contestId
int64 0
1.01k
| index
stringclasses 40
values | name
stringlengths 2
54
| type
stringclasses 2
values | rating
int64 0
3.4k
| tags
listlengths 0
7
| title
stringclasses 393
values | time-limit
stringclasses 7
values | memory-limit
stringclasses 6
values | problem-description
stringlengths 0
2.97k
| input-specification
stringlengths 4
1.87k
| output-specification
stringlengths 4
1.12k
| demo-input
listlengths 0
7
| demo-output
listlengths 0
7
| note
stringlengths 0
5.24k
| points
float64 0
3.5k
| test_cases
listlengths 0
402
| creationTimeSeconds
int64 1.37B
1.7B
| relativeTimeSeconds
int64 8
2.15B
| programmingLanguage
stringclasses 3
values | verdict
stringclasses 1
value | testset
stringclasses 9
values | passedTestCount
int64 1
402
| timeConsumedMillis
int64 15
8.06k
| memoryConsumedBytes
int64 0
514M
| code
stringlengths 11
61.4k
| prompt
stringlengths 297
7.35k
| response
stringlengths 25
61.4k
| score
float64 2.82
3.99
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
330
|
A
|
Cakeminator
|
PROGRAMMING
| 800
|
[
"brute force",
"implementation"
] | null | null |
You are given a rectangular cake, represented as an *r*<=×<=*c* grid. Each cell either has an evil strawberry, or is empty. For example, a 3<=×<=4 cake may look as follows:
The cakeminator is going to eat the cake! Each time he eats, he chooses a row or a column that does not contain any evil strawberries and contains at least one cake cell that has not been eaten before, and eats all the cake cells there. He may decide to eat any number of times.
Please output the maximum number of cake cells that the cakeminator can eat.
|
The first line contains two integers *r* and *c* (2<=≤<=*r*,<=*c*<=≤<=10), denoting the number of rows and the number of columns of the cake. The next *r* lines each contains *c* characters — the *j*-th character of the *i*-th line denotes the content of the cell at row *i* and column *j*, and is either one of these:
- '.' character denotes a cake cell with no evil strawberry; - 'S' character denotes a cake cell with an evil strawberry.
|
Output the maximum number of cake cells that the cakeminator can eat.
|
[
"3 4\nS...\n....\n..S.\n"
] |
[
"8\n"
] |
For the first example, one possible way to eat the maximum number of cake cells is as follows (perform 3 eats).
| 500
|
[
{
"input": "3 4\nS...\n....\n..S.",
"output": "8"
},
{
"input": "2 2\n..\n..",
"output": "4"
},
{
"input": "2 2\nSS\nSS",
"output": "0"
},
{
"input": "7 3\nS..\nS..\nS..\nS..\nS..\nS..\nS..",
"output": "14"
},
{
"input": "3 5\n..S..\nSSSSS\n..S..",
"output": "0"
},
{
"input": "10 10\nSSSSSSSSSS\nSSSSSSSSSS\nSSSSSSSSSS\nSSSSSSSSSS\nSSSSSSSSSS\nSSSSSSSSSS\nSSSSSSSSSS\nSSSSSSSSSS\nSSSSSSSSSS\nSSSSSSSSSS",
"output": "0"
},
{
"input": "10 10\nS...SSSSSS\nS...SSSSSS\nS...SSSSSS\nS...SSSSSS\nS...SSSSSS\nS...SSSSSS\nS...SSSSSS\nS...SSSSSS\nS...SSSSSS\nS...SSSSSS",
"output": "30"
},
{
"input": "10 10\n....S..S..\n....S..S..\n....S..S..\n....S..S..\n....S..S..\n....S..S..\n....S..S..\n....S..S..\n....S..S..\n....S..S..",
"output": "80"
},
{
"input": "9 5\nSSSSS\nSSSSS\nSSSSS\nSSSSS\nSSSSS\nSSSSS\nSSSSS\nSSSSS\nSSSSS",
"output": "0"
},
{
"input": "9 9\n...S.....\nS.S.....S\n.S....S..\n.S.....SS\n.........\n..S.S..S.\n.SS......\n....S....\n..S...S..",
"output": "17"
},
{
"input": "5 6\nSSSSSS\nSSSSSS\nSSSSSS\nSS.S..\nS.S.SS",
"output": "0"
},
{
"input": "9 8\n........\n.......S\n........\nS.......\n........\n........\nS.......\n........\n.......S",
"output": "64"
},
{
"input": "9 7\n......S\n......S\nS.S.S..\n.......\n.......\n.S.....\n.S....S\n..S....\n.S....S",
"output": "28"
},
{
"input": "10 10\n.....S....\n....SS..S.\n.S...S....\n........SS\n.S.......S\nSS..S.....\n.SS.....SS\nS..S......\n.......SSS\nSSSSS....S",
"output": "10"
},
{
"input": "6 7\n..S.SS.\n......S\n....S.S\nSS..S..\nS..SS.S\n.....S.",
"output": "0"
},
{
"input": "10 6\n.SSSSS\nSSS.SS\nSSSSSS\nS.SSSS\nSSSSS.\nS.SSSS\nSS.SSS\n.SSS.S\n.SSS..\nSS..SS",
"output": "0"
},
{
"input": "2 2\n..\n..",
"output": "4"
},
{
"input": "3 2\nS.\n.S\nS.",
"output": "0"
},
{
"input": "3 2\nS.\n.S\nS.",
"output": "0"
},
{
"input": "4 3\n.S.\nS.S\n.S.\nS.S",
"output": "0"
},
{
"input": "2 3\n...\nSSS",
"output": "3"
},
{
"input": "2 4\nS.SS\nS.SS",
"output": "2"
},
{
"input": "2 2\n..\n.S",
"output": "3"
},
{
"input": "3 2\n.S\n.S\nSS",
"output": "0"
},
{
"input": "2 4\nSS.S\n..S.",
"output": "0"
},
{
"input": "2 3\n...\nS..",
"output": "5"
}
] | 1,605,257,038
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 42
| 186
| 307,200
|
# # ----- Транспортирование 1 ----
# n = int(input())
# a = []
# for i in range(n):
# a.append(list(map(int, input().split())))
# for i in range(n):
# k = []
# for j in range(n):
# k.append(a[j][i])
# print(*k)
# # ----- Транспортирование 2 ----
# n = int(input())
# a = []
# for i in range(n):
# a.append(list(map(int, input().split())))
# for i in range(n - 1, -1, -1):
# k = []
# for j in range(n - 1, -1, -1):
# k.append(a[j][i])
# print(*k)
# # ----- Транспортирование 3 ----
# n, m = map(int, input().split())
# a = []
# for i in range(n):
# a.append(list(map(int, input().split())))
# print()
# for i in range(n):
# k = []
# for j in range(m - 1, -1, -1):
# k.append(a[i][j])
# print(*k)
# # ----- Красивая матрица ----
# a = []
# for i in range(5):
# a.append(list(map(int, input().split())))
# for i in range(5):
# for j in range(5):
# if a[i][j] == 1:
# row = i
# column = j
# print(abs(2 - row) + abs(2 - column))
# # ----- Транспортирование 4 ----
# n, m = map(int, input().split())
# a = []
# for i in range(n):
# a.append(list(map(int, input().split())))
# for i in range(n - 1, -1, -1):
# print(*a[i])
# # ----- Сумма главной диагонали ----
# n = int(input())
# a = []
# for i in range(n):
# a.append(list(map(int, input().split())))
# # # -- 1st ---
# # s = 0
# # for i in range(n):
# # s += a[i][i]
# # print(s)
# # -- 2st ---
# print(sum(a[i][i] for i in range(n)))
# # ---- Двумерный массив ---
# n, m = map(int, input().split())
# a = []
# for i in range(n):
# a.append(list(map(int, input().split())))
# for i in range(n):
# print(sum(i for i in a[i]), end=' ')
# print()
# for j in range(m):
# b = 0
# for i in range(n):
# b += a[i][j]
# print(b, end=' ')
# print('\n')
# for i in a:
# print(*i)
# # ---- Сумма матриц ---
# n, m = map(int, input().split())
# a = [list(map(int, input().split())) for i in range(n)]
# input()
# b = [list(map(int, input().split())) for i in range(n)]
# for i in range(n):
# c = []
# for j in range(m):
# c.append(a[i][j] + b[i][j])
# print(*c)
# from time import *
# # ---- Произведение матриц ---
# n, m, p = map(int, input().split())
# st = time()
# a = [list(map(int, input().split())) for i in range(n)]
# # a = list()
# # for i in range(n):
# # a.append([int(j) for j in input().split()])
# input()
#
# b = [list(map(int, input().split())) for s in range(n)]
# # b = list()
# # for i in range(n):
# # b.append([int(j) for j in input().split()])
# for i in range(n):
# for k in range(p):
# pr = []
# for j in range(m):
# pr.append(a[i][j] * b[j][k])
# print(sum(pr), end=' ')
# print()
# print(time() - st)
# # ---- Семетрична ли матрица ---
# n = int(input('Size: '))
# a = [list(map(int, input().split())) for i in range(n)]
# b = []
# for i in range(n):
# c = []
# for j in range(n):
# c += [a[j][i]]
# b += [c]
# if a == b:
# print('yes')
# else:
# print('no')
# # ---- Семетрична ли матрица ---
# n = int(input())
# a = [list(map(int, input().split())) for k in range(n)]
# i = 0
# while i < n:
# for j in range(n):
# if a[i][j] != a[j][i]:
# i = n
# print('no')
# break
# if i == n - 1 and j == n - 1:
# print('yes')
# i += 1
# # --- Состязания - 1 ---
# n, m = map(int, input().split())
# a = [list(map(int, input().split())) for i in range(n)]
# sum_score = []
# for i in range(n):
# sum_score.append(sum(a[i]))
# max_score = max(sum_score)
# print(max_score, sum_score.index(max_score), sep='\n')
# # --- Состязания - 2 ---
# n, m = map(int, input().split())
# a = [list(map(int, input().split())) for i in range(n)]
# max_stroka = []
# for i in a:
# max_stroka.append(max(i))
# print(max(max_stroka))
# print(max_stroka.index(max(max_stroka)), a[max_stroka.index(max(max_stroka))].index(max(max_stroka)))
# # --- Состязания - 3 ---
# n, m = map(int, input().split())
# a = [list(map(int, input().split())) for i in range(n)]
# max_score = 0
# max_sum_stroka = 0
# igrok = 0
# for i in range(n):
# if max(a[i]) > max_score:
# max_score = max(a[i])
# max_sum_stroka = sum(a[i])
# igrok = i
# if max(a[i]) == max_score and sum(a[i]) > max_sum_stroka:
# max_sum_stroka = sum(a[i])
# igrok = i
# print(igrok)
# # --- Миша и негатив ---
# n, m = map(int, input().split())
# a = [input() for i in range(n)]
# input()
# b = [input() for i in range(n)]
# errors = 0
# for row in range(n):
# for column in range(m):
# if a[row][column] == b[row][column]:
# errors += 1
# print(errors)
# # --- A. Матчи ---
# n = int(input())
# a = [list(map(int, input().split())) for i in range(n)]
# count = 0
# for i in range(n):
# for j in range(n):
# if i != j and a[i][0] == a[j][1]:
# count += 1
# print(count)
# # --- Весёлая шутка ---
# h = input()
# g = input()
# l = input()
# hg = h + g
# letters = []
# host_gest = []
# for i in l:
# letters.append(i)
# letters.sort()
# for i in hg:
# host_gest.append(i)
# host_gest.sort()
# if host_gest == letters:
# print('YES')
# else:
# print('NO')
# # --- Состязания - 4 ---
# n, m = map(int, input().split())
# a = [list(map(int, input().split())) for i in range(n)]
# count = 0
# max_score = 0
# for i in a:
# if max(i) > max_score:
# max_score = max(i)
# count = 1
# continue
# if max(i) == max_score:
# count += 1
# print(count)
# # --- Морской бой - 2 ---
# n, m = map(int, input().split())
# mas = list()
# mas.append('.' * (m + 2))
# for i in range(n):
# row = '.' + input() + '.'
# mas.append(row)
# mas.append('.' * (m + 2))
# count = 0
# for i in range(1, n + 1):
# for j in range(1, m + 1):
# if mas[i][j] == '.' and mas[i][j + 1] == '.' and mas[i][j - 1] == '.' and mas[i + 1][j] == '.' \
# and mas[i - 1][j] == '.':
# count += 1
# print(count)
# # --- Карты ---
# n = int(input())
# a = list(map(int, input().split()))
# in_used = []
# count = sum(a) / (n / 2)
# for i in range(n - 1):
# sum_card = 0
# if i in in_used:
# continue
# for j in range(i + 1, n):
# if j in in_used:
# continue
# sum_card = a[i] + a[j]
# if sum_card == count:
# print(i + 1, j + 1)
# in_used += [i] + [j]
# break
# # --- Заполнение змейкой ---
# n, m = map(int, input().split())
# k = 0
# s = m
# for i in range(n):
# if i % 2 == 0:
# a = [j for j in range(k, s)]
# k = s
# s += m
# print(*a)
# else:
# a = [j for j in range(k, s)]
# k = s
# s += m
# a.reverse()
# print(*a)
# # --- Фотографии ---
# n, m = map(int, input().split())
# a = ''
# for i in range(n):
# a += input().replace(' ', '')
# if 'C' in a or 'M' in a or 'Y' in a:
# print('#Color')
# else:
# print('#Black&White')
# # --- Спираль ---
# n = int(input())
# mas = list([0] * n for i in range(n))
# x = 0
# y = -1
# move_x = 0
# move_y = 1
# number = 1
# while number <= n ** 2:
# if 0 <= x + move_x < n and 0 <= y + move_y < n and mas[x + move_x][y + move_y] == 0:
# x += move_x
# y += move_y
# mas[x][y] = number
# number += 1
# else:
# if move_y == 1:
# move_x = 1
# move_y = 0
# elif move_x == 1:
# move_x = 0
# move_y = -1
# elif move_y == -1:
# move_x = -1
# move_y = 0
# elif move_x == -1:
# move_x = 0
# move_y = 1
# for row in mas:
# print(*row)
# # --- Спираль (моё решение) ---
# n = int(input())
# mas = list([0] * n for i in range(n))
# x = 0
# y = -1
# k = 1
# while n > 0:
# for y in range(y + 1, y + 1 + n):
# mas[x][y] = k
# k += 1
# for x in range(x + 1, x + n):
# mas[x][y] = k
# k += 1
# n -= 1
# for y in range(y - 1, y - 1 - n, -1):
# mas[x][y] = k
# k += 1
# n -= 1
# for x in range(x - 1, x - 1 - n, -1):
# mas[x][y] = k
# k += 1
# for row in mas:
# print(*row)
# # print('\t'.join(map(str, row)))
# #n - размерность матрицы n x n
# #mat - результирующая матрица
# #st - текущее значение-счетчик для записи в матрицу
# #m - коеффициент, используемый для заполнения верхней
# #матрицы последующих витков, т.к. одномерные матрицы
# #следующих витков имеют меньше значений
# n = int(input())
# mat = [[0]*n for i in range(n)]
# st, m = 1, 0
# # Заранее присваиваю значение центральному элементу
# # матрицы
# mat[n//2][n//2]=n*n
# for v in range(n//2):
# #Заполнение верхней горизонтальной матрицы
# for i in range(n-m):
# mat[v][i+v] = st
# st+=1
# #i+=1
# #Заполнение правой вертикальной матрицы
# for i in range(v+1, n-v):
# mat[i][-v-1] = st
# st+=1
# #i+=1
# #Заполнение нижней горизонтальной матрицы
# for i in range(v+1, n-v):
# mat[-v-1][-i-1] =st
# st+=1
# #i+=1
# #Заполнение левой вертикальной матрицы
# for i in range(v+1, n-(v+1)):
# mat[-i-1][v]=st
# st+=1
# #i+=1
# #v+=1
# m+=2
# #Вывод результата на экран
# for i in mat:
# print(*i)
# --- Тортминатор ---
n, m = map(int, input().split())
st = [input() for _ in range(n)]
col = []
for j in range(m):
a = ''
for i in range(n):
a += st[i][j:j + 1]
col.append(a)
count = 0
count_st = 0
for i in range(n):
if 'S' not in st[i]:
count += m
count_st += 1
for j in range(m):
if 'S' not in col[j]:
count += n - count_st
print(count)
|
Title: Cakeminator
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You are given a rectangular cake, represented as an *r*<=×<=*c* grid. Each cell either has an evil strawberry, or is empty. For example, a 3<=×<=4 cake may look as follows:
The cakeminator is going to eat the cake! Each time he eats, he chooses a row or a column that does not contain any evil strawberries and contains at least one cake cell that has not been eaten before, and eats all the cake cells there. He may decide to eat any number of times.
Please output the maximum number of cake cells that the cakeminator can eat.
Input Specification:
The first line contains two integers *r* and *c* (2<=≤<=*r*,<=*c*<=≤<=10), denoting the number of rows and the number of columns of the cake. The next *r* lines each contains *c* characters — the *j*-th character of the *i*-th line denotes the content of the cell at row *i* and column *j*, and is either one of these:
- '.' character denotes a cake cell with no evil strawberry; - 'S' character denotes a cake cell with an evil strawberry.
Output Specification:
Output the maximum number of cake cells that the cakeminator can eat.
Demo Input:
['3 4\nS...\n....\n..S.\n']
Demo Output:
['8\n']
Note:
For the first example, one possible way to eat the maximum number of cake cells is as follows (perform 3 eats).
|
```python
# # ----- Транспортирование 1 ----
# n = int(input())
# a = []
# for i in range(n):
# a.append(list(map(int, input().split())))
# for i in range(n):
# k = []
# for j in range(n):
# k.append(a[j][i])
# print(*k)
# # ----- Транспортирование 2 ----
# n = int(input())
# a = []
# for i in range(n):
# a.append(list(map(int, input().split())))
# for i in range(n - 1, -1, -1):
# k = []
# for j in range(n - 1, -1, -1):
# k.append(a[j][i])
# print(*k)
# # ----- Транспортирование 3 ----
# n, m = map(int, input().split())
# a = []
# for i in range(n):
# a.append(list(map(int, input().split())))
# print()
# for i in range(n):
# k = []
# for j in range(m - 1, -1, -1):
# k.append(a[i][j])
# print(*k)
# # ----- Красивая матрица ----
# a = []
# for i in range(5):
# a.append(list(map(int, input().split())))
# for i in range(5):
# for j in range(5):
# if a[i][j] == 1:
# row = i
# column = j
# print(abs(2 - row) + abs(2 - column))
# # ----- Транспортирование 4 ----
# n, m = map(int, input().split())
# a = []
# for i in range(n):
# a.append(list(map(int, input().split())))
# for i in range(n - 1, -1, -1):
# print(*a[i])
# # ----- Сумма главной диагонали ----
# n = int(input())
# a = []
# for i in range(n):
# a.append(list(map(int, input().split())))
# # # -- 1st ---
# # s = 0
# # for i in range(n):
# # s += a[i][i]
# # print(s)
# # -- 2st ---
# print(sum(a[i][i] for i in range(n)))
# # ---- Двумерный массив ---
# n, m = map(int, input().split())
# a = []
# for i in range(n):
# a.append(list(map(int, input().split())))
# for i in range(n):
# print(sum(i for i in a[i]), end=' ')
# print()
# for j in range(m):
# b = 0
# for i in range(n):
# b += a[i][j]
# print(b, end=' ')
# print('\n')
# for i in a:
# print(*i)
# # ---- Сумма матриц ---
# n, m = map(int, input().split())
# a = [list(map(int, input().split())) for i in range(n)]
# input()
# b = [list(map(int, input().split())) for i in range(n)]
# for i in range(n):
# c = []
# for j in range(m):
# c.append(a[i][j] + b[i][j])
# print(*c)
# from time import *
# # ---- Произведение матриц ---
# n, m, p = map(int, input().split())
# st = time()
# a = [list(map(int, input().split())) for i in range(n)]
# # a = list()
# # for i in range(n):
# # a.append([int(j) for j in input().split()])
# input()
#
# b = [list(map(int, input().split())) for s in range(n)]
# # b = list()
# # for i in range(n):
# # b.append([int(j) for j in input().split()])
# for i in range(n):
# for k in range(p):
# pr = []
# for j in range(m):
# pr.append(a[i][j] * b[j][k])
# print(sum(pr), end=' ')
# print()
# print(time() - st)
# # ---- Семетрична ли матрица ---
# n = int(input('Size: '))
# a = [list(map(int, input().split())) for i in range(n)]
# b = []
# for i in range(n):
# c = []
# for j in range(n):
# c += [a[j][i]]
# b += [c]
# if a == b:
# print('yes')
# else:
# print('no')
# # ---- Семетрична ли матрица ---
# n = int(input())
# a = [list(map(int, input().split())) for k in range(n)]
# i = 0
# while i < n:
# for j in range(n):
# if a[i][j] != a[j][i]:
# i = n
# print('no')
# break
# if i == n - 1 and j == n - 1:
# print('yes')
# i += 1
# # --- Состязания - 1 ---
# n, m = map(int, input().split())
# a = [list(map(int, input().split())) for i in range(n)]
# sum_score = []
# for i in range(n):
# sum_score.append(sum(a[i]))
# max_score = max(sum_score)
# print(max_score, sum_score.index(max_score), sep='\n')
# # --- Состязания - 2 ---
# n, m = map(int, input().split())
# a = [list(map(int, input().split())) for i in range(n)]
# max_stroka = []
# for i in a:
# max_stroka.append(max(i))
# print(max(max_stroka))
# print(max_stroka.index(max(max_stroka)), a[max_stroka.index(max(max_stroka))].index(max(max_stroka)))
# # --- Состязания - 3 ---
# n, m = map(int, input().split())
# a = [list(map(int, input().split())) for i in range(n)]
# max_score = 0
# max_sum_stroka = 0
# igrok = 0
# for i in range(n):
# if max(a[i]) > max_score:
# max_score = max(a[i])
# max_sum_stroka = sum(a[i])
# igrok = i
# if max(a[i]) == max_score and sum(a[i]) > max_sum_stroka:
# max_sum_stroka = sum(a[i])
# igrok = i
# print(igrok)
# # --- Миша и негатив ---
# n, m = map(int, input().split())
# a = [input() for i in range(n)]
# input()
# b = [input() for i in range(n)]
# errors = 0
# for row in range(n):
# for column in range(m):
# if a[row][column] == b[row][column]:
# errors += 1
# print(errors)
# # --- A. Матчи ---
# n = int(input())
# a = [list(map(int, input().split())) for i in range(n)]
# count = 0
# for i in range(n):
# for j in range(n):
# if i != j and a[i][0] == a[j][1]:
# count += 1
# print(count)
# # --- Весёлая шутка ---
# h = input()
# g = input()
# l = input()
# hg = h + g
# letters = []
# host_gest = []
# for i in l:
# letters.append(i)
# letters.sort()
# for i in hg:
# host_gest.append(i)
# host_gest.sort()
# if host_gest == letters:
# print('YES')
# else:
# print('NO')
# # --- Состязания - 4 ---
# n, m = map(int, input().split())
# a = [list(map(int, input().split())) for i in range(n)]
# count = 0
# max_score = 0
# for i in a:
# if max(i) > max_score:
# max_score = max(i)
# count = 1
# continue
# if max(i) == max_score:
# count += 1
# print(count)
# # --- Морской бой - 2 ---
# n, m = map(int, input().split())
# mas = list()
# mas.append('.' * (m + 2))
# for i in range(n):
# row = '.' + input() + '.'
# mas.append(row)
# mas.append('.' * (m + 2))
# count = 0
# for i in range(1, n + 1):
# for j in range(1, m + 1):
# if mas[i][j] == '.' and mas[i][j + 1] == '.' and mas[i][j - 1] == '.' and mas[i + 1][j] == '.' \
# and mas[i - 1][j] == '.':
# count += 1
# print(count)
# # --- Карты ---
# n = int(input())
# a = list(map(int, input().split()))
# in_used = []
# count = sum(a) / (n / 2)
# for i in range(n - 1):
# sum_card = 0
# if i in in_used:
# continue
# for j in range(i + 1, n):
# if j in in_used:
# continue
# sum_card = a[i] + a[j]
# if sum_card == count:
# print(i + 1, j + 1)
# in_used += [i] + [j]
# break
# # --- Заполнение змейкой ---
# n, m = map(int, input().split())
# k = 0
# s = m
# for i in range(n):
# if i % 2 == 0:
# a = [j for j in range(k, s)]
# k = s
# s += m
# print(*a)
# else:
# a = [j for j in range(k, s)]
# k = s
# s += m
# a.reverse()
# print(*a)
# # --- Фотографии ---
# n, m = map(int, input().split())
# a = ''
# for i in range(n):
# a += input().replace(' ', '')
# if 'C' in a or 'M' in a or 'Y' in a:
# print('#Color')
# else:
# print('#Black&White')
# # --- Спираль ---
# n = int(input())
# mas = list([0] * n for i in range(n))
# x = 0
# y = -1
# move_x = 0
# move_y = 1
# number = 1
# while number <= n ** 2:
# if 0 <= x + move_x < n and 0 <= y + move_y < n and mas[x + move_x][y + move_y] == 0:
# x += move_x
# y += move_y
# mas[x][y] = number
# number += 1
# else:
# if move_y == 1:
# move_x = 1
# move_y = 0
# elif move_x == 1:
# move_x = 0
# move_y = -1
# elif move_y == -1:
# move_x = -1
# move_y = 0
# elif move_x == -1:
# move_x = 0
# move_y = 1
# for row in mas:
# print(*row)
# # --- Спираль (моё решение) ---
# n = int(input())
# mas = list([0] * n for i in range(n))
# x = 0
# y = -1
# k = 1
# while n > 0:
# for y in range(y + 1, y + 1 + n):
# mas[x][y] = k
# k += 1
# for x in range(x + 1, x + n):
# mas[x][y] = k
# k += 1
# n -= 1
# for y in range(y - 1, y - 1 - n, -1):
# mas[x][y] = k
# k += 1
# n -= 1
# for x in range(x - 1, x - 1 - n, -1):
# mas[x][y] = k
# k += 1
# for row in mas:
# print(*row)
# # print('\t'.join(map(str, row)))
# #n - размерность матрицы n x n
# #mat - результирующая матрица
# #st - текущее значение-счетчик для записи в матрицу
# #m - коеффициент, используемый для заполнения верхней
# #матрицы последующих витков, т.к. одномерные матрицы
# #следующих витков имеют меньше значений
# n = int(input())
# mat = [[0]*n for i in range(n)]
# st, m = 1, 0
# # Заранее присваиваю значение центральному элементу
# # матрицы
# mat[n//2][n//2]=n*n
# for v in range(n//2):
# #Заполнение верхней горизонтальной матрицы
# for i in range(n-m):
# mat[v][i+v] = st
# st+=1
# #i+=1
# #Заполнение правой вертикальной матрицы
# for i in range(v+1, n-v):
# mat[i][-v-1] = st
# st+=1
# #i+=1
# #Заполнение нижней горизонтальной матрицы
# for i in range(v+1, n-v):
# mat[-v-1][-i-1] =st
# st+=1
# #i+=1
# #Заполнение левой вертикальной матрицы
# for i in range(v+1, n-(v+1)):
# mat[-i-1][v]=st
# st+=1
# #i+=1
# #v+=1
# m+=2
# #Вывод результата на экран
# for i in mat:
# print(*i)
# --- Тортминатор ---
n, m = map(int, input().split())
st = [input() for _ in range(n)]
col = []
for j in range(m):
a = ''
for i in range(n):
a += st[i][j:j + 1]
col.append(a)
count = 0
count_st = 0
for i in range(n):
if 'S' not in st[i]:
count += m
count_st += 1
for j in range(m):
if 'S' not in col[j]:
count += n - count_st
print(count)
```
| 3
|
|
733
|
B
|
Parade
|
PROGRAMMING
| 1,100
|
[
"math"
] | null | null |
Very soon there will be a parade of victory over alien invaders in Berland. Unfortunately, all soldiers died in the war and now the army consists of entirely new recruits, many of whom do not even know from which leg they should begin to march. The civilian population also poorly understands from which leg recruits begin to march, so it is only important how many soldiers march in step.
There will be *n* columns participating in the parade, the *i*-th column consists of *l**i* soldiers, who start to march from left leg, and *r**i* soldiers, who start to march from right leg.
The beauty of the parade is calculated by the following formula: if *L* is the total number of soldiers on the parade who start to march from the left leg, and *R* is the total number of soldiers on the parade who start to march from the right leg, so the beauty will equal |*L*<=-<=*R*|.
No more than once you can choose one column and tell all the soldiers in this column to switch starting leg, i.e. everyone in this columns who starts the march from left leg will now start it from right leg, and vice versa. Formally, you can pick no more than one index *i* and swap values *l**i* and *r**i*.
Find the index of the column, such that switching the starting leg for soldiers in it will maximize the the beauty of the parade, or determine, that no such operation can increase the current beauty.
|
The first line contains single integer *n* (1<=≤<=*n*<=≤<=105) — the number of columns.
The next *n* lines contain the pairs of integers *l**i* and *r**i* (1<=≤<=*l**i*,<=*r**i*<=≤<=500) — the number of soldiers in the *i*-th column which start to march from the left or the right leg respectively.
|
Print single integer *k* — the number of the column in which soldiers need to change the leg from which they start to march, or 0 if the maximum beauty is already reached.
Consider that columns are numbered from 1 to *n* in the order they are given in the input data.
If there are several answers, print any of them.
|
[
"3\n5 6\n8 9\n10 3\n",
"2\n6 5\n5 6\n",
"6\n5 9\n1 3\n4 8\n4 5\n23 54\n12 32\n"
] |
[
"3\n",
"1\n",
"0\n"
] |
In the first example if you don't give the order to change the leg, the number of soldiers, who start to march from the left leg, would equal 5 + 8 + 10 = 23, and from the right leg — 6 + 9 + 3 = 18. In this case the beauty of the parade will equal |23 - 18| = 5.
If you give the order to change the leg to the third column, so the number of soldiers, who march from the left leg, will equal 5 + 8 + 3 = 16, and who march from the right leg — 6 + 9 + 10 = 25. In this case the beauty equals |16 - 25| = 9.
It is impossible to reach greater beauty by giving another orders. Thus, the maximum beauty that can be achieved is 9.
| 1,000
|
[
{
"input": "3\n5 6\n8 9\n10 3",
"output": "3"
},
{
"input": "2\n6 5\n5 6",
"output": "1"
},
{
"input": "6\n5 9\n1 3\n4 8\n4 5\n23 54\n12 32",
"output": "0"
},
{
"input": "2\n500 499\n500 500",
"output": "0"
},
{
"input": "1\n139 252",
"output": "0"
},
{
"input": "10\n18 18\n71 471\n121 362\n467 107\n138 254\n13 337\n499 373\n337 387\n147 417\n76 417",
"output": "4"
},
{
"input": "4\n4 1\n5 3\n7 6\n3 5",
"output": "4"
},
{
"input": "3\n6 5\n9 8\n3 10",
"output": "3"
},
{
"input": "3\n100 9\n1 3\n1 5",
"output": "1"
},
{
"input": "4\n10 1\n10 2\n10 3\n1 10",
"output": "4"
},
{
"input": "5\n25 1\n24 1\n2 3\n2 3\n2 3",
"output": "3"
},
{
"input": "3\n90 1\n1 90\n100 1",
"output": "2"
},
{
"input": "3\n1 123\n22 1\n12 1",
"output": "1"
},
{
"input": "3\n4 5\n7 6\n10 9",
"output": "1"
},
{
"input": "4\n50 1\n50 1\n50 1\n1 49",
"output": "4"
},
{
"input": "7\n2 1\n2 1\n2 1\n2 1\n1 200\n1 200\n1 200",
"output": "1"
},
{
"input": "5\n10 8\n7 6\n2 8\n9 1\n7 1",
"output": "3"
},
{
"input": "3\n22 1\n12 1\n1 123",
"output": "3"
},
{
"input": "3\n10 8\n9 7\n4 5",
"output": "3"
},
{
"input": "5\n1 2\n4 8\n4 8\n32 16\n128 64",
"output": "2"
},
{
"input": "5\n10 1\n10 1\n10 1\n100 1\n1 5",
"output": "5"
}
] | 1,666,385,661
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 40
| 265
| 1,638,400
|
# legs
num_columns = int(input())
col_values = [0] * num_columns
total_beauty = 0
most_lefty_converts = 0
most_lefty_converts_index = -1
most_righty_converts = 0
most_righty_converts_index = -1
for c in range(num_columns):
left, right = [int(i) for i in input().split()]
column_beauty = -left + right
col_values[c] = column_beauty
total_beauty += column_beauty
lefty_converts = right - left
if lefty_converts > most_lefty_converts:
most_lefty_converts = lefty_converts
most_lefty_converts_index = c
righty_converts = left - right
if righty_converts > most_righty_converts:
most_righty_converts = righty_converts
most_righty_converts_index = c
#print("MLC:",most_lefty_converts,"index:", most_lefty_converts_index)
#print("MRC:",most_righty_converts,"index:", most_righty_converts_index)
abs_beauty = abs(total_beauty)
bR = abs(total_beauty + 2*most_righty_converts)
bL = abs(total_beauty - 2*most_lefty_converts)
#print("bR:", bR, "bL:", bL)
if abs_beauty > bR and abs_beauty > bL:
print(0)
elif bR > bL:
print(most_righty_converts_index+1)
elif bL > bR:
print(most_lefty_converts_index+1)
elif bL == bR:
print(most_righty_converts_index+1)
#print("B:", total_beauty)
|
Title: Parade
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Very soon there will be a parade of victory over alien invaders in Berland. Unfortunately, all soldiers died in the war and now the army consists of entirely new recruits, many of whom do not even know from which leg they should begin to march. The civilian population also poorly understands from which leg recruits begin to march, so it is only important how many soldiers march in step.
There will be *n* columns participating in the parade, the *i*-th column consists of *l**i* soldiers, who start to march from left leg, and *r**i* soldiers, who start to march from right leg.
The beauty of the parade is calculated by the following formula: if *L* is the total number of soldiers on the parade who start to march from the left leg, and *R* is the total number of soldiers on the parade who start to march from the right leg, so the beauty will equal |*L*<=-<=*R*|.
No more than once you can choose one column and tell all the soldiers in this column to switch starting leg, i.e. everyone in this columns who starts the march from left leg will now start it from right leg, and vice versa. Formally, you can pick no more than one index *i* and swap values *l**i* and *r**i*.
Find the index of the column, such that switching the starting leg for soldiers in it will maximize the the beauty of the parade, or determine, that no such operation can increase the current beauty.
Input Specification:
The first line contains single integer *n* (1<=≤<=*n*<=≤<=105) — the number of columns.
The next *n* lines contain the pairs of integers *l**i* and *r**i* (1<=≤<=*l**i*,<=*r**i*<=≤<=500) — the number of soldiers in the *i*-th column which start to march from the left or the right leg respectively.
Output Specification:
Print single integer *k* — the number of the column in which soldiers need to change the leg from which they start to march, or 0 if the maximum beauty is already reached.
Consider that columns are numbered from 1 to *n* in the order they are given in the input data.
If there are several answers, print any of them.
Demo Input:
['3\n5 6\n8 9\n10 3\n', '2\n6 5\n5 6\n', '6\n5 9\n1 3\n4 8\n4 5\n23 54\n12 32\n']
Demo Output:
['3\n', '1\n', '0\n']
Note:
In the first example if you don't give the order to change the leg, the number of soldiers, who start to march from the left leg, would equal 5 + 8 + 10 = 23, and from the right leg — 6 + 9 + 3 = 18. In this case the beauty of the parade will equal |23 - 18| = 5.
If you give the order to change the leg to the third column, so the number of soldiers, who march from the left leg, will equal 5 + 8 + 3 = 16, and who march from the right leg — 6 + 9 + 10 = 25. In this case the beauty equals |16 - 25| = 9.
It is impossible to reach greater beauty by giving another orders. Thus, the maximum beauty that can be achieved is 9.
|
```python
# legs
num_columns = int(input())
col_values = [0] * num_columns
total_beauty = 0
most_lefty_converts = 0
most_lefty_converts_index = -1
most_righty_converts = 0
most_righty_converts_index = -1
for c in range(num_columns):
left, right = [int(i) for i in input().split()]
column_beauty = -left + right
col_values[c] = column_beauty
total_beauty += column_beauty
lefty_converts = right - left
if lefty_converts > most_lefty_converts:
most_lefty_converts = lefty_converts
most_lefty_converts_index = c
righty_converts = left - right
if righty_converts > most_righty_converts:
most_righty_converts = righty_converts
most_righty_converts_index = c
#print("MLC:",most_lefty_converts,"index:", most_lefty_converts_index)
#print("MRC:",most_righty_converts,"index:", most_righty_converts_index)
abs_beauty = abs(total_beauty)
bR = abs(total_beauty + 2*most_righty_converts)
bL = abs(total_beauty - 2*most_lefty_converts)
#print("bR:", bR, "bL:", bL)
if abs_beauty > bR and abs_beauty > bL:
print(0)
elif bR > bL:
print(most_righty_converts_index+1)
elif bL > bR:
print(most_lefty_converts_index+1)
elif bL == bR:
print(most_righty_converts_index+1)
#print("B:", total_beauty)
```
| 3
|
|
116
|
A
|
Tram
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Linear Kingdom has exactly one tram line. It has *n* stops, numbered from 1 to *n* in the order of tram's movement. At the *i*-th stop *a**i* passengers exit the tram, while *b**i* passengers enter it. The tram is empty before it arrives at the first stop. Also, when the tram arrives at the last stop, all passengers exit so that it becomes empty.
Your task is to calculate the tram's minimum capacity such that the number of people inside the tram at any time never exceeds this capacity. Note that at each stop all exiting passengers exit before any entering passenger enters the tram.
|
The first line contains a single number *n* (2<=≤<=*n*<=≤<=1000) — the number of the tram's stops.
Then *n* lines follow, each contains two integers *a**i* and *b**i* (0<=≤<=*a**i*,<=*b**i*<=≤<=1000) — the number of passengers that exits the tram at the *i*-th stop, and the number of passengers that enter the tram at the *i*-th stop. The stops are given from the first to the last stop in the order of tram's movement.
- The number of people who exit at a given stop does not exceed the total number of people in the tram immediately before it arrives at the stop. More formally, . This particularly means that *a*1<==<=0. - At the last stop, all the passengers exit the tram and it becomes empty. More formally, . - No passenger will enter the train at the last stop. That is, *b**n*<==<=0.
|
Print a single integer denoting the minimum possible capacity of the tram (0 is allowed).
|
[
"4\n0 3\n2 5\n4 2\n4 0\n"
] |
[
"6\n"
] |
For the first example, a capacity of 6 is sufficient:
- At the first stop, the number of passengers inside the tram before arriving is 0. Then, 3 passengers enter the tram, and the number of passengers inside the tram becomes 3. - At the second stop, 2 passengers exit the tram (1 passenger remains inside). Then, 5 passengers enter the tram. There are 6 passengers inside the tram now. - At the third stop, 4 passengers exit the tram (2 passengers remain inside). Then, 2 passengers enter the tram. There are 4 passengers inside the tram now. - Finally, all the remaining passengers inside the tram exit the tram at the last stop. There are no passenger inside the tram now, which is in line with the constraints.
Since the number of passengers inside the tram never exceeds 6, a capacity of 6 is sufficient. Furthermore it is not possible for the tram to have a capacity less than 6. Hence, 6 is the correct answer.
| 500
|
[
{
"input": "4\n0 3\n2 5\n4 2\n4 0",
"output": "6"
},
{
"input": "5\n0 4\n4 6\n6 5\n5 4\n4 0",
"output": "6"
},
{
"input": "10\n0 5\n1 7\n10 8\n5 3\n0 5\n3 3\n8 8\n0 6\n10 1\n9 0",
"output": "18"
},
{
"input": "3\n0 1\n1 1\n1 0",
"output": "1"
},
{
"input": "4\n0 1\n0 1\n1 0\n1 0",
"output": "2"
},
{
"input": "3\n0 0\n0 0\n0 0",
"output": "0"
},
{
"input": "3\n0 1000\n1000 1000\n1000 0",
"output": "1000"
},
{
"input": "5\n0 73\n73 189\n189 766\n766 0\n0 0",
"output": "766"
},
{
"input": "5\n0 0\n0 0\n0 0\n0 1\n1 0",
"output": "1"
},
{
"input": "5\n0 917\n917 923\n904 992\n1000 0\n11 0",
"output": "1011"
},
{
"input": "5\n0 1\n1 2\n2 1\n1 2\n2 0",
"output": "2"
},
{
"input": "5\n0 0\n0 0\n0 0\n0 0\n0 0",
"output": "0"
},
{
"input": "20\n0 7\n2 1\n2 2\n5 7\n2 6\n6 10\n2 4\n0 4\n7 4\n8 0\n10 6\n2 1\n6 1\n1 7\n0 3\n8 7\n6 3\n6 3\n1 1\n3 0",
"output": "22"
},
{
"input": "5\n0 1000\n1000 1000\n1000 1000\n1000 1000\n1000 0",
"output": "1000"
},
{
"input": "10\n0 592\n258 598\n389 203\n249 836\n196 635\n478 482\n994 987\n1000 0\n769 0\n0 0",
"output": "1776"
},
{
"input": "10\n0 1\n1 0\n0 0\n0 0\n0 0\n0 1\n1 1\n0 1\n1 0\n1 0",
"output": "2"
},
{
"input": "10\n0 926\n926 938\n938 931\n931 964\n937 989\n983 936\n908 949\n997 932\n945 988\n988 0",
"output": "1016"
},
{
"input": "10\n0 1\n1 2\n1 2\n2 2\n2 2\n2 2\n1 1\n1 1\n2 1\n2 0",
"output": "3"
},
{
"input": "10\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0",
"output": "0"
},
{
"input": "10\n0 1000\n1000 1000\n1000 1000\n1000 1000\n1000 1000\n1000 1000\n1000 1000\n1000 1000\n1000 1000\n1000 0",
"output": "1000"
},
{
"input": "50\n0 332\n332 268\n268 56\n56 711\n420 180\n160 834\n149 341\n373 777\n763 93\n994 407\n86 803\n700 132\n471 608\n429 467\n75 5\n638 305\n405 853\n316 478\n643 163\n18 131\n648 241\n241 766\n316 847\n640 380\n923 759\n789 41\n125 421\n421 9\n9 388\n388 829\n408 108\n462 856\n816 411\n518 688\n290 7\n405 912\n397 772\n396 652\n394 146\n27 648\n462 617\n514 433\n780 35\n710 705\n460 390\n194 508\n643 56\n172 469\n1000 0\n194 0",
"output": "2071"
},
{
"input": "50\n0 0\n0 1\n1 1\n0 1\n0 0\n1 0\n0 0\n1 0\n0 0\n0 0\n0 0\n0 0\n0 1\n0 0\n0 0\n0 1\n1 0\n0 1\n0 0\n1 1\n1 0\n0 1\n0 0\n1 1\n0 1\n1 0\n1 1\n1 0\n0 0\n1 1\n1 0\n0 1\n0 0\n0 1\n1 1\n1 1\n1 1\n1 0\n1 1\n1 0\n0 1\n1 0\n0 0\n0 1\n1 1\n1 1\n0 1\n0 0\n1 0\n1 0",
"output": "3"
},
{
"input": "50\n0 926\n926 971\n915 980\n920 965\n954 944\n928 952\n955 980\n916 980\n906 935\n944 913\n905 923\n912 922\n965 934\n912 900\n946 930\n931 983\n979 905\n925 969\n924 926\n910 914\n921 977\n934 979\n962 986\n942 909\n976 903\n982 982\n991 941\n954 929\n902 980\n947 983\n919 924\n917 943\n916 905\n907 913\n964 977\n984 904\n905 999\n950 970\n986 906\n993 970\n960 994\n963 983\n918 986\n980 900\n931 986\n993 997\n941 909\n907 909\n1000 0\n278 0",
"output": "1329"
},
{
"input": "2\n0 863\n863 0",
"output": "863"
},
{
"input": "50\n0 1\n1 2\n2 2\n1 1\n1 1\n1 2\n1 2\n1 1\n1 2\n1 1\n1 1\n1 2\n1 2\n1 1\n2 1\n2 2\n1 2\n2 2\n1 2\n2 1\n2 1\n2 2\n2 1\n1 2\n1 2\n2 1\n1 1\n2 2\n1 1\n2 1\n2 2\n2 1\n1 2\n2 2\n1 2\n1 1\n1 1\n2 1\n2 1\n2 2\n2 1\n2 1\n1 2\n1 2\n1 2\n1 2\n2 0\n2 0\n2 0\n0 0",
"output": "8"
},
{
"input": "50\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0",
"output": "0"
},
{
"input": "100\n0 1\n0 0\n0 0\n1 0\n0 0\n0 1\n0 1\n1 1\n0 0\n0 0\n1 1\n0 0\n1 1\n0 1\n1 1\n0 1\n1 1\n1 0\n1 0\n0 0\n1 0\n0 1\n1 0\n0 0\n0 0\n1 1\n1 1\n0 1\n0 0\n1 0\n1 1\n0 1\n1 0\n1 1\n0 1\n1 1\n1 0\n0 0\n0 0\n0 1\n0 0\n0 1\n1 1\n0 0\n1 1\n1 1\n0 0\n0 1\n1 0\n0 1\n0 0\n0 1\n0 1\n1 1\n1 1\n1 1\n0 0\n0 0\n1 1\n0 1\n0 1\n1 0\n0 0\n0 0\n1 1\n0 1\n0 1\n1 1\n1 1\n0 1\n1 1\n1 1\n0 0\n1 0\n0 1\n0 0\n0 0\n1 1\n1 1\n1 1\n1 1\n0 1\n1 0\n1 0\n1 0\n1 0\n1 0\n0 0\n1 0\n1 0\n0 0\n1 0\n0 0\n0 1\n1 0\n0 1\n1 0\n1 0\n1 0\n1 0",
"output": "11"
},
{
"input": "100\n0 2\n1 2\n2 1\n1 2\n1 2\n2 1\n2 2\n1 1\n1 1\n2 1\n1 2\n2 1\n1 2\n2 2\n2 2\n2 2\n1 2\n2 2\n2 1\n1 1\n1 1\n1 1\n2 2\n1 2\n2 2\n1 1\n1 1\n1 1\n1 1\n2 2\n1 2\n2 1\n1 1\n2 2\n1 1\n2 1\n1 1\n2 2\n2 1\n1 2\n1 1\n1 2\n2 1\n2 2\n1 1\n2 1\n1 1\n2 1\n1 1\n1 2\n2 2\n2 2\n1 1\n2 2\n1 2\n2 1\n2 1\n1 1\n1 1\n1 2\n1 2\n1 1\n1 1\n2 1\n1 2\n1 2\n2 1\n2 2\n2 2\n2 2\n2 1\n2 2\n1 1\n1 2\n1 2\n1 1\n2 2\n2 2\n1 1\n2 1\n1 1\n1 2\n1 2\n1 2\n1 1\n1 1\n2 2\n1 2\n2 1\n2 1\n2 1\n1 2\n1 2\n1 1\n2 2\n1 2\n2 0\n2 0\n2 0\n1 0",
"output": "7"
},
{
"input": "100\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0",
"output": "0"
},
{
"input": "2\n0 1\n1 0",
"output": "1"
},
{
"input": "2\n0 900\n900 0",
"output": "900"
},
{
"input": "2\n0 1\n1 0",
"output": "1"
},
{
"input": "2\n0 0\n0 0",
"output": "0"
},
{
"input": "2\n0 1000\n1000 0",
"output": "1000"
},
{
"input": "3\n0 802\n175 188\n815 0",
"output": "815"
},
{
"input": "3\n0 910\n910 976\n976 0",
"output": "976"
},
{
"input": "3\n0 2\n2 1\n1 0",
"output": "2"
}
] | 1,691,690,226
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 71
| 92
| 102,400
|
def Tram(list_of_passenger) :
passengers_inside = 0
max_capacity = 0
for stop in list_of_passenger:
passengers_inside -= stop[0] # Passengers exit
passengers_inside += stop[1] # Passengers enter
max_capacity = max(max_capacity, passengers_inside)
return max_capacity
if __name__ == "__main__":
list_of_passenger = list()
for i in range(int(input())):
outside , inside = map(int , input().split())
list_of_passenger.append([outside,inside])
print(Tram(list_of_passenger))
|
Title: Tram
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Linear Kingdom has exactly one tram line. It has *n* stops, numbered from 1 to *n* in the order of tram's movement. At the *i*-th stop *a**i* passengers exit the tram, while *b**i* passengers enter it. The tram is empty before it arrives at the first stop. Also, when the tram arrives at the last stop, all passengers exit so that it becomes empty.
Your task is to calculate the tram's minimum capacity such that the number of people inside the tram at any time never exceeds this capacity. Note that at each stop all exiting passengers exit before any entering passenger enters the tram.
Input Specification:
The first line contains a single number *n* (2<=≤<=*n*<=≤<=1000) — the number of the tram's stops.
Then *n* lines follow, each contains two integers *a**i* and *b**i* (0<=≤<=*a**i*,<=*b**i*<=≤<=1000) — the number of passengers that exits the tram at the *i*-th stop, and the number of passengers that enter the tram at the *i*-th stop. The stops are given from the first to the last stop in the order of tram's movement.
- The number of people who exit at a given stop does not exceed the total number of people in the tram immediately before it arrives at the stop. More formally, . This particularly means that *a*1<==<=0. - At the last stop, all the passengers exit the tram and it becomes empty. More formally, . - No passenger will enter the train at the last stop. That is, *b**n*<==<=0.
Output Specification:
Print a single integer denoting the minimum possible capacity of the tram (0 is allowed).
Demo Input:
['4\n0 3\n2 5\n4 2\n4 0\n']
Demo Output:
['6\n']
Note:
For the first example, a capacity of 6 is sufficient:
- At the first stop, the number of passengers inside the tram before arriving is 0. Then, 3 passengers enter the tram, and the number of passengers inside the tram becomes 3. - At the second stop, 2 passengers exit the tram (1 passenger remains inside). Then, 5 passengers enter the tram. There are 6 passengers inside the tram now. - At the third stop, 4 passengers exit the tram (2 passengers remain inside). Then, 2 passengers enter the tram. There are 4 passengers inside the tram now. - Finally, all the remaining passengers inside the tram exit the tram at the last stop. There are no passenger inside the tram now, which is in line with the constraints.
Since the number of passengers inside the tram never exceeds 6, a capacity of 6 is sufficient. Furthermore it is not possible for the tram to have a capacity less than 6. Hence, 6 is the correct answer.
|
```python
def Tram(list_of_passenger) :
passengers_inside = 0
max_capacity = 0
for stop in list_of_passenger:
passengers_inside -= stop[0] # Passengers exit
passengers_inside += stop[1] # Passengers enter
max_capacity = max(max_capacity, passengers_inside)
return max_capacity
if __name__ == "__main__":
list_of_passenger = list()
for i in range(int(input())):
outside , inside = map(int , input().split())
list_of_passenger.append([outside,inside])
print(Tram(list_of_passenger))
```
| 3
|
|
557
|
A
|
Ilya and Diplomas
|
PROGRAMMING
| 1,100
|
[
"greedy",
"implementation",
"math"
] | null | null |
Soon a school Olympiad in Informatics will be held in Berland, *n* schoolchildren will participate there.
At a meeting of the jury of the Olympiad it was decided that each of the *n* participants, depending on the results, will get a diploma of the first, second or third degree. Thus, each student will receive exactly one diploma.
They also decided that there must be given at least *min*1 and at most *max*1 diplomas of the first degree, at least *min*2 and at most *max*2 diplomas of the second degree, and at least *min*3 and at most *max*3 diplomas of the third degree.
After some discussion it was decided to choose from all the options of distributing diplomas satisfying these limitations the one that maximizes the number of participants who receive diplomas of the first degree. Of all these options they select the one which maximizes the number of the participants who receive diplomas of the second degree. If there are multiple of these options, they select the option that maximizes the number of diplomas of the third degree.
Choosing the best option of distributing certificates was entrusted to Ilya, one of the best programmers of Berland. However, he found more important things to do, so it is your task now to choose the best option of distributing of diplomas, based on the described limitations.
It is guaranteed that the described limitations are such that there is a way to choose such an option of distributing diplomas that all *n* participants of the Olympiad will receive a diploma of some degree.
|
The first line of the input contains a single integer *n* (3<=≤<=*n*<=≤<=3·106) — the number of schoolchildren who will participate in the Olympiad.
The next line of the input contains two integers *min*1 and *max*1 (1<=≤<=*min*1<=≤<=*max*1<=≤<=106) — the minimum and maximum limits on the number of diplomas of the first degree that can be distributed.
The third line of the input contains two integers *min*2 and *max*2 (1<=≤<=*min*2<=≤<=*max*2<=≤<=106) — the minimum and maximum limits on the number of diplomas of the second degree that can be distributed.
The next line of the input contains two integers *min*3 and *max*3 (1<=≤<=*min*3<=≤<=*max*3<=≤<=106) — the minimum and maximum limits on the number of diplomas of the third degree that can be distributed.
It is guaranteed that *min*1<=+<=*min*2<=+<=*min*3<=≤<=*n*<=≤<=*max*1<=+<=*max*2<=+<=*max*3.
|
In the first line of the output print three numbers, showing how many diplomas of the first, second and third degree will be given to students in the optimal variant of distributing diplomas.
The optimal variant of distributing diplomas is the one that maximizes the number of students who receive diplomas of the first degree. Of all the suitable options, the best one is the one which maximizes the number of participants who receive diplomas of the second degree. If there are several of these options, the best one is the one that maximizes the number of diplomas of the third degree.
|
[
"6\n1 5\n2 6\n3 7\n",
"10\n1 2\n1 3\n1 5\n",
"6\n1 3\n2 2\n2 2\n"
] |
[
"1 2 3 \n",
"2 3 5 \n",
"2 2 2 \n"
] |
none
| 500
|
[
{
"input": "6\n1 5\n2 6\n3 7",
"output": "1 2 3 "
},
{
"input": "10\n1 2\n1 3\n1 5",
"output": "2 3 5 "
},
{
"input": "6\n1 3\n2 2\n2 2",
"output": "2 2 2 "
},
{
"input": "55\n1 1000000\n40 50\n10 200",
"output": "5 40 10 "
},
{
"input": "3\n1 1\n1 1\n1 1",
"output": "1 1 1 "
},
{
"input": "3\n1 1000000\n1 1000000\n1 1000000",
"output": "1 1 1 "
},
{
"input": "1000\n100 400\n300 500\n400 1200",
"output": "300 300 400 "
},
{
"input": "3000000\n1 1000000\n1 1000000\n1 1000000",
"output": "1000000 1000000 1000000 "
},
{
"input": "11\n3 5\n3 5\n3 5",
"output": "5 3 3 "
},
{
"input": "12\n3 5\n3 5\n3 5",
"output": "5 4 3 "
},
{
"input": "13\n3 5\n3 5\n3 5",
"output": "5 5 3 "
},
{
"input": "3000000\n1000000 1000000\n1000000 1000000\n1000000 1000000",
"output": "1000000 1000000 1000000 "
},
{
"input": "50\n1 100\n1 100\n1 100",
"output": "48 1 1 "
},
{
"input": "1279\n123 670\n237 614\n846 923",
"output": "196 237 846 "
},
{
"input": "1589\n213 861\n5 96\n506 634",
"output": "861 96 632 "
},
{
"input": "2115\n987 987\n112 483\n437 959",
"output": "987 483 645 "
},
{
"input": "641\n251 960\n34 370\n149 149",
"output": "458 34 149 "
},
{
"input": "1655\n539 539\n10 425\n605 895",
"output": "539 425 691 "
},
{
"input": "1477\n210 336\n410 837\n448 878",
"output": "336 693 448 "
},
{
"input": "1707\n149 914\n190 422\n898 899",
"output": "619 190 898 "
},
{
"input": "1529\n515 515\n563 869\n169 451",
"output": "515 845 169 "
},
{
"input": "1543\n361 994\n305 407\n102 197",
"output": "994 407 142 "
},
{
"input": "1107\n471 849\n360 741\n71 473",
"output": "676 360 71 "
},
{
"input": "1629279\n267360 999930\n183077 674527\n202618 786988",
"output": "999930 426731 202618 "
},
{
"input": "1233589\n2850 555444\n500608 921442\n208610 607343",
"output": "524371 500608 208610 "
},
{
"input": "679115\n112687 183628\n101770 982823\n81226 781340",
"output": "183628 414261 81226 "
},
{
"input": "1124641\n117999 854291\n770798 868290\n76651 831405",
"output": "277192 770798 76651 "
},
{
"input": "761655\n88152 620061\n60403 688549\n79370 125321",
"output": "620061 62224 79370 "
},
{
"input": "2174477\n276494 476134\n555283 954809\n319941 935631",
"output": "476134 954809 743534 "
},
{
"input": "1652707\n201202 990776\n34796 883866\n162979 983308",
"output": "990776 498952 162979 "
},
{
"input": "2065529\n43217 891429\n434379 952871\n650231 855105",
"output": "891429 523869 650231 "
},
{
"input": "1702543\n405042 832833\n50931 747750\n381818 796831",
"output": "832833 487892 381818 "
},
{
"input": "501107\n19061 859924\n126478 724552\n224611 489718",
"output": "150018 126478 224611 "
},
{
"input": "1629279\n850831 967352\n78593 463906\n452094 885430",
"output": "967352 209833 452094 "
},
{
"input": "1233589\n2850 157021\n535109 748096\n392212 475634",
"output": "157021 684356 392212 "
},
{
"input": "679115\n125987 786267\n70261 688983\n178133 976789",
"output": "430721 70261 178133 "
},
{
"input": "1124641\n119407 734250\n213706 860770\n102149 102149",
"output": "734250 288242 102149 "
},
{
"input": "761655\n325539 325539\n280794 792505\n18540 106895",
"output": "325539 417576 18540 "
},
{
"input": "2174477\n352351 791072\n365110 969163\n887448 955610",
"output": "791072 495957 887448 "
},
{
"input": "1652707\n266774 638522\n65688 235422\n924898 992826",
"output": "638522 89287 924898 "
},
{
"input": "2065529\n608515 608515\n751563 864337\n614898 705451",
"output": "608515 842116 614898 "
},
{
"input": "1702543\n5784 996578\n47395 300407\n151614 710197",
"output": "996578 300407 405558 "
},
{
"input": "501107\n8073 390048\n190494 647328\n274071 376923",
"output": "36542 190494 274071 "
},
{
"input": "200\n50 50\n100 100\n50 50",
"output": "50 100 50 "
},
{
"input": "14\n1 100\n1 100\n8 9",
"output": "5 1 8 "
},
{
"input": "300\n200 400\n50 100\n40 80",
"output": "210 50 40 "
},
{
"input": "10\n3 6\n3 6\n3 6",
"output": "4 3 3 "
},
{
"input": "14\n3 6\n3 6\n3 6",
"output": "6 5 3 "
},
{
"input": "17\n3 6\n3 6\n3 6",
"output": "6 6 5 "
},
{
"input": "1000000\n300000 600000\n300000 600000\n300000 600000",
"output": "400000 300000 300000 "
},
{
"input": "1400000\n300000 600000\n300000 600000\n300000 600000",
"output": "600000 500000 300000 "
},
{
"input": "1700000\n300000 600000\n300000 600000\n300000 600000",
"output": "600000 600000 500000 "
},
{
"input": "561\n400 400\n80 80\n81 81",
"output": "400 80 81 "
},
{
"input": "2000\n100 1000\n1 1\n1 2000",
"output": "1000 1 999 "
},
{
"input": "1000002\n1 1000000\n1 1000000\n999999 1000000",
"output": "2 1 999999 "
},
{
"input": "1000002\n1 1000000\n1 1000000\n1000000 1000000",
"output": "1 1 1000000 "
}
] | 1,679,068,283
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 56
| 93
| 0
|
I=lambda:map(int,input().split())
n=next(I())
a,b=I()
c,d=I()
f,e=I()
x=min(b,n-c-f)
y=min(d,n-x-f)
print(x,y,n-x-y)
|
Title: Ilya and Diplomas
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Soon a school Olympiad in Informatics will be held in Berland, *n* schoolchildren will participate there.
At a meeting of the jury of the Olympiad it was decided that each of the *n* participants, depending on the results, will get a diploma of the first, second or third degree. Thus, each student will receive exactly one diploma.
They also decided that there must be given at least *min*1 and at most *max*1 diplomas of the first degree, at least *min*2 and at most *max*2 diplomas of the second degree, and at least *min*3 and at most *max*3 diplomas of the third degree.
After some discussion it was decided to choose from all the options of distributing diplomas satisfying these limitations the one that maximizes the number of participants who receive diplomas of the first degree. Of all these options they select the one which maximizes the number of the participants who receive diplomas of the second degree. If there are multiple of these options, they select the option that maximizes the number of diplomas of the third degree.
Choosing the best option of distributing certificates was entrusted to Ilya, one of the best programmers of Berland. However, he found more important things to do, so it is your task now to choose the best option of distributing of diplomas, based on the described limitations.
It is guaranteed that the described limitations are such that there is a way to choose such an option of distributing diplomas that all *n* participants of the Olympiad will receive a diploma of some degree.
Input Specification:
The first line of the input contains a single integer *n* (3<=≤<=*n*<=≤<=3·106) — the number of schoolchildren who will participate in the Olympiad.
The next line of the input contains two integers *min*1 and *max*1 (1<=≤<=*min*1<=≤<=*max*1<=≤<=106) — the minimum and maximum limits on the number of diplomas of the first degree that can be distributed.
The third line of the input contains two integers *min*2 and *max*2 (1<=≤<=*min*2<=≤<=*max*2<=≤<=106) — the minimum and maximum limits on the number of diplomas of the second degree that can be distributed.
The next line of the input contains two integers *min*3 and *max*3 (1<=≤<=*min*3<=≤<=*max*3<=≤<=106) — the minimum and maximum limits on the number of diplomas of the third degree that can be distributed.
It is guaranteed that *min*1<=+<=*min*2<=+<=*min*3<=≤<=*n*<=≤<=*max*1<=+<=*max*2<=+<=*max*3.
Output Specification:
In the first line of the output print three numbers, showing how many diplomas of the first, second and third degree will be given to students in the optimal variant of distributing diplomas.
The optimal variant of distributing diplomas is the one that maximizes the number of students who receive diplomas of the first degree. Of all the suitable options, the best one is the one which maximizes the number of participants who receive diplomas of the second degree. If there are several of these options, the best one is the one that maximizes the number of diplomas of the third degree.
Demo Input:
['6\n1 5\n2 6\n3 7\n', '10\n1 2\n1 3\n1 5\n', '6\n1 3\n2 2\n2 2\n']
Demo Output:
['1 2 3 \n', '2 3 5 \n', '2 2 2 \n']
Note:
none
|
```python
I=lambda:map(int,input().split())
n=next(I())
a,b=I()
c,d=I()
f,e=I()
x=min(b,n-c-f)
y=min(d,n-x-f)
print(x,y,n-x-y)
```
| 3
|
|
721
|
A
|
One-dimensional Japanese Crossword
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Recently Adaltik discovered japanese crosswords. Japanese crossword is a picture, represented as a table sized *a*<=×<=*b* squares, and each square is colored white or black. There are integers to the left of the rows and to the top of the columns, encrypting the corresponding row or column. The number of integers represents how many groups of black squares there are in corresponding row or column, and the integers themselves represents the number of consecutive black squares in corresponding group (you can find more detailed explanation in Wikipedia [https://en.wikipedia.org/wiki/Japanese_crossword](https://en.wikipedia.org/wiki/Japanese_crossword)).
Adaltik decided that the general case of japanese crossword is too complicated and drew a row consisting of *n* squares (e.g. japanese crossword sized 1<=×<=*n*), which he wants to encrypt in the same way as in japanese crossword.
Help Adaltik find the numbers encrypting the row he drew.
|
The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the length of the row. The second line of the input contains a single string consisting of *n* characters 'B' or 'W', ('B' corresponds to black square, 'W' — to white square in the row that Adaltik drew).
|
The first line should contain a single integer *k* — the number of integers encrypting the row, e.g. the number of groups of black squares in the row.
The second line should contain *k* integers, encrypting the row, e.g. corresponding to sizes of groups of consecutive black squares in the order from left to right.
|
[
"3\nBBW\n",
"5\nBWBWB\n",
"4\nWWWW\n",
"4\nBBBB\n",
"13\nWBBBBWWBWBBBW\n"
] |
[
"1\n2 ",
"3\n1 1 1 ",
"0\n",
"1\n4 ",
"3\n4 1 3 "
] |
The last sample case correspond to the picture in the statement.
| 500
|
[
{
"input": "3\nBBW",
"output": "1\n2 "
},
{
"input": "5\nBWBWB",
"output": "3\n1 1 1 "
},
{
"input": "4\nWWWW",
"output": "0"
},
{
"input": "4\nBBBB",
"output": "1\n4 "
},
{
"input": "13\nWBBBBWWBWBBBW",
"output": "3\n4 1 3 "
},
{
"input": "1\nB",
"output": "1\n1 "
},
{
"input": "2\nBB",
"output": "1\n2 "
},
{
"input": "100\nWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWB",
"output": "50\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 "
},
{
"input": "1\nW",
"output": "0"
},
{
"input": "2\nWW",
"output": "0"
},
{
"input": "2\nWB",
"output": "1\n1 "
},
{
"input": "2\nBW",
"output": "1\n1 "
},
{
"input": "3\nBBB",
"output": "1\n3 "
},
{
"input": "3\nBWB",
"output": "2\n1 1 "
},
{
"input": "3\nWBB",
"output": "1\n2 "
},
{
"input": "3\nWWB",
"output": "1\n1 "
},
{
"input": "3\nWBW",
"output": "1\n1 "
},
{
"input": "3\nBWW",
"output": "1\n1 "
},
{
"input": "3\nWWW",
"output": "0"
},
{
"input": "100\nBBBWWWWWWBBWWBBWWWBBWBBBBBBBBBBBWBBBWBBWWWBBWWBBBWBWWBBBWWBBBWBBBBBWWWBWWBBWWWWWWBWBBWWBWWWBWBWWWWWB",
"output": "21\n3 2 2 2 11 3 2 2 3 1 3 3 5 1 2 1 2 1 1 1 1 "
},
{
"input": "5\nBBBWB",
"output": "2\n3 1 "
},
{
"input": "5\nBWWWB",
"output": "2\n1 1 "
},
{
"input": "5\nWWWWB",
"output": "1\n1 "
},
{
"input": "5\nBWWWW",
"output": "1\n1 "
},
{
"input": "5\nBBBWW",
"output": "1\n3 "
},
{
"input": "5\nWWBBB",
"output": "1\n3 "
},
{
"input": "10\nBBBBBWWBBB",
"output": "2\n5 3 "
},
{
"input": "10\nBBBBWBBWBB",
"output": "3\n4 2 2 "
},
{
"input": "20\nBBBBBWWBWBBWBWWBWBBB",
"output": "6\n5 1 2 1 1 3 "
},
{
"input": "20\nBBBWWWWBBWWWBWBWWBBB",
"output": "5\n3 2 1 1 3 "
},
{
"input": "20\nBBBBBBBBWBBBWBWBWBBB",
"output": "5\n8 3 1 1 3 "
},
{
"input": "20\nBBBWBWBWWWBBWWWWBWBB",
"output": "6\n3 1 1 2 1 2 "
},
{
"input": "40\nBBBBBBWWWWBWBWWWBWWWWWWWWWWWBBBBBBBBBBBB",
"output": "5\n6 1 1 1 12 "
},
{
"input": "40\nBBBBBWBWWWBBWWWBWBWWBBBBWWWWBWBWBBBBBBBB",
"output": "9\n5 1 2 1 1 4 1 1 8 "
},
{
"input": "50\nBBBBBBBBBBBWWWWBWBWWWWBBBBBBBBWWWWWWWBWWWWBWBBBBBB",
"output": "7\n11 1 1 8 1 1 6 "
},
{
"input": "50\nWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW",
"output": "0"
},
{
"input": "50\nBBBBBWWWWWBWWWBWWWWWBWWWBWWWWWWBBWBBWWWWBWWWWWWWBW",
"output": "9\n5 1 1 1 1 2 2 1 1 "
},
{
"input": "50\nWWWWBWWBWWWWWWWWWWWWWWWWWWWWWWWWWBWBWBWWWWWWWBBBBB",
"output": "6\n1 1 1 1 1 5 "
},
{
"input": "50\nBBBBBWBWBWWBWBWWWWWWBWBWBWWWWWWWWWWWWWBWBWWWWBWWWB",
"output": "12\n5 1 1 1 1 1 1 1 1 1 1 1 "
},
{
"input": "50\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB",
"output": "1\n50 "
},
{
"input": "100\nBBBBBBBBBBBWBWWWWBWWBBWBBWWWWWWWWWWBWBWWBWWWWWWWWWWWBBBWWBBWWWWWBWBWWWWBWWWWWWWWWWWBWWWWWBBBBBBBBBBB",
"output": "15\n11 1 1 2 2 1 1 1 3 2 1 1 1 1 11 "
},
{
"input": "100\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB",
"output": "1\n100 "
},
{
"input": "100\nBBBBBBBBBBBBBBBBBBBBWBWBWWWWWBWWWWWWWWWWWWWWBBWWWBWWWWBWWBWWWWWWBWWWWWWWWWWWWWBWBBBBBBBBBBBBBBBBBBBB",
"output": "11\n20 1 1 1 2 1 1 1 1 1 20 "
},
{
"input": "100\nBBBBWWWWWWWWWWWWWWWWWWWWWWWWWBWBWWWWWBWBWWWWWWBBWWWWWWWWWWWWBWWWWBWWWWWWWWWWWWBWWWWWWWBWWWWWWWBBBBBB",
"output": "11\n4 1 1 1 1 2 1 1 1 1 6 "
},
{
"input": "5\nBWBWB",
"output": "3\n1 1 1 "
},
{
"input": "10\nWWBWWWBWBB",
"output": "3\n1 1 2 "
},
{
"input": "50\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB",
"output": "1\n50 "
},
{
"input": "50\nBBBBBBBBBBBBBBBBBWWBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB",
"output": "2\n17 31 "
},
{
"input": "100\nBBBBBBBBBBBBBBBBBBBBBBBBWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB",
"output": "2\n24 42 "
},
{
"input": "90\nWWBWWBWBBWBBWWBWBWBBBWBWBBBWBWBWBWBWBWBWBWBBBBBWBBWWWWBWBBWBWWBBBWBWBWWBWBWBWBWWWWWWBWBBBB",
"output": "30\n1 1 2 2 1 1 3 1 3 1 1 1 1 1 1 1 5 2 1 2 1 3 1 1 1 1 1 1 1 4 "
},
{
"input": "100\nBWWWBWBWBBBBBWBWWBWBWWWBWBWBWWBBWWBBBWBBBWWBWBWWBBBBWBWBBBWBWBBWWWWWWBWWBBBBWBWBWWBWBWWWBWBWWBWBWWWB",
"output": "31\n1 1 1 5 1 1 1 1 1 1 2 3 3 1 1 4 1 3 1 2 1 4 1 1 1 1 1 1 1 1 1 "
},
{
"input": "90\nWBWBBBBBBWWWBBWWBWWWBBWWBWWWBWBBWBWBBWWWWBWBWBBWBBWBWWWBBWBBWWWWBWBBWWWBBBWBBWBWBBBBWWBWWB",
"output": "25\n1 6 2 1 2 1 1 2 1 2 1 1 2 2 1 2 2 1 2 3 2 1 4 1 1 "
},
{
"input": "80\nBBWWBBBWBBWWWWBBWBWBBWWWWWBWBBWWBWBWBWBWBWWBWWBWWWBWBBWBBWBBWBBBWWBBBBBBBWBBBWBB",
"output": "23\n2 3 2 2 1 2 1 2 1 1 1 1 1 1 1 1 2 2 2 3 7 3 2 "
},
{
"input": "65\nWWWWBWWWBBBBBWWWWWWBBBWWBBBBWWWWWWWWBBBWWWWBWBWWBBWWWWBWWWBBWBBBB",
"output": "11\n1 5 3 4 3 1 1 2 1 2 4 "
}
] | 1,661,025,754
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 54
| 46
| 0
|
def main():
length = int(input())
letters = input()
black_groups_count = 0
last_letter = None
current_count = 0
second_input = ""
for letter in letters:
if letter == "B":
current_count += 1
else:
if current_count > 0:
second_input += str(current_count) + " "
current_count = 0
if letter == "B" and last_letter != "B":
black_groups_count += 1
last_letter = letter
if current_count > 0:
second_input += str(current_count) + " "
print(black_groups_count)
print(second_input)
main()
|
Title: One-dimensional Japanese Crossword
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Recently Adaltik discovered japanese crosswords. Japanese crossword is a picture, represented as a table sized *a*<=×<=*b* squares, and each square is colored white or black. There are integers to the left of the rows and to the top of the columns, encrypting the corresponding row or column. The number of integers represents how many groups of black squares there are in corresponding row or column, and the integers themselves represents the number of consecutive black squares in corresponding group (you can find more detailed explanation in Wikipedia [https://en.wikipedia.org/wiki/Japanese_crossword](https://en.wikipedia.org/wiki/Japanese_crossword)).
Adaltik decided that the general case of japanese crossword is too complicated and drew a row consisting of *n* squares (e.g. japanese crossword sized 1<=×<=*n*), which he wants to encrypt in the same way as in japanese crossword.
Help Adaltik find the numbers encrypting the row he drew.
Input Specification:
The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the length of the row. The second line of the input contains a single string consisting of *n* characters 'B' or 'W', ('B' corresponds to black square, 'W' — to white square in the row that Adaltik drew).
Output Specification:
The first line should contain a single integer *k* — the number of integers encrypting the row, e.g. the number of groups of black squares in the row.
The second line should contain *k* integers, encrypting the row, e.g. corresponding to sizes of groups of consecutive black squares in the order from left to right.
Demo Input:
['3\nBBW\n', '5\nBWBWB\n', '4\nWWWW\n', '4\nBBBB\n', '13\nWBBBBWWBWBBBW\n']
Demo Output:
['1\n2 ', '3\n1 1 1 ', '0\n', '1\n4 ', '3\n4 1 3 ']
Note:
The last sample case correspond to the picture in the statement.
|
```python
def main():
length = int(input())
letters = input()
black_groups_count = 0
last_letter = None
current_count = 0
second_input = ""
for letter in letters:
if letter == "B":
current_count += 1
else:
if current_count > 0:
second_input += str(current_count) + " "
current_count = 0
if letter == "B" and last_letter != "B":
black_groups_count += 1
last_letter = letter
if current_count > 0:
second_input += str(current_count) + " "
print(black_groups_count)
print(second_input)
main()
```
| 3
|
|
621
|
D
|
Rat Kwesh and Cheese
|
PROGRAMMING
| 2,400
|
[
"brute force",
"constructive algorithms",
"math"
] | null | null |
Wet Shark asked Rat Kwesh to generate three positive real numbers *x*, *y* and *z*, from 0.1 to 200.0, inclusive. Wet Krash wants to impress Wet Shark, so all generated numbers will have exactly one digit after the decimal point.
Wet Shark knows Rat Kwesh will want a lot of cheese. So he will give the Rat an opportunity to earn a lot of cheese. He will hand the three numbers *x*, *y* and *z* to Rat Kwesh, and Rat Kwesh will pick one of the these twelve options:
1. *a*1<==<=*x**y**z*; 1. *a*2<==<=*x**z**y*; 1. *a*3<==<=(*x**y*)*z*; 1. *a*4<==<=(*x**z*)*y*; 1. *a*5<==<=*y**x**z*; 1. *a*6<==<=*y**z**x*; 1. *a*7<==<=(*y**x*)*z*; 1. *a*8<==<=(*y**z*)*x*; 1. *a*9<==<=*z**x**y*; 1. *a*10<==<=*z**y**x*; 1. *a*11<==<=(*z**x*)*y*; 1. *a*12<==<=(*z**y*)*x*.
Let *m* be the maximum of all the *a**i*, and *c* be the smallest index (from 1 to 12) such that *a**c*<==<=*m*. Rat's goal is to find that *c*, and he asks you to help him. Rat Kwesh wants to see how much cheese he gets, so he you will have to print the expression corresponding to that *a**c*.
|
The only line of the input contains three space-separated real numbers *x*, *y* and *z* (0.1<=≤<=*x*,<=*y*,<=*z*<=≤<=200.0). Each of *x*, *y* and *z* is given with exactly one digit after the decimal point.
|
Find the maximum value of expression among *x**y**z*, *x**z**y*, (*x**y*)*z*, (*x**z*)*y*, *y**x**z*, *y**z**x*, (*y**x*)*z*, (*y**z*)*x*, *z**x**y*, *z**y**x*, (*z**x*)*y*, (*z**y*)*x* and print the corresponding expression. If there are many maximums, print the one that comes first in the list.
*x**y**z* should be outputted as x^y^z (without brackets), and (*x**y*)*z* should be outputted as (x^y)^z (quotes for clarity).
|
[
"1.1 3.4 2.5\n",
"2.0 2.0 2.0\n",
"1.9 1.8 1.7\n"
] |
[
"z^y^x\n",
"x^y^z\n",
"(x^y)^z\n"
] |
none
| 2,000
|
[
{
"input": "1.1 3.4 2.5",
"output": "z^y^x"
},
{
"input": "2.0 2.0 2.0",
"output": "x^y^z"
},
{
"input": "1.9 1.8 1.7",
"output": "(x^y)^z"
},
{
"input": "2.0 2.1 2.2",
"output": "x^z^y"
},
{
"input": "1.5 1.7 2.5",
"output": "(z^x)^y"
},
{
"input": "1.1 1.1 1.1",
"output": "(x^y)^z"
},
{
"input": "4.2 1.1 1.2",
"output": "(x^y)^z"
},
{
"input": "113.9 125.2 88.8",
"output": "z^x^y"
},
{
"input": "185.9 9.6 163.4",
"output": "y^z^x"
},
{
"input": "198.7 23.7 89.1",
"output": "y^z^x"
},
{
"input": "141.1 108.1 14.9",
"output": "z^y^x"
},
{
"input": "153.9 122.1 89.5",
"output": "z^y^x"
},
{
"input": "25.9 77.0 144.8",
"output": "x^y^z"
},
{
"input": "38.7 142.2 89.8",
"output": "x^z^y"
},
{
"input": "51.5 156.3 145.1",
"output": "x^z^y"
},
{
"input": "193.9 40.7 19.7",
"output": "z^y^x"
},
{
"input": "51.8 51.8 7.1",
"output": "z^x^y"
},
{
"input": "64.6 117.1 81.6",
"output": "x^z^y"
},
{
"input": "7.0 131.1 7.4",
"output": "x^z^y"
},
{
"input": "149.4 15.5 82.0",
"output": "y^z^x"
},
{
"input": "91.8 170.4 7.7",
"output": "z^x^y"
},
{
"input": "104.6 184.4 82.3",
"output": "z^x^y"
},
{
"input": "117.4 68.8 137.7",
"output": "y^x^z"
},
{
"input": "189.4 63.7 63.4",
"output": "z^y^x"
},
{
"input": "2.2 148.1 138.0",
"output": "x^z^y"
},
{
"input": "144.6 103.0 193.4",
"output": "y^x^z"
},
{
"input": "144.0 70.4 148.1",
"output": "y^x^z"
},
{
"input": "156.9 154.8 73.9",
"output": "z^y^x"
},
{
"input": "28.9 39.3 148.4",
"output": "x^y^z"
},
{
"input": "41.7 104.5 74.2",
"output": "x^z^y"
},
{
"input": "184.1 118.5 129.5",
"output": "y^z^x"
},
{
"input": "196.9 3.0 4.1",
"output": "y^z^x"
},
{
"input": "139.3 87.4 129.9",
"output": "y^z^x"
},
{
"input": "81.7 171.9 4.4",
"output": "z^x^y"
},
{
"input": "94.5 56.3 59.8",
"output": "y^z^x"
},
{
"input": "36.9 51.1 4.8",
"output": "z^x^y"
},
{
"input": "55.5 159.4 140.3",
"output": "x^z^y"
},
{
"input": "3.9 0.2 3.8",
"output": "x^z^y"
},
{
"input": "0.9 4.6 3.4",
"output": "(z^x)^y"
},
{
"input": "3.7 3.7 4.1",
"output": "x^y^z"
},
{
"input": "1.1 3.1 4.9",
"output": "x^y^z"
},
{
"input": "3.9 2.1 4.5",
"output": "y^x^z"
},
{
"input": "0.9 2.0 4.8",
"output": "(y^x)^z"
},
{
"input": "3.7 2.2 4.8",
"output": "y^x^z"
},
{
"input": "1.5 1.3 0.1",
"output": "x^y^z"
},
{
"input": "3.9 0.7 4.7",
"output": "(x^y)^z"
},
{
"input": "1.8 1.8 2.1",
"output": "(z^x)^y"
},
{
"input": "4.6 2.1 1.6",
"output": "z^y^x"
},
{
"input": "2.0 1.1 2.4",
"output": "(z^x)^y"
},
{
"input": "4.4 0.5 2.0",
"output": "x^z^y"
},
{
"input": "1.8 0.4 2.7",
"output": "z^x^y"
},
{
"input": "4.6 4.4 2.3",
"output": "z^y^x"
},
{
"input": "2.4 3.8 2.7",
"output": "x^z^y"
},
{
"input": "4.4 3.7 3.4",
"output": "z^y^x"
},
{
"input": "2.2 3.1 3.0",
"output": "x^z^y"
},
{
"input": "4.6 3.0 3.4",
"output": "y^z^x"
},
{
"input": "4.0 0.4 3.1",
"output": "x^z^y"
},
{
"input": "1.9 4.8 3.9",
"output": "x^z^y"
},
{
"input": "3.9 4.3 3.4",
"output": "z^x^y"
},
{
"input": "1.7 4.5 4.2",
"output": "x^z^y"
},
{
"input": "4.1 3.5 4.5",
"output": "y^x^z"
},
{
"input": "1.9 3.0 4.1",
"output": "x^y^z"
},
{
"input": "4.3 2.4 4.9",
"output": "y^x^z"
},
{
"input": "1.7 1.9 4.4",
"output": "x^y^z"
},
{
"input": "4.5 1.3 4.8",
"output": "y^x^z"
},
{
"input": "1.9 1.1 4.8",
"output": "x^z^y"
},
{
"input": "0.4 0.2 0.3",
"output": "(x^y)^z"
},
{
"input": "0.4 1.1 0.9",
"output": "y^z^x"
},
{
"input": "0.2 0.7 0.6",
"output": "(y^x)^z"
},
{
"input": "0.1 0.1 0.4",
"output": "(z^x)^y"
},
{
"input": "1.4 1.1 1.0",
"output": "x^y^z"
},
{
"input": "1.4 0.5 0.8",
"output": "x^z^y"
},
{
"input": "1.2 0.7 1.3",
"output": "z^x^y"
},
{
"input": "1.0 0.3 1.1",
"output": "z^x^y"
},
{
"input": "0.9 1.2 0.2",
"output": "y^x^z"
},
{
"input": "0.8 0.3 0.6",
"output": "(x^y)^z"
},
{
"input": "0.6 0.6 1.1",
"output": "z^x^y"
},
{
"input": "0.5 0.1 0.9",
"output": "(z^x)^y"
},
{
"input": "0.4 1.0 1.5",
"output": "z^y^x"
},
{
"input": "0.3 0.4 1.2",
"output": "z^y^x"
},
{
"input": "0.1 1.4 0.3",
"output": "y^z^x"
},
{
"input": "1.4 0.8 0.2",
"output": "x^y^z"
},
{
"input": "1.4 1.2 1.4",
"output": "(x^y)^z"
},
{
"input": "1.2 0.6 0.5",
"output": "x^y^z"
},
{
"input": "1.1 1.5 0.4",
"output": "y^x^z"
},
{
"input": "1.5 1.4 1.1",
"output": "(x^y)^z"
},
{
"input": "1.4 0.8 0.9",
"output": "x^z^y"
},
{
"input": "1.4 0.3 1.4",
"output": "x^z^y"
},
{
"input": "1.2 0.5 1.2",
"output": "x^z^y"
},
{
"input": "1.1 1.5 1.0",
"output": "y^x^z"
},
{
"input": "0.9 1.0 0.1",
"output": "y^x^z"
},
{
"input": "0.8 0.4 1.4",
"output": "z^x^y"
},
{
"input": "0.7 1.4 0.4",
"output": "y^x^z"
},
{
"input": "0.5 0.8 0.3",
"output": "(y^x)^z"
},
{
"input": "0.4 1.1 0.8",
"output": "y^z^x"
},
{
"input": "0.2 0.1 0.2",
"output": "(x^y)^z"
},
{
"input": "0.1 0.2 0.6",
"output": "(z^x)^y"
},
{
"input": "0.1 0.2 0.6",
"output": "(z^x)^y"
},
{
"input": "0.5 0.1 0.3",
"output": "(x^y)^z"
},
{
"input": "0.1 0.1 0.1",
"output": "(x^y)^z"
},
{
"input": "0.5 0.5 0.1",
"output": "(x^y)^z"
},
{
"input": "0.5 0.2 0.2",
"output": "(x^y)^z"
},
{
"input": "0.3 0.4 0.4",
"output": "(y^x)^z"
},
{
"input": "0.1 0.3 0.5",
"output": "(z^x)^y"
},
{
"input": "0.3 0.3 0.5",
"output": "(z^x)^y"
},
{
"input": "0.2 0.6 0.3",
"output": "(y^x)^z"
},
{
"input": "0.6 0.3 0.2",
"output": "(x^y)^z"
},
{
"input": "0.2 0.1 0.6",
"output": "(z^x)^y"
},
{
"input": "0.4 0.1 0.6",
"output": "(z^x)^y"
},
{
"input": "0.6 0.4 0.3",
"output": "(x^y)^z"
},
{
"input": "0.4 0.2 0.3",
"output": "(x^y)^z"
},
{
"input": "0.2 0.2 0.5",
"output": "(z^x)^y"
},
{
"input": "0.2 0.3 0.2",
"output": "(y^x)^z"
},
{
"input": "0.6 0.3 0.2",
"output": "(x^y)^z"
},
{
"input": "0.2 0.6 0.4",
"output": "(y^x)^z"
},
{
"input": "0.6 0.2 0.5",
"output": "(x^y)^z"
},
{
"input": "0.5 0.2 0.3",
"output": "(x^y)^z"
},
{
"input": "0.5 0.3 0.2",
"output": "(x^y)^z"
},
{
"input": "0.3 0.5 0.6",
"output": "(z^x)^y"
},
{
"input": "0.5 0.3 0.1",
"output": "(x^y)^z"
},
{
"input": "0.3 0.4 0.1",
"output": "(y^x)^z"
},
{
"input": "0.5 0.4 0.5",
"output": "(x^y)^z"
},
{
"input": "0.1 0.5 0.4",
"output": "(y^x)^z"
},
{
"input": "0.5 0.5 0.6",
"output": "(z^x)^y"
},
{
"input": "0.1 0.5 0.2",
"output": "(y^x)^z"
},
{
"input": "1.0 2.0 4.0",
"output": "y^z^x"
},
{
"input": "1.0 4.0 2.0",
"output": "y^z^x"
},
{
"input": "2.0 1.0 4.0",
"output": "x^z^y"
},
{
"input": "2.0 4.0 1.0",
"output": "x^y^z"
},
{
"input": "4.0 1.0 2.0",
"output": "x^z^y"
},
{
"input": "4.0 2.0 1.0",
"output": "x^y^z"
},
{
"input": "3.0 3.0 3.1",
"output": "x^y^z"
},
{
"input": "0.1 0.2 0.3",
"output": "(z^x)^y"
},
{
"input": "200.0 200.0 200.0",
"output": "x^y^z"
},
{
"input": "1.0 1.0 200.0",
"output": "z^x^y"
},
{
"input": "1.0 200.0 1.0",
"output": "y^x^z"
},
{
"input": "200.0 1.0 1.0",
"output": "x^y^z"
},
{
"input": "200.0 200.0 1.0",
"output": "x^y^z"
},
{
"input": "200.0 1.0 200.0",
"output": "x^z^y"
},
{
"input": "1.0 200.0 200.0",
"output": "y^z^x"
},
{
"input": "1.0 1.0 1.0",
"output": "x^y^z"
},
{
"input": "200.0 0.1 0.1",
"output": "x^y^z"
},
{
"input": "200.0 0.1 200.0",
"output": "(x^y)^z"
},
{
"input": "0.1 200.0 200.0",
"output": "(y^x)^z"
},
{
"input": "200.0 200.0 0.1",
"output": "(x^y)^z"
},
{
"input": "0.1 200.0 0.1",
"output": "y^x^z"
},
{
"input": "0.1 0.1 200.0",
"output": "z^x^y"
},
{
"input": "0.1 0.1 0.1",
"output": "(x^y)^z"
},
{
"input": "0.1 0.4 0.2",
"output": "(y^x)^z"
},
{
"input": "0.2 0.3 0.1",
"output": "(y^x)^z"
},
{
"input": "0.1 0.4 0.3",
"output": "(y^x)^z"
},
{
"input": "1.0 2.0 1.0",
"output": "y^x^z"
}
] | 1,609,141,867
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 152
| 155
| 0
|
import math
ar=list(map(float,input().split()))
mn=-float('inf')
mns=""
def xyz(x,y,z,op):
if(op==1):
return (x**y**z,"x^y^z")
elif(op==2):
return (x**z**y,"x^z^y")
elif(op==5):
return (y**x**z,"y^x^z")
elif(op==6):
return (y**z**x,"y^z^x")
elif(op==9):
return (z**x**y,"z^x^y")
elif(op==10):
return (z**y**x,"z^y^x")
elif(op==3):
return ((x**y)**z,"(x^y)^z")
elif(op==4):
return ((x**z)**y,"(x^z)^y")
elif(op==7):
return ((y**x)**z,"(y^x)^z")
elif(op==8):
return ((y**z)**x,"(y^z)^x")
elif(op==11):
return ((z**x)**y,"(z^x)^y")
elif(op==12):
return ((z**y)**x,"(z^y)^x")
def xyz2(x,y,z,op):
if(op==1):
try:
vl=math.log2(math.log2(x))+math.log2(y)*z
except:
vl=-float('inf')
return (vl,"x^y^z")
elif(op==2):
try:
vl=math.log2(math.log2(x))+math.log2(z)*y
except:
vl=-float('inf')
return (vl,"x^z^y")
elif(op==5):
try:
vl=math.log2(math.log2(y))+math.log2(x)*z
except:
vl=-float('inf')
return (vl,"y^x^z")
elif(op==6):
try:
vl=math.log2(math.log2(y))+math.log2(z)*x
except:
vl=-float('inf')
return (vl,"y^z^x")
elif(op==9):
try:
vl=math.log2(math.log2(z))+math.log2(x)*y
except:
vl=-float('inf')
return (vl,"z^x^y")
elif(op==10):
try:
vl=math.log2(math.log2(z))+math.log2(y)*x
except:
vl=-float('inf')
return (vl,"z^y^x")
elif(op==3):
try:
vl=math.log2(math.log2(x))+math.log2(y)+math.log2(z)
except:
vl=-float('inf')
return (vl,"(x^y)^z")
elif(op==4):
try:
vl=math.log2(math.log2(x))+math.log2(z)+math.log2(y)
except:
vl=-float('inf')
return (vl,"(x^z)^y")
elif(op==7):
try:
vl=math.log2(math.log2(y))+math.log2(x)+math.log2(z)
except:
vl=-float('inf')
return (vl,"(y^x)^z")
elif(op==8):
try:
vl=math.log2(math.log2(y))+math.log2(x)+math.log2(z)
except:
vl=-float('inf')
return (vl,"(y^z)^x")
elif(op==11):
try:
vl=math.log2(math.log2(z))+math.log2(x)+math.log2(y)
except:
vl=-float('inf')
return (vl,"(z^x)^y")
elif(op==12):
try:
vl=math.log2(math.log2(z))+math.log2(x)+math.log2(y)
except:
vl=-float('inf')
return (vl,"(z^y)^x")
E=[[0,1,2],[0,2,1],[1,0,2],[1,2,0],[2,0,1],[2,1,0]]
if(max(ar)<4.1):
for i in range(1,13):
a=xyz(ar[0],ar[1],ar[2],i)
#print(a)
if(a[0]-1e-7>mn):
mn=a[0]
mns=a[1]
else:
for i in range(1,13):
a=xyz2(ar[0],ar[1],ar[2],i)
#print(a)
if(a[0]-1e-7>mn):
mn=a[0]
mns=a[1]
print(mns)
|
Title: Rat Kwesh and Cheese
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Wet Shark asked Rat Kwesh to generate three positive real numbers *x*, *y* and *z*, from 0.1 to 200.0, inclusive. Wet Krash wants to impress Wet Shark, so all generated numbers will have exactly one digit after the decimal point.
Wet Shark knows Rat Kwesh will want a lot of cheese. So he will give the Rat an opportunity to earn a lot of cheese. He will hand the three numbers *x*, *y* and *z* to Rat Kwesh, and Rat Kwesh will pick one of the these twelve options:
1. *a*1<==<=*x**y**z*; 1. *a*2<==<=*x**z**y*; 1. *a*3<==<=(*x**y*)*z*; 1. *a*4<==<=(*x**z*)*y*; 1. *a*5<==<=*y**x**z*; 1. *a*6<==<=*y**z**x*; 1. *a*7<==<=(*y**x*)*z*; 1. *a*8<==<=(*y**z*)*x*; 1. *a*9<==<=*z**x**y*; 1. *a*10<==<=*z**y**x*; 1. *a*11<==<=(*z**x*)*y*; 1. *a*12<==<=(*z**y*)*x*.
Let *m* be the maximum of all the *a**i*, and *c* be the smallest index (from 1 to 12) such that *a**c*<==<=*m*. Rat's goal is to find that *c*, and he asks you to help him. Rat Kwesh wants to see how much cheese he gets, so he you will have to print the expression corresponding to that *a**c*.
Input Specification:
The only line of the input contains three space-separated real numbers *x*, *y* and *z* (0.1<=≤<=*x*,<=*y*,<=*z*<=≤<=200.0). Each of *x*, *y* and *z* is given with exactly one digit after the decimal point.
Output Specification:
Find the maximum value of expression among *x**y**z*, *x**z**y*, (*x**y*)*z*, (*x**z*)*y*, *y**x**z*, *y**z**x*, (*y**x*)*z*, (*y**z*)*x*, *z**x**y*, *z**y**x*, (*z**x*)*y*, (*z**y*)*x* and print the corresponding expression. If there are many maximums, print the one that comes first in the list.
*x**y**z* should be outputted as x^y^z (without brackets), and (*x**y*)*z* should be outputted as (x^y)^z (quotes for clarity).
Demo Input:
['1.1 3.4 2.5\n', '2.0 2.0 2.0\n', '1.9 1.8 1.7\n']
Demo Output:
['z^y^x\n', 'x^y^z\n', '(x^y)^z\n']
Note:
none
|
```python
import math
ar=list(map(float,input().split()))
mn=-float('inf')
mns=""
def xyz(x,y,z,op):
if(op==1):
return (x**y**z,"x^y^z")
elif(op==2):
return (x**z**y,"x^z^y")
elif(op==5):
return (y**x**z,"y^x^z")
elif(op==6):
return (y**z**x,"y^z^x")
elif(op==9):
return (z**x**y,"z^x^y")
elif(op==10):
return (z**y**x,"z^y^x")
elif(op==3):
return ((x**y)**z,"(x^y)^z")
elif(op==4):
return ((x**z)**y,"(x^z)^y")
elif(op==7):
return ((y**x)**z,"(y^x)^z")
elif(op==8):
return ((y**z)**x,"(y^z)^x")
elif(op==11):
return ((z**x)**y,"(z^x)^y")
elif(op==12):
return ((z**y)**x,"(z^y)^x")
def xyz2(x,y,z,op):
if(op==1):
try:
vl=math.log2(math.log2(x))+math.log2(y)*z
except:
vl=-float('inf')
return (vl,"x^y^z")
elif(op==2):
try:
vl=math.log2(math.log2(x))+math.log2(z)*y
except:
vl=-float('inf')
return (vl,"x^z^y")
elif(op==5):
try:
vl=math.log2(math.log2(y))+math.log2(x)*z
except:
vl=-float('inf')
return (vl,"y^x^z")
elif(op==6):
try:
vl=math.log2(math.log2(y))+math.log2(z)*x
except:
vl=-float('inf')
return (vl,"y^z^x")
elif(op==9):
try:
vl=math.log2(math.log2(z))+math.log2(x)*y
except:
vl=-float('inf')
return (vl,"z^x^y")
elif(op==10):
try:
vl=math.log2(math.log2(z))+math.log2(y)*x
except:
vl=-float('inf')
return (vl,"z^y^x")
elif(op==3):
try:
vl=math.log2(math.log2(x))+math.log2(y)+math.log2(z)
except:
vl=-float('inf')
return (vl,"(x^y)^z")
elif(op==4):
try:
vl=math.log2(math.log2(x))+math.log2(z)+math.log2(y)
except:
vl=-float('inf')
return (vl,"(x^z)^y")
elif(op==7):
try:
vl=math.log2(math.log2(y))+math.log2(x)+math.log2(z)
except:
vl=-float('inf')
return (vl,"(y^x)^z")
elif(op==8):
try:
vl=math.log2(math.log2(y))+math.log2(x)+math.log2(z)
except:
vl=-float('inf')
return (vl,"(y^z)^x")
elif(op==11):
try:
vl=math.log2(math.log2(z))+math.log2(x)+math.log2(y)
except:
vl=-float('inf')
return (vl,"(z^x)^y")
elif(op==12):
try:
vl=math.log2(math.log2(z))+math.log2(x)+math.log2(y)
except:
vl=-float('inf')
return (vl,"(z^y)^x")
E=[[0,1,2],[0,2,1],[1,0,2],[1,2,0],[2,0,1],[2,1,0]]
if(max(ar)<4.1):
for i in range(1,13):
a=xyz(ar[0],ar[1],ar[2],i)
#print(a)
if(a[0]-1e-7>mn):
mn=a[0]
mns=a[1]
else:
for i in range(1,13):
a=xyz2(ar[0],ar[1],ar[2],i)
#print(a)
if(a[0]-1e-7>mn):
mn=a[0]
mns=a[1]
print(mns)
```
| 3
|
|
769
|
A
|
Year of University Entrance
|
PROGRAMMING
| 800
|
[
"*special",
"implementation",
"sortings"
] | null | null |
There is the faculty of Computer Science in Berland. In the social net "TheContact!" for each course of this faculty there is the special group whose name equals the year of university entrance of corresponding course of students at the university.
Each of students joins the group of his course and joins all groups for which the year of student's university entrance differs by no more than *x* from the year of university entrance of this student, where *x* — some non-negative integer. A value *x* is not given, but it can be uniquely determined from the available data. Note that students don't join other groups.
You are given the list of groups which the student Igor joined. According to this information you need to determine the year of Igor's university entrance.
|
The first line contains the positive odd integer *n* (1<=≤<=*n*<=≤<=5) — the number of groups which Igor joined.
The next line contains *n* distinct integers *a*1,<=*a*2,<=...,<=*a**n* (2010<=≤<=*a**i*<=≤<=2100) — years of student's university entrance for each group in which Igor is the member.
It is guaranteed that the input data is correct and the answer always exists. Groups are given randomly.
|
Print the year of Igor's university entrance.
|
[
"3\n2014 2016 2015\n",
"1\n2050\n"
] |
[
"2015\n",
"2050\n"
] |
In the first test the value *x* = 1. Igor entered the university in 2015. So he joined groups members of which are students who entered the university in 2014, 2015 and 2016.
In the second test the value *x* = 0. Igor entered only the group which corresponds to the year of his university entrance.
| 500
|
[
{
"input": "3\n2014 2016 2015",
"output": "2015"
},
{
"input": "1\n2050",
"output": "2050"
},
{
"input": "1\n2010",
"output": "2010"
},
{
"input": "1\n2011",
"output": "2011"
},
{
"input": "3\n2010 2011 2012",
"output": "2011"
},
{
"input": "3\n2049 2047 2048",
"output": "2048"
},
{
"input": "5\n2043 2042 2041 2044 2040",
"output": "2042"
},
{
"input": "5\n2012 2013 2014 2015 2016",
"output": "2014"
},
{
"input": "1\n2045",
"output": "2045"
},
{
"input": "1\n2046",
"output": "2046"
},
{
"input": "1\n2099",
"output": "2099"
},
{
"input": "1\n2100",
"output": "2100"
},
{
"input": "3\n2011 2010 2012",
"output": "2011"
},
{
"input": "3\n2011 2012 2010",
"output": "2011"
},
{
"input": "3\n2012 2011 2010",
"output": "2011"
},
{
"input": "3\n2010 2012 2011",
"output": "2011"
},
{
"input": "3\n2012 2010 2011",
"output": "2011"
},
{
"input": "3\n2047 2048 2049",
"output": "2048"
},
{
"input": "3\n2047 2049 2048",
"output": "2048"
},
{
"input": "3\n2048 2047 2049",
"output": "2048"
},
{
"input": "3\n2048 2049 2047",
"output": "2048"
},
{
"input": "3\n2049 2048 2047",
"output": "2048"
},
{
"input": "5\n2011 2014 2012 2013 2010",
"output": "2012"
},
{
"input": "5\n2014 2013 2011 2012 2015",
"output": "2013"
},
{
"input": "5\n2021 2023 2024 2020 2022",
"output": "2022"
},
{
"input": "5\n2081 2079 2078 2080 2077",
"output": "2079"
},
{
"input": "5\n2095 2099 2097 2096 2098",
"output": "2097"
},
{
"input": "5\n2097 2099 2100 2098 2096",
"output": "2098"
},
{
"input": "5\n2012 2010 2014 2011 2013",
"output": "2012"
},
{
"input": "5\n2012 2011 2013 2015 2014",
"output": "2013"
},
{
"input": "5\n2023 2024 2022 2021 2020",
"output": "2022"
},
{
"input": "5\n2077 2078 2080 2079 2081",
"output": "2079"
},
{
"input": "5\n2099 2096 2095 2097 2098",
"output": "2097"
},
{
"input": "5\n2097 2100 2098 2096 2099",
"output": "2098"
},
{
"input": "5\n2011 2014 2013 2010 2012",
"output": "2012"
},
{
"input": "5\n2013 2011 2015 2012 2014",
"output": "2013"
},
{
"input": "5\n2024 2020 2021 2023 2022",
"output": "2022"
},
{
"input": "5\n2079 2080 2077 2081 2078",
"output": "2079"
},
{
"input": "5\n2095 2097 2096 2098 2099",
"output": "2097"
},
{
"input": "5\n2099 2096 2100 2097 2098",
"output": "2098"
},
{
"input": "5\n2034 2033 2036 2032 2035",
"output": "2034"
},
{
"input": "5\n2030 2031 2033 2032 2029",
"output": "2031"
},
{
"input": "5\n2093 2092 2094 2096 2095",
"output": "2094"
},
{
"input": "5\n2012 2015 2014 2013 2011",
"output": "2013"
},
{
"input": "5\n2056 2057 2058 2059 2060",
"output": "2058"
}
] | 1,488,643,184
| 14,384
|
Python 3
|
OK
|
TESTS
| 45
| 62
| 4,608,000
|
a = int(input()) // 2
arr = list(map(int, input().split()))
arr.sort()
print(arr[a])
|
Title: Year of University Entrance
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
There is the faculty of Computer Science in Berland. In the social net "TheContact!" for each course of this faculty there is the special group whose name equals the year of university entrance of corresponding course of students at the university.
