojNa6PKmA3B6MaiiWDsWMtMlUaeZTiSRpc8xK/OkxNZDsx5XbWt8KQQv68N8WVaFp2JfooxZYp/e3CLdGN/A9wa6J3QIk1CAAAAABJRU5ErkJggg=="
}
] |
<image>As shown in the figure, put the right-angled vertex of the triangle plate with 30.0 angle on one side of the ruler, if angle 1 = 35.0, then the degree of angle 2 is ()
|
65.0
|
396
|
[
"80^\\circ",
"65^\\circ",
"60^\\circ",
"55^\\circ"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAIkAAABTCAAAAACO6ntcAAAF40lEQVR4nM3aeVBVdRQH8O99C5AgKiEoLikx5FqhTkySS2LjZOVCjppT2tg0aZpTajotZpPTuDamaYaVpdik2bikTlMizzQzxg3ThyHihqYIDxCBBw/ePf1BKO+u59773uT5693zO/fHh9+Fe95dBBH3SAj0fwuaw2Zd0tBgcQICGgCHkV1cjkHSlPjDoadR+OAoKxJxo3twRV8jksq5n8lythv2Z3HlphUI7MXRoz1rbfwd6l1tEuTZvInwdB1gSYL8kbh/hAFJbkqHtrJkrbt8UbY1B65XPwo4+Ecn97SvSi45mJhS8pBFyW+JTqCYLSm9/NTpaHn6QHqnqVb//Q4PBbx7uUen9PPhyf5yvzR9O3sgBANHWCk8v/e6+cfK6dw1KYqPQdzLdmm6emZHawwAt9+sK3LOcwiiwNzhvauRYZXS3uCMJjHKRhDphum2Eda6VmgbPo8tWfF2qmI+15HmA0iw1L/CD/urIRIrTmKH8kBWq0reDFrhjVxF3DXp8cAvKiMPJ/9oZTkAACNLj4K5JkvsJWpDx5FrdUl2o4iIJ/FgnfrghN4WITVxc4grGTtQY/AitliTTO1EXMk2XNAaXtDebwXiwkGuxBOxUHO8Jv4DC5DK2GnElWQkNmoXfIty85J3o31ciQsn9EqSXzANKbDtIaakrtMM3elc+MuspE8GcSWvtNc5NkREzwwwCVmN61zJUfzKmLAEG01BzuKr5o96ErH7FNaUs+LqzUgeS7vzUU/yaVgNa0pv+EoTkM24yJVcFL5kTprp9BiGeMKW3t3Q6cUpsfu4/TRx0EajLXhUYX6Ln665JmtRzP4Fc5BncEl2w91iS1NShNUGJh6dagxSE/5hy01NybB+RmYuwF5DkpkdvFzJdvxtaOoZCT4D1cewP2BbQ3Kr3UeGIFTRbjG/2Nd9UmBCQzIpyRiEKBM32bWzom5xJfuavsAYiuSp3MoC/CTJqEr80dMMQ2g/zjArB4yQZlQl82NuG5dQepp+DRHRhogyriQPu01A6ARcnLISxzeynNrZPqn3LqPnbgDA5JxLjIv+J7zH5UnlNVkWYbyfERFRuX2FftFmnJcnlSVl2GoOQrTGWapXUhO5QCGrLBn+uFkIUcfpehXjFC8aFSXfoci8ZH9Ah1UsOMKVlAlLzEOIhg3WHK6OnqOYV5IMt3bJXShpbZKY21n52lVBshP5liQ0M1njOvksspUH5JLq2NnWIFQifK061thnvMqIXPJGN8aVlnZ87KxTG1oGtSYik+Rav0VE9V1fUxnJR5baTlKJt/NkyxCiXShQHuiXrrqPVDI3sjoIEkpTvgmVab/ElVzAtmBAKA8HFLLl+EJ9F0kv7t9lp6kWLIsJ7jPy5MRzJzR2CViTpTDZgmXhiciU5XbglMYeAZJz2BAkCNHiVtJ/1+owpRasLBkyJGgQEmOk7eX1zqpnGalku+Ny8CS0Q3Lr1IWjmvUtJBVRy4MIIeqREbCZ8KJ2eQvJ+CTmcw1m5CKnxdbsNrJv82qSXTqrZzxeSr77q+UFsDQlDVFWW7Asrtvu9uTUCXrVdySz43k31IzEoojmmwfLw3VPVM2SYzgUdAj5uixs+vAP1usWN0seCUYLlsVWND2gerKvfu1/kvfDqkIh8fcfQ0S0BowTVZPkLL4PBYToEI4RlYZ9wiht6sVDGw4HpwXLYkzRaWScU+jLyr14nU31eaPVuIotp5SuguUBkai4lcbzRquxtFu3+axCQRTw3J7ujSE6OID9UlIhq1AQBRw5WVUfsle47K2f78KVXCN72/tCBQGQXxoXnaD/pN4G5I27snZ9yBzZK6viV63jvDIg0qZ3qKBnqP5gcyZWEbn/ZFQ6gOxB+ZveCtGK+JcvbA305CyJDbiSkFXxaogkp+pSAbBe57DB3WHk4vO5IZKUcN/4AWzIHoLa2jYhkvQSfYD3KqdUOD9/bOzPKVNCJEGWe7yzrAfntSqhuFGs69guVBDgwrWYpHBOIf/drVCH7V6B4F9n5QpwL3fQOAAAAABJRU5ErkJggg=="
}
] |
<image>As shown in the figure, in parallelogram ABCD, F is a point on AD, CF = CD. If angle B = 72.0, then the degree of angle AFC is ()
|
108.0
|
397
|
[
"144^\\circ",
"108^\\circ",
"102^\\circ",
".78^\\circA菱形的对角线互相垂直"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAGsAAABnCAAAAAAiFuOrAAAKPklEQVR4nNVa65MU1RX//U73zPJYjEExJBLBRAlWSSkkBUZDfIBBWAFNKvmeVOVr/qVUvqUqH1KmCpYFXJWg+EIjvlIqvogIIsoisLsz3eeXD7dnprunu3dYzIecKtiZvrfv757nPefcobAACQSKs1g/tzAqOsX+g3ghqDBzCK4SpfSRkEFhs6NhFTDrRzX8RQDEmjmVpGaQa3h5Yb5c8ZW3lN+UL7lBOT5l4+38oh7HgzECrQg2GpYUf7P/o3HPy8KdLLJbUFeSGgBQgltknz+wb1S+4i/33/Kntuf0xflLeeEznZ1nziI49w1ggAMpuOKDKY6KxTOTt2234rPW+II77NOHS//4WSaDWiwx/Pvk0IZtKhmQXBZ0UGE3LgomAg7D6y/vmvk4m2XDk8MbgCTgvamN25CCBbI4jiKSrDJRGkh3FxDhhZcfXTvv2UgNXw4ITpw8vmUT0mh4wZotAmBwYDKN0+dO7VoL7/FTg2UC3fjqi9vvSnNRZhRyAqAJcXf6zJ7Vbn0rqtMXkZKvvPLYHQIh1Ym6kkSAaWt+ambvTe5GNdhG0GuEF96eWBvEdS18mVNE2prdn+z9TgpD2q6Nh3JzGEzPfjzxA2et9dRyBTkZXT6IfUsVAUjGGmJvSiZx98jnE9+TKk1tISwhmvnH+EQ7C8H1+qK5FF99euaJlcKwBS5MbhZdOHDz9rZnPthwftE86jyX/nrZNalpQIbozOS6R5BaiMj9VSqwJF7669zuLxPSGeLHsmW9E4kQ2B6z2qNGBD859JNtTBlO2EHgLGEJoBRNPfXTv3cEgBAhtMccBAVRsM7Mb+/xUqAPsdfJ1Oy96U1b4dYbJ6ptnhJguLBzb6eXaRDglcsIDu30seRwe5VSq1SlM+K7/9y6KSwfMFgXo8Jwe8XKaglB7E7/aM+NaawKITqdPPn8LzbmTiCiW+dfhAM0B6CgHTCIHQ4CvDKpJ28EvGw4YTzmyyce3uAeDR6j267hi2BqkJC5FpGpQkGa30wu2bdC5JBtKKRNx97ctc57h3hQQY1/iRCNYD/PCnYIAnJG/Org6l1jlcFEosc6+sHEbYCRGt7NsM1TADyCoPCtjxuBXxxZu9O6rDALyRR3ps/tucWZsZOTVRVWT2pmCDZNIvsEAp8duns7ksqg7/Soc3Bmz0rvLT5sOiUZAqABbA3mDhLXTw/f+7AclceZyWYnk303pDQh89OyC5b4EggQigAxs0NQIogPprdug5tbttZghwRgV/dzYrmXY3VjLtqHCNunKEAi3zn64BbJZAD63IVoASq6eHD5r8ZgGCiC2XppXIM1JB4KcCNf+9eOTT3/lcPyNYIz+mLy5kfbFe4tqtuq42t4tsyIV957/A4nKVKAZYLLeDb7z9S6hyyxCkXmaIQ6RTA/8fHvbuoJKCzY/58APjq84ZdeCcVcWjgClgGH/rb9+asUzGEC0IozIxPMBTt37xaoMhiL6JcCFVgm5CoFgUzevn31RfWZgb7sWD/2yuzZ32+pO8IJMq3BCrElbeVmi+mS++9L8wJKe3GBEGAXV8Lrs4WmcxmQF0MDzRjl05zSwu104HHlI5Tqb6Mq3wDg+elwRUhl/Q3IgtVDIlOzRJmz5aNgj3y+AUssuhnRtRgE80q0TIRkBNjAdcumSHiyrBqLConEQIZ0IGULzFl0LjsKkE0Z66CaqTqIQjWUW7iDMZRrsOI7DWMDqsijskQgh+W0TGhVRIxYWpRmBXZTtArPOmijgTwdISIMYwVK8i9LcERNtUrayFdIlGqxlH8sYp5jBS8okTVAKVe8LSxpCg5bZG4PIJ0dq8cqF/0I+locGCGvt3nkXSKAOa+14CtQQ71swRYGX5GwJamKM/ZeqMXJdSaG80PIBU/7khSYeKQaIRJBnXUlUj4lHTpTAERz7394yjMwyttvrUJTLTvHRv9KqrFECnZ5ev2aKMvyQKF1vsHgQbjXW44Iq6mJJPLrA0v/MFZ4uuSEWO7iFdDqO5qEVJOzCTw3tTKffcmNcxGb4ivZxJd3ehsvyVDRmYO3PhL7oIsmip0WmsgbwjxzLBewhOj0ofUPWJprDtOBpDH0juzmRb7s1JF77itWpwKRNPNl1Egd6HxAJ99/estmoeC2dMNcjEpPzihJRwuXoRKQlCbEyeltmz0FLO9NhK62K7MWIFRMXbSqR1ksaGKEjp97jJdef2iDi6UQQQChRKrYe6irrV5l+aQsBmByQ4Rjbz22rquIggphgknShi+iC5ZtJ8n3RSk4/dipx9ckpnLop6CktejrB1HdvH+5YOnhL/au8qzkQZ4vgh71q+ZhIqraKgPyXjqPGIA81ovzT95Qc5ghVlRdJCNrUakpRhVtwzj75zd2HJ/NbC2SLxkftDdk86fvr0sW+t3Ies5YwJKdfW3tlQtCSgIwR9LtL0ZwbvX3a1cCiCRaIK7kseB37V7jzFJbQt10sFEJ8ViDlMQO2yPHDSmW8qmSxnJv9jpK9XJS3aEdtu69wzIGQEKC54/r3CfJANbfB5RHer0CQHSP7HJnRR4LooGsdFcSjQlAwdLyj0UXYF9Pb70z67DEACxrdH3LlIJonTuw5mH64F7vum4ka4nm5OmDdzzENPOXgJVWtelGp+rajBFOHdl4P5JeyAnnV+JZXFwUdSxv80RW3BPvHN2yOdf3CPq6PnUlQyk44STeOP7ze/K3JKPfZTfQ0E4FGV86sWN9ikjVuc11UKHRA8J47OTOHxe73f8LvkREOPru3jWZzTjyNi/aok0/tIvceq0UJ92Sp0/vWw1GIoq/cyCMWrR9qBdvsq6HG6175NwTN6flIjvIML0+WRbClIGzk7P7vutDx3WQ4Zw3Z5vN1GEcJMnQB790oLV3RTo8L/Djfj0ulmS6z7rRM0+N717SrYjXQV+LzcdCk73/tgTywuRNj7YV0YdaspmeyEVHqGyBDM3OHvjhI5Gjqhv2bflyBmifTd35ALvVkTwuzl3E8lkqFcz+1DN334ekpiPbO7+EhvSlnpTLAUT8+5mtm9VLWyvvpAi3GCDSiLlF+rcUfRYwbK2eKZpKDa+9uG2jPIqMg7dLWG4JYhAwCcUw2qN+vVwCFOXxvBkcZq++umN9Wpd/9PkCDCwE5RyMSg9ya8mNQhpF8ljH3t15u9jQ3wu2QXdz1bhZr2lc4RMyIAIFtvyZT3ffqqEfGA1jCf2aS+V2RdXNY4/MnaGplBw5O3GLg97wE4IsRhE9bSGUOLkfpTlk5WTEexsLEmulU+cnVqWKyIYWT9BXGrU0iDVFLiqfZgm5nCZa+/Lxmd+sSNyU9errsdx0/mzk4aZQAGW5HhEFtvoKJwBFPd9gDBDRVwfHn1yeerWll7C4+vJflmYykoxiqyB1i0I5ky3l8XKEE0Qwacnrb/5sV5w6zZrqsKCGBDh/aeDGhF25OEjDHFH34lzBkuevshdtQKmz/sFYodJpsKPF558lCsa6QIz7lrBGoutqGv+/Yqn09zrpv1fdhbdlhAxzAAAAAElFTkSuQmCC"
}
] |
<image>From a corner of the cubic blank with edge length 4.0, excavate a small cube with edge length 2.0 to obtain a part as shown in the figure, then the surface area of this part is ()
|
96.0
|
398
|
[
"90",
"92",
"94",
"96"
] |
D
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAH0AAABcCAAAAABmG+VqAAAMdklEQVR4nO2aa4xd1XXH/2utvc85dx4ej9/P2DgGBhtsCCUg4joOrwBpAmnVD5TkQ6SqFBWpEUrVBqImaVUJ2n6gUlupTZsQJJpaVVEFCQ002DGOCWA3sQ3GxsTGT2yPsT3PO/ecs/da/XDvjMf2YF+7V+MP7fowM/fM3fu31957rb3W2gd2QdEYYxmGn55HM/9l3V+Y5TFeuFFz4nBBoWFtd9sfWvC9WeWzWx6BWZVTuXCzZqQJOhLw1j+vfuUu4If+qt0HP5UZtwbeFJ2ltu7Nv7o3J7lrcfH6pmtntIjdFN1A259bfTco0vJF5dZ+BlOL6E3MIYnuOnJvB8DI5s+DOFGdPDpQnpg1oxYiW0o1FENoFbypdQehd0ACiw1FmpKwtWrim9Jdk+sqmzXzYdv6Pn+y7KA8tojelO563R3PX3knDq5denckT6i0yNyboldt9mM9TzyZXfvgquRUTKEtm/lm6BXEaQ8u8dzZ01YOI4aWwZuia5mo3AUglNLVXhqVrkUDaMrXISRWghTCSSgFBXxr6M3sefFaJLAAp/nAcMCk+joUMbUh78VxVN/pC/hW7flm6KSaoGpeS1dxPgNoMnVPfCHtuSIEsrxWS0DWInpT3iZJIN1AZqDpU07G5g6HZuTiO2qV3pdGb52vuRR6K+X/6f836U3Ze+vF1IQukk4A6NIN/nRDQlCOcJdD90hsnrWGjstBF4q5pJTxZdl1BPIesdDLsutKFSZFenl0Fy+CAAmXRXcGQAkQ/OTTyda/UivyOb+5wk+m7mpsMHVUfWXP8qk7f/WNnsmkWwTI1OhzB1/761nP/f4Xr6ZJpBMrETloODlvlg5Omz7Jfp5ZyUrXeyjZueudL1wzqXQ2gBTEpw7/4sfdf7Sqe1LpFkvHzGTrrv7D4ReeWjyDJ3XPU0qkkfp3Xn2bla/9ZEmnTKKvY+/AprS/cy5oKsCTqjvhwI4Fizvx3x9bg8Pf6r2tg+AA2MRBuoGs9KTRUaToVAwEGGFcnHBOO7PRNM+CJVAVMigE2P/GtsOzH5S3fvIP7W+ne3c9fAPb+eydYDGKRcotsTy6XJpIXQlq0oBbDYKCEki5660Dx/uHZ6zqccO9N5Yfhil/+SXJZVxsc44+UYUqWlhWlsxSchACwPG8kZUFb1HJkZHHsHoBBnYf6t29x1/1pVsShOLmWwAAwRVFdr51D9FpEB8jS+4qRV5xACDleemaE5WBiQGjduDEwWPvbd3TueqB5VlhakDJFJGE6KTd4OpKG51ewtHevdcqOpioz6YpEkdKBPjz1+qkrWaph5pTZ6f6jmx56dDK+z/VxZ5NtCqpQwHHkcTYgjgYDKBz648Uo7QRjcSOaTEKKQVhAD6cl65lRvmItEs5MrDj5Y1DNz28osNlKWAwtMfCfIYyT5wWjpNxup8tRiyxTDItBnzXSIaBNlYGpNTzxdSmjMQhHHztlX3u1x6f1z0jA9SoGiukJERsURwTEUPFWcPibJQ51jd5GNHQS8/se+DrOtwuFs2YqFDoR5dOJDXiD5772dDca25ftGg+QYc4FSA1JV+U3scIQU4SXIC4Bsyg9TGc3gBUhtSVbx+9Z//L6e8lfR2mFCEIiihcH+UEg+BtL20dnnnD4kVLZwFqhITIIshpjOxRiCASAWzEcASYEcHAiBBEjFo1kRLFWfd8PH/oPx9KBmU486hXy9giIjxZzUt91ZRoOBNUt2/YXetecsXK5ZX6RBIoAUCAManAohAAQR3tGiUgauRJFOMoPQaxMiwhpD2n8vbOapvbe7Dq3nAZVCxCtGCm0hyikhDaPty18UBXX7bynjKf5RQ8bmoEAEgAcqOfADROWBpbc4BGzx2K0TG48ERdMwWp2/fq9iJm740UQE1ESzMjFyJ5BnDgjQ97e49OWXnTldj1xODDM+RC2R6N0RtwAwE0Voj0EgN7Ne6ffV9X5HfW7r7i+m6f7K9ZkrOv1dJ2G/A+EYwcOnDkg62nFt5893yUGHzvcEcHhaYKim5MdTIjGud0EE3ywiU0/Gb3Z1Du/J7/1rIosNe7qKyQpqlF7gJqe/ftf/+1HTc8cjuzK82s/XPFznIkuTg6kRoxTi8W5cXUhFLqe/PgLRg48fy1n58LrmXSGzCYZlBmK4ZPDuz68bYln/3ar9YNjnQjL9FhUWRQpuQjHc3QR+0cZOD6Nm1IJYuFow/e3Hz9jJ2bPvA3zUVpDgpCBwvKHMMHt724f9Hdj02x9ju++HhyXxnaYi2DJXmNXFNhS0N3q5/MZwhpTVztlb/fPbVy06rNf7LcauIDAAURYG/9++vpst9aOHN+O2Bx+v0vdN2G3GeWp+3dqVFTNXRXV5YMBDvT38aQUu5Wz8stYM+8nkQF5hBTge/f+Pye6cseXjD7Cg9YQQkn9zy95w5KHJChv3CIF153I7jGTBPgrG70jejFlITMLVoEYNPTj3bnliCXpHNow4fv9opf3rNi8YJ60xRg9kuroVLXx3d3UXIBslYlI4y74zhzpQxCBFcE9jHZd+CTTFpklfj6c3u/Ue7FTVdW3t91ApWiMV1GnRtGtnRWCUa89+T6WXG88gZIezalYvUPNmfVlbk4nTCqbJgATKMIALF8eFqRJujbvHlfjR6Vqe3eQmE8c3DAGteSFv1n89JglaLWcS1QDemYD1MDsw99g42IkIacC0ir6UdlE3WNLBolCaI7duQTncf2bD95fG/y6TuXXuLFRLW/qG9vqk6bXroQ2mrxIyIrIwDCFsEQHN/TvfadY28vuvPRhaP/V0BJHY+dzLU0R0KsEDVSoXGXdqbEhKxt7EE5wsxTyxfnTHzNYARATaCM2olTP/oPXy67Z80MBIcP9hUyZ5HPzcv4IzYU3tFIbCvIwwyicXTfaTSQiJ1+ZSBqoRXGjq99eQLdjUAwU2Gg6D/+1i+3nVp23+2CdoOLh77/fbKeR1enkbTwZNYYvqQanREnRIE5mqPYGBklZoAFlVGWjGilSAZfHp57Lr1x2BgCiuM//6/35tz82OLOTo+hEuBNT9b+dfrwH3z7iVuhVqbjI9FCMw8AVnqJdjpFI1gRzCVCo/GbpSZuYEPVVybWHUDgfT989ejSW788d2aXQ7QiKVz66t/M+upK4E8f2XQrm6VW+NGTNEoGhkYE7xFZYhx1dgb2HoRIY5uEYeH40dV71VkkBsiUCRa5cc5U3/zpVlv6mSXzlkwFLBLghLnvmeNfv85MF6elFfBSOEbdjEhGWxKzGZGNj7oEgAk1vmo0YF3Hfv7pGfM6nQFUWqK5j+yYAJJT69Yf6rzi9pk9PRlgFMEECBw2/nLNDcGZHsmdsRkpk9WtqOGqCJB6Hkdn2+Vpn0rIbPAHT60IbZ3OhBBLcp6YwcC7m34RYrpy+SeWAiiVPBgEKAyysXKboNrmt7jpJgZyZDC66Ou5QMn7x75ie1zhOMB5iyAH1N55e39/X23hzb8+HSgZMIg1Yk6QxqMze8rIfPjFZZ80g4kbnwI1Lw7bt/3O9di8eYYzJYMjh6Ed7504sgfX//bNQCiZ2CACBON6jgCi0NGlnNW+u+vb16gxiMtLqrTu/dl3ux6o/nRtb5ezRGMkHNj77vaD0265f9FMB4VGJhWnxgRhUyIQBHN37b8RxbPPrlnjchDXz/mLV37/j4q5vdmGYwMbKdKIej/8b2tn3bFqduIYiIUIQEaaW+LJAqQRb6//5sKvFge/s/jP5pdEIB6NxWEXtQBRXSjSQddpVPOIIz7rPzatrR0oI4s6jISKzy1VFaJYpTYCCGb4wd+eKuc+vrq9MGFQhIzCL4pe5QwanQooljwWBKkRKchUACOFs6CeVYlhxgbOjw9ZsiCFKoEQLGk4r4ujR2KjUn1eoRE/mj/UPAeWELLR+oxRPcnC6AyPhRLWSDwbLS+SXm9jrEwxf+aFgZCUPX+XjZAR0UTVmbO7N5z54FLfPuITdBU67vr8jdv++P1UjAgTBQ90Tsp85oNLvpc+afbkP5mV/zjvqT4LWlTPfW1R1VTPetAa4e5q37GI4H5j9av7ITqh6meKXZx9nU8YxZa2xdCQXXO0hlhwcm7PND7DOSfp+F/RNdnQtczElUUmMLI4wctz4xbZxv1sAT3U3p26IOSI/VeLideJC2JnaGxnP7h0uljPx8Bt2PjiyqtRkJxzMNeFxv1u4Vte8kbbNIht+uelN1YKI51YJzr7r9aMgKvfSZcBa39Xv7kC6ogn9XKS7n1x+bV5zd32hY9PJrYh/wP2ZK1Rk3qP/wAAAABJRU5ErkJggg=="
}
] |
<image>As shown in the figure, the points B, O, D are on the same straight line, if angle 1 = 15.0, angle 2 = 105.0, then the degree of angle AOC is ()
|
90.0
|
399
|
[
"70",
"80",
"90",
"100"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAH4AAAA0CAAAAABpi9NeAAAFMUlEQVR4nL2YbWhbVRjHn6STTqxGMMVMopUupZmZEtsvdatk0AyqJhpHZUUr7VCpOGQT01kwox8sWFmFwCokVDCDglVTK7PoRvKhkwqFVrphayqmmJmhmSmsMxVSTO/fDzc3ucl9O7eU/b8k59xznt/zPOf1XgOIQV+YO1ia6ZeRqVXC7V0jIir5yuT0ruFpsK317CaRQcAa7hQeIALVvv/rjaYLIuwuha+JNxiIDPf+Sw9+NnX+qcVy9R3CExHRngIRHVp803viJu3ewDPji+pdNTePbu/awDPj79nkf03nfrpi/2736Iz4uwrCv/3fnj91dE0p/7qHhTH5ZbvoXO1sG/hHHqh7WIxE0HZ6b15EqHk3sW77dKfAShkKwZx2q9Vrxysr/rz83zMP8waqfd/7Ti0Rgc2vPTXO53x2pqZiPXTi5y8febYOVdmHYSZ5uZaIPStAtCEFFXEAvu+U1ucC5uF8dWWoIaFmSyICMG6/qdFq1iVXm/ZapytrAo40wHvMjseIM6cDLzIed7hXRE/eaNtgBvMyEhG95/Zsqc+QbVFBNKwdy55Db98uFrZe/GvWxDjkgvh1f66pe1tt+Qm7nlSnfoPtEyIiuu2+/5tanXQiPgkFXw9XnVmRlpwqCVxud8SBzMFBnYkHimMPIO/yqxEcqkai1q4rDcEd0EHgAHBArnVEudXvDepW8m/RMX72sk96AIARBhAZiOouRcKKI6S1icx9/bnxwBRLS/mxB4CU9SslJ1Mq0XPAhGUBmHO2L+gLHULyeSWscYXkbZjkqIKCxa1urP5kVjdepAXLvJx54JYaftCREbz0m0YLSk5q4xG3yG/ZMtELKvS1i7a65aP2uAZRBY8pheOHZGsB5Dy+rYqKGZsnKSpqhF+yW2w3bs9U7D9JQ1IZz2Gj7bXqyvywKZBjXX8Su5XHT4xIBY+0PSADyvRZIkX3dOPhd+XFPXl8neyRmLCG5DFzra1si1AmrNd94tnL4++TO0nnLZOKdiOWvgxD+GU8J/wUfD3FIlfCm2TwM/vUJvmG3zRSUHlejS/7kXcNiBokAaAxLWk20XxVzTCHpKdppqqKBQ8u9/RHpUJ9EgAc16uNfNyYhIa4Sza3RiMpngOQbQ5V4purt4MzLRloqzBq9ouGTRq+7IricN06VYFvqdwNC692atwOBa33mUMicLUDStvZL41xAEhSPcUAHL4mdi7nfklyxVbUQnvrnBxZFY/F+nlRn5Yl0aO/j/QX/WC7XUxYujKcfEtFfPH4KfZqKx+FSNmHdN5qcoEHpG8kGnhEH00ByE8P+Y+cbpgtVa9YQgAQIxpQ6ilV2mON6sRj3J6Z9pB7aHg22FjCz1miAJAcQJLC7HzEHe5lfXgE7n5ikk+aW9jgxvfxjsTAcWGvrjEImvjLkLiPKh7HXXm+g28aAMB9aIiUn8a8OuAA1k+ax6pmjTq+dPy8wOOHbRfMS6WHYT3JBwAsH3ZUnhMa+ILvFQBAVxQA+p1ZRJwFIQCdwQMAotauP0RFjW87NZM3BoiI6jaJtrrXfjBTr/WD4mX+zEWdd3oiomPJJx8/K3pjVHeW4/i3n94Icq7uPACkTRsAB4RjOwgeANJdltIiVMPzOc7aQ0BfJOMUtrqeIADEwkBMtwe8yfIbiUb0AJCyRnE6YBsRei8cBIcwQ+pUNGbuzzLikbDGXzaNl8uWjN43San4NxJO8l1MToveW489X/5YFj3g2MGkq9bK1P5QBxOefryaFf6KOsAI6Wc9FpU++nn+B35LvbG9/+zjAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, the right-angled vertices of the two triangle plates are overlapped and stacked together. If angle 1 = 40.0, then the degree of angle 2 is ()
|
40.0
|
400
|
[
"60^\\circ",
"50^\\circ",
"40^\\circ",
"30^\\circ"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAGEAAABJCAAAAAAIkhckAAAEfUlEQVR4nO1Yf0yUZRz/3MsdVyBwp8zMaEOYlEBkS1iNYsCSpn80pdbItfVHq+WMZGrEGEQ2KMtuQQ4nW0XYcIXGBuEmRsnBvEROfkiSyhHpiZ6IchwNuF/v0x/cwfMeL3fP+xKba3z/ej/fH89nz/f7PN/neR8FwRILt9QEywzLDMsMywz3HYNyMcGDZ8XCFa/9ZwyNF18PEmPwgbLPB/fnj29nciQy5c57l9kc5Waps65sBWm9sb4+5p2lmcO3lYSQ+g9c5NZJX1NL0g+NNVNzWBbDVKGeEGJNuiRmPJftID/r+FksZz/8nb8rDcCgOlrMakxTIbLdNYtlMDTX6NYCgCNUCZjtPlZXezJw5Ym5+kpmILqxEhUAIIE77tCPqn3s1oFYTNTlUJtCYgnG8i7Ofk82NY/OcziVPtlb2EYpJO643pqSCL8Ojl67Rh1LZ0bafjg2oqN7QvcAsDGu5yoQnTLSCmiy7A2AKlEQI4XBUfbcDgraD67JBFbh0XAgDGGbADVUm4AwnzD2Etx495oADw4xhbHP4cyvX9DrpuehGLY45kofCn+DhrW2nYyBjFmy7TXS0FF2ji2OsPal/t3Chc+PMROw7YefBvfRK/xEfDxrhsDUNVyl6nyOhiFSCBjqYMk10dC+27SQp8wsGRpKQgQKt9jp70cCMVRxb9Hw8JOp0sYP1DUm9297loLjhTkCgq4m394NAIp8IfaXwoFcCw353JsC83eVLHXwx9BY6qKhW2idLtKzEMxU+tJ1sRT1xL1Mw+pHsmh4rTz/Yb8Z9ooSADTuWTyhDgZ4hQLm4J3TWz5L8uptB3KS6Lhfzh9kbZqCGbnaEvoI4fe3uA8czmp6+8gzdq+l1kr78eXHmTJEiO9tJig1GcD1ft5peGHrlRcLts6c+RjCDvrwHC/Y/ArjBERXq9PwFNQNptO1mmyP4suMdbRD37Ei33NMGkN/7DhgPVSt8WCLbo+gpnX3PmUfX7TzrTIb9KP1e1RGD/6zlCZwlq0JeBcWiHAO5MKIPjoqsiPE9X3FrYpRsvqxFe3PZ9AeNyvy2BbprCzUl04bItZFc5bOr1o30Oo2w16VNIIF+tJvF1I/AgCn1SSoaVVkgcTxId6Xqps8H4MC9USx6HU+gIgxfOM59X/kBerLxTYZBDP3pTMuRKRYO4GgTLQ69Xe2wTgGvu1VwV9lo+Vj6RmCpw5aN0KhWglwgNaVrlUhXAGuMJTyc5cnvySLACCEmDLvzpvb2YTmxq/n+vXtomE5GSKEEA5wdCht84jD12ck10x5UcfRD9fKnAE4oG9j1O15+p6Yrqr3vWk6OrxP6i6gGUZPmm1Dvmq+PWOlOnjme+qTp7Nljw8oSXeudthEfB4j/rmasjqqZTMH4K/aPAmdVITh1JQWyt/tDwjVHdOq89XlHIBmc/FixgcUxgc3OP9wxmkF2skuFzTxwQB/JDFtcQQBbmT3Kt+UvYaYGLr1u+SvIRaGOhXbA5J/UQJAp0nMdDc9UUwtVeS/kbHK/+E1dJnh/mD4F22MIfjeRINFAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, after a car has turned twice through a section of road, it is the same as the original driving direction, that is, the two roads before and after turning are parallel to each other. The first turning angle angle B is equal to 142.0, and the degree of angle the second turning angle C is ()
|
142.0
|
401
|
[
"38^\\circ",
"142^\\circ",
"130^\\circ",
"140^\\circ"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAJoAAABfCAAAAAA1sYHMAAAPeUlEQVR4nM2aaZRdVZXH/3uf4d43VFVCAmQmFBkNBCQIMURJQkgUwhSxBdugkLUUUFGklbbBFURcjSAOaUlAY2YghCkNIgQFlDiANOJAgzaQThYQgUaSStUb7r3nnN0fKhXie1Wpl5BQ+X95q+qde+7v7umcs9+lgANDlIlJg1V4hsZHIWMD7mukLonSsHHJZd9em/lgNQ4YNEqF4UKTPLT9gwUlaThw0MSw70CgR7a7jSIJSThg0KjquKD55dKRRxzGHUYlBw6aRNqlAQ/3G9QcQxznNXRfM70t0erJZa+qoz6JoqTqQEITizc23Tj8f58mJFrkAEgDgpeQOXBWfeNzfMKgpPRK1VaYD4RYCwHKKHL24TPWt2PZJQvv3MwFkzhQX68G5L1mAJkqb00GZalL7QDAgqjP0SBCECBw8DEyAwCByHPfowWm4MUQAiP55daphzJVtA3gvs9QESIFAtLS5jUrpx6vhGLAB8N9jsYkQoS0rbzkwfflXvckqZDSQn2foYwghPbNC+d2rBrQMlKQBWOUZKEPHSqZZhe0Sg37l1feP/mHo594euzhAQYEIUN9hkZb89YlkS5HUeX/7rltzMLxpmPhrGEbUlDn9+gzNGlmUopReMuuWXzENccNhPtSdN4zKb09pO8c6jxFyN5av2j498YM4NSu3vgvg9r1gYDGRMBbP108/KIZ/cFp/NSST8wEigKSPkajcpb3996ivzz5YBVCFrXfOHmOQkksusj6Co0QhweWbT3vtIH5apIvRfTdLV8aJiLb3dtj+gSNgPT+u9/88GkjCQKbxebBdf86SZLYFvrCoQLHirIQjIZUf/OD0imntWrPijJmvenqc85WwUJ76gOHEhlpiyOAqu65Hz9/2hkjcwjMWRoZym4ceq4RELDrZuPdQ/PONEklB/enW5770KWtOZRVhKByIKx8ZsHhmZGaK941tIo2JRtp9/xNf5p1aWsTUrEKFZ9Tqfnz4k9P37XWvttoUSlXRHhh4YZTF7c2oZLlDEmwxKDK1Secp0TVGu1dTIMCY8t3Hpp501H9slIusmlQjg1BzDXtVzdVdd9ZjVTy8rp1Y2+e0D9NtcmsaGamEMT85JFLjxKbQfdNrBHw2pp7Rlw9sSUSBa8p0SYkpEjxlutPnuvIKd73DiWXxuxUWUep5kCOd2xOhRwpJMQaEvTr69aM/MqkweIEDCJYAgsrCK4Y9hkbBLw/HKpiqkJF3Jbn7b6piwyBNCrWgvz2Zty06rCLpgyHDzoQgQBCpljBmUXl+UNFuJtQ2wdoklqbuqTYAjRLqnYSoxTyKqs06fiem1sWHDlE+URZoi4G3R6JmF/eNm8mJYpUNxO/Y7SqsVSBtY7fyrFh7loCSzom5UKx9OiKjvNnDMxLRjFRkB27WBCzotLC95xlIQQI6oLtHaMpdmnEry2/u+QHth/645FdN8hlirYVcN+P7MwZY5UXaAJSMTsJYhXUtyqXHOqhGLLL2rnP0DSpOMjAeX+ZeFLy8oOZhB2101tnCutXVE6dPipKgukw5Nga2UnmQWrd+i8dDQaL32nsfYlG1aRJV+PhQ+e2/n42MXXdmxmPfq96zuQxcVaKVMVqKCKirCtPMtu29eaPngYQ4IUgdYnwjtFSVXAc4dmm6KkXDz/dBAIAAtQvV2z5wBljLTKJlTcqMxwypXbez6Lpi8VziwIPxSC3H0ouq8xr7nj1jpWlbzdX2IuhCsXupQWVEz55XAECRSTE0BBoCAJnSnn2Olu26aphFaMJQhDeD7EmQEQd9ucXH/vtQSpua5JAMZ5bff9HZ0zoj5CJYUhnJevMTW6LTYWjTD/7w4umbTfwnQ7eH7Hm2pvY59548cLxZ4xKTBER8NJNv5jyH5OaIB6aakMoy6eafYhfu/aDpypb//0+RLOqvWDlv6YehLn5H53cCry4/NdHfWf8QQbOE6s6P7EWWHH25o4LBldMXYDtSzTviprKP5vdAnNdRzO23PRk65VHHwwvpBQkk9olSCdQtL3ljke+MspL1ZpuPLmv0MhQ8sIN9947rIw/reHr7jnmsmMHw6VRBkOAQq3DEuWFis8vmT3bphFc6G6J2kdouhTbkfMvVm82e/rV0gFfO24QOW+i1DABVG8Tk+pq2u/6/ufbqmbYkrU9me2dWy2Qap4GILvvtq0vrJweIEqlwWifkCFIrdnYVkz8g//55oiEFbXlcvVFYyeaEEkAdpMpneqaoWscZcGSeOgCA0D1ge/1mz/u8684quiow9qMWGNXMM+MQITgrHl8+eUf8IYgea4/EryN1nnf3sBQFzMVq6rVJoVtRSrnw71LzaemtpoLVrxvrHEh9qxqfy1RBB+YgtLcfv202UpIACP7IkO70LrmsqmPikpQSHR+7Wo7+6SJVDZzFz8xyvo0DlI3L4lnDajU4tr4Mwd5JbtMtnu0nkbVInV9KisaICS5x37UNmP2GFvxuWp8ye1TR1mqmoDazAseDAiB1v78G6PTBnrIDVut68jfhZpoDWSs/rj0hZPOHheh3eSZwkeW3HdJDLdjlf+HR1SA+KCi5xb900nQqB/RI1qjVusSUznpb568/cVjL5jQnG5ryqlttlDJfWbZnDE+x/XnIyLJoJjbvjPkvELV7Cb869B6U+1D6nKce2bRi5O+MrEfKqrgsnxBJYwz735saMxO17EFJlGMdNlLC0aILce7W6L2Em3HjOQLzy/6w/HXjh0IJ0b7EJEJmhGdtXr6GK+kLucDETPaXlg3dyqqUc9rwK5oIv9Q1GoduDPGGFWjAM+SWkqjF1ZtGL3gvQMAYbCQYREiCJ2x4vHDFEtia1yWRko73XHVtI9rKGfrPd4NWo16uiQk2mTEFb29OSoXtt3y6HFXjzuUxTN1lvyu6lr41O0njf57s69dHKNK7KFvzp8zUKi75sseoNU6RGWiyLHlIlF14YOtl08YbDKlaj0jOHP1z0co5GpXT0Vi6O4Nl40HBej6BWw3aLUja/6WcsyOTJJJc3nFrcOuOPIwZGTTLKq7LveJH08fu7WprpMH4k3XzZut4AJLr+siurFaVy2smZki1eb7URzj5tWDv3BsKwFc0Ya8qrlJaues2tBarKtbSRSya8edGzuIgnS34e4RjWo+6waWY/77QLdszfALTxyLxJKnmBIX145nFC9ccsLEpLa/YhjXvHztISAighPdO1ujaSAVHczBy1ce8vHJR6JkrNOcpcaauut1Yucs3TDG1v6fsyfWz5+EwCAAoYENRaNpQDG7O2/z55w8FiKREnKsIvb1E3rtogtWzRq9ay+bBMD2706Zyxmz95qpm55VPVpP4U9eFAUHZvZM5Tzdfoc6cdZRBBFoiBJ0294BV43MWfnwiKiko45YJyZVZntsU3uD/Vg/pBFIQbibFkc9Wk9fJIq8Yg1COXIm//j3w7GnTLLYWcM6uzv115FSFJ/+sw+P1D7EQbhqVLv1wd7y1BePAeyO5GzAaD2jaQXJvNGOI6We+P6b06YfXXCBsu6adLsqGELlYw88fH6+ksaZaA4UVWP899oPTteOjaOGf1LvEU11pHmrAC3854UvTf/A8XmAuD4AaiXk2eTmrJs5yqJqAjS8JfLXj76wUNIqSOM/9vc4MkQFy4qAFy++dNC/fWFaHoD/+/YGzhBedPox9VBVKYcgjrw3+qbN5w/PjKHqHryH0KPVmKVD5fm1G353wpWT+iNz4EgXyTeSW6i0nLdq1hgfM4HKhuXppV88vqqMr9+Q7A1aBp1XG9f+5NgrJx2McqwYKLlY97o5JTAhys645xfDrHKaYHX21tc/dK6uau9MLtujWOu+LrPC3259aMTlkwcjBIMgYiMjzvQ2IaekEQdz+tqTxnoW8UxmIc/Pe8tOOd3r9bugkZTylMBmSgHiNHkmTxxU2/J1rZ+fOAqZZrCwQDR2dzbrkmIBGGet/u0oTrVXgrt+e+WYTGnSRPXN5HqlSqeKg9JJsAQrpMlXpKgqIU9lY8Qtv2PwZeMP1xVrRKhztykN1SMFAEJNF9z53qN10OXCX7979jQQCwjdNPjqRZnTHNr7aR1SAyJwqmMRjkJwkaqsWX7ovOOH9PNl08BjdieRs5Y8Mi7iNKIFIz+hG9o7diqxKlBV5aGhwtd+W5GmK6dyOxelki8XsfT2g+dPmoBSm+RNI8/ZnbJ43n1nHgGlr9ty42CfNXKE6pSp6lJksxhc4cL7K8dfctxXn4GxQjEX157607OuOH9cikKUM2W/B+m+qzQ+uu0XvqrX3/W5SU7Vn7B6EHl4ycc6LkPbtw6a9q3Pjtr4wzfAEaDvuiM99cSJKngkUSx+N6253Ushf/Zd0w7f+O9nf5hpW54bXAaEQ5QWCKKhLcKzk4Zh2fvfAw352YpkypQji2izESdJ5LL83jrUMc/7z8dGrOp/dhPIN7I/6xRVouLfFjx7xNeDrjZv27T+1wd98lMjRG+4RU+YdYwG0ExABBjT2CahG2mg5aKlW391xXsADOi9F0UgwACI6PKNp86Iv2m1aH5q/oCf3jOLHrv1yWTKkM3PE3koSGASkG/kgNGdnDb2zacfP+X121LTPqItY2B3xyjJJS637Xc5BfONhz47n/GbnI6wadOXD5k8c9HUv74ycPRBm9saKasNiDhUBs/Zcshviqjqv5Rtb20Crqr+FTWqiFdv/chF7PnkFs3h1aPzyNt+h7aeDK7sddh3o44WlXkPZlti1XWI7smzIZDxoeUQXDd4HoOTo5s13B9PLOLi12eMx24ufAfySnbT5q5VhmeOGlIygQZB/+Gy37/36rS0aBSQcKMp3oCcCqYaA1AVUsFp1YvVsqANAHailWXicl43f9pVIz7yGACaWPbZG8SsQunWB0oCtXhosEpkRxXqKV6UIoQEsQxoTwvOVF8bToEAOFISSJzmvc7IWrkQzPNXDpnC97+2eHxms9pTfq2IgBDEYPXXL7sE5RsmnklOgq14o3SqKUjvDblG5Umy3FXnHIMt88d8dWDvLwA7xV40fEhWLCmYoTNnjNACEziG9wwhhL0t/nXSVcubo0rgITPufH1QansLFZIg8CQoXjTqFTnklBw0I8CEzs1iI02SRpUwRU/ywZRWJj+6HSbp5vWXfxCLMEQYXs0GgMB6f71pLZ5Kt/3zyIzjjUP7+4rhPbyRQO+vl/p1muVHTtBJml993DA20Z7mPvV+5N1bucj9elgLItz5l0+3eJuqPbRae/N+sxoptWL6UODSB66amYna44pp92Xg12jbtcvGHeb8sJmn7+UE/w/VkIu/5JeOkQAAAABJRU5ErkJggg=="
}
] |
<image>As shown in triangle ABC, angle ACB = 90.0, AD bisects angle BAC and it intersects BC at D, DE is perpendicular to AB to E, if DE = 1.5, BD = 3.0, then BC = ()
|
4.5
|
402
|
[
"3cm",
"7.5cm",
"6cm",
"4.5cm"
] |
D
