contestId
int64 0
1.01k
| index
stringclasses 40
values | name
stringlengths 2
54
| type
stringclasses 2
values | rating
int64 0
3.4k
| tags
listlengths 0
7
| title
stringclasses 393
values | time-limit
stringclasses 7
values | memory-limit
stringclasses 6
values | problem-description
stringlengths 0
2.97k
| input-specification
stringlengths 4
1.87k
| output-specification
stringlengths 4
1.12k
| demo-input
listlengths 0
7
| demo-output
listlengths 0
7
| note
stringlengths 0
5.24k
| points
float64 0
3.5k
| test_cases
listlengths 0
402
| creationTimeSeconds
int64 1.37B
1.7B
| relativeTimeSeconds
int64 8
2.15B
| programmingLanguage
stringclasses 3
values | verdict
stringclasses 1
value | testset
stringclasses 9
values | passedTestCount
int64 1
402
| timeConsumedMillis
int64 15
8.06k
| memoryConsumedBytes
int64 0
514M
| code
stringlengths 11
61.4k
| prompt
stringlengths 297
7.35k
| response
stringlengths 25
61.4k
| score
float64 2.82
3.99
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
59
|
A
|
Word
|
PROGRAMMING
| 800
|
[
"implementation",
"strings"
] |
A. Word
|
2
|
256
|
Vasya is very upset that many people on the Net mix uppercase and lowercase letters in one word. That's why he decided to invent an extension for his favorite browser that would change the letters' register in every word so that it either only consisted of lowercase letters or, vice versa, only of uppercase ones. At that as little as possible letters should be changed in the word. For example, the word HoUse must be replaced with house, and the word ViP β with VIP. If a word contains an equal number of uppercase and lowercase letters, you should replace all the letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to use the given method on one given word.
|
The first line contains a word *s* β it consists of uppercase and lowercase Latin letters and possesses the length from 1 to 100.
|
Print the corrected word *s*. If the given word *s* has strictly more uppercase letters, make the word written in the uppercase register, otherwise - in the lowercase one.
|
[
"HoUse\n",
"ViP\n",
"maTRIx\n"
] |
[
"house\n",
"VIP\n",
"matrix\n"
] |
none
| 500
|
[
{
"input": "HoUse",
"output": "house"
},
{
"input": "ViP",
"output": "VIP"
},
{
"input": "maTRIx",
"output": "matrix"
},
{
"input": "BNHWpnpawg",
"output": "bnhwpnpawg"
},
{
"input": "VTYGP",
"output": "VTYGP"
},
{
"input": "CHNenu",
"output": "chnenu"
},
{
"input": "ERPZGrodyu",
"output": "erpzgrodyu"
},
{
"input": "KSXBXWpebh",
"output": "KSXBXWPEBH"
},
{
"input": "qvxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaiv",
"output": "qvxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaiv"
},
{
"input": "Amnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfd",
"output": "amnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfd"
},
{
"input": "ISAGFJFARYFBLOPQDSHWGMCNKMFTLVFUGNJEWGWNBLXUIATXEkqiettmmjgydwcpafqrppdsrrrtguinqbgmzzfqwonkpgpcwenv",
"output": "isagfjfaryfblopqdshwgmcnkmftlvfugnjewgwnblxuiatxekqiettmmjgydwcpafqrppdsrrrtguinqbgmzzfqwonkpgpcwenv"
},
{
"input": "XHRPXZEGHSOCJPICUIXSKFUZUPYTSGJSDIYBCMNMNBPNDBXLXBzhbfnqvwcffvrdhtickyqhupmcehlsyvncqmfhautvxudqdhgg",
"output": "xhrpxzeghsocjpicuixskfuzupytsgjsdiybcmnmnbpndbxlxbzhbfnqvwcffvrdhtickyqhupmcehlsyvncqmfhautvxudqdhgg"
},
{
"input": "RJIQZMJCIMSNDBOHBRAWIENODSALETAKGKPYUFGVEFGCBRENZGAdkcetqjljtmttlonpekcovdzebzdkzggwfsxhapmjkdbuceak",
"output": "RJIQZMJCIMSNDBOHBRAWIENODSALETAKGKPYUFGVEFGCBRENZGADKCETQJLJTMTTLONPEKCOVDZEBZDKZGGWFSXHAPMJKDBUCEAK"
},
{
"input": "DWLWOBHNMMGTFOLFAECKBRNNGLYLYDXTGTVRLMEESZOIUATZZZXUFUZDLSJXMEVRTESSFBWLNZZCLCQWEVNNUCXYVHNGNXHCBDFw",
"output": "DWLWOBHNMMGTFOLFAECKBRNNGLYLYDXTGTVRLMEESZOIUATZZZXUFUZDLSJXMEVRTESSFBWLNZZCLCQWEVNNUCXYVHNGNXHCBDFW"
},
{
"input": "NYCNHJWGBOCOTSPETKKHVWFGAQYNHOVJWJHCIEFOUQZXOYUIEQDZALFKTEHTVDBVJMEUBJUBCMNVPWGDPNCHQHZJRCHYRFPVIGUB",
"output": "NYCNHJWGBOCOTSPETKKHVWFGAQYNHOVJWJHCIEFOUQZXOYUIEQDZALFKTEHTVDBVJMEUBJUBCMNVPWGDPNCHQHZJRCHYRFPVIGUB"
},
{
"input": "igxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwge",
"output": "igxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwge"
},
{
"input": "Ykkekrsqolzryiwsmdlnbmfautxxxauoojrddvwklgnlyrfcvhorrzbmtcrvpaypqhcffdqhwziipyyskcmztjprjqvmzzqhqnw",
"output": "ykkekrsqolzryiwsmdlnbmfautxxxauoojrddvwklgnlyrfcvhorrzbmtcrvpaypqhcffdqhwziipyyskcmztjprjqvmzzqhqnw"
},
{
"input": "YQOMLKYAORUQQUCQZCDYMIVDHGWZFFRMUVTAWCHERFPMNRYRIkgqrciokgajamehmcxgerpudvsqyonjonsxgbnefftzmygncks",
"output": "yqomlkyaoruqqucqzcdymivdhgwzffrmuvtawcherfpmnryrikgqrciokgajamehmcxgerpudvsqyonjonsxgbnefftzmygncks"
},
{
"input": "CDOZDPBVVVHNBJVBYHEOXWFLJKRWJCAJMIFCOZWWYFKVWOGTVJcuusigdqfkumewjtdyitveeiaybwrhomrwmpdipjwiuxfnwuz",
"output": "CDOZDPBVVVHNBJVBYHEOXWFLJKRWJCAJMIFCOZWWYFKVWOGTVJCUUSIGDQFKUMEWJTDYITVEEIAYBWRHOMRWMPDIPJWIUXFNWUZ"
},
{
"input": "WHIUVEXHVOOIJIDVJVPQUBJMEVPMPDKQWJKFBZSGSKUXMIPPMJWuckzcpxosodcjaaakvlxpbiigsiauviilylnnqlyucziihqg",
"output": "WHIUVEXHVOOIJIDVJVPQUBJMEVPMPDKQWJKFBZSGSKUXMIPPMJWUCKZCPXOSODCJAAAKVLXPBIIGSIAUVIILYLNNQLYUCZIIHQG"
},
{
"input": "VGHUNFOXKETUYMZDJNGTAOIOANYXSGYNFOGOFFLDAWEUKYFOZXCJTCAFXZYLQZERYZLRSQXYQGAPCSUDPMEYTNCTTTMFAGVDWBO",
"output": "VGHUNFOXKETUYMZDJNGTAOIOANYXSGYNFOGOFFLDAWEUKYFOZXCJTCAFXZYLQZERYZLRSQXYQGAPCSUDPMEYTNCTTTMFAGVDWBO"
},
{
"input": "EDUANHCQDOCJHFONTTSWBUJSTTIXBIXMAIUFSGFLXWAYIURTVAVZPYQDLAWIGCLMPHXCEFCJPFAAHXVNGQUFNHADAIUAZIDMHDd",
"output": "EDUANHCQDOCJHFONTTSWBUJSTTIXBIXMAIUFSGFLXWAYIURTVAVZPYQDLAWIGCLMPHXCEFCJPFAAHXVNGQUFNHADAIUAZIDMHDD"
},
{
"input": "EBWOVSNLYTWWXrnovgugogtjahnmatomubebyxakas",
"output": "ebwovsnlytwwxrnovgugogtjahnmatomubebyxakas"
},
{
"input": "AORNNDKTRLRVGDPXJKXFTPFpopuzrlqumrxssskvbm",
"output": "AORNNDKTRLRVGDPXJKXFTPFPOPUZRLQUMRXSSSKVBM"
},
{
"input": "DBBZJCWQEVGYHEEUHJAWRHBDPsnplijbwtdibqrrheebfxqcvn",
"output": "dbbzjcwqevgyheeuhjawrhbdpsnplijbwtdibqrrheebfxqcvn"
},
{
"input": "t",
"output": "t"
},
{
"input": "N",
"output": "N"
},
{
"input": "kv",
"output": "kv"
},
{
"input": "Ur",
"output": "ur"
},
{
"input": "CN",
"output": "CN"
}
] | 1,654,785,113
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 30
| 92
| 0
|
s=input()
h=0
t=0
for i in s:
if i.isupper()==True:
h=h+1
if i.islower()==True:
t=t+1
if h>t:
print(s.upper())
else:
print(s.lower())
|
Title: Word
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Vasya is very upset that many people on the Net mix uppercase and lowercase letters in one word. That's why he decided to invent an extension for his favorite browser that would change the letters' register in every word so that it either only consisted of lowercase letters or, vice versa, only of uppercase ones. At that as little as possible letters should be changed in the word. For example, the word HoUse must be replaced with house, and the word ViP β with VIP. If a word contains an equal number of uppercase and lowercase letters, you should replace all the letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to use the given method on one given word.
Input Specification:
The first line contains a word *s* β it consists of uppercase and lowercase Latin letters and possesses the length from 1 to 100.
Output Specification:
Print the corrected word *s*. If the given word *s* has strictly more uppercase letters, make the word written in the uppercase register, otherwise - in the lowercase one.
Demo Input:
['HoUse\n', 'ViP\n', 'maTRIx\n']
Demo Output:
['house\n', 'VIP\n', 'matrix\n']
Note:
none
|
```python
s=input()
h=0
t=0
for i in s:
if i.isupper()==True:
h=h+1
if i.islower()==True:
t=t+1
if h>t:
print(s.upper())
else:
print(s.lower())
```
| 3.977
|
234
|
C
|
Weather
|
PROGRAMMING
| 1,300
|
[
"dp",
"implementation"
] | null | null |
Scientists say a lot about the problems of global warming and cooling of the Earth. Indeed, such natural phenomena strongly influence all life on our planet.
Our hero Vasya is quite concerned about the problems. He decided to try a little experiment and observe how outside daily temperature changes. He hung out a thermometer on the balcony every morning and recorded the temperature. He had been measuring the temperature for the last *n* days. Thus, he got a sequence of numbers *t*1,<=*t*2,<=...,<=*t**n*, where the *i*-th number is the temperature on the *i*-th day.
Vasya analyzed the temperature statistics in other cities, and came to the conclusion that the city has no environmental problems, if first the temperature outside is negative for some non-zero number of days, and then the temperature is positive for some non-zero number of days. More formally, there must be a positive integer *k* (1<=β€<=*k*<=β€<=*n*<=-<=1) such that *t*1<=<<=0,<=*t*2<=<<=0,<=...,<=*t**k*<=<<=0 and *t**k*<=+<=1<=><=0,<=*t**k*<=+<=2<=><=0,<=...,<=*t**n*<=><=0. In particular, the temperature should never be zero. If this condition is not met, Vasya decides that his city has environmental problems, and gets upset.
You do not want to upset Vasya. Therefore, you want to select multiple values of temperature and modify them to satisfy Vasya's condition. You need to know what the least number of temperature values needs to be changed for that.
|
The first line contains a single integer *n* (2<=β€<=*n*<=β€<=105) β the number of days for which Vasya has been measuring the temperature.
The second line contains a sequence of *n* integers *t*1,<=*t*2,<=...,<=*t**n* (|*t**i*|<=β€<=109) β the sequence of temperature values. Numbers *t**i* are separated by single spaces.
|
Print a single integer β the answer to the given task.
|
[
"4\n-1 1 -2 1\n",
"5\n0 -1 1 2 -5\n"
] |
[
"1\n",
"2\n"
] |
Note to the first sample: there are two ways to change exactly one number so that the sequence met Vasya's condition. You can either replace the first number 1 by any negative number or replace the number -2 by any positive number.
| 0
|
[
{
"input": "4\n-1 1 -2 1",
"output": "1"
},
{
"input": "5\n0 -1 1 2 -5",
"output": "2"
},
{
"input": "6\n0 0 0 0 0 0",
"output": "6"
},
{
"input": "6\n-1 -2 -3 -4 5 6",
"output": "0"
},
{
"input": "8\n1 2 -1 0 10 2 12 13",
"output": "3"
},
{
"input": "7\n-1 -2 -3 3 -1 3 4",
"output": "1"
},
{
"input": "2\n3 -5",
"output": "2"
},
{
"input": "50\n4 -8 0 -1 -3 -9 0 -2 0 1 -1 0 7 -10 9 7 0 -10 5 0 1 -6 9 -9 3 -3 3 7 4 -8 -8 3 3 -1 0 2 -6 10 7 -1 -6 -3 -4 2 3 0 -4 0 7 -9",
"output": "26"
},
{
"input": "90\n52 -89 17 64 11 -61 92 51 42 -92 -14 -100 21 -88 73 -11 84 72 -80 -78 5 -70 -70 80 91 -89 87 -74 63 -79 -94 52 82 79 81 40 69 -15 33 -52 18 30 -39 99 84 -98 44 69 -75 0 60 -89 51 -92 83 73 16 -43 17 0 51 9 -53 86 86 -50 0 -80 3 0 86 0 -76 -45 0 -32 45 81 47 15 -62 21 4 -82 77 -67 -64 -12 0 -50",
"output": "42"
},
{
"input": "10\n-19 -29 -21 -6 29 89 -74 -22 18 -13",
"output": "3"
},
{
"input": "100\n-782 365 -283 769 -58 224 1000 983 7 595 -963 -267 -934 -187 -609 693 -316 431 859 -753 865 -421 861 -728 -793 621 -311 414 -101 -196 120 84 633 -362 989 94 206 19 -949 -629 489 376 -391 165 50 22 -209 735 565 61 -321 -256 890 34 343 -326 984 -268 -609 385 717 81 372 -391 271 -89 297 -510 797 -425 -276 573 510 560 165 -482 511 541 -491 60 168 -805 235 -657 -679 -617 -212 816 -98 901 380 103 608 -257 -643 333 8 355 743 -801",
"output": "40"
}
] | 1,620,651,562
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 40
| 342
| 15,872,000
|
with open('input.txt', 'r') as f:
n = int(f.readline())
g = list(map(int, f.readline().split()))
a = sum(x <= 0 for x in g)
for i in g[:-1]:
a += (i > 0) - (i < 0)
n = min(n, a)
print(n, file=open("output.txt", "w"))
|
Title: Weather
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Scientists say a lot about the problems of global warming and cooling of the Earth. Indeed, such natural phenomena strongly influence all life on our planet.
Our hero Vasya is quite concerned about the problems. He decided to try a little experiment and observe how outside daily temperature changes. He hung out a thermometer on the balcony every morning and recorded the temperature. He had been measuring the temperature for the last *n* days. Thus, he got a sequence of numbers *t*1,<=*t*2,<=...,<=*t**n*, where the *i*-th number is the temperature on the *i*-th day.
Vasya analyzed the temperature statistics in other cities, and came to the conclusion that the city has no environmental problems, if first the temperature outside is negative for some non-zero number of days, and then the temperature is positive for some non-zero number of days. More formally, there must be a positive integer *k* (1<=β€<=*k*<=β€<=*n*<=-<=1) such that *t*1<=<<=0,<=*t*2<=<<=0,<=...,<=*t**k*<=<<=0 and *t**k*<=+<=1<=><=0,<=*t**k*<=+<=2<=><=0,<=...,<=*t**n*<=><=0. In particular, the temperature should never be zero. If this condition is not met, Vasya decides that his city has environmental problems, and gets upset.
You do not want to upset Vasya. Therefore, you want to select multiple values of temperature and modify them to satisfy Vasya's condition. You need to know what the least number of temperature values needs to be changed for that.
Input Specification:
The first line contains a single integer *n* (2<=β€<=*n*<=β€<=105) β the number of days for which Vasya has been measuring the temperature.
The second line contains a sequence of *n* integers *t*1,<=*t*2,<=...,<=*t**n* (|*t**i*|<=β€<=109) β the sequence of temperature values. Numbers *t**i* are separated by single spaces.
Output Specification:
Print a single integer β the answer to the given task.
Demo Input:
['4\n-1 1 -2 1\n', '5\n0 -1 1 2 -5\n']
Demo Output:
['1\n', '2\n']
Note:
Note to the first sample: there are two ways to change exactly one number so that the sequence met Vasya's condition. You can either replace the first number 1 by any negative number or replace the number -2 by any positive number.
|
```python
with open('input.txt', 'r') as f:
n = int(f.readline())
g = list(map(int, f.readline().split()))
a = sum(x <= 0 for x in g)
for i in g[:-1]:
a += (i > 0) - (i < 0)
n = min(n, a)
print(n, file=open("output.txt", "w"))
```
| 3
|
|
278
|
A
|
Circle Line
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
The circle line of the Berland subway has *n* stations. We know the distances between all pairs of neighboring stations:
- *d*1 is the distance between the 1-st and the 2-nd station;- *d*2 is the distance between the 2-nd and the 3-rd station;...- *d**n*<=-<=1 is the distance between the *n*<=-<=1-th and the *n*-th station;- *d**n* is the distance between the *n*-th and the 1-st station.
The trains go along the circle line in both directions. Find the shortest distance between stations with numbers *s* and *t*.
|
The first line contains integer *n* (3<=β€<=*n*<=β€<=100) β the number of stations on the circle line. The second line contains *n* integers *d*1,<=*d*2,<=...,<=*d**n* (1<=β€<=*d**i*<=β€<=100) β the distances between pairs of neighboring stations. The third line contains two integers *s* and *t* (1<=β€<=*s*,<=*t*<=β€<=*n*) β the numbers of stations, between which you need to find the shortest distance. These numbers can be the same.
The numbers in the lines are separated by single spaces.
|
Print a single number β the length of the shortest path between stations number *s* and *t*.
|
[
"4\n2 3 4 9\n1 3\n",
"4\n5 8 2 100\n4 1\n",
"3\n1 1 1\n3 1\n",
"3\n31 41 59\n1 1\n"
] |
[
"5\n",
"15\n",
"1\n",
"0\n"
] |
In the first sample the length of path 1βββ2βββ3 equals 5, the length of path 1βββ4βββ3 equals 13.
In the second sample the length of path 4βββ1 is 100, the length of path 4βββ3βββ2βββ1 is 15.
In the third sample the length of path 3βββ1 is 1, the length of path 3βββ2βββ1 is 2.
In the fourth sample the numbers of stations are the same, so the shortest distance equals 0.
| 500
|
[
{
"input": "4\n2 3 4 9\n1 3",
"output": "5"
},
{
"input": "4\n5 8 2 100\n4 1",
"output": "15"
},
{
"input": "3\n1 1 1\n3 1",
"output": "1"
},
{
"input": "3\n31 41 59\n1 1",
"output": "0"
},
{
"input": "5\n16 13 10 30 15\n4 2",
"output": "23"
},
{
"input": "6\n89 82 87 32 67 33\n4 4",
"output": "0"
},
{
"input": "7\n2 3 17 10 2 2 2\n4 2",
"output": "18"
},
{
"input": "3\n4 37 33\n3 3",
"output": "0"
},
{
"input": "8\n87 40 96 7 86 86 72 97\n6 8",
"output": "158"
},
{
"input": "10\n91 94 75 99 100 91 79 86 79 92\n2 8",
"output": "348"
},
{
"input": "19\n1 1 1 1 2 1 1 1 1 1 2 1 3 2 2 1 1 1 2\n7 7",
"output": "0"
},
{
"input": "34\n96 65 24 99 74 76 97 93 99 69 94 82 92 91 98 83 95 97 96 81 90 95 86 87 43 78 88 86 82 62 76 99 83 96\n21 16",
"output": "452"
},
{
"input": "50\n75 98 65 75 99 89 84 65 9 53 62 61 61 53 80 7 6 47 86 1 89 27 67 1 31 39 53 92 19 20 76 41 60 15 29 94 76 82 87 89 93 38 42 6 87 36 100 97 93 71\n2 6",
"output": "337"
},
{
"input": "99\n1 15 72 78 23 22 26 98 7 2 75 58 100 98 45 79 92 69 79 72 33 88 62 9 15 87 17 73 68 54 34 89 51 91 28 44 20 11 74 7 85 61 30 46 95 72 36 18 48 22 42 46 29 46 86 53 96 55 98 34 60 37 75 54 1 81 20 68 84 19 18 18 75 84 86 57 73 34 23 43 81 87 47 96 57 41 69 1 52 44 54 7 85 35 5 1 19 26 7\n4 64",
"output": "1740"
},
{
"input": "100\n33 63 21 27 49 82 86 93 43 55 4 72 89 85 5 34 80 7 23 13 21 49 22 73 89 65 81 25 6 92 82 66 58 88 48 96 1 1 16 48 67 96 84 63 87 76 20 100 36 4 31 41 35 62 55 76 74 70 68 41 4 16 39 81 2 41 34 73 66 57 41 89 78 93 68 96 87 47 92 60 40 58 81 12 19 74 56 83 56 61 83 97 26 92 62 52 39 57 89 95\n71 5",
"output": "2127"
},
{
"input": "100\n95 98 99 81 98 96 100 92 96 90 99 91 98 98 91 78 97 100 96 98 87 93 96 99 91 92 96 92 90 97 85 83 99 95 66 91 87 89 100 95 100 88 99 84 96 79 99 100 94 100 99 99 92 89 99 91 100 94 98 97 91 92 90 87 84 99 97 98 93 100 90 85 75 95 86 71 98 93 91 87 92 95 98 94 95 94 100 98 96 100 97 96 95 95 86 86 94 97 98 96\n67 57",
"output": "932"
},
{
"input": "100\n100 100 100 100 100 100 100 100 100 100 97 100 100 100 100 100 99 100 100 99 99 100 99 100 100 100 100 100 100 100 100 100 97 99 98 98 100 98 98 100 99 100 100 100 100 99 100 98 100 99 98 99 98 98 100 100 100 100 100 100 100 100 100 100 99 100 100 100 100 100 98 100 99 99 100 96 100 96 100 99 100 100 99 100 99 100 100 100 99 100 100 100 100 98 98 97 100 100 99 98\n16 6",
"output": "997"
},
{
"input": "100\n3 6 23 4 23 1 2 14 2 3 3 9 17 8 10 5 1 14 8 5 7 4 13 8 5 6 24 3 12 3 4 9 2 8 2 1 2 1 3 2 1 6 14 23 8 6 3 5 7 8 18 9 2 5 22 6 13 16 2 4 31 20 4 3 3 6 6 1 1 18 5 11 1 14 4 16 6 37 11 1 8 3 7 11 21 14 3 3 12 2 5 1 9 16 3 1 3 4 4 2\n98 24",
"output": "195"
},
{
"input": "100\n1 1 3 1 1 2 1 2 1 1 2 2 2 1 1 1 1 1 1 3 1 1 1 3 1 3 3 1 1 2 1 1 1 1 1 2 1 1 1 4 1 1 3 3 2 1 1 1 1 1 2 2 1 3 1 1 1 2 4 1 1 2 5 2 1 1 2 1 1 1 2 3 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 2 2 3 1 7 3 1 3 1 2 1 2 1\n49 10",
"output": "60"
},
{
"input": "100\n75 62 31 96 62 76 93 96 72 67 88 35 67 34 60 56 95 86 82 48 64 61 74 100 56 98 76 98 78 55 53 10 12 78 58 45 86 90 93 77 69 73 88 66 92 88 33 50 95 69 89 12 93 57 93 89 59 53 71 86 15 13 61 93 24 100 58 76 46 95 76 82 50 20 79 38 5 72 99 81 55 90 90 65 85 44 63 39 6 34 98 72 88 30 59 73 84 61 25 67\n86 25",
"output": "2523"
},
{
"input": "100\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100\n1 51",
"output": "5000"
},
{
"input": "4\n1 1 1 1\n2 4",
"output": "2"
},
{
"input": "4\n1 1 2 1\n2 4",
"output": "2"
}
] | 1,411,571,447
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 23
| 124
| 0
|
#!/usr/bin/env python3
n = int(input())
st = list(map(int, input().split()))
i, j = map(int, input().split())
i -= 1
j -= 1
d = 0
station = []
for x in range(len(st)):
station.append(d)
d = d + st[x]
station.append(d) # last value of st list
if i > j:
i, j = j, i
distance = station[j] - station[i]
print(min(distance, (station[-1] - distance)))
|
Title: Circle Line
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
The circle line of the Berland subway has *n* stations. We know the distances between all pairs of neighboring stations:
- *d*1 is the distance between the 1-st and the 2-nd station;- *d*2 is the distance between the 2-nd and the 3-rd station;...- *d**n*<=-<=1 is the distance between the *n*<=-<=1-th and the *n*-th station;- *d**n* is the distance between the *n*-th and the 1-st station.
The trains go along the circle line in both directions. Find the shortest distance between stations with numbers *s* and *t*.
Input Specification:
The first line contains integer *n* (3<=β€<=*n*<=β€<=100) β the number of stations on the circle line. The second line contains *n* integers *d*1,<=*d*2,<=...,<=*d**n* (1<=β€<=*d**i*<=β€<=100) β the distances between pairs of neighboring stations. The third line contains two integers *s* and *t* (1<=β€<=*s*,<=*t*<=β€<=*n*) β the numbers of stations, between which you need to find the shortest distance. These numbers can be the same.
The numbers in the lines are separated by single spaces.
Output Specification:
Print a single number β the length of the shortest path between stations number *s* and *t*.
Demo Input:
['4\n2 3 4 9\n1 3\n', '4\n5 8 2 100\n4 1\n', '3\n1 1 1\n3 1\n', '3\n31 41 59\n1 1\n']
Demo Output:
['5\n', '15\n', '1\n', '0\n']
Note:
In the first sample the length of path 1βββ2βββ3 equals 5, the length of path 1βββ4βββ3 equals 13.
In the second sample the length of path 4βββ1 is 100, the length of path 4βββ3βββ2βββ1 is 15.
In the third sample the length of path 3βββ1 is 1, the length of path 3βββ2βββ1 is 2.
In the fourth sample the numbers of stations are the same, so the shortest distance equals 0.
|
```python
#!/usr/bin/env python3
n = int(input())
st = list(map(int, input().split()))
i, j = map(int, input().split())
i -= 1
j -= 1
d = 0
station = []
for x in range(len(st)):
station.append(d)
d = d + st[x]
station.append(d) # last value of st list
if i > j:
i, j = j, i
distance = station[j] - station[i]
print(min(distance, (station[-1] - distance)))
```
| 3
|
|
556
|
A
|
Case of the Zeros and Ones
|
PROGRAMMING
| 900
|
[
"greedy"
] | null | null |
Andrewid the Android is a galaxy-famous detective. In his free time he likes to think about strings containing zeros and ones.
Once he thought about a string of length *n* consisting of zeroes and ones. Consider the following operation: we choose any two adjacent positions in the string, and if one them contains 0, and the other contains 1, then we are allowed to remove these two digits from the string, obtaining a string of length *n*<=-<=2 as a result.
Now Andreid thinks about what is the minimum length of the string that can remain after applying the described operation several times (possibly, zero)? Help him to calculate this number.
|
First line of the input contains a single integer *n* (1<=β€<=*n*<=β€<=2Β·105), the length of the string that Andreid has.
The second line contains the string of length *n* consisting only from zeros and ones.
|
Output the minimum length of the string that may remain after applying the described operations several times.
|
[
"4\n1100\n",
"5\n01010\n",
"8\n11101111\n"
] |
[
"0\n",
"1\n",
"6\n"
] |
In the first sample test it is possible to change the string like the following: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/10df55364c21c6e8d5da31b6ab6f6294c4fc26b3.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
In the second sample test it is possible to change the string like the following: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/19ec5dcd85f0b5cf757aa076ace72df39634de2d.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
In the third sample test it is possible to change the string like the following: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/dc34a159e4230375fa325555527ebc748811f188.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
| 250
|
[
{
"input": "4\n1100",
"output": "0"
},
{
"input": "5\n01010",
"output": "1"
},
{
"input": "8\n11101111",
"output": "6"
},
{
"input": "1\n0",
"output": "1"
},
{
"input": "1\n1",
"output": "1"
},
{
"input": "2\n00",
"output": "2"
},
{
"input": "2\n01",
"output": "0"
},
{
"input": "2\n10",
"output": "0"
},
{
"input": "2\n11",
"output": "2"
},
{
"input": "3\n001",
"output": "1"
},
{
"input": "6\n110110",
"output": "2"
},
{
"input": "7\n0000011",
"output": "3"
},
{
"input": "6\n110010",
"output": "0"
},
{
"input": "6\n110100",
"output": "0"
},
{
"input": "3\n100",
"output": "1"
},
{
"input": "6\n010111",
"output": "2"
},
{
"input": "8\n01011100",
"output": "0"
},
{
"input": "6\n001011",
"output": "0"
},
{
"input": "7\n1110000",
"output": "1"
},
{
"input": "9\n011111101",
"output": "5"
}
] | 1,629,661,625
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 49
| 77
| 8,294,400
|
def solucao(n, string):
l = list(string)
zeros = l.count('0')
ones = l.count('1')
return n - (2 * min(zeros, ones))
n = int(input())
string = input()
print(solucao(n, string))
|
Title: Case of the Zeros and Ones
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Andrewid the Android is a galaxy-famous detective. In his free time he likes to think about strings containing zeros and ones.
Once he thought about a string of length *n* consisting of zeroes and ones. Consider the following operation: we choose any two adjacent positions in the string, and if one them contains 0, and the other contains 1, then we are allowed to remove these two digits from the string, obtaining a string of length *n*<=-<=2 as a result.
Now Andreid thinks about what is the minimum length of the string that can remain after applying the described operation several times (possibly, zero)? Help him to calculate this number.
Input Specification:
First line of the input contains a single integer *n* (1<=β€<=*n*<=β€<=2Β·105), the length of the string that Andreid has.
The second line contains the string of length *n* consisting only from zeros and ones.
Output Specification:
Output the minimum length of the string that may remain after applying the described operations several times.
Demo Input:
['4\n1100\n', '5\n01010\n', '8\n11101111\n']
Demo Output:
['0\n', '1\n', '6\n']
Note:
In the first sample test it is possible to change the string like the following: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/10df55364c21c6e8d5da31b6ab6f6294c4fc26b3.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
In the second sample test it is possible to change the string like the following: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/19ec5dcd85f0b5cf757aa076ace72df39634de2d.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
In the third sample test it is possible to change the string like the following: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/dc34a159e4230375fa325555527ebc748811f188.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
|
```python
def solucao(n, string):
l = list(string)
zeros = l.count('0')
ones = l.count('1')
return n - (2 * min(zeros, ones))
n = int(input())
string = input()
print(solucao(n, string))
```
| 3
|
|
513
|
A
|
Game
|
PROGRAMMING
| 800
|
[
"constructive algorithms",
"math"
] | null | null |
Two players play a simple game. Each player is provided with a box with balls. First player's box contains exactly *n*1 balls and second player's box contains exactly *n*2 balls. In one move first player can take from 1 to *k*1 balls from his box and throw them away. Similarly, the second player can take from 1 to *k*2 balls from his box in his move. Players alternate turns and the first player starts the game. The one who can't make a move loses. Your task is to determine who wins if both players play optimally.
|
The first line contains four integers *n*1,<=*n*2,<=*k*1,<=*k*2. All numbers in the input are from 1 to 50.
This problem doesn't have subproblems. You will get 3 points for the correct submission.
|
Output "First" if the first player wins and "Second" otherwise.
|
[
"2 2 1 2\n",
"2 1 1 1\n"
] |
[
"Second\n",
"First\n"
] |
Consider the first sample test. Each player has a box with 2 balls. The first player draws a single ball from his box in one move and the second player can either take 1 or 2 balls from his box in one move. No matter how the first player acts, the second player can always win if he plays wisely.
| 3
|
[
{
"input": "2 2 1 2",
"output": "Second"
},
{
"input": "2 1 1 1",
"output": "First"
},
{
"input": "5 7 4 1",
"output": "Second"
},
{
"input": "5 7 1 4",
"output": "Second"
},
{
"input": "5 7 10 10",
"output": "Second"
},
{
"input": "5 7 1 10",
"output": "Second"
},
{
"input": "1 1 1 1",
"output": "Second"
},
{
"input": "50 50 50 50",
"output": "Second"
},
{
"input": "50 49 1 2",
"output": "First"
},
{
"input": "50 48 3 1",
"output": "First"
},
{
"input": "48 50 12 11",
"output": "Second"
},
{
"input": "49 50 11 12",
"output": "Second"
},
{
"input": "49 49 4 1",
"output": "Second"
},
{
"input": "49 49 3 3",
"output": "Second"
},
{
"input": "1 50 1 50",
"output": "Second"
},
{
"input": "1 50 50 50",
"output": "Second"
},
{
"input": "50 1 1 1",
"output": "First"
},
{
"input": "50 1 1 50",
"output": "First"
},
{
"input": "32 31 10 9",
"output": "First"
},
{
"input": "32 4 17 3",
"output": "First"
}
] | 1,593,761,834
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 20
| 109
| 0
|
n1,n2,k1,k2=map(int,input().split())
if n1>n2:
print("First")
elif n1<n2:
print("Second")
elif n1==n2:
print("Second")
|
Title: Game
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Two players play a simple game. Each player is provided with a box with balls. First player's box contains exactly *n*1 balls and second player's box contains exactly *n*2 balls. In one move first player can take from 1 to *k*1 balls from his box and throw them away. Similarly, the second player can take from 1 to *k*2 balls from his box in his move. Players alternate turns and the first player starts the game. The one who can't make a move loses. Your task is to determine who wins if both players play optimally.
Input Specification:
The first line contains four integers *n*1,<=*n*2,<=*k*1,<=*k*2. All numbers in the input are from 1 to 50.
This problem doesn't have subproblems. You will get 3 points for the correct submission.
Output Specification:
Output "First" if the first player wins and "Second" otherwise.
Demo Input:
['2 2 1 2\n', '2 1 1 1\n']
Demo Output:
['Second\n', 'First\n']
Note:
Consider the first sample test. Each player has a box with 2 balls. The first player draws a single ball from his box in one move and the second player can either take 1 or 2 balls from his box in one move. No matter how the first player acts, the second player can always win if he plays wisely.
|
```python
n1,n2,k1,k2=map(int,input().split())
if n1>n2:
print("First")
elif n1<n2:
print("Second")
elif n1==n2:
print("Second")
```
| 3
|
|
461
|
A
|
Appleman and Toastman
|
PROGRAMMING
| 1,200
|
[
"greedy",
"sortings"
] | null | null |
Appleman and Toastman play a game. Initially Appleman gives one group of *n* numbers to the Toastman, then they start to complete the following tasks:
- Each time Toastman gets a group of numbers, he sums up all the numbers and adds this sum to the score. Then he gives the group to the Appleman. - Each time Appleman gets a group consisting of a single number, he throws this group out. Each time Appleman gets a group consisting of more than one number, he splits the group into two non-empty groups (he can do it in any way) and gives each of them to Toastman.
After guys complete all the tasks they look at the score value. What is the maximum possible value of score they can get?
|
The first line contains a single integer *n* (1<=β€<=*n*<=β€<=3Β·105). The second line contains *n* integers *a*1, *a*2, ..., *a**n* (1<=β€<=*a**i*<=β€<=106) β the initial group that is given to Toastman.
|
Print a single integer β the largest possible score.
|
[
"3\n3 1 5\n",
"1\n10\n"
] |
[
"26\n",
"10\n"
] |
Consider the following situation in the first example. Initially Toastman gets group [3, 1, 5] and adds 9 to the score, then he give the group to Appleman. Appleman splits group [3, 1, 5] into two groups: [3, 5] and [1]. Both of them should be given to Toastman. When Toastman receives group [1], he adds 1 to score and gives the group to Appleman (he will throw it out). When Toastman receives group [3, 5], he adds 8 to the score and gives the group to Appleman. Appleman splits [3, 5] in the only possible way: [5] and [3]. Then he gives both groups to Toastman. When Toastman receives [5], he adds 5 to the score and gives the group to Appleman (he will throws it out). When Toastman receives [3], he adds 3 to the score and gives the group to Appleman (he will throws it out). Finally Toastman have added 9 + 1 + 8 + 5 + 3 = 26 to the score. This is the optimal sequence of actions.
| 500
|
[
{
"input": "3\n3 1 5",
"output": "26"
},
{
"input": "1\n10",
"output": "10"
},
{
"input": "10\n8 10 2 5 6 2 4 7 2 1",
"output": "376"
},
{
"input": "10\n171308 397870 724672 431255 228496 892002 542924 718337 888642 161821",
"output": "40204082"
},
{
"input": "10\n1 2 2 2 4 5 6 7 8 10",
"output": "376"
},
{
"input": "10\n161821 171308 228496 397870 431255 542924 718337 724672 888642 892002",
"output": "40204082"
},
{
"input": "1\n397870",
"output": "397870"
},
{
"input": "1\n1000000",
"output": "1000000"
},
{
"input": "10\n10 8 7 6 5 4 2 2 2 1",
"output": "376"
},
{
"input": "10\n892002 888642 724672 718337 542924 431255 397870 228496 171308 161821",
"output": "40204082"
},
{
"input": "10\n5 2 6 10 10 10 10 2 2 5",
"output": "485"
},
{
"input": "10\n431255 724672 228496 397870 397870 397870 397870 724672 888642 431255",
"output": "36742665"
},
{
"input": "10\n2 2 2 5 5 6 10 10 10 10",
"output": "485"
},
{
"input": "10\n228496 397870 397870 397870 397870 431255 431255 724672 724672 888642",
"output": "36742665"
},
{
"input": "10\n10 10 10 10 6 5 5 2 2 2",
"output": "485"
},
{
"input": "10\n888642 724672 724672 431255 431255 397870 397870 397870 397870 228496",
"output": "36742665"
},
{
"input": "10\n10 10 10 10 10 10 10 10 10 10",
"output": "640"
},
{
"input": "10\n1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000",
"output": "64000000"
},
{
"input": "1\n397870",
"output": "397870"
},
{
"input": "2\n1 2",
"output": "6"
},
{
"input": "2\n2 3",
"output": "10"
},
{
"input": "2\n1 1",
"output": "4"
}
] | 1,410,578,969
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 36
| 498
| 23,449,600
|
n=int(input())
s=input()
x=list()
x=s.split()
y=sorted(x,key=int)
ans=0
for i in range(n):
ans+=int(y[i])*(i+2)
ans-=int(y[n-1])
print(ans)
|
Title: Appleman and Toastman
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Appleman and Toastman play a game. Initially Appleman gives one group of *n* numbers to the Toastman, then they start to complete the following tasks:
- Each time Toastman gets a group of numbers, he sums up all the numbers and adds this sum to the score. Then he gives the group to the Appleman. - Each time Appleman gets a group consisting of a single number, he throws this group out. Each time Appleman gets a group consisting of more than one number, he splits the group into two non-empty groups (he can do it in any way) and gives each of them to Toastman.
After guys complete all the tasks they look at the score value. What is the maximum possible value of score they can get?
Input Specification:
The first line contains a single integer *n* (1<=β€<=*n*<=β€<=3Β·105). The second line contains *n* integers *a*1, *a*2, ..., *a**n* (1<=β€<=*a**i*<=β€<=106) β the initial group that is given to Toastman.
Output Specification:
Print a single integer β the largest possible score.
Demo Input:
['3\n3 1 5\n', '1\n10\n']
Demo Output:
['26\n', '10\n']
Note:
Consider the following situation in the first example. Initially Toastman gets group [3, 1, 5] and adds 9 to the score, then he give the group to Appleman. Appleman splits group [3, 1, 5] into two groups: [3, 5] and [1]. Both of them should be given to Toastman. When Toastman receives group [1], he adds 1 to score and gives the group to Appleman (he will throw it out). When Toastman receives group [3, 5], he adds 8 to the score and gives the group to Appleman. Appleman splits [3, 5] in the only possible way: [5] and [3]. Then he gives both groups to Toastman. When Toastman receives [5], he adds 5 to the score and gives the group to Appleman (he will throws it out). When Toastman receives [3], he adds 3 to the score and gives the group to Appleman (he will throws it out). Finally Toastman have added 9 + 1 + 8 + 5 + 3 = 26 to the score. This is the optimal sequence of actions.
|
```python
n=int(input())
s=input()
x=list()
x=s.split()
y=sorted(x,key=int)
ans=0
for i in range(n):
ans+=int(y[i])*(i+2)
ans-=int(y[n-1])
print(ans)
```
| 3
|
|
344
|
A
|
Magnets
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Mad scientist Mike entertains himself by arranging rows of dominoes. He doesn't need dominoes, though: he uses rectangular magnets instead. Each magnet has two poles, positive (a "plus") and negative (a "minus"). If two magnets are put together at a close distance, then the like poles will repel each other and the opposite poles will attract each other.
Mike starts by laying one magnet horizontally on the table. During each following step Mike adds one more magnet horizontally to the right end of the row. Depending on how Mike puts the magnet on the table, it is either attracted to the previous one (forming a group of multiple magnets linked together) or repelled by it (then Mike lays this magnet at some distance to the right from the previous one). We assume that a sole magnet not linked to others forms a group of its own.
Mike arranged multiple magnets in a row. Determine the number of groups that the magnets formed.
|
The first line of the input contains an integer *n* (1<=β€<=*n*<=β€<=100000) β the number of magnets. Then *n* lines follow. The *i*-th line (1<=β€<=*i*<=β€<=*n*) contains either characters "01", if Mike put the *i*-th magnet in the "plus-minus" position, or characters "10", if Mike put the magnet in the "minus-plus" position.
|
On the single line of the output print the number of groups of magnets.
|
[
"6\n10\n10\n10\n01\n10\n10\n",
"4\n01\n01\n10\n10\n"
] |
[
"3\n",
"2\n"
] |
The first testcase corresponds to the figure. The testcase has three groups consisting of three, one and two magnets.
The second testcase has two groups, each consisting of two magnets.
| 500
|
[
{
"input": "6\n10\n10\n10\n01\n10\n10",
"output": "3"
},
{
"input": "4\n01\n01\n10\n10",
"output": "2"
},
{
"input": "1\n10",
"output": "1"
},
{
"input": "2\n01\n10",
"output": "2"
},
{
"input": "2\n10\n10",
"output": "1"
},
{
"input": "3\n10\n01\n10",
"output": "3"
},
{
"input": "1\n01",
"output": "1"
},
{
"input": "2\n01\n01",
"output": "1"
},
{
"input": "2\n10\n01",
"output": "2"
},
{
"input": "3\n01\n01\n01",
"output": "1"
},
{
"input": "3\n10\n10\n01",
"output": "2"
},
{
"input": "3\n01\n10\n10",
"output": "2"
},
{
"input": "115\n10\n10\n10\n10\n01\n01\n10\n10\n10\n01\n01\n10\n01\n01\n10\n10\n10\n01\n10\n01\n10\n10\n01\n01\n10\n10\n10\n10\n01\n10\n01\n01\n10\n10\n10\n10\n01\n10\n10\n10\n01\n10\n01\n10\n10\n10\n10\n01\n01\n01\n10\n10\n01\n01\n01\n10\n10\n01\n10\n01\n01\n01\n01\n10\n10\n01\n10\n01\n01\n01\n01\n01\n10\n01\n10\n10\n01\n01\n01\n10\n01\n01\n10\n10\n01\n01\n01\n01\n01\n10\n01\n10\n01\n10\n01\n01\n01\n10\n01\n10\n10\n01\n10\n10\n01\n01\n01\n10\n10\n10\n10\n10\n10\n10\n10",
"output": "55"
}
] | 1,691,077,607
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 31
| 310
| 7,884,800
|
def count_groups(n, magnets):
groups = 1
for i in range(1, n):
if magnets[i] != magnets[i-1]:
groups += 1
return groups
# Read input
n = int(input())
magnets = [input() for _ in range(n)]
# Count the number of groups formed by the magnets
result = count_groups(n, magnets)
# Print the output
print(result)
|
Title: Magnets
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Mad scientist Mike entertains himself by arranging rows of dominoes. He doesn't need dominoes, though: he uses rectangular magnets instead. Each magnet has two poles, positive (a "plus") and negative (a "minus"). If two magnets are put together at a close distance, then the like poles will repel each other and the opposite poles will attract each other.
Mike starts by laying one magnet horizontally on the table. During each following step Mike adds one more magnet horizontally to the right end of the row. Depending on how Mike puts the magnet on the table, it is either attracted to the previous one (forming a group of multiple magnets linked together) or repelled by it (then Mike lays this magnet at some distance to the right from the previous one). We assume that a sole magnet not linked to others forms a group of its own.
Mike arranged multiple magnets in a row. Determine the number of groups that the magnets formed.
Input Specification:
The first line of the input contains an integer *n* (1<=β€<=*n*<=β€<=100000) β the number of magnets. Then *n* lines follow. The *i*-th line (1<=β€<=*i*<=β€<=*n*) contains either characters "01", if Mike put the *i*-th magnet in the "plus-minus" position, or characters "10", if Mike put the magnet in the "minus-plus" position.
Output Specification:
On the single line of the output print the number of groups of magnets.
Demo Input:
['6\n10\n10\n10\n01\n10\n10\n', '4\n01\n01\n10\n10\n']
Demo Output:
['3\n', '2\n']
Note:
The first testcase corresponds to the figure. The testcase has three groups consisting of three, one and two magnets.
The second testcase has two groups, each consisting of two magnets.
|
```python
def count_groups(n, magnets):
groups = 1
for i in range(1, n):
if magnets[i] != magnets[i-1]:
groups += 1
return groups
# Read input
n = int(input())
magnets = [input() for _ in range(n)]
# Count the number of groups formed by the magnets
result = count_groups(n, magnets)
# Print the output
print(result)
```
| 3
|
|
61
|
A
|
Ultra-Fast Mathematician
|
PROGRAMMING
| 800
|
[
"implementation"
] |
A. Ultra-Fast Mathematician
|
2
|
256
|
Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second.
One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part.
In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0.
Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length β (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length.
Now you are going to take part in Shapur's contest. See if you are faster and more accurate.
|
There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100.
|
Write one line β the corresponding answer. Do not omit the leading 0s.
|
[
"1010100\n0100101\n",
"000\n111\n",
"1110\n1010\n",
"01110\n01100\n"
] |
[
"1110001\n",
"111\n",
"0100\n",
"00010\n"
] |
none
| 500
|
[
{
"input": "1010100\n0100101",
"output": "1110001"
},
{
"input": "000\n111",
"output": "111"
},
{
"input": "1110\n1010",
"output": "0100"
},
{
"input": "01110\n01100",
"output": "00010"
},
{
"input": "011101\n000001",
"output": "011100"
},
{
"input": "10\n01",
"output": "11"
},
{
"input": "00111111\n11011101",
"output": "11100010"
},
{
"input": "011001100\n101001010",
"output": "110000110"
},
{
"input": "1100100001\n0110101100",
"output": "1010001101"
},
{
"input": "00011101010\n10010100101",
"output": "10001001111"
},
{
"input": "100000101101\n111010100011",
"output": "011010001110"
},
{
"input": "1000001111010\n1101100110001",
"output": "0101101001011"
},
{
"input": "01011111010111\n10001110111010",
"output": "11010001101101"
},
{
"input": "110010000111100\n001100101011010",
"output": "111110101100110"
},
{
"input": "0010010111110000\n0000000011010110",
"output": "0010010100100110"
},
{
"input": "00111110111110000\n01111100001100000",
"output": "01000010110010000"
},
{
"input": "101010101111010001\n001001111101111101",
"output": "100011010010101100"
},
{
"input": "0110010101111100000\n0011000101000000110",
"output": "0101010000111100110"
},
{
"input": "11110100011101010111\n00001000011011000000",
"output": "11111100000110010111"
},
{
"input": "101010101111101101001\n111010010010000011111",
"output": "010000111101101110110"
},
{
"input": "0000111111100011000010\n1110110110110000001010",
"output": "1110001001010011001000"
},
{
"input": "10010010101000110111000\n00101110100110111000111",
"output": "10111100001110001111111"
},
{
"input": "010010010010111100000111\n100100111111100011001110",
"output": "110110101101011111001001"
},
{
"input": "0101110100100111011010010\n0101100011010111001010001",
"output": "0000010111110000010000011"
},
{
"input": "10010010100011110111111011\n10000110101100000001000100",
"output": "00010100001111110110111111"
},
{
"input": "000001111000000100001000000\n011100111101111001110110001",
"output": "011101000101111101111110001"
},
{
"input": "0011110010001001011001011100\n0000101101000011101011001010",
"output": "0011011111001010110010010110"
},
{
"input": "11111000000000010011001101111\n11101110011001010100010000000",
"output": "00010110011001000111011101111"
},
{
"input": "011001110000110100001100101100\n001010000011110000001000101001",
"output": "010011110011000100000100000101"
},
{
"input": "1011111010001100011010110101111\n1011001110010000000101100010101",
"output": "0000110100011100011111010111010"
},
{
"input": "10111000100001000001010110000001\n10111000001100101011011001011000",
"output": "00000000101101101010001111011001"
},
{
"input": "000001010000100001000000011011100\n111111111001010100100001100000111",
"output": "111110101001110101100001111011011"
},
{
"input": "1101000000000010011011101100000110\n1110000001100010011010000011011110",
"output": "0011000001100000000001101111011000"
},
{
"input": "01011011000010100001100100011110001\n01011010111000001010010100001110000",
"output": "00000001111010101011110000010000001"
},
{
"input": "000011111000011001000110111100000100\n011011000110000111101011100111000111",
"output": "011000111110011110101101011011000011"
},
{
"input": "1001000010101110001000000011111110010\n0010001011010111000011101001010110000",
"output": "1011001001111001001011101010101000010"
},
{
"input": "00011101011001100101111111000000010101\n10010011011011001011111000000011101011",
"output": "10001110000010101110000111000011111110"
},
{
"input": "111011100110001001101111110010111001010\n111111101101111001110010000101101000100",
"output": "000100001011110000011101110111010001110"
},
{
"input": "1111001001101000001000000010010101001010\n0010111100111110001011000010111110111001",
"output": "1101110101010110000011000000101011110011"
},
{
"input": "00100101111000000101011111110010100011010\n11101110001010010101001000111110101010100",
"output": "11001011110010010000010111001100001001110"
},
{
"input": "101011001110110100101001000111010101101111\n100111100110101011010100111100111111010110",
"output": "001100101000011111111101111011101010111001"
},
{
"input": "1111100001100101000111101001001010011100001\n1000110011000011110010001011001110001000001",
"output": "0111010010100110110101100010000100010100000"
},
{
"input": "01100111011111010101000001101110000001110101\n10011001011111110000000101011001001101101100",
"output": "11111110000000100101000100110111001100011001"
},
{
"input": "110010100111000100100101100000011100000011001\n011001111011100110000110111001110110100111011",
"output": "101011011100100010100011011001101010100100010"
},
{
"input": "0001100111111011010110100100111000000111000110\n1100101011000000000001010010010111001100110001",
"output": "1101001100111011010111110110101111001011110111"
},
{
"input": "00000101110110110001110010100001110100000100000\n10010000110011110001101000111111101010011010001",
"output": "10010101000101000000011010011110011110011110001"
},
{
"input": "110000100101011100100011001111110011111110010001\n101011111001011100110110111101110011010110101100",
"output": "011011011100000000010101110010000000101000111101"
},
{
"input": "0101111101011111010101011101000011101100000000111\n0000101010110110001110101011011110111001010100100",
"output": "0101010111101001011011110110011101010101010100011"
},
{
"input": "11000100010101110011101000011111001010110111111100\n00001111000111001011111110000010101110111001000011",
"output": "11001011010010111000010110011101100100001110111111"
},
{
"input": "101000001101111101101111111000001110110010101101010\n010011100111100001100000010001100101000000111011011",
"output": "111011101010011100001111101001101011110010010110001"
},
{
"input": "0011111110010001010100010110111000110011001101010100\n0111000000100010101010000100101000000100101000111001",
"output": "0100111110110011111110010010010000110111100101101101"
},
{
"input": "11101010000110000011011010000001111101000111011111100\n10110011110001010100010110010010101001010111100100100",
"output": "01011001110111010111001100010011010100010000111011000"
},
{
"input": "011000100001000001101000010110100110011110100111111011\n111011001000001001110011001111011110111110110011011111",
"output": "100011101001001000011011011001111000100000010100100100"
},
{
"input": "0111010110010100000110111011010110100000000111110110000\n1011100100010001101100000100111111101001110010000100110",
"output": "1100110010000101101010111111101001001001110101110010110"
},
{
"input": "10101000100111000111010001011011011011110100110101100011\n11101111000000001100100011111000100100000110011001101110",
"output": "01000111100111001011110010100011111111110010101100001101"
},
{
"input": "000000111001010001000000110001001011100010011101010011011\n110001101000010010000101000100001111101001100100001010010",
"output": "110001010001000011000101110101000100001011111001011001001"
},
{
"input": "0101011100111010000111110010101101111111000000111100011100\n1011111110000010101110111001000011100000100111111111000111",
"output": "1110100010111000101001001011101110011111100111000011011011"
},
{
"input": "11001000001100100111100111100100101011000101001111001001101\n10111110100010000011010100110100100011101001100000001110110",
"output": "01110110101110100100110011010000001000101100101111000111011"
},
{
"input": "010111011011101000000110000110100110001110100001110110111011\n101011110011101011101101011111010100100001100111100100111011",
"output": "111100101000000011101011011001110010101111000110010010000000"
},
{
"input": "1001011110110110000100011001010110000100011010010111010101110\n1101111100001000010111110011010101111010010100000001000010111",
"output": "0100100010111110010011101010000011111110001110010110010111001"
},
{
"input": "10000010101111100111110101111000010100110111101101111111111010\n10110110101100101010011001011010100110111011101100011001100111",
"output": "00110100000011001101101100100010110010001100000001100110011101"
},
{
"input": "011111010011111000001010101001101001000010100010111110010100001\n011111001011000011111001000001111001010110001010111101000010011",
"output": "000000011000111011110011101000010000010100101000000011010110010"
},
{
"input": "1111000000110001011101000100100100001111011100001111001100011111\n1101100110000101100001100000001001011011111011010101000101001010",
"output": "0010100110110100111100100100101101010100100111011010001001010101"
},
{
"input": "01100000101010010011001110100110110010000110010011011001100100011\n10110110010110111100100111000111000110010000000101101110000010111",
"output": "11010110111100101111101001100001110100010110010110110111100110100"
},
{
"input": "001111111010000100001100001010011001111110011110010111110001100111\n110000101001011000100010101100100110000111100000001101001110010111",
"output": "111111010011011100101110100110111111111001111110011010111111110000"
},
{
"input": "1011101011101101011110101101011101011000010011100101010101000100110\n0001000001001111010111100100111101100000000001110001000110000000110",
"output": "1010101010100010001001001001100000111000010010010100010011000100000"
},
{
"input": "01000001011001010011011100010000100100110101111011011011110000001110\n01011110000110011011000000000011000111100001010000000011111001110000",
"output": "00011111011111001000011100010011100011010100101011011000001001111110"
},
{
"input": "110101010100110101000001111110110100010010000100111110010100110011100\n111010010111111011100110101011001011001110110111110100000110110100111",
"output": "001111000011001110100111010101111111011100110011001010010010000111011"
},
{
"input": "1001101011000001011111100110010010000011010001001111011100010100110001\n1111100111110101001111010001010000011001001001010110001111000000100101",
"output": "0110001100110100010000110111000010011010011000011001010011010100010100"
},
{
"input": "00000111110010110001110110001010010101000111011001111111100110011110010\n00010111110100000100110101000010010001100001100011100000001100010100010",
"output": "00010000000110110101000011001000000100100110111010011111101010001010000"
},
{
"input": "100101011100101101000011010001011001101110101110001100010001010111001110\n100001111100101011011111110000001111000111001011111110000010101110111001",
"output": "000100100000000110011100100001010110101001100101110010010011111001110111"
},
{
"input": "1101100001000111001101001011101000111000011110000001001101101001111011010\n0101011101010100011011010110101000010010110010011110101100000110110001000",
"output": "1000111100010011010110011101000000101010101100011111100001101111001010010"
},
{
"input": "01101101010011110101100001110101111011100010000010001101111000011110111111\n00101111001101001100111010000101110000100101101111100111101110010100011011",
"output": "01000010011110111001011011110000001011000111101101101010010110001010100100"
},
{
"input": "101100101100011001101111110110110010100110110010100001110010110011001101011\n000001011010101011110011111101001110000111000010001101000010010000010001101",
"output": "101101110110110010011100001011111100100001110000101100110000100011011100110"
},
{
"input": "0010001011001010001100000010010011110110011000100000000100110000101111001110\n1100110100111000110100001110111001011101001100001010100001010011100110110001",
"output": "1110111111110010111000001100101010101011010100101010100101100011001001111111"
},
{
"input": "00101101010000000101011001101011001100010001100000101011101110000001111001000\n10010110010111000000101101000011101011001010000011011101101011010000000011111",
"output": "10111011000111000101110100101000100111011011100011110110000101010001111010111"
},
{
"input": "111100000100100000101001100001001111001010001000001000000111010000010101101011\n001000100010100101111011111011010110101100001111011000010011011011100010010110",
"output": "110100100110000101010010011010011001100110000111010000010100001011110111111101"
},
{
"input": "0110001101100100001111110101101000100101010010101010011001101001001101110000000\n0111011000000010010111011110010000000001000110001000011001101000000001110100111",
"output": "0001010101100110011000101011111000100100010100100010000000000001001100000100111"
},
{
"input": "10001111111001000101001011110101111010100001011010101100111001010001010010001000\n10000111010010011110111000111010101100000011110001101111001000111010100000000001",
"output": "00001000101011011011110011001111010110100010101011000011110001101011110010001001"
},
{
"input": "100110001110110000100101001110000011110110000110000000100011110100110110011001101\n110001110101110000000100101001101011111100100100001001000110000001111100011110110",
"output": "010111111011000000100001100111101000001010100010001001100101110101001010000111011"
},
{
"input": "0000010100100000010110111100011111111010011101000000100000011001001101101100111010\n0100111110011101010110101011110110010111001111000110101100101110111100101000111111",
"output": "0100101010111101000000010111101001101101010010000110001100110111110001000100000101"
},
{
"input": "11000111001010100001110000001001011010010010110000001110100101000001010101100110111\n11001100100100100001101010110100000111100011101110011010110100001001000011011011010",
"output": "00001011101110000000011010111101011101110001011110010100010001001000010110111101101"
},
{
"input": "010110100010001000100010101001101010011010111110100001000100101000111011100010100001\n110000011111101101010011111000101010111010100001001100001001100101000000111000000000",
"output": "100110111101100101110001010001000000100000011111101101001101001101111011011010100001"
},
{
"input": "0000011110101110010101110110110101100001011001101010101001000010000010000000101001101\n1100111111011100000110000111101110011111100111110001011001000010011111100001001100011",
"output": "1100100001110010010011110001011011111110111110011011110000000000011101100001100101110"
},
{
"input": "10100000101101110001100010010010100101100011010010101000110011100000101010110010000000\n10001110011011010010111011011101101111000111110000111000011010010101001100000001010011",
"output": "00101110110110100011011001001111001010100100100010010000101001110101100110110011010011"
},
{
"input": "001110000011111101101010011111000101010111010100001001100001001100101000000111000000000\n111010000000000000101001110011001000111011001100101010011001000011101001001011110000011",
"output": "110100000011111101000011101100001101101100011000100011111000001111000001001100110000011"
},
{
"input": "1110111100111011010101011011001110001010010010110011110010011111000010011111010101100001\n1001010101011001001010100010101100000110111101011000100010101111111010111100001110010010",
"output": "0111101001100010011111111001100010001100101111101011010000110000111000100011011011110011"
},
{
"input": "11100010001100010011001100001100010011010001101110011110100101110010101101011101000111111\n01110000000110111010110100001010000101011110100101010011000110101110101101110111011110001",
"output": "10010010001010101001111000000110010110001111001011001101100011011100000000101010011001110"
},
{
"input": "001101011001100101101100110000111000101011001001100100000100101000100000110100010111111101\n101001111110000010111101111110001001111001111101111010000110111000100100110010010001011111",
"output": "100100100111100111010001001110110001010010110100011110000010010000000100000110000110100010"
},
{
"input": "1010110110010101000110010010110101011101010100011001101011000110000000100011100100011000000\n0011011111100010001111101101000111001011101110100000110111100100101111010110101111011100011",
"output": "1001101001110111001001111111110010010110111010111001011100100010101111110101001011000100011"
},
{
"input": "10010010000111010111011111110010100101100000001100011100111011100010000010010001011100001100\n00111010100010110010000100010111010001111110100100100011101000101111111111001101101100100100",
"output": "10101000100101100101011011100101110100011110101000111111010011001101111101011100110000101000"
},
{
"input": "010101110001010101100000010111010000000111110011001101100011001000000011001111110000000010100\n010010111011100101010101111110110000000111000100001101101001001000001100101110001010000100001",
"output": "000111001010110000110101101001100000000000110111000000001010000000001111100001111010000110101"
},
{
"input": "1100111110011001000111101001001011000110011010111111100010111111001100111111011101100111101011\n1100000011001000110100110111000001011001010111101000010010100011000001100100111101101000010110",
"output": "0000111101010001110011011110001010011111001101010111110000011100001101011011100000001111111101"
},
{
"input": "00011000100100110111100101100100000000010011110111110010101110110011100001010111010011110100101\n00011011111011111011100101100111100101001110010111000010000111000100100100000001110101111011011",
"output": "00000011011111001100000000000011100101011101100000110000101001110111000101010110100110001111110"
},
{
"input": "000101011001001100000111100010110101111011110101111101000110001101011010111110110011100100000001\n011000101010011111011000111000100000000011011000000001111110001000001111101010110000011100001111",
"output": "011101110011010011011111011010010101111000101101111100111000000101010101010100000011111000001110"
},
{
"input": "1000101001011010000100100100010010011101011001110101111011101111111110010101001101010001010101001\n0110110010011100011111011111110111000000010001110100001010111110101011010011111011111110000110000",
"output": "1110011011000110011011111011100101011101001000000001110001010001010101000110110110101111010011001"
},
{
"input": "01111010010101100111110111111011011010100001011101010000111100101101101110111011001100101011100111\n00001100110110100001111011000010001001001100000010111101000001111011100000010111010010000011000010",
"output": "01110110100011000110001100111001010011101101011111101101111101010110001110101100011110101000100101"
},
{
"input": "111101011101111000001011001101111010110111001101110100100011111011011101001101010101011010111000110\n101111100101101101001100110011000001111010011101110111110110101110011011110011111100001001110101101",
"output": "010010111000010101000111111110111011001101010000000011010101010101000110111110101001010011001101011"
},
{
"input": "1010000011010110011101001101110001110010000111011101110010110110111111001001110100101100010101010001\n0111101000111100101100000101111010100100001000011101010100110011100011010011010101000100101011100011",
"output": "1101101011101010110001001000001011010110001111000000100110000101011100011010100001101000111110110010"
},
{
"input": "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001\n1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111010",
"output": "1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111011"
},
{
"input": "0\n0",
"output": "0"
},
{
"input": "0\n1",
"output": "1"
}
] | 1,667,933,990
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 102
| 77
| 0
|
f = input()
s = input()
a = ""
for i in range(len(f)):
if int(f[i]) + int(s[i]) == 1:
a += "1"
else:
a += "0"
print(a)
|
Title: Ultra-Fast Mathematician
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second.
One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part.
In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0.
Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length β (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length.
Now you are going to take part in Shapur's contest. See if you are faster and more accurate.
Input Specification:
There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100.
Output Specification:
Write one line β the corresponding answer. Do not omit the leading 0s.
Demo Input:
['1010100\n0100101\n', '000\n111\n', '1110\n1010\n', '01110\n01100\n']
Demo Output:
['1110001\n', '111\n', '0100\n', '00010\n']
Note:
none
|
```python
f = input()
s = input()
a = ""
for i in range(len(f)):
if int(f[i]) + int(s[i]) == 1:
a += "1"
else:
a += "0"
print(a)
```
| 3.98075
|
758
|
A
|
Holiday Of Equality
|
PROGRAMMING
| 800
|
[
"implementation",
"math"
] | null | null |
In Berland it is the holiday of equality. In honor of the holiday the king decided to equalize the welfare of all citizens in Berland by the expense of the state treasury.
Totally in Berland there are *n* citizens, the welfare of each of them is estimated as the integer in *a**i* burles (burle is the currency in Berland).
You are the royal treasurer, which needs to count the minimum charges of the kingdom on the king's present. The king can only give money, he hasn't a power to take away them.
|
The first line contains the integer *n* (1<=β€<=*n*<=β€<=100)Β β the number of citizens in the kingdom.
The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n*, where *a**i* (0<=β€<=*a**i*<=β€<=106)Β β the welfare of the *i*-th citizen.
|
In the only line print the integer *S*Β β the minimum number of burles which are had to spend.
|
[
"5\n0 1 2 3 4\n",
"5\n1 1 0 1 1\n",
"3\n1 3 1\n",
"1\n12\n"
] |
[
"10",
"1",
"4",
"0"
] |
In the first example if we add to the first citizen 4 burles, to the second 3, to the third 2 and to the fourth 1, then the welfare of all citizens will equal 4.
In the second example it is enough to give one burle to the third citizen.
In the third example it is necessary to give two burles to the first and the third citizens to make the welfare of citizens equal 3.
In the fourth example it is possible to give nothing to everyone because all citizens have 12 burles.
| 500
|
[
{
"input": "5\n0 1 2 3 4",
"output": "10"
},
{
"input": "5\n1 1 0 1 1",
"output": "1"
},
{
"input": "3\n1 3 1",
"output": "4"
},
{
"input": "1\n12",
"output": "0"
},
{
"input": "3\n1 2 3",
"output": "3"
},
{
"input": "14\n52518 718438 358883 462189 853171 592966 225788 46977 814826 295697 676256 561479 56545 764281",
"output": "5464380"
},
{
"input": "21\n842556 216391 427181 626688 775504 168309 851038 448402 880826 73697 593338 519033 135115 20128 424606 939484 846242 756907 377058 241543 29353",
"output": "9535765"
},
{
"input": "3\n1 3 2",
"output": "3"
},
{
"input": "3\n2 1 3",
"output": "3"
},
{
"input": "3\n2 3 1",
"output": "3"
},
{
"input": "3\n3 1 2",
"output": "3"
},
{
"input": "3\n3 2 1",
"output": "3"
},
{
"input": "1\n228503",
"output": "0"
},
{
"input": "2\n32576 550340",
"output": "517764"
},
{
"input": "3\n910648 542843 537125",
"output": "741328"
},
{
"input": "4\n751720 572344 569387 893618",
"output": "787403"
},
{
"input": "6\n433864 631347 597596 794426 713555 231193",
"output": "1364575"
},
{
"input": "9\n31078 645168 695751 126111 375934 150495 838412 434477 993107",
"output": "4647430"
},
{
"input": "30\n315421 772664 560686 654312 151528 356749 351486 707462 820089 226682 546700 136028 824236 842130 578079 337807 665903 764100 617900 822937 992759 591749 651310 742085 767695 695442 17967 515106 81059 186025",
"output": "13488674"
},
{
"input": "45\n908719 394261 815134 419990 926993 383792 772842 277695 527137 655356 684956 695716 273062 550324 106247 399133 442382 33076 462920 294674 846052 817752 421365 474141 290471 358990 109812 74492 543281 169434 919692 786809 24028 197184 310029 801476 699355 429672 51343 374128 776726 850380 293868 981569 550763",
"output": "21993384"
},
{
"input": "56\n100728 972537 13846 385421 756708 184642 259487 319707 376662 221694 675284 972837 499419 13846 38267 289898 901299 831197 954715 197515 514102 910423 127555 883934 362472 870788 538802 741008 973434 448124 391526 363321 947321 544618 68006 782313 955075 741981 815027 723297 585059 718114 700739 413489 454091 736144 308999 98065 3716 347323 9635 289003 986510 607065 60236 273351",
"output": "26984185"
},
{
"input": "70\n644488 5444 150441 714420 602059 335330 510670 196555 546346 740011 509449 850947 692874 524857 750434 952985 223744 374727 896124 753037 367352 679050 560202 172728 569291 778616 332116 286927 843598 372698 244906 498046 900681 709791 420904 724593 864493 813094 791377 39998 296710 625656 403891 579231 706693 984045 16901 574259 562265 761104 930361 256045 124461 538980 573508 372148 988722 108592 784354 55302 232524 277205 782251 299943 436488 743389 324618 742543 266915 99642",
"output": "32816391"
},
{
"input": "1\n0",
"output": "0"
},
{
"input": "1\n1000000",
"output": "0"
},
{
"input": "100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0",
"output": "0"
},
{
"input": "100\n1000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0",
"output": "99000000"
},
{
"input": "100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1000000",
"output": "99000000"
},
{
"input": "100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0",
"output": "99000000"
},
{
"input": "3\n0 0 0",
"output": "0"
},
{
"input": "50\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "0"
},
{
"input": "3\n5 0 0",
"output": "10"
},
{
"input": "5\n2 10 0 0 0",
"output": "38"
}
] | 1,676,464,139
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 41
| 46
| 0
|
c=int(input())
a = [int (x) for x in input ().split()]
s=0
x=a.sort()
maxx=a[-1]
for w in a:
d=int(maxx)-int(w)
s+=d
print(s)
|
Title: Holiday Of Equality
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
In Berland it is the holiday of equality. In honor of the holiday the king decided to equalize the welfare of all citizens in Berland by the expense of the state treasury.
Totally in Berland there are *n* citizens, the welfare of each of them is estimated as the integer in *a**i* burles (burle is the currency in Berland).
You are the royal treasurer, which needs to count the minimum charges of the kingdom on the king's present. The king can only give money, he hasn't a power to take away them.
Input Specification:
The first line contains the integer *n* (1<=β€<=*n*<=β€<=100)Β β the number of citizens in the kingdom.
The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n*, where *a**i* (0<=β€<=*a**i*<=β€<=106)Β β the welfare of the *i*-th citizen.
Output Specification:
In the only line print the integer *S*Β β the minimum number of burles which are had to spend.
Demo Input:
['5\n0 1 2 3 4\n', '5\n1 1 0 1 1\n', '3\n1 3 1\n', '1\n12\n']
Demo Output:
['10', '1', '4', '0']
Note:
In the first example if we add to the first citizen 4 burles, to the second 3, to the third 2 and to the fourth 1, then the welfare of all citizens will equal 4.
In the second example it is enough to give one burle to the third citizen.
In the third example it is necessary to give two burles to the first and the third citizens to make the welfare of citizens equal 3.
In the fourth example it is possible to give nothing to everyone because all citizens have 12 burles.
|
```python
c=int(input())
a = [int (x) for x in input ().split()]
s=0
x=a.sort()
maxx=a[-1]
for w in a:
d=int(maxx)-int(w)
s+=d
print(s)
```
| 3
|
|
1
|
A
|
Theatre Square
|
PROGRAMMING
| 1,000
|
[
"math"
] |
A. Theatre Square
|
1
|
256
|
Theatre Square in the capital city of Berland has a rectangular shape with the size *n*<=Γ<=*m* meters. On the occasion of the city's anniversary, a decision was taken to pave the Square with square granite flagstones. Each flagstone is of the size *a*<=Γ<=*a*.
What is the least number of flagstones needed to pave the Square? It's allowed to cover the surface larger than the Theatre Square, but the Square has to be covered. It's not allowed to break the flagstones. The sides of flagstones should be parallel to the sides of the Square.
|
The input contains three positive integer numbers in the first line: *n*,<=<=*m* and *a* (1<=β€<=<=*n*,<=*m*,<=*a*<=β€<=109).
|
Write the needed number of flagstones.
|
[
"6 6 4\n"
] |
[
"4\n"
] |
none
| 0
|
[
{
"input": "6 6 4",
"output": "4"
},
{
"input": "1 1 1",
"output": "1"
},
{
"input": "2 1 1",
"output": "2"
},
{
"input": "1 2 1",
"output": "2"
},
{
"input": "2 2 1",
"output": "4"
},
{
"input": "2 1 2",
"output": "1"
},
{
"input": "1 1 3",
"output": "1"
},
{
"input": "2 3 4",
"output": "1"
},
{
"input": "1000000000 1000000000 1",
"output": "1000000000000000000"
},
{
"input": "12 13 4",
"output": "12"
},
{
"input": "222 332 5",
"output": "3015"
},
{
"input": "1000 1000 10",
"output": "10000"
},
{
"input": "1001 1000 10",
"output": "10100"
},
{
"input": "100 10001 1000000000",
"output": "1"
},
{
"input": "1000000000 1000000000 1000000000",
"output": "1"
},
{
"input": "1000000000 1000000000 999999999",
"output": "4"
},
{
"input": "1000000000 1000000000 192",
"output": "27126743055556"
},
{
"input": "1000000000 987654321 1",
"output": "987654321000000000"
},
{
"input": "456784567 1000000000 51",
"output": "175618850864484"
},
{
"input": "39916800 134217728 40320",
"output": "3295710"
}
] | 1,695,554,626
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 20
| 46
| 0
|
import math
n, m, a = map(int, input().split())
width_stones = math.ceil(n / a)
length_stones = math.ceil(m / a)
result = width_stones * length_stones
print(result)
|
Title: Theatre Square
Time Limit: 1 seconds
Memory Limit: 256 megabytes
Problem Description:
Theatre Square in the capital city of Berland has a rectangular shape with the size *n*<=Γ<=*m* meters. On the occasion of the city's anniversary, a decision was taken to pave the Square with square granite flagstones. Each flagstone is of the size *a*<=Γ<=*a*.
What is the least number of flagstones needed to pave the Square? It's allowed to cover the surface larger than the Theatre Square, but the Square has to be covered. It's not allowed to break the flagstones. The sides of flagstones should be parallel to the sides of the Square.
Input Specification:
The input contains three positive integer numbers in the first line: *n*,<=<=*m* and *a* (1<=β€<=<=*n*,<=*m*,<=*a*<=β€<=109).
Output Specification:
Write the needed number of flagstones.
Demo Input:
['6 6 4\n']
Demo Output:
['4\n']
Note:
none
|
```python
import math
n, m, a = map(int, input().split())
width_stones = math.ceil(n / a)
length_stones = math.ceil(m / a)
result = width_stones * length_stones
print(result)
```
| 3.977
|
864
|
A
|
Fair Game
|
PROGRAMMING
| 1,000
|
[
"implementation",
"sortings"
] | null | null |
Petya and Vasya decided to play a game. They have *n* cards (*n* is an even number). A single integer is written on each card.
Before the game Petya will choose an integer and after that Vasya will choose another integer (different from the number that Petya chose). During the game each player takes all the cards with number he chose. For example, if Petya chose number 5 before the game he will take all cards on which 5 is written and if Vasya chose number 10 before the game he will take all cards on which 10 is written.
The game is considered fair if Petya and Vasya can take all *n* cards, and the number of cards each player gets is the same.
Determine whether Petya and Vasya can choose integer numbers before the game so that the game is fair.
|
The first line contains a single integer *n* (2<=β€<=*n*<=β€<=100) β number of cards. It is guaranteed that *n* is an even number.
The following *n* lines contain a sequence of integers *a*1,<=*a*2,<=...,<=*a**n* (one integer per line, 1<=β€<=*a**i*<=β€<=100) β numbers written on the *n* cards.
|
If it is impossible for Petya and Vasya to choose numbers in such a way that the game will be fair, print "NO" (without quotes) in the first line. In this case you should not print anything more.
In the other case print "YES" (without quotes) in the first line. In the second line print two distinct integers β number that Petya should choose and the number that Vasya should choose to make the game fair. If there are several solutions, print any of them.
|
[
"4\n11\n27\n27\n11\n",
"2\n6\n6\n",
"6\n10\n20\n30\n20\n10\n20\n",
"6\n1\n1\n2\n2\n3\n3\n"
] |
[
"YES\n11 27\n",
"NO\n",
"NO\n",
"NO\n"
] |
In the first example the game will be fair if, for example, Petya chooses number 11, and Vasya chooses number 27. Then the will take all cards β Petya will take cards 1 and 4, and Vasya will take cards 2 and 3. Thus, each of them will take exactly two cards.
In the second example fair game is impossible because the numbers written on the cards are equal, but the numbers that Petya and Vasya should choose should be distinct.
In the third example it is impossible to take all cards. Petya and Vasya can take at most five cards β for example, Petya can choose number 10 and Vasya can choose number 20. But for the game to be fair it is necessary to take 6 cards.
| 500
|
[
{
"input": "4\n11\n27\n27\n11",
"output": "YES\n11 27"
},
{
"input": "2\n6\n6",
"output": "NO"
},
{
"input": "6\n10\n20\n30\n20\n10\n20",
"output": "NO"
},
{
"input": "6\n1\n1\n2\n2\n3\n3",
"output": "NO"
},
{
"input": "2\n1\n100",
"output": "YES\n1 100"
},
{
"input": "2\n1\n1",
"output": "NO"
},
{
"input": "2\n100\n100",
"output": "NO"
},
{
"input": "14\n43\n43\n43\n43\n43\n43\n43\n43\n43\n43\n43\n43\n43\n43",
"output": "NO"
},
{
"input": "100\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32",
"output": "YES\n14 32"
},
{
"input": "2\n50\n100",
"output": "YES\n50 100"
},
{
"input": "2\n99\n100",
"output": "YES\n99 100"
},
{
"input": "4\n4\n4\n5\n5",
"output": "YES\n4 5"
},
{
"input": "10\n10\n10\n10\n10\n10\n23\n23\n23\n23\n23",
"output": "YES\n10 23"
},
{
"input": "20\n34\n34\n34\n34\n34\n34\n34\n34\n34\n34\n11\n11\n11\n11\n11\n11\n11\n11\n11\n11",
"output": "YES\n11 34"
},
{
"input": "40\n20\n20\n20\n20\n20\n20\n20\n20\n20\n20\n20\n20\n20\n20\n20\n20\n20\n20\n20\n20\n30\n30\n30\n30\n30\n30\n30\n30\n30\n30\n30\n30\n30\n30\n30\n30\n30\n30\n30\n30",
"output": "YES\n20 30"
},
{
"input": "58\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1",
"output": "YES\n1 100"
},
{
"input": "98\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99",
"output": "YES\n2 99"
},
{
"input": "100\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100",
"output": "YES\n1 100"
},
{
"input": "100\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2",
"output": "YES\n1 2"
},
{
"input": "100\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12",
"output": "YES\n12 49"
},
{
"input": "100\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94",
"output": "YES\n15 94"
},
{
"input": "100\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42",
"output": "YES\n33 42"
},
{
"input": "100\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35",
"output": "YES\n16 35"
},
{
"input": "100\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44",
"output": "YES\n33 44"
},
{
"input": "100\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98",
"output": "YES\n54 98"
},
{
"input": "100\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12",
"output": "YES\n12 81"
},
{
"input": "100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100",
"output": "NO"
},
{
"input": "100\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1",
"output": "NO"
},
{
"input": "40\n20\n20\n30\n30\n20\n20\n20\n30\n30\n20\n20\n30\n30\n30\n30\n20\n30\n30\n30\n30\n20\n20\n30\n30\n30\n20\n30\n20\n30\n20\n30\n20\n20\n20\n30\n20\n20\n20\n30\n30",
"output": "NO"
},
{
"input": "58\n100\n100\n100\n100\n100\n1\n1\n1\n1\n1\n1\n100\n100\n1\n100\n1\n100\n100\n1\n1\n100\n100\n1\n100\n1\n100\n100\n1\n1\n100\n1\n1\n1\n100\n1\n1\n1\n1\n100\n1\n100\n100\n100\n100\n100\n1\n1\n100\n100\n100\n100\n1\n100\n1\n1\n1\n1\n1",
"output": "NO"
},
{
"input": "98\n2\n99\n99\n99\n99\n2\n99\n99\n99\n2\n2\n99\n2\n2\n2\n2\n99\n99\n2\n99\n2\n2\n99\n99\n99\n99\n2\n2\n99\n2\n99\n99\n2\n2\n99\n2\n99\n2\n99\n2\n2\n2\n99\n2\n2\n2\n2\n99\n99\n99\n99\n2\n2\n2\n2\n2\n2\n2\n2\n99\n2\n99\n99\n2\n2\n99\n99\n99\n99\n99\n99\n99\n99\n2\n99\n2\n99\n2\n2\n2\n99\n99\n99\n99\n99\n99\n2\n99\n99\n2\n2\n2\n2\n2\n99\n99\n99\n2",
"output": "NO"
},
{
"input": "100\n100\n1\n100\n1\n1\n100\n1\n1\n1\n100\n100\n1\n100\n1\n100\n100\n1\n1\n1\n100\n1\n100\n1\n100\n100\n1\n100\n1\n100\n1\n1\n1\n1\n1\n100\n1\n100\n100\n100\n1\n100\n100\n1\n100\n1\n1\n100\n100\n100\n1\n100\n100\n1\n1\n100\n100\n1\n100\n1\n100\n1\n1\n100\n100\n100\n100\n100\n100\n1\n100\n100\n1\n100\n100\n1\n100\n1\n1\n1\n100\n100\n1\n100\n1\n100\n1\n1\n1\n1\n100\n1\n1\n100\n1\n100\n100\n1\n100\n1\n100",
"output": "NO"
},
{
"input": "100\n100\n100\n100\n1\n100\n1\n1\n1\n100\n1\n1\n1\n1\n100\n1\n100\n1\n100\n1\n100\n100\n100\n1\n100\n1\n1\n1\n100\n1\n1\n1\n1\n1\n100\n100\n1\n100\n1\n1\n100\n1\n1\n100\n1\n100\n100\n100\n1\n100\n100\n100\n1\n100\n1\n100\n100\n100\n1\n1\n100\n100\n100\n100\n1\n100\n36\n100\n1\n100\n1\n100\n100\n100\n1\n1\n1\n1\n1\n1\n1\n1\n1\n100\n1\n1\n100\n100\n100\n100\n100\n1\n100\n1\n100\n1\n1\n100\n100\n1\n100",
"output": "NO"
},
{
"input": "100\n2\n1\n1\n2\n2\n1\n1\n1\n1\n2\n1\n1\n1\n2\n2\n2\n1\n1\n1\n2\n1\n2\n2\n2\n2\n1\n1\n2\n1\n1\n2\n1\n27\n1\n1\n1\n2\n2\n2\n1\n2\n1\n2\n1\n1\n2\n2\n2\n2\n2\n2\n2\n2\n1\n2\n2\n2\n2\n1\n2\n1\n1\n1\n1\n1\n2\n1\n1\n1\n2\n2\n2\n2\n2\n2\n1\n1\n1\n1\n2\n2\n1\n2\n2\n1\n1\n1\n2\n1\n2\n2\n1\n1\n2\n1\n1\n1\n2\n2\n1",
"output": "NO"
},
{
"input": "100\n99\n99\n100\n99\n99\n100\n100\n100\n99\n100\n99\n99\n100\n99\n99\n99\n99\n99\n99\n100\n100\n100\n99\n100\n100\n99\n100\n99\n100\n100\n99\n100\n99\n99\n99\n100\n99\n10\n99\n100\n100\n100\n99\n100\n100\n100\n100\n100\n100\n100\n99\n100\n100\n100\n99\n99\n100\n99\n100\n99\n100\n100\n99\n99\n99\n99\n100\n99\n100\n100\n100\n100\n100\n100\n99\n99\n100\n100\n99\n99\n99\n99\n99\n99\n100\n99\n99\n100\n100\n99\n100\n99\n99\n100\n99\n99\n99\n99\n100\n100",
"output": "NO"
},
{
"input": "100\n29\n43\n43\n29\n43\n29\n29\n29\n43\n29\n29\n29\n29\n43\n29\n29\n29\n29\n43\n29\n29\n29\n43\n29\n29\n29\n43\n43\n43\n43\n43\n43\n29\n29\n43\n43\n43\n29\n43\n43\n43\n29\n29\n29\n43\n29\n29\n29\n43\n43\n43\n43\n29\n29\n29\n29\n43\n29\n43\n43\n29\n29\n43\n43\n29\n29\n95\n29\n29\n29\n43\n43\n29\n29\n29\n29\n29\n43\n43\n43\n43\n29\n29\n43\n43\n43\n43\n43\n43\n29\n43\n43\n43\n43\n43\n43\n29\n43\n29\n43",
"output": "NO"
},
{
"input": "100\n98\n98\n98\n88\n88\n88\n88\n98\n98\n88\n98\n88\n98\n88\n88\n88\n88\n88\n98\n98\n88\n98\n98\n98\n88\n88\n88\n98\n98\n88\n88\n88\n98\n88\n98\n88\n98\n88\n88\n98\n98\n98\n88\n88\n98\n98\n88\n88\n88\n88\n88\n98\n98\n98\n88\n98\n88\n88\n98\n98\n88\n98\n88\n88\n98\n88\n88\n98\n27\n88\n88\n88\n98\n98\n88\n88\n98\n98\n98\n98\n98\n88\n98\n88\n98\n98\n98\n98\n88\n88\n98\n88\n98\n88\n98\n98\n88\n98\n98\n88",
"output": "NO"
},
{
"input": "100\n50\n1\n1\n50\n50\n50\n50\n1\n50\n100\n50\n50\n50\n100\n1\n100\n1\n100\n50\n50\n50\n50\n50\n1\n50\n1\n100\n1\n1\n50\n100\n50\n50\n100\n50\n50\n100\n1\n50\n50\n100\n1\n1\n50\n1\n100\n50\n50\n100\n100\n1\n100\n1\n50\n100\n50\n50\n1\n1\n50\n100\n50\n100\n100\n100\n50\n50\n1\n1\n50\n100\n1\n50\n100\n100\n1\n50\n50\n50\n100\n50\n50\n100\n1\n50\n50\n50\n50\n1\n50\n50\n50\n50\n1\n50\n50\n100\n1\n50\n100",
"output": "NO"
},
{
"input": "100\n45\n45\n45\n45\n45\n45\n44\n44\n44\n43\n45\n44\n44\n45\n44\n44\n45\n44\n43\n44\n43\n43\n43\n45\n43\n45\n44\n45\n43\n44\n45\n45\n45\n45\n45\n45\n45\n45\n43\n45\n43\n43\n45\n44\n45\n45\n45\n44\n45\n45\n45\n45\n45\n45\n44\n43\n45\n45\n43\n44\n45\n45\n45\n45\n44\n45\n45\n45\n43\n43\n44\n44\n43\n45\n43\n45\n45\n45\n44\n44\n43\n43\n44\n44\n44\n43\n45\n43\n44\n43\n45\n43\n43\n45\n45\n44\n45\n43\n43\n45",
"output": "NO"
},
{
"input": "100\n12\n12\n97\n15\n97\n12\n15\n97\n12\n97\n12\n12\n97\n12\n15\n12\n12\n15\n12\n12\n97\n12\n12\n15\n15\n12\n97\n15\n12\n97\n15\n12\n12\n15\n15\n15\n97\n15\n97\n12\n12\n12\n12\n12\n97\n12\n97\n12\n15\n15\n12\n15\n12\n15\n12\n12\n12\n12\n12\n12\n12\n12\n97\n97\n12\n12\n97\n12\n97\n97\n15\n97\n12\n97\n97\n12\n12\n12\n97\n97\n15\n12\n12\n15\n12\n15\n97\n97\n12\n15\n12\n12\n97\n12\n15\n15\n15\n15\n12\n12",
"output": "NO"
},
{
"input": "12\n2\n3\n1\n3\n3\n1\n2\n1\n2\n1\n3\n2",
"output": "NO"
},
{
"input": "48\n99\n98\n100\n100\n99\n100\n99\n100\n100\n98\n99\n98\n98\n99\n98\n99\n98\n100\n100\n98\n100\n98\n99\n100\n98\n99\n98\n99\n99\n100\n98\n99\n99\n98\n100\n99\n98\n99\n98\n100\n100\n100\n99\n98\n99\n98\n100\n100",
"output": "NO"
},
{
"input": "4\n1\n3\n3\n3",
"output": "NO"
},
{
"input": "6\n1\n1\n1\n1\n2\n2",
"output": "NO"
},
{
"input": "4\n1\n1\n1\n2",
"output": "NO"
},
{
"input": "4\n1\n2\n2\n2",
"output": "NO"
},
{
"input": "4\n1\n2\n3\n4",
"output": "NO"
},
{
"input": "8\n1\n1\n2\n2\n3\n3\n4\n4",
"output": "NO"
},
{
"input": "4\n1\n3\n2\n4",
"output": "NO"
},
{
"input": "4\n10\n10\n10\n20",
"output": "NO"
},
{
"input": "4\n11\n12\n13\n13",
"output": "NO"
},
{
"input": "4\n1\n1\n1\n3",
"output": "NO"
},
{
"input": "6\n1\n1\n2\n2\n2\n2",
"output": "NO"
},
{
"input": "10\n1\n1\n2\n2\n2\n3\n3\n4\n4\n4",
"output": "NO"
}
] | 1,644,196,423
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 54
| 46
| 0
|
n = int(input())
a = []
for i in range(n):
a.append(int(input()))
p = 0
v = 0
a = sorted(a)
flag = True
for i in range(n//2):
p = a[i]
v = a[-1]
m = a.count(p)
z = a.count(v)
if m+z != n:
break
if m == z and p != v:
print("YES")
print(f"{p} {v}")
flag = False
break
if flag:
print("NO")
|
Title: Fair Game
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Petya and Vasya decided to play a game. They have *n* cards (*n* is an even number). A single integer is written on each card.
Before the game Petya will choose an integer and after that Vasya will choose another integer (different from the number that Petya chose). During the game each player takes all the cards with number he chose. For example, if Petya chose number 5 before the game he will take all cards on which 5 is written and if Vasya chose number 10 before the game he will take all cards on which 10 is written.
The game is considered fair if Petya and Vasya can take all *n* cards, and the number of cards each player gets is the same.
Determine whether Petya and Vasya can choose integer numbers before the game so that the game is fair.
Input Specification:
The first line contains a single integer *n* (2<=β€<=*n*<=β€<=100) β number of cards. It is guaranteed that *n* is an even number.
The following *n* lines contain a sequence of integers *a*1,<=*a*2,<=...,<=*a**n* (one integer per line, 1<=β€<=*a**i*<=β€<=100) β numbers written on the *n* cards.
Output Specification:
If it is impossible for Petya and Vasya to choose numbers in such a way that the game will be fair, print "NO" (without quotes) in the first line. In this case you should not print anything more.
In the other case print "YES" (without quotes) in the first line. In the second line print two distinct integers β number that Petya should choose and the number that Vasya should choose to make the game fair. If there are several solutions, print any of them.
Demo Input:
['4\n11\n27\n27\n11\n', '2\n6\n6\n', '6\n10\n20\n30\n20\n10\n20\n', '6\n1\n1\n2\n2\n3\n3\n']
Demo Output:
['YES\n11 27\n', 'NO\n', 'NO\n', 'NO\n']
Note:
In the first example the game will be fair if, for example, Petya chooses number 11, and Vasya chooses number 27. Then the will take all cards β Petya will take cards 1 and 4, and Vasya will take cards 2 and 3. Thus, each of them will take exactly two cards.
In the second example fair game is impossible because the numbers written on the cards are equal, but the numbers that Petya and Vasya should choose should be distinct.
In the third example it is impossible to take all cards. Petya and Vasya can take at most five cards β for example, Petya can choose number 10 and Vasya can choose number 20. But for the game to be fair it is necessary to take 6 cards.
|
```python
n = int(input())
a = []
for i in range(n):
a.append(int(input()))
p = 0
v = 0
a = sorted(a)
flag = True
for i in range(n//2):
p = a[i]
v = a[-1]
m = a.count(p)
z = a.count(v)
if m+z != n:
break
if m == z and p != v:
print("YES")
print(f"{p} {v}")
flag = False
break
if flag:
print("NO")
```
| 3
|
|
69
|
A
|
Young Physicist
|
PROGRAMMING
| 1,000
|
[
"implementation",
"math"
] |
A. Young Physicist
|
2
|
256
|
A guy named Vasya attends the final grade of a high school. One day Vasya decided to watch a match of his favorite hockey team. And, as the boy loves hockey very much, even more than physics, he forgot to do the homework. Specifically, he forgot to complete his physics tasks. Next day the teacher got very angry at Vasya and decided to teach him a lesson. He gave the lazy student a seemingly easy task: You are given an idle body in space and the forces that affect it. The body can be considered as a material point with coordinates (0; 0; 0). Vasya had only to answer whether it is in equilibrium. "Piece of cake" β thought Vasya, we need only to check if the sum of all vectors is equal to 0. So, Vasya began to solve the problem. But later it turned out that there can be lots and lots of these forces, and Vasya can not cope without your help. Help him. Write a program that determines whether a body is idle or is moving by the given vectors of forces.
|
The first line contains a positive integer *n* (1<=β€<=*n*<=β€<=100), then follow *n* lines containing three integers each: the *x**i* coordinate, the *y**i* coordinate and the *z**i* coordinate of the force vector, applied to the body (<=-<=100<=β€<=*x**i*,<=*y**i*,<=*z**i*<=β€<=100).
|
Print the word "YES" if the body is in equilibrium, or the word "NO" if it is not.
|
[
"3\n4 1 7\n-2 4 -1\n1 -5 -3\n",
"3\n3 -1 7\n-5 2 -4\n2 -1 -3\n"
] |
[
"NO",
"YES"
] |
none
| 500
|
[
{
"input": "3\n4 1 7\n-2 4 -1\n1 -5 -3",
"output": "NO"
},
{
"input": "3\n3 -1 7\n-5 2 -4\n2 -1 -3",
"output": "YES"
},
{
"input": "10\n21 32 -46\n43 -35 21\n42 2 -50\n22 40 20\n-27 -9 38\n-4 1 1\n-40 6 -31\n-13 -2 34\n-21 34 -12\n-32 -29 41",
"output": "NO"
},
{
"input": "10\n25 -33 43\n-27 -42 28\n-35 -20 19\n41 -42 -1\n49 -39 -4\n-49 -22 7\n-19 29 41\n8 -27 -43\n8 34 9\n-11 -3 33",
"output": "NO"
},
{
"input": "10\n-6 21 18\n20 -11 -8\n37 -11 41\n-5 8 33\n29 23 32\n30 -33 -11\n39 -49 -36\n28 34 -49\n22 29 -34\n-18 -6 7",
"output": "NO"
},
{
"input": "10\n47 -2 -27\n0 26 -14\n5 -12 33\n2 18 3\n45 -30 -49\n4 -18 8\n-46 -44 -41\n-22 -10 -40\n-35 -21 26\n33 20 38",
"output": "NO"
},
{
"input": "13\n-3 -36 -46\n-11 -50 37\n42 -11 -15\n9 42 44\n-29 -12 24\n3 9 -40\n-35 13 50\n14 43 18\n-13 8 24\n-48 -15 10\n50 9 -50\n21 0 -50\n0 0 -6",
"output": "YES"
},
{
"input": "14\n43 23 17\n4 17 44\n5 -5 -16\n-43 -7 -6\n47 -48 12\n50 47 -45\n2 14 43\n37 -30 15\n4 -17 -11\n17 9 -45\n-50 -3 -8\n-50 0 0\n-50 0 0\n-16 0 0",
"output": "YES"
},
{
"input": "13\n29 49 -11\n38 -11 -20\n25 1 -40\n-11 28 11\n23 -19 1\n45 -41 -17\n-3 0 -19\n-13 -33 49\n-30 0 28\n34 17 45\n-50 9 -27\n-50 0 0\n-37 0 0",
"output": "YES"
},
{
"input": "12\n3 28 -35\n-32 -44 -17\n9 -25 -6\n-42 -22 20\n-19 15 38\n-21 38 48\n-1 -37 -28\n-10 -13 -50\n-5 21 29\n34 28 50\n50 11 -49\n34 0 0",
"output": "YES"
},
{
"input": "37\n-64 -79 26\n-22 59 93\n-5 39 -12\n77 -9 76\n55 -86 57\n83 100 -97\n-70 94 84\n-14 46 -94\n26 72 35\n14 78 -62\n17 82 92\n-57 11 91\n23 15 92\n-80 -1 1\n12 39 18\n-23 -99 -75\n-34 50 19\n-39 84 -7\n45 -30 -39\n-60 49 37\n45 -16 -72\n33 -51 -56\n-48 28 5\n97 91 88\n45 -82 -11\n-21 -15 -90\n-53 73 -26\n-74 85 -90\n-40 23 38\n100 -13 49\n32 -100 -100\n0 -100 -70\n0 -100 0\n0 -100 0\n0 -100 0\n0 -100 0\n0 -37 0",
"output": "YES"
},
{
"input": "4\n68 3 100\n68 21 -100\n-100 -24 0\n-36 0 0",
"output": "YES"
},
{
"input": "33\n-1 -46 -12\n45 -16 -21\n-11 45 -21\n-60 -42 -93\n-22 -45 93\n37 96 85\n-76 26 83\n-4 9 55\n7 -52 -9\n66 8 -85\n-100 -54 11\n-29 59 74\n-24 12 2\n-56 81 85\n-92 69 -52\n-26 -97 91\n54 59 -51\n58 21 -57\n7 68 56\n-47 -20 -51\n-59 77 -13\n-85 27 91\n79 60 -56\n66 -80 5\n21 -99 42\n-31 -29 98\n66 93 76\n-49 45 61\n100 -100 -100\n100 -100 -100\n66 -75 -100\n0 0 -100\n0 0 -87",
"output": "YES"
},
{
"input": "3\n1 2 3\n3 2 1\n0 0 0",
"output": "NO"
},
{
"input": "2\n5 -23 12\n0 0 0",
"output": "NO"
},
{
"input": "1\n0 0 0",
"output": "YES"
},
{
"input": "1\n1 -2 0",
"output": "NO"
},
{
"input": "2\n-23 77 -86\n23 -77 86",
"output": "YES"
},
{
"input": "26\n86 7 20\n-57 -64 39\n-45 6 -93\n-44 -21 100\n-11 -49 21\n73 -71 -80\n-2 -89 56\n-65 -2 7\n5 14 84\n57 41 13\n-12 69 54\n40 -25 27\n-17 -59 0\n64 -91 -30\n-53 9 42\n-54 -8 14\n-35 82 27\n-48 -59 -80\n88 70 79\n94 57 97\n44 63 25\n84 -90 -40\n-100 100 -100\n-92 100 -100\n0 10 -100\n0 0 -82",
"output": "YES"
},
{
"input": "42\n11 27 92\n-18 -56 -57\n1 71 81\n33 -92 30\n82 83 49\n-87 -61 -1\n-49 45 49\n73 26 15\n-22 22 -77\n29 -93 87\n-68 44 -90\n-4 -84 20\n85 67 -6\n-39 26 77\n-28 -64 20\n65 -97 24\n-72 -39 51\n35 -75 -91\n39 -44 -8\n-25 -27 -57\n91 8 -46\n-98 -94 56\n94 -60 59\n-9 -95 18\n-53 -37 98\n-8 -94 -84\n-52 55 60\n15 -14 37\n65 -43 -25\n94 12 66\n-8 -19 -83\n29 81 -78\n-58 57 33\n24 86 -84\n-53 32 -88\n-14 7 3\n89 97 -53\n-5 -28 -91\n-100 100 -6\n-84 100 0\n0 100 0\n0 70 0",
"output": "YES"
},
{
"input": "3\n96 49 -12\n2 -66 28\n-98 17 -16",
"output": "YES"
},
{
"input": "5\n70 -46 86\n-100 94 24\n-27 63 -63\n57 -100 -47\n0 -11 0",
"output": "YES"
},
{
"input": "18\n-86 -28 70\n-31 -89 42\n31 -48 -55\n95 -17 -43\n24 -95 -85\n-21 -14 31\n68 -18 81\n13 31 60\n-15 28 99\n-42 15 9\n28 -61 -62\n-16 71 29\n-28 75 -48\n-77 -67 36\n-100 83 89\n100 100 -100\n57 34 -100\n0 0 -53",
"output": "YES"
},
{
"input": "44\n52 -54 -29\n-82 -5 -94\n-54 43 43\n91 16 71\n7 80 -91\n3 15 29\n-99 -6 -77\n-3 -77 -64\n73 67 34\n25 -10 -18\n-29 91 63\n-72 86 -16\n-68 85 -81\n-3 36 44\n-74 -14 -80\n34 -96 -97\n-76 -78 -33\n-24 44 -58\n98 12 77\n95 -63 -6\n-51 3 -90\n-92 -10 72\n7 3 -68\n57 -53 71\n29 57 -48\n35 -60 10\n79 -70 -61\n-20 77 55\n-86 -15 -35\n84 -88 -18\n100 -42 77\n-20 46 8\n-41 -43 -65\n38 -98 -23\n-100 65 45\n-7 -91 -63\n46 88 -85\n48 59 100\n0 0 100\n0 0 100\n0 0 100\n0 0 100\n0 0 100\n0 0 1",
"output": "YES"
},
{
"input": "18\n-14 -64 -91\n-8 -66 -86\n-23 92 -40\n6 -3 -53\n57 41 78\n-79 42 -22\n-88 -17 45\n4 -45 44\n83 -18 -25\n34 86 -92\n75 -30 12\n44 99 11\n-67 -13 72\n22 83 -56\n-37 71 72\n-9 -100 100\n0 -100 31\n0 -58 0",
"output": "YES"
},
{
"input": "23\n-70 37 78\n42 84 6\n28 -94 -24\n-49 76 95\n-67 18 84\n-53 78 -5\n65 -63 -64\n-66 -64 -69\n81 -93 95\n10 52 -79\n-89 -61 -64\n-64 -47 43\n-81 -35 55\n80 82 73\n-60 -81 -18\n49 -10 -19\n-58 70 12\n-24 -15 -93\n98 -93 -54\n-28 -75 11\n100 100 -63\n100 100 0\n56 34 0",
"output": "YES"
},
{
"input": "3\n0 2 -2\n1 -1 3\n-3 0 0",
"output": "NO"
}
] | 1,665,040,661
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 81
| 122
| 0
|
n = int(input())
x_group = []
y_group = []
z_group = []
for i in range(n):
xi, yi, zi = map(int,input().split())
x_group.append(xi)
y_group.append(yi)
z_group.append(zi)
if sum(x_group) == 0 and sum(y_group) == 0 and sum(z_group) == 0:
print("YES")
else: print("NO")
|
Title: Young Physicist
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
A guy named Vasya attends the final grade of a high school. One day Vasya decided to watch a match of his favorite hockey team. And, as the boy loves hockey very much, even more than physics, he forgot to do the homework. Specifically, he forgot to complete his physics tasks. Next day the teacher got very angry at Vasya and decided to teach him a lesson. He gave the lazy student a seemingly easy task: You are given an idle body in space and the forces that affect it. The body can be considered as a material point with coordinates (0; 0; 0). Vasya had only to answer whether it is in equilibrium. "Piece of cake" β thought Vasya, we need only to check if the sum of all vectors is equal to 0. So, Vasya began to solve the problem. But later it turned out that there can be lots and lots of these forces, and Vasya can not cope without your help. Help him. Write a program that determines whether a body is idle or is moving by the given vectors of forces.
Input Specification:
The first line contains a positive integer *n* (1<=β€<=*n*<=β€<=100), then follow *n* lines containing three integers each: the *x**i* coordinate, the *y**i* coordinate and the *z**i* coordinate of the force vector, applied to the body (<=-<=100<=β€<=*x**i*,<=*y**i*,<=*z**i*<=β€<=100).
Output Specification:
Print the word "YES" if the body is in equilibrium, or the word "NO" if it is not.
Demo Input:
['3\n4 1 7\n-2 4 -1\n1 -5 -3\n', '3\n3 -1 7\n-5 2 -4\n2 -1 -3\n']
Demo Output:
['NO', 'YES']
Note:
none
|
```python
n = int(input())
x_group = []
y_group = []
z_group = []
for i in range(n):
xi, yi, zi = map(int,input().split())
x_group.append(xi)
y_group.append(yi)
z_group.append(zi)
if sum(x_group) == 0 and sum(y_group) == 0 and sum(z_group) == 0:
print("YES")
else: print("NO")
```
| 3.9695
|
467
|
A
|
George and Accommodation
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
George has recently entered the BSUCP (Berland State University for Cool Programmers). George has a friend Alex who has also entered the university. Now they are moving into a dormitory.
George and Alex want to live in the same room. The dormitory has *n* rooms in total. At the moment the *i*-th room has *p**i* people living in it and the room can accommodate *q**i* people in total (*p**i*<=β€<=*q**i*). Your task is to count how many rooms has free place for both George and Alex.
|
The first line contains a single integer *n* (1<=β€<=*n*<=β€<=100) β the number of rooms.
The *i*-th of the next *n* lines contains two integers *p**i* and *q**i* (0<=β€<=*p**i*<=β€<=*q**i*<=β€<=100) β the number of people who already live in the *i*-th room and the room's capacity.
|
Print a single integer β the number of rooms where George and Alex can move in.
|
[
"3\n1 1\n2 2\n3 3\n",
"3\n1 10\n0 10\n10 10\n"
] |
[
"0\n",
"2\n"
] |
none
| 500
|
[
{
"input": "3\n1 1\n2 2\n3 3",
"output": "0"
},
{
"input": "3\n1 10\n0 10\n10 10",
"output": "2"
},
{
"input": "2\n36 67\n61 69",
"output": "2"
},
{
"input": "3\n21 71\n10 88\n43 62",
"output": "3"
},
{
"input": "3\n1 2\n2 3\n3 4",
"output": "0"
},
{
"input": "10\n0 10\n0 20\n0 30\n0 40\n0 50\n0 60\n0 70\n0 80\n0 90\n0 100",
"output": "10"
},
{
"input": "13\n14 16\n30 31\n45 46\n19 20\n15 17\n66 67\n75 76\n95 97\n29 30\n37 38\n0 2\n36 37\n8 9",
"output": "4"
},
{
"input": "19\n66 67\n97 98\n89 91\n67 69\n67 68\n18 20\n72 74\n28 30\n91 92\n27 28\n75 77\n17 18\n74 75\n28 30\n16 18\n90 92\n9 11\n22 24\n52 54",
"output": "12"
},
{
"input": "15\n55 57\n95 97\n57 59\n34 36\n50 52\n96 98\n39 40\n13 15\n13 14\n74 76\n47 48\n56 58\n24 25\n11 13\n67 68",
"output": "10"
},
{
"input": "17\n68 69\n47 48\n30 31\n52 54\n41 43\n33 35\n38 40\n56 58\n45 46\n92 93\n73 74\n61 63\n65 66\n37 39\n67 68\n77 78\n28 30",
"output": "8"
},
{
"input": "14\n64 66\n43 44\n10 12\n76 77\n11 12\n25 27\n87 88\n62 64\n39 41\n58 60\n10 11\n28 29\n57 58\n12 14",
"output": "7"
},
{
"input": "38\n74 76\n52 54\n78 80\n48 49\n40 41\n64 65\n28 30\n6 8\n49 51\n68 70\n44 45\n57 59\n24 25\n46 48\n49 51\n4 6\n63 64\n76 78\n57 59\n18 20\n63 64\n71 73\n88 90\n21 22\n89 90\n65 66\n89 91\n96 98\n42 44\n1 1\n74 76\n72 74\n39 40\n75 76\n29 30\n48 49\n87 89\n27 28",
"output": "22"
},
{
"input": "100\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0",
"output": "0"
},
{
"input": "26\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2",
"output": "0"
},
{
"input": "68\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2",
"output": "68"
},
{
"input": "7\n0 1\n1 5\n2 4\n3 5\n4 6\n5 6\n6 8",
"output": "5"
},
{
"input": "1\n0 0",
"output": "0"
},
{
"input": "1\n100 100",
"output": "0"
},
{
"input": "44\n0 8\n1 11\n2 19\n3 5\n4 29\n5 45\n6 6\n7 40\n8 19\n9 22\n10 18\n11 26\n12 46\n13 13\n14 27\n15 48\n16 25\n17 20\n18 29\n19 27\n20 45\n21 39\n22 29\n23 39\n24 42\n25 37\n26 52\n27 36\n28 43\n29 35\n30 38\n31 70\n32 47\n33 38\n34 61\n35 71\n36 51\n37 71\n38 59\n39 77\n40 70\n41 80\n42 77\n43 73",
"output": "42"
},
{
"input": "3\n1 3\n2 7\n8 9",
"output": "2"
},
{
"input": "53\n0 1\n1 2\n2 3\n3 4\n4 5\n5 6\n6 7\n7 8\n8 9\n9 10\n10 11\n11 12\n12 13\n13 14\n14 15\n15 16\n16 17\n17 18\n18 19\n19 20\n20 21\n21 22\n22 23\n23 24\n24 25\n25 26\n26 27\n27 28\n28 29\n29 30\n30 31\n31 32\n32 33\n33 34\n34 35\n35 36\n36 37\n37 38\n38 39\n39 40\n40 41\n41 42\n42 43\n43 44\n44 45\n45 46\n46 47\n47 48\n48 49\n49 50\n50 51\n51 52\n52 53",
"output": "0"
},
{
"input": "55\n0 0\n1 1\n2 2\n3 3\n4 4\n5 5\n6 6\n7 7\n8 8\n9 9\n10 10\n11 11\n12 12\n13 13\n14 14\n15 15\n16 16\n17 17\n18 18\n19 19\n20 20\n21 21\n22 22\n23 23\n24 24\n25 25\n26 26\n27 27\n28 28\n29 29\n30 30\n31 31\n32 32\n33 33\n34 34\n35 35\n36 36\n37 37\n38 38\n39 39\n40 40\n41 41\n42 42\n43 43\n44 44\n45 45\n46 46\n47 47\n48 48\n49 49\n50 50\n51 51\n52 52\n53 53\n54 54",
"output": "0"
},
{
"input": "51\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 62\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 73\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 82\n55 68\n55 70\n55 63\n55 55\n55 55\n55 55\n55 75\n55 75\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 73\n55 55\n55 82\n55 99\n55 60",
"output": "12"
},
{
"input": "14\n1 1\n1 1\n1 55\n1 16\n1 1\n1 1\n1 55\n1 62\n1 53\n1 26\n1 1\n1 36\n1 2\n1 3",
"output": "8"
}
] | 1,687,627,545
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 27
| 31
| 0
|
n = int(input())
count = 0
for i in range(1,n+1):
p,q = map(int,input().split())
diff = abs(p-q)
if diff >= 2:
count+=1
print(count)
|
Title: George and Accommodation
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
George has recently entered the BSUCP (Berland State University for Cool Programmers). George has a friend Alex who has also entered the university. Now they are moving into a dormitory.
George and Alex want to live in the same room. The dormitory has *n* rooms in total. At the moment the *i*-th room has *p**i* people living in it and the room can accommodate *q**i* people in total (*p**i*<=β€<=*q**i*). Your task is to count how many rooms has free place for both George and Alex.
Input Specification:
The first line contains a single integer *n* (1<=β€<=*n*<=β€<=100) β the number of rooms.
The *i*-th of the next *n* lines contains two integers *p**i* and *q**i* (0<=β€<=*p**i*<=β€<=*q**i*<=β€<=100) β the number of people who already live in the *i*-th room and the room's capacity.
Output Specification:
Print a single integer β the number of rooms where George and Alex can move in.