Each of students joins the group of his course and joins all groups for which the year of student's university entrance differs by no more than *x* from the year of university entrance of this student, where *x* — some non-negative integer. A value *x* is not given, but it can be uniquely determined from the available data. Note that students don't join other groups.
You are given the list of groups which the student Igor joined. According to this information you need to determine the year of Igor's university entrance.
Input Specification:
The first line contains the positive odd integer *n* (1<=≤<=*n*<=≤<=5) — the number of groups which Igor joined.
The next line contains *n* distinct integers *a*1,<=*a*2,<=...,<=*a**n* (2010<=≤<=*a**i*<=≤<=2100) — years of student's university entrance for each group in which Igor is the member.
It is guaranteed that the input data is correct and the answer always exists. Groups are given randomly.
Output Specification:
Print the year of Igor's university entrance.
Demo Input:
['3\n2014 2016 2015\n', '1\n2050\n']
Demo Output:
['2015\n', '2050\n']
Note:
In the first test the value *x* = 1. Igor entered the university in 2015. So he joined groups members of which are students who entered the university in 2014, 2015 and 2016.
In the second test the value *x* = 0. Igor entered only the group which corresponds to the year of his university entrance.
|
```python
a = int(input()) // 2
arr = list(map(int, input().split()))
arr.sort()
print(arr[a])
```
| 3
|
|
133
|
A
|
HQ9+
|
PROGRAMMING
| 900
|
[
"implementation"
] | null | null |
HQ9+ is a joke programming language which has only four one-character instructions:
- "H" prints "Hello, World!",- "Q" prints the source code of the program itself,- "9" prints the lyrics of "99 Bottles of Beer" song, - "+" increments the value stored in the internal accumulator.
Instructions "H" and "Q" are case-sensitive and must be uppercase. The characters of the program which are not instructions are ignored.
You are given a program written in HQ9+. You have to figure out whether executing this program will produce any output.
|
The input will consist of a single line *p* which will give a program in HQ9+. String *p* will contain between 1 and 100 characters, inclusive. ASCII-code of each character of *p* will be between 33 (exclamation mark) and 126 (tilde), inclusive.
|
Output "YES", if executing the program will produce any output, and "NO" otherwise.
|
[
"Hi!\n",
"Codeforces\n"
] |
[
"YES\n",
"NO\n"
] |
In the first case the program contains only one instruction — "H", which prints "Hello, World!".
In the second case none of the program characters are language instructions.
| 500
|
[
{
"input": "Hi!",
"output": "YES"
},
{
"input": "Codeforces",
"output": "NO"
},
{
"input": "a+b=c",
"output": "NO"
},
{
"input": "hq-lowercase",
"output": "NO"
},
{
"input": "Q",
"output": "YES"
},
{
"input": "9",
"output": "YES"
},
{
"input": "H",
"output": "YES"
},
{
"input": "+",
"output": "NO"
},
{
"input": "~",
"output": "NO"
},
{
"input": "dEHsbM'gS[\\brZ_dpjXw8f?L[4E\"s4Zc9*(,j:>p$}m7HD[_9nOWQ\\uvq2mHWR",
"output": "YES"
},
{
"input": "tt6l=RHOfStm.;Qd$-}zDes*E,.F7qn5-b%HC",
"output": "YES"
},
{
"input": "@F%K2=%RyL/",
"output": "NO"
},
{
"input": "juq)k(FT.^G=G\\zcqnO\"uJIE1_]KFH9S=1c\"mJ;F9F)%>&.WOdp09+k`Yc6}\"6xw,Aos:M\\_^^:xBb[CcsHm?J",
"output": "YES"
},
{
"input": "6G_\"Fq#<AWyHG=Rci1t%#Jc#x<Fpg'N@t%F=``YO7\\Zd;6PkMe<#91YgzTC)",
"output": "YES"
},
{
"input": "Fvg_~wC>SO4lF}*c`Q;mII9E{4.QodbqN]C",
"output": "YES"
},
{
"input": "p-UXsbd&f",
"output": "NO"
},
{
"input": "<]D7NMA)yZe=`?RbP5lsa.l_Mg^V:\"-0x+$3c,q&L%18Ku<HcA\\s!^OQblk^x{35S'>yz8cKgVHWZ]kV0>_",
"output": "YES"
},
{
"input": "f.20)8b+.R}Gy!DbHU3v(.(=Q^`z[_BaQ}eO=C1IK;b2GkD\\{\\Bf\"!#qh]",
"output": "YES"
},
{
"input": "}do5RU<(w<q[\"-NR)IAH_HyiD{",
"output": "YES"
},
{
"input": "Iy^.,Aw*,5+f;l@Q;jLK'G5H-r1Pfmx?ei~`CjMmUe{K:lS9cu4ay8rqRh-W?Gqv!e-j*U)!Mzn{E8B6%~aSZ~iQ_QwlC9_cX(o8",
"output": "YES"
},
{
"input": "sKLje,:q>-D,;NvQ3,qN3-N&tPx0nL/,>Ca|z\"k2S{NF7btLa3_TyXG4XZ:`(t&\"'^M|@qObZxv",
"output": "YES"
},
{
"input": "%z:c@1ZsQ@\\6U/NQ+M9R>,$bwG`U1+C\\18^:S},;kw!&4r|z`",
"output": "YES"
},
{
"input": "OKBB5z7ud81[Tn@P\"nDUd,>@",
"output": "NO"
},
{
"input": "y{0;neX]w0IenPvPx0iXp+X|IzLZZaRzBJ>q~LhMhD$x-^GDwl;,a'<bAqH8QrFwbK@oi?I'W.bZ]MlIQ/x(0YzbTH^l.)]0Bv",
"output": "YES"
},
{
"input": "EL|xIP5_+Caon1hPpQ0[8+r@LX4;b?gMy>;/WH)pf@Ur*TiXu*e}b-*%acUA~A?>MDz#!\\Uh",
"output": "YES"
},
{
"input": "UbkW=UVb>;z6)p@Phr;^Dn.|5O{_i||:Rv|KJ_ay~V(S&Jp",
"output": "NO"
},
{
"input": "!3YPv@2JQ44@)R2O_4`GO",
"output": "YES"
},
{
"input": "Kba/Q,SL~FMd)3hOWU'Jum{9\"$Ld4:GW}D]%tr@G{hpG:PV5-c'VIZ~m/6|3I?_4*1luKnOp`%p|0H{[|Y1A~4-ZdX,Rw2[\\",
"output": "YES"
},
{
"input": "NRN*=v>;oU7[acMIJn*n^bWm!cm3#E7Efr>{g-8bl\"DN4~_=f?[T;~Fq#&)aXq%</GcTJD^e$@Extm[e\"C)q_L",
"output": "NO"
},
{
"input": "y#<fv{_=$MP!{D%I\\1OqjaqKh[pqE$KvYL<9@*V'j8uH0/gQdA'G;&y4Cv6&",
"output": "YES"
},
{
"input": "+SE_Pg<?7Fh,z&uITQut2a-mk8X8La`c2A}",
"output": "YES"
},
{
"input": "Uh3>ER](J",
"output": "NO"
},
{
"input": "!:!{~=9*\\P;Z6F?HC5GadFz)>k*=u|+\"Cm]ICTmB!`L{&oS/z6b~#Snbp/^\\Q>XWU-vY+/dP.7S=-#&whS@,",
"output": "YES"
},
{
"input": "KimtYBZp+ISeO(uH;UldoE6eAcp|9u?SzGZd6j-e}[}u#e[Cx8.qgY]$2!",
"output": "YES"
},
{
"input": "[:[SN-{r>[l+OggH3v3g{EPC*@YBATT@",
"output": "YES"
},
{
"input": "'jdL(vX",
"output": "NO"
},
{
"input": "Q;R+aay]cL?Zh*uG\"YcmO*@Dts*Gjp}D~M7Z96+<4?9I3aH~0qNdO(RmyRy=ci,s8qD_kwj;QHFzD|5,5",
"output": "YES"
},
{
"input": "{Q@#<LU_v^qdh%gGxz*pu)Y\"]k-l-N30WAxvp2IE3:jD0Wi4H/xWPH&s",
"output": "YES"
},
{
"input": "~@Gb(S&N$mBuBUMAky-z^{5VwLNTzYg|ZUZncL@ahS?K*As<$iNUARM3r43J'jJB)$ujfPAq\"G<S9flGyakZg!2Z.-NJ|2{F>]",
"output": "YES"
},
{
"input": "Jp5Aa>aP6fZ!\\6%A}<S}j{O4`C6y$8|i3IW,WHy&\"ioE&7zP\"'xHAY;:x%@SnS]Mr{R|})gU",
"output": "YES"
},
{
"input": "ZA#:U)$RI^sE\\vuAt]x\"2zipI!}YEu2<j$:H0_9/~eB?#->",
"output": "YES"
},
{
"input": "&ppw0._:\\p-PuWM@l}%%=",
"output": "NO"
},
{
"input": "P(^pix\"=oiEZu8?@d@J(I`Xp5TN^T3\\Z7P5\"ZrvZ{2Fwz3g-8`U!)(1$a<g+9Q|COhDoH;HwFY02Pa|ZGp$/WZBR=>6Jg!yr",
"output": "YES"
},
{
"input": "`WfODc\\?#ax~1xu@[ao+o_rN|L7%v,p,nDv>3+6cy.]q3)+A6b!q*Hc+#.t4f~vhUa~$^q",
"output": "YES"
},
{
"input": ",)TH9N}'6t2+0Yg?S#6/{_.,!)9d}h'wG|sY&'Ul4D0l0",
"output": "YES"
},
{
"input": "VXB&r9Z)IlKOJ:??KDA",
"output": "YES"
},
{
"input": "\")1cL>{o\\dcYJzu?CefyN^bGRviOH&P7rJS3PT4:0V3F)%\\}L=AJouYsj_>j2|7^1NWu*%NbOP>ngv-ls<;b-4Sd3Na0R",
"output": "YES"
},
{
"input": "2Y}\\A)>row{~c[g>:'.|ZC8%UTQ/jcdhK%6O)QRC.kd@%y}LJYk=V{G5pQK/yKJ%{G3C",
"output": "YES"
},
{
"input": "O.&=qt(`z(",
"output": "NO"
},
{
"input": "_^r6fyIc/~~;>l%9?aVEi7-{=,[<aMiB'-scSg$$|\"jAzY0N>QkHHGBZj2c\"=fhRlWd5;5K|GgU?7h]!;wl@",
"output": "YES"
},
{
"input": "+/`sAd&eB29E=Nu87${.u6GY@$^a$,}s^!p!F}B-z8<<wORb<S7;HM1a,gp",
"output": "YES"
},
{
"input": "U_ilyOGMT+QiW/M8/D(1=6a7)_FA,h4`8",
"output": "YES"
},
{
"input": "!0WKT:$O",
"output": "NO"
},
{
"input": "1EE*I%EQz6$~pPu7|(r7nyPQt4uGU@]~H'4uII?b1_Wn)K?ZRHrr0z&Kr;}aO3<mN=3:{}QgPxI|Ncm4#)",
"output": "YES"
},
{
"input": "[u3\"$+!:/.<Dp1M7tH}:zxjt],^kv}qP;y12\"`^'/u*h%AFmPJ>e1#Yly",
"output": "YES"
},
{
"input": "'F!_]tB<A&UO+p?7liE>(x&RFgG2~\\(",
"output": "NO"
},
{
"input": "Qv)X8",
"output": "YES"
},
{
"input": "aGv7,J@&g1(}E3g6[LuDZwZl2<v7IwQA%\"R(?ouBD>_=y\"3Kf%^>vON<a^T\\G^ootgE@whWmZo=[ex|F",
"output": "YES"
},
{
"input": "e{}2vQ+/r@p0}cLKNe4MCk",
"output": "YES"
},
{
"input": "mzbmweyydiadtlcouegmdbyfwurpwbpuvhifnuapwyndmhtqvkgkbhtytszotwflegsjzzszfwtzfpnscguemwrczqxycivdqnkH",
"output": "YES"
},
{
"input": "Qzbmweyydiadtlcouegmdbyfwurpwbpuvhifnuapwyndmhtqvkgkbhtytszotwflegsjzzszfwtzfpnscguemwrczqxycivdqnky",
"output": "YES"
},
{
"input": "mzbmweyydiadtlcouegmdbyfwurpwb9uvhifnuapwyndmhtqvkgkbhtytszotwflegsjzzszfwtzfpnscguemwrczqxycivdqnky",
"output": "YES"
},
{
"input": "1H1",
"output": "YES"
},
{
"input": "+Q",
"output": "YES"
},
{
"input": "1ab",
"output": "NO"
},
{
"input": "!",
"output": "NO"
},
{
"input": "0+",
"output": "NO"
},
{
"input": "+H",
"output": "YES"
},
{
"input": "cH",
"output": "YES"
},
{
"input": "+8",
"output": "NO"
},
{
"input": "8+",
"output": "NO"
},
{
"input": "++++++++++++++++++++++++++",
"output": "NO"
},
{
"input": "(+)",
"output": "NO"
},
{
"input": "H+",
"output": "YES"
},
{
"input": "a!",
"output": "NO"
},
{
"input": "++++++++++++++",
"output": "NO"
},
{
"input": "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++",
"output": "NO"
},
{
"input": "8",
"output": "NO"
},
{
"input": "3",
"output": "NO"
},
{
"input": "HQ9",
"output": "YES"
},
{
"input": "+++H",
"output": "YES"
},
{
"input": "++++++++++",
"output": "NO"
},
{
"input": "HHHHHHH",
"output": "YES"
},
{
"input": "abacabaH",
"output": "YES"
},
{
"input": "+G",
"output": "NO"
}
] | 1,690,259,616
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 85
| 124
| 0
|
def check(string):
for t in string:
if t in "HQ9":
return "YES"
return "NO"
string = input()
print(check(string))
|
Title: HQ9+
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
HQ9+ is a joke programming language which has only four one-character instructions:
- "H" prints "Hello, World!",- "Q" prints the source code of the program itself,- "9" prints the lyrics of "99 Bottles of Beer" song, - "+" increments the value stored in the internal accumulator.
Instructions "H" and "Q" are case-sensitive and must be uppercase. The characters of the program which are not instructions are ignored.
You are given a program written in HQ9+. You have to figure out whether executing this program will produce any output.
Input Specification:
The input will consist of a single line *p* which will give a program in HQ9+. String *p* will contain between 1 and 100 characters, inclusive. ASCII-code of each character of *p* will be between 33 (exclamation mark) and 126 (tilde), inclusive.
Output Specification:
Output "YES", if executing the program will produce any output, and "NO" otherwise.
Demo Input:
['Hi!\n', 'Codeforces\n']
Demo Output:
['YES\n', 'NO\n']
Note:
In the first case the program contains only one instruction — "H", which prints "Hello, World!".
In the second case none of the program characters are language instructions.
|
```python
def check(string):
for t in string:
if t in "HQ9":
return "YES"
return "NO"
string = input()
print(check(string))
```
| 3
|
|
285
|
C
|
Building Permutation
|
PROGRAMMING
| 1,200
|
[
"greedy",
"implementation",
"sortings"
] | null | null |
Permutation *p* is an ordered set of integers *p*1,<=<=*p*2,<=<=...,<=<=*p**n*, consisting of *n* distinct positive integers, each of them doesn't exceed *n*. We'll denote the *i*-th element of permutation *p* as *p**i*. We'll call number *n* the size or the length of permutation *p*1,<=<=*p*2,<=<=...,<=<=*p**n*.
You have a sequence of integers *a*1,<=*a*2,<=...,<=*a**n*. In one move, you are allowed to decrease or increase any number by one. Count the minimum number of moves, needed to build a permutation from this sequence.
|
The first line contains integer *n* (1<=≤<=*n*<=≤<=3·105) — the size of the sought permutation. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (<=-<=109<=≤<=*a**i*<=≤<=109).
|
Print a single number — the minimum number of moves.
Please, do not use the %lld specifier to read or write 64-bit integers in C++. It is preferred to use the cin, cout streams or the %I64d specifier.
|
[
"2\n3 0\n",
"3\n-1 -1 2\n"
] |
[
"2\n",
"6\n"
] |
In the first sample you should decrease the first number by one and then increase the second number by one. The resulting permutation is (2, 1).
In the second sample you need 6 moves to build permutation (1, 3, 2).
| 1,500
|
[
{
"input": "2\n3 0",
"output": "2"
},
{
"input": "3\n-1 -1 2",
"output": "6"
},
{
"input": "5\n-3 5 -3 3 3",
"output": "10"
},
{
"input": "10\n9 6 -2 4 1 1 1 9 6 2",
"output": "18"
},
{
"input": "9\n2 0 0 6 5 4 1 9 3",
"output": "15"
},
{
"input": "100\n-77 57 -95 -23 53 -28 82 -83 38 -73 85 28 25 6 -43 4 -10 -30 -9 -92 14 34 -93 61 36 -100 90 -68 28 16 100 -3 97 30 36 -55 62 -62 53 74 -50 -23 67 11 22 -30 -19 83 7 84 43 90 -65 -75 -15 97 90 15 66 2 13 -91 91 -44 46 51 51 -58 95 77 20 30 76 79 91 60 76 2 82 42 -93 94 -57 88 65 -95 -66 100 -9 33 -67 54 -99 97 53 13 54 66 60 -48",
"output": "3459"
}
] | 1,414,220,722
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 33
| 1,090
| 24,780,800
|
import sys
import math
n = int(sys.stdin.readline())
a = [int(x) for x in (sys.stdin.readline()).split()]
a.sort()
res = 0
for i in range(n):
res += int(math.fabs(i + 1 - a[i]))
print(res)
|
Title: Building Permutation
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Permutation *p* is an ordered set of integers *p*1,<=<=*p*2,<=<=...,<=<=*p**n*, consisting of *n* distinct positive integers, each of them doesn't exceed *n*. We'll denote the *i*-th element of permutation *p* as *p**i*. We'll call number *n* the size or the length of permutation *p*1,<=<=*p*2,<=<=...,<=<=*p**n*.
You have a sequence of integers *a*1,<=*a*2,<=...,<=*a**n*. In one move, you are allowed to decrease or increase any number by one. Count the minimum number of moves, needed to build a permutation from this sequence.
Input Specification:
The first line contains integer *n* (1<=≤<=*n*<=≤<=3·105) — the size of the sought permutation. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (<=-<=109<=≤<=*a**i*<=≤<=109).
Output Specification:
Print a single number — the minimum number of moves.
Please, do not use the %lld specifier to read or write 64-bit integers in C++. It is preferred to use the cin, cout streams or the %I64d specifier.
Demo Input:
['2\n3 0\n', '3\n-1 -1 2\n']
Demo Output:
['2\n', '6\n']
Note:
In the first sample you should decrease the first number by one and then increase the second number by one. The resulting permutation is (2, 1).
In the second sample you need 6 moves to build permutation (1, 3, 2).
|
```python
import sys
import math
n = int(sys.stdin.readline())
a = [int(x) for x in (sys.stdin.readline()).split()]
a.sort()
res = 0
for i in range(n):
res += int(math.fabs(i + 1 - a[i]))
print(res)
```
| 3
|
|
342
|
A
|
Xenia and Divisors
|
PROGRAMMING
| 1,200
|
[
"greedy",
"implementation"
] | null | null |
Xenia the mathematician has a sequence consisting of *n* (*n* is divisible by 3) positive integers, each of them is at most 7. She wants to split the sequence into groups of three so that for each group of three *a*,<=*b*,<=*c* the following conditions held:
- *a*<=<<=*b*<=<<=*c*; - *a* divides *b*, *b* divides *c*.
Naturally, Xenia wants each element of the sequence to belong to exactly one group of three. Thus, if the required partition exists, then it has groups of three.
Help Xenia, find the required partition or else say that it doesn't exist.
|
The first line contains integer *n* (3<=≤<=*n*<=≤<=99999) — the number of elements in the sequence. The next line contains *n* positive integers, each of them is at most 7.
It is guaranteed that *n* is divisible by 3.
|
If the required partition exists, print groups of three. Print each group as values of the elements it contains. You should print values in increasing order. Separate the groups and integers in groups by whitespaces. If there are multiple solutions, you can print any of them.
If there is no solution, print -1.
|
[
"6\n1 1 1 2 2 2\n",
"6\n2 2 1 1 4 6\n"
] |
[
"-1\n",
"1 2 4\n1 2 6\n"
] |
none
| 500
|
[
{
"input": "6\n1 1 1 2 2 2",
"output": "-1"
},
{
"input": "6\n2 2 1 1 4 6",
"output": "1 2 4\n1 2 6"
},
{
"input": "3\n1 2 3",
"output": "-1"
},
{
"input": "3\n7 5 7",
"output": "-1"
},
{
"input": "3\n1 3 4",
"output": "-1"
},
{
"input": "3\n1 1 1",
"output": "-1"
},
{
"input": "9\n1 3 6 6 3 1 3 1 6",
"output": "1 3 6\n1 3 6\n1 3 6"
},
{
"input": "6\n1 2 4 1 3 5",
"output": "-1"
},
{
"input": "3\n1 3 7",
"output": "-1"
},
{
"input": "3\n1 1 1",
"output": "-1"
},
{
"input": "9\n1 2 4 1 2 4 1 3 6",
"output": "1 2 4\n1 2 4\n1 3 6"
},
{
"input": "12\n3 6 1 1 3 6 1 1 2 6 2 6",
"output": "1 3 6\n1 3 6\n1 2 6\n1 2 6"
},
{
"input": "9\n1 1 1 4 4 4 6 2 2",
"output": "-1"
},
{
"input": "9\n1 2 4 6 3 1 3 1 5",
"output": "-1"
},
{
"input": "15\n2 1 2 1 3 6 1 2 1 6 1 3 4 6 4",
"output": "1 2 4\n1 2 4\n1 3 6\n1 3 6\n1 2 6"
},
{
"input": "3\n2 3 6",
"output": "-1"
},
{
"input": "3\n2 4 6",
"output": "-1"
},
{
"input": "3\n2 5 6",
"output": "-1"
},
{
"input": "3\n2 4 7",
"output": "-1"
},
{
"input": "6\n1 2 3 4 5 6",
"output": "-1"
},
{
"input": "3\n7 7 7",
"output": "-1"
},
{
"input": "6\n1 2 4 7 7 7",
"output": "-1"
},
{
"input": "6\n1 1 2 6 6 6",
"output": "-1"
},
{
"input": "9\n1 1 1 3 3 2 4 4 6",
"output": "-1"
},
{
"input": "6\n1 2 4 5 5 5",
"output": "-1"
},
{
"input": "15\n1 1 1 1 1 2 2 2 2 4 4 6 6 6 6",
"output": "-1"
},
{
"input": "6\n1 1 5 5 7 7",
"output": "-1"
},
{
"input": "9\n1 1 1 2 3 4 5 6 7",
"output": "-1"
},
{
"input": "6\n1 1 4 4 7 7",
"output": "-1"
},
{
"input": "24\n1 1 1 1 1 1 1 1 1 2 2 2 3 3 3 3 3 3 4 4 4 6 6 6",
"output": "-1"
},
{
"input": "3\n1 7 6",
"output": "-1"
},
{
"input": "6\n1 1 2 4 7 7",
"output": "-1"
},
{
"input": "9\n1 1 1 7 7 7 7 7 7",
"output": "-1"
},
{
"input": "9\n1 1 1 2 3 4 6 5 5",
"output": "-1"
}
] | 1,615,668,940
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 45
| 280
| 2,662,400
|
import collections as coll
groups,impossible = [],False
n,nums = int(input()), coll.Counter(map(int,input().split(" ")))
x = n // 3
for x in range(x):
group = []
if nums[1] != 0:
group.append(1)
nums[1] -= 1
else:
impossible = True
break
if nums[2] != 0:
group.append(2)
nums[2] -= 1
if nums[4] != 0:
group.append(4)
nums[4] -= 1
elif nums[6] != 0:
group.append(6)
nums[6] -= 1
else:
impossible = True
break
elif nums[3] != 0 and nums[6] != 0:
group.append(3)
group.append(6)
nums[3] -= 1
nums[6] -= 1
else:
impossible = True
break
groups.append(group)
if impossible: print(-1)
else:
for group in groups:
print(*group)
'''
the numbers which we get on the input
should be at most 7. It means that if we have at least one 7 or 5
on our input, it is impossible to create a required partition since
7 and 5 are primes. And they are not divisors because max is 7, and numbers cannot
be the same in one group.
a < b < c. (without this condition something like that could exists 1,1,7, 5,5,5)
a | b && b | c
If 'n' is always divisible by 3. It means that we have to use every signle number.
6,4,3,2,1 (valid divisors: 3,2,1)
Since numbers are at most 7, we have very limited amount of groups which are vaild for these
conditions: (Every group should start from 4 or 6, otherwise it's impossible to satisfy parititon)
1,2,4
1,2,6
1,3,6
wystarczy sprawdzic ilosc liczb
suma ilosci czworek i szostek musi dac liczbe grup poniewaz wszystkie musza
sie konczyc na 6 albo 4. Liczba jedynek musi byc tyle samo co grup.
Oraz liczba 2 i 3:
odkad wszystkie musza sie zaczynac na 1 biorac pod uwage warunki.
I mozna pojsc od jedynek w takim razie przy konstrukcji,
jezeli do niej dojdziemy tzn ze mozemy stworzyc te grupy
1 - 2 - 4
1 - 2 - 6
1 - 3 - 6
Jezeli w grupie bedzie jakas 5,7 albo za duzo czegos lub za malo tzn ze niemozliwe
spelnienie warunkow.
'''
|
Title: Xenia and Divisors
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Xenia the mathematician has a sequence consisting of *n* (*n* is divisible by 3) positive integers, each of them is at most 7. She wants to split the sequence into groups of three so that for each group of three *a*,<=*b*,<=*c* the following conditions held:
- *a*<=<<=*b*<=<<=*c*; - *a* divides *b*, *b* divides *c*.
Naturally, Xenia wants each element of the sequence to belong to exactly one group of three. Thus, if the required partition exists, then it has groups of three.
Help Xenia, find the required partition or else say that it doesn't exist.
Input Specification:
The first line contains integer *n* (3<=≤<=*n*<=≤<=99999) — the number of elements in the sequence. The next line contains *n* positive integers, each of them is at most 7.
It is guaranteed that *n* is divisible by 3.
Output Specification:
If the required partition exists, print groups of three. Print each group as values of the elements it contains. You should print values in increasing order. Separate the groups and integers in groups by whitespaces. If there are multiple solutions, you can print any of them.
If there is no solution, print -1.
Demo Input:
['6\n1 1 1 2 2 2\n', '6\n2 2 1 1 4 6\n']
Demo Output:
['-1\n', '1 2 4\n1 2 6\n']
Note:
none
|
```python
import collections as coll
groups,impossible = [],False
n,nums = int(input()), coll.Counter(map(int,input().split(" ")))
x = n // 3
for x in range(x):
group = []
if nums[1] != 0:
group.append(1)
nums[1] -= 1
else:
impossible = True
break
if nums[2] != 0:
group.append(2)
nums[2] -= 1
if nums[4] != 0:
group.append(4)
nums[4] -= 1
elif nums[6] != 0:
group.append(6)
nums[6] -= 1
else:
impossible = True
break
elif nums[3] != 0 and nums[6] != 0:
group.append(3)
group.append(6)
nums[3] -= 1
nums[6] -= 1
else:
impossible = True
break
groups.append(group)
if impossible: print(-1)
else:
for group in groups:
print(*group)
'''
the numbers which we get on the input
should be at most 7. It means that if we have at least one 7 or 5
on our input, it is impossible to create a required partition since
7 and 5 are primes. And they are not divisors because max is 7, and numbers cannot
be the same in one group.
a < b < c. (without this condition something like that could exists 1,1,7, 5,5,5)
a | b && b | c
If 'n' is always divisible by 3. It means that we have to use every signle number.
6,4,3,2,1 (valid divisors: 3,2,1)
Since numbers are at most 7, we have very limited amount of groups which are vaild for these
conditions: (Every group should start from 4 or 6, otherwise it's impossible to satisfy parititon)
1,2,4
1,2,6
1,3,6
wystarczy sprawdzic ilosc liczb
suma ilosci czworek i szostek musi dac liczbe grup poniewaz wszystkie musza
sie konczyc na 6 albo 4. Liczba jedynek musi byc tyle samo co grup.
Oraz liczba 2 i 3:
odkad wszystkie musza sie zaczynac na 1 biorac pod uwage warunki.
I mozna pojsc od jedynek w takim razie przy konstrukcji,
jezeli do niej dojdziemy tzn ze mozemy stworzyc te grupy
1 - 2 - 4
1 - 2 - 6
1 - 3 - 6
Jezeli w grupie bedzie jakas 5,7 albo za duzo czegos lub za malo tzn ze niemozliwe
spelnienie warunkow.
'''
```
| 3
|
|
835
|
C
|
Star sky
|
PROGRAMMING
| 1,600
|
[
"dp",
"implementation"
] | null | null |
The Cartesian coordinate system is set in the sky. There you can see *n* stars, the *i*-th has coordinates (*x**i*, *y**i*), a maximum brightness *c*, equal for all stars, and an initial brightness *s**i* (0<=≤<=*s**i*<=≤<=*c*).
Over time the stars twinkle. At moment 0 the *i*-th star has brightness *s**i*. Let at moment *t* some star has brightness *x*. Then at moment (*t*<=+<=1) this star will have brightness *x*<=+<=1, if *x*<=+<=1<=≤<=*c*, and 0, otherwise.
You want to look at the sky *q* times. In the *i*-th time you will look at the moment *t**i* and you will see a rectangle with sides parallel to the coordinate axes, the lower left corner has coordinates (*x*1*i*, *y*1*i*) and the upper right — (*x*2*i*, *y*2*i*). For each view, you want to know the total brightness of the stars lying in the viewed rectangle.
A star lies in a rectangle if it lies on its border or lies strictly inside it.
|
The first line contains three integers *n*, *q*, *c* (1<=≤<=*n*,<=*q*<=≤<=105, 1<=≤<=*c*<=≤<=10) — the number of the stars, the number of the views and the maximum brightness of the stars.
The next *n* lines contain the stars description. The *i*-th from these lines contains three integers *x**i*, *y**i*, *s**i* (1<=≤<=*x**i*,<=*y**i*<=≤<=100, 0<=≤<=*s**i*<=≤<=*c*<=≤<=10) — the coordinates of *i*-th star and its initial brightness.
The next *q* lines contain the views description. The *i*-th from these lines contains five integers *t**i*, *x*1*i*, *y*1*i*, *x*2*i*, *y*2*i* (0<=≤<=*t**i*<=≤<=109, 1<=≤<=*x*1*i*<=<<=*x*2*i*<=≤<=100, 1<=≤<=*y*1*i*<=<<=*y*2*i*<=≤<=100) — the moment of the *i*-th view and the coordinates of the viewed rectangle.
|
For each view print the total brightness of the viewed stars.
|
[
"2 3 3\n1 1 1\n3 2 0\n2 1 1 2 2\n0 2 1 4 5\n5 1 1 5 5\n",
"3 4 5\n1 1 2\n2 3 0\n3 3 1\n0 1 1 100 100\n1 2 2 4 4\n2 2 1 4 7\n1 50 50 51 51\n"
] |
[
"3\n0\n3\n",
"3\n3\n5\n0\n"
] |
Let's consider the first example.
At the first view, you can see only the first star. At moment 2 its brightness is 3, so the answer is 3.
At the second view, you can see only the second star. At moment 0 its brightness is 0, so the answer is 0.
At the third view, you can see both stars. At moment 5 brightness of the first is 2, and brightness of the second is 1, so the answer is 3.
| 1,250
|
[
{
"input": "2 3 3\n1 1 1\n3 2 0\n2 1 1 2 2\n0 2 1 4 5\n5 1 1 5 5",
"output": "3\n0\n3"
},
{
"input": "3 4 5\n1 1 2\n2 3 0\n3 3 1\n0 1 1 100 100\n1 2 2 4 4\n2 2 1 4 7\n1 50 50 51 51",
"output": "3\n3\n5\n0"
}
] | 1,599,560,593
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 52
| 1,996
| 5,120,000
|
import math,sys,bisect,heapq
from collections import defaultdict,Counter,deque
from itertools import groupby,accumulate
#sys.setrecursionlimit(200000000)
int1 = lambda x: int(x) - 1
#input = iter(sys.stdin.buffer.read().decode().splitlines()).__next__
ilele = lambda: map(int,input().split())
alele = lambda: list(map(int, input().split()))
ilelec = lambda: map(int1,input().split())
alelec = lambda: list(map(int1, input().split()))
def list2d(a, b, c): return [[c] * b for i in range(a)]
def list3d(a, b, c, d): return [[[d] * c for j in range(b)] for i in range(a)]
#MOD = 1000000000 + 7
def Y(c): print(["NO","YES"][c])
def y(c): print(["no","yes"][c])
def Yy(c): print(["No","Yes"][c])
dp = {}
def fun(A):
B = list2d(101,101,0)
for j in range(101):
B[0][j] = A[0][j]
for i in range(1,101):
for j in range(101):
B[i][j] = A[i][j] + B[i-1][j]
for i in range(101):
for j in range(1,101):
B[i][j] = B[i][j] + B[i][j-1]
return B
n,q,c = ilele()
G = defaultdict(list)
for i in range(n):
a,b,s = ilele()
G[(a,b)].append(s)
#print(G)
for i in range(c+1):
#print(i,c)
A = list2d(101,101,0)
for j in range(1,101):
for k in range(1,101):
x = G.get((j,k),[])
for l in x:
r = (l + i)%(c+1)
#print(j,k,r,l,i)
A[j][k] += r
B = fun(A)
dp[i] = B
for i in range(q):
t,x1,y1,x2,y2 = ilele()
t %= (c+1)
#print(dp[t][x2][y2],dp[t][x2][y1])
ans = dp[t][x2][y2]
ans -= dp[t][x2][y1-1]
ans -= dp[t][x1-1][y2]
ans += dp[t][x1-1][y1-1]
print(ans)
|
Title: Star sky
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
The Cartesian coordinate system is set in the sky. There you can see *n* stars, the *i*-th has coordinates (*x**i*, *y**i*), a maximum brightness *c*, equal for all stars, and an initial brightness *s**i* (0<=≤<=*s**i*<=≤<=*c*).
Over time the stars twinkle. At moment 0 the *i*-th star has brightness *s**i*. Let at moment *t* some star has brightness *x*. Then at moment (*t*<=+<=1) this star will have brightness *x*<=+<=1, if *x*<=+<=1<=≤<=*c*, and 0, otherwise.
You want to look at the sky *q* times. In the *i*-th time you will look at the moment *t**i* and you will see a rectangle with sides parallel to the coordinate axes, the lower left corner has coordinates (*x*1*i*, *y*1*i*) and the upper right — (*x*2*i*, *y*2*i*). For each view, you want to know the total brightness of the stars lying in the viewed rectangle.
A star lies in a rectangle if it lies on its border or lies strictly inside it.
Input Specification:
The first line contains three integers *n*, *q*, *c* (1<=≤<=*n*,<=*q*<=≤<=105, 1<=≤<=*c*<=≤<=10) — the number of the stars, the number of the views and the maximum brightness of the stars.
The next *n* lines contain the stars description. The *i*-th from these lines contains three integers *x**i*, *y**i*, *s**i* (1<=≤<=*x**i*,<=*y**i*<=≤<=100, 0<=≤<=*s**i*<=≤<=*c*<=≤<=10) — the coordinates of *i*-th star and its initial brightness.
The next *q* lines contain the views description. The *i*-th from these lines contains five integers *t**i*, *x*1*i*, *y*1*i*, *x*2*i*, *y*2*i* (0<=≤<=*t**i*<=≤<=109, 1<=≤<=*x*1*i*<=<<=*x*2*i*<=≤<=100, 1<=≤<=*y*1*i*<=<<=*y*2*i*<=≤<=100) — the moment of the *i*-th view and the coordinates of the viewed rectangle.
Output Specification:
For each view print the total brightness of the viewed stars.
Demo Input:
['2 3 3\n1 1 1\n3 2 0\n2 1 1 2 2\n0 2 1 4 5\n5 1 1 5 5\n', '3 4 5\n1 1 2\n2 3 0\n3 3 1\n0 1 1 100 100\n1 2 2 4 4\n2 2 1 4 7\n1 50 50 51 51\n']
Demo Output:
['3\n0\n3\n', '3\n3\n5\n0\n']
Note:
Let's consider the first example.
At the first view, you can see only the first star. At moment 2 its brightness is 3, so the answer is 3.
At the second view, you can see only the second star. At moment 0 its brightness is 0, so the answer is 0.
At the third view, you can see both stars. At moment 5 brightness of the first is 2, and brightness of the second is 1, so the answer is 3.
|
```python
import math,sys,bisect,heapq
from collections import defaultdict,Counter,deque
from itertools import groupby,accumulate
#sys.setrecursionlimit(200000000)
int1 = lambda x: int(x) - 1
#input = iter(sys.stdin.buffer.read().decode().splitlines()).__next__
ilele = lambda: map(int,input().split())
alele = lambda: list(map(int, input().split()))
ilelec = lambda: map(int1,input().split())
alelec = lambda: list(map(int1, input().split()))
def list2d(a, b, c): return [[c] * b for i in range(a)]
def list3d(a, b, c, d): return [[[d] * c for j in range(b)] for i in range(a)]
#MOD = 1000000000 + 7
def Y(c): print(["NO","YES"][c])
def y(c): print(["no","yes"][c])
def Yy(c): print(["No","Yes"][c])
dp = {}
def fun(A):
B = list2d(101,101,0)
for j in range(101):
B[0][j] = A[0][j]
for i in range(1,101):
for j in range(101):
B[i][j] = A[i][j] + B[i-1][j]
for i in range(101):
for j in range(1,101):
B[i][j] = B[i][j] + B[i][j-1]
return B
n,q,c = ilele()
G = defaultdict(list)
for i in range(n):
a,b,s = ilele()
G[(a,b)].append(s)
#print(G)
for i in range(c+1):
#print(i,c)
A = list2d(101,101,0)
for j in range(1,101):
for k in range(1,101):
x = G.get((j,k),[])
for l in x:
r = (l + i)%(c+1)
#print(j,k,r,l,i)
A[j][k] += r
B = fun(A)
dp[i] = B
for i in range(q):
t,x1,y1,x2,y2 = ilele()
t %= (c+1)
#print(dp[t][x2][y2],dp[t][x2][y1])
ans = dp[t][x2][y2]
ans -= dp[t][x2][y1-1]
ans -= dp[t][x1-1][y2]
ans += dp[t][x1-1][y1-1]
print(ans)
```
| 3
|
|
935
|
C
|
Fifa and Fafa
|
PROGRAMMING
| 1,600
|
[
"geometry"
] | null | null |
Fifa and Fafa are sharing a flat. Fifa loves video games and wants to download a new soccer game. Unfortunately, Fafa heavily uses the internet which consumes the quota. Fifa can access the internet through his Wi-Fi access point. This access point can be accessed within a range of *r* meters (this range can be chosen by Fifa) from its position. Fifa must put the access point inside the flat which has a circular shape of radius *R*. Fifa wants to minimize the area that is not covered by the access point inside the flat without letting Fafa or anyone outside the flat to get access to the internet.
The world is represented as an infinite 2D plane. The flat is centered at (*x*1,<=*y*1) and has radius *R* and Fafa's laptop is located at (*x*2,<=*y*2), not necessarily inside the flat. Find the position and the radius chosen by Fifa for his access point which minimizes the uncovered area.
|
The single line of the input contains 5 space-separated integers *R*,<=*x*1,<=*y*1,<=*x*2,<=*y*2 (1<=≤<=*R*<=≤<=105, |*x*1|,<=|*y*1|,<=|*x*2|,<=|*y*2|<=≤<=105).
|
Print three space-separated numbers *x**ap*,<=*y**ap*,<=*r* where (*x**ap*,<=*y**ap*) is the position which Fifa chose for the access point and *r* is the radius of its range.
Your answer will be considered correct if the radius does not differ from optimal more than 10<=-<=6 absolutely or relatively, and also the radius you printed can be changed by no more than 10<=-<=6 (absolutely or relatively) in such a way that all points outside the flat and Fafa's laptop position are outside circle of the access point range.
|
[
"5 3 3 1 1\n",
"10 5 5 5 15\n"
] |
[
"3.7677669529663684 3.7677669529663684 3.914213562373095\n",
"5.0 5.0 10.0\n"
] |
none
| 1,250
|
[
{
"input": "5 3 3 1 1",
"output": "3.7677669529663684 3.7677669529663684 3.914213562373095"
},
{
"input": "10 5 5 5 15",
"output": "5.0 5.0 10.0"
},
{
"input": "5 0 0 0 7",
"output": "0 0 5"
},
{
"input": "10 0 0 0 0",
"output": "5.0 0.0 5.0"
},
{
"input": "100000 100000 100000 10000 10000",
"output": "100000 100000 100000"
},
{
"input": "100000 -100000 100000 -10000 100000",
"output": "-105000.0 100000.0 95000.0"
},
{
"input": "1 0 0 0 -1",
"output": "0.0 0.0 1.0"
},
{
"input": "100000 83094 84316 63590 53480",
"output": "100069.69149822203 111154.72144376408 68243.2515742123"
},
{
"input": "1 0 0 0 0",
"output": "0.5 0.0 0.5"
},
{
"input": "1 0 0 -2 -2",
"output": "0 0 1"
},
{
"input": "10 0 0 4 0",
"output": "-3.0 0.0 7.0"
},
{
"input": "82 1928 -30264 2004 -30294",
"output": "1927.8636359254158 -30263.946172075823 81.85339643163098"
},
{
"input": "75 -66998 89495 -66988 89506",
"output": "-67018.22522977486 89472.75224724766 44.933034373659254"
},
{
"input": "11 9899 34570 9895 34565",
"output": "9900.435822761548 34571.794778451935 8.701562118716424"
},
{
"input": "21 7298 -45672 7278 -45677",
"output": "7298.186496251526 -45671.95337593712 20.80776406404415"
},
{
"input": "31 84194 -71735 84170 -71758",
"output": "84194 -71735 31"
},
{
"input": "436 25094 -66597 25383 -66277",
"output": "25092.386577687754 -66598.78648837341 433.5927874489312"
},
{
"input": "390 -98011 78480 -98362 78671",
"output": "-98011 78480 390"
},
{
"input": "631 -21115 -1762 -21122 -1629",
"output": "-21101.91768814977 -2010.563925154407 382.0920415665416"
},
{
"input": "872 55782 51671 54965 51668",
"output": "55809.49706065544 51671.100968398976 844.502753968685"
},
{
"input": "519 -92641 -28571 -92540 -28203",
"output": "-92659.18165738975 -28637.246038806206 450.30421903092184"
},
{
"input": "3412 23894 22453 26265 25460",
"output": "23894 22453 3412"
},
{
"input": "3671 -99211 -3610 -99825 -1547",
"output": "-98994.40770099283 -4337.736014416596 2911.7161725229744"
},
{
"input": "3930 -76494 -83852 -78181 -81125",
"output": "-76303.71953677801 -84159.58436467478 3568.316718555632"
},
{
"input": "4189 -24915 61224 -28221 65024",
"output": "-24915 61224 4189"
},
{
"input": "8318 -2198 35161 3849 29911",
"output": "-2315.0277877457083 35262.60342081445 8163.0201360632545"
},
{
"input": "15096 -12439 58180 -10099 50671",
"output": "-13514.641370727473 61631.70557811649 11480.578066612283"
},
{
"input": "70343 64457 3256 83082 -17207",
"output": "50095.092392996106 19035.206193939368 49006.464709026186"
},
{
"input": "66440 -58647 -76987 2151 -40758",
"output": "-58647 -76987 66440"
},
{
"input": "62537 18249 96951 -3656 54754",
"output": "21702.922094423477 103604.5106422455 55040.41533091097"
},
{
"input": "88209 95145 42027 21960 26111",
"output": "101649.61478542663 43441.59928844504 81552.34132964142"
},
{
"input": "100000 -100000 -100000 -100000 -100000",
"output": "-50000.0 -100000.0 50000.0"
},
{
"input": "100000 100000 100000 100000 100000",
"output": "150000.0 100000.0 50000.0"
},
{
"input": "2 0 0 0 1",
"output": "0.0 -0.5 1.5"
},
{
"input": "1 1 0 1 0",
"output": "1.5 0.0 0.5"
},
{
"input": "2 3 3 3 3",
"output": "4.0 3.0 1.0"
},
{
"input": "1 1 1 1 1",
"output": "1.5 1.0 0.5"
},
{
"input": "10 1 1 1 1",
"output": "6.0 1.0 5.0"
},
{
"input": "10 5 5 5 10",
"output": "5.0 2.5 7.5"
},
{
"input": "5 0 0 0 0",
"output": "2.5 0.0 2.5"
}
] | 1,670,409,346
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 40
| 77
| 0
|
import sys
input = sys.stdin.readline
r, x1, y1, x2, y2 = map(int, input().split())
a = ((x2-x1)**2 + (y2-y1)**2)**0.5
if a >= r:
print(x1, y1, r)
else:
q = (a+r)/2
if a == 0:
u = x2 + q
v = y2
else:
u = x2 + (x1-x2)/a*q
v = y2 + (y1-y2)/a*q
print(u, v, q)
|
Title: Fifa and Fafa
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Fifa and Fafa are sharing a flat. Fifa loves video games and wants to download a new soccer game. Unfortunately, Fafa heavily uses the internet which consumes the quota. Fifa can access the internet through his Wi-Fi access point. This access point can be accessed within a range of *r* meters (this range can be chosen by Fifa) from its position. Fifa must put the access point inside the flat which has a circular shape of radius *R*. Fifa wants to minimize the area that is not covered by the access point inside the flat without letting Fafa or anyone outside the flat to get access to the internet.
The world is represented as an infinite 2D plane. The flat is centered at (*x*1,<=*y*1) and has radius *R* and Fafa's laptop is located at (*x*2,<=*y*2), not necessarily inside the flat. Find the position and the radius chosen by Fifa for his access point which minimizes the uncovered area.
Input Specification:
The single line of the input contains 5 space-separated integers *R*,<=*x*1,<=*y*1,<=*x*2,<=*y*2 (1<=≤<=*R*<=≤<=105, |*x*1|,<=|*y*1|,<=|*x*2|,<=|*y*2|<=≤<=105).
Output Specification:
Print three space-separated numbers *x**ap*,<=*y**ap*,<=*r* where (*x**ap*,<=*y**ap*) is the position which Fifa chose for the access point and *r* is the radius of its range.
Your answer will be considered correct if the radius does not differ from optimal more than 10<=-<=6 absolutely or relatively, and also the radius you printed can be changed by no more than 10<=-<=6 (absolutely or relatively) in such a way that all points outside the flat and Fafa's laptop position are outside circle of the access point range.
Demo Input:
['5 3 3 1 1\n', '10 5 5 5 15\n']
Demo Output:
['3.7677669529663684 3.7677669529663684 3.914213562373095\n', '5.0 5.0 10.0\n']
Note:
none
|
```python
import sys
input = sys.stdin.readline
r, x1, y1, x2, y2 = map(int, input().split())
a = ((x2-x1)**2 + (y2-y1)**2)**0.5
if a >= r:
print(x1, y1, r)
else:
q = (a+r)/2
if a == 0:
u = x2 + q
v = y2
else:
u = x2 + (x1-x2)/a*q
v = y2 + (y1-y2)/a*q
print(u, v, q)
```
| 3
|
|
709
|
A
|
Juicer
|
PROGRAMMING
| 900
|
[
"implementation"
] | null | null |
Kolya is going to make fresh orange juice. He has *n* oranges of sizes *a*1,<=*a*2,<=...,<=*a**n*. Kolya will put them in the juicer in the fixed order, starting with orange of size *a*1, then orange of size *a*2 and so on. To be put in the juicer the orange must have size not exceeding *b*, so if Kolya sees an orange that is strictly greater he throws it away and continues with the next one.
The juicer has a special section to collect waste. It overflows if Kolya squeezes oranges of the total size strictly greater than *d*. When it happens Kolya empties the waste section (even if there are no more oranges) and continues to squeeze the juice. How many times will he have to empty the waste section?
|
The first line of the input contains three integers *n*, *b* and *d* (1<=≤<=*n*<=≤<=100<=000, 1<=≤<=*b*<=≤<=*d*<=≤<=1<=000<=000) — the number of oranges, the maximum size of the orange that fits in the juicer and the value *d*, which determines the condition when the waste section should be emptied.
The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=1<=000<=000) — sizes of the oranges listed in the order Kolya is going to try to put them in the juicer.
|
Print one integer — the number of times Kolya will have to empty the waste section.
|
[
"2 7 10\n5 6\n",
"1 5 10\n7\n",
"3 10 10\n5 7 7\n",
"1 1 1\n1\n"
] |
[
"1\n",
"0\n",
"1\n",
"0\n"
] |
In the first sample, Kolya will squeeze the juice from two oranges and empty the waste section afterwards.
In the second sample, the orange won't fit in the juicer so Kolya will have no juice at all.
| 500
|
[
{
"input": "2 7 10\n5 6",
"output": "1"
},
{
"input": "1 5 10\n7",
"output": "0"
},
{
"input": "3 10 10\n5 7 7",
"output": "1"
},
{
"input": "1 1 1\n1",
"output": "0"
},
{
"input": "2 951637 951638\n44069 951637",
"output": "1"
},
{
"input": "50 100 129\n55 130 91 19 116 3 63 52 104 76 75 27 151 99 149 147 39 148 84 9 132 49 40 112 124 141 144 93 36 32 146 74 48 38 150 55 94 32 107 69 77 81 33 57 62 98 78 127 154 126",
"output": "12"
},
{
"input": "100 1000 1083\n992 616 818 359 609 783 263 989 501 929 362 394 919 1081 870 830 1097 975 62 346 531 367 323 457 707 360 949 334 867 116 478 417 961 963 1029 114 867 1008 988 916 983 1077 959 942 572 961 579 318 721 337 488 717 111 70 416 685 987 130 353 107 61 191 827 849 106 815 211 953 111 398 889 860 801 71 375 320 395 1059 116 222 931 444 582 74 677 655 88 173 686 491 661 186 114 832 615 814 791 464 517 850",
"output": "36"
},
{
"input": "2 6 8\n2 1",
"output": "0"
},
{
"input": "5 15 16\n7 11 5 12 8",
"output": "2"
},
{
"input": "15 759966 759967\n890397 182209 878577 548548 759966 812923 759966 860479 200595 381358 299175 339368 759966 907668 69574",
"output": "4"
},
{
"input": "5 234613 716125\n642626 494941 234613 234613 234613",
"output": "0"
},
{
"input": "50 48547 567054\n529808 597004 242355 559114 78865 537318 631455 733020 655072 645093 309010 855034 306058 625046 524574 834944 27330 664392 443637 821584 338013 490702 289520 675471 885846 258814 134220 571301 84875 94132 200425 928833 375166 521232 317961 175315 947093 89971 322071 174033 48547 998535 954205 704114 943163 438900 48547 538422 48547 48547",
"output": "0"
},
{
"input": "5 10 20\n10 10 10 10 1",
"output": "1"
},
{
"input": "5 10 11\n10 10 10 10 1",
"output": "2"
},
{
"input": "3 10 10\n4 3 3",
"output": "0"
},
{
"input": "3 5 5\n5 5 5",
"output": "1"
},
{
"input": "3 4 14\n5 5 5",
"output": "0"
},
{
"input": "2 7 10\n1234 1234",
"output": "0"
},
{
"input": "1 5 6\n10",
"output": "0"
},
{
"input": "3 4 6\n1 2 3",
"output": "0"
},
{
"input": "5 10 12\n13 13 13 13 13",
"output": "0"
},
{
"input": "3 4 5\n5 7 9",
"output": "0"
},
{
"input": "3 10 100\n5 5 5",
"output": "0"
},
{
"input": "5 1 2\n2 2 2 2 2",
"output": "0"
},
{
"input": "5 5 5\n5 5 5 5 5",
"output": "2"
},
{
"input": "2 2 5\n5 5",
"output": "0"
},
{
"input": "3 1 4\n2 2 2",
"output": "0"
}
] | 1,664,386,708
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 58
| 109
| 7,270,400
|
n,b,d=map(int,input().split())
lst=list(map(int,input().split()))
free=0
joicerSize=0
for i in range(n):
siz=lst[i]
if(siz<=b):
joicerSize+=siz
if(joicerSize>d):
joicerSize=0
free+=1
print(free)
|
Title: Juicer
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Kolya is going to make fresh orange juice. He has *n* oranges of sizes *a*1,<=*a*2,<=...,<=*a**n*. Kolya will put them in the juicer in the fixed order, starting with orange of size *a*1, then orange of size *a*2 and so on. To be put in the juicer the orange must have size not exceeding *b*, so if Kolya sees an orange that is strictly greater he throws it away and continues with the next one.
The juicer has a special section to collect waste. It overflows if Kolya squeezes oranges of the total size strictly greater than *d*. When it happens Kolya empties the waste section (even if there are no more oranges) and continues to squeeze the juice. How many times will he have to empty the waste section?
Input Specification:
The first line of the input contains three integers *n*, *b* and *d* (1<=≤<=*n*<=≤<=100<=000, 1<=≤<=*b*<=≤<=*d*<=≤<=1<=000<=000) — the number of oranges, the maximum size of the orange that fits in the juicer and the value *d*, which determines the condition when the waste section should be emptied.
The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=1<=000<=000) — sizes of the oranges listed in the order Kolya is going to try to put them in the juicer.
Output Specification:
Print one integer — the number of times Kolya will have to empty the waste section.
Demo Input:
['2 7 10\n5 6\n', '1 5 10\n7\n', '3 10 10\n5 7 7\n', '1 1 1\n1\n']
Demo Output:
['1\n', '0\n', '1\n', '0\n']
Note:
In the first sample, Kolya will squeeze the juice from two oranges and empty the waste section afterwards.
In the second sample, the orange won't fit in the juicer so Kolya will have no juice at all.
|
```python
n,b,d=map(int,input().split())
lst=list(map(int,input().split()))
free=0
joicerSize=0
for i in range(n):
siz=lst[i]
if(siz<=b):
joicerSize+=siz
if(joicerSize>d):
joicerSize=0
free+=1
print(free)
```
| 3
|
|
869
|
B
|
The Eternal Immortality
|
PROGRAMMING
| 1,100
|
[
"math"
] | null | null |
Even if the world is full of counterfeits, I still regard it as wonderful.
Pile up herbs and incense, and arise again from the flames and ashes of its predecessor — as is known to many, the phoenix does it like this.
The phoenix has a rather long lifespan, and reincarnates itself once every *a*! years. Here *a*! denotes the factorial of integer *a*, that is, *a*!<==<=1<=×<=2<=×<=...<=×<=*a*. Specifically, 0!<==<=1.
Koyomi doesn't care much about this, but before he gets into another mess with oddities, he is interested in the number of times the phoenix will reincarnate in a timespan of *b*! years, that is, . Note that when *b*<=≥<=*a* this value is always integer.
As the answer can be quite large, it would be enough for Koyomi just to know the last digit of the answer in decimal representation. And you're here to provide Koyomi with this knowledge.
|
The first and only line of input contains two space-separated integers *a* and *b* (0<=≤<=*a*<=≤<=*b*<=≤<=1018).
|
Output one line containing a single decimal digit — the last digit of the value that interests Koyomi.
|
[
"2 4\n",
"0 10\n",
"107 109\n"
] |
[
"2\n",
"0\n",
"2\n"
] |
In the first example, the last digit of <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/99c47ca8b182f097e38094d12f0c06ce0b081b76.png" style="max-width: 100.0%;max-height: 100.0%;"/> is 2;
In the second example, the last digit of <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/9642ef11a23e7c5a3f3c2b1255c1b1b3533802a4.png" style="max-width: 100.0%;max-height: 100.0%;"/> is 0;
In the third example, the last digit of <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/844938cef52ee264c183246d2a9df05cca94dc60.png" style="max-width: 100.0%;max-height: 100.0%;"/> is 2.
| 1,000
|
[
{
"input": "2 4",
"output": "2"
},
{
"input": "0 10",
"output": "0"
},
{
"input": "107 109",
"output": "2"
},
{
"input": "10 13",
"output": "6"
},
{
"input": "998244355 998244359",
"output": "4"
},
{
"input": "999999999000000000 1000000000000000000",
"output": "0"
},
{
"input": "2 3",
"output": "3"
},
{
"input": "3 15",
"output": "0"
},
{
"input": "24 26",
"output": "0"
},
{
"input": "14 60",
"output": "0"
},
{
"input": "11 79",
"output": "0"
},
{
"input": "1230 1232",
"output": "2"
},
{
"input": "2633 2634",
"output": "4"
},
{
"input": "535 536",
"output": "6"
},
{
"input": "344319135 396746843",
"output": "0"
},
{
"input": "696667767 696667767",
"output": "1"
},
{
"input": "419530302 610096911",
"output": "0"
},
{
"input": "238965115 821731161",
"output": "0"
},
{
"input": "414626436 728903812",
"output": "0"
},
{
"input": "274410639 293308324",
"output": "0"
},
{
"input": "650636673091305697 650636673091305702",
"output": "0"
},
{
"input": "651240548333620923 651240548333620924",
"output": "4"
},
{
"input": "500000000000000000 1000000000000000000",
"output": "0"
},
{
"input": "999999999999999999 1000000000000000000",
"output": "0"
},
{
"input": "1000000000000000000 1000000000000000000",
"output": "1"
},
{
"input": "0 4",
"output": "4"
},
{
"input": "50000000062000007 50000000062000011",
"output": "0"
},
{
"input": "0 0",
"output": "1"
},
{
"input": "1 1",
"output": "1"
},
{
"input": "0 2",
"output": "2"
},
{
"input": "10000000000012 10000000000015",
"output": "0"
},
{
"input": "5 5",
"output": "1"
},
{
"input": "12 23",
"output": "0"
},
{
"input": "0 11",
"output": "0"
},
{
"input": "11111234567890 11111234567898",
"output": "0"
},
{
"input": "0 3",
"output": "6"
},
{
"input": "1 2",
"output": "2"
},
{
"input": "999999999999999997 999999999999999999",
"output": "2"
},
{
"input": "4 5",
"output": "5"
},
{
"input": "0 1",
"output": "1"
},
{
"input": "101 1002",
"output": "0"
},
{
"input": "0 100000000000000001",
"output": "0"
},
{
"input": "99999999999999997 99999999999999999",
"output": "2"
},
{
"input": "14 15",
"output": "5"
},
{
"input": "8 19",
"output": "0"
},
{
"input": "12 22",
"output": "0"
},
{
"input": "999999999999996 999999999999999",
"output": "4"
},
{
"input": "1 3",
"output": "6"
},
{
"input": "124 125",
"output": "5"
},
{
"input": "11 32",
"output": "0"
},
{
"input": "0 5",
"output": "0"
},
{
"input": "0 999999",
"output": "0"
},
{
"input": "151151151515 151151151526",
"output": "0"
},
{
"input": "6 107",
"output": "0"
},
{
"input": "5 16",
"output": "0"
},
{
"input": "7 16",
"output": "0"
},
{
"input": "6 19",
"output": "0"
},
{
"input": "11113111111111 13111111111111",
"output": "0"
},
{
"input": "1 1000",
"output": "0"
},
{
"input": "24 25",
"output": "5"
},
{
"input": "0 100000000000",
"output": "0"
},
{
"input": "1 22",
"output": "0"
},
{
"input": "999999999999999996 999999999999999999",
"output": "4"
}
] | 1,508,101,302
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 63
| 62
| 5,529,600
|
L = input()
L = L.split()
a = int(L[0])
b = int(L[1])
def Factorial (N):
k = 1
F = 1
while k <= N:
F *= k
k += 1
return F
if a == b:
print (1)
else:
if a == 0:
if b >= 5:
print (0)
else:
print(Factorial(b)%10)
else:
i = b - a
if i == 1:
print (b%10)
else:
f = 1
M = 0
t = a + f
n = a + f + 1
while f < i and i <= 10:
t = t%10
n = n%10
M = (t*n)%10
f += 1
t = M
n = a + f + 1
print (M)
|
Title: The Eternal Immortality
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Even if the world is full of counterfeits, I still regard it as wonderful.
Pile up herbs and incense, and arise again from the flames and ashes of its predecessor — as is known to many, the phoenix does it like this.
The phoenix has a rather long lifespan, and reincarnates itself once every *a*! years. Here *a*! denotes the factorial of integer *a*, that is, *a*!<==<=1<=×<=2<=×<=...<=×<=*a*. Specifically, 0!<==<=1.
Koyomi doesn't care much about this, but before he gets into another mess with oddities, he is interested in the number of times the phoenix will reincarnate in a timespan of *b*! years, that is, . Note that when *b*<=≥<=*a* this value is always integer.
As the answer can be quite large, it would be enough for Koyomi just to know the last digit of the answer in decimal representation. And you're here to provide Koyomi with this knowledge.
Input Specification:
The first and only line of input contains two space-separated integers *a* and *b* (0<=≤<=*a*<=≤<=*b*<=≤<=1018).
Output Specification:
Output one line containing a single decimal digit — the last digit of the value that interests Koyomi.
Demo Input:
['2 4\n', '0 10\n', '107 109\n']
Demo Output:
['2\n', '0\n', '2\n']
Note:
In the first example, the last digit of <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/99c47ca8b182f097e38094d12f0c06ce0b081b76.png" style="max-width: 100.0%;max-height: 100.0%;"/> is 2;
In the second example, the last digit of <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/9642ef11a23e7c5a3f3c2b1255c1b1b3533802a4.png" style="max-width: 100.0%;max-height: 100.0%;"/> is 0;
In the third example, the last digit of <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/844938cef52ee264c183246d2a9df05cca94dc60.png" style="max-width: 100.0%;max-height: 100.0%;"/> is 2.
|
```python
L = input()
L = L.split()
a = int(L[0])
b = int(L[1])
def Factorial (N):
k = 1
F = 1
while k <= N:
F *= k
k += 1
return F
if a == b:
print (1)
else:
if a == 0:
if b >= 5:
print (0)
else:
print(Factorial(b)%10)
else:
i = b - a
if i == 1:
print (b%10)
else:
f = 1
M = 0
t = a + f
n = a + f + 1
while f < i and i <= 10:
t = t%10
n = n%10
M = (t*n)%10
f += 1
t = M
n = a + f + 1
print (M)
```
| 3
|
|
540
|
A
|
Combination Lock
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Scrooge McDuck keeps his most treasured savings in a home safe with a combination lock. Each time he wants to put there the treasures that he's earned fair and square, he has to open the lock.
The combination lock is represented by *n* rotating disks with digits from 0 to 9 written on them. Scrooge McDuck has to turn some disks so that the combination of digits on the disks forms a secret combination. In one move, he can rotate one disk one digit forwards or backwards. In particular, in one move he can go from digit 0 to digit 9 and vice versa. What minimum number of actions does he need for that?
|
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=1000) — the number of disks on the combination lock.
The second line contains a string of *n* digits — the original state of the disks.
The third line contains a string of *n* digits — Scrooge McDuck's combination that opens the lock.
|
Print a single integer — the minimum number of moves Scrooge McDuck needs to open the lock.
|
[
"5\n82195\n64723\n"
] |
[
"13\n"
] |
In the sample he needs 13 moves:
- 1 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/b8967f65a723782358b93eff9ce69f336817cf70.png" style="max-width: 100.0%;max-height: 100.0%;"/> - 2 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/07fa58573ece0d32c4d555e498d2b24d2f70f36a.png" style="max-width: 100.0%;max-height: 100.0%;"/> - 3 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/cc2275d9252aae35a6867c6a5b4ba7596e9a7626.png" style="max-width: 100.0%;max-height: 100.0%;"/> - 4 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/b100aea470fcaaab4e9529b234ba0d7875943c10.png" style="max-width: 100.0%;max-height: 100.0%;"/> - 5 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/eb2cbe4324cebca65b85816262a85e473cd65967.png" style="max-width: 100.0%;max-height: 100.0%;"/>
| 500
|
[
{
"input": "5\n82195\n64723",
"output": "13"
},
{
"input": "12\n102021090898\n010212908089",
"output": "16"
},
{
"input": "1\n8\n1",
"output": "3"
},
{
"input": "2\n83\n57",
"output": "7"
},
{
"input": "10\n0728592530\n1362615763",
"output": "27"
},
{
"input": "100\n4176196363694273682807653052945037727131821799902563705176501742060696655282954944720643131654235909\n3459912084922154505910287499879975659298239371519889866585472674423008837878123067103005344986554746",
"output": "245"
},
{
"input": "1\n8\n1",
"output": "3"
},
{
"input": "2\n83\n57",
"output": "7"
},
{
"input": "3\n607\n684",
"output": "5"
},
{
"input": "4\n0809\n0636",
"output": "8"
},
{
"input": "5\n84284\n08941",
"output": "16"
},
{
"input": "25\n8037856825987124762280548\n9519431339078678836940020",
"output": "72"
},
{
"input": "125\n23269567683904664184142384849516523616863461607751021071772615078579713054027902974007001544768640273491193035874486891541257\n47635110303703399505805044019026243695451609639556649012447370081552870340011971572363458960190590266459684717415349529509024",
"output": "305"
},
{
"input": "5\n84284\n08941",
"output": "16"
},
{
"input": "25\n8037856825987124762285484\n9519431339078678836940202",
"output": "74"
},
{
"input": "125\n23269567689466418414238845152168634610771021717726157879713054270294007001544768647391193035874486891412573389247025830678706\n47635110307339950580504010224954516093956649124473708152870340117152363458960190596659684717415349529090241694059599629136831",
"output": "357"
},
{
"input": "5\n84284\n08941",
"output": "16"
},
{
"input": "25\n8378525987476228048406972\n9194339078883694020217816",
"output": "55"
},
{
"input": "125\n23269576839046618414238484916523616863461607750210717761078579713054027902974007015447686027349193035874486891541257338624472\n47635103037033950580504401926243695451609639556490124437081552870340011971572363489601905026645984717415349529509024169604599",
"output": "274"
},
{
"input": "1\n0\n0",
"output": "0"
},
{
"input": "1\n7\n7",
"output": "0"
},
{
"input": "1\n0\n5",
"output": "5"
},
{
"input": "1\n2\n7",
"output": "5"
},
{
"input": "1\n7\n9",
"output": "2"
},
{
"input": "1\n9\n7",
"output": "2"
},
{
"input": "1\n2\n9",
"output": "3"
},
{
"input": "1\n9\n2",
"output": "3"
},
{
"input": "25\n3164978461316464614169874\n9413979197249127496597357",
"output": "66"
},
{
"input": "4\n9999\n9999",
"output": "0"
},
{
"input": "2\n11\n11",
"output": "0"
}
] | 1,641,995,560
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 43
| 46
| 0
|
t=int(input())
s=input()
c=0
l=input()
for i in range(t):
m=abs(int(s[i])-int(l[i]))
if m>5:
m=abs(10-m)
c=c+m
print(c)
|
Title: Combination Lock
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Scrooge McDuck keeps his most treasured savings in a home safe with a combination lock. Each time he wants to put there the treasures that he's earned fair and square, he has to open the lock.
The combination lock is represented by *n* rotating disks with digits from 0 to 9 written on them. Scrooge McDuck has to turn some disks so that the combination of digits on the disks forms a secret combination. In one move, he can rotate one disk one digit forwards or backwards. In particular, in one move he can go from digit 0 to digit 9 and vice versa. What minimum number of actions does he need for that?
Input Specification:
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=1000) — the number of disks on the combination lock.
The second line contains a string of *n* digits — the original state of the disks.
The third line contains a string of *n* digits — Scrooge McDuck's combination that opens the lock.
Output Specification:
Print a single integer — the minimum number of moves Scrooge McDuck needs to open the lock.
Demo Input:
['5\n82195\n64723\n']
Demo Output:
['13\n']
Note:
In the sample he needs 13 moves:
- 1 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/b8967f65a723782358b93eff9ce69f336817cf70.png" style="max-width: 100.0%;max-height: 100.0%;"/> - 2 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/07fa58573ece0d32c4d555e498d2b24d2f70f36a.png" style="max-width: 100.0%;max-height: 100.0%;"/> - 3 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/cc2275d9252aae35a6867c6a5b4ba7596e9a7626.png" style="max-width: 100.0%;max-height: 100.0%;"/> - 4 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/b100aea470fcaaab4e9529b234ba0d7875943c10.png" style="max-width: 100.0%;max-height: 100.0%;"/> - 5 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/eb2cbe4324cebca65b85816262a85e473cd65967.png" style="max-width: 100.0%;max-height: 100.0%;"/>
|
```python
t=int(input())
s=input()
c=0
l=input()
for i in range(t):
m=abs(int(s[i])-int(l[i]))
if m>5:
m=abs(10-m)
c=c+m
print(c)
```
| 3
|
|
38
|
B
|
Chess
|
PROGRAMMING
| 1,200
|
[
"brute force",
"implementation",
"math"
] |
B. Chess
|
2
|
256
|
Two chess pieces, a rook and a knight, stand on a standard chessboard 8<=×<=8 in size. The positions in which they are situated are known. It is guaranteed that none of them beats the other one.
Your task is to find the number of ways to place another knight on the board so that none of the three pieces on the board beat another one. A new piece can only be placed on an empty square.
|
The first input line contains the description of the rook's position on the board. This description is a line which is 2 in length. Its first symbol is a lower-case Latin letter from a to h, and its second symbol is a number from 1 to 8. The second line contains the description of the knight's position in a similar way. It is guaranteed that their positions do not coincide.
|
Print a single number which is the required number of ways.
|
[
"a1\nb2\n",
"a8\nd4\n"
] |
[
"44\n",
"38\n"
] |
none
| 0
|
[
{
"input": "a1\nb2",
"output": "44"
},
{
"input": "a8\nd4",
"output": "38"
},
{
"input": "a8\nf1",
"output": "42"
},
{
"input": "f8\nh3",
"output": "42"
},
{
"input": "g8\nb7",
"output": "42"
},
{
"input": "h1\ng5",
"output": "42"
},
{
"input": "c6\nb5",
"output": "39"
},
{
"input": "c1\nd2",
"output": "42"
},
{
"input": "g3\nh4",
"output": "42"
},
{
"input": "e3\ng5",
"output": "38"
},
{
"input": "f8\na3",
"output": "40"
},
{
"input": "a2\nh8",
"output": "43"
},
{
"input": "a3\nc5",
"output": "40"
},
{
"input": "g1\ne6",
"output": "39"
},
{
"input": "e1\na7",
"output": "41"
},
{
"input": "b5\nc1",
"output": "39"
},
{
"input": "b2\ne1",
"output": "43"
},
{
"input": "h8\ng2",
"output": "43"
},
{
"input": "a3\nd6",
"output": "38"
},
{
"input": "g6\nb7",
"output": "39"
},
{
"input": "c8\ne6",
"output": "40"
},
{
"input": "e6\nf2",
"output": "35"
},
{
"input": "b6\nd8",
"output": "41"
},
{
"input": "a4\nd1",
"output": "42"
},
{
"input": "b5\nh8",
"output": "40"
},
{
"input": "h6\na1",
"output": "42"
},
{
"input": "c3\na8",
"output": "39"
},
{
"input": "g5\nd2",
"output": "38"
},
{
"input": "b6\ng7",
"output": "39"
},
{
"input": "h6\na8",
"output": "43"
},
{
"input": "a8\nb7",
"output": "44"
},
{
"input": "c8\nb2",
"output": "41"
},
{
"input": "e4\nc1",
"output": "37"
},
{
"input": "f1\nc3",
"output": "38"
},
{
"input": "a3\nc8",
"output": "41"
},
{
"input": "e8\nb6",
"output": "40"
},
{
"input": "a1\nb7",
"output": "43"
},
{
"input": "g2\nb7",
"output": "40"
},
{
"input": "e1\nd6",
"output": "38"
},
{
"input": "e5\nh6",
"output": "39"
}
] | 1,689,151,678
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 40
| 124
| 0
|
dict1={"a":1,"b":2,"c":3,"d":4,"e":5,"f":6,"g":7,"h":8}
r=input()
k=input()
r=[dict1[r[0]],int(r[1])]
k=[dict1[k[0]],int(k[1])]
c=64
x,y=k
kk=[[x,y],[x-2,y+1],[x-2,y-1],[x-1,y+2],[x+1,y+2],[x+2,y+1],[x+2,y-1],[x+1,y-2],[x-1,y-2]]
x,y=r
rr=[[x,y],[x-2,y+1],[x-2,y-1],[x-1,y+2],[x+1,y+2],[x+2,y+1],[x+2,y-1],[x+1,y-2],[x-1,y-2]]
kk+=rr
for i in range(1,9):
for t in range(1,9):
if i==r[0] or t==r[1] or [i,t] in kk:
c-=1
print(c)
|
Title: Chess
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Two chess pieces, a rook and a knight, stand on a standard chessboard 8<=×<=8 in size. The positions in which they are situated are known. It is guaranteed that none of them beats the other one.
Your task is to find the number of ways to place another knight on the board so that none of the three pieces on the board beat another one. A new piece can only be placed on an empty square.
Input Specification:
The first input line contains the description of the rook's position on the board. This description is a line which is 2 in length. Its first symbol is a lower-case Latin letter from a to h, and its second symbol is a number from 1 to 8. The second line contains the description of the knight's position in a similar way. It is guaranteed that their positions do not coincide.
Output Specification:
Print a single number which is the required number of ways.
Demo Input:
['a1\nb2\n', 'a8\nd4\n']
Demo Output:
['44\n', '38\n']
Note:
none
|
```python
dict1={"a":1,"b":2,"c":3,"d":4,"e":5,"f":6,"g":7,"h":8}
r=input()
k=input()
r=[dict1[r[0]],int(r[1])]
k=[dict1[k[0]],int(k[1])]
c=64
x,y=k
kk=[[x,y],[x-2,y+1],[x-2,y-1],[x-1,y+2],[x+1,y+2],[x+2,y+1],[x+2,y-1],[x+1,y-2],[x-1,y-2]]
x,y=r
rr=[[x,y],[x-2,y+1],[x-2,y-1],[x-1,y+2],[x+1,y+2],[x+2,y+1],[x+2,y-1],[x+1,y-2],[x-1,y-2]]
kk+=rr
for i in range(1,9):
for t in range(1,9):
if i==r[0] or t==r[1] or [i,t] in kk:
c-=1
print(c)
```
| 3.969
|
702
|
A
|
Maximum Increase
|
PROGRAMMING
| 800
|
[
"dp",
"greedy",
"implementation"
] | null | null |
You are given array consisting of *n* integers. Your task is to find the maximum length of an increasing subarray of the given array.
A subarray is the sequence of consecutive elements of the array. Subarray is called increasing if each element of this subarray strictly greater than previous.
|
The first line contains single positive integer *n* (1<=≤<=*n*<=≤<=105) — the number of integers.
The second line contains *n* positive integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=109).
|
Print the maximum length of an increasing subarray of the given array.
|
[
"5\n1 7 2 11 15\n",
"6\n100 100 100 100 100 100\n",
"3\n1 2 3\n"
] |
[
"3\n",
"1\n",
"3\n"
] |
none
| 0
|
[
{
"input": "5\n1 7 2 11 15",
"output": "3"
},
{
"input": "6\n100 100 100 100 100 100",
"output": "1"
},
{
"input": "3\n1 2 3",
"output": "3"
},
{
"input": "1\n1000000000",
"output": "1"
},
{
"input": "10\n802030518 598196518 640274071 983359971 71550121 96204862 799843967 446173607 796619138 402690754",
"output": "3"
},
{
"input": "2\n2 1",
"output": "1"
},
{
"input": "5\n1 2 3 3 4",
"output": "3"
},
{
"input": "4\n1 2 2 3",
"output": "2"
},
{
"input": "3\n2 1 1",
"output": "1"
},
{
"input": "3\n1 2 1",
"output": "2"
},
{
"input": "1\n1",
"output": "1"
},
{
"input": "2\n1 2",
"output": "2"
},
{
"input": "3\n1 1 2",
"output": "2"
},
{
"input": "11\n1 2 3 1 2 3 2 1 2 3 4",
"output": "4"
},
{
"input": "9\n1 2 3 4 5 6 7 8 9",
"output": "9"
},
{
"input": "9\n1 1 1 1 1 1 1 1 1",
"output": "1"
},
{
"input": "3\n3 2 1",
"output": "1"
},
{
"input": "7\n1 2 3 4 5 6 7",
"output": "7"
},
{
"input": "1\n1234394",
"output": "1"
}
] | 1,691,073,853
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 32
| 186
| 10,649,600
|
n=int(input())
nums=[int(i) for i in input().split()]
i=0
maxi=1
for j in range(1,n):
if nums[j]<=nums[j-1]:
i=j
maxi=max(maxi,j-i+1)
print(maxi)
|
Title: Maximum Increase
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You are given array consisting of *n* integers. Your task is to find the maximum length of an increasing subarray of the given array.
A subarray is the sequence of consecutive elements of the array. Subarray is called increasing if each element of this subarray strictly greater than previous.
Input Specification:
The first line contains single positive integer *n* (1<=≤<=*n*<=≤<=105) — the number of integers.
The second line contains *n* positive integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=109).
Output Specification:
Print the maximum length of an increasing subarray of the given array.
Demo Input:
['5\n1 7 2 11 15\n', '6\n100 100 100 100 100 100\n', '3\n1 2 3\n']
Demo Output:
['3\n', '1\n', '3\n']
Note:
none
|
```python
n=int(input())
nums=[int(i) for i in input().split()]
i=0
maxi=1
for j in range(1,n):
if nums[j]<=nums[j-1]:
i=j
maxi=max(maxi,j-i+1)
print(maxi)
```
| 3
|
|
990
|
A
|
Commentary Boxes
|
PROGRAMMING
| 1,000
|
[
"implementation",
"math"
] | null | null |
Berland Football Cup starts really soon! Commentators from all over the world come to the event.
Organizers have already built $n$ commentary boxes. $m$ regional delegations will come to the Cup. Every delegation should get the same number of the commentary boxes. If any box is left unoccupied then the delegations will be upset. So each box should be occupied by exactly one delegation.
If $n$ is not divisible by $m$, it is impossible to distribute the boxes to the delegations at the moment.
Organizers can build a new commentary box paying $a$ burles and demolish a commentary box paying $b$ burles. They can both build and demolish boxes arbitrary number of times (each time paying a corresponding fee). It is allowed to demolish all the existing boxes.
What is the minimal amount of burles organizers should pay to satisfy all the delegations (i.e. to make the number of the boxes be divisible by $m$)?
|
The only line contains four integer numbers $n$, $m$, $a$ and $b$ ($1 \le n, m \le 10^{12}$, $1 \le a, b \le 100$), where $n$ is the initial number of the commentary boxes, $m$ is the number of delegations to come, $a$ is the fee to build a box and $b$ is the fee to demolish a box.
|
Output the minimal amount of burles organizers should pay to satisfy all the delegations (i.e. to make the number of the boxes be divisible by $m$). It is allowed that the final number of the boxes is equal to $0$.
|
[
"9 7 3 8\n",
"2 7 3 7\n",
"30 6 17 19\n"
] |
[
"15\n",
"14\n",
"0\n"
] |
In the first example organizers can build $5$ boxes to make the total of $14$ paying $3$ burles for the each of them.
In the second example organizers can demolish $2$ boxes to make the total of $0$ paying $7$ burles for the each of them.
In the third example organizers are already able to distribute all the boxes equally among the delegations, each one get $5$ boxes.
| 0
|
[
{
"input": "9 7 3 8",
"output": "15"
},
{
"input": "2 7 3 7",
"output": "14"
},
{
"input": "30 6 17 19",
"output": "0"
},
{
"input": "500000000001 1000000000000 100 100",
"output": "49999999999900"
},
{
"input": "1000000000000 750000000001 10 100",
"output": "5000000000020"
},
{
"input": "1000000000000 750000000001 100 10",
"output": "2499999999990"
},
{
"input": "42 1 1 1",
"output": "0"
},
{
"input": "1 1000000000000 1 100",
"output": "100"
},
{
"input": "7 2 3 7",
"output": "3"
},
{
"input": "999999999 2 1 1",
"output": "1"
},
{
"input": "999999999999 10000000007 100 100",
"output": "70100"
},
{
"input": "10000000001 2 1 1",
"output": "1"
},
{
"input": "29 6 1 2",
"output": "1"
},
{
"input": "99999999999 6 100 100",
"output": "300"
},
{
"input": "1000000000000 7 3 8",
"output": "8"
},
{
"input": "99999999999 2 1 1",
"output": "1"
},
{
"input": "1 2 1 1",
"output": "1"
},
{
"input": "999999999999 2 1 1",
"output": "1"
},
{
"input": "9 2 1 1",
"output": "1"
},
{
"input": "17 4 5 5",
"output": "5"
},
{
"input": "100000000000 3 1 1",
"output": "1"
},
{
"input": "100 7 1 1",
"output": "2"
},
{
"input": "1000000000000 3 100 100",
"output": "100"
},
{
"input": "70 3 10 10",
"output": "10"
},
{
"input": "1 2 5 1",
"output": "1"
},
{
"input": "1000000000000 3 1 1",
"output": "1"
},
{
"input": "804289377 846930887 78 16",
"output": "3326037780"
},
{
"input": "1000000000000 9 55 55",
"output": "55"
},
{
"input": "957747787 424238336 87 93",
"output": "10162213695"
},
{
"input": "25 6 1 2",
"output": "2"
},
{
"input": "22 7 3 8",
"output": "8"
},
{
"input": "10000000000 1 1 1",
"output": "0"
},
{
"input": "999999999999 2 10 10",
"output": "10"
},
{
"input": "999999999999 2 100 100",
"output": "100"
},
{
"input": "100 3 3 8",
"output": "6"
},
{
"input": "99999 2 1 1",
"output": "1"
},
{
"input": "100 3 2 5",
"output": "4"
},
{
"input": "1000000000000 13 10 17",
"output": "17"
},
{
"input": "7 2 1 2",
"output": "1"
},
{
"input": "10 3 1 2",
"output": "2"
},
{
"input": "5 2 2 2",
"output": "2"
},
{
"input": "100 3 5 2",
"output": "2"
},
{
"input": "7 2 1 1",
"output": "1"
},
{
"input": "70 4 1 1",
"output": "2"
},
{
"input": "10 4 1 1",
"output": "2"
},
{
"input": "6 7 41 42",
"output": "41"
},
{
"input": "10 3 10 1",
"output": "1"
},
{
"input": "5 5 2 3",
"output": "0"
},
{
"input": "1000000000000 3 99 99",
"output": "99"
},
{
"input": "7 3 100 1",
"output": "1"
},
{
"input": "7 2 100 5",
"output": "5"
},
{
"input": "1000000000000 1 23 33",
"output": "0"
},
{
"input": "30 7 1 1",
"output": "2"
},
{
"input": "100 3 1 1",
"output": "1"
},
{
"input": "90001 300 100 1",
"output": "1"
},
{
"input": "13 4 1 2",
"output": "2"
},
{
"input": "1000000000000 6 1 3",
"output": "2"
},
{
"input": "50 4 5 100",
"output": "10"
},
{
"input": "999 2 1 1",
"output": "1"
},
{
"input": "5 2 5 5",
"output": "5"
},
{
"input": "20 3 3 3",
"output": "3"
},
{
"input": "3982258181 1589052704 87 20",
"output": "16083055460"
},
{
"input": "100 3 1 3",
"output": "2"
},
{
"input": "7 3 1 1",
"output": "1"
},
{
"input": "19 10 100 100",
"output": "100"
},
{
"input": "23 3 100 1",
"output": "2"
},
{
"input": "25 7 100 1",
"output": "4"
},
{
"input": "100 9 1 2",
"output": "2"
},
{
"input": "9999999999 2 1 100",
"output": "1"
},
{
"input": "1000000000000 2 1 1",
"output": "0"
},
{
"input": "10000 3 1 1",
"output": "1"
},
{
"input": "22 7 1 6",
"output": "6"
},
{
"input": "100000000000 1 1 1",
"output": "0"
},
{
"input": "18 7 100 1",
"output": "4"
},
{
"input": "10003 4 1 100",
"output": "1"
},
{
"input": "3205261341 718648876 58 11",
"output": "3637324207"
},
{
"input": "8 3 100 1",
"output": "2"
},
{
"input": "15 7 1 1",
"output": "1"
},
{
"input": "1000000000000 1 20 20",
"output": "0"
},
{
"input": "16 7 3 2",
"output": "4"
},
{
"input": "1000000000000 1 1 1",
"output": "0"
},
{
"input": "7 3 1 100",
"output": "2"
},
{
"input": "16 3 1 100",
"output": "2"
},
{
"input": "13 4 1 10",
"output": "3"
},
{
"input": "10 4 5 5",
"output": "10"
},
{
"input": "14 3 1 100",
"output": "1"
},
{
"input": "100 33 100 1",
"output": "1"
},
{
"input": "22 7 1 8",
"output": "6"
},
{
"input": "10 4 2 1",
"output": "2"
},
{
"input": "6 4 2 2",
"output": "4"
},
{
"input": "17 4 2 1",
"output": "1"
},
{
"input": "7 3 100 10",
"output": "10"
},
{
"input": "702 7 3 2",
"output": "4"
},
{
"input": "8 3 1 5",
"output": "1"
},
{
"input": "3 2 5 2",
"output": "2"
},
{
"input": "99 19 1 7",
"output": "15"
},
{
"input": "16 3 100 1",
"output": "1"
},
{
"input": "100 34 1 100",
"output": "2"
},
{
"input": "100 33 1 1",
"output": "1"
},
{
"input": "2 3 4 3",
"output": "4"
},
{
"input": "15 4 4 10",
"output": "4"
},
{
"input": "1144108931 470211273 45 79",
"output": "11993619960"
},
{
"input": "2 3 3 4",
"output": "3"
},
{
"input": "29 5 4 9",
"output": "4"
},
{
"input": "15 7 1 5",
"output": "5"
},
{
"input": "1 1 1 1",
"output": "0"
},
{
"input": "1 1 3 4",
"output": "0"
},
{
"input": "10 12 2 1",
"output": "4"
},
{
"input": "1 2 3 4",
"output": "3"
}
] | 1,601,056,156
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 109
| 140
| 0
|
n,m,a,b=map(int,input().split())
if n%m:print(min((m*(n//m+1)-n)*a,(n%m)*b))
else:print(0)
|
Title: Commentary Boxes
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Berland Football Cup starts really soon! Commentators from all over the world come to the event.
Organizers have already built $n$ commentary boxes. $m$ regional delegations will come to the Cup. Every delegation should get the same number of the commentary boxes. If any box is left unoccupied then the delegations will be upset. So each box should be occupied by exactly one delegation.
If $n$ is not divisible by $m$, it is impossible to distribute the boxes to the delegations at the moment.
Organizers can build a new commentary box paying $a$ burles and demolish a commentary box paying $b$ burles. They can both build and demolish boxes arbitrary number of times (each time paying a corresponding fee). It is allowed to demolish all the existing boxes.
What is the minimal amount of burles organizers should pay to satisfy all the delegations (i.e. to make the number of the boxes be divisible by $m$)?
Input Specification:
The only line contains four integer numbers $n$, $m$, $a$ and $b$ ($1 \le n, m \le 10^{12}$, $1 \le a, b \le 100$), where $n$ is the initial number of the commentary boxes, $m$ is the number of delegations to come, $a$ is the fee to build a box and $b$ is the fee to demolish a box.
Output Specification:
Output the minimal amount of burles organizers should pay to satisfy all the delegations (i.e. to make the number of the boxes be divisible by $m$). It is allowed that the final number of the boxes is equal to $0$.
Demo Input:
['9 7 3 8\n', '2 7 3 7\n', '30 6 17 19\n']
Demo Output:
['15\n', '14\n', '0\n']
Note:
In the first example organizers can build $5$ boxes to make the total of $14$ paying $3$ burles for the each of them.
In the second example organizers can demolish $2$ boxes to make the total of $0$ paying $7$ burles for the each of them.
In the third example organizers are already able to distribute all the boxes equally among the delegations, each one get $5$ boxes.
|
```python
n,m,a,b=map(int,input().split())
if n%m:print(min((m*(n//m+1)-n)*a,(n%m)*b))
else:print(0)
```
| 3
|
|
126
|
B
|
Password
|
PROGRAMMING
| 1,700
|
[
"binary search",
"dp",
"hashing",
"string suffix structures",
"strings"
] | null | null |
Asterix, Obelix and their temporary buddies Suffix and Prefix has finally found the Harmony temple. However, its doors were firmly locked and even Obelix had no luck opening them.
A little later they found a string *s*, carved on a rock below the temple's gates. Asterix supposed that that's the password that opens the temple and read the string aloud. However, nothing happened. Then Asterix supposed that a password is some substring *t* of the string *s*.
Prefix supposed that the substring *t* is the beginning of the string *s*; Suffix supposed that the substring *t* should be the end of the string *s*; and Obelix supposed that *t* should be located somewhere inside the string *s*, that is, *t* is neither its beginning, nor its end.
Asterix chose the substring *t* so as to please all his companions. Besides, from all acceptable variants Asterix chose the longest one (as Asterix loves long strings). When Asterix read the substring *t* aloud, the temple doors opened.
You know the string *s*. Find the substring *t* or determine that such substring does not exist and all that's been written above is just a nice legend.
|
You are given the string *s* whose length can vary from 1 to 106 (inclusive), consisting of small Latin letters.
|
Print the string *t*. If a suitable *t* string does not exist, then print "Just a legend" without the quotes.
|
[
"fixprefixsuffix\n",
"abcdabc\n"
] |
[
"fix",
"Just a legend"
] |
none
| 1,000
|
[
{
"input": "fixprefixsuffix",
"output": "fix"
},
{
"input": "abcdabc",
"output": "Just a legend"
},
{
"input": "qwertyqwertyqwerty",
"output": "qwerty"
},
{
"input": "papapapap",
"output": "papap"
},
{
"input": "aaaaaaaaaa",
"output": "aaaaaaaa"
},
{
"input": "ghbdtn",
"output": "Just a legend"
},
{
"input": "a",
"output": "Just a legend"
},
{
"input": "aa",
"output": "Just a legend"
},
{
"input": "ab",
"output": "Just a legend"
},
{
"input": "aaa",
"output": "a"
},
{
"input": "aba",
"output": "Just a legend"
},
{
"input": "aab",
"output": "Just a legend"
},
{
"input": "abb",
"output": "Just a legend"
},
{
"input": "abc",
"output": "Just a legend"
},
{
"input": "aaabaabaaaaab",
"output": "Just a legend"
},
{
"input": "aabaaabaaaaab",
"output": "aab"
},
{
"input": "aaabaaaabab",
"output": "Just a legend"
},
{
"input": "abcabcabcabcabc",
"output": "abcabcabc"
},
{
"input": "aaaaabaaaa",
"output": "aaaa"
},
{
"input": "aaaabaaaaaaa",
"output": "aaaa"
},
{
"input": "ghghghgxghghghg",
"output": "ghghg"
},
{
"input": "kincenvizh",
"output": "Just a legend"
},
{
"input": "amcksgurlgqzqizdauqminfzshiweejkevbazyzylrrghumnvqeqqdedyopgtvxakqwpvxntxgrkrcxabhrgoxngrwrxrvcguuyw",
"output": "Just a legend"
},
{
"input": "kwuaizneqxfflhmyruotjlkqksinoanvkyvqptkkntnpjdyzicceelgooajdgpkneuhyvhdtmasiglplajxolxovlhkwuaizneqx",
"output": "Just a legend"
},
{
"input": "nfbdzgdlbjhrlvfryyjbvtsmzacxglcvukmyexdgpuiwvqbnfbdzgdlbjhrlvfryyjbtuomcwbwvlhefnfbdzgdlbjhrlvfryyjb",
"output": "nfbdzgdlbjhrlvfryyjb"
},
{
"input": "btbdpnzdenxueteteytvkwnegodyhmdwhmrmbftrifytzudumzlacwytsuzefqfpjesdblxhpcsidgksisjdmhyxmmugrjmtfcgxmcgpmvbxbyszdugvmoyjeeqsywcvuqskcjotyhvdijyslgfvyujxthngnonasgnbzzygyikheelirdfsvuicbiazfdeqecbtbdpnzdenxueteteytvkwnegodyhmdwhmrmbftrifytzudumzlacwytsuzefqfpjesdblxhpcsidgksisjdmhyxmmugrjmtfcgxmcgpccdtdteohtjjuicfjfcbzpynlqhecyqqrjpmexgfqywnfmusldgzvgnzdmuuujtkdfnlytzgstquwqpuccxbtbdpnzdenxueteteytvkwnegodyhmdwhmrmbftrifytzudumzlacwytsuzefqfpjesdblxhpcsidgksisjdmhyxmmugrjmtfcgxmcgp",
"output": "btbdpnzdenxueteteytvkwnegodyhmdwhmrmbftrifytzudumzlacwytsuzefqfpjesdblxhpcsidgksisjdmhyxmmugrjmtfcgxmcgp"
},
{
"input": "abcazabca",
"output": "a"
}
] | 1,653,271,859
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 97
| 404
| 17,305,600
|
s = input()
n = len(s)
p = [0] * (n + 1)
i, j = 0, 1
while j < n:
if s[j] == s[i]:
j += 1
i += 1
p[j] = i
elif i:
i = p[i]
else:
j += 1
a = p.pop()
b = p[a]
print(s[:a]
if a and a in p
else s[:b] if b else 'Just a legend'
)
|
Title: Password
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Asterix, Obelix and their temporary buddies Suffix and Prefix has finally found the Harmony temple. However, its doors were firmly locked and even Obelix had no luck opening them.
A little later they found a string *s*, carved on a rock below the temple's gates. Asterix supposed that that's the password that opens the temple and read the string aloud. However, nothing happened. Then Asterix supposed that a password is some substring *t* of the string *s*.
Prefix supposed that the substring *t* is the beginning of the string *s*; Suffix supposed that the substring *t* should be the end of the string *s*; and Obelix supposed that *t* should be located somewhere inside the string *s*, that is, *t* is neither its beginning, nor its end.
Asterix chose the substring *t* so as to please all his companions. Besides, from all acceptable variants Asterix chose the longest one (as Asterix loves long strings). When Asterix read the substring *t* aloud, the temple doors opened.
You know the string *s*. Find the substring *t* or determine that such substring does not exist and all that's been written above is just a nice legend.
Input Specification:
You are given the string *s* whose length can vary from 1 to 106 (inclusive), consisting of small Latin letters.
Output Specification:
Print the string *t*. If a suitable *t* string does not exist, then print "Just a legend" without the quotes.
Demo Input:
['fixprefixsuffix\n', 'abcdabc\n']
Demo Output:
['fix', 'Just a legend']
Note:
none
|
```python
s = input()
n = len(s)
p = [0] * (n + 1)
i, j = 0, 1
while j < n:
if s[j] == s[i]:
j += 1
i += 1
p[j] = i
elif i:
i = p[i]
else:
j += 1
a = p.pop()
b = p[a]
print(s[:a]
if a and a in p
else s[:b] if b else 'Just a legend'
)
```
| 3
|
|
386
|
A
|
Second-Price Auction
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
In this problem we consider a special type of an auction, which is called the second-price auction. As in regular auction *n* bidders place a bid which is price a bidder ready to pay. The auction is closed, that is, each bidder secretly informs the organizer of the auction price he is willing to pay. After that, the auction winner is the participant who offered the highest price. However, he pay not the price he offers, but the highest price among the offers of other participants (hence the name: the second-price auction).
Write a program that reads prices offered by bidders and finds the winner and the price he will pay. Consider that all of the offered prices are different.
|
The first line of the input contains *n* (2<=≤<=*n*<=≤<=1000) — number of bidders. The second line contains *n* distinct integer numbers *p*1,<=*p*2,<=... *p**n*, separated by single spaces (1<=≤<=*p**i*<=≤<=10000), where *p**i* stands for the price offered by the *i*-th bidder.
|
The single output line should contain two integers: index of the winner and the price he will pay. Indices are 1-based.
|
[
"2\n5 7\n",
"3\n10 2 8\n",
"6\n3 8 2 9 4 14\n"
] |
[
"2 5\n",
"1 8\n",
"6 9\n"
] |
none
| 500
|
[
{
"input": "2\n5 7",
"output": "2 5"
},
{
"input": "3\n10 2 8",
"output": "1 8"
},
{
"input": "6\n3 8 2 9 4 14",
"output": "6 9"
},
{
"input": "4\n4707 7586 4221 5842",
"output": "2 5842"
},
{
"input": "5\n3304 4227 4869 6937 6002",
"output": "4 6002"
},
{
"input": "6\n5083 3289 7708 5362 9031 7458",
"output": "5 7708"
},
{
"input": "7\n9038 6222 3392 1706 3778 1807 2657",
"output": "1 6222"
},
{
"input": "8\n7062 2194 4481 3864 7470 1814 8091 733",
"output": "7 7470"
},
{
"input": "9\n2678 5659 9199 2628 7906 7496 4524 2663 3408",
"output": "3 7906"
},
{
"input": "2\n3458 1504",
"output": "1 1504"
},
{
"input": "50\n9237 3904 407 9052 6657 9229 9752 3888 7732 2512 4614 1055 2355 7108 6506 6849 2529 8862 159 8630 7906 7941 960 8470 333 8659 54 9475 3163 5625 6393 6814 2656 3388 169 7918 4881 8468 9983 6281 6340 280 5108 2996 101 7617 3313 8172 326 1991",
"output": "39 9752"
},
{
"input": "100\n2515 3324 7975 6171 4240 1217 4829 5203 8603 6900 3031 4699 4732 6070 4221 3228 6497 7359 9130 4346 4619 1109 3945 5442 3271 16 9711 2045 6410 2301 3406 8125 6003 1892 1260 9661 3940 6692 4708 7027 4930 6925 1979 5361 4263 3144 867 8639 6230 5562 9714 3676 4231 3347 4733 4920 4881 3431 1059 7313 8912 3038 9308 72 9583 7009 3034 7425 2398 6141 3245 2495 2933 6710 8289 9806 1226 8393 7349 6462 1618 9613 3546 6012 2964 9995 1578 210 2123 4874 1252 8625 348 8020 803 7244 9080 5088 706 2602",
"output": "86 9806"
},
{
"input": "2\n2 1",
"output": "1 1"
},
{
"input": "2\n1 2",
"output": "2 1"
},
{
"input": "3\n10 20 30",
"output": "3 20"
},
{
"input": "3\n10 30 20",
"output": "2 20"
},
{
"input": "3\n20 10 30",
"output": "3 20"
},
{
"input": "3\n20 30 10",
"output": "2 20"
},
{
"input": "3\n30 10 20",
"output": "1 20"
},
{
"input": "3\n30 20 10",
"output": "1 20"
},
{
"input": "2\n1 10000",
"output": "2 1"
},
{
"input": "2\n10000 999",
"output": "1 999"
},
{
"input": "3\n3 4 1",
"output": "2 3"
},
{
"input": "6\n1 2 24 6 5 7",
"output": "3 7"
}
] | 1,642,798,455
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 42
| 46
| 0
|
n=int(input());
c=0
l=list(map(int,input().split()))
maxi=max(l)
for i in range(len(l)):
if l[i]==maxi:
m=i+1
break
p=sorted(l)
print(m,p[-2])
|
Title: Second-Price Auction
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
In this problem we consider a special type of an auction, which is called the second-price auction. As in regular auction *n* bidders place a bid which is price a bidder ready to pay. The auction is closed, that is, each bidder secretly informs the organizer of the auction price he is willing to pay. After that, the auction winner is the participant who offered the highest price. However, he pay not the price he offers, but the highest price among the offers of other participants (hence the name: the second-price auction).
Write a program that reads prices offered by bidders and finds the winner and the price he will pay. Consider that all of the offered prices are different.
Input Specification:
The first line of the input contains *n* (2<=≤<=*n*<=≤<=1000) — number of bidders. The second line contains *n* distinct integer numbers *p*1,<=*p*2,<=... *p**n*, separated by single spaces (1<=≤<=*p**i*<=≤<=10000), where *p**i* stands for the price offered by the *i*-th bidder.
