contestId
int64 0
1.01k
| index
stringclasses 40
values | name
stringlengths 2
54
| type
stringclasses 2
values | rating
int64 0
3.4k
| tags
listlengths 0
7
| title
stringclasses 393
values | time-limit
stringclasses 7
values | memory-limit
stringclasses 6
values | problem-description
stringlengths 0
2.97k
| input-specification
stringlengths 4
1.87k
| output-specification
stringlengths 4
1.12k
| demo-input
listlengths 0
7
| demo-output
listlengths 0
7
| note
stringlengths 0
5.24k
| points
float64 0
3.5k
| test_cases
listlengths 0
402
| creationTimeSeconds
int64 1.37B
1.7B
| relativeTimeSeconds
int64 8
2.15B
| programmingLanguage
stringclasses 3
values | verdict
stringclasses 1
value | testset
stringclasses 9
values | passedTestCount
int64 1
402
| timeConsumedMillis
int64 15
8.06k
| memoryConsumedBytes
int64 0
514M
| code
stringlengths 11
61.4k
| prompt
stringlengths 297
7.35k
| response
stringlengths 25
61.4k
| score
float64 2.82
3.99
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
688
|
A
|
Opponents
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Arya has *n* opponents in the school. Each day he will fight with all opponents who are present this day. His opponents have some fighting plan that guarantees they will win, but implementing this plan requires presence of them all. That means if one day at least one of Arya's opponents is absent at the school, then Arya will beat all present opponents. Otherwise, if all opponents are present, then they will beat Arya.
For each opponent Arya knows his schedule — whether or not he is going to present on each particular day. Tell him the maximum number of consecutive days that he will beat all present opponents.
Note, that if some day there are no opponents present, Arya still considers he beats all the present opponents.
|
The first line of the input contains two integers *n* and *d* (1<=≤<=*n*,<=*d*<=≤<=100) — the number of opponents and the number of days, respectively.
The *i*-th of the following *d* lines contains a string of length *n* consisting of characters '0' and '1'. The *j*-th character of this string is '0' if the *j*-th opponent is going to be absent on the *i*-th day.
|
Print the only integer — the maximum number of consecutive days that Arya will beat all present opponents.
|
[
"2 2\n10\n00\n",
"4 1\n0100\n",
"4 5\n1101\n1111\n0110\n1011\n1111\n"
] |
[
"2\n",
"1\n",
"2\n"
] |
In the first and the second samples, Arya will beat all present opponents each of the *d* days.
In the third sample, Arya will beat his opponents on days 1, 3 and 4 and his opponents will beat him on days 2 and 5. Thus, the maximum number of consecutive winning days is 2, which happens on days 3 and 4.
| 500
|
[
{
"input": "2 2\n10\n00",
"output": "2"
},
{
"input": "4 1\n0100",
"output": "1"
},
{
"input": "4 5\n1101\n1111\n0110\n1011\n1111",
"output": "2"
},
{
"input": "3 2\n110\n110",
"output": "2"
},
{
"input": "10 6\n1111111111\n0100110101\n1111111111\n0000011010\n1111111111\n1111111111",
"output": "1"
},
{
"input": "10 10\n1111111111\n0001001000\n1111111111\n1111111111\n1111111111\n1000000100\n1111111111\n0000011100\n1111111111\n1111111111",
"output": "1"
},
{
"input": "10 10\n0000100011\n0100001111\n1111111111\n1100011111\n1111111111\n1000111000\n1111000010\n0111001001\n1101010110\n1111111111",
"output": "4"
},
{
"input": "10 10\n1100110010\n0000000001\n1011100111\n1111111111\n1111111111\n1111111111\n1100010110\n1111111111\n1001001010\n1111111111",
"output": "3"
},
{
"input": "10 7\n0000111001\n1111111111\n0110110001\n1111111111\n1111111111\n1000111100\n0110000111",
"output": "2"
},
{
"input": "5 10\n00110\n11000\n10010\n00010\n11110\n01101\n11111\n10001\n11111\n01001",
"output": "6"
},
{
"input": "5 9\n11111\n11101\n11111\n11111\n01010\n01010\n00000\n11111\n00111",
"output": "3"
},
{
"input": "5 10\n11111\n00010\n11010\n11111\n11111\n00100\n11111\n11111\n01000\n11111",
"output": "2"
},
{
"input": "5 9\n11111\n11111\n11111\n11111\n11100\n11111\n11111\n11111\n00000",
"output": "1"
},
{
"input": "5 8\n11111\n10110\n01001\n11111\n01100\n10010\n11111\n11111",
"output": "2"
},
{
"input": "1 1\n1",
"output": "0"
},
{
"input": "100 1\n0011001100100010000011001100000001011101110110010001110001101100110011111101001011011001000010001111",
"output": "1"
},
{
"input": "100 1\n1011011100000101000111110000110111010101110010010011110010001110100011001110110101111100100110000000",
"output": "1"
},
{
"input": "100 1\n1110000011110101010111111100011001100000101101010110100101110000011100110110110101011100110110010011",
"output": "1"
},
{
"input": "100 1\n1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111",
"output": "0"
},
{
"input": "1 100\n1\n0\n0\n0\n1\n1\n0\n0\n0\n0\n1\n1\n0\n1\n1\n0\n0\n1\n1\n1\n0\n0\n1\n1\n1\n1\n1\n0\n1\n0\n0\n0\n1\n1\n0\n1\n0\n1\n0\n0\n0\n1\n0\n1\n0\n0\n0\n1\n1\n1\n0\n1\n1\n1\n0\n1\n0\n1\n1\n1\n1\n0\n0\n0\n0\n0\n0\n1\n1\n0\n1\n1\n1\n1\n1\n0\n1\n1\n1\n1\n1\n0\n1\n0\n0\n1\n0\n0\n1\n0\n0\n1\n0\n1\n1\n1\n0\n1\n0\n0",
"output": "6"
},
{
"input": "1 100\n0\n0\n0\n0\n1\n0\n0\n0\n0\n1\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0",
"output": "49"
},
{
"input": "1 100\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1",
"output": "0"
},
{
"input": "1 100\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0",
"output": "100"
},
{
"input": "2 2\n11\n10",
"output": "1"
},
{
"input": "1 1\n0",
"output": "1"
}
] | 1,697,959,506
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 56
| 93
| 0
|
n=int(input().split()[1])
s=['0' in input() for _ in range(n)]
mx=cnt=0
for i in range(n):
if s[i]:
cnt+=1
else:
mx=max(mx,cnt)
cnt=0
print(max(mx,cnt))
|
Title: Opponents
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Arya has *n* opponents in the school. Each day he will fight with all opponents who are present this day. His opponents have some fighting plan that guarantees they will win, but implementing this plan requires presence of them all. That means if one day at least one of Arya's opponents is absent at the school, then Arya will beat all present opponents. Otherwise, if all opponents are present, then they will beat Arya.
For each opponent Arya knows his schedule — whether or not he is going to present on each particular day. Tell him the maximum number of consecutive days that he will beat all present opponents.
Note, that if some day there are no opponents present, Arya still considers he beats all the present opponents.
Input Specification:
The first line of the input contains two integers *n* and *d* (1<=≤<=*n*,<=*d*<=≤<=100) — the number of opponents and the number of days, respectively.
The *i*-th of the following *d* lines contains a string of length *n* consisting of characters '0' and '1'. The *j*-th character of this string is '0' if the *j*-th opponent is going to be absent on the *i*-th day.
Output Specification:
Print the only integer — the maximum number of consecutive days that Arya will beat all present opponents.
Demo Input:
['2 2\n10\n00\n', '4 1\n0100\n', '4 5\n1101\n1111\n0110\n1011\n1111\n']
Demo Output:
['2\n', '1\n', '2\n']
Note:
In the first and the second samples, Arya will beat all present opponents each of the *d* days.
In the third sample, Arya will beat his opponents on days 1, 3 and 4 and his opponents will beat him on days 2 and 5. Thus, the maximum number of consecutive winning days is 2, which happens on days 3 and 4.
|
```python
n=int(input().split()[1])
s=['0' in input() for _ in range(n)]
mx=cnt=0
for i in range(n):
if s[i]:
cnt+=1
else:
mx=max(mx,cnt)
cnt=0
print(max(mx,cnt))
```
| 3
|
|
244
|
A
|
Dividing Orange
|
PROGRAMMING
| 900
|
[
"implementation"
] | null | null |
One day Ms Swan bought an orange in a shop. The orange consisted of *n*·*k* segments, numbered with integers from 1 to *n*·*k*.
There were *k* children waiting for Ms Swan at home. The children have recently learned about the orange and they decided to divide it between them. For that each child took a piece of paper and wrote the number of the segment that he would like to get: the *i*-th (1<=≤<=*i*<=≤<=*k*) child wrote the number *a**i* (1<=≤<=*a**i*<=≤<=*n*·*k*). All numbers *a**i* accidentally turned out to be different.
Now the children wonder, how to divide the orange so as to meet these conditions:
- each child gets exactly *n* orange segments; - the *i*-th child gets the segment with number *a**i* for sure; - no segment goes to two children simultaneously.
Help the children, divide the orange and fulfill the requirements, described above.
|
The first line contains two integers *n*, *k* (1<=≤<=*n*,<=*k*<=≤<=30). The second line contains *k* space-separated integers *a*1,<=*a*2,<=...,<=*a**k* (1<=≤<=*a**i*<=≤<=*n*·*k*), where *a**i* is the number of the orange segment that the *i*-th child would like to get.
It is guaranteed that all numbers *a**i* are distinct.
|
Print exactly *n*·*k* distinct integers. The first *n* integers represent the indexes of the segments the first child will get, the second *n* integers represent the indexes of the segments the second child will get, and so on. Separate the printed numbers with whitespaces.
You can print a child's segment indexes in any order. It is guaranteed that the answer always exists. If there are multiple correct answers, print any of them.
|
[
"2 2\n4 1\n",
"3 1\n2\n"
] |
[
"2 4 \n1 3 \n",
"3 2 1 \n"
] |
none
| 500
|
[
{
"input": "2 2\n4 1",
"output": "2 4 \n1 3 "
},
{
"input": "3 1\n2",
"output": "3 2 1 "
},
{
"input": "5 5\n25 24 23 22 21",
"output": "2 3 1 25 4 \n7 6 8 5 24 \n10 12 9 23 11 \n13 15 14 16 22 \n19 21 20 17 18 "
},
{
"input": "1 30\n8 22 13 25 10 30 12 27 6 4 7 2 20 16 26 14 15 17 23 3 24 9 5 11 29 1 19 28 21 18",
"output": "8 \n22 \n13 \n25 \n10 \n30 \n12 \n27 \n6 \n4 \n7 \n2 \n20 \n16 \n26 \n14 \n15 \n17 \n23 \n3 \n24 \n9 \n5 \n11 \n29 \n1 \n19 \n28 \n21 \n18 "
},
{
"input": "30 1\n29",
"output": "8 20 17 12 5 26 13 2 19 22 28 16 10 4 6 11 3 25 1 27 15 9 30 24 21 18 14 23 29 7 "
},
{
"input": "10 10\n13 39 6 75 84 94 96 21 85 71",
"output": "9 3 1 13 5 7 4 2 10 8 \n17 12 19 11 39 14 15 18 16 20 \n22 27 6 24 25 30 26 28 23 29 \n36 33 75 34 38 31 35 40 37 32 \n43 44 49 42 46 48 47 45 84 41 \n51 94 52 56 57 54 50 55 53 58 \n64 60 62 61 66 59 63 96 67 65 \n72 69 76 77 70 78 73 21 74 68 \n81 85 87 88 80 83 89 86 79 82 \n93 91 100 99 98 71 90 95 92 97 "
},
{
"input": "10 15\n106 109 94 50 3 143 147 10 89 145 29 28 87 126 110",
"output": "9 4 1 106 6 7 5 2 11 8 \n17 13 19 12 109 14 15 18 16 20 \n21 26 94 23 24 31 25 27 22 30 \n37 34 50 35 39 32 36 40 38 33 \n43 44 49 42 46 48 47 45 3 41 \n52 143 53 57 58 55 51 56 54 59 \n65 61 63 62 67 60 64 147 68 66 \n72 70 75 76 71 77 73 10 74 69 \n80 89 84 85 79 82 86 83 78 81 \n92 90 98 97 96 145 88 93 91 95 \n100 104 105 103 102 108 99 101 29 107 \n111 114 112 116 119 118 28 113 117 115 \n128 120 122 125 129 127 87 124 123 121 \n133 136 130 134 132 131 135 126 137 138 \n142 141 144 148 146 149 110 140..."
},
{
"input": "15 10\n126 111 12 6 28 47 51 116 53 35",
"output": "9 13 1 14 5 16 15 2 10 8 126 3 11 4 7 \n111 22 21 26 20 30 17 23 18 19 24 31 27 25 29 \n43 40 41 39 42 12 45 44 34 37 32 36 38 33 46 \n59 6 57 56 58 49 62 54 50 52 63 61 48 55 60 \n70 67 71 75 69 77 72 65 68 73 76 74 28 64 66 \n80 89 86 79 87 91 81 78 88 83 85 82 90 84 47 \n95 93 51 99 104 98 103 101 100 102 97 96 94 92 105 \n120 115 113 118 109 119 110 116 114 106 121 117 108 107 112 \n135 133 128 125 123 131 129 122 124 53 134 132 130 127 136 \n148 139 141 143 146 144 147 138 137 145 142 149 140 150 35 \n..."
},
{
"input": "30 30\n455 723 796 90 7 881 40 736 147 718 560 619 468 363 161 767 282 19 111 369 443 850 871 242 713 789 208 435 135 411",
"output": "9 22 18 13 5 28 14 2 21 24 30 17 11 4 6 12 3 27 1 29 16 10 31 26 23 20 15 25 455 8 \n723 52 49 60 45 48 34 59 58 44 32 57 61 56 51 33 42 37 41 38 47 53 36 50 54 55 46 39 43 35 \n89 71 796 74 78 70 88 67 84 85 63 83 82 62 72 79 81 80 73 91 69 66 65 87 77 75 64 68 86 76 \n115 90 102 121 104 106 109 98 112 120 119 105 103 97 113 93 100 118 107 96 117 92 94 116 95 101 110 108 114 99 \n136 133 148 123 144 139 149 142 7 140 138 127 150 129 122 130 143 126 134 152 132 145 131 146 125 151 137 128 124 141 \n154 177..."
},
{
"input": "1 1\n1",
"output": "1 "
},
{
"input": "2 1\n1",
"output": "2 1 "
},
{
"input": "1 2\n2 1",
"output": "2 \n1 "
},
{
"input": "1 3\n2 3 1",
"output": "2 \n3 \n1 "
},
{
"input": "2 3\n3 2 1",
"output": "4 3 \n2 5 \n1 6 "
},
{
"input": "3 3\n6 7 8",
"output": "2 6 1 \n7 4 3 \n5 9 8 "
},
{
"input": "3 1\n3",
"output": "2 3 1 "
},
{
"input": "3 2\n5 4",
"output": "2 5 1 \n4 6 3 "
},
{
"input": "12 13\n149 22 133 146 151 64 45 88 77 126 92 134 143",
"output": "8 11 1 10 5 6 4 2 9 7 149 3 \n14 13 19 12 17 16 22 20 21 23 15 18 \n133 28 34 32 31 25 30 33 24 29 26 27 \n35 42 38 40 43 46 39 41 44 146 36 37 \n56 51 48 49 50 54 53 151 57 52 47 55 \n61 58 65 68 67 59 62 66 69 63 64 60 \n80 70 75 74 76 81 45 72 78 73 79 71 \n94 85 88 83 90 87 86 89 93 82 84 91 \n99 104 98 96 103 105 102 97 77 95 101 100 \n116 109 107 111 115 113 126 108 112 110 114 106 \n127 121 125 118 120 128 123 92 119 122 117 124 \n139 132 136 130 131 140 141 134 137 138 135 129 \n150 142 144 155 154..."
},
{
"input": "30 29\n427 740 444 787 193 268 19 767 46 276 245 468 661 348 402 62 665 425 398 503 89 455 200 772 355 442 863 416 164",
"output": "8 21 17 12 5 27 13 2 20 23 29 16 10 4 6 11 3 26 1 28 15 9 30 25 22 18 14 24 427 7 \n740 51 48 59 43 47 33 58 57 42 31 56 60 55 50 32 40 36 39 37 45 52 35 49 53 54 44 38 41 34 \n90 71 444 74 78 70 88 67 84 85 63 83 82 61 72 79 81 80 73 91 69 66 65 87 77 75 64 68 86 76 \n114 787 102 120 104 106 109 98 111 119 118 105 103 97 112 93 100 117 107 96 116 92 94 115 95 101 110 108 113 99 \n134 132 145 122 142 137 146 140 193 138 136 126 147 128 121 129 141 125 133 149 131 143 130 144 124 148 135 127 123 139 \n151 1..."
},
{
"input": "29 30\n173 601 360 751 194 411 708 598 236 812 855 647 100 106 59 38 822 196 529 417 606 159 384 389 300 172 544 726 702 799",
"output": "8 20 17 12 5 26 13 2 19 22 28 16 10 4 6 11 3 25 1 27 15 9 7 24 21 18 14 23 173 \n47 36 37 35 45 51 49 41 31 33 29 32 46 57 52 48 54 34 55 53 56 30 601 44 43 39 40 42 50 \n77 79 84 86 64 72 75 60 76 78 81 73 80 58 82 69 70 67 83 65 68 62 360 71 61 63 85 66 74 \n90 107 751 110 105 93 98 96 95 97 116 91 109 102 115 87 99 104 114 88 92 113 94 111 101 89 103 112 108 \n140 127 144 134 118 125 141 137 119 133 128 139 124 121 130 126 120 142 136 122 132 117 194 131 129 143 138 123 135 \n147 168 163 154 174 160 146..."
},
{
"input": "29 29\n669 371 637 18 176 724 137 757 407 420 658 737 188 408 185 416 425 293 178 557 8 104 139 819 268 403 255 63 793",
"output": "9 22 19 13 5 28 14 2 21 24 30 17 11 4 6 12 3 27 1 29 16 10 7 26 23 20 15 25 669 \n48 38 39 37 46 52 50 42 33 35 31 34 47 58 53 49 55 36 56 54 57 32 371 45 44 40 41 43 51 \n78 80 85 87 65 73 76 60 77 79 82 74 81 59 83 70 71 68 84 66 69 62 637 72 61 64 86 67 75 \n91 107 18 110 106 94 99 97 96 98 116 92 109 102 115 88 100 105 114 89 93 113 95 111 101 90 103 112 108 \n142 127 146 134 118 125 143 138 119 133 128 141 124 121 130 126 120 144 136 122 132 117 176 131 129 145 140 123 135 \n149 169 164 156 173 161 14..."
},
{
"input": "28 29\n771 736 590 366 135 633 68 789 193 459 137 370 216 692 730 712 537 356 752 757 796 541 804 27 431 162 196 630 684",
"output": "8 20 17 12 5 26 13 2 19 22 771 16 10 4 6 11 3 25 1 28 15 9 7 24 21 18 14 23 \n34 55 49 41 54 45 33 37 35 53 29 40 30 32 43 31 36 51 736 44 39 46 38 50 48 52 47 42 \n77 65 78 73 63 56 72 590 76 62 74 57 83 69 58 80 60 79 66 59 64 82 67 70 81 61 71 75 \n107 104 92 94 106 109 84 88 86 99 98 105 366 93 103 101 89 87 95 90 100 85 91 102 97 108 110 96 \n124 125 113 123 119 120 121 134 127 132 117 129 116 130 138 111 118 131 122 139 128 114 112 126 115 136 133 135 \n141 633 142 153 160 152 149 156 166 158 161 144..."
},
{
"input": "29 29\n669 371 637 18 176 724 137 757 407 420 658 737 188 408 185 416 425 293 178 557 8 104 139 819 268 403 255 63 793",
"output": "9 22 19 13 5 28 14 2 21 24 30 17 11 4 6 12 3 27 1 29 16 10 7 26 23 20 15 25 669 \n48 38 39 37 46 52 50 42 33 35 31 34 47 58 53 49 55 36 56 54 57 32 371 45 44 40 41 43 51 \n78 80 85 87 65 73 76 60 77 79 82 74 81 59 83 70 71 68 84 66 69 62 637 72 61 64 86 67 75 \n91 107 18 110 106 94 99 97 96 98 116 92 109 102 115 88 100 105 114 89 93 113 95 111 101 90 103 112 108 \n142 127 146 134 118 125 143 138 119 133 128 141 124 121 130 126 120 144 136 122 132 117 176 131 129 145 140 123 135 \n149 169 164 156 173 161 14..."
},
{
"input": "27 3\n12 77 80",
"output": "8 21 18 13 5 27 14 2 20 23 12 17 10 4 6 11 3 26 1 24 16 9 7 25 22 19 15 \n43 32 46 48 51 37 41 49 77 30 40 28 34 38 44 35 31 45 52 50 47 29 36 53 42 39 33 \n62 61 78 63 81 55 70 79 67 73 58 69 59 64 80 54 56 57 68 72 65 60 71 66 74 75 76 "
},
{
"input": "3 27\n77 9 32 56 7 65 58 24 64 19 49 62 47 44 28 79 76 71 21 4 18 23 51 53 12 6 20",
"output": "2 77 1 \n9 5 3 \n8 10 32 \n13 56 11 \n15 7 14 \n65 17 16 \n22 58 25 \n24 26 27 \n29 64 30 \n31 33 19 \n35 34 49 \n62 37 36 \n47 38 39 \n44 40 41 \n42 43 28 \n46 45 79 \n48 50 76 \n71 54 52 \n57 21 55 \n60 4 59 \n61 18 63 \n66 23 67 \n68 51 69 \n72 70 53 \n12 73 74 \n75 6 78 \n81 20 80 "
},
{
"input": "10 30\n165 86 241 45 144 43 95 250 28 240 42 15 295 211 48 99 199 156 206 109 100 194 229 224 57 10 220 79 44 203",
"output": "8 3 1 165 5 6 4 2 9 7 \n17 12 19 11 86 13 14 18 16 20 \n21 26 241 23 24 30 25 27 22 29 \n36 33 45 34 38 31 35 39 37 32 \n46 47 53 41 50 52 51 49 144 40 \n55 43 56 61 62 59 54 60 58 63 \n69 65 67 66 71 64 68 95 72 70 \n76 74 80 81 75 82 77 250 78 73 \n85 28 90 91 84 88 92 89 83 87 \n97 94 104 103 102 240 93 98 96 101 \n106 111 112 110 108 114 105 107 42 113 \n115 118 116 120 123 122 15 117 121 119 \n131 124 126 129 132 130 295 128 127 125 \n136 139 133 137 135 134 138 211 140 141 \n146 145 147 149 148 150 4..."
},
{
"input": "30 10\n71 146 274 157 190 85 32 152 25 278",
"output": "8 20 17 12 5 27 13 2 19 22 29 16 10 4 6 11 3 26 1 28 15 9 30 24 21 18 14 23 71 7 \n146 51 48 59 44 47 34 58 57 43 31 56 60 55 50 33 41 37 40 38 46 52 36 49 53 54 45 39 42 35 \n90 70 274 74 78 69 89 66 84 86 62 83 82 61 72 79 81 80 73 91 68 65 64 88 77 75 63 67 87 76 \n114 157 102 120 104 106 109 98 111 119 118 105 103 97 112 93 100 117 107 96 116 92 94 115 95 101 110 108 113 99 \n134 132 145 122 142 137 147 140 190 138 136 126 148 128 121 129 141 125 133 150 131 143 130 144 124 149 135 127 123 139 \n153 17..."
},
{
"input": "7 1\n5",
"output": "2 3 1 5 6 7 4 "
},
{
"input": "6 1\n5",
"output": "2 3 1 5 6 4 "
}
] | 1,558,982,235
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 29
| 216
| 0
|
n, k = map(int, input().split())
a = list(map(int, input().split()))
i = 1
for j in range(k):
temp = [a[j]]
while len(temp) != n:
if i in a:
i += 1
else:
temp.append(i)
i += 1
print(' '.join(str(temp[m]) for m in range(n)))
|
Title: Dividing Orange
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
One day Ms Swan bought an orange in a shop. The orange consisted of *n*·*k* segments, numbered with integers from 1 to *n*·*k*.
There were *k* children waiting for Ms Swan at home. The children have recently learned about the orange and they decided to divide it between them. For that each child took a piece of paper and wrote the number of the segment that he would like to get: the *i*-th (1<=≤<=*i*<=≤<=*k*) child wrote the number *a**i* (1<=≤<=*a**i*<=≤<=*n*·*k*). All numbers *a**i* accidentally turned out to be different.
Now the children wonder, how to divide the orange so as to meet these conditions:
- each child gets exactly *n* orange segments; - the *i*-th child gets the segment with number *a**i* for sure; - no segment goes to two children simultaneously.
Help the children, divide the orange and fulfill the requirements, described above.
Input Specification:
The first line contains two integers *n*, *k* (1<=≤<=*n*,<=*k*<=≤<=30). The second line contains *k* space-separated integers *a*1,<=*a*2,<=...,<=*a**k* (1<=≤<=*a**i*<=≤<=*n*·*k*), where *a**i* is the number of the orange segment that the *i*-th child would like to get.
It is guaranteed that all numbers *a**i* are distinct.
Output Specification:
Print exactly *n*·*k* distinct integers. The first *n* integers represent the indexes of the segments the first child will get, the second *n* integers represent the indexes of the segments the second child will get, and so on. Separate the printed numbers with whitespaces.
You can print a child's segment indexes in any order. It is guaranteed that the answer always exists. If there are multiple correct answers, print any of them.
Demo Input:
['2 2\n4 1\n', '3 1\n2\n']
Demo Output:
['2 4 \n1 3 \n', '3 2 1 \n']
Note:
none
|
```python
n, k = map(int, input().split())
a = list(map(int, input().split()))
i = 1
for j in range(k):
temp = [a[j]]
while len(temp) != n:
if i in a:
i += 1
else:
temp.append(i)
i += 1
print(' '.join(str(temp[m]) for m in range(n)))
```
| 3
|
|
412
|
B
|
Network Configuration
|
PROGRAMMING
| 900
|
[
"greedy",
"sortings"
] | null | null |
The R1 company wants to hold a web search championship. There were *n* computers given for the competition, each of them is connected to the Internet. The organizers believe that the data transfer speed directly affects the result. The higher the speed of the Internet is, the faster the participant will find the necessary information. Therefore, before the competition started, each computer had its maximum possible data transfer speed measured. On the *i*-th computer it was *a**i* kilobits per second.
There will be *k* participants competing in the championship, each should get a separate computer. The organizing company does not want any of the participants to have an advantage over the others, so they want to provide the same data transfer speed to each participant's computer. Also, the organizers want to create the most comfortable conditions for the participants, so the data transfer speed on the participants' computers should be as large as possible.
The network settings of the R1 company has a special option that lets you to cut the initial maximum data transfer speed of any computer to any lower speed. How should the R1 company configure the network using the described option so that at least *k* of *n* computers had the same data transfer speed and the data transfer speed on these computers was as large as possible?
|
The first line contains two space-separated integers *n* and *k* (1<=≤<=*k*<=≤<=*n*<=≤<=100) — the number of computers and the number of participants, respectively. In the second line you have a space-separated sequence consisting of *n* integers: *a*1,<=*a*2,<=...,<=*a**n* (16<=≤<=*a**i*<=≤<=32768); number *a**i* denotes the maximum data transfer speed on the *i*-th computer.
|
Print a single integer — the maximum Internet speed value. It is guaranteed that the answer to the problem is always an integer.
|
[
"3 2\n40 20 30\n",
"6 4\n100 20 40 20 50 50\n"
] |
[
"30\n",
"40\n"
] |
In the first test case the organizers can cut the first computer's speed to 30 kilobits. Then two computers (the first and the third one) will have the same speed of 30 kilobits. They should be used as the participants' computers. This answer is optimal.
| 1,000
|
[
{
"input": "3 2\n40 20 30",
"output": "30"
},
{
"input": "6 4\n100 20 40 20 50 50",
"output": "40"
},
{
"input": "1 1\n16",
"output": "16"
},
{
"input": "2 1\n10000 17",
"output": "10000"
},
{
"input": "2 2\n200 300",
"output": "200"
},
{
"input": "3 1\n21 25 16",
"output": "25"
},
{
"input": "3 2\n23 20 26",
"output": "23"
},
{
"input": "3 3\n19 29 28",
"output": "19"
},
{
"input": "100 2\n82 37 88 28 98 30 38 76 90 68 79 29 67 93 19 71 122 103 110 79 20 75 68 101 16 120 114 68 73 71 103 114 99 70 73 18 36 31 32 87 32 79 44 72 58 25 44 72 106 38 47 17 83 41 75 23 49 30 73 67 117 52 22 117 109 89 66 88 75 62 17 35 83 69 63 60 23 120 93 18 112 93 39 72 116 109 106 72 27 123 117 119 87 72 33 73 70 110 43 43",
"output": "122"
},
{
"input": "30 13\n36 82 93 91 48 62 59 96 72 40 45 68 97 70 26 22 35 98 92 83 72 49 70 39 53 94 97 65 37 28",
"output": "70"
},
{
"input": "50 49\n20 77 31 40 18 87 44 64 70 48 29 59 98 33 95 17 69 84 81 17 24 66 37 54 97 55 77 79 42 21 23 42 36 55 81 83 94 45 25 84 20 97 37 95 46 92 73 39 90 71",
"output": "17"
},
{
"input": "40 40\n110 674 669 146 882 590 650 844 427 187 380 711 122 94 38 216 414 874 380 31 895 390 414 557 913 68 665 964 895 708 594 17 24 621 780 509 837 550 630 568",
"output": "17"
},
{
"input": "40 1\n851 110 1523 1572 945 4966 4560 756 2373 4760 144 2579 4022 220 1924 1042 160 2792 2425 4483 2154 4120 319 4617 4686 2502 4797 4941 4590 4478 4705 4355 695 684 1560 684 2780 1090 4995 3113",
"output": "4995"
},
{
"input": "70 12\n6321 2502 557 2734 16524 10133 13931 5045 3897 18993 5745 8687 12344 1724 12071 2345 3852 9312 14432 8615 7461 2439 4751 19872 12266 12997 8276 8155 9502 3047 7226 12754 9447 17349 1888 14564 18257 18099 8924 14199 738 13693 10917 15554 15773 17859 13391 13176 10567 19658 16494 3968 13977 14694 10537 4044 16402 9714 4425 13599 19660 2426 19687 2455 2382 3413 5754 113 7542 8353",
"output": "16402"
},
{
"input": "80 60\n6159 26457 23753 27073 9877 4492 11957 10989 27151 6552 1646 7773 23924 27554 10517 8788 31160 455 12625 22009 22133 15657 14968 31871 15344 16550 27414 876 31213 10895 21508 17516 12747 59 11786 10497 30143 25548 22003 2809 11694 30395 8122 31248 23075 19013 31614 9133 27942 27346 15969 19415 10367 8424 29355 18903 3396 6327 4201 24124 24266 22586 724 1595 3972 17526 2843 20982 23655 12714 18050 15225 2658 7236 27555 13023 729 9022 17386 2585",
"output": "8122"
},
{
"input": "100 1\n199 348 489 76 638 579 982 125 28 401 228 117 195 337 80 914 752 98 679 417 47 225 357 413 849 622 477 620 487 223 321 240 439 393 733 660 652 500 877 40 788 246 376 723 952 601 912 316 598 809 476 932 384 147 982 271 202 695 129 303 304 712 49 306 598 141 833 730 946 708 724 788 202 465 951 118 279 706 214 655 152 976 998 231 487 311 342 317 243 554 977 232 365 643 336 501 761 400 600 528",
"output": "998"
},
{
"input": "80 50\n15160 6853 20254 11358 19535 27691 2983 31650 9219 11833 32053 31695 21511 4320 4384 24843 1454 31543 18796 13815 1546 27926 16276 14315 12542 25370 24890 29647 3584 17867 12446 15072 19852 30207 16361 7964 5343 398 10837 31114 9252 12767 15098 22562 32637 31823 8160 12658 6422 19142 12448 6765 7373 868 31712 24856 23251 29200 8159 16144 27165 4308 13652 12502 4183 7961 3032 26855 8687 12263 24319 7722 19460 30700 29806 1280 21141 25965 25550 26881",
"output": "12448"
},
{
"input": "50 16\n16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16",
"output": "16"
},
{
"input": "100 1\n16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16",
"output": "16"
},
{
"input": "100 2\n16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16",
"output": "16"
},
{
"input": "100 100\n16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16",
"output": "16"
},
{
"input": "100 99\n16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16",
"output": "16"
}
] | 1,564,751,481
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 34
| 140
| 0
|
n,k=map(int,input().split())
a=list(map(int,input().split()))
a.sort()
x=(n-k)
print(a[x])
|
Title: Network Configuration
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
The R1 company wants to hold a web search championship. There were *n* computers given for the competition, each of them is connected to the Internet. The organizers believe that the data transfer speed directly affects the result. The higher the speed of the Internet is, the faster the participant will find the necessary information. Therefore, before the competition started, each computer had its maximum possible data transfer speed measured. On the *i*-th computer it was *a**i* kilobits per second.
There will be *k* participants competing in the championship, each should get a separate computer. The organizing company does not want any of the participants to have an advantage over the others, so they want to provide the same data transfer speed to each participant's computer. Also, the organizers want to create the most comfortable conditions for the participants, so the data transfer speed on the participants' computers should be as large as possible.
The network settings of the R1 company has a special option that lets you to cut the initial maximum data transfer speed of any computer to any lower speed. How should the R1 company configure the network using the described option so that at least *k* of *n* computers had the same data transfer speed and the data transfer speed on these computers was as large as possible?
Input Specification:
The first line contains two space-separated integers *n* and *k* (1<=≤<=*k*<=≤<=*n*<=≤<=100) — the number of computers and the number of participants, respectively. In the second line you have a space-separated sequence consisting of *n* integers: *a*1,<=*a*2,<=...,<=*a**n* (16<=≤<=*a**i*<=≤<=32768); number *a**i* denotes the maximum data transfer speed on the *i*-th computer.
Output Specification:
Print a single integer — the maximum Internet speed value. It is guaranteed that the answer to the problem is always an integer.
Demo Input:
['3 2\n40 20 30\n', '6 4\n100 20 40 20 50 50\n']
Demo Output:
['30\n', '40\n']
Note:
In the first test case the organizers can cut the first computer's speed to 30 kilobits. Then two computers (the first and the third one) will have the same speed of 30 kilobits. They should be used as the participants' computers. This answer is optimal.
|
```python
n,k=map(int,input().split())
a=list(map(int,input().split()))
a.sort()
x=(n-k)
print(a[x])
```
| 3
|
|
697
|
A
|
Pineapple Incident
|
PROGRAMMING
| 900
|
[
"implementation",
"math"
] | null | null |
Ted has a pineapple. This pineapple is able to bark like a bulldog! At time *t* (in seconds) it barks for the first time. Then every *s* seconds after it, it barks twice with 1 second interval. Thus it barks at times *t*, *t*<=+<=*s*, *t*<=+<=*s*<=+<=1, *t*<=+<=2*s*, *t*<=+<=2*s*<=+<=1, etc.
Barney woke up in the morning and wants to eat the pineapple, but he can't eat it when it's barking. Barney plans to eat it at time *x* (in seconds), so he asked you to tell him if it's gonna bark at that time.
|
The first and only line of input contains three integers *t*, *s* and *x* (0<=≤<=*t*,<=*x*<=≤<=109, 2<=≤<=*s*<=≤<=109) — the time the pineapple barks for the first time, the pineapple barking interval, and the time Barney wants to eat the pineapple respectively.
|
Print a single "YES" (without quotes) if the pineapple will bark at time *x* or a single "NO" (without quotes) otherwise in the only line of output.
|
[
"3 10 4\n",
"3 10 3\n",
"3 8 51\n",
"3 8 52\n"
] |
[
"NO\n",
"YES\n",
"YES\n",
"YES\n"
] |
In the first and the second sample cases pineapple will bark at moments 3, 13, 14, ..., so it won't bark at the moment 4 and will bark at the moment 3.
In the third and fourth sample cases pineapple will bark at moments 3, 11, 12, 19, 20, 27, 28, 35, 36, 43, 44, 51, 52, 59, ..., so it will bark at both moments 51 and 52.
| 500
|
[
{
"input": "3 10 4",
"output": "NO"
},
{
"input": "3 10 3",
"output": "YES"
},
{
"input": "3 8 51",
"output": "YES"
},
{
"input": "3 8 52",
"output": "YES"
},
{
"input": "456947336 740144 45",
"output": "NO"
},
{
"input": "33 232603 599417964",
"output": "YES"
},
{
"input": "4363010 696782227 701145238",
"output": "YES"
},
{
"input": "9295078 2 6",
"output": "NO"
},
{
"input": "76079 281367 119938421",
"output": "YES"
},
{
"input": "93647 7 451664565",
"output": "YES"
},
{
"input": "5 18553 10908",
"output": "NO"
},
{
"input": "6 52 30",
"output": "NO"
},
{
"input": "6431 855039 352662",
"output": "NO"
},
{
"input": "749399100 103031711 761562532",
"output": "NO"
},
{
"input": "21 65767 55245",
"output": "NO"
},
{
"input": "4796601 66897 4860613",
"output": "NO"
},
{
"input": "8 6728951 860676",
"output": "NO"
},
{
"input": "914016 6 914019",
"output": "NO"
},
{
"input": "60686899 78474 60704617",
"output": "NO"
},
{
"input": "3 743604 201724",
"output": "NO"
},
{
"input": "571128 973448796 10",
"output": "NO"
},
{
"input": "688051712 67 51",
"output": "NO"
},
{
"input": "74619 213344 6432326",
"output": "NO"
},
{
"input": "6947541 698167 6",
"output": "NO"
},
{
"input": "83 6 6772861",
"output": "NO"
},
{
"input": "251132 67561 135026988",
"output": "NO"
},
{
"input": "8897216 734348516 743245732",
"output": "YES"
},
{
"input": "50 64536 153660266",
"output": "YES"
},
{
"input": "876884 55420 971613604",
"output": "YES"
},
{
"input": "0 6906451 366041903",
"output": "YES"
},
{
"input": "11750 8 446010134",
"output": "YES"
},
{
"input": "582692707 66997 925047377",
"output": "YES"
},
{
"input": "11 957526890 957526901",
"output": "YES"
},
{
"input": "556888 514614196 515171084",
"output": "YES"
},
{
"input": "6 328006 584834704",
"output": "YES"
},
{
"input": "4567998 4 204966403",
"output": "YES"
},
{
"input": "60 317278 109460971",
"output": "YES"
},
{
"input": "906385 342131991 685170368",
"output": "YES"
},
{
"input": "1 38 902410512",
"output": "YES"
},
{
"input": "29318 787017 587931018",
"output": "YES"
},
{
"input": "351416375 243431 368213115",
"output": "YES"
},
{
"input": "54 197366062 197366117",
"output": "YES"
},
{
"input": "586389 79039 850729874",
"output": "YES"
},
{
"input": "723634470 2814619 940360134",
"output": "YES"
},
{
"input": "0 2 0",
"output": "YES"
},
{
"input": "0 2 1",
"output": "NO"
},
{
"input": "0 2 2",
"output": "YES"
},
{
"input": "0 2 3",
"output": "YES"
},
{
"input": "0 2 1000000000",
"output": "YES"
},
{
"input": "0 10 23",
"output": "NO"
},
{
"input": "0 2 999999999",
"output": "YES"
},
{
"input": "10 5 11",
"output": "NO"
},
{
"input": "1 2 1000000000",
"output": "YES"
},
{
"input": "1 10 20",
"output": "NO"
},
{
"input": "1 2 999999937",
"output": "YES"
},
{
"input": "10 3 5",
"output": "NO"
},
{
"input": "3 2 5",
"output": "YES"
},
{
"input": "0 4 0",
"output": "YES"
},
{
"input": "0 215 403",
"output": "NO"
},
{
"input": "5 2 10",
"output": "YES"
},
{
"input": "0 2 900000000",
"output": "YES"
},
{
"input": "0 79 4000",
"output": "NO"
},
{
"input": "5 1000 1000",
"output": "NO"
},
{
"input": "1 5 103",
"output": "NO"
},
{
"input": "5 2 6",
"output": "NO"
},
{
"input": "120 2 1000000000",
"output": "YES"
},
{
"input": "2 2 1000000000",
"output": "YES"
},
{
"input": "5 5 13",
"output": "NO"
},
{
"input": "10 5 15",
"output": "YES"
},
{
"input": "11 2 0",
"output": "NO"
},
{
"input": "3 8 53",
"output": "NO"
},
{
"input": "2 2 4",
"output": "YES"
},
{
"input": "4 4 0",
"output": "NO"
},
{
"input": "1 2 3",
"output": "YES"
},
{
"input": "5 3 9",
"output": "YES"
},
{
"input": "5 6 19",
"output": "NO"
},
{
"input": "3 10 125",
"output": "NO"
},
{
"input": "5 3 8",
"output": "YES"
},
{
"input": "6 3 9",
"output": "YES"
},
{
"input": "0 3 5",
"output": "NO"
},
{
"input": "5 3 300000035",
"output": "YES"
},
{
"input": "5 2 7",
"output": "YES"
},
{
"input": "1 5 6",
"output": "YES"
},
{
"input": "4 2 6",
"output": "YES"
},
{
"input": "0 3 999999998",
"output": "NO"
},
{
"input": "0 10001 0",
"output": "YES"
},
{
"input": "6 5 3",
"output": "NO"
},
{
"input": "1 5 1000000000",
"output": "NO"
},
{
"input": "1 3 6",
"output": "NO"
},
{
"input": "3 3 1000000000",
"output": "YES"
},
{
"input": "3 3 4",
"output": "NO"
},
{
"input": "3 3 5",
"output": "NO"
},
{
"input": "3 3 0",
"output": "NO"
},
{
"input": "1 2 4",
"output": "YES"
},
{
"input": "5 5 10",
"output": "YES"
}
] | 1,555,767,915
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 95
| 124
| 0
|
t, s, x = map(int, input().split())
if ((x - t) % s == 0 or (x - t) % s == 1) and x - t >= 0 and x - t != 1:
print('YES')
else:
print('NO')
|
Title: Pineapple Incident
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Ted has a pineapple. This pineapple is able to bark like a bulldog! At time *t* (in seconds) it barks for the first time. Then every *s* seconds after it, it barks twice with 1 second interval. Thus it barks at times *t*, *t*<=+<=*s*, *t*<=+<=*s*<=+<=1, *t*<=+<=2*s*, *t*<=+<=2*s*<=+<=1, etc.
Barney woke up in the morning and wants to eat the pineapple, but he can't eat it when it's barking. Barney plans to eat it at time *x* (in seconds), so he asked you to tell him if it's gonna bark at that time.
Input Specification:
The first and only line of input contains three integers *t*, *s* and *x* (0<=≤<=*t*,<=*x*<=≤<=109, 2<=≤<=*s*<=≤<=109) — the time the pineapple barks for the first time, the pineapple barking interval, and the time Barney wants to eat the pineapple respectively.
Output Specification:
Print a single "YES" (without quotes) if the pineapple will bark at time *x* or a single "NO" (without quotes) otherwise in the only line of output.
Demo Input:
['3 10 4\n', '3 10 3\n', '3 8 51\n', '3 8 52\n']
Demo Output:
['NO\n', 'YES\n', 'YES\n', 'YES\n']
Note:
In the first and the second sample cases pineapple will bark at moments 3, 13, 14, ..., so it won't bark at the moment 4 and will bark at the moment 3.
In the third and fourth sample cases pineapple will bark at moments 3, 11, 12, 19, 20, 27, 28, 35, 36, 43, 44, 51, 52, 59, ..., so it will bark at both moments 51 and 52.
|
```python
t, s, x = map(int, input().split())
if ((x - t) % s == 0 or (x - t) % s == 1) and x - t >= 0 and x - t != 1:
print('YES')
else:
print('NO')
```
| 3
|
|
37
|
A
|
Towers
|
PROGRAMMING
| 1,000
|
[
"sortings"
] |
A. Towers
|
2
|
256
|
Little Vasya has received a young builder’s kit. The kit consists of several wooden bars, the lengths of all of them are known. The bars can be put one on the top of the other if their lengths are the same.
Vasya wants to construct the minimal number of towers from the bars. Help Vasya to use the bars in the best way possible.
|
The first line contains an integer *N* (1<=≤<=*N*<=≤<=1000) — the number of bars at Vasya’s disposal. The second line contains *N* space-separated integers *l**i* — the lengths of the bars. All the lengths are natural numbers not exceeding 1000.
|
In one line output two numbers — the height of the largest tower and their total number. Remember that Vasya should use all the bars.
|
[
"3\n1 2 3\n",
"4\n6 5 6 7\n"
] |
[
"1 3\n",
"2 3\n"
] |
none
| 500
|
[
{
"input": "3\n1 2 3",
"output": "1 3"
},
{
"input": "4\n6 5 6 7",
"output": "2 3"
},
{
"input": "4\n3 2 1 1",
"output": "2 3"
},
{
"input": "4\n1 2 3 3",
"output": "2 3"
},
{
"input": "3\n20 22 36",
"output": "1 3"
},
{
"input": "25\n47 30 94 41 45 20 96 51 110 129 24 116 9 47 32 82 105 114 116 75 154 151 70 42 162",
"output": "2 23"
},
{
"input": "45\n802 664 442 318 318 827 417 878 711 291 231 414 807 553 657 392 279 202 386 606 465 655 658 112 887 15 25 502 95 44 679 775 942 609 209 871 31 234 4 231 150 110 22 823 193",
"output": "2 43"
},
{
"input": "63\n93 180 116 7 8 179 268 279 136 94 221 153 264 190 278 19 19 63 153 26 158 225 25 49 89 218 111 149 255 225 197 122 243 80 3 224 107 178 202 17 53 92 69 42 228 24 81 205 95 8 265 82 228 156 127 241 172 159 106 60 67 155 111",
"output": "2 57"
},
{
"input": "83\n246 535 994 33 390 927 321 97 223 922 812 705 79 80 977 457 476 636 511 137 6 360 815 319 717 674 368 551 714 628 278 713 761 553 184 414 623 753 428 214 581 115 439 61 677 216 772 592 187 603 658 310 439 559 870 376 109 321 189 337 277 26 70 734 796 907 979 693 570 227 345 650 737 633 701 914 134 403 972 940 371 6 642",
"output": "2 80"
},
{
"input": "105\n246 57 12 204 165 123 246 68 191 310 3 152 386 333 374 257 158 104 333 50 80 290 8 340 101 76 221 316 388 289 138 359 316 26 93 290 105 178 81 195 41 196 218 180 244 292 187 97 315 323 174 119 248 239 92 312 31 2 101 180 307 170 338 314 163 281 217 31 142 238 280 190 190 156 70 74 329 113 151 8 141 313 366 40 253 116 168 124 135 230 294 266 353 389 371 359 195 200 183 237 93 102 315 118 188",
"output": "2 92"
},
{
"input": "123\n112 277 170 247 252 115 157 293 256 143 196 90 12 164 164 42 8 223 167 109 175 232 239 111 148 51 9 254 93 32 268 162 231 91 47 162 161 191 195 145 247 292 129 199 230 94 144 217 18 205 176 20 143 198 121 243 211 262 230 277 195 255 108 290 220 275 158 2 286 200 60 267 278 207 123 150 123 116 131 13 12 226 33 244 30 275 263 45 158 192 254 149 242 176 62 224 221 288 250 160 155 225 132 143 276 293 218 145 197 175 33 129 79 206 210 192 222 262 190 52 274 243 233",
"output": "3 101"
},
{
"input": "5\n5 5 5 5 5",
"output": "5 1"
},
{
"input": "3\n1000 1000 1000",
"output": "3 1"
},
{
"input": "1\n1000",
"output": "1 1"
},
{
"input": "1\n1",
"output": "1 1"
},
{
"input": "5\n1 1000 1000 1000 1000",
"output": "4 2"
},
{
"input": "5\n1000 1000 1000 8 7",
"output": "3 3"
}
] | 1,598,033,178
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 61
| 218
| 6,963,200
|
z=int(input())
x=list(map(int,input().split()))
d=[]
q=[]
for i in range(z):
if q==[] or x[i] not in q:
d.append(x.count(x[i]))
q.append(x[i])
print(max(d),len(d))
|
Title: Towers
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Little Vasya has received a young builder’s kit. The kit consists of several wooden bars, the lengths of all of them are known. The bars can be put one on the top of the other if their lengths are the same.
Vasya wants to construct the minimal number of towers from the bars. Help Vasya to use the bars in the best way possible.
Input Specification:
The first line contains an integer *N* (1<=≤<=*N*<=≤<=1000) — the number of bars at Vasya’s disposal. The second line contains *N* space-separated integers *l**i* — the lengths of the bars. All the lengths are natural numbers not exceeding 1000.
Output Specification:
In one line output two numbers — the height of the largest tower and their total number. Remember that Vasya should use all the bars.
Demo Input:
['3\n1 2 3\n', '4\n6 5 6 7\n']
Demo Output:
['1 3\n', '2 3\n']
Note:
none
|
```python
z=int(input())
x=list(map(int,input().split()))
d=[]
q=[]
for i in range(z):
if q==[] or x[i] not in q:
d.append(x.count(x[i]))
q.append(x[i])
print(max(d),len(d))
```
| 3.93253
|
214
|
A
|
System of Equations
|
PROGRAMMING
| 800
|
[
"brute force"
] | null | null |
Furik loves math lessons very much, so he doesn't attend them, unlike Rubik. But now Furik wants to get a good mark for math. For that Ms. Ivanova, his math teacher, gave him a new task. Furik solved the task immediately. Can you?
You are given a system of equations:
You should count, how many there are pairs of integers (*a*,<=*b*) (0<=≤<=*a*,<=*b*) which satisfy the system.
|
A single line contains two integers *n*,<=*m* (1<=≤<=*n*,<=*m*<=≤<=1000) — the parameters of the system. The numbers on the line are separated by a space.
|
On a single line print the answer to the problem.
|
[
"9 3\n",
"14 28\n",
"4 20\n"
] |
[
"1\n",
"1\n",
"0\n"
] |
In the first sample the suitable pair is integers (3, 0). In the second sample the suitable pair is integers (3, 5). In the third sample there is no suitable pair.
| 500
|
[
{
"input": "9 3",
"output": "1"
},
{
"input": "14 28",
"output": "1"
},
{
"input": "4 20",
"output": "0"
},
{
"input": "18 198",
"output": "1"
},
{
"input": "22 326",
"output": "1"
},
{
"input": "26 104",
"output": "1"
},
{
"input": "14 10",
"output": "0"
},
{
"input": "8 20",
"output": "0"
},
{
"input": "2 8",
"output": "0"
},
{
"input": "20 11",
"output": "0"
},
{
"input": "57 447",
"output": "1"
},
{
"input": "1 1",
"output": "2"
},
{
"input": "66 296",
"output": "1"
},
{
"input": "75 683",
"output": "1"
},
{
"input": "227 975",
"output": "1"
},
{
"input": "247 499",
"output": "1"
},
{
"input": "266 116",
"output": "1"
},
{
"input": "286 916",
"output": "1"
},
{
"input": "307 341",
"output": "1"
},
{
"input": "451 121",
"output": "1"
},
{
"input": "471 921",
"output": "1"
},
{
"input": "502 346",
"output": "1"
},
{
"input": "535 59",
"output": "1"
},
{
"input": "555 699",
"output": "1"
},
{
"input": "747 351",
"output": "1"
},
{
"input": "790 64",
"output": "1"
},
{
"input": "810 704",
"output": "1"
},
{
"input": "855 225",
"output": "1"
},
{
"input": "902 34",
"output": "1"
},
{
"input": "922 514",
"output": "1"
},
{
"input": "971 131",
"output": "1"
},
{
"input": "991 931",
"output": "1"
},
{
"input": "840 780",
"output": "0"
},
{
"input": "102 595",
"output": "0"
},
{
"input": "139 433",
"output": "0"
},
{
"input": "968 288",
"output": "0"
},
{
"input": "563 354",
"output": "0"
},
{
"input": "994 975",
"output": "0"
},
{
"input": "456 221",
"output": "0"
},
{
"input": "205 210",
"output": "0"
},
{
"input": "1 11",
"output": "0"
},
{
"input": "1000 1000",
"output": "0"
},
{
"input": "3 3",
"output": "0"
},
{
"input": "11 99",
"output": "0"
},
{
"input": "2 2",
"output": "1"
},
{
"input": "11 1",
"output": "0"
},
{
"input": "6 6",
"output": "1"
},
{
"input": "100 452",
"output": "0"
},
{
"input": "420 380",
"output": "0"
},
{
"input": "31 31",
"output": "0"
},
{
"input": "2 6",
"output": "0"
},
{
"input": "112 134",
"output": "0"
},
{
"input": "13 13",
"output": "0"
},
{
"input": "1 571",
"output": "0"
}
] | 1,689,921,251
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 54
| 124
| 0
|
n,m = map(int, input().split())
print(sum(a*a+b-n==a+b*b-m==0 for a in range(32) for b in range(32)))
|
Title: System of Equations
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Furik loves math lessons very much, so he doesn't attend them, unlike Rubik. But now Furik wants to get a good mark for math. For that Ms. Ivanova, his math teacher, gave him a new task. Furik solved the task immediately. Can you?
You are given a system of equations:
You should count, how many there are pairs of integers (*a*,<=*b*) (0<=≤<=*a*,<=*b*) which satisfy the system.
Input Specification:
A single line contains two integers *n*,<=*m* (1<=≤<=*n*,<=*m*<=≤<=1000) — the parameters of the system. The numbers on the line are separated by a space.
Output Specification:
On a single line print the answer to the problem.
Demo Input:
['9 3\n', '14 28\n', '4 20\n']
Demo Output:
['1\n', '1\n', '0\n']
Note:
In the first sample the suitable pair is integers (3, 0). In the second sample the suitable pair is integers (3, 5). In the third sample there is no suitable pair.
|
```python
n,m = map(int, input().split())
print(sum(a*a+b-n==a+b*b-m==0 for a in range(32) for b in range(32)))
```
| 3
|
|
977
|
A
|
Wrong Subtraction
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Little girl Tanya is learning how to decrease a number by one, but she does it wrong with a number consisting of two or more digits. Tanya subtracts one from a number by the following algorithm:
- if the last digit of the number is non-zero, she decreases the number by one; - if the last digit of the number is zero, she divides the number by 10 (i.e. removes the last digit).
You are given an integer number $n$. Tanya will subtract one from it $k$ times. Your task is to print the result after all $k$ subtractions.