Demo Input:
['3\n1 1\n2 2\n3 3\n', '3\n1 10\n0 10\n10 10\n']
Demo Output:
['0\n', '2\n']
Note:
none
|
```python
n = int(input())
count = 0
for i in range(1,n+1):
p,q = map(int,input().split())
diff = abs(p-q)
if diff >= 2:
count+=1
print(count)
```
| 3
|
|
9
|
A
|
Die Roll
|
PROGRAMMING
| 800
|
[
"math",
"probabilities"
] |
A. Die Roll
|
1
|
64
|
Yakko, Wakko and Dot, world-famous animaniacs, decided to rest from acting in cartoons, and take a leave to travel a bit. Yakko dreamt to go to Pennsylvania, his Motherland and the Motherland of his ancestors. Wakko thought about Tasmania, its beaches, sun and sea. Dot chose Transylvania as the most mysterious and unpredictable place.
But to their great regret, the leave turned to be very short, so it will be enough to visit one of the three above named places. That's why Yakko, as the cleverest, came up with a truly genius idea: let each of the three roll an ordinary six-sided die, and the one with the highest amount of points will be the winner, and will take the other two to the place of his/her dreams.
Yakko thrown a die and got Y points, Wakko β W points. It was Dot's turn. But she didn't hurry. Dot wanted to know for sure what were her chances to visit Transylvania.
It is known that Yakko and Wakko are true gentlemen, that's why if they have the same amount of points with Dot, they will let Dot win.
|
The only line of the input file contains two natural numbers Y and W β the results of Yakko's and Wakko's die rolls.
|
Output the required probability in the form of irreducible fraction in format Β«A/BΒ», where A β the numerator, and B β the denominator. If the required probability equals to zero, output Β«0/1Β». If the required probability equals to 1, output Β«1/1Β».
|
[
"4 2\n"
] |
[
"1/2\n"
] |
Dot will go to Transylvania, if she is lucky to roll 4, 5 or 6 points.
| 0
|
[
{
"input": "4 2",
"output": "1/2"
},
{
"input": "1 1",
"output": "1/1"
},
{
"input": "1 2",
"output": "5/6"
},
{
"input": "1 3",
"output": "2/3"
},
{
"input": "1 4",
"output": "1/2"
},
{
"input": "1 5",
"output": "1/3"
},
{
"input": "1 6",
"output": "1/6"
},
{
"input": "2 1",
"output": "5/6"
},
{
"input": "2 2",
"output": "5/6"
},
{
"input": "2 3",
"output": "2/3"
},
{
"input": "2 4",
"output": "1/2"
},
{
"input": "2 5",
"output": "1/3"
},
{
"input": "2 6",
"output": "1/6"
},
{
"input": "3 1",
"output": "2/3"
},
{
"input": "3 2",
"output": "2/3"
},
{
"input": "3 3",
"output": "2/3"
},
{
"input": "3 4",
"output": "1/2"
},
{
"input": "3 5",
"output": "1/3"
},
{
"input": "3 6",
"output": "1/6"
},
{
"input": "4 1",
"output": "1/2"
},
{
"input": "4 3",
"output": "1/2"
},
{
"input": "4 4",
"output": "1/2"
},
{
"input": "4 5",
"output": "1/3"
},
{
"input": "4 6",
"output": "1/6"
},
{
"input": "5 1",
"output": "1/3"
},
{
"input": "5 2",
"output": "1/3"
},
{
"input": "5 3",
"output": "1/3"
},
{
"input": "5 4",
"output": "1/3"
},
{
"input": "5 5",
"output": "1/3"
},
{
"input": "5 6",
"output": "1/6"
},
{
"input": "6 1",
"output": "1/6"
},
{
"input": "6 2",
"output": "1/6"
},
{
"input": "6 3",
"output": "1/6"
},
{
"input": "6 4",
"output": "1/6"
},
{
"input": "6 5",
"output": "1/6"
},
{
"input": "6 6",
"output": "1/6"
}
] | 1,655,869,154
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 36
| 92
| 0
|
# Author: JosΓ© Rodolfo (jric2002)
y, w = list(map(int, input().split(" ")))
d = 6
n = d - max(y, w) + 1
i = 2
while (i <= n):
if ((n % i) == 0 and (d % i) == 0):
n = int(n / i)
d = int(d / i)
else:
i += 1
print(n, d, sep="/")
|
Title: Die Roll
Time Limit: 1 seconds
Memory Limit: 64 megabytes
Problem Description:
Yakko, Wakko and Dot, world-famous animaniacs, decided to rest from acting in cartoons, and take a leave to travel a bit. Yakko dreamt to go to Pennsylvania, his Motherland and the Motherland of his ancestors. Wakko thought about Tasmania, its beaches, sun and sea. Dot chose Transylvania as the most mysterious and unpredictable place.
But to their great regret, the leave turned to be very short, so it will be enough to visit one of the three above named places. That's why Yakko, as the cleverest, came up with a truly genius idea: let each of the three roll an ordinary six-sided die, and the one with the highest amount of points will be the winner, and will take the other two to the place of his/her dreams.
Yakko thrown a die and got Y points, Wakko β W points. It was Dot's turn. But she didn't hurry. Dot wanted to know for sure what were her chances to visit Transylvania.
It is known that Yakko and Wakko are true gentlemen, that's why if they have the same amount of points with Dot, they will let Dot win.
Input Specification:
The only line of the input file contains two natural numbers Y and W β the results of Yakko's and Wakko's die rolls.
Output Specification:
Output the required probability in the form of irreducible fraction in format Β«A/BΒ», where A β the numerator, and B β the denominator. If the required probability equals to zero, output Β«0/1Β». If the required probability equals to 1, output Β«1/1Β».
Demo Input:
['4 2\n']
Demo Output:
['1/2\n']
Note:
Dot will go to Transylvania, if she is lucky to roll 4, 5 or 6 points.
|
```python
# Author: JosΓ© Rodolfo (jric2002)
y, w = list(map(int, input().split(" ")))
d = 6
n = d - max(y, w) + 1
i = 2
while (i <= n):
if ((n % i) == 0 and (d % i) == 0):
n = int(n / i)
d = int(d / i)
else:
i += 1
print(n, d, sep="/")
```
| 3.954
|
664
|
A
|
Complicated GCD
|
PROGRAMMING
| 800
|
[
"math",
"number theory"
] | null | null |
Greatest common divisor *GCD*(*a*,<=*b*) of two positive integers *a* and *b* is equal to the biggest integer *d* such that both integers *a* and *b* are divisible by *d*. There are many efficient algorithms to find greatest common divisor *GCD*(*a*,<=*b*), for example, Euclid algorithm.
Formally, find the biggest integer *d*, such that all integers *a*,<=*a*<=+<=1,<=*a*<=+<=2,<=...,<=*b* are divisible by *d*. To make the problem even more complicated we allow *a* and *b* to be up to googol, 10100Β β such number do not fit even in 64-bit integer type!
|
The only line of the input contains two integers *a* and *b* (1<=β€<=*a*<=β€<=*b*<=β€<=10100).
|
Output one integerΒ β greatest common divisor of all integers from *a* to *b* inclusive.
|
[
"1 2\n",
"61803398874989484820458683436563811772030917980576 61803398874989484820458683436563811772030917980576\n"
] |
[
"1\n",
"61803398874989484820458683436563811772030917980576\n"
] |
none
| 500
|
[
{
"input": "1 2",
"output": "1"
},
{
"input": "61803398874989484820458683436563811772030917980576 61803398874989484820458683436563811772030917980576",
"output": "61803398874989484820458683436563811772030917980576"
},
{
"input": "1 100",
"output": "1"
},
{
"input": "100 100000",
"output": "1"
},
{
"input": "12345 67890123456789123457",
"output": "1"
},
{
"input": "1 1",
"output": "1"
},
{
"input": "2 2",
"output": "2"
},
{
"input": "8392739158839273915883927391588392739158839273915883927391588392739158839273915883927391588392739158 8392739158839273915883927391588392739158839273915883927391588392739158839273915883927391588392739158",
"output": "8392739158839273915883927391588392739158839273915883927391588392739158839273915883927391588392739158"
},
{
"input": "1 10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000",
"output": "1"
},
{
"input": "8328748239473982794239847237438782379810988324751 9328748239473982794239847237438782379810988324751",
"output": "1"
},
{
"input": "1029398958432734901284327523909481928483573793 1029398958432734901284327523909481928483573794",
"output": "1"
},
{
"input": "10000 1000000000",
"output": "1"
},
{
"input": "10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000",
"output": "10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000"
},
{
"input": "11210171722243 65715435710585778347",
"output": "1"
},
{
"input": "2921881079263974825226940825843 767693191032295360887755303860323261471",
"output": "1"
},
{
"input": "8025352957265704896940312528736939363590612908210603 96027920417708260814607687034511406492969694925539085",
"output": "1"
},
{
"input": "23510978780782786207241069904470895053213996267165977112058175452757132930 210352653280909370107314249722987050753257161175393375412301228883856435481424",
"output": "1"
},
{
"input": "8150070767079366215626260746398623663859344142817267779361251788637547414925170226504788118262 49924902262298336032630839998470954964895251605110946547855439236151401194070172107435992986913614",
"output": "1"
},
{
"input": "15943150466658398903 15943150466658398903",
"output": "15943150466658398903"
},
{
"input": "410470228200245407491525399055972 410470228200245407491525399055972",
"output": "410470228200245407491525399055972"
},
{
"input": "51894705655711504622197349350106792045098781545973899451307 51894705655711504622197349350106792045098781545973899451307",
"output": "51894705655711504622197349350106792045098781545973899451307"
},
{
"input": "60353594589897438036015726222485085035927634677598681595162804007836722215668410 60353594589897438036015726222485085035927634677598681595162804007836722215668410",
"output": "60353594589897438036015726222485085035927634677598681595162804007836722215668410"
},
{
"input": "761733780145118977868180796896376577405349682060892737466239031663476251177476275459280340045369535 761733780145118977868180796896376577405349682060892737466239031663476251177476275459280340045369535",
"output": "761733780145118977868180796896376577405349682060892737466239031663476251177476275459280340045369535"
},
{
"input": "1 2000000000",
"output": "1"
},
{
"input": "13 1928834874",
"output": "1"
},
{
"input": "87 2938984237482934238",
"output": "1"
},
{
"input": "213 413",
"output": "1"
},
{
"input": "3 4",
"output": "1"
}
] | 1,565,960,587
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 28
| 124
| 0
|
# import sys
# sys.stdin=open("input.in","r")
a,b=map(int,input().split())
print(a if a==b else "1")
|
Title: Complicated GCD
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Greatest common divisor *GCD*(*a*,<=*b*) of two positive integers *a* and *b* is equal to the biggest integer *d* such that both integers *a* and *b* are divisible by *d*. There are many efficient algorithms to find greatest common divisor *GCD*(*a*,<=*b*), for example, Euclid algorithm.
Formally, find the biggest integer *d*, such that all integers *a*,<=*a*<=+<=1,<=*a*<=+<=2,<=...,<=*b* are divisible by *d*. To make the problem even more complicated we allow *a* and *b* to be up to googol, 10100Β β such number do not fit even in 64-bit integer type!
Input Specification:
The only line of the input contains two integers *a* and *b* (1<=β€<=*a*<=β€<=*b*<=β€<=10100).
Output Specification:
Output one integerΒ β greatest common divisor of all integers from *a* to *b* inclusive.
Demo Input:
['1 2\n', '61803398874989484820458683436563811772030917980576 61803398874989484820458683436563811772030917980576\n']
Demo Output:
['1\n', '61803398874989484820458683436563811772030917980576\n']
Note:
none
|
```python
# import sys
# sys.stdin=open("input.in","r")
a,b=map(int,input().split())
print(a if a==b else "1")
```
| 3
|
|
855
|
A
|
Tom Riddle's Diary
|
PROGRAMMING
| 800
|
[
"brute force",
"implementation",
"strings"
] | null | null |
Harry Potter is on a mission to destroy You-Know-Who's Horcruxes. The first Horcrux that he encountered in the Chamber of Secrets is Tom Riddle's diary. The diary was with Ginny and it forced her to open the Chamber of Secrets. Harry wants to know the different people who had ever possessed the diary to make sure they are not under its influence.
He has names of *n* people who possessed the diary in order. You need to tell, for each person, if he/she possessed the diary at some point before or not.
Formally, for a name *s**i* in the *i*-th line, output "YES" (without quotes) if there exists an index *j* such that *s**i*<==<=*s**j* and *j*<=<<=*i*, otherwise, output "NO" (without quotes).
|
First line of input contains an integer *n* (1<=β€<=*n*<=β€<=100)Β β the number of names in the list.
Next *n* lines each contain a string *s**i*, consisting of lowercase English letters. The length of each string is between 1 and 100.
|
Output *n* lines each containing either "YES" or "NO" (without quotes), depending on whether this string was already present in the stream or not.
You can print each letter in any case (upper or lower).
|
[
"6\ntom\nlucius\nginny\nharry\nginny\nharry\n",
"3\na\na\na\n"
] |
[
"NO\nNO\nNO\nNO\nYES\nYES\n",
"NO\nYES\nYES\n"
] |
In test case 1, for *i*β=β5 there exists *j*β=β3 such that *s*<sub class="lower-index">*i*</sub>β=β*s*<sub class="lower-index">*j*</sub> and *j*β<β*i*, which means that answer for *i*β=β5 is "YES".
| 500
|
[
{
"input": "6\ntom\nlucius\nginny\nharry\nginny\nharry",
"output": "NO\nNO\nNO\nNO\nYES\nYES"
},
{
"input": "3\na\na\na",
"output": "NO\nYES\nYES"
},
{
"input": "1\nzn",
"output": "NO"
},
{
"input": "9\nliyzmbjwnzryjokufuxcqtzwworjeoxkbaqrujrhdidqdvwdfzilwszgnzglnnbogaclckfnbqovtziuhwvyrqwmskx\nliyzmbjwnzryjokufuxcqtzwworjeoxkbaqrujrhdidqdvwdfzilwszgnzglnnbogaclckfnbqovtziuhwvyrqwmskx\nliyzmbjwnzryjokufuxcqtzwworjeoxkbaqrujrhdidqdvwdfzilwszgnzglnnbogaclckfnbqovtziuhwvyrqwmskx\nhrtm\nssjqvixduertmotgagizamvfucfwtxqnhuowbqbzctgznivehelpcyigwrbbdsxnewfqvcf\nhyrtxvozpbveexfkgalmguozzakitjiwsduqxonb\nwcyxteiwtcyuztaguilqpbiwcwjaiq\nwcyxteiwtcyuztaguilqpbiwcwjaiq\nbdbivqzvhggth",
"output": "NO\nYES\nYES\nNO\nNO\nNO\nNO\nYES\nNO"
},
{
"input": "10\nkkiubdktydpdcbbttwpfdplhhjhrpqmpg\nkkiubdktydpdcbbttwpfdplhhjhrpqmpg\nmvutw\nqooeqoxzxwetlpecqiwgdbogiqqulttysyohwhzxzphvsfmnplizxoebzcvvfyppqbhxjksuzepuezqqzxlfmdanoeaoqmor\nmvutw\nvchawxjoreboqzuklifv\nvchawxjoreboqzuklifv\nnivijte\nrflybruq\nvchawxjoreboqzuklifv",
"output": "NO\nYES\nNO\nNO\nYES\nNO\nYES\nNO\nNO\nYES"
},
{
"input": "1\nz",
"output": "NO"
},
{
"input": "9\nl\ny\nm\nj\nn\nr\nj\nk\nf",
"output": "NO\nNO\nNO\nNO\nNO\nNO\nYES\nNO\nNO"
},
{
"input": "14\nw\na\nh\np\nk\nw\ny\nv\ns\nf\nx\nd\nk\nr",
"output": "NO\nNO\nNO\nNO\nNO\nYES\nNO\nNO\nNO\nNO\nNO\nNO\nYES\nNO"
},
{
"input": "25\np\nk\nu\nl\nf\nt\nc\ns\nq\nd\nb\nq\no\ni\ni\nd\ni\nw\nn\ng\nw\nt\na\ne\ni",
"output": "NO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nYES\nNO\nNO\nYES\nYES\nYES\nNO\nNO\nNO\nYES\nYES\nNO\nNO\nYES"
},
{
"input": "20\nd\nh\ng\no\np\ne\nt\nj\nv\ni\nt\nh\ns\ni\nw\nf\nx\na\nl\ni",
"output": "NO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nYES\nYES\nNO\nYES\nNO\nNO\nNO\nNO\nNO\nYES"
},
{
"input": "3\nbbbbbbb\nbbbbbbbbb\nbbbbbbbbbbbbbbbbbbbbbbbbbbbb",
"output": "NO\nNO\nNO"
},
{
"input": "2\nab\nba",
"output": "NO\nNO"
},
{
"input": "6\ntom\nlucius\nginnys\nharpy\nginny\nharry",
"output": "NO\nNO\nNO\nNO\nNO\nNO"
},
{
"input": "2\nabcdeabcdeabcdeabcdeabcdeabcdeabcdeabcdeabcdeabcdeabcdeabcdeabcdeabcdeabcdeabcdeabcdeabcdeabcdeabcde\nabcdeabcdeabcdeabcdeabcdeabcdeabcdeabcdeabcdeabcdeabcdeabcdeabcdeabcdeabcdeabcdeabcdeabcdeabcdeabcde",
"output": "NO\nYES"
},
{
"input": "42\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na",
"output": "NO\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES"
}
] | 1,619,589,091
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 55
| 108
| 0
|
#C
n = int(input())
alist = []
for a in range(n):
name = str(input())
if name in alist:
print("YES")
else:
print("NO")
alist.append(name)
|
Title: Tom Riddle's Diary
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Harry Potter is on a mission to destroy You-Know-Who's Horcruxes. The first Horcrux that he encountered in the Chamber of Secrets is Tom Riddle's diary. The diary was with Ginny and it forced her to open the Chamber of Secrets. Harry wants to know the different people who had ever possessed the diary to make sure they are not under its influence.
He has names of *n* people who possessed the diary in order. You need to tell, for each person, if he/she possessed the diary at some point before or not.
Formally, for a name *s**i* in the *i*-th line, output "YES" (without quotes) if there exists an index *j* such that *s**i*<==<=*s**j* and *j*<=<<=*i*, otherwise, output "NO" (without quotes).
Input Specification:
First line of input contains an integer *n* (1<=β€<=*n*<=β€<=100)Β β the number of names in the list.
Next *n* lines each contain a string *s**i*, consisting of lowercase English letters. The length of each string is between 1 and 100.
Output Specification:
Output *n* lines each containing either "YES" or "NO" (without quotes), depending on whether this string was already present in the stream or not.
You can print each letter in any case (upper or lower).
Demo Input:
['6\ntom\nlucius\nginny\nharry\nginny\nharry\n', '3\na\na\na\n']
Demo Output:
['NO\nNO\nNO\nNO\nYES\nYES\n', 'NO\nYES\nYES\n']
Note:
In test case 1, for *i*β=β5 there exists *j*β=β3 such that *s*<sub class="lower-index">*i*</sub>β=β*s*<sub class="lower-index">*j*</sub> and *j*β<β*i*, which means that answer for *i*β=β5 is "YES".
|
```python
#C
n = int(input())
alist = []
for a in range(n):
name = str(input())
if name in alist:
print("YES")
else:
print("NO")
alist.append(name)
```
| 3
|
|
884
|
A
|
Book Reading
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Recently Luba bought a very interesting book. She knows that it will take *t* seconds to read the book. Luba wants to finish reading as fast as she can.
But she has some work to do in each of *n* next days. The number of seconds that Luba has to spend working during *i*-th day is *a**i*. If some free time remains, she can spend it on reading.
Help Luba to determine the minimum number of day when she finishes reading.
It is guaranteed that the answer doesn't exceed *n*.
Remember that there are 86400 seconds in a day.
|
The first line contains two integers *n* and *t* (1<=β€<=*n*<=β€<=100, 1<=β€<=*t*<=β€<=106) β the number of days and the time required to read the book.
The second line contains *n* integers *a**i* (0<=β€<=*a**i*<=β€<=86400) β the time Luba has to spend on her work during *i*-th day.
|
Print the minimum day Luba can finish reading the book.
It is guaranteed that answer doesn't exceed *n*.
|
[
"2 2\n86400 86398\n",
"2 86400\n0 86400\n"
] |
[
"2\n",
"1\n"
] |
none
| 0
|
[
{
"input": "2 2\n86400 86398",
"output": "2"
},
{
"input": "2 86400\n0 86400",
"output": "1"
},
{
"input": "2 86400\n1 86399",
"output": "2"
},
{
"input": "100 1000000\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0",
"output": "12"
},
{
"input": "1 1\n86399",
"output": "1"
},
{
"input": "6 1200\n86400 86400 86000 86000 86000 86400",
"output": "5"
},
{
"input": "6 1200\n86400 86400 86000 86000 86001 86399",
"output": "6"
},
{
"input": "4 172799\n1 1 86400 0",
"output": "4"
},
{
"input": "4 172799\n0 86400 86399 0",
"output": "4"
},
{
"input": "6 1\n1 1 86400 1 86399 1",
"output": "1"
},
{
"input": "4 1\n86400 86399 86400 86400",
"output": "2"
},
{
"input": "4 1\n86400 86400 0 86400",
"output": "3"
}
] | 1,509,178,692
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 16
| 62
| 0
|
n, t = map(int, input().split())
a = list(map(int, input().split()))
cnt = t
for i in range(len(a)):
cnt -= 86400 - a[i]
if cnt <= 0:
print(i + 1)
exit()
|
Title: Book Reading
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Recently Luba bought a very interesting book. She knows that it will take *t* seconds to read the book. Luba wants to finish reading as fast as she can.
But she has some work to do in each of *n* next days. The number of seconds that Luba has to spend working during *i*-th day is *a**i*. If some free time remains, she can spend it on reading.
Help Luba to determine the minimum number of day when she finishes reading.
It is guaranteed that the answer doesn't exceed *n*.
Remember that there are 86400 seconds in a day.
Input Specification:
The first line contains two integers *n* and *t* (1<=β€<=*n*<=β€<=100, 1<=β€<=*t*<=β€<=106) β the number of days and the time required to read the book.
The second line contains *n* integers *a**i* (0<=β€<=*a**i*<=β€<=86400) β the time Luba has to spend on her work during *i*-th day.
Output Specification:
Print the minimum day Luba can finish reading the book.
It is guaranteed that answer doesn't exceed *n*.
Demo Input:
['2 2\n86400 86398\n', '2 86400\n0 86400\n']
Demo Output:
['2\n', '1\n']
Note:
none
|
```python
n, t = map(int, input().split())
a = list(map(int, input().split()))
cnt = t
for i in range(len(a)):
cnt -= 86400 - a[i]
if cnt <= 0:
print(i + 1)
exit()
```
| 3
|
|
868
|
A
|
Bark to Unlock
|
PROGRAMMING
| 900
|
[
"brute force",
"implementation",
"strings"
] | null | null |
As technologies develop, manufacturers are making the process of unlocking a phone as user-friendly as possible. To unlock its new phone, Arkady's pet dog Mu-mu has to bark the password once. The phone represents a password as a string of two lowercase English letters.
Mu-mu's enemy Kashtanka wants to unlock Mu-mu's phone to steal some sensible information, but it can only bark *n* distinct words, each of which can be represented as a string of two lowercase English letters. Kashtanka wants to bark several words (not necessarily distinct) one after another to pronounce a string containing the password as a substring. Tell if it's possible to unlock the phone in this way, or not.
|
The first line contains two lowercase English lettersΒ β the password on the phone.
The second line contains single integer *n* (1<=β€<=*n*<=β€<=100)Β β the number of words Kashtanka knows.
The next *n* lines contain two lowercase English letters each, representing the words Kashtanka knows. The words are guaranteed to be distinct.
|
Print "YES" if Kashtanka can bark several words in a line forming a string containing the password, and "NO" otherwise.
You can print each letter in arbitrary case (upper or lower).
|
[
"ya\n4\nah\noy\nto\nha\n",
"hp\n2\nht\ntp\n",
"ah\n1\nha\n"
] |
[
"YES\n",
"NO\n",
"YES\n"
] |
In the first example the password is "ya", and Kashtanka can bark "oy" and then "ah", and then "ha" to form the string "oyahha" which contains the password. So, the answer is "YES".
In the second example Kashtanka can't produce a string containing password as a substring. Note that it can bark "ht" and then "tp" producing "http", but it doesn't contain the password "hp" as a substring.
In the third example the string "hahahaha" contains "ah" as a substring.
| 250
|
[
{
"input": "ya\n4\nah\noy\nto\nha",
"output": "YES"
},
{
"input": "hp\n2\nht\ntp",
"output": "NO"
},
{
"input": "ah\n1\nha",
"output": "YES"
},
{
"input": "bb\n4\nba\nab\naa\nbb",
"output": "YES"
},
{
"input": "bc\n4\nca\nba\nbb\ncc",
"output": "YES"
},
{
"input": "ba\n4\ncd\nad\ncc\ncb",
"output": "YES"
},
{
"input": "pg\n4\nzl\nxs\ndi\nxn",
"output": "NO"
},
{
"input": "bn\n100\ndf\nyb\nze\nml\nyr\nof\nnw\nfm\ndw\nlv\nzr\nhu\nzt\nlw\nld\nmo\nxz\ntp\nmr\nou\nme\npx\nvp\nes\nxi\nnr\nbx\nqc\ngm\njs\nkn\ntw\nrq\nkz\nuc\nvc\nqr\nab\nna\nro\nya\nqy\ngu\nvk\nqk\ngs\nyq\nop\nhw\nrj\neo\nlz\nbh\nkr\nkb\nma\nrd\nza\nuf\nhq\nmc\nmn\nti\nwn\nsh\nax\nsi\nnd\ntz\ndu\nfj\nkl\nws\now\nnf\nvr\nye\nzc\niw\nfv\nkv\noo\nsm\nbc\nrs\nau\nuz\nuv\ngh\nsu\njn\ndz\nrl\nwj\nbk\nzl\nas\nms\nit\nwu",
"output": "YES"
},
{
"input": "bb\n1\naa",
"output": "NO"
},
{
"input": "qm\n25\nqw\nwe\ner\nrt\nty\nyu\nui\nio\nop\npa\nas\nsd\ndf\nfg\ngh\nhj\njk\nkl\nlz\nzx\nxc\ncv\nvb\nbn\nnm",
"output": "NO"
},
{
"input": "mq\n25\nqw\nwe\ner\nrt\nty\nyu\nui\nio\nop\npa\nas\nsd\ndf\nfg\ngh\nhj\njk\nkl\nlz\nzx\nxc\ncv\nvb\nbn\nnm",
"output": "YES"
},
{
"input": "aa\n1\naa",
"output": "YES"
},
{
"input": "bb\n1\nbb",
"output": "YES"
},
{
"input": "ba\n1\ncc",
"output": "NO"
},
{
"input": "ha\n1\nha",
"output": "YES"
},
{
"input": "aa\n1\naa",
"output": "YES"
},
{
"input": "ez\n1\njl",
"output": "NO"
},
{
"input": "aa\n2\nab\nba",
"output": "YES"
},
{
"input": "aa\n2\nca\ncc",
"output": "NO"
},
{
"input": "dd\n2\nac\ndc",
"output": "NO"
},
{
"input": "qc\n2\nyc\nkr",
"output": "NO"
},
{
"input": "aa\n3\nba\nbb\nab",
"output": "YES"
},
{
"input": "ca\n3\naa\nbb\nab",
"output": "NO"
},
{
"input": "ca\n3\nbc\nbd\nca",
"output": "YES"
},
{
"input": "dd\n3\nmt\nrg\nxl",
"output": "NO"
},
{
"input": "be\n20\nad\ncd\ncb\ndb\ndd\naa\nab\nca\nae\ned\ndc\nbb\nba\nda\nee\nea\ncc\nac\nec\neb",
"output": "YES"
},
{
"input": "fc\n20\nca\nbb\nce\nfd\nde\nfa\ncc\nec\nfb\nfc\nff\nbe\ncf\nba\ndb\ned\naf\nae\nda\nef",
"output": "YES"
},
{
"input": "ca\n20\ndc\naf\ndf\neg\naa\nbc\nea\nbd\nab\ndb\ngc\nfb\nba\nbe\nee\ngf\ncf\nag\nga\nca",
"output": "YES"
},
{
"input": "ke\n20\nzk\nra\nbq\nqz\nwt\nzg\nmz\nuk\nge\nuv\nud\nfd\neh\ndm\nsk\nki\nfv\ntp\nat\nfb",
"output": "YES"
},
{
"input": "hh\n50\nag\nhg\ndg\nfh\neg\ngh\ngd\nda\nbh\nab\nhf\ndc\nhb\nfe\nad\nec\nac\nfd\nca\naf\ncg\nhd\neb\nce\nhe\nha\ngb\nea\nae\nfb\nff\nbe\nch\nhh\nee\nde\nge\ngf\naa\ngg\neh\ned\nbf\nfc\nah\nga\nbd\ncb\nbg\nbc",
"output": "YES"
},
{
"input": "id\n50\nhi\ndc\nfg\nee\ngi\nhc\nac\nih\ndg\nfc\nde\ned\nie\neb\nic\ncf\nib\nfa\ngc\nba\nbe\nga\nha\nhg\nia\ndf\nab\nei\neh\nad\nii\nci\ndh\nec\nif\ndi\nbg\nag\nhe\neg\nca\nae\ndb\naa\nid\nfh\nhh\ncc\nfb\ngb",
"output": "YES"
},
{
"input": "fe\n50\nje\nbi\nbg\ngc\nfb\nig\ndf\nji\ndg\nfe\nfc\ncf\ngf\nai\nhe\nac\nch\nja\ngh\njf\nge\ncb\nij\ngb\ncg\naf\neh\nee\nhd\njd\njb\nii\nca\nci\nga\nab\nhi\nag\nfj\nej\nfi\nie\ndj\nfg\nef\njc\njg\njh\nhf\nha",
"output": "YES"
},
{
"input": "rn\n50\nba\nec\nwg\nao\nlk\nmz\njj\ncf\nfa\njk\ndy\nsz\njs\nzr\nqv\ntx\nwv\nrd\nqw\nls\nrr\nvt\nrx\nkc\neh\nnj\niq\nyi\nkh\nue\nnv\nkz\nrn\nes\nua\nzf\nvu\nll\neg\nmj\ncz\nzj\nxz\net\neb\nci\nih\nig\nam\nvd",
"output": "YES"
},
{
"input": "ee\n100\nah\nfb\ncd\nbi\nii\nai\nid\nag\nie\nha\ndi\nec\nae\nce\njb\ndg\njg\ngd\ngf\nda\nih\nbd\nhj\ngg\nhb\ndf\ned\nfh\naf\nja\nci\nfc\nic\nji\nac\nhi\nfj\nch\nbc\njd\naa\nff\nad\ngj\nej\nde\nee\nhe\ncf\nga\nia\ncg\nbb\nhc\nbe\ngi\njf\nbg\naj\njj\nbh\nfe\ndj\nef\ngb\nge\ndb\nig\ncj\ndc\nij\njh\nei\ndd\nib\nhf\neg\nbf\nfg\nab\ngc\nfd\nhd\ngh\neh\njc\neb\nhh\nca\nje\nbj\nif\nea\nhg\nfa\ncc\nba\ndh\ncb\nfi",
"output": "YES"
},
{
"input": "if\n100\njd\nbc\nje\nhi\nga\nde\nkb\nfc\ncd\ngd\naj\ncb\nei\nbf\ncf\ndk\ndb\ncg\nki\ngg\nkg\nfa\nkj\nii\njf\njg\ngb\nbh\nbg\neh\nhj\nhb\ndg\ndj\njc\njb\nce\ndi\nig\nci\ndf\nji\nhc\nfk\naf\nac\ngk\nhd\nae\nkd\nec\nkc\neb\nfh\nij\nie\nca\nhh\nkf\nha\ndd\nif\nef\nih\nhg\nej\nfe\njk\nea\nib\nck\nhf\nak\ngi\nch\ndc\nba\nke\nad\nka\neg\njh\nja\ngc\nfd\ncc\nab\ngj\nik\nfg\nbj\nhe\nfj\nge\ngh\nhk\nbk\ned\nid\nfi",
"output": "YES"
},
{
"input": "kd\n100\nek\nea\nha\nkf\nkj\ngh\ndl\nfj\nal\nga\nlj\nik\ngd\nid\ncb\nfh\ndk\nif\nbh\nkb\nhc\nej\nhk\ngc\ngb\nef\nkk\nll\nlf\nkh\ncl\nlh\njj\nil\nhh\nci\ndb\ndf\ngk\njg\nch\nbd\ncg\nfg\nda\neb\nlg\ndg\nbk\nje\nbg\nbl\njl\ncj\nhb\nei\naa\ngl\nka\nfa\nfi\naf\nkc\nla\ngi\nij\nib\nle\ndi\nck\nag\nlc\nca\nge\nie\nlb\nke\nii\nae\nig\nic\nhe\ncf\nhd\nak\nfb\nhi\ngf\nad\nba\nhg\nbi\nkl\nac\ngg\ngj\nbe\nlk\nld\naj",
"output": "YES"
},
{
"input": "ab\n1\nab",
"output": "YES"
},
{
"input": "ya\n1\nya",
"output": "YES"
},
{
"input": "ay\n1\nyb",
"output": "NO"
},
{
"input": "ax\n2\nii\nxa",
"output": "YES"
},
{
"input": "hi\n1\nhi",
"output": "YES"
},
{
"input": "ag\n1\nag",
"output": "YES"
},
{
"input": "th\n1\nth",
"output": "YES"
},
{
"input": "sb\n1\nsb",
"output": "YES"
},
{
"input": "hp\n1\nhp",
"output": "YES"
},
{
"input": "ah\n1\nah",
"output": "YES"
},
{
"input": "ta\n1\nta",
"output": "YES"
},
{
"input": "tb\n1\ntb",
"output": "YES"
},
{
"input": "ab\n5\nca\nda\nea\nfa\nka",
"output": "NO"
},
{
"input": "ac\n1\nac",
"output": "YES"
},
{
"input": "ha\n2\nha\nzz",
"output": "YES"
},
{
"input": "ok\n1\nok",
"output": "YES"
},
{
"input": "bc\n1\nbc",
"output": "YES"
},
{
"input": "az\n1\nzz",
"output": "NO"
},
{
"input": "ab\n2\nba\ntt",
"output": "YES"
},
{
"input": "ah\n2\nap\nhp",
"output": "NO"
},
{
"input": "sh\n1\nsh",
"output": "YES"
},
{
"input": "az\n1\nby",
"output": "NO"
},
{
"input": "as\n1\nas",
"output": "YES"
},
{
"input": "ab\n2\nab\ncd",
"output": "YES"
},
{
"input": "ab\n2\nxa\nza",
"output": "NO"
},
{
"input": "ab\n2\net\nab",
"output": "YES"
},
{
"input": "ab\n1\naa",
"output": "NO"
},
{
"input": "ab\n2\nab\nde",
"output": "YES"
},
{
"input": "ah\n2\nba\nha",
"output": "YES"
},
{
"input": "ha\n3\ndd\ncc\nha",
"output": "YES"
},
{
"input": "oo\n1\nox",
"output": "NO"
},
{
"input": "ab\n2\nax\nbx",
"output": "NO"
},
{
"input": "ww\n4\nuw\now\npo\nko",
"output": "NO"
},
{
"input": "ay\n1\nay",
"output": "YES"
},
{
"input": "yo\n1\nyo",
"output": "YES"
},
{
"input": "ba\n1\nba",
"output": "YES"
},
{
"input": "qw\n1\nqw",
"output": "YES"
},
{
"input": "la\n1\nla",
"output": "YES"
},
{
"input": "ab\n2\nbb\nbc",
"output": "NO"
},
{
"input": "aa\n2\nab\nac",
"output": "NO"
},
{
"input": "ah\n2\nbb\nha",
"output": "YES"
},
{
"input": "ya\n42\nab\nac\nad\nae\naf\nag\nah\nai\nak\naj\nba\nbc\nbd\nbe\nbf\nbg\nbh\nbi\nbk\nbj\ncb\nca\ncd\nce\ncf\ncg\nch\nci\nck\ncj\ndb\ndc\nda\nde\ndf\ndg\ndh\ndi\ndk\ndj\nef\nek",
"output": "NO"
},
{
"input": "ab\n3\nab\nxx\nyy",
"output": "YES"
},
{
"input": "ab\n2\nab\ncc",
"output": "YES"
},
{
"input": "sa\n2\nxx\nas",
"output": "YES"
},
{
"input": "ma\n1\nma",
"output": "YES"
},
{
"input": "ba\n1\nbb",
"output": "NO"
},
{
"input": "bc\n1\nab",
"output": "NO"
},
{
"input": "fa\n1\nfa",
"output": "YES"
},
{
"input": "ap\n1\nap",
"output": "YES"
},
{
"input": "ab\n1\nbb",
"output": "NO"
},
{
"input": "bk\n1\nbk",
"output": "YES"
},
{
"input": "xy\n2\nxy\naa",
"output": "YES"
},
{
"input": "ab\n2\nza\nbz",
"output": "YES"
}
] | 1,508,141,805
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 90
| 62
| 5,529,600
|
p =input()
n =int(input())
arr =[]
for i in range(n):
arr.append(input())
for i in range(n):
for j in range(n):
if p in str(arr[i]+arr[j]):
print ("YES")
exit()
print ("NO")
|
Title: Bark to Unlock
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
As technologies develop, manufacturers are making the process of unlocking a phone as user-friendly as possible. To unlock its new phone, Arkady's pet dog Mu-mu has to bark the password once. The phone represents a password as a string of two lowercase English letters.
Mu-mu's enemy Kashtanka wants to unlock Mu-mu's phone to steal some sensible information, but it can only bark *n* distinct words, each of which can be represented as a string of two lowercase English letters. Kashtanka wants to bark several words (not necessarily distinct) one after another to pronounce a string containing the password as a substring. Tell if it's possible to unlock the phone in this way, or not.
Input Specification:
The first line contains two lowercase English lettersΒ β the password on the phone.
The second line contains single integer *n* (1<=β€<=*n*<=β€<=100)Β β the number of words Kashtanka knows.
The next *n* lines contain two lowercase English letters each, representing the words Kashtanka knows. The words are guaranteed to be distinct.
Output Specification:
Print "YES" if Kashtanka can bark several words in a line forming a string containing the password, and "NO" otherwise.
You can print each letter in arbitrary case (upper or lower).
Demo Input:
['ya\n4\nah\noy\nto\nha\n', 'hp\n2\nht\ntp\n', 'ah\n1\nha\n']
Demo Output:
['YES\n', 'NO\n', 'YES\n']
Note:
In the first example the password is "ya", and Kashtanka can bark "oy" and then "ah", and then "ha" to form the string "oyahha" which contains the password. So, the answer is "YES".
In the second example Kashtanka can't produce a string containing password as a substring. Note that it can bark "ht" and then "tp" producing "http", but it doesn't contain the password "hp" as a substring.
In the third example the string "hahahaha" contains "ah" as a substring.
|
```python
p =input()
n =int(input())
arr =[]
for i in range(n):
arr.append(input())
for i in range(n):
for j in range(n):
if p in str(arr[i]+arr[j]):
print ("YES")
exit()
print ("NO")
```
| 3
|
|
129
|
B
|
Students and Shoelaces
|
PROGRAMMING
| 1,200
|
[
"brute force",
"dfs and similar",
"graphs",
"implementation"
] | null | null |
Anna and Maria are in charge of the math club for junior students. When the club gathers together, the students behave badly. They've brought lots of shoe laces to the club and got tied with each other. Specifically, each string ties together two students. Besides, if two students are tied, then the lace connects the first student with the second one as well as the second student with the first one.
To restore order, Anna and Maria do the following. First, for each student Anna finds out what other students he is tied to. If a student is tied to exactly one other student, Anna reprimands him. Then Maria gathers in a single group all the students who have been just reprimanded. She kicks them out from the club. This group of students immediately leaves the club. These students takes with them the laces that used to tie them. Then again for every student Anna finds out how many other students he is tied to and so on. And they do so until Anna can reprimand at least one student.
Determine how many groups of students will be kicked out of the club.
|
The first line contains two integers *n* and *m* β the initial number of students and laces (). The students are numbered from 1 to *n*, and the laces are numbered from 1 to *m*. Next *m* lines each contain two integers *a* and *b* β the numbers of students tied by the *i*-th lace (1<=β€<=*a*,<=*b*<=β€<=*n*,<=*a*<=β <=*b*). It is guaranteed that no two students are tied with more than one lace. No lace ties a student to himself.
|
Print the single number β the number of groups of students that will be kicked out from the club.
|
[
"3 3\n1 2\n2 3\n3 1\n",
"6 3\n1 2\n2 3\n3 4\n",
"6 5\n1 4\n2 4\n3 4\n5 4\n6 4\n"
] |
[
"0\n",
"2\n",
"1\n"
] |
In the first sample Anna and Maria won't kick out any group of students β in the initial position every student is tied to two other students and Anna won't be able to reprimand anyone.
In the second sample four students are tied in a chain and two more are running by themselves. First Anna and Maria kick out the two students from both ends of the chain (1 and 4), then β two other students from the chain (2 and 3). At that the students who are running by themselves will stay in the club.
In the third sample Anna and Maria will momentarily kick out all students except for the fourth one and the process stops at that point. The correct answer is one.
| 1,000
|
[
{
"input": "3 3\n1 2\n2 3\n3 1",
"output": "0"
},
{
"input": "6 3\n1 2\n2 3\n3 4",
"output": "2"
},
{
"input": "6 5\n1 4\n2 4\n3 4\n5 4\n6 4",
"output": "1"
},
{
"input": "100 0",
"output": "0"
},
{
"input": "5 5\n1 2\n2 3\n3 4\n4 5\n5 1",
"output": "0"
},
{
"input": "5 4\n1 4\n4 3\n4 5\n5 2",
"output": "2"
},
{
"input": "11 10\n1 2\n1 3\n3 4\n1 5\n5 6\n6 7\n1 8\n8 9\n9 10\n10 11",
"output": "4"
},
{
"input": "7 7\n1 2\n2 3\n3 1\n1 4\n4 5\n4 6\n4 7",
"output": "2"
},
{
"input": "12 49\n6 3\n12 9\n10 11\n3 5\n10 2\n6 9\n8 5\n6 12\n7 3\n3 12\n3 2\n5 6\n7 5\n9 2\n11 1\n7 6\n5 4\n8 7\n12 5\n5 11\n8 9\n10 3\n6 2\n10 4\n9 10\n9 11\n11 3\n5 9\n11 6\n10 8\n7 9\n10 7\n4 6\n3 8\n4 11\n12 2\n4 9\n2 11\n7 11\n1 5\n7 2\n8 1\n4 12\n9 1\n4 2\n8 2\n11 12\n3 1\n1 6",
"output": "0"
},
{
"input": "10 29\n4 5\n1 7\n4 2\n3 8\n7 6\n8 10\n10 6\n4 1\n10 1\n6 2\n7 4\n7 10\n2 7\n9 8\n5 10\n2 5\n8 5\n4 9\n2 8\n5 7\n4 8\n7 3\n6 5\n1 3\n1 9\n10 4\n10 9\n10 2\n2 3",
"output": "0"
},
{
"input": "9 33\n5 7\n5 9\n9 6\n9 1\n7 4\n3 5\n7 8\n8 6\n3 6\n8 2\n3 8\n1 6\n1 8\n1 4\n4 2\n1 2\n2 5\n3 4\n8 5\n2 6\n3 1\n1 5\n1 7\n3 2\n5 4\n9 4\n3 9\n7 3\n6 4\n9 8\n7 9\n8 4\n6 5",
"output": "0"
},
{
"input": "7 8\n5 7\n2 7\n1 6\n1 3\n3 7\n6 3\n6 4\n2 6",
"output": "1"
},
{
"input": "6 15\n3 1\n4 5\n1 4\n6 2\n3 5\n6 3\n1 6\n1 5\n2 3\n2 5\n6 4\n5 6\n4 2\n1 2\n3 4",
"output": "0"
},
{
"input": "7 11\n5 3\n6 5\n6 4\n1 6\n7 1\n2 6\n7 5\n2 5\n3 1\n3 4\n2 4",
"output": "0"
},
{
"input": "95 0",
"output": "0"
},
{
"input": "100 0",
"output": "0"
},
{
"input": "62 30\n29 51\n29 55\n4 12\n53 25\n36 28\n32 11\n29 11\n47 9\n21 8\n25 4\n51 19\n26 56\n22 21\n37 9\n9 33\n7 25\n16 7\n40 49\n15 21\n49 58\n34 30\n20 46\n62 48\n53 57\n33 6\n60 37\n41 34\n62 36\n36 43\n11 39",
"output": "2"
},
{
"input": "56 25\n12 40\n31 27\n18 40\n1 43\n9 10\n25 47\n27 29\n26 28\n19 38\n19 40\n22 14\n21 51\n29 31\n55 29\n51 33\n20 17\n24 15\n3 48\n31 56\n15 29\n49 42\n50 4\n22 42\n25 17\n18 51",
"output": "3"
},
{
"input": "51 29\n36 30\n37 45\n4 24\n40 18\n47 35\n15 1\n30 38\n15 18\n32 40\n34 42\n2 47\n35 21\n25 28\n13 1\n13 28\n36 1\n46 47\n22 17\n41 45\n43 45\n40 15\n29 35\n47 15\n30 21\n9 14\n18 38\n18 50\n42 10\n31 41",
"output": "3"
},
{
"input": "72 45\n5 15\n8 18\n40 25\n71 66\n67 22\n6 44\n16 25\n8 23\n19 70\n26 34\n48 15\n24 2\n54 68\n44 43\n17 37\n49 19\n71 49\n34 38\n59 1\n65 70\n11 54\n5 11\n15 31\n29 50\n48 16\n70 57\n25 59\n2 59\n56 12\n66 62\n24 16\n46 27\n45 67\n68 43\n31 11\n31 30\n8 44\n64 33\n38 44\n54 10\n13 9\n7 51\n25 4\n40 70\n26 65",
"output": "5"
},
{
"input": "56 22\n17 27\n48 49\n29 8\n47 20\n32 7\n44 5\n14 39\n5 13\n40 2\n50 42\n38 9\n18 37\n16 44\n21 32\n21 39\n37 54\n19 46\n30 47\n17 13\n30 31\n49 16\n56 7",
"output": "4"
},
{
"input": "81 46\n53 58\n31 14\n18 54\n43 61\n57 65\n6 38\n49 5\n6 40\n6 10\n17 72\n27 48\n58 39\n21 75\n21 43\n78 20\n34 4\n15 35\n74 48\n76 15\n49 38\n46 51\n78 9\n80 5\n26 42\n64 31\n46 72\n1 29\n20 17\n32 45\n53 43\n24 5\n52 59\n3 80\n78 19\n61 17\n80 12\n17 8\n63 2\n8 4\n44 10\n53 72\n18 60\n68 15\n17 58\n79 71\n73 35",
"output": "4"
},
{
"input": "82 46\n64 43\n32 24\n57 30\n24 46\n70 12\n23 41\n63 39\n46 70\n4 61\n19 12\n39 79\n14 28\n37 3\n12 27\n15 20\n35 39\n25 64\n59 16\n68 63\n37 14\n76 7\n67 29\n9 5\n14 55\n46 26\n71 79\n47 42\n5 55\n18 45\n28 40\n44 78\n74 9\n60 53\n44 19\n52 81\n65 52\n40 13\n40 19\n43 1\n24 23\n68 9\n16 20\n70 14\n41 40\n29 10\n45 65",
"output": "8"
},
{
"input": "69 38\n63 35\n52 17\n43 69\n2 57\n12 5\n26 36\n13 10\n16 68\n5 18\n5 41\n10 4\n60 9\n39 22\n39 28\n53 57\n13 52\n66 38\n49 61\n12 19\n27 46\n67 7\n25 8\n23 58\n52 34\n29 2\n2 42\n8 53\n57 43\n68 11\n48 28\n56 19\n46 33\n63 21\n57 16\n68 59\n67 34\n28 43\n56 36",
"output": "4"
},
{
"input": "75 31\n32 50\n52 8\n21 9\n68 35\n12 72\n47 26\n38 58\n40 55\n31 70\n53 75\n44 1\n65 22\n33 22\n33 29\n14 39\n1 63\n16 52\n70 15\n12 27\n63 31\n47 9\n71 31\n43 17\n43 49\n8 26\n11 39\n9 22\n30 45\n65 47\n32 9\n60 70",
"output": "4"
},
{
"input": "77 41\n48 45\n50 36\n6 69\n70 3\n22 21\n72 6\n54 3\n49 31\n2 23\n14 59\n68 58\n4 54\n60 12\n63 60\n44 24\n28 24\n40 8\n5 1\n13 24\n29 15\n19 76\n70 50\n65 71\n23 33\n58 16\n50 42\n71 28\n58 54\n24 73\n6 17\n29 13\n60 4\n42 4\n21 60\n77 39\n57 9\n51 19\n61 6\n49 36\n24 32\n41 66",
"output": "3"
},
{
"input": "72 39\n9 44\n15 12\n2 53\n34 18\n41 70\n54 72\n39 19\n26 7\n4 54\n53 59\n46 49\n70 6\n9 10\n64 51\n31 60\n61 53\n59 71\n9 60\n67 16\n4 16\n34 3\n2 61\n16 23\n34 6\n10 18\n13 38\n66 40\n59 9\n40 14\n38 24\n31 48\n7 69\n20 39\n49 52\n32 67\n61 35\n62 45\n37 54\n5 27",
"output": "8"
},
{
"input": "96 70\n30 37\n47 56\n19 79\n15 28\n2 43\n43 54\n59 75\n42 22\n38 18\n18 14\n47 41\n60 29\n35 11\n90 4\n14 41\n11 71\n41 24\n68 28\n45 92\n14 15\n34 63\n77 32\n67 38\n36 8\n37 4\n58 95\n68 84\n69 81\n35 23\n56 63\n78 91\n35 44\n66 63\n80 19\n87 88\n28 14\n62 35\n24 23\n83 37\n54 89\n14 40\n9 35\n94 9\n56 46\n92 70\n16 58\n96 31\n53 23\n56 5\n36 42\n89 77\n29 51\n26 13\n46 70\n25 56\n95 96\n3 51\n76 8\n36 82\n44 85\n54 56\n89 67\n32 5\n82 78\n33 65\n43 28\n35 1\n94 13\n26 24\n10 51",
"output": "4"
},
{
"input": "76 49\n15 59\n23 26\n57 48\n49 51\n42 76\n36 40\n37 40\n29 15\n28 71\n47 70\n27 39\n76 21\n55 16\n21 18\n19 1\n25 31\n51 71\n54 42\n28 9\n61 69\n33 9\n18 19\n58 51\n51 45\n29 34\n9 67\n26 8\n70 37\n11 62\n24 22\n59 76\n67 17\n59 11\n54 1\n12 57\n23 3\n46 47\n37 20\n65 9\n51 12\n31 19\n56 13\n58 22\n26 59\n39 76\n27 11\n48 64\n59 35\n44 75",
"output": "5"
},
{
"input": "52 26\n29 41\n16 26\n18 48\n31 17\n37 42\n26 1\n11 7\n29 6\n23 17\n12 47\n34 23\n41 16\n15 35\n25 21\n45 7\n52 2\n37 10\n28 19\n1 27\n30 47\n42 35\n50 30\n30 34\n19 30\n42 25\n47 31",
"output": "3"
},
{
"input": "86 48\n59 34\n21 33\n45 20\n62 23\n4 68\n2 65\n63 26\n64 20\n51 34\n64 21\n68 78\n61 80\n81 3\n38 39\n47 48\n24 34\n44 71\n72 78\n50 2\n13 51\n82 78\n11 74\n14 48\n2 75\n49 55\n63 85\n20 85\n4 53\n51 15\n11 67\n1 15\n2 64\n10 81\n6 7\n68 18\n84 28\n77 69\n10 36\n15 14\n32 86\n16 79\n26 13\n38 55\n47 43\n47 39\n45 37\n58 81\n42 35",
"output": "8"
},
{
"input": "58 29\n27 24\n40 52\n51 28\n44 50\n7 28\n14 53\n10 16\n16 45\n8 56\n35 26\n39 6\n6 14\n45 22\n35 13\n20 17\n42 6\n37 21\n4 11\n26 56\n54 55\n3 57\n40 3\n55 27\n4 51\n35 29\n50 16\n47 7\n48 20\n1 37",
"output": "3"
},
{
"input": "51 23\n46 47\n31 27\n1 20\n49 16\n2 10\n29 47\n13 27\n34 26\n31 2\n28 20\n17 40\n39 4\n29 26\n28 44\n3 39\n50 12\n19 1\n30 21\n41 23\n2 29\n16 3\n49 28\n49 41",
"output": "4"
},
{
"input": "75 43\n46 34\n33 12\n51 39\n47 74\n68 64\n40 46\n20 51\n47 19\n4 5\n57 59\n12 26\n68 65\n38 42\n73 37\n5 74\n36 61\n8 18\n58 33\n34 73\n42 43\n10 49\n70 50\n49 18\n24 53\n71 73\n44 24\n49 56\n24 29\n44 67\n70 46\n57 25\n73 63\n3 51\n30 71\n41 44\n17 69\n17 18\n19 68\n42 7\n11 51\n1 5\n72 23\n65 53",
"output": "5"
}
] | 1,624,025,281
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 70
| 186
| 204,800
|
from collections import defaultdict
n,m=map(int,input().split())
dic=defaultdict(list)
li=[0]*n
for i in range(m):
u,v=list(map(int,input().split()))
u=u-1
v=v-1
li[u]+=1
li[v]+=1
dic[u].append(v)
dic[v].append(u)
r=0
for i in range(n):
res=[]
for i in range(n):
if li[i]==1:
res.append(i)
li[i]=0
#print(res)
if len(res)==0:
break
r+=1
for j in res:
for k in dic[j]:
li[k]-=1
print(r)
|
Title: Students and Shoelaces
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Anna and Maria are in charge of the math club for junior students. When the club gathers together, the students behave badly. They've brought lots of shoe laces to the club and got tied with each other. Specifically, each string ties together two students. Besides, if two students are tied, then the lace connects the first student with the second one as well as the second student with the first one.
To restore order, Anna and Maria do the following. First, for each student Anna finds out what other students he is tied to. If a student is tied to exactly one other student, Anna reprimands him. Then Maria gathers in a single group all the students who have been just reprimanded. She kicks them out from the club. This group of students immediately leaves the club. These students takes with them the laces that used to tie them. Then again for every student Anna finds out how many other students he is tied to and so on. And they do so until Anna can reprimand at least one student.
Determine how many groups of students will be kicked out of the club.
Input Specification:
The first line contains two integers *n* and *m* β the initial number of students and laces (). The students are numbered from 1 to *n*, and the laces are numbered from 1 to *m*. Next *m* lines each contain two integers *a* and *b* β the numbers of students tied by the *i*-th lace (1<=β€<=*a*,<=*b*<=β€<=*n*,<=*a*<=β <=*b*). It is guaranteed that no two students are tied with more than one lace. No lace ties a student to himself.
Output Specification:
Print the single number β the number of groups of students that will be kicked out from the club.
Demo Input:
['3 3\n1 2\n2 3\n3 1\n', '6 3\n1 2\n2 3\n3 4\n', '6 5\n1 4\n2 4\n3 4\n5 4\n6 4\n']
Demo Output:
['0\n', '2\n', '1\n']
Note:
In the first sample Anna and Maria won't kick out any group of students β in the initial position every student is tied to two other students and Anna won't be able to reprimand anyone.
In the second sample four students are tied in a chain and two more are running by themselves. First Anna and Maria kick out the two students from both ends of the chain (1 and 4), then β two other students from the chain (2 and 3). At that the students who are running by themselves will stay in the club.
In the third sample Anna and Maria will momentarily kick out all students except for the fourth one and the process stops at that point. The correct answer is one.
|
```python
from collections import defaultdict
n,m=map(int,input().split())
dic=defaultdict(list)
li=[0]*n
for i in range(m):
u,v=list(map(int,input().split()))
u=u-1
v=v-1
li[u]+=1
li[v]+=1
dic[u].append(v)
dic[v].append(u)
r=0
for i in range(n):
res=[]
for i in range(n):
if li[i]==1:
res.append(i)
li[i]=0
#print(res)
if len(res)==0:
break
r+=1
for j in res:
for k in dic[j]:
li[k]-=1
print(r)
```
| 3
|
|
25
|
A
|
IQ test
|
PROGRAMMING
| 1,300
|
[
"brute force"
] |
A. IQ test
|
2
|
256
|
Bob is preparing to pass IQ test. The most frequent task in this test is to find out which one of the given *n* numbers differs from the others. Bob observed that one number usually differs from the others in evenness. Help Bob β to check his answers, he needs a program that among the given *n* numbers finds one that is different in evenness.
|
The first line contains integer *n* (3<=β€<=*n*<=β€<=100) β amount of numbers in the task. The second line contains *n* space-separated natural numbers, not exceeding 100. It is guaranteed, that exactly one of these numbers differs from the others in evenness.
|
Output index of number that differs from the others in evenness. Numbers are numbered from 1 in the input order.
|
[
"5\n2 4 7 8 10\n",
"4\n1 2 1 1\n"
] |
[
"3\n",
"2\n"
] |
none
| 0
|
[
{
"input": "5\n2 4 7 8 10",
"output": "3"
},
{
"input": "4\n1 2 1 1",
"output": "2"
},
{
"input": "3\n1 2 2",
"output": "1"
},
{
"input": "3\n100 99 100",
"output": "2"
},
{
"input": "3\n5 3 2",
"output": "3"
},
{
"input": "4\n43 28 1 91",
"output": "2"
},
{
"input": "4\n75 13 94 77",
"output": "3"
},
{
"input": "4\n97 8 27 3",
"output": "2"
},
{
"input": "10\n95 51 12 91 85 3 1 31 25 7",
"output": "3"
},
{
"input": "20\n88 96 66 51 14 88 2 92 18 72 18 88 20 30 4 82 90 100 24 46",
"output": "4"
},
{
"input": "30\n20 94 56 50 10 98 52 32 14 22 24 60 4 8 98 46 34 68 82 82 98 90 50 20 78 49 52 94 64 36",
"output": "26"
},
{
"input": "50\n79 27 77 57 37 45 27 49 65 33 57 21 71 19 75 85 65 61 23 97 85 9 23 1 9 3 99 77 77 21 79 69 15 37 15 7 93 81 13 89 91 31 45 93 15 97 55 80 85 83",
"output": "48"
},
{
"input": "60\n46 11 73 65 3 69 3 53 43 53 97 47 55 93 31 75 35 3 9 73 23 31 3 81 91 79 61 21 15 11 11 11 81 7 83 75 39 87 83 59 89 55 93 27 49 67 67 29 1 93 11 17 9 19 35 21 63 31 31 25",
"output": "1"
},
{
"input": "70\n28 42 42 92 64 54 22 38 38 78 62 38 4 38 14 66 4 92 66 58 94 26 4 44 41 88 48 82 44 26 74 44 48 4 16 92 34 38 26 64 94 4 30 78 50 54 12 90 8 16 80 98 28 100 74 50 36 42 92 18 76 98 8 22 2 50 58 50 64 46",
"output": "25"
},
{
"input": "100\n43 35 79 53 13 91 91 45 65 83 57 9 42 39 85 45 71 51 61 59 31 13 63 39 25 21 79 39 91 67 21 61 97 75 93 83 29 79 59 97 11 37 63 51 39 55 91 23 21 17 47 23 35 75 49 5 69 99 5 7 41 17 25 89 15 79 21 63 53 81 43 91 59 91 69 99 85 15 91 51 49 37 65 7 89 81 21 93 61 63 97 93 45 17 13 69 57 25 75 73",
"output": "13"
},
{
"input": "100\n50 24 68 60 70 30 52 22 18 74 68 98 20 82 4 46 26 68 100 78 84 58 74 98 38 88 68 86 64 80 82 100 20 22 98 98 52 6 94 10 48 68 2 18 38 22 22 82 44 20 66 72 36 58 64 6 36 60 4 96 76 64 12 90 10 58 64 60 74 28 90 26 24 60 40 58 2 16 76 48 58 36 82 60 24 44 4 78 28 38 8 12 40 16 38 6 66 24 31 76",
"output": "99"
},
{
"input": "100\n47 48 94 48 14 18 94 36 96 22 12 30 94 20 48 98 40 58 2 94 8 36 98 18 98 68 2 60 76 38 18 100 8 72 100 68 2 86 92 72 58 16 48 14 6 58 72 76 6 88 80 66 20 28 74 62 86 68 90 86 2 56 34 38 56 90 4 8 76 44 32 86 12 98 38 34 54 92 70 94 10 24 82 66 90 58 62 2 32 58 100 22 58 72 2 22 68 72 42 14",
"output": "1"
},
{
"input": "99\n38 20 68 60 84 16 28 88 60 48 80 28 4 92 70 60 46 46 20 34 12 100 76 2 40 10 8 86 6 80 50 66 12 34 14 28 26 70 46 64 34 96 10 90 98 96 56 88 50 74 70 94 2 94 24 66 68 46 22 30 6 10 64 32 88 14 98 100 64 58 50 18 50 50 8 38 8 16 54 2 60 54 62 84 92 98 4 72 66 26 14 88 99 16 10 6 88 56 22",
"output": "93"
},
{
"input": "99\n50 83 43 89 53 47 69 1 5 37 63 87 95 15 55 95 75 89 33 53 89 75 93 75 11 85 49 29 11 97 49 67 87 11 25 37 97 73 67 49 87 43 53 97 43 29 53 33 45 91 37 73 39 49 59 5 21 43 87 35 5 63 89 57 63 47 29 99 19 85 13 13 3 13 43 19 5 9 61 51 51 57 15 89 13 97 41 13 99 79 13 27 97 95 73 33 99 27 23",
"output": "1"
},
{
"input": "98\n61 56 44 30 58 14 20 24 88 28 46 56 96 52 58 42 94 50 46 30 46 80 72 88 68 16 6 60 26 90 10 98 76 20 56 40 30 16 96 20 88 32 62 30 74 58 36 76 60 4 24 36 42 54 24 92 28 14 2 74 86 90 14 52 34 82 40 76 8 64 2 56 10 8 78 16 70 86 70 42 70 74 22 18 76 98 88 28 62 70 36 72 20 68 34 48 80 98",
"output": "1"
},
{
"input": "98\n66 26 46 42 78 32 76 42 26 82 8 12 4 10 24 26 64 44 100 46 94 64 30 18 88 28 8 66 30 82 82 28 74 52 62 80 80 60 94 86 64 32 44 88 92 20 12 74 94 28 34 58 4 22 16 10 94 76 82 58 40 66 22 6 30 32 92 54 16 76 74 98 18 48 48 30 92 2 16 42 84 74 30 60 64 52 50 26 16 86 58 96 79 60 20 62 82 94",
"output": "93"
},
{
"input": "95\n9 31 27 93 17 77 75 9 9 53 89 39 51 99 5 1 11 39 27 49 91 17 27 79 81 71 37 75 35 13 93 4 99 55 85 11 23 57 5 43 5 61 15 35 23 91 3 81 99 85 43 37 39 27 5 67 7 33 75 59 13 71 51 27 15 93 51 63 91 53 43 99 25 47 17 71 81 15 53 31 59 83 41 23 73 25 91 91 13 17 25 13 55 57 29",
"output": "32"
},
{
"input": "100\n91 89 81 45 53 1 41 3 77 93 55 97 55 97 87 27 69 95 73 41 93 21 75 35 53 56 5 51 87 59 91 67 33 3 99 45 83 17 97 47 75 97 7 89 17 99 23 23 81 25 55 97 27 35 69 5 77 35 93 19 55 59 37 21 31 37 49 41 91 53 73 69 7 37 37 39 17 71 7 97 55 17 47 23 15 73 31 39 57 37 9 5 61 41 65 57 77 79 35 47",
"output": "26"
},
{
"input": "99\n38 56 58 98 80 54 26 90 14 16 78 92 52 74 40 30 84 14 44 80 16 90 98 68 26 24 78 72 42 16 84 40 14 44 2 52 50 2 12 96 58 66 8 80 44 52 34 34 72 98 74 4 66 74 56 21 8 38 76 40 10 22 48 32 98 34 12 62 80 68 64 82 22 78 58 74 20 22 48 56 12 38 32 72 6 16 74 24 94 84 26 38 18 24 76 78 98 94 72",
"output": "56"
},
{
"input": "100\n44 40 6 40 56 90 98 8 36 64 76 86 98 76 36 92 6 30 98 70 24 98 96 60 24 82 88 68 86 96 34 42 58 10 40 26 56 10 88 58 70 32 24 28 14 82 52 12 62 36 70 60 52 34 74 30 78 76 10 16 42 94 66 90 70 38 52 12 58 22 98 96 14 68 24 70 4 30 84 98 8 50 14 52 66 34 100 10 28 100 56 48 38 12 38 14 91 80 70 86",
"output": "97"
},
{
"input": "100\n96 62 64 20 90 46 56 90 68 36 30 56 70 28 16 64 94 34 6 32 34 50 94 22 90 32 40 2 72 10 88 38 28 92 20 26 56 80 4 100 100 90 16 74 74 84 8 2 30 20 80 32 16 46 92 56 42 12 96 64 64 42 64 58 50 42 74 28 2 4 36 32 70 50 54 92 70 16 45 76 28 16 18 50 48 2 62 94 4 12 52 52 4 100 70 60 82 62 98 42",
"output": "79"
},
{
"input": "99\n14 26 34 68 90 58 50 36 8 16 18 6 2 74 54 20 36 84 32 50 52 2 26 24 3 64 20 10 54 26 66 44 28 72 4 96 78 90 96 86 68 28 94 4 12 46 100 32 22 36 84 32 44 94 76 94 4 52 12 30 74 4 34 64 58 72 44 16 70 56 54 8 14 74 8 6 58 62 98 54 14 40 80 20 36 72 28 98 20 58 40 52 90 64 22 48 54 70 52",
"output": "25"
},
{
"input": "95\n82 86 30 78 6 46 80 66 74 72 16 24 18 52 52 38 60 36 86 26 62 28 22 46 96 26 94 84 20 46 66 88 76 32 12 86 74 18 34 88 4 48 94 6 58 6 100 82 4 24 88 32 54 98 34 48 6 76 42 88 42 28 100 4 22 2 10 66 82 54 98 20 60 66 38 98 32 47 86 58 6 100 12 46 2 42 8 84 78 28 24 70 34 28 86",
"output": "78"
},
{
"input": "90\n40 50 8 42 76 24 58 42 26 68 20 48 54 12 34 84 14 36 32 88 6 50 96 56 20 92 48 16 40 34 96 46 20 84 30 50 20 98 8 44 96 42 8 76 70 38 84 30 40 88 84 72 2 22 52 58 16 62 100 66 80 40 50 32 14 62 88 72 22 99 76 50 84 82 8 82 98 46 26 40 2 98 18 78 30 72 70 18 34 68",
"output": "70"
},
{
"input": "80\n81 43 87 1 55 43 53 61 27 19 43 13 89 9 33 83 75 55 97 71 91 37 95 5 21 69 81 93 95 69 31 83 55 7 97 7 79 57 8 61 27 85 49 1 15 97 63 79 29 73 41 85 5 41 31 93 67 11 63 59 15 99 91 77 43 69 23 23 81 73 19 1 67 51 1 75 99 67 3 81",
"output": "39"
},
{
"input": "98\n13 83 61 27 35 1 85 95 97 73 95 65 73 45 5 43 27 83 91 19 11 3 85 59 9 39 69 23 45 7 51 85 5 71 5 95 1 51 75 3 43 57 3 11 33 71 21 99 47 41 87 39 71 87 31 85 91 49 83 5 49 85 47 91 55 99 33 23 31 23 23 73 29 77 55 31 25 5 81 49 91 15 15 39 87 5 9 40 69 47 29 33 11 21 49 79 51 83",
"output": "88"
},
{
"input": "3\n100 100 1",
"output": "3"
}
] | 1,570,809,609
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 32
| 218
| 0
|
n=int(input())
l=[int(x) for x in input().split()]
e=0
o=0
for i in range(0,3):
if(l[i]%2==0):
e+=1
else:
o+=1
if(e>o):
for i in range(0,n):
if(l[i]%2!=0):
print(i+1)
break
else:
for i in range(0,n):
if(l[i]%2==0):
print(i+1)
break
|
Title: IQ test
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Bob is preparing to pass IQ test. The most frequent task in this test is to find out which one of the given *n* numbers differs from the others. Bob observed that one number usually differs from the others in evenness. Help Bob β to check his answers, he needs a program that among the given *n* numbers finds one that is different in evenness.
Input Specification:
The first line contains integer *n* (3<=β€<=*n*<=β€<=100) β amount of numbers in the task. The second line contains *n* space-separated natural numbers, not exceeding 100. It is guaranteed, that exactly one of these numbers differs from the others in evenness.
Output Specification:
Output index of number that differs from the others in evenness. Numbers are numbered from 1 in the input order.
Demo Input:
['5\n2 4 7 8 10\n', '4\n1 2 1 1\n']
Demo Output:
['3\n', '2\n']
Note:
none
|
```python
n=int(input())
l=[int(x) for x in input().split()]
e=0
o=0
for i in range(0,3):
if(l[i]%2==0):
e+=1
else:
o+=1
if(e>o):
for i in range(0,n):
if(l[i]%2!=0):
print(i+1)
break
else:
for i in range(0,n):
if(l[i]%2==0):
print(i+1)
break
```
| 3.9455
|
200
|
B
|
Drinks
|
PROGRAMMING
| 800
|
[
"implementation",
"math"
] | null | null |
Little Vasya loves orange juice very much. That's why any food and drink in his kitchen necessarily contains orange juice. There are *n* drinks in his fridge, the volume fraction of orange juice in the *i*-th drink equals *p**i* percent.
One day Vasya decided to make himself an orange cocktail. He took equal proportions of each of the *n* drinks and mixed them. Then he wondered, how much orange juice the cocktail has.
Find the volume fraction of orange juice in the final drink.
|
The first input line contains a single integer *n* (1<=β€<=*n*<=β€<=100) β the number of orange-containing drinks in Vasya's fridge. The second line contains *n* integers *p**i* (0<=β€<=*p**i*<=β€<=100) β the volume fraction of orange juice in the *i*-th drink, in percent. The numbers are separated by a space.
|
Print the volume fraction in percent of orange juice in Vasya's cocktail. The answer will be considered correct if the absolute or relative error does not exceed 10<=<=-<=4.
|
[
"3\n50 50 100\n",
"4\n0 25 50 75\n"
] |
[
"66.666666666667\n",
"37.500000000000\n"
] |
Note to the first sample: let's assume that Vasya takes *x* milliliters of each drink from the fridge. Then the volume of pure juice in the cocktail will equal <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/c1fac6e64d3a8ee6a5ac138cbe51e60039b22473.png" style="max-width: 100.0%;max-height: 100.0%;"/> milliliters. The total cocktail's volume equals 3Β·*x* milliliters, so the volume fraction of the juice in the cocktail equals <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/ceb0664e55a1f9f5fa1243ec74680a4665a4d58d.png" style="max-width: 100.0%;max-height: 100.0%;"/>, that is, 66.(6) percent.
| 500
|
[
{
"input": "3\n50 50 100",
"output": "66.666666666667"
},
{
"input": "4\n0 25 50 75",
"output": "37.500000000000"
},
{
"input": "3\n0 1 8",
"output": "3.000000000000"
},
{
"input": "5\n96 89 93 95 70",
"output": "88.600000000000"
},
{
"input": "7\n62 41 78 4 38 39 75",
"output": "48.142857142857"
},
{
"input": "13\n2 22 7 0 1 17 3 17 11 2 21 26 22",
"output": "11.615384615385"
},
{
"input": "21\n5 4 11 7 0 5 45 21 0 14 51 6 0 16 10 19 8 9 7 12 18",
"output": "12.761904761905"
},
{
"input": "26\n95 70 93 74 94 70 91 70 39 79 80 57 87 75 37 93 48 67 51 90 85 26 23 64 66 84",
"output": "69.538461538462"
},
{
"input": "29\n84 99 72 96 83 92 95 98 97 93 76 84 99 93 81 76 93 99 99 100 95 100 96 95 97 100 71 98 94",
"output": "91.551724137931"
},
{
"input": "33\n100 99 100 100 99 99 99 100 100 100 99 99 99 100 100 100 100 99 100 99 100 100 97 100 100 100 100 100 100 100 98 98 100",
"output": "99.515151515152"
},
{
"input": "34\n14 9 10 5 4 26 18 23 0 1 0 20 18 15 2 2 3 5 14 1 9 4 2 15 7 1 7 19 10 0 0 11 0 2",
"output": "8.147058823529"
},
{
"input": "38\n99 98 100 100 99 92 99 99 98 84 88 94 86 99 93 100 98 99 65 98 85 84 64 97 96 89 79 96 91 84 99 93 72 96 94 97 96 93",
"output": "91.921052631579"
},
{
"input": "52\n100 94 99 98 99 99 99 95 97 97 98 100 100 98 97 100 98 90 100 99 97 94 90 98 100 100 90 99 100 95 98 95 94 85 97 94 96 94 99 99 99 98 100 100 94 99 99 100 98 87 100 100",
"output": "97.019230769231"
},
{
"input": "58\n10 70 12 89 1 82 100 53 40 100 21 69 92 91 67 66 99 77 25 48 8 63 93 39 46 79 82 14 44 42 1 79 0 69 56 73 67 17 59 4 65 80 20 60 77 52 3 61 16 76 33 18 46 100 28 59 9 6",
"output": "50.965517241379"
},
{
"input": "85\n7 8 1 16 0 15 1 7 0 11 15 6 2 12 2 8 9 8 2 0 3 7 15 7 1 8 5 7 2 26 0 3 11 1 8 10 31 0 7 6 1 8 1 0 9 14 4 8 7 16 9 1 0 16 10 9 6 1 1 4 2 7 4 5 4 1 20 6 16 16 1 1 10 17 8 12 14 19 3 8 1 7 10 23 10",
"output": "7.505882352941"
},
{
"input": "74\n5 3 0 7 13 10 12 10 18 5 0 18 2 13 7 17 2 7 5 2 40 19 0 2 2 3 0 45 4 20 0 4 2 8 1 19 3 9 17 1 15 0 16 1 9 4 0 9 32 2 6 18 11 18 1 15 16 12 7 19 5 3 9 28 26 8 3 10 33 29 4 13 28 6",
"output": "10.418918918919"
},
{
"input": "98\n42 9 21 11 9 11 22 12 52 20 10 6 56 9 26 27 1 29 29 14 38 17 41 21 7 45 15 5 29 4 51 20 6 8 34 17 13 53 30 45 0 10 16 41 4 5 6 4 14 2 31 6 0 11 13 3 3 43 13 36 51 0 7 16 28 23 8 36 30 22 8 54 21 45 39 4 50 15 1 30 17 8 18 10 2 20 16 50 6 68 15 6 38 7 28 8 29 41",
"output": "20.928571428571"
},
{
"input": "99\n60 65 40 63 57 44 30 84 3 10 39 53 40 45 72 20 76 11 61 32 4 26 97 55 14 57 86 96 34 69 52 22 26 79 31 4 21 35 82 47 81 28 72 70 93 84 40 4 69 39 83 58 30 7 32 73 74 12 92 23 61 88 9 58 70 32 75 40 63 71 46 55 39 36 14 97 32 16 95 41 28 20 85 40 5 50 50 50 75 6 10 64 38 19 77 91 50 72 96",
"output": "49.191919191919"
},
{
"input": "99\n100 88 40 30 81 80 91 98 69 73 88 96 79 58 14 100 87 84 52 91 83 88 72 83 99 35 54 80 46 79 52 72 85 32 99 39 79 79 45 83 88 50 75 75 50 59 65 75 97 63 92 58 89 46 93 80 89 33 69 86 99 99 66 85 72 74 79 98 85 95 46 63 77 97 49 81 89 39 70 76 68 91 90 56 31 93 51 87 73 95 74 69 87 95 57 68 49 95 92",
"output": "73.484848484848"
},
{
"input": "100\n18 15 17 0 3 3 0 4 1 8 2 22 7 21 5 0 0 8 3 16 1 0 2 9 9 3 10 8 17 20 5 4 8 12 2 3 1 1 3 2 23 0 1 0 5 7 4 0 1 3 3 4 25 2 2 14 8 4 9 3 0 11 0 3 12 3 14 16 7 7 14 1 17 9 0 35 42 12 3 1 25 9 3 8 5 3 2 8 22 14 11 6 3 9 6 8 7 7 4 6",
"output": "7.640000000000"
},
{
"input": "100\n88 77 65 87 100 63 91 96 92 89 77 95 76 80 84 83 100 71 85 98 26 54 74 78 69 59 96 86 88 91 95 26 52 88 64 70 84 81 76 84 94 82 100 66 97 98 43 94 59 94 100 80 98 73 69 83 94 70 74 79 91 31 62 88 69 55 62 97 40 64 62 83 87 85 50 90 69 72 67 49 100 51 69 96 81 90 83 91 86 34 79 69 100 66 97 98 47 97 74 100",
"output": "77.660000000000"
},
{
"input": "100\n91 92 90 91 98 84 85 96 83 98 99 87 94 70 87 75 86 90 89 88 82 83 91 94 88 86 90 99 100 98 97 75 95 99 95 100 91 92 76 93 95 97 88 93 95 81 96 89 88 100 98 87 90 96 100 99 58 90 96 77 92 82 100 100 93 93 98 99 79 88 97 95 98 66 96 83 96 100 99 92 98 98 92 93 100 97 98 100 98 97 100 100 94 90 99 100 98 79 80 81",
"output": "91.480000000000"
},
{
"input": "1\n0",
"output": "0.000000000000"
},
{
"input": "1\n100",
"output": "100.000000000000"
},
{
"input": "1\n78",
"output": "78.000000000000"
},
{
"input": "2\n0 100",
"output": "50.000000000000"
},
{
"input": "2\n100 100",
"output": "100.000000000000"
},
{
"input": "5\n0 0 0 0 1",
"output": "0.200000000000"
},
{
"input": "100\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 99",
"output": "99.990000000000"
},
{
"input": "100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1",
"output": "0.010000000000"
},
{
"input": "5\n100 100 100 100 100",
"output": "100.000000000000"
}
] | 1,697,787,614
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 31
| 124
| 0
|
n = int(input())
pi = list(map(int, input().split()))
total_fraction = sum(pi)
average_fraction = total_fraction / n
print("{:.12f}".format(average_fraction))
|
Title: Drinks
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Little Vasya loves orange juice very much. That's why any food and drink in his kitchen necessarily contains orange juice. There are *n* drinks in his fridge, the volume fraction of orange juice in the *i*-th drink equals *p**i* percent.
One day Vasya decided to make himself an orange cocktail. He took equal proportions of each of the *n* drinks and mixed them. Then he wondered, how much orange juice the cocktail has.
Find the volume fraction of orange juice in the final drink.
Input Specification:
The first input line contains a single integer *n* (1<=β€<=*n*<=β€<=100) β the number of orange-containing drinks in Vasya's fridge. The second line contains *n* integers *p**i* (0<=β€<=*p**i*<=β€<=100) β the volume fraction of orange juice in the *i*-th drink, in percent. The numbers are separated by a space.
Output Specification:
Print the volume fraction in percent of orange juice in Vasya's cocktail. The answer will be considered correct if the absolute or relative error does not exceed 10<=<=-<=4.
Demo Input:
['3\n50 50 100\n', '4\n0 25 50 75\n']
Demo Output:
['66.666666666667\n', '37.500000000000\n']
Note:
Note to the first sample: let's assume that Vasya takes *x* milliliters of each drink from the fridge. Then the volume of pure juice in the cocktail will equal <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/c1fac6e64d3a8ee6a5ac138cbe51e60039b22473.png" style="max-width: 100.0%;max-height: 100.0%;"/> milliliters. The total cocktail's volume equals 3Β·*x* milliliters, so the volume fraction of the juice in the cocktail equals <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/ceb0664e55a1f9f5fa1243ec74680a4665a4d58d.png" style="max-width: 100.0%;max-height: 100.0%;"/>, that is, 66.(6) percent.
|
```python
n = int(input())
pi = list(map(int, input().split()))
total_fraction = sum(pi)
average_fraction = total_fraction / n
print("{:.12f}".format(average_fraction))
```
| 3
|
|
435
|
A
|
Queue on Bus Stop
|
PROGRAMMING
| 1,000
|
[
"implementation"
] | null | null |
It's that time of the year when the Russians flood their countryside summer cottages (dachas) and the bus stop has a lot of people. People rarely go to the dacha on their own, it's usually a group, so the people stand in queue by groups.
The bus stop queue has *n* groups of people. The *i*-th group from the beginning has *a**i* people. Every 30 minutes an empty bus arrives at the bus stop, it can carry at most *m* people. Naturally, the people from the first group enter the bus first. Then go the people from the second group and so on. Note that the order of groups in the queue never changes. Moreover, if some group cannot fit all of its members into the current bus, it waits for the next bus together with other groups standing after it in the queue.
Your task is to determine how many buses is needed to transport all *n* groups to the dacha countryside.
|
The first line contains two integers *n* and *m* (1<=β€<=*n*,<=*m*<=β€<=100). The next line contains *n* integers: *a*1,<=*a*2,<=...,<=*a**n* (1<=β€<=*a**i*<=β€<=*m*).
|
Print a single integer β the number of buses that is needed to transport all *n* groups to the dacha countryside.
|
[
"4 3\n2 3 2 1\n",
"3 4\n1 2 1\n"
] |
[
"3\n",
"1\n"
] |
none
| 500
|
[
{
"input": "4 3\n2 3 2 1",
"output": "3"
},
{
"input": "3 4\n1 2 1",
"output": "1"
},
{
"input": "1 5\n4",
"output": "1"
},
{
"input": "5 1\n1 1 1 1 1",
"output": "5"
},
{
"input": "6 4\n1 3 2 3 4 1",
"output": "5"
},
{
"input": "6 8\n6 1 1 1 4 5",
"output": "3"
},
{
"input": "10 10\n1 10 1 10 1 1 7 8 6 7",
"output": "8"
},
{
"input": "100 100\n85 50 17 89 65 89 5 20 86 26 16 21 85 14 44 31 87 31 6 2 48 67 8 80 79 1 48 36 97 1 5 30 79 50 78 12 2 55 76 100 54 40 26 81 97 96 68 56 87 14 51 17 54 37 52 33 69 62 38 63 74 15 62 78 9 19 67 2 60 58 93 60 18 96 55 48 34 7 79 82 32 58 90 67 20 50 27 15 7 89 98 10 11 15 99 49 4 51 77 52",
"output": "63"
},
{
"input": "10 1\n1 1 1 1 1 1 1 1 1 1",
"output": "10"
},
{
"input": "10 2\n2 2 1 1 1 1 1 2 1 2",
"output": "8"
},
{
"input": "10 3\n1 3 1 1 3 2 2 2 3 3",
"output": "9"
},
{
"input": "10 4\n2 1 1 1 3 4 4 4 1 2",
"output": "6"
},
{
"input": "10 5\n2 2 3 4 4 1 5 3 1 2",
"output": "7"
},
{
"input": "100 3\n1 2 3 2 1 2 2 3 1 3 3 2 2 1 1 2 2 1 1 1 1 2 3 3 2 1 1 2 2 2 3 3 3 2 1 3 1 3 3 2 3 1 2 2 2 3 2 1 1 3 3 3 3 2 1 1 2 3 2 2 3 2 3 2 2 3 2 2 2 2 3 3 3 1 3 3 1 1 2 3 2 2 2 2 3 3 3 2 1 2 3 1 1 2 3 3 1 3 3 2",
"output": "83"
},
{
"input": "100 7\n4 7 4 7 7 4 7 3 5 6 3 5 4 3 7 2 7 2 4 1 6 3 3 7 4 4 5 4 3 6 4 3 2 2 1 4 4 1 7 3 7 7 1 3 1 5 4 1 5 3 5 2 2 1 5 5 1 5 2 7 5 5 1 5 5 4 6 5 1 3 5 6 7 4 1 3 3 4 3 2 7 6 5 7 2 7 1 1 2 2 3 1 3 7 1 3 2 1 1 7",
"output": "71"
},
{
"input": "100 10\n3 4 8 10 8 6 4 3 7 7 6 2 3 1 3 10 1 7 9 3 5 5 2 6 2 9 1 7 4 2 4 1 6 1 7 10 2 5 3 7 6 4 6 2 8 8 8 6 6 10 3 7 4 3 4 1 7 9 3 6 3 6 1 4 9 3 8 1 10 1 4 10 7 7 9 5 3 8 10 2 1 10 8 7 10 8 5 3 1 2 1 10 6 1 5 3 3 5 7 2",
"output": "64"
},
{
"input": "100 15\n3 12 8 3 11 14 12 14 1 11 13 3 5 13 4 14 2 11 7 8 12 9 15 7 15 1 4 11 6 12 1 3 8 13 1 8 14 4 3 14 1 3 1 6 10 15 13 11 12 1 14 13 11 14 11 3 12 7 3 15 14 4 5 6 5 14 7 14 6 2 6 12 6 13 13 1 9 13 15 11 6 3 15 11 9 4 15 8 15 12 1 15 10 10 4 1 15 1 4 1",
"output": "71"
},
{
"input": "100 30\n7 14 22 16 11 13 7 29 20 19 22 6 12 16 1 8 27 21 22 3 15 27 20 12 4 19 1 26 26 22 25 17 29 25 16 29 29 28 16 26 25 14 16 20 5 21 5 15 19 13 17 21 17 19 23 13 1 25 6 30 16 19 12 10 28 8 15 13 14 24 19 30 12 19 22 1 3 14 16 3 20 26 15 19 9 10 19 27 2 16 10 22 15 13 19 3 24 9 8 13",
"output": "71"
},
{
"input": "100 40\n39 19 13 36 11 21 32 12 1 2 39 26 32 39 24 1 4 19 10 4 16 39 32 34 13 24 30 35 3 10 8 18 13 12 39 27 31 40 37 20 17 17 37 5 10 12 22 17 7 1 31 13 11 10 2 6 22 16 2 4 9 27 6 35 22 16 22 30 33 2 26 20 35 19 40 37 19 17 21 28 37 28 40 4 5 4 35 19 26 36 19 12 21 20 21 30 9 16 9 32",
"output": "65"
},
{
"input": "100 50\n2 46 4 6 38 19 15 34 10 35 37 30 3 25 5 45 40 45 33 31 6 20 10 44 11 9 2 14 35 5 9 23 20 2 48 22 25 35 38 31 24 33 35 16 4 30 27 10 12 22 6 24 12 30 23 21 14 12 32 21 7 12 25 43 18 34 34 28 47 13 28 43 18 39 44 42 35 26 35 14 8 29 32 20 29 3 20 6 20 9 9 27 8 42 10 37 42 27 8 1",
"output": "60"
},
{
"input": "100 60\n34 21 39 17 48 46 23 56 46 52 50 39 55 48 54 38 32 38 24 26 44 12 28 9 25 26 10 52 42 60 41 3 16 60 44 29 27 55 19 19 19 57 45 59 29 35 5 14 50 47 57 48 16 7 12 36 58 31 37 58 30 50 19 11 10 41 59 57 49 41 33 9 12 11 53 50 60 51 21 9 44 23 1 16 4 15 17 57 15 17 46 50 18 52 43 24 47 50 19 18",
"output": "74"
},
{
"input": "100 90\n74 65 49 41 3 79 61 83 50 40 13 57 90 14 62 77 36 10 3 5 5 40 50 75 32 26 3 71 79 54 88 50 46 20 42 59 30 36 83 86 60 62 82 68 62 80 18 65 28 28 81 74 62 33 61 35 33 83 90 72 6 6 51 4 22 20 29 10 8 3 84 69 12 17 24 16 12 64 80 74 68 59 1 59 15 59 37 58 79 83 51 56 81 14 37 45 19 31 61 90",
"output": "67"
},
{
"input": "100 99\n69 46 76 47 71 9 66 46 78 17 96 83 56 96 29 3 43 48 79 23 93 61 19 9 29 72 15 84 93 46 71 87 11 43 96 44 54 75 3 66 2 95 46 32 69 52 79 38 57 53 37 60 71 82 28 31 84 58 89 40 62 74 22 50 45 38 99 67 24 28 28 12 69 88 33 10 31 71 46 7 42 81 54 81 96 44 8 1 20 24 28 19 54 35 69 32 71 13 66 15",
"output": "68"
},
{
"input": "90 100\n25 52 88 89 36 17 57 64 66 11 89 61 54 92 48 51 18 42 44 92 6 14 67 100 16 21 17 88 85 73 33 11 94 84 56 72 4 80 90 78 96 5 62 70 54 70 94 80 10 91 100 89 98 87 69 74 88 63 53 79 38 94 89 52 21 82 67 79 100 81 2 40 30 69 34 15 12 33 87 52 95 18 51 30 15 39 30 99 46 84",
"output": "67"
},
{
"input": "5 100\n14 67 15 28 21",
"output": "2"
},
{
"input": "10 100\n2 17 53 94 95 57 36 47 68 48",
"output": "7"
},
{
"input": "1 100\n18",
"output": "1"
},
{
"input": "100 1\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "100"
},
{
"input": "30 100\n56 7 99 83 2 65 35 53 99 36 42 57 13 37 68 52 87 11 50 23 86 24 32 39 97 6 64 1 18 86",
"output": "18"
},
{
"input": "60 100\n18 75 43 88 45 43 20 59 59 79 62 39 53 21 28 46 54 53 97 81 18 15 2 95 84 9 36 70 30 76 17 19 83 40 45 32 31 70 23 14 44 35 79 84 97 96 99 60 3 73 64 83 6 12 67 86 70 89 18 61",
"output": "40"
},
{
"input": "1 73\n24",
"output": "1"
},
{
"input": "4 4\n1 4 4 4",
"output": "4"
},
{
"input": "2 6\n1 4",
"output": "1"
},
{
"input": "2 5\n5 5",
"output": "2"
}
] | 1,417,424,769
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 34
| 77
| 0
|
from sys import stdin
def main():
n, m = map(int, stdin.readline().strip().split())
it = iter(map(int, stdin.readline().strip().split()))
try:
cnt = vol = 0
while True:
x = next(it)
if vol < x:
cnt += 1
vol = m
vol -= x
except StopIteration:
return cnt
print(main())
|
Title: Queue on Bus Stop
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
It's that time of the year when the Russians flood their countryside summer cottages (dachas) and the bus stop has a lot of people. People rarely go to the dacha on their own, it's usually a group, so the people stand in queue by groups.
The bus stop queue has *n* groups of people. The *i*-th group from the beginning has *a**i* people. Every 30 minutes an empty bus arrives at the bus stop, it can carry at most *m* people. Naturally, the people from the first group enter the bus first. Then go the people from the second group and so on. Note that the order of groups in the queue never changes. Moreover, if some group cannot fit all of its members into the current bus, it waits for the next bus together with other groups standing after it in the queue.
Your task is to determine how many buses is needed to transport all *n* groups to the dacha countryside.
Input Specification:
The first line contains two integers *n* and *m* (1<=β€<=*n*,<=*m*<=β€<=100). The next line contains *n* integers: *a*1,<=*a*2,<=...,<=*a**n* (1<=β€<=*a**i*<=β€<=*m*).
Output Specification:
Print a single integer β the number of buses that is needed to transport all *n* groups to the dacha countryside.
Demo Input:
['4 3\n2 3 2 1\n', '3 4\n1 2 1\n']
Demo Output:
['3\n', '1\n']
Note:
none
|
```python
from sys import stdin
def main():
n, m = map(int, stdin.readline().strip().split())
it = iter(map(int, stdin.readline().strip().split()))
try:
cnt = vol = 0
while True:
x = next(it)
if vol < x:
cnt += 1
vol = m
vol -= x
except StopIteration:
return cnt
print(main())
```
| 3
|
|
102
|
B
|
Sum of Digits
|
PROGRAMMING
| 1,000
|
[
"implementation"
] |
B. Sum of Digits
|
2
|
265
|
Having watched the last Harry Potter film, little Gerald also decided to practice magic. He found in his father's magical book a spell that turns any number in the sum of its digits. At the moment Gerald learned that, he came across a number *n*. How many times can Gerald put a spell on it until the number becomes one-digit?
|
The first line contains the only integer *n* (0<=β€<=*n*<=β€<=10100000). It is guaranteed that *n* doesn't contain any leading zeroes.
|
Print the number of times a number can be replaced by the sum of its digits until it only contains one digit.
|
[
"0\n",
"10\n",
"991\n"
] |
[
"0\n",
"1\n",
"3\n"
] |
In the first sample the number already is one-digit β Herald can't cast a spell.
The second test contains number 10. After one casting of a spell it becomes 1, and here the process is completed. Thus, Gerald can only cast the spell once.
The third test contains number 991. As one casts a spell the following transformations take place: 991βββ19βββ10βββ1. After three transformations the number becomes one-digit.
| 1,000
|
[
{
"input": "0",
"output": "0"
},
{
"input": "10",
"output": "1"
},
{
"input": "991",
"output": "3"
},
{
"input": "99",
"output": "2"
},
{
"input": "100",
"output": "1"
},
{
"input": "123456789",
"output": "2"
},
{
"input": "32",
"output": "1"
},
{
"input": "86",
"output": "2"
},
{
"input": "2",
"output": "0"
},
{
"input": "8",
"output": "0"
},
{
"input": "34",
"output": "1"
},
{
"input": "13",
"output": "1"
},
{
"input": "28",
"output": "2"
},
{
"input": "23",
"output": "1"
},
{
"input": "57",
"output": "2"
},
{
"input": "29",
"output": "2"
},
{
"input": "353869285",
"output": "3"
},
{
"input": "549548646",
"output": "2"
},
{
"input": "858893424",
"output": "2"
},
{
"input": "644818852",
"output": "3"
},
{
"input": "360322525",
"output": "3"
},
{
"input": "122937520",
"output": "2"
},
{
"input": "288403032",
"output": "2"
},
{
"input": "677257481",
"output": "3"
},
{
"input": "58059561",
"output": "3"
},
{
"input": "211288847",
"output": "2"
},
{
"input": "339900034079539584",
"output": "2"
},
{
"input": "784084029310269952",
"output": "3"
},
{
"input": "774730557264864000",
"output": "3"
},
{
"input": "478233807148352256",
"output": "3"
},
{
"input": "165646874056812544",
"output": "3"
},
{
"input": "477533739511673792",
"output": "3"
},
{
"input": "660119944377002240",
"output": "3"
},
{
"input": "448375218506078080",
"output": "3"
},
{
"input": "77213334785795616",
"output": "3"
},
{
"input": "165767221702271872",
"output": "3"
},
{
"input": "1",
"output": "0"
},
{
"input": "5",
"output": "0"
},
{
"input": "8",
"output": "0"
},
{
"input": "156161456146164104103460452045416165146141414651641564105461465156445621465146514562146145465165145145614561465145614561",
"output": "3"
},
{
"input": "9",
"output": "0"
}
] | 1,679,064,842
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 51
| 154
| 1,843,200
|
import sys
a= input()
c=0
while 1:
if len(a)==1:
break
a= str(sum(int(i) for i in a))
c+=1
print(c)
|
Title: Sum of Digits
Time Limit: 2 seconds
Memory Limit: 265 megabytes
Problem Description:
Having watched the last Harry Potter film, little Gerald also decided to practice magic. He found in his father's magical book a spell that turns any number in the sum of its digits. At the moment Gerald learned that, he came across a number *n*. How many times can Gerald put a spell on it until the number becomes one-digit?
Input Specification:
The first line contains the only integer *n* (0<=β€<=*n*<=β€<=10100000). It is guaranteed that *n* doesn't contain any leading zeroes.
Output Specification:
Print the number of times a number can be replaced by the sum of its digits until it only contains one digit.
Demo Input:
['0\n', '10\n', '991\n']
Demo Output:
['0\n', '1\n', '3\n']
Note:
In the first sample the number already is one-digit β Herald can't cast a spell.
The second test contains number 10. After one casting of a spell it becomes 1, and here the process is completed. Thus, Gerald can only cast the spell once.
The third test contains number 991. As one casts a spell the following transformations take place: 991βββ19βββ10βββ1. After three transformations the number becomes one-digit.
|
```python
import sys
a= input()
c=0
while 1:
if len(a)==1:
break
a= str(sum(int(i) for i in a))
c+=1
print(c)
```
| 3.958183
|
41
|
A
|
Translation
|
PROGRAMMING
| 800
|
[
"implementation",
"strings"
] |
A. Translation
|
2
|
256
|
The translation from the Berland language into the Birland language is not an easy task. Those languages are very similar: a berlandish word differs from a birlandish word with the same meaning a little: it is spelled (and pronounced) reversely. For example, a Berlandish word code corresponds to a Birlandish word edoc. However, it's easy to make a mistake during the Β«translationΒ». Vasya translated word *s* from Berlandish into Birlandish as *t*. Help him: find out if he translated the word correctly.
|
The first line contains word *s*, the second line contains word *t*. The words consist of lowercase Latin letters. The input data do not consist unnecessary spaces. The words are not empty and their lengths do not exceed 100 symbols.
|
If the word *t* is a word *s*, written reversely, print YES, otherwise print NO.
|
[
"code\nedoc\n",
"abb\naba\n",
"code\ncode\n"
] |
[
"YES\n",
"NO\n",
"NO\n"
] |
none
| 500
|
[
{
"input": "code\nedoc",
"output": "YES"
},
{
"input": "abb\naba",
"output": "NO"
},
{
"input": "code\ncode",
"output": "NO"
},
{
"input": "abacaba\nabacaba",
"output": "YES"
},
{
"input": "q\nq",
"output": "YES"
},
{
"input": "asrgdfngfnmfgnhweratgjkk\nasrgdfngfnmfgnhweratgjkk",
"output": "NO"
},
{
"input": "z\na",
"output": "NO"
},
{
"input": "asd\ndsa",
"output": "YES"
},
{
"input": "abcdef\nfecdba",
"output": "NO"
},
{
"input": "ywjjbirapvskozubvxoemscfwl\ngnduubaogtfaiowjizlvjcu",
"output": "NO"
},
{
"input": "mfrmqxtzvgaeuleubcmcxcfqyruwzenguhgrmkuhdgnhgtgkdszwqyd\nmfxufheiperjnhyczclkmzyhcxntdfskzkzdwzzujdinf",
"output": "NO"
},
{
"input": "bnbnemvybqizywlnghlykniaxxxlkhftppbdeqpesrtgkcpoeqowjwhrylpsziiwcldodcoonpimudvrxejjo\ntiynnekmlalogyvrgptbinkoqdwzuiyjlrldxhzjmmp",
"output": "NO"
},
{
"input": "pwlpubwyhzqvcitemnhvvwkmwcaawjvdiwtoxyhbhbxerlypelevasmelpfqwjk\nstruuzebbcenziscuoecywugxncdwzyfozhljjyizpqcgkyonyetarcpwkqhuugsqjuixsxptmbnlfupdcfigacdhhrzb",
"output": "NO"
},
{
"input": "gdvqjoyxnkypfvdxssgrihnwxkeojmnpdeobpecytkbdwujqfjtxsqspxvxpqioyfagzjxupqqzpgnpnpxcuipweunqch\nkkqkiwwasbhezqcfeceyngcyuogrkhqecwsyerdniqiocjehrpkljiljophqhyaiefjpavoom",
"output": "NO"
},
{
"input": "umeszdawsvgkjhlqwzents\nhxqhdungbylhnikwviuh",
"output": "NO"
},
{
"input": "juotpscvyfmgntshcealgbsrwwksgrwnrrbyaqqsxdlzhkbugdyx\nibqvffmfktyipgiopznsqtrtxiijntdbgyy",
"output": "NO"
},
{
"input": "zbwueheveouatecaglziqmudxemhrsozmaujrwlqmppzoumxhamwugedikvkblvmxwuofmpafdprbcftew\nulczwrqhctbtbxrhhodwbcxwimncnexosksujlisgclllxokrsbnozthajnnlilyffmsyko",
"output": "NO"
},
{
"input": "nkgwuugukzcv\nqktnpxedwxpxkrxdvgmfgoxkdfpbzvwsduyiybynbkouonhvmzakeiruhfmvrktghadbfkmwxduoqv",
"output": "NO"
},
{
"input": "incenvizhqpcenhjhehvjvgbsnfixbatrrjstxjzhlmdmxijztphxbrldlqwdfimweepkggzcxsrwelodpnryntepioqpvk\ndhjbjjftlvnxibkklxquwmzhjfvnmwpapdrslioxisbyhhfymyiaqhlgecpxamqnocizwxniubrmpyubvpenoukhcobkdojlybxd",
"output": "NO"
},
{
"input": "w\nw",
"output": "YES"
},
{
"input": "vz\nzv",
"output": "YES"
},
{
"input": "ry\nyr",
"output": "YES"
},
{
"input": "xou\nuox",
"output": "YES"
},
{
"input": "axg\ngax",
"output": "NO"
},
{
"input": "zdsl\nlsdz",
"output": "YES"
},
{
"input": "kudl\nldku",
"output": "NO"
},
{
"input": "zzlzwnqlcl\nlclqnwzlzz",
"output": "YES"
},
{
"input": "vzzgicnzqooejpjzads\nsdazjpjeooqzncigzzv",
"output": "YES"
},
{
"input": "raqhmvmzuwaykjpyxsykr\nxkysrypjkyawuzmvmhqar",
"output": "NO"
},
{
"input": "ngedczubzdcqbxksnxuavdjaqtmdwncjnoaicvmodcqvhfezew\nwezefhvqcdomvciaonjcnwdmtqajdvauxnskxbqcdzbuzcdegn",
"output": "YES"
},
{
"input": "muooqttvrrljcxbroizkymuidvfmhhsjtumksdkcbwwpfqdyvxtrlymofendqvznzlmim\nmimlznzvqdnefomylrtxvydqfpwwbckdskmutjshhmfvdiumykziorbxcjlrrvttqooum",
"output": "YES"
},
{
"input": "vxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaivg\ngviayyikkitmuomcpiakhbxszgbnhvwyzkftwoagzixaearxpjacrnvpvbuzenvovehkmmxvblqyxvctroddksdsgebcmlluqpxv",
"output": "YES"
},
{
"input": "mnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfdc\ncdfmkdgrdptkpewbsqvszipgxvgvuiuzbkkwuowbafkikgvnqdkxnayzdjygvezmtsgywnupocdntipiyiorblqkrzjpzatxahnm",
"output": "NO"
},
{
"input": "dgxmzbqofstzcdgthbaewbwocowvhqpinehpjatnnbrijcolvsatbblsrxabzrpszoiecpwhfjmwuhqrapvtcgvikuxtzbftydkw\nwkdytfbztxukivgctvparqhuwmjfhwpceiozsprzbaxrslbbqasvlocjirbnntajphenipthvwocowbweabhtgdcztsfoqbzmxgd",
"output": "NO"
},
{
"input": "gxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwgeh\nhegwxvocotmzstqfbmpjvijgkcyodlxyjawrpkczpmdspsuhoiruavnnnuwvtwohglkdxjetshkboalvzqbgjgthoteceixioxg",
"output": "YES"
},
{
"input": "sihxuwvmaambplxvjfoskinghzicyfqebjtkysotattkahssumfcgrkheotdxwjckpvapbkaepqrxseyfrwtyaycmrzsrsngkh\nhkgnsrszrmcyaytwrfyesxrqpeakbpavpkcjwxdtoehkrgcfmusshakttatosyktjbeqfycizhgniksofjvxlpbmaamvwuxhis",
"output": "YES"
},
{
"input": "ycnahksbughnonldzrhkysujmylcgcfuludjvjiahtkyzqvkopzqcnwhltbzfugzojqkjjlggmvnultascmygelkiktmfieok\nkoeifmtkiklegkmcsatlunvmggkjjlqjozgufzbtlhwncqzpokvqzykthaijvjdulufcgclymjusyyhrzdlnonhgubskhancy",
"output": "NO"
},
{
"input": "wbqasaehtkfojruzyhrlgwmtyiovmzyfifslvlemhqheyaelzwnthrenjsbmntwaoryzwfbxmscmypvxlfmzpnkkjlvwvmtz\nztmvwvljkknpzmflxvpymcsmxbfwzyroawtnmbsjnerhtnwzleayehqhmelvlsfifyzmvoiytmwglrhyzurjofktheasaqbw",
"output": "YES"
},
{
"input": "imippqurprbhfugngtgifelytadegwrgaefnfhbjjnmzikvjaccotqzemufqieqldgnbmviisgkynzeldlhqxuqphjfmyij\njiymfjhpquxqhldleznykgsiivmbngdlqeiqfumezqtoccajvkizmnjjbhfnfeagrwgedatylefigtgngufhbrpruqppimi",
"output": "YES"
},
{
"input": "bikydffiuisckpvzqlteqfhegsagimodb\nbdomigasgehfqetlqzvpkcsiuiffdykib",
"output": "YES"
}
] | 1,427,062,242
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 40
| 124
| 0
|
word = input()
bword = input()
n = len(word) if len(word) < len(bword) else len(bword)
good = True if len(word) == len(bword) else False
for i in range(n):
if word[i] != bword[n - 1 - i]:
good = False
print("YES") if good else print("NO")
|
Title: Translation
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
The translation from the Berland language into the Birland language is not an easy task. Those languages are very similar: a berlandish word differs from a birlandish word with the same meaning a little: it is spelled (and pronounced) reversely. For example, a Berlandish word code corresponds to a Birlandish word edoc. However, it's easy to make a mistake during the Β«translationΒ». Vasya translated word *s* from Berlandish into Birlandish as *t*. Help him: find out if he translated the word correctly.
Input Specification:
The first line contains word *s*, the second line contains word *t*. The words consist of lowercase Latin letters. The input data do not consist unnecessary spaces. The words are not empty and their lengths do not exceed 100 symbols.
Output Specification:
If the word *t* is a word *s*, written reversely, print YES, otherwise print NO.
Demo Input:
['code\nedoc\n', 'abb\naba\n', 'code\ncode\n']
Demo Output:
['YES\n', 'NO\n', 'NO\n']
Note:
none
|
```python
word = input()
bword = input()
n = len(word) if len(word) < len(bword) else len(bword)
good = True if len(word) == len(bword) else False
for i in range(n):
if word[i] != bword[n - 1 - i]:
good = False
print("YES") if good else print("NO")
```
| 3.969
|
437
|
C
|
The Child and Toy
|
PROGRAMMING
| 1,400
|
[
"graphs",
"greedy",
"sortings"
] | null | null |
On Children's Day, the child got a toy from Delayyy as a present. However, the child is so naughty that he can't wait to destroy the toy.
The toy consists of *n* parts and *m* ropes. Each rope links two parts, but every pair of parts is linked by at most one rope. To split the toy, the child must remove all its parts. The child can remove a single part at a time, and each remove consume an energy. Let's define an energy value of part *i* as *v**i*. The child spend *v**f*1<=+<=*v**f*2<=+<=...<=+<=*v**f**k* energy for removing part *i* where *f*1,<=*f*2,<=...,<=*f**k* are the parts that are directly connected to the *i*-th and haven't been removed.
Help the child to find out, what is the minimum total energy he should spend to remove all *n* parts.
|
The first line contains two integers *n* and *m* (1<=β€<=*n*<=β€<=1000; 0<=β€<=*m*<=β€<=2000). The second line contains *n* integers: *v*1,<=*v*2,<=...,<=*v**n* (0<=β€<=*v**i*<=β€<=105). Then followed *m* lines, each line contains two integers *x**i* and *y**i*, representing a rope from part *x**i* to part *y**i* (1<=β€<=*x**i*,<=*y**i*<=β€<=*n*;Β *x**i*<=β <=*y**i*).
Consider all the parts are numbered from 1 to *n*.
|
Output the minimum total energy the child should spend to remove all *n* parts of the toy.
|
[
"4 3\n10 20 30 40\n1 4\n1 2\n2 3\n",
"4 4\n100 100 100 100\n1 2\n2 3\n2 4\n3 4\n",
"7 10\n40 10 20 10 20 80 40\n1 5\n4 7\n4 5\n5 2\n5 7\n6 4\n1 6\n1 3\n4 3\n1 4\n"
] |
[
"40\n",
"400\n",
"160\n"
] |
One of the optimal sequence of actions in the first sample is:
- First, remove part 3, cost of the action is 20. - Then, remove part 2, cost of the action is 10. - Next, remove part 4, cost of the action is 10. - At last, remove part 1, cost of the action is 0.
So the total energy the child paid is 20β+β10β+β10β+β0β=β40, which is the minimum.
In the second sample, the child will spend 400 no matter in what order he will remove the parts.
| 1,500
|
[
{
"input": "4 3\n10 20 30 40\n1 4\n1 2\n2 3",
"output": "40"
},
{
"input": "4 4\n100 100 100 100\n1 2\n2 3\n2 4\n3 4",
"output": "400"
},
{
"input": "7 10\n40 10 20 10 20 80 40\n1 5\n4 7\n4 5\n5 2\n5 7\n6 4\n1 6\n1 3\n4 3\n1 4",
"output": "160"
},
{
"input": "1 0\n23333",
"output": "0"
},
{
"input": "5 4\n1 2 2 2 2\n1 2\n1 3\n1 4\n1 5",
"output": "4"
},
{
"input": "10 30\n3 6 17 15 13 15 6 12 9 1\n3 8\n1 10\n4 7\n1 7\n3 7\n2 9\n8 10\n3 1\n3 4\n8 6\n10 3\n3 9\n2 3\n10 4\n2 10\n5 8\n9 5\n6 1\n2 1\n7 2\n7 6\n7 10\n4 8\n5 6\n3 6\n4 1\n8 9\n7 9\n4 2\n5 10",
"output": "188"
},
{
"input": "3 3\n1 1 1\n1 2\n2 3\n3 1",
"output": "3"
}
] | 1,560,566,082
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 29
| 109
| 0
|
n, m = map(int, input().split())
x = list(map(int, input().split()))
num = 0
for i in range(m):
a, b = map(int, input().split())
a, b = a - 1, b - 1
num += min(x[a], x[b])
print(num)
|
Title: The Child and Toy
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
On Children's Day, the child got a toy from Delayyy as a present. However, the child is so naughty that he can't wait to destroy the toy.
The toy consists of *n* parts and *m* ropes. Each rope links two parts, but every pair of parts is linked by at most one rope. To split the toy, the child must remove all its parts. The child can remove a single part at a time, and each remove consume an energy. Let's define an energy value of part *i* as *v**i*. The child spend *v**f*1<=+<=*v**f*2<=+<=...<=+<=*v**f**k* energy for removing part *i* where *f*1,<=*f*2,<=...,<=*f**k* are the parts that are directly connected to the *i*-th and haven't been removed.
Help the child to find out, what is the minimum total energy he should spend to remove all *n* parts.
Input Specification:
The first line contains two integers *n* and *m* (1<=β€<=*n*<=β€<=1000; 0<=β€<=*m*<=β€<=2000). The second line contains *n* integers: *v*1,<=*v*2,<=...,<=*v**n* (0<=β€<=*v**i*<=β€<=105). Then followed *m* lines, each line contains two integers *x**i* and *y**i*, representing a rope from part *x**i* to part *y**i* (1<=β€<=*x**i*,<=*y**i*<=β€<=*n*;Β *x**i*<=β <=*y**i*).
Consider all the parts are numbered from 1 to *n*.
Output Specification:
Output the minimum total energy the child should spend to remove all *n* parts of the toy.
Demo Input:
['4 3\n10 20 30 40\n1 4\n1 2\n2 3\n', '4 4\n100 100 100 100\n1 2\n2 3\n2 4\n3 4\n', '7 10\n40 10 20 10 20 80 40\n1 5\n4 7\n4 5\n5 2\n5 7\n6 4\n1 6\n1 3\n4 3\n1 4\n']
Demo Output:
['40\n', '400\n', '160\n']
Note:
One of the optimal sequence of actions in the first sample is:
- First, remove part 3, cost of the action is 20. - Then, remove part 2, cost of the action is 10. - Next, remove part 4, cost of the action is 10. - At last, remove part 1, cost of the action is 0.