Output Specification:
The single output line should contain two integers: index of the winner and the price he will pay. Indices are 1-based.
Demo Input:
['2\n5 7\n', '3\n10 2 8\n', '6\n3 8 2 9 4 14\n']
Demo Output:
['2 5\n', '1 8\n', '6 9\n']
Note:
none
|
```python
n=int(input());
c=0
l=list(map(int,input().split()))
maxi=max(l)
for i in range(len(l)):
if l[i]==maxi:
m=i+1
break
p=sorted(l)
print(m,p[-2])
```
| 3
|
|
141
|
A
|
Amusing Joke
|
PROGRAMMING
| 800
|
[
"implementation",
"sortings",
"strings"
] | null | null |
So, the New Year holidays are over. Santa Claus and his colleagues can take a rest and have guests at last. When two "New Year and Christmas Men" meet, thear assistants cut out of cardboard the letters from the guest's name and the host's name in honor of this event. Then the hung the letters above the main entrance. One night, when everyone went to bed, someone took all the letters of our characters' names. Then he may have shuffled the letters and put them in one pile in front of the door.
The next morning it was impossible to find the culprit who had made the disorder. But everybody wondered whether it is possible to restore the names of the host and his guests from the letters lying at the door? That is, we need to verify that there are no extra letters, and that nobody will need to cut more letters.
Help the "New Year and Christmas Men" and their friends to cope with this problem. You are given both inscriptions that hung over the front door the previous night, and a pile of letters that were found at the front door next morning.
|
The input file consists of three lines: the first line contains the guest's name, the second line contains the name of the residence host and the third line contains letters in a pile that were found at the door in the morning. All lines are not empty and contain only uppercase Latin letters. The length of each line does not exceed 100.
|
Print "YES" without the quotes, if the letters in the pile could be permuted to make the names of the "New Year and Christmas Men". Otherwise, print "NO" without the quotes.
|
[
"SANTACLAUS\nDEDMOROZ\nSANTAMOROZDEDCLAUS\n",
"PAPAINOEL\nJOULUPUKKI\nJOULNAPAOILELUPUKKI\n",
"BABBONATALE\nFATHERCHRISTMAS\nBABCHRISTMASBONATALLEFATHER\n"
] |
[
"YES\n",
"NO\n",
"NO\n"
] |
In the first sample the letters written in the last line can be used to write the names and there won't be any extra letters left.
In the second sample letter "P" is missing from the pile and there's an extra letter "L".
In the third sample there's an extra letter "L".
| 500
|
[
{
"input": "SANTACLAUS\nDEDMOROZ\nSANTAMOROZDEDCLAUS",
"output": "YES"
},
{
"input": "PAPAINOEL\nJOULUPUKKI\nJOULNAPAOILELUPUKKI",
"output": "NO"
},
{
"input": "BABBONATALE\nFATHERCHRISTMAS\nBABCHRISTMASBONATALLEFATHER",
"output": "NO"
},
{
"input": "B\nA\nAB",
"output": "YES"
},
{
"input": "ONDOL\nJNPB\nONLNJBODP",
"output": "YES"
},
{
"input": "Y\nW\nYW",
"output": "YES"
},
{
"input": "OI\nM\nIMO",
"output": "YES"
},
{
"input": "VFQRWWWACX\nGHZJPOQUSXRAQDGOGMR\nOPAWDOUSGWWCGQXXQAZJRQRGHRMVF",
"output": "YES"
},
{
"input": "JUTCN\nPIGMZOPMEUFADQBW\nNWQGZMAIPUPOMCDUB",
"output": "NO"
},
{
"input": "Z\nO\nZOCNDOLTBZKQLTBOLDEGXRHZGTTPBJBLSJCVSVXISQZCSFDEBXRCSGBGTHWOVIXYHACAGBRYBKBJAEPIQZHVEGLYH",
"output": "NO"
},
{
"input": "IQ\nOQ\nQOQIGGKFNHJSGCGM",
"output": "NO"
},
{
"input": "ROUWANOPNIGTVMIITVMZ\nOQTUPZMTKUGY\nVTVNGZITGPUNPMQOOATUUIYIWMMKZOTR",
"output": "YES"
},
{
"input": "OVQELLOGFIOLEHXMEMBJDIGBPGEYFG\nJNKFPFFIJOFHRIFHXEWYZOPDJBZTJZKBWQTECNHRFSJPJOAPQT\nYAIPFFFEXJJNEJPLREIGODEGQZVMCOBDFKWTMWJSBEBTOFFQOHIQJLHFNXIGOHEZRZLFOKJBJPTPHPGY",
"output": "YES"
},
{
"input": "NBJGVNGUISUXQTBOBKYHQCOOVQWUXWPXBUDLXPKX\nNSFQDFUMQDQWQ\nWXKKVNTDQQFXCUQBIMQGQHSLVGWSBFYBUPOWPBDUUJUXQNOQDNXOX",
"output": "YES"
},
{
"input": "IJHHGKCXWDBRWJUPRDBZJLNTTNWKXLUGJSBWBOAUKWRAQWGFNL\nNJMWRMBCNPHXTDQQNZ\nWDNJRCLILNQRHWBANLTXWMJBPKUPGKJDJZAQWKTZFBRCTXHHBNXRGUQUNBNMWODGSJWW",
"output": "YES"
},
{
"input": "SRROWANGUGZHCIEFYMQVTWVOMDWPUZJFRDUMVFHYNHNTTGNXCJ\nDJYWGLBFCCECXFHOLORDGDCNRHPWXNHXFCXQCEZUHRRNAEKUIX\nWCUJDNYHNHYOPWMHLDCDYRWBVOGHFFUKOZTXJRXJHRGWICCMRNEVNEGQWTZPNFCSHDRFCFQDCXMHTLUGZAXOFNXNVGUEXIACRERU",
"output": "YES"
},
{
"input": "H\nJKFGHMIAHNDBMFXWYQLZRSVNOTEGCQSVUBYUOZBTNKTXPFQDCMKAGFITEUGOYDFIYQIORMFJEOJDNTFVIQEBICSNGKOSNLNXJWC\nBQSVDOGIHCHXSYNYTQFCHNJGYFIXTSOQINZOKSVQJMTKNTGFNXAVTUYEONMBQMGJLEWJOFGEARIOPKFUFCEMUBRBDNIIDFZDCLWK",
"output": "YES"
},
{
"input": "DSWNZRFVXQ\nPVULCZGOOU\nUOLVZXNUPOQRZGWFVDSCANQTCLEIE",
"output": "NO"
},
{
"input": "EUHTSCENIPXLTSBMLFHD\nIZAVSZPDLXOAGESUSE\nLXAELAZ",
"output": "NO"
},
{
"input": "WYSJFEREGELSKRQRXDXCGBODEFZVSI\nPEJKMGFLBFFDWRCRFSHVEFLEBTJCVCHRJTLDTISHPOGFWPLEWNYJLMXWIAOTYOXMV\nHXERTZWLEXTPIOTFRVMEJVYFFJLRPFMXDEBNSGCEOFFCWTKIDDGCFYSJKGLHBORWEPLDRXRSJYBGASSVCMHEEJFLVI",
"output": "NO"
},
{
"input": "EPBMDIUQAAUGLBIETKOKFLMTCVEPETWJRHHYKCKU\nHGMAETVPCFZYNNKDQXVXUALHYLOTCHM\nECGXACVKEYMCEDOTMKAUFHLHOMT",
"output": "NO"
},
{
"input": "NUBKQEJHALANSHEIFUZHYEZKKDRFHQKAJHLAOWTZIMOCWOVVDW\nEFVOBIGAUAUSQGVSNBKNOBDMINODMFSHDL\nKLAMKNTHBFFOHVKWICHBKNDDQNEISODUSDNLUSIOAVWY",
"output": "NO"
},
{
"input": "VXINHOMEQCATZUGAJEIUIZZLPYFGUTVLNBNWCUVMEENUXKBWBGZTMRJJVJDLVSLBABVCEUDDSQFHOYPYQTWVAGTWOLKYISAGHBMC\nZMRGXPZSHOGCSAECAPGVOIGCWEOWWOJXLGYRDMPXBLOKZVRACPYQLEQGFQCVYXAGBEBELUTDAYEAGPFKXRULZCKFHZCHVCWIRGPK\nRCVUXGQVNWFGRUDLLENNDQEJHYYVWMKTLOVIPELKPWCLSQPTAXAYEMGWCBXEVAIZGGDDRBRT",
"output": "NO"
},
{
"input": "PHBDHHWUUTZAHELGSGGOPOQXSXEZIXHZTOKYFBQLBDYWPVCNQSXHEAXRRPVHFJBVBYCJIFOTQTWSUOWXLKMVJJBNLGTVITWTCZZ\nFUPDLNVIHRWTEEEHOOEC\nLOUSUUSZCHJBPEWIILUOXEXRQNCJEGTOBRVZLTTZAHTKVEJSNGHFTAYGY",
"output": "NO"
},
{
"input": "GDSLNIIKTO\nJF\nPDQYFKDTNOLI",
"output": "NO"
},
{
"input": "AHOKHEKKPJLJIIWJRCGY\nORELJCSIX\nZVWPXVFWFSWOXXLIHJKPXIOKRELYE",
"output": "NO"
},
{
"input": "ZWCOJFORBPHXCOVJIDPKVECMHVHCOC\nTEV\nJVGTBFTLFVIEPCCHODOFOMCVZHWXVCPEH",
"output": "NO"
},
{
"input": "AGFIGYWJLVMYZGNQHEHWKJIAWBPUAQFERMCDROFN\nPMJNHMVNRGCYZAVRWNDSMLSZHFNYIUWFPUSKKIGU\nMCDVPPRXGUAYLSDRHRURZASXUWZSIIEZCPXUVEONKNGNWRYGOSFMCKESMVJZHWWUCHWDQMLASLNNMHAU",
"output": "NO"
},
{
"input": "XLOWVFCZSSXCSYQTIIDKHNTKNKEEDFMDZKXSPVLBIDIREDUAIN\nZKIWNDGBISDB\nSLPKLYFYSRNRMOSWYLJJDGFFENPOXYLPZFTQDANKBDNZDIIEWSUTTKYBKVICLG",
"output": "NO"
},
{
"input": "PMUKBTRKFIAYVGBKHZHUSJYSSEPEOEWPOSPJLWLOCTUYZODLTUAFCMVKGQKRRUSOMPAYOTBTFPXYAZXLOADDEJBDLYOTXJCJYTHA\nTWRRAJLCQJTKOKWCGUH\nEWDPNXVCXWCDQCOYKKSOYTFSZTOOPKPRDKFJDETKSRAJRVCPDOBWUGPYRJPUWJYWCBLKOOTUPBESTOFXZHTYLLMCAXDYAEBUTAHM",
"output": "NO"
},
{
"input": "QMIMGQRQDMJDPNFEFXSXQMCHEJKTWCTCVZPUAYICOIRYOWKUSIWXJLHDYWSBOITHTMINXFKBKAWZTXXBJIVYCRWKXNKIYKLDDXL\nV\nFWACCXBVDOJFIUAVYRALBYJKXXWIIFORRUHKHCXLDBZMXIYJWISFEAWTIQFIZSBXMKNOCQKVKRWDNDAMQSTKYLDNYVTUCGOJXJTW",
"output": "NO"
},
{
"input": "XJXPVOOQODELPPWUISSYVVXRJTYBPDHJNENQEVQNVFIXSESKXVYPVVHPMOSX\nLEXOPFPVPSZK\nZVXVPYEYOYXVOISVLXPOVHEQVXPNQJIOPFDTXEUNMPEPPHELNXKKWSVSOXSBPSJDPVJVSRFQ",
"output": "YES"
},
{
"input": "OSKFHGYNQLSRFSAHPXKGPXUHXTRBJNAQRBSSWJVEENLJCDDHFXVCUNPZAIVVO\nFNUOCXAGRRHNDJAHVVLGGEZQHWARYHENBKHP\nUOEFNWVXCUNERLKVTHAGPSHKHDYFPYWZHJKHQLSNFBJHVJANRXCNSDUGVDABGHVAOVHBJZXGRACHRXEGNRPQEAPORQSILNXFS",
"output": "YES"
},
{
"input": "VYXYVVACMLPDHONBUTQFZTRREERBLKUJYKAHZRCTRLRCLOZYWVPBRGDQPFPQIF\nFE\nRNRPEVDRLYUQFYRZBCQLCYZEABKLRXCJLKVZBVFUEYRATOMDRTHFPGOWQVTIFPPH",
"output": "YES"
},
{
"input": "WYXUZQJQNLASEGLHPMSARWMTTQMQLVAZLGHPIZTRVTCXDXBOLNXZPOFCTEHCXBZ\nBLQZRRWP\nGIQZXPLTTMNHQVWPPEAPLOCDMBSTHRCFLCQRRZXLVAOQEGZBRUZJXXZTMAWLZHSLWNQTYXB",
"output": "YES"
},
{
"input": "MKVJTSSTDGKPVVDPYSRJJYEVGKBMSIOKHLZQAEWLRIBINVRDAJIBCEITKDHUCCVY\nPUJJQFHOGZKTAVNUGKQUHMKTNHCCTI\nQVJKUSIGTSVYUMOMLEGHWYKSKQTGATTKBNTKCJKJPCAIRJIRMHKBIZISEGFHVUVQZBDERJCVAKDLNTHUDCHONDCVVJIYPP",
"output": "YES"
},
{
"input": "OKNJOEYVMZXJMLVJHCSPLUCNYGTDASKSGKKCRVIDGEIBEWRVBVRVZZTLMCJLXHJIA\nDJBFVRTARTFZOWN\nAGHNVUNJVCPLWSVYBJKZSVTFGLELZASLWTIXDDJXCZDICTVIJOTMVEYOVRNMJGRKKHRMEBORAKFCZJBR",
"output": "YES"
},
{
"input": "OQZACLPSAGYDWHFXDFYFRRXWGIEJGSXWUONAFWNFXDTGVNDEWNQPHUXUJNZWWLBPYL\nOHBKWRFDRQUAFRCMT\nWIQRYXRJQWWRUWCYXNXALKFZGXFTLOODWRDPGURFUFUQOHPWBASZNVWXNCAGHWEHFYESJNFBMNFDDAPLDGT",
"output": "YES"
},
{
"input": "OVIRQRFQOOWVDEPLCJETWQSINIOPLTLXHSQWUYUJNFBMKDNOSHNJQQCDHZOJVPRYVSV\nMYYDQKOOYPOOUELCRIT\nNZSOTVLJTTVQLFHDQEJONEOUOFOLYVSOIYUDNOSIQVIRMVOERCLMYSHPCQKIDRDOQPCUPQBWWRYYOXJWJQPNKH",
"output": "YES"
},
{
"input": "WGMBZWNMSJXNGDUQUJTCNXDSJJLYRDOPEGPQXYUGBESDLFTJRZDDCAAFGCOCYCQMDBWK\nYOBMOVYTUATTFGJLYUQD\nDYXVTLQCYFJUNJTUXPUYOPCBCLBWNSDUJRJGWDOJDSQAAMUOJWSYERDYDXYTMTOTMQCGQZDCGNFBALGGDFKZMEBG",
"output": "YES"
},
{
"input": "CWLRBPMEZCXAPUUQFXCUHAQTLPBTXUUKWVXKBHKNSSJFEXLZMXGVFHHVTPYAQYTIKXJJE\nMUFOSEUEXEQTOVLGDSCWM\nJUKEQCXOXWEHCGKFPBIGMWVJLXUONFXBYTUAXERYTXKCESKLXAEHVPZMMUFTHLXTTZSDMBJLQPEUWCVUHSQQVUASPF",
"output": "YES"
},
{
"input": "IDQRX\nWETHO\nODPDGBHVUVSSISROHQJTUKPUCLXABIZQQPPBPKOSEWGEHRSRRNBAVLYEMZISMWWGKHVTXKUGUXEFBSWOIWUHRJGMWBMHQLDZHBWA",
"output": "NO"
},
{
"input": "IXFDY\nJRMOU\nDF",
"output": "NO"
},
{
"input": "JPSPZ\nUGCUB\nJMZZZZZZZZ",
"output": "NO"
},
{
"input": "AC\nA\nBBA",
"output": "NO"
},
{
"input": "UIKWWKXLSHTOOZOVGXKYSOJEHAUEEG\nKZXQDWJJWRXFHKJDQHJK\nXMZHTFOGEXAUJXXJUYVJIFOTKLZHDKELJWERHMGAWGKWAQKEKHIDWGGZVYOHKXRPWSJDPESFJUMKQYWBYUTHQYEFZUGKQOBHYDWB",
"output": "NO"
},
{
"input": "PXWRXRPFLR\nPJRWWXIVHODV\nXW",
"output": "NO"
},
{
"input": "CHTAZVHGSHCVIBK\nEQINEBKXEPYJSAZIMLDF\nZCZZZZDZMCZZEZDZZEZZZZQZZBZZZOZZCZE",
"output": "NO"
},
{
"input": "GXPZFSELJJNDAXYRV\nUYBKPMVBSOVOJWMONLTJOJCNQKMTAHEWLHOWIIBH\nHCWNFWJPEJIWOVPTBMVCRJLSISSVNOHCKLBFMIUAIMASQWPXEYXBOXQGFEMYJLBKDCZIMJNHOJEDGGANIVYKQTUOSOVOPWHVJGXH",
"output": "NO"
},
{
"input": "LFGJCJJDUTUP\nOVSBILTIYCJCRHKCIXCETJQJJ\nGIJJTJCLTJJJ",
"output": "NO"
},
{
"input": "GIO\nPRL\nPRL",
"output": "NO"
},
{
"input": "A\nB\nABC",
"output": "NO"
},
{
"input": "KKK\nKKK\nZZZZZ",
"output": "NO"
},
{
"input": "ZMYGQLDBLAPN\nZFJBKWHROVNPSJQUDFTHOCGREUFLYIWYICD\nZMJZZEDAZANKZZZZZZEZZBZDZZZZZZKHZZFZZZDZNZMDZZA",
"output": "NO"
}
] | 1,696,870,550
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 54
| 92
| 307,200
|
from collections import Counter
a=input()
b=input()
c=input()
x=Counter(a)
y=Counter(b)
z=Counter(c)
if x+y ==z:
print("YES")
else:
print("NO")
|
Title: Amusing Joke
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
So, the New Year holidays are over. Santa Claus and his colleagues can take a rest and have guests at last. When two "New Year and Christmas Men" meet, thear assistants cut out of cardboard the letters from the guest's name and the host's name in honor of this event. Then the hung the letters above the main entrance. One night, when everyone went to bed, someone took all the letters of our characters' names. Then he may have shuffled the letters and put them in one pile in front of the door.
The next morning it was impossible to find the culprit who had made the disorder. But everybody wondered whether it is possible to restore the names of the host and his guests from the letters lying at the door? That is, we need to verify that there are no extra letters, and that nobody will need to cut more letters.
Help the "New Year and Christmas Men" and their friends to cope with this problem. You are given both inscriptions that hung over the front door the previous night, and a pile of letters that were found at the front door next morning.
Input Specification:
The input file consists of three lines: the first line contains the guest's name, the second line contains the name of the residence host and the third line contains letters in a pile that were found at the door in the morning. All lines are not empty and contain only uppercase Latin letters. The length of each line does not exceed 100.
Output Specification:
Print "YES" without the quotes, if the letters in the pile could be permuted to make the names of the "New Year and Christmas Men". Otherwise, print "NO" without the quotes.
Demo Input:
['SANTACLAUS\nDEDMOROZ\nSANTAMOROZDEDCLAUS\n', 'PAPAINOEL\nJOULUPUKKI\nJOULNAPAOILELUPUKKI\n', 'BABBONATALE\nFATHERCHRISTMAS\nBABCHRISTMASBONATALLEFATHER\n']
Demo Output:
['YES\n', 'NO\n', 'NO\n']
Note:
In the first sample the letters written in the last line can be used to write the names and there won't be any extra letters left.
In the second sample letter "P" is missing from the pile and there's an extra letter "L".
In the third sample there's an extra letter "L".
|
```python
from collections import Counter
a=input()
b=input()
c=input()
x=Counter(a)
y=Counter(b)
z=Counter(c)
if x+y ==z:
print("YES")
else:
print("NO")
```
| 3
|
|
0
|
none
|
none
|
none
| 0
|
[
"none"
] | null | null |
Natasha is going to fly on a rocket to Mars and return to Earth. Also, on the way to Mars, she will land on $n - 2$ intermediate planets. Formally: we number all the planets from $1$ to $n$. $1$ is Earth, $n$ is Mars. Natasha will make exactly $n$ flights: $1 \to 2 \to \ldots n \to 1$.
Flight from $x$ to $y$ consists of two phases: take-off from planet $x$ and landing to planet $y$. This way, the overall itinerary of the trip will be: the $1$-st planet $\to$ take-off from the $1$-st planet $\to$ landing to the $2$-nd planet $\to$ $2$-nd planet $\to$ take-off from the $2$-nd planet $\to$ $\ldots$ $\to$ landing to the $n$-th planet $\to$ the $n$-th planet $\to$ take-off from the $n$-th planet $\to$ landing to the $1$-st planet $\to$ the $1$-st planet.
The mass of the rocket together with all the useful cargo (but without fuel) is $m$ tons. However, Natasha does not know how much fuel to load into the rocket. Unfortunately, fuel can only be loaded on Earth, so if the rocket runs out of fuel on some other planet, Natasha will not be able to return home. Fuel is needed to take-off from each planet and to land to each planet. It is known that $1$ ton of fuel can lift off $a_i$ tons of rocket from the $i$-th planet or to land $b_i$ tons of rocket onto the $i$-th planet.
For example, if the weight of rocket is $9$ tons, weight of fuel is $3$ tons and take-off coefficient is $8$ ($a_i = 8$), then $1.5$ tons of fuel will be burnt (since $1.5 \cdot 8 = 9 + 3$). The new weight of fuel after take-off will be $1.5$ tons.
Please note, that it is allowed to burn non-integral amount of fuel during take-off or landing, and the amount of initial fuel can be non-integral as well.
Help Natasha to calculate the minimum mass of fuel to load into the rocket. Note, that the rocket must spend fuel to carry both useful cargo and the fuel itself. However, it doesn't need to carry the fuel which has already been burnt. Assume, that the rocket takes off and lands instantly.
|
The first line contains a single integer $n$ ($2 \le n \le 1000$) — number of planets.
The second line contains the only integer $m$ ($1 \le m \le 1000$) — weight of the payload.
The third line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 1000$), where $a_i$ is the number of tons, which can be lifted off by one ton of fuel.
The fourth line contains $n$ integers $b_1, b_2, \ldots, b_n$ ($1 \le b_i \le 1000$), where $b_i$ is the number of tons, which can be landed by one ton of fuel.
It is guaranteed, that if Natasha can make a flight, then it takes no more than $10^9$ tons of fuel.
|
If Natasha can fly to Mars through $(n - 2)$ planets and return to Earth, print the minimum mass of fuel (in tons) that Natasha should take. Otherwise, print a single number $-1$.
It is guaranteed, that if Natasha can make a flight, then it takes no more than $10^9$ tons of fuel.
The answer will be considered correct if its absolute or relative error doesn't exceed $10^{-6}$. Formally, let your answer be $p$, and the jury's answer be $q$. Your answer is considered correct if $\frac{|p - q|}{\max{(1, |q|)}} \le 10^{-6}$.
|
[
"2\n12\n11 8\n7 5\n",
"3\n1\n1 4 1\n2 5 3\n",
"6\n2\n4 6 3 3 5 6\n2 6 3 6 5 3\n"
] |
[
"10.0000000000\n",
"-1\n",
"85.4800000000\n"
] |
Let's consider the first example.
Initially, the mass of a rocket with fuel is $22$ tons.
- At take-off from Earth one ton of fuel can lift off $11$ tons of cargo, so to lift off $22$ tons you need to burn $2$ tons of fuel. Remaining weight of the rocket with fuel is $20$ tons.- During landing on Mars, one ton of fuel can land $5$ tons of cargo, so for landing $20$ tons you will need to burn $4$ tons of fuel. There will be $16$ tons of the rocket with fuel remaining.- While taking off from Mars, one ton of fuel can raise $8$ tons of cargo, so to lift off $16$ tons you will need to burn $2$ tons of fuel. There will be $14$ tons of rocket with fuel after that.- During landing on Earth, one ton of fuel can land $7$ tons of cargo, so for landing $14$ tons you will need to burn $2$ tons of fuel. Remaining weight is $12$ tons, that is, a rocket without any fuel.
In the second case, the rocket will not be able even to take off from Earth.
| 0
|
[
{
"input": "2\n12\n11 8\n7 5",
"output": "10.0000000000"
},
{
"input": "3\n1\n1 4 1\n2 5 3",
"output": "-1"
},
{
"input": "6\n2\n4 6 3 3 5 6\n2 6 3 6 5 3",
"output": "85.4800000000"
},
{
"input": "3\n3\n1 2 1\n2 2 2",
"output": "-1"
},
{
"input": "4\n4\n2 3 2 2\n2 3 4 3",
"output": "284.0000000000"
},
{
"input": "5\n2\n1 2 2 1 2\n4 5 1 4 1",
"output": "-1"
},
{
"input": "7\n7\n3 2 6 2 2 2 5\n4 7 5 6 2 2 2",
"output": "4697.0000000000"
},
{
"input": "2\n1000\n12 34\n56 78",
"output": "159.2650775220"
},
{
"input": "8\n4\n1 1 4 1 3 1 8 1\n1 1 1 1 1 3 1 2",
"output": "-1"
},
{
"input": "9\n2\n8 7 1 1 3 7 1 2 4\n4 1 1 8 7 7 1 1 5",
"output": "-1"
},
{
"input": "10\n10\n9 8 8 7 2 10 2 9 2 4\n3 10 6 2 6 6 5 9 4 5",
"output": "3075.7142857143"
},
{
"input": "20\n12\n3 9 12 13 16 18 9 9 19 7 2 5 17 14 7 7 15 16 5 7\n16 9 13 5 14 10 4 3 16 16 12 20 17 11 4 5 5 14 6 15",
"output": "4670.8944493007"
},
{
"input": "30\n5\n25 1 28 1 27 25 24 1 28 1 12 1 29 16 1 1 1 1 27 1 24 1 1 1 1 1 1 1 30 3\n1 22 1 1 24 2 13 1 16 21 1 27 14 16 1 1 7 1 1 18 1 23 10 1 15 16 16 15 10 1",
"output": "-1"
},
{
"input": "40\n13\n1 1 1 23 21 1 1 1 1 1 40 32 1 21 1 8 1 1 36 15 33 1 30 1 1 37 22 1 4 39 7 1 9 37 1 1 1 28 1 1\n1 34 17 1 38 20 8 14 1 18 29 3 21 21 18 14 1 11 1 1 23 1 25 1 14 1 7 31 9 20 25 1 1 1 1 8 26 12 1 1",
"output": "-1"
},
{
"input": "50\n19\n17 7 13 42 19 25 10 25 2 36 17 40 30 48 34 43 34 20 5 15 8 7 43 35 21 40 40 19 30 11 49 7 24 23 43 30 38 49 10 8 30 11 28 50 48 25 25 20 48 24\n49 35 10 22 24 50 50 7 6 13 16 35 12 43 50 44 35 33 38 49 26 18 23 37 7 38 23 20 28 48 41 16 6 32 32 34 11 39 38 9 38 23 16 31 37 47 33 20 46 30",
"output": "7832.1821424977"
},
{
"input": "60\n21\n11 35 1 28 39 13 19 56 13 13 21 25 1 1 23 1 52 26 53 1 1 1 30 39 1 7 1 1 3 1 1 10 1 1 37 1 1 25 1 1 1 53 1 3 48 1 6 5 4 15 1 14 25 53 25 38 27 1 1 1\n1 1 1 35 40 58 10 22 1 56 1 59 1 6 33 1 1 1 1 18 14 1 1 40 25 47 1 34 1 1 53 1 1 25 1 45 1 1 25 34 3 1 1 1 53 27 11 58 1 1 1 10 12 1 1 1 31 52 1 1",
"output": "-1"
},
{
"input": "70\n69\n70 66 57 58 24 60 39 2 48 61 65 22 10 26 68 62 48 25 12 14 45 57 6 30 48 15 46 33 42 28 69 42 64 25 24 8 62 12 68 53 55 20 32 70 3 5 41 49 16 26 2 34 34 20 39 65 18 47 62 31 39 28 61 67 7 14 31 31 53 54\n40 33 24 20 68 20 22 39 53 56 48 38 59 45 47 46 7 69 11 58 61 40 35 38 62 66 18 36 44 48 67 24 14 27 67 63 68 30 50 6 58 7 6 35 20 58 6 12 12 23 14 2 63 27 29 22 49 16 55 40 70 27 27 70 42 38 66 55 69 47",
"output": "217989.4794743629"
},
{
"input": "80\n21\n65 4 26 25 1 1 1 1 1 1 60 1 29 43 48 6 48 13 29 1 1 62 1 1 1 1 1 1 1 26 9 1 22 1 35 13 66 36 1 1 1 38 55 21 70 1 58 70 1 1 38 1 1 20 1 1 51 1 1 28 1 23 11 1 39 47 1 52 41 1 63 1 1 52 1 45 11 10 80 1\n1 1 25 30 1 1 55 54 1 48 10 37 22 1 74 1 78 13 1 65 32 1 1 1 1 69 5 59 1 1 65 1 40 1 31 1 1 75 54 1 60 1 1 1 1 1 1 1 11 29 36 1 72 71 52 1 1 1 37 1 1 75 43 9 53 1 62 1 29 1 40 27 59 74 41 53 19 30 1 73",
"output": "-1"
},
{
"input": "90\n35\n1 68 16 30 24 1 1 1 35 1 1 67 1 1 1 1 33 16 37 77 83 1 77 26 1 1 68 67 70 62 1 47 1 1 1 84 1 65 1 32 83 1 1 1 28 1 71 76 84 1 1 5 1 74 10 1 1 1 38 87 13 1 7 66 81 49 1 9 1 11 1 25 1 1 1 1 7 1 1 36 61 47 51 1 1 69 40 1 37 1\n40 1 21 1 19 51 37 52 64 1 86 1 5 24 1 1 1 19 36 1 1 77 24 4 1 18 89 1 1 1 1 1 29 22 1 80 32 36 6 1 63 1 30 1 1 1 86 79 73 52 9 1 1 11 7 1 25 20 1 20 1 49 1 37 1 41 1 1 1 1 54 55 1 10 1 1 1 1 1 1 66 1 68 1 1 1 1 53 1 1",
"output": "-1"
},
{
"input": "2\n1\n1 1\n1 1",
"output": "-1"
},
{
"input": "2\n1\n1 1\n2 2",
"output": "-1"
},
{
"input": "2\n1\n2 2\n1 1",
"output": "-1"
},
{
"input": "2\n1\n2 2\n2 2",
"output": "15.0000000000"
},
{
"input": "2\n2\n1 1\n1 1",
"output": "-1"
},
{
"input": "2\n2\n1 1\n2 2",
"output": "-1"
},
{
"input": "2\n2\n2 2\n1 1",
"output": "-1"
},
{
"input": "2\n2\n2 2\n2 2",
"output": "30.0000000000"
},
{
"input": "40\n55\n1 382 1 1 1 629 111 689 396 614 1 1 995 148 7 820 913 1 1 169 157 1 702 1 159 1 1 226 1 253 1 319 1 130 1 1 1 466 1 756\n1 23 555 1 412 1 1 373 316 234 888 1 112 818 33 443 313 1 235 1 1 610 110 535 1 445 1 386 1 1 758 1 292 1 862 1 244 428 530 1",
"output": "-1"
},
{
"input": "49\n1\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100\n3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3",
"output": "695580114.6380882263"
},
{
"input": "2\n12\n11 8\n1 1",
"output": "-1"
},
{
"input": "3\n3\n7 11 17\n19 31 33",
"output": "1.6012429470"
}
] | 1,536,867,207
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 76
| 187
| 0
|
from sys import stdin
n=int(stdin.readline())
m=int(stdin.readline())
a=[int(x) for x in stdin.readline().split()]
b=[int(x) for x in stdin.readline().split()]
w = m
for i in range(n):
ax = a[-i-1]
bx = b[-i]
if ax == 1 or bx == 1:
print(-1)
exit()
w += w/(bx-1.0)
w += w/(ax-1.0)
print(w-m)
|
Title: none
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Natasha is going to fly on a rocket to Mars and return to Earth. Also, on the way to Mars, she will land on $n - 2$ intermediate planets. Formally: we number all the planets from $1$ to $n$. $1$ is Earth, $n$ is Mars. Natasha will make exactly $n$ flights: $1 \to 2 \to \ldots n \to 1$.
Flight from $x$ to $y$ consists of two phases: take-off from planet $x$ and landing to planet $y$. This way, the overall itinerary of the trip will be: the $1$-st planet $\to$ take-off from the $1$-st planet $\to$ landing to the $2$-nd planet $\to$ $2$-nd planet $\to$ take-off from the $2$-nd planet $\to$ $\ldots$ $\to$ landing to the $n$-th planet $\to$ the $n$-th planet $\to$ take-off from the $n$-th planet $\to$ landing to the $1$-st planet $\to$ the $1$-st planet.
The mass of the rocket together with all the useful cargo (but without fuel) is $m$ tons. However, Natasha does not know how much fuel to load into the rocket. Unfortunately, fuel can only be loaded on Earth, so if the rocket runs out of fuel on some other planet, Natasha will not be able to return home. Fuel is needed to take-off from each planet and to land to each planet. It is known that $1$ ton of fuel can lift off $a_i$ tons of rocket from the $i$-th planet or to land $b_i$ tons of rocket onto the $i$-th planet.
For example, if the weight of rocket is $9$ tons, weight of fuel is $3$ tons and take-off coefficient is $8$ ($a_i = 8$), then $1.5$ tons of fuel will be burnt (since $1.5 \cdot 8 = 9 + 3$). The new weight of fuel after take-off will be $1.5$ tons.
Please note, that it is allowed to burn non-integral amount of fuel during take-off or landing, and the amount of initial fuel can be non-integral as well.
Help Natasha to calculate the minimum mass of fuel to load into the rocket. Note, that the rocket must spend fuel to carry both useful cargo and the fuel itself. However, it doesn't need to carry the fuel which has already been burnt. Assume, that the rocket takes off and lands instantly.
Input Specification:
The first line contains a single integer $n$ ($2 \le n \le 1000$) — number of planets.
The second line contains the only integer $m$ ($1 \le m \le 1000$) — weight of the payload.
The third line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 1000$), where $a_i$ is the number of tons, which can be lifted off by one ton of fuel.
The fourth line contains $n$ integers $b_1, b_2, \ldots, b_n$ ($1 \le b_i \le 1000$), where $b_i$ is the number of tons, which can be landed by one ton of fuel.
It is guaranteed, that if Natasha can make a flight, then it takes no more than $10^9$ tons of fuel.
Output Specification:
If Natasha can fly to Mars through $(n - 2)$ planets and return to Earth, print the minimum mass of fuel (in tons) that Natasha should take. Otherwise, print a single number $-1$.
It is guaranteed, that if Natasha can make a flight, then it takes no more than $10^9$ tons of fuel.
The answer will be considered correct if its absolute or relative error doesn't exceed $10^{-6}$. Formally, let your answer be $p$, and the jury's answer be $q$. Your answer is considered correct if $\frac{|p - q|}{\max{(1, |q|)}} \le 10^{-6}$.
Demo Input:
['2\n12\n11 8\n7 5\n', '3\n1\n1 4 1\n2 5 3\n', '6\n2\n4 6 3 3 5 6\n2 6 3 6 5 3\n']
Demo Output:
['10.0000000000\n', '-1\n', '85.4800000000\n']
Note:
Let's consider the first example.
Initially, the mass of a rocket with fuel is $22$ tons.
- At take-off from Earth one ton of fuel can lift off $11$ tons of cargo, so to lift off $22$ tons you need to burn $2$ tons of fuel. Remaining weight of the rocket with fuel is $20$ tons.- During landing on Mars, one ton of fuel can land $5$ tons of cargo, so for landing $20$ tons you will need to burn $4$ tons of fuel. There will be $16$ tons of the rocket with fuel remaining.- While taking off from Mars, one ton of fuel can raise $8$ tons of cargo, so to lift off $16$ tons you will need to burn $2$ tons of fuel. There will be $14$ tons of rocket with fuel after that.- During landing on Earth, one ton of fuel can land $7$ tons of cargo, so for landing $14$ tons you will need to burn $2$ tons of fuel. Remaining weight is $12$ tons, that is, a rocket without any fuel.
In the second case, the rocket will not be able even to take off from Earth.
|
```python
from sys import stdin
n=int(stdin.readline())
m=int(stdin.readline())
a=[int(x) for x in stdin.readline().split()]
b=[int(x) for x in stdin.readline().split()]
w = m
for i in range(n):
ax = a[-i-1]
bx = b[-i]
if ax == 1 or bx == 1:
print(-1)
exit()
w += w/(bx-1.0)
w += w/(ax-1.0)
print(w-m)
```
| 3
|
|
540
|
A
|
Combination Lock
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Scrooge McDuck keeps his most treasured savings in a home safe with a combination lock. Each time he wants to put there the treasures that he's earned fair and square, he has to open the lock.
The combination lock is represented by *n* rotating disks with digits from 0 to 9 written on them. Scrooge McDuck has to turn some disks so that the combination of digits on the disks forms a secret combination. In one move, he can rotate one disk one digit forwards or backwards. In particular, in one move he can go from digit 0 to digit 9 and vice versa. What minimum number of actions does he need for that?
|
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=1000) — the number of disks on the combination lock.
The second line contains a string of *n* digits — the original state of the disks.
The third line contains a string of *n* digits — Scrooge McDuck's combination that opens the lock.
|
Print a single integer — the minimum number of moves Scrooge McDuck needs to open the lock.
|
[
"5\n82195\n64723\n"
] |
[
"13\n"
] |
In the sample he needs 13 moves:
- 1 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/b8967f65a723782358b93eff9ce69f336817cf70.png" style="max-width: 100.0%;max-height: 100.0%;"/> - 2 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/07fa58573ece0d32c4d555e498d2b24d2f70f36a.png" style="max-width: 100.0%;max-height: 100.0%;"/> - 3 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/cc2275d9252aae35a6867c6a5b4ba7596e9a7626.png" style="max-width: 100.0%;max-height: 100.0%;"/> - 4 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/b100aea470fcaaab4e9529b234ba0d7875943c10.png" style="max-width: 100.0%;max-height: 100.0%;"/> - 5 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/eb2cbe4324cebca65b85816262a85e473cd65967.png" style="max-width: 100.0%;max-height: 100.0%;"/>
| 500
|
[
{
"input": "5\n82195\n64723",
"output": "13"
},
{
"input": "12\n102021090898\n010212908089",
"output": "16"
},
{
"input": "1\n8\n1",
"output": "3"
},
{
"input": "2\n83\n57",
"output": "7"
},
{
"input": "10\n0728592530\n1362615763",
"output": "27"
},
{
"input": "100\n4176196363694273682807653052945037727131821799902563705176501742060696655282954944720643131654235909\n3459912084922154505910287499879975659298239371519889866585472674423008837878123067103005344986554746",
"output": "245"
},
{
"input": "1\n8\n1",
"output": "3"
},
{
"input": "2\n83\n57",
"output": "7"
},
{
"input": "3\n607\n684",
"output": "5"
},
{
"input": "4\n0809\n0636",
"output": "8"
},
{
"input": "5\n84284\n08941",
"output": "16"
},
{
"input": "25\n8037856825987124762280548\n9519431339078678836940020",
"output": "72"
},
{
"input": "125\n23269567683904664184142384849516523616863461607751021071772615078579713054027902974007001544768640273491193035874486891541257\n47635110303703399505805044019026243695451609639556649012447370081552870340011971572363458960190590266459684717415349529509024",
"output": "305"
},
{
"input": "5\n84284\n08941",
"output": "16"
},
{
"input": "25\n8037856825987124762285484\n9519431339078678836940202",
"output": "74"
},
{
"input": "125\n23269567689466418414238845152168634610771021717726157879713054270294007001544768647391193035874486891412573389247025830678706\n47635110307339950580504010224954516093956649124473708152870340117152363458960190596659684717415349529090241694059599629136831",
"output": "357"
},
{
"input": "5\n84284\n08941",
"output": "16"
},
{
"input": "25\n8378525987476228048406972\n9194339078883694020217816",
"output": "55"
},
{
"input": "125\n23269576839046618414238484916523616863461607750210717761078579713054027902974007015447686027349193035874486891541257338624472\n47635103037033950580504401926243695451609639556490124437081552870340011971572363489601905026645984717415349529509024169604599",
"output": "274"
},
{
"input": "1\n0\n0",
"output": "0"
},
{
"input": "1\n7\n7",
"output": "0"
},
{
"input": "1\n0\n5",
"output": "5"
},
{
"input": "1\n2\n7",
"output": "5"
},
{
"input": "1\n7\n9",
"output": "2"
},
{
"input": "1\n9\n7",
"output": "2"
},
{
"input": "1\n2\n9",
"output": "3"
},
{
"input": "1\n9\n2",
"output": "3"
},
{
"input": "25\n3164978461316464614169874\n9413979197249127496597357",
"output": "66"
},
{
"input": "4\n9999\n9999",
"output": "0"
},
{
"input": "2\n11\n11",
"output": "0"
}
] | 1,664,094,986
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 43
| 62
| 0
|
n=int(input())
l=["0","1","2","3","4","5","6","7","8","9"]
s1=input()
s2=input()
res=0
for i in range(len(s1)):
c1=abs(int(s1[i])-int(s2[i]))
c2=10-abs(int(s1[i])-int(s2[i]))
# print(c1,c2)
res+=min(c1,c2)
print(res)
|
Title: Combination Lock
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Scrooge McDuck keeps his most treasured savings in a home safe with a combination lock. Each time he wants to put there the treasures that he's earned fair and square, he has to open the lock.
The combination lock is represented by *n* rotating disks with digits from 0 to 9 written on them. Scrooge McDuck has to turn some disks so that the combination of digits on the disks forms a secret combination. In one move, he can rotate one disk one digit forwards or backwards. In particular, in one move he can go from digit 0 to digit 9 and vice versa. What minimum number of actions does he need for that?
Input Specification:
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=1000) — the number of disks on the combination lock.
The second line contains a string of *n* digits — the original state of the disks.
The third line contains a string of *n* digits — Scrooge McDuck's combination that opens the lock.
Output Specification:
Print a single integer — the minimum number of moves Scrooge McDuck needs to open the lock.
Demo Input:
['5\n82195\n64723\n']
Demo Output:
['13\n']
Note:
In the sample he needs 13 moves:
- 1 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/b8967f65a723782358b93eff9ce69f336817cf70.png" style="max-width: 100.0%;max-height: 100.0%;"/> - 2 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/07fa58573ece0d32c4d555e498d2b24d2f70f36a.png" style="max-width: 100.0%;max-height: 100.0%;"/> - 3 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/cc2275d9252aae35a6867c6a5b4ba7596e9a7626.png" style="max-width: 100.0%;max-height: 100.0%;"/> - 4 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/b100aea470fcaaab4e9529b234ba0d7875943c10.png" style="max-width: 100.0%;max-height: 100.0%;"/> - 5 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/eb2cbe4324cebca65b85816262a85e473cd65967.png" style="max-width: 100.0%;max-height: 100.0%;"/>
|
```python
n=int(input())
l=["0","1","2","3","4","5","6","7","8","9"]
s1=input()
s2=input()
res=0
for i in range(len(s1)):
c1=abs(int(s1[i])-int(s2[i]))
c2=10-abs(int(s1[i])-int(s2[i]))
# print(c1,c2)
res+=min(c1,c2)
print(res)
```
| 3
|
|
982
|
A
|
Row
|
PROGRAMMING
| 1,200
|
[
"brute force",
"constructive algorithms"
] | null | null |
You're given a row with $n$ chairs. We call a seating of people "maximal" if the two following conditions hold:
1. There are no neighbors adjacent to anyone seated. 1. It's impossible to seat one more person without violating the first rule.
The seating is given as a string consisting of zeros and ones ($0$ means that the corresponding seat is empty, $1$ — occupied). The goal is to determine whether this seating is "maximal".
Note that the first and last seats are not adjacent (if $n \ne 2$).
|
The first line contains a single integer $n$ ($1 \leq n \leq 1000$) — the number of chairs.
The next line contains a string of $n$ characters, each of them is either zero or one, describing the seating.
|
Output "Yes" (without quotation marks) if the seating is "maximal". Otherwise print "No".
You are allowed to print letters in whatever case you'd like (uppercase or lowercase).
|
[
"3\n101\n",
"4\n1011\n",
"5\n10001\n"
] |
[
"Yes\n",
"No\n",
"No\n"
] |
In sample case one the given seating is maximal.
In sample case two the person at chair three has a neighbour to the right.
In sample case three it is possible to seat yet another person into chair three.
| 500
|
[
{
"input": "3\n101",
"output": "Yes"
},
{
"input": "4\n1011",
"output": "No"
},
{
"input": "5\n10001",
"output": "No"
},
{
"input": "1\n0",
"output": "No"
},
{
"input": "1\n1",
"output": "Yes"
},
{
"input": "100\n0101001010101001010010010101001010100101001001001010010101010010101001001010101001001001010100101010",
"output": "Yes"
},
{
"input": "4\n0100",
"output": "No"
},
{
"input": "42\n011000100101001001101011011010100010011010",
"output": "No"
},
{
"input": "3\n001",
"output": "No"
},
{
"input": "64\n1001001010010010100101010010010100100101001001001001010100101001",
"output": "Yes"
},
{
"input": "3\n111",
"output": "No"
},
{
"input": "4\n0000",
"output": "No"
},
{
"input": "4\n0001",
"output": "No"
},
{
"input": "4\n0010",
"output": "No"
},
{
"input": "4\n0011",
"output": "No"
},
{
"input": "4\n0101",
"output": "Yes"
},
{
"input": "4\n0110",
"output": "No"
},
{
"input": "4\n0111",
"output": "No"
},
{
"input": "4\n1000",
"output": "No"
},
{
"input": "4\n1001",
"output": "Yes"
},
{
"input": "4\n1010",
"output": "Yes"
},
{
"input": "4\n1100",
"output": "No"
},
{
"input": "4\n1101",
"output": "No"
},
{
"input": "4\n1110",
"output": "No"
},
{
"input": "4\n1111",
"output": "No"
},
{
"input": "2\n00",
"output": "No"
},
{
"input": "2\n01",
"output": "Yes"
},
{
"input": "2\n10",
"output": "Yes"
},
{
"input": "2\n11",
"output": "No"
},
{
"input": "3\n000",
"output": "No"
},
{
"input": "3\n010",
"output": "Yes"
},
{
"input": "3\n011",
"output": "No"
},
{
"input": "3\n100",
"output": "No"
},
{
"input": "3\n110",
"output": "No"
},
{
"input": "100\n0111001010101110001100000010011000100101110010001100111110101110001110101010111000010010011000000110",
"output": "No"
},
{
"input": "357\n100101010010010010010100101001001010101010100100100100101001010101001010010100101001010100101001010010100100101001010101010101001001010100101010010100101001010100100100101010010010010100101010010010101001010010010101001001010010010101010100100101010010100100101001010100101001010100101001010010010010100101001010100100100100100100100101010101010010010100101",
"output": "Yes"
},
{
"input": "459\n000111000101010000100001001010111110011011010001100101111010111011101110111101111101100101100011011001100110001001111001101000111001011100110100011111011111000010000110010011100110011011111110011100001101001111000100111011001000001011111100110100001001001100101011100001110110100101011011110100100111101011000101110000100110100100010000000100001001111111000011101010010011001111010111001100000100111001010111011010000011000011100101101011101000011011000110011",
"output": "No"
},
{
"input": "3\n001",
"output": "No"
},
{
"input": "4\n0010",
"output": "No"
},
{
"input": "3\n111",
"output": "No"
},
{
"input": "4\n0110",
"output": "No"
},
{
"input": "2\n11",
"output": "No"
},
{
"input": "2\n10",
"output": "Yes"
},
{
"input": "2\n01",
"output": "Yes"
},
{
"input": "4\n1101",
"output": "No"
},
{
"input": "2\n00",
"output": "No"
},
{
"input": "4\n1111",
"output": "No"
},
{
"input": "15\n000010101010000",
"output": "No"
},
{
"input": "8\n10010100",
"output": "No"
},
{
"input": "5\n00100",
"output": "No"
},
{
"input": "6\n100100",
"output": "No"
},
{
"input": "7\n1000001",
"output": "No"
},
{
"input": "98\n10101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010",
"output": "Yes"
}
] | 1,658,084,999
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 55
| 93
| 0
|
input()
a = '0'+input()+'0'
print("No" if "000" in a or "11" in a else "Yes")
|
Title: Row
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You're given a row with $n$ chairs. We call a seating of people "maximal" if the two following conditions hold:
1. There are no neighbors adjacent to anyone seated. 1. It's impossible to seat one more person without violating the first rule.
The seating is given as a string consisting of zeros and ones ($0$ means that the corresponding seat is empty, $1$ — occupied). The goal is to determine whether this seating is "maximal".
Note that the first and last seats are not adjacent (if $n \ne 2$).
Input Specification:
The first line contains a single integer $n$ ($1 \leq n \leq 1000$) — the number of chairs.
The next line contains a string of $n$ characters, each of them is either zero or one, describing the seating.
Output Specification:
Output "Yes" (without quotation marks) if the seating is "maximal". Otherwise print "No".
You are allowed to print letters in whatever case you'd like (uppercase or lowercase).
Demo Input:
['3\n101\n', '4\n1011\n', '5\n10001\n']
Demo Output:
['Yes\n', 'No\n', 'No\n']
Note:
In sample case one the given seating is maximal.
In sample case two the person at chair three has a neighbour to the right.
In sample case three it is possible to seat yet another person into chair three.
|
```python
input()
a = '0'+input()+'0'
print("No" if "000" in a or "11" in a else "Yes")
```
| 3
|
|
139
|
A
|
Petr and Book
|
PROGRAMMING
| 1,000
|
[
"implementation"
] | null | null |
One Sunday Petr went to a bookshop and bought a new book on sports programming. The book had exactly *n* pages.
Petr decided to start reading it starting from the next day, that is, from Monday. Petr's got a very tight schedule and for each day of the week he knows how many pages he will be able to read on that day. Some days are so busy that Petr will have no time to read whatsoever. However, we know that he will be able to read at least one page a week.
Assuming that Petr will not skip days and will read as much as he can every day, determine on which day of the week he will read the last page of the book.
|
The first input line contains the single integer *n* (1<=≤<=*n*<=≤<=1000) — the number of pages in the book.
The second line contains seven non-negative space-separated integers that do not exceed 1000 — those integers represent how many pages Petr can read on Monday, Tuesday, Wednesday, Thursday, Friday, Saturday and Sunday correspondingly. It is guaranteed that at least one of those numbers is larger than zero.
|
Print a single number — the number of the day of the week, when Petr will finish reading the book. The days of the week are numbered starting with one in the natural order: Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday.
|
[
"100\n15 20 20 15 10 30 45\n",
"2\n1 0 0 0 0 0 0\n"
] |
[
"6\n",
"1\n"
] |
Note to the first sample:
By the end of Monday and therefore, by the beginning of Tuesday Petr has 85 pages left. He has 65 pages left by Wednesday, 45 by Thursday, 30 by Friday, 20 by Saturday and on Saturday Petr finishes reading the book (and he also has time to read 10 pages of something else).
Note to the second sample:
On Monday of the first week Petr will read the first page. On Monday of the second week Petr will read the second page and will finish reading the book.
| 500
|
[
{
"input": "100\n15 20 20 15 10 30 45",
"output": "6"
},
{
"input": "2\n1 0 0 0 0 0 0",
"output": "1"
},
{
"input": "100\n100 200 100 200 300 400 500",
"output": "1"
},
{
"input": "3\n1 1 1 1 1 1 1",
"output": "3"
},
{
"input": "1\n1 1 1 1 1 1 1",
"output": "1"
},
{
"input": "20\n5 3 7 2 1 6 4",
"output": "6"
},
{
"input": "10\n5 1 1 1 1 1 5",
"output": "6"
},
{
"input": "50\n10 1 10 1 10 1 10",
"output": "1"
},
{
"input": "77\n11 11 11 11 11 11 10",
"output": "1"
},
{
"input": "1\n1000 1000 1000 1000 1000 1000 1000",
"output": "1"
},
{
"input": "1000\n100 100 100 100 100 100 100",
"output": "3"
},
{
"input": "999\n10 20 10 20 30 20 10",
"output": "3"
},
{
"input": "433\n109 58 77 10 39 125 15",
"output": "7"
},
{
"input": "1\n0 0 0 0 0 0 1",
"output": "7"
},
{
"input": "5\n1 0 1 0 1 0 1",
"output": "1"
},
{
"input": "997\n1 1 0 0 1 0 1",
"output": "1"
},
{
"input": "1000\n1 1 1 1 1 1 1",
"output": "6"
},
{
"input": "1000\n1000 1000 1000 1000 1000 1000 1000",
"output": "1"
},
{
"input": "1000\n1 0 0 0 0 0 0",
"output": "1"
},
{
"input": "1000\n0 0 0 0 0 0 1",
"output": "7"
},
{
"input": "1000\n1 0 0 1 0 0 1",
"output": "1"
},
{
"input": "509\n105 23 98 0 7 0 155",
"output": "2"
},
{
"input": "7\n1 1 1 1 1 1 1",
"output": "7"
},
{
"input": "2\n1 1 0 0 0 0 0",
"output": "2"
},
{
"input": "1\n0 0 0 0 0 1 0",
"output": "6"
},
{
"input": "10\n0 0 0 0 0 0 1",
"output": "7"
},
{
"input": "5\n0 0 0 0 0 6 0",
"output": "6"
},
{
"input": "3\n0 1 0 0 0 0 0",
"output": "2"
},
{
"input": "10\n0 0 0 0 0 0 10",
"output": "7"
},
{
"input": "28\n1 2 3 4 5 6 7",
"output": "7"
},
{
"input": "100\n5 5 5 5 5 5 5",
"output": "6"
},
{
"input": "4\n1 0 0 0 0 0 1",
"output": "7"
},
{
"input": "2\n0 0 0 0 0 0 1",
"output": "7"
},
{
"input": "7\n0 0 0 0 0 0 7",
"output": "7"
},
{
"input": "7\n2 1 1 1 1 1 0",
"output": "6"
},
{
"input": "2\n0 0 1 1 0 0 0",
"output": "4"
},
{
"input": "6\n1 1 1 1 1 1 0",
"output": "6"
},
{
"input": "5\n1 1 1 0 0 1 1",
"output": "7"
},
{
"input": "100\n10 20 30 10 10 10 10",
"output": "7"
},
{
"input": "1\n0 0 0 1 0 0 0",
"output": "4"
},
{
"input": "70\n10 10 10 10 10 10 10",
"output": "7"
},
{
"input": "22\n1 2 3 4 5 6 10",
"output": "7"
},
{
"input": "5\n0 0 0 1 0 0 0",
"output": "4"
},
{
"input": "2\n0 0 0 1 0 0 0",
"output": "4"
},
{
"input": "6\n1 0 0 0 0 0 2",
"output": "7"
},
{
"input": "10\n1 2 2 1 2 1 1",
"output": "7"
},
{
"input": "5\n0 0 0 0 0 0 10",
"output": "7"
},
{
"input": "4\n0 1 1 0 0 0 0",
"output": "3"
},
{
"input": "100\n0 0 0 0 0 1 0",
"output": "6"
}
] | 1,664,227,552
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 49
| 92
| 0
|
n = int(input())
a = [int(x) for x in input().split()]
sm = 0
for i in a:
sm += i
if sm < n:
while(sm < n):
n -= sm
#print(n)
temp = 0
for i in range(7):
temp += a[i]
# print(temp)
if temp >= n:
print(i+1)
break
else:
temp = 0
for i in range(7):
temp += a[i]
if temp >= n:
print(i+1)
break
|
Title: Petr and Book
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
One Sunday Petr went to a bookshop and bought a new book on sports programming. The book had exactly *n* pages.
Petr decided to start reading it starting from the next day, that is, from Monday. Petr's got a very tight schedule and for each day of the week he knows how many pages he will be able to read on that day. Some days are so busy that Petr will have no time to read whatsoever. However, we know that he will be able to read at least one page a week.
Assuming that Petr will not skip days and will read as much as he can every day, determine on which day of the week he will read the last page of the book.
Input Specification:
The first input line contains the single integer *n* (1<=≤<=*n*<=≤<=1000) — the number of pages in the book.
The second line contains seven non-negative space-separated integers that do not exceed 1000 — those integers represent how many pages Petr can read on Monday, Tuesday, Wednesday, Thursday, Friday, Saturday and Sunday correspondingly. It is guaranteed that at least one of those numbers is larger than zero.
Output Specification:
Print a single number — the number of the day of the week, when Petr will finish reading the book. The days of the week are numbered starting with one in the natural order: Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday.
Demo Input:
['100\n15 20 20 15 10 30 45\n', '2\n1 0 0 0 0 0 0\n']
Demo Output:
['6\n', '1\n']
Note:
Note to the first sample:
By the end of Monday and therefore, by the beginning of Tuesday Petr has 85 pages left. He has 65 pages left by Wednesday, 45 by Thursday, 30 by Friday, 20 by Saturday and on Saturday Petr finishes reading the book (and he also has time to read 10 pages of something else).
Note to the second sample:
On Monday of the first week Petr will read the first page. On Monday of the second week Petr will read the second page and will finish reading the book.
|
```python
n = int(input())
a = [int(x) for x in input().split()]
sm = 0
for i in a:
sm += i
if sm < n:
while(sm < n):
n -= sm
#print(n)
temp = 0
for i in range(7):
temp += a[i]
# print(temp)
if temp >= n:
print(i+1)
break
else:
temp = 0
for i in range(7):
temp += a[i]
if temp >= n:
print(i+1)
break
```
| 3
|
|
1,011
|
A
|
Stages
|
PROGRAMMING
| 900
|
[
"greedy",
"implementation",
"sortings"
] | null | null |
Natasha is going to fly to Mars. She needs to build a rocket, which consists of several stages in some order. Each of the stages is defined by a lowercase Latin letter. This way, the rocket can be described by the string — concatenation of letters, which correspond to the stages.
There are $n$ stages available. The rocket must contain exactly $k$ of them. Stages in the rocket should be ordered by their weight. So, after the stage with some letter can go only stage with a letter, which is at least two positions after in the alphabet (skipping one letter in between, or even more). For example, after letter 'c' can't go letters 'a', 'b', 'c' and 'd', but can go letters 'e', 'f', ..., 'z'.
For the rocket to fly as far as possible, its weight should be minimal. The weight of the rocket is equal to the sum of the weights of its stages. The weight of the stage is the number of its letter in the alphabet. For example, the stage 'a 'weighs one ton,' b 'weighs two tons, and' z' — $26$ tons.
Build the rocket with the minimal weight or determine, that it is impossible to build a rocket at all. Each stage can be used at most once.
|
The first line of input contains two integers — $n$ and $k$ ($1 \le k \le n \le 50$) – the number of available stages and the number of stages to use in the rocket.
The second line contains string $s$, which consists of exactly $n$ lowercase Latin letters. Each letter defines a new stage, which can be used to build the rocket. Each stage can be used at most once.
|
Print a single integer — the minimal total weight of the rocket or -1, if it is impossible to build the rocket at all.
|
[
"5 3\nxyabd\n",
"7 4\nproblem\n",
"2 2\nab\n",
"12 1\nabaabbaaabbb\n"
] |
[
"29",
"34",
"-1",
"1"
] |
In the first example, the following rockets satisfy the condition:
- "adx" (weight is $1+4+24=29$);- "ady" (weight is $1+4+25=30$);- "bdx" (weight is $2+4+24=30$);- "bdy" (weight is $2+4+25=31$).
Rocket "adx" has the minimal weight, so the answer is $29$.
In the second example, target rocket is "belo". Its weight is $2+5+12+15=34$.
In the third example, $n=k=2$, so the rocket must have both stages: 'a' and 'b'. This rocket doesn't satisfy the condition, because these letters are adjacent in the alphabet. Answer is -1.
| 500
|
[
{
"input": "5 3\nxyabd",
"output": "29"
},
{
"input": "7 4\nproblem",
"output": "34"
},
{
"input": "2 2\nab",
"output": "-1"
},
{
"input": "12 1\nabaabbaaabbb",
"output": "1"
},
{
"input": "50 13\nqwertyuiopasdfghjklzxcvbnmaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "169"
},
{
"input": "50 14\nqwertyuiopasdfghjklzxcvbnmaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "-1"
},
{
"input": "1 1\na",
"output": "1"
},
{
"input": "50 1\naaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "1"
},
{
"input": "50 2\naaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "-1"
},
{
"input": "13 13\nuwgmkyqeiaocs",
"output": "169"
},
{
"input": "13 13\nhzdxpbfvrltnj",
"output": "182"
},
{
"input": "1 1\nn",
"output": "14"
},
{
"input": "10 8\nsmzeblyjqw",
"output": "113"
},
{
"input": "20 20\ntzmvhskkyugkuuxpvtbh",
"output": "-1"
},
{
"input": "30 15\nwjzolzzkfulwgioksfxmcxmnnjtoav",
"output": "-1"
},
{
"input": "40 30\nxumfrflllrrgswehqtsskefixhcxjrxbjmrpsshv",
"output": "-1"
},
{
"input": "50 31\nahbyyoxltryqdmvenemaqnbakglgqolxnaifnqtoclnnqiabpz",
"output": "-1"
},
{
"input": "10 7\niuiukrxcml",
"output": "99"
},
{
"input": "38 2\nvjzarfykmrsrvwbwfwldsulhxtykmjbnwmdufa",
"output": "5"
},
{
"input": "12 6\nfwseyrarkwcd",
"output": "61"
},
{
"input": "2 2\nac",
"output": "4"
},
{
"input": "1 1\nc",
"output": "3"
},
{
"input": "2 2\nad",
"output": "5"
},
{
"input": "2 1\nac",
"output": "1"
},
{
"input": "4 3\nadjz",
"output": "15"
},
{
"input": "3 3\naoz",
"output": "42"
},
{
"input": "3 1\nzzz",
"output": "26"
},
{
"input": "2 1\nxz",
"output": "24"
},
{
"input": "5 1\naaddd",
"output": "1"
}
] | 1,532,801,338
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 29
| 140
| 0
|
d = [False for i in range(26)]
n, k = map(int,input().split())
for el in str(input()):
d[ord(el) - ord("a")] = True
ans = 100000000000000
def get_ans(i):
if not d[i]:
return 100000000000000
last = i + 2
ret = i +1
gett = 1
for j in range(i + 2, 26):
if j >= last and d[j] and gett < k:
last = j + 2
ret += j +1
gett += 1
if gett != k:
return 100000000000000
return ret
for i in range(26):
ans = min(ans, get_ans(i))
print(- 1 if ans == 100000000000000 else ans)
|
Title: Stages
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Natasha is going to fly to Mars. She needs to build a rocket, which consists of several stages in some order. Each of the stages is defined by a lowercase Latin letter. This way, the rocket can be described by the string — concatenation of letters, which correspond to the stages.
There are $n$ stages available. The rocket must contain exactly $k$ of them. Stages in the rocket should be ordered by their weight. So, after the stage with some letter can go only stage with a letter, which is at least two positions after in the alphabet (skipping one letter in between, or even more). For example, after letter 'c' can't go letters 'a', 'b', 'c' and 'd', but can go letters 'e', 'f', ..., 'z'.
For the rocket to fly as far as possible, its weight should be minimal. The weight of the rocket is equal to the sum of the weights of its stages. The weight of the stage is the number of its letter in the alphabet. For example, the stage 'a 'weighs one ton,' b 'weighs two tons, and' z' — $26$ tons.
Build the rocket with the minimal weight or determine, that it is impossible to build a rocket at all. Each stage can be used at most once.
Input Specification:
The first line of input contains two integers — $n$ and $k$ ($1 \le k \le n \le 50$) – the number of available stages and the number of stages to use in the rocket.
The second line contains string $s$, which consists of exactly $n$ lowercase Latin letters. Each letter defines a new stage, which can be used to build the rocket. Each stage can be used at most once.
Output Specification:
Print a single integer — the minimal total weight of the rocket or -1, if it is impossible to build the rocket at all.
Demo Input:
['5 3\nxyabd\n', '7 4\nproblem\n', '2 2\nab\n', '12 1\nabaabbaaabbb\n']
Demo Output:
['29', '34', '-1', '1']
Note:
In the first example, the following rockets satisfy the condition:
- "adx" (weight is $1+4+24=29$);- "ady" (weight is $1+4+25=30$);- "bdx" (weight is $2+4+24=30$);- "bdy" (weight is $2+4+25=31$).
Rocket "adx" has the minimal weight, so the answer is $29$.
In the second example, target rocket is "belo". Its weight is $2+5+12+15=34$.
In the third example, $n=k=2$, so the rocket must have both stages: 'a' and 'b'. This rocket doesn't satisfy the condition, because these letters are adjacent in the alphabet. Answer is -1.
|
```python
d = [False for i in range(26)]
n, k = map(int,input().split())
for el in str(input()):
d[ord(el) - ord("a")] = True
ans = 100000000000000
def get_ans(i):
if not d[i]:
return 100000000000000
last = i + 2
ret = i +1
gett = 1
for j in range(i + 2, 26):
if j >= last and d[j] and gett < k:
last = j + 2
ret += j +1
gett += 1
if gett != k:
return 100000000000000
return ret
for i in range(26):
ans = min(ans, get_ans(i))
print(- 1 if ans == 100000000000000 else ans)
```
| 3
|
|
431
|
A
|
Black Square
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Quite recently, a very smart student named Jury decided that lectures are boring, so he downloaded a game called "Black Square" on his super cool touchscreen phone.
In this game, the phone's screen is divided into four vertical strips. Each second, a black square appears on some of the strips. According to the rules of the game, Jury must use this second to touch the corresponding strip to make the square go away. As Jury is both smart and lazy, he counted that he wastes exactly *a**i* calories on touching the *i*-th strip.
You've got a string *s*, describing the process of the game and numbers *a*1,<=*a*2,<=*a*3,<=*a*4. Calculate how many calories Jury needs to destroy all the squares?
|
The first line contains four space-separated integers *a*1, *a*2, *a*3, *a*4 (0<=≤<=*a*1,<=*a*2,<=*a*3,<=*a*4<=≤<=104).
The second line contains string *s* (1<=≤<=|*s*|<=≤<=105), where the *і*-th character of the string equals "1", if on the *i*-th second of the game the square appears on the first strip, "2", if it appears on the second strip, "3", if it appears on the third strip, "4", if it appears on the fourth strip.
|
Print a single integer — the total number of calories that Jury wastes.
|
[
"1 2 3 4\n123214\n",
"1 5 3 2\n11221\n"
] |
[
"13\n",
"13\n"
] |
none
| 500
|
[
{
"input": "1 2 3 4\n123214",
"output": "13"
},
{
"input": "1 5 3 2\n11221",
"output": "13"
},
{
"input": "5 5 5 1\n3422",
"output": "16"
},
{
"input": "4 3 2 1\n2",
"output": "3"
},
{
"input": "5651 6882 6954 4733\n2442313421",
"output": "60055"
},
{
"input": "0 0 0 0\n4132",
"output": "0"
},
{
"input": "3163 5778 83 7640\n11141442444",
"output": "64270"
},
{
"input": "1809 1302 7164 6122\n3144121413113111223311232232114144321414421243443243422322144324121433444342231344234443332241322442",
"output": "420780"
},
{
"input": "0 0 0 0\n1",
"output": "0"
},
{
"input": "1 2 3 4\n4",
"output": "4"
},
{
"input": "2343 7653 1242 5432\n1",
"output": "2343"
},
{
"input": "2343 7653 1242 5432\n2",
"output": "7653"
},
{
"input": "2343 7653 1242 5432\n3",
"output": "1242"
},
{
"input": "2343 7653 1242 5432\n4",
"output": "5432"
},
{
"input": "1 2 3 4\n123412",
"output": "13"
},
{
"input": "50 50 50 50\n11111111111111111111111111111111111111111111111111111",
"output": "2650"
},
{
"input": "1 2 3 4\n11111111111111111111111111111111111111111111111111",
"output": "50"
},
{
"input": "1 2 3 4\n23123231321231231231231231221232123121312321",
"output": "87"
},
{
"input": "1 2 3 4\n1111111111111222222222233333333333444444444444444",
"output": "126"
},
{
"input": "2 3 1 4\n121321232412342112312313213123123412131231231232",
"output": "105"
}
] | 1,654,455,113
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 49
| 61
| 102,400
|
n=input()
sq=input()
n=list(map(int,n.split()))
calo=0
for i in sq:
if i=="1":
calo+=n[0]
elif i=="2":
calo+=n[1]
elif i=="3":
calo+=n[2]
elif i=="4":
calo+=n[3]
print(calo)
|
Title: Black Square
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Quite recently, a very smart student named Jury decided that lectures are boring, so he downloaded a game called "Black Square" on his super cool touchscreen phone.
In this game, the phone's screen is divided into four vertical strips. Each second, a black square appears on some of the strips. According to the rules of the game, Jury must use this second to touch the corresponding strip to make the square go away. As Jury is both smart and lazy, he counted that he wastes exactly *a**i* calories on touching the *i*-th strip.
You've got a string *s*, describing the process of the game and numbers *a*1,<=*a*2,<=*a*3,<=*a*4. Calculate how many calories Jury needs to destroy all the squares?
Input Specification:
The first line contains four space-separated integers *a*1, *a*2, *a*3, *a*4 (0<=≤<=*a*1,<=*a*2,<=*a*3,<=*a*4<=≤<=104).
The second line contains string *s* (1<=≤<=|*s*|<=≤<=105), where the *і*-th character of the string equals "1", if on the *i*-th second of the game the square appears on the first strip, "2", if it appears on the second strip, "3", if it appears on the third strip, "4", if it appears on the fourth strip.
Output Specification:
Print a single integer — the total number of calories that Jury wastes.
Demo Input:
['1 2 3 4\n123214\n', '1 5 3 2\n11221\n']
Demo Output:
['13\n', '13\n']
Note:
none
|
```python
n=input()
sq=input()
n=list(map(int,n.split()))
calo=0
for i in sq:
if i=="1":
calo+=n[0]
elif i=="2":
calo+=n[1]
elif i=="3":
calo+=n[2]
elif i=="4":
calo+=n[3]
print(calo)
```
| 3
|
|
118
|
A
|
String Task
|
PROGRAMMING
| 1,000
|
[
"implementation",
"strings"
] | null | null |
Petya started to attend programming lessons. On the first lesson his task was to write a simple program. The program was supposed to do the following: in the given string, consisting if uppercase and lowercase Latin letters, it:
- deletes all the vowels, - inserts a character "." before each consonant, - replaces all uppercase consonants with corresponding lowercase ones.
Vowels are letters "A", "O", "Y", "E", "U", "I", and the rest are consonants. The program's input is exactly one string, it should return the output as a single string, resulting after the program's processing the initial string.
Help Petya cope with this easy task.
|
The first line represents input string of Petya's program. This string only consists of uppercase and lowercase Latin letters and its length is from 1 to 100, inclusive.
|
Print the resulting string. It is guaranteed that this string is not empty.
|
[
"tour\n",
"Codeforces\n",
"aBAcAba\n"
] |
[
".t.r\n",
".c.d.f.r.c.s\n",
".b.c.b\n"
] |
none
| 500
|
[
{
"input": "tour",
"output": ".t.r"
},
{
"input": "Codeforces",
"output": ".c.d.f.r.c.s"
},
{
"input": "aBAcAba",
"output": ".b.c.b"
},
{
"input": "obn",
"output": ".b.n"
},
{
"input": "wpwl",
"output": ".w.p.w.l"
},
{
"input": "ggdvq",
"output": ".g.g.d.v.q"
},
{
"input": "pumesz",
"output": ".p.m.s.z"
},
{
"input": "g",
"output": ".g"
},
{
"input": "zjuotps",
"output": ".z.j.t.p.s"
},
{
"input": "jzbwuehe",
"output": ".j.z.b.w.h"
},
{
"input": "tnkgwuugu",
"output": ".t.n.k.g.w.g"
},
{
"input": "kincenvizh",
"output": ".k.n.c.n.v.z.h"
},
{
"input": "xattxjenual",
"output": ".x.t.t.x.j.n.l"
},
{
"input": "ktajqhpqsvhw",
"output": ".k.t.j.q.h.p.q.s.v.h.w"
},
{
"input": "xnhcigytnqcmy",
"output": ".x.n.h.c.g.t.n.q.c.m"
},
{
"input": "jfmtbejyilxcec",
"output": ".j.f.m.t.b.j.l.x.c.c"
},
{
"input": "D",
"output": ".d"
},
{
"input": "ab",
"output": ".b"
},
{
"input": "Ab",
"output": ".b"
},
{
"input": "aB",
"output": ".b"
},
{
"input": "AB",
"output": ".b"
},
{
"input": "ba",
"output": ".b"
},
{
"input": "bA",
"output": ".b"
},
{
"input": "Ba",
"output": ".b"
},
{
"input": "BA",
"output": ".b"
},
{
"input": "aab",
"output": ".b"
},
{
"input": "baa",
"output": ".b"
},
{
"input": "femOZeCArKCpUiHYnbBPTIOFmsHmcpObtPYcLCdjFrUMIyqYzAokKUiiKZRouZiNMoiOuGVoQzaaCAOkquRjmmKKElLNqCnhGdQM",
"output": ".f.m.z.c.r.k.c.p.h.n.b.b.p.t.f.m.s.h.m.c.p.b.t.p.c.l.c.d.j.f.r.m.q.z.k.k.k.z.r.z.n.m.g.v.q.z.c.k.q.r.j.m.m.k.k.l.l.n.q.c.n.h.g.d.q.m"
},
{
"input": "VMBPMCmMDCLFELLIISUJDWQRXYRDGKMXJXJHXVZADRZWVWJRKFRRNSAWKKDPZZLFLNSGUNIVJFBEQsMDHSBJVDTOCSCgZWWKvZZN",
"output": ".v.m.b.p.m.c.m.m.d.c.l.f.l.l.s.j.d.w.q.r.x.r.d.g.k.m.x.j.x.j.h.x.v.z.d.r.z.w.v.w.j.r.k.f.r.r.n.s.w.k.k.d.p.z.z.l.f.l.n.s.g.n.v.j.f.b.q.s.m.d.h.s.b.j.v.d.t.c.s.c.g.z.w.w.k.v.z.z.n"
},
{
"input": "MCGFQQJNUKuAEXrLXibVjClSHjSxmlkQGTKZrRaDNDomIPOmtSgjJAjNVIVLeUGUAOHNkCBwNObVCHOWvNkLFQQbFnugYVMkJruJ",
"output": ".m.c.g.f.q.q.j.n.k.x.r.l.x.b.v.j.c.l.s.h.j.s.x.m.l.k.q.g.t.k.z.r.r.d.n.d.m.p.m.t.s.g.j.j.j.n.v.v.l.g.h.n.k.c.b.w.n.b.v.c.h.w.v.n.k.l.f.q.q.b.f.n.g.v.m.k.j.r.j"
},
{
"input": "iyaiuiwioOyzUaOtAeuEYcevvUyveuyioeeueoeiaoeiavizeeoeyYYaaAOuouueaUioueauayoiuuyiuovyOyiyoyioaoyuoyea",
"output": ".w.z.t.c.v.v.v.v.z.v"
},
{
"input": "yjnckpfyLtzwjsgpcrgCfpljnjwqzgVcufnOvhxplvflxJzqxnhrwgfJmPzifgubvspffmqrwbzivatlmdiBaddiaktdsfPwsevl",
"output": ".j.n.c.k.p.f.l.t.z.w.j.s.g.p.c.r.g.c.f.p.l.j.n.j.w.q.z.g.v.c.f.n.v.h.x.p.l.v.f.l.x.j.z.q.x.n.h.r.w.g.f.j.m.p.z.f.g.b.v.s.p.f.f.m.q.r.w.b.z.v.t.l.m.d.b.d.d.k.t.d.s.f.p.w.s.v.l"
},
{
"input": "RIIIUaAIYJOiuYIUWFPOOAIuaUEZeIooyUEUEAoIyIHYOEAlVAAIiLUAUAeiUIEiUMuuOiAgEUOIAoOUYYEYFEoOIIVeOOAOIIEg",
"output": ".r.j.w.f.p.z.h.l.v.l.m.g.f.v.g"
},
{
"input": "VBKQCFBMQHDMGNSGBQVJTGQCNHHRJMNKGKDPPSQRRVQTZNKBZGSXBPBRXPMVFTXCHZMSJVBRNFNTHBHGJLMDZJSVPZZBCCZNVLMQ",
"output": ".v.b.k.q.c.f.b.m.q.h.d.m.g.n.s.g.b.q.v.j.t.g.q.c.n.h.h.r.j.m.n.k.g.k.d.p.p.s.q.r.r.v.q.t.z.n.k.b.z.g.s.x.b.p.b.r.x.p.m.v.f.t.x.c.h.z.m.s.j.v.b.r.n.f.n.t.h.b.h.g.j.l.m.d.z.j.s.v.p.z.z.b.c.c.z.n.v.l.m.q"
},
{
"input": "iioyoaayeuyoolyiyoeuouiayiiuyTueyiaoiueyioiouyuauouayyiaeoeiiigmioiououeieeeyuyyaYyioiiooaiuouyoeoeg",
"output": ".l.t.g.m.g"
},
{
"input": "ueyiuiauuyyeueykeioouiiauzoyoeyeuyiaoaiiaaoaueyaeydaoauexuueafouiyioueeaaeyoeuaueiyiuiaeeayaioeouiuy",
"output": ".k.z.d.x.f"
},
{
"input": "FSNRBXLFQHZXGVMKLQDVHWLDSLKGKFMDRQWMWSSKPKKQBNDZRSCBLRSKCKKFFKRDMZFZGCNSMXNPMZVDLKXGNXGZQCLRTTDXLMXQ",
"output": ".f.s.n.r.b.x.l.f.q.h.z.x.g.v.m.k.l.q.d.v.h.w.l.d.s.l.k.g.k.f.m.d.r.q.w.m.w.s.s.k.p.k.k.q.b.n.d.z.r.s.c.b.l.r.s.k.c.k.k.f.f.k.r.d.m.z.f.z.g.c.n.s.m.x.n.p.m.z.v.d.l.k.x.g.n.x.g.z.q.c.l.r.t.t.d.x.l.m.x.q"
},
{
"input": "EYAYAYIOIOYOOAUOEUEUOUUYIYUUMOEOIIIAOIUOAAOIYOIOEUIERCEYYAOIOIGYUIAOYUEOEUAEAYPOYEYUUAUOAOEIYIEYUEEY",
"output": ".m.r.c.g.p"
},
{
"input": "jvvzcdcxjstbbksmqjsngxkgtttdxrljjxtwptgwwqzpvqchvgrkqlzxmptzblxhhsmrkmzzmgdfskhtmmnqzzflpmqdctvrfgtx",
"output": ".j.v.v.z.c.d.c.x.j.s.t.b.b.k.s.m.q.j.s.n.g.x.k.g.t.t.t.d.x.r.l.j.j.x.t.w.p.t.g.w.w.q.z.p.v.q.c.h.v.g.r.k.q.l.z.x.m.p.t.z.b.l.x.h.h.s.m.r.k.m.z.z.m.g.d.f.s.k.h.t.m.m.n.q.z.z.f.l.p.m.q.d.c.t.v.r.f.g.t.x"
},
{
"input": "YB",
"output": ".b"
},
{
"input": "fly",
"output": ".f.l"
},
{
"input": "YyyYYYyyYxdwdawdDAWDdaddYYYY",
"output": ".x.d.w.d.w.d.d.w.d.d.d.d"
}
] | 1,695,107,498
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 42
| 92
| 0
|
i = input()
set_list = list(i.lower())
v = ["a","o","y","e","u","i"]
u = [x for x in set_list if x not in v]
u_str = '.'.join(u)
u_str = '.' + u_str
print(u_str)
|
Title: String Task
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Petya started to attend programming lessons. On the first lesson his task was to write a simple program. The program was supposed to do the following: in the given string, consisting if uppercase and lowercase Latin letters, it:
- deletes all the vowels, - inserts a character "." before each consonant, - replaces all uppercase consonants with corresponding lowercase ones.
Vowels are letters "A", "O", "Y", "E", "U", "I", and the rest are consonants. The program's input is exactly one string, it should return the output as a single string, resulting after the program's processing the initial string.
Help Petya cope with this easy task.
Input Specification:
The first line represents input string of Petya's program. This string only consists of uppercase and lowercase Latin letters and its length is from 1 to 100, inclusive.
Output Specification:
Print the resulting string. It is guaranteed that this string is not empty.
Demo Input:
['tour\n', 'Codeforces\n', 'aBAcAba\n']
Demo Output:
['.t.r\n', '.c.d.f.r.c.s\n', '.b.c.b\n']
Note:
none
|
```python
i = input()
set_list = list(i.lower())
v = ["a","o","y","e","u","i"]
u = [x for x in set_list if x not in v]
u_str = '.'.join(u)
u_str = '.' + u_str
print(u_str)
```
| 3
|
|
677
|
A
|
Vanya and Fence
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Vanya and his friends are walking along the fence of height *h* and they do not want the guard to notice them. In order to achieve this the height of each of the friends should not exceed *h*. If the height of some person is greater than *h* he can bend down and then he surely won't be noticed by the guard. The height of the *i*-th person is equal to *a**i*.
Consider the width of the person walking as usual to be equal to 1, while the width of the bent person is equal to 2. Friends want to talk to each other while walking, so they would like to walk in a single row. What is the minimum width of the road, such that friends can walk in a row and remain unattended by the guard?
|
The first line of the input contains two integers *n* and *h* (1<=≤<=*n*<=≤<=1000, 1<=≤<=*h*<=≤<=1000) — the number of friends and the height of the fence, respectively.
The second line contains *n* integers *a**i* (1<=≤<=*a**i*<=≤<=2*h*), the *i*-th of them is equal to the height of the *i*-th person.
|
Print a single integer — the minimum possible valid width of the road.
|
[
"3 7\n4 5 14\n",
"6 1\n1 1 1 1 1 1\n",
"6 5\n7 6 8 9 10 5\n"
] |
[
"4\n",
"6\n",
"11\n"
] |
In the first sample, only person number 3 must bend down, so the required width is equal to 1 + 1 + 2 = 4.
In the second sample, all friends are short enough and no one has to bend, so the width 1 + 1 + 1 + 1 + 1 + 1 = 6 is enough.
In the third sample, all the persons have to bend, except the last one. The required minimum width of the road is equal to 2 + 2 + 2 + 2 + 2 + 1 = 11.
| 500
|
[
{
"input": "3 7\n4 5 14",
"output": "4"
},
{
"input": "6 1\n1 1 1 1 1 1",
"output": "6"
},
{
"input": "6 5\n7 6 8 9 10 5",
"output": "11"
},
{
"input": "10 420\n214 614 297 675 82 740 174 23 255 15",
"output": "13"
},
{
"input": "10 561\n657 23 1096 487 785 66 481 554 1000 821",
"output": "15"
},
{
"input": "100 342\n478 143 359 336 162 333 385 515 117 496 310 538 469 539 258 676 466 677 1 296 150 560 26 213 627 221 255 126 617 174 279 178 24 435 70 145 619 46 669 566 300 67 576 251 58 176 441 564 569 194 24 669 73 262 457 259 619 78 400 579 222 626 269 47 80 315 160 194 455 186 315 424 197 246 683 220 68 682 83 233 290 664 273 598 362 305 674 614 321 575 362 120 14 534 62 436 294 351 485 396",
"output": "144"
},
{
"input": "100 290\n244 49 276 77 449 261 468 458 201 424 9 131 300 88 432 394 104 77 13 289 435 259 111 453 168 394 156 412 351 576 178 530 81 271 228 564 125 328 42 372 205 61 180 471 33 360 567 331 222 318 241 117 529 169 188 484 202 202 299 268 246 343 44 364 333 494 59 236 84 485 50 8 428 8 571 227 205 310 210 9 324 472 368 490 114 84 296 305 411 351 569 393 283 120 510 171 232 151 134 366",
"output": "145"
},
{
"input": "1 1\n1",
"output": "1"
},
{
"input": "1 1\n2",
"output": "2"
},
{
"input": "46 71\n30 26 56 138 123 77 60 122 73 45 79 10 130 3 14 1 38 46 128 50 82 16 32 68 28 98 62 106 2 49 131 11 114 39 139 70 40 50 45 137 33 30 35 136 135 19",
"output": "63"
},
{
"input": "20 723\n212 602 293 591 754 91 1135 640 80 495 845 928 1399 498 926 1431 1226 869 814 1386",
"output": "31"
},
{
"input": "48 864\n843 1020 751 1694 18 1429 1395 1174 272 1158 1628 1233 1710 441 765 561 778 748 1501 1200 563 1263 1398 1687 1518 1640 1591 839 500 466 1603 1587 1201 1209 432 868 1159 639 649 628 9 91 1036 147 896 1557 941 518",
"output": "75"
},
{
"input": "26 708\n549 241 821 734 945 1161 566 1268 216 30 1142 730 529 1014 255 168 796 1148 89 113 1328 286 743 871 1259 1397",
"output": "41"
},
{
"input": "75 940\n1620 1745 1599 441 64 1466 1496 1239 1716 1475 778 106 1136 1212 1261 444 781 257 1071 747 626 232 609 1544 682 1326 469 1361 1460 1450 1207 1319 922 625 1737 1057 1698 592 692 80 1016 541 1254 201 682 1007 847 206 1066 809 259 109 240 1611 219 1455 1326 1377 1827 786 42 1002 1382 1592 543 1866 1198 334 1524 1760 340 1566 955 257 1118",
"output": "116"
}
] | 1,692,358,021
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 29
| 31
| 0
|
n,h=map(int,input().split(" "))
m=list(map(int,input().split(" ")))
ans= n
for i in m:
if i>h:
ans+=1
print(ans)
|
Title: Vanya and Fence
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Vanya and his friends are walking along the fence of height *h* and they do not want the guard to notice them. In order to achieve this the height of each of the friends should not exceed *h*. If the height of some person is greater than *h* he can bend down and then he surely won't be noticed by the guard. The height of the *i*-th person is equal to *a**i*.
Consider the width of the person walking as usual to be equal to 1, while the width of the bent person is equal to 2. Friends want to talk to each other while walking, so they would like to walk in a single row. What is the minimum width of the road, such that friends can walk in a row and remain unattended by the guard?
Input Specification:
The first line of the input contains two integers *n* and *h* (1<=≤<=*n*<=≤<=1000, 1<=≤<=*h*<=≤<=1000) — the number of friends and the height of the fence, respectively.
The second line contains *n* integers *a**i* (1<=≤<=*a**i*<=≤<=2*h*), the *i*-th of them is equal to the height of the *i*-th person.
Output Specification:
Print a single integer — the minimum possible valid width of the road.
Demo Input:
['3 7\n4 5 14\n', '6 1\n1 1 1 1 1 1\n', '6 5\n7 6 8 9 10 5\n']
Demo Output:
['4\n', '6\n', '11\n']
Note:
In the first sample, only person number 3 must bend down, so the required width is equal to 1 + 1 + 2 = 4.
In the second sample, all friends are short enough and no one has to bend, so the width 1 + 1 + 1 + 1 + 1 + 1 = 6 is enough.
In the third sample, all the persons have to bend, except the last one. The required minimum width of the road is equal to 2 + 2 + 2 + 2 + 2 + 1 = 11.
|
```python
n,h=map(int,input().split(" "))
m=list(map(int,input().split(" ")))
ans= n
for i in m:
if i>h:
ans+=1
print(ans)
```
| 3
|
|
102
|
B
|
Sum of Digits
|
PROGRAMMING
| 1,000
|
[
"implementation"
] |
B. Sum of Digits
|
2
|
265
|
Having watched the last Harry Potter film, little Gerald also decided to practice magic. He found in his father's magical book a spell that turns any number in the sum of its digits. At the moment Gerald learned that, he came across a number *n*. How many times can Gerald put a spell on it until the number becomes one-digit?
|
The first line contains the only integer *n* (0<=≤<=*n*<=≤<=10100000). It is guaranteed that *n* doesn't contain any leading zeroes.
|
Print the number of times a number can be replaced by the sum of its digits until it only contains one digit.
|
[
"0\n",
"10\n",
"991\n"
] |
[
"0\n",
"1\n",
"3\n"
] |
In the first sample the number already is one-digit — Herald can't cast a spell.
The second test contains number 10. After one casting of a spell it becomes 1, and here the process is completed. Thus, Gerald can only cast the spell once.
The third test contains number 991. As one casts a spell the following transformations take place: 991 → 19 → 10 → 1. After three transformations the number becomes one-digit.
| 1,000
|
[
{
"input": "0",
"output": "0"
},
{
"input": "10",
"output": "1"
},
{
"input": "991",
"output": "3"
},
{
"input": "99",
"output": "2"
},
{
"input": "100",
"output": "1"
},
{
"input": "123456789",
"output": "2"
},
{
"input": "32",
"output": "1"
},
{
"input": "86",
"output": "2"
},
{
"input": "2",
"output": "0"
},
{
"input": "8",
"output": "0"
},
{
"input": "34",
"output": "1"
},
{
"input": "13",
"output": "1"
},
{
"input": "28",
"output": "2"
},
{
"input": "23",
"output": "1"
},
{
"input": "57",
"output": "2"
},
{
"input": "29",
"output": "2"
},
{
"input": "353869285",
"output": "3"
},
{
"input": "549548646",
"output": "2"
},
{
"input": "858893424",
"output": "2"
},
{
"input": "644818852",
"output": "3"
},
{
"input": "360322525",
"output": "3"
},
{
"input": "122937520",
"output": "2"
},
{
"input": "288403032",
"output": "2"
},
{
"input": "677257481",
"output": "3"
},
{
"input": "58059561",
"output": "3"
},
{
"input": "211288847",
"output": "2"
},
{
"input": "339900034079539584",
"output": "2"
},
{
"input": "784084029310269952",
"output": "3"
},
{
"input": "774730557264864000",
"output": "3"
},
{
"input": "478233807148352256",
"output": "3"
},
{
"input": "165646874056812544",
"output": "3"
},
{
"input": "477533739511673792",
"output": "3"
},
{
"input": "660119944377002240",
"output": "3"
},
{
"input": "448375218506078080",
"output": "3"
},
{
"input": "77213334785795616",
"output": "3"
},
{
"input": "165767221702271872",
"output": "3"
},
{
"input": "1",
"output": "0"
},
{
"input": "5",
"output": "0"
},
{
"input": "8",
"output": "0"
},
{
"input": "156161456146164104103460452045416165146141414651641564105461465156445621465146514562146145465165145145614561465145614561",
"output": "3"
},
{
"input": "9",
"output": "0"
}
] | 1,674,182,676
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 51
| 122
| 0
|
# LUOGU_RID: 100284783
t = input().strip()
def f(x):
if len(x) > 1:
s = 0
for i in x: s += int(i)
return f(str(s)) + 1
return 0
print(f(t))
|
Title: Sum of Digits
Time Limit: 2 seconds
Memory Limit: 265 megabytes
Problem Description:
Having watched the last Harry Potter film, little Gerald also decided to practice magic. He found in his father's magical book a spell that turns any number in the sum of its digits. At the moment Gerald learned that, he came across a number *n*. How many times can Gerald put a spell on it until the number becomes one-digit?
Input Specification:
The first line contains the only integer *n* (0<=≤<=*n*<=≤<=10100000). It is guaranteed that *n* doesn't contain any leading zeroes.
Output Specification:
Print the number of times a number can be replaced by the sum of its digits until it only contains one digit.
Demo Input:
['0\n', '10\n', '991\n']
Demo Output:
['0\n', '1\n', '3\n']
Note:
In the first sample the number already is one-digit — Herald can't cast a spell.
The second test contains number 10. After one casting of a spell it becomes 1, and here the process is completed. Thus, Gerald can only cast the spell once.
The third test contains number 991. As one casts a spell the following transformations take place: 991 → 19 → 10 → 1. After three transformations the number becomes one-digit.
|
```python
# LUOGU_RID: 100284783
t = input().strip()
def f(x):
if len(x) > 1:
s = 0
for i in x: s += int(i)
return f(str(s)) + 1
return 0
print(f(t))
```
| 3.9695
|
614
|
A
|
Link/Cut Tree
|
PROGRAMMING
| 1,500
|
[
"brute force",
"implementation"
] | null | null |
Programmer Rostislav got seriously interested in the Link/Cut Tree data structure, which is based on Splay trees. Specifically, he is now studying the *expose* procedure.
Unfortunately, Rostislav is unable to understand the definition of this procedure, so he decided to ask programmer Serezha to help him. Serezha agreed to help if Rostislav solves a simple task (and if he doesn't, then why would he need Splay trees anyway?)
Given integers *l*, *r* and *k*, you need to print all powers of number *k* within range from *l* to *r* inclusive. However, Rostislav doesn't want to spent time doing this, as he got interested in playing a network game called Agar with Gleb. Help him!
|
The first line of the input contains three space-separated integers *l*, *r* and *k* (1<=≤<=*l*<=≤<=*r*<=≤<=1018, 2<=≤<=*k*<=≤<=109).
|
Print all powers of number *k*, that lie within range from *l* to *r* in the increasing order. If there are no such numbers, print "-1" (without the quotes).
|
[
"1 10 2\n",
"2 4 5\n"
] |
[
"1 2 4 8 ",
"-1"
] |
Note to the first sample: numbers 2<sup class="upper-index">0</sup> = 1, 2<sup class="upper-index">1</sup> = 2, 2<sup class="upper-index">2</sup> = 4, 2<sup class="upper-index">3</sup> = 8 lie within the specified range. The number 2<sup class="upper-index">4</sup> = 16 is greater then 10, thus it shouldn't be printed.
| 500
|
[
{
"input": "1 10 2",
"output": "1 2 4 8 "
},
{
"input": "2 4 5",
"output": "-1"
},
{
"input": "18102 43332383920 28554",
"output": "28554 815330916 "
},
{
"input": "19562 31702689720 17701",
"output": "313325401 "
},
{
"input": "11729 55221128400 313",
"output": "97969 30664297 9597924961 "
},
{
"input": "5482 100347128000 342",
"output": "116964 40001688 13680577296 "
},
{
"input": "3680 37745933600 10",
"output": "10000 100000 1000000 10000000 100000000 1000000000 10000000000 "
},
{
"input": "17098 191120104800 43",
"output": "79507 3418801 147008443 6321363049 "
},
{
"input": "10462 418807699200 2",
"output": "16384 32768 65536 131072 262144 524288 1048576 2097152 4194304 8388608 16777216 33554432 67108864 134217728 268435456 536870912 1073741824 2147483648 4294967296 8589934592 17179869184 34359738368 68719476736 137438953472 274877906944 "
},
{
"input": "30061 641846400000 3",
"output": "59049 177147 531441 1594323 4782969 14348907 43046721 129140163 387420489 1162261467 3486784401 10460353203 31381059609 94143178827 282429536481 "
},
{
"input": "1 1000000000000000000 2",
"output": "1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576 2097152 4194304 8388608 16777216 33554432 67108864 134217728 268435456 536870912 1073741824 2147483648 4294967296 8589934592 17179869184 34359738368 68719476736 137438953472 274877906944 549755813888 1099511627776 2199023255552 4398046511104 8796093022208 17592186044416 35184372088832 70368744177664 140737488355328 281474976710656 562949953421312 1125899906842624 2251799813685248 4503599627370496 900719925474099..."
},
{
"input": "32 2498039712000 4",
"output": "64 256 1024 4096 16384 65536 262144 1048576 4194304 16777216 67108864 268435456 1073741824 4294967296 17179869184 68719476736 274877906944 1099511627776 "
},
{
"input": "1 2576683920000 2",
"output": "1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576 2097152 4194304 8388608 16777216 33554432 67108864 134217728 268435456 536870912 1073741824 2147483648 4294967296 8589934592 17179869184 34359738368 68719476736 137438953472 274877906944 549755813888 1099511627776 2199023255552 "
},
{
"input": "5 25 5",
"output": "5 25 "
},
{
"input": "1 90 90",
"output": "1 90 "
},
{
"input": "95 2200128528000 68",
"output": "4624 314432 21381376 1453933568 98867482624 "
},
{
"input": "64 426314644000 53",
"output": "2809 148877 7890481 418195493 22164361129 "
},
{
"input": "198765 198765 198765",
"output": "198765 "
},
{
"input": "42 2845016496000 12",
"output": "144 1728 20736 248832 2985984 35831808 429981696 5159780352 61917364224 743008370688 "
},
{
"input": "6 6 3",
"output": "-1"
},
{
"input": "1 10 11",
"output": "1 "
},
{
"input": "2 10 11",
"output": "-1"
},
{
"input": "87 160 41",
"output": "-1"
},
{
"input": "237171123124584251 923523399718980912 7150",
"output": "-1"
},
{
"input": "101021572000739548 453766043506276015 8898",
"output": "-1"
},
{
"input": "366070689449360724 928290634811046396 8230",
"output": "-1"
},
{
"input": "438133886369772308 942612870269666780 7193",
"output": "-1"
},
{
"input": "10 10 10",
"output": "10 "
},
{
"input": "16 16 256",
"output": "-1"
},
{
"input": "1 1000000000000000000 1000000000",
"output": "1 1000000000 1000000000000000000 "
},
{
"input": "1000000000000000000 1000000000000000000 1000000000",
"output": "1000000000000000000 "
},
{
"input": "1000000000 1000000000000000000 1000000000",
"output": "1000000000 1000000000000000000 "
},
{
"input": "1 1 4",
"output": "1 "
},
{
"input": "1 999999999999999999 1000000000",
"output": "1 1000000000 "
},
{
"input": "1 1000000000000000000 999999990",
"output": "1 999999990 999999980000000100 "
},
{
"input": "1 1000000000000000000 999999984",
"output": "1 999999984 999999968000000256 "
},
{
"input": "1 1000000000000000000 324325",
"output": "1 324325 105186705625 34114678301828125 "
},
{
"input": "1 1000000000000000000 999999523",
"output": "1 999999523 999999046000227529 "
},
{
"input": "1 243 3",
"output": "1 3 9 27 81 243 "
},
{
"input": "62769392426654367 567152589733560993 688813",
"output": "326816522793383797 "
},
{
"input": "1 1000000000000000000 690852001",
"output": "1 690852001 477276487285704001 "
},
{
"input": "1 1000000000000000000 918745157",
"output": "1 918745157 844092663510954649 "
},
{
"input": "1 1000000000000000000 131299843",
"output": "1 131299843 17239648771824649 "
},
{
"input": "2861381721051425 2861381721051425 1234",
"output": "-1"
}
] | 1,549,184,136
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 44
| 139
| 0
|
l , r , k = map(int , input().split())
K = k
k = 1
cnt = 0
while k <= r:
if k >= l:
print(k , end = ' ')
cnt+=1
k *= K
if cnt == 0:
print(-1)
|
Title: Link/Cut Tree
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Programmer Rostislav got seriously interested in the Link/Cut Tree data structure, which is based on Splay trees. Specifically, he is now studying the *expose* procedure.
Unfortunately, Rostislav is unable to understand the definition of this procedure, so he decided to ask programmer Serezha to help him. Serezha agreed to help if Rostislav solves a simple task (and if he doesn't, then why would he need Splay trees anyway?)
Given integers *l*, *r* and *k*, you need to print all powers of number *k* within range from *l* to *r* inclusive. However, Rostislav doesn't want to spent time doing this, as he got interested in playing a network game called Agar with Gleb. Help him!
Input Specification:
The first line of the input contains three space-separated integers *l*, *r* and *k* (1<=≤<=*l*<=≤<=*r*<=≤<=1018, 2<=≤<=*k*<=≤<=109).
Output Specification:
Print all powers of number *k*, that lie within range from *l* to *r* in the increasing order. If there are no such numbers, print "-1" (without the quotes).
Demo Input:
['1 10 2\n', '2 4 5\n']
Demo Output:
['1 2 4 8 ', '-1']
Note:
Note to the first sample: numbers 2<sup class="upper-index">0</sup> = 1, 2<sup class="upper-index">1</sup> = 2, 2<sup class="upper-index">2</sup> = 4, 2<sup class="upper-index">3</sup> = 8 lie within the specified range. The number 2<sup class="upper-index">4</sup> = 16 is greater then 10, thus it shouldn't be printed.
|
```python
l , r , k = map(int , input().split())
K = k
k = 1
cnt = 0
while k <= r:
if k >= l:
print(k , end = ' ')
cnt+=1
k *= K
if cnt == 0:
print(-1)
```
| 3
|
|
6
|
B
|
President's Office
|
PROGRAMMING
| 1,100
|
[
"implementation"
] |
B. President's Office
|
2
|
64
|
President of Berland has a very vast office-room, where, apart from him, work his subordinates. Each subordinate, as well as President himself, has his own desk of a unique colour. Each desk is rectangular, and its sides are parallel to the office walls. One day President decided to establish an assembly, of which all his deputies will be members. Unfortunately, he does not remember the exact amount of his deputies, but he remembers that the desk of each his deputy is adjacent to his own desk, that is to say, the two desks (President's and each deputy's) have a common side of a positive length.