It is guaranteed that the result will be positive integer number.
|
The first line of the input contains two integer numbers $n$ and $k$ ($2 \le n \le 10^9$, $1 \le k \le 50$) — the number from which Tanya will subtract and the number of subtractions correspondingly.
|
Print one integer number — the result of the decreasing $n$ by one $k$ times.
It is guaranteed that the result will be positive integer number.
|
[
"512 4\n",
"1000000000 9\n"
] |
[
"50\n",
"1\n"
] |
The first example corresponds to the following sequence: $512 \rightarrow 511 \rightarrow 510 \rightarrow 51 \rightarrow 50$.
| 0
|
[
{
"input": "512 4",
"output": "50"
},
{
"input": "1000000000 9",
"output": "1"
},
{
"input": "131203 11",
"output": "12"
},
{
"input": "999999999 50",
"output": "9999"
},
{
"input": "999999999 49",
"output": "99990"
},
{
"input": "131203 9",
"output": "130"
},
{
"input": "900000000 16",
"output": "1"
},
{
"input": "909090909 50",
"output": "3"
},
{
"input": "1001 2",
"output": "100"
},
{
"input": "5 2",
"output": "3"
},
{
"input": "2 1",
"output": "1"
}
] | 1,694,094,760
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 11
| 46
| 0
|
# Read input values
n, k = map(int, input().split())
# Simulate the subtraction process
for _ in range(k):
if n % 10 != 0:
n -= 1
else:
n //= 10
# Print the result
print(n)
|
Title: Wrong Subtraction
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Little girl Tanya is learning how to decrease a number by one, but she does it wrong with a number consisting of two or more digits. Tanya subtracts one from a number by the following algorithm:
- if the last digit of the number is non-zero, she decreases the number by one; - if the last digit of the number is zero, she divides the number by 10 (i.e. removes the last digit).
You are given an integer number $n$. Tanya will subtract one from it $k$ times. Your task is to print the result after all $k$ subtractions.
It is guaranteed that the result will be positive integer number.
Input Specification:
The first line of the input contains two integer numbers $n$ and $k$ ($2 \le n \le 10^9$, $1 \le k \le 50$) — the number from which Tanya will subtract and the number of subtractions correspondingly.
Output Specification:
Print one integer number — the result of the decreasing $n$ by one $k$ times.
It is guaranteed that the result will be positive integer number.
Demo Input:
['512 4\n', '1000000000 9\n']
Demo Output:
['50\n', '1\n']
Note:
The first example corresponds to the following sequence: $512 \rightarrow 511 \rightarrow 510 \rightarrow 51 \rightarrow 50$.
|
```python
# Read input values
n, k = map(int, input().split())
# Simulate the subtraction process
for _ in range(k):
if n % 10 != 0:
n -= 1
else:
n //= 10
# Print the result
print(n)
```
| 3
|
|
50
|
A
|
Domino piling
|
PROGRAMMING
| 800
|
[
"greedy",
"math"
] |
A. Domino piling
|
2
|
256
|
You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions:
1. Each domino completely covers two squares.
2. No two dominoes overlap.
3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board.
Find the maximum number of dominoes, which can be placed under these restrictions.
|
In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16).
|
Output one number — the maximal number of dominoes, which can be placed.
|
[
"2 4\n",
"3 3\n"
] |
[
"4\n",
"4\n"
] |
none
| 500
|
[
{
"input": "2 4",
"output": "4"
},
{
"input": "3 3",
"output": "4"
},
{
"input": "1 5",
"output": "2"
},
{
"input": "1 6",
"output": "3"
},
{
"input": "1 15",
"output": "7"
},
{
"input": "1 16",
"output": "8"
},
{
"input": "2 5",
"output": "5"
},
{
"input": "2 6",
"output": "6"
},
{
"input": "2 7",
"output": "7"
},
{
"input": "2 14",
"output": "14"
},
{
"input": "2 15",
"output": "15"
},
{
"input": "1 4",
"output": "2"
},
{
"input": "2 16",
"output": "16"
},
{
"input": "3 5",
"output": "7"
},
{
"input": "3 6",
"output": "9"
},
{
"input": "3 10",
"output": "15"
},
{
"input": "3 14",
"output": "21"
},
{
"input": "3 15",
"output": "22"
},
{
"input": "3 16",
"output": "24"
},
{
"input": "5 7",
"output": "17"
},
{
"input": "16 16",
"output": "128"
},
{
"input": "15 16",
"output": "120"
},
{
"input": "2 3",
"output": "3"
},
{
"input": "15 15",
"output": "112"
},
{
"input": "14 16",
"output": "112"
},
{
"input": "11 13",
"output": "71"
},
{
"input": "5 16",
"output": "40"
},
{
"input": "8 15",
"output": "60"
},
{
"input": "2 2",
"output": "2"
},
{
"input": "3 4",
"output": "6"
},
{
"input": "4 4",
"output": "8"
},
{
"input": "1 1",
"output": "0"
},
{
"input": "1 2",
"output": "1"
},
{
"input": "1 3",
"output": "1"
},
{
"input": "14 15",
"output": "105"
}
] | 1,646,873,142
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 35
| 92
| 0
|
x,y=map(int,input().split())
if x==1 and y==1: print(0)
else: print(int(x*y) // 2)
|
Title: Domino piling
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions:
1. Each domino completely covers two squares.
2. No two dominoes overlap.
3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board.
Find the maximum number of dominoes, which can be placed under these restrictions.
Input Specification:
In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16).
Output Specification:
Output one number — the maximal number of dominoes, which can be placed.
Demo Input:
['2 4\n', '3 3\n']
Demo Output:
['4\n', '4\n']
Note:
none
|
```python
x,y=map(int,input().split())
if x==1 and y==1: print(0)
else: print(int(x*y) // 2)
```
| 3.977
|
794
|
B
|
Cutting Carrot
|
PROGRAMMING
| 1,200
|
[
"geometry",
"math"
] | null | null |
Igor the analyst has adopted *n* little bunnies. As we all know, bunnies love carrots. Thus, Igor has bought a carrot to be shared between his bunnies. Igor wants to treat all the bunnies equally, and thus he wants to cut the carrot into *n* pieces of equal area.
Formally, the carrot can be viewed as an isosceles triangle with base length equal to 1 and height equal to *h*. Igor wants to make *n*<=-<=1 cuts parallel to the base to cut the carrot into *n* pieces. He wants to make sure that all *n* pieces have the same area. Can you help Igor determine where to cut the carrot so that each piece have equal area?
|
The first and only line of input contains two space-separated integers, *n* and *h* (2<=≤<=*n*<=≤<=1000, 1<=≤<=*h*<=≤<=105).
|
The output should contain *n*<=-<=1 real numbers *x*1,<=*x*2,<=...,<=*x**n*<=-<=1. The number *x**i* denotes that the *i*-th cut must be made *x**i* units away from the apex of the carrot. In addition, 0<=<<=*x*1<=<<=*x*2<=<<=...<=<<=*x**n*<=-<=1<=<<=*h* must hold.
Your output will be considered correct if absolute or relative error of every number in your output doesn't exceed 10<=-<=6.
Formally, let your answer be *a*, and the jury's answer be *b*. Your answer is considered correct if .
|
[
"3 2\n",
"2 100000\n"
] |
[
"1.154700538379 1.632993161855\n",
"70710.678118654752\n"
] |
Definition of isosceles triangle: [https://en.wikipedia.org/wiki/Isosceles_triangle](https://en.wikipedia.org/wiki/Isosceles_triangle).
| 1,000
|
[
{
"input": "3 2",
"output": "1.154700538379 1.632993161855"
},
{
"input": "2 100000",
"output": "70710.678118654752"
},
{
"input": "1000 100000",
"output": "3162.277660168379 4472.135954999579 5477.225575051661 6324.555320336759 7071.067811865475 7745.966692414834 8366.600265340755 8944.271909999159 9486.832980505138 10000.000000000000 10488.088481701515 10954.451150103322 11401.754250991380 11832.159566199232 12247.448713915890 12649.110640673517 13038.404810405297 13416.407864998738 13784.048752090222 14142.135623730950 14491.376746189439 14832.396974191326 15165.750888103101 15491.933384829668 15811.388300841897 16124.515496597099 16431.676725154983 16733.2..."
},
{
"input": "2 1",
"output": "0.707106781187"
},
{
"input": "1000 1",
"output": "0.031622776602 0.044721359550 0.054772255751 0.063245553203 0.070710678119 0.077459666924 0.083666002653 0.089442719100 0.094868329805 0.100000000000 0.104880884817 0.109544511501 0.114017542510 0.118321595662 0.122474487139 0.126491106407 0.130384048104 0.134164078650 0.137840487521 0.141421356237 0.144913767462 0.148323969742 0.151657508881 0.154919333848 0.158113883008 0.161245154966 0.164316767252 0.167332005307 0.170293863659 0.173205080757 0.176068168617 0.178885438200 0.181659021246 0.184390889146 0..."
},
{
"input": "20 17",
"output": "3.801315561750 5.375872022286 6.584071688553 7.602631123499 8.500000000000 9.311283477588 10.057335631269 10.751744044572 11.403946685249 12.020815280171 12.607537428063 13.168143377105 13.705838172108 14.223220451079 14.722431864335 15.205262246999 15.673225577398 16.127616066859 16.569550386175"
},
{
"input": "999 1",
"output": "0.031638599858 0.044743737014 0.054799662435 0.063277199717 0.070746059996 0.077498425829 0.083707867056 0.089487474029 0.094915799575 0.100050037531 0.104933364623 0.109599324870 0.114074594073 0.118380800867 0.122535770349 0.126554399434 0.130449289063 0.134231211043 0.137909459498 0.141492119993 0.144986278734 0.148398187395 0.151733394554 0.154996851658 0.158192999292 0.161325838061 0.164398987305 0.167415734111 0.170379074505 0.173291748303 0.176156268782 0.178974948057 0.181749918935 0.184483153795 0..."
},
{
"input": "998 99999",
"output": "3165.413034717700 4476.570044210349 5482.656203071844 6330.826069435401 7078.078722492680 7753.646760213179 8374.895686665300 8953.140088420697 9496.239104153101 10009.914924893578 10498.487342658843 10965.312406143687 11413.059004696742 11843.891063542002 12259.591967329534 12661.652138870802 13051.332290848021 13429.710132631046 13797.715532900862 14156.157444985360 14505.744837393740 14847.103184390411 15180.787616204127 15507.293520426358 15827.065173588502 16140.502832606510 16447.968609215531 16749.7..."
},
{
"input": "574 29184",
"output": "1218.116624752432 1722.677051277028 2109.839883615525 2436.233249504864 2723.791577469041 2983.764177844748 3222.833656968322 3445.354102554056 3654.349874257297 3852.022989934325 4040.035795197963 4219.679767231051 4391.981950040022 4557.775066957079 4717.745401404559 4872.466499009729 5022.423508175150 5168.031153831084 5309.647268742708 5447.583154938083 5582.111638212139 5713.473414041731 5841.882108059006 5967.528355689497 6090.583123762161 6211.200439444432 6329.519650846576 6445.667313936643 6559.75..."
},
{
"input": "2 5713",
"output": "4039.701040918746"
},
{
"input": "937 23565",
"output": "769.834993893392 1088.711089153444 1333.393322867831 1539.669987786784 1721.403377803760 1885.702921177414 2036.791944396843 2177.422178306887 2309.504981680176 2434.432003204934 2553.253825229922 2666.786645735663 2775.679544129132 2880.458791498282 2981.558110676796 3079.339975573568 3174.110994119182 3266.133267460331 3355.632941582547 3442.806755607520 3527.827132142336 3610.846187821139 3691.998931463184 3771.405842354828 3849.174969466960 3925.403656108988 4000.179968603494 4073.583888793686 4145.688..."
},
{
"input": "693 39706",
"output": "1508.306216302128 2133.067107306117 2612.463000007259 3016.612432604256 3372.675230537060 3694.580605808168 3990.603149268227 4266.134214612233 4524.918648906384 4769.683052505315 5002.485788434792 5224.926000014517 5438.275401978402 5643.565095743912 5841.644856719264 6033.224865208513 6218.905845589392 6399.201321918350 6574.554372775177 6745.350461074120 6911.927407376938 7074.583247583148 7233.582498950279 7389.161211616337 7541.531081510641 7690.882829397851 7837.389000021776 7981.206298536455 8122.47..."
},
{
"input": "449 88550",
"output": "4178.932872810542 5909.903544975429 7238.124057127628 8357.865745621084 9344.377977012855 10236.253207728862 11056.417127089408 11819.807089950858 12536.798618431626 13214.946067032045 13859.952363194553 14476.248114255256 15067.356749640443 15636.135052384012 16184.937421313947 16715.731491242168 17230.181636963718 17729.710634926286 18215.546084421264 18688.755954025709 19150.276213793575 19600.932605874766 20041.458005232581 20472.506415457724 20894.664364052710 21308.460264455309 21714.372171382883 221..."
},
{
"input": "642 37394",
"output": "1475.823459881026 2087.129552632132 2556.201215516026 2951.646919762052 3300.041579082908 3615.014427137354 3904.661853880105 4174.259105264265 4427.470379643078 4666.963557534173 4894.752673229489 5112.402431032051 5321.157158133711 5522.025750238117 5715.839682061424 5903.293839524104 6084.976009853978 6261.388657896397 6432.965320127946 6600.083158165816 6763.072717296425 6922.225614943105 7077.800671741869 7230.028854274709 7379.117299405130 7525.252620551370 7668.603646548077 7809.323707760210 7947.55..."
},
{
"input": "961 53535",
"output": "1726.935483870968 2442.255582633666 2991.139999458060 3453.870967741935 3861.545134691976 4230.110754190240 4569.041820575576 4884.511165267332 5180.806451612903 5461.049501197232 5727.597037150849 5982.279998916119 6226.554436514989 6461.600909707837 6688.392369006905 6907.741935483871 7120.337408627144 7326.766747900998 7527.537256208063 7723.090269383951 7913.812575143900 8100.045409746687 8282.091632275692 8460.221508380480 8634.677419354839 8805.677730973862 8973.419998374179 9138.083641151152 9299.83..."
},
{
"input": "4 31901",
"output": "15950.500000000000 22557.413426632053 27627.076406127377"
},
{
"input": "4 23850",
"output": "11925.000000000000 16864.496731299158 20654.705880258862"
},
{
"input": "4 72694",
"output": "36347.000000000000 51402.420351574886 62954.850702705983"
},
{
"input": "4 21538",
"output": "10769.000000000000 15229.665853195861 18652.455146709240"
},
{
"input": "4 70383",
"output": "35191.500000000000 49768.296580252774 60953.465994560145"
},
{
"input": "5 1",
"output": "0.447213595500 0.632455532034 0.774596669241 0.894427191000"
},
{
"input": "5 1",
"output": "0.447213595500 0.632455532034 0.774596669241 0.894427191000"
},
{
"input": "5 1",
"output": "0.447213595500 0.632455532034 0.774596669241 0.894427191000"
},
{
"input": "5 1",
"output": "0.447213595500 0.632455532034 0.774596669241 0.894427191000"
},
{
"input": "5 1",
"output": "0.447213595500 0.632455532034 0.774596669241 0.894427191000"
},
{
"input": "20 1",
"output": "0.223606797750 0.316227766017 0.387298334621 0.447213595500 0.500000000000 0.547722557505 0.591607978310 0.632455532034 0.670820393250 0.707106781187 0.741619848710 0.774596669241 0.806225774830 0.836660026534 0.866025403784 0.894427191000 0.921954445729 0.948683298051 0.974679434481"
},
{
"input": "775 1",
"output": "0.035921060405 0.050800050800 0.062217101684 0.071842120811 0.080321932890 0.087988269013 0.095038192662 0.101600101600 0.107763181216 0.113592366849 0.119136679436 0.124434203368 0.129515225161 0.134404301006 0.139121668728 0.143684241621 0.148106326235 0.152400152400 0.156576272252 0.160643865780 0.164610978351 0.168484707835 0.172271353843 0.175976538026 0.179605302027 0.183162187956 0.186651305051 0.190076385325 0.193440830330 0.196747750735 0.200000000000 0.203200203200 0.206350781829 0.209453975235 0..."
},
{
"input": "531 1",
"output": "0.043396303660 0.061371641193 0.075164602800 0.086792607321 0.097037084957 0.106298800691 0.114815827305 0.122743282386 0.130188910981 0.137231161599 0.143929256529 0.150329205601 0.156467598013 0.162374100149 0.168073161363 0.173585214641 0.178927543753 0.184114923580 0.189160102178 0.194074169913 0.198866846404 0.203546706606 0.208121361089 0.212597601381 0.216981518301 0.221278599182 0.225493808401 0.229631654609 0.233696247231 0.237691344271 0.241620392998 0.245486564773 0.249292785005 0.253041759057 0..."
},
{
"input": "724 1",
"output": "0.037164707312 0.052558833123 0.064371161313 0.074329414625 0.083102811914 0.091034569355 0.098328573097 0.105117666246 0.111494121937 0.117525123681 0.123261389598 0.128742322627 0.133999257852 0.139057601643 0.143938292487 0.148658829249 0.153234013794 0.157676499368 0.161997203441 0.166205623829 0.170310084440 0.174317928887 0.178235674883 0.182069138710 0.185823536562 0.189503567803 0.193113483940 0.196657146194 0.200138073886 0.203559485381 0.206924332929 0.210235332491 0.213494989396 0.216705620524 0..."
},
{
"input": "917 1",
"output": "0.033022909334 0.046701446249 0.057197356781 0.066045818668 0.073841470086 0.080889277691 0.087370405666 0.093402892499 0.099068728003 0.104427608461 0.109524599747 0.114394713561 0.119065792869 0.123560412643 0.127897177895 0.132091637337 0.136156943250 0.140104338748 0.143943524609 0.147682940172 0.151329981692 0.154891174376 0.158372309576 0.161778555382 0.165114546671 0.168384459091 0.171592070342 0.174740811332 0.177833809176 0.180873923568 0.183863777748 0.186805784998 0.189702171441 0.192554995756 0..."
},
{
"input": "458 100",
"output": "4.672693135160 6.608186004551 8.093341918275 9.345386270320 10.448459488214 11.445713905748 12.362783988552 13.216372009102 14.018079405480 14.776353114139 15.497569889795 16.186683836551 16.847634693328 17.483616785299 18.097262694412 18.690772540640 19.266007352363 19.824558013653 20.367797170339 20.896918976429 21.412969991171 21.916873521973 22.409449036367 22.891427811495 23.363465675800 23.826153477212 24.280025754826 24.725567977104 25.163222626003 25.593394344267 26.016454316384 26.432744018204 26...."
}
] | 1,638,361,009
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 31
| 77
| 2,457,600
|
n, h = map(int,input().split())
s = h / 2 / n
k = 0
for i in range (1, n):
k = ((s * n) / (s * i)) ** 0.5
print (h / k, end = " ")
|
Title: Cutting Carrot
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Igor the analyst has adopted *n* little bunnies. As we all know, bunnies love carrots. Thus, Igor has bought a carrot to be shared between his bunnies. Igor wants to treat all the bunnies equally, and thus he wants to cut the carrot into *n* pieces of equal area.
Formally, the carrot can be viewed as an isosceles triangle with base length equal to 1 and height equal to *h*. Igor wants to make *n*<=-<=1 cuts parallel to the base to cut the carrot into *n* pieces. He wants to make sure that all *n* pieces have the same area. Can you help Igor determine where to cut the carrot so that each piece have equal area?
Input Specification:
The first and only line of input contains two space-separated integers, *n* and *h* (2<=≤<=*n*<=≤<=1000, 1<=≤<=*h*<=≤<=105).
Output Specification:
The output should contain *n*<=-<=1 real numbers *x*1,<=*x*2,<=...,<=*x**n*<=-<=1. The number *x**i* denotes that the *i*-th cut must be made *x**i* units away from the apex of the carrot. In addition, 0<=<<=*x*1<=<<=*x*2<=<<=...<=<<=*x**n*<=-<=1<=<<=*h* must hold.
Your output will be considered correct if absolute or relative error of every number in your output doesn't exceed 10<=-<=6.
Formally, let your answer be *a*, and the jury's answer be *b*. Your answer is considered correct if .
Demo Input:
['3 2\n', '2 100000\n']
Demo Output:
['1.154700538379 1.632993161855\n', '70710.678118654752\n']
Note:
Definition of isosceles triangle: [https://en.wikipedia.org/wiki/Isosceles_triangle](https://en.wikipedia.org/wiki/Isosceles_triangle).
|
```python
n, h = map(int,input().split())
s = h / 2 / n
k = 0
for i in range (1, n):
k = ((s * n) / (s * i)) ** 0.5
print (h / k, end = " ")
```
| 3
|
|
25
|
A
|
IQ test
|
PROGRAMMING
| 1,300
|
[
"brute force"
] |
A. IQ test
|
2
|
256
|
Bob is preparing to pass IQ test. The most frequent task in this test is to find out which one of the given *n* numbers differs from the others. Bob observed that one number usually differs from the others in evenness. Help Bob — to check his answers, he needs a program that among the given *n* numbers finds one that is different in evenness.
|
The first line contains integer *n* (3<=≤<=*n*<=≤<=100) — amount of numbers in the task. The second line contains *n* space-separated natural numbers, not exceeding 100. It is guaranteed, that exactly one of these numbers differs from the others in evenness.
|
Output index of number that differs from the others in evenness. Numbers are numbered from 1 in the input order.
|
[
"5\n2 4 7 8 10\n",
"4\n1 2 1 1\n"
] |
[
"3\n",
"2\n"
] |
none
| 0
|
[
{
"input": "5\n2 4 7 8 10",
"output": "3"
},
{
"input": "4\n1 2 1 1",
"output": "2"
},
{
"input": "3\n1 2 2",
"output": "1"
},
{
"input": "3\n100 99 100",
"output": "2"
},
{
"input": "3\n5 3 2",
"output": "3"
},
{
"input": "4\n43 28 1 91",
"output": "2"
},
{
"input": "4\n75 13 94 77",
"output": "3"
},
{
"input": "4\n97 8 27 3",
"output": "2"
},
{
"input": "10\n95 51 12 91 85 3 1 31 25 7",
"output": "3"
},
{
"input": "20\n88 96 66 51 14 88 2 92 18 72 18 88 20 30 4 82 90 100 24 46",
"output": "4"
},
{
"input": "30\n20 94 56 50 10 98 52 32 14 22 24 60 4 8 98 46 34 68 82 82 98 90 50 20 78 49 52 94 64 36",
"output": "26"
},
{
"input": "50\n79 27 77 57 37 45 27 49 65 33 57 21 71 19 75 85 65 61 23 97 85 9 23 1 9 3 99 77 77 21 79 69 15 37 15 7 93 81 13 89 91 31 45 93 15 97 55 80 85 83",
"output": "48"
},
{
"input": "60\n46 11 73 65 3 69 3 53 43 53 97 47 55 93 31 75 35 3 9 73 23 31 3 81 91 79 61 21 15 11 11 11 81 7 83 75 39 87 83 59 89 55 93 27 49 67 67 29 1 93 11 17 9 19 35 21 63 31 31 25",
"output": "1"
},
{
"input": "70\n28 42 42 92 64 54 22 38 38 78 62 38 4 38 14 66 4 92 66 58 94 26 4 44 41 88 48 82 44 26 74 44 48 4 16 92 34 38 26 64 94 4 30 78 50 54 12 90 8 16 80 98 28 100 74 50 36 42 92 18 76 98 8 22 2 50 58 50 64 46",
"output": "25"
},
{
"input": "100\n43 35 79 53 13 91 91 45 65 83 57 9 42 39 85 45 71 51 61 59 31 13 63 39 25 21 79 39 91 67 21 61 97 75 93 83 29 79 59 97 11 37 63 51 39 55 91 23 21 17 47 23 35 75 49 5 69 99 5 7 41 17 25 89 15 79 21 63 53 81 43 91 59 91 69 99 85 15 91 51 49 37 65 7 89 81 21 93 61 63 97 93 45 17 13 69 57 25 75 73",
"output": "13"
},
{
"input": "100\n50 24 68 60 70 30 52 22 18 74 68 98 20 82 4 46 26 68 100 78 84 58 74 98 38 88 68 86 64 80 82 100 20 22 98 98 52 6 94 10 48 68 2 18 38 22 22 82 44 20 66 72 36 58 64 6 36 60 4 96 76 64 12 90 10 58 64 60 74 28 90 26 24 60 40 58 2 16 76 48 58 36 82 60 24 44 4 78 28 38 8 12 40 16 38 6 66 24 31 76",
"output": "99"
},
{
"input": "100\n47 48 94 48 14 18 94 36 96 22 12 30 94 20 48 98 40 58 2 94 8 36 98 18 98 68 2 60 76 38 18 100 8 72 100 68 2 86 92 72 58 16 48 14 6 58 72 76 6 88 80 66 20 28 74 62 86 68 90 86 2 56 34 38 56 90 4 8 76 44 32 86 12 98 38 34 54 92 70 94 10 24 82 66 90 58 62 2 32 58 100 22 58 72 2 22 68 72 42 14",
"output": "1"
},
{
"input": "99\n38 20 68 60 84 16 28 88 60 48 80 28 4 92 70 60 46 46 20 34 12 100 76 2 40 10 8 86 6 80 50 66 12 34 14 28 26 70 46 64 34 96 10 90 98 96 56 88 50 74 70 94 2 94 24 66 68 46 22 30 6 10 64 32 88 14 98 100 64 58 50 18 50 50 8 38 8 16 54 2 60 54 62 84 92 98 4 72 66 26 14 88 99 16 10 6 88 56 22",
"output": "93"
},
{
"input": "99\n50 83 43 89 53 47 69 1 5 37 63 87 95 15 55 95 75 89 33 53 89 75 93 75 11 85 49 29 11 97 49 67 87 11 25 37 97 73 67 49 87 43 53 97 43 29 53 33 45 91 37 73 39 49 59 5 21 43 87 35 5 63 89 57 63 47 29 99 19 85 13 13 3 13 43 19 5 9 61 51 51 57 15 89 13 97 41 13 99 79 13 27 97 95 73 33 99 27 23",
"output": "1"
},
{
"input": "98\n61 56 44 30 58 14 20 24 88 28 46 56 96 52 58 42 94 50 46 30 46 80 72 88 68 16 6 60 26 90 10 98 76 20 56 40 30 16 96 20 88 32 62 30 74 58 36 76 60 4 24 36 42 54 24 92 28 14 2 74 86 90 14 52 34 82 40 76 8 64 2 56 10 8 78 16 70 86 70 42 70 74 22 18 76 98 88 28 62 70 36 72 20 68 34 48 80 98",
"output": "1"
},
{
"input": "98\n66 26 46 42 78 32 76 42 26 82 8 12 4 10 24 26 64 44 100 46 94 64 30 18 88 28 8 66 30 82 82 28 74 52 62 80 80 60 94 86 64 32 44 88 92 20 12 74 94 28 34 58 4 22 16 10 94 76 82 58 40 66 22 6 30 32 92 54 16 76 74 98 18 48 48 30 92 2 16 42 84 74 30 60 64 52 50 26 16 86 58 96 79 60 20 62 82 94",
"output": "93"
},
{
"input": "95\n9 31 27 93 17 77 75 9 9 53 89 39 51 99 5 1 11 39 27 49 91 17 27 79 81 71 37 75 35 13 93 4 99 55 85 11 23 57 5 43 5 61 15 35 23 91 3 81 99 85 43 37 39 27 5 67 7 33 75 59 13 71 51 27 15 93 51 63 91 53 43 99 25 47 17 71 81 15 53 31 59 83 41 23 73 25 91 91 13 17 25 13 55 57 29",
"output": "32"
},
{
"input": "100\n91 89 81 45 53 1 41 3 77 93 55 97 55 97 87 27 69 95 73 41 93 21 75 35 53 56 5 51 87 59 91 67 33 3 99 45 83 17 97 47 75 97 7 89 17 99 23 23 81 25 55 97 27 35 69 5 77 35 93 19 55 59 37 21 31 37 49 41 91 53 73 69 7 37 37 39 17 71 7 97 55 17 47 23 15 73 31 39 57 37 9 5 61 41 65 57 77 79 35 47",
"output": "26"
},
{
"input": "99\n38 56 58 98 80 54 26 90 14 16 78 92 52 74 40 30 84 14 44 80 16 90 98 68 26 24 78 72 42 16 84 40 14 44 2 52 50 2 12 96 58 66 8 80 44 52 34 34 72 98 74 4 66 74 56 21 8 38 76 40 10 22 48 32 98 34 12 62 80 68 64 82 22 78 58 74 20 22 48 56 12 38 32 72 6 16 74 24 94 84 26 38 18 24 76 78 98 94 72",
"output": "56"
},
{
"input": "100\n44 40 6 40 56 90 98 8 36 64 76 86 98 76 36 92 6 30 98 70 24 98 96 60 24 82 88 68 86 96 34 42 58 10 40 26 56 10 88 58 70 32 24 28 14 82 52 12 62 36 70 60 52 34 74 30 78 76 10 16 42 94 66 90 70 38 52 12 58 22 98 96 14 68 24 70 4 30 84 98 8 50 14 52 66 34 100 10 28 100 56 48 38 12 38 14 91 80 70 86",
"output": "97"
},
{
"input": "100\n96 62 64 20 90 46 56 90 68 36 30 56 70 28 16 64 94 34 6 32 34 50 94 22 90 32 40 2 72 10 88 38 28 92 20 26 56 80 4 100 100 90 16 74 74 84 8 2 30 20 80 32 16 46 92 56 42 12 96 64 64 42 64 58 50 42 74 28 2 4 36 32 70 50 54 92 70 16 45 76 28 16 18 50 48 2 62 94 4 12 52 52 4 100 70 60 82 62 98 42",
"output": "79"
},
{
"input": "99\n14 26 34 68 90 58 50 36 8 16 18 6 2 74 54 20 36 84 32 50 52 2 26 24 3 64 20 10 54 26 66 44 28 72 4 96 78 90 96 86 68 28 94 4 12 46 100 32 22 36 84 32 44 94 76 94 4 52 12 30 74 4 34 64 58 72 44 16 70 56 54 8 14 74 8 6 58 62 98 54 14 40 80 20 36 72 28 98 20 58 40 52 90 64 22 48 54 70 52",
"output": "25"
},
{
"input": "95\n82 86 30 78 6 46 80 66 74 72 16 24 18 52 52 38 60 36 86 26 62 28 22 46 96 26 94 84 20 46 66 88 76 32 12 86 74 18 34 88 4 48 94 6 58 6 100 82 4 24 88 32 54 98 34 48 6 76 42 88 42 28 100 4 22 2 10 66 82 54 98 20 60 66 38 98 32 47 86 58 6 100 12 46 2 42 8 84 78 28 24 70 34 28 86",
"output": "78"
},
{
"input": "90\n40 50 8 42 76 24 58 42 26 68 20 48 54 12 34 84 14 36 32 88 6 50 96 56 20 92 48 16 40 34 96 46 20 84 30 50 20 98 8 44 96 42 8 76 70 38 84 30 40 88 84 72 2 22 52 58 16 62 100 66 80 40 50 32 14 62 88 72 22 99 76 50 84 82 8 82 98 46 26 40 2 98 18 78 30 72 70 18 34 68",
"output": "70"
},
{
"input": "80\n81 43 87 1 55 43 53 61 27 19 43 13 89 9 33 83 75 55 97 71 91 37 95 5 21 69 81 93 95 69 31 83 55 7 97 7 79 57 8 61 27 85 49 1 15 97 63 79 29 73 41 85 5 41 31 93 67 11 63 59 15 99 91 77 43 69 23 23 81 73 19 1 67 51 1 75 99 67 3 81",
"output": "39"
},
{
"input": "98\n13 83 61 27 35 1 85 95 97 73 95 65 73 45 5 43 27 83 91 19 11 3 85 59 9 39 69 23 45 7 51 85 5 71 5 95 1 51 75 3 43 57 3 11 33 71 21 99 47 41 87 39 71 87 31 85 91 49 83 5 49 85 47 91 55 99 33 23 31 23 23 73 29 77 55 31 25 5 81 49 91 15 15 39 87 5 9 40 69 47 29 33 11 21 49 79 51 83",
"output": "88"
},
{
"input": "3\n100 100 1",
"output": "3"
}
] | 1,639,482,793
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 32
| 92
| 0
|
a = int(input())
lis = input().split()
even = 0
evenpls = 0
evennum = 0
odd = 0
oddnum = 0
oddpls = 0
runner = 0
for val in lis:
val = int(val)
runner = runner + 1
if val % 2 == 0:
odd = odd + 1
oddpls = runner
oddnum = oddnum + 1
else:
even = even + 1
evenpls = runner
evennum = evennum + 1
if oddnum > evennum:
print(evenpls)
else:
print(oddpls)
|
Title: IQ test
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Bob is preparing to pass IQ test. The most frequent task in this test is to find out which one of the given *n* numbers differs from the others. Bob observed that one number usually differs from the others in evenness. Help Bob — to check his answers, he needs a program that among the given *n* numbers finds one that is different in evenness.
Input Specification:
The first line contains integer *n* (3<=≤<=*n*<=≤<=100) — amount of numbers in the task. The second line contains *n* space-separated natural numbers, not exceeding 100. It is guaranteed, that exactly one of these numbers differs from the others in evenness.
Output Specification:
Output index of number that differs from the others in evenness. Numbers are numbered from 1 in the input order.
Demo Input:
['5\n2 4 7 8 10\n', '4\n1 2 1 1\n']
Demo Output:
['3\n', '2\n']
Note:
none
|
```python
a = int(input())
lis = input().split()
even = 0
evenpls = 0
evennum = 0
odd = 0
oddnum = 0
oddpls = 0
runner = 0
for val in lis:
val = int(val)
runner = runner + 1
if val % 2 == 0:
odd = odd + 1
oddpls = runner
oddnum = oddnum + 1
else:
even = even + 1
evenpls = runner
evennum = evennum + 1
if oddnum > evennum:
print(evenpls)
else:
print(oddpls)
```
| 3.977
|
522
|
A
|
Reposts
|
PROGRAMMING
| 1,200
|
[
"*special",
"dfs and similar",
"dp",
"graphs",
"trees"
] | null | null |
One day Polycarp published a funny picture in a social network making a poll about the color of his handle. Many of his friends started reposting Polycarp's joke to their news feed. Some of them reposted the reposts and so on.
These events are given as a sequence of strings "name1 reposted name2", where name1 is the name of the person who reposted the joke, and name2 is the name of the person from whose news feed the joke was reposted. It is guaranteed that for each string "name1 reposted name2" user "name1" didn't have the joke in his feed yet, and "name2" already had it in his feed by the moment of repost. Polycarp was registered as "Polycarp" and initially the joke was only in his feed.
Polycarp measures the popularity of the joke as the length of the largest repost chain. Print the popularity of Polycarp's joke.
|
The first line of the input contains integer *n* (1<=≤<=*n*<=≤<=200) — the number of reposts. Next follow the reposts in the order they were made. Each of them is written on a single line and looks as "name1 reposted name2". All the names in the input consist of lowercase or uppercase English letters and/or digits and have lengths from 2 to 24 characters, inclusive.
We know that the user names are case-insensitive, that is, two names that only differ in the letter case correspond to the same social network user.
|
Print a single integer — the maximum length of a repost chain.
|
[
"5\ntourist reposted Polycarp\nPetr reposted Tourist\nWJMZBMR reposted Petr\nsdya reposted wjmzbmr\nvepifanov reposted sdya\n",
"6\nMike reposted Polycarp\nMax reposted Polycarp\nEveryOne reposted Polycarp\n111 reposted Polycarp\nVkCup reposted Polycarp\nCodeforces reposted Polycarp\n",
"1\nSoMeStRaNgEgUe reposted PoLyCaRp\n"
] |
[
"6\n",
"2\n",
"2\n"
] |
none
| 500
|
[
{
"input": "5\ntourist reposted Polycarp\nPetr reposted Tourist\nWJMZBMR reposted Petr\nsdya reposted wjmzbmr\nvepifanov reposted sdya",
"output": "6"
},
{
"input": "6\nMike reposted Polycarp\nMax reposted Polycarp\nEveryOne reposted Polycarp\n111 reposted Polycarp\nVkCup reposted Polycarp\nCodeforces reposted Polycarp",
"output": "2"
},
{
"input": "1\nSoMeStRaNgEgUe reposted PoLyCaRp",
"output": "2"
},
{
"input": "1\niuNtwVf reposted POlYcarP",
"output": "2"
},
{
"input": "10\ncs reposted poLYCaRp\nAFIkDrY7Of4V7Mq reposted CS\nsoBiwyN7KOvoFUfbhux reposted aFikDry7Of4v7MQ\nvb6LbwA reposted sObIWYN7KOvoFufBHUx\nDtWKIcVwIHgj4Rcv reposted vb6lbwa\nkt reposted DTwKicvwihgJ4rCV\n75K reposted kT\njKzyxx1 reposted 75K\nuoS reposted jkZyXX1\npZJskHTCIqE3YyZ5ME reposted uoS",
"output": "11"
},
{
"input": "10\nvxrUpCXvx8Isq reposted pOLYcaRP\nICb1 reposted vXRUpCxvX8ISq\nJFMt4b8jZE7iF2m8by7y2 reposted Icb1\nqkG6ZkMIf9QRrBFQU reposted ICb1\nnawsNfcR2palIMnmKZ reposted pOlYcaRP\nKksyH reposted jFMT4b8JzE7If2M8by7y2\nwJtWwQS5FvzN0h8CxrYyL reposted NawsNfcR2paLIMnmKz\nDpBcBPYAcTXEdhldI6tPl reposted NaWSnFCr2pALiMnmkZ\nlEnwTVnlwdQg2vaIRQry reposted kKSYh\nQUVFgwllaWO reposted Wjtwwqs5FVzN0H8cxRyyl",
"output": "6"
},
{
"input": "10\nkkuLGEiHv reposted POLYcArp\n3oX1AoUqyw1eR3nCADY9hLwd reposted kkuLGeIHV\nwf97dqq5bx1dPIchCoT reposted 3OX1AOuQYW1eR3ncAdY9hLwD\nWANr8h reposted Wf97dQQ5bx1dpIcHcoT\n3Fb736lkljZK2LtSbfL reposted wANR8h\n6nq9xLOn reposted 3fB736lKlJZk2LtSbFL\nWL reposted 3Fb736lKLjZk2LTSbfl\ndvxn4Xtc6SBcvKf1 reposted wF97DQq5bX1dPiChCOt\nMCcPLIMISqxDzrj reposted 6nQ9XLOn\nxsQL4Z2Iu reposted MCcpLiMiSqxdzrj",
"output": "9"
},
{
"input": "10\nsMA4 reposted pOLyCARP\nlq3 reposted pOlycARp\nEa16LSFTQxLJnE reposted polYcARp\nkvZVZhJwXcWsnC7NA1DV2WvS reposted polYCArp\nEYqqlrjRwddI reposted pOlyCArP\nsPqQCA67Y6PBBbcaV3EhooO reposted ea16LSFTqxLJne\njjPnneZdF6WLZ3v reposted Ea16LSFTqxLjNe\nWEoi6UpnfBUx79 reposted ea16LSFtqXljNe\nqi4yra reposted eYqqlRJrWDDI\ncw7E1UCSUD reposted eYqqLRJRwDdI",
"output": "3"
}
] | 1,558,817,114
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 36
| 109
| 307,200
|
n = int(input())
ans = 1
mp = dict()
for _ in range(n):
t, _, f = input().lower().split()
# print('{} -- {}'.format(f, t))
if f in mp.keys():
mp[f].append(t)
else:
mp[f] = [t]
d = 1
def req(curr):
global d, ans, mp
d += 1
if d > ans:
ans = d
for el in mp[curr]:
if el in mp.keys():
req(el)
d -= 1
req('polycarp')
print(ans)
|
Title: Reposts
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
One day Polycarp published a funny picture in a social network making a poll about the color of his handle. Many of his friends started reposting Polycarp's joke to their news feed. Some of them reposted the reposts and so on.
These events are given as a sequence of strings "name1 reposted name2", where name1 is the name of the person who reposted the joke, and name2 is the name of the person from whose news feed the joke was reposted. It is guaranteed that for each string "name1 reposted name2" user "name1" didn't have the joke in his feed yet, and "name2" already had it in his feed by the moment of repost. Polycarp was registered as "Polycarp" and initially the joke was only in his feed.
Polycarp measures the popularity of the joke as the length of the largest repost chain. Print the popularity of Polycarp's joke.
Input Specification:
The first line of the input contains integer *n* (1<=≤<=*n*<=≤<=200) — the number of reposts. Next follow the reposts in the order they were made. Each of them is written on a single line and looks as "name1 reposted name2". All the names in the input consist of lowercase or uppercase English letters and/or digits and have lengths from 2 to 24 characters, inclusive.
We know that the user names are case-insensitive, that is, two names that only differ in the letter case correspond to the same social network user.
Output Specification:
Print a single integer — the maximum length of a repost chain.
Demo Input:
['5\ntourist reposted Polycarp\nPetr reposted Tourist\nWJMZBMR reposted Petr\nsdya reposted wjmzbmr\nvepifanov reposted sdya\n', '6\nMike reposted Polycarp\nMax reposted Polycarp\nEveryOne reposted Polycarp\n111 reposted Polycarp\nVkCup reposted Polycarp\nCodeforces reposted Polycarp\n', '1\nSoMeStRaNgEgUe reposted PoLyCaRp\n']
Demo Output:
['6\n', '2\n', '2\n']
Note:
none
|
```python
n = int(input())
ans = 1
mp = dict()
for _ in range(n):
t, _, f = input().lower().split()
# print('{} -- {}'.format(f, t))
if f in mp.keys():
mp[f].append(t)
else:
mp[f] = [t]
d = 1
def req(curr):
global d, ans, mp
d += 1
if d > ans:
ans = d
for el in mp[curr]:
if el in mp.keys():
req(el)
d -= 1
req('polycarp')
print(ans)
```
| 3
|
|
832
|
A
|
Sasha and Sticks
|
PROGRAMMING
| 800
|
[
"games",
"math"
] | null | null |
It's one more school day now. Sasha doesn't like classes and is always bored at them. So, each day he invents some game and plays in it alone or with friends.
Today he invented one simple game to play with Lena, with whom he shares a desk. The rules are simple. Sasha draws *n* sticks in a row. After that the players take turns crossing out exactly *k* sticks from left or right in each turn. Sasha moves first, because he is the inventor of the game. If there are less than *k* sticks on the paper before some turn, the game ends. Sasha wins if he makes strictly more moves than Lena. Sasha wants to know the result of the game before playing, you are to help him.
|
The first line contains two integers *n* and *k* (1<=≤<=*n*,<=*k*<=≤<=1018, *k*<=≤<=*n*) — the number of sticks drawn by Sasha and the number *k* — the number of sticks to be crossed out on each turn.
|
If Sasha wins, print "YES" (without quotes), otherwise print "NO" (without quotes).
You can print each letter in arbitrary case (upper of lower).
|
[
"1 1\n",
"10 4\n"
] |
[
"YES\n",
"NO\n"
] |
In the first example Sasha crosses out 1 stick, and then there are no sticks. So Lena can't make a move, and Sasha wins.
In the second example Sasha crosses out 4 sticks, then Lena crosses out 4 sticks, and after that there are only 2 sticks left. Sasha can't make a move. The players make equal number of moves, so Sasha doesn't win.
| 500
|
[
{
"input": "1 1",
"output": "YES"
},
{
"input": "10 4",
"output": "NO"
},
{
"input": "251656215122324104 164397544865601257",
"output": "YES"
},
{
"input": "963577813436662285 206326039287271924",
"output": "NO"
},
{
"input": "1000000000000000000 1",
"output": "NO"
},
{
"input": "253308697183523656 25332878317796706",
"output": "YES"
},
{
"input": "669038685745448997 501718093668307460",
"output": "YES"
},
{
"input": "116453141993601660 87060381463547965",
"output": "YES"
},
{
"input": "766959657 370931668",
"output": "NO"
},
{
"input": "255787422422806632 146884995820359999",
"output": "YES"
},
{
"input": "502007866464507926 71266379084204128",
"output": "YES"
},
{
"input": "257439908778973480 64157133126869976",
"output": "NO"
},
{
"input": "232709385 91708542",
"output": "NO"
},
{
"input": "252482458300407528 89907711721009125",
"output": "NO"
},
{
"input": "6 2",
"output": "YES"
},
{
"input": "6 3",
"output": "NO"
},
{
"input": "6 4",
"output": "YES"
},
{
"input": "6 5",
"output": "YES"
},
{
"input": "6 6",
"output": "YES"
},
{
"input": "258266151957056904 30153168463725364",
"output": "NO"
},
{
"input": "83504367885565783 52285355047292458",
"output": "YES"
},
{
"input": "545668929424440387 508692735816921376",
"output": "YES"
},
{
"input": "547321411485639939 36665750286082900",
"output": "NO"
},
{
"input": "548973893546839491 183137237979822911",
"output": "NO"
},
{
"input": "544068082 193116851",
"output": "NO"
},
{
"input": "871412474 749817171",
"output": "YES"
},
{
"input": "999999999 1247",
"output": "NO"
},
{
"input": "851941088 712987048",
"output": "YES"
},
{
"input": "559922900 418944886",
"output": "YES"
},
{
"input": "293908937 37520518",
"output": "YES"
},
{
"input": "650075786 130049650",
"output": "NO"
},
{
"input": "1000000000 1000000000",
"output": "YES"
},
{
"input": "548147654663723363 107422751713800746",
"output": "YES"
},
{
"input": "828159210 131819483",
"output": "NO"
},
{
"input": "6242634 4110365",
"output": "YES"
},
{
"input": "458601973 245084155",
"output": "YES"
},
{
"input": "349593257 18089089",
"output": "YES"
},
{
"input": "814768821 312514745",
"output": "NO"
},
{
"input": "697884949 626323363",
"output": "YES"
},
{
"input": "667011589 54866795",
"output": "NO"
},
{
"input": "1000000000000000000 2",
"output": "NO"
},
{
"input": "1000000000000000000 3",
"output": "YES"
},
{
"input": "1000000000000000000 4",
"output": "NO"
},
{
"input": "999999999999999 1",
"output": "YES"
},
{
"input": "17 4",
"output": "NO"
},
{
"input": "2 2",
"output": "YES"
},
{
"input": "1000000000000000 2",
"output": "NO"
},
{
"input": "12 4",
"output": "YES"
},
{
"input": "6 1",
"output": "NO"
},
{
"input": "2 1",
"output": "NO"
},
{
"input": "10000000005 1",
"output": "YES"
},
{
"input": "10000000000000009 2",
"output": "NO"
},
{
"input": "12457895452123 1",
"output": "YES"
},
{
"input": "999999999999999999 9",
"output": "YES"
},
{
"input": "1000000000000 3",
"output": "YES"
},
{
"input": "13099714659575475 6549849616514894",
"output": "NO"
},
{
"input": "100000000000000001 1",
"output": "YES"
},
{
"input": "825175814723458 324",
"output": "YES"
},
{
"input": "20 4",
"output": "YES"
},
{
"input": "100000176877 4",
"output": "YES"
},
{
"input": "100000 3",
"output": "YES"
},
{
"input": "946744073709551614 10",
"output": "YES"
}
] | 1,586,521,081
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 62
| 109
| 0
|
n,k=map(int,input().split())
c=n//k
r=n%k
#print(c,r)
if(c%2==0 and r<=k):
print("NO")
else:
print("YES")
|
Title: Sasha and Sticks
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
It's one more school day now. Sasha doesn't like classes and is always bored at them. So, each day he invents some game and plays in it alone or with friends.
Today he invented one simple game to play with Lena, with whom he shares a desk. The rules are simple. Sasha draws *n* sticks in a row. After that the players take turns crossing out exactly *k* sticks from left or right in each turn. Sasha moves first, because he is the inventor of the game. If there are less than *k* sticks on the paper before some turn, the game ends. Sasha wins if he makes strictly more moves than Lena. Sasha wants to know the result of the game before playing, you are to help him.
Input Specification:
The first line contains two integers *n* and *k* (1<=≤<=*n*,<=*k*<=≤<=1018, *k*<=≤<=*n*) — the number of sticks drawn by Sasha and the number *k* — the number of sticks to be crossed out on each turn.
Output Specification:
If Sasha wins, print "YES" (without quotes), otherwise print "NO" (without quotes).
You can print each letter in arbitrary case (upper of lower).
Demo Input:
['1 1\n', '10 4\n']
Demo Output:
['YES\n', 'NO\n']
Note:
In the first example Sasha crosses out 1 stick, and then there are no sticks. So Lena can't make a move, and Sasha wins.
In the second example Sasha crosses out 4 sticks, then Lena crosses out 4 sticks, and after that there are only 2 sticks left. Sasha can't make a move. The players make equal number of moves, so Sasha doesn't win.
|
```python
n,k=map(int,input().split())
c=n//k
r=n%k
#print(c,r)
if(c%2==0 and r<=k):
print("NO")
else:
print("YES")
```
| 3
|
|
258
|
A
|
Little Elephant and Bits
|
PROGRAMMING
| 1,100
|
[
"greedy",
"math"
] | null | null |
The Little Elephant has an integer *a*, written in the binary notation. He wants to write this number on a piece of paper.
To make sure that the number *a* fits on the piece of paper, the Little Elephant ought to delete exactly one any digit from number *a* in the binary record. At that a new number appears. It consists of the remaining binary digits, written in the corresponding order (possible, with leading zeroes).
The Little Elephant wants the number he is going to write on the paper to be as large as possible. Help him find the maximum number that he can obtain after deleting exactly one binary digit and print it in the binary notation.
|
The single line contains integer *a*, written in the binary notation without leading zeroes. This number contains more than 1 and at most 105 digits.
|
In the single line print the number that is written without leading zeroes in the binary notation — the answer to the problem.
|
[
"101\n",
"110010\n"
] |
[
"11\n",
"11010\n"
] |
In the first sample the best strategy is to delete the second digit. That results in number 11<sub class="lower-index">2</sub> = 3<sub class="lower-index">10</sub>.
In the second sample the best strategy is to delete the third or fourth digits — that results in number 11010<sub class="lower-index">2</sub> = 26<sub class="lower-index">10</sub>.
| 500
|
[
{
"input": "101",
"output": "11"
},
{
"input": "110010",
"output": "11010"
},
{
"input": "10000",
"output": "1000"
},
{
"input": "1111111110",
"output": "111111111"
},
{
"input": "10100101011110101",
"output": "1100101011110101"
},
{
"input": "111010010111",
"output": "11110010111"
},
{
"input": "11110111011100000000",
"output": "1111111011100000000"
},
{
"input": "11110010010100001110110101110011110110100111101",
"output": "1111010010100001110110101110011110110100111101"
},
{
"input": "1001011111010010100111111",
"output": "101011111010010100111111"
},
{
"input": "1111111111",
"output": "111111111"
},
{
"input": "1111111111111111111100111101001110110111111000001111110101001101001110011000001011001111111000110101",
"output": "111111111111111111110111101001110110111111000001111110101001101001110011000001011001111111000110101"
},
{
"input": "11010110000100100101111110111001001010011000011011000010010100111010101000111010011101101111110001111000101000001100011101110100",
"output": "1110110000100100101111110111001001010011000011011000010010100111010101000111010011101101111110001111000101000001100011101110100"
},
{
"input": "11111111111111111111111110110111001101100111010010101101101001011100011011000111010011110010101100010001011101011010010100001000011100001101101001100010100001001010010100100001111110100110011000101100001111111011010111001011111110111101000100101001001011",
"output": "1111111111111111111111111110111001101100111010010101101101001011100011011000111010011110010101100010001011101011010010100001000011100001101101001100010100001001010010100100001111110100110011000101100001111111011010111001011111110111101000100101001001011"
},
{
"input": "11100010010010000110101101101100111111001010001101101001001111010110010111001011010000001100110101000101111000001111101111110010000010101110011110101101010110001100011101111011100010011101100111110010111111100110101000000111101000000000110100100101111101000110101010101101001110001110000101011010101100011100100111100010001011010010001100011111110010011010011000111000100111100010110100011010010101011011011111110100001110000011011",
"output": "1110010010010000110101101101100111111001010001101101001001111010110010111001011010000001100110101000101111000001111101111110010000010101110011110101101010110001100011101111011100010011101100111110010111111100110101000000111101000000000110100100101111101000110101010101101001110001110000101011010101100011100100111100010001011010010001100011111110010011010011000111000100111100010110100011010010101011011011111110100001110000011011"
},
{
"input": "11",
"output": "1"
},
{
"input": "111",
"output": "11"
},
{
"input": "111111",
"output": "11111"
},
{
"input": "11111",
"output": "1111"
},
{
"input": "1111",
"output": "111"
}
] | 1,462,300,545
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 37
| 716
| 6,246,400
|
n=input()
s=''
c=0
for i in n:
if i=='0':
c+=1
if c>1:
s+=i
else:
s+=i
if c>0:
print(s)
else:
for i in range(len(s)-1):
print(s[i],end='')
|
Title: Little Elephant and Bits
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
The Little Elephant has an integer *a*, written in the binary notation. He wants to write this number on a piece of paper.
To make sure that the number *a* fits on the piece of paper, the Little Elephant ought to delete exactly one any digit from number *a* in the binary record. At that a new number appears. It consists of the remaining binary digits, written in the corresponding order (possible, with leading zeroes).
The Little Elephant wants the number he is going to write on the paper to be as large as possible. Help him find the maximum number that he can obtain after deleting exactly one binary digit and print it in the binary notation.
Input Specification:
The single line contains integer *a*, written in the binary notation without leading zeroes. This number contains more than 1 and at most 105 digits.
Output Specification:
In the single line print the number that is written without leading zeroes in the binary notation — the answer to the problem.
Demo Input:
['101\n', '110010\n']
Demo Output:
['11\n', '11010\n']
Note:
In the first sample the best strategy is to delete the second digit. That results in number 11<sub class="lower-index">2</sub> = 3<sub class="lower-index">10</sub>.
In the second sample the best strategy is to delete the third or fourth digits — that results in number 11010<sub class="lower-index">2</sub> = 26<sub class="lower-index">10</sub>.
|
```python
n=input()
s=''
c=0
for i in n:
if i=='0':
c+=1
if c>1:
s+=i
else:
s+=i
if c>0:
print(s)
else:
for i in range(len(s)-1):
print(s[i],end='')
```
| 3
|
|
548
|
B
|
Mike and Fun
|
PROGRAMMING
| 1,400
|
[
"brute force",
"dp",
"greedy",
"implementation"
] | null | null |
Mike and some bears are playing a game just for fun. Mike is the judge. All bears except Mike are standing in an *n*<=×<=*m* grid, there's exactly one bear in each cell. We denote the bear standing in column number *j* of row number *i* by (*i*,<=*j*). Mike's hands are on his ears (since he's the judge) and each bear standing in the grid has hands either on his mouth or his eyes.