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAH8AAABlCAAAAABBm2MyAAALu0lEQVR4nM2be1xM6R/HvzM1KXJLbhFdSNQqJVIikiilVi77w+bFbhdJUq4hL9Ytfjbrtsiyct1dyw+JErb8fi5LpdBdiHTR6DIzNc2c8/39MU3NOWemmhnVfv86z+f7fZ73POe5nuecYSF0qrE7F68unyQ7lc+7U6YmX1OdzPy9JSPV5KtTf1H+dZPBncgv1LElGzqPL6gx7CpSE68GvzpeXJZOaHQa/2l69smc/mr1X1Cj/+dWenUlLC3UxKvML0geYw8V9UQn8atu84wBanqrO/0BS7X1h1egY8KBUt4A3c7hN9q9Lg5q8tXqv8d2ao2f8PVAdYpQp/6P/PK6e/DZhnOcO4Wftf6mP6c0oPpc7Qgfq74dzi8J0BL5ugWNjygrTnjY3cnNXKVSVG//Q3qLzuj33xfcbYWBZWH29ViHhZZ6KhSDKtreYSmnJ6UhnjU9QiJi8eVVEyfGVipdjKr8RNvDZECwELHhJ6tXiIhYnb7azmPLM2GH8LOcwkXEkp2IiKJA13cSUfDu/DR7vzMVonbnF7vPLMWUWTcQEfGdy+zaRp2s/N8qm9lb0/jtyxdum16I+PvsR5Jk/uRD4iZffdmZKSPDHleQ7cg/Z3YeESNWS9v6gulpGS9Z/esye/ezBTxF2Ym66qqqWslPVmX8p+9wCQL4uNRxU6NAHDx1nrITIJ5felXq6mswQF524kFqf21xpfksAJX2P8WrMyYBwHPeaKmiEeCypkQ2RMNmz6nA8lD/uDdyNgiiaxdMvrIQZ0pSSt984fqxs755WEzETElvFvMmhxKMyIffWS/YncZoBp5/ECKKa0lEFdpf+NOEwpJgx7l7LILFMnK291ExMzjrgOO4kDPFVPHtmJNEVV1jQmn+ZeNTiJi42qlPHEWPG3ZdXnjlUW+LOXGZDc0K+dvI90nRn1TkP3c++Pn3ZET8a3YyxVG/1fG1/Cz3w3yc190ukSYbQiZWXYySppTk82bOxfuGyxHxyLc0XJmne6GCXCXRC529TmRKEjWzopDgqsj/aUYulixagYghq+m+LKfFCoc8meDn5rXtAyLiM/O/ERFLVeEfHf0CkR+1HPHtksMM77PJ+1rI+/coWMZFFIU7csUN+Yd/kahKrf8vjyyzABALWAAPi5Yw3DYB2wfPV5D189XnM8Y8fG0L/A+GCVriv1+ukejK8N+EuYYCALAAyMwecvY73k+3jhzNlAGqLt0TTZjHjSABuoQLCQQX3wlK8+vWYaj0ml1r2J8ZobM+K+K4EUNOi8+pn+A+CgTCvLEs7bEUnxL8Y2UxQ6TXRfxx8kL67vM/sYOmvTiVPMBjqgUAGA16Va9D87Z9/j91JNQaAABYhAjSX4+QGzT6YOZJipCzZlHG0gMhFgAA2rpsxmrX5vpnHvN3l1wJyrQbcnXltjOAnceuQTOaUoWxt3ou8RguTeqIxIwMbRx571zDpKt9XWZejX+gosDaVT7SiSl3g/XkmDwZ3y2Pl/TwtvJDnPNlUo8djiiMLHfx+YCImLdxonNMPsWV4fSUHt3G+3/iY/QwmWSprh0AQMHVcpM59Cefvv9efnYNFpx/MCLK1IhFcdVrMI5r2sa/uDfKTibZkGFkBQCVD16XnkF/eplWu3eXV7yz2GzZh15M1/o8a1X4b09/M1c2LazswQEALXcv9CsUdqVFCxuK7oyPsu3FLMfc6LlHN+X5ZcEa/lqywouiIAAA3e4A9mZa1GDek6NZbjMzB8nBA0eXgWvD+CejuTsHUZQc7lAAABaQx0tsKUVWJy8L0DyyZ5fh9vfyiiIy+XSp1Z4vOm5/m6oIIuY3bvaqwrqG1jQ7KpPmOwYm1SFiht1Sec8gB4zpA7B1/n9MdtKUYp/wxiuyYXGPphIrkr6fEvC48eHrydjzzA0pZjq9oCmttn9B7IINNKnoY0jjFYvjl9+4w65Iv1I0cVPTAmG3NGqgM6MwEbJoSmv86g1kCE3CYo4hAACU1AyAfK+BAAAFhdffjFtrLBPl/+bHYYzDcW1RoTm1x7XCJ85+2kN/iCGy02KtbYcDXE3yxPRgfYCc+JvdxoYOp0RpbPg68kf6gYTp0JSp1AHYMp84e2kbY6Hlvh1ScFdnwVx9h946ZOQQyE64wvNYxNiO9NoTeHgzTeui24Ue1mLfe2oVxRSfWCdiboRRmKTjv9rrNGZTgdzc9yyv0KXgiGqq0CL//ZwlzLME4srXlYh4a+JFRHwVPdl2Y66C7KLIEak0KcGD9lNbuv91m4uPM/01Sb31AMAt468Z5ZcT6lwXKzz40tzK33qhaXnKTuU4G5tV0ncALVT/Z6snctQcizWIiPh44sIg98isFvIjcp2/bXzQEl5Y6G44NSPXPp0aoZhPnB/xizw9wywBEfFasI3vhY8t0hEx1WaFZBrKDj9UdLH7D5VuMQ2UAMX8AuuNAnk/60+fGsTkRZaLb1S1RkfExPHnEBHxfSEi/iucv2JlLcWvsP0/rRu5hTFYAKAmZWT3pKRn3dfPYCzv8sy1cMegyQAwCAD4QiMO0YdKVMQXrX17Th4eBHf0lz8aFTi1TXQAmJ8VLd2IXNWcxtF8ydem+BXct/PWj+U74qDn/NbbXcbeTPL7jIiIxfvuE3h7TA7Fq4CfaHZSrn5r+Zzou2VK0BExacxeRETujeeImG9P5cu//9z93gvkyEl/ltkus1b2yGpa+L7hs6H0V8vRZM5QMYf6ykju+VtV6OvL/RjqvUuldu7mOpCVziF7jmP6FVpD5I2fJwWfNdATaZ8ZGGAVLNuv5NY/5uVRevHcO0ll4wLNugLU//HHBuPSGOfpbeZrRXLPGOo7gRCn99PuUUQ5kpPHv/rnATuqwv09rs4zxLQbAABRN9xHp65qN7T9B/Ra+330Vk1A0NMAQoe6BZHT90ZsoR7efjruMGpjpnQ/93HeSkSs8Q5Tpg/etVxNIiIKandEUTaGTH7NrHDZiY0sj3U0X/eyvklIs7qJiLhWKT5es7+AmLnCZZrdFMrgZdz/upW85T2bUmTpzbgKLz8TmS7zwcAaAKoLlfvywDNr12CtldoL9d+eqpfV6Xzc9vygiTRRX56cUDHuOxOOTEBN8uCBAJD+KFgpPqwpDyDnrOjHLvol36gF/o272xylP6UwLqWvj1tP6vPd5yfzAEB0Z7ivcnzO6qeE/wAAbc2EKTJQGj9vx6RpkitBwbPrDUu8e1L9QKZVuYuR/9e7yOGgnA3Zvj4+CKCPI8jOQFQ+d5vVem0AAMHLi0kDvpnLfLtcexXSPohLq8KtlMQDTIk4ZDwDgGAp5NdvyTzRBwDqsn5L0ls1T967bQ1vNyhlmdmo8t7QN2XjAGu29gOugYwoOxiO2d1GRN5/w62nxrb9FVLbTeC3iIvx5rLPgLL8eIsjiHWpm7zcjrUHHRHfO4Xx3zvIHsrI8LPtgwjR/c22y1KUfIeohCWY/VrhLFv/5vWPG6mx69ntF0bWi+Tue76QXd6/5eaw4OYlvInP33MpUOdeP2+XdoQDAGx40tM4unlKaeJfW8KxGeEzGYRqf1LSorHJVXGhPzD5qf450HVG3yq1P6hqzbQ/JVonNp/ZScex0NSMJeKW048H2sE0vc1lOpi0/mJuAws65ltQtr7MkZl639+ob9KRUM3rYHANKRSiWNL+oss3bUQavkNay/PlLDdVb2bRIdMAXTYAQEPqUxeXhxElreX6Yvb4B72xWgYmPG1J/cUch6/A8FKFQWv5vpC9CB/v0QV6eRezJe1fnjaMfPzEV9kdhapWvV9jUxcAGDqBJal/0XvB9mTXMPpBdntZeWJQbwAADkcy//DvjQ79+KKgw0aiyMCz6ZoNAII3Q/tYfp9yqqP4qNV8BskGgLI8TwA+W9VPyJQ21udiAJDMtpoA4nje0JJP8Z7zOorf3/70sF46n0EfgGQhlAe+nY61Dl7dO4oPlfsFs8ekmwwBABYCkixSzQ8hlTUk2GySDUBUagKwNDr8XwgsTUnPq3/2T1n/Osv+Dwub6ioKx0sqAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, AB = AC, AD = AE, angle BAC = angle DAE, angle 1 = 25.0, angle 2 = 30.0, then angle 3 = ()
|
55.0
|
403
|
[
"60^\\circ",
"55^\\circ",
"50^\\circ",
"无法计算"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAGwAAABUCAAAAABCJI3RAAAEbUlEQVR4nN1ZXWhURxT+rslqtrr2IbFa0BD/whKsUmyougZBCfib2hJpscFSK4qNICENStU8iASlPii+aOJ/FCXQlEqpEqVNaaWtkoa00GJdJIb4U4lFxGBTm54+bHZ37vzcmTt7bx88Lztzztnvm3P23DMzdx1CSDLv6Cxe5YRF1va2iDwqJK4/vpMow4rsfMVkETk/HK71M89JtOFEdjm68L3O26KeQpATcaIxEuRQ0pjfBBwuEPWhlb5Mwir9/5NslyPThlP6M5NSdRiR/eUkARldCGTN0dqqOWiVmQJ/yErxJWEgMUliCvw3c0A4icI3Pwo/sisoIyJU030ZcLBkVTiSBkVSNAeaRgePYwAWAwDaG8JMYzfyUgO0EdFLM0SP4MjqsC016AQRUaMEOTAy4FZ6VE5E1CtBDqjrD45DBsh5WgAAzv2JvFcwHeSTcW9luD7EyE72qegXRApL8BWTz92pzxfniKkOgMu14mR6Ui9C557Gz50E+7vPjY0M1kt8cw2rAq3uMG9mRo+EFOTIBTxzzZuygDgVLFkXojxebWaYNz9QsrVo4jTDDN4mATsXMqCPV81n8K4HSNYnKy50sJMhzmpd+vuK14qd7jNUup6KgEp/LK5LtEi4ZpW82YpqSLFIt7aGd7JK4+kxFdLN4l33dKPgYBFXAhfkhtQJRBWoVRqVC+wSwC+5577T+I1TotpvF0zjNc25pbEae9Uh8894FYfukwx4orR9LGB9kQvZrfRhTb6QBlFlT7YNdR7WB7LuddWWLIJuL/MsGdn7dmSPdbWE70XdEvd3TEu/efxK7xPmGcwTlRusSj/u2jukgVVLlINueLMTsQOtmxzI6ZnNzEzSeNGJa7neUOiPumb6FC7n+6s0i61S9VzXgUhPBjzVc32rwGlx6XVkXYjpqYicMrn+Tz9ktekbnkbwQGVgr9beZNkbnrc0KGGw3ZDsrvEGhEaVJV5kRrYH7xhy9atRDrAmtVsJOg25qIg/8WeljyVQvgcxaBoZGehRmqbg3suZiaKDnHcWmXMdxmwP60lmLA2+XNEQ5IIaD2NxMeMo/TaGfXANe9bsHsYqSeMPziRfJ7zFntY17ERYSg32+wiLiNDubc5ercULG/r9cfHnNQHwoIos6f/wj9e97YXZHu3GbsRmv1ykK6btzPsDVh/DL7651ulS0S0lG7a6P+GQ1iNztc7itwi3UhNJ6heIYwLZK6obnrfECrUu0XKezPYmj0GtS/YNU2rQ4aNhWEiabGSLOVh0528bmNET7v2r83lhRnr0/P4zmA9cPL7iYb3Vl+9sWfXP1Eq9H4BrVyO/F4JoP9hXkn6kD/Rs6WoTz8QHRFtLQfRqDf1oR7Y7j4gwoHdcHSEiGgIR6uq5u6+pYCexDcLDMdWxQE/Qrz7QajCI5P9dcdKOtP+mCBFabLg6QURtBgs9myHDCfpNeOdpJGXLiboidw08MUBENyj/Z/z0dc+N0RaF//DX6I7euFHjSU5fEX9tGf4DMI/WGnUm03kAAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, in triangle ABC, angle B = 46.0, angle C = 54.0, AD bisects angle BAC and it intersects BC at D, then the size of angle BAD is ()
|
40.0
|
404
|
[
"45^\\circ",
"54^\\circ",
"40^\\circ",
"50^\\circ"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAGcAAABoCAAAAADJfLHwAAAGZklEQVR4nN2aW2wUVRzGv6mY1MBWLGEbW0xrwVJkAUvcaEwoskptNVoSuiiJGtSgSR+q8KAPRsxiHzRiCC9thAQeNLA0mECC4tZLAiQUt3EXQw3XsuAlSAk1zlbQEv18mO3u7Mw5Zy7b8uD3Mmdm/2e+/Z/zm3POXDSidKXnBZxCtMnw0bIznELKJsFmc9TRZjLy2duw1PkkpeeTxbyoc1TpPlufRegW+Ox9V6tw0fbTSrQZA3HizJT7jL3cB7iwAViKYoDOKBBzjJyU69SFJuM6/V/5HBl0FVZq/9ycs2yfm7hS82mdfjh7C3x69ZE3PnAVWdL1k6k4FGK1m8jS8mn7OLMSqz6d6nxeb+fj3zATchFaik+imiwnGfluSn3Gg0kml5NMdDgHl9A/revD6F8JoGXQBdq+0+kNk2xOkuS2tx2jfftkAldIBowdZ7R9t1vb9iDQv8LYcYG2z3S62klyQ08uOUe0ffokjJYKnc/tr0hOic94MEmSB+7K+7ZPiU/EAGz+9C2njQPDs3R1DV/zT++uJADgpYU/DwyGZwLHa2Y8+qGyih+fi4vPVQEAak5WAsM3gBBQ86u6ko9Wa4wb22vmy6bzE2UdHz4G0iR7ukxHMwsm2ScxZ6LUnjAfjyjR9uyTQ5rMDzpZ6KQT2p59Ivkx89wikmQKhg9rVWh7Hd969O6J4oE2AEDTBLEbu0UV/PFmjNKGmicaMJePctT26NO4p1Auz58ja2xVaHvzySNNMtls9ck0ymt66p/+ffsLO1+1FNre2NRVK9baHrIxIU0ydDqfzwRoCrS9+ESKlgGBwjnyQNdek9X10G69WTO4/ZFcIauhIp0rb5SvtV1nY0aahSm7WEFZbfc+ZqRJ1mdEQZ07S/UxI03yqviilKLttn+KkAbwdYswrK56oKT+KUaa5Lo94sAv28XHXfpErCvbahnBErTdtVsx0gCGKyoloRve999uFqRJ9myQBovRdpVP246g5UiiVRrcsctvPhakSfOgY09eiLYLn4T9Ujm5RBEfOebLx4Y0ye5uRYXEU758bEjTNGULVXvVh09PWHBQXWubAEYnn8xsK9IkB5rtx8wSoO3EddtWK9IA+larK3Xs8Mq1AGmabuMkEqCt9hEgTXJccfUYigx48hmfbYsnyS9WOfnY0Vb2T+trD4sOH3xS3T1Ay9Coh/4RIk2yetQpHzvaCh/7KG3ompsHe1a0Fe3Wtl2ANIB+8ZRdLBva0n8kRprkut0u8rGiLfURI02SgXEXPtZRW+YjGqUNnV9obNPq1xcWtGU+K6SP1HJTth6jjrjCqLaIIomPDGnm77JTJONRhU8x2mIfGdIkeVehmFL5mANlXMuQBjC4qFA+qxy31xahLfonXc/I/+V7pocgynSYqTftiHwSdytqP3RnfsXr9LYscljpI0eaJMt/W/KmUYqnHHzMaAv6p3V9WN7o/Y9VnbiwEQDSaEI6LY8EWoZGFP2jQJq527jGBBmX9m5BJrRtkSqkSYaGSf4SdHhKOaEC2jafBZIbm5yMKXtnpzufzu0yH+kobWj/amPr6t0SmZk7UbJwYL09tGp/h7F99SNlGABgdGjo+OiR3E7xc9ibcw4qWEPuySuA0fCw8PeLYxgcxYkr+GEEjffgvvpws/FD8Xt0JdIARpG7jav8vXDwzE0cvY6jf2rHswjPRFNQe74GjZYX9EW7tttDq/JT9tC9uy8DCeDbfxC5Dcvv4FsB5ecO5nbLP5cWa4hjx/DXYfx9BOXLTlW+CK0Fbj6lsPnc/85a27m1K2mMpPFHEsHF2qwHURlmoM7luQ3tfQ7Rvs2mdutqWAsANy7w0mn8dAqXh1A/F3XzEX4B1bLbaydlK2JEVosX8ul/ov06zl7C4io0VXFRDeff7vPcZmmxTQA2P13I5+qWR9Rd6Ud92AQADfM8POczvtJxH0+S+ZWKh+d8fVGdjGle0smiIVcqA7BG07Qy5UySUwDYtCbmxSivMgB9a1L8fqnju9Z0CAAW/ujh7AGcBYBs2mhvkDocp5RYinRYs9kUR4pMR415IRUjo86f4BgIxJwDzUrBWB6DZBya5jxB6jGS1OG0+hCrDMBn+r97Khy75/P5APBKtMlD/5hE6lGaQJcKOpmFp94xaRpwaLUZdInSS1EBIP2Av2wAMqqTJX6P4iykAMB3c7jWf7wlPe9GcFikAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, it is known that D is a point on BC, angle B = angle 1, angle BAC = 78.0, then angle 2 = ()
|
78.0
|
405
|
[
"78^\\circ",
"80^\\circ",
"50^\\circ",
"60^\\circ"
] |
A
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHQAAAA7CAAAAACP//FCAAAAHklEQVR4nO3BAQ0AAADCoPdPbQ43oAAAAAAAAODeABr3AAELB6f5AAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, in triangle ABC, angle ACB = 90.0, fold triangle CBD along CD so that point B falls exactly at point E on the edge of AC. If angle A = 24.0, then the degree of angle BDC is ()
|
69.0
|
406
|
[
"42^\\circ",
"66^\\circ",
"69^\\circ",
"77^\\circ"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAKwAAACWCAAAAABmuzzPAAAJOUlEQVR4nO2cbUxb1xnH/5fFmwgwqUhBWrMGGmC81Ay7W5jcNNDADFOdBjqZYS+AlEqJliE10jIpk8KCjIiUShApkZJoRGqqjIZUpBtWk024gQk0ykraQATGJBadl62RStR8GHYjhW5nH/yCX+4999zrc21P4v+Fe87znEc/js4995znXF+BICO0tCNX3knIEFjBnyPvlKU9B4t6zQysGdKzztIXWDgyomcDKDSz+GUE7EAzXmbxywRYZ4/AMBUA2KIxCIMCIFjysnimHzbw0zGAiRUgaZYD8BMz4GDwzYypi1GZcIMBizNMbhkBe91wgckv/TcY0H3jnpHJMQNgW5/OY9dULYNn2ofBU8NOJ2B7j8lZ87mJrr8/O0wIIV89w+KsXc8ODDA4Tey+aQOA7OJ5Bu/0DoNzXXOG4FXHFQb3tMIednoKQpdMgzadsHW68ch1Qf49+Qbpg10ttp2PKtquyTdJG+xt46Uj0eUDDIM2XbBDrX+tj6ko+s9D2UZpgj1+7v7zcVXtv5dtlR7Ylgez34yvsw3LNksH7JrBKAKmf/RYrmEaYFfKe3vE6q2yU23qYW/Wju0XNbTLzgcpXyK+9c5ynrhll3tdR2+b6p7tGPdIsAK2IZnGKYY15bukjbLzQUphHxUdPksx138i0z6VsH8zvHOQ6tB0nR4ghbCXbbOv0D3aZQZt6maDo7M+OReLlW5PWc82PmZIZDTdpJpTBLtW1SC/TpFd1KZmGNzfe6GZxc/2S6o5JT3r3DvBxAoYp2jWVPRs7x+knrAJah+iZWY492yjIGQJQmyd/c48Kyts1JmWM6zL7P8vcUTTrtfsGGVvn112m2LlPWZJDnDS3Bsp+0rffEtJezttfcAZdmkPALw8HS5P7B5pVxSgnbYC5wx73QoA1eHc/8VDc7uUBcjfRkl2cIbtqQSAu6EjuK5rKwU0bzHZKQ8PvrABBwAEeqwA8LBhfVJ5iDbKoOULe6saAF43VwLwntkxqCJEEXzSRq6pYfgJ8cNMCCFzea8VDquJceK0dHiVWGJyB/99NyGEDD97tP/p9/tURFmuljTxHAaVwZCVAI6f9j0H3d1J+s5AVGXSyQ5tFjKtn83rAMCla1TeuO1dKYsWsOuGnSOhy8E6w9dKm3delbJosOry7R6wRQonikumtytrb7j3JFvcwr9nXaEDmNBTzDZcM68wglVqv8AdduDoggEAEF56maYt9J1VgiQ3ubyHwcEHnviqouWalTeVxKidkzBw7tm6reOJlXme948qimKRWIJzhV0ttp8XNUx+0aokjlSGjifsrPHSLyRM154zKQhkGROv5wj77s+m6yWNZ94ols3Cb2if+C3J7wY79pGXlgs+VFg1Vcwaq23IIlbNrWdbHs7Q89aNY7XUpEC0rOLjgBPsmuFF2ZMh/Vyn5FM/Xj+cEKvlA3uv3HFS3qvAe7abMaBd9CHGBdZZz5Ye0s3OM64Z20VnWh6wp7qXyxhdbzCuGXVln4rUcoDtmFlgTg9hsKHqCYtfp9ihWPKwpvwbStyP91R8zuAmOg6Shf2cfgAjIuvVmrvyXnnb3ImVScJO1Qwr3ma9NP2qzKkMIJH0UrH/3NBg4ReStv5+SVNAL20L61+FiXVJPW4ZDmBEtXWh7oHc4Nn+DV9RfF0yw4DpAEZck6stci6diflE9bBrFfUsBzASGtbXyHiILGpVD4PFpkHRlRGr+opLZvNpDmWPV+NTkGp79nrTVFKswMELVStUh/aE9YFKWEffZ8yLUyk1jtVSzvMBe8I4UAdrn5v/lqqGMdIvHLlMMRv+Ef9gVgOr7ACGovyVi7+lmBOSHSpgfeXKDmBomp3rkDba4tfqymEn9lxVdgBD1Y38OknbnjtxFYphz3Z9+iOlbajx9kuvGS1x40ApbNeoR/EBDF3Heip8EqaOuPlAIWzD139RA0SVdeQlicd2Y9x2WBHsqn7/79QiUbTrtl1izdjkjCkqgb1tPKcswcaq7R6H+Kv3cQ8xBbDXWinpoeSUvfCnw2L1zbHJDnbY46e9RUkRUTW+vk+sOjbZwQzbEjqA0UqXDTUiP03rjBkHjLBPDPoRea+k1HekZDWhsk0F7Mr3uvv4IFF08JJxIb5OZ4ye1ZhgXbV/lnmXjYvqp36SsGY8ENO1DHvY/vIvGbwSWsnvYBP05c6342r+vS2qwLCtETmA0Ur5K6bF2Bk3r2hRHynIDwOT2AGMZpp5YI+tiL7F5GBXi94QP4DRSiMFsWvG6E2uDOxHxiuHNCCi6ez+irWo4vZsX+SaDjv081mWH0Ly1bH+cl9UMWq/QIX91XmvwhNtLrLc3B01ux7YGAc02H2PZA5gtJLh46gzhZInkQebNOxalSmJ9FBy+q739KlIoS2CIQl7v7zvhMZIFOnmJyNrxo5Ihk4K1rl3nPH9XI3kiqwZ9ZFkhwTsqe7l8lQgUXTZYFgPXlnDt5g4rKIDGK3U95vS4K0V2dyIwa6bChQdwGgl2xXjIgCYwi8AiyxkfK/0cUm5jAHAWNMx9RFqJ+sGLQCsQ0GgxJ6dUvp+roYq8fz6IjbGQULPXjo1xynlkkyfhvVtj8l7BvUtwVJ8z3a97eOcHkpSM/+0A5ZRAAmwDV+pPoDRSiPfMYV/9h4D+7jCQktFqxGHL7+c6az4QfCdmejvyCzWllkBIiT1bRkihP6MoSmJMDG688HWq/WIvcEmTiDMSgSJdrISYv7w0YvPP5MNxMIqegePQRxmg1hxf3GyURAEQVDxji+DssLxlzgFdJnXCHEzfStMgZyC0IjeLAAus4e49QFegXPhrKzmFQwAEBDuEvJHoToLAD4sRyGvr0stdcFZCr5r4VzHSSDHUboFwJIDeN3B8q0/BnlbAD+fUGE5cRIAqgtBCBkF4FeRzRKV2U/MhBB1uS5xYTR0kQXgvJ+M5nIasgHkoItPqLD8KA1dZQXjN+MWn8i3uoBm9Mo7smvj+ZIVjB8QSinuCnThxwAauU4GOcHP5QWWAELMfkI4/SAo/C6Wn/Acs6NwE+I2E5K1JHyYKwhmPjNX6Nc1hNPMElKz+wVBeN8FbKn8P/h8X5gx7V9CU6JNWK20CauVNmG10iasVtqE1UqbsFppE1YrbcJqJQ1huWY9AWgKy3+/tDkMtNL/APHMQVlPykyMAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, DE is the perpendicular bisector of BC of triangle ABC, and it intersects BC at E as well as intersects AB at D, and angle B = 40.0, angle A = 60.0, then the degree of angle ACD is ()
|
40.0
|
407
|
[
"40^\\circ",
"50^\\circ",
"30^\\circ",
"45^\\circ"
] |
A
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAG8AAABqCAAAAACXY1APAAANSUlEQVR4nO2ae5BVxZ3Hv93n3HPvzDCiSCQgKihigPAIEF4iLCQRk6gxYcsUu5GoJLVmN9HN1pqtVLKV1FaySSoulrtJTG3FGB+r0YjEtSqwIijK8gogLA+JkTfIa5gZ5s6959Hdv+/+MTN37h3OvXODlFu15a/qVvXt8+v+nP6d3/n1r7uPIt5T0e8t7n3e+7z3ef+HPL/qFZfkFADnMVZZiT0PHgAc2Ldlx8EOtRsIPnhpw4gpH57wQQAQeoDTih0DKV51nqoVzyw9WGbpCg0BkOSPbHh20yUfmjblmovVCAD5lvz+dRu2YcbtU4cMzUC07cTFSJiVvlbrrajBoygNgOho1lGh8NbL/3ViwZ3TG7oudmayJcVVT6wfOmP+2MsagMgH3PnyqOGgrfbQtmfb7wqz7h0G61utQYpPIaCVMibrAUd/tmH4tMkfaYQpDrTCbJ+u6uIBFIcgzhZfX7X7ulvnKbZeLF7iayolnlhk4Kg1BJ7TCi8uaxt3wyf8KBfqvri6eKR24ivRK393ctzCcUgQIFRZ0XAaIsrToKWnKPDhfADbnj+mvzAviZvY12Hq4jnfKg+t3zr7oT8fC0P4zne+pacBEVGeEnriPK0IoSfwgDd/s23ckqtpgqo88Fw56ywNmYiQj878zmbSOpJihXQiPWrirDjjhKSwp3rH3Tc8R0YxSZpSj6U2TOGZOClQwhYayp1/tqKVpGMvppaElPxLs+4l46Lt7KyTJ9bRnmXYwkM3fmU/hXRCY85VTJH2iNy3ZN7xME/neqt7i2m8kHlKZxu3z/yHs4xJmwitrQeXt2TiDtw/Y4+LhL1NavJix2OMDZ8f/Uu2G8ZCKxR3rmKKJIXIkvz2wM08le+trsmji8lDfHD4chqy1ZIUU9fwWKCx0tpKvjjsh44t9fGMkC28Z+IbNLSdQhERW5e7sGgkdpTYcuPIb5c98XRet4J1jPjY8DZGkjiSNrH1eSfJziIpLkryPHntv1IcKSJSxT87SWudi13EZVfsrZOQKolNuGHIasbGiXXVeBQbJ8Y6yz8MWv1ucC52dHxl8B8ZFsVJNXtKYoRCw5ZJP2ZcOH+eMVYS4fcmn2YcRqEt45XHT4pWznq+uXnKP0OSXLXI2q8QsQ4KOe9rR5ZBQM/rjZ/lM6PyYOj7uOfavwPbzx8HJTrjsoo/aPq6lxGUzxblPAuh7+GRg9/UgOfOn0cEKvJ0kv3usUeR+BVTUJnZY7qQxaNzV4UulOj8Hx+d68hLFJL89dyjLCZVnl/nAKfEXzLqvgYV68z5Dw8AoUAFtHxfLU081WvFcnsOsAj9F5JPNir4GbyrhahSgILl4LsOrwk8zTiNJzpsil4YMwl0Gu+O1yWekQmTXkhAVcpoynmx0lid/wxoHXghMm/JGHvLsbWwvb5X3quvGgurJ4+LRWeUXIh1fayyeuLotTbDUm8VPCbb993slOcpyLt4HUrSGNHhtl0b4UsaT5l408jxCGgJqAvAM87QTBv8P629CWI5zwVnXrodClCAV+3xEQQgBodvWfT1fbV50qQUcOumM6pkrYrxYS9mCp3yFHTV8ZG0ojIrZi76GO88WJOXgYeMLDh5GKnxU0er5imxktKy/KYBS/XU377wF1/6zqWP1FTVgIjOTlxjeu++PA6dHnOEYmtnRmJJ4dGmlZTOs1/8ak1dYynGcM/st0tVFY/pUH54lLiaL56IFlH4t+sX2LAJZ6Ka4/M0lA8Zc/x0+ZB7ZcUnEVR1lG59pawFHv4q/QDrjn+5prJSAvgaY98JU3krF6PWCru7gQKgM6rDD1ePGFdT14LGAu7OpxtKdWXmToZ0xpR+Mk1nxJETHiL5RPOm2rqdJIWOYaZUVc7bcRWdCYu1+zB5xsas+PDmlUuvfr22ao8Is8d6yuXWOzQW8PqLmyoDSHDTG0sPjNgH1hWFFMYfHNZdLudtnwnq/qYFpRi4xPumaEDMOSvndJm9fVZ3qbz77TNAKl17hFrHTpMwf/ONf68ehPrIjO2lYpmdJx6iE+dq5u4ukSgS8p2FQPZn9T6/rfN7yuXjOzMYCkrVvulYBb44/OeybBA/EtZU7RHB4FMl85TVJz7o+sGpXGy11mhHYmBO1MVz0Kn5y+nAUOBqPj/lBz6UwgKQCEbWxfMw/Fgaj/BUPztAQLfBJ/0V0Px7mHp4CrBpPEBJpt4tysEPsAPsJ/iVGKn5CwCn+pn9StL4Nkybs/0rAgBS88FmKKk7cekcBjZGdY0PaLs0jTekBX7daaAuwI+zdVrjxNA03qBW+MI6E+uGEDLA1mnPtsFpvKv2Q2kR9ESFPkECAEq1OD4IYv1sz9/a8ocr03gTNkFU1+6fiFQu7dHVZ88EBjQ7ZHzfoS7e+rFpvPHrYaE9qi6BKpNuP1JA91+i69f9t5YQW0t5QLmDTdgKRfEuSGpdLgq7J6bxhkWSMfR6HObCYdv9S3qK5fbMTlwDKOguC/YzD/4psuL6UrEivnz6OSjfseeJVfhL16gJ9PGPetzluUXpvMmbIap3JVbTXyqUqoG6b+aNmaX5qCIgTbHHh9LvaV0ZWrtWVKq0sOrxX3TfRqqIcmCw98qLUuMnmmf/6oKs20uilZcJ8OT1Tb015ZeDT6+GupDABCpB/Nr8i9J54cQBa3FBVu5dQgcIXh00WqXOfyb3gelPocZh2p8qLidRDs/OHZY+3xrPn3XyTVXf/F6PaC0GW07P8nrXeOWd54yaMfbxOvuqx+oqnxmAZyZPlSR1fDrR2RlH3mYRRUic0r5cBgu65igHWzUNVU5vPzHH691e6rOfBXxcr1SNLT50f4nMmQFQvtJAIfZy7VVwGlgxaL4rjwiVk2rCZTfuijvIuL8kvaf9b1iIqim7d7jhC6tZvn9dmX/SxJ8b83PTDOh+95d+SpJcfDrKZf0kXcUO7Xx21PwKa1fk81CNAe7fswES+q6/VFYARyS5HMzZvud93RJg3c4v2YZy16qYjyQkksu/+P1DukG8/lK9APQEBOLMJVXSJr750OLLfVuNB5e1DslfXvfQCdh+X/t8TyRqcKiyLXL84WvvAHxdFs8rRhFeZBUi/wdLfvRg0O/0HsGDhyYNeBiQrrL04GPPncrrBRNsaXe6nNcRhL6nn1B3P/zxn09KgrzyPGeDynBDo1xOu/gDuGgHC43N7/xxSxuaTKWS+LEa2HHxa6vXxStenl1c88Do1PFppZQ69MwdxSHLp80Z395Q8I3X2NJU0ZVC50BGAQfhlw9a08CDcaLb+7qLU41FqFMbXmtqusU8jpFbxtkeTjkv1z4YB3fZXGPnqN/OXTS1oDPG5fouESwaCsj5blwhR4aNuCrXYHypNL4yWhp2LVw/Qlrab8WL10xGiVfxvseWm3/7tWdoC/zFpA6KI9N3Y7rP5+KeF7nvkl/I/HUP0fDUVwZc8cAR5ksvfLnhWwPu3/eZqaOgGnD32PlvKTHIhpWBmWIKNE7hV96gH0ePawCFc9zTCfZfffu98FtPR5v+5el18FPjmWNhETD2v9lhQhaWDl3FJGSfcxZJbBKfYQfu4tGfDFzLqOjClKOYp4Y8lqc9wfX3k7fedbraeeqa1Wx55gDJpEi+dNVPaJw46RbnnHMutrEVDv18kTz+jbeM6UgYsdBzuWvlwR9d+Qp5luz43nJy3l/HRZvGS5YvpN343e1kJ0Ui7rzuvgLJIm2HM3FiSSFtkTFf9wqGrWf+43TJNFFIceKMFAtsu2/aXgoZcffnDnIJXi1jlPPuxnT7yujc4tcSsWciGrZ86p4dZP5MTNd1Sp0IxRSFox60jMSUAr/kySR2jjxI7lh802HHoiMfxWWXYe7hGufTXe7o2oU0IgmXfHZFkSxIHIuQ1lJCx8RM/NZZxiycjju721njRKQYkfmXP3U/u74R6PZtZ6rwwlBcFMWxkZiSxImj5dI5f7+NFJskVqxQjGEs4bifiiGPnyx1VOxMaJ2L+ft7bvgF6ZJE6KIi263pNKxyHpdkENlmFDIZ8WgzdMxEufZ/PH79zdfCic9EBzSZKIB376tPTsDu7dNHJV2hhTYjxZyP3c/vHPXlkYnkCFDDwWOklO+lf/8i4oknYgLP+oaBiXIm6+Wbn9xw9prbPgIqywwk8rLOtv/TntHhR6+4rdQyDJTydv76WO72+TB0KtAQCMQ2wsa5Kjyrk6xoJhlKYOkVM9rkxAcKr67bc/nCuT5EwcJ3jAdET+btTeON6l1P4JVnT46efyOTrHUZ64vyKJ4zOREb6HQe4Twq1fUxGSm+U1qU0xrhxp0b2+bcMRyAU0q0gw8IFJUSaABvP732otkzJ2cBAs4Hu87zqEDltILzUnjpEjZYm0P+5K7l2/WUz3/s3Gw4fGnZ1uwnbho1tGpG4ExpVuufRyXW1xAVxgdeXv5G48Q5U0c2xGMB5FuLe1/fslOmf3b6iAGBTfwqaQyLud5lXBkvPSXzACbGDzSKXhZyYN/WHQfz2APdNPCS3KiPjhl/OQAYF2iEfup2u1ZoHVT3+C6s/H//HvO95v0v/yJAUjgpr5MAAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, in circle O with radius 5.0, AB is a chord, OC perpendicular AB at point C, and OC = 3.0, then the value of AB is ()
|
8.0
|
408
|
[
"3cm",
"4cm",
"6cm",
"8cm"
] |
D
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAF4AAACFCAAAAAD3QBBeAAAP9ElEQVR4nK1ae5hV1XX/rb33Oee+hnkxgDAQREWpGsWiIKAWlcSIjcYoQWtoG2P9bOIjXxtbW5N8TUxjUpukJlBjNAnRgDW+AtFYnzFqQROtD+oD1Cg4gDwGZu7jvPZeq3/MAOHeuXPvNa5/Bu4563fWWa+9HocEB5LVIWVISnkiwJV2P/fu22+9u33QQo/p6Z128KQ5HVkDAHDE1ldOY2QSYqKIquAl9qE4yhJTWNq47qk3jx0/cUpvT5uGK+3o29S3Y920j8yfmstCLBmBpD61Ag8JAx3GHaXShvvX2aMXHpcNst5eCZ0NI/vs/esLcz8y3XTD6jQstCY9BA4mKf7q+oPmzzmiK68AIIFRYAuPAEulweeffm7XNQs7ooCQBC1Jz6WCkoFVt3VfO6mjAAAplBYQQwnIMRTDk8p7G29ILz6zzWVSr0XllPiJH9rzPt4DIBWllIAAWBgAApR9o1g0dj74k+DyecZvVTnP3LnulM9P0KnSEIAAx9AKADsoDVYpDIiFNt3+6PS/mlNH+GF4yF5iERGJ7ph1xbuhCLOIc845K8JsWYQts4h1wszWcipxtOXi2fclf8D8h8TiWMJ98C6xVmTwa7N+WhJxpdr7q9mLTqS4avYN2xwLJ3Z0eA4dS7z5ikWPOymxJA3hJRUuir137pe2RRzWoFdLz64oG04480WRymBq04boYkUiK+6lMz72InOxgfTiuPToMVdv58Qyp6WKa4ieWhYXprLz6pmPCJeqGargrayfcX3RsmPhlDluQjshi7UspW/PeqnWtlW6T/vO/MeBsi1HYVSpsDTUjhUJExYedNJ/zSfeqbk+BL/P7/svSX+U86EBATHD1HPoYbdOPRILBVJWDyye8eXuEf1eDf8v/m7/f4zN6kRIEiatGqCDPOfIM1qLgDr+7fUfhpDqCAUA5pStuFVzH5GEhe1QRDVBvF8JiTx+/M9cVHIudfsvO5YQMXMssnb2CpaSE6l14AaUWpFE3K3z1grHFRftlW0IXqUVeFxcMf+TlGaUOB5dJ7WkFUNCdeHMG/vJM1x9urhBlsG7TuyTMBKOG7r7CEoKmcuhvDfrbhFXqlKOcgUgvO3c8SBfQtfAoCOQiBbKCHouuH07kkxyoH1VKkX7cLxUiYJTAVyr8Cl7EKUluajygGWoA6+qjGrbcefHO4ktKFCxHcm7RiNPhK0I/J7Fd23LVR9eKgXfF55nnPLBIlLvbKtPVrQhTxI6L1qdBDUvJ30nPCRlHvLk5lz+QNPu+/PEya9LtWk1NhaOkgwBIKB10+5lIcifmD6p1j1VHj9hzPvwmBpiajvymWLVjwqDvzk9Z+JWLVpDkiI47alSDfyb4VHgloO1hsgIZu3uq4a362blydartZonpyKMPfqZqAq++PRCLQm1HE7VJNASnPHYQBV8/6ajPfFqqilAwIAM/asJ0s4Lcdxre4YYhllEPTO909AIurGxHXScWhaJhFOREU+L/cSaMunYQ1+2IuxcwqllK5Hqm2SGi70qaRQXwopRElGWbGhFRn8LIiitJ+0oMUGFRukB6NhTvz/Yh6A6FQEwIM4iTIOd72xP2krcwPgKAqUP2WI1CykwtVPsa7VxugaLVDNLKoZzlOTxywWnnvjpre2qkQUcA2r6Jos0RU6LJfJjZzb1ahBq4MkknpFKofSNX9wyaddll67oahQaQoDq3RZBSzGJDY2xQaak9rQNvVg1keeEUbn22bvmjD/2ixs3N0xHAgjaigBvvnH2nNNOvEVip02qYfUIrE4ZNrkH1nzjCJidGNNE1iCkvrEVeFPOeeaMk9+6fsLZJjZg2JE6DJ3qRO/+8eyFENu+ZWuBavRXzaAAEHxU8hPU/KPxLgPa1L1dqSAO3744J+SVnj12HO/MetZQvT5WUiNCYeSEs+7/xrid95w4T0MMFEZ6hKQGFJTL0/1KLn3o6e91rlsbUZgPwjo2oKDM7Vsm921/fkJOvfE/v02v/cxBgDWegxnBKYhYRTkVvHTCmGTb8g/PwmPre9uNcqmqoyMGKLtzMLZWRS/f+OHbvjlxcqKM6SgCPIJtdSnvofec++dPe+PS6Tf0hHzERRPB5Grjb+hto6xiVfpp2+x2/t/tEydfvvLhk3KomN6+w7SM9MZExmb/9t2lqX/9vLGyyxV6M7D1TdXGKvHN6kJBuZeOOQwbg/EasOawjSdpVRtXkuYIFPdczW3SS2w7C86NlDr2MyS+wiN9p2ej3/9mUf/AVdsXGqezZtpbiU8AV3sEEVId68MBWE3GxbEVUqg7AbG+mGhZ17HqlUu2PwNM/clRAwVNZuJLFlSb08mLPah8TLriGXJl44kiZhrhYBgiTU7/elP+Q5kjV4vEKj8uKhCzmfudYgdivyapUUCKdBbIgqALqRBBST3ZAWGq3Hzu3Qd7mDT0Q4YVKTV24vqUUqEa4xIIIAIRhrLS6FGrtH1hT+aorn2PG+LLzX0ogU/1xWqa+Aenvb6gveqhZt6zZWfsH4+OF19e9NZRmSp4TAs2KlUvFlug8opz+jsnVP2oMOakRyLX8CxqTE+9sWTNMeNr4POnrt2t30/teiCV7jut8OqcgqvqTkRPH3gN6d7C5P0gCwC8+sq5683RqPJAZTHuL761y3PCkrJEreM7iZgR//j07lvOz9Y0PxrqE969qeEYioiSlvE1eazwyu8W/nb3nK7qWlJVuDj+/HsHoQwkFn+kY7fhAyzSFadPWX7eNLWjysOVQd58VK90xNAcUf2MW4ecA/n29XVL7tVnefFYrjKtX1HIXbhqBySlrH4fptVwyq78s/zNl09ypKs7w1hDch878tvlDDnyJG0VnSAp3n5yyapDj4VylSrlK5VBqtuX/noNvIhJj3Jg1INnP7pj+suP/n3OxX42PfDcVgZWO8y7YtmTqDfMrkNDiuTEqZ33LFj2qdkZ7SecOVA+paCVEn3uyV9714OEQ1dd2tAIgjSFWFHKT2465NaPX6DA5Nc45lBpL7mrzOf7S6xgbWqhdaOiT2LxlLOOwbL7gc2TP9vueDDW1QrY+y489qZkGVKdam0oFtXIQckjYqd9FXvJ98KJ/zQOMpjzo+qsshee7JSv334LixEmJRYNw0sLa0+R9am8Kr36iH7n8nG5WF2Q7bME4bDv3Pr1EmzqKJCkofK5wopYXDrw19u/NRddOijlCx0qrPKc/dKYM+9+5JI3vAxCeNRoEgjSGqFQ0H/56hvPCYt7+otdsXg1njP8VyoIMPX27qseFO1A1ND/ySOB5scufPqcs5S7/5Tjl7yxbCuqo3KvCSnrtPiHXf/d6ypnFSCxqsYnQPYVOQJyqaJssmb5h7f+Xc+Lfzl5Zdvrn57bxr47MOHv85ChWqHz6kP//fkvtKtc4pMIIEKkhAAOnKQmVQSniCJkEWds3/LfXFbun1G86qBrj8SE2VO9yK9S6oEOKMhfOPXucxZc2R3E2pAApGBZKaUGmT34zJ5OOAjIRYXNd9138LIJi7/Qfuemn8weoOwpBtnqQ7XGv/XRMx5bcemnPtoOwDlFBK0JcB2iqJJRqljwJfVJuzW3JZcvyPz84JPf++aiY5BVfHKWnYwqPcClNn3egju/e9u/TBqTNQYSK6MEpHZRCh9W5RXIT3Zu+MGbSxf3qN3f++exb2FqAIO0U6S/s4H0VKCEej579i8/PemUeUd0BJQBJOYMZWIPRjwkklRefPx3uy66YWzGVR6aeCL2lIx2IH9AtXVWqrZwNcqhsudFce+SMzf+6it8zEeP84Oszgj5baItVVQFa3+xMXfMVUfmuwZ8tfs/P9eVdk7ZWuwU+/LWk4gKSaBGg5c4C/KtdHRMPr644dlb3p7ZM2HKlHEdaWnPa2H/O1s2Pzft1Es+VPA9SvLkns7M913vRf865mK88KPrkko28Q50aKrOEqxSrQWxrwCE/bte79vUt3OgaMvuOJU5fFLP9IM6fQVwFMR+6aILP6WY3cNfTDH3S72eiv04O4xfdyU5lKH3ltCyK5PauIgfu8vyKgiMh6HxQaoo/dkvbxonxApbEuTGAWC1r00Ygq+XeIkBMIA4QJqNZyTdMsXfdxGAJ5KsOruLCQqYOHxBNfT7/ZMjAqAqVz6W5E24ZjrbxAf/gWatt3b3ItNgFFD/2CAIwNlrKgvnu28v/n51khMq3bxkUtTgfK7JjAemJKJs54JDD//KrOUDVYKIfuC9JX6jumW0TpUAuNfS7AB6ujcn1YzlleePl3yDxN0or8cPzmtvS8szdc0s7UH5pJO6fWiz8Ov/lNjTL3woqAqQ8spTxwVUaTACqwtPqSAhbD1kgsfY+PDMPGOocpKEIcBT/Ys8oUw8On49eLGqLAr86Ng8/LeXj/vzzDBOImUgRHjH2eNBsWrVc/YKr3QWlG5YPS3a88QFr91wyF4pPdeu4iyefuesAoBGq8V6fs/lvC4WHv+HzV9Zth2fu+CgZJ8Sym2OKPzRGRNJyjWrmIbww829yoUZn+b83HelTOWwTGV/OLQlGW1/+85XcwIP/H6jVme0luw0VgCSJFPeK71oD9iz4mMTqaIC9lv3++HCuuhQFlt06XY2br8JKdRInu871zBrNNy5jAA/xKKyFOdoZ86ZLsXBvsYXLojJ3XPqBM96JmpYy9XNOZTRgdbdnkcGWsHQ8GM1FDY8eW4HeT4FDWu50QptAjxUL7SIvMrKRV0K1Djkm7njQJIE4avrlnQ02UK2Ck9G9M9mHa6aXHS13CZj1+BTt+ZdQ6MOUeuNZv7786alzXbvLcMn2578TNbW1C9/NDwBgIBumT1VZcg1p/um4V0uEahEtjy0uABplClbhtdlS1L00+XzZ5KlRmumluEdZ5Dkkr7/XtKWKjTu2luEF1GINK2cMR2jTJLfLzxlYkF+YHDN0o5IEZpdwDYtvfJSmOyyw+cknomEmvzgoFl44QzAlXuWdomCkxFG2n8UPFGqMbDyuGPhC2Wp9AErRxIoJP91fheUgqJGxV/T8MNbYIEBVveeQK1J1XxSULxj5eLuFj8JaEH3sjo3t2mHbxEeJrPzjkuqP9/6wOCF8/dkTozr7pXqCdXsjbzh1aXdVLv1Hp2akF4AiFIPqgWm5Slqo/slciW4J15J0v6/OSh1aHEA3wiePJvBjus2mej4OWS41UltI3guG73tgdy4pOPCbpBUWnTMRqZVBRc98V7Jyx4/w6tkPMetab/h3drfVTlu8lg3syfxFQUfcFhJeeudx3d0uGAMlJGo1d1Qw1lx8PCNN+dmFMQpA6ReS+BNhNVLex7y1r4RKCKOgqxucfs30pYfAMAGVlF5/U1fnhYFUTknAh+Km1YOQQgOI3/LJsJp6GTXDdN6Ht/y9UN6riy3+jVcxCJSqZthmQCye/b43d5GV6DeVrUuxFC1w64PjhwpZ+J6T5fYeAJEQUVlQhU0WRrsYx/0MkS7/x9Gx75gkpfefgAAAABJRU5ErkJggg=="