The office-room plan can be viewed as a matrix with *n* rows and *m* columns. Each cell of this matrix is either empty, or contains a part of a desk. An uppercase Latin letter stands for each desk colour. The «period» character («.») stands for an empty cell.
|
The first line contains two separated by a space integer numbers *n*, *m* (1<=≤<=*n*,<=*m*<=≤<=100) — the length and the width of the office-room, and *c* character — the President's desk colour. The following *n* lines contain *m* characters each — the office-room description. It is guaranteed that the colour of each desk is unique, and each desk represents a continuous subrectangle of the given matrix. All colours are marked by uppercase Latin letters.
|
Print the only number — the amount of President's deputies.
|
[
"3 4 R\nG.B.\n.RR.\nTTT.\n",
"3 3 Z\n...\n.H.\n..Z\n"
] |
[
"2\n",
"0\n"
] |
none
| 0
|
[
{
"input": "3 4 R\nG.B.\n.RR.\nTTT.",
"output": "2"
},
{
"input": "3 3 Z\n...\n.H.\n..Z",
"output": "0"
},
{
"input": "1 1 C\nC",
"output": "0"
},
{
"input": "2 2 W\nKW\nKW",
"output": "1"
},
{
"input": "1 10 H\n....DDHHHH",
"output": "1"
},
{
"input": "3 2 W\nOO\nWW\nWW",
"output": "1"
},
{
"input": "3 3 U\nUOO\nUVV\nUVV",
"output": "2"
},
{
"input": "4 5 Z\n...ZZ\nUU.ZZ\nUUTT.\n..TT.",
"output": "1"
},
{
"input": "4 4 X\nT..R\nTJJJ\nDJJJ\nXJJJ",
"output": "2"
},
{
"input": "5 5 O\nCQGAV\nIHTUD\nRFPZO\nMYSKX\nJEWBN",
"output": "3"
},
{
"input": "5 4 O\n.O.J\nWOBJ\nWOBJ\nDDBJ\nDD.J",
"output": "3"
},
{
"input": "7 7 Q\n....RRR\nUUUURRR\nUUUUSS.\n....SSB\nPPP.OIB\n.MMTTIB\nQQQTTIB",
"output": "2"
},
{
"input": "8 10 B\n..BBBBEEEE\n..BBBBEEEE\n..BBBBEEEE\n..BBBBEEEE\nJJJJYYYY..\nJJJJYYYY..\nJJJJYYYY..\nJJJJYYYY..",
"output": "3"
},
{
"input": "7 13 G\n....GGGGGGXXX\nSSSSGGGGGGXXX\nSSSSJJFFFFFFF\nRRR.JJFFFFFFF\nRRRYYYYYYYAAA\nRRRYYYYYYYAAA\nRRR.......AAA",
"output": "4"
},
{
"input": "10 10 T\nCCEEEKKKHJ\nCCRRRRRRHJ\nCC..XFFOOO\nZZZZZFFOOO\n..PTTFFOOO\nAAATTFFOOO\nAAATTYYYYY\nAAATTYYYYY\nAAAMMYYYYY\nAAA..YYYYY",
"output": "6"
},
{
"input": "15 12 M\n............\n.....L..QQQQ\nNNN..L..QQQQ\nNNN..LJJJJJ.\nNNNEEEEEEEE.\nNNNEEEEEEEE.\nNNNMMMMM.AAA\nNNNMMMMM.AAA\n.RRMMMMM.AAA\n.RRMMMMMYAAA\n.RRMMMMMYAAA\n.RRMMMMMYAAA\nZRRMMMMMYAAA\nZRRMMMMM.AAA\nZRRMMMMM.AAA",
"output": "4"
}
] | 1,634,566,180
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 32
| 61
| 0
|
n, m, c = input().split()
n, m = int(n), int(m)
d = [input() for i in range(int(n))]
dir = [[0, 1], [1, 0], [0, -1], [-1, 0]]
ad = {c, '.'}
for i in range(n):
for j in range(m):
if d[i][j] == c:
for x, y in dir:
if 0 <= i + x < n and 0 <= j + y < m:
l = d[i + x][j + y]
if l not in ad:
ad.add(l)
print(len(ad) - 2)
|
Title: President's Office
Time Limit: 2 seconds
Memory Limit: 64 megabytes
Problem Description:
President of Berland has a very vast office-room, where, apart from him, work his subordinates. Each subordinate, as well as President himself, has his own desk of a unique colour. Each desk is rectangular, and its sides are parallel to the office walls. One day President decided to establish an assembly, of which all his deputies will be members. Unfortunately, he does not remember the exact amount of his deputies, but he remembers that the desk of each his deputy is adjacent to his own desk, that is to say, the two desks (President's and each deputy's) have a common side of a positive length.
The office-room plan can be viewed as a matrix with *n* rows and *m* columns. Each cell of this matrix is either empty, or contains a part of a desk. An uppercase Latin letter stands for each desk colour. The «period» character («.») stands for an empty cell.
Input Specification:
The first line contains two separated by a space integer numbers *n*, *m* (1<=≤<=*n*,<=*m*<=≤<=100) — the length and the width of the office-room, and *c* character — the President's desk colour. The following *n* lines contain *m* characters each — the office-room description. It is guaranteed that the colour of each desk is unique, and each desk represents a continuous subrectangle of the given matrix. All colours are marked by uppercase Latin letters.
Output Specification:
Print the only number — the amount of President's deputies.
Demo Input:
['3 4 R\nG.B.\n.RR.\nTTT.\n', '3 3 Z\n...\n.H.\n..Z\n']
Demo Output:
['2\n', '0\n']
Note:
none
|
```python
n, m, c = input().split()
n, m = int(n), int(m)
d = [input() for i in range(int(n))]
dir = [[0, 1], [1, 0], [0, -1], [-1, 0]]
ad = {c, '.'}
for i in range(n):
for j in range(m):
if d[i][j] == c:
for x, y in dir:
if 0 <= i + x < n and 0 <= j + y < m:
l = d[i + x][j + y]
if l not in ad:
ad.add(l)
print(len(ad) - 2)
```
| 3.98475
|
1,004
|
A
|
Sonya and Hotels
|
PROGRAMMING
| 900
|
[
"implementation"
] | null | null |
Sonya decided that having her own hotel business is the best way of earning money because she can profit and rest wherever she wants.
The country where Sonya lives is an endless line. There is a city in each integer coordinate on this line. She has $n$ hotels, where the $i$-th hotel is located in the city with coordinate $x_i$. Sonya is a smart girl, so she does not open two or more hotels in the same city.
Sonya understands that her business needs to be expanded by opening new hotels, so she decides to build one more. She wants to make the minimum distance from this hotel to all others to be equal to $d$. The girl understands that there are many possible locations to construct such a hotel. Thus she wants to know the number of possible coordinates of the cities where she can build a new hotel.
Because Sonya is lounging in a jacuzzi in one of her hotels, she is asking you to find the number of cities where she can build a new hotel so that the minimum distance from the original $n$ hotels to the new one is equal to $d$.
|
The first line contains two integers $n$ and $d$ ($1\leq n\leq 100$, $1\leq d\leq 10^9$) — the number of Sonya's hotels and the needed minimum distance from a new hotel to all others.
The second line contains $n$ different integers in strictly increasing order $x_1, x_2, \ldots, x_n$ ($-10^9\leq x_i\leq 10^9$) — coordinates of Sonya's hotels.
|
Print the number of cities where Sonya can build a new hotel so that the minimum distance from this hotel to all others is equal to $d$.
|
[
"4 3\n-3 2 9 16\n",
"5 2\n4 8 11 18 19\n"
] |
[
"6\n",
"5\n"
] |
In the first example, there are $6$ possible cities where Sonya can build a hotel. These cities have coordinates $-6$, $5$, $6$, $12$, $13$, and $19$.
In the second example, there are $5$ possible cities where Sonya can build a hotel. These cities have coordinates $2$, $6$, $13$, $16$, and $21$.
| 500
|
[
{
"input": "4 3\n-3 2 9 16",
"output": "6"
},
{
"input": "5 2\n4 8 11 18 19",
"output": "5"
},
{
"input": "10 10\n-67 -59 -49 -38 -8 20 41 59 74 83",
"output": "8"
},
{
"input": "10 10\n0 20 48 58 81 95 111 137 147 159",
"output": "9"
},
{
"input": "100 1\n0 1 2 3 4 5 7 8 10 11 12 13 14 15 16 17 19 21 22 23 24 25 26 27 28 30 32 33 36 39 40 41 42 46 48 53 54 55 59 60 61 63 65 68 70 71 74 75 76 79 80 81 82 84 88 89 90 91 93 94 96 97 98 100 101 102 105 106 107 108 109 110 111 113 114 115 116 117 118 120 121 122 125 126 128 131 132 133 134 135 137 138 139 140 143 144 146 147 148 149",
"output": "47"
},
{
"input": "1 1000000000\n-1000000000",
"output": "2"
},
{
"input": "2 1000000000\n-1000000000 1000000000",
"output": "3"
},
{
"input": "100 2\n1 3 5 6 8 9 12 13 14 17 18 21 22 23 24 25 26 27 29 30 34 35 36 39 41 44 46 48 52 53 55 56 57 59 61 63 64 66 68 69 70 71 72 73 75 76 77 79 80 81 82 87 88 91 92 93 94 95 96 97 99 100 102 103 104 106 109 110 111 112 113 114 115 117 118 119 120 122 124 125 127 128 129 130 131 132 133 134 136 137 139 140 141 142 143 145 146 148 149 150",
"output": "6"
},
{
"input": "100 3\n0 1 3 6 7 8 9 10 13 14 16 17 18 20 21 22 24 26 27 30 33 34 35 36 37 39 42 43 44 45 46 48 53 54 55 56 57 58 61 63 64 65 67 69 70 72 73 76 77 78 79 81 82 83 85 86 87 88 90 92 93 95 96 97 98 99 100 101 104 105 108 109 110 113 114 115 116 118 120 121 123 124 125 128 130 131 132 133 134 135 136 137 139 140 141 142 146 147 148 150",
"output": "2"
},
{
"input": "1 1000000000\n1000000000",
"output": "2"
},
{
"input": "10 2\n-93 -62 -53 -42 -38 11 57 58 87 94",
"output": "17"
},
{
"input": "2 500000000\n-1000000000 1000000000",
"output": "4"
},
{
"input": "100 10\n-489 -476 -445 -432 -430 -421 -420 -418 -412 -411 -404 -383 -356 -300 -295 -293 -287 -276 -265 -263 -258 -251 -249 -246 -220 -219 -205 -186 -166 -157 -143 -137 -136 -130 -103 -86 -80 -69 -67 -55 -43 -41 -40 -26 -19 -9 16 29 41 42 54 76 84 97 98 99 101 115 134 151 157 167 169 185 197 204 208 226 227 232 234 249 259 266 281 282 293 298 300 306 308 313 319 328 331 340 341 344 356 362 366 380 390 399 409 411 419 444 455 498",
"output": "23"
},
{
"input": "1 1000000000\n999999999",
"output": "2"
},
{
"input": "1 1\n-5",
"output": "2"
},
{
"input": "2 1\n-1000000000 1000000000",
"output": "4"
},
{
"input": "1 2\n1",
"output": "2"
},
{
"input": "4 5\n0 20 40 60",
"output": "8"
},
{
"input": "1 1\n-10",
"output": "2"
},
{
"input": "1 1\n-1000000000",
"output": "2"
},
{
"input": "1 1000000000\n0",
"output": "2"
},
{
"input": "1 2\n-10",
"output": "2"
},
{
"input": "1 1\n2",
"output": "2"
},
{
"input": "1 5\n-100",
"output": "2"
},
{
"input": "2 1000000000\n999999999 1000000000",
"output": "2"
},
{
"input": "2 2\n0 5",
"output": "4"
},
{
"input": "1 2\n-5",
"output": "2"
},
{
"input": "1 1\n1",
"output": "2"
},
{
"input": "1 5\n-20",
"output": "2"
},
{
"input": "2 100000000\n-1000000000 1000000000",
"output": "4"
},
{
"input": "1 1000000000\n147483641",
"output": "2"
},
{
"input": "3 3\n1 8 9",
"output": "4"
},
{
"input": "2 1\n1 1000000000",
"output": "4"
},
{
"input": "1 2\n-4",
"output": "2"
},
{
"input": "2 1\n-1000000000 -1",
"output": "4"
}
] | 1,530,809,912
| 1,412
|
Python 3
|
OK
|
TESTS
| 45
| 124
| 0
|
n, d = [int(i) for i in input().split()]
x = [int(i) for i in input().split()]
count = 0
for i in range(n):
if i - 1 >= 0:
if (x[i] - d) > x[i - 1] + d:
count += 1
if i + 1 < n:
if (x[i] + d) <= x[i + 1] - d:
count += 1
print(count + 2)
|
Title: Sonya and Hotels
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Sonya decided that having her own hotel business is the best way of earning money because she can profit and rest wherever she wants.
The country where Sonya lives is an endless line. There is a city in each integer coordinate on this line. She has $n$ hotels, where the $i$-th hotel is located in the city with coordinate $x_i$. Sonya is a smart girl, so she does not open two or more hotels in the same city.
Sonya understands that her business needs to be expanded by opening new hotels, so she decides to build one more. She wants to make the minimum distance from this hotel to all others to be equal to $d$. The girl understands that there are many possible locations to construct such a hotel. Thus she wants to know the number of possible coordinates of the cities where she can build a new hotel.
Because Sonya is lounging in a jacuzzi in one of her hotels, she is asking you to find the number of cities where she can build a new hotel so that the minimum distance from the original $n$ hotels to the new one is equal to $d$.
Input Specification:
The first line contains two integers $n$ and $d$ ($1\leq n\leq 100$, $1\leq d\leq 10^9$) — the number of Sonya's hotels and the needed minimum distance from a new hotel to all others.
The second line contains $n$ different integers in strictly increasing order $x_1, x_2, \ldots, x_n$ ($-10^9\leq x_i\leq 10^9$) — coordinates of Sonya's hotels.
Output Specification:
Print the number of cities where Sonya can build a new hotel so that the minimum distance from this hotel to all others is equal to $d$.
Demo Input:
['4 3\n-3 2 9 16\n', '5 2\n4 8 11 18 19\n']
Demo Output:
['6\n', '5\n']
Note:
In the first example, there are $6$ possible cities where Sonya can build a hotel. These cities have coordinates $-6$, $5$, $6$, $12$, $13$, and $19$.
In the second example, there are $5$ possible cities where Sonya can build a hotel. These cities have coordinates $2$, $6$, $13$, $16$, and $21$.
|
```python
n, d = [int(i) for i in input().split()]
x = [int(i) for i in input().split()]
count = 0
for i in range(n):
if i - 1 >= 0:
if (x[i] - d) > x[i - 1] + d:
count += 1
if i + 1 < n:
if (x[i] + d) <= x[i + 1] - d:
count += 1
print(count + 2)
```
| 3
|
|
976
|
A
|
Minimum Binary Number
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
String can be called correct if it consists of characters "0" and "1" and there are no redundant leading zeroes. Here are some examples: "0", "10", "1001".
You are given a correct string *s*.
You can perform two different operations on this string:
1. swap any pair of adjacent characters (for example, "101" "110"); 1. replace "11" with "1" (for example, "110" "10").
Let *val*(*s*) be such a number that *s* is its binary representation.
Correct string *a* is less than some other correct string *b* iff *val*(*a*)<=<<=*val*(*b*).
Your task is to find the minimum correct string that you can obtain from the given one using the operations described above. You can use these operations any number of times in any order (or even use no operations at all).
|
The first line contains integer number *n* (1<=≤<=*n*<=≤<=100) — the length of string *s*.
The second line contains the string *s* consisting of characters "0" and "1". It is guaranteed that the string *s* is correct.
|
Print one string — the minimum correct string that you can obtain from the given one.
|
[
"4\n1001\n",
"1\n1\n"
] |
[
"100\n",
"1\n"
] |
In the first example you can obtain the answer by the following sequence of operations: "1001" <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> "1010" <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> "1100" <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> "100".
In the second example you can't obtain smaller answer no matter what operations you use.
| 0
|
[
{
"input": "4\n1001",
"output": "100"
},
{
"input": "1\n1",
"output": "1"
},
{
"input": "100\n1110111100001111011111111010110011111111011110000111101101011100110110001011000000101010110101011100",
"output": "1000000000000000000000000000000000000000"
},
{
"input": "100\n1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000",
"output": "1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000"
},
{
"input": "100\n1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111",
"output": "1"
},
{
"input": "100\n1111111111111111111111111111111111111111111111111111111110111111111111111111111111111111111111111111",
"output": "10"
},
{
"input": "1\n0",
"output": "0"
},
{
"input": "8\n10101010",
"output": "10000"
},
{
"input": "2\n10",
"output": "10"
},
{
"input": "3\n111",
"output": "1"
},
{
"input": "5\n11100",
"output": "100"
},
{
"input": "2\n11",
"output": "1"
},
{
"input": "3\n110",
"output": "10"
},
{
"input": "50\n10010010000000000000000000000000000000001000000000",
"output": "10000000000000000000000000000000000000000000000"
}
] | 1,526,780,215
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 14
| 77
| 0
|
n = int(input())
a = input()
if a.count('1') >= 1:
print('1'+a.count('0')*'0')
else:
print(0)
|
Title: Minimum Binary Number
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
String can be called correct if it consists of characters "0" and "1" and there are no redundant leading zeroes. Here are some examples: "0", "10", "1001".
You are given a correct string *s*.
You can perform two different operations on this string:
1. swap any pair of adjacent characters (for example, "101" "110"); 1. replace "11" with "1" (for example, "110" "10").
Let *val*(*s*) be such a number that *s* is its binary representation.
Correct string *a* is less than some other correct string *b* iff *val*(*a*)<=<<=*val*(*b*).
Your task is to find the minimum correct string that you can obtain from the given one using the operations described above. You can use these operations any number of times in any order (or even use no operations at all).
Input Specification:
The first line contains integer number *n* (1<=≤<=*n*<=≤<=100) — the length of string *s*.
The second line contains the string *s* consisting of characters "0" and "1". It is guaranteed that the string *s* is correct.
Output Specification:
Print one string — the minimum correct string that you can obtain from the given one.
Demo Input:
['4\n1001\n', '1\n1\n']
Demo Output:
['100\n', '1\n']
Note:
In the first example you can obtain the answer by the following sequence of operations: "1001" <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> "1010" <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> "1100" <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> "100".
In the second example you can't obtain smaller answer no matter what operations you use.
|
```python
n = int(input())
a = input()
if a.count('1') >= 1:
print('1'+a.count('0')*'0')
else:
print(0)
```
| 3
|
|
842
|
B
|
Gleb And Pizza
|
PROGRAMMING
| 1,100
|
[
"geometry"
] | null | null |
Gleb ordered pizza home. When the courier delivered the pizza, he was very upset, because several pieces of sausage lay on the crust, and he does not really like the crust.
The pizza is a circle of radius *r* and center at the origin. Pizza consists of the main part — circle of radius *r*<=-<=*d* with center at the origin, and crust around the main part of the width *d*. Pieces of sausage are also circles. The radius of the *i* -th piece of the sausage is *r**i*, and the center is given as a pair (*x**i*, *y**i*).
Gleb asks you to help determine the number of pieces of sausage caught on the crust. A piece of sausage got on the crust, if it completely lies on the crust.
|
First string contains two integer numbers *r* and *d* (0<=≤<=*d*<=<<=*r*<=≤<=500) — the radius of pizza and the width of crust.
Next line contains one integer number *n* — the number of pieces of sausage (1<=≤<=*n*<=≤<=105).
Each of next *n* lines contains three integer numbers *x**i*, *y**i* and *r**i* (<=-<=500<=≤<=*x**i*,<=*y**i*<=≤<=500, 0<=≤<=*r**i*<=≤<=500), where *x**i* and *y**i* are coordinates of the center of *i*-th peace of sausage, *r**i* — radius of *i*-th peace of sausage.
|
Output the number of pieces of sausage that lay on the crust.
|
[
"8 4\n7\n7 8 1\n-7 3 2\n0 2 1\n0 -2 2\n-3 -3 1\n0 6 2\n5 3 1\n",
"10 8\n4\n0 0 9\n0 0 10\n1 0 1\n1 0 2\n"
] |
[
"2\n",
"0\n"
] |
Below is a picture explaining the first example. Circles of green color denote pieces of sausage lying on the crust.
| 1,000
|
[
{
"input": "8 4\n7\n7 8 1\n-7 3 2\n0 2 1\n0 -2 2\n-3 -3 1\n0 6 2\n5 3 1",
"output": "2"
},
{
"input": "10 8\n4\n0 0 9\n0 0 10\n1 0 1\n1 0 2",
"output": "0"
},
{
"input": "1 0\n1\n1 1 0",
"output": "0"
},
{
"input": "3 0\n5\n3 0 0\n0 3 0\n-3 0 0\n0 -3 0\n3 0 1",
"output": "4"
},
{
"input": "9 0\n5\n8 1 0\n8 2 0\n8 3 0\n-8 3 0\n-8 2 0",
"output": "0"
},
{
"input": "10 2\n11\n1 1 0\n2 2 3\n3 3 0\n4 4 0\n5 5 0\n6 6 0\n7 7 4\n8 8 7\n9 9 3\n10 10 100\n9 0 1",
"output": "2"
},
{
"input": "5 3\n1\n500 500 10",
"output": "0"
}
] | 1,504,025,040
| 5,940
|
Python 3
|
OK
|
TESTS
| 34
| 545
| 0
|
import math
r, d = map(int, input().split())
result = 0
for i in range(int(input())):
x, y, ri = map(int, input().split())
dist = math.sqrt(x**2+y**2)
if r - d <= dist-ri and dist+ri <= r:
result += 1
print(result)
|
Title: Gleb And Pizza
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Gleb ordered pizza home. When the courier delivered the pizza, he was very upset, because several pieces of sausage lay on the crust, and he does not really like the crust.
The pizza is a circle of radius *r* and center at the origin. Pizza consists of the main part — circle of radius *r*<=-<=*d* with center at the origin, and crust around the main part of the width *d*. Pieces of sausage are also circles. The radius of the *i* -th piece of the sausage is *r**i*, and the center is given as a pair (*x**i*, *y**i*).
Gleb asks you to help determine the number of pieces of sausage caught on the crust. A piece of sausage got on the crust, if it completely lies on the crust.
Input Specification:
First string contains two integer numbers *r* and *d* (0<=≤<=*d*<=<<=*r*<=≤<=500) — the radius of pizza and the width of crust.
Next line contains one integer number *n* — the number of pieces of sausage (1<=≤<=*n*<=≤<=105).
Each of next *n* lines contains three integer numbers *x**i*, *y**i* and *r**i* (<=-<=500<=≤<=*x**i*,<=*y**i*<=≤<=500, 0<=≤<=*r**i*<=≤<=500), where *x**i* and *y**i* are coordinates of the center of *i*-th peace of sausage, *r**i* — radius of *i*-th peace of sausage.
Output Specification:
Output the number of pieces of sausage that lay on the crust.
Demo Input:
['8 4\n7\n7 8 1\n-7 3 2\n0 2 1\n0 -2 2\n-3 -3 1\n0 6 2\n5 3 1\n', '10 8\n4\n0 0 9\n0 0 10\n1 0 1\n1 0 2\n']
Demo Output:
['2\n', '0\n']
Note:
Below is a picture explaining the first example. Circles of green color denote pieces of sausage lying on the crust.
|
```python
import math
r, d = map(int, input().split())
result = 0
for i in range(int(input())):
x, y, ri = map(int, input().split())
dist = math.sqrt(x**2+y**2)
if r - d <= dist-ri and dist+ri <= r:
result += 1
print(result)
```
| 3
|
|
44
|
A
|
Indian Summer
|
PROGRAMMING
| 900
|
[
"implementation"
] |
A. Indian Summer
|
2
|
256
|
Indian summer is such a beautiful time of the year! A girl named Alyona is walking in the forest and picking a bouquet from fallen leaves. Alyona is very choosy — she doesn't take a leaf if it matches the color and the species of the tree of one of the leaves she already has. Find out how many leaves Alyona has picked.
|
The first line contains an integer *n* (1<=≤<=*n*<=≤<=100) — the number of leaves Alyona has found. The next *n* lines contain the leaves' descriptions. Each leaf is characterized by the species of the tree it has fallen from and by the color. The species of the trees and colors are given in names, consisting of no more than 10 lowercase Latin letters. A name can not be an empty string. The species of a tree and the color are given in each line separated by a space.
|
Output the single number — the number of Alyona's leaves.
|
[
"5\nbirch yellow\nmaple red\nbirch yellow\nmaple yellow\nmaple green\n",
"3\noak yellow\noak yellow\noak yellow\n"
] |
[
"4\n",
"1\n"
] |
none
| 0
|
[
{
"input": "5\nbirch yellow\nmaple red\nbirch yellow\nmaple yellow\nmaple green",
"output": "4"
},
{
"input": "3\noak yellow\noak yellow\noak yellow",
"output": "1"
},
{
"input": "5\nxbnbkzn hp\nkaqkl vrgzbvqstu\nj aqidx\nhos gyul\nwefxmh tygpluae",
"output": "5"
},
{
"input": "1\nqvwli hz",
"output": "1"
},
{
"input": "4\nsrhk x\nsrhk x\nqfoe vnrjuab\nqfoe vnrjuab",
"output": "2"
},
{
"input": "4\nsddqllmmpk syded\nfprsq fnenjnaz\nn hdej\nsddqllmmpk syded",
"output": "3"
},
{
"input": "17\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw",
"output": "1"
},
{
"input": "18\nb d\nrfdb esp\nrfdb esp\nb d\nrfdb esp\nrfdb esp\nb d\nb d\nrfdb esp\nrfdb esp\nb d\nrfdb esp\nb d\nrfdb esp\nb d\nb d\nrfdb esp\nrfdb esp",
"output": "2"
},
{
"input": "13\nsvpzwtwn rykzfdce\nqweiyeck jkreouy\nhk nnli\ntwxrnbbdt vtuv\nxokqjtylly sz\nesdt dbfidjslq\ng ybqgomvw\nxcpfjmf zcqvz\nifajadhj invzueip\nvdemdnxifb hckwebmi\nsdpnhipam wvowzavh\nuqdlfskhgo vunbpghae\ne dtigwnb",
"output": "13"
},
{
"input": "20\nm vkfh\nvptikamead mvx\nitu mf\nklruxckw aqega\nekqkd enjllwol\ncc uybfdh\nimrfdngvo u\ne uh\ntwt jsslcfuogk\nbljwqsag tuqbdn\nqcv q\nasx gzhvwwmajj\nqcv q\nekqkd enjllwol\nasx gzhvwwmajj\nks vv\nkzyfi cn\ncc uybfdh\nitu mf\ncjbjhtbyvk vatwfmux",
"output": "15"
},
{
"input": "2\nab ab\na bab",
"output": "2"
}
] | 1,666,899,199
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 29
| 154
| 0
|
n = int(input())
leaflist=[]
for i in range(n):
x = input()
if x in leaflist:
pass
else:
leaflist.append(x)
print(len(leaflist))
|
Title: Indian Summer
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Indian summer is such a beautiful time of the year! A girl named Alyona is walking in the forest and picking a bouquet from fallen leaves. Alyona is very choosy — she doesn't take a leaf if it matches the color and the species of the tree of one of the leaves she already has. Find out how many leaves Alyona has picked.
Input Specification:
The first line contains an integer *n* (1<=≤<=*n*<=≤<=100) — the number of leaves Alyona has found. The next *n* lines contain the leaves' descriptions. Each leaf is characterized by the species of the tree it has fallen from and by the color. The species of the trees and colors are given in names, consisting of no more than 10 lowercase Latin letters. A name can not be an empty string. The species of a tree and the color are given in each line separated by a space.
Output Specification:
Output the single number — the number of Alyona's leaves.
Demo Input:
['5\nbirch yellow\nmaple red\nbirch yellow\nmaple yellow\nmaple green\n', '3\noak yellow\noak yellow\noak yellow\n']
Demo Output:
['4\n', '1\n']
Note:
none
|
```python
n = int(input())
leaflist=[]
for i in range(n):
x = input()
if x in leaflist:
pass
else:
leaflist.append(x)
print(len(leaflist))
```
| 3.9615
|
632
|
A
|
Grandma Laura and Apples
|
PROGRAMMING
| 1,200
|
[] | null | null |
Grandma Laura came to the market to sell some apples. During the day she sold all the apples she had. But grandma is old, so she forgot how many apples she had brought to the market.
She precisely remembers she had *n* buyers and each of them bought exactly half of the apples she had at the moment of the purchase and also she gave a half of an apple to some of them as a gift (if the number of apples at the moment of purchase was odd), until she sold all the apples she had.
So each buyer took some integral positive number of apples, but maybe he didn't pay for a half of an apple (if the number of apples at the moment of the purchase was odd).
For each buyer grandma remembers if she gave a half of an apple as a gift or not. The cost of an apple is *p* (the number *p* is even).
Print the total money grandma should have at the end of the day to check if some buyers cheated her.
|
The first line contains two integers *n* and *p* (1<=≤<=*n*<=≤<=40,<=2<=≤<=*p*<=≤<=1000) — the number of the buyers and the cost of one apple. It is guaranteed that the number *p* is even.
The next *n* lines contains the description of buyers. Each buyer is described with the string half if he simply bought half of the apples and with the string halfplus if grandma also gave him a half of an apple as a gift.
It is guaranteed that grandma has at least one apple at the start of the day and she has no apples at the end of the day.
|
Print the only integer *a* — the total money grandma should have at the end of the day.
Note that the answer can be too large, so you should use 64-bit integer type to store it. In C++ you can use the long long integer type and in Java you can use long integer type.
|
[
"2 10\nhalf\nhalfplus\n",
"3 10\nhalfplus\nhalfplus\nhalfplus\n"
] |
[
"15\n",
"55\n"
] |
In the first sample at the start of the day the grandma had two apples. First she sold one apple and then she sold a half of the second apple and gave a half of the second apple as a present to the second buyer.
| 0
|
[
{
"input": "2 10\nhalf\nhalfplus",
"output": "15"
},
{
"input": "3 10\nhalfplus\nhalfplus\nhalfplus",
"output": "55"
},
{
"input": "10 328\nhalf\nhalfplus\nhalfplus\nhalf\nhalfplus\nhalf\nhalf\nhalf\nhalfplus\nhalfplus",
"output": "258300"
},
{
"input": "1 2\nhalfplus",
"output": "1"
},
{
"input": "5 6\nhalf\nhalf\nhalfplus\nhalf\nhalfplus",
"output": "114"
},
{
"input": "10 2\nhalfplus\nhalfplus\nhalfplus\nhalf\nhalfplus\nhalf\nhalfplus\nhalf\nhalfplus\nhalfplus",
"output": "1703"
},
{
"input": "20 6\nhalf\nhalfplus\nhalfplus\nhalfplus\nhalf\nhalf\nhalfplus\nhalf\nhalfplus\nhalfplus\nhalfplus\nhalf\nhalf\nhalfplus\nhalfplus\nhalf\nhalfplus\nhalfplus\nhalfplus\nhalfplus",
"output": "6056877"
},
{
"input": "30 68\nhalf\nhalf\nhalf\nhalfplus\nhalfplus\nhalf\nhalf\nhalf\nhalf\nhalf\nhalf\nhalf\nhalf\nhalfplus\nhalfplus\nhalf\nhalfplus\nhalf\nhalfplus\nhalf\nhalfplus\nhalfplus\nhalfplus\nhalf\nhalf\nhalf\nhalfplus\nhalf\nhalfplus\nhalfplus",
"output": "59847312584"
},
{
"input": "40 562\nhalfplus\nhalfplus\nhalfplus\nhalfplus\nhalfplus\nhalfplus\nhalfplus\nhalfplus\nhalf\nhalf\nhalf\nhalfplus\nhalf\nhalf\nhalfplus\nhalf\nhalfplus\nhalf\nhalfplus\nhalf\nhalfplus\nhalf\nhalfplus\nhalfplus\nhalfplus\nhalfplus\nhalfplus\nhalf\nhalf\nhalfplus\nhalf\nhalfplus\nhalfplus\nhalf\nhalf\nhalfplus\nhalf\nhalf\nhalfplus\nhalfplus",
"output": "486750560068982"
}
] | 1,456,846,398
| 1,998
|
Python 3
|
OK
|
TESTS
| 9
| 62
| 0
|
n, p = map(int, input().split())
s = []
for i in range(n):
s.append(input().strip())
cnt = 0
ans = 0
for c in reversed(s):
ans += p * cnt
cnt *= 2
if c == 'halfplus':
cnt += 1
ans += p//2
print(ans)
|
Title: Grandma Laura and Apples
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Grandma Laura came to the market to sell some apples. During the day she sold all the apples she had. But grandma is old, so she forgot how many apples she had brought to the market.
She precisely remembers she had *n* buyers and each of them bought exactly half of the apples she had at the moment of the purchase and also she gave a half of an apple to some of them as a gift (if the number of apples at the moment of purchase was odd), until she sold all the apples she had.
So each buyer took some integral positive number of apples, but maybe he didn't pay for a half of an apple (if the number of apples at the moment of the purchase was odd).
For each buyer grandma remembers if she gave a half of an apple as a gift or not. The cost of an apple is *p* (the number *p* is even).
Print the total money grandma should have at the end of the day to check if some buyers cheated her.
Input Specification:
The first line contains two integers *n* and *p* (1<=≤<=*n*<=≤<=40,<=2<=≤<=*p*<=≤<=1000) — the number of the buyers and the cost of one apple. It is guaranteed that the number *p* is even.
The next *n* lines contains the description of buyers. Each buyer is described with the string half if he simply bought half of the apples and with the string halfplus if grandma also gave him a half of an apple as a gift.
It is guaranteed that grandma has at least one apple at the start of the day and she has no apples at the end of the day.
Output Specification:
Print the only integer *a* — the total money grandma should have at the end of the day.
Note that the answer can be too large, so you should use 64-bit integer type to store it. In C++ you can use the long long integer type and in Java you can use long integer type.
Demo Input:
['2 10\nhalf\nhalfplus\n', '3 10\nhalfplus\nhalfplus\nhalfplus\n']
Demo Output:
['15\n', '55\n']
Note:
In the first sample at the start of the day the grandma had two apples. First she sold one apple and then she sold a half of the second apple and gave a half of the second apple as a present to the second buyer.
|
```python
n, p = map(int, input().split())
s = []
for i in range(n):
s.append(input().strip())
cnt = 0
ans = 0
for c in reversed(s):
ans += p * cnt
cnt *= 2
if c == 'halfplus':
cnt += 1
ans += p//2
print(ans)
```
| 3
|
|
617
|
A
|
Elephant
|
PROGRAMMING
| 800
|
[
"math"
] | null | null |
An elephant decided to visit his friend. It turned out that the elephant's house is located at point 0 and his friend's house is located at point *x*(*x*<=><=0) of the coordinate line. In one step the elephant can move 1, 2, 3, 4 or 5 positions forward. Determine, what is the minimum number of steps he need to make in order to get to his friend's house.
|
The first line of the input contains an integer *x* (1<=≤<=*x*<=≤<=1<=000<=000) — The coordinate of the friend's house.
|
Print the minimum number of steps that elephant needs to make to get from point 0 to point *x*.
|
[
"5\n",
"12\n"
] |
[
"1\n",
"3\n"
] |
In the first sample the elephant needs to make one step of length 5 to reach the point *x*.
In the second sample the elephant can get to point *x* if he moves by 3, 5 and 4. There are other ways to get the optimal answer but the elephant cannot reach *x* in less than three moves.
| 500
|
[
{
"input": "5",
"output": "1"
},
{
"input": "12",
"output": "3"
},
{
"input": "999999",
"output": "200000"
},
{
"input": "41",
"output": "9"
},
{
"input": "1000000",
"output": "200000"
},
{
"input": "1",
"output": "1"
},
{
"input": "2",
"output": "1"
},
{
"input": "3",
"output": "1"
},
{
"input": "4",
"output": "1"
},
{
"input": "534204",
"output": "106841"
},
{
"input": "469569",
"output": "93914"
},
{
"input": "502877",
"output": "100576"
},
{
"input": "942212",
"output": "188443"
},
{
"input": "97",
"output": "20"
},
{
"input": "53",
"output": "11"
},
{
"input": "89",
"output": "18"
},
{
"input": "574",
"output": "115"
},
{
"input": "716",
"output": "144"
},
{
"input": "729",
"output": "146"
},
{
"input": "8901",
"output": "1781"
},
{
"input": "3645",
"output": "729"
},
{
"input": "4426",
"output": "886"
},
{
"input": "46573",
"output": "9315"
},
{
"input": "86380",
"output": "17276"
},
{
"input": "94190",
"output": "18838"
},
{
"input": "999990",
"output": "199998"
},
{
"input": "999991",
"output": "199999"
},
{
"input": "999992",
"output": "199999"
},
{
"input": "999993",
"output": "199999"
},
{
"input": "999994",
"output": "199999"
},
{
"input": "999995",
"output": "199999"
},
{
"input": "999996",
"output": "200000"
},
{
"input": "999997",
"output": "200000"
},
{
"input": "999998",
"output": "200000"
}
] | 1,694,518,297
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 34
| 77
| 0
|
distance = int(input())
c = 0
a = 5
while distance != 0:
while distance >= a:
if a == 0:
break
elif distance >= a:
distance -= a
c += 1
a -= 1
if a <= 0:
a = 1
print(c)
|
Title: Elephant
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
An elephant decided to visit his friend. It turned out that the elephant's house is located at point 0 and his friend's house is located at point *x*(*x*<=><=0) of the coordinate line. In one step the elephant can move 1, 2, 3, 4 or 5 positions forward. Determine, what is the minimum number of steps he need to make in order to get to his friend's house.
Input Specification:
The first line of the input contains an integer *x* (1<=≤<=*x*<=≤<=1<=000<=000) — The coordinate of the friend's house.
Output Specification:
Print the minimum number of steps that elephant needs to make to get from point 0 to point *x*.
Demo Input:
['5\n', '12\n']
Demo Output:
['1\n', '3\n']
Note:
In the first sample the elephant needs to make one step of length 5 to reach the point *x*.
In the second sample the elephant can get to point *x* if he moves by 3, 5 and 4. There are other ways to get the optimal answer but the elephant cannot reach *x* in less than three moves.
|
```python
distance = int(input())
c = 0
a = 5
while distance != 0:
while distance >= a:
if a == 0:
break
elif distance >= a:
distance -= a
c += 1
a -= 1
if a <= 0:
a = 1
print(c)
```
| 3
|
|
514
|
A
|
Chewbaсca and Number
|
PROGRAMMING
| 1,200
|
[
"greedy",
"implementation"
] | null | null |
Luke Skywalker gave Chewbacca an integer number *x*. Chewbacca isn't good at numbers but he loves inverting digits in them. Inverting digit *t* means replacing it with digit 9<=-<=*t*.
Help Chewbacca to transform the initial number *x* to the minimum possible positive number by inverting some (possibly, zero) digits. The decimal representation of the final number shouldn't start with a zero.
|
The first line contains a single integer *x* (1<=≤<=*x*<=≤<=1018) — the number that Luke Skywalker gave to Chewbacca.
|
Print the minimum possible positive number that Chewbacca can obtain after inverting some digits. The number shouldn't contain leading zeroes.
|
[
"27\n",
"4545\n"
] |
[
"22\n",
"4444\n"
] |
none
| 500
|
[
{
"input": "27",
"output": "22"
},
{
"input": "4545",
"output": "4444"
},
{
"input": "1",
"output": "1"
},
{
"input": "9",
"output": "9"
},
{
"input": "8772",
"output": "1222"
},
{
"input": "81",
"output": "11"
},
{
"input": "71723447",
"output": "21223442"
},
{
"input": "91730629",
"output": "91230320"
},
{
"input": "420062703497",
"output": "420032203402"
},
{
"input": "332711047202",
"output": "332211042202"
},
{
"input": "3395184971407775",
"output": "3304114021402224"
},
{
"input": "8464062628894325",
"output": "1434032321104324"
},
{
"input": "164324828731963982",
"output": "134324121231033012"
},
{
"input": "384979173822804784",
"output": "314020123122104214"
},
{
"input": "41312150450968417",
"output": "41312140440031412"
},
{
"input": "2156",
"output": "2143"
},
{
"input": "1932",
"output": "1032"
},
{
"input": "5902",
"output": "4002"
},
{
"input": "5728",
"output": "4221"
},
{
"input": "8537",
"output": "1432"
},
{
"input": "55403857",
"output": "44403142"
},
{
"input": "270739",
"output": "220230"
},
{
"input": "28746918",
"output": "21243011"
},
{
"input": "10279211",
"output": "10220211"
},
{
"input": "40289679",
"output": "40210320"
},
{
"input": "545203238506",
"output": "444203231403"
},
{
"input": "461117063340",
"output": "431112033340"
},
{
"input": "658492686568",
"output": "341402313431"
},
{
"input": "857373361868",
"output": "142323331131"
},
{
"input": "429325660016",
"output": "420324330013"
},
{
"input": "9894448650287940",
"output": "9104441340212040"
},
{
"input": "6354510839296263",
"output": "3344410130203233"
},
{
"input": "6873575462224593",
"output": "3123424432224403"
},
{
"input": "4237951492601449",
"output": "4232041402301440"
},
{
"input": "2680352384836991",
"output": "2310342314133001"
},
{
"input": "606187734191890310",
"output": "303112234101100310"
},
{
"input": "351499943576823355",
"output": "341400043423123344"
},
{
"input": "180593481782177068",
"output": "110403411212122031"
},
{
"input": "999999999999999999",
"output": "900000000000000000"
},
{
"input": "1000000000000000000",
"output": "1000000000000000000"
},
{
"input": "9999",
"output": "9000"
},
{
"input": "99",
"output": "90"
},
{
"input": "9991",
"output": "9001"
}
] | 1,696,354,515
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 43
| 62
| 0
|
a = [(d, str(9-int(d)))[int(d) > 4] for d in input()]
if a[0] == '0':
a[0] = '9'
print(int(''.join(a)))
|
Title: Chewbaсca and Number
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Luke Skywalker gave Chewbacca an integer number *x*. Chewbacca isn't good at numbers but he loves inverting digits in them. Inverting digit *t* means replacing it with digit 9<=-<=*t*.
Help Chewbacca to transform the initial number *x* to the minimum possible positive number by inverting some (possibly, zero) digits. The decimal representation of the final number shouldn't start with a zero.
Input Specification:
The first line contains a single integer *x* (1<=≤<=*x*<=≤<=1018) — the number that Luke Skywalker gave to Chewbacca.
Output Specification:
Print the minimum possible positive number that Chewbacca can obtain after inverting some digits. The number shouldn't contain leading zeroes.
Demo Input:
['27\n', '4545\n']
Demo Output:
['22\n', '4444\n']
Note:
none
|
```python
a = [(d, str(9-int(d)))[int(d) > 4] for d in input()]
if a[0] == '0':
a[0] = '9'
print(int(''.join(a)))
```
| 3
|
|
596
|
B
|
Wilbur and Array
|
PROGRAMMING
| 1,100
|
[
"greedy",
"implementation"
] | null | null |
Wilbur the pig is tinkering with arrays again. He has the array *a*1,<=*a*2,<=...,<=*a**n* initially consisting of *n* zeros. At one step, he can choose any index *i* and either add 1 to all elements *a**i*,<=*a**i*<=+<=1,<=... ,<=*a**n* or subtract 1 from all elements *a**i*,<=*a**i*<=+<=1,<=...,<=*a**n*. His goal is to end up with the array *b*1,<=*b*2,<=...,<=*b**n*.
Of course, Wilbur wants to achieve this goal in the minimum number of steps and asks you to compute this value.
|
The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=200<=000) — the length of the array *a**i*. Initially *a**i*<==<=0 for every position *i*, so this array is not given in the input.
The second line of the input contains *n* integers *b*1,<=*b*2,<=...,<=*b**n* (<=-<=109<=≤<=*b**i*<=≤<=109).
|
Print the minimum number of steps that Wilbur needs to make in order to achieve *a**i*<==<=*b**i* for all *i*.
|
[
"5\n1 2 3 4 5\n",
"4\n1 2 2 1\n"
] |
[
"5",
"3"
] |
In the first sample, Wilbur may successively choose indices 1, 2, 3, 4, and 5, and add 1 to corresponding suffixes.
In the second sample, Wilbur first chooses indices 1 and 2 and adds 1 to corresponding suffixes, then he chooses index 4 and subtract 1.
| 1,000
|
[
{
"input": "5\n1 2 3 4 5",
"output": "5"
},
{
"input": "4\n1 2 2 1",
"output": "3"
},
{
"input": "3\n1 2 4",
"output": "4"
},
{
"input": "6\n1 2 3 6 5 4",
"output": "8"
},
{
"input": "10\n2 1 4 3 6 5 8 7 10 9",
"output": "19"
},
{
"input": "7\n12 6 12 13 4 3 2",
"output": "36"
},
{
"input": "15\n15 14 13 1 2 3 12 11 10 4 5 6 9 8 7",
"output": "55"
},
{
"input": "16\n1 2 3 4 13 14 15 16 9 10 11 12 5 6 7 8",
"output": "36"
},
{
"input": "6\n1000 1 2000 1 3000 1",
"output": "11995"
},
{
"input": "1\n0",
"output": "0"
},
{
"input": "5\n1000000000 1 1000000000 1 1000000000",
"output": "4999999996"
},
{
"input": "5\n1000000000 0 1000000000 0 1000000000",
"output": "5000000000"
},
{
"input": "10\n1000000000 0 1000000000 0 1000000000 0 1000000000 0 1000000000 0",
"output": "10000000000"
},
{
"input": "10\n1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000",
"output": "19000000000"
},
{
"input": "7\n0 1000000000 0 1000000000 0 1000000000 0",
"output": "6000000000"
},
{
"input": "4\n1000000000 -1000000000 1000000000 -1000000000",
"output": "7000000000"
},
{
"input": "20\n1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000",
"output": "39000000000"
},
{
"input": "11\n1000000000 0 1000000000 0 1000000000 0 1000000000 0 1000000000 0 1000000000",
"output": "11000000000"
},
{
"input": "5\n1000000000 -1000000000 1000000000 -1000000000 1000000000",
"output": "9000000000"
},
{
"input": "22\n1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000",
"output": "43000000000"
}
] | 1,626,038,059
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 76
| 202
| 24,268,800
|
n = int(input())
vals = list(map(int, input().split()))
vals = [0] + vals
c = 0
for i in range(n):
c += abs(vals[i]-vals[i+1])
print(c)
|
Title: Wilbur and Array
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Wilbur the pig is tinkering with arrays again. He has the array *a*1,<=*a*2,<=...,<=*a**n* initially consisting of *n* zeros. At one step, he can choose any index *i* and either add 1 to all elements *a**i*,<=*a**i*<=+<=1,<=... ,<=*a**n* or subtract 1 from all elements *a**i*,<=*a**i*<=+<=1,<=...,<=*a**n*. His goal is to end up with the array *b*1,<=*b*2,<=...,<=*b**n*.
Of course, Wilbur wants to achieve this goal in the minimum number of steps and asks you to compute this value.
Input Specification:
The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=200<=000) — the length of the array *a**i*. Initially *a**i*<==<=0 for every position *i*, so this array is not given in the input.
The second line of the input contains *n* integers *b*1,<=*b*2,<=...,<=*b**n* (<=-<=109<=≤<=*b**i*<=≤<=109).
Output Specification:
Print the minimum number of steps that Wilbur needs to make in order to achieve *a**i*<==<=*b**i* for all *i*.
Demo Input:
['5\n1 2 3 4 5\n', '4\n1 2 2 1\n']
Demo Output:
['5', '3']
Note:
In the first sample, Wilbur may successively choose indices 1, 2, 3, 4, and 5, and add 1 to corresponding suffixes.
In the second sample, Wilbur first chooses indices 1 and 2 and adds 1 to corresponding suffixes, then he chooses index 4 and subtract 1.
|
```python
n = int(input())
vals = list(map(int, input().split()))
vals = [0] + vals
c = 0
for i in range(n):
c += abs(vals[i]-vals[i+1])
print(c)
```
| 3
|
|
339
|
A
|
Helpful Maths
|
PROGRAMMING
| 800
|
[
"greedy",
"implementation",
"sortings",
"strings"
] | null | null |
Xenia the beginner mathematician is a third year student at elementary school. She is now learning the addition operation.
The teacher has written down the sum of multiple numbers. Pupils should calculate the sum. To make the calculation easier, the sum only contains numbers 1, 2 and 3. Still, that isn't enough for Xenia. She is only beginning to count, so she can calculate a sum only if the summands follow in non-decreasing order. For example, she can't calculate sum 1+3+2+1 but she can calculate sums 1+1+2 and 3+3.
You've got the sum that was written on the board. Rearrange the summans and print the sum in such a way that Xenia can calculate the sum.
|
The first line contains a non-empty string *s* — the sum Xenia needs to count. String *s* contains no spaces. It only contains digits and characters "+". Besides, string *s* is a correct sum of numbers 1, 2 and 3. String *s* is at most 100 characters long.
|
Print the new sum that Xenia can count.
|
[
"3+2+1\n",
"1+1+3+1+3\n",
"2\n"
] |
[
"1+2+3\n",
"1+1+1+3+3\n",
"2\n"
] |
none
| 500
|
[
{
"input": "3+2+1",
"output": "1+2+3"
},
{
"input": "1+1+3+1+3",
"output": "1+1+1+3+3"
},
{
"input": "2",
"output": "2"
},
{
"input": "2+2+1+1+3",
"output": "1+1+2+2+3"
},
{
"input": "2+1+2+2+2+3+1+3+1+2",
"output": "1+1+1+2+2+2+2+2+3+3"
},
{
"input": "1+2+1+2+2+2+2+1+3+3",
"output": "1+1+1+2+2+2+2+2+3+3"
},
{
"input": "2+3+3+1+2+2+2+1+1+2+1+3+2+2+3+3+2+2+3+3+3+1+1+1+3+3+3+2+1+3+2+3+2+1+1+3+3+3+1+2+2+1+2+2+1+2+1+3+1+1",
"output": "1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+3+3+3+3+3+3+3+3+3+3+3+3+3+3+3+3+3"
},
{
"input": "1",
"output": "1"
},
{
"input": "2+1+2+2+1+3+2+3+1+1+2+1+2+2+3+1+1+3+3+3+2+2+3+2+2+2+1+2+1+2+3+2+2+2+1+3+1+3+3+3+1+2+1+2+2+2+2+3+1+1",
"output": "1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+3+3+3+3+3+3+3+3+3+3+3+3+3"
},
{
"input": "2+2+1+1+1+3+1+1+3+3+2+3+1+3+1+1+3+1+1+2+2+2+2+1+2+1+2+1+1+1+3+1+3+2+3+2+3+3+1+1+1+2+3+2+1+3+1+3+2+2",
"output": "1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+3+3+3+3+3+3+3+3+3+3+3+3+3+3"
},
{
"input": "3+2+3+3+2+2+1+2+1+2+3+1+2+3+2+3+2+1+2+2+1+1+2+2+3+2+1+3+1+1+3+2+2+2+2+3+3+2+2+3+3+1+1+2+3+3+2+3+3+3",
"output": "1+1+1+1+1+1+1+1+1+1+1+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+3+3+3+3+3+3+3+3+3+3+3+3+3+3+3+3+3+3"
},
{
"input": "3",
"output": "3"
},
{
"input": "1+1",
"output": "1+1"
},
{
"input": "1+2",
"output": "1+2"
},
{
"input": "1+3",
"output": "1+3"
},
{
"input": "2+1",
"output": "1+2"
},
{
"input": "2+2",
"output": "2+2"
},
{
"input": "2+3",
"output": "2+3"
},
{
"input": "3+1",
"output": "1+3"
},
{
"input": "3+2",
"output": "2+3"
},
{
"input": "3+3",
"output": "3+3"
}
] | 1,696,527,679
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 21
| 92
| 0
|
x = list(map(int, input().split('+')))
x.sort()
print('+'.join(map(str, x)))
|
Title: Helpful Maths
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Xenia the beginner mathematician is a third year student at elementary school. She is now learning the addition operation.
The teacher has written down the sum of multiple numbers. Pupils should calculate the sum. To make the calculation easier, the sum only contains numbers 1, 2 and 3. Still, that isn't enough for Xenia. She is only beginning to count, so she can calculate a sum only if the summands follow in non-decreasing order. For example, she can't calculate sum 1+3+2+1 but she can calculate sums 1+1+2 and 3+3.
You've got the sum that was written on the board. Rearrange the summans and print the sum in such a way that Xenia can calculate the sum.
Input Specification:
The first line contains a non-empty string *s* — the sum Xenia needs to count. String *s* contains no spaces. It only contains digits and characters "+". Besides, string *s* is a correct sum of numbers 1, 2 and 3. String *s* is at most 100 characters long.
Output Specification:
Print the new sum that Xenia can count.
Demo Input:
['3+2+1\n', '1+1+3+1+3\n', '2\n']
Demo Output:
['1+2+3\n', '1+1+1+3+3\n', '2\n']
Note:
none
|
```python
x = list(map(int, input().split('+')))
x.sort()
print('+'.join(map(str, x)))
```
| 3
|
|
946
|
A
|
Partition
|
PROGRAMMING
| 800
|
[
"greedy"
] | null | null |
You are given a sequence *a* consisting of *n* integers. You may partition this sequence into two sequences *b* and *c* in such a way that every element belongs exactly to one of these sequences.
Let *B* be the sum of elements belonging to *b*, and *C* be the sum of elements belonging to *c* (if some of these sequences is empty, then its sum is 0). What is the maximum possible value of *B*<=-<=*C*?
|
The first line contains one integer *n* (1<=≤<=*n*<=≤<=100) — the number of elements in *a*.
The second line contains *n* integers *a*1, *a*2, ..., *a**n* (<=-<=100<=≤<=*a**i*<=≤<=100) — the elements of sequence *a*.
|
Print the maximum possible value of *B*<=-<=*C*, where *B* is the sum of elements of sequence *b*, and *C* is the sum of elements of sequence *c*.
|
[
"3\n1 -2 0\n",
"6\n16 23 16 15 42 8\n"
] |
[
"3\n",
"120\n"
] |
In the first example we may choose *b* = {1, 0}, *c* = { - 2}. Then *B* = 1, *C* = - 2, *B* - *C* = 3.
In the second example we choose *b* = {16, 23, 16, 15, 42, 8}, *c* = {} (an empty sequence). Then *B* = 120, *C* = 0, *B* - *C* = 120.
| 0
|
[
{
"input": "3\n1 -2 0",
"output": "3"
},
{
"input": "6\n16 23 16 15 42 8",
"output": "120"
},
{
"input": "1\n-1",
"output": "1"
},
{
"input": "100\n-100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100",
"output": "10000"
},
{
"input": "2\n-1 5",
"output": "6"
},
{
"input": "3\n-2 0 1",
"output": "3"
},
{
"input": "12\n-1 -2 -3 4 4 -6 -6 56 3 3 -3 3",
"output": "94"
},
{
"input": "4\n1 -1 1 -1",
"output": "4"
},
{
"input": "4\n100 -100 100 -100",
"output": "400"
},
{
"input": "3\n-2 -5 10",
"output": "17"
},
{
"input": "5\n1 -2 3 -4 5",
"output": "15"
},
{
"input": "3\n-100 100 -100",
"output": "300"
},
{
"input": "6\n1 -1 1 -1 1 -1",
"output": "6"
},
{
"input": "6\n2 -2 2 -2 2 -2",
"output": "12"
},
{
"input": "9\n12 93 -2 0 0 0 3 -3 -9",
"output": "122"
},
{
"input": "6\n-1 2 4 -5 -3 55",
"output": "70"
},
{
"input": "6\n-12 8 68 -53 1 -15",
"output": "157"
},
{
"input": "2\n-2 1",
"output": "3"
},
{
"input": "3\n100 -100 100",
"output": "300"
},
{
"input": "5\n100 100 -1 -100 2",
"output": "303"
},
{
"input": "6\n-5 -4 -3 -2 -1 0",
"output": "15"
},
{
"input": "6\n4 4 4 -3 -3 2",
"output": "20"
},
{
"input": "2\n-1 2",
"output": "3"
},
{
"input": "1\n100",
"output": "100"
},
{
"input": "5\n-1 -2 3 1 2",
"output": "9"
},
{
"input": "5\n100 -100 100 -100 100",
"output": "500"
},
{
"input": "5\n1 -1 1 -1 1",
"output": "5"
},
{
"input": "4\n0 0 0 -1",
"output": "1"
},
{
"input": "5\n100 -100 -1 2 100",
"output": "303"
},
{
"input": "2\n75 0",
"output": "75"
},
{
"input": "4\n55 56 -59 -58",
"output": "228"
},
{
"input": "2\n9 71",
"output": "80"
},
{
"input": "2\n9 70",
"output": "79"
},
{
"input": "2\n9 69",
"output": "78"
},
{
"input": "2\n100 -100",
"output": "200"
},
{
"input": "4\n-9 4 -9 5",
"output": "27"
},
{
"input": "42\n91 -27 -79 -56 80 -93 -23 10 80 94 61 -89 -64 81 34 99 31 -32 -69 92 79 -9 73 66 -8 64 99 99 58 -19 -40 21 1 -33 93 -23 -62 27 55 41 57 36",
"output": "2348"
},
{
"input": "7\n-1 2 2 2 -1 2 -1",
"output": "11"
},
{
"input": "6\n-12 8 17 -69 7 -88",
"output": "201"
},
{
"input": "3\n1 -2 5",
"output": "8"
},
{
"input": "6\n-2 3 -4 5 6 -1",
"output": "21"
},
{
"input": "2\n-5 1",
"output": "6"
},
{
"input": "4\n2 2 -2 4",
"output": "10"
},
{
"input": "68\n21 47 -75 -25 64 83 83 -21 89 24 43 44 -35 34 -42 92 -96 -52 -66 64 14 -87 25 -61 -78 83 -96 -18 95 83 -93 -28 75 49 87 65 -93 -69 -2 95 -24 -36 -61 -71 88 -53 -93 -51 -81 -65 -53 -46 -56 6 65 58 19 100 57 61 -53 44 -58 48 -8 80 -88 72",
"output": "3991"
},
{
"input": "5\n5 5 -10 -1 1",
"output": "22"
},
{
"input": "3\n-1 2 3",
"output": "6"
},
{
"input": "76\n57 -38 -48 -81 93 -32 96 55 -44 2 38 -46 42 64 71 -73 95 31 -39 -62 -1 75 -17 57 28 52 12 -11 82 -84 59 -86 73 -97 34 97 -57 -85 -6 39 -5 -54 95 24 -44 35 -18 9 91 7 -22 -61 -80 54 -40 74 -90 15 -97 66 -52 -49 -24 65 21 -93 -29 -24 -4 -1 76 -93 7 -55 -53 1",
"output": "3787"
},
{
"input": "5\n-1 -2 1 2 3",
"output": "9"
},
{
"input": "4\n2 2 -2 -2",
"output": "8"
},
{
"input": "6\n100 -100 100 -100 100 -100",
"output": "600"
},
{
"input": "100\n-59 -33 34 0 69 24 -22 58 62 -36 5 45 -19 -73 61 -9 95 42 -73 -64 91 -96 2 53 -8 82 -79 16 18 -5 -53 26 71 38 -31 12 -33 -1 -65 -6 3 -89 22 33 -27 -36 41 11 -47 -32 47 -56 -38 57 -63 -41 23 41 29 78 16 -65 90 -58 -12 6 -60 42 -36 -52 -54 -95 -10 29 70 50 -94 1 93 48 -71 -77 -16 54 56 -60 66 76 31 8 44 -61 -74 23 37 38 18 -18 29 41",
"output": "4362"
},
{
"input": "2\n-1 1",
"output": "2"
},
{
"input": "3\n1 -2 100",
"output": "103"
},
{
"input": "5\n1 -2 3 1 2",
"output": "9"
},
{
"input": "10\n100 -10 -100 10 10 10 10 10 10 10",
"output": "280"
},
{
"input": "4\n2 0 -2 4",
"output": "8"
},
{
"input": "4\n3 -3 1 -1",
"output": "8"
},
{
"input": "3\n1 -1 1",
"output": "3"
},
{
"input": "4\n2 5 -2 4",
"output": "13"
},
{
"input": "2\n-2 2",
"output": "4"
},
{
"input": "3\n1 -2 1",
"output": "4"
},
{
"input": "5\n-1 -2 1 1 -1",
"output": "6"
},
{
"input": "4\n-2 0 2 4",
"output": "8"
},
{
"input": "8\n-42 7 87 -16 -5 65 -88 1",
"output": "311"
},
{
"input": "3\n1 -3 4",
"output": "8"
},
{
"input": "1\n1",
"output": "1"
},
{
"input": "2\n0 1",
"output": "1"
},
{
"input": "3\n-1 2 -1",
"output": "4"
},
{
"input": "18\n-21 12 65 66 -24 62 82 35 -45 -47 28 37 5 -32 22 -14 -69 -95",
"output": "761"
},
{
"input": "4\n-1 1 -1 1",
"output": "4"
},
{
"input": "5\n-1 2 1 1 1",
"output": "6"
},
{
"input": "3\n1 1 1",
"output": "3"
}
] | 1,588,934,871
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 72
| 155
| 20,172,800
|
n=int(input())
l=list(map(int,input().split()))
c=[]
d=[]
m=min(l)
if(m>=0):
print(sum(l))
else:
for i in range(n):
if(l[i]<0):
c.append(l[i])
else:
d.append(l[i])
print(sum(d)-sum(c))
|
Title: Partition
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You are given a sequence *a* consisting of *n* integers. You may partition this sequence into two sequences *b* and *c* in such a way that every element belongs exactly to one of these sequences.
Let *B* be the sum of elements belonging to *b*, and *C* be the sum of elements belonging to *c* (if some of these sequences is empty, then its sum is 0). What is the maximum possible value of *B*<=-<=*C*?
Input Specification:
The first line contains one integer *n* (1<=≤<=*n*<=≤<=100) — the number of elements in *a*.
The second line contains *n* integers *a*1, *a*2, ..., *a**n* (<=-<=100<=≤<=*a**i*<=≤<=100) — the elements of sequence *a*.
Output Specification:
Print the maximum possible value of *B*<=-<=*C*, where *B* is the sum of elements of sequence *b*, and *C* is the sum of elements of sequence *c*.
Demo Input:
['3\n1 -2 0\n', '6\n16 23 16 15 42 8\n']
Demo Output:
['3\n', '120\n']
Note:
In the first example we may choose *b* = {1, 0}, *c* = { - 2}. Then *B* = 1, *C* = - 2, *B* - *C* = 3.
In the second example we choose *b* = {16, 23, 16, 15, 42, 8}, *c* = {} (an empty sequence). Then *B* = 120, *C* = 0, *B* - *C* = 120.
|
```python
n=int(input())
l=list(map(int,input().split()))
c=[]
d=[]
m=min(l)
if(m>=0):
print(sum(l))
else:
for i in range(n):
if(l[i]<0):
c.append(l[i])
else:
d.append(l[i])
print(sum(d)-sum(c))
```
| 3
|
|
935
|
A
|
Fafa and his Company
|
PROGRAMMING
| 800
|
[
"brute force",
"implementation"
] | null | null |
Fafa owns a company that works on huge projects. There are *n* employees in Fafa's company. Whenever the company has a new project to start working on, Fafa has to divide the tasks of this project among all the employees.
Fafa finds doing this every time is very tiring for him. So, he decided to choose the best *l* employees in his company as team leaders. Whenever there is a new project, Fafa will divide the tasks among only the team leaders and each team leader will be responsible of some positive number of employees to give them the tasks. To make this process fair for the team leaders, each one of them should be responsible for the same number of employees. Moreover, every employee, who is not a team leader, has to be under the responsibility of exactly one team leader, and no team leader is responsible for another team leader.
Given the number of employees *n*, find in how many ways Fafa could choose the number of team leaders *l* in such a way that it is possible to divide employees between them evenly.
|
The input consists of a single line containing a positive integer *n* (2<=≤<=*n*<=≤<=105) — the number of employees in Fafa's company.
|
Print a single integer representing the answer to the problem.
|
[
"2\n",
"10\n"
] |
[
"1\n",
"3\n"
] |
In the second sample Fafa has 3 ways:
- choose only 1 employee as a team leader with 9 employees under his responsibility. - choose 2 employees as team leaders with 4 employees under the responsibility of each of them. - choose 5 employees as team leaders with 1 employee under the responsibility of each of them.
| 500
|
[
{
"input": "2",
"output": "1"
},
{
"input": "10",
"output": "3"
},
{
"input": "3",
"output": "1"
},
{
"input": "4",
"output": "2"
},
{
"input": "6",
"output": "3"
},
{
"input": "13",
"output": "1"
},
{
"input": "100000",
"output": "35"
},
{
"input": "1024",
"output": "10"
},
{
"input": "99999",
"output": "11"
},
{
"input": "10007",
"output": "1"
},
{
"input": "4096",
"output": "12"
},
{
"input": "65536",
"output": "16"
},
{
"input": "40320",
"output": "95"
},
{
"input": "30030",
"output": "63"
},
{
"input": "161",
"output": "3"
},
{
"input": "1000",
"output": "15"
},
{
"input": "10000",
"output": "24"
},
{
"input": "777",
"output": "7"
},
{
"input": "121",
"output": "2"
},
{
"input": "25",
"output": "2"
},
{
"input": "40000",
"output": "34"
},
{
"input": "99990",
"output": "47"
},
{
"input": "98765",
"output": "3"
},
{
"input": "56789",
"output": "3"
},
{
"input": "13579",
"output": "3"
},
{
"input": "97531",
"output": "3"
},
{
"input": "12345",
"output": "7"
},
{
"input": "54321",
"output": "7"
},
{
"input": "83160",
"output": "127"
},
{
"input": "9",
"output": "2"
},
{
"input": "21",
"output": "3"
},
{
"input": "11",
"output": "1"
},
{
"input": "15",
"output": "3"
}
] | 1,686,856,522
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 33
| 46
| 0
|
n = int(input())
attempts = 1
for i in range(2,n // 2 + 1):
temp = n - i
if temp % i == 0:
attempts += 1
print(attempts)
|
Title: Fafa and his Company
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Fafa owns a company that works on huge projects. There are *n* employees in Fafa's company. Whenever the company has a new project to start working on, Fafa has to divide the tasks of this project among all the employees.
Fafa finds doing this every time is very tiring for him. So, he decided to choose the best *l* employees in his company as team leaders. Whenever there is a new project, Fafa will divide the tasks among only the team leaders and each team leader will be responsible of some positive number of employees to give them the tasks. To make this process fair for the team leaders, each one of them should be responsible for the same number of employees. Moreover, every employee, who is not a team leader, has to be under the responsibility of exactly one team leader, and no team leader is responsible for another team leader.
Given the number of employees *n*, find in how many ways Fafa could choose the number of team leaders *l* in such a way that it is possible to divide employees between them evenly.
Input Specification:
The input consists of a single line containing a positive integer *n* (2<=≤<=*n*<=≤<=105) — the number of employees in Fafa's company.
Output Specification:
Print a single integer representing the answer to the problem.
Demo Input:
['2\n', '10\n']
Demo Output:
['1\n', '3\n']
Note:
In the second sample Fafa has 3 ways:
- choose only 1 employee as a team leader with 9 employees under his responsibility. - choose 2 employees as team leaders with 4 employees under the responsibility of each of them. - choose 5 employees as team leaders with 1 employee under the responsibility of each of them.
|
```python
n = int(input())
attempts = 1
for i in range(2,n // 2 + 1):
temp = n - i
if temp % i == 0:
attempts += 1
print(attempts)
```
| 3
|
|
126
|
B
|
Password
|
PROGRAMMING
| 1,700
|
[
"binary search",
"dp",
"hashing",
"string suffix structures",
"strings"
] | null | null |
Asterix, Obelix and their temporary buddies Suffix and Prefix has finally found the Harmony temple. However, its doors were firmly locked and even Obelix had no luck opening them.
A little later they found a string *s*, carved on a rock below the temple's gates. Asterix supposed that that's the password that opens the temple and read the string aloud. However, nothing happened. Then Asterix supposed that a password is some substring *t* of the string *s*.
Prefix supposed that the substring *t* is the beginning of the string *s*; Suffix supposed that the substring *t* should be the end of the string *s*; and Obelix supposed that *t* should be located somewhere inside the string *s*, that is, *t* is neither its beginning, nor its end.
Asterix chose the substring *t* so as to please all his companions. Besides, from all acceptable variants Asterix chose the longest one (as Asterix loves long strings). When Asterix read the substring *t* aloud, the temple doors opened.
You know the string *s*. Find the substring *t* or determine that such substring does not exist and all that's been written above is just a nice legend.
|
You are given the string *s* whose length can vary from 1 to 106 (inclusive), consisting of small Latin letters.
|
Print the string *t*. If a suitable *t* string does not exist, then print "Just a legend" without the quotes.
|
[
"fixprefixsuffix\n",
"abcdabc\n"
] |
[
"fix",
"Just a legend"
] |
none
| 1,000
|
[
{
"input": "fixprefixsuffix",
"output": "fix"
},
{
"input": "abcdabc",
"output": "Just a legend"
},
{
"input": "qwertyqwertyqwerty",
"output": "qwerty"
},
{
"input": "papapapap",
"output": "papap"
},
{
"input": "aaaaaaaaaa",
"output": "aaaaaaaa"
},
{
"input": "ghbdtn",
"output": "Just a legend"
},
{
"input": "a",
"output": "Just a legend"
},
{
"input": "aa",
"output": "Just a legend"
},
{
"input": "ab",
"output": "Just a legend"
},
{
"input": "aaa",
"output": "a"
},
{
"input": "aba",
"output": "Just a legend"
},
{
"input": "aab",
"output": "Just a legend"
},
{
"input": "abb",
"output": "Just a legend"
},
{
"input": "abc",
"output": "Just a legend"
},
{
"input": "aaabaabaaaaab",
"output": "Just a legend"
},
{
"input": "aabaaabaaaaab",
"output": "aab"
},
{
"input": "aaabaaaabab",
"output": "Just a legend"
},
{
"input": "abcabcabcabcabc",
"output": "abcabcabc"
},
{
"input": "aaaaabaaaa",
"output": "aaaa"
},
{
"input": "aaaabaaaaaaa",
"output": "aaaa"
},
{
"input": "ghghghgxghghghg",
"output": "ghghg"
},
{
"input": "kincenvizh",
"output": "Just a legend"
},
{
"input": "amcksgurlgqzqizdauqminfzshiweejkevbazyzylrrghumnvqeqqdedyopgtvxakqwpvxntxgrkrcxabhrgoxngrwrxrvcguuyw",
"output": "Just a legend"
},
{
"input": "kwuaizneqxfflhmyruotjlkqksinoanvkyvqptkkntnpjdyzicceelgooajdgpkneuhyvhdtmasiglplajxolxovlhkwuaizneqx",
"output": "Just a legend"
},
{
"input": "nfbdzgdlbjhrlvfryyjbvtsmzacxglcvukmyexdgpuiwvqbnfbdzgdlbjhrlvfryyjbtuomcwbwvlhefnfbdzgdlbjhrlvfryyjb",
"output": "nfbdzgdlbjhrlvfryyjb"
},
{
"input": "btbdpnzdenxueteteytvkwnegodyhmdwhmrmbftrifytzudumzlacwytsuzefqfpjesdblxhpcsidgksisjdmhyxmmugrjmtfcgxmcgpmvbxbyszdugvmoyjeeqsywcvuqskcjotyhvdijyslgfvyujxthngnonasgnbzzygyikheelirdfsvuicbiazfdeqecbtbdpnzdenxueteteytvkwnegodyhmdwhmrmbftrifytzudumzlacwytsuzefqfpjesdblxhpcsidgksisjdmhyxmmugrjmtfcgxmcgpccdtdteohtjjuicfjfcbzpynlqhecyqqrjpmexgfqywnfmusldgzvgnzdmuuujtkdfnlytzgstquwqpuccxbtbdpnzdenxueteteytvkwnegodyhmdwhmrmbftrifytzudumzlacwytsuzefqfpjesdblxhpcsidgksisjdmhyxmmugrjmtfcgxmcgp",
"output": "btbdpnzdenxueteteytvkwnegodyhmdwhmrmbftrifytzudumzlacwytsuzefqfpjesdblxhpcsidgksisjdmhyxmmugrjmtfcgxmcgp"
},
{
"input": "abcazabca",
"output": "a"
}
] | 1,652,828,931
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 97
| 1,996
| 15,360,000
|
import os, sys, io, array
#sys.stdin = io.StringIO(os.read(0, os.fstat(0).st_size).decode())
input = sys.stdin.readline
s = input().rstrip()
LPS = array.array('i', [0])* len(s)
k = 0
for i in range(1, len(s)):
while s[i] != s[k] and k:
k = LPS[k-1]
k += s[i] == s[k]
LPS[i] = k
len_boundary = LPS[-1]
if len_boundary == 0:
print("Just a legend")
exit(0)
for n in LPS[:-1]:
if n == len_boundary:
print(s[:len_boundary])
exit(0)
if LPS[len_boundary-1] == 0:
print("Just a legend")
exit(0)
print(s[:LPS[len_boundary-1]])
|
Title: Password
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Asterix, Obelix and their temporary buddies Suffix and Prefix has finally found the Harmony temple. However, its doors were firmly locked and even Obelix had no luck opening them.
A little later they found a string *s*, carved on a rock below the temple's gates. Asterix supposed that that's the password that opens the temple and read the string aloud. However, nothing happened. Then Asterix supposed that a password is some substring *t* of the string *s*.
Prefix supposed that the substring *t* is the beginning of the string *s*; Suffix supposed that the substring *t* should be the end of the string *s*; and Obelix supposed that *t* should be located somewhere inside the string *s*, that is, *t* is neither its beginning, nor its end.
Asterix chose the substring *t* so as to please all his companions. Besides, from all acceptable variants Asterix chose the longest one (as Asterix loves long strings). When Asterix read the substring *t* aloud, the temple doors opened.
You know the string *s*. Find the substring *t* or determine that such substring does not exist and all that's been written above is just a nice legend.
Input Specification:
You are given the string *s* whose length can vary from 1 to 106 (inclusive), consisting of small Latin letters.
Output Specification:
Print the string *t*. If a suitable *t* string does not exist, then print "Just a legend" without the quotes.
Demo Input:
['fixprefixsuffix\n', 'abcdabc\n']
Demo Output:
['fix', 'Just a legend']
Note:
none
|
```python
import os, sys, io, array
#sys.stdin = io.StringIO(os.read(0, os.fstat(0).st_size).decode())
input = sys.stdin.readline
s = input().rstrip()
LPS = array.array('i', [0])* len(s)
k = 0
for i in range(1, len(s)):
while s[i] != s[k] and k:
k = LPS[k-1]
k += s[i] == s[k]
LPS[i] = k
len_boundary = LPS[-1]
if len_boundary == 0:
print("Just a legend")
exit(0)
for n in LPS[:-1]:
if n == len_boundary:
print(s[:len_boundary])
exit(0)
if LPS[len_boundary-1] == 0:
print("Just a legend")
exit(0)
print(s[:LPS[len_boundary-1]])
```
| 3
|
|
58
|
A
|
Chat room
|
PROGRAMMING
| 1,000
|
[
"greedy",
"strings"
] |
A. Chat room
|
1
|
256
|
Vasya has recently learned to type and log on to the Internet. He immediately entered a chat room and decided to say hello to everybody. Vasya typed the word *s*. It is considered that Vasya managed to say hello if several letters can be deleted from the typed word so that it resulted in the word "hello". For example, if Vasya types the word "ahhellllloou", it will be considered that he said hello, and if he types "hlelo", it will be considered that Vasya got misunderstood and he didn't manage to say hello. Determine whether Vasya managed to say hello by the given word *s*.
|
The first and only line contains the word *s*, which Vasya typed. This word consisits of small Latin letters, its length is no less that 1 and no more than 100 letters.
|
If Vasya managed to say hello, print "YES", otherwise print "NO".
|
[
"ahhellllloou\n",
"hlelo\n"
] |
[
"YES\n",
"NO\n"
] |
none
| 500
|
[
{
"input": "ahhellllloou",
"output": "YES"
},
{
"input": "hlelo",
"output": "NO"
},
{
"input": "helhcludoo",
"output": "YES"
},
{
"input": "hehwelloho",
"output": "YES"
},
{
"input": "pnnepelqomhhheollvlo",
"output": "YES"
},
{
"input": "tymbzjyqhymedasloqbq",
"output": "NO"
},
{
"input": "yehluhlkwo",
"output": "NO"
},
{
"input": "hatlevhhalrohairnolsvocafgueelrqmlqlleello",
"output": "YES"
},
{
"input": "hhhtehdbllnhwmbyhvelqqyoulretpbfokflhlhreeflxeftelziclrwllrpflflbdtotvlqgoaoqldlroovbfsq",
"output": "YES"
},
{
"input": "rzlvihhghnelqtwlexmvdjjrliqllolhyewgozkuovaiezgcilelqapuoeglnwmnlftxxiigzczlouooi",
"output": "YES"
},
{
"input": "pfhhwctyqdlkrwhebfqfelhyebwllhemtrmeblgrynmvyhioesqklclocxmlffuormljszllpoo",
"output": "YES"
},
{
"input": "lqllcolohwflhfhlnaow",
"output": "NO"
},
{
"input": "heheeellollvoo",
"output": "YES"
},
{
"input": "hellooo",
"output": "YES"
},
{
"input": "o",
"output": "NO"
},
{
"input": "hhqhzeclohlehljlhtesllylrolmomvuhcxsobtsckogdv",
"output": "YES"
},
{
"input": "yoegfuzhqsihygnhpnukluutocvvwuldiighpogsifealtgkfzqbwtmgghmythcxflebrkctlldlkzlagovwlstsghbouk",
"output": "YES"
},
{
"input": "uatqtgbvrnywfacwursctpagasnhydvmlinrcnqrry",
"output": "NO"
},
{
"input": "tndtbldbllnrwmbyhvqaqqyoudrstpbfokfoclnraefuxtftmgzicorwisrpfnfpbdtatvwqgyalqtdtrjqvbfsq",
"output": "NO"
},
{
"input": "rzlvirhgemelnzdawzpaoqtxmqucnahvqnwldklrmjiiyageraijfivigvozgwngiulttxxgzczptusoi",
"output": "YES"
},
{
"input": "kgyelmchocojsnaqdsyeqgnllytbqietpdlgknwwumqkxrexgdcnwoldicwzwofpmuesjuxzrasscvyuqwspm",
"output": "YES"
},
{
"input": "pnyvrcotjvgynbeldnxieghfltmexttuxzyac",
"output": "NO"
},
{
"input": "dtwhbqoumejligbenxvzhjlhosqojetcqsynlzyhfaevbdpekgbtjrbhlltbceobcok",
"output": "YES"
},
{
"input": "crrfpfftjwhhikwzeedrlwzblckkteseofjuxjrktcjfsylmlsvogvrcxbxtffujqshslemnixoeezivksouefeqlhhokwbqjz",
"output": "YES"
},
{
"input": "jhfbndhyzdvhbvhmhmefqllujdflwdpjbehedlsqfdsqlyelwjtyloxwsvasrbqosblzbowlqjmyeilcvotdlaouxhdpoeloaovb",
"output": "YES"
},
{
"input": "hwlghueoemiqtjhhpashjsouyegdlvoyzeunlroypoprnhlyiwiuxrghekaylndhrhllllwhbebezoglydcvykllotrlaqtvmlla",
"output": "YES"
},
{
"input": "wshiaunnqnqxodholbipwhhjmyeblhgpeleblklpzwhdunmpqkbuzloetmwwxmeltkrcomulxauzlwmlklldjodozxryghsnwgcz",
"output": "YES"
},
{
"input": "shvksednttggehroewuiptvvxtrzgidravtnjwuqrlnnkxbplctzkckinpkgjopjfoxdbojtcvsuvablcbkrzajrlhgobkcxeqti",
"output": "YES"
},
{
"input": "hyyhddqhxhekehkwfhlnlsihzefwchzerevcjtokefplholrbvxlltdlafjxrfhleglrvlolojoqaolagtbeyogxlbgfolllslli",
"output": "YES"
},
{
"input": "iaagrdhhelxpdegueiulflquvlzidoprzkehthkldaytrjwhyhprwjxlltinxvuilxohqgjqcvkkdcuoliekcnlilwgqlnlzouoo",
"output": "YES"
},
{
"input": "wfluaeseldgxyvxpwuhkptdmlflnlhktwxiabsvkolsquymrmhzczzoybvlilhmvsuunggvgxzgyyffk",
"output": "NO"
},
{
"input": "loee",
"output": "NO"
},
{
"input": "izdipwylefqmjbuoznfglgcfvedeouflkeehxbasaqmiooppfsqlhprospqgxvzrcpwlfdddngoqvpwvggsnvvxhmjoslwjudjlo",
"output": "NO"
},
{
"input": "pplynflbjlseflaegzqpdxswgunhnlglqhycrbcwdfhclmcrwekkzsoosmfblljeenwfjyifcvxihhhbyhmhlkvtskeglaovjnsi",
"output": "YES"
},
{
"input": "xqjqmenkodmlhzyzmmvofdngktygbbxbzpluzcohohmalkoeuwfikblltaaigv",
"output": "NO"
},
{
"input": "hello",
"output": "YES"
},
{
"input": "oohell",
"output": "NO"
},
{
"input": "hell",
"output": "NO"
},
{
"input": "eloellohoelo",
"output": "NO"
},
{
"input": "helllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllo",
"output": "YES"
}
] | 1,672,808,759
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 40
| 61
| 0
|
s=input()
w="hello"
j=0
for i in range(len(s)):
if w[j]==s[i]:
j+=1
if (j==5):
break
if j==5:
print("YES")
else:
print("NO")
|
Title: Chat room
Time Limit: 1 seconds
Memory Limit: 256 megabytes
Problem Description:
Vasya has recently learned to type and log on to the Internet. He immediately entered a chat room and decided to say hello to everybody. Vasya typed the word *s*. It is considered that Vasya managed to say hello if several letters can be deleted from the typed word so that it resulted in the word "hello". For example, if Vasya types the word "ahhellllloou", it will be considered that he said hello, and if he types "hlelo", it will be considered that Vasya got misunderstood and he didn't manage to say hello. Determine whether Vasya managed to say hello by the given word *s*.
Input Specification:
The first and only line contains the word *s*, which Vasya typed. This word consisits of small Latin letters, its length is no less that 1 and no more than 100 letters.
Output Specification:
If Vasya managed to say hello, print "YES", otherwise print "NO".
Demo Input:
['ahhellllloou\n', 'hlelo\n']
Demo Output:
['YES\n', 'NO\n']
Note:
none
|
```python
s=input()
w="hello"
j=0
for i in range(len(s)):
if w[j]==s[i]:
j+=1
if (j==5):
break
if j==5:
print("YES")
else:
print("NO")
```
| 3.9695
|
447
|
A
|
DZY Loves Hash
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
DZY has a hash table with *p* buckets, numbered from 0 to *p*<=-<=1. He wants to insert *n* numbers, in the order they are given, into the hash table. For the *i*-th number *x**i*, DZY will put it into the bucket numbered *h*(*x**i*), where *h*(*x*) is the hash function. In this problem we will assume, that *h*(*x*)<==<=*x* *mod* *p*. Operation *a* *mod* *b* denotes taking a remainder after division *a* by *b*.
However, each bucket can contain no more than one element. If DZY wants to insert an number into a bucket which is already filled, we say a "conflict" happens. Suppose the first conflict happens right after the *i*-th insertion, you should output *i*. If no conflict happens, just output -1.
|
The first line contains two integers, *p* and *n* (2<=≤<=*p*,<=*n*<=≤<=300). Then *n* lines follow. The *i*-th of them contains an integer *x**i* (0<=≤<=*x**i*<=≤<=109).
|
Output a single integer — the answer to the problem.
|
[
"10 5\n0\n21\n53\n41\n53\n",
"5 5\n0\n1\n2\n3\n4\n"
] |
[
"4\n",
"-1\n"
] |
none
| 500
|
[
{
"input": "10 5\n0\n21\n53\n41\n53",
"output": "4"
},
{
"input": "5 5\n0\n1\n2\n3\n4",
"output": "-1"
},
{
"input": "10 6\n811966798\n734823552\n790326404\n929189974\n414343256\n560346537",
"output": "4"
},
{
"input": "2 2\n788371161\n801743052",
"output": "-1"
},
{
"input": "10 6\n812796223\n122860157\n199259103\n597650585\n447742024\n521549402",
"output": "3"
},
{
"input": "300 2\n822454942\n119374431",
"output": "-1"
},
{
"input": "300 2\n823284367\n507345500",
"output": "-1"
},
{
"input": "2 5\n791579811\n35613889\n997079893\n878677665\n693717467",
"output": "2"
},
{
"input": "20 5\n793926268\n28931770\n842870287\n974950617\n859404206",
"output": "-1"
},
{
"input": "100 15\n805069249\n778178198\n633897389\n844316223\n146759898\n870527016\n82668754\n42060733\n943602929\n979451110\n746979598\n47406033\n607284062\n850870259\n229415316",
"output": "5"
},
{
"input": "100 15\n806204335\n189490323\n718805086\n716787474\n262315718\n822030596\n894644222\n724054623\n141384399\n579354205\n192622443\n672556242\n97417563\n243354557\n208957882",
"output": "8"
},
{
"input": "100 15\n807033760\n577461392\n275221433\n532633429\n295714486\n783298996\n255799943\n99107143\n729119412\n59302896\n37640015\n313610861\n630550567\n534283052\n681062462",
"output": "8"
},
{
"input": "100 15\n808103310\n136224397\n360129131\n405104681\n263786657\n734802577\n67808179\n928584682\n926900882\n511722343\n483348395\n938695534\n120684068\n74152694\n808088675",
"output": "9"
},
{
"input": "2 2\n2\n2",
"output": "2"
},
{
"input": "300 2\n0\n300",
"output": "2"
},
{
"input": "2 2\n0\n0",
"output": "2"
}
] | 1,680,689,636
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 29
| 46
| 0
|
p, n = map(int, input().split())
val = [False] * p
for i in range(n):
x = int(input())
r = x % p
if val[r]:
print(i + 1)
exit(0)
else:
val[r] = True
print(-1)
|
Title: DZY Loves Hash
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
DZY has a hash table with *p* buckets, numbered from 0 to *p*<=-<=1. He wants to insert *n* numbers, in the order they are given, into the hash table. For the *i*-th number *x**i*, DZY will put it into the bucket numbered *h*(*x**i*), where *h*(*x*) is the hash function. In this problem we will assume, that *h*(*x*)<==<=*x* *mod* *p*. Operation *a* *mod* *b* denotes taking a remainder after division *a* by *b*.
However, each bucket can contain no more than one element. If DZY wants to insert an number into a bucket which is already filled, we say a "conflict" happens. Suppose the first conflict happens right after the *i*-th insertion, you should output *i*. If no conflict happens, just output -1.
Input Specification:
The first line contains two integers, *p* and *n* (2<=≤<=*p*,<=*n*<=≤<=300). Then *n* lines follow. The *i*-th of them contains an integer *x**i* (0<=≤<=*x**i*<=≤<=109).
Output Specification:
Output a single integer — the answer to the problem.
Demo Input:
['10 5\n0\n21\n53\n41\n53\n', '5 5\n0\n1\n2\n3\n4\n']
Demo Output:
['4\n', '-1\n']
Note:
none
|
```python
p, n = map(int, input().split())
val = [False] * p
for i in range(n):
x = int(input())
r = x % p
if val[r]:
print(i + 1)
exit(0)
else:
val[r] = True
print(-1)
```
| 3
|
|
32
|
B
|
Borze
|
PROGRAMMING
| 800
|
[
"expression parsing",
"implementation"
] |
B. Borze
|
2
|
256
|
Ternary numeric notation is quite popular in Berland. To telegraph the ternary number the Borze alphabet is used. Digit 0 is transmitted as «.», 1 as «-.» and 2 as «--». You are to decode the Borze code, i.e. to find out the ternary number given its representation in Borze alphabet.
|
The first line contains a number in Borze code. The length of the string is between 1 and 200 characters. It's guaranteed that the given string is a valid Borze code of some ternary number (this number can have leading zeroes).
|
Output the decoded ternary number. It can have leading zeroes.
|
[
".-.--\n",
"--.\n",
"-..-.--\n"
] |
[
"012",
"20",
"1012"
] |
none
| 1,000
|
[
{
"input": ".-.--",
"output": "012"
},
{
"input": "--.",
"output": "20"
},
{
"input": "-..-.--",
"output": "1012"
},
{
"input": "---..",
"output": "210"
},
{
"input": "..--.---..",
"output": "0020210"
},
{
"input": "-.....----.",
"output": "10000220"
},
{
"input": ".",
"output": "0"
},
{
"input": "-.",
"output": "1"
},
{
"input": "--",
"output": "2"
},
{
"input": "..",
"output": "00"
},
{
"input": "--.",
"output": "20"
},
{
"input": ".--.",
"output": "020"
},
{
"input": ".-.-..",
"output": "0110"
},
{
"input": "----.-.",
"output": "2201"
},
{
"input": "-..--.-.",
"output": "10201"
},
{
"input": "..--..--.",
"output": "0020020"
},
{
"input": "-.-.---.--..-..-.-.-..-..-.--.",
"output": "112120010111010120"
},
{
"input": "---.-.-.------..-..-..-..-.-..-.--.-.-..-.-.-----..-.-.",
"output": "21112220010101011012011011221011"
},
{
"input": "-.-..--.-.-.-.-.-..-.-.-.---------.--.---..--...--.-----.-.-.-...--.-.-.---.------.--..-.--.-----.-...-..------",
"output": "11020111110111222212021020002022111100201121222020012022110010222"
},
{
"input": "-.-..-.--.---..---.-..---.-...-.-.----..-.---.-.---..-.--.---.-.-------.---.--....----.-.---.---.---.----.-----..---.-.-.-.-----.--.-------.-..",
"output": "110120210211021100112200121121012021122212120000220121212122022102111122120222110"
},
{
"input": ".-..-.-.---.-----.--.---...-.--.-.-....-..",
"output": "01011212212021001201100010"
},
{
"input": ".------.-.---..--...-..-..-.-.-.--.--.-..-.--...-.-.---.-.-.------..--..-.---..----.-..-.--.---.-.----.-.---...-.-.-.-----.-.-.---.---.-.....-.-...-----.-...-.---.-..-.-----.--...---.-.-..-.--.-.---..",
"output": "022201210200010101112020101200011211122200200121022010120211220121001112211121211000011002211001211012212000211101201210"
},
{
"input": ".-.--.---.-----.-.-----.-.-..-----..-..----..--.-.--.----..---.---..-.-.-----..-------.----..----.-..---...-----..-..-----...-..-.-.-----....---..---..-.-----...-.--...--.-.---.-.-.-.-.-...---..----.",
"output": "01202122112211102210102200201202200212101122102221220022010210022101022100101122100021021012210012000201211111100210220"
},
{
"input": "..-.-.-.---.-.-.-..-.-..-.-.---.-------.---..-----.---....-.---.--.--.-.---.---------.-..---.-.-.--..---.---.-.---.-.-..-.-..-.-.-.----.--.-....--------.-.---..----.------.-.-.--.--.-----.-----.----",
"output": "0011121111011011212221210221210001212020121222211021112002121121110110111220201000222201210220222011202022122122"
},
{
"input": "-..-------.------.-..--.-.-..--.-.-..-----..-.-.-..-..-..--.---..-----..---..-..--.-..-.-.---...-.....-------.---.-----.-...-.-...-.-.---.---.-----.--.--...-.--..-.-..-...-.-.-.-.---..---.-..-.-.-.-..",
"output": "102221222010201102011022101110101020210221021010201011210010000222121221100110011212122120200012001101001111210211011110"
},
{
"input": ".-.----.-.--..-.-.-.-..----..-.-...--.-.---.---.-------..-.--..-......--.------.--.----.--...-.--.--..-----..-.....--.--.-.-.------..--------.----------..-.---.----.---.-..--..-.....-..------.--.",
"output": "012201200111102200110020121212221012001000002022202022020001202002210100002020112220022220222220012122021102001000010222020"
},
{
"input": "------.-----.-....--.-.----.-.---.-.-..---.-.---.-----..-...-.-.---..-.-.-..-.-.-...-.-.-.----..--.------.----.-..-.--...-.-------...-.-..-.-.--.--.---..--..--------.--.-.-.---.-.-.-...----.--..-.--..",
"output": "222022110002012201211102112122101001121011101110011122002022202201012000122210011011202021020022220201121111002202001200"
},
{
"input": "-.---...----...--.--...-.--.----",
"output": "121002200020200012022"
},
{
"input": "--.--.--.---.--.-.---.-.-..-..--.-..---.-.....-..---.-----.--...-.-.-------.-.--.-.----.-..-.------.",
"output": "202020212012111010201021100001021221200011222112012201012220"
}
] | 1,606,380,993
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 30
| 280
| 0
|
s = input()
i = 0
while i < len(s):
if (s[i] == "-" and s[i+1] == "."):
print(1, end = "")
i += 2
elif (s[i] == "-" and s[i+1] == "-") :
print(2, end = "")
i += 2
elif s[i] == ".":
print(0, end = "")
i += 1
|
Title: Borze
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Ternary numeric notation is quite popular in Berland. To telegraph the ternary number the Borze alphabet is used. Digit 0 is transmitted as «.», 1 as «-.» and 2 as «--». You are to decode the Borze code, i.e. to find out the ternary number given its representation in Borze alphabet.
Input Specification:
The first line contains a number in Borze code. The length of the string is between 1 and 200 characters. It's guaranteed that the given string is a valid Borze code of some ternary number (this number can have leading zeroes).
Output Specification:
Output the decoded ternary number. It can have leading zeroes.
Demo Input:
['.-.--\n', '--.\n', '-..-.--\n']
Demo Output:
['012', '20', '1012']
Note:
none
|
```python
s = input()
i = 0
while i < len(s):
if (s[i] == "-" and s[i+1] == "."):
print(1, end = "")
i += 2
elif (s[i] == "-" and s[i+1] == "-") :
print(2, end = "")
i += 2
elif s[i] == ".":
print(0, end = "")
i += 1
```
| 3.93
|
69
|
A
|
Young Physicist
|
PROGRAMMING
| 1,000
|
[
"implementation",
"math"
] |
A. Young Physicist
|
2
|
256
|
A guy named Vasya attends the final grade of a high school. One day Vasya decided to watch a match of his favorite hockey team. And, as the boy loves hockey very much, even more than physics, he forgot to do the homework. Specifically, he forgot to complete his physics tasks. Next day the teacher got very angry at Vasya and decided to teach him a lesson. He gave the lazy student a seemingly easy task: You are given an idle body in space and the forces that affect it. The body can be considered as a material point with coordinates (0; 0; 0). Vasya had only to answer whether it is in equilibrium. "Piece of cake" — thought Vasya, we need only to check if the sum of all vectors is equal to 0. So, Vasya began to solve the problem. But later it turned out that there can be lots and lots of these forces, and Vasya can not cope without your help. Help him. Write a program that determines whether a body is idle or is moving by the given vectors of forces.
|
The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=100), then follow *n* lines containing three integers each: the *x**i* coordinate, the *y**i* coordinate and the *z**i* coordinate of the force vector, applied to the body (<=-<=100<=≤<=*x**i*,<=*y**i*,<=*z**i*<=≤<=100).
|
Print the word "YES" if the body is in equilibrium, or the word "NO" if it is not.
|
[
"3\n4 1 7\n-2 4 -1\n1 -5 -3\n",
"3\n3 -1 7\n-5 2 -4\n2 -1 -3\n"
] |
[
"NO",
"YES"
] |
none
| 500
|
[
{
"input": "3\n4 1 7\n-2 4 -1\n1 -5 -3",
"output": "NO"
},
{
"input": "3\n3 -1 7\n-5 2 -4\n2 -1 -3",
"output": "YES"
},
{
"input": "10\n21 32 -46\n43 -35 21\n42 2 -50\n22 40 20\n-27 -9 38\n-4 1 1\n-40 6 -31\n-13 -2 34\n-21 34 -12\n-32 -29 41",
"output": "NO"
},
{
"input": "10\n25 -33 43\n-27 -42 28\n-35 -20 19\n41 -42 -1\n49 -39 -4\n-49 -22 7\n-19 29 41\n8 -27 -43\n8 34 9\n-11 -3 33",
"output": "NO"
},
{
"input": "10\n-6 21 18\n20 -11 -8\n37 -11 41\n-5 8 33\n29 23 32\n30 -33 -11\n39 -49 -36\n28 34 -49\n22 29 -34\n-18 -6 7",
"output": "NO"
},
{
"input": "10\n47 -2 -27\n0 26 -14\n5 -12 33\n2 18 3\n45 -30 -49\n4 -18 8\n-46 -44 -41\n-22 -10 -40\n-35 -21 26\n33 20 38",
"output": "NO"
},
{
"input": "13\n-3 -36 -46\n-11 -50 37\n42 -11 -15\n9 42 44\n-29 -12 24\n3 9 -40\n-35 13 50\n14 43 18\n-13 8 24\n-48 -15 10\n50 9 -50\n21 0 -50\n0 0 -6",
"output": "YES"
},
{
"input": "14\n43 23 17\n4 17 44\n5 -5 -16\n-43 -7 -6\n47 -48 12\n50 47 -45\n2 14 43\n37 -30 15\n4 -17 -11\n17 9 -45\n-50 -3 -8\n-50 0 0\n-50 0 0\n-16 0 0",
"output": "YES"
},
{
"input": "13\n29 49 -11\n38 -11 -20\n25 1 -40\n-11 28 11\n23 -19 1\n45 -41 -17\n-3 0 -19\n-13 -33 49\n-30 0 28\n34 17 45\n-50 9 -27\n-50 0 0\n-37 0 0",
"output": "YES"
},
{
"input": "12\n3 28 -35\n-32 -44 -17\n9 -25 -6\n-42 -22 20\n-19 15 38\n-21 38 48\n-1 -37 -28\n-10 -13 -50\n-5 21 29\n34 28 50\n50 11 -49\n34 0 0",
"output": "YES"
},
{
"input": "37\n-64 -79 26\n-22 59 93\n-5 39 -12\n77 -9 76\n55 -86 57\n83 100 -97\n-70 94 84\n-14 46 -94\n26 72 35\n14 78 -62\n17 82 92\n-57 11 91\n23 15 92\n-80 -1 1\n12 39 18\n-23 -99 -75\n-34 50 19\n-39 84 -7\n45 -30 -39\n-60 49 37\n45 -16 -72\n33 -51 -56\n-48 28 5\n97 91 88\n45 -82 -11\n-21 -15 -90\n-53 73 -26\n-74 85 -90\n-40 23 38\n100 -13 49\n32 -100 -100\n0 -100 -70\n0 -100 0\n0 -100 0\n0 -100 0\n0 -100 0\n0 -37 0",
"output": "YES"
},
{
"input": "4\n68 3 100\n68 21 -100\n-100 -24 0\n-36 0 0",
"output": "YES"
},
{
"input": "33\n-1 -46 -12\n45 -16 -21\n-11 45 -21\n-60 -42 -93\n-22 -45 93\n37 96 85\n-76 26 83\n-4 9 55\n7 -52 -9\n66 8 -85\n-100 -54 11\n-29 59 74\n-24 12 2\n-56 81 85\n-92 69 -52\n-26 -97 91\n54 59 -51\n58 21 -57\n7 68 56\n-47 -20 -51\n-59 77 -13\n-85 27 91\n79 60 -56\n66 -80 5\n21 -99 42\n-31 -29 98\n66 93 76\n-49 45 61\n100 -100 -100\n100 -100 -100\n66 -75 -100\n0 0 -100\n0 0 -87",
"output": "YES"
},
{
"input": "3\n1 2 3\n3 2 1\n0 0 0",
"output": "NO"
},
{
"input": "2\n5 -23 12\n0 0 0",
"output": "NO"
},
{
"input": "1\n0 0 0",
"output": "YES"
},
{
"input": "1\n1 -2 0",
"output": "NO"
},
{
"input": "2\n-23 77 -86\n23 -77 86",
"output": "YES"
},
{
"input": "26\n86 7 20\n-57 -64 39\n-45 6 -93\n-44 -21 100\n-11 -49 21\n73 -71 -80\n-2 -89 56\n-65 -2 7\n5 14 84\n57 41 13\n-12 69 54\n40 -25 27\n-17 -59 0\n64 -91 -30\n-53 9 42\n-54 -8 14\n-35 82 27\n-48 -59 -80\n88 70 79\n94 57 97\n44 63 25\n84 -90 -40\n-100 100 -100\n-92 100 -100\n0 10 -100\n0 0 -82",
"output": "YES"
},
{
"input": "42\n11 27 92\n-18 -56 -57\n1 71 81\n33 -92 30\n82 83 49\n-87 -61 -1\n-49 45 49\n73 26 15\n-22 22 -77\n29 -93 87\n-68 44 -90\n-4 -84 20\n85 67 -6\n-39 26 77\n-28 -64 20\n65 -97 24\n-72 -39 51\n35 -75 -91\n39 -44 -8\n-25 -27 -57\n91 8 -46\n-98 -94 56\n94 -60 59\n-9 -95 18\n-53 -37 98\n-8 -94 -84\n-52 55 60\n15 -14 37\n65 -43 -25\n94 12 66\n-8 -19 -83\n29 81 -78\n-58 57 33\n24 86 -84\n-53 32 -88\n-14 7 3\n89 97 -53\n-5 -28 -91\n-100 100 -6\n-84 100 0\n0 100 0\n0 70 0",
"output": "YES"
},
{
"input": "3\n96 49 -12\n2 -66 28\n-98 17 -16",
"output": "YES"
},
{
"input": "5\n70 -46 86\n-100 94 24\n-27 63 -63\n57 -100 -47\n0 -11 0",
"output": "YES"
},
{
"input": "18\n-86 -28 70\n-31 -89 42\n31 -48 -55\n95 -17 -43\n24 -95 -85\n-21 -14 31\n68 -18 81\n13 31 60\n-15 28 99\n-42 15 9\n28 -61 -62\n-16 71 29\n-28 75 -48\n-77 -67 36\n-100 83 89\n100 100 -100\n57 34 -100\n0 0 -53",
"output": "YES"
},
{
"input": "44\n52 -54 -29\n-82 -5 -94\n-54 43 43\n91 16 71\n7 80 -91\n3 15 29\n-99 -6 -77\n-3 -77 -64\n73 67 34\n25 -10 -18\n-29 91 63\n-72 86 -16\n-68 85 -81\n-3 36 44\n-74 -14 -80\n34 -96 -97\n-76 -78 -33\n-24 44 -58\n98 12 77\n95 -63 -6\n-51 3 -90\n-92 -10 72\n7 3 -68\n57 -53 71\n29 57 -48\n35 -60 10\n79 -70 -61\n-20 77 55\n-86 -15 -35\n84 -88 -18\n100 -42 77\n-20 46 8\n-41 -43 -65\n38 -98 -23\n-100 65 45\n-7 -91 -63\n46 88 -85\n48 59 100\n0 0 100\n0 0 100\n0 0 100\n0 0 100\n0 0 100\n0 0 1",
"output": "YES"
},
{
"input": "18\n-14 -64 -91\n-8 -66 -86\n-23 92 -40\n6 -3 -53\n57 41 78\n-79 42 -22\n-88 -17 45\n4 -45 44\n83 -18 -25\n34 86 -92\n75 -30 12\n44 99 11\n-67 -13 72\n22 83 -56\n-37 71 72\n-9 -100 100\n0 -100 31\n0 -58 0",
"output": "YES"
},
{
"input": "23\n-70 37 78\n42 84 6\n28 -94 -24\n-49 76 95\n-67 18 84\n-53 78 -5\n65 -63 -64\n-66 -64 -69\n81 -93 95\n10 52 -79\n-89 -61 -64\n-64 -47 43\n-81 -35 55\n80 82 73\n-60 -81 -18\n49 -10 -19\n-58 70 12\n-24 -15 -93\n98 -93 -54\n-28 -75 11\n100 100 -63\n100 100 0\n56 34 0",
"output": "YES"
},
{
"input": "3\n0 2 -2\n1 -1 3\n-3 0 0",
"output": "NO"
}
] | 1,615,095,586
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 81
| 124
| 0
|
n = int(input())
x,y,z = 0,0,0
for _ in range(n):
a,b,c = [int(i) for i in input().split()]
x = x+a
y = y+b
z = z+c
if (x == 0 and y == 0) and z == 0:
print("YES")
else:
print("NO")
|
Title: Young Physicist
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
A guy named Vasya attends the final grade of a high school. One day Vasya decided to watch a match of his favorite hockey team. And, as the boy loves hockey very much, even more than physics, he forgot to do the homework. Specifically, he forgot to complete his physics tasks. Next day the teacher got very angry at Vasya and decided to teach him a lesson. He gave the lazy student a seemingly easy task: You are given an idle body in space and the forces that affect it. The body can be considered as a material point with coordinates (0; 0; 0). Vasya had only to answer whether it is in equilibrium. "Piece of cake" — thought Vasya, we need only to check if the sum of all vectors is equal to 0. So, Vasya began to solve the problem. But later it turned out that there can be lots and lots of these forces, and Vasya can not cope without your help. Help him. Write a program that determines whether a body is idle or is moving by the given vectors of forces.