So the total energy the child paid is 20β+β10β+β10β+β0β=β40, which is the minimum.
In the second sample, the child will spend 400 no matter in what order he will remove the parts.
|
```python
n, m = map(int, input().split())
x = list(map(int, input().split()))
num = 0
for i in range(m):
a, b = map(int, input().split())
a, b = a - 1, b - 1
num += min(x[a], x[b])
print(num)
```
| 3
|
|
785
|
A
|
Anton and Polyhedrons
|
PROGRAMMING
| 800
|
[
"implementation",
"strings"
] | null | null |
Anton's favourite geometric figures are regular polyhedrons. Note that there are five kinds of regular polyhedrons:
- Tetrahedron. Tetrahedron has 4 triangular faces. - Cube. Cube has 6 square faces. - Octahedron. Octahedron has 8 triangular faces. - Dodecahedron. Dodecahedron has 12 pentagonal faces. - Icosahedron. Icosahedron has 20 triangular faces.
All five kinds of polyhedrons are shown on the picture below:
Anton has a collection of *n* polyhedrons. One day he decided to know, how many faces his polyhedrons have in total. Help Anton and find this number!
|
The first line of the input contains a single integer *n* (1<=β€<=*n*<=β€<=200<=000)Β β the number of polyhedrons in Anton's collection.
Each of the following *n* lines of the input contains a string *s**i*Β β the name of the *i*-th polyhedron in Anton's collection. The string can look like this:
- "Tetrahedron" (without quotes), if the *i*-th polyhedron in Anton's collection is a tetrahedron. - "Cube" (without quotes), if the *i*-th polyhedron in Anton's collection is a cube. - "Octahedron" (without quotes), if the *i*-th polyhedron in Anton's collection is an octahedron. - "Dodecahedron" (without quotes), if the *i*-th polyhedron in Anton's collection is a dodecahedron. - "Icosahedron" (without quotes), if the *i*-th polyhedron in Anton's collection is an icosahedron.
|
Output one numberΒ β the total number of faces in all the polyhedrons in Anton's collection.
|
[
"4\nIcosahedron\nCube\nTetrahedron\nDodecahedron\n",
"3\nDodecahedron\nOctahedron\nOctahedron\n"
] |
[
"42\n",
"28\n"
] |
In the first sample Anton has one icosahedron, one cube, one tetrahedron and one dodecahedron. Icosahedron has 20 faces, cube has 6 faces, tetrahedron has 4 faces and dodecahedron has 12 faces. In total, they have 20β+β6β+β4β+β12β=β42 faces.
| 500
|
[
{
"input": "4\nIcosahedron\nCube\nTetrahedron\nDodecahedron",
"output": "42"
},
{
"input": "3\nDodecahedron\nOctahedron\nOctahedron",
"output": "28"
},
{
"input": "25\nIcosahedron\nOctahedron\nTetrahedron\nDodecahedron\nCube\nIcosahedron\nOctahedron\nCube\nTetrahedron\nIcosahedron\nIcosahedron\nTetrahedron\nOctahedron\nDodecahedron\nIcosahedron\nOctahedron\nIcosahedron\nTetrahedron\nDodecahedron\nTetrahedron\nOctahedron\nCube\nCube\nDodecahedron\nTetrahedron",
"output": "256"
},
{
"input": "1\nTetrahedron",
"output": "4"
},
{
"input": "1\nCube",
"output": "6"
},
{
"input": "1\nOctahedron",
"output": "8"
},
{
"input": "1\nDodecahedron",
"output": "12"
},
{
"input": "1\nIcosahedron",
"output": "20"
},
{
"input": "28\nOctahedron\nDodecahedron\nOctahedron\nOctahedron\nDodecahedron\nIcosahedron\nIcosahedron\nDodecahedron\nDodecahedron\nDodecahedron\nCube\nDodecahedron\nCube\nTetrahedron\nCube\nCube\nTetrahedron\nDodecahedron\nDodecahedron\nDodecahedron\nIcosahedron\nIcosahedron\nDodecahedron\nIcosahedron\nDodecahedron\nDodecahedron\nIcosahedron\nIcosahedron",
"output": "340"
}
] | 1,676,892,655
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 30
| 265
| 0
|
n = int(input())
result = 0
a = {
"Tetrahedron": 4,
"Cube": 6,
"Octahedron": 8,
"Dodecahedron": 12,
"Icosahedron": 20,
}
for _ in range(n):
s = input()
result += a[s]
print(result)
|
Title: Anton and Polyhedrons
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Anton's favourite geometric figures are regular polyhedrons. Note that there are five kinds of regular polyhedrons:
- Tetrahedron. Tetrahedron has 4 triangular faces. - Cube. Cube has 6 square faces. - Octahedron. Octahedron has 8 triangular faces. - Dodecahedron. Dodecahedron has 12 pentagonal faces. - Icosahedron. Icosahedron has 20 triangular faces.
All five kinds of polyhedrons are shown on the picture below:
Anton has a collection of *n* polyhedrons. One day he decided to know, how many faces his polyhedrons have in total. Help Anton and find this number!
Input Specification:
The first line of the input contains a single integer *n* (1<=β€<=*n*<=β€<=200<=000)Β β the number of polyhedrons in Anton's collection.
Each of the following *n* lines of the input contains a string *s**i*Β β the name of the *i*-th polyhedron in Anton's collection. The string can look like this:
- "Tetrahedron" (without quotes), if the *i*-th polyhedron in Anton's collection is a tetrahedron. - "Cube" (without quotes), if the *i*-th polyhedron in Anton's collection is a cube. - "Octahedron" (without quotes), if the *i*-th polyhedron in Anton's collection is an octahedron. - "Dodecahedron" (without quotes), if the *i*-th polyhedron in Anton's collection is a dodecahedron. - "Icosahedron" (without quotes), if the *i*-th polyhedron in Anton's collection is an icosahedron.
Output Specification:
Output one numberΒ β the total number of faces in all the polyhedrons in Anton's collection.
Demo Input:
['4\nIcosahedron\nCube\nTetrahedron\nDodecahedron\n', '3\nDodecahedron\nOctahedron\nOctahedron\n']
Demo Output:
['42\n', '28\n']
Note:
In the first sample Anton has one icosahedron, one cube, one tetrahedron and one dodecahedron. Icosahedron has 20 faces, cube has 6 faces, tetrahedron has 4 faces and dodecahedron has 12 faces. In total, they have 20β+β6β+β4β+β12β=β42 faces.
|
```python
n = int(input())
result = 0
a = {
"Tetrahedron": 4,
"Cube": 6,
"Octahedron": 8,
"Dodecahedron": 12,
"Icosahedron": 20,
}
for _ in range(n):
s = input()
result += a[s]
print(result)
```
| 3
|
|
63
|
A
|
Sinking Ship
|
PROGRAMMING
| 900
|
[
"implementation",
"sortings",
"strings"
] |
A. Sinking Ship
|
2
|
256
|
The ship crashed into a reef and is sinking. Now the entire crew must be evacuated. All *n* crew members have already lined up in a row (for convenience let's label them all from left to right with positive integers from 1 to *n*) and await further instructions. However, one should evacuate the crew properly, in a strict order. Specifically:
The first crew members to leave the ship are rats. Then women and children (both groups have the same priority) leave the ship. After that all men are evacuated from the ship. The captain leaves the sinking ship last.
If we cannot determine exactly who should leave the ship first for any two members of the crew by the rules from the previous paragraph, then the one who stands to the left in the line leaves the ship first (or in other words, the one whose number in the line is less).
For each crew member we know his status as a crew member, and also his name. All crew members have different names. Determine the order in which to evacuate the crew.
|
The first line contains an integer *n*, which is the number of people in the crew (1<=β€<=*n*<=β€<=100). Then follow *n* lines. The *i*-th of those lines contains two words β the name of the crew member who is *i*-th in line, and his status on the ship. The words are separated by exactly one space. There are no other spaces in the line. The names consist of Latin letters, the first letter is uppercase, the rest are lowercase. The length of any name is from 1 to 10 characters. The status can have the following values: rat for a rat, woman for a woman, child for a child, man for a man, captain for the captain. The crew contains exactly one captain.
|
Print *n* lines. The *i*-th of them should contain the name of the crew member who must be the *i*-th one to leave the ship.
|
[
"6\nJack captain\nAlice woman\nCharlie man\nTeddy rat\nBob child\nJulia woman\n"
] |
[
"Teddy\nAlice\nBob\nJulia\nCharlie\nJack\n"
] |
none
| 500
|
[
{
"input": "6\nJack captain\nAlice woman\nCharlie man\nTeddy rat\nBob child\nJulia woman",
"output": "Teddy\nAlice\nBob\nJulia\nCharlie\nJack"
},
{
"input": "1\nA captain",
"output": "A"
},
{
"input": "1\nAbcdefjhij captain",
"output": "Abcdefjhij"
},
{
"input": "5\nA captain\nB man\nD woman\nC child\nE rat",
"output": "E\nD\nC\nB\nA"
},
{
"input": "10\nCap captain\nD child\nC woman\nA woman\nE child\nMan man\nB child\nF woman\nRat rat\nRatt rat",
"output": "Rat\nRatt\nD\nC\nA\nE\nB\nF\nMan\nCap"
},
{
"input": "5\nJoyxnkypf captain\nDxssgr woman\nKeojmnpd rat\nGdv man\nHnw man",
"output": "Keojmnpd\nDxssgr\nGdv\nHnw\nJoyxnkypf"
},
{
"input": "11\nJue rat\nWyglbyphk rat\nGjlgu child\nGi man\nAttx rat\nTheorpkgx man\nYm rat\nX child\nB captain\nEnualf rat\nKktsgyuyv woman",
"output": "Jue\nWyglbyphk\nAttx\nYm\nEnualf\nGjlgu\nX\nKktsgyuyv\nGi\nTheorpkgx\nB"
},
{
"input": "22\nWswwcvvm woman\nBtmfats rat\nI rat\nOcmtsnwx man\nUrcqv rat\nYghnogt woman\nWtyfc man\nWqle child\nUjfrelpu rat\nDstixj man\nAhksnio woman\nKhkvaap woman\nSjppvwm rat\nEgdmsv rat\nDank rat\nNquicjnw rat\nLh captain\nTdyaqaqln rat\nQtj rat\nTfgwijvq rat\nNbiso child\nNqthvbf woman",
"output": "Btmfats\nI\nUrcqv\nUjfrelpu\nSjppvwm\nEgdmsv\nDank\nNquicjnw\nTdyaqaqln\nQtj\nTfgwijvq\nWswwcvvm\nYghnogt\nWqle\nAhksnio\nKhkvaap\nNbiso\nNqthvbf\nOcmtsnwx\nWtyfc\nDstixj\nLh"
},
{
"input": "36\nKqxmtwmsf child\nIze woman\nDlpr child\nK woman\nF captain\nRjwfeuhba rat\nBbv rat\nS rat\nMnmg woman\nSmzyx woman\nSr man\nQmhroracn rat\nSoqpuqock rat\nPibdq man\nIlrkrptx rat\nZaecfyqka man\nMmersfs child\nVvvocqi man\nHjeqxvq rat\nMpmb woman\nWmgu woman\nCerelmhoxi child\nA man\nDylv man\nXrdgmmtcpq woman\nXj woman\nCeh child\nOfccguo man\nNevr man\nAknkwdkq child\nBmo man\nLqo woman\nVej child\nT child\nRlijc man\nNsdtpdg woman",
"output": "Rjwfeuhba\nBbv\nS\nQmhroracn\nSoqpuqock\nIlrkrptx\nHjeqxvq\nKqxmtwmsf\nIze\nDlpr\nK\nMnmg\nSmzyx\nMmersfs\nMpmb\nWmgu\nCerelmhoxi\nXrdgmmtcpq\nXj\nCeh\nAknkwdkq\nLqo\nVej\nT\nNsdtpdg\nSr\nPibdq\nZaecfyqka\nVvvocqi\nA\nDylv\nOfccguo\nNevr\nBmo\nRlijc\nF"
},
{
"input": "2\nA captain\nB man",
"output": "B\nA"
},
{
"input": "2\nB woman\nA captain",
"output": "B\nA"
},
{
"input": "2\nX child\nY captain",
"output": "X\nY"
},
{
"input": "2\nX captain\nY rat",
"output": "Y\nX"
},
{
"input": "6\nAbdelrhman captain\nAlice woman\nCharlie man\nTeddy rat\nBob child\nJulia woman",
"output": "Teddy\nAlice\nBob\nJulia\nCharlie\nAbdelrhman"
},
{
"input": "4\nAratos captain\nMind child\nAman woman\nCarrot man",
"output": "Mind\nAman\nCarrot\nAratos"
}
] | 1,621,937,872
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 26
| 124
| 0
|
t=int(input())
l1,l2,l3=[],[],[]
for i in range(t):
n,s=map(str,input().split())
if s=='rat':
l1.append(n)
if s=='child' or s=='woman':
l2.append(n)
if s=='man':
l3.append(n)
if s=='captain':
cap=n
for i in range(len(l1)):
print(l1[i])
for j in range(len(l2)):
print(l2[j])
for k in range(len(l3)):
print(l3[k])
print(cap)
|
Title: Sinking Ship
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
The ship crashed into a reef and is sinking. Now the entire crew must be evacuated. All *n* crew members have already lined up in a row (for convenience let's label them all from left to right with positive integers from 1 to *n*) and await further instructions. However, one should evacuate the crew properly, in a strict order. Specifically:
The first crew members to leave the ship are rats. Then women and children (both groups have the same priority) leave the ship. After that all men are evacuated from the ship. The captain leaves the sinking ship last.
If we cannot determine exactly who should leave the ship first for any two members of the crew by the rules from the previous paragraph, then the one who stands to the left in the line leaves the ship first (or in other words, the one whose number in the line is less).
For each crew member we know his status as a crew member, and also his name. All crew members have different names. Determine the order in which to evacuate the crew.
Input Specification:
The first line contains an integer *n*, which is the number of people in the crew (1<=β€<=*n*<=β€<=100). Then follow *n* lines. The *i*-th of those lines contains two words β the name of the crew member who is *i*-th in line, and his status on the ship. The words are separated by exactly one space. There are no other spaces in the line. The names consist of Latin letters, the first letter is uppercase, the rest are lowercase. The length of any name is from 1 to 10 characters. The status can have the following values: rat for a rat, woman for a woman, child for a child, man for a man, captain for the captain. The crew contains exactly one captain.
Output Specification:
Print *n* lines. The *i*-th of them should contain the name of the crew member who must be the *i*-th one to leave the ship.
Demo Input:
['6\nJack captain\nAlice woman\nCharlie man\nTeddy rat\nBob child\nJulia woman\n']
Demo Output:
['Teddy\nAlice\nBob\nJulia\nCharlie\nJack\n']
Note:
none
|
```python
t=int(input())
l1,l2,l3=[],[],[]
for i in range(t):
n,s=map(str,input().split())
if s=='rat':
l1.append(n)
if s=='child' or s=='woman':
l2.append(n)
if s=='man':
l3.append(n)
if s=='captain':
cap=n
for i in range(len(l1)):
print(l1[i])
for j in range(len(l2)):
print(l2[j])
for k in range(len(l3)):
print(l3[k])
print(cap)
```
| 3.969
|
200
|
B
|
Drinks
|
PROGRAMMING
| 800
|
[
"implementation",
"math"
] | null | null |
Little Vasya loves orange juice very much. That's why any food and drink in his kitchen necessarily contains orange juice. There are *n* drinks in his fridge, the volume fraction of orange juice in the *i*-th drink equals *p**i* percent.
One day Vasya decided to make himself an orange cocktail. He took equal proportions of each of the *n* drinks and mixed them. Then he wondered, how much orange juice the cocktail has.
Find the volume fraction of orange juice in the final drink.
|
The first input line contains a single integer *n* (1<=β€<=*n*<=β€<=100) β the number of orange-containing drinks in Vasya's fridge. The second line contains *n* integers *p**i* (0<=β€<=*p**i*<=β€<=100) β the volume fraction of orange juice in the *i*-th drink, in percent. The numbers are separated by a space.
|
Print the volume fraction in percent of orange juice in Vasya's cocktail. The answer will be considered correct if the absolute or relative error does not exceed 10<=<=-<=4.
|
[
"3\n50 50 100\n",
"4\n0 25 50 75\n"
] |
[
"66.666666666667\n",
"37.500000000000\n"
] |
Note to the first sample: let's assume that Vasya takes *x* milliliters of each drink from the fridge. Then the volume of pure juice in the cocktail will equal <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/c1fac6e64d3a8ee6a5ac138cbe51e60039b22473.png" style="max-width: 100.0%;max-height: 100.0%;"/> milliliters. The total cocktail's volume equals 3Β·*x* milliliters, so the volume fraction of the juice in the cocktail equals <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/ceb0664e55a1f9f5fa1243ec74680a4665a4d58d.png" style="max-width: 100.0%;max-height: 100.0%;"/>, that is, 66.(6) percent.
| 500
|
[
{
"input": "3\n50 50 100",
"output": "66.666666666667"
},
{
"input": "4\n0 25 50 75",
"output": "37.500000000000"
},
{
"input": "3\n0 1 8",
"output": "3.000000000000"
},
{
"input": "5\n96 89 93 95 70",
"output": "88.600000000000"
},
{
"input": "7\n62 41 78 4 38 39 75",
"output": "48.142857142857"
},
{
"input": "13\n2 22 7 0 1 17 3 17 11 2 21 26 22",
"output": "11.615384615385"
},
{
"input": "21\n5 4 11 7 0 5 45 21 0 14 51 6 0 16 10 19 8 9 7 12 18",
"output": "12.761904761905"
},
{
"input": "26\n95 70 93 74 94 70 91 70 39 79 80 57 87 75 37 93 48 67 51 90 85 26 23 64 66 84",
"output": "69.538461538462"
},
{
"input": "29\n84 99 72 96 83 92 95 98 97 93 76 84 99 93 81 76 93 99 99 100 95 100 96 95 97 100 71 98 94",
"output": "91.551724137931"
},
{
"input": "33\n100 99 100 100 99 99 99 100 100 100 99 99 99 100 100 100 100 99 100 99 100 100 97 100 100 100 100 100 100 100 98 98 100",
"output": "99.515151515152"
},
{
"input": "34\n14 9 10 5 4 26 18 23 0 1 0 20 18 15 2 2 3 5 14 1 9 4 2 15 7 1 7 19 10 0 0 11 0 2",
"output": "8.147058823529"
},
{
"input": "38\n99 98 100 100 99 92 99 99 98 84 88 94 86 99 93 100 98 99 65 98 85 84 64 97 96 89 79 96 91 84 99 93 72 96 94 97 96 93",
"output": "91.921052631579"
},
{
"input": "52\n100 94 99 98 99 99 99 95 97 97 98 100 100 98 97 100 98 90 100 99 97 94 90 98 100 100 90 99 100 95 98 95 94 85 97 94 96 94 99 99 99 98 100 100 94 99 99 100 98 87 100 100",
"output": "97.019230769231"
},
{
"input": "58\n10 70 12 89 1 82 100 53 40 100 21 69 92 91 67 66 99 77 25 48 8 63 93 39 46 79 82 14 44 42 1 79 0 69 56 73 67 17 59 4 65 80 20 60 77 52 3 61 16 76 33 18 46 100 28 59 9 6",
"output": "50.965517241379"
},
{
"input": "85\n7 8 1 16 0 15 1 7 0 11 15 6 2 12 2 8 9 8 2 0 3 7 15 7 1 8 5 7 2 26 0 3 11 1 8 10 31 0 7 6 1 8 1 0 9 14 4 8 7 16 9 1 0 16 10 9 6 1 1 4 2 7 4 5 4 1 20 6 16 16 1 1 10 17 8 12 14 19 3 8 1 7 10 23 10",
"output": "7.505882352941"
},
{
"input": "74\n5 3 0 7 13 10 12 10 18 5 0 18 2 13 7 17 2 7 5 2 40 19 0 2 2 3 0 45 4 20 0 4 2 8 1 19 3 9 17 1 15 0 16 1 9 4 0 9 32 2 6 18 11 18 1 15 16 12 7 19 5 3 9 28 26 8 3 10 33 29 4 13 28 6",
"output": "10.418918918919"
},
{
"input": "98\n42 9 21 11 9 11 22 12 52 20 10 6 56 9 26 27 1 29 29 14 38 17 41 21 7 45 15 5 29 4 51 20 6 8 34 17 13 53 30 45 0 10 16 41 4 5 6 4 14 2 31 6 0 11 13 3 3 43 13 36 51 0 7 16 28 23 8 36 30 22 8 54 21 45 39 4 50 15 1 30 17 8 18 10 2 20 16 50 6 68 15 6 38 7 28 8 29 41",
"output": "20.928571428571"
},
{
"input": "99\n60 65 40 63 57 44 30 84 3 10 39 53 40 45 72 20 76 11 61 32 4 26 97 55 14 57 86 96 34 69 52 22 26 79 31 4 21 35 82 47 81 28 72 70 93 84 40 4 69 39 83 58 30 7 32 73 74 12 92 23 61 88 9 58 70 32 75 40 63 71 46 55 39 36 14 97 32 16 95 41 28 20 85 40 5 50 50 50 75 6 10 64 38 19 77 91 50 72 96",
"output": "49.191919191919"
},
{
"input": "99\n100 88 40 30 81 80 91 98 69 73 88 96 79 58 14 100 87 84 52 91 83 88 72 83 99 35 54 80 46 79 52 72 85 32 99 39 79 79 45 83 88 50 75 75 50 59 65 75 97 63 92 58 89 46 93 80 89 33 69 86 99 99 66 85 72 74 79 98 85 95 46 63 77 97 49 81 89 39 70 76 68 91 90 56 31 93 51 87 73 95 74 69 87 95 57 68 49 95 92",
"output": "73.484848484848"
},
{
"input": "100\n18 15 17 0 3 3 0 4 1 8 2 22 7 21 5 0 0 8 3 16 1 0 2 9 9 3 10 8 17 20 5 4 8 12 2 3 1 1 3 2 23 0 1 0 5 7 4 0 1 3 3 4 25 2 2 14 8 4 9 3 0 11 0 3 12 3 14 16 7 7 14 1 17 9 0 35 42 12 3 1 25 9 3 8 5 3 2 8 22 14 11 6 3 9 6 8 7 7 4 6",
"output": "7.640000000000"
},
{
"input": "100\n88 77 65 87 100 63 91 96 92 89 77 95 76 80 84 83 100 71 85 98 26 54 74 78 69 59 96 86 88 91 95 26 52 88 64 70 84 81 76 84 94 82 100 66 97 98 43 94 59 94 100 80 98 73 69 83 94 70 74 79 91 31 62 88 69 55 62 97 40 64 62 83 87 85 50 90 69 72 67 49 100 51 69 96 81 90 83 91 86 34 79 69 100 66 97 98 47 97 74 100",
"output": "77.660000000000"
},
{
"input": "100\n91 92 90 91 98 84 85 96 83 98 99 87 94 70 87 75 86 90 89 88 82 83 91 94 88 86 90 99 100 98 97 75 95 99 95 100 91 92 76 93 95 97 88 93 95 81 96 89 88 100 98 87 90 96 100 99 58 90 96 77 92 82 100 100 93 93 98 99 79 88 97 95 98 66 96 83 96 100 99 92 98 98 92 93 100 97 98 100 98 97 100 100 94 90 99 100 98 79 80 81",
"output": "91.480000000000"
},
{
"input": "1\n0",
"output": "0.000000000000"
},
{
"input": "1\n100",
"output": "100.000000000000"
},
{
"input": "1\n78",
"output": "78.000000000000"
},
{
"input": "2\n0 100",
"output": "50.000000000000"
},
{
"input": "2\n100 100",
"output": "100.000000000000"
},
{
"input": "5\n0 0 0 0 1",
"output": "0.200000000000"
},
{
"input": "100\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 99",
"output": "99.990000000000"
},
{
"input": "100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1",
"output": "0.010000000000"
},
{
"input": "5\n100 100 100 100 100",
"output": "100.000000000000"
}
] | 1,698,555,828
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 31
| 92
| 0
|
n = int(input()) # Number of drinks
fractions = list(map(int, input().split())) # List of volume fractions
# Calculate the weighted average
total_volume = sum(fractions)
average_fraction = total_volume / n
# Print the result with 10 decimal places
print(format(average_fraction, '.10f'))
|
Title: Drinks
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Little Vasya loves orange juice very much. That's why any food and drink in his kitchen necessarily contains orange juice. There are *n* drinks in his fridge, the volume fraction of orange juice in the *i*-th drink equals *p**i* percent.
One day Vasya decided to make himself an orange cocktail. He took equal proportions of each of the *n* drinks and mixed them. Then he wondered, how much orange juice the cocktail has.
Find the volume fraction of orange juice in the final drink.
Input Specification:
The first input line contains a single integer *n* (1<=β€<=*n*<=β€<=100) β the number of orange-containing drinks in Vasya's fridge. The second line contains *n* integers *p**i* (0<=β€<=*p**i*<=β€<=100) β the volume fraction of orange juice in the *i*-th drink, in percent. The numbers are separated by a space.
Output Specification:
Print the volume fraction in percent of orange juice in Vasya's cocktail. The answer will be considered correct if the absolute or relative error does not exceed 10<=<=-<=4.
Demo Input:
['3\n50 50 100\n', '4\n0 25 50 75\n']
Demo Output:
['66.666666666667\n', '37.500000000000\n']
Note:
Note to the first sample: let's assume that Vasya takes *x* milliliters of each drink from the fridge. Then the volume of pure juice in the cocktail will equal <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/c1fac6e64d3a8ee6a5ac138cbe51e60039b22473.png" style="max-width: 100.0%;max-height: 100.0%;"/> milliliters. The total cocktail's volume equals 3Β·*x* milliliters, so the volume fraction of the juice in the cocktail equals <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/ceb0664e55a1f9f5fa1243ec74680a4665a4d58d.png" style="max-width: 100.0%;max-height: 100.0%;"/>, that is, 66.(6) percent.
|
```python
n = int(input()) # Number of drinks
fractions = list(map(int, input().split())) # List of volume fractions
# Calculate the weighted average
total_volume = sum(fractions)
average_fraction = total_volume / n
# Print the result with 10 decimal places
print(format(average_fraction, '.10f'))
```
| 3
|
|
59
|
A
|
Word
|
PROGRAMMING
| 800
|
[
"implementation",
"strings"
] |
A. Word
|
2
|
256
|
Vasya is very upset that many people on the Net mix uppercase and lowercase letters in one word. That's why he decided to invent an extension for his favorite browser that would change the letters' register in every word so that it either only consisted of lowercase letters or, vice versa, only of uppercase ones. At that as little as possible letters should be changed in the word. For example, the word HoUse must be replaced with house, and the word ViP β with VIP. If a word contains an equal number of uppercase and lowercase letters, you should replace all the letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to use the given method on one given word.
|
The first line contains a word *s* β it consists of uppercase and lowercase Latin letters and possesses the length from 1 to 100.
|
Print the corrected word *s*. If the given word *s* has strictly more uppercase letters, make the word written in the uppercase register, otherwise - in the lowercase one.
|
[
"HoUse\n",
"ViP\n",
"maTRIx\n"
] |
[
"house\n",
"VIP\n",
"matrix\n"
] |
none
| 500
|
[
{
"input": "HoUse",
"output": "house"
},
{
"input": "ViP",
"output": "VIP"
},
{
"input": "maTRIx",
"output": "matrix"
},
{
"input": "BNHWpnpawg",
"output": "bnhwpnpawg"
},
{
"input": "VTYGP",
"output": "VTYGP"
},
{
"input": "CHNenu",
"output": "chnenu"
},
{
"input": "ERPZGrodyu",
"output": "erpzgrodyu"
},
{
"input": "KSXBXWpebh",
"output": "KSXBXWPEBH"
},
{
"input": "qvxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaiv",
"output": "qvxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaiv"
},
{
"input": "Amnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfd",
"output": "amnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfd"
},
{
"input": "ISAGFJFARYFBLOPQDSHWGMCNKMFTLVFUGNJEWGWNBLXUIATXEkqiettmmjgydwcpafqrppdsrrrtguinqbgmzzfqwonkpgpcwenv",
"output": "isagfjfaryfblopqdshwgmcnkmftlvfugnjewgwnblxuiatxekqiettmmjgydwcpafqrppdsrrrtguinqbgmzzfqwonkpgpcwenv"
},
{
"input": "XHRPXZEGHSOCJPICUIXSKFUZUPYTSGJSDIYBCMNMNBPNDBXLXBzhbfnqvwcffvrdhtickyqhupmcehlsyvncqmfhautvxudqdhgg",
"output": "xhrpxzeghsocjpicuixskfuzupytsgjsdiybcmnmnbpndbxlxbzhbfnqvwcffvrdhtickyqhupmcehlsyvncqmfhautvxudqdhgg"
},
{
"input": "RJIQZMJCIMSNDBOHBRAWIENODSALETAKGKPYUFGVEFGCBRENZGAdkcetqjljtmttlonpekcovdzebzdkzggwfsxhapmjkdbuceak",
"output": "RJIQZMJCIMSNDBOHBRAWIENODSALETAKGKPYUFGVEFGCBRENZGADKCETQJLJTMTTLONPEKCOVDZEBZDKZGGWFSXHAPMJKDBUCEAK"
},
{
"input": "DWLWOBHNMMGTFOLFAECKBRNNGLYLYDXTGTVRLMEESZOIUATZZZXUFUZDLSJXMEVRTESSFBWLNZZCLCQWEVNNUCXYVHNGNXHCBDFw",
"output": "DWLWOBHNMMGTFOLFAECKBRNNGLYLYDXTGTVRLMEESZOIUATZZZXUFUZDLSJXMEVRTESSFBWLNZZCLCQWEVNNUCXYVHNGNXHCBDFW"
},
{
"input": "NYCNHJWGBOCOTSPETKKHVWFGAQYNHOVJWJHCIEFOUQZXOYUIEQDZALFKTEHTVDBVJMEUBJUBCMNVPWGDPNCHQHZJRCHYRFPVIGUB",
"output": "NYCNHJWGBOCOTSPETKKHVWFGAQYNHOVJWJHCIEFOUQZXOYUIEQDZALFKTEHTVDBVJMEUBJUBCMNVPWGDPNCHQHZJRCHYRFPVIGUB"
},
{
"input": "igxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwge",
"output": "igxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwge"
},
{
"input": "Ykkekrsqolzryiwsmdlnbmfautxxxauoojrddvwklgnlyrfcvhorrzbmtcrvpaypqhcffdqhwziipyyskcmztjprjqvmzzqhqnw",
"output": "ykkekrsqolzryiwsmdlnbmfautxxxauoojrddvwklgnlyrfcvhorrzbmtcrvpaypqhcffdqhwziipyyskcmztjprjqvmzzqhqnw"
},
{
"input": "YQOMLKYAORUQQUCQZCDYMIVDHGWZFFRMUVTAWCHERFPMNRYRIkgqrciokgajamehmcxgerpudvsqyonjonsxgbnefftzmygncks",
"output": "yqomlkyaoruqqucqzcdymivdhgwzffrmuvtawcherfpmnryrikgqrciokgajamehmcxgerpudvsqyonjonsxgbnefftzmygncks"
},
{
"input": "CDOZDPBVVVHNBJVBYHEOXWFLJKRWJCAJMIFCOZWWYFKVWOGTVJcuusigdqfkumewjtdyitveeiaybwrhomrwmpdipjwiuxfnwuz",
"output": "CDOZDPBVVVHNBJVBYHEOXWFLJKRWJCAJMIFCOZWWYFKVWOGTVJCUUSIGDQFKUMEWJTDYITVEEIAYBWRHOMRWMPDIPJWIUXFNWUZ"
},
{
"input": "WHIUVEXHVOOIJIDVJVPQUBJMEVPMPDKQWJKFBZSGSKUXMIPPMJWuckzcpxosodcjaaakvlxpbiigsiauviilylnnqlyucziihqg",
"output": "WHIUVEXHVOOIJIDVJVPQUBJMEVPMPDKQWJKFBZSGSKUXMIPPMJWUCKZCPXOSODCJAAAKVLXPBIIGSIAUVIILYLNNQLYUCZIIHQG"
},
{
"input": "VGHUNFOXKETUYMZDJNGTAOIOANYXSGYNFOGOFFLDAWEUKYFOZXCJTCAFXZYLQZERYZLRSQXYQGAPCSUDPMEYTNCTTTMFAGVDWBO",
"output": "VGHUNFOXKETUYMZDJNGTAOIOANYXSGYNFOGOFFLDAWEUKYFOZXCJTCAFXZYLQZERYZLRSQXYQGAPCSUDPMEYTNCTTTMFAGVDWBO"
},
{
"input": "EDUANHCQDOCJHFONTTSWBUJSTTIXBIXMAIUFSGFLXWAYIURTVAVZPYQDLAWIGCLMPHXCEFCJPFAAHXVNGQUFNHADAIUAZIDMHDd",
"output": "EDUANHCQDOCJHFONTTSWBUJSTTIXBIXMAIUFSGFLXWAYIURTVAVZPYQDLAWIGCLMPHXCEFCJPFAAHXVNGQUFNHADAIUAZIDMHDD"
},
{
"input": "EBWOVSNLYTWWXrnovgugogtjahnmatomubebyxakas",
"output": "ebwovsnlytwwxrnovgugogtjahnmatomubebyxakas"
},
{
"input": "AORNNDKTRLRVGDPXJKXFTPFpopuzrlqumrxssskvbm",
"output": "AORNNDKTRLRVGDPXJKXFTPFPOPUZRLQUMRXSSSKVBM"
},
{
"input": "DBBZJCWQEVGYHEEUHJAWRHBDPsnplijbwtdibqrrheebfxqcvn",
"output": "dbbzjcwqevgyheeuhjawrhbdpsnplijbwtdibqrrheebfxqcvn"
},
{
"input": "t",
"output": "t"
},
{
"input": "N",
"output": "N"
},
{
"input": "kv",
"output": "kv"
},
{
"input": "Ur",
"output": "ur"
},
{
"input": "CN",
"output": "CN"
}
] | 1,695,182,051
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 30
| 92
| 0
|
i = input()
l = len(i)
s = l/2
uppernum = 0
for x in i:
if ord(x) < 97:
uppernum += 1
if uppernum > s:
print(i.upper())
else:
print(i.lower())
|
Title: Word
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Vasya is very upset that many people on the Net mix uppercase and lowercase letters in one word. That's why he decided to invent an extension for his favorite browser that would change the letters' register in every word so that it either only consisted of lowercase letters or, vice versa, only of uppercase ones. At that as little as possible letters should be changed in the word. For example, the word HoUse must be replaced with house, and the word ViP β with VIP. If a word contains an equal number of uppercase and lowercase letters, you should replace all the letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to use the given method on one given word.
Input Specification:
The first line contains a word *s* β it consists of uppercase and lowercase Latin letters and possesses the length from 1 to 100.
Output Specification:
Print the corrected word *s*. If the given word *s* has strictly more uppercase letters, make the word written in the uppercase register, otherwise - in the lowercase one.
Demo Input:
['HoUse\n', 'ViP\n', 'maTRIx\n']
Demo Output:
['house\n', 'VIP\n', 'matrix\n']
Note:
none
|
```python
i = input()
l = len(i)
s = l/2
uppernum = 0
for x in i:
if ord(x) < 97:
uppernum += 1
if uppernum > s:
print(i.upper())
else:
print(i.lower())
```
| 3.977
|
379
|
A
|
New Year Candles
|
PROGRAMMING
| 1,000
|
[
"implementation"
] | null | null |
Vasily the Programmer loves romance, so this year he decided to illuminate his room with candles.
Vasily has *a* candles.When Vasily lights up a new candle, it first burns for an hour and then it goes out. Vasily is smart, so he can make *b* went out candles into a new candle. As a result, this new candle can be used like any other new candle.
Now Vasily wonders: for how many hours can his candles light up the room if he acts optimally well? Help him find this number.
|
The single line contains two integers, *a* and *b* (1<=β€<=*a*<=β€<=1000;Β 2<=β€<=*b*<=β€<=1000).
|
Print a single integer β the number of hours Vasily can light up the room for.
|
[
"4 2\n",
"6 3\n"
] |
[
"7\n",
"8\n"
] |
Consider the first sample. For the first four hours Vasily lights up new candles, then he uses four burned out candles to make two new ones and lights them up. When these candles go out (stop burning), Vasily can make another candle. Overall, Vasily can light up the room for 7 hours.
| 500
|
[
{
"input": "4 2",
"output": "7"
},
{
"input": "6 3",
"output": "8"
},
{
"input": "1000 1000",
"output": "1001"
},
{
"input": "123 5",
"output": "153"
},
{
"input": "1000 2",
"output": "1999"
},
{
"input": "1 2",
"output": "1"
},
{
"input": "1 3",
"output": "1"
},
{
"input": "1 4",
"output": "1"
},
{
"input": "2 2",
"output": "3"
},
{
"input": "3 2",
"output": "5"
},
{
"input": "3 3",
"output": "4"
},
{
"input": "999 2",
"output": "1997"
},
{
"input": "1000 3",
"output": "1499"
},
{
"input": "1000 4",
"output": "1333"
},
{
"input": "1 1000",
"output": "1"
},
{
"input": "80 970",
"output": "80"
},
{
"input": "80 970",
"output": "80"
},
{
"input": "80 970",
"output": "80"
},
{
"input": "80 970",
"output": "80"
},
{
"input": "80 970",
"output": "80"
},
{
"input": "80 970",
"output": "80"
},
{
"input": "10 4",
"output": "13"
},
{
"input": "4 3",
"output": "5"
},
{
"input": "91 5",
"output": "113"
},
{
"input": "777 17",
"output": "825"
},
{
"input": "100 4",
"output": "133"
},
{
"input": "5 3",
"output": "7"
},
{
"input": "6 4",
"output": "7"
},
{
"input": "26 8",
"output": "29"
},
{
"input": "9 4",
"output": "11"
},
{
"input": "20 3",
"output": "29"
},
{
"input": "17 3",
"output": "25"
}
] | 1,641,889,013
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 32
| 77
| 0
|
a,b = map(int,input().split())
c=a
x=a
while(x>=b ):
c+= x//b
x = x//b + (x - (x//b)*b)
# print(x,c)
print(c)
|
Title: New Year Candles
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Vasily the Programmer loves romance, so this year he decided to illuminate his room with candles.
Vasily has *a* candles.When Vasily lights up a new candle, it first burns for an hour and then it goes out. Vasily is smart, so he can make *b* went out candles into a new candle. As a result, this new candle can be used like any other new candle.
Now Vasily wonders: for how many hours can his candles light up the room if he acts optimally well? Help him find this number.
Input Specification:
The single line contains two integers, *a* and *b* (1<=β€<=*a*<=β€<=1000;Β 2<=β€<=*b*<=β€<=1000).
Output Specification:
Print a single integer β the number of hours Vasily can light up the room for.
Demo Input:
['4 2\n', '6 3\n']
Demo Output:
['7\n', '8\n']
Note:
Consider the first sample. For the first four hours Vasily lights up new candles, then he uses four burned out candles to make two new ones and lights them up. When these candles go out (stop burning), Vasily can make another candle. Overall, Vasily can light up the room for 7 hours.
|
```python
a,b = map(int,input().split())
c=a
x=a
while(x>=b ):
c+= x//b
x = x//b + (x - (x//b)*b)
# print(x,c)
print(c)
```
| 3
|
|
510
|
A
|
Fox And Snake
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Fox Ciel starts to learn programming. The first task is drawing a fox! However, that turns out to be too hard for a beginner, so she decides to draw a snake instead.
A snake is a pattern on a *n* by *m* table. Denote *c*-th cell of *r*-th row as (*r*,<=*c*). The tail of the snake is located at (1,<=1), then it's body extends to (1,<=*m*), then goes down 2 rows to (3,<=*m*), then goes left to (3,<=1) and so on.
Your task is to draw this snake for Fox Ciel: the empty cells should be represented as dot characters ('.') and the snake cells should be filled with number signs ('#').
Consider sample tests in order to understand the snake pattern.
|
The only line contains two integers: *n* and *m* (3<=β€<=*n*,<=*m*<=β€<=50).
*n* is an odd number.
|
Output *n* lines. Each line should contain a string consisting of *m* characters. Do not output spaces.
|
[
"3 3\n",
"3 4\n",
"5 3\n",
"9 9\n"
] |
[
"###\n..#\n###\n",
"####\n...#\n####\n",
"###\n..#\n###\n#..\n###\n",
"#########\n........#\n#########\n#........\n#########\n........#\n#########\n#........\n#########\n"
] |
none
| 500
|
[
{
"input": "3 3",
"output": "###\n..#\n###"
},
{
"input": "3 4",
"output": "####\n...#\n####"
},
{
"input": "5 3",
"output": "###\n..#\n###\n#..\n###"
},
{
"input": "9 9",
"output": "#########\n........#\n#########\n#........\n#########\n........#\n#########\n#........\n#########"
},
{
"input": "3 5",
"output": "#####\n....#\n#####"
},
{
"input": "3 6",
"output": "######\n.....#\n######"
},
{
"input": "7 3",
"output": "###\n..#\n###\n#..\n###\n..#\n###"
},
{
"input": "7 4",
"output": "####\n...#\n####\n#...\n####\n...#\n####"
},
{
"input": "49 50",
"output": "##################################################\n.................................................#\n##################################################\n#.................................................\n##################################################\n.................................................#\n##################################################\n#.................................................\n##################################################\n.............................................."
},
{
"input": "43 50",
"output": "##################################################\n.................................................#\n##################################################\n#.................................................\n##################################################\n.................................................#\n##################################################\n#.................................................\n##################################################\n.............................................."
},
{
"input": "43 27",
"output": "###########################\n..........................#\n###########################\n#..........................\n###########################\n..........................#\n###########################\n#..........................\n###########################\n..........................#\n###########################\n#..........................\n###########################\n..........................#\n###########################\n#..........................\n###########################\n....................."
},
{
"input": "11 15",
"output": "###############\n..............#\n###############\n#..............\n###############\n..............#\n###############\n#..............\n###############\n..............#\n###############"
},
{
"input": "11 3",
"output": "###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###"
},
{
"input": "19 3",
"output": "###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###"
},
{
"input": "23 50",
"output": "##################################################\n.................................................#\n##################################################\n#.................................................\n##################################################\n.................................................#\n##################################################\n#.................................................\n##################################################\n.............................................."
},
{
"input": "49 49",
"output": "#################################################\n................................................#\n#################################################\n#................................................\n#################################################\n................................................#\n#################################################\n#................................................\n#################################################\n................................................#\n#..."
},
{
"input": "33 43",
"output": "###########################################\n..........................................#\n###########################################\n#..........................................\n###########################################\n..........................................#\n###########################################\n#..........................................\n###########################################\n..........................................#\n###########################################\n#.................."
},
{
"input": "33 44",
"output": "############################################\n...........................................#\n############################################\n#...........................................\n############################################\n...........................................#\n############################################\n#...........................................\n############################################\n...........................................#\n############################################\n#......."
},
{
"input": "45 45",
"output": "#############################################\n............................................#\n#############################################\n#............................................\n#############################################\n............................................#\n#############################################\n#............................................\n#############################################\n............................................#\n#########################################..."
},
{
"input": "45 49",
"output": "#################################################\n................................................#\n#################################################\n#................................................\n#################################################\n................................................#\n#################################################\n#................................................\n#################################################\n................................................#\n#..."
},
{
"input": "45 3",
"output": "###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###"
},
{
"input": "45 4",
"output": "####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####"
},
{
"input": "5 4",
"output": "####\n...#\n####\n#...\n####"
},
{
"input": "5 5",
"output": "#####\n....#\n#####\n#....\n#####"
},
{
"input": "5 6",
"output": "######\n.....#\n######\n#.....\n######"
},
{
"input": "7 5",
"output": "#####\n....#\n#####\n#....\n#####\n....#\n#####"
},
{
"input": "7 6",
"output": "######\n.....#\n######\n#.....\n######\n.....#\n######"
},
{
"input": "7 7",
"output": "#######\n......#\n#######\n#......\n#######\n......#\n#######"
}
] | 1,674,008,422
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 28
| 171
| 2,867,200
|
r,c=map(int,input().split())
l=[*range(1,55,4)]
for i in range(r):
for j in range(c):
if(i%2==0):
print("#",end="")
else:
if(i in l and j==c-1):
print("#",end="")
elif(i not in l and j==0):
print("#",end="")
else:
print(".",end="")
print()
|
Title: Fox And Snake
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Fox Ciel starts to learn programming. The first task is drawing a fox! However, that turns out to be too hard for a beginner, so she decides to draw a snake instead.
A snake is a pattern on a *n* by *m* table. Denote *c*-th cell of *r*-th row as (*r*,<=*c*). The tail of the snake is located at (1,<=1), then it's body extends to (1,<=*m*), then goes down 2 rows to (3,<=*m*), then goes left to (3,<=1) and so on.
Your task is to draw this snake for Fox Ciel: the empty cells should be represented as dot characters ('.') and the snake cells should be filled with number signs ('#').
Consider sample tests in order to understand the snake pattern.
Input Specification:
The only line contains two integers: *n* and *m* (3<=β€<=*n*,<=*m*<=β€<=50).
*n* is an odd number.
Output Specification:
Output *n* lines. Each line should contain a string consisting of *m* characters. Do not output spaces.
Demo Input:
['3 3\n', '3 4\n', '5 3\n', '9 9\n']
Demo Output:
['###\n..#\n###\n', '####\n...#\n####\n', '###\n..#\n###\n#..\n###\n', '#########\n........#\n#########\n#........\n#########\n........#\n#########\n#........\n#########\n']
Note:
none
|
```python
r,c=map(int,input().split())
l=[*range(1,55,4)]
for i in range(r):
for j in range(c):
if(i%2==0):
print("#",end="")
else:
if(i in l and j==c-1):
print("#",end="")
elif(i not in l and j==0):
print("#",end="")
else:
print(".",end="")
print()
```
| 3
|
|
909
|
B
|
Segments
|
PROGRAMMING
| 1,300
|
[
"constructive algorithms",
"math"
] | null | null |
You are given an integer *N*. Consider all possible segments on the coordinate axis with endpoints at integer points with coordinates between 0 and *N*, inclusive; there will be of them.
You want to draw these segments in several layers so that in each layer the segments don't overlap (they might touch at the endpoints though). You can not move the segments to a different location on the coordinate axis.
Find the minimal number of layers you have to use for the given *N*.
|
The only input line contains a single integer *N* (1<=β€<=*N*<=β€<=100).
|
Output a single integer - the minimal number of layers required to draw the segments for the given *N*.
|
[
"2\n",
"3\n",
"4\n"
] |
[
"2\n",
"4\n",
"6\n"
] |
As an example, here are the segments and their optimal arrangement into layers for *N*β=β4.
| 1,000
|
[
{
"input": "2",
"output": "2"
},
{
"input": "3",
"output": "4"
},
{
"input": "4",
"output": "6"
},
{
"input": "21",
"output": "121"
},
{
"input": "100",
"output": "2550"
},
{
"input": "1",
"output": "1"
},
{
"input": "5",
"output": "9"
},
{
"input": "6",
"output": "12"
},
{
"input": "7",
"output": "16"
},
{
"input": "8",
"output": "20"
},
{
"input": "9",
"output": "25"
},
{
"input": "10",
"output": "30"
},
{
"input": "11",
"output": "36"
},
{
"input": "12",
"output": "42"
},
{
"input": "13",
"output": "49"
},
{
"input": "14",
"output": "56"
},
{
"input": "15",
"output": "64"
},
{
"input": "16",
"output": "72"
},
{
"input": "17",
"output": "81"
},
{
"input": "18",
"output": "90"
},
{
"input": "19",
"output": "100"
},
{
"input": "20",
"output": "110"
},
{
"input": "22",
"output": "132"
},
{
"input": "23",
"output": "144"
},
{
"input": "24",
"output": "156"
},
{
"input": "25",
"output": "169"
},
{
"input": "26",
"output": "182"
},
{
"input": "27",
"output": "196"
},
{
"input": "28",
"output": "210"
},
{
"input": "29",
"output": "225"
},
{
"input": "30",
"output": "240"
},
{
"input": "31",
"output": "256"
},
{
"input": "32",
"output": "272"
},
{
"input": "33",
"output": "289"
},
{
"input": "34",
"output": "306"
},
{
"input": "35",
"output": "324"
},
{
"input": "36",
"output": "342"
},
{
"input": "37",
"output": "361"
},
{
"input": "38",
"output": "380"
},
{
"input": "39",
"output": "400"
},
{
"input": "40",
"output": "420"
},
{
"input": "41",
"output": "441"
},
{
"input": "42",
"output": "462"
},
{
"input": "43",
"output": "484"
},
{
"input": "44",
"output": "506"
},
{
"input": "45",
"output": "529"
},
{
"input": "46",
"output": "552"
},
{
"input": "47",
"output": "576"
},
{
"input": "48",
"output": "600"
},
{
"input": "49",
"output": "625"
},
{
"input": "50",
"output": "650"
},
{
"input": "51",
"output": "676"
},
{
"input": "52",
"output": "702"
},
{
"input": "53",
"output": "729"
},
{
"input": "54",
"output": "756"
},
{
"input": "55",
"output": "784"
},
{
"input": "56",
"output": "812"
},
{
"input": "57",
"output": "841"
},
{
"input": "58",
"output": "870"
},
{
"input": "59",
"output": "900"
},
{
"input": "60",
"output": "930"
},
{
"input": "61",
"output": "961"
},
{
"input": "62",
"output": "992"
},
{
"input": "63",
"output": "1024"
},
{
"input": "64",
"output": "1056"
},
{
"input": "65",
"output": "1089"
},
{
"input": "66",
"output": "1122"
},
{
"input": "67",
"output": "1156"
},
{
"input": "68",
"output": "1190"
},
{
"input": "69",
"output": "1225"
},
{
"input": "70",
"output": "1260"
},
{
"input": "71",
"output": "1296"
},
{
"input": "72",
"output": "1332"
},
{
"input": "73",
"output": "1369"
},
{
"input": "74",
"output": "1406"
},
{
"input": "75",
"output": "1444"
},
{
"input": "76",
"output": "1482"
},
{
"input": "77",
"output": "1521"
},
{
"input": "78",
"output": "1560"
},
{
"input": "79",
"output": "1600"
},
{
"input": "80",
"output": "1640"
},
{
"input": "81",
"output": "1681"
},
{
"input": "82",
"output": "1722"
},
{
"input": "83",
"output": "1764"
},
{
"input": "84",
"output": "1806"
},
{
"input": "85",
"output": "1849"
},
{
"input": "86",
"output": "1892"
},
{
"input": "87",
"output": "1936"
},
{
"input": "88",
"output": "1980"
},
{
"input": "89",
"output": "2025"
},
{
"input": "90",
"output": "2070"
},
{
"input": "91",
"output": "2116"
},
{
"input": "92",
"output": "2162"
},
{
"input": "93",
"output": "2209"
},
{
"input": "94",
"output": "2256"
},
{
"input": "95",
"output": "2304"
},
{
"input": "96",
"output": "2352"
},
{
"input": "97",
"output": "2401"
},
{
"input": "98",
"output": "2450"
},
{
"input": "99",
"output": "2500"
},
{
"input": "1",
"output": "1"
},
{
"input": "5",
"output": "9"
}
] | 1,641,496,192
| 592
|
PyPy 3-64
|
OK
|
TESTS
| 102
| 108
| 0
|
def process(n):
if n % 2==1:
return ((n+1)//2)**2
return (n//2)*(n//2+1)
n = int(input())
print(process(n))
|
Title: Segments
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You are given an integer *N*. Consider all possible segments on the coordinate axis with endpoints at integer points with coordinates between 0 and *N*, inclusive; there will be of them.
You want to draw these segments in several layers so that in each layer the segments don't overlap (they might touch at the endpoints though). You can not move the segments to a different location on the coordinate axis.
Find the minimal number of layers you have to use for the given *N*.
Input Specification:
The only input line contains a single integer *N* (1<=β€<=*N*<=β€<=100).
Output Specification:
Output a single integer - the minimal number of layers required to draw the segments for the given *N*.
Demo Input:
['2\n', '3\n', '4\n']
Demo Output:
['2\n', '4\n', '6\n']
Note:
As an example, here are the segments and their optimal arrangement into layers for *N*β=β4.
|
```python
def process(n):
if n % 2==1:
return ((n+1)//2)**2
return (n//2)*(n//2+1)
n = int(input())
print(process(n))
```
| 3
|
|
452
|
C
|
Magic Trick
|
PROGRAMMING
| 2,100
|
[
"combinatorics",
"math",
"probabilities"
] | null | null |
Alex enjoys performing magic tricks. He has a trick that requires a deck of *n* cards. He has *m* identical decks of *n* different cards each, which have been mixed together. When Alex wishes to perform the trick, he grabs *n* cards at random and performs the trick with those. The resulting deck looks like a normal deck, but may have duplicates of some cards.
The trick itself is performed as follows: first Alex allows you to choose a random card from the deck. You memorize the card and put it back in the deck. Then Alex shuffles the deck, and pulls out a card. If the card matches the one you memorized, the trick is successful.
You don't think Alex is a very good magician, and that he just pulls a card randomly from the deck. Determine the probability of the trick being successful if this is the case.
|
First line of the input consists of two integers *n* and *m* (1<=β€<=*n*,<=*m*<=β€<=1000), separated by space β number of cards in each deck, and number of decks.
|
On the only line of the output print one floating point number β probability of Alex successfully performing the trick. Relative or absolute error of your answer should not be higher than 10<=-<=6.
|
[
"2 2\n",
"4 4\n",
"1 2\n"
] |
[
"0.6666666666666666\n",
"0.4000000000000000\n",
"1.0000000000000000\n"
] |
In the first sample, with probability <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/64c94d13eeb330b494061e86538db66574ad0f7d.png" style="max-width: 100.0%;max-height: 100.0%;"/> Alex will perform the trick with two cards with the same value from two different decks. In this case the trick is guaranteed to succeed.
With the remaining <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/14b21b617fcd2e25700376368355f7bbf975d8de.png" style="max-width: 100.0%;max-height: 100.0%;"/> probability he took two different cards, and the probability of pulling off the trick is <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/eb946338365d9781f7d2e9ec692c26702d0ae3a7.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
The resulting probability is <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/f54a03c9fa9df64ba08161730756d50b780a5f43.png" style="max-width: 100.0%;max-height: 100.0%;"/>
| 1,000
|
[
{
"input": "2 2",
"output": "0.6666666666666666"
},
{
"input": "4 4",
"output": "0.4000000000000000"
},
{
"input": "1 2",
"output": "1.0000000000000000"
},
{
"input": "2 1",
"output": "0.5000000000000000"
},
{
"input": "10 10",
"output": "0.1818181818181818"
},
{
"input": "1000 1000",
"output": "0.0019980019980020"
},
{
"input": "1 1",
"output": "1"
},
{
"input": "987 123",
"output": "0.0020170953866492"
},
{
"input": "999 999",
"output": "0.0020000000000000"
},
{
"input": "1 999",
"output": "1.0000000000000000"
},
{
"input": "998 1",
"output": "0.0010020040080160"
},
{
"input": "2 987",
"output": "0.7498732894069944"
},
{
"input": "555 543",
"output": "0.0035970508143694"
},
{
"input": "321 123",
"output": "0.0061956542837219"
},
{
"input": "2 3",
"output": "0.7000000000000000"
},
{
"input": "461 1000",
"output": "0.0043315295751250"
},
{
"input": "678 231",
"output": "0.0029413109179425"
}
] | 1,600,573,348
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 17
| 155
| 1,638,400
|
def cal(m,n,i):
tot=1
for j in range(1,n-i+1):
tot=tot*(n*m-m-n+i+j)/(n*m-n+i+j)
for j in range(1,i+1):
tot=tot*(m-i+j)/(n*m-n+j)
for j in range(1,i+1):
tot=tot/j*(n-i+j)
return tot
n,m = input().split()
n = int(n)
m = int(m)
ans = 0
for i in range(1, min(n,m)+1):
ans += i * i /n * cal(m,n,i)
print(ans)
|
Title: Magic Trick
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Alex enjoys performing magic tricks. He has a trick that requires a deck of *n* cards. He has *m* identical decks of *n* different cards each, which have been mixed together. When Alex wishes to perform the trick, he grabs *n* cards at random and performs the trick with those. The resulting deck looks like a normal deck, but may have duplicates of some cards.
The trick itself is performed as follows: first Alex allows you to choose a random card from the deck. You memorize the card and put it back in the deck. Then Alex shuffles the deck, and pulls out a card. If the card matches the one you memorized, the trick is successful.
You don't think Alex is a very good magician, and that he just pulls a card randomly from the deck. Determine the probability of the trick being successful if this is the case.
Input Specification:
First line of the input consists of two integers *n* and *m* (1<=β€<=*n*,<=*m*<=β€<=1000), separated by space β number of cards in each deck, and number of decks.
Output Specification:
On the only line of the output print one floating point number β probability of Alex successfully performing the trick. Relative or absolute error of your answer should not be higher than 10<=-<=6.
Demo Input:
['2 2\n', '4 4\n', '1 2\n']
Demo Output:
['0.6666666666666666\n', '0.4000000000000000\n', '1.0000000000000000\n']
Note:
In the first sample, with probability <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/64c94d13eeb330b494061e86538db66574ad0f7d.png" style="max-width: 100.0%;max-height: 100.0%;"/> Alex will perform the trick with two cards with the same value from two different decks. In this case the trick is guaranteed to succeed.
With the remaining <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/14b21b617fcd2e25700376368355f7bbf975d8de.png" style="max-width: 100.0%;max-height: 100.0%;"/> probability he took two different cards, and the probability of pulling off the trick is <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/eb946338365d9781f7d2e9ec692c26702d0ae3a7.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
The resulting probability is <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/f54a03c9fa9df64ba08161730756d50b780a5f43.png" style="max-width: 100.0%;max-height: 100.0%;"/>
|
```python
def cal(m,n,i):
tot=1
for j in range(1,n-i+1):
tot=tot*(n*m-m-n+i+j)/(n*m-n+i+j)
for j in range(1,i+1):
tot=tot*(m-i+j)/(n*m-n+j)
for j in range(1,i+1):
tot=tot/j*(n-i+j)
return tot
n,m = input().split()
n = int(n)
m = int(m)
ans = 0
for i in range(1, min(n,m)+1):
ans += i * i /n * cal(m,n,i)
print(ans)
```
| 3
|
|
46
|
A
|
Ball Game
|
PROGRAMMING
| 800
|
[
"brute force",
"implementation"
] |
A. Ball Game
|
2
|
256
|
A kindergarten teacher Natalia Pavlovna has invented a new ball game. This game not only develops the children's physique, but also teaches them how to count.
The game goes as follows. Kids stand in circle. Let's agree to think of the children as numbered with numbers from 1 to *n* clockwise and the child number 1 is holding the ball. First the first child throws the ball to the next one clockwise, i.e. to the child number 2. Then the child number 2 throws the ball to the next but one child, i.e. to the child number 4, then the fourth child throws the ball to the child that stands two children away from him, i.e. to the child number 7, then the ball is thrown to the child who stands 3 children away from the child number 7, then the ball is thrown to the child who stands 4 children away from the last one, and so on. It should be mentioned that when a ball is thrown it may pass the beginning of the circle. For example, if *n*<==<=5, then after the third throw the child number 2 has the ball again. Overall, *n*<=-<=1 throws are made, and the game ends.
The problem is that not all the children get the ball during the game. If a child doesn't get the ball, he gets very upset and cries until Natalia Pavlovna gives him a candy. That's why Natalia Pavlovna asks you to help her to identify the numbers of the children who will get the ball after each throw.
|
The first line contains integer *n* (2<=β€<=*n*<=β€<=100) which indicates the number of kids in the circle.
|
In the single line print *n*<=-<=1 numbers which are the numbers of children who will get the ball after each throw. Separate the numbers by spaces.
|
[
"10\n",
"3\n"
] |
[
"2 4 7 1 6 2 9 7 6\n",
"2 1\n"
] |
none
| 0
|
[
{
"input": "10",
"output": "2 4 7 1 6 2 9 7 6"
},
{
"input": "3",
"output": "2 1"
},
{
"input": "4",
"output": "2 4 3"
},
{
"input": "5",
"output": "2 4 2 1"
},
{
"input": "6",
"output": "2 4 1 5 4"
},
{
"input": "7",
"output": "2 4 7 4 2 1"
},
{
"input": "8",
"output": "2 4 7 3 8 6 5"
},
{
"input": "9",
"output": "2 4 7 2 7 4 2 1"
},
{
"input": "2",
"output": "2"
},
{
"input": "11",
"output": "2 4 7 11 5 11 7 4 2 1"
},
{
"input": "12",
"output": "2 4 7 11 4 10 5 1 10 8 7"
},
{
"input": "13",
"output": "2 4 7 11 3 9 3 11 7 4 2 1"
},
{
"input": "20",
"output": "2 4 7 11 16 2 9 17 6 16 7 19 12 6 1 17 14 12 11"
},
{
"input": "25",
"output": "2 4 7 11 16 22 4 12 21 6 17 4 17 6 21 12 4 22 16 11 7 4 2 1"
},
{
"input": "30",
"output": "2 4 7 11 16 22 29 7 16 26 7 19 2 16 1 17 4 22 11 1 22 14 7 1 26 22 19 17 16"
},
{
"input": "35",
"output": "2 4 7 11 16 22 29 2 11 21 32 9 22 1 16 32 14 32 16 1 22 9 32 21 11 2 29 22 16 11 7 4 2 1"
},
{
"input": "40",
"output": "2 4 7 11 16 22 29 37 6 16 27 39 12 26 1 17 34 12 31 11 32 14 37 21 6 32 19 7 36 26 17 9 2 36 31 27 24 22 21"
},
{
"input": "45",
"output": "2 4 7 11 16 22 29 37 1 11 22 34 2 16 31 2 19 37 11 31 7 29 7 31 11 37 19 2 31 16 2 34 22 11 1 37 29 22 16 11 7 4 2 1"
},
{
"input": "50",
"output": "2 4 7 11 16 22 29 37 46 6 17 29 42 6 21 37 4 22 41 11 32 4 27 1 26 2 29 7 36 16 47 29 12 46 31 17 4 42 31 21 12 4 47 41 36 32 29 27 26"
},
{
"input": "55",
"output": "2 4 7 11 16 22 29 37 46 1 12 24 37 51 11 27 44 7 26 46 12 34 2 26 51 22 49 22 51 26 2 34 12 46 26 7 44 27 11 51 37 24 12 1 46 37 29 22 16 11 7 4 2 1"
},
{
"input": "60",
"output": "2 4 7 11 16 22 29 37 46 56 7 19 32 46 1 17 34 52 11 31 52 14 37 1 26 52 19 47 16 46 17 49 22 56 31 7 44 22 1 41 22 4 47 31 16 2 49 37 26 16 7 59 52 46 41 37 34 32 31"
},
{
"input": "65",
"output": "2 4 7 11 16 22 29 37 46 56 2 14 27 41 56 7 24 42 61 16 37 59 17 41 1 27 54 17 46 11 42 9 42 11 46 17 54 27 1 41 17 59 37 16 61 42 24 7 56 41 27 14 2 56 46 37 29 22 16 11 7 4 2 1"
},
{
"input": "70",
"output": "2 4 7 11 16 22 29 37 46 56 67 9 22 36 51 67 14 32 51 1 22 44 67 21 46 2 29 57 16 46 7 39 2 36 1 37 4 42 11 51 22 64 37 11 56 32 9 57 36 16 67 49 32 16 1 57 44 32 21 11 2 64 57 51 46 42 39 37 36"
},
{
"input": "75",
"output": "2 4 7 11 16 22 29 37 46 56 67 4 17 31 46 62 4 22 41 61 7 29 52 1 26 52 4 32 61 16 47 4 37 71 31 67 29 67 31 71 37 4 47 16 61 32 4 52 26 1 52 29 7 61 41 22 4 62 46 31 17 4 67 56 46 37 29 22 16 11 7 4 2 1"
},
{
"input": "80",
"output": "2 4 7 11 16 22 29 37 46 56 67 79 12 26 41 57 74 12 31 51 72 14 37 61 6 32 59 7 36 66 17 49 2 36 71 27 64 22 61 21 62 24 67 31 76 42 9 57 26 76 47 19 72 46 21 77 54 32 11 71 52 34 17 1 66 52 39 27 16 6 77 69 62 56 51 47 44 42 41"
},
{
"input": "85",
"output": "2 4 7 11 16 22 29 37 46 56 67 79 7 21 36 52 69 2 21 41 62 84 22 46 71 12 39 67 11 41 72 19 52 1 36 72 24 62 16 56 12 54 12 56 16 62 24 72 36 1 52 19 72 41 11 67 39 12 71 46 22 84 62 41 21 2 69 52 36 21 7 79 67 56 46 37 29 22 16 11 7 4 2 1"
},
{
"input": "90",
"output": "2 4 7 11 16 22 29 37 46 56 67 79 2 16 31 47 64 82 11 31 52 74 7 31 56 82 19 47 76 16 47 79 22 56 1 37 74 22 61 11 52 4 47 1 46 2 49 7 56 16 67 29 82 46 11 67 34 2 61 31 2 64 37 11 76 52 29 7 76 56 37 19 2 76 61 47 34 22 11 1 82 74 67 61 56 52 49 47 46"
},
{
"input": "95",
"output": "2 4 7 11 16 22 29 37 46 56 67 79 92 11 26 42 59 77 1 21 42 64 87 16 41 67 94 27 56 86 22 54 87 26 61 2 39 77 21 61 7 49 92 41 86 37 84 37 86 41 92 49 7 61 21 77 39 2 61 26 87 54 22 86 56 27 94 67 41 16 87 64 42 21 1 77 59 42 26 11 92 79 67 56 46 37 29 22 16 11 7 4 2 1"
},
{
"input": "96",
"output": "2 4 7 11 16 22 29 37 46 56 67 79 92 10 25 41 58 76 95 19 40 62 85 13 38 64 91 23 52 82 17 49 82 20 55 91 32 70 13 53 94 40 83 31 76 26 73 25 74 28 79 35 88 46 5 61 22 80 43 7 68 34 1 65 34 4 71 43 16 86 61 37 14 88 67 47 28 10 89 73 58 44 31 19 8 94 85 77 70 64 59 55 52 50 49"
},
{
"input": "97",
"output": "2 4 7 11 16 22 29 37 46 56 67 79 92 9 24 40 57 75 94 17 38 60 83 10 35 61 88 19 48 78 12 44 77 14 49 85 25 63 5 45 86 31 74 21 66 15 62 13 62 15 66 21 74 31 86 45 5 63 25 85 49 14 77 44 12 78 48 19 88 61 35 10 83 60 38 17 94 75 57 40 24 9 92 79 67 56 46 37 29 22 16 11 7 4 2 1"
},
{
"input": "98",
"output": "2 4 7 11 16 22 29 37 46 56 67 79 92 8 23 39 56 74 93 15 36 58 81 7 32 58 85 15 44 74 7 39 72 8 43 79 18 56 95 37 78 22 65 11 56 4 51 1 50 2 53 7 60 16 71 29 86 46 7 67 30 92 57 23 88 56 25 93 64 36 9 81 56 32 9 85 64 44 25 7 88 72 57 43 30 18 7 95 86 78 71 65 60 56 53 51 50"
},
{
"input": "99",
"output": "2 4 7 11 16 22 29 37 46 56 67 79 92 7 22 38 55 73 92 13 34 56 79 4 29 55 82 11 40 70 2 34 67 2 37 73 11 49 88 29 70 13 56 1 46 92 40 88 38 88 40 92 46 1 56 13 70 29 88 49 11 73 37 2 67 34 2 70 40 11 82 55 29 4 79 56 34 13 92 73 55 38 22 7 92 79 67 56 46 37 29 22 16 11 7 4 2 1"
},
{
"input": "100",
"output": "2 4 7 11 16 22 29 37 46 56 67 79 92 6 21 37 54 72 91 11 32 54 77 1 26 52 79 7 36 66 97 29 62 96 31 67 4 42 81 21 62 4 47 91 36 82 29 77 26 76 27 79 32 86 41 97 54 12 71 31 92 54 17 81 46 12 79 47 16 86 57 29 2 76 51 27 4 82 61 41 22 4 87 71 56 42 29 17 6 96 87 79 72 66 61 57 54 52 51"
}
] | 1,574,660,434
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 33
| 280
| 0
|
n = int(input())
ls = [2]
for i in range(n-2):
m = (ls[i] + i+2)%n
if m == 0:
m = n
ls.append(m)
print(*ls)
|
Title: Ball Game
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
A kindergarten teacher Natalia Pavlovna has invented a new ball game. This game not only develops the children's physique, but also teaches them how to count.
The game goes as follows. Kids stand in circle. Let's agree to think of the children as numbered with numbers from 1 to *n* clockwise and the child number 1 is holding the ball. First the first child throws the ball to the next one clockwise, i.e. to the child number 2. Then the child number 2 throws the ball to the next but one child, i.e. to the child number 4, then the fourth child throws the ball to the child that stands two children away from him, i.e. to the child number 7, then the ball is thrown to the child who stands 3 children away from the child number 7, then the ball is thrown to the child who stands 4 children away from the last one, and so on. It should be mentioned that when a ball is thrown it may pass the beginning of the circle. For example, if *n*<==<=5, then after the third throw the child number 2 has the ball again. Overall, *n*<=-<=1 throws are made, and the game ends.
The problem is that not all the children get the ball during the game. If a child doesn't get the ball, he gets very upset and cries until Natalia Pavlovna gives him a candy. That's why Natalia Pavlovna asks you to help her to identify the numbers of the children who will get the ball after each throw.
Input Specification:
The first line contains integer *n* (2<=β€<=*n*<=β€<=100) which indicates the number of kids in the circle.
Output Specification:
In the single line print *n*<=-<=1 numbers which are the numbers of children who will get the ball after each throw. Separate the numbers by spaces.
Demo Input:
['10\n', '3\n']
Demo Output:
['2 4 7 1 6 2 9 7 6\n', '2 1\n']
Note:
none
|
```python
n = int(input())
ls = [2]
for i in range(n-2):
m = (ls[i] + i+2)%n
if m == 0:
m = n
ls.append(m)
print(*ls)
```
| 3.93
|
621
|
A
|
Wet Shark and Odd and Even
|
PROGRAMMING
| 900
|
[
"implementation"
] | null | null |
Today, Wet Shark is given *n* integers. Using any of these integers no more than once, Wet Shark wants to get maximum possible even (divisible by 2) sum. Please, calculate this value for Wet Shark.
Note, that if Wet Shark uses no integers from the *n* integers, the sum is an even integer 0.
|
The first line of the input contains one integer, *n* (1<=β€<=*n*<=β€<=100<=000). The next line contains *n* space separated integers given to Wet Shark. Each of these integers is in range from 1 to 109, inclusive.
|
Print the maximum possible even sum that can be obtained if we use some of the given integers.
|
[
"3\n1 2 3\n",
"5\n999999999 999999999 999999999 999999999 999999999\n"
] |
[
"6",
"3999999996"
] |
In the first sample, we can simply take all three integers for a total sum of 6.
In the second sample Wet Shark should take any four out of five integers 999β999β999.
| 500
|
[
{
"input": "3\n1 2 3",
"output": "6"
},
{
"input": "5\n999999999 999999999 999999999 999999999 999999999",
"output": "3999999996"
},
{
"input": "1\n1",
"output": "0"
},
{
"input": "15\n39 52 88 78 46 95 84 98 55 3 68 42 6 18 98",
"output": "870"
},
{
"input": "15\n59 96 34 48 8 72 67 90 15 85 7 90 97 47 25",
"output": "840"
},
{
"input": "15\n87 37 91 29 58 45 51 74 70 71 47 38 91 89 44",
"output": "922"
},
{
"input": "15\n11 81 49 7 11 14 30 67 29 50 90 81 77 18 59",
"output": "674"
},
{
"input": "15\n39 21 95 89 73 90 9 55 85 32 30 21 68 59 82",
"output": "848"
},
{
"input": "15\n59 70 48 54 26 67 84 39 40 18 77 69 70 88 93",
"output": "902"
},
{
"input": "15\n87 22 98 32 88 36 72 31 100 97 17 16 60 22 20",
"output": "798"
},
{
"input": "15\n15 63 51 13 37 9 43 19 55 79 57 60 50 59 31",
"output": "632"
},
{
"input": "1\n4",
"output": "4"
},
{
"input": "2\n1 4",
"output": "4"
},
{
"input": "3\n1 2 4",
"output": "6"
},
{
"input": "2\n9 3",
"output": "12"
},
{
"input": "2\n1000000000 1001",
"output": "1000000000"
},
{
"input": "3\n1 8 4",
"output": "12"
},
{
"input": "3\n7 4 4",
"output": "8"
},
{
"input": "5\n2 3 4 5 3",
"output": "14"
},
{
"input": "2\n4 5",
"output": "4"
},
{
"input": "3\n2 4 5",
"output": "6"
},
{
"input": "3\n2 2 3",
"output": "4"
},
{
"input": "2\n2 3",
"output": "2"
},
{
"input": "4\n2 3 7 7",
"output": "16"
},
{
"input": "2\n999999999 2",
"output": "2"
},
{
"input": "2\n2 5",
"output": "2"
},
{
"input": "3\n5 3 1",
"output": "8"
},
{
"input": "4\n3 2 5 7",
"output": "14"
}
] | 1,624,346,058
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 87
| 187
| 10,956,800
|
n=int(input())
s=0
m=100000000000
for i in map(int,input().split()):
s+=i
if(i%2!=0):m=min(i,m)
if(s%2!=0):s-=m
print(s)
|
Title: Wet Shark and Odd and Even
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Today, Wet Shark is given *n* integers. Using any of these integers no more than once, Wet Shark wants to get maximum possible even (divisible by 2) sum. Please, calculate this value for Wet Shark.
Note, that if Wet Shark uses no integers from the *n* integers, the sum is an even integer 0.
Input Specification:
The first line of the input contains one integer, *n* (1<=β€<=*n*<=β€<=100<=000). The next line contains *n* space separated integers given to Wet Shark. Each of these integers is in range from 1 to 109, inclusive.
Output Specification:
Print the maximum possible even sum that can be obtained if we use some of the given integers.
Demo Input:
['3\n1 2 3\n', '5\n999999999 999999999 999999999 999999999 999999999\n']
Demo Output:
['6', '3999999996']
Note:
In the first sample, we can simply take all three integers for a total sum of 6.
In the second sample Wet Shark should take any four out of five integers 999β999β999.
|
```python
n=int(input())
s=0
m=100000000000
for i in map(int,input().split()):
s+=i
if(i%2!=0):m=min(i,m)
if(s%2!=0):s-=m
print(s)
```
| 3
|
|
965
|
C
|
Greedy Arkady
|
PROGRAMMING
| 2,000
|
[
"math"
] | null | null |
$k$ people want to split $n$ candies between them. Each candy should be given to exactly one of them or be thrown away.
The people are numbered from $1$ to $k$, and Arkady is the first of them. To split the candies, Arkady will choose an integer $x$ and then give the first $x$ candies to himself, the next $x$ candies to the second person, the next $x$ candies to the third person and so on in a cycle. The leftover (the remainder that is not divisible by $x$) will be thrown away.
Arkady can't choose $x$ greater than $M$ as it is considered greedy. Also, he can't choose such a small $x$ that some person will receive candies more than $D$ times, as it is considered a slow splitting.
Please find what is the maximum number of candies Arkady can receive by choosing some valid $x$.
|
The only line contains four integers $n$, $k$, $M$ and $D$ ($2 \le n \le 10^{18}$, $2 \le k \le n$, $1 \le M \le n$, $1 \le D \le \min{(n, 1000)}$, $M \cdot D \cdot k \ge n$)Β β the number of candies, the number of people, the maximum number of candies given to a person at once, the maximum number of times a person can receive candies.
|
Print a single integerΒ β the maximum possible number of candies Arkady can give to himself.
Note that it is always possible to choose some valid $x$.
|
[
"20 4 5 2\n",
"30 9 4 1\n"
] |
[
"8\n",
"4\n"
] |
In the first example Arkady should choose $x = 4$. He will give $4$ candies to himself, $4$ candies to the second person, $4$ candies to the third person, then $4$ candies to the fourth person and then again $4$ candies to himself. No person is given candies more than $2$ times, and Arkady receives $8$ candies in total.
Note that if Arkady chooses $x = 5$, he will receive only $5$ candies, and if he chooses $x = 3$, he will receive only $3 + 3 = 6$ candies as well as the second person, the third and the fourth persons will receive $3$ candies, and $2$ candies will be thrown away. He can't choose $x = 1$ nor $x = 2$ because in these cases he will receive candies more than $2$ times.
In the second example Arkady has to choose $x = 4$, because any smaller value leads to him receiving candies more than $1$ time.
| 1,500
|
[
{
"input": "20 4 5 2",
"output": "8"
},
{
"input": "30 9 4 1",
"output": "4"
},
{
"input": "2 2 1 1",
"output": "1"
},
{
"input": "42 20 5 29",
"output": "5"
},
{
"input": "1000000000000000000 135 1000000000000000 1000",
"output": "8325624421831635"
},
{
"input": "100 33 100 100",
"output": "100"
},
{
"input": "1000000000 1000000000 1000000000 1000",
"output": "1000000000"
},
{
"input": "1000000000 32428 1000000000 1000",
"output": "1000000000"
},
{
"input": "1000000000 324934 1000 1000",
"output": "4000"
},
{
"input": "1000000000000000000 32400093004 10000000 1000",
"output": "40000000"
},
{
"input": "885 2 160 842",
"output": "504"
},
{
"input": "216 137 202 208",
"output": "202"
},
{
"input": "72 66 28 9",
"output": "28"
},
{
"input": "294 4 13 8",
"output": "80"
},
{
"input": "9 2 2 3",
"output": "4"
},
{
"input": "31 3 2 8",
"output": "10"
},
{
"input": "104 2 5 11",
"output": "50"
},
{
"input": "1000000000000000000 1000000000000000000 1000 1000",
"output": "1000"
},
{
"input": "1000000000000000000 100000000000000000 1 1000",
"output": "10"
},
{
"input": "23925738098196565 23925738098196565 23925738098196565 1000",
"output": "23925738098196565"
},
{
"input": "576460752303423488 576460752303423488 351082447248993993 1000",
"output": "351082447248993993"
},
{
"input": "962768465676381898 72057594037927936 586039918340257175 256",
"output": "586039918340257175"
},
{
"input": "1000000000000000000 1000000000000000000 10 1000",
"output": "10"
},
{
"input": "23925738098196565 23925738098196565 1 1000",
"output": "1"
},
{
"input": "1000000000000000000 1000000000000000000 1 1000",
"output": "1"
}
] | 1,524,719,385
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 25
| 78
| 7,065,600
|
# cook your dish here
n, k, m, d = [int(x) for x in input().split()]
res = -1
for i in range(1,d+1):
iter = (i-1)*k + 1
max_x = n//iter
min_x = n//(i*k)
if min_x > m:
continue
if max_x > m:
res = max(res, i*m)
else:
res = max(res, i*max_x)
print(int(res))
|
Title: Greedy Arkady
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
$k$ people want to split $n$ candies between them. Each candy should be given to exactly one of them or be thrown away.
The people are numbered from $1$ to $k$, and Arkady is the first of them. To split the candies, Arkady will choose an integer $x$ and then give the first $x$ candies to himself, the next $x$ candies to the second person, the next $x$ candies to the third person and so on in a cycle. The leftover (the remainder that is not divisible by $x$) will be thrown away.
Arkady can't choose $x$ greater than $M$ as it is considered greedy. Also, he can't choose such a small $x$ that some person will receive candies more than $D$ times, as it is considered a slow splitting.
Please find what is the maximum number of candies Arkady can receive by choosing some valid $x$.
Input Specification:
The only line contains four integers $n$, $k$, $M$ and $D$ ($2 \le n \le 10^{18}$, $2 \le k \le n$, $1 \le M \le n$, $1 \le D \le \min{(n, 1000)}$, $M \cdot D \cdot k \ge n$)Β β the number of candies, the number of people, the maximum number of candies given to a person at once, the maximum number of times a person can receive candies.
Output Specification:
Print a single integerΒ β the maximum possible number of candies Arkady can give to himself.
Note that it is always possible to choose some valid $x$.
Demo Input:
['20 4 5 2\n', '30 9 4 1\n']
Demo Output:
['8\n', '4\n']
Note:
In the first example Arkady should choose $x = 4$. He will give $4$ candies to himself, $4$ candies to the second person, $4$ candies to the third person, then $4$ candies to the fourth person and then again $4$ candies to himself. No person is given candies more than $2$ times, and Arkady receives $8$ candies in total.
Note that if Arkady chooses $x = 5$, he will receive only $5$ candies, and if he chooses $x = 3$, he will receive only $3 + 3 = 6$ candies as well as the second person, the third and the fourth persons will receive $3$ candies, and $2$ candies will be thrown away. He can't choose $x = 1$ nor $x = 2$ because in these cases he will receive candies more than $2$ times.
In the second example Arkady has to choose $x = 4$, because any smaller value leads to him receiving candies more than $1$ time.
|
```python
# cook your dish here
n, k, m, d = [int(x) for x in input().split()]
res = -1
for i in range(1,d+1):
iter = (i-1)*k + 1
max_x = n//iter
min_x = n//(i*k)
if min_x > m:
continue
if max_x > m:
res = max(res, i*m)
else:
res = max(res, i*max_x)
print(int(res))
```
| 3
|
|
678
|
D
|
Iterated Linear Function
|
PROGRAMMING
| 1,700
|
[
"math",
"number theory"
] | null | null |
Consider a linear function *f*(*x*)<==<=*Ax*<=+<=*B*. Let's define *g*(0)(*x*)<==<=*x* and *g*(*n*)(*x*)<==<=*f*(*g*(*n*<=-<=1)(*x*)) for *n*<=><=0. For the given integer values *A*, *B*, *n* and *x* find the value of *g*(*n*)(*x*) modulo 109<=+<=7.
|
The only line contains four integers *A*, *B*, *n* and *x* (1<=β€<=*A*,<=*B*,<=*x*<=β€<=109,<=1<=β€<=*n*<=β€<=1018) β the parameters from the problem statement.
Note that the given value *n* can be too large, so you should use 64-bit integer type to store it. In C++ you can use the long long integer type and in Java you can use long integer type.
|
Print the only integer *s* β the value *g*(*n*)(*x*) modulo 109<=+<=7.
|
[
"3 4 1 1\n",
"3 4 2 1\n",
"3 4 3 1\n"
] |
[
"7\n",
"25\n",
"79\n"
] |
none
| 0
|
[
{
"input": "3 4 1 1",
"output": "7"
},
{
"input": "3 4 2 1",
"output": "25"
},
{
"input": "3 4 3 1",
"output": "79"
},
{
"input": "1 1 1 1",
"output": "2"
},
{
"input": "3 10 723 6",
"output": "443623217"
},
{
"input": "14 81 51 82",
"output": "908370438"
},
{
"input": "826504481 101791432 76 486624528",
"output": "621999403"
},
{
"input": "475965351 844435993 96338 972382431",
"output": "83709654"
},
{
"input": "528774798 650132512 6406119 36569714",
"output": "505858307"
},
{
"input": "632656975 851906850 1 310973933",
"output": "230360736"
},
{
"input": "1 1 352875518515340737 1",
"output": "45212126"
},
{
"input": "978837295 606974665 846646545585165081 745145208",
"output": "154788991"
},
{
"input": "277677243 142088706 8846851 253942280",
"output": "221036825"
},
{
"input": "1 192783664 1000000000000000000 596438713",
"output": "42838179"
},
{
"input": "1 1000000000 1000000000000000000 1",
"output": "999999665"
},
{
"input": "1 1000000000 1000000000000000000 1000000000",
"output": "999999657"
},
{
"input": "1 100000000 10000000000000 1000000000",
"output": "48993"
},
{
"input": "1 1171281 1000000000000000000 100",
"output": "57392869"
},
{
"input": "1 1000000000 100000000000000000 1000000000",
"output": "899999965"
},
{
"input": "1 100000000 100000000000000000 10000",
"output": "490010000"
},
{
"input": "1 100000456 10000000000000000 54165",
"output": "129054389"
},
{
"input": "1 1000000000 10000000000000 1",
"output": "490001"
},
{
"input": "1 100000000 10000000000000000 10000",
"output": "49010000"
},
{
"input": "1 1000000000 10000000000 12",
"output": "502"
},
{
"input": "1 999999999 999999999999999999 12345678",
"output": "12345294"
},
{
"input": "1 1000000 1000000000000000000 100000",
"output": "49100000"
},
{
"input": "1 1000000000 1000000000000 12",
"output": "49012"
},
{
"input": "1 10000 1000000000000000000 5",
"output": "490005"
},
{
"input": "1 10000 1000000000000000000 10000",
"output": "500000"
},
{
"input": "1 1000000000 10000000000000 12",
"output": "490012"
},
{
"input": "1 1000000000 1000000000000000 12",
"output": "49000012"
},
{
"input": "1 1000000000 1000000000000000000 12",
"output": "999999676"
},
{
"input": "1 10000000 100000000000000000 100000",
"output": "49100000"
},
{
"input": "114514 114514 114514 114514",
"output": "623380685"
},
{
"input": "2 1 1000000006 1",
"output": "1"
},
{
"input": "1 1234 10 9",
"output": "12349"
}
] | 1,698,106,131
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 36
| 140
| 0
|
# we are applying a linear function many times.
# multiplies 2 2x2 matrices and returns that
mod = 7+10**9
def matmul(a, b):
c = [[0,0],[0,0]]
for i in range(2):
for j in range(2):
for k in range(2):
c[i][j] += a[i][k] * b[k][j]
c[i][j] %= mod
return c
def binpow(a, n):
c = [[1,0],[0,1]]
while n != 0:
if (n&1):
c = matmul(a,c)
a = matmul(a,a)
n//=2
return c
A,B,n,x = [int(i) for i in input().split(" ")]
matDef = [[A,B],[0,1]]
matDef = binpow(matDef,n)
print((matDef[0][0] * x + matDef[0][1]) % mod)
|
Title: Iterated Linear Function
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Consider a linear function *f*(*x*)<==<=*Ax*<=+<=*B*. Let's define *g*(0)(*x*)<==<=*x* and *g*(*n*)(*x*)<==<=*f*(*g*(*n*<=-<=1)(*x*)) for *n*<=><=0. For the given integer values *A*, *B*, *n* and *x* find the value of *g*(*n*)(*x*) modulo 109<=+<=7.
Input Specification:
The only line contains four integers *A*, *B*, *n* and *x* (1<=β€<=*A*,<=*B*,<=*x*<=β€<=109,<=1<=β€<=*n*<=β€<=1018) β the parameters from the problem statement.
Note that the given value *n* can be too large, so you should use 64-bit integer type to store it. In C++ you can use the long long integer type and in Java you can use long integer type.
Output Specification:
Print the only integer *s* β the value *g*(*n*)(*x*) modulo 109<=+<=7.
Demo Input:
['3 4 1 1\n', '3 4 2 1\n', '3 4 3 1\n']
Demo Output:
['7\n', '25\n', '79\n']
Note:
none
|
```python
# we are applying a linear function many times.
# multiplies 2 2x2 matrices and returns that
mod = 7+10**9
def matmul(a, b):
c = [[0,0],[0,0]]
for i in range(2):
for j in range(2):
for k in range(2):
c[i][j] += a[i][k] * b[k][j]
c[i][j] %= mod
return c
def binpow(a, n):
c = [[1,0],[0,1]]
while n != 0:
if (n&1):
c = matmul(a,c)
a = matmul(a,a)
n//=2
return c
A,B,n,x = [int(i) for i in input().split(" ")]
matDef = [[A,B],[0,1]]
matDef = binpow(matDef,n)
print((matDef[0][0] * x + matDef[0][1]) % mod)
```
| 3
|
|
465
|
A
|
inc ARG
|
PROGRAMMING
| 900
|
[
"implementation"
] | null | null |
Sergey is testing a next-generation processor. Instead of bytes the processor works with memory cells consisting of *n* bits. These bits are numbered from 1 to *n*. An integer is stored in the cell in the following way: the least significant bit is stored in the first bit of the cell, the next significant bit is stored in the second bit, and so on; the most significant bit is stored in the *n*-th bit.
Now Sergey wants to test the following instruction: "add 1 to the value of the cell". As a result of the instruction, the integer that is written in the cell must be increased by one; if some of the most significant bits of the resulting number do not fit into the cell, they must be discarded.
Sergey wrote certain values ββof the bits in the cell and is going to add one to its value. How many bits of the cell will change after the operation?
|
The first line contains a single integer *n* (1<=β€<=*n*<=β€<=100) β the number of bits in the cell.
The second line contains a string consisting of *n* characters β the initial state of the cell. The first character denotes the state of the first bit of the cell. The second character denotes the second least significant bit and so on. The last character denotes the state of the most significant bit.
|
Print a single integer β the number of bits in the cell which change their state after we add 1 to the cell.
|
[
"4\n1100\n",
"4\n1111\n"
] |
[
"3\n",
"4\n"
] |
In the first sample the cell ends up with value 0010, in the second sample β with 0000.
| 500
|
[
{
"input": "4\n1100",
"output": "3"
},
{
"input": "4\n1111",
"output": "4"
},
{
"input": "1\n0",
"output": "1"
},
{
"input": "1\n1",
"output": "1"
},
{
"input": "2\n00",
"output": "1"
},
{
"input": "2\n01",
"output": "1"
},
{
"input": "2\n10",
"output": "2"
},
{
"input": "2\n11",
"output": "2"
},
{
"input": "10\n0000000000",
"output": "1"
},
{
"input": "20\n11111111110110001100",
"output": "11"
},
{
"input": "50\n01011110100010000001010000100001001101001101101011",
"output": "1"
},
{
"input": "60\n111111111101111111111111111111111111111111111111111111111111",
"output": "11"
},
{
"input": "60\n111111111111111111111111111111111111111111111111111111111111",
"output": "60"
},
{
"input": "66\n111111010010011001110011000111000100011110011001111110011111111101",
"output": "7"
},
{
"input": "90\n000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000",
"output": "1"
},
{
"input": "91\n1011111111111111111111111111111111111111111111111111111111111111111111111111111111111111111",
"output": "2"
},
{
"input": "92\n11111111101011111011111111111111111111111011101111111111011111111111111101111111101011111101",
"output": "10"
},
{
"input": "100\n0001011110100011001100100010111001000001111101101001001001001011110100101101010000000110100101110010",
"output": "1"
},
{
"input": "100\n0111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111",
"output": "1"
},
{
"input": "100\n0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000",
"output": "1"
},
{
"input": "100\n0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000",
"output": "1"
},
{
"input": "100\n1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111",
"output": "100"
},
{
"input": "100\n1011001110001000011111110011000100001110010110111101110110011011011000010100110001111100000010110010",
"output": "2"
},
{
"input": "100\n1101111011001111111111110011110111101110111111111111111111111111111111011111111111110111111111111111",
"output": "3"
},
{
"input": "100\n1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111",
"output": "100"
},
{
"input": "100\n1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111110",
"output": "100"
},
{
"input": "100\n1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111101",
"output": "99"
},
{
"input": "100\n1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111100000",
"output": "96"
},
{
"input": "100\n1111111111111111111111111111111110011000110110001010101100100100001000010010010010000100110000010101",
"output": "34"
}
] | 1,599,379,310
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 29
| 109
| 0
|
n = int(input())
s = (input())
num = (s[::-1])
ans = 0
rem = 1
while num:
x = int(num)%10
num = num[:-1]
if x==1 and rem==1:
ans+=1
rem = 1
elif x==0 and rem==1:
ans += 1
rem = 0
else:
rem = 0
print(ans)
|
Title: inc ARG
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Sergey is testing a next-generation processor. Instead of bytes the processor works with memory cells consisting of *n* bits. These bits are numbered from 1 to *n*. An integer is stored in the cell in the following way: the least significant bit is stored in the first bit of the cell, the next significant bit is stored in the second bit, and so on; the most significant bit is stored in the *n*-th bit.
Now Sergey wants to test the following instruction: "add 1 to the value of the cell". As a result of the instruction, the integer that is written in the cell must be increased by one; if some of the most significant bits of the resulting number do not fit into the cell, they must be discarded.
Sergey wrote certain values ββof the bits in the cell and is going to add one to its value. How many bits of the cell will change after the operation?
Input Specification:
The first line contains a single integer *n* (1<=β€<=*n*<=β€<=100) β the number of bits in the cell.
The second line contains a string consisting of *n* characters β the initial state of the cell. The first character denotes the state of the first bit of the cell. The second character denotes the second least significant bit and so on. The last character denotes the state of the most significant bit.
Output Specification:
Print a single integer β the number of bits in the cell which change their state after we add 1 to the cell.
Demo Input:
['4\n1100\n', '4\n1111\n']
Demo Output:
['3\n', '4\n']
Note:
In the first sample the cell ends up with value 0010, in the second sample β with 0000.
|
```python
n = int(input())
s = (input())
num = (s[::-1])
ans = 0
rem = 1
while num:
x = int(num)%10
num = num[:-1]
if x==1 and rem==1:
ans+=1
rem = 1
elif x==0 and rem==1:
ans += 1
rem = 0
else:
rem = 0
print(ans)
```
| 3
|
|
233
|
A
|
Perfect Permutation
|
PROGRAMMING
| 800
|
[
"implementation",
"math"
] | null | null |
A permutation is a sequence of integers *p*1,<=*p*2,<=...,<=*p**n*, consisting of *n* distinct positive integers, each of them doesn't exceed *n*. Let's denote the *i*-th element of permutation *p* as *p**i*. We'll call number *n* the size of permutation *p*1,<=*p*2,<=...,<=*p**n*.
Nickolas adores permutations. He likes some permutations more than the others. He calls such permutations perfect. A perfect permutation is such permutation *p* that for any *i* (1<=β€<=*i*<=β€<=*n*) (*n* is the permutation size) the following equations hold *p**p**i*<==<=*i* and *p**i*<=β <=*i*. Nickolas asks you to print any perfect permutation of size *n* for the given *n*.
|
A single line contains a single integer *n* (1<=β€<=*n*<=β€<=100) β the permutation size.
|
If a perfect permutation of size *n* doesn't exist, print a single integer -1. Otherwise print *n* distinct integers from 1 to *n*, *p*1,<=*p*2,<=...,<=*p**n* β permutation *p*, that is perfect. Separate printed numbers by whitespaces.
|
[
"1\n",
"2\n",
"4\n"
] |
[
"-1\n",
"2 1 \n",
"2 1 4 3 \n"
] |
none
| 500
|
[
{
"input": "1",
"output": "-1"
},
{
"input": "2",
"output": "2 1 "
},
{
"input": "4",
"output": "2 1 4 3 "
},
{
"input": "3",
"output": "-1"
},
{
"input": "5",
"output": "-1"
},
{
"input": "6",
"output": "2 1 4 3 6 5 "
},
{
"input": "7",
"output": "-1"
},
{
"input": "20",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 "
},
{
"input": "8",
"output": "2 1 4 3 6 5 8 7 "
},
{
"input": "9",
"output": "-1"
},
{
"input": "10",
"output": "2 1 4 3 6 5 8 7 10 9 "
},
{
"input": "11",
"output": "-1"
},
{
"input": "21",
"output": "-1"
},
{
"input": "50",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 40 39 42 41 44 43 46 45 48 47 50 49 "
},
{
"input": "51",
"output": "-1"
},
{
"input": "52",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 40 39 42 41 44 43 46 45 48 47 50 49 52 51 "
},
{
"input": "84",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 40 39 42 41 44 43 46 45 48 47 50 49 52 51 54 53 56 55 58 57 60 59 62 61 64 63 66 65 68 67 70 69 72 71 74 73 76 75 78 77 80 79 82 81 84 83 "
},
{
"input": "86",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 40 39 42 41 44 43 46 45 48 47 50 49 52 51 54 53 56 55 58 57 60 59 62 61 64 63 66 65 68 67 70 69 72 71 74 73 76 75 78 77 80 79 82 81 84 83 86 85 "
},
{
"input": "100",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 40 39 42 41 44 43 46 45 48 47 50 49 52 51 54 53 56 55 58 57 60 59 62 61 64 63 66 65 68 67 70 69 72 71 74 73 76 75 78 77 80 79 82 81 84 83 86 85 88 87 90 89 92 91 94 93 96 95 98 97 100 99 "
},
{
"input": "98",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 40 39 42 41 44 43 46 45 48 47 50 49 52 51 54 53 56 55 58 57 60 59 62 61 64 63 66 65 68 67 70 69 72 71 74 73 76 75 78 77 80 79 82 81 84 83 86 85 88 87 90 89 92 91 94 93 96 95 98 97 "
},
{
"input": "96",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 40 39 42 41 44 43 46 45 48 47 50 49 52 51 54 53 56 55 58 57 60 59 62 61 64 63 66 65 68 67 70 69 72 71 74 73 76 75 78 77 80 79 82 81 84 83 86 85 88 87 90 89 92 91 94 93 96 95 "
},
{
"input": "33",
"output": "-1"
},
{
"input": "34",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 "
},
{
"input": "36",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 "
},
{
"input": "38",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 "
},
{
"input": "40",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 40 39 "
},
{
"input": "42",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 40 39 42 41 "
},
{
"input": "44",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 40 39 42 41 44 43 "
},
{
"input": "46",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 40 39 42 41 44 43 46 45 "
},
{
"input": "48",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 40 39 42 41 44 43 46 45 48 47 "
}
] | 1,696,005,412
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 30
| 92
| 0
|
n = int(input())
arr = [0] * n
for i in range(n):
if i % 2 == 0:
arr[i] = i + 2
else:
arr[i] = i
if n != 1 and n % 2 == 0:
print(*arr)
else:
print(-1)
|
Title: Perfect Permutation
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
A permutation is a sequence of integers *p*1,<=*p*2,<=...,<=*p**n*, consisting of *n* distinct positive integers, each of them doesn't exceed *n*. Let's denote the *i*-th element of permutation *p* as *p**i*. We'll call number *n* the size of permutation *p*1,<=*p*2,<=...,<=*p**n*.
Nickolas adores permutations. He likes some permutations more than the others. He calls such permutations perfect. A perfect permutation is such permutation *p* that for any *i* (1<=β€<=*i*<=β€<=*n*) (*n* is the permutation size) the following equations hold *p**p**i*<==<=*i* and *p**i*<=β <=*i*. Nickolas asks you to print any perfect permutation of size *n* for the given *n*.
Input Specification:
A single line contains a single integer *n* (1<=β€<=*n*<=β€<=100) β the permutation size.
Output Specification:
If a perfect permutation of size *n* doesn't exist, print a single integer -1. Otherwise print *n* distinct integers from 1 to *n*, *p*1,<=*p*2,<=...,<=*p**n* β permutation *p*, that is perfect. Separate printed numbers by whitespaces.
Demo Input:
['1\n', '2\n', '4\n']
Demo Output:
['-1\n', '2 1 \n', '2 1 4 3 \n']
Note:
none
|
```python
n = int(input())
arr = [0] * n
for i in range(n):
if i % 2 == 0:
arr[i] = i + 2
else:
arr[i] = i
if n != 1 and n % 2 == 0:
print(*arr)
else:
print(-1)
```
| 3
|
|
115
|
A
|
Party
|
PROGRAMMING
| 900
|
[
"dfs and similar",
"graphs",
"trees"
] | null | null |
A company has *n* employees numbered from 1 to *n*. Each employee either has no immediate manager or exactly one immediate manager, who is another employee with a different number. An employee *A* is said to be the superior of another employee *B* if at least one of the following is true:
- Employee *A* is the immediate manager of employee *B* - Employee *B* has an immediate manager employee *C* such that employee *A* is the superior of employee *C*.
The company will not have a managerial cycle. That is, there will not exist an employee who is the superior of his/her own immediate manager.
Today the company is going to arrange a party. This involves dividing all *n* employees into several groups: every employee must belong to exactly one group. Furthermore, within any single group, there must not be two employees *A* and *B* such that *A* is the superior of *B*.
What is the minimum number of groups that must be formed?
|
The first line contains integer *n* (1<=β€<=*n*<=β€<=2000) β the number of employees.
The next *n* lines contain the integers *p**i* (1<=β€<=*p**i*<=β€<=*n* or *p**i*<==<=-1). Every *p**i* denotes the immediate manager for the *i*-th employee. If *p**i* is -1, that means that the *i*-th employee does not have an immediate manager.
It is guaranteed, that no employee will be the immediate manager of him/herself (*p**i*<=β <=*i*). Also, there will be no managerial cycles.
|
Print a single integer denoting the minimum number of groups that will be formed in the party.
|
[
"5\n-1\n1\n2\n1\n-1\n"
] |
[
"3\n"
] |
For the first example, three groups are sufficient, for example:
- Employee 1 - Employees 2 and 4 - Employees 3 and 5
| 500
|
[
{
"input": "5\n-1\n1\n2\n1\n-1",
"output": "3"
},
{
"input": "4\n-1\n1\n2\n3",
"output": "4"
},
{
"input": "12\n-1\n1\n2\n3\n-1\n5\n6\n7\n-1\n9\n10\n11",
"output": "4"
},
{
"input": "6\n-1\n-1\n2\n3\n1\n1",
"output": "3"
},
{
"input": "3\n-1\n1\n1",
"output": "2"
},
{
"input": "1\n-1",
"output": "1"
},
{
"input": "2\n2\n-1",
"output": "2"
},
{
"input": "2\n-1\n-1",
"output": "1"
},
{
"input": "3\n2\n-1\n1",
"output": "3"
},
{
"input": "3\n-1\n-1\n-1",
"output": "1"
},
{
"input": "5\n4\n5\n1\n-1\n4",
"output": "3"
},
{
"input": "12\n-1\n1\n1\n1\n1\n1\n3\n4\n3\n3\n4\n7",
"output": "4"
},
{
"input": "12\n-1\n-1\n1\n-1\n1\n1\n5\n11\n8\n6\n6\n4",
"output": "5"
},
{
"input": "12\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n2\n-1\n-1\n-1",
"output": "2"
},
{
"input": "12\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1",
"output": "1"
},
{
"input": "12\n3\n4\n2\n8\n7\n1\n10\n12\n5\n-1\n9\n11",
"output": "12"
},
{
"input": "12\n5\n6\n7\n1\n-1\n9\n12\n4\n8\n-1\n3\n2",
"output": "11"
},
{
"input": "12\n-1\n9\n11\n6\n6\n-1\n6\n3\n8\n6\n1\n6",
"output": "6"
},
{
"input": "12\n7\n8\n4\n12\n7\n9\n-1\n-1\n-1\n8\n6\n-1",
"output": "3"
},
{
"input": "12\n-1\n10\n-1\n1\n-1\n5\n9\n12\n-1\n-1\n3\n-1",
"output": "2"
},
{
"input": "12\n-1\n7\n9\n12\n1\n7\n-1\n-1\n8\n5\n4\n-1",
"output": "3"
},
{
"input": "12\n11\n11\n8\n9\n1\n1\n2\n-1\n10\n3\n-1\n8",
"output": "5"
},
{
"input": "12\n-1\n8\n9\n-1\n4\n2\n11\n1\n-1\n6\n-1\n10",
"output": "6"
},
{
"input": "12\n7\n4\n4\n-1\n6\n7\n9\n7\n-1\n7\n4\n1",
"output": "4"
},
{
"input": "12\n-1\n6\n10\n6\n1\n11\n5\n9\n11\n5\n1\n9",
"output": "4"
},
{
"input": "12\n8\n6\n6\n8\n6\n-1\n6\n6\n8\n6\n8\n8",
"output": "3"
},
{
"input": "12\n3\n8\n9\n12\n2\n8\n11\n12\n2\n9\n-1\n11",
"output": "7"
},
{
"input": "7\n7\n6\n-1\n-1\n4\n4\n-1",
"output": "3"
},
{
"input": "77\n53\n-1\n48\n-1\n51\n-1\n54\n43\n70\n19\n64\n31\n45\n58\n6\n61\n41\n56\n34\n-1\n54\n-1\n66\n65\n74\n16\n38\n1\n2\n61\n-1\n34\n-1\n-1\n7\n19\n57\n13\n61\n42\n-1\n34\n65\n16\n31\n61\n6\n5\n34\n15\n-1\n13\n4\n22\n74\n7\n-1\n70\n38\n61\n45\n53\n46\n22\n-1\n65\n34\n19\n43\n48\n33\n58\n36\n-1\n47\n24\n34",
"output": "6"
},
{
"input": "5\n2\n3\n4\n5\n-1",
"output": "5"
}
] | 1,680,971,746
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 106
| 810
| 0
|
b=[]
def dfs(s):
depth=1
while s-1>=0:
depth+=1
s=b[s-1]
return depth
n=int(input())
for i in range(n):
b.append(int(input()))
m=1
for i in b:
p=dfs(i)
m=max(m,p)
print(m)
|
Title: Party
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
A company has *n* employees numbered from 1 to *n*. Each employee either has no immediate manager or exactly one immediate manager, who is another employee with a different number. An employee *A* is said to be the superior of another employee *B* if at least one of the following is true:
- Employee *A* is the immediate manager of employee *B* - Employee *B* has an immediate manager employee *C* such that employee *A* is the superior of employee *C*.
The company will not have a managerial cycle. That is, there will not exist an employee who is the superior of his/her own immediate manager.
Today the company is going to arrange a party. This involves dividing all *n* employees into several groups: every employee must belong to exactly one group. Furthermore, within any single group, there must not be two employees *A* and *B* such that *A* is the superior of *B*.
What is the minimum number of groups that must be formed?
Input Specification:
The first line contains integer *n* (1<=β€<=*n*<=β€<=2000) β the number of employees.
The next *n* lines contain the integers *p**i* (1<=β€<=*p**i*<=β€<=*n* or *p**i*<==<=-1). Every *p**i* denotes the immediate manager for the *i*-th employee. If *p**i* is -1, that means that the *i*-th employee does not have an immediate manager.
It is guaranteed, that no employee will be the immediate manager of him/herself (*p**i*<=β <=*i*). Also, there will be no managerial cycles.
Output Specification:
Print a single integer denoting the minimum number of groups that will be formed in the party.
Demo Input:
['5\n-1\n1\n2\n1\n-1\n']
Demo Output:
['3\n']
Note:
For the first example, three groups are sufficient, for example:
- Employee 1 - Employees 2 and 4 - Employees 3 and 5
|
```python
b=[]
def dfs(s):
depth=1
while s-1>=0:
depth+=1
s=b[s-1]
return depth
n=int(input())
for i in range(n):
b.append(int(input()))
m=1
for i in b:
p=dfs(i)
m=max(m,p)
print(m)
```
| 3
|
|
703
|
A
|
Mishka and Game
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Mishka is a little polar bear. As known, little bears loves spending their free time playing dice for chocolates. Once in a wonderful sunny morning, walking around blocks of ice, Mishka met her friend Chris, and they started playing the game.
Rules of the game are very simple: at first number of rounds *n* is defined. In every round each of the players throws a cubical dice with distinct numbers from 1 to 6 written on its faces. Player, whose value after throwing the dice is greater, wins the round. In case if player dice values are equal, no one of them is a winner.
In average, player, who won most of the rounds, is the winner of the game. In case if two players won the same number of rounds, the result of the game is draw.
Mishka is still very little and can't count wins and losses, so she asked you to watch their game and determine its result. Please help her!
|
The first line of the input contains single integer *n* *n* (1<=β€<=*n*<=β€<=100)Β β the number of game rounds.
The next *n* lines contains rounds description. *i*-th of them contains pair of integers *m**i* and *c**i* (1<=β€<=*m**i*,<=<=*c**i*<=β€<=6)Β β values on dice upper face after Mishka's and Chris' throws in *i*-th round respectively.
|
If Mishka is the winner of the game, print "Mishka" (without quotes) in the only line.
If Chris is the winner of the game, print "Chris" (without quotes) in the only line.
If the result of the game is draw, print "Friendship is magic!^^" (without quotes) in the only line.
|
[
"3\n3 5\n2 1\n4 2\n",
"2\n6 1\n1 6\n",
"3\n1 5\n3 3\n2 2\n"
] |
[
"Mishka",
"Friendship is magic!^^",
"Chris"
] |
In the first sample case Mishka loses the first round, but wins second and third rounds and thus she is the winner of the game.
In the second sample case Mishka wins the first round, Chris wins the second round, and the game ends with draw with score 1:1.