}
] |
<image>As shown in the figure, in circle O, OA perpendicular OB, angle A = 35.0, then the degree of arc CD is ()
|
20.0
|
409
|
[
"20^\\circ",
"25^\\circ",
"30^\\circ",
"35^\\circ"
] |
A
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAJcAAABGCAAAAADkllkvAAAGhklEQVR4nL2acWgTVxzHf1e2KWxQsRd2W1O71cg6o1jsBmG2VJx/RBe74hxhrEK3ZZatMAoLiFrohLL2jzLLaKXYP+ygsIJl1SKZg4pxdlBIWTbsVnAdRNNhpFEjWbsrjffdH8kll+SS3HuJfv/I3b37/e597v3e/d67exFA3PI8PsTvXEBlnH4gWv2qlCAZ4uUSiNzP7y4pSpp4uOKh75Pk0qKkiYdLICKae3DwhY0lhtGIN45rQ8eFioqSoqSJl+vMqPjGeklJ0sXFBZp7AHi2lBpGo2d4nIRfT3xP9HupWdIEDh0j05TsIDrM6rhs2FIoIt8zK7zDW2vQ9ClyQTgqnjFqzNW/+CRcnJ03bszbXhAgsHmEd07sIaNOnPnrlwsCMWLRZ617yLgT6yMFABjZvGHXOKPPeK3MYM3F5bYG7J/aq8/FACgGfUKSz7AtH1f0yP4IAuW3/U6p/18oOSpTMnZbupgqMc6lVhSqb48B6GkBAi6xazmTQpXsICKixvsAgDErSxQ52usP8wAAKHLtZQAht9gRzGEpN08BnviYEBT9bNWwcl2WJhN7V16RASDSI360oGu6cjC8cmrlJADA0c1YD2McB81+INGnnMfjJ+RBc8usjoOnE71D8d2RutgT4wIQ66jTBC0kLqi8o681/ZRl3UtkmgIABE3zUE2fAFfU3hLVHg80pfYnbXUZCU1unpIPLylQgP09DLUwcwWtnekFsTQUr716RBst374wToYBYLieNYoMXIpPGs4sm5Ui0ETH73yxP9GgCtDbCUD+OIyAqP9clIZrQprOLnRltGAqoUFunlIgOzqBpn52LMNcfdXzOt12WfIB8RZLnAy5xc+DADzx0dd0CQMN60+MK9ZmW9Z9mM7Z4lvNyUiPqXU+dbhYvsiBZYzr4V7nf8gCAADYMjqdAkAeNDtm1IKGAR4sQ1yLltxj7m+S3ruEMlrbcBkA0N/AkLTYuGaksTwpsbMtkym+mbRZx4AFMcCSTVm4RqWZfKejkt4YBABe+5azbw7yQKEwl9JVW6Dfjlt1s6aiQPHvfK4voi0zzpV3fg9a++DG7Nb8E3Fn1YBesSCQ8OzdG4uWE/eSrzYsbwR5qZfr2woPIQumJf2WiNWPQAm5xfaA8XZSlZdrvlpN1Xkj0OXUL++2AwAe9ojahFY81xVpwtA15OoresV+MZi4n0RCY3kw83ANm30GL3LFojN5l+tGNUfJhFY0V6dVO3HPf68t3dllp1rSjydt1jHjLablUjQAUceBqI65nhQgWB7QHgKATwplGnrt1cNy0kL7m59Lo2BdR64XQz0u9NkzCmXrmI6p3/lS30NDF83iUgDAZ2bM0+vWjEfEfUTfMOAST9xl4dI266T0IwuUAsBrjib3FWBWdzgHFCD0pTahMcRRGTDrzQELqM2tOZAtE3nqjBhIaNlcMVd9Vo81oJCoqaqzNf+Npc3QCnIpABDZ/x7blwRVww3J3ZkcUdTqfG3DpEEuAPjb6gbYUnNCsfrzCbeoRb/GjE88k7baUV07Ha5ZKbdpIfmkxJymI3OqmEvX7ObBHMFRueL3Mi55047Z1N4OAIrXHClkmZTfKfboWqe1V7eF4w00pYjkAxA1647iuRRwbXKrz5mmMTRccmtDCp1rUv5dfQxwuRi9Qu7yT7JmaCmu5YYPNbHme4tpGsS02eC4mvbKKTr9mVyJ8wsW9o8uWZoXb5mnee5JHqyye7UF6rrCz80WB8PsO5eu3tz2jsH5u3ayL4Bo9LbteEtaCRE9GlxXlzBQxrcEIoCI7px3VRq0h85ryOvO1OkSSYl/3rxV9IV6iRrvHOVdR86SQCQIRNuKvMzcVh/wzd6Kp7r+WFirjTUXiKh9V8naK6G1Q4IgCFX/sHuCiOjbyAAR0dYtBNlBJNDZEnQxAInVhGM1S1zOK7vVD5AEyI4heBJftIvXysFlQG5Wl77ZcpmvJvHBH2VEj8PvkmlzsimLEIjo+kaRaIN07368iHWRUlUZ0fWXK9dOWw8VcRFVAhFdfJuI6FW+frt9019ERHMjRNp1iVKE0bYEAO3Mf2GI62saAjyNYRDk5in0mi4Bqc7AuwXgex9I9hMOfw8RHQFQRjdX36Ivqq6pcShmS0TTlUS0drrSyel/AMAFIirD1R0V9Gek2Dyd0OoP+4jmtj+aLPqvTnLLFFZ21yyVIIbJ1YQhhdM/VRRvwsbi74+IkpMX1n9W6Oh/kAmvuLa78mUAAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, in triangle ABC, DE is the perpendicular bisector of AC, AE = 3.0, the perimeter of triangle ABD is 13.0, then the perimeter of triangle ABC is ()
|
19.0
|
410
|
[
"16cm",
"13cm",
"19cm",
"10cm"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAG8AAABnCAAAAAAr/UPRAAAJu0lEQVR4nO2aeVBUyR3Hv4zMyD3cIgwwA8ohiiiiCCZcinjEA2GNRzaullljLJP9w+xq9jK1JrW7FbOp3bLiWVqeK6ursusBigeKgICAiNzHcs4MxzADwyHMyx8Mw7yDeW8eiZVUpf+a9/39uj/d/V53/7p7LAi80SR4s7j/8/4reM/i47/obuaT04LH91l9XuYNh3uSdbbm57U0P0vtueFYX6DEbqr5eXn0J5FTvdUXwIJZPOrKo33lVXHBABDMB8eDV6xNAgCI+OB49GevwJEXiS9PQAy/UZ7jiBwABnveEC/OYb8K6P7HIC8ej/HedfFrkXBXssub4mGoAgKJIy8cL95kkrnjT6fs7AXRXxou9HX5T88vivqmrkHdCIG+lzVlflYCgZOXv7eZPM792dLY1N3Zo5VMc3PQvsiKublroFM5LHZ2c5d4W5vB49Y+RUNTQ2P/gsS5IgDoqkreWewZC6CyME8llflJpJx5XNrXX5BR7R4d4zH2nPndUTw/ccALADD8+GG+LCli2r+P9/y0dvUvjOaF8hsRCcDvlq0zKEXHiDVLOa6GBEtq2bYynaycOUAQBKHcWmykFe5MuclWEkEQBMHCU30Qf2OYLGV+VkUQBEF8fbzLWM57b2MhB57p/iw8F7nckSwpLjttAQCoP1mRaGzQFN4K3M7anSZ5GYUxkdQJ/ZT6HfHoryttq2QkU83tob1s37uJ9aHvSs3KKKr9RXeYHocVQ7lk24wUp2/kvHlN36sT5tLUTM/osZ82Ye3FZKNHiselcp682iwkBtLUjJH5QsNDjHOujmy2/6XXI0odOPJ6btgme9HU4XthRnWYMk+bRfVI8c4u4cO74LrShq5ecp9n/Bgqe0qLZVZ5P2k0n3dNnsyAG7yW5EoSFjhcpTmtc7rabwLIOCqLN/QxyR+d1lGUnHcGaV4DZ/828Xhn5LWsUDDJtYlqqqQ5+iXdr/3IMbN4bbuLmFx1W+8x1CFFSRfrDmVMxGN4f0NZknl0FciyiqeLfps/pIuyhJMTvT4GXuWjzUyebed/zyTHql7SxVlBlzjzegpCfBkch+77z2YqwGnHV/T43j71+gThN51XWJ3K5Fj84m3mEpbpHtLFkMDLHHmqGk8PBr+2/JCJQrHfXG+ji9tuMs/cNF5u7yomv/zOtybAYZFlLn1Rk87M5MTrqHSVMbi9qI+aeH+592EpXfzgaj0XXtHIfCa3HGLZhDhIXUq0NNHZqpoTz4LpK7yjTWRQDekPRY/p4soSJTtvpNeVwUn71CPEFM9+YWUTTfxZpYKdl28fwOB0wmOFKRyQqqaPCV9NKzvvucNMuk+VKtTRNE8Y1fGcJoa29rHyKl2c6T4XAhcyY9I2bdo72rBY8ROaNbaxjo3XIKLHEMjGAsYor/l4fdJq/9OPAcBi/ut7VHuknGGhJ5dU5s6w77iyxp8J13pPuzYQfcfPLQGAuQ3Poij7sinCbnoucvvqxPRTgIsOi5hwSOveEAjYxlcPAQDCra9TPbz66cOSzKsXO1Edeq5uYTx2LM8PlwDA2LGIJDxXQ3GRDNBHIIXnSHM4u4gShbZXNAPAg8UhAEA02eknutCgc5Ss3oMdLDw1bWtcfmcvWbi9JWLDNQAVwc4AoChN1hsckm6pyK7i19QWU3nWQopZfXYHeZ5+nZ7TW3QEGNKODpzSbMO6IU39nJzZVkc/gyLxhq2pH35R3TqyoOghIHjdCpFtJwCUnNw83iXJeeQlwXZkwDSPtoxVffcxRSlrnWLrGuwJxOU0Ahmfx+8wKv/Djygl0NdFk/s17TNf8jw9cnjoj331PssBJHbs67aM3B9kbI4/9zDWVHlsvIKaX5Oec27PiAxAvzUA2CTP1ghnSMgZ9vwzmOWggsQTDpH2Vy3lM6VGj5pve8IS7QD9C3OOpJc23zlnnYXhaUhA/fyo32f/a+Onp1rjUCb/tHpJsp2pugN4O8coGu0TWNEcyP1pbbyzKf1pjtjw0JFbZbud/X5jlmuR1FCnLpE9zYHcPl/jKDXLcTxmeXmlaPG7XK5TttWMb+pbRfRggczzUY/PCBkwrHqDt89j32IONGCarMIQjbZMpc/+ZJ6nRj320yh+b/nzw03vcj0E3KIy7LEVIjHNTOaFdBii4lO+Y9/fxd+G/nUORxogipIX638q6TgKL0w5tiSr8iPcAADyja+ObORMAxBvpV/pX7j5sPEg6dJvdj5ZNRr3nnlv537KoGZLUYLRHs3zYuctVL0CAGRPjbIAUH1Q8+lSc45vASBM9mQYAHJ9GOYaCi9CUwUAOLZ2OtD//eWwjUzxKEsKF6cBUA17MtgoPCcrOQBc9loElJ5ti17rZj4O3vOKVUC2H9O+bpz3Qx8A+PU3AW3p2y17b923SorlQQMwV3oBuBsyncFkmM9KnyYCQERLgbcuPSCg8lnjoqX8aIBDzOF2p6YARW0H4BJNMo3xOuudRAAgc3m1tPbR/pxbrjuYuoNjCo4+4jXPp/pksaPIqXe5sUV/3tpX23P3IACg4s7QgFx6avcyB/44EA2/sjs/G5l9qy2zP043XlT07dM4uug3KkGVnw4ohTh0aBI4AEKbQKDNyRJ20inG+ihPPiBVuOuVGTPkaYwnH+Yk1ZLDQgzYeaE5M5Y8fgmCILred5NEnBk7cjq1fmTC4y+u6cwBgiBat7kF7u4iGywIAM1am94W4c/1NVCm6fZMsnmVB484AnldPv0Pmr6yMLYIAOQNB0iCXA3nnW4JlbWTwynT1zgC6PAPWRAurySZBMCXn71E54mP//5gTAtMPqrGJJImyyEVgHKqCyAUkmMmSyDYZTZs/JdPHZ+64hpO7OF3nQ8AeKx4awqABhcXNP6gJa8uzPcdxBfSVN7/jMl+GRkG4OodZx9RTfPaFA48aA4vSeCJK34aHAsAf2oD4LWKEqVOdJ9T/W18FC9c3Y2gJBPmiXptZtSjR3xw9WdlpnAm7qtK0uaYFbcAAMq+STG9qpi4H+s4ivfNvPK+dukg/Q6IKw+DV8p3mRUr/aV3H+28wQweRu4+iDH5Nkip7HzQetZFjOW+OD+rdX0cJ1r5j11Riex3xmz309UlDcMJEazF1N5XSmaFc6gW+314cYFaPJ/xAsSQ6vLkVoHRnGZALvf92c8IsbvMl/nd6Grq5d19s+PoWz3ePCArS+UxXeLhTT2s1LS3tfzULIxcwZHG/f8auie5BTahUk+xnRBCa8HAAEb6uxRNFa2+CUvYNtl8eADQ/uPz8m4PZ4h9LBRyQtts4zc3xvSLnRwPANDRho4ynVQqsJeamZMfb5Lpf+P/pvzTvwA5alrjQgpT8wAAAABJRU5ErkJggg=="
}
] |
<image>As shown in the figure, ⊿ABC is inscribed in circle O, if angle OAB = 28.0, then the size of angle C is ()
|
62.0
|
411
|
[
"56^\\circ",
"60^\\circ",
"62^\\circ",
"28^\\circ"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAJ4AAAB0CAAAAABRMdRDAAAM0klEQVR4nMVcfWxT1xX/PeMuHQSidqZxW1OXkpaUBOpAVqIFZBhBCYJp6WDlo0EQjQq0RCNAEEGK6qDyEQSMjKUsXVlxBC2wwlKpfK5QYmBrSlIlpckcRqBhMapR6AokdKSJffbHe7bf83vP775nT/tJse+7Pu/e3z3369x7zw1HYAZx/B//IXxKcXF0Ont6DDDpkOWEP4GXAruh0kRwEkEPvRA4qKl8q/2ZeMjIYYSeouIA4IDjVhxUlGCMngCCRI+++5OfGB4nnyjERY+T6nFPCSbESScacdGTon4HNyZxqfEwswre/aLz60bg+i0CbOPwSK7t+SnJorGFbvUTLnz5/6DnO3f2vH/amHHrk/GsHUD3TfQ3ew5eevqns2anCgPNrddPAV8lmB1AKgiGAt7yNOvCOm9QHCegvXaBJaOyi4joDcAbXAysVUvPGFTp8eitm2Ir/0csifY11mnv3JVTTwxi0vOvSS46HnlUY3B0YUpFbwI5iaBAL8SiZ2VKuV9DKcLPPSUpZf6E8hKgMLDwvbF/Y9aT13ekqswPElmCrfbqoxOrBhLeMVS7RoN1Za9IPXIEQx9CwD/Wkno60cpTaXs9eY4mFUZqePj47KeG5yS6CUZVLj+Ftvx4RutUlZpUQ63lJ7dqO545JE0pbihQdlv01BKv015LiYto6HVucmsClBYGJytlYPWZDzN0l3KV2YIqAE0Fg/lbE2cxy3ruvXlftOhn13FsCx/IuZr+z9xF1+PmJSCaXke2vTFFXxIEoLwy9FLq37OsT00p9iWAG2T0zuSW1Q3TmQQHnOkKLTIISQeWvvu+PXNVYghKWnh7iqGhayijgcjlCqfUYOnqrbAkYh4Ja48DcKdwSz4MjAn7LIWilzgUlv38h1vbMX7jnYRpj4iG8koMFfGutZVE2iMiKiokIv/KUZV3DSuOiATtCSUvx+90Fo3/qi54KfqXd/xVQGpdh99e1S+SjEd77jRjU1KXxU8k0V6QqMfWQERE3Qst1X3GjcEIvSaL11gS8zdTFD0iomZLOx/wLrDWPCQiQxZrmJ7PprPTBoXPS7aHSvToqL1XkGkttNYN6acmoZdXbeT1INGUg6RIL1i5IBxuKrDtM5J8mN7hKUbKFyR6b7IQltILEj1MF9XHJaf9sHF6fbZmY+we2i4p0iMiOps+IHpqzEk/qjsHYVjeNDfbQK/ngJ05uao/z3pph+jJ+WnNtqwP9WYRJCLqshgcPv0p3aGgXHvkt0TNaw2OHEkH1OzLJg4ANpfotFJCqPi1PcavqUXV0ojC1rKy6Z7Is8ZCC/yw7DeqvDZr5EVZzxUSjtbQQbtTYR2jpj0AqF5hUHmrXeovcgBS5++Waei17sUL5rSwznJE1Jti0PRpyBgKK0qp7RF1WfpCQZEWA7XWwjZm7b33yhP6FUdAYP2uYWFFKfwOYNy0v4QihBU7ATCVdM/IW9TJkIsJQP1y/ezAATVp+eq2CL/GomXvSghzwo5g0uqvHNOX3tTOJkitdj0VGqmjXqkNoVi5wSFLt0I0ERHddaWs7NHIzcShfjlAzAZZpCKrFmovGDlT0X41Dae4bj6WWXo7dgJEY4wZUl5LL4mVqag9oqYXVVMIEvWWp5T1xhidTegcNLZqXl9hgcbASgCye26rNk/AsuMq0jZ+o5qCCR4ndBnbgui5Tu0DKg7AsGmNnHIGfFTq7i+/fbHqniq98zPBMrtI8gQC5dVJbPIzzkfekrALRY2pa7lp396vQs/jZKcGhAq9P3k+o/wMj3K8SKf2/U2tY3cp7l52W4z0i7tWmX2o0jWIkhQndNkuf+GTNQGZlKmLZb/nAsdx68QR1QXs9uGL19SUJ8aEhhOn7G9HS5k6n4+dOAFwvfaABs+I+N38Q7XqCzKkXWWR4pB1+ujRZ+tFfYgAU5fGsMIBb1zuGQ7z3j9/F47cUJbKSo5UtKeEqR/X7594BACwxMRxpnVAwXEtk9UDLxGRx/YgFNNkfSgXU217Bxeo/KCI0zkZDRQMkuskDU6qNfmf1hpU6tamAyDRedka1kEFAGDr1SGM/E9Xbsrq43DNCXPhDXP/SA35oY6lAIg78+pw8KPVkf8s05NhsvKQpoJ7ZeeveEeh59/DgWu5pgfJGvL+K2MBcBcOrQAADhgor9WTH0Y8YJUk4Ez6iC9HTQU+mQe4LhYj+b5GYxicdJKIBicJZ41n061ORTnVttdjY254fSvsjXxoMYACIpNm5ZoL9wC+R/J28Y+lnX61CVIFo/pYJT2ZaOfnMN89IjrFdNy8aQkHeEXjz6P66Cm54yihv+KYO18I3xCyMzE03PeJKMxuzbCJO/XR6xvBZBF5Mh90hthh7+tiejHfJknggz1XcvXtdvaP1LSICP2li97eH1qV+rgjE/iFkmnEd9B4mxMHTvhWSuJY6Glrj7sgVh1sREG+uswj7+vICYHf7B0G9uYEAHiQrGVUf7/umDs/UkkiYZNVl19R7Qv5gD7lwTdaQ+Cy405nvrSSQjCnd2mmHy4O3d/skcaw4FpMk42+r9pXN58UkyWY0jo00xetHedPiIphQEdMk+2yo8s7H8oudxxnTv+AXRU3Drbr4SWga7zkUZLdQNW+t38R411zWge7KtaVM5t5IjreFyTP4uw+W57p/REAUqsPs93cybrO9bQdMcDu8thRStEcEKjcV8cvqFQ1ZCKnykpKhkDZdj1mXgiN0pWgMH5wQFt2p1druWfi+HUoA/YnL9TNDeAaZ0qfhe9A1eyyBovmgE1eK6OxY22OuVetYlANJSvubbY6CvwRNxhVmJBuZtkHBLbnTdE5ogAAWmypcgUFqmaXnUoNu/Kqwwz88tAmhmx8v2/Xzw3A4YWQeTm3FVvbGccAYtx+LKrUEIiq3CBfb0Oju4NR8UMui5slRyIiM+B4jGGbpeXsNX1zmeD2+tEEu7Ruuc7i5A7mvWwTgOVubbnSN7XsDmXUF0e9tX160V917LQT08HBYYdmPWgdHBAFibw5zm7ScfBsAmAprtEow8AGLQkV7CgJrVMJ4LB9etF5u55GYgaAdVkVsY+Fdmc5dVpRPG4fDp8NcEBncVKLXQgzwgQAtnm7Y8nQ7V07dSUaeg/VxaJib5++tDHWAaESzABxqMxZE0N9nKtoHDunSCm42+9dCT/cXBZo0UsOMAEcMG75BiFxJZmOY1XsK7OwZQ3Q6tXWUIpvZc+5qJ8dwPeiPvlmbAR5tSydTOGwPi20z9btzOkM9149MPHFTa5ZFVArwAnfKgPFBgZKa5MAgLA3e86ngsmsswGHXLwWPqa29g+U79TrMgeAgM2Z/Mr1XzMOXNygPwUeYSdqNTeb2jy2elBysyEiqrUY8pDhoemkdPfJVraUZE5KHURE/oIcg75PRCR2DJ6682dK7nab5zp0+48R0PPKOxMA1GdOvRSPo6toA21Z2+LTslZ2w92uoz2Hr4gNvPqrQsBf7P/YEQc5qe/oTqyOZCR86zgigKgcK6xVQP3EqZ874iEHqVt1b1r0CNdoVzgiUIarKhLenNFH/gJHaxytjofU67t9lLj7Bokc7H5ZLld4yG2wXCe3xRWI/45JlFP66ZTaELUgEblz2FOK9NzqlPN3ChOgOpK49BOA/L/VlAb4VsQBAxU17I0kFBgoPvD5N+npTY5EOPWL6HEAkNFyfVZ4532bU+HegQpCveJObv+pisrj25KMmP6x6PFIOZGZ3QEAhNs128HupMGzaZk8e9HktDb2YmlAocLdVr6DFFUwt5Gg0PaOWvcvSGf34NKE4lWmZutmImq23hdHMtAbqrT/1lLBPBQxQPEqU3ZzY9ZnWPPmyEjVslxp8mQ2v/zH49t+ACTssov6VaZ5GfqcXddPsm+xliRSdRTjGl3fxsddOrzA/RWjK5aGzusSB9ULsMlbv/g6bb2Gh5NQAfCVjn/4iXtUu06fE5a0Y6mkLLnolPb6oIG/hNiaOKWFoX2F8+mKmPZke5l12r44rz2oQ37TKhqdf/qw3znTqWRUdjQ2NloWLEtLeJWGoU0PgO/c2cavp40Z9/IIPGsnDje70d98veeSbWZeXtgcXHIIwPG5/3t69ctR8JFrSySCOOBeG3/52gdgzHN4JHdM2hSpG8KSpXMuOL2J/a8O4rbHd4EerCXyQbb0jtlBgkSDkx9QD+JZ9yhA1jUEn4Y3TsryVyXGw7OWaHGC717L6bl5Z596r4xVMBIhIxskcgOIeU07EfQGJ70lZiNDUPVxsZfcia5b2azBO9UAYSMgqutwKo/k+3Y8Xpt0LpHdAgz/1YHR5uXOzePgv/JcvHyiEE3POukGAPhO6U3ozCwMzbUlfNKNrm03ThJ5CnS2Ef5UU+9bmgjK51wPEv6/GYzjv5O/b5q3deofAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, it is known that PA and PB are the tangents of circle O, A and B are the tangent points, AC is the diameter of circle O, angle P = 40.0, then the degree of angle BAC is ()
|
20.0
|
412
|
[
"10^\\circ",
"20^\\circ",
"30^\\circ",
"40^\\circ"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAGYAAABVCAAAAACeWs69AAAG+0lEQVR4nL2ZaVRTVxDH/1kIBFQkIEQxogUXEFyKIFYsFrFWVDyCuFu01WNFPaIttNqqR21V3EU9WlurPbhSPZUWq1SkqOCu4FZBjSCKCLITERKS2w+QkJf3El8Ir/Pp3pl598fc+zIz98EjAGof+oNb4QPAsYin/wOm+JeyMu4x5NDCkUruMdnXnB9d4xyjzg4XkhccY4SVsTVJ5T2uyKV2XGL4L7uNfCsPmXph1CkuMSBNclUk+45wJ/xmmtouOm/2E86C0WKElS8TXSIvcMZpjipLElhDjgzcwPGmvfHjncfUfYkR3OQDLUYlDbwODDrrMC2HSwyIR60G6Ppz6OyDXGJq/eRlABCz5WB0PXcYZW/JaQBAcFLh2FucYYio22MCAHBO8o06yxkGoXcam4a28avWLW/kBgMiE+hqaOSBq0tfc4PRuIke6Sbup53GneMGA+/0Fr145ZRFm7jAEIyoUutZYpKSY4rbHgMMqXugb+r3x5sJzzjACCrTKTbJvuCpR9sGI9Qb80bKqUbeutRYeUy7NsDoR4OQ3BID86jkO1MK2xrTVUPrcHr86hKS0sYYp96naQ62+1d+vVdNU1uC4flcaaC7zDhwYmZVW2IQQAiDj/8xh7E32hLjJshmcnLaPXkaJSVoalU1ZlVzIWUm8Uodwui2yG116Vob3VR1NMW7I2Y5s8ZQo0GQsZ49LLko7LFuZu2WEzr3ejxriiHGU2isJex6pP+Y33Szix0CHTxvssdQNw3u1s88jLlu8l5dtEgAAFCcHQHkK9hjDKJBXxNVJurQP5OLAAAl1WFQF/RrPcYj38TFbcBx55mpAJBh7Y8dJbHsMdrm9vToBkIIIUWBeSa71MTuhwi5Feh6OPbDS2Y0twZnA4nLk16m/qoZzuuvx4sW2ykHLe9oRjCGGBuftFCTD3zsu2BOgrcZBAD0s0G/rHf0nI7Dz45KN+3CAhPgmGv6iX/3n1mys8BMjOGmobPjxQGmHiiY/qmfX7CNGgJzMLRoECBnytI6WeAbA0g7Po0wIwcwYd4vNNXXrir9gQcAroMXm9Nn0zE9VbeNu59LPeQCALBdttfNIoxTOzmDX5M8/TKmt3bs41m/nfUFhY7BMKO7oYyLmKI3tSqOPNB6TJ+qKiPOsRWUNCaI3/5Aw5JjkNMIIfWTs5kT02GPYrryFYOOLgzRiLyY34Gba+OldG3aiBMsgmHA8LpkqBg8K1bGhDOoJy1JYXPhom8ayRv8giHuhdNVzBtSr1SUt2LT4OqWQ1fuK91DS0xNYm31aOKldwTDhLHrdo+mS98a197oIt7jtr40H4PBOYaa53Ff+BpfxGrJtnd8W2TEuFfUGGi+CVhscpnu9vlzHpmwM2L6Cv+mzMmaqs08kxigU6fP/zJuZTxWkceFifrzY8dP2jD56Uu79Zli41bGaBCcp//LubtpT593UQAE+tYfNHb1ZsZ4luj1uJrYCR+yoADgX52WzFwTmTEePi2vdON8uxXsKBDtnZXJlECMnA0EXqmTtOMdl80ok1FqfiUc6HrmaOBXXtU8yti10ZU9BgLeyaEZrDGDq5t/1lXfrhhtBgVA+Nx9pTSldtMInwIU97zuBQCN87w/M48CyZI6kYpncBjaxfkNFIyVrOlq9mPVRjMpAGyFeWEPqSot1T47XKppdF+s/XIS9H2dLZC89ai9+RjAfdCM3QFMmLduwwX8ooPTtJj+7z31RuHS9a373554jX8Xqqa57qSMI4S8Hv5YV4jmbyOKkGg1m0LPLPLoInpZ4zUqAYWmJUEOy8FmlwQjLyIbcVSOy9JNtOsQKxFgL2h5Qbw0W8+vM6sdNxD7n6JFuol2XeHdeBHvVf5zYXMDze8oT/zd+hmIXSe8VvAd29VUEHsJSt6IO6OymkjsFeUaO2eU1YqkgpoKvrNNfalaLFW/Ulq5WNW9Ridb1SsSJXxyNUhGwXiG5wqAyPt5zf0dj4QEVqRooOwdgju5wuBe+VmagUNxQ+42npd7Gx8MfJnR0PMT3L3vEiYuyLQeIy1PeyMbr8wsdQiVFKchxL02o3qIR/o9d1nzchbsCytRZ9b7EyMYUmatUHcQmShUbOXiqc4O+yOFUCYVV9pOMfi2QVISA7scGZBgMeXMvF1huOTOB/98XF3ZzDNUK7998fwJDh0sprxdOTYM2DBUCOGQ3O3onkXNwySV/6c4wtFiTM3DrwA4WQmBB6rNj32iqGb1BWl8whiLKYC6Ech4sICP0ss9CvI+6km1XrPZuV6WZzmlfdAzVeFxL4CkdXlBTnUooSakLbIyEr+i9QlNJ8VxO5adIAQ1C/wKcgJ8qinGm8Gy/XNdzfn2Y1TqC8sJIbz7SU6SMsUM6rU4v1zc0GDvZfmmaeU/3VD7b6Ulh/cAAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, in Rttriangle ABC, angle B = 90.0, AB = 6.0, AC = 10.0 Fold triangle ABC along ED to make point C coincide with point A, then the perimeter of triangle ABE is equal to ()
|
14.0
|
413
|
[
"14",
"12",
"10",
"15"
] |
A
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAJAAAABKCAAAAABxiIItAAAGdElEQVR4nM2Z7XnjOBKE35nHCdSF0BMCNgROCNwQtCHIIdghjEJYhiCGIIRghMAKgfcDoCT7VrJFae6u/SGRBMBif1Q3mt9m7hHrrun/IN/vmGt4OB6e1kyyShaQ9HgVrdCQEX4exWg/3mTf1vmQf+wT/g0WW2cyGJUK+g14Vjm1YYjhLwvjhyOab5Vpnuc59vPf9duj5VYNVb/JTnTHM1+c+DV5D+jzWcLALgleCxjXM/5s+tHfTLk27gkLrBq/4ir5WoAoQQwanUAI7Gf60utrTq5nba/c5dvbaKnobMgJoWVZy0e95jCybMmkqNT4r5dNfo0XKPEpIP8R+yuXvxtA4vR8UvtFVQOqerYMqBSKDdgeZASFjrR9LZ+lEmMYNleD89ucZVklWcsdw1FUUg6Dw7IKKkiWowCyHDbpWVssXocD+MeB+DyVZKef+yuDnkqRcWSVyKkgR1a21fRgilCRrRI2JSdjlULuypjy2AnGBGRXp7qiIIGHlHOJy8O+y676M9VUCMugaszlXztfna0QAkvdzkDeAM9d+iRMBc6RIhVdHvfd1Xks5GVBIaKEGwYbq0GrhpVAFii9wqgEY/nFOwW9u+fCCh77iBi4jOhJoVFJPZ0STsoJOjtQVQWdUBCZkKJIdsgqdM692QxjN5RSMoc4JVvrg/GqPinZoqjS6wd3Ww7nt/3LvmaEadpP8zxP069pP0/zPE/ztH+b53naH6b9oXH726Gmj8Pbfp7ned4eDm+Ht3lqM66nnA/f3h9O0zzPTzCWDktYhACPsVN7BFX3K+5OT16fPu+6sLC2r5JBWTLV+VSp6lxDXowNpg2sFxZvRU6deCLOVBdg0WmMpud6Rmk8rV5Hl5wqSSDlTg4nWYuPheUoqr5TI6EVKyrCUVS60rDJxBn3PlVv0/FOQgy9z+wqHKfUUr+41EMLtq9K1WtjPGOzhJArSHBgS1bCJUIlAtxoruaDqvynBqTlCLD0V3hRaIXlzLEaa7ClUhrtuN/JqQiKVXC1iW0Zt/yLSyufLNs+IxsvZ+vjPkFPWmgGEKVHXSMc3HzrLO1aWCk1HSKi320sR4kogrOYbpBMc1KXZNe1vHhalGUdC/EE6b13EAFHG9aMls6vvwtpASSVriayyIv3SXF0BZUIuZKuTnEREMLR9EDIWltTn4vg5bWk7JBIlkkEVlgKKCEsoaq4BBSLVha4JC1nAlYX+R+lG1NYyOO4XUyPQhaRF2cTVQkuo9RYVDUfDAR1T3XPzrWJwUmDBChT1E5KAeAxL/5MK3K6iEp04KhM54UX7gZUaY5NrkBSX/LCI/VjLF32WWmFsWPJ3DLYdpgad3cDqqxrNmOpZZylMzjUMvw8bUkjaVEjNVUfI2DtzvVcGoXt2ACDI33InKOVltKl4izSu1rXyiWWkvXefdR0zI4vh2OqnOZ//D9dT67zNM/z3YBOi03biwn9BnlAlFUR6nfNJvd0IR4GCEgaaxNrPZyHAjJ9i32+vnP+D3kgIEE30HZfq5X0gLCvUoN6oD87WiMPNRn0Od9hLnggoJacNuNpO/e/BQSAiDTc13l8LCAgcZ/RHg5I3XBX8/rhgIgW+yvl8YDonP8/wr6K8Rlh3y6P96HqRqvlN5hMJK1HtAB6ZEfebHJpOe3mdb83MGqf9/4ByPQ7s2zOb5OHJdejHLPsukirJnvUS5S2jaDQ11d8q0x2d5F3kqUdFdCNXlzhJvk2u2l5adTc83P0GZUYvFlTFz3t7DXzLoulgnAMnaSbV368Uy/6xrv+8zcfNwHKGdSvgFSevRk3KY+bUw/wM00tAy4ztf/cRa/XW8HUBuOm1zNJ+WyD/4moNht8eee67eZ5mg8Xr1+UaZ54m7dpntru+ia5CGjPCixNfsXbtn+b5/mw/fqk1ne/aLIcaTVZjgkcxintvjypdW0uOvVP/b2ODiz/8asrP/YdWLvClTctJzRGEJ18sce4eQYrp0vXL+OhEK3XLvrSXh5cp9Q6NYQuAurYdRpu15DwYO+GbWsl3/pEl3moDERawWzYPnuDS3FBjq8C+w1M/UH8078Yefni8Af1qc/ur4/Hio4bIvYyL5y3Be+QN+3n/deHX04dWl5I3SnF+Wf+eqF21YfW0dCHiX+Ww3hDrH3m1GsrpdO8H5vtTTOvmHNa50HvJx2Yblro2kZxZaX9ftLYDzct9F/godt2Z/8Gxy6y/TnFBjIAAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, a rectangular ruler is broken and dislocated along a straight line, and points E, D, B, and F are on the same straight line. If angle ADE = 125.0, then the degree of angle DBC is ()
|
55.0
|
414
|
[
"125^\\circ",
"75^\\circ",
"65^\\circ",
"55^\\circ"
] |
D
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAGoAAABkCAAAAABLQPo7AAAPcUlEQVR4nK2ae7TWVZnHn/17z6nlpRTwcD2AoIiAkeJyjQmKYwnOykFHB8q0staMl0g0yUoxTYvKabJMbSaXWlnLNZZSMZJkFAeGmiRlNEQ8oCRXuSqXuJz3t5/vZ/7Yv/ec94XzvhxWPeesddb5/fbe3/08+7nvX8AOJmUEMwIh/Zf+3/1/7RsXZfnajco0cKSFCUOGv+8dlMyUYcG8lIY3oHAIlLIEE5sUAsG8ZOvanl28YWLryeOOz09uzQgbXvcDS9esXXzShPdPbglpjikjNmP1AQ+BUmZeMmFpm15qf2juX86bdPYYs2LfHoI3oZLZ8iULF/SfduVJmSwY2WG4Mg6hCBEAp7zje2cO+Ozq6AAIFw6eBpQRzisz+o9/dBdAjJTxQ9erUDdQToRcRDbfcuxV85CDQI4AogBFgXBihJ9++Jhbt3XtsMdQDtFxYMO1775lHUKO412A4ICEYsFsfHPGu2Zsk/D8SKDSXLT3lhPu2A4IyNMOohJIhDLkFCIVlOPWW3vfcUCJ7x5DuQDmDLhmGwhBBOVVbwUiikKgXvxu+eiQ+d4IqwrKoRAQayedvjTHcRpJ5GBRLBr9D9sRkugO0qrHFhz50gF3kxcM9ZiE/PbBLyf1UCOoHCqjfnjCr5KI6HZKXSzBT094knoK38VVR/rj+adPWqGIR5R3K4g65I7DcwNvBcrdodWclRztvvD8nVCGI4FJox2PbBl32V+6l3unN8EyC5mtOP2UZ47LrdncFMw41BvXITfDshJ9244Z/4asu3mdmxKCub0fTAqbC+RHxJcX58tXjlvc3fsqDRS81PuZTsXLj0x+xORNhGtun9XdQTmFC3Vn28kPHNnydSifPXo3hQOQoh4xOze/zfDiGcSJM45Eubsnpwx89BKPha8sr7cb5evt25YigpzIzAs7jlDr6lA5dpx9Z+GxcrXc5EhffNocL1z094dt+VsgRQnYMOhJ3JHiw7YL4JEVhkSOci3ts+rIPFH3JCK5R57v+ydHaG/L/VFRAkuBIPJG6/wjcg4NsADhTwzbBq51NjeXu+dkZhZCLHHNpyY3GUE9Ndn6GYTJwLJpH7lW5hYsCwRokiVb4PEzkmH89Wx1Ruv9o+ZH4v6WB6Kj9fOiCUfaM+iFZGB/9WGpiETCF5xSRvlj9rS87Vx3Q3TALdfHI41PdZkqso8cDZmCXL81s+m5yyIirmrZnhzR30LZwSPu8GTzsW+qOBeXDIhcfRdEeh7dG1CR6kD5oYFHXX8TqJwclBtRbO319t9AdAU50VH0r4/+Q9+NLW/F9EyQWSlo9nXHl6LJjJ7Hp7q6nlkp81C66b8W7x018LL7S+ZSZsEwYFuvNyNHHp+6JxEj+NQP7OG+6Xqt996cIuHLLNrjl/YvEdxCdri6pQcUKJW094Phl8eyfGQYft5PmoRSrBeMbWugepI8IuGFHtdnJxmvi51/dx044xfhvzhXCHfAiC+dWDefAhQVhfJ4GEMQEFMquea0L+U4sfeWnLxlPUqBymDGnd6Aq6rc2Mm9vqZWKhVebv2uI+K6fgJunIWns7LIkFdS7ltvBZfcVeTq9SmmfemFfk8hJBZMdKIvHS1PMjNW9KcRV7goE73NzGaoketyF/Bsv98Uof6Ba+Wi4+htRY6c2ZLxlqlBCWuBZg93nL/XO+bcpFLdYcqy4PrJR5+5IMOCzFeODiHEd5z/awtpdaY+BA30wkGu28Y7aIF1NNDBMvJHWl8t6jznvN8AMPtfC1mYBrx6uNChfKGtVAdqs131rdyR7hq5HhUhy1vWAc7vxhQHZOt6H6becKlj6oxcyH9ge7yoFKtnqFLzXX/W211Pt/QiPW/andjKVo0xD3SbYxdHZU7bJEyWzZ1+DCayoNB1tq6ABQvWcdWfFx7vlcesGiVkFnhPu1lJZtmqUyyzBi2HGKy0fduJgSy2zbnGSlYKLqvaWikT5sR9/6hfHt2lNuGl0VnwAGFEu5kFs2zVSAtmXlcDS2a0tKwJQaVpN55mYFbKTJ3jMSOjFMoTTnkiVDFrr44xmhXMTl5lEMyyle8xmeqzFfKQNV9zb7BNpSu/kYUQJHmWdXKF5SUPrDlj6ne82mb89VM9mFngtJUhIDM7/QViYz9QRnGKma1Merq5UiB2KYXTPuRhJSXsfD5oTVGdLJwAONiIdhp6i0LbUvvAnQPDFlA9XDj8od8TuFDe9WLn0SKSI5aemZ5a3x3xML5NKrKFHKTbLxq07qDx/syAhcWjLgP93RmkpkLePipSBuzYPT1MNFNF+FrfdQ+M66iIQYDzRL9l1NqZ4HufdBwh1g9KAy3gPewZRNHBpK/BJ6em0OIpxHxn8KvFPgp0gfjMvyslT77r+EKAhnrEVopvPx8diT7xyzixcG1fGL25xjGmpg4X/neF893vLnzgu3YXzZ7Dg4nywAWA72qdU1lXn5jwNjXeupDs4PZKCbB2UHphAzb1FApn1hVAdJa3LkutmwPTJkevVrwkWLHrKKnINlacmh7b8DU9K0AiaE2vdUWZMa91MxHffeGVdFUExX5wxLJRhQKiF08nIsh67cCCNXC3FQclwvTPDXYTRjZp+tQOs50T3/NjuVm1D83MggVb9r48BExmtuN4CxbMshO2BtlhG9dmZGHOms9ayUpmmTd9fuj00hvjp33TshK1G8UCZu1Dmy0Gy0xhc5+0lezU1ZYl1O5JJjPcZAdmfrcpTyVhSeGRZbPO+dwXcsOCWW2xSTCtfK/RZBYso/20FKOyU182r4OSBEJmHkodJZ991kRrJrMseMzsHXd//dqP5c0WzExW6sIKhlm2fHTnRttHBAtuZvMviBxGByM58FqfjXheSerivL4PDXwd8nLShRq9EnuPjpXih/f+MZVTtralojh1VVzgZU2+p7Kegz8+cJl+dNIuAZW+S7W2vzSy6PIimnYlFTf1XdVY14u3c0aVweWUhfjWkDWg2yeXEcSaBQSRH09VZe7/jipkloWJvw3d3IxUnbGwaPs+80BmRshoDtitj/1xWMzD3U2fsxCthGq0isxWjglG0sZFf29ZNDPL7P2LzK1+vyJ4ltHkXzvn3JJRkgJm/7Kkra81NZfDE88+rCZZVqXumIVgy8cmnTILi8cHazKZmV5taXhUSBD/3HttZ+1+YMrlB1JnQlrb+nsnEmslKI38U9EwUDxqSxHGDAa90jCICGDyPahoG++aeHUHaXHBwn5rY211kYM63pkXSDx3SuWl4TffQcOORURPji6Trnv05ntnUlzRRHL08LjdOkgsYtmoyi7LN3y50qw14ksneYMiWKB9w36dhKe47tRvpDSe4nLJr7+kNq1B0pzLimsop/9rlbVNYuzCRlxF/IsfUjoclrV+34tWSg5liPgHbq/dm8Os20Eiwk/PAVB0MOi4/xMNWsIOq3uvB8qgxf3ndgmrcv2ya+gvDmquxKk/IiUjfvlj5MVLw9lx/PYGtTC6eDYoR3p64JLU7ffURAKPEW/v/XxtFuNjX/R0c/Na791FlxpMoBtn1kUC5oworsUeHfp8JXNIVC4UYv7grVUFsxPfeQD2E53r7up0hRiIjS1v1UfaP+Q3yZl9c8TrRCpFb/K6kiDyb2cfqGIqX3GSABdbj91Z0R4wyJ2rZxU76jJFpdIvcseHUwr72XGbut1KDnD1VaLyAz+5BEdEPnNj1UCLAGv67QAiHVWaWCQJq/qsQzl8fMJeuksYhSLqmHCvJ0mJyJduTXecm07YXDXeyEX0m6+rOYREEUcX3YOLA1MuiYe8pzJF8OaAeclR4Ohjjya3NHV2tbpZarzv67csklc6DJVVyvCz0WWRv3Xete512iNKh/Fi/1eoNDjHLkWgZ0fsrzZtI7WRHj+zDFR1HxPsvqELcLac8fkUfrqNbEWlMmfY9sLtdRy1x3EOnDa/ZpxV0u/331Pw0UXumjVNsPrEe4FYp8sUEWWgfPd5xWXc6sGA+OLltWKwJCmxYeA8qO62RKH2lo3O8wMeT27c8+7BcHCHadNFWeRzp4B4atDb1NyxmJLrlP+xz4qDXKH7B2fDwv7zUvWibsNacRsOxD2n3w+IL88Ef+6EFdT2iaruGh8bvhWSaSod9s9O7eBn/Z/rWU3k4o3+bSA+/qhY2/qUvHZvVbdyftMkKdK5ee848Vn+Y9DL3ZhBd0jg/M/gdojjlrD/7Dsp+t7dcYVfcH0xiQ7A75jGV8esS935w3MVwfnBqN247eSKfyZH6ZuJGigV57B9+LfloPQVwust628Yu1nQ0QOmQDkON01hbStfGbMLkGqO3irn4OCsaPlVMnkiuujrV0zeCeSoUZimc34Onk+aOe8DP29ZI3ns/EziICjlRHjG7id948CckRdPKyfndHiWAKUUe//wj4y336bPMeTq/qwcl5YPn56Di33Dxnyy8B25c3iuYoW1dhv5hismFO8OSiIiafdF578l4ObjbqMoEWmYJ1YtIND2cVN2e0qvDsraqjVQCCn/1MjllBeEr6ao54frr3vFueNIz7d+HolLzcyermvC5FG5UP7D/r9aYVfEAjzZdKP0F49KgZanWp9CQuVLn/bFtrxG7Fa4bClH0ctLXoliaS9rrXz3U1xp1E3eimvDDsqQ39n6kuSSx+G79WdbUasWRYbgkqKX85aVkth09pjfpxsv6vm+LlmgSI6TLxx58TaQFL3tBteUG2rtsWLCElEe77p4j8sRT7Ve+1YKek7eKCNVYk1svurEZ1OnInf9wMxWem1MyszMQjALVlL2w7GvNJmCApf9qdfwr2zPUClYqabWPYhkipax49ZRJ68+P1gwhSz43BV6eNSq0FxbqnWSs/6+DWfLVfRR3rzm2JnbUtxrVKgIfMOn33XzpsoXSFFx03h3b3kgqjrt7WpuKLP7Pm1nKRghWGbW93trOkZfOd+asZDXrSpD8LkfPu2YNd8cEJpSRZ8Z8z9E2LRtSClY0yFcSaCHzWyGiliJIpFt/zmu9baXi3Iq0hmCvDAnZ8UN/Sc88lZV/ijKuvRl5S22z2uMpBNKrHtQse0+iSjK6kxA228e2e9DD66szHEkFyKHF797eZ8Rd66uSW8kLTEzs7MOcux0Ftza+k+/C/b49hkWLJaCEcxDJgvBfMOiBW0bJw4YceZxPnyoeWn96mzf0tc2LRo2YfIF/ay2bSRvIgTzkqGSxazrhDqhZn3VVo6YNsdu+FbJCOal2GQxSdpLZnH/C6s2tVlYtclKPmhEsPOGDjmnOcvMs2DVaJiXQvoMMtR+nfj/sLQoIekGZssAAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, the central angle angle AOB = 60.0 ∘, then the degree of the angle of circumference angle ACB is ()