They play for *q* rounds. In each round, Mike chooses a bear (*i*,<=*j*) and tells him to change his state i. e. if his hands are on his mouth, then he'll put his hands on his eyes or he'll put his hands on his mouth otherwise. After that, Mike wants to know the score of the bears.
Score of the bears is the maximum over all rows of number of consecutive bears with hands on their eyes in that row.
Since bears are lazy, Mike asked you for help. For each round, tell him the score of these bears after changing the state of a bear selected in that round.
|
The first line of input contains three integers *n*, *m* and *q* (1<=≤<=*n*,<=*m*<=≤<=500 and 1<=≤<=*q*<=≤<=5000).
The next *n* lines contain the grid description. There are *m* integers separated by spaces in each line. Each of these numbers is either 0 (for mouth) or 1 (for eyes).
The next *q* lines contain the information about the rounds. Each of them contains two integers *i* and *j* (1<=≤<=*i*<=≤<=*n* and 1<=≤<=*j*<=≤<=*m*), the row number and the column number of the bear changing his state.
|
After each round, print the current score of the bears.
|
[
"5 4 5\n0 1 1 0\n1 0 0 1\n0 1 1 0\n1 0 0 1\n0 0 0 0\n1 1\n1 4\n1 1\n4 2\n4 3\n"
] |
[
"3\n4\n3\n3\n4\n"
] |
none
| 1,000
|
[
{
"input": "5 4 5\n0 1 1 0\n1 0 0 1\n0 1 1 0\n1 0 0 1\n0 0 0 0\n1 1\n1 4\n1 1\n4 2\n4 3",
"output": "3\n4\n3\n3\n4"
},
{
"input": "2 2 10\n1 1\n0 1\n1 1\n2 1\n1 1\n2 2\n1 1\n2 1\n2 2\n2 2\n1 1\n1 1",
"output": "1\n2\n2\n2\n1\n1\n1\n1\n2\n1"
},
{
"input": "2 2 10\n1 1\n0 1\n2 2\n2 2\n1 1\n2 1\n2 1\n1 1\n1 1\n2 1\n1 1\n2 1",
"output": "2\n2\n1\n2\n1\n2\n1\n2\n2\n2"
},
{
"input": "5 5 30\n0 1 1 1 0\n1 1 0 1 1\n0 1 1 1 1\n0 0 1 1 0\n0 0 0 0 0\n3 2\n2 2\n2 2\n4 3\n1 4\n3 2\n4 1\n2 4\n1 4\n2 1\n5 2\n4 1\n4 1\n5 1\n2 4\n2 4\n4 4\n1 2\n3 1\n4 5\n1 2\n2 3\n1 1\n5 1\n3 4\n1 1\n5 4\n1 5\n5 4\n2 2",
"output": "3\n3\n3\n3\n3\n4\n4\n4\n4\n4\n4\n4\n4\n4\n4\n4\n4\n4\n5\n5\n5\n5\n5\n5\n4\n3\n3\n4\n4\n4"
},
{
"input": "1 1 10\n0\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1",
"output": "1\n0\n1\n0\n1\n0\n1\n0\n1\n0"
},
{
"input": "1 1 3\n1\n1 1\n1 1\n1 1",
"output": "0\n1\n0"
},
{
"input": "1 5 5\n0 0 0 0 0\n1 2\n1 1\n1 4\n1 5\n1 3",
"output": "1\n2\n2\n2\n5"
},
{
"input": "5 1 5\n0\n0\n0\n0\n0\n1 1\n2 1\n3 1\n4 1\n5 1",
"output": "1\n1\n1\n1\n1"
},
{
"input": "1 1 1\n0\n1 1",
"output": "1"
},
{
"input": "2 2 1\n1 1\n1 1\n1 1",
"output": "2"
}
] | 1,682,970,716
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 35
| 280
| 11,059,200
|
def maior(i):
saida, sub = 0, -1
for j in range(m):
if matriz[i][j] == 0:
sub = j
else:
saida = max(saida, j - sub)
return saida
n, m, q = list(map(int, input().split()))
matriz = [list(map(int, input().split())) for i in range(n)]
v = list(map(maior, range(n)))
for i in range(q):
linha, col = map(int, input().split())
linha -= 1
col -= 1
matriz[linha][col] = 1 - matriz[linha][col]
v[linha] = maior(linha)
print(max(v))
|
Title: Mike and Fun
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Mike and some bears are playing a game just for fun. Mike is the judge. All bears except Mike are standing in an *n*<=×<=*m* grid, there's exactly one bear in each cell. We denote the bear standing in column number *j* of row number *i* by (*i*,<=*j*). Mike's hands are on his ears (since he's the judge) and each bear standing in the grid has hands either on his mouth or his eyes.
They play for *q* rounds. In each round, Mike chooses a bear (*i*,<=*j*) and tells him to change his state i. e. if his hands are on his mouth, then he'll put his hands on his eyes or he'll put his hands on his mouth otherwise. After that, Mike wants to know the score of the bears.
Score of the bears is the maximum over all rows of number of consecutive bears with hands on their eyes in that row.
Since bears are lazy, Mike asked you for help. For each round, tell him the score of these bears after changing the state of a bear selected in that round.
Input Specification:
The first line of input contains three integers *n*, *m* and *q* (1<=≤<=*n*,<=*m*<=≤<=500 and 1<=≤<=*q*<=≤<=5000).
The next *n* lines contain the grid description. There are *m* integers separated by spaces in each line. Each of these numbers is either 0 (for mouth) or 1 (for eyes).
The next *q* lines contain the information about the rounds. Each of them contains two integers *i* and *j* (1<=≤<=*i*<=≤<=*n* and 1<=≤<=*j*<=≤<=*m*), the row number and the column number of the bear changing his state.
Output Specification:
After each round, print the current score of the bears.
Demo Input:
['5 4 5\n0 1 1 0\n1 0 0 1\n0 1 1 0\n1 0 0 1\n0 0 0 0\n1 1\n1 4\n1 1\n4 2\n4 3\n']
Demo Output:
['3\n4\n3\n3\n4\n']
Note:
none
|
```python
def maior(i):
saida, sub = 0, -1
for j in range(m):
if matriz[i][j] == 0:
sub = j
else:
saida = max(saida, j - sub)
return saida
n, m, q = list(map(int, input().split()))
matriz = [list(map(int, input().split())) for i in range(n)]
v = list(map(maior, range(n)))
for i in range(q):
linha, col = map(int, input().split())
linha -= 1
col -= 1
matriz[linha][col] = 1 - matriz[linha][col]
v[linha] = maior(linha)
print(max(v))
```
| 3
|
|
688
|
B
|
Lovely Palindromes
|
PROGRAMMING
| 1,000
|
[
"constructive algorithms",
"math"
] | null | null |
Pari has a friend who loves palindrome numbers. A palindrome number is a number that reads the same forward or backward. For example 12321, 100001 and 1 are palindrome numbers, while 112 and 1021 are not.
Pari is trying to love them too, but only very special and gifted people can understand the beauty behind palindrome numbers. Pari loves integers with even length (i.e. the numbers with even number of digits), so she tries to see a lot of big palindrome numbers with even length (like a 2-digit 11 or 6-digit 122221), so maybe she could see something in them.
Now Pari asks you to write a program that gets a huge integer *n* from the input and tells what is the *n*-th even-length positive palindrome number?
|
The only line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=10100<=000).
|
Print the *n*-th even-length palindrome number.
|
[
"1\n",
"10\n"
] |
[
"11\n",
"1001\n"
] |
The first 10 even-length palindrome numbers are 11, 22, 33, ... , 88, 99 and 1001.
| 1,000
|
[
{
"input": "1",
"output": "11"
},
{
"input": "10",
"output": "1001"
},
{
"input": "11",
"output": "1111"
},
{
"input": "12",
"output": "1221"
},
{
"input": "100",
"output": "100001"
},
{
"input": "1321",
"output": "13211231"
},
{
"input": "2",
"output": "22"
},
{
"input": "3",
"output": "33"
},
{
"input": "4",
"output": "44"
},
{
"input": "5",
"output": "55"
},
{
"input": "6",
"output": "66"
},
{
"input": "7",
"output": "77"
},
{
"input": "8",
"output": "88"
},
{
"input": "9",
"output": "99"
},
{
"input": "13",
"output": "1331"
},
{
"input": "14",
"output": "1441"
},
{
"input": "15",
"output": "1551"
},
{
"input": "16",
"output": "1661"
},
{
"input": "17",
"output": "1771"
},
{
"input": "18",
"output": "1881"
},
{
"input": "19",
"output": "1991"
},
{
"input": "20",
"output": "2002"
},
{
"input": "26550",
"output": "2655005562"
},
{
"input": "16137",
"output": "1613773161"
},
{
"input": "91471",
"output": "9147117419"
},
{
"input": "41242",
"output": "4124224214"
},
{
"input": "30866",
"output": "3086666803"
},
{
"input": "4442231232741003009964183199713851566466079882929007253443848371978048610682180431295671905105980116",
"output": "44422312327410030099641831997138515664660798829290072534438483719780486106821804312956719051059801166110895015091765921340812860168408791738483443527009292889706646651583179913814699003001472321322444"
},
{
"input": "7806526084732010742850470902979267046151204705563201965818390803445852115032119297648697933316807252",
"output": "78065260847320107428504709029792670461512047055632019658183908034458521150321192976486979333168072522527086133397968467929112305112585443080938185691023655074021516407629792090740582470102374806256087"
},
{
"input": "2244399823612183124978103773977739948197709395321563148611877999503840818596183803323258317041875913",
"output": "22443998236121831249781037739777399481977093953215631486118779995038408185961838033232583170418759133195781407138523233083816958180483059997781168413651235939077918499377793773018794213812163289934422"
},
{
"input": "123451",
"output": "123451154321"
}
] | 1,699,799,770
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 40
| 140
| 25,804,800
|
n = input()
final = []
final.extend(list(n))
final.extend(n[::-1])
print(*final, sep='')
|
Title: Lovely Palindromes
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Pari has a friend who loves palindrome numbers. A palindrome number is a number that reads the same forward or backward. For example 12321, 100001 and 1 are palindrome numbers, while 112 and 1021 are not.
Pari is trying to love them too, but only very special and gifted people can understand the beauty behind palindrome numbers. Pari loves integers with even length (i.e. the numbers with even number of digits), so she tries to see a lot of big palindrome numbers with even length (like a 2-digit 11 or 6-digit 122221), so maybe she could see something in them.
Now Pari asks you to write a program that gets a huge integer *n* from the input and tells what is the *n*-th even-length positive palindrome number?
Input Specification:
The only line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=10100<=000).
Output Specification:
Print the *n*-th even-length palindrome number.
Demo Input:
['1\n', '10\n']
Demo Output:
['11\n', '1001\n']
Note:
The first 10 even-length palindrome numbers are 11, 22, 33, ... , 88, 99 and 1001.
|
```python
n = input()
final = []
final.extend(list(n))
final.extend(n[::-1])
print(*final, sep='')
```
| 3
|
|
34
|
A
|
Reconnaissance 2
|
PROGRAMMING
| 800
|
[
"implementation"
] |
A. Reconnaissance 2
|
2
|
256
|
*n* soldiers stand in a circle. For each soldier his height *a**i* is known. A reconnaissance unit can be made of such two neighbouring soldiers, whose heights difference is minimal, i.e. |*a**i*<=-<=*a**j*| is minimal. So each of them will be less noticeable with the other. Output any pair of soldiers that can form a reconnaissance unit.
|
The first line contains integer *n* (2<=≤<=*n*<=≤<=100) — amount of soldiers. Then follow the heights of the soldiers in their order in the circle — *n* space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=1000). The soldier heights are given in clockwise or counterclockwise direction.
|
Output two integers — indexes of neighbouring soldiers, who should form a reconnaissance unit. If there are many optimum solutions, output any of them. Remember, that the soldiers stand in a circle.
|
[
"5\n10 12 13 15 10\n",
"4\n10 20 30 40\n"
] |
[
"5 1\n",
"1 2\n"
] |
none
| 500
|
[
{
"input": "5\n10 12 13 15 10",
"output": "5 1"
},
{
"input": "4\n10 20 30 40",
"output": "1 2"
},
{
"input": "6\n744 359 230 586 944 442",
"output": "2 3"
},
{
"input": "5\n826 747 849 687 437",
"output": "1 2"
},
{
"input": "5\n999 999 993 969 999",
"output": "1 2"
},
{
"input": "5\n4 24 6 1 15",
"output": "3 4"
},
{
"input": "2\n511 32",
"output": "1 2"
},
{
"input": "3\n907 452 355",
"output": "2 3"
},
{
"input": "4\n303 872 764 401",
"output": "4 1"
},
{
"input": "10\n684 698 429 694 956 812 594 170 937 764",
"output": "1 2"
},
{
"input": "20\n646 840 437 946 640 564 936 917 487 752 844 734 468 969 674 646 728 642 514 695",
"output": "7 8"
},
{
"input": "30\n996 999 998 984 989 1000 996 993 1000 983 992 999 999 1000 979 992 987 1000 996 1000 1000 989 981 996 995 999 999 989 999 1000",
"output": "12 13"
},
{
"input": "50\n93 27 28 4 5 78 59 24 19 134 31 128 118 36 90 32 32 1 44 32 33 13 31 10 12 25 38 50 25 12 4 22 28 53 48 83 4 25 57 31 71 24 8 7 28 86 23 80 101 58",
"output": "16 17"
},
{
"input": "88\n1000 1000 1000 1000 1000 998 998 1000 1000 1000 1000 999 999 1000 1000 1000 999 1000 997 999 997 1000 999 998 1000 999 1000 1000 1000 999 1000 999 999 1000 1000 999 1000 999 1000 1000 998 1000 1000 1000 998 998 1000 1000 999 1000 1000 1000 1000 1000 1000 1000 998 1000 1000 1000 999 1000 1000 999 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 998 1000 1000 1000 998 1000 1000 998 1000 999 1000 1000 1000 1000",
"output": "1 2"
},
{
"input": "99\n4 4 21 6 5 3 13 2 6 1 3 4 1 3 1 9 11 1 6 17 4 5 20 4 1 9 5 11 3 4 14 1 3 3 1 4 3 5 27 1 1 2 10 7 11 4 19 7 11 6 11 13 3 1 10 7 2 1 16 1 9 4 29 13 2 12 14 2 21 1 9 8 26 12 12 5 2 14 7 8 8 8 9 4 12 2 6 6 7 16 8 14 2 10 20 15 3 7 4",
"output": "1 2"
},
{
"input": "100\n713 572 318 890 577 657 646 146 373 783 392 229 455 871 20 593 573 336 26 381 280 916 907 732 820 713 111 840 570 446 184 711 481 399 788 647 492 15 40 530 549 506 719 782 126 20 778 996 712 761 9 74 812 418 488 175 103 585 900 3 604 521 109 513 145 708 990 361 682 827 791 22 596 780 596 385 450 643 158 496 876 975 319 783 654 895 891 361 397 81 682 899 347 623 809 557 435 279 513 438",
"output": "86 87"
},
{
"input": "100\n31 75 86 68 111 27 22 22 26 30 54 163 107 75 160 122 14 23 17 26 27 20 43 58 59 71 21 148 9 32 43 91 133 286 132 70 90 156 84 14 77 93 23 18 13 72 18 131 33 28 72 175 30 86 249 20 14 208 28 57 63 199 6 10 24 30 62 267 43 479 60 28 138 1 45 3 19 47 7 166 116 117 50 140 28 14 95 85 93 43 61 15 2 70 10 51 7 95 9 25",
"output": "7 8"
},
{
"input": "100\n896 898 967 979 973 709 961 968 806 967 896 967 826 975 936 903 986 856 851 931 852 971 786 837 949 978 686 936 952 909 965 749 908 916 943 973 983 975 939 886 964 928 960 976 907 788 994 773 949 871 947 980 945 985 726 981 887 943 907 990 931 874 840 867 948 951 961 904 888 901 976 967 994 921 828 970 972 722 755 970 860 855 914 869 714 899 969 978 898 862 642 939 904 936 819 934 884 983 955 964",
"output": "1 2"
},
{
"input": "100\n994 927 872 970 815 986 952 996 965 1000 877 986 978 999 950 990 936 997 993 960 921 860 895 869 943 998 983 968 973 953 999 990 995 871 853 979 973 963 953 938 997 989 993 964 960 973 946 975 1000 962 920 746 989 957 904 965 920 979 966 961 1000 993 975 952 846 971 991 979 985 969 984 973 956 1000 952 778 983 974 956 927 995 997 980 997 1000 970 960 970 988 983 947 904 935 972 1000 863 992 996 932 967",
"output": "81 82"
},
{
"input": "100\n48 108 63 21 27 8 49 21 75 8 24 42 149 18 8 28 21 18 25 35 59 70 59 33 40 1 67 34 120 82 4 115 72 87 3 15 15 63 37 12 40 27 83 14 38 20 14 58 93 10 31 3 39 6 197 77 54 16 31 146 9 49 14 8 77 82 5 11 80 116 8 61 50 24 7 103 29 11 3 3 1 12 46 24 21 131 39 29 36 2 107 40 16 99 31 41 29 48 17 17",
"output": "36 37"
}
] | 1,610,198,866
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 20
| 124
| 307,200
|
kol = int(input())
sol = list(map(int, input().split()))
sol.append(sol[0])
minDiff = 1000
minA = 0
minB = 0
for k in range(kol):
cur = sol[k]
cur1 = sol[k + 1]
com = abs(cur - cur1)
if com < minDiff:
minDiff = com
minA = k
minB = k + 1
if minB >= kol:
minB = minB - kol
print(minA + 1, minB + 1)
|
Title: Reconnaissance 2
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
*n* soldiers stand in a circle. For each soldier his height *a**i* is known. A reconnaissance unit can be made of such two neighbouring soldiers, whose heights difference is minimal, i.e. |*a**i*<=-<=*a**j*| is minimal. So each of them will be less noticeable with the other. Output any pair of soldiers that can form a reconnaissance unit.
Input Specification:
The first line contains integer *n* (2<=≤<=*n*<=≤<=100) — amount of soldiers. Then follow the heights of the soldiers in their order in the circle — *n* space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=1000). The soldier heights are given in clockwise or counterclockwise direction.
Output Specification:
Output two integers — indexes of neighbouring soldiers, who should form a reconnaissance unit. If there are many optimum solutions, output any of them. Remember, that the soldiers stand in a circle.
Demo Input:
['5\n10 12 13 15 10\n', '4\n10 20 30 40\n']
Demo Output:
['5 1\n', '1 2\n']
Note:
none
|
```python
kol = int(input())
sol = list(map(int, input().split()))
sol.append(sol[0])
minDiff = 1000
minA = 0
minB = 0
for k in range(kol):
cur = sol[k]
cur1 = sol[k + 1]
com = abs(cur - cur1)
if com < minDiff:
minDiff = com
minA = k
minB = k + 1
if minB >= kol:
minB = minB - kol
print(minA + 1, minB + 1)
```
| 3.968428
|
456
|
A
|
Laptops
|
PROGRAMMING
| 1,100
|
[
"sortings"
] | null | null |
One day Dima and Alex had an argument about the price and quality of laptops. Dima thinks that the more expensive a laptop is, the better it is. Alex disagrees. Alex thinks that there are two laptops, such that the price of the first laptop is less (strictly smaller) than the price of the second laptop but the quality of the first laptop is higher (strictly greater) than the quality of the second laptop.
Please, check the guess of Alex. You are given descriptions of *n* laptops. Determine whether two described above laptops exist.
|
The first line contains an integer *n* (1<=≤<=*n*<=≤<=105) — the number of laptops.
Next *n* lines contain two integers each, *a**i* and *b**i* (1<=≤<=*a**i*,<=*b**i*<=≤<=*n*), where *a**i* is the price of the *i*-th laptop, and *b**i* is the number that represents the quality of the *i*-th laptop (the larger the number is, the higher is the quality).
All *a**i* are distinct. All *b**i* are distinct.
|
If Alex is correct, print "Happy Alex", otherwise print "Poor Alex" (without the quotes).
|
[
"2\n1 2\n2 1\n"
] |
[
"Happy Alex\n"
] |
none
| 500
|
[
{
"input": "2\n1 2\n2 1",
"output": "Happy Alex"
},
{
"input": "2\n1 1\n2 2",
"output": "Poor Alex"
},
{
"input": "3\n2 2\n3 3\n1 1",
"output": "Poor Alex"
},
{
"input": "3\n3 3\n1 2\n2 1",
"output": "Happy Alex"
},
{
"input": "1\n1 1",
"output": "Poor Alex"
},
{
"input": "3\n2 3\n1 1\n3 2",
"output": "Happy Alex"
},
{
"input": "4\n4 1\n3 2\n2 3\n1 4",
"output": "Happy Alex"
},
{
"input": "2\n2 1\n1 2",
"output": "Happy Alex"
},
{
"input": "3\n3 2\n1 1\n2 3",
"output": "Happy Alex"
},
{
"input": "3\n1 2\n2 3\n3 1",
"output": "Happy Alex"
},
{
"input": "3\n1 2\n2 1\n3 3",
"output": "Happy Alex"
},
{
"input": "3\n1 2\n2 3\n3 1",
"output": "Happy Alex"
}
] | 1,684,590,242
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 46
| 296
| 14,848,000
|
n = int(input())
laptops = []
for _ in range(n):
ai, bi = map(int, input().split())
laptops.append((ai, bi))
laptops.sort()
for i in range(n-1):
if laptops[i][1] > laptops[i+1][1]:
print("Happy Alex")
exit()
print("Poor Alex")
|
Title: Laptops
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
One day Dima and Alex had an argument about the price and quality of laptops. Dima thinks that the more expensive a laptop is, the better it is. Alex disagrees. Alex thinks that there are two laptops, such that the price of the first laptop is less (strictly smaller) than the price of the second laptop but the quality of the first laptop is higher (strictly greater) than the quality of the second laptop.
Please, check the guess of Alex. You are given descriptions of *n* laptops. Determine whether two described above laptops exist.
Input Specification:
The first line contains an integer *n* (1<=≤<=*n*<=≤<=105) — the number of laptops.
Next *n* lines contain two integers each, *a**i* and *b**i* (1<=≤<=*a**i*,<=*b**i*<=≤<=*n*), where *a**i* is the price of the *i*-th laptop, and *b**i* is the number that represents the quality of the *i*-th laptop (the larger the number is, the higher is the quality).
All *a**i* are distinct. All *b**i* are distinct.
Output Specification:
If Alex is correct, print "Happy Alex", otherwise print "Poor Alex" (without the quotes).
Demo Input:
['2\n1 2\n2 1\n']
Demo Output:
['Happy Alex\n']
Note:
none
|
```python
n = int(input())
laptops = []
for _ in range(n):
ai, bi = map(int, input().split())
laptops.append((ai, bi))
laptops.sort()
for i in range(n-1):
if laptops[i][1] > laptops[i+1][1]:
print("Happy Alex")
exit()
print("Poor Alex")
```
| 3
|
|
169
|
A
|
Chores
|
PROGRAMMING
| 800
|
[
"sortings"
] | null | null |
Petya and Vasya are brothers. Today is a special day for them as their parents left them home alone and commissioned them to do *n* chores. Each chore is characterized by a single parameter — its complexity. The complexity of the *i*-th chore equals *h**i*.
As Petya is older, he wants to take the chores with complexity larger than some value *x* (*h**i*<=><=*x*) to leave to Vasya the chores with complexity less than or equal to *x* (*h**i*<=≤<=*x*). The brothers have already decided that Petya will do exactly *a* chores and Vasya will do exactly *b* chores (*a*<=+<=*b*<==<=*n*).
In how many ways can they choose an integer *x* so that Petya got exactly *a* chores and Vasya got exactly *b* chores?
|
The first input line contains three integers *n*,<=*a* and *b* (2<=≤<=*n*<=≤<=2000; *a*,<=*b*<=≥<=1; *a*<=+<=*b*<==<=*n*) — the total number of chores, the number of Petya's chores and the number of Vasya's chores.
The next line contains a sequence of integers *h*1,<=*h*2,<=...,<=*h**n* (1<=≤<=*h**i*<=≤<=109), *h**i* is the complexity of the *i*-th chore. The numbers in the given sequence are not necessarily different.
All numbers on the lines are separated by single spaces.
|
Print the required number of ways to choose an integer value of *x*. If there are no such ways, print 0.
|
[
"5 2 3\n6 2 3 100 1\n",
"7 3 4\n1 1 9 1 1 1 1\n"
] |
[
"3\n",
"0\n"
] |
In the first sample the possible values of *x* are 3, 4 or 5.
In the second sample it is impossible to find such *x*, that Petya got 3 chores and Vasya got 4.
| 500
|
[
{
"input": "5 2 3\n6 2 3 100 1",
"output": "3"
},
{
"input": "7 3 4\n1 1 9 1 1 1 1",
"output": "0"
},
{
"input": "2 1 1\n10 2",
"output": "8"
},
{
"input": "2 1 1\n7 7",
"output": "0"
},
{
"input": "2 1 1\n1 1000000000",
"output": "999999999"
},
{
"input": "3 1 2\n6 5 5",
"output": "1"
},
{
"input": "3 2 1\n10 10 8",
"output": "2"
},
{
"input": "8 3 5\n42 55 61 72 83 10 22 33",
"output": "6"
},
{
"input": "10 5 5\n1 2 3 4 5 999999999 999999998 999999997 999999996 999999995",
"output": "999999990"
},
{
"input": "4 1 3\n10 8 7 3",
"output": "2"
},
{
"input": "4 2 2\n402 10 10 402",
"output": "392"
},
{
"input": "4 1 3\n10 402 402 10",
"output": "0"
},
{
"input": "4 3 1\n100 100 200 200",
"output": "0"
},
{
"input": "150 10 140\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "0"
},
{
"input": "102 101 1\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "0"
}
] | 1,595,870,324
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 29
| 109
| 6,963,200
|
n,a,b=map(int,input().split())
li=sorted(list(map(int,input().split())))
print(li[b]-li[b-1])
|
Title: Chores
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Petya and Vasya are brothers. Today is a special day for them as their parents left them home alone and commissioned them to do *n* chores. Each chore is characterized by a single parameter — its complexity. The complexity of the *i*-th chore equals *h**i*.
As Petya is older, he wants to take the chores with complexity larger than some value *x* (*h**i*<=><=*x*) to leave to Vasya the chores with complexity less than or equal to *x* (*h**i*<=≤<=*x*). The brothers have already decided that Petya will do exactly *a* chores and Vasya will do exactly *b* chores (*a*<=+<=*b*<==<=*n*).
In how many ways can they choose an integer *x* so that Petya got exactly *a* chores and Vasya got exactly *b* chores?
Input Specification:
The first input line contains three integers *n*,<=*a* and *b* (2<=≤<=*n*<=≤<=2000; *a*,<=*b*<=≥<=1; *a*<=+<=*b*<==<=*n*) — the total number of chores, the number of Petya's chores and the number of Vasya's chores.
The next line contains a sequence of integers *h*1,<=*h*2,<=...,<=*h**n* (1<=≤<=*h**i*<=≤<=109), *h**i* is the complexity of the *i*-th chore. The numbers in the given sequence are not necessarily different.
All numbers on the lines are separated by single spaces.
Output Specification:
Print the required number of ways to choose an integer value of *x*. If there are no such ways, print 0.
Demo Input:
['5 2 3\n6 2 3 100 1\n', '7 3 4\n1 1 9 1 1 1 1\n']
Demo Output:
['3\n', '0\n']
Note:
In the first sample the possible values of *x* are 3, 4 or 5.
In the second sample it is impossible to find such *x*, that Petya got 3 chores and Vasya got 4.
|
```python
n,a,b=map(int,input().split())
li=sorted(list(map(int,input().split())))
print(li[b]-li[b-1])
```
| 3
|
|
102
|
B
|
Sum of Digits
|
PROGRAMMING
| 1,000
|
[
"implementation"
] |
B. Sum of Digits
|
2
|
265
|
Having watched the last Harry Potter film, little Gerald also decided to practice magic. He found in his father's magical book a spell that turns any number in the sum of its digits. At the moment Gerald learned that, he came across a number *n*. How many times can Gerald put a spell on it until the number becomes one-digit?
|
The first line contains the only integer *n* (0<=≤<=*n*<=≤<=10100000). It is guaranteed that *n* doesn't contain any leading zeroes.
|
Print the number of times a number can be replaced by the sum of its digits until it only contains one digit.
|
[
"0\n",
"10\n",
"991\n"
] |
[
"0\n",
"1\n",
"3\n"
] |
In the first sample the number already is one-digit — Herald can't cast a spell.
The second test contains number 10. After one casting of a spell it becomes 1, and here the process is completed. Thus, Gerald can only cast the spell once.
The third test contains number 991. As one casts a spell the following transformations take place: 991 → 19 → 10 → 1. After three transformations the number becomes one-digit.
| 1,000
|
[
{
"input": "0",
"output": "0"
},
{
"input": "10",
"output": "1"
},
{
"input": "991",
"output": "3"
},
{
"input": "99",
"output": "2"
},
{
"input": "100",
"output": "1"
},
{
"input": "123456789",
"output": "2"
},
{
"input": "32",
"output": "1"
},
{
"input": "86",
"output": "2"
},
{
"input": "2",
"output": "0"
},
{
"input": "8",
"output": "0"
},
{
"input": "34",
"output": "1"
},
{
"input": "13",
"output": "1"
},
{
"input": "28",
"output": "2"
},
{
"input": "23",
"output": "1"
},
{
"input": "57",
"output": "2"
},
{
"input": "29",
"output": "2"
},
{
"input": "353869285",
"output": "3"
},
{
"input": "549548646",
"output": "2"
},
{
"input": "858893424",
"output": "2"
},
{
"input": "644818852",
"output": "3"
},
{
"input": "360322525",
"output": "3"
},
{
"input": "122937520",
"output": "2"
},
{
"input": "288403032",
"output": "2"
},
{
"input": "677257481",
"output": "3"
},
{
"input": "58059561",
"output": "3"
},
{
"input": "211288847",
"output": "2"
},
{
"input": "339900034079539584",
"output": "2"
},
{
"input": "784084029310269952",
"output": "3"
},
{
"input": "774730557264864000",
"output": "3"
},
{
"input": "478233807148352256",
"output": "3"
},
{
"input": "165646874056812544",
"output": "3"
},
{
"input": "477533739511673792",
"output": "3"
},
{
"input": "660119944377002240",
"output": "3"
},
{
"input": "448375218506078080",
"output": "3"
},
{
"input": "77213334785795616",
"output": "3"
},
{
"input": "165767221702271872",
"output": "3"
},
{
"input": "1",
"output": "0"
},
{
"input": "5",
"output": "0"
},
{
"input": "8",
"output": "0"
},
{
"input": "156161456146164104103460452045416165146141414651641564105461465156445621465146514562146145465165145145614561465145614561",
"output": "3"
},
{
"input": "9",
"output": "0"
}
] | 1,657,188,502
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 51
| 124
| 0
|
n_str = input()
r = 0
while len(n_str) > 1:
n = 0
for i in n_str:
n += int(i)
n_str = str(n)
r += 1
print(r)
|
Title: Sum of Digits
Time Limit: 2 seconds
Memory Limit: 265 megabytes
Problem Description:
Having watched the last Harry Potter film, little Gerald also decided to practice magic. He found in his father's magical book a spell that turns any number in the sum of its digits. At the moment Gerald learned that, he came across a number *n*. How many times can Gerald put a spell on it until the number becomes one-digit?
Input Specification:
The first line contains the only integer *n* (0<=≤<=*n*<=≤<=10100000). It is guaranteed that *n* doesn't contain any leading zeroes.
Output Specification:
Print the number of times a number can be replaced by the sum of its digits until it only contains one digit.
Demo Input:
['0\n', '10\n', '991\n']
Demo Output:
['0\n', '1\n', '3\n']
Note:
In the first sample the number already is one-digit — Herald can't cast a spell.
The second test contains number 10. After one casting of a spell it becomes 1, and here the process is completed. Thus, Gerald can only cast the spell once.
The third test contains number 991. As one casts a spell the following transformations take place: 991 → 19 → 10 → 1. After three transformations the number becomes one-digit.
|
```python
n_str = input()
r = 0
while len(n_str) > 1:
n = 0
for i in n_str:
n += int(i)
n_str = str(n)
r += 1
print(r)
```
| 3.969
|
513
|
A
|
Game
|
PROGRAMMING
| 800
|
[
"constructive algorithms",
"math"
] | null | null |
Two players play a simple game. Each player is provided with a box with balls. First player's box contains exactly *n*1 balls and second player's box contains exactly *n*2 balls. In one move first player can take from 1 to *k*1 balls from his box and throw them away. Similarly, the second player can take from 1 to *k*2 balls from his box in his move. Players alternate turns and the first player starts the game. The one who can't make a move loses. Your task is to determine who wins if both players play optimally.
|
The first line contains four integers *n*1,<=*n*2,<=*k*1,<=*k*2. All numbers in the input are from 1 to 50.
This problem doesn't have subproblems. You will get 3 points for the correct submission.
|
Output "First" if the first player wins and "Second" otherwise.
|
[
"2 2 1 2\n",
"2 1 1 1\n"
] |
[
"Second\n",
"First\n"
] |
Consider the first sample test. Each player has a box with 2 balls. The first player draws a single ball from his box in one move and the second player can either take 1 or 2 balls from his box in one move. No matter how the first player acts, the second player can always win if he plays wisely.
| 3
|
[
{
"input": "2 2 1 2",
"output": "Second"
},
{
"input": "2 1 1 1",
"output": "First"
},
{
"input": "5 7 4 1",
"output": "Second"
},
{
"input": "5 7 1 4",
"output": "Second"
},
{
"input": "5 7 10 10",
"output": "Second"
},
{
"input": "5 7 1 10",
"output": "Second"
},
{
"input": "1 1 1 1",
"output": "Second"
},
{
"input": "50 50 50 50",
"output": "Second"
},
{
"input": "50 49 1 2",
"output": "First"
},
{
"input": "50 48 3 1",
"output": "First"
},
{
"input": "48 50 12 11",
"output": "Second"
},
{
"input": "49 50 11 12",
"output": "Second"
},
{
"input": "49 49 4 1",
"output": "Second"
},
{
"input": "49 49 3 3",
"output": "Second"
},
{
"input": "1 50 1 50",
"output": "Second"
},
{
"input": "1 50 50 50",
"output": "Second"
},
{
"input": "50 1 1 1",
"output": "First"
},
{
"input": "50 1 1 50",
"output": "First"
},
{
"input": "32 31 10 9",
"output": "First"
},
{
"input": "32 4 17 3",
"output": "First"
}
] | 1,587,438,468
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 20
| 93
| 0
|
n1,n2,k1,k2 = map(int,input().split())
output = 'Second'
if n1 > n2:
output ='First'
print(output)
|
Title: Game
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Two players play a simple game. Each player is provided with a box with balls. First player's box contains exactly *n*1 balls and second player's box contains exactly *n*2 balls. In one move first player can take from 1 to *k*1 balls from his box and throw them away. Similarly, the second player can take from 1 to *k*2 balls from his box in his move. Players alternate turns and the first player starts the game. The one who can't make a move loses. Your task is to determine who wins if both players play optimally.
Input Specification:
The first line contains four integers *n*1,<=*n*2,<=*k*1,<=*k*2. All numbers in the input are from 1 to 50.
This problem doesn't have subproblems. You will get 3 points for the correct submission.
Output Specification:
Output "First" if the first player wins and "Second" otherwise.
Demo Input:
['2 2 1 2\n', '2 1 1 1\n']
Demo Output:
['Second\n', 'First\n']
Note:
Consider the first sample test. Each player has a box with 2 balls. The first player draws a single ball from his box in one move and the second player can either take 1 or 2 balls from his box in one move. No matter how the first player acts, the second player can always win if he plays wisely.
|
```python
n1,n2,k1,k2 = map(int,input().split())
output = 'Second'
if n1 > n2:
output ='First'
print(output)
```
| 3
|
|
118
|
A
|
String Task
|
PROGRAMMING
| 1,000
|
[
"implementation",
"strings"
] | null | null |
Petya started to attend programming lessons. On the first lesson his task was to write a simple program. The program was supposed to do the following: in the given string, consisting if uppercase and lowercase Latin letters, it:
- deletes all the vowels, - inserts a character "." before each consonant, - replaces all uppercase consonants with corresponding lowercase ones.
Vowels are letters "A", "O", "Y", "E", "U", "I", and the rest are consonants. The program's input is exactly one string, it should return the output as a single string, resulting after the program's processing the initial string.
Help Petya cope with this easy task.
|
The first line represents input string of Petya's program. This string only consists of uppercase and lowercase Latin letters and its length is from 1 to 100, inclusive.
|
Print the resulting string. It is guaranteed that this string is not empty.
|
[
"tour\n",
"Codeforces\n",
"aBAcAba\n"
] |
[
".t.r\n",
".c.d.f.r.c.s\n",
".b.c.b\n"
] |
none
| 500
|
[
{
"input": "tour",
"output": ".t.r"
},
{
"input": "Codeforces",
"output": ".c.d.f.r.c.s"
},
{
"input": "aBAcAba",
"output": ".b.c.b"
},
{
"input": "obn",
"output": ".b.n"
},
{
"input": "wpwl",
"output": ".w.p.w.l"
},
{
"input": "ggdvq",
"output": ".g.g.d.v.q"
},
{
"input": "pumesz",
"output": ".p.m.s.z"
},
{
"input": "g",
"output": ".g"
},
{
"input": "zjuotps",
"output": ".z.j.t.p.s"
},
{
"input": "jzbwuehe",
"output": ".j.z.b.w.h"
},
{
"input": "tnkgwuugu",
"output": ".t.n.k.g.w.g"
},
{
"input": "kincenvizh",
"output": ".k.n.c.n.v.z.h"
},
{
"input": "xattxjenual",
"output": ".x.t.t.x.j.n.l"
},
{
"input": "ktajqhpqsvhw",
"output": ".k.t.j.q.h.p.q.s.v.h.w"
},
{
"input": "xnhcigytnqcmy",
"output": ".x.n.h.c.g.t.n.q.c.m"
},
{
"input": "jfmtbejyilxcec",
"output": ".j.f.m.t.b.j.l.x.c.c"
},
{
"input": "D",
"output": ".d"
},
{
"input": "ab",
"output": ".b"
},
{
"input": "Ab",
"output": ".b"
},
{
"input": "aB",
"output": ".b"
},
{
"input": "AB",
"output": ".b"
},
{
"input": "ba",
"output": ".b"
},
{
"input": "bA",
"output": ".b"
},
{
"input": "Ba",
"output": ".b"
},
{
"input": "BA",
"output": ".b"
},
{
"input": "aab",
"output": ".b"
},
{
"input": "baa",
"output": ".b"
},
{
"input": "femOZeCArKCpUiHYnbBPTIOFmsHmcpObtPYcLCdjFrUMIyqYzAokKUiiKZRouZiNMoiOuGVoQzaaCAOkquRjmmKKElLNqCnhGdQM",
"output": ".f.m.z.c.r.k.c.p.h.n.b.b.p.t.f.m.s.h.m.c.p.b.t.p.c.l.c.d.j.f.r.m.q.z.k.k.k.z.r.z.n.m.g.v.q.z.c.k.q.r.j.m.m.k.k.l.l.n.q.c.n.h.g.d.q.m"
},
{
"input": "VMBPMCmMDCLFELLIISUJDWQRXYRDGKMXJXJHXVZADRZWVWJRKFRRNSAWKKDPZZLFLNSGUNIVJFBEQsMDHSBJVDTOCSCgZWWKvZZN",
"output": ".v.m.b.p.m.c.m.m.d.c.l.f.l.l.s.j.d.w.q.r.x.r.d.g.k.m.x.j.x.j.h.x.v.z.d.r.z.w.v.w.j.r.k.f.r.r.n.s.w.k.k.d.p.z.z.l.f.l.n.s.g.n.v.j.f.b.q.s.m.d.h.s.b.j.v.d.t.c.s.c.g.z.w.w.k.v.z.z.n"
},
{
"input": "MCGFQQJNUKuAEXrLXibVjClSHjSxmlkQGTKZrRaDNDomIPOmtSgjJAjNVIVLeUGUAOHNkCBwNObVCHOWvNkLFQQbFnugYVMkJruJ",
"output": ".m.c.g.f.q.q.j.n.k.x.r.l.x.b.v.j.c.l.s.h.j.s.x.m.l.k.q.g.t.k.z.r.r.d.n.d.m.p.m.t.s.g.j.j.j.n.v.v.l.g.h.n.k.c.b.w.n.b.v.c.h.w.v.n.k.l.f.q.q.b.f.n.g.v.m.k.j.r.j"
},
{
"input": "iyaiuiwioOyzUaOtAeuEYcevvUyveuyioeeueoeiaoeiavizeeoeyYYaaAOuouueaUioueauayoiuuyiuovyOyiyoyioaoyuoyea",
"output": ".w.z.t.c.v.v.v.v.z.v"
},
{
"input": "yjnckpfyLtzwjsgpcrgCfpljnjwqzgVcufnOvhxplvflxJzqxnhrwgfJmPzifgubvspffmqrwbzivatlmdiBaddiaktdsfPwsevl",
"output": ".j.n.c.k.p.f.l.t.z.w.j.s.g.p.c.r.g.c.f.p.l.j.n.j.w.q.z.g.v.c.f.n.v.h.x.p.l.v.f.l.x.j.z.q.x.n.h.r.w.g.f.j.m.p.z.f.g.b.v.s.p.f.f.m.q.r.w.b.z.v.t.l.m.d.b.d.d.k.t.d.s.f.p.w.s.v.l"
},
{
"input": "RIIIUaAIYJOiuYIUWFPOOAIuaUEZeIooyUEUEAoIyIHYOEAlVAAIiLUAUAeiUIEiUMuuOiAgEUOIAoOUYYEYFEoOIIVeOOAOIIEg",
"output": ".r.j.w.f.p.z.h.l.v.l.m.g.f.v.g"
},
{
"input": "VBKQCFBMQHDMGNSGBQVJTGQCNHHRJMNKGKDPPSQRRVQTZNKBZGSXBPBRXPMVFTXCHZMSJVBRNFNTHBHGJLMDZJSVPZZBCCZNVLMQ",
"output": ".v.b.k.q.c.f.b.m.q.h.d.m.g.n.s.g.b.q.v.j.t.g.q.c.n.h.h.r.j.m.n.k.g.k.d.p.p.s.q.r.r.v.q.t.z.n.k.b.z.g.s.x.b.p.b.r.x.p.m.v.f.t.x.c.h.z.m.s.j.v.b.r.n.f.n.t.h.b.h.g.j.l.m.d.z.j.s.v.p.z.z.b.c.c.z.n.v.l.m.q"
},
{
"input": "iioyoaayeuyoolyiyoeuouiayiiuyTueyiaoiueyioiouyuauouayyiaeoeiiigmioiououeieeeyuyyaYyioiiooaiuouyoeoeg",
"output": ".l.t.g.m.g"
},
{
"input": "ueyiuiauuyyeueykeioouiiauzoyoeyeuyiaoaiiaaoaueyaeydaoauexuueafouiyioueeaaeyoeuaueiyiuiaeeayaioeouiuy",
"output": ".k.z.d.x.f"
},
{
"input": "FSNRBXLFQHZXGVMKLQDVHWLDSLKGKFMDRQWMWSSKPKKQBNDZRSCBLRSKCKKFFKRDMZFZGCNSMXNPMZVDLKXGNXGZQCLRTTDXLMXQ",
"output": ".f.s.n.r.b.x.l.f.q.h.z.x.g.v.m.k.l.q.d.v.h.w.l.d.s.l.k.g.k.f.m.d.r.q.w.m.w.s.s.k.p.k.k.q.b.n.d.z.r.s.c.b.l.r.s.k.c.k.k.f.f.k.r.d.m.z.f.z.g.c.n.s.m.x.n.p.m.z.v.d.l.k.x.g.n.x.g.z.q.c.l.r.t.t.d.x.l.m.x.q"
},
{
"input": "EYAYAYIOIOYOOAUOEUEUOUUYIYUUMOEOIIIAOIUOAAOIYOIOEUIERCEYYAOIOIGYUIAOYUEOEUAEAYPOYEYUUAUOAOEIYIEYUEEY",
"output": ".m.r.c.g.p"
},
{
"input": "jvvzcdcxjstbbksmqjsngxkgtttdxrljjxtwptgwwqzpvqchvgrkqlzxmptzblxhhsmrkmzzmgdfskhtmmnqzzflpmqdctvrfgtx",
"output": ".j.v.v.z.c.d.c.x.j.s.t.b.b.k.s.m.q.j.s.n.g.x.k.g.t.t.t.d.x.r.l.j.j.x.t.w.p.t.g.w.w.q.z.p.v.q.c.h.v.g.r.k.q.l.z.x.m.p.t.z.b.l.x.h.h.s.m.r.k.m.z.z.m.g.d.f.s.k.h.t.m.m.n.q.z.z.f.l.p.m.q.d.c.t.v.r.f.g.t.x"
},
{
"input": "YB",
"output": ".b"
},
{
"input": "fly",
"output": ".f.l"
},
{
"input": "YyyYYYyyYxdwdawdDAWDdaddYYYY",
"output": ".x.d.w.d.w.d.d.w.d.d.d.d"
}
] | 1,698,470,818
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 42
| 92
| 0
|
n=input()
n=n.lower()
a=''
for i in n:
if i!='a' and i!='e' and i!='o' and i!='i' and i!='u' and i!='y':
a=a+'.'+i
print(a)
|
Title: String Task
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Petya started to attend programming lessons. On the first lesson his task was to write a simple program. The program was supposed to do the following: in the given string, consisting if uppercase and lowercase Latin letters, it:
- deletes all the vowels, - inserts a character "." before each consonant, - replaces all uppercase consonants with corresponding lowercase ones.
Vowels are letters "A", "O", "Y", "E", "U", "I", and the rest are consonants. The program's input is exactly one string, it should return the output as a single string, resulting after the program's processing the initial string.
Help Petya cope with this easy task.
Input Specification:
The first line represents input string of Petya's program. This string only consists of uppercase and lowercase Latin letters and its length is from 1 to 100, inclusive.
Output Specification:
Print the resulting string. It is guaranteed that this string is not empty.
Demo Input:
['tour\n', 'Codeforces\n', 'aBAcAba\n']
Demo Output:
['.t.r\n', '.c.d.f.r.c.s\n', '.b.c.b\n']
Note:
none
|
```python
n=input()
n=n.lower()
a=''
for i in n:
if i!='a' and i!='e' and i!='o' and i!='i' and i!='u' and i!='y':
a=a+'.'+i
print(a)
```
| 3
|
|
573
|
A
|
Bear and Poker
|
PROGRAMMING
| 1,300
|
[
"implementation",
"math",
"number theory"
] | null | null |
Limak is an old brown bear. He often plays poker with his friends. Today they went to a casino. There are *n* players (including Limak himself) and right now all of them have bids on the table. *i*-th of them has bid with size *a**i* dollars.
Each player can double his bid any number of times and triple his bid any number of times. The casino has a great jackpot for making all bids equal. Is it possible that Limak and his friends will win a jackpot?
|
First line of input contains an integer *n* (2<=≤<=*n*<=≤<=105), the number of players.
The second line contains *n* integer numbers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=109) — the bids of players.
|
Print "Yes" (without the quotes) if players can make their bids become equal, or "No" otherwise.
|
[
"4\n75 150 75 50\n",
"3\n100 150 250\n"
] |
[
"Yes\n",
"No\n"
] |
In the first sample test first and third players should double their bids twice, second player should double his bid once and fourth player should both double and triple his bid.
It can be shown that in the second sample test there is no way to make all bids equal.
| 500
|
[
{
"input": "4\n75 150 75 50",
"output": "Yes"
},
{
"input": "3\n100 150 250",
"output": "No"
},
{
"input": "7\n34 34 68 34 34 68 34",
"output": "Yes"
},
{
"input": "10\n72 96 12 18 81 20 6 2 54 1",
"output": "No"
},
{
"input": "20\n958692492 954966768 77387000 724664764 101294996 614007760 202904092 555293973 707655552 108023967 73123445 612562357 552908390 914853758 915004122 466129205 122853497 814592742 373389439 818473058",
"output": "No"
},
{
"input": "2\n1 1",
"output": "Yes"
},
{
"input": "2\n72 72",
"output": "Yes"
},
{
"input": "2\n49 42",
"output": "No"
},
{
"input": "3\n1000000000 1000000000 1000000000",
"output": "Yes"
},
{
"input": "6\n162000 96000 648000 1000 864000 432000",
"output": "Yes"
},
{
"input": "8\n600000 100000 100000 100000 900000 600000 900000 600000",
"output": "Yes"
},
{
"input": "12\n2048 1024 6144 1024 3072 3072 6144 1024 4096 2048 6144 3072",
"output": "Yes"
},
{
"input": "20\n246 246 246 246 246 246 246 246 246 246 246 246 246 246 246 246 246 246 246 246",
"output": "Yes"
},
{
"input": "50\n840868705 387420489 387420489 795385082 634350497 206851546 536870912 536870912 414927754 387420489 387420489 536870912 387420489 149011306 373106005 536870912 700746206 387420489 777952883 847215247 176645254 576664386 387420489 230876513 536870912 536870912 536870912 387420489 387420489 536870912 460495524 528643722 387420489 536870912 470369206 899619085 387420489 631148352 387420489 387420489 536870912 414666674 521349938 776784669 387420489 102428009 536870912 387420489 536870912 718311009",
"output": "No"
},
{
"input": "2\n5 6",
"output": "No"
},
{
"input": "3\n536870912 387420489 257407169",
"output": "No"
},
{
"input": "4\n2 2 5 2",
"output": "No"
},
{
"input": "2\n33554432 59049",
"output": "Yes"
},
{
"input": "3\n536870912 387420489 387420489",
"output": "Yes"
},
{
"input": "2\n1 5",
"output": "No"
},
{
"input": "18\n2 3 5 7 11 13 17 19 23 29 31 37 43 47 53 59 67 71",
"output": "No"
},
{
"input": "2\n1 30",
"output": "No"
},
{
"input": "3\n335544320 71744535 71744535",
"output": "Yes"
},
{
"input": "5\n1000000000 999999999 999999998 999999997 999999996",
"output": "No"
},
{
"input": "2\n25 5",
"output": "No"
},
{
"input": "4\n75 150 75 5",
"output": "No"
},
{
"input": "3\n536870912 387420489 362797056",
"output": "Yes"
},
{
"input": "3\n536870912 387420489 89",
"output": "No"
},
{
"input": "4\n547 2606459 222763549 143466789",
"output": "No"
},
{
"input": "3\n129140163 33554432 1",
"output": "Yes"
},
{
"input": "10\n244140625 244140625 244140625 244140625 244140625 244140625 244140625 244140625 536870912 387420489",
"output": "No"
},
{
"input": "3\n5 5 1",
"output": "No"
},
{
"input": "5\n3 7 29 36760123 823996703",
"output": "No"
}
] | 1,613,665,927
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 70
| 218
| 14,950,400
|
from math import gcd
n=int(input());arr=list(map(int,input().split()))
s=set()
for i in arr:
while i%2==0:
i=i//2
while i%3==0:
i=i//3
s.add(i)
if len(s)!=1:print("NO")
else:print("YES")
|
Title: Bear and Poker
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Limak is an old brown bear. He often plays poker with his friends. Today they went to a casino. There are *n* players (including Limak himself) and right now all of them have bids on the table. *i*-th of them has bid with size *a**i* dollars.
Each player can double his bid any number of times and triple his bid any number of times. The casino has a great jackpot for making all bids equal. Is it possible that Limak and his friends will win a jackpot?
Input Specification:
First line of input contains an integer *n* (2<=≤<=*n*<=≤<=105), the number of players.
The second line contains *n* integer numbers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=109) — the bids of players.
Output Specification:
Print "Yes" (without the quotes) if players can make their bids become equal, or "No" otherwise.
Demo Input:
['4\n75 150 75 50\n', '3\n100 150 250\n']
Demo Output:
['Yes\n', 'No\n']
Note:
In the first sample test first and third players should double their bids twice, second player should double his bid once and fourth player should both double and triple his bid.
It can be shown that in the second sample test there is no way to make all bids equal.
|
```python
from math import gcd
n=int(input());arr=list(map(int,input().split()))
s=set()
for i in arr:
while i%2==0:
i=i//2
while i%3==0:
i=i//3
s.add(i)
if len(s)!=1:print("NO")
else:print("YES")
```
| 3
|
|
664
|
A
|
Complicated GCD
|
PROGRAMMING
| 800
|
[
"math",
"number theory"
] | null | null |
Greatest common divisor *GCD*(*a*,<=*b*) of two positive integers *a* and *b* is equal to the biggest integer *d* such that both integers *a* and *b* are divisible by *d*. There are many efficient algorithms to find greatest common divisor *GCD*(*a*,<=*b*), for example, Euclid algorithm.