In the third sample case Chris wins the first round, but there is no winner of the next two rounds. The winner of the game is Chris.
| 500
|
[
{
"input": "3\n3 5\n2 1\n4 2",
"output": "Mishka"
},
{
"input": "2\n6 1\n1 6",
"output": "Friendship is magic!^^"
},
{
"input": "3\n1 5\n3 3\n2 2",
"output": "Chris"
},
{
"input": "6\n4 1\n4 2\n5 3\n5 1\n5 3\n4 1",
"output": "Mishka"
},
{
"input": "8\n2 4\n1 4\n1 5\n2 6\n2 5\n2 5\n2 4\n2 5",
"output": "Chris"
},
{
"input": "8\n4 1\n2 6\n4 2\n2 5\n5 2\n3 5\n5 2\n1 5",
"output": "Friendship is magic!^^"
},
{
"input": "9\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n1 3",
"output": "Mishka"
},
{
"input": "9\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n1 6\n1 6\n1 6",
"output": "Mishka"
},
{
"input": "9\n1 2\n1 2\n1 2\n1 2\n1 2\n6 1\n6 1\n6 1\n6 1",
"output": "Chris"
},
{
"input": "9\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n1 6\n1 6\n1 6",
"output": "Mishka"
},
{
"input": "10\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n1 4",
"output": "Mishka"
},
{
"input": "10\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n1 6\n1 6\n1 6",
"output": "Mishka"
},
{
"input": "10\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n6 1\n6 1\n6 1\n6 1",
"output": "Chris"
},
{
"input": "10\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n1 6\n1 6\n1 6",
"output": "Mishka"
},
{
"input": "100\n2 4\n6 6\n3 2\n1 5\n5 2\n1 5\n1 5\n3 1\n6 5\n4 3\n1 1\n5 1\n3 3\n2 4\n1 5\n3 4\n5 1\n5 5\n2 5\n2 1\n4 3\n6 5\n1 1\n2 1\n1 3\n1 1\n6 4\n4 6\n6 4\n2 1\n2 5\n6 2\n3 4\n5 5\n1 4\n4 6\n3 4\n1 6\n5 1\n4 3\n3 4\n2 2\n1 2\n2 3\n1 3\n4 4\n5 5\n4 5\n4 4\n3 1\n4 5\n2 3\n2 6\n6 5\n6 1\n6 6\n2 3\n6 4\n3 3\n2 5\n4 4\n3 1\n2 4\n6 1\n3 2\n1 3\n5 4\n6 6\n2 5\n5 1\n1 1\n2 5\n6 5\n3 6\n5 6\n4 3\n3 4\n3 4\n6 5\n5 2\n4 2\n1 1\n3 1\n2 6\n1 6\n1 2\n6 1\n3 4\n1 6\n3 1\n5 3\n1 3\n5 6\n2 1\n6 4\n3 1\n1 6\n6 3\n3 3\n4 3",
"output": "Chris"
},
{
"input": "100\n4 1\n3 4\n4 6\n4 5\n6 5\n5 3\n6 2\n6 3\n5 2\n4 5\n1 5\n5 4\n1 4\n4 5\n4 6\n1 6\n4 4\n5 1\n6 4\n6 4\n4 6\n2 3\n6 2\n4 6\n1 4\n2 3\n4 3\n1 3\n6 2\n3 1\n3 4\n2 6\n4 5\n5 4\n2 2\n2 5\n4 1\n2 2\n3 3\n1 4\n5 6\n6 4\n4 2\n6 1\n5 5\n4 1\n2 1\n6 4\n4 4\n4 3\n5 3\n4 5\n5 3\n3 5\n6 3\n1 1\n3 4\n6 3\n6 1\n5 1\n2 4\n4 3\n2 2\n5 5\n1 5\n5 3\n4 6\n1 4\n6 3\n4 3\n2 4\n3 2\n2 4\n3 4\n6 2\n5 6\n1 2\n1 5\n5 5\n2 6\n5 1\n1 6\n5 3\n3 5\n2 6\n4 6\n6 2\n3 1\n5 5\n6 1\n3 6\n4 4\n1 1\n4 6\n5 3\n4 2\n5 1\n3 3\n2 1\n1 4",
"output": "Mishka"
},
{
"input": "100\n6 3\n4 5\n4 3\n5 4\n5 1\n6 3\n4 2\n4 6\n3 1\n2 4\n2 2\n4 6\n5 3\n5 5\n4 2\n6 2\n2 3\n4 4\n6 4\n3 5\n2 4\n2 2\n5 2\n3 5\n2 4\n4 4\n3 5\n6 5\n1 3\n1 6\n2 2\n2 4\n3 2\n5 4\n1 6\n3 4\n4 1\n1 5\n1 4\n5 3\n2 2\n4 5\n6 3\n4 4\n1 1\n4 1\n2 4\n4 1\n4 5\n5 3\n1 1\n1 6\n5 6\n6 6\n4 2\n4 3\n3 4\n3 6\n3 4\n6 5\n3 4\n5 4\n5 1\n5 3\n5 1\n1 2\n2 6\n3 4\n6 5\n4 3\n1 1\n5 5\n5 1\n3 3\n5 2\n1 3\n6 6\n5 6\n1 4\n4 4\n1 4\n3 6\n6 5\n3 3\n3 6\n1 5\n1 2\n3 6\n3 6\n4 1\n5 2\n1 2\n5 2\n3 3\n4 4\n4 2\n6 2\n5 4\n6 1\n6 3",
"output": "Mishka"
},
{
"input": "8\n4 1\n6 2\n4 1\n5 3\n4 1\n5 3\n6 2\n5 3",
"output": "Mishka"
},
{
"input": "5\n3 6\n3 5\n3 5\n1 6\n3 5",
"output": "Chris"
},
{
"input": "4\n4 1\n2 4\n5 3\n3 6",
"output": "Friendship is magic!^^"
},
{
"input": "6\n6 3\n5 1\n6 3\n4 3\n4 3\n5 2",
"output": "Mishka"
},
{
"input": "7\n3 4\n1 4\n2 5\n1 6\n1 6\n1 5\n3 4",
"output": "Chris"
},
{
"input": "6\n6 2\n2 5\n5 2\n3 6\n4 3\n1 6",
"output": "Friendship is magic!^^"
},
{
"input": "8\n6 1\n5 3\n4 3\n4 1\n5 1\n4 2\n4 2\n4 1",
"output": "Mishka"
},
{
"input": "9\n2 5\n2 5\n1 4\n2 6\n2 4\n2 5\n2 6\n1 5\n2 5",
"output": "Chris"
},
{
"input": "4\n6 2\n2 4\n4 2\n3 6",
"output": "Friendship is magic!^^"
},
{
"input": "9\n5 2\n4 1\n4 1\n5 1\n6 2\n6 1\n5 3\n6 1\n6 2",
"output": "Mishka"
},
{
"input": "8\n2 4\n3 6\n1 6\n1 6\n2 4\n3 4\n3 6\n3 4",
"output": "Chris"
},
{
"input": "6\n5 3\n3 6\n6 2\n1 6\n5 1\n3 5",
"output": "Friendship is magic!^^"
},
{
"input": "6\n5 2\n5 1\n6 1\n5 2\n4 2\n5 1",
"output": "Mishka"
},
{
"input": "5\n1 4\n2 5\n3 4\n2 6\n3 4",
"output": "Chris"
},
{
"input": "4\n6 2\n3 4\n5 1\n1 6",
"output": "Friendship is magic!^^"
},
{
"input": "93\n4 3\n4 1\n4 2\n5 2\n5 3\n6 3\n4 3\n6 2\n6 3\n5 1\n4 2\n4 2\n5 1\n6 2\n6 3\n6 1\n4 1\n6 2\n5 3\n4 3\n4 1\n4 2\n5 2\n6 3\n5 2\n5 2\n6 3\n5 1\n6 2\n5 2\n4 1\n5 2\n5 1\n4 1\n6 1\n5 2\n4 3\n5 3\n5 3\n5 1\n4 3\n4 3\n4 2\n4 1\n6 2\n6 1\n4 1\n5 2\n5 2\n6 2\n5 3\n5 1\n6 2\n5 1\n6 3\n5 2\n6 2\n6 2\n4 2\n5 2\n6 1\n6 3\n6 3\n5 1\n5 1\n4 1\n5 1\n4 3\n5 3\n6 3\n4 1\n4 3\n6 1\n6 1\n4 2\n6 2\n4 2\n5 2\n4 1\n5 2\n4 1\n5 1\n5 2\n5 1\n4 1\n6 3\n6 2\n4 3\n4 1\n5 2\n4 3\n5 2\n5 1",
"output": "Mishka"
},
{
"input": "11\n1 6\n1 6\n2 4\n2 5\n3 4\n1 5\n1 6\n1 5\n1 6\n2 6\n3 4",
"output": "Chris"
},
{
"input": "70\n6 1\n3 6\n4 3\n2 5\n5 2\n1 4\n6 2\n1 6\n4 3\n1 4\n5 3\n2 4\n5 3\n1 6\n5 1\n3 5\n4 2\n2 4\n5 1\n3 5\n6 2\n1 5\n4 2\n2 5\n5 3\n1 5\n4 2\n1 4\n5 2\n2 6\n4 3\n1 5\n6 2\n3 4\n4 2\n3 5\n6 3\n3 4\n5 1\n1 4\n4 2\n1 4\n6 3\n2 6\n5 2\n1 6\n6 1\n2 6\n5 3\n1 5\n5 1\n1 6\n4 1\n1 5\n4 2\n2 4\n5 1\n2 5\n6 3\n1 4\n6 3\n3 6\n5 1\n1 4\n5 3\n3 5\n4 2\n3 4\n6 2\n1 4",
"output": "Friendship is magic!^^"
},
{
"input": "59\n4 1\n5 3\n6 1\n4 2\n5 1\n4 3\n6 1\n5 1\n4 3\n4 3\n5 2\n5 3\n4 1\n6 2\n5 1\n6 3\n6 3\n5 2\n5 2\n6 1\n4 1\n6 1\n4 3\n5 3\n5 3\n4 3\n4 2\n4 2\n6 3\n6 3\n6 1\n4 3\n5 1\n6 2\n6 1\n4 1\n6 1\n5 3\n4 2\n5 1\n6 2\n6 2\n4 3\n5 3\n4 3\n6 3\n5 2\n5 2\n4 3\n5 1\n5 3\n6 1\n6 3\n6 3\n4 3\n5 2\n5 2\n5 2\n4 3",
"output": "Mishka"
},
{
"input": "42\n1 5\n1 6\n1 6\n1 4\n2 5\n3 6\n1 6\n3 4\n2 5\n2 5\n2 4\n1 4\n3 4\n2 4\n2 6\n1 5\n3 6\n2 6\n2 6\n3 5\n1 4\n1 5\n2 6\n3 6\n1 4\n3 4\n2 4\n1 6\n3 4\n2 4\n2 6\n1 6\n1 4\n1 6\n1 6\n2 4\n1 5\n1 6\n2 5\n3 6\n3 5\n3 4",
"output": "Chris"
},
{
"input": "78\n4 3\n3 5\n4 3\n1 5\n5 1\n1 5\n4 3\n1 4\n6 3\n1 5\n4 1\n2 4\n4 3\n2 4\n5 1\n3 6\n4 2\n3 6\n6 3\n3 4\n4 3\n3 6\n5 3\n1 5\n4 1\n2 6\n4 2\n2 4\n4 1\n3 5\n5 2\n3 6\n4 3\n2 4\n6 3\n1 6\n4 3\n3 5\n6 3\n2 6\n4 1\n2 4\n6 2\n1 6\n4 2\n1 4\n4 3\n1 4\n4 3\n2 4\n6 2\n3 5\n6 1\n3 6\n5 3\n1 6\n6 1\n2 6\n4 2\n1 5\n6 2\n2 6\n6 3\n2 4\n4 2\n3 5\n6 1\n2 5\n5 3\n2 6\n5 1\n3 6\n4 3\n3 6\n6 3\n2 5\n6 1\n2 6",
"output": "Friendship is magic!^^"
},
{
"input": "76\n4 1\n5 2\n4 3\n5 2\n5 3\n5 2\n6 1\n4 2\n6 2\n5 3\n4 2\n6 2\n4 1\n4 2\n5 1\n5 1\n6 2\n5 2\n5 3\n6 3\n5 2\n4 3\n6 3\n6 1\n4 3\n6 2\n6 1\n4 1\n6 1\n5 3\n4 1\n5 3\n4 2\n5 2\n4 3\n6 1\n6 2\n5 2\n6 1\n5 3\n4 3\n5 1\n5 3\n4 3\n5 1\n5 1\n4 1\n4 1\n4 1\n4 3\n5 3\n6 3\n6 3\n5 2\n6 2\n6 3\n5 1\n6 3\n5 3\n6 1\n5 3\n4 1\n5 3\n6 1\n4 2\n6 2\n4 3\n4 1\n6 2\n4 3\n5 3\n5 2\n5 3\n5 1\n6 3\n5 2",
"output": "Mishka"
},
{
"input": "84\n3 6\n3 4\n2 5\n2 4\n1 6\n3 4\n1 5\n1 6\n3 5\n1 6\n2 4\n2 6\n2 6\n2 4\n3 5\n1 5\n3 6\n3 6\n3 4\n3 4\n2 6\n1 6\n1 6\n3 5\n3 4\n1 6\n3 4\n3 5\n2 4\n2 5\n2 5\n3 5\n1 6\n3 4\n2 6\n2 6\n3 4\n3 4\n2 5\n2 5\n2 4\n3 4\n2 5\n3 4\n3 4\n2 6\n2 6\n1 6\n2 4\n1 5\n3 4\n2 5\n2 5\n3 4\n2 4\n2 6\n2 6\n1 4\n3 5\n3 5\n2 4\n2 5\n3 4\n1 5\n1 5\n2 6\n1 5\n3 5\n2 4\n2 5\n3 4\n2 6\n1 6\n2 5\n3 5\n3 5\n3 4\n2 5\n2 6\n3 4\n1 6\n2 5\n2 6\n1 4",
"output": "Chris"
},
{
"input": "44\n6 1\n1 6\n5 2\n1 4\n6 2\n2 5\n5 3\n3 6\n5 2\n1 6\n4 1\n2 4\n6 1\n3 4\n6 3\n3 6\n4 3\n2 4\n6 1\n3 4\n6 1\n1 6\n4 1\n3 5\n6 1\n3 6\n4 1\n1 4\n4 2\n2 6\n6 1\n2 4\n6 2\n1 4\n6 2\n2 4\n5 2\n3 6\n6 3\n2 6\n5 3\n3 4\n5 3\n2 4",
"output": "Friendship is magic!^^"
},
{
"input": "42\n5 3\n5 1\n5 2\n4 1\n6 3\n6 1\n6 2\n4 1\n4 3\n4 1\n5 1\n5 3\n5 1\n4 1\n4 2\n6 1\n6 3\n5 1\n4 1\n4 1\n6 3\n4 3\n6 3\n5 2\n6 1\n4 1\n5 3\n4 3\n5 2\n6 3\n6 1\n5 1\n4 2\n4 3\n5 2\n5 3\n6 3\n5 2\n5 1\n5 3\n6 2\n6 1",
"output": "Mishka"
},
{
"input": "50\n3 6\n2 6\n1 4\n1 4\n1 4\n2 5\n3 4\n3 5\n2 6\n1 6\n3 5\n1 5\n2 6\n2 4\n2 4\n3 5\n1 6\n1 5\n1 5\n1 4\n3 5\n1 6\n3 5\n1 4\n1 5\n1 4\n3 6\n1 6\n1 4\n1 4\n1 4\n1 5\n3 6\n1 6\n1 6\n2 4\n1 5\n2 6\n2 5\n3 5\n3 6\n3 4\n2 4\n2 6\n3 4\n2 5\n3 6\n3 5\n2 4\n2 4",
"output": "Chris"
},
{
"input": "86\n6 3\n2 4\n6 3\n3 5\n6 3\n1 5\n5 2\n2 4\n4 3\n2 6\n4 1\n2 6\n5 2\n1 4\n5 1\n2 4\n4 1\n1 4\n6 2\n3 5\n4 2\n2 4\n6 2\n1 5\n5 3\n2 5\n5 1\n1 6\n6 1\n1 4\n4 3\n3 4\n5 2\n2 4\n5 3\n2 5\n4 3\n3 4\n4 1\n1 5\n6 3\n3 4\n4 3\n3 4\n4 1\n3 4\n5 1\n1 6\n4 2\n1 6\n5 1\n2 4\n5 1\n3 6\n4 1\n1 5\n5 2\n1 4\n4 3\n2 5\n5 1\n1 5\n6 2\n2 6\n4 2\n2 4\n4 1\n2 5\n5 3\n3 4\n5 1\n3 4\n6 3\n3 4\n4 3\n2 6\n6 2\n2 5\n5 2\n3 5\n4 2\n3 6\n6 2\n3 4\n4 2\n2 4",
"output": "Friendship is magic!^^"
},
{
"input": "84\n6 1\n6 3\n6 3\n4 1\n4 3\n4 2\n6 3\n5 3\n6 1\n6 3\n4 3\n5 2\n5 3\n5 1\n6 2\n6 2\n6 1\n4 1\n6 3\n5 2\n4 1\n5 3\n6 3\n4 2\n6 2\n6 3\n4 3\n4 1\n4 3\n5 1\n5 1\n5 1\n4 1\n6 1\n4 3\n6 2\n5 1\n5 1\n6 2\n5 2\n4 1\n6 1\n6 1\n6 3\n6 2\n4 3\n6 3\n6 2\n5 2\n5 1\n4 3\n6 2\n4 1\n6 2\n6 1\n5 2\n5 1\n6 2\n6 1\n5 3\n5 2\n6 1\n6 3\n5 2\n6 1\n6 3\n4 3\n5 1\n6 3\n6 1\n5 3\n4 3\n5 2\n5 1\n6 2\n5 3\n6 1\n5 1\n4 1\n5 1\n5 1\n5 2\n5 2\n5 1",
"output": "Mishka"
},
{
"input": "92\n1 5\n2 4\n3 5\n1 6\n2 5\n1 6\n3 6\n1 6\n2 4\n3 4\n3 4\n3 6\n1 5\n2 5\n1 5\n1 5\n2 6\n2 4\n3 6\n1 4\n1 6\n2 6\n3 4\n2 6\n2 6\n1 4\n3 5\n2 5\n2 6\n1 5\n1 4\n1 5\n3 6\n3 5\n2 5\n1 5\n3 5\n3 6\n2 6\n2 6\n1 5\n3 4\n2 4\n3 6\n2 5\n1 5\n2 4\n1 4\n2 6\n2 6\n2 6\n1 5\n3 6\n3 6\n2 5\n1 4\n2 4\n3 4\n1 5\n2 5\n2 4\n2 5\n3 5\n3 4\n3 6\n2 6\n3 5\n1 4\n3 4\n1 6\n3 6\n2 6\n1 4\n3 6\n3 6\n2 5\n2 6\n1 6\n2 6\n3 5\n2 5\n3 6\n2 5\n2 6\n1 5\n2 4\n1 4\n2 4\n1 5\n2 5\n2 5\n2 6",
"output": "Chris"
},
{
"input": "20\n5 1\n1 4\n4 3\n1 5\n4 2\n3 6\n6 2\n1 6\n4 1\n1 4\n5 2\n3 4\n5 1\n1 6\n5 1\n2 6\n6 3\n2 5\n6 2\n2 4",
"output": "Friendship is magic!^^"
},
{
"input": "100\n4 3\n4 3\n4 2\n4 3\n4 1\n4 3\n5 2\n5 2\n6 2\n4 2\n5 1\n4 2\n5 2\n6 1\n4 1\n6 3\n5 3\n5 1\n5 1\n5 1\n5 3\n6 1\n6 1\n4 1\n5 2\n5 2\n6 1\n6 3\n4 2\n4 1\n5 3\n4 1\n5 3\n5 1\n6 3\n6 3\n6 1\n5 2\n5 3\n5 3\n6 1\n4 1\n6 2\n6 1\n6 2\n6 3\n4 3\n4 3\n6 3\n4 2\n4 2\n5 3\n5 2\n5 2\n4 3\n5 3\n5 2\n4 2\n5 1\n4 2\n5 1\n5 3\n6 3\n5 3\n5 3\n4 2\n4 1\n4 2\n4 3\n6 3\n4 3\n6 2\n6 1\n5 3\n5 2\n4 1\n6 1\n5 2\n6 2\n4 2\n6 3\n4 3\n5 1\n6 3\n5 2\n4 3\n5 3\n5 3\n4 3\n6 3\n4 3\n4 1\n5 1\n6 2\n6 3\n5 3\n6 1\n6 3\n5 3\n6 1",
"output": "Mishka"
},
{
"input": "100\n1 5\n1 4\n1 5\n2 4\n2 6\n3 6\n3 5\n1 5\n2 5\n3 6\n3 5\n1 6\n1 4\n1 5\n1 6\n2 6\n1 5\n3 5\n3 4\n2 6\n2 6\n2 5\n3 4\n1 6\n1 4\n2 4\n1 5\n1 6\n3 5\n1 6\n2 6\n3 5\n1 6\n3 4\n3 5\n1 6\n3 6\n2 4\n2 4\n3 5\n2 6\n1 5\n3 5\n3 6\n2 4\n2 4\n2 6\n3 4\n3 4\n1 5\n1 4\n2 5\n3 4\n1 4\n2 6\n2 5\n2 4\n2 4\n2 5\n1 5\n1 6\n1 5\n1 5\n1 5\n1 6\n3 4\n2 4\n3 5\n3 5\n1 6\n3 5\n1 5\n1 6\n3 6\n3 4\n1 5\n3 5\n3 6\n1 4\n3 6\n1 5\n3 5\n3 6\n3 5\n1 4\n3 4\n2 4\n2 4\n2 5\n3 6\n3 5\n1 5\n2 4\n1 4\n3 4\n1 5\n3 4\n3 6\n3 5\n3 4",
"output": "Chris"
},
{
"input": "100\n4 3\n3 4\n5 1\n2 5\n5 3\n1 5\n6 3\n2 4\n5 2\n2 6\n5 2\n1 5\n6 3\n1 5\n6 3\n3 4\n5 2\n1 5\n6 1\n1 5\n4 2\n3 5\n6 3\n2 6\n6 3\n1 4\n6 2\n3 4\n4 1\n3 6\n5 1\n2 4\n5 1\n3 4\n6 2\n3 5\n4 1\n2 6\n4 3\n2 6\n5 2\n3 6\n6 2\n3 5\n4 3\n1 5\n5 3\n3 6\n4 2\n3 4\n6 1\n3 4\n5 2\n2 6\n5 2\n2 4\n6 2\n3 6\n4 3\n2 4\n4 3\n2 6\n4 2\n3 4\n6 3\n2 4\n6 3\n3 5\n5 2\n1 5\n6 3\n3 6\n4 3\n1 4\n5 2\n1 6\n4 1\n2 5\n4 1\n2 4\n4 2\n2 5\n6 1\n2 4\n6 3\n1 5\n4 3\n2 6\n6 3\n2 6\n5 3\n1 5\n4 1\n1 5\n6 2\n2 5\n5 1\n3 6\n4 3\n3 4",
"output": "Friendship is magic!^^"
},
{
"input": "99\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n1 3",
"output": "Mishka"
},
{
"input": "99\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6",
"output": "Mishka"
},
{
"input": "99\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1",
"output": "Chris"
},
{
"input": "99\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6",
"output": "Mishka"
},
{
"input": "100\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n1 4",
"output": "Mishka"
},
{
"input": "100\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6",
"output": "Mishka"
},
{
"input": "100\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1",
"output": "Chris"
},
{
"input": "100\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6",
"output": "Mishka"
},
{
"input": "84\n6 2\n1 5\n6 2\n2 3\n5 5\n1 2\n3 4\n3 4\n6 5\n6 4\n2 5\n4 1\n1 2\n1 1\n1 4\n2 5\n5 6\n6 3\n2 4\n5 5\n2 6\n3 4\n5 1\n3 3\n5 5\n4 6\n4 6\n2 4\n4 1\n5 2\n2 2\n3 6\n3 3\n4 6\n1 1\n2 4\n6 5\n5 2\n6 5\n5 5\n2 5\n6 4\n1 1\n6 2\n3 6\n6 5\n4 4\n1 5\n5 6\n4 4\n3 5\n6 1\n3 4\n1 5\n4 6\n4 6\n4 1\n3 6\n6 2\n1 1\n4 5\n5 4\n5 3\n3 4\n6 4\n1 1\n5 2\n6 5\n6 1\n2 2\n2 4\n3 3\n4 6\n1 3\n6 6\n5 2\n1 6\n6 2\n6 6\n4 1\n3 6\n6 4\n2 3\n3 4",
"output": "Chris"
},
{
"input": "70\n3 4\n2 3\n2 3\n6 5\n6 6\n4 3\n2 3\n3 1\n3 5\n5 6\n1 6\n2 5\n5 3\n2 5\n4 6\n5 1\n6 1\n3 1\n3 3\n5 3\n2 1\n3 3\n6 4\n6 3\n4 3\n4 5\n3 5\n5 5\n5 2\n1 6\n3 4\n5 2\n2 4\n1 6\n4 3\n4 3\n6 2\n1 3\n1 5\n6 1\n3 1\n1 1\n1 3\n2 2\n3 2\n6 4\n1 1\n4 4\n3 1\n4 5\n4 2\n6 3\n4 4\n3 2\n1 2\n2 6\n3 3\n1 5\n1 1\n6 5\n2 2\n3 1\n5 4\n5 2\n6 4\n6 3\n6 6\n6 3\n3 3\n5 4",
"output": "Mishka"
},
{
"input": "56\n6 4\n3 4\n6 1\n3 3\n1 4\n2 3\n1 5\n2 5\n1 5\n5 5\n2 3\n1 1\n3 2\n3 5\n4 6\n4 4\n5 2\n4 3\n3 1\n3 6\n2 3\n3 4\n5 6\n5 2\n5 6\n1 5\n1 5\n4 1\n6 3\n2 2\n2 1\n5 5\n2 1\n4 1\n5 4\n2 5\n4 1\n6 2\n3 4\n4 2\n6 4\n5 4\n4 2\n4 3\n6 2\n6 2\n3 1\n1 4\n3 6\n5 1\n5 5\n3 6\n6 4\n2 3\n6 5\n3 3",
"output": "Mishka"
},
{
"input": "94\n2 4\n6 4\n1 6\n1 4\n5 1\n3 3\n4 3\n6 1\n6 5\n3 2\n2 3\n5 1\n5 3\n1 2\n4 3\n3 2\n2 3\n4 6\n1 3\n6 3\n1 1\n3 2\n4 3\n1 5\n4 6\n3 2\n6 3\n1 6\n1 1\n1 2\n3 5\n1 3\n3 5\n4 4\n4 2\n1 4\n4 5\n1 3\n1 2\n1 1\n5 4\n5 5\n6 1\n2 1\n2 6\n6 6\n4 2\n3 6\n1 6\n6 6\n1 5\n3 2\n1 2\n4 4\n6 4\n4 1\n1 5\n3 3\n1 3\n3 4\n4 4\n1 1\n2 5\n4 5\n3 1\n3 1\n3 6\n3 2\n1 4\n1 6\n6 3\n2 4\n1 1\n2 2\n2 2\n2 1\n5 4\n1 2\n6 6\n2 2\n3 3\n6 3\n6 3\n1 6\n2 3\n2 4\n2 3\n6 6\n2 6\n6 3\n3 5\n1 4\n1 1\n3 5",
"output": "Chris"
},
{
"input": "81\n4 2\n1 2\n2 3\n4 5\n6 2\n1 6\n3 6\n3 4\n4 6\n4 4\n3 5\n4 6\n3 6\n3 5\n3 1\n1 3\n5 3\n3 4\n1 1\n4 1\n1 2\n6 1\n1 3\n6 5\n4 5\n4 2\n4 5\n6 2\n1 2\n2 6\n5 2\n1 5\n2 4\n4 3\n5 4\n1 2\n5 3\n2 6\n6 4\n1 1\n1 3\n3 1\n3 1\n6 5\n5 5\n6 1\n6 6\n5 2\n1 3\n1 4\n2 3\n5 5\n3 1\n3 1\n4 4\n1 6\n6 4\n2 2\n4 6\n4 4\n2 6\n2 4\n2 4\n4 1\n1 6\n1 4\n1 3\n6 5\n5 1\n1 3\n5 1\n1 4\n3 5\n2 6\n1 3\n5 6\n3 5\n4 4\n5 5\n5 6\n4 3",
"output": "Chris"
},
{
"input": "67\n6 5\n3 6\n1 6\n5 3\n5 4\n5 1\n1 6\n1 1\n3 2\n4 4\n3 1\n4 1\n1 5\n5 3\n3 3\n6 4\n2 4\n2 2\n4 3\n1 4\n1 4\n6 1\n1 2\n2 2\n5 1\n6 2\n3 5\n5 5\n2 2\n6 5\n6 2\n4 4\n3 1\n4 2\n6 6\n6 4\n5 1\n2 2\n4 5\n5 5\n4 6\n1 5\n6 3\n4 4\n1 5\n6 4\n3 6\n3 4\n1 6\n2 4\n2 1\n2 5\n6 5\n6 4\n4 1\n3 2\n1 2\n5 1\n5 6\n1 5\n3 5\n3 1\n5 3\n3 2\n5 1\n4 6\n6 6",
"output": "Mishka"
},
{
"input": "55\n6 6\n6 5\n2 2\n2 2\n6 4\n5 5\n6 5\n5 3\n1 3\n2 2\n5 6\n3 3\n3 3\n6 5\n3 5\n5 5\n1 2\n1 1\n4 6\n1 2\n5 5\n6 2\n6 3\n1 2\n5 1\n1 3\n3 3\n4 4\n2 5\n1 1\n5 3\n4 3\n2 2\n4 5\n5 6\n4 5\n6 3\n1 6\n6 4\n3 6\n1 6\n5 2\n6 3\n2 3\n5 5\n4 3\n3 1\n4 2\n1 1\n2 5\n5 3\n2 2\n6 3\n4 5\n2 2",
"output": "Mishka"
},
{
"input": "92\n2 3\n1 3\n2 6\n5 1\n5 5\n3 2\n5 6\n2 5\n3 1\n3 6\n4 5\n2 5\n1 2\n2 3\n6 5\n3 6\n4 4\n6 2\n4 5\n4 4\n5 1\n6 1\n3 4\n3 5\n6 6\n3 2\n6 4\n2 2\n3 5\n6 4\n6 3\n6 6\n3 4\n3 3\n6 1\n5 4\n6 2\n2 6\n5 6\n1 4\n4 6\n6 3\n3 1\n4 1\n6 6\n3 5\n6 3\n6 1\n1 6\n3 2\n6 6\n4 3\n3 4\n1 3\n3 5\n5 3\n6 5\n4 3\n5 5\n4 1\n1 5\n6 4\n2 3\n2 3\n1 5\n1 2\n5 2\n4 3\n3 6\n5 5\n5 4\n1 4\n3 3\n1 6\n5 6\n5 4\n5 3\n1 1\n6 2\n5 5\n2 5\n4 3\n6 6\n5 1\n1 1\n4 6\n4 6\n3 1\n6 4\n2 4\n2 2\n2 1",
"output": "Chris"
},
{
"input": "79\n5 3\n4 6\n3 6\n2 1\n5 2\n2 3\n4 4\n6 2\n2 5\n1 6\n6 6\n2 6\n3 3\n4 5\n6 2\n2 1\n1 5\n5 1\n2 1\n2 6\n5 3\n6 2\n2 6\n2 3\n1 5\n4 4\n6 3\n5 2\n3 2\n1 3\n1 3\n6 3\n2 6\n3 6\n5 3\n4 5\n6 1\n3 5\n3 5\n6 5\n1 5\n4 2\n6 2\n2 3\n4 6\n3 6\n2 5\n4 4\n1 1\n4 6\n2 6\n6 4\n3 2\n4 1\n1 2\n6 4\n5 6\n1 4\n2 2\n5 4\n3 2\n1 2\n2 4\n2 5\n2 1\n3 6\n3 3\n1 1\n2 2\n4 4\n4 5\n3 3\n5 3\n6 2\n4 5\n6 5\n2 5\n5 6\n2 2",
"output": "Chris"
},
{
"input": "65\n1 1\n5 1\n2 2\n5 4\n4 5\n2 5\n3 2\n5 6\n6 3\n1 1\n6 1\n1 5\n1 1\n5 2\n6 4\n1 6\n1 1\n4 3\n2 3\n5 6\n4 4\n6 2\n1 3\n4 3\n1 3\n6 3\n3 5\n4 2\n4 1\n6 1\n3 2\n2 6\n3 2\n3 5\n6 3\n4 3\n1 5\n2 6\n1 3\n4 1\n4 1\n2 5\n2 5\n6 2\n5 3\n3 1\n3 3\n5 1\n2 4\n5 3\n3 3\n1 1\n6 3\n3 3\n5 1\n1 6\n4 5\n6 6\n5 5\n2 5\n4 1\n2 2\n1 4\n1 6\n6 5",
"output": "Mishka"
},
{
"input": "1\n1 1",
"output": "Friendship is magic!^^"
}
] | 1,691,789,030
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 69
| 93
| 0
|
# Read the number of game rounds
n = int(input())
# Initialize counters for Mishka and Chris
mishka_wins = 0
chris_wins = 0
# Process each round
for _ in range(n):
# Read the values on dice upper face for Mishka and Chris
mi, ci = map(int, input().split())
# Compare the values and update the counters
if mi > ci:
mishka_wins += 1
elif ci > mi:
chris_wins += 1
# Determine the result of the game
if mishka_wins > chris_wins:
print("Mishka")
elif chris_wins > mishka_wins:
print("Chris")
else:
print("Friendship is magic!^^")
|
Title: Mishka and Game
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Mishka is a little polar bear. As known, little bears loves spending their free time playing dice for chocolates. Once in a wonderful sunny morning, walking around blocks of ice, Mishka met her friend Chris, and they started playing the game.
Rules of the game are very simple: at first number of rounds *n* is defined. In every round each of the players throws a cubical dice with distinct numbers from 1 to 6 written on its faces. Player, whose value after throwing the dice is greater, wins the round. In case if player dice values are equal, no one of them is a winner.
In average, player, who won most of the rounds, is the winner of the game. In case if two players won the same number of rounds, the result of the game is draw.
Mishka is still very little and can't count wins and losses, so she asked you to watch their game and determine its result. Please help her!
Input Specification:
The first line of the input contains single integer *n* *n* (1<=β€<=*n*<=β€<=100)Β β the number of game rounds.
The next *n* lines contains rounds description. *i*-th of them contains pair of integers *m**i* and *c**i* (1<=β€<=*m**i*,<=<=*c**i*<=β€<=6)Β β values on dice upper face after Mishka's and Chris' throws in *i*-th round respectively.
Output Specification:
If Mishka is the winner of the game, print "Mishka" (without quotes) in the only line.
If Chris is the winner of the game, print "Chris" (without quotes) in the only line.
If the result of the game is draw, print "Friendship is magic!^^" (without quotes) in the only line.
Demo Input:
['3\n3 5\n2 1\n4 2\n', '2\n6 1\n1 6\n', '3\n1 5\n3 3\n2 2\n']
Demo Output:
['Mishka', 'Friendship is magic!^^', 'Chris']
Note:
In the first sample case Mishka loses the first round, but wins second and third rounds and thus she is the winner of the game.
In the second sample case Mishka wins the first round, Chris wins the second round, and the game ends with draw with score 1:1.
In the third sample case Chris wins the first round, but there is no winner of the next two rounds. The winner of the game is Chris.
|
```python
# Read the number of game rounds
n = int(input())
# Initialize counters for Mishka and Chris
mishka_wins = 0
chris_wins = 0
# Process each round
for _ in range(n):
# Read the values on dice upper face for Mishka and Chris
mi, ci = map(int, input().split())
# Compare the values and update the counters
if mi > ci:
mishka_wins += 1
elif ci > mi:
chris_wins += 1
# Determine the result of the game
if mishka_wins > chris_wins:
print("Mishka")
elif chris_wins > mishka_wins:
print("Chris")
else:
print("Friendship is magic!^^")
```
| 3
|
|
460
|
A
|
Vasya and Socks
|
PROGRAMMING
| 900
|
[
"brute force",
"implementation",
"math"
] | null | null |
Vasya has *n* pairs of socks. In the morning of each day Vasya has to put on a pair of socks before he goes to school. When he comes home in the evening, Vasya takes off the used socks and throws them away. Every *m*-th day (at days with numbers *m*,<=2*m*,<=3*m*,<=...) mom buys a pair of socks to Vasya. She does it late in the evening, so that Vasya cannot put on a new pair of socks before the next day. How many consecutive days pass until Vasya runs out of socks?
|
The single line contains two integers *n* and *m* (1<=β€<=*n*<=β€<=100;Β 2<=β€<=*m*<=β€<=100), separated by a space.
|
Print a single integer β the answer to the problem.
|
[
"2 2\n",
"9 3\n"
] |
[
"3\n",
"13\n"
] |
In the first sample Vasya spends the first two days wearing the socks that he had initially. Then on day three he puts on the socks that were bought on day two.
In the second sample Vasya spends the first nine days wearing the socks that he had initially. Then he spends three days wearing the socks that were bought on the third, sixth and ninth days. Than he spends another day wearing the socks that were bought on the twelfth day.
| 500
|
[
{
"input": "2 2",
"output": "3"
},
{
"input": "9 3",
"output": "13"
},
{
"input": "1 2",
"output": "1"
},
{
"input": "2 3",
"output": "2"
},
{
"input": "1 99",
"output": "1"
},
{
"input": "4 4",
"output": "5"
},
{
"input": "10 2",
"output": "19"
},
{
"input": "10 9",
"output": "11"
},
{
"input": "100 100",
"output": "101"
},
{
"input": "2 27",
"output": "2"
},
{
"input": "99 100",
"output": "99"
},
{
"input": "99 2",
"output": "197"
},
{
"input": "100 3",
"output": "149"
},
{
"input": "98 3",
"output": "146"
},
{
"input": "4 4",
"output": "5"
},
{
"input": "100 2",
"output": "199"
},
{
"input": "62 4",
"output": "82"
},
{
"input": "99 10",
"output": "109"
},
{
"input": "100 5",
"output": "124"
},
{
"input": "80 80",
"output": "81"
},
{
"input": "95 16",
"output": "101"
},
{
"input": "75 16",
"output": "79"
},
{
"input": "99 74",
"output": "100"
},
{
"input": "20 21",
"output": "20"
},
{
"input": "52 96",
"output": "52"
},
{
"input": "24 5",
"output": "29"
}
] | 1,641,484,648
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 26
| 46
| 0
|
n,m=map(int, input().split())
s=n
while (n//m)>=1:
s+=(n//m)
n=((n//m)+(n%m))
print(s)
|
Title: Vasya and Socks
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Vasya has *n* pairs of socks. In the morning of each day Vasya has to put on a pair of socks before he goes to school. When he comes home in the evening, Vasya takes off the used socks and throws them away. Every *m*-th day (at days with numbers *m*,<=2*m*,<=3*m*,<=...) mom buys a pair of socks to Vasya. She does it late in the evening, so that Vasya cannot put on a new pair of socks before the next day. How many consecutive days pass until Vasya runs out of socks?
Input Specification:
The single line contains two integers *n* and *m* (1<=β€<=*n*<=β€<=100;Β 2<=β€<=*m*<=β€<=100), separated by a space.
Output Specification:
Print a single integer β the answer to the problem.
Demo Input:
['2 2\n', '9 3\n']
Demo Output:
['3\n', '13\n']
Note:
In the first sample Vasya spends the first two days wearing the socks that he had initially. Then on day three he puts on the socks that were bought on day two.
In the second sample Vasya spends the first nine days wearing the socks that he had initially. Then he spends three days wearing the socks that were bought on the third, sixth and ninth days. Than he spends another day wearing the socks that were bought on the twelfth day.
|
```python
n,m=map(int, input().split())
s=n
while (n//m)>=1:
s+=(n//m)
n=((n//m)+(n%m))
print(s)
```
| 3
|
|
617
|
A
|
Elephant
|
PROGRAMMING
| 800
|
[
"math"
] | null | null |
An elephant decided to visit his friend. It turned out that the elephant's house is located at point 0 and his friend's house is located at point *x*(*x*<=><=0) of the coordinate line. In one step the elephant can move 1, 2, 3, 4 or 5 positions forward. Determine, what is the minimum number of steps he need to make in order to get to his friend's house.
|
The first line of the input contains an integer *x* (1<=β€<=*x*<=β€<=1<=000<=000)Β β The coordinate of the friend's house.
|
Print the minimum number of steps that elephant needs to make to get from point 0 to point *x*.
|
[
"5\n",
"12\n"
] |
[
"1\n",
"3\n"
] |
In the first sample the elephant needs to make one step of length 5 to reach the point *x*.
In the second sample the elephant can get to point *x* if he moves by 3, 5 and 4. There are other ways to get the optimal answer but the elephant cannot reach *x* in less than three moves.
| 500
|
[
{
"input": "5",
"output": "1"
},
{
"input": "12",
"output": "3"
},
{
"input": "999999",
"output": "200000"
},
{
"input": "41",
"output": "9"
},
{
"input": "1000000",
"output": "200000"
},
{
"input": "1",
"output": "1"
},
{
"input": "2",
"output": "1"
},
{
"input": "3",
"output": "1"
},
{
"input": "4",
"output": "1"
},
{
"input": "534204",
"output": "106841"
},
{
"input": "469569",
"output": "93914"
},
{
"input": "502877",
"output": "100576"
},
{
"input": "942212",
"output": "188443"
},
{
"input": "97",
"output": "20"
},
{
"input": "53",
"output": "11"
},
{
"input": "89",
"output": "18"
},
{
"input": "574",
"output": "115"
},
{
"input": "716",
"output": "144"
},
{
"input": "729",
"output": "146"
},
{
"input": "8901",
"output": "1781"
},
{
"input": "3645",
"output": "729"
},
{
"input": "4426",
"output": "886"
},
{
"input": "46573",
"output": "9315"
},
{
"input": "86380",
"output": "17276"
},
{
"input": "94190",
"output": "18838"
},
{
"input": "999990",
"output": "199998"
},
{
"input": "999991",
"output": "199999"
},
{
"input": "999992",
"output": "199999"
},
{
"input": "999993",
"output": "199999"
},
{
"input": "999994",
"output": "199999"
},
{
"input": "999995",
"output": "199999"
},
{
"input": "999996",
"output": "200000"
},
{
"input": "999997",
"output": "200000"
},
{
"input": "999998",
"output": "200000"
}
] | 1,698,487,568
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 34
| 46
| 0
|
x= int(input())
steps = x // 5
if x %5 != 0:
steps +=1
print(steps)
|
Title: Elephant
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
An elephant decided to visit his friend. It turned out that the elephant's house is located at point 0 and his friend's house is located at point *x*(*x*<=><=0) of the coordinate line. In one step the elephant can move 1, 2, 3, 4 or 5 positions forward. Determine, what is the minimum number of steps he need to make in order to get to his friend's house.
Input Specification:
The first line of the input contains an integer *x* (1<=β€<=*x*<=β€<=1<=000<=000)Β β The coordinate of the friend's house.
Output Specification:
Print the minimum number of steps that elephant needs to make to get from point 0 to point *x*.
Demo Input:
['5\n', '12\n']
Demo Output:
['1\n', '3\n']
Note:
In the first sample the elephant needs to make one step of length 5 to reach the point *x*.
In the second sample the elephant can get to point *x* if he moves by 3, 5 and 4. There are other ways to get the optimal answer but the elephant cannot reach *x* in less than three moves.
|
```python
x= int(input())
steps = x // 5
if x %5 != 0:
steps +=1
print(steps)
```
| 3
|
|
815
|
A
|
Karen and Game
|
PROGRAMMING
| 1,700
|
[
"brute force",
"greedy",
"implementation"
] | null | null |
On the way to school, Karen became fixated on the puzzle game on her phone!
The game is played as follows. In each level, you have a grid with *n* rows and *m* columns. Each cell originally contains the number 0.
One move consists of choosing one row or column, and adding 1 to all of the cells in that row or column.
To win the level, after all the moves, the number in the cell at the *i*-th row and *j*-th column should be equal to *g**i*,<=*j*.
Karen is stuck on one level, and wants to know a way to beat this level using the minimum number of moves. Please, help her with this task!
|
The first line of input contains two integers, *n* and *m* (1<=β€<=*n*,<=*m*<=β€<=100), the number of rows and the number of columns in the grid, respectively.
The next *n* lines each contain *m* integers. In particular, the *j*-th integer in the *i*-th of these rows contains *g**i*,<=*j* (0<=β€<=*g**i*,<=*j*<=β€<=500).
|
If there is an error and it is actually not possible to beat the level, output a single integer -1.
Otherwise, on the first line, output a single integer *k*, the minimum number of moves necessary to beat the level.
The next *k* lines should each contain one of the following, describing the moves in the order they must be done:
- row *x*, (1<=β€<=*x*<=β€<=*n*) describing a move of the form "choose the *x*-th row". - col *x*, (1<=β€<=*x*<=β€<=*m*) describing a move of the form "choose the *x*-th column".
If there are multiple optimal solutions, output any one of them.
|
[
"3 5\n2 2 2 3 2\n0 0 0 1 0\n1 1 1 2 1\n",
"3 3\n0 0 0\n0 1 0\n0 0 0\n",
"3 3\n1 1 1\n1 1 1\n1 1 1\n"
] |
[
"4\nrow 1\nrow 1\ncol 4\nrow 3\n",
"-1\n",
"3\nrow 1\nrow 2\nrow 3\n"
] |
In the first test case, Karen has a grid with 3 rows and 5 columns. She can perform the following 4 moves to beat the level:
In the second test case, Karen has a grid with 3 rows and 3 columns. It is clear that it is impossible to beat the level; performing any move will create three 1s on the grid, but it is required to only have one 1 in the center.
In the third test case, Karen has a grid with 3 rows and 3 columns. She can perform the following 3 moves to beat the level:
Note that this is not the only solution; another solution, among others, is col 1, col 2, col 3.
| 500
|
[
{
"input": "3 5\n2 2 2 3 2\n0 0 0 1 0\n1 1 1 2 1",
"output": "4\nrow 1\nrow 1\ncol 4\nrow 3"
},
{
"input": "3 3\n0 0 0\n0 1 0\n0 0 0",
"output": "-1"
},
{
"input": "3 3\n1 1 1\n1 1 1\n1 1 1",
"output": "3\nrow 1\nrow 2\nrow 3"
},
{
"input": "3 5\n2 4 2 2 3\n0 2 0 0 1\n1 3 1 1 2",
"output": "6\nrow 1\nrow 1\ncol 2\ncol 2\ncol 5\nrow 3"
},
{
"input": "3 5\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 1",
"output": "-1"
},
{
"input": "9 10\n14 5 6 4 8 9 4 14 14 13\n13 4 5 3 7 8 3 13 13 12\n16 7 8 6 10 11 6 16 16 15\n10 1 2 0 4 5 0 10 10 9\n11 2 3 1 5 6 1 11 11 10\n10 1 2 0 4 5 0 10 10 9\n12 3 4 2 6 7 2 12 12 11\n13 4 5 3 7 8 3 13 13 12\n13 4 5 3 7 8 3 13 13 12",
"output": "73\nrow 1\nrow 1\nrow 1\nrow 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 2\ncol 3\ncol 3\ncol 5\ncol 5\ncol 5\ncol 5\ncol 6\ncol 6\ncol 6\ncol 6\ncol 6\ncol 8\ncol 8\ncol 8\ncol 8\ncol 8\ncol 8\ncol 8\ncol 8\ncol 8\ncol 8\ncol 9\ncol 9\ncol 9\ncol 9\ncol 9\ncol 9\ncol 9\ncol 9\ncol 9\ncol 9\ncol 10\ncol 10\ncol 10\ncol 10\ncol 10\ncol 10\ncol 10\ncol 10\ncol 10\nrow 2\nrow 2\nrow 2\nrow 3\nrow 3\nrow 3\nrow 3\nrow 3\nrow 3\nrow 5\nrow 7\nrow 7\nrow 8\nrow 8\nrow 8\nrow 9\nr..."
},
{
"input": "10 10\n30 30 30 33 30 33 30 33 30 33\n431 431 431 434 431 434 431 434 431 434\n19 19 19 22 19 22 19 22 19 22\n24 24 24 27 24 27 24 27 24 27\n5 5 5 8 5 8 5 8 5 8\n0 0 0 3 0 3 0 3 0 3\n0 0 0 3 0 3 0 3 0 3\n0 0 0 3 0 3 0 3 0 3\n0 0 0 3 0 3 0 3 0 3\n0 0 0 3 0 3 0 3 0 3",
"output": "521\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\ncol 4\ncol 4\ncol 4\ncol 6\ncol 6\ncol 6\ncol 8\ncol 8\ncol 8\ncol 10\ncol 10\ncol 10\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\n..."
},
{
"input": "1 1\n0",
"output": "0"
},
{
"input": "1 1\n500",
"output": "500\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nro..."
},
{
"input": "10 10\n1 1 1 1 1 1 1 1 1 1\n1 1 1 1 1 1 1 1 1 1\n1 1 1 1 1 1 1 1 1 1\n1 1 1 1 1 1 1 1 1 1\n0 0 0 0 0 0 0 0 0 0\n1 1 1 1 1 1 1 1 1 1\n1 1 1 1 1 1 1 1 1 1\n1 1 1 1 1 1 1 1 1 1\n1 1 1 1 1 1 1 1 1 1\n1 1 1 1 1 1 1 1 1 1",
"output": "9\nrow 1\nrow 2\nrow 3\nrow 4\nrow 6\nrow 7\nrow 8\nrow 9\nrow 10"
},
{
"input": "10 10\n1 1 1 1 1 1 0 1 1 1\n1 1 1 1 1 1 0 1 1 1\n1 1 1 1 1 1 0 1 1 1\n1 1 1 1 1 1 0 1 1 1\n1 1 1 1 1 1 0 1 1 1\n1 1 1 1 1 1 0 1 1 1\n1 1 1 1 1 1 0 1 1 1\n1 1 1 1 1 1 0 1 1 1\n1 1 1 1 1 1 0 1 1 1\n1 1 1 1 1 1 0 1 1 1",
"output": "9\ncol 1\ncol 2\ncol 3\ncol 4\ncol 5\ncol 6\ncol 8\ncol 9\ncol 10"
},
{
"input": "10 11\n8 7 10 15 5 13 12 9 14 11 6\n6 5 8 13 3 11 10 7 12 9 4\n10 9 12 17 7 15 14 11 16 13 8\n9 8 11 16 6 14 13 10 15 12 7\n12 11 14 19 9 17 16 13 18 15 10\n14 13 16 21 11 19 18 15 20 17 12\n7 6 9 14 4 12 11 8 13 10 5\n5 4 7 12 2 10 9 6 11 8 3\n11 10 13 18 8 16 15 12 17 14 9\n13 12 15 20 10 18 17 14 19 16 11",
"output": "120\nrow 1\nrow 2\nrow 3\nrow 4\nrow 5\nrow 6\nrow 7\nrow 8\nrow 9\nrow 10\nrow 1\nrow 2\nrow 3\nrow 4\nrow 5\nrow 6\nrow 7\nrow 8\nrow 9\nrow 10\nrow 1\nrow 1\nrow 1\ncol 1\ncol 1\ncol 1\ncol 2\ncol 2\ncol 3\ncol 3\ncol 3\ncol 3\ncol 3\ncol 4\ncol 4\ncol 4\ncol 4\ncol 4\ncol 4\ncol 4\ncol 4\ncol 4\ncol 4\ncol 6\ncol 6\ncol 6\ncol 6\ncol 6\ncol 6\ncol 6\ncol 6\ncol 7\ncol 7\ncol 7\ncol 7\ncol 7\ncol 7\ncol 7\ncol 8\ncol 8\ncol 8\ncol 8\ncol 9\ncol 9\ncol 9\ncol 9\ncol 9\ncol 9\ncol 9\ncol 9\ncol 9\ncol 10\n..."
},
{
"input": "5 3\n2 2 2\n2 2 2\n2 2 2\n1 1 1\n2 2 2",
"output": "7\ncol 1\ncol 2\ncol 3\nrow 1\nrow 2\nrow 3\nrow 5"
},
{
"input": "3 5\n2 2 2 1 2\n2 2 2 1 2\n2 2 2 1 2",
"output": "7\nrow 1\nrow 2\nrow 3\ncol 1\ncol 2\ncol 3\ncol 5"
},
{
"input": "1 100\n396 314 350 362 287 349 266 289 297 305 235 226 256 385 302 304 253 192 298 238 360 366 163 340 247 395 318 260 252 281 178 188 252 379 212 187 354 232 225 159 290 335 387 234 383 215 356 182 323 280 195 209 263 215 322 262 334 157 189 214 195 386 220 209 177 193 368 174 270 329 388 237 260 343 230 173 254 371 327 266 193 178 161 209 335 310 323 323 353 172 368 307 329 234 363 264 334 266 305 209",
"output": "11960\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\n..."
},
{
"input": "100 1\n173\n164\n99\n114\n255\n223\n280\n235\n207\n190\n136\n204\n206\n282\n253\n335\n267\n184\n288\n299\n263\n243\n341\n111\n278\n111\n214\n133\n125\n245\n99\n144\n232\n203\n131\n204\n117\n315\n269\n206\n262\n125\n212\n95\n220\n243\n141\n163\n311\n171\n222\n266\n141\n314\n329\n138\n187\n342\n272\n181\n300\n261\n339\n110\n194\n187\n183\n129\n151\n187\n129\n185\n322\n167\n99\n340\n285\n99\n176\n175\n272\n126\n220\n164\n237\n214\n96\n162\n129\n141\n144\n135\n172\n191\n155\n333\n186\n324\n237\n318",
"output": "11282\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\n..."
},
{
"input": "1 100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0",
"output": "0"
},
{
"input": "100 1\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0",
"output": "0"
},
{
"input": "1 100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "1\nrow 1"
},
{
"input": "100 1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1",
"output": "1\ncol 1"
},
{
"input": "1 100\n500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500",
"output": "500\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nro..."
},
{
"input": "100 1\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500",
"output": "500\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\nco..."
},
{
"input": "2 1\n1\n1",
"output": "1\ncol 1"
},
{
"input": "4 3\n1 1 1\n1 1 1\n1 1 1\n1 1 1",
"output": "3\ncol 1\ncol 2\ncol 3"
},
{
"input": "2 1\n2\n2",
"output": "2\ncol 1\ncol 1"
},
{
"input": "3 2\n1 1\n1 1\n1 1",
"output": "2\ncol 1\ncol 2"
},
{
"input": "2 1\n1\n2",
"output": "2\ncol 1\nrow 2"
},
{
"input": "2 3\n1 1 1\n1 1 1",
"output": "2\nrow 1\nrow 2"
},
{
"input": "1 2\n1 1",
"output": "1\nrow 1"
},
{
"input": "5 1\n1\n1\n1\n1\n1",
"output": "1\ncol 1"
},
{
"input": "10 3\n101 201 301\n102 202 302\n103 203 303\n104 204 304\n105 205 305\n106 206 306\n107 207 307\n108 208 308\n109 209 309\n111 211 311",
"output": "649\ncol 1\ncol 2\ncol 3\ncol 1\ncol 2\ncol 3\ncol 1\ncol 2\ncol 3\ncol 1\ncol 2\ncol 3\ncol 1\ncol 2\ncol 3\ncol 1\ncol 2\ncol 3\ncol 1\ncol 2\ncol 3\ncol 1\ncol 2\ncol 3\ncol 1\ncol 2\ncol 3\ncol 1\ncol 2\ncol 3\ncol 1\ncol 2\ncol 3\ncol 1\ncol 2\ncol 3\ncol 1\ncol 2\ncol 3\ncol 1\ncol 2\ncol 3\ncol 1\ncol 2\ncol 3\ncol 1\ncol 2\ncol 3\ncol 1\ncol 2\ncol 3\ncol 1\ncol 2\ncol 3\ncol 1\ncol 2\ncol 3\ncol 1\ncol 2\ncol 3\ncol 1\ncol 2\ncol 3\ncol 1\ncol 2\ncol 3\ncol 1\ncol 2\ncol 3\ncol 1\ncol 2\ncol 3\nco..."
},
{
"input": "2 1\n10\n10",
"output": "10\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1"
},
{
"input": "4 3\n2 2 2\n2 2 2\n2 2 2\n2 2 2",
"output": "6\ncol 1\ncol 2\ncol 3\ncol 1\ncol 2\ncol 3"
},
{
"input": "3 1\n1\n1\n1",
"output": "1\ncol 1"
},
{
"input": "8 2\n2 2\n2 2\n2 2\n2 2\n2 2\n2 2\n2 2\n2 2",
"output": "4\ncol 1\ncol 2\ncol 1\ncol 2"
},
{
"input": "1 2\n2 2",
"output": "2\nrow 1\nrow 1"
},
{
"input": "3 2\n2 3\n2 3\n2 3",
"output": "5\ncol 1\ncol 2\ncol 1\ncol 2\ncol 2"
},
{
"input": "2 1\n3\n3",
"output": "3\ncol 1\ncol 1\ncol 1"
},
{
"input": "6 2\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1",
"output": "2\ncol 1\ncol 2"
},
{
"input": "4 1\n1\n1\n1\n1",
"output": "1\ncol 1"
},
{
"input": "2 5\n1 1 1 1 1\n1 1 1 1 1",
"output": "2\nrow 1\nrow 2"
},
{
"input": "3 1\n500\n500\n500",
"output": "500\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\nco..."
},
{
"input": "5 2\n1 1\n2 2\n2 2\n2 2\n2 2",
"output": "6\ncol 1\ncol 2\nrow 2\nrow 3\nrow 4\nrow 5"
},
{
"input": "4 3\n3 3 3\n3 3 3\n3 3 3\n3 3 3",
"output": "9\ncol 1\ncol 2\ncol 3\ncol 1\ncol 2\ncol 3\ncol 1\ncol 2\ncol 3"
},
{
"input": "5 2\n1 1\n1 1\n1 1\n1 1\n1 1",
"output": "2\ncol 1\ncol 2"
},
{
"input": "1 4\n1 1 1 1",
"output": "1\nrow 1"
},
{
"input": "3 1\n2\n3\n2",
"output": "3\ncol 1\ncol 1\nrow 2"
},
{
"input": "1 5\n1 1 1 1 1",
"output": "1\nrow 1"
},
{
"input": "2 4\n3 1 1 1\n3 1 1 1",
"output": "4\nrow 1\nrow 2\ncol 1\ncol 1"
},
{
"input": "3 3\n1 1 1\n0 1 0\n0 0 0",
"output": "-1"
},
{
"input": "3 2\n2 2\n1 1\n2 2",
"output": "4\ncol 1\ncol 2\nrow 1\nrow 3"
},
{
"input": "2 1\n9\n9",
"output": "9\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1"
},
{
"input": "1 7\n3 3 3 3 3 3 3",
"output": "3\nrow 1\nrow 1\nrow 1"
},
{
"input": "5 2\n3 3\n3 3\n3 3\n3 3\n3 3",
"output": "6\ncol 1\ncol 2\ncol 1\ncol 2\ncol 1\ncol 2"
},
{
"input": "10 11\n250 198 192 182 85 239 295 91 318 216 249\n290 238 232 222 125 279 335 131 358 256 289\n409 357 351 341 244 398 454 250 477 375 408\n362 310 304 294 197 351 407 203 430 328 361\n352 300 294 284 187 341 397 193 420 318 351\n409 357 351 341 244 398 454 250 477 375 408\n209 157 151 141 44 198 254 50 277 175 208\n313 261 255 245 148 302 358 154 381 279 312\n171 119 113 103 6 160 216 12 239 137 170\n275 223 217 207 110 264 320 116 343 241 274",
"output": "2770\nrow 1\nrow 2\nrow 3\nrow 4\nrow 5\nrow 6\nrow 7\nrow 8\nrow 9\nrow 10\nrow 1\nrow 2\nrow 3\nrow 4\nrow 5\nrow 6\nrow 7\nrow 8\nrow 9\nrow 10\nrow 1\nrow 2\nrow 3\nrow 4\nrow 5\nrow 6\nrow 7\nrow 8\nrow 9\nrow 10\nrow 1\nrow 2\nrow 3\nrow 4\nrow 5\nrow 6\nrow 7\nrow 8\nrow 9\nrow 10\nrow 1\nrow 2\nrow 3\nrow 4\nrow 5\nrow 6\nrow 7\nrow 8\nrow 9\nrow 10\nrow 1\nrow 2\nrow 3\nrow 4\nrow 5\nrow 6\nrow 7\nrow 8\nrow 9\nrow 10\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nro..."
},
{
"input": "7 1\n1\n1\n1\n1\n1\n1\n1",
"output": "1\ncol 1"
},
{
"input": "5 3\n1 1 1\n1 1 1\n1 1 1\n1 1 1\n1 1 1",
"output": "3\ncol 1\ncol 2\ncol 3"
},
{
"input": "5 3\n3 3 3\n3 3 3\n3 3 3\n3 3 3\n3 3 3",
"output": "9\ncol 1\ncol 2\ncol 3\ncol 1\ncol 2\ncol 3\ncol 1\ncol 2\ncol 3"
},
{
"input": "2 1\n4\n5",
"output": "5\ncol 1\ncol 1\ncol 1\ncol 1\nrow 2"
},
{
"input": "4 2\n3 3\n3 3\n3 3\n3 3",
"output": "6\ncol 1\ncol 2\ncol 1\ncol 2\ncol 1\ncol 2"
},
{
"input": "6 3\n2 2 2\n1 1 1\n1 1 1\n1 1 1\n1 1 1\n1 1 1",
"output": "4\ncol 1\ncol 2\ncol 3\nrow 1"
},
{
"input": "5 1\n1\n2\n3\n4\n5",
"output": "11\ncol 1\nrow 2\nrow 3\nrow 3\nrow 4\nrow 4\nrow 4\nrow 5\nrow 5\nrow 5\nrow 5"
},
{
"input": "2 1\n1\n3",
"output": "3\ncol 1\nrow 2\nrow 2"
},
{
"input": "3 2\n1 500\n1 500\n1 500",
"output": "501\ncol 1\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\nco..."
},
{
"input": "10 1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1",
"output": "1\ncol 1"
},
{
"input": "6 2\n2 2\n2 2\n2 2\n2 2\n2 2\n2 2",
"output": "4\ncol 1\ncol 2\ncol 1\ncol 2"
},
{
"input": "3 5\n1 1 1 1 1\n1 1 1 1 1\n1 1 1 1 1",
"output": "3\nrow 1\nrow 2\nrow 3"
},
{
"input": "2 3\n2 1 2\n2 1 2",
"output": "4\nrow 1\nrow 2\ncol 1\ncol 3"
},
{
"input": "5 2\n2 2\n2 2\n2 2\n2 2\n2 2",
"output": "4\ncol 1\ncol 2\ncol 1\ncol 2"
},
{
"input": "1 2\n1 3",
"output": "3\nrow 1\ncol 2\ncol 2"
},
{
"input": "4 3\n2 2 2\n1 1 1\n1 1 1\n1 1 1",
"output": "4\ncol 1\ncol 2\ncol 3\nrow 1"
},
{
"input": "3 2\n1 1\n2 2\n3 3",
"output": "5\ncol 1\ncol 2\nrow 2\nrow 3\nrow 3"
},
{
"input": "4 2\n1 1\n1 1\n1 1\n1 1",
"output": "2\ncol 1\ncol 2"
},
{
"input": "3 4\n1 1 1 1\n1 1 1 1\n1 1 1 1",
"output": "3\nrow 1\nrow 2\nrow 3"
},
{
"input": "2 1\n2\n3",
"output": "3\ncol 1\ncol 1\nrow 2"
},
{
"input": "5 3\n2 2 2\n2 2 2\n2 2 2\n2 2 2\n2 2 2",
"output": "6\ncol 1\ncol 2\ncol 3\ncol 1\ncol 2\ncol 3"
},
{
"input": "3 2\n1 0\n2 1\n2 1",
"output": "3\ncol 1\nrow 2\nrow 3"
},
{
"input": "3 2\n1 2\n2 3\n3 4",
"output": "6\ncol 1\ncol 2\ncol 2\nrow 2\nrow 3\nrow 3"
},
{
"input": "3 3\n1 1 1\n1 2 1\n1 1 1",
"output": "-1"
},
{
"input": "4 3\n2 1 1\n2 1 1\n2 1 1\n2 1 1",
"output": "4\ncol 1\ncol 2\ncol 3\ncol 1"
},
{
"input": "4 1\n3\n3\n3\n3",
"output": "3\ncol 1\ncol 1\ncol 1"
},
{
"input": "1 3\n2 3 2",
"output": "3\nrow 1\nrow 1\ncol 2"
},
{
"input": "1 2\n1 2",
"output": "2\nrow 1\ncol 2"
},
{
"input": "3 2\n2 2\n2 2\n2 2",
"output": "4\ncol 1\ncol 2\ncol 1\ncol 2"
},
{
"input": "1 3\n1 1 1",
"output": "1\nrow 1"
},
{
"input": "6 3\n1 1 1\n1 1 1\n1 1 1\n1 1 1\n1 1 1\n1 1 1",
"output": "3\ncol 1\ncol 2\ncol 3"
},
{
"input": "3 1\n2\n2\n2",
"output": "2\ncol 1\ncol 1"
},
{
"input": "3 1\n3\n3\n3",
"output": "3\ncol 1\ncol 1\ncol 1"
},
{
"input": "3 2\n2 2\n1 1\n1 1",
"output": "3\ncol 1\ncol 2\nrow 1"
},
{
"input": "5 3\n1 1 2\n1 1 2\n1 1 2\n1 1 2\n1 1 2",
"output": "4\ncol 1\ncol 2\ncol 3\ncol 3"
},
{
"input": "1 2\n2 3",
"output": "3\nrow 1\nrow 1\ncol 2"
},
{
"input": "5 1\n2\n2\n2\n2\n2",
"output": "2\ncol 1\ncol 1"
},
{
"input": "3 2\n1 1\n2 2\n2 2",
"output": "4\ncol 1\ncol 2\nrow 2\nrow 3"
},
{
"input": "3 3\n1 1 1\n2 3 3\n4 4 4",
"output": "-1"
},
{
"input": "2 1\n5\n2",
"output": "5\ncol 1\ncol 1\nrow 1\nrow 1\nrow 1"
},
{
"input": "4 2\n2 2\n2 2\n2 2\n2 2",
"output": "4\ncol 1\ncol 2\ncol 1\ncol 2"
},
{
"input": "3 2\n5 10\n5 10\n5 10",
"output": "15\ncol 1\ncol 2\ncol 1\ncol 2\ncol 1\ncol 2\ncol 1\ncol 2\ncol 1\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2"
},
{
"input": "4 3\n3 4 3\n5 6 5\n3 4 3\n3 4 3",
"output": "12\ncol 1\ncol 2\ncol 3\ncol 1\ncol 2\ncol 3\ncol 1\ncol 2\ncol 3\ncol 2\nrow 2\nrow 2"
},
{
"input": "4 2\n1 1\n1 1\n1 1\n2 2",
"output": "3\ncol 1\ncol 2\nrow 4"
},
{
"input": "2 3\n1 1 1\n500 500 500",
"output": "501\nrow 1\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nro..."
},
{
"input": "4 1\n4\n4\n4\n4",
"output": "4\ncol 1\ncol 1\ncol 1\ncol 1"
},
{
"input": "3 2\n1 1\n1 1\n2 2",
"output": "3\ncol 1\ncol 2\nrow 3"
},
{
"input": "2 3\n2 2 2\n2 2 2",
"output": "4\nrow 1\nrow 2\nrow 1\nrow 2"
},
{
"input": "3 2\n3 3\n3 3\n3 3",
"output": "6\ncol 1\ncol 2\ncol 1\ncol 2\ncol 1\ncol 2"
},
{
"input": "2 3\n10 10 10\n5 5 5",
"output": "15\nrow 1\nrow 2\nrow 1\nrow 2\nrow 1\nrow 2\nrow 1\nrow 2\nrow 1\nrow 2\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1"
},
{
"input": "5 2\n1 2\n1 2\n1 2\n1 2\n1 2",
"output": "3\ncol 1\ncol 2\ncol 2"
},
{
"input": "1 2\n500 500",
"output": "500\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nro..."
},
{
"input": "2 1\n5\n5",
"output": "5\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1"
}
] | 1,662,573,362
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 177
| 218
| 16,588,800
|
from collections import defaultdict as dc
n,m=[int(x) for x in input().split()]
arr=list()
check=dc(lambda:False)
check2=dc(lambda:False)
ans,ans2=list(),list()
for _ in range(n):
tmp=list(map(int,input().split()))
arr.append(tmp)
pair,pair2=list(),list()
for i in range(n):
tmp=list()
for j in range(m):tmp.append((arr[i][j],j))
pair.append(tmp)
for i in range(n):pair[i]=sorted(pair[i],reverse=True)
for i in range(n):
for j in range(m):
x=pair[i][j][0]-pair[i][-1][0]
if x==0:break
idx=pair[i][j][1]
if check[idx+1]==True:continue
while x:ans.append(("col",idx+1)); x-=1; check[idx+1]=True
x=pair[i][-1][0]
if x:
for aa in range(1,m+1):check[aa]=True
while x:ans.append(("row",i+1)); x-=1
#print(ans)
Flag1=True
comp=list()
for i in range(n):
tmp=list()
for j in range(m):tmp.append(0)
comp.append(tmp)
for i in ans:
if i[0]=='row':
for j in range(m):comp[i[1]-1][j]+=1
else:
for j in range(n):comp[j][i[1]-1]+=1
if comp!=arr:Flag1=False
########################################
for i in range(m):
tmp=list()
for j in range(n):tmp.append((arr[j][i],j))
pair2.append(tmp)
for i in range(m):pair2[i]=sorted(pair2[i],reverse=True)
#print(pair2)
for j in range(m):
for i in range(n):
x=pair2[j][i][0]-pair2[j][-1][0]
if x==0:break
idx=pair2[j][i][1]
if check2[idx+1]==True:continue
while x:ans2.append(("row",idx+1)); x-=1; check2[idx+1]=True
x=pair2[j][-1][0]
if x:
for aa in range(1,m+1):check2[aa]=True
while x:
ans2.append(("col",j+1)); x-=1
#print(ans2)
Flag2=True
comp=list()
for i in range(n):
tmp=list()
for j in range(m):tmp.append(0)
comp.append(tmp)
for i in ans2:
if i[0]=='row':
for j in range(m):comp[i[1]-1][j]+=1
else:
for j in range(n):comp[j][i[1]-1]+=1
if comp!=arr:Flag2=False
if Flag1==Flag2 and Flag1==False:print(-1)
else:
if len(ans)==len(ans2) or len(ans)<len(ans2) or Flag2==False:
print(len(ans))
for i in ans:
print(i[0],i[1])
else:
print(len(ans2))
for i in ans2:
print(i[0],i[1])
|
Title: Karen and Game
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
On the way to school, Karen became fixated on the puzzle game on her phone!
The game is played as follows. In each level, you have a grid with *n* rows and *m* columns. Each cell originally contains the number 0.
One move consists of choosing one row or column, and adding 1 to all of the cells in that row or column.
To win the level, after all the moves, the number in the cell at the *i*-th row and *j*-th column should be equal to *g**i*,<=*j*.
Karen is stuck on one level, and wants to know a way to beat this level using the minimum number of moves. Please, help her with this task!
Input Specification:
The first line of input contains two integers, *n* and *m* (1<=β€<=*n*,<=*m*<=β€<=100), the number of rows and the number of columns in the grid, respectively.
The next *n* lines each contain *m* integers. In particular, the *j*-th integer in the *i*-th of these rows contains *g**i*,<=*j* (0<=β€<=*g**i*,<=*j*<=β€<=500).
Output Specification:
If there is an error and it is actually not possible to beat the level, output a single integer -1.
Otherwise, on the first line, output a single integer *k*, the minimum number of moves necessary to beat the level.
The next *k* lines should each contain one of the following, describing the moves in the order they must be done:
- row *x*, (1<=β€<=*x*<=β€<=*n*) describing a move of the form "choose the *x*-th row". - col *x*, (1<=β€<=*x*<=β€<=*m*) describing a move of the form "choose the *x*-th column".
If there are multiple optimal solutions, output any one of them.
Demo Input:
['3 5\n2 2 2 3 2\n0 0 0 1 0\n1 1 1 2 1\n', '3 3\n0 0 0\n0 1 0\n0 0 0\n', '3 3\n1 1 1\n1 1 1\n1 1 1\n']
Demo Output:
['4\nrow 1\nrow 1\ncol 4\nrow 3\n', '-1\n', '3\nrow 1\nrow 2\nrow 3\n']
Note:
In the first test case, Karen has a grid with 3 rows and 5 columns. She can perform the following 4 moves to beat the level:
In the second test case, Karen has a grid with 3 rows and 3 columns. It is clear that it is impossible to beat the level; performing any move will create three 1s on the grid, but it is required to only have one 1 in the center.
In the third test case, Karen has a grid with 3 rows and 3 columns. She can perform the following 3 moves to beat the level:
Note that this is not the only solution; another solution, among others, is col 1, col 2, col 3.
|
```python
from collections import defaultdict as dc
n,m=[int(x) for x in input().split()]
arr=list()
check=dc(lambda:False)
check2=dc(lambda:False)
ans,ans2=list(),list()
for _ in range(n):
tmp=list(map(int,input().split()))
arr.append(tmp)
pair,pair2=list(),list()
for i in range(n):
tmp=list()
for j in range(m):tmp.append((arr[i][j],j))
pair.append(tmp)
for i in range(n):pair[i]=sorted(pair[i],reverse=True)
for i in range(n):
for j in range(m):
x=pair[i][j][0]-pair[i][-1][0]
if x==0:break
idx=pair[i][j][1]
if check[idx+1]==True:continue
while x:ans.append(("col",idx+1)); x-=1; check[idx+1]=True
x=pair[i][-1][0]
if x:
for aa in range(1,m+1):check[aa]=True
while x:ans.append(("row",i+1)); x-=1
#print(ans)
Flag1=True
comp=list()
for i in range(n):
tmp=list()
for j in range(m):tmp.append(0)
comp.append(tmp)
for i in ans:
if i[0]=='row':
for j in range(m):comp[i[1]-1][j]+=1
else:
for j in range(n):comp[j][i[1]-1]+=1
if comp!=arr:Flag1=False
########################################
for i in range(m):
tmp=list()
for j in range(n):tmp.append((arr[j][i],j))
pair2.append(tmp)
for i in range(m):pair2[i]=sorted(pair2[i],reverse=True)
#print(pair2)
for j in range(m):
for i in range(n):
x=pair2[j][i][0]-pair2[j][-1][0]
if x==0:break
idx=pair2[j][i][1]
if check2[idx+1]==True:continue
while x:ans2.append(("row",idx+1)); x-=1; check2[idx+1]=True
x=pair2[j][-1][0]
if x:
for aa in range(1,m+1):check2[aa]=True
while x:
ans2.append(("col",j+1)); x-=1
#print(ans2)
Flag2=True
comp=list()
for i in range(n):
tmp=list()
for j in range(m):tmp.append(0)
comp.append(tmp)
for i in ans2:
if i[0]=='row':
for j in range(m):comp[i[1]-1][j]+=1
else:
for j in range(n):comp[j][i[1]-1]+=1
if comp!=arr:Flag2=False
if Flag1==Flag2 and Flag1==False:print(-1)
else:
if len(ans)==len(ans2) or len(ans)<len(ans2) or Flag2==False:
print(len(ans))
for i in ans:
print(i[0],i[1])
else:
print(len(ans2))
for i in ans2:
print(i[0],i[1])
```
| 3
|
|
665
|
A
|
Buses Between Cities
|
PROGRAMMING
| 1,600
|
[
"implementation"
] | null | null |
Buses run between the cities *A* and *B*, the first one is at 05:00 AM and the last one departs not later than at 11:59 PM. A bus from the city *A* departs every *a* minutes and arrives to the city *B* in a *t**a* minutes, and a bus from the city *B* departs every *b* minutes and arrives to the city *A* in a *t**b* minutes.
The driver Simion wants to make his job diverse, so he counts the buses going towards him. Simion doesn't count the buses he meet at the start and finish.
You know the time when Simion departed from the city *A* to the city *B*. Calculate the number of buses Simion will meet to be sure in his counting.
|
The first line contains two integers *a*,<=*t**a* (1<=β€<=*a*,<=*t**a*<=β€<=120) β the frequency of the buses from the city *A* to the city *B* and the travel time. Both values are given in minutes.
The second line contains two integers *b*,<=*t**b* (1<=β€<=*b*,<=*t**b*<=β€<=120) β the frequency of the buses from the city *B* to the city *A* and the travel time. Both values are given in minutes.
The last line contains the departure time of Simion from the city *A* in the format hh:mm. It is guaranteed that there are a bus from the city *A* at that time. Note that the hours and the minutes are given with exactly two digits.
|
Print the only integer *z* β the number of buses Simion will meet on the way. Note that you should not count the encounters in cities *A* and *B*.
|
[
"10 30\n10 35\n05:20\n",
"60 120\n24 100\n13:00\n"
] |
[
"5\n",
"9\n"
] |
In the first example Simion departs form the city *A* at 05:20 AM and arrives to the city *B* at 05:50 AM. He will meet the first 5 buses from the city *B* that departed in the period [05:00 AM - 05:40 AM]. Also Simion will meet a bus in the city *B* at 05:50 AM, but he will not count it.
Also note that the first encounter will be between 05:26 AM and 05:27 AM (if we suggest that the buses are go with the sustained speed).
| 0
|
[
{
"input": "10 30\n10 35\n05:20",
"output": "5"
},
{
"input": "60 120\n24 100\n13:00",
"output": "9"
},
{
"input": "30 60\n60 60\n22:30",
"output": "2"
},
{
"input": "30 60\n10 60\n23:30",
"output": "8"
},
{
"input": "5 45\n4 60\n21:00",
"output": "26"
},
{
"input": "1 1\n1 1\n10:28",
"output": "1"
},
{
"input": "4 1\n5 4\n18:40",
"output": "1"
},
{
"input": "8 8\n1 1\n13:24",
"output": "8"
},
{
"input": "20 4\n1 20\n06:20",
"output": "23"
},
{
"input": "15 24\n23 6\n21:15",
"output": "1"
},
{
"input": "30 19\n21 4\n10:30",
"output": "1"
},
{
"input": "31 15\n36 25\n07:04",
"output": "1"
},
{
"input": "24 3\n54 9\n18:12",
"output": "0"
},
{
"input": "18 69\n62 54\n08:00",
"output": "2"
},
{
"input": "33 58\n70 78\n22:36",
"output": "2"
},
{
"input": "68 34\n84 78\n10:40",
"output": "1"
},
{
"input": "15 14\n32 65\n05:45",
"output": "2"
},
{
"input": "40 74\n100 42\n05:40",
"output": "2"
},
{
"input": "65 49\n24 90\n07:10",
"output": "6"
},
{
"input": "1 1\n1 1\n23:59",
"output": "1"
},
{
"input": "23 118\n118 20\n23:24",
"output": "0"
},
{
"input": "3 88\n17 38\n22:33",
"output": "8"
},
{
"input": "3 1\n2 3\n05:03",
"output": "1"
},
{
"input": "1 1\n3 2\n08:44",
"output": "0"
},
{
"input": "1 3\n1 2\n21:43",
"output": "4"
},
{
"input": "2 28\n2 12\n05:12",
"output": "19"
},
{
"input": "60 120\n17 120\n23:00",
"output": "11"
},
{
"input": "1 55\n1 54\n23:59",
"output": "54"
},
{
"input": "66 75\n1 82\n06:06",
"output": "141"
},
{
"input": "1 90\n1 88\n23:59",
"output": "88"
},
{
"input": "1 120\n1 100\n23:59",
"output": "100"
}
] | 1,461,166,385
| 1,985
|
PyPy 3
|
OK
|
TESTS
| 31
| 186
| 23,244,800
|
a, t1 = map(int, input().split())
b, t2 = map(int, input().split())
hour, minute = map(int, input().split(':'))
minutef = minute + hour * 60 + t1
minutes = minute + hour * 60 - t2
cnt = 0
time = 300
while time < minutef and time < 240 * 6:
if time > minutes:
cnt += 1
time += b
print(cnt)
|
Title: Buses Between Cities
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Buses run between the cities *A* and *B*, the first one is at 05:00 AM and the last one departs not later than at 11:59 PM. A bus from the city *A* departs every *a* minutes and arrives to the city *B* in a *t**a* minutes, and a bus from the city *B* departs every *b* minutes and arrives to the city *A* in a *t**b* minutes.
The driver Simion wants to make his job diverse, so he counts the buses going towards him. Simion doesn't count the buses he meet at the start and finish.
You know the time when Simion departed from the city *A* to the city *B*. Calculate the number of buses Simion will meet to be sure in his counting.
Input Specification:
The first line contains two integers *a*,<=*t**a* (1<=β€<=*a*,<=*t**a*<=β€<=120) β the frequency of the buses from the city *A* to the city *B* and the travel time. Both values are given in minutes.
The second line contains two integers *b*,<=*t**b* (1<=β€<=*b*,<=*t**b*<=β€<=120) β the frequency of the buses from the city *B* to the city *A* and the travel time. Both values are given in minutes.
The last line contains the departure time of Simion from the city *A* in the format hh:mm. It is guaranteed that there are a bus from the city *A* at that time. Note that the hours and the minutes are given with exactly two digits.
Output Specification:
Print the only integer *z* β the number of buses Simion will meet on the way. Note that you should not count the encounters in cities *A* and *B*.
Demo Input:
['10 30\n10 35\n05:20\n', '60 120\n24 100\n13:00\n']
Demo Output:
['5\n', '9\n']
Note:
In the first example Simion departs form the city *A* at 05:20 AM and arrives to the city *B* at 05:50 AM. He will meet the first 5 buses from the city *B* that departed in the period [05:00 AM - 05:40 AM]. Also Simion will meet a bus in the city *B* at 05:50 AM, but he will not count it.
Also note that the first encounter will be between 05:26 AM and 05:27 AM (if we suggest that the buses are go with the sustained speed).
|
```python
a, t1 = map(int, input().split())
b, t2 = map(int, input().split())
hour, minute = map(int, input().split(':'))
minutef = minute + hour * 60 + t1
minutes = minute + hour * 60 - t2
cnt = 0
time = 300
while time < minutef and time < 240 * 6:
if time > minutes:
cnt += 1
time += b
print(cnt)
```
| 3
|
|
412
|
C
|
Pattern
|
PROGRAMMING
| 1,200
|
[
"implementation",
"strings"
] | null | null |
Developers often face with regular expression patterns. A pattern is usually defined as a string consisting of characters and metacharacters that sets the rules for your search. These patterns are most often used to check whether a particular string meets the certain rules.
In this task, a pattern will be a string consisting of small English letters and question marks ('?'). The question mark in the pattern is a metacharacter that denotes an arbitrary small letter of the English alphabet. We will assume that a string matches the pattern if we can transform the string into the pattern by replacing the question marks by the appropriate characters. For example, string aba matches patterns: ???, ??a, a?a, aba.
Programmers that work for the R1 company love puzzling each other (and themselves) with riddles. One of them is as follows: you are given *n* patterns of the same length, you need to find a pattern that contains as few question marks as possible, and intersects with each of the given patterns. Two patterns intersect if there is a string that matches both the first and the second pattern. Can you solve this riddle?
|
The first line contains a single integer *n* (1<=β€<=*n*<=β€<=105) β the number of patterns. Next *n* lines contain the patterns.
It is guaranteed that the patterns can only consist of small English letters and symbols '?'. All patterns are non-empty and have the same length. The total length of all the patterns does not exceed 105 characters.
|
In a single line print the answer to the problem β the pattern with the minimal number of signs '?', which intersects with each of the given ones. If there are several answers, print any of them.
|
[
"2\n?ab\n??b\n",
"2\na\nb\n",
"1\n?a?b\n"
] |
[
"xab\n",
"?\n",
"cacb\n"
] |
Consider the first example. Pattern xab intersects with each of the given patterns. Pattern ??? also intersects with each of the given patterns, but it contains more question signs, hence it is not an optimal answer. Clearly, xab is the optimal answer, because it doesn't contain any question sign. There are a lot of other optimal answers, for example: aab, bab, cab, dab and so on.
| 1,500
|
[
{
"input": "2\n?ab\n??b",
"output": "xab"
},
{
"input": "2\na\nb",
"output": "?"
},
{
"input": "1\n?a?b",
"output": "cacb"
},
{
"input": "1\n?",
"output": "x"
},
{
"input": "3\nabacaba\nabacaba\nabacaba",
"output": "abacaba"
},
{
"input": "3\nabc?t\n?bc?z\nab??t",
"output": "abcx?"
},
{
"input": "4\nabc\ndef\n???\nxyz",
"output": "???"
},
{
"input": "2\n?????\n?????",
"output": "xxxxx"
},
{
"input": "2\na\na",
"output": "a"
},
{
"input": "3\nabc\n???\naxc",
"output": "a?c"
},
{
"input": "1\n?m??x?xxexxx?xxmxx??",
"output": "cmccxcxxexxxcxxmxxcc"
},
{
"input": "2\nhszhh?zszs\nhhzhz?zzhs",
"output": "h?zh?cz??s"
},
{
"input": "3\neddzde\needded\nzdde?z",
"output": "??d???"
},
{
"input": "4\nff?o?\nfk?of\nk?kof\nfk?oo",
"output": "??ko?"
},
{
"input": "5\nyigi\ne?gi\niig?\n?eg?\n??gi",
"output": "??gi"
},
{
"input": "100\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz\nz",
"output": "z"
},
{
"input": "100\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?\nb?",
"output": "bc"
},
{
"input": "1\nq",
"output": "q"
},
{
"input": "2\n?\n?",
"output": "x"
},
{
"input": "2\n?\na",
"output": "a"
},
{
"input": "2\n?\nb",
"output": "b"
},
{
"input": "3\n?\na\na",
"output": "a"
},
{
"input": "3\na\n?\na",
"output": "a"
},
{
"input": "3\na\nb\n?",
"output": "?"
},
{
"input": "3\n?\na\nb",
"output": "?"
},
{
"input": "3\nb\n?\na",
"output": "?"
},
{
"input": "2\n???\naaa",
"output": "aaa"
},
{
"input": "2\n??\nss",
"output": "ss"
}
] | 1,654,175,513
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 70
| 218
| 4,198,400
|
for s in zip(*(input()for p in range(int(input())))):
l=set(s)-{'?'}
print('?'if len(l)>1 else l.pop()if l else 'a',end='')
|
Title: Pattern
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Developers often face with regular expression patterns. A pattern is usually defined as a string consisting of characters and metacharacters that sets the rules for your search. These patterns are most often used to check whether a particular string meets the certain rules.
In this task, a pattern will be a string consisting of small English letters and question marks ('?'). The question mark in the pattern is a metacharacter that denotes an arbitrary small letter of the English alphabet. We will assume that a string matches the pattern if we can transform the string into the pattern by replacing the question marks by the appropriate characters. For example, string aba matches patterns: ???, ??a, a?a, aba.
Programmers that work for the R1 company love puzzling each other (and themselves) with riddles. One of them is as follows: you are given *n* patterns of the same length, you need to find a pattern that contains as few question marks as possible, and intersects with each of the given patterns. Two patterns intersect if there is a string that matches both the first and the second pattern. Can you solve this riddle?
Input Specification:
The first line contains a single integer *n* (1<=β€<=*n*<=β€<=105) β the number of patterns. Next *n* lines contain the patterns.
It is guaranteed that the patterns can only consist of small English letters and symbols '?'. All patterns are non-empty and have the same length. The total length of all the patterns does not exceed 105 characters.
Output Specification:
In a single line print the answer to the problem β the pattern with the minimal number of signs '?', which intersects with each of the given ones. If there are several answers, print any of them.
Demo Input:
['2\n?ab\n??b\n', '2\na\nb\n', '1\n?a?b\n']
Demo Output:
['xab\n', '?\n', 'cacb\n']
Note:
Consider the first example. Pattern xab intersects with each of the given patterns. Pattern ??? also intersects with each of the given patterns, but it contains more question signs, hence it is not an optimal answer. Clearly, xab is the optimal answer, because it doesn't contain any question sign. There are a lot of other optimal answers, for example: aab, bab, cab, dab and so on.
|
```python
for s in zip(*(input()for p in range(int(input())))):
l=set(s)-{'?'}
print('?'if len(l)>1 else l.pop()if l else 'a',end='')
```
| 3
|
|
911
|
B
|
Two Cakes
|
PROGRAMMING
| 1,200
|
[
"binary search",
"brute force",
"implementation"
] | null | null |
It's New Year's Eve soon, so Ivan decided it's high time he started setting the table. Ivan has bought two cakes and cut them into pieces: the first cake has been cut into *a* pieces, and the second one β into *b* pieces.
Ivan knows that there will be *n* people at the celebration (including himself), so Ivan has set *n* plates for the cakes. Now he is thinking about how to distribute the cakes between the plates. Ivan wants to do it in such a way that all following conditions are met:
1. Each piece of each cake is put on some plate; 1. Each plate contains at least one piece of cake; 1. No plate contains pieces of both cakes.
To make his guests happy, Ivan wants to distribute the cakes in such a way that the minimum number of pieces on the plate is maximized. Formally, Ivan wants to know the maximum possible number *x* such that he can distribute the cakes according to the aforementioned conditions, and each plate will contain at least *x* pieces of cake.
Help Ivan to calculate this number *x*!
|
The first line contains three integers *n*, *a* and *b* (1<=β€<=*a*,<=*b*<=β€<=100, 2<=β€<=*n*<=β€<=*a*<=+<=*b*) β the number of plates, the number of pieces of the first cake, and the number of pieces of the second cake, respectively.
|
Print the maximum possible number *x* such that Ivan can distribute the cake in such a way that each plate will contain at least *x* pieces of cake.
|
[
"5 2 3\n",
"4 7 10\n"
] |
[
"1\n",
"3\n"
] |
In the first example there is only one way to distribute cakes to plates, all of them will have 1 cake on it.
In the second example you can have two plates with 3 and 4 pieces of the first cake and two plates both with 5 pieces of the second cake. Minimal number of pieces is 3.
| 0
|
[
{
"input": "5 2 3",
"output": "1"
},
{
"input": "4 7 10",
"output": "3"
},
{
"input": "100 100 100",
"output": "2"
},
{
"input": "10 100 3",
"output": "3"
},
{
"input": "2 9 29",
"output": "9"
},
{
"input": "4 6 10",
"output": "3"
},
{
"input": "3 70 58",
"output": "35"
},
{
"input": "5 7 10",
"output": "3"
},
{
"input": "5 30 22",
"output": "10"
},
{
"input": "5 5 6",
"output": "2"
},
{
"input": "2 4 3",
"output": "3"
},
{
"input": "10 10 31",
"output": "3"
},
{
"input": "2 1 1",
"output": "1"
},
{
"input": "10 98 99",
"output": "19"
},
{
"input": "4 10 16",
"output": "5"
},
{
"input": "11 4 8",
"output": "1"
},
{
"input": "5 10 14",
"output": "4"
},
{
"input": "6 7 35",
"output": "7"
},
{
"input": "5 6 7",
"output": "2"
},
{
"input": "4 15 3",
"output": "3"
},
{
"input": "7 48 77",
"output": "16"
},
{
"input": "4 4 10",
"output": "3"
},
{
"input": "4 7 20",
"output": "6"
},
{
"input": "5 2 8",
"output": "2"
},
{
"input": "3 2 3",
"output": "1"
},
{
"input": "14 95 1",
"output": "1"
},
{
"input": "99 82 53",
"output": "1"
},
{
"input": "10 71 27",
"output": "9"
},
{
"input": "5 7 8",
"output": "2"
},
{
"input": "11 77 77",
"output": "12"
},
{
"input": "10 5 28",
"output": "3"
},
{
"input": "7 3 12",
"output": "2"
},
{
"input": "10 15 17",
"output": "3"
},
{
"input": "7 7 7",
"output": "1"
},
{
"input": "4 11 18",
"output": "6"
},
{
"input": "3 3 4",
"output": "2"
},
{
"input": "9 2 10",
"output": "1"
},
{
"input": "100 90 20",
"output": "1"
},
{
"input": "3 2 2",
"output": "1"
},
{
"input": "12 45 60",
"output": "8"
},
{
"input": "3 94 79",
"output": "47"
},
{
"input": "41 67 34",
"output": "2"
},
{
"input": "9 3 23",
"output": "2"
},
{
"input": "10 20 57",
"output": "7"
},
{
"input": "55 27 30",
"output": "1"
},
{
"input": "100 100 10",
"output": "1"
},
{
"input": "20 8 70",
"output": "3"
},
{
"input": "3 3 3",
"output": "1"
},
{
"input": "4 9 15",
"output": "5"
},
{
"input": "3 1 3",
"output": "1"
},
{
"input": "2 94 94",
"output": "94"
},
{
"input": "5 3 11",
"output": "2"
},
{
"input": "4 3 2",
"output": "1"
},
{
"input": "12 12 100",
"output": "9"
},
{
"input": "6 75 91",
"output": "25"
},
{
"input": "3 4 3",
"output": "2"
},
{
"input": "3 2 5",
"output": "2"
},
{
"input": "6 5 15",
"output": "3"
},
{
"input": "4 3 6",
"output": "2"
},
{
"input": "3 9 9",
"output": "4"
},
{
"input": "26 93 76",
"output": "6"
},
{
"input": "41 34 67",
"output": "2"
},
{
"input": "6 12 6",
"output": "3"
},
{
"input": "5 20 8",
"output": "5"
},
{
"input": "2 1 3",
"output": "1"
},
{
"input": "35 66 99",
"output": "4"
},
{
"input": "30 7 91",
"output": "3"
},
{
"input": "5 22 30",
"output": "10"
},
{
"input": "8 19 71",
"output": "10"
},
{
"input": "3 5 6",
"output": "3"
},
{
"input": "5 3 8",
"output": "2"
},
{
"input": "2 4 2",
"output": "2"
},
{
"input": "4 3 7",
"output": "2"
},
{
"input": "5 20 10",
"output": "5"
},
{
"input": "5 100 50",
"output": "25"
},
{
"input": "6 3 10",
"output": "2"
},
{
"input": "2 90 95",
"output": "90"
},
{
"input": "4 8 6",
"output": "3"
},
{
"input": "6 10 3",
"output": "2"
},
{
"input": "3 3 5",
"output": "2"
},
{
"input": "5 33 33",
"output": "11"
},
{
"input": "5 5 8",
"output": "2"
},
{
"input": "19 24 34",
"output": "3"
},
{
"input": "5 5 12",
"output": "3"
},
{
"input": "8 7 10",
"output": "2"
},
{
"input": "5 56 35",
"output": "17"
},
{
"input": "4 3 5",
"output": "1"
},
{
"input": "18 100 50",
"output": "8"
},
{
"input": "5 6 8",
"output": "2"
},
{
"input": "5 98 100",
"output": "33"
},
{
"input": "6 5 8",
"output": "2"
},
{
"input": "3 40 80",
"output": "40"
},
{
"input": "4 8 11",
"output": "4"
},
{
"input": "66 100 99",
"output": "3"
},
{
"input": "17 100 79",
"output": "10"
},
{
"input": "3 2 10",
"output": "2"
},
{
"input": "99 100 99",
"output": "2"
},
{
"input": "21 100 5",
"output": "5"
},
{
"input": "3 10 2",
"output": "2"
},
{
"input": "4 100 63",
"output": "33"
},
{
"input": "2 2 10",
"output": "2"
},
{
"input": "5 94 79",
"output": "31"
},
{
"input": "4 12 5",
"output": "4"
},
{
"input": "5 5 40",
"output": "5"
},
{
"input": "99 99 99",
"output": "1"
},
{
"input": "8 97 44",
"output": "16"
},
{
"input": "11 4 10",
"output": "1"
},
{
"input": "6 3 3",
"output": "1"
},
{
"input": "7 3 4",
"output": "1"
},
{
"input": "8 4 4",
"output": "1"
},
{
"input": "9 4 5",
"output": "1"
},
{
"input": "12 6 6",
"output": "1"
},
{
"input": "4 48 89",
"output": "29"
},
{
"input": "8 3 6",
"output": "1"
},
{
"input": "4 6 3",
"output": "2"
},
{
"input": "5 5 1",
"output": "1"
},
{
"input": "11 6 5",
"output": "1"
},
{
"input": "4 5 4",
"output": "2"
},
{
"input": "6 6 4",
"output": "1"
},
{
"input": "2 1 2",
"output": "1"
},
{
"input": "4 1 3",
"output": "1"
},
{
"input": "3 3 1",
"output": "1"
},
{
"input": "9 4 6",
"output": "1"
},
{
"input": "6 5 6",
"output": "1"
},
{
"input": "2 2 3",
"output": "2"
},
{
"input": "4 5 1",
"output": "1"
},
{
"input": "13 6 7",
"output": "1"
},
{
"input": "14 7 7",
"output": "1"
},
{
"input": "12 97 13",
"output": "8"
},
{
"input": "4 2 9",
"output": "2"
},
{
"input": "10 20 59",
"output": "7"
},
{
"input": "12 34 56",
"output": "7"
},
{
"input": "4 5 9",
"output": "3"
},
{
"input": "2 2 2",
"output": "2"
},
{
"input": "4 66 41",
"output": "22"
}
] | 1,636,562,854
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 135
| 93
| 17,715,200
|
import sys,math
#sys.stdin=open('input.txt','r')
#sys.stdout=open('output.txt','w')
def solve():
n,a,b=map(int,input().split())
ans=0
for i in range(1,n):
mina=a//i
minb=b//(n-i)
ans1=min(mina,minb)
ans=max(ans,ans1)
print(ans)
solve()
|
Title: Two Cakes
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
It's New Year's Eve soon, so Ivan decided it's high time he started setting the table. Ivan has bought two cakes and cut them into pieces: the first cake has been cut into *a* pieces, and the second one β into *b* pieces.
Ivan knows that there will be *n* people at the celebration (including himself), so Ivan has set *n* plates for the cakes. Now he is thinking about how to distribute the cakes between the plates. Ivan wants to do it in such a way that all following conditions are met:
1. Each piece of each cake is put on some plate; 1. Each plate contains at least one piece of cake; 1. No plate contains pieces of both cakes.
To make his guests happy, Ivan wants to distribute the cakes in such a way that the minimum number of pieces on the plate is maximized. Formally, Ivan wants to know the maximum possible number *x* such that he can distribute the cakes according to the aforementioned conditions, and each plate will contain at least *x* pieces of cake.
Help Ivan to calculate this number *x*!
Input Specification:
The first line contains three integers *n*, *a* and *b* (1<=β€<=*a*,<=*b*<=β€<=100, 2<=β€<=*n*<=β€<=*a*<=+<=*b*) β the number of plates, the number of pieces of the first cake, and the number of pieces of the second cake, respectively.
Output Specification:
Print the maximum possible number *x* such that Ivan can distribute the cake in such a way that each plate will contain at least *x* pieces of cake.
Demo Input:
['5 2 3\n', '4 7 10\n']
Demo Output:
['1\n', '3\n']
Note:
In the first example there is only one way to distribute cakes to plates, all of them will have 1 cake on it.
In the second example you can have two plates with 3 and 4 pieces of the first cake and two plates both with 5 pieces of the second cake. Minimal number of pieces is 3.
|
```python
import sys,math
#sys.stdin=open('input.txt','r')
#sys.stdout=open('output.txt','w')
def solve():
n,a,b=map(int,input().split())
ans=0
for i in range(1,n):
mina=a//i
minb=b//(n-i)
ans1=min(mina,minb)
ans=max(ans,ans1)
print(ans)
solve()
```
| 3
|
|
192
|
A
|
Funky Numbers
|
PROGRAMMING
| 1,300
|
[
"binary search",
"brute force",
"implementation"
] | null | null |
As you very well know, this year's funkiest numbers are so called triangular numbers (that is, integers that are representable as , where *k* is some positive integer), and the coolest numbers are those that are representable as a sum of two triangular numbers.
A well-known hipster Andrew adores everything funky and cool but unfortunately, he isn't good at maths. Given number *n*, help him define whether this number can be represented by a sum of two triangular numbers (not necessarily different)!
|
The first input line contains an integer *n* (1<=β€<=*n*<=β€<=109).
|
Print "YES" (without the quotes), if *n* can be represented as a sum of two triangular numbers, otherwise print "NO" (without the quotes).
|
[
"256\n",
"512\n"
] |
[
"YES\n",
"NO\n"
] |
In the first sample number <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/92095692c6ea93e9e3b837a0408ba7543549d5b2.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
In the second sample number 512 can not be represented as a sum of two triangular numbers.
| 500
|
[
{
"input": "256",
"output": "YES"
},
{
"input": "512",
"output": "NO"
},
{
"input": "80",
"output": "NO"
},
{
"input": "828",
"output": "YES"
},
{
"input": "6035",
"output": "NO"
},
{
"input": "39210",
"output": "YES"
},
{
"input": "79712",
"output": "NO"
},
{
"input": "190492",
"output": "YES"
},
{
"input": "5722367",
"output": "NO"
},
{
"input": "816761542",
"output": "YES"
},
{
"input": "1",
"output": "NO"
},
{
"input": "2",
"output": "YES"
},
{
"input": "3",
"output": "NO"
},
{
"input": "4",
"output": "YES"
},
{
"input": "5",
"output": "NO"
},
{
"input": "6",
"output": "YES"
},
{
"input": "7",
"output": "YES"
},
{
"input": "8",
"output": "NO"
},
{
"input": "9",
"output": "YES"
},
{
"input": "10",
"output": "NO"
},
{
"input": "12",
"output": "YES"
},
{
"input": "13",
"output": "YES"
},
{
"input": "14",
"output": "NO"
},
{
"input": "15",
"output": "NO"
},
{
"input": "16",
"output": "YES"
},
{
"input": "17",
"output": "NO"
},
{
"input": "18",
"output": "YES"
},
{
"input": "19",
"output": "NO"
},
{
"input": "20",
"output": "YES"
},
{
"input": "41",
"output": "NO"
},
{
"input": "11",
"output": "YES"
},
{
"input": "69",
"output": "YES"
},
{
"input": "82",
"output": "NO"
},
{
"input": "85",
"output": "NO"
},
{
"input": "736",
"output": "NO"
},
{
"input": "895",
"output": "YES"
},
{
"input": "934",
"output": "YES"
},
{
"input": "6213",
"output": "YES"
},
{
"input": "7405",
"output": "NO"
},
{
"input": "9919",
"output": "NO"
},
{
"input": "40942",
"output": "YES"
},
{
"input": "41992",
"output": "NO"
},
{
"input": "68535",
"output": "NO"
},
{
"input": "405718",
"output": "NO"
},
{
"input": "1046146",
"output": "YES"
},
{
"input": "3761248",
"output": "YES"
},
{
"input": "6195181",
"output": "YES"
},
{
"input": "35354345",
"output": "NO"
},
{
"input": "81282830",
"output": "NO"
},
{
"input": "187719774",
"output": "NO"
},
{
"input": "296798673",
"output": "NO"
},
{
"input": "938938476",
"output": "NO"
},
{
"input": "1000000000",
"output": "NO"
},
{
"input": "999887464",
"output": "YES"
},
{
"input": "999111944",
"output": "NO"
},
{
"input": "999966520",
"output": "YES"
},
{
"input": "999912080",
"output": "NO"
},
{
"input": "999992017",
"output": "YES"
},
{
"input": "999990474",
"output": "NO"
},
{
"input": "999999190",
"output": "YES"
},
{
"input": "999999125",
"output": "NO"
},
{
"input": "999999940",
"output": "YES"
},
{
"input": "999999995",
"output": "NO"
},
{
"input": "1000000000",
"output": "NO"
},
{
"input": "1",
"output": "NO"
},
{
"input": "999999999",
"output": "YES"
},
{
"input": "83495494",
"output": "NO"
},
{
"input": "968022000",
"output": "YES"
},
{
"input": "399980000",
"output": "YES"
},
{
"input": "4",
"output": "YES"
},
{
"input": "999999998",
"output": "NO"
}
] | 1,591,083,777
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 71
| 342
| 1,433,600
|
import math
n = int(input())
a = 1
b = 1
c = -(2*n)
d = (b**2) - (4*a*c)
flag = 0
sol = (-b+math.sqrt(d))//(2*a)
ma = int(sol)
temp = 0
for i in range(1,ma+1):
temp += i
c = -(2*(n-temp))
d = (b**2) - (4*a*c)
sol = (-b + math.sqrt(d)) // (2 * a)
if (sol*(sol+1))//2 + temp == n and sol > 0:
flag = 1
print("YES")
break
if flag == 0:
print("NO")
|
Title: Funky Numbers
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
As you very well know, this year's funkiest numbers are so called triangular numbers (that is, integers that are representable as , where *k* is some positive integer), and the coolest numbers are those that are representable as a sum of two triangular numbers.
A well-known hipster Andrew adores everything funky and cool but unfortunately, he isn't good at maths. Given number *n*, help him define whether this number can be represented by a sum of two triangular numbers (not necessarily different)!
Input Specification:
The first input line contains an integer *n* (1<=β€<=*n*<=β€<=109).
Output Specification:
Print "YES" (without the quotes), if *n* can be represented as a sum of two triangular numbers, otherwise print "NO" (without the quotes).
Demo Input:
['256\n', '512\n']
Demo Output:
['YES\n', 'NO\n']
Note:
In the first sample number <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/92095692c6ea93e9e3b837a0408ba7543549d5b2.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
In the second sample number 512 can not be represented as a sum of two triangular numbers.
|
```python
import math
n = int(input())
a = 1
b = 1
c = -(2*n)
d = (b**2) - (4*a*c)
flag = 0
sol = (-b+math.sqrt(d))//(2*a)
ma = int(sol)
temp = 0
for i in range(1,ma+1):
temp += i
c = -(2*(n-temp))
d = (b**2) - (4*a*c)
sol = (-b + math.sqrt(d)) // (2 * a)
if (sol*(sol+1))//2 + temp == n and sol > 0:
flag = 1
print("YES")
break
if flag == 0:
print("NO")
```
| 3
|
|
486
|
A
|
Calculating Function
|
PROGRAMMING
| 800
|
[
"implementation",
"math"
] | null | null |
For a positive integer *n* let's define a function *f*:
*f*(*n*)<==<=<=-<=1<=+<=2<=-<=3<=+<=..<=+<=(<=-<=1)*n**n*
Your task is to calculate *f*(*n*) for a given integer *n*.
|
The single line contains the positive integer *n* (1<=β€<=*n*<=β€<=1015).
|
Print *f*(*n*) in a single line.
|
[
"4\n",
"5\n"
] |
[
"2\n",
"-3\n"
] |
*f*(4)β=ββ-β1β+β2β-β3β+β4β=β2
*f*(5)β=ββ-β1β+β2β-β3β+β4β-β5β=ββ-β3
| 500
|
[
{
"input": "4",
"output": "2"
},
{
"input": "5",
"output": "-3"
},
{
"input": "1000000000",
"output": "500000000"
},
{
"input": "1000000001",
"output": "-500000001"
},
{
"input": "1000000000000000",
"output": "500000000000000"
},
{
"input": "100",
"output": "50"
},
{
"input": "101",
"output": "-51"
},
{
"input": "102",
"output": "51"
},
{
"input": "103",
"output": "-52"
},
{
"input": "104",
"output": "52"
},
{
"input": "105",
"output": "-53"
},
{
"input": "106",
"output": "53"
},
{
"input": "107",
"output": "-54"
},
{
"input": "108",
"output": "54"
},
{
"input": "109",
"output": "-55"
},
{
"input": "208170109961052",
"output": "104085054980526"
},
{
"input": "46017661651072",
"output": "23008830825536"
},
{
"input": "4018154546667",
"output": "-2009077273334"
},
{
"input": "288565475053",
"output": "-144282737527"
},
{
"input": "3052460231",
"output": "-1526230116"
},
{
"input": "29906716",
"output": "14953358"
},
{
"input": "87897701693326",
"output": "43948850846663"
},
{
"input": "8240",
"output": "4120"
},
{
"input": "577935",
"output": "-288968"
},
{
"input": "62",
"output": "31"
},
{
"input": "1",
"output": "-1"
},
{
"input": "2",
"output": "1"
},
{
"input": "9999999999999",
"output": "-5000000000000"
},
{
"input": "1000000000000",
"output": "500000000000"
},
{
"input": "99999999999999",
"output": "-50000000000000"
},
{
"input": "999999999999999",
"output": "-500000000000000"
},
{
"input": "42191359342",
"output": "21095679671"
},
{
"input": "100000000000000",
"output": "50000000000000"
},
{
"input": "145645214654154",
"output": "72822607327077"
},
{
"input": "4294967296",
"output": "2147483648"
},
{
"input": "3037000499",
"output": "-1518500250"
},
{
"input": "10000000000001",
"output": "-5000000000001"
},
{
"input": "100000017040846",
"output": "50000008520423"
},
{
"input": "98979894985999",
"output": "-49489947493000"
}
] | 1,693,220,510
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 39
| 93
| 0
|
y = int(input())
print(y//2-y * (y%2))
|
Title: Calculating Function
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
For a positive integer *n* let's define a function *f*:
*f*(*n*)<==<=<=-<=1<=+<=2<=-<=3<=+<=..<=+<=(<=-<=1)*n**n*
Your task is to calculate *f*(*n*) for a given integer *n*.
Input Specification:
The single line contains the positive integer *n* (1<=β€<=*n*<=β€<=1015).
Output Specification:
Print *f*(*n*) in a single line.
Demo Input:
['4\n', '5\n']
Demo Output:
['2\n', '-3\n']
Note:
*f*(4)β=ββ-β1β+β2β-β3β+β4β=β2
*f*(5)β=ββ-β1β+β2β-β3β+β4β-β5β=ββ-β3
|
```python
y = int(input())
print(y//2-y * (y%2))
```
| 3
|
|
222
|
A
|
Shooshuns and Sequence
|
PROGRAMMING
| 1,200
|
[
"brute force",
"implementation"
] | null | null |
One day shooshuns found a sequence of *n* integers, written on a blackboard. The shooshuns can perform one operation with it, the operation consists of two steps:
1. Find the number that goes *k*-th in the current sequence and add the same number to the end of the sequence; 1. Delete the first number of the current sequence.
The shooshuns wonder after how many operations all numbers on the board will be the same and whether all numbers will ever be the same.
|
The first line contains two space-separated integers *n* and *k* (1<=β€<=*k*<=β€<=*n*<=β€<=105).
The second line contains *n* space-separated integers: *a*1,<=*a*2,<=...,<=*a**n* (1<=β€<=*a**i*<=β€<=105) β the sequence that the shooshuns found.
|
Print the minimum number of operations, required for all numbers on the blackboard to become the same. If it is impossible to achieve, print -1.
|
[
"3 2\n3 1 1\n",
"3 1\n3 1 1\n"
] |
[
"1\n",
"-1\n"
] |
In the first test case after the first operation the blackboard will have sequence [1, 1, 1]. So, one operation is enough to make all numbers the same. Thus, the answer equals one.
In the second test case the sequence will never consist of the same numbers. It will always contain at least two distinct numbers 3 and 1. Thus, the answer equals -1.
| 500
|
[
{
"input": "3 2\n3 1 1",
"output": "1"
},
{
"input": "3 1\n3 1 1",
"output": "-1"
},
{
"input": "1 1\n1",
"output": "0"
},
{
"input": "2 1\n1 1",
"output": "0"
},
{
"input": "2 1\n2 1",
"output": "-1"
},
{
"input": "4 4\n1 2 3 4",
"output": "3"
},
{
"input": "4 3\n1 2 3 4",
"output": "-1"
},
{
"input": "5 3\n2 1 1 1 1",
"output": "1"
},
{
"input": "5 3\n1 1 1 1 1",
"output": "0"
},
{
"input": "5 5\n1 1 1 1 1",
"output": "0"
},
{
"input": "10 1\n1 1 1 1 1 1 1 1 1 1",
"output": "0"
},
{
"input": "10 1\n1 2 1 1 1 1 1 1 1 1",
"output": "-1"
},
{
"input": "10 1\n2 1 1 1 1 1 1 1 1 1",
"output": "-1"
},
{
"input": "10 2\n2 1 1 1 1 1 1 1 1 1",
"output": "1"
},
{
"input": "10 2\n1 2 1 1 1 1 1 1 1 1",
"output": "-1"
},
{
"input": "10 3\n3 2 1 1 1 1 1 1 1 1",
"output": "2"
},
{
"input": "10 1\n1 2 3 4 5 6 7 8 9 10",
"output": "-1"
},
{
"input": "10 10\n1 2 3 4 5 6 7 8 9 10",
"output": "9"
},
{
"input": "20 10\n1 2 3 4 5 6 7 8 9 10 1 1 1 1 1 1 1 1 1 1",
"output": "-1"
},
{
"input": "20 11\n1 2 3 4 5 6 7 8 9 10 1 1 1 1 1 1 1 1 1 1",
"output": "10"
},
{
"input": "20 9\n1 2 3 4 5 6 7 8 9 10 1 1 1 1 1 1 1 1 1 1",
"output": "-1"
},
{
"input": "20 10\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "0"
},
{
"input": "20 20\n20 1 19 2 18 3 17 4 16 5 15 6 14 7 13 8 12 9 11 10",
"output": "19"
}
] | 1,630,465,600
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 47
| 186
| 14,438,400
|
n, k = map(int, input().split())
if n == 1:
arr = [int(input())]
else:
arr = list(map(int, input().split()))
fromK = set(arr[k-1:])
if len(fromK)>1:
print(-1)
else:
i=k-1
while i>=0 and arr[i]==arr[k-1]:
i-=1
print(i+1)
|
Title: Shooshuns and Sequence
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
One day shooshuns found a sequence of *n* integers, written on a blackboard. The shooshuns can perform one operation with it, the operation consists of two steps:
1. Find the number that goes *k*-th in the current sequence and add the same number to the end of the sequence; 1. Delete the first number of the current sequence.
The shooshuns wonder after how many operations all numbers on the board will be the same and whether all numbers will ever be the same.
Input Specification:
The first line contains two space-separated integers *n* and *k* (1<=β€<=*k*<=β€<=*n*<=β€<=105).
The second line contains *n* space-separated integers: *a*1,<=*a*2,<=...,<=*a**n* (1<=β€<=*a**i*<=β€<=105) β the sequence that the shooshuns found.
Output Specification:
Print the minimum number of operations, required for all numbers on the blackboard to become the same. If it is impossible to achieve, print -1.
Demo Input:
['3 2\n3 1 1\n', '3 1\n3 1 1\n']
Demo Output:
['1\n', '-1\n']
Note:
In the first test case after the first operation the blackboard will have sequence [1, 1, 1]. So, one operation is enough to make all numbers the same. Thus, the answer equals one.