|
30.0
|
415
|
[
"30^\\circ",
"60^\\circ",
"90^\\circ",
"120^\\circ"
] |
A
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAIsAAABaCAAAAACtEPqpAAAF6ElEQVR4nM2aX2xTVRzHv10G1PlgFRdKfFgZCuXB0KiEEgU6ArF7oosPtpKNTgnreBnEmEwTsj6xGR62PZiCMbkzCm00cOXpTgw2JJJtD3X0qSOi7RJJl7DYYkLapiU/H1pG1957z7l/Zvm99PScc3/93HN/53e+5/ZYCM+NtbUaoM7MY0n8btSDaSylc4ZdmMby5aYuoy7MYrnabdyTSSzLqwc3v2DUiTksla9PwdFh1Is5LD9ceNFRMezFFJblVaKFNwy7aTcD5cyPwH0THJFxQ2f/XD9w2qgfixnrUezqQ9Fugh8TxkXyFRY9OeN+TGCZ8xSIFt2F54ClNiSSzzCMYZbka7lq4fs3jboyGruZwb22MAAUe9/7W2hp7ObcKQpFiKjgk2jyrDFnxlhynkUi8olE/igRjY21jqXgjRMRFXxSKEJERLWPFrAUfFK1kNv1aa0qKLSI5dkP59bqvFJLWGTHYG2sdJj+OR1GWK662BNx6fSoW79MlGRRYJXO3dXrU+d4CkHFprQnrc+nTpaoX6VRL4w+FsZCqFNB6GKZ8zDWZH0KQg8Lx23rUhA6WNIuJgqR5K37Uu4HgN2rprNwRua6iVY+mSAKs2A0s+TcKb6OkdCzcvHDx0TlfsZOQWuuy/dFnHw9Q9vCa+XkSx1A+86/1K/QyFIMjLl4+4YfTT0tSl4AYO0stbEUAyMe/t6TyZlqofTbIQD4o5txgaZg0SpPfCIREWXOEBFluq+r99a0nx48HNTSHYi+/e8AgDs7AFTOd79v3rholbPZUbvDsUhUPJggynQffczor4FlfFQTSdxvH88Gv/Is1hQS4wGRlmc0c0/D9icfm7YPRQF0RPui3HKN9zZVVUKDpUKOUDUjBgUNCoKXRcNiF/U4I7laOSgQpdw55c46WJgq4allx+3++LOvQYH45QwfC6+3Ob99NFtfUU1InIPKxcKlEqgQcbqjDXW15MgHw7MGZAZFG7vT8I6kOOeXb/QeH+b4HQ6WfCDiYPWJ9fbsTams4MH9HDBsFrZKWJnYcWMkHbKp9alXELpZmCphfvDAo3jUy/ITLk0wYVgBqb4/Lggut6ASl/ULO3ORZ60Bw8dV7jgzHfMKLubt1kwIWBVCu2YMFjWVMDu9NJKy8ZIAEAI21UepzhLuUkLJX7rsHGEGyXqzRnttbpV21dhVepeA+cE9j+KSRhTAKn5+V6VZbVwUVEIxdhlDEatWEACwiT2iQ7lZOazlVUJ61BGcY0wIlbmjpiCUWWTXEMnnGM82V/OzqCkIRRYZlZCbdHhFDSCyLCprvhJL8xWpoP1sWhuJfH6LexWSowJLk0oQ3E61/KqFRVFByLM0RFh61K4hXpksStpZdk7nA0LdzJv9dn5o0Yy/8NbMXxyUyxZyua5eJeQv7Zk+nh41FQUIdoX5WOpUwtLwnqQoqa9oukz2RXXze+9iYKiW3GPT+ZGgrvy6Zr1bXACwMtXkRmbVbR6XmkpYCW+/MZkKGUPB5urHrfmmFuHnWFOdfOTH/fYxLfmVMY888eamZpXWOI/CXUEUZ2qb4Q01a7TP6llX08AyURpfmv7JJ3K+kzMKY3PVV6yPl5l7e3v7VDcXZppNHF5qZKkMWCwWiwhcmpq9MZJS31yYChMdztR/JyIq91+nhc7Erf+Loc5ebYzdJ9lD2PYKjrT4DGIbACS7t1bOH36rtSSoPqMrQGfChGxi0NoAVG4maMpr+AijEbtqsRz7pw3Ag4dOfLDr19aRLO+8TfTNvjYAd3o6sJLd2TKU0omjl4GugTagcvMISic2HTL/R6qJy3KM0e3a6gUA2A2qTmTmS2ldVj6ZIFpg/G1UfPditdAObGBWeVJ0lr7r36feaS08NvZcc/Kdjmtbt5zi7L2xLPc/s5xlHuu1b/8TAJYlM87XqYVL+RPWv69EV3CdaOHoYzPOYyrag4fO9gPsY70fvb4fOP2LKecOlW/4IhGVv+CdohsZL5WbR4DKxy/zHjI25Wyokm8AQOcsrwD4D0Iuf1XdiN1RAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, in triangle ABC, angle A = 90.0, AB = AC, BD bisects angle ABE, DE perpendicular BC, if BC = 10.0, then the perimeter of triangle DEC is ()
|
10.0
|
416
|
[
"8cm",
"10cm",
"11cm",
"12cm"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAKgAAABgCAAAAACsm2axAAALIElEQVR4nN2be3BU1R3Hv/vePDabTbJ5SB6EkJAlz00ChEAIBhQRQUSZwVYE2wraOtritPU5dhy0w7Rap5QW6ygtHWx1BEEBRSAIgZCEhE3C5kHej01IyIO8931v/9hks5vs3XvuXRxHv//svTfn9/t9cu+5957f75wroPHDkPD7BiDVjw/Udmvyu+RgFTGo/iOTj6FGervab/G2FhO2M50dDuQdxKEv/+PvN7b7IZ7WhKB0HeQCniGmla3bHH3tfdUKftaEoB2K1ZW+PsgCUnMl8c3Hsvx4WZOBDr9L+WdLeAVwiqpVCYHFXxn5gZLdTE2LU2VhPl764WsJIoBSS/mZE5xRevg4nrF/0m+SG0qsItrJK6BpiKVSWMwWO22hIJQIRRK5RGixWOH2T9mFufGAVREJTHy2huc9SQBq//zgUzh6KCoz+ZBBS1NOTgjl0oHevjsWq5miLTSEEqFQIpUoIyNVVpN9pkcLUVv9WiCaktUYOGhbw4+TBFT0UGEo1i4Vhw027CxwckIopbtvDFsn/JIWxKikQSJQ48bRnsYuk5VSpMYJrXZnS0Hjm7cSS1/PtFou9++d/92BCsIBhIQARVFa1w5Wfr1nIm5dcpjIrbV9pKHqUllkZq585phmUWVie5L9gjVzG++HsYDDQ+f1qGedfc98/pJJvXKp5zvYXHWhT5y73t954PiZ/WKAhg/3I+mbCcDt/oLpQMaLp0WphfFMLWXLlvWcKzm3bu30+UswtSbBF0xOoGWBGVNb+o+HC1dEeW18z5P9pUXFj+c49hbGX0rix+cUB9DrkWoAwNinF1c8dw9rc/XGFV8eyNweAgB+CWV2EZuBd5GPRw13sh2/+2r27GbnBBCy43fdbzUBADLoWh5wriIHvWbLAQD9PsXrmaQ2mjfi3ikHAE1IMVeyWSIGpVuiFQAuvZO9J4zcfcBzaw6eAiBa1D7BHc5VxKDd3bkA9cmhrTs5DU6EW3cc/cgKrDBd5w7nKuKbqWlIC/uhil/lcI1QELF/7BlZXGBtPldLN5GeUbo2UYlj1/Zw5gSSX2o+AmR13uFu6iJS0AF9IS5/vYvX0zDmhdKTyO9u5mPrFClokymt+V+PZfMLsvBnn1VGRtTzM54SIai9Ms94IG893yi5D354a1PVKF9zgBj0Tl384fDt/MNs0XwQPdrI354YtENYMrTLh6RJ/JTteHwDxd6QUWSg9FVz409DfQiDwB311poxHxyQgVquVT+42IcoABIeqOno88GeDLS2c/4GX+sP66KHinwwJwMtbnk62IcgAAD/HR3FNv7mRKAT11OW8A8xrdSV3dX8rYlA9SU/UfEPMS3ZzvZv+VsTgVaoV/GPMCOttop/jZUEdLRodRzvAC5SbCzX8zYmAa1pyuXt301acTlvWxLQsoWreft3U8baIt7vewLQwTPJQXzdzwqmKeGd4xGAdvWl8/U+W4sjq/mWgwlAy0PzeDqfozTN6UGepuyg1pOqWJ7O50ilrujmacqe3PUYVvP07UHz511PFQEYP95IC6xx24KJLZlAJw7rJCJLwTYBrgSl3g1EhxJTijarAEhu69aFVZ3YEExsyQQqlxnvC9R12iTUOVHy3UB0KCaopU0FQLYqs3CkoJzDEJcJVKRNzO9e2i+EoU8YcTcQHVLKk8q0AoAy9KLx4Yc4FM6YQKm2Ol3UplCgJG7Cx3kbV0n8Uq4PhQLjdVWn8kO4FPiYQMcbOlt+IQMs+sybJH6oImuhjL2Zvy2lp+ZeoNl+0DDKaSjOBNpu3a9TAGg2yFtKDBYWLwLJlf3Wp++n2LI38aA+YeDyvcBgUojCyulKMYH2Z8tyzRWL/UuH7nRW95hZvAglp7vwlYK2s7QTj/fo7b13gjtL10PCrUd5BrXVfbW6DqfFabb6jYWGRxO9n1EaAnHuu+YXsihKAAA04zUV93VsTDhQvvyv30oyOPZ8z6Cjh3UGkWXyJZluco06LFTJ7idPQ5E8a+xhEbExZfftfkrBoSYPgAlU+bLAZodcBb3/gn4B0YoCslxlHDQyjnXzqLV5BhVNnR1L6yKI/EdIHA0f7Z+3MZit1bhMDu1nlTHkgNPyPihp7cmDPJxkfUXDG03U2X2sw+IepQqB0U08xnreQfWyhZBH9rC7aX4v8c1X3qw7x9auK0gJFBi6iPmc8go6rl8ihTDUwFrcMv9D+awU0WG32Roa/ERAioXHON8raGfrMgDK/nE2L9W920RA/yjbjW8eUgEIyNCzvUHmyitooyoGQISyjc3LjQANgAt+K1natcvjAWBFI/dr7w10snyJH4B5UTfYvFgoCWA4stz7/ChwIyABAOL9uNfzvYEOtGkBQK5m7VJLjVfGGl5Je4KtXVOwPwAE5pRxXu3l7QVROc9RINFUdbE8+LI3vBMgKtzKtmqgb2QqTcz+ZiCaGNEhb6DFWY7ImWcvPMniZmvqsCqNNdhVeqooGDuv6i6C9owsdGxIE2vYhmQSktTf3hwztShCkX6J69I3L320VJ04tZU3wb9m5KLmlrXTm0lDBG8RN3kBvRY3/ViMjrniQ614WvRFtXMwknRPCUdrZtCOsZk0+eEm36bdAABdFVuc0ZTzqzi+75lBrwZondsJC877Mkfk0NkozcxO+ngrN2tm0Pp5Lk+bx25UcfM7V43Fm12yv7QAjteeEbRleKnLXuKqT31cOWz/b3amy64soYUtwXIXI2gVleG6u3n8JCe/c/RNz6NuqVTuEOuL2U1MoLbmBW6rxJTbvyjjRuaum59ucV/ZkyzmNtZjAu1qmzUSWvbAh+2cPLvp9oHl988KnN5m5OKBCbTVtGjWkW2avw1z8eyqyQPhO2fn0PntrKNHVzGAUrqM2SMM8S7p+2yFCCYdHnpmzkLc6ACiWtG0GED7alfO+UvArzs/5uJ6Ricqnp+7VkqWX8llrMcA2iD1MAUW/ssr/+Pg2qlTx3cnejis5ZTjeQa1lmk9LRdLefbC3zlnO/SRoz/3OOUbEavj4MYz6Eh9isc/ZL/Y9FY/B+8ARv588XnPqVTgkqscXiKeQWuVDEWXpNfovZzWsHS+PcC45nDROIcpEs+g5zVM5fDQV5P/dJHcve6P4a8ypjGxCzgsgXQd4dvLOozCwlhgyHAvo4Fs94nD+i1s6aZDgycurdnGnBvIU846lr9aT/XmaYbVxKCo/SBdWvGbBFQovUyECB9ZeOTttevZP1Cwnz8p3eV10i+5qD4VgO70pGnyywJyUFF+78vmTWUJqIjyesbS9p4uKr4v399bG9iKvzbmPez9u5D48OJUoPUPWW9Iy/75iNem7mf0lrS3JTMHQ30snx+INy0rOvP5uiVqpukFW9+NU3TOWrZMUxKrt0hth4NekiLhyUhyULqt6HLGbyOhkxawREDE42t0pd9ocyLC53ZBW//tqjLV/VqChHh1fa22rnKPDAhZzpLnuoL23dqLv5zZgVIjBmnQENAQOH9ct0AL4FeQfLP4aFh6UqSfv79YJBeBMlJW46TxdqO+N22DJso+4PhEgPbkw/EjCBgs0XaZFgAQsvV5N9CgbGH01SdsxuH3WZJOWgAIZAK/rIGSL0wymVgsFItoykbbbCazVK1OD2pqNNsJppHEQ2OQ2qwALGYFMaitaamw7tvtIsETA0RZAi2QiGGnJkdHR8z2CStECpE0SKkIFAqFVhtFNNtF50ViccSxF0WdJatYQGe+FZk88O/EiJtZvw8niXA3VfmeKThhZS7LNMkMqKV6mLIqcgnmCe+2umqoRazzJFy+vvle9eP7JPj71g8G9P/ABZm9bxdSswAAAABJRU5ErkJggg=="
}
] |
<image>As shown in the figure, the perpendicular bisector of the isosceles trapezoid ABCD circumscribed by the circle EF = 15.0, then the perimeter of the isosceles trapezoid ABCD is equal to ()
|
60.0
|
417
|
[
"15cm",
"20cm",
"30cm",
"60cm"
] |
D
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAMsAAAAeCAAAAACnY7VzAAABx0lEQVR4nO2Xv0tCURTHv/dRupkQueSPQYRAghChPSIkaC3HcHGLIIgGQcggavQ/iDYXdao/ocHARd4gDeabAqEnOPiW03CfpWLRuU/oJe+zXBW+33O+91zvU0FYGLS/bmCOeFncySJlWZKLABQuAaEiciScZfXppY1/yLfhixwJv7WTK42/+6fYg5FZ1M6YgNLJdCCc7TWyEt6z0pV4WdyJl8WdKGe5EpKsNc92HDHKUqswhYVmuENEZtv/rFDWiAghIq8Kyglqcj9HHRAREQ1zSZN4dFMdIiIqsZU0zMl9SDW4ymnMVOOrA3suesr/qLg3x2abK7kdvEQBBG7WFGtOcmCv8neyVT9dL2QCSk6BEFdhVKs+AMCuUsFprPKd7FzORd8I7G+rDoZNbxicn1la+Aeb8qUGAFY9A9/JZV/JrB9McCXmu1KlmTSIsnF5iWgAoBdXhNhq8QbTewMAWMU892yu4omp+JmdkPTTAFj3HSKiqspgjHjokKsJ588c38aTxAHILPpyFADSJmcw/ZwRE0JkWtf80ud7sQoAGA987QzKCfsLQ1QFkiZRE8CF0/v+t3TDAHA0dOpTwljX3n8xd+JlcScfT3vWiGu/TXMAAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, if CB = 4.0, DB = 7.0, and D is the midpoint of AC, then the length of AC is ()
|
6.0
|
418
|
[
"6cm",
"7cm",
"4cm",
"5cm"
] |
A
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAO8AAABYCAAAAAA41P+oAAALz0lEQVR4nO1ce1gTVxY/IRleIQV5SqLh/QgIWlp2vy0VcVtFHm5bq1u73W4V8AGK2vrZ2tqn+0cV+7Va0YIIAfvcWt3WCoT4tetzt/rVCpIEkAABVFAEwTxJQmb/IASSTCaTZLKEbn9/5d65c+75zbn33HPvnAkFhf8ruE23Av9j/Mb3143f+P668RvfXzdo060AASg7QTXql0CKLMoMiDdubrsaRGW9kYSQIGsmjOeQP9Ne+/zF7c1kyJoJfJEFoWMq1JdKhqyZMJ5BnEMJ8i1e7E6CqJngr0A5a0NSe82cRBJEzYTxDBr31Ec5rSNkiHJtvu3js80LQYFCIUWiC4/ndrTtn3+JjATQCLt/BmGoDxlCXdZfiW5VnU177iPvt9Ph9hby1l/XtK9Ifr/MM7a7mOW25Ot7KQHvUpRqXzK8lWvybe2o6I1+pf38gdSrHtno5qEz88iT7XJ8BbKRUrTYL6j38qpU0AyPLdi+l/8oObYFcDW+Lcq75b2sougYuHhobRYAg3kr6anIXV+++ThZPbiSvxJKuJKwjQx6EkBtzd9yAUDz48H3k6BFcPKFXJL6cBn7tinvHILCQHoCAEBDdUEmAADC7JMCcDh0rvtScrpxEb4iSWV32MYIzniprnpt5vgvKTwEAJBNqb6fRMoG2BX4tioGSzXFAXS9V2q//k2+ni4wmLfjEADI8tmjfnshCX1NO1+BfLisl10YHj9R8eM+t9fSJwrxmw8GLwAAWDhbcFiW5Xh308xXJDnaw9roT59cYfnc/HkG7oDM7pON/4qJQbiUZQ53OJ18RYqBA+6bgz3jp9TVVa81sqLa26BhrkeVLDnWwT6nj69IUtnNLg43DiUauAWZRhVa+eQufwntA3THYsd6nSa+LYp7pZSiIG+OcTWvKs+YLviw+rUGHRfPbSpXmzSwEc7gq+xEFV5JOA1E3ZWSsMJwswWmjrvOdJmN33JgTrKhFB3tWalxKPRwBt/Bd6/4s7enW7jaqrx7eGyzmWkBgM/NM4sqENaEwxpHDlKlnh9lv27O4Bvy7LXts4/qFmIcKDbLR8q7IzZEmJMFqK02sy4AKLyNVVzqvof66iLjNkJpMJsgEWfwRRLDUhKG9wabjde2rrJe9vpAb8ztzhluPlbMOKbwNK7ICG0qUy+ZWnNuf4vvFwRt7hR/pRp9AFF3ZcaVQvnQx7Qts+jx2PecPlaAubrSmbcTjQdKXJxfhTrHUBy7VLleVqEgqJqT/DMFRulGolu6jvawN5u7KD3ahMfzsIOJ+MJDLFPft1TLRQxjQbgnPwvS/Akq5hy+KAoeCq2hKFIMHEQ2BXlZMC3A+RLNLgv+jcrsk5lVZlO5I8lx47+ld6IAmEQ1cwpfT08f6AjSnycKpcMVkvDiMJztTf2nLyZjeTAAAJCh3uaVmd571LsyAACARh/TtejcIr0IqeYMvhphz7W+73bGAgDc6KjoCVsX7G3RtABQzy3A2d0yWP2J5louZDaWqZYBAGjkdNUbV/5wYC4h3ZzB984J7UfslxcBNMukpZqts3zwj5943DV4m3nOtv2hyebVUVEe3LEcAGCEtMSvvbxyNjHdnME3YDco/cNBLP7kJntjJJ5lAQDqTENmEyDMW1LMC7lIterhSJj3ermnZ1oawcNpZ/D14gC0XxkqhW2+dKuHEg3cfCsRsZJuQclMjxLqW7+jLhwrQXYRdVjO8c/iO/s75xRGWvRBk6jnrrG2qdUqPCxcyQi9+ubLWZARiOJF68ZASYfgcsOi+T9cbSHSlreywWobYW6d1tK1vuCUCzaohqJk27dFer+iM+mFb71TiLSux3dV44gtOmxxMfvpsSWf9yfF2aCgTU/HGlprVzyygvfLDZS3mIB5bxxfbd26KIo2plyxcIX33CX0fGb2OeIakmhfgWzksLrYn5EIAHOp7VHWPObZEiB2WjFqyWHV1uQ9Bgs/FJQpCB9skca3vbOsl70hSj+0YnceCMNYNKfiTFXegmhCojVy7MwNfnXeMgBISPA9qssmqCY5fAWykVLdFr/JwIIW1K7FuwGgtualHPwWBjBYt+LM9dSer8nTH+1lao/J5xFYDADImL+t13hPP/LUaeMJ25zboMa7ib+ynnAHWv7yRvPajvSvJwvnlmYR89MO21fUxe0KL/IzDSzi1u2NiLF8V23NWuJnydRQrAirkbJgspAeJPrk/nICshzj2yYdLHXb6I8RICOxFHG4RY/Fq8aPIU2gArpZXf2JdyKnFDkcn6M0Au8fHOHb2lkpCd8UhW3GqFdLIi2ti/VWY0hj0Jn9YyaHYbyqAhPfngk10mRrwbr981d4mfennNqfmi02EP/xlAb7St0q4nMXRVEU1dbnCowq1GefP23e7ELWUquT2D6+wp/5z6Q8U9uO10bDWy7EvNCwqs7W/hpTLhuV2xadxGrWeWJ1rRVJ9oxngaSqZ+76WT74aSS0ADHmknT6mIWTKhyYRhyNMB+rWUSERzUVf6bYzLdVMbCfVhzgZf3tMxI9oDUT39F43AbPPAGN3Oi0hv/de2zshjnUaul8nHXB1vnbfGrFI8/UYY9TU6i/f0JkWnc+68mztvWIoiiKNi3nT1nNv8eb/+eyn/wBR5It9m1T9h+kFQZgH5ebA4lFxdHGSxKvZs18WzYzE0gsOhhsGMH8GrwJkR7aVKHBGdOEn7Hw9LMpK+oJ7Wr1UDcsv25UUbeSZ8PtU9Fo2OZqf3jemnc/vcqy1yJo31bZ4GFdYSDdpsQvJFCsm1rmc9fa+zJTQ58YKF3vFVub/zm0amWShRfjRPgKFPfLu8M3RuP6AUzh0QNT4oQ67volOI1xMfnau4nysNXWmZ570Vext5oTfEfvBXhiNgCR5MjNuesC6HYkMSYW7GUZti1nuGvspgt0Zr8GAQCoO/lOmPXmi4KFRzTYJyf6cd1mEsHoIbrakJ3L/8XMzxJEyxOnJo6ealfZO3dRFEXVvNxmFEXResIeoG4lRgRmmL+arqGuWLPwXiDhStibwuzP1oza+XH4+NEhv9ruuQsAgDD7ZADaS8deIioli1KjSjDfE+v5Cj978asIY16tyrv7kU0B3o6ktSFB+hjLNO3GZkiBAdDxzlbiyQzLPN+nmb4YN/AdGQj77sGU6mbZcKUkbCvb0Rw+avSABoEW4UnbNkTmYDBvctyuoVbOiIyQESIoV5g+ZT1fP+VFhZ+hUiw+0h1eEGDb6oMJTv7eiJiz+7SvZzgoKGFDRUz/qd3hNnXOYVShJgdb43y1w+jJwOHxaLdb+eCT0R2+DGLv26yAmhokvvftVo7DwqhxA2d6N6XZeNeyh75w57AAAEA0jASwafr8Z8lrBaye6t2xMNp1492+wL/GR9N0KgAScqPdmkrUrzwxNqqz3hRfTnuR186MURs1onj9a59vySJ3gPMf3n1APxY3bt+xf194IaH93H+iqEO7BcOI9MylYUf1m4A7yCnffK1xWI6bepb6+HGb5SAUuH0ogaW7WPFSdFONUj+e+07Q/hH9LXJqCdN/h5rhppNpyfsMy40B0jESvpWi+oDUdiOgVIZO5w/Ne9Y/DUmL/fX5/MoeHW32HQ2VbSHEmvG4uPVT/UpDAwDwigMAhhP6UXZQVBpq4BwyvpRyBAh9VP/LufmiQ2/9EuI95HnM+rGhFai6KCotNTDUTnU18olXyM7lG7z6euHDHeVEk8EsY3Dn9SD6oN0PjhFyIwHQNhbDyXyR5KhMZkRqkMOCQlYLN6W2ltn74ObtrEBj2up2xDs7/1klu0D78gNiqVF4oCVHZM4OSQ2083ZqOnx4c862MKfne3s/+LtiUE6CIJX8ktvn++x/cOmB92clgNP5yhmvIJ+Zv/yxHXTpe/KBtx0QMHU9ch48fNKYjyuUjg9oOeNlt09JUNa537NrBV38tov5LY5L8vRJe/aIA3ntE3Cuffu/Gjtcc88LI+HTRmiui8+tCiZBI+d+H6rqpKg0tECmw0/1VtGV3x9ikaCRK30PiwOVGCWa8YuPGcKXNLj2/2+Qj/8CYSRrTdemDxsAAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, in triangle ABC, angle ABC = 120.0, if DE and FG bisect AB and BC perpendicularly, then the degree of angle EBF is ()
|
60.0
|
419
|
[
"30^\\circ",
"45^\\circ",
"60^\\circ",
"75^\\circ"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAKMAAACICAAAAACubASpAAAWeElEQVR4nM1ceZxdVX3//s7d3n3vzbyZJJONqIiGJCyxIAoRSUNE0CCYokiLFlGgarFCP1VEa1tRrG1lUyxWqVVKiyBYILZIAoii2EoAlQCCQAxLQmYms7ztbuec369/vDeTdLb3JpkZ+/tjlvvOO/d7f9v5LedcErBihclICIDA2ICevOZ6XH5I8n5xjDvp+NmgydH9H3ID2rqultQ6P7qQOZHZxTSORKxYmZRYRIS5ph86/ENZlfVRkYiefPisUJtSy+NGc7lHL9Mf7phfcmaXa+OI2tNH7Dpl7dV9BxFBCKib0twhbFsf08EnVnqveFnwAupAYU4htovROxiHSXVpGfNIZZXMzi6oMdQmRtV3+N06b7u+n9O+3+nz7IIae/M2xx1yyjWbSP+z4zynYGFmFdM4as/3sKlc04NDbk1TkWHunyuv06A27dq46F0IIQUMzAdbb+6Y2LasnV69WPVmVBc7HxVFswtqDLWJkRZlyBYftyP/MmGoE/8v1+t6WkT9kcc+/tASqXQjm1ubaROjH8hw9xXLzv/yoOOj35tbPray6yZxWaR/WU9694Z+yUTiObDmvdQmH7POGNsXLY9PPu+iioc4pwVWAD27/GtSmxiDNMR1J/khrb34nBclhEdQljE3LqjddcagfO/qeQ7CY067rAYAIMVzFOu2izGvHzq6Mk90IfrgG//SpjqzUHNlOW1i1ETfOr8vbw0KQxcsubzu+Q4AmhtGtrvOoPbfx0nRCYHOoUsH/n0YgAH+X2FUuPsNHbXFEFTcorlm+13bBQaYmxitTYwW3znX2bnUEDr3+B6uvP3RFIQ5itFaYEwBWMA6uPskv5wDgAWAUjffcUctQCUHgJFls4uxhW0GEEOAk33vj5xMCqPxjnPDuuKGrDMmhxz4qBdmE2MrWYsmF4D/z+9Xttox6rMz86N/2eTvyeU818SziQ9oyUdYx4E1Kn1hJYU7S6N8JN/e+Mdda60r5EYqmFU2tsLISgHKp5uOLwK9C0Yxeqjh1jOyk5C6bklYZrcs0DLuMSwiJ2xmGfKzdOTisIgM9r39HitpJKL5dxz3aCB7vvJmQlSy/sjF0jBsrvT9T/1c/ASws5s7tMCoAUXo2/a6IGbqKu+93mWd0O+9/fPbpAjMsu9pJWsTSyZ8/IN9Ir98YzpGpiyPv+dXbGNhERaJkt+JrFPHs97Qb/m185FUwrH5IOGwD388SXMgm2kgDJJZYWMLjBaORvG2oxYo6OF549WOTvj0me4g6o7vGgPMjl62wJhP4VW9294LwKn0yLhaVNn9/c+91YMPo1ytEfwuMCKG4+5M36gt3P7u8fWMUkSrL32f9tLYIlSzVE5rtc4EQuF1G5QLUG/nBLJ0UXnLwpNu7QnYOk42O668BR8loASbz2AAVOka/3nN5w5v2V/83YuiKjJb4WQLjCTInkpXudZASaeMi7uLhr1k4WmHXdcrHs1WKttKH1P4t/xBHkoBO3uiCWTtIgf64PKrthe07QBbASAzy9AWGGt5Qz8+jYUIqhxOmk6rD8gma8RCOQS21G62OSMYBebXlaNSAgF9XbnJp/mUvip1G6ow42l3C4wdOnfT6c0xg13OpM6lMu8vfvM9a5Ay4LqYWSfUWh83vzcOAAgnHZMvI53G/tOj/+qxr9hgpvPFVmth8b87XxW6GpDIC6YYHbvuFf/1wACgjG7tdWcUo+DbZ1kFASgqutmkjEw6MhPe8M1nBhk+ZnrdboHRNXedYSG+CGX5KdJpH9oFvvl3v9kjysMc6WPFAJwK/mfFghAMEHYstPlJpyEpiuT92y4drgA6cgBAmGdGLyfDWFCGVUD491NdMgIASRtBjXfbn+2U1MvP7IIzCUbrKKsAiTafocAkBFQ7qXUNqucbn9jW9PQyY1o5CcYECGAstr7ioAy+sgCGutuok8krv/Tx5yT2GkNpZlBOglEhBbRD3zzXYYFxIRiY18Z0lKz62oVP5KQRfcwuxhApRKH8k9MoZ6wBBEPz2pC1DunVV16yAyKYOQ80qe9RyAJseV0JAHxAUCm2VxPVR1z1kX6ZQXWcDKNGDoLoP99bhpDjaAjSySOKveRFOqAlX33PzGbcE+fXHItInC4ezagr8vYt3Dp/NiIi0v+zjQMi2szQDpZJ+GhyXIfcs8YZEZiHcthG0dcBNKN7xWf+JLOJM0MFjEntWhmEXz1n9OMA/SW0TqkEQAane9UH3lcvohbOCMbJeuxCxlJP/0gRyjroeXRZayvQHmCUEopv/uWXTDAzeeJk4tNwg9vetE+MZbNim9O5ijPIOcddkDkzU1uZBKN4bHH9JdneYTUvaCOecWAMoAKTdzYu/0q9HVew3xjJKPPS8Am89/9qp0PtxNeNfMvCOJeWrhmeTYyowHngddHeYEynobThw1kcBbYMWHHP9K+bkQBIATTBimDmwf3HCwp7Mbl75rnW+OMGjp2OAChHBZUgiJacW77J1FNkBxhGKmAi9hBlu/g1+4CnODetEMEHUiz46LYbgqDsRQeWzaqJBejAveuInn1cB1U6J+L3ZCQKKGS07LP/8mDkk3tgIp9MH436tzNlH/g0MG86fCQX8FXVFH949c+8xGupI60wykScdF948USYfWTdPx80jX61Surw8h7ku5/9kXfA+jjhfQX/tdZxo70XaHA+TaNfbZDzBA6Qq9xx7eMHmHtNwkca/sEHBB2jPltQLk1H8S3gU5aZFPMX/OuHth4QxKY+jr/9zqfXJCnt066Mc+34xxEKMg1RvhtUEJdu/9IvDoiRyhBSl/ZWP2uopQBu/UOXIygAzY8GlwrgoLGpRzfhTo7Z90AuAIVQL/78537FqElW3T8f1LRry41gFnAQBKx58wYUu7IQzcTJYqiDIAIGLIOnxLcveYQ6jrj0yt9WCzWvsH/7BpoYma21zAw4xkMmT1Z/j4iq1KglCgt2z1OWjbViLcNifNl5QhIHCLQ69gMfjhGU9zNPbGIkQEQAk4gGtH/rWRGqpoARjC4Gu8FwRKRhZNIeSFaCkBL15q+du9vL6f2rpzUxOoqIlHLIKg9a4c6zDXSUG7VrMlmeiZQiIiJQmxDhqKzCXg5Bz9+ftyvg9EAwjt48UC5M8EtaukB3hwBBGlWRWujCsSA1grE9fawj8CwA+Ad/4aLnA7NfRrN3LRQBYFwr8Ommdwtp8moOQZgFZMolItKj7GsTIgCErtEJgo7Dz7+sL79fCjmCsWnVKUwCx246K1/NWxgQQQRESa0oClnWSCYbGtnO9IUsg7herk5w16y/fP+2hygXKmBohnIVECILkfzP4oNRhCMlEMhxFFGhd6EQwsDxSeVd5B3Pc9FOtcT3oQCEBNv5rrd8LIlijO+MtsLY+EXNoMbVBWS5m85yGprY2HoNgJIcHUgBR0GY8r/3to+qUKgu0wsoR2Q9cvvIQ13ufRcBaBhH83q1SO1vRJyIRAGvetvKv04p6cimp5cjfKSmfw0Q5x9+1fzRz0fc7nBJAc7+x9NMHkDFizo/mRoOpjfPiO+hZpTtQ4JvnDPej+3phhzIfke2QBpp+qRc66dS3x9Zj/KRka/es2FvY3DE2QyVaDoOZxwRC9zA096Xtt+hubA/st6X7jl0ngdgxME0cFU60K7fnvg+DuA4CEVdcd+DvdP87pj/XST3nkkYZeAIsCSYluMeS0wOgY0GSf7yHzw8Te8zpv44LEPdaVXYDp8JHIJ3x7XLPmRFeN3tLKLFHuiuLSMv2x3vv1dLmaWP25ttDMaM5e71zFk2ZPsuunrgscMvLq+4hxPh9Q9zJU5ZRLhe2//SJ4twxH3H32t4IGn3ecfIWgg3vBcEt5MLu1Z0HnbU9t1HrkQQ13b6KOa8GHEly+fd/a59WtsH89L8677zsO32qNKmzMfIul5fNiwpsxl8dkUl+Su8+PR/6n4ZsIc8w3221tizZfZf4FYSw4nYX7z9yZqNuPVBCZFxsha+5STWZdbaXIeenj8brKR7rO23cc9OYWaWrFquH8hWwkxSlnTAPPqW3iq3WS8fg7HOJ9/KtUzsgNnwvcH7e86OddlyxIx3XHjbLpOyMHPzlNd+UbnCtswsw7s37OTI7A/G2q6jhyVhecHq1Xt0euHJw2U9zBI9efiPvrpxxYaPbPktSzyQTjHh1KTZpMJmT8z847XPtfmoYzKM/J3LCzYQOUh++OZOTvlZ8lWxb5Gb9By+5rw9fT+5YsA9+p0n+Pt9uNmN8kiDdB5FzvGXffqy5e1FKQ0+WskkkUjMGbdpiTKRwY3bKtv+Fje9wJyymC0nZUZzllaqT33lrYeeeOEdz7EkiYhIJpLFIsK6oaas9VSWwM0fEe/RPzv9WZYolrg8NUObGI1kkkhddi9P62KEs0PdQvFofHsXi6QsZtM7tDFiREy5Vt/5w+tPe/0xH7lzp5U4E6mL1CWKRCSq9sUi7Th6jmU4Nrdc+kyNZYBbNKeavQ/jWkd7mf/tW+6KPB/a29WR+ZkfOgRhB/jOpn8jcVgZVwjCbKLtP7//qdKhpx07HznKPBICKwgoQuAga1nMM67UivbGh6/URW1CO6XuNDFmvgAge+Lla42LJGccisPhrsFOqzxA6LrHryUoIWnm4S7YmuTpX9/3i+Ibjliz2qYFZCbPw52ugDK3pZoJRSHi0PzH925QgeaptxiMYgQAPLnhmfICoNKJKA+U/RyxAix7l6efVY0A07gA133fxm7ICdMTP//1I7Wj3/3aQ0IhiBaGclu3jjLfJAXUC/Edm/8pBOpTBuZNJjdnve8Udz5gi6gVakUJckmOAMMeBpc1YmDjuiZBsUjGKQLW9bNjjqrJ4MM3PW3fdPKqpV3+CJtaYPSjMNS+I/n31D5zyUKaOncY6cUZF9pLNl52WAc4y1k13EVAJW+VMPmEC954XqO6b8kRoF7U7JssT1EeUUhZ5vDzWzdv61z5lhWr8hz7rc+iVTqopkLCUOErAxcvnPqRRjAmOUT5oUNfdspdqHYwO1QJTY5YgRWQXHDy2Q6EhCAsSol1YR2hWiF1XDIuojyn4Oceuf+ZPSv+4JQlulWDK8qpzANVi9rY6+mDhXZsBtUOse4Xan9LQk1JCQkBbF0C23d86gRSmW/HaNqoTBt/sNVSe2DT4/7SjatXhtYBYB0gVoFxgUbnlIXU6BelXDJe/Wq5JKgVehcqJBM+24jNeFoCve6KNWM/Z1EE8JqvHmNd7bXUM6mlebK/eWbL09VVJx93cD4OoAMgDo0NYFKiHI2AbYxPwijs/xYudpK8SjiccP4mxjgsF9wn3rVtrCJxM/N/9Q9WZMFYLk4IEgQw62j3Y/c9iqUbjz1cZTYgGekDSUIh9vpP7VWKSnr/cdGfKNc6k7T8mxi1Z53atdUvjH0O44KJgNLTi+NQpna1jYcSEWr6T/viMw9u3fGa09e/Nqh0UMx5ijkPglajDytJQOUSBj9z6rogLdDEXNinxz546g3Lxu4o0x6YCLpzTyEN0DqUsJY8AHUOVep6HFcC/evvP2BfufGwI/JCEFCi4e/jsuMcCcW5nZ+4cHVR9fVMJWsg9p47a6szltfGhVVkqq/pc62iluoIAKiaggdKAsrIE0oy3+x64scP9R520jGrukEQ0F6NTIOBLqdazPyBCz5xjA3S3ER3GMVYK17Gfz2O1Q3PGfevfVY862CKFwc0SItyBWQSlQdS8gdLjjUBJyodfOqeB+NFpx95dAcltJeRqV+nMCqQ7b/g84d0pMFUGC2pJfevnGhjhfFQ3fWuX6V57UG3cs6N9dB1mMiwj8wzJgSLA3DNt4O/+slj2xefduprnFFmsPHY+HpoIR675oJjJzHKRmymxfx0fU2LHUNazLAIbznJMEsmzCImjtsI8a2x+wSMzT9YV2u77/rzdW9Ye839e6w0DlmlNSPCLPWX37YjYsm0SCIixohIKlpkxAoUOzedGqpx5wQJqgjr1DsAIQ8kgOO0sR43u080pr9FRcm99cTkpd77/377QevXrZqX+UnO06iW6oV89Rvn3RwOdlOSlIa6WBHHyIHjnNPESMSbfjpB05IS5UtSGO6Chm/J+MiMciGtZJ65SgzT+OPPrAM317nsTVx/Ysuno/knHru2HvVIiV3Kcj1Xbvz6clueh3qJHLD2PIpCLxuJcYUe/NjWesd456JdMg59edcXFSCMxPFUo+81NU3h7ZPY6UASEGvz0rO/2Prg6089dG2eYlOgwa5tV31xKajckdoCGReoeDmyzqhdX3jkh3mCKpqQZQ+f6LwkAMS6AhIjbZwOtxquO34fiziNpci4SJBjtnsKT935k+2vX/a+N3iZH+Ue+Ifv2oJLqU9IyYd247SLRjDuWX/XEofHVbyjPBmH4o8ffk7ONa51AIiB13IjmS8Wipgn1AlJbZ7FoUR7yktqBebNOzc/uXLtkW8vlx785rVdKHdqDgiRCkhAETGxYoWfnn+172UYu0EsyYsNYvnW8nVW2UIScNeibsCmk+9wblA110A3tonJPmDgSsKhgnbIwkEWaIgeGrxl20NHHHX2vTv+yu9iF8gchTQYKjkpMUQx6Vu/vCR4vnvcwTaf6lQc7nmoe+UgS2fFy4b3VAClWjVQiwsX5tNMBWOF7RpWrqRZwTORKqI+/5VFkZw35M/r91Pv2c4dj1c78EhXnHvm+huCc9dUzvhi+rFF1LeAIEJZ7CIOJ/LRlZLRPilpHP+X9k51VAf6Et/ndBLFFWr6r77+IQTQ2iUBiFFdGO/YdafvPbfx1Vcs/PZV15xy/BfXdLnzwVbnarmiM9wzwWxJrlAptbdO70ulg1Lteq3P+jg2cV1mGvEDQvWgklcvnXLcFYvo7E1v2nPkqhK55p2PdGTp6V9P6h2ZP9Q99oEDoc5a8cVXTBOjqHDC8GAspapEjeivQXU/F+aruavnX7EodjuPHfLeuUSBbO2jy/94+P1Lv0+Kxq8fjVcM9W46f5rto9h3wKZ104nGONIoByZFRxz2NT+vZLiD0w7ruNWwvuEVy9Y8n9hckPJYu6ZKJ+qFzy+YHkIgR4BqY+eRZREQeERvc1ZUtdjX9+e6SyV+CZ6fwXULz/1yVfnarz/vOyrKj7eHHFP+1t2vnS5GMkwugVvJ2wGLu8+yZOOcCpykY1kpLffUC0Zcn6DwwPaDX1f5zUGOrYSV8Rh9lezoPahFAjzRzV2XgEbnfgoyItYAlpvkFFwwcuEWyS00Ww0hBaAG77796Zu/e2NM6KCOcfojddBV5z097ffCCSlqq1FCjk+AVU0Cxcjbxcff+B09eDOs52awFrX1dRk875BMaizj67P8Mn/ysWz9FmPZWnPA3Zk2iEVE6n9zVM+6m6scM4sI7ruIX+Q/Xd0nLJJkY7+R6fuwugcvGcvMbOcCpIiIxH27y6luBshYd1+kLw6uYpmwp5G89De7djyyOsoMi8whRrExiySNAi8WdyztXvkfwyKcVMcP/dF51WHe1JMmWQPjXEFksakZSTSwrXf3b4cjzjKRZHxPowf32A9hWU8tZRFus+czA1RnkSSKYxYRocyrFsm4lYID64yLKQalw+93olynowgiB7RbYVp+wRrHEzRyWZJK6CWOp700mCDqSX1LKqIQzZcezd1L7MRmNucSACgUPUk9a2AnOl3pa5cln6sD1Fi15oqsuGG+eerkfwEhfwmVh+JBSwAAAABJRU5ErkJggg=="
}
] |
<image>As shown in the figure, in Rttriangle ABC, angle BAC = 90.0, rotate triangle ABC clockwise around point A by 90.0 to obtain triangle AB′C′ (the corresponding point of point B is point B′, and the corresponding point of point C is point C ′), connect CC′, if angle CC′B′ = 33.0, then the size of angle B is ()
|
78.0
|
420
|
[
"33^\\circ",
"45^\\circ",
"57^\\circ",
"78^\\circ"
] |
D
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAKcAAAAWCAAAAACA69PgAAACKElEQVR4nMWWsW/TQBTGf5dUYsmaAQlVIqX1wBJmBrxUBIawsDIwkKFLJTp0YcgfgDogBaQysDGELgwgR0io/wAyHTtEeABGhpYpueZjOCdN2sp24iR8sv3und/d9/zd+dlGADRpkgmZA/NjgqqwMBpBs5kalRXT5KlLjSSYqXNJwjR5mkuN5WFx6z4HjK2bcW0ffwE8h+ZentH4zZGzkjuZBPh5BpuJ/WUyvRP/H8P92fk+75nnIcAjY4w5cNNJknpeqHQM6gDl07Sw2LbA722P3FlQ/6CAUFKs54vVW06CRBXMx3o40JPK32QV3LaKzJH07tr1PFWs363hMdRzoNb722kiSZJ6NUmqN7KEes8k6Xl7ViklKWgM2VYAE50+LJcApT3611WA9W+pgfD2zx7A2vrsakJ3f5+wClAQ8HKXDQCTtvu/bAJUMixl/9VOCcFWNU+enVCtO0cABQNvWuYmgJTySewHNYDuRjrDr+O1/N/X6KSqhhcAFCA6sQoqgEkrpr/vloBob3MaMiFmrFKfa5ifxxWXZ/R0F7rxlMn4VAHY9h+nU9zwugDRAQbDjNJ27tOvlR8AsAOhrcOWlbVWslYDuebAGQ3kOnpeaO0PfCtrZc/r5EUrSXpNWwr8q+5ntAEAvnOQJHt+jo4xEztuHG1rh4lehVGyAZClgGWDEXBWhLOiM0BxoqMI41fXHd9cHkb/S8WYd6ns2VFwEo7jop/cvST8A+oZ2IIvzIw4AAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, point C is on line AB, point D is the midpoint of AC, if CD = 3.0, AB = 10.0, then the length of BC is ()
|
4.0
|
421
|
[
"3cm",
"4cm",
"6cm",