Input Specification:
The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=100), then follow *n* lines containing three integers each: the *x**i* coordinate, the *y**i* coordinate and the *z**i* coordinate of the force vector, applied to the body (<=-<=100<=≤<=*x**i*,<=*y**i*,<=*z**i*<=≤<=100).
Output Specification:
Print the word "YES" if the body is in equilibrium, or the word "NO" if it is not.
Demo Input:
['3\n4 1 7\n-2 4 -1\n1 -5 -3\n', '3\n3 -1 7\n-5 2 -4\n2 -1 -3\n']
Demo Output:
['NO', 'YES']
Note:
none
|
```python
n = int(input())
x,y,z = 0,0,0
for _ in range(n):
a,b,c = [int(i) for i in input().split()]
x = x+a
y = y+b
z = z+c
if (x == 0 and y == 0) and z == 0:
print("YES")
else:
print("NO")
```
| 3.969
|
59
|
A
|
Word
|
PROGRAMMING
| 800
|
[
"implementation",
"strings"
] |
A. Word
|
2
|
256
|
Vasya is very upset that many people on the Net mix uppercase and lowercase letters in one word. That's why he decided to invent an extension for his favorite browser that would change the letters' register in every word so that it either only consisted of lowercase letters or, vice versa, only of uppercase ones. At that as little as possible letters should be changed in the word. For example, the word HoUse must be replaced with house, and the word ViP — with VIP. If a word contains an equal number of uppercase and lowercase letters, you should replace all the letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to use the given method on one given word.
|
The first line contains a word *s* — it consists of uppercase and lowercase Latin letters and possesses the length from 1 to 100.
|
Print the corrected word *s*. If the given word *s* has strictly more uppercase letters, make the word written in the uppercase register, otherwise - in the lowercase one.
|
[
"HoUse\n",
"ViP\n",
"maTRIx\n"
] |
[
"house\n",
"VIP\n",
"matrix\n"
] |
none
| 500
|
[
{
"input": "HoUse",
"output": "house"
},
{
"input": "ViP",
"output": "VIP"
},
{
"input": "maTRIx",
"output": "matrix"
},
{
"input": "BNHWpnpawg",
"output": "bnhwpnpawg"
},
{
"input": "VTYGP",
"output": "VTYGP"
},
{
"input": "CHNenu",
"output": "chnenu"
},
{
"input": "ERPZGrodyu",
"output": "erpzgrodyu"
},
{
"input": "KSXBXWpebh",
"output": "KSXBXWPEBH"
},
{
"input": "qvxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaiv",
"output": "qvxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaiv"
},
{
"input": "Amnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfd",
"output": "amnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfd"
},
{
"input": "ISAGFJFARYFBLOPQDSHWGMCNKMFTLVFUGNJEWGWNBLXUIATXEkqiettmmjgydwcpafqrppdsrrrtguinqbgmzzfqwonkpgpcwenv",
"output": "isagfjfaryfblopqdshwgmcnkmftlvfugnjewgwnblxuiatxekqiettmmjgydwcpafqrppdsrrrtguinqbgmzzfqwonkpgpcwenv"
},
{
"input": "XHRPXZEGHSOCJPICUIXSKFUZUPYTSGJSDIYBCMNMNBPNDBXLXBzhbfnqvwcffvrdhtickyqhupmcehlsyvncqmfhautvxudqdhgg",
"output": "xhrpxzeghsocjpicuixskfuzupytsgjsdiybcmnmnbpndbxlxbzhbfnqvwcffvrdhtickyqhupmcehlsyvncqmfhautvxudqdhgg"
},
{
"input": "RJIQZMJCIMSNDBOHBRAWIENODSALETAKGKPYUFGVEFGCBRENZGAdkcetqjljtmttlonpekcovdzebzdkzggwfsxhapmjkdbuceak",
"output": "RJIQZMJCIMSNDBOHBRAWIENODSALETAKGKPYUFGVEFGCBRENZGADKCETQJLJTMTTLONPEKCOVDZEBZDKZGGWFSXHAPMJKDBUCEAK"
},
{
"input": "DWLWOBHNMMGTFOLFAECKBRNNGLYLYDXTGTVRLMEESZOIUATZZZXUFUZDLSJXMEVRTESSFBWLNZZCLCQWEVNNUCXYVHNGNXHCBDFw",
"output": "DWLWOBHNMMGTFOLFAECKBRNNGLYLYDXTGTVRLMEESZOIUATZZZXUFUZDLSJXMEVRTESSFBWLNZZCLCQWEVNNUCXYVHNGNXHCBDFW"
},
{
"input": "NYCNHJWGBOCOTSPETKKHVWFGAQYNHOVJWJHCIEFOUQZXOYUIEQDZALFKTEHTVDBVJMEUBJUBCMNVPWGDPNCHQHZJRCHYRFPVIGUB",
"output": "NYCNHJWGBOCOTSPETKKHVWFGAQYNHOVJWJHCIEFOUQZXOYUIEQDZALFKTEHTVDBVJMEUBJUBCMNVPWGDPNCHQHZJRCHYRFPVIGUB"
},
{
"input": "igxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwge",
"output": "igxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwge"
},
{
"input": "Ykkekrsqolzryiwsmdlnbmfautxxxauoojrddvwklgnlyrfcvhorrzbmtcrvpaypqhcffdqhwziipyyskcmztjprjqvmzzqhqnw",
"output": "ykkekrsqolzryiwsmdlnbmfautxxxauoojrddvwklgnlyrfcvhorrzbmtcrvpaypqhcffdqhwziipyyskcmztjprjqvmzzqhqnw"
},
{
"input": "YQOMLKYAORUQQUCQZCDYMIVDHGWZFFRMUVTAWCHERFPMNRYRIkgqrciokgajamehmcxgerpudvsqyonjonsxgbnefftzmygncks",
"output": "yqomlkyaoruqqucqzcdymivdhgwzffrmuvtawcherfpmnryrikgqrciokgajamehmcxgerpudvsqyonjonsxgbnefftzmygncks"
},
{
"input": "CDOZDPBVVVHNBJVBYHEOXWFLJKRWJCAJMIFCOZWWYFKVWOGTVJcuusigdqfkumewjtdyitveeiaybwrhomrwmpdipjwiuxfnwuz",
"output": "CDOZDPBVVVHNBJVBYHEOXWFLJKRWJCAJMIFCOZWWYFKVWOGTVJCUUSIGDQFKUMEWJTDYITVEEIAYBWRHOMRWMPDIPJWIUXFNWUZ"
},
{
"input": "WHIUVEXHVOOIJIDVJVPQUBJMEVPMPDKQWJKFBZSGSKUXMIPPMJWuckzcpxosodcjaaakvlxpbiigsiauviilylnnqlyucziihqg",
"output": "WHIUVEXHVOOIJIDVJVPQUBJMEVPMPDKQWJKFBZSGSKUXMIPPMJWUCKZCPXOSODCJAAAKVLXPBIIGSIAUVIILYLNNQLYUCZIIHQG"
},
{
"input": "VGHUNFOXKETUYMZDJNGTAOIOANYXSGYNFOGOFFLDAWEUKYFOZXCJTCAFXZYLQZERYZLRSQXYQGAPCSUDPMEYTNCTTTMFAGVDWBO",
"output": "VGHUNFOXKETUYMZDJNGTAOIOANYXSGYNFOGOFFLDAWEUKYFOZXCJTCAFXZYLQZERYZLRSQXYQGAPCSUDPMEYTNCTTTMFAGVDWBO"
},
{
"input": "EDUANHCQDOCJHFONTTSWBUJSTTIXBIXMAIUFSGFLXWAYIURTVAVZPYQDLAWIGCLMPHXCEFCJPFAAHXVNGQUFNHADAIUAZIDMHDd",
"output": "EDUANHCQDOCJHFONTTSWBUJSTTIXBIXMAIUFSGFLXWAYIURTVAVZPYQDLAWIGCLMPHXCEFCJPFAAHXVNGQUFNHADAIUAZIDMHDD"
},
{
"input": "EBWOVSNLYTWWXrnovgugogtjahnmatomubebyxakas",
"output": "ebwovsnlytwwxrnovgugogtjahnmatomubebyxakas"
},
{
"input": "AORNNDKTRLRVGDPXJKXFTPFpopuzrlqumrxssskvbm",
"output": "AORNNDKTRLRVGDPXJKXFTPFPOPUZRLQUMRXSSSKVBM"
},
{
"input": "DBBZJCWQEVGYHEEUHJAWRHBDPsnplijbwtdibqrrheebfxqcvn",
"output": "dbbzjcwqevgyheeuhjawrhbdpsnplijbwtdibqrrheebfxqcvn"
},
{
"input": "t",
"output": "t"
},
{
"input": "N",
"output": "N"
},
{
"input": "kv",
"output": "kv"
},
{
"input": "Ur",
"output": "ur"
},
{
"input": "CN",
"output": "CN"
}
] | 1,581,398,243
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 30
| 310
| 0
|
s = input()
uc_count = lc_count = 0
for char in s:
if char >= 'A' and char <= 'Z':
uc_count += 1
else:
lc_count += 1
if uc_count > lc_count: print(s.upper())
else: print(s.lower())
|
Title: Word
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Vasya is very upset that many people on the Net mix uppercase and lowercase letters in one word. That's why he decided to invent an extension for his favorite browser that would change the letters' register in every word so that it either only consisted of lowercase letters or, vice versa, only of uppercase ones. At that as little as possible letters should be changed in the word. For example, the word HoUse must be replaced with house, and the word ViP — with VIP. If a word contains an equal number of uppercase and lowercase letters, you should replace all the letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to use the given method on one given word.
Input Specification:
The first line contains a word *s* — it consists of uppercase and lowercase Latin letters and possesses the length from 1 to 100.
Output Specification:
Print the corrected word *s*. If the given word *s* has strictly more uppercase letters, make the word written in the uppercase register, otherwise - in the lowercase one.
Demo Input:
['HoUse\n', 'ViP\n', 'maTRIx\n']
Demo Output:
['house\n', 'VIP\n', 'matrix\n']
Note:
none
|
```python
s = input()
uc_count = lc_count = 0
for char in s:
if char >= 'A' and char <= 'Z':
uc_count += 1
else:
lc_count += 1
if uc_count > lc_count: print(s.upper())
else: print(s.lower())
```
| 3.9225
|
12
|
A
|
Super Agent
|
PROGRAMMING
| 800
|
[
"implementation"
] |
A. Super Agent
|
2
|
256
|
There is a very secret base in Potatoland where potato mash is made according to a special recipe. The neighbours from Porridgia decided to seize this recipe and to sell it to Pilauland. For this mission they have been preparing special agent Pearlo for many years. When, finally, Pearlo learned all secrets of espionage, he penetrated into the Potatoland territory and reached the secret base.
Now he is standing at the entrance, but to get inside he need to pass combination lock. Minute ago one of the workers entered the password on the terminal and opened the door. The terminal is a square digital keyboard 3<=×<=3 with digits from 1 to 9.
Pearlo knows that the password consists from distinct digits and is probably symmetric with respect to the central button of the terminal. He has heat sensor which allowed him to detect the digits which the worker pressed. Now he wants to check whether the password entered by the worker is symmetric with respect to the central button of the terminal. This fact can Help Pearlo to reduce the number of different possible password combinations.
|
Input contains the matrix of three rows of three symbols each. Symbol «X» means that the corresponding button was pressed, and «.» means that is was not pressed. The matrix may contain no «X», also it may contain no «.».
|
Print YES if the password is symmetric with respect to the central button of the terminal and NO otherwise.
|
[
"XX.\n...\n.XX\n",
"X.X\nX..\n...\n"
] |
[
"YES\n",
"NO\n"
] |
If you are not familiar with the term «central symmetry», you may look into http://en.wikipedia.org/wiki/Central_symmetry
| 0
|
[
{
"input": "XX.\n...\n.XX",
"output": "YES"
},
{
"input": ".X.\n.X.\n.X.",
"output": "YES"
},
{
"input": "XXX\nXXX\nXXX",
"output": "YES"
},
{
"input": "XXX\nX.X\nXXX",
"output": "YES"
},
{
"input": "X..\n.X.\n..X",
"output": "YES"
},
{
"input": "...\nX.X\nX..",
"output": "NO"
},
{
"input": ".X.\nX.X\n.X.",
"output": "YES"
},
{
"input": "X.X\n.X.\nX.X",
"output": "YES"
},
{
"input": "...\n...\n..X",
"output": "NO"
},
{
"input": "XXX\n...\nXXX",
"output": "YES"
},
{
"input": "..X\nX..\n..X",
"output": "NO"
},
{
"input": ".X.\n...\nX.X",
"output": "NO"
},
{
"input": "X.X\nX.X\nX.X",
"output": "YES"
},
{
"input": ".X.\nX.X\nXX.",
"output": "NO"
},
{
"input": "...\nXXX\nXXX",
"output": "NO"
},
{
"input": "XXX\n..X\nXXX",
"output": "NO"
},
{
"input": "X..\nX.X\n.X.",
"output": "NO"
},
{
"input": "...\n..X\nXXX",
"output": "NO"
},
{
"input": "..X\nX.X\nX..",
"output": "YES"
},
{
"input": "..X\n..X\nXXX",
"output": "NO"
},
{
"input": "X..\nX..\nX..",
"output": "NO"
},
{
"input": "XXX\n.X.\nXXX",
"output": "YES"
},
{
"input": "..X\n...\nX..",
"output": "YES"
},
{
"input": "...\n...\nX..",
"output": "NO"
},
{
"input": "...\n...\n.X.",
"output": "NO"
},
{
"input": "...\n...\n..X",
"output": "NO"
},
{
"input": "...\n.X.\nX..",
"output": "NO"
}
] | 1,685,884,132
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 40
| 92
| 921,600
|
import sys
import re
import collections
import math
import itertools
class Point(object):
def __init__(self, x=0, y=0):
self.x = x
self.y = y
def function(*args):
one = input()
two = input()
three = input()
arr = []
if two[0] == two[-1] and one == three[::-1]:
print('YES')
return
print('NO')
if __name__ == '__main__':
function()
|
Title: Super Agent
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
There is a very secret base in Potatoland where potato mash is made according to a special recipe. The neighbours from Porridgia decided to seize this recipe and to sell it to Pilauland. For this mission they have been preparing special agent Pearlo for many years. When, finally, Pearlo learned all secrets of espionage, he penetrated into the Potatoland territory and reached the secret base.
Now he is standing at the entrance, but to get inside he need to pass combination lock. Minute ago one of the workers entered the password on the terminal and opened the door. The terminal is a square digital keyboard 3<=×<=3 with digits from 1 to 9.
Pearlo knows that the password consists from distinct digits and is probably symmetric with respect to the central button of the terminal. He has heat sensor which allowed him to detect the digits which the worker pressed. Now he wants to check whether the password entered by the worker is symmetric with respect to the central button of the terminal. This fact can Help Pearlo to reduce the number of different possible password combinations.
Input Specification:
Input contains the matrix of three rows of three symbols each. Symbol «X» means that the corresponding button was pressed, and «.» means that is was not pressed. The matrix may contain no «X», also it may contain no «.».
Output Specification:
Print YES if the password is symmetric with respect to the central button of the terminal and NO otherwise.
Demo Input:
['XX.\n...\n.XX\n', 'X.X\nX..\n...\n']
Demo Output:
['YES\n', 'NO\n']
Note:
If you are not familiar with the term «central symmetry», you may look into http://en.wikipedia.org/wiki/Central_symmetry
|
```python
import sys
import re
import collections
import math
import itertools
class Point(object):
def __init__(self, x=0, y=0):
self.x = x
self.y = y
def function(*args):
one = input()
two = input()
three = input()
arr = []
if two[0] == two[-1] and one == three[::-1]:
print('YES')
return
print('NO')
if __name__ == '__main__':
function()
```
| 3.975283
|
371
|
A
|
K-Periodic Array
|
PROGRAMMING
| 1,000
|
[
"greedy",
"implementation",
"math"
] | null | null |
This task will exclusively concentrate only on the arrays where all elements equal 1 and/or 2.
Array *a* is *k*-period if its length is divisible by *k* and there is such array *b* of length *k*, that *a* is represented by array *b* written exactly times consecutively. In other words, array *a* is *k*-periodic, if it has period of length *k*.
For example, any array is *n*-periodic, where *n* is the array length. Array [2,<=1,<=2,<=1,<=2,<=1] is at the same time 2-periodic and 6-periodic and array [1,<=2,<=1,<=1,<=2,<=1,<=1,<=2,<=1] is at the same time 3-periodic and 9-periodic.
For the given array *a*, consisting only of numbers one and two, find the minimum number of elements to change to make the array *k*-periodic. If the array already is *k*-periodic, then the required value equals 0.
|
The first line of the input contains a pair of integers *n*, *k* (1<=≤<=*k*<=≤<=*n*<=≤<=100), where *n* is the length of the array and the value *n* is divisible by *k*. The second line contains the sequence of elements of the given array *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=2), *a**i* is the *i*-th element of the array.
|
Print the minimum number of array elements we need to change to make the array *k*-periodic. If the array already is *k*-periodic, then print 0.
|
[
"6 2\n2 1 2 2 2 1\n",
"8 4\n1 1 2 1 1 1 2 1\n",
"9 3\n2 1 1 1 2 1 1 1 2\n"
] |
[
"1\n",
"0\n",
"3\n"
] |
In the first sample it is enough to change the fourth element from 2 to 1, then the array changes to [2, 1, 2, 1, 2, 1].
In the second sample, the given array already is 4-periodic.
In the third sample it is enough to replace each occurrence of number two by number one. In this case the array will look as [1, 1, 1, 1, 1, 1, 1, 1, 1] — this array is simultaneously 1-, 3- and 9-periodic.
| 500
|
[
{
"input": "6 2\n2 1 2 2 2 1",
"output": "1"
},
{
"input": "8 4\n1 1 2 1 1 1 2 1",
"output": "0"
},
{
"input": "9 3\n2 1 1 1 2 1 1 1 2",
"output": "3"
},
{
"input": "1 1\n2",
"output": "0"
},
{
"input": "2 1\n1 1",
"output": "0"
},
{
"input": "2 2\n2 2",
"output": "0"
},
{
"input": "100 1\n1 2 1 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2",
"output": "8"
},
{
"input": "2 1\n1 2",
"output": "1"
},
{
"input": "2 2\n2 1",
"output": "0"
},
{
"input": "3 1\n2 1 2",
"output": "1"
},
{
"input": "3 3\n1 2 1",
"output": "0"
},
{
"input": "4 2\n2 1 2 2",
"output": "1"
},
{
"input": "10 2\n2 2 2 1 1 2 2 2 2 1",
"output": "3"
},
{
"input": "10 5\n2 2 1 2 1 1 2 1 1 1",
"output": "2"
},
{
"input": "20 4\n2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2",
"output": "0"
},
{
"input": "20 5\n2 2 1 1 1 2 1 1 1 1 2 2 1 1 2 2 2 1 1 2",
"output": "3"
},
{
"input": "20 10\n1 2 2 2 2 1 1 1 2 1 1 2 2 2 2 1 2 2 2 1",
"output": "2"
},
{
"input": "100 2\n2 2 1 2 1 2 1 2 1 2 1 2 1 2 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 1 2 1 2 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2",
"output": "5"
},
{
"input": "100 4\n1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 2 2 1 2 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 2 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 2 1 1 2 1 1 1 2 1 2 1 2 1 1 1 2 1 1 1 2 1 1",
"output": "8"
},
{
"input": "100 5\n2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 1 2 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 1 2 2 2 1 1 2 1 2 2 2 2 2 2 2 1 2 2 2",
"output": "16"
},
{
"input": "100 10\n2 1 1 1 1 2 2 2 1 1 2 1 1 2 1 2 1 2 1 1 2 1 1 1 1 2 1 2 1 1 2 1 1 1 1 2 2 2 1 1 2 1 1 1 1 2 1 2 1 1 2 1 1 1 1 2 1 2 2 1 2 1 1 1 1 2 1 2 1 1 2 1 2 1 1 2 1 2 1 1 2 1 1 1 1 2 1 2 1 1 2 1 1 1 2 2 1 2 1 1",
"output": "6"
},
{
"input": "100 20\n2 2 2 1 1 2 1 2 1 2 1 1 2 2 2 2 2 1 2 1 2 2 2 2 1 2 1 2 1 1 1 1 2 2 2 2 1 2 1 1 2 2 2 2 1 2 1 2 1 2 1 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 1 2 1 1 1 1 2 2 2 2 2 1 1 2 2 1 2 2 1 2 1 2 1 2 1 1 2 2 1 2 2 1 1 1",
"output": "13"
},
{
"input": "100 25\n2 2 1 2 2 2 2 2 1 2 2 1 2 1 1 2 1 2 1 2 2 2 1 2 2 2 1 1 2 1 2 1 2 1 2 2 1 2 1 1 2 2 2 1 2 2 1 2 2 2 2 1 1 2 1 2 2 1 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 1 2 1 1 2 2 2 2 2 1 2 2 1 1 2 1 2 2 2 1 2 2 2 2 2 2",
"output": "15"
},
{
"input": "100 10\n2 2 2 2 2 1 2 1 2 1 2 2 2 2 2 1 2 1 2 1 2 2 2 2 2 1 2 1 2 1 2 2 2 2 2 1 2 1 2 1 2 2 2 2 2 1 2 1 2 1 2 2 2 2 2 1 2 1 2 1 2 2 2 2 2 1 2 1 2 1 2 2 2 2 2 1 2 1 2 1 2 2 2 2 2 1 2 1 2 1 2 2 2 2 2 1 2 1 2 1",
"output": "0"
}
] | 1,668,874,326
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 24
| 46
| 0
|
n,k=map(int,input().split())
a=list(map(int,input().split()))
s=0
for y in range(k):
ikki = 0
bir = 0
for x in range(y,n,k):
ikki += a[x]== 2
bir += a[x]== 1
if ikki != 0 or bir != 0:
s += min(ikki,bir)
print(s)
|
Title: K-Periodic Array
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
This task will exclusively concentrate only on the arrays where all elements equal 1 and/or 2.
Array *a* is *k*-period if its length is divisible by *k* and there is such array *b* of length *k*, that *a* is represented by array *b* written exactly times consecutively. In other words, array *a* is *k*-periodic, if it has period of length *k*.
For example, any array is *n*-periodic, where *n* is the array length. Array [2,<=1,<=2,<=1,<=2,<=1] is at the same time 2-periodic and 6-periodic and array [1,<=2,<=1,<=1,<=2,<=1,<=1,<=2,<=1] is at the same time 3-periodic and 9-periodic.
For the given array *a*, consisting only of numbers one and two, find the minimum number of elements to change to make the array *k*-periodic. If the array already is *k*-periodic, then the required value equals 0.
Input Specification:
The first line of the input contains a pair of integers *n*, *k* (1<=≤<=*k*<=≤<=*n*<=≤<=100), where *n* is the length of the array and the value *n* is divisible by *k*. The second line contains the sequence of elements of the given array *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=2), *a**i* is the *i*-th element of the array.
Output Specification:
Print the minimum number of array elements we need to change to make the array *k*-periodic. If the array already is *k*-periodic, then print 0.
Demo Input:
['6 2\n2 1 2 2 2 1\n', '8 4\n1 1 2 1 1 1 2 1\n', '9 3\n2 1 1 1 2 1 1 1 2\n']
Demo Output:
['1\n', '0\n', '3\n']
Note:
In the first sample it is enough to change the fourth element from 2 to 1, then the array changes to [2, 1, 2, 1, 2, 1].
In the second sample, the given array already is 4-periodic.
In the third sample it is enough to replace each occurrence of number two by number one. In this case the array will look as [1, 1, 1, 1, 1, 1, 1, 1, 1] — this array is simultaneously 1-, 3- and 9-periodic.
|
```python
n,k=map(int,input().split())
a=list(map(int,input().split()))
s=0
for y in range(k):
ikki = 0
bir = 0
for x in range(y,n,k):
ikki += a[x]== 2
bir += a[x]== 1
if ikki != 0 or bir != 0:
s += min(ikki,bir)
print(s)
```
| 3
|
|
879
|
B
|
Table Tennis
|
PROGRAMMING
| 1,200
|
[
"data structures",
"implementation"
] | null | null |
*n* people are standing in a line to play table tennis. At first, the first two players in the line play a game. Then the loser goes to the end of the line, and the winner plays with the next person from the line, and so on. They play until someone wins *k* games in a row. This player becomes the winner.
For each of the participants, you know the power to play table tennis, and for all players these values are different. In a game the player with greater power always wins. Determine who will be the winner.
|
The first line contains two integers: *n* and *k* (2<=≤<=*n*<=≤<=500, 2<=≤<=*k*<=≤<=1012) — the number of people and the number of wins.
The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=*n*) — powers of the player. It's guaranteed that this line contains a valid permutation, i.e. all *a**i* are distinct.
|
Output a single integer — power of the winner.
|
[
"2 2\n1 2\n",
"4 2\n3 1 2 4\n",
"6 2\n6 5 3 1 2 4\n",
"2 10000000000\n2 1\n"
] |
[
"2 ",
"3 ",
"6 ",
"2\n"
] |
Games in the second sample:
3 plays with 1. 3 wins. 1 goes to the end of the line.
3 plays with 2. 3 wins. He wins twice in a row. He becomes the winner.
| 1,000
|
[
{
"input": "2 2\n1 2",
"output": "2 "
},
{
"input": "4 2\n3 1 2 4",
"output": "3 "
},
{
"input": "6 2\n6 5 3 1 2 4",
"output": "6 "
},
{
"input": "2 10000000000\n2 1",
"output": "2"
},
{
"input": "4 4\n1 3 4 2",
"output": "4 "
},
{
"input": "2 2147483648\n2 1",
"output": "2"
},
{
"input": "3 2\n1 3 2",
"output": "3 "
},
{
"input": "3 3\n1 2 3",
"output": "3 "
},
{
"input": "5 2\n2 1 3 4 5",
"output": "5 "
},
{
"input": "10 2\n7 10 5 8 9 3 4 6 1 2",
"output": "10 "
},
{
"input": "100 2\n62 70 29 14 12 87 94 78 39 92 84 91 61 49 60 33 69 37 19 82 42 8 45 97 81 43 54 67 1 22 77 58 65 17 18 28 25 57 16 90 40 13 4 21 68 35 15 76 73 93 56 95 79 47 74 75 30 71 66 99 41 24 88 83 5 6 31 96 38 80 27 46 51 53 2 86 32 9 20 100 26 36 63 7 52 55 23 3 50 59 48 89 85 44 34 64 10 72 11 98",
"output": "70 "
},
{
"input": "4 10\n2 1 3 4",
"output": "4"
},
{
"input": "10 2\n1 2 3 4 5 6 7 8 9 10",
"output": "10 "
},
{
"input": "10 2\n10 9 8 7 6 5 4 3 2 1",
"output": "10 "
},
{
"input": "4 1000000000000\n3 4 1 2",
"output": "4"
},
{
"input": "100 10\n19 55 91 50 31 23 60 84 38 1 22 51 27 76 28 98 11 44 61 63 15 93 52 3 66 16 53 36 18 62 35 85 78 37 73 64 87 74 46 26 82 69 49 33 83 89 56 67 71 25 39 94 96 17 21 6 47 68 34 42 57 81 13 10 54 2 48 80 20 77 4 5 59 30 90 95 45 75 8 88 24 41 40 14 97 32 7 9 65 70 100 99 72 58 92 29 79 12 86 43",
"output": "91 "
},
{
"input": "100 50\n2 4 82 12 47 63 52 91 87 45 53 1 17 25 64 50 9 13 22 54 21 30 43 24 38 33 68 11 41 78 99 23 28 18 58 67 79 10 71 56 49 61 26 29 59 20 90 74 5 75 89 8 39 95 72 42 66 98 44 32 88 35 92 3 97 55 65 51 77 27 81 76 84 69 73 85 19 46 62 100 60 37 7 36 57 6 14 83 40 48 16 70 96 15 31 93 80 86 94 34",
"output": "100 "
},
{
"input": "2 1000000000000\n1 2",
"output": "2"
},
{
"input": "5 2\n1 4 3 5 2",
"output": "4 "
},
{
"input": "5 2\n1 3 2 4 5",
"output": "3 "
},
{
"input": "4 1000000000000\n3 1 2 4",
"output": "4"
},
{
"input": "4 2\n1 3 2 4",
"output": "3 "
},
{
"input": "10 3\n8 1 9 2 3 10 4 5 6 7",
"output": "9 "
},
{
"input": "5 2\n2 1 4 3 5",
"output": "4 "
},
{
"input": "3 4294967297\n2 1 3",
"output": "3"
},
{
"input": "4 4294967297\n3 2 1 4",
"output": "4"
},
{
"input": "5 4294967298\n3 2 1 4 5",
"output": "5"
},
{
"input": "10 4\n5 4 7 1 2 9 3 6 8 10",
"output": "9 "
},
{
"input": "11 21474836489\n10 1 2 3 4 5 6 7 8 9 11",
"output": "11"
}
] | 1,656,871,670
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 43
| 46
| 102,400
|
[n, k] = [int (x) for x in (input().split())]
arr = [int (x) for x in (input().split())]
obj = dict.fromkeys(arr, 0)
def tableTennis(array, k, object, iter):
winner = max(array[:2])
mini = min(array[:2])
object[winner] += 1
if(iter > len(array)):
print(winner)
return
elif(object[winner] >= k):
key = [ky for ky, v in object.items() if v == k]
print(key[0])
return
else:
array.remove(mini)
array.append(mini)
iter += 1
tableTennis(array, k, object, iter)
tableTennis(arr, k, obj, 0)
|
Title: Table Tennis
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
*n* people are standing in a line to play table tennis. At first, the first two players in the line play a game. Then the loser goes to the end of the line, and the winner plays with the next person from the line, and so on. They play until someone wins *k* games in a row. This player becomes the winner.
For each of the participants, you know the power to play table tennis, and for all players these values are different. In a game the player with greater power always wins. Determine who will be the winner.
Input Specification:
The first line contains two integers: *n* and *k* (2<=≤<=*n*<=≤<=500, 2<=≤<=*k*<=≤<=1012) — the number of people and the number of wins.
The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=*n*) — powers of the player. It's guaranteed that this line contains a valid permutation, i.e. all *a**i* are distinct.
Output Specification:
Output a single integer — power of the winner.
Demo Input:
['2 2\n1 2\n', '4 2\n3 1 2 4\n', '6 2\n6 5 3 1 2 4\n', '2 10000000000\n2 1\n']
Demo Output:
['2 ', '3 ', '6 ', '2\n']
Note:
Games in the second sample:
3 plays with 1. 3 wins. 1 goes to the end of the line.
3 plays with 2. 3 wins. He wins twice in a row. He becomes the winner.
|
```python
[n, k] = [int (x) for x in (input().split())]
arr = [int (x) for x in (input().split())]
obj = dict.fromkeys(arr, 0)
def tableTennis(array, k, object, iter):
winner = max(array[:2])
mini = min(array[:2])
object[winner] += 1
if(iter > len(array)):
print(winner)
return
elif(object[winner] >= k):
key = [ky for ky, v in object.items() if v == k]
print(key[0])
return
else:
array.remove(mini)
array.append(mini)
iter += 1
tableTennis(array, k, object, iter)
tableTennis(arr, k, obj, 0)
```
| 3
|
|
807
|
A
|
Is it rated?
|
PROGRAMMING
| 900
|
[
"implementation",
"sortings"
] | null | null |
Is it rated?
Here it is. The Ultimate Question of Competitive Programming, Codeforces, and Everything. And you are here to answer it.
Another Codeforces round has been conducted. No two participants have the same number of points. For each participant, from the top to the bottom of the standings, their rating before and after the round is known.
It's known that if at least one participant's rating has changed, then the round was rated for sure.
It's also known that if the round was rated and a participant with lower rating took a better place in the standings than a participant with higher rating, then at least one round participant's rating has changed.
In this problem, you should not make any other assumptions about the rating system.
Determine if the current round is rated, unrated, or it's impossible to determine whether it is rated of not.
|
The first line contains a single integer *n* (2<=≤<=*n*<=≤<=1000) — the number of round participants.
Each of the next *n* lines contains two integers *a**i* and *b**i* (1<=≤<=*a**i*,<=*b**i*<=≤<=4126) — the rating of the *i*-th participant before and after the round, respectively. The participants are listed in order from the top to the bottom of the standings.
|
If the round is rated for sure, print "rated". If the round is unrated for sure, print "unrated". If it's impossible to determine whether the round is rated or not, print "maybe".
|
[
"6\n3060 3060\n2194 2194\n2876 2903\n2624 2624\n3007 2991\n2884 2884\n",
"4\n1500 1500\n1300 1300\n1200 1200\n1400 1400\n",
"5\n3123 3123\n2777 2777\n2246 2246\n2246 2246\n1699 1699\n"
] |
[
"rated\n",
"unrated\n",
"maybe\n"
] |
In the first example, the ratings of the participants in the third and fifth places have changed, therefore, the round was rated.
In the second example, no one's rating has changed, but the participant in the second place has lower rating than the participant in the fourth place. Therefore, if the round was rated, someone's rating would've changed for sure.
In the third example, no one's rating has changed, and the participants took places in non-increasing order of their rating. Therefore, it's impossible to determine whether the round is rated or not.
| 500
|
[
{
"input": "6\n3060 3060\n2194 2194\n2876 2903\n2624 2624\n3007 2991\n2884 2884",
"output": "rated"
},
{
"input": "4\n1500 1500\n1300 1300\n1200 1200\n1400 1400",
"output": "unrated"
},
{
"input": "5\n3123 3123\n2777 2777\n2246 2246\n2246 2246\n1699 1699",
"output": "maybe"
},
{
"input": "2\n1 1\n1 1",
"output": "maybe"
},
{
"input": "2\n4126 4126\n4126 4126",
"output": "maybe"
},
{
"input": "10\n446 446\n1331 1331\n3594 3594\n1346 1902\n91 91\n3590 3590\n2437 2437\n4007 3871\n2797 699\n1423 1423",
"output": "rated"
},
{
"input": "10\n4078 4078\n2876 2876\n1061 1061\n3721 3721\n143 143\n2992 2992\n3279 3279\n3389 3389\n1702 1702\n1110 1110",
"output": "unrated"
},
{
"input": "10\n4078 4078\n3721 3721\n3389 3389\n3279 3279\n2992 2992\n2876 2876\n1702 1702\n1110 1110\n1061 1061\n143 143",
"output": "maybe"
},
{
"input": "2\n3936 3936\n2967 2967",
"output": "maybe"
},
{
"input": "2\n1 1\n2 2",
"output": "unrated"
},
{
"input": "2\n2 2\n1 1",
"output": "maybe"
},
{
"input": "2\n2 1\n1 2",
"output": "rated"
},
{
"input": "2\n2967 2967\n3936 3936",
"output": "unrated"
},
{
"input": "3\n1200 1200\n1200 1200\n1300 1300",
"output": "unrated"
},
{
"input": "3\n3 3\n2 2\n1 1",
"output": "maybe"
},
{
"input": "3\n1 1\n1 1\n2 2",
"output": "unrated"
},
{
"input": "2\n3 2\n3 2",
"output": "rated"
},
{
"input": "3\n5 5\n4 4\n3 4",
"output": "rated"
},
{
"input": "3\n200 200\n200 200\n300 300",
"output": "unrated"
},
{
"input": "3\n1 1\n2 2\n3 3",
"output": "unrated"
},
{
"input": "5\n3123 3123\n2777 2777\n2246 2246\n2245 2245\n1699 1699",
"output": "maybe"
},
{
"input": "2\n10 10\n8 8",
"output": "maybe"
},
{
"input": "3\n1500 1500\n1500 1500\n1600 1600",
"output": "unrated"
},
{
"input": "3\n1500 1500\n1500 1500\n1700 1700",
"output": "unrated"
},
{
"input": "4\n100 100\n100 100\n70 70\n80 80",
"output": "unrated"
},
{
"input": "2\n1 2\n2 1",
"output": "rated"
},
{
"input": "3\n5 5\n4 3\n3 3",
"output": "rated"
},
{
"input": "3\n1600 1650\n1500 1550\n1400 1450",
"output": "rated"
},
{
"input": "4\n2000 2000\n1500 1500\n1500 1500\n1700 1700",
"output": "unrated"
},
{
"input": "4\n1500 1500\n1400 1400\n1400 1400\n1700 1700",
"output": "unrated"
},
{
"input": "2\n1600 1600\n1400 1400",
"output": "maybe"
},
{
"input": "2\n3 1\n9 8",
"output": "rated"
},
{
"input": "2\n2 1\n1 1",
"output": "rated"
},
{
"input": "4\n4123 4123\n4123 4123\n2670 2670\n3670 3670",
"output": "unrated"
},
{
"input": "2\n2 2\n3 3",
"output": "unrated"
},
{
"input": "2\n10 11\n5 4",
"output": "rated"
},
{
"input": "2\n15 14\n13 12",
"output": "rated"
},
{
"input": "2\n2 1\n2 2",
"output": "rated"
},
{
"input": "3\n2670 2670\n3670 3670\n4106 4106",
"output": "unrated"
},
{
"input": "3\n4 5\n3 3\n2 2",
"output": "rated"
},
{
"input": "2\n10 9\n10 10",
"output": "rated"
},
{
"input": "3\n1011 1011\n1011 999\n2200 2100",
"output": "rated"
},
{
"input": "2\n3 3\n5 5",
"output": "unrated"
},
{
"input": "2\n1500 1500\n3000 2000",
"output": "rated"
},
{
"input": "2\n5 6\n5 5",
"output": "rated"
},
{
"input": "3\n2000 2000\n1500 1501\n500 500",
"output": "rated"
},
{
"input": "2\n2 3\n2 2",
"output": "rated"
},
{
"input": "2\n3 3\n2 2",
"output": "maybe"
},
{
"input": "2\n1 2\n1 1",
"output": "rated"
},
{
"input": "4\n3123 3123\n2777 2777\n2246 2246\n1699 1699",
"output": "maybe"
},
{
"input": "2\n15 14\n14 13",
"output": "rated"
},
{
"input": "4\n3000 3000\n2900 2900\n3000 3000\n2900 2900",
"output": "unrated"
},
{
"input": "6\n30 3060\n24 2194\n26 2903\n24 2624\n37 2991\n24 2884",
"output": "rated"
},
{
"input": "2\n100 99\n100 100",
"output": "rated"
},
{
"input": "4\n2 2\n1 1\n1 1\n2 2",
"output": "unrated"
},
{
"input": "3\n100 101\n100 100\n100 100",
"output": "rated"
},
{
"input": "4\n1000 1001\n900 900\n950 950\n890 890",
"output": "rated"
},
{
"input": "2\n2 3\n1 1",
"output": "rated"
},
{
"input": "2\n2 2\n1 1",
"output": "maybe"
},
{
"input": "2\n3 2\n2 2",
"output": "rated"
},
{
"input": "2\n3 2\n3 3",
"output": "rated"
},
{
"input": "2\n1 1\n2 2",
"output": "unrated"
},
{
"input": "3\n3 2\n3 3\n3 3",
"output": "rated"
},
{
"input": "4\n1500 1501\n1300 1300\n1200 1200\n1400 1400",
"output": "rated"
},
{
"input": "3\n1000 1000\n500 500\n400 300",
"output": "rated"
},
{
"input": "5\n3123 3123\n2777 2777\n2246 2246\n2246 2246\n3000 3000",
"output": "unrated"
},
{
"input": "2\n1 1\n2 3",
"output": "rated"
},
{
"input": "2\n6 2\n6 2",
"output": "rated"
},
{
"input": "5\n3123 3123\n1699 1699\n2777 2777\n2246 2246\n2246 2246",
"output": "unrated"
},
{
"input": "2\n1500 1500\n1600 1600",
"output": "unrated"
},
{
"input": "5\n3123 3123\n2777 2777\n2246 2246\n2241 2241\n1699 1699",
"output": "maybe"
},
{
"input": "2\n20 30\n10 5",
"output": "rated"
},
{
"input": "3\n1 1\n2 2\n1 1",
"output": "unrated"
},
{
"input": "2\n1 2\n3 3",
"output": "rated"
},
{
"input": "5\n5 5\n4 4\n3 3\n2 2\n1 1",
"output": "maybe"
},
{
"input": "2\n2 2\n2 1",
"output": "rated"
},
{
"input": "2\n100 100\n90 89",
"output": "rated"
},
{
"input": "2\n1000 900\n2000 2000",
"output": "rated"
},
{
"input": "2\n50 10\n10 50",
"output": "rated"
},
{
"input": "2\n200 200\n100 100",
"output": "maybe"
},
{
"input": "3\n2 2\n2 2\n3 3",
"output": "unrated"
},
{
"input": "3\n1000 1000\n300 300\n100 100",
"output": "maybe"
},
{
"input": "4\n2 2\n2 2\n3 3\n4 4",
"output": "unrated"
},
{
"input": "2\n5 3\n6 3",
"output": "rated"
},
{
"input": "2\n1200 1100\n1200 1000",
"output": "rated"
},
{
"input": "2\n5 5\n4 4",
"output": "maybe"
},
{
"input": "2\n5 5\n3 3",
"output": "maybe"
},
{
"input": "5\n1500 1500\n1300 1300\n1200 1200\n1400 1400\n1100 1100",
"output": "unrated"
},
{
"input": "5\n10 10\n9 9\n8 8\n7 7\n6 6",
"output": "maybe"
},
{
"input": "3\n1000 1000\n300 300\n10 10",
"output": "maybe"
},
{
"input": "5\n6 6\n5 5\n4 4\n3 3\n2 2",
"output": "maybe"
},
{
"input": "2\n3 3\n1 1",
"output": "maybe"
},
{
"input": "4\n2 2\n2 2\n2 2\n3 3",
"output": "unrated"
},
{
"input": "2\n1000 1000\n700 700",
"output": "maybe"
},
{
"input": "2\n4 3\n5 3",
"output": "rated"
},
{
"input": "2\n1000 1000\n1100 1100",
"output": "unrated"
},
{
"input": "4\n5 5\n4 4\n3 3\n2 2",
"output": "maybe"
},
{
"input": "3\n1 1\n2 3\n2 2",
"output": "rated"
},
{
"input": "2\n1 2\n1 3",
"output": "rated"
},
{
"input": "2\n3 3\n1 2",
"output": "rated"
},
{
"input": "4\n1501 1500\n1300 1300\n1200 1200\n1400 1400",
"output": "rated"
},
{
"input": "5\n1 1\n2 2\n3 3\n4 4\n5 5",
"output": "unrated"
},
{
"input": "2\n10 10\n1 2",
"output": "rated"
},
{
"input": "6\n3123 3123\n2777 2777\n2246 2246\n2246 2246\n1699 1699\n1900 1900",
"output": "unrated"
},
{
"input": "6\n3123 3123\n2777 2777\n3000 3000\n2246 2246\n2246 2246\n1699 1699",
"output": "unrated"
},
{
"input": "2\n100 100\n110 110",
"output": "unrated"
},
{
"input": "3\n3 3\n3 3\n4 4",
"output": "unrated"
},
{
"input": "3\n3 3\n3 2\n4 4",
"output": "rated"
},
{
"input": "3\n5 2\n4 4\n3 3",
"output": "rated"
},
{
"input": "4\n4 4\n3 3\n2 2\n1 1",
"output": "maybe"
},
{
"input": "2\n1 1\n3 2",
"output": "rated"
},
{
"input": "5\n3123 3123\n2777 2777\n2246 2246\n2246 2246\n2699 2699",
"output": "unrated"
},
{
"input": "3\n3 3\n3 3\n3 4",
"output": "rated"
},
{
"input": "3\n1 2\n2 2\n3 3",
"output": "rated"
},
{
"input": "3\n1 2\n1 2\n1 2",
"output": "rated"
},
{
"input": "2\n2 1\n2 1",
"output": "rated"
},
{
"input": "2\n1 2\n3 4",
"output": "rated"
},
{
"input": "2\n3 2\n2 3",
"output": "rated"
},
{
"input": "3\n1500 1500\n1600 1600\n1600 1600",
"output": "unrated"
},
{
"input": "3\n1 1\n3 3\n4 4",
"output": "unrated"
},
{
"input": "3\n1 1\n2 2\n2 2",
"output": "unrated"
},
{
"input": "2\n10 12\n8 8",
"output": "rated"
},
{
"input": "5\n1200 1200\n1500 1500\n1500 1500\n1500 1500\n1500 1500",
"output": "unrated"
},
{
"input": "2\n1 2\n2 2",
"output": "rated"
},
{
"input": "3\n1500 1400\n1200 1200\n1100 1100",
"output": "rated"
},
{
"input": "2\n10 12\n10 10",
"output": "rated"
},
{
"input": "3\n1500 1500\n1400 1400\n1300 1300",
"output": "maybe"
},
{
"input": "3\n3 3\n4 4\n5 5",
"output": "unrated"
},
{
"input": "3\n2 6\n3 5\n4 4",
"output": "rated"
},
{
"input": "2\n5 6\n4 6",
"output": "rated"
},
{
"input": "4\n10 10\n10 10\n7 7\n8 8",
"output": "unrated"
},
{
"input": "2\n4 4\n3 3",
"output": "maybe"
}
] | 1,692,342,799
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 150
| 46
| 0
|
"""
@auther:Abdallah_Gaber
"""
n = int(input())
befores = []
afters = []
for i in range(n):
lst = [int(x) for x in input().split()]
befores.append(lst[0])
afters.append(lst[1])
if befores[i] != afters[i]:
print("rated")
quit()
#print(befores)
#print(afters)
for i in range(n-1):
if befores[i] < befores[i+1]:
print("unrated")
quit()
print("maybe")
|
Title: Is it rated?
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Is it rated?
Here it is. The Ultimate Question of Competitive Programming, Codeforces, and Everything. And you are here to answer it.
Another Codeforces round has been conducted. No two participants have the same number of points. For each participant, from the top to the bottom of the standings, their rating before and after the round is known.
It's known that if at least one participant's rating has changed, then the round was rated for sure.
It's also known that if the round was rated and a participant with lower rating took a better place in the standings than a participant with higher rating, then at least one round participant's rating has changed.
In this problem, you should not make any other assumptions about the rating system.
Determine if the current round is rated, unrated, or it's impossible to determine whether it is rated of not.
Input Specification:
The first line contains a single integer *n* (2<=≤<=*n*<=≤<=1000) — the number of round participants.
Each of the next *n* lines contains two integers *a**i* and *b**i* (1<=≤<=*a**i*,<=*b**i*<=≤<=4126) — the rating of the *i*-th participant before and after the round, respectively. The participants are listed in order from the top to the bottom of the standings.
Output Specification:
If the round is rated for sure, print "rated". If the round is unrated for sure, print "unrated". If it's impossible to determine whether the round is rated or not, print "maybe".
Demo Input:
['6\n3060 3060\n2194 2194\n2876 2903\n2624 2624\n3007 2991\n2884 2884\n', '4\n1500 1500\n1300 1300\n1200 1200\n1400 1400\n', '5\n3123 3123\n2777 2777\n2246 2246\n2246 2246\n1699 1699\n']
Demo Output:
['rated\n', 'unrated\n', 'maybe\n']
Note:
In the first example, the ratings of the participants in the third and fifth places have changed, therefore, the round was rated.
In the second example, no one's rating has changed, but the participant in the second place has lower rating than the participant in the fourth place. Therefore, if the round was rated, someone's rating would've changed for sure.
In the third example, no one's rating has changed, and the participants took places in non-increasing order of their rating. Therefore, it's impossible to determine whether the round is rated or not.
|
```python
"""
@auther:Abdallah_Gaber
"""
n = int(input())
befores = []
afters = []
for i in range(n):
lst = [int(x) for x in input().split()]
befores.append(lst[0])
afters.append(lst[1])
if befores[i] != afters[i]:
print("rated")
quit()
#print(befores)
#print(afters)
for i in range(n-1):
if befores[i] < befores[i+1]:
print("unrated")
quit()
print("maybe")
```
| 3
|
|
371
|
C
|
Hamburgers
|
PROGRAMMING
| 1,600
|
[
"binary search",
"brute force"
] | null | null |
Polycarpus loves hamburgers very much. He especially adores the hamburgers he makes with his own hands. Polycarpus thinks that there are only three decent ingredients to make hamburgers from: a bread, sausage and cheese. He writes down the recipe of his favorite "Le Hamburger de Polycarpus" as a string of letters 'B' (bread), 'S' (sausage) и 'C' (cheese). The ingredients in the recipe go from bottom to top, for example, recipe "ВSCBS" represents the hamburger where the ingredients go from bottom to top as bread, sausage, cheese, bread and sausage again.
Polycarpus has *n**b* pieces of bread, *n**s* pieces of sausage and *n**c* pieces of cheese in the kitchen. Besides, the shop nearby has all three ingredients, the prices are *p**b* rubles for a piece of bread, *p**s* for a piece of sausage and *p**c* for a piece of cheese.
Polycarpus has *r* rubles and he is ready to shop on them. What maximum number of hamburgers can he cook? You can assume that Polycarpus cannot break or slice any of the pieces of bread, sausage or cheese. Besides, the shop has an unlimited number of pieces of each ingredient.
|
The first line of the input contains a non-empty string that describes the recipe of "Le Hamburger de Polycarpus". The length of the string doesn't exceed 100, the string contains only letters 'B' (uppercase English B), 'S' (uppercase English S) and 'C' (uppercase English C).
The second line contains three integers *n**b*, *n**s*, *n**c* (1<=≤<=*n**b*,<=*n**s*,<=*n**c*<=≤<=100) — the number of the pieces of bread, sausage and cheese on Polycarpus' kitchen. The third line contains three integers *p**b*, *p**s*, *p**c* (1<=≤<=*p**b*,<=*p**s*,<=*p**c*<=≤<=100) — the price of one piece of bread, sausage and cheese in the shop. Finally, the fourth line contains integer *r* (1<=≤<=*r*<=≤<=1012) — the number of rubles Polycarpus has.
Please, do not write the %lld specifier to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams or the %I64d specifier.
|
Print the maximum number of hamburgers Polycarpus can make. If he can't make any hamburger, print 0.
|
[
"BBBSSC\n6 4 1\n1 2 3\n4\n",
"BBC\n1 10 1\n1 10 1\n21\n",
"BSC\n1 1 1\n1 1 3\n1000000000000\n"
] |
[
"2\n",
"7\n",
"200000000001\n"
] |
none
| 1,500
|
[
{
"input": "BBBSSC\n6 4 1\n1 2 3\n4",
"output": "2"
},
{
"input": "BBC\n1 10 1\n1 10 1\n21",
"output": "7"
},
{
"input": "BSC\n1 1 1\n1 1 3\n1000000000000",
"output": "200000000001"
},
{
"input": "B\n1 1 1\n1 1 1\n381",
"output": "382"
},
{
"input": "BSC\n3 5 6\n7 3 9\n100",
"output": "10"
},
{
"input": "BSC\n100 1 1\n100 1 1\n100",
"output": "51"
},
{
"input": "SBBCCSBB\n1 50 100\n31 59 21\n100000",
"output": "370"
},
{
"input": "BBBBCCCCCCCCCCCCCCCCCCCCSSSSBBBBBBBBSS\n100 100 100\n1 1 1\n3628800",
"output": "95502"
},
{
"input": "BBBBBBBBBBCCCCCCCCCCCCCCCCCCCCSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\n10 20 40\n100 100 100\n200",
"output": "0"
},
{
"input": "BBBBBBBBBBCCCCCCCCCCCCCCCCCCCCSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\n10 20 40\n100 100 100\n2000",
"output": "1"
},
{
"input": "BBBBBBBBBBCCCCCCCCCCCCCCCCCCCCSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\n10 20 40\n100 100 100\n300",
"output": "0"
},
{
"input": "BBBBBBBBBBCCCCCCCCCCCCCCCCCCCCSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\n10 20 40\n100 100 100\n300000000",
"output": "42858"
},
{
"input": "BBBBBBBBBBCCCCCCCCCCCCCCCCCCCCSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\n10 20 40\n100 100 100\n914159265358",
"output": "130594181"
},
{
"input": "SSSSSSSSSSBBBBBBBBBCCCCCCCCCCCCCCCCCCCSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSBB\n31 53 97\n13 17 31\n914159265358",
"output": "647421579"
},
{
"input": "BBBCSBSBBSSSSCCCCBBCSBBBBSSBBBCBSCCSSCSSCSBSSSCCCCBSCSSBSSSCCCBBCCCSCBCBBCCSCCCCSBBCCBBBBCCCCCCBSSCB\n91 87 17\n64 44 43\n958532915587",
"output": "191668251"
},
{
"input": "CSSCBBCCCSBSCBBBCSBBBCBSBCSCBCSCBCBSBCBCSSBBSBBCBBBBSCSBBCCBCCBCBBSBSBCSCSBBSSBBCSSBCSCSCCSSBCBBCBSB\n56 34 48\n78 6 96\n904174875419",
"output": "140968956"
},
{
"input": "CCSCCCSBBBSCBSCSCCSSBBBSSBBBSBBBCBCSSBCSCBBCCCBCBCBCCCSSBSBBCCCCCBBSCBSCBCBBCBBCSSBCSBSSCCSCCSCCBBBS\n33 73 67\n4 56 42\n886653164314",
"output": "277425898"
},
{
"input": "SBCSSCBBSSBCSSBBBSSBSCBSSSCBBSBBBBCSBCSBSCBSCBSCBSBSSCCCCBSBCCBCBSCCCBSCCBSBBCBSSCCCCSBSBBBSSSBCSCBC\n94 16 85\n14 18 91\n836590091442",
"output": "217522127"
},
{
"input": "BSCSBSCCSCSSCCCSBCSSBCBBSCCBSCCSSSSSSSSSCCSBSCCBBCBBSBSCCCCBCSBSBSSBBBBBSSBSSCBCCSSBSSSCBBCSBBSBCCCB\n67 54 8\n36 73 37\n782232051273",
"output": "154164772"
},
{
"input": "CBBCBSBCCSCBSSCCBCSBCSBBSCBBCSCCBSCCSCSBBSSBSBSCBBSBBCSSSSBBBBSBBCBCSBBCBCSSBBCSBSCCSCSBCSCBSCCBBCSC\n71 71 52\n52 88 3\n654400055575",
"output": "137826467"
},
{
"input": "CBBCBSBCCSCBSSCCBCSBCSBBSCBBCSCCBSCCSCSBBSBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBCBBCSC\n100 1 1\n1 17 23\n954400055575",
"output": "1355681897"
},
{
"input": "C\n100 100 100\n1 1 1\n1000000000000",
"output": "1000000000100"
},
{
"input": "SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\n100 100 100\n100 100 100\n1000000000000",
"output": "100000001"
},
{
"input": "B\n100 100 100\n1 1 1\n1",
"output": "101"
},
{
"input": "SC\n2 1 1\n1 1 1\n100000000000",
"output": "50000000001"
},
{
"input": "B\n100 1 1\n1 1 1\n1000000000000",
"output": "1000000000100"
},
{
"input": "BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\n1 1 1\n100 100 100\n1000000000000",
"output": "100000000"
},
{
"input": "CC\n1 1 1\n100 100 100\n1",
"output": "0"
},
{
"input": "B\n100 100 100\n1 1 1\n1000000000000",
"output": "1000000000100"
},
{
"input": "BSC\n100 100 100\n1 1 1\n1000000000000",
"output": "333333333433"
},
{
"input": "BSC\n100 100 100\n1 1 1\n1",
"output": "100"
}
] | 1,696,875,144
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 31
| 93
| 0
|
s=input()
nb, ns, nc=map(int, input().split())
pb, ps, pc=map(int, input().split())
rer=int(input())
cb=0
cs=0
cc=0
for i in s:
if(i=='B'):
cb+=1
elif(i=='S'):
cs+=1
elif(i=='C'):
cc+=1
l=0
r=10**18
while l+1<r:
mid=(l+r)//2
nuzb=max(mid*cb-nb, 0)
nuzs=max(mid*cs-ns, 0)
nuzc=max(mid*cc-nc, 0)
if(rer>=nuzb*pb+nuzs*ps+nuzc*pc):
l=mid
else:
r=mid
nuzb=max(r*cb-nb, 0)
nuzs=max(r*cs-ns, 0)
nuzc=max(r*cc-nc, 0)
if(rer>nuzb*pb+nuzs*ps+nuzc*pc):
print(r)
else:
print(l)
# Mon Oct 09 2023 21:12:24 GMT+0300 (Moscow Standard Time)
|
Title: Hamburgers
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Polycarpus loves hamburgers very much. He especially adores the hamburgers he makes with his own hands. Polycarpus thinks that there are only three decent ingredients to make hamburgers from: a bread, sausage and cheese. He writes down the recipe of his favorite "Le Hamburger de Polycarpus" as a string of letters 'B' (bread), 'S' (sausage) и 'C' (cheese). The ingredients in the recipe go from bottom to top, for example, recipe "ВSCBS" represents the hamburger where the ingredients go from bottom to top as bread, sausage, cheese, bread and sausage again.
Polycarpus has *n**b* pieces of bread, *n**s* pieces of sausage and *n**c* pieces of cheese in the kitchen. Besides, the shop nearby has all three ingredients, the prices are *p**b* rubles for a piece of bread, *p**s* for a piece of sausage and *p**c* for a piece of cheese.
Polycarpus has *r* rubles and he is ready to shop on them. What maximum number of hamburgers can he cook? You can assume that Polycarpus cannot break or slice any of the pieces of bread, sausage or cheese. Besides, the shop has an unlimited number of pieces of each ingredient.
Input Specification:
The first line of the input contains a non-empty string that describes the recipe of "Le Hamburger de Polycarpus". The length of the string doesn't exceed 100, the string contains only letters 'B' (uppercase English B), 'S' (uppercase English S) and 'C' (uppercase English C).
The second line contains three integers *n**b*, *n**s*, *n**c* (1<=≤<=*n**b*,<=*n**s*,<=*n**c*<=≤<=100) — the number of the pieces of bread, sausage and cheese on Polycarpus' kitchen. The third line contains three integers *p**b*, *p**s*, *p**c* (1<=≤<=*p**b*,<=*p**s*,<=*p**c*<=≤<=100) — the price of one piece of bread, sausage and cheese in the shop. Finally, the fourth line contains integer *r* (1<=≤<=*r*<=≤<=1012) — the number of rubles Polycarpus has.
Please, do not write the %lld specifier to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams or the %I64d specifier.
Output Specification:
Print the maximum number of hamburgers Polycarpus can make. If he can't make any hamburger, print 0.
Demo Input:
['BBBSSC\n6 4 1\n1 2 3\n4\n', 'BBC\n1 10 1\n1 10 1\n21\n', 'BSC\n1 1 1\n1 1 3\n1000000000000\n']
Demo Output:
['2\n', '7\n', '200000000001\n']
Note:
none
|
```python
s=input()
nb, ns, nc=map(int, input().split())
pb, ps, pc=map(int, input().split())
rer=int(input())
cb=0
cs=0
cc=0
for i in s:
if(i=='B'):
cb+=1
elif(i=='S'):
cs+=1
elif(i=='C'):
cc+=1
l=0
r=10**18
while l+1<r:
mid=(l+r)//2
nuzb=max(mid*cb-nb, 0)
nuzs=max(mid*cs-ns, 0)
nuzc=max(mid*cc-nc, 0)
if(rer>=nuzb*pb+nuzs*ps+nuzc*pc):
l=mid
else:
r=mid
nuzb=max(r*cb-nb, 0)
nuzs=max(r*cs-ns, 0)
nuzc=max(r*cc-nc, 0)
if(rer>nuzb*pb+nuzs*ps+nuzc*pc):
print(r)
else:
print(l)
# Mon Oct 09 2023 21:12:24 GMT+0300 (Moscow Standard Time)
```
| 3
|
|
463
|
B
|
Caisa and Pylons
|
PROGRAMMING
| 1,100
|
[
"brute force",
"implementation",
"math"
] | null | null |
Caisa solved the problem with the sugar and now he is on the way back to home.
Caisa is playing a mobile game during his path. There are (*n*<=+<=1) pylons numbered from 0 to *n* in this game. The pylon with number 0 has zero height, the pylon with number *i* (*i*<=><=0) has height *h**i*. The goal of the game is to reach *n*-th pylon, and the only move the player can do is to jump from the current pylon (let's denote its number as *k*) to the next one (its number will be *k*<=+<=1). When the player have made such a move, its energy increases by *h**k*<=-<=*h**k*<=+<=1 (if this value is negative the player loses energy). The player must have non-negative amount of energy at any moment of the time.
Initially Caisa stand at 0 pylon and has 0 energy. The game provides a special opportunity: one can pay a single dollar and increase the height of anyone pylon by one. Caisa may use that opportunity several times, but he doesn't want to spend too much money. What is the minimal amount of money he must paid to reach the goal of the game?
|
The first line contains integer *n* (1<=≤<=*n*<=≤<=105). The next line contains *n* integers *h*1, *h*2,<=..., *h**n* (1<=<=≤<=<=*h**i*<=<=≤<=<=105) representing the heights of the pylons.
|
Print a single number representing the minimum number of dollars paid by Caisa.
|
[
"5\n3 4 3 2 4\n",
"3\n4 4 4\n"
] |
[
"4\n",
"4\n"
] |
In the first sample he can pay 4 dollars and increase the height of pylon with number 0 by 4 units. Then he can safely pass to the last pylon.
| 1,000
|
[
{
"input": "5\n3 4 3 2 4",
"output": "4"
},
{
"input": "3\n4 4 4",
"output": "4"
},
{
"input": "99\n1401 2019 1748 3785 3236 3177 3443 3772 2138 1049 353 908 310 2388 1322 88 2160 2783 435 2248 1471 706 2468 2319 3156 3506 2794 1999 1983 2519 2597 3735 537 344 3519 3772 3872 2961 3895 2010 10 247 3269 671 2986 942 758 1146 77 1545 3745 1547 2250 2565 217 1406 2070 3010 3404 404 1528 2352 138 2065 3047 3656 2188 2919 2616 2083 1280 2977 2681 548 4000 1667 1489 1109 3164 1565 2653 3260 3463 903 1824 3679 2308 245 2689 2063 648 568 766 785 2984 3812 440 1172 2730",
"output": "4000"
},
{
"input": "68\n477 1931 3738 3921 2306 1823 3328 2057 661 3993 2967 3520 171 1739 1525 1817 209 3475 1902 2666 518 3283 3412 3040 3383 2331 1147 1460 1452 1800 1327 2280 82 1416 2200 2388 3238 1879 796 250 1872 114 121 2042 1853 1645 211 2061 1472 2464 726 1989 1746 489 1380 1128 2819 2527 2939 622 678 265 2902 1111 2032 1453 3850 1621",
"output": "3993"
},
{
"input": "30\n30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1",
"output": "30"
},
{
"input": "3\n3 2 1",
"output": "3"
},
{
"input": "1\n69",
"output": "69"
}
] | 1,652,065,936
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 49
| 62
| 5,632,000
|
import sys
input = sys.stdin.readline
n = int(input())
print(max((map(int, input().split()))))
|
Title: Caisa and Pylons
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Caisa solved the problem with the sugar and now he is on the way back to home.
Caisa is playing a mobile game during his path. There are (*n*<=+<=1) pylons numbered from 0 to *n* in this game. The pylon with number 0 has zero height, the pylon with number *i* (*i*<=><=0) has height *h**i*. The goal of the game is to reach *n*-th pylon, and the only move the player can do is to jump from the current pylon (let's denote its number as *k*) to the next one (its number will be *k*<=+<=1). When the player have made such a move, its energy increases by *h**k*<=-<=*h**k*<=+<=1 (if this value is negative the player loses energy). The player must have non-negative amount of energy at any moment of the time.
Initially Caisa stand at 0 pylon and has 0 energy. The game provides a special opportunity: one can pay a single dollar and increase the height of anyone pylon by one. Caisa may use that opportunity several times, but he doesn't want to spend too much money. What is the minimal amount of money he must paid to reach the goal of the game?
Input Specification:
The first line contains integer *n* (1<=≤<=*n*<=≤<=105). The next line contains *n* integers *h*1, *h*2,<=..., *h**n* (1<=<=≤<=<=*h**i*<=<=≤<=<=105) representing the heights of the pylons.
Output Specification:
Print a single number representing the minimum number of dollars paid by Caisa.
Demo Input:
['5\n3 4 3 2 4\n', '3\n4 4 4\n']
Demo Output:
['4\n', '4\n']
Note:
In the first sample he can pay 4 dollars and increase the height of pylon with number 0 by 4 units. Then he can safely pass to the last pylon.
|
```python
import sys
input = sys.stdin.readline
n = int(input())
print(max((map(int, input().split()))))
```
| 3
|
|
25
|
A
|
IQ test
|
PROGRAMMING
| 1,300
|
[
"brute force"
] |
A. IQ test
|
2
|
256
|
Bob is preparing to pass IQ test. The most frequent task in this test is to find out which one of the given *n* numbers differs from the others. Bob observed that one number usually differs from the others in evenness. Help Bob — to check his answers, he needs a program that among the given *n* numbers finds one that is different in evenness.
|
The first line contains integer *n* (3<=≤<=*n*<=≤<=100) — amount of numbers in the task. The second line contains *n* space-separated natural numbers, not exceeding 100. It is guaranteed, that exactly one of these numbers differs from the others in evenness.
|
Output index of number that differs from the others in evenness. Numbers are numbered from 1 in the input order.
|
[
"5\n2 4 7 8 10\n",
"4\n1 2 1 1\n"
] |
[
"3\n",
"2\n"
] |
none
| 0
|
[
{
"input": "5\n2 4 7 8 10",
"output": "3"
},
{
"input": "4\n1 2 1 1",
"output": "2"
},
{
"input": "3\n1 2 2",
"output": "1"
},
{
"input": "3\n100 99 100",
"output": "2"
},
{
"input": "3\n5 3 2",
"output": "3"
},
{
"input": "4\n43 28 1 91",
"output": "2"
},
{
"input": "4\n75 13 94 77",
"output": "3"
},
{
"input": "4\n97 8 27 3",
"output": "2"
},
{
"input": "10\n95 51 12 91 85 3 1 31 25 7",
"output": "3"
},
{
"input": "20\n88 96 66 51 14 88 2 92 18 72 18 88 20 30 4 82 90 100 24 46",
"output": "4"
},
{
"input": "30\n20 94 56 50 10 98 52 32 14 22 24 60 4 8 98 46 34 68 82 82 98 90 50 20 78 49 52 94 64 36",
"output": "26"
},
{
"input": "50\n79 27 77 57 37 45 27 49 65 33 57 21 71 19 75 85 65 61 23 97 85 9 23 1 9 3 99 77 77 21 79 69 15 37 15 7 93 81 13 89 91 31 45 93 15 97 55 80 85 83",
"output": "48"
},
{
"input": "60\n46 11 73 65 3 69 3 53 43 53 97 47 55 93 31 75 35 3 9 73 23 31 3 81 91 79 61 21 15 11 11 11 81 7 83 75 39 87 83 59 89 55 93 27 49 67 67 29 1 93 11 17 9 19 35 21 63 31 31 25",
"output": "1"
},
{
"input": "70\n28 42 42 92 64 54 22 38 38 78 62 38 4 38 14 66 4 92 66 58 94 26 4 44 41 88 48 82 44 26 74 44 48 4 16 92 34 38 26 64 94 4 30 78 50 54 12 90 8 16 80 98 28 100 74 50 36 42 92 18 76 98 8 22 2 50 58 50 64 46",
"output": "25"
},
{
"input": "100\n43 35 79 53 13 91 91 45 65 83 57 9 42 39 85 45 71 51 61 59 31 13 63 39 25 21 79 39 91 67 21 61 97 75 93 83 29 79 59 97 11 37 63 51 39 55 91 23 21 17 47 23 35 75 49 5 69 99 5 7 41 17 25 89 15 79 21 63 53 81 43 91 59 91 69 99 85 15 91 51 49 37 65 7 89 81 21 93 61 63 97 93 45 17 13 69 57 25 75 73",
"output": "13"
},
{
"input": "100\n50 24 68 60 70 30 52 22 18 74 68 98 20 82 4 46 26 68 100 78 84 58 74 98 38 88 68 86 64 80 82 100 20 22 98 98 52 6 94 10 48 68 2 18 38 22 22 82 44 20 66 72 36 58 64 6 36 60 4 96 76 64 12 90 10 58 64 60 74 28 90 26 24 60 40 58 2 16 76 48 58 36 82 60 24 44 4 78 28 38 8 12 40 16 38 6 66 24 31 76",
"output": "99"
},
{
"input": "100\n47 48 94 48 14 18 94 36 96 22 12 30 94 20 48 98 40 58 2 94 8 36 98 18 98 68 2 60 76 38 18 100 8 72 100 68 2 86 92 72 58 16 48 14 6 58 72 76 6 88 80 66 20 28 74 62 86 68 90 86 2 56 34 38 56 90 4 8 76 44 32 86 12 98 38 34 54 92 70 94 10 24 82 66 90 58 62 2 32 58 100 22 58 72 2 22 68 72 42 14",
"output": "1"
},
{
"input": "99\n38 20 68 60 84 16 28 88 60 48 80 28 4 92 70 60 46 46 20 34 12 100 76 2 40 10 8 86 6 80 50 66 12 34 14 28 26 70 46 64 34 96 10 90 98 96 56 88 50 74 70 94 2 94 24 66 68 46 22 30 6 10 64 32 88 14 98 100 64 58 50 18 50 50 8 38 8 16 54 2 60 54 62 84 92 98 4 72 66 26 14 88 99 16 10 6 88 56 22",
"output": "93"
},
{
"input": "99\n50 83 43 89 53 47 69 1 5 37 63 87 95 15 55 95 75 89 33 53 89 75 93 75 11 85 49 29 11 97 49 67 87 11 25 37 97 73 67 49 87 43 53 97 43 29 53 33 45 91 37 73 39 49 59 5 21 43 87 35 5 63 89 57 63 47 29 99 19 85 13 13 3 13 43 19 5 9 61 51 51 57 15 89 13 97 41 13 99 79 13 27 97 95 73 33 99 27 23",
"output": "1"
},
{
"input": "98\n61 56 44 30 58 14 20 24 88 28 46 56 96 52 58 42 94 50 46 30 46 80 72 88 68 16 6 60 26 90 10 98 76 20 56 40 30 16 96 20 88 32 62 30 74 58 36 76 60 4 24 36 42 54 24 92 28 14 2 74 86 90 14 52 34 82 40 76 8 64 2 56 10 8 78 16 70 86 70 42 70 74 22 18 76 98 88 28 62 70 36 72 20 68 34 48 80 98",
"output": "1"
},
{
"input": "98\n66 26 46 42 78 32 76 42 26 82 8 12 4 10 24 26 64 44 100 46 94 64 30 18 88 28 8 66 30 82 82 28 74 52 62 80 80 60 94 86 64 32 44 88 92 20 12 74 94 28 34 58 4 22 16 10 94 76 82 58 40 66 22 6 30 32 92 54 16 76 74 98 18 48 48 30 92 2 16 42 84 74 30 60 64 52 50 26 16 86 58 96 79 60 20 62 82 94",
"output": "93"
},
{
"input": "95\n9 31 27 93 17 77 75 9 9 53 89 39 51 99 5 1 11 39 27 49 91 17 27 79 81 71 37 75 35 13 93 4 99 55 85 11 23 57 5 43 5 61 15 35 23 91 3 81 99 85 43 37 39 27 5 67 7 33 75 59 13 71 51 27 15 93 51 63 91 53 43 99 25 47 17 71 81 15 53 31 59 83 41 23 73 25 91 91 13 17 25 13 55 57 29",
"output": "32"
},
{
"input": "100\n91 89 81 45 53 1 41 3 77 93 55 97 55 97 87 27 69 95 73 41 93 21 75 35 53 56 5 51 87 59 91 67 33 3 99 45 83 17 97 47 75 97 7 89 17 99 23 23 81 25 55 97 27 35 69 5 77 35 93 19 55 59 37 21 31 37 49 41 91 53 73 69 7 37 37 39 17 71 7 97 55 17 47 23 15 73 31 39 57 37 9 5 61 41 65 57 77 79 35 47",
"output": "26"
},
{
"input": "99\n38 56 58 98 80 54 26 90 14 16 78 92 52 74 40 30 84 14 44 80 16 90 98 68 26 24 78 72 42 16 84 40 14 44 2 52 50 2 12 96 58 66 8 80 44 52 34 34 72 98 74 4 66 74 56 21 8 38 76 40 10 22 48 32 98 34 12 62 80 68 64 82 22 78 58 74 20 22 48 56 12 38 32 72 6 16 74 24 94 84 26 38 18 24 76 78 98 94 72",
"output": "56"
},
{
"input": "100\n44 40 6 40 56 90 98 8 36 64 76 86 98 76 36 92 6 30 98 70 24 98 96 60 24 82 88 68 86 96 34 42 58 10 40 26 56 10 88 58 70 32 24 28 14 82 52 12 62 36 70 60 52 34 74 30 78 76 10 16 42 94 66 90 70 38 52 12 58 22 98 96 14 68 24 70 4 30 84 98 8 50 14 52 66 34 100 10 28 100 56 48 38 12 38 14 91 80 70 86",
"output": "97"
},
{
"input": "100\n96 62 64 20 90 46 56 90 68 36 30 56 70 28 16 64 94 34 6 32 34 50 94 22 90 32 40 2 72 10 88 38 28 92 20 26 56 80 4 100 100 90 16 74 74 84 8 2 30 20 80 32 16 46 92 56 42 12 96 64 64 42 64 58 50 42 74 28 2 4 36 32 70 50 54 92 70 16 45 76 28 16 18 50 48 2 62 94 4 12 52 52 4 100 70 60 82 62 98 42",
"output": "79"
},
{
"input": "99\n14 26 34 68 90 58 50 36 8 16 18 6 2 74 54 20 36 84 32 50 52 2 26 24 3 64 20 10 54 26 66 44 28 72 4 96 78 90 96 86 68 28 94 4 12 46 100 32 22 36 84 32 44 94 76 94 4 52 12 30 74 4 34 64 58 72 44 16 70 56 54 8 14 74 8 6 58 62 98 54 14 40 80 20 36 72 28 98 20 58 40 52 90 64 22 48 54 70 52",
"output": "25"
},
{
"input": "95\n82 86 30 78 6 46 80 66 74 72 16 24 18 52 52 38 60 36 86 26 62 28 22 46 96 26 94 84 20 46 66 88 76 32 12 86 74 18 34 88 4 48 94 6 58 6 100 82 4 24 88 32 54 98 34 48 6 76 42 88 42 28 100 4 22 2 10 66 82 54 98 20 60 66 38 98 32 47 86 58 6 100 12 46 2 42 8 84 78 28 24 70 34 28 86",
"output": "78"
},
{
"input": "90\n40 50 8 42 76 24 58 42 26 68 20 48 54 12 34 84 14 36 32 88 6 50 96 56 20 92 48 16 40 34 96 46 20 84 30 50 20 98 8 44 96 42 8 76 70 38 84 30 40 88 84 72 2 22 52 58 16 62 100 66 80 40 50 32 14 62 88 72 22 99 76 50 84 82 8 82 98 46 26 40 2 98 18 78 30 72 70 18 34 68",
"output": "70"
},
{
"input": "80\n81 43 87 1 55 43 53 61 27 19 43 13 89 9 33 83 75 55 97 71 91 37 95 5 21 69 81 93 95 69 31 83 55 7 97 7 79 57 8 61 27 85 49 1 15 97 63 79 29 73 41 85 5 41 31 93 67 11 63 59 15 99 91 77 43 69 23 23 81 73 19 1 67 51 1 75 99 67 3 81",
"output": "39"
},
{
"input": "98\n13 83 61 27 35 1 85 95 97 73 95 65 73 45 5 43 27 83 91 19 11 3 85 59 9 39 69 23 45 7 51 85 5 71 5 95 1 51 75 3 43 57 3 11 33 71 21 99 47 41 87 39 71 87 31 85 91 49 83 5 49 85 47 91 55 99 33 23 31 23 23 73 29 77 55 31 25 5 81 49 91 15 15 39 87 5 9 40 69 47 29 33 11 21 49 79 51 83",
"output": "88"
},
{
"input": "3\n100 100 1",
"output": "3"
}
] | 1,663,062,566
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 32
| 92
| 0
|
n = int(input())
num = list(int(i) for i in input().split())
if num[0]%2 != num[1]%2 :
if num[2]%2 == num[0]%2:
print(2)
else:
print(1)
else:
for i in range(2,len(num)):
if num[i]%2 != num[0]%2:
print(i+1)
|
Title: IQ test
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Bob is preparing to pass IQ test. The most frequent task in this test is to find out which one of the given *n* numbers differs from the others. Bob observed that one number usually differs from the others in evenness. Help Bob — to check his answers, he needs a program that among the given *n* numbers finds one that is different in evenness.
Input Specification:
The first line contains integer *n* (3<=≤<=*n*<=≤<=100) — amount of numbers in the task. The second line contains *n* space-separated natural numbers, not exceeding 100. It is guaranteed, that exactly one of these numbers differs from the others in evenness.
Output Specification:
Output index of number that differs from the others in evenness. Numbers are numbered from 1 in the input order.
Demo Input:
['5\n2 4 7 8 10\n', '4\n1 2 1 1\n']
Demo Output:
['3\n', '2\n']
Note:
none
|
```python
n = int(input())
num = list(int(i) for i in input().split())
if num[0]%2 != num[1]%2 :
if num[2]%2 == num[0]%2:
print(2)
else:
print(1)
else:
for i in range(2,len(num)):
if num[i]%2 != num[0]%2:
print(i+1)
```
| 3.977
|
59
|
A
|
Word
|
PROGRAMMING
| 800
|
[
"implementation",
"strings"
] |
A. Word
|
2
|
256
|
Vasya is very upset that many people on the Net mix uppercase and lowercase letters in one word. That's why he decided to invent an extension for his favorite browser that would change the letters' register in every word so that it either only consisted of lowercase letters or, vice versa, only of uppercase ones. At that as little as possible letters should be changed in the word. For example, the word HoUse must be replaced with house, and the word ViP — with VIP. If a word contains an equal number of uppercase and lowercase letters, you should replace all the letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to use the given method on one given word.
|
The first line contains a word *s* — it consists of uppercase and lowercase Latin letters and possesses the length from 1 to 100.
|
Print the corrected word *s*. If the given word *s* has strictly more uppercase letters, make the word written in the uppercase register, otherwise - in the lowercase one.
|
[
"HoUse\n",
"ViP\n",
"maTRIx\n"
] |
[
"house\n",
"VIP\n",
"matrix\n"
] |
none
| 500
|
[
{
"input": "HoUse",
"output": "house"
},
{
"input": "ViP",
"output": "VIP"
},
{
"input": "maTRIx",
"output": "matrix"
},
{
"input": "BNHWpnpawg",
"output": "bnhwpnpawg"
},
{
"input": "VTYGP",
"output": "VTYGP"
},
{
"input": "CHNenu",
"output": "chnenu"
},
{
"input": "ERPZGrodyu",
"output": "erpzgrodyu"
},
{
"input": "KSXBXWpebh",
"output": "KSXBXWPEBH"
},
{
"input": "qvxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaiv",
"output": "qvxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaiv"
},
{
"input": "Amnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfd",
"output": "amnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfd"
},
{
"input": "ISAGFJFARYFBLOPQDSHWGMCNKMFTLVFUGNJEWGWNBLXUIATXEkqiettmmjgydwcpafqrppdsrrrtguinqbgmzzfqwonkpgpcwenv",
"output": "isagfjfaryfblopqdshwgmcnkmftlvfugnjewgwnblxuiatxekqiettmmjgydwcpafqrppdsrrrtguinqbgmzzfqwonkpgpcwenv"
},
{
"input": "XHRPXZEGHSOCJPICUIXSKFUZUPYTSGJSDIYBCMNMNBPNDBXLXBzhbfnqvwcffvrdhtickyqhupmcehlsyvncqmfhautvxudqdhgg",
"output": "xhrpxzeghsocjpicuixskfuzupytsgjsdiybcmnmnbpndbxlxbzhbfnqvwcffvrdhtickyqhupmcehlsyvncqmfhautvxudqdhgg"
},
{
"input": "RJIQZMJCIMSNDBOHBRAWIENODSALETAKGKPYUFGVEFGCBRENZGAdkcetqjljtmttlonpekcovdzebzdkzggwfsxhapmjkdbuceak",
"output": "RJIQZMJCIMSNDBOHBRAWIENODSALETAKGKPYUFGVEFGCBRENZGADKCETQJLJTMTTLONPEKCOVDZEBZDKZGGWFSXHAPMJKDBUCEAK"
},
{
"input": "DWLWOBHNMMGTFOLFAECKBRNNGLYLYDXTGTVRLMEESZOIUATZZZXUFUZDLSJXMEVRTESSFBWLNZZCLCQWEVNNUCXYVHNGNXHCBDFw",
"output": "DWLWOBHNMMGTFOLFAECKBRNNGLYLYDXTGTVRLMEESZOIUATZZZXUFUZDLSJXMEVRTESSFBWLNZZCLCQWEVNNUCXYVHNGNXHCBDFW"
},
{
"input": "NYCNHJWGBOCOTSPETKKHVWFGAQYNHOVJWJHCIEFOUQZXOYUIEQDZALFKTEHTVDBVJMEUBJUBCMNVPWGDPNCHQHZJRCHYRFPVIGUB",
"output": "NYCNHJWGBOCOTSPETKKHVWFGAQYNHOVJWJHCIEFOUQZXOYUIEQDZALFKTEHTVDBVJMEUBJUBCMNVPWGDPNCHQHZJRCHYRFPVIGUB"
},
{
"input": "igxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwge",
"output": "igxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwge"
},
{
"input": "Ykkekrsqolzryiwsmdlnbmfautxxxauoojrddvwklgnlyrfcvhorrzbmtcrvpaypqhcffdqhwziipyyskcmztjprjqvmzzqhqnw",
"output": "ykkekrsqolzryiwsmdlnbmfautxxxauoojrddvwklgnlyrfcvhorrzbmtcrvpaypqhcffdqhwziipyyskcmztjprjqvmzzqhqnw"
},
{
"input": "YQOMLKYAORUQQUCQZCDYMIVDHGWZFFRMUVTAWCHERFPMNRYRIkgqrciokgajamehmcxgerpudvsqyonjonsxgbnefftzmygncks",
"output": "yqomlkyaoruqqucqzcdymivdhgwzffrmuvtawcherfpmnryrikgqrciokgajamehmcxgerpudvsqyonjonsxgbnefftzmygncks"
},
{
"input": "CDOZDPBVVVHNBJVBYHEOXWFLJKRWJCAJMIFCOZWWYFKVWOGTVJcuusigdqfkumewjtdyitveeiaybwrhomrwmpdipjwiuxfnwuz",
"output": "CDOZDPBVVVHNBJVBYHEOXWFLJKRWJCAJMIFCOZWWYFKVWOGTVJCUUSIGDQFKUMEWJTDYITVEEIAYBWRHOMRWMPDIPJWIUXFNWUZ"
},
{
"input": "WHIUVEXHVOOIJIDVJVPQUBJMEVPMPDKQWJKFBZSGSKUXMIPPMJWuckzcpxosodcjaaakvlxpbiigsiauviilylnnqlyucziihqg",
"output": "WHIUVEXHVOOIJIDVJVPQUBJMEVPMPDKQWJKFBZSGSKUXMIPPMJWUCKZCPXOSODCJAAAKVLXPBIIGSIAUVIILYLNNQLYUCZIIHQG"
},
{
"input": "VGHUNFOXKETUYMZDJNGTAOIOANYXSGYNFOGOFFLDAWEUKYFOZXCJTCAFXZYLQZERYZLRSQXYQGAPCSUDPMEYTNCTTTMFAGVDWBO",
"output": "VGHUNFOXKETUYMZDJNGTAOIOANYXSGYNFOGOFFLDAWEUKYFOZXCJTCAFXZYLQZERYZLRSQXYQGAPCSUDPMEYTNCTTTMFAGVDWBO"
},
{
"input": "EDUANHCQDOCJHFONTTSWBUJSTTIXBIXMAIUFSGFLXWAYIURTVAVZPYQDLAWIGCLMPHXCEFCJPFAAHXVNGQUFNHADAIUAZIDMHDd",
"output": "EDUANHCQDOCJHFONTTSWBUJSTTIXBIXMAIUFSGFLXWAYIURTVAVZPYQDLAWIGCLMPHXCEFCJPFAAHXVNGQUFNHADAIUAZIDMHDD"
},
{
"input": "EBWOVSNLYTWWXrnovgugogtjahnmatomubebyxakas",
"output": "ebwovsnlytwwxrnovgugogtjahnmatomubebyxakas"
},
{
"input": "AORNNDKTRLRVGDPXJKXFTPFpopuzrlqumrxssskvbm",
"output": "AORNNDKTRLRVGDPXJKXFTPFPOPUZRLQUMRXSSSKVBM"
},
{
"input": "DBBZJCWQEVGYHEEUHJAWRHBDPsnplijbwtdibqrrheebfxqcvn",
"output": "dbbzjcwqevgyheeuhjawrhbdpsnplijbwtdibqrrheebfxqcvn"
},
{
"input": "t",
"output": "t"
},
{
"input": "N",
"output": "N"
},
{
"input": "kv",
"output": "kv"
},
{
"input": "Ur",
"output": "ur"
},
{
"input": "CN",
"output": "CN"
}
] | 1,681,673,532
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 30
| 186
| 0
|
s = input()
s_ASCII = list(map(ord, s))
upper = 0
lower = 0
for i in range(len(s_ASCII)):
if s_ASCII[i]<97:
upper+=1
elif s_ASCII[i]>=97:
lower+=1
if lower>=upper:
print(s.lower())
else:
print(s.upper())
|
Title: Word
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Vasya is very upset that many people on the Net mix uppercase and lowercase letters in one word. That's why he decided to invent an extension for his favorite browser that would change the letters' register in every word so that it either only consisted of lowercase letters or, vice versa, only of uppercase ones. At that as little as possible letters should be changed in the word. For example, the word HoUse must be replaced with house, and the word ViP — with VIP. If a word contains an equal number of uppercase and lowercase letters, you should replace all the letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to use the given method on one given word.
Input Specification:
The first line contains a word *s* — it consists of uppercase and lowercase Latin letters and possesses the length from 1 to 100.
Output Specification:
Print the corrected word *s*. If the given word *s* has strictly more uppercase letters, make the word written in the uppercase register, otherwise - in the lowercase one.
Demo Input:
['HoUse\n', 'ViP\n', 'maTRIx\n']
Demo Output:
['house\n', 'VIP\n', 'matrix\n']
Note:
none
|
```python
s = input()
s_ASCII = list(map(ord, s))
upper = 0
lower = 0
for i in range(len(s_ASCII)):
if s_ASCII[i]<97:
upper+=1
elif s_ASCII[i]>=97:
lower+=1
if lower>=upper:
print(s.lower())
else:
print(s.upper())
```
| 3.9535
|
831
|
A
|
Unimodal Array
|
PROGRAMMING
| 1,000
|
[
"implementation"
] | null | null |
Array of integers is unimodal, if:
- it is strictly increasing in the beginning; - after that it is constant; - after that it is strictly decreasing.
The first block (increasing) and the last block (decreasing) may be absent. It is allowed that both of this blocks are absent.
For example, the following three arrays are unimodal: [5,<=7,<=11,<=11,<=2,<=1], [4,<=4,<=2], [7], but the following three are not unimodal: [5,<=5,<=6,<=6,<=1], [1,<=2,<=1,<=2], [4,<=5,<=5,<=6].
Write a program that checks if an array is unimodal.
|
The first line contains integer *n* (1<=≤<=*n*<=≤<=100) — the number of elements in the array.
The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=1<=000) — the elements of the array.
|
Print "YES" if the given array is unimodal. Otherwise, print "NO".
You can output each letter in any case (upper or lower).
|
[
"6\n1 5 5 5 4 2\n",
"5\n10 20 30 20 10\n",
"4\n1 2 1 2\n",
"7\n3 3 3 3 3 3 3\n"
] |
[
"YES\n",
"YES\n",
"NO\n",
"YES\n"
] |
In the first example the array is unimodal, because it is strictly increasing in the beginning (from position 1 to position 2, inclusively), that it is constant (from position 2 to position 4, inclusively) and then it is strictly decreasing (from position 4 to position 6, inclusively).
| 500
|
[
{
"input": "6\n1 5 5 5 4 2",
"output": "YES"
},
{
"input": "5\n10 20 30 20 10",
"output": "YES"
},
{
"input": "4\n1 2 1 2",
"output": "NO"
},
{
"input": "7\n3 3 3 3 3 3 3",
"output": "YES"
},
{
"input": "6\n5 7 11 11 2 1",
"output": "YES"
},
{
"input": "1\n7",
"output": "YES"
},
{
"input": "100\n527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527",
"output": "YES"
},
{
"input": "5\n5 5 6 6 1",
"output": "NO"
},
{
"input": "3\n4 4 2",
"output": "YES"
},
{
"input": "4\n4 5 5 6",
"output": "NO"
},
{
"input": "3\n516 516 515",
"output": "YES"
},
{
"input": "5\n502 503 508 508 507",
"output": "YES"
},
{
"input": "10\n538 538 538 538 538 538 538 538 538 538",
"output": "YES"
},
{
"input": "15\n452 454 455 455 450 448 443 442 439 436 433 432 431 428 426",
"output": "YES"
},
{
"input": "20\n497 501 504 505 509 513 513 513 513 513 513 513 513 513 513 513 513 513 513 513",
"output": "YES"
},
{
"input": "50\n462 465 465 465 463 459 454 449 444 441 436 435 430 429 426 422 421 418 417 412 408 407 406 403 402 399 395 392 387 386 382 380 379 376 374 371 370 365 363 359 358 354 350 349 348 345 342 341 338 337",
"output": "YES"
},
{
"input": "70\n290 292 294 297 299 300 303 305 310 312 313 315 319 320 325 327 328 333 337 339 340 341 345 350 351 354 359 364 367 372 374 379 381 382 383 384 389 393 395 397 398 400 402 405 409 411 416 417 422 424 429 430 434 435 440 442 445 449 451 453 458 460 465 470 474 477 482 482 482 479",
"output": "YES"
},
{
"input": "99\n433 435 439 444 448 452 457 459 460 464 469 470 471 476 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 479 478 477 476 474 469 468 465 460 457 453 452 450 445 443 440 438 433 432 431 430 428 425 421 418 414 411 406 402 397 396 393",
"output": "YES"
},
{
"input": "100\n537 538 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543",
"output": "YES"
},
{
"input": "100\n524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 521",
"output": "YES"
},
{
"input": "100\n235 239 243 245 246 251 254 259 260 261 264 269 272 275 277 281 282 285 289 291 292 293 298 301 302 303 305 307 308 310 315 317 320 324 327 330 334 337 342 346 347 348 353 357 361 366 370 373 376 378 379 384 386 388 390 395 398 400 405 408 413 417 420 422 424 429 434 435 438 441 443 444 445 450 455 457 459 463 465 468 471 473 475 477 481 486 491 494 499 504 504 504 504 504 504 504 504 504 504 504",
"output": "YES"
},
{
"input": "100\n191 196 201 202 207 212 216 219 220 222 224 227 230 231 234 235 238 242 246 250 253 254 259 260 263 267 269 272 277 280 284 287 288 290 295 297 300 305 307 312 316 320 324 326 327 332 333 334 338 343 347 351 356 358 363 368 370 374 375 380 381 386 390 391 394 396 397 399 402 403 405 410 414 419 422 427 429 433 437 442 443 447 448 451 455 459 461 462 464 468 473 478 481 484 485 488 492 494 496 496",
"output": "YES"
},
{
"input": "100\n466 466 466 466 466 464 459 455 452 449 446 443 439 436 435 433 430 428 425 424 420 419 414 412 407 404 401 396 394 391 386 382 379 375 374 369 364 362 360 359 356 351 350 347 342 340 338 337 333 330 329 326 321 320 319 316 311 306 301 297 292 287 286 281 278 273 269 266 261 257 256 255 253 252 250 245 244 242 240 238 235 230 225 220 216 214 211 209 208 206 203 198 196 194 192 190 185 182 177 173",
"output": "YES"
},
{
"input": "100\n360 362 367 369 374 377 382 386 389 391 396 398 399 400 405 410 413 416 419 420 423 428 431 436 441 444 445 447 451 453 457 459 463 468 468 468 468 468 468 468 468 468 468 468 468 468 468 468 468 468 468 468 468 468 468 468 465 460 455 453 448 446 443 440 436 435 430 425 420 415 410 405 404 403 402 399 394 390 387 384 382 379 378 373 372 370 369 366 361 360 355 353 349 345 344 342 339 338 335 333",
"output": "YES"
},
{
"input": "1\n1000",
"output": "YES"
},
{
"input": "100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "YES"
},
{
"input": "100\n1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000",
"output": "YES"
},
{
"input": "100\n1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1",
"output": "YES"
},
{
"input": "100\n1 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000",
"output": "YES"
},
{
"input": "100\n1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 999 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000",
"output": "NO"
},
{
"input": "100\n998 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 999 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 999",
"output": "NO"
},
{
"input": "100\n537 538 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 691 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543",
"output": "NO"
},
{
"input": "100\n527 527 527 527 527 527 527 527 872 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527",
"output": "NO"
},
{
"input": "100\n524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 208 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 521",
"output": "NO"
},
{
"input": "100\n235 239 243 245 246 251 254 259 260 261 264 269 272 275 277 281 282 285 289 291 292 293 298 301 302 303 305 307 308 310 315 317 320 324 327 330 334 337 342 921 347 348 353 357 361 366 370 373 376 378 379 384 386 388 390 395 398 400 405 408 413 417 420 422 424 429 434 435 438 441 443 444 445 450 455 457 459 463 465 468 471 473 475 477 481 486 491 494 499 504 504 504 504 504 504 504 504 504 504 504",
"output": "NO"
},
{
"input": "100\n191 196 201 202 207 212 216 219 220 222 224 227 230 231 234 235 238 242 246 250 253 254 259 260 263 267 269 272 277 280 284 287 288 290 295 297 300 305 307 312 316 320 324 326 327 332 333 334 338 343 347 351 356 358 119 368 370 374 375 380 381 386 390 391 394 396 397 399 402 403 405 410 414 419 422 427 429 433 437 442 443 447 448 451 455 459 461 462 464 468 473 478 481 484 485 488 492 494 496 496",
"output": "NO"
},
{
"input": "100\n466 466 466 466 466 464 459 455 452 449 446 443 439 436 435 433 430 428 425 424 420 419 414 412 407 404 401 396 394 391 386 382 379 375 374 369 364 362 360 359 356 335 350 347 342 340 338 337 333 330 329 326 321 320 319 316 311 306 301 297 292 287 286 281 278 273 269 266 261 257 256 255 253 252 250 245 244 242 240 238 235 230 225 220 216 214 211 209 208 206 203 198 196 194 192 190 185 182 177 173",
"output": "NO"
},
{
"input": "100\n360 362 367 369 374 377 382 386 389 391 396 398 399 400 405 410 413 416 419 420 423 428 525 436 441 444 445 447 451 453 457 459 463 468 468 468 468 468 468 468 468 468 468 468 468 468 468 468 468 468 468 468 468 468 468 468 465 460 455 453 448 446 443 440 436 435 430 425 420 415 410 405 404 403 402 399 394 390 387 384 382 379 378 373 372 370 369 366 361 360 355 353 349 345 344 342 339 338 335 333",
"output": "NO"
},
{
"input": "3\n1 2 3",
"output": "YES"
},
{
"input": "3\n3 2 1",
"output": "YES"
},
{
"input": "3\n1 1 2",
"output": "NO"
},
{
"input": "3\n2 1 1",
"output": "NO"
},
{
"input": "3\n2 1 2",
"output": "NO"
},
{
"input": "3\n3 1 2",
"output": "NO"
},
{
"input": "3\n1 3 2",
"output": "YES"
},
{
"input": "100\n395 399 402 403 405 408 413 415 419 424 426 431 434 436 439 444 447 448 449 454 457 459 461 462 463 464 465 469 470 473 477 480 482 484 485 487 492 494 496 497 501 504 505 508 511 506 505 503 500 499 494 490 488 486 484 481 479 474 472 471 470 465 462 458 453 452 448 445 440 436 433 430 428 426 424 421 419 414 413 408 404 403 399 395 393 388 384 379 377 375 374 372 367 363 360 356 353 351 350 346",
"output": "YES"
},
{
"input": "100\n263 268 273 274 276 281 282 287 288 292 294 295 296 300 304 306 308 310 311 315 319 322 326 330 333 336 339 341 342 347 351 353 356 358 363 365 369 372 374 379 383 387 389 391 392 395 396 398 403 404 407 411 412 416 419 421 424 428 429 430 434 436 440 443 444 448 453 455 458 462 463 464 469 473 477 481 486 489 492 494 499 503 506 509 510 512 514 515 511 510 507 502 499 498 494 491 486 482 477 475",
"output": "YES"
},
{
"input": "100\n482 484 485 489 492 496 499 501 505 509 512 517 520 517 515 513 509 508 504 503 498 496 493 488 486 481 478 476 474 470 468 466 463 459 456 453 452 449 445 444 439 438 435 432 428 427 424 423 421 419 417 413 408 405 402 399 397 393 388 385 380 375 370 366 363 361 360 355 354 352 349 345 340 336 335 331 329 327 324 319 318 317 315 314 310 309 307 304 303 300 299 295 291 287 285 282 280 278 273 271",
"output": "YES"
},
{
"input": "100\n395 399 402 403 405 408 413 415 419 424 426 431 434 436 439 444 447 448 449 454 457 459 461 462 463 464 465 469 470 473 477 480 482 484 485 487 492 494 496 32 501 504 505 508 511 506 505 503 500 499 494 490 488 486 484 481 479 474 472 471 470 465 462 458 453 452 448 445 440 436 433 430 428 426 424 421 419 414 413 408 404 403 399 395 393 388 384 379 377 375 374 372 367 363 360 356 353 351 350 346",
"output": "NO"
},
{
"input": "100\n263 268 273 274 276 281 282 287 288 292 294 295 296 300 304 306 308 310 311 315 319 322 326 330 247 336 339 341 342 347 351 353 356 358 363 365 369 372 374 379 383 387 389 391 392 395 396 398 403 404 407 411 412 416 419 421 424 428 429 430 434 436 440 443 444 448 453 455 458 462 463 464 469 473 477 481 486 489 492 494 499 503 506 509 510 512 514 515 511 510 507 502 499 498 494 491 486 482 477 475",
"output": "NO"
},
{
"input": "100\n482 484 485 489 492 496 499 501 505 509 512 517 520 517 515 513 509 508 504 503 497 496 493 488 486 481 478 476 474 470 468 466 463 459 456 453 452 449 445 444 439 438 435 432 428 427 424 423 421 419 417 413 408 405 402 399 397 393 388 385 380 375 370 366 363 361 360 355 354 352 349 345 340 336 335 331 329 327 324 319 318 317 315 314 310 309 307 304 303 300 299 295 291 287 285 282 280 278 273 271",
"output": "YES"
},
{
"input": "2\n1 3",
"output": "YES"
},
{
"input": "2\n1 2",
"output": "YES"
},
{
"input": "5\n2 2 1 1 1",
"output": "NO"
},
{
"input": "4\n1 3 2 2",
"output": "NO"
},
{
"input": "6\n1 2 1 2 2 1",
"output": "NO"
},
{
"input": "2\n4 2",
"output": "YES"
},
{
"input": "3\n3 2 2",
"output": "NO"
},
{
"input": "9\n1 2 2 3 3 4 3 2 1",
"output": "NO"
},
{
"input": "4\n5 5 4 4",
"output": "NO"
},
{
"input": "2\n2 1",
"output": "YES"
},
{
"input": "5\n5 4 3 2 1",
"output": "YES"
},
{
"input": "7\n4 3 3 3 3 3 3",
"output": "NO"
},
{
"input": "5\n1 2 3 4 5",
"output": "YES"
},
{
"input": "3\n2 2 1",
"output": "YES"
},
{
"input": "3\n4 3 3",
"output": "NO"
},
{
"input": "7\n1 5 5 4 3 3 1",
"output": "NO"
},
{
"input": "6\n3 3 1 2 2 1",
"output": "NO"
},
{
"input": "5\n1 2 1 2 1",
"output": "NO"
},
{
"input": "2\n5 1",
"output": "YES"
},
{
"input": "9\n1 2 3 4 4 3 2 2 1",
"output": "NO"
},
{
"input": "3\n2 2 3",
"output": "NO"
},
{
"input": "2\n5 4",
"output": "YES"
},
{
"input": "5\n1 3 3 2 2",
"output": "NO"
},
{
"input": "10\n1 2 3 4 5 6 7 8 9 99",
"output": "YES"
},
{
"input": "4\n1 2 3 4",
"output": "YES"
},
{
"input": "3\n5 5 2",
"output": "YES"
},
{
"input": "4\n1 4 2 3",
"output": "NO"
},
{
"input": "2\n3 2",
"output": "YES"
},
{
"input": "5\n1 2 2 1 1",
"output": "NO"
},
{
"input": "4\n3 3 2 2",
"output": "NO"
},
{
"input": "5\n1 2 3 2 2",
"output": "NO"
},
{
"input": "5\n5 6 6 5 5",
"output": "NO"
},
{
"input": "4\n2 2 1 1",
"output": "NO"
},
{
"input": "5\n5 4 3 3 2",
"output": "NO"
},
{
"input": "7\n1 3 3 3 2 1 1",
"output": "NO"
},
{
"input": "9\n5 6 6 5 5 4 4 3 3",
"output": "NO"
},
{
"input": "6\n1 5 5 3 2 2",
"output": "NO"
},
{
"input": "5\n2 1 3 3 1",
"output": "NO"
},
{
"input": "2\n4 3",
"output": "YES"
},
{
"input": "5\n3 2 2 1 1",
"output": "NO"
},
{
"input": "4\n5 4 3 2",
"output": "YES"
},
{
"input": "4\n4 4 1 1",
"output": "NO"
},
{
"input": "4\n3 3 1 1",
"output": "NO"
},
{
"input": "4\n4 4 2 2",
"output": "NO"
},
{
"input": "5\n4 4 3 2 2",
"output": "NO"
},
{
"input": "8\n4 4 4 4 5 6 7 8",
"output": "NO"
},
{
"input": "5\n3 5 4 4 3",
"output": "NO"
},
{
"input": "6\n2 5 3 3 2 2",
"output": "NO"
},
{
"input": "4\n5 5 2 2",
"output": "NO"
},
{
"input": "5\n1 2 2 3 5",
"output": "NO"
}
] | 1,641,013,731
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 101
| 62
| 0
|
n=int(input())
a=*map(int,input().split()),
l=0
r=n
while l+1<n and a[l]<a[l+1]: l+=1
while r>0 and a[r-2]>a[r-1]: r-=1
print('YNEOS'[len({*a[l:r]})!=1::2])
|
Title: Unimodal Array
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Array of integers is unimodal, if:
- it is strictly increasing in the beginning; - after that it is constant; - after that it is strictly decreasing.