In the second test case the sequence will never consist of the same numbers. It will always contain at least two distinct numbers 3 and 1. Thus, the answer equals -1.
|
```python
n, k = map(int, input().split())
if n == 1:
arr = [int(input())]
else:
arr = list(map(int, input().split()))
fromK = set(arr[k-1:])
if len(fromK)>1:
print(-1)
else:
i=k-1
while i>=0 and arr[i]==arr[k-1]:
i-=1
print(i+1)
```
| 3
|
|
932
|
A
|
Palindromic Supersequence
|
PROGRAMMING
| 800
|
[
"constructive algorithms"
] | null | null |
You are given a string *A*. Find a string *B*, where *B* is a palindrome and *A* is a subsequence of *B*.
A subsequence of a string is a string that can be derived from it by deleting some (not necessarily consecutive) characters without changing the order of the remaining characters. For example, "cotst" is a subsequence of "contest".
A palindrome is a string that reads the same forward or backward.
The length of string *B* should be at most 104. It is guaranteed that there always exists such string.
You do not need to find the shortest answer, the only restriction is that the length of string *B* should not exceed 104.
|
First line contains a string *A* (1<=β€<=|*A*|<=β€<=103) consisting of lowercase Latin letters, where |*A*| is a length of *A*.
|
Output single line containing *B* consisting of only lowercase Latin letters. You do not need to find the shortest answer, the only restriction is that the length of string *B* should not exceed 104. If there are many possible *B*, print any of them.
|
[
"aba\n",
"ab\n"
] |
[
"aba",
"aabaa"
] |
In the first example, "aba" is a subsequence of "aba" which is a palindrome.
In the second example, "ab" is a subsequence of "aabaa" which is a palindrome.
| 500
|
[
{
"input": "aba",
"output": "abaaba"
},
{
"input": "ab",
"output": "abba"
},
{
"input": "krnyoixirslfszfqivgkaflgkctvbvksipwomqxlyqxhlbceuhbjbfnhofcgpgwdseffycthmlpcqejgskwjkbkbbmifnurnwyhevsoqzmtvzgfiqajfrgyuzxnrtxectcnlyoisbglpdbjbslxlpoymrcxmdtqhcnlvtqdwftuzgbdxsyscwbrguostbelnvtaqdmkmihmoxqtqlxvlsssisvqvvzotoyqryuyqwoknnqcqggysrqpkrccvyhxsjmhoqoyocwcriplarjoyiqrmmpmueqbsbljddwrumauczfziodpudheexalbwpiypmdjlmwtgdrzhpxneofhqzjdmurgvmrwdotuwyknlrbvuvtnhiouvqitgyfgfieonbaapyhwpcrmehxcpkijzfiayfvoxkpa",
"output": "krnyoixirslfszfqivgkaflgkctvbvksipwomqxlyqxhlbceuhbjbfnhofcgpgwdseffycthmlpcqejgskwjkbkbbmifnurnwyhevsoqzmtvzgfiqajfrgyuzxnrtxectcnlyoisbglpdbjbslxlpoymrcxmdtqhcnlvtqdwftuzgbdxsyscwbrguostbelnvtaqdmkmihmoxqtqlxvlsssisvqvvzotoyqryuyqwoknnqcqggysrqpkrccvyhxsjmhoqoyocwcriplarjoyiqrmmpmueqbsbljddwrumauczfziodpudheexalbwpiypmdjlmwtgdrzhpxneofhqzjdmurgvmrwdotuwyknlrbvuvtnhiouvqitgyfgfieonbaapyhwpcrmehxcpkijzfiayfvoxkpaapkxovfyaifzjikpcxhemrcpwhypaabnoeifgfygtiqvuoihntvuvbrlnkywutodwrmvgrumdjzqhfoenxphzrdgtwmljdm..."
},
{
"input": "mgrfmzxqpejcixxppqgvuawutgrmezjkteofjbnrvzzkvjtacfxjjokisavsgrslryxfqgrmdsqwptajbqzvethuljbdatxghfzqrwvfgakwmoawlzqjypmhllbbuuhbpriqsnibywlgjlxowyzagrfnqafvcqwktkcjwejevzbnxhsfmwojshcdypnvbuhhuzqmgovmvgwiizatoxgblyudipahfbkewmuneoqhjmbpdtwnznblwvtjrniwlbyblhppndspojrouffazpoxtqdfpjuhitvijrohavpqatofxwmksvjcvhdecxwwmosqiczjpkfafqlboxosnjgzgdraehzdltthemeusxhiiimrdrugabnxwsygsktkcslhjebfexucsyvlwrptebkjhefsvfrmcqqdlanbetrgzwylizmrystvpgrkhlicfadco",
"output": "mgrfmzxqpejcixxppqgvuawutgrmezjkteofjbnrvzzkvjtacfxjjokisavsgrslryxfqgrmdsqwptajbqzvethuljbdatxghfzqrwvfgakwmoawlzqjypmhllbbuuhbpriqsnibywlgjlxowyzagrfnqafvcqwktkcjwejevzbnxhsfmwojshcdypnvbuhhuzqmgovmvgwiizatoxgblyudipahfbkewmuneoqhjmbpdtwnznblwvtjrniwlbyblhppndspojrouffazpoxtqdfpjuhitvijrohavpqatofxwmksvjcvhdecxwwmosqiczjpkfafqlboxosnjgzgdraehzdltthemeusxhiiimrdrugabnxwsygsktkcslhjebfexucsyvlwrptebkjhefsvfrmcqqdlanbetrgzwylizmrystvpgrkhlicfadcoocdafcilhkrgpvtsyrmzilywzgrtebnaldqqcmrfvsfehjkbetprwlvyscuxef..."
},
{
"input": "hdmasfcjuigrwjchmjslmpynewnzpphmudzcbxzdexjuhktdtcoibzvevsmwaxakrtdfoivkvoooypyemiidadquqepxwqkesdnakxkbzrcjkgvwwxtqxvfpxcwitljyehldgsjytmekimkkndjvnzqtjykiymkmdzpwakxdtkzcqcatlevppgfhyykgmipuodjrnfjzhcmjdbzvhywprbwdcfxiffpzbjbmbyijkqnosslqbfvvicxvoeuzruraetglthgourzhfpnubzvblfzmmbgepjjyshchthulxar",
"output": "hdmasfcjuigrwjchmjslmpynewnzpphmudzcbxzdexjuhktdtcoibzvevsmwaxakrtdfoivkvoooypyemiidadquqepxwqkesdnakxkbzrcjkgvwwxtqxvfpxcwitljyehldgsjytmekimkkndjvnzqtjykiymkmdzpwakxdtkzcqcatlevppgfhyykgmipuodjrnfjzhcmjdbzvhywprbwdcfxiffpzbjbmbyijkqnosslqbfvvicxvoeuzruraetglthgourzhfpnubzvblfzmmbgepjjyshchthulxarraxluhthchsyjjpegbmmzflbvzbunpfhzruoghtlgtearurzueovxcivvfbqlssonqkjiybmbjbzpffixfcdwbrpwyhvzbdjmchzjfnrjdoupimgkyyhfgppveltacqczktdxkawpzdmkmyikyjtqznvjdnkkmikemtyjsgdlheyjltiwcxpfvxqtxwwvgkjcrzbkxkandsekqwxpequ..."
},
{
"input": "fggbyzobbmxtwdajawqdywnppflkkmtxzjvxopqvliwdwhzepcuiwelhbuotlkvesexnwkytonfrpqcxzzqzdvsmbsjcxxeugavekozfjlolrtqgwzqxsfgrnvrgfrqpixhsskbpzghndesvwptpvvkasfalzsetopervpwzmkgpcexqnvtnoulprwnowmsorscecvvvrjfwumcjqyrounqsgdruxttvtmrkivtxauhosokdiahsyrftzsgvgyveqwkzhqstbgywrvmsgfcfyuxpphvmyydzpohgdicoxbtjnsbyhoidnkrialowvlvmjpxcfeygqzphmbcjkupojsmmuqlydixbaluwezvnfasjfxilbyllwyipsmovdzosuwotcxerzcfuvxprtziseshjfcosalyqglpotxvxaanpocypsiyazsejjoximnbvqucftuvdksaxutvjeunodbipsumlaymjnzljurefjg",
"output": "fggbyzobbmxtwdajawqdywnppflkkmtxzjvxopqvliwdwhzepcuiwelhbuotlkvesexnwkytonfrpqcxzzqzdvsmbsjcxxeugavekozfjlolrtqgwzqxsfgrnvrgfrqpixhsskbpzghndesvwptpvvkasfalzsetopervpwzmkgpcexqnvtnoulprwnowmsorscecvvvrjfwumcjqyrounqsgdruxttvtmrkivtxauhosokdiahsyrftzsgvgyveqwkzhqstbgywrvmsgfcfyuxpphvmyydzpohgdicoxbtjnsbyhoidnkrialowvlvmjpxcfeygqzphmbcjkupojsmmuqlydixbaluwezvnfasjfxilbyllwyipsmovdzosuwotcxerzcfuvxprtziseshjfcosalyqglpotxvxaanpocypsiyazsejjoximnbvqucftuvdksaxutvjeunodbipsumlaymjnzljurefjggjferujlznjmyalmuspib..."
},
{
"input": "qyyxqkbxsvfnjzttdqmpzinbdgayllxpfrpopwciejjjzadguurnnhvixgueukugkkjyghxknedojvmdrskswiotgatsajowionuiumuhyggjuoympuxyfahwftwufvocdguxmxabbxnfviscxtilzzauizsgugwcqtbqgoosefhkumhodwpgolfdkbuiwlzjydonwbgyzzrjwxnceltqgqelrrljmzdbftmaogiuosaqhngmdzxzlmyrwefzhqawmkdckfnyyjgdjgadtfjvrkdwysqofcgyqrnyzutycvspzbjmmesobvhshtqlrytztyieknnkporrbcmlopgtknlmsstzkigreqwgsvagmvbrvwypoxttmzzsgm",
"output": "qyyxqkbxsvfnjzttdqmpzinbdgayllxpfrpopwciejjjzadguurnnhvixgueukugkkjyghxknedojvmdrskswiotgatsajowionuiumuhyggjuoympuxyfahwftwufvocdguxmxabbxnfviscxtilzzauizsgugwcqtbqgoosefhkumhodwpgolfdkbuiwlzjydonwbgyzzrjwxnceltqgqelrrljmzdbftmaogiuosaqhngmdzxzlmyrwefzhqawmkdckfnyyjgdjgadtfjvrkdwysqofcgyqrnyzutycvspzbjmmesobvhshtqlrytztyieknnkporrbcmlopgtknlmsstzkigreqwgsvagmvbrvwypoxttmzzsgmmgszzmttxopywvrbvmgavsgwqergikztssmlnktgpolmcbrropknnkeiytztyrlqthshvbosemmjbzpsvcytuzynrqygcfoqsywdkrvjftdagjdgjyynfkcdkmwaqhzfewry..."
},
{
"input": "scvlhflaqvniyiyofonowwcuqajuwscdrzhbvasymvqfnthzvtjcfuaftrbjghhvslcohwpxkggrbtatjtgehuqtorwinwvrtdldyoeeozxwippuahgkuehvsmyqtodqvlufqqmqautaqirvwzvtodzxtgxiinubhrbeoiybidutrqamsdnasctxatzkvkjkrmavdravnsxyngjlugwftmhmcvvxdbfndurrbmcpuoigjpssqcortmqoqttrabhoqvopjkxvpbqdqsilvlplhgqazauyvnodsxtwnomlinjpozwhrgrkqwmlwcwdkxjxjftexiavwrejvdjcfptterblxysjcheesyqsbgdrzjxbfjqgjgmvccqcyj",
"output": "scvlhflaqvniyiyofonowwcuqajuwscdrzhbvasymvqfnthzvtjcfuaftrbjghhvslcohwpxkggrbtatjtgehuqtorwinwvrtdldyoeeozxwippuahgkuehvsmyqtodqvlufqqmqautaqirvwzvtodzxtgxiinubhrbeoiybidutrqamsdnasctxatzkvkjkrmavdravnsxyngjlugwftmhmcvvxdbfndurrbmcpuoigjpssqcortmqoqttrabhoqvopjkxvpbqdqsilvlplhgqazauyvnodsxtwnomlinjpozwhrgrkqwmlwcwdkxjxjftexiavwrejvdjcfptterblxysjcheesyqsbgdrzjxbfjqgjgmvccqcyjjycqccvmgjgqjfbxjzrdgbsqyseehcjsyxlbrettpfcjdvjerwvaixetfjxjxkdwcwlmwqkrgrhwzopjnilmonwtxsdonvyuazaqghlplvlisqdqbpvxkjpovqohbarttqoqm..."
},
{
"input": "oohkqxxtvxzmvfjjxyjwlbqmeqwwlienzkdbhswgfbkhfygltsucdijozwaiewpixapyazfztksjeoqjugjfhdbqzuezbuajfvvffkwprroyivfoocvslejffgxuiofisenroxoeixmdbzonmreikpflciwsbafrdqfvdfojgoziiibqhwwsvhnzmptgirqqulkgmyzrfekzqqujmdumxkudsgexisupedisgmdgebvlvrpyfrbrqjknrxyzfpwmsxjxismgd",
"output": "oohkqxxtvxzmvfjjxyjwlbqmeqwwlienzkdbhswgfbkhfygltsucdijozwaiewpixapyazfztksjeoqjugjfhdbqzuezbuajfvvffkwprroyivfoocvslejffgxuiofisenroxoeixmdbzonmreikpflciwsbafrdqfvdfojgoziiibqhwwsvhnzmptgirqqulkgmyzrfekzqqujmdumxkudsgexisupedisgmdgebvlvrpyfrbrqjknrxyzfpwmsxjxismgddgmsixjxsmwpfzyxrnkjqrbrfyprvlvbegdmgsidepusixegsdukxmudmjuqqzkefrzymgkluqqrigtpmznhvswwhqbiiizogjofdvfqdrfabswiclfpkiermnozbdmxieoxornesifoiuxgffjelsvcoofviyorrpwkffvvfjaubzeuzqbdhfjgujqoejsktzfzaypaxipweiawzojidcustlgyfhkbfgwshbdkzneilwwqemqblw..."
},
{
"input": "gilhoixzjgidfanqrmekjelnvicpuujlpxittgadgrhqallnkjlemwazntwfywjnrxdkgrnczlwzjyeyfktduzdjnivcldjjarfzmmdbyytvipbbnjqolfnlqjpidotxxfobgtgpvjmpddcyddwdcjsxxumuoyznhpvpqccgqnuouzojntanfwctthcgynrukcvshsuuqrxfdvqqggaatwytikkitywtaaggqqvdfxrquushsvckurnygchttcwfnatnjozuounqgccqpvphnzyoumuxxsjcdwddycddpmjvpgtgbofxxtodipjqlnfloqjnbbpivtyybdmmzfrajjdlcvinjdzudtkfyeyjzwlzcnrgkdxrnjwyfwtnzawmeljknllaqhrgdagttixpljuupcivnlejkemrqnafdigjzxiohlig",
"output": "gilhoixzjgidfanqrmekjelnvicpuujlpxittgadgrhqallnkjlemwazntwfywjnrxdkgrnczlwzjyeyfktduzdjnivcldjjarfzmmdbyytvipbbnjqolfnlqjpidotxxfobgtgpvjmpddcyddwdcjsxxumuoyznhpvpqccgqnuouzojntanfwctthcgynrukcvshsuuqrxfdvqqggaatwytikkitywtaaggqqvdfxrquushsvckurnygchttcwfnatnjozuounqgccqpvphnzyoumuxxsjcdwddycddpmjvpgtgbofxxtodipjqlnfloqjnbbpivtyybdmmzfrajjdlcvinjdzudtkfyeyjzwlzcnrgkdxrnjwyfwtnzawmeljknllaqhrgdagttixpljuupcivnlejkemrqnafdigjzxiohliggilhoixzjgidfanqrmekjelnvicpuujlpxittgadgrhqallnkjlemwazntwfywjnrxdkgrnczlw..."
},
{
"input": "abcab",
"output": "abcabbacba"
},
{
"input": "baaaaaaa",
"output": "baaaaaaaaaaaaaab"
},
{
"input": "baaaaaa",
"output": "baaaaaaaaaaaab"
},
{
"input": "baaaaaaaaa",
"output": "baaaaaaaaaaaaaaaaaab"
},
{
"input": "baaaaaaaa",
"output": "baaaaaaaaaaaaaaaab"
}
] | 1,518,706,430
| 1,130
|
Python 3
|
OK
|
TESTS
| 48
| 77
| 5,632,000
|
a=input()
a1,c=a[::-1],-1
if a==a1:
print(a)
quit()
for i in range(len(a)):
if a[i:]==a1[:-i]:
c=i
break
if c==-1:
print(a+a1)
quit()
print(a+a[:c][::-1])
|
Title: Palindromic Supersequence
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You are given a string *A*. Find a string *B*, where *B* is a palindrome and *A* is a subsequence of *B*.
A subsequence of a string is a string that can be derived from it by deleting some (not necessarily consecutive) characters without changing the order of the remaining characters. For example, "cotst" is a subsequence of "contest".
A palindrome is a string that reads the same forward or backward.
The length of string *B* should be at most 104. It is guaranteed that there always exists such string.
You do not need to find the shortest answer, the only restriction is that the length of string *B* should not exceed 104.
Input Specification:
First line contains a string *A* (1<=β€<=|*A*|<=β€<=103) consisting of lowercase Latin letters, where |*A*| is a length of *A*.
Output Specification:
Output single line containing *B* consisting of only lowercase Latin letters. You do not need to find the shortest answer, the only restriction is that the length of string *B* should not exceed 104. If there are many possible *B*, print any of them.
Demo Input:
['aba\n', 'ab\n']
Demo Output:
['aba', 'aabaa']
Note:
In the first example, "aba" is a subsequence of "aba" which is a palindrome.
In the second example, "ab" is a subsequence of "aabaa" which is a palindrome.
|
```python
a=input()
a1,c=a[::-1],-1
if a==a1:
print(a)
quit()
for i in range(len(a)):
if a[i:]==a1[:-i]:
c=i
break
if c==-1:
print(a+a1)
quit()
print(a+a[:c][::-1])
```
| 3
|
|
519
|
A
|
A and B and Chess
|
PROGRAMMING
| 900
|
[
"implementation"
] | null | null |
A and B are preparing themselves for programming contests.
To train their logical thinking and solve problems better, A and B decided to play chess. During the game A wondered whose position is now stronger.
For each chess piece we know its weight:
- the queen's weight is 9, - the rook's weight is 5, - the bishop's weight is 3, - the knight's weight is 3, - the pawn's weight is 1, - the king's weight isn't considered in evaluating position.
The player's weight equals to the sum of weights of all his pieces on the board.
As A doesn't like counting, he asked you to help him determine which player has the larger position weight.
|
The input contains eight lines, eight characters each β the board's description.
The white pieces on the board are marked with uppercase letters, the black pieces are marked with lowercase letters.
The white pieces are denoted as follows: the queen is represented is 'Q', the rook β as 'R', the bishop β as'B', the knight β as 'N', the pawn β as 'P', the king β as 'K'.
The black pieces are denoted as 'q', 'r', 'b', 'n', 'p', 'k', respectively.
An empty square of the board is marked as '.' (a dot).
It is not guaranteed that the given chess position can be achieved in a real game. Specifically, there can be an arbitrary (possibly zero) number pieces of each type, the king may be under attack and so on.
|
Print "White" (without quotes) if the weight of the position of the white pieces is more than the weight of the position of the black pieces, print "Black" if the weight of the black pieces is more than the weight of the white pieces and print "Draw" if the weights of the white and black pieces are equal.
|
[
"...QK...\n........\n........\n........\n........\n........\n........\n...rk...\n",
"rnbqkbnr\npppppppp\n........\n........\n........\n........\nPPPPPPPP\nRNBQKBNR\n",
"rppppppr\n...k....\n........\n........\n........\n........\nK...Q...\n........\n"
] |
[
"White\n",
"Draw\n",
"Black\n"
] |
In the first test sample the weight of the position of the white pieces equals to 9, the weight of the position of the black pieces equals 5.
In the second test sample the weights of the positions of the black and the white pieces are equal to 39.
In the third test sample the weight of the position of the white pieces equals to 9, the weight of the position of the black pieces equals to 16.
| 500
|
[
{
"input": "rnbqkbnr\npppppppp\n........\n........\n........\n........\nPPPPPPPP\nRNBQKBNR",
"output": "Draw"
},
{
"input": "....bQ.K\n.B......\n.....P..\n........\n........\n........\n...N.P..\n.....R..",
"output": "White"
},
{
"input": "b....p..\nR.......\n.pP...b.\npp......\nq.PPNpPR\n..K..rNn\nP.....p.\n...Q..B.",
"output": "White"
},
{
"input": "...Nn...\n........\n........\n........\n.R....b.\n........\n........\n......p.",
"output": "White"
},
{
"input": "qqqqqqqq\nqqqqqqqq\nqqqqqqqq\nqqqqqqqq\nqqqqqqqq\nqqqqqqqq\nqqqqqqqq\nqqqqqqqq",
"output": "Black"
},
{
"input": "QQQQQQQQ\nQQQQQQQQ\nQQQQQQQQ\nQQQQQQQQ\nQQQQQQQQ\nQQQQQQQQ\nQQQQQQQQ\nQQQQQQQQ",
"output": "White"
},
{
"input": "qqqqqqqq\nqqqqqqqq\nqqqqqqqq\nqqqqqqqq\nQQQQQQQQ\nQQQQQQQQ\nQQQQQQQQ\nQQQQQQQQ",
"output": "Draw"
},
{
"input": "QQQQQQQQ\nQQQQQQQQ\n........\n........\n........\n........\nrrrrrr..\nrrrrrrrr",
"output": "White"
},
{
"input": "........\n........\n........\n........\n........\n........\n........\n.......n",
"output": "Black"
},
{
"input": "........\n...b....\n........\n........\n........\n........\n........\n.......K",
"output": "Black"
},
{
"input": "........\n........\n........\n........\n........\n........\n........\n......Kp",
"output": "Black"
},
{
"input": "........\n........\n........\n........\n........\n........\n........\n.......Q",
"output": "White"
},
{
"input": "........\n........\n........\n........\n........\n........\n........\n......Bp",
"output": "White"
},
{
"input": "........\n........\n........\n........\n........\n........\n........\nkkkkkB..",
"output": "White"
},
{
"input": "QqPQNN.Q\n.qBbr.qB\np.RKBpNK\nPknBr.nq\nKqKRNKKk\n.BqPqkb.\nPBNPr.rk\nBpBKrPRR",
"output": "Black"
},
{
"input": "........\n........\n........\n........\n........\n........\n........\n.......K",
"output": "Draw"
}
] | 1,700,035,396
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 65
| 92
| 0
|
power = {
'q' : 9,
'r' : 5,
'b' : 3,
'n' : 3,
'p' : 1,
'k' : 0}
sw = 0
sb = 0
for i in range(8):
l = input()
for w in l:
if w == '.':
continue
if w.islower():
sb += power[w]
else:
sw += power[w.lower()]
if sw > sb:
print('White')
elif sw == sb:
print('Draw')
else:
print('Black')
|
Title: A and B and Chess
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
A and B are preparing themselves for programming contests.
To train their logical thinking and solve problems better, A and B decided to play chess. During the game A wondered whose position is now stronger.
For each chess piece we know its weight:
- the queen's weight is 9, - the rook's weight is 5, - the bishop's weight is 3, - the knight's weight is 3, - the pawn's weight is 1, - the king's weight isn't considered in evaluating position.
The player's weight equals to the sum of weights of all his pieces on the board.
As A doesn't like counting, he asked you to help him determine which player has the larger position weight.
Input Specification:
The input contains eight lines, eight characters each β the board's description.
The white pieces on the board are marked with uppercase letters, the black pieces are marked with lowercase letters.
The white pieces are denoted as follows: the queen is represented is 'Q', the rook β as 'R', the bishop β as'B', the knight β as 'N', the pawn β as 'P', the king β as 'K'.
The black pieces are denoted as 'q', 'r', 'b', 'n', 'p', 'k', respectively.
An empty square of the board is marked as '.' (a dot).
It is not guaranteed that the given chess position can be achieved in a real game. Specifically, there can be an arbitrary (possibly zero) number pieces of each type, the king may be under attack and so on.
Output Specification:
Print "White" (without quotes) if the weight of the position of the white pieces is more than the weight of the position of the black pieces, print "Black" if the weight of the black pieces is more than the weight of the white pieces and print "Draw" if the weights of the white and black pieces are equal.
Demo Input:
['...QK...\n........\n........\n........\n........\n........\n........\n...rk...\n', 'rnbqkbnr\npppppppp\n........\n........\n........\n........\nPPPPPPPP\nRNBQKBNR\n', 'rppppppr\n...k....\n........\n........\n........\n........\nK...Q...\n........\n']
Demo Output:
['White\n', 'Draw\n', 'Black\n']
Note:
In the first test sample the weight of the position of the white pieces equals to 9, the weight of the position of the black pieces equals 5.
In the second test sample the weights of the positions of the black and the white pieces are equal to 39.
In the third test sample the weight of the position of the white pieces equals to 9, the weight of the position of the black pieces equals to 16.
|
```python
power = {
'q' : 9,
'r' : 5,
'b' : 3,
'n' : 3,
'p' : 1,
'k' : 0}
sw = 0
sb = 0
for i in range(8):
l = input()
for w in l:
if w == '.':
continue
if w.islower():
sb += power[w]
else:
sw += power[w.lower()]
if sw > sb:
print('White')
elif sw == sb:
print('Draw')
else:
print('Black')
```
| 3
|
|
965
|
A
|
Paper Airplanes
|
PROGRAMMING
| 800
|
[
"math"
] | null | null |
To make a paper airplane, one has to use a rectangular piece of paper. From a sheet of standard size you can make $s$ airplanes.
A group of $k$ people decided to make $n$ airplanes each. They are going to buy several packs of paper, each of them containing $p$ sheets, and then distribute the sheets between the people. Each person should have enough sheets to make $n$ airplanes. How many packs should they buy?
|
The only line contains four integers $k$, $n$, $s$, $p$ ($1 \le k, n, s, p \le 10^4$)Β β the number of people, the number of airplanes each should make, the number of airplanes that can be made using one sheet and the number of sheets in one pack, respectively.
|
Print a single integerΒ β the minimum number of packs they should buy.
|
[
"5 3 2 3\n",
"5 3 100 1\n"
] |
[
"4\n",
"5\n"
] |
In the first sample they have to buy $4$ packs of paper: there will be $12$ sheets in total, and giving $2$ sheets to each person is enough to suit everyone's needs.
In the second sample they have to buy a pack for each person as they can't share sheets.
| 500
|
[
{
"input": "5 3 2 3",
"output": "4"
},
{
"input": "5 3 100 1",
"output": "5"
},
{
"input": "10000 10000 1 1",
"output": "100000000"
},
{
"input": "1 1 10000 10000",
"output": "1"
},
{
"input": "300 300 21 23",
"output": "196"
},
{
"input": "300 2 37 51",
"output": "6"
},
{
"input": "2 400 23 57",
"output": "1"
},
{
"input": "1 1 1 1",
"output": "1"
},
{
"input": "10000 10000 3 2",
"output": "16670000"
},
{
"input": "1 2 1 2",
"output": "1"
},
{
"input": "1 1 2 2",
"output": "1"
},
{
"input": "1 1 10 10",
"output": "1"
},
{
"input": "5324 5439 32 13",
"output": "69622"
},
{
"input": "9000 1 2432 1",
"output": "9000"
},
{
"input": "230 1234 9124 23",
"output": "10"
},
{
"input": "11 1 1 1",
"output": "11"
},
{
"input": "6246 8489 1227 9",
"output": "4858"
},
{
"input": "9 20 5 7",
"output": "6"
}
] | 1,609,438,547
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 18
| 93
| 0
|
# A. Paper Airplanes
k, n, s, p = map(int, input().split())
sheets = (n + s - 1) // s
print((sheets * k + p - 1) // p)
|
Title: Paper Airplanes
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
To make a paper airplane, one has to use a rectangular piece of paper. From a sheet of standard size you can make $s$ airplanes.
A group of $k$ people decided to make $n$ airplanes each. They are going to buy several packs of paper, each of them containing $p$ sheets, and then distribute the sheets between the people. Each person should have enough sheets to make $n$ airplanes. How many packs should they buy?
Input Specification:
The only line contains four integers $k$, $n$, $s$, $p$ ($1 \le k, n, s, p \le 10^4$)Β β the number of people, the number of airplanes each should make, the number of airplanes that can be made using one sheet and the number of sheets in one pack, respectively.
Output Specification:
Print a single integerΒ β the minimum number of packs they should buy.
Demo Input:
['5 3 2 3\n', '5 3 100 1\n']
Demo Output:
['4\n', '5\n']
Note:
In the first sample they have to buy $4$ packs of paper: there will be $12$ sheets in total, and giving $2$ sheets to each person is enough to suit everyone's needs.
In the second sample they have to buy a pack for each person as they can't share sheets.
|
```python
# A. Paper Airplanes
k, n, s, p = map(int, input().split())
sheets = (n + s - 1) // s
print((sheets * k + p - 1) // p)
```
| 3
|
|
450
|
A
|
Jzzhu and Children
|
PROGRAMMING
| 1,000
|
[
"implementation"
] | null | null |
There are *n* children in Jzzhu's school. Jzzhu is going to give some candies to them. Let's number all the children from 1 to *n*. The *i*-th child wants to get at least *a**i* candies.
Jzzhu asks children to line up. Initially, the *i*-th child stands at the *i*-th place of the line. Then Jzzhu start distribution of the candies. He follows the algorithm:
1. Give *m* candies to the first child of the line. 1. If this child still haven't got enough candies, then the child goes to the end of the line, else the child go home. 1. Repeat the first two steps while the line is not empty.
Consider all the children in the order they go home. Jzzhu wants to know, which child will be the last in this order?
|
The first line contains two integers *n*,<=*m* (1<=β€<=*n*<=β€<=100;Β 1<=β€<=*m*<=β€<=100). The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=β€<=*a**i*<=β€<=100).
|
Output a single integer, representing the number of the last child.
|
[
"5 2\n1 3 1 4 2\n",
"6 4\n1 1 2 2 3 3\n"
] |
[
"4\n",
"6\n"
] |
Let's consider the first sample.
Firstly child 1 gets 2 candies and go home. Then child 2 gets 2 candies and go to the end of the line. Currently the line looks like [3, 4, 5, 2] (indices of the children in order of the line). Then child 3 gets 2 candies and go home, and then child 4 gets 2 candies and goes to the end of the line. Currently the line looks like [5, 2, 4]. Then child 5 gets 2 candies and goes home. Then child 2 gets two candies and goes home, and finally child 4 gets 2 candies and goes home.
Child 4 is the last one who goes home.
| 500
|
[
{
"input": "5 2\n1 3 1 4 2",
"output": "4"
},
{
"input": "6 4\n1 1 2 2 3 3",
"output": "6"
},
{
"input": "7 3\n6 1 5 4 2 3 1",
"output": "4"
},
{
"input": "10 5\n2 7 3 6 2 5 1 3 4 5",
"output": "4"
},
{
"input": "100 1\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100",
"output": "100"
},
{
"input": "9 3\n9 5 2 3 7 1 8 4 6",
"output": "7"
},
{
"input": "20 10\n58 4 32 10 73 7 30 39 47 6 59 21 24 66 79 79 46 13 29 58",
"output": "16"
},
{
"input": "50 5\n89 56 3 2 40 37 56 52 83 59 43 83 43 59 29 74 22 58 53 41 53 67 78 30 57 32 58 29 95 46 45 85 60 49 41 82 8 71 52 40 45 26 6 71 84 91 4 93 40 54",
"output": "48"
},
{
"input": "50 1\n4 3 9 7 6 8 3 7 10 9 8 8 10 2 9 3 2 4 4 10 4 6 8 10 9 9 4 2 8 9 4 4 9 5 1 5 2 4 4 9 10 2 5 10 7 2 8 6 8 1",
"output": "44"
},
{
"input": "50 5\n3 9 10 8 3 3 4 6 8 2 9 9 3 1 2 10 6 8 7 2 7 4 2 7 5 10 2 2 2 5 10 5 6 6 8 7 10 4 3 2 10 8 6 6 8 6 4 4 1 3",
"output": "46"
},
{
"input": "50 2\n56 69 72 15 95 92 51 1 74 87 100 29 46 54 18 81 84 72 84 83 20 63 71 27 45 74 50 89 48 8 21 15 47 3 39 73 80 84 6 99 17 25 56 3 74 64 71 39 89 78",
"output": "40"
},
{
"input": "50 3\n31 39 64 16 86 3 1 9 25 54 98 42 20 3 49 41 73 37 55 62 33 77 64 22 33 82 26 13 10 13 7 40 48 18 46 79 94 72 19 12 11 61 16 37 10 49 14 94 48 69",
"output": "11"
},
{
"input": "50 100\n67 67 61 68 42 29 70 77 12 61 71 27 4 73 87 52 59 38 93 90 31 27 87 47 26 57 76 6 28 72 81 68 50 84 69 79 39 93 52 6 88 12 46 13 90 68 71 38 90 95",
"output": "50"
},
{
"input": "100 3\n4 14 20 11 19 11 14 20 5 7 6 12 11 17 5 11 7 6 2 10 13 5 12 8 5 17 20 18 7 19 11 7 7 20 20 8 10 17 17 19 20 5 15 16 19 7 11 16 4 17 2 10 1 20 20 16 19 9 9 11 5 7 12 9 9 6 20 18 13 19 8 4 8 1 2 4 10 11 15 14 1 7 17 12 13 19 12 2 3 14 15 15 5 17 14 12 17 14 16 9",
"output": "86"
},
{
"input": "100 5\n16 8 14 16 12 11 17 19 19 2 8 9 5 6 19 9 11 18 6 9 14 16 14 18 17 17 17 5 15 20 19 7 7 10 10 5 14 20 5 19 11 16 16 19 17 9 7 12 14 10 2 11 14 5 20 8 10 11 19 2 14 14 19 17 5 10 8 8 4 2 1 10 20 12 14 11 7 6 6 15 1 5 9 15 3 17 16 17 5 14 11 9 16 15 1 11 10 6 15 7",
"output": "93"
},
{
"input": "100 1\n58 94 18 50 17 14 96 62 83 80 75 5 9 22 25 41 3 96 74 45 66 37 2 37 13 85 68 54 77 11 85 19 25 21 52 59 90 61 72 89 82 22 10 16 3 68 61 29 55 76 28 85 65 76 27 3 14 10 56 37 86 18 35 38 56 68 23 88 33 38 52 87 55 83 94 34 100 41 83 56 91 77 32 74 97 13 67 31 57 81 53 39 5 88 46 1 79 4 49 42",
"output": "77"
},
{
"input": "100 2\n1 51 76 62 34 93 90 43 57 59 52 78 3 48 11 60 57 48 5 54 28 81 87 23 44 77 67 61 14 73 29 53 21 89 67 41 47 9 63 37 1 71 40 85 4 14 77 40 78 75 89 74 4 70 32 65 81 95 49 90 72 41 76 55 69 83 73 84 85 93 46 6 74 90 62 37 97 7 7 37 83 30 37 88 34 16 11 59 85 19 57 63 85 20 63 97 97 65 61 48",
"output": "97"
},
{
"input": "100 3\n30 83 14 55 61 66 34 98 90 62 89 74 45 93 33 31 75 35 82 100 63 69 48 18 99 2 36 71 14 30 70 76 96 85 97 90 49 36 6 76 37 94 70 3 63 73 75 48 39 29 13 2 46 26 9 56 1 18 54 53 85 34 2 12 1 93 75 67 77 77 14 26 33 25 55 9 57 70 75 6 87 66 18 3 41 69 73 24 49 2 20 72 39 58 91 54 74 56 66 78",
"output": "20"
},
{
"input": "100 4\n69 92 76 3 32 50 15 38 21 22 14 3 67 41 95 12 10 62 83 52 78 1 18 58 94 35 62 71 58 75 13 73 60 34 50 97 50 70 19 96 53 10 100 26 20 39 62 59 88 26 24 83 70 68 66 8 6 38 16 93 2 91 81 89 78 74 21 8 31 56 28 53 77 5 81 5 94 42 77 75 92 15 59 36 61 18 55 45 69 68 81 51 12 42 85 74 98 31 17 41",
"output": "97"
},
{
"input": "100 5\n2 72 10 60 6 50 72 34 97 77 35 43 80 64 40 53 46 6 90 22 29 70 26 68 52 19 72 88 83 18 55 32 99 81 11 21 39 42 41 63 60 97 30 23 55 78 89 35 24 50 99 52 27 76 24 8 20 27 51 37 17 82 69 18 46 19 26 77 52 83 76 65 43 66 84 84 13 30 66 88 84 23 37 1 17 26 11 50 73 56 54 37 40 29 35 8 1 39 50 82",
"output": "51"
},
{
"input": "100 7\n6 73 7 54 92 33 66 65 80 47 2 53 28 59 61 16 54 89 37 48 77 40 49 59 27 52 17 22 78 80 81 80 8 93 50 7 87 57 29 16 89 55 20 7 51 54 30 98 44 96 27 70 1 1 32 61 22 92 84 98 31 89 91 90 28 56 49 25 86 49 55 16 19 1 18 8 88 47 16 18 73 86 2 96 16 91 74 49 38 98 94 25 34 85 29 27 99 31 31 58",
"output": "97"
},
{
"input": "100 9\n36 4 45 16 19 6 10 87 44 82 71 49 70 35 83 19 40 76 45 94 44 96 10 54 82 77 86 63 11 37 21 3 15 89 80 88 89 16 72 23 25 9 51 25 10 45 96 5 6 18 51 31 42 57 41 51 42 15 89 61 45 82 16 48 61 67 19 40 9 33 90 36 78 36 79 79 16 10 83 87 9 22 84 12 23 76 36 14 2 81 56 33 56 23 57 84 76 55 35 88",
"output": "47"
},
{
"input": "100 10\n75 81 39 64 90 58 92 28 75 9 96 78 92 83 77 68 76 71 14 46 58 60 80 25 78 11 13 63 22 82 65 68 47 6 33 63 90 50 85 43 73 94 80 48 67 11 83 17 22 15 94 80 66 99 66 4 46 35 52 1 62 39 96 57 37 47 97 49 64 12 36 63 90 16 4 75 85 82 85 56 13 4 92 45 44 93 17 35 22 46 18 44 29 7 52 4 100 98 87 51",
"output": "98"
},
{
"input": "100 20\n21 19 61 70 54 97 98 14 61 72 25 94 24 56 55 25 12 80 76 11 35 17 80 26 11 94 52 47 84 61 10 2 74 25 10 21 2 79 55 50 30 75 10 64 44 5 60 96 52 16 74 41 20 77 20 44 8 86 74 36 49 61 99 13 54 64 19 99 50 43 12 73 48 48 83 55 72 73 63 81 30 27 95 9 97 82 24 3 89 90 33 14 47 88 22 78 12 75 58 67",
"output": "94"
},
{
"input": "100 30\n56 79 59 23 11 23 67 82 81 80 99 79 8 58 93 36 98 81 46 39 34 67 3 50 4 68 70 71 2 21 52 30 75 23 33 21 16 100 56 43 8 27 40 8 56 24 17 40 94 10 67 49 61 36 95 87 17 41 7 94 33 19 17 50 26 11 94 54 38 46 77 9 53 35 98 42 50 20 43 6 78 6 38 24 100 45 43 16 1 50 16 46 14 91 95 88 10 1 50 19",
"output": "95"
},
{
"input": "100 40\n86 11 97 17 38 95 11 5 13 83 67 75 50 2 46 39 84 68 22 85 70 23 64 46 59 93 39 80 35 78 93 21 83 19 64 1 49 59 99 83 44 81 70 58 15 82 83 47 55 65 91 10 2 92 4 77 37 32 12 57 78 11 42 8 59 21 96 69 61 30 44 29 12 70 91 14 10 83 11 75 14 10 19 39 8 98 5 81 66 66 79 55 36 29 22 45 19 24 55 49",
"output": "88"
},
{
"input": "100 50\n22 39 95 69 94 53 80 73 33 90 40 60 2 4 84 50 70 38 92 12 36 74 87 70 51 36 57 5 54 6 35 81 52 17 55 100 95 81 32 76 21 1 100 1 95 1 40 91 98 59 84 19 11 51 79 19 47 86 45 15 62 2 59 77 31 68 71 92 17 33 10 33 85 57 5 2 88 97 91 99 63 20 63 54 79 93 24 62 46 27 30 87 3 64 95 88 16 50 79 1",
"output": "99"
},
{
"input": "100 70\n61 48 89 17 97 6 93 13 64 50 66 88 24 52 46 99 6 65 93 64 82 37 57 41 47 1 84 5 97 83 79 46 16 35 40 7 64 15 44 96 37 17 30 92 51 67 26 3 14 56 27 68 66 93 36 39 51 6 40 55 79 26 71 54 8 48 18 2 71 12 55 60 29 37 31 97 26 37 25 68 67 70 3 87 100 41 5 82 65 92 24 66 76 48 89 8 40 93 31 95",
"output": "100"
},
{
"input": "100 90\n87 32 30 15 10 52 93 63 84 1 82 41 27 51 75 32 42 94 39 53 70 13 4 22 99 35 44 38 5 23 18 100 61 80 9 12 42 93 9 77 3 7 60 95 66 78 95 42 69 8 1 88 93 66 96 20 76 63 15 36 92 52 2 72 36 57 48 63 29 20 74 88 49 47 81 61 94 74 70 93 47 3 19 52 59 41 5 40 22 3 76 97 91 37 95 88 91 99 76 15",
"output": "98"
},
{
"input": "100 100\n79 75 7 28 6 96 38 35 57 95 41 74 24 96 32 78 81 13 63 84 24 95 3 23 66 1 60 6 96 49 41 5 14 18 31 97 66 19 49 89 49 70 51 28 20 99 18 1 28 77 24 46 69 21 40 32 31 66 28 6 66 97 9 16 70 90 91 30 34 82 93 41 65 11 39 52 1 88 63 43 80 50 60 49 28 56 18 76 24 57 74 1 28 99 36 35 79 54 18 16",
"output": "100"
},
{
"input": "1 3\n5",
"output": "1"
},
{
"input": "1 1\n100",
"output": "1"
},
{
"input": "2 3\n4 2",
"output": "1"
},
{
"input": "2 5\n99 97",
"output": "2"
},
{
"input": "3 4\n7 5 2",
"output": "2"
},
{
"input": "3 50\n47 86 51",
"output": "3"
},
{
"input": "5 100\n82 100 85 1 37",
"output": "5"
},
{
"input": "5 20\n40 39 21 5 20",
"output": "3"
},
{
"input": "1 27\n81",
"output": "1"
},
{
"input": "20 13\n7 8 29 83 74 28 93 85 7 8 3 9 8 70 49 50 39 41 57 1",
"output": "7"
},
{
"input": "2 1\n100 2",
"output": "1"
},
{
"input": "2 2\n6 4",
"output": "1"
},
{
"input": "5 2\n6 4 4 1 1",
"output": "1"
},
{
"input": "1 4\n3",
"output": "1"
},
{
"input": "3 2\n1 5 3",
"output": "2"
},
{
"input": "3 1\n3 2 2",
"output": "1"
},
{
"input": "3 1\n2 3 2",
"output": "2"
},
{
"input": "5 1\n5 1 1 1 1",
"output": "1"
},
{
"input": "2 3\n7 4",
"output": "1"
}
] | 1,670,330,472
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 49
| 62
| 0
|
n=list(map(int,input().split()))
arr=list(map(int,input().split()))
arr2=[]
dict={}
for i in range(n[0]):
if(arr[i]%n[1]==0):
arr2.append(arr[i]/n[1])
else:
arr2.append(int(arr[i]/n[1])+1)
x=max(arr2)
for i in range(len(arr2)):
if(arr2[i]==x):
dict[i]=x
print(list(dict.keys())[-1]+1)
|
Title: Jzzhu and Children
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
There are *n* children in Jzzhu's school. Jzzhu is going to give some candies to them. Let's number all the children from 1 to *n*. The *i*-th child wants to get at least *a**i* candies.
Jzzhu asks children to line up. Initially, the *i*-th child stands at the *i*-th place of the line. Then Jzzhu start distribution of the candies. He follows the algorithm:
1. Give *m* candies to the first child of the line. 1. If this child still haven't got enough candies, then the child goes to the end of the line, else the child go home. 1. Repeat the first two steps while the line is not empty.
Consider all the children in the order they go home. Jzzhu wants to know, which child will be the last in this order?
Input Specification:
The first line contains two integers *n*,<=*m* (1<=β€<=*n*<=β€<=100;Β 1<=β€<=*m*<=β€<=100). The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=β€<=*a**i*<=β€<=100).
Output Specification:
Output a single integer, representing the number of the last child.
Demo Input:
['5 2\n1 3 1 4 2\n', '6 4\n1 1 2 2 3 3\n']
Demo Output:
['4\n', '6\n']
Note:
Let's consider the first sample.
Firstly child 1 gets 2 candies and go home. Then child 2 gets 2 candies and go to the end of the line. Currently the line looks like [3, 4, 5, 2] (indices of the children in order of the line). Then child 3 gets 2 candies and go home, and then child 4 gets 2 candies and goes to the end of the line. Currently the line looks like [5, 2, 4]. Then child 5 gets 2 candies and goes home. Then child 2 gets two candies and goes home, and finally child 4 gets 2 candies and goes home.
Child 4 is the last one who goes home.
|
```python
n=list(map(int,input().split()))
arr=list(map(int,input().split()))
arr2=[]
dict={}
for i in range(n[0]):
if(arr[i]%n[1]==0):
arr2.append(arr[i]/n[1])
else:
arr2.append(int(arr[i]/n[1])+1)
x=max(arr2)
for i in range(len(arr2)):
if(arr2[i]==x):
dict[i]=x
print(list(dict.keys())[-1]+1)
```
| 3
|
|
59
|
A
|
Word
|
PROGRAMMING
| 800
|
[
"implementation",
"strings"
] |
A. Word
|
2
|
256
|
Vasya is very upset that many people on the Net mix uppercase and lowercase letters in one word. That's why he decided to invent an extension for his favorite browser that would change the letters' register in every word so that it either only consisted of lowercase letters or, vice versa, only of uppercase ones. At that as little as possible letters should be changed in the word. For example, the word HoUse must be replaced with house, and the word ViP β with VIP. If a word contains an equal number of uppercase and lowercase letters, you should replace all the letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to use the given method on one given word.
|
The first line contains a word *s* β it consists of uppercase and lowercase Latin letters and possesses the length from 1 to 100.
|
Print the corrected word *s*. If the given word *s* has strictly more uppercase letters, make the word written in the uppercase register, otherwise - in the lowercase one.
|
[
"HoUse\n",
"ViP\n",
"maTRIx\n"
] |
[
"house\n",
"VIP\n",
"matrix\n"
] |
none
| 500
|
[
{
"input": "HoUse",
"output": "house"
},
{
"input": "ViP",
"output": "VIP"
},
{
"input": "maTRIx",
"output": "matrix"
},
{
"input": "BNHWpnpawg",
"output": "bnhwpnpawg"
},
{
"input": "VTYGP",
"output": "VTYGP"
},
{
"input": "CHNenu",
"output": "chnenu"
},
{
"input": "ERPZGrodyu",
"output": "erpzgrodyu"
},
{
"input": "KSXBXWpebh",
"output": "KSXBXWPEBH"
},
{
"input": "qvxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaiv",
"output": "qvxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaiv"
},
{
"input": "Amnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfd",
"output": "amnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfd"
},
{
"input": "ISAGFJFARYFBLOPQDSHWGMCNKMFTLVFUGNJEWGWNBLXUIATXEkqiettmmjgydwcpafqrppdsrrrtguinqbgmzzfqwonkpgpcwenv",
"output": "isagfjfaryfblopqdshwgmcnkmftlvfugnjewgwnblxuiatxekqiettmmjgydwcpafqrppdsrrrtguinqbgmzzfqwonkpgpcwenv"
},
{
"input": "XHRPXZEGHSOCJPICUIXSKFUZUPYTSGJSDIYBCMNMNBPNDBXLXBzhbfnqvwcffvrdhtickyqhupmcehlsyvncqmfhautvxudqdhgg",
"output": "xhrpxzeghsocjpicuixskfuzupytsgjsdiybcmnmnbpndbxlxbzhbfnqvwcffvrdhtickyqhupmcehlsyvncqmfhautvxudqdhgg"
},
{
"input": "RJIQZMJCIMSNDBOHBRAWIENODSALETAKGKPYUFGVEFGCBRENZGAdkcetqjljtmttlonpekcovdzebzdkzggwfsxhapmjkdbuceak",
"output": "RJIQZMJCIMSNDBOHBRAWIENODSALETAKGKPYUFGVEFGCBRENZGADKCETQJLJTMTTLONPEKCOVDZEBZDKZGGWFSXHAPMJKDBUCEAK"
},
{
"input": "DWLWOBHNMMGTFOLFAECKBRNNGLYLYDXTGTVRLMEESZOIUATZZZXUFUZDLSJXMEVRTESSFBWLNZZCLCQWEVNNUCXYVHNGNXHCBDFw",
"output": "DWLWOBHNMMGTFOLFAECKBRNNGLYLYDXTGTVRLMEESZOIUATZZZXUFUZDLSJXMEVRTESSFBWLNZZCLCQWEVNNUCXYVHNGNXHCBDFW"
},
{
"input": "NYCNHJWGBOCOTSPETKKHVWFGAQYNHOVJWJHCIEFOUQZXOYUIEQDZALFKTEHTVDBVJMEUBJUBCMNVPWGDPNCHQHZJRCHYRFPVIGUB",
"output": "NYCNHJWGBOCOTSPETKKHVWFGAQYNHOVJWJHCIEFOUQZXOYUIEQDZALFKTEHTVDBVJMEUBJUBCMNVPWGDPNCHQHZJRCHYRFPVIGUB"
},
{
"input": "igxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwge",
"output": "igxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwge"
},
{
"input": "Ykkekrsqolzryiwsmdlnbmfautxxxauoojrddvwklgnlyrfcvhorrzbmtcrvpaypqhcffdqhwziipyyskcmztjprjqvmzzqhqnw",
"output": "ykkekrsqolzryiwsmdlnbmfautxxxauoojrddvwklgnlyrfcvhorrzbmtcrvpaypqhcffdqhwziipyyskcmztjprjqvmzzqhqnw"
},
{
"input": "YQOMLKYAORUQQUCQZCDYMIVDHGWZFFRMUVTAWCHERFPMNRYRIkgqrciokgajamehmcxgerpudvsqyonjonsxgbnefftzmygncks",
"output": "yqomlkyaoruqqucqzcdymivdhgwzffrmuvtawcherfpmnryrikgqrciokgajamehmcxgerpudvsqyonjonsxgbnefftzmygncks"
},
{
"input": "CDOZDPBVVVHNBJVBYHEOXWFLJKRWJCAJMIFCOZWWYFKVWOGTVJcuusigdqfkumewjtdyitveeiaybwrhomrwmpdipjwiuxfnwuz",
"output": "CDOZDPBVVVHNBJVBYHEOXWFLJKRWJCAJMIFCOZWWYFKVWOGTVJCUUSIGDQFKUMEWJTDYITVEEIAYBWRHOMRWMPDIPJWIUXFNWUZ"
},
{
"input": "WHIUVEXHVOOIJIDVJVPQUBJMEVPMPDKQWJKFBZSGSKUXMIPPMJWuckzcpxosodcjaaakvlxpbiigsiauviilylnnqlyucziihqg",
"output": "WHIUVEXHVOOIJIDVJVPQUBJMEVPMPDKQWJKFBZSGSKUXMIPPMJWUCKZCPXOSODCJAAAKVLXPBIIGSIAUVIILYLNNQLYUCZIIHQG"
},
{
"input": "VGHUNFOXKETUYMZDJNGTAOIOANYXSGYNFOGOFFLDAWEUKYFOZXCJTCAFXZYLQZERYZLRSQXYQGAPCSUDPMEYTNCTTTMFAGVDWBO",
"output": "VGHUNFOXKETUYMZDJNGTAOIOANYXSGYNFOGOFFLDAWEUKYFOZXCJTCAFXZYLQZERYZLRSQXYQGAPCSUDPMEYTNCTTTMFAGVDWBO"
},
{
"input": "EDUANHCQDOCJHFONTTSWBUJSTTIXBIXMAIUFSGFLXWAYIURTVAVZPYQDLAWIGCLMPHXCEFCJPFAAHXVNGQUFNHADAIUAZIDMHDd",
"output": "EDUANHCQDOCJHFONTTSWBUJSTTIXBIXMAIUFSGFLXWAYIURTVAVZPYQDLAWIGCLMPHXCEFCJPFAAHXVNGQUFNHADAIUAZIDMHDD"
},
{
"input": "EBWOVSNLYTWWXrnovgugogtjahnmatomubebyxakas",
"output": "ebwovsnlytwwxrnovgugogtjahnmatomubebyxakas"
},
{
"input": "AORNNDKTRLRVGDPXJKXFTPFpopuzrlqumrxssskvbm",
"output": "AORNNDKTRLRVGDPXJKXFTPFPOPUZRLQUMRXSSSKVBM"
},
{
"input": "DBBZJCWQEVGYHEEUHJAWRHBDPsnplijbwtdibqrrheebfxqcvn",
"output": "dbbzjcwqevgyheeuhjawrhbdpsnplijbwtdibqrrheebfxqcvn"
},
{
"input": "t",
"output": "t"
},
{
"input": "N",
"output": "N"
},
{
"input": "kv",
"output": "kv"
},
{
"input": "Ur",
"output": "ur"
},
{
"input": "CN",
"output": "CN"
}
] | 1,656,246,735
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 30
| 186
| 17,715,200
|
s=input()
countup=0
countlo=0
if(len(s)<=100):
for i in range(0,len(s),1):
if(s[i]>='a' and s[i]<='z'):
countlo+=1
else:
countup+=1
if(countlo==countup):
print(s.lower())
elif(countlo>countup):
print(s.lower())
else:
print(s.upper())
else:
exit
|
Title: Word
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Vasya is very upset that many people on the Net mix uppercase and lowercase letters in one word. That's why he decided to invent an extension for his favorite browser that would change the letters' register in every word so that it either only consisted of lowercase letters or, vice versa, only of uppercase ones. At that as little as possible letters should be changed in the word. For example, the word HoUse must be replaced with house, and the word ViP β with VIP. If a word contains an equal number of uppercase and lowercase letters, you should replace all the letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to use the given method on one given word.
Input Specification:
The first line contains a word *s* β it consists of uppercase and lowercase Latin letters and possesses the length from 1 to 100.
Output Specification:
Print the corrected word *s*. If the given word *s* has strictly more uppercase letters, make the word written in the uppercase register, otherwise - in the lowercase one.
Demo Input:
['HoUse\n', 'ViP\n', 'maTRIx\n']
Demo Output:
['house\n', 'VIP\n', 'matrix\n']
Note:
none
|
```python
s=input()
countup=0
countlo=0
if(len(s)<=100):
for i in range(0,len(s),1):
if(s[i]>='a' and s[i]<='z'):
countlo+=1
else:
countup+=1
if(countlo==countup):
print(s.lower())
elif(countlo>countup):
print(s.lower())
else:
print(s.upper())
else:
exit
```
| 3.920503
|
405
|
A
|
Gravity Flip
|
PROGRAMMING
| 900
|
[
"greedy",
"implementation",
"sortings"
] | null | null |
Little Chris is bored during his physics lessons (too easy), so he has built a toy box to keep himself occupied. The box is special, since it has the ability to change gravity.
There are *n* columns of toy cubes in the box arranged in a line. The *i*-th column contains *a**i* cubes. At first, the gravity in the box is pulling the cubes downwards. When Chris switches the gravity, it begins to pull all the cubes to the right side of the box. The figure shows the initial and final configurations of the cubes in the box: the cubes that have changed their position are highlighted with orange.
Given the initial configuration of the toy cubes in the box, find the amounts of cubes in each of the *n* columns after the gravity switch!
|
The first line of input contains an integer *n* (1<=β€<=*n*<=β€<=100), the number of the columns in the box. The next line contains *n* space-separated integer numbers. The *i*-th number *a**i* (1<=β€<=*a**i*<=β€<=100) denotes the number of cubes in the *i*-th column.
|
Output *n* integer numbers separated by spaces, where the *i*-th number is the amount of cubes in the *i*-th column after the gravity switch.
|
[
"4\n3 2 1 2\n",
"3\n2 3 8\n"
] |
[
"1 2 2 3 \n",
"2 3 8 \n"
] |
The first example case is shown on the figure. The top cube of the first column falls to the top of the last column; the top cube of the second column falls to the top of the third column; the middle cube of the first column falls to the top of the second column.
In the second example case the gravity switch does not change the heights of the columns.
| 500
|
[
{
"input": "4\n3 2 1 2",
"output": "1 2 2 3 "
},
{
"input": "3\n2 3 8",
"output": "2 3 8 "
},
{
"input": "5\n2 1 2 1 2",
"output": "1 1 2 2 2 "
},
{
"input": "1\n1",
"output": "1 "
},
{
"input": "2\n4 3",
"output": "3 4 "
},
{
"input": "6\n100 40 60 20 1 80",
"output": "1 20 40 60 80 100 "
},
{
"input": "10\n10 8 6 7 5 3 4 2 9 1",
"output": "1 2 3 4 5 6 7 8 9 10 "
},
{
"input": "10\n1 2 3 4 5 6 7 8 9 10",
"output": "1 2 3 4 5 6 7 8 9 10 "
},
{
"input": "100\n82 51 81 14 37 17 78 92 64 15 8 86 89 8 87 77 66 10 15 12 100 25 92 47 21 78 20 63 13 49 41 36 41 79 16 87 87 69 3 76 80 60 100 49 70 59 72 8 38 71 45 97 71 14 76 54 81 4 59 46 39 29 92 3 49 22 53 99 59 52 74 31 92 43 42 23 44 9 82 47 7 40 12 9 3 55 37 85 46 22 84 52 98 41 21 77 63 17 62 91",
"output": "3 3 3 4 7 8 8 8 9 9 10 12 12 13 14 14 15 15 16 17 17 20 21 21 22 22 23 25 29 31 36 37 37 38 39 40 41 41 41 42 43 44 45 46 46 47 47 49 49 49 51 52 52 53 54 55 59 59 59 60 62 63 63 64 66 69 70 71 71 72 74 76 76 77 77 78 78 79 80 81 81 82 82 84 85 86 87 87 87 89 91 92 92 92 92 97 98 99 100 100 "
},
{
"input": "100\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100",
"output": "100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 "
},
{
"input": "10\n1 9 7 6 2 4 7 8 1 3",
"output": "1 1 2 3 4 6 7 7 8 9 "
},
{
"input": "20\n53 32 64 20 41 97 50 20 66 68 22 60 74 61 97 54 80 30 72 59",
"output": "20 20 22 30 32 41 50 53 54 59 60 61 64 66 68 72 74 80 97 97 "
},
{
"input": "30\n7 17 4 18 16 12 14 10 1 13 2 16 13 17 8 16 13 14 9 17 17 5 13 5 1 7 6 20 18 12",
"output": "1 1 2 4 5 5 6 7 7 8 9 10 12 12 13 13 13 13 14 14 16 16 16 17 17 17 17 18 18 20 "
},
{
"input": "40\n22 58 68 58 48 53 52 1 16 78 75 17 63 15 36 32 78 75 49 14 42 46 66 54 49 82 40 43 46 55 12 73 5 45 61 60 1 11 31 84",
"output": "1 1 5 11 12 14 15 16 17 22 31 32 36 40 42 43 45 46 46 48 49 49 52 53 54 55 58 58 60 61 63 66 68 73 75 75 78 78 82 84 "
},
{
"input": "70\n1 3 3 1 3 3 1 1 1 3 3 2 3 3 1 1 1 2 3 1 3 2 3 3 3 2 2 3 1 3 3 2 1 1 2 1 2 1 2 2 1 1 1 3 3 2 3 2 3 2 3 3 2 2 2 3 2 3 3 3 1 1 3 3 1 1 1 1 3 1",
"output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 "
},
{
"input": "90\n17 75 51 30 100 5 50 95 51 73 66 5 7 76 43 49 23 55 3 24 95 79 10 11 44 93 17 99 53 66 82 66 63 76 19 4 51 71 75 43 27 5 24 19 48 7 91 15 55 21 7 6 27 10 2 91 64 58 18 21 16 71 90 88 21 20 6 6 95 85 11 7 40 65 52 49 92 98 46 88 17 48 85 96 77 46 100 34 67 52",
"output": "2 3 4 5 5 5 6 6 6 7 7 7 7 10 10 11 11 15 16 17 17 17 18 19 19 20 21 21 21 23 24 24 27 27 30 34 40 43 43 44 46 46 48 48 49 49 50 51 51 51 52 52 53 55 55 58 63 64 65 66 66 66 67 71 71 73 75 75 76 76 77 79 82 85 85 88 88 90 91 91 92 93 95 95 95 96 98 99 100 100 "
},
{
"input": "100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 "
},
{
"input": "100\n1 1 1 1 2 1 1 1 1 1 2 2 1 1 2 1 2 1 1 1 2 1 1 2 1 2 1 1 2 2 2 1 1 2 1 1 1 2 2 2 1 1 1 2 1 2 2 1 2 1 1 2 2 1 2 1 2 1 2 2 1 1 1 2 1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 1 1 1 1 2 2 2 2 2 2 2 1 1 1 2 1 2 1",
"output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 "
},
{
"input": "100\n2 1 1 1 3 2 3 3 2 3 3 1 3 3 1 3 3 1 1 1 2 3 1 2 3 1 2 3 3 1 3 1 1 2 3 2 3 3 2 3 3 1 2 2 1 2 3 2 3 2 2 1 1 3 1 3 2 1 3 1 3 1 3 1 1 3 3 3 2 3 2 2 2 2 1 3 3 3 1 2 1 2 3 2 1 3 1 3 2 1 3 1 2 1 2 3 1 3 2 3",
"output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 "
},
{
"input": "100\n7 4 5 5 10 10 5 8 5 7 4 5 4 6 8 8 2 6 3 3 10 7 10 8 6 2 7 3 9 7 7 2 4 5 2 4 9 5 10 1 10 5 10 4 1 3 4 2 6 9 9 9 10 6 2 5 6 1 8 10 4 10 3 4 10 5 5 4 10 4 5 3 7 10 2 7 3 6 9 6 1 6 5 5 4 6 6 4 4 1 5 1 6 6 6 8 8 6 2 6",
"output": "1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10 "
},
{
"input": "100\n12 10 5 11 13 12 14 13 7 15 15 12 13 19 12 18 14 10 10 3 1 10 16 11 19 8 10 15 5 10 12 16 11 13 11 15 14 12 16 8 11 8 15 2 18 2 14 13 15 20 8 8 4 12 14 7 10 3 9 1 7 19 6 7 2 14 8 20 7 17 18 20 3 18 18 9 6 10 4 1 4 19 9 13 3 3 12 11 11 20 8 2 13 6 7 12 1 4 17 3",
"output": "1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 4 4 5 5 6 6 6 7 7 7 7 7 7 8 8 8 8 8 8 8 9 9 9 10 10 10 10 10 10 10 10 11 11 11 11 11 11 11 12 12 12 12 12 12 12 12 12 13 13 13 13 13 13 13 14 14 14 14 14 14 15 15 15 15 15 15 16 16 16 17 17 18 18 18 18 18 19 19 19 19 20 20 20 20 "
},
{
"input": "100\n5 13 1 40 30 10 23 32 33 12 6 4 15 29 31 17 23 5 36 31 32 38 24 11 34 39 19 21 6 19 31 35 1 15 6 29 22 15 17 15 1 17 2 34 20 8 27 2 29 26 13 9 22 27 27 3 20 40 4 40 33 29 36 30 35 16 19 28 26 11 36 24 29 5 40 10 38 34 33 23 34 39 31 7 10 31 22 6 36 24 14 31 34 23 2 4 26 16 2 32",
"output": "1 1 1 2 2 2 2 3 4 4 4 5 5 5 6 6 6 6 7 8 9 10 10 10 11 11 12 13 13 14 15 15 15 15 16 16 17 17 17 19 19 19 20 20 21 22 22 22 23 23 23 23 24 24 24 26 26 26 27 27 27 28 29 29 29 29 29 30 30 31 31 31 31 31 31 32 32 32 33 33 33 34 34 34 34 34 35 35 36 36 36 36 38 38 39 39 40 40 40 40 "
},
{
"input": "100\n72 44 34 74 9 60 26 37 55 77 74 69 28 66 54 55 8 36 57 31 31 48 32 66 40 70 77 43 64 28 37 10 21 58 51 32 60 28 51 52 28 35 7 33 1 68 38 70 57 71 8 20 42 57 59 4 58 10 17 47 22 48 16 3 76 67 32 37 64 47 33 41 75 69 2 76 39 9 27 75 20 21 52 25 71 21 11 29 38 10 3 1 45 55 63 36 27 7 59 41",
"output": "1 1 2 3 3 4 7 7 8 8 9 9 10 10 10 11 16 17 20 20 21 21 21 22 25 26 27 27 28 28 28 28 29 31 31 32 32 32 33 33 34 35 36 36 37 37 37 38 38 39 40 41 41 42 43 44 45 47 47 48 48 51 51 52 52 54 55 55 55 57 57 57 58 58 59 59 60 60 63 64 64 66 66 67 68 69 69 70 70 71 71 72 74 74 75 75 76 76 77 77 "
},
{
"input": "100\n75 18 61 10 56 53 42 57 79 80 31 2 50 45 54 99 84 52 71 21 86 3 19 98 14 37 40 62 63 68 5 10 87 8 81 85 52 52 57 94 2 7 56 96 19 76 1 13 81 6 80 47 22 59 99 32 9 5 36 88 98 91 70 70 12 93 12 22 85 1 97 48 94 16 84 84 51 34 62 7 68 51 30 2 37 82 4 7 27 1 80 9 61 16 59 55 12 96 94 82",
"output": "1 1 1 2 2 2 3 4 5 5 6 7 7 7 8 9 9 10 10 12 12 12 13 14 16 16 18 19 19 21 22 22 27 30 31 32 34 36 37 37 40 42 45 47 48 50 51 51 52 52 52 53 54 55 56 56 57 57 59 59 61 61 62 62 63 68 68 70 70 71 75 76 79 80 80 80 81 81 82 82 84 84 84 85 85 86 87 88 91 93 94 94 94 96 96 97 98 98 99 99 "
},
{
"input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 "
},
{
"input": "100\n100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 "
},
{
"input": "100\n50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50",
"output": "50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 "
},
{
"input": "49\n1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97",
"output": "1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 "
},
{
"input": "30\n1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88",
"output": "1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 "
},
{
"input": "100\n100 51 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 51 100 "
},
{
"input": "10\n100 90 80 70 60 50 40 30 20 10",
"output": "10 20 30 40 50 60 70 80 90 100 "
},
{
"input": "1\n10",
"output": "10 "
}
] | 1,686,386,241
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 32
| 62
| 0
|
n = int(input())
columns = list(map(int, input().split()))
columns.sort()
output = ' '.join(map(str, columns))
print(output)
|
Title: Gravity Flip
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Little Chris is bored during his physics lessons (too easy), so he has built a toy box to keep himself occupied. The box is special, since it has the ability to change gravity.
There are *n* columns of toy cubes in the box arranged in a line. The *i*-th column contains *a**i* cubes. At first, the gravity in the box is pulling the cubes downwards. When Chris switches the gravity, it begins to pull all the cubes to the right side of the box. The figure shows the initial and final configurations of the cubes in the box: the cubes that have changed their position are highlighted with orange.
Given the initial configuration of the toy cubes in the box, find the amounts of cubes in each of the *n* columns after the gravity switch!
Input Specification:
The first line of input contains an integer *n* (1<=β€<=*n*<=β€<=100), the number of the columns in the box. The next line contains *n* space-separated integer numbers. The *i*-th number *a**i* (1<=β€<=*a**i*<=β€<=100) denotes the number of cubes in the *i*-th column.
Output Specification:
Output *n* integer numbers separated by spaces, where the *i*-th number is the amount of cubes in the *i*-th column after the gravity switch.
Demo Input:
['4\n3 2 1 2\n', '3\n2 3 8\n']
Demo Output:
['1 2 2 3 \n', '2 3 8 \n']
Note:
The first example case is shown on the figure. The top cube of the first column falls to the top of the last column; the top cube of the second column falls to the top of the third column; the middle cube of the first column falls to the top of the second column.
In the second example case the gravity switch does not change the heights of the columns.
|
```python
n = int(input())
columns = list(map(int, input().split()))
columns.sort()
output = ' '.join(map(str, columns))
print(output)
```
| 3
|
|
69
|
A
|
Young Physicist
|
PROGRAMMING
| 1,000
|
[
"implementation",
"math"
] |
A. Young Physicist
|
2
|
256
|
A guy named Vasya attends the final grade of a high school. One day Vasya decided to watch a match of his favorite hockey team. And, as the boy loves hockey very much, even more than physics, he forgot to do the homework. Specifically, he forgot to complete his physics tasks. Next day the teacher got very angry at Vasya and decided to teach him a lesson. He gave the lazy student a seemingly easy task: You are given an idle body in space and the forces that affect it. The body can be considered as a material point with coordinates (0; 0; 0). Vasya had only to answer whether it is in equilibrium. "Piece of cake" β thought Vasya, we need only to check if the sum of all vectors is equal to 0. So, Vasya began to solve the problem. But later it turned out that there can be lots and lots of these forces, and Vasya can not cope without your help. Help him. Write a program that determines whether a body is idle or is moving by the given vectors of forces.
|
The first line contains a positive integer *n* (1<=β€<=*n*<=β€<=100), then follow *n* lines containing three integers each: the *x**i* coordinate, the *y**i* coordinate and the *z**i* coordinate of the force vector, applied to the body (<=-<=100<=β€<=*x**i*,<=*y**i*,<=*z**i*<=β€<=100).
|
Print the word "YES" if the body is in equilibrium, or the word "NO" if it is not.
|
[
"3\n4 1 7\n-2 4 -1\n1 -5 -3\n",
"3\n3 -1 7\n-5 2 -4\n2 -1 -3\n"
] |
[
"NO",
"YES"
] |
none
| 500
|
[
{
"input": "3\n4 1 7\n-2 4 -1\n1 -5 -3",
"output": "NO"
},
{
"input": "3\n3 -1 7\n-5 2 -4\n2 -1 -3",
"output": "YES"
},
{
"input": "10\n21 32 -46\n43 -35 21\n42 2 -50\n22 40 20\n-27 -9 38\n-4 1 1\n-40 6 -31\n-13 -2 34\n-21 34 -12\n-32 -29 41",
"output": "NO"
},
{
"input": "10\n25 -33 43\n-27 -42 28\n-35 -20 19\n41 -42 -1\n49 -39 -4\n-49 -22 7\n-19 29 41\n8 -27 -43\n8 34 9\n-11 -3 33",
"output": "NO"
},
{
"input": "10\n-6 21 18\n20 -11 -8\n37 -11 41\n-5 8 33\n29 23 32\n30 -33 -11\n39 -49 -36\n28 34 -49\n22 29 -34\n-18 -6 7",
"output": "NO"
},
{
"input": "10\n47 -2 -27\n0 26 -14\n5 -12 33\n2 18 3\n45 -30 -49\n4 -18 8\n-46 -44 -41\n-22 -10 -40\n-35 -21 26\n33 20 38",
"output": "NO"
},
{
"input": "13\n-3 -36 -46\n-11 -50 37\n42 -11 -15\n9 42 44\n-29 -12 24\n3 9 -40\n-35 13 50\n14 43 18\n-13 8 24\n-48 -15 10\n50 9 -50\n21 0 -50\n0 0 -6",
"output": "YES"
},
{
"input": "14\n43 23 17\n4 17 44\n5 -5 -16\n-43 -7 -6\n47 -48 12\n50 47 -45\n2 14 43\n37 -30 15\n4 -17 -11\n17 9 -45\n-50 -3 -8\n-50 0 0\n-50 0 0\n-16 0 0",
"output": "YES"
},
{
"input": "13\n29 49 -11\n38 -11 -20\n25 1 -40\n-11 28 11\n23 -19 1\n45 -41 -17\n-3 0 -19\n-13 -33 49\n-30 0 28\n34 17 45\n-50 9 -27\n-50 0 0\n-37 0 0",
"output": "YES"
},
{
"input": "12\n3 28 -35\n-32 -44 -17\n9 -25 -6\n-42 -22 20\n-19 15 38\n-21 38 48\n-1 -37 -28\n-10 -13 -50\n-5 21 29\n34 28 50\n50 11 -49\n34 0 0",
"output": "YES"
},
{
"input": "37\n-64 -79 26\n-22 59 93\n-5 39 -12\n77 -9 76\n55 -86 57\n83 100 -97\n-70 94 84\n-14 46 -94\n26 72 35\n14 78 -62\n17 82 92\n-57 11 91\n23 15 92\n-80 -1 1\n12 39 18\n-23 -99 -75\n-34 50 19\n-39 84 -7\n45 -30 -39\n-60 49 37\n45 -16 -72\n33 -51 -56\n-48 28 5\n97 91 88\n45 -82 -11\n-21 -15 -90\n-53 73 -26\n-74 85 -90\n-40 23 38\n100 -13 49\n32 -100 -100\n0 -100 -70\n0 -100 0\n0 -100 0\n0 -100 0\n0 -100 0\n0 -37 0",
"output": "YES"
},
{
"input": "4\n68 3 100\n68 21 -100\n-100 -24 0\n-36 0 0",
"output": "YES"
},
{
"input": "33\n-1 -46 -12\n45 -16 -21\n-11 45 -21\n-60 -42 -93\n-22 -45 93\n37 96 85\n-76 26 83\n-4 9 55\n7 -52 -9\n66 8 -85\n-100 -54 11\n-29 59 74\n-24 12 2\n-56 81 85\n-92 69 -52\n-26 -97 91\n54 59 -51\n58 21 -57\n7 68 56\n-47 -20 -51\n-59 77 -13\n-85 27 91\n79 60 -56\n66 -80 5\n21 -99 42\n-31 -29 98\n66 93 76\n-49 45 61\n100 -100 -100\n100 -100 -100\n66 -75 -100\n0 0 -100\n0 0 -87",
"output": "YES"
},
{
"input": "3\n1 2 3\n3 2 1\n0 0 0",
"output": "NO"
},
{
"input": "2\n5 -23 12\n0 0 0",
"output": "NO"
},
{
"input": "1\n0 0 0",
"output": "YES"
},
{
"input": "1\n1 -2 0",
"output": "NO"
},
{
"input": "2\n-23 77 -86\n23 -77 86",
"output": "YES"
},
{
"input": "26\n86 7 20\n-57 -64 39\n-45 6 -93\n-44 -21 100\n-11 -49 21\n73 -71 -80\n-2 -89 56\n-65 -2 7\n5 14 84\n57 41 13\n-12 69 54\n40 -25 27\n-17 -59 0\n64 -91 -30\n-53 9 42\n-54 -8 14\n-35 82 27\n-48 -59 -80\n88 70 79\n94 57 97\n44 63 25\n84 -90 -40\n-100 100 -100\n-92 100 -100\n0 10 -100\n0 0 -82",
"output": "YES"
},
{
"input": "42\n11 27 92\n-18 -56 -57\n1 71 81\n33 -92 30\n82 83 49\n-87 -61 -1\n-49 45 49\n73 26 15\n-22 22 -77\n29 -93 87\n-68 44 -90\n-4 -84 20\n85 67 -6\n-39 26 77\n-28 -64 20\n65 -97 24\n-72 -39 51\n35 -75 -91\n39 -44 -8\n-25 -27 -57\n91 8 -46\n-98 -94 56\n94 -60 59\n-9 -95 18\n-53 -37 98\n-8 -94 -84\n-52 55 60\n15 -14 37\n65 -43 -25\n94 12 66\n-8 -19 -83\n29 81 -78\n-58 57 33\n24 86 -84\n-53 32 -88\n-14 7 3\n89 97 -53\n-5 -28 -91\n-100 100 -6\n-84 100 0\n0 100 0\n0 70 0",
"output": "YES"
},
{
"input": "3\n96 49 -12\n2 -66 28\n-98 17 -16",
"output": "YES"
},
{
"input": "5\n70 -46 86\n-100 94 24\n-27 63 -63\n57 -100 -47\n0 -11 0",
"output": "YES"
},
{
"input": "18\n-86 -28 70\n-31 -89 42\n31 -48 -55\n95 -17 -43\n24 -95 -85\n-21 -14 31\n68 -18 81\n13 31 60\n-15 28 99\n-42 15 9\n28 -61 -62\n-16 71 29\n-28 75 -48\n-77 -67 36\n-100 83 89\n100 100 -100\n57 34 -100\n0 0 -53",
"output": "YES"
},
{
"input": "44\n52 -54 -29\n-82 -5 -94\n-54 43 43\n91 16 71\n7 80 -91\n3 15 29\n-99 -6 -77\n-3 -77 -64\n73 67 34\n25 -10 -18\n-29 91 63\n-72 86 -16\n-68 85 -81\n-3 36 44\n-74 -14 -80\n34 -96 -97\n-76 -78 -33\n-24 44 -58\n98 12 77\n95 -63 -6\n-51 3 -90\n-92 -10 72\n7 3 -68\n57 -53 71\n29 57 -48\n35 -60 10\n79 -70 -61\n-20 77 55\n-86 -15 -35\n84 -88 -18\n100 -42 77\n-20 46 8\n-41 -43 -65\n38 -98 -23\n-100 65 45\n-7 -91 -63\n46 88 -85\n48 59 100\n0 0 100\n0 0 100\n0 0 100\n0 0 100\n0 0 100\n0 0 1",
"output": "YES"
},
{
"input": "18\n-14 -64 -91\n-8 -66 -86\n-23 92 -40\n6 -3 -53\n57 41 78\n-79 42 -22\n-88 -17 45\n4 -45 44\n83 -18 -25\n34 86 -92\n75 -30 12\n44 99 11\n-67 -13 72\n22 83 -56\n-37 71 72\n-9 -100 100\n0 -100 31\n0 -58 0",
"output": "YES"
},
{
"input": "23\n-70 37 78\n42 84 6\n28 -94 -24\n-49 76 95\n-67 18 84\n-53 78 -5\n65 -63 -64\n-66 -64 -69\n81 -93 95\n10 52 -79\n-89 -61 -64\n-64 -47 43\n-81 -35 55\n80 82 73\n-60 -81 -18\n49 -10 -19\n-58 70 12\n-24 -15 -93\n98 -93 -54\n-28 -75 11\n100 100 -63\n100 100 0\n56 34 0",
"output": "YES"
},
{
"input": "3\n0 2 -2\n1 -1 3\n-3 0 0",
"output": "NO"
}
] | 1,646,634,868
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 81
| 92
| 0
|
n=int(input())
a1=0
a2=0
a3=0
for x in range(n):
a,b,c=map(int,input().split())
a1=a1+a
a2=a2+b
a3=a3+c
if a1==0 and a2==0 and a3==0:
print("YES")
else:
print('NO')
|
Title: Young Physicist
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
A guy named Vasya attends the final grade of a high school. One day Vasya decided to watch a match of his favorite hockey team. And, as the boy loves hockey very much, even more than physics, he forgot to do the homework. Specifically, he forgot to complete his physics tasks. Next day the teacher got very angry at Vasya and decided to teach him a lesson. He gave the lazy student a seemingly easy task: You are given an idle body in space and the forces that affect it. The body can be considered as a material point with coordinates (0; 0; 0). Vasya had only to answer whether it is in equilibrium. "Piece of cake" β thought Vasya, we need only to check if the sum of all vectors is equal to 0. So, Vasya began to solve the problem. But later it turned out that there can be lots and lots of these forces, and Vasya can not cope without your help. Help him. Write a program that determines whether a body is idle or is moving by the given vectors of forces.
Input Specification:
The first line contains a positive integer *n* (1<=β€<=*n*<=β€<=100), then follow *n* lines containing three integers each: the *x**i* coordinate, the *y**i* coordinate and the *z**i* coordinate of the force vector, applied to the body (<=-<=100<=β€<=*x**i*,<=*y**i*,<=*z**i*<=β€<=100).
Output Specification:
Print the word "YES" if the body is in equilibrium, or the word "NO" if it is not.
Demo Input:
['3\n4 1 7\n-2 4 -1\n1 -5 -3\n', '3\n3 -1 7\n-5 2 -4\n2 -1 -3\n']
Demo Output:
['NO', 'YES']
Note:
none
|
```python
n=int(input())
a1=0
a2=0
a3=0
for x in range(n):
a,b,c=map(int,input().split())
a1=a1+a
a2=a2+b
a3=a3+c
if a1==0 and a2==0 and a3==0:
print("YES")
else:
print('NO')
```
| 3.977
|
225
|
A
|
Dice Tower
|
PROGRAMMING
| 1,100
|
[
"constructive algorithms",
"greedy"
] | null | null |
A dice is a cube, its faces contain distinct integers from 1 to 6 as black points. The sum of numbers at the opposite dice faces always equals 7. Please note that there are only two dice (these dices are mirror of each other) that satisfy the given constraints (both of them are shown on the picture on the left).
Alice and Bob play dice. Alice has built a tower from *n* dice. We know that in this tower the adjacent dice contact with faces with distinct numbers. Bob wants to uniquely identify the numbers written on the faces of all dice, from which the tower is built. Unfortunately, Bob is looking at the tower from the face, and so he does not see all the numbers on the faces. Bob sees the number on the top of the tower and the numbers on the two adjacent sides (on the right side of the picture shown what Bob sees).
Help Bob, tell whether it is possible to uniquely identify the numbers on the faces of all the dice in the tower, or not.
|
The first line contains a single integer *n* (1<=β€<=*n*<=β€<=100) β the number of dice in the tower.
The second line contains an integer *x* (1<=β€<=*x*<=β€<=6) β the number Bob sees at the top of the tower. Next *n* lines contain two space-separated integers each: the *i*-th line contains numbers *a**i*,<=*b**i* (1<=β€<=*a**i*,<=*b**i*<=β€<=6;Β *a**i*<=β <=*b**i*) β the numbers Bob sees on the two sidelong faces of the *i*-th dice in the tower.
Consider the dice in the tower indexed from top to bottom from 1 to *n*. That is, the topmost dice has index 1 (the dice whose top face Bob can see). It is guaranteed that it is possible to make a dice tower that will look as described in the input.
|
Print "YES" (without the quotes), if it is possible to to uniquely identify the numbers on the faces of all the dice in the tower. If it is impossible, print "NO" (without the quotes).
|
[
"3\n6\n3 2\n5 4\n2 4\n",
"3\n3\n2 6\n4 1\n5 3\n"
] |
[
"YES",
"NO"
] |
none
| 500
|
[
{
"input": "3\n6\n3 2\n5 4\n2 4",
"output": "YES"
},
{
"input": "3\n3\n2 6\n4 1\n5 3",
"output": "NO"
},
{
"input": "1\n3\n2 1",
"output": "YES"
},
{
"input": "2\n2\n3 1\n1 5",
"output": "NO"
},
{
"input": "3\n2\n1 4\n5 3\n6 4",
"output": "NO"
},
{
"input": "4\n3\n5 6\n1 3\n1 5\n4 1",
"output": "NO"
},
{
"input": "2\n2\n3 1\n1 3",
"output": "YES"
},
{
"input": "3\n2\n1 4\n3 1\n4 6",
"output": "YES"
},
{
"input": "4\n3\n5 6\n1 5\n5 1\n1 5",
"output": "YES"
},
{
"input": "5\n1\n2 3\n5 3\n5 4\n5 1\n3 5",
"output": "NO"
},
{
"input": "10\n5\n1 3\n2 3\n6 5\n6 5\n4 5\n1 3\n1 2\n3 2\n4 2\n1 2",
"output": "NO"
},
{
"input": "15\n4\n2 1\n2 4\n6 4\n5 3\n4 1\n4 2\n6 3\n4 5\n3 5\n2 6\n5 6\n1 5\n3 5\n6 4\n3 2",
"output": "NO"
},
{
"input": "20\n6\n3 2\n4 6\n3 6\n6 4\n5 1\n1 5\n2 6\n1 2\n1 4\n5 3\n2 3\n6 2\n5 4\n2 6\n1 3\n4 6\n4 5\n6 3\n3 1\n6 2",
"output": "NO"
},
{
"input": "25\n4\n1 2\n4 1\n3 5\n2 1\n3 5\n6 5\n3 5\n5 6\n1 2\n2 4\n6 2\n2 3\n2 4\n6 5\n2 3\n6 3\n2 3\n1 3\n2 1\n3 1\n5 6\n3 1\n6 4\n3 6\n2 3",
"output": "NO"
},
{
"input": "100\n3\n6 5\n5 1\n3 2\n1 5\n3 6\n5 4\n2 6\n4 1\n6 3\n4 5\n1 5\n1 4\n4 2\n2 6\n5 4\n4 1\n1 3\n6 5\n5 1\n2 1\n2 4\n2 1\n3 6\n4 1\n6 3\n2 3\n5 1\n2 6\n6 4\n3 5\n4 1\n6 5\n1 5\n1 5\n2 3\n4 1\n5 3\n6 4\n1 3\n5 3\n4 1\n1 4\n2 1\n6 2\n1 5\n6 2\n6 2\n4 5\n4 2\n5 6\n6 3\n1 3\n2 3\n5 4\n6 5\n3 1\n1 2\n4 1\n1 3\n1 3\n6 5\n4 6\n3 1\n2 1\n2 3\n3 2\n4 1\n1 5\n4 1\n6 3\n1 5\n4 5\n4 2\n4 5\n2 6\n2 1\n3 5\n4 6\n4 2\n4 5\n2 4\n3 1\n6 4\n5 6\n3 1\n1 4\n4 5\n6 3\n6 3\n2 1\n5 1\n3 6\n3 5\n2 1\n4 6\n4 2\n5 6\n3 1\n3 5\n3 6",
"output": "NO"
},
{
"input": "99\n3\n2 1\n6 2\n3 6\n1 3\n5 1\n2 6\n4 6\n6 4\n6 4\n6 5\n3 6\n2 6\n1 5\n2 3\n4 6\n1 4\n4 1\n2 3\n4 5\n4 1\n5 1\n1 2\n6 5\n4 6\n6 5\n6 2\n3 6\n6 4\n2 1\n3 1\n2 1\n6 2\n3 5\n4 1\n5 3\n3 1\n1 5\n3 6\n6 2\n1 5\n2 1\n5 1\n4 1\n2 6\n5 4\n4 2\n2 1\n1 5\n1 3\n4 6\n4 6\n4 5\n2 3\n6 2\n3 2\n2 1\n4 6\n6 2\n3 5\n3 6\n3 1\n2 3\n2 1\n3 6\n6 5\n6 3\n1 2\n5 1\n1 4\n6 2\n5 3\n1 3\n5 4\n2 3\n6 3\n1 5\n1 2\n2 6\n5 6\n5 6\n3 5\n3 1\n4 6\n3 1\n4 5\n4 2\n3 5\n6 2\n2 4\n4 6\n6 2\n4 2\n2 3\n2 4\n1 5\n1 4\n3 5\n1 2\n4 5",
"output": "NO"
},
{
"input": "98\n6\n4 2\n1 2\n3 2\n2 1\n2 1\n3 2\n2 3\n6 5\n4 6\n1 5\n4 5\n5 1\n6 5\n1 4\n1 2\n2 4\n6 5\n4 5\n4 6\n3 1\n2 3\n4 1\n4 2\n6 5\n3 2\n4 2\n5 1\n2 4\n1 3\n4 5\n3 2\n1 2\n3 1\n3 2\n3 6\n6 4\n3 6\n3 5\n4 6\n6 5\n3 5\n3 2\n4 2\n6 4\n1 3\n2 4\n5 3\n2 3\n1 3\n5 6\n5 3\n5 3\n4 6\n4 6\n3 6\n4 1\n6 5\n6 2\n1 5\n2 1\n6 2\n5 4\n6 3\n1 5\n2 3\n2 6\n5 6\n2 6\n5 1\n3 2\n6 2\n6 2\n1 2\n2 1\n3 5\n2 1\n4 6\n1 4\n4 5\n3 2\n3 2\n5 4\n1 3\n5 1\n2 3\n6 2\n2 6\n1 5\n5 1\n5 4\n5 1\n5 4\n2 1\n6 5\n1 4\n6 5\n1 2\n3 5",
"output": "NO"
},
{
"input": "97\n3\n2 1\n6 5\n4 1\n6 5\n3 2\n1 2\n6 3\n6 4\n6 3\n1 3\n1 3\n3 1\n3 6\n3 2\n5 6\n4 2\n3 6\n1 5\n2 6\n3 2\n6 2\n2 1\n2 4\n1 3\n3 1\n2 6\n3 6\n4 6\n6 2\n5 1\n6 3\n2 6\n3 6\n2 4\n4 5\n6 5\n4 1\n5 6\n6 2\n5 4\n5 1\n6 5\n1 4\n2 1\n4 5\n4 5\n4 1\n5 4\n1 4\n2 6\n2 6\n1 5\n5 6\n3 2\n2 3\n1 4\n4 1\n3 6\n6 2\n5 3\n6 2\n4 5\n6 2\n2 6\n6 5\n1 4\n2 6\n3 5\n2 6\n4 1\n4 5\n1 3\n4 2\n3 2\n1 2\n5 6\n1 5\n3 5\n2 1\n1 2\n1 2\n6 4\n5 1\n1 2\n2 4\n6 3\n4 5\n1 5\n4 2\n5 1\n3 1\n6 4\n4 2\n1 5\n4 6\n2 1\n2 6",
"output": "NO"
},
{
"input": "96\n4\n1 5\n1 5\n4 6\n1 2\n4 2\n3 2\n4 6\n6 4\n6 3\n6 2\n4 1\n6 4\n5 1\n2 4\n5 6\n6 5\n3 2\n6 2\n3 1\n1 4\n3 2\n6 2\n2 4\n1 3\n5 4\n1 3\n6 2\n6 2\n5 6\n1 4\n4 2\n6 2\n3 1\n6 5\n3 1\n4 2\n6 3\n3 2\n3 6\n1 3\n5 6\n6 4\n1 4\n5 4\n2 6\n3 5\n5 4\n5 1\n2 4\n1 5\n1 3\n1 2\n1 3\n6 4\n6 3\n4 5\n4 1\n3 6\n1 2\n6 4\n1 2\n2 3\n2 1\n4 6\n1 3\n5 1\n4 5\n5 4\n6 3\n2 6\n5 1\n6 2\n3 1\n3 1\n5 4\n3 1\n5 6\n2 6\n5 6\n4 2\n6 5\n3 2\n6 5\n2 3\n6 4\n6 2\n1 2\n4 1\n1 2\n6 3\n2 1\n5 1\n6 5\n5 4\n4 5\n1 2",
"output": "NO"
},
{
"input": "5\n1\n2 3\n3 5\n4 5\n5 4\n5 3",
"output": "YES"
},
{
"input": "10\n5\n1 3\n3 1\n6 3\n6 3\n4 6\n3 1\n1 4\n3 1\n4 6\n1 3",
"output": "YES"
},
{
"input": "15\n4\n2 1\n2 6\n6 5\n5 1\n1 5\n2 1\n6 5\n5 1\n5 1\n6 2\n6 5\n5 1\n5 1\n6 5\n2 6",
"output": "YES"
},
{
"input": "20\n6\n3 2\n4 2\n3 5\n4 2\n5 3\n5 4\n2 3\n2 3\n4 5\n3 5\n3 2\n2 4\n4 5\n2 4\n3 2\n4 2\n5 4\n3 2\n3 5\n2 4",
"output": "YES"
},
{
"input": "25\n4\n1 2\n1 5\n5 6\n1 2\n5 1\n5 6\n5 1\n6 5\n2 1\n2 6\n2 6\n2 6\n2 6\n5 6\n2 6\n6 5\n2 1\n1 5\n1 2\n1 2\n6 5\n1 2\n6 5\n6 2\n2 6",
"output": "YES"
},
{
"input": "100\n3\n6 5\n1 5\n2 1\n5 1\n6 5\n5 1\n6 2\n1 2\n6 5\n5 1\n5 1\n1 5\n2 6\n6 2\n5 6\n1 2\n1 5\n5 6\n1 5\n1 2\n2 6\n1 2\n6 2\n1 5\n6 2\n2 6\n1 5\n6 2\n6 5\n5 6\n1 5\n5 6\n5 1\n5 1\n2 1\n1 2\n5 6\n6 5\n1 5\n5 1\n1 2\n1 5\n1 2\n2 6\n5 1\n2 6\n2 6\n5 6\n2 6\n6 5\n6 5\n1 5\n2 1\n5 6\n5 6\n1 2\n2 1\n1 2\n1 2\n1 2\n5 6\n6 2\n1 5\n1 2\n2 1\n2 6\n1 2\n5 1\n1 5\n6 5\n5 1\n5 1\n2 6\n5 6\n6 2\n1 2\n5 1\n6 2\n2 1\n5 6\n2 1\n1 5\n6 5\n6 5\n1 2\n1 2\n5 1\n6 2\n6 2\n1 2\n1 5\n6 5\n5 6\n1 2\n6 5\n2 1\n6 5\n1 5\n5 6\n6 5",
"output": "YES"
},
{
"input": "99\n3\n2 1\n2 6\n6 2\n1 5\n1 5\n6 2\n6 5\n6 5\n6 2\n5 6\n6 5\n6 2\n5 1\n2 6\n6 5\n1 5\n1 5\n2 6\n5 1\n1 5\n1 5\n2 1\n5 6\n6 5\n5 6\n2 6\n6 2\n6 5\n1 2\n1 2\n1 2\n2 6\n5 6\n1 2\n5 6\n1 2\n5 1\n6 5\n2 6\n5 1\n1 2\n1 5\n1 5\n6 2\n5 1\n2 6\n1 2\n5 1\n1 5\n6 5\n6 5\n5 6\n2 1\n2 6\n2 6\n1 2\n6 2\n2 6\n5 6\n6 5\n1 5\n2 1\n1 2\n6 2\n5 6\n6 5\n2 1\n1 5\n1 5\n2 6\n5 1\n1 2\n5 6\n2 1\n6 5\n5 1\n2 1\n6 2\n6 5\n6 5\n5 6\n1 2\n6 5\n1 2\n5 1\n2 1\n5 1\n2 6\n2 1\n6 2\n2 6\n2 6\n2 1\n2 1\n5 1\n1 5\n5 6\n2 1\n5 6",
"output": "YES"
},
{
"input": "98\n6\n4 2\n2 3\n2 3\n2 3\n2 3\n2 3\n3 2\n5 4\n4 2\n5 4\n5 4\n5 4\n5 3\n4 5\n2 3\n4 2\n5 3\n5 4\n4 5\n3 5\n3 2\n4 2\n2 4\n5 4\n2 3\n2 4\n5 4\n4 2\n3 5\n5 4\n2 3\n2 4\n3 5\n2 3\n3 5\n4 2\n3 5\n5 3\n4 2\n5 3\n5 3\n2 3\n2 4\n4 5\n3 2\n4 2\n3 5\n3 2\n3 5\n5 4\n3 5\n3 5\n4 2\n4 2\n3 2\n4 5\n5 4\n2 3\n5 4\n2 4\n2 3\n4 5\n3 5\n5 4\n3 2\n2 3\n5 3\n2 3\n5 3\n2 3\n2 3\n2 4\n2 3\n2 3\n5 3\n2 3\n4 2\n4 2\n5 4\n2 3\n2 3\n4 5\n3 2\n5 3\n3 2\n2 4\n2 4\n5 3\n5 4\n4 5\n5 3\n4 5\n2 4\n5 3\n4 2\n5 4\n2 4\n5 3",
"output": "YES"
},
{
"input": "97\n3\n2 1\n5 6\n1 2\n5 6\n2 6\n2 1\n6 2\n6 5\n6 2\n1 5\n1 2\n1 2\n6 2\n2 6\n6 5\n2 6\n6 5\n5 1\n6 2\n2 6\n2 6\n1 2\n2 6\n1 2\n1 5\n6 2\n6 5\n6 5\n2 6\n1 5\n6 5\n6 2\n6 2\n2 6\n5 6\n5 6\n1 5\n6 5\n2 6\n5 6\n1 5\n5 6\n1 5\n1 2\n5 1\n5 1\n1 5\n5 1\n1 5\n6 2\n6 2\n5 1\n6 5\n2 1\n2 6\n1 5\n1 5\n6 2\n2 6\n5 6\n2 6\n5 6\n2 6\n6 2\n5 6\n1 2\n6 2\n5 6\n6 2\n1 5\n5 6\n1 5\n2 6\n2 6\n2 1\n6 5\n5 1\n5 1\n1 2\n2 1\n2 1\n6 2\n1 5\n2 1\n2 1\n6 2\n5 1\n5 1\n2 6\n1 5\n1 2\n6 2\n2 6\n5 1\n6 5\n1 2\n6 2",
"output": "YES"
},
{
"input": "96\n4\n1 5\n5 1\n6 5\n2 1\n2 1\n2 6\n6 5\n6 5\n6 2\n2 6\n1 5\n6 5\n1 5\n2 6\n6 5\n5 6\n2 1\n2 6\n1 2\n1 5\n2 6\n2 6\n2 1\n1 5\n5 1\n1 2\n2 6\n2 6\n6 5\n1 5\n2 1\n2 6\n1 2\n5 6\n1 5\n2 6\n6 2\n2 6\n6 5\n1 5\n6 5\n6 5\n1 5\n5 1\n6 2\n5 1\n5 1\n1 5\n2 6\n5 1\n1 5\n2 1\n1 2\n6 2\n6 2\n5 6\n1 5\n6 5\n2 1\n6 5\n2 1\n2 1\n1 2\n6 2\n1 2\n1 5\n5 1\n5 6\n6 5\n6 2\n1 5\n2 6\n1 2\n1 2\n5 1\n1 5\n6 5\n6 2\n6 5\n2 6\n5 6\n2 1\n5 6\n2 1\n6 5\n2 6\n2 1\n1 5\n2 1\n6 2\n1 2\n1 5\n5 6\n5 1\n5 6\n2 1",
"output": "YES"
},
{
"input": "3\n6\n3 2\n5 4\n2 6",
"output": "NO"
},
{
"input": "4\n1\n2 3\n2 3\n2 3\n1 3",
"output": "NO"
},
{
"input": "2\n6\n3 2\n6 4",
"output": "NO"
},
{
"input": "3\n6\n3 2\n5 6\n2 4",
"output": "NO"
},
{
"input": "2\n5\n6 3\n4 5",
"output": "NO"
},
{
"input": "2\n6\n3 2\n6 5",
"output": "NO"
},
{
"input": "2\n1\n3 2\n1 2",
"output": "NO"
},
{
"input": "2\n3\n5 1\n3 5",
"output": "NO"
},
{
"input": "2\n1\n2 3\n1 2",
"output": "NO"
},
{
"input": "2\n1\n2 3\n2 1",
"output": "NO"
},
{
"input": "3\n1\n4 5\n4 1\n4 5",
"output": "NO"
},
{
"input": "2\n4\n2 6\n5 4",
"output": "NO"
},
{
"input": "2\n6\n3 2\n6 2",
"output": "NO"
},
{
"input": "2\n3\n2 1\n3 5",
"output": "NO"
},
{
"input": "2\n3\n1 2\n3 1",
"output": "NO"
},
{
"input": "2\n3\n2 6\n5 3",
"output": "NO"
},
{
"input": "3\n3\n1 2\n3 2\n3 1",
"output": "NO"
},
{
"input": "3\n5\n3 1\n1 3\n2 3",
"output": "NO"
},
{
"input": "2\n6\n2 4\n6 5",
"output": "NO"
},
{
"input": "2\n6\n4 5\n6 5",
"output": "NO"
},
{
"input": "2\n6\n3 5\n3 6",
"output": "NO"
},
{
"input": "2\n4\n1 2\n4 5",
"output": "NO"
},
{
"input": "2\n3\n2 6\n3 1",
"output": "NO"
}
] | 1,377,816,254
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 52
| 124
| 0
|
import sys
f = sys.stdin
#f = open("input.txt", "r")
n = int(f.readline().strip())
u = int(f.readline().strip())
a, b = [], []
for i in f:
a.append(int(i.split()[0]))
b.append(int(i.split()[1]))
c = [[1, 2, 3, 4, 5, 6] for i in range(n)]
for i in range(n):
c[i].remove(a[i])
c[i].remove(b[i])
c[i].remove(7-a[i])
c[i].remove(7-b[i])
for i in range(n-1):
if c[i] != c[i+1]:
print("NO")
break
else:
print("YES")
|
Title: Dice Tower
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
A dice is a cube, its faces contain distinct integers from 1 to 6 as black points. The sum of numbers at the opposite dice faces always equals 7. Please note that there are only two dice (these dices are mirror of each other) that satisfy the given constraints (both of them are shown on the picture on the left).
Alice and Bob play dice. Alice has built a tower from *n* dice. We know that in this tower the adjacent dice contact with faces with distinct numbers. Bob wants to uniquely identify the numbers written on the faces of all dice, from which the tower is built. Unfortunately, Bob is looking at the tower from the face, and so he does not see all the numbers on the faces. Bob sees the number on the top of the tower and the numbers on the two adjacent sides (on the right side of the picture shown what Bob sees).
Help Bob, tell whether it is possible to uniquely identify the numbers on the faces of all the dice in the tower, or not.
Input Specification:
The first line contains a single integer *n* (1<=β€<=*n*<=β€<=100) β the number of dice in the tower.
The second line contains an integer *x* (1<=β€<=*x*<=β€<=6) β the number Bob sees at the top of the tower. Next *n* lines contain two space-separated integers each: the *i*-th line contains numbers *a**i*,<=*b**i* (1<=β€<=*a**i*,<=*b**i*<=β€<=6;Β *a**i*<=β <=*b**i*) β the numbers Bob sees on the two sidelong faces of the *i*-th dice in the tower.
Consider the dice in the tower indexed from top to bottom from 1 to *n*. That is, the topmost dice has index 1 (the dice whose top face Bob can see). It is guaranteed that it is possible to make a dice tower that will look as described in the input.
Output Specification:
Print "YES" (without the quotes), if it is possible to to uniquely identify the numbers on the faces of all the dice in the tower. If it is impossible, print "NO" (without the quotes).
Demo Input:
['3\n6\n3 2\n5 4\n2 4\n', '3\n3\n2 6\n4 1\n5 3\n']
Demo Output:
['YES', 'NO']
Note:
none
|
```python
import sys
f = sys.stdin
#f = open("input.txt", "r")
n = int(f.readline().strip())
u = int(f.readline().strip())
a, b = [], []
for i in f:
a.append(int(i.split()[0]))
b.append(int(i.split()[1]))
c = [[1, 2, 3, 4, 5, 6] for i in range(n)]
for i in range(n):
c[i].remove(a[i])
c[i].remove(b[i])
c[i].remove(7-a[i])
c[i].remove(7-b[i])
for i in range(n-1):
if c[i] != c[i+1]:
print("NO")
break
else:
print("YES")
```
| 3
|
|
25
|
B
|
Phone numbers
|
PROGRAMMING
| 1,100
|
[
"implementation"
] |
B. Phone numbers
|
2
|
256
|
Phone number in Berland is a sequence of *n* digits. Often, to make it easier to memorize the number, it is divided into groups of two or three digits. For example, the phone number 1198733 is easier to remember as 11-987-33. Your task is to find for a given phone number any of its divisions into groups of two or three digits.
|
The first line contains integer *n* (2<=β€<=*n*<=β€<=100) β amount of digits in the phone number. The second line contains *n* digits β the phone number to divide into groups.
|
Output any of divisions of the given phone number into groups of two or three digits. Separate groups by single character -. If the answer is not unique, output any.
|
[
"6\n549871\n",
"7\n1198733\n"
] |
[
"54-98-71",
"11-987-33\n"
] |
none
| 0
|
[
{
"input": "6\n549871",
"output": "54-98-71"
},
{
"input": "7\n1198733",
"output": "119-87-33"
},
{
"input": "2\n74",
"output": "74"
},
{
"input": "2\n33",
"output": "33"
},
{
"input": "3\n074",
"output": "074"
},
{
"input": "3\n081",
"output": "081"
},
{
"input": "4\n3811",
"output": "38-11"
},
{
"input": "5\n21583",
"output": "215-83"
},
{
"input": "8\n33408349",
"output": "33-40-83-49"
},
{
"input": "9\n988808426",
"output": "988-80-84-26"
},
{
"input": "10\n0180990956",
"output": "01-80-99-09-56"
},
{
"input": "15\n433488906230138",
"output": "433-48-89-06-23-01-38"
},
{
"input": "22\n7135498415686025907059",
"output": "71-35-49-84-15-68-60-25-90-70-59"
},
{
"input": "49\n2429965524999668169991253653390090510755018570235",
"output": "242-99-65-52-49-99-66-81-69-99-12-53-65-33-90-09-05-10-75-50-18-57-02-35"
},
{
"input": "72\n491925337784111770500147619881727525570039735507439360627744863794794290",
"output": "49-19-25-33-77-84-11-17-70-50-01-47-61-98-81-72-75-25-57-00-39-73-55-07-43-93-60-62-77-44-86-37-94-79-42-90"
},
{
"input": "95\n32543414456047900690980198395035321172843693417425457554204776648220562494524275489599199209210",
"output": "325-43-41-44-56-04-79-00-69-09-80-19-83-95-03-53-21-17-28-43-69-34-17-42-54-57-55-42-04-77-66-48-22-05-62-49-45-24-27-54-89-59-91-99-20-92-10"
},
{
"input": "97\n9362344595153688016434451101547661156123505108492010669557671355055642365998461003851354321478898",
"output": "936-23-44-59-51-53-68-80-16-43-44-51-10-15-47-66-11-56-12-35-05-10-84-92-01-06-69-55-76-71-35-50-55-64-23-65-99-84-61-00-38-51-35-43-21-47-88-98"
},
{
"input": "98\n65521815795893886057122984634320900545031770769333931308009346017867969790810907868670369236928568",
"output": "65-52-18-15-79-58-93-88-60-57-12-29-84-63-43-20-90-05-45-03-17-70-76-93-33-93-13-08-00-93-46-01-78-67-96-97-90-81-09-07-86-86-70-36-92-36-92-85-68"
},
{
"input": "99\n455213856470326729480192345541970106407563996625458559297407682539801838244443866898560852503660390",
"output": "455-21-38-56-47-03-26-72-94-80-19-23-45-54-19-70-10-64-07-56-39-96-62-54-58-55-92-97-40-76-82-53-98-01-83-82-44-44-38-66-89-85-60-85-25-03-66-03-90"
},
{
"input": "100\n4004223124942730640235383244438257614581534320356060987241659784249551110165034719443327659510644224",
"output": "40-04-22-31-24-94-27-30-64-02-35-38-32-44-43-82-57-61-45-81-53-43-20-35-60-60-98-72-41-65-97-84-24-95-51-11-01-65-03-47-19-44-33-27-65-95-10-64-42-24"
}
] | 1,677,595,127
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 20
| 186
| 0
|
n = int(input())
s = str(input())
flag = 3
if n % 2 == 0:
flag = 2
res = []
curr = 0
for i in range(len(s)):
if curr == 3 and flag == 3:
flag = 2
res.append("-")
res.append(s[i])
curr = 1
else:
res.append(s[i])
curr += 1
if flag != 3 and curr == 2 and i < len(s) - 1:
res.append("-")
curr = 0
print("".join(res))
|
Title: Phone numbers
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Phone number in Berland is a sequence of *n* digits. Often, to make it easier to memorize the number, it is divided into groups of two or three digits. For example, the phone number 1198733 is easier to remember as 11-987-33. Your task is to find for a given phone number any of its divisions into groups of two or three digits.
Input Specification:
The first line contains integer *n* (2<=β€<=*n*<=β€<=100) β amount of digits in the phone number. The second line contains *n* digits β the phone number to divide into groups.
Output Specification:
Output any of divisions of the given phone number into groups of two or three digits. Separate groups by single character -. If the answer is not unique, output any.
Demo Input:
['6\n549871\n', '7\n1198733\n']
Demo Output:
['54-98-71', '11-987-33\n']
Note:
none
|
```python
n = int(input())
s = str(input())
flag = 3
if n % 2 == 0:
flag = 2
res = []
curr = 0
for i in range(len(s)):
if curr == 3 and flag == 3:
flag = 2
res.append("-")
res.append(s[i])
curr = 1
else:
res.append(s[i])
curr += 1
if flag != 3 and curr == 2 and i < len(s) - 1:
res.append("-")
curr = 0
print("".join(res))
```
| 3.9535
|
431
|
A
|
Black Square
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Quite recently, a very smart student named Jury decided that lectures are boring, so he downloaded a game called "Black Square" on his super cool touchscreen phone.
In this game, the phone's screen is divided into four vertical strips. Each second, a black square appears on some of the strips. According to the rules of the game, Jury must use this second to touch the corresponding strip to make the square go away. As Jury is both smart and lazy, he counted that he wastes exactly *a**i* calories on touching the *i*-th strip.
You've got a string *s*, describing the process of the game and numbers *a*1,<=*a*2,<=*a*3,<=*a*4. Calculate how many calories Jury needs to destroy all the squares?
|
The first line contains four space-separated integers *a*1, *a*2, *a*3, *a*4 (0<=β€<=*a*1,<=*a*2,<=*a*3,<=*a*4<=β€<=104).
The second line contains string *s* (1<=β€<=|*s*|<=β€<=105), where the *Ρ*-th character of the string equals "1", if on the *i*-th second of the game the square appears on the first strip, "2", if it appears on the second strip, "3", if it appears on the third strip, "4", if it appears on the fourth strip.
|
Print a single integer β the total number of calories that Jury wastes.
|
[
"1 2 3 4\n123214\n",
"1 5 3 2\n11221\n"
] |
[
"13\n",
"13\n"
] |
none
| 500
|
[
{
"input": "1 2 3 4\n123214",
"output": "13"
},
{
"input": "1 5 3 2\n11221",
"output": "13"
},
{
"input": "5 5 5 1\n3422",
"output": "16"
},
{
"input": "4 3 2 1\n2",
"output": "3"
},
{
"input": "5651 6882 6954 4733\n2442313421",
"output": "60055"
},
{
"input": "0 0 0 0\n4132",
"output": "0"
},
{
"input": "3163 5778 83 7640\n11141442444",
"output": "64270"
},
{
"input": "1809 1302 7164 6122\n3144121413113111223311232232114144321414421243443243422322144324121433444342231344234443332241322442",
"output": "420780"
},
{
"input": "0 0 0 0\n1",
"output": "0"
},
{
"input": "1 2 3 4\n4",
"output": "4"
},
{
"input": "2343 7653 1242 5432\n1",
"output": "2343"
},
{
"input": "2343 7653 1242 5432\n2",
"output": "7653"
},
{
"input": "2343 7653 1242 5432\n3",
"output": "1242"
},
{
"input": "2343 7653 1242 5432\n4",
"output": "5432"
},
{
"input": "1 2 3 4\n123412",
"output": "13"
},
{
"input": "50 50 50 50\n11111111111111111111111111111111111111111111111111111",
"output": "2650"
},
{
"input": "1 2 3 4\n11111111111111111111111111111111111111111111111111",
"output": "50"
},
{
"input": "1 2 3 4\n23123231321231231231231231221232123121312321",
"output": "87"
},
{
"input": "1 2 3 4\n1111111111111222222222233333333333444444444444444",
"output": "126"
},
{
"input": "2 3 1 4\n121321232412342112312313213123123412131231231232",
"output": "105"
}
] | 1,697,703,526
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 49
| 62
| 2,355,200
|
a = list(map(int, input().split()))
s = input()
s = [int(c) for c in s]
c = 0
for i in range(len(s)):
c += a[s[i] - 1]
print(c)
|
Title: Black Square
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Quite recently, a very smart student named Jury decided that lectures are boring, so he downloaded a game called "Black Square" on his super cool touchscreen phone.