"7cm"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAJsAAABhCAAAAADkA4wvAAAHf0lEQVR4nL1bXWgc1xk9d23Xj4GSh3lYqljeUhm1ZI0cLBK3okRODN1N98EgQ10w1IkIhiKDZfJgEAY/JI6getCDtyrED4aoD2WF4kBbrYttXBpVDTZUifKw66oIyiZKiEB5WO/M3NOH2dnf+bnztweknZn7fXfOnHvv93262hHEAEEBlI8cVbROJcqlFwLAaaFqPUhuBIGr+SOq9mJwY0oBcOnIa8p3HKBuAsBTDOeVHQY731B8CyPKxoPltvS+yKhbH0yOSD+qJMpPlc0Hye3p5VUKdWoAB4ZZoMI8MEup5jDAGBIYA16ngTBQbgHHaKDcHq4AUKc4QG7m7NlfrQNWglDB4LhVT+4sG7VALsnGjTZua0uc+m1WMXyQJAfEbe/c2Ba30/VsiaRqfEtwTDum/PqL6fURLP7m8Nx1ABCK6yFBsVqY08qS/E6rkZZwahgAt51TuV2SXLhIshRgxiXPraQtkCSNzL9JyWxJmVzS3PanRx6TpGTpDEmylFX2TTi+PXkJG1kAEFiYAQAUsKKcGBJRqwm5oJXs440RkpSWcGrDmiS33TM/3WmdnF+yj5SXaoLcytqN9smOVrcPlWdcYtyMK0PrHWP3zrV2k6pwSXHbyk7t2ceSrGu1dpuqcAlxW9Lu0JrylnSLFzpbFYVLhNve1Fil+0rmceeZonBJxLe/v5heP2qlcyuS8eMXsh1RCwWsKHUUl1YkKSlJzmn3exsm7nabqQkX+5junPrFbu+1x5neK0p1XNzc/tjM7F24cKvngmwJ50UvXm7fvTm62X+3Wjvu2pAqSzXGtUA8OZH6dFT0pfLFC4d7L4m56woJPw65mphvZ/ZO8bribqtFoY6LjZvcnZyoOd7u1q97TUmlGBcbNzuzy47f1uGPNhwdsqVk12mr8/rM0CcuNn+e6LJswb+Oi7YWhLUG8MX415snHaYyAMzPtCy7UMCK3+5DeNHasDJ7HyRJbmYMFy/fGReJmzUke4WTlc7zblxcdHX3i3HhudlEHqWvOSsjSbKm7bv24Cdc1DE15rQHTSrSQTc5d8XD2Ue4CNwkye3xQl9m70Q9vePR6iNcNN2Wtd4s3oOlKfc26SdcFG77F0c3PW8tOeoW9SwLb+EixLd/HT/86ah7swDEve/3R71Oi2YB7Jb2Q2pGzmt3fW3O/Mm73buOA0nZaDTMAKwkydrkxJe+hltH3eJuqyuvGQeSlHoQaiR5V3vX6tvTatqhBu6B135ccG6Ssj6Tca4turGr7bk3KtRx9lowdAPUJWjoEqCh62h9WEdG81wYmy9/s3GcRkP3WSzFc895LhUCwNx194Tf1E3qJE3SIHWTuknTOjKtGaObNOzLt9IfUuo6pe4tWz29rbKb5V7HtcZUGpQmZaPRaJhSJ6V1c4uANCwzUn5TeKVqWh4+M+H2WV9epFcd1xzTFASlTAGpQ4cOpeyA0447tH8/fOnH93/gM5ZN/G5GycyjjiNNQxokZcMkqZukpKWj/dFcLJL6s2vDf2tp5qPb/XEl2TyyagoQ0hAAhEgBOGDqusABqZsHYH8YUliX/zf5+T9/DpNm68flcQG73lUUzq0jG35xRN7xy+ydqAz5xd0W3IRrc5M+3PbPH99Su5ckKS/NqxmTruWIzc30y1obmZm+nQMP7D3vEXd74SKcaq6/0c7s7d1IF0iS786oEnOv4xS4SbI2MelZ3vYQI410VdGe7nWcf/1GgY+z+bXnFVedFaqWTwwr2sOjjvN+fpKsXzqqktm7nMf6ti697R3rOFfdWqH6s7FnT06oiwAAeIiJQPbil3aM68oQfo90S/swkAQkycIdh00bTzjVcT7cdnPj28FoScogcderjvNeCw9+MvaPoUCjAwGBxbcPBLB3r+M8Hsm4ln4UTDRLh1bcDfKFC4c6zoNbZbzwbUBiFuYvhfHqr+PcuEne0ZZc2nxgDFX8jRzQlxzcuO2fzypm9j4s58L59SUHF26fvBAos3dAcjxY3G2jVzgHbpLyhlYO2T/5SP2LDD3oFc5Jt9rPJr8O2z959nZo1x7hHLiVtABlYR+20yEnA/uE6+NWnx55EjThdGLmhr+NM/rqOLSuW9gcvei+QauAPe2rCN7dwoFkHgDWSJIL2nKErkkuTEdy7xIOJJlf4xoq5G7ulNf2rAKMTNioaKEpXBEiz9mDAPDRKo4AeHDOuPQHOwWH+05yFcuh/ACmCABbKwVUf3iFqIrfCwLlv97EGyM3//sBYL0BEQbWw4hn3wvJzcaxKYir7wG4+hpIFgGES4HdCLOsHVC01mexAknmqix2k4t4l2juKDYPUgJVMYw3ca9rgMKMxhspIYQI7Y5mkVnFcHOup4B7OeApAvzN5oLVXIWcDcsLaD+T/UnmK2Qs/6vMkWRuNmo3KEqSlTWmyuKjjBD5GF5jKB8DwGNfRO2nOH0PKF+exMHJ2F6u+MvrAEQmMre3hk8Ds6uxvjtmdXUVN+PqMLZ3efifWQCovr8WV4/xvSMgyhkAuJx/Na4eY3x/YfpVsCqwGiWINNGcZ9Hnm5WAy6cBAGuTUbvrwP8BY7+T7EQhAzYAAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, AD is the midline of triangle ABC, and it is known that the perimeter of triangle ABD is 22.0, and AB is longer than AC by 3.0, then the perimeter of triangle ACD is ()
|
19.0
|
422
|
[
"19cm",
"22cm",
"25cm",
"31cm"
] |
A
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAANgAAAAVCAAAAAABPX9bAAACtUlEQVR4nNWXv08UQRzFPzOcVlhi4s8oqBcszFkaGiAxUAEx2ppIDA0mGDHRxH/AQgsLSIyFvdBQSPYs5E84KNUgZ4ENiQVQ7ezts9i9A7y5Y1c9Iy/Zu53ve2/2O5n5fm8PNRBAz446hrzTt9GXW1H7PNRjcQCdXFne6dvoA4yf2u8pkEDmA8DW5FU6g3LO6VvpjSgj2JrsN35PcBvA1vU0yToBe7jkEL0ad6YVkY5/96zkxF89ii2oAAxnE4ID4aPQPOI2U+0jzK87eISgdtVj08NZXv03yfw5xo0xxgzRVGQHkVanm8lb1pkhAM0bM+QeZrSMG2PMyd2mfgDA0tiaFBTbOBcBbLLwZ+d7c2ecEQao2jXp7fFTGS1LYxXpbu+ud0vC8Jp7Ndzfyrmg4M4q9R2bv/49d8I54EanXsOF2UtZ9WEJXgzM+jitDPLm9LGZFs71EZLNtADVnRs93bnTzY43P14C9PZl1H88D9D32ceZ9adm+nJzXCBYGTjBzFQJkt+xaW1M5WzeeRAWn+czzC5I0tyglxyrxLd2FPuoWHPAqiTJAvNz5mL+bciOzU99/j7QAi4YBfH1io+sbpfMQLe3I8pQrmi+tApgobojF3SsdySPzKXeHOgGU31500cuj8IjHvgow7ftEveLZQBL9d4T+JL76TlwpvgVA9XFbHIt94KYGbztY8sjwPg5v/X9aHI+AB5DRRMw5RS7muRcJCl0TpJc6NLT65yrj52rudApiWTCHO+kwF8yzQiLFWmDwbRsDiBIV1DxWycqCovJS1XyruhqcpIiySWDmqLkLnINwV64fmXMNFYAZG1Pae4LnmXVp2vrHE4GybtiZK1qBWJLBFgbFSAqkH6x/zMqEFnbuP5bpH80LYZYXXuBIw8LtQiArtgAxCCoJWytoTsQPgr4CZyp9L0vh05GAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, the line segment AB = 20.0, C is the midpoint of AB, D is the point on CB, E is the midpoint of DB, and EB = 3.0, then CD is equal to ()
|
4.0
|
423
|
[
"10",
"6",
"4",
"2"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAK8AAAAYCAAAAACpNvJkAAACpUlEQVR4nNWXTUhUURTHf+/5xpdlHxrZB2GZlkgroVaiUC1y0aKNqyAF0025qUUEltGmRQhFRAsJKizL2tXCioJWQeZGDGxjRGY1WJI2+a6+8bR484aZUefdmSnRH8Ocy73nnPu/h3sf9yLZMNAQ1nPsPZFV/vlcb/OsiU/zA7QJRQr0HI0p/aRpiTqejetVYZVBuDun5xcKZZA07YSuZ+N6jUIAEQAJip4oDOtN8y08k7m2hZA8zxq+tpk2e1JB3pzpWlHSazZta3ZGo8JG0U0OlEVylAoQWmddA8Dye/58L691jSgm0TzXFCsvXbhlam0IY+3PD0e2TOcmFcDIH5qMzex3bait25974lQa/lWiji+eNQL36vLg5WgjsHL0+pjBLsuKlabXP2/H7+pGfD4fmZDVT/ScW4cru75uzUJXMl2vf0+F+iBe39NPtWM3PXtcvmew8JeG69Uat6Kk/mw2CpPZea+/cqoOABERGWyq1r969HaKSOm+YMdbdIhIxZVM7zYLsNcRYVr8+85wk6u/2E/rgRvvBgMdm5suAheOZV7PeVTZnCxdBSAiTpcTadFe6sdzjoiMr+kLcmwrzr6eKYxiFD8XEa++t1tKinZoL7V7xAbGSncHOfbUZV3OVM5cfnOoBfC+D/nv3RfV2rGbCwCaS3YFOYrmHVmDt91Wr3GnEbDg4Ctlj4UUtgIbhQ0oEk28pcCebVS2ut//MHCSsiEAfmzMWe5IqwVsA6AdxKmCRyLiJPwSTOKIdNY6jnOKnthAGsa5JCKHx3LfvvUDImXel4yYmrg8x1lEr/ffDsBRR4L1imyHmonc5ZYD5HttQwBlA8pWdqxJrJXckdgdG1x6TEh9ty3yjsvkeff/MCR2wuI1nH/elJ3UrcBW2H7Y0vIXqzTL/MubYYYAAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, C and D are two points on the line segment AB. If CB = 4.0, DB = 7.0, and D is the midpoint of AC, then AB = ()
|
10.0
|
424
|
[
"10cm",
"11cm",
"12cm",
"14cm"
] |
A
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAL0AAAClCAAAAAAsOaMaAAAti0lEQVR4nNW9eZhdx3Ef+qvqPstdZsMsGOw7hgQBElwlEpQIipREkZIoSrIj0UoU2ZYSWXH8HMvPcRw5tvO+ZyfPzvMSyaasSN4SWUsUiVohiYu4Q1zAFcS+YzD73Ln7Oae76v1xZ0BggAEwIPJM1/cNzsxZf1VdXV1dXV0gxRwkqUChABSqpKRKpCdvVyVSKNz4l2Et4CRLvKiJLScaNa67gWTyh1Mu4NiwDW25dsPVxioBUFV4xpFdjWOfLloozYXg/GTnvsQCUrTeTiCASEEKJUAIBM8qqkWTASwkAihZMIwjFD12P8k5qIGQ9ybX3H2NCgEQgKrH9+5N2mK783pgFvh5MXMO9MYphIVaDQAACihABCFAFR4Ah8sPQlsYVAygLGDpdi+9FEjG5AyEBFE4OdlBRkGoHnr5hE+Vs8Buv9qw8GlfbYH3AIRIiZQAJSiEzXzQE6mqbwl6hlQJEJ3mQxWqeMsREIEYqiAFCIGE4bYxzrxSYIhUsiAuNB9/l3oZ2be37InAXjx4pNw7W/bTwlcQQbJUmwbGqIkseXNGu5wDPYyABADrtOBbByWdRg4IgHyQimU4iMIRB8KZWfjdlJwPlQwzKatQYepYs/HcLtfikwx8lhmzq/cMVSEAIHUjD+ypO0smYWHOgoH39Z3BKGjuXgttqCqBprsuoBDSlsCnmVBV1ede4JAzlyRNJY5ylFoNMnXWELMRFhAF7fHYhPMAiJVAKk4QtYN+3eAMhfCAP/jY9g5DDICUoKIu/a1ent0tePajp3JmVHVa6xWAqKhCIOoBURHxznknV5AKGYgCClGFowzC1gZBAPIiTryngrUAtRQZIIZ6ZypHztpLR/706z+tVapNJwIPVYEx/BBkdh+fW3NIYTIQVFua0+KCkAxNVFWDYnt3YJ2QOEMLT6hnYoFHYIVgUkZA1pCmIiAlcmkWRykw3b8VIFKX2fjZ5WdB/8Tjo/yb/ew/nTCD4A2ImGpn3nguvW/pDJEQ6TT4R19MvQERMRsY4mLvkk7FW74urARWYWhKoQ/gKQJ5731L3siyoFA2bho5WmedBPv4dNUVAHtemLjyQwa7/tq3hQIASkrSaJsPeiKQEUChMxYRGCHllvS8B8DNiV0UXLNk2WGExjA8iJqxByWhZWTOeQUzAeoyLRZrrACUASIPkHOmcWDV6Z9VGvr7yWvvNen3np2M2AlDIASFXNm6fMGyV5twywySEhSaJWIdGZjWAMwqEN94OFxCDsYCHiyO1Daz0HrnMkcgEAEkNdNWbPqTlosI7DNpu7lnds+b+h9x8D7W558eef/AwVK1ok5DCToWDvSDL1zvAZCBJ+j0iKGKRMBswtYrVAAo2KfVqQhZZIwXiHiJXSWOfJL5TC21mkrIVaLiZKsZVRlK1i2/viu7PDhVnJ4g38u//O/bdPCbpX8zoCtJAFIQhEnOMDnnRg8OUgGk9RSLNjIgCAy8CIHZKFTFMxqVfFyPI/XO1CODSXRkSaoCArMhMBRolLojl6pntQAKa1f25aTpmxG9BkhI8cPyK+/pgTwSvGeAGSfNqRIYZ7gV55a9hnUCtzwdVUVDgMAiTUQdmC1bMmwscbWcxj7OVZyhyFYrqxv1DLCGOQQxgVRUGwgIBAa61lzRqQoB24mOmY8pgVT3jx5a/XbC8O6p2xmqJ9WKWoZ/Fp1b78moAiAiKIFdM/M20KyZiio5eDImiIIwTINGzYcSLnHeUmNy+XgdsKG1gSUCUcuxUBeCJFy9blGBpaURHNROujkEKJqPjNJHGfoDvc0CyjoDWekMwZ8bvZKC4zp5hpIhKLH3atQ7USjUq0emiE1sbVchrqU+lyMJsqmuiaoPIhuGxjKBSUECUk0R9G9YaWEURpUA2NRPdvuTqDS73x+/t0N19ATuAhj4809h6w9//Y9nkM+Wvj0F7Cz0BChyVVIJWlZaKHFCECVSAOpFoKhxzYYRBbkGmgVkHm3lRiMfFcMgYCIGBKpQodDxpvVWvdEZLw+wwVA3WmOYincv8f41+sNSY9CsZACHVn1CcSj8g1MhzYH+tCvTrBBZEsAxgUlYDcgAIOtUPUBQFQWoZshAqc0oN11oaXHORpaJW46cqqpIwAtWFqDa8vKnBy3DSU0TuEbWqDQqk20vrex/acWatm9M3gMgu+MT9wErf23NnOoxh+a0wDNAUYWYPLe8ejbeMxtPDG+cKiDqIVAI2HTkTeoVPu4a9SYLI0uiQhABIIJ1RfXGwJMnFQFU6g3OdE+nclYf5r7+8OHh0ob2FyaSPu5aD6W/nPgjAFi99gLRn9Sek79QYQoAS2vUigkEZusBeDKeHXsICygwxlrrXeohsYMTdT4yAHkSzUSU3JM+7h/oMqKGIoh11MhbGVxwMHxswyF6dRj6yjjwclK96btXXnMXgdyf/loRAH5pTvCz0BPuvh9A74HiyVMhPEhJADWaZ59ZNUpsRJ14T0oGgHAYB+VaEELhrRlMImKbJSERvIohCmwcdPfnF+UrzWaKV3HANsy+I3k8BfQOjD93c9L45c6XPjiZfYYeWrL2L+/FFQQM7p5bZc6KHvjW3b+7GZ9ePQNfhXJT5AxIlYULVkVZDBlVCbw661UEhqO8nki4XAzzTbGJtxIQfOra44XL4t68JLt2T5a31TGSIhkFlna4Kxdr+69F+oejl9WBK/nwy3dOVp4P/o2RibduX75kQfHcvvtc6LN0M/CHe3/tvpnGwIKSB4FIPWsUhZJFrORBBOODQBRkjNFKRUKytVo+VDLXL4uWFJ5Osl37pyZPIBkFsBRYCnNZbPILGzmRLL9kw/FbPe/oJd5xJ+voZv/oEXNdQesd4TcX7vsUMbBkYD8AHHrmgxeM/sHlALDu2Zm/CUHYBKsAsMlDmabWWw9SBWlAKpZIqVlytHRJ0CxmT2f1nSVURkE9QF+bD7eWbU+88HjoOysSRpXQLT6krKRDh93eLZsm1rGZzIFOXPFAI+7aqjjW73/4pmwVoBT860+t+SC2/cFDFy77H70dAFY/CwhYGKTIV8kIZzt3VUgtAi/eeDJOvAYYC2x9HNlOh90AeoGVcS23oCvp1f6aon0q9ItOWKF64CX1VI8oMVMBUVeFvHHJTx5o69xYyzfyZXcod8xuCYAD1w6+8tEbAoCAX1pzB+jjD2HuMMks9NkPfkcJOLAeAAQCiBQ08y/vFxhhAy6NGzOEcHICjQNAbxtyvRk2+LZbej0fyeWtHZV8FpCjNDSI2GYhsSuHWdCAakmVhwsKb8AACSa2/7TjisEFx8LRR1eXFgMot39hoHLVNN53zsxc5orxzEJ/fEsRwKE/+trMCQENf/NIUhsHHwcOkJpFYbog780a7vw5Q+QIrmlARWS1kMKCqZApTlnmGkOy2KEUO7JiSNPQB4mhUDzrVE7TgEHFKfL+8Wi/C168eXi1AcY7ct8foJhaM6DzBqZm2fvvrQaAX9n6fkH6g0eOHvDJLqC3DcEiTjYHfFfbEdjOEscVw6a3JHG7GG2DYeu5UemIO0xcYumtsg1raoplGAe2pmuIJVSy1hkUEvGFpnJQKxjvA+Ob1u3oW5bsuBlGsXP91I6fvzWYnrmfhHVhsvd/+vfAoVVbHxJUfvPHlXXrlvSEt7403EwY9y/eRCpYmaTcjhzZyOZyRryFtWEsvpImzoVx0zhmVmMKCWXRVcOlOIHN6qFXhMIci6RsPAIvhRorKnlQuejd6m8t9j+9DaL7rvrmaHTjLE2Zuw3sqTdtuwNXA/jaB6HIb9n7wXt2v5m+uj7+duRJJ65WwLgoj7TNa0eOfRpXBWqIwiSxZZ+2J22GkiTiCVaybU1J25ZX9ooXP9xpUAsCrcWSlfKEZuBNI8rCKGGNncUNDy5SHv5yx6rbTfjE9QtPm24pzan1p40JhHeoiqp8ECAyUbOXFcpYbcNA/bFuiIKhAgo4MMRSy5wzhhq10ZJJE3RIrN5DbDlnkISRxYucj9+6nDRQNd4yw5o4YDaZslaApM0KwqIsP2LBmDJ++dTAiSeuueW0XnpO3T91RJueARAAZrRVeg0bBuxVEmHPaqNsVAF1HgjCrv5qRgpLSWlKMq/EcWBhyAiZtnzYpCBs1nY6Gw7ctqoHJHloPgeOY0shB8xMKkNQPwW078kbMsu2fuqqV1fu3Ld8JTPNwJoz0ncm+tN9ZFQ6WxE0bGiG9tmNIKgAltgE8ZuuXzHohQ37arUuQjVjQle0kpPABpwFFqCoYY6W+pTZvvP2LrGkVatSsQLNeS5YGJ2EulrznS/mgHzXJ28K0135nb0L41OQnMfqzOlNEFXaAZAyda3IvVLZAKgqQ4sb33JLW14fq2QWcVJL4CFhmaJcGpPECWyOsszHQD4gf7iL0LSuY8uGy0OtgDUjaM2wNAODuMcgLG7+2yLHN/5ij4WOdux+dv1N5wZ8Gs05M2SaWpAKvALhku985RNBBkPcdcXSvX351GN7ud0gQKYIm2xYY5OXQCiuGSL4RmQUGkEb1XZU2yAjvUuvfeVlp5QTNnWIlLuIEHg0Fg73y7sDv2fpRJK83LX7pVvXXoh7dj7ZI00POA840NEv/ZePL7UcrHn36tsW+wY8pHwcngznMkZs2UZhri2Gqkx0eS4xoeGdLwWM8e1Cw+2GjxVJJz74s28rBkRpwZkoR8jGhW1+c9+71rYj2d5dlXBqkz3yHsglkD3G8N6xtauufOn+Y7u2/E5/A7f0iW1AtQHj3IEoTQNisSBrAeowMFaYg2jKTi5galqracQiaamr0eZ0vIjmuJX2ZTftf+54t2ZZzKCcBLJp99ueWQHOagNMg9Fzj67axPNY+pkTvaQrDrz442U75a7VW57agp/ugSMPJV8NVHXz1GQ1VG0GRlKLUAOYBhlbW2pGhYWiCpyFGM7TUzeHbOpdBiNLvN3XTWvi8tFBGVkGX+9eduWJQ7cnL24AJhYC+srSeHjZwvmsW82tOZV27e/50Hve8zNbgz/+JW2vuyffVvZk9D9c/c+8mq0rxXqp5SPbCPNBYlgyo8O0cGmcWFAtgDVWNYmBn3T77OXVoL2bDL26wuA7i+64t1ggX1723o1Hd68pHVrknPFL9u1/7rnhfY98xMxD7c+hOeUOevhjkGbT/JPvfXhXOfv2n/SSh/6/9/zK8JeuAg/szNer4ys0KS3XtN5O8VB+qLtS1Ljc5zHZpY1Kp9Oi85STw1FbrswbquXsukqt8DEDfMBmWg3CE80Ny3xws/MJdPSaYKDre827MB3zfj3oBUjKX8h+6/PfajzY/Zuc8cLGO2/9eK1e4RoGh0oTe9J6dzxBiy1HvaqFPhuGS7N1kUzSQG+N7UDZ6coStzcTl3WNXY3xnEmrq4Jx26ulkQGPZ260evSKanHH3aDRlZlUw6Bih9qn5PJiK+p6geozp+wbhxe17TJA+2g1wfDDObO7MXqwsD/8wC//1TW/W16CJL/k6gP7ymFbmtf8WCTZsaDn5qOrfPa42lzdcDhcAE1FwifMOltQTOVZhpcTja8kTOSVp4w79tyNoGrsSMcWqa+ORVOPf4jnozhzow9p4e3XH/jKXYfeUXR76j/PPzJJ74bBDUz/+S3BSLiApgo96Vo7PpFVNMooKCdcuDwLlTMmk09YjQV8AO7bZ14c6FKprgaXc5Dh9YLxtYSj3YfGLu8jrfQLMl+om+dqcX37l+eD/Ry9luvdC9pDxEEURMSRDYqtNQNVwz4MKM1x4LrfvGlBUKv4rHx4ebR+oS8QNRaDciyIrdMEJD6icr3gfWJ9MzZIrSfX7FJfqlULQ3mfjbVByh2eeEpGxvuXXhL0xKZaJNLW0ocHoN2CJgM+EpHYWB8TJx1mace1C0ySngjMlWtMo92YZACagsk7oQTejgeWh1SmYqHRPqKRxayNOEXDNSeXLxc0EquYaAfRRMfR7T975nL4RaEHKqQIAGsABtR3KzwEGimcZZNGxqTtltB//RrOkqC5hjWJrGpPu68oYQpkRVQSNvZ4mUsLyB/uhh9ZohjpFD3ROXLD6BrV0cUOWRJ40Wyka+c75wd+bs2RaifUQtBaMSDkLVKjKiFJaplSa7keWONNsLR/3cC7UxuYZmRMhDVBI+CoSYgBFANCUHhF0jafpYE265Yw2aV6fHJ5UAnUV/rEVWN1WaN9MB7aMvfi9/zQY6qIAzfuvu4x4Nf/7L7bSH7yvtF3HxTRgDkLhJshTIOMBMa49k1vDXpCkxgbVHPRkj4YLjBLytA8KUzQHMsbaixVlHpEmprXA30dKyqhl7rxWTZcSJN6aXnxiWs7aH6qMzf6Wo6WPOXTG4H//D33APS26uM/Xq2oW0FmlBJjkLHRiIOkaEO3xETN3igqdQWdBQaZCFGNSUoEZEq7C54nF0MnliqNLfCV2t41fqRP3FQ+89mk8YV1jWcWvfiueUE/F3qttvuZbI1WxD3ghAlJoJIZMIekkbFZFMVpIQ6bi/JRfQkH5S6LKsBT1hQkpLAEhA2vcYN1IoRr5OEH+5ovH36rTSrtmR+Nm5VSZBZEY1Rp7L/rkqFPETOgoqreA94p9YK8pIGKGJCzrGRs0h4GtTgMs3wYSU9o47xJ+0Jvm9ZEEZv2iCmkELVXKfGkdUtefbi304dSsT4tZ9GCdXrt2t7eoXzXq7hivujnHK0mC66aJmUno6yNF8hNPiu1ehtp2olMlaEBNYsG1SXWaD7y9QCZsah3W6mvmahq3lIjVNWQvYsdl9teXLSIdLDDo9Z2IHthi9PR9grcTQOSbbs9h/LE0E3Pbp13jtec6MfbXpWsVpXqHs65pEC5JcIvQrRhvXqbiRWTFsEust7n4QJGI69c6SZTWTzwDMFnSQTnsuCWQzwWeDmhm0Fjm70ctqWpq9vLmbtiKX+tn3isLweMto/Szl+bn8HBOfJzHvn4B4ymoSAIGNawAoZhiWGMtxaqlkiNJ1YSAokSGy9Ejr1GIpy/HMwMZfZRoODEEFzIkn4/vX4xa1TpgBzNJ43xjCQdLUU7/27Pogv1zmZoTtmXOrbeOnTkBvnmnfnGdz4AfPsupm/HXWb3lbnsmVupuft6PL+0t/H4Vhqc2Mi7eC09tnohvvmOsLJjC//gAPmlDzGKE4Hr35LDS2+miaEBP+p7aPL7m7vT+8d+9ScLOvlEfTU1X70H0vhK5YpnV/WfL4RwBs3Za0tFz0oMGDJkDMSyVkOgSZJYMo3QarWIDEZHelknewiVDs40MOXYUn9TVByyUBtp0WhlsTeT3YRhKtcmb6ctu0sfM0fXx7xjbWQb7VGcO1jdUA/unH9q4xzoBeNFFa/ghAAFJCFwuki0yZqGquWcl2aARkyYLIpUOimRnFYLlkaXgEbJyQlOqQYTHZnyYwskKUWl8WTjDevGH3vHwyfW9pYW5jk5WiBz/DJous9VX3rhlnmDP4fs2whCBBCk5S4Q0iI7InWANCL41Gq5TVCKKRXry50G46vZT/VoJkszKmW+OOF8f3MwHcoqo1n7uhVLe/U78S8cq3Tfib3rDIavs8gOLCE6fML2NPfdfAnRT3Uww0M8QQTZVT93GwhP37jly14S84vL7vWaJoYqRXhn0YiVxhYJxpdIqgVMLl6HXKDKEuTi7tGqSfrj1es7d67VR9vR/wpuDuRgN/z+GwijLgJ2jq1t5t5cnAvKRaAfKzqoglUBxs/8zv+85l8qPXDsh3u2abbt7qN/9FlNY0GtgCxWVDqcjnZoNlFArU11dMkABaLWt8d2qJGTu7asGFpD/kjPC4O73vbXLluKqm9HMhEAB9cBpSPd/oVjt1xERu/cmtNeFW0tdJPZVn4//u9Hdoz/9gJs8pRY+JpBI1KpFlDvgp/qUS4X1MHpRLfoiWJxbVZoixNxuZt/9V/wMut8H1U6mi/Wuyf7BvvzOLg+wFCXgR/eBHnALyzhB+/m+c0KgXONtZ2YiQtl7gB8Fgzs7+m0P07e7tP3/6dPYac22oQ1oPoioepyhWFfb1MdXynUJLfxB7ZZXLZx/fY3dVYzoNxjMHjNd10XHp9YsBLJy+9R2nM5ULWxunqamo1u3m7CudBPtQFiQAEBfs0rNQXU0Qfuf4s3Sfg5vb+gjXYhDf34cqVGLOU2xURPZir5rJJrpMO5/mv3vL3LH7tVBxco7e5VfTWiwuJnFhX8Kq02cqhNLFXevVjoiHTnj9itFwH+HHpfALwqQRW6dvQ+dbtXkf36dx/9km9a7yyk3klprJiMpaGQ4x3ej3ZIRXz1aJwuSD79i1e4TlsxxhxcTrq7Tyr7R0t3HOo7+O7uCCMDVoa6DLk9S8l/p9Qp2Q/f10Ly+mcnCgBTeZ96n9bFuTRc8Z3P3Bst2mCUen/hOLxxngXNSBp516yxr1jvjnZkyURUH+SKH956VZ5jHOu3emggyMr9yGyHOZLV3+aT8bteXMG0ewObw+ugVfRitJjg2MbH3tIKvs6v655NcwhAU3sfeCZ1PxX8dQr3F/T58rbLf1D/XuFE74lM4FMrPg3T0ZwkVY+R2MmYzSr1Ujo4cGXyUJsfWuR513pxB96hox0WR1eb9Jl14cD9dbvxvg/r1Fg3/NibgP2XGf9k18rDQ5tWLZpn6v2c6AFwqXPoa66QHr/t2mKcVRbH/Mc33ePHFwUjj/5cI/Npkst84u1Yp69G4sZ703q9PjUZ1bKpkcc4eDba1/W8HlyQJGPjY7t7jrtnLt+/Jxn8wI7D/MFh58v72uoyEcdedm5tNgelLVvy8J00b4MzN3qMdfR97N/vnVzx7764ffH4g1134jMfcZOPfhL4v9qPxE8T2ydQ+nFY7q/WpITR3olqfsHypzu2yNHb4ld1iz9ya1jfdSMfWriKnruuOH7ibZPPhR/JPe1uxsH1tfr+gQqe7TnarE6+UC9p44Hea//tf4DMJ/Q9J/pW+012YQO8W3TfP73lgZx7h6/8YA2O/7O/ke+8PXnxlTdjiBdmL7+Jt/UUqr21WpzmsWnkeDl8MLfqWXe4Z7tN9ufH+iajE2sFtsu297d/pWPV4vvinhvw458NK+lV5Idv68Ce627E3/GGoR0L91yEm3BW9LRt4Wag3BuNAgTa+uY7v2UIUIgPCGku9uql3iZl411qUemIV4+/XX90XZv/+nuxt7LZH7u1eaCzaCqrx7wP9iernlNa9+fm2FVPhLh+3FUa2cGuDBO9RZXH36GDo7zoaPH5N58lRfoC6ExtS38FACbaL3vii7tHXno1/ciGf+lFQWApep9BF3CW1ck1uFZCvdO88zruBY3EcET0Sh+qSbRgePnS7mdXrFm6e+2qV7quv3ZnzhxZu/mJiayDBy8vD0+uGh6uXfH8T55du+fbP2rPbRu88idbL2Kgxdlk/5kVawGMdYX3Pf3S+GOp+0z3T/5mj8n5v1CJj/DItlyGhOpISlm9397qfA4nFlKtGmCkCH/obebYAtaD19NkZM2RtsAffS+Xj4zWVy17uLh3zRJ6cMvi9MFr8vLFe9bqvuO3p99oLNu9+8P/ettFQD8b+s9t/i4AlHb8IL7iFvHqfXr3vb9Nk+Ol8Vpu0HBqMkyZWsNNdSS7zLbK2FcKJ/oGU78jdziuuDTwB9dCTBeOXQndtw7V5TkdKXW0FdoeG94ywBPjS3C0ow31oCvQA7cXDzaytoXHa37jzOfnZzVnodfDlTt7iwBuxZ82XxlbvK7zquCmwoc/+2UAmjVckibV5hXVat8IwTi7ZEVit+Jrm9r3+h53fO3xsfZX5ciil8cLO/nVTbvMictH9q4YpRf6D//Wt5+rbzh2hx5brHjhMpWXNgZITuT94xofHbr1kbcqYVZeyMWgpz/8r4fWA8DWrQBwbM/U883fw5Pp9pVL1havxVaQqrYWzdM0aTYrzfaHseAZ0tyRdupuH736itpL1/rHtyxrPLk+KxcWpq++tTH6UvKe590V2YJHT0y8suoATlw1Ki/c4+Vgm3el+vLh3T/7rz561izj+aFXwuc++1l84uQJWbxU7mYI/uSrv3t07/Hv4jba3L5maf9A8TogyLeeUbjUuawp1zYaVH0w5e9EY5SYrix3eEUxraySb7mr33L/8L6PZFtW+cZ6nuzta46kzdHq020Pla1O+qmex750Echnoyccqii2PX9S+7hlkxj/6rMdrVmnPlPbdeKFr1Sew03B5o51S7s3+ANTURRFQRwssUxQ5aTarDUrvU+po4dN//N7hun28jGzeuCrd4Yvd3XJtsvb2k5cu4IqzQ+ZL4z0LHrmxhdX9QOtTNCvzZ3/dz70OPSxh4D9wGt5VdNsBE/2TqeQXI+trXsfxjOV7x8/sSdeaNeHKzr7F4WGQ0UcBTYXdwUBPItHlu3eWfuZg09XCgu/75+ISt17ixN9jejFOwjHu4Ks1Fjy3PH/47/cCQDfuvuffnDbHTs2Xyz6T/8Rnt989/04cB8ws+ds+lIvZivmVmwFIDrxB2OD/sF0dLK4IthkrozXd2hZmuSR40iC2H9r8v2bK19t/vyVRpNapVkf3/gSUe8Lhfpg/MSJup+C6X3ktxVAuv8ODMwHOuaKpV2w3RLgp//JxtYG7Ep6IjyEwUbXwsJl5hq+vAj42v+S6E6TjqVrCkEuZ0IOAyYGRJ2vjfx5smksW/7hdceKALZ94z7cvegv5oX+7F7aBfd/FizKIa16a9XE64K1zLZSbuz3D9Mx39Pe2V7r7h0qmC5KvPosS3zqg5ijfDE27XmsOP5zX9z1Cz9+UxFQ2v/5z2N+enO+XTMXQkv/lqDSHBudGjwwjJpL8u3ti5XYoNScqtWP4W/RHy7oaO/vWBcXoygggsKV3BEqty8+MhSs/5NbIUzYtmPz565+7up5fXueC0Vn0LSOtSZGLADUZWm9USkNDU40xitB4MNwwk0m1VI6jn7qL/Qt6FoTZ/lcZNpy+x6urP7M8m0b0bIY2aaP/ca8vv56Zd/a1SJgVRYwBBQEuU4Ajrh1dXx4/PD44HDQrNmSK1WPN2tls1SXmY748vZy25pd2UYA+N4dwPHz56zP/vrrhA+00EvLXX0tNegUi6ukIlY4S5tJtTo6duzYIRymphuto7drQ/T3UMLd//HKbNPEgfkF1Ehbm9YuamI2Ny/Te+NeY4Mh3NqlpKSkoCz76f/sHkrHeyf+3dVMP7oDALaeI917TvSAf53gz2FhT78kABgCUBL6Y7++7ND6TUHzXqsX+flLI/JTEM7WxNP5YmZWMDOFwNLfG+l8ZaTXPjKPTLTTaQa9eA/1AngvALz3eO1w8jfvPSBexMv0jediZA6a3gylxqz7cKP48P5VR37qvYhcRA/kk0cDIoYYA4GQYcHMAYCQoZnTDGWj3pjX1eHJMPhd70XHjw4ufeVlUr0YF/mk5kzDVO8VUG51Zz5pkxjMJ/+m6Z+LbvEZDugDb0Lue6VFT+25OB3mmQNBhAEy5mx5bZfErp6Fgo+v0eyBxpKHT5C0tpXNi3h6l+9Jyy+ttf1WPvVrm+hPPX2piJmR/6QNBp9D97enLkZCpFBpWfvWXlEPmJl/pw8CPvW0KMzMz+tlQFSOfbKtcdOGWv0jIc1be1rKcspTxpiT/04fmE87zcac/HndRGbF7zf5iQNdtGf+4E954H+Xap/788x85YczfarStlPnbwVOpun7ix3vXjfRP3mHb4zkptzFy57mlUF7CUmh+i96ObX+dcj+H4wIxHGbOjTl9ej9PxgplOBx0imZB70B0BPQ4RtEFzFy/4OjVwCI2an5xyh7AkChS8T6f4S9FgBQRALOwPMdc86C/jRn6ezv0/MNbjrreB4IRfUa+/k7UeeTPZ0VxHkD1idLAsx+9CzsCJATD8rOA+UsdJaISKvIx+km4Jwy1LO3uJ6Fc2U5Zap7UnR5SRO4C8F7Os1CL2CInhJbmp5AnXSf2ZuTbJECLEzQM9CrcqtcxewrAkCFWzEUD2lxUpBMOYPMtxeeWUdEMLgnNBaw5Ewg0yW7pmHoTOxsGpUxgILUyGuaTtNVNk5B/lrBNWnVhFMoVKpikIrXxsR1ScMn8zchs+qIsAK6t4woDjhj1pSVAGZ4mNZ8sFUr0FKrbXyr5ptPAZWZNmhFoKTFGFrFa6Yrfqm2yrmIKEjz6jRylFHcU6r5s9TkunD0LSGpwpmaVAADKDGjVUIGRETQAKzKELatMmYw6lsJpKoekFYISlWUPE2rlEA9CEriIaqCVlkU9b5hPaU+FOdcrV2r8/fRT9vbDJCS/NufrMpHISNgZgXApEQCIqhnUeJWsIygRArvxTvx3llvnM4oMqY3t7Z8SAJhOrNeBVARAD5lllBd6lwj7W4/wVP1wsXrPag1exWuvQwsWOzThgLkOFAyxMRECiYQKzOhQQQOLYQi4xEErkAuakVlqbWZOnitVBJxK6uztZFCQVCWlMrOe68VUK5txaYl9fs/dPGyFwBKwhNjG5203bK8cfzgeCND8f/pm/WIktLJ9dUWuLO2+XkDvP63DqdifC60Vkaf3puuvfj8HC8GKv7+778U+DrpEusacYH0ze/pA/h8S0FnrR0w92RNpss6/cd9v5RfLGvWNDMk6pHofBOMTqInqDz4l1QsccxxFt8YlnMLM0kbFko6k5uts46nQKXT2cCco7ESWBTPfH2PKfWurh1vvqnbp15FpIfOVpfr/OiVAFQ/3eyYeLGnq1GuuVVtJvCimUgOp5QEoFnHU6oEnY2ns0b3CBAM/6rNYWjDxERpHL3M1nlIsmRulueglnIKKbJP+dJYZZGM1co9d1y5GOQz9Up38EzFtPPTBd0mgN/x+231QXdZ6UhpxXs3BFYgmuJE7Zdb9UUunKZlD3UfRflYdUCOT132f3YkDeuErEPyVzd34JwSORXxBfGo7HZ8pufo0fCqsSMTd/5CY6qg7LxXeXbftTfOBzpmHCUCvo7K4bFFZnLqns/oXz1mBSoiePbYfz/PlGfedoK0/oWOQ0fGemsnxn/5o3u/7QGvIvLoDv7SfINK0w1F5f+eDU3GS6uljffufvIdmy1BXZa9/LXkocp84Z2dTnF6Hj80NlRf3j45lbv54KG3LhCv4oV2lRoHDs/zpdOyl9FmqZL1oZp8dHL/xmak3mfi+JE0Gxw900m/GJppI4V8IxhvXt7lyv43+eUBCgk+yxrhR9Ka/+xFyV7piXCyEfZVakuX7NqUdVhR59KpwkCSVo6oztMKz0kKgJQPlavJDabcoCuHlnKbeu+yysuHVvUkeGKeM/NpzfHPNZwErK7bCFMEiPjxJ0ubHVz1XEVU5ketxA3NEs/cyCTQesxWGVI61nEkbYNMzrOVp0crnpLM97KlNltXa4kkG0RehQTZpZL8NKmXLCuyOg0kP9YLknRf0hemQdN5O09BzfTa9YlwQ2Enqh0Nl/nG6J6ww7QNGUX3pQUPMmnGTclEG/uWHW3UqiN7zMLCyJq0BL9gnk7mjMW8tWnNlLe8Z3LJbhk+fCxZXGwuzr9iKFqurSiDysyU6syJIICTa36nhCRUTr3e8pcF1MmhHw7FZH+X3bBratJ198bjg8v+a9n6ay8KvWKtI+bR9oXusf7VuyQq5u3UExv2PIp4dU9r9nRKttFZ0c+APBU4QU52Q2YWUQggW701T/VkIb+8fcWylyrClR0H7xl/IjT49DwTD6b1nrpu+0mQjV3W3vb13Ls7vnpHobGDf5H+WxZGt+dby4StwpjTEQE5m1Og0xPXaQ6mV8NOS1xQAOB7/1fJTg5GSeD/8PeuuPaLB9K17+kZ/GQQYN3CU193ARpLKlAjwPitPmkuuvrgEbp3azQ+XFxGe/9gMghWfH4xjIJaWkNKdEbkgohmcANoVX8HMF2FdqakOghQ8iKq+refRz3jNq67+Jb39QFSffQLHBfxl9cQjLYYZjnZKVXn3P4uCrAn+Kc+IVl2bcfhE5X8b/S00wvf2I8gyn30DiKQUcsGDCYiTKdP6Mll25MDqYKg5E56H6eSAgKfOSdZ5v/sxYb30qZJ5qk33z90wBp0uA//c2MjNhFLqwwx6cxEtJXccCYL5FRFUsnS9Ft/lm+6TV3D45OpGnEUhoauu8eawHBAQWBh2Z4/1KhEStOV8E/jQFXFpWmSpkm9+ePnbJZI3maZz5xVGwbWvesthSAOwjA2bA0ZIGhJjGXO1T0aFXFZljSyWrbz7xNkfcsqlUqqmQ/Bcv11oQltEITWRiFZYwhW2DOUZtKhppG9Ng8kZcxMzolOiQurd1mWNhppo95oHNtRtnBZDg5AFli4Oxbl4ijOxWEuMkHAzMxkYMFMDLIwOHOSR4ecT10jqTWqWbk8+GQjsG09PnFpljUWb+wMojAKwjAKTRTYVvnj88hecDI94NT8IgBOnUuajUaj1qzVa/WJ8kSiQQMBkCFYtbgQB3ExzsdRIQ5DawIGB2wYlmHARMSg2QEcq95naVKv/48Vrict3FirOddsJoJwYXdsUxg2Sswaq3iCwp0nFexko0yXbX9teiWq4r0X8S5xaeY4XtBEGsHBhvkwX/MuR0YIJoUSyIPUg0GtHAlSbv1xOnpLTkmRYlvtaLww1xEXOyOQYYQxRUEUhpEJwzCM2FhjiFoV1U+dKraCZKd6wDQdwuTTQrCkYOtDZ4Igkkghlq3EYGFr4yAMi2Gcy+XiXBTb0FprmUxLeQAAfGYJcwA0oT51WZY0kqwxfPDE6GDlaLIoXh6sjtdqEBgTRhQE1lobkjEGhkjOfMkpmjLz3yyccZOoaJpmzaTZbKaNZtrwdYckhHKOUbBhztpCFOTDKAqCCIElIjJsWmaOmKDmzP8jIlXR1HtpepclWaoOTexMXkl31Q/m13StXLRodS9bg9AaGBgw45T8rGmxgC5ordUjcy5NsixJsswl6lL2ZMDGmtCaKLBhYCMbWsOWjSVwa2s1AXOVAzqLJE/S8K5DB3cNPT+1uePG6Nb4TTOn5xoEL7EveiHvO4tjccZT25sPJU9OPd+xuf+yVasGFp7xwLw+eC46z+NnXp7LLZp9p9JZmuJSS3veNBv9qVn3c9D25kPpE1PPd17VP7B65WWzmmJ+kZ9z333+d81Cf2Y4bK436PDuQwd3Db1QuqrztF5xHrq0zfX6M3mne0X71f2XrTqjKc6gs2jk66BLk4eMMw3U2SYAZ0P6uuBfMvQzdKqBmm6KWQBPi5LTWU9fKF1C9Kd9fo6x4twPzZsuuexPIQVhe/PB9MnSC6c2xSXsupcS/Rlm8LXfTm2Krbkb5jRk82TrUst+7tUVALN7Rd/rbYP/nZrzGs3m5ZSmCN8Wvfmi33vJ0M89rJ0jxr89ebDVFIsGVq0c6J/3R///kf15aGj3hRkovObJ3P3kgeIbBP0MPZWcMVacQdNtfOhjD+GNgX7OXtF+08mmmD3Efa7yG3hjoJ+LtjcfSp4qnb0p7v7dzXijoD+nnR959WSv+P2Zc9l7v690KfYZXgo6DfxsJenra+1M3t586uT5B5eD8EZBj1lRlrNeehNeq+rV+q9B3hiaMz8HQQnZ1U8VgddWH/APeaR53U/Ag1v+5vnX0M/OnnijHw98vrIZeINozkXTGyMP+WLpHzf6/w/bYIMkrhCZdwAAAABJRU5ErkJggg=="
}
] |
<image>As shown in the figure, a supermarket shopping cart is placed on a horizontal ground, and its lateral quadrilateral ABCD is in the same plane as a horizontal line on the ground, and AB parallel l, if angle A = 93.0, angle D = 111.0, then the degree of the acute angle between the straight line CD and l is ()
|
24.0
|
425
|
[
"15^\\circ",
"18^\\circ",
"21^\\circ",
"24^\\circ"
] |
D