Formally, find the biggest integer *d*, such that all integers *a*,<=*a*<=+<=1,<=*a*<=+<=2,<=...,<=*b* are divisible by *d*. To make the problem even more complicated we allow *a* and *b* to be up to googol, 10100 — such number do not fit even in 64-bit integer type!
|
The only line of the input contains two integers *a* and *b* (1<=≤<=*a*<=≤<=*b*<=≤<=10100).
|
Output one integer — greatest common divisor of all integers from *a* to *b* inclusive.
|
[
"1 2\n",
"61803398874989484820458683436563811772030917980576 61803398874989484820458683436563811772030917980576\n"
] |
[
"1\n",
"61803398874989484820458683436563811772030917980576\n"
] |
none
| 500
|
[
{
"input": "1 2",
"output": "1"
},
{
"input": "61803398874989484820458683436563811772030917980576 61803398874989484820458683436563811772030917980576",
"output": "61803398874989484820458683436563811772030917980576"
},
{
"input": "1 100",
"output": "1"
},
{
"input": "100 100000",
"output": "1"
},
{
"input": "12345 67890123456789123457",
"output": "1"
},
{
"input": "1 1",
"output": "1"
},
{
"input": "2 2",
"output": "2"
},
{
"input": "8392739158839273915883927391588392739158839273915883927391588392739158839273915883927391588392739158 8392739158839273915883927391588392739158839273915883927391588392739158839273915883927391588392739158",
"output": "8392739158839273915883927391588392739158839273915883927391588392739158839273915883927391588392739158"
},
{
"input": "1 10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000",
"output": "1"
},
{
"input": "8328748239473982794239847237438782379810988324751 9328748239473982794239847237438782379810988324751",
"output": "1"
},
{
"input": "1029398958432734901284327523909481928483573793 1029398958432734901284327523909481928483573794",
"output": "1"
},
{
"input": "10000 1000000000",
"output": "1"
},
{
"input": "10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000",
"output": "10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000"
},
{
"input": "11210171722243 65715435710585778347",
"output": "1"
},
{
"input": "2921881079263974825226940825843 767693191032295360887755303860323261471",
"output": "1"
},
{
"input": "8025352957265704896940312528736939363590612908210603 96027920417708260814607687034511406492969694925539085",
"output": "1"
},
{
"input": "23510978780782786207241069904470895053213996267165977112058175452757132930 210352653280909370107314249722987050753257161175393375412301228883856435481424",
"output": "1"
},
{
"input": "8150070767079366215626260746398623663859344142817267779361251788637547414925170226504788118262 49924902262298336032630839998470954964895251605110946547855439236151401194070172107435992986913614",
"output": "1"
},
{
"input": "15943150466658398903 15943150466658398903",
"output": "15943150466658398903"
},
{
"input": "410470228200245407491525399055972 410470228200245407491525399055972",
"output": "410470228200245407491525399055972"
},
{
"input": "51894705655711504622197349350106792045098781545973899451307 51894705655711504622197349350106792045098781545973899451307",
"output": "51894705655711504622197349350106792045098781545973899451307"
},
{
"input": "60353594589897438036015726222485085035927634677598681595162804007836722215668410 60353594589897438036015726222485085035927634677598681595162804007836722215668410",
"output": "60353594589897438036015726222485085035927634677598681595162804007836722215668410"
},
{
"input": "761733780145118977868180796896376577405349682060892737466239031663476251177476275459280340045369535 761733780145118977868180796896376577405349682060892737466239031663476251177476275459280340045369535",
"output": "761733780145118977868180796896376577405349682060892737466239031663476251177476275459280340045369535"
},
{
"input": "1 2000000000",
"output": "1"
},
{
"input": "13 1928834874",
"output": "1"
},
{
"input": "87 2938984237482934238",
"output": "1"
},
{
"input": "213 413",
"output": "1"
},
{
"input": "3 4",
"output": "1"
}
] | 1,684,758,782
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 28
| 46
| 0
|
a, b = list(map(str, input().split()))
if a == b:print(a)
else:print(1)
|
Title: Complicated GCD
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Greatest common divisor *GCD*(*a*,<=*b*) of two positive integers *a* and *b* is equal to the biggest integer *d* such that both integers *a* and *b* are divisible by *d*. There are many efficient algorithms to find greatest common divisor *GCD*(*a*,<=*b*), for example, Euclid algorithm.
Formally, find the biggest integer *d*, such that all integers *a*,<=*a*<=+<=1,<=*a*<=+<=2,<=...,<=*b* are divisible by *d*. To make the problem even more complicated we allow *a* and *b* to be up to googol, 10100 — such number do not fit even in 64-bit integer type!
Input Specification:
The only line of the input contains two integers *a* and *b* (1<=≤<=*a*<=≤<=*b*<=≤<=10100).
Output Specification:
Output one integer — greatest common divisor of all integers from *a* to *b* inclusive.
Demo Input:
['1 2\n', '61803398874989484820458683436563811772030917980576 61803398874989484820458683436563811772030917980576\n']
Demo Output:
['1\n', '61803398874989484820458683436563811772030917980576\n']
Note:
none
|
```python
a, b = list(map(str, input().split()))
if a == b:print(a)
else:print(1)
```
| 3
|
|
267
|
A
|
Subtractions
|
PROGRAMMING
| 900
|
[
"math",
"number theory"
] | null | null |
You've got two numbers. As long as they are both larger than zero, they go through the same operation: subtract the lesser number from the larger one. If they equal substract one number from the another. For example, one operation transforms pair (4,17) to pair (4,13), it transforms (5,5) to (0,5).
You've got some number of pairs (*a**i*,<=*b**i*). How many operations will be performed for each of them?
|
The first line contains the number of pairs *n* (1<=<=≤<=<=*n*<=<=≤<=<=1000). Then follow *n* lines, each line contains a pair of positive integers *a**i*,<=*b**i* (1<=<=≤<=<=*a**i*,<=<=*b**i*<=<=≤<=<=109).
|
Print the sought number of operations for each pair on a single line.
|
[
"2\n4 17\n7 987654321\n"
] |
[
"8\n141093479\n"
] |
none
| 500
|
[
{
"input": "2\n4 17\n7 987654321",
"output": "8\n141093479"
},
{
"input": "10\n7 987654321\n7 987654321\n7 987654321\n7 987654321\n7 987654321\n7 987654321\n7 987654321\n7 987654321\n7 987654321\n7 987654321",
"output": "141093479\n141093479\n141093479\n141093479\n141093479\n141093479\n141093479\n141093479\n141093479\n141093479"
},
{
"input": "1\n536870912 32",
"output": "16777216"
},
{
"input": "20\n1000000000 999999999\n1000000000 999999999\n1000000000 999999999\n1000000000 999999999\n1000000000 999999999\n1000000000 999999999\n1000000000 999999999\n1000000000 999999999\n1000000000 999999999\n1000000000 999999999\n1000000000 999999999\n1000000000 999999999\n1000000000 999999999\n1000000000 999999999\n1000000000 999999999\n1000000000 999999999\n1000000000 999999999\n1000000000 999999999\n1000000000 999999999\n1000000000 999999999",
"output": "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000"
},
{
"input": "3\n1000000000 1\n1000000000 1\n1 100000000",
"output": "1000000000\n1000000000\n100000000"
}
] | 1,626,263,900
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 35
| 171
| 24,268,800
|
#
# 14.07.2021
#
# CF Testing Round 5 A
t = int (input ())
for ttt in range (0, t) :
s = (input ()).split (' ')
a = int (s [0])
b = int (s [1])
k = 0
while a > 0 and b > 0 :
if a > b :
k += a // b; a = a % b
elif b > a :
k += b // a; b = b % a
else :
k += 1; break
print (k)
#
|
Title: Subtractions
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You've got two numbers. As long as they are both larger than zero, they go through the same operation: subtract the lesser number from the larger one. If they equal substract one number from the another. For example, one operation transforms pair (4,17) to pair (4,13), it transforms (5,5) to (0,5).
You've got some number of pairs (*a**i*,<=*b**i*). How many operations will be performed for each of them?
Input Specification:
The first line contains the number of pairs *n* (1<=<=≤<=<=*n*<=<=≤<=<=1000). Then follow *n* lines, each line contains a pair of positive integers *a**i*,<=*b**i* (1<=<=≤<=<=*a**i*,<=<=*b**i*<=<=≤<=<=109).
Output Specification:
Print the sought number of operations for each pair on a single line.
Demo Input:
['2\n4 17\n7 987654321\n']
Demo Output:
['8\n141093479\n']
Note:
none
|
```python
#
# 14.07.2021
#
# CF Testing Round 5 A
t = int (input ())
for ttt in range (0, t) :
s = (input ()).split (' ')
a = int (s [0])
b = int (s [1])
k = 0
while a > 0 and b > 0 :
if a > b :
k += a // b; a = a % b
elif b > a :
k += b // a; b = b % a
else :
k += 1; break
print (k)
#
```
| 3
|
|
0
|
none
|
none
|
none
| 0
|
[
"none"
] | null | null |
Andryusha is an orderly boy and likes to keep things in their place.
Today he faced a problem to put his socks in the wardrobe. He has *n* distinct pairs of socks which are initially in a bag. The pairs are numbered from 1 to *n*. Andryusha wants to put paired socks together and put them in the wardrobe. He takes the socks one by one from the bag, and for each sock he looks whether the pair of this sock has been already took out of the bag, or not. If not (that means the pair of this sock is still in the bag), he puts the current socks on the table in front of him. Otherwise, he puts both socks from the pair to the wardrobe.
Andryusha remembers the order in which he took the socks from the bag. Can you tell him what is the maximum number of socks that were on the table at the same time?
|
The first line contains the single integer *n* (1<=≤<=*n*<=≤<=105) — the number of sock pairs.
The second line contains 2*n* integers *x*1,<=*x*2,<=...,<=*x*2*n* (1<=≤<=*x**i*<=≤<=*n*), which describe the order in which Andryusha took the socks from the bag. More precisely, *x**i* means that the *i*-th sock Andryusha took out was from pair *x**i*.
It is guaranteed that Andryusha took exactly two socks of each pair.
|
Print single integer — the maximum number of socks that were on the table at the same time.
|
[
"1\n1 1\n",
"3\n2 1 1 3 2 3\n"
] |
[
"1\n",
"2\n"
] |
In the first example Andryusha took a sock from the first pair and put it on the table. Then he took the next sock which is from the first pair as well, so he immediately puts both socks to the wardrobe. Thus, at most one sock was on the table at the same time.
In the second example Andryusha behaved as follows:
- Initially the table was empty, he took out a sock from pair 2 and put it on the table. - Sock (2) was on the table. Andryusha took out a sock from pair 1 and put it on the table. - Socks (1, 2) were on the table. Andryusha took out a sock from pair 1, and put this pair into the wardrobe. - Sock (2) was on the table. Andryusha took out a sock from pair 3 and put it on the table. - Socks (2, 3) were on the table. Andryusha took out a sock from pair 2, and put this pair into the wardrobe. - Sock (3) was on the table. Andryusha took out a sock from pair 3 and put this pair into the wardrobe.
| 0
|
[
{
"input": "1\n1 1",
"output": "1"
},
{
"input": "3\n2 1 1 3 2 3",
"output": "2"
},
{
"input": "5\n5 1 3 2 4 3 1 2 4 5",
"output": "5"
},
{
"input": "10\n4 2 6 3 4 8 7 1 1 5 2 10 6 8 3 5 10 9 9 7",
"output": "6"
},
{
"input": "50\n30 47 31 38 37 50 36 43 9 23 2 2 15 31 14 49 9 16 6 44 27 14 5 6 3 47 25 26 1 35 3 15 24 19 8 46 49 41 4 26 40 28 42 11 34 35 46 18 7 28 18 40 19 42 4 41 38 48 50 12 29 39 33 17 25 22 22 21 36 45 27 30 20 7 13 29 39 44 21 8 37 45 34 1 20 10 11 17 33 12 43 13 10 16 48 24 32 5 23 32",
"output": "25"
},
{
"input": "50\n1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 19 19 20 20 21 21 22 22 23 23 24 24 25 25 26 26 27 27 28 28 29 29 30 30 31 31 32 32 33 33 34 34 35 35 36 36 37 37 38 38 39 39 40 40 41 41 42 42 43 43 44 44 45 45 46 46 47 47 48 48 49 49 50 50",
"output": "1"
},
{
"input": "50\n50 50 49 49 48 48 47 47 46 46 45 45 44 44 43 43 42 42 41 41 40 40 39 39 38 38 37 37 36 36 35 35 34 34 33 33 32 32 31 31 30 30 29 29 28 28 27 27 26 26 25 25 24 24 23 23 22 22 21 21 20 20 19 19 18 18 17 17 16 16 15 15 14 14 13 13 12 12 11 11 10 10 9 9 8 8 7 7 6 6 5 5 4 4 3 3 2 2 1 1",
"output": "1"
},
{
"input": "50\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50",
"output": "50"
},
{
"input": "50\n50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1",
"output": "50"
},
{
"input": "10\n2 9 4 1 6 7 10 3 1 5 8 6 2 3 10 7 4 8 5 9",
"output": "9"
}
] | 1,689,246,588
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 56
| 187
| 27,648,000
|
n = int(input())
array = list(map(int, input().split()))
on_table_last_sock = array[0]
on_table_last_socks_set = {array[0]}
max_socks = 1
socks_on_table = 1
for i in range(1, len(array)):
current_sock_taken_from_bag = array[i]
if current_sock_taken_from_bag == on_table_last_sock or current_sock_taken_from_bag in on_table_last_socks_set:
socks_on_table =socks_on_table-1
else:
socks_on_table = socks_on_table+1
if socks_on_table > max_socks:
max_socks = socks_on_table
on_table_last_socks_set.add(array[i])
on_table_last_sock = array[i]
print(max_socks)
|
Title: none
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Andryusha is an orderly boy and likes to keep things in their place.
Today he faced a problem to put his socks in the wardrobe. He has *n* distinct pairs of socks which are initially in a bag. The pairs are numbered from 1 to *n*. Andryusha wants to put paired socks together and put them in the wardrobe. He takes the socks one by one from the bag, and for each sock he looks whether the pair of this sock has been already took out of the bag, or not. If not (that means the pair of this sock is still in the bag), he puts the current socks on the table in front of him. Otherwise, he puts both socks from the pair to the wardrobe.
Andryusha remembers the order in which he took the socks from the bag. Can you tell him what is the maximum number of socks that were on the table at the same time?
Input Specification:
The first line contains the single integer *n* (1<=≤<=*n*<=≤<=105) — the number of sock pairs.
The second line contains 2*n* integers *x*1,<=*x*2,<=...,<=*x*2*n* (1<=≤<=*x**i*<=≤<=*n*), which describe the order in which Andryusha took the socks from the bag. More precisely, *x**i* means that the *i*-th sock Andryusha took out was from pair *x**i*.
It is guaranteed that Andryusha took exactly two socks of each pair.
Output Specification:
Print single integer — the maximum number of socks that were on the table at the same time.
Demo Input:
['1\n1 1\n', '3\n2 1 1 3 2 3\n']
Demo Output:
['1\n', '2\n']
Note:
In the first example Andryusha took a sock from the first pair and put it on the table. Then he took the next sock which is from the first pair as well, so he immediately puts both socks to the wardrobe. Thus, at most one sock was on the table at the same time.
In the second example Andryusha behaved as follows:
- Initially the table was empty, he took out a sock from pair 2 and put it on the table. - Sock (2) was on the table. Andryusha took out a sock from pair 1 and put it on the table. - Socks (1, 2) were on the table. Andryusha took out a sock from pair 1, and put this pair into the wardrobe. - Sock (2) was on the table. Andryusha took out a sock from pair 3 and put it on the table. - Socks (2, 3) were on the table. Andryusha took out a sock from pair 2, and put this pair into the wardrobe. - Sock (3) was on the table. Andryusha took out a sock from pair 3 and put this pair into the wardrobe.
|
```python
n = int(input())
array = list(map(int, input().split()))
on_table_last_sock = array[0]
on_table_last_socks_set = {array[0]}
max_socks = 1
socks_on_table = 1
for i in range(1, len(array)):
current_sock_taken_from_bag = array[i]
if current_sock_taken_from_bag == on_table_last_sock or current_sock_taken_from_bag in on_table_last_socks_set:
socks_on_table =socks_on_table-1
else:
socks_on_table = socks_on_table+1
if socks_on_table > max_socks:
max_socks = socks_on_table
on_table_last_socks_set.add(array[i])
on_table_last_sock = array[i]
print(max_socks)
```
| 3
|
|
199
|
A
|
Hexadecimal's theorem
|
PROGRAMMING
| 900
|
[
"brute force",
"constructive algorithms",
"implementation",
"number theory"
] | null | null |
Recently, a chaotic virus Hexadecimal advanced a new theorem which will shake the Universe. She thinks that each Fibonacci number can be represented as sum of three not necessary different Fibonacci numbers.
Let's remember how Fibonacci numbers can be calculated. *F*0<==<=0, *F*1<==<=1, and all the next numbers are *F**i*<==<=*F**i*<=-<=2<=+<=*F**i*<=-<=1.
So, Fibonacci numbers make a sequence of numbers: 0, 1, 1, 2, 3, 5, 8, 13, ...
If you haven't run away from the PC in fear, you have to help the virus. Your task is to divide given Fibonacci number *n* by three not necessary different Fibonacci numbers or say that it is impossible.
|
The input contains of a single integer *n* (0<=≤<=*n*<=<<=109) — the number that should be represented by the rules described above. It is guaranteed that *n* is a Fibonacci number.
|
Output three required numbers: *a*, *b* and *c*. If there is no answer for the test you have to print "I'm too stupid to solve this problem" without the quotes.
If there are multiple answers, print any of them.
|
[
"3\n",
"13\n"
] |
[
"1 1 1\n",
"2 3 8\n"
] |
none
| 500
|
[
{
"input": "3",
"output": "1 1 1"
},
{
"input": "13",
"output": "2 3 8"
},
{
"input": "0",
"output": "0 0 0"
},
{
"input": "1",
"output": "1 0 0"
},
{
"input": "2",
"output": "1 1 0"
},
{
"input": "1597",
"output": "233 377 987"
},
{
"input": "0",
"output": "0 0 0"
},
{
"input": "1",
"output": "1 0 0"
},
{
"input": "1",
"output": "1 0 0"
},
{
"input": "2",
"output": "1 1 0"
},
{
"input": "3",
"output": "1 1 1"
},
{
"input": "5",
"output": "1 1 3"
},
{
"input": "8",
"output": "1 2 5"
},
{
"input": "13",
"output": "2 3 8"
},
{
"input": "21",
"output": "3 5 13"
},
{
"input": "34",
"output": "5 8 21"
},
{
"input": "55",
"output": "8 13 34"
},
{
"input": "89",
"output": "13 21 55"
},
{
"input": "144",
"output": "21 34 89"
},
{
"input": "233",
"output": "34 55 144"
},
{
"input": "377",
"output": "55 89 233"
},
{
"input": "610",
"output": "89 144 377"
},
{
"input": "987",
"output": "144 233 610"
},
{
"input": "1597",
"output": "233 377 987"
},
{
"input": "2584",
"output": "377 610 1597"
},
{
"input": "4181",
"output": "610 987 2584"
},
{
"input": "6765",
"output": "987 1597 4181"
},
{
"input": "10946",
"output": "1597 2584 6765"
},
{
"input": "17711",
"output": "2584 4181 10946"
},
{
"input": "28657",
"output": "4181 6765 17711"
},
{
"input": "46368",
"output": "6765 10946 28657"
},
{
"input": "75025",
"output": "10946 17711 46368"
},
{
"input": "121393",
"output": "17711 28657 75025"
},
{
"input": "196418",
"output": "28657 46368 121393"
},
{
"input": "317811",
"output": "46368 75025 196418"
},
{
"input": "514229",
"output": "75025 121393 317811"
},
{
"input": "832040",
"output": "121393 196418 514229"
},
{
"input": "1346269",
"output": "196418 317811 832040"
},
{
"input": "2178309",
"output": "317811 514229 1346269"
},
{
"input": "3524578",
"output": "514229 832040 2178309"
},
{
"input": "5702887",
"output": "832040 1346269 3524578"
},
{
"input": "9227465",
"output": "1346269 2178309 5702887"
},
{
"input": "14930352",
"output": "2178309 3524578 9227465"
},
{
"input": "24157817",
"output": "3524578 5702887 14930352"
},
{
"input": "39088169",
"output": "5702887 9227465 24157817"
},
{
"input": "63245986",
"output": "9227465 14930352 39088169"
},
{
"input": "102334155",
"output": "14930352 24157817 63245986"
},
{
"input": "165580141",
"output": "24157817 39088169 102334155"
},
{
"input": "267914296",
"output": "39088169 63245986 165580141"
},
{
"input": "433494437",
"output": "63245986 102334155 267914296"
},
{
"input": "701408733",
"output": "102334155 165580141 433494437"
},
{
"input": "701408733",
"output": "102334155 165580141 433494437"
},
{
"input": "102334155",
"output": "14930352 24157817 63245986"
},
{
"input": "63245986",
"output": "9227465 14930352 39088169"
}
] | 1,591,869,771
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 54
| 280
| 0
|
def search(n,f,m):
l = []
if n == 0:
for i in range(m):
l = [0 for i in range(m)]
return(l)
else:
for i in range(len(f)-1):
if f[i]<=n and f[i+1]>n:
break
return([f[i]]+search(n-f[i],f,m-1))
n = int(input())
if n == 0:
f = [0]
if n>0:
f = [1,2]
a = 1
b = 2
c = 3
while(c<=n):
f.append(c)
a = b
b = c
c = a+b
for i in search(n,f,3):
print(i,end=" ")
print()
|
Title: Hexadecimal's theorem
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Recently, a chaotic virus Hexadecimal advanced a new theorem which will shake the Universe. She thinks that each Fibonacci number can be represented as sum of three not necessary different Fibonacci numbers.
Let's remember how Fibonacci numbers can be calculated. *F*0<==<=0, *F*1<==<=1, and all the next numbers are *F**i*<==<=*F**i*<=-<=2<=+<=*F**i*<=-<=1.
So, Fibonacci numbers make a sequence of numbers: 0, 1, 1, 2, 3, 5, 8, 13, ...
If you haven't run away from the PC in fear, you have to help the virus. Your task is to divide given Fibonacci number *n* by three not necessary different Fibonacci numbers or say that it is impossible.
Input Specification:
The input contains of a single integer *n* (0<=≤<=*n*<=<<=109) — the number that should be represented by the rules described above. It is guaranteed that *n* is a Fibonacci number.
Output Specification:
Output three required numbers: *a*, *b* and *c*. If there is no answer for the test you have to print "I'm too stupid to solve this problem" without the quotes.
If there are multiple answers, print any of them.
Demo Input:
['3\n', '13\n']
Demo Output:
['1 1 1\n', '2 3 8\n']
Note:
none
|
```python
def search(n,f,m):
l = []
if n == 0:
for i in range(m):
l = [0 for i in range(m)]
return(l)
else:
for i in range(len(f)-1):
if f[i]<=n and f[i+1]>n:
break
return([f[i]]+search(n-f[i],f,m-1))
n = int(input())
if n == 0:
f = [0]
if n>0:
f = [1,2]
a = 1
b = 2
c = 3
while(c<=n):
f.append(c)
a = b
b = c
c = a+b
for i in search(n,f,3):
print(i,end=" ")
print()
```
| 3
|
|
350
|
A
|
TL
|
PROGRAMMING
| 1,200
|
[
"brute force",
"greedy",
"implementation"
] | null | null |
Valera wanted to prepare a Codesecrof round. He's already got one problem and he wants to set a time limit (TL) on it.
Valera has written *n* correct solutions. For each correct solution, he knows its running time (in seconds). Valera has also wrote *m* wrong solutions and for each wrong solution he knows its running time (in seconds).
Let's suppose that Valera will set *v* seconds TL in the problem. Then we can say that a solution passes the system testing if its running time is at most *v* seconds. We can also say that a solution passes the system testing with some "extra" time if for its running time, *a* seconds, an inequality 2*a*<=≤<=*v* holds.
As a result, Valera decided to set *v* seconds TL, that the following conditions are met:
1. *v* is a positive integer; 1. all correct solutions pass the system testing; 1. at least one correct solution passes the system testing with some "extra" time; 1. all wrong solutions do not pass the system testing; 1. value *v* is minimum among all TLs, for which points 1, 2, 3, 4 hold.
Help Valera and find the most suitable TL or else state that such TL doesn't exist.
|
The first line contains two integers *n*, *m* (1<=≤<=*n*,<=*m*<=≤<=100). The second line contains *n* space-separated positive integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=100) — the running time of each of the *n* correct solutions in seconds. The third line contains *m* space-separated positive integers *b*1,<=*b*2,<=...,<=*b**m* (1<=≤<=*b**i*<=≤<=100) — the running time of each of *m* wrong solutions in seconds.
|
If there is a valid TL value, print it. Otherwise, print -1.
|
[
"3 6\n4 5 2\n8 9 6 10 7 11\n",
"3 1\n3 4 5\n6\n"
] |
[
"5",
"-1\n"
] |
none
| 500
|
[
{
"input": "3 6\n4 5 2\n8 9 6 10 7 11",
"output": "5"
},
{
"input": "3 1\n3 4 5\n6",
"output": "-1"
},
{
"input": "2 5\n45 99\n49 41 77 83 45",
"output": "-1"
},
{
"input": "50 50\n18 13 5 34 10 36 36 12 15 11 16 17 14 36 23 45 32 24 31 18 24 32 7 1 31 3 49 8 16 23 3 39 47 43 42 38 40 22 41 1 49 47 9 8 19 15 29 30 16 18\n91 58 86 51 94 94 73 84 98 69 74 56 52 80 88 61 53 99 88 50 55 95 65 84 87 79 51 52 69 60 74 73 93 61 73 59 64 56 95 78 86 72 79 70 93 78 54 61 71 50",
"output": "49"
},
{
"input": "55 44\n93 17 74 15 34 16 41 80 26 54 94 94 86 93 20 44 63 72 39 43 67 4 37 49 76 94 5 51 64 74 11 47 77 97 57 30 42 72 71 26 8 14 67 64 49 57 30 23 40 4 76 78 87 78 79\n38 55 17 65 26 7 36 65 48 28 49 93 18 98 31 90 26 57 1 26 88 56 48 56 23 13 8 67 80 2 51 3 21 33 20 54 2 45 21 36 3 98 62 2",
"output": "-1"
},
{
"input": "32 100\n30 8 4 35 18 41 18 12 33 39 39 18 39 19 33 46 45 33 34 27 14 39 40 21 38 9 42 35 27 10 14 14\n65 49 89 64 47 78 59 52 73 51 84 82 88 63 91 99 67 87 53 99 75 47 85 82 58 47 80 50 65 91 83 90 77 52 100 88 97 74 98 99 50 93 65 61 65 65 65 96 61 51 84 67 79 90 92 83 100 100 100 95 80 54 77 51 98 64 74 62 60 96 73 74 94 55 89 60 92 65 74 79 66 81 53 47 71 51 54 85 74 97 68 72 88 94 100 85 65 63 65 90",
"output": "46"
},
{
"input": "1 50\n7\n65 52 99 78 71 19 96 72 80 15 50 94 20 35 79 95 44 41 45 53 77 50 74 66 59 96 26 84 27 48 56 84 36 78 89 81 67 34 79 74 99 47 93 92 90 96 72 28 78 66",
"output": "14"
},
{
"input": "1 1\n4\n9",
"output": "8"
},
{
"input": "1 1\n2\n4",
"output": "-1"
},
{
"input": "22 56\n49 20 42 68 15 46 98 78 82 8 7 33 50 30 75 96 36 88 35 99 19 87\n15 18 81 24 35 89 25 32 23 3 48 24 52 69 18 32 23 61 48 98 50 38 5 17 70 20 38 32 49 54 68 11 51 81 46 22 19 59 29 38 45 83 18 13 91 17 84 62 25 60 97 32 23 13 83 58",
"output": "-1"
},
{
"input": "1 1\n50\n100",
"output": "-1"
},
{
"input": "1 1\n49\n100",
"output": "98"
},
{
"input": "1 1\n100\n100",
"output": "-1"
},
{
"input": "1 1\n99\n100",
"output": "-1"
},
{
"input": "8 4\n1 2 49 99 99 95 78 98\n100 100 100 100",
"output": "99"
},
{
"input": "68 85\n43 55 2 4 72 45 19 56 53 81 18 90 11 87 47 8 94 88 24 4 67 9 21 70 25 66 65 27 46 13 8 51 65 99 37 43 71 59 71 79 32 56 49 43 57 85 95 81 40 28 60 36 72 81 60 40 16 78 61 37 29 26 15 95 70 27 50 97\n6 6 48 72 54 31 1 50 29 64 93 9 29 93 66 63 25 90 52 1 66 13 70 30 24 87 32 90 84 72 44 13 25 45 31 16 92 60 87 40 62 7 20 63 86 78 73 88 5 36 74 100 64 34 9 5 62 29 58 48 81 46 84 56 27 1 60 14 54 88 31 93 62 7 9 69 27 48 10 5 33 10 53 66 2",
"output": "-1"
},
{
"input": "5 100\n1 1 1 1 1\n77 53 38 29 97 33 64 17 78 100 27 12 42 44 20 24 44 68 58 57 65 90 8 24 4 6 74 68 61 43 25 69 8 62 36 85 67 48 69 30 35 41 42 12 87 66 50 92 53 76 38 67 85 7 80 78 53 76 94 8 37 50 4 100 4 71 10 48 34 47 83 42 25 81 64 72 25 51 53 75 43 98 53 77 94 38 81 15 89 91 72 76 7 36 27 41 88 18 19 75",
"output": "2"
},
{
"input": "3 3\n2 3 4\n8 9 10",
"output": "4"
},
{
"input": "2 1\n2 3\n15",
"output": "4"
},
{
"input": "2 1\n2 4\n4",
"output": "-1"
},
{
"input": "2 3\n4 5\n10 11 12",
"output": "8"
},
{
"input": "3 1\n2 3 3\n5",
"output": "4"
},
{
"input": "2 1\n9 10\n100",
"output": "18"
},
{
"input": "3 3\n3 12 15\n7 8 9",
"output": "-1"
},
{
"input": "2 2\n3 5\n7 8",
"output": "6"
},
{
"input": "3 3\n4 5 6\n10 11 12",
"output": "8"
},
{
"input": "3 5\n2 3 3\n6 6 6 6 2",
"output": "-1"
},
{
"input": "3 6\n4 5 3\n8 9 7 10 7 11",
"output": "6"
},
{
"input": "3 6\n4 5 2\n8 9 6 10 7 4",
"output": "-1"
},
{
"input": "2 1\n4 6\n10",
"output": "8"
},
{
"input": "1 2\n1\n3 1",
"output": "-1"
},
{
"input": "2 1\n5 6\n20",
"output": "10"
},
{
"input": "2 1\n1 5\n5",
"output": "-1"
},
{
"input": "3 2\n10 20 30\n30 40",
"output": "-1"
},
{
"input": "2 2\n5 6\n7 100",
"output": "-1"
},
{
"input": "2 1\n2 5\n7",
"output": "5"
},
{
"input": "1 1\n5\n20",
"output": "10"
},
{
"input": "2 1\n10 11\n100",
"output": "20"
},
{
"input": "1 1\n1\n10",
"output": "2"
},
{
"input": "1 1\n10\n100",
"output": "20"
}
] | 1,682,797,029
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 45
| 92
| 0
|
n,m = map(int,input().split())
right = list(map(int,input().split()))
wrong = list(map(int,input().split()))
tl = max(right)
if tl < min(wrong):
if min(right)*2 <= tl:
print(tl)
else:
tl = min(right)*2
if tl < min(wrong):
print(tl)
else:
print(-1)
else:
print(-1)
|
Title: TL
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Valera wanted to prepare a Codesecrof round. He's already got one problem and he wants to set a time limit (TL) on it.
Valera has written *n* correct solutions. For each correct solution, he knows its running time (in seconds). Valera has also wrote *m* wrong solutions and for each wrong solution he knows its running time (in seconds).
Let's suppose that Valera will set *v* seconds TL in the problem. Then we can say that a solution passes the system testing if its running time is at most *v* seconds. We can also say that a solution passes the system testing with some "extra" time if for its running time, *a* seconds, an inequality 2*a*<=≤<=*v* holds.
As a result, Valera decided to set *v* seconds TL, that the following conditions are met:
1. *v* is a positive integer; 1. all correct solutions pass the system testing; 1. at least one correct solution passes the system testing with some "extra" time; 1. all wrong solutions do not pass the system testing; 1. value *v* is minimum among all TLs, for which points 1, 2, 3, 4 hold.
Help Valera and find the most suitable TL or else state that such TL doesn't exist.
Input Specification:
The first line contains two integers *n*, *m* (1<=≤<=*n*,<=*m*<=≤<=100). The second line contains *n* space-separated positive integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=100) — the running time of each of the *n* correct solutions in seconds. The third line contains *m* space-separated positive integers *b*1,<=*b*2,<=...,<=*b**m* (1<=≤<=*b**i*<=≤<=100) — the running time of each of *m* wrong solutions in seconds.
Output Specification:
If there is a valid TL value, print it. Otherwise, print -1.
Demo Input:
['3 6\n4 5 2\n8 9 6 10 7 11\n', '3 1\n3 4 5\n6\n']
Demo Output:
['5', '-1\n']
Note:
none
|
```python
n,m = map(int,input().split())
right = list(map(int,input().split()))
wrong = list(map(int,input().split()))
tl = max(right)
if tl < min(wrong):
if min(right)*2 <= tl:
print(tl)
else:
tl = min(right)*2
if tl < min(wrong):
print(tl)
else:
print(-1)
else:
print(-1)
```
| 3
|
|
371
|
A
|
K-Periodic Array
|
PROGRAMMING
| 1,000
|
[
"greedy",
"implementation",
"math"
] | null | null |
This task will exclusively concentrate only on the arrays where all elements equal 1 and/or 2.
Array *a* is *k*-period if its length is divisible by *k* and there is such array *b* of length *k*, that *a* is represented by array *b* written exactly times consecutively. In other words, array *a* is *k*-periodic, if it has period of length *k*.
For example, any array is *n*-periodic, where *n* is the array length. Array [2,<=1,<=2,<=1,<=2,<=1] is at the same time 2-periodic and 6-periodic and array [1,<=2,<=1,<=1,<=2,<=1,<=1,<=2,<=1] is at the same time 3-periodic and 9-periodic.
For the given array *a*, consisting only of numbers one and two, find the minimum number of elements to change to make the array *k*-periodic. If the array already is *k*-periodic, then the required value equals 0.
|
The first line of the input contains a pair of integers *n*, *k* (1<=≤<=*k*<=≤<=*n*<=≤<=100), where *n* is the length of the array and the value *n* is divisible by *k*. The second line contains the sequence of elements of the given array *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=2), *a**i* is the *i*-th element of the array.
|
Print the minimum number of array elements we need to change to make the array *k*-periodic. If the array already is *k*-periodic, then print 0.
|
[
"6 2\n2 1 2 2 2 1\n",
"8 4\n1 1 2 1 1 1 2 1\n",
"9 3\n2 1 1 1 2 1 1 1 2\n"
] |
[
"1\n",
"0\n",
"3\n"
] |
In the first sample it is enough to change the fourth element from 2 to 1, then the array changes to [2, 1, 2, 1, 2, 1].
In the second sample, the given array already is 4-periodic.
In the third sample it is enough to replace each occurrence of number two by number one. In this case the array will look as [1, 1, 1, 1, 1, 1, 1, 1, 1] — this array is simultaneously 1-, 3- and 9-periodic.
| 500
|
[
{
"input": "6 2\n2 1 2 2 2 1",
"output": "1"
},
{
"input": "8 4\n1 1 2 1 1 1 2 1",
"output": "0"
},
{
"input": "9 3\n2 1 1 1 2 1 1 1 2",
"output": "3"
},
{
"input": "1 1\n2",
"output": "0"
},
{
"input": "2 1\n1 1",
"output": "0"
},
{
"input": "2 2\n2 2",
"output": "0"
},
{
"input": "100 1\n1 2 1 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2",
"output": "8"
},
{
"input": "2 1\n1 2",
"output": "1"
},
{
"input": "2 2\n2 1",
"output": "0"
},
{
"input": "3 1\n2 1 2",
"output": "1"
},
{
"input": "3 3\n1 2 1",
"output": "0"
},
{
"input": "4 2\n2 1 2 2",
"output": "1"
},
{
"input": "10 2\n2 2 2 1 1 2 2 2 2 1",
"output": "3"
},
{
"input": "10 5\n2 2 1 2 1 1 2 1 1 1",
"output": "2"
},
{
"input": "20 4\n2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2",
"output": "0"
},
{
"input": "20 5\n2 2 1 1 1 2 1 1 1 1 2 2 1 1 2 2 2 1 1 2",
"output": "3"
},
{
"input": "20 10\n1 2 2 2 2 1 1 1 2 1 1 2 2 2 2 1 2 2 2 1",
"output": "2"
},
{
"input": "100 2\n2 2 1 2 1 2 1 2 1 2 1 2 1 2 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 1 2 1 2 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2",
"output": "5"
},
{
"input": "100 4\n1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 2 2 1 2 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 2 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 2 1 1 2 1 1 1 2 1 2 1 2 1 1 1 2 1 1 1 2 1 1",
"output": "8"
},
{
"input": "100 5\n2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 1 2 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 1 2 2 2 1 1 2 1 2 2 2 2 2 2 2 1 2 2 2",
"output": "16"
},
{
"input": "100 10\n2 1 1 1 1 2 2 2 1 1 2 1 1 2 1 2 1 2 1 1 2 1 1 1 1 2 1 2 1 1 2 1 1 1 1 2 2 2 1 1 2 1 1 1 1 2 1 2 1 1 2 1 1 1 1 2 1 2 2 1 2 1 1 1 1 2 1 2 1 1 2 1 2 1 1 2 1 2 1 1 2 1 1 1 1 2 1 2 1 1 2 1 1 1 2 2 1 2 1 1",
"output": "6"
},
{
"input": "100 20\n2 2 2 1 1 2 1 2 1 2 1 1 2 2 2 2 2 1 2 1 2 2 2 2 1 2 1 2 1 1 1 1 2 2 2 2 1 2 1 1 2 2 2 2 1 2 1 2 1 2 1 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 1 2 1 1 1 1 2 2 2 2 2 1 1 2 2 1 2 2 1 2 1 2 1 2 1 1 2 2 1 2 2 1 1 1",
"output": "13"
},
{
"input": "100 25\n2 2 1 2 2 2 2 2 1 2 2 1 2 1 1 2 1 2 1 2 2 2 1 2 2 2 1 1 2 1 2 1 2 1 2 2 1 2 1 1 2 2 2 1 2 2 1 2 2 2 2 1 1 2 1 2 2 1 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 1 2 1 1 2 2 2 2 2 1 2 2 1 1 2 1 2 2 2 1 2 2 2 2 2 2",
"output": "15"
},
{
"input": "100 10\n2 2 2 2 2 1 2 1 2 1 2 2 2 2 2 1 2 1 2 1 2 2 2 2 2 1 2 1 2 1 2 2 2 2 2 1 2 1 2 1 2 2 2 2 2 1 2 1 2 1 2 2 2 2 2 1 2 1 2 1 2 2 2 2 2 1 2 1 2 1 2 2 2 2 2 1 2 1 2 1 2 2 2 2 2 1 2 1 2 1 2 2 2 2 2 1 2 1 2 1",
"output": "0"
}
] | 1,630,244,481
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 24
| 93
| 20,172,800
|
def f(it, ls):
a = 0
b = 0
for e in ls:
if e[it] == '1':
a += 1
else:
b += 1
return a if a < b else b
n, k = list(map(int, input().split()))
l1 = input().split()
l2 = []
for i in range(0, n, k):
if i + k <= n:
t = tuple(l1[i:i+k])
l2.append(t)
if len(l2) == 1 and len(set(l2)) == 1:
print(0)
else:
print(sum([f(j, l2) for j in range(k)]))
|
Title: K-Periodic Array
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
This task will exclusively concentrate only on the arrays where all elements equal 1 and/or 2.
Array *a* is *k*-period if its length is divisible by *k* and there is such array *b* of length *k*, that *a* is represented by array *b* written exactly times consecutively. In other words, array *a* is *k*-periodic, if it has period of length *k*.
For example, any array is *n*-periodic, where *n* is the array length. Array [2,<=1,<=2,<=1,<=2,<=1] is at the same time 2-periodic and 6-periodic and array [1,<=2,<=1,<=1,<=2,<=1,<=1,<=2,<=1] is at the same time 3-periodic and 9-periodic.
For the given array *a*, consisting only of numbers one and two, find the minimum number of elements to change to make the array *k*-periodic. If the array already is *k*-periodic, then the required value equals 0.
Input Specification:
The first line of the input contains a pair of integers *n*, *k* (1<=≤<=*k*<=≤<=*n*<=≤<=100), where *n* is the length of the array and the value *n* is divisible by *k*. The second line contains the sequence of elements of the given array *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=2), *a**i* is the *i*-th element of the array.
Output Specification:
Print the minimum number of array elements we need to change to make the array *k*-periodic. If the array already is *k*-periodic, then print 0.
Demo Input:
['6 2\n2 1 2 2 2 1\n', '8 4\n1 1 2 1 1 1 2 1\n', '9 3\n2 1 1 1 2 1 1 1 2\n']
Demo Output:
['1\n', '0\n', '3\n']
Note:
In the first sample it is enough to change the fourth element from 2 to 1, then the array changes to [2, 1, 2, 1, 2, 1].
In the second sample, the given array already is 4-periodic.
In the third sample it is enough to replace each occurrence of number two by number one. In this case the array will look as [1, 1, 1, 1, 1, 1, 1, 1, 1] — this array is simultaneously 1-, 3- and 9-periodic.
|
```python
def f(it, ls):
a = 0
b = 0
for e in ls:
if e[it] == '1':
a += 1
else:
b += 1
return a if a < b else b
n, k = list(map(int, input().split()))
l1 = input().split()
l2 = []
for i in range(0, n, k):
if i + k <= n:
t = tuple(l1[i:i+k])
l2.append(t)
if len(l2) == 1 and len(set(l2)) == 1:
print(0)
else:
print(sum([f(j, l2) for j in range(k)]))
```
| 3
|
|
883
|
M
|
Quadcopter Competition
|
PROGRAMMING
| 1,100
|
[
"greedy",
"math"
] | null | null |
Polycarp takes part in a quadcopter competition. According to the rules a flying robot should:
- start the race from some point of a field, - go around the flag, - close cycle returning back to the starting point.
Polycarp knows the coordinates of the starting point (*x*1,<=*y*1) and the coordinates of the point where the flag is situated (*x*2,<=*y*2). Polycarp’s quadcopter can fly only parallel to the sides of the field each tick changing exactly one coordinate by 1. It means that in one tick the quadcopter can fly from the point (*x*,<=*y*) to any of four points: (*x*<=-<=1,<=*y*), (*x*<=+<=1,<=*y*), (*x*,<=*y*<=-<=1) or (*x*,<=*y*<=+<=1).
Thus the quadcopter path is a closed cycle starting and finishing in (*x*1,<=*y*1) and containing the point (*x*2,<=*y*2) strictly inside.
What is the minimal length of the quadcopter path?
|
The first line contains two integer numbers *x*1 and *y*1 (<=-<=100<=≤<=*x*1,<=*y*1<=≤<=100) — coordinates of the quadcopter starting (and finishing) point.
The second line contains two integer numbers *x*2 and *y*2 (<=-<=100<=≤<=*x*2,<=*y*2<=≤<=100) — coordinates of the flag.
It is guaranteed that the quadcopter starting point and the flag do not coincide.
|
Print the length of minimal path of the quadcopter to surround the flag and return back.
|
[
"1 5\n5 2\n",
"0 1\n0 0\n"
] |
[
"18\n",
"8\n"
] |
none
| 0
|
[
{
"input": "1 5\n5 2",
"output": "18"
},
{
"input": "0 1\n0 0",
"output": "8"
},
{
"input": "-100 -100\n100 100",
"output": "804"
},
{
"input": "-100 -100\n-100 100",
"output": "406"
},
{
"input": "-100 -100\n100 -100",
"output": "406"
},
{
"input": "100 -100\n-100 -100",
"output": "406"
},
{
"input": "100 -100\n-100 100",
"output": "804"
},
{
"input": "100 -100\n100 100",
"output": "406"
},
{
"input": "-100 100\n-100 -100",
"output": "406"
},
{
"input": "-100 100\n100 -100",
"output": "804"
},
{
"input": "-100 100\n100 100",
"output": "406"
},
{
"input": "100 100\n-100 -100",
"output": "804"
},
{
"input": "100 100\n-100 100",
"output": "406"
},
{
"input": "100 100\n100 -100",
"output": "406"
},
{
"input": "45 -43\n45 -44",
"output": "8"
},
{
"input": "76 76\n75 75",
"output": "8"
},
{
"input": "-34 -56\n-35 -56",
"output": "8"
},
{
"input": "56 -7\n55 -6",
"output": "8"
},
{
"input": "43 -11\n43 -10",
"output": "8"
},
{
"input": "1 -3\n2 -2",
"output": "8"
},
{
"input": "55 71\n56 71",
"output": "8"
},
{
"input": "54 -87\n55 -88",
"output": "8"
},
{
"input": "22 98\n100 33",
"output": "290"
},
{
"input": "37 84\n-83 5",
"output": "402"
},
{
"input": "52 74\n-73 -39",
"output": "480"
},
{
"input": "66 51\n51 -71",
"output": "278"
},
{
"input": "-31 44\n73 86",
"output": "296"
},
{
"input": "-20 34\n-9 55",
"output": "68"
},
{
"input": "-5 19\n-91 -86",
"output": "386"
},
{
"input": "-82 5\n28 -17",
"output": "268"
},
{
"input": "-90 -100\n55 48",
"output": "590"
},
{
"input": "-75 -14\n-32 8",
"output": "134"
},
{
"input": "-53 -28\n-13 -28",
"output": "86"
},
{
"input": "-42 -46\n10 -64",
"output": "144"
},
{
"input": "55 -42\n25 2",
"output": "152"
},
{
"input": "70 -64\n-54 70",
"output": "520"
},
{
"input": "93 -78\n-32 -75",
"output": "260"
},
{
"input": "8 -93\n79 -6",
"output": "320"
},
{
"input": "50 43\n54 10",
"output": "78"
},
{
"input": "65 32\n-37 71",
"output": "286"
},
{
"input": "80 18\n-15 -58",
"output": "346"
},
{
"input": "94 92\n4 -1",
"output": "370"
},
{
"input": "-10 96\n27 64",
"output": "142"
},
{
"input": "-96 78\n-56 32",
"output": "176"
},
{
"input": "-81 64\n-37 -8",
"output": "236"
},
{
"input": "-58 49\n74 -40",
"output": "446"
},
{
"input": "-62 -55\n1 18",
"output": "276"
},
{
"input": "-51 -69\n-78 86",
"output": "368"
},
{
"input": "-29 -80\n-56 -47",
"output": "124"
},
{
"input": "-14 -94\n55 -90",
"output": "150"
},
{
"input": "83 -2\n82 83",
"output": "176"
},
{
"input": "98 -16\n-96 40",
"output": "504"
},
{
"input": "17 -34\n-86 -93",
"output": "328"
},
{
"input": "32 -48\n33 -37",
"output": "28"
},
{
"input": "74 87\n3 92",
"output": "156"
},
{
"input": "89 73\n-80 49",
"output": "390"
},
{
"input": "4 58\n-61 -80",
"output": "410"
},
{
"input": "15 48\n50 -20",
"output": "210"
},
{
"input": "-82 45\n81 46",
"output": "332"
},
{
"input": "-68 26\n-2 6",
"output": "176"
},
{
"input": "-53 4\n-92 -31",
"output": "152"
},
{
"input": "-30 94\n31 -58",
"output": "430"
},
{
"input": "-38 -11\n58 99",
"output": "416"
},
{
"input": "-27 -25\n-28 68",
"output": "192"
},
{
"input": "-5 -39\n-10 -77",
"output": "90"
},
{
"input": "-90 -54\n9 -9",
"output": "292"
},
{
"input": "7 -57\n28 61",
"output": "282"
},
{
"input": "18 -67\n-51 21",
"output": "318"
},
{
"input": "41 -82\n-33 -15",
"output": "286"
},
{
"input": "56 -8\n91 -55",
"output": "168"
},
{
"input": "-23 -13\n-24 -12",
"output": "8"
},
{
"input": "1 32\n1 33",
"output": "8"
},
{
"input": "25 76\n24 76",
"output": "8"
},
{
"input": "-29 -78\n-28 -79",
"output": "8"
},
{
"input": "-77 19\n-76 19",
"output": "8"
},
{
"input": "-53 63\n-53 62",
"output": "8"
},
{
"input": "86 12\n86 11",
"output": "8"
},
{
"input": "14 56\n13 56",
"output": "8"
},
{
"input": "63 41\n62 40",
"output": "8"
},
{
"input": "0 -4\n1 -4",
"output": "8"
},
{
"input": "24 41\n24 42",
"output": "8"
},
{
"input": "48 85\n49 86",
"output": "8"
},
{
"input": "0 0\n0 1",
"output": "8"
},
{
"input": "0 0\n1 0",
"output": "8"
},
{
"input": "0 0\n1 1",
"output": "8"
},
{
"input": "0 1\n0 0",
"output": "8"
},
{
"input": "0 1\n1 0",
"output": "8"
},
{
"input": "0 1\n1 1",
"output": "8"
},
{
"input": "1 0\n0 0",
"output": "8"
},
{
"input": "1 0\n0 1",
"output": "8"
},
{
"input": "1 0\n1 1",
"output": "8"
},
{
"input": "1 1\n0 0",
"output": "8"
},
{
"input": "1 1\n0 1",
"output": "8"
},
{
"input": "1 1\n1 0",
"output": "8"
},
{
"input": "100 100\n99 -100",
"output": "406"
},
{
"input": "100 100\n-100 99",
"output": "406"
},
{
"input": "-100 -100\n-99 100",
"output": "406"
},
{
"input": "-100 -100\n100 -99",
"output": "406"
},
{
"input": "0 0\n1 2",
"output": "10"
},
{
"input": "0 0\n2 1",
"output": "10"
}
] | 1,600,925,594
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 100
| 109
| 307,200
|
x1,y1 = [i for i in map(int,(input().split()))]
x2,y2 = [i for i in map(int,(input().split()))]
#print(x1,x2,y1,y2)
if x1 == x2 or y1 == y2:
if x1==x2:
x1 +=1
if y1==y2:
y1 +=1
#print(y1)
x = x1-x2
y = y1-y2
#print(x,y)
if x<0:
x = -1*x
if y<0:
y = -1*y
x = 2*(x+1)
y = 2*(y+1)
print(x+y)
|
Title: Quadcopter Competition
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Polycarp takes part in a quadcopter competition. According to the rules a flying robot should:
- start the race from some point of a field, - go around the flag, - close cycle returning back to the starting point.
Polycarp knows the coordinates of the starting point (*x*1,<=*y*1) and the coordinates of the point where the flag is situated (*x*2,<=*y*2). Polycarp’s quadcopter can fly only parallel to the sides of the field each tick changing exactly one coordinate by 1. It means that in one tick the quadcopter can fly from the point (*x*,<=*y*) to any of four points: (*x*<=-<=1,<=*y*), (*x*<=+<=1,<=*y*), (*x*,<=*y*<=-<=1) or (*x*,<=*y*<=+<=1).
Thus the quadcopter path is a closed cycle starting and finishing in (*x*1,<=*y*1) and containing the point (*x*2,<=*y*2) strictly inside.
What is the minimal length of the quadcopter path?
Input Specification:
The first line contains two integer numbers *x*1 and *y*1 (<=-<=100<=≤<=*x*1,<=*y*1<=≤<=100) — coordinates of the quadcopter starting (and finishing) point.
The second line contains two integer numbers *x*2 and *y*2 (<=-<=100<=≤<=*x*2,<=*y*2<=≤<=100) — coordinates of the flag.
It is guaranteed that the quadcopter starting point and the flag do not coincide.
Output Specification:
Print the length of minimal path of the quadcopter to surround the flag and return back.
Demo Input:
['1 5\n5 2\n', '0 1\n0 0\n']
Demo Output:
['18\n', '8\n']
Note:
none
|
```python
x1,y1 = [i for i in map(int,(input().split()))]
x2,y2 = [i for i in map(int,(input().split()))]
#print(x1,x2,y1,y2)
if x1 == x2 or y1 == y2:
if x1==x2:
x1 +=1
if y1==y2:
y1 +=1
#print(y1)
x = x1-x2
y = y1-y2
#print(x,y)
if x<0:
x = -1*x
if y<0:
y = -1*y
x = 2*(x+1)
y = 2*(y+1)
print(x+y)
```
| 3
|
|
50
|
A
|
Domino piling
|
PROGRAMMING
| 800
|
[
"greedy",
"math"
] |
A. Domino piling
|
2
|
256
|
You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions:
1. Each domino completely covers two squares.
2. No two dominoes overlap.
3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board.
Find the maximum number of dominoes, which can be placed under these restrictions.
|
In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16).
|
Output one number — the maximal number of dominoes, which can be placed.
|
[
"2 4\n",
"3 3\n"
] |
[
"4\n",
"4\n"
] |
none
| 500
|
[
{
"input": "2 4",
"output": "4"
},
{
"input": "3 3",
"output": "4"
},
{
"input": "1 5",
"output": "2"
},
{
"input": "1 6",
"output": "3"
},
{
"input": "1 15",
"output": "7"
},
{
"input": "1 16",
"output": "8"
},
{
"input": "2 5",
"output": "5"
},
{
"input": "2 6",
"output": "6"
},
{
"input": "2 7",
"output": "7"
},
{
"input": "2 14",
"output": "14"
},
{
"input": "2 15",
"output": "15"
},
{
"input": "1 4",
"output": "2"
},
{
"input": "2 16",
"output": "16"
},
{
"input": "3 5",
"output": "7"
},
{
"input": "3 6",
"output": "9"
},
{
"input": "3 10",
"output": "15"
},
{
"input": "3 14",
"output": "21"
},
{
"input": "3 15",
"output": "22"
},
{
"input": "3 16",
"output": "24"
},
{
"input": "5 7",
"output": "17"
},
{
"input": "16 16",
"output": "128"
},
{
"input": "15 16",
"output": "120"
},
{
"input": "2 3",
"output": "3"
},
{
"input": "15 15",
"output": "112"
},
{
"input": "14 16",
"output": "112"
},
{
"input": "11 13",
"output": "71"
},
{
"input": "5 16",
"output": "40"
},
{
"input": "8 15",
"output": "60"
},
{
"input": "2 2",
"output": "2"
},
{
"input": "3 4",
"output": "6"
},
{
"input": "4 4",
"output": "8"
},
{
"input": "1 1",
"output": "0"
},
{
"input": "1 2",
"output": "1"
},
{
"input": "1 3",
"output": "1"
},
{
"input": "14 15",
"output": "105"
}
] | 1,686,821,458
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 35
| 92
| 0
|
M, N = map(int, input().split())
max_pizza = (M * N) // 2
print(max_pizza)
|
Title: Domino piling
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions:
1. Each domino completely covers two squares.
2. No two dominoes overlap.
3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board.
Find the maximum number of dominoes, which can be placed under these restrictions.
Input Specification:
In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16).
Output Specification:
Output one number — the maximal number of dominoes, which can be placed.
Demo Input:
['2 4\n', '3 3\n']
Demo Output:
['4\n', '4\n']
Note:
none
|
```python
M, N = map(int, input().split())
max_pizza = (M * N) // 2
print(max_pizza)
```
| 3.977
|
421
|
A
|
Pasha and Hamsters
|
PROGRAMMING
| 800
|
[
"constructive algorithms",
"implementation"
] | null | null |
Pasha has two hamsters: Arthur and Alexander. Pasha put *n* apples in front of them. Pasha knows which apples Arthur likes. Similarly, Pasha knows which apples Alexander likes. Pasha doesn't want any conflict between the hamsters (as they may like the same apple), so he decided to distribute the apples between the hamsters on his own. He is going to give some apples to Arthur and some apples to Alexander. It doesn't matter how many apples each hamster gets but it is important that each hamster gets only the apples he likes. It is possible that somebody doesn't get any apples.