In this game, the phone's screen is divided into four vertical strips. Each second, a black square appears on some of the strips. According to the rules of the game, Jury must use this second to touch the corresponding strip to make the square go away. As Jury is both smart and lazy, he counted that he wastes exactly *a**i* calories on touching the *i*-th strip.
You've got a string *s*, describing the process of the game and numbers *a*1,<=*a*2,<=*a*3,<=*a*4. Calculate how many calories Jury needs to destroy all the squares?
Input Specification:
The first line contains four space-separated integers *a*1, *a*2, *a*3, *a*4 (0<=β€<=*a*1,<=*a*2,<=*a*3,<=*a*4<=β€<=104).
The second line contains string *s* (1<=β€<=|*s*|<=β€<=105), where the *Ρ*-th character of the string equals "1", if on the *i*-th second of the game the square appears on the first strip, "2", if it appears on the second strip, "3", if it appears on the third strip, "4", if it appears on the fourth strip.
Output Specification:
Print a single integer β the total number of calories that Jury wastes.
Demo Input:
['1 2 3 4\n123214\n', '1 5 3 2\n11221\n']
Demo Output:
['13\n', '13\n']
Note:
none
|
```python
a = list(map(int, input().split()))
s = input()
s = [int(c) for c in s]
c = 0
for i in range(len(s)):
c += a[s[i] - 1]
print(c)
```
| 3
|
|
50
|
A
|
Domino piling
|
PROGRAMMING
| 800
|
[
"greedy",
"math"
] |
A. Domino piling
|
2
|
256
|
You are given a rectangular board of *M*<=Γ<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=Γ<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions:
1. Each domino completely covers two squares.
2. No two dominoes overlap.
3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board.
Find the maximum number of dominoes, which can be placed under these restrictions.
|
In a single line you are given two integers *M* and *N* β board sizes in squares (1<=β€<=*M*<=β€<=*N*<=β€<=16).
|
Output one number β the maximal number of dominoes, which can be placed.
|
[
"2 4\n",
"3 3\n"
] |
[
"4\n",
"4\n"
] |
none
| 500
|
[
{
"input": "2 4",
"output": "4"
},
{
"input": "3 3",
"output": "4"
},
{
"input": "1 5",
"output": "2"
},
{
"input": "1 6",
"output": "3"
},
{
"input": "1 15",
"output": "7"
},
{
"input": "1 16",
"output": "8"
},
{
"input": "2 5",
"output": "5"
},
{
"input": "2 6",
"output": "6"
},
{
"input": "2 7",
"output": "7"
},
{
"input": "2 14",
"output": "14"
},
{
"input": "2 15",
"output": "15"
},
{
"input": "1 4",
"output": "2"
},
{
"input": "2 16",
"output": "16"
},
{
"input": "3 5",
"output": "7"
},
{
"input": "3 6",
"output": "9"
},
{
"input": "3 10",
"output": "15"
},
{
"input": "3 14",
"output": "21"
},
{
"input": "3 15",
"output": "22"
},
{
"input": "3 16",
"output": "24"
},
{
"input": "5 7",
"output": "17"
},
{
"input": "16 16",
"output": "128"
},
{
"input": "15 16",
"output": "120"
},
{
"input": "2 3",
"output": "3"
},
{
"input": "15 15",
"output": "112"
},
{
"input": "14 16",
"output": "112"
},
{
"input": "11 13",
"output": "71"
},
{
"input": "5 16",
"output": "40"
},
{
"input": "8 15",
"output": "60"
},
{
"input": "2 2",
"output": "2"
},
{
"input": "3 4",
"output": "6"
},
{
"input": "4 4",
"output": "8"
},
{
"input": "1 1",
"output": "0"
},
{
"input": "1 2",
"output": "1"
},
{
"input": "1 3",
"output": "1"
},
{
"input": "14 15",
"output": "105"
}
] | 1,676,146,493
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 35
| 92
| 0
|
m,n= map(int,input().split())
area=m*n
no_of_squares=area//2
print(no_of_squares)
|
Title: Domino piling
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
You are given a rectangular board of *M*<=Γ<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=Γ<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions:
1. Each domino completely covers two squares.
2. No two dominoes overlap.
3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board.
Find the maximum number of dominoes, which can be placed under these restrictions.
Input Specification:
In a single line you are given two integers *M* and *N* β board sizes in squares (1<=β€<=*M*<=β€<=*N*<=β€<=16).
Output Specification:
Output one number β the maximal number of dominoes, which can be placed.
Demo Input:
['2 4\n', '3 3\n']
Demo Output:
['4\n', '4\n']
Note:
none
|
```python
m,n= map(int,input().split())
area=m*n
no_of_squares=area//2
print(no_of_squares)
```
| 3.977
|
581
|
A
|
Vasya the Hipster
|
PROGRAMMING
| 800
|
[
"implementation",
"math"
] | null | null |
One day Vasya the Hipster decided to count how many socks he had. It turned out that he had *a* red socks and *b* blue socks.
According to the latest fashion, hipsters should wear the socks of different colors: a red one on the left foot, a blue one on the right foot.
Every day Vasya puts on new socks in the morning and throws them away before going to bed as he doesn't want to wash them.
Vasya wonders, what is the maximum number of days when he can dress fashionable and wear different socks, and after that, for how many days he can then wear the same socks until he either runs out of socks or cannot make a single pair from the socks he's got.
Can you help him?
|
The single line of the input contains two positive integers *a* and *b* (1<=β€<=*a*,<=*b*<=β€<=100) β the number of red and blue socks that Vasya's got.
|
Print two space-separated integers β the maximum number of days when Vasya can wear different socks and the number of days when he can wear the same socks until he either runs out of socks or cannot make a single pair from the socks he's got.
Keep in mind that at the end of the day Vasya throws away the socks that he's been wearing on that day.
|
[
"3 1\n",
"2 3\n",
"7 3\n"
] |
[
"1 1\n",
"2 0\n",
"3 2\n"
] |
In the first sample Vasya can first put on one pair of different socks, after that he has two red socks left to wear on the second day.
| 500
|
[
{
"input": "3 1",
"output": "1 1"
},
{
"input": "2 3",
"output": "2 0"
},
{
"input": "7 3",
"output": "3 2"
},
{
"input": "100 100",
"output": "100 0"
},
{
"input": "4 10",
"output": "4 3"
},
{
"input": "6 10",
"output": "6 2"
},
{
"input": "6 11",
"output": "6 2"
},
{
"input": "10 40",
"output": "10 15"
},
{
"input": "11 56",
"output": "11 22"
},
{
"input": "34 30",
"output": "30 2"
},
{
"input": "33 33",
"output": "33 0"
},
{
"input": "100 45",
"output": "45 27"
},
{
"input": "100 23",
"output": "23 38"
},
{
"input": "45 12",
"output": "12 16"
},
{
"input": "1 1",
"output": "1 0"
},
{
"input": "1 100",
"output": "1 49"
},
{
"input": "100 1",
"output": "1 49"
},
{
"input": "68 59",
"output": "59 4"
},
{
"input": "45 99",
"output": "45 27"
},
{
"input": "99 100",
"output": "99 0"
},
{
"input": "100 98",
"output": "98 1"
},
{
"input": "59 12",
"output": "12 23"
},
{
"input": "86 4",
"output": "4 41"
},
{
"input": "68 21",
"output": "21 23"
},
{
"input": "100 11",
"output": "11 44"
},
{
"input": "100 10",
"output": "10 45"
},
{
"input": "15 45",
"output": "15 15"
},
{
"input": "11 32",
"output": "11 10"
},
{
"input": "34 96",
"output": "34 31"
},
{
"input": "89 89",
"output": "89 0"
}
] | 1,696,234,679
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 30
| 46
| 0
|
a, b = sorted(list(map(int, input().split())))
m = a
p = (b-a)//2
print(m, p)
|
Title: Vasya the Hipster
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
One day Vasya the Hipster decided to count how many socks he had. It turned out that he had *a* red socks and *b* blue socks.
According to the latest fashion, hipsters should wear the socks of different colors: a red one on the left foot, a blue one on the right foot.
Every day Vasya puts on new socks in the morning and throws them away before going to bed as he doesn't want to wash them.
Vasya wonders, what is the maximum number of days when he can dress fashionable and wear different socks, and after that, for how many days he can then wear the same socks until he either runs out of socks or cannot make a single pair from the socks he's got.
Can you help him?
Input Specification:
The single line of the input contains two positive integers *a* and *b* (1<=β€<=*a*,<=*b*<=β€<=100) β the number of red and blue socks that Vasya's got.
Output Specification:
Print two space-separated integers β the maximum number of days when Vasya can wear different socks and the number of days when he can wear the same socks until he either runs out of socks or cannot make a single pair from the socks he's got.
Keep in mind that at the end of the day Vasya throws away the socks that he's been wearing on that day.
Demo Input:
['3 1\n', '2 3\n', '7 3\n']
Demo Output:
['1 1\n', '2 0\n', '3 2\n']
Note:
In the first sample Vasya can first put on one pair of different socks, after that he has two red socks left to wear on the second day.
|
```python
a, b = sorted(list(map(int, input().split())))
m = a
p = (b-a)//2
print(m, p)
```
| 3
|
|
381
|
A
|
Sereja and Dima
|
PROGRAMMING
| 800
|
[
"greedy",
"implementation",
"two pointers"
] | null | null |
Sereja and Dima play a game. The rules of the game are very simple. The players have *n* cards in a row. Each card contains a number, all numbers on the cards are distinct. The players take turns, Sereja moves first. During his turn a player can take one card: either the leftmost card in a row, or the rightmost one. The game ends when there is no more cards. The player who has the maximum sum of numbers on his cards by the end of the game, wins.
Sereja and Dima are being greedy. Each of them chooses the card with the larger number during his move.
Inna is a friend of Sereja and Dima. She knows which strategy the guys are using, so she wants to determine the final score, given the initial state of the game. Help her.
|
The first line contains integer *n* (1<=β€<=*n*<=β€<=1000) β the number of cards on the table. The second line contains space-separated numbers on the cards from left to right. The numbers on the cards are distinct integers from 1 to 1000.
|
On a single line, print two integers. The first number is the number of Sereja's points at the end of the game, the second number is the number of Dima's points at the end of the game.
|
[
"4\n4 1 2 10\n",
"7\n1 2 3 4 5 6 7\n"
] |
[
"12 5\n",
"16 12\n"
] |
In the first sample Sereja will take cards with numbers 10 and 2, so Sereja's sum is 12. Dima will take cards with numbers 4 and 1, so Dima's sum is 5.
| 500
|
[
{
"input": "4\n4 1 2 10",
"output": "12 5"
},
{
"input": "7\n1 2 3 4 5 6 7",
"output": "16 12"
},
{
"input": "42\n15 29 37 22 16 5 26 31 6 32 19 3 45 36 33 14 25 20 48 7 42 11 24 28 9 18 8 21 47 17 38 40 44 4 35 1 43 39 41 27 12 13",
"output": "613 418"
},
{
"input": "43\n32 1 15 48 38 26 25 14 20 44 11 30 3 42 49 19 18 46 5 45 10 23 34 9 29 41 2 52 6 17 35 4 50 22 33 51 7 28 47 13 39 37 24",
"output": "644 500"
},
{
"input": "1\n3",
"output": "3 0"
},
{
"input": "45\n553 40 94 225 415 471 126 190 647 394 515 303 189 159 308 6 139 132 326 78 455 75 85 295 135 613 360 614 351 228 578 259 258 591 444 29 33 463 561 174 368 183 140 168 646",
"output": "6848 6568"
},
{
"input": "44\n849 373 112 307 479 608 856 769 526 82 168 143 573 762 115 501 688 36 214 450 396 496 236 309 287 786 397 43 811 141 745 846 350 270 276 677 420 459 403 722 267 54 394 727",
"output": "9562 9561"
},
{
"input": "35\n10 15 18 1 28 16 2 33 6 22 23 4 9 25 35 8 7 26 3 20 30 14 31 19 27 32 11 5 29 24 21 34 13 17 12",
"output": "315 315"
},
{
"input": "17\n580 376 191 496 73 44 520 357 483 149 81 178 514 300 216 598 304",
"output": "3238 2222"
},
{
"input": "30\n334 443 223 424 168 549 189 303 429 559 516 220 459 134 344 346 316 446 209 148 487 526 69 286 102 366 518 280 392 325",
"output": "5246 4864"
},
{
"input": "95\n122 29 188 265 292 287 183 225 222 187 155 256 64 148 173 278 218 136 290 17 31 130 2 87 57 283 255 280 68 166 174 142 102 39 116 206 288 154 26 78 296 172 184 232 77 91 277 8 249 186 94 93 207 251 257 195 101 299 193 124 293 65 58 35 24 302 220 189 252 125 27 284 247 182 141 103 198 97 234 83 281 216 85 180 267 236 109 143 149 239 79 300 191 244 71",
"output": "8147 7807"
},
{
"input": "1\n1",
"output": "1 0"
}
] | 1,693,500,783
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 34
| 62
| 0
|
n=int(input())
l=list(map(int,input().split()))
sums=0
sumd=0
for i in range(1,n+1):
if(i%2!=0):
if(l[0]>=l[len(l)-1]):
sums+=l[0]
l.remove(l[0])
else:
sums+=l[len(l)-1]
l.remove(l[len(l)-1])
else:
if(l[0]>=l[len(l)-1]):
sumd+=l[0]
l.remove(l[0])
else:
sumd+=l[len(l)-1]
l.remove(l[len(l)-1])
print(sums,sumd)
|
Title: Sereja and Dima
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Sereja and Dima play a game. The rules of the game are very simple. The players have *n* cards in a row. Each card contains a number, all numbers on the cards are distinct. The players take turns, Sereja moves first. During his turn a player can take one card: either the leftmost card in a row, or the rightmost one. The game ends when there is no more cards. The player who has the maximum sum of numbers on his cards by the end of the game, wins.
Sereja and Dima are being greedy. Each of them chooses the card with the larger number during his move.
Inna is a friend of Sereja and Dima. She knows which strategy the guys are using, so she wants to determine the final score, given the initial state of the game. Help her.
Input Specification:
The first line contains integer *n* (1<=β€<=*n*<=β€<=1000) β the number of cards on the table. The second line contains space-separated numbers on the cards from left to right. The numbers on the cards are distinct integers from 1 to 1000.
Output Specification:
On a single line, print two integers. The first number is the number of Sereja's points at the end of the game, the second number is the number of Dima's points at the end of the game.
Demo Input:
['4\n4 1 2 10\n', '7\n1 2 3 4 5 6 7\n']
Demo Output:
['12 5\n', '16 12\n']
Note:
In the first sample Sereja will take cards with numbers 10 and 2, so Sereja's sum is 12. Dima will take cards with numbers 4 and 1, so Dima's sum is 5.
|
```python
n=int(input())
l=list(map(int,input().split()))
sums=0
sumd=0
for i in range(1,n+1):
if(i%2!=0):
if(l[0]>=l[len(l)-1]):
sums+=l[0]
l.remove(l[0])
else:
sums+=l[len(l)-1]
l.remove(l[len(l)-1])
else:
if(l[0]>=l[len(l)-1]):
sumd+=l[0]
l.remove(l[0])
else:
sumd+=l[len(l)-1]
l.remove(l[len(l)-1])
print(sums,sumd)
```
| 3
|
|
989
|
A
|
A Blend of Springtime
|
PROGRAMMING
| 900
|
[
"implementation",
"strings"
] | null | null |
"What a pity it's already late spring," sighs Mino with regret, "one more drizzling night and they'd be gone."
"But these blends are at their best, aren't they?" Absorbed in the landscape, Kanno remains optimistic.
The landscape can be expressed as a row of consecutive cells, each of which either contains a flower of colour amber or buff or canary yellow, or is empty.
When a flower withers, it disappears from the cell that it originally belonged to, and it spreads petals of its colour in its two neighbouring cells (or outside the field if the cell is on the side of the landscape). In case petals fall outside the given cells, they simply become invisible.
You are to help Kanno determine whether it's possible that after some (possibly none or all) flowers shed their petals, at least one of the cells contains all three colours, considering both petals and flowers. Note that flowers can wither in arbitrary order.
|
The first and only line of input contains a non-empty string $s$ consisting of uppercase English letters 'A', 'B', 'C' and characters '.' (dots) only ($\lvert s \rvert \leq 100$)Β β denoting cells containing an amber flower, a buff one, a canary yellow one, and no flowers, respectively.
|
Output "Yes" if it's possible that all three colours appear in some cell, and "No" otherwise.
You can print each letter in any case (upper or lower).
|
[
".BAC.\n",
"AA..CB\n"
] |
[
"Yes\n",
"No\n"
] |
In the first example, the buff and canary yellow flowers can leave their petals in the central cell, blending all three colours in it.
In the second example, it's impossible to satisfy the requirement because there is no way that amber and buff meet in any cell.
| 500
|
[
{
"input": ".BAC.",
"output": "Yes"
},
{
"input": "AA..CB",
"output": "No"
},
{
"input": ".",
"output": "No"
},
{
"input": "ACB.AAAAAA",
"output": "Yes"
},
{
"input": "B.BC.BBBCA",
"output": "Yes"
},
{
"input": "BA..CAB..B",
"output": "Yes"
},
{
"input": "CACCBAA.BC",
"output": "Yes"
},
{
"input": ".CAACCBBA.CBB.AC..BABCCBCCB..B.BC..CBC.CA.CC.C.CC.B.A.CC.BBCCBB..ACAACAC.CBCCB.AABAAC.CBCC.BA..CCBC.",
"output": "Yes"
},
{
"input": "A",
"output": "No"
},
{
"input": "..",
"output": "No"
},
{
"input": "BC",
"output": "No"
},
{
"input": "CAB",
"output": "Yes"
},
{
"input": "A.CB",
"output": "No"
},
{
"input": "B.ACAA.CA..CBCBBAA.B.CCBCB.CAC.ABC...BC.BCCC.BC.CB",
"output": "Yes"
},
{
"input": "B.B...CC.B..CCCB.CB..CBCB..CBCC.CCBC.B.CB..CA.C.C.",
"output": "No"
},
{
"input": "AA.CBAABABCCC..B..B.ABBABAB.B.B.CCA..CB.B...A..CBC",
"output": "Yes"
},
{
"input": "CA.ABB.CC.B.C.BBBABAAB.BBBAACACAAA.C.AACA.AAC.C.BCCB.CCBC.C..CCACA.CBCCB.CCAABAAB.AACAA..A.AAA.",
"output": "No"
},
{
"input": "CBC...AC.BBBB.BBABABA.CAAACC.AAABB..A.BA..BC.CBBBC.BBBBCCCAA.ACCBB.AB.C.BA..CC..AAAC...AB.A.AAABBA.A",
"output": "No"
},
{
"input": "CC.AAAC.BA.BBB.AABABBCCAA.A.CBCCB.B.BC.ABCBCBBAA.CACA.CCCA.CB.CCB.A.BCCCB...C.A.BCCBC..B.ABABB.C.BCB",
"output": "Yes"
},
{
"input": "CCC..A..CACACCA.CA.ABAAB.BBA..C.AAA...ACB.ACA.CA.B.AB.A..C.BC.BC.A.C....ABBCCACCCBCC.BBBAA.ACCACB.BB",
"output": "Yes"
},
{
"input": "BC.ABACAACC..AC.A..CCCAABBCCACAC.AA.CC.BAABABABBCBB.BA..C.C.C.A.BBA.C..BC.ACACCC.AAAACCCCC.AAC.AC.AB",
"output": "Yes"
},
{
"input": "ACAC.BAA.C..CAAC..ABBAACC..BAA...CC...ACCBBCA.BAABABAACCAC.A.BBCACCC..BCB.BABAAAACCBCB.BCAABBC.C.BBB",
"output": "Yes"
},
{
"input": "CCAC.BCBC.A.ABBAB.C.C.BC.CCABBCBCCBC..B.AA.C.BC...B..BAA.ACCCCBBB.AAAACA.CAACCB.CCB.CC.BCCAB.BBBBABB",
"output": "Yes"
},
{
"input": ".AACAA.AAAAC.BBBB.BC...CCACCACAAA.A..CCA..BCC.AB.ABAAB..AABA...B.C.CBAB.BAAB.A.C.AAC.BBBA.ACAAA.BB.C",
"output": "Yes"
},
{
"input": "CC.ACCC.BCCCCAA.BBAACB.ABABAAAA.A.CBAB.CBACBBC..C.CA.AAA..AA..ABBB.A.C..CBBCAAACC.B..CC.AC..CAABACB.",
"output": "Yes"
},
{
"input": ".BAB.",
"output": "No"
},
{
"input": "BBBBBBBBB",
"output": "No"
},
{
"input": "..AAC..",
"output": "No"
},
{
"input": ".AAABBBCCC.",
"output": "No"
},
{
"input": "AAABC",
"output": "Yes"
},
{
"input": "BBB",
"output": "No"
},
{
"input": "AAAAABABAAAAA",
"output": "No"
},
{
"input": "AABBCC",
"output": "No"
},
{
"input": ".BA",
"output": "No"
},
{
"input": "CAAAAB",
"output": "No"
}
] | 1,651,160,243
| 143
|
PyPy 3
|
OK
|
TESTS
| 37
| 92
| 0
|
def process(S):
n = len(S)
for i in range(n-2):
if S[i] != '.' and S[i+1] != '.' and S[i+2] != '.' and S[i] != S[i+1] and S[i] != S[i+2] and S[i+1] != S[i+2]:
print('Yes')
return
print('No')
S = input()
process(S)
|
Title: A Blend of Springtime
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
"What a pity it's already late spring," sighs Mino with regret, "one more drizzling night and they'd be gone."
"But these blends are at their best, aren't they?" Absorbed in the landscape, Kanno remains optimistic.
The landscape can be expressed as a row of consecutive cells, each of which either contains a flower of colour amber or buff or canary yellow, or is empty.
When a flower withers, it disappears from the cell that it originally belonged to, and it spreads petals of its colour in its two neighbouring cells (or outside the field if the cell is on the side of the landscape). In case petals fall outside the given cells, they simply become invisible.
You are to help Kanno determine whether it's possible that after some (possibly none or all) flowers shed their petals, at least one of the cells contains all three colours, considering both petals and flowers. Note that flowers can wither in arbitrary order.
Input Specification:
The first and only line of input contains a non-empty string $s$ consisting of uppercase English letters 'A', 'B', 'C' and characters '.' (dots) only ($\lvert s \rvert \leq 100$)Β β denoting cells containing an amber flower, a buff one, a canary yellow one, and no flowers, respectively.
Output Specification:
Output "Yes" if it's possible that all three colours appear in some cell, and "No" otherwise.
You can print each letter in any case (upper or lower).
Demo Input:
['.BAC.\n', 'AA..CB\n']
Demo Output:
['Yes\n', 'No\n']
Note:
In the first example, the buff and canary yellow flowers can leave their petals in the central cell, blending all three colours in it.
In the second example, it's impossible to satisfy the requirement because there is no way that amber and buff meet in any cell.
|
```python
def process(S):
n = len(S)
for i in range(n-2):
if S[i] != '.' and S[i+1] != '.' and S[i+2] != '.' and S[i] != S[i+1] and S[i] != S[i+2] and S[i+1] != S[i+2]:
print('Yes')
return
print('No')
S = input()
process(S)
```
| 3
|
|
41
|
A
|
Translation
|
PROGRAMMING
| 800
|
[
"implementation",
"strings"
] |
A. Translation
|
2
|
256
|
The translation from the Berland language into the Birland language is not an easy task. Those languages are very similar: a berlandish word differs from a birlandish word with the same meaning a little: it is spelled (and pronounced) reversely. For example, a Berlandish word code corresponds to a Birlandish word edoc. However, it's easy to make a mistake during the Β«translationΒ». Vasya translated word *s* from Berlandish into Birlandish as *t*. Help him: find out if he translated the word correctly.
|
The first line contains word *s*, the second line contains word *t*. The words consist of lowercase Latin letters. The input data do not consist unnecessary spaces. The words are not empty and their lengths do not exceed 100 symbols.
|
If the word *t* is a word *s*, written reversely, print YES, otherwise print NO.
|
[
"code\nedoc\n",
"abb\naba\n",
"code\ncode\n"
] |
[
"YES\n",
"NO\n",
"NO\n"
] |
none
| 500
|
[
{
"input": "code\nedoc",
"output": "YES"
},
{
"input": "abb\naba",
"output": "NO"
},
{
"input": "code\ncode",
"output": "NO"
},
{
"input": "abacaba\nabacaba",
"output": "YES"
},
{
"input": "q\nq",
"output": "YES"
},
{
"input": "asrgdfngfnmfgnhweratgjkk\nasrgdfngfnmfgnhweratgjkk",
"output": "NO"
},
{
"input": "z\na",
"output": "NO"
},
{
"input": "asd\ndsa",
"output": "YES"
},
{
"input": "abcdef\nfecdba",
"output": "NO"
},
{
"input": "ywjjbirapvskozubvxoemscfwl\ngnduubaogtfaiowjizlvjcu",
"output": "NO"
},
{
"input": "mfrmqxtzvgaeuleubcmcxcfqyruwzenguhgrmkuhdgnhgtgkdszwqyd\nmfxufheiperjnhyczclkmzyhcxntdfskzkzdwzzujdinf",
"output": "NO"
},
{
"input": "bnbnemvybqizywlnghlykniaxxxlkhftppbdeqpesrtgkcpoeqowjwhrylpsziiwcldodcoonpimudvrxejjo\ntiynnekmlalogyvrgptbinkoqdwzuiyjlrldxhzjmmp",
"output": "NO"
},
{
"input": "pwlpubwyhzqvcitemnhvvwkmwcaawjvdiwtoxyhbhbxerlypelevasmelpfqwjk\nstruuzebbcenziscuoecywugxncdwzyfozhljjyizpqcgkyonyetarcpwkqhuugsqjuixsxptmbnlfupdcfigacdhhrzb",
"output": "NO"
},
{
"input": "gdvqjoyxnkypfvdxssgrihnwxkeojmnpdeobpecytkbdwujqfjtxsqspxvxpqioyfagzjxupqqzpgnpnpxcuipweunqch\nkkqkiwwasbhezqcfeceyngcyuogrkhqecwsyerdniqiocjehrpkljiljophqhyaiefjpavoom",
"output": "NO"
},
{
"input": "umeszdawsvgkjhlqwzents\nhxqhdungbylhnikwviuh",
"output": "NO"
},
{
"input": "juotpscvyfmgntshcealgbsrwwksgrwnrrbyaqqsxdlzhkbugdyx\nibqvffmfktyipgiopznsqtrtxiijntdbgyy",
"output": "NO"
},
{
"input": "zbwueheveouatecaglziqmudxemhrsozmaujrwlqmppzoumxhamwugedikvkblvmxwuofmpafdprbcftew\nulczwrqhctbtbxrhhodwbcxwimncnexosksujlisgclllxokrsbnozthajnnlilyffmsyko",
"output": "NO"
},
{
"input": "nkgwuugukzcv\nqktnpxedwxpxkrxdvgmfgoxkdfpbzvwsduyiybynbkouonhvmzakeiruhfmvrktghadbfkmwxduoqv",
"output": "NO"
},
{
"input": "incenvizhqpcenhjhehvjvgbsnfixbatrrjstxjzhlmdmxijztphxbrldlqwdfimweepkggzcxsrwelodpnryntepioqpvk\ndhjbjjftlvnxibkklxquwmzhjfvnmwpapdrslioxisbyhhfymyiaqhlgecpxamqnocizwxniubrmpyubvpenoukhcobkdojlybxd",
"output": "NO"
},
{
"input": "w\nw",
"output": "YES"
},
{
"input": "vz\nzv",
"output": "YES"
},
{
"input": "ry\nyr",
"output": "YES"
},
{
"input": "xou\nuox",
"output": "YES"
},
{
"input": "axg\ngax",
"output": "NO"
},
{
"input": "zdsl\nlsdz",
"output": "YES"
},
{
"input": "kudl\nldku",
"output": "NO"
},
{
"input": "zzlzwnqlcl\nlclqnwzlzz",
"output": "YES"
},
{
"input": "vzzgicnzqooejpjzads\nsdazjpjeooqzncigzzv",
"output": "YES"
},
{
"input": "raqhmvmzuwaykjpyxsykr\nxkysrypjkyawuzmvmhqar",
"output": "NO"
},
{
"input": "ngedczubzdcqbxksnxuavdjaqtmdwncjnoaicvmodcqvhfezew\nwezefhvqcdomvciaonjcnwdmtqajdvauxnskxbqcdzbuzcdegn",
"output": "YES"
},
{
"input": "muooqttvrrljcxbroizkymuidvfmhhsjtumksdkcbwwpfqdyvxtrlymofendqvznzlmim\nmimlznzvqdnefomylrtxvydqfpwwbckdskmutjshhmfvdiumykziorbxcjlrrvttqooum",
"output": "YES"
},
{
"input": "vxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaivg\ngviayyikkitmuomcpiakhbxszgbnhvwyzkftwoagzixaearxpjacrnvpvbuzenvovehkmmxvblqyxvctroddksdsgebcmlluqpxv",
"output": "YES"
},
{
"input": "mnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfdc\ncdfmkdgrdptkpewbsqvszipgxvgvuiuzbkkwuowbafkikgvnqdkxnayzdjygvezmtsgywnupocdntipiyiorblqkrzjpzatxahnm",
"output": "NO"
},
{
"input": "dgxmzbqofstzcdgthbaewbwocowvhqpinehpjatnnbrijcolvsatbblsrxabzrpszoiecpwhfjmwuhqrapvtcgvikuxtzbftydkw\nwkdytfbztxukivgctvparqhuwmjfhwpceiozsprzbaxrslbbqasvlocjirbnntajphenipthvwocowbweabhtgdcztsfoqbzmxgd",
"output": "NO"
},
{
"input": "gxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwgeh\nhegwxvocotmzstqfbmpjvijgkcyodlxyjawrpkczpmdspsuhoiruavnnnuwvtwohglkdxjetshkboalvzqbgjgthoteceixioxg",
"output": "YES"
},
{
"input": "sihxuwvmaambplxvjfoskinghzicyfqebjtkysotattkahssumfcgrkheotdxwjckpvapbkaepqrxseyfrwtyaycmrzsrsngkh\nhkgnsrszrmcyaytwrfyesxrqpeakbpavpkcjwxdtoehkrgcfmusshakttatosyktjbeqfycizhgniksofjvxlpbmaamvwuxhis",
"output": "YES"
},
{
"input": "ycnahksbughnonldzrhkysujmylcgcfuludjvjiahtkyzqvkopzqcnwhltbzfugzojqkjjlggmvnultascmygelkiktmfieok\nkoeifmtkiklegkmcsatlunvmggkjjlqjozgufzbtlhwncqzpokvqzykthaijvjdulufcgclymjusyyhrzdlnonhgubskhancy",
"output": "NO"
},
{
"input": "wbqasaehtkfojruzyhrlgwmtyiovmzyfifslvlemhqheyaelzwnthrenjsbmntwaoryzwfbxmscmypvxlfmzpnkkjlvwvmtz\nztmvwvljkknpzmflxvpymcsmxbfwzyroawtnmbsjnerhtnwzleayehqhmelvlsfifyzmvoiytmwglrhyzurjofktheasaqbw",
"output": "YES"
},
{
"input": "imippqurprbhfugngtgifelytadegwrgaefnfhbjjnmzikvjaccotqzemufqieqldgnbmviisgkynzeldlhqxuqphjfmyij\njiymfjhpquxqhldleznykgsiivmbngdlqeiqfumezqtoccajvkizmnjjbhfnfeagrwgedatylefigtgngufhbrpruqppimi",
"output": "YES"
},
{
"input": "bikydffiuisckpvzqlteqfhegsagimodb\nbdomigasgehfqetlqzvpkcsiuiffdykib",
"output": "YES"
}
] | 1,694,499,702
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 40
| 154
| 0
|
chir = input()
vanG = input()
if vanG==chir[::-1]:
print("YES")
else:
print("NO")
|
Title: Translation
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
The translation from the Berland language into the Birland language is not an easy task. Those languages are very similar: a berlandish word differs from a birlandish word with the same meaning a little: it is spelled (and pronounced) reversely. For example, a Berlandish word code corresponds to a Birlandish word edoc. However, it's easy to make a mistake during the Β«translationΒ». Vasya translated word *s* from Berlandish into Birlandish as *t*. Help him: find out if he translated the word correctly.
Input Specification:
The first line contains word *s*, the second line contains word *t*. The words consist of lowercase Latin letters. The input data do not consist unnecessary spaces. The words are not empty and their lengths do not exceed 100 symbols.
Output Specification:
If the word *t* is a word *s*, written reversely, print YES, otherwise print NO.
Demo Input:
['code\nedoc\n', 'abb\naba\n', 'code\ncode\n']
Demo Output:
['YES\n', 'NO\n', 'NO\n']
Note:
none
|
```python
chir = input()
vanG = input()
if vanG==chir[::-1]:
print("YES")
else:
print("NO")
```
| 3.9615
|
939
|
A
|
Love Triangle
|
PROGRAMMING
| 800
|
[
"graphs"
] | null | null |
As you could know there are no male planes nor female planes. However, each plane on Earth likes some other plane. There are *n* planes on Earth, numbered from 1 to *n*, and the plane with number *i* likes the plane with number *f**i*, where 1<=β€<=*f**i*<=β€<=*n* and *f**i*<=β <=*i*.
We call a love triangle a situation in which plane *A* likes plane *B*, plane *B* likes plane *C* and plane *C* likes plane *A*. Find out if there is any love triangle on Earth.
|
The first line contains a single integer *n* (2<=β€<=*n*<=β€<=5000)Β β the number of planes.
The second line contains *n* integers *f*1,<=*f*2,<=...,<=*f**n* (1<=β€<=*f**i*<=β€<=*n*, *f**i*<=β <=*i*), meaning that the *i*-th plane likes the *f**i*-th.
|
Output Β«YESΒ» if there is a love triangle consisting of planes on Earth. Otherwise, output Β«NOΒ».
You can output any letter in lower case or in upper case.
|
[
"5\n2 4 5 1 3\n",
"5\n5 5 5 5 1\n"
] |
[
"YES\n",
"NO\n"
] |
In first example plane 2 likes plane 4, plane 4 likes plane 1, plane 1 likes plane 2 and that is a love triangle.
In second example there are no love triangles.
| 500
|
[
{
"input": "5\n2 4 5 1 3",
"output": "YES"
},
{
"input": "5\n5 5 5 5 1",
"output": "NO"
},
{
"input": "3\n3 1 2",
"output": "YES"
},
{
"input": "10\n4 10 9 5 3 1 5 10 6 4",
"output": "NO"
},
{
"input": "10\n5 5 4 9 10 9 9 5 3 1",
"output": "YES"
},
{
"input": "100\n50 40 60 87 39 58 44 84 46 68 16 57 77 87 92 95 42 31 74 15 36 84 30 3 47 15 87 90 76 66 6 63 74 19 40 49 6 84 41 9 77 34 7 12 11 73 58 24 81 14 81 29 65 100 1 85 64 32 38 4 54 67 32 81 80 7 100 71 29 80 4 52 47 7 78 56 52 75 81 37 16 41 27 28 58 60 62 47 29 40 37 14 59 91 12 54 25 58 12 43",
"output": "NO"
},
{
"input": "100\n25 6 46 37 87 99 70 31 46 12 94 40 87 56 28 8 94 39 13 12 67 13 71 39 83 48 40 14 62 41 16 71 20 41 83 41 68 98 23 82 62 83 62 35 49 22 31 21 66 98 54 39 34 52 11 28 47 89 25 44 68 36 91 46 82 86 88 48 27 93 7 9 53 36 16 100 84 84 44 25 58 66 16 46 72 21 91 78 4 17 44 17 47 67 93 89 75 44 56 50",
"output": "YES"
},
{
"input": "2\n2 1",
"output": "NO"
},
{
"input": "3\n2 3 1",
"output": "YES"
},
{
"input": "5\n2 1 4 5 3",
"output": "YES"
},
{
"input": "5\n5 4 5 5 2",
"output": "YES"
}
] | 1,625,116,600
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 16
| 77
| 0
|
n=int(input())
f=[int(f) for f in input().split()]
triangle=0
for i in range(0,len(f)-1):
f1=f[i]
f2=f[f1-1]
f3=f[f2-1]
if f[f3-1]==f[i]:
triangle+=1
break
print("YES") if triangle>0 else print("NO")
|
Title: Love Triangle
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
As you could know there are no male planes nor female planes. However, each plane on Earth likes some other plane. There are *n* planes on Earth, numbered from 1 to *n*, and the plane with number *i* likes the plane with number *f**i*, where 1<=β€<=*f**i*<=β€<=*n* and *f**i*<=β <=*i*.
We call a love triangle a situation in which plane *A* likes plane *B*, plane *B* likes plane *C* and plane *C* likes plane *A*. Find out if there is any love triangle on Earth.
Input Specification:
The first line contains a single integer *n* (2<=β€<=*n*<=β€<=5000)Β β the number of planes.
The second line contains *n* integers *f*1,<=*f*2,<=...,<=*f**n* (1<=β€<=*f**i*<=β€<=*n*, *f**i*<=β <=*i*), meaning that the *i*-th plane likes the *f**i*-th.
Output Specification:
Output Β«YESΒ» if there is a love triangle consisting of planes on Earth. Otherwise, output Β«NOΒ».
You can output any letter in lower case or in upper case.
Demo Input:
['5\n2 4 5 1 3\n', '5\n5 5 5 5 1\n']
Demo Output:
['YES\n', 'NO\n']
Note:
In first example plane 2 likes plane 4, plane 4 likes plane 1, plane 1 likes plane 2 and that is a love triangle.
In second example there are no love triangles.
|
```python
n=int(input())
f=[int(f) for f in input().split()]
triangle=0
for i in range(0,len(f)-1):
f1=f[i]
f2=f[f1-1]
f3=f[f2-1]
if f[f3-1]==f[i]:
triangle+=1
break
print("YES") if triangle>0 else print("NO")
```
| 3
|
|
508
|
A
|
Pasha and Pixels
|
PROGRAMMING
| 1,100
|
[
"brute force"
] | null | null |
Pasha loves his phone and also putting his hair up... But the hair is now irrelevant.
Pasha has installed a new game to his phone. The goal of the game is following. There is a rectangular field consisting of *n* row with *m* pixels in each row. Initially, all the pixels are colored white. In one move, Pasha can choose any pixel and color it black. In particular, he can choose the pixel that is already black, then after the boy's move the pixel does not change, that is, it remains black. Pasha loses the game when a 2<=Γ<=2 square consisting of black pixels is formed.
Pasha has made a plan of *k* moves, according to which he will paint pixels. Each turn in his plan is represented as a pair of numbers *i* and *j*, denoting respectively the row and the column of the pixel to be colored on the current move.
Determine whether Pasha loses if he acts in accordance with his plan, and if he does, on what move the 2<=Γ<=2 square consisting of black pixels is formed.
|
The first line of the input contains three integers *n*,<=*m*,<=*k* (1<=β€<=*n*,<=*m*<=β€<=1000, 1<=β€<=*k*<=β€<=105)Β β the number of rows, the number of columns and the number of moves that Pasha is going to perform.
The next *k* lines contain Pasha's moves in the order he makes them. Each line contains two integers *i* and *j* (1<=β€<=*i*<=β€<=*n*, 1<=β€<=*j*<=β€<=*m*), representing the row number and column number of the pixel that was painted during a move.
|
If Pasha loses, print the number of the move when the 2<=Γ<=2 square consisting of black pixels is formed.
If Pasha doesn't lose, that is, no 2<=Γ<=2 square consisting of black pixels is formed during the given *k* moves, print 0.
|
[
"2 2 4\n1 1\n1 2\n2 1\n2 2\n",
"2 3 6\n2 3\n2 2\n1 3\n2 2\n1 2\n1 1\n",
"5 3 7\n2 3\n1 2\n1 1\n4 1\n3 1\n5 3\n3 2\n"
] |
[
"4\n",
"5\n",
"0\n"
] |
none
| 500
|
[
{
"input": "2 2 4\n1 1\n1 2\n2 1\n2 2",
"output": "4"
},
{
"input": "2 3 6\n2 3\n2 2\n1 3\n2 2\n1 2\n1 1",
"output": "5"
},
{
"input": "5 3 7\n2 3\n1 2\n1 1\n4 1\n3 1\n5 3\n3 2",
"output": "0"
},
{
"input": "3 3 11\n2 1\n3 1\n1 1\n1 3\n1 2\n2 3\n3 3\n3 2\n2 2\n1 3\n3 3",
"output": "9"
},
{
"input": "2 2 5\n1 1\n2 1\n2 1\n1 2\n2 2",
"output": "5"
},
{
"input": "518 518 10\n37 97\n47 278\n17 467\n158 66\n483 351\n83 123\n285 219\n513 187\n380 75\n304 352",
"output": "0"
},
{
"input": "1 1 5\n1 1\n1 1\n1 1\n1 1\n1 1",
"output": "0"
},
{
"input": "1 5 5\n1 1\n1 2\n1 3\n1 4\n1 5",
"output": "0"
},
{
"input": "5 1 5\n1 1\n2 1\n3 1\n4 1\n5 1",
"output": "0"
},
{
"input": "1 1 1\n1 1",
"output": "0"
},
{
"input": "10 10 4\n5 9\n6 9\n6 10\n5 10",
"output": "4"
},
{
"input": "1000 1000 4\n999 999\n999 1000\n1000 999\n1000 1000",
"output": "4"
},
{
"input": "2 3 5\n2 3\n1 3\n1 2\n1 1\n2 2",
"output": "5"
},
{
"input": "1000 1000 4\n1000 1000\n999 999\n1000 999\n999 1000",
"output": "4"
}
] | 1,668,166,584
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 52
| 576
| 8,704,000
|
#10_2.py
m, n, k = map(int,input().split())
c = [[0]*(n+1) for i in range(m+1)]
color = [[0]*(n+1) for i in range(m+1)]
dx = [-1,-1,0,0]
dy = [-1,0,-1,0]
flag = False
for cnt in range(k):
i, j = map(int,input().split())
if flag:
continue
if c[i][j]:
continue
c[i][j] = 1
for l in range(4):
ii = i + dx[l]
jj = j + dy[l]
color[ii][jj] += 1
if color[ii][jj] == 4:
print(cnt+1)
flag = True
break
if flag == False:
print(0)
|
Title: Pasha and Pixels
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Pasha loves his phone and also putting his hair up... But the hair is now irrelevant.
Pasha has installed a new game to his phone. The goal of the game is following. There is a rectangular field consisting of *n* row with *m* pixels in each row. Initially, all the pixels are colored white. In one move, Pasha can choose any pixel and color it black. In particular, he can choose the pixel that is already black, then after the boy's move the pixel does not change, that is, it remains black. Pasha loses the game when a 2<=Γ<=2 square consisting of black pixels is formed.
Pasha has made a plan of *k* moves, according to which he will paint pixels. Each turn in his plan is represented as a pair of numbers *i* and *j*, denoting respectively the row and the column of the pixel to be colored on the current move.
Determine whether Pasha loses if he acts in accordance with his plan, and if he does, on what move the 2<=Γ<=2 square consisting of black pixels is formed.
Input Specification:
The first line of the input contains three integers *n*,<=*m*,<=*k* (1<=β€<=*n*,<=*m*<=β€<=1000, 1<=β€<=*k*<=β€<=105)Β β the number of rows, the number of columns and the number of moves that Pasha is going to perform.
The next *k* lines contain Pasha's moves in the order he makes them. Each line contains two integers *i* and *j* (1<=β€<=*i*<=β€<=*n*, 1<=β€<=*j*<=β€<=*m*), representing the row number and column number of the pixel that was painted during a move.
Output Specification:
If Pasha loses, print the number of the move when the 2<=Γ<=2 square consisting of black pixels is formed.
If Pasha doesn't lose, that is, no 2<=Γ<=2 square consisting of black pixels is formed during the given *k* moves, print 0.
Demo Input:
['2 2 4\n1 1\n1 2\n2 1\n2 2\n', '2 3 6\n2 3\n2 2\n1 3\n2 2\n1 2\n1 1\n', '5 3 7\n2 3\n1 2\n1 1\n4 1\n3 1\n5 3\n3 2\n']
Demo Output:
['4\n', '5\n', '0\n']
Note:
none
|
```python
#10_2.py
m, n, k = map(int,input().split())
c = [[0]*(n+1) for i in range(m+1)]
color = [[0]*(n+1) for i in range(m+1)]
dx = [-1,-1,0,0]
dy = [-1,0,-1,0]
flag = False
for cnt in range(k):
i, j = map(int,input().split())
if flag:
continue
if c[i][j]:
continue
c[i][j] = 1
for l in range(4):
ii = i + dx[l]
jj = j + dy[l]
color[ii][jj] += 1
if color[ii][jj] == 4:
print(cnt+1)
flag = True
break
if flag == False:
print(0)
```
| 3
|
|
1
|
A
|
Theatre Square
|
PROGRAMMING
| 1,000
|
[
"math"
] |
A. Theatre Square
|
1
|
256
|
Theatre Square in the capital city of Berland has a rectangular shape with the size *n*<=Γ<=*m* meters. On the occasion of the city's anniversary, a decision was taken to pave the Square with square granite flagstones. Each flagstone is of the size *a*<=Γ<=*a*.
What is the least number of flagstones needed to pave the Square? It's allowed to cover the surface larger than the Theatre Square, but the Square has to be covered. It's not allowed to break the flagstones. The sides of flagstones should be parallel to the sides of the Square.
|
The input contains three positive integer numbers in the first line: *n*,<=<=*m* and *a* (1<=β€<=<=*n*,<=*m*,<=*a*<=β€<=109).
|
Write the needed number of flagstones.
|
[
"6 6 4\n"
] |
[
"4\n"
] |
none
| 0
|
[
{
"input": "6 6 4",
"output": "4"
},
{
"input": "1 1 1",
"output": "1"
},
{
"input": "2 1 1",
"output": "2"
},
{
"input": "1 2 1",
"output": "2"
},
{
"input": "2 2 1",
"output": "4"
},
{
"input": "2 1 2",
"output": "1"
},
{
"input": "1 1 3",
"output": "1"
},
{
"input": "2 3 4",
"output": "1"
},
{
"input": "1000000000 1000000000 1",
"output": "1000000000000000000"
},
{
"input": "12 13 4",
"output": "12"
},
{
"input": "222 332 5",
"output": "3015"
},
{
"input": "1000 1000 10",
"output": "10000"
},
{
"input": "1001 1000 10",
"output": "10100"
},
{
"input": "100 10001 1000000000",
"output": "1"
},
{
"input": "1000000000 1000000000 1000000000",
"output": "1"
},
{
"input": "1000000000 1000000000 999999999",
"output": "4"
},
{
"input": "1000000000 1000000000 192",
"output": "27126743055556"
},
{
"input": "1000000000 987654321 1",
"output": "987654321000000000"
},
{
"input": "456784567 1000000000 51",
"output": "175618850864484"
},
{
"input": "39916800 134217728 40320",
"output": "3295710"
}
] | 1,669,299,724
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 20
| 46
| 0
|
x,y,z=map(int,input().split())
if x%z==0:
x=x//z
else:
x=x//z+1
if y%z==0:
y=y//z
else:
y=y//z+1
print(x*y)
|
Title: Theatre Square
Time Limit: 1 seconds
Memory Limit: 256 megabytes
Problem Description:
Theatre Square in the capital city of Berland has a rectangular shape with the size *n*<=Γ<=*m* meters. On the occasion of the city's anniversary, a decision was taken to pave the Square with square granite flagstones. Each flagstone is of the size *a*<=Γ<=*a*.
What is the least number of flagstones needed to pave the Square? It's allowed to cover the surface larger than the Theatre Square, but the Square has to be covered. It's not allowed to break the flagstones. The sides of flagstones should be parallel to the sides of the Square.
Input Specification:
The input contains three positive integer numbers in the first line: *n*,<=<=*m* and *a* (1<=β€<=<=*n*,<=*m*,<=*a*<=β€<=109).
Output Specification:
Write the needed number of flagstones.
Demo Input:
['6 6 4\n']
Demo Output:
['4\n']
Note:
none
|
```python
x,y,z=map(int,input().split())
if x%z==0:
x=x//z
else:
x=x//z+1
if y%z==0:
y=y//z
else:
y=y//z+1
print(x*y)
```
| 3.977
|
1,011
|
B
|
Planning The Expedition
|
PROGRAMMING
| 1,200
|
[
"binary search",
"brute force",
"implementation"
] | null | null |
Natasha is planning an expedition to Mars for $n$ people. One of the important tasks is to provide food for each participant.
The warehouse has $m$ daily food packages. Each package has some food type $a_i$.
Each participant must eat exactly one food package each day. Due to extreme loads, each participant must eat the same food type throughout the expedition. Different participants may eat different (or the same) types of food.
Formally, for each participant $j$ Natasha should select his food type $b_j$ and each day $j$-th participant will eat one food package of type $b_j$. The values $b_j$ for different participants may be different.
What is the maximum possible number of days the expedition can last, following the requirements above?
|
The first line contains two integers $n$ and $m$ ($1 \le n \le 100$, $1 \le m \le 100$)Β β the number of the expedition participants and the number of the daily food packages available.
The second line contains sequence of integers $a_1, a_2, \dots, a_m$ ($1 \le a_i \le 100$), where $a_i$ is the type of $i$-th food package.
|
Print the single integerΒ β the number of days the expedition can last. If it is not possible to plan the expedition for even one day, print 0.
|
[
"4 10\n1 5 2 1 1 1 2 5 7 2\n",
"100 1\n1\n",
"2 5\n5 4 3 2 1\n",
"3 9\n42 42 42 42 42 42 42 42 42\n"
] |
[
"2\n",
"0\n",
"1\n",
"3\n"
] |
In the first example, Natasha can assign type $1$ food to the first participant, the same type $1$ to the second, type $5$ to the third and type $2$ to the fourth. In this case, the expedition can last for $2$ days, since each participant can get two food packages of his food type (there will be used $4$ packages of type $1$, two packages of type $2$ and two packages of type $5$).
In the second example, there are $100$ participants and only $1$ food package. In this case, the expedition can't last even $1$ day.
| 1,000
|
[
{
"input": "4 10\n1 5 2 1 1 1 2 5 7 2",
"output": "2"
},
{
"input": "100 1\n1",
"output": "0"
},
{
"input": "2 5\n5 4 3 2 1",
"output": "1"
},
{
"input": "3 9\n42 42 42 42 42 42 42 42 42",
"output": "3"
},
{
"input": "1 1\n100",
"output": "1"
},
{
"input": "4 100\n84 99 66 69 86 94 89 96 98 93 93 82 87 93 91 100 69 99 93 81 99 84 75 100 86 88 98 100 84 96 44 70 94 91 85 78 86 79 45 88 91 78 98 94 81 87 93 72 96 88 96 97 96 62 86 72 94 84 80 98 88 90 93 73 73 98 78 50 91 96 97 82 85 90 87 41 97 82 97 77 100 100 92 83 98 81 70 81 74 78 84 79 98 98 55 99 97 99 79 98",
"output": "5"
},
{
"input": "100 100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "1"
},
{
"input": "1 100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "100"
},
{
"input": "6 100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4",
"output": "15"
},
{
"input": "1 1\n59",
"output": "1"
},
{
"input": "1 50\n39 1 46 21 23 28 100 32 63 63 18 15 40 29 34 49 56 74 47 42 96 97 59 62 76 62 69 61 36 21 66 18 92 58 63 85 5 6 77 75 91 66 38 10 66 43 20 74 37 83",
"output": "3"
},
{
"input": "1 100\n83 72 21 55 49 5 61 60 87 21 89 88 3 75 49 81 36 25 50 61 96 19 36 55 48 8 97 69 50 24 23 39 26 25 41 90 69 20 19 62 38 52 60 6 66 31 9 45 36 12 69 94 22 60 91 65 35 58 13 85 33 87 83 11 95 20 20 85 13 21 57 69 17 94 78 37 59 45 60 7 64 51 60 89 91 22 6 58 95 96 51 53 89 22 28 16 27 56 1 54",
"output": "5"
},
{
"input": "50 1\n75",
"output": "0"
},
{
"input": "50 50\n85 20 12 73 52 78 70 95 88 43 31 88 81 41 80 99 16 11 97 11 21 44 2 34 47 38 87 2 32 47 97 93 52 14 35 37 97 48 58 19 52 55 97 72 17 25 16 85 90 58",
"output": "1"
},
{
"input": "50 100\n2 37 74 32 99 75 73 86 67 33 62 30 15 21 51 41 73 75 67 39 90 10 56 74 72 26 38 65 75 55 46 99 34 49 92 82 11 100 15 71 75 12 22 56 47 74 20 98 59 65 14 76 1 40 89 36 43 93 83 73 75 100 50 95 27 10 72 51 25 69 15 3 57 60 84 99 31 44 12 61 69 95 51 31 28 36 57 35 31 52 44 19 79 12 27 27 7 81 68 1",
"output": "1"
},
{
"input": "100 1\n26",
"output": "0"
},
{
"input": "100 50\n8 82 62 11 85 57 5 32 99 92 77 2 61 86 8 88 10 28 83 4 68 79 8 64 56 98 4 88 22 54 30 60 62 79 72 38 17 28 32 16 62 26 56 44 72 33 22 84 77 45",
"output": "0"
},
{
"input": "100 100\n13 88 64 65 78 10 61 97 16 32 76 9 60 1 40 35 90 61 60 85 26 16 38 36 33 95 24 55 82 88 13 9 47 34 94 2 90 74 11 81 46 70 94 11 55 32 19 36 97 16 17 35 38 82 89 16 74 94 97 79 9 94 88 12 28 2 4 25 72 95 49 31 88 82 6 77 70 98 90 57 57 33 38 61 26 75 2 66 22 44 13 35 16 4 33 16 12 66 32 86",
"output": "1"
},
{
"input": "34 64\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "1"
},
{
"input": "53 98\n1 1 2 2 2 2 2 1 2 2 2 1 1 2 2 2 1 1 2 1 1 2 2 1 1 2 1 1 1 2 1 2 1 1 1 2 2 1 2 1 1 1 2 2 1 2 1 1 2 1 2 2 1 2 2 2 2 2 2 2 2 2 1 1 2 2 1 2 1 2 1 2 1 1 2 2 2 1 1 2 1 2 1 1 1 1 2 2 2 2 2 1 1 2 2 2 1 1",
"output": "1"
},
{
"input": "17 8\n2 5 3 4 3 2 2 2",
"output": "0"
},
{
"input": "24 77\n8 6 10 4 6 6 4 10 9 7 7 5 5 4 6 7 10 6 3 4 6 6 4 9 4 6 2 5 3 4 4 1 4 6 6 8 1 1 6 4 6 2 5 7 7 2 4 4 10 1 10 9 2 3 8 1 10 4 3 9 3 8 3 5 6 3 4 9 5 3 4 1 1 6 1 2 1",
"output": "2"
},
{
"input": "65 74\n7 19 2 38 28 44 34 49 14 13 30 22 11 4 4 12 8 1 40 8 34 31 44 38 21 35 13 7 19 32 37 5 36 26 7 2 15 11 47 45 48 2 49 10 10 42 42 31 50 24 29 34 31 38 39 48 43 47 32 46 10 1 33 21 12 50 13 44 38 11 41 41 10 7",
"output": "1"
},
{
"input": "37 71\n50 93 15 80 82 23 35 90 70 73 55 23 23 6 86 63 38 70 38 52 88 34 25 75 32 19 6 98 31 38 21 8 66 8 59 71 7 80 69 23 17 70 6 40 72 5 48 59 18 1 48 91 17 41 11 27 53 95 87 31 62 94 94 60 38 99 70 50 81 86 44",
"output": "1"
},
{
"input": "35 4\n100 100 100 100",
"output": "0"
},
{
"input": "68 12\n100 100 100 99 99 100 100 100 99 99 99 99",
"output": "0"
},
{
"input": "91 33\n97 100 96 96 97 100 97 97 96 96 99 99 98 97 97 99 99 98 100 96 96 99 100 96 97 100 97 97 99 98 96 98 97",
"output": "0"
},
{
"input": "59 72\n99 96 96 93 94 97 93 96 100 99 93 99 96 92 92 97 93 100 92 100 91 96 99 100 97 98 93 93 96 100 97 99 100 100 91 93 96 91 93 100 95 96 92 97 91 91 99 100 91 95 95 100 92 93 98 93 95 92 95 100 91 95 99 95 92 91 100 93 98 98 96 99",
"output": "1"
},
{
"input": "9 35\n95 54 78 94 56 63 68 73 61 85 73 62 61 94 67 91 66 54 89 69 92 60 91 87 63 62 85 70 62 68 97 88 96 55 62",
"output": "2"
},
{
"input": "99 100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "1"
},
{
"input": "1 50\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "50"
}
] | 1,686,101,624
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 31
| 46
| 0
|
people_quantity, food_package_quantity = map(int, input().split())
food_type_sequence = list(map(int, input().split()))
food_type_quantity_sequence = [0]*101
for i in food_type_sequence:
food_type_quantity_sequence[i] += 1
# For d days, maximum how many people can go?
for day in range(food_package_quantity, -1, -1):
max_people_possible = 0
if day == 0:
print(0)
break
for food_type_quantity in food_type_quantity_sequence:
max_people_possible += food_type_quantity // day
if max_people_possible >= people_quantity:
print(day)
break
|
Title: Planning The Expedition
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Natasha is planning an expedition to Mars for $n$ people. One of the important tasks is to provide food for each participant.
The warehouse has $m$ daily food packages. Each package has some food type $a_i$.
Each participant must eat exactly one food package each day. Due to extreme loads, each participant must eat the same food type throughout the expedition. Different participants may eat different (or the same) types of food.
Formally, for each participant $j$ Natasha should select his food type $b_j$ and each day $j$-th participant will eat one food package of type $b_j$. The values $b_j$ for different participants may be different.
What is the maximum possible number of days the expedition can last, following the requirements above?
Input Specification:
The first line contains two integers $n$ and $m$ ($1 \le n \le 100$, $1 \le m \le 100$)Β β the number of the expedition participants and the number of the daily food packages available.
The second line contains sequence of integers $a_1, a_2, \dots, a_m$ ($1 \le a_i \le 100$), where $a_i$ is the type of $i$-th food package.
Output Specification:
Print the single integerΒ β the number of days the expedition can last. If it is not possible to plan the expedition for even one day, print 0.
Demo Input:
['4 10\n1 5 2 1 1 1 2 5 7 2\n', '100 1\n1\n', '2 5\n5 4 3 2 1\n', '3 9\n42 42 42 42 42 42 42 42 42\n']
Demo Output:
['2\n', '0\n', '1\n', '3\n']
Note:
In the first example, Natasha can assign type $1$ food to the first participant, the same type $1$ to the second, type $5$ to the third and type $2$ to the fourth. In this case, the expedition can last for $2$ days, since each participant can get two food packages of his food type (there will be used $4$ packages of type $1$, two packages of type $2$ and two packages of type $5$).
In the second example, there are $100$ participants and only $1$ food package. In this case, the expedition can't last even $1$ day.
|
```python
people_quantity, food_package_quantity = map(int, input().split())
food_type_sequence = list(map(int, input().split()))
food_type_quantity_sequence = [0]*101
for i in food_type_sequence:
food_type_quantity_sequence[i] += 1
# For d days, maximum how many people can go?
for day in range(food_package_quantity, -1, -1):
max_people_possible = 0
if day == 0:
print(0)
break
for food_type_quantity in food_type_quantity_sequence:
max_people_possible += food_type_quantity // day
if max_people_possible >= people_quantity:
print(day)
break
```
| 3
|
|
299
|
B
|
Ksusha the Squirrel
|
PROGRAMMING
| 900
|
[
"brute force",
"implementation"
] | null | null |
Ksusha the Squirrel is standing at the beginning of a straight road, divided into *n* sectors. The sectors are numbered 1 to *n*, from left to right. Initially, Ksusha stands in sector 1.
Ksusha wants to walk to the end of the road, that is, get to sector *n*. Unfortunately, there are some rocks on the road. We know that Ksusha hates rocks, so she doesn't want to stand in sectors that have rocks.
Ksusha the squirrel keeps fit. She can jump from sector *i* to any of the sectors *i*<=+<=1,<=*i*<=+<=2,<=...,<=*i*<=+<=*k*.
Help Ksusha! Given the road description, say if she can reach the end of the road (note, she cannot stand on a rock)?
|
The first line contains two integers *n* and *k* (2<=β€<=*n*<=β€<=3Β·105,<=1<=β€<=*k*<=β€<=3Β·105). The next line contains *n* characters β the description of the road: the *i*-th character equals ".", if the *i*-th sector contains no rocks. Otherwise, it equals "#".
It is guaranteed that the first and the last characters equal ".".
|
Print "YES" (without the quotes) if Ksusha can reach the end of the road, otherwise print "NO" (without the quotes).
|
[
"2 1\n..\n",
"5 2\n.#.#.\n",
"7 3\n.#.###.\n"
] |
[
"YES\n",
"YES\n",
"NO\n"
] |
none
| 1,000
|
[
{
"input": "2 1\n..",
"output": "YES"
},
{
"input": "5 2\n.#.#.",
"output": "YES"
},
{
"input": "7 3\n.#.###.",
"output": "NO"
},
{
"input": "2 200\n..",
"output": "YES"
},
{
"input": "2 1\n..",
"output": "YES"
},
{
"input": "2 2\n..",
"output": "YES"
},
{
"input": "2 100000\n..",
"output": "YES"
},
{
"input": "3 1\n.#.",
"output": "NO"
},
{
"input": "3 2\n.#.",
"output": "YES"
},
{
"input": "3 10000\n.#.",
"output": "YES"
}
] | 1,589,110,566
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 33
| 218
| 7,782,400
|
n,k=tuple(map(int,input().split()))
st=input()
s="#"*k
if s in st:
print("NO")
else:
print("YES")
|
Title: Ksusha the Squirrel
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Ksusha the Squirrel is standing at the beginning of a straight road, divided into *n* sectors. The sectors are numbered 1 to *n*, from left to right. Initially, Ksusha stands in sector 1.
Ksusha wants to walk to the end of the road, that is, get to sector *n*. Unfortunately, there are some rocks on the road. We know that Ksusha hates rocks, so she doesn't want to stand in sectors that have rocks.
Ksusha the squirrel keeps fit. She can jump from sector *i* to any of the sectors *i*<=+<=1,<=*i*<=+<=2,<=...,<=*i*<=+<=*k*.
Help Ksusha! Given the road description, say if she can reach the end of the road (note, she cannot stand on a rock)?
Input Specification:
The first line contains two integers *n* and *k* (2<=β€<=*n*<=β€<=3Β·105,<=1<=β€<=*k*<=β€<=3Β·105). The next line contains *n* characters β the description of the road: the *i*-th character equals ".", if the *i*-th sector contains no rocks. Otherwise, it equals "#".
It is guaranteed that the first and the last characters equal ".".
Output Specification:
Print "YES" (without the quotes) if Ksusha can reach the end of the road, otherwise print "NO" (without the quotes).
Demo Input:
['2 1\n..\n', '5 2\n.#.#.\n', '7 3\n.#.###.\n']
Demo Output:
['YES\n', 'YES\n', 'NO\n']
Note:
none
|
```python
n,k=tuple(map(int,input().split()))
st=input()
s="#"*k
if s in st:
print("NO")
else:
print("YES")
```
| 3
|
|
0
|
none
|
none
|
none
| 0
|
[
"none"
] | null | null |
In a small but very proud high school it was decided to win ACM ICPC. This goal requires to compose as many teams of three as possible, but since there were only 6 students who wished to participate, the decision was to build exactly two teams.
After practice competition, participant number *i* got a score of *a**i*. Team score is defined as sum of scores of its participants. High school management is interested if it's possible to build two teams with equal scores. Your task is to answer that question.
|
The single line contains six integers *a*1,<=...,<=*a*6 (0<=β€<=*a**i*<=β€<=1000) β scores of the participants
|
Print "YES" (quotes for clarity), if it is possible to build teams with equal score, and "NO" otherwise.
You can print each character either upper- or lowercase ("YeS" and "yes" are valid when the answer is "YES").
|
[
"1 3 2 1 2 1\n",
"1 1 1 1 1 99\n"
] |
[
"YES\n",
"NO\n"
] |
In the first sample, first team can be composed of 1st, 2nd and 6th participant, second β of 3rd, 4th and 5th: team scores are 1β+β3β+β1β=β2β+β1β+β2β=β5.
In the second sample, score of participant number 6 is too high: his team score will be definitely greater.
| 0
|
[
{
"input": "1 3 2 1 2 1",
"output": "YES"
},
{
"input": "1 1 1 1 1 99",
"output": "NO"
},
{
"input": "1000 1000 1000 1000 1000 1000",
"output": "YES"
},
{
"input": "0 0 0 0 0 0",
"output": "YES"
},
{
"input": "633 609 369 704 573 416",
"output": "NO"
},
{
"input": "353 313 327 470 597 31",
"output": "NO"
},
{
"input": "835 638 673 624 232 266",
"output": "NO"
},
{
"input": "936 342 19 398 247 874",
"output": "NO"
},
{
"input": "417 666 978 553 271 488",
"output": "NO"
},
{
"input": "71 66 124 199 67 147",
"output": "YES"
},
{
"input": "54 26 0 171 239 12",
"output": "YES"
},
{
"input": "72 8 186 92 267 69",
"output": "YES"
},
{
"input": "180 179 188 50 75 214",
"output": "YES"
},
{
"input": "16 169 110 136 404 277",
"output": "YES"
},
{
"input": "101 400 9 200 300 10",
"output": "YES"
},
{
"input": "101 400 200 9 300 10",
"output": "YES"
},
{
"input": "101 200 400 9 300 10",
"output": "YES"
},
{
"input": "101 400 200 300 9 10",
"output": "YES"
},
{
"input": "101 200 400 300 9 10",
"output": "YES"
},
{
"input": "4 4 4 4 5 4",
"output": "NO"
},
{
"input": "2 2 2 2 2 1",
"output": "NO"
},
{
"input": "1000 1000 999 1000 1000 1000",
"output": "NO"
},
{
"input": "129 1 10 29 8 111",
"output": "NO"
},
{
"input": "1000 1000 1000 999 999 1000",
"output": "YES"
},
{
"input": "101 200 300 400 9 10",
"output": "YES"
},
{
"input": "101 400 200 300 10 9",
"output": "YES"
},
{
"input": "101 200 400 300 10 9",
"output": "YES"
},
{
"input": "101 200 300 400 10 9",
"output": "YES"
},
{
"input": "101 200 300 10 400 9",
"output": "YES"
},
{
"input": "1 1 1 1 1 5",
"output": "NO"
},
{
"input": "8 1 1 3 3 0",
"output": "NO"
},
{
"input": "1 1 2 2 3 3",
"output": "YES"
},
{
"input": "1 2 2 5 2 5",
"output": "NO"
},
{
"input": "1 2 3 6 6 6",
"output": "NO"
},
{
"input": "36 91 7 86 51 89",
"output": "NO"
},
{
"input": "10 1 1 1 23 24",
"output": "NO"
},
{
"input": "1 1 1 10 23 24",
"output": "NO"
},
{
"input": "20 10 1 2 3 44",
"output": "NO"
},
{
"input": "7 0 14 11 8 6",
"output": "NO"
},
{
"input": "100 496 1 1 1 1",
"output": "NO"
},
{
"input": "5 4 2 5 11 3",
"output": "NO"
},
{
"input": "1 3 7 8 8 9",
"output": "YES"
},
{
"input": "1 3 4 5 18 19",
"output": "YES"
},
{
"input": "5 5 1 2 2 15",
"output": "NO"
},
{
"input": "2 1 0 0 0 5",
"output": "NO"
},
{
"input": "1 6 6 1 20 2",
"output": "NO"
},
{
"input": "2 10 0 0 0 0",
"output": "NO"
},
{
"input": "1 1 3 1 1 11",
"output": "NO"
},
{
"input": "10 10 1 1 1 37",
"output": "NO"
},
{
"input": "1 1 0 0 0 4",
"output": "NO"
},
{
"input": "1 1 10 1 1 28",
"output": "NO"
},
{
"input": "1 5 5 5 6 8",
"output": "YES"
},
{
"input": "0 2 3 4 4 5",
"output": "YES"
}
] | 1,510,504,261
| 1,561
|
Python 3
|
OK
|
TESTS
| 53
| 62
| 0
|
# cook your dish here
# from math import *
#for _ in range(int(input().strip())):
l=[int(x) for x in input().split()]
s=sum(l)
flag=0
for i in range(1,2**6):
cnt=0
s2=0
for j in range(6):
if (1<<j) & i :
cnt+=1
s2+=l[j]
if cnt==3 and s2==(s//2):
flag=1
break
if flag==1:
break
if s%2==1:
flag=0
if flag:
print("yes")
else:
print("no")
|
Title: none
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
In a small but very proud high school it was decided to win ACM ICPC. This goal requires to compose as many teams of three as possible, but since there were only 6 students who wished to participate, the decision was to build exactly two teams.
After practice competition, participant number *i* got a score of *a**i*. Team score is defined as sum of scores of its participants. High school management is interested if it's possible to build two teams with equal scores. Your task is to answer that question.
Input Specification:
The single line contains six integers *a*1,<=...,<=*a*6 (0<=β€<=*a**i*<=β€<=1000) β scores of the participants
Output Specification:
Print "YES" (quotes for clarity), if it is possible to build teams with equal score, and "NO" otherwise.
You can print each character either upper- or lowercase ("YeS" and "yes" are valid when the answer is "YES").
Demo Input:
['1 3 2 1 2 1\n', '1 1 1 1 1 99\n']
Demo Output:
['YES\n', 'NO\n']
Note:
In the first sample, first team can be composed of 1st, 2nd and 6th participant, second β of 3rd, 4th and 5th: team scores are 1β+β3β+β1β=β2β+β1β+β2β=β5.
In the second sample, score of participant number 6 is too high: his team score will be definitely greater.
|
```python
# cook your dish here
# from math import *
#for _ in range(int(input().strip())):
l=[int(x) for x in input().split()]
s=sum(l)
flag=0
for i in range(1,2**6):
cnt=0
s2=0
for j in range(6):
if (1<<j) & i :
cnt+=1
s2+=l[j]
if cnt==3 and s2==(s//2):
flag=1
break
if flag==1:
break
if s%2==1:
flag=0
if flag:
print("yes")
else:
print("no")
```
| 3
|
|
63
|
B
|
Settlers' Training
|
PROGRAMMING
| 1,200
|
[
"implementation"
] |
B. Settlers' Training
|
2
|
256
|
In a strategic computer game "Settlers II" one has to build defense structures to expand and protect the territory. Let's take one of these buildings. At the moment the defense structure accommodates exactly *n* soldiers. Within this task we can assume that the number of soldiers in the defense structure won't either increase or decrease.
Every soldier has a rank β some natural number from 1 to *k*. 1 stands for a private and *k* stands for a general. The higher the rank of the soldier is, the better he fights. Therefore, the player profits from having the soldiers of the highest possible rank.
To increase the ranks of soldiers they need to train. But the soldiers won't train for free, and each training session requires one golden coin. On each training session all the *n* soldiers are present.
At the end of each training session the soldiers' ranks increase as follows. First all the soldiers are divided into groups with the same rank, so that the least possible number of groups is formed. Then, within each of the groups where the soldiers below the rank *k* are present, exactly one soldier increases his rank by one.
You know the ranks of all *n* soldiers at the moment. Determine the number of golden coins that are needed to increase the ranks of all the soldiers to the rank *k*.
|
The first line contains two integers *n* and *k* (1<=β€<=*n*,<=*k*<=β€<=100). They represent the number of soldiers and the number of different ranks correspondingly. The second line contains *n* numbers in the non-decreasing order. The *i*-th of them, *a**i*, represents the rank of the *i*-th soldier in the defense building (1<=β€<=*i*<=β€<=*n*, 1<=β€<=*a**i*<=β€<=*k*).
|
Print a single integer β the number of golden coins needed to raise all the soldiers to the maximal rank.
|
[
"4 4\n1 2 2 3\n",
"4 3\n1 1 1 1\n"
] |
[
"4",
"5"
] |
In the first example the ranks will be raised in the following manner:
1 2 2 3 βββ 2 2 3 4 βββ 2 3 4 4 βββ 3 4 4 4 βββ 4 4 4 4
Thus totals to 4 training sessions that require 4 golden coins.
| 1,000
|
[
{
"input": "4 4\n1 2 2 3",
"output": "4"
},
{
"input": "4 3\n1 1 1 1",
"output": "5"
},
{
"input": "3 3\n1 2 3",
"output": "2"
},
{
"input": "1 1\n1",
"output": "0"
},
{
"input": "1 5\n1",
"output": "4"
},
{
"input": "1 5\n4",
"output": "1"
},
{
"input": "2 6\n2 5",
"output": "4"
},
{
"input": "6 10\n1 1 3 4 9 9",
"output": "10"
},
{
"input": "7 7\n1 1 1 1 1 1 7",
"output": "11"
},
{
"input": "10 10\n1 1 1 3 3 4 7 8 8 8",
"output": "11"
},
{
"input": "10 13\n1 1 1 1 1 1 1 1 1 1",
"output": "21"
},
{
"input": "10 13\n2 6 6 7 9 9 9 10 12 12",
"output": "11"
},
{
"input": "17 9\n2 3 4 5 5 5 5 5 6 6 7 7 8 8 8 8 8",
"output": "17"
},
{
"input": "18 24\n3 3 3 4 5 7 8 8 9 9 9 9 10 10 11 11 11 11",
"output": "30"
},
{
"input": "23 2\n1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2",
"output": "12"
},
{
"input": "37 42\n1 1 1 1 1 2 2 2 2 2 3 4 4 4 4 5 5 5 5 6 6 6 6 6 6 6 6 7 7 7 7 7 8 8 8 8 8",
"output": "70"
},
{
"input": "44 50\n38 38 38 38 38 38 38 39 39 39 39 39 39 39 40 40 40 40 40 41 41 41 41 41 41 41 42 42 42 43 43 43 44 44 44 44 45 45 45 46 46 46 46 46",
"output": "47"
},
{
"input": "57 100\n2 2 4 7 8 10 12 12 14 15 16 18 19 21 21 22 25 26 26 33 38 40 44 44 44 45 47 47 50 51 51 54 54 54 54 55 56 58 61 65 67 68 68 70 74 75 78 79 83 86 89 90 92 95 96 96 97",
"output": "99"
},
{
"input": "78 10\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9",
"output": "78"
},
{
"input": "96 78\n20 20 20 20 20 21 21 21 22 23 23 24 24 25 25 27 28 29 30 30 30 32 32 32 33 33 33 33 34 34 35 36 37 37 39 39 41 41 41 41 42 42 43 43 43 44 44 45 46 46 48 48 49 50 51 51 51 52 53 55 55 56 56 56 56 57 58 59 60 61 61 61 62 62 62 63 63 64 64 64 65 65 65 66 66 67 68 69 71 72 72 73 73 75 75 75",
"output": "98"
},
{
"input": "100 1\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "0"
},
{
"input": "100 100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "198"
},
{
"input": "100 100\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100",
"output": "0"
},
{
"input": "100 100\n1 1 4 4 5 5 7 9 10 10 11 11 12 12 12 13 14 15 16 16 16 17 18 18 19 20 22 25 26 27 29 32 33 34 34 35 35 35 36 36 37 37 38 39 39 40 41 42 44 44 46 47 47 47 47 50 53 53 53 55 56 56 57 57 58 58 59 59 62 64 64 64 64 68 68 68 69 70 70 71 74 77 77 77 79 80 80 81 84 86 88 88 91 93 94 96 96 99 99 99",
"output": "108"
},
{
"input": "100 100\n1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 3 3 3 3 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 7 7 7 7 8 8 8 8 8 9 9 9 9 9 9 9 10 10 10 10 10 11 11 11 11 11 12 12 12 12 12 12 13 13 13 13 13 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14 15 15 15 15 15",
"output": "184"
},
{
"input": "100 100\n20 20 20 21 21 21 21 21 22 23 23 23 23 23 23 24 24 25 25 26 26 26 26 26 27 27 27 27 28 28 28 28 29 29 29 29 29 30 30 30 30 31 32 32 34 34 34 34 34 34 34 34 35 35 35 36 36 37 37 37 37 37 37 38 38 38 39 40 41 41 42 42 42 42 42 43 43 43 44 44 44 44 44 45 45 45 45 45 46 46 46 46 46 47 47 47 48 48 48 50",
"output": "150"
},
{
"input": "100 2\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2",
"output": "59"
},
{
"input": "30 50\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 49",
"output": "77"
},
{
"input": "40 20\n5 5 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 20 20 20 20 20 20 20 20 20 20",
"output": "31"
},
{
"input": "81 90\n1 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90",
"output": "89"
},
{
"input": "100 20\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 13 13 13 13 13 13 13 13 13",
"output": "106"
},
{
"input": "100 100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 100",
"output": "197"
},
{
"input": "100 100\n49 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 51",
"output": "148"
},
{
"input": "1 100\n1",
"output": "99"
},
{
"input": "4 3\n1 1 2 2",
"output": "4"
},
{
"input": "10 100\n98 99 99 99 99 99 99 100 100 100",
"output": "7"
},
{
"input": "5 100\n1 2 2 100 100",
"output": "100"
}
] | 1,654,795,922
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 37
| 124
| 102,400
|
from collections import Counter
n,k = map(int,input().split())
arr = list(map(int,input().split()))
dit = Counter(arr)
ans = 0
while len(dit) != 1 or k not in dit:
ans+=1
new = {}
for e in dit:
if e != k:
if e+1 in new:
new[e+1] +=1
else:
new[e+1] = 1
if dit[e]>1:
if e in new:
new[e]+=dit[e]-1
else:
new[e] = dit[e]-1
dit = new
# print(dit)
print(ans)
|
Title: Settlers' Training
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
In a strategic computer game "Settlers II" one has to build defense structures to expand and protect the territory. Let's take one of these buildings. At the moment the defense structure accommodates exactly *n* soldiers. Within this task we can assume that the number of soldiers in the defense structure won't either increase or decrease.
Every soldier has a rank β some natural number from 1 to *k*. 1 stands for a private and *k* stands for a general. The higher the rank of the soldier is, the better he fights. Therefore, the player profits from having the soldiers of the highest possible rank.
To increase the ranks of soldiers they need to train. But the soldiers won't train for free, and each training session requires one golden coin. On each training session all the *n* soldiers are present.
At the end of each training session the soldiers' ranks increase as follows. First all the soldiers are divided into groups with the same rank, so that the least possible number of groups is formed. Then, within each of the groups where the soldiers below the rank *k* are present, exactly one soldier increases his rank by one.
You know the ranks of all *n* soldiers at the moment. Determine the number of golden coins that are needed to increase the ranks of all the soldiers to the rank *k*.
Input Specification:
The first line contains two integers *n* and *k* (1<=β€<=*n*,<=*k*<=β€<=100). They represent the number of soldiers and the number of different ranks correspondingly. The second line contains *n* numbers in the non-decreasing order. The *i*-th of them, *a**i*, represents the rank of the *i*-th soldier in the defense building (1<=β€<=*i*<=β€<=*n*, 1<=β€<=*a**i*<=β€<=*k*).
Output Specification:
Print a single integer β the number of golden coins needed to raise all the soldiers to the maximal rank.
Demo Input:
['4 4\n1 2 2 3\n', '4 3\n1 1 1 1\n']
Demo Output:
['4', '5']
Note:
In the first example the ranks will be raised in the following manner:
1 2 2 3 βββ 2 2 3 4 βββ 2 3 4 4 βββ 3 4 4 4 βββ 4 4 4 4
Thus totals to 4 training sessions that require 4 golden coins.
|
```python
from collections import Counter
n,k = map(int,input().split())
arr = list(map(int,input().split()))
dit = Counter(arr)
ans = 0
while len(dit) != 1 or k not in dit:
ans+=1
new = {}
for e in dit:
if e != k:
if e+1 in new:
new[e+1] +=1
else:
new[e+1] = 1
if dit[e]>1:
if e in new:
new[e]+=dit[e]-1
else:
new[e] = dit[e]-1
dit = new
# print(dit)
print(ans)
```
| 3.968809
|
984
|
A
|
Game
|
PROGRAMMING
| 800
|
[
"sortings"
] | null | null |
Two players play a game.
Initially there are $n$ integers $a_1, a_2, \ldots, a_n$ written on the board. Each turn a player selects one number and erases it from the board. This continues until there is only one number left on the board, i.Β e. $n - 1$ turns are made. The first player makes the first move, then players alternate turns.
The first player wants to minimize the last number that would be left on the board, while the second player wants to maximize it.
You want to know what number will be left on the board after $n - 1$ turns if both players make optimal moves.
|
The first line contains one integer $n$ ($1 \le n \le 1000$)Β β the number of numbers on the board.
The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^6$).
|
Print one number that will be left on the board.
|
[
"3\n2 1 3\n",
"3\n2 2 2\n"
] |
[
"2",
"2"
] |
In the first sample, the first player erases $3$ and the second erases $1$. $2$ is left on the board.
In the second sample, $2$ is left on the board regardless of the actions of the players.
| 500
|
[
{
"input": "3\n2 1 3",
"output": "2"
},
{
"input": "3\n2 2 2",
"output": "2"
},
{
"input": "9\n44 53 51 80 5 27 74 79 94",
"output": "53"
},
{
"input": "10\n38 82 23 37 96 4 81 60 67 86",
"output": "60"
},
{
"input": "10\n58 26 77 15 53 81 68 48 22 65",
"output": "53"
},
{
"input": "1\n124",
"output": "124"
},
{
"input": "2\n2 1",
"output": "1"
},
{
"input": "3\n1 1 1000",
"output": "1"
},
{
"input": "2\n322 322",
"output": "322"
},
{
"input": "3\n9 92 12",
"output": "12"
},
{
"input": "3\n1 2 2",
"output": "2"
}
] | 1,596,354,365
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 35
| 109
| 6,963,200
|
t_moves=int(input())
moves=t_moves-1
a=list(map(int, input().split()))
a.sort()
i=0;j=t_moves-1
while moves:
if moves==1:
j-=1
moves-=1
else:
j-=1;i+=1
moves-=2
print(a[j])
|
Title: Game
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Two players play a game.
Initially there are $n$ integers $a_1, a_2, \ldots, a_n$ written on the board. Each turn a player selects one number and erases it from the board. This continues until there is only one number left on the board, i.Β e. $n - 1$ turns are made. The first player makes the first move, then players alternate turns.
The first player wants to minimize the last number that would be left on the board, while the second player wants to maximize it.
You want to know what number will be left on the board after $n - 1$ turns if both players make optimal moves.
Input Specification:
The first line contains one integer $n$ ($1 \le n \le 1000$)Β β the number of numbers on the board.
The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^6$).
Output Specification:
Print one number that will be left on the board.
Demo Input:
['3\n2 1 3\n', '3\n2 2 2\n']
Demo Output:
['2', '2']
Note:
In the first sample, the first player erases $3$ and the second erases $1$. $2$ is left on the board.
In the second sample, $2$ is left on the board regardless of the actions of the players.
|
```python
t_moves=int(input())
moves=t_moves-1
a=list(map(int, input().split()))
a.sort()
i=0;j=t_moves-1
while moves:
if moves==1:
j-=1
moves-=1
else:
j-=1;i+=1
moves-=2
print(a[j])
```
| 3
|
|
769
|
A
|
Year of University Entrance
|
PROGRAMMING
| 800
|
[
"*special",
"implementation",
"sortings"
] | null | null |
There is the faculty of Computer Science in Berland. In the social net "TheContact!" for each course of this faculty there is the special group whose name equals the year of university entrance of corresponding course of students at the university.
Each of students joins the group of his course and joins all groups for which the year of student's university entrance differs by no more than *x* from the year of university entrance of this student, where *x* β some non-negative integer. A value *x* is not given, but it can be uniquely determined from the available data. Note that students don't join other groups.
You are given the list of groups which the student Igor joined. According to this information you need to determine the year of Igor's university entrance.
|
The first line contains the positive odd integer *n* (1<=β€<=*n*<=β€<=5) β the number of groups which Igor joined.
The next line contains *n* distinct integers *a*1,<=*a*2,<=...,<=*a**n* (2010<=β€<=*a**i*<=β€<=2100) β years of student's university entrance for each group in which Igor is the member.
It is guaranteed that the input data is correct and the answer always exists. Groups are given randomly.
|
Print the year of Igor's university entrance.
|
[
"3\n2014 2016 2015\n",
"1\n2050\n"
] |
[
"2015\n",
"2050\n"
] |
In the first test the value *x*β=β1. Igor entered the university in 2015. So he joined groups members of which are students who entered the university in 2014, 2015 and 2016.
In the second test the value *x*β=β0. Igor entered only the group which corresponds to the year of his university entrance.
| 500
|
[
{
"input": "3\n2014 2016 2015",
"output": "2015"
},
{
"input": "1\n2050",
"output": "2050"
},
{
"input": "1\n2010",
"output": "2010"
},
{
"input": "1\n2011",
"output": "2011"
},
{
"input": "3\n2010 2011 2012",
"output": "2011"
},
{
"input": "3\n2049 2047 2048",
"output": "2048"
},
{
"input": "5\n2043 2042 2041 2044 2040",
"output": "2042"
},
{
"input": "5\n2012 2013 2014 2015 2016",
"output": "2014"
},
{
"input": "1\n2045",
"output": "2045"
},
{
"input": "1\n2046",
"output": "2046"
},
{
"input": "1\n2099",
"output": "2099"
},
{
"input": "1\n2100",
"output": "2100"
},
{
"input": "3\n2011 2010 2012",
"output": "2011"
},
{
"input": "3\n2011 2012 2010",
"output": "2011"
},
{
"input": "3\n2012 2011 2010",
"output": "2011"
},
{
"input": "3\n2010 2012 2011",
"output": "2011"
},
{
"input": "3\n2012 2010 2011",
"output": "2011"
},
{
"input": "3\n2047 2048 2049",
"output": "2048"
},
{
"input": "3\n2047 2049 2048",
"output": "2048"
},
{
"input": "3\n2048 2047 2049",
"output": "2048"
},
{
"input": "3\n2048 2049 2047",
"output": "2048"
},
{
"input": "3\n2049 2048 2047",
"output": "2048"
},
{
"input": "5\n2011 2014 2012 2013 2010",
"output": "2012"
},
{
"input": "5\n2014 2013 2011 2012 2015",
"output": "2013"
},
{
"input": "5\n2021 2023 2024 2020 2022",
"output": "2022"
},
{
"input": "5\n2081 2079 2078 2080 2077",
"output": "2079"
},
{
"input": "5\n2095 2099 2097 2096 2098",
"output": "2097"
},
{
"input": "5\n2097 2099 2100 2098 2096",
"output": "2098"
},
{
"input": "5\n2012 2010 2014 2011 2013",
"output": "2012"
},
{
"input": "5\n2012 2011 2013 2015 2014",
"output": "2013"
},
{
"input": "5\n2023 2024 2022 2021 2020",
"output": "2022"
},
{
"input": "5\n2077 2078 2080 2079 2081",
"output": "2079"
},
{
"input": "5\n2099 2096 2095 2097 2098",
"output": "2097"
},
{
"input": "5\n2097 2100 2098 2096 2099",
"output": "2098"
},
{
"input": "5\n2011 2014 2013 2010 2012",
"output": "2012"
},
{
"input": "5\n2013 2011 2015 2012 2014",
"output": "2013"
},
{
"input": "5\n2024 2020 2021 2023 2022",
"output": "2022"
},
{
"input": "5\n2079 2080 2077 2081 2078",
"output": "2079"
},
{
"input": "5\n2095 2097 2096 2098 2099",
"output": "2097"
},
{
"input": "5\n2099 2096 2100 2097 2098",
"output": "2098"
},
{
"input": "5\n2034 2033 2036 2032 2035",
"output": "2034"
},
{
"input": "5\n2030 2031 2033 2032 2029",
"output": "2031"
},
{
"input": "5\n2093 2092 2094 2096 2095",
"output": "2094"
},
{
"input": "5\n2012 2015 2014 2013 2011",
"output": "2013"
},
{
"input": "5\n2056 2057 2058 2059 2060",
"output": "2058"
}
] | 1,636,371,012
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 45
| 46
| 4,300,800
|
n = int(input())
g = list(map(int, input().split()))
print(sum(g) // n)
|
Title: Year of University Entrance
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
There is the faculty of Computer Science in Berland. In the social net "TheContact!" for each course of this faculty there is the special group whose name equals the year of university entrance of corresponding course of students at the university.
Each of students joins the group of his course and joins all groups for which the year of student's university entrance differs by no more than *x* from the year of university entrance of this student, where *x* β some non-negative integer. A value *x* is not given, but it can be uniquely determined from the available data. Note that students don't join other groups.
You are given the list of groups which the student Igor joined. According to this information you need to determine the year of Igor's university entrance.
Input Specification:
The first line contains the positive odd integer *n* (1<=β€<=*n*<=β€<=5) β the number of groups which Igor joined.
The next line contains *n* distinct integers *a*1,<=*a*2,<=...,<=*a**n* (2010<=β€<=*a**i*<=β€<=2100) β years of student's university entrance for each group in which Igor is the member.
It is guaranteed that the input data is correct and the answer always exists. Groups are given randomly.
Output Specification:
Print the year of Igor's university entrance.
Demo Input:
['3\n2014 2016 2015\n', '1\n2050\n']
Demo Output:
['2015\n', '2050\n']
Note:
In the first test the value *x*β=β1. Igor entered the university in 2015. So he joined groups members of which are students who entered the university in 2014, 2015 and 2016.
In the second test the value *x*β=β0. Igor entered only the group which corresponds to the year of his university entrance.
|
```python
n = int(input())
g = list(map(int, input().split()))
print(sum(g) // n)
```
| 3
|
|
580
|
C
|
Kefa and Park
|
PROGRAMMING
| 1,500
|
[
"dfs and similar",
"graphs",
"trees"
] | null | null |
Kefa decided to celebrate his first big salary by going to the restaurant.
He lives by an unusual park. The park is a rooted tree consisting of *n* vertices with the root at vertex 1. Vertex 1 also contains Kefa's house. Unfortunaely for our hero, the park also contains cats. Kefa has already found out what are the vertices with cats in them.
The leaf vertices of the park contain restaurants. Kefa wants to choose a restaurant where he will go, but unfortunately he is very afraid of cats, so there is no way he will go to the restaurant if the path from the restaurant to his house contains more than *m* consecutive vertices with cats.
Your task is to help Kefa count the number of restaurants where he can go.
|
The first line contains two integers, *n* and *m* (2<=β€<=*n*<=β€<=105, 1<=β€<=*m*<=β€<=*n*) β the number of vertices of the tree and the maximum number of consecutive vertices with cats that is still ok for Kefa.
The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n*, where each *a**i* either equals to 0 (then vertex *i* has no cat), or equals to 1 (then vertex *i* has a cat).
Next *n*<=-<=1 lines contains the edges of the tree in the format "*x**i* *y**i*" (without the quotes) (1<=β€<=*x**i*,<=*y**i*<=β€<=*n*, *x**i*<=β <=*y**i*), where *x**i* and *y**i* are the vertices of the tree, connected by an edge.
It is guaranteed that the given set of edges specifies a tree.
|
A single integer β the number of distinct leaves of a tree the path to which from Kefa's home contains at most *m* consecutive vertices with cats.
|
[
"4 1\n1 1 0 0\n1 2\n1 3\n1 4\n",
"7 1\n1 0 1 1 0 0 0\n1 2\n1 3\n2 4\n2 5\n3 6\n3 7\n"
] |
[
"2\n",
"2\n"
] |
Let us remind you that a tree is a connected graph on *n* vertices and *n*β-β1 edge. A rooted tree is a tree with a special vertex called root. In a rooted tree among any two vertices connected by an edge, one vertex is a parent (the one closer to the root), and the other one is a child. A vertex is called a leaf, if it has no children.
Note to the first sample test: <img class="tex-graphics" src="https://espresso.codeforces.com/785114b4b3f5336f02078c25750f87c5a1d0b4be.png" style="max-width: 100.0%;max-height: 100.0%;"/> The vertices containing cats are marked red. The restaurants are at vertices 2, 3, 4. Kefa can't go only to the restaurant located at vertex 2.
Note to the second sample test: <img class="tex-graphics" src="https://espresso.codeforces.com/e5c07640680c837aec99126d94287872e69aa09a.png" style="max-width: 100.0%;max-height: 100.0%;"/> The restaurants are located at vertices 4, 5, 6, 7. Kefa can't go to restaurants 6, 7.
| 1,500
|
[
{
"input": "4 1\n1 1 0 0\n1 2\n1 3\n1 4",
"output": "2"
},
{
"input": "7 1\n1 0 1 1 0 0 0\n1 2\n1 3\n2 4\n2 5\n3 6\n3 7",
"output": "2"
},
{
"input": "3 2\n1 1 1\n1 2\n2 3",
"output": "0"
},
{
"input": "5 2\n1 1 0 1 1\n1 2\n2 3\n3 4\n4 5",
"output": "1"
},
{
"input": "6 1\n1 0 1 1 0 0\n1 2\n1 3\n1 4\n1 5\n1 6",
"output": "3"
},
{
"input": "7 3\n1 1 1 1 1 0 1\n1 2\n1 3\n2 4\n3 5\n5 6\n6 7",
"output": "2"
},
{
"input": "15 2\n1 0 1 0 1 0 0 0 0 0 0 0 0 0 0\n1 2\n1 3\n2 4\n2 5\n3 6\n3 7\n4 8\n4 9\n5 10\n5 11\n6 12\n6 13\n7 14\n7 15",
"output": "8"
},
{
"input": "2 1\n1 1\n2 1",
"output": "0"
},
{
"input": "12 3\n1 0 1 0 1 1 1 1 0 0 0 0\n6 7\n12 1\n9 7\n1 4\n10 7\n7 1\n11 8\n5 1\n3 7\n5 8\n4 2",
"output": "7"
}
] | 1,692,007,401
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 40
| 780
| 24,576,000
|
n, m = map(int, input().split())
a = list(map(int, input().split()))
adjlist = [[] for _ in range(n)]
for i in range(n-1):
x, y = map(int, input().split())
adjlist[x-1] += [y-1]
adjlist[y-1] += [x-1]
def dfs(node: int) ->int:
seen = [0]*n
ret = 0
s = [(node, 0)]
seen[node] = 1
while s:
cur, cat = s.pop()
if a[cur]: cat += 1
else: cat = 0
if cat > m: continue
isLeaf = True
for nb in adjlist[cur]:
if not seen[nb]:
seen[nb] = 1
s.append((nb, cat))
isLeaf = False
if isLeaf: ret += 1
return ret
ans = dfs(0)
print(ans)
|
Title: Kefa and Park
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Kefa decided to celebrate his first big salary by going to the restaurant.
He lives by an unusual park. The park is a rooted tree consisting of *n* vertices with the root at vertex 1. Vertex 1 also contains Kefa's house. Unfortunaely for our hero, the park also contains cats. Kefa has already found out what are the vertices with cats in them.
The leaf vertices of the park contain restaurants. Kefa wants to choose a restaurant where he will go, but unfortunately he is very afraid of cats, so there is no way he will go to the restaurant if the path from the restaurant to his house contains more than *m* consecutive vertices with cats.
Your task is to help Kefa count the number of restaurants where he can go.
Input Specification:
The first line contains two integers, *n* and *m* (2<=β€<=*n*<=β€<=105, 1<=β€<=*m*<=β€<=*n*) β the number of vertices of the tree and the maximum number of consecutive vertices with cats that is still ok for Kefa.
The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n*, where each *a**i* either equals to 0 (then vertex *i* has no cat), or equals to 1 (then vertex *i* has a cat).
Next *n*<=-<=1 lines contains the edges of the tree in the format "*x**i* *y**i*" (without the quotes) (1<=β€<=*x**i*,<=*y**i*<=β€<=*n*, *x**i*<=β <=*y**i*), where *x**i* and *y**i* are the vertices of the tree, connected by an edge.
It is guaranteed that the given set of edges specifies a tree.
Output Specification:
A single integer β the number of distinct leaves of a tree the path to which from Kefa's home contains at most *m* consecutive vertices with cats.
Demo Input:
['4 1\n1 1 0 0\n1 2\n1 3\n1 4\n', '7 1\n1 0 1 1 0 0 0\n1 2\n1 3\n2 4\n2 5\n3 6\n3 7\n']
Demo Output:
['2\n', '2\n']
Note:
Let us remind you that a tree is a connected graph on *n* vertices and *n*β-β1 edge. A rooted tree is a tree with a special vertex called root. In a rooted tree among any two vertices connected by an edge, one vertex is a parent (the one closer to the root), and the other one is a child. A vertex is called a leaf, if it has no children.
Note to the first sample test: <img class="tex-graphics" src="https://espresso.codeforces.com/785114b4b3f5336f02078c25750f87c5a1d0b4be.png" style="max-width: 100.0%;max-height: 100.0%;"/> The vertices containing cats are marked red. The restaurants are at vertices 2, 3, 4. Kefa can't go only to the restaurant located at vertex 2.
Note to the second sample test: <img class="tex-graphics" src="https://espresso.codeforces.com/e5c07640680c837aec99126d94287872e69aa09a.png" style="max-width: 100.0%;max-height: 100.0%;"/> The restaurants are located at vertices 4, 5, 6, 7. Kefa can't go to restaurants 6, 7.
|
```python
n, m = map(int, input().split())
a = list(map(int, input().split()))
adjlist = [[] for _ in range(n)]
for i in range(n-1):
x, y = map(int, input().split())
adjlist[x-1] += [y-1]
adjlist[y-1] += [x-1]
def dfs(node: int) ->int:
seen = [0]*n
ret = 0
s = [(node, 0)]
seen[node] = 1
while s:
cur, cat = s.pop()
if a[cur]: cat += 1
else: cat = 0
if cat > m: continue
isLeaf = True
for nb in adjlist[cur]:
if not seen[nb]:
seen[nb] = 1
s.append((nb, cat))
isLeaf = False
if isLeaf: ret += 1
return ret
ans = dfs(0)
print(ans)
```
| 3
|
|
50
|
B
|
Choosing Symbol Pairs
|
PROGRAMMING
| 1,500
|
[
"strings"
] |
B. Choosing Symbol Pairs
|
2
|
256
|
There is a given string *S* consisting of *N* symbols. Your task is to find the number of ordered pairs of integers *i* and *j* such that
1. 1<=β€<=*i*,<=*j*<=β€<=*N*
2. *S*[*i*]<==<=*S*[*j*], that is the *i*-th symbol of string *S* is equal to the *j*-th.
|
The single input line contains *S*, consisting of lowercase Latin letters and digits. It is guaranteed that string *S* in not empty and its length does not exceed 105.
|
Print a single number which represents the number of pairs *i* and *j* with the needed property. Pairs (*x*,<=*y*) and (*y*,<=*x*) should be considered different, i.e. the ordered pairs count.
|
[
"great10\n",
"aaaaaaaaaa\n"
] |
[
"7\n",
"100\n"
] |
none
| 1,000
|
[
{
"input": "great10",
"output": "7"
},
{
"input": "aaaaaaaaaa",
"output": "100"
},
{
"input": "great10",
"output": "7"
},
{
"input": "aaaaaaaaaa",
"output": "100"
},
{
"input": "aabb",
"output": "8"
},
{
"input": "w",
"output": "1"
},
{
"input": "129a",
"output": "4"
},
{
"input": "233444",
"output": "14"
},
{
"input": "abacaba",
"output": "21"
},
{
"input": "abcdefghijklmnopqrstuvwxyz0987654321abcdefghijklmnopqrstuvwxyz0987654321abcdefghijklmnopqrstuvwxyz0987654321",
"output": "324"
},
{
"input": "zazaeeeeeeeq34443333444tttttt",
"output": "155"
},
{
"input": "00000000000000000000000",
"output": "529"
},
{
"input": "999000888775646453342311",
"output": "62"
}
] | 1,640,658,564
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 30
| 124
| 0
|
a=input()
b={}
c=0
for i in a:
b[i]=b.get(i,0)+1
for f in b.values():
c+=f**2
print(c)
|
Title: Choosing Symbol Pairs
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
There is a given string *S* consisting of *N* symbols. Your task is to find the number of ordered pairs of integers *i* and *j* such that
1. 1<=β€<=*i*,<=*j*<=β€<=*N*
2. *S*[*i*]<==<=*S*[*j*], that is the *i*-th symbol of string *S* is equal to the *j*-th.
Input Specification:
The single input line contains *S*, consisting of lowercase Latin letters and digits. It is guaranteed that string *S* in not empty and its length does not exceed 105.
Output Specification:
Print a single number which represents the number of pairs *i* and *j* with the needed property. Pairs (*x*,<=*y*) and (*y*,<=*x*) should be considered different, i.e. the ordered pairs count.
Demo Input:
['great10\n', 'aaaaaaaaaa\n']
Demo Output:
['7\n', '100\n']
Note:
none
|
```python
a=input()
b={}
c=0
for i in a:
b[i]=b.get(i,0)+1
for f in b.values():
c+=f**2
print(c)
```
| 3.969
|
727
|
C
|
Guess the Array
|
PROGRAMMING
| 1,400
|
[
"constructive algorithms",
"interactive",
"math"
] | null | null |
This is an interactive problem. You should use flush operation after each printed line. For example, in C++ you should use fflush(stdout), in Java you should use System.out.flush(), and in PascalΒ β flush(output).
In this problem you should guess an array *a* which is unknown for you. The only information you have initially is the length *n* of the array *a*.
The only allowed action is to ask the sum of two elements by their indices. Formally, you can print two indices *i* and *j* (the indices should be distinct). Then your program should read the response: the single integer equals to *a**i*<=+<=*a**j*.
It is easy to prove that it is always possible to guess the array using at most *n* requests.
Write a program that will guess the array *a* by making at most *n* requests.
|
none
|
none
|
[
"5\nΒ \n9\nΒ \n7\nΒ \n9\nΒ \n11\nΒ \n6\nΒ "
] |
[
"? 1 5\nΒ \n? 2 3\nΒ \n? 4 1\nΒ \n? 5 2\nΒ \n? 3 4\nΒ \n! 4 6 1 5 5"
] |
The format of a test to make a hack is:
- The first line contains an integer number *n* (3ββ€β*n*ββ€β5000)Β β the length of the array.- The second line contains *n* numbers *a*<sub class="lower-index">1</sub>,β*a*<sub class="lower-index">2</sub>,β...,β*a*<sub class="lower-index">*n*</sub> (1ββ€β*a*<sub class="lower-index">*i*</sub>ββ€β10<sup class="upper-index">5</sup>)Β β the elements of the array to guess.
| 1,500
|
[
{
"input": "5\n4 6 1 5 5",
"output": "5 out of 5"
},
{
"input": "3\n1 1 1",
"output": "3 out of 3"
},
{
"input": "4\n100 1 100 1",
"output": "4 out of 4"
},
{
"input": "10\n9 5 10 7 4 4 8 5 10 5",
"output": "10 out of 10"
},
{
"input": "3\n1 1 1",
"output": "3 out of 3"
},
{
"input": "3\n100000 100000 100000",
"output": "3 out of 3"
},
{
"input": "3\n91906 50782 19777",
"output": "3 out of 3"
},
{
"input": "15\n5 10 10 7 7 6 4 6 8 10 8 4 10 9 4",
"output": "15 out of 15"
},
{
"input": "30\n2 3 3 4 3 2 4 4 4 3 3 2 4 2 3 4 4 2 4 3 4 2 2 4 3 3 4 4 4 4",
"output": "30 out of 30"
},
{
"input": "35\n4 2 2 2 4 4 3 2 4 2 2 4 2 2 3 2 3 4 4 2 3 2 2 4 3 3 3 3 4 2 3 2 2 2 3",
"output": "35 out of 35"
},
{
"input": "40\n3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3",
"output": "40 out of 40"
},
{
"input": "47\n3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3",
"output": "47 out of 47"
},
{
"input": "100\n76 92 53 18 65 98 100 65 93 72 100 44 70 62 78 61 89 89 80 32 88 64 67 27 46 30 75 14 78 94 8 86 41 9 68 38 76 29 69 44 23 23 14 24 97 14 7 98 45 80 55 71 58 35 41 100 60 54 64 85 56 98 87 93 40 62 92 6 7 27 88 85 10 94 25 43 99 65 82 65 39 34 17 100 49 27 4 15 84 10 35 76 98 52 72 17 43 10 49 5",
"output": "100 out of 100"
}
] | 1,653,237,519
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 36
| 374
| 10,444,800
|
nnums = int(input())
ans = [-1] * nnums
print("? 1 2", flush = True)
a = int(input())
print("? 2 3", flush = True)
b = int(input())
print("? 3 1", flush = True)
c = int(input())
ans[0 : 3] = [(a-b+c)/2, (b-c+a)/2, (c-a+b)/2]
for i in range(3, nnums):
print("? " + str(i) + " " + str(i+1), flush = True)
ans[i] = int(input()) - ans[i-1]
print('!', *map(int, ans))
|
Title: Guess the Array
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
This is an interactive problem. You should use flush operation after each printed line. For example, in C++ you should use fflush(stdout), in Java you should use System.out.flush(), and in PascalΒ β flush(output).
In this problem you should guess an array *a* which is unknown for you. The only information you have initially is the length *n* of the array *a*.
The only allowed action is to ask the sum of two elements by their indices. Formally, you can print two indices *i* and *j* (the indices should be distinct). Then your program should read the response: the single integer equals to *a**i*<=+<=*a**j*.
It is easy to prove that it is always possible to guess the array using at most *n* requests.
Write a program that will guess the array *a* by making at most *n* requests.
Input Specification:
none
Output Specification:
none
Demo Input:
['5\n\xa0\n9\n\xa0\n7\n\xa0\n9\n\xa0\n11\n\xa0\n6\n\xa0']
Demo Output:
['? 1 5\n\xa0\n? 2 3\n\xa0\n? 4 1\n\xa0\n? 5 2\n\xa0\n? 3 4\n\xa0\n! 4 6 1 5 5']
Note:
The format of a test to make a hack is:
- The first line contains an integer number *n* (3ββ€β*n*ββ€β5000)Β β the length of the array.- The second line contains *n* numbers *a*<sub class="lower-index">1</sub>,β*a*<sub class="lower-index">2</sub>,β...,β*a*<sub class="lower-index">*n*</sub> (1ββ€β*a*<sub class="lower-index">*i*</sub>ββ€β10<sup class="upper-index">5</sup>)Β β the elements of the array to guess.
|
```python
nnums = int(input())
ans = [-1] * nnums
print("? 1 2", flush = True)
a = int(input())
print("? 2 3", flush = True)
b = int(input())
print("? 3 1", flush = True)
c = int(input())
ans[0 : 3] = [(a-b+c)/2, (b-c+a)/2, (c-a+b)/2]
for i in range(3, nnums):
print("? " + str(i) + " " + str(i+1), flush = True)
ans[i] = int(input()) - ans[i-1]
print('!', *map(int, ans))
```
| 3
|
|
344
|
A
|
Magnets
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Mad scientist Mike entertains himself by arranging rows of dominoes. He doesn't need dominoes, though: he uses rectangular magnets instead. Each magnet has two poles, positive (a "plus") and negative (a "minus"). If two magnets are put together at a close distance, then the like poles will repel each other and the opposite poles will attract each other.
Mike starts by laying one magnet horizontally on the table. During each following step Mike adds one more magnet horizontally to the right end of the row. Depending on how Mike puts the magnet on the table, it is either attracted to the previous one (forming a group of multiple magnets linked together) or repelled by it (then Mike lays this magnet at some distance to the right from the previous one). We assume that a sole magnet not linked to others forms a group of its own.
Mike arranged multiple magnets in a row. Determine the number of groups that the magnets formed.
|
The first line of the input contains an integer *n* (1<=β€<=*n*<=β€<=100000) β the number of magnets. Then *n* lines follow. The *i*-th line (1<=β€<=*i*<=β€<=*n*) contains either characters "01", if Mike put the *i*-th magnet in the "plus-minus" position, or characters "10", if Mike put the magnet in the "minus-plus" position.
|
On the single line of the output print the number of groups of magnets.
|
[
"6\n10\n10\n10\n01\n10\n10\n",
"4\n01\n01\n10\n10\n"
] |
[
"3\n",
"2\n"
] |
The first testcase corresponds to the figure. The testcase has three groups consisting of three, one and two magnets.
The second testcase has two groups, each consisting of two magnets.
| 500
|
[
{
"input": "6\n10\n10\n10\n01\n10\n10",
"output": "3"
},
{
"input": "4\n01\n01\n10\n10",
"output": "2"
},
{
"input": "1\n10",
"output": "1"
},
{
"input": "2\n01\n10",
"output": "2"
},
{
"input": "2\n10\n10",
"output": "1"
},
{
"input": "3\n10\n01\n10",
"output": "3"
},
{
"input": "1\n01",
"output": "1"
},
{
"input": "2\n01\n01",
"output": "1"
},
{
"input": "2\n10\n01",
"output": "2"
},
{
"input": "3\n01\n01\n01",
"output": "1"
},
{
"input": "3\n10\n10\n01",
"output": "2"
},
{
"input": "3\n01\n10\n10",
"output": "2"
},
{
"input": "115\n10\n10\n10\n10\n01\n01\n10\n10\n10\n01\n01\n10\n01\n01\n10\n10\n10\n01\n10\n01\n10\n10\n01\n01\n10\n10\n10\n10\n01\n10\n01\n01\n10\n10\n10\n10\n01\n10\n10\n10\n01\n10\n01\n10\n10\n10\n10\n01\n01\n01\n10\n10\n01\n01\n01\n10\n10\n01\n10\n01\n01\n01\n01\n10\n10\n01\n10\n01\n01\n01\n01\n01\n10\n01\n10\n10\n01\n01\n01\n10\n01\n01\n10\n10\n01\n01\n01\n01\n01\n10\n01\n10\n01\n10\n01\n01\n01\n10\n01\n10\n10\n01\n10\n10\n01\n01\n01\n10\n10\n10\n10\n10\n10\n10\n10",
"output": "55"
}
] | 1,690,561,131
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 31
| 156
| 0
|
import sys
sys.setrecursionlimit(100000000)
input=lambda:sys.stdin.readline().strip()
write=lambda x:sys.stdout.write(str(x))
# from random import randint
# from copy import deepcopy
# from collections import deque
# from heapq import heapify,heappush,heappop
# from bisect import bisect_left,bisect,insort
# from math import inf,sqrt,gcd,ceil,floor,log,log2,log10
# from functools import cmp_to_key
n=int(input())
cnt=1
last=input()
for i in range(n-1):
s=input()
if s[0]==last[-1]:
cnt+=1
last=s
print(cnt)
|
Title: Magnets
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Mad scientist Mike entertains himself by arranging rows of dominoes. He doesn't need dominoes, though: he uses rectangular magnets instead. Each magnet has two poles, positive (a "plus") and negative (a "minus"). If two magnets are put together at a close distance, then the like poles will repel each other and the opposite poles will attract each other.
Mike starts by laying one magnet horizontally on the table. During each following step Mike adds one more magnet horizontally to the right end of the row. Depending on how Mike puts the magnet on the table, it is either attracted to the previous one (forming a group of multiple magnets linked together) or repelled by it (then Mike lays this magnet at some distance to the right from the previous one). We assume that a sole magnet not linked to others forms a group of its own.
Mike arranged multiple magnets in a row. Determine the number of groups that the magnets formed.
Input Specification:
The first line of the input contains an integer *n* (1<=β€<=*n*<=β€<=100000) β the number of magnets. Then *n* lines follow. The *i*-th line (1<=β€<=*i*<=β€<=*n*) contains either characters "01", if Mike put the *i*-th magnet in the "plus-minus" position, or characters "10", if Mike put the magnet in the "minus-plus" position.