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAKYAAACPCAAAAABVQP9VAAAMCklEQVR4nO1cf2wUxxX+5s5nR+1VbsNRnxtHDuAqjkzVqEaxq5I6bSGkgktIk5S0tQIJDj4EFKfJUVBNoYIKV9DGaRzFB6FAlEg0pQJRIqWxkUBBrV07KiimpsIORU7lS3yOTCGqz3e3r3/s3u3e3v6Y3R23ippPsm93Z/a9b9/beW9mdnYZ4eMA3/+aAB8+oSkSs0Szd1SsvFmiuVSwvNmhuSWyQKxANhsBaf/8pYLFzoY1RzEvIljkbNCMr0OtYJGzQHP/XlYjWmaJaIEYBaH3XcFChdMcfeokIJolQEIhxYARigAxsXJnJSCJxyw0oRNnxcsUb80bd9w0VCZaqGBrErA9+LmtYoVCOE2GwaO16472AwAEOkr0vZmNdty4rXNtCgAxcWJF0+wKrh6vXPXF3QAEshQTN6X81lhomMLjlAj9VYRcFeLCu0RE0sodRP4M0eEvZ4QJJiIS53QG4LXL25AM+oHVczuECQYgNllOhfuIhhcQyd4XCJFNiH78QAMwORcAqnY+nhEoWiTNv5z4BYDxEADQhrIXBIoWSDO79rlyAJMVAMBwcMdVcbIF0tx36yoASM6VdxdsXy1OthiaBODqnm4AwHhISZJtqbgQ4YAomgxAdFs1QEAyrKQf/0vt/4SgzC7M6b8dewYAAyZDyhGqa2sBwIQQFRTYpsJ9ylbdABHJSSl952FB4sV0i4lF0a1sVw5U5Y8PRs5XiJAvqvfev/JSubJZ8pGm77596LiYDp0Il0iZuqO57YmgtmS69pgIBWKSJeuQQyYAXAtrS8oOR5Mi/CWE5qXOA/ntZKigqKH5KSYgKAmhGW2XWw2B8kkoh463XhfQkRdB88iNjfIGA8O4rmmXHYle865CAM3k1m6/ujcZ0hU3LX/Guw6vNAmIPboI6u2ndzqw743THpV4n5FjONs7LG/ISNyprxLsfuJi0KMaz9acjj6vcqDClk7yv+Xf3O5Ri2earKN2pWYPmJhTsAswYO/RP3lU4zoLKWPz4dBY4fGqseK6dLx22q0eGd5yOrF7HtxceOima0bTcY/U7PGix2tOP1yvmza4HjSsl6gc8KTHHU1J+T8R1msfqZGKqxNJr9R5mgZx14QYABBTQqbqGSBZbpgY2ffn7XKlSYH7uEkMp+WQqZIhVhzdlaIXFz5S51qX+4BEDKm1B4OFnR+mTCYYoGrfmqxbXR5oMmBn472k75pPhg3qEgC0fLpTs+cQHpLlxYPvFPfQkkbWlGsdWbS8Vt1zBg9ZqGXX54tNk5hjWBcgVLc/6VqXe5pxamXFpklWmlRnwObMc661uY1kidCQ0eGv9FucMxy64lKba2tubimOLwR8YOZ0AKiNuXa7y8t7o9q4M1F23fCwkpoy9QfcqXNJ89/Vbxgev15mfd6QvkPFCXdOp581LjMseN8kCeVQt2G9K4UurCkRDYUS2qdBaklfvc3J0wtfyUtxAHfWbNldYRSmGU2Z5cocyg49k5TrOlLogiZDHK0mRWY9DxX1zW7c7oImvdf+kllZwiila88F233hhHOdbqy5aYNpl2zCxukMKDu03vk0iAuaxy9tMy2btIruCr72UJtzpY4aHBHR9VvOmBeuOMXRhv9lEnQt4Nya25c2mRcmQxxt+DMHW2441er0ugbCExalNSNcQta0OtTqlGa63urhhBQ0Tul6TFWdIUcR3qnTXwhaPeKbSfPNaZU/35JyFuH5r4iI6D3rx+RjVbyCmtsc6XVozY0bLFdmJirANSQjdCqLgDjhA5CdmZmRuGqfsAiZgPLIn8OXDHM616S4VMrwAfAHEOCy6vVN3dbLypLllsVafLd2N3ddh1nop0ssQiYAJELco3DW3X2eX7MyTqc0WCCbLfFRGr4SUBooRe4nVz746vkZlGIGJRmwkjRYQC8tWcn55I8YKn75+KDfvqYMxZosgAD8Ph8ypaUSIR0o9aWR+wGQDpQivWZfZakvjQAypQHKlAaKDZcMOQgyj4X4FwHlnM78aZAPRDMzIGIMfoLyA4AYQ+BXt35P2Q9AdkMRz/ftesU5MAJwqPNvvDQVpzP4s5QtgexIUvQX0Li657ztfTdhNplQzBNA1c615zjd7gMyaTAA/rQPYCQBEkNGfmSWyYUXkhDdepu6b4Lkzbw0AQAbSrt4mxxRJpWSiIhmiIikVCpFJKVSM5T/SWVJSr1al1b2U6mUpPzpcoUUtOqWGGCknK+rou16WM46q4skLDDt51Oq9jn2NfH1P9S4mbUMoVseaLD3zITtgE2GeuO0pfbznaLQTafSVlfTXznF0fEarCOnA/Ch0BjPCTkTlpQaTsgqN3j2iWfLOZJ1MgynA/C6tid5TrBJloqIfeoiCStM8edKGQRsTbwsW8PyTLtJbWIAru65wKU1GXJoSwb4D3x7WQWDjRfsuh4MUNaVcWCcO7prsCgata9kTVN2xGtjnOsL7CYTjNF+6fe2daxpMgBIbj7ImdI+dEWz7Eg0aVeHo78Ze5QjZAKwn0EywV3NT9nWsQ1ZZ6r4BrVEUq3LZc/T1cdtatjSnK61E6Ei5DCl53Gmasq6gu1j/50XjvO5jli2zPXi7Gj2gGaPmPo/d8gaRYskLJAIy7/O0iUREV2vOl10nnbXrgnl1pXxIKnMGrp4KBnsfuKG/jztrg3Nl29s5Et/hHx0d7V6ZPk3rN+FsvRF8SIJKxxd5aBysapz+e0IGICIptTcmgToF0lYXi4w8VkPy3BCL65N5U4/GblM1KOdBjKnyYCzvbs4fUhg9s+urLHyS+3q3bgA+5do39A1o0kAUtFfBzkbBAOAibCLxqOi65VBZat3BfbPxzpNmRlNBmBP7YOO9EyG5LGzc9cTAFTkV4O828pa5+lqmMJJyCQiosW9zuoXQJKIVuyQt1eMUKSw1CIgySHTgWmS7noeMhgDXuy8CACjbD5W6IpNL6+7MeMsoUihhGMb6nBgUYaI4nEiooKXnc1oSiaLJCyQgdfX7CRq6iCiyAgRReLaEhRWU7Fqq1MliZBLbhpcCQ33KG4umA+BySlmiyQs8E6t0zP0SonoRzWGdQqbUD7upVrjjt+K5p411CGnNPl6+z0lJ6eeNapjMgDe2bjM8Ssfjhu6RsFgf1/flcV3x46F/n73d6qLNRvTvPjSkPP+WJLj6W8BZAXJ/r63zs1rbNwsdx9uf/qxs0brHowEfHWNyfIDK/x82vESTcWIjQ2a+yXbEG0pqmhozTi1Ao7f3B6/g7cmsSIjqvAfuee+oq64Ec33288AcOx1w8WGhni7v6/vyuLFsWOGZ9RtWP8HoNBKRjR/aLCujANFb2OoUDUm+/98ztCImqrb6l/9AXRWKo5RLkImEREt1KWtokQ72NVc429qP2U9TJaIBsIJ3cn6JkQsdXvceMWWHSotXq9T7sSGRo7RADHa8o/fFR4rbumxsaOOGQIAAtM+xU8E7UA715zv0nbujZtnboCeWrh3pfU4fSA84WagTTQxt9jVH5xqb/LXNHcNkKZMylWxUHNOt1RDb81sw6bVhdfGi+GHCp+ZDfb1F8VEfmz86JB2V9/Su4Kr8/ycBaQP1SSUi4lt9bo6HBeuVOlY+MeCFlJo7LE5w7YOMYRExx4mIqKBruYaf9NPNM3ZxS0kEfUWTASWFF7Hpo3K6Nj5GHHiZpPE4mK4yYBvLXla89544b154uGYu6/aMJr5zVSqurrqlk+J+jjKtc6zX9fI1xYdueL+jd23K78gC/TOkxgxAPPUtUT/v59t8o5i0+Vo3s98jPX+d9mYQs5FAA4wdj+2IE+TTkbepJ6l7r/zeD9jjAn9Zg+jUXaZ6Fn5o3S5yASiEXA+hDdCZIQoJvY7aogRkRTrofwAWOqJEUW8fFUtQiR5k1AAiSguc4uPkEJTIopDGcC76nYQ9cQkIopF3J5vAGjmPXwAwIBTIxSvGYXrV8nfvJcBqBH45atRzFd3fLljC7AOypvPbuYn9y4BgBHRX4rMQaF5eoWGvnODsNEYAIzuXSbmYyMAYYH8pcTRXnnBFhHJ7dTLG6zxbiKJIhH7mg5kooeoRxYJIiJ5EsyLDlwmacSTBAP0IP9JRyE5vVf+sG7PEgGyjPFJ10MkPiY0/wN9HbbletHcOwAAAABJRU5ErkJggg=="
}
] |
<image>As shown in the figure, in triangle ABC, angle B = angle C, D is a point on edge BC, point E is on edge AC, angle ADE = angle AED, if angle BAD = 24.0, then angle CDE = ()
|
12.0
|
426
|
[
"24^\\circ",
"20^\\circ",
"15^\\circ",
"12^\\circ"
] |
D
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAGQAAABwCAAAAADNzooFAAAIPUlEQVR4nL2af2iU9x3HX9/He+aY1966niTFa9MmZ3MS2eK0YDFbokYizNnJIg7MtshY7AjDgG5mIMSBYxmLWIaRFikqbamQtNGt3S6r1QuT4RYlDhKakGSmNeqFlJHuTkjzxPvsj+e5y93lfjzPNdmbu+f5Ps/z/X7fnx/f5/N8fynBHj67PfwgBOP3BHxl6Ft8aze6bZZVdkgmr34QelD1dNkLbp4tAT6eINo/fve6b2ttbdGSkAy/fjlSvbU6kOHRUN+1kLe+sSwvi+TE9KsbfUc+ypVjsKW46uxMzLyIZc6TkyTc4m54L6cQMRGR7n1fbZ3ORpCH5O5Bz5EHeRnMrM2Pt4QLIIm0etumF9WZVdxwq7dtNtvTbCQ9xQeTKWKLEotpGkqCjkg+qd1wI1+lixFatyshWEq5jCT9xScc1L2A+WMlg5nuZyI57w0uEsYmurzdtkjmm/0ZxbGHfl+rDZKZnVUzZipWkC7hjfWR9HJaeqTYVBLyWBEHZSMupaPo+pc3/zt3WAl6ThcgvYmE/O2eUOqTVJJBT6KpF2KqeMFL3rEsJDGRaX/heqTgREUk+XIh1It6tLP8dAFeyIQfRnusStN90lI7vzSKiMxubku6SiI5759Oz1s47vp6JOFYJJ6+4c35cXKK/icXXumEJpNrssXQAtFdkjBMgqS2fWk5RI7Vp5O8vXHJnB5/w2YDf0klifj6k58vDa4EZs2EFbt+/Z1NQEHBKju2f6PDSomIyJh3Zkl1sBD2hkVEYhognGj2LKkOFooa2gEUIiLhJ01FltYlIhI2LaQh0P5TD8JSuwQo+v4pAERk2pOjY/bFMOaNiNm63tpjp2teEMqq3gWQmFSGbLqjAJ/1VIsIIgMlhZW3hXnvREw0uNAoDnxud2RmYUXDOQUiPtshPvcoJHPeGwERjeH5TIOojLDUtTUEjOfdNDmFRl+1bd3jldu1rQArqkJoXN1mt0ivptRB2xLFham+BlJs1yWHV0dkrrzJtlcs3AgIE167HNskFpPe1ZH8WVOxcsY1VpHfTkoUvScHUI5bMMC6UW14rVlRTtMqONNUCTDulELwj2hjgbwBWIC5kR0A9O6xO9eRkDAwqg0H8rZIBdwf8QP0/vFnji0WGNLCa2zlXFM+Cswdaqp0/NXxTWvRx2zl1HedESZWVr/mkAFYFXVFbdq44yUNBiqdc+B+iNthu78SqLzurMRdX75pokUIwGZnJWY86QPTZYHmfuiswGlvcUf+XMmIPOZyR1c5KrK9mS2JYZotRN2aO+pMLhNO3pXoKs0dKYTECR66teJ7QEHR1S4mV2uBMWAZeqgJyGiF5h9ctupNqKG1WmB0mUkYK3f5hzDAtYzm+mitVuIa1tGXj4N/PufRpLpv+QgAQjVoaus1AMMwMAwDDCN+uXBKpKwjhoGRscYsJHy7D8CFjo6OoesGGHryCTB0nYVrQ8fQbbI8ul4jGutcw5jviaET1yQDdBBJJHW7itz0FSkN9l4EiEum69nLK8ftQ+TiPtCQ/RdSH2RRxbYTUsSKvXkANFFf/9rfAXRDB3TD0EE3kk8G6MacLvFrjPgvP/5UUYJoCv1H55PumtbSk086oO9VmlKln+tmFvOXG4LAhQOgNGD/pSkst2fH5d0DIvtKHXx9FIrx6/WABngbX5GsjSoOY64SOl48bJ8E4PfNqwRcAIc3tOadW7n6DMDaW444pi5+jAINBN+uU9bdLN8ugQ92AORfiEtB+wEPgAYKjnV+Zt7N8iIojOBOgPHnnXBMvdmKRQKUNR7Nk//eFjcwcXKHAw451FKURELb5Zu5C/y5FOBQTb0Dkmu3jkgyifuVlx9lcYgAzP2hDiZU9JoDjs+bT69UySTse6Ijy5BQAb0rRzYo9VzXhw44OLG+zkq5TGkV516srMvkeFFAXQE9pnfeSHhAi0vr624YJoMqhX6Yb778vjdRh1Vrb1HlhRN7vmKjjxuiJudzJUqQSNfp85eArnhYAYxD8ONd7zjpR2eDIEKs6ycv9ezukuDe2xAfA/1yR0RkvrbZxpimrc1GpobvicxVROQOA2LOQQpnKu8DK97u7bQtbk78ZuANuLrFzSFzikFE5E77nRoRickg+dc3bGjS4x0TkU5gQERENAE6jvI8oKgI7rOrSw78rrG7DOgdkM4Nt7E06QSaLCEG/c3zuSea8mky21gxLiJyp0Zkrrw9JiIaTEREgqWWlStujW//7xcZrHy6JXqjFOD9nci9kTIFaEwcOJo8+fP4e+s3DUHCt+JsgHRzw44uNyD8tY75navNyHIYBmS3ZS/TUOeKgzl2EuQ0V3extVQeBGCbWQdWVSkbIHIu+mcjiYk8OlYyuEiqWHwlSCUdgU39oW/+I24su1D0Vdy+WbEoZiiyznq8m7oRI8ls2TQJ70/diJFkcS3h3lS594w+se74p6ny5MLUr9b7R+qS76iFhEkiafYC3L8dCPt/MZXPSCYmf14+O3h8ZbKckvTXJKucvldH5v0NvQtlsuHyD9a7x04Vpcu/8M+3Yem1jb7W1NnpFJ/EZLDlqaqzedb2XLnt4G1qGn79u9HqrdXlGbQdCoVC3vq/5e3x2dtE9uGVvvvf8pW94FbPPHuc45/cWcpNZElfyvh2uEnAV6ZWVD3tX9rtcJlp7cP29KA1KC2oE2CbJD4oPaPUVqMFnIScfCRpNU2of4mc+9JTYAUleyy5W3garDWaw13OlgydTdme/c9JgFK/Q984U6SwjRSONLk34nA4Z+H/M8PtJPOa8nGAiW6nLI6M20mXSHCbU584XHQIstAPtI//AVdeJ7F5XoPZAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, AB is the chord of circle O, OC perpendicular AB at point D, and it intersects circle O at point C, if the radius is 5.0, OD = 3.0, then the length of chord AB is ()
|
8.0
|
427
|
[
"5",
"6",
"7",
"8"
] |
D
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHAAAACCCAAAAAC70ROFAAAKFElEQVR4nMWbe1BU1x3Hv2clF41YTFiElqUkPAYU0ipiY8QHBKNtlGoUq51qhakVW62PllbSOg2Z0cFOMlodSewYK612ahoollDUlESwoT7YibGCQoDWB0Yp2MgIDHsVfv3j3rt77+7eJ7vp74+959x7zvmc3+/8zuOeexZkQYYWA8AbNGIhL6wAaWhxGdVGVlvJaoN5IQz3LkHkkxayAlaAjBocMa5XU3MtES2ZtBSwZlBrJoXrXDX9+HvvWlLQEvDK4HPYHPvB5wQkoC7Vjqv3kz4fIDG4zj2PwUIssQS04DS1ABjm9FpzGkbmNfQbNiqmTcoAkCwsixrLb1bD0YqlbvH/A5Ls16AYNykxAH0ft96pBzq7ADgS8FimIyl9ghmeGeDt9+vq78yOTZwxHk/FlaDkxnUMNHXcbHRkz58fBRAz5MAaQEWe1sMn+udlz0sBMRAjVoISYsRADC319fX2vPwEY/UOUcd5eL2Vh7pX1SQLNQSY0B+YEEZq6ka0vDU7ce2KcCNE/bHh7taw1TXeN195xRMWVhqVK8OLe/RXHbpe2rUhOaTj6CIIzui3AYSxYNnx5gcJ2/6jV54OcKB4WnTHa1HuctVcgRiAmAOfjE0rcY0GeCLx/rUSu3YJ7sqAIaq0uTP5tGZKVacB0FXQe+JZAzS5RB1t2JB4xK7eLdQ0JMCZkXXJLA/AvOapGS0a3U3VncrtpzScTe6lPlJhr1B9pmbS4S2nz6SZV0+Q5XEvOUtVjKpi0r7Fl52WeUCG828rBvw/8g9syYirNzRsqElUY+jMTuPAU5nbDo5yogw9tmZ6g78H/tqwZdWfFqh2ccOyPTnvvJ8B3Q+wd+muBdY5Hl9ZenXJ+TCf5x7LiR2Hhr/99Y3WeXLL/HzaGt/nNu+UrAi/HgVPIW/dLfG5pzApMdDva86NCRQw9J3npi7VAjLgYtHfjQzWBsVR9WJSKhSLBy/v78o7lhI4HpDx5qJeKBrWC1iwaWEgecDyNT9QztpK4Nv3iwLLA3Y0v6fo0gpgf9GbAV+Jcwe2uORLEwXg1UUZox5gvIXlfPV1eSPKvbSzvN3KC5ie7EtbF+WJyTXcuXFiEHiIWr1bFpMBu2u2BQFHQPGxPr/A3etGNQWqCAMmLd/riXvasPdIWxB4AMB+9rUi97Th0fAPL0X5TR4AiZ9T6Q67gVSeHywesPaIL/DyZ/OCB8xtuSF1fTfwd/nB42HM6iNSh3MDK1YFEYhVbwPCACcBWx8FdFrylozb3SAwGbAheC1IAGyz6sXxVAKeyZaeBZzHALDsM2LUJlZC0DAYQykDAciSVsUCkN0IZhMygJ79d58ciI5UEwVYMDzD5HYhnwhs09/e9WCYn3u6ktgm5BOB7foWZZpRXZncLlxtQiVbDTXhScbYcjFMJqnJLSJQyNMdYyDPhk1dNHB9uX5Cf+LoEYHC5YGBLcHCqxdj8PjOj29bAo7vF67iBNzv+17lLSerDkdIYQtrrbABJXC8XgbXG3NyAeAyALC6spAXMs0BHwjVFE2qr+HwpzkA4GqcGgPgR73dRTDVLSb0k7xb6MvVgVgA+OBCvhA366WebwBERBT2QHPPkYgG0suIaOAry4iIqM4e3aiXQyk3HcJV1DCsX69+4zKO34PzmURhOZSzsXCWuTFuQGy0EAA8EDaoa5D9eXZEHhY/Ugp7p2YsKrllCACO58L6NFMDQGi1UD5J+6bmusaACBRNGv2pfhbmvkimNGPSrkkKYMonPA+e5wGeByAE3RcAPO9yx13M5cIIzOnYnioHUuJVcODAgec4HuA5+QUAz3FMivOMD2UjNl6taP/SkiRftbGUdgA8B0lDP8J5ApyFT0gdyYJFxKEtsYXjORAjT7kBlmviFG8DeABxY1ohfQFRUdGkCb3kwtPhEpDAc0BWA8dzADie5wCOl1945W0ePDBisgb10rrXBsZxANzrRo4TfmUXTnmb4zhwNvGOYWC2GyjIvAaeQ3BWwgAw/GEWAIDcwPiQNkJwVsIA4HRIX3ckIJdXaQHmymWMMTb3nnoSwWbHV0pxd39aW06e58aEwFV8s5qoNjJCPREjAMPHCnyAU584CzJnUwY2/GjW4I55k7VTgWpS4xRAAoD8cgst2JASsf9Lj+/Uq1m5W0EByADgO1V3TfPon3vYnljdZJ0fehaznjHRXrDPNJD/R/XQnHRAp+1f+6FnjRbiWWL+JL3YxFYUAcCVwVmhKWNBTLM1uo/f8ERsDNjN2Nxb34Vj0V4TXsoAoC4tArvCCv6rXbHdBTJFbHAmNBHtyYoAdpT1mfMb17lswJU3UaNXgKH7WLEsbhssnFoJZMxPAhLyt8NMTzw5tnoJY+MuPK+dbMs2xZ5aaXwXEdGvqonoQXST0WWm5gdLhdQluqSzfvFdRCx9rrS3SAwrGr9v0Kb1yAIAMNJ5sRn+zdGFAFzfWpeLwrqzMTb3WSpiQOq4RmM82eEdnRqejVwIAMOPZgH7p2wG4svk+t9yaH34tWDSCkcPEY1Q7TIiGlmf2Wub2A4AHx0S6uOoWN1qVEdRQ8+vH3FuOGUHwPCXHADsaRtQijKiWs8ZriOJPYHT8JajiohGiAZmdhERrV9GoL8CWCZLtHX+o0ABh2ZKqZpWEhE1xZeRDS8SUaXMCq9jsymjath6XXSJGKqLBuB6NWalnwXtmD++VxYAHgN2XToKAAwY/HMO4JzSV/Wk35MKzeGSq6qfjjFg0ip7hxiqFSpRRiQc2fUp9nT4Ab3SVIHuwnZ/oV4RFwMh8LOsWNC49Nq+MZZOAkqFuTY0fZQgi7tF2i9VyhRnR47+K6qG9Gb2n09QlsvkQO9qsPCatIwW68cIndNeeCfMT7mA1vGWaH+jnNQknjb09oARoopo9eMtGqe+mqJ3iiX4cVYNL334i7gr6qVqvFhmNNVPuwj3MTZt8Vi/4RntkzHqdSGiqujCHlFLUXxNqnhMd1fHac836hoSiJa2PzG5RPEh3kdZ2RYYofvltIQ27Q/z6kAGxhBWeulu4k+7NSYgWQ1ub0oeai4J1eSpAyWC42Dbo8Q1p/Wb8cSqtLCOvZN002kaXJSeg9MdxdcUPcDLS1u2Rs8+dN9Pm/qI1kE6oUIMsBcWXvttrnDcE7LNLyEiHPdsjJdl0rCHidGk6/26+jtzYuNnTKCn4kpQcvM69Td13mqMEQ60SjXREZPDl3hk91+3wCg2Ho9lOpKm62+XjwIoE4U6xicW41tY5PVKrkAw3fWbO6VuCu/K+1fGsIoGTBrYAyEGTMoAHVOZ2bA12oYKLQk49S75PjRiCksnhBgGf2l108r8P0oAAEVj063xrP3fAqVffAgSO0qwgQDg/OwbYWMZmBWrWgG6yrYjQmsjIdDAveX2GQ8t8qwAnfeIar9sFag7H/ryXj4ufra0JkZmfLmsR2T10GLhHdbKHx7/B44YELeWCzvZAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, AB is the diameter of circle O, O is the center of the circle, the chord CD perpendicular AB at E, AB = 10.0, CD = 8.0, then the length of OE is ()
|
3.0
|
428
|
[
"2",
"3",
"4",
"5"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAGQAAABlCAAAAACe1RktAAAI+klEQVR4nK1abWwUxxl+5lhEgUsMrY2v6jlHbFMOJYEjOIrbI7UlHEFqtzgKKg6xBJGCoIK01IYqVJSjSSWIakshtRVLQcqROilNULGUBBLFKGfXbggfOSuAzkR2fS6HamIrtmMTbHm9b3/c3t1+zM5NoY90tzOzs/O8zzsfOx8LEuJpADhtSdQ0e0ZOUgYQk9DTp6kDMe4tYbkmuCCEeu0nKAQAst9j4kcNyELSXb4Qv63zm0vkEGaBWGgYcHDW/+K0LEo+ilF4Ra8oh4zTxCSJUT+eWXk2rVqiQB4U4d2zVcDQF4U6BWNI9F8Z7p7BpUkgZzXNDeY9WFgAyqaGOVlHDMCWg/6Zkq+vLQAADEYin4wFlv3gETcCOcDIVRrrGRzoySsvL/PyHjbGndEBANhARETDLYGc6lei9irXLjRUuUuPjRlagK0tZOuMRERxOrfJXXuKe08jIlJPbnZvjnLvS5FoRPG8Hxe2ztpKNkQ0oqmwd3P8TkmI/r1y/r0nnQwwQH0ld8cQv9tkIxnek1txIOZ9nX9XM10mQrkvjPGyZemML6/4Tl9Q8Xc1vsxvm5kLAe5DsaniZm5TFWBi09ohooMhouE1oSySdcTXbLtta1/OSgj9pfmR/KSduWdPNoo16/D9E2sTtrHG2dMRT5iIiA6FiIiGilvktFCT54IlxdldTV49byikERHFPSckWbp069Lgjl3EoG6//Gl6sGAA4PvksXnV2ccpAMGujReaYBhcuHXCgF+Odqc5KPnzn9l+Ve51WHTu2r5kMeRMAhyN/m1emsCliylpqJ6Q4QDcp94/njIXcGjC73lvZiKhUDq4o0qyWijuiWQiXCVXt7+3hGth8zi/U9rhO1nbn4kZ6bVk6x3yvm9MNSihIW+EJNFanB5iTEoYGIDpyj2VDvZR/rGt03JS6Jma6lk9zHFX/UP13KcAMKx/7JAcCcNLi9JZbTJjHstIanQX0fD3rf3ZEUO51y3uSr3rad8LOSILcw/vnBXdNyB/1/5kIE2S6mWdvbvFj25d3CRJQvvbe/SQjtToHPi7VbXZXaRFPVOyDguXmd2lKznufhLiWRwLlLbITvNqx9tMSpKYSg7TppeORQlR1DMtK6W9eJZsPb6hrMQgywGB0tfkhADrlr1mVqIR0X2f262xKaFIQFYJRVaZlTCg87urZexbO3JVIhcBQNlYDyzuemNb5rbg4Tk1JyQokj7fdhzMVPETOV9xZmd2d1HUJ+2vuEc1K+n+UZ7cqy/gviiTDQB8Sy+aB8hIueyjT7TL5kR5xExyqly2l5VckidpM5HcvFEiu24u6TI1D5FpwZ5JlyHX5YfnyJpXhJuy9rj913QSBgD9P5TlAAJdxpiQr7jPBaTV9vrlSXwjeoAM/3z4Yy6DIYNF8iR5Ook+SxRIoeJBY8UPFMiTLP4PgQB0MsbqhUrY0oEUSWcv8I3wvZsxDQTkjzMwIFR7S5tprxdWijvVutTnQfhmEb9Mq2lgwMJJAAidv76AKX9+51uRUYvGk7N6Ouy7j2HiHh4H18j2Xd92B9H5Yix5X9iFF04mSd5c1QZg+gg3cwSHbMTNI9j7KVrq/GDAgLgJz7/tAoDE5MNLFgBzVH4ujsMIANSrFQCAj36xQEQyNR8aEe2j63VElDfMHaw5Qz215+Z30fXkVpjT9mEK/cUuBhz/EysAgHvGnYyxaVlXuy8Iz8oBgNTn68Sd+OscF5CYnKGOQgD3jjrls/s8GgCUja8CN+ZWNIor/pZbQWL7GRUDALA0USI0KQNil1YBeHELA2L+LGNX/H5XqODDXtqybfdeFUUDKqCqAKCaLumQ/o/ZL3MWAcDbRJR1wOv3uf5A5MfbGh1RsCymQFUUFVAV4wWAqihIxVWoyhdrFIemaEdshT5AMgAo/BIpJRwomYCCz6SmTkn0FaUHSEXFA5dmAUURb0smcaZKmmMy5ncBM6noEu9FAHCQYkzuvS3bRIDu1W4XwFQFABRVqY5AUVUFUFTjhcGUrEL9YL3qaIwVkWq4gIx/yiOpmGK8EEzJiqK0bVQg5VYAkXLDbEVVELw0IsidAmGwt0KOAEA8/kiaRFUBuCvfkuBgaHpujvRmd7jGZdmK4q4JbAPkWGpVKwNfVLPM6stGeyTmkOF11h1tZ3QsDjDTDJKA7Ueyz9lmm38jzYEjz8G8I8GA+o7s0/UT+Y9Kc5zt2wHYtgfDa4nIvDK11MlUQZf0aZaaXLBb91a2Trbpopxw9NGg9GlWa86TAKxLbI3al6kWc8xKhjx9kjI0mvJcJNJsShjWLefvaqQa3Uu1hbI6cLhijb79bUVvepdI4yg5b91DchBBxNslSmP5U3t0szmun362SWYum3xy5069P3E21RovNzrW7IHVT0lwJHFw9JAe4gyl8z4o8Vfq01PLJLX7RFSa462/Xkwv3HguveKJGrpKqk40mvCdka6QLm+mFXK3bB849rOb9nM7hl89vkFWx+Cm1sySikNCwE/3Vk7bWZqjTekcAjAAtzYcKcuk2EgIDGC/Xl0znWwjmQK7/9g2L1OMEJPVlVsNURuJXkDL4mAiEycAiU2tvmyF6+gvXd5gttyp+gznJ0REU4EGiUonIqJ/WM9PBGda7Z4wEWn6SVDNZlmOJs85S4pgyrGu6+fnX53DiBiA3fGP5Vw1vfPyBeuLU3QEWPTZV+U3k8uq35/90C1DQYNBdNtezpzWlWlR7nerHtw/DuDoXz6WWn6P1JU8+8Y8DjcHhjff8J7cigOtueIFm46J0Pf4J6bZz36v1+bNP881hXf2y4XMUXlsfWGr9XVpxVTYW3Onp9i6sec2ubfZ9vAzUE/WujdHnacXzp1R/wsDG2Z+R8MtgUWWLwt0XGiocpe+Pi4y1fEbiSRueOsakSho2oX0NxLektQ3Ehh1+kbCAjGJuubxBgCh0idSpH1Xhrtn8PkEkBPA3GDeQ4UpAtFZqkgmvem9RUQU5rRgaw2IJnxCkpmVTUIbZCE6j099F3OnH96k4UzCOKH/OwkAz8p/AUDizN2yCJ0Zxmmizg13WydZenwHwOrvloP+C5Lq9KnK/pdjAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, the radius of circle O is OA = 5.0, and the arc with A as the center and OA as the radius intersects circle O at the two points B and C, then the length of the chord BC is equal to ()
|
5\sqrt{3}
|
429
|
[
"5\\sqrt{3}",
"\\frac{5}{2}\\sqrt{3}",
"8",
"5\\sqrt{2}"
] |
A
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAJgAAAAWCAAAAAAZEwpVAAACIUlEQVR4nL2WvW8TQRDFf3OOqNIGKU0EDsEFUpSUERSmiASNQ4EokWjcGslCFDSmS5F0OBKioMdVGuQoCuI/MC75EHETSoRkaHybexR7Ro7h7vyB/Yqdnd23M29ud6QzAVDTc/4batSmPxzEvgEo48wU+cZGMOjYHBNnIbjoKuOjzQ8WGUCRYjb3/SikMXhJh2sAC6M8rnmiGFsbQ9NU3TYu+sKOltfnl3QUBP4ew0oyxUvfMTO7/DMllP6aTCnMgGcr+QziYaml6GE+TZnHgQW3w8cTytkxM2vEwoCDzW+JXPnbdr0NbG+rmhzUADrWll5fWp5Q2OG9N2o++NAX1uluLS0m5zOAkxWAtU/pgcM75ZdwpXptQmHh57sUoC9s7ynXs44cbwPkg1SSXn3fB1hdm0yX3t1cVKW8ASCpDpSVjt6NriRV03m9wm5GnFREUR1oSZIC6Pxyrpn19s9uLQKd/e2UctHZx9VpWtLsuK36ZhsgoPPoCbkvZHT526sIKsX7KWExpvwR6PxYp1xoAlCFlisN3WU0ZNUrtKRTign7UTzGV/m1kcpLtvVd6ZSGJCFJTnLOyTkXyTlJcqE3LpQk+RpoOOckhXIucv8M/YKGdNTXP7a0Uku9wlLXC4uk0IuTk0IvU4Pmj+N9X0O8MYwm2Y2UBF9+XJUJOM/Bec4bIHdhIQeDo1+ON2eIhf4kFyeabbrREfiPNIhhP315VvgNJ1iizHgm2RAAAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, C and D are two points on the line segment AB. If BC = 3.0, BD = 5.0, and D is the midpoint of AC, then the length of AC is ()
|
4.0
|
430
|
[
"2cm",
"4cm",
"8cm",
"13cm"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHQAAABrCAAAAACDcfm1AAAJcklEQVR4nLVbfWxT1xX/XTt2+HBnGFZxN4uEkoyUBLAWJoIaltAF4q5UpBstH0MjaEEdLZNY2mloQiSd8scmwTpVrISytUaibbalSrZqUAZqHQItDCRSlDRhJJDgsIYRacmSaM579jv7433Yfn6273Pin+Q8+757z++ee+65977zThjBJMa7+r68LGK0BwC8Tsxd6yksdQDEQIxPBOMiVaV1XQx8HCpbml82B04vAHw+hslrA8FLCysrK4u5+81HCmKYbm0/v2BjZYUnphPa7XuBwIVQ5datVj5W4sOFWkfVyUEp6X2JaOBkubOuk0cYF+nEbz1FR4LJGTUMNi3Law5lThqleHjIue1aXElClZifV2pcTeOZkqoYe9VRN2gsX1ekFvbWOg5NzIj0tOvlESOOZNxERHSv1t2eAakirru8/Foq6UmbXvpm1e3k/Uup6WHPaRNs8Wh2H0l6L4WfDu9wvuvk8zsjjG61ve9SPVrn2PpeaOPwgSt5V/nQ4PqIDE2TdHgP5F1L7AgXorUvuRsMayQhDW8rG8uEUIcRb51RscXQHpO+qfNOEABwbhzGWBy4/dw0oJ83hqTj6/PbHTQzPhnOv+dWTSYK0qsuEU2UHpjJmOqwtyKkN5LmMtFJPV1deHLmOkbxfKjdwuIoEv00smXun2eTE+FnnS3xJYk2rY20JJTNCDnt9/cDiJ1PehM0e1PvEJlgoqAl7ree9Iarf9Y5E6TqSPV9mi00e2PPE/ETiXYsaJ5dg8piGbbHCY7rUFtR+gNOBpCIQp5A9HccaSgvoK8/a6xtxWHtZ5zLNG6oyMLgAmCEmsIjicMrEXW7RrKjJRFJNOgcVIuiE4nYcxUHsqOojMahdxI1veFOWJlnFWOas2o2ZXjtYC73c5c5yKPpfKlJryn1e7LiLrGqukd0mqLp1dzEPX5W4XzxVzKDNpHGC+46sskIAKMrhu1AzNbWstmBLGsK15NtABBdkUqztBjFoa2KiKLL4I0lsrtk0WWIKOIaJIpOpFN75NNmVlxGg6X2bQCayxT1ZlVFFVfKiLRl8IH3SyAxgDHriCwadsizl4CAvL2Y4uxkjL3CXVtWzrruMmRSRvhkgxk6AEDDzikSL3CzKvpUBgDVpuZNethHRNThmcrAqCAiiUJO7laKT11Er0JqzsnCDpJdhqG3gHtUlWE6Xl8EAu6adTKre0hdBu+s5G4lT4hwTxXAgHMvzDPFCZT0q6Q3zWo6cnMpAHS+v9ckJwq6VdIB/gimjMWr7gII768v4m8jj1HJP1XSex6TpLaaN4Bh21NHTbSRxyj/X4QcAMB/55toTAzAazsZWN9yE80UzPkPUzSdfMR04/eIpAw44ZiEssuMmSGN+si5ExmQjoMpmpo4qZB6uvjrAt8/zJ805k9CWQZ549ux+MAKeMw3G3MSyRMpN8IZfNd2v9F93Y8NI4PNUJyrusxXprgbySStKwq6/EXuTeZPGlMOIAdAJPLIqMM4dBYPVa3Rfd0frsV3ehvNMgKYdMqaWm2OaR5OVS1/QUHX2gz4ZFJFU+Crk/ytHtSOXFiTKSUQWqja1HNfEAREBAkkCGGABEGAdtG+kSAIp0rWfFoqTIskCGImpINfB3JADMjv3iLaYSULwnYIxEQbC4s2KBcAoo2JkkW0/fuHI+dXi6KdRNFOpkmJAT2FgAWMgJIBZhVBFhAJAojAYCUoFwDEGGwWwpvfKLvqBWyQP2aXBgbgdgmQAzDg8ZuwRiiSAzBjYQQAQ3tCn64QZ/a4Q90FgAUIi3giCFhFC8BIAoghDDAoFwCABBz71qbOYrAZHY1JGlkiayqJ8xf1FVkjFgA2EbDDJgqwQ70IORabOPBSqHO5KMAOEaJd/kjc65iG6yUMsABWu51VdABWAGB2u13+S8oPgt0C9vo632dF8k273a58zHOyQAW059MNnyCiWx9YzLVv3dnPf26aIQ7KVAhsiJJWfiwYL90EAL9evyuwJK6tecjSI5+VQ12RsHjRHd0RS+kDA3rqcq/lg8lFM3zCuv7EPEQf/59u0WmhSo80PrkrkB9XNAO0VjNommL3lkZDoV173LcWz5xMQcR/HYhqunphh1Glxo0Hzs4eJz4szoslxY/9iXWur7nas5tPHN8EO7VPqa2eXVz6Fwahgy5/6vNOQ4O589FDlxyU0zR1bv59fK+uevt7U6iZie8c25ULADGh14HyQXt0Kk03/uH499MJaQxUAgggwMc5XtDzKDHEvgxaVnYiynnZ2/9FWk6zeP2ZRxUPiY74Dfe08m3iZXdrOvtImk15LWsQ7wW8ZccBgNBRPNWXVk3zK8Xrm5cp32JX+aamBwCm9m9/6+0ZvIBPhqE3G7GTMcbOqnEkXOwDiusOAudKpvqquXJ3SHdNgwOv5OG9HWfo4ndv5QBgQPgnfwTQuPzMnwInqsE3eEx3Td47BqD9disQvlWBpZrL/PJ6yzwAp37k3WTn6zgAdFAlgAAq05NG3vjeO8DFvxzFzseOyjY9tfo+AGD3RosdAOMcMu1NfcrqxAC0FeYBuPsbxg4flV0meCzok/1goqCFpCzEfJu9IZKIdvSSH1/IT6Y/o2C9Egvjf38qaX/S44ZrgIgo6JNIXPU7AhH5AdRH+zTBKckP+MRf8NRU38r6jxEFcYYswPAkUcfjqgVeLHle4rHnMOsiOmn7GkfV6aertwEAnXsK4Wc8FQAFfUofFIQ3b03fd0lYVU8k0eG/paqkCPRtIyIi+ZTgIyIcBnppBxDNpwh92zDhJB5+OebqTxqyjdpo6+ZwfIFkFOKY8P40sWk8xFXHktxJQF15wus0w7jKmLcubFQeRRBn+KZbaHu57kQiJcnScXYO1kzLHp/c7ZWdMfUcmqwOXdDFqJhBRgcBgOOj+ZXjLCo6Ae7iOwAwfDb1wvtgfWFbrio2pn/JRik288oAfpwhCvhSVZHo0uIGwzvQauhbtLqOphLZAaA+tV3lHDMDpMymW3DamdnrIWJqNp0hUsSPPJ2lJe9m9vzCgBMrnz2fhDNNqq2aIWkal0urUmwcXLmgZhGsdbelup8uPPeD/rnL9w6ZGtu+PSs9t2tSVknf74eHnC/wDrJEV2pcTelSDk1kMqfdsSW6m5DJbNjGVM72UMoq/SfLnXWXeIRxZqcDcdnpCRgylZ3OTwoAXR2BwP/Kluatk/PwiXWN6/LwuRYTc6RAwn8csDlrPYWlDuM83iT4P2HVAkJxdYZ4AAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, in circle O, AB is the chord, OC perpendicular AB, the foot of perpendicular is C, if AB = 16.0, OC = 6.0, then the diameter of circle O is equal to ()
|
20.0
|
431
|
[
"16",
"20",
"10",
"8"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAGwAAABwCAAAAADeGcrxAAAI0ElEQVR4nLVaf2wT1x3/PPtYURrmorqNp7mEJqExS8ayAoIVugSRiYi2ggoYDQMtTJvaLZOWZWWiVYWzLhtIbGxTUYVGJxIxOjaogtYOko0oNqooFLohGs9GJC1VzHCWaBBipqz23Xd/vLvzxT777l3izx++d++HP+/7497PL8gJuhiaUi8ros1cEAQBcXZVocNzPsdE20JcrNSSdiKiPaeFWwpLBhz7z08BoOJR8aYOBDso3MaxZKNXK8RF4hAnI6dUTsh8Sz4CgPgZB2w21W34prpwmijc5MBmDlxfCQNoz9OTgmDOTUDCH/UMHER8AJFEKk9cid0KMRqOg5G/EnNW+RctLRVob1uN8f6zoVurH6lcPo8Wlneg45MbSF4aHnnXv6axsWxWyWK/O5WsX1NfzVQ7dSCoKTESCoUe3NJSaedvbKhx/K3Diea3A8RgsJOeqKn5Hou8sbrqm1s81i5j5a6JttLt72RnBoPZOSe3enb/2+q/LLwx/kK1NHT0KWvxNx0fnFz0w9HClUzIMlZMvlTnG9pvaX7ewH/w2tzajv8JkumKP7XodqzDa0WlNSCU7R0cru4rUNHEQVQzx3eOn1qRlZcPxDhl2dHwC1VH8vbPXDICLi9v+PsKY14hZIrrB+uWR/J3yhxd3l4tqeQOtLneaHRM74k8JabfGSk/6AvVqOoBExwFN5U/+8Fe0xJT17/79JXLNYCTsRYELLv81y3J6VncY13ZNQFElpWHPeI0HAxA2fm5K4cz35A+9LiMLDyrb1XbIbdTLv5P9x3dsTRsMu6qtjsX1awY8fRazr0FHYSjxzuU/SeKi3cm/X2tV+MbfrbOkbGyhNvYtuGenrONMcbOMBcABvx8wSM8ITeva50JEaD19OUv79Bz3mw+TeH1MW6z7i/9S5XlRfxG79wMKd9IdGjp9LV6VKjDVTy59uESzvrni+5M55xBG9ruO/GVuo08eb6hBD9uD4CIaBfF+dLsgjeabegcKES0R3MQpaAnXfIO8kQXgCifz7r3Mz8AIL759wFr9RgFZ9qIbyriskNPjYMA9EWpa3EMEhBPEs59CAA7A++9Z0tTIXRMV1m+WaH8uycYMDIRwDcO9Fe7EP9OK/AxAPzx9hO2qAzgklFeGz852AcgtB5IXK1g2ANEqRmsje76L1kaTEUwSDYX3WcDU0TNUUot8U8al9+7Jg/ZFahDU6M1nvvik/UA0HQGhvlsyHvHrmAUDJJCzQDgv2dRNeFN6GkX9yQCOls/a7e3AMDwZnOU6FvV/y1cr2z7vsyLpvqEgGDcZqnNRETb2gtXNf6xS3Okfd8WncLOLwCAqn9ajG1lmw5oSW3yHD/SJsiF/kYAqLAc23a9rk3bGtmxZ+1uRTSk3qkHgI8CVoN25aq3MmREAI60CPAQAIw2lAC4+erXLAftliMZMsaAK3fqARDZm1sYAPRXAIRdTestqz8T+UQnA4DuFgKI2V61MaQPrAVusts2Tijc2zXRuFP6tanF3sY/GAzz1jmbKVNcCPAnX6TG0trUYnfW/KrIXL4sPloGcDUSwvUCTcXhXh2CRsYwsKaoZGgY4GQEoNiSoYGb2MUA3JCtVwMzwoqPJwDV9YcXF5cL+MJ1nSz2WLHJKq/pZENF1iJQbZCs6GSLIzpZ4vPFJvOP6WTJecUmuz+pkSnK3PQs7CQKoZRvn4iIcFvsWuWs1/euUAMa8ROpZ8RIiZEFgJViZHc8REQS+Do1DUiK4mYkw+UCyYAE7QEtxX/TcANuksHs77z5ZOICA0MSbkhwMQZZkhSC7JaYDO0BQHZL0LLdOFD9+F5Zctu3M92dp9vsobhCcpoUhZRUKpVSlBSRkiL1QURKmohIz1ZI+VQ5h6wD90KIBojU88Z5SQYXkcIAJkmSyQSaK0THtmTq07M/silZ8n6uRsjyA/cIcMkugBEBxKDwUyRFn7oN2SAAne+PlEB67U8Wi28V7F4pAEgAU3y3HifmUhgAtwxIcMsKJGiPtJsZs2UmS+FXP4QM2Z5cAOIPqWQu12NDYOpgwqTMr/aQpmdLAH7bXgtJ3UPawfUaQGWoGgSgCJwQpCONAIC+r5fYaxBZpHUTgROQySVAlrj6KACc+0PUZoOhagB8y3TDKzYeUGrJX0i/abWDuXe46zOgXIrZlwoApI2vATfnNP7SZv2LCz2AtvyuDwtxEX4ynzF/1C4XBvjqjW9z1wwIHVcx4BgR2Z/fw+q6lIgUivoEjSaGdCnfxPMVcUCKYVaO4sxx2c93muqWafNxzPBEswDo+FYtRURE/1hQTC16b5CuRgB1D4r5oxDerinnCW0D39JVPLLunVpKFXXMk8irhhliyDtJ09QI785fF0uw/a36ja+2ix4ROU4SQeKBacdJBAL8T/+qOILta8mcUxlUWxTREt6Efgbh7HBTAM/VvpI5Qc70YdJn+9jWPv5WNZV5Md4MHl+anm2uqYB6wagQTb+n3jr/F7OtxM7adTzBstRINOLv03sxKzi5cMz4Ov2C9YI3NmtEZLgeUQXIus3tqrIMELCPEX/PdC1lXx23Nc6ak0ytDGblZN9Lyk3VB2fJOXYke7KzsvszVuU4Om06OmvuEhEpBofLvYEf9PTm5DlAj3cox61Nrvt7PQf1Wo6/gn2eUG6mWWzBYFVr2iGT2mSqpWbIpNTsur/mg+G1E3C02uJNxlclL5pGEJl2MN1aOWhaYEuuS/7d+kvB70xDt8+xm5z0ncxTkjc66X1fJzkxW/qV8rxKyR8KNbK27oIwFYUCz4zlLSwUd9Xje356wzxfROYtsb2816yGikJxVxuuz1/cMZ7jazl+qr2NvlRbcW2dWY2C3qj3eeR5z4uJnFAL07ojrZ42i4WurfC1fI5pUGvPVs/uMbMiITKFxg4t9e8uGHMQafOtPmxjIVgg5NBwha+HHObWioRCIe9meyGHduIbiQGI9/cP6MGUIGYMpnyYFbryt0eWE50wcSV2KwQMxwH4q+gzT5iEiRLLH+v2f68eHEBeHeQxAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, in the circle O with a radius of 10.0, the radius OC is perpendicular to the chord AB to the point D, AB = 16.0, then the length of CD is ()
|
4.0
|
432
|
[
"2",
"4",
"6",