Help Pasha distribute all the apples between the hamsters. Note that Pasha wants to distribute all the apples, not just some of them.
|
The first line contains integers *n*, *a*, *b* (1<=≤<=*n*<=≤<=100; 1<=≤<=*a*,<=*b*<=≤<=*n*) — the number of apples Pasha has, the number of apples Arthur likes and the number of apples Alexander likes, correspondingly.
The next line contains *a* distinct integers — the numbers of the apples Arthur likes. The next line contains *b* distinct integers — the numbers of the apples Alexander likes.
Assume that the apples are numbered from 1 to *n*. The input is such that the answer exists.
|
Print *n* characters, each of them equals either 1 or 2. If the *i*-h character equals 1, then the *i*-th apple should be given to Arthur, otherwise it should be given to Alexander. If there are multiple correct answers, you are allowed to print any of them.
|
[
"4 2 3\n1 2\n2 3 4\n",
"5 5 2\n3 4 1 2 5\n2 3\n"
] |
[
"1 1 2 2\n",
"1 1 1 1 1\n"
] |
none
| 500
|
[
{
"input": "4 2 3\n1 2\n2 3 4",
"output": "1 1 2 2"
},
{
"input": "5 5 2\n3 4 1 2 5\n2 3",
"output": "1 1 1 1 1"
},
{
"input": "100 69 31\n1 3 4 5 6 7 8 9 10 11 12 14 15 16 17 18 19 20 21 24 26 27 29 31 37 38 39 40 44 46 48 49 50 51 53 55 56 57 58 59 60 61 63 64 65 66 67 68 69 70 71 72 74 76 77 78 79 80 81 82 83 89 92 94 95 97 98 99 100\n2 13 22 23 25 28 30 32 33 34 35 36 41 42 43 45 47 52 54 62 73 75 84 85 86 87 88 90 91 93 96",
"output": "1 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 2 1 2 1 1 2 1 2 1 2 2 2 2 2 1 1 1 1 2 2 2 1 2 1 2 1 1 1 1 2 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 2 2 2 2 2 1 2 2 1 2 1 1 2 1 1 1 1"
},
{
"input": "100 56 44\n1 2 5 8 14 15 17 18 20 21 23 24 25 27 30 33 34 35 36 38 41 42 44 45 46 47 48 49 50 53 56 58 59 60 62 63 64 65 68 69 71 75 76 80 81 84 87 88 90 91 92 94 95 96 98 100\n3 4 6 7 9 10 11 12 13 16 19 22 26 28 29 31 32 37 39 40 43 51 52 54 55 57 61 66 67 70 72 73 74 77 78 79 82 83 85 86 89 93 97 99",
"output": "1 1 2 2 1 2 2 1 2 2 2 2 2 1 1 2 1 1 2 1 1 2 1 1 1 2 1 2 2 1 2 2 1 1 1 1 2 1 2 2 1 1 2 1 1 1 1 1 1 1 2 2 1 2 2 1 2 1 1 1 2 1 1 1 1 2 2 1 1 2 1 2 2 2 1 1 2 2 2 1 1 2 2 1 2 2 1 1 2 1 1 1 2 1 1 1 2 1 2 1"
},
{
"input": "100 82 18\n1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 17 18 19 20 22 23 25 27 29 30 31 32 33 34 35 36 37 38 42 43 44 45 46 47 48 49 50 51 53 54 55 57 58 59 60 61 62 63 64 65 66 67 68 69 71 72 73 74 75 77 78 79 80 82 83 86 88 90 91 92 93 94 96 97 98 99 100\n12 21 24 26 28 39 40 41 52 56 70 76 81 84 85 87 89 95",
"output": "1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 2 1 2 1 2 1 1 1 1 1 1 1 1 1 1 2 2 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 2 1 1 2 2 1 2 1 2 1 1 1 1 1 2 1 1 1 1 1"
},
{
"input": "99 72 27\n1 2 3 4 5 6 7 8 10 11 12 13 14 15 16 17 20 23 25 26 28 29 30 32 33 34 35 36 39 41 42 43 44 45 46 47 50 51 52 54 55 56 58 59 60 61 62 67 70 71 72 74 75 76 77 80 81 82 84 85 86 88 90 91 92 93 94 95 96 97 98 99\n9 18 19 21 22 24 27 31 37 38 40 48 49 53 57 63 64 65 66 68 69 73 78 79 83 87 89",
"output": "1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 2 1 2 2 1 2 1 1 2 1 1 1 2 1 1 1 1 1 2 2 1 2 1 1 1 1 1 1 1 2 2 1 1 1 2 1 1 1 2 1 1 1 1 1 2 2 2 2 1 2 2 1 1 1 2 1 1 1 1 2 2 1 1 1 2 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1"
},
{
"input": "99 38 61\n1 3 10 15 16 22 23 28 31 34 35 36 37 38 39 43 44 49 50 53 56 60 63 68 69 70 72 74 75 77 80 81 83 85 96 97 98 99\n2 4 5 6 7 8 9 11 12 13 14 17 18 19 20 21 24 25 26 27 29 30 32 33 40 41 42 45 46 47 48 51 52 54 55 57 58 59 61 62 64 65 66 67 71 73 76 78 79 82 84 86 87 88 89 90 91 92 93 94 95",
"output": "1 2 1 2 2 2 2 2 2 1 2 2 2 2 1 1 2 2 2 2 2 1 1 2 2 2 2 1 2 2 1 2 2 1 1 1 1 1 1 2 2 2 1 1 2 2 2 2 1 1 2 2 1 2 2 1 2 2 2 1 2 2 1 2 2 2 2 1 1 1 2 1 2 1 1 2 1 2 2 1 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 1 1 1 1"
},
{
"input": "99 84 15\n1 2 3 5 6 7 8 9 10 11 12 13 14 15 16 17 19 20 21 22 23 24 25 26 27 28 29 30 31 32 34 35 36 37 38 39 40 41 42 43 44 47 48 50 51 52 53 55 56 58 59 60 61 62 63 64 65 68 69 70 71 72 73 74 75 77 79 80 81 82 83 84 85 86 87 89 90 91 92 93 94 97 98 99\n4 18 33 45 46 49 54 57 66 67 76 78 88 95 96",
"output": "1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 2 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 2 1 1 1"
},
{
"input": "4 3 1\n1 3 4\n2",
"output": "1 2 1 1"
},
{
"input": "4 3 1\n1 2 4\n3",
"output": "1 1 2 1"
},
{
"input": "4 2 2\n2 3\n1 4",
"output": "2 1 1 2"
},
{
"input": "4 3 1\n2 3 4\n1",
"output": "2 1 1 1"
},
{
"input": "1 1 1\n1\n1",
"output": "1"
},
{
"input": "2 1 1\n2\n1",
"output": "2 1"
},
{
"input": "2 1 1\n1\n2",
"output": "1 2"
},
{
"input": "3 3 1\n1 2 3\n1",
"output": "1 1 1"
},
{
"input": "3 3 1\n1 2 3\n3",
"output": "1 1 1"
},
{
"input": "3 2 1\n1 3\n2",
"output": "1 2 1"
},
{
"input": "100 1 100\n84\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100",
"output": "2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2"
},
{
"input": "100 100 1\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100\n17",
"output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1"
},
{
"input": "98 51 47\n1 2 3 4 6 7 8 10 13 15 16 18 19 21 22 23 25 26 27 29 31 32 36 37 39 40 41 43 44 48 49 50 51 52 54 56 58 59 65 66 68 79 80 84 86 88 89 90 94 95 97\n5 9 11 12 14 17 20 24 28 30 33 34 35 38 42 45 46 47 53 55 57 60 61 62 63 64 67 69 70 71 72 73 74 75 76 77 78 81 82 83 85 87 91 92 93 96 98",
"output": "1 1 1 1 2 1 1 1 2 1 2 2 1 2 1 1 2 1 1 2 1 1 1 2 1 1 1 2 1 2 1 1 2 2 2 1 1 2 1 1 1 2 1 1 2 2 2 1 1 1 1 1 2 1 2 1 2 1 1 2 2 2 2 2 1 1 2 1 2 2 2 2 2 2 2 2 2 2 1 1 2 2 2 1 2 1 2 1 1 1 2 2 2 1 1 2 1 2"
},
{
"input": "98 28 70\n1 13 15 16 19 27 28 40 42 43 46 53 54 57 61 63 67 68 69 71 75 76 78 80 88 93 97 98\n2 3 4 5 6 7 8 9 10 11 12 14 17 18 20 21 22 23 24 25 26 29 30 31 32 33 34 35 36 37 38 39 41 44 45 47 48 49 50 51 52 55 56 58 59 60 62 64 65 66 70 72 73 74 77 79 81 82 83 84 85 86 87 89 90 91 92 94 95 96",
"output": "1 2 2 2 2 2 2 2 2 2 2 2 1 2 1 1 2 2 1 2 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 1 2 1 1 2 2 1 2 2 2 2 2 2 1 1 2 2 1 2 2 2 1 2 1 2 2 2 1 1 1 2 1 2 2 2 1 1 2 1 2 1 2 2 2 2 2 2 2 1 2 2 2 2 1 2 2 2 1 1"
},
{
"input": "97 21 76\n7 10 16 17 26 30 34 39 40 42 44 46 53 54 56 64 67 72 78 79 94\n1 2 3 4 5 6 8 9 11 12 13 14 15 18 19 20 21 22 23 24 25 27 28 29 31 32 33 35 36 37 38 41 43 45 47 48 49 50 51 52 55 57 58 59 60 61 62 63 65 66 68 69 70 71 73 74 75 76 77 80 81 82 83 84 85 86 87 88 89 90 91 92 93 95 96 97",
"output": "2 2 2 2 2 2 1 2 2 1 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 2 1 1 2 1 2 1 2 1 2 2 2 2 2 2 1 1 2 1 2 2 2 2 2 2 2 1 2 2 1 2 2 2 2 1 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2"
},
{
"input": "97 21 76\n1 10 12 13 17 18 22 25 31 48 50 54 61 64 67 74 78 81 86 88 94\n2 3 4 5 6 7 8 9 11 14 15 16 19 20 21 23 24 26 27 28 29 30 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 49 51 52 53 55 56 57 58 59 60 62 63 65 66 68 69 70 71 72 73 75 76 77 79 80 82 83 84 85 87 89 90 91 92 93 95 96 97",
"output": "1 2 2 2 2 2 2 2 2 1 2 1 1 2 2 2 1 1 2 2 2 1 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 1 2 2 1 2 2 1 2 2 2 2 2 2 1 2 2 2 1 2 2 1 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2"
},
{
"input": "96 10 86\n2 5 31 37 68 69 80 82 90 91\n1 3 4 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 32 33 34 35 36 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 70 71 72 73 74 75 76 77 78 79 81 83 84 85 86 87 88 89 92 93 94 95 96",
"output": "2 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 1 1 2 2 2 2 2"
},
{
"input": "95 4 91\n58 65 70 93\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 59 60 61 62 63 64 66 67 68 69 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 94 95",
"output": "2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 1 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2"
},
{
"input": "98 88 10\n1 2 4 5 6 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 33 34 35 36 38 39 40 41 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 62 63 64 65 66 67 68 69 71 72 73 74 75 76 77 79 80 81 83 84 85 86 87 88 89 90 92 93 94 95 96 97 98\n3 7 32 37 42 61 70 78 82 91",
"output": "1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1"
},
{
"input": "98 96 2\n1 2 3 4 5 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98\n6 7",
"output": "1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1"
},
{
"input": "97 97 1\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97\n94",
"output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1"
},
{
"input": "97 97 1\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97\n20",
"output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1"
},
{
"input": "96 96 1\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96\n48",
"output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1"
},
{
"input": "95 95 1\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95\n55",
"output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1"
}
] | 1,565,539,573
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 32
| 124
| 0
|
a,b,c=input().split()
a,b,c=int(a),int(b),int(c)
v=input().split()
n=input().split()
d={}
for i in range(b):
if v[i] not in n:
d[int(v[i])]=1
for i in range(c):
d[int(n[i])]=2
for i in range(1,a+1):
print(d[i],end=' ')
|
Title: Pasha and Hamsters
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Pasha has two hamsters: Arthur and Alexander. Pasha put *n* apples in front of them. Pasha knows which apples Arthur likes. Similarly, Pasha knows which apples Alexander likes. Pasha doesn't want any conflict between the hamsters (as they may like the same apple), so he decided to distribute the apples between the hamsters on his own. He is going to give some apples to Arthur and some apples to Alexander. It doesn't matter how many apples each hamster gets but it is important that each hamster gets only the apples he likes. It is possible that somebody doesn't get any apples.
Help Pasha distribute all the apples between the hamsters. Note that Pasha wants to distribute all the apples, not just some of them.
Input Specification:
The first line contains integers *n*, *a*, *b* (1<=≤<=*n*<=≤<=100; 1<=≤<=*a*,<=*b*<=≤<=*n*) — the number of apples Pasha has, the number of apples Arthur likes and the number of apples Alexander likes, correspondingly.
The next line contains *a* distinct integers — the numbers of the apples Arthur likes. The next line contains *b* distinct integers — the numbers of the apples Alexander likes.
Assume that the apples are numbered from 1 to *n*. The input is such that the answer exists.
Output Specification:
Print *n* characters, each of them equals either 1 or 2. If the *i*-h character equals 1, then the *i*-th apple should be given to Arthur, otherwise it should be given to Alexander. If there are multiple correct answers, you are allowed to print any of them.
Demo Input:
['4 2 3\n1 2\n2 3 4\n', '5 5 2\n3 4 1 2 5\n2 3\n']
Demo Output:
['1 1 2 2\n', '1 1 1 1 1\n']
Note:
none
|
```python
a,b,c=input().split()
a,b,c=int(a),int(b),int(c)
v=input().split()
n=input().split()
d={}
for i in range(b):
if v[i] not in n:
d[int(v[i])]=1
for i in range(c):
d[int(n[i])]=2
for i in range(1,a+1):
print(d[i],end=' ')
```
| 3
|
|
915
|
A
|
Garden
|
PROGRAMMING
| 900
|
[
"implementation"
] | null | null |
Luba thinks about watering her garden. The garden can be represented as a segment of length *k*. Luba has got *n* buckets, the *i*-th bucket allows her to water some continuous subsegment of garden of length exactly *a**i* each hour. Luba can't water any parts of the garden that were already watered, also she can't water the ground outside the garden.
Luba has to choose one of the buckets in order to water the garden as fast as possible (as mentioned above, each hour she will water some continuous subsegment of length *a**i* if she chooses the *i*-th bucket). Help her to determine the minimum number of hours she has to spend watering the garden. It is guaranteed that Luba can always choose a bucket so it is possible water the garden.
See the examples for better understanding.
|
The first line of input contains two integer numbers *n* and *k* (1<=≤<=*n*,<=*k*<=≤<=100) — the number of buckets and the length of the garden, respectively.
The second line of input contains *n* integer numbers *a**i* (1<=≤<=*a**i*<=≤<=100) — the length of the segment that can be watered by the *i*-th bucket in one hour.
It is guaranteed that there is at least one bucket such that it is possible to water the garden in integer number of hours using only this bucket.
|
Print one integer number — the minimum number of hours required to water the garden.
|
[
"3 6\n2 3 5\n",
"6 7\n1 2 3 4 5 6\n"
] |
[
"2\n",
"7\n"
] |
In the first test the best option is to choose the bucket that allows to water the segment of length 3. We can't choose the bucket that allows to water the segment of length 5 because then we can't water the whole garden.
In the second test we can choose only the bucket that allows us to water the segment of length 1.
| 0
|
[
{
"input": "3 6\n2 3 5",
"output": "2"
},
{
"input": "6 7\n1 2 3 4 5 6",
"output": "7"
},
{
"input": "5 97\n1 10 50 97 2",
"output": "1"
},
{
"input": "5 97\n1 10 50 100 2",
"output": "97"
},
{
"input": "100 100\n2 46 24 18 86 90 31 38 84 49 58 28 15 80 14 24 87 56 62 87 41 87 55 71 87 32 41 56 91 32 24 75 43 42 35 30 72 53 31 26 54 61 87 85 36 75 44 31 7 38 77 57 61 54 70 77 45 96 39 57 11 8 91 42 52 15 42 30 92 41 27 26 34 27 3 80 32 86 26 97 63 91 30 75 14 7 19 23 45 11 8 43 44 73 11 56 3 55 63 16",
"output": "50"
},
{
"input": "100 91\n13 13 62 96 74 47 81 46 78 21 20 42 4 73 25 30 76 74 58 28 25 52 42 48 74 40 82 9 25 29 17 22 46 64 57 95 81 39 47 86 40 95 97 35 31 98 45 98 47 78 52 63 58 14 89 97 17 95 28 22 20 36 68 38 95 16 2 26 54 47 42 31 31 81 21 21 65 40 82 53 60 71 75 33 96 98 6 22 95 12 5 48 18 27 58 62 5 96 36 75",
"output": "7"
},
{
"input": "8 8\n8 7 6 5 4 3 2 1",
"output": "1"
},
{
"input": "3 8\n4 3 2",
"output": "2"
},
{
"input": "3 8\n2 4 2",
"output": "2"
},
{
"input": "3 6\n1 3 2",
"output": "2"
},
{
"input": "3 6\n3 2 5",
"output": "2"
},
{
"input": "3 8\n4 2 1",
"output": "2"
},
{
"input": "5 6\n2 3 5 1 2",
"output": "2"
},
{
"input": "2 6\n5 3",
"output": "2"
},
{
"input": "4 12\n6 4 3 1",
"output": "2"
},
{
"input": "3 18\n1 9 6",
"output": "2"
},
{
"input": "3 9\n3 2 1",
"output": "3"
},
{
"input": "3 6\n5 3 2",
"output": "2"
},
{
"input": "2 10\n5 2",
"output": "2"
},
{
"input": "2 18\n6 3",
"output": "3"
},
{
"input": "4 12\n1 2 12 3",
"output": "1"
},
{
"input": "3 7\n3 2 1",
"output": "7"
},
{
"input": "3 6\n3 2 1",
"output": "2"
},
{
"input": "5 10\n5 4 3 2 1",
"output": "2"
},
{
"input": "5 16\n8 4 2 1 7",
"output": "2"
},
{
"input": "6 7\n6 5 4 3 7 1",
"output": "1"
},
{
"input": "2 6\n3 2",
"output": "2"
},
{
"input": "2 4\n4 1",
"output": "1"
},
{
"input": "6 8\n2 4 1 3 5 7",
"output": "2"
},
{
"input": "6 8\n6 5 4 3 2 1",
"output": "2"
},
{
"input": "6 15\n5 2 3 6 4 3",
"output": "3"
},
{
"input": "4 8\n2 4 8 1",
"output": "1"
},
{
"input": "2 5\n5 1",
"output": "1"
},
{
"input": "4 18\n3 1 1 2",
"output": "6"
},
{
"input": "2 1\n2 1",
"output": "1"
},
{
"input": "3 10\n2 10 5",
"output": "1"
},
{
"input": "5 12\n12 4 4 4 3",
"output": "1"
},
{
"input": "3 6\n6 3 2",
"output": "1"
},
{
"input": "2 2\n2 1",
"output": "1"
},
{
"input": "3 18\n1 9 3",
"output": "2"
},
{
"input": "3 8\n7 2 4",
"output": "2"
},
{
"input": "2 100\n99 1",
"output": "100"
},
{
"input": "4 12\n1 3 4 2",
"output": "3"
},
{
"input": "3 6\n2 3 1",
"output": "2"
},
{
"input": "4 6\n3 2 5 12",
"output": "2"
},
{
"input": "4 97\n97 1 50 10",
"output": "1"
},
{
"input": "3 12\n1 12 2",
"output": "1"
},
{
"input": "4 12\n1 4 3 2",
"output": "3"
},
{
"input": "1 1\n1",
"output": "1"
},
{
"input": "3 19\n7 1 1",
"output": "19"
},
{
"input": "5 12\n12 4 3 4 4",
"output": "1"
},
{
"input": "3 8\n8 4 2",
"output": "1"
},
{
"input": "3 3\n3 2 1",
"output": "1"
},
{
"input": "5 6\n3 2 4 2 2",
"output": "2"
},
{
"input": "2 16\n8 4",
"output": "2"
},
{
"input": "3 6\n10 2 3",
"output": "2"
},
{
"input": "5 3\n2 4 5 3 6",
"output": "1"
},
{
"input": "11 99\n1 2 3 6 5 4 7 8 99 33 66",
"output": "1"
},
{
"input": "3 12\n3 12 2",
"output": "1"
},
{
"input": "5 25\n24 5 15 25 23",
"output": "1"
},
{
"input": "2 4\n8 1",
"output": "4"
},
{
"input": "4 100\n2 50 4 1",
"output": "2"
},
{
"input": "3 28\n7 14 1",
"output": "2"
},
{
"input": "4 8\n2 8 4 1",
"output": "1"
},
{
"input": "4 6\n6 1 2 3",
"output": "1"
},
{
"input": "2 12\n4 3",
"output": "3"
},
{
"input": "4 12\n1 2 4 3",
"output": "3"
},
{
"input": "5 12\n2 3 12 6 4",
"output": "1"
},
{
"input": "4 4\n1 2 2 4",
"output": "1"
},
{
"input": "3 6\n2 3 2",
"output": "2"
},
{
"input": "4 21\n21 20 21 2",
"output": "1"
},
{
"input": "3 8\n3 4 2",
"output": "2"
},
{
"input": "1 25\n25",
"output": "1"
},
{
"input": "99 12\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99",
"output": "1"
},
{
"input": "98 12\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98",
"output": "1"
},
{
"input": "79 12\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79",
"output": "1"
},
{
"input": "4 32\n1 1 1 1",
"output": "32"
},
{
"input": "1 100\n1",
"output": "100"
},
{
"input": "2 100\n7 1",
"output": "100"
},
{
"input": "7 24\n1 3 6 4 5 2 7",
"output": "4"
},
{
"input": "6 87\n1 2 8 4 5 7",
"output": "87"
},
{
"input": "1 88\n1",
"output": "88"
},
{
"input": "1 89\n1",
"output": "89"
}
] | 1,525,518,618
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 83
| 93
| 7,065,600
|
k = int(input().split()[1])
a = input().split()
for i in range(len(a)):
a[i] = int(a[i])
for d in sorted(a, reverse=True):
if k % d == 0:
break
print (k // d)
|
Title: Garden
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Luba thinks about watering her garden. The garden can be represented as a segment of length *k*. Luba has got *n* buckets, the *i*-th bucket allows her to water some continuous subsegment of garden of length exactly *a**i* each hour. Luba can't water any parts of the garden that were already watered, also she can't water the ground outside the garden.
Luba has to choose one of the buckets in order to water the garden as fast as possible (as mentioned above, each hour she will water some continuous subsegment of length *a**i* if she chooses the *i*-th bucket). Help her to determine the minimum number of hours she has to spend watering the garden. It is guaranteed that Luba can always choose a bucket so it is possible water the garden.
See the examples for better understanding.
Input Specification:
The first line of input contains two integer numbers *n* and *k* (1<=≤<=*n*,<=*k*<=≤<=100) — the number of buckets and the length of the garden, respectively.
The second line of input contains *n* integer numbers *a**i* (1<=≤<=*a**i*<=≤<=100) — the length of the segment that can be watered by the *i*-th bucket in one hour.
It is guaranteed that there is at least one bucket such that it is possible to water the garden in integer number of hours using only this bucket.
Output Specification:
Print one integer number — the minimum number of hours required to water the garden.
Demo Input:
['3 6\n2 3 5\n', '6 7\n1 2 3 4 5 6\n']
Demo Output:
['2\n', '7\n']
Note:
In the first test the best option is to choose the bucket that allows to water the segment of length 3. We can't choose the bucket that allows to water the segment of length 5 because then we can't water the whole garden.
In the second test we can choose only the bucket that allows us to water the segment of length 1.
|
```python
k = int(input().split()[1])
a = input().split()
for i in range(len(a)):
a[i] = int(a[i])
for d in sorted(a, reverse=True):
if k % d == 0:
break
print (k // d)
```
| 3
|
|
26
|
A
|
Almost Prime
|
PROGRAMMING
| 900
|
[
"number theory"
] |
A. Almost Prime
|
2
|
256
|
A number is called almost prime if it has exactly two distinct prime divisors. For example, numbers 6, 18, 24 are almost prime, while 4, 8, 9, 42 are not. Find the amount of almost prime numbers which are between 1 and *n*, inclusive.
|
Input contains one integer number *n* (1<=≤<=*n*<=≤<=3000).
|
Output the amount of almost prime numbers between 1 and *n*, inclusive.
|
[
"10\n",
"21\n"
] |
[
"2\n",
"8\n"
] |
none
| 500
|
[
{
"input": "10",
"output": "2"
},
{
"input": "21",
"output": "8"
},
{
"input": "1",
"output": "0"
},
{
"input": "2",
"output": "0"
},
{
"input": "4",
"output": "0"
},
{
"input": "3",
"output": "0"
},
{
"input": "8",
"output": "1"
},
{
"input": "19",
"output": "6"
},
{
"input": "40",
"output": "19"
},
{
"input": "77",
"output": "41"
},
{
"input": "222",
"output": "125"
},
{
"input": "987",
"output": "501"
},
{
"input": "1000",
"output": "508"
},
{
"input": "2000",
"output": "958"
},
{
"input": "3000",
"output": "1375"
},
{
"input": "2999",
"output": "1375"
},
{
"input": "2998",
"output": "1375"
},
{
"input": "2997",
"output": "1374"
},
{
"input": "1429",
"output": "706"
},
{
"input": "1673",
"output": "808"
},
{
"input": "1500",
"output": "732"
},
{
"input": "500",
"output": "266"
},
{
"input": "856",
"output": "439"
}
] | 1,527,552,247
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 23
| 310
| 1,126,400
|
from fractions import Fraction
import sys
sys.setrecursionlimit(1000*100)
#c=int(input())
#a,b=tuple(map(int,input().split()))
#edges=dict((i,[]) for i in range(1,c+1))
#children=filter(lambda x: x != p, edges[r])
#cs.sort(key=lambda x:Fraction(x[0],x[1]),reverse=True)
#if dp[r] is not None:
n=int(input())
a=[0 for _ in range(0,n+1)]
#print(a)
ret=0
for i in range(2,n+1):
if a[i]==0:
for j in range(2*i,n+1,i):
a[j]+=1
elif a[i]==2:
ret+=1
#print(a)
print(ret)
|
Title: Almost Prime
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
A number is called almost prime if it has exactly two distinct prime divisors. For example, numbers 6, 18, 24 are almost prime, while 4, 8, 9, 42 are not. Find the amount of almost prime numbers which are between 1 and *n*, inclusive.
Input Specification:
Input contains one integer number *n* (1<=≤<=*n*<=≤<=3000).
Output Specification:
Output the amount of almost prime numbers between 1 and *n*, inclusive.
Demo Input:
['10\n', '21\n']
Demo Output:
['2\n', '8\n']
Note:
none
|
```python
from fractions import Fraction
import sys
sys.setrecursionlimit(1000*100)
#c=int(input())
#a,b=tuple(map(int,input().split()))
#edges=dict((i,[]) for i in range(1,c+1))
#children=filter(lambda x: x != p, edges[r])
#cs.sort(key=lambda x:Fraction(x[0],x[1]),reverse=True)
#if dp[r] is not None:
n=int(input())
a=[0 for _ in range(0,n+1)]
#print(a)
ret=0
for i in range(2,n+1):
if a[i]==0:
for j in range(2*i,n+1,i):
a[j]+=1
elif a[i]==2:
ret+=1
#print(a)
print(ret)
```
| 3.920402
|
755
|
B
|
PolandBall and Game
|
PROGRAMMING
| 1,100
|
[
"binary search",
"data structures",
"games",
"greedy",
"sortings",
"strings"
] | null | null |
PolandBall is playing a game with EnemyBall. The rules are simple. Players have to say words in turns. You cannot say a word which was already said. PolandBall starts. The Ball which can't say a new word loses.
You're given two lists of words familiar to PolandBall and EnemyBall. Can you determine who wins the game, if both play optimally?
|
The first input line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=103) — number of words PolandBall and EnemyBall know, respectively.
Then *n* strings follow, one per line — words familiar to PolandBall.
Then *m* strings follow, one per line — words familiar to EnemyBall.
Note that one Ball cannot know a word more than once (strings are unique), but some words can be known by both players.
Each word is non-empty and consists of no more than 500 lowercase English alphabet letters.
|
In a single line of print the answer — "YES" if PolandBall wins and "NO" otherwise. Both Balls play optimally.
|
[
"5 1\npolandball\nis\na\ncool\ncharacter\nnope\n",
"2 2\nkremowka\nwadowicka\nkremowka\nwiedenska\n",
"1 2\na\na\nb\n"
] |
[
"YES",
"YES",
"NO"
] |
In the first example PolandBall knows much more words and wins effortlessly.
In the second example if PolandBall says kremowka first, then EnemyBall cannot use that word anymore. EnemyBall can only say wiedenska. PolandBall says wadowicka and wins.
| 1,000
|
[
{
"input": "5 1\npolandball\nis\na\ncool\ncharacter\nnope",
"output": "YES"
},
{
"input": "2 2\nkremowka\nwadowicka\nkremowka\nwiedenska",
"output": "YES"
},
{
"input": "1 2\na\na\nb",
"output": "NO"
},
{
"input": "2 2\na\nb\nb\nc",
"output": "YES"
},
{
"input": "2 1\nc\na\na",
"output": "YES"
},
{
"input": "3 3\nab\nbc\ncd\ncd\ndf\nfg",
"output": "YES"
},
{
"input": "3 3\nc\na\nb\na\nd\ng",
"output": "YES"
},
{
"input": "1 1\naa\naa",
"output": "YES"
},
{
"input": "2 1\na\nb\na",
"output": "YES"
},
{
"input": "6 5\na\nb\nc\nd\ne\nf\nf\ne\nd\nz\ny",
"output": "YES"
},
{
"input": "3 2\na\nb\nc\nd\ne",
"output": "YES"
}
] | 1,646,823,029
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 33
| 46
| 1,433,600
|
n, m = list(map(int, input().split()))
word = set()
for i in range(n+m):
tmp = input()
word.add(tmp)
common = n + m - len(word)
n -= common
m -= common
if common & 1:
n += common // 2 + 1
else:
n += common // 2
m += common // 2
if n > m:
print("YES")
else:
print("NO")
|
Title: PolandBall and Game
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
PolandBall is playing a game with EnemyBall. The rules are simple. Players have to say words in turns. You cannot say a word which was already said. PolandBall starts. The Ball which can't say a new word loses.
You're given two lists of words familiar to PolandBall and EnemyBall. Can you determine who wins the game, if both play optimally?
Input Specification:
The first input line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=103) — number of words PolandBall and EnemyBall know, respectively.
Then *n* strings follow, one per line — words familiar to PolandBall.
Then *m* strings follow, one per line — words familiar to EnemyBall.
Note that one Ball cannot know a word more than once (strings are unique), but some words can be known by both players.
Each word is non-empty and consists of no more than 500 lowercase English alphabet letters.
Output Specification:
In a single line of print the answer — "YES" if PolandBall wins and "NO" otherwise. Both Balls play optimally.
Demo Input:
['5 1\npolandball\nis\na\ncool\ncharacter\nnope\n', '2 2\nkremowka\nwadowicka\nkremowka\nwiedenska\n', '1 2\na\na\nb\n']
Demo Output:
['YES', 'YES', 'NO']
Note:
In the first example PolandBall knows much more words and wins effortlessly.
In the second example if PolandBall says kremowka first, then EnemyBall cannot use that word anymore. EnemyBall can only say wiedenska. PolandBall says wadowicka and wins.
|
```python
n, m = list(map(int, input().split()))
word = set()
for i in range(n+m):
tmp = input()
word.add(tmp)
common = n + m - len(word)
n -= common
m -= common
if common & 1:
n += common // 2 + 1
else:
n += common // 2
m += common // 2
if n > m:
print("YES")
else:
print("NO")
```
| 3
|
|
23
|
B
|
Party
|
PROGRAMMING
| 1,600
|
[
"constructive algorithms",
"graphs",
"math"
] |
B. Party
|
2
|
256
|
*n* people came to a party. Then those, who had no friends among people at the party, left. Then those, who had exactly 1 friend among those who stayed, left as well. Then those, who had exactly 2,<=3,<=...,<=*n*<=-<=1 friends among those who stayed by the moment of their leaving, did the same.
What is the maximum amount of people that could stay at the party in the end?
|
The first input line contains one number *t* — amount of tests (1<=≤<=*t*<=≤<=105). Each of the following *t* lines contains one integer number *n* (1<=≤<=*n*<=≤<=105).
|
For each test output in a separate line one number — the maximum amount of people that could stay in the end.
|
[
"1\n3\n"
] |
[
"1\n"
] |
none
| 0
|
[
{
"input": "1\n3",
"output": "1"
}
] | 1,691,612,547
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 2
| 1,154
| 0
|
t = int(input())
count = 0
while count < t:
n = int(input())
if n <= 2:
print(0)
else:
print(n - 2)
count += 1
|
Title: Party
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
*n* people came to a party. Then those, who had no friends among people at the party, left. Then those, who had exactly 1 friend among those who stayed, left as well. Then those, who had exactly 2,<=3,<=...,<=*n*<=-<=1 friends among those who stayed by the moment of their leaving, did the same.
What is the maximum amount of people that could stay at the party in the end?
Input Specification:
The first input line contains one number *t* — amount of tests (1<=≤<=*t*<=≤<=105). Each of the following *t* lines contains one integer number *n* (1<=≤<=*n*<=≤<=105).
Output Specification:
For each test output in a separate line one number — the maximum amount of people that could stay in the end.
Demo Input:
['1\n3\n']
Demo Output:
['1\n']
Note:
none
|
```python
t = int(input())
count = 0
while count < t:
n = int(input())
if n <= 2:
print(0)
else:
print(n - 2)
count += 1
```
| 3.7115
|
637
|
B
|
Chat Order
|
PROGRAMMING
| 1,200
|
[
"*special",
"binary search",
"constructive algorithms",
"data structures",
"sortings"
] | null | null |
Polycarp is a big lover of killing time in social networks. A page with a chatlist in his favourite network is made so that when a message is sent to some friend, his friend's chat rises to the very top of the page. The relative order of the other chats doesn't change. If there was no chat with this friend before, then a new chat is simply inserted to the top of the list.
Assuming that the chat list is initially empty, given the sequence of Polycaprus' messages make a list of chats after all of his messages are processed. Assume that no friend wrote any message to Polycarpus.
|
The first line contains integer *n* (1<=≤<=*n*<=≤<=200<=000) — the number of Polycarpus' messages. Next *n* lines enlist the message recipients in the order in which the messages were sent. The name of each participant is a non-empty sequence of lowercase English letters of length at most 10.
|
Print all the recipients to who Polycarp talked to in the order of chats with them, from top to bottom.
|
[
"4\nalex\nivan\nroman\nivan\n",
"8\nalina\nmaria\nekaterina\ndarya\ndarya\nekaterina\nmaria\nalina\n"
] |
[
"ivan\nroman\nalex\n",
"alina\nmaria\nekaterina\ndarya\n"
] |
In the first test case Polycarpus first writes to friend by name "alex", and the list looks as follows:
1. alex
Then Polycarpus writes to friend by name "ivan" and the list looks as follows:
1. ivan 1. alex
Polycarpus writes the third message to friend by name "roman" and the list looks as follows:
1. roman 1. ivan 1. alex
Polycarpus writes the fourth message to friend by name "ivan", to who he has already sent a message, so the list of chats changes as follows:
1. ivan 1. roman 1. alex
| 1,000
|
[
{
"input": "4\nalex\nivan\nroman\nivan",
"output": "ivan\nroman\nalex"
},
{
"input": "8\nalina\nmaria\nekaterina\ndarya\ndarya\nekaterina\nmaria\nalina",
"output": "alina\nmaria\nekaterina\ndarya"
},
{
"input": "1\nwdi",
"output": "wdi"
},
{
"input": "2\nypg\nypg",
"output": "ypg"
},
{
"input": "3\nexhll\nexhll\narruapexj",
"output": "arruapexj\nexhll"
},
{
"input": "3\nfv\nle\nle",
"output": "le\nfv"
},
{
"input": "8\nm\nm\nm\nm\nm\nm\nm\nm",
"output": "m"
},
{
"input": "10\nr\nr\ni\nw\nk\nr\nb\nu\nu\nr",
"output": "r\nu\nb\nk\nw\ni"
},
{
"input": "7\ne\nfau\ncmk\nnzs\nby\nwx\ntjmok",
"output": "tjmok\nwx\nby\nnzs\ncmk\nfau\ne"
},
{
"input": "6\nklrj\nwe\nklrj\nwe\nwe\nwe",
"output": "we\nklrj"
},
{
"input": "8\nzncybqmh\naeebef\nzncybqmh\nn\naeebef\nzncybqmh\nzncybqmh\nzncybqmh",
"output": "zncybqmh\naeebef\nn"
},
{
"input": "30\nkqqcbs\nvap\nkymomn\nj\nkqqcbs\nfuzlzoum\nkymomn\ndbh\nfuzlzoum\nkymomn\nvap\nvlgzs\ndbh\nvlgzs\nbvy\ndbh\nkymomn\nkymomn\neoqql\nkymomn\nkymomn\nkqqcbs\nvlgzs\nkqqcbs\nkqqcbs\nfuzlzoum\nvlgzs\nrylgdoo\nvlgzs\nrylgdoo",
"output": "rylgdoo\nvlgzs\nfuzlzoum\nkqqcbs\nkymomn\neoqql\ndbh\nbvy\nvap\nj"
},
{
"input": "40\nji\nv\nv\nns\nji\nn\nji\nv\nfvy\nvje\nns\nvje\nv\nhas\nv\nusm\nhas\nfvy\nvje\nkdb\nn\nv\nji\nji\nn\nhas\nv\nji\nkdb\nr\nvje\nns\nv\nusm\nn\nvje\nhas\nns\nhas\nn",
"output": "n\nhas\nns\nvje\nusm\nv\nr\nkdb\nji\nfvy"
},
{
"input": "50\njcg\nvle\njopb\nepdb\nnkef\nfv\nxj\nufe\nfuy\noqta\ngbc\nyuz\nec\nyji\nkuux\ncwm\ntq\nnno\nhp\nzry\nxxpp\ntjvo\ngyz\nkwo\nvwqz\nyaqc\njnj\nwoav\nqcv\ndcu\ngc\nhovn\nop\nevy\ndc\ntrpu\nyb\nuzfa\npca\noq\nnhxy\nsiqu\nde\nhphy\nc\nwovu\nf\nbvv\ndsik\nlwyg",
"output": "lwyg\ndsik\nbvv\nf\nwovu\nc\nhphy\nde\nsiqu\nnhxy\noq\npca\nuzfa\nyb\ntrpu\ndc\nevy\nop\nhovn\ngc\ndcu\nqcv\nwoav\njnj\nyaqc\nvwqz\nkwo\ngyz\ntjvo\nxxpp\nzry\nhp\nnno\ntq\ncwm\nkuux\nyji\nec\nyuz\ngbc\noqta\nfuy\nufe\nxj\nfv\nnkef\nepdb\njopb\nvle\njcg"
},
{
"input": "100\nvhh\nvhh\nvhh\nfa\nfa\nvhh\nvhh\nvhh\nfa\nfa\nfa\nvhh\nfa\nvhh\nvhh\nvhh\nfa\nvhh\nvhh\nfa\nfa\nfa\nfa\nfa\nfa\nvhh\nfa\nfa\nvhh\nvhh\nvhh\nfa\nfa\nfa\nvhh\nfa\nvhh\nfa\nvhh\nvhh\nfa\nvhh\nfa\nvhh\nvhh\nvhh\nfa\nvhh\nfa\nfa\nvhh\nfa\nvhh\nvhh\nvhh\nvhh\nfa\nvhh\nvhh\nvhh\nvhh\nfa\nvhh\nvhh\nvhh\nvhh\nvhh\nfa\nvhh\nvhh\nfa\nfa\nfa\nvhh\nfa\nfa\nvhh\nfa\nvhh\nfa\nfa\nfa\nfa\nfa\nfa\nvhh\nvhh\nfa\nvhh\nfa\nfa\nvhh\nfa\nfa\nvhh\nfa\nvhh\nvhh\nfa\nvhh",
"output": "vhh\nfa"
},
{
"input": "2\naa\nbb",
"output": "bb\naa"
},
{
"input": "2\naa\na",
"output": "a\naa"
},
{
"input": "3\naa\naa\naa",
"output": "aa"
},
{
"input": "5\naa\na\naa\na\naa",
"output": "aa\na"
},
{
"input": "7\naaaa\naaaa\naaa\na\naa\naaaaaaa\naaa",
"output": "aaa\naaaaaaa\naa\na\naaaa"
},
{
"input": "5\na\naa\naaa\naaaa\na",
"output": "a\naaaa\naaa\naa"
},
{
"input": "12\naaaaa\naaaaaa\naaaa\naaaaaa\naa\naaaa\naaaa\naaaaaa\na\naaa\naaaaaaaa\naa",
"output": "aa\naaaaaaaa\naaa\na\naaaaaa\naaaa\naaaaa"
},
{
"input": "3\na\naa\naaa",
"output": "aaa\naa\na"
},
{
"input": "9\nzzz\nzzzzz\nzzz\nzzzz\nzz\nzzzz\nzzzzz\nzzzz\nzzzzzzz",
"output": "zzzzzzz\nzzzz\nzzzzz\nzz\nzzz"
}
] | 1,694,220,326
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 95
| 514
| 27,955,200
|
n=int(input())
tab=[0]*n
s=set()
for i in range(len(tab)- 1, -1, -1):
name=input()
tab[i]=name
for i in tab:
if i not in s:
s.add(i)
print(i)
|
Title: Chat Order
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Polycarp is a big lover of killing time in social networks. A page with a chatlist in his favourite network is made so that when a message is sent to some friend, his friend's chat rises to the very top of the page. The relative order of the other chats doesn't change. If there was no chat with this friend before, then a new chat is simply inserted to the top of the list.
Assuming that the chat list is initially empty, given the sequence of Polycaprus' messages make a list of chats after all of his messages are processed. Assume that no friend wrote any message to Polycarpus.
Input Specification:
The first line contains integer *n* (1<=≤<=*n*<=≤<=200<=000) — the number of Polycarpus' messages. Next *n* lines enlist the message recipients in the order in which the messages were sent. The name of each participant is a non-empty sequence of lowercase English letters of length at most 10.
Output Specification:
Print all the recipients to who Polycarp talked to in the order of chats with them, from top to bottom.
Demo Input:
['4\nalex\nivan\nroman\nivan\n', '8\nalina\nmaria\nekaterina\ndarya\ndarya\nekaterina\nmaria\nalina\n']
Demo Output:
['ivan\nroman\nalex\n', 'alina\nmaria\nekaterina\ndarya\n']
Note:
In the first test case Polycarpus first writes to friend by name "alex", and the list looks as follows:
1. alex
Then Polycarpus writes to friend by name "ivan" and the list looks as follows:
1. ivan 1. alex
Polycarpus writes the third message to friend by name "roman" and the list looks as follows:
1. roman 1. ivan 1. alex
Polycarpus writes the fourth message to friend by name "ivan", to who he has already sent a message, so the list of chats changes as follows:
1. ivan 1. roman 1. alex
|
```python
n=int(input())
tab=[0]*n
s=set()
for i in range(len(tab)- 1, -1, -1):
name=input()
tab[i]=name
for i in tab:
if i not in s:
s.add(i)
print(i)
```
| 3
|
|
900
|
A
|
Find Extra One
|
PROGRAMMING
| 800
|
[
"geometry",
"implementation"
] | null | null |
You have *n* distinct points on a plane, none of them lie on *OY* axis. Check that there is a point after removal of which the remaining points are located on one side of the *OY* axis.
|
The first line contains a single positive integer *n* (2<=≤<=*n*<=≤<=105).
The following *n* lines contain coordinates of the points. The *i*-th of these lines contains two single integers *x**i* and *y**i* (|*x**i*|,<=|*y**i*|<=≤<=109, *x**i*<=≠<=0). No two points coincide.
|
Print "Yes" if there is such a point, "No" — otherwise.
You can print every letter in any case (upper or lower).
|
[
"3\n1 1\n-1 -1\n2 -1\n",
"4\n1 1\n2 2\n-1 1\n-2 2\n",
"3\n1 2\n2 1\n4 60\n"
] |
[
"Yes",
"No",
"Yes"
] |
In the first example the second point can be removed.
In the second example there is no suitable for the condition point.
In the third example any point can be removed.
| 500
|
[
{
"input": "3\n1 1\n-1 -1\n2 -1",
"output": "Yes"
},
{
"input": "4\n1 1\n2 2\n-1 1\n-2 2",
"output": "No"
},
{
"input": "3\n1 2\n2 1\n4 60",
"output": "Yes"
},
{
"input": "10\n1 1\n2 2\n3 3\n4 4\n5 5\n6 6\n7 7\n8 8\n9 9\n-1 -1",
"output": "Yes"
},
{
"input": "2\n1000000000 -1000000000\n1000000000 1000000000",
"output": "Yes"
},
{
"input": "23\n-1 1\n-1 2\n-2 4\n-7 -8\n-3 3\n-9 -14\n-5 3\n-6 2\n-7 11\n-4 4\n-8 5\n1 1\n-1 -1\n-1 -2\n-2 -4\n-7 8\n-3 -3\n-9 14\n-5 -3\n-6 -2\n-7 -11\n-4 -4\n-8 -5",
"output": "Yes"
},
{
"input": "4\n-1000000000 -1000000000\n1000000000 1000000000\n-1000000000 1000000000\n1000000000 -1000000000",
"output": "No"
},
{
"input": "2\n-1000000000 1000000000\n-1000000000 -1000000000",
"output": "Yes"
},
{
"input": "5\n-1 -1\n-2 2\n2 2\n2 -2\n3 2",
"output": "No"
},
{
"input": "2\n1 0\n-1 0",
"output": "Yes"
},
{
"input": "4\n-1 1\n-1 2\n-1 3\n-1 4",
"output": "Yes"
},
{
"input": "2\n-1 0\n1 0",
"output": "Yes"
},
{
"input": "2\n1 2\n-1 2",
"output": "Yes"
},
{
"input": "2\n8 0\n7 0",
"output": "Yes"
},
{
"input": "6\n-1 0\n-2 0\n-1 -1\n-1 5\n1 0\n1 1",
"output": "No"
},
{
"input": "4\n1 0\n2 0\n-1 0\n-2 0",
"output": "No"
},
{
"input": "4\n-2 0\n-1 0\n1 0\n2 0",
"output": "No"
},
{
"input": "2\n1 1\n-1 1",
"output": "Yes"
},
{
"input": "4\n-1 0\n-2 0\n1 0\n2 0",
"output": "No"
},
{
"input": "2\n4 3\n-4 -2",
"output": "Yes"
},
{
"input": "4\n1 0\n2 0\n-1 1\n-1 2",
"output": "No"
},
{
"input": "5\n1 1\n2 1\n3 1\n-1 1\n-2 1",
"output": "No"
},
{
"input": "2\n1 1\n-1 -1",
"output": "Yes"
},
{
"input": "4\n1 2\n1 0\n1 -2\n-1 2",
"output": "Yes"
},
{
"input": "5\n-2 3\n-3 3\n4 2\n3 2\n1 2",
"output": "No"
},
{
"input": "3\n2 0\n3 0\n4 0",
"output": "Yes"
},
{
"input": "5\n-3 1\n-2 1\n-1 1\n1 1\n2 1",
"output": "No"
},
{
"input": "4\n-3 0\n1 0\n2 0\n3 0",
"output": "Yes"
},
{
"input": "2\n1 0\n-1 1",
"output": "Yes"
},
{
"input": "3\n-1 0\n1 0\n2 0",
"output": "Yes"
},
{
"input": "5\n1 0\n3 0\n-1 0\n-6 0\n-4 1",
"output": "No"
},
{
"input": "5\n-1 2\n-2 2\n-3 1\n1 2\n2 3",
"output": "No"
},
{
"input": "3\n1 0\n-1 0\n-2 0",
"output": "Yes"
},
{
"input": "4\n1 0\n2 0\n3 1\n4 1",
"output": "Yes"
},
{
"input": "4\n1 0\n1 2\n1 3\n-1 5",
"output": "Yes"
},
{
"input": "4\n2 2\n2 5\n-2 3\n-2 0",
"output": "No"
},
{
"input": "4\n1 1\n-1 1\n-1 0\n-1 -1",
"output": "Yes"
},
{
"input": "4\n2 0\n3 0\n-3 -3\n-3 -4",
"output": "No"
},
{
"input": "4\n-1 0\n-2 0\n-3 0\n-4 0",
"output": "Yes"
},
{
"input": "2\n-1 1\n1 1",
"output": "Yes"
},
{
"input": "5\n1 1\n2 2\n3 3\n-4 -4\n-5 -5",
"output": "No"
},
{
"input": "5\n2 0\n3 0\n4 0\n5 0\n6 0",
"output": "Yes"
},
{
"input": "2\n-1 2\n1 2",
"output": "Yes"
},
{
"input": "4\n1 1\n2 1\n-3 0\n-4 0",
"output": "No"
},
{
"input": "4\n-1 0\n-2 0\n3 0\n4 0",
"output": "No"
},
{
"input": "3\n3 0\n2 0\n1 0",
"output": "Yes"
},
{
"input": "4\n-2 0\n-3 0\n1 -1\n3 1",
"output": "No"
},
{
"input": "3\n-1 -1\n1 1\n2 2",
"output": "Yes"
},
{
"input": "4\n-2 0\n-1 0\n2 0\n1 0",
"output": "No"
},
{
"input": "2\n-3 5\n3 5",
"output": "Yes"
},
{
"input": "2\n-1 5\n1 5",
"output": "Yes"
},
{
"input": "4\n2 0\n3 0\n-2 0\n-3 0",
"output": "No"
},
{
"input": "3\n-1 1\n1 1\n1 -1",
"output": "Yes"
},
{
"input": "2\n1 0\n2 0",
"output": "Yes"
},
{
"input": "4\n-1 1\n-2 1\n2 -1\n3 -1",
"output": "No"
},
{
"input": "5\n1 0\n2 0\n3 0\n-1 0\n-2 0",
"output": "No"
},
{
"input": "4\n-3 0\n-4 0\n-5 0\n-6 0",
"output": "Yes"
},
{
"input": "6\n-3 0\n-2 0\n-1 0\n1 0\n2 0\n3 0",
"output": "No"
},
{
"input": "4\n5 0\n5 1\n6 0\n6 1",
"output": "Yes"
}
] | 1,573,556,140
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 71
| 327
| 10,854,400
|
import itertools
def main():
n = int(input())
d = []
for i in range(n):
d.append([int(v) for v in input().split()])
dp = [dd for dd in d if dd[0]>0]
dn = [dd for dd in d if dd[0] < 0]
if len(dp)<=1:
print("YES")
elif len(dn)<=1:
print("YES")
else:
print("NO")
if __name__ == "__main__":
main()
|
Title: Find Extra One
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You have *n* distinct points on a plane, none of them lie on *OY* axis. Check that there is a point after removal of which the remaining points are located on one side of the *OY* axis.
Input Specification:
The first line contains a single positive integer *n* (2<=≤<=*n*<=≤<=105).
The following *n* lines contain coordinates of the points. The *i*-th of these lines contains two single integers *x**i* and *y**i* (|*x**i*|,<=|*y**i*|<=≤<=109, *x**i*<=≠<=0). No two points coincide.
Output Specification:
Print "Yes" if there is such a point, "No" — otherwise.
You can print every letter in any case (upper or lower).
Demo Input:
['3\n1 1\n-1 -1\n2 -1\n', '4\n1 1\n2 2\n-1 1\n-2 2\n', '3\n1 2\n2 1\n4 60\n']
Demo Output:
['Yes', 'No', 'Yes']
Note:
In the first example the second point can be removed.
In the second example there is no suitable for the condition point.
In the third example any point can be removed.
|
```python
import itertools
def main():
n = int(input())
d = []
for i in range(n):
d.append([int(v) for v in input().split()])
dp = [dd for dd in d if dd[0]>0]
dn = [dd for dd in d if dd[0] < 0]
if len(dp)<=1:
print("YES")
elif len(dn)<=1:
print("YES")
else:
print("NO")
if __name__ == "__main__":
main()
```
| 3
|
|
461
|
A
|
Appleman and Toastman
|
PROGRAMMING
| 1,200
|
[
"greedy",
"sortings"
] | null | null |
Appleman and Toastman play a game. Initially Appleman gives one group of *n* numbers to the Toastman, then they start to complete the following tasks:
- Each time Toastman gets a group of numbers, he sums up all the numbers and adds this sum to the score. Then he gives the group to the Appleman. - Each time Appleman gets a group consisting of a single number, he throws this group out. Each time Appleman gets a group consisting of more than one number, he splits the group into two non-empty groups (he can do it in any way) and gives each of them to Toastman.