Output Specification:
On the single line of the output print the number of groups of magnets.
Demo Input:
['6\n10\n10\n10\n01\n10\n10\n', '4\n01\n01\n10\n10\n']
Demo Output:
['3\n', '2\n']
Note:
The first testcase corresponds to the figure. The testcase has three groups consisting of three, one and two magnets.
The second testcase has two groups, each consisting of two magnets.
|
```python
import sys
sys.setrecursionlimit(100000000)
input=lambda:sys.stdin.readline().strip()
write=lambda x:sys.stdout.write(str(x))
# from random import randint
# from copy import deepcopy
# from collections import deque
# from heapq import heapify,heappush,heappop
# from bisect import bisect_left,bisect,insort
# from math import inf,sqrt,gcd,ceil,floor,log,log2,log10
# from functools import cmp_to_key
n=int(input())
cnt=1
last=input()
for i in range(n-1):
s=input()
if s[0]==last[-1]:
cnt+=1
last=s
print(cnt)
```
| 3
|
|
712
|
A
|
Memory and Crow
|
PROGRAMMING
| 800
|
[
"implementation",
"math"
] | null | null |
There are *n* integers *b*1,<=*b*2,<=...,<=*b**n* written in a row. For all *i* from 1 to *n*, values *a**i* are defined by the crows performing the following procedure:
- The crow sets *a**i* initially 0. - The crow then adds *b**i* to *a**i*, subtracts *b**i*<=+<=1, adds the *b**i*<=+<=2 number, and so on until the *n*'th number. Thus, *a**i*<==<=*b**i*<=-<=*b**i*<=+<=1<=+<=*b**i*<=+<=2<=-<=*b**i*<=+<=3....
Memory gives you the values *a*1,<=*a*2,<=...,<=*a**n*, and he now wants you to find the initial numbers *b*1,<=*b*2,<=...,<=*b**n* written in the row? Can you do it?
|
The first line of the input contains a single integer *n* (2<=β€<=*n*<=β€<=100<=000)Β β the number of integers written in the row.
The next line contains *n*, the *i*'th of which is *a**i* (<=-<=109<=β€<=*a**i*<=β€<=109)Β β the value of the *i*'th number.
|
Print *n* integers corresponding to the sequence *b*1,<=*b*2,<=...,<=*b**n*. It's guaranteed that the answer is unique and fits in 32-bit integer type.
|
[
"5\n6 -4 8 -2 3\n",
"5\n3 -2 -1 5 6\n"
] |
[
"2 4 6 1 3 \n",
"1 -3 4 11 6 \n"
] |
In the first sample test, the crows report the numbers 6,β-β4, 8,β-β2, and 3 when he starts at indices 1, 2, 3, 4 and 5 respectively. It is easy to check that the sequence 2 4 6 1 3 satisfies the reports. For example, 6β=β2β-β4β+β6β-β1β+β3, and β-β4β=β4β-β6β+β1β-β3.
In the second sample test, the sequence 1, β-β3, 4, 11, 6 satisfies the reports. For example, 5β=β11β-β6 and 6β=β6.
| 500
|
[
{
"input": "5\n6 -4 8 -2 3",
"output": "2 4 6 1 3 "
},
{
"input": "5\n3 -2 -1 5 6",
"output": "1 -3 4 11 6 "
},
{
"input": "10\n13 -2 532 -63 -23 -63 -64 -23 12 10",
"output": "11 530 469 -86 -86 -127 -87 -11 22 10 "
},
{
"input": "10\n0 0 0 0 0 0 0 0 0 0",
"output": "0 0 0 0 0 0 0 0 0 0 "
},
{
"input": "10\n1 -1 1 -1 1 -1 1 -1 1 -1",
"output": "0 0 0 0 0 0 0 0 0 -1 "
},
{
"input": "10\n-1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000",
"output": "0 0 0 0 0 0 0 0 0 1000000000 "
},
{
"input": "10\n124 532 -642 6482 -124 952 -235 7594 34 -12",
"output": "656 -110 5840 6358 828 717 7359 7628 22 -12 "
},
{
"input": "10\n1294 35852 32749 537295 12048 53729 29357 58320 64739 1240",
"output": "37146 68601 570044 549343 65777 83086 87677 123059 65979 1240 "
}
] | 1,567,770,522
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 49
| 373
| 8,499,200
|
n=int(input())
l=list(map(int,input().split()))
k=[]
r=0
for i in range(len(l)):
if i==len(l)-1:
r=l[len(l)-1]
print(r,end=" ")
else:
r=l[i+1]+l[i]
print(r,end=" ")
|
Title: Memory and Crow
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
There are *n* integers *b*1,<=*b*2,<=...,<=*b**n* written in a row. For all *i* from 1 to *n*, values *a**i* are defined by the crows performing the following procedure:
- The crow sets *a**i* initially 0. - The crow then adds *b**i* to *a**i*, subtracts *b**i*<=+<=1, adds the *b**i*<=+<=2 number, and so on until the *n*'th number. Thus, *a**i*<==<=*b**i*<=-<=*b**i*<=+<=1<=+<=*b**i*<=+<=2<=-<=*b**i*<=+<=3....
Memory gives you the values *a*1,<=*a*2,<=...,<=*a**n*, and he now wants you to find the initial numbers *b*1,<=*b*2,<=...,<=*b**n* written in the row? Can you do it?
Input Specification:
The first line of the input contains a single integer *n* (2<=β€<=*n*<=β€<=100<=000)Β β the number of integers written in the row.
The next line contains *n*, the *i*'th of which is *a**i* (<=-<=109<=β€<=*a**i*<=β€<=109)Β β the value of the *i*'th number.
Output Specification:
Print *n* integers corresponding to the sequence *b*1,<=*b*2,<=...,<=*b**n*. It's guaranteed that the answer is unique and fits in 32-bit integer type.
Demo Input:
['5\n6 -4 8 -2 3\n', '5\n3 -2 -1 5 6\n']
Demo Output:
['2 4 6 1 3 \n', '1 -3 4 11 6 \n']
Note:
In the first sample test, the crows report the numbers 6,β-β4, 8,β-β2, and 3 when he starts at indices 1, 2, 3, 4 and 5 respectively. It is easy to check that the sequence 2 4 6 1 3 satisfies the reports. For example, 6β=β2β-β4β+β6β-β1β+β3, and β-β4β=β4β-β6β+β1β-β3.
In the second sample test, the sequence 1, β-β3, 4, 11, 6 satisfies the reports. For example, 5β=β11β-β6 and 6β=β6.
|
```python
n=int(input())
l=list(map(int,input().split()))
k=[]
r=0
for i in range(len(l)):
if i==len(l)-1:
r=l[len(l)-1]
print(r,end=" ")
else:
r=l[i+1]+l[i]
print(r,end=" ")
```
| 3
|
|
645
|
B
|
Mischievous Mess Makers
|
PROGRAMMING
| 1,200
|
[
"greedy",
"math"
] | null | null |
It is a balmy spring afternoon, and Farmer John's *n* cows are ruminating about link-cut cacti in their stalls. The cows, labeled 1 through *n*, are arranged so that the *i*-th cow occupies the *i*-th stall from the left. However, Elsie, after realizing that she will forever live in the shadows beyond Bessie's limelight, has formed the Mischievous Mess Makers and is plotting to disrupt this beautiful pastoral rhythm. While Farmer John takes his *k* minute long nap, Elsie and the Mess Makers plan to repeatedly choose two distinct stalls and swap the cows occupying those stalls, making no more than one swap each minute.
Being the meticulous pranksters that they are, the Mischievous Mess Makers would like to know the maximum messiness attainable in the *k* minutes that they have. We denote as *p**i* the label of the cow in the *i*-th stall. The messiness of an arrangement of cows is defined as the number of pairs (*i*,<=*j*) such that *i*<=<<=*j* and *p**i*<=><=*p**j*.
|
The first line of the input contains two integers *n* and *k* (1<=β€<=*n*,<=*k*<=β€<=100<=000)Β β the number of cows and the length of Farmer John's nap, respectively.
|
Output a single integer, the maximum messiness that the Mischievous Mess Makers can achieve by performing no more than *k* swaps.
|
[
"5 2\n",
"1 10\n"
] |
[
"10\n",
"0\n"
] |
In the first sample, the Mischievous Mess Makers can swap the cows in the stalls 1 and 5 during the first minute, then the cows in stalls 2 and 4 during the second minute. This reverses the arrangement of cows, giving us a total messiness of 10.
In the second sample, there is only one cow, so the maximum possible messiness is 0.
| 1,000
|
[
{
"input": "5 2",
"output": "10"
},
{
"input": "1 10",
"output": "0"
},
{
"input": "100000 2",
"output": "399990"
},
{
"input": "1 1",
"output": "0"
},
{
"input": "8 3",
"output": "27"
},
{
"input": "7 1",
"output": "11"
},
{
"input": "100000 40000",
"output": "4799960000"
},
{
"input": "1 1000",
"output": "0"
},
{
"input": "100 45",
"output": "4905"
},
{
"input": "9 2",
"output": "26"
},
{
"input": "456 78",
"output": "58890"
},
{
"input": "100000 50000",
"output": "4999950000"
},
{
"input": "100000 50001",
"output": "4999950000"
},
{
"input": "100000 50002",
"output": "4999950000"
},
{
"input": "100000 50003",
"output": "4999950000"
},
{
"input": "100000 49998",
"output": "4999949994"
},
{
"input": "100000 49997",
"output": "4999949985"
},
{
"input": "99999 49998",
"output": "4999849998"
},
{
"input": "99999 49997",
"output": "4999849991"
},
{
"input": "99999 49996",
"output": "4999849980"
},
{
"input": "99999 50000",
"output": "4999850001"
},
{
"input": "99999 50001",
"output": "4999850001"
},
{
"input": "99999 50002",
"output": "4999850001"
},
{
"input": "30062 9",
"output": "540945"
},
{
"input": "13486 3",
"output": "80895"
},
{
"input": "29614 7",
"output": "414491"
},
{
"input": "13038 8",
"output": "208472"
},
{
"input": "96462 6",
"output": "1157466"
},
{
"input": "22599 93799",
"output": "255346101"
},
{
"input": "421 36817",
"output": "88410"
},
{
"input": "72859 65869",
"output": "2654180511"
},
{
"input": "37916 5241",
"output": "342494109"
},
{
"input": "47066 12852",
"output": "879423804"
},
{
"input": "84032 21951",
"output": "2725458111"
},
{
"input": "70454 75240",
"output": "2481847831"
},
{
"input": "86946 63967",
"output": "3779759985"
},
{
"input": "71128 11076",
"output": "1330260828"
},
{
"input": "46111 64940",
"output": "1063089105"
},
{
"input": "46111 64940",
"output": "1063089105"
},
{
"input": "56500 84184",
"output": "1596096750"
},
{
"input": "60108 83701",
"output": "1806455778"
},
{
"input": "1 2",
"output": "0"
},
{
"input": "1 3",
"output": "0"
},
{
"input": "1 4",
"output": "0"
},
{
"input": "1 5",
"output": "0"
},
{
"input": "1 6",
"output": "0"
},
{
"input": "2 1",
"output": "1"
},
{
"input": "2 2",
"output": "1"
},
{
"input": "2 3",
"output": "1"
},
{
"input": "2 4",
"output": "1"
},
{
"input": "2 5",
"output": "1"
},
{
"input": "3 1",
"output": "3"
},
{
"input": "3 2",
"output": "3"
},
{
"input": "3 3",
"output": "3"
},
{
"input": "3 4",
"output": "3"
},
{
"input": "3 5",
"output": "3"
},
{
"input": "4 1",
"output": "5"
},
{
"input": "4 2",
"output": "6"
},
{
"input": "4 3",
"output": "6"
},
{
"input": "4 4",
"output": "6"
},
{
"input": "4 5",
"output": "6"
},
{
"input": "5 1",
"output": "7"
},
{
"input": "5 3",
"output": "10"
},
{
"input": "5 4",
"output": "10"
},
{
"input": "5 5",
"output": "10"
},
{
"input": "6 1",
"output": "9"
},
{
"input": "6 2",
"output": "14"
},
{
"input": "6 3",
"output": "15"
},
{
"input": "7 2",
"output": "18"
},
{
"input": "7 3",
"output": "21"
},
{
"input": "7 4",
"output": "21"
},
{
"input": "10 2",
"output": "30"
},
{
"input": "60982 2",
"output": "243918"
},
{
"input": "23426 23",
"output": "1076515"
},
{
"input": "444 3",
"output": "2643"
},
{
"input": "18187 433",
"output": "15374531"
},
{
"input": "6895 3544",
"output": "23767065"
},
{
"input": "56204 22352",
"output": "1513297456"
},
{
"input": "41977 5207",
"output": "382917573"
},
{
"input": "78147 2321",
"output": "351981971"
},
{
"input": "99742 62198",
"output": "4974183411"
},
{
"input": "72099 38339",
"output": "2599096851"
},
{
"input": "82532 4838",
"output": "751762306"
},
{
"input": "79410 33144",
"output": "3066847464"
},
{
"input": "11021 3389",
"output": "51726307"
},
{
"input": "66900 7572",
"output": "898455660"
},
{
"input": "99999 49999",
"output": "4999850001"
},
{
"input": "100000 49999",
"output": "4999949999"
},
{
"input": "100000 100000",
"output": "4999950000"
},
{
"input": "100000 1",
"output": "199997"
},
{
"input": "4 100",
"output": "6"
},
{
"input": "100000 1234",
"output": "243753254"
}
] | 1,692,785,957
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 92
| 62
| 1,331,200
|
n, k = map(int, input().split())
ans = 0
d = n
for i in range(min(k, n // 2)):
ans += (d*2-3)
d -= 2
print(ans)
|
Title: Mischievous Mess Makers
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
It is a balmy spring afternoon, and Farmer John's *n* cows are ruminating about link-cut cacti in their stalls. The cows, labeled 1 through *n*, are arranged so that the *i*-th cow occupies the *i*-th stall from the left. However, Elsie, after realizing that she will forever live in the shadows beyond Bessie's limelight, has formed the Mischievous Mess Makers and is plotting to disrupt this beautiful pastoral rhythm. While Farmer John takes his *k* minute long nap, Elsie and the Mess Makers plan to repeatedly choose two distinct stalls and swap the cows occupying those stalls, making no more than one swap each minute.
Being the meticulous pranksters that they are, the Mischievous Mess Makers would like to know the maximum messiness attainable in the *k* minutes that they have. We denote as *p**i* the label of the cow in the *i*-th stall. The messiness of an arrangement of cows is defined as the number of pairs (*i*,<=*j*) such that *i*<=<<=*j* and *p**i*<=><=*p**j*.
Input Specification:
The first line of the input contains two integers *n* and *k* (1<=β€<=*n*,<=*k*<=β€<=100<=000)Β β the number of cows and the length of Farmer John's nap, respectively.
Output Specification:
Output a single integer, the maximum messiness that the Mischievous Mess Makers can achieve by performing no more than *k* swaps.
Demo Input:
['5 2\n', '1 10\n']
Demo Output:
['10\n', '0\n']
Note:
In the first sample, the Mischievous Mess Makers can swap the cows in the stalls 1 and 5 during the first minute, then the cows in stalls 2 and 4 during the second minute. This reverses the arrangement of cows, giving us a total messiness of 10.
In the second sample, there is only one cow, so the maximum possible messiness is 0.
|
```python
n, k = map(int, input().split())
ans = 0
d = n
for i in range(min(k, n // 2)):
ans += (d*2-3)
d -= 2
print(ans)
```
| 3
|
|
507
|
B
|
Amr and Pins
|
PROGRAMMING
| 1,400
|
[
"geometry",
"math"
] | null | null |
Amr loves Geometry. One day he came up with a very interesting problem.
Amr has a circle of radius *r* and center in point (*x*,<=*y*). He wants the circle center to be in new position (*x*',<=*y*').
In one step Amr can put a pin to the border of the circle in a certain point, then rotate the circle around that pin by any angle and finally remove the pin.
Help Amr to achieve his goal in minimum number of steps.
|
Input consists of 5 space-separated integers *r*, *x*, *y*, *x*' *y*' (1<=β€<=*r*<=β€<=105, <=-<=105<=β€<=*x*,<=*y*,<=*x*',<=*y*'<=β€<=105), circle radius, coordinates of original center of the circle and coordinates of destination center of the circle respectively.
|
Output a single integer β minimum number of steps required to move the center of the circle to the destination point.
|
[
"2 0 0 0 4\n",
"1 1 1 4 4\n",
"4 5 6 5 6\n"
] |
[
"1\n",
"3\n",
"0\n"
] |
In the first sample test the optimal way is to put a pin at point (0,β2) and rotate the circle by 180 degrees counter-clockwise (or clockwise, no matter).
<img class="tex-graphics" src="https://espresso.codeforces.com/4e40fd4cc24a2050a0488aa131e6244369328039.png" style="max-width: 100.0%;max-height: 100.0%;"/>
| 1,000
|
[
{
"input": "2 0 0 0 4",
"output": "1"
},
{
"input": "1 1 1 4 4",
"output": "3"
},
{
"input": "4 5 6 5 6",
"output": "0"
},
{
"input": "10 20 0 40 0",
"output": "1"
},
{
"input": "9 20 0 40 0",
"output": "2"
},
{
"input": "5 -1 -6 -5 1",
"output": "1"
},
{
"input": "99125 26876 -21414 14176 17443",
"output": "1"
},
{
"input": "8066 7339 19155 -90534 -60666",
"output": "8"
},
{
"input": "100000 -100000 -100000 100000 100000",
"output": "2"
},
{
"input": "10 20 0 41 0",
"output": "2"
},
{
"input": "25 -64 -6 -56 64",
"output": "2"
},
{
"input": "125 455 450 439 721",
"output": "2"
},
{
"input": "5 6 3 7 2",
"output": "1"
},
{
"input": "24 130 14786 3147 2140",
"output": "271"
},
{
"input": "125 -363 176 93 330",
"output": "2"
},
{
"input": "1 14 30 30 14",
"output": "12"
},
{
"input": "25 96 13 7 2",
"output": "2"
},
{
"input": "4 100000 -100000 100000 -100000",
"output": "0"
},
{
"input": "1 3 4 2 5",
"output": "1"
},
{
"input": "1 -3 3 2 6",
"output": "3"
},
{
"input": "2 7 20 13 -5",
"output": "7"
},
{
"input": "1 1 1 1 4",
"output": "2"
},
{
"input": "249 -54242 -30537 -45023 -89682",
"output": "121"
},
{
"input": "4 100000 -100000 100000 -99999",
"output": "1"
},
{
"input": "97741 23818 78751 97583 26933",
"output": "1"
},
{
"input": "56767 -29030 51625 79823 -56297",
"output": "2"
},
{
"input": "98260 13729 74998 23701 9253",
"output": "1"
},
{
"input": "67377 -80131 -90254 -57320 14102",
"output": "1"
},
{
"input": "1 100000 100000 100000 -100000",
"output": "100000"
},
{
"input": "19312 19470 82059 58064 62231",
"output": "2"
},
{
"input": "67398 -68747 -79056 -34193 29400",
"output": "1"
},
{
"input": "91099 37184 -71137 75650 -3655",
"output": "1"
},
{
"input": "46456 -2621 -23623 -98302 -99305",
"output": "2"
},
{
"input": "100 100000 -100000 100000 -99999",
"output": "1"
},
{
"input": "1 100000 -100000 100000 -100000",
"output": "0"
},
{
"input": "8 0 0 0 32",
"output": "2"
},
{
"input": "100000 100000 1 -100000 0",
"output": "2"
}
] | 1,657,035,181
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 37
| 77
| 0
|
import math
r,x,y,x1,y1 = [int(x) for x in input().split()]
dist = math.sqrt(((x1-x)**2)+((y1-y)**2))
print(math.ceil(dist/(r*2)))
|
Title: Amr and Pins
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Amr loves Geometry. One day he came up with a very interesting problem.
Amr has a circle of radius *r* and center in point (*x*,<=*y*). He wants the circle center to be in new position (*x*',<=*y*').
In one step Amr can put a pin to the border of the circle in a certain point, then rotate the circle around that pin by any angle and finally remove the pin.
Help Amr to achieve his goal in minimum number of steps.
Input Specification:
Input consists of 5 space-separated integers *r*, *x*, *y*, *x*' *y*' (1<=β€<=*r*<=β€<=105, <=-<=105<=β€<=*x*,<=*y*,<=*x*',<=*y*'<=β€<=105), circle radius, coordinates of original center of the circle and coordinates of destination center of the circle respectively.
Output Specification:
Output a single integer β minimum number of steps required to move the center of the circle to the destination point.
Demo Input:
['2 0 0 0 4\n', '1 1 1 4 4\n', '4 5 6 5 6\n']
Demo Output:
['1\n', '3\n', '0\n']
Note:
In the first sample test the optimal way is to put a pin at point (0,β2) and rotate the circle by 180 degrees counter-clockwise (or clockwise, no matter).
<img class="tex-graphics" src="https://espresso.codeforces.com/4e40fd4cc24a2050a0488aa131e6244369328039.png" style="max-width: 100.0%;max-height: 100.0%;"/>
|
```python
import math
r,x,y,x1,y1 = [int(x) for x in input().split()]
dist = math.sqrt(((x1-x)**2)+((y1-y)**2))
print(math.ceil(dist/(r*2)))
```
| 3
|
|
518
|
B
|
Tanya and Postcard
|
PROGRAMMING
| 1,400
|
[
"greedy",
"implementation",
"strings"
] | null | null |
Little Tanya decided to present her dad a postcard on his Birthday. She has already created a message β string *s* of length *n*, consisting of uppercase and lowercase English letters. Tanya can't write yet, so she found a newspaper and decided to cut out the letters and glue them into the postcard to achieve string *s*. The newspaper contains string *t*, consisting of uppercase and lowercase English letters. We know that the length of string *t* greater or equal to the length of the string *s*.
The newspaper may possibly have too few of some letters needed to make the text and too many of some other letters. That's why Tanya wants to cut some *n* letters out of the newspaper and make a message of length exactly *n*, so that it looked as much as possible like *s*. If the letter in some position has correct value and correct letter case (in the string *s* and in the string that Tanya will make), then she shouts joyfully "YAY!", and if the letter in the given position has only the correct value but it is in the wrong case, then the girl says "WHOOPS".
Tanya wants to make such message that lets her shout "YAY!" as much as possible. If there are multiple ways to do this, then her second priority is to maximize the number of times she says "WHOOPS". Your task is to help Tanya make the message.
|
The first line contains line *s* (1<=β€<=|*s*|<=β€<=2Β·105), consisting of uppercase and lowercase English letters β the text of Tanya's message.
The second line contains line *t* (|*s*|<=β€<=|*t*|<=β€<=2Β·105), consisting of uppercase and lowercase English letters β the text written in the newspaper.
Here |*a*| means the length of the string *a*.
|
Print two integers separated by a space:
- the first number is the number of times Tanya shouts "YAY!" while making the message, - the second number is the number of times Tanya says "WHOOPS" while making the message.
|
[
"AbC\nDCbA\n",
"ABC\nabc\n",
"abacaba\nAbaCaBA\n"
] |
[
"3 0\n",
"0 3\n",
"3 4\n"
] |
none
| 1,000
|
[
{
"input": "AbC\nDCbA",
"output": "3 0"
},
{
"input": "ABC\nabc",
"output": "0 3"
},
{
"input": "abacaba\nAbaCaBA",
"output": "3 4"
},
{
"input": "zzzzz\nZZZZZ",
"output": "0 5"
},
{
"input": "zzzZZZ\nZZZzzZ",
"output": "5 1"
},
{
"input": "abcdefghijklmnopqrstuvwxyz\nABCDEFGHIJKLMNOPQRSTUVWXYZ",
"output": "0 26"
},
{
"input": "abcdefghijklmnopqrstuvwxyz\nqrsimtabuvzhnwcdefgjklxyop",
"output": "26 0"
},
{
"input": "l\nFPbAVjsMpPDTLkfwNYFmBDHPTDSWSOUlrBHYJHPM",
"output": "1 0"
},
{
"input": "ncMeXssLHS\nuwyeMcaFatpInZVdEYpwJQSnVxLK",
"output": "6 1"
},
{
"input": "DpiNBmCRFWxpdbfGOzvvOcemjructoAdEwegTvbVbfWWRPGyEAxGdDRWVlqNyGWMWHMrHAIZpyxvgaflrsVZhhZRouvpxrKXFZam\nwwPLFtNfPtJXvMLuHjKfYyaRhreNSWSzOvDpqHCGcqllACNPGHxReeFUCmAqIKXYytsSQwIxJzNiiUtgebVuwRmWpRALLyKAzyDPvgIGxALSaeeTIqm",
"output": "66 12"
},
{
"input": "CCAE\ndcecc",
"output": "0 3"
},
{
"input": "Dccb\nbeeeb",
"output": "1 0"
},
{
"input": "Adc\neadeabcad",
"output": "2 1"
},
{
"input": "DBAdeb\ndeeabcddadaa",
"output": "3 2"
},
{
"input": "EDCED\neebeacdba",
"output": "0 4"
},
{
"input": "CdAbD\ndecbde",
"output": "2 2"
},
{
"input": "a\nB",
"output": "0 0"
},
{
"input": "r\nqA",
"output": "0 0"
}
] | 1,608,899,253
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 49
| 280
| 4,608,000
|
s=input()
t=input()
from collections import Counter as C
import string
lower=string.ascii_lowercase
upper=string.ascii_uppercase
cS=C(s)
cT=C(t)
yay=0
whoops=0
for c,cnt in cS.items():
if c in cT.keys():
subtract=min(cnt,cT[c])
yay+=subtract
cS[c]-=subtract
cT[c]-=subtract
for c,cnt in cS.items():
if cnt==0:
continue
if c in lower:
c2=c.upper()
else:
c2=c.lower()
if c2 in cT.keys():
subtract=min(cnt,cT[c2])
whoops+=subtract
cS[c]-=subtract
cT[c2]-=subtract
print('{} {}'.format(yay,whoops))
|
Title: Tanya and Postcard
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Little Tanya decided to present her dad a postcard on his Birthday. She has already created a message β string *s* of length *n*, consisting of uppercase and lowercase English letters. Tanya can't write yet, so she found a newspaper and decided to cut out the letters and glue them into the postcard to achieve string *s*. The newspaper contains string *t*, consisting of uppercase and lowercase English letters. We know that the length of string *t* greater or equal to the length of the string *s*.
The newspaper may possibly have too few of some letters needed to make the text and too many of some other letters. That's why Tanya wants to cut some *n* letters out of the newspaper and make a message of length exactly *n*, so that it looked as much as possible like *s*. If the letter in some position has correct value and correct letter case (in the string *s* and in the string that Tanya will make), then she shouts joyfully "YAY!", and if the letter in the given position has only the correct value but it is in the wrong case, then the girl says "WHOOPS".
Tanya wants to make such message that lets her shout "YAY!" as much as possible. If there are multiple ways to do this, then her second priority is to maximize the number of times she says "WHOOPS". Your task is to help Tanya make the message.
Input Specification:
The first line contains line *s* (1<=β€<=|*s*|<=β€<=2Β·105), consisting of uppercase and lowercase English letters β the text of Tanya's message.
The second line contains line *t* (|*s*|<=β€<=|*t*|<=β€<=2Β·105), consisting of uppercase and lowercase English letters β the text written in the newspaper.
Here |*a*| means the length of the string *a*.
Output Specification:
Print two integers separated by a space:
- the first number is the number of times Tanya shouts "YAY!" while making the message, - the second number is the number of times Tanya says "WHOOPS" while making the message.
Demo Input:
['AbC\nDCbA\n', 'ABC\nabc\n', 'abacaba\nAbaCaBA\n']
Demo Output:
['3 0\n', '0 3\n', '3 4\n']
Note:
none
|
```python
s=input()
t=input()
from collections import Counter as C
import string
lower=string.ascii_lowercase
upper=string.ascii_uppercase
cS=C(s)
cT=C(t)
yay=0
whoops=0
for c,cnt in cS.items():
if c in cT.keys():
subtract=min(cnt,cT[c])
yay+=subtract
cS[c]-=subtract
cT[c]-=subtract
for c,cnt in cS.items():
if cnt==0:
continue
if c in lower:
c2=c.upper()
else:
c2=c.lower()
if c2 in cT.keys():
subtract=min(cnt,cT[c2])
whoops+=subtract
cS[c]-=subtract
cT[c2]-=subtract
print('{} {}'.format(yay,whoops))
```
| 3
|
|
703
|
A
|
Mishka and Game
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Mishka is a little polar bear. As known, little bears loves spending their free time playing dice for chocolates. Once in a wonderful sunny morning, walking around blocks of ice, Mishka met her friend Chris, and they started playing the game.
Rules of the game are very simple: at first number of rounds *n* is defined. In every round each of the players throws a cubical dice with distinct numbers from 1 to 6 written on its faces. Player, whose value after throwing the dice is greater, wins the round. In case if player dice values are equal, no one of them is a winner.
In average, player, who won most of the rounds, is the winner of the game. In case if two players won the same number of rounds, the result of the game is draw.
Mishka is still very little and can't count wins and losses, so she asked you to watch their game and determine its result. Please help her!
|
The first line of the input contains single integer *n* *n* (1<=β€<=*n*<=β€<=100)Β β the number of game rounds.
The next *n* lines contains rounds description. *i*-th of them contains pair of integers *m**i* and *c**i* (1<=β€<=*m**i*,<=<=*c**i*<=β€<=6)Β β values on dice upper face after Mishka's and Chris' throws in *i*-th round respectively.
|
If Mishka is the winner of the game, print "Mishka" (without quotes) in the only line.
If Chris is the winner of the game, print "Chris" (without quotes) in the only line.
If the result of the game is draw, print "Friendship is magic!^^" (without quotes) in the only line.
|
[
"3\n3 5\n2 1\n4 2\n",
"2\n6 1\n1 6\n",
"3\n1 5\n3 3\n2 2\n"
] |
[
"Mishka",
"Friendship is magic!^^",
"Chris"
] |
In the first sample case Mishka loses the first round, but wins second and third rounds and thus she is the winner of the game.
In the second sample case Mishka wins the first round, Chris wins the second round, and the game ends with draw with score 1:1.
In the third sample case Chris wins the first round, but there is no winner of the next two rounds. The winner of the game is Chris.
| 500
|
[
{
"input": "3\n3 5\n2 1\n4 2",
"output": "Mishka"
},
{
"input": "2\n6 1\n1 6",
"output": "Friendship is magic!^^"
},
{
"input": "3\n1 5\n3 3\n2 2",
"output": "Chris"
},
{
"input": "6\n4 1\n4 2\n5 3\n5 1\n5 3\n4 1",
"output": "Mishka"
},
{
"input": "8\n2 4\n1 4\n1 5\n2 6\n2 5\n2 5\n2 4\n2 5",
"output": "Chris"
},
{
"input": "8\n4 1\n2 6\n4 2\n2 5\n5 2\n3 5\n5 2\n1 5",
"output": "Friendship is magic!^^"
},
{
"input": "9\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n1 3",
"output": "Mishka"
},
{
"input": "9\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n1 6\n1 6\n1 6",
"output": "Mishka"
},
{
"input": "9\n1 2\n1 2\n1 2\n1 2\n1 2\n6 1\n6 1\n6 1\n6 1",
"output": "Chris"
},
{
"input": "9\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n1 6\n1 6\n1 6",
"output": "Mishka"
},
{
"input": "10\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n1 4",
"output": "Mishka"
},
{
"input": "10\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n1 6\n1 6\n1 6",
"output": "Mishka"
},
{
"input": "10\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n6 1\n6 1\n6 1\n6 1",
"output": "Chris"
},
{
"input": "10\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n1 6\n1 6\n1 6",
"output": "Mishka"
},
{
"input": "100\n2 4\n6 6\n3 2\n1 5\n5 2\n1 5\n1 5\n3 1\n6 5\n4 3\n1 1\n5 1\n3 3\n2 4\n1 5\n3 4\n5 1\n5 5\n2 5\n2 1\n4 3\n6 5\n1 1\n2 1\n1 3\n1 1\n6 4\n4 6\n6 4\n2 1\n2 5\n6 2\n3 4\n5 5\n1 4\n4 6\n3 4\n1 6\n5 1\n4 3\n3 4\n2 2\n1 2\n2 3\n1 3\n4 4\n5 5\n4 5\n4 4\n3 1\n4 5\n2 3\n2 6\n6 5\n6 1\n6 6\n2 3\n6 4\n3 3\n2 5\n4 4\n3 1\n2 4\n6 1\n3 2\n1 3\n5 4\n6 6\n2 5\n5 1\n1 1\n2 5\n6 5\n3 6\n5 6\n4 3\n3 4\n3 4\n6 5\n5 2\n4 2\n1 1\n3 1\n2 6\n1 6\n1 2\n6 1\n3 4\n1 6\n3 1\n5 3\n1 3\n5 6\n2 1\n6 4\n3 1\n1 6\n6 3\n3 3\n4 3",
"output": "Chris"
},
{
"input": "100\n4 1\n3 4\n4 6\n4 5\n6 5\n5 3\n6 2\n6 3\n5 2\n4 5\n1 5\n5 4\n1 4\n4 5\n4 6\n1 6\n4 4\n5 1\n6 4\n6 4\n4 6\n2 3\n6 2\n4 6\n1 4\n2 3\n4 3\n1 3\n6 2\n3 1\n3 4\n2 6\n4 5\n5 4\n2 2\n2 5\n4 1\n2 2\n3 3\n1 4\n5 6\n6 4\n4 2\n6 1\n5 5\n4 1\n2 1\n6 4\n4 4\n4 3\n5 3\n4 5\n5 3\n3 5\n6 3\n1 1\n3 4\n6 3\n6 1\n5 1\n2 4\n4 3\n2 2\n5 5\n1 5\n5 3\n4 6\n1 4\n6 3\n4 3\n2 4\n3 2\n2 4\n3 4\n6 2\n5 6\n1 2\n1 5\n5 5\n2 6\n5 1\n1 6\n5 3\n3 5\n2 6\n4 6\n6 2\n3 1\n5 5\n6 1\n3 6\n4 4\n1 1\n4 6\n5 3\n4 2\n5 1\n3 3\n2 1\n1 4",
"output": "Mishka"
},
{
"input": "100\n6 3\n4 5\n4 3\n5 4\n5 1\n6 3\n4 2\n4 6\n3 1\n2 4\n2 2\n4 6\n5 3\n5 5\n4 2\n6 2\n2 3\n4 4\n6 4\n3 5\n2 4\n2 2\n5 2\n3 5\n2 4\n4 4\n3 5\n6 5\n1 3\n1 6\n2 2\n2 4\n3 2\n5 4\n1 6\n3 4\n4 1\n1 5\n1 4\n5 3\n2 2\n4 5\n6 3\n4 4\n1 1\n4 1\n2 4\n4 1\n4 5\n5 3\n1 1\n1 6\n5 6\n6 6\n4 2\n4 3\n3 4\n3 6\n3 4\n6 5\n3 4\n5 4\n5 1\n5 3\n5 1\n1 2\n2 6\n3 4\n6 5\n4 3\n1 1\n5 5\n5 1\n3 3\n5 2\n1 3\n6 6\n5 6\n1 4\n4 4\n1 4\n3 6\n6 5\n3 3\n3 6\n1 5\n1 2\n3 6\n3 6\n4 1\n5 2\n1 2\n5 2\n3 3\n4 4\n4 2\n6 2\n5 4\n6 1\n6 3",
"output": "Mishka"
},
{
"input": "8\n4 1\n6 2\n4 1\n5 3\n4 1\n5 3\n6 2\n5 3",
"output": "Mishka"
},
{
"input": "5\n3 6\n3 5\n3 5\n1 6\n3 5",
"output": "Chris"
},
{
"input": "4\n4 1\n2 4\n5 3\n3 6",
"output": "Friendship is magic!^^"
},
{
"input": "6\n6 3\n5 1\n6 3\n4 3\n4 3\n5 2",
"output": "Mishka"
},
{
"input": "7\n3 4\n1 4\n2 5\n1 6\n1 6\n1 5\n3 4",
"output": "Chris"
},
{
"input": "6\n6 2\n2 5\n5 2\n3 6\n4 3\n1 6",
"output": "Friendship is magic!^^"
},
{
"input": "8\n6 1\n5 3\n4 3\n4 1\n5 1\n4 2\n4 2\n4 1",
"output": "Mishka"
},
{
"input": "9\n2 5\n2 5\n1 4\n2 6\n2 4\n2 5\n2 6\n1 5\n2 5",
"output": "Chris"
},
{
"input": "4\n6 2\n2 4\n4 2\n3 6",
"output": "Friendship is magic!^^"
},
{
"input": "9\n5 2\n4 1\n4 1\n5 1\n6 2\n6 1\n5 3\n6 1\n6 2",
"output": "Mishka"
},
{
"input": "8\n2 4\n3 6\n1 6\n1 6\n2 4\n3 4\n3 6\n3 4",
"output": "Chris"
},
{
"input": "6\n5 3\n3 6\n6 2\n1 6\n5 1\n3 5",
"output": "Friendship is magic!^^"
},
{
"input": "6\n5 2\n5 1\n6 1\n5 2\n4 2\n5 1",
"output": "Mishka"
},
{
"input": "5\n1 4\n2 5\n3 4\n2 6\n3 4",
"output": "Chris"
},
{
"input": "4\n6 2\n3 4\n5 1\n1 6",
"output": "Friendship is magic!^^"
},
{
"input": "93\n4 3\n4 1\n4 2\n5 2\n5 3\n6 3\n4 3\n6 2\n6 3\n5 1\n4 2\n4 2\n5 1\n6 2\n6 3\n6 1\n4 1\n6 2\n5 3\n4 3\n4 1\n4 2\n5 2\n6 3\n5 2\n5 2\n6 3\n5 1\n6 2\n5 2\n4 1\n5 2\n5 1\n4 1\n6 1\n5 2\n4 3\n5 3\n5 3\n5 1\n4 3\n4 3\n4 2\n4 1\n6 2\n6 1\n4 1\n5 2\n5 2\n6 2\n5 3\n5 1\n6 2\n5 1\n6 3\n5 2\n6 2\n6 2\n4 2\n5 2\n6 1\n6 3\n6 3\n5 1\n5 1\n4 1\n5 1\n4 3\n5 3\n6 3\n4 1\n4 3\n6 1\n6 1\n4 2\n6 2\n4 2\n5 2\n4 1\n5 2\n4 1\n5 1\n5 2\n5 1\n4 1\n6 3\n6 2\n4 3\n4 1\n5 2\n4 3\n5 2\n5 1",
"output": "Mishka"
},
{
"input": "11\n1 6\n1 6\n2 4\n2 5\n3 4\n1 5\n1 6\n1 5\n1 6\n2 6\n3 4",
"output": "Chris"
},
{
"input": "70\n6 1\n3 6\n4 3\n2 5\n5 2\n1 4\n6 2\n1 6\n4 3\n1 4\n5 3\n2 4\n5 3\n1 6\n5 1\n3 5\n4 2\n2 4\n5 1\n3 5\n6 2\n1 5\n4 2\n2 5\n5 3\n1 5\n4 2\n1 4\n5 2\n2 6\n4 3\n1 5\n6 2\n3 4\n4 2\n3 5\n6 3\n3 4\n5 1\n1 4\n4 2\n1 4\n6 3\n2 6\n5 2\n1 6\n6 1\n2 6\n5 3\n1 5\n5 1\n1 6\n4 1\n1 5\n4 2\n2 4\n5 1\n2 5\n6 3\n1 4\n6 3\n3 6\n5 1\n1 4\n5 3\n3 5\n4 2\n3 4\n6 2\n1 4",
"output": "Friendship is magic!^^"
},
{
"input": "59\n4 1\n5 3\n6 1\n4 2\n5 1\n4 3\n6 1\n5 1\n4 3\n4 3\n5 2\n5 3\n4 1\n6 2\n5 1\n6 3\n6 3\n5 2\n5 2\n6 1\n4 1\n6 1\n4 3\n5 3\n5 3\n4 3\n4 2\n4 2\n6 3\n6 3\n6 1\n4 3\n5 1\n6 2\n6 1\n4 1\n6 1\n5 3\n4 2\n5 1\n6 2\n6 2\n4 3\n5 3\n4 3\n6 3\n5 2\n5 2\n4 3\n5 1\n5 3\n6 1\n6 3\n6 3\n4 3\n5 2\n5 2\n5 2\n4 3",
"output": "Mishka"
},
{
"input": "42\n1 5\n1 6\n1 6\n1 4\n2 5\n3 6\n1 6\n3 4\n2 5\n2 5\n2 4\n1 4\n3 4\n2 4\n2 6\n1 5\n3 6\n2 6\n2 6\n3 5\n1 4\n1 5\n2 6\n3 6\n1 4\n3 4\n2 4\n1 6\n3 4\n2 4\n2 6\n1 6\n1 4\n1 6\n1 6\n2 4\n1 5\n1 6\n2 5\n3 6\n3 5\n3 4",
"output": "Chris"
},
{
"input": "78\n4 3\n3 5\n4 3\n1 5\n5 1\n1 5\n4 3\n1 4\n6 3\n1 5\n4 1\n2 4\n4 3\n2 4\n5 1\n3 6\n4 2\n3 6\n6 3\n3 4\n4 3\n3 6\n5 3\n1 5\n4 1\n2 6\n4 2\n2 4\n4 1\n3 5\n5 2\n3 6\n4 3\n2 4\n6 3\n1 6\n4 3\n3 5\n6 3\n2 6\n4 1\n2 4\n6 2\n1 6\n4 2\n1 4\n4 3\n1 4\n4 3\n2 4\n6 2\n3 5\n6 1\n3 6\n5 3\n1 6\n6 1\n2 6\n4 2\n1 5\n6 2\n2 6\n6 3\n2 4\n4 2\n3 5\n6 1\n2 5\n5 3\n2 6\n5 1\n3 6\n4 3\n3 6\n6 3\n2 5\n6 1\n2 6",
"output": "Friendship is magic!^^"
},
{
"input": "76\n4 1\n5 2\n4 3\n5 2\n5 3\n5 2\n6 1\n4 2\n6 2\n5 3\n4 2\n6 2\n4 1\n4 2\n5 1\n5 1\n6 2\n5 2\n5 3\n6 3\n5 2\n4 3\n6 3\n6 1\n4 3\n6 2\n6 1\n4 1\n6 1\n5 3\n4 1\n5 3\n4 2\n5 2\n4 3\n6 1\n6 2\n5 2\n6 1\n5 3\n4 3\n5 1\n5 3\n4 3\n5 1\n5 1\n4 1\n4 1\n4 1\n4 3\n5 3\n6 3\n6 3\n5 2\n6 2\n6 3\n5 1\n6 3\n5 3\n6 1\n5 3\n4 1\n5 3\n6 1\n4 2\n6 2\n4 3\n4 1\n6 2\n4 3\n5 3\n5 2\n5 3\n5 1\n6 3\n5 2",
"output": "Mishka"
},
{
"input": "84\n3 6\n3 4\n2 5\n2 4\n1 6\n3 4\n1 5\n1 6\n3 5\n1 6\n2 4\n2 6\n2 6\n2 4\n3 5\n1 5\n3 6\n3 6\n3 4\n3 4\n2 6\n1 6\n1 6\n3 5\n3 4\n1 6\n3 4\n3 5\n2 4\n2 5\n2 5\n3 5\n1 6\n3 4\n2 6\n2 6\n3 4\n3 4\n2 5\n2 5\n2 4\n3 4\n2 5\n3 4\n3 4\n2 6\n2 6\n1 6\n2 4\n1 5\n3 4\n2 5\n2 5\n3 4\n2 4\n2 6\n2 6\n1 4\n3 5\n3 5\n2 4\n2 5\n3 4\n1 5\n1 5\n2 6\n1 5\n3 5\n2 4\n2 5\n3 4\n2 6\n1 6\n2 5\n3 5\n3 5\n3 4\n2 5\n2 6\n3 4\n1 6\n2 5\n2 6\n1 4",
"output": "Chris"
},
{
"input": "44\n6 1\n1 6\n5 2\n1 4\n6 2\n2 5\n5 3\n3 6\n5 2\n1 6\n4 1\n2 4\n6 1\n3 4\n6 3\n3 6\n4 3\n2 4\n6 1\n3 4\n6 1\n1 6\n4 1\n3 5\n6 1\n3 6\n4 1\n1 4\n4 2\n2 6\n6 1\n2 4\n6 2\n1 4\n6 2\n2 4\n5 2\n3 6\n6 3\n2 6\n5 3\n3 4\n5 3\n2 4",
"output": "Friendship is magic!^^"
},
{
"input": "42\n5 3\n5 1\n5 2\n4 1\n6 3\n6 1\n6 2\n4 1\n4 3\n4 1\n5 1\n5 3\n5 1\n4 1\n4 2\n6 1\n6 3\n5 1\n4 1\n4 1\n6 3\n4 3\n6 3\n5 2\n6 1\n4 1\n5 3\n4 3\n5 2\n6 3\n6 1\n5 1\n4 2\n4 3\n5 2\n5 3\n6 3\n5 2\n5 1\n5 3\n6 2\n6 1",
"output": "Mishka"
},
{
"input": "50\n3 6\n2 6\n1 4\n1 4\n1 4\n2 5\n3 4\n3 5\n2 6\n1 6\n3 5\n1 5\n2 6\n2 4\n2 4\n3 5\n1 6\n1 5\n1 5\n1 4\n3 5\n1 6\n3 5\n1 4\n1 5\n1 4\n3 6\n1 6\n1 4\n1 4\n1 4\n1 5\n3 6\n1 6\n1 6\n2 4\n1 5\n2 6\n2 5\n3 5\n3 6\n3 4\n2 4\n2 6\n3 4\n2 5\n3 6\n3 5\n2 4\n2 4",
"output": "Chris"
},
{
"input": "86\n6 3\n2 4\n6 3\n3 5\n6 3\n1 5\n5 2\n2 4\n4 3\n2 6\n4 1\n2 6\n5 2\n1 4\n5 1\n2 4\n4 1\n1 4\n6 2\n3 5\n4 2\n2 4\n6 2\n1 5\n5 3\n2 5\n5 1\n1 6\n6 1\n1 4\n4 3\n3 4\n5 2\n2 4\n5 3\n2 5\n4 3\n3 4\n4 1\n1 5\n6 3\n3 4\n4 3\n3 4\n4 1\n3 4\n5 1\n1 6\n4 2\n1 6\n5 1\n2 4\n5 1\n3 6\n4 1\n1 5\n5 2\n1 4\n4 3\n2 5\n5 1\n1 5\n6 2\n2 6\n4 2\n2 4\n4 1\n2 5\n5 3\n3 4\n5 1\n3 4\n6 3\n3 4\n4 3\n2 6\n6 2\n2 5\n5 2\n3 5\n4 2\n3 6\n6 2\n3 4\n4 2\n2 4",
"output": "Friendship is magic!^^"
},
{
"input": "84\n6 1\n6 3\n6 3\n4 1\n4 3\n4 2\n6 3\n5 3\n6 1\n6 3\n4 3\n5 2\n5 3\n5 1\n6 2\n6 2\n6 1\n4 1\n6 3\n5 2\n4 1\n5 3\n6 3\n4 2\n6 2\n6 3\n4 3\n4 1\n4 3\n5 1\n5 1\n5 1\n4 1\n6 1\n4 3\n6 2\n5 1\n5 1\n6 2\n5 2\n4 1\n6 1\n6 1\n6 3\n6 2\n4 3\n6 3\n6 2\n5 2\n5 1\n4 3\n6 2\n4 1\n6 2\n6 1\n5 2\n5 1\n6 2\n6 1\n5 3\n5 2\n6 1\n6 3\n5 2\n6 1\n6 3\n4 3\n5 1\n6 3\n6 1\n5 3\n4 3\n5 2\n5 1\n6 2\n5 3\n6 1\n5 1\n4 1\n5 1\n5 1\n5 2\n5 2\n5 1",
"output": "Mishka"
},
{
"input": "92\n1 5\n2 4\n3 5\n1 6\n2 5\n1 6\n3 6\n1 6\n2 4\n3 4\n3 4\n3 6\n1 5\n2 5\n1 5\n1 5\n2 6\n2 4\n3 6\n1 4\n1 6\n2 6\n3 4\n2 6\n2 6\n1 4\n3 5\n2 5\n2 6\n1 5\n1 4\n1 5\n3 6\n3 5\n2 5\n1 5\n3 5\n3 6\n2 6\n2 6\n1 5\n3 4\n2 4\n3 6\n2 5\n1 5\n2 4\n1 4\n2 6\n2 6\n2 6\n1 5\n3 6\n3 6\n2 5\n1 4\n2 4\n3 4\n1 5\n2 5\n2 4\n2 5\n3 5\n3 4\n3 6\n2 6\n3 5\n1 4\n3 4\n1 6\n3 6\n2 6\n1 4\n3 6\n3 6\n2 5\n2 6\n1 6\n2 6\n3 5\n2 5\n3 6\n2 5\n2 6\n1 5\n2 4\n1 4\n2 4\n1 5\n2 5\n2 5\n2 6",
"output": "Chris"
},
{
"input": "20\n5 1\n1 4\n4 3\n1 5\n4 2\n3 6\n6 2\n1 6\n4 1\n1 4\n5 2\n3 4\n5 1\n1 6\n5 1\n2 6\n6 3\n2 5\n6 2\n2 4",
"output": "Friendship is magic!^^"
},
{
"input": "100\n4 3\n4 3\n4 2\n4 3\n4 1\n4 3\n5 2\n5 2\n6 2\n4 2\n5 1\n4 2\n5 2\n6 1\n4 1\n6 3\n5 3\n5 1\n5 1\n5 1\n5 3\n6 1\n6 1\n4 1\n5 2\n5 2\n6 1\n6 3\n4 2\n4 1\n5 3\n4 1\n5 3\n5 1\n6 3\n6 3\n6 1\n5 2\n5 3\n5 3\n6 1\n4 1\n6 2\n6 1\n6 2\n6 3\n4 3\n4 3\n6 3\n4 2\n4 2\n5 3\n5 2\n5 2\n4 3\n5 3\n5 2\n4 2\n5 1\n4 2\n5 1\n5 3\n6 3\n5 3\n5 3\n4 2\n4 1\n4 2\n4 3\n6 3\n4 3\n6 2\n6 1\n5 3\n5 2\n4 1\n6 1\n5 2\n6 2\n4 2\n6 3\n4 3\n5 1\n6 3\n5 2\n4 3\n5 3\n5 3\n4 3\n6 3\n4 3\n4 1\n5 1\n6 2\n6 3\n5 3\n6 1\n6 3\n5 3\n6 1",
"output": "Mishka"
},
{
"input": "100\n1 5\n1 4\n1 5\n2 4\n2 6\n3 6\n3 5\n1 5\n2 5\n3 6\n3 5\n1 6\n1 4\n1 5\n1 6\n2 6\n1 5\n3 5\n3 4\n2 6\n2 6\n2 5\n3 4\n1 6\n1 4\n2 4\n1 5\n1 6\n3 5\n1 6\n2 6\n3 5\n1 6\n3 4\n3 5\n1 6\n3 6\n2 4\n2 4\n3 5\n2 6\n1 5\n3 5\n3 6\n2 4\n2 4\n2 6\n3 4\n3 4\n1 5\n1 4\n2 5\n3 4\n1 4\n2 6\n2 5\n2 4\n2 4\n2 5\n1 5\n1 6\n1 5\n1 5\n1 5\n1 6\n3 4\n2 4\n3 5\n3 5\n1 6\n3 5\n1 5\n1 6\n3 6\n3 4\n1 5\n3 5\n3 6\n1 4\n3 6\n1 5\n3 5\n3 6\n3 5\n1 4\n3 4\n2 4\n2 4\n2 5\n3 6\n3 5\n1 5\n2 4\n1 4\n3 4\n1 5\n3 4\n3 6\n3 5\n3 4",
"output": "Chris"
},
{
"input": "100\n4 3\n3 4\n5 1\n2 5\n5 3\n1 5\n6 3\n2 4\n5 2\n2 6\n5 2\n1 5\n6 3\n1 5\n6 3\n3 4\n5 2\n1 5\n6 1\n1 5\n4 2\n3 5\n6 3\n2 6\n6 3\n1 4\n6 2\n3 4\n4 1\n3 6\n5 1\n2 4\n5 1\n3 4\n6 2\n3 5\n4 1\n2 6\n4 3\n2 6\n5 2\n3 6\n6 2\n3 5\n4 3\n1 5\n5 3\n3 6\n4 2\n3 4\n6 1\n3 4\n5 2\n2 6\n5 2\n2 4\n6 2\n3 6\n4 3\n2 4\n4 3\n2 6\n4 2\n3 4\n6 3\n2 4\n6 3\n3 5\n5 2\n1 5\n6 3\n3 6\n4 3\n1 4\n5 2\n1 6\n4 1\n2 5\n4 1\n2 4\n4 2\n2 5\n6 1\n2 4\n6 3\n1 5\n4 3\n2 6\n6 3\n2 6\n5 3\n1 5\n4 1\n1 5\n6 2\n2 5\n5 1\n3 6\n4 3\n3 4",
"output": "Friendship is magic!^^"
},
{
"input": "99\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n1 3",
"output": "Mishka"
},
{
"input": "99\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6",
"output": "Mishka"
},
{
"input": "99\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1",
"output": "Chris"
},
{
"input": "99\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6",
"output": "Mishka"
},
{
"input": "100\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n1 4",
"output": "Mishka"
},
{
"input": "100\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6",
"output": "Mishka"
},
{
"input": "100\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1",
"output": "Chris"
},
{
"input": "100\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6",
"output": "Mishka"
},
{
"input": "84\n6 2\n1 5\n6 2\n2 3\n5 5\n1 2\n3 4\n3 4\n6 5\n6 4\n2 5\n4 1\n1 2\n1 1\n1 4\n2 5\n5 6\n6 3\n2 4\n5 5\n2 6\n3 4\n5 1\n3 3\n5 5\n4 6\n4 6\n2 4\n4 1\n5 2\n2 2\n3 6\n3 3\n4 6\n1 1\n2 4\n6 5\n5 2\n6 5\n5 5\n2 5\n6 4\n1 1\n6 2\n3 6\n6 5\n4 4\n1 5\n5 6\n4 4\n3 5\n6 1\n3 4\n1 5\n4 6\n4 6\n4 1\n3 6\n6 2\n1 1\n4 5\n5 4\n5 3\n3 4\n6 4\n1 1\n5 2\n6 5\n6 1\n2 2\n2 4\n3 3\n4 6\n1 3\n6 6\n5 2\n1 6\n6 2\n6 6\n4 1\n3 6\n6 4\n2 3\n3 4",
"output": "Chris"
},
{
"input": "70\n3 4\n2 3\n2 3\n6 5\n6 6\n4 3\n2 3\n3 1\n3 5\n5 6\n1 6\n2 5\n5 3\n2 5\n4 6\n5 1\n6 1\n3 1\n3 3\n5 3\n2 1\n3 3\n6 4\n6 3\n4 3\n4 5\n3 5\n5 5\n5 2\n1 6\n3 4\n5 2\n2 4\n1 6\n4 3\n4 3\n6 2\n1 3\n1 5\n6 1\n3 1\n1 1\n1 3\n2 2\n3 2\n6 4\n1 1\n4 4\n3 1\n4 5\n4 2\n6 3\n4 4\n3 2\n1 2\n2 6\n3 3\n1 5\n1 1\n6 5\n2 2\n3 1\n5 4\n5 2\n6 4\n6 3\n6 6\n6 3\n3 3\n5 4",
"output": "Mishka"
},
{
"input": "56\n6 4\n3 4\n6 1\n3 3\n1 4\n2 3\n1 5\n2 5\n1 5\n5 5\n2 3\n1 1\n3 2\n3 5\n4 6\n4 4\n5 2\n4 3\n3 1\n3 6\n2 3\n3 4\n5 6\n5 2\n5 6\n1 5\n1 5\n4 1\n6 3\n2 2\n2 1\n5 5\n2 1\n4 1\n5 4\n2 5\n4 1\n6 2\n3 4\n4 2\n6 4\n5 4\n4 2\n4 3\n6 2\n6 2\n3 1\n1 4\n3 6\n5 1\n5 5\n3 6\n6 4\n2 3\n6 5\n3 3",
"output": "Mishka"
},
{
"input": "94\n2 4\n6 4\n1 6\n1 4\n5 1\n3 3\n4 3\n6 1\n6 5\n3 2\n2 3\n5 1\n5 3\n1 2\n4 3\n3 2\n2 3\n4 6\n1 3\n6 3\n1 1\n3 2\n4 3\n1 5\n4 6\n3 2\n6 3\n1 6\n1 1\n1 2\n3 5\n1 3\n3 5\n4 4\n4 2\n1 4\n4 5\n1 3\n1 2\n1 1\n5 4\n5 5\n6 1\n2 1\n2 6\n6 6\n4 2\n3 6\n1 6\n6 6\n1 5\n3 2\n1 2\n4 4\n6 4\n4 1\n1 5\n3 3\n1 3\n3 4\n4 4\n1 1\n2 5\n4 5\n3 1\n3 1\n3 6\n3 2\n1 4\n1 6\n6 3\n2 4\n1 1\n2 2\n2 2\n2 1\n5 4\n1 2\n6 6\n2 2\n3 3\n6 3\n6 3\n1 6\n2 3\n2 4\n2 3\n6 6\n2 6\n6 3\n3 5\n1 4\n1 1\n3 5",
"output": "Chris"
},
{
"input": "81\n4 2\n1 2\n2 3\n4 5\n6 2\n1 6\n3 6\n3 4\n4 6\n4 4\n3 5\n4 6\n3 6\n3 5\n3 1\n1 3\n5 3\n3 4\n1 1\n4 1\n1 2\n6 1\n1 3\n6 5\n4 5\n4 2\n4 5\n6 2\n1 2\n2 6\n5 2\n1 5\n2 4\n4 3\n5 4\n1 2\n5 3\n2 6\n6 4\n1 1\n1 3\n3 1\n3 1\n6 5\n5 5\n6 1\n6 6\n5 2\n1 3\n1 4\n2 3\n5 5\n3 1\n3 1\n4 4\n1 6\n6 4\n2 2\n4 6\n4 4\n2 6\n2 4\n2 4\n4 1\n1 6\n1 4\n1 3\n6 5\n5 1\n1 3\n5 1\n1 4\n3 5\n2 6\n1 3\n5 6\n3 5\n4 4\n5 5\n5 6\n4 3",
"output": "Chris"
},
{
"input": "67\n6 5\n3 6\n1 6\n5 3\n5 4\n5 1\n1 6\n1 1\n3 2\n4 4\n3 1\n4 1\n1 5\n5 3\n3 3\n6 4\n2 4\n2 2\n4 3\n1 4\n1 4\n6 1\n1 2\n2 2\n5 1\n6 2\n3 5\n5 5\n2 2\n6 5\n6 2\n4 4\n3 1\n4 2\n6 6\n6 4\n5 1\n2 2\n4 5\n5 5\n4 6\n1 5\n6 3\n4 4\n1 5\n6 4\n3 6\n3 4\n1 6\n2 4\n2 1\n2 5\n6 5\n6 4\n4 1\n3 2\n1 2\n5 1\n5 6\n1 5\n3 5\n3 1\n5 3\n3 2\n5 1\n4 6\n6 6",
"output": "Mishka"
},
{
"input": "55\n6 6\n6 5\n2 2\n2 2\n6 4\n5 5\n6 5\n5 3\n1 3\n2 2\n5 6\n3 3\n3 3\n6 5\n3 5\n5 5\n1 2\n1 1\n4 6\n1 2\n5 5\n6 2\n6 3\n1 2\n5 1\n1 3\n3 3\n4 4\n2 5\n1 1\n5 3\n4 3\n2 2\n4 5\n5 6\n4 5\n6 3\n1 6\n6 4\n3 6\n1 6\n5 2\n6 3\n2 3\n5 5\n4 3\n3 1\n4 2\n1 1\n2 5\n5 3\n2 2\n6 3\n4 5\n2 2",
"output": "Mishka"
},
{
"input": "92\n2 3\n1 3\n2 6\n5 1\n5 5\n3 2\n5 6\n2 5\n3 1\n3 6\n4 5\n2 5\n1 2\n2 3\n6 5\n3 6\n4 4\n6 2\n4 5\n4 4\n5 1\n6 1\n3 4\n3 5\n6 6\n3 2\n6 4\n2 2\n3 5\n6 4\n6 3\n6 6\n3 4\n3 3\n6 1\n5 4\n6 2\n2 6\n5 6\n1 4\n4 6\n6 3\n3 1\n4 1\n6 6\n3 5\n6 3\n6 1\n1 6\n3 2\n6 6\n4 3\n3 4\n1 3\n3 5\n5 3\n6 5\n4 3\n5 5\n4 1\n1 5\n6 4\n2 3\n2 3\n1 5\n1 2\n5 2\n4 3\n3 6\n5 5\n5 4\n1 4\n3 3\n1 6\n5 6\n5 4\n5 3\n1 1\n6 2\n5 5\n2 5\n4 3\n6 6\n5 1\n1 1\n4 6\n4 6\n3 1\n6 4\n2 4\n2 2\n2 1",
"output": "Chris"
},
{
"input": "79\n5 3\n4 6\n3 6\n2 1\n5 2\n2 3\n4 4\n6 2\n2 5\n1 6\n6 6\n2 6\n3 3\n4 5\n6 2\n2 1\n1 5\n5 1\n2 1\n2 6\n5 3\n6 2\n2 6\n2 3\n1 5\n4 4\n6 3\n5 2\n3 2\n1 3\n1 3\n6 3\n2 6\n3 6\n5 3\n4 5\n6 1\n3 5\n3 5\n6 5\n1 5\n4 2\n6 2\n2 3\n4 6\n3 6\n2 5\n4 4\n1 1\n4 6\n2 6\n6 4\n3 2\n4 1\n1 2\n6 4\n5 6\n1 4\n2 2\n5 4\n3 2\n1 2\n2 4\n2 5\n2 1\n3 6\n3 3\n1 1\n2 2\n4 4\n4 5\n3 3\n5 3\n6 2\n4 5\n6 5\n2 5\n5 6\n2 2",
"output": "Chris"
},
{
"input": "65\n1 1\n5 1\n2 2\n5 4\n4 5\n2 5\n3 2\n5 6\n6 3\n1 1\n6 1\n1 5\n1 1\n5 2\n6 4\n1 6\n1 1\n4 3\n2 3\n5 6\n4 4\n6 2\n1 3\n4 3\n1 3\n6 3\n3 5\n4 2\n4 1\n6 1\n3 2\n2 6\n3 2\n3 5\n6 3\n4 3\n1 5\n2 6\n1 3\n4 1\n4 1\n2 5\n2 5\n6 2\n5 3\n3 1\n3 3\n5 1\n2 4\n5 3\n3 3\n1 1\n6 3\n3 3\n5 1\n1 6\n4 5\n6 6\n5 5\n2 5\n4 1\n2 2\n1 4\n1 6\n6 5",
"output": "Mishka"
},
{
"input": "1\n1 1",
"output": "Friendship is magic!^^"
}
] | 1,692,598,868
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 69
| 46
| 0
|
n = int(input())
mishka_Wins = 0
chris_Wins = 0
for _ in range(n):
mi, ci = map(int, input().split())
if mi > ci:
mishka_Wins += 1
elif ci > mi:
chris_Wins += 1
if mishka_Wins > chris_Wins:
print("Mishka")
elif chris_Wins > mishka_Wins:
print("Chris")
else:
print("Friendship is magic!^^")
|
Title: Mishka and Game
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Mishka is a little polar bear. As known, little bears loves spending their free time playing dice for chocolates. Once in a wonderful sunny morning, walking around blocks of ice, Mishka met her friend Chris, and they started playing the game.
Rules of the game are very simple: at first number of rounds *n* is defined. In every round each of the players throws a cubical dice with distinct numbers from 1 to 6 written on its faces. Player, whose value after throwing the dice is greater, wins the round. In case if player dice values are equal, no one of them is a winner.
In average, player, who won most of the rounds, is the winner of the game. In case if two players won the same number of rounds, the result of the game is draw.
Mishka is still very little and can't count wins and losses, so she asked you to watch their game and determine its result. Please help her!
Input Specification:
The first line of the input contains single integer *n* *n* (1<=β€<=*n*<=β€<=100)Β β the number of game rounds.
The next *n* lines contains rounds description. *i*-th of them contains pair of integers *m**i* and *c**i* (1<=β€<=*m**i*,<=<=*c**i*<=β€<=6)Β β values on dice upper face after Mishka's and Chris' throws in *i*-th round respectively.
Output Specification:
If Mishka is the winner of the game, print "Mishka" (without quotes) in the only line.
If Chris is the winner of the game, print "Chris" (without quotes) in the only line.
If the result of the game is draw, print "Friendship is magic!^^" (without quotes) in the only line.
Demo Input:
['3\n3 5\n2 1\n4 2\n', '2\n6 1\n1 6\n', '3\n1 5\n3 3\n2 2\n']
Demo Output:
['Mishka', 'Friendship is magic!^^', 'Chris']
Note:
In the first sample case Mishka loses the first round, but wins second and third rounds and thus she is the winner of the game.
In the second sample case Mishka wins the first round, Chris wins the second round, and the game ends with draw with score 1:1.
In the third sample case Chris wins the first round, but there is no winner of the next two rounds. The winner of the game is Chris.
|
```python
n = int(input())
mishka_Wins = 0
chris_Wins = 0
for _ in range(n):
mi, ci = map(int, input().split())
if mi > ci:
mishka_Wins += 1
elif ci > mi:
chris_Wins += 1
if mishka_Wins > chris_Wins:
print("Mishka")
elif chris_Wins > mishka_Wins:
print("Chris")
else:
print("Friendship is magic!^^")
```
| 3
|
|
116
|
A
|
Tram
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Linear Kingdom has exactly one tram line. It has *n* stops, numbered from 1 to *n* in the order of tram's movement. At the *i*-th stop *a**i* passengers exit the tram, while *b**i* passengers enter it. The tram is empty before it arrives at the first stop. Also, when the tram arrives at the last stop, all passengers exit so that it becomes empty.
Your task is to calculate the tram's minimum capacity such that the number of people inside the tram at any time never exceeds this capacity. Note that at each stop all exiting passengers exit before any entering passenger enters the tram.
|
The first line contains a single number *n* (2<=β€<=*n*<=β€<=1000) β the number of the tram's stops.
Then *n* lines follow, each contains two integers *a**i* and *b**i* (0<=β€<=*a**i*,<=*b**i*<=β€<=1000) β the number of passengers that exits the tram at the *i*-th stop, and the number of passengers that enter the tram at the *i*-th stop. The stops are given from the first to the last stop in the order of tram's movement.
- The number of people who exit at a given stop does not exceed the total number of people in the tram immediately before it arrives at the stop. More formally, . This particularly means that *a*1<==<=0. - At the last stop, all the passengers exit the tram and it becomes empty. More formally, . - No passenger will enter the train at the last stop. That is, *b**n*<==<=0.
|
Print a single integer denoting the minimum possible capacity of the tram (0 is allowed).
|
[
"4\n0 3\n2 5\n4 2\n4 0\n"
] |
[
"6\n"
] |
For the first example, a capacity of 6 is sufficient:
- At the first stop, the number of passengers inside the tram before arriving is 0. Then, 3 passengers enter the tram, and the number of passengers inside the tram becomes 3. - At the second stop, 2 passengers exit the tram (1 passenger remains inside). Then, 5 passengers enter the tram. There are 6 passengers inside the tram now. - At the third stop, 4 passengers exit the tram (2 passengers remain inside). Then, 2 passengers enter the tram. There are 4 passengers inside the tram now. - Finally, all the remaining passengers inside the tram exit the tram at the last stop. There are no passenger inside the tram now, which is in line with the constraints.
Since the number of passengers inside the tram never exceeds 6, a capacity of 6 is sufficient. Furthermore it is not possible for the tram to have a capacity less than 6. Hence, 6 is the correct answer.
| 500
|
[
{
"input": "4\n0 3\n2 5\n4 2\n4 0",
"output": "6"
},
{
"input": "5\n0 4\n4 6\n6 5\n5 4\n4 0",
"output": "6"
},
{
"input": "10\n0 5\n1 7\n10 8\n5 3\n0 5\n3 3\n8 8\n0 6\n10 1\n9 0",
"output": "18"
},
{
"input": "3\n0 1\n1 1\n1 0",
"output": "1"
},
{
"input": "4\n0 1\n0 1\n1 0\n1 0",
"output": "2"
},
{
"input": "3\n0 0\n0 0\n0 0",
"output": "0"
},
{
"input": "3\n0 1000\n1000 1000\n1000 0",
"output": "1000"
},
{
"input": "5\n0 73\n73 189\n189 766\n766 0\n0 0",
"output": "766"
},
{
"input": "5\n0 0\n0 0\n0 0\n0 1\n1 0",
"output": "1"
},
{
"input": "5\n0 917\n917 923\n904 992\n1000 0\n11 0",
"output": "1011"
},
{
"input": "5\n0 1\n1 2\n2 1\n1 2\n2 0",
"output": "2"
},
{
"input": "5\n0 0\n0 0\n0 0\n0 0\n0 0",
"output": "0"
},
{
"input": "20\n0 7\n2 1\n2 2\n5 7\n2 6\n6 10\n2 4\n0 4\n7 4\n8 0\n10 6\n2 1\n6 1\n1 7\n0 3\n8 7\n6 3\n6 3\n1 1\n3 0",
"output": "22"
},
{
"input": "5\n0 1000\n1000 1000\n1000 1000\n1000 1000\n1000 0",
"output": "1000"
},
{
"input": "10\n0 592\n258 598\n389 203\n249 836\n196 635\n478 482\n994 987\n1000 0\n769 0\n0 0",
"output": "1776"
},
{
"input": "10\n0 1\n1 0\n0 0\n0 0\n0 0\n0 1\n1 1\n0 1\n1 0\n1 0",
"output": "2"
},
{
"input": "10\n0 926\n926 938\n938 931\n931 964\n937 989\n983 936\n908 949\n997 932\n945 988\n988 0",
"output": "1016"
},
{
"input": "10\n0 1\n1 2\n1 2\n2 2\n2 2\n2 2\n1 1\n1 1\n2 1\n2 0",
"output": "3"
},
{
"input": "10\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0",
"output": "0"
},
{
"input": "10\n0 1000\n1000 1000\n1000 1000\n1000 1000\n1000 1000\n1000 1000\n1000 1000\n1000 1000\n1000 1000\n1000 0",
"output": "1000"
},
{
"input": "50\n0 332\n332 268\n268 56\n56 711\n420 180\n160 834\n149 341\n373 777\n763 93\n994 407\n86 803\n700 132\n471 608\n429 467\n75 5\n638 305\n405 853\n316 478\n643 163\n18 131\n648 241\n241 766\n316 847\n640 380\n923 759\n789 41\n125 421\n421 9\n9 388\n388 829\n408 108\n462 856\n816 411\n518 688\n290 7\n405 912\n397 772\n396 652\n394 146\n27 648\n462 617\n514 433\n780 35\n710 705\n460 390\n194 508\n643 56\n172 469\n1000 0\n194 0",
"output": "2071"
},
{
"input": "50\n0 0\n0 1\n1 1\n0 1\n0 0\n1 0\n0 0\n1 0\n0 0\n0 0\n0 0\n0 0\n0 1\n0 0\n0 0\n0 1\n1 0\n0 1\n0 0\n1 1\n1 0\n0 1\n0 0\n1 1\n0 1\n1 0\n1 1\n1 0\n0 0\n1 1\n1 0\n0 1\n0 0\n0 1\n1 1\n1 1\n1 1\n1 0\n1 1\n1 0\n0 1\n1 0\n0 0\n0 1\n1 1\n1 1\n0 1\n0 0\n1 0\n1 0",
"output": "3"
},
{
"input": "50\n0 926\n926 971\n915 980\n920 965\n954 944\n928 952\n955 980\n916 980\n906 935\n944 913\n905 923\n912 922\n965 934\n912 900\n946 930\n931 983\n979 905\n925 969\n924 926\n910 914\n921 977\n934 979\n962 986\n942 909\n976 903\n982 982\n991 941\n954 929\n902 980\n947 983\n919 924\n917 943\n916 905\n907 913\n964 977\n984 904\n905 999\n950 970\n986 906\n993 970\n960 994\n963 983\n918 986\n980 900\n931 986\n993 997\n941 909\n907 909\n1000 0\n278 0",
"output": "1329"
},
{
"input": "2\n0 863\n863 0",
"output": "863"
},
{
"input": "50\n0 1\n1 2\n2 2\n1 1\n1 1\n1 2\n1 2\n1 1\n1 2\n1 1\n1 1\n1 2\n1 2\n1 1\n2 1\n2 2\n1 2\n2 2\n1 2\n2 1\n2 1\n2 2\n2 1\n1 2\n1 2\n2 1\n1 1\n2 2\n1 1\n2 1\n2 2\n2 1\n1 2\n2 2\n1 2\n1 1\n1 1\n2 1\n2 1\n2 2\n2 1\n2 1\n1 2\n1 2\n1 2\n1 2\n2 0\n2 0\n2 0\n0 0",
"output": "8"
},
{
"input": "50\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0",
"output": "0"
},
{
"input": "100\n0 1\n0 0\n0 0\n1 0\n0 0\n0 1\n0 1\n1 1\n0 0\n0 0\n1 1\n0 0\n1 1\n0 1\n1 1\n0 1\n1 1\n1 0\n1 0\n0 0\n1 0\n0 1\n1 0\n0 0\n0 0\n1 1\n1 1\n0 1\n0 0\n1 0\n1 1\n0 1\n1 0\n1 1\n0 1\n1 1\n1 0\n0 0\n0 0\n0 1\n0 0\n0 1\n1 1\n0 0\n1 1\n1 1\n0 0\n0 1\n1 0\n0 1\n0 0\n0 1\n0 1\n1 1\n1 1\n1 1\n0 0\n0 0\n1 1\n0 1\n0 1\n1 0\n0 0\n0 0\n1 1\n0 1\n0 1\n1 1\n1 1\n0 1\n1 1\n1 1\n0 0\n1 0\n0 1\n0 0\n0 0\n1 1\n1 1\n1 1\n1 1\n0 1\n1 0\n1 0\n1 0\n1 0\n1 0\n0 0\n1 0\n1 0\n0 0\n1 0\n0 0\n0 1\n1 0\n0 1\n1 0\n1 0\n1 0\n1 0",
"output": "11"
},
{
"input": "100\n0 2\n1 2\n2 1\n1 2\n1 2\n2 1\n2 2\n1 1\n1 1\n2 1\n1 2\n2 1\n1 2\n2 2\n2 2\n2 2\n1 2\n2 2\n2 1\n1 1\n1 1\n1 1\n2 2\n1 2\n2 2\n1 1\n1 1\n1 1\n1 1\n2 2\n1 2\n2 1\n1 1\n2 2\n1 1\n2 1\n1 1\n2 2\n2 1\n1 2\n1 1\n1 2\n2 1\n2 2\n1 1\n2 1\n1 1\n2 1\n1 1\n1 2\n2 2\n2 2\n1 1\n2 2\n1 2\n2 1\n2 1\n1 1\n1 1\n1 2\n1 2\n1 1\n1 1\n2 1\n1 2\n1 2\n2 1\n2 2\n2 2\n2 2\n2 1\n2 2\n1 1\n1 2\n1 2\n1 1\n2 2\n2 2\n1 1\n2 1\n1 1\n1 2\n1 2\n1 2\n1 1\n1 1\n2 2\n1 2\n2 1\n2 1\n2 1\n1 2\n1 2\n1 1\n2 2\n1 2\n2 0\n2 0\n2 0\n1 0",
"output": "7"
},
{
"input": "100\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0",
"output": "0"
},
{
"input": "2\n0 1\n1 0",
"output": "1"
},
{
"input": "2\n0 900\n900 0",
"output": "900"
},
{
"input": "2\n0 1\n1 0",
"output": "1"
},
{
"input": "2\n0 0\n0 0",
"output": "0"
},
{
"input": "2\n0 1000\n1000 0",
"output": "1000"
},
{
"input": "3\n0 802\n175 188\n815 0",
"output": "815"
},
{
"input": "3\n0 910\n910 976\n976 0",
"output": "976"
},
{
"input": "3\n0 2\n2 1\n1 0",
"output": "2"
}
] | 1,691,831,506
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 71
| 124
| 0
|
n = int(input())
current = 0
mx = 0
for i in range(n):
l = list(map(int,input().split()))
current -= l[0]
current += l[1]
if(current>mx):
mx = current
print(mx)
|
Title: Tram
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Linear Kingdom has exactly one tram line. It has *n* stops, numbered from 1 to *n* in the order of tram's movement. At the *i*-th stop *a**i* passengers exit the tram, while *b**i* passengers enter it. The tram is empty before it arrives at the first stop. Also, when the tram arrives at the last stop, all passengers exit so that it becomes empty.
Your task is to calculate the tram's minimum capacity such that the number of people inside the tram at any time never exceeds this capacity. Note that at each stop all exiting passengers exit before any entering passenger enters the tram.
Input Specification:
The first line contains a single number *n* (2<=β€<=*n*<=β€<=1000) β the number of the tram's stops.
Then *n* lines follow, each contains two integers *a**i* and *b**i* (0<=β€<=*a**i*,<=*b**i*<=β€<=1000) β the number of passengers that exits the tram at the *i*-th stop, and the number of passengers that enter the tram at the *i*-th stop. The stops are given from the first to the last stop in the order of tram's movement.
- The number of people who exit at a given stop does not exceed the total number of people in the tram immediately before it arrives at the stop. More formally, . This particularly means that *a*1<==<=0. - At the last stop, all the passengers exit the tram and it becomes empty. More formally, . - No passenger will enter the train at the last stop. That is, *b**n*<==<=0.
Output Specification:
Print a single integer denoting the minimum possible capacity of the tram (0 is allowed).
Demo Input:
['4\n0 3\n2 5\n4 2\n4 0\n']
Demo Output:
['6\n']
Note:
For the first example, a capacity of 6 is sufficient:
- At the first stop, the number of passengers inside the tram before arriving is 0. Then, 3 passengers enter the tram, and the number of passengers inside the tram becomes 3. - At the second stop, 2 passengers exit the tram (1 passenger remains inside). Then, 5 passengers enter the tram. There are 6 passengers inside the tram now. - At the third stop, 4 passengers exit the tram (2 passengers remain inside). Then, 2 passengers enter the tram. There are 4 passengers inside the tram now. - Finally, all the remaining passengers inside the tram exit the tram at the last stop. There are no passenger inside the tram now, which is in line with the constraints.
Since the number of passengers inside the tram never exceeds 6, a capacity of 6 is sufficient. Furthermore it is not possible for the tram to have a capacity less than 6. Hence, 6 is the correct answer.
|
```python
n = int(input())
current = 0
mx = 0
for i in range(n):
l = list(map(int,input().split()))
current -= l[0]
current += l[1]
if(current>mx):
mx = current
print(mx)
```
| 3
|
|
253
|
A
|
Boys and Girls
|
PROGRAMMING
| 1,100
|
[
"greedy"
] | null | null |
There are *n* boys and *m* girls studying in the class. They should stand in a line so that boys and girls alternated there as much as possible. Let's assume that positions in the line are indexed from left to right by numbers from 1 to *n*<=+<=*m*. Then the number of integers *i* (1<=β€<=*i*<=<<=*n*<=+<=*m*) such that positions with indexes *i* and *i*<=+<=1 contain children of different genders (position *i* has a girl and position *i*<=+<=1 has a boy or vice versa) must be as large as possible.
Help the children and tell them how to form the line.
|
The single line of the input contains two integers *n* and *m* (1<=β€<=*n*,<=*m*<=β€<=100), separated by a space.
|
Print a line of *n*<=+<=*m* characters. Print on the *i*-th position of the line character "B", if the *i*-th position of your arrangement should have a boy and "G", if it should have a girl.
Of course, the number of characters "B" should equal *n* and the number of characters "G" should equal *m*. If there are multiple optimal solutions, print any of them.
|
[
"3 3\n",
"4 2\n"
] |
[
"GBGBGB\n",
"BGBGBB\n"
] |
In the first sample another possible answer is BGBGBG.
In the second sample answer BBGBGB is also optimal.
| 500
|
[
{
"input": "3 3",
"output": "GBGBGB"
},
{
"input": "4 2",
"output": "BGBGBB"
},
{
"input": "5 5",
"output": "GBGBGBGBGB"
},
{
"input": "6 4",
"output": "BGBGBGBGBB"
},
{
"input": "100 1",
"output": "BGBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"
},
{
"input": "76 48",
"output": "BGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBBBBBBBBBBBBBBBBBBBBBBBBBBBB"
},
{
"input": "100 90",
"output": "BGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBBBBBBBBBB"
},
{
"input": "90 100",
"output": "GBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGGGGGGGGGG"
},
{
"input": "1 98",
"output": "GBGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG"
},
{
"input": "1 100",
"output": "GBGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG"
},
{
"input": "56 98",
"output": "GBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG"
},
{
"input": "89 89",
"output": "GBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGB"
},
{
"input": "18 94",
"output": "GBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG"
},
{
"input": "84 27",
"output": "BGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"
},
{
"input": "1 1",
"output": "GB"
},
{
"input": "1 2",
"output": "GBG"
},
{
"input": "2 1",
"output": "BGB"
},
{
"input": "1 34",
"output": "GBGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG"
},
{
"input": "46 2",
"output": "BGBGBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"
},
{
"input": "99 3",
"output": "BGBGBGBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"
},
{
"input": "10 100",
"output": "GBGBGBGBGBGBGBGBGBGBGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG"
},
{
"input": "100 100",
"output": "GBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGB"
},
{
"input": "1 4",
"output": "GBGGG"
}
] | 1,691,204,342
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 23
| 124
| 0
|
f = open('input.txt', 'r')
line = f.readline()
n, m = map(int, line.split())
f.close()
ans = ''
cur = 'B' if n > m else 'G'
while n and m:
ans += cur
if cur == 'B':
n -= 1
cur = 'G'
else:
m -= 1
cur = 'B'
while n:
ans += 'B'
n -= 1
while m:
ans += 'G'
m -= 1
f = open('output.txt', 'w')
f.write(ans)
|
Title: Boys and Girls
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
There are *n* boys and *m* girls studying in the class. They should stand in a line so that boys and girls alternated there as much as possible. Let's assume that positions in the line are indexed from left to right by numbers from 1 to *n*<=+<=*m*. Then the number of integers *i* (1<=β€<=*i*<=<<=*n*<=+<=*m*) such that positions with indexes *i* and *i*<=+<=1 contain children of different genders (position *i* has a girl and position *i*<=+<=1 has a boy or vice versa) must be as large as possible.
Help the children and tell them how to form the line.
Input Specification:
The single line of the input contains two integers *n* and *m* (1<=β€<=*n*,<=*m*<=β€<=100), separated by a space.
Output Specification:
Print a line of *n*<=+<=*m* characters. Print on the *i*-th position of the line character "B", if the *i*-th position of your arrangement should have a boy and "G", if it should have a girl.
Of course, the number of characters "B" should equal *n* and the number of characters "G" should equal *m*. If there are multiple optimal solutions, print any of them.
Demo Input:
['3 3\n', '4 2\n']
Demo Output:
['GBGBGB\n', 'BGBGBB\n']
Note:
In the first sample another possible answer is BGBGBG.
In the second sample answer BBGBGB is also optimal.
|
```python
f = open('input.txt', 'r')
line = f.readline()
n, m = map(int, line.split())
f.close()
ans = ''
cur = 'B' if n > m else 'G'
while n and m:
ans += cur
if cur == 'B':
n -= 1
cur = 'G'
else:
m -= 1
cur = 'B'
while n:
ans += 'B'
n -= 1
while m:
ans += 'G'
m -= 1
f = open('output.txt', 'w')
f.write(ans)
```
| 3
|
|
174
|
A
|
Problem About Equation
|
PROGRAMMING
| 1,100
|
[
"math"
] | null | null |
A group of *n* merry programmers celebrate Robert Floyd's birthday. Polucarpus has got an honourable task of pouring Ber-Cola to everybody. Pouring the same amount of Ber-Cola to everybody is really important. In other words, the drink's volume in each of the *n* mugs must be the same.
Polycarpus has already began the process and he partially emptied the Ber-Cola bottle. Now the first mug has *a*1 milliliters of the drink, the second one has *a*2 milliliters and so on. The bottle has *b* milliliters left and Polycarpus plans to pour them into the mugs so that the main equation was fulfilled.
Write a program that would determine what volume of the drink Polycarpus needs to add into each mug to ensure that the following two conditions were fulfilled simultaneously:
- there were *b* milliliters poured in total. That is, the bottle need to be emptied; - after the process is over, the volumes of the drink in the mugs should be equal.
|
The first line contains a pair of integers *n*, *b* (2<=β€<=*n*<=β€<=100,<=1<=β€<=*b*<=β€<=100), where *n* is the total number of friends in the group and *b* is the current volume of drink in the bottle. The second line contains a sequence of integers *a*1,<=*a*2,<=...,<=*a**n* (0<=β€<=*a**i*<=β€<=100), where *a**i* is the current volume of drink in the *i*-th mug.
|
Print a single number "-1" (without the quotes), if there is no solution. Otherwise, print *n* float numbers *c*1,<=*c*2,<=...,<=*c**n*, where *c**i* is the volume of the drink to add in the *i*-th mug. Print the numbers with no less than 6 digits after the decimal point, print each *c**i* on a single line. Polycarpus proved that if a solution exists then it is unique.
Russian locale is installed by default on the testing computer. Make sure that your solution use the point to separate the integer part of a real number from the decimal, not a comma.
|
[
"5 50\n1 2 3 4 5\n",
"2 2\n1 100\n"
] |
[
"12.000000\n11.000000\n10.000000\n9.000000\n8.000000\n",
"-1\n"
] |
none
| 500
|
[
{
"input": "5 50\n1 2 3 4 5",
"output": "12.000000\n11.000000\n10.000000\n9.000000\n8.000000"
},
{
"input": "2 2\n1 100",
"output": "-1"
},
{
"input": "2 2\n1 1",
"output": "1.000000\n1.000000"
},
{
"input": "3 2\n1 2 1",
"output": "1.000000\n0.000000\n1.000000"
},
{
"input": "3 5\n1 2 1",
"output": "2.000000\n1.000000\n2.000000"
},
{
"input": "10 95\n0 0 0 0 0 1 1 1 1 1",
"output": "10.000000\n10.000000\n10.000000\n10.000000\n10.000000\n9.000000\n9.000000\n9.000000\n9.000000\n9.000000"
},
{
"input": "3 5\n1 2 3",
"output": "2.666667\n1.666667\n0.666667"
},
{
"input": "3 5\n1 3 2",
"output": "2.666667\n0.666667\n1.666667"
},
{
"input": "3 5\n2 1 3",
"output": "1.666667\n2.666667\n0.666667"
},
{
"input": "3 5\n2 3 1",
"output": "1.666667\n0.666667\n2.666667"
},
{
"input": "3 5\n3 1 2",
"output": "0.666667\n2.666667\n1.666667"
},
{
"input": "3 5\n3 2 1",
"output": "0.666667\n1.666667\n2.666667"
},
{
"input": "2 1\n1 1",
"output": "0.500000\n0.500000"
},
{
"input": "2 1\n2 2",
"output": "0.500000\n0.500000"
},
{
"input": "3 2\n2 1 2",
"output": "0.333333\n1.333333\n0.333333"
},
{
"input": "3 3\n2 2 1",
"output": "0.666667\n0.666667\n1.666667"
},
{
"input": "3 3\n3 1 2",
"output": "0.000000\n2.000000\n1.000000"
},
{
"input": "100 100\n37 97 75 52 33 29 51 22 33 37 45 96 96 60 82 58 86 71 28 73 38 50 6 6 90 17 26 76 13 41 100 47 17 93 4 1 56 16 41 74 25 17 69 61 39 37 96 73 49 93 52 14 62 24 91 30 9 97 52 100 6 16 85 8 12 26 10 3 94 63 80 27 29 78 9 48 79 64 60 18 98 75 81 35 24 81 2 100 23 70 21 60 98 38 29 29 58 37 49 72",
"output": "-1"
},
{
"input": "100 100\n1 3 7 7 9 5 9 3 7 8 10 1 3 10 10 6 1 3 10 4 3 9 4 9 5 4 9 2 8 7 4 3 3 3 5 10 8 9 10 1 9 2 4 8 3 10 9 2 3 9 8 2 4 4 4 7 1 1 7 3 7 8 9 5 1 2 6 7 1 10 9 10 5 10 1 10 5 2 4 3 10 1 6 5 6 7 8 9 3 8 6 10 8 7 2 3 8 6 3 6",
"output": "-1"
},
{
"input": "100 61\n81 80 83 72 87 76 91 92 77 93 77 94 76 73 71 88 88 76 87 73 89 73 85 81 79 90 76 73 82 93 79 93 71 75 72 71 78 85 92 89 88 93 74 87 71 94 74 87 85 89 90 93 86 94 92 87 90 91 75 73 90 84 92 94 92 79 74 85 74 74 89 76 84 84 84 83 86 84 82 71 76 74 83 81 89 73 73 74 71 77 90 94 73 94 73 75 93 89 84 92",
"output": "-1"
},
{
"input": "100 100\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100",
"output": "1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1..."
},
{
"input": "100 100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0",
"output": "1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1..."
},
{
"input": "100 100\n99 100 99 100 100 100 99 99 99 100 100 100 99 100 99 100 100 100 100 100 99 99 99 99 100 99 100 99 100 99 99 100 100 100 100 100 99 99 99 100 99 99 100 99 100 99 100 99 99 99 99 100 100 99 99 99 100 100 99 100 100 100 99 99 100 100 100 100 100 100 99 99 99 99 99 100 99 99 100 99 100 100 100 99 100 99 99 100 99 100 100 100 99 100 99 100 100 100 100 99",
"output": "1.530000\n0.530000\n1.530000\n0.530000\n0.530000\n0.530000\n1.530000\n1.530000\n1.530000\n0.530000\n0.530000\n0.530000\n1.530000\n0.530000\n1.530000\n0.530000\n0.530000\n0.530000\n0.530000\n0.530000\n1.530000\n1.530000\n1.530000\n1.530000\n0.530000\n1.530000\n0.530000\n1.530000\n0.530000\n1.530000\n1.530000\n0.530000\n0.530000\n0.530000\n0.530000\n0.530000\n1.530000\n1.530000\n1.530000\n0.530000\n1.530000\n1.530000\n0.530000\n1.530000\n0.530000\n1.530000\n0.530000\n1.530000\n1.530000\n1.530000\n1.530000\n0..."
},
{
"input": "100 100\n100 100 100 100 100 100 100 100 99 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 99 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 99 100 100 100 100 100 100 100 100 100 99 100 100 100 100 100 100 99 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 99 100 100 100",
"output": "0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n1.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n1.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0..."
},
{
"input": "100 100\n99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 100 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 100 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99",
"output": "1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n0.020000\n1.020000\n1..."
},
{
"input": "10 100\n52 52 51 52 52 52 51 51 52 52",
"output": "9.700000\n9.700000\n10.700000\n9.700000\n9.700000\n9.700000\n10.700000\n10.700000\n9.700000\n9.700000"
},
{
"input": "10 100\n13 13 13 13 12 13 12 13 12 12",
"output": "9.600000\n9.600000\n9.600000\n9.600000\n10.600000\n9.600000\n10.600000\n9.600000\n10.600000\n10.600000"
},
{
"input": "10 100\n50 51 47 51 48 46 49 51 46 51",
"output": "9.000000\n8.000000\n12.000000\n8.000000\n11.000000\n13.000000\n10.000000\n8.000000\n13.000000\n8.000000"
},
{
"input": "10 100\n13 13 9 12 12 11 13 8 10 13",
"output": "8.400000\n8.400000\n12.400000\n9.400000\n9.400000\n10.400000\n8.400000\n13.400000\n11.400000\n8.400000"
},
{
"input": "93 91\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100",
"output": "0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0..."
},
{
"input": "93 97\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0",
"output": "1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1..."
},
{
"input": "91 99\n99 100 100 100 99 100 100 100 99 100 99 99 100 99 100 100 100 99 99 100 99 100 100 100 100 100 99 99 100 99 100 99 99 100 100 100 100 99 99 100 100 100 99 100 100 99 100 100 99 100 99 99 99 100 99 99 99 100 99 100 99 100 99 100 99 99 100 100 100 100 99 100 99 100 99 99 100 100 99 100 100 100 100 99 99 100 100 99 99 100 99",
"output": "1.648352\n0.648352\n0.648352\n0.648352\n1.648352\n0.648352\n0.648352\n0.648352\n1.648352\n0.648352\n1.648352\n1.648352\n0.648352\n1.648352\n0.648352\n0.648352\n0.648352\n1.648352\n1.648352\n0.648352\n1.648352\n0.648352\n0.648352\n0.648352\n0.648352\n0.648352\n1.648352\n1.648352\n0.648352\n1.648352\n0.648352\n1.648352\n1.648352\n0.648352\n0.648352\n0.648352\n0.648352\n1.648352\n1.648352\n0.648352\n0.648352\n0.648352\n1.648352\n0.648352\n0.648352\n1.648352\n0.648352\n0.648352\n1.648352\n0.648352\n1.648352\n1..."
},
{
"input": "99 98\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 99 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100",
"output": "0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n1.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0..."
},
{
"input": "98 99\n99 99 99 99 99 99 99 99 99 99 99 99 99 99 100 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 100 99 99 99 99 99 99 100 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 100 99 99 99 99 99",
"output": "1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n0.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n0.051020\n1.051020\n1..."
},
{
"input": "13 97\n52 52 51 51 52 52 51 52 51 51 52 52 52",
"output": "7.076923\n7.076923\n8.076923\n8.076923\n7.076923\n7.076923\n8.076923\n7.076923\n8.076923\n8.076923\n7.076923\n7.076923\n7.076923"
},
{
"input": "17 99\n13 13 12 13 11 12 12 12 13 13 11 13 13 13 13 12 13",
"output": "5.294118\n5.294118\n6.294118\n5.294118\n7.294118\n6.294118\n6.294118\n6.294118\n5.294118\n5.294118\n7.294118\n5.294118\n5.294118\n5.294118\n5.294118\n6.294118\n5.294118"
},
{
"input": "9 91\n52 51 50 52 52 51 50 48 51",
"output": "8.888889\n9.888889\n10.888889\n8.888889\n8.888889\n9.888889\n10.888889\n12.888889\n9.888889"
},
{
"input": "17 91\n13 13 13 13 12 12 13 13 12 13 12 13 10 12 13 13 12",
"output": "4.823529\n4.823529\n4.823529\n4.823529\n5.823529\n5.823529\n4.823529\n4.823529\n5.823529\n4.823529\n5.823529\n4.823529\n7.823529\n5.823529\n4.823529\n4.823529\n5.823529"
},
{
"input": "2 3\n1 1",
"output": "1.500000\n1.500000"
},
{
"input": "2 90\n0 89",
"output": "89.500000\n0.500000"
},
{
"input": "4 17\n3 4 8 1",
"output": "5.250000\n4.250000\n0.250000\n7.250000"
},
{
"input": "2 9\n5 5",
"output": "4.500000\n4.500000"
},
{
"input": "7 28\n1 3 9 10 9 6 10",
"output": "9.857143\n7.857143\n1.857143\n0.857143\n1.857143\n4.857143\n0.857143"
},
{
"input": "5 11\n1 2 3 4 5",
"output": "4.200000\n3.200000\n2.200000\n1.200000\n0.200000"
},
{
"input": "2 1\n1 1",
"output": "0.500000\n0.500000"
},
{
"input": "5 3\n1 1 1 1 1",
"output": "0.600000\n0.600000\n0.600000\n0.600000\n0.600000"
},
{
"input": "3 1\n100 100 100",
"output": "0.333333\n0.333333\n0.333333"
},
{
"input": "5 50\n2 2 3 2 2",
"output": "10.200000\n10.200000\n9.200000\n10.200000\n10.200000"
},
{
"input": "3 3\n2 2 3",
"output": "1.333333\n1.333333\n0.333333"
},
{
"input": "2 52\n2 100",
"output": "-1"
},
{
"input": "3 2\n2 2 3",
"output": "1.000000\n1.000000\n0.000000"
},
{
"input": "5 1\n1 1 1 1 1",
"output": "0.200000\n0.200000\n0.200000\n0.200000\n0.200000"
},
{
"input": "2 4\n1 2",
"output": "2.500000\n1.500000"
},
{
"input": "5 49\n1 2 3 4 5",
"output": "11.800000\n10.800000\n9.800000\n8.800000\n7.800000"
}
] | 1,596,648,767
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 54
| 248
| 6,758,400
|
# import sys
# sys.stdin = open("test.txt", 'r')
n, b = list(map(int, input().split()))
a = list(map(int, input().split()))
ans = []
t = sum(a) + b
p = t/n
for v in a:
s = p-v
if s < 0:
print(-1)
break
else:
ans.append(s)
else:
for s in ans:
print(f'{s:.6f}')
|
Title: Problem About Equation
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
A group of *n* merry programmers celebrate Robert Floyd's birthday. Polucarpus has got an honourable task of pouring Ber-Cola to everybody. Pouring the same amount of Ber-Cola to everybody is really important. In other words, the drink's volume in each of the *n* mugs must be the same.
Polycarpus has already began the process and he partially emptied the Ber-Cola bottle. Now the first mug has *a*1 milliliters of the drink, the second one has *a*2 milliliters and so on. The bottle has *b* milliliters left and Polycarpus plans to pour them into the mugs so that the main equation was fulfilled.
Write a program that would determine what volume of the drink Polycarpus needs to add into each mug to ensure that the following two conditions were fulfilled simultaneously:
- there were *b* milliliters poured in total. That is, the bottle need to be emptied; - after the process is over, the volumes of the drink in the mugs should be equal.
Input Specification:
The first line contains a pair of integers *n*, *b* (2<=β€<=*n*<=β€<=100,<=1<=β€<=*b*<=β€<=100), where *n* is the total number of friends in the group and *b* is the current volume of drink in the bottle. The second line contains a sequence of integers *a*1,<=*a*2,<=...,<=*a**n* (0<=β€<=*a**i*<=β€<=100), where *a**i* is the current volume of drink in the *i*-th mug.
Output Specification:
Print a single number "-1" (without the quotes), if there is no solution. Otherwise, print *n* float numbers *c*1,<=*c*2,<=...,<=*c**n*, where *c**i* is the volume of the drink to add in the *i*-th mug. Print the numbers with no less than 6 digits after the decimal point, print each *c**i* on a single line. Polycarpus proved that if a solution exists then it is unique.
Russian locale is installed by default on the testing computer. Make sure that your solution use the point to separate the integer part of a real number from the decimal, not a comma.
Demo Input:
['5 50\n1 2 3 4 5\n', '2 2\n1 100\n']
Demo Output:
['12.000000\n11.000000\n10.000000\n9.000000\n8.000000\n', '-1\n']
Note:
none
|
```python
# import sys
# sys.stdin = open("test.txt", 'r')
n, b = list(map(int, input().split()))
a = list(map(int, input().split()))
ans = []
t = sum(a) + b
p = t/n
for v in a:
s = p-v
if s < 0:
print(-1)
break
else:
ans.append(s)
else:
for s in ans:
print(f'{s:.6f}')
```
| 3
|
|
69
|
A
|
Young Physicist
|
PROGRAMMING
| 1,000
|
[
"implementation",
"math"
] |
A. Young Physicist
|
2
|
256
|
A guy named Vasya attends the final grade of a high school. One day Vasya decided to watch a match of his favorite hockey team. And, as the boy loves hockey very much, even more than physics, he forgot to do the homework. Specifically, he forgot to complete his physics tasks. Next day the teacher got very angry at Vasya and decided to teach him a lesson. He gave the lazy student a seemingly easy task: You are given an idle body in space and the forces that affect it. The body can be considered as a material point with coordinates (0; 0; 0). Vasya had only to answer whether it is in equilibrium. "Piece of cake" β thought Vasya, we need only to check if the sum of all vectors is equal to 0. So, Vasya began to solve the problem. But later it turned out that there can be lots and lots of these forces, and Vasya can not cope without your help. Help him. Write a program that determines whether a body is idle or is moving by the given vectors of forces.
|
The first line contains a positive integer *n* (1<=β€<=*n*<=β€<=100), then follow *n* lines containing three integers each: the *x**i* coordinate, the *y**i* coordinate and the *z**i* coordinate of the force vector, applied to the body (<=-<=100<=β€<=*x**i*,<=*y**i*,<=*z**i*<=β€<=100).
|
Print the word "YES" if the body is in equilibrium, or the word "NO" if it is not.
|
[
"3\n4 1 7\n-2 4 -1\n1 -5 -3\n",
"3\n3 -1 7\n-5 2 -4\n2 -1 -3\n"
] |
[
"NO",
"YES"
] |
none
| 500
|
[
{
"input": "3\n4 1 7\n-2 4 -1\n1 -5 -3",
"output": "NO"
},
{
"input": "3\n3 -1 7\n-5 2 -4\n2 -1 -3",
"output": "YES"
},
{
"input": "10\n21 32 -46\n43 -35 21\n42 2 -50\n22 40 20\n-27 -9 38\n-4 1 1\n-40 6 -31\n-13 -2 34\n-21 34 -12\n-32 -29 41",
"output": "NO"
},
{
"input": "10\n25 -33 43\n-27 -42 28\n-35 -20 19\n41 -42 -1\n49 -39 -4\n-49 -22 7\n-19 29 41\n8 -27 -43\n8 34 9\n-11 -3 33",
"output": "NO"
},
{
"input": "10\n-6 21 18\n20 -11 -8\n37 -11 41\n-5 8 33\n29 23 32\n30 -33 -11\n39 -49 -36\n28 34 -49\n22 29 -34\n-18 -6 7",
"output": "NO"
},
{
"input": "10\n47 -2 -27\n0 26 -14\n5 -12 33\n2 18 3\n45 -30 -49\n4 -18 8\n-46 -44 -41\n-22 -10 -40\n-35 -21 26\n33 20 38",
"output": "NO"
},
{
"input": "13\n-3 -36 -46\n-11 -50 37\n42 -11 -15\n9 42 44\n-29 -12 24\n3 9 -40\n-35 13 50\n14 43 18\n-13 8 24\n-48 -15 10\n50 9 -50\n21 0 -50\n0 0 -6",
"output": "YES"
},
{
"input": "14\n43 23 17\n4 17 44\n5 -5 -16\n-43 -7 -6\n47 -48 12\n50 47 -45\n2 14 43\n37 -30 15\n4 -17 -11\n17 9 -45\n-50 -3 -8\n-50 0 0\n-50 0 0\n-16 0 0",
"output": "YES"
},
{
"input": "13\n29 49 -11\n38 -11 -20\n25 1 -40\n-11 28 11\n23 -19 1\n45 -41 -17\n-3 0 -19\n-13 -33 49\n-30 0 28\n34 17 45\n-50 9 -27\n-50 0 0\n-37 0 0",
"output": "YES"
},
{
"input": "12\n3 28 -35\n-32 -44 -17\n9 -25 -6\n-42 -22 20\n-19 15 38\n-21 38 48\n-1 -37 -28\n-10 -13 -50\n-5 21 29\n34 28 50\n50 11 -49\n34 0 0",
"output": "YES"
},
{
"input": "37\n-64 -79 26\n-22 59 93\n-5 39 -12\n77 -9 76\n55 -86 57\n83 100 -97\n-70 94 84\n-14 46 -94\n26 72 35\n14 78 -62\n17 82 92\n-57 11 91\n23 15 92\n-80 -1 1\n12 39 18\n-23 -99 -75\n-34 50 19\n-39 84 -7\n45 -30 -39\n-60 49 37\n45 -16 -72\n33 -51 -56\n-48 28 5\n97 91 88\n45 -82 -11\n-21 -15 -90\n-53 73 -26\n-74 85 -90\n-40 23 38\n100 -13 49\n32 -100 -100\n0 -100 -70\n0 -100 0\n0 -100 0\n0 -100 0\n0 -100 0\n0 -37 0",
"output": "YES"
},
{
"input": "4\n68 3 100\n68 21 -100\n-100 -24 0\n-36 0 0",
"output": "YES"
},
{
"input": "33\n-1 -46 -12\n45 -16 -21\n-11 45 -21\n-60 -42 -93\n-22 -45 93\n37 96 85\n-76 26 83\n-4 9 55\n7 -52 -9\n66 8 -85\n-100 -54 11\n-29 59 74\n-24 12 2\n-56 81 85\n-92 69 -52\n-26 -97 91\n54 59 -51\n58 21 -57\n7 68 56\n-47 -20 -51\n-59 77 -13\n-85 27 91\n79 60 -56\n66 -80 5\n21 -99 42\n-31 -29 98\n66 93 76\n-49 45 61\n100 -100 -100\n100 -100 -100\n66 -75 -100\n0 0 -100\n0 0 -87",
"output": "YES"
},
{
"input": "3\n1 2 3\n3 2 1\n0 0 0",
"output": "NO"
},
{
"input": "2\n5 -23 12\n0 0 0",
"output": "NO"
},
{
"input": "1\n0 0 0",
"output": "YES"
},
{
"input": "1\n1 -2 0",
"output": "NO"
},
{
"input": "2\n-23 77 -86\n23 -77 86",
"output": "YES"
},
{
"input": "26\n86 7 20\n-57 -64 39\n-45 6 -93\n-44 -21 100\n-11 -49 21\n73 -71 -80\n-2 -89 56\n-65 -2 7\n5 14 84\n57 41 13\n-12 69 54\n40 -25 27\n-17 -59 0\n64 -91 -30\n-53 9 42\n-54 -8 14\n-35 82 27\n-48 -59 -80\n88 70 79\n94 57 97\n44 63 25\n84 -90 -40\n-100 100 -100\n-92 100 -100\n0 10 -100\n0 0 -82",
"output": "YES"
},
{
"input": "42\n11 27 92\n-18 -56 -57\n1 71 81\n33 -92 30\n82 83 49\n-87 -61 -1\n-49 45 49\n73 26 15\n-22 22 -77\n29 -93 87\n-68 44 -90\n-4 -84 20\n85 67 -6\n-39 26 77\n-28 -64 20\n65 -97 24\n-72 -39 51\n35 -75 -91\n39 -44 -8\n-25 -27 -57\n91 8 -46\n-98 -94 56\n94 -60 59\n-9 -95 18\n-53 -37 98\n-8 -94 -84\n-52 55 60\n15 -14 37\n65 -43 -25\n94 12 66\n-8 -19 -83\n29 81 -78\n-58 57 33\n24 86 -84\n-53 32 -88\n-14 7 3\n89 97 -53\n-5 -28 -91\n-100 100 -6\n-84 100 0\n0 100 0\n0 70 0",
"output": "YES"
},
{
"input": "3\n96 49 -12\n2 -66 28\n-98 17 -16",
"output": "YES"
},
{
"input": "5\n70 -46 86\n-100 94 24\n-27 63 -63\n57 -100 -47\n0 -11 0",
"output": "YES"
},
{
"input": "18\n-86 -28 70\n-31 -89 42\n31 -48 -55\n95 -17 -43\n24 -95 -85\n-21 -14 31\n68 -18 81\n13 31 60\n-15 28 99\n-42 15 9\n28 -61 -62\n-16 71 29\n-28 75 -48\n-77 -67 36\n-100 83 89\n100 100 -100\n57 34 -100\n0 0 -53",
"output": "YES"
},
{
"input": "44\n52 -54 -29\n-82 -5 -94\n-54 43 43\n91 16 71\n7 80 -91\n3 15 29\n-99 -6 -77\n-3 -77 -64\n73 67 34\n25 -10 -18\n-29 91 63\n-72 86 -16\n-68 85 -81\n-3 36 44\n-74 -14 -80\n34 -96 -97\n-76 -78 -33\n-24 44 -58\n98 12 77\n95 -63 -6\n-51 3 -90\n-92 -10 72\n7 3 -68\n57 -53 71\n29 57 -48\n35 -60 10\n79 -70 -61\n-20 77 55\n-86 -15 -35\n84 -88 -18\n100 -42 77\n-20 46 8\n-41 -43 -65\n38 -98 -23\n-100 65 45\n-7 -91 -63\n46 88 -85\n48 59 100\n0 0 100\n0 0 100\n0 0 100\n0 0 100\n0 0 100\n0 0 1",
"output": "YES"
},
{
"input": "18\n-14 -64 -91\n-8 -66 -86\n-23 92 -40\n6 -3 -53\n57 41 78\n-79 42 -22\n-88 -17 45\n4 -45 44\n83 -18 -25\n34 86 -92\n75 -30 12\n44 99 11\n-67 -13 72\n22 83 -56\n-37 71 72\n-9 -100 100\n0 -100 31\n0 -58 0",
"output": "YES"
},
{
"input": "23\n-70 37 78\n42 84 6\n28 -94 -24\n-49 76 95\n-67 18 84\n-53 78 -5\n65 -63 -64\n-66 -64 -69\n81 -93 95\n10 52 -79\n-89 -61 -64\n-64 -47 43\n-81 -35 55\n80 82 73\n-60 -81 -18\n49 -10 -19\n-58 70 12\n-24 -15 -93\n98 -93 -54\n-28 -75 11\n100 100 -63\n100 100 0\n56 34 0",
"output": "YES"
},
{
"input": "3\n0 2 -2\n1 -1 3\n-3 0 0",
"output": "NO"
}
] | 1,675,957,070
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 81
| 122
| 0
|
n = int(input())
a,b,c =0,0,0
while n != 0:
arr = input().split()
a, b, c = a+int(arr[0]), b+int(arr[1]), c+int(arr[2])
n -= 1
if a == 0 and b == 0 and c == 0:
print('YES')
else:
print("NO")
|
Title: Young Physicist
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
A guy named Vasya attends the final grade of a high school. One day Vasya decided to watch a match of his favorite hockey team. And, as the boy loves hockey very much, even more than physics, he forgot to do the homework. Specifically, he forgot to complete his physics tasks. Next day the teacher got very angry at Vasya and decided to teach him a lesson. He gave the lazy student a seemingly easy task: You are given an idle body in space and the forces that affect it. The body can be considered as a material point with coordinates (0; 0; 0). Vasya had only to answer whether it is in equilibrium. "Piece of cake" β thought Vasya, we need only to check if the sum of all vectors is equal to 0. So, Vasya began to solve the problem. But later it turned out that there can be lots and lots of these forces, and Vasya can not cope without your help. Help him. Write a program that determines whether a body is idle or is moving by the given vectors of forces.
Input Specification:
The first line contains a positive integer *n* (1<=β€<=*n*<=β€<=100), then follow *n* lines containing three integers each: the *x**i* coordinate, the *y**i* coordinate and the *z**i* coordinate of the force vector, applied to the body (<=-<=100<=β€<=*x**i*,<=*y**i*,<=*z**i*<=β€<=100).
Output Specification:
Print the word "YES" if the body is in equilibrium, or the word "NO" if it is not.