The first block (increasing) and the last block (decreasing) may be absent. It is allowed that both of this blocks are absent.
For example, the following three arrays are unimodal: [5,<=7,<=11,<=11,<=2,<=1], [4,<=4,<=2], [7], but the following three are not unimodal: [5,<=5,<=6,<=6,<=1], [1,<=2,<=1,<=2], [4,<=5,<=5,<=6].
Write a program that checks if an array is unimodal.
Input Specification:
The first line contains integer *n* (1<=≤<=*n*<=≤<=100) — the number of elements in the array.
The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=1<=000) — the elements of the array.
Output Specification:
Print "YES" if the given array is unimodal. Otherwise, print "NO".
You can output each letter in any case (upper or lower).
Demo Input:
['6\n1 5 5 5 4 2\n', '5\n10 20 30 20 10\n', '4\n1 2 1 2\n', '7\n3 3 3 3 3 3 3\n']
Demo Output:
['YES\n', 'YES\n', 'NO\n', 'YES\n']
Note:
In the first example the array is unimodal, because it is strictly increasing in the beginning (from position 1 to position 2, inclusively), that it is constant (from position 2 to position 4, inclusively) and then it is strictly decreasing (from position 4 to position 6, inclusively).
|
```python
n=int(input())
a=*map(int,input().split()),
l=0
r=n
while l+1<n and a[l]<a[l+1]: l+=1
while r>0 and a[r-2]>a[r-1]: r-=1
print('YNEOS'[len({*a[l:r]})!=1::2])
```
| 3
|
|
600
|
B
|
Queries about less or equal elements
|
PROGRAMMING
| 1,300
|
[
"binary search",
"data structures",
"sortings",
"two pointers"
] | null | null |
You are given two arrays of integers *a* and *b*. For each element of the second array *b**j* you should find the number of elements in array *a* that are less than or equal to the value *b**j*.
|
The first line contains two integers *n*,<=*m* (1<=≤<=*n*,<=*m*<=≤<=2·105) — the sizes of arrays *a* and *b*.
The second line contains *n* integers — the elements of array *a* (<=-<=109<=≤<=*a**i*<=≤<=109).
The third line contains *m* integers — the elements of array *b* (<=-<=109<=≤<=*b**j*<=≤<=109).
|
Print *m* integers, separated by spaces: the *j*-th of which is equal to the number of such elements in array *a* that are less than or equal to the value *b**j*.
|
[
"5 4\n1 3 5 7 9\n6 4 2 8\n",
"5 5\n1 2 1 2 5\n3 1 4 1 5\n"
] |
[
"3 2 1 4\n",
"4 2 4 2 5\n"
] |
none
| 0
|
[
{
"input": "5 4\n1 3 5 7 9\n6 4 2 8",
"output": "3 2 1 4"
},
{
"input": "5 5\n1 2 1 2 5\n3 1 4 1 5",
"output": "4 2 4 2 5"
},
{
"input": "1 1\n-1\n-2",
"output": "0"
},
{
"input": "1 1\n-80890826\n686519510",
"output": "1"
},
{
"input": "11 11\n237468511 -779187544 -174606592 193890085 404563196 -71722998 -617934776 170102710 -442808289 109833389 953091341\n994454001 322957429 216874735 -606986750 -455806318 -663190696 3793295 41395397 -929612742 -787653860 -684738874",
"output": "11 9 8 2 2 1 5 5 0 0 1"
},
{
"input": "20 22\n858276994 -568758442 -918490847 -983345984 -172435358 389604931 200224783 486556113 413281867 -258259500 -627945379 -584563643 444685477 -602481243 -370745158 965672503 630955806 -626138773 -997221880 633102929\n-61330638 -977252080 -212144219 385501731 669589742 954357160 563935906 584468977 -895883477 405774444 853372186 186056475 -964575261 -952431965 632332084 -388829939 -23011650 310957048 -770695392 977376693 321435214 199223897",
"output": "11 2 10 12 18 19 16 16 3 13 18 11 2 2 17 8 11 12 3 20 12 11"
},
{
"input": "5 9\n1 3 5 7 9\n1 2 3 4 5 6 7 8 9",
"output": "1 1 2 2 3 3 4 4 5"
},
{
"input": "22 1\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22\n1",
"output": "1"
},
{
"input": "5 1\n1 3 3 3 5\n3",
"output": "4"
},
{
"input": "4 5\n1 1 1 4\n1 5 5 4 3",
"output": "3 4 4 4 3"
},
{
"input": "5 4\n0 5 5 5 6\n5 1 6 3",
"output": "4 1 5 1"
},
{
"input": "1 3\n0\n-1 0 1",
"output": "0 1 1"
},
{
"input": "96 1\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n1",
"output": "96"
},
{
"input": "7 1\n1 2 3 4 5 6 7\n1",
"output": "1"
},
{
"input": "13 13\n-1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000\n-1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000",
"output": "7 13 7 13 7 13 7 13 7 13 7 13 7"
},
{
"input": "9 5\n1 2 3 4 5 6 7 8 9\n1 2 3 4 5",
"output": "1 2 3 4 5"
},
{
"input": "3 8\n1 1 1\n1 1 1 1 1 1 1 1",
"output": "3 3 3 3 3 3 3 3"
},
{
"input": "1 1\n-11111\n-5938",
"output": "1"
},
{
"input": "1 1\n1\n400000009",
"output": "1"
},
{
"input": "1 1\n1\n300000009",
"output": "1"
},
{
"input": "1 1\n1\n200000009",
"output": "1"
},
{
"input": "1 1\n1\n200000003",
"output": "1"
}
] | 1,665,146,005
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 60
| 389
| 35,225,600
|
# your code goes here
def lower(lis,k):
l = 0
r = len(lis)-1
while l <= r:
m = l + ((r-l)//2)
if k >= lis[m]:
l = m + 1
else:
r = m - 1
return l
n, k = map(int,input().split())
l = list(map(int,input().split()))
q = list(map(int,input().split()))
l.sort()
for i in q:
print(lower(l, i), end = " ")
print()
|
Title: Queries about less or equal elements
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You are given two arrays of integers *a* and *b*. For each element of the second array *b**j* you should find the number of elements in array *a* that are less than or equal to the value *b**j*.
Input Specification:
The first line contains two integers *n*,<=*m* (1<=≤<=*n*,<=*m*<=≤<=2·105) — the sizes of arrays *a* and *b*.
The second line contains *n* integers — the elements of array *a* (<=-<=109<=≤<=*a**i*<=≤<=109).
The third line contains *m* integers — the elements of array *b* (<=-<=109<=≤<=*b**j*<=≤<=109).
Output Specification:
Print *m* integers, separated by spaces: the *j*-th of which is equal to the number of such elements in array *a* that are less than or equal to the value *b**j*.
Demo Input:
['5 4\n1 3 5 7 9\n6 4 2 8\n', '5 5\n1 2 1 2 5\n3 1 4 1 5\n']
Demo Output:
['3 2 1 4\n', '4 2 4 2 5\n']
Note:
none
|
```python
# your code goes here
def lower(lis,k):
l = 0
r = len(lis)-1
while l <= r:
m = l + ((r-l)//2)
if k >= lis[m]:
l = m + 1
else:
r = m - 1
return l
n, k = map(int,input().split())
l = list(map(int,input().split()))
q = list(map(int,input().split()))
l.sort()
for i in q:
print(lower(l, i), end = " ")
print()
```
| 3
|
|
952
|
B
|
A Map of the Cat
|
PROGRAMMING
| 1,900
|
[
"brute force",
"interactive"
] | null | null |
If you have ever interacted with a cat, you have probably noticed that they are quite particular about how to pet them. Here is an approximate map of a normal cat.
However, some cats won't tolerate this nonsense from the humans. Here is a map of a grumpy cat.
You have met a cat. Can you figure out whether it's normal or grumpy?
|
none
|
none
|
[] |
[] |
Please make sure to use the stream flushing operation after each query in order not to leave part of your output in some buffer.
| 0
|
[
{
"input": "5 0 1 2 5 3 5 4 5 5",
"output": "Correct answer 'normal'"
},
{
"input": "5 5 5 6 6 7 8 9 10 11",
"output": "Correct answer 'grumpy'"
},
{
"input": "10 6 5 7 5 6 11 5 8 9",
"output": "Correct answer 'grumpy'"
},
{
"input": "7 10 8 9 6 5 5 11 5 6",
"output": "Correct answer 'grumpy'"
},
{
"input": "5 5 4 5 2 5 5 0 1 3",
"output": "Correct answer 'normal'"
},
{
"input": "0 4 3 5 5 5 2 1 5 5",
"output": "Correct answer 'normal'"
},
{
"input": "3 5 5 0 5 5 2 5 4 1",
"output": "Correct answer 'normal'"
},
{
"input": "5 4 5 1 5 5 0 5 2 3",
"output": "Correct answer 'normal'"
},
{
"input": "5 5 1 2 5 5 4 3 0 5",
"output": "Correct answer 'normal'"
},
{
"input": "7 10 5 5 11 6 5 9 6 8",
"output": "Correct answer 'grumpy'"
},
{
"input": "6 5 10 5 5 7 8 11 9 6",
"output": "Correct answer 'grumpy'"
},
{
"input": "5 5 5 5 5 0 4 2 3 1",
"output": "Correct answer 'normal'"
},
{
"input": "11 5 6 5 9 5 10 8 7 6",
"output": "Correct answer 'grumpy'"
},
{
"input": "5 9 8 10 7 11 5 6 5 6",
"output": "Correct answer 'grumpy'"
},
{
"input": "5 8 10 11 5 6 5 6 7 9",
"output": "Correct answer 'grumpy'"
},
{
"input": "5 5 6 11 6 10 9 5 8 7",
"output": "Correct answer 'grumpy'"
},
{
"input": "1 5 5 2 5 0 3 5 5 4",
"output": "Correct answer 'normal'"
},
{
"input": "5 5 2 5 4 5 3 1 0 5",
"output": "Correct answer 'normal'"
}
] | 1,675,871,274
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 18
| 46
| 0
|
# LUOGU_RID: 101738871
print(input('9\n')[-2:] in ['s?', 'le', 'se',
'ay', 'en'] and 'grumpy' or 'normal')
|
Title: A Map of the Cat
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
If you have ever interacted with a cat, you have probably noticed that they are quite particular about how to pet them. Here is an approximate map of a normal cat.
However, some cats won't tolerate this nonsense from the humans. Here is a map of a grumpy cat.
You have met a cat. Can you figure out whether it's normal or grumpy?
Input Specification:
none
Output Specification:
none
Note:
Please make sure to use the stream flushing operation after each query in order not to leave part of your output in some buffer.
|
```python
# LUOGU_RID: 101738871
print(input('9\n')[-2:] in ['s?', 'le', 'se',
'ay', 'en'] and 'grumpy' or 'normal')
```
| 3
|
|
764
|
A
|
Taymyr is calling you
|
PROGRAMMING
| 800
|
[
"brute force",
"implementation",
"math"
] | null | null |
Comrade Dujikov is busy choosing artists for Timofey's birthday and is recieving calls from Taymyr from Ilia-alpinist.
Ilia-alpinist calls every *n* minutes, i.e. in minutes *n*, 2*n*, 3*n* and so on. Artists come to the comrade every *m* minutes, i.e. in minutes *m*, 2*m*, 3*m* and so on. The day is *z* minutes long, i.e. the day consists of minutes 1,<=2,<=...,<=*z*. How many artists should be killed so that there are no artists in the room when Ilia calls? Consider that a call and a talk with an artist take exactly one minute.
|
The only string contains three integers — *n*, *m* and *z* (1<=≤<=*n*,<=*m*,<=*z*<=≤<=104).
|
Print single integer — the minimum number of artists that should be killed so that there are no artists in the room when Ilia calls.
|
[
"1 1 10\n",
"1 2 5\n",
"2 3 9\n"
] |
[
"10\n",
"2\n",
"1\n"
] |
Taymyr is a place in the north of Russia.
In the first test the artists come each minute, as well as the calls, so we need to kill all of them.
In the second test we need to kill artists which come on the second and the fourth minutes.
In the third test — only the artist which comes on the sixth minute.
| 500
|
[
{
"input": "1 1 10",
"output": "10"
},
{
"input": "1 2 5",
"output": "2"
},
{
"input": "2 3 9",
"output": "1"
},
{
"input": "4 8 9",
"output": "1"
},
{
"input": "7 9 2",
"output": "0"
},
{
"input": "10000 10000 10000",
"output": "1"
},
{
"input": "24 22 9235",
"output": "34"
},
{
"input": "74 8 417",
"output": "1"
},
{
"input": "972 1 203",
"output": "0"
},
{
"input": "550 1 754",
"output": "1"
},
{
"input": "860 1 884",
"output": "1"
},
{
"input": "358 2 809",
"output": "2"
},
{
"input": "33 27 216",
"output": "0"
},
{
"input": "2940 1 9311",
"output": "3"
},
{
"input": "4624 1 1953",
"output": "0"
},
{
"input": "2696 2 7345",
"output": "2"
},
{
"input": "3443 2 6701",
"output": "0"
},
{
"input": "3 613 2275",
"output": "1"
},
{
"input": "1 10000 10000",
"output": "1"
},
{
"input": "10000 1 10000",
"output": "1"
},
{
"input": "1 1 1",
"output": "1"
},
{
"input": "1 1 10000",
"output": "10000"
},
{
"input": "34 27 10000",
"output": "10"
},
{
"input": "2 2 9999",
"output": "4999"
},
{
"input": "2 2 1",
"output": "0"
},
{
"input": "6 4 36",
"output": "3"
},
{
"input": "33 6 3005",
"output": "45"
},
{
"input": "5 1 20",
"output": "4"
},
{
"input": "1 2 10",
"output": "5"
},
{
"input": "2 1 100",
"output": "50"
},
{
"input": "10 20 10000",
"output": "500"
},
{
"input": "8 12 12",
"output": "0"
}
] | 1,486,235,717
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 32
| 888
| 4,915,200
|
lista=(input()).split()
n,m,z=int(lista[0]), int(lista[1]), int(lista[2])
lista2=[i for i in range(m,z+1,m)]
zbroj=0
for i in range(n,z+1,n):
if i in lista2:
zbroj+=1
print (zbroj)
|
Title: Taymyr is calling you
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Comrade Dujikov is busy choosing artists for Timofey's birthday and is recieving calls from Taymyr from Ilia-alpinist.
Ilia-alpinist calls every *n* minutes, i.e. in minutes *n*, 2*n*, 3*n* and so on. Artists come to the comrade every *m* minutes, i.e. in minutes *m*, 2*m*, 3*m* and so on. The day is *z* minutes long, i.e. the day consists of minutes 1,<=2,<=...,<=*z*. How many artists should be killed so that there are no artists in the room when Ilia calls? Consider that a call and a talk with an artist take exactly one minute.
Input Specification:
The only string contains three integers — *n*, *m* and *z* (1<=≤<=*n*,<=*m*,<=*z*<=≤<=104).
Output Specification:
Print single integer — the minimum number of artists that should be killed so that there are no artists in the room when Ilia calls.
Demo Input:
['1 1 10\n', '1 2 5\n', '2 3 9\n']
Demo Output:
['10\n', '2\n', '1\n']
Note:
Taymyr is a place in the north of Russia.
In the first test the artists come each minute, as well as the calls, so we need to kill all of them.
In the second test we need to kill artists which come on the second and the fourth minutes.
In the third test — only the artist which comes on the sixth minute.
|
```python
lista=(input()).split()
n,m,z=int(lista[0]), int(lista[1]), int(lista[2])
lista2=[i for i in range(m,z+1,m)]
zbroj=0
for i in range(n,z+1,n):
if i in lista2:
zbroj+=1
print (zbroj)
```
| 3
|
|
859
|
B
|
Lazy Security Guard
|
PROGRAMMING
| 1,000
|
[
"brute force",
"geometry",
"math"
] | null | null |
Your security guard friend recently got a new job at a new security company. The company requires him to patrol an area of the city encompassing exactly *N* city blocks, but they let him choose which blocks. That is, your friend must walk the perimeter of a region whose area is exactly *N* blocks. Your friend is quite lazy and would like your help to find the shortest possible route that meets the requirements. The city is laid out in a square grid pattern, and is large enough that for the sake of the problem it can be considered infinite.
|
Input will consist of a single integer *N* (1<=≤<=*N*<=≤<=106), the number of city blocks that must be enclosed by the route.
|
Print the minimum perimeter that can be achieved.
|
[
"4\n",
"11\n",
"22\n"
] |
[
"8\n",
"14\n",
"20\n"
] |
Here are some possible shapes for the examples:
<img class="tex-graphics" src="https://espresso.codeforces.com/e11bef2cf82b55dd583cfc97d12b5aee5e483a65.png" style="max-width: 100.0%;max-height: 100.0%;"/>
| 750
|
[
{
"input": "4",
"output": "8"
},
{
"input": "11",
"output": "14"
},
{
"input": "22",
"output": "20"
},
{
"input": "3",
"output": "8"
},
{
"input": "1024",
"output": "128"
},
{
"input": "101",
"output": "42"
},
{
"input": "30",
"output": "22"
},
{
"input": "1000000",
"output": "4000"
},
{
"input": "1",
"output": "4"
},
{
"input": "2",
"output": "6"
},
{
"input": "5",
"output": "10"
},
{
"input": "6",
"output": "10"
},
{
"input": "7",
"output": "12"
},
{
"input": "8",
"output": "12"
},
{
"input": "9",
"output": "12"
},
{
"input": "10",
"output": "14"
},
{
"input": "999000",
"output": "3998"
},
{
"input": "999001",
"output": "4000"
},
{
"input": "999999",
"output": "4000"
},
{
"input": "933206",
"output": "3866"
},
{
"input": "718351",
"output": "3392"
},
{
"input": "607443",
"output": "3118"
},
{
"input": "347887",
"output": "2360"
},
{
"input": "246206",
"output": "1986"
},
{
"input": "151375",
"output": "1558"
},
{
"input": "12639",
"output": "450"
},
{
"input": "3751",
"output": "246"
},
{
"input": "3607",
"output": "242"
},
{
"input": "124",
"output": "46"
},
{
"input": "64",
"output": "32"
},
{
"input": "31",
"output": "24"
},
{
"input": "23",
"output": "20"
},
{
"input": "15",
"output": "16"
},
{
"input": "19",
"output": "18"
},
{
"input": "59637",
"output": "978"
}
] | 1,505,622,638
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 35
| 77
| 0
|
import math
n=int(input())
a=int(math.sqrt(n))
if a*a==n:
print(4*a)
elif a*(a+1)>=n:
print(4*a+2)
else:
print(4*(a+1))
|
Title: Lazy Security Guard
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Your security guard friend recently got a new job at a new security company. The company requires him to patrol an area of the city encompassing exactly *N* city blocks, but they let him choose which blocks. That is, your friend must walk the perimeter of a region whose area is exactly *N* blocks. Your friend is quite lazy and would like your help to find the shortest possible route that meets the requirements. The city is laid out in a square grid pattern, and is large enough that for the sake of the problem it can be considered infinite.
Input Specification:
Input will consist of a single integer *N* (1<=≤<=*N*<=≤<=106), the number of city blocks that must be enclosed by the route.
Output Specification:
Print the minimum perimeter that can be achieved.
Demo Input:
['4\n', '11\n', '22\n']
Demo Output:
['8\n', '14\n', '20\n']
Note:
Here are some possible shapes for the examples:
<img class="tex-graphics" src="https://espresso.codeforces.com/e11bef2cf82b55dd583cfc97d12b5aee5e483a65.png" style="max-width: 100.0%;max-height: 100.0%;"/>
|
```python
import math
n=int(input())
a=int(math.sqrt(n))
if a*a==n:
print(4*a)
elif a*(a+1)>=n:
print(4*a+2)
else:
print(4*(a+1))
```
| 3
|
|
468
|
C
|
Hack it!
|
PROGRAMMING
| 2,500
|
[
"binary search",
"constructive algorithms",
"math"
] | null | null |
Little X has met the following problem recently.
Let's define *f*(*x*) as the sum of digits in decimal representation of number *x* (for example, *f*(1234)<==<=1<=+<=2<=+<=3<=+<=4). You are to calculate
Of course Little X has solved this problem quickly, has locked it, and then has tried to hack others. He has seen the following C++ code:
|
The first line contains a single integer *a* (1<=≤<=*a*<=≤<=1018).
|
Print two integers: *l*,<=*r* (1<=≤<=*l*<=≤<=*r*<=<<=10200) — the required test data. Leading zeros aren't allowed. It's guaranteed that the solution exists.
|
[
"46\n",
"126444381000032\n"
] |
[
"1 10\n",
"2333333 2333333333333\n"
] |
none
| 1,500
|
[
{
"input": "46",
"output": "1 10"
},
{
"input": "126444381000032",
"output": "2333333 2333333333333"
},
{
"input": "69645082595",
"output": "613752823618441225798858488535 713259406474207764329704856394"
},
{
"input": "70602205995",
"output": "11 249221334020432074498656960922"
},
{
"input": "33898130785",
"output": "9 558855506346909386939077840182"
},
{
"input": "58929554039",
"output": "22 855783114773435710171914224422"
},
{
"input": "81696185182",
"output": "499118531974994927425925323518 956291458400902769638235161661"
},
{
"input": "1",
"output": "149268802942315027273202513064 277551734280589260570057105889"
},
{
"input": "2",
"output": "119692200833686078608961312319 629363568954685219494592939495"
},
{
"input": "3",
"output": "2 302254410562920936884653943506"
},
{
"input": "4",
"output": "284378053387469023431537894255 317250990020830090421009164911"
},
{
"input": "5",
"output": "2 62668056583245293799710157951"
},
{
"input": "6",
"output": "3 93810188780011787541394067841"
},
{
"input": "7",
"output": "2 834286447477504059026206246185"
},
{
"input": "8",
"output": "3 257583347960907690857477857197"
},
{
"input": "10",
"output": "3 163048811987317819669274448265"
},
{
"input": "11",
"output": "3 919618203693907154039906935669"
},
{
"input": "12",
"output": "448221703341269567451520778454 698029790336105644790102859494"
},
{
"input": "43",
"output": "9 172412961300207091437973214327"
},
{
"input": "36",
"output": "8 619355518777647869838990701242"
},
{
"input": "65",
"output": "6 709024330418134127413755925068"
},
{
"input": "43",
"output": "7 669540448846929747909766131221"
},
{
"input": "23",
"output": "2 104579054315773428039906118259"
},
{
"input": "100",
"output": "15 324437778467489559125023403167"
},
{
"input": "10000",
"output": "2 936791129091842315790163514642"
},
{
"input": "1000000",
"output": "18 369591628030718549289473454545"
},
{
"input": "100000000",
"output": "7 870405265198051697453938746950"
},
{
"input": "10000000000",
"output": "20 972749766921651560604778558599"
},
{
"input": "1000000000000",
"output": "6 68997070398311657294228230677"
},
{
"input": "100000000000000",
"output": "249537318528661282822184562278 397003438246047829818181818181"
},
{
"input": "10000000000000000",
"output": "10 778165727326620883431915444624"
},
{
"input": "1000000000000000000",
"output": "408256298986776744812953390000 824018301451167837914299999999"
},
{
"input": "450000000000000000",
"output": "2 357722688084551093593033993033"
},
{
"input": "432022",
"output": "3 333556238531076799985515487090"
},
{
"input": "428033",
"output": "22 730314748425770554502599499142"
},
{
"input": "776930",
"output": "20 521232359366297130685112811874"
},
{
"input": "329824",
"output": "308969571112207311167474021348 745620588073413831210052337999"
},
{
"input": "85058261498638",
"output": "16 931187081941564769324316582547"
},
{
"input": "2130909834463",
"output": "21 895378349209612431051450316022"
},
{
"input": "3427089130241",
"output": "10 676758114393938690602742889714"
},
{
"input": "22881472397923",
"output": "174523915446146844994793303441 429392837423394397373605399524"
},
{
"input": "756499070280135900",
"output": "17 414254565210363110239866979636"
},
{
"input": "348919756917359012",
"output": "15 148711424846749040017925495268"
},
{
"input": "789136710974630947",
"output": "13 214740524663440316532540770911"
},
{
"input": "32851678509090784",
"output": "15 728787006985867306455350840047"
},
{
"input": "219760524792138559",
"output": "8 51530430692061277616906746431"
},
{
"input": "1000000007",
"output": "19 96093944063249823335491170999"
},
{
"input": "999999874000003969",
"output": "306259936121099507549028331741 983025349899931537481252156006"
},
{
"input": "999999999999999989",
"output": "140766388309929586494194507367 705096656792775954903252198639"
},
{
"input": "999999999999999983",
"output": "4 365946710276937286091309116340"
},
{
"input": "999999999999999999",
"output": "26 983966655749419565978291923474"
}
] | 1,669,375,353
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 51
| 46
| 0
|
# LUOGU_RID: 95415977
a=int(input())
l=a-int(1e18)*81%a
r=l+int(1e18)-1
print(l,r);
|
Title: Hack it!
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Little X has met the following problem recently.
Let's define *f*(*x*) as the sum of digits in decimal representation of number *x* (for example, *f*(1234)<==<=1<=+<=2<=+<=3<=+<=4). You are to calculate
Of course Little X has solved this problem quickly, has locked it, and then has tried to hack others. He has seen the following C++ code:
Input Specification:
The first line contains a single integer *a* (1<=≤<=*a*<=≤<=1018).
Output Specification:
Print two integers: *l*,<=*r* (1<=≤<=*l*<=≤<=*r*<=<<=10200) — the required test data. Leading zeros aren't allowed. It's guaranteed that the solution exists.
Demo Input:
['46\n', '126444381000032\n']
Demo Output:
['1 10\n', '2333333 2333333333333\n']
Note:
none
|
```python
# LUOGU_RID: 95415977
a=int(input())
l=a-int(1e18)*81%a
r=l+int(1e18)-1
print(l,r);
```
| 3
|
|
50
|
A
|
Domino piling
|
PROGRAMMING
| 800
|
[
"greedy",
"math"
] |
A. Domino piling
|
2
|
256
|
You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions:
1. Each domino completely covers two squares.
2. No two dominoes overlap.
3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board.
Find the maximum number of dominoes, which can be placed under these restrictions.
|
In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16).
|
Output one number — the maximal number of dominoes, which can be placed.
|
[
"2 4\n",
"3 3\n"
] |
[
"4\n",
"4\n"
] |
none
| 500
|
[
{
"input": "2 4",
"output": "4"
},
{
"input": "3 3",
"output": "4"
},
{
"input": "1 5",
"output": "2"
},
{
"input": "1 6",
"output": "3"
},
{
"input": "1 15",
"output": "7"
},
{
"input": "1 16",
"output": "8"
},
{
"input": "2 5",
"output": "5"
},
{
"input": "2 6",
"output": "6"
},
{
"input": "2 7",
"output": "7"
},
{
"input": "2 14",
"output": "14"
},
{
"input": "2 15",
"output": "15"
},
{
"input": "1 4",
"output": "2"
},
{
"input": "2 16",
"output": "16"
},
{
"input": "3 5",
"output": "7"
},
{
"input": "3 6",
"output": "9"
},
{
"input": "3 10",
"output": "15"
},
{
"input": "3 14",
"output": "21"
},
{
"input": "3 15",
"output": "22"
},
{
"input": "3 16",
"output": "24"
},
{
"input": "5 7",
"output": "17"
},
{
"input": "16 16",
"output": "128"
},
{
"input": "15 16",
"output": "120"
},
{
"input": "2 3",
"output": "3"
},
{
"input": "15 15",
"output": "112"
},
{
"input": "14 16",
"output": "112"
},
{
"input": "11 13",
"output": "71"
},
{
"input": "5 16",
"output": "40"
},
{
"input": "8 15",
"output": "60"
},
{
"input": "2 2",
"output": "2"
},
{
"input": "3 4",
"output": "6"
},
{
"input": "4 4",
"output": "8"
},
{
"input": "1 1",
"output": "0"
},
{
"input": "1 2",
"output": "1"
},
{
"input": "1 3",
"output": "1"
},
{
"input": "14 15",
"output": "105"
}
] | 1,682,834,769
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 35
| 92
| 0
|
n=input()
n=n.split()
k=int(n[1])
n=int(n[0])
print(n*k//2)
|
Title: Domino piling
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions:
1. Each domino completely covers two squares.
2. No two dominoes overlap.
3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board.
Find the maximum number of dominoes, which can be placed under these restrictions.
Input Specification:
In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16).
Output Specification:
Output one number — the maximal number of dominoes, which can be placed.
Demo Input:
['2 4\n', '3 3\n']
Demo Output:
['4\n', '4\n']
Note:
none
|
```python
n=input()
n=n.split()
k=int(n[1])
n=int(n[0])
print(n*k//2)
```
| 3.977
|
58
|
A
|
Chat room
|
PROGRAMMING
| 1,000
|
[
"greedy",
"strings"
] |
A. Chat room
|
1
|
256
|
Vasya has recently learned to type and log on to the Internet. He immediately entered a chat room and decided to say hello to everybody. Vasya typed the word *s*. It is considered that Vasya managed to say hello if several letters can be deleted from the typed word so that it resulted in the word "hello". For example, if Vasya types the word "ahhellllloou", it will be considered that he said hello, and if he types "hlelo", it will be considered that Vasya got misunderstood and he didn't manage to say hello. Determine whether Vasya managed to say hello by the given word *s*.
|
The first and only line contains the word *s*, which Vasya typed. This word consisits of small Latin letters, its length is no less that 1 and no more than 100 letters.
|
If Vasya managed to say hello, print "YES", otherwise print "NO".
|
[
"ahhellllloou\n",
"hlelo\n"
] |
[
"YES\n",
"NO\n"
] |
none
| 500
|
[
{
"input": "ahhellllloou",
"output": "YES"
},
{
"input": "hlelo",
"output": "NO"
},
{
"input": "helhcludoo",
"output": "YES"
},
{
"input": "hehwelloho",
"output": "YES"
},
{
"input": "pnnepelqomhhheollvlo",
"output": "YES"
},
{
"input": "tymbzjyqhymedasloqbq",
"output": "NO"
},
{
"input": "yehluhlkwo",
"output": "NO"
},
{
"input": "hatlevhhalrohairnolsvocafgueelrqmlqlleello",
"output": "YES"
},
{
"input": "hhhtehdbllnhwmbyhvelqqyoulretpbfokflhlhreeflxeftelziclrwllrpflflbdtotvlqgoaoqldlroovbfsq",
"output": "YES"
},
{
"input": "rzlvihhghnelqtwlexmvdjjrliqllolhyewgozkuovaiezgcilelqapuoeglnwmnlftxxiigzczlouooi",
"output": "YES"
},
{
"input": "pfhhwctyqdlkrwhebfqfelhyebwllhemtrmeblgrynmvyhioesqklclocxmlffuormljszllpoo",
"output": "YES"
},
{
"input": "lqllcolohwflhfhlnaow",
"output": "NO"
},
{
"input": "heheeellollvoo",
"output": "YES"
},
{
"input": "hellooo",
"output": "YES"
},
{
"input": "o",
"output": "NO"
},
{
"input": "hhqhzeclohlehljlhtesllylrolmomvuhcxsobtsckogdv",
"output": "YES"
},
{
"input": "yoegfuzhqsihygnhpnukluutocvvwuldiighpogsifealtgkfzqbwtmgghmythcxflebrkctlldlkzlagovwlstsghbouk",
"output": "YES"
},
{
"input": "uatqtgbvrnywfacwursctpagasnhydvmlinrcnqrry",
"output": "NO"
},
{
"input": "tndtbldbllnrwmbyhvqaqqyoudrstpbfokfoclnraefuxtftmgzicorwisrpfnfpbdtatvwqgyalqtdtrjqvbfsq",
"output": "NO"
},
{
"input": "rzlvirhgemelnzdawzpaoqtxmqucnahvqnwldklrmjiiyageraijfivigvozgwngiulttxxgzczptusoi",
"output": "YES"
},
{
"input": "kgyelmchocojsnaqdsyeqgnllytbqietpdlgknwwumqkxrexgdcnwoldicwzwofpmuesjuxzrasscvyuqwspm",
"output": "YES"
},
{
"input": "pnyvrcotjvgynbeldnxieghfltmexttuxzyac",
"output": "NO"
},
{
"input": "dtwhbqoumejligbenxvzhjlhosqojetcqsynlzyhfaevbdpekgbtjrbhlltbceobcok",
"output": "YES"
},
{
"input": "crrfpfftjwhhikwzeedrlwzblckkteseofjuxjrktcjfsylmlsvogvrcxbxtffujqshslemnixoeezivksouefeqlhhokwbqjz",
"output": "YES"
},
{
"input": "jhfbndhyzdvhbvhmhmefqllujdflwdpjbehedlsqfdsqlyelwjtyloxwsvasrbqosblzbowlqjmyeilcvotdlaouxhdpoeloaovb",
"output": "YES"
},
{
"input": "hwlghueoemiqtjhhpashjsouyegdlvoyzeunlroypoprnhlyiwiuxrghekaylndhrhllllwhbebezoglydcvykllotrlaqtvmlla",
"output": "YES"
},
{
"input": "wshiaunnqnqxodholbipwhhjmyeblhgpeleblklpzwhdunmpqkbuzloetmwwxmeltkrcomulxauzlwmlklldjodozxryghsnwgcz",
"output": "YES"
},
{
"input": "shvksednttggehroewuiptvvxtrzgidravtnjwuqrlnnkxbplctzkckinpkgjopjfoxdbojtcvsuvablcbkrzajrlhgobkcxeqti",
"output": "YES"
},
{
"input": "hyyhddqhxhekehkwfhlnlsihzefwchzerevcjtokefplholrbvxlltdlafjxrfhleglrvlolojoqaolagtbeyogxlbgfolllslli",
"output": "YES"
},
{
"input": "iaagrdhhelxpdegueiulflquvlzidoprzkehthkldaytrjwhyhprwjxlltinxvuilxohqgjqcvkkdcuoliekcnlilwgqlnlzouoo",
"output": "YES"
},
{
"input": "wfluaeseldgxyvxpwuhkptdmlflnlhktwxiabsvkolsquymrmhzczzoybvlilhmvsuunggvgxzgyyffk",
"output": "NO"
},
{
"input": "loee",
"output": "NO"
},
{
"input": "izdipwylefqmjbuoznfglgcfvedeouflkeehxbasaqmiooppfsqlhprospqgxvzrcpwlfdddngoqvpwvggsnvvxhmjoslwjudjlo",
"output": "NO"
},
{
"input": "pplynflbjlseflaegzqpdxswgunhnlglqhycrbcwdfhclmcrwekkzsoosmfblljeenwfjyifcvxihhhbyhmhlkvtskeglaovjnsi",
"output": "YES"
},
{
"input": "xqjqmenkodmlhzyzmmvofdngktygbbxbzpluzcohohmalkoeuwfikblltaaigv",
"output": "NO"
},
{
"input": "hello",
"output": "YES"
},
{
"input": "oohell",
"output": "NO"
},
{
"input": "hell",
"output": "NO"
},
{
"input": "eloellohoelo",
"output": "NO"
},
{
"input": "helllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllo",
"output": "YES"
}
] | 1,627,386,587
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 40
| 62
| 6,758,400
|
s=input()
a="hello"
count=0
for i in s:
if(a[count]==i):
count+=1
if (count == 5):
print('YES')
break
else:
print('NO')
|
Title: Chat room
Time Limit: 1 seconds
Memory Limit: 256 megabytes
Problem Description:
Vasya has recently learned to type and log on to the Internet. He immediately entered a chat room and decided to say hello to everybody. Vasya typed the word *s*. It is considered that Vasya managed to say hello if several letters can be deleted from the typed word so that it resulted in the word "hello". For example, if Vasya types the word "ahhellllloou", it will be considered that he said hello, and if he types "hlelo", it will be considered that Vasya got misunderstood and he didn't manage to say hello. Determine whether Vasya managed to say hello by the given word *s*.
Input Specification:
The first and only line contains the word *s*, which Vasya typed. This word consisits of small Latin letters, its length is no less that 1 and no more than 100 letters.
Output Specification:
If Vasya managed to say hello, print "YES", otherwise print "NO".
Demo Input:
['ahhellllloou\n', 'hlelo\n']
Demo Output:
['YES\n', 'NO\n']
Note:
none
|
```python
s=input()
a="hello"
count=0
for i in s:
if(a[count]==i):
count+=1
if (count == 5):
print('YES')
break
else:
print('NO')
```
| 3.956411
|
892
|
B
|
Wrath
|
PROGRAMMING
| 1,200
|
[
"greedy",
"implementation",
"two pointers"
] | null | null |
Hands that shed innocent blood!
There are *n* guilty people in a line, the *i*-th of them holds a claw with length *L**i*. The bell rings and every person kills some of people in front of him. All people kill others at the same time. Namely, the *i*-th person kills the *j*-th person if and only if *j*<=<<=*i* and *j*<=≥<=*i*<=-<=*L**i*.
You are given lengths of the claws. You need to find the total number of alive people after the bell rings.
|
The first line contains one integer *n* (1<=≤<=*n*<=≤<=106) — the number of guilty people.
Second line contains *n* space-separated integers *L*1,<=*L*2,<=...,<=*L**n* (0<=≤<=*L**i*<=≤<=109), where *L**i* is the length of the *i*-th person's claw.
|
Print one integer — the total number of alive people after the bell rings.
|
[
"4\n0 1 0 10\n",
"2\n0 0\n",
"10\n1 1 3 0 0 0 2 1 0 3\n"
] |
[
"1\n",
"2\n",
"3\n"
] |
In first sample the last person kills everyone in front of him.
| 1,000
|
[
{
"input": "4\n0 1 0 10",
"output": "1"
},
{
"input": "2\n0 0",
"output": "2"
},
{
"input": "10\n1 1 3 0 0 0 2 1 0 3",
"output": "3"
},
{
"input": "10\n0 0 2 0 0 3 3 2 2 0",
"output": "2"
},
{
"input": "1\n0",
"output": "1"
},
{
"input": "5\n0 0 0 1 0",
"output": "4"
},
{
"input": "6\n3 1 1 0 3 3",
"output": "1"
},
{
"input": "8\n0 0 0 1 0 0 1 2",
"output": "5"
},
{
"input": "1\n1000000000",
"output": "1"
},
{
"input": "2\n1 3",
"output": "1"
},
{
"input": "2\n1000000000 1000000000",
"output": "1"
},
{
"input": "11\n1 0 0 1 1 3 2 0 0 2 3",
"output": "4"
},
{
"input": "1\n1",
"output": "1"
}
] | 1,537,166,865
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 43
| 1,496
| 76,390,400
|
n = int(input())
a = list(map(int, input().split(' ')))
j = n - 2
i = n - 1
killed = 0
while i >= 0:
if j > i - 1:
j = i - 1
while j >= 0 and j >= i - a[i]:
killed += 1
j -= 1
i -= 1
print(n - killed)
|
Title: Wrath
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Hands that shed innocent blood!
There are *n* guilty people in a line, the *i*-th of them holds a claw with length *L**i*. The bell rings and every person kills some of people in front of him. All people kill others at the same time. Namely, the *i*-th person kills the *j*-th person if and only if *j*<=<<=*i* and *j*<=≥<=*i*<=-<=*L**i*.
You are given lengths of the claws. You need to find the total number of alive people after the bell rings.
Input Specification:
The first line contains one integer *n* (1<=≤<=*n*<=≤<=106) — the number of guilty people.
Second line contains *n* space-separated integers *L*1,<=*L*2,<=...,<=*L**n* (0<=≤<=*L**i*<=≤<=109), where *L**i* is the length of the *i*-th person's claw.
Output Specification:
Print one integer — the total number of alive people after the bell rings.
Demo Input:
['4\n0 1 0 10\n', '2\n0 0\n', '10\n1 1 3 0 0 0 2 1 0 3\n']
Demo Output:
['1\n', '2\n', '3\n']
Note:
In first sample the last person kills everyone in front of him.
|
```python
n = int(input())
a = list(map(int, input().split(' ')))
j = n - 2
i = n - 1
killed = 0
while i >= 0:
if j > i - 1:
j = i - 1
while j >= 0 and j >= i - a[i]:
killed += 1
j -= 1
i -= 1
print(n - killed)
```
| 3
|
|
7
|
A
|
Kalevitch and Chess
|
PROGRAMMING
| 1,100
|
[
"brute force",
"constructive algorithms"
] |
A. Kalevitch and Chess
|
2
|
64
|
A famous Berland's painter Kalevitch likes to shock the public. One of his last obsessions is chess. For more than a thousand years people have been playing this old game on uninteresting, monotonous boards. Kalevitch decided to put an end to this tradition and to introduce a new attitude to chessboards.
As before, the chessboard is a square-checkered board with the squares arranged in a 8<=×<=8 grid, each square is painted black or white. Kalevitch suggests that chessboards should be painted in the following manner: there should be chosen a horizontal or a vertical line of 8 squares (i.e. a row or a column), and painted black. Initially the whole chessboard is white, and it can be painted in the above described way one or more times. It is allowed to paint a square many times, but after the first time it does not change its colour any more and remains black. Kalevitch paints chessboards neatly, and it is impossible to judge by an individual square if it was painted with a vertical or a horizontal stroke.
Kalevitch hopes that such chessboards will gain popularity, and he will be commissioned to paint chessboards, which will help him ensure a comfortable old age. The clients will inform him what chessboard they want to have, and the painter will paint a white chessboard meeting the client's requirements.
It goes without saying that in such business one should economize on everything — for each commission he wants to know the minimum amount of strokes that he has to paint to fulfill the client's needs. You are asked to help Kalevitch with this task.
|
The input file contains 8 lines, each of the lines contains 8 characters. The given matrix describes the client's requirements, W character stands for a white square, and B character — for a square painted black.
It is guaranteed that client's requirments can be fulfilled with a sequence of allowed strokes (vertical/column or horizontal/row).
|
Output the only number — the minimum amount of rows and columns that Kalevitch has to paint on the white chessboard to meet the client's requirements.
|
[
"WWWBWWBW\nBBBBBBBB\nWWWBWWBW\nWWWBWWBW\nWWWBWWBW\nWWWBWWBW\nWWWBWWBW\nWWWBWWBW\n",
"WWWWWWWW\nBBBBBBBB\nWWWWWWWW\nWWWWWWWW\nWWWWWWWW\nWWWWWWWW\nWWWWWWWW\nWWWWWWWW\n"
] |
[
"3\n",
"1\n"
] |
none
| 0
|
[
{
"input": "WWWBWWBW\nBBBBBBBB\nWWWBWWBW\nWWWBWWBW\nWWWBWWBW\nWWWBWWBW\nWWWBWWBW\nWWWBWWBW",
"output": "3"
},
{
"input": "WWWWWWWW\nBBBBBBBB\nWWWWWWWW\nWWWWWWWW\nWWWWWWWW\nWWWWWWWW\nWWWWWWWW\nWWWWWWWW",
"output": "1"
},
{
"input": "WWWWWWWW\nWWWWWWWW\nWWWWWWWW\nWWWWWWWW\nWWWWWWWW\nWWWWWWWW\nWWWWWWWW\nWWWWWWWW",
"output": "0"
},
{
"input": "BBBBBBBB\nBBBBBBBB\nBBBBBBBB\nBBBBBBBB\nBBBBBBBB\nBBBBBBBB\nBBBBBBBB\nBBBBBBBB",
"output": "8"
},
{
"input": "BBBBBBBB\nBBBBBBBB\nBBBBBBBB\nBBBBBBBB\nBBBBBBBB\nBBBBBBBB\nBBBBBBBB\nBBBBBBBW",
"output": "14"
},
{
"input": "BBBBBBBB\nBBBBBBBB\nBBBBBBWB\nBBBBBBBB\nBBBBBBBB\nBBBBBBBB\nBBBBBBBB\nBBBBBBBB",
"output": "14"
},
{
"input": "BBBBBBBB\nWBBBWBBW\nBBBBBBBB\nWBBBWBBW\nWBBBWBBW\nBBBBBBBB\nBBBBBBBB\nWBBBWBBW",
"output": "9"
},
{
"input": "BBBBBBBB\nWBBWWWBB\nBBBBBBBB\nWBBWWWBB\nBBBBBBBB\nBBBBBBBB\nWBBWWWBB\nBBBBBBBB",
"output": "9"
},
{
"input": "BBBBBWWB\nBBBBBBBB\nBBBBBBBB\nBBBBBWWB\nBBBBBWWB\nBBBBBWWB\nBBBBBWWB\nBBBBBWWB",
"output": "8"
},
{
"input": "WWWWBBBB\nWWWWBBBB\nBBBBBBBB\nBBBBBBBB\nWWWWBBBB\nWWWWBBBB\nBBBBBBBB\nBBBBBBBB",
"output": "8"
},
{
"input": "BBBBBBBB\nWBWWBBBW\nBBBBBBBB\nWBWWBBBW\nWBWWBBBW\nWBWWBBBW\nWBWWBBBW\nBBBBBBBB",
"output": "7"
},
{
"input": "WBWWBBBW\nBBBBBBBB\nBBBBBBBB\nBBBBBBBB\nBBBBBBBB\nBBBBBBBB\nWBWWBBBW\nWBWWBBBW",
"output": "9"
},
{
"input": "BBWWBBBW\nBBBBBBBB\nBBBBBBBB\nBBWWBBBW\nBBBBBBBB\nBBBBBBBB\nBBBBBBBB\nBBBBBBBB",
"output": "11"
},
{
"input": "WWBWBBBB\nBBBBBBBB\nBBBBBBBB\nBBBBBBBB\nWWBWBBBB\nBBBBBBBB\nWWBWBBBB\nBBBBBBBB",
"output": "10"
},
{
"input": "BBBBBBBB\nBBBBBBBB\nBBBBBBBB\nWWBWBBBB\nWWBWBBBB\nBBBBBBBB\nBBBBBBBB\nWWBWBBBB",
"output": "10"
},
{
"input": "WBBWBBBW\nWBBWBBBW\nWBBWBBBW\nWBBWBBBW\nWBBWBBBW\nBBBBBBBB\nWBBWBBBW\nWBBWBBBW",
"output": "6"
},
{
"input": "BBBWBBBW\nBBBWBBBW\nBBBWBBBW\nBBBBBBBB\nBBBBBBBB\nBBBWBBBW\nBBBBBBBB\nBBBBBBBB",
"output": "10"
},
{
"input": "BBBBBBBB\nBBBWBBBB\nBBBWBBBB\nBBBWBBBB\nBBBBBBBB\nBBBWBBBB\nBBBWBBBB\nBBBWBBBB",
"output": "9"
},
{
"input": "BBBBBBBB\nWWWBBBBB\nWWWBBBBB\nBBBBBBBB\nWWWBBBBB\nWWWBBBBB\nBBBBBBBB\nBBBBBBBB",
"output": "9"
},
{
"input": "WBBBBBWB\nBBBBBBBB\nWBBBBBWB\nWBBBBBWB\nWBBBBBWB\nWBBBBBWB\nWBBBBBWB\nBBBBBBBB",
"output": "8"
},
{
"input": "WBBBWWBW\nWBBBWWBW\nBBBBBBBB\nWBBBWWBW\nBBBBBBBB\nWBBBWWBW\nWBBBWWBW\nWBBBWWBW",
"output": "6"
},
{
"input": "WBBBBWBB\nBBBBBBBB\nBBBBBBBB\nWBBBBWBB\nWBBBBWBB\nBBBBBBBB\nWBBBBWBB\nBBBBBBBB",
"output": "10"
},
{
"input": "BBBBBBBB\nBBBBBBBB\nBBBBBBBB\nWBBBWBBW\nBBBBBBBB\nBBBBBBBB\nWBBBWBBW\nBBBBBBBB",
"output": "11"
},
{
"input": "BBBBBBBB\nBWBBBBBW\nBWBBBBBW\nBBBBBBBB\nBWBBBBBW\nBWBBBBBW\nBBBBBBBB\nBWBBBBBW",
"output": "9"
},
{
"input": "BBBBBBBB\nBBBBBBBB\nWBBBWWWW\nBBBBBBBB\nBBBBBBBB\nWBBBWWWW\nBBBBBBBB\nBBBBBBBB",
"output": "9"
},
{
"input": "BWBBBWWB\nBWBBBWWB\nBBBBBBBB\nBBBBBBBB\nBWBBBWWB\nBBBBBBBB\nBBBBBBBB\nBBBBBBBB",
"output": "10"
},
{
"input": "BBBBBBBB\nBBBBBBBB\nBBBBBBBB\nBBBBBBBB\nBBBBBBBB\nBBBBBBBB\nBBBBBBBB\nBWBBWBWB",
"output": "12"
},
{
"input": "BWBBBBWW\nBWBBBBWW\nBWBBBBWW\nBWBBBBWW\nBBBBBBBB\nBWBBBBWW\nBWBBBBWW\nBBBBBBBB",
"output": "7"
},
{
"input": "WWBBWWBB\nBBBBBBBB\nWWBBWWBB\nWWBBWWBB\nWWBBWWBB\nBBBBBBBB\nWWBBWWBB\nWWBBWWBB",
"output": "6"
},
{
"input": "BWBBWWWW\nBWBBWWWW\nBWBBWWWW\nBBBBBBBB\nBBBBBBBB\nBBBBBBBB\nBWBBWWWW\nBBBBBBBB",
"output": "7"
}
] | 1,547,698,313
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 30
| 216
| 0
|
m=[input() for i in range(8)]
r=sum([1 for i in range(8) if m[i]=='B'*8 ])
c=sum([1 for i in range(8) if sum([1 for k in range(8) if m[k][i]=='B'])==8])
if max(r,c)==8:print(8)
else:print(r+c)
|
Title: Kalevitch and Chess
Time Limit: 2 seconds
Memory Limit: 64 megabytes
Problem Description:
A famous Berland's painter Kalevitch likes to shock the public. One of his last obsessions is chess. For more than a thousand years people have been playing this old game on uninteresting, monotonous boards. Kalevitch decided to put an end to this tradition and to introduce a new attitude to chessboards.
As before, the chessboard is a square-checkered board with the squares arranged in a 8<=×<=8 grid, each square is painted black or white. Kalevitch suggests that chessboards should be painted in the following manner: there should be chosen a horizontal or a vertical line of 8 squares (i.e. a row or a column), and painted black. Initially the whole chessboard is white, and it can be painted in the above described way one or more times. It is allowed to paint a square many times, but after the first time it does not change its colour any more and remains black. Kalevitch paints chessboards neatly, and it is impossible to judge by an individual square if it was painted with a vertical or a horizontal stroke.
Kalevitch hopes that such chessboards will gain popularity, and he will be commissioned to paint chessboards, which will help him ensure a comfortable old age. The clients will inform him what chessboard they want to have, and the painter will paint a white chessboard meeting the client's requirements.
It goes without saying that in such business one should economize on everything — for each commission he wants to know the minimum amount of strokes that he has to paint to fulfill the client's needs. You are asked to help Kalevitch with this task.
Input Specification:
The input file contains 8 lines, each of the lines contains 8 characters. The given matrix describes the client's requirements, W character stands for a white square, and B character — for a square painted black.
It is guaranteed that client's requirments can be fulfilled with a sequence of allowed strokes (vertical/column or horizontal/row).
Output Specification:
Output the only number — the minimum amount of rows and columns that Kalevitch has to paint on the white chessboard to meet the client's requirements.
Demo Input:
['WWWBWWBW\nBBBBBBBB\nWWWBWWBW\nWWWBWWBW\nWWWBWWBW\nWWWBWWBW\nWWWBWWBW\nWWWBWWBW\n', 'WWWWWWWW\nBBBBBBBB\nWWWWWWWW\nWWWWWWWW\nWWWWWWWW\nWWWWWWWW\nWWWWWWWW\nWWWWWWWW\n']
Demo Output:
['3\n', '1\n']
Note:
none
|
```python
m=[input() for i in range(8)]
r=sum([1 for i in range(8) if m[i]=='B'*8 ])
c=sum([1 for i in range(8) if sum([1 for k in range(8) if m[k][i]=='B'])==8])
if max(r,c)==8:print(8)
else:print(r+c)
```
| 3.946
|
796
|
B
|
Find The Bone
|
PROGRAMMING
| 1,300
|
[
"implementation"
] | null | null |
Zane the wizard is going to perform a magic show shuffling the cups.
There are *n* cups, numbered from 1 to *n*, placed along the *x*-axis on a table that has *m* holes on it. More precisely, cup *i* is on the table at the position *x*<==<=*i*.
The problematic bone is initially at the position *x*<==<=1. Zane will confuse the audience by swapping the cups *k* times, the *i*-th time of which involves the cups at the positions *x*<==<=*u**i* and *x*<==<=*v**i*. If the bone happens to be at the position where there is a hole at any time, it will fall into the hole onto the ground and will not be affected by future swapping operations.
Do not forget that Zane is a wizard. When he swaps the cups, he does not move them ordinarily. Instead, he teleports the cups (along with the bone, if it is inside) to the intended positions. Therefore, for example, when he swaps the cup at *x*<==<=4 and the one at *x*<==<=6, they will not be at the position *x*<==<=5 at any moment during the operation.
Zane’s puppy, Inzane, is in trouble. Zane is away on his vacation, and Inzane cannot find his beloved bone, as it would be too exhausting to try opening all the cups. Inzane knows that the Codeforces community has successfully helped Zane, so he wants to see if it could help him solve his problem too. Help Inzane determine the final position of the bone.
|
The first line contains three integers *n*, *m*, and *k* (2<=≤<=*n*<=≤<=106, 1<=≤<=*m*<=≤<=*n*, 1<=≤<=*k*<=≤<=3·105) — the number of cups, the number of holes on the table, and the number of swapping operations, respectively.
The second line contains *m* distinct integers *h*1,<=*h*2,<=...,<=*h**m* (1<=≤<=*h**i*<=≤<=*n*) — the positions along the *x*-axis where there is a hole on the table.
Each of the next *k* lines contains two integers *u**i* and *v**i* (1<=≤<=*u**i*,<=*v**i*<=≤<=*n*, *u**i*<=≠<=*v**i*) — the positions of the cups to be swapped.
|
Print one integer — the final position along the *x*-axis of the bone.
|
[
"7 3 4\n3 4 6\n1 2\n2 5\n5 7\n7 1\n",
"5 1 2\n2\n1 2\n2 4\n"
] |
[
"1",
"2"
] |
In the first sample, after the operations, the bone becomes at *x* = 2, *x* = 5, *x* = 7, and *x* = 1, respectively.
In the second sample, after the first operation, the bone becomes at *x* = 2, and falls into the hole onto the ground.
| 750
|
[
{
"input": "7 3 4\n3 4 6\n1 2\n2 5\n5 7\n7 1",
"output": "1"
},
{
"input": "5 1 2\n2\n1 2\n2 4",
"output": "2"
},
{
"input": "10000 1 9\n55\n44 1\n2929 9292\n9999 9998\n44 55\n49 94\n55 53\n100 199\n55 50\n53 11",
"output": "55"
},
{
"input": "100000 3 7\n2 3 4\n1 5\n5 1\n1 5\n5 1\n1 4\n4 3\n3 2",
"output": "4"
},
{
"input": "1000000 9 11\n38 59 999999 199 283 4849 1000000 2 554\n39 94\n3 9\n1 39\n39 40\n40 292\n5399 5858\n292 49949\n49949 222\n222 38\n202 9494\n38 59",
"output": "38"
},
{
"input": "1000000 11 9\n19 28 39 82 99 929384 8298 892849 202020 777777 123123\n19 28\n28 39\n1 123124\n39 28\n28 99\n99 8298\n123124 123122\n2300 3200\n8298 1000000",
"output": "123122"
},
{
"input": "2 1 1\n1\n1 2",
"output": "1"
},
{
"input": "7 3 6\n1 4 5\n1 2\n2 3\n3 5\n4 5\n4 5\n4 5",
"output": "1"
},
{
"input": "10 3 8\n1 5 10\n1 2\n2 3\n3 4\n3 4\n3 4\n4 5\n5 6\n6 5",
"output": "1"
},
{
"input": "5 2 9\n2 4\n1 3\n3 5\n3 5\n3 4\n4 2\n2 4\n1 4\n1 2\n1 4",
"output": "4"
},
{
"input": "10 10 13\n1 2 3 4 5 6 7 8 9 10\n1 2\n2 3\n3 4\n4 5\n5 6\n6 7\n6 7\n6 10\n10 9\n9 1\n1 10\n1 10\n1 10",
"output": "1"
},
{
"input": "3 3 3\n1 2 3\n1 2\n2 3\n3 2",
"output": "1"
},
{
"input": "100 7 7\n17 27 37 47 57 67 77\n49 39\n55 1\n50 3\n89 1\n1 99\n100 55\n98 55",
"output": "100"
},
{
"input": "9 1 9\n9\n1 2\n3 2\n4 3\n8 9\n4 5\n7 4\n8 5\n1 3\n3 2",
"output": "8"
},
{
"input": "300000 1 1\n200000\n300000 1",
"output": "300000"
},
{
"input": "203948 2 14\n203948 203946\n39 38\n4959 3030\n1 203947\n2929 9292\n203944 203948\n203947 203944\n203944 203922\n203922 203948\n2495 20495\n29419 5959\n12949 12\n49 29292\n1 94\n1 203",
"output": "203948"
},
{
"input": "203948 2 14\n203948 203947\n39 38\n4959 3030\n1 203947\n2929 9292\n203944 203948\n203947 203944\n203944 203922\n203922 203948\n2495 20495\n29419 5959\n12949 12\n49 29292\n1 94\n1 203",
"output": "203947"
},
{
"input": "100 2 5\n1 2\n2 39\n39 29\n99 100\n1 2\n2 39",
"output": "1"
},
{
"input": "3 1 1\n1\n1 2",
"output": "1"
},
{
"input": "5 2 2\n1 2\n1 2\n2 3",
"output": "1"
},
{
"input": "2 2 1\n1 2\n2 1",
"output": "1"
},
{
"input": "5 2 1\n1 2\n2 1",
"output": "1"
},
{
"input": "5 1 1\n5\n3 4",
"output": "1"
},
{
"input": "3 2 1\n1 2\n2 1",
"output": "1"
},
{
"input": "5 1 2\n2\n2 1\n2 3",
"output": "2"
},
{
"input": "3 1 2\n2\n2 1\n2 3",
"output": "2"
},
{
"input": "3 2 2\n2 3\n2 1\n2 3",
"output": "2"
},
{
"input": "4 2 1\n1 2\n2 1",
"output": "1"
},
{
"input": "4 1 1\n2\n2 3",
"output": "1"
},
{
"input": "3 2 1\n1 3\n3 1",
"output": "1"
},
{
"input": "10 1 3\n2\n2 1\n2 4\n9 10",
"output": "2"
},
{
"input": "5 2 4\n3 5\n1 2\n4 2\n3 4\n3 5",
"output": "3"
},
{
"input": "4 3 1\n1 2 3\n2 1",
"output": "1"
}
] | 1,684,744,156
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 73
| 826
| 145,305,600
|
n,m,k=map(int,input().split())
l=set(map(int,input().split()))
x=1
for i in range(k):
u,v=map(int,input().split())
if x in l: break
if x==u: x=v
elif x==v: x=u
print(x)
|
Title: Find The Bone
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Zane the wizard is going to perform a magic show shuffling the cups.
There are *n* cups, numbered from 1 to *n*, placed along the *x*-axis on a table that has *m* holes on it. More precisely, cup *i* is on the table at the position *x*<==<=*i*.
The problematic bone is initially at the position *x*<==<=1. Zane will confuse the audience by swapping the cups *k* times, the *i*-th time of which involves the cups at the positions *x*<==<=*u**i* and *x*<==<=*v**i*. If the bone happens to be at the position where there is a hole at any time, it will fall into the hole onto the ground and will not be affected by future swapping operations.
Do not forget that Zane is a wizard. When he swaps the cups, he does not move them ordinarily. Instead, he teleports the cups (along with the bone, if it is inside) to the intended positions. Therefore, for example, when he swaps the cup at *x*<==<=4 and the one at *x*<==<=6, they will not be at the position *x*<==<=5 at any moment during the operation.
Zane’s puppy, Inzane, is in trouble. Zane is away on his vacation, and Inzane cannot find his beloved bone, as it would be too exhausting to try opening all the cups. Inzane knows that the Codeforces community has successfully helped Zane, so he wants to see if it could help him solve his problem too. Help Inzane determine the final position of the bone.
Input Specification:
The first line contains three integers *n*, *m*, and *k* (2<=≤<=*n*<=≤<=106, 1<=≤<=*m*<=≤<=*n*, 1<=≤<=*k*<=≤<=3·105) — the number of cups, the number of holes on the table, and the number of swapping operations, respectively.
The second line contains *m* distinct integers *h*1,<=*h*2,<=...,<=*h**m* (1<=≤<=*h**i*<=≤<=*n*) — the positions along the *x*-axis where there is a hole on the table.
Each of the next *k* lines contains two integers *u**i* and *v**i* (1<=≤<=*u**i*,<=*v**i*<=≤<=*n*, *u**i*<=≠<=*v**i*) — the positions of the cups to be swapped.
Output Specification:
Print one integer — the final position along the *x*-axis of the bone.
Demo Input:
['7 3 4\n3 4 6\n1 2\n2 5\n5 7\n7 1\n', '5 1 2\n2\n1 2\n2 4\n']
Demo Output:
['1', '2']
Note:
In the first sample, after the operations, the bone becomes at *x* = 2, *x* = 5, *x* = 7, and *x* = 1, respectively.
In the second sample, after the first operation, the bone becomes at *x* = 2, and falls into the hole onto the ground.
|
```python
n,m,k=map(int,input().split())
l=set(map(int,input().split()))
x=1
for i in range(k):
u,v=map(int,input().split())
if x in l: break
if x==u: x=v
elif x==v: x=u
print(x)
```
| 3
|
|
584
|
A
|
Olesya and Rodion
|
PROGRAMMING
| 1,000
|
[
"math"
] | null | null |
Olesya loves numbers consisting of *n* digits, and Rodion only likes numbers that are divisible by *t*. Find some number that satisfies both of them.
Your task is: given the *n* and *t* print an integer strictly larger than zero consisting of *n* digits that is divisible by *t*. If such number doesn't exist, print <=-<=1.
|
The single line contains two numbers, *n* and *t* (1<=≤<=*n*<=≤<=100, 2<=≤<=*t*<=≤<=10) — the length of the number and the number it should be divisible by.
|
Print one such positive number without leading zeroes, — the answer to the problem, or <=-<=1, if such number doesn't exist. If there are multiple possible answers, you are allowed to print any of them.
|
[
"3 2\n"
] |
[
"712"
] |
none
| 500
|
[
{
"input": "3 2",
"output": "222"
},
{
"input": "2 2",
"output": "22"
},
{
"input": "4 3",
"output": "3333"
},
{
"input": "5 3",
"output": "33333"
},
{
"input": "10 7",
"output": "7777777777"
},
{
"input": "2 9",
"output": "99"
},
{
"input": "18 8",
"output": "888888888888888888"
},
{
"input": "1 5",
"output": "5"
},
{
"input": "1 10",
"output": "-1"
},
{
"input": "100 5",
"output": "5555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555"
},
{
"input": "10 2",
"output": "2222222222"
},
{
"input": "18 10",
"output": "111111111111111110"
},
{
"input": "1 9",
"output": "9"
},
{
"input": "7 6",
"output": "6666666"
},
{
"input": "4 4",
"output": "4444"
},
{
"input": "14 7",
"output": "77777777777777"
},
{
"input": "3 8",
"output": "888"
},
{
"input": "1 3",
"output": "3"
},
{
"input": "2 8",
"output": "88"
},
{
"input": "3 8",
"output": "888"
},
{
"input": "4 3",
"output": "3333"
},
{
"input": "5 9",
"output": "99999"
},
{
"input": "4 8",
"output": "8888"
},
{
"input": "3 4",
"output": "444"
},
{
"input": "9 4",
"output": "444444444"
},
{
"input": "8 10",
"output": "11111110"
},
{
"input": "1 6",
"output": "6"
},
{
"input": "20 3",
"output": "33333333333333333333"
},
{
"input": "15 10",
"output": "111111111111110"
},
{
"input": "31 4",
"output": "4444444444444444444444444444444"
},
{
"input": "18 9",
"output": "999999999999999999"
},
{
"input": "72 4",
"output": "444444444444444444444444444444444444444444444444444444444444444444444444"
},
{
"input": "76 8",
"output": "8888888888888888888888888888888888888888888888888888888888888888888888888888"
},
{
"input": "12 5",
"output": "555555555555"
},
{
"input": "54 5",
"output": "555555555555555555555555555555555555555555555555555555"
},
{
"input": "96 10",
"output": "111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111110"
},
{
"input": "15 9",
"output": "999999999999999"
},
{
"input": "100 2",
"output": "2222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222"
},
{
"input": "99 3",
"output": "333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333"
},
{
"input": "98 4",
"output": "44444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444"
},
{
"input": "97 5",
"output": "5555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555"
},
{
"input": "100 6",
"output": "6666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666"
},
{
"input": "99 7",
"output": "777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777"
},
{
"input": "98 8",
"output": "88888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888"
},
{
"input": "97 9",
"output": "9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999"
},
{
"input": "100 10",
"output": "1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111110"
},
{
"input": "3 10",
"output": "110"
},
{
"input": "2 4",
"output": "44"
},
{
"input": "2 10",
"output": "10"
},
{
"input": "10 10",
"output": "1111111110"
},
{
"input": "4 10",
"output": "1110"
},
{
"input": "25 10",
"output": "1111111111111111111111110"
},
{
"input": "50 10",
"output": "11111111111111111111111111111111111111111111111110"
},
{
"input": "5 10",
"output": "11110"
},
{
"input": "99 10",
"output": "111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111110"
},
{
"input": "100 10",
"output": "1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111110"
},
{
"input": "1 2",
"output": "2"
},
{
"input": "20 10",
"output": "11111111111111111110"
},
{
"input": "99 7",
"output": "777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777"
},
{
"input": "89 5",
"output": "55555555555555555555555555555555555555555555555555555555555555555555555555555555555555555"
},
{
"input": "6 10",
"output": "111110"
},
{
"input": "3 8",
"output": "888"
},
{
"input": "1 9",
"output": "9"
},
{
"input": "1 4",
"output": "4"
},
{
"input": "100 7",
"output": "7777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777"
}
] | 1,666,239,521
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 65
| 77
| 0
|
z=[0 for i in range(10)]
z[0]=1
def solve():
q,w=map(int,input().split())
a=10**(q-1)
while(a%w!=0):
a+=1
if len(str(a))==q and a%w==0:
print(a)
else:
print(-1)
a=1
for i in range(a):
solve()
|
Title: Olesya and Rodion
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Olesya loves numbers consisting of *n* digits, and Rodion only likes numbers that are divisible by *t*. Find some number that satisfies both of them.
Your task is: given the *n* and *t* print an integer strictly larger than zero consisting of *n* digits that is divisible by *t*. If such number doesn't exist, print <=-<=1.
Input Specification:
The single line contains two numbers, *n* and *t* (1<=≤<=*n*<=≤<=100, 2<=≤<=*t*<=≤<=10) — the length of the number and the number it should be divisible by.
Output Specification:
Print one such positive number without leading zeroes, — the answer to the problem, or <=-<=1, if such number doesn't exist. If there are multiple possible answers, you are allowed to print any of them.
Demo Input:
['3 2\n']
Demo Output:
['712']
Note:
none
|
```python
z=[0 for i in range(10)]
z[0]=1
def solve():
q,w=map(int,input().split())
a=10**(q-1)
while(a%w!=0):
a+=1
if len(str(a))==q and a%w==0:
print(a)
else:
print(-1)
a=1
for i in range(a):
solve()
```
| 3
|
|
987
|
A
|
Infinity Gauntlet
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
You took a peek on Thanos wearing Infinity Gauntlet. In the Gauntlet there is a place for six Infinity Gems:
- the Power Gem of purple color, - the Time Gem of green color, - the Space Gem of blue color, - the Soul Gem of orange color, - the Reality Gem of red color, - the Mind Gem of yellow color.
Using colors of Gems you saw in the Gauntlet determine the names of absent Gems.
|
In the first line of input there is one integer $n$ ($0 \le n \le 6$) — the number of Gems in Infinity Gauntlet.
In next $n$ lines there are colors of Gems you saw. Words used for colors are: purple, green, blue, orange, red, yellow. It is guaranteed that all the colors are distinct. All colors are given in lowercase English letters.
|
In the first line output one integer $m$ ($0 \le m \le 6$) — the number of absent Gems.
Then in $m$ lines print the names of absent Gems, each on its own line. Words used for names are: Power, Time, Space, Soul, Reality, Mind. Names can be printed in any order. Keep the first letter uppercase, others lowercase.
|
[
"4\nred\npurple\nyellow\norange\n",
"0\n"
] |
[
"2\nSpace\nTime\n",
"6\nTime\nMind\nSoul\nPower\nReality\nSpace\n"
] |
In the first sample Thanos already has Reality, Power, Mind and Soul Gems, so he needs two more: Time and Space.
In the second sample Thanos doesn't have any Gems, so he needs all six.
| 500
|
[
{
"input": "4\nred\npurple\nyellow\norange",
"output": "2\nSpace\nTime"
},
{
"input": "0",
"output": "6\nMind\nSpace\nPower\nTime\nReality\nSoul"
},
{
"input": "6\npurple\nblue\nyellow\nred\ngreen\norange",
"output": "0"
},
{
"input": "1\npurple",
"output": "5\nTime\nReality\nSoul\nSpace\nMind"
},
{
"input": "3\nblue\norange\npurple",
"output": "3\nTime\nReality\nMind"
},
{
"input": "2\nyellow\nred",
"output": "4\nPower\nSoul\nSpace\nTime"
},
{
"input": "1\ngreen",
"output": "5\nReality\nSpace\nPower\nSoul\nMind"
},
{
"input": "2\npurple\ngreen",
"output": "4\nReality\nMind\nSpace\nSoul"
},
{
"input": "1\nblue",
"output": "5\nPower\nReality\nSoul\nTime\nMind"
},
{
"input": "2\npurple\nblue",
"output": "4\nMind\nSoul\nTime\nReality"
},
{
"input": "2\ngreen\nblue",
"output": "4\nReality\nMind\nPower\nSoul"
},
{
"input": "3\npurple\ngreen\nblue",
"output": "3\nMind\nReality\nSoul"
},
{
"input": "1\norange",
"output": "5\nReality\nTime\nPower\nSpace\nMind"
},
{
"input": "2\npurple\norange",
"output": "4\nReality\nMind\nTime\nSpace"
},
{
"input": "2\norange\ngreen",
"output": "4\nSpace\nMind\nReality\nPower"
},
{
"input": "3\norange\npurple\ngreen",
"output": "3\nReality\nSpace\nMind"
},
{
"input": "2\norange\nblue",
"output": "4\nTime\nMind\nReality\nPower"
},
{
"input": "3\nblue\ngreen\norange",
"output": "3\nPower\nMind\nReality"
},
{
"input": "4\nblue\norange\ngreen\npurple",
"output": "2\nMind\nReality"
},
{
"input": "1\nred",
"output": "5\nTime\nSoul\nMind\nPower\nSpace"
},
{
"input": "2\nred\npurple",
"output": "4\nMind\nSpace\nTime\nSoul"
},
{
"input": "2\nred\ngreen",
"output": "4\nMind\nSpace\nPower\nSoul"
},
{
"input": "3\nred\npurple\ngreen",
"output": "3\nSoul\nSpace\nMind"
},
{
"input": "2\nblue\nred",
"output": "4\nMind\nTime\nPower\nSoul"
},
{
"input": "3\nred\nblue\npurple",
"output": "3\nTime\nMind\nSoul"
},
{
"input": "3\nred\nblue\ngreen",
"output": "3\nSoul\nPower\nMind"
},
{
"input": "4\npurple\nblue\ngreen\nred",
"output": "2\nMind\nSoul"
},
{
"input": "2\norange\nred",
"output": "4\nPower\nMind\nTime\nSpace"
},
{
"input": "3\nred\norange\npurple",
"output": "3\nMind\nSpace\nTime"
},
{
"input": "3\nred\norange\ngreen",
"output": "3\nMind\nSpace\nPower"
},
{
"input": "4\nred\norange\ngreen\npurple",
"output": "2\nSpace\nMind"
},
{
"input": "3\nblue\norange\nred",
"output": "3\nPower\nMind\nTime"
},
{
"input": "4\norange\nblue\npurple\nred",
"output": "2\nTime\nMind"
},
{
"input": "4\ngreen\norange\nred\nblue",
"output": "2\nMind\nPower"
},
{
"input": "5\npurple\norange\nblue\nred\ngreen",
"output": "1\nMind"
},
{
"input": "1\nyellow",
"output": "5\nPower\nSoul\nReality\nSpace\nTime"
},
{
"input": "2\npurple\nyellow",
"output": "4\nTime\nReality\nSpace\nSoul"
},
{
"input": "2\ngreen\nyellow",
"output": "4\nSpace\nReality\nPower\nSoul"
},
{
"input": "3\npurple\nyellow\ngreen",
"output": "3\nSoul\nReality\nSpace"
},
{
"input": "2\nblue\nyellow",
"output": "4\nTime\nReality\nPower\nSoul"
},
{
"input": "3\nyellow\nblue\npurple",
"output": "3\nSoul\nReality\nTime"
},
{
"input": "3\ngreen\nyellow\nblue",
"output": "3\nSoul\nReality\nPower"
},
{
"input": "4\nyellow\nblue\ngreen\npurple",
"output": "2\nReality\nSoul"
},
{
"input": "2\nyellow\norange",
"output": "4\nTime\nSpace\nReality\nPower"
},
{
"input": "3\nyellow\npurple\norange",
"output": "3\nSpace\nReality\nTime"
},
{
"input": "3\norange\nyellow\ngreen",
"output": "3\nSpace\nReality\nPower"
},
{
"input": "4\ngreen\nyellow\norange\npurple",
"output": "2\nSpace\nReality"
},
{
"input": "3\nyellow\nblue\norange",
"output": "3\nTime\nReality\nPower"
},
{
"input": "4\norange\npurple\nblue\nyellow",
"output": "2\nReality\nTime"
},
{
"input": "4\nblue\norange\nyellow\ngreen",
"output": "2\nReality\nPower"
},
{
"input": "5\ngreen\nyellow\norange\nblue\npurple",
"output": "1\nReality"
},
{
"input": "3\nyellow\npurple\nred",
"output": "3\nTime\nSoul\nSpace"
},
{
"input": "3\nred\ngreen\nyellow",
"output": "3\nPower\nSoul\nSpace"
},
{
"input": "4\nred\npurple\ngreen\nyellow",
"output": "2\nSpace\nSoul"
},
{
"input": "3\nred\nyellow\nblue",
"output": "3\nPower\nSoul\nTime"
},
{
"input": "4\nblue\nyellow\nred\npurple",
"output": "2\nTime\nSoul"
},
{
"input": "4\nblue\nyellow\nred\ngreen",
"output": "2\nSoul\nPower"
},
{
"input": "5\nred\nyellow\ngreen\nblue\npurple",
"output": "1\nSoul"
},
{
"input": "3\nred\nyellow\norange",
"output": "3\nPower\nSpace\nTime"
},
{
"input": "4\norange\ngreen\nyellow\nred",
"output": "2\nPower\nSpace"
},
{
"input": "5\norange\nred\ngreen\nyellow\npurple",
"output": "1\nSpace"
},
{
"input": "4\nyellow\nred\norange\nblue",
"output": "2\nTime\nPower"
},
{
"input": "5\npurple\nblue\norange\nyellow\nred",
"output": "1\nTime"
},
{
"input": "5\norange\nblue\nyellow\nred\ngreen",
"output": "1\nPower"
}
] | 1,623,133,839
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 64
| 155
| 0
|
n=int(input())
l=[]
p=[]
m=[['purple','Power'],['green','Time'],['blue','Space'],['orange','Soul'],['red','Reality'],
['yellow','Mind']]
j=0
for i in range(n):
s=str(input())
l.append(s)
for i in range(len(m)):
if m[i][0] not in l:
j=j+1
p.append(m[i][1])
print(j)
for x in p:
print(x)
|
Title: Infinity Gauntlet
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You took a peek on Thanos wearing Infinity Gauntlet. In the Gauntlet there is a place for six Infinity Gems:
- the Power Gem of purple color, - the Time Gem of green color, - the Space Gem of blue color, - the Soul Gem of orange color, - the Reality Gem of red color, - the Mind Gem of yellow color.
Using colors of Gems you saw in the Gauntlet determine the names of absent Gems.
Input Specification:
In the first line of input there is one integer $n$ ($0 \le n \le 6$) — the number of Gems in Infinity Gauntlet.
In next $n$ lines there are colors of Gems you saw. Words used for colors are: purple, green, blue, orange, red, yellow. It is guaranteed that all the colors are distinct. All colors are given in lowercase English letters.
Output Specification:
In the first line output one integer $m$ ($0 \le m \le 6$) — the number of absent Gems.
Then in $m$ lines print the names of absent Gems, each on its own line. Words used for names are: Power, Time, Space, Soul, Reality, Mind. Names can be printed in any order. Keep the first letter uppercase, others lowercase.
Demo Input:
['4\nred\npurple\nyellow\norange\n', '0\n']
Demo Output:
['2\nSpace\nTime\n', '6\nTime\nMind\nSoul\nPower\nReality\nSpace\n']
Note:
In the first sample Thanos already has Reality, Power, Mind and Soul Gems, so he needs two more: Time and Space.
In the second sample Thanos doesn't have any Gems, so he needs all six.
|
```python
n=int(input())
l=[]
p=[]
m=[['purple','Power'],['green','Time'],['blue','Space'],['orange','Soul'],['red','Reality'],
['yellow','Mind']]
j=0
for i in range(n):
s=str(input())
l.append(s)
for i in range(len(m)):
if m[i][0] not in l:
j=j+1
p.append(m[i][1])
print(j)
for x in p:
print(x)
```
| 3
|
|
888
|
B
|
Buggy Robot
|
PROGRAMMING
| 1,000
|
[
"greedy"
] | null | null |
Ivan has a robot which is situated on an infinite grid. Initially the robot is standing in the starting cell (0,<=0). The robot can process commands. There are four types of commands it can perform:
- U — move from the cell (*x*,<=*y*) to (*x*,<=*y*<=+<=1); - D — move from (*x*,<=*y*) to (*x*,<=*y*<=-<=1); - L — move from (*x*,<=*y*) to (*x*<=-<=1,<=*y*); - R — move from (*x*,<=*y*) to (*x*<=+<=1,<=*y*).
Ivan entered a sequence of *n* commands, and the robot processed it. After this sequence the robot ended up in the starting cell (0,<=0), but Ivan doubts that the sequence is such that after performing it correctly the robot ends up in the same cell. He thinks that some commands were ignored by robot. To acknowledge whether the robot is severely bugged, he needs to calculate the maximum possible number of commands that were performed correctly. Help Ivan to do the calculations!
|
The first line contains one number *n* — the length of sequence of commands entered by Ivan (1<=≤<=*n*<=≤<=100).
The second line contains the sequence itself — a string consisting of *n* characters. Each character can be U, D, L or R.
|
Print the maximum possible number of commands from the sequence the robot could perform to end up in the starting cell.
|
[
"4\nLDUR\n",
"5\nRRRUU\n",
"6\nLLRRRR\n"
] |
[
"4\n",
"0\n",
"4\n"
] |
none
| 0
|
[
{
"input": "4\nLDUR",
"output": "4"
},
{
"input": "5\nRRRUU",
"output": "0"
},
{
"input": "6\nLLRRRR",
"output": "4"
},
{
"input": "88\nLLUUULRDRRURDDLURRLRDRLLRULRUUDDLLLLRRDDURDURRLDURRLDRRRUULDDLRRRDDRRLUULLURDURUDDDDDLDR",
"output": "76"
},
{
"input": "89\nLDLLLDRDUDURRRRRUDULDDDLLUDLRLRLRLDLDUULRDUDLRRDLUDLURRDDRRDLDUDUUURUUUDRLUDUDLURDLDLLDDU",
"output": "80"
},
{
"input": "90\nRRRDUULLLRDUUDDRLDLRLUDURDRDUUURUURDDRRRURLDDDUUDRLLLULURDRDRURLDRRRRUULDULDDLLLRRLRDLLLLR",
"output": "84"
},
{
"input": "91\nRLDRLRRLLDLULULLURULLRRULUDUULLUDULDUULURUDRUDUURDULDUDDUUUDRRUUDLLRULRULURLDRDLDRURLLLRDDD",
"output": "76"
},
{
"input": "92\nRLRDDLULRLLUURRDDDLDDDLDDUURRRULLRDULDULLLUUULDUDLRLRRDRDRDDULDRLUDRDULDRURUDUULLRDRRLLDRLRR",
"output": "86"
},
{
"input": "93\nRLLURLULRURDDLUURLUDDRDLUURLRDLRRRDUULLRDRRLRLDURRDLLRDDLLLDDDLDRRURLLDRUDULDDRRULRRULRLDRDLR",
"output": "84"
},
{
"input": "94\nRDULDDDLULRDRUDRUUDUUDRRRULDRRUDURUULRDUUDLULLLUDURRDRDLUDRULRRRULUURUDDDDDUDLLRDLDRLLRUUURLUL",
"output": "86"
},
{
"input": "95\nRDLUUULLUURDDRLDLLRRRULRLRDULULRULRUDURLULDDDRLURLDRULDUDUUULLRDDURUULULLDDLDRDRLLLURLRDLLDDDDU",
"output": "86"
},
{
"input": "96\nRDDRLRLLDDULRLRURUDLRLDUDRURLLUUDLLURDLRRUURDRRUDRURLLDLLRDURDURLRLUDURULLLRDUURULUUULRRURRDLURL",
"output": "84"
},
{
"input": "97\nRURDDLRLLRULUDURDLRLLUUDURRLLUDLLLDUDRUULDRUUURURULRDLDRRLLUUUDLLLDDLLLLRLLDUDRRDLLUDLRURUDULRLUR",
"output": "82"
},
{
"input": "98\nRUDURLULLDDLLRDLLRDDLLLLRLDDDDRRRDDRRURLDRLLRUUUDLUUUDDDUDRUURLURUUDUUDRULRRULLRRLRULLULDLUURLULRD",
"output": "92"
},
{
"input": "99\nRRULLDULRRDRULLDUDRUDDDRLLUUDRDDUDURLDDRUUDRRUUURRRURDDLDUURDLRLURRDDLUDDLUDURDRUDDURLURURLRUDRURLD",
"output": "86"
},
{
"input": "100\nUDRLRRLLRRLRRRDDLLDDDLULLDDLURUURUULUDDDRDDLLRDLLUURLRDRLRRLRLLLULDUDDUURRLRDULDRDURRRRRRULDRRDLDRRL",
"output": "88"
},
{
"input": "1\nU",
"output": "0"
},
{
"input": "5\nUUULD",
"output": "2"
},
{
"input": "1\nD",
"output": "0"
},
{
"input": "5\nURLUL",
"output": "2"
},
{
"input": "5\nDDDRU",
"output": "2"
},
{
"input": "2\nLR",
"output": "2"
},
{
"input": "8\nDDRDLDUR",
"output": "4"
},
{
"input": "6\nLLLLUD",
"output": "2"
},
{
"input": "13\nRRRLLLLLLLLLL",
"output": "6"
}
] | 1,512,494,722
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 25
| 62
| 5,529,600
|
#buggy robot
import math
n = int(input())
s = input()
dp = [0,0,0,0]
for i in s:
if i == "L":
dp[0] += 1
elif i == "R":
dp[1] += 1
elif i == "U":
dp[2] += 1
else:
dp[3] += 1
print(2*(min(dp[0],dp[1])+min(dp[2],dp[3])))
|
Title: Buggy Robot
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Ivan has a robot which is situated on an infinite grid. Initially the robot is standing in the starting cell (0,<=0). The robot can process commands. There are four types of commands it can perform:
- U — move from the cell (*x*,<=*y*) to (*x*,<=*y*<=+<=1); - D — move from (*x*,<=*y*) to (*x*,<=*y*<=-<=1); - L — move from (*x*,<=*y*) to (*x*<=-<=1,<=*y*); - R — move from (*x*,<=*y*) to (*x*<=+<=1,<=*y*).
Ivan entered a sequence of *n* commands, and the robot processed it. After this sequence the robot ended up in the starting cell (0,<=0), but Ivan doubts that the sequence is such that after performing it correctly the robot ends up in the same cell. He thinks that some commands were ignored by robot. To acknowledge whether the robot is severely bugged, he needs to calculate the maximum possible number of commands that were performed correctly. Help Ivan to do the calculations!
Input Specification:
The first line contains one number *n* — the length of sequence of commands entered by Ivan (1<=≤<=*n*<=≤<=100).
The second line contains the sequence itself — a string consisting of *n* characters. Each character can be U, D, L or R.
Output Specification:
Print the maximum possible number of commands from the sequence the robot could perform to end up in the starting cell.
Demo Input:
['4\nLDUR\n', '5\nRRRUU\n', '6\nLLRRRR\n']
Demo Output:
['4\n', '0\n', '4\n']
Note:
none
|
```python
#buggy robot
import math
n = int(input())
s = input()
dp = [0,0,0,0]
for i in s:
if i == "L":
dp[0] += 1
elif i == "R":
dp[1] += 1
elif i == "U":
dp[2] += 1
else:
dp[3] += 1
print(2*(min(dp[0],dp[1])+min(dp[2],dp[3])))
```
| 3
|
|
168
|
A
|
Wizards and Demonstration
|
PROGRAMMING
| 900
|
[
"implementation",
"math"
] | null | null |
Some country is populated by wizards. They want to organize a demonstration.
There are *n* people living in the city, *x* of them are the wizards who will surely go to the demonstration. Other city people (*n*<=-<=*x* people) do not support the wizards and aren't going to go to the demonstration. We know that the city administration will react only to the demonstration involving at least *y* percent of the city people. Having considered the matter, the wizards decided to create clone puppets which can substitute the city people on the demonstration.
So all in all, the demonstration will involve only the wizards and their puppets. The city administration cannot tell the difference between a puppet and a person, so, as they calculate the percentage, the administration will consider the city to be consisting of only *n* people and not containing any clone puppets.
Help the wizards and find the minimum number of clones to create to that the demonstration had no less than *y* percent of the city people.
|
The first line contains three space-separated integers, *n*, *x*, *y* (1<=≤<=*n*,<=*x*,<=*y*<=≤<=104,<=*x*<=≤<=*n*) — the number of citizens in the city, the number of wizards and the percentage the administration needs, correspondingly.
Please note that *y* can exceed 100 percent, that is, the administration wants to see on a demonstration more people that actually live in the city (<=><=*n*).
|
Print a single integer — the answer to the problem, the minimum number of clones to create, so that the demonstration involved no less than *y* percent of *n* (the real total city population).
|
[
"10 1 14\n",
"20 10 50\n",
"1000 352 146\n"
] |
[
"1\n",
"0\n",
"1108\n"
] |
In the first sample it is necessary that at least 14% of 10 people came to the demonstration. As the number of people should be integer, then at least two people should come. There is only one wizard living in the city and he is going to come. That isn't enough, so he needs to create one clone.
In the second sample 10 people should come to the demonstration. The city has 10 wizards. They will all come to the demonstration, so nobody has to create any clones.
| 500
|
[
{
"input": "10 1 14",
"output": "1"
},
{
"input": "20 10 50",
"output": "0"
},
{
"input": "1000 352 146",
"output": "1108"
},
{
"input": "68 65 20",
"output": "0"
},
{
"input": "78 28 27",
"output": "0"
},
{
"input": "78 73 58",
"output": "0"
},
{
"input": "70 38 66",
"output": "9"
},
{
"input": "54 4 38",
"output": "17"
},
{
"input": "3 1 69",
"output": "2"
},
{
"input": "11 9 60",
"output": "0"
},
{
"input": "71 49 65",
"output": "0"
},
{
"input": "78 55 96",
"output": "20"
},
{
"input": "2765 768 9020",
"output": "248635"
},
{
"input": "3478 1728 9727",
"output": "336578"
},
{
"input": "9678 6173 5658",
"output": "541409"
},
{
"input": "1138 570 6666",
"output": "75290"
},
{
"input": "7754 204 9038",
"output": "700603"
},
{
"input": "8403 7401 4769",
"output": "393339"
},
{
"input": "4909 2111 8860",
"output": "432827"
},
{
"input": "6571 6449 8965",
"output": "582642"
},
{
"input": "9178 2255 7996",
"output": "731618"
},
{
"input": "6151 6148 3746",
"output": "224269"
},
{
"input": "8890 5449 8734",
"output": "771004"
},
{
"input": "7879 2590 2818",
"output": "219441"
},
{
"input": "8484 6400 547",
"output": "40008"
},
{
"input": "7835 6710 1639",
"output": "121706"
},
{
"input": "2379 1436 9663",
"output": "228447"
},
{
"input": "6487 5670 8",
"output": "0"
},
{
"input": "4470 2543 6",
"output": "0"
},
{
"input": "7261 5328 10",
"output": "0"
},
{
"input": "3871 3795 7",
"output": "0"
},
{
"input": "9620 6557 6",
"output": "0"
},
{
"input": "4890 1112 5",
"output": "0"
},
{
"input": "1 1 1",
"output": "0"
},
{
"input": "1 1 10000",
"output": "99"
},
{
"input": "10000 1 1",
"output": "99"
},
{
"input": "10000 1 10000",
"output": "999999"
},
{
"input": "10000 10000 1",
"output": "0"
},
{
"input": "10000 10000 10000",
"output": "990000"
},
{
"input": "67 1 3",
"output": "2"
},
{
"input": "7878 4534 9159",
"output": "717013"
},
{
"input": "1 1 1",
"output": "0"
},
{
"input": "3271 5 50",
"output": "1631"
}
] | 1,664,199,553
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 43
| 92
| 102,400
|
import math as mt
from collections import defaultdict,deque
import sys
from bisect import bisect_right as b_r
from bisect import bisect_left as b_l
from os import path
from heapq import *
mod=1000000007
INT_MAX = sys.maxsize-1
INT_MIN = -sys.maxsize
# if(path.exists('inputt.txt')):
# sys.stdin = open('inputt.txt','r')
# sys.stdout = open('output.txt','w')
# else:
# # input=sys.stdin.readline
# pass
def myyy__answer():
n,m,p=map(int,input().split())
req=mt.ceil((n*p)/100)
if(m>=req):
print(0)
else:
print(req-m)
if __name__ == "__main__":
# for _ in range(int(input())):
# print(myyy__answer())
myyy__answer()
|
Title: Wizards and Demonstration
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Some country is populated by wizards. They want to organize a demonstration.
There are *n* people living in the city, *x* of them are the wizards who will surely go to the demonstration. Other city people (*n*<=-<=*x* people) do not support the wizards and aren't going to go to the demonstration. We know that the city administration will react only to the demonstration involving at least *y* percent of the city people. Having considered the matter, the wizards decided to create clone puppets which can substitute the city people on the demonstration.
So all in all, the demonstration will involve only the wizards and their puppets. The city administration cannot tell the difference between a puppet and a person, so, as they calculate the percentage, the administration will consider the city to be consisting of only *n* people and not containing any clone puppets.
Help the wizards and find the minimum number of clones to create to that the demonstration had no less than *y* percent of the city people.
Input Specification:
The first line contains three space-separated integers, *n*, *x*, *y* (1<=≤<=*n*,<=*x*,<=*y*<=≤<=104,<=*x*<=≤<=*n*) — the number of citizens in the city, the number of wizards and the percentage the administration needs, correspondingly.
Please note that *y* can exceed 100 percent, that is, the administration wants to see on a demonstration more people that actually live in the city (<=><=*n*).
Output Specification:
Print a single integer — the answer to the problem, the minimum number of clones to create, so that the demonstration involved no less than *y* percent of *n* (the real total city population).
Demo Input:
['10 1 14\n', '20 10 50\n', '1000 352 146\n']
Demo Output:
['1\n', '0\n', '1108\n']
Note:
In the first sample it is necessary that at least 14% of 10 people came to the demonstration. As the number of people should be integer, then at least two people should come. There is only one wizard living in the city and he is going to come. That isn't enough, so he needs to create one clone.
In the second sample 10 people should come to the demonstration. The city has 10 wizards. They will all come to the demonstration, so nobody has to create any clones.
|
```python
import math as mt
from collections import defaultdict,deque
import sys
from bisect import bisect_right as b_r
from bisect import bisect_left as b_l
from os import path
from heapq import *
mod=1000000007
INT_MAX = sys.maxsize-1
INT_MIN = -sys.maxsize
# if(path.exists('inputt.txt')):
# sys.stdin = open('inputt.txt','r')
# sys.stdout = open('output.txt','w')
# else:
# # input=sys.stdin.readline
# pass
def myyy__answer():
n,m,p=map(int,input().split())
req=mt.ceil((n*p)/100)
if(m>=req):
print(0)
else:
print(req-m)
if __name__ == "__main__":
# for _ in range(int(input())):
# print(myyy__answer())
myyy__answer()
```
| 3
|
|
271
|
A
|
Beautiful Year
|
PROGRAMMING
| 800
|
[
"brute force"
] | null | null |
It seems like the year of 2013 came only yesterday. Do you know a curious fact? The year of 2013 is the first year after the old 1987 with only distinct digits.
Now you are suggested to solve the following problem: given a year number, find the minimum year number which is strictly larger than the given one and has only distinct digits.
|
The single line contains integer *y* (1000<=≤<=*y*<=≤<=9000) — the year number.
|
Print a single integer — the minimum year number that is strictly larger than *y* and all it's digits are distinct. It is guaranteed that the answer exists.
|
[
"1987\n",
"2013\n"
] |
[
"2013\n",
"2014\n"
] |
none
| 500
|
[
{
"input": "1987",
"output": "2013"
},
{
"input": "2013",
"output": "2014"
},
{
"input": "1000",
"output": "1023"
},
{
"input": "1001",
"output": "1023"
},
{
"input": "1234",
"output": "1235"
},
{
"input": "5555",
"output": "5601"
},
{
"input": "9000",
"output": "9012"
},
{
"input": "1111",
"output": "1203"
},
{
"input": "8999",
"output": "9012"
},
{
"input": "4572",
"output": "4573"
},
{
"input": "6666",
"output": "6701"
},
{
"input": "2001",
"output": "2013"
},
{
"input": "3000",
"output": "3012"
},
{
"input": "7712",
"output": "7801"
},
{
"input": "8088",
"output": "8091"
},
{
"input": "1594",
"output": "1596"
},
{
"input": "6016",
"output": "6017"
},
{
"input": "8800",
"output": "8901"
},
{
"input": "3331",
"output": "3401"
},
{
"input": "5090",
"output": "5091"
},
{
"input": "2342",
"output": "2345"
},
{
"input": "2334",
"output": "2340"
},
{
"input": "1123",
"output": "1203"
},
{
"input": "8989",
"output": "9012"
},
{
"input": "8977",
"output": "9012"
},
{
"input": "6869",
"output": "6870"
},
{
"input": "8999",
"output": "9012"
}
] | 1,696,945,528
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 27
| 92
| 0
|
test_year=int(input())
test=True
while test:
test_year+=1
if len(set(str(test_year))) == 4:
test=False
print(test_year)
|
Title: Beautiful Year
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
It seems like the year of 2013 came only yesterday. Do you know a curious fact? The year of 2013 is the first year after the old 1987 with only distinct digits.
Now you are suggested to solve the following problem: given a year number, find the minimum year number which is strictly larger than the given one and has only distinct digits.
Input Specification:
The single line contains integer *y* (1000<=≤<=*y*<=≤<=9000) — the year number.
Output Specification:
Print a single integer — the minimum year number that is strictly larger than *y* and all it's digits are distinct. It is guaranteed that the answer exists.
Demo Input:
['1987\n', '2013\n']
Demo Output:
['2013\n', '2014\n']
Note:
none
|
```python
test_year=int(input())
test=True
while test:
test_year+=1
if len(set(str(test_year))) == 4:
test=False
print(test_year)
```
| 3
|
|
282
|
A
|
Bit++
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
The classic programming language of Bitland is Bit++. This language is so peculiar and complicated.
The language is that peculiar as it has exactly one variable, called *x*. Also, there are two operations:
- Operation ++ increases the value of variable *x* by 1. - Operation -- decreases the value of variable *x* by 1.
A statement in language Bit++ is a sequence, consisting of exactly one operation and one variable *x*. The statement is written without spaces, that is, it can only contain characters "+", "-", "X". Executing a statement means applying the operation it contains.
A programme in Bit++ is a sequence of statements, each of them needs to be executed. Executing a programme means executing all the statements it contains.
You're given a programme in language Bit++. The initial value of *x* is 0. Execute the programme and find its final value (the value of the variable when this programme is executed).
|
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=150) — the number of statements in the programme.