After guys complete all the tasks they look at the score value. What is the maximum possible value of score they can get?
|
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=3·105). The second line contains *n* integers *a*1, *a*2, ..., *a**n* (1<=≤<=*a**i*<=≤<=106) — the initial group that is given to Toastman.
|
Print a single integer — the largest possible score.
|
[
"3\n3 1 5\n",
"1\n10\n"
] |
[
"26\n",
"10\n"
] |
Consider the following situation in the first example. Initially Toastman gets group [3, 1, 5] and adds 9 to the score, then he give the group to Appleman. Appleman splits group [3, 1, 5] into two groups: [3, 5] and [1]. Both of them should be given to Toastman. When Toastman receives group [1], he adds 1 to score and gives the group to Appleman (he will throw it out). When Toastman receives group [3, 5], he adds 8 to the score and gives the group to Appleman. Appleman splits [3, 5] in the only possible way: [5] and [3]. Then he gives both groups to Toastman. When Toastman receives [5], he adds 5 to the score and gives the group to Appleman (he will throws it out). When Toastman receives [3], he adds 3 to the score and gives the group to Appleman (he will throws it out). Finally Toastman have added 9 + 1 + 8 + 5 + 3 = 26 to the score. This is the optimal sequence of actions.
| 500
|
[
{
"input": "3\n3 1 5",
"output": "26"
},
{
"input": "1\n10",
"output": "10"
},
{
"input": "10\n8 10 2 5 6 2 4 7 2 1",
"output": "376"
},
{
"input": "10\n171308 397870 724672 431255 228496 892002 542924 718337 888642 161821",
"output": "40204082"
},
{
"input": "10\n1 2 2 2 4 5 6 7 8 10",
"output": "376"
},
{
"input": "10\n161821 171308 228496 397870 431255 542924 718337 724672 888642 892002",
"output": "40204082"
},
{
"input": "1\n397870",
"output": "397870"
},
{
"input": "1\n1000000",
"output": "1000000"
},
{
"input": "10\n10 8 7 6 5 4 2 2 2 1",
"output": "376"
},
{
"input": "10\n892002 888642 724672 718337 542924 431255 397870 228496 171308 161821",
"output": "40204082"
},
{
"input": "10\n5 2 6 10 10 10 10 2 2 5",
"output": "485"
},
{
"input": "10\n431255 724672 228496 397870 397870 397870 397870 724672 888642 431255",
"output": "36742665"
},
{
"input": "10\n2 2 2 5 5 6 10 10 10 10",
"output": "485"
},
{
"input": "10\n228496 397870 397870 397870 397870 431255 431255 724672 724672 888642",
"output": "36742665"
},
{
"input": "10\n10 10 10 10 6 5 5 2 2 2",
"output": "485"
},
{
"input": "10\n888642 724672 724672 431255 431255 397870 397870 397870 397870 228496",
"output": "36742665"
},
{
"input": "10\n10 10 10 10 10 10 10 10 10 10",
"output": "640"
},
{
"input": "10\n1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000",
"output": "64000000"
},
{
"input": "1\n397870",
"output": "397870"
},
{
"input": "2\n1 2",
"output": "6"
},
{
"input": "2\n2 3",
"output": "10"
},
{
"input": "2\n1 1",
"output": "4"
}
] | 1,588,083,037
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 36
| 451
| 20,889,600
|
n=int(input())
a=sorted(list(map(int,input().split())),reverse=True)
mul=n
ans=0
for i in range(n):
if i>1:mul-=1
ans+=(a[i]*mul)
print(ans)
|
Title: Appleman and Toastman
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Appleman and Toastman play a game. Initially Appleman gives one group of *n* numbers to the Toastman, then they start to complete the following tasks:
- Each time Toastman gets a group of numbers, he sums up all the numbers and adds this sum to the score. Then he gives the group to the Appleman. - Each time Appleman gets a group consisting of a single number, he throws this group out. Each time Appleman gets a group consisting of more than one number, he splits the group into two non-empty groups (he can do it in any way) and gives each of them to Toastman.
After guys complete all the tasks they look at the score value. What is the maximum possible value of score they can get?
Input Specification:
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=3·105). The second line contains *n* integers *a*1, *a*2, ..., *a**n* (1<=≤<=*a**i*<=≤<=106) — the initial group that is given to Toastman.
Output Specification:
Print a single integer — the largest possible score.
Demo Input:
['3\n3 1 5\n', '1\n10\n']
Demo Output:
['26\n', '10\n']
Note:
Consider the following situation in the first example. Initially Toastman gets group [3, 1, 5] and adds 9 to the score, then he give the group to Appleman. Appleman splits group [3, 1, 5] into two groups: [3, 5] and [1]. Both of them should be given to Toastman. When Toastman receives group [1], he adds 1 to score and gives the group to Appleman (he will throw it out). When Toastman receives group [3, 5], he adds 8 to the score and gives the group to Appleman. Appleman splits [3, 5] in the only possible way: [5] and [3]. Then he gives both groups to Toastman. When Toastman receives [5], he adds 5 to the score and gives the group to Appleman (he will throws it out). When Toastman receives [3], he adds 3 to the score and gives the group to Appleman (he will throws it out). Finally Toastman have added 9 + 1 + 8 + 5 + 3 = 26 to the score. This is the optimal sequence of actions.
|
```python
n=int(input())
a=sorted(list(map(int,input().split())),reverse=True)
mul=n
ans=0
for i in range(n):
if i>1:mul-=1
ans+=(a[i]*mul)
print(ans)
```
| 3
|
|
567
|
A
|
Lineland Mail
|
PROGRAMMING
| 900
|
[
"greedy",
"implementation"
] | null | null |
All cities of Lineland are located on the *Ox* coordinate axis. Thus, each city is associated with its position *x**i* — a coordinate on the *Ox* axis. No two cities are located at a single point.
Lineland residents love to send letters to each other. A person may send a letter only if the recipient lives in another city (because if they live in the same city, then it is easier to drop in).
Strange but true, the cost of sending the letter is exactly equal to the distance between the sender's city and the recipient's city.
For each city calculate two values *min**i* and *max**i*, where *min**i* is the minimum cost of sending a letter from the *i*-th city to some other city, and *max**i* is the the maximum cost of sending a letter from the *i*-th city to some other city
|
The first line of the input contains integer *n* (2<=≤<=*n*<=≤<=105) — the number of cities in Lineland. The second line contains the sequence of *n* distinct integers *x*1,<=*x*2,<=...,<=*x**n* (<=-<=109<=≤<=*x**i*<=≤<=109), where *x**i* is the *x*-coordinate of the *i*-th city. All the *x**i*'s are distinct and follow in ascending order.
|
Print *n* lines, the *i*-th line must contain two integers *min**i*,<=*max**i*, separated by a space, where *min**i* is the minimum cost of sending a letter from the *i*-th city, and *max**i* is the maximum cost of sending a letter from the *i*-th city.
|
[
"4\n-5 -2 2 7\n",
"2\n-1 1\n"
] |
[
"3 12\n3 9\n4 7\n5 12\n",
"2 2\n2 2\n"
] |
none
| 500
|
[
{
"input": "4\n-5 -2 2 7",
"output": "3 12\n3 9\n4 7\n5 12"
},
{
"input": "2\n-1 1",
"output": "2 2\n2 2"
},
{
"input": "3\n-1 0 1",
"output": "1 2\n1 1\n1 2"
},
{
"input": "4\n-1 0 1 3",
"output": "1 4\n1 3\n1 2\n2 4"
},
{
"input": "3\n-1000000000 0 1000000000",
"output": "1000000000 2000000000\n1000000000 1000000000\n1000000000 2000000000"
},
{
"input": "2\n-1000000000 1000000000",
"output": "2000000000 2000000000\n2000000000 2000000000"
},
{
"input": "10\n1 10 12 15 59 68 130 912 1239 9123",
"output": "9 9122\n2 9113\n2 9111\n3 9108\n9 9064\n9 9055\n62 8993\n327 8211\n327 7884\n7884 9122"
},
{
"input": "5\n-2 -1 0 1 2",
"output": "1 4\n1 3\n1 2\n1 3\n1 4"
},
{
"input": "5\n-2 -1 0 1 3",
"output": "1 5\n1 4\n1 3\n1 3\n2 5"
},
{
"input": "3\n-10000 1 10000",
"output": "10001 20000\n9999 10001\n9999 20000"
},
{
"input": "5\n-1000000000 -999999999 -999999998 -999999997 -999999996",
"output": "1 4\n1 3\n1 2\n1 3\n1 4"
},
{
"input": "10\n-857422304 -529223472 82412729 145077145 188538640 265299215 527377039 588634631 592896147 702473706",
"output": "328198832 1559896010\n328198832 1231697178\n62664416 939835033\n43461495 1002499449\n43461495 1045960944\n76760575 1122721519\n61257592 1384799343\n4261516 1446056935\n4261516 1450318451\n109577559 1559896010"
},
{
"input": "10\n-876779400 -829849659 -781819137 -570920213 18428128 25280705 121178189 219147240 528386329 923854124",
"output": "46929741 1800633524\n46929741 1753703783\n48030522 1705673261\n210898924 1494774337\n6852577 905425996\n6852577 902060105\n95897484 997957589\n97969051 1095926640\n309239089 1405165729\n395467795 1800633524"
},
{
"input": "30\n-15 1 21 25 30 40 59 60 77 81 97 100 103 123 139 141 157 158 173 183 200 215 226 231 244 256 267 279 289 292",
"output": "16 307\n16 291\n4 271\n4 267\n5 262\n10 252\n1 233\n1 232\n4 215\n4 211\n3 195\n3 192\n3 189\n16 169\n2 154\n2 156\n1 172\n1 173\n10 188\n10 198\n15 215\n11 230\n5 241\n5 246\n12 259\n11 271\n11 282\n10 294\n3 304\n3 307"
},
{
"input": "10\n-1000000000 -999999999 -999999997 -999999996 -999999995 -999999994 -999999992 -999999990 -999999988 -999999986",
"output": "1 14\n1 13\n1 11\n1 10\n1 9\n1 8\n2 8\n2 10\n2 12\n2 14"
},
{
"input": "50\n-50000 -49459 -48875 -48456 -48411 -48096 -47901 -47500 -47150 -46808 -46687 -46679 -46337 -45747 -45604 -45194 -44752 -44242 -44231 -44122 -43636 -43274 -42916 -42881 -42386 -42095 -41830 -41618 -41145 -40897 -40534 -40007 -39761 -39389 -39104 -38909 -38630 -38561 -38364 -38255 -38214 -38084 -37959 -37607 -37202 -36890 -36681 -36136 -36123 -35886",
"output": "541 14114\n541 13573\n419 12989\n45 12570\n45 12525\n195 12210\n195 12015\n350 11614\n342 11264\n121 10922\n8 10801\n8 10793\n342 10451\n143 9861\n143 9718\n410 9308\n442 8866\n11 8356\n11 8345\n109 8236\n362 7750\n358 7388\n35 7084\n35 7119\n291 7614\n265 7905\n212 8170\n212 8382\n248 8855\n248 9103\n363 9466\n246 9993\n246 10239\n285 10611\n195 10896\n195 11091\n69 11370\n69 11439\n109 11636\n41 11745\n41 11786\n125 11916\n125 12041\n352 12393\n312 12798\n209 13110\n209 13319\n13 13864\n13 13877\n237 141..."
},
{
"input": "3\n-1000000000 999999999 1000000000",
"output": "1999999999 2000000000\n1 1999999999\n1 2000000000"
}
] | 1,657,717,816
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 54
| 311
| 31,641,600
|
'''
n = int(input())
a, b = map(int, input().split())
arr = list(map(int, input().split()))
'''
n = int(input())
cities = list(enumerate(map(int, input().split())))
cities.sort(key=lambda x:x[1])
output = []
for ind, pos in cities:
a = float("INF")
b = 0
if ind > 0:
a = min(a, pos - cities[ind-1][1])
b = max(b, pos - cities[0][1])
if ind < n-1:
a = min(a, cities[ind+1][1] - pos)
b = max(b, cities[-1][1] - pos)
output.append((ind, a, b))
output.sort(key=lambda x:x[0])
for item in output:
print(item[1], item[2])
|
Title: Lineland Mail
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
All cities of Lineland are located on the *Ox* coordinate axis. Thus, each city is associated with its position *x**i* — a coordinate on the *Ox* axis. No two cities are located at a single point.
Lineland residents love to send letters to each other. A person may send a letter only if the recipient lives in another city (because if they live in the same city, then it is easier to drop in).
Strange but true, the cost of sending the letter is exactly equal to the distance between the sender's city and the recipient's city.
For each city calculate two values *min**i* and *max**i*, where *min**i* is the minimum cost of sending a letter from the *i*-th city to some other city, and *max**i* is the the maximum cost of sending a letter from the *i*-th city to some other city
Input Specification:
The first line of the input contains integer *n* (2<=≤<=*n*<=≤<=105) — the number of cities in Lineland. The second line contains the sequence of *n* distinct integers *x*1,<=*x*2,<=...,<=*x**n* (<=-<=109<=≤<=*x**i*<=≤<=109), where *x**i* is the *x*-coordinate of the *i*-th city. All the *x**i*'s are distinct and follow in ascending order.
Output Specification:
Print *n* lines, the *i*-th line must contain two integers *min**i*,<=*max**i*, separated by a space, where *min**i* is the minimum cost of sending a letter from the *i*-th city, and *max**i* is the maximum cost of sending a letter from the *i*-th city.
Demo Input:
['4\n-5 -2 2 7\n', '2\n-1 1\n']
Demo Output:
['3 12\n3 9\n4 7\n5 12\n', '2 2\n2 2\n']
Note:
none
|
```python
'''
n = int(input())
a, b = map(int, input().split())
arr = list(map(int, input().split()))
'''
n = int(input())
cities = list(enumerate(map(int, input().split())))
cities.sort(key=lambda x:x[1])
output = []
for ind, pos in cities:
a = float("INF")
b = 0
if ind > 0:
a = min(a, pos - cities[ind-1][1])
b = max(b, pos - cities[0][1])
if ind < n-1:
a = min(a, cities[ind+1][1] - pos)
b = max(b, cities[-1][1] - pos)
output.append((ind, a, b))
output.sort(key=lambda x:x[0])
for item in output:
print(item[1], item[2])
```
| 3
|
|
999
|
A
|
Mishka and Contest
|
PROGRAMMING
| 800
|
[
"brute force",
"implementation"
] | null | null |
Mishka started participating in a programming contest. There are $n$ problems in the contest. Mishka's problem-solving skill is equal to $k$.
Mishka arranges all problems from the contest into a list. Because of his weird principles, Mishka only solves problems from one of the ends of the list. Every time, he chooses which end (left or right) he will solve the next problem from. Thus, each problem Mishka solves is either the leftmost or the rightmost problem in the list.
Mishka cannot solve a problem with difficulty greater than $k$. When Mishka solves the problem, it disappears from the list, so the length of the list decreases by $1$. Mishka stops when he is unable to solve any problem from any end of the list.
How many problems can Mishka solve?
|
The first line of input contains two integers $n$ and $k$ ($1 \le n, k \le 100$) — the number of problems in the contest and Mishka's problem-solving skill.
The second line of input contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 100$), where $a_i$ is the difficulty of the $i$-th problem. The problems are given in order from the leftmost to the rightmost in the list.
|
Print one integer — the maximum number of problems Mishka can solve.
|
[
"8 4\n4 2 3 1 5 1 6 4\n",
"5 2\n3 1 2 1 3\n",
"5 100\n12 34 55 43 21\n"
] |
[
"5\n",
"0\n",
"5\n"
] |
In the first example, Mishka can solve problems in the following order: $[4, 2, 3, 1, 5, 1, 6, 4] \rightarrow [2, 3, 1, 5, 1, 6, 4] \rightarrow [2, 3, 1, 5, 1, 6] \rightarrow [3, 1, 5, 1, 6] \rightarrow [1, 5, 1, 6] \rightarrow [5, 1, 6]$, so the number of solved problems will be equal to $5$.
In the second example, Mishka can't solve any problem because the difficulties of problems from both ends are greater than $k$.
In the third example, Mishka's solving skill is so amazing that he can solve all the problems.
| 0
|
[
{
"input": "8 4\n4 2 3 1 5 1 6 4",
"output": "5"
},
{
"input": "5 2\n3 1 2 1 3",
"output": "0"
},
{
"input": "5 100\n12 34 55 43 21",
"output": "5"
},
{
"input": "100 100\n44 47 36 83 76 94 86 69 31 2 22 77 37 51 10 19 25 78 53 25 1 29 48 95 35 53 22 72 49 86 60 38 13 91 89 18 54 19 71 2 25 33 65 49 53 5 95 90 100 68 25 5 87 48 45 72 34 14 100 44 94 75 80 26 25 7 57 82 49 73 55 43 42 60 34 8 51 11 71 41 81 23 20 89 12 72 68 26 96 92 32 63 13 47 19 9 35 56 79 62",
"output": "100"
},
{
"input": "100 99\n84 82 43 4 71 3 30 92 15 47 76 43 2 17 76 4 1 33 24 96 44 98 75 99 59 11 73 27 67 17 8 88 69 41 44 22 91 48 4 46 42 21 21 67 85 51 57 84 11 100 100 59 39 72 89 82 74 19 98 14 37 97 20 78 38 52 44 83 19 83 69 32 56 6 93 13 98 80 80 2 33 71 11 15 55 51 98 58 16 91 39 32 83 58 77 79 88 81 17 98",
"output": "98"
},
{
"input": "100 69\n80 31 12 89 16 35 8 28 39 12 32 51 42 67 64 53 17 88 63 97 29 41 57 28 51 33 82 75 93 79 57 86 32 100 83 82 99 33 1 27 86 22 65 15 60 100 42 37 38 85 26 43 90 62 91 13 1 92 16 20 100 19 28 30 23 6 5 69 24 22 9 1 10 14 28 14 25 9 32 8 67 4 39 7 10 57 15 7 8 35 62 6 53 59 62 13 24 7 53 2",
"output": "39"
},
{
"input": "100 2\n2 2 2 2 1 1 1 2 1 2 2 2 1 2 2 2 2 1 2 1 2 1 1 1 2 1 2 1 2 1 1 2 2 2 2 2 1 2 1 2 1 1 2 1 2 1 1 2 1 2 1 2 2 1 2 1 2 1 1 2 1 2 2 1 1 2 2 2 1 1 2 1 1 2 2 2 1 1 1 2 2 2 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 2 2 16",
"output": "99"
},
{
"input": "100 3\n86 53 82 40 2 20 59 2 46 63 75 49 24 81 70 22 9 9 93 72 47 23 29 77 78 51 17 59 19 71 35 3 20 60 70 9 11 96 71 94 91 19 88 93 50 49 72 19 53 30 38 67 62 71 81 86 5 26 5 32 63 98 1 97 22 32 87 65 96 55 43 85 56 37 56 67 12 100 98 58 77 54 18 20 33 53 21 66 24 64 42 71 59 32 51 69 49 79 10 1",
"output": "1"
},
{
"input": "13 7\n1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "13"
},
{
"input": "1 5\n4",
"output": "1"
},
{
"input": "3 2\n1 4 1",
"output": "2"
},
{
"input": "1 2\n100",
"output": "0"
},
{
"input": "7 4\n4 2 3 4 4 2 3",
"output": "7"
},
{
"input": "1 2\n1",
"output": "1"
},
{
"input": "1 2\n15",
"output": "0"
},
{
"input": "2 1\n1 1",
"output": "2"
},
{
"input": "5 3\n3 4 3 2 1",
"output": "4"
},
{
"input": "1 1\n2",
"output": "0"
},
{
"input": "1 5\n1",
"output": "1"
},
{
"input": "6 6\n7 1 1 1 1 1",
"output": "5"
},
{
"input": "5 5\n6 5 5 5 5",
"output": "4"
},
{
"input": "1 4\n2",
"output": "1"
},
{
"input": "9 4\n1 2 1 2 4 2 1 2 1",
"output": "9"
},
{
"input": "1 1\n1",
"output": "1"
},
{
"input": "1 10\n5",
"output": "1"
},
{
"input": "5 5\n1 1 1 1 1",
"output": "5"
},
{
"input": "100 10\n2 5 1 10 10 2 7 7 9 4 1 8 1 1 8 4 7 9 10 5 7 9 5 6 7 2 7 5 3 2 1 82 4 80 9 8 6 1 10 7 5 7 1 5 6 7 19 4 2 4 6 2 1 8 31 6 2 2 57 42 3 2 7 1 9 5 10 8 5 4 10 8 3 5 8 7 2 7 6 5 3 3 4 10 6 7 10 8 7 10 7 2 4 6 8 10 10 2 6 4",
"output": "71"
},
{
"input": "100 90\n17 16 5 51 17 62 24 45 49 41 90 30 19 78 67 66 59 34 28 47 42 8 33 77 90 41 61 16 86 33 43 71 90 95 23 9 56 41 24 90 31 12 77 36 90 67 47 15 92 50 79 88 42 19 21 79 86 60 41 26 47 4 70 62 44 90 82 89 84 91 54 16 90 53 29 69 21 44 18 28 88 74 56 43 12 76 10 22 34 24 27 52 28 76 90 75 5 29 50 90",
"output": "63"
},
{
"input": "100 10\n6 4 8 4 1 9 4 8 5 2 2 5 2 6 10 2 2 5 3 5 2 3 10 5 2 9 1 1 6 1 5 9 16 42 33 49 26 31 81 27 53 63 81 90 55 97 70 51 87 21 79 62 60 91 54 95 26 26 30 61 87 79 47 11 59 34 40 82 37 40 81 2 7 1 8 4 10 7 1 10 8 7 3 5 2 8 3 3 9 2 1 1 5 7 8 7 1 10 9 8",
"output": "61"
},
{
"input": "100 90\n45 57 52 69 17 81 85 60 59 39 55 14 87 90 90 31 41 57 35 89 74 20 53 4 33 49 71 11 46 90 71 41 71 90 63 74 51 13 99 92 99 91 100 97 93 40 93 96 100 99 100 92 98 96 78 91 91 91 91 100 94 97 95 97 96 95 17 13 45 35 54 26 2 74 6 51 20 3 73 90 90 42 66 43 86 28 84 70 37 27 90 30 55 80 6 58 57 51 10 22",
"output": "72"
},
{
"input": "100 10\n10 2 10 10 10 10 10 10 10 7 10 10 10 10 10 10 9 10 10 10 10 10 10 10 10 7 9 10 10 10 37 10 4 10 10 10 59 5 95 10 10 10 10 39 10 10 10 10 10 10 10 5 10 10 10 10 10 10 10 10 10 10 10 10 66 10 10 10 10 10 5 10 10 10 10 10 10 44 10 10 10 10 10 10 10 10 10 10 10 7 10 10 10 10 10 10 10 10 10 2",
"output": "52"
},
{
"input": "100 90\n57 90 90 90 90 90 90 90 81 90 3 90 39 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 92 90 90 90 90 90 90 90 90 98 90 90 90 90 90 90 90 90 90 90 90 90 90 54 90 90 90 90 90 62 90 90 91 90 90 90 90 90 90 91 90 90 90 90 90 90 90 3 90 90 90 90 90 90 90 2 90 90 90 90 90 90 90 90 90 2 90 90 90 90 90",
"output": "60"
},
{
"input": "100 10\n10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 6 10 10 10 10 10 10 78 90 61 40 87 39 91 50 64 30 10 24 10 55 28 11 28 35 26 26 10 57 45 67 14 99 96 51 67 79 59 11 21 55 70 33 10 16 92 70 38 50 66 52 5 10 10 10 2 4 10 10 10 10 10 10 10 10 10 6 10 10 10 10 10 10 10 10 10 10 8 10 10 10 10 10",
"output": "56"
},
{
"input": "100 90\n90 90 90 90 90 90 55 21 90 90 90 90 90 90 90 90 90 90 69 83 90 90 90 90 90 90 90 90 93 95 92 98 92 97 91 92 92 91 91 95 94 95 100 100 96 97 94 93 90 90 95 95 97 99 90 95 98 91 94 96 99 99 94 95 95 97 99 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 12 90 3 90 90 90 90 90 90 90",
"output": "61"
},
{
"input": "100 49\n71 25 14 36 36 48 36 49 28 40 49 49 49 38 40 49 33 22 49 49 14 46 8 44 49 11 37 49 40 49 2 49 3 49 37 49 49 11 25 49 49 32 49 11 49 30 16 21 49 49 23 24 30 49 49 49 49 49 49 27 49 42 49 49 20 32 30 29 35 49 30 49 9 49 27 25 5 49 49 42 49 20 49 35 49 22 15 49 49 49 19 49 29 28 13 49 22 7 6 24",
"output": "99"
},
{
"input": "100 50\n38 68 9 6 50 18 19 50 50 20 33 34 43 50 24 50 50 2 50 50 50 50 50 21 30 50 41 40 50 50 50 50 50 7 50 21 19 23 1 50 24 50 50 50 25 50 50 50 50 50 50 50 7 24 28 18 50 5 43 50 20 50 13 50 50 16 50 3 2 24 50 50 18 5 50 4 50 50 38 50 33 49 12 33 11 14 50 50 50 33 50 50 50 50 50 50 7 4 50 50",
"output": "99"
},
{
"input": "100 48\n8 6 23 47 29 48 48 48 48 48 48 26 24 48 48 48 3 48 27 28 41 45 9 29 48 48 48 48 48 48 48 48 48 48 47 23 48 48 48 5 48 22 40 48 48 48 20 48 48 57 48 32 19 48 33 2 4 19 48 48 39 48 16 48 48 44 48 48 48 48 29 14 25 43 46 7 48 19 30 48 18 8 39 48 30 47 35 18 48 45 48 48 30 13 48 48 48 17 9 48",
"output": "99"
},
{
"input": "100 57\n57 9 57 4 43 57 57 57 57 26 57 18 57 57 57 57 57 57 57 47 33 57 57 43 57 57 55 57 14 57 57 4 1 57 57 57 57 57 46 26 57 57 57 57 57 57 57 39 57 57 57 5 57 12 11 57 57 57 25 37 34 57 54 18 29 57 39 57 5 57 56 34 57 24 7 57 57 57 2 57 57 57 57 1 55 39 19 57 57 57 57 21 3 40 13 3 57 57 62 57",
"output": "99"
},
{
"input": "100 51\n51 51 38 51 51 45 51 51 51 18 51 36 51 19 51 26 37 51 11 51 45 34 51 21 51 51 33 51 6 51 51 51 21 47 51 13 51 51 30 29 50 51 51 51 51 51 51 45 14 51 2 51 51 23 9 51 50 23 51 29 34 51 40 32 1 36 31 51 11 51 51 47 51 51 51 51 51 51 51 50 39 51 14 4 4 12 3 11 51 51 51 51 41 51 51 51 49 37 5 93",
"output": "99"
},
{
"input": "100 50\n87 91 95 73 50 50 16 97 39 24 58 50 33 89 42 37 50 50 12 71 3 55 50 50 80 10 76 50 52 36 88 44 66 69 86 71 77 50 72 50 21 55 50 50 78 61 75 89 65 2 50 69 62 47 11 92 97 77 41 31 55 29 35 51 36 48 50 91 92 86 50 36 50 94 51 74 4 27 55 63 50 36 87 50 67 7 65 75 20 96 88 50 41 73 35 51 66 21 29 33",
"output": "3"
},
{
"input": "100 50\n50 37 28 92 7 76 50 50 50 76 100 57 50 50 50 32 76 50 8 72 14 8 50 91 67 50 55 82 50 50 24 97 88 50 59 61 68 86 44 15 61 67 88 50 40 50 36 99 1 23 63 50 88 59 76 82 99 76 68 50 50 30 31 68 57 98 71 12 15 60 35 79 90 6 67 50 50 50 50 68 13 6 50 50 16 87 84 50 67 67 50 64 50 58 50 50 77 51 50 51",
"output": "3"
},
{
"input": "100 50\n43 50 50 91 97 67 6 50 86 50 76 60 50 59 4 56 11 38 49 50 37 50 50 20 60 47 33 54 95 58 22 50 77 77 72 9 57 40 81 57 95 50 81 63 62 76 13 87 50 39 74 69 50 99 63 1 11 62 84 31 97 99 56 73 70 36 45 100 28 91 93 9 19 52 73 50 83 58 84 52 86 12 50 44 64 52 97 50 12 71 97 52 87 66 83 66 86 50 9 49",
"output": "6"
},
{
"input": "88 10\n10 8 1 10 10 1 3 7 10 5 8 8 10 2 7 10 10 10 10 10 1 10 10 10 10 1 2 9 10 9 10 10 10 64 100 25 10 12 9 52 13 8 10 56 10 4 10 7 10 3 10 79 74 8 73 10 10 10 9 10 3 5 10 10 10 5 1 10 10 4 3 10 10 10 4 10 6 4 10 10 10 10 3 3 8 5 6 8",
"output": "66"
},
{
"input": "100 50\n80 39 33 69 75 50 23 88 50 50 67 90 87 50 29 15 55 32 60 50 50 50 38 95 62 50 50 88 8 97 45 50 42 12 22 93 49 50 24 50 50 71 60 4 50 72 57 57 50 50 50 83 69 17 1 31 72 55 50 11 50 80 93 41 91 94 20 60 50 50 51 48 53 56 76 73 50 72 19 98 50 50 50 50 50 28 48 45 62 11 16 67 93 88 63 50 50 66 48 95",
"output": "0"
},
{
"input": "100 50\n70 50 38 50 38 50 32 30 50 31 26 42 50 33 34 50 50 50 28 21 50 44 50 47 50 50 9 40 50 50 50 50 50 42 50 50 16 50 50 3 24 50 50 50 4 26 50 2 50 50 33 1 27 50 50 50 8 29 50 23 33 50 6 29 50 50 15 50 50 50 32 50 43 50 50 50 31 50 4 50 50 31 50 50 31 16 50 17 50 17 31 13 25 16 50 10 50 47 50 66",
"output": "0"
},
{
"input": "2 8\n8 8",
"output": "2"
},
{
"input": "1 6\n3",
"output": "1"
},
{
"input": "1 5\n5",
"output": "1"
}
] | 1,634,580,912
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 48
| 77
| 0
|
n,k=map(int,input().split())
a=list(map(int,input().split()))
c=0
for i in range(n):
if(a[i]<=k):
c+=1
else:
break
for i in range(n-1,-1,-1):
if(a[i]<=k):
c+=1
else:
break
if(c>n):
print(n)
else:
print(c)
|
Title: Mishka and Contest
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Mishka started participating in a programming contest. There are $n$ problems in the contest. Mishka's problem-solving skill is equal to $k$.
Mishka arranges all problems from the contest into a list. Because of his weird principles, Mishka only solves problems from one of the ends of the list. Every time, he chooses which end (left or right) he will solve the next problem from. Thus, each problem Mishka solves is either the leftmost or the rightmost problem in the list.
Mishka cannot solve a problem with difficulty greater than $k$. When Mishka solves the problem, it disappears from the list, so the length of the list decreases by $1$. Mishka stops when he is unable to solve any problem from any end of the list.
How many problems can Mishka solve?
Input Specification:
The first line of input contains two integers $n$ and $k$ ($1 \le n, k \le 100$) — the number of problems in the contest and Mishka's problem-solving skill.
The second line of input contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 100$), where $a_i$ is the difficulty of the $i$-th problem. The problems are given in order from the leftmost to the rightmost in the list.
Output Specification:
Print one integer — the maximum number of problems Mishka can solve.
Demo Input:
['8 4\n4 2 3 1 5 1 6 4\n', '5 2\n3 1 2 1 3\n', '5 100\n12 34 55 43 21\n']
Demo Output:
['5\n', '0\n', '5\n']
Note:
In the first example, Mishka can solve problems in the following order: $[4, 2, 3, 1, 5, 1, 6, 4] \rightarrow [2, 3, 1, 5, 1, 6, 4] \rightarrow [2, 3, 1, 5, 1, 6] \rightarrow [3, 1, 5, 1, 6] \rightarrow [1, 5, 1, 6] \rightarrow [5, 1, 6]$, so the number of solved problems will be equal to $5$.
In the second example, Mishka can't solve any problem because the difficulties of problems from both ends are greater than $k$.
In the third example, Mishka's solving skill is so amazing that he can solve all the problems.
|
```python
n,k=map(int,input().split())
a=list(map(int,input().split()))
c=0
for i in range(n):
if(a[i]<=k):
c+=1
else:
break
for i in range(n-1,-1,-1):
if(a[i]<=k):
c+=1
else:
break
if(c>n):
print(n)
else:
print(c)
```
| 3
|
|
835
|
B
|
The number on the board
|
PROGRAMMING
| 1,100
|
[
"greedy"
] | null | null |
Some natural number was written on the board. Its sum of digits was not less than *k*. But you were distracted a bit, and someone changed this number to *n*, replacing some digits with others. It's known that the length of the number didn't change.
You have to find the minimum number of digits in which these two numbers can differ.
|
The first line contains integer *k* (1<=≤<=*k*<=≤<=109).
The second line contains integer *n* (1<=≤<=*n*<=<<=10100000).
There are no leading zeros in *n*. It's guaranteed that this situation is possible.
|
Print the minimum number of digits in which the initial number and *n* can differ.
|
[
"3\n11\n",
"3\n99\n"
] |
[
"1\n",
"0\n"
] |
In the first example, the initial number could be 12.
In the second example the sum of the digits of *n* is not less than *k*. The initial number could be equal to *n*.
| 750
|
[
{
"input": "3\n11",
"output": "1"
},
{
"input": "3\n99",
"output": "0"
},
{
"input": "10\n5205602270",
"output": "0"
},
{
"input": "70\n3326631213",
"output": "6"
},
{
"input": "200\n1000000010000000000000000000010000000000000001000001000000000000000000000000000000000000000000000000",
"output": "22"
},
{
"input": "500\n1899337170458531693764539600958943248270674811247191310452938511077656066239840703432499357537079035",
"output": "6"
},
{
"input": "700\n9307216756404590162143344901558545760612901767837570518638460182990196397856220673189163417019781185",
"output": "32"
},
{
"input": "900\n7570423817272967027553082464863962024635217372307919506594193055572300657732661146354209508997483330",
"output": "91"
},
{
"input": "18\n900",
"output": "1"
},
{
"input": "23\n12138",
"output": "1"
},
{
"input": "16\n333",
"output": "2"
},
{
"input": "3\n12",
"output": "0"
},
{
"input": "3\n111",
"output": "0"
},
{
"input": "1\n100",
"output": "0"
},
{
"input": "17\n89",
"output": "0"
},
{
"input": "18\n99",
"output": "0"
},
{
"input": "42\n97779",
"output": "2"
},
{
"input": "2\n11",
"output": "0"
},
{
"input": "6\n33",
"output": "0"
},
{
"input": "45\n23456",
"output": "5"
},
{
"input": "3\n21",
"output": "0"
},
{
"input": "2\n2",
"output": "0"
},
{
"input": "108\n199999899899",
"output": "3"
},
{
"input": "6\n222",
"output": "0"
},
{
"input": "1\n1",
"output": "0"
},
{
"input": "9\n9",
"output": "0"
},
{
"input": "5\n5",
"output": "0"
},
{
"input": "27\n888",
"output": "3"
}
] | 1,574,452,086
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 48
| 187
| 1,228,800
|
k = int(input())
s = input()
digits = []
for c in s:
digits.append(ord(c) - ord('0'))
digits.sort()
current, result = sum(digits), 0
for d in digits:
if current < k:
current += 9 - d
result += 1
print(result)
|
Title: The number on the board
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Some natural number was written on the board. Its sum of digits was not less than *k*. But you were distracted a bit, and someone changed this number to *n*, replacing some digits with others. It's known that the length of the number didn't change.
You have to find the minimum number of digits in which these two numbers can differ.
Input Specification:
The first line contains integer *k* (1<=≤<=*k*<=≤<=109).
The second line contains integer *n* (1<=≤<=*n*<=<<=10100000).
There are no leading zeros in *n*. It's guaranteed that this situation is possible.
Output Specification:
Print the minimum number of digits in which the initial number and *n* can differ.
Demo Input:
['3\n11\n', '3\n99\n']
Demo Output:
['1\n', '0\n']
Note:
In the first example, the initial number could be 12.
In the second example the sum of the digits of *n* is not less than *k*. The initial number could be equal to *n*.
|
```python
k = int(input())
s = input()
digits = []
for c in s:
digits.append(ord(c) - ord('0'))
digits.sort()
current, result = sum(digits), 0
for d in digits:
if current < k:
current += 9 - d
result += 1
print(result)
```
| 3
|
|
16
|
A
|
Flag
|
PROGRAMMING
| 800
|
[
"implementation"
] |
A. Flag
|
2
|
64
|
According to a new ISO standard, a flag of every country should have a chequered field *n*<=×<=*m*, each square should be of one of 10 colours, and the flag should be «striped»: each horizontal row of the flag should contain squares of the same colour, and the colours of adjacent horizontal rows should be different. Berland's government asked you to find out whether their flag meets the new ISO standard.
|
The first line of the input contains numbers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100), *n* — the amount of rows, *m* — the amount of columns on the flag of Berland. Then there follows the description of the flag: each of the following *n* lines contain *m* characters. Each character is a digit between 0 and 9, and stands for the colour of the corresponding square.
|
Output YES, if the flag meets the new ISO standard, and NO otherwise.
|
[
"3 3\n000\n111\n222\n",
"3 3\n000\n000\n111\n",
"3 3\n000\n111\n002\n"
] |
[
"YES\n",
"NO\n",
"NO\n"
] |
none
| 0
|
[
{
"input": "3 3\n000\n111\n222",
"output": "YES"
},
{
"input": "3 3\n000\n000\n111",
"output": "NO"
},
{
"input": "3 3\n000\n111\n002",
"output": "NO"
},
{
"input": "10 10\n2222222222\n5555555555\n0000000000\n4444444444\n1111111111\n3333333393\n3333333333\n5555555555\n0000000000\n8888888888",
"output": "NO"
},
{
"input": "10 13\n4442444444444\n8888888888888\n6666666666666\n0000000000000\n3333333333333\n4444444444444\n7777777777777\n8388888888888\n1111111111111\n5555555555555",
"output": "NO"
},
{
"input": "10 8\n33333333\n44444444\n11111115\n81888888\n44444444\n11111111\n66666666\n33330333\n33333333\n33333333",
"output": "NO"
},
{
"input": "5 5\n88888\n44444\n66666\n55555\n88888",
"output": "YES"
},
{
"input": "20 19\n1111111111111111111\n5555555555555555555\n0000000000000000000\n3333333333333333333\n1111111111111111111\n2222222222222222222\n4444444444444444444\n5555555555555555555\n0000000000000000000\n4444444444444444444\n0000000000000000000\n5555555555555555555\n7777777777777777777\n9999999999999999999\n2222222222222222222\n4444444444444444444\n1111111111111111111\n6666666666666666666\n7777777777777777777\n2222222222222222222",
"output": "YES"
},
{
"input": "1 100\n8888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888",
"output": "YES"
},
{
"input": "100 1\n5\n7\n9\n4\n7\n2\n5\n1\n6\n7\n2\n7\n6\n8\n7\n4\n0\n2\n9\n8\n9\n1\n6\n4\n3\n4\n7\n1\n9\n3\n0\n8\n3\n1\n7\n5\n3\n9\n5\n1\n3\n5\n8\n1\n9\n3\n9\n0\n6\n0\n7\n6\n5\n2\n8\n3\n7\n6\n5\n1\n8\n3\n6\n9\n6\n0\n5\n8\n5\n2\n9\n1\n0\n1\n8\n3\n2\n1\n0\n3\n9\n0\n5\n1\n0\n4\n9\n3\n0\n4\n8\n4\n8\n6\n3\n0\n4\n6\n8\n4",
"output": "YES"
},
{
"input": "1 1\n2",
"output": "YES"
},
{
"input": "1 100\n1111111111111111111111111111111111111111111111111111111111111111111111111111181111111111111111111111",
"output": "NO"
},
{
"input": "100 1\n3\n6\n4\n3\n0\n2\n8\n7\n3\n2\n1\n7\n1\n3\n2\n3\n6\n9\n0\n8\n5\n9\n7\n9\n2\n1\n4\n5\n1\n9\n2\n5\n1\n4\n6\n4\n9\n1\n0\n2\n1\n4\n7\n1\n4\n8\n0\n9\n2\n1\n6\n2\n8\n6\n9\n5\n8\n6\n4\n5\n9\n2\n7\n4\n1\n5\n8\n0\n9\n5\n4\n6\n5\n0\n6\n3\n6\n9\n7\n2\n0\n9\n7\n3\n2\n4\n9\n4\n7\n1\n2\n3\n1\n7\n9\n1\n9\n0\n4\n0",
"output": "YES"
}
] | 1,688,827,909
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 35
| 92
| 0
|
#import sys
#sys.stdin = open("1.in", "r")
n, m = map(int, input().split())
last = ' '
for _ in range(n):
row = input()
if row[0] == last or row != row[0] * m:
print("NO")
exit(0)
last = row[0]
print("YES")
|
Title: Flag
Time Limit: 2 seconds
Memory Limit: 64 megabytes
Problem Description:
According to a new ISO standard, a flag of every country should have a chequered field *n*<=×<=*m*, each square should be of one of 10 colours, and the flag should be «striped»: each horizontal row of the flag should contain squares of the same colour, and the colours of adjacent horizontal rows should be different. Berland's government asked you to find out whether their flag meets the new ISO standard.
Input Specification:
The first line of the input contains numbers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100), *n* — the amount of rows, *m* — the amount of columns on the flag of Berland. Then there follows the description of the flag: each of the following *n* lines contain *m* characters. Each character is a digit between 0 and 9, and stands for the colour of the corresponding square.
Output Specification:
Output YES, if the flag meets the new ISO standard, and NO otherwise.
Demo Input:
['3 3\n000\n111\n222\n', '3 3\n000\n000\n111\n', '3 3\n000\n111\n002\n']
Demo Output:
['YES\n', 'NO\n', 'NO\n']
Note:
none
|
```python
#import sys
#sys.stdin = open("1.in", "r")
n, m = map(int, input().split())
last = ' '
for _ in range(n):
row = input()
if row[0] == last or row != row[0] * m:
print("NO")
exit(0)
last = row[0]
print("YES")
```
| 3.977
|
456
|
A
|
Laptops
|
PROGRAMMING
| 1,100
|
[
"sortings"
] | null | null |
One day Dima and Alex had an argument about the price and quality of laptops. Dima thinks that the more expensive a laptop is, the better it is. Alex disagrees. Alex thinks that there are two laptops, such that the price of the first laptop is less (strictly smaller) than the price of the second laptop but the quality of the first laptop is higher (strictly greater) than the quality of the second laptop.
Please, check the guess of Alex. You are given descriptions of *n* laptops. Determine whether two described above laptops exist.
|
The first line contains an integer *n* (1<=≤<=*n*<=≤<=105) — the number of laptops.
Next *n* lines contain two integers each, *a**i* and *b**i* (1<=≤<=*a**i*,<=*b**i*<=≤<=*n*), where *a**i* is the price of the *i*-th laptop, and *b**i* is the number that represents the quality of the *i*-th laptop (the larger the number is, the higher is the quality).
All *a**i* are distinct. All *b**i* are distinct.
|
If Alex is correct, print "Happy Alex", otherwise print "Poor Alex" (without the quotes).
|
[
"2\n1 2\n2 1\n"
] |
[
"Happy Alex\n"
] |
none
| 500
|
[
{
"input": "2\n1 2\n2 1",
"output": "Happy Alex"
},
{
"input": "2\n1 1\n2 2",
"output": "Poor Alex"
},
{
"input": "3\n2 2\n3 3\n1 1",
"output": "Poor Alex"
},
{
"input": "3\n3 3\n1 2\n2 1",
"output": "Happy Alex"
},
{
"input": "1\n1 1",
"output": "Poor Alex"
},
{
"input": "3\n2 3\n1 1\n3 2",
"output": "Happy Alex"
},
{
"input": "4\n4 1\n3 2\n2 3\n1 4",
"output": "Happy Alex"
},
{
"input": "2\n2 1\n1 2",
"output": "Happy Alex"
},
{
"input": "3\n3 2\n1 1\n2 3",
"output": "Happy Alex"
},
{
"input": "3\n1 2\n2 3\n3 1",
"output": "Happy Alex"
},
{
"input": "3\n1 2\n2 1\n3 3",
"output": "Happy Alex"
},
{
"input": "3\n1 2\n2 3\n3 1",
"output": "Happy Alex"
}
] | 1,674,499,796
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 46
| 343
| 10,956,800
|
laptops = []
for _ in range(int(input())):
laptops.append(list(map(int, input().split(" "))))
laptops_copy = laptops.copy()
laptops.sort(key=lambda x: x[0])
laptops_copy.sort(key=lambda x: x[1])
if laptops != laptops_copy:
print("Happy Alex")
else:
print("Poor Alex")
|
Title: Laptops
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
One day Dima and Alex had an argument about the price and quality of laptops. Dima thinks that the more expensive a laptop is, the better it is. Alex disagrees. Alex thinks that there are two laptops, such that the price of the first laptop is less (strictly smaller) than the price of the second laptop but the quality of the first laptop is higher (strictly greater) than the quality of the second laptop.
Please, check the guess of Alex. You are given descriptions of *n* laptops. Determine whether two described above laptops exist.
Input Specification:
The first line contains an integer *n* (1<=≤<=*n*<=≤<=105) — the number of laptops.
Next *n* lines contain two integers each, *a**i* and *b**i* (1<=≤<=*a**i*,<=*b**i*<=≤<=*n*), where *a**i* is the price of the *i*-th laptop, and *b**i* is the number that represents the quality of the *i*-th laptop (the larger the number is, the higher is the quality).
All *a**i* are distinct. All *b**i* are distinct.
Output Specification:
If Alex is correct, print "Happy Alex", otherwise print "Poor Alex" (without the quotes).
Demo Input:
['2\n1 2\n2 1\n']
Demo Output:
['Happy Alex\n']
Note:
none
|
```python
laptops = []
for _ in range(int(input())):
laptops.append(list(map(int, input().split(" "))))
laptops_copy = laptops.copy()
laptops.sort(key=lambda x: x[0])
laptops_copy.sort(key=lambda x: x[1])
if laptops != laptops_copy:
print("Happy Alex")
else:
print("Poor Alex")
```
| 3
|
|
271
|
A
|
Beautiful Year
|
PROGRAMMING
| 800
|
[
"brute force"
] | null | null |
It seems like the year of 2013 came only yesterday. Do you know a curious fact? The year of 2013 is the first year after the old 1987 with only distinct digits.
Now you are suggested to solve the following problem: given a year number, find the minimum year number which is strictly larger than the given one and has only distinct digits.
|
The single line contains integer *y* (1000<=≤<=*y*<=≤<=9000) — the year number.
|
Print a single integer — the minimum year number that is strictly larger than *y* and all it's digits are distinct. It is guaranteed that the answer exists.
|
[
"1987\n",
"2013\n"
] |
[
"2013\n",
"2014\n"
] |
none
| 500
|
[
{
"input": "1987",
"output": "2013"
},
{
"input": "2013",
"output": "2014"
},
{
"input": "1000",
"output": "1023"
},
{
"input": "1001",
"output": "1023"
},
{
"input": "1234",
"output": "1235"
},
{
"input": "5555",
"output": "5601"
},
{
"input": "9000",
"output": "9012"
},
{
"input": "1111",
"output": "1203"
},
{
"input": "8999",
"output": "9012"
},
{
"input": "4572",
"output": "4573"
},
{
"input": "6666",
"output": "6701"
},
{
"input": "2001",
"output": "2013"
},
{
"input": "3000",
"output": "3012"
},
{
"input": "7712",
"output": "7801"
},
{
"input": "8088",
"output": "8091"
},
{
"input": "1594",
"output": "1596"
},
{
"input": "6016",
"output": "6017"
},
{
"input": "8800",
"output": "8901"
},
{
"input": "3331",
"output": "3401"
},
{
"input": "5090",
"output": "5091"
},
{
"input": "2342",
"output": "2345"
},
{
"input": "2334",
"output": "2340"
},
{
"input": "1123",
"output": "1203"
},
{
"input": "8989",
"output": "9012"
},
{
"input": "8977",
"output": "9012"
},
{
"input": "6869",
"output": "6870"
},
{
"input": "8999",
"output": "9012"
}
] | 1,693,575,532
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 27
| 92
| 0
|
year = int(input())
year += 1
while True:
x = str(year)
if x[0] != x[1] and x[0] != x[2] and x[0] != x[3] and x[1] != x[2] and x[1] != x[3] and x[2] != x[3]:
print(year)
break
year += 1
|
Title: Beautiful Year
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
It seems like the year of 2013 came only yesterday. Do you know a curious fact? The year of 2013 is the first year after the old 1987 with only distinct digits.
Now you are suggested to solve the following problem: given a year number, find the minimum year number which is strictly larger than the given one and has only distinct digits.
Input Specification:
The single line contains integer *y* (1000<=≤<=*y*<=≤<=9000) — the year number.
Output Specification:
Print a single integer — the minimum year number that is strictly larger than *y* and all it's digits are distinct. It is guaranteed that the answer exists.
Demo Input:
['1987\n', '2013\n']
Demo Output:
['2013\n', '2014\n']
Note:
none
|
```python
year = int(input())
year += 1
while True:
x = str(year)
if x[0] != x[1] and x[0] != x[2] and x[0] != x[3] and x[1] != x[2] and x[1] != x[3] and x[2] != x[3]:
print(year)
break
year += 1
```
| 3
|
|
689
|
A
|
Mike and Cellphone
|
PROGRAMMING
| 1,400
|
[
"brute force",
"constructive algorithms",
"implementation"
] | null | null |
While swimming at the beach, Mike has accidentally dropped his cellphone into the water. There was no worry as he bought a cheap replacement phone with an old-fashioned keyboard. The keyboard has only ten digital equal-sized keys, located in the following way:
Together with his old phone, he lost all his contacts and now he can only remember the way his fingers moved when he put some number in. One can formally consider finger movements as a sequence of vectors connecting centers of keys pressed consecutively to put in a number. For example, the finger movements for number "586" are the same as finger movements for number "253":
Mike has already put in a number by his "finger memory" and started calling it, so he is now worrying, can he be sure that he is calling the correct number? In other words, is there any other number, that has the same finger movements?
|
The first line of the input contains the only integer *n* (1<=≤<=*n*<=≤<=9) — the number of digits in the phone number that Mike put in.
The second line contains the string consisting of *n* digits (characters from '0' to '9') representing the number that Mike put in.
|
If there is no other phone number with the same finger movements and Mike can be sure he is calling the correct number, print "YES" (without quotes) in the only line.
Otherwise print "NO" (without quotes) in the first line.
|
[
"3\n586\n",
"2\n09\n",
"9\n123456789\n",
"3\n911\n"
] |
[
"NO\n",
"NO\n",
"YES\n",
"YES\n"
] |
You can find the picture clarifying the first sample case in the statement above.
| 500
|
[
{
"input": "3\n586",
"output": "NO"
},
{
"input": "2\n09",
"output": "NO"
},
{
"input": "9\n123456789",
"output": "YES"
},
{
"input": "3\n911",
"output": "YES"
},
{
"input": "3\n089",
"output": "NO"
},
{
"input": "3\n159",
"output": "YES"
},
{
"input": "9\n000000000",
"output": "NO"
},
{
"input": "4\n0874",
"output": "NO"
},
{
"input": "6\n235689",
"output": "NO"
},
{
"input": "2\n10",
"output": "YES"
},
{
"input": "3\n358",
"output": "NO"
},
{
"input": "6\n123456",
"output": "NO"
},
{
"input": "1\n0",
"output": "NO"
},
{
"input": "4\n0068",
"output": "NO"
},
{
"input": "6\n021149",
"output": "YES"
},
{
"input": "5\n04918",
"output": "YES"
},
{
"input": "2\n05",
"output": "NO"
},
{
"input": "4\n0585",
"output": "NO"
},
{
"input": "4\n0755",
"output": "NO"
},
{
"input": "2\n08",
"output": "NO"
},
{
"input": "4\n0840",
"output": "NO"
},
{
"input": "9\n103481226",
"output": "YES"
},
{
"input": "4\n1468",
"output": "NO"
},
{
"input": "7\n1588216",
"output": "NO"
},
{
"input": "9\n188758557",
"output": "NO"
},
{
"input": "1\n2",
"output": "NO"
},
{
"input": "2\n22",
"output": "NO"
},
{
"input": "8\n23482375",
"output": "YES"
},
{
"input": "9\n246112056",
"output": "YES"
},
{
"input": "9\n256859223",
"output": "NO"
},
{
"input": "6\n287245",
"output": "NO"
},
{
"input": "8\n28959869",
"output": "NO"
},
{
"input": "9\n289887167",
"output": "YES"
},
{
"input": "4\n3418",
"output": "NO"
},
{
"input": "4\n3553",
"output": "NO"
},
{
"input": "2\n38",
"output": "NO"
},
{
"input": "6\n386126",
"output": "NO"
},
{
"input": "6\n392965",
"output": "NO"
},
{
"input": "1\n4",
"output": "NO"
},
{
"input": "6\n423463",
"output": "NO"
},
{
"input": "4\n4256",
"output": "NO"
},
{
"input": "8\n42937903",
"output": "YES"
},
{
"input": "1\n5",
"output": "NO"
},
{
"input": "8\n50725390",
"output": "YES"
},
{
"input": "9\n515821866",
"output": "NO"
},
{
"input": "2\n56",
"output": "NO"
},
{
"input": "2\n57",
"output": "NO"
},
{
"input": "7\n5740799",
"output": "NO"
},
{
"input": "9\n582526521",
"output": "NO"
},
{
"input": "9\n585284126",
"output": "NO"
},
{
"input": "1\n6",
"output": "NO"
},
{
"input": "3\n609",
"output": "NO"
},
{
"input": "2\n63",
"output": "NO"
},
{
"input": "3\n633",
"output": "NO"
},
{
"input": "7\n6668940",
"output": "NO"
},
{
"input": "5\n66883",
"output": "NO"
},
{
"input": "2\n68",
"output": "NO"
},
{
"input": "5\n69873",
"output": "YES"
},
{
"input": "1\n7",
"output": "NO"
},
{
"input": "4\n7191",
"output": "YES"
},
{
"input": "9\n722403540",
"output": "YES"
},
{
"input": "9\n769554547",
"output": "NO"
},
{
"input": "3\n780",
"output": "NO"
},
{
"input": "5\n78248",
"output": "NO"
},
{
"input": "4\n7844",
"output": "NO"
},
{
"input": "4\n7868",
"output": "NO"
},
{
"input": "1\n8",
"output": "NO"
},
{
"input": "6\n817332",
"output": "YES"
},
{
"input": "7\n8465393",
"output": "YES"
},
{
"input": "7\n8526828",
"output": "NO"
},
{
"input": "8\n85812664",
"output": "NO"
},
{
"input": "8\n93008225",
"output": "YES"
},
{
"input": "7\n9454566",
"output": "NO"
},
{
"input": "4\n9625",
"output": "NO"
},
{
"input": "8\n97862407",
"output": "YES"
},
{
"input": "3\n993",
"output": "NO"
},
{
"input": "3\n267",
"output": "YES"
},
{
"input": "3\n249",
"output": "YES"
},
{
"input": "3\n672",
"output": "YES"
},
{
"input": "3\n176",
"output": "YES"
},
{
"input": "3\n123",
"output": "NO"
},
{
"input": "3\n367",
"output": "YES"
},
{
"input": "2\n12",
"output": "NO"
},
{
"input": "4\n2580",
"output": "YES"
},
{
"input": "2\n20",
"output": "YES"
},
{
"input": "3\n492",
"output": "YES"
},
{
"input": "3\n167",
"output": "YES"
},
{
"input": "3\n970",
"output": "NO"
},
{
"input": "3\n460",
"output": "NO"
},
{
"input": "4\n4268",
"output": "NO"
},
{
"input": "4\n9394",
"output": "YES"
},
{
"input": "2\n13",
"output": "NO"
},
{
"input": "3\n729",
"output": "YES"
},
{
"input": "6\n456893",
"output": "YES"
}
] | 1,467,829,439
| 6,539
|
Python 3
|
OK
|
TESTS
| 93
| 93
| 307,200
|
n = int(input())
s = input()
l =[[[-1,-3],[0,-3],[1,-3],[-1,-2],[0,-2],[1,-2],[-1,-1],[0,-1],[1,-1],[0,0]] ,
[[0,0],[1,0],[2,0],[0,1],[1,1],[2,1],[0,2],[1,2],[2,2],[2,3]] ,
[[-1,0],[0,0],[1,0],[-1,1],[0,1],[1,1],[-1,2],[0,2],[1,2],[0,3]] ,
[[-2,0],[-1,0],[0,0],[-2,1],[-1,1],[0,1],[-2,2],[-1,2],[0,2],[-1,3]] ,
[[0,-1],[1,-1],[2,-1],[0,0],[1,0],[2,0],[0,1],[1,1],[2,1],[1,2]] ,
[[-1,-1],[0,-1],[1,-1],[-1,0],[0,0],[1,0],[-1,1],[0,1],[1,1],[0,2]] ,
[[-2,-1],[-1,-1],[0,-1],[-2,0],[-1,0],[0,0],[-2,1],[-1,1],[0,1],[-1,2]] ,
[[0,-2],[1,-2],[2,-2],[0,-1],[1,-1],[2,-1],[0,0],[1,0],[2,0],[1,1]] ,
[[-1,-2],[0,-2],[1,-2],[-1,-1],[0,-1],[1,-1],[-1,0],[0,0],[1,0],[0,1]] ,
[[-2,-2],[-1,-2],[0,-2],[-2,-1],[-1,-1],[0,-1],[-2,0],[-1,0],[0,0],[-1,1]] ,
]
pos = [[1,3],[0,0],[1,0],[2,0],[0,1],[1,1],[2,1],[0,2],[1,2],[2,2]]
def bad(i,j):
if i < 0 or j < 0:
return 1
if i > 2 or j > 3:
return 1
if [i,j]==[0,3] or [i,j]==[2,3]:
return 1
return 0
ll = []
for i in range(n-1):
x,y=int(s[i]),int(s[i+1])-1
ll.append(l[x][y])
res= 'YES'
z = []
for num in range(10):
i,j=pos[num][0],pos[num][1]
c = 1
for k in range(n-1):
i+=ll[k][0]
j+=ll[k][1]
if bad(i,j):
c = 0
z.append(c)
z[int(s[0])]=0
if 1 in z :
res = 'NO'
print(res)
|
Title: Mike and Cellphone
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
While swimming at the beach, Mike has accidentally dropped his cellphone into the water. There was no worry as he bought a cheap replacement phone with an old-fashioned keyboard. The keyboard has only ten digital equal-sized keys, located in the following way:
Together with his old phone, he lost all his contacts and now he can only remember the way his fingers moved when he put some number in. One can formally consider finger movements as a sequence of vectors connecting centers of keys pressed consecutively to put in a number. For example, the finger movements for number "586" are the same as finger movements for number "253":
Mike has already put in a number by his "finger memory" and started calling it, so he is now worrying, can he be sure that he is calling the correct number? In other words, is there any other number, that has the same finger movements?