Demo Input:
['3\n4 1 7\n-2 4 -1\n1 -5 -3\n', '3\n3 -1 7\n-5 2 -4\n2 -1 -3\n']
Demo Output:
['NO', 'YES']
Note:
none
|
```python
n = int(input())
a,b,c =0,0,0
while n != 0:
arr = input().split()
a, b, c = a+int(arr[0]), b+int(arr[1]), c+int(arr[2])
n -= 1
if a == 0 and b == 0 and c == 0:
print('YES')
else:
print("NO")
```
| 3.9695
|
59
|
A
|
Word
|
PROGRAMMING
| 800
|
[
"implementation",
"strings"
] |
A. Word
|
2
|
256
|
Vasya is very upset that many people on the Net mix uppercase and lowercase letters in one word. That's why he decided to invent an extension for his favorite browser that would change the letters' register in every word so that it either only consisted of lowercase letters or, vice versa, only of uppercase ones. At that as little as possible letters should be changed in the word. For example, the word HoUse must be replaced with house, and the word ViP β with VIP. If a word contains an equal number of uppercase and lowercase letters, you should replace all the letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to use the given method on one given word.
|
The first line contains a word *s* β it consists of uppercase and lowercase Latin letters and possesses the length from 1 to 100.
|
Print the corrected word *s*. If the given word *s* has strictly more uppercase letters, make the word written in the uppercase register, otherwise - in the lowercase one.
|
[
"HoUse\n",
"ViP\n",
"maTRIx\n"
] |
[
"house\n",
"VIP\n",
"matrix\n"
] |
none
| 500
|
[
{
"input": "HoUse",
"output": "house"
},
{
"input": "ViP",
"output": "VIP"
},
{
"input": "maTRIx",
"output": "matrix"
},
{
"input": "BNHWpnpawg",
"output": "bnhwpnpawg"
},
{
"input": "VTYGP",
"output": "VTYGP"
},
{
"input": "CHNenu",
"output": "chnenu"
},
{
"input": "ERPZGrodyu",
"output": "erpzgrodyu"
},
{
"input": "KSXBXWpebh",
"output": "KSXBXWPEBH"
},
{
"input": "qvxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaiv",
"output": "qvxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaiv"
},
{
"input": "Amnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfd",
"output": "amnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfd"
},
{
"input": "ISAGFJFARYFBLOPQDSHWGMCNKMFTLVFUGNJEWGWNBLXUIATXEkqiettmmjgydwcpafqrppdsrrrtguinqbgmzzfqwonkpgpcwenv",
"output": "isagfjfaryfblopqdshwgmcnkmftlvfugnjewgwnblxuiatxekqiettmmjgydwcpafqrppdsrrrtguinqbgmzzfqwonkpgpcwenv"
},
{
"input": "XHRPXZEGHSOCJPICUIXSKFUZUPYTSGJSDIYBCMNMNBPNDBXLXBzhbfnqvwcffvrdhtickyqhupmcehlsyvncqmfhautvxudqdhgg",
"output": "xhrpxzeghsocjpicuixskfuzupytsgjsdiybcmnmnbpndbxlxbzhbfnqvwcffvrdhtickyqhupmcehlsyvncqmfhautvxudqdhgg"
},
{
"input": "RJIQZMJCIMSNDBOHBRAWIENODSALETAKGKPYUFGVEFGCBRENZGAdkcetqjljtmttlonpekcovdzebzdkzggwfsxhapmjkdbuceak",
"output": "RJIQZMJCIMSNDBOHBRAWIENODSALETAKGKPYUFGVEFGCBRENZGADKCETQJLJTMTTLONPEKCOVDZEBZDKZGGWFSXHAPMJKDBUCEAK"
},
{
"input": "DWLWOBHNMMGTFOLFAECKBRNNGLYLYDXTGTVRLMEESZOIUATZZZXUFUZDLSJXMEVRTESSFBWLNZZCLCQWEVNNUCXYVHNGNXHCBDFw",
"output": "DWLWOBHNMMGTFOLFAECKBRNNGLYLYDXTGTVRLMEESZOIUATZZZXUFUZDLSJXMEVRTESSFBWLNZZCLCQWEVNNUCXYVHNGNXHCBDFW"
},
{
"input": "NYCNHJWGBOCOTSPETKKHVWFGAQYNHOVJWJHCIEFOUQZXOYUIEQDZALFKTEHTVDBVJMEUBJUBCMNVPWGDPNCHQHZJRCHYRFPVIGUB",
"output": "NYCNHJWGBOCOTSPETKKHVWFGAQYNHOVJWJHCIEFOUQZXOYUIEQDZALFKTEHTVDBVJMEUBJUBCMNVPWGDPNCHQHZJRCHYRFPVIGUB"
},
{
"input": "igxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwge",
"output": "igxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwge"
},
{
"input": "Ykkekrsqolzryiwsmdlnbmfautxxxauoojrddvwklgnlyrfcvhorrzbmtcrvpaypqhcffdqhwziipyyskcmztjprjqvmzzqhqnw",
"output": "ykkekrsqolzryiwsmdlnbmfautxxxauoojrddvwklgnlyrfcvhorrzbmtcrvpaypqhcffdqhwziipyyskcmztjprjqvmzzqhqnw"
},
{
"input": "YQOMLKYAORUQQUCQZCDYMIVDHGWZFFRMUVTAWCHERFPMNRYRIkgqrciokgajamehmcxgerpudvsqyonjonsxgbnefftzmygncks",
"output": "yqomlkyaoruqqucqzcdymivdhgwzffrmuvtawcherfpmnryrikgqrciokgajamehmcxgerpudvsqyonjonsxgbnefftzmygncks"
},
{
"input": "CDOZDPBVVVHNBJVBYHEOXWFLJKRWJCAJMIFCOZWWYFKVWOGTVJcuusigdqfkumewjtdyitveeiaybwrhomrwmpdipjwiuxfnwuz",
"output": "CDOZDPBVVVHNBJVBYHEOXWFLJKRWJCAJMIFCOZWWYFKVWOGTVJCUUSIGDQFKUMEWJTDYITVEEIAYBWRHOMRWMPDIPJWIUXFNWUZ"
},
{
"input": "WHIUVEXHVOOIJIDVJVPQUBJMEVPMPDKQWJKFBZSGSKUXMIPPMJWuckzcpxosodcjaaakvlxpbiigsiauviilylnnqlyucziihqg",
"output": "WHIUVEXHVOOIJIDVJVPQUBJMEVPMPDKQWJKFBZSGSKUXMIPPMJWUCKZCPXOSODCJAAAKVLXPBIIGSIAUVIILYLNNQLYUCZIIHQG"
},
{
"input": "VGHUNFOXKETUYMZDJNGTAOIOANYXSGYNFOGOFFLDAWEUKYFOZXCJTCAFXZYLQZERYZLRSQXYQGAPCSUDPMEYTNCTTTMFAGVDWBO",
"output": "VGHUNFOXKETUYMZDJNGTAOIOANYXSGYNFOGOFFLDAWEUKYFOZXCJTCAFXZYLQZERYZLRSQXYQGAPCSUDPMEYTNCTTTMFAGVDWBO"
},
{
"input": "EDUANHCQDOCJHFONTTSWBUJSTTIXBIXMAIUFSGFLXWAYIURTVAVZPYQDLAWIGCLMPHXCEFCJPFAAHXVNGQUFNHADAIUAZIDMHDd",
"output": "EDUANHCQDOCJHFONTTSWBUJSTTIXBIXMAIUFSGFLXWAYIURTVAVZPYQDLAWIGCLMPHXCEFCJPFAAHXVNGQUFNHADAIUAZIDMHDD"
},
{
"input": "EBWOVSNLYTWWXrnovgugogtjahnmatomubebyxakas",
"output": "ebwovsnlytwwxrnovgugogtjahnmatomubebyxakas"
},
{
"input": "AORNNDKTRLRVGDPXJKXFTPFpopuzrlqumrxssskvbm",
"output": "AORNNDKTRLRVGDPXJKXFTPFPOPUZRLQUMRXSSSKVBM"
},
{
"input": "DBBZJCWQEVGYHEEUHJAWRHBDPsnplijbwtdibqrrheebfxqcvn",
"output": "dbbzjcwqevgyheeuhjawrhbdpsnplijbwtdibqrrheebfxqcvn"
},
{
"input": "t",
"output": "t"
},
{
"input": "N",
"output": "N"
},
{
"input": "kv",
"output": "kv"
},
{
"input": "Ur",
"output": "ur"
},
{
"input": "CN",
"output": "CN"
}
] | 1,628,043,628
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 30
| 248
| 20,172,800
|
def bandwagons(s):
low=[i for i in s if i in "abcdefghijklmnopqrstuvwxyz"]
high=[i for i in s if i in "ABCDEFGHIJKLMNOPQRSTUVWXYZ"]
if len(low)>=len(high):
#return (len(low),s.lower())
return s.lower()
else:
#return (len(high),s.upper())
return s.upper()
s=input()
print(bandwagons(s))
|
Title: Word
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Vasya is very upset that many people on the Net mix uppercase and lowercase letters in one word. That's why he decided to invent an extension for his favorite browser that would change the letters' register in every word so that it either only consisted of lowercase letters or, vice versa, only of uppercase ones. At that as little as possible letters should be changed in the word. For example, the word HoUse must be replaced with house, and the word ViP β with VIP. If a word contains an equal number of uppercase and lowercase letters, you should replace all the letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to use the given method on one given word.
Input Specification:
The first line contains a word *s* β it consists of uppercase and lowercase Latin letters and possesses the length from 1 to 100.
Output Specification:
Print the corrected word *s*. If the given word *s* has strictly more uppercase letters, make the word written in the uppercase register, otherwise - in the lowercase one.
Demo Input:
['HoUse\n', 'ViP\n', 'maTRIx\n']
Demo Output:
['house\n', 'VIP\n', 'matrix\n']
Note:
none
|
```python
def bandwagons(s):
low=[i for i in s if i in "abcdefghijklmnopqrstuvwxyz"]
high=[i for i in s if i in "ABCDEFGHIJKLMNOPQRSTUVWXYZ"]
if len(low)>=len(high):
#return (len(low),s.lower())
return s.lower()
else:
#return (len(high),s.upper())
return s.upper()
s=input()
print(bandwagons(s))
```
| 3.900425
|
832
|
A
|
Sasha and Sticks
|
PROGRAMMING
| 800
|
[
"games",
"math"
] | null | null |
It's one more school day now. Sasha doesn't like classes and is always bored at them. So, each day he invents some game and plays in it alone or with friends.
Today he invented one simple game to play with Lena, with whom he shares a desk. The rules are simple. Sasha draws *n* sticks in a row. After that the players take turns crossing out exactly *k* sticks from left or right in each turn. Sasha moves first, because he is the inventor of the game. If there are less than *k* sticks on the paper before some turn, the game ends. Sasha wins if he makes strictly more moves than Lena. Sasha wants to know the result of the game before playing, you are to help him.
|
The first line contains two integers *n* and *k* (1<=β€<=*n*,<=*k*<=β€<=1018, *k*<=β€<=*n*)Β β the number of sticks drawn by Sasha and the number *k*Β β the number of sticks to be crossed out on each turn.
|
If Sasha wins, print "YES" (without quotes), otherwise print "NO" (without quotes).
You can print each letter in arbitrary case (upper of lower).
|
[
"1 1\n",
"10 4\n"
] |
[
"YES\n",
"NO\n"
] |
In the first example Sasha crosses out 1 stick, and then there are no sticks. So Lena can't make a move, and Sasha wins.
In the second example Sasha crosses out 4 sticks, then Lena crosses out 4 sticks, and after that there are only 2 sticks left. Sasha can't make a move. The players make equal number of moves, so Sasha doesn't win.
| 500
|
[
{
"input": "1 1",
"output": "YES"
},
{
"input": "10 4",
"output": "NO"
},
{
"input": "251656215122324104 164397544865601257",
"output": "YES"
},
{
"input": "963577813436662285 206326039287271924",
"output": "NO"
},
{
"input": "1000000000000000000 1",
"output": "NO"
},
{
"input": "253308697183523656 25332878317796706",
"output": "YES"
},
{
"input": "669038685745448997 501718093668307460",
"output": "YES"
},
{
"input": "116453141993601660 87060381463547965",
"output": "YES"
},
{
"input": "766959657 370931668",
"output": "NO"
},
{
"input": "255787422422806632 146884995820359999",
"output": "YES"
},
{
"input": "502007866464507926 71266379084204128",
"output": "YES"
},
{
"input": "257439908778973480 64157133126869976",
"output": "NO"
},
{
"input": "232709385 91708542",
"output": "NO"
},
{
"input": "252482458300407528 89907711721009125",
"output": "NO"
},
{
"input": "6 2",
"output": "YES"
},
{
"input": "6 3",
"output": "NO"
},
{
"input": "6 4",
"output": "YES"
},
{
"input": "6 5",
"output": "YES"
},
{
"input": "6 6",
"output": "YES"
},
{
"input": "258266151957056904 30153168463725364",
"output": "NO"
},
{
"input": "83504367885565783 52285355047292458",
"output": "YES"
},
{
"input": "545668929424440387 508692735816921376",
"output": "YES"
},
{
"input": "547321411485639939 36665750286082900",
"output": "NO"
},
{
"input": "548973893546839491 183137237979822911",
"output": "NO"
},
{
"input": "544068082 193116851",
"output": "NO"
},
{
"input": "871412474 749817171",
"output": "YES"
},
{
"input": "999999999 1247",
"output": "NO"
},
{
"input": "851941088 712987048",
"output": "YES"
},
{
"input": "559922900 418944886",
"output": "YES"
},
{
"input": "293908937 37520518",
"output": "YES"
},
{
"input": "650075786 130049650",
"output": "NO"
},
{
"input": "1000000000 1000000000",
"output": "YES"
},
{
"input": "548147654663723363 107422751713800746",
"output": "YES"
},
{
"input": "828159210 131819483",
"output": "NO"
},
{
"input": "6242634 4110365",
"output": "YES"
},
{
"input": "458601973 245084155",
"output": "YES"
},
{
"input": "349593257 18089089",
"output": "YES"
},
{
"input": "814768821 312514745",
"output": "NO"
},
{
"input": "697884949 626323363",
"output": "YES"
},
{
"input": "667011589 54866795",
"output": "NO"
},
{
"input": "1000000000000000000 2",
"output": "NO"
},
{
"input": "1000000000000000000 3",
"output": "YES"
},
{
"input": "1000000000000000000 4",
"output": "NO"
},
{
"input": "999999999999999 1",
"output": "YES"
},
{
"input": "17 4",
"output": "NO"
},
{
"input": "2 2",
"output": "YES"
},
{
"input": "1000000000000000 2",
"output": "NO"
},
{
"input": "12 4",
"output": "YES"
},
{
"input": "6 1",
"output": "NO"
},
{
"input": "2 1",
"output": "NO"
},
{
"input": "10000000005 1",
"output": "YES"
},
{
"input": "10000000000000009 2",
"output": "NO"
},
{
"input": "12457895452123 1",
"output": "YES"
},
{
"input": "999999999999999999 9",
"output": "YES"
},
{
"input": "1000000000000 3",
"output": "YES"
},
{
"input": "13099714659575475 6549849616514894",
"output": "NO"
},
{
"input": "100000000000000001 1",
"output": "YES"
},
{
"input": "825175814723458 324",
"output": "YES"
},
{
"input": "20 4",
"output": "YES"
},
{
"input": "100000176877 4",
"output": "YES"
},
{
"input": "100000 3",
"output": "YES"
},
{
"input": "946744073709551614 10",
"output": "YES"
}
] | 1,675,727,678
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 62
| 93
| 0
|
import sys
toks = (tok for tok in sys.stdin.read().split())
n = int(next(toks))
k = int(next(toks))
total = n // k
if total % 2 == 0:
print('NO')
else:
print('YES')
|
Title: Sasha and Sticks
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
It's one more school day now. Sasha doesn't like classes and is always bored at them. So, each day he invents some game and plays in it alone or with friends.
Today he invented one simple game to play with Lena, with whom he shares a desk. The rules are simple. Sasha draws *n* sticks in a row. After that the players take turns crossing out exactly *k* sticks from left or right in each turn. Sasha moves first, because he is the inventor of the game. If there are less than *k* sticks on the paper before some turn, the game ends. Sasha wins if he makes strictly more moves than Lena. Sasha wants to know the result of the game before playing, you are to help him.
Input Specification:
The first line contains two integers *n* and *k* (1<=β€<=*n*,<=*k*<=β€<=1018, *k*<=β€<=*n*)Β β the number of sticks drawn by Sasha and the number *k*Β β the number of sticks to be crossed out on each turn.
Output Specification:
If Sasha wins, print "YES" (without quotes), otherwise print "NO" (without quotes).
You can print each letter in arbitrary case (upper of lower).
Demo Input:
['1 1\n', '10 4\n']
Demo Output:
['YES\n', 'NO\n']
Note:
In the first example Sasha crosses out 1 stick, and then there are no sticks. So Lena can't make a move, and Sasha wins.
In the second example Sasha crosses out 4 sticks, then Lena crosses out 4 sticks, and after that there are only 2 sticks left. Sasha can't make a move. The players make equal number of moves, so Sasha doesn't win.
|
```python
import sys
toks = (tok for tok in sys.stdin.read().split())
n = int(next(toks))
k = int(next(toks))
total = n // k
if total % 2 == 0:
print('NO')
else:
print('YES')
```
| 3
|
|
604
|
B
|
More Cowbell
|
PROGRAMMING
| 1,400
|
[
"binary search",
"greedy"
] | null | null |
Kevin Sun wants to move his precious collection of *n* cowbells from Naperthrill to Exeter, where there is actually grass instead of corn. Before moving, he must pack his cowbells into *k* boxes of a fixed size. In order to keep his collection safe during transportation, he won't place more than two cowbells into a single box. Since Kevin wishes to minimize expenses, he is curious about the smallest size box he can use to pack his entire collection.
Kevin is a meticulous cowbell collector and knows that the size of his *i*-th (1<=β€<=*i*<=β€<=*n*) cowbell is an integer *s**i*. In fact, he keeps his cowbells sorted by size, so *s**i*<=-<=1<=β€<=*s**i* for any *i*<=><=1. Also an expert packer, Kevin can fit one or two cowbells into a box of size *s* if and only if the sum of their sizes does not exceed *s*. Given this information, help Kevin determine the smallest *s* for which it is possible to put all of his cowbells into *k* boxes of size *s*.
|
The first line of the input contains two space-separated integers *n* and *k* (1<=β€<=*n*<=β€<=2Β·*k*<=β€<=100<=000), denoting the number of cowbells and the number of boxes, respectively.
The next line contains *n* space-separated integers *s*1,<=*s*2,<=...,<=*s**n* (1<=β€<=*s*1<=β€<=*s*2<=β€<=...<=β€<=*s**n*<=β€<=1<=000<=000), the sizes of Kevin's cowbells. It is guaranteed that the sizes *s**i* are given in non-decreasing order.
|
Print a single integer, the smallest *s* for which it is possible for Kevin to put all of his cowbells into *k* boxes of size *s*.
|
[
"2 1\n2 5\n",
"4 3\n2 3 5 9\n",
"3 2\n3 5 7\n"
] |
[
"7\n",
"9\n",
"8\n"
] |
In the first sample, Kevin must pack his two cowbells into the same box.
In the second sample, Kevin can pack together the following sets of cowbells: {2,β3}, {5} and {9}.
In the third sample, the optimal solution is {3,β5} and {7}.
| 1,000
|
[
{
"input": "2 1\n2 5",
"output": "7"
},
{
"input": "4 3\n2 3 5 9",
"output": "9"
},
{
"input": "3 2\n3 5 7",
"output": "8"
},
{
"input": "20 11\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "2"
},
{
"input": "10 10\n3 15 31 61 63 63 68 94 98 100",
"output": "100"
},
{
"input": "100 97\n340 402 415 466 559 565 649 689 727 771 774 776 789 795 973 1088 1212 1293 1429 1514 1587 1599 1929 1997 2278 2529 2656 2677 2839 2894 2951 3079 3237 3250 3556 3568 3569 3578 3615 3641 3673 3892 4142 4418 4515 4766 4846 4916 5225 5269 5352 5460 5472 5635 5732 5886 5941 5976 5984 6104 6113 6402 6409 6460 6550 6563 6925 7006 7289 7401 7441 7451 7709 7731 7742 7750 7752 7827 8101 8154 8376 8379 8432 8534 8578 8630 8706 8814 8882 8972 9041 9053 9109 9173 9473 9524 9547 9775 9791 9983",
"output": "9983"
},
{
"input": "10 9\n7 29 35 38 41 47 54 56 73 74",
"output": "74"
},
{
"input": "1 2342\n12345",
"output": "12345"
},
{
"input": "10 5\n15 15 20 28 38 44 46 52 69 94",
"output": "109"
},
{
"input": "10 9\n6 10 10 32 36 38 69 80 82 93",
"output": "93"
},
{
"input": "10 10\n4 19 22 24 25 43 49 56 78 88",
"output": "88"
},
{
"input": "100 89\n474 532 759 772 803 965 1043 1325 1342 1401 1411 1452 1531 1707 1906 1928 2034 2222 2335 2606 2757 2968 2978 3211 3513 3734 3772 3778 3842 3948 3976 4038 4055 4113 4182 4267 4390 4408 4478 4595 4668 4792 4919 5133 5184 5255 5312 5341 5476 5628 5683 5738 5767 5806 5973 6051 6134 6254 6266 6279 6314 6342 6599 6676 6747 6777 6827 6842 7057 7097 7259 7340 7378 7405 7510 7520 7698 7796 8148 8351 8507 8601 8805 8814 8826 8978 9116 9140 9174 9338 9394 9403 9407 9423 9429 9519 9764 9784 9838 9946",
"output": "9946"
},
{
"input": "100 74\n10 211 323 458 490 592 979 981 1143 1376 1443 1499 1539 1612 1657 1874 2001 2064 2123 2274 2346 2471 2522 2589 2879 2918 2933 2952 3160 3164 3167 3270 3382 3404 3501 3522 3616 3802 3868 3985 4007 4036 4101 4580 4687 4713 4714 4817 4955 5257 5280 5343 5428 5461 5566 5633 5727 5874 5925 6233 6309 6389 6500 6701 6731 6847 6916 7088 7088 7278 7296 7328 7564 7611 7646 7887 7887 8065 8075 8160 8300 8304 8316 8355 8404 8587 8758 8794 8890 9038 9163 9235 9243 9339 9410 9587 9868 9916 9923 9986",
"output": "9986"
},
{
"input": "100 61\n82 167 233 425 432 456 494 507 562 681 683 921 1218 1323 1395 1531 1586 1591 1675 1766 1802 1842 2116 2625 2697 2735 2739 3337 3349 3395 3406 3596 3610 3721 4059 4078 4305 4330 4357 4379 4558 4648 4651 4784 4819 4920 5049 5312 5361 5418 5440 5463 5547 5594 5821 5951 5972 6141 6193 6230 6797 6842 6853 6854 7017 7026 7145 7322 7391 7460 7599 7697 7756 7768 7872 7889 8094 8215 8408 8440 8462 8714 8756 8760 8881 9063 9111 9184 9281 9373 9406 9417 9430 9511 9563 9634 9660 9788 9883 9927",
"output": "9927"
},
{
"input": "100 84\n53 139 150 233 423 570 786 861 995 1017 1072 1196 1276 1331 1680 1692 1739 1748 1826 2067 2280 2324 2368 2389 2607 2633 2760 2782 2855 2996 3030 3093 3513 3536 3557 3594 3692 3707 3823 3832 4009 4047 4088 4095 4408 4537 4565 4601 4784 4878 4935 5029 5252 5322 5389 5407 5511 5567 5857 6182 6186 6198 6280 6290 6353 6454 6458 6567 6843 7166 7216 7257 7261 7375 7378 7539 7542 7762 7771 7797 7980 8363 8606 8612 8663 8801 8808 8823 8918 8975 8997 9240 9245 9259 9356 9755 9759 9760 9927 9970",
"output": "9970"
},
{
"input": "100 50\n130 248 312 312 334 589 702 916 921 1034 1047 1346 1445 1500 1585 1744 1951 2123 2273 2362 2400 2455 2496 2530 2532 2944 3074 3093 3094 3134 3698 3967 4047 4102 4109 4260 4355 4466 4617 4701 4852 4892 4915 4917 4936 4981 4999 5106 5152 5203 5214 5282 5412 5486 5525 5648 5897 5933 5969 6251 6400 6421 6422 6558 6805 6832 6908 6924 6943 6980 7092 7206 7374 7417 7479 7546 7672 7756 7973 8020 8028 8079 8084 8085 8137 8153 8178 8239 8639 8667 8829 9263 9333 9370 9420 9579 9723 9784 9841 9993",
"output": "11103"
},
{
"input": "100 50\n156 182 208 409 496 515 659 761 772 794 827 912 1003 1236 1305 1388 1412 1422 1428 1465 1613 2160 2411 2440 2495 2684 2724 2925 3033 3035 3155 3260 3378 3442 3483 3921 4031 4037 4091 4113 4119 4254 4257 4442 4559 4614 4687 4839 4896 5054 5246 5316 5346 5859 5928 5981 6148 6250 6422 6433 6448 6471 6473 6485 6503 6779 6812 7050 7064 7074 7141 7378 7424 7511 7574 7651 7808 7858 8286 8291 8446 8536 8599 8628 8636 8768 8900 8981 9042 9055 9114 9146 9186 9411 9480 9590 9681 9749 9757 9983",
"output": "10676"
},
{
"input": "100 50\n145 195 228 411 577 606 629 775 1040 1040 1058 1187 1307 1514 1784 1867 1891 2042 2042 2236 2549 2555 2560 2617 2766 2807 2829 2917 3070 3072 3078 3095 3138 3147 3149 3196 3285 3287 3309 3435 3531 3560 3563 3769 3830 3967 4081 4158 4315 4387 4590 4632 4897 4914 5128 5190 5224 5302 5402 5416 5420 5467 5517 5653 5820 5862 5941 6053 6082 6275 6292 6316 6490 6530 6619 6632 6895 7071 7234 7323 7334 7412 7626 7743 8098 8098 8136 8158 8264 8616 8701 8718 8770 8803 8809 8983 9422 9530 9811 9866",
"output": "10011"
},
{
"input": "100 50\n56 298 387 456 518 532 589 792 870 1041 1055 1122 1141 1166 1310 1329 1523 1548 1626 1730 1780 1833 1850 1911 2006 2157 2303 2377 2403 2442 2450 2522 2573 2822 2994 3200 3238 3252 3280 3311 3345 3422 3429 3506 3526 3617 3686 3791 4134 4467 4525 4614 4633 4792 5017 5220 5243 5338 5445 5536 5639 5675 5763 5875 6129 6220 6228 6287 6385 6616 6789 6822 6940 6959 6985 7297 7304 7391 7443 7580 7824 7884 7981 8055 8063 8223 8280 8322 8346 8473 8688 8986 9087 9323 9477 9489 9518 9621 9699 9804",
"output": "10009"
},
{
"input": "100 49990\n221 257 543 613 818 855 884 1195 1233 1293 1327 1474 1567 1568 1728 1789 1809 1957 1994 2198 2217 2289 2298 2360 2441 2454 2517 2519 2597 2652 2909 2958 2970 3271 3310 3409 3450 3646 3950 3965 4016 4116 4134 4159 4462 4624 4631 4783 4804 5031 5276 5538 5729 5845 5880 5894 5959 5961 6028 6105 6184 6335 6370 6523 6532 6677 6762 6868 6998 7066 7245 7360 7490 7492 7645 7677 7786 7804 8038 8131 8207 8400 8507 8556 8575 8599 8673 8676 8712 8816 9123 9158 9216 9369 9628 9707 9768 9800 9876 9934",
"output": "9934"
},
{
"input": "1 50000\n2",
"output": "2"
},
{
"input": "1 40000\n23456",
"output": "23456"
},
{
"input": "1 2\n10",
"output": "10"
},
{
"input": "1 1\n1",
"output": "1"
},
{
"input": "2 2\n2 3",
"output": "3"
},
{
"input": "4 2\n1 2 8 9",
"output": "10"
}
] | 1,589,627,949
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 54
| 218
| 30,617,600
|
n, k = map(int, input().split())
a = list(map(int, input().split()))
b = [0]*k
for i in range(n-1, -1, -1):
b[(n-1-i) % k] += a[i]
if n-1-i == k-1:
b = b[::-1]
print(max(b))
|
Title: More Cowbell
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Kevin Sun wants to move his precious collection of *n* cowbells from Naperthrill to Exeter, where there is actually grass instead of corn. Before moving, he must pack his cowbells into *k* boxes of a fixed size. In order to keep his collection safe during transportation, he won't place more than two cowbells into a single box. Since Kevin wishes to minimize expenses, he is curious about the smallest size box he can use to pack his entire collection.
Kevin is a meticulous cowbell collector and knows that the size of his *i*-th (1<=β€<=*i*<=β€<=*n*) cowbell is an integer *s**i*. In fact, he keeps his cowbells sorted by size, so *s**i*<=-<=1<=β€<=*s**i* for any *i*<=><=1. Also an expert packer, Kevin can fit one or two cowbells into a box of size *s* if and only if the sum of their sizes does not exceed *s*. Given this information, help Kevin determine the smallest *s* for which it is possible to put all of his cowbells into *k* boxes of size *s*.
Input Specification:
The first line of the input contains two space-separated integers *n* and *k* (1<=β€<=*n*<=β€<=2Β·*k*<=β€<=100<=000), denoting the number of cowbells and the number of boxes, respectively.
The next line contains *n* space-separated integers *s*1,<=*s*2,<=...,<=*s**n* (1<=β€<=*s*1<=β€<=*s*2<=β€<=...<=β€<=*s**n*<=β€<=1<=000<=000), the sizes of Kevin's cowbells. It is guaranteed that the sizes *s**i* are given in non-decreasing order.
Output Specification:
Print a single integer, the smallest *s* for which it is possible for Kevin to put all of his cowbells into *k* boxes of size *s*.
Demo Input:
['2 1\n2 5\n', '4 3\n2 3 5 9\n', '3 2\n3 5 7\n']
Demo Output:
['7\n', '9\n', '8\n']
Note:
In the first sample, Kevin must pack his two cowbells into the same box.
In the second sample, Kevin can pack together the following sets of cowbells: {2,β3}, {5} and {9}.
In the third sample, the optimal solution is {3,β5} and {7}.
|
```python
n, k = map(int, input().split())
a = list(map(int, input().split()))
b = [0]*k
for i in range(n-1, -1, -1):
b[(n-1-i) % k] += a[i]
if n-1-i == k-1:
b = b[::-1]
print(max(b))
```
| 3
|
|
114
|
A
|
Cifera
|
PROGRAMMING
| 1,000
|
[
"math"
] | null | null |
When Petya went to school, he got interested in large numbers and what they were called in ancient times. For instance, he learned that the Russian word "tma" (which now means "too much to be counted") used to stand for a thousand and "tma tmyschaya" (which literally means "the tma of tmas") used to stand for a million.
Petya wanted to modernize the words we use for numbers and invented a word petricium that represents number *k*. Moreover, petricium la petricium stands for number *k*2, petricium la petricium la petricium stands for *k*3 and so on. All numbers of this form are called petriciumus cifera, and the number's importance is the number of articles la in its title.
Petya's invention brought on a challenge that needed to be solved quickly: does some number *l* belong to the set petriciumus cifera? As Petya is a very busy schoolboy he needs to automate the process, he asked you to solve it.
|
The first input line contains integer number *k*, the second line contains integer number *l* (2<=β€<=*k*,<=*l*<=β€<=231<=-<=1).
|
You should print in the first line of the output "YES", if the number belongs to the set petriciumus cifera and otherwise print "NO". If the number belongs to the set, then print on the seconds line the only number β the importance of number *l*.
|
[
"5\n25\n",
"3\n8\n"
] |
[
"YES\n1\n",
"NO\n"
] |
none
| 500
|
[
{
"input": "5\n25",
"output": "YES\n1"
},
{
"input": "3\n8",
"output": "NO"
},
{
"input": "123\n123",
"output": "YES\n0"
},
{
"input": "99\n970300",
"output": "NO"
},
{
"input": "1000\n6666666",
"output": "NO"
},
{
"input": "59\n3571",
"output": "NO"
},
{
"input": "256\n16777217",
"output": "NO"
},
{
"input": "4638\n21511044",
"output": "YES\n1"
},
{
"input": "24\n191102976",
"output": "YES\n5"
},
{
"input": "52010\n557556453",
"output": "NO"
},
{
"input": "61703211\n1750753082",
"output": "NO"
},
{
"input": "137\n2571353",
"output": "YES\n2"
},
{
"input": "8758\n1746157336",
"output": "NO"
},
{
"input": "2\n64",
"output": "YES\n5"
},
{
"input": "96\n884736",
"output": "YES\n2"
},
{
"input": "1094841453\n1656354409",
"output": "NO"
},
{
"input": "1154413\n1229512809",
"output": "NO"
},
{
"input": "2442144\n505226241",
"output": "NO"
},
{
"input": "11548057\n1033418098",
"output": "NO"
},
{
"input": "581\n196122941",
"output": "YES\n2"
},
{
"input": "146\n1913781536",
"output": "NO"
},
{
"input": "945916\n1403881488",
"output": "NO"
},
{
"input": "68269\n365689065",
"output": "NO"
},
{
"input": "30\n900",
"output": "YES\n1"
},
{
"input": "6\n1296",
"output": "YES\n3"
},
{
"input": "1470193122\n1420950405",
"output": "NO"
},
{
"input": "90750\n1793111557",
"output": "NO"
},
{
"input": "1950054\n1664545956",
"output": "NO"
},
{
"input": "6767692\n123762320",
"output": "NO"
},
{
"input": "1437134\n1622348229",
"output": "NO"
},
{
"input": "444103\n1806462642",
"output": "NO"
},
{
"input": "2592\n6718464",
"output": "YES\n1"
},
{
"input": "50141\n366636234",
"output": "NO"
},
{
"input": "835\n582182875",
"output": "YES\n2"
},
{
"input": "156604\n902492689",
"output": "NO"
},
{
"input": "27385965\n1742270058",
"output": "NO"
},
{
"input": "3\n9",
"output": "YES\n1"
},
{
"input": "35\n1838265625",
"output": "YES\n5"
},
{
"input": "8\n4096",
"output": "YES\n3"
},
{
"input": "85955\n945811082",
"output": "NO"
},
{
"input": "54958832\n956670209",
"output": "NO"
},
{
"input": "1475381\n1348159738",
"output": "NO"
},
{
"input": "7313241\n413670642",
"output": "NO"
},
{
"input": "582470\n2116368165",
"output": "NO"
},
{
"input": "26859739\n595086170",
"output": "NO"
},
{
"input": "249766393\n1582130",
"output": "NO"
},
{
"input": "11734\n137686756",
"output": "YES\n1"
},
{
"input": "925093\n1098566745",
"output": "NO"
},
{
"input": "40\n1600",
"output": "YES\n1"
},
{
"input": "2147483647\n2147483647",
"output": "YES\n0"
},
{
"input": "2147483646\n2147483647",
"output": "NO"
},
{
"input": "2147483647\n2147483646",
"output": "NO"
},
{
"input": "2\n2147483647",
"output": "NO"
},
{
"input": "2\n1073741825",
"output": "NO"
},
{
"input": "2\n1073741824",
"output": "YES\n29"
},
{
"input": "10000\n10",
"output": "NO"
},
{
"input": "10\n10000",
"output": "YES\n3"
},
{
"input": "10\n2000000000",
"output": "NO"
},
{
"input": "10\n1000000000",
"output": "YES\n8"
},
{
"input": "5\n1808548329",
"output": "NO"
},
{
"input": "2\n2147483646",
"output": "NO"
},
{
"input": "25\n125",
"output": "NO"
},
{
"input": "6\n18",
"output": "NO"
},
{
"input": "5\n30",
"output": "NO"
}
] | 1,616,647,981
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 64
| 216
| 0
|
k=int(input())
l=int(input())
i=0
while l>1:l/=k;i+=1
if l==1:
print("YES")
print(i-1)
else:print("NO")
|
Title: Cifera
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
When Petya went to school, he got interested in large numbers and what they were called in ancient times. For instance, he learned that the Russian word "tma" (which now means "too much to be counted") used to stand for a thousand and "tma tmyschaya" (which literally means "the tma of tmas") used to stand for a million.
Petya wanted to modernize the words we use for numbers and invented a word petricium that represents number *k*. Moreover, petricium la petricium stands for number *k*2, petricium la petricium la petricium stands for *k*3 and so on. All numbers of this form are called petriciumus cifera, and the number's importance is the number of articles la in its title.
Petya's invention brought on a challenge that needed to be solved quickly: does some number *l* belong to the set petriciumus cifera? As Petya is a very busy schoolboy he needs to automate the process, he asked you to solve it.
Input Specification:
The first input line contains integer number *k*, the second line contains integer number *l* (2<=β€<=*k*,<=*l*<=β€<=231<=-<=1).
Output Specification:
You should print in the first line of the output "YES", if the number belongs to the set petriciumus cifera and otherwise print "NO". If the number belongs to the set, then print on the seconds line the only number β the importance of number *l*.
Demo Input:
['5\n25\n', '3\n8\n']
Demo Output:
['YES\n1\n', 'NO\n']
Note:
none
|
```python
k=int(input())
l=int(input())
i=0
while l>1:l/=k;i+=1
if l==1:
print("YES")
print(i-1)
else:print("NO")
```
| 3
|
|
630
|
C
|
Lucky Numbers
|
PROGRAMMING
| 1,100
|
[
"combinatorics",
"math"
] | null | null |
The numbers of all offices in the new building of the Tax Office of IT City will have lucky numbers.
Lucky number is a number that consists of digits 7 and 8 only. Find the maximum number of offices in the new building of the Tax Office given that a door-plate can hold a number not longer than *n* digits.
|
The only line of input contains one integer *n* (1<=β€<=*n*<=β€<=55) β the maximum length of a number that a door-plate can hold.
|
Output one integer β the maximum number of offices, than can have unique lucky numbers not longer than *n* digits.
|
[
"2\n"
] |
[
"6"
] |
none
| 0
|
[
{
"input": "2",
"output": "6"
},
{
"input": "1",
"output": "2"
},
{
"input": "3",
"output": "14"
},
{
"input": "5",
"output": "62"
},
{
"input": "12",
"output": "8190"
},
{
"input": "34",
"output": "34359738366"
},
{
"input": "43",
"output": "17592186044414"
},
{
"input": "49",
"output": "1125899906842622"
},
{
"input": "54",
"output": "36028797018963966"
},
{
"input": "55",
"output": "72057594037927934"
}
] | 1,695,876,778
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 10
| 31
| 0
|
a=int(input())
print(2*((2**a)-1))
|
Title: Lucky Numbers
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
The numbers of all offices in the new building of the Tax Office of IT City will have lucky numbers.
Lucky number is a number that consists of digits 7 and 8 only. Find the maximum number of offices in the new building of the Tax Office given that a door-plate can hold a number not longer than *n* digits.
Input Specification:
The only line of input contains one integer *n* (1<=β€<=*n*<=β€<=55) β the maximum length of a number that a door-plate can hold.
Output Specification:
Output one integer β the maximum number of offices, than can have unique lucky numbers not longer than *n* digits.
Demo Input:
['2\n']
Demo Output:
['6']
Note:
none
|
```python
a=int(input())
print(2*((2**a)-1))
```
| 3
|
|
908
|
A
|
New Year and Counting Cards
|
PROGRAMMING
| 800
|
[
"brute force",
"implementation"
] | null | null |
Your friend has *n* cards.
You know that each card has a lowercase English letter on one side and a digit on the other.
Currently, your friend has laid out the cards on a table so only one side of each card is visible.
You would like to know if the following statement is true for cards that your friend owns: "If a card has a vowel on one side, then it has an even digit on the other side." More specifically, a vowel is one of 'a', 'e', 'i', 'o' or 'u', and even digit is one of '0', '2', '4', '6' or '8'.
For example, if a card has 'a' on one side, and '6' on the other side, then this statement is true for it. Also, the statement is true, for example, for a card with 'b' and '4', and for a card with 'b' and '3' (since the letter is not a vowel). The statement is false, for example, for card with 'e' and '5'. You are interested if the statement is true for all cards. In particular, if no card has a vowel, the statement is true.
To determine this, you can flip over some cards to reveal the other side. You would like to know what is the minimum number of cards you need to flip in the worst case in order to verify that the statement is true.
|
The first and only line of input will contain a string *s* (1<=β€<=|*s*|<=β€<=50), denoting the sides of the cards that you can see on the table currently. Each character of *s* is either a lowercase English letter or a digit.
|
Print a single integer, the minimum number of cards you must turn over to verify your claim.
|
[
"ee\n",
"z\n",
"0ay1\n"
] |
[
"2\n",
"0\n",
"2\n"
] |
In the first sample, we must turn over both cards. Note that even though both cards have the same letter, they could possibly have different numbers on the other side.
In the second sample, we don't need to turn over any cards. The statement is vacuously true, since you know your friend has no cards with a vowel on them.
In the third sample, we need to flip the second and fourth cards.
| 500
|
[
{
"input": "ee",
"output": "2"
},
{
"input": "z",
"output": "0"
},
{
"input": "0ay1",
"output": "2"
},
{
"input": "0abcdefghijklmnopqrstuvwxyz1234567896",
"output": "10"
},
{
"input": "0a0a9e9e2i2i9o9o6u6u9z9z4x4x9b9b",
"output": "18"
},
{
"input": "01234567890123456789012345678901234567890123456789",
"output": "25"
},
{
"input": "qwertyuioplkjhgfdsazxcvbnmqwertyuioplkjhgfdsazxcvb",
"output": "10"
},
{
"input": "cjw2dwmr10pku4yxohe0wglktd",
"output": "4"
},
{
"input": "6z2tx805jie8cfybwtfqvmlveec3iak5z5u3lu62vbxyqht6",
"output": "13"
},
{
"input": "kaq7jyialrfp4ilkni90eq8v3amcbygon7py0hb8z26fbl8ss1",
"output": "13"
},
{
"input": "hpwn50zgbmct80k9rizjqg40nycgs0acwikjqt11nr6m61krfs",
"output": "8"
},
{
"input": "l3rw91a4m25l8iytxyeuixsegzcbm4h41ornf3pixkrmwznrzc",
"output": "14"
},
{
"input": "2222",
"output": "0"
},
{
"input": "13579",
"output": "5"
},
{
"input": "1",
"output": "1"
},
{
"input": "0",
"output": "0"
},
{
"input": "a",
"output": "1"
},
{
"input": "y",
"output": "0"
},
{
"input": "w",
"output": "0"
},
{
"input": "oo",
"output": "2"
},
{
"input": "oy",
"output": "1"
},
{
"input": "yo",
"output": "1"
},
{
"input": "yy",
"output": "0"
},
{
"input": "a0",
"output": "1"
},
{
"input": "a9",
"output": "2"
},
{
"input": "y0",
"output": "0"
},
{
"input": "y7",
"output": "1"
},
{
"input": "0a",
"output": "1"
},
{
"input": "3a",
"output": "2"
},
{
"input": "06",
"output": "0"
},
{
"input": "07",
"output": "1"
},
{
"input": "70",
"output": "1"
},
{
"input": "77",
"output": "2"
},
{
"input": "13570",
"output": "4"
},
{
"input": "0000000000011111",
"output": "5"
},
{
"input": "1357",
"output": "4"
},
{
"input": "uuuuuuuuuuuuuuuuuu",
"output": "18"
},
{
"input": "gabieurat",
"output": "5"
}
] | 1,514,627,845
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 38
| 61
| 5,632,000
|
s = input().strip()
print (sum([s.count(x) for x in "aeiou13579"]))
|
Title: New Year and Counting Cards
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Your friend has *n* cards.
You know that each card has a lowercase English letter on one side and a digit on the other.
Currently, your friend has laid out the cards on a table so only one side of each card is visible.
You would like to know if the following statement is true for cards that your friend owns: "If a card has a vowel on one side, then it has an even digit on the other side." More specifically, a vowel is one of 'a', 'e', 'i', 'o' or 'u', and even digit is one of '0', '2', '4', '6' or '8'.
For example, if a card has 'a' on one side, and '6' on the other side, then this statement is true for it. Also, the statement is true, for example, for a card with 'b' and '4', and for a card with 'b' and '3' (since the letter is not a vowel). The statement is false, for example, for card with 'e' and '5'. You are interested if the statement is true for all cards. In particular, if no card has a vowel, the statement is true.
To determine this, you can flip over some cards to reveal the other side. You would like to know what is the minimum number of cards you need to flip in the worst case in order to verify that the statement is true.
Input Specification:
The first and only line of input will contain a string *s* (1<=β€<=|*s*|<=β€<=50), denoting the sides of the cards that you can see on the table currently. Each character of *s* is either a lowercase English letter or a digit.
Output Specification:
Print a single integer, the minimum number of cards you must turn over to verify your claim.
Demo Input:
['ee\n', 'z\n', '0ay1\n']
Demo Output:
['2\n', '0\n', '2\n']
Note:
In the first sample, we must turn over both cards. Note that even though both cards have the same letter, they could possibly have different numbers on the other side.
In the second sample, we don't need to turn over any cards. The statement is vacuously true, since you know your friend has no cards with a vowel on them.
In the third sample, we need to flip the second and fourth cards.
|
```python
s = input().strip()
print (sum([s.count(x) for x in "aeiou13579"]))
```
| 3
|
|
670
|
A
|
Holidays
|
PROGRAMMING
| 900
|
[
"brute force",
"constructive algorithms",
"greedy",
"math"
] | null | null |
On the planet Mars a year lasts exactly *n* days (there are no leap years on Mars). But Martians have the same weeks as earthlingsΒ β 5 work days and then 2 days off. Your task is to determine the minimum possible and the maximum possible number of days off per year on Mars.
|
The first line of the input contains a positive integer *n* (1<=β€<=*n*<=β€<=1<=000<=000)Β β the number of days in a year on Mars.
|
Print two integersΒ β the minimum possible and the maximum possible number of days off per year on Mars.
|
[
"14\n",
"2\n"
] |
[
"4 4\n",
"0 2\n"
] |
In the first sample there are 14 days in a year on Mars, and therefore independently of the day a year starts with there will be exactly 4 days off .
In the second sample there are only 2 days in a year on Mars, and they can both be either work days or days off.
| 500
|
[
{
"input": "14",
"output": "4 4"
},
{
"input": "2",
"output": "0 2"
},
{
"input": "1",
"output": "0 1"
},
{
"input": "3",
"output": "0 2"
},
{
"input": "4",
"output": "0 2"
},
{
"input": "5",
"output": "0 2"
},
{
"input": "6",
"output": "1 2"
},
{
"input": "7",
"output": "2 2"
},
{
"input": "8",
"output": "2 3"
},
{
"input": "9",
"output": "2 4"
},
{
"input": "10",
"output": "2 4"
},
{
"input": "11",
"output": "2 4"
},
{
"input": "12",
"output": "2 4"
},
{
"input": "13",
"output": "3 4"
},
{
"input": "1000000",
"output": "285714 285715"
},
{
"input": "16",
"output": "4 6"
},
{
"input": "17",
"output": "4 6"
},
{
"input": "18",
"output": "4 6"
},
{
"input": "19",
"output": "4 6"
},
{
"input": "20",
"output": "5 6"
},
{
"input": "21",
"output": "6 6"
},
{
"input": "22",
"output": "6 7"
},
{
"input": "23",
"output": "6 8"
},
{
"input": "24",
"output": "6 8"
},
{
"input": "25",
"output": "6 8"
},
{
"input": "26",
"output": "6 8"
},
{
"input": "27",
"output": "7 8"
},
{
"input": "28",
"output": "8 8"
},
{
"input": "29",
"output": "8 9"
},
{
"input": "30",
"output": "8 10"
},
{
"input": "100",
"output": "28 30"
},
{
"input": "99",
"output": "28 29"
},
{
"input": "98",
"output": "28 28"
},
{
"input": "97",
"output": "27 28"
},
{
"input": "96",
"output": "26 28"
},
{
"input": "95",
"output": "26 28"
},
{
"input": "94",
"output": "26 28"
},
{
"input": "93",
"output": "26 28"
},
{
"input": "92",
"output": "26 27"
},
{
"input": "91",
"output": "26 26"
},
{
"input": "90",
"output": "25 26"
},
{
"input": "89",
"output": "24 26"
},
{
"input": "88",
"output": "24 26"
},
{
"input": "87",
"output": "24 26"
},
{
"input": "86",
"output": "24 26"
},
{
"input": "85",
"output": "24 25"
},
{
"input": "84",
"output": "24 24"
},
{
"input": "83",
"output": "23 24"
},
{
"input": "82",
"output": "22 24"
},
{
"input": "81",
"output": "22 24"
},
{
"input": "80",
"output": "22 24"
},
{
"input": "1000",
"output": "285 286"
},
{
"input": "999",
"output": "284 286"
},
{
"input": "998",
"output": "284 286"
},
{
"input": "997",
"output": "284 286"
},
{
"input": "996",
"output": "284 286"
},
{
"input": "995",
"output": "284 285"
},
{
"input": "994",
"output": "284 284"
},
{
"input": "993",
"output": "283 284"
},
{
"input": "992",
"output": "282 284"
},
{
"input": "991",
"output": "282 284"
},
{
"input": "990",
"output": "282 284"
},
{
"input": "989",
"output": "282 284"
},
{
"input": "988",
"output": "282 283"
},
{
"input": "987",
"output": "282 282"
},
{
"input": "986",
"output": "281 282"
},
{
"input": "985",
"output": "280 282"
},
{
"input": "984",
"output": "280 282"
},
{
"input": "983",
"output": "280 282"
},
{
"input": "982",
"output": "280 282"
},
{
"input": "981",
"output": "280 281"
},
{
"input": "980",
"output": "280 280"
},
{
"input": "10000",
"output": "2856 2858"
},
{
"input": "9999",
"output": "2856 2858"
},
{
"input": "9998",
"output": "2856 2858"
},
{
"input": "9997",
"output": "2856 2857"
},
{
"input": "9996",
"output": "2856 2856"
},
{
"input": "9995",
"output": "2855 2856"
},
{
"input": "9994",
"output": "2854 2856"
},
{
"input": "9993",
"output": "2854 2856"
},
{
"input": "9992",
"output": "2854 2856"
},
{
"input": "9991",
"output": "2854 2856"
},
{
"input": "9990",
"output": "2854 2855"
},
{
"input": "9989",
"output": "2854 2854"
},
{
"input": "9988",
"output": "2853 2854"
},
{
"input": "9987",
"output": "2852 2854"
},
{
"input": "9986",
"output": "2852 2854"
},
{
"input": "9985",
"output": "2852 2854"
},
{
"input": "9984",
"output": "2852 2854"
},
{
"input": "9983",
"output": "2852 2853"
},
{
"input": "9982",
"output": "2852 2852"
},
{
"input": "9981",
"output": "2851 2852"
},
{
"input": "9980",
"output": "2850 2852"
},
{
"input": "100000",
"output": "28570 28572"
},
{
"input": "99999",
"output": "28570 28572"
},
{
"input": "99998",
"output": "28570 28572"
},
{
"input": "99997",
"output": "28570 28572"
},
{
"input": "99996",
"output": "28570 28571"
},
{
"input": "99995",
"output": "28570 28570"
},
{
"input": "99994",
"output": "28569 28570"
},
{
"input": "99993",
"output": "28568 28570"
},
{
"input": "99992",
"output": "28568 28570"
},
{
"input": "99991",
"output": "28568 28570"
},
{
"input": "99990",
"output": "28568 28570"
},
{
"input": "99989",
"output": "28568 28569"
},
{
"input": "99988",
"output": "28568 28568"
},
{
"input": "99987",
"output": "28567 28568"
},
{
"input": "99986",
"output": "28566 28568"
},
{
"input": "99985",
"output": "28566 28568"
},
{
"input": "99984",
"output": "28566 28568"
},
{
"input": "99983",
"output": "28566 28568"
},
{
"input": "99982",
"output": "28566 28567"
},
{
"input": "99981",
"output": "28566 28566"
},
{
"input": "99980",
"output": "28565 28566"
},
{
"input": "999999",
"output": "285714 285714"
},
{
"input": "999998",
"output": "285713 285714"
},
{
"input": "999997",
"output": "285712 285714"
},
{
"input": "999996",
"output": "285712 285714"
},
{
"input": "999995",
"output": "285712 285714"
},
{
"input": "999994",
"output": "285712 285714"
},
{
"input": "999993",
"output": "285712 285713"
},
{
"input": "999992",
"output": "285712 285712"
},
{
"input": "999991",
"output": "285711 285712"
},
{
"input": "999990",
"output": "285710 285712"
},
{
"input": "999989",
"output": "285710 285712"
},
{
"input": "999988",
"output": "285710 285712"
},
{
"input": "999987",
"output": "285710 285712"
},
{
"input": "999986",
"output": "285710 285711"
},
{
"input": "999985",
"output": "285710 285710"
},
{
"input": "999984",
"output": "285709 285710"
},
{
"input": "999983",
"output": "285708 285710"
},
{
"input": "999982",
"output": "285708 285710"
},
{
"input": "999981",
"output": "285708 285710"
},
{
"input": "999980",
"output": "285708 285710"
},
{
"input": "234123",
"output": "66892 66893"
},
{
"input": "234122",
"output": "66892 66892"
},
{
"input": "234121",
"output": "66891 66892"
},
{
"input": "234120",
"output": "66890 66892"
},
{
"input": "234119",
"output": "66890 66892"
},
{
"input": "234118",
"output": "66890 66892"
},
{
"input": "234117",
"output": "66890 66892"
},
{
"input": "234116",
"output": "66890 66891"
},
{
"input": "234115",
"output": "66890 66890"
},
{
"input": "234114",
"output": "66889 66890"
},
{
"input": "234113",
"output": "66888 66890"
},
{
"input": "234112",
"output": "66888 66890"
},
{
"input": "234111",
"output": "66888 66890"
},
{
"input": "234110",
"output": "66888 66890"
},
{
"input": "234109",
"output": "66888 66889"
},
{
"input": "234108",
"output": "66888 66888"
},
{
"input": "234107",
"output": "66887 66888"
},
{
"input": "234106",
"output": "66886 66888"
},
{
"input": "234105",
"output": "66886 66888"
},
{
"input": "234104",
"output": "66886 66888"
},
{
"input": "234103",
"output": "66886 66888"
},
{
"input": "868531",
"output": "248151 248152"
},
{
"input": "868530",
"output": "248150 248152"
},
{
"input": "868529",
"output": "248150 248152"
},
{
"input": "868528",
"output": "248150 248152"
},
{
"input": "868527",
"output": "248150 248152"
},
{
"input": "868526",
"output": "248150 248151"
},
{
"input": "868525",
"output": "248150 248150"
},
{
"input": "868524",
"output": "248149 248150"
},
{
"input": "868523",
"output": "248148 248150"
},
{
"input": "868522",
"output": "248148 248150"
},
{
"input": "868521",
"output": "248148 248150"
},
{
"input": "868520",
"output": "248148 248150"
},
{
"input": "868519",
"output": "248148 248149"
},
{
"input": "868518",
"output": "248148 248148"
},
{
"input": "868517",
"output": "248147 248148"
},
{
"input": "868516",
"output": "248146 248148"
},
{
"input": "868515",
"output": "248146 248148"
},
{
"input": "868514",
"output": "248146 248148"
},
{
"input": "868513",
"output": "248146 248148"
},
{
"input": "868512",
"output": "248146 248147"
},
{
"input": "868511",
"output": "248146 248146"
},
{
"input": "123413",
"output": "35260 35262"
},
{
"input": "123412",
"output": "35260 35262"
},
{
"input": "123411",
"output": "35260 35261"
},
{
"input": "123410",
"output": "35260 35260"
},
{
"input": "123409",
"output": "35259 35260"
},
{
"input": "123408",
"output": "35258 35260"
},
{
"input": "123407",
"output": "35258 35260"
},
{
"input": "123406",
"output": "35258 35260"
},
{
"input": "123405",
"output": "35258 35260"
},
{
"input": "123404",
"output": "35258 35259"
},
{
"input": "123403",
"output": "35258 35258"
},
{
"input": "123402",
"output": "35257 35258"
},
{
"input": "123401",
"output": "35256 35258"
},
{
"input": "123400",
"output": "35256 35258"
},
{
"input": "123399",
"output": "35256 35258"
},
{
"input": "123398",
"output": "35256 35258"
},
{
"input": "123397",
"output": "35256 35257"
},
{
"input": "123396",
"output": "35256 35256"
},
{
"input": "123395",
"output": "35255 35256"
},
{
"input": "123394",
"output": "35254 35256"
},
{
"input": "123393",
"output": "35254 35256"
},
{
"input": "15",
"output": "4 5"
}
] | 1,652,042,462
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 198
| 46
| 0
|
w,e=divmod(int(input()),7)
print(w*2+int(e==6),w*2+min(e,2))
|
Title: Holidays
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
On the planet Mars a year lasts exactly *n* days (there are no leap years on Mars). But Martians have the same weeks as earthlingsΒ β 5 work days and then 2 days off. Your task is to determine the minimum possible and the maximum possible number of days off per year on Mars.
Input Specification:
The first line of the input contains a positive integer *n* (1<=β€<=*n*<=β€<=1<=000<=000)Β β the number of days in a year on Mars.
Output Specification:
Print two integersΒ β the minimum possible and the maximum possible number of days off per year on Mars.
Demo Input:
['14\n', '2\n']
Demo Output:
['4 4\n', '0 2\n']
Note:
In the first sample there are 14 days in a year on Mars, and therefore independently of the day a year starts with there will be exactly 4 days off .
In the second sample there are only 2 days in a year on Mars, and they can both be either work days or days off.
|
```python
w,e=divmod(int(input()),7)
print(w*2+int(e==6),w*2+min(e,2))
```
| 3
|
|
908
|
E
|
New Year and Entity Enumeration
|
PROGRAMMING
| 2,500
|
[
"bitmasks",
"combinatorics",
"dp",
"math"
] | null | null |
You are given an integer *m*.
Let *M*<==<=2*m*<=-<=1.
You are also given a set of *n* integers denoted as the set *T*. The integers will be provided in base 2 as *n* binary strings of length *m*.
A set of integers *S* is called "good" if the following hold.
1. If , then . 1. If , then 1. 1. All elements of *S* are less than or equal to *M*.
Here, and refer to the bitwise XOR and bitwise AND operators, respectively.
Count the number of good sets *S*, modulo 109<=+<=7.
|
The first line will contain two integers *m* and *n* (1<=β€<=*m*<=β€<=1<=000, 1<=β€<=*n*<=β€<=*min*(2*m*,<=50)).
The next *n* lines will contain the elements of *T*. Each line will contain exactly *m* zeros and ones. Elements of *T* will be distinct.
|
Print a single integer, the number of good sets modulo 109<=+<=7.
|
[
"5 3\n11010\n00101\n11000\n",
"30 2\n010101010101010010101010101010\n110110110110110011011011011011\n"
] |
[
"4\n",
"860616440\n"
] |
An example of a valid set *S* is {00000, 00101, 00010, 00111, 11000, 11010, 11101, 11111}.
| 1,750
|
[
{
"input": "5 3\n11010\n00101\n11000",
"output": "4"
},
{
"input": "30 2\n010101010101010010101010101010\n110110110110110011011011011011",
"output": "860616440"
},
{
"input": "30 10\n001000000011000111000010010000\n000001100001010000000000000100\n000110100010100000000000101000\n110000010000000001000000000000\n100001000000000010010101000101\n001001000000000100000000110000\n000000010000100000001000000000\n001000010001000000001000000010\n000000110000000001001010000000\n000011001000000000010001000000",
"output": "80"
}
] | 1,618,558,920
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 37
| 608
| 13,107,200
|
from collections import defaultdict
def E1():
mod = 10 ** 9 + 7
comb = [[1]]
for i in range(1, 1010):
x = [1]
for j in range(1, i):
x.append((comb[i - 1][j - 1] + comb[i - 1][j]) % mod)
x.append(1)
comb.append(x)
dp = [1]
for i in range(1, 1010):
r = 0
for k in range(i):
r += dp[k] * comb[i - 1][k]
r %= mod
dp.append(r)
m, n = map(int, input().split())
ns = [0 for __ in range(m)]
for j in range(n):
temp = input()
s = [int(i) for i in temp]
for i in range(m):
ns[i] |= s[i] << j
dd = defaultdict(int)
for e in ns:
dd[e] += 1
ans = 1
for b in dd.values():
ans = ans * dp[b] % mod
print(ans)
if __name__=='__main__':
E1()
|
Title: New Year and Entity Enumeration
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You are given an integer *m*.
Let *M*<==<=2*m*<=-<=1.
You are also given a set of *n* integers denoted as the set *T*. The integers will be provided in base 2 as *n* binary strings of length *m*.
A set of integers *S* is called "good" if the following hold.
1. If , then . 1. If , then 1. 1. All elements of *S* are less than or equal to *M*.
Here, and refer to the bitwise XOR and bitwise AND operators, respectively.
Count the number of good sets *S*, modulo 109<=+<=7.
Input Specification:
The first line will contain two integers *m* and *n* (1<=β€<=*m*<=β€<=1<=000, 1<=β€<=*n*<=β€<=*min*(2*m*,<=50)).
The next *n* lines will contain the elements of *T*. Each line will contain exactly *m* zeros and ones. Elements of *T* will be distinct.
Output Specification:
Print a single integer, the number of good sets modulo 109<=+<=7.
Demo Input:
['5 3\n11010\n00101\n11000\n', '30 2\n010101010101010010101010101010\n110110110110110011011011011011\n']
Demo Output:
['4\n', '860616440\n']
Note:
An example of a valid set *S* is {00000, 00101, 00010, 00111, 11000, 11010, 11101, 11111}.
|
```python
from collections import defaultdict
def E1():
mod = 10 ** 9 + 7
comb = [[1]]
for i in range(1, 1010):
x = [1]
for j in range(1, i):
x.append((comb[i - 1][j - 1] + comb[i - 1][j]) % mod)
x.append(1)
comb.append(x)
dp = [1]
for i in range(1, 1010):
r = 0
for k in range(i):
r += dp[k] * comb[i - 1][k]
r %= mod
dp.append(r)
m, n = map(int, input().split())
ns = [0 for __ in range(m)]
for j in range(n):
temp = input()
s = [int(i) for i in temp]
for i in range(m):
ns[i] |= s[i] << j
dd = defaultdict(int)
for e in ns:
dd[e] += 1
ans = 1
for b in dd.values():
ans = ans * dp[b] % mod
print(ans)
if __name__=='__main__':
E1()
```
| 3
|
|
996
|
A
|
Hit the Lottery
|
PROGRAMMING
| 800
|
[
"dp",
"greedy"
] | null | null |
Allen has a LOT of money. He has $n$ dollars in the bank. For security reasons, he wants to withdraw it in cash (we will not disclose the reasons here). The denominations for dollar bills are $1$, $5$, $10$, $20$, $100$. What is the minimum number of bills Allen could receive after withdrawing his entire balance?
|
The first and only line of input contains a single integer $n$ ($1 \le n \le 10^9$).
|
Output the minimum number of bills that Allen could receive.
|
[
"125\n",
"43\n",
"1000000000\n"
] |
[
"3\n",
"5\n",
"10000000\n"
] |
In the first sample case, Allen can withdraw this with a $100$ dollar bill, a $20$ dollar bill, and a $5$ dollar bill. There is no way for Allen to receive $125$ dollars in one or two bills.
In the second sample case, Allen can withdraw two $20$ dollar bills and three $1$ dollar bills.
In the third sample case, Allen can withdraw $100000000$ (ten million!) $100$ dollar bills.
| 500
|
[
{
"input": "125",
"output": "3"
},
{
"input": "43",
"output": "5"
},
{
"input": "1000000000",
"output": "10000000"
},
{
"input": "4",
"output": "4"
},
{
"input": "5",
"output": "1"
},
{
"input": "1",
"output": "1"
},
{
"input": "74",
"output": "8"
},
{
"input": "31",
"output": "3"
},
{
"input": "59",
"output": "8"
},
{
"input": "79",
"output": "9"
},
{
"input": "7",
"output": "3"
},
{
"input": "55",
"output": "4"
},
{
"input": "40",
"output": "2"
},
{
"input": "719",
"output": "13"
},
{
"input": "847",
"output": "13"
},
{
"input": "225",
"output": "4"
},
{
"input": "4704",
"output": "51"
},
{
"input": "1132",
"output": "15"
},
{
"input": "7811",
"output": "80"
},
{
"input": "7981",
"output": "84"
},
{
"input": "82655",
"output": "830"
},
{
"input": "6364",
"output": "70"
},
{
"input": "74611",
"output": "748"
},
{
"input": "45391",
"output": "459"
},
{
"input": "620448",
"output": "6210"
},
{
"input": "265145",
"output": "2654"
},
{
"input": "671704",
"output": "6721"
},
{
"input": "365173",
"output": "3658"
},
{
"input": "7130872",
"output": "71314"
},
{
"input": "9628747",
"output": "96292"
},
{
"input": "8898399",
"output": "88993"
},
{
"input": "9497953",
"output": "94985"
},
{
"input": "19070947",
"output": "190714"
},
{
"input": "20185520",
"output": "201856"
},
{
"input": "91402248",
"output": "914028"
},
{
"input": "27035533",
"output": "270360"
},
{
"input": "22717528",
"output": "227180"
},
{
"input": "24403439",
"output": "244041"
},
{
"input": "163565555",
"output": "1635659"
},
{
"input": "152541908",
"output": "1525423"
},
{
"input": "668439837",
"output": "6684403"
},
{
"input": "20",
"output": "1"
},
{
"input": "999999999",
"output": "10000009"
},
{
"input": "10",
"output": "1"
},
{
"input": "7",
"output": "3"
},
{
"input": "6",
"output": "2"
},
{
"input": "99999999",
"output": "1000009"
},
{
"input": "1000001",
"output": "10001"
},
{
"input": "2521",
"output": "27"
}
] | 1,694,802,039
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 49
| 46
| 0
|
schet = int(input())
# schet = 1000000000
dollars = 0
Banknotes = [100,20,10,5,1]
for i in Banknotes:
dollars += schet // i
schet=schet%i
print(dollars)
|
Title: Hit the Lottery
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Allen has a LOT of money. He has $n$ dollars in the bank. For security reasons, he wants to withdraw it in cash (we will not disclose the reasons here). The denominations for dollar bills are $1$, $5$, $10$, $20$, $100$. What is the minimum number of bills Allen could receive after withdrawing his entire balance?
Input Specification:
The first and only line of input contains a single integer $n$ ($1 \le n \le 10^9$).
Output Specification:
Output the minimum number of bills that Allen could receive.
Demo Input:
['125\n', '43\n', '1000000000\n']
Demo Output:
['3\n', '5\n', '10000000\n']
Note:
In the first sample case, Allen can withdraw this with a $100$ dollar bill, a $20$ dollar bill, and a $5$ dollar bill. There is no way for Allen to receive $125$ dollars in one or two bills.
In the second sample case, Allen can withdraw two $20$ dollar bills and three $1$ dollar bills.
In the third sample case, Allen can withdraw $100000000$ (ten million!) $100$ dollar bills.
|
```python
schet = int(input())
# schet = 1000000000
dollars = 0
Banknotes = [100,20,10,5,1]
for i in Banknotes:
dollars += schet // i
schet=schet%i
print(dollars)
```
| 3
|
|
1
|
A
|
Theatre Square
|
PROGRAMMING
| 1,000
|
[
"math"
] |
A. Theatre Square
|
1
|
256
|
Theatre Square in the capital city of Berland has a rectangular shape with the size *n*<=Γ<=*m* meters. On the occasion of the city's anniversary, a decision was taken to pave the Square with square granite flagstones. Each flagstone is of the size *a*<=Γ<=*a*.
What is the least number of flagstones needed to pave the Square? It's allowed to cover the surface larger than the Theatre Square, but the Square has to be covered. It's not allowed to break the flagstones. The sides of flagstones should be parallel to the sides of the Square.
|
The input contains three positive integer numbers in the first line: *n*,<=<=*m* and *a* (1<=β€<=<=*n*,<=*m*,<=*a*<=β€<=109).
|
Write the needed number of flagstones.
|
[
"6 6 4\n"
] |
[
"4\n"
] |
none
| 0
|
[
{
"input": "6 6 4",
"output": "4"
},
{
"input": "1 1 1",
"output": "1"
},
{
"input": "2 1 1",
"output": "2"
},
{
"input": "1 2 1",
"output": "2"
},
{
"input": "2 2 1",
"output": "4"
},
{
"input": "2 1 2",
"output": "1"
},
{
"input": "1 1 3",
"output": "1"
},
{
"input": "2 3 4",
"output": "1"
},
{
"input": "1000000000 1000000000 1",
"output": "1000000000000000000"
},
{
"input": "12 13 4",
"output": "12"
},
{
"input": "222 332 5",
"output": "3015"
},
{
"input": "1000 1000 10",
"output": "10000"
},
{
"input": "1001 1000 10",
"output": "10100"
},
{
"input": "100 10001 1000000000",
"output": "1"
},
{
"input": "1000000000 1000000000 1000000000",
"output": "1"
},
{
"input": "1000000000 1000000000 999999999",
"output": "4"
},
{
"input": "1000000000 1000000000 192",
"output": "27126743055556"
},
{
"input": "1000000000 987654321 1",
"output": "987654321000000000"
},
{
"input": "456784567 1000000000 51",
"output": "175618850864484"
},
{
"input": "39916800 134217728 40320",
"output": "3295710"
}
] | 1,689,783,573
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 20
| 46
| 0
|
# Read the input numbers
n, m, a = map(int, input().split())
# Calculate the number of flagstones required for the length of the square
length_flagstones = n // a
if n % a != 0:
length_flagstones += 1
# Calculate the number of flagstones required for the width of the square
width_flagstones = m // a
if m % a != 0:
width_flagstones += 1
# Calculate the total number of flagstones needed
total_flagstones = length_flagstones * width_flagstones
# Print the total number of flagstones
print(total_flagstones)
|
Title: Theatre Square
Time Limit: 1 seconds
Memory Limit: 256 megabytes
Problem Description:
Theatre Square in the capital city of Berland has a rectangular shape with the size *n*<=Γ<=*m* meters. On the occasion of the city's anniversary, a decision was taken to pave the Square with square granite flagstones. Each flagstone is of the size *a*<=Γ<=*a*.
What is the least number of flagstones needed to pave the Square? It's allowed to cover the surface larger than the Theatre Square, but the Square has to be covered. It's not allowed to break the flagstones. The sides of flagstones should be parallel to the sides of the Square.
Input Specification:
The input contains three positive integer numbers in the first line: *n*,<=<=*m* and *a* (1<=β€<=<=*n*,<=*m*,<=*a*<=β€<=109).
Output Specification:
Write the needed number of flagstones.
Demo Input:
['6 6 4\n']
Demo Output:
['4\n']
Note:
none
|
```python
# Read the input numbers
n, m, a = map(int, input().split())
# Calculate the number of flagstones required for the length of the square
length_flagstones = n // a
if n % a != 0:
length_flagstones += 1
# Calculate the number of flagstones required for the width of the square
width_flagstones = m // a
if m % a != 0:
width_flagstones += 1
# Calculate the total number of flagstones needed
total_flagstones = length_flagstones * width_flagstones
# Print the total number of flagstones
print(total_flagstones)
```
| 3.977
|
25
|
A
|
IQ test
|
PROGRAMMING
| 1,300
|
[
"brute force"
] |
A. IQ test
|
2
|
256
|
Bob is preparing to pass IQ test. The most frequent task in this test is to find out which one of the given *n* numbers differs from the others. Bob observed that one number usually differs from the others in evenness. Help Bob β to check his answers, he needs a program that among the given *n* numbers finds one that is different in evenness.
|
The first line contains integer *n* (3<=β€<=*n*<=β€<=100) β amount of numbers in the task. The second line contains *n* space-separated natural numbers, not exceeding 100. It is guaranteed, that exactly one of these numbers differs from the others in evenness.
|
Output index of number that differs from the others in evenness. Numbers are numbered from 1 in the input order.
|
[
"5\n2 4 7 8 10\n",
"4\n1 2 1 1\n"
] |
[
"3\n",
"2\n"
] |
none
| 0
|
[
{
"input": "5\n2 4 7 8 10",
"output": "3"
},
{
"input": "4\n1 2 1 1",
"output": "2"
},
{
"input": "3\n1 2 2",
"output": "1"
},
{
"input": "3\n100 99 100",
"output": "2"
},
{
"input": "3\n5 3 2",
"output": "3"
},
{
"input": "4\n43 28 1 91",
"output": "2"
},
{
"input": "4\n75 13 94 77",
"output": "3"
},
{
"input": "4\n97 8 27 3",
"output": "2"
},
{
"input": "10\n95 51 12 91 85 3 1 31 25 7",
"output": "3"
},
{
"input": "20\n88 96 66 51 14 88 2 92 18 72 18 88 20 30 4 82 90 100 24 46",
"output": "4"
},
{
"input": "30\n20 94 56 50 10 98 52 32 14 22 24 60 4 8 98 46 34 68 82 82 98 90 50 20 78 49 52 94 64 36",
"output": "26"
},
{
"input": "50\n79 27 77 57 37 45 27 49 65 33 57 21 71 19 75 85 65 61 23 97 85 9 23 1 9 3 99 77 77 21 79 69 15 37 15 7 93 81 13 89 91 31 45 93 15 97 55 80 85 83",
"output": "48"
},
{
"input": "60\n46 11 73 65 3 69 3 53 43 53 97 47 55 93 31 75 35 3 9 73 23 31 3 81 91 79 61 21 15 11 11 11 81 7 83 75 39 87 83 59 89 55 93 27 49 67 67 29 1 93 11 17 9 19 35 21 63 31 31 25",
"output": "1"
},
{
"input": "70\n28 42 42 92 64 54 22 38 38 78 62 38 4 38 14 66 4 92 66 58 94 26 4 44 41 88 48 82 44 26 74 44 48 4 16 92 34 38 26 64 94 4 30 78 50 54 12 90 8 16 80 98 28 100 74 50 36 42 92 18 76 98 8 22 2 50 58 50 64 46",
"output": "25"
},
{
"input": "100\n43 35 79 53 13 91 91 45 65 83 57 9 42 39 85 45 71 51 61 59 31 13 63 39 25 21 79 39 91 67 21 61 97 75 93 83 29 79 59 97 11 37 63 51 39 55 91 23 21 17 47 23 35 75 49 5 69 99 5 7 41 17 25 89 15 79 21 63 53 81 43 91 59 91 69 99 85 15 91 51 49 37 65 7 89 81 21 93 61 63 97 93 45 17 13 69 57 25 75 73",
"output": "13"
},
{
"input": "100\n50 24 68 60 70 30 52 22 18 74 68 98 20 82 4 46 26 68 100 78 84 58 74 98 38 88 68 86 64 80 82 100 20 22 98 98 52 6 94 10 48 68 2 18 38 22 22 82 44 20 66 72 36 58 64 6 36 60 4 96 76 64 12 90 10 58 64 60 74 28 90 26 24 60 40 58 2 16 76 48 58 36 82 60 24 44 4 78 28 38 8 12 40 16 38 6 66 24 31 76",
"output": "99"
},
{
"input": "100\n47 48 94 48 14 18 94 36 96 22 12 30 94 20 48 98 40 58 2 94 8 36 98 18 98 68 2 60 76 38 18 100 8 72 100 68 2 86 92 72 58 16 48 14 6 58 72 76 6 88 80 66 20 28 74 62 86 68 90 86 2 56 34 38 56 90 4 8 76 44 32 86 12 98 38 34 54 92 70 94 10 24 82 66 90 58 62 2 32 58 100 22 58 72 2 22 68 72 42 14",
"output": "1"
},
{
"input": "99\n38 20 68 60 84 16 28 88 60 48 80 28 4 92 70 60 46 46 20 34 12 100 76 2 40 10 8 86 6 80 50 66 12 34 14 28 26 70 46 64 34 96 10 90 98 96 56 88 50 74 70 94 2 94 24 66 68 46 22 30 6 10 64 32 88 14 98 100 64 58 50 18 50 50 8 38 8 16 54 2 60 54 62 84 92 98 4 72 66 26 14 88 99 16 10 6 88 56 22",
"output": "93"
},
{
"input": "99\n50 83 43 89 53 47 69 1 5 37 63 87 95 15 55 95 75 89 33 53 89 75 93 75 11 85 49 29 11 97 49 67 87 11 25 37 97 73 67 49 87 43 53 97 43 29 53 33 45 91 37 73 39 49 59 5 21 43 87 35 5 63 89 57 63 47 29 99 19 85 13 13 3 13 43 19 5 9 61 51 51 57 15 89 13 97 41 13 99 79 13 27 97 95 73 33 99 27 23",
"output": "1"
},
{
"input": "98\n61 56 44 30 58 14 20 24 88 28 46 56 96 52 58 42 94 50 46 30 46 80 72 88 68 16 6 60 26 90 10 98 76 20 56 40 30 16 96 20 88 32 62 30 74 58 36 76 60 4 24 36 42 54 24 92 28 14 2 74 86 90 14 52 34 82 40 76 8 64 2 56 10 8 78 16 70 86 70 42 70 74 22 18 76 98 88 28 62 70 36 72 20 68 34 48 80 98",
"output": "1"
},
{
"input": "98\n66 26 46 42 78 32 76 42 26 82 8 12 4 10 24 26 64 44 100 46 94 64 30 18 88 28 8 66 30 82 82 28 74 52 62 80 80 60 94 86 64 32 44 88 92 20 12 74 94 28 34 58 4 22 16 10 94 76 82 58 40 66 22 6 30 32 92 54 16 76 74 98 18 48 48 30 92 2 16 42 84 74 30 60 64 52 50 26 16 86 58 96 79 60 20 62 82 94",
"output": "93"
},
{
"input": "95\n9 31 27 93 17 77 75 9 9 53 89 39 51 99 5 1 11 39 27 49 91 17 27 79 81 71 37 75 35 13 93 4 99 55 85 11 23 57 5 43 5 61 15 35 23 91 3 81 99 85 43 37 39 27 5 67 7 33 75 59 13 71 51 27 15 93 51 63 91 53 43 99 25 47 17 71 81 15 53 31 59 83 41 23 73 25 91 91 13 17 25 13 55 57 29",
"output": "32"
},
{
"input": "100\n91 89 81 45 53 1 41 3 77 93 55 97 55 97 87 27 69 95 73 41 93 21 75 35 53 56 5 51 87 59 91 67 33 3 99 45 83 17 97 47 75 97 7 89 17 99 23 23 81 25 55 97 27 35 69 5 77 35 93 19 55 59 37 21 31 37 49 41 91 53 73 69 7 37 37 39 17 71 7 97 55 17 47 23 15 73 31 39 57 37 9 5 61 41 65 57 77 79 35 47",
"output": "26"
},
{
"input": "99\n38 56 58 98 80 54 26 90 14 16 78 92 52 74 40 30 84 14 44 80 16 90 98 68 26 24 78 72 42 16 84 40 14 44 2 52 50 2 12 96 58 66 8 80 44 52 34 34 72 98 74 4 66 74 56 21 8 38 76 40 10 22 48 32 98 34 12 62 80 68 64 82 22 78 58 74 20 22 48 56 12 38 32 72 6 16 74 24 94 84 26 38 18 24 76 78 98 94 72",
"output": "56"
},
{
"input": "100\n44 40 6 40 56 90 98 8 36 64 76 86 98 76 36 92 6 30 98 70 24 98 96 60 24 82 88 68 86 96 34 42 58 10 40 26 56 10 88 58 70 32 24 28 14 82 52 12 62 36 70 60 52 34 74 30 78 76 10 16 42 94 66 90 70 38 52 12 58 22 98 96 14 68 24 70 4 30 84 98 8 50 14 52 66 34 100 10 28 100 56 48 38 12 38 14 91 80 70 86",
"output": "97"
},
{
"input": "100\n96 62 64 20 90 46 56 90 68 36 30 56 70 28 16 64 94 34 6 32 34 50 94 22 90 32 40 2 72 10 88 38 28 92 20 26 56 80 4 100 100 90 16 74 74 84 8 2 30 20 80 32 16 46 92 56 42 12 96 64 64 42 64 58 50 42 74 28 2 4 36 32 70 50 54 92 70 16 45 76 28 16 18 50 48 2 62 94 4 12 52 52 4 100 70 60 82 62 98 42",
"output": "79"
},
{
"input": "99\n14 26 34 68 90 58 50 36 8 16 18 6 2 74 54 20 36 84 32 50 52 2 26 24 3 64 20 10 54 26 66 44 28 72 4 96 78 90 96 86 68 28 94 4 12 46 100 32 22 36 84 32 44 94 76 94 4 52 12 30 74 4 34 64 58 72 44 16 70 56 54 8 14 74 8 6 58 62 98 54 14 40 80 20 36 72 28 98 20 58 40 52 90 64 22 48 54 70 52",
"output": "25"
},
{
"input": "95\n82 86 30 78 6 46 80 66 74 72 16 24 18 52 52 38 60 36 86 26 62 28 22 46 96 26 94 84 20 46 66 88 76 32 12 86 74 18 34 88 4 48 94 6 58 6 100 82 4 24 88 32 54 98 34 48 6 76 42 88 42 28 100 4 22 2 10 66 82 54 98 20 60 66 38 98 32 47 86 58 6 100 12 46 2 42 8 84 78 28 24 70 34 28 86",
"output": "78"
},
{
"input": "90\n40 50 8 42 76 24 58 42 26 68 20 48 54 12 34 84 14 36 32 88 6 50 96 56 20 92 48 16 40 34 96 46 20 84 30 50 20 98 8 44 96 42 8 76 70 38 84 30 40 88 84 72 2 22 52 58 16 62 100 66 80 40 50 32 14 62 88 72 22 99 76 50 84 82 8 82 98 46 26 40 2 98 18 78 30 72 70 18 34 68",
"output": "70"
},
{
"input": "80\n81 43 87 1 55 43 53 61 27 19 43 13 89 9 33 83 75 55 97 71 91 37 95 5 21 69 81 93 95 69 31 83 55 7 97 7 79 57 8 61 27 85 49 1 15 97 63 79 29 73 41 85 5 41 31 93 67 11 63 59 15 99 91 77 43 69 23 23 81 73 19 1 67 51 1 75 99 67 3 81",
"output": "39"
},
{
"input": "98\n13 83 61 27 35 1 85 95 97 73 95 65 73 45 5 43 27 83 91 19 11 3 85 59 9 39 69 23 45 7 51 85 5 71 5 95 1 51 75 3 43 57 3 11 33 71 21 99 47 41 87 39 71 87 31 85 91 49 83 5 49 85 47 91 55 99 33 23 31 23 23 73 29 77 55 31 25 5 81 49 91 15 15 39 87 5 9 40 69 47 29 33 11 21 49 79 51 83",
"output": "88"
},
{
"input": "3\n100 100 1",
"output": "3"
}
] | 1,628,459,357
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 32
| 154
| 6,963,200
|
n= int(input())
a = input().split()
for i in range(n):
a[i] = int(a[i])
x1 = 0
x0 = 0
if a[0]%2==0:
x0+=1
else:
x1+=1
if a[1]%2==0:
x0+=1
else:
x1+=1
if a[2]%2==0:
x0+=1
else:
x1+=1
if x0>=2:
for i in range(n):
if a[i]%2==1:
print(i+1)
break
else:
for i in range(n):
if a[i] % 2 == 0:
print(i + 1)
break
|
Title: IQ test
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Bob is preparing to pass IQ test. The most frequent task in this test is to find out which one of the given *n* numbers differs from the others. Bob observed that one number usually differs from the others in evenness. Help Bob β to check his answers, he needs a program that among the given *n* numbers finds one that is different in evenness.
Input Specification:
The first line contains integer *n* (3<=β€<=*n*<=β€<=100) β amount of numbers in the task. The second line contains *n* space-separated natural numbers, not exceeding 100. It is guaranteed, that exactly one of these numbers differs from the others in evenness.
Output Specification:
Output index of number that differs from the others in evenness. Numbers are numbered from 1 in the input order.
Demo Input:
['5\n2 4 7 8 10\n', '4\n1 2 1 1\n']
Demo Output:
['3\n', '2\n']
Note:
none
|
```python
n= int(input())
a = input().split()
for i in range(n):
a[i] = int(a[i])
x1 = 0
x0 = 0
if a[0]%2==0:
x0+=1
else:
x1+=1
if a[1]%2==0:
x0+=1
else:
x1+=1
if a[2]%2==0:
x0+=1
else:
x1+=1
if x0>=2:
for i in range(n):
if a[i]%2==1:
print(i+1)
break
else:
for i in range(n):
if a[i] % 2 == 0:
print(i + 1)
break
```
| 3.94853
|
455
|
A
|
Boredom
|
PROGRAMMING
| 1,500
|
[
"dp"
] | null | null |
Alex doesn't like boredom. That's why whenever he gets bored, he comes up with games. One long winter evening he came up with a game and decided to play it.
Given a sequence *a* consisting of *n* integers. The player can make several steps. In a single step he can choose an element of the sequence (let's denote it *a**k*) and delete it, at that all elements equal to *a**k*<=+<=1 and *a**k*<=-<=1 also must be deleted from the sequence. That step brings *a**k* points to the player.
Alex is a perfectionist, so he decided to get as many points as possible. Help him.
|
The first line contains integer *n* (1<=β€<=*n*<=β€<=105) that shows how many numbers are in Alex's sequence.
The second line contains *n* integers *a*1, *a*2, ..., *a**n* (1<=β€<=*a**i*<=β€<=105).
|
Print a single integer β the maximum number of points that Alex can earn.
|
[
"2\n1 2\n",
"3\n1 2 3\n",
"9\n1 2 1 3 2 2 2 2 3\n"
] |
[
"2\n",
"4\n",
"10\n"
] |
Consider the third test example. At first step we need to choose any element equal to 2. After that step our sequence looks like this [2,β2,β2,β2]. Then we do 4 steps, on each step we choose any element equals to 2. In total we earn 10 points.
| 500
|
[
{
"input": "2\n1 2",
"output": "2"
},
{
"input": "3\n1 2 3",
"output": "4"
},
{
"input": "9\n1 2 1 3 2 2 2 2 3",
"output": "10"
},
{
"input": "5\n3 3 4 5 4",
"output": "11"
},
{
"input": "5\n5 3 5 3 4",
"output": "16"
},
{
"input": "5\n4 2 3 2 5",
"output": "9"
},
{
"input": "10\n10 5 8 9 5 6 8 7 2 8",
"output": "46"
},
{
"input": "10\n1 1 1 1 1 1 2 3 4 4",
"output": "14"
},
{
"input": "100\n6 6 8 9 7 9 6 9 5 7 7 4 5 3 9 1 10 3 4 5 8 9 6 5 6 4 10 9 1 4 1 7 1 4 9 10 8 2 9 9 10 5 8 9 5 6 8 7 2 8 7 6 2 6 10 8 6 2 5 5 3 2 8 8 5 3 6 2 1 4 7 2 7 3 7 4 10 10 7 5 4 7 5 10 7 1 1 10 7 7 7 2 3 4 2 8 4 7 4 4",
"output": "296"
},
{
"input": "100\n6 1 5 7 10 10 2 7 3 7 2 10 7 6 3 5 5 5 3 7 2 4 2 7 7 4 2 8 2 10 4 7 9 1 1 7 9 7 1 10 10 9 5 6 10 1 7 5 8 1 1 5 3 10 2 4 3 5 2 7 4 9 5 10 1 3 7 6 6 9 3 6 6 10 1 10 6 1 10 3 4 1 7 9 2 7 8 9 3 3 2 4 6 6 1 2 9 4 1 2",
"output": "313"
},
{
"input": "100\n7 6 3 8 8 3 10 5 3 8 6 4 6 9 6 7 3 9 10 7 5 5 9 10 7 2 3 8 9 5 4 7 9 3 6 4 9 10 7 6 8 7 6 6 10 3 7 4 5 7 7 5 1 5 4 8 7 3 3 4 7 8 5 9 2 2 3 1 6 4 6 6 6 1 7 10 7 4 5 3 9 2 4 1 5 10 9 3 9 6 8 5 2 1 10 4 8 5 10 9",
"output": "298"
},
{
"input": "100\n2 10 9 1 2 6 7 2 2 8 9 9 9 5 6 2 5 1 1 10 7 4 5 5 8 1 9 4 10 1 9 3 1 8 4 10 8 8 2 4 6 5 1 4 2 2 1 2 8 5 3 9 4 10 10 7 8 6 1 8 2 6 7 1 6 7 3 10 10 3 7 7 6 9 6 8 8 10 4 6 4 3 3 3 2 3 10 6 8 5 5 10 3 7 3 1 1 1 5 5",
"output": "312"
},
{
"input": "100\n4 9 7 10 4 7 2 6 1 9 1 8 7 5 5 7 6 7 9 8 10 5 3 5 7 10 3 2 1 3 8 9 4 10 4 7 6 4 9 6 7 1 9 4 3 5 8 9 2 7 10 5 7 5 3 8 10 3 8 9 3 4 3 10 6 5 1 8 3 2 5 8 4 7 5 3 3 2 6 9 9 8 2 7 6 3 2 2 8 8 4 5 6 9 2 3 2 2 5 2",
"output": "287"
},
{
"input": "100\n4 8 10 1 8 8 8 1 10 3 1 8 6 8 6 1 10 3 3 3 3 7 2 1 1 6 10 1 7 9 8 10 3 8 6 2 1 6 5 6 10 8 9 7 4 3 10 5 3 9 10 5 10 8 8 5 7 8 9 5 3 9 9 2 7 8 1 10 4 9 2 8 10 10 5 8 5 1 7 3 4 5 2 5 9 3 2 5 6 2 3 10 1 5 9 6 10 4 10 8",
"output": "380"
},
{
"input": "100\n4 8 10 1 8 8 8 1 10 3 1 8 6 8 6 1 10 3 3 3 3 7 2 1 1 6 10 1 7 9 8 10 3 8 6 2 1 6 5 6 10 8 9 7 4 3 10 5 3 9 10 5 10 8 8 5 7 8 9 5 3 9 9 2 7 8 1 10 4 9 2 8 10 10 5 8 5 1 7 3 4 5 2 5 9 3 2 5 6 2 3 10 1 5 9 6 10 4 10 8",
"output": "380"
},
{
"input": "100\n10 5 8 4 4 4 1 4 5 8 3 10 2 4 1 10 8 1 1 6 8 4 2 9 1 3 1 7 7 9 3 5 5 8 6 9 9 4 8 1 3 3 2 6 1 5 4 5 3 5 5 6 7 5 7 9 3 5 4 9 2 6 8 1 1 7 7 3 8 9 8 7 3 2 4 1 6 1 3 9 4 2 2 8 5 10 1 8 8 5 1 5 6 9 4 5 6 5 10 2",
"output": "265"
},
{
"input": "100\n7 5 1 8 5 6 6 2 6 2 7 7 3 6 2 4 4 2 10 2 2 2 10 6 6 1 5 10 9 1 5 9 8 9 4 1 10 5 7 5 7 6 4 8 8 1 7 8 3 8 2 1 8 4 10 3 5 6 6 10 9 6 5 1 10 7 6 9 9 2 10 10 9 1 2 1 7 7 4 10 1 10 5 5 3 8 9 8 1 4 10 2 4 5 4 4 1 6 2 9",
"output": "328"
},
{
"input": "100\n5 6 10 7 1 7 10 1 9 1 5 1 4 1 3 3 7 9 1 6 1 6 5 7 1 6 3 1 3 6 3 8 2 4 1 5 2 10 7 3 10 4 10 1 5 4 2 9 7 9 5 7 10 4 1 4 8 9 3 1 3 7 7 4 3 7 7 10 6 9 5 5 6 5 3 9 8 8 5 5 4 10 9 4 10 4 1 8 3 5 4 10 9 3 10 4 10 7 10 9",
"output": "324"
},
{
"input": "10\n7 4 5 3 9 1 10 3 4 5",
"output": "34"
},
{
"input": "10\n8 9 6 5 6 4 10 9 1 4",
"output": "39"
},
{
"input": "10\n1 7 1 4 9 10 8 2 9 9",
"output": "40"
},
{
"input": "1\n100000",
"output": "100000"
}
] | 1,674,078,705
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 47
| 171
| 7,372,800
|
n = int(input())
vals = list(map(int, input().split(" ")))
occu = [0 for _ in range(max(vals) + 1)]
l = [0 for _ in range(max(vals) + 1)]
for x in vals:
occu[x] += 1
give = []
l[1] = occu[1]
for i in range(2, len(occu)):
l[i] = max(l[i-2] + i * occu[i],l[i-1])
print(l[-1])
|
Title: Boredom
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Alex doesn't like boredom. That's why whenever he gets bored, he comes up with games. One long winter evening he came up with a game and decided to play it.
Given a sequence *a* consisting of *n* integers. The player can make several steps. In a single step he can choose an element of the sequence (let's denote it *a**k*) and delete it, at that all elements equal to *a**k*<=+<=1 and *a**k*<=-<=1 also must be deleted from the sequence. That step brings *a**k* points to the player.
Alex is a perfectionist, so he decided to get as many points as possible. Help him.
Input Specification:
The first line contains integer *n* (1<=β€<=*n*<=β€<=105) that shows how many numbers are in Alex's sequence.
The second line contains *n* integers *a*1, *a*2, ..., *a**n* (1<=β€<=*a**i*<=β€<=105).
Output Specification:
Print a single integer β the maximum number of points that Alex can earn.
Demo Input:
['2\n1 2\n', '3\n1 2 3\n', '9\n1 2 1 3 2 2 2 2 3\n']
Demo Output:
['2\n', '4\n', '10\n']
Note:
Consider the third test example. At first step we need to choose any element equal to 2. After that step our sequence looks like this [2,β2,β2,β2]. Then we do 4 steps, on each step we choose any element equals to 2. In total we earn 10 points.
|
```python
n = int(input())
vals = list(map(int, input().split(" ")))
occu = [0 for _ in range(max(vals) + 1)]
l = [0 for _ in range(max(vals) + 1)]
for x in vals:
occu[x] += 1
give = []
l[1] = occu[1]
for i in range(2, len(occu)):
l[i] = max(l[i-2] + i * occu[i],l[i-1])
print(l[-1])
```
| 3
|
|
61
|
A
|
Ultra-Fast Mathematician
|
PROGRAMMING
| 800
|
[
"implementation"
] |
A. Ultra-Fast Mathematician
|
2
|
256
|
Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second.
One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part.
In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0.
Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length β (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length.
Now you are going to take part in Shapur's contest. See if you are faster and more accurate.
|
There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100.
|
Write one line β the corresponding answer. Do not omit the leading 0s.
|
[
"1010100\n0100101\n",
"000\n111\n",
"1110\n1010\n",
"01110\n01100\n"
] |
[
"1110001\n",
"111\n",
"0100\n",
"00010\n"
] |
none
| 500
|
[
{
"input": "1010100\n0100101",
"output": "1110001"
},
{
"input": "000\n111",
"output": "111"
},
{
"input": "1110\n1010",
"output": "0100"
},
{
"input": "01110\n01100",
"output": "00010"
},
{
"input": "011101\n000001",
"output": "011100"
},
{
"input": "10\n01",
"output": "11"
},
{
"input": "00111111\n11011101",
"output": "11100010"
},
{
"input": "011001100\n101001010",
"output": "110000110"
},
{
"input": "1100100001\n0110101100",
"output": "1010001101"
},
{
"input": "00011101010\n10010100101",
"output": "10001001111"
},
{
"input": "100000101101\n111010100011",
"output": "011010001110"
},
{
"input": "1000001111010\n1101100110001",
"output": "0101101001011"
},
{
"input": "01011111010111\n10001110111010",
"output": "11010001101101"
},
{
"input": "110010000111100\n001100101011010",
"output": "111110101100110"
},
{
"input": "0010010111110000\n0000000011010110",
"output": "0010010100100110"
},
{
"input": "00111110111110000\n01111100001100000",
"output": "01000010110010000"
},
{
"input": "101010101111010001\n001001111101111101",
"output": "100011010010101100"
},
{
"input": "0110010101111100000\n0011000101000000110",
"output": "0101010000111100110"
},
{
"input": "11110100011101010111\n00001000011011000000",
"output": "11111100000110010111"
},
{
"input": "101010101111101101001\n111010010010000011111",
"output": "010000111101101110110"
},
{
"input": "0000111111100011000010\n1110110110110000001010",
"output": "1110001001010011001000"
},
{
"input": "10010010101000110111000\n00101110100110111000111",
"output": "10111100001110001111111"
},
{
"input": "010010010010111100000111\n100100111111100011001110",
"output": "110110101101011111001001"
},
{
"input": "0101110100100111011010010\n0101100011010111001010001",
"output": "0000010111110000010000011"
},
{
"input": "10010010100011110111111011\n10000110101100000001000100",
"output": "00010100001111110110111111"
},
{
"input": "000001111000000100001000000\n011100111101111001110110001",
"output": "011101000101111101111110001"
},
{
"input": "0011110010001001011001011100\n0000101101000011101011001010",
"output": "0011011111001010110010010110"
},
{
"input": "11111000000000010011001101111\n11101110011001010100010000000",
"output": "00010110011001000111011101111"
},
{
"input": "011001110000110100001100101100\n001010000011110000001000101001",
"output": "010011110011000100000100000101"
},
{
"input": "1011111010001100011010110101111\n1011001110010000000101100010101",
"output": "0000110100011100011111010111010"
},
{
"input": "10111000100001000001010110000001\n10111000001100101011011001011000",
"output": "00000000101101101010001111011001"
},
{
"input": "000001010000100001000000011011100\n111111111001010100100001100000111",
"output": "111110101001110101100001111011011"
},
{
"input": "1101000000000010011011101100000110\n1110000001100010011010000011011110",
"output": "0011000001100000000001101111011000"
},
{
"input": "01011011000010100001100100011110001\n01011010111000001010010100001110000",
"output": "00000001111010101011110000010000001"
},
{
"input": "000011111000011001000110111100000100\n011011000110000111101011100111000111",
"output": "011000111110011110101101011011000011"
},
{
"input": "1001000010101110001000000011111110010\n0010001011010111000011101001010110000",
"output": "1011001001111001001011101010101000010"
},
{
"input": "00011101011001100101111111000000010101\n10010011011011001011111000000011101011",
"output": "10001110000010101110000111000011111110"
},
{
"input": "111011100110001001101111110010111001010\n111111101101111001110010000101101000100",
"output": "000100001011110000011101110111010001110"
},
{
"input": "1111001001101000001000000010010101001010\n0010111100111110001011000010111110111001",
"output": "1101110101010110000011000000101011110011"
},
{
"input": "00100101111000000101011111110010100011010\n11101110001010010101001000111110101010100",
"output": "11001011110010010000010111001100001001110"
},
{
"input": "101011001110110100101001000111010101101111\n100111100110101011010100111100111111010110",
"output": "001100101000011111111101111011101010111001"
},
{
"input": "1111100001100101000111101001001010011100001\n1000110011000011110010001011001110001000001",
"output": "0111010010100110110101100010000100010100000"
},
{
"input": "01100111011111010101000001101110000001110101\n10011001011111110000000101011001001101101100",
"output": "11111110000000100101000100110111001100011001"
},
{
"input": "110010100111000100100101100000011100000011001\n011001111011100110000110111001110110100111011",
"output": "101011011100100010100011011001101010100100010"
},
{
"input": "0001100111111011010110100100111000000111000110\n1100101011000000000001010010010111001100110001",
"output": "1101001100111011010111110110101111001011110111"
},
{
"input": "00000101110110110001110010100001110100000100000\n10010000110011110001101000111111101010011010001",
"output": "10010101000101000000011010011110011110011110001"
},
{
"input": "110000100101011100100011001111110011111110010001\n101011111001011100110110111101110011010110101100",
"output": "011011011100000000010101110010000000101000111101"
},
{
"input": "0101111101011111010101011101000011101100000000111\n0000101010110110001110101011011110111001010100100",
"output": "0101010111101001011011110110011101010101010100011"
},
{
"input": "11000100010101110011101000011111001010110111111100\n00001111000111001011111110000010101110111001000011",
"output": "11001011010010111000010110011101100100001110111111"
},
{
"input": "101000001101111101101111111000001110110010101101010\n010011100111100001100000010001100101000000111011011",
"output": "111011101010011100001111101001101011110010010110001"
},
{
"input": "0011111110010001010100010110111000110011001101010100\n0111000000100010101010000100101000000100101000111001",
"output": "0100111110110011111110010010010000110111100101101101"
},
{
"input": "11101010000110000011011010000001111101000111011111100\n10110011110001010100010110010010101001010111100100100",
"output": "01011001110111010111001100010011010100010000111011000"
},
{
"input": "011000100001000001101000010110100110011110100111111011\n111011001000001001110011001111011110111110110011011111",
"output": "100011101001001000011011011001111000100000010100100100"
},
{
"input": "0111010110010100000110111011010110100000000111110110000\n1011100100010001101100000100111111101001110010000100110",
"output": "1100110010000101101010111111101001001001110101110010110"
},
{
"input": "10101000100111000111010001011011011011110100110101100011\n11101111000000001100100011111000100100000110011001101110",
"output": "01000111100111001011110010100011111111110010101100001101"
},
{
"input": "000000111001010001000000110001001011100010011101010011011\n110001101000010010000101000100001111101001100100001010010",
"output": "110001010001000011000101110101000100001011111001011001001"
},
{
"input": "0101011100111010000111110010101101111111000000111100011100\n1011111110000010101110111001000011100000100111111111000111",
"output": "1110100010111000101001001011101110011111100111000011011011"
},
{
"input": "11001000001100100111100111100100101011000101001111001001101\n10111110100010000011010100110100100011101001100000001110110",
"output": "01110110101110100100110011010000001000101100101111000111011"
},
{
"input": "010111011011101000000110000110100110001110100001110110111011\n101011110011101011101101011111010100100001100111100100111011",
"output": "111100101000000011101011011001110010101111000110010010000000"
},
{
"input": "1001011110110110000100011001010110000100011010010111010101110\n1101111100001000010111110011010101111010010100000001000010111",
"output": "0100100010111110010011101010000011111110001110010110010111001"
},
{
"input": "10000010101111100111110101111000010100110111101101111111111010\n10110110101100101010011001011010100110111011101100011001100111",
"output": "00110100000011001101101100100010110010001100000001100110011101"
},
{
"input": "011111010011111000001010101001101001000010100010111110010100001\n011111001011000011111001000001111001010110001010111101000010011",
"output": "000000011000111011110011101000010000010100101000000011010110010"
},
{
"input": "1111000000110001011101000100100100001111011100001111001100011111\n1101100110000101100001100000001001011011111011010101000101001010",
"output": "0010100110110100111100100100101101010100100111011010001001010101"
},
{
"input": "01100000101010010011001110100110110010000110010011011001100100011\n10110110010110111100100111000111000110010000000101101110000010111",
"output": "11010110111100101111101001100001110100010110010110110111100110100"
},
{
"input": "001111111010000100001100001010011001111110011110010111110001100111\n110000101001011000100010101100100110000111100000001101001110010111",
"output": "111111010011011100101110100110111111111001111110011010111111110000"
},
{
"input": "1011101011101101011110101101011101011000010011100101010101000100110\n0001000001001111010111100100111101100000000001110001000110000000110",
"output": "1010101010100010001001001001100000111000010010010100010011000100000"
},
{
"input": "01000001011001010011011100010000100100110101111011011011110000001110\n01011110000110011011000000000011000111100001010000000011111001110000",
"output": "00011111011111001000011100010011100011010100101011011000001001111110"
},
{
"input": "110101010100110101000001111110110100010010000100111110010100110011100\n111010010111111011100110101011001011001110110111110100000110110100111",
"output": "001111000011001110100111010101111111011100110011001010010010000111011"
},
{
"input": "1001101011000001011111100110010010000011010001001111011100010100110001\n1111100111110101001111010001010000011001001001010110001111000000100101",
"output": "0110001100110100010000110111000010011010011000011001010011010100010100"
},
{
"input": "00000111110010110001110110001010010101000111011001111111100110011110010\n00010111110100000100110101000010010001100001100011100000001100010100010",
"output": "00010000000110110101000011001000000100100110111010011111101010001010000"
},
{
"input": "100101011100101101000011010001011001101110101110001100010001010111001110\n100001111100101011011111110000001111000111001011111110000010101110111001",
"output": "000100100000000110011100100001010110101001100101110010010011111001110111"
},
{
"input": "1101100001000111001101001011101000111000011110000001001101101001111011010\n0101011101010100011011010110101000010010110010011110101100000110110001000",
"output": "1000111100010011010110011101000000101010101100011111100001101111001010010"
},
{
"input": "01101101010011110101100001110101111011100010000010001101111000011110111111\n00101111001101001100111010000101110000100101101111100111101110010100011011",
"output": "01000010011110111001011011110000001011000111101101101010010110001010100100"
},
{
"input": "101100101100011001101111110110110010100110110010100001110010110011001101011\n000001011010101011110011111101001110000111000010001101000010010000010001101",
"output": "101101110110110010011100001011111100100001110000101100110000100011011100110"
},
{
"input": "0010001011001010001100000010010011110110011000100000000100110000101111001110\n1100110100111000110100001110111001011101001100001010100001010011100110110001",
"output": "1110111111110010111000001100101010101011010100101010100101100011001001111111"
},
{
"input": "00101101010000000101011001101011001100010001100000101011101110000001111001000\n10010110010111000000101101000011101011001010000011011101101011010000000011111",
"output": "10111011000111000101110100101000100111011011100011110110000101010001111010111"
},
{
"input": "111100000100100000101001100001001111001010001000001000000111010000010101101011\n001000100010100101111011111011010110101100001111011000010011011011100010010110",
"output": "110100100110000101010010011010011001100110000111010000010100001011110111111101"
},
{
"input": "0110001101100100001111110101101000100101010010101010011001101001001101110000000\n0111011000000010010111011110010000000001000110001000011001101000000001110100111",
"output": "0001010101100110011000101011111000100100010100100010000000000001001100000100111"
},
{
"input": "10001111111001000101001011110101111010100001011010101100111001010001010010001000\n10000111010010011110111000111010101100000011110001101111001000111010100000000001",
"output": "00001000101011011011110011001111010110100010101011000011110001101011110010001001"
},
{
"input": "100110001110110000100101001110000011110110000110000000100011110100110110011001101\n110001110101110000000100101001101011111100100100001001000110000001111100011110110",
"output": "010111111011000000100001100111101000001010100010001001100101110101001010000111011"
},
{
"input": "0000010100100000010110111100011111111010011101000000100000011001001101101100111010\n0100111110011101010110101011110110010111001111000110101100101110111100101000111111",
"output": "0100101010111101000000010111101001101101010010000110001100110111110001000100000101"
},
{
"input": "11000111001010100001110000001001011010010010110000001110100101000001010101100110111\n11001100100100100001101010110100000111100011101110011010110100001001000011011011010",
"output": "00001011101110000000011010111101011101110001011110010100010001001000010110111101101"
},
{
"input": "010110100010001000100010101001101010011010111110100001000100101000111011100010100001\n110000011111101101010011111000101010111010100001001100001001100101000000111000000000",
"output": "100110111101100101110001010001000000100000011111101101001101001101111011011010100001"
},
{
"input": "0000011110101110010101110110110101100001011001101010101001000010000010000000101001101\n1100111111011100000110000111101110011111100111110001011001000010011111100001001100011",
"output": "1100100001110010010011110001011011111110111110011011110000000000011101100001100101110"
},
{
"input": "10100000101101110001100010010010100101100011010010101000110011100000101010110010000000\n10001110011011010010111011011101101111000111110000111000011010010101001100000001010011",
"output": "00101110110110100011011001001111001010100100100010010000101001110101100110110011010011"
},
{
"input": "001110000011111101101010011111000101010111010100001001100001001100101000000111000000000\n111010000000000000101001110011001000111011001100101010011001000011101001001011110000011",
"output": "110100000011111101000011101100001101101100011000100011111000001111000001001100110000011"
},
{
"input": "1110111100111011010101011011001110001010010010110011110010011111000010011111010101100001\n1001010101011001001010100010101100000110111101011000100010101111111010111100001110010010",
"output": "0111101001100010011111111001100010001100101111101011010000110000111000100011011011110011"
},
{
"input": "11100010001100010011001100001100010011010001101110011110100101110010101101011101000111111\n01110000000110111010110100001010000101011110100101010011000110101110101101110111011110001",
"output": "10010010001010101001111000000110010110001111001011001101100011011100000000101010011001110"
},
{
"input": "001101011001100101101100110000111000101011001001100100000100101000100000110100010111111101\n101001111110000010111101111110001001111001111101111010000110111000100100110010010001011111",
"output": "100100100111100111010001001110110001010010110100011110000010010000000100000110000110100010"
},
{
"input": "1010110110010101000110010010110101011101010100011001101011000110000000100011100100011000000\n0011011111100010001111101101000111001011101110100000110111100100101111010110101111011100011",
"output": "1001101001110111001001111111110010010110111010111001011100100010101111110101001011000100011"
},
{
"input": "10010010000111010111011111110010100101100000001100011100111011100010000010010001011100001100\n00111010100010110010000100010111010001111110100100100011101000101111111111001101101100100100",
"output": "10101000100101100101011011100101110100011110101000111111010011001101111101011100110000101000"
},
{
"input": "010101110001010101100000010111010000000111110011001101100011001000000011001111110000000010100\n010010111011100101010101111110110000000111000100001101101001001000001100101110001010000100001",
"output": "000111001010110000110101101001100000000000110111000000001010000000001111100001111010000110101"
},
{
"input": "1100111110011001000111101001001011000110011010111111100010111111001100111111011101100111101011\n1100000011001000110100110111000001011001010111101000010010100011000001100100111101101000010110",
"output": "0000111101010001110011011110001010011111001101010111110000011100001101011011100000001111111101"
},
{
"input": "00011000100100110111100101100100000000010011110111110010101110110011100001010111010011110100101\n00011011111011111011100101100111100101001110010111000010000111000100100100000001110101111011011",
"output": "00000011011111001100000000000011100101011101100000110000101001110111000101010110100110001111110"
},
{
"input": "000101011001001100000111100010110101111011110101111101000110001101011010111110110011100100000001\n011000101010011111011000111000100000000011011000000001111110001000001111101010110000011100001111",
"output": "011101110011010011011111011010010101111000101101111100111000000101010101010100000011111000001110"
},
{
"input": "1000101001011010000100100100010010011101011001110101111011101111111110010101001101010001010101001\n0110110010011100011111011111110111000000010001110100001010111110101011010011111011111110000110000",
"output": "1110011011000110011011111011100101011101001000000001110001010001010101000110110110101111010011001"
},
{
"input": "01111010010101100111110111111011011010100001011101010000111100101101101110111011001100101011100111\n00001100110110100001111011000010001001001100000010111101000001111011100000010111010010000011000010",
"output": "01110110100011000110001100111001010011101101011111101101111101010110001110101100011110101000100101"
},
{
"input": "111101011101111000001011001101111010110111001101110100100011111011011101001101010101011010111000110\n101111100101101101001100110011000001111010011101110111110110101110011011110011111100001001110101101",
"output": "010010111000010101000111111110111011001101010000000011010101010101000110111110101001010011001101011"
},
{
"input": "1010000011010110011101001101110001110010000111011101110010110110111111001001110100101100010101010001\n0111101000111100101100000101111010100100001000011101010100110011100011010011010101000100101011100011",
"output": "1101101011101010110001001000001011010110001111000000100110000101011100011010100001101000111110110010"
},
{
"input": "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001\n1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111010",
"output": "1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111011"
},
{
"input": "0\n0",
"output": "0"
},
{
"input": "0\n1",
"output": "1"
}
] | 1,626,779,921
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 102
| 77
| 6,758,400
|
a=input()
b=input()
s=str(int(a)+int(b))
print('0'*(len(a)-len(s))+s.replace('2','0'))
|
Title: Ultra-Fast Mathematician
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second.
One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part.
In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0.
Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length β (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length.
Now you are going to take part in Shapur's contest. See if you are faster and more accurate.
Input Specification:
There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100.
Output Specification:
Write one line β the corresponding answer. Do not omit the leading 0s.
Demo Input:
['1010100\n0100101\n', '000\n111\n', '1110\n1010\n', '01110\n01100\n']
Demo Output:
['1110001\n', '111\n', '0100\n', '00010\n']
Note:
none
|
```python
a=input()
b=input()
s=str(int(a)+int(b))
print('0'*(len(a)-len(s))+s.replace('2','0'))
```
| 3.968161
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.