Next *n* lines contain a statement each. Each statement contains exactly one operation (++ or --) and exactly one variable *x* (denoted as letter «X»). Thus, there are no empty statements. The operation and the variable can be written in any order.
|
Print a single integer — the final value of *x*.
|
[
"1\n++X\n",
"2\nX++\n--X\n"
] |
[
"1\n",
"0\n"
] |
none
| 500
|
[
{
"input": "1\n++X",
"output": "1"
},
{
"input": "2\nX++\n--X",
"output": "0"
},
{
"input": "3\n++X\n++X\n++X",
"output": "3"
},
{
"input": "2\n--X\n--X",
"output": "-2"
},
{
"input": "5\n++X\n--X\n++X\n--X\n--X",
"output": "-1"
},
{
"input": "28\nX--\n++X\nX++\nX++\nX++\n--X\n--X\nX++\nX--\n++X\nX++\n--X\nX--\nX++\nX--\n++X\n++X\nX++\nX++\nX++\nX++\n--X\n++X\n--X\n--X\n--X\n--X\nX++",
"output": "4"
},
{
"input": "94\nX++\nX++\n++X\n++X\nX--\n--X\nX++\n--X\nX++\n++X\nX++\n++X\n--X\n--X\n++X\nX++\n--X\nX--\nX--\n--X\nX--\nX--\n--X\n++X\n--X\nX--\nX--\nX++\n++X\n--X\nX--\n++X\n--X\n--X\nX--\nX--\nX++\nX++\nX--\nX++\nX--\nX--\nX--\n--X\nX--\nX--\nX--\nX++\n++X\nX--\n++X\nX++\n--X\n--X\n--X\n--X\n++X\nX--\n--X\n--X\n++X\nX--\nX--\nX++\n++X\nX++\n++X\n--X\n--X\nX--\n++X\nX--\nX--\n++X\n++X\n++X\n++X\nX++\n++X\n--X\nX++\n--X\n--X\n++X\n--X\nX++\n++X\nX++\n--X\nX--\nX--\n--X\n++X\nX++",
"output": "-10"
},
{
"input": "56\n--X\nX--\n--X\n--X\nX--\nX--\n--X\nX++\n++X\n--X\nX++\nX--\n--X\n++X\n--X\nX--\nX--\n++X\nX--\nX--\n--X\n++X\n--X\n++X\n--X\nX++\n++X\nX++\n--X\n++X\nX++\nX++\n--X\nX++\nX--\n--X\nX--\n--X\nX++\n++X\n--X\n++X\nX++\nX--\n--X\n--X\n++X\nX--\nX--\n--X\nX--\n--X\nX++\n--X\n++X\n--X",
"output": "-14"
},
{
"input": "59\nX--\n--X\nX++\n++X\nX--\n--X\n--X\n++X\n++X\n++X\n++X\nX++\n++X\n++X\nX++\n--X\nX--\nX++\n++X\n--X\nX++\n--X\n++X\nX++\n--X\n--X\nX++\nX++\n--X\nX++\nX++\nX++\nX--\nX--\n--X\nX++\nX--\nX--\n++X\nX--\nX++\n--X\nX++\nX--\nX--\nX--\nX--\n++X\n--X\nX++\nX++\nX--\nX++\n++X\nX--\nX++\nX--\nX--\n++X",
"output": "3"
},
{
"input": "87\n--X\n++X\n--X\nX++\n--X\nX--\n--X\n++X\nX--\n++X\n--X\n--X\nX++\n--X\nX--\nX++\n++X\n--X\n++X\n++X\n--X\n++X\n--X\nX--\n++X\n++X\nX--\nX++\nX++\n--X\n--X\n++X\nX--\n--X\n++X\n--X\nX++\n--X\n--X\nX--\n++X\n++X\n--X\nX--\nX--\nX--\nX--\nX--\nX++\n--X\n++X\n--X\nX++\n++X\nX++\n++X\n--X\nX++\n++X\nX--\n--X\nX++\n++X\nX++\nX++\n--X\n--X\n++X\n--X\nX++\nX++\n++X\nX++\nX++\nX++\nX++\n--X\n--X\n--X\n--X\n--X\n--X\n--X\nX--\n--X\n++X\n++X",
"output": "-5"
},
{
"input": "101\nX++\nX++\nX++\n++X\n--X\nX--\nX++\nX--\nX--\n--X\n--X\n++X\nX++\n++X\n++X\nX--\n--X\n++X\nX++\nX--\n++X\n--X\n--X\n--X\n++X\n--X\n++X\nX++\nX++\n++X\n--X\nX++\nX--\nX++\n++X\n++X\nX--\nX--\nX--\nX++\nX++\nX--\nX--\nX++\n++X\n++X\n++X\n--X\n--X\n++X\nX--\nX--\n--X\n++X\nX--\n++X\nX++\n++X\nX--\nX--\n--X\n++X\n--X\n++X\n++X\n--X\nX++\n++X\nX--\n++X\nX--\n++X\nX++\nX--\n++X\nX++\n--X\nX++\nX++\n++X\n--X\n++X\n--X\nX++\n--X\nX--\n--X\n++X\n++X\n++X\n--X\nX--\nX--\nX--\nX--\n--X\n--X\n--X\n++X\n--X\n--X",
"output": "1"
},
{
"input": "63\n--X\nX--\n++X\n--X\n++X\nX++\n--X\n--X\nX++\n--X\n--X\nX++\nX--\nX--\n--X\n++X\nX--\nX--\nX++\n++X\nX++\nX++\n--X\n--X\n++X\nX--\nX--\nX--\n++X\nX++\nX--\n--X\nX--\n++X\n++X\nX++\n++X\nX++\nX++\n--X\nX--\n++X\nX--\n--X\nX--\nX--\nX--\n++X\n++X\n++X\n++X\nX++\nX++\n++X\n--X\n--X\n++X\n++X\n++X\nX--\n++X\n++X\nX--",
"output": "1"
},
{
"input": "45\n--X\n++X\nX--\n++X\n++X\nX++\n--X\n--X\n--X\n--X\n--X\n--X\n--X\nX++\n++X\nX--\n++X\n++X\nX--\nX++\nX--\n--X\nX--\n++X\n++X\n--X\n--X\nX--\nX--\n--X\n++X\nX--\n--X\n++X\n++X\n--X\n--X\nX--\n++X\n++X\nX++\nX++\n++X\n++X\nX++",
"output": "-3"
},
{
"input": "21\n++X\nX++\n--X\nX--\nX++\n++X\n--X\nX--\nX++\nX--\nX--\nX--\nX++\n++X\nX++\n++X\n--X\nX--\n--X\nX++\n++X",
"output": "1"
},
{
"input": "100\n--X\n++X\nX++\n++X\nX--\n++X\nX--\nX++\n--X\nX++\nX--\nX--\nX--\n++X\nX--\nX++\nX++\n++X\nX++\nX++\nX++\nX++\n++X\nX++\n++X\nX--\n--X\n++X\nX--\n--X\n++X\n++X\nX--\nX++\nX++\nX++\n++X\n--X\n++X\nX++\nX--\n++X\n++X\n--X\n++X\nX--\nX--\nX--\nX++\nX--\nX--\nX++\nX++\n--X\nX++\nX++\n--X\nX--\n--X\n++X\n--X\n++X\n++X\nX--\n--X\n++X\n++X\n--X\n--X\n++X\nX++\nX--\nX++\nX--\nX++\nX++\n--X\nX--\nX--\n++X\nX--\n--X\n--X\nX++\n--X\n--X\nX--\nX--\n++X\n++X\nX--\n++X\nX++\n--X\n++X\n++X\nX++\n--X\n--X\nX++",
"output": "8"
},
{
"input": "17\nX++\nX++\n++X\n--X\n--X\n++X\n++X\n--X\nX--\nX++\nX--\n--X\n--X\nX--\n++X\nX--\nX++",
"output": "-1"
},
{
"input": "77\n++X\nX++\n--X\nX--\n--X\n--X\nX--\nX++\nX--\nX++\nX--\n++X\n--X\n--X\n--X\n--X\n++X\nX--\nX++\nX--\n--X\nX--\n--X\nX--\n++X\n--X\n++X\n++X\nX++\nX++\nX--\n--X\nX--\nX--\nX++\n--X\n--X\n++X\nX--\nX--\n++X\nX++\nX--\n++X\n--X\nX++\nX--\n++X\n++X\n++X\nX--\nX--\nX--\n--X\n++X\n++X\n++X\nX++\n--X\n--X\n++X\n--X\nX--\nX++\n++X\nX++\n++X\nX--\nX++\nX++\n--X\nX++\nX++\nX++\n--X\nX++\nX--",
"output": "-5"
},
{
"input": "21\nX--\n++X\n--X\nX--\n++X\nX--\n++X\nX--\n--X\n++X\nX++\n++X\nX++\n++X\nX--\n--X\nX++\nX++\nX--\n++X\nX--",
"output": "1"
},
{
"input": "1\nX--",
"output": "-1"
}
] | 1,697,836,911
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 36
| 62
| 0
|
print(sum(1 if "++" in input() else -1 for _ in range(int(input()))))
|
Title: Bit++
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
The classic programming language of Bitland is Bit++. This language is so peculiar and complicated.
The language is that peculiar as it has exactly one variable, called *x*. Also, there are two operations:
- Operation ++ increases the value of variable *x* by 1. - Operation -- decreases the value of variable *x* by 1.
A statement in language Bit++ is a sequence, consisting of exactly one operation and one variable *x*. The statement is written without spaces, that is, it can only contain characters "+", "-", "X". Executing a statement means applying the operation it contains.
A programme in Bit++ is a sequence of statements, each of them needs to be executed. Executing a programme means executing all the statements it contains.
You're given a programme in language Bit++. The initial value of *x* is 0. Execute the programme and find its final value (the value of the variable when this programme is executed).
Input Specification:
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=150) — the number of statements in the programme.
Next *n* lines contain a statement each. Each statement contains exactly one operation (++ or --) and exactly one variable *x* (denoted as letter «X»). Thus, there are no empty statements. The operation and the variable can be written in any order.
Output Specification:
Print a single integer — the final value of *x*.
Demo Input:
['1\n++X\n', '2\nX++\n--X\n']
Demo Output:
['1\n', '0\n']
Note:
none
|
```python
print(sum(1 if "++" in input() else -1 for _ in range(int(input()))))
```
| 3
|
|
443
|
A
|
Anton and Letters
|
PROGRAMMING
| 800
|
[
"constructive algorithms",
"implementation"
] | null | null |
Recently, Anton has found a set. The set consists of small English letters. Anton carefully wrote out all the letters from the set in one line, separated by a comma. He also added an opening curved bracket at the beginning of the line and a closing curved bracket at the end of the line.
Unfortunately, from time to time Anton would forget writing some letter and write it again. He asks you to count the total number of distinct letters in his set.
|
The first and the single line contains the set of letters. The length of the line doesn't exceed 1000. It is guaranteed that the line starts from an opening curved bracket and ends with a closing curved bracket. Between them, small English letters are listed, separated by a comma. Each comma is followed by a space.
|
Print a single number — the number of distinct letters in Anton's set.
|
[
"{a, b, c}\n",
"{b, a, b, a}\n",
"{}\n"
] |
[
"3\n",
"2\n",
"0\n"
] |
none
| 500
|
[
{
"input": "{a, b, c}",
"output": "3"
},
{
"input": "{b, a, b, a}",
"output": "2"
},
{
"input": "{}",
"output": "0"
},
{
"input": "{a, a, c, b, b, b, c, c, c, c}",
"output": "3"
},
{
"input": "{a, c, b, b}",
"output": "3"
},
{
"input": "{a, b}",
"output": "2"
},
{
"input": "{a}",
"output": "1"
},
{
"input": "{b, a, b, a, b, c, c, b, c, b}",
"output": "3"
},
{
"input": "{e, g, c, e}",
"output": "3"
},
{
"input": "{a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a}",
"output": "1"
},
{
"input": "{a, a, b}",
"output": "2"
},
{
"input": "{a, b, b, b, a, b, a, a, a, a, a, a, b, a, b, a, a, a, a, a, b, a, b, a}",
"output": "2"
},
{
"input": "{j, u, a, c, f, w, e, w, x, t, h, p, v, n, i, l, x, n, i, b, u, c, a, a}",
"output": "16"
},
{
"input": "{x, i, w, c, p, e, h, z, k, i}",
"output": "9"
},
{
"input": "{t, k, o, x, r, d, q, j, k, e, z, w, y, r, z, s, s, e, s, b, k, i}",
"output": "15"
},
{
"input": "{y}",
"output": "1"
},
{
"input": "{x}",
"output": "1"
},
{
"input": "{b, z, a, z}",
"output": "3"
},
{
"input": "{z}",
"output": "1"
},
{
"input": "{a, z}",
"output": "2"
},
{
"input": "{a, b, z}",
"output": "3"
},
{
"input": "{s, q, z, r, t, a, b, h, j, i, o, z, r, q}",
"output": "11"
}
] | 1,696,997,123
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 27
| 46
| 0
|
x=input()
if x=='{}':
print(0)
else:
x=x.replace('{','')
x=x.replace('}','')
newlist=list(x.split(', '))
newset=set(newlist)
newlist=list(newset)
print(len(newlist))
|
Title: Anton and Letters
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Recently, Anton has found a set. The set consists of small English letters. Anton carefully wrote out all the letters from the set in one line, separated by a comma. He also added an opening curved bracket at the beginning of the line and a closing curved bracket at the end of the line.
Unfortunately, from time to time Anton would forget writing some letter and write it again. He asks you to count the total number of distinct letters in his set.
Input Specification:
The first and the single line contains the set of letters. The length of the line doesn't exceed 1000. It is guaranteed that the line starts from an opening curved bracket and ends with a closing curved bracket. Between them, small English letters are listed, separated by a comma. Each comma is followed by a space.
Output Specification:
Print a single number — the number of distinct letters in Anton's set.
Demo Input:
['{a, b, c}\n', '{b, a, b, a}\n', '{}\n']
Demo Output:
['3\n', '2\n', '0\n']
Note:
none
|
```python
x=input()
if x=='{}':
print(0)
else:
x=x.replace('{','')
x=x.replace('}','')
newlist=list(x.split(', '))
newset=set(newlist)
newlist=list(newset)
print(len(newlist))
```
| 3
|
|
834
|
A
|
The Useless Toy
|
PROGRAMMING
| 900
|
[
"implementation"
] | null | null |
Walking through the streets of Marshmallow City, Slastyona have spotted some merchants selling a kind of useless toy which is very popular nowadays – caramel spinner! Wanting to join the craze, she has immediately bought the strange contraption.
Spinners in Sweetland have the form of V-shaped pieces of caramel. Each spinner can, well, spin around an invisible magic axis. At a specific point in time, a spinner can take 4 positions shown below (each one rotated 90 degrees relative to the previous, with the fourth one followed by the first one):
After the spinner was spun, it starts its rotation, which is described by a following algorithm: the spinner maintains its position for a second then majestically switches to the next position in clockwise or counter-clockwise order, depending on the direction the spinner was spun in.
Slastyona managed to have spinner rotating for exactly *n* seconds. Being fascinated by elegance of the process, she completely forgot the direction the spinner was spun in! Lucky for her, she managed to recall the starting position, and wants to deduct the direction given the information she knows. Help her do this.
|
There are two characters in the first string – the starting and the ending position of a spinner. The position is encoded with one of the following characters: v (ASCII code 118, lowercase v), < (ASCII code 60), ^ (ASCII code 94) or > (ASCII code 62) (see the picture above for reference). Characters are separated by a single space.
In the second strings, a single number *n* is given (0<=≤<=*n*<=≤<=109) – the duration of the rotation.
It is guaranteed that the ending position of a spinner is a result of a *n* second spin in any of the directions, assuming the given starting position.
|
Output cw, if the direction is clockwise, ccw – if counter-clockwise, and undefined otherwise.
|
[
"^ >\n1\n",
"< ^\n3\n",
"^ v\n6\n"
] |
[
"cw\n",
"ccw\n",
"undefined\n"
] |
none
| 500
|
[
{
"input": "^ >\n1",
"output": "cw"
},
{
"input": "< ^\n3",
"output": "ccw"
},
{
"input": "^ v\n6",
"output": "undefined"
},
{
"input": "^ >\n999999999",
"output": "ccw"
},
{
"input": "> v\n1",
"output": "cw"
},
{
"input": "v <\n1",
"output": "cw"
},
{
"input": "< ^\n1",
"output": "cw"
},
{
"input": "v <\n422435957",
"output": "cw"
},
{
"input": "v >\n139018901",
"output": "ccw"
},
{
"input": "v ^\n571728018",
"output": "undefined"
},
{
"input": "^ ^\n0",
"output": "undefined"
},
{
"input": "< >\n2",
"output": "undefined"
},
{
"input": "> >\n1000000000",
"output": "undefined"
},
{
"input": "v v\n8",
"output": "undefined"
},
{
"input": "< <\n1568",
"output": "undefined"
},
{
"input": "^ v\n2",
"output": "undefined"
},
{
"input": "^ <\n1",
"output": "ccw"
},
{
"input": "< v\n1",
"output": "ccw"
},
{
"input": "v >\n1",
"output": "ccw"
},
{
"input": "> ^\n1",
"output": "ccw"
},
{
"input": "v <\n422435957",
"output": "cw"
},
{
"input": "v v\n927162384",
"output": "undefined"
},
{
"input": "v ^\n571728018",
"output": "undefined"
},
{
"input": "^ <\n467441155",
"output": "cw"
},
{
"input": "^ >\n822875521",
"output": "cw"
},
{
"input": "^ <\n821690113",
"output": "ccw"
},
{
"input": "^ <\n171288453",
"output": "ccw"
},
{
"input": "^ <\n110821381",
"output": "ccw"
},
{
"input": "^ ^\n539580280",
"output": "undefined"
},
{
"input": "^ >\n861895563",
"output": "ccw"
},
{
"input": "v v\n4",
"output": "undefined"
},
{
"input": "^ ^\n4",
"output": "undefined"
},
{
"input": "> >\n4",
"output": "undefined"
},
{
"input": "< <\n8",
"output": "undefined"
},
{
"input": "v v\n0",
"output": "undefined"
},
{
"input": "^ <\n11",
"output": "cw"
},
{
"input": "< <\n4",
"output": "undefined"
},
{
"input": "< <\n0",
"output": "undefined"
},
{
"input": "< v\n3",
"output": "cw"
},
{
"input": "^ <\n3",
"output": "cw"
},
{
"input": "^ <\n7",
"output": "cw"
},
{
"input": "< >\n6",
"output": "undefined"
},
{
"input": "v >\n3",
"output": "cw"
},
{
"input": "> >\n300",
"output": "undefined"
},
{
"input": "> >\n0",
"output": "undefined"
},
{
"input": "v <\n3",
"output": "ccw"
},
{
"input": "> >\n12",
"output": "undefined"
}
] | 1,657,277,937
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 47
| 46
| 0
|
line = input()
a, b = line.split()
n = int(input())
positions = {'^': 0, '>': 1, 'v': 2, '<': 3}
n %= 4
i = (positions[a] + n) % 4 == positions[b]
j = (positions[a] - n) % 4 == positions[b]
if i and j:
print('undefined')
elif i:
print('cw')
else:
print('ccw')
|
Title: The Useless Toy
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Walking through the streets of Marshmallow City, Slastyona have spotted some merchants selling a kind of useless toy which is very popular nowadays – caramel spinner! Wanting to join the craze, she has immediately bought the strange contraption.
Spinners in Sweetland have the form of V-shaped pieces of caramel. Each spinner can, well, spin around an invisible magic axis. At a specific point in time, a spinner can take 4 positions shown below (each one rotated 90 degrees relative to the previous, with the fourth one followed by the first one):
After the spinner was spun, it starts its rotation, which is described by a following algorithm: the spinner maintains its position for a second then majestically switches to the next position in clockwise or counter-clockwise order, depending on the direction the spinner was spun in.
Slastyona managed to have spinner rotating for exactly *n* seconds. Being fascinated by elegance of the process, she completely forgot the direction the spinner was spun in! Lucky for her, she managed to recall the starting position, and wants to deduct the direction given the information she knows. Help her do this.
Input Specification:
There are two characters in the first string – the starting and the ending position of a spinner. The position is encoded with one of the following characters: v (ASCII code 118, lowercase v), < (ASCII code 60), ^ (ASCII code 94) or > (ASCII code 62) (see the picture above for reference). Characters are separated by a single space.
In the second strings, a single number *n* is given (0<=≤<=*n*<=≤<=109) – the duration of the rotation.
It is guaranteed that the ending position of a spinner is a result of a *n* second spin in any of the directions, assuming the given starting position.
Output Specification:
Output cw, if the direction is clockwise, ccw – if counter-clockwise, and undefined otherwise.
Demo Input:
['^ >\n1\n', '< ^\n3\n', '^ v\n6\n']
Demo Output:
['cw\n', 'ccw\n', 'undefined\n']
Note:
none
|
```python
line = input()
a, b = line.split()
n = int(input())
positions = {'^': 0, '>': 1, 'v': 2, '<': 3}
n %= 4
i = (positions[a] + n) % 4 == positions[b]
j = (positions[a] - n) % 4 == positions[b]
if i and j:
print('undefined')
elif i:
print('cw')
else:
print('ccw')
```
| 3
|
|
13
|
A
|
Numbers
|
PROGRAMMING
| 1,000
|
[
"implementation",
"math"
] |
A. Numbers
|
1
|
64
|
Little Petya likes numbers a lot. He found that number 123 in base 16 consists of two digits: the first is 7 and the second is 11. So the sum of digits of 123 in base 16 is equal to 18.
Now he wonders what is an average value of sum of digits of the number *A* written in all bases from 2 to *A*<=-<=1.
Note that all computations should be done in base 10. You should find the result as an irreducible fraction, written in base 10.
|
Input contains one integer number *A* (3<=≤<=*A*<=≤<=1000).
|
Output should contain required average value in format «X/Y», where X is the numerator and Y is the denominator.
|
[
"5\n",
"3\n"
] |
[
"7/3\n",
"2/1\n"
] |
In the first sample number 5 written in all bases from 2 to 4 looks so: 101, 12, 11. Sums of digits are 2, 3 and 2, respectively.
| 0
|
[
{
"input": "5",
"output": "7/3"
},
{
"input": "3",
"output": "2/1"
},
{
"input": "1000",
"output": "90132/499"
},
{
"input": "927",
"output": "155449/925"
},
{
"input": "260",
"output": "6265/129"
},
{
"input": "131",
"output": "3370/129"
},
{
"input": "386",
"output": "857/12"
},
{
"input": "277",
"output": "2864/55"
},
{
"input": "766",
"output": "53217/382"
},
{
"input": "28",
"output": "85/13"
},
{
"input": "406",
"output": "7560/101"
},
{
"input": "757",
"output": "103847/755"
},
{
"input": "6",
"output": "9/4"
},
{
"input": "239",
"output": "10885/237"
},
{
"input": "322",
"output": "2399/40"
},
{
"input": "98",
"output": "317/16"
},
{
"input": "208",
"output": "4063/103"
},
{
"input": "786",
"output": "55777/392"
},
{
"input": "879",
"output": "140290/877"
},
{
"input": "702",
"output": "89217/700"
},
{
"input": "948",
"output": "7369/43"
},
{
"input": "537",
"output": "52753/535"
},
{
"input": "984",
"output": "174589/982"
},
{
"input": "934",
"output": "157951/932"
},
{
"input": "726",
"output": "95491/724"
},
{
"input": "127",
"output": "3154/125"
},
{
"input": "504",
"output": "23086/251"
},
{
"input": "125",
"output": "3080/123"
},
{
"input": "604",
"output": "33178/301"
},
{
"input": "115",
"output": "2600/113"
},
{
"input": "27",
"output": "167/25"
},
{
"input": "687",
"output": "85854/685"
},
{
"input": "880",
"output": "69915/439"
},
{
"input": "173",
"output": "640/19"
},
{
"input": "264",
"output": "6438/131"
},
{
"input": "785",
"output": "111560/783"
},
{
"input": "399",
"output": "29399/397"
},
{
"input": "514",
"output": "6031/64"
},
{
"input": "381",
"output": "26717/379"
},
{
"input": "592",
"output": "63769/590"
},
{
"input": "417",
"output": "32002/415"
},
{
"input": "588",
"output": "62723/586"
},
{
"input": "852",
"output": "131069/850"
},
{
"input": "959",
"output": "5059/29"
},
{
"input": "841",
"output": "127737/839"
},
{
"input": "733",
"output": "97598/731"
},
{
"input": "692",
"output": "87017/690"
},
{
"input": "69",
"output": "983/67"
},
{
"input": "223",
"output": "556/13"
},
{
"input": "93",
"output": "246/13"
},
{
"input": "643",
"output": "75503/641"
},
{
"input": "119",
"output": "2833/117"
},
{
"input": "498",
"output": "1459/16"
},
{
"input": "155",
"output": "4637/153"
},
{
"input": "305",
"output": "17350/303"
},
{
"input": "454",
"output": "37893/452"
},
{
"input": "88",
"output": "1529/86"
},
{
"input": "850",
"output": "32645/212"
},
{
"input": "474",
"output": "20581/236"
},
{
"input": "309",
"output": "17731/307"
},
{
"input": "762",
"output": "105083/760"
},
{
"input": "591",
"output": "63761/589"
},
{
"input": "457",
"output": "38317/455"
},
{
"input": "141",
"output": "3832/139"
},
{
"input": "385",
"output": "27232/383"
},
{
"input": "387",
"output": "27628/385"
},
{
"input": "469",
"output": "40306/467"
},
{
"input": "624",
"output": "35285/311"
},
{
"input": "330",
"output": "487/8"
},
{
"input": "31",
"output": "222/29"
},
{
"input": "975",
"output": "171679/973"
},
{
"input": "584",
"output": "62183/582"
},
{
"input": "668",
"output": "81127/666"
},
{
"input": "331",
"output": "20297/329"
},
{
"input": "189",
"output": "6789/187"
},
{
"input": "251",
"output": "11939/249"
},
{
"input": "876",
"output": "69196/437"
},
{
"input": "615",
"output": "68987/613"
},
{
"input": "451",
"output": "37258/449"
},
{
"input": "499",
"output": "45727/497"
},
{
"input": "699",
"output": "89117/697"
},
{
"input": "619",
"output": "70019/617"
},
{
"input": "413",
"output": "10515/137"
},
{
"input": "197",
"output": "7399/195"
},
{
"input": "794",
"output": "14281/99"
},
{
"input": "659",
"output": "79403/657"
},
{
"input": "653",
"output": "77695/651"
},
{
"input": "23",
"output": "45/7"
},
{
"input": "430",
"output": "16985/214"
},
{
"input": "249",
"output": "11659/247"
},
{
"input": "837",
"output": "126869/835"
},
{
"input": "258",
"output": "12373/256"
},
{
"input": "995",
"output": "59665/331"
},
{
"input": "102",
"output": "504/25"
},
{
"input": "989",
"output": "177124/987"
},
{
"input": "376",
"output": "13008/187"
},
{
"input": "657",
"output": "15715/131"
},
{
"input": "746",
"output": "50509/372"
},
{
"input": "602",
"output": "13177/120"
}
] | 1,650,799,406
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 99
| 124
| 2,150,400
|
def sumOfBaseDigits(n, base):
suma = 0
while n:
suma += n%base
n = n//base
return suma
A = int(input())
num = 0
den = A-2
for i in range(2, A):
num += sumOfBaseDigits(A,i)
i = 2
while i < min(num, den):
while num%i == 0 and den%i == 0:
num = num // i
den = den // i
i += 1
print(num, "/", den, sep="")
|
Title: Numbers
Time Limit: 1 seconds
Memory Limit: 64 megabytes
Problem Description:
Little Petya likes numbers a lot. He found that number 123 in base 16 consists of two digits: the first is 7 and the second is 11. So the sum of digits of 123 in base 16 is equal to 18.
Now he wonders what is an average value of sum of digits of the number *A* written in all bases from 2 to *A*<=-<=1.
Note that all computations should be done in base 10. You should find the result as an irreducible fraction, written in base 10.
Input Specification:
Input contains one integer number *A* (3<=≤<=*A*<=≤<=1000).
Output Specification:
Output should contain required average value in format «X/Y», where X is the numerator and Y is the denominator.
Demo Input:
['5\n', '3\n']
Demo Output:
['7/3\n', '2/1\n']
Note:
In the first sample number 5 written in all bases from 2 to 4 looks so: 101, 12, 11. Sums of digits are 2, 3 and 2, respectively.
|
```python
def sumOfBaseDigits(n, base):
suma = 0
while n:
suma += n%base
n = n//base
return suma
A = int(input())
num = 0
den = A-2
for i in range(2, A):
num += sumOfBaseDigits(A,i)
i = 2
while i < min(num, den):
while num%i == 0 and den%i == 0:
num = num // i
den = den // i
i += 1
print(num, "/", den, sep="")
```
| 3.921978
|
846
|
D
|
Monitor
|
PROGRAMMING
| 1,900
|
[
"binary search",
"data structures"
] | null | null |
Recently Luba bought a monitor. Monitor is a rectangular matrix of size *n*<=×<=*m*. But then she started to notice that some pixels cease to work properly. Luba thinks that the monitor will become broken the first moment when it contains a square *k*<=×<=*k* consisting entirely of broken pixels. She knows that *q* pixels are already broken, and for each of them she knows the moment when it stopped working. Help Luba to determine when the monitor became broken (or tell that it's still not broken even after all *q* pixels stopped working).
|
The first line contains four integer numbers *n*,<=*m*,<=*k*,<=*q* (1<=≤<=*n*,<=*m*<=≤<=500,<=1<=≤<=*k*<=≤<=*min*(*n*,<=*m*),<=0<=≤<=*q*<=≤<=*n*·*m*) — the length and width of the monitor, the size of a rectangle such that the monitor is broken if there is a broken rectangle with this size, and the number of broken pixels.
Each of next *q* lines contain three integer numbers *x**i*,<=*y**i*,<=*t**i* (1<=≤<=*x**i*<=≤<=*n*,<=1<=≤<=*y**i*<=≤<=*m*,<=0<=≤<=*t*<=≤<=109) — coordinates of *i*-th broken pixel (its row and column in matrix) and the moment it stopped working. Each pixel is listed at most once.
We consider that pixel is already broken at moment *t**i*.
|
Print one number — the minimum moment the monitor became broken, or "-1" if it's still not broken after these *q* pixels stopped working.
|
[
"2 3 2 5\n2 1 8\n2 2 8\n1 2 1\n1 3 4\n2 3 2\n",
"3 3 2 5\n1 2 2\n2 2 1\n2 3 5\n3 2 10\n2 1 100\n"
] |
[
"8\n",
"-1\n"
] |
none
| 0
|
[
{
"input": "2 3 2 5\n2 1 8\n2 2 8\n1 2 1\n1 3 4\n2 3 2",
"output": "8"
},
{
"input": "3 3 2 5\n1 2 2\n2 2 1\n2 3 5\n3 2 10\n2 1 100",
"output": "-1"
},
{
"input": "29 50 5 29\n21 42 1565821\n21 43 53275635\n21 44 2717830\n21 45 9579585\n21 46 20725775\n22 42 2568372\n22 43 9584662\n22 44 31411635\n22 45 5089311\n22 46 4960702\n23 42 11362237\n23 43 42200296\n23 44 18762146\n23 45 8553819\n23 46 4819516\n24 42 10226552\n24 43 21022685\n24 44 32940182\n24 45 39208099\n24 46 3119232\n25 42 8418247\n25 43 4093694\n25 44 9162006\n25 45 328637\n25 46 13121717\n6 21 3147344\n28 26 12445148\n5 7 925220\n25 35 170187",
"output": "53275635"
},
{
"input": "500 500 1 0",
"output": "-1"
},
{
"input": "1 1 1 0",
"output": "-1"
},
{
"input": "1 1 1 1\n1 1 228",
"output": "228"
},
{
"input": "4 5 2 20\n1 2 3\n1 3 8\n4 3 6\n4 5 2\n2 2 15\n1 5 14\n3 5 10\n1 4 16\n2 3 7\n2 4 17\n2 5 1\n1 1 12\n3 4 19\n2 1 13\n3 2 18\n4 2 11\n4 1 4\n3 3 9\n3 1 0\n4 4 5",
"output": "15"
},
{
"input": "4 2 1 4\n4 2 3\n2 2 0\n4 1 2\n1 1 1",
"output": "0"
},
{
"input": "3 4 2 9\n3 3 8\n1 1 5\n1 2 4\n3 1 2\n1 4 7\n3 4 1\n2 4 0\n2 3 6\n1 3 3",
"output": "7"
}
] | 1,671,049,244
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 38
| 1,496
| 13,209,600
|
from collections import deque
n , m , k , q = map ( int , input ( ) . split ( ) )
inf = -1000000001
M = [ [ inf for i in range ( m) ] for j in range ( n ) ]
for qq in range ( q ) :
x , y , t = map ( int , input ( ) . split ( ) )
x-= 1
y-= 1
M[x][y] = t*-1
def add_one ( a , i , dQ ) :
if len ( dQ ) == 0 :
dQ.appendleft( (a,i) )
return
for ii in range ( len ( dQ ) ) :
if dQ[0][0] < a :
dQ.appendleft( (a,i) )
break
dQ.popleft()
else :
dQ.appendleft( (a,i) )
def remove_one ( a , i , dQ ) :
if len( dQ ) == 0 :
return
if dQ [-1] == (a,i) :
dQ.pop()
R = [ [] for i in range ( n ) ]
for i in range ( n ) :
dQ = deque([])
for j in range ( k ) :
add_one ( M[i][j] , j , dQ )
R[i] += [dQ[-1][0]]
for j in range ( k , m ) :
add_one ( M[i][j] , j , dQ )
remove_one ( M[i][j-k] , j-k , dQ )
R[i] += [dQ[-1][0]]
C = [ [] for i in range ( m - k + 1 ) ]
for j in range ( m - k + 1 ) :
dQ = deque([])
for i in range ( k ) :
add_one ( R[i][j] , i , dQ )
C[j] += [dQ[-1][0]]
for i in range ( k , n ) :
add_one ( R[i][j] , i , dQ )
remove_one ( R[i-k][j] , i-k , dQ )
C[j] += [dQ[-1][0]]
maxo = inf
for i in range ( len ( C ) ) :
for j in range ( len ( C [ 0] ) ) :
maxo = max ( maxo , C[i][j] )
if maxo == inf :
maxo = 1
print(maxo*-1)
|
Title: Monitor
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Recently Luba bought a monitor. Monitor is a rectangular matrix of size *n*<=×<=*m*. But then she started to notice that some pixels cease to work properly. Luba thinks that the monitor will become broken the first moment when it contains a square *k*<=×<=*k* consisting entirely of broken pixels. She knows that *q* pixels are already broken, and for each of them she knows the moment when it stopped working. Help Luba to determine when the monitor became broken (or tell that it's still not broken even after all *q* pixels stopped working).
Input Specification:
The first line contains four integer numbers *n*,<=*m*,<=*k*,<=*q* (1<=≤<=*n*,<=*m*<=≤<=500,<=1<=≤<=*k*<=≤<=*min*(*n*,<=*m*),<=0<=≤<=*q*<=≤<=*n*·*m*) — the length and width of the monitor, the size of a rectangle such that the monitor is broken if there is a broken rectangle with this size, and the number of broken pixels.
Each of next *q* lines contain three integer numbers *x**i*,<=*y**i*,<=*t**i* (1<=≤<=*x**i*<=≤<=*n*,<=1<=≤<=*y**i*<=≤<=*m*,<=0<=≤<=*t*<=≤<=109) — coordinates of *i*-th broken pixel (its row and column in matrix) and the moment it stopped working. Each pixel is listed at most once.
We consider that pixel is already broken at moment *t**i*.
Output Specification:
Print one number — the minimum moment the monitor became broken, or "-1" if it's still not broken after these *q* pixels stopped working.
Demo Input:
['2 3 2 5\n2 1 8\n2 2 8\n1 2 1\n1 3 4\n2 3 2\n', '3 3 2 5\n1 2 2\n2 2 1\n2 3 5\n3 2 10\n2 1 100\n']
Demo Output:
['8\n', '-1\n']
Note:
none
|
```python
from collections import deque
n , m , k , q = map ( int , input ( ) . split ( ) )
inf = -1000000001
M = [ [ inf for i in range ( m) ] for j in range ( n ) ]
for qq in range ( q ) :
x , y , t = map ( int , input ( ) . split ( ) )
x-= 1
y-= 1
M[x][y] = t*-1
def add_one ( a , i , dQ ) :
if len ( dQ ) == 0 :
dQ.appendleft( (a,i) )
return
for ii in range ( len ( dQ ) ) :
if dQ[0][0] < a :
dQ.appendleft( (a,i) )
break
dQ.popleft()
else :
dQ.appendleft( (a,i) )
def remove_one ( a , i , dQ ) :
if len( dQ ) == 0 :
return
if dQ [-1] == (a,i) :
dQ.pop()
R = [ [] for i in range ( n ) ]
for i in range ( n ) :
dQ = deque([])
for j in range ( k ) :
add_one ( M[i][j] , j , dQ )
R[i] += [dQ[-1][0]]
for j in range ( k , m ) :
add_one ( M[i][j] , j , dQ )
remove_one ( M[i][j-k] , j-k , dQ )
R[i] += [dQ[-1][0]]
C = [ [] for i in range ( m - k + 1 ) ]
for j in range ( m - k + 1 ) :
dQ = deque([])
for i in range ( k ) :
add_one ( R[i][j] , i , dQ )
C[j] += [dQ[-1][0]]
for i in range ( k , n ) :
add_one ( R[i][j] , i , dQ )
remove_one ( R[i-k][j] , i-k , dQ )
C[j] += [dQ[-1][0]]
maxo = inf
for i in range ( len ( C ) ) :
for j in range ( len ( C [ 0] ) ) :
maxo = max ( maxo , C[i][j] )
if maxo == inf :
maxo = 1
print(maxo*-1)
```
| 3
|
|
26
|
A
|
Almost Prime
|
PROGRAMMING
| 900
|
[
"number theory"
] |
A. Almost Prime
|
2
|
256
|
A number is called almost prime if it has exactly two distinct prime divisors. For example, numbers 6, 18, 24 are almost prime, while 4, 8, 9, 42 are not. Find the amount of almost prime numbers which are between 1 and *n*, inclusive.
|
Input contains one integer number *n* (1<=≤<=*n*<=≤<=3000).
|
Output the amount of almost prime numbers between 1 and *n*, inclusive.
|
[
"10\n",
"21\n"
] |
[
"2\n",
"8\n"
] |
none
| 500
|
[
{
"input": "10",
"output": "2"
},
{
"input": "21",
"output": "8"
},
{
"input": "1",
"output": "0"
},
{
"input": "2",
"output": "0"
},
{
"input": "4",
"output": "0"
},
{
"input": "3",
"output": "0"
},
{
"input": "8",
"output": "1"
},
{
"input": "19",
"output": "6"
},
{
"input": "40",
"output": "19"
},
{
"input": "77",
"output": "41"
},
{
"input": "222",
"output": "125"
},
{
"input": "987",
"output": "501"
},
{
"input": "1000",
"output": "508"
},
{
"input": "2000",
"output": "958"
},
{
"input": "3000",
"output": "1375"
},
{
"input": "2999",
"output": "1375"
},
{
"input": "2998",
"output": "1375"
},
{
"input": "2997",
"output": "1374"
},
{
"input": "1429",
"output": "706"
},
{
"input": "1673",
"output": "808"
},
{
"input": "1500",
"output": "732"
},
{
"input": "500",
"output": "266"
},
{
"input": "856",
"output": "439"
}
] | 1,486,061,426
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 23
| 310
| 23,961,600
|
def sieve(n):
primes = [True] * (n + 1)
primes[0] = False
primes[1] = False
for index, i in enumerate(primes):
if i == True:
for j in range(index * index, n + 1, index):
primes[j] = False
return primes
def main():
n = int(input())
arr = [0] * (n + 1)
primes = sieve(n)
for i, boolean in enumerate(primes):
if boolean == True:
for j in range(2 * i, n + 1, i):
arr[j] += 1
count = 0
for i in arr:
if i == 2:
count += 1
print(count)
if __name__ == '__main__':
main()
|
Title: Almost Prime
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
A number is called almost prime if it has exactly two distinct prime divisors. For example, numbers 6, 18, 24 are almost prime, while 4, 8, 9, 42 are not. Find the amount of almost prime numbers which are between 1 and *n*, inclusive.
Input Specification:
Input contains one integer number *n* (1<=≤<=*n*<=≤<=3000).
Output Specification:
Output the amount of almost prime numbers between 1 and *n*, inclusive.
Demo Input:
['10\n', '21\n']
Demo Output:
['2\n', '8\n']
Note:
none
|
```python
def sieve(n):
primes = [True] * (n + 1)
primes[0] = False
primes[1] = False
for index, i in enumerate(primes):
if i == True:
for j in range(index * index, n + 1, index):
primes[j] = False
return primes
def main():
n = int(input())
arr = [0] * (n + 1)
primes = sieve(n)
for i, boolean in enumerate(primes):
if boolean == True:
for j in range(2 * i, n + 1, i):
arr[j] += 1
count = 0
for i in arr:
if i == 2:
count += 1
print(count)
if __name__ == '__main__':
main()
```
| 3.877868
|
447
|
A
|
DZY Loves Hash
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
DZY has a hash table with *p* buckets, numbered from 0 to *p*<=-<=1. He wants to insert *n* numbers, in the order they are given, into the hash table. For the *i*-th number *x**i*, DZY will put it into the bucket numbered *h*(*x**i*), where *h*(*x*) is the hash function. In this problem we will assume, that *h*(*x*)<==<=*x* *mod* *p*. Operation *a* *mod* *b* denotes taking a remainder after division *a* by *b*.
However, each bucket can contain no more than one element. If DZY wants to insert an number into a bucket which is already filled, we say a "conflict" happens. Suppose the first conflict happens right after the *i*-th insertion, you should output *i*. If no conflict happens, just output -1.
|
The first line contains two integers, *p* and *n* (2<=≤<=*p*,<=*n*<=≤<=300). Then *n* lines follow. The *i*-th of them contains an integer *x**i* (0<=≤<=*x**i*<=≤<=109).
|
Output a single integer — the answer to the problem.
|
[
"10 5\n0\n21\n53\n41\n53\n",
"5 5\n0\n1\n2\n3\n4\n"
] |
[
"4\n",
"-1\n"
] |
none
| 500
|
[
{
"input": "10 5\n0\n21\n53\n41\n53",
"output": "4"
},
{
"input": "5 5\n0\n1\n2\n3\n4",
"output": "-1"
},
{
"input": "10 6\n811966798\n734823552\n790326404\n929189974\n414343256\n560346537",
"output": "4"
},
{
"input": "2 2\n788371161\n801743052",
"output": "-1"
},
{
"input": "10 6\n812796223\n122860157\n199259103\n597650585\n447742024\n521549402",
"output": "3"
},
{
"input": "300 2\n822454942\n119374431",
"output": "-1"
},
{
"input": "300 2\n823284367\n507345500",
"output": "-1"
},
{
"input": "2 5\n791579811\n35613889\n997079893\n878677665\n693717467",
"output": "2"
},
{
"input": "20 5\n793926268\n28931770\n842870287\n974950617\n859404206",
"output": "-1"
},
{
"input": "100 15\n805069249\n778178198\n633897389\n844316223\n146759898\n870527016\n82668754\n42060733\n943602929\n979451110\n746979598\n47406033\n607284062\n850870259\n229415316",
"output": "5"
},
{
"input": "100 15\n806204335\n189490323\n718805086\n716787474\n262315718\n822030596\n894644222\n724054623\n141384399\n579354205\n192622443\n672556242\n97417563\n243354557\n208957882",
"output": "8"
},
{
"input": "100 15\n807033760\n577461392\n275221433\n532633429\n295714486\n783298996\n255799943\n99107143\n729119412\n59302896\n37640015\n313610861\n630550567\n534283052\n681062462",
"output": "8"
},
{
"input": "100 15\n808103310\n136224397\n360129131\n405104681\n263786657\n734802577\n67808179\n928584682\n926900882\n511722343\n483348395\n938695534\n120684068\n74152694\n808088675",
"output": "9"
},
{
"input": "2 2\n2\n2",
"output": "2"
},
{
"input": "300 2\n0\n300",
"output": "2"
},
{
"input": "2 2\n0\n0",
"output": "2"
}
] | 1,405,305,271
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 29
| 77
| 0
|
p, n = map(int, input().split())
used = set()
for i in range(n):
x = int(input())
r = x % p
if r in used:
print(i + 1)
exit()
else:
used.add(r)
print(-1)
|
Title: DZY Loves Hash
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
DZY has a hash table with *p* buckets, numbered from 0 to *p*<=-<=1. He wants to insert *n* numbers, in the order they are given, into the hash table. For the *i*-th number *x**i*, DZY will put it into the bucket numbered *h*(*x**i*), where *h*(*x*) is the hash function. In this problem we will assume, that *h*(*x*)<==<=*x* *mod* *p*. Operation *a* *mod* *b* denotes taking a remainder after division *a* by *b*.
However, each bucket can contain no more than one element. If DZY wants to insert an number into a bucket which is already filled, we say a "conflict" happens. Suppose the first conflict happens right after the *i*-th insertion, you should output *i*. If no conflict happens, just output -1.
Input Specification:
The first line contains two integers, *p* and *n* (2<=≤<=*p*,<=*n*<=≤<=300). Then *n* lines follow. The *i*-th of them contains an integer *x**i* (0<=≤<=*x**i*<=≤<=109).
Output Specification:
Output a single integer — the answer to the problem.
Demo Input:
['10 5\n0\n21\n53\n41\n53\n', '5 5\n0\n1\n2\n3\n4\n']
Demo Output:
['4\n', '-1\n']
Note:
none
|
```python
p, n = map(int, input().split())
used = set()
for i in range(n):
x = int(input())
r = x % p
if r in used:
print(i + 1)
exit()
else:
used.add(r)
print(-1)
```
| 3
|
|
112
|
A
|
Petya and Strings
|
PROGRAMMING
| 800
|
[
"implementation",
"strings"
] |
A. Petya and Strings
|
2
|
256
|
Little Petya loves presents. His mum bought him two strings of the same size for his birthday. The strings consist of uppercase and lowercase Latin letters. Now Petya wants to compare those two strings lexicographically. The letters' case does not matter, that is an uppercase letter is considered equivalent to the corresponding lowercase letter. Help Petya perform the comparison.
|
Each of the first two lines contains a bought string. The strings' lengths range from 1 to 100 inclusive. It is guaranteed that the strings are of the same length and also consist of uppercase and lowercase Latin letters.
|
If the first string is less than the second one, print "-1". If the second string is less than the first one, print "1". If the strings are equal, print "0". Note that the letters' case is not taken into consideration when the strings are compared.
|
[
"aaaa\naaaA\n",
"abs\nAbz\n",
"abcdefg\nAbCdEfF\n"
] |
[
"0\n",
"-1\n",
"1\n"
] |
If you want more formal information about the lexicographical order (also known as the "dictionary order" or "alphabetical order"), you can visit the following site:
- http://en.wikipedia.org/wiki/Lexicographical_order
| 500
|
[
{
"input": "aaaa\naaaA",
"output": "0"
},
{
"input": "abs\nAbz",
"output": "-1"
},
{
"input": "abcdefg\nAbCdEfF",
"output": "1"
},
{
"input": "asadasdasd\nasdwasdawd",
"output": "-1"
},
{
"input": "aslkjlkasdd\nasdlkjdajwi",
"output": "1"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa\naaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "0"
},
{
"input": "aAaaaAAaAaaAzZsssSsdDfeEaeqZlpP\nAaaaAaaAaaAaZzSSSSsDdFeeAeQZLpp",
"output": "0"
},
{
"input": "bwuEhEveouaTECagLZiqmUdxEmhRSOzMauJRWLQMppZOumxhAmwuGeDIkvkBLvMXwUoFmpAfDprBcFtEwOULcZWRQhcTbTbX\nHhoDWbcxwiMnCNexOsKsujLiSGcLllXOkRSbnOzThAjnnliLYFFmsYkOfpTxRNEfBsoUHfoLTiqAINRPxWRqrTJhgfkKcDOH",
"output": "-1"
},
{
"input": "kGWUuguKzcvxqKTNpxeDWXpXkrXDvGMFGoXKDfPBZvWSDUyIYBynbKOUonHvmZaKeirUhfmVRKtGhAdBfKMWXDUoqvbfpfHYcg\ncvOULleuIIiYVVxcLZmHVpNGXuEpzcWZZWyMOwIwbpkKPwCfkVbKkUuosvxYCKjqfVmHfJKbdrsAcatPYgrCABaFcoBuOmMfFt",
"output": "1"
},
{
"input": "nCeNVIzHqPceNhjHeHvJvgBsNFiXBATRrjSTXJzhLMDMxiJztphxBRlDlqwDFImWeEPkggZCXSRwelOdpNrYnTepiOqpvkr\nHJbjJFtlvNxIbkKlxQUwmZHJFVNMwPAPDRslIoXISBYHHfymyIaQHLgECPxAmqnOCizwXnIUBRmpYUBVPenoUKhCobKdOjL",
"output": "1"
},
{
"input": "ttXjenUAlfixytHEOrPkgXmkKTSGYuyVXGIHYmWWYGlBYpHkujueqBSgjLguSgiMGJWATIGEUjjAjKXdMiVbHozZUmqQtFrT\nJziDBFBDmDJCcGqFsQwDFBYdOidLxxhBCtScznnDgnsiStlWFnEXQrJxqTXKPxZyIGfLIToETKWZBPUIBmLeImrlSBWCkTNo",
"output": "1"
},
{
"input": "AjQhPqSVhwQQjcgCycjKorWBgFCRuQBwgdVuAPSMJAvTyxGVuFHjfJzkKfsmfhFbKqFrFIohSZBbpjgEHebezmVlGLTPSCTMf\nXhxWuSnMmKFrCUOwkTUmvKAfbTbHWzzOTzxJatLLCdlGnHVaBUnxDlsqpvjLHMThOPAFBggVKDyKBrZAmjnjrhHlrnSkyzBja",
"output": "-1"
},
{
"input": "HCIgYtnqcMyjVngziNflxKHtdTmcRJhzMAjFAsNdWXFJYEhiTzsQUtFNkAbdrFBRmvLirkuirqTDvIpEfyiIqkrwsjvpPWTEdI\nErqiiWKsmIjyZuzgTlTqxYZwlrpvRyaVhRTOYUqtPMVGGtWOkDCOOQRKrkkRzPftyQCkYkzKkzTPqqXmeZhvvEEiEhkdOmoMvy",
"output": "1"
},
{
"input": "mtBeJYILXcECGyEVSyzLFdQJbiVnnfkbsYYsdUJSIRmyzLfTTtFwIBmRLVnwcewIqcuydkcLpflHAFyDaToLiFMgeHvQorTVbI\nClLvyejznjbRfCDcrCzkLvqQaGzTjwmWONBdCctJAPJBcQrcYvHaSLQgPIJbmkFBhFzuQLBiRzAdNHulCjIAkBvZxxlkdzUWLR",
"output": "1"
},
{
"input": "tjucSbGESVmVridTBjTmpVBCwwdWKBPeBvmgdxgIVLwQxveETnSdxkTVJpXoperWSgdpPMKNmwDiGeHfxnuqaDissgXPlMuNZIr\nHfjOOJhomqNIKHvqSgfySjlsWJQBuWYwhLQhlZYlpZwboMpoLoluGsBmhhlYgeIouwdkPfiaAIrkYRlxtiFazOPOllPsNZHcIZd",
"output": "1"
},
{
"input": "AanbDfbZNlUodtBQlvPMyomStKNhgvSGhSbTdabxGFGGXCdpsJDimsAykKjfBDPMulkhBMsqLmVKLDoesHZsRAEEdEzqigueXInY\ncwfyjoppiJNrjrOLNZkqcGimrpTsiyFBVgMWEPXsMrxLJDDbtYzerXiFGuLBcQYitLdqhGHBpdjRnkUegmnwhGHAKXGyFtscWDSI",
"output": "-1"
},
{
"input": "HRfxniwuJCaHOcaOVgjOGHXKrwxrDQxJpppeGDXnTAowyKbCsCQPbchCKeTWOcKbySSYnoaTJDnmRcyGPbfXJyZoPcARHBu\nxkLXvwkvGIWSQaFTznLOctUXNuzzBBOlqvzmVfTSejekTAlwidRrsxkbZTsGGeEWxCXHzqWVuLGoCyrGjKkQoHqduXwYQKC",
"output": "-1"
},
{
"input": "OjYwwNuPESIazoyLFREpObIaMKhCaKAMWMfRGgucEuyNYRantwdwQkmflzfqbcFRaXBnZoIUGsFqXZHGKwlaBUXABBcQEWWPvkjW\nRxLqGcTTpBwHrHltCOllnTpRKLDofBUqqHxnOtVWPgvGaeHIevgUSOeeDOJubfqonFpVNGVbHFcAhjnyFvrrqnRgKhkYqQZmRfUl",
"output": "-1"
},
{
"input": "tatuhQPIzjptlzzJpCAPXSRTKZRlwgfoCIsFjJquRoIDyZZYRSPdFUTjjUPhLBBfeEIfLQpygKXRcyQFiQsEtRtLnZErBqW\ntkHUjllbafLUWhVCnvblKjgYIEoHhsjVmrDBmAWbvtkHxDbRFvsXAjHIrujaDbYwOZmacknhZPeCcorbRgHjjgAgoJdjvLo",
"output": "-1"
},
{
"input": "cymCPGqdXKUdADEWDdUaLEEMHiXHsdAZuDnJDMUvxvrLRBrPSDpXPAgMRoGplLtniFRTomDTAHXWAdgUveTxaqKVSvnOyhOwiRN\nuhmyEWzapiRNPFDisvHTbenXMfeZaHqOFlKjrfQjUBwdFktNpeiRoDWuBftZLcCZZAVfioOihZVNqiNCNDIsUdIhvbcaxpTRWoV",
"output": "-1"
},
{
"input": "sSvpcITJAwghVfJaLKBmyjOkhltTGjYJVLWCYMFUomiJaKQYhXTajvZVHIMHbyckYROGQZzjWyWCcnmDmrkvTKfHSSzCIhsXgEZa\nvhCXkCwAmErGVBPBAnkSYEYvseFKbWSktoqaHYXUmYkHfOkRwuEyBRoGoBrOXBKVxXycjZGStuvDarnXMbZLWrbjrisDoJBdSvWJ",
"output": "-1"
},
{
"input": "hJDANKUNBisOOINDsTixJmYgHNogtpwswwcvVMptfGwIjvqgwTYFcqTdyAqaqlnhOCMtsnWXQqtjFwQlEcBtMFAtSqnqthVb\nrNquIcjNWESjpPVWmzUJFrelpUZeGDmSvCurCqVmKHKVAAPkaHksniOlzjiKYIJtvbuQWZRufMebpTFPqyxIWWjfPaWYiNlK",
"output": "-1"
},
{
"input": "ycLoapxsfsDTHMSfAAPIUpiEhQKUIXUcXEiopMBuuZLHtfPpLmCHwNMNQUwsEXxCEmKHTBSnKhtQhGWUvppUFZUgSpbeChX\ndCZhgVXofkGousCzObxZSJwXcHIaqUDSCPKzXntcVmPxtNcXmVcjsetZYxedmgQzXTZHMvzjoaXCMKsncGciSDqQWIIRlys",
"output": "1"
},
{
"input": "nvUbnrywIePXcoukIhwTfUVcHUEgXcsMyNQhmMlTltZiCooyZiIKRIGVHMCnTKgzXXIuvoNDEZswKoACOBGSyVNqTNQqMhAG\nplxuGSsyyJjdvpddrSebOARSAYcZKEaKjqbCwvjhNykuaECoQVHTVFMKXwvrQXRaqXsHsBaGVhCxGRxNyGUbMlxOarMZNXxy",
"output": "-1"
},
{
"input": "EncmXtAblQzcVRzMQqdDqXfAhXbtJKQwZVWyHoWUckohnZqfoCmNJDzexFgFJYrwNHGgzCJTzQQFnxGlhmvQTpicTkEeVICKac\nNIUNZoMLFMyAjVgQLITELJSodIXcGSDWfhFypRoGYuogJpnqGTotWxVqpvBHjFOWcDRDtARsaHarHaOkeNWEHGTaGOFCOFEwvK",
"output": "-1"
},
{
"input": "UG\nak",
"output": "1"
},
{
"input": "JZR\nVae",
"output": "-1"
},
{
"input": "a\nZ",
"output": "-1"
},
{
"input": "rk\nkv",
"output": "1"
},
{
"input": "RvuT\nbJzE",
"output": "1"
},
{
"input": "PPS\nydq",
"output": "-1"
},
{
"input": "q\nq",
"output": "0"
},
{
"input": "peOw\nIgSJ",
"output": "1"
},
{
"input": "PyK\noKN",
"output": "1"
},
{
"input": "O\ni",
"output": "1"
},
{
"input": "NmGY\npDlP",
"output": "-1"
},
{
"input": "nG\nZf",
"output": "-1"
},
{
"input": "m\na",
"output": "1"
},
{
"input": "MWyB\nWZEV",
"output": "-1"
},
{
"input": "Gre\nfxc",
"output": "1"
},
{
"input": "Ooq\nwap",
"output": "-1"
},
{
"input": "XId\nlbB",
"output": "1"
},
{
"input": "lfFpECEqUMEOJhipvkZjDPcpDNJedOVXiSMgBvBZbtfzIKekcvpWPCazKAhJyHircRtgcBIJwwstpHaLAgxFOngAWUZRgCef\nLfFPEcequmeojHIpVkzjDPcpdNJEDOVXiSmGBVBZBtfZikEKcvPwpCAzKAHJyHIrCRTgCbIJWwSTphALagXfOnGAwUzRGcEF",
"output": "0"
},
{
"input": "DQBdtSEDtFGiNRUeJNbOIfDZnsryUlzJHGTXGFXnwsVyxNtLgmklmFvRCzYETBVdmkpJJIvIOkMDgCFHZOTODiYrkwXd\nDQbDtsEdTFginRUEJNBOIfdZnsryulZJHGtxGFxnwSvYxnTLgmKlmFVRCzyEtBVdmKpJjiVioKMDgCFhzoTODiYrKwXD",
"output": "0"
},
{
"input": "tYWRijFQSzHBpCjUzqBtNvBKyzZRnIdWEuyqnORBQTLyOQglIGfYJIRjuxnbLvkqZakNqPiGDvgpWYkfxYNXsdoKXZtRkSasfa\nTYwRiJfqsZHBPcJuZQBTnVbkyZZRnidwEuYQnorbQTLYOqGligFyjirJUxnblVKqZaknQpigDVGPwyKfxyNXSDoKxztRKSaSFA",
"output": "0"
},
{
"input": "KhScXYiErQIUtmVhNTCXSLAviefIeHIIdiGhsYnPkSBaDTvMkyanfMLBOvDWgRybLtDqvXVdVjccNunDyijhhZEAKBrdz\nkHsCXyiErqIuTMVHNTCxSLaViEFIEhIIDiGHsYNpKsBAdTvMKyANFMLBovdwGRYbLtdQVxvDVJCcNUndYiJHhzeakBrdZ",
"output": "0"
},
{
"input": "cpPQMpjRQJKQVXjWDYECXbagSmNcVfOuBWNZxihdERraVuiOpSVDCPgTGuSQALNoVjySceHcKXwOEpSzXrEqWwwrYeppNiWhDVg\nCPPqmPjRqJkQvxJwdyECXBAGsMNcVfOuBWNzxIhderRavUiOpSvDCpGTgusqAlNovjyScEhCKXwoePSZxrEQwWwryEPPniWHDvG",
"output": "0"
},
{
"input": "SajcCGMepaLjZIWLRBGFcrZRCRvvoCsIyKsQerbrwsIamxxpRmQSZSalasJLVFbCHCuXJlubciQAvLxXYBazLsMKLHLdDQ\nsaJcCgmEpaLJziWlrBgFcRzrCrVVOcSIykSQerBrwSIamxxPrMqSzSalASjLVFbChCUxjLUbCIQAVlxxybAZLsmkLhLDdQ",
"output": "0"
},
{
"input": "kigPrWNTOUNDBskAfefjhHYZNYdnfZWuXWzHiBxFQryBbAkPtenFwWvCSTYGpzOntUNzNUhxRWjKmicTwLwJAnbAxj\nkigpRWntOUNdBsKaFEFjhhYZnYDNfzWuXwZhibxFQRybbakPteNfwwvcStyGPzoNTunznuHXrWjKMIctWLWJANBAxJ",
"output": "0"
},
{
"input": "nTomZZuTTRTAAPoUsySVFGElrpQRNLjqvFmcYytiheQnjUhPLnqNBiYtQkljbcvmjuNAVKbvQOWpqqFlQhAhULIhquoCnjUI\nntOmzZuttrtAAPOUSySVFgeLRPQrNLjQvfmCyYTiHEQnjuHPlNQNbIYtqKLJBCVmjunavkbvQOWPQQFlqHaHULIHQuOcnJUi",
"output": "0"
},
{
"input": "abac\nadaa",
"output": "-1"
},
{
"input": "Bbc\nabc",
"output": "1"
},
{
"input": "aaaba\naaaab",
"output": "1"
}
] | 1,695,296,612
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 53
| 92
| 0
|
'''
author 罗景轩 2300012610
'''
A = input().lower()
B = input().lower()
if A == B:
print("0")
elif A < B:
print("-1")
else :
print("1")
|
Title: Petya and Strings
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Little Petya loves presents. His mum bought him two strings of the same size for his birthday. The strings consist of uppercase and lowercase Latin letters. Now Petya wants to compare those two strings lexicographically. The letters' case does not matter, that is an uppercase letter is considered equivalent to the corresponding lowercase letter. Help Petya perform the comparison.
Input Specification:
Each of the first two lines contains a bought string. The strings' lengths range from 1 to 100 inclusive. It is guaranteed that the strings are of the same length and also consist of uppercase and lowercase Latin letters.
Output Specification:
If the first string is less than the second one, print "-1". If the second string is less than the first one, print "1". If the strings are equal, print "0". Note that the letters' case is not taken into consideration when the strings are compared.
Demo Input:
['aaaa\naaaA\n', 'abs\nAbz\n', 'abcdefg\nAbCdEfF\n']
Demo Output:
['0\n', '-1\n', '1\n']
Note:
If you want more formal information about the lexicographical order (also known as the "dictionary order" or "alphabetical order"), you can visit the following site:
- http://en.wikipedia.org/wiki/Lexicographical_order
|
```python
'''
author 罗景轩 2300012610
'''
A = input().lower()
B = input().lower()
if A == B:
print("0")
elif A < B:
print("-1")
else :
print("1")
```
| 3.977
|
50
|
A
|
Domino piling
|
PROGRAMMING
| 800
|
[
"greedy",
"math"
] |
A. Domino piling
|
2
|
256
|
You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions:
1. Each domino completely covers two squares.
2. No two dominoes overlap.
3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board.
Find the maximum number of dominoes, which can be placed under these restrictions.
|
In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16).
|
Output one number — the maximal number of dominoes, which can be placed.
|
[
"2 4\n",
"3 3\n"
] |
[
"4\n",
"4\n"
] |
none
| 500
|
[
{
"input": "2 4",
"output": "4"
},
{
"input": "3 3",
"output": "4"
},
{
"input": "1 5",
"output": "2"
},
{
"input": "1 6",
"output": "3"
},
{
"input": "1 15",
"output": "7"
},
{
"input": "1 16",
"output": "8"
},
{
"input": "2 5",
"output": "5"
},
{
"input": "2 6",
"output": "6"
},
{
"input": "2 7",
"output": "7"
},
{
"input": "2 14",
"output": "14"
},
{
"input": "2 15",
"output": "15"
},
{
"input": "1 4",
"output": "2"
},
{
"input": "2 16",
"output": "16"
},
{
"input": "3 5",
"output": "7"
},
{
"input": "3 6",
"output": "9"
},
{
"input": "3 10",
"output": "15"
},
{
"input": "3 14",
"output": "21"
},
{
"input": "3 15",
"output": "22"
},
{
"input": "3 16",
"output": "24"
},
{
"input": "5 7",
"output": "17"
},
{
"input": "16 16",
"output": "128"
},
{
"input": "15 16",
"output": "120"
},
{
"input": "2 3",
"output": "3"
},
{
"input": "15 15",
"output": "112"
},
{
"input": "14 16",
"output": "112"
},
{
"input": "11 13",
"output": "71"
},
{
"input": "5 16",
"output": "40"
},
{
"input": "8 15",
"output": "60"
},
{
"input": "2 2",
"output": "2"
},
{
"input": "3 4",
"output": "6"
},
{
"input": "4 4",
"output": "8"
},
{
"input": "1 1",
"output": "0"
},
{
"input": "1 2",
"output": "1"
},
{
"input": "1 3",
"output": "1"
},
{
"input": "14 15",
"output": "105"
}
] | 1,692,385,996
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 35
| 92
| 0
|
a,k=input().split()
j=int(a)*int(k)
print(j//2)
|
Title: Domino piling
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions:
1. Each domino completely covers two squares.
2. No two dominoes overlap.
3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board.
Find the maximum number of dominoes, which can be placed under these restrictions.
Input Specification:
In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16).
Output Specification:
Output one number — the maximal number of dominoes, which can be placed.
Demo Input:
['2 4\n', '3 3\n']
Demo Output:
['4\n', '4\n']
Note:
none
|
```python
a,k=input().split()
j=int(a)*int(k)
print(j//2)
```
| 3.977
|
200
|
B
|
Drinks
|
PROGRAMMING
| 800
|
[
"implementation",
"math"
] | null | null |
Little Vasya loves orange juice very much. That's why any food and drink in his kitchen necessarily contains orange juice. There are *n* drinks in his fridge, the volume fraction of orange juice in the *i*-th drink equals *p**i* percent.
One day Vasya decided to make himself an orange cocktail. He took equal proportions of each of the *n* drinks and mixed them. Then he wondered, how much orange juice the cocktail has.
Find the volume fraction of orange juice in the final drink.
|
The first input line contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of orange-containing drinks in Vasya's fridge. The second line contains *n* integers *p**i* (0<=≤<=*p**i*<=≤<=100) — the volume fraction of orange juice in the *i*-th drink, in percent. The numbers are separated by a space.
|
Print the volume fraction in percent of orange juice in Vasya's cocktail. The answer will be considered correct if the absolute or relative error does not exceed 10<=<=-<=4.
|
[
"3\n50 50 100\n",
"4\n0 25 50 75\n"
] |
[
"66.666666666667\n",
"37.500000000000\n"
] |
Note to the first sample: let's assume that Vasya takes *x* milliliters of each drink from the fridge. Then the volume of pure juice in the cocktail will equal <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/c1fac6e64d3a8ee6a5ac138cbe51e60039b22473.png" style="max-width: 100.0%;max-height: 100.0%;"/> milliliters. The total cocktail's volume equals 3·*x* milliliters, so the volume fraction of the juice in the cocktail equals <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/ceb0664e55a1f9f5fa1243ec74680a4665a4d58d.png" style="max-width: 100.0%;max-height: 100.0%;"/>, that is, 66.(6) percent.
| 500
|
[
{
"input": "3\n50 50 100",
"output": "66.666666666667"
},
{
"input": "4\n0 25 50 75",
"output": "37.500000000000"
},
{
"input": "3\n0 1 8",
"output": "3.000000000000"
},
{
"input": "5\n96 89 93 95 70",
"output": "88.600000000000"
},
{
"input": "7\n62 41 78 4 38 39 75",
"output": "48.142857142857"
},
{
"input": "13\n2 22 7 0 1 17 3 17 11 2 21 26 22",
"output": "11.615384615385"
},
{
"input": "21\n5 4 11 7 0 5 45 21 0 14 51 6 0 16 10 19 8 9 7 12 18",
"output": "12.761904761905"
},
{
"input": "26\n95 70 93 74 94 70 91 70 39 79 80 57 87 75 37 93 48 67 51 90 85 26 23 64 66 84",
"output": "69.538461538462"
},
{
"input": "29\n84 99 72 96 83 92 95 98 97 93 76 84 99 93 81 76 93 99 99 100 95 100 96 95 97 100 71 98 94",
"output": "91.551724137931"
},
{
"input": "33\n100 99 100 100 99 99 99 100 100 100 99 99 99 100 100 100 100 99 100 99 100 100 97 100 100 100 100 100 100 100 98 98 100",
"output": "99.515151515152"
},
{
"input": "34\n14 9 10 5 4 26 18 23 0 1 0 20 18 15 2 2 3 5 14 1 9 4 2 15 7 1 7 19 10 0 0 11 0 2",
"output": "8.147058823529"
},
{
"input": "38\n99 98 100 100 99 92 99 99 98 84 88 94 86 99 93 100 98 99 65 98 85 84 64 97 96 89 79 96 91 84 99 93 72 96 94 97 96 93",
"output": "91.921052631579"
},
{
"input": "52\n100 94 99 98 99 99 99 95 97 97 98 100 100 98 97 100 98 90 100 99 97 94 90 98 100 100 90 99 100 95 98 95 94 85 97 94 96 94 99 99 99 98 100 100 94 99 99 100 98 87 100 100",
"output": "97.019230769231"
},
{
"input": "58\n10 70 12 89 1 82 100 53 40 100 21 69 92 91 67 66 99 77 25 48 8 63 93 39 46 79 82 14 44 42 1 79 0 69 56 73 67 17 59 4 65 80 20 60 77 52 3 61 16 76 33 18 46 100 28 59 9 6",
"output": "50.965517241379"
},
{
"input": "85\n7 8 1 16 0 15 1 7 0 11 15 6 2 12 2 8 9 8 2 0 3 7 15 7 1 8 5 7 2 26 0 3 11 1 8 10 31 0 7 6 1 8 1 0 9 14 4 8 7 16 9 1 0 16 10 9 6 1 1 4 2 7 4 5 4 1 20 6 16 16 1 1 10 17 8 12 14 19 3 8 1 7 10 23 10",
"output": "7.505882352941"
},
{
"input": "74\n5 3 0 7 13 10 12 10 18 5 0 18 2 13 7 17 2 7 5 2 40 19 0 2 2 3 0 45 4 20 0 4 2 8 1 19 3 9 17 1 15 0 16 1 9 4 0 9 32 2 6 18 11 18 1 15 16 12 7 19 5 3 9 28 26 8 3 10 33 29 4 13 28 6",
"output": "10.418918918919"
},
{
"input": "98\n42 9 21 11 9 11 22 12 52 20 10 6 56 9 26 27 1 29 29 14 38 17 41 21 7 45 15 5 29 4 51 20 6 8 34 17 13 53 30 45 0 10 16 41 4 5 6 4 14 2 31 6 0 11 13 3 3 43 13 36 51 0 7 16 28 23 8 36 30 22 8 54 21 45 39 4 50 15 1 30 17 8 18 10 2 20 16 50 6 68 15 6 38 7 28 8 29 41",
"output": "20.928571428571"
},
{
"input": "99\n60 65 40 63 57 44 30 84 3 10 39 53 40 45 72 20 76 11 61 32 4 26 97 55 14 57 86 96 34 69 52 22 26 79 31 4 21 35 82 47 81 28 72 70 93 84 40 4 69 39 83 58 30 7 32 73 74 12 92 23 61 88 9 58 70 32 75 40 63 71 46 55 39 36 14 97 32 16 95 41 28 20 85 40 5 50 50 50 75 6 10 64 38 19 77 91 50 72 96",
"output": "49.191919191919"
},
{
"input": "99\n100 88 40 30 81 80 91 98 69 73 88 96 79 58 14 100 87 84 52 91 83 88 72 83 99 35 54 80 46 79 52 72 85 32 99 39 79 79 45 83 88 50 75 75 50 59 65 75 97 63 92 58 89 46 93 80 89 33 69 86 99 99 66 85 72 74 79 98 85 95 46 63 77 97 49 81 89 39 70 76 68 91 90 56 31 93 51 87 73 95 74 69 87 95 57 68 49 95 92",
"output": "73.484848484848"
},
{
"input": "100\n18 15 17 0 3 3 0 4 1 8 2 22 7 21 5 0 0 8 3 16 1 0 2 9 9 3 10 8 17 20 5 4 8 12 2 3 1 1 3 2 23 0 1 0 5 7 4 0 1 3 3 4 25 2 2 14 8 4 9 3 0 11 0 3 12 3 14 16 7 7 14 1 17 9 0 35 42 12 3 1 25 9 3 8 5 3 2 8 22 14 11 6 3 9 6 8 7 7 4 6",
"output": "7.640000000000"
},
{
"input": "100\n88 77 65 87 100 63 91 96 92 89 77 95 76 80 84 83 100 71 85 98 26 54 74 78 69 59 96 86 88 91 95 26 52 88 64 70 84 81 76 84 94 82 100 66 97 98 43 94 59 94 100 80 98 73 69 83 94 70 74 79 91 31 62 88 69 55 62 97 40 64 62 83 87 85 50 90 69 72 67 49 100 51 69 96 81 90 83 91 86 34 79 69 100 66 97 98 47 97 74 100",
"output": "77.660000000000"
},
{
"input": "100\n91 92 90 91 98 84 85 96 83 98 99 87 94 70 87 75 86 90 89 88 82 83 91 94 88 86 90 99 100 98 97 75 95 99 95 100 91 92 76 93 95 97 88 93 95 81 96 89 88 100 98 87 90 96 100 99 58 90 96 77 92 82 100 100 93 93 98 99 79 88 97 95 98 66 96 83 96 100 99 92 98 98 92 93 100 97 98 100 98 97 100 100 94 90 99 100 98 79 80 81",
"output": "91.480000000000"
},
{
"input": "1\n0",
"output": "0.000000000000"
},
{
"input": "1\n100",
"output": "100.000000000000"
},
{
"input": "1\n78",
"output": "78.000000000000"
},
{
"input": "2\n0 100",
"output": "50.000000000000"
},
{
"input": "2\n100 100",
"output": "100.000000000000"
},
{
"input": "5\n0 0 0 0 1",
"output": "0.200000000000"
},
{
"input": "100\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 99",
"output": "99.990000000000"
},
{
"input": "100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1",
"output": "0.010000000000"
},
{
"input": "5\n100 100 100 100 100",
"output": "100.000000000000"
}
] | 1,692,899,687
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 31
| 154
| 0
|
n = int(input())
l = map(int, input().split(' '))
l = sum(l)/n
print(l)
|
Title: Drinks
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Little Vasya loves orange juice very much. That's why any food and drink in his kitchen necessarily contains orange juice. There are *n* drinks in his fridge, the volume fraction of orange juice in the *i*-th drink equals *p**i* percent.
One day Vasya decided to make himself an orange cocktail. He took equal proportions of each of the *n* drinks and mixed them. Then he wondered, how much orange juice the cocktail has.
Find the volume fraction of orange juice in the final drink.
Input Specification:
The first input line contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of orange-containing drinks in Vasya's fridge. The second line contains *n* integers *p**i* (0<=≤<=*p**i*<=≤<=100) — the volume fraction of orange juice in the *i*-th drink, in percent. The numbers are separated by a space.
Output Specification:
Print the volume fraction in percent of orange juice in Vasya's cocktail. The answer will be considered correct if the absolute or relative error does not exceed 10<=<=-<=4.
Demo Input:
['3\n50 50 100\n', '4\n0 25 50 75\n']
Demo Output:
['66.666666666667\n', '37.500000000000\n']
Note:
Note to the first sample: let's assume that Vasya takes *x* milliliters of each drink from the fridge. Then the volume of pure juice in the cocktail will equal <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/c1fac6e64d3a8ee6a5ac138cbe51e60039b22473.png" style="max-width: 100.0%;max-height: 100.0%;"/> milliliters. The total cocktail's volume equals 3·*x* milliliters, so the volume fraction of the juice in the cocktail equals <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/ceb0664e55a1f9f5fa1243ec74680a4665a4d58d.png" style="max-width: 100.0%;max-height: 100.0%;"/>, that is, 66.(6) percent.
|
```python
n = int(input())
l = map(int, input().split(' '))
l = sum(l)/n
print(l)
```
| 3
|
|
996
|
A
|
Hit the Lottery
|
PROGRAMMING
| 800
|
[
"dp",
"greedy"
] | null | null |
Allen has a LOT of money. He has $n$ dollars in the bank. For security reasons, he wants to withdraw it in cash (we will not disclose the reasons here). The denominations for dollar bills are $1$, $5$, $10$, $20$, $100$. What is the minimum number of bills Allen could receive after withdrawing his entire balance?
|
The first and only line of input contains a single integer $n$ ($1 \le n \le 10^9$).
|
Output the minimum number of bills that Allen could receive.
|
[
"125\n",
"43\n",
"1000000000\n"
] |
[
"3\n",
"5\n",
"10000000\n"
] |
In the first sample case, Allen can withdraw this with a $100$ dollar bill, a $20$ dollar bill, and a $5$ dollar bill. There is no way for Allen to receive $125$ dollars in one or two bills.
In the second sample case, Allen can withdraw two $20$ dollar bills and three $1$ dollar bills.
In the third sample case, Allen can withdraw $100000000$ (ten million!) $100$ dollar bills.
| 500
|
[
{
"input": "125",
"output": "3"
},
{
"input": "43",
"output": "5"
},
{
"input": "1000000000",
"output": "10000000"
},
{
"input": "4",
"output": "4"
},
{
"input": "5",
"output": "1"
},
{
"input": "1",
"output": "1"
},
{
"input": "74",
"output": "8"
},
{
"input": "31",
"output": "3"
},
{
"input": "59",
"output": "8"
},
{
"input": "79",
"output": "9"
},
{
"input": "7",
"output": "3"
},
{
"input": "55",
"output": "4"
},
{
"input": "40",
"output": "2"
},
{
"input": "719",
"output": "13"
},
{
"input": "847",
"output": "13"
},
{
"input": "225",
"output": "4"
},
{
"input": "4704",
"output": "51"
},
{
"input": "1132",
"output": "15"
},
{
"input": "7811",
"output": "80"
},
{
"input": "7981",
"output": "84"
},
{
"input": "82655",
"output": "830"
},
{
"input": "6364",
"output": "70"
},
{
"input": "74611",
"output": "748"
},
{
"input": "45391",
"output": "459"
},
{
"input": "620448",
"output": "6210"
},
{
"input": "265145",
"output": "2654"
},
{
"input": "671704",
"output": "6721"
},
{
"input": "365173",
"output": "3658"
},
{
"input": "7130872",
"output": "71314"
},
{
"input": "9628747",
"output": "96292"
},
{
"input": "8898399",
"output": "88993"
},
{
"input": "9497953",
"output": "94985"
},
{
"input": "19070947",
"output": "190714"
},
{
"input": "20185520",
"output": "201856"
},
{
"input": "91402248",
"output": "914028"
},
{
"input": "27035533",
"output": "270360"
},
{
"input": "22717528",
"output": "227180"
},
{
"input": "24403439",
"output": "244041"
},
{
"input": "163565555",
"output": "1635659"
},
{
"input": "152541908",
"output": "1525423"
},
{
"input": "668439837",
"output": "6684403"
},
{
"input": "20",
"output": "1"
},
{
"input": "999999999",
"output": "10000009"
},
{
"input": "10",
"output": "1"
},
{
"input": "7",
"output": "3"
},
{
"input": "6",
"output": "2"
},
{
"input": "99999999",
"output": "1000009"
},
{
"input": "1000001",
"output": "10001"
},
{
"input": "2521",
"output": "27"
}
] | 1,699,183,056
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 49
| 46
| 0
|
n=int(input())
notes=[100,20,10,5,1]
count=0
for i in notes:
if(i<=n):
count+=n//i
n=n%i
print(count)
|
Title: Hit the Lottery
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Allen has a LOT of money. He has $n$ dollars in the bank. For security reasons, he wants to withdraw it in cash (we will not disclose the reasons here). The denominations for dollar bills are $1$, $5$, $10$, $20$, $100$. What is the minimum number of bills Allen could receive after withdrawing his entire balance?
Input Specification:
The first and only line of input contains a single integer $n$ ($1 \le n \le 10^9$).
Output Specification:
Output the minimum number of bills that Allen could receive.
Demo Input:
['125\n', '43\n', '1000000000\n']
Demo Output:
['3\n', '5\n', '10000000\n']
Note:
In the first sample case, Allen can withdraw this with a $100$ dollar bill, a $20$ dollar bill, and a $5$ dollar bill. There is no way for Allen to receive $125$ dollars in one or two bills.
In the second sample case, Allen can withdraw two $20$ dollar bills and three $1$ dollar bills.
In the third sample case, Allen can withdraw $100000000$ (ten million!) $100$ dollar bills.
|
```python
n=int(input())
notes=[100,20,10,5,1]
count=0
for i in notes:
if(i<=n):
count+=n//i
n=n%i
print(count)
```
| 3
|
|
21
|
B
|
Intersection
|
PROGRAMMING
| 2,000
|
[
"implementation",
"math"
] |
B. Intersection
|
1
|
256
|
You are given two set of points. The first set is determined by the equation *A*1*x*<=+<=*B*1*y*<=+<=*C*1<==<=0, and the second one is determined by the equation *A*2*x*<=+<=*B*2*y*<=+<=*C*2<==<=0.
Write the program which finds the number of points in the intersection of two given sets.
|
The first line of the input contains three integer numbers *A*1,<=*B*1,<=*C*1 separated by space. The second line contains three integer numbers *A*2,<=*B*2,<=*C*2 separated by space. All the numbers are between -100 and 100, inclusive.
|
Print the number of points in the intersection or -1 if there are infinite number of points.
|
[
"1 1 0\n2 2 0\n",
"1 1 0\n2 -2 0\n"
] |
[
"-1\n",
"1\n"
] |
none
| 1,000
|
[
{
"input": "1 1 0\n2 2 0",
"output": "-1"
},
{
"input": "1 1 0\n2 -2 0",
"output": "1"
},
{
"input": "0 0 0\n0 0 0",
"output": "-1"
},
{
"input": "1 1 1\n1 1 1",
"output": "-1"
},
{
"input": "8 3 -4\n-5 2 7",
"output": "1"
},
{
"input": "-1 -1 0\n0 -1 -1",
"output": "1"
},
{
"input": "-1 -1 0\n1 1 -1",
"output": "0"
},
{
"input": "-1 -1 1\n0 -1 0",
"output": "1"
},
{
"input": "0 0 0\n1 -1 -1",
"output": "-1"
},
{
"input": "0 0 1\n-1 1 -1",
"output": "0"
},
{
"input": "0 1 -1\n-1 1 -1",
"output": "1"
},
{
"input": "1 0 -1\n0 0 -1",
"output": "0"
},
{
"input": "0 1 1\n1 0 0",
"output": "1"
},
{
"input": "1 0 0\n0 0 1",
"output": "0"
},
{
"input": "1 -1 -1\n1 -1 0",
"output": "0"
},
{
"input": "1 0 0\n0 1 1",
"output": "1"
},
{
"input": "1 -1 1\n-1 -1 1",
"output": "1"
},
{
"input": "1 0 0\n0 1 1",
"output": "1"
},
{
"input": "-1 -1 1\n-1 -1 -1",
"output": "0"
},
{
"input": "-1 -1 0\n1 1 -1",
"output": "0"
},
{
"input": "0 0 0\n0 1 -1",
"output": "-1"
},
{
"input": "0 1 1\n0 1 -1",
"output": "0"
},
{
"input": "0 1 0\n1 1 0",
"output": "1"
},
{
"input": "1 0 1\n-1 0 -1",
"output": "-1"
},
{
"input": "1 1 0\n1 0 -1",
"output": "1"
},
{
"input": "0 -1 -1\n-1 0 0",
"output": "1"
},
{
"input": "1 0 0\n1 0 0",
"output": "-1"
},
{
"input": "1 1 1\n-1 -1 0",
"output": "0"
},
{
"input": "-1 -1 -1\n0 -1 1",
"output": "1"
},
{
"input": "0 -1 0\n0 0 1",
"output": "0"
},
{
"input": "0 1 1\n-1 -1 1",
"output": "1"
},
{
"input": "0 -1 0\n0 -1 1",
"output": "0"
},
{
"input": "0 1 1\n0 1 1",
"output": "-1"
},
{
"input": "1 -1 0\n-1 -1 1",
"output": "1"
},
{
"input": "0 1 1\n0 1 -1",
"output": "0"
},
{
"input": "1 0 1\n1 0 0",
"output": "0"
},
{
"input": "1 1 1\n0 0 0",
"output": "-1"
},
{
"input": "1 0 1\n-1 -1 -1",
"output": "1"
},
{
"input": "1 -1 1\n0 0 0",
"output": "-1"
},
{
"input": "0 1 1\n-1 -1 0",
"output": "1"
},
{
"input": "-1 0 1\n1 0 0",
"output": "0"
},
{
"input": "0 1 -1\n0 0 1",
"output": "0"
},
{
"input": "0 -1 0\n1 1 1",
"output": "1"
},
{
"input": "1 0 1\n0 1 1",
"output": "1"
},
{
"input": "0 0 0\n1 1 -1",
"output": "-1"
},
{
"input": "1 -1 1\n1 1 1",
"output": "1"
},
{
"input": "1 0 -1\n-1 0 1",
"output": "-1"
},
{
"input": "1 0 1\n1 -1 1",
"output": "1"
},
{
"input": "1 -1 -1\n-1 -1 -1",
"output": "1"
},
{
"input": "0 -1 1\n0 0 -1",
"output": "0"
},
{
"input": "0 0 -1\n1 -1 -1",
"output": "0"
},
{
"input": "1 1 0\n-1 0 0",
"output": "1"
},
{
"input": "1 0 -1\n0 -1 0",
"output": "1"
},
{
"input": "1 -1 0\n-1 1 0",
"output": "-1"
},
{
"input": "1 -1 1\n1 -1 0",
"output": "0"
},
{
"input": "-1 -1 -1\n-1 1 0",
"output": "1"
},
{
"input": "-1 0 1\n1 -1 1",
"output": "1"
},
{
"input": "1 -1 0\n0 -1 -1",
"output": "1"
},
{
"input": "-1 1 0\n-1 0 -1",
"output": "1"
},
{
"input": "-1 -1 -1\n1 -1 1",
"output": "1"
},
{
"input": "-1 -1 0\n1 1 1",
"output": "0"
},
{
"input": "0 1 -1\n-1 0 0",
"output": "1"
},
{
"input": "0 0 0\n0 0 0",
"output": "-1"
},
{
"input": "0 1 1\n1 0 -1",
"output": "1"
},
{
"input": "0 1 -1\n0 0 0",
"output": "-1"
},
{
"input": "1 -1 0\n-1 1 0",
"output": "-1"
},
{
"input": "0 0 0\n0 1 0",
"output": "-1"
},
{
"input": "0 -1 1\n1 -1 1",
"output": "1"
},
{
"input": "1 0 0\n0 1 0",
"output": "1"
},
{
"input": "-1 1 0\n0 -1 1",
"output": "1"
},
{
"input": "-1 0 -1\n1 1 0",
"output": "1"
},
{
"input": "0 -1 0\n1 1 -1",
"output": "1"
},
{
"input": "-1 -1 1\n-1 0 1",
"output": "1"
},
{
"input": "0 1 0\n1 0 1",
"output": "1"
},
{
"input": "1 0 0\n-1 0 -1",
"output": "0"
},
{
"input": "-1 -1 0\n1 -1 1",
"output": "1"
},
{
"input": "1 1 1\n-1 -1 -1",
"output": "-1"
},
{
"input": "1 -1 0\n-1 1 0",
"output": "-1"
},
{
"input": "-1 -1 1\n-1 1 0",
"output": "1"
},
{
"input": "0 0 1\n1 0 -1",
"output": "0"
},
{
"input": "0 -1 -2\n0 1 0",
"output": "0"
},
{
"input": "0 -1 0\n2 -2 2",
"output": "1"
},
{
"input": "1 -1 2\n-1 0 0",
"output": "1"
},
{
"input": "-2 0 2\n0 0 2",
"output": "0"
},
{
"input": "-1 0 -1\n1 -1 -1",
"output": "1"
},
{
"input": "-1 2 0\n-2 1 -2",
"output": "1"
},
{
"input": "0 2 0\n0 1 2",
"output": "0"
},
{
"input": "2 2 2\n0 -2 0",
"output": "1"
},
{
"input": "-2 0 -2\n2 -2 -2",
"output": "1"
},
{
"input": "2 2 -1\n-2 1 1",
"output": "1"
},
{
"input": "-2 -1 1\n0 -1 0",
"output": "1"
},
{
"input": "-2 1 1\n0 0 -2",
"output": "0"
},
{
"input": "-1 2 -2\n0 2 1",
"output": "1"
},
{
"input": "1 2 -2\n-1 2 0",
"output": "1"
},
{
"input": "0 0 2\n0 -1 -1",
"output": "0"
},
{
"input": "2 1 1\n1 2 1",
"output": "1"
},
{
"input": "-2 -1 2\n1 1 1",
"output": "1"
},
{
"input": "0 -1 -1\n-2 -2 -1",
"output": "1"
},
{
"input": "-1 0 -1\n0 -2 1",
"output": "1"
},
{
"input": "1 1 2\n0 1 0",
"output": "1"
},
{
"input": "-2 1 1\n2 1 -1",
"output": "1"
},
{
"input": "-1 -2 1\n-1 -2 2",
"output": "0"
},
{
"input": "0 -2 1\n-2 2 2",
"output": "1"
},
{
"input": "0 -1 2\n-1 -1 0",
"output": "1"
},
{
"input": "1 -1 -2\n1 2 -2",
"output": "1"
},
{
"input": "-2 -1 0\n-2 2 2",
"output": "1"
},
{
"input": "-1 1 0\n0 -1 0",
"output": "1"
},
{
"input": "-1 -2 2\n-1 0 -2",
"output": "1"
},
{
"input": "0 1 -1\n1 0 -2",
"output": "1"
},
{
"input": "-1 -2 -2\n-2 1 0",
"output": "1"
},
{
"input": "1 -1 2\n0 0 -2",
"output": "0"
},
{
"input": "2 -1 2\n0 -2 1",
"output": "1"
},
{
"input": "1 0 -1\n2 0 1",
"output": "0"
},
{
"input": "-2 -1 0\n-2 0 -1",
"output": "1"
},
{
"input": "-1 1 1\n0 1 1",
"output": "1"
},
{
"input": "1 1 1\n1 1 -2",
"output": "0"
},
{
"input": "1 2 1\n1 -1 1",
"output": "1"
},
{
"input": "-2 -2 0\n0 -2 -1",
"output": "1"
},
{
"input": "-1 -1 0\n-1 -2 -1",
"output": "1"
},
{
"input": "-2 -2 -2\n1 1 -1",
"output": "0"
},
{
"input": "0 0 0\n0 0 1",
"output": "0"
},
{
"input": "0 0 -87\n0 0 0",
"output": "0"
},
{
"input": "0 0 1\n0 0 1",
"output": "0"
},
{
"input": "100 100 100\n-100 100 -100",
"output": "1"
},
{
"input": "12 -32 89\n0 67 -23",
"output": "1"
},
{
"input": "0 0 1\n0 0 2",
"output": "0"
},
{
"input": "0 5 0\n0 0 5",
"output": "0"
},
{
"input": "0 1 1\n0 -1 -1",
"output": "-1"
},
{
"input": "1 1 0\n2 2 1",
"output": "0"
},
{
"input": "0 0 5\n0 0 5",
"output": "0"
},
{
"input": "0 5 0\n0 5 1",
"output": "0"
},
{
"input": "0 1 1\n0 1 2",
"output": "0"
},
{
"input": "0 1 1\n0 2 3",
"output": "0"
},
{
"input": "2 2 -3\n2 2 -2",
"output": "0"
},
{
"input": "3 3 3\n3 3 4",
"output": "0"
},
{
"input": "0 1 2\n0 2 3",
"output": "0"
},
{
"input": "0 0 1\n1 1 1",
"output": "0"
},
{
"input": "5 0 1\n7 0 2",
"output": "0"
},
{
"input": "4 6 1\n2 3 1",
"output": "0"
},
{
"input": "0 0 0\n0 1 2",
"output": "-1"
}
] | 1,572,032,675
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 140
| 140
| 0
|
a1, b1, c1 = map(int, input().split())
a2, b2, c2 = map(int, input().split())
if a1 == 0 and b1 == 0 and a2 == 0 and b2 == 0 and c1 != c2:
print(0)
elif (a1 == 0 and b1 == 0 and c1 == 0) or (a2 == 0 and b2 == 0 and c2 == 0):
print("-1")
elif (a1 == 0 and b1 == 0 and c1 != 0) or (a2 == 0 and b2 == 0 and c2 != 0) and (c1 == c2):
print(0)
elif a1*b2 == a2*b1:
if b2*c1 == c2*b1 and c1*a2 == c2*a1:
print("-1")
else:
print(0)
else:
print(1)
|
Title: Intersection
Time Limit: 1 seconds
Memory Limit: 256 megabytes
Problem Description:
You are given two set of points. The first set is determined by the equation *A*1*x*<=+<=*B*1*y*<=+<=*C*1<==<=0, and the second one is determined by the equation *A*2*x*<=+<=*B*2*y*<=+<=*C*2<==<=0.
Write the program which finds the number of points in the intersection of two given sets.
Input Specification:
The first line of the input contains three integer numbers *A*1,<=*B*1,<=*C*1 separated by space. The second line contains three integer numbers *A*2,<=*B*2,<=*C*2 separated by space. All the numbers are between -100 and 100, inclusive.
Output Specification:
Print the number of points in the intersection or -1 if there are infinite number of points.
Demo Input:
['1 1 0\n2 2 0\n', '1 1 0\n2 -2 0\n']
Demo Output:
['-1\n', '1\n']
Note:
none
|
```python
a1, b1, c1 = map(int, input().split())
a2, b2, c2 = map(int, input().split())
if a1 == 0 and b1 == 0 and a2 == 0 and b2 == 0 and c1 != c2:
print(0)
elif (a1 == 0 and b1 == 0 and c1 == 0) or (a2 == 0 and b2 == 0 and c2 == 0):
print("-1")
elif (a1 == 0 and b1 == 0 and c1 != 0) or (a2 == 0 and b2 == 0 and c2 != 0) and (c1 == c2):
print(0)
elif a1*b2 == a2*b1:
if b2*c1 == c2*b1 and c1*a2 == c2*a1:
print("-1")
else:
print(0)
else:
print(1)
```
| 3.93
|
121
|
A
|
Lucky Sum
|
PROGRAMMING
| 1,100
|
[
"implementation"
] | null | null |
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
Let *next*(*x*) be the minimum lucky number which is larger than or equals *x*. Petya is interested what is the value of the expression *next*(*l*)<=+<=*next*(*l*<=+<=1)<=+<=...<=+<=*next*(*r*<=-<=1)<=+<=*next*(*r*). Help him solve this problem.
|
The single line contains two integers *l* and *r* (1<=≤<=*l*<=≤<=*r*<=≤<=109) — the left and right interval limits.
|
In the single line print the only number — the sum *next*(*l*)<=+<=*next*(*l*<=+<=1)<=+<=...<=+<=*next*(*r*<=-<=1)<=+<=*next*(*r*).
Please do not use the %lld specificator to read or write 64-bit integers in C++. It is preferred to use the cin, cout streams or the %I64d specificator.
|
[
"2 7\n",
"7 7\n"
] |
[
"33\n",
"7\n"
] |
In the first sample: *next*(2) + *next*(3) + *next*(4) + *next*(5) + *next*(6) + *next*(7) = 4 + 4 + 4 + 7 + 7 + 7 = 33
In the second sample: *next*(7) = 7
| 500
|
[
{
"input": "2 7",
"output": "33"
},
{
"input": "7 7",
"output": "7"
},
{
"input": "1 9",
"output": "125"
},
{
"input": "4 7",
"output": "25"
},
{
"input": "12 47",
"output": "1593"
},
{
"input": "6 77",
"output": "4012"
},
{
"input": "1 100",
"output": "14247"
},
{
"input": "1000000000 1000000000",
"output": "4444444444"
},
{
"input": "77 77",
"output": "77"
},
{
"input": "69 788",
"output": "452195"
},
{
"input": "474 747",
"output": "202794"
},
{
"input": "4 77777",
"output": "4070145675"
},
{
"input": "1 1000000",
"output": "1394675359387"
},
{
"input": "47 744447",
"output": "381286992761"
},
{
"input": "47444 1000000000",
"output": "1394672348253941136"
},
{
"input": "48 854888",
"output": "749733199853"
},
{
"input": "854444 985555",
"output": "582719941728"
},
{
"input": "774744 774747",
"output": "3098985"
},
{
"input": "654 987654",
"output": "1339803940266"
},
{
"input": "477777 1000000000",
"output": "1394672167300009765"
},
{
"input": "77777 777777777",
"output": "407018021649898097"
},
{
"input": "963 85555574",
"output": "7526978888069560"
},
{
"input": "47 7444",
"output": "38125896"
},
{
"input": "1 1000000000",
"output": "1394672350065645019"
},
{
"input": "474 999888555",
"output": "1394177038954402791"
},
{
"input": "777 1000000000",
"output": "1394672350065239125"
},
{
"input": "7 777777774",
"output": "407018023386632646"
},
{
"input": "369 852",
"output": "606732"
},
{
"input": "47 47",
"output": "47"
},
{
"input": "747 748",
"output": "1521"
},
{
"input": "77777440 77777444",
"output": "388887220"
},
{
"input": "987545885 999875584",
"output": "54798666661186800"
},
{
"input": "2 777777776",
"output": "407018024942188226"
},
{
"input": "1 1",
"output": "4"
},
{
"input": "1 2",
"output": "8"
},
{
"input": "999999999 1000000000",
"output": "8888888888"
},
{
"input": "777777777 1000000000",
"output": "987654325123456789"
},
{
"input": "777777778 1000000000",
"output": "987654324345679012"
},
{
"input": "5 6",
"output": "14"
},
{
"input": "49 49",
"output": "74"
},
{
"input": "6 6",
"output": "7"
},
{
"input": "3 4",
"output": "8"
}
] | 1,690,394,629
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 42
| 46
| 102,400
|
def generate_helper(number, length, lucky_numbers):
if len(number) == length:
lucky_numbers.append(int(number))
return
generate_helper(number + "4", length, lucky_numbers)
generate_helper(number + "7", length, lucky_numbers)
def generate_lucky_numbers(length):
lucky_numbers = []
generate_helper("", length, lucky_numbers)
return lucky_numbers
if __name__ == "__main__":
all_lucky_numbers = []
lucky = []
for length in range(1, 11):
lucky_numbers = generate_lucky_numbers(length)
all_lucky_numbers.append(lucky_numbers)
for num in lucky_numbers:
lucky.append(num)
l, r = map(int, input().split())
sum_val = 0
x = 0
flag = 0
stop = 0
for i in range(len(lucky)):
if lucky[i] >= l and lucky[i] <= r and flag == 0:
x = (lucky[i] - l + 1) * lucky[i] # 3*4
sum_val += x
flag = 1
stop = lucky[i]
elif lucky[i] <= r and flag == 1:
x = (lucky[i] - lucky[i - 1]) * lucky[i] # 3*7
sum_val += x
stop = lucky[i]
if r == l:
for i in lucky:
if i >= r:
sum_val=i
break
elif sum_val ==0:
for i in lucky:
if i > r:
x = (r-l+1)*i
sum_val = x
break
else:
if r not in lucky:
for i in lucky:
if i > stop:
x = (r - stop) * i
sum_val += x
break
print(sum_val)
|
Title: Lucky Sum
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
Let *next*(*x*) be the minimum lucky number which is larger than or equals *x*. Petya is interested what is the value of the expression *next*(*l*)<=+<=*next*(*l*<=+<=1)<=+<=...<=+<=*next*(*r*<=-<=1)<=+<=*next*(*r*). Help him solve this problem.
Input Specification:
The single line contains two integers *l* and *r* (1<=≤<=*l*<=≤<=*r*<=≤<=109) — the left and right interval limits.
Output Specification:
In the single line print the only number — the sum *next*(*l*)<=+<=*next*(*l*<=+<=1)<=+<=...<=+<=*next*(*r*<=-<=1)<=+<=*next*(*r*).
Please do not use the %lld specificator to read or write 64-bit integers in C++. It is preferred to use the cin, cout streams or the %I64d specificator.
Demo Input:
['2 7\n', '7 7\n']
Demo Output:
['33\n', '7\n']
Note:
In the first sample: *next*(2) + *next*(3) + *next*(4) + *next*(5) + *next*(6) + *next*(7) = 4 + 4 + 4 + 7 + 7 + 7 = 33
In the second sample: *next*(7) = 7
|
```python
def generate_helper(number, length, lucky_numbers):
if len(number) == length:
lucky_numbers.append(int(number))
return
generate_helper(number + "4", length, lucky_numbers)
generate_helper(number + "7", length, lucky_numbers)
def generate_lucky_numbers(length):
lucky_numbers = []
generate_helper("", length, lucky_numbers)
return lucky_numbers
if __name__ == "__main__":
all_lucky_numbers = []
lucky = []
for length in range(1, 11):
lucky_numbers = generate_lucky_numbers(length)
all_lucky_numbers.append(lucky_numbers)
for num in lucky_numbers:
lucky.append(num)
l, r = map(int, input().split())
sum_val = 0
x = 0
flag = 0
stop = 0
for i in range(len(lucky)):
if lucky[i] >= l and lucky[i] <= r and flag == 0:
x = (lucky[i] - l + 1) * lucky[i] # 3*4
sum_val += x
flag = 1
stop = lucky[i]
elif lucky[i] <= r and flag == 1:
x = (lucky[i] - lucky[i - 1]) * lucky[i] # 3*7
sum_val += x
stop = lucky[i]
if r == l:
for i in lucky:
if i >= r:
sum_val=i
break
elif sum_val ==0:
for i in lucky:
if i > r:
x = (r-l+1)*i
sum_val = x
break
else:
if r not in lucky:
for i in lucky:
if i > stop:
x = (r - stop) * i
sum_val += x
break
print(sum_val)
```
| 3
|
|
388
|
A
|
Fox and Box Accumulation
|
PROGRAMMING
| 1,400
|
[
"greedy",
"sortings"
] | null | null |
Fox Ciel has *n* boxes in her room. They have the same size and weight, but they might have different strength. The *i*-th box can hold at most *x**i* boxes on its top (we'll call *x**i* the strength of the box).