Input Specification:
The first line of the input contains the only integer *n* (1<=≤<=*n*<=≤<=9) — the number of digits in the phone number that Mike put in.
The second line contains the string consisting of *n* digits (characters from '0' to '9') representing the number that Mike put in.
Output Specification:
If there is no other phone number with the same finger movements and Mike can be sure he is calling the correct number, print "YES" (without quotes) in the only line.
Otherwise print "NO" (without quotes) in the first line.
Demo Input:
['3\n586\n', '2\n09\n', '9\n123456789\n', '3\n911\n']
Demo Output:
['NO\n', 'NO\n', 'YES\n', 'YES\n']
Note:
You can find the picture clarifying the first sample case in the statement above.
|
```python
n = int(input())
s = input()
l =[[[-1,-3],[0,-3],[1,-3],[-1,-2],[0,-2],[1,-2],[-1,-1],[0,-1],[1,-1],[0,0]] ,
[[0,0],[1,0],[2,0],[0,1],[1,1],[2,1],[0,2],[1,2],[2,2],[2,3]] ,
[[-1,0],[0,0],[1,0],[-1,1],[0,1],[1,1],[-1,2],[0,2],[1,2],[0,3]] ,
[[-2,0],[-1,0],[0,0],[-2,1],[-1,1],[0,1],[-2,2],[-1,2],[0,2],[-1,3]] ,
[[0,-1],[1,-1],[2,-1],[0,0],[1,0],[2,0],[0,1],[1,1],[2,1],[1,2]] ,
[[-1,-1],[0,-1],[1,-1],[-1,0],[0,0],[1,0],[-1,1],[0,1],[1,1],[0,2]] ,
[[-2,-1],[-1,-1],[0,-1],[-2,0],[-1,0],[0,0],[-2,1],[-1,1],[0,1],[-1,2]] ,
[[0,-2],[1,-2],[2,-2],[0,-1],[1,-1],[2,-1],[0,0],[1,0],[2,0],[1,1]] ,
[[-1,-2],[0,-2],[1,-2],[-1,-1],[0,-1],[1,-1],[-1,0],[0,0],[1,0],[0,1]] ,
[[-2,-2],[-1,-2],[0,-2],[-2,-1],[-1,-1],[0,-1],[-2,0],[-1,0],[0,0],[-1,1]] ,
]
pos = [[1,3],[0,0],[1,0],[2,0],[0,1],[1,1],[2,1],[0,2],[1,2],[2,2]]
def bad(i,j):
if i < 0 or j < 0:
return 1
if i > 2 or j > 3:
return 1
if [i,j]==[0,3] or [i,j]==[2,3]:
return 1
return 0
ll = []
for i in range(n-1):
x,y=int(s[i]),int(s[i+1])-1
ll.append(l[x][y])
res= 'YES'
z = []
for num in range(10):
i,j=pos[num][0],pos[num][1]
c = 1
for k in range(n-1):
i+=ll[k][0]
j+=ll[k][1]
if bad(i,j):
c = 0
z.append(c)
z[int(s[0])]=0
if 1 in z :
res = 'NO'
print(res)
```
| 3
|
|
831
|
A
|
Unimodal Array
|
PROGRAMMING
| 1,000
|
[
"implementation"
] | null | null |
Array of integers is unimodal, if:
- it is strictly increasing in the beginning; - after that it is constant; - after that it is strictly decreasing.
The first block (increasing) and the last block (decreasing) may be absent. It is allowed that both of this blocks are absent.
For example, the following three arrays are unimodal: [5,<=7,<=11,<=11,<=2,<=1], [4,<=4,<=2], [7], but the following three are not unimodal: [5,<=5,<=6,<=6,<=1], [1,<=2,<=1,<=2], [4,<=5,<=5,<=6].
Write a program that checks if an array is unimodal.
|
The first line contains integer *n* (1<=≤<=*n*<=≤<=100) — the number of elements in the array.
The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=1<=000) — the elements of the array.
|
Print "YES" if the given array is unimodal. Otherwise, print "NO".
You can output each letter in any case (upper or lower).
|
[
"6\n1 5 5 5 4 2\n",
"5\n10 20 30 20 10\n",
"4\n1 2 1 2\n",
"7\n3 3 3 3 3 3 3\n"
] |
[
"YES\n",
"YES\n",
"NO\n",
"YES\n"
] |
In the first example the array is unimodal, because it is strictly increasing in the beginning (from position 1 to position 2, inclusively), that it is constant (from position 2 to position 4, inclusively) and then it is strictly decreasing (from position 4 to position 6, inclusively).
| 500
|
[
{
"input": "6\n1 5 5 5 4 2",
"output": "YES"
},
{
"input": "5\n10 20 30 20 10",
"output": "YES"
},
{
"input": "4\n1 2 1 2",
"output": "NO"
},
{
"input": "7\n3 3 3 3 3 3 3",
"output": "YES"
},
{
"input": "6\n5 7 11 11 2 1",
"output": "YES"
},
{
"input": "1\n7",
"output": "YES"
},
{
"input": "100\n527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527",
"output": "YES"
},
{
"input": "5\n5 5 6 6 1",
"output": "NO"
},
{
"input": "3\n4 4 2",
"output": "YES"
},
{
"input": "4\n4 5 5 6",
"output": "NO"
},
{
"input": "3\n516 516 515",
"output": "YES"
},
{
"input": "5\n502 503 508 508 507",
"output": "YES"
},
{
"input": "10\n538 538 538 538 538 538 538 538 538 538",
"output": "YES"
},
{
"input": "15\n452 454 455 455 450 448 443 442 439 436 433 432 431 428 426",
"output": "YES"
},
{
"input": "20\n497 501 504 505 509 513 513 513 513 513 513 513 513 513 513 513 513 513 513 513",
"output": "YES"
},
{
"input": "50\n462 465 465 465 463 459 454 449 444 441 436 435 430 429 426 422 421 418 417 412 408 407 406 403 402 399 395 392 387 386 382 380 379 376 374 371 370 365 363 359 358 354 350 349 348 345 342 341 338 337",
"output": "YES"
},
{
"input": "70\n290 292 294 297 299 300 303 305 310 312 313 315 319 320 325 327 328 333 337 339 340 341 345 350 351 354 359 364 367 372 374 379 381 382 383 384 389 393 395 397 398 400 402 405 409 411 416 417 422 424 429 430 434 435 440 442 445 449 451 453 458 460 465 470 474 477 482 482 482 479",
"output": "YES"
},
{
"input": "99\n433 435 439 444 448 452 457 459 460 464 469 470 471 476 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 479 478 477 476 474 469 468 465 460 457 453 452 450 445 443 440 438 433 432 431 430 428 425 421 418 414 411 406 402 397 396 393",
"output": "YES"
},
{
"input": "100\n537 538 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543",
"output": "YES"
},
{
"input": "100\n524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 521",
"output": "YES"
},
{
"input": "100\n235 239 243 245 246 251 254 259 260 261 264 269 272 275 277 281 282 285 289 291 292 293 298 301 302 303 305 307 308 310 315 317 320 324 327 330 334 337 342 346 347 348 353 357 361 366 370 373 376 378 379 384 386 388 390 395 398 400 405 408 413 417 420 422 424 429 434 435 438 441 443 444 445 450 455 457 459 463 465 468 471 473 475 477 481 486 491 494 499 504 504 504 504 504 504 504 504 504 504 504",
"output": "YES"
},
{
"input": "100\n191 196 201 202 207 212 216 219 220 222 224 227 230 231 234 235 238 242 246 250 253 254 259 260 263 267 269 272 277 280 284 287 288 290 295 297 300 305 307 312 316 320 324 326 327 332 333 334 338 343 347 351 356 358 363 368 370 374 375 380 381 386 390 391 394 396 397 399 402 403 405 410 414 419 422 427 429 433 437 442 443 447 448 451 455 459 461 462 464 468 473 478 481 484 485 488 492 494 496 496",
"output": "YES"
},
{
"input": "100\n466 466 466 466 466 464 459 455 452 449 446 443 439 436 435 433 430 428 425 424 420 419 414 412 407 404 401 396 394 391 386 382 379 375 374 369 364 362 360 359 356 351 350 347 342 340 338 337 333 330 329 326 321 320 319 316 311 306 301 297 292 287 286 281 278 273 269 266 261 257 256 255 253 252 250 245 244 242 240 238 235 230 225 220 216 214 211 209 208 206 203 198 196 194 192 190 185 182 177 173",
"output": "YES"
},
{
"input": "100\n360 362 367 369 374 377 382 386 389 391 396 398 399 400 405 410 413 416 419 420 423 428 431 436 441 444 445 447 451 453 457 459 463 468 468 468 468 468 468 468 468 468 468 468 468 468 468 468 468 468 468 468 468 468 468 468 465 460 455 453 448 446 443 440 436 435 430 425 420 415 410 405 404 403 402 399 394 390 387 384 382 379 378 373 372 370 369 366 361 360 355 353 349 345 344 342 339 338 335 333",
"output": "YES"
},
{
"input": "1\n1000",
"output": "YES"
},
{
"input": "100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "YES"
},
{
"input": "100\n1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000",
"output": "YES"
},
{
"input": "100\n1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1",
"output": "YES"
},
{
"input": "100\n1 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000",
"output": "YES"
},
{
"input": "100\n1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 999 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000",
"output": "NO"
},
{
"input": "100\n998 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 999 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 999",
"output": "NO"
},
{
"input": "100\n537 538 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 691 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543",
"output": "NO"
},
{
"input": "100\n527 527 527 527 527 527 527 527 872 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527",
"output": "NO"
},
{
"input": "100\n524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 208 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 521",
"output": "NO"
},
{
"input": "100\n235 239 243 245 246 251 254 259 260 261 264 269 272 275 277 281 282 285 289 291 292 293 298 301 302 303 305 307 308 310 315 317 320 324 327 330 334 337 342 921 347 348 353 357 361 366 370 373 376 378 379 384 386 388 390 395 398 400 405 408 413 417 420 422 424 429 434 435 438 441 443 444 445 450 455 457 459 463 465 468 471 473 475 477 481 486 491 494 499 504 504 504 504 504 504 504 504 504 504 504",
"output": "NO"
},
{
"input": "100\n191 196 201 202 207 212 216 219 220 222 224 227 230 231 234 235 238 242 246 250 253 254 259 260 263 267 269 272 277 280 284 287 288 290 295 297 300 305 307 312 316 320 324 326 327 332 333 334 338 343 347 351 356 358 119 368 370 374 375 380 381 386 390 391 394 396 397 399 402 403 405 410 414 419 422 427 429 433 437 442 443 447 448 451 455 459 461 462 464 468 473 478 481 484 485 488 492 494 496 496",
"output": "NO"
},
{
"input": "100\n466 466 466 466 466 464 459 455 452 449 446 443 439 436 435 433 430 428 425 424 420 419 414 412 407 404 401 396 394 391 386 382 379 375 374 369 364 362 360 359 356 335 350 347 342 340 338 337 333 330 329 326 321 320 319 316 311 306 301 297 292 287 286 281 278 273 269 266 261 257 256 255 253 252 250 245 244 242 240 238 235 230 225 220 216 214 211 209 208 206 203 198 196 194 192 190 185 182 177 173",
"output": "NO"
},
{
"input": "100\n360 362 367 369 374 377 382 386 389 391 396 398 399 400 405 410 413 416 419 420 423 428 525 436 441 444 445 447 451 453 457 459 463 468 468 468 468 468 468 468 468 468 468 468 468 468 468 468 468 468 468 468 468 468 468 468 465 460 455 453 448 446 443 440 436 435 430 425 420 415 410 405 404 403 402 399 394 390 387 384 382 379 378 373 372 370 369 366 361 360 355 353 349 345 344 342 339 338 335 333",
"output": "NO"
},
{
"input": "3\n1 2 3",
"output": "YES"
},
{
"input": "3\n3 2 1",
"output": "YES"
},
{
"input": "3\n1 1 2",
"output": "NO"
},
{
"input": "3\n2 1 1",
"output": "NO"
},
{
"input": "3\n2 1 2",
"output": "NO"
},
{
"input": "3\n3 1 2",
"output": "NO"
},
{
"input": "3\n1 3 2",
"output": "YES"
},
{
"input": "100\n395 399 402 403 405 408 413 415 419 424 426 431 434 436 439 444 447 448 449 454 457 459 461 462 463 464 465 469 470 473 477 480 482 484 485 487 492 494 496 497 501 504 505 508 511 506 505 503 500 499 494 490 488 486 484 481 479 474 472 471 470 465 462 458 453 452 448 445 440 436 433 430 428 426 424 421 419 414 413 408 404 403 399 395 393 388 384 379 377 375 374 372 367 363 360 356 353 351 350 346",
"output": "YES"
},
{
"input": "100\n263 268 273 274 276 281 282 287 288 292 294 295 296 300 304 306 308 310 311 315 319 322 326 330 333 336 339 341 342 347 351 353 356 358 363 365 369 372 374 379 383 387 389 391 392 395 396 398 403 404 407 411 412 416 419 421 424 428 429 430 434 436 440 443 444 448 453 455 458 462 463 464 469 473 477 481 486 489 492 494 499 503 506 509 510 512 514 515 511 510 507 502 499 498 494 491 486 482 477 475",
"output": "YES"
},
{
"input": "100\n482 484 485 489 492 496 499 501 505 509 512 517 520 517 515 513 509 508 504 503 498 496 493 488 486 481 478 476 474 470 468 466 463 459 456 453 452 449 445 444 439 438 435 432 428 427 424 423 421 419 417 413 408 405 402 399 397 393 388 385 380 375 370 366 363 361 360 355 354 352 349 345 340 336 335 331 329 327 324 319 318 317 315 314 310 309 307 304 303 300 299 295 291 287 285 282 280 278 273 271",
"output": "YES"
},
{
"input": "100\n395 399 402 403 405 408 413 415 419 424 426 431 434 436 439 444 447 448 449 454 457 459 461 462 463 464 465 469 470 473 477 480 482 484 485 487 492 494 496 32 501 504 505 508 511 506 505 503 500 499 494 490 488 486 484 481 479 474 472 471 470 465 462 458 453 452 448 445 440 436 433 430 428 426 424 421 419 414 413 408 404 403 399 395 393 388 384 379 377 375 374 372 367 363 360 356 353 351 350 346",
"output": "NO"
},
{
"input": "100\n263 268 273 274 276 281 282 287 288 292 294 295 296 300 304 306 308 310 311 315 319 322 326 330 247 336 339 341 342 347 351 353 356 358 363 365 369 372 374 379 383 387 389 391 392 395 396 398 403 404 407 411 412 416 419 421 424 428 429 430 434 436 440 443 444 448 453 455 458 462 463 464 469 473 477 481 486 489 492 494 499 503 506 509 510 512 514 515 511 510 507 502 499 498 494 491 486 482 477 475",
"output": "NO"
},
{
"input": "100\n482 484 485 489 492 496 499 501 505 509 512 517 520 517 515 513 509 508 504 503 497 496 493 488 486 481 478 476 474 470 468 466 463 459 456 453 452 449 445 444 439 438 435 432 428 427 424 423 421 419 417 413 408 405 402 399 397 393 388 385 380 375 370 366 363 361 360 355 354 352 349 345 340 336 335 331 329 327 324 319 318 317 315 314 310 309 307 304 303 300 299 295 291 287 285 282 280 278 273 271",
"output": "YES"
},
{
"input": "2\n1 3",
"output": "YES"
},
{
"input": "2\n1 2",
"output": "YES"
},
{
"input": "5\n2 2 1 1 1",
"output": "NO"
},
{
"input": "4\n1 3 2 2",
"output": "NO"
},
{
"input": "6\n1 2 1 2 2 1",
"output": "NO"
},
{
"input": "2\n4 2",
"output": "YES"
},
{
"input": "3\n3 2 2",
"output": "NO"
},
{
"input": "9\n1 2 2 3 3 4 3 2 1",
"output": "NO"
},
{
"input": "4\n5 5 4 4",
"output": "NO"
},
{
"input": "2\n2 1",
"output": "YES"
},
{
"input": "5\n5 4 3 2 1",
"output": "YES"
},
{
"input": "7\n4 3 3 3 3 3 3",
"output": "NO"
},
{
"input": "5\n1 2 3 4 5",
"output": "YES"
},
{
"input": "3\n2 2 1",
"output": "YES"
},
{
"input": "3\n4 3 3",
"output": "NO"
},
{
"input": "7\n1 5 5 4 3 3 1",
"output": "NO"
},
{
"input": "6\n3 3 1 2 2 1",
"output": "NO"
},
{
"input": "5\n1 2 1 2 1",
"output": "NO"
},
{
"input": "2\n5 1",
"output": "YES"
},
{
"input": "9\n1 2 3 4 4 3 2 2 1",
"output": "NO"
},
{
"input": "3\n2 2 3",
"output": "NO"
},
{
"input": "2\n5 4",
"output": "YES"
},
{
"input": "5\n1 3 3 2 2",
"output": "NO"
},
{
"input": "10\n1 2 3 4 5 6 7 8 9 99",
"output": "YES"
},
{
"input": "4\n1 2 3 4",
"output": "YES"
},
{
"input": "3\n5 5 2",
"output": "YES"
},
{
"input": "4\n1 4 2 3",
"output": "NO"
},
{
"input": "2\n3 2",
"output": "YES"
},
{
"input": "5\n1 2 2 1 1",
"output": "NO"
},
{
"input": "4\n3 3 2 2",
"output": "NO"
},
{
"input": "5\n1 2 3 2 2",
"output": "NO"
},
{
"input": "5\n5 6 6 5 5",
"output": "NO"
},
{
"input": "4\n2 2 1 1",
"output": "NO"
},
{
"input": "5\n5 4 3 3 2",
"output": "NO"
},
{
"input": "7\n1 3 3 3 2 1 1",
"output": "NO"
},
{
"input": "9\n5 6 6 5 5 4 4 3 3",
"output": "NO"
},
{
"input": "6\n1 5 5 3 2 2",
"output": "NO"
},
{
"input": "5\n2 1 3 3 1",
"output": "NO"
},
{
"input": "2\n4 3",
"output": "YES"
},
{
"input": "5\n3 2 2 1 1",
"output": "NO"
},
{
"input": "4\n5 4 3 2",
"output": "YES"
},
{
"input": "4\n4 4 1 1",
"output": "NO"
},
{
"input": "4\n3 3 1 1",
"output": "NO"
},
{
"input": "4\n4 4 2 2",
"output": "NO"
},
{
"input": "5\n4 4 3 2 2",
"output": "NO"
},
{
"input": "8\n4 4 4 4 5 6 7 8",
"output": "NO"
},
{
"input": "5\n3 5 4 4 3",
"output": "NO"
},
{
"input": "6\n2 5 3 3 2 2",
"output": "NO"
},
{
"input": "4\n5 5 2 2",
"output": "NO"
},
{
"input": "5\n1 2 2 3 5",
"output": "NO"
}
] | 1,640,878,048
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 101
| 61
| 0
|
n=int(input())
L=list(map(int,input().split()))
z=[]
for i in range(len(L)-1):
if L[i] < L[i+1]:
z.append(0)
elif L[i] > L[i+1]:
z.append(2)
elif L[i]==L[i+1]:
z.append(1)
y=sorted(z)
if y == z:
print('YES')
else:
print('NO')
|
Title: Unimodal Array
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Array of integers is unimodal, if:
- it is strictly increasing in the beginning; - after that it is constant; - after that it is strictly decreasing.
The first block (increasing) and the last block (decreasing) may be absent. It is allowed that both of this blocks are absent.
For example, the following three arrays are unimodal: [5,<=7,<=11,<=11,<=2,<=1], [4,<=4,<=2], [7], but the following three are not unimodal: [5,<=5,<=6,<=6,<=1], [1,<=2,<=1,<=2], [4,<=5,<=5,<=6].
Write a program that checks if an array is unimodal.
Input Specification:
The first line contains integer *n* (1<=≤<=*n*<=≤<=100) — the number of elements in the array.
The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=1<=000) — the elements of the array.
Output Specification:
Print "YES" if the given array is unimodal. Otherwise, print "NO".
You can output each letter in any case (upper or lower).
Demo Input:
['6\n1 5 5 5 4 2\n', '5\n10 20 30 20 10\n', '4\n1 2 1 2\n', '7\n3 3 3 3 3 3 3\n']
Demo Output:
['YES\n', 'YES\n', 'NO\n', 'YES\n']
Note:
In the first example the array is unimodal, because it is strictly increasing in the beginning (from position 1 to position 2, inclusively), that it is constant (from position 2 to position 4, inclusively) and then it is strictly decreasing (from position 4 to position 6, inclusively).
|
```python
n=int(input())
L=list(map(int,input().split()))
z=[]
for i in range(len(L)-1):
if L[i] < L[i+1]:
z.append(0)
elif L[i] > L[i+1]:
z.append(2)
elif L[i]==L[i+1]:
z.append(1)
y=sorted(z)
if y == z:
print('YES')
else:
print('NO')
```
| 3
|
|
224
|
A
|
Parallelepiped
|
PROGRAMMING
| 1,100
|
[
"brute force",
"geometry",
"math"
] | null | null |
You've got a rectangular parallelepiped with integer edge lengths. You know the areas of its three faces that have a common vertex. Your task is to find the sum of lengths of all 12 edges of this parallelepiped.
|
The first and the single line contains three space-separated integers — the areas of the parallelepiped's faces. The area's values are positive (<=><=0) and do not exceed 104. It is guaranteed that there exists at least one parallelepiped that satisfies the problem statement.
|
Print a single number — the sum of all edges of the parallelepiped.
|
[
"1 1 1\n",
"4 6 6\n"
] |
[
"12\n",
"28\n"
] |
In the first sample the parallelepiped has sizes 1 × 1 × 1, in the second one — 2 × 2 × 3.
| 500
|
[
{
"input": "1 1 1",
"output": "12"
},
{
"input": "4 6 6",
"output": "28"
},
{
"input": "20 10 50",
"output": "68"
},
{
"input": "9 4 36",
"output": "56"
},
{
"input": "324 9 36",
"output": "184"
},
{
"input": "1333 93 129",
"output": "308"
},
{
"input": "1022 584 112",
"output": "380"
},
{
"input": "66 174 319",
"output": "184"
},
{
"input": "912 276 1748",
"output": "444"
},
{
"input": "65 156 60",
"output": "120"
},
{
"input": "1 10000 10000",
"output": "40008"
},
{
"input": "1485 55 27",
"output": "332"
},
{
"input": "152 108 4104",
"output": "528"
},
{
"input": "1656 6900 1350",
"output": "740"
},
{
"input": "12 14 42",
"output": "60"
},
{
"input": "615 18 1230",
"output": "856"
},
{
"input": "680 60 408",
"output": "336"
},
{
"input": "644 966 6",
"output": "1308"
},
{
"input": "1 432 432",
"output": "1736"
},
{
"input": "2239 2239 1",
"output": "8964"
},
{
"input": "4106 8212 2",
"output": "16436"
},
{
"input": "10000 10000 10000",
"output": "1200"
},
{
"input": "3623 3623 1",
"output": "14500"
},
{
"input": "9801 9801 9801",
"output": "1188"
},
{
"input": "10000 1 10000",
"output": "40008"
},
{
"input": "9 9 9",
"output": "36"
},
{
"input": "9801 9702 9702",
"output": "1184"
}
] | 1,595,236,929
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 27
| 186
| 6,656,000
|
a,b,c=map(int,input().split())
m=pow(((a*c)/b),1/2)
n=pow(((b*a)/c),1/2)
p=pow(((c*b)/a),1/2)
ans=4*(m+p+n)
print(int(ans))
|
Title: Parallelepiped
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You've got a rectangular parallelepiped with integer edge lengths. You know the areas of its three faces that have a common vertex. Your task is to find the sum of lengths of all 12 edges of this parallelepiped.
Input Specification:
The first and the single line contains three space-separated integers — the areas of the parallelepiped's faces. The area's values are positive (<=><=0) and do not exceed 104. It is guaranteed that there exists at least one parallelepiped that satisfies the problem statement.
Output Specification:
Print a single number — the sum of all edges of the parallelepiped.
Demo Input:
['1 1 1\n', '4 6 6\n']
Demo Output:
['12\n', '28\n']
Note:
In the first sample the parallelepiped has sizes 1 × 1 × 1, in the second one — 2 × 2 × 3.
|
```python
a,b,c=map(int,input().split())
m=pow(((a*c)/b),1/2)
n=pow(((b*a)/c),1/2)
p=pow(((c*b)/a),1/2)
ans=4*(m+p+n)
print(int(ans))
```
| 3
|
|
50
|
A
|
Domino piling
|
PROGRAMMING
| 800
|
[
"greedy",
"math"
] |
A. Domino piling
|
2
|
256
|
You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions:
1. Each domino completely covers two squares.
2. No two dominoes overlap.
3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board.
Find the maximum number of dominoes, which can be placed under these restrictions.
|
In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16).
|
Output one number — the maximal number of dominoes, which can be placed.
|
[
"2 4\n",
"3 3\n"
] |
[
"4\n",
"4\n"
] |
none
| 500
|
[
{
"input": "2 4",
"output": "4"
},
{
"input": "3 3",
"output": "4"
},
{
"input": "1 5",
"output": "2"
},
{
"input": "1 6",
"output": "3"
},
{
"input": "1 15",
"output": "7"
},
{
"input": "1 16",
"output": "8"
},
{
"input": "2 5",
"output": "5"
},
{
"input": "2 6",
"output": "6"
},
{
"input": "2 7",
"output": "7"
},
{
"input": "2 14",
"output": "14"
},
{
"input": "2 15",
"output": "15"
},
{
"input": "1 4",
"output": "2"
},
{
"input": "2 16",
"output": "16"
},
{
"input": "3 5",
"output": "7"
},
{
"input": "3 6",
"output": "9"
},
{
"input": "3 10",
"output": "15"
},
{
"input": "3 14",
"output": "21"
},
{
"input": "3 15",
"output": "22"
},
{
"input": "3 16",
"output": "24"
},
{
"input": "5 7",
"output": "17"
},
{
"input": "16 16",
"output": "128"
},
{
"input": "15 16",
"output": "120"
},
{
"input": "2 3",
"output": "3"
},
{
"input": "15 15",
"output": "112"
},
{
"input": "14 16",
"output": "112"
},
{
"input": "11 13",
"output": "71"
},
{
"input": "5 16",
"output": "40"
},
{
"input": "8 15",
"output": "60"
},
{
"input": "2 2",
"output": "2"
},
{
"input": "3 4",
"output": "6"
},
{
"input": "4 4",
"output": "8"
},
{
"input": "1 1",
"output": "0"
},
{
"input": "1 2",
"output": "1"
},
{
"input": "1 3",
"output": "1"
},
{
"input": "14 15",
"output": "105"
}
] | 1,612,619,325
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 35
| 154
| 0
|
x, y =input().split()
z= 2*1
A= int(x)*int(y)
c=A/z
print (int(c))
|
Title: Domino piling
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions:
1. Each domino completely covers two squares.
2. No two dominoes overlap.
3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board.
Find the maximum number of dominoes, which can be placed under these restrictions.
Input Specification:
In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16).
Output Specification:
Output one number — the maximal number of dominoes, which can be placed.
Demo Input:
['2 4\n', '3 3\n']
Demo Output:
['4\n', '4\n']
Note:
none
|
```python
x, y =input().split()
z= 2*1
A= int(x)*int(y)
c=A/z
print (int(c))
```
| 3.9615
|
879
|
B
|
Table Tennis
|
PROGRAMMING
| 1,200
|
[
"data structures",
"implementation"
] | null | null |
*n* people are standing in a line to play table tennis. At first, the first two players in the line play a game. Then the loser goes to the end of the line, and the winner plays with the next person from the line, and so on. They play until someone wins *k* games in a row. This player becomes the winner.
For each of the participants, you know the power to play table tennis, and for all players these values are different. In a game the player with greater power always wins. Determine who will be the winner.
|
The first line contains two integers: *n* and *k* (2<=≤<=*n*<=≤<=500, 2<=≤<=*k*<=≤<=1012) — the number of people and the number of wins.
The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=*n*) — powers of the player. It's guaranteed that this line contains a valid permutation, i.e. all *a**i* are distinct.
|
Output a single integer — power of the winner.
|
[
"2 2\n1 2\n",
"4 2\n3 1 2 4\n",
"6 2\n6 5 3 1 2 4\n",
"2 10000000000\n2 1\n"
] |
[
"2 ",
"3 ",
"6 ",
"2\n"
] |
Games in the second sample:
3 plays with 1. 3 wins. 1 goes to the end of the line.
3 plays with 2. 3 wins. He wins twice in a row. He becomes the winner.
| 1,000
|
[
{
"input": "2 2\n1 2",
"output": "2 "
},
{
"input": "4 2\n3 1 2 4",
"output": "3 "
},
{
"input": "6 2\n6 5 3 1 2 4",
"output": "6 "
},
{
"input": "2 10000000000\n2 1",
"output": "2"
},
{
"input": "4 4\n1 3 4 2",
"output": "4 "
},
{
"input": "2 2147483648\n2 1",
"output": "2"
},
{
"input": "3 2\n1 3 2",
"output": "3 "
},
{
"input": "3 3\n1 2 3",
"output": "3 "
},
{
"input": "5 2\n2 1 3 4 5",
"output": "5 "
},
{
"input": "10 2\n7 10 5 8 9 3 4 6 1 2",
"output": "10 "
},
{
"input": "100 2\n62 70 29 14 12 87 94 78 39 92 84 91 61 49 60 33 69 37 19 82 42 8 45 97 81 43 54 67 1 22 77 58 65 17 18 28 25 57 16 90 40 13 4 21 68 35 15 76 73 93 56 95 79 47 74 75 30 71 66 99 41 24 88 83 5 6 31 96 38 80 27 46 51 53 2 86 32 9 20 100 26 36 63 7 52 55 23 3 50 59 48 89 85 44 34 64 10 72 11 98",
"output": "70 "
},
{
"input": "4 10\n2 1 3 4",
"output": "4"
},
{
"input": "10 2\n1 2 3 4 5 6 7 8 9 10",
"output": "10 "
},
{
"input": "10 2\n10 9 8 7 6 5 4 3 2 1",
"output": "10 "
},
{
"input": "4 1000000000000\n3 4 1 2",
"output": "4"
},
{
"input": "100 10\n19 55 91 50 31 23 60 84 38 1 22 51 27 76 28 98 11 44 61 63 15 93 52 3 66 16 53 36 18 62 35 85 78 37 73 64 87 74 46 26 82 69 49 33 83 89 56 67 71 25 39 94 96 17 21 6 47 68 34 42 57 81 13 10 54 2 48 80 20 77 4 5 59 30 90 95 45 75 8 88 24 41 40 14 97 32 7 9 65 70 100 99 72 58 92 29 79 12 86 43",
"output": "91 "
},
{
"input": "100 50\n2 4 82 12 47 63 52 91 87 45 53 1 17 25 64 50 9 13 22 54 21 30 43 24 38 33 68 11 41 78 99 23 28 18 58 67 79 10 71 56 49 61 26 29 59 20 90 74 5 75 89 8 39 95 72 42 66 98 44 32 88 35 92 3 97 55 65 51 77 27 81 76 84 69 73 85 19 46 62 100 60 37 7 36 57 6 14 83 40 48 16 70 96 15 31 93 80 86 94 34",
"output": "100 "
},
{
"input": "2 1000000000000\n1 2",
"output": "2"
},
{
"input": "5 2\n1 4 3 5 2",
"output": "4 "
},
{
"input": "5 2\n1 3 2 4 5",
"output": "3 "
},
{
"input": "4 1000000000000\n3 1 2 4",
"output": "4"
},
{
"input": "4 2\n1 3 2 4",
"output": "3 "
},
{
"input": "10 3\n8 1 9 2 3 10 4 5 6 7",
"output": "9 "
},
{
"input": "5 2\n2 1 4 3 5",
"output": "4 "
},
{
"input": "3 4294967297\n2 1 3",
"output": "3"
},
{
"input": "4 4294967297\n3 2 1 4",
"output": "4"
},
{
"input": "5 4294967298\n3 2 1 4 5",
"output": "5"
},
{
"input": "10 4\n5 4 7 1 2 9 3 6 8 10",
"output": "9 "
},
{
"input": "11 21474836489\n10 1 2 3 4 5 6 7 8 9 11",
"output": "11"
}
] | 1,625,755,068
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 43
| 77
| 0
|
n, k = map(int,input().split())
jog = list(map(int,input().split()))
jog1 = jog[0]
st = 0
count = 0
if k > len(jog):
print(max(jog))
exit()
else:
for i in range(1,n):
if st >= k:
count += 1
print(jog1)
exit()
else:
if jog1 > jog[i]:
st += 1
else:
st = 1
jog1 = jog[i]
print(jog1)
|
Title: Table Tennis
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
*n* people are standing in a line to play table tennis. At first, the first two players in the line play a game. Then the loser goes to the end of the line, and the winner plays with the next person from the line, and so on. They play until someone wins *k* games in a row. This player becomes the winner.
For each of the participants, you know the power to play table tennis, and for all players these values are different. In a game the player with greater power always wins. Determine who will be the winner.
Input Specification:
The first line contains two integers: *n* and *k* (2<=≤<=*n*<=≤<=500, 2<=≤<=*k*<=≤<=1012) — the number of people and the number of wins.
The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=*n*) — powers of the player. It's guaranteed that this line contains a valid permutation, i.e. all *a**i* are distinct.
Output Specification:
Output a single integer — power of the winner.
Demo Input:
['2 2\n1 2\n', '4 2\n3 1 2 4\n', '6 2\n6 5 3 1 2 4\n', '2 10000000000\n2 1\n']
Demo Output:
['2 ', '3 ', '6 ', '2\n']
Note:
Games in the second sample:
3 plays with 1. 3 wins. 1 goes to the end of the line.
3 plays with 2. 3 wins. He wins twice in a row. He becomes the winner.
|
```python
n, k = map(int,input().split())
jog = list(map(int,input().split()))
jog1 = jog[0]
st = 0
count = 0
if k > len(jog):
print(max(jog))
exit()
else:
for i in range(1,n):
if st >= k:
count += 1
print(jog1)
exit()
else:
if jog1 > jog[i]:
st += 1
else:
st = 1
jog1 = jog[i]
print(jog1)
```
| 3
|
|
731
|
A
|
Night at the Museum
|
PROGRAMMING
| 800
|
[
"implementation",
"strings"
] | null | null |
Grigoriy, like the hero of one famous comedy film, found a job as a night security guard at the museum. At first night he received embosser and was to take stock of the whole exposition.
Embosser is a special devise that allows to "print" the text of a plastic tape. Text is printed sequentially, character by character. The device consists of a wheel with a lowercase English letters written in a circle, static pointer to the current letter and a button that print the chosen letter. At one move it's allowed to rotate the alphabetic wheel one step clockwise or counterclockwise. Initially, static pointer points to letter 'a'. Other letters are located as shown on the picture:
After Grigoriy add new item to the base he has to print its name on the plastic tape and attach it to the corresponding exhibit. It's not required to return the wheel to its initial position with pointer on the letter 'a'.
Our hero is afraid that some exhibits may become alive and start to attack him, so he wants to print the names as fast as possible. Help him, for the given string find the minimum number of rotations of the wheel required to print it.
|
The only line of input contains the name of some exhibit — the non-empty string consisting of no more than 100 characters. It's guaranteed that the string consists of only lowercase English letters.
|
Print one integer — the minimum number of rotations of the wheel, required to print the name given in the input.
|
[
"zeus\n",
"map\n",
"ares\n"
] |
[
"18\n",
"35\n",
"34\n"
] |
To print the string from the first sample it would be optimal to perform the following sequence of rotations:
1. from 'a' to 'z' (1 rotation counterclockwise), 1. from 'z' to 'e' (5 clockwise rotations), 1. from 'e' to 'u' (10 rotations counterclockwise), 1. from 'u' to 's' (2 counterclockwise rotations).
| 500
|
[
{
"input": "zeus",
"output": "18"
},
{
"input": "map",
"output": "35"
},
{
"input": "ares",
"output": "34"
},
{
"input": "l",
"output": "11"
},
{
"input": "abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuv",
"output": "99"
},
{
"input": "gngvi",
"output": "44"
},
{
"input": "aaaaa",
"output": "0"
},
{
"input": "a",
"output": "0"
},
{
"input": "z",
"output": "1"
},
{
"input": "vyadeehhikklnoqrs",
"output": "28"
},
{
"input": "jjiihhhhgggfedcccbazyxx",
"output": "21"
},
{
"input": "fyyptqqxuciqvwdewyppjdzur",
"output": "117"
},
{
"input": "fqcnzmzmbobmancqcoalzmanaobpdse",
"output": "368"
},
{
"input": "zzzzzaaaaaaazzzzzzaaaaaaazzzzzzaaaazzzza",
"output": "8"
},
{
"input": "aucnwhfixuruefkypvrvnvznwtjgwlghoqtisbkhuwxmgzuljvqhmnwzisnsgjhivnjmbknptxatdkelhzkhsuxzrmlcpeoyukiy",
"output": "644"
},
{
"input": "sssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss",
"output": "8"
},
{
"input": "nypjygrdtpzpigzyrisqeqfriwgwlengnezppgttgtndbrryjdl",
"output": "421"
},
{
"input": "pnllnnmmmmoqqqqqrrtssssuuvtsrpopqoonllmonnnpppopnonoopooqpnopppqppqstuuuwwwwvxzxzzaa",
"output": "84"
},
{
"input": "btaoahqgxnfsdmzsjxgvdwjukcvereqeskrdufqfqgzqfsftdqcthtkcnaipftcnco",
"output": "666"
},
{
"input": "eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeerrrrrrrrrrrrrrrrwwwwwwwwww",
"output": "22"
},
{
"input": "uyknzcrwjyzmscqucclvacmorepdgmnyhmakmmnygqwglrxkxhkpansbmruwxdeoprxzmpsvwackopujxbbkpwyeggsvjykpxh",
"output": "643"
},
{
"input": "gzwpooohffcxwtpjgfzwtooiccxsrrokezutoojdzwsrmmhecaxwrojcbyrqlfdwwrliiib",
"output": "245"
},
{
"input": "dbvnkktasjdwqsrzfwwtmjgbcxggdxsoeilecihduypktkkbwfbruxzzhlttrssicgdwqruddwrlbtxgmhdbatzvdxbbro",
"output": "468"
},
{
"input": "mdtvowlktxzzbuaeiuebfeorgbdczauxsovbucactkvyvemsknsjfhifqgycqredzchipmkvzbxdjkcbyukomjlzvxzoswumned",
"output": "523"
},
{
"input": "kkkkkkkaaaaxxaaaaaaaxxxxxxxxaaaaaaxaaaaaaaaaakkkkkkkkkaaaaaaannnnnxxxxkkkkkkkkaannnnnnna",
"output": "130"
},
{
"input": "dffiknqqrsvwzcdgjkmpqtuwxadfhkkkmpqrtwxyadfggjmpppsuuwyyzcdgghhknnpsvvvwwwyabccffiloqruwwyyzabeeehh",
"output": "163"
},
{
"input": "qpppmmkjihgecbyvvsppnnnkjiffeebaaywutrrqpmkjhgddbzzzywtssssqnmmljheddbbaxvusrqonmlifedbbzyywwtqnkheb",
"output": "155"
},
{
"input": "wvvwwwvvwxxxyyyxxwwvwwvuttttttuvvwxxwxxyxxwwwwwvvuttssrssstsssssrqpqqppqrssrsrrssrssssrrsrqqrrqpppqp",
"output": "57"
},
{
"input": "dqcpcobpcobnznamznamzlykxkxlxlylzmaobnaobpbnanbpcoaobnboaoboanzlymzmykylymylzlylymanboanaocqdqesfrfs",
"output": "1236"
},
{
"input": "nnnnnnnnnnnnnnnnnnnnaaaaaaaaaaaaaaaaaaaakkkkkkkkkkkkkkkkkkkkkkaaaaaaaaaaaaaaaaaaaaxxxxxxxxxxxxxxxxxx",
"output": "49"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "0"
},
{
"input": "cgilqsuwzaffilptwwbgmnttyyejkorxzflqvzbddhmnrvxchijpuwaeiimosxyycejlpquuwbfkpvbgijkqvxybdjjjptxcfkqt",
"output": "331"
},
{
"input": "ufsepwgtzgtgjssxaitgpailuvgqweoppszjwhoxdhhhpwwdorwfrdjwcdekxiktwziqwbkvbknrtvajpyeqbjvhiikxxaejjpte",
"output": "692"
},
{
"input": "uhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuh",
"output": "1293"
},
{
"input": "vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvgggggggggggggggggggggggggggggggggggggggggggggggggg",
"output": "16"
},
{
"input": "lyidmjyzbszgiwkxhhpnnthfwcvvstueionspfrvqgkvngmwyhezlosrpdnbvtcjjxxsykixwnepbumaacdzadlqhnjlcejovple",
"output": "616"
},
{
"input": "etzqqbaveffalkdguunfmyyrzkccnxmlluxeasqmopxzfvlkbhipqdwjgrttoemruohgwukfisdhznqyvhswbbypoxgtxyappcrl",
"output": "605"
},
{
"input": "lizussgedcbdjhrbeskhgatyozvwwekanlggcstijrniivupmcoofbaxfqrxddyzzptwxcftlhajsmmkkriarrqtkoauhcqefyud",
"output": "549"
},
{
"input": "dvjuvgfdogpknmbowlsfjzcimnygbtjiucyeeroqwhmzwpjqxlbjkqawrdtmvxbiqufllfuqibxvmtdrwaqkjblxqjpwzmhwqore",
"output": "688"
},
{
"input": "eeycuijtbgynmiczjfslwobmnkpgodfgvujvduyfeqchuaoktqrrairkkmmsjahltfcxwtpzzyddxrqfxabfoocmpuviinrjitsc",
"output": "604"
},
{
"input": "cgglnakewwvzoytaghksebrhjdbcdegssuzilrcppayxtgxopybbwshvyqnzhdsifkuwghourmeottrgjwdqpihbklvfzxpomqsa",
"output": "572"
},
{
"input": "aexullmxncckzryymfnuugdklaffevabqqztelpvojecljnhqldazdcaamubpenwxikysxxjjctvbndprsolzehywmgnvkgqvrfp",
"output": "609"
},
{
"input": "psnoieutsvvcwfhtnnphhxkwigzsbzyjmdiyl",
"output": "223"
},
{
"input": "aa",
"output": "0"
}
] | 1,645,372,325
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 44
| 46
| 409,600
|
from string import ascii_letters
listik = list(ascii_letters[:26])
spins = 0
for bykva in input():
right = listik.index(bykva)
left = listik[::-1].index(bykva) + 1
if right < left:
spins += right
else:
spins += left
listik = listik[right:] + listik[:right]
print(spins)
|
Title: Night at the Museum
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Grigoriy, like the hero of one famous comedy film, found a job as a night security guard at the museum. At first night he received embosser and was to take stock of the whole exposition.
Embosser is a special devise that allows to "print" the text of a plastic tape. Text is printed sequentially, character by character. The device consists of a wheel with a lowercase English letters written in a circle, static pointer to the current letter and a button that print the chosen letter. At one move it's allowed to rotate the alphabetic wheel one step clockwise or counterclockwise. Initially, static pointer points to letter 'a'. Other letters are located as shown on the picture:
After Grigoriy add new item to the base he has to print its name on the plastic tape and attach it to the corresponding exhibit. It's not required to return the wheel to its initial position with pointer on the letter 'a'.
Our hero is afraid that some exhibits may become alive and start to attack him, so he wants to print the names as fast as possible. Help him, for the given string find the minimum number of rotations of the wheel required to print it.
Input Specification:
The only line of input contains the name of some exhibit — the non-empty string consisting of no more than 100 characters. It's guaranteed that the string consists of only lowercase English letters.
Output Specification:
Print one integer — the minimum number of rotations of the wheel, required to print the name given in the input.
Demo Input:
['zeus\n', 'map\n', 'ares\n']
Demo Output:
['18\n', '35\n', '34\n']
Note:
To print the string from the first sample it would be optimal to perform the following sequence of rotations:
1. from 'a' to 'z' (1 rotation counterclockwise), 1. from 'z' to 'e' (5 clockwise rotations), 1. from 'e' to 'u' (10 rotations counterclockwise), 1. from 'u' to 's' (2 counterclockwise rotations).
|
```python
from string import ascii_letters
listik = list(ascii_letters[:26])
spins = 0
for bykva in input():
right = listik.index(bykva)
left = listik[::-1].index(bykva) + 1
if right < left:
spins += right
else:
spins += left
listik = listik[right:] + listik[:right]
print(spins)
```
| 3
|
|
27
|
A
|
Next Test
|
PROGRAMMING
| 1,200
|
[
"implementation",
"sortings"
] |
A. Next Test
|
2
|
256
|
«Polygon» is a system which allows to create programming tasks in a simple and professional way. When you add a test to the problem, the corresponding form asks you for the test index. As in most cases it is clear which index the next test will have, the system suggests the default value of the index. It is calculated as the smallest positive integer which is not used as an index for some previously added test.
You are to implement this feature. Create a program which determines the default index of the next test, given the indexes of the previously added tests.
|
The first line contains one integer *n* (1<=≤<=*n*<=≤<=3000) — the amount of previously added tests. The second line contains *n* distinct integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=3000) — indexes of these tests.
|
Output the required default value for the next test index.
|
[
"3\n1 7 2\n"
] |
[
"3\n"
] |
none
| 500
|
[
{
"input": "1\n1",
"output": "2"
},
{
"input": "2\n2 1",
"output": "3"
},
{
"input": "3\n3 4 1",
"output": "2"
},
{
"input": "4\n6 4 3 5",
"output": "1"
},
{
"input": "5\n3 2 1 7 4",
"output": "5"
},
{
"input": "6\n4 1 2 5 3 7",
"output": "6"
},
{
"input": "7\n3 2 1 6 5 7 4",
"output": "8"
},
{
"input": "8\n2 8 3 7 6 9 1 5",
"output": "4"
},
{
"input": "9\n10 5 9 3 8 7 1 2 4",
"output": "6"
},
{
"input": "10\n7 2 3 8 9 6 5 4 1 10",
"output": "11"
},
{
"input": "1\n1",
"output": "2"
},
{
"input": "2\n1 2",
"output": "3"
},
{
"input": "3\n2 4 1",
"output": "3"
},
{
"input": "4\n4 2 3 1",
"output": "5"
},
{
"input": "5\n3 1 4 2 5",
"output": "6"
},
{
"input": "6\n1 3 6 7 2 4",
"output": "5"
},
{
"input": "7\n1 5 4 7 2 3 6",
"output": "8"
},
{
"input": "8\n12 1 6 5 2 8 3 4",
"output": "7"
},
{
"input": "9\n3 2 7 5 6 4 1 9 10",
"output": "8"
},
{
"input": "10\n1 7 13 6 5 10 3 8 2 4",
"output": "9"
},
{
"input": "1\n2",
"output": "1"
},
{
"input": "1\n3",
"output": "1"
},
{
"input": "1\n3000",
"output": "1"
},
{
"input": "2\n2 3",
"output": "1"
},
{
"input": "2\n3000 1",
"output": "2"
}
] | 1,670,356,822
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 30
| 92
| 0
|
n = int(input())
ls = input().split(" ")
for i in range(len(ls)):
ls[i] = int(ls[i])
ls = set(ls)
flag = 1
for i in range(1,n+1):
if(i not in ls):
print(i)
flag = 0
break
if(flag == 1):
print(n+1)
|
Title: Next Test
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
«Polygon» is a system which allows to create programming tasks in a simple and professional way. When you add a test to the problem, the corresponding form asks you for the test index. As in most cases it is clear which index the next test will have, the system suggests the default value of the index. It is calculated as the smallest positive integer which is not used as an index for some previously added test.
You are to implement this feature. Create a program which determines the default index of the next test, given the indexes of the previously added tests.
Input Specification:
The first line contains one integer *n* (1<=≤<=*n*<=≤<=3000) — the amount of previously added tests. The second line contains *n* distinct integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=3000) — indexes of these tests.
Output Specification:
Output the required default value for the next test index.
Demo Input:
['3\n1 7 2\n']
Demo Output:
['3\n']
Note:
none
|
```python
n = int(input())
ls = input().split(" ")
for i in range(len(ls)):
ls[i] = int(ls[i])
ls = set(ls)
flag = 1
for i in range(1,n+1):
if(i not in ls):
print(i)
flag = 0
break
if(flag == 1):
print(n+1)
```
| 3.977
|
699
|
A
|
Launch of Collider
|
PROGRAMMING
| 1,000
|
[
"implementation"
] | null | null |
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. *n* particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, *x**i* is the coordinate of the *i*-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement — it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
|
The first line contains the positive integer *n* (1<=≤<=*n*<=≤<=200<=000) — the number of particles.