"8"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAGoAAABuCAAAAADq29ldAAAIdElEQVR4nLVabWxbVxl+7nVHoc1wxTziqp4CTao6RCodyaQKAm5pkCLIj6JmRF2K8IRQJbJKUchQgNIw6I9IgKhoflSaUD0JtrFlpEiopJCudulQhceHilsX6kGYPdXFE6TYQUG79zz8uPfa1/b1/arzSPY9995zz3Pec97znnPe80qEO9z70607SeCNtwhEuvHAxyK7+jtcfqtBckNVePXXyTuDj3Q/1oEPdAH4xwoq6TfyVyMHhoY620h160c/L8cOxKIWr26kLidDo/Ful1y0Relsf2Q6a5cjMxkefHZVaDfCLqctVXGy4+gvbKsiSHJhbNtMyZ7GgSp/LDh9x5FHyzrx3smib6ryTGi21FRyy6oXZ0Kz6/aCtaJaDB8zE4mmRDPZ0a4lH1RvDj16zanoZiR7R6rVs/jOkiodPuWBoQblRFem9VsrqkRoqUXFHPFyaMEDlTLRY1M1J6QjM66pVocHV7WU8CVXsX+0bP2d3GhrBrqSQd1mQXJpcczovPrufX9zY5iWgvM+JNFQlWUumLR6X0+VCVaHhp/GMz48H8rZUgmy1ONfpjqc6is3P6xNIpTU4d3zPnrHCp+vLOqFWvfV5JDSHqHI9X2zTc9MVImeUtNr38hHFtnQ4aDx5FrIdgr0ivRDjYagKlVhh71d9oyFroZGqlINzbWXiTwxak31Qn/bVMLooPXoL62oypG0OVd7sBxdN9/qNvCZzwwA8GX0WuPgh7+nDyjTuMqFVtsqj45iqEhW20oGQJyaCLZVHh2dR+eAWluRZPEhTaj2dhXJYshUsAwCc18Kgmh3VwHoPPwD1OQiWQo6Lhf9IheqmXgZwE8+63474RHdg6/Ubii4N7kB3aRjMVZNgvxjFzeOSgmtGEXLwHNxboBG6AgcPVctmoy0dfIwYOy4rkWNJzJuKVYbwvuGLos0ULirP5GRim0EEwDN9gUGk1WqVz+5YVQSAMQuV6mufGLDqAAAB1JGaiXkppNTAKZ8KshmfdaQc30uajY7vsZ3lr9SnXk8ofe2dpVv7QLgUMbs7/JbsOnMS//1MfyInr9oqU25KCjZDGFCuvLtLOB3lEuIVqWK2pchSTg7FQWAFlsZR0RvACAgF3c4ZVVuDAEALn5uiy+qSAmABGyqPOiUtXj9gwBw5YWsLyZsrWhXueLoaevc83cAyvEpnwasY03TOrmy1SnrpkM/BAoPDH0fAHCp99HXPFJVTDO+E44AMMx/FNjnbQivBvUh7KZez1PQ1Holb1JBH7Vyx5qbvLXxMB/tFU+pAOjWdJQf1D6XOyreKngwe/P63f33AMmtmTIUzx0V64rtePngwA0Akjv7YSie3FF2kdtsuQjgW3NDr9hkr8eaIVX4rWoB7iABwOHlma+7/arwsE4VzdUK8IC+19OPV9x99Vd9mpJ7Mh5JdASXOvfl9LS9cDd36VTR26Cqqt7nvMD80x+/qCXthcvt1hMrIZKK6s0A6EhH3DiKjAkfDGdJxec6Ot8fX3fKU11zyoylAECoKqgSUFUBQFVV1C7VlKqqgFApVBWqqiLyGgYLDm2fNNaZsnTgMgDICECSJIhAAISQA5IK4wItZTyWIeQA1EAAwOZz8YHfO1AdMFK8GSYVIYRCClJRFEVQIanQuNT9K1pzaz9BcjmcsGs/pcPYJ2rbA4WkKtSmMp2oSJK5vgkb94rRVamsDIz9VNNYIcE4ZJIETBdAHzqm+xrYfe3u/nst2+/FMQCAchyg+MNurXqawiuKUv3XL6qoe6wqitB/RtVnezItNoNKaIUk+czIGgS5V/Pq+htbGhbCLVz5izFSkInzH6nIEhBPAA2+T684vDzzNUv79NyTgIRCpf/9W0GytK1I1afBqGJ1aNTCNfy85kx4mvkpzXM2OdOGXbcy0dfo8k5Et58gyQQAnSrfHm9WYrvZUfqf05HDvwqukszPk6l5ghRkfFZ/f3/SpSNnjAJKs+F4jpOTJPPDJBNn2F4nnWF+8xOh6aLupDsJZHkE0qS+4pw+1hYqsR7vzzMTD59aJcmxU+ZWMhyq4XRbuMj5932q66w2syz31M0wxjr6xX6lLc6fxcEP/VhPrkeXKExlNji/75PtXDRWU8JvWDq/BZmP3K9Lv3wagOYIECQXut42vRTmMxHtoMK3WP+cDcdzJy/wnT3aeiP9cKahLM/HL9Z10bX7iTXBb06RxvFLHUybni+MHFEtDGYDrIzyjScf2577bicK/3qPhNxOAP97/IuHmrKZaJWhCRdiNQl5dcTQ7sQ8eTJSITl+qDlr3abxbW8HgIIkFwf3GtrNJwAMky0OAFsea7qhIRNm7S4M64lFh2NNkh4Pa8unI6NmI5PSHV5z25Lm6rSgYqZnwuVSV7PdZoxlSXI93pezLKFpg39vOLbqxCXIN78cmi7qFdey5wFkyVL/aJmWY8IyXODPtQLYkNSQiXd+Z9WyvPQO9+ECJM+Fl2yjRmra3YSF8ELLJvEe2mHWbjMEqXoO7SDzRsBKU3xSnXY3IBkdsYsxauX3+VldGI7+faN216E47isMh1bBRSbtbq56cSY067CrcwiZqh1s6ba7kUZX9KeCesiUzThxCgQb1yJyqisTK5wfC840R1d5o9LC22ayv6lpd0MhgpnJ7YPPulraObsDs8c3B/adzZKkaIjMycyPhqInrEyrFdyEIqa6Ly03hiKWX9+AUEQAoFQNsCwAiHTjXR99pMdjgKVtAx4BgAsNwW2+Fzr2fTV2gSk0Hdr5JLP13Sq3Y9gJNraxvpLx6paypfrt/i346lRv/SKpyiB5pbMTOQE0N59v2Ep1MctE7y0vFbeDHVXh31GM77nUJiZbqS6NAHev72wTlWRHdfEglE9HYn4O/SzRshe1g8/hlu894/9yaCRq4aCZDAAAAABJRU5ErkJggg=="
}
] |
<image>As shown in the figure, P is a point on the chord AB of circle O, AB = 10.0, AP = 4.0, OP = 5.0, then the radius of circle O is. ()
|
7.0
|
433
|
[
"5",
"7",
"6",
"6.5"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAKwAAABvCAAAAABUJnQeAAAKAklEQVR4nO1cbWwUxxl+5j5QVI64KHZwxRFDfMYmdtqjUAUKKnZwsKsgk0ZUUIlIIFVYqiNBiqO6KhVEopIr0dJQjBylFaBILcKWTChKzgnBdtVKRLZ0pDLCls89I0OxMT+Au0jEt7dvf+zufXl2b2duj6pqnx93uzvvvO+z77zzsTOzywj/PXD9pwmI4P9ki4UikCWAQNmn2clZh3SasYbEQTuai0CWAQws+zQ7OfNwyvUF0ZlF37Cj2QmyhB2MMdYLbstCqR8eEs373wNWHgrYs5RGKEyyaOmhEEyzq+YZu8piRERdtkx7AJBWMokD54WdavhnshnV+s0z/Y/Yw+tjMwPEIncA+Cux6LsrAut8ORlPHvIBwE9smfEgFUWHn7NXFhxc3eTDgf1BpJXd+ezK4N3NKyrf9mFlBYBbU4gPD37wN39DY+OydMY745XG7dlBukD+9M2YRXlZogvIDIKb7VXlu7pv8iRHT+0srTkcMU6juGAVJDlIkY12RutleBIRUUuYuvCFdjzXvc7fftM8UFUaPVi++f0HREQ0X91JRBTtESPbRtH9slyj9SmzM2/59lzOn6N3V0nHHBFRF3qIQjbdZJDtAiBOVvdeVyepUfQQTbeWtM/Yyzr9ZsnBGSIKMaDVph2dbLSTKNQpTFZHS5jmq8tisY7SI3PmpnIx01F65LG1SA40stF6IuoSJ6sSEYUAAPXUV97Ko2qRe2ZPRUgkA4iIDgFhapGIgwyHTDcGr2Vcy+MqI3mwZvuc/eaAZXaExOw3eU8clDM2YFm9r12oRHS2LJR1LoDesl47YhrhLKsQtkVEpLQFRnUF9pESHl7RYUMclBMGAJN5JHu4O365RLp4gdlXV53x5RNiuWEghxvrK4ZKYDEMzIdlf39qw6QtyYXOFkSo5JR4piyoRJ0lg8ahCUAL2ImTHS0RairN0FcasRZwguz9QKF+1XGsNmaZ7kAFSzZXnxLLYYo3Yhetkh2oYO14Vz8qeGbnD/eO5pVZ6GwBnA2IjQYscdvfZ5EqG7OpKnut9CZJ9SJ8DJeOqqSaqCuggqmkEk37HWkI0uitMC+oAisYbWv8GSDyvJcXvxzrMUtihAJiVj2/TnEuBDQ8rjEtK+kwUImIYv5heVZmuFLz2CQFRCTVdDEAeOfV9ZKFbYGt3zpuZVc2ZiMbI9YjLblYnq0bXcZNKKhT+FWbztXs9qS40rI9neapsp6drcvjWB4TO/xnX5xYqJhYpmdFO0vq/PHTgllsemLZ6ycWirFsBfpd2/XsXNU4P7QKx+SGKO+xgdHCMCgSg4LAjPloPQx2MMbYiriNZlbrBoKDjjWtC9C3hWsSSPVgLWGiQ2XW4980whUFjF/yZVRKp0xSdM/OK0Hg+MZ2mNU10r3PGgDg3N4CIsY8o2bavecMhwbBCAMa8ANA1biJLgIDPmwJkxpaDQC9u2WZWkKvQLsvcGiwFFn2aSMAPG+qBQDm54OJky+/AGBMqXGeacoO1k/f4ydrZBOh7wPAP1dbaRqox/vLvQcADG1xkGAKOxhjzMV64d48YCJCRKRPekdxQbWI/y4AYZWIaFe3RL3Kj5Yw0XxtjKjTZHZZ8+xHzwPAgfofWvWJn4bp9QADiuXZxHwQv/U2+ID6Ib6ECwASJ5tAU+zRQNY6Zg6mHgSxyQcAt4oTslfrMTWO3wN4KfrQlGz/ovG1zLWqxyxStGbko2bgp3gTQOSFYnDFZAdbpVfxNRNcCReAJi0idsKskWUA0N8EYMcKAGOW9VAa/WHqqtQOA+NcKh4OLa6mZlwCgHcARJyOAmIAph4FEXhWu1AzwaXiWXiJi6aMGx1rTJtwBAzQwmybrrfmIldO5klhZnnahHPob9IPGOCf44rIkI0vkWZkin52ae0/UmeL41whu2GQiXjeOfUcHGFH84k0ZdUn35dcoSdB9rPTnlc2CeXw8T0rs+IhmmfNGF66ZluaGPCw4gGv+noAqEnAU9wHGgHtLOsvCy4ALg8T4rqEX0imOFUTtJpn4SDGr8IyrcFifvjnggB8whhr3XozLBayZrXCIKskFKgJAikJFSAlkUDqTztSjHPlmZiSSJKSSFpbZED7nhh9NdQqOi1B8cWWZN3MA5ebQfV4VULS7XUnYfwBSLq9zLjs/tojj4cUjycvhfbwPR8WvdsXF6wQ7Eu+Z42mi7mSbmIgVYX2yMVU4w/acrk7dV52V8+Yp8Pt/01YjGQKt5+1IsvgUohcgMsNgIxpmpQYZZ6vjtgzeVrbPKWvdIoMJSb4g1CX1nIBcCkMYEQAMaYCDPqfwdO4jMpRWxYT49sAAP0/8AFiQ4kbVdzLHgCq6gHgUhkAtwJ44U4mmQfGn+JmmZeTq/soSYo3SYrXwiD9a7wSAPoviQdDpNpEZwpJuw92U6WUb15FJZXmq3uIaL5aYgfWUw+4l9PtrGq7nCo8Y/lKlYHBu70LmFq05T27elP4fCV/7tcgqyYEgup7f7UldvxpxlaFxbliwOTp2SDr8gr0ZS9ftSf3IREFxXoEAoChBn6i1D6TsYa79q2Lj5CSX4/wZ6qlFkBqPGO2ZQW4Gq37iN9kVl1utWbn+WK8i2EMDs/vMhOQsnr9tSlnF20zkSwfeY6vWs6zwaUms1HZkHP/X2orTNwgQ5aAvefsRKOc68/tM9Und/f3A0VbWops5C4tAdLLoaX7fkeFb4vJgabveJvpw7OkZ3F7rbYc6ngtm62+ZapYdqHZv/0EgCKs8v16X4mpYlnPYnKD+EpzXhDTl/D5BSZNFm/HuqVJmWP3i78AYMZWfLCpI1Y+rI1cncSVgNm2EyKpbZ0G/rxOkc+cDeOOH9d8bCVWwPa+3UsF51nMYZT5sbpmS7kC/HF7+RPchEYkHwYqkbG9r2AYQTD8zKi1YCGedXjj5LS/j6wrrHzTBQB4azTkLkhBGl/VNx3NI1IQWWJObvaN9+lKLQwWAJVo7kltoyYqNGYpa4O6cP+gpjPl3aBO5ABZB7b+E6nG1n9rFE6WRgNt0l2Ztr/h8d7aCTvSDrwBUjsyuTW15C5YXxnAcH9T/JqtF1OdeKO55HLd+htp66IYWftKj82VNdkCzC7Ms+X92oH4IKy3vNduJkfIEtFI+TGpfMrhijx9bAacegv/28ODaz/Xy8p2JsJQ3fWRWvtWpPzBRfqFy+xiNS9k0RcuHfy+wWsTS9ccvQ8ALDXHBovuc/bndZX6soNdiHvQAtOtJe13rQTSXp5u014SFoGzX47wd48rVW/0mwsw3dt9P6pdEjnBX+2ygIwDLTHXvc7fYTkoz3ixXWxAUeB4lo+xP16Mb2mo560P3RgaGCzduVfoqwYpFIMsMeC2/jGG72R+jGFyOvdjDGIoimd1PLw+dncQmLxDgL8S3k3+qozPXEi4tphkHcf/+hd6iod/A6lRbdqn6BhIAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, the rectangle intersects with circle O, if AB = 4.0, BC = 5.0, DE = 3.0, then the length of EF is ()
|
7.0
|
434
|
[
"3.5",
"6.5",
"7",
"8"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHwAAAB0CAAAAABiJgkPAAAMQUlEQVR4nLVbe3BTVRr/nbQJu1CNDNFGDVRplRS6QIc4IHYJSF1E6kxdUV4dKesDd1uHiqioDCkuo/hAcBcE18eW8UFZQXRgga6wpEAFbBnAKTQMReo2SLDMAkvYhSbNt3/cm/Q+zr33BOs30ybn+ft+53z3fN859wTU81ID3Nf5IhERJUwr2tDDQmH2LSXeddwEAGAWlXtYYkPnEhEt3GJF++dg/sm/XwaAgbda0gYY9Sx2fMQTFco0mWnQ08wj3w5UpU3Z9/iwpyM9De4e+h0AhLdKSfNJzRToUJ637um7cCh0OgicCAPw5JFjtOe2EVlyf3PLB06k3a9uJQZiFjaXtsGFd+zYebqof+4d19AtOSD2fRuijSfa99x8d3FxNgDs8gNzlwr1JQCuMNjQh59f8o/zD+IQOrozGHRNLs8V5CB3LSwdq0d45rWY1Wiuche9f55IYH0hIiJh8DNVWWWbDcoUUOun9C7r4BddLXiifbZz3hltRwlOoqPseqdzTkSoV6HllaIvFrpb37hBO9NMn/g83/1YzsO/LKi+0lNzvtE9u0OVkdB9kb5HSr37KPDs9Q2RspxtnNHRijV4e/HwvdYKJoioxhW4TBQIbMy7TEFvyVnLRibgktKN7sXW0EREbcWFB4mIAgEqqyKKL8hp/gngRERU49omhr3CtSROMniHew8laL1rfcL8kTMHj1XkHRF6ZluKRiVXgECAaGPeZSJq9Myn5AByOzGzdrpw/+GmwdYxAfBa0dS9XkW6dNR8AL6mrx6Kys25nZiBH/XlBK+1Rsbhwq0H/qDOWlbbACC74RejTpi1NB7Kbc4VAgNO8WpXjTIdCBAlB57oVWfQuKkxeLNTyNT2eUsi3dOaSILTjDlS+UZXq6HVGIJ35BnzTqT+Ls53rdcUyuAd7j1SevGQ/8htdDoYzXnXtAkV3AKCZD0MANtVcLLlQX684lpVLi2xLxU+Aqm+zuiMwOfhbX4BkzQgABcqp7xb64KBKZeOel768n6k2gDEYNhr8jr4BclRJ6Jt7tnnObMpD7ti4Ns9G/nTzgff5woZY8tdz8jh23EKnD6XLZ4aXamVVqUEd9jDkz8eBPPQc0P+Tc3+1Ojx60hLDQDf6pKzylkzHfbiJRa0I6X5+4zKuplTh3u3/G3BZF5VHvN15+aZcAawpmDYwZEqBvx6rlWz5KBiQXMdr6Zen4ueRn2mIn5oKx5+0MTZKJgTlVXJjbd7/yfEfNEknz4zNVdspa+4abiAswEALFvbIMXe44fxQnmdOq2u8xrSSq+s8J0CzBOpNZ4irohujVMyl5aOxRVaT8ZYarJe+7Xad1pK6Z2yxd9QtkS/Gim0lDXUEFeoe3C4v82ctoY5EXXcuMeoYwVzWasljzm1xOVh6aq+pyqYkw5tAHC9I6/x2Q8u0xVqlOlwGgT8iX3eEqG9gIZ50uKJWl0XDZlL8ukD2RrlpI/oiyWLN2Vb7Ld17QhIRjVAbtEGTR0teE05t6t6yXemsaNmqX+u1fLAz/yrTkOVHBzAG8nzFe5t+ljAYKHRDXtq4OMujblqmK+ZpVAr+aXOGw9N0D8nyrT5gCyr/ZoAZJRpqat18bToKP1o5DsNhMM8udTs8xq7VEIo7lVQIgDYMNjd7DcgRtjFGHvGlDWAlHP1nTpj4FITRLR6ikblSKnX0HcS0ULPpeR5pynzZFRzb60qV73I7Byn1nhNwbBDI2EogW/aeyPzz3+7ZEldDifH7lRnq1Rxq5xGW/Gwgya0qR4tRET1nkuWzGWL3+c1YA7gX3GF06CVvvEHhpvRWT3XCwAnrYwdgLzUjDx5QVk5EyCWPOw6XtBdOfR4fLe5/4odmQEAqHu4tzU2XKvKm3sh/7hP8YjalM9rKC/1VcB3nvk2FwB2rX1cAFu2+LyQMiuTFFuJVhmODpdf12Tpv9xDT3qB+FNzBR38sqGT7/K2KnNsssPcFQIQkrrpWlT8tIDvzCz9ExC2Fy8VmnOC652ZVwYdUVaWDa7rKQD44WYA2F9w4MhMgc6wqC9j/VuWQuCdAsCA0jvn9++Aes4B4JWcAQD+ew0QfaFk8aZsfgeazvApEQkHVQQsq22NAgCmM8bYVhl8TWEEAKJZKd/Z88IA16qXLwIAPp22hervC9kA4FS0sF9vABe7KqdK+06xqGFHfmFDd9AgIKW+HwAA8WNjMJBJh/1vvx4eDACXRpz7/d69okwIK89i6qPa/CCqjZv0izaMZsDXY/vguae9NgBr3mD9ASCE2fOT0aO1CREp+fK5a05nCf16tTEAJ99ibOFSgKh9BVH9CiKirO4IT+DwLUHbb7fX6ioarO2StHuIiGhaC9WghWwIP14BnAQAZKXck+nrsBST8ccW7xbdOEmjE80CgPA5L2YM3QFboP+2o53TyyufAXBNlDteJjJ73QWDkumMMcYmqrVFtA8B2FEivYCzLSIabK9J0FIAfS6mVBQU529rDJp8Mq2FqH6wJvdSFgNQNx7xSR6/OnR2n0qpKCpPr+gCeNPUFfPGPxitBQ/fQNjF1uYzu6e9d/K9GsUAR9ftx0Ex2DKlJJIfyXL5fycy42CZMTA74M3bVKpTlxiwdyw+uTHzUXUmHR/MMCY1SjJzZocDGXlHEHc4EoSY3WGLIfkBIGZ3sISctiPusFPMYScAqHwb4E3Ud5WsXPValQFgR25TZiWHnWXEQN7jRJ2dIAJDBkH+AECMwW5Lpe3yHwGYFD6kYS69R6xroekDdCq1DuKAM2QQdd3eDOZwODinFSYmWLVSnZZ2VKfOeeHXRTjUomUej4EByIjZcuzHKAEkGOISgXiKkyJbIzM3n1WlJT23lwBP4FlN3W9uVe2/bQCjWCaADNjgr7fHOzttsCc6Y3YkPzoTTJkdQ4zkPwDIKvsLZ2Tq7gYw/RZNbtCvTncvfTHOpkFE2jxx7fJaL3euPb4x3DR0ZRDG1CN9yfHVarPGyL5BE2l07RmrSifB453EGPIzQ0hfqvTnHfx1qsmjDpGS4JmOTACYrCMhIP6u/WILcu3D6rTmsZpZcxXgXOociX/8O0NwImD4dfVIx7FIMrXhlEi1zUM08bgCnDEAs2qQ/l2GXuUrrSupjz0k0TwMhkdhphJxXVY9alxpdUU1Odql1DVreXqsAQDZ99ZY1qE3KvoYMpeDsXb9KaWANA6xZB5xnifD1xzyk+mZJGa6avH13WFVZcksJ3SOXyMJ3ZG3kKwvsWAeuV5vTDr3yXLLn78K6qWHW82KiebM0W8AOb478GVTmsgEZFQsN63yzwNa98oHz1r+ZFd64AzAk+vOm9TorFzhEALHlL5vpgcOAM4H15iULi6YwFs3ecbRfrPgRYluSVBLXurOhN4cc7hvR7lvFD0bytJ1rQzevE1GhU1P/t3Fy+eC08g37z/LKzCVyuUGBeEH3hvCLdCBSxHzzJJpaRodMOnUIW7+lYceLeW34DBnAPAm5qQLrguiJaHH3NUGDfSLDAAQMtbWCblJpWiDaEleOfiRUQP+nDPA9cVL/0gTPKvsXX3mF8u/1DmzbiBDEbyqknrWiNo8sUTyUZPd1xJn0PiYw+SSzoSG5ZXiVscA5PjWMUWacGXWRwf8xsccHGtPyZCmE+ONDh74oowkCezsXdH9uSbbfb7ByXLt5l/5msWhCf6u/ckOiKGp8J7PjOcbsLwJWOPeJniVU6o+hQLV8vf1bu39Ha2YgyfSuIxHRESXPe0yuMhlPBODI4ABvsZg4X7hke9VvlKymvqCQ038NTWNYSfiXMA0kUi/BQGiSFlOnUBlc+aSlB7vm18t6GiyJx7CmRcKco/9RqS2GKH22c55ESKBY9HGfnc4q1Kx4k+5A6mQyJysMoEQY+OUjEeE5yiNi9Y/rh7heaHFmEyCmqvcRe+dSiWJyPz6Z3p7wtAHX0T94/yDmG7FpKPBYLDfQ+ldMb+Ky/Xbg6eL+ufekUW35gD4/nuKNp4I7/aMky/XA1PXAfAcs37Vlw54iu6FQ6HT9ST/rCAXjtGePF+WouL0hV4EPrRG7+nfsQBAfNpnAKbfaPnbgp/4aw7iHWN8PQAA8o5atk4XXAOlvlYpF35VDAACppcuONc3k7KQ4lv8AHBisLKoR8CtNWKRsb0BhP9YbNnuZ/j50I6BAPDcvRN1ev3s4BR/azwQZue2ilTuYZFPb7eI1P0/YRxNU64bVpYAAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, AB is the diameter of circle O, CD is the chord, AB perpendicular CD, the foot of perpendicular is point E, connect OD, CB, AC, angle DOB = 60.0, EB = 2.0, then the length of CD is ()
|
4\sqrt{3}
|
435
|
[
"\\sqrt{3}",
"2\\sqrt{3}",
"3\\sqrt{3}",
"4\\sqrt{3}"
] |
D
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAGYAAACDCAAAAABaPTGPAAAJp0lEQVR4nL1afWyVVxn/nfde2QeFy8ytbfRiN9qm3RqFbmPZWBPKYIEoqUOJ/IMZLEoNJK7DJTTRkJigMIeTKGxOnGH+ocvadB9R20awbXQZNkuLsQJlLQWK5a41c/Q2S0vfc37+8X7c997evu85HexJ2vc97z3P+T3Pc85zPp7zCOLTIOtTQTGDofLeOvpvHQyFW5s3mmBmbBMY4b/s/2KlCKv5SWCU//+llWMwU8cAxgIAWsSlyUeKi24ZDABQQOD5fagy5DSEEQCOvSjuMeMyhSGBSxmyvczQq+NatZRwBpagurKzi+KiEIAycgYjUnuBfj4BNPpftPhEtPZ0NFEWKJyC99QnDZgAVN6rB3/TYAq1b0J63agAT6KFLRwG2lw/c36sB2LoKoBUBeOPLq98oEhzuOnBqLFTJ7uv1S1f8dBicXeZkNblS5jqvTj699S6DY9/7ibBnH/lzam169ZWB3ncjjrb1d1VvHVHeWQb83qI+3/85drUs+coAw6CXIcZaCqtO3493G8Kw0jvJf1M0fY/FuSRwS+t2xLN4+YwLl1tXPpsOpzHQxvdk2hKc95JoRCMJCkpM83J/QVFLCzatebk/un5BJ5PG6naShvHg+Ll981cSm8v+7M+jCTJ0Q21p+d8DPDkdI1fqbt6c+Eumkey3pID5HyWhgwgB/Gksn9QNqAJIyVPJDsKw4eJ5kjVmmzRZLH3VBQUKchT0GiUJHtTzXN/DMB4FvpwU91HYSj57pkHw/T9WzP5YgRmPneeP7u6rGtJ5NwR2BwGyAKAkndvf3jYypvE8sXpSPwyVBVGuDRJ8mCiJ5xlINFBRqzwITDSZW5LDoWxjFccDQPweQqLkf2qDtRMBn/JXQjkpupfRC/FWmvUt6beyO0bmRWkaYMdrUxk30iSnH5kf2EWxRMVobO5LoxDo6m2wizvJs9pNaC5hfxH8t+5LIpU5JXlHfN5tzGMJMmWsv96vRFg2XBIT0pdbcgfbg2yOBq89oBNpamNDHOsbBPT1Z35kmVSvbr77ghtApKerHbXU29O44++urrwPFWAlAr71WlSAcD6lYfdbaqLO5QMn5UNtAlSOpn2tSGAH+9O6GliRiXbDwEAQVKR6eL/6YtocvRKO1Zy++bQU8vMxAztnaA633gBgNs344kCu76bog2Hkhlfm99vKTFTRkcfp0J5XZunjVzVbSKggTaKbFvrsfSXmaCYGY128pJrtFefNDaZPsW2/9Y1WkpvAQhoozcrOXS62tHmvF0dJVI+mRyqH7z6ASwAPWtvaVw1VtcDC0DXuk9w4teg+r+62txSFNT3QBCXH5wwYzOIJQAAeMcHFjBUA+hPUllm7Zri3vctYLASMI7f+YNNR7zyQQt433g4A8JXRseC916wgMEFwDikAAiNUVp11gKufWEhECY+sHzCAqYiD01zyO2Q/LPSfHRnxgKmlpiNsuvZ8aKp0pKPLWDqTm/foUc9qH0HClAdQojv6nAUTcF0+SArgYdJcm9xhtNVjVHVSX60xAIcU+sbLubo/v2+8cW47UjblAaLAFmUMdPmJL78DtmOPlKxs1iDezQVB5ZkbteNrgMA1uOfAF5qrAWBYR2OqSILWPxxzMgLAAKzg+sBAXZsKYqun7kjDhRNAmYRfwH8Z7AcgGh/u0+j/sdLLaB0DLBsJaFsgLatANq2Df/hvEmvbIO2XVo1bEvceOY7KzVgrhZbQPUQIGKIwRKAiscJqHhcSP8BQMXj8MoxyHgsvvnFGEduq/+1jhEu3GcBFQMAhCXBGEjbJgjA8h9wfDeWLccJ/HSp9ZkV/b/S8uuzlXGgusUtqRggYl6zmNuCXxaE9RZlHNCacIaqLWDFMARgCTvmrR4CChDewwcIlI2I5yotoGzRuRgASwBAzLZtIKZsFfMfNkTw8yxsSPdPi3rvScQBa/Xf7vO1F/Hsf+8Rz/28CHHEYeDR3WthAVjXRRhelcFkSu9+DCB5rpS0Z3UiAg6BpNTfRdtFaVoAquPnEYubKWPpD4X3UiXOOrj1D0YQhldSr30TWOgxSmqFXUiq7DFq1V3dpttOyz21Ruol3q4p8zYPT75qhAEAwt2mRVRT+N1TgGM0NZFIG5y/QJINAID6sHqSzDmwi+TOI/ojhwAg33qij6q9KsxsFgA8v7vI04YcNYgMOdrMbFIzR2Z+HmoERaYTwWBKavML2to4dKpe/Obzi5pCjSCAn+xMwA0NOSY0CnRJHgPQF1VTBgNdAFC+Y5+JLhY6+9TXK0OcQAGA9XSTG6XxgCdLjIKQI/Xkz1z756uQfZ6smA4YgKRZSJU89hxJuaegpfy36aoOt2T52/ttdx2G0D4bdj4OYkuq0HjONnHgSxu9UlYKg3B3u9tO/3xWliTZWjYRNIBHRsF7ySiZepP/ymVxyOgqInpZG029kSeZT9oXK4ohw7LAxYqgvwugwOxXrvdGd3/4GV3GAPjXRPR2YPQEk1Sc+Gw0ih7VZNxZvDiTNdpRoH72eyQHEh2B26l5jRZF25wrvIY+cm/xpMsygkbFIRwkyY5E5CVeNMyhZd0kObOJJBt2KYLkjHNO3fs6ScqBit0R4yAURpHTO2qGSCrV7rRbT1qAOv7hYQBYUQEAVs17F9dPLrhLKDCxZup0OQAh/rIBACoAgJypOpgr0Gzk1bfvl8FJUEmStuxNNZOkJGdqMpLk3kYS5AjmXL2fKI26yC84ASiSrSWtXmFkF0mOiBYfxnU35Q2xYFrCnEHn9s28aQnK5Tj6HBXZUO+wzFQdUiRHXne5CiZZFICZS7lJFjNVfeSIs/kByWNooWqvpySVL+SclJFoGD9lRCqSHc6YaMmytANozE5TC0iAUWR63gQY5V+vKv9DkHLSeQonwGTTeZZ56TzKm7sCTA6Mcn9TAX1IOslJcwbdHG1U27bEvoDigQt9t6k52Q+5iimOv3x/qjl3ucvjGWgqrTueu/3ycKRXclPownZ16sIrb07V1+cmjrmkkThGASiTNLg1ZSseKkLZ3YK4dPnmp8G5dP3M+bFugeGrAFLlIr7m5if1WQCkd95UTmzUJBBhcq3gSO4uwmakuf2jU1cpN0SkQE8+rcOkUTJsDhmFK0zvYvKwdXNXNbNUCbjm+ZoQQrR6J1ztiFT+xBFGiiQbWpzgsH7whTkZXRoiQfHG8EZU69vBJcPKljj16BI8vavWNFxhojpJHgPEGYNgygKMBkB19vHoqn5YZuE3U5grk7X4dlWnqSeYXhD+aSMxNlhhHFo1MLAi2dDPmSqdW45cMstkcM6cj5mCkP8HnnT9CWePnXAAAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, AB is the diameter of circle O, CD is the chord, AB perpendicular CD at point E, if the radius is 5.0, OE = 3.0, then the length of CD is ()
|
8.0
|
436
|
[
"4",
"6",
"8",
"7"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAGQAAABcCAAAAAC9oE9IAAAIbElEQVR4nK1aW2wVxxn+ZnYTUjjpocrhJpw6AXMRUS1qiHCJkUlLK5cQhbYJpipRQUIqzUMaWVTJQ0L7BlVJSwiVrLgSTkQboiJ4aIloRdKDAw2OFIgiGxsBbYkh4qKmJudADN35vz7M7p49111fvodzZmdn/m/+mX/+fy6riAQQDQDXzwx+eozqwzyQWgL3kfvnNX4FAEComtVVIhLgavZo9l8tD351+T1YMlnjxkfIf/DPoZ4Frd9ZMc02wjbE/paCMTAk/9vVlF6767T/ZH8senc+lmrpzhWKVkRNElvr+IbUuiM1ihx8cvLGkySlqpzqJH6dw631ndck1MGUFSDlyq7Z383WaGxMdx1tnt9dkZuWM4D3Wn3r8bGRXGmftb8gzJRyRLkMu2ZuvjYGkj2ZF0cKYoogkYTx3+a2TusaHYlh7smWgar2Ug4hebpp40ild5XMmgD0pdap7y5MNofshAPQ+I9bq64DACTBPBH2znzF12h02FbfV55ZTmJIMfszVWdGFYj/eyDz5wQkJPlifZ/xjWbU6J35cgISw/YV1YyxNmyThpp+Ek/CF1pHSG9MalBI5pp2xJLsqw/dyKjl+7rMOhxD0pvpYy1vlwTvZwZMREYxiZBX6g6OS751onsbhv2HchJypGXb2AajwEGSfK7tTuGxEBltTNuU/xNVlfg2Gpg1C3/LMChH2iD09n49R453REjSDDccrDImwzN76UWUHiMBSfJYXegsixcSW9DJ2guPeIRdvf7B7UE6Qm96Zw6PR4MSXMkM+KmQREi2Vgk6Y8TOJyqQnKz3JpTkdsaPelFb3fGsUxptxoW7n/lVyZiQp2dVjJ3jwHDmfIkm0vmzSROpB4D05s4STUbSQxOphZBkX51XrMnbi+smckQoAB7KHAeAAskbm6JP44bWAGRjt2W08HLpXPKe+DuADmEtJ2eN91rmDk3YXU7PN1IoWy9VgADY9nSed/76c6DG5keDApnWcEp0waefWGlfxYHALz68OAV3/e6tWwCr76FEAcDKrIZG0APLTib171n0UwyzdTfjy5rDbSQhtl9zaY81+zisZp7qoAjNG3V5E188l/ZIraAgwMDXHIHEbDABQJmz34JSog+vm6JV7CCmZv8bcKkADZxtgIZOEHfV1Y8fAKiPvdUHJBjE+QNzoW3b5VwDAEkyUaY3XgTU/57teCjR3G24AGgQAPTZBpsXX+/utbuBoUmPvsxEc7dhAIC/S2s6GW8qAdoBDCSyEpJHVxlq2xx1K52gVQAAmjeFXEAkWw1MyetQ43wqKYlopQAoJjvMSOUADSEgGJ6alMTBO9NnnQBUAnsHMPUGQgepkq+0zAKg2Y5HgkrD6UI8qbhDrQytEHhGbWJLC/zJJMDkPIgkFgzg1cyMX/sFnViWm/cCLuya777hVOKl46pn0BKknZiyciNtSeABX84DmNDQCNFU0Pl77VBoBWfS8ASKtxwQAsiloDQAOMC8i8GriYK2/XJhrtjuArDgnHFEHEUPWgOe7Uj/D4AH5fjPHpR4yrE51eG7tvOLCuF3/gUHWinAdYXwHFcZBH8APMdlkO2C2qVx3dozXmkCwPm5duECAvMuGFCD9DyASsFh8Aeb4arwWdF2RYxfUQBwbqHfGwpq0aCnxYFRDgrLg1IhCU9eAYR7ofylBwANGAOF1NxTdzTgkgAVBLRx2bpaFc1OBn8c3lvmABpQ9DSwssdRAB3jeQqueOIg+POIaLYHKg8GHuKdCnq+aQm16yrg0Xc1hEq5rgvAdR2Ef65CNNt1Qdd1YbNqdhlMdiUiU3z5324GAX+CIAA+O780QmLu+f7B0YxrAmho/PFxJ0Li6A17J5YDAND9Y0RIoFf3X55Q+QJg8D8tRSSY9IM/TCiJJvB6uwIgdu4LBNiy5zaSechkg6dw4/c/1QC0VhAYTQ0sXtqZIAxzFH76N2vmAPAdsr/weGG3nV0iNQTZAJ9Il9uvPW8TWhgOzLLZe+3pdk1tdEAViz3N/hG5qwFQsWfaImDnE0/FLiSTn7dd3X7cT/nLQG/Jm4sAbDndlqT6MbQmKHXose3FJL88tX8yqK7P+dGMpA2Nw6UDl8Olr5Bk96Gmm0IRdjXGXYJZxC/ohxsOhGmtQFzOLZ0+WUEpbG7aBACVzSuy1VX+SrC8nC0jsv7x7wHrlVLqbYBCbuUnHX4Dv2h5qZoeUvpQTVsj5HNtHkm2H2YW/aCYbgAdficZ//C5XICUkbBw1VRK093wGUV4pynPIfSDHNpNZneHonozffGKhNcllfH+fYM0JLMdZHsHwcurSXbv9s+/Dbmv/mqF6om3Fsbwkxl/sTW6AQwY4iXgDH8Y9BdJ8vnWkXKSKo2uxJ1r2kFPSLK9n93oJ1jYzoQV2lsqXNJI9OJPqhEwuKQRIYfayNuNr1LTejslAGhtV/a3PNxfZpsq4rGCRCVT/+DhdZ0AlRK8sxq4+vGcarfY+4KLM1N+50uSLDrcjb4+kDkYaC7tZ+R2Y91NU+0yszfzSnFG1YG3t0bB62114RVgjwKANprq17JDizd7RdVrctgEv2hvLoymGFJopPKNKUCg7r0bKwdtTBPrLFj0vnR4oICPHvlSdhrs5gdQCqKoyZpfFhQumIOGhY2XEos2JD/fmome9Rtj6BthzFV53f4yWRWt15BdMzZfK3RcESqSGAbmc7R54euhfwoP6sonptdV33qiREKQkCqaRKQcaa3vjEzNyP1/AVd21bVlA4mFkoETjft8gSSPP53acMSWDoRL1Pseak9trH2QleiTkuGupvTaXaciOcFv7841qZbuz2Mi5Wg/jmmewuKPY769YnrsEiaepCDg+pnBT48B/mc+dy2/f97itC0RPcWugP8D8cAUwUegCmIAAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, in the circle O with a radius of 5.0, the length of the chord AB is 8.0, then the distance from the center O to the chord AB is ()
|
3.0
|
437
|
[
"3",
"4",
"5",
"6"
] |
A
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAKYAAAASCAAAAAD0uPrIAAABxUlEQVR4nNWWMW7cMBBF3wgBUucIzgrIHsROFfkMqdZVgi0i926zAZzS6nKIVKH2Hiko3YMs9FNQXq0DOBJVOR+CSArzZ740MxSRBkkOmjTLhcOWMVOIFf5pJBMABnx+Qw5kANyBfVrCTIZjvOW4A/ymOHtiWfzJenFkZdj+TT1L+hosZjpoVlSVg4dT0l86inmTl4D/QaYmmW1Hdn0LaAq75nZ9ayyBQTH6vzJyWx1TV3SD7q2cp16bmWX518RrIfVTXeX3oCRuJal2M/v7IKnyGmqWu350WDk5PJI0NC7DweSpSazGL4hZSVJV54YQkqd7BdBzUeXlOyX9pgHQbt6Sdguw/Z0boq1hX18UoPjwkXdjLeS0QsfbpGEW4td7gDJTJfQHs+9frQD78e11aWO0tT/MObvDJQK/zVTJT6+m7CigJ8jlvyds6AC6ltksdDUY/eEqM0THhh1HCvr9DvohRmKIECNAfDKcZuOdGIlAc9NCu788HZeexbEUaF/lyjx+GGurBh8q+CIpaAhSus6G0yKtQwgKQUGSA2pJw9yBEy958ne9yksgMYo4qQjhGZlP7MLjo2nn+Adc+jQuU+OQeJWkPzKhBMQ7fDSUAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, AB = 8.0, AD = BC = 5.0, then CD is equal to ()
|
2.0
|
438
|
[
"1cm",
"2cm",
"3cm",
"4cm"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAJsAAAAUCAAAAAC/7BBdAAACSUlEQVR4nLWWv2/TQBzFP9+7iCkTEj8kJIaIkgEJhRF1IAygTqmEmJEYWiSWqooQA0tGli5IYWFgYyBdWFDC0v4HhhWpShZWlnRKfX4MttuCartJylvOd/e+33vfe+ezTcyBHr2SWVk1Zx64k3V7VTKr5m1pNZmQ7MGdGrSKxc+39rIKT0SYci/atEtDDNi3ByXzpizVcthv99KHGjJLUyelEYapTL2BLsbWYx25j6Nrreqoi9iVOeBSbfFWFXHdzNzVw+qM780eHm0vpyoV5dKteHPzVgX9SyeSnjWqxE3sh/Tx0vXFda2bOTdIJUpS/9PdqcoxW5OkzmYhIZGkWXNTkrqfK7KVoTPQkEiSAxhP71+ulxYj9m4CrPwspBjAh987AI2VxfdtdrBGE8jut53X3C4PML49AmiU047edesAL1uLa9tbrbP1ogUgqQ9snjLmTEvvTKVE3Y1SS8cMljAzRR+IpNTTyVQaNvL9KcCv1TrYZOdxESG/jOb6Pp+FUaT+ve8AjsnzV3F8UBXxtQGw3X5ayrrRPDDBZHdxaZPDFhvNEQBdI0qeHJtaYNasGUlj2tWGDKRhJa0sw1tpzCCRhCQls8JzlkpLy2C3mJZjSEmZ50En0qx5ZSpJJkDBB8wniTcFnEMBauQNoID5rB/jA+YC5he3rgCjNUy094DsCCt4Qg2CJ3hib7G3gCdrgNhbcNmwAjUF8wq1C9f2F/L/N3MBOaQ4BpnhlDekA96O+z4LXPqdLEdWuuFiJZ7UJxXcB/9Zy7/4A8rY1XIo0wZ0AAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, C and D are two points on the line segment AB. If CB = 4.0, DB = 7.0, and D is the midpoint of AC, then the length of AB is equal to ()
|
10.0
|
439
|
[
"6cm",
"7cm",
"10cm",
"11cm"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAK0AAAAXCAAAAABclZCMAAACs0lEQVR4nMVWPW/TUBQ9zzigQhETLIivFIhEl0wsXapKqFlwpYqZjTBVfI78gHRgAORKhZ/QLl0qVxVlB4G7gqgckLoyNEVIvpYPw3NMQpLn56qFoyjvOT4+9/je+16eIgAA+6eziQ1untm05tJJjhkJqjNuvO98u/Bnno0/rcMDaH+35yr8KmAUhGYHAHQuu26dUeRhGBsrwy6QVkWhXRBQuVSJHjgCWERX3YnTe2GLE8fLsE8W+DllL1WqAzSIna9l+B+M2SDe20up7ouXTvA/Q8+eotL/b5PWFpyjNkvzOppTjnLO7VuKdft2Y1tLH+7+sKTUjDxUBtE17xN5t2q0O6eUUqsAAJIk49o27eApAJi2oUZokhFaJk7cIEmvaY65ygAhySy3zy5NWKZr7XZIBteLiZRGcxm4/NiovHURAK59MXFkZxY1AN1OWKrv2nkFJK7Li5nJYqJ68+M5AExcNbE2bwFA1ai0NTWOR806oDshakVWpSXJoEV/xYYY14wtkJEmOyT5xNgJPoAwJUmQqSxI1CSZ2pjwAYQ2xAg9LzVKOmoOUAfhhfR1TAdQr19VrgA9/xQmbIScN9Z2KEbtk+tVAHgwfcfwbHuvjnu1DQBwgPaeMKiaNP96dMp8IM1wvrYDAO1VA0dezgJttffOJLTeAHY/67XKaJpCf1GEIkKKkKTEepA4q0YsMUkRf5EULgilv8RDRl+tkMFMfxf08QKdn5UeyhAdL2RcO9tJSeIpVBh7wH2SQkpKIYVM9UBtV7of7yNF5lsSpwV2SQYA8uUzeL+/l0fpBADy/V0RQOICUkHiAgkAV8/yAfn324YuzvaNSvbTIcD+mIA8ZCWLbvQwy+wlkoNaG4ISJxUHA5FHODlMgweFIpIsn1m14QJI0DPoDsmvE8BN4CbmMhwJfgOSG5zStR559gAAAABJRU5ErkJggg=="
}
] |
<image>As shown in the figure, point C is on line AB, point E is the midpoint of AC, and point D is the midpoint of BC. If ED = 6.0, the length of the line segment AB is ()
|
12.0
|
440
|
[
"6",
"9",
"12",