Since all the boxes have the same size, Ciel cannot put more than one box directly on the top of some box. For example, imagine Ciel has three boxes: the first has strength 2, the second has strength 1 and the third has strength 1. She cannot put the second and the third box simultaneously directly on the top of the first one. But she can put the second box directly on the top of the first one, and then the third box directly on the top of the second one. We will call such a construction of boxes a pile.
Fox Ciel wants to construct piles from all the boxes. Each pile will contain some boxes from top to bottom, and there cannot be more than *x**i* boxes on the top of *i*-th box. What is the minimal number of piles she needs to construct?
|
The first line contains an integer *n* (1<=≤<=*n*<=≤<=100). The next line contains *n* integers *x*1,<=*x*2,<=...,<=*x**n* (0<=≤<=*x**i*<=≤<=100).
|
Output a single integer — the minimal possible number of piles.
|
[
"3\n0 0 10\n",
"5\n0 1 2 3 4\n",
"4\n0 0 0 0\n",
"9\n0 1 0 2 0 1 1 2 10\n"
] |
[
"2\n",
"1\n",
"4\n",
"3\n"
] |
In example 1, one optimal way is to build 2 piles: the first pile contains boxes 1 and 3 (from top to bottom), the second pile contains only box 2.
In example 2, we can build only 1 pile that contains boxes 1, 2, 3, 4, 5 (from top to bottom).
| 500
|
[
{
"input": "3\n0 0 10",
"output": "2"
},
{
"input": "5\n0 1 2 3 4",
"output": "1"
},
{
"input": "4\n0 0 0 0",
"output": "4"
},
{
"input": "9\n0 1 0 2 0 1 1 2 10",
"output": "3"
},
{
"input": "1\n0",
"output": "1"
},
{
"input": "2\n0 0",
"output": "2"
},
{
"input": "2\n0 1",
"output": "1"
},
{
"input": "2\n100 99",
"output": "1"
},
{
"input": "9\n0 1 1 0 2 0 3 45 4",
"output": "3"
},
{
"input": "10\n1 1 1 1 2 2 2 2 2 2",
"output": "4"
},
{
"input": "100\n50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50",
"output": "2"
},
{
"input": "100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0",
"output": "100"
},
{
"input": "100\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100",
"output": "1"
},
{
"input": "11\n71 34 31 71 42 38 64 60 36 76 67",
"output": "1"
},
{
"input": "39\n54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54",
"output": "1"
},
{
"input": "59\n61 33 84 76 56 47 70 94 46 77 95 85 35 90 83 62 48 74 36 74 83 97 62 92 95 75 70 82 94 67 82 42 78 70 50 73 80 76 94 83 96 80 80 88 91 79 83 54 38 90 33 93 53 33 86 95 48 34 46",
"output": "1"
},
{
"input": "87\n52 63 93 90 50 35 67 66 46 89 43 64 33 88 34 80 69 59 75 55 55 68 66 83 46 33 72 36 73 34 54 85 52 87 67 68 47 95 52 78 92 58 71 66 84 61 36 77 69 44 84 70 71 55 43 91 33 65 77 34 43 59 83 70 95 38 92 92 74 53 66 65 81 45 55 89 49 52 43 69 78 41 37 79 63 70 67",
"output": "1"
},
{
"input": "15\n20 69 36 63 40 40 52 42 20 43 59 68 64 49 47",
"output": "1"
},
{
"input": "39\n40 20 49 35 80 18 20 75 39 62 43 59 46 37 58 52 67 16 34 65 32 75 59 42 59 41 68 21 41 61 66 19 34 63 19 63 78 62 24",
"output": "1"
},
{
"input": "18\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0",
"output": "18"
},
{
"input": "46\n14 13 13 10 13 15 8 8 12 9 11 15 8 10 13 8 12 13 11 8 12 15 12 15 11 13 12 9 13 12 10 8 13 15 9 15 8 13 11 8 9 9 9 8 11 8",
"output": "3"
},
{
"input": "70\n6 1 4 1 1 6 5 2 5 1 1 5 2 1 2 4 1 1 1 2 4 5 2 1 6 6 5 2 1 4 3 1 4 3 6 5 2 1 3 4 4 1 4 5 6 2 1 2 4 4 5 3 6 1 1 2 2 1 5 6 1 6 3 1 4 4 2 3 1 4",
"output": "11"
},
{
"input": "94\n11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11",
"output": "8"
},
{
"input": "18\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "9"
},
{
"input": "46\n14 8 7 4 8 7 8 8 12 9 9 12 9 12 14 8 10 14 14 6 9 11 7 14 14 13 11 4 13 13 11 13 9 10 10 12 10 8 12 10 13 10 7 13 14 6",
"output": "4"
},
{
"input": "74\n4 4 5 5 5 5 5 5 6 6 5 4 4 4 3 3 5 4 5 3 4 4 5 6 3 3 5 4 4 5 4 3 5 5 4 4 3 5 6 4 3 6 6 3 4 5 4 4 3 3 3 6 3 5 6 5 5 5 5 3 6 4 5 4 4 6 6 3 4 5 6 6 6 6",
"output": "11"
},
{
"input": "100\n48 35 44 37 35 42 42 39 49 53 35 55 41 42 42 39 43 49 46 54 48 39 42 53 55 39 56 43 43 38 48 40 54 36 48 55 46 40 41 39 45 56 38 40 47 46 45 46 53 51 38 41 54 35 35 47 42 43 54 54 39 44 49 41 37 49 36 37 37 49 53 44 47 37 55 49 45 40 35 51 44 40 42 35 46 48 53 48 35 38 42 36 54 46 44 47 41 40 41 42",
"output": "2"
},
{
"input": "100\n34 3 37 35 40 44 38 46 13 31 12 23 26 40 26 18 28 36 5 21 2 4 10 29 3 46 38 41 37 28 44 14 39 10 35 17 24 28 38 16 29 6 2 42 47 34 43 2 43 46 7 16 16 43 33 32 20 47 8 48 32 4 45 38 15 7 25 25 19 41 20 35 16 2 31 5 31 25 27 3 45 29 32 36 9 47 39 35 9 21 32 17 21 41 29 48 11 40 5 25",
"output": "3"
},
{
"input": "100\n2 4 5 5 0 5 3 0 3 0 5 3 4 1 0 3 0 5 5 0 4 3 3 3 0 2 1 2 2 4 4 2 4 0 1 3 4 1 4 2 5 3 5 2 3 0 1 2 5 5 2 0 4 2 5 1 0 0 4 0 1 2 0 1 2 4 1 4 5 3 4 5 5 1 0 0 3 1 4 0 4 5 1 3 3 0 4 2 0 4 5 2 3 0 5 1 4 4 1 0",
"output": "21"
},
{
"input": "100\n5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5",
"output": "17"
},
{
"input": "100\n1 1 1 2 2 2 2 2 2 1 1 1 2 0 2 2 0 0 0 0 0 2 0 0 2 2 1 0 2 0 2 1 1 2 2 1 2 2 1 2 1 2 2 1 2 0 1 2 2 0 2 2 2 2 1 0 1 0 0 0 2 0 2 0 1 1 0 2 2 2 2 1 1 1 2 1 1 2 1 1 1 2 1 0 2 1 0 1 2 0 1 1 2 0 0 1 1 0 1 1",
"output": "34"
},
{
"input": "100\n0 3 1 0 3 2 1 2 2 1 2 1 3 2 1 2 1 3 2 0 0 2 3 0 0 2 1 2 2 3 1 2 2 2 0 3 3 2 0 0 1 0 1 2 3 1 0 3 3 3 0 2 1 3 0 1 3 2 2 2 2 3 3 2 0 2 0 1 0 1 3 0 1 2 0 1 3 2 0 3 1 1 2 3 1 3 1 0 3 0 3 0 2 1 1 1 2 2 0 1",
"output": "26"
},
{
"input": "100\n1 0 2 2 2 2 1 0 1 2 2 2 0 1 0 1 2 1 2 1 0 1 2 2 2 1 0 1 0 2 1 2 0 2 1 1 2 1 1 0 1 2 1 1 2 1 1 0 2 2 0 0 1 2 0 2 0 0 1 1 0 0 2 1 2 1 0 2 2 2 2 2 2 1 2 0 1 2 1 2 1 0 1 0 1 0 1 1 0 2 1 0 0 1 2 2 1 0 0 1",
"output": "34"
},
{
"input": "100\n3 4 4 4 3 3 3 3 3 4 4 4 3 3 3 4 3 4 4 4 3 4 3 4 3 4 3 3 4 4 3 4 4 3 4 4 4 4 4 3 4 3 3 3 4 3 3 4 3 4 3 4 3 3 4 4 4 3 3 3 3 3 4 4 3 4 4 3 4 3 3 3 4 4 3 3 3 3 3 4 3 4 4 3 3 4 3 4 3 4 4 4 3 3 3 4 4 4 4 3",
"output": "20"
},
{
"input": "100\n8 7 9 10 2 7 8 11 11 4 7 10 2 5 8 9 10 3 9 4 10 5 5 6 3 8 8 9 6 9 5 5 4 11 4 2 11 8 3 5 6 6 11 9 8 11 9 8 3 3 8 9 8 9 4 8 6 11 4 4 4 9 7 5 3 4 11 3 9 11 8 10 3 5 5 7 6 9 4 5 2 11 3 6 2 10 9 4 6 10 5 11 8 10 10 8 9 8 5 3",
"output": "9"
},
{
"input": "5\n4 1 1 1 1",
"output": "2"
}
] | 1,589,972,929
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 36
| 155
| 1,331,200
|
import sys
#input=sys.stdin.buffer.readline
t=1
mod=10**9+7
for __ in range(t):
#a=[]
n=int(input())
#n,m=map(int,input().split())
l=list(map(int,input().split()))
l.sort()
cnt=0
maxi=0
ans=0
# print(l)
while cnt<n:
cnt1=0
for i in range(n):
if l[i]!=-1:
if l[i]>=cnt1:
cnt+=1
cnt1+=1
l[i]=-1
#print(l)
ans+=1
print(ans)
|
Title: Fox and Box Accumulation
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Fox Ciel has *n* boxes in her room. They have the same size and weight, but they might have different strength. The *i*-th box can hold at most *x**i* boxes on its top (we'll call *x**i* the strength of the box).
Since all the boxes have the same size, Ciel cannot put more than one box directly on the top of some box. For example, imagine Ciel has three boxes: the first has strength 2, the second has strength 1 and the third has strength 1. She cannot put the second and the third box simultaneously directly on the top of the first one. But she can put the second box directly on the top of the first one, and then the third box directly on the top of the second one. We will call such a construction of boxes a pile.
Fox Ciel wants to construct piles from all the boxes. Each pile will contain some boxes from top to bottom, and there cannot be more than *x**i* boxes on the top of *i*-th box. What is the minimal number of piles she needs to construct?
Input Specification:
The first line contains an integer *n* (1<=≤<=*n*<=≤<=100). The next line contains *n* integers *x*1,<=*x*2,<=...,<=*x**n* (0<=≤<=*x**i*<=≤<=100).
Output Specification:
Output a single integer — the minimal possible number of piles.
Demo Input:
['3\n0 0 10\n', '5\n0 1 2 3 4\n', '4\n0 0 0 0\n', '9\n0 1 0 2 0 1 1 2 10\n']
Demo Output:
['2\n', '1\n', '4\n', '3\n']
Note:
In example 1, one optimal way is to build 2 piles: the first pile contains boxes 1 and 3 (from top to bottom), the second pile contains only box 2.
In example 2, we can build only 1 pile that contains boxes 1, 2, 3, 4, 5 (from top to bottom).
|
```python
import sys
#input=sys.stdin.buffer.readline
t=1
mod=10**9+7
for __ in range(t):
#a=[]
n=int(input())
#n,m=map(int,input().split())
l=list(map(int,input().split()))
l.sort()
cnt=0
maxi=0
ans=0
# print(l)
while cnt<n:
cnt1=0
for i in range(n):
if l[i]!=-1:
if l[i]>=cnt1:
cnt+=1
cnt1+=1
l[i]=-1
#print(l)
ans+=1
print(ans)
```
| 3
|
|
437
|
C
|
The Child and Toy
|
PROGRAMMING
| 1,400
|
[
"graphs",
"greedy",
"sortings"
] | null | null |
On Children's Day, the child got a toy from Delayyy as a present. However, the child is so naughty that he can't wait to destroy the toy.
The toy consists of *n* parts and *m* ropes. Each rope links two parts, but every pair of parts is linked by at most one rope. To split the toy, the child must remove all its parts. The child can remove a single part at a time, and each remove consume an energy. Let's define an energy value of part *i* as *v**i*. The child spend *v**f*1<=+<=*v**f*2<=+<=...<=+<=*v**f**k* energy for removing part *i* where *f*1,<=*f*2,<=...,<=*f**k* are the parts that are directly connected to the *i*-th and haven't been removed.
Help the child to find out, what is the minimum total energy he should spend to remove all *n* parts.
|
The first line contains two integers *n* and *m* (1<=≤<=*n*<=≤<=1000; 0<=≤<=*m*<=≤<=2000). The second line contains *n* integers: *v*1,<=*v*2,<=...,<=*v**n* (0<=≤<=*v**i*<=≤<=105). Then followed *m* lines, each line contains two integers *x**i* and *y**i*, representing a rope from part *x**i* to part *y**i* (1<=≤<=*x**i*,<=*y**i*<=≤<=*n*; *x**i*<=≠<=*y**i*).
Consider all the parts are numbered from 1 to *n*.
|
Output the minimum total energy the child should spend to remove all *n* parts of the toy.
|
[
"4 3\n10 20 30 40\n1 4\n1 2\n2 3\n",
"4 4\n100 100 100 100\n1 2\n2 3\n2 4\n3 4\n",
"7 10\n40 10 20 10 20 80 40\n1 5\n4 7\n4 5\n5 2\n5 7\n6 4\n1 6\n1 3\n4 3\n1 4\n"
] |
[
"40\n",
"400\n",
"160\n"
] |
One of the optimal sequence of actions in the first sample is:
- First, remove part 3, cost of the action is 20. - Then, remove part 2, cost of the action is 10. - Next, remove part 4, cost of the action is 10. - At last, remove part 1, cost of the action is 0.
So the total energy the child paid is 20 + 10 + 10 + 0 = 40, which is the minimum.
In the second sample, the child will spend 400 no matter in what order he will remove the parts.
| 1,500
|
[
{
"input": "4 3\n10 20 30 40\n1 4\n1 2\n2 3",
"output": "40"
},
{
"input": "4 4\n100 100 100 100\n1 2\n2 3\n2 4\n3 4",
"output": "400"
},
{
"input": "7 10\n40 10 20 10 20 80 40\n1 5\n4 7\n4 5\n5 2\n5 7\n6 4\n1 6\n1 3\n4 3\n1 4",
"output": "160"
},
{
"input": "1 0\n23333",
"output": "0"
},
{
"input": "5 4\n1 2 2 2 2\n1 2\n1 3\n1 4\n1 5",
"output": "4"
},
{
"input": "10 30\n3 6 17 15 13 15 6 12 9 1\n3 8\n1 10\n4 7\n1 7\n3 7\n2 9\n8 10\n3 1\n3 4\n8 6\n10 3\n3 9\n2 3\n10 4\n2 10\n5 8\n9 5\n6 1\n2 1\n7 2\n7 6\n7 10\n4 8\n5 6\n3 6\n4 1\n8 9\n7 9\n4 2\n5 10",
"output": "188"
},
{
"input": "3 3\n1 1 1\n1 2\n2 3\n3 1",
"output": "3"
}
] | 1,669,138,391
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 29
| 139
| 5,120,000
|
n,m=map(int,input().split())
arr=list(map(int,input().split()))
ma={};mb={}
for i in range(m):
a,b=map(int,input().split())
if a in ma:ma[a]+=[b]
else:ma[a]=[b]
if b in mb:mb[b]+=[a]
else:mb[b]=[a]
energy=[]
for i in range(1,n+1):energy.append([arr[i-1],i])
energy.sort();ans=0
# print(energy)
while len(ma) and len(mb):
x=energy.pop(0)
rope,ene=x[1],x[0]
try:
li=ma[rope]
del ma[rope]
# print(li)
for i in li:
if i in mb:
mb[i].remove(rope)
ans+=ene
if mb[i]==[]:
del mb[i]
# print(mb);break
except:pass
try:
ki=mb[rope]
del mb[rope]
# print(ki)
for i in ki:
if i in ma:
ma[i].remove(rope)
ans+=ene
if ma[i]==[]:del ma[i]
except:pass
print(ans)
|
Title: The Child and Toy
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
On Children's Day, the child got a toy from Delayyy as a present. However, the child is so naughty that he can't wait to destroy the toy.
The toy consists of *n* parts and *m* ropes. Each rope links two parts, but every pair of parts is linked by at most one rope. To split the toy, the child must remove all its parts. The child can remove a single part at a time, and each remove consume an energy. Let's define an energy value of part *i* as *v**i*. The child spend *v**f*1<=+<=*v**f*2<=+<=...<=+<=*v**f**k* energy for removing part *i* where *f*1,<=*f*2,<=...,<=*f**k* are the parts that are directly connected to the *i*-th and haven't been removed.
Help the child to find out, what is the minimum total energy he should spend to remove all *n* parts.
Input Specification:
The first line contains two integers *n* and *m* (1<=≤<=*n*<=≤<=1000; 0<=≤<=*m*<=≤<=2000). The second line contains *n* integers: *v*1,<=*v*2,<=...,<=*v**n* (0<=≤<=*v**i*<=≤<=105). Then followed *m* lines, each line contains two integers *x**i* and *y**i*, representing a rope from part *x**i* to part *y**i* (1<=≤<=*x**i*,<=*y**i*<=≤<=*n*; *x**i*<=≠<=*y**i*).
Consider all the parts are numbered from 1 to *n*.
Output Specification:
Output the minimum total energy the child should spend to remove all *n* parts of the toy.
Demo Input:
['4 3\n10 20 30 40\n1 4\n1 2\n2 3\n', '4 4\n100 100 100 100\n1 2\n2 3\n2 4\n3 4\n', '7 10\n40 10 20 10 20 80 40\n1 5\n4 7\n4 5\n5 2\n5 7\n6 4\n1 6\n1 3\n4 3\n1 4\n']
Demo Output:
['40\n', '400\n', '160\n']
Note:
One of the optimal sequence of actions in the first sample is:
- First, remove part 3, cost of the action is 20. - Then, remove part 2, cost of the action is 10. - Next, remove part 4, cost of the action is 10. - At last, remove part 1, cost of the action is 0.
So the total energy the child paid is 20 + 10 + 10 + 0 = 40, which is the minimum.
In the second sample, the child will spend 400 no matter in what order he will remove the parts.
|
```python
n,m=map(int,input().split())
arr=list(map(int,input().split()))
ma={};mb={}
for i in range(m):
a,b=map(int,input().split())
if a in ma:ma[a]+=[b]
else:ma[a]=[b]
if b in mb:mb[b]+=[a]
else:mb[b]=[a]
energy=[]
for i in range(1,n+1):energy.append([arr[i-1],i])
energy.sort();ans=0
# print(energy)
while len(ma) and len(mb):
x=energy.pop(0)
rope,ene=x[1],x[0]
try:
li=ma[rope]
del ma[rope]
# print(li)
for i in li:
if i in mb:
mb[i].remove(rope)
ans+=ene
if mb[i]==[]:
del mb[i]
# print(mb);break
except:pass
try:
ki=mb[rope]
del mb[rope]
# print(ki)
for i in ki:
if i in ma:
ma[i].remove(rope)
ans+=ene
if ma[i]==[]:del ma[i]
except:pass
print(ans)
```
| 3
|
|
560
|
A
|
Currency System in Geraldion
|
PROGRAMMING
| 1,000
|
[
"implementation",
"sortings"
] | null | null |
A magic island Geraldion, where Gerald lives, has its own currency system. It uses banknotes of several values. But the problem is, the system is not perfect and sometimes it happens that Geraldionians cannot express a certain sum of money with any set of banknotes. Of course, they can use any number of banknotes of each value. Such sum is called unfortunate. Gerald wondered: what is the minimum unfortunate sum?
|
The first line contains number *n* (1<=≤<=*n*<=≤<=1000) — the number of values of the banknotes that used in Geraldion.
The second line contains *n* distinct space-separated numbers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=106) — the values of the banknotes.
|
Print a single line — the minimum unfortunate sum. If there are no unfortunate sums, print <=-<=1.
|
[
"5\n1 2 3 4 5\n"
] |
[
"-1\n"
] |
none
| 500
|
[
{
"input": "5\n1 2 3 4 5",
"output": "-1"
},
{
"input": "1\n2",
"output": "1"
},
{
"input": "10\n371054 506438 397130 1 766759 208409 769264 549213 641270 771837",
"output": "-1"
},
{
"input": "10\n635370 154890 909382 220996 276501 716105 538714 140162 171960 271264",
"output": "1"
},
{
"input": "50\n110876 835020 859879 999908 712969 788264 287153 921820 330355 499311 209594 484829 296329 940051 174081 931503 1 780512 390075 97866 124255 950067 697612 244256 782385 789882 37608 82153 399889 598867 416717 377988 535636 511221 792568 683271 131077 290194 496712 330720 587436 563481 645817 942562 654093 980561 382937 48293 582608 116156",
"output": "-1"
},
{
"input": "50\n474421 421097 217233 156339 27075 733996 281778 863492 184707 956857 288561 70997 393786 337382 663642 131184 637 273801 799870 295017 392338 842567 161819 297705 102013 930684 375703 838048 154915 138503 629056 256591 893619 19263 787927 684541 320265 841090 421423 490879 394582 493952 619247 633202 612928 50907 276653 407819 489945 153173",
"output": "1"
},
{
"input": "1\n1",
"output": "-1"
},
{
"input": "1\n1000000",
"output": "1"
},
{
"input": "2\n3 2",
"output": "1"
},
{
"input": "2\n2 3",
"output": "1"
}
] | 1,550,083,829
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 16
| 108
| 0
|
def money(lst):
if 1 in lst:
return -1
return 1
n = int(input())
a = [int(i) for i in input().split()]
print(money(a))
|
Title: Currency System in Geraldion
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
A magic island Geraldion, where Gerald lives, has its own currency system. It uses banknotes of several values. But the problem is, the system is not perfect and sometimes it happens that Geraldionians cannot express a certain sum of money with any set of banknotes. Of course, they can use any number of banknotes of each value. Such sum is called unfortunate. Gerald wondered: what is the minimum unfortunate sum?
Input Specification:
The first line contains number *n* (1<=≤<=*n*<=≤<=1000) — the number of values of the banknotes that used in Geraldion.
The second line contains *n* distinct space-separated numbers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=106) — the values of the banknotes.
Output Specification:
Print a single line — the minimum unfortunate sum. If there are no unfortunate sums, print <=-<=1.
Demo Input:
['5\n1 2 3 4 5\n']
Demo Output:
['-1\n']
Note:
none
|
```python
def money(lst):
if 1 in lst:
return -1
return 1
n = int(input())
a = [int(i) for i in input().split()]
print(money(a))
```
| 3
|
|
456
|
A
|
Laptops
|
PROGRAMMING
| 1,100
|
[
"sortings"
] | null | null |
One day Dima and Alex had an argument about the price and quality of laptops. Dima thinks that the more expensive a laptop is, the better it is. Alex disagrees. Alex thinks that there are two laptops, such that the price of the first laptop is less (strictly smaller) than the price of the second laptop but the quality of the first laptop is higher (strictly greater) than the quality of the second laptop.
Please, check the guess of Alex. You are given descriptions of *n* laptops. Determine whether two described above laptops exist.
|
The first line contains an integer *n* (1<=≤<=*n*<=≤<=105) — the number of laptops.
Next *n* lines contain two integers each, *a**i* and *b**i* (1<=≤<=*a**i*,<=*b**i*<=≤<=*n*), where *a**i* is the price of the *i*-th laptop, and *b**i* is the number that represents the quality of the *i*-th laptop (the larger the number is, the higher is the quality).
All *a**i* are distinct. All *b**i* are distinct.
|
If Alex is correct, print "Happy Alex", otherwise print "Poor Alex" (without the quotes).
|
[
"2\n1 2\n2 1\n"
] |
[
"Happy Alex\n"
] |
none
| 500
|
[
{
"input": "2\n1 2\n2 1",
"output": "Happy Alex"
},
{
"input": "2\n1 1\n2 2",
"output": "Poor Alex"
},
{
"input": "3\n2 2\n3 3\n1 1",
"output": "Poor Alex"
},
{
"input": "3\n3 3\n1 2\n2 1",
"output": "Happy Alex"
},
{
"input": "1\n1 1",
"output": "Poor Alex"
},
{
"input": "3\n2 3\n1 1\n3 2",
"output": "Happy Alex"
},
{
"input": "4\n4 1\n3 2\n2 3\n1 4",
"output": "Happy Alex"
},
{
"input": "2\n2 1\n1 2",
"output": "Happy Alex"
},
{
"input": "3\n3 2\n1 1\n2 3",
"output": "Happy Alex"
},
{
"input": "3\n1 2\n2 3\n3 1",
"output": "Happy Alex"
},
{
"input": "3\n1 2\n2 1\n3 3",
"output": "Happy Alex"
},
{
"input": "3\n1 2\n2 3\n3 1",
"output": "Happy Alex"
}
] | 1,684,422,406
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 46
| 264
| 17,510,400
|
n = int(input())
a = []
b = []
for i in range(n):
x, y = [int(x) for x in input().split()]
a.append(x)
b.append(y)
a.sort(key=dict(zip(a, b)).get)
flag = 0
for i in range(n - 1):
if (a[i] > a[i + 1]):
flag = 1
break
if (flag == 0):
print("Poor Alex")
else:
print("Happy Alex")
|
Title: Laptops
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
One day Dima and Alex had an argument about the price and quality of laptops. Dima thinks that the more expensive a laptop is, the better it is. Alex disagrees. Alex thinks that there are two laptops, such that the price of the first laptop is less (strictly smaller) than the price of the second laptop but the quality of the first laptop is higher (strictly greater) than the quality of the second laptop.
Please, check the guess of Alex. You are given descriptions of *n* laptops. Determine whether two described above laptops exist.
Input Specification:
The first line contains an integer *n* (1<=≤<=*n*<=≤<=105) — the number of laptops.
Next *n* lines contain two integers each, *a**i* and *b**i* (1<=≤<=*a**i*,<=*b**i*<=≤<=*n*), where *a**i* is the price of the *i*-th laptop, and *b**i* is the number that represents the quality of the *i*-th laptop (the larger the number is, the higher is the quality).
All *a**i* are distinct. All *b**i* are distinct.
Output Specification:
If Alex is correct, print "Happy Alex", otherwise print "Poor Alex" (without the quotes).
Demo Input:
['2\n1 2\n2 1\n']
Demo Output:
['Happy Alex\n']
Note:
none
|
```python
n = int(input())
a = []
b = []
for i in range(n):
x, y = [int(x) for x in input().split()]
a.append(x)
b.append(y)
a.sort(key=dict(zip(a, b)).get)
flag = 0
for i in range(n - 1):
if (a[i] > a[i + 1]):
flag = 1
break
if (flag == 0):
print("Poor Alex")
else:
print("Happy Alex")
```
| 3
|
|
59
|
A
|
Word
|
PROGRAMMING
| 800
|
[
"implementation",
"strings"
] |
A. Word
|
2
|
256
|
Vasya is very upset that many people on the Net mix uppercase and lowercase letters in one word. That's why he decided to invent an extension for his favorite browser that would change the letters' register in every word so that it either only consisted of lowercase letters or, vice versa, only of uppercase ones. At that as little as possible letters should be changed in the word. For example, the word HoUse must be replaced with house, and the word ViP — with VIP. If a word contains an equal number of uppercase and lowercase letters, you should replace all the letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to use the given method on one given word.
|
The first line contains a word *s* — it consists of uppercase and lowercase Latin letters and possesses the length from 1 to 100.
|
Print the corrected word *s*. If the given word *s* has strictly more uppercase letters, make the word written in the uppercase register, otherwise - in the lowercase one.
|
[
"HoUse\n",
"ViP\n",
"maTRIx\n"
] |
[
"house\n",
"VIP\n",
"matrix\n"
] |
none
| 500
|
[
{
"input": "HoUse",
"output": "house"
},
{
"input": "ViP",
"output": "VIP"
},
{
"input": "maTRIx",
"output": "matrix"
},
{
"input": "BNHWpnpawg",
"output": "bnhwpnpawg"
},
{
"input": "VTYGP",
"output": "VTYGP"
},
{
"input": "CHNenu",
"output": "chnenu"
},
{
"input": "ERPZGrodyu",
"output": "erpzgrodyu"
},
{
"input": "KSXBXWpebh",
"output": "KSXBXWPEBH"
},
{
"input": "qvxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaiv",
"output": "qvxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaiv"
},
{
"input": "Amnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfd",
"output": "amnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfd"
},
{
"input": "ISAGFJFARYFBLOPQDSHWGMCNKMFTLVFUGNJEWGWNBLXUIATXEkqiettmmjgydwcpafqrppdsrrrtguinqbgmzzfqwonkpgpcwenv",
"output": "isagfjfaryfblopqdshwgmcnkmftlvfugnjewgwnblxuiatxekqiettmmjgydwcpafqrppdsrrrtguinqbgmzzfqwonkpgpcwenv"
},
{
"input": "XHRPXZEGHSOCJPICUIXSKFUZUPYTSGJSDIYBCMNMNBPNDBXLXBzhbfnqvwcffvrdhtickyqhupmcehlsyvncqmfhautvxudqdhgg",
"output": "xhrpxzeghsocjpicuixskfuzupytsgjsdiybcmnmnbpndbxlxbzhbfnqvwcffvrdhtickyqhupmcehlsyvncqmfhautvxudqdhgg"
},
{
"input": "RJIQZMJCIMSNDBOHBRAWIENODSALETAKGKPYUFGVEFGCBRENZGAdkcetqjljtmttlonpekcovdzebzdkzggwfsxhapmjkdbuceak",
"output": "RJIQZMJCIMSNDBOHBRAWIENODSALETAKGKPYUFGVEFGCBRENZGADKCETQJLJTMTTLONPEKCOVDZEBZDKZGGWFSXHAPMJKDBUCEAK"
},
{
"input": "DWLWOBHNMMGTFOLFAECKBRNNGLYLYDXTGTVRLMEESZOIUATZZZXUFUZDLSJXMEVRTESSFBWLNZZCLCQWEVNNUCXYVHNGNXHCBDFw",
"output": "DWLWOBHNMMGTFOLFAECKBRNNGLYLYDXTGTVRLMEESZOIUATZZZXUFUZDLSJXMEVRTESSFBWLNZZCLCQWEVNNUCXYVHNGNXHCBDFW"
},
{
"input": "NYCNHJWGBOCOTSPETKKHVWFGAQYNHOVJWJHCIEFOUQZXOYUIEQDZALFKTEHTVDBVJMEUBJUBCMNVPWGDPNCHQHZJRCHYRFPVIGUB",
"output": "NYCNHJWGBOCOTSPETKKHVWFGAQYNHOVJWJHCIEFOUQZXOYUIEQDZALFKTEHTVDBVJMEUBJUBCMNVPWGDPNCHQHZJRCHYRFPVIGUB"
},
{
"input": "igxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwge",
"output": "igxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwge"
},
{
"input": "Ykkekrsqolzryiwsmdlnbmfautxxxauoojrddvwklgnlyrfcvhorrzbmtcrvpaypqhcffdqhwziipyyskcmztjprjqvmzzqhqnw",
"output": "ykkekrsqolzryiwsmdlnbmfautxxxauoojrddvwklgnlyrfcvhorrzbmtcrvpaypqhcffdqhwziipyyskcmztjprjqvmzzqhqnw"
},
{
"input": "YQOMLKYAORUQQUCQZCDYMIVDHGWZFFRMUVTAWCHERFPMNRYRIkgqrciokgajamehmcxgerpudvsqyonjonsxgbnefftzmygncks",
"output": "yqomlkyaoruqqucqzcdymivdhgwzffrmuvtawcherfpmnryrikgqrciokgajamehmcxgerpudvsqyonjonsxgbnefftzmygncks"
},
{
"input": "CDOZDPBVVVHNBJVBYHEOXWFLJKRWJCAJMIFCOZWWYFKVWOGTVJcuusigdqfkumewjtdyitveeiaybwrhomrwmpdipjwiuxfnwuz",
"output": "CDOZDPBVVVHNBJVBYHEOXWFLJKRWJCAJMIFCOZWWYFKVWOGTVJCUUSIGDQFKUMEWJTDYITVEEIAYBWRHOMRWMPDIPJWIUXFNWUZ"
},
{
"input": "WHIUVEXHVOOIJIDVJVPQUBJMEVPMPDKQWJKFBZSGSKUXMIPPMJWuckzcpxosodcjaaakvlxpbiigsiauviilylnnqlyucziihqg",
"output": "WHIUVEXHVOOIJIDVJVPQUBJMEVPMPDKQWJKFBZSGSKUXMIPPMJWUCKZCPXOSODCJAAAKVLXPBIIGSIAUVIILYLNNQLYUCZIIHQG"
},
{
"input": "VGHUNFOXKETUYMZDJNGTAOIOANYXSGYNFOGOFFLDAWEUKYFOZXCJTCAFXZYLQZERYZLRSQXYQGAPCSUDPMEYTNCTTTMFAGVDWBO",
"output": "VGHUNFOXKETUYMZDJNGTAOIOANYXSGYNFOGOFFLDAWEUKYFOZXCJTCAFXZYLQZERYZLRSQXYQGAPCSUDPMEYTNCTTTMFAGVDWBO"
},
{
"input": "EDUANHCQDOCJHFONTTSWBUJSTTIXBIXMAIUFSGFLXWAYIURTVAVZPYQDLAWIGCLMPHXCEFCJPFAAHXVNGQUFNHADAIUAZIDMHDd",
"output": "EDUANHCQDOCJHFONTTSWBUJSTTIXBIXMAIUFSGFLXWAYIURTVAVZPYQDLAWIGCLMPHXCEFCJPFAAHXVNGQUFNHADAIUAZIDMHDD"
},
{
"input": "EBWOVSNLYTWWXrnovgugogtjahnmatomubebyxakas",
"output": "ebwovsnlytwwxrnovgugogtjahnmatomubebyxakas"
},
{
"input": "AORNNDKTRLRVGDPXJKXFTPFpopuzrlqumrxssskvbm",
"output": "AORNNDKTRLRVGDPXJKXFTPFPOPUZRLQUMRXSSSKVBM"
},
{
"input": "DBBZJCWQEVGYHEEUHJAWRHBDPsnplijbwtdibqrrheebfxqcvn",
"output": "dbbzjcwqevgyheeuhjawrhbdpsnplijbwtdibqrrheebfxqcvn"
},
{
"input": "t",
"output": "t"
},
{
"input": "N",
"output": "N"
},
{
"input": "kv",
"output": "kv"
},
{
"input": "Ur",
"output": "ur"
},
{
"input": "CN",
"output": "CN"
}
] | 1,608,313,902
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 30
| 186
| 0
|
def listToString(s):
temp = ""
for lst in s:
temp+=lst
return temp
strlist = input()
strlist = list(strlist)
i=up=down=0
while(i<len(strlist)):
if(strlist[i].isupper()):
up+=1
else: down+=1
i+=1
strlist = listToString(strlist)
if(up>down):
print(strlist.upper())
else: print(strlist.lower())
|
Title: Word
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Vasya is very upset that many people on the Net mix uppercase and lowercase letters in one word. That's why he decided to invent an extension for his favorite browser that would change the letters' register in every word so that it either only consisted of lowercase letters or, vice versa, only of uppercase ones. At that as little as possible letters should be changed in the word. For example, the word HoUse must be replaced with house, and the word ViP — with VIP. If a word contains an equal number of uppercase and lowercase letters, you should replace all the letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to use the given method on one given word.
Input Specification:
The first line contains a word *s* — it consists of uppercase and lowercase Latin letters and possesses the length from 1 to 100.
Output Specification:
Print the corrected word *s*. If the given word *s* has strictly more uppercase letters, make the word written in the uppercase register, otherwise - in the lowercase one.
Demo Input:
['HoUse\n', 'ViP\n', 'maTRIx\n']
Demo Output:
['house\n', 'VIP\n', 'matrix\n']
Note:
none
|
```python
def listToString(s):
temp = ""
for lst in s:
temp+=lst
return temp
strlist = input()
strlist = list(strlist)
i=up=down=0
while(i<len(strlist)):
if(strlist[i].isupper()):
up+=1
else: down+=1
i+=1
strlist = listToString(strlist)
if(up>down):
print(strlist.upper())
else: print(strlist.lower())
```
| 3.9535
|
1
|
A
|
Theatre Square
|
PROGRAMMING
| 1,000
|
[
"math"
] |
A. Theatre Square
|
1
|
256
|
Theatre Square in the capital city of Berland has a rectangular shape with the size *n*<=×<=*m* meters. On the occasion of the city's anniversary, a decision was taken to pave the Square with square granite flagstones. Each flagstone is of the size *a*<=×<=*a*.
What is the least number of flagstones needed to pave the Square? It's allowed to cover the surface larger than the Theatre Square, but the Square has to be covered. It's not allowed to break the flagstones. The sides of flagstones should be parallel to the sides of the Square.
|
The input contains three positive integer numbers in the first line: *n*,<=<=*m* and *a* (1<=≤<=<=*n*,<=*m*,<=*a*<=≤<=109).
|
Write the needed number of flagstones.
|
[
"6 6 4\n"
] |
[
"4\n"
] |
none
| 0
|
[
{
"input": "6 6 4",
"output": "4"
},
{
"input": "1 1 1",
"output": "1"
},
{
"input": "2 1 1",
"output": "2"
},
{
"input": "1 2 1",
"output": "2"
},
{
"input": "2 2 1",
"output": "4"
},
{
"input": "2 1 2",
"output": "1"
},
{
"input": "1 1 3",
"output": "1"
},
{
"input": "2 3 4",
"output": "1"
},
{
"input": "1000000000 1000000000 1",
"output": "1000000000000000000"
},
{
"input": "12 13 4",
"output": "12"
},
{
"input": "222 332 5",
"output": "3015"
},
{
"input": "1000 1000 10",
"output": "10000"
},
{
"input": "1001 1000 10",
"output": "10100"
},
{
"input": "100 10001 1000000000",
"output": "1"
},
{
"input": "1000000000 1000000000 1000000000",
"output": "1"
},
{
"input": "1000000000 1000000000 999999999",
"output": "4"
},
{
"input": "1000000000 1000000000 192",
"output": "27126743055556"
},
{
"input": "1000000000 987654321 1",
"output": "987654321000000000"
},
{
"input": "456784567 1000000000 51",
"output": "175618850864484"
},
{
"input": "39916800 134217728 40320",
"output": "3295710"
}
] | 1,692,806,329
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 20
| 31
| 0
|
n, m, a = map(int, input().split())
rows = n // a + int(n % a > 0)
cols = m // a + int(m % a > 0)
print(rows * cols)
|
Title: Theatre Square
Time Limit: 1 seconds
Memory Limit: 256 megabytes
Problem Description:
Theatre Square in the capital city of Berland has a rectangular shape with the size *n*<=×<=*m* meters. On the occasion of the city's anniversary, a decision was taken to pave the Square with square granite flagstones. Each flagstone is of the size *a*<=×<=*a*.
What is the least number of flagstones needed to pave the Square? It's allowed to cover the surface larger than the Theatre Square, but the Square has to be covered. It's not allowed to break the flagstones. The sides of flagstones should be parallel to the sides of the Square.
Input Specification:
The input contains three positive integer numbers in the first line: *n*,<=<=*m* and *a* (1<=≤<=<=*n*,<=*m*,<=*a*<=≤<=109).
Output Specification:
Write the needed number of flagstones.
Demo Input:
['6 6 4\n']
Demo Output:
['4\n']
Note:
none
|
```python
n, m, a = map(int, input().split())
rows = n // a + int(n % a > 0)
cols = m // a + int(m % a > 0)
print(rows * cols)
```
| 3.9845
|
415
|
A
|
Mashmokh and Lights
|
PROGRAMMING
| 900
|
[
"implementation"
] | null | null |
Mashmokh works in a factory. At the end of each day he must turn off all of the lights.
The lights on the factory are indexed from 1 to *n*. There are *n* buttons in Mashmokh's room indexed from 1 to *n* as well. If Mashmokh pushes button with index *i*, then each light with index not less than *i* that is still turned on turns off.
Mashmokh is not very clever. So instead of pushing the first button he pushes some of the buttons randomly each night. He pushed *m* distinct buttons *b*1,<=*b*2,<=...,<=*b**m* (the buttons were pushed consecutively in the given order) this night. Now he wants to know for each light the index of the button that turned this light off. Please note that the index of button *b**i* is actually *b**i*, not *i*.
Please, help Mashmokh, print these indices.
|
The first line of the input contains two space-separated integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100), the number of the factory lights and the pushed buttons respectively. The next line contains *m* distinct space-separated integers *b*1,<=*b*2,<=...,<=*b**m* (1<=≤<=*b**i*<=≤<=*n*).
It is guaranteed that all lights will be turned off after pushing all buttons.
|
Output *n* space-separated integers where the *i*-th number is index of the button that turns the *i*-th light off.
|
[
"5 4\n4 3 1 2\n",
"5 5\n5 4 3 2 1\n"
] |
[
"1 1 3 4 4 \n",
"1 2 3 4 5 \n"
] |
In the first sample, after pressing button number 4, lights 4 and 5 are turned off and lights 1, 2 and 3 are still on. Then after pressing button number 3, light number 3 is turned off as well. Pressing button number 1 turns off lights number 1 and 2 as well so pressing button number 2 in the end has no effect. Thus button number 4 turned lights 4 and 5 off, button number 3 turned light 3 off and button number 1 turned light 1 and 2 off.
| 500
|
[
{
"input": "5 4\n4 3 1 2",
"output": "1 1 3 4 4 "
},
{
"input": "5 5\n5 4 3 2 1",
"output": "1 2 3 4 5 "
},
{
"input": "16 11\n8 5 12 10 14 2 6 3 15 9 1",
"output": "1 2 2 2 5 5 5 8 8 8 8 8 8 8 8 8 "
},
{
"input": "79 22\n76 32 48 28 33 44 58 59 1 51 77 13 15 64 49 72 74 21 61 12 60 57",
"output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 28 28 28 28 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 76 76 76 76 "
},
{
"input": "25 19\n3 12 21 11 19 6 5 15 4 16 20 8 9 1 22 23 25 18 13",
"output": "1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 "
},
{
"input": "48 8\n42 27 40 1 18 3 19 2",
"output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 42 42 42 42 42 42 42 "
},
{
"input": "44 19\n13 20 7 10 9 14 43 17 18 39 21 42 37 1 33 8 35 4 6",
"output": "1 1 1 1 1 1 7 7 7 7 7 7 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 "
},
{
"input": "80 29\n79 51 28 73 65 39 10 1 59 29 7 70 64 3 35 17 24 71 74 2 6 49 66 80 13 18 60 15 12",
"output": "1 1 1 1 1 1 1 1 1 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 79 79 "
},
{
"input": "31 4\n8 18 30 1",
"output": "1 1 1 1 1 1 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 "
},
{
"input": "62 29\n61 55 35 13 51 56 23 6 8 26 27 40 48 11 18 12 19 50 54 14 24 21 32 17 43 33 1 2 3",
"output": "1 1 1 1 1 6 6 6 6 6 6 6 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 55 55 55 55 55 55 61 61 "
},
{
"input": "5 4\n2 3 4 1",
"output": "1 2 2 2 2 "
},
{
"input": "39 37\n2 5 17 24 19 33 35 16 20 3 1 34 10 36 15 37 14 8 28 21 13 31 30 29 7 25 32 12 6 27 22 4 11 39 18 9 26",
"output": "1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 "
},
{
"input": "100 100\n100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 "
},
{
"input": "1 1\n1",
"output": "1 "
},
{
"input": "18 3\n18 1 11",
"output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 18 "
},
{
"input": "67 20\n66 23 40 49 3 39 60 43 52 47 16 36 22 5 41 10 55 34 64 1",
"output": "1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 66 66 "
},
{
"input": "92 52\n9 85 44 13 27 61 8 1 28 41 6 14 70 67 39 71 56 80 34 21 5 10 40 73 63 38 90 57 37 36 82 86 65 46 7 54 81 12 45 49 83 59 64 26 62 25 60 24 91 47 53 55",
"output": "1 1 1 1 1 1 1 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 "
},
{
"input": "66 36\n44 62 32 29 3 15 47 30 50 42 35 2 33 65 10 13 56 12 1 16 7 36 39 11 25 28 20 52 46 38 37 8 61 49 48 14",
"output": "1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 29 29 29 32 32 32 32 32 32 32 32 32 32 32 32 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 "
},
{
"input": "32 8\n27 23 1 13 18 24 17 26",
"output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 23 23 23 23 27 27 27 27 27 27 "
},
{
"input": "26 13\n1 14 13 2 4 24 21 22 16 3 10 12 6",
"output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 "
},
{
"input": "31 20\n10 11 20 2 4 26 31 7 13 12 28 1 30 18 21 8 3 16 15 19",
"output": "1 2 2 2 2 2 2 2 2 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 "
},
{
"input": "86 25\n22 62 8 23 53 77 9 31 43 1 58 16 72 11 15 35 60 39 79 4 82 64 76 63 59",
"output": "1 1 1 1 1 1 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 "
},
{
"input": "62 54\n2 5 4 47 40 61 37 31 41 16 44 42 48 32 10 6 62 38 52 49 11 20 55 22 3 36 25 21 50 8 28 14 18 39 34 54 53 19 46 27 15 23 12 24 60 17 33 57 58 1 35 29 51 7",
"output": "1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 "
},
{
"input": "57 19\n43 45 37 40 42 55 16 33 47 32 34 35 9 41 1 6 8 15 5",
"output": "1 1 1 1 1 1 1 1 9 9 9 9 9 9 9 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 37 37 37 37 37 37 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 "
},
{
"input": "32 14\n4 7 13 1 25 22 9 27 6 28 30 2 14 21",
"output": "1 1 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 "
},
{
"input": "57 12\n8 53 51 38 1 6 16 33 13 46 28 35",
"output": "1 1 1 1 1 1 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 "
},
{
"input": "87 9\n57 34 78 1 52 67 56 6 54",
"output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 "
},
{
"input": "88 42\n85 45 52 14 63 53 70 71 16 86 66 47 12 22 10 72 4 31 3 69 11 77 17 25 46 75 23 1 21 84 44 20 18 33 48 88 41 83 67 61 73 34",
"output": "1 1 3 4 4 4 4 4 4 10 10 12 12 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 85 85 85 85 "
},
{
"input": "27 25\n9 21 17 5 16 3 23 7 12 4 14 11 13 1 15 19 27 8 20 10 22 25 6 18 26",
"output": "1 1 3 3 5 5 5 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 "
},
{
"input": "89 28\n5 22 79 42 16 35 66 48 57 55 1 37 29 31 40 38 45 62 41 87 64 89 81 13 60 44 71 82",
"output": "1 1 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 "
},
{
"input": "17 4\n4 3 1 2",
"output": "1 1 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 "
}
] | 1,580,035,962
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 31
| 124
| 0
|
def solve(n, m, b):
a = [-1 for _ in range(n)]
for i, k in enumerate(b):
for j in range(k-1, n):
if a[j] == -1:
a[j] = k
return ' '.join(map(str, a))
def main():
n, m = list(map(int, input().split()))
b = list(map(int, input().split()))
print(solve(n, m, b))
main()
|
Title: Mashmokh and Lights
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Mashmokh works in a factory. At the end of each day he must turn off all of the lights.
The lights on the factory are indexed from 1 to *n*. There are *n* buttons in Mashmokh's room indexed from 1 to *n* as well. If Mashmokh pushes button with index *i*, then each light with index not less than *i* that is still turned on turns off.
Mashmokh is not very clever. So instead of pushing the first button he pushes some of the buttons randomly each night. He pushed *m* distinct buttons *b*1,<=*b*2,<=...,<=*b**m* (the buttons were pushed consecutively in the given order) this night. Now he wants to know for each light the index of the button that turned this light off. Please note that the index of button *b**i* is actually *b**i*, not *i*.
Please, help Mashmokh, print these indices.
Input Specification:
The first line of the input contains two space-separated integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100), the number of the factory lights and the pushed buttons respectively. The next line contains *m* distinct space-separated integers *b*1,<=*b*2,<=...,<=*b**m* (1<=≤<=*b**i*<=≤<=*n*).
It is guaranteed that all lights will be turned off after pushing all buttons.
Output Specification:
Output *n* space-separated integers where the *i*-th number is index of the button that turns the *i*-th light off.
Demo Input:
['5 4\n4 3 1 2\n', '5 5\n5 4 3 2 1\n']
Demo Output:
['1 1 3 4 4 \n', '1 2 3 4 5 \n']
Note:
In the first sample, after pressing button number 4, lights 4 and 5 are turned off and lights 1, 2 and 3 are still on. Then after pressing button number 3, light number 3 is turned off as well. Pressing button number 1 turns off lights number 1 and 2 as well so pressing button number 2 in the end has no effect. Thus button number 4 turned lights 4 and 5 off, button number 3 turned light 3 off and button number 1 turned light 1 and 2 off.
|
```python
def solve(n, m, b):
a = [-1 for _ in range(n)]
for i, k in enumerate(b):
for j in range(k-1, n):
if a[j] == -1:
a[j] = k
return ' '.join(map(str, a))
def main():
n, m = list(map(int, input().split()))
b = list(map(int, input().split()))
print(solve(n, m, b))
main()
```
| 3
|
|
744
|
A
|
Hongcow Builds A Nation
|
PROGRAMMING
| 1,500
|
[
"dfs and similar",
"graphs"
] | null | null |
Hongcow is ruler of the world. As ruler of the world, he wants to make it easier for people to travel by road within their own countries.
The world can be modeled as an undirected graph with *n* nodes and *m* edges. *k* of the nodes are home to the governments of the *k* countries that make up the world.
There is at most one edge connecting any two nodes and no edge connects a node to itself. Furthermore, for any two nodes corresponding to governments, there is no path between those two nodes. Any graph that satisfies all of these conditions is stable.
Hongcow wants to add as many edges as possible to the graph while keeping it stable. Determine the maximum number of edges Hongcow can add.
|
The first line of input will contain three integers *n*, *m* and *k* (1<=≤<=*n*<=≤<=1<=000, 0<=≤<=*m*<=≤<=100<=000, 1<=≤<=*k*<=≤<=*n*) — the number of vertices and edges in the graph, and the number of vertices that are homes of the government.
The next line of input will contain *k* integers *c*1,<=*c*2,<=...,<=*c**k* (1<=≤<=*c**i*<=≤<=*n*). These integers will be pairwise distinct and denote the nodes that are home to the governments in this world.
The following *m* lines of input will contain two integers *u**i* and *v**i* (1<=≤<=*u**i*,<=*v**i*<=≤<=*n*). This denotes an undirected edge between nodes *u**i* and *v**i*.
It is guaranteed that the graph described by the input is stable.
|
Output a single integer, the maximum number of edges Hongcow can add to the graph while keeping it stable.
|
[
"4 1 2\n1 3\n1 2\n",
"3 3 1\n2\n1 2\n1 3\n2 3\n"
] |
[
"2\n",
"0\n"
] |
For the first sample test, the graph looks like this:
For the second sample test, the graph looks like this:
| 500
|
[
{
"input": "4 1 2\n1 3\n1 2",
"output": "2"
},
{
"input": "3 3 1\n2\n1 2\n1 3\n2 3",
"output": "0"
},
{
"input": "10 3 2\n1 10\n1 2\n1 3\n4 5",
"output": "33"
},
{
"input": "1 0 1\n1",
"output": "0"
},
{
"input": "1000 0 1\n72",
"output": "499500"
},
{
"input": "24 38 2\n4 13\n7 1\n24 1\n2 8\n17 2\n2 18\n22 2\n23 3\n5 9\n21 5\n6 7\n6 19\n6 20\n11 7\n7 20\n13 8\n16 8\n9 10\n14 9\n21 9\n12 10\n10 22\n23 10\n17 11\n11 24\n20 12\n13 16\n13 23\n15 14\n17 14\n14 20\n19 16\n17 20\n17 23\n18 22\n18 23\n22 19\n21 20\n23 24",
"output": "215"
},
{
"input": "10 30 1\n4\n1 2\n3 1\n4 1\n1 6\n1 8\n10 1\n2 4\n2 7\n3 4\n3 5\n7 3\n3 9\n10 3\n5 4\n6 4\n7 4\n9 4\n10 4\n6 5\n5 8\n9 5\n10 5\n6 7\n9 6\n10 6\n7 8\n9 7\n10 7\n9 8\n10 8",
"output": "15"
},
{
"input": "10 13 2\n5 10\n2 1\n1 4\n2 3\n2 8\n3 4\n7 3\n4 6\n8 4\n4 9\n6 7\n6 9\n10 6\n7 8",
"output": "23"
},
{
"input": "10 10 3\n2 5 6\n1 3\n4 1\n4 3\n5 3\n3 9\n8 4\n9 4\n5 10\n8 7\n10 8",
"output": "18"
},
{
"input": "10 5 3\n1 5 9\n1 3\n1 8\n2 3\n8 4\n5 7",
"output": "17"
},
{
"input": "6 4 2\n1 4\n1 2\n2 3\n4 5\n5 6",
"output": "2"
},
{
"input": "7 8 2\n1 4\n1 2\n2 3\n4 5\n4 6\n4 7\n5 6\n5 7\n6 7",
"output": "1"
},
{
"input": "5 2 3\n1 3 4\n1 5\n2 4",
"output": "0"
},
{
"input": "5 3 2\n1 2\n2 3\n2 4\n1 5",
"output": "1"
},
{
"input": "9 5 2\n1 5\n1 2\n2 3\n3 4\n5 6\n6 7",
"output": "13"
},
{
"input": "6 4 1\n1\n2 3\n3 4\n4 5\n5 6",
"output": "11"
},
{
"input": "6 4 2\n1 5\n1 2\n2 3\n3 4\n5 6",
"output": "3"
},
{
"input": "7 3 3\n1 5 6\n1 2\n1 3\n6 7",
"output": "4"
},
{
"input": "5 2 2\n1 2\n1 3\n2 4",
"output": "2"
},
{
"input": "11 7 2\n1 4\n1 2\n1 3\n4 5\n4 6\n5 6\n9 10\n1 11",
"output": "24"
},
{
"input": "20 4 5\n1 3 9 10 20\n5 6\n1 2\n7 9\n4 10",
"output": "89"
}
] | 1,620,610,650
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 61
| 826
| 44,441,600
|
def estavel(p):
if p != arr[p]:
arr[p] = estavel(arr[p])
return arr[p]
n, m, k = map(int, input().split())
grafo = map(int, input().split())
arr = [p for p in range(n+1)]
for _ in range(m):
u, v = map(int, input().split())
u = estavel(u)
v = estavel(v)
arr[v] = u
aux = [0 for i in range(n+1)]
for i in range(n+1):
aux[estavel(i)] += 1
sobras = n
resultado = 0
maior = 0
for x in grafo:
elem = estavel(x)
maior = max(maior, aux[elem])
resultado += aux[elem] * (aux[elem] - 1) // 2
sobras -= aux[elem]
resultado -= maior * (maior - 1) // 2
resultado += (maior+sobras) * ((maior+sobras) - 1) // 2
resultado -= m
print(resultado)
|
Title: Hongcow Builds A Nation
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Hongcow is ruler of the world. As ruler of the world, he wants to make it easier for people to travel by road within their own countries.
The world can be modeled as an undirected graph with *n* nodes and *m* edges. *k* of the nodes are home to the governments of the *k* countries that make up the world.
There is at most one edge connecting any two nodes and no edge connects a node to itself. Furthermore, for any two nodes corresponding to governments, there is no path between those two nodes. Any graph that satisfies all of these conditions is stable.
Hongcow wants to add as many edges as possible to the graph while keeping it stable. Determine the maximum number of edges Hongcow can add.
Input Specification:
The first line of input will contain three integers *n*, *m* and *k* (1<=≤<=*n*<=≤<=1<=000, 0<=≤<=*m*<=≤<=100<=000, 1<=≤<=*k*<=≤<=*n*) — the number of vertices and edges in the graph, and the number of vertices that are homes of the government.
The next line of input will contain *k* integers *c*1,<=*c*2,<=...,<=*c**k* (1<=≤<=*c**i*<=≤<=*n*). These integers will be pairwise distinct and denote the nodes that are home to the governments in this world.
The following *m* lines of input will contain two integers *u**i* and *v**i* (1<=≤<=*u**i*,<=*v**i*<=≤<=*n*). This denotes an undirected edge between nodes *u**i* and *v**i*.
It is guaranteed that the graph described by the input is stable.
Output Specification:
Output a single integer, the maximum number of edges Hongcow can add to the graph while keeping it stable.
Demo Input:
['4 1 2\n1 3\n1 2\n', '3 3 1\n2\n1 2\n1 3\n2 3\n']
Demo Output:
['2\n', '0\n']
Note:
For the first sample test, the graph looks like this:
For the second sample test, the graph looks like this:
|
```python
def estavel(p):
if p != arr[p]:
arr[p] = estavel(arr[p])
return arr[p]
n, m, k = map(int, input().split())
grafo = map(int, input().split())
arr = [p for p in range(n+1)]
for _ in range(m):
u, v = map(int, input().split())
u = estavel(u)
v = estavel(v)
arr[v] = u
aux = [0 for i in range(n+1)]
for i in range(n+1):
aux[estavel(i)] += 1
sobras = n
resultado = 0
maior = 0
for x in grafo:
elem = estavel(x)
maior = max(maior, aux[elem])
resultado += aux[elem] * (aux[elem] - 1) // 2
sobras -= aux[elem]
resultado -= maior * (maior - 1) // 2
resultado += (maior+sobras) * ((maior+sobras) - 1) // 2
resultado -= m
print(resultado)
```
| 3
|
|
595
|
A
|
Vitaly and Night
|
PROGRAMMING
| 800
|
[
"constructive algorithms",
"implementation"
] | null | null |
One day Vitaly was going home late at night and wondering: how many people aren't sleeping at that moment? To estimate, Vitaly decided to look which windows are lit in the house he was passing by at that moment.
Vitaly sees a building of *n* floors and 2·*m* windows on each floor. On each floor there are *m* flats numbered from 1 to *m*, and two consecutive windows correspond to each flat. If we number the windows from 1 to 2·*m* from left to right, then the *j*-th flat of the *i*-th floor has windows 2·*j*<=-<=1 and 2·*j* in the corresponding row of windows (as usual, floors are enumerated from the bottom). Vitaly thinks that people in the flat aren't sleeping at that moment if at least one of the windows corresponding to this flat has lights on.
Given the information about the windows of the given house, your task is to calculate the number of flats where, according to Vitaly, people aren't sleeping.
|
The first line of the input contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100) — the number of floors in the house and the number of flats on each floor respectively.
Next *n* lines describe the floors from top to bottom and contain 2·*m* characters each. If the *i*-th window of the given floor has lights on, then the *i*-th character of this line is '1', otherwise it is '0'.
|
Print a single integer — the number of flats that have lights on in at least one window, that is, the flats where, according to Vitaly, people aren't sleeping.
|
[
"2 2\n0 0 0 1\n1 0 1 1\n",
"1 3\n1 1 0 1 0 0\n"
] |
[
"3\n",
"2\n"
] |
In the first test case the house has two floors, two flats on each floor. That is, in total there are 4 flats. The light isn't on only on the second floor in the left flat. That is, in both rooms of the flat the light is off.
In the second test case the house has one floor and the first floor has three flats. The light is on in the leftmost flat (in both windows) and in the middle flat (in one window). In the right flat the light is off.
| 500
|
[
{
"input": "2 2\n0 0 0 1\n1 0 1 1",
"output": "3"
},
{
"input": "1 3\n1 1 0 1 0 0",
"output": "2"
},
{
"input": "3 3\n1 1 1 1 1 1\n1 1 0 1 1 0\n1 0 0 0 1 1",
"output": "8"
},
{
"input": "1 5\n1 0 1 1 1 0 1 1 1 1",
"output": "5"
},
{
"input": "1 100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "99"
},
{
"input": "1 100\n0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0",
"output": "6"
},
{
"input": "1 100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0",
"output": "0"
},
{
"input": "100 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 0\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n0 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 0\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 0\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n0 1\n1 1\n1 1\n1 0\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1",
"output": "100"
},
{
"input": "100 1\n0 0\n0 0\n0 1\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n1 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 1\n0 0\n0 0\n0 0\n1 0\n0 0\n0 0\n0 0\n1 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 1\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 1\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n1 0",
"output": "8"
},
{
"input": "100 1\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0",
"output": "0"
},
{
"input": "1 1\n0 0",
"output": "0"
},
{
"input": "1 1\n0 1",
"output": "1"
},
{
"input": "1 1\n1 0",
"output": "1"
},
{
"input": "1 1\n1 1",
"output": "1"
}
] | 1,574,581,786
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 36
| 124
| 307,200
|
n,m=input().split()
n=int(n)
m=int(m)
c=0
for x in range (n):
a=list(map(int,input().split()))[:2*m]
for y in range(0,2*m,2):
if a[y]==1 or a[y+1]==1:
c+=1
print(c)
|
Title: Vitaly and Night
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
One day Vitaly was going home late at night and wondering: how many people aren't sleeping at that moment? To estimate, Vitaly decided to look which windows are lit in the house he was passing by at that moment.
Vitaly sees a building of *n* floors and 2·*m* windows on each floor. On each floor there are *m* flats numbered from 1 to *m*, and two consecutive windows correspond to each flat. If we number the windows from 1 to 2·*m* from left to right, then the *j*-th flat of the *i*-th floor has windows 2·*j*<=-<=1 and 2·*j* in the corresponding row of windows (as usual, floors are enumerated from the bottom). Vitaly thinks that people in the flat aren't sleeping at that moment if at least one of the windows corresponding to this flat has lights on.
Given the information about the windows of the given house, your task is to calculate the number of flats where, according to Vitaly, people aren't sleeping.
Input Specification:
The first line of the input contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100) — the number of floors in the house and the number of flats on each floor respectively.
Next *n* lines describe the floors from top to bottom and contain 2·*m* characters each. If the *i*-th window of the given floor has lights on, then the *i*-th character of this line is '1', otherwise it is '0'.
Output Specification:
Print a single integer — the number of flats that have lights on in at least one window, that is, the flats where, according to Vitaly, people aren't sleeping.
Demo Input:
['2 2\n0 0 0 1\n1 0 1 1\n', '1 3\n1 1 0 1 0 0\n']
Demo Output:
['3\n', '2\n']
Note:
In the first test case the house has two floors, two flats on each floor. That is, in total there are 4 flats. The light isn't on only on the second floor in the left flat. That is, in both rooms of the flat the light is off.
In the second test case the house has one floor and the first floor has three flats. The light is on in the leftmost flat (in both windows) and in the middle flat (in one window). In the right flat the light is off.
|
```python
n,m=input().split()
n=int(n)
m=int(m)
c=0
for x in range (n):
a=list(map(int,input().split()))[:2*m]
for y in range(0,2*m,2):
if a[y]==1 or a[y+1]==1:
c+=1
print(c)
```
| 3
|
|
476
|
C
|
Dreamoon and Sums
|
PROGRAMMING
| 1,600
|
[
"math"
] | null | null |
Dreamoon loves summing up something for no reason. One day he obtains two integers *a* and *b* occasionally. He wants to calculate the sum of all nice integers. Positive integer *x* is called nice if and , where *k* is some integer number in range [1,<=*a*].
By we denote the quotient of integer division of *x* and *y*. By we denote the remainder of integer division of *x* and *y*. You can read more about these operations here: http://goo.gl/AcsXhT.
The answer may be large, so please print its remainder modulo 1<=000<=000<=007 (109<=+<=7). Can you compute it faster than Dreamoon?
|
The single line of the input contains two integers *a*, *b* (1<=≤<=*a*,<=*b*<=≤<=107).
|
Print a single integer representing the answer modulo 1<=000<=000<=007 (109<=+<=7).
|
[
"1 1\n",
"2 2\n"
] |
[
"0\n",
"8\n"
] |
For the first sample, there are no nice integers because <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/03b1dc6bae5180f8a2d8eb85789e8b393e585970.png" style="max-width: 100.0%;max-height: 100.0%;"/> is always zero.
For the second sample, the set of nice integers is {3, 5}.
| 1,500
|
[
{
"input": "1 1",
"output": "0"
},
{
"input": "2 2",
"output": "8"
},
{
"input": "4 1",
"output": "0"
},
{
"input": "4 2",
"output": "24"
},
{
"input": "4 3",
"output": "102"
},
{
"input": "4 4",
"output": "264"
},
{
"input": "3 4",
"output": "162"
},
{
"input": "2 4",
"output": "84"
},
{
"input": "1 4",
"output": "30"
},
{
"input": "1000 1000",
"output": "247750000"
},
{
"input": "10000000 10000000",
"output": "425362313"
},
{
"input": "10000000 9999999",
"output": "930564389"
},
{
"input": "2 10000000",
"output": "990423507"
},
{
"input": "10000000 2",
"output": "19300000"
},
{
"input": "9999999 2",
"output": "999300006"
},
{
"input": "9999999 9999999",
"output": "957764103"
},
{
"input": "10000000 10000",
"output": "723127969"
},
{
"input": "10000 10000000",
"output": "372369289"
},
{
"input": "2 9999999",
"output": "48573499"
},
{
"input": "123456 123456",
"output": "417111819"
},
{
"input": "6407688 3000816",
"output": "895399645"
},
{
"input": "9956532 1084240",
"output": "554368769"
},
{
"input": "3505377 9167664",
"output": "80435138"
},
{
"input": "7054221 7251088",
"output": "7849970"
},
{
"input": "346169 367216",
"output": "358144298"
},
{
"input": "3895014 8450640",
"output": "627604019"
},
{
"input": "861392 6200826",
"output": "180835815"
},
{
"input": "4410236 9316955",
"output": "602743722"
},
{
"input": "2926377 2367675",
"output": "395740917"
},
{
"input": "1507925 5483803",
"output": "727607740"
},
{
"input": "9832578 8599931",
"output": "428281878"
},
{
"input": "8348718 6683355",
"output": "275994807"
},
{
"input": "1897562 4766779",
"output": "148050609"
},
{
"input": "413703 2850203",
"output": "76966774"
},
{
"input": "8995251 5966331",
"output": "451718548"
},
{
"input": "7319903 9017051",
"output": "975259203"
},
{
"input": "9253578 1799941",
"output": "868664771"
},
{
"input": "7835126 9883365",
"output": "119844544"
},
{
"input": "6351267 7966789",
"output": "683811063"
},
{
"input": "9900111 1082917",
"output": "539539383"
},
{
"input": "1 10000000",
"output": "995024507"
},
{
"input": "123456 234567",
"output": "93010021"
},
{
"input": "888888 888888",
"output": "456888843"
},
{
"input": "1001 1500126",
"output": "45074025"
},
{
"input": "9243243 432434",
"output": "203891513"
},
{
"input": "3 10000000",
"output": "986197007"
},
{
"input": "4108931 211273",
"output": "142398939"
},
{
"input": "999999 92321",
"output": "286549418"
},
{
"input": "999999 999999",
"output": "691690639"
},
{
"input": "191919 123123",
"output": "358196438"
},
{
"input": "999999 1000000",
"output": "725921292"
},
{
"input": "31623 10000000",
"output": "382702377"
},
{
"input": "1000023 1000043",
"output": "175442768"
},
{
"input": "666666 666666",
"output": "869302791"
},
{
"input": "7672285 753250",
"output": "461773059"
},
{
"input": "1000000 1000000",
"output": "249917764"
},
{
"input": "6340794 6874449",
"output": "930977735"
},
{
"input": "9998486 9998486",
"output": "988877388"
},
{
"input": "9999997 9999998",
"output": "946983076"
}
] | 1,673,967,086
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 59
| 61
| 0
|
mod=1000000007
a,b= map(int,input().split())
v= b*(b-1)//2
t1= b*a*(a+1)//2
sum= v*(a+t1)
sum=sum%mod
print(int(sum))
|
Title: Dreamoon and Sums
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Dreamoon loves summing up something for no reason. One day he obtains two integers *a* and *b* occasionally. He wants to calculate the sum of all nice integers. Positive integer *x* is called nice if and , where *k* is some integer number in range [1,<=*a*].
By we denote the quotient of integer division of *x* and *y*. By we denote the remainder of integer division of *x* and *y*. You can read more about these operations here: http://goo.gl/AcsXhT.
The answer may be large, so please print its remainder modulo 1<=000<=000<=007 (109<=+<=7). Can you compute it faster than Dreamoon?
Input Specification:
The single line of the input contains two integers *a*, *b* (1<=≤<=*a*,<=*b*<=≤<=107).
Output Specification:
Print a single integer representing the answer modulo 1<=000<=000<=007 (109<=+<=7).
Demo Input:
['1 1\n', '2 2\n']
Demo Output:
['0\n', '8\n']
Note:
For the first sample, there are no nice integers because <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/03b1dc6bae5180f8a2d8eb85789e8b393e585970.png" style="max-width: 100.0%;max-height: 100.0%;"/> is always zero.
For the second sample, the set of nice integers is {3, 5}.
|
```python
mod=1000000007
a,b= map(int,input().split())
v= b*(b-1)//2
t1= b*a*(a+1)//2
sum= v*(a+t1)
sum=sum%mod
print(int(sum))
```
| 3
|
|
289
|
B
|
Polo the Penguin and Matrix
|
PROGRAMMING
| 1,400
|
[
"brute force",
"dp",
"implementation",
"sortings",
"ternary search"
] | null | null |
Little penguin Polo has an *n*<=×<=*m* matrix, consisting of integers. Let's index the matrix rows from 1 to *n* from top to bottom and let's index the columns from 1 to *m* from left to right. Let's represent the matrix element on the intersection of row *i* and column *j* as *a**ij*.
In one move the penguin can add or subtract number *d* from some matrix element. Find the minimum number of moves needed to make all matrix elements equal. If the described plan is impossible to carry out, say so.
|
The first line contains three integers *n*, *m* and *d* (1<=≤<=*n*,<=*m*<=≤<=100,<=1<=≤<=*d*<=≤<=104) — the matrix sizes and the *d* parameter. Next *n* lines contain the matrix: the *j*-th integer in the *i*-th row is the matrix element *a**ij* (1<=≤<=*a**ij*<=≤<=104).
|
In a single line print a single integer — the minimum number of moves the penguin needs to make all matrix elements equal. If that is impossible, print "-1" (without the quotes).
|
[
"2 2 2\n2 4\n6 8\n",
"1 2 7\n6 7\n"
] |
[
"4\n",
"-1\n"
] |
none
| 1,000
|
[
{
"input": "2 2 2\n2 4\n6 8",
"output": "4"
},
{
"input": "1 2 7\n6 7",
"output": "-1"
},
{
"input": "3 2 1\n5 7\n1 2\n5 100",
"output": "104"
},
{
"input": "3 3 3\n5 8 5\n11 11 17\n14 5 2",
"output": "12"
},
{
"input": "3 3 3\n5 8 5\n11 11 17\n14 5 3",
"output": "-1"
},
{
"input": "2 2 4\n5 5\n5 5",
"output": "0"
},
{
"input": "7 4 5\n7 7 7 12\n7 12 12 7\n7 7 7 7\n7 7 12 7\n7 7 12 12\n12 12 7 12\n7 7 7 7",
"output": "9"
},
{
"input": "7 7 47\n91 91 91 91 91 91 91\n91 91 91 91 91 91 91\n91 91 91 91 91 91 91\n91 91 91 91 91 91 91\n91 91 91 91 91 91 91\n91 91 91 91 91 91 91\n91 91 91 91 91 91 91",
"output": "0"
},
{
"input": "7 7 47\n47 47 47 47 47 47 47\n47 47 47 47 77 47 47\n47 47 47 47 47 47 47\n47 47 47 47 47 47 47\n47 47 47 47 47 47 47\n47 47 47 47 47 47 47\n47 47 47 47 47 127 47",
"output": "-1"
},
{
"input": "7 5 47\n9583 1734 4601 5353 2110\n3802 5165 7985 6293 324\n7045 653 9160 7891 4930\n1781 3520 4178 2298 3943\n1405 2956 5447 5494 6528\n3097 1640 7750 4883 8032\n4225 8455 1875 4789 4366",
"output": "1508"
},
{
"input": "1 1 1\n1",
"output": "0"
},
{
"input": "1 1 8\n12",
"output": "0"
}
] | 1,694,956,480
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 31
| 92
| 716,800
|
n,m,d=map(int,input().split())
lst=[]
for i in range(n):
x=(list(map(int,input().split())))
lst=lst+x
flag=True
for i in range(len(lst)-1):
if(abs(lst[i+1]-lst[i])%d!=0):
flag=False
break
if(flag==False):
print(-1)
else:
lst.sort()
count=0
if(len(lst)%2==0):
middle=min(lst[len(lst)//2],lst[(len(lst)//2)-1])
else:
middle=lst[len(lst)//2]
for i in range(len(lst)):
count += abs(lst[i]-middle)//d
print(count)
|
Title: Polo the Penguin and Matrix
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Little penguin Polo has an *n*<=×<=*m* matrix, consisting of integers. Let's index the matrix rows from 1 to *n* from top to bottom and let's index the columns from 1 to *m* from left to right. Let's represent the matrix element on the intersection of row *i* and column *j* as *a**ij*.
In one move the penguin can add or subtract number *d* from some matrix element. Find the minimum number of moves needed to make all matrix elements equal. If the described plan is impossible to carry out, say so.
Input Specification:
The first line contains three integers *n*, *m* and *d* (1<=≤<=*n*,<=*m*<=≤<=100,<=1<=≤<=*d*<=≤<=104) — the matrix sizes and the *d* parameter. Next *n* lines contain the matrix: the *j*-th integer in the *i*-th row is the matrix element *a**ij* (1<=≤<=*a**ij*<=≤<=104).
Output Specification:
In a single line print a single integer — the minimum number of moves the penguin needs to make all matrix elements equal. If that is impossible, print "-1" (without the quotes).
Demo Input:
['2 2 2\n2 4\n6 8\n', '1 2 7\n6 7\n']
Demo Output:
['4\n', '-1\n']
Note:
none
|
```python
n,m,d=map(int,input().split())
lst=[]
for i in range(n):
x=(list(map(int,input().split())))
lst=lst+x
flag=True
for i in range(len(lst)-1):
if(abs(lst[i+1]-lst[i])%d!=0):
flag=False
break
if(flag==False):
print(-1)
else:
lst.sort()
count=0
if(len(lst)%2==0):
middle=min(lst[len(lst)//2],lst[(len(lst)//2)-1])
else:
middle=lst[len(lst)//2]
for i in range(len(lst)):
count += abs(lst[i]-middle)//d
print(count)
```
| 3
|
|
41
|
A
|
Translation
|
PROGRAMMING
| 800
|
[
"implementation",
"strings"
] |
A. Translation
|
2
|
256
|
The translation from the Berland language into the Birland language is not an easy task. Those languages are very similar: a berlandish word differs from a birlandish word with the same meaning a little: it is spelled (and pronounced) reversely. For example, a Berlandish word code corresponds to a Birlandish word edoc. However, it's easy to make a mistake during the «translation». Vasya translated word *s* from Berlandish into Birlandish as *t*. Help him: find out if he translated the word correctly.
|
The first line contains word *s*, the second line contains word *t*. The words consist of lowercase Latin letters. The input data do not consist unnecessary spaces. The words are not empty and their lengths do not exceed 100 symbols.
|
If the word *t* is a word *s*, written reversely, print YES, otherwise print NO.
|
[
"code\nedoc\n",
"abb\naba\n",
"code\ncode\n"
] |
[
"YES\n",
"NO\n",
"NO\n"
] |
none
| 500
|
[
{
"input": "code\nedoc",
"output": "YES"
},
{
"input": "abb\naba",
"output": "NO"
},
{
"input": "code\ncode",
"output": "NO"
},
{
"input": "abacaba\nabacaba",
"output": "YES"
},
{
"input": "q\nq",
"output": "YES"
},
{
"input": "asrgdfngfnmfgnhweratgjkk\nasrgdfngfnmfgnhweratgjkk",
"output": "NO"
},
{
"input": "z\na",
"output": "NO"
},
{
"input": "asd\ndsa",
"output": "YES"
},
{
"input": "abcdef\nfecdba",
"output": "NO"
},
{
"input": "ywjjbirapvskozubvxoemscfwl\ngnduubaogtfaiowjizlvjcu",
"output": "NO"
},
{
"input": "mfrmqxtzvgaeuleubcmcxcfqyruwzenguhgrmkuhdgnhgtgkdszwqyd\nmfxufheiperjnhyczclkmzyhcxntdfskzkzdwzzujdinf",
"output": "NO"
},
{
"input": "bnbnemvybqizywlnghlykniaxxxlkhftppbdeqpesrtgkcpoeqowjwhrylpsziiwcldodcoonpimudvrxejjo\ntiynnekmlalogyvrgptbinkoqdwzuiyjlrldxhzjmmp",
"output": "NO"
},
{
"input": "pwlpubwyhzqvcitemnhvvwkmwcaawjvdiwtoxyhbhbxerlypelevasmelpfqwjk\nstruuzebbcenziscuoecywugxncdwzyfozhljjyizpqcgkyonyetarcpwkqhuugsqjuixsxptmbnlfupdcfigacdhhrzb",
"output": "NO"
},
{
"input": "gdvqjoyxnkypfvdxssgrihnwxkeojmnpdeobpecytkbdwujqfjtxsqspxvxpqioyfagzjxupqqzpgnpnpxcuipweunqch\nkkqkiwwasbhezqcfeceyngcyuogrkhqecwsyerdniqiocjehrpkljiljophqhyaiefjpavoom",
"output": "NO"
},
{
"input": "umeszdawsvgkjhlqwzents\nhxqhdungbylhnikwviuh",
"output": "NO"
},
{
"input": "juotpscvyfmgntshcealgbsrwwksgrwnrrbyaqqsxdlzhkbugdyx\nibqvffmfktyipgiopznsqtrtxiijntdbgyy",
"output": "NO"
},
{
"input": "zbwueheveouatecaglziqmudxemhrsozmaujrwlqmppzoumxhamwugedikvkblvmxwuofmpafdprbcftew\nulczwrqhctbtbxrhhodwbcxwimncnexosksujlisgclllxokrsbnozthajnnlilyffmsyko",
"output": "NO"
},
{
"input": "nkgwuugukzcv\nqktnpxedwxpxkrxdvgmfgoxkdfpbzvwsduyiybynbkouonhvmzakeiruhfmvrktghadbfkmwxduoqv",
"output": "NO"
},
{
"input": "incenvizhqpcenhjhehvjvgbsnfixbatrrjstxjzhlmdmxijztphxbrldlqwdfimweepkggzcxsrwelodpnryntepioqpvk\ndhjbjjftlvnxibkklxquwmzhjfvnmwpapdrslioxisbyhhfymyiaqhlgecpxamqnocizwxniubrmpyubvpenoukhcobkdojlybxd",
"output": "NO"
},
{
"input": "w\nw",
"output": "YES"
},
{
"input": "vz\nzv",
"output": "YES"
},
{
"input": "ry\nyr",
"output": "YES"
},
{
"input": "xou\nuox",
"output": "YES"
},
{
"input": "axg\ngax",
"output": "NO"
},
{
"input": "zdsl\nlsdz",
"output": "YES"
},
{
"input": "kudl\nldku",
"output": "NO"
},
{
"input": "zzlzwnqlcl\nlclqnwzlzz",
"output": "YES"
},
{
"input": "vzzgicnzqooejpjzads\nsdazjpjeooqzncigzzv",
"output": "YES"
},
{
"input": "raqhmvmzuwaykjpyxsykr\nxkysrypjkyawuzmvmhqar",
"output": "NO"
},
{
"input": "ngedczubzdcqbxksnxuavdjaqtmdwncjnoaicvmodcqvhfezew\nwezefhvqcdomvciaonjcnwdmtqajdvauxnskxbqcdzbuzcdegn",
"output": "YES"
},
{
"input": "muooqttvrrljcxbroizkymuidvfmhhsjtumksdkcbwwpfqdyvxtrlymofendqvznzlmim\nmimlznzvqdnefomylrtxvydqfpwwbckdskmutjshhmfvdiumykziorbxcjlrrvttqooum",
"output": "YES"
},
{
"input": "vxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaivg\ngviayyikkitmuomcpiakhbxszgbnhvwyzkftwoagzixaearxpjacrnvpvbuzenvovehkmmxvblqyxvctroddksdsgebcmlluqpxv",
"output": "YES"
},
{
"input": "mnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfdc\ncdfmkdgrdptkpewbsqvszipgxvgvuiuzbkkwuowbafkikgvnqdkxnayzdjygvezmtsgywnupocdntipiyiorblqkrzjpzatxahnm",
"output": "NO"
},
{
"input": "dgxmzbqofstzcdgthbaewbwocowvhqpinehpjatnnbrijcolvsatbblsrxabzrpszoiecpwhfjmwuhqrapvtcgvikuxtzbftydkw\nwkdytfbztxukivgctvparqhuwmjfhwpceiozsprzbaxrslbbqasvlocjirbnntajphenipthvwocowbweabhtgdcztsfoqbzmxgd",
"output": "NO"
},
{
"input": "gxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwgeh\nhegwxvocotmzstqfbmpjvijgkcyodlxyjawrpkczpmdspsuhoiruavnnnuwvtwohglkdxjetshkboalvzqbgjgthoteceixioxg",
"output": "YES"
},
{
"input": "sihxuwvmaambplxvjfoskinghzicyfqebjtkysotattkahssumfcgrkheotdxwjckpvapbkaepqrxseyfrwtyaycmrzsrsngkh\nhkgnsrszrmcyaytwrfyesxrqpeakbpavpkcjwxdtoehkrgcfmusshakttatosyktjbeqfycizhgniksofjvxlpbmaamvwuxhis",
"output": "YES"
},
{
"input": "ycnahksbughnonldzrhkysujmylcgcfuludjvjiahtkyzqvkopzqcnwhltbzfugzojqkjjlggmvnultascmygelkiktmfieok\nkoeifmtkiklegkmcsatlunvmggkjjlqjozgufzbtlhwncqzpokvqzykthaijvjdulufcgclymjusyyhrzdlnonhgubskhancy",
"output": "NO"
},
{
"input": "wbqasaehtkfojruzyhrlgwmtyiovmzyfifslvlemhqheyaelzwnthrenjsbmntwaoryzwfbxmscmypvxlfmzpnkkjlvwvmtz\nztmvwvljkknpzmflxvpymcsmxbfwzyroawtnmbsjnerhtnwzleayehqhmelvlsfifyzmvoiytmwglrhyzurjofktheasaqbw",
"output": "YES"
},
{
"input": "imippqurprbhfugngtgifelytadegwrgaefnfhbjjnmzikvjaccotqzemufqieqldgnbmviisgkynzeldlhqxuqphjfmyij\njiymfjhpquxqhldleznykgsiivmbngdlqeiqfumezqtoccajvkizmnjjbhfnfeagrwgedatylefigtgngufhbrpruqppimi",
"output": "YES"
},
{
"input": "bikydffiuisckpvzqlteqfhegsagimodb\nbdomigasgehfqetlqzvpkcsiuiffdykib",
"output": "YES"
}
] | 1,669,915,618
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 40
| 92
| 0
|
a=input()
s=input()
if a[::-1]==s:print("YES")
else:print("NO")
|
Title: Translation
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
The translation from the Berland language into the Birland language is not an easy task. Those languages are very similar: a berlandish word differs from a birlandish word with the same meaning a little: it is spelled (and pronounced) reversely. For example, a Berlandish word code corresponds to a Birlandish word edoc. However, it's easy to make a mistake during the «translation». Vasya translated word *s* from Berlandish into Birlandish as *t*. Help him: find out if he translated the word correctly.
Input Specification:
The first line contains word *s*, the second line contains word *t*. The words consist of lowercase Latin letters. The input data do not consist unnecessary spaces. The words are not empty and their lengths do not exceed 100 symbols.
Output Specification:
If the word *t* is a word *s*, written reversely, print YES, otherwise print NO.
Demo Input:
['code\nedoc\n', 'abb\naba\n', 'code\ncode\n']
Demo Output:
['YES\n', 'NO\n', 'NO\n']
Note:
none
|
```python
a=input()
s=input()
if a[::-1]==s:print("YES")
else:print("NO")
```
| 3.977
|
828
|
A
|
Restaurant Tables
|
PROGRAMMING
| 1,200
|
[
"implementation"
] | null | null |
In a small restaurant there are *a* tables for one person and *b* tables for two persons.
It it known that *n* groups of people come today, each consisting of one or two people.
If a group consist of one person, it is seated at a vacant one-seater table. If there are none of them, it is seated at a vacant two-seater table. If there are none of them, it is seated at a two-seater table occupied by single person. If there are still none of them, the restaurant denies service to this group.
If a group consist of two people, it is seated at a vacant two-seater table. If there are none of them, the restaurant denies service to this group.
You are given a chronological order of groups coming. You are to determine the total number of people the restaurant denies service to.
|
The first line contains three integers *n*, *a* and *b* (1<=≤<=*n*<=≤<=2·105, 1<=≤<=*a*,<=*b*<=≤<=2·105) — the number of groups coming to the restaurant, the number of one-seater and the number of two-seater tables.
The second line contains a sequence of integers *t*1,<=*t*2,<=...,<=*t**n* (1<=≤<=*t**i*<=≤<=2) — the description of clients in chronological order. If *t**i* is equal to one, then the *i*-th group consists of one person, otherwise the *i*-th group consists of two people.
|
Print the total number of people the restaurant denies service to.
|
[
"4 1 2\n1 2 1 1\n",
"4 1 1\n1 1 2 1\n"
] |
[
"0\n",
"2\n"
] |
In the first example the first group consists of one person, it is seated at a vacant one-seater table. The next group occupies a whole two-seater table. The third group consists of one person, it occupies one place at the remaining two-seater table. The fourth group consists of one person, he is seated at the remaining seat at the two-seater table. Thus, all clients are served.
In the second example the first group consists of one person, it is seated at the vacant one-seater table. The next group consists of one person, it occupies one place at the two-seater table. It's impossible to seat the next group of two people, so the restaurant denies service to them. The fourth group consists of one person, he is seated at the remaining seat at the two-seater table. Thus, the restaurant denies service to 2 clients.
| 500
|
[
{
"input": "4 1 2\n1 2 1 1",
"output": "0"
},
{
"input": "4 1 1\n1 1 2 1",
"output": "2"
},
{
"input": "1 1 1\n1",
"output": "0"
},
{
"input": "2 1 2\n2 2",
"output": "0"
},
{
"input": "5 1 3\n1 2 2 2 1",
"output": "1"
},
{
"input": "7 6 1\n1 1 1 1 1 1 1",
"output": "0"
},
{
"input": "10 2 1\n2 1 2 2 2 2 1 2 1 2",
"output": "13"
},
{
"input": "20 4 3\n2 2 2 2 2 2 2 2 1 2 1 1 2 2 1 2 2 2 1 2",
"output": "25"
},
{
"input": "1 1 1\n1",
"output": "0"
},
{
"input": "1 1 1\n2",
"output": "0"
},
{
"input": "1 200000 200000\n2",
"output": "0"
},
{
"input": "30 10 10\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2",
"output": "20"
},
{
"input": "4 1 2\n1 1 1 2",
"output": "2"
},
{
"input": "6 2 3\n1 2 1 1 1 2",
"output": "2"
},
{
"input": "6 1 4\n1 1 1 1 1 2",
"output": "2"
},
{
"input": "6 1 3\n1 1 1 1 2 2",
"output": "4"
},
{
"input": "6 1 3\n1 1 1 1 1 2",
"output": "2"
},
{
"input": "6 4 2\n2 1 2 2 1 1",
"output": "2"
},
{
"input": "3 10 1\n2 2 2",
"output": "4"
},
{
"input": "5 1 3\n1 1 1 1 2",
"output": "2"
},
{
"input": "5 2 2\n1 1 1 1 2",
"output": "2"
},
{
"input": "15 5 5\n1 1 1 1 1 1 1 1 1 1 2 2 2 2 2",
"output": "10"
},
{
"input": "5 1 2\n1 1 1 1 1",
"output": "0"
},
{
"input": "3 6 1\n2 2 2",
"output": "4"
},
{
"input": "5 3 3\n2 2 2 2 2",
"output": "4"
},
{
"input": "8 3 3\n1 1 1 1 1 1 2 2",
"output": "4"
},
{
"input": "5 1 2\n1 1 1 2 1",
"output": "2"
},
{
"input": "6 1 4\n1 2 2 1 2 2",
"output": "2"
},
{
"input": "2 1 1\n2 2",
"output": "2"
},
{
"input": "2 2 1\n2 2",
"output": "2"
},
{
"input": "5 8 1\n2 2 2 2 2",
"output": "8"
},
{
"input": "3 1 4\n1 1 2",
"output": "0"
},
{
"input": "7 1 5\n1 1 1 1 1 1 2",
"output": "2"
},
{
"input": "6 1 3\n1 1 1 2 1 1",
"output": "0"
},
{
"input": "6 1 2\n1 1 1 2 2 2",
"output": "6"
},
{
"input": "8 1 4\n2 1 1 1 2 2 2 2",
"output": "6"
},
{
"input": "4 2 3\n2 2 2 2",
"output": "2"
},
{
"input": "3 1 1\n1 1 2",
"output": "2"
},
{
"input": "5 1 1\n2 2 2 2 2",
"output": "8"
},
{
"input": "10 1 5\n1 1 1 1 1 2 2 2 2 2",
"output": "8"
},
{
"input": "5 1 2\n1 1 1 2 2",
"output": "4"
},
{
"input": "4 1 1\n1 1 2 2",
"output": "4"
},
{
"input": "7 1 2\n1 1 1 1 1 1 1",
"output": "2"
},
{
"input": "5 1 4\n2 2 2 2 2",
"output": "2"
},
{
"input": "6 2 3\n1 1 1 1 2 2",
"output": "2"
},
{
"input": "5 2 2\n2 1 2 1 2",
"output": "2"
},
{
"input": "4 6 1\n2 2 2 2",
"output": "6"
},
{
"input": "6 1 4\n1 1 2 1 1 2",
"output": "2"
},
{
"input": "7 1 3\n1 1 1 1 2 2 2",
"output": "6"
},
{
"input": "4 1 2\n1 1 2 2",
"output": "2"
},
{
"input": "3 1 2\n1 1 2",
"output": "0"
},
{
"input": "6 1 3\n1 2 1 1 2 1",
"output": "2"
},
{
"input": "6 1 3\n1 1 1 2 2 2",
"output": "4"
},
{
"input": "10 2 2\n1 1 1 1 2 2 2 2 2 2",
"output": "12"
},
{
"input": "10 1 4\n1 1 1 1 1 2 2 2 2 2",
"output": "10"
},
{
"input": "3 10 2\n2 2 2",
"output": "2"
},
{
"input": "4 3 1\n1 2 2 2",
"output": "4"
},
{
"input": "7 1 4\n1 1 1 1 1 2 2",
"output": "4"
},
{
"input": "3 4 1\n2 2 2",
"output": "4"
},
{
"input": "4 1 2\n2 1 1 2",
"output": "2"
},
{
"input": "10 1 2\n1 1 1 1 1 1 1 1 1 2",
"output": "6"
},
{
"input": "5 1 3\n1 1 2 1 2",
"output": "2"
},
{
"input": "6 1 3\n1 1 1 1 2 1",
"output": "2"
},
{
"input": "6 1 4\n1 1 1 2 2 2",
"output": "2"
},
{
"input": "7 1 2\n1 2 1 1 1 1 1",
"output": "3"
},
{
"input": "6 2 2\n1 1 1 1 1 1",
"output": "0"
},
{
"input": "6 1 2\n1 1 2 1 1 1",
"output": "2"
},
{
"input": "3 3 1\n2 2 1",
"output": "2"
},
{
"input": "8 4 2\n1 1 1 1 1 1 1 2",
"output": "2"
},
{
"input": "9 1 4\n1 1 1 1 1 2 2 2 2",
"output": "8"
},
{
"input": "5 10 1\n2 2 2 2 2",
"output": "8"
},
{
"input": "3 5 1\n2 2 2",
"output": "4"
},
{
"input": "5 100 1\n2 2 2 2 2",
"output": "8"
},
{
"input": "4 1 2\n1 1 1 1",
"output": "0"
},
{
"input": "4 1 1\n1 1 1 1",
"output": "1"
},
{
"input": "7 2 2\n1 1 1 1 1 1 1",
"output": "1"
}
] | 1,588,993,804
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 97
| 202
| 32,563,200
|
n,a,b=map(int,input().split())
l=list(map(int,input().split()))
s=0
c=0
for i in range(n):
if(l[i]==1):
if(a>0):
a=a-1
elif(b>0):
b=b-1
c=c+0.5
elif(b>=0.5):
b=b-0.5
elif(c>=0.5):
c-=0.5
else:
s=s+1
else:
if(b>0):
b=b-1
else:
s=s+2
print(s)
|
Title: Restaurant Tables
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
In a small restaurant there are *a* tables for one person and *b* tables for two persons.
It it known that *n* groups of people come today, each consisting of one or two people.
If a group consist of one person, it is seated at a vacant one-seater table. If there are none of them, it is seated at a vacant two-seater table. If there are none of them, it is seated at a two-seater table occupied by single person. If there are still none of them, the restaurant denies service to this group.
If a group consist of two people, it is seated at a vacant two-seater table. If there are none of them, the restaurant denies service to this group.
You are given a chronological order of groups coming. You are to determine the total number of people the restaurant denies service to.
Input Specification:
The first line contains three integers *n*, *a* and *b* (1<=≤<=*n*<=≤<=2·105, 1<=≤<=*a*,<=*b*<=≤<=2·105) — the number of groups coming to the restaurant, the number of one-seater and the number of two-seater tables.
The second line contains a sequence of integers *t*1,<=*t*2,<=...,<=*t**n* (1<=≤<=*t**i*<=≤<=2) — the description of clients in chronological order. If *t**i* is equal to one, then the *i*-th group consists of one person, otherwise the *i*-th group consists of two people.
Output Specification:
Print the total number of people the restaurant denies service to.
Demo Input:
['4 1 2\n1 2 1 1\n', '4 1 1\n1 1 2 1\n']
Demo Output:
['0\n', '2\n']
Note:
In the first example the first group consists of one person, it is seated at a vacant one-seater table. The next group occupies a whole two-seater table. The third group consists of one person, it occupies one place at the remaining two-seater table. The fourth group consists of one person, he is seated at the remaining seat at the two-seater table. Thus, all clients are served.
In the second example the first group consists of one person, it is seated at the vacant one-seater table. The next group consists of one person, it occupies one place at the two-seater table. It's impossible to seat the next group of two people, so the restaurant denies service to them. The fourth group consists of one person, he is seated at the remaining seat at the two-seater table. Thus, the restaurant denies service to 2 clients.
|
```python
n,a,b=map(int,input().split())
l=list(map(int,input().split()))
s=0
c=0
for i in range(n):
if(l[i]==1):
if(a>0):
a=a-1
elif(b>0):
b=b-1
c=c+0.5
elif(b>=0.5):
b=b-0.5
elif(c>=0.5):
c-=0.5
else:
s=s+1
else:
if(b>0):
b=b-1
else:
s=s+2
print(s)
```
| 3
|
|
540
|
A
|
Combination Lock
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Scrooge McDuck keeps his most treasured savings in a home safe with a combination lock. Each time he wants to put there the treasures that he's earned fair and square, he has to open the lock.
The combination lock is represented by *n* rotating disks with digits from 0 to 9 written on them. Scrooge McDuck has to turn some disks so that the combination of digits on the disks forms a secret combination. In one move, he can rotate one disk one digit forwards or backwards. In particular, in one move he can go from digit 0 to digit 9 and vice versa. What minimum number of actions does he need for that?
|
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=1000) — the number of disks on the combination lock.
The second line contains a string of *n* digits — the original state of the disks.
The third line contains a string of *n* digits — Scrooge McDuck's combination that opens the lock.
|
Print a single integer — the minimum number of moves Scrooge McDuck needs to open the lock.
|
[
"5\n82195\n64723\n"
] |
[
"13\n"
] |
In the sample he needs 13 moves:
- 1 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/b8967f65a723782358b93eff9ce69f336817cf70.png" style="max-width: 100.0%;max-height: 100.0%;"/> - 2 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/07fa58573ece0d32c4d555e498d2b24d2f70f36a.png" style="max-width: 100.0%;max-height: 100.0%;"/> - 3 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/cc2275d9252aae35a6867c6a5b4ba7596e9a7626.png" style="max-width: 100.0%;max-height: 100.0%;"/> - 4 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/b100aea470fcaaab4e9529b234ba0d7875943c10.png" style="max-width: 100.0%;max-height: 100.0%;"/> - 5 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/eb2cbe4324cebca65b85816262a85e473cd65967.png" style="max-width: 100.0%;max-height: 100.0%;"/>
| 500
|
[
{
"input": "5\n82195\n64723",
"output": "13"
},
{
"input": "12\n102021090898\n010212908089",
"output": "16"
},
{
"input": "1\n8\n1",
"output": "3"
},
{
"input": "2\n83\n57",
"output": "7"
},
{
"input": "10\n0728592530\n1362615763",
"output": "27"
},
{
"input": "100\n4176196363694273682807653052945037727131821799902563705176501742060696655282954944720643131654235909\n3459912084922154505910287499879975659298239371519889866585472674423008837878123067103005344986554746",
"output": "245"
},
{
"input": "1\n8\n1",
"output": "3"
},
{
"input": "2\n83\n57",
"output": "7"
},
{
"input": "3\n607\n684",
"output": "5"
},
{
"input": "4\n0809\n0636",
"output": "8"
},
{
"input": "5\n84284\n08941",
"output": "16"
},
{
"input": "25\n8037856825987124762280548\n9519431339078678836940020",
"output": "72"
},
{
"input": "125\n23269567683904664184142384849516523616863461607751021071772615078579713054027902974007001544768640273491193035874486891541257\n47635110303703399505805044019026243695451609639556649012447370081552870340011971572363458960190590266459684717415349529509024",
"output": "305"
},
{
"input": "5\n84284\n08941",
"output": "16"
},
{
"input": "25\n8037856825987124762285484\n9519431339078678836940202",
"output": "74"
},
{
"input": "125\n23269567689466418414238845152168634610771021717726157879713054270294007001544768647391193035874486891412573389247025830678706\n47635110307339950580504010224954516093956649124473708152870340117152363458960190596659684717415349529090241694059599629136831",
"output": "357"
},
{
"input": "5\n84284\n08941",
"output": "16"
},
{
"input": "25\n8378525987476228048406972\n9194339078883694020217816",
"output": "55"
},
{
"input": "125\n23269576839046618414238484916523616863461607750210717761078579713054027902974007015447686027349193035874486891541257338624472\n47635103037033950580504401926243695451609639556490124437081552870340011971572363489601905026645984717415349529509024169604599",
"output": "274"
},
{
"input": "1\n0\n0",
"output": "0"
},
{
"input": "1\n7\n7",
"output": "0"
},
{
"input": "1\n0\n5",
"output": "5"
},
{
"input": "1\n2\n7",
"output": "5"
},
{
"input": "1\n7\n9",
"output": "2"
},
{
"input": "1\n9\n7",
"output": "2"
},
{
"input": "1\n2\n9",
"output": "3"
},
{
"input": "1\n9\n2",
"output": "3"
},
{
"input": "25\n3164978461316464614169874\n9413979197249127496597357",
"output": "66"
},
{
"input": "4\n9999\n9999",
"output": "0"
},
{
"input": "2\n11\n11",
"output": "0"
}
] | 1,604,116,916
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 43
| 140
| 0
|
r=int(input())
num1=input()
num2=input()
w=0
for i in range(r):
c=abs(int(num1[i])-int(num2[i]))
if c > 5:
w+=(10-c)
else:
w+=c
print(w)
|
Title: Combination Lock
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Scrooge McDuck keeps his most treasured savings in a home safe with a combination lock. Each time he wants to put there the treasures that he's earned fair and square, he has to open the lock.
The combination lock is represented by *n* rotating disks with digits from 0 to 9 written on them. Scrooge McDuck has to turn some disks so that the combination of digits on the disks forms a secret combination. In one move, he can rotate one disk one digit forwards or backwards. In particular, in one move he can go from digit 0 to digit 9 and vice versa. What minimum number of actions does he need for that?
Input Specification:
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=1000) — the number of disks on the combination lock.
The second line contains a string of *n* digits — the original state of the disks.
The third line contains a string of *n* digits — Scrooge McDuck's combination that opens the lock.
Output Specification:
Print a single integer — the minimum number of moves Scrooge McDuck needs to open the lock.
Demo Input:
['5\n82195\n64723\n']
Demo Output:
['13\n']
Note:
In the sample he needs 13 moves:
- 1 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/b8967f65a723782358b93eff9ce69f336817cf70.png" style="max-width: 100.0%;max-height: 100.0%;"/> - 2 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/07fa58573ece0d32c4d555e498d2b24d2f70f36a.png" style="max-width: 100.0%;max-height: 100.0%;"/> - 3 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/cc2275d9252aae35a6867c6a5b4ba7596e9a7626.png" style="max-width: 100.0%;max-height: 100.0%;"/> - 4 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/b100aea470fcaaab4e9529b234ba0d7875943c10.png" style="max-width: 100.0%;max-height: 100.0%;"/> - 5 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/eb2cbe4324cebca65b85816262a85e473cd65967.png" style="max-width: 100.0%;max-height: 100.0%;"/>
|
```python
r=int(input())
num1=input()
num2=input()
w=0
for i in range(r):
c=abs(int(num1[i])-int(num2[i]))
if c > 5:
w+=(10-c)
else:
w+=c
print(w)
```
| 3
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.