"18"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHYAAABjCAAAAABr16vlAAAH20lEQVR4nN1aX2gcxx3+VjJ3hR5RW5T6TC6RYsuRqAK5YIoVUipjVPdKHFWuFKJSJVGIbVI7RU5dmj4Y/FKICnEtJVIjsNvIWC4Cu9imbjhVJih9iRIHTiEu6h8pOlDTqqi0Sq4P2tNlvz7s3t7u7ezMWLp76YeNZnd+N998v5n9zcxvF1ShEwDuzintXIwC+/IDcpsaqHC9M0M+vfO/SkMbWeMD8o3IDoWZsvP5lEWy86ie1HzzUZI8eWWrat+6zwCw+y96Ys/9+wwA7NwlN1PTTncAwE61IQBsvHoyBgLHkluk3Zj+Fgh81ASAStqP/7wLMNTdU9J+/EgMBrJnvgGt9jShpH3zfgAY2N+jsLM9cU/zAkBkr6iaVc7MOfIj7NObx+QoLpNppbmCNm337bIuKzkF4IjSylBME5bGc/VuleP0x146tt4u8VLzu4q2DADIbZ3WAIwit7HjP/foNHjg7S3TFrkBABcfmtRo792/D+rQqmOyg5X45SRJK6zeqegZia5otKZNe/pHhfqM0mohsd41VEHaQiJrHT8RLtapOfFTTiYlPrlT2okecra+EG5gkeRafI3rdfPq5vQWFuDnLwB762+GGxgAcL67DtFDF6heNPTEziZJ8uUn5VaFxALJmQalj3Wd/OQ4SWaja1KryS6SZGKmQrTL8XWS5L4xmZW1x+b7yeFK0FrkqVN2cbxdZjizx/57u269ArTk+g4nBORiWUnnuiacclKxgdOcyRe/vt0uxLreCJ/Ji+/3OuX+CeUGSEdt62yxlG4Itzr+SjFOLEdXFS3q0M60ucVCYjbMaq2+NM1T0qlHPScPveAWa/tCvTzaV+eWe8dtT27FydmEJyaGztJCYsF2sUXp1NNWO/J8bemi9f5rYquJtl12gDTgTD1piFSKzcVXvcFuqEtslvQNerpJ3qiadqzfKdjkq9FV0bo23eazKsRnvZeboG2Z818fLC7jS8iUmn78ip/ixHFpo0ra9NfKbkwmnQoUaUnON5UtxRnZ2qxBmyrfmq/XfWgX8s0lPxz272QssuWqrFXVTF6cP1R2J9p7yZ2OxcI/b/T7bAygX7rPlNESwNnv15Y/Bk9NfFZu9bonVDjovf6JjFfuYm/Ec9GQdpycKfo9sew610X7+GacbGsc7w7I8PnPtrr4aMK+8hyCGB5GlWoLTfMBFeRSLOdX23JL8NtPosubUAsASDe2APAd4wk07vkNvLentu8RxMG7Hr8UuKeptuOG8PZYOy0uoXju7bgqjEZXW8MbltLe3i2+v+b6zyKZCYm/n0kOL1Inv3Zc5B6grqvoPwPA8IviX9d0XwhfciVi1+Jh2+LftZTKK3EzxGo2ERogZWrHuutCenvgX6WT/cjhSMjv926bDm07XKx9tAjAIskXTxTL6/Xh59nT/WE128LFXksKE4cGADzdcZcBfLGjFecPbg/NlTyVfO3z4iqJkz07twCS9/4JwF977n327IA4O0cAux68bpSu/NVCWOR7LeIqGz+z9zbLpzpkViOpO95dPCPd6y47h792cUBxsBpdEfOG0Vor8ZCdqdOOvQO/JXUJGZbIqAGQz+cDrjfO90XFw+qMVt8FAhg+GT7+gLtPFww9ScHzXkgoNti52Dy5nFAcKd1ERpmvw2byZFuDXEesZwIYfi7EJY4kRA9dsIvlk91Ra5omTdMkTZMkza/eJO27NuySaZoWadI0ac40MBdXpr5mGoS3XSc7/51/7ySdkjMAbg1Np4c0G2aG1NmCkESGN0rlIwDs2TV0LOAxN/JG8hEgQnz3l+/8Vj4QANA30S70f1GR6RG3GF8PqA14ZB4H1GJ5+wuiBaqmqM8jGvjV4eBUCTxkLW1H1GLR2nhDcNcg8o7/8hG79QjMxltfhuPxiF2RL13ngUgekTzyMQ1aDM9cFSwVJeFFZ1g8p8i2kXReOWK/0k6YyCjReoYgGZqg8PFmyLTGq7/U68F7xXDhjY9vf26vhvM2CsmN4f1fURv2jgu2KILuuWktMZw4lx7kiDLtRYoTGQLabKKgzkOTI/AecGXoOx24JYjJI8/XQvJ6qFjz+wy/06QxGECf4HgQ6Egu/g8dCUv7yDNaYkuJDJnaS6m4joQ3U8APIdlulVDbO6FW2/I+qfGSoTNDsvNlLbnBREaANpAiEcJ55ag5p4KJjADtQdVDYQmLcgyWh71y2oX7pImdTaL0ksHpafmUOnusFtB5C68LAkBD2zXplAo/5G0N59r912Vqx78tSJFUAE/M/k2itrD7dlXEkj2DvvnnqiUApBtaqyIW/N6kf6n39SkkRVIBlL2F9Y3tH7Op6ogFart964GP9tUf1KJaeHbSn6l0YVXr6bHReJOluOZRa4yJEowVwzMT8ByFSNKyyNAUSaWwEPvUcvVug92Hqe3Jmw9frKJYgw/+4TFXr+PkjQHgm79GJb9NKgMx/Zj3kiT54wN38GnfptEJOOlRW+0vkivVUunFtc7LnHpiDo6Ts7lHvqR1ntkiCospPAAUaV95CQ+gkotsCN56NIaBo0kAIDkKA5qfMW4eFslRFHdfNUA2Z1npndWWagCYynD04TkAqEH2uZcMLFbvySlh6dMkjjRPAQBOAnPshO1l7a3gpjA6SGbtB8i33laX1erMMN9sf/ur/b3UlmHv6J1PEVVf/lUJuh8u/X/Q/g8ZyFOh02YZ/AAAAABJRU5ErkJggg=="
}
] |
<image>As shown in the figure, it is known that angle 1 = 40.0, angle A + angle B = 140.0, then the degree of angle C + angle D is ()
|
80.0
|
441
|
[
"40^\\circ",
"60^\\circ",
"80^\\circ",
"100^\\circ"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHoAAABLCAAAAACaFMwwAAANEklEQVR4nLWae5RU1ZXG9723qrqK7hY14pjJOHnozNKMmkTQhCiKiBFQ8MGMg/GFokaNMXHiLKNRxsxaxhiCaFZ0zMTRaESjmEQdDQrL8RGFiUZQggHFJ/JQaPpV93Wev/mjX0VXdUOj861Vq9Y655773b3PPt/e59wbIEMgq0i1NR01VPeO4CIRFwam6HwxaSaovyIcaqitiGq1o9SuUkeIIFLIo1CatwZuBNQhvun1R8XvKrU4KwH4slglY6SBCcGQDjdFPye5r7DL1LoQisUt3bb/+k8d3b5n/QVDWu2KsuyJ9bvOTBAKQaGw6of7fOG+h/bUI6AWad8y7RPJLlNLQcRFQfj+hP3/4cDfJaURUEf5mk9NKcS7zBwE4gNxH/7pMKu61zWKmSGpiVfEr66pNojMnQPiJZLu9W2TCm51k2nAMyR1sHrykfuVEmdEYpFcjDgREUUv/CD0tYtoEUS8ZKFIuOTvPp0kK760uxkB9cY1o0ufK7SVItEtmS93FiUQp0SCXoSD0NeufUlngVgtkfPS8sfDmoq/1lckxXqGIUM436fEHpeNtgXVJFEoo6VrNFFUbd3RDJR0qSQiviKlMPWbXjtu61/uXbh3gwAfZl3nZYlbRCSruEjan0z3fo+AvTe09nYPHtenlMXNn+kI/mrDPpNbCpH4N5ccutdTXz6o5GzTCKh1pCtxswvDvOzl6atWjJlsN+2mQzuIqg999ymMXrevWxK0zj9bBcUgq8iHY0Jp39M2cC9DQoMDhbd0n3nLg2Pvse3YqtsB2nAfzjhq7e1TwGjlcRCjuxvcf0jqlA4SdG4cMU9ORS2fei3k/f2DKQdGLj1qzla75agnAMjRCXntwB1T40ixBrDkl9yhyT+YPXNN2k85eHH1tWc//+I88P4HFzmX+hTjSD3pSKzuh4I/T0lzlcFPJizEYbog6e+2QG6w5B6N33TWlEW4lOq6g99EYe3QN94xNQnX/7t2ODpZfNjcNutAY/q7tXFg6cZ57OLx575NAhnpBdejhrnrTlBbn783YznE3tFN+4lnrERBZ3+/AWuyzAOYeYff0o7qgg545MjORjM8AmrlufnbnShog6SaXXXifTaDuK8/Ae2ANGbTBV9dDKnCWZTfMu03VD8StSeZ/iQud47ubmLMwi//SKXZwAXOWDBd8Nxhs7Zgq2CsB8Vtp2s9nM93Yq5/f1obmoTYYzDw3gkz38760wXKoFLgx+N/noFGdRvrtLOsO+JFGoZ2L4YpFXoRLz7hE+Kk7JsCI1IwstfCcRc93Z+JMAUJKrL1nD/NvbAo4uKoteApJpF8dvzDShqkjZ1Qsx6YN4/ZjDGAd5CB0rh7Zv5w4ALQvHTKRa+TYzNAxwaN8Tw7YfNwcTY0tUY7Ysxl84ymZjEZfM7yabM3a00M3pNz9+E3DB7usfr0HwPGgvaDu4eldpoUsg3TVqIcA9KQgIJN/3rEC3QTZ1XSbd8du6zBkxvzyD/mOG28bigsQ1N7Te7hjvNBGQY0WltU7Mn+a9xNkINdPvP894xu8OxKTXocPN7Wem1nrCZ3dPoT/wDO0+8x74wHE8OyU89+A8z9R17ZrbP68TmGG89xAL6hoA5H3Q3m8ZNIFTVGx2AdkCjavjl9+YZLZj7uoaMunlwC+r1jVuFSAw2cMty6VhrLaXc7dO1QA85mOR4Ddx107DdegaSB0daDshd/H0yOb6Qsw63rSHg+nqKkUFuTFKyRqFwSfCGRv3Zr+XuJR5Xr91RB4CSwp7y4QQqBBHX1lAy7+yiJBIsOHVOxgSbqb3WFYqBdYEIt4dU/XfBKPuv5FiVSV3qFDgmaji2t6BIvEtnB/cNJivfwxuT3BzdnWIu2eN49bda73tkfTLjHa42GnFrJzvAxyYMzNGqEc+2oktz6bVfXYdBVjGPRtPnduafqn55whXWQd+H1QEYjAwXvzHgKix9hhFu2nbC0vj3tMeLGrz5mEjJDnHedfsT7ditkqI6aR3QYB9d9xxocDeRsOCH1/z2ru95TTnvFm+ec1hZrugBPbm455E6g3Q7KkS7P/aqp6wx2REJq0W7mb+vrDO+wPDz5hnZPnuBdhnPe/M/ky6o4ugas61lvDi65Hps1EvEhqQ08N2kT9XNNlt888XFo82iNr4LLcG9//WurqPaUsAD0pBwPT0zUWjW6zzAOt5fenNQ3G79x1vS1OMAYyOnQOCBbcOi9qO1KA2eVtrbrnx5xjGyu/ZuTXquxoh9Lj7kkpxO6cSTPrHpW48DrlAfH/8uWGutUb7L0Pz3D4oewOstqhTAx4B2Kay7MMM4DJscp6IacX0y8Bd9FDFXHN+9897p5aEjxKSuOn7mSlCyrrdMdm45dgRtqcW0nwR5rbQ5rpj2DVvgs68l5nQrFpjknL8c6b8nBnXtxZleMfQ2nUNpXyb91xBPEUDu3muz715hGCbuO2oAFBbfO8hoyDyqPU+cg45l/vvx9qDoSr4mf/dy9mmW7rXQYnEG1w/1HXJOn1NTKaFh21Lu+AXefhud5Lnmei6hcI+Lj9udPDchzrUSCwqiKVu2u/ItrJ17/N6kpuCQ0zleW5icH6Qv77mElJDS+tEfups9/f84H4mjO+9ONcOi+zzfcS/dZ3fvLoMPZDvziaR/qzGi6tbaQpGTbLv3aMtiksizLq5nrYOZ065h99mZ0ioM8dcA73zv8eagOWGlyHjmrvYHDazNXXhaRJC+GHgkenDjGSVCk6MMoj4OKeXlO8e7xVbNHwdtyIW+i1O0Ot+HqV0/dW8KKDaWrqWJSkc/ccPl5C7KWgSxLJJM6VzYwup+63OuiUrkiYUVeWT89CCSSXIgkaA7Shdcf/aPdbWsxD0YVXNQSR2FlaoeSu8YdF+pItHSPFt00ynkjp/760UvXD5gUFFzLxCVpQ4dnPWHW85c5OrFZ59zzY0cWZ2TKO8Xrl09ZAqlzKoNO8nZo09VbHnlgkUWhNbanRLQOZfhg9lEDecdheevYtQ0jvG9V9/xVM8C9degLzmuyLMUQs+z087YpIE3THhnIMptk5J3Vusg1YKjeevBNKd4ZHAadMfdKQ+b9dnmkRs16Bd95l3DrbBNjO9E+wZhfTvwZuaGnfOiF9+Dy+sRmsAa6XppwwcZ22IZSjoxXjmvvgO3qyxrqvsWt8ambscixTRPjyf01X3/xg/q852mozHjnjLZ+/SkT30g0gMtx+vSHU0hdbT3eRz0gphpYcnIbCaASWH3mFW/3SMtghkbEPWptlMbN/+IDGQmeLnz+2zMxaGp2MfXpw2mFOm8+QKLA/GbGAuhusHnwzvZsLAY1e2c9kJE/Nf7KjbAJFGyd+hKD6vE6ao9i+eTXoFol9em1Z/UcQsXUu9f57azogQWdGmewMZ3Tp76oAIPlxkusRddWHnXFcCDF9NFxB0p7SyWt/GVOMvf43LlcitJzpN0viPT86t7kOJFiE2HBmGZVevSwb/xOeVWQTGZsWB16iWovHfzUxvuN4xfj6Db86qRbrcOhNYaeua3JSDjjGwSa1dY66zwJWPPYIVe3ofDeffc2cjfsXGtYcHbuMFRvOO2JRoXNyPDWlBl/RoN/5hTiodZ1L3KOf4gkcevPmrN+uKOQnYSy137+Xh87zZn3qLw2zuqoVf77iR0KFk2+2aE6B3ePGC7l/i9coaDzzgshrqmW663OTr7Ns23+SctsHEOjI90Rwcew5qRjnwN3/HPbebEuwtM35Oig/br1874SNlWcbx3cP1LQrLcdcMfEqx5OwyOfduXadyB1j3n1Wbw87UZNAvqjG43PnNF0PzBuXrJx/NaBetH7OuquL62988SlKEsHLqbBpn1k0GCthxemzH71Ww91DTySryuabnx2Uuel+0DoIhHJKh/V4ZIWiy6SvKz/bfNeG37Z1KdBSEAeNHkRW6q2qlJgt5yw6oCTdzdNesfHiCOD2t3959qWmy6QdJRUi2VTlIIri3FRXMh3k1JaLpixYwrrkqjUXv+G5qOhuXv0AQfZFpu1atsq7zCmGGAL8Ye3v3F8sv9xLeKSSlHEZZUoL3/M1GJFCnGxGIqxlV916eZSwaWjWlpe3+eMh6757MFRVCpmhULUIlLe9XfmjaEqgm8R4ykW73rsZ5/8iS9Eu0lqNp04utwVRmm5bCpiwjD3zR/3XFe8LaUEzQT5a9+77JNycV7IKjZ4Y5s8sGzefq5J8rKLQoKKyC6/wh0CUeBllBgRpRbufZVUW5sLZUdlZXHU+sJJ5c49xZTpyam7/mnGEDDFsvioZAtR8bGxmdtNR2EQRerlr5z5nf/9D/bMk1ZXME7w8nEz95zJex/mhTXbDmwuSqZDycKmP5xgN7xYwkXN4qQYSfBxT3QvojAMy3a/Q8YkldW3m7CjYh7s3vrMgnPHFoJIfINvCj5eeHaf+9iaP173t00Bki5fu1drNu7TImgz6v/J4H7oKJRX3Lv7tn7+/wCwunIaWGkS2QAAAABJRU5ErkJggg=="
}
] |
<image>As shown in the figure, the diagonals of the quadrilateral ABCD AC perpendicular BD, the foot of perpendicular is O, and AC = 12.0, BD = 9.0, then the area of the quadrilateral ABCD is ()
|
54.0
|
442
|
[
"60",
"54",
"30",
"27"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAOMAAABkCAAAAABRUNjwAAAHc0lEQVR4nOVcbUwURxh+5iR+JOdHUtA1XEtLUUyoCVaaatBIa6pnVDyipvYrqW1qTftDUkz0h0YSTWoipljRYCQBUtqSHoak0nrUL5pCg4EGm2JsE6hnxEZbakvPpCjcvv2xtwfIAXcz795t6BPIzc7tPnPPzvs+O7Nze4LAgsZ52TxEFsDBQzOwi4fHEjBp3PdEBgACmMKCFRwaCSezfwMAAQgGPm5waBT+wPIUJ+zZiWDQSABK9mAhAAh7ylTWKICTJ8RTAEA0aWPVHyDypQMQwo69CCQpM9x46zLQDRKwZy8CIEUUAR2UD+wgXZXKKtg0vFjBMgaw+Xli0WjTNDTBNJbDxStMRBaASWP3655q24as+rUDAHrXlOZs+PlDFi5+qPgqmXkYXJ1XjL5t0z9xjnrLDlCJ1bCOnSnFwOyG1GU9CE2w7CRRfQxARCVL+41CudZs1tlpQMCgscF1xyw2a9XqfOxQ19ipdQxtdGXtViZkh7TnmK5yN+e4Z1h137akz52R9k8gpD0nJPGBp9ADIDyem30ubVmX6odihuqYfNuMykcvFNV763LVSLmhFuoHVvWP8lC9WasKldTIuaCmsS6jN5KSrqxCIt02GhVilUT7uu8WRRzS3N+K2tkKwcULhXGO6CmoNSWOOFME57ms3G61D8YJ+RAIZJeN827V0Jgn0VCI1YLUsrHOmwDQsuXQ29LcrJDXuPva2dDELOIkg8TN9XnHpsiyc0I6H6u/8ppzz4iTDIG01psb+mTpOSGrsWnf2QmHbM6zS563hfPIpXGXq5lo4gugXqU1hUpy7bBATmNgUVWUe7Zq45lvfCDhOSSC7uwjiPKGRo874c4jkY8Cu5xHjEIUcLXedSfYeWLXSDjx/SeI4uZ4aOXc6c3JSbDzxB7ePtetqPfViUinGs0XezN8iF3j9eS2cDkKt9SJiNoS6jwxa+zNqJNo5tbSd4MSh/Eg1nx84Hlts0RGuJr+fDFhzhOrxp1PFku14/SuzLkmdSQDou1wI/VKlvVLh0ztMOeJ67AntnysT7sz8U5jos2VGOeJaZxzdd2FLMnVGgIEejxLTon4L4XEko938yuyZCecQgjA1fL3qn+M7XiuVcagsX990XrILIwP6ZnmXZ0A54mhW7bOOc3Q4JmdNWsZaGJC1Jl7YNUgiwO0uUqHNuLir1H346fFP8ziWTu9s2FxhTnbist6c7T5eGW3bxZ4PFFr+TevN1SOi8lGqfHmlpqn2dqcVuuOr/MQEQWDEwyYA1nlvClSpzXEb6xj5ONEabEx4yPmU3t1Y2ERM+WYiErjB9cbOG/JkADQ615cPo2RdByY+Ug6AToA0sOb5kvFN94pRol0AkgH6WTuIgEBAMktg2HnsRpENHytUA//hV+aNP8j1UNvK+Gwq1ORITqENYY+cTAYDJrbuk5EepfWbL4Z2k0fcYQC6rV6ChNbh0c1jhLzV3oNGd3Gr5E6XYeVOSaGIBAECQC6A6b7kABIgAQGNz17MEJ1+F8RvRszKix3HgcgSBdAyAqErhMgSCcBCNILpx4Ejawmo/dBpD5BSm5KyrXceRwAHIa5Gr3icAgAwmEoPt5aa3TZsGrhEOF/ZUyrfGXJVXWa8TFuJPvSblnlB0O0DdoZa5owYWrUI43mOrW2CLXM0Kkz7ZBRsAiR5lYhL6F7S0s9VocRAKC3ILVqunX0keYdoTR76HnHY13Dw5F8YcaKu9bRjzNHfiOp0rp2H8Wxkvocy6bMY0bxoRXyt4sl4EuWWUeJCmNqrE/7w6o2I6Mz44BFzGPFavu6y89YEjdjo7dAq7FkzBPxXgehZ0tNvCUiuWlO7i1LmIf16dAFKrC0dHSXxwFlWrsFrJFjtWBeuSUndFyQABrfLH2ZnVgQRlv2/lZfor5ucs2z7SDAexWJ1I/Vh9oT9wXbvk0plcwPFkTwnJZ9jQmSSABmXXxsZQ/zstaoDPVr31qQ97GgjHkqACLKBwBvqCKQdZq1ARn4tBrOSQh0Isr3kg8dREQ06E7ow0Qhadcz9jKSOgQw0O1GZih0dycdYU2FGBFy00Xt7Vvvs5E6AFzKdWLXjmwAOHX+MzZqORhuM9s3d9ltLkpBwMn3gY5sALi4JnsmF7MkdNPpf+p/1aVqr8UAjH5s7KATxo2jzv0zgcQ+7x++9i9+zv+A56MIgn/7ZQws3r7HqLDVk8TKIAHAAXztBm7/Yi6hTiqJhhoH0LgWA+6UuH/ZYlwQcFKIFwYKOcgcjeLLJWLq/N8T7TUjIfziR6LKqfOlGTYJIcTcAACW58p5oRMRPczcQURU9IU8T34HUVFKgGL//qr1EABw+t5RAEhfIEFgWPHAw2ygZHkRuH7LghsDHxc5AeA9mYMN17z0OAAs6ADf766wgYDhNi+N82sAIF2HDTWak3bFi/+Azw0Avy6EDTUCAFIzuwUB/jqJY42Tc3uFE4D/6EuADX2ViIhOwEvky1MgOKwTkSePiOX3OiyBD8AO+cMfZnYQ3YBxkibn75I1ugEA3s3Gavik1DgS9vQcXvwfNP4HaQmrkXIa9FYAAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, it is known that triangle ABC, point D is on the extended line of BC, angle ACD = 140.0, angle ABC = 50.0, then the size of angle A is ()
|
90.0
|
443
|
[
"50^\\circ",
"140^\\circ",
"120^\\circ",
"90^\\circ"
] |
D
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAALoAAABACAAAAACIbDJSAAAFiUlEQVR4nNWaf0xVZRjHvy/HdbWB9McF/INJ6AUy+IOJm0wNMMtMsGzlr0VzLbUtaa15nVayNX9MGJC54VZzTVilw3JjbSxoNMjdK2g028Km3Fs6JfMHrivoblfvOU9/nB/33HOPcM89L3D7ws573vfA837Ow/P+eriMEKOzi2PbiMW2TbNSYptuVj9/IaYx+cjN0LMurq148+bUo1iVCTqE7f7sgtp7IAAm8ZQsMkMH0vcNXsk9wgCw5GU3QScAyP7y+/a8DiRlkCsaz6sdu5yNi6YOxapivK57ldWDm9ZsvJa08R6DzvS3b/vyFu68m6QxYz5MNaXuGwy4DotqNan8PwE6kHW0t/OpU0olqfw/3jDVFv8f3al1S5IKGxjf6xrss+e3vLb+jymgsaQJAwYAGG2+Ulyyc2SyYawpLnQwOD7yB11NoWQap+OgU/S9s3mgx/XNpAPFL2t7lJ92oKl8slCsyur2qs1dfMg1OShWFV+sR7TBX7Go5nZSLE5W0eHY4Z+VdyDEpp/eGjoBgLPhl1+fbJ3+pTXBo4R3973GFZxRrCrhU9Cp3a6mp7miWFXcAUO6KwC8enFV+dZpPXzHjc50VwCA8J7/iaLa+9yJ4pblGUan9IbzPtfnWnWqZxy7J/4B90h9JaYlO2YHXcbteD/n4LQcvu0EjOzoyqGXX6we5kNjSXbQVdVcnldUe5eDIWvigY7UvZeGXUckHqYsiAs6kHWst72gnY+tuEXc1Fm4bICISJKrkuGxB9jKrzMi4uR1AHhhcHPVumFt2TLMlr7jNHT6IL/ewNPrRDS2P90dkIz+JiKirlGJWlaNcuwsBYAoihO+4YTyFfUDqR9eDOZ8IgKxa+vKNAYX15GcAkCAYNvOmfxbAMDmNHt7c0/BfDfvr0iz3ZFORERhe385iYgoWNGn1rtLFnvMfi64iWe8aMNUFEU5cOTgEaMK7U65QhShizGjg1cMvLtxjUmyrP4wV6er6ILyJQqCCIiCvgAgCgLUughRgCio7GaboNf9F4prjMmy1gVOnuRRS5IoQPW6iYTIjaCrqT6PfoPA9d9oQV1I3+S9vp55T9qCNYgkJdbDFCY17JW76AZ9czgyQJSpUBfrRFJzFZF/bfZXRNQpNx0DgIKb9kNcm3qhMkfQw+bo4Uegkx5dtVvWQkTkKS3pDlTNcfvtA5vQgyisQCiQ8nvoi3B0czgcJvk7Cv0ZnddvOAJyH99mVw1e25+zrGWMM72MrsrWFHmpAGjTas1VmtHG9O1/U0+1c0t/7LbGniLoCZPHAElU3hp5EHCnHxijwNHivE9vJNqFqZQD3scpAL9V+v6hnQ7d0XG06+ryhaA7ZwcKX5lh9/CtAgMzlBY73DHnW/98R2SyZDR73V8/9G95zFm5+k/BdtogYkDfLadTPTHcSzU2Kp+xSbwLYsbfVdH7UZqo0XF6e1SFi5TVNPgBb8Mw7G04kYfeYIyxk4CGXjdzHr/slTE96WWMbeNk2/FFdRt5avqhorfODXPPl8vmCKh96xYFf98GEI/knnRjOTIzAQXdN1L2+CzbRhWRdgEARrXnfs7AzPrTt8HIXrINADCQm/Fg75JSAJCIQrtGh97hulro5MnoIyLyKDsvuwuq1AJk9ElERCkMOF4/O/+h7sXsi7TiwWdrSwHArzyxGZX0sKePGl46CwApgO8OkSfXnkmDIvkM8fJzAPCwuyyTh2PY1X8KsSG/BwBmwOf+WnYKsUn4z9ZwYC4AnOv6js884C1Nw7WR+QCAPcjo+7famJlScym2y+DSE0QUXGpIfCViTyKi0OY+Ci6Vxw3fFFIUnVzsWXmXhgq2RrUlLA8AYKWcWDBDlziVREQUqgYyznCxb1ASfwRzInFMl061/sfo/wFzmaCnbE3mwwAAAABJRU5ErkJggg=="
}
] |
<image>As shown in the figure, point O is on the straight line AB, if angle 2 = 140.0, then the degree of angle 1 is ()
|
40.0
|
444
|
[
"40^\\circ",
"60^\\circ",
"140^\\circ",
"150^\\circ"
] |
A
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAALsAAAASCAAAAAAm6PCQAAACoUlEQVR4nMWUwWsTQRTGv5dWUcg1iAQvtWUPXlLQg/TQFK3NqYroH9CDkXqw0CJ68FBvFezBQwoVwUOP7Vk3LcT8B4vSgkLT7EHFkwfjxZlkPg+7aZNsstlNW/yRzezMvJn3zds3T4gmy1jGyUI5PWsAwzHte9Pl6BIjHnEi59sm/C57W546A/gmcKQ97vc6SQbwLQAgLflenjpO9MvItvUpXQa7QQEEHzEZ+QxllIGOfD9W4mQ7+pGViO9Z2iLZC+9GUxDJ+pTxy8sAdxWkIUnb4f+kAGTVQsxF/l3VC4nexwynKDcAuCJTHRPbzZGivAxZT8CVz+S7sxejurwtIrIFeEd4Ml0bNGRGWw5JNx+YsVM1kvxrbYbvoKw8SS71MWthdpM2HC/ca+M/4gW7BSGKAL7MB2aqGQDA/fS98B3e/loFgJHRaA4JXcnB8uu7W7ueSkZX20FpY+MPsJsJTOye3wewdulW+Hr9eikJAI+CO3RFUJpIYiGfSQBovFqsW7HktrF3LWdDDwMdRVaPje0Dbu3c5fD137/2MQhQeSPyYh0JAOuFs2ODl8r6EKZ3WEoD7TWdpcmRA+j5RTsXYZcY/omiYwrjDhKAWzPqw0g8wS18S2Pm56dSQKDsZUA83yxN9EnHtFUBBO5WRIfi/s7IA2sbCbhzT4EKdZ0NTVDrBkCtNQ4b763e7GtNreveCAA7B8wULwQE6iGMHqxdTe7cBELjeubxsy2gONfnRh/xPucn2hLgmDvAQ5La+zWoDeuaxmtIUhtq4/eNUjRKG6NIkqskqwjWN9thFStUV/pXXxtAsMT2wHDWobJSNYIkjfJEGRqllDJGk0bRb0ga3fw3ikaZw4cFYIXk3YDAWcCp5lkAUv3Em6iySXoHBbIk/wFukmTMwR72VAAAAABJRU5ErkJggg=="
}
] |
<image>As shown in the figure, line segment AB = 10.0, M is the midpoint of line segment AB, C is the midpoint of line segment MB, N is a point of line segment AM, and MN = 1.0, the length of line segment NC ()
|
3.5
|
445
|
[
"2",
"2.5",
"3",
"3.5"
] |
D
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAIUAAABpCAAAAAAxN78ZAAAHiUlEQVR4nO2be0xTZxjGX7a5P5wbXqiFIQNBNPECERZXt6CZuEyicd2UOS+L0RnjJV5iQBPj6tTEaAxi3KKzY87FVOcFJcaRKNPVqjVRJpJtBi3ONc5JvaCuaGt76LM/zjntoZxzei4tmGVPgPTcf3zv9z3f+34ckkDPgV7obgAi+p9CqDhQOC88BxT+JbpvEQeKzymn+ym+yXlZN4RuimbP+B49u5siWLmcMnt1N8WeHa/mtuuG0EnR7AEcufopXtIFMbeWqEk/BBG0q4wMzoCZaLqOe7BK0jmn/pkVj6bQ2TsvmM7Eg0JPRIBG436jXXc8AF0U7ozDsMcDQw9F67DtQFwwdFD4x6wE4oOhnaJ96swQ4oShhiJgJoq4w9LiZ/wB3Rjq2qLMBl+BBQCwJf9xZL9eDFUUgakeoGw6AOzLui08ohNDlWu5PT0p2JxLRKdX1L4uPDL2wDRd9qUG2WoByrI9QKPxbPQxXa2huneavKxbdZIeDDUUriIvAN6t4omhhsLBDlLereKIoYIiYHYCQrfSh8G6D5EtQsHussld5TKQwYkObqUXwwn4TJ4IBQJmGxwGZ+xrO7iVLgzfBC8qWxd5BRQ+kweuAbEpotxKD4bDAtcs9iOf/V4a2D9YXjT6SL18pXXzyGyrvP+UTCzNVGBTd3dQ0/r1ZGG3eO9s2p+UvnJf23dbq6/J1Bee6tKUGLfPLD3kjskQqttPwVonrEO4HWyTBMxOWA1O4P7OopT5dolBIOpWGoJyrbC0Fa4iL85zXYCjcBV5w7Ole1NeRnmDyMUSbqUao8r4LdjpgBdHYbUALkN4pP62euDQDTeiLpZ0K3UYraWF1xB2HyFFwOyEryDbE9kfOr+4v2l7i+BqGbdSg3EmqzwAAEQCXyAAcBARO08JFaz9tPf7e/7hN+XcSjFGcE3GTyK75R38yQ+Tk0uP+oFYbqUQ44bpg3tiZ8ecRx7sGttv3un2WG6lCGOvcYf4yUpms1tbRqa8ckgdhAjG45n5v0ucq2xObew3O2fIuuu6MJw5y/xSpyqicGccBi4sTR1V+bdWDGZ9ei3gMoivMyih4N2KOTG7z/jdj7RguItKWtic1VcggqGAQuhWTw+ak6dU+9RiHEjdFgLKTF4ADqEtKaaIdquHVeP6zqljVGB45w69AvDpizYKEbe6XVGYtvyiUoxLgxc8BRAws6GwaqGQcKumtbm5liYFGKd79asBAPgKbBDAqKKQcauLy9MKK2J52e3iAgPbN7hMTjStjEFxKvWqzFGmbk7fcVUPZc6oSdsc4rooO2WLDpEYFCKVYJT81VOSzQefih98umDwJYRHSpnJC5dBdFlSlkJZbvVo9/g+s0+IDJorQ+e2AWGMgJmkig05CqW5FXBn26jUJRc67gtVph7kP7MYf1yWup4AMIzo6FeeWwHA9XVDctYIOlFLyRh3ZMtutMNBNJ1bAxGjgCiEmtyKVf2K9JFbbrGfa9M3dLir3WibBSt1yLCUUKjKrTi1n57Xb+yuB/Avy4l+mGwuylMwDMNGho0Ow1TkPxbGiv3E/QTDiJMDeHa0NPndN6Z1tjo5jHBbcN/8176sW5H9giNgOGBJDGBr8ojes2qDKjCEFNxvywDMqdSrTBRFZ1Jx3ZtsuoGW7ab+i89H9StpjEi/YAQPbTCehUaKuow1bCvc2DB04OpflWEQ//gIBQN39mF0omCUUATKs85EthrKM/I2CcarJAbx/TH8PAatw7YzfCcNd5nINt8vRDCuFZa2dtgRss9PKdp5PxaGwDv5u6pzK6HYAjRKz459kjzR1iaLEaawEpnufgYtbsWJK0BF5N1b0nvG8YA0Bl+zD5jBwGWwQJtbAZECVFx3v3rHsNARksBgKbhZv8ymuhLkJVGACnVz4/DMVY2iGCwFlwtWObFZbSXISqoAjVLjqszhG2/ajXZ+nZGr0AlAeP0EcL64uF0DhGQB2kmhswsNby8zuNn1C24dl6UQrJ80FI+7o5ZBpgAVU+D4jNdKnvgmeH0VvgpxCrR/kR4rwFGSK0Al1HYMDgus4acKI+Ji87tT6WtVRIUtQNXLKkw1uN5JNsDBL+a0qIgKW4CqV8DsFGRdnF84SFhMK48KW4BqkKvIi8rwEpZE9qssKlwBqkVWC4DAIo5D4u9m4345915LrBXc+sKX6/NjrvOKKlg7gSj4cQr/Mo0UbMyotG9Oq9HYENyiYqR7ytQj8lG5XVysyWVFJVcVyY2VmrTN2rqlagrpqHAFaNdQSEUlXIB2EYVYVIQFaBdRdI5KxwK0iyiioxJdgHYVhTAqIgVoPKTknQPjyTFvniIioqtv3b88WptbyksZLBuVHca9CWgIKH93zTMTX6722LIT0RDK310znizIyz6bIAhS8R7fjxMTxKCKIoFSGJHgh0lJSUk5d7uXosdBsxP4aHSCMJT2znb/CKKNecu7l+JSn15EPQbdbOtWimOTiIgGJ4RBMYX/3HgiousD9b/7rYPir0H9iaj5+0kJgVBK8XM2EQXLcyZ3J4X/6wlEzektdYkJiLI5lSsfZF+k6pI5NbH6z/xfURz0L0mDG0xculPZAAAAAElFTkSuQmCC"
}
] |
<image>Suppose BF intersects AC at point P, AE intersects DF at point Q. If angle APB = 126.0, angle AQF = 100.0, then angle A-angle F = ()
|
46.0
|
446
|
[
"60^\\circ",
"46^\\circ",
"26^\\circ",
"45^\\circ"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAGoAAACKCAAAAABnDoDJAAAMEElEQVR4nN1bbXBU1Rl+7llZql2IH1mTtHQymhSCodpSSxDqoE4CWIgwGuQrWDqIjmXGiS2oMyIdp85YP6o4MtVoB6EEsgalHTQaDCoFlawzDo50Jq1sIG3GVpaRr62Qve45T3+cu7v37t7dvTfCn74wyb3nnvM+533Oe97znnNvDGIkosTuK2pkwFcb4ReEABQEmoiA8tXS8G2VMgwAvz60029D/1CAEnjxyibfDX0TCEBgAFc0AwrwQ+FIoID2u1CnIPw1HxHUi08atRD+bBoZ1BFI9tYqKH+NL/CPNHDfTqjDFDBA0sfcol9ZA8TYDKwmKf00HMG8EvoHjcydNxnBvNLaNZL+6U1G4BYCp5KAxvCBNCIPZOQv1pUvbx8Rgddd/JbvViNydhz5VB4L+282EgI3zW/aZl36YdA3gTLA+vUn1u/32QzwP4Ulo+WpRGiAij7nsG8CBTpbA6GWzTCU3yjo1yqmqvrInpqUJKWUPszy7xa7Qw1A438/FoCA8NHeP9S2xQoILO4E4LOjfvlLhGIkVbQyJeV5cgul9BzqnlQDBWPKxbvE+VrwBQUIhY5FutHt232HNM/2K0qS8dFxSUrFwVCC9MWgn5VNAOi6ISwUhIHqSd0A/TDoo6oBAB3L0vO2tcPfcuXXAwdDiZTUrMVHH/WVWngnkFCA+uP8UEBAAEqFZ273OSm99klKyhTHd1vXJDun+jKK/giMXpbK3iRCg74a++Ogc5ktwwy1bDw/BJJkqiJqv+0Zf56sIrB77BR7SePpj/wY5WMKA5FFjpLAok4/UD4IlDqo2yQ6LuVe9RsSqET3pBpnyZQxe3wY5R1KoGNxbsmCrT6gfBAYHx13RHJJDoaGzweBeOWmcgcLAqie9GfvaaePsdq61MjVqlpfgfdNsWf7j3w7oXJzMRkfHafX9dG7VS/fGjLsuZgCIC5r2gFAeDPLs1V1PW6lkes9K/AM1VfunK4Waenw7mEueyYw0hogbA5g5Uuhlg4AhJczBY9GyXCf++D31JH0lLuXtkoqKKhdZde6V73p5CeA8JK7l64SEABE1+KA+0nZqMWbFdQ58UA93olQjFSmG03RcR63PiWt0qled/0VUMYotwk0JbTH29anZCUddrYuBASVa/3bN8Nb+l7acKmDuiTTaZldFAfLhl3KR0AgIICuG8IQUFD5VBmortvpUu6qx4N0LNN1XWoroHWbJy0ezi2U+OfE+EVFtB0b98UlHqA89WfjbaFi9cIzt3vR4onjrlbIYjVatxV7mhEPDhgtN4utftJj9l7SKmWgc+moIs8hZOjWyDmxiqnKvqJGk+ypPxdWAe+EGkrF08YvPymtJw+KgDPOqM4lKHLAIwAwsMhL7lmEOM1PXqbuRqGX7N2ttyQAyAAAJfBGTqaeI0oBSk256P2SRrmFGsMAgIB++4ati4unXhQUAos2lYTKJ1DPIEUylQ7qpUUOlg2XyjzzrdIlBgADAqrrxjCA4iuSVKJ64pulMmoXApNLDcMwjJtPGwBFR2sGuqAEBND6pwLqsuJi6fDPP6Dat9La1iQ88EfyWOhEiRoCgGmaDnRl/uDs8z/+EQBg4/yQLivWXQAov7FUeBcAggg6yj6eNKbrsgvvUcqA6mrVOKWjytKSs5gkk05LNwHh/SSlZDRs0uOmJhEaKk0goEk0TRMwzeR7+4ebv5dUEIbZuWwUIA0gaZpIU23CNGHmdFmFWrYWd9Q0VND6ZwaDh09cZVw7ZnQK6uvAqwuSQMCAOToIwAwGgyZMmEGYQTNX0aKINygAMIMAzOSHDWNxz7cePAWB3cEpgPWuOTOeQQSRM7oAiMajnxQd0syzdC+Dxr6bAHPF2DIAkZuFoSuVPM80YCzsKu6pZFK7hf6V3KeLw/uHyS8vLH8iSUoymf6fvUrmDrvsG1fULUAmkySZoj6C0HfJZJJkZPq/rp9znElS2YqTySSTSZVMkko5lNXtyVw2W3Y4odKdSua25NxnFB+qirKAOGpLkuvuzF7PjVGucWBlb3Rktp+26DP17oqnC2Exp2uDZZoZKclmkmxeY3uanVeAcEYF0XXDpQL42cevzjtR0BcyogBUT3xThxaB3XUAVN3fXTwwGBydc/6gsEUfn373vYk/+Sijzu5RzlsFLNumIJQCsWumAkRtjgdmxZEfyMOh0+nr1yufc+Uuh0DGQyepX2mAlOQaO4EF0xjFdcuyIzfUcNtxZyxU3AdghSM8Ss7dpH/HVpNkDG/bnsNe0Snj7ccv5n01B5wbtrUTjqqvpq/MNleU7JyhLW1vl6RsbrbrK5ycRcOSdop2hJ+3mcS1s09Jyb0TjmaxJJkoG6KkJGKSA3AgFYJSZNvCnLLDkxdmV+R94f2STO2d8IWmI2XNlDlPkezVbtDrbF/Qqq/DVTklKXPV+E+t67OtK0lFbppwlDJDveyefOWk7EjkjIgtWkhpd6ie2vxXiXJ7+EWt+cz0zgTJ5LKVkpnN+Aczxr+aqjiYAcrZi7tbJZlavs7twWeTlyQUyc/q9yck5b7wB7o/ijwwu/Ilkm0PlrbKKYlQzFlTkYqUw6vqD5LqzPRIQvHM9JWKVFJS9rdULJlHktFq69ghT2UhqMh1uSUaK8ltFS+Tcu3sU/xswgpNpxxaXva7xFAwQUk58a8FVOZAqfQYz1lfKHmRh6654yyTrUD4QympyM9XhR8+SXLaFklyyZ36ZVeeaXlW6adFM/UzK+r7dVVJ8uQD5W1xSZJPz+PhBypmjk3lghSA0rJhdmEkRXZcvkX3S55+dOzKIWpnHRrVVPWbITbscG9XYCcytaMwFBXZX7/iLMnhZ8sXDmZNmLZOUXFDi1coRXJwTCINKnOXZl3p7B3XHJIvjJv/N1v/qINJvECa707gutaMAjcgkooby8qb+mjN++ymjGTzJh9jlT5Td12UmCIpX6u/unrVV66tI42uxa5QUduZuszroFKUb0+9agcTSyYfcutQosw1e3eBkmxrc2iWTji1YOeM6k5KSb50eSTTyIa1fL1HKJpVRY9f+sajKU4lSaqD439p6kt7V3f9MLd7haB6agvj8PDt5etJHflImVg4eUBSWpotP5JV/R7d4hf5QV1aiobuLnv0tCRldg5sqNyRp7dtrYtaF6jCxy/xtvIHj6eyo6IhDtTcZ+YsTdFqb1CRBud9OnSefLis7T+Z0jSeUjze0jBkw5KUrHvfKnDPmNIy91mXLvH042V3uvqwpJTPVbxuK1GU6+7WkHZj86FygrqunFpf2dJvL8iRaM0DZnZjIuVguSN+FIDaMCtf00vjZh/IJAuur0COz5s2ZO/J1Pzw7oBSklZQdyiL1Mx4380Upzxd0Z2+lOSGhalUqdxiMJSQ6QaSkuy5ZnIPpYcXfNGqh7I3ca3G3iwDlV6graBurXbc89O6HenrUnJ8zrR/Z9rO3Zz7OAOVshKLuh6b5uis6mJrZJ48WZHJaCN567jTKjJanj1+6Z9f9YKfrxxI9lWts1Irlh1NOd8MOcZKkve2WUhqsLX8Kb3fVPRAoOXW8VkzrLmy/JmcZs5Nj5mq7NMh84u7y9bpj8pUOv55lMcq9pIkuyfnPMgh8M1aSVLGV5f9Km5tL1hw0S8geyseJclUZb+zXKT3sfqia4kATj3y/cQ/fh+2Xp7C76dl1x98t/GYsj6MtL8McJCTCMU4/Hh566B3vvJFkb+t2EtpD++SJKj0/FQkGZmaer5yfr+rBj9Q3FvxGFVdH6XNpQzaP39vvnjfxEemuJDiS2gAxxYEt/zhyw1WifUJvM3IfjTsceunH7FmUmz+2Ev1brodaOb9JC9QAre8DqC3UeCdS2e9++43tUl/uc+rL+mZa75185HaNRJHjHYAhjKUuOXext1NsRq89qmuPJK/vrGLEgAFPv/OtFli9RMA7p/ZCICKhGQMhzJel/L3lxL5kk0+2vUAtQ+QBCl71+SccZ0bkZJEe/YekmwHECP9RB+PEsPubIIhBPBGjO21Axjp3xIVHjLoz2UttQIYQA3uwjvZx+dKBGpwREFhQCsn29vJWO4pzbmQFPkCeslefdYEsjlGjuAT+lKiR6gXMNboa+ijp+airUaM5PCzbzpbfQ3d/yPU/wDzvEwWcgid3QAAAABJRU5ErkJggg=="
}
] |
<image>As shown in the figure, BD and CE are the height and angular bisector of triangle ABC respectively, and they intersect with point O. If angle BCA = 70.0, then the degree of angle BOE is ()
|
55.0
|
447
|
[
"60^\\circ",
"55^\\circ",
"50^\\circ",
"40^\\circ"
] |
B
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAK8AAAAZCAAAAABiaiHBAAACY0lEQVR4nO2Wy2sTURSHf2fmRowLkQhSMKUtDQiFtov62Chx0yIi7hR17SYIVcSBrlyXFooEuvMPcN2FSLrQ+tgWMiK4EQKNGCLVrtTMfRwXk5mktp1J04mh0A/uI3cO535zcrkJMQ4VVr8F9smRb2/pma/jJBGyg8Nb327e9j/S1KPwPruIPAAYCyaJoq/56Q4YEmLeIb8IQIQreQDGgpXQGYlTMVawYyeEYXT0e9FT2n0/feybRhwrRLe35rHN15tLLL16SEQ0+SM+ZrWTdNXJ98xL+VMAwCHP7v3kpJBPXObixGZkzGyJy1k3PlljxmFmLpaYuVXfleE/5iA13YZp5IDC1fnImOoUTmc7SPaqNgcAQwPwz4OWUnJ18/zJdAKmPp+PpwGRq/yOihnNqIUr47G5vOVCBgBujsP3tQWEfnGHs8n5rk0DwGBkTGWRRu4vxOeq10ZbH4Lz8NI5Mdjo1m4H3pspANgYjqiAeu3y8vX9XklN3+p3T5ZHJIOl1ABLqRAO4czvlWQlVevZLtTHMgC+PZ+O2Lm2lcO1sQ/ximcGvgBA9W3L9+vTuyQqZBFMKsUMLVKkEAzwZ8GyDS0E65TYawNg/SwANX/ucoTG+qU06rWheN9jDwqrgPv4AgD/Pisi6zZmAYeN53meMZLZSG4O3N4bycYzYdvjArrhMm9M3PoVdZs9crkxE33jBZQBOP4UoY406l+xLn3Lfl1KcQpA5BvtCjE021oA2ggClE1gUmSzFmgOACvRWmYlKGjx32bCEEMbCAKgfDOQaPbBoGxqX1ZMImj98A1I5G96r/kLdiyvVtwIQmAAAAAASUVORK5CYII="
}
] |
<image>As shown in the figure, it is known that points A, B, and C are on the same straight line, AB = 7.0, BC = 3.0, point D is the midpoint of line segment AC, and the length of line segment DB is ()
|
2.0
|
448
|
[
"2",
"4",
"6",
"8"
] |
A
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.