The second line contains *n* symbols "L" and "R". If the *i*-th symbol equals "L", then the *i*-th particle will move to the left, otherwise the *i*-th symbol equals "R" and the *i*-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers *x*1,<=*x*2,<=...,<=*x**n* (0<=≤<=*x**i*<=≤<=109) — the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
|
In the first line print the only integer — the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
|
[
"4\nRLRL\n2 4 6 10\n",
"3\nLLR\n40 50 60\n"
] |
[
"1\n",
"-1\n"
] |
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
| 500
|
[
{
"input": "4\nRLRL\n2 4 6 10",
"output": "1"
},
{
"input": "3\nLLR\n40 50 60",
"output": "-1"
},
{
"input": "4\nRLLR\n46 230 264 470",
"output": "92"
},
{
"input": "6\nLLRLLL\n446 492 650 844 930 970",
"output": "97"
},
{
"input": "8\nRRLLLLLL\n338 478 512 574 594 622 834 922",
"output": "17"
},
{
"input": "10\nLRLRLLRRLR\n82 268 430 598 604 658 670 788 838 1000",
"output": "3"
},
{
"input": "2\nRL\n0 1000000000",
"output": "500000000"
},
{
"input": "12\nLRLLRRRRLRLL\n254 1260 1476 1768 2924 4126 4150 4602 5578 7142 8134 9082",
"output": "108"
},
{
"input": "14\nRLLRRLRLLRLLLR\n698 2900 3476 3724 3772 3948 4320 4798 5680 6578 7754 8034 8300 8418",
"output": "88"
},
{
"input": "16\nRRLLLRLRLLLLRLLR\n222 306 968 1060 1636 1782 2314 2710 3728 4608 5088 6790 6910 7156 7418 7668",
"output": "123"
},
{
"input": "18\nRLRLLRRRLLLRLRRLRL\n1692 2028 2966 3008 3632 4890 5124 5838 6596 6598 6890 8294 8314 8752 8868 9396 9616 9808",
"output": "10"
},
{
"input": "20\nRLLLLLLLRRRRLRRLRRLR\n380 902 1400 1834 2180 2366 2562 2596 2702 2816 3222 3238 3742 5434 6480 7220 7410 8752 9708 9970",
"output": "252"
},
{
"input": "22\nLRRRRRRRRRRRLLRRRRRLRL\n1790 2150 2178 2456 2736 3282 3622 4114 4490 4772 5204 5240 5720 5840 5910 5912 6586 7920 8584 9404 9734 9830",
"output": "48"
},
{
"input": "24\nLLRLRRLLRLRRRRLLRRLRLRRL\n100 360 864 1078 1360 1384 1438 2320 2618 3074 3874 3916 3964 5178 5578 6278 6630 6992 8648 8738 8922 8930 9276 9720",
"output": "27"
},
{
"input": "26\nRLLLLLLLRLRRLRLRLRLRLLLRRR\n908 1826 2472 2474 2728 3654 3716 3718 3810 3928 4058 4418 4700 5024 5768 6006 6128 6386 6968 7040 7452 7774 7822 8726 9338 9402",
"output": "59"
},
{
"input": "28\nRRLRLRRRRRRLLLRRLRRLLLRRLLLR\n156 172 1120 1362 2512 3326 3718 4804 4990 5810 6242 6756 6812 6890 6974 7014 7088 7724 8136 8596 8770 8840 9244 9250 9270 9372 9400 9626",
"output": "10"
},
{
"input": "30\nRLLRLRLLRRRLRRRLLLLLLRRRLRRLRL\n128 610 1680 2436 2896 2994 3008 3358 3392 4020 4298 4582 4712 4728 5136 5900 6088 6232 6282 6858 6934 7186 7224 7256 7614 8802 8872 9170 9384 9794",
"output": "7"
},
{
"input": "10\nLLLLRRRRRR\n0 2 4 6 8 10 12 14 16 18",
"output": "-1"
},
{
"input": "5\nLLLLL\n0 10 20 30 40",
"output": "-1"
},
{
"input": "6\nRRRRRR\n40 50 60 70 80 100",
"output": "-1"
},
{
"input": "1\nR\n0",
"output": "-1"
},
{
"input": "2\nRL\n2 1000000000",
"output": "499999999"
},
{
"input": "2\nRL\n0 400000",
"output": "200000"
},
{
"input": "2\nRL\n0 200002",
"output": "100001"
},
{
"input": "2\nRL\n2 20000000",
"output": "9999999"
},
{
"input": "4\nLLRL\n2 4 10 100",
"output": "45"
},
{
"input": "4\nRLRL\n2 10 12 14",
"output": "1"
},
{
"input": "2\nRL\n0 100000000",
"output": "50000000"
},
{
"input": "2\nRL\n2 600002",
"output": "300000"
},
{
"input": "1\nL\n0",
"output": "-1"
},
{
"input": "2\nRL\n0 600000",
"output": "300000"
},
{
"input": "5\nRRRRR\n0 2 4 6 8",
"output": "-1"
},
{
"input": "2\nRL\n2 200000000",
"output": "99999999"
},
{
"input": "2\nRL\n0 267382766",
"output": "133691383"
},
{
"input": "3\nRRL\n4 8 999999998",
"output": "499999995"
},
{
"input": "2\nRL\n0 2",
"output": "1"
},
{
"input": "2\nRL\n2 400002",
"output": "200000"
},
{
"input": "2\nLL\n2 4",
"output": "-1"
},
{
"input": "2\nLL\n0 2",
"output": "-1"
},
{
"input": "2\nRL\n0 100000",
"output": "50000"
},
{
"input": "2\nRL\n2 200000020",
"output": "100000009"
},
{
"input": "2\nRL\n2000000 4000000",
"output": "1000000"
},
{
"input": "2\nRL\n0 199998",
"output": "99999"
},
{
"input": "3\nLRR\n40 50 60",
"output": "-1"
},
{
"input": "2\nRL\n200 400400",
"output": "200100"
},
{
"input": "2\nRL\n2 400004",
"output": "200001"
},
{
"input": "2\nRL\n0 200000000",
"output": "100000000"
}
] | 1,690,032,079
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 85
| 155
| 27,545,600
|
n = int(input())
directions = input()
positions = [int(i) for i in input().split()]
res = 1000000000
for i in range(n - 1):
if directions[i] == 'R' and directions[i + 1] == 'L':
if (positions[i + 1] - positions[i]) // 2 < res:
res = (positions[i + 1] - positions[i]) // 2
print(-1 if res == 1000000000 else res)
|
Title: Launch of Collider
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. *n* particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, *x**i* is the coordinate of the *i*-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement — it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input Specification:
The first line contains the positive integer *n* (1<=≤<=*n*<=≤<=200<=000) — the number of particles.
The second line contains *n* symbols "L" and "R". If the *i*-th symbol equals "L", then the *i*-th particle will move to the left, otherwise the *i*-th symbol equals "R" and the *i*-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers *x*1,<=*x*2,<=...,<=*x**n* (0<=≤<=*x**i*<=≤<=109) — the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output Specification:
In the first line print the only integer — the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Demo Input:
['4\nRLRL\n2 4 6 10\n', '3\nLLR\n40 50 60\n']
Demo Output:
['1\n', '-1\n']
Note:
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
|
```python
n = int(input())
directions = input()
positions = [int(i) for i in input().split()]
res = 1000000000
for i in range(n - 1):
if directions[i] == 'R' and directions[i + 1] == 'L':
if (positions[i + 1] - positions[i]) // 2 < res:
res = (positions[i + 1] - positions[i]) // 2
print(-1 if res == 1000000000 else res)
```
| 3
|
|
29
|
B
|
Traffic Lights
|
PROGRAMMING
| 1,500
|
[
"implementation"
] |
B. Traffic Lights
|
2
|
256
|
A car moves from point A to point B at speed *v* meters per second. The action takes place on the X-axis. At the distance *d* meters from A there are traffic lights. Starting from time 0, for the first *g* seconds the green light is on, then for the following *r* seconds the red light is on, then again the green light is on for the *g* seconds, and so on.
The car can be instantly accelerated from 0 to *v* and vice versa, can instantly slow down from the *v* to 0. Consider that it passes the traffic lights at the green light instantly. If the car approaches the traffic lights at the moment when the red light has just turned on, it doesn't have time to pass it. But if it approaches the traffic lights at the moment when the green light has just turned on, it can move. The car leaves point A at the time 0.
What is the minimum time for the car to get from point A to point B without breaking the traffic rules?
|
The first line contains integers *l*, *d*, *v*, *g*, *r* (1<=≤<=*l*,<=*d*,<=*v*,<=*g*,<=*r*<=≤<=1000,<=*d*<=<<=*l*) — the distance between A and B (in meters), the distance from A to the traffic lights, car's speed, the duration of green light and the duration of red light.
|
Output a single number — the minimum time that the car needs to get from point A to point B. Your output must have relative or absolute error less than 10<=-<=6.
|
[
"2 1 3 4 5\n",
"5 4 3 1 1\n"
] |
[
"0.66666667\n",
"2.33333333\n"
] |
none
| 1,000
|
[
{
"input": "2 1 3 4 5",
"output": "0.66666667"
},
{
"input": "5 4 3 1 1",
"output": "2.33333333"
},
{
"input": "862 33 604 888 704",
"output": "1.42715232"
},
{
"input": "458 251 49 622 472",
"output": "9.34693878"
},
{
"input": "772 467 142 356 889",
"output": "5.43661972"
},
{
"input": "86 64 587 89 657",
"output": "0.14650767"
},
{
"input": "400 333 31 823 74",
"output": "12.90322581"
},
{
"input": "714 474 124 205 491",
"output": "5.75806452"
},
{
"input": "29 12 569 939 259",
"output": "0.05096661"
},
{
"input": "65 24 832 159 171",
"output": "0.07812500"
},
{
"input": "2 1 1 1 1",
"output": "3.00000000"
},
{
"input": "2 1 1 1 1000",
"output": "1002.00000000"
},
{
"input": "2 1 1 1000 1",
"output": "2.00000000"
},
{
"input": "2 1 1 1000 1000",
"output": "2.00000000"
},
{
"input": "2 1 1000 1 1",
"output": "0.00200000"
},
{
"input": "2 1 1000 1 1000",
"output": "0.00200000"
},
{
"input": "2 1 1000 1000 1",
"output": "0.00200000"
},
{
"input": "2 1 1000 1000 1000",
"output": "0.00200000"
},
{
"input": "1000 1 1 1 1",
"output": "1001.00000000"
},
{
"input": "1000 1 1 1 1000",
"output": "2000.00000000"
},
{
"input": "1000 1 1 1000 1",
"output": "1000.00000000"
},
{
"input": "1000 1 1 1000 1000",
"output": "1000.00000000"
},
{
"input": "1000 1 1000 1 1",
"output": "1.00000000"
},
{
"input": "1000 1 1000 1 1000",
"output": "1.00000000"
},
{
"input": "1000 1 1000 1000 1",
"output": "1.00000000"
},
{
"input": "1000 1 1000 1000 1000",
"output": "1.00000000"
},
{
"input": "1000 999 1 1 1",
"output": "1001.00000000"
},
{
"input": "1000 999 1 1 1000",
"output": "1002.00000000"
},
{
"input": "1000 999 1 1000 1",
"output": "1000.00000000"
},
{
"input": "1000 999 1 1000 1000",
"output": "1000.00000000"
},
{
"input": "1000 999 1000 1 1",
"output": "1.00000000"
},
{
"input": "1000 999 1000 1 1000",
"output": "1.00000000"
},
{
"input": "1000 999 1000 1000 1",
"output": "1.00000000"
},
{
"input": "1000 999 1000 1000 1000",
"output": "1.00000000"
}
] | 1,593,821,379
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 34
| 310
| 0
|
l,d,v,g,r = [int(c) for c in input().split()]
light = d/v
while (light >= g+r): light -= (g+r)
ret = 0.00
if (light < g): ret = l/v
else:
wait = g + r - light
ret = d/v + wait + (l-d)/v
print(ret)
|
Title: Traffic Lights
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
A car moves from point A to point B at speed *v* meters per second. The action takes place on the X-axis. At the distance *d* meters from A there are traffic lights. Starting from time 0, for the first *g* seconds the green light is on, then for the following *r* seconds the red light is on, then again the green light is on for the *g* seconds, and so on.
The car can be instantly accelerated from 0 to *v* and vice versa, can instantly slow down from the *v* to 0. Consider that it passes the traffic lights at the green light instantly. If the car approaches the traffic lights at the moment when the red light has just turned on, it doesn't have time to pass it. But if it approaches the traffic lights at the moment when the green light has just turned on, it can move. The car leaves point A at the time 0.
What is the minimum time for the car to get from point A to point B without breaking the traffic rules?
Input Specification:
The first line contains integers *l*, *d*, *v*, *g*, *r* (1<=≤<=*l*,<=*d*,<=*v*,<=*g*,<=*r*<=≤<=1000,<=*d*<=<<=*l*) — the distance between A and B (in meters), the distance from A to the traffic lights, car's speed, the duration of green light and the duration of red light.
Output Specification:
Output a single number — the minimum time that the car needs to get from point A to point B. Your output must have relative or absolute error less than 10<=-<=6.
Demo Input:
['2 1 3 4 5\n', '5 4 3 1 1\n']
Demo Output:
['0.66666667\n', '2.33333333\n']
Note:
none
|
```python
l,d,v,g,r = [int(c) for c in input().split()]
light = d/v
while (light >= g+r): light -= (g+r)
ret = 0.00
if (light < g): ret = l/v
else:
wait = g + r - light
ret = d/v + wait + (l-d)/v
print(ret)
```
| 3.9225
|
630
|
L
|
Cracking the Code
|
PROGRAMMING
| 1,400
|
[
"implementation",
"math"
] | null | null |
The protection of a popular program developed by one of IT City companies is organized the following way. After installation it outputs a random five digit number which should be sent in SMS to a particular phone number. In response an SMS activation code arrives.
A young hacker Vasya disassembled the program and found the algorithm that transforms the shown number into the activation code. Note: it is clear that Vasya is a law-abiding hacker, and made it for a noble purpose — to show the developer the imperfection of their protection.
The found algorithm looks the following way. At first the digits of the number are shuffled in the following order <first digit><third digit><fifth digit><fourth digit><second digit>. For example the shuffle of 12345 should lead to 13542. On the second stage the number is raised to the fifth power. The result of the shuffle and exponentiation of the number 12345 is 455 422 043 125 550 171 232. The answer is the 5 last digits of this result. For the number 12345 the answer should be 71232.
Vasya is going to write a keygen program implementing this algorithm. Can you do the same?
|
The only line of the input contains a positive integer five digit number for which the activation code should be found.
|
Output exactly 5 digits without spaces between them — the found activation code of the program.
|
[
"12345\n"
] |
[
"71232"
] |
none
| 0
|
[
{
"input": "12345",
"output": "71232"
},
{
"input": "13542",
"output": "84443"
},
{
"input": "71232",
"output": "10151"
},
{
"input": "11111",
"output": "36551"
},
{
"input": "10000",
"output": "00000"
},
{
"input": "99999",
"output": "99999"
},
{
"input": "91537",
"output": "27651"
},
{
"input": "70809",
"output": "00000"
},
{
"input": "41675",
"output": "61851"
},
{
"input": "32036",
"output": "82432"
}
] | 1,693,589,539
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 10
| 61
| 0
|
s=input()
s1=s[0]+s[2]+s[4]+s[3]+s[1]
n=int(s1)
ans=pow(n,5)
n1=str(ans)
print(n1[-5:])
|
Title: Cracking the Code
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
The protection of a popular program developed by one of IT City companies is organized the following way. After installation it outputs a random five digit number which should be sent in SMS to a particular phone number. In response an SMS activation code arrives.
A young hacker Vasya disassembled the program and found the algorithm that transforms the shown number into the activation code. Note: it is clear that Vasya is a law-abiding hacker, and made it for a noble purpose — to show the developer the imperfection of their protection.
The found algorithm looks the following way. At first the digits of the number are shuffled in the following order <first digit><third digit><fifth digit><fourth digit><second digit>. For example the shuffle of 12345 should lead to 13542. On the second stage the number is raised to the fifth power. The result of the shuffle and exponentiation of the number 12345 is 455 422 043 125 550 171 232. The answer is the 5 last digits of this result. For the number 12345 the answer should be 71232.
Vasya is going to write a keygen program implementing this algorithm. Can you do the same?
Input Specification:
The only line of the input contains a positive integer five digit number for which the activation code should be found.
Output Specification:
Output exactly 5 digits without spaces between them — the found activation code of the program.
Demo Input:
['12345\n']
Demo Output:
['71232']
Note:
none
|
```python
s=input()
s1=s[0]+s[2]+s[4]+s[3]+s[1]
n=int(s1)
ans=pow(n,5)
n1=str(ans)
print(n1[-5:])
```
| 3
|
|
794
|
B
|
Cutting Carrot
|
PROGRAMMING
| 1,200
|
[
"geometry",
"math"
] | null | null |
Igor the analyst has adopted *n* little bunnies. As we all know, bunnies love carrots. Thus, Igor has bought a carrot to be shared between his bunnies. Igor wants to treat all the bunnies equally, and thus he wants to cut the carrot into *n* pieces of equal area.
Formally, the carrot can be viewed as an isosceles triangle with base length equal to 1 and height equal to *h*. Igor wants to make *n*<=-<=1 cuts parallel to the base to cut the carrot into *n* pieces. He wants to make sure that all *n* pieces have the same area. Can you help Igor determine where to cut the carrot so that each piece have equal area?
|
The first and only line of input contains two space-separated integers, *n* and *h* (2<=≤<=*n*<=≤<=1000, 1<=≤<=*h*<=≤<=105).
|
The output should contain *n*<=-<=1 real numbers *x*1,<=*x*2,<=...,<=*x**n*<=-<=1. The number *x**i* denotes that the *i*-th cut must be made *x**i* units away from the apex of the carrot. In addition, 0<=<<=*x*1<=<<=*x*2<=<<=...<=<<=*x**n*<=-<=1<=<<=*h* must hold.
Your output will be considered correct if absolute or relative error of every number in your output doesn't exceed 10<=-<=6.
Formally, let your answer be *a*, and the jury's answer be *b*. Your answer is considered correct if .
|
[
"3 2\n",
"2 100000\n"
] |
[
"1.154700538379 1.632993161855\n",
"70710.678118654752\n"
] |
Definition of isosceles triangle: [https://en.wikipedia.org/wiki/Isosceles_triangle](https://en.wikipedia.org/wiki/Isosceles_triangle).
| 1,000
|
[
{
"input": "3 2",
"output": "1.154700538379 1.632993161855"
},
{
"input": "2 100000",
"output": "70710.678118654752"
},
{
"input": "1000 100000",
"output": "3162.277660168379 4472.135954999579 5477.225575051661 6324.555320336759 7071.067811865475 7745.966692414834 8366.600265340755 8944.271909999159 9486.832980505138 10000.000000000000 10488.088481701515 10954.451150103322 11401.754250991380 11832.159566199232 12247.448713915890 12649.110640673517 13038.404810405297 13416.407864998738 13784.048752090222 14142.135623730950 14491.376746189439 14832.396974191326 15165.750888103101 15491.933384829668 15811.388300841897 16124.515496597099 16431.676725154983 16733.2..."
},
{
"input": "2 1",
"output": "0.707106781187"
},
{
"input": "1000 1",
"output": "0.031622776602 0.044721359550 0.054772255751 0.063245553203 0.070710678119 0.077459666924 0.083666002653 0.089442719100 0.094868329805 0.100000000000 0.104880884817 0.109544511501 0.114017542510 0.118321595662 0.122474487139 0.126491106407 0.130384048104 0.134164078650 0.137840487521 0.141421356237 0.144913767462 0.148323969742 0.151657508881 0.154919333848 0.158113883008 0.161245154966 0.164316767252 0.167332005307 0.170293863659 0.173205080757 0.176068168617 0.178885438200 0.181659021246 0.184390889146 0..."
},
{
"input": "20 17",
"output": "3.801315561750 5.375872022286 6.584071688553 7.602631123499 8.500000000000 9.311283477588 10.057335631269 10.751744044572 11.403946685249 12.020815280171 12.607537428063 13.168143377105 13.705838172108 14.223220451079 14.722431864335 15.205262246999 15.673225577398 16.127616066859 16.569550386175"
},
{
"input": "999 1",
"output": "0.031638599858 0.044743737014 0.054799662435 0.063277199717 0.070746059996 0.077498425829 0.083707867056 0.089487474029 0.094915799575 0.100050037531 0.104933364623 0.109599324870 0.114074594073 0.118380800867 0.122535770349 0.126554399434 0.130449289063 0.134231211043 0.137909459498 0.141492119993 0.144986278734 0.148398187395 0.151733394554 0.154996851658 0.158192999292 0.161325838061 0.164398987305 0.167415734111 0.170379074505 0.173291748303 0.176156268782 0.178974948057 0.181749918935 0.184483153795 0..."
},
{
"input": "998 99999",
"output": "3165.413034717700 4476.570044210349 5482.656203071844 6330.826069435401 7078.078722492680 7753.646760213179 8374.895686665300 8953.140088420697 9496.239104153101 10009.914924893578 10498.487342658843 10965.312406143687 11413.059004696742 11843.891063542002 12259.591967329534 12661.652138870802 13051.332290848021 13429.710132631046 13797.715532900862 14156.157444985360 14505.744837393740 14847.103184390411 15180.787616204127 15507.293520426358 15827.065173588502 16140.502832606510 16447.968609215531 16749.7..."
},
{
"input": "574 29184",
"output": "1218.116624752432 1722.677051277028 2109.839883615525 2436.233249504864 2723.791577469041 2983.764177844748 3222.833656968322 3445.354102554056 3654.349874257297 3852.022989934325 4040.035795197963 4219.679767231051 4391.981950040022 4557.775066957079 4717.745401404559 4872.466499009729 5022.423508175150 5168.031153831084 5309.647268742708 5447.583154938083 5582.111638212139 5713.473414041731 5841.882108059006 5967.528355689497 6090.583123762161 6211.200439444432 6329.519650846576 6445.667313936643 6559.75..."
},
{
"input": "2 5713",
"output": "4039.701040918746"
},
{
"input": "937 23565",
"output": "769.834993893392 1088.711089153444 1333.393322867831 1539.669987786784 1721.403377803760 1885.702921177414 2036.791944396843 2177.422178306887 2309.504981680176 2434.432003204934 2553.253825229922 2666.786645735663 2775.679544129132 2880.458791498282 2981.558110676796 3079.339975573568 3174.110994119182 3266.133267460331 3355.632941582547 3442.806755607520 3527.827132142336 3610.846187821139 3691.998931463184 3771.405842354828 3849.174969466960 3925.403656108988 4000.179968603494 4073.583888793686 4145.688..."
},
{
"input": "693 39706",
"output": "1508.306216302128 2133.067107306117 2612.463000007259 3016.612432604256 3372.675230537060 3694.580605808168 3990.603149268227 4266.134214612233 4524.918648906384 4769.683052505315 5002.485788434792 5224.926000014517 5438.275401978402 5643.565095743912 5841.644856719264 6033.224865208513 6218.905845589392 6399.201321918350 6574.554372775177 6745.350461074120 6911.927407376938 7074.583247583148 7233.582498950279 7389.161211616337 7541.531081510641 7690.882829397851 7837.389000021776 7981.206298536455 8122.47..."
},
{
"input": "449 88550",
"output": "4178.932872810542 5909.903544975429 7238.124057127628 8357.865745621084 9344.377977012855 10236.253207728862 11056.417127089408 11819.807089950858 12536.798618431626 13214.946067032045 13859.952363194553 14476.248114255256 15067.356749640443 15636.135052384012 16184.937421313947 16715.731491242168 17230.181636963718 17729.710634926286 18215.546084421264 18688.755954025709 19150.276213793575 19600.932605874766 20041.458005232581 20472.506415457724 20894.664364052710 21308.460264455309 21714.372171382883 221..."
},
{
"input": "642 37394",
"output": "1475.823459881026 2087.129552632132 2556.201215516026 2951.646919762052 3300.041579082908 3615.014427137354 3904.661853880105 4174.259105264265 4427.470379643078 4666.963557534173 4894.752673229489 5112.402431032051 5321.157158133711 5522.025750238117 5715.839682061424 5903.293839524104 6084.976009853978 6261.388657896397 6432.965320127946 6600.083158165816 6763.072717296425 6922.225614943105 7077.800671741869 7230.028854274709 7379.117299405130 7525.252620551370 7668.603646548077 7809.323707760210 7947.55..."
},
{
"input": "961 53535",
"output": "1726.935483870968 2442.255582633666 2991.139999458060 3453.870967741935 3861.545134691976 4230.110754190240 4569.041820575576 4884.511165267332 5180.806451612903 5461.049501197232 5727.597037150849 5982.279998916119 6226.554436514989 6461.600909707837 6688.392369006905 6907.741935483871 7120.337408627144 7326.766747900998 7527.537256208063 7723.090269383951 7913.812575143900 8100.045409746687 8282.091632275692 8460.221508380480 8634.677419354839 8805.677730973862 8973.419998374179 9138.083641151152 9299.83..."
},
{
"input": "4 31901",
"output": "15950.500000000000 22557.413426632053 27627.076406127377"
},
{
"input": "4 23850",
"output": "11925.000000000000 16864.496731299158 20654.705880258862"
},
{
"input": "4 72694",
"output": "36347.000000000000 51402.420351574886 62954.850702705983"
},
{
"input": "4 21538",
"output": "10769.000000000000 15229.665853195861 18652.455146709240"
},
{
"input": "4 70383",
"output": "35191.500000000000 49768.296580252774 60953.465994560145"
},
{
"input": "5 1",
"output": "0.447213595500 0.632455532034 0.774596669241 0.894427191000"
},
{
"input": "5 1",
"output": "0.447213595500 0.632455532034 0.774596669241 0.894427191000"
},
{
"input": "5 1",
"output": "0.447213595500 0.632455532034 0.774596669241 0.894427191000"
},
{
"input": "5 1",
"output": "0.447213595500 0.632455532034 0.774596669241 0.894427191000"
},
{
"input": "5 1",
"output": "0.447213595500 0.632455532034 0.774596669241 0.894427191000"
},
{
"input": "20 1",
"output": "0.223606797750 0.316227766017 0.387298334621 0.447213595500 0.500000000000 0.547722557505 0.591607978310 0.632455532034 0.670820393250 0.707106781187 0.741619848710 0.774596669241 0.806225774830 0.836660026534 0.866025403784 0.894427191000 0.921954445729 0.948683298051 0.974679434481"
},
{
"input": "775 1",
"output": "0.035921060405 0.050800050800 0.062217101684 0.071842120811 0.080321932890 0.087988269013 0.095038192662 0.101600101600 0.107763181216 0.113592366849 0.119136679436 0.124434203368 0.129515225161 0.134404301006 0.139121668728 0.143684241621 0.148106326235 0.152400152400 0.156576272252 0.160643865780 0.164610978351 0.168484707835 0.172271353843 0.175976538026 0.179605302027 0.183162187956 0.186651305051 0.190076385325 0.193440830330 0.196747750735 0.200000000000 0.203200203200 0.206350781829 0.209453975235 0..."
},
{
"input": "531 1",
"output": "0.043396303660 0.061371641193 0.075164602800 0.086792607321 0.097037084957 0.106298800691 0.114815827305 0.122743282386 0.130188910981 0.137231161599 0.143929256529 0.150329205601 0.156467598013 0.162374100149 0.168073161363 0.173585214641 0.178927543753 0.184114923580 0.189160102178 0.194074169913 0.198866846404 0.203546706606 0.208121361089 0.212597601381 0.216981518301 0.221278599182 0.225493808401 0.229631654609 0.233696247231 0.237691344271 0.241620392998 0.245486564773 0.249292785005 0.253041759057 0..."
},
{
"input": "724 1",
"output": "0.037164707312 0.052558833123 0.064371161313 0.074329414625 0.083102811914 0.091034569355 0.098328573097 0.105117666246 0.111494121937 0.117525123681 0.123261389598 0.128742322627 0.133999257852 0.139057601643 0.143938292487 0.148658829249 0.153234013794 0.157676499368 0.161997203441 0.166205623829 0.170310084440 0.174317928887 0.178235674883 0.182069138710 0.185823536562 0.189503567803 0.193113483940 0.196657146194 0.200138073886 0.203559485381 0.206924332929 0.210235332491 0.213494989396 0.216705620524 0..."
},
{
"input": "917 1",
"output": "0.033022909334 0.046701446249 0.057197356781 0.066045818668 0.073841470086 0.080889277691 0.087370405666 0.093402892499 0.099068728003 0.104427608461 0.109524599747 0.114394713561 0.119065792869 0.123560412643 0.127897177895 0.132091637337 0.136156943250 0.140104338748 0.143943524609 0.147682940172 0.151329981692 0.154891174376 0.158372309576 0.161778555382 0.165114546671 0.168384459091 0.171592070342 0.174740811332 0.177833809176 0.180873923568 0.183863777748 0.186805784998 0.189702171441 0.192554995756 0..."
},
{
"input": "458 100",
"output": "4.672693135160 6.608186004551 8.093341918275 9.345386270320 10.448459488214 11.445713905748 12.362783988552 13.216372009102 14.018079405480 14.776353114139 15.497569889795 16.186683836551 16.847634693328 17.483616785299 18.097262694412 18.690772540640 19.266007352363 19.824558013653 20.367797170339 20.896918976429 21.412969991171 21.916873521973 22.409449036367 22.891427811495 23.363465675800 23.826153477212 24.280025754826 24.725567977104 25.163222626003 25.593394344267 26.016454316384 26.432744018204 26...."
}
] | 1,642,107,815
| 455
|
PyPy 3-64
|
OK
|
TESTS
| 31
| 93
| 102,400
|
import sys
input = sys.stdin.buffer.readline
def process(n, h):
answer = []
for i in range(1, n):
answer.append(h*(i/n)**0.5)
return answer
#ai*(ai/h)/2 = (h*i)/(2*n)
#ai
n, h = [int(x) for x in input().split()]
answer = process(n, h)
sys.stdout.write(' '.join(map(str, answer))+'\n')
|
Title: Cutting Carrot
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Igor the analyst has adopted *n* little bunnies. As we all know, bunnies love carrots. Thus, Igor has bought a carrot to be shared between his bunnies. Igor wants to treat all the bunnies equally, and thus he wants to cut the carrot into *n* pieces of equal area.
Formally, the carrot can be viewed as an isosceles triangle with base length equal to 1 and height equal to *h*. Igor wants to make *n*<=-<=1 cuts parallel to the base to cut the carrot into *n* pieces. He wants to make sure that all *n* pieces have the same area. Can you help Igor determine where to cut the carrot so that each piece have equal area?
Input Specification:
The first and only line of input contains two space-separated integers, *n* and *h* (2<=≤<=*n*<=≤<=1000, 1<=≤<=*h*<=≤<=105).
Output Specification:
The output should contain *n*<=-<=1 real numbers *x*1,<=*x*2,<=...,<=*x**n*<=-<=1. The number *x**i* denotes that the *i*-th cut must be made *x**i* units away from the apex of the carrot. In addition, 0<=<<=*x*1<=<<=*x*2<=<<=...<=<<=*x**n*<=-<=1<=<<=*h* must hold.
Your output will be considered correct if absolute or relative error of every number in your output doesn't exceed 10<=-<=6.
Formally, let your answer be *a*, and the jury's answer be *b*. Your answer is considered correct if .
Demo Input:
['3 2\n', '2 100000\n']
Demo Output:
['1.154700538379 1.632993161855\n', '70710.678118654752\n']
Note:
Definition of isosceles triangle: [https://en.wikipedia.org/wiki/Isosceles_triangle](https://en.wikipedia.org/wiki/Isosceles_triangle).
|
```python
import sys
input = sys.stdin.buffer.readline
def process(n, h):
answer = []
for i in range(1, n):
answer.append(h*(i/n)**0.5)
return answer
#ai*(ai/h)/2 = (h*i)/(2*n)
#ai
n, h = [int(x) for x in input().split()]
answer = process(n, h)
sys.stdout.write(' '.join(map(str, answer))+'\n')
```
| 3
|
|
61
|
A
|
Ultra-Fast Mathematician
|
PROGRAMMING
| 800
|
[
"implementation"
] |
A. Ultra-Fast Mathematician
|
2
|
256
|
Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second.
One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part.
In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0.
Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length ∞ (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length.
Now you are going to take part in Shapur's contest. See if you are faster and more accurate.
|
There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100.
|
Write one line — the corresponding answer. Do not omit the leading 0s.
|
[
"1010100\n0100101\n",
"000\n111\n",
"1110\n1010\n",
"01110\n01100\n"
] |
[
"1110001\n",
"111\n",
"0100\n",
"00010\n"
] |
none
| 500
|
[
{
"input": "1010100\n0100101",
"output": "1110001"
},
{
"input": "000\n111",
"output": "111"
},
{
"input": "1110\n1010",
"output": "0100"
},
{
"input": "01110\n01100",
"output": "00010"
},
{
"input": "011101\n000001",
"output": "011100"
},
{
"input": "10\n01",
"output": "11"
},
{
"input": "00111111\n11011101",
"output": "11100010"
},
{
"input": "011001100\n101001010",
"output": "110000110"
},
{
"input": "1100100001\n0110101100",
"output": "1010001101"
},
{
"input": "00011101010\n10010100101",
"output": "10001001111"
},
{
"input": "100000101101\n111010100011",
"output": "011010001110"
},
{
"input": "1000001111010\n1101100110001",
"output": "0101101001011"
},
{
"input": "01011111010111\n10001110111010",
"output": "11010001101101"
},
{
"input": "110010000111100\n001100101011010",
"output": "111110101100110"
},
{
"input": "0010010111110000\n0000000011010110",
"output": "0010010100100110"
},
{
"input": "00111110111110000\n01111100001100000",
"output": "01000010110010000"
},
{
"input": "101010101111010001\n001001111101111101",
"output": "100011010010101100"
},
{
"input": "0110010101111100000\n0011000101000000110",
"output": "0101010000111100110"
},
{
"input": "11110100011101010111\n00001000011011000000",
"output": "11111100000110010111"
},
{
"input": "101010101111101101001\n111010010010000011111",
"output": "010000111101101110110"
},
{
"input": "0000111111100011000010\n1110110110110000001010",
"output": "1110001001010011001000"
},
{
"input": "10010010101000110111000\n00101110100110111000111",
"output": "10111100001110001111111"
},
{
"input": "010010010010111100000111\n100100111111100011001110",
"output": "110110101101011111001001"
},
{
"input": "0101110100100111011010010\n0101100011010111001010001",
"output": "0000010111110000010000011"
},
{
"input": "10010010100011110111111011\n10000110101100000001000100",
"output": "00010100001111110110111111"
},
{
"input": "000001111000000100001000000\n011100111101111001110110001",
"output": "011101000101111101111110001"
},
{
"input": "0011110010001001011001011100\n0000101101000011101011001010",
"output": "0011011111001010110010010110"
},
{
"input": "11111000000000010011001101111\n11101110011001010100010000000",
"output": "00010110011001000111011101111"
},
{
"input": "011001110000110100001100101100\n001010000011110000001000101001",
"output": "010011110011000100000100000101"
},
{
"input": "1011111010001100011010110101111\n1011001110010000000101100010101",
"output": "0000110100011100011111010111010"
},
{
"input": "10111000100001000001010110000001\n10111000001100101011011001011000",
"output": "00000000101101101010001111011001"
},
{
"input": "000001010000100001000000011011100\n111111111001010100100001100000111",
"output": "111110101001110101100001111011011"
},
{
"input": "1101000000000010011011101100000110\n1110000001100010011010000011011110",
"output": "0011000001100000000001101111011000"
},
{
"input": "01011011000010100001100100011110001\n01011010111000001010010100001110000",
"output": "00000001111010101011110000010000001"
},
{
"input": "000011111000011001000110111100000100\n011011000110000111101011100111000111",
"output": "011000111110011110101101011011000011"
},
{
"input": "1001000010101110001000000011111110010\n0010001011010111000011101001010110000",
"output": "1011001001111001001011101010101000010"
},
{
"input": "00011101011001100101111111000000010101\n10010011011011001011111000000011101011",
"output": "10001110000010101110000111000011111110"
},
{
"input": "111011100110001001101111110010111001010\n111111101101111001110010000101101000100",
"output": "000100001011110000011101110111010001110"
},
{
"input": "1111001001101000001000000010010101001010\n0010111100111110001011000010111110111001",
"output": "1101110101010110000011000000101011110011"
},
{
"input": "00100101111000000101011111110010100011010\n11101110001010010101001000111110101010100",
"output": "11001011110010010000010111001100001001110"
},
{
"input": "101011001110110100101001000111010101101111\n100111100110101011010100111100111111010110",
"output": "001100101000011111111101111011101010111001"
},
{
"input": "1111100001100101000111101001001010011100001\n1000110011000011110010001011001110001000001",
"output": "0111010010100110110101100010000100010100000"
},
{
"input": "01100111011111010101000001101110000001110101\n10011001011111110000000101011001001101101100",
"output": "11111110000000100101000100110111001100011001"
},
{
"input": "110010100111000100100101100000011100000011001\n011001111011100110000110111001110110100111011",
"output": "101011011100100010100011011001101010100100010"
},
{
"input": "0001100111111011010110100100111000000111000110\n1100101011000000000001010010010111001100110001",
"output": "1101001100111011010111110110101111001011110111"
},
{
"input": "00000101110110110001110010100001110100000100000\n10010000110011110001101000111111101010011010001",
"output": "10010101000101000000011010011110011110011110001"
},
{
"input": "110000100101011100100011001111110011111110010001\n101011111001011100110110111101110011010110101100",
"output": "011011011100000000010101110010000000101000111101"
},
{
"input": "0101111101011111010101011101000011101100000000111\n0000101010110110001110101011011110111001010100100",
"output": "0101010111101001011011110110011101010101010100011"
},
{
"input": "11000100010101110011101000011111001010110111111100\n00001111000111001011111110000010101110111001000011",
"output": "11001011010010111000010110011101100100001110111111"
},
{
"input": "101000001101111101101111111000001110110010101101010\n010011100111100001100000010001100101000000111011011",
"output": "111011101010011100001111101001101011110010010110001"
},
{
"input": "0011111110010001010100010110111000110011001101010100\n0111000000100010101010000100101000000100101000111001",
"output": "0100111110110011111110010010010000110111100101101101"
},
{
"input": "11101010000110000011011010000001111101000111011111100\n10110011110001010100010110010010101001010111100100100",
"output": "01011001110111010111001100010011010100010000111011000"
},
{
"input": "011000100001000001101000010110100110011110100111111011\n111011001000001001110011001111011110111110110011011111",
"output": "100011101001001000011011011001111000100000010100100100"
},
{
"input": "0111010110010100000110111011010110100000000111110110000\n1011100100010001101100000100111111101001110010000100110",
"output": "1100110010000101101010111111101001001001110101110010110"
},
{
"input": "10101000100111000111010001011011011011110100110101100011\n11101111000000001100100011111000100100000110011001101110",
"output": "01000111100111001011110010100011111111110010101100001101"
},
{
"input": "000000111001010001000000110001001011100010011101010011011\n110001101000010010000101000100001111101001100100001010010",
"output": "110001010001000011000101110101000100001011111001011001001"
},
{
"input": "0101011100111010000111110010101101111111000000111100011100\n1011111110000010101110111001000011100000100111111111000111",
"output": "1110100010111000101001001011101110011111100111000011011011"
},
{
"input": "11001000001100100111100111100100101011000101001111001001101\n10111110100010000011010100110100100011101001100000001110110",
"output": "01110110101110100100110011010000001000101100101111000111011"
},
{
"input": "010111011011101000000110000110100110001110100001110110111011\n101011110011101011101101011111010100100001100111100100111011",
"output": "111100101000000011101011011001110010101111000110010010000000"
},
{
"input": "1001011110110110000100011001010110000100011010010111010101110\n1101111100001000010111110011010101111010010100000001000010111",
"output": "0100100010111110010011101010000011111110001110010110010111001"
},
{
"input": "10000010101111100111110101111000010100110111101101111111111010\n10110110101100101010011001011010100110111011101100011001100111",
"output": "00110100000011001101101100100010110010001100000001100110011101"
},
{
"input": "011111010011111000001010101001101001000010100010111110010100001\n011111001011000011111001000001111001010110001010111101000010011",
"output": "000000011000111011110011101000010000010100101000000011010110010"
},
{
"input": "1111000000110001011101000100100100001111011100001111001100011111\n1101100110000101100001100000001001011011111011010101000101001010",
"output": "0010100110110100111100100100101101010100100111011010001001010101"
},
{
"input": "01100000101010010011001110100110110010000110010011011001100100011\n10110110010110111100100111000111000110010000000101101110000010111",
"output": "11010110111100101111101001100001110100010110010110110111100110100"
},
{
"input": "001111111010000100001100001010011001111110011110010111110001100111\n110000101001011000100010101100100110000111100000001101001110010111",
"output": "111111010011011100101110100110111111111001111110011010111111110000"
},
{
"input": "1011101011101101011110101101011101011000010011100101010101000100110\n0001000001001111010111100100111101100000000001110001000110000000110",
"output": "1010101010100010001001001001100000111000010010010100010011000100000"
},
{
"input": "01000001011001010011011100010000100100110101111011011011110000001110\n01011110000110011011000000000011000111100001010000000011111001110000",
"output": "00011111011111001000011100010011100011010100101011011000001001111110"
},
{
"input": "110101010100110101000001111110110100010010000100111110010100110011100\n111010010111111011100110101011001011001110110111110100000110110100111",
"output": "001111000011001110100111010101111111011100110011001010010010000111011"
},
{
"input": "1001101011000001011111100110010010000011010001001111011100010100110001\n1111100111110101001111010001010000011001001001010110001111000000100101",
"output": "0110001100110100010000110111000010011010011000011001010011010100010100"
},
{
"input": "00000111110010110001110110001010010101000111011001111111100110011110010\n00010111110100000100110101000010010001100001100011100000001100010100010",
"output": "00010000000110110101000011001000000100100110111010011111101010001010000"
},
{
"input": "100101011100101101000011010001011001101110101110001100010001010111001110\n100001111100101011011111110000001111000111001011111110000010101110111001",
"output": "000100100000000110011100100001010110101001100101110010010011111001110111"
},
{
"input": "1101100001000111001101001011101000111000011110000001001101101001111011010\n0101011101010100011011010110101000010010110010011110101100000110110001000",
"output": "1000111100010011010110011101000000101010101100011111100001101111001010010"
},
{
"input": "01101101010011110101100001110101111011100010000010001101111000011110111111\n00101111001101001100111010000101110000100101101111100111101110010100011011",
"output": "01000010011110111001011011110000001011000111101101101010010110001010100100"
},
{
"input": "101100101100011001101111110110110010100110110010100001110010110011001101011\n000001011010101011110011111101001110000111000010001101000010010000010001101",
"output": "101101110110110010011100001011111100100001110000101100110000100011011100110"
},
{
"input": "0010001011001010001100000010010011110110011000100000000100110000101111001110\n1100110100111000110100001110111001011101001100001010100001010011100110110001",
"output": "1110111111110010111000001100101010101011010100101010100101100011001001111111"
},
{
"input": "00101101010000000101011001101011001100010001100000101011101110000001111001000\n10010110010111000000101101000011101011001010000011011101101011010000000011111",
"output": "10111011000111000101110100101000100111011011100011110110000101010001111010111"
},
{
"input": "111100000100100000101001100001001111001010001000001000000111010000010101101011\n001000100010100101111011111011010110101100001111011000010011011011100010010110",
"output": "110100100110000101010010011010011001100110000111010000010100001011110111111101"
},
{
"input": "0110001101100100001111110101101000100101010010101010011001101001001101110000000\n0111011000000010010111011110010000000001000110001000011001101000000001110100111",
"output": "0001010101100110011000101011111000100100010100100010000000000001001100000100111"
},
{
"input": "10001111111001000101001011110101111010100001011010101100111001010001010010001000\n10000111010010011110111000111010101100000011110001101111001000111010100000000001",
"output": "00001000101011011011110011001111010110100010101011000011110001101011110010001001"
},
{
"input": "100110001110110000100101001110000011110110000110000000100011110100110110011001101\n110001110101110000000100101001101011111100100100001001000110000001111100011110110",
"output": "010111111011000000100001100111101000001010100010001001100101110101001010000111011"
},
{
"input": "0000010100100000010110111100011111111010011101000000100000011001001101101100111010\n0100111110011101010110101011110110010111001111000110101100101110111100101000111111",
"output": "0100101010111101000000010111101001101101010010000110001100110111110001000100000101"
},
{
"input": "11000111001010100001110000001001011010010010110000001110100101000001010101100110111\n11001100100100100001101010110100000111100011101110011010110100001001000011011011010",
"output": "00001011101110000000011010111101011101110001011110010100010001001000010110111101101"
},
{
"input": "010110100010001000100010101001101010011010111110100001000100101000111011100010100001\n110000011111101101010011111000101010111010100001001100001001100101000000111000000000",
"output": "100110111101100101110001010001000000100000011111101101001101001101111011011010100001"
},
{
"input": "0000011110101110010101110110110101100001011001101010101001000010000010000000101001101\n1100111111011100000110000111101110011111100111110001011001000010011111100001001100011",
"output": "1100100001110010010011110001011011111110111110011011110000000000011101100001100101110"
},
{
"input": "10100000101101110001100010010010100101100011010010101000110011100000101010110010000000\n10001110011011010010111011011101101111000111110000111000011010010101001100000001010011",
"output": "00101110110110100011011001001111001010100100100010010000101001110101100110110011010011"
},
{
"input": "001110000011111101101010011111000101010111010100001001100001001100101000000111000000000\n111010000000000000101001110011001000111011001100101010011001000011101001001011110000011",
"output": "110100000011111101000011101100001101101100011000100011111000001111000001001100110000011"
},
{
"input": "1110111100111011010101011011001110001010010010110011110010011111000010011111010101100001\n1001010101011001001010100010101100000110111101011000100010101111111010111100001110010010",
"output": "0111101001100010011111111001100010001100101111101011010000110000111000100011011011110011"
},
{
"input": "11100010001100010011001100001100010011010001101110011110100101110010101101011101000111111\n01110000000110111010110100001010000101011110100101010011000110101110101101110111011110001",
"output": "10010010001010101001111000000110010110001111001011001101100011011100000000101010011001110"
},
{
"input": "001101011001100101101100110000111000101011001001100100000100101000100000110100010111111101\n101001111110000010111101111110001001111001111101111010000110111000100100110010010001011111",
"output": "100100100111100111010001001110110001010010110100011110000010010000000100000110000110100010"
},
{
"input": "1010110110010101000110010010110101011101010100011001101011000110000000100011100100011000000\n0011011111100010001111101101000111001011101110100000110111100100101111010110101111011100011",
"output": "1001101001110111001001111111110010010110111010111001011100100010101111110101001011000100011"
},
{
"input": "10010010000111010111011111110010100101100000001100011100111011100010000010010001011100001100\n00111010100010110010000100010111010001111110100100100011101000101111111111001101101100100100",
"output": "10101000100101100101011011100101110100011110101000111111010011001101111101011100110000101000"
},
{
"input": "010101110001010101100000010111010000000111110011001101100011001000000011001111110000000010100\n010010111011100101010101111110110000000111000100001101101001001000001100101110001010000100001",
"output": "000111001010110000110101101001100000000000110111000000001010000000001111100001111010000110101"
},
{
"input": "1100111110011001000111101001001011000110011010111111100010111111001100111111011101100111101011\n1100000011001000110100110111000001011001010111101000010010100011000001100100111101101000010110",
"output": "0000111101010001110011011110001010011111001101010111110000011100001101011011100000001111111101"
},
{
"input": "00011000100100110111100101100100000000010011110111110010101110110011100001010111010011110100101\n00011011111011111011100101100111100101001110010111000010000111000100100100000001110101111011011",
"output": "00000011011111001100000000000011100101011101100000110000101001110111000101010110100110001111110"
},
{
"input": "000101011001001100000111100010110101111011110101111101000110001101011010111110110011100100000001\n011000101010011111011000111000100000000011011000000001111110001000001111101010110000011100001111",
"output": "011101110011010011011111011010010101111000101101111100111000000101010101010100000011111000001110"
},
{
"input": "1000101001011010000100100100010010011101011001110101111011101111111110010101001101010001010101001\n0110110010011100011111011111110111000000010001110100001010111110101011010011111011111110000110000",
"output": "1110011011000110011011111011100101011101001000000001110001010001010101000110110110101111010011001"
},
{
"input": "01111010010101100111110111111011011010100001011101010000111100101101101110111011001100101011100111\n00001100110110100001111011000010001001001100000010111101000001111011100000010111010010000011000010",
"output": "01110110100011000110001100111001010011101101011111101101111101010110001110101100011110101000100101"
},
{
"input": "111101011101111000001011001101111010110111001101110100100011111011011101001101010101011010111000110\n101111100101101101001100110011000001111010011101110111110110101110011011110011111100001001110101101",
"output": "010010111000010101000111111110111011001101010000000011010101010101000110111110101001010011001101011"
},
{
"input": "1010000011010110011101001101110001110010000111011101110010110110111111001001110100101100010101010001\n0111101000111100101100000101111010100100001000011101010100110011100011010011010101000100101011100011",
"output": "1101101011101010110001001000001011010110001111000000100110000101011100011010100001101000111110110010"
},
{
"input": "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001\n1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111010",
"output": "1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111011"
},
{
"input": "0\n0",
"output": "0"
},
{
"input": "0\n1",
"output": "1"
}
] | 1,653,143,017
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 102
| 61
| 0
|
m=input()
n=input()
ans=''
for i in range(len(m)):
if m[i]==n[i]:
ans+='0'
else:
ans+='1'
print(ans)
|
Title: Ultra-Fast Mathematician
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second.
One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part.
In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0.
Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length ∞ (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length.
Now you are going to take part in Shapur's contest. See if you are faster and more accurate.
Input Specification:
There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100.
Output Specification:
Write one line — the corresponding answer. Do not omit the leading 0s.
Demo Input:
['1010100\n0100101\n', '000\n111\n', '1110\n1010\n', '01110\n01100\n']
Demo Output:
['1110001\n', '111\n', '0100\n', '00010\n']
Note:
none
|
```python
m=input()
n=input()
ans=''
for i in range(len(m)):
if m[i]==n[i]:
ans+='0'
else:
ans+='1'
print(ans)
```
| 3.98475
|
653
|
A
|
Bear and Three Balls
|
PROGRAMMING
| 900
|
[
"brute force",
"implementation",
"sortings"
] | null | null |
Limak is a little polar bear. He has *n* balls, the *i*-th ball has size *t**i*.
Limak wants to give one ball to each of his three friends. Giving gifts isn't easy — there are two rules Limak must obey to make friends happy:
- No two friends can get balls of the same size. - No two friends can get balls of sizes that differ by more than 2.
For example, Limak can choose balls with sizes 4, 5 and 3, or balls with sizes 90, 91 and 92. But he can't choose balls with sizes 5, 5 and 6 (two friends would get balls of the same size), and he can't choose balls with sizes 30, 31 and 33 (because sizes 30 and 33 differ by more than 2).
Your task is to check whether Limak can choose three balls that satisfy conditions above.
|
The first line of the input contains one integer *n* (3<=≤<=*n*<=≤<=50) — the number of balls Limak has.
The second line contains *n* integers *t*1,<=*t*2,<=...,<=*t**n* (1<=≤<=*t**i*<=≤<=1000) where *t**i* denotes the size of the *i*-th ball.
|
Print "YES" (without quotes) if Limak can choose three balls of distinct sizes, such that any two of them differ by no more than 2. Otherwise, print "NO" (without quotes).
|
[
"4\n18 55 16 17\n",
"6\n40 41 43 44 44 44\n",
"8\n5 972 3 4 1 4 970 971\n"
] |
[
"YES\n",
"NO\n",
"YES\n"
] |
In the first sample, there are 4 balls and Limak is able to choose three of them to satisfy the rules. He must must choose balls with sizes 18, 16 and 17.
In the second sample, there is no way to give gifts to three friends without breaking the rules.
In the third sample, there is even more than one way to choose balls:
1. Choose balls with sizes 3, 4 and 5. 1. Choose balls with sizes 972, 970, 971.
| 500
|
[
{
"input": "4\n18 55 16 17",
"output": "YES"
},
{
"input": "6\n40 41 43 44 44 44",
"output": "NO"
},
{
"input": "8\n5 972 3 4 1 4 970 971",
"output": "YES"
},
{
"input": "3\n959 747 656",
"output": "NO"
},
{
"input": "4\n1 2 2 3",
"output": "YES"
},
{
"input": "50\n998 30 384 289 505 340 872 223 663 31 929 625 864 699 735 589 676 399 745 635 963 381 75 97 324 612 597 797 103 382 25 894 219 458 337 572 201 355 294 275 278 311 586 573 965 704 936 237 715 543",
"output": "NO"
},
{
"input": "50\n941 877 987 982 966 979 984 810 811 909 872 980 957 897 845 995 924 905 984 914 824 840 868 910 815 808 872 858 883 952 823 835 860 874 959 972 931 867 866 987 982 837 800 921 887 910 982 980 828 869",
"output": "YES"
},
{
"input": "3\n408 410 409",
"output": "YES"
},
{
"input": "3\n903 902 904",
"output": "YES"
},
{
"input": "3\n399 400 398",
"output": "YES"
},
{
"input": "3\n450 448 449",
"output": "YES"
},
{
"input": "3\n390 389 388",
"output": "YES"
},
{
"input": "3\n438 439 440",
"output": "YES"
},
{
"input": "11\n488 688 490 94 564 615 641 170 489 517 669",
"output": "YES"
},
{
"input": "24\n102 672 983 82 720 501 81 721 982 312 207 897 159 964 611 956 118 984 37 271 596 403 772 954",
"output": "YES"
},
{
"input": "36\n175 551 70 479 875 480 979 32 465 402 640 116 76 687 874 678 359 785 753 401 978 629 162 963 886 641 39 845 132 930 2 372 478 947 407 318",
"output": "YES"
},
{
"input": "6\n10 79 306 334 304 305",
"output": "YES"
},
{
"input": "34\n787 62 26 683 486 364 684 891 846 801 969 837 359 800 836 359 471 637 732 91 841 836 7 799 959 405 416 841 737 803 615 483 323 365",
"output": "YES"
},
{
"input": "30\n860 238 14 543 669 100 428 789 576 484 754 274 849 850 586 377 711 386 510 408 520 693 23 477 266 851 728 711 964 73",
"output": "YES"
},
{
"input": "11\n325 325 324 324 324 325 325 324 324 324 324",
"output": "NO"
},
{
"input": "7\n517 517 518 517 518 518 518",
"output": "NO"
},
{
"input": "20\n710 710 711 711 711 711 710 710 710 710 711 710 710 710 710 710 710 711 711 710",
"output": "NO"
},
{
"input": "48\n29 30 29 29 29 30 29 30 30 30 30 29 30 30 30 29 29 30 30 29 30 29 29 30 29 30 29 30 30 29 30 29 29 30 30 29 29 30 30 29 29 30 30 30 29 29 30 29",
"output": "NO"
},
{
"input": "7\n880 880 514 536 881 881 879",
"output": "YES"
},
{
"input": "15\n377 432 262 376 261 375 377 262 263 263 261 376 262 262 375",
"output": "YES"
},
{
"input": "32\n305 426 404 961 426 425 614 304 404 425 615 403 303 304 615 303 305 405 427 614 403 303 425 615 404 304 427 403 206 616 405 404",
"output": "YES"
},
{
"input": "41\n115 686 988 744 762 519 745 519 518 83 85 115 520 44 687 686 685 596 988 687 989 988 114 745 84 519 519 746 988 84 745 744 115 114 85 115 520 746 745 116 987",
"output": "YES"
},
{
"input": "47\n1 2 483 28 7 109 270 651 464 162 353 521 224 989 721 499 56 69 197 716 313 446 580 645 828 197 100 138 789 499 147 677 384 711 783 937 300 543 540 93 669 604 739 122 632 822 116",
"output": "NO"
},
{
"input": "31\n1 2 1 373 355 692 750 920 578 666 615 232 141 129 663 929 414 704 422 559 568 731 354 811 532 618 39 879 292 602 995",
"output": "NO"
},
{
"input": "50\n5 38 41 4 15 40 27 39 20 3 44 47 30 6 36 29 35 12 19 26 10 2 21 50 11 46 48 49 17 16 33 13 32 28 31 18 23 34 7 14 24 45 9 37 1 8 42 25 43 22",
"output": "YES"
},
{
"input": "50\n967 999 972 990 969 978 963 987 954 955 973 970 959 981 995 983 986 994 979 957 965 982 992 977 953 975 956 961 993 997 998 958 980 962 960 951 996 991 1000 966 971 988 976 968 989 984 974 964 985 952",
"output": "YES"
},
{
"input": "50\n850 536 761 506 842 898 857 723 583 637 536 943 895 929 890 612 832 633 696 731 553 880 710 812 665 877 915 636 711 540 748 600 554 521 813 796 568 513 543 809 798 820 928 504 999 646 907 639 550 911",
"output": "NO"
},
{
"input": "3\n3 1 2",
"output": "YES"
},
{
"input": "3\n500 999 1000",
"output": "NO"
},
{
"input": "10\n101 102 104 105 107 109 110 112 113 115",
"output": "NO"
},
{
"input": "50\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "NO"
},
{
"input": "50\n1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000",
"output": "NO"
},
{
"input": "3\n1000 999 998",
"output": "YES"
},
{
"input": "49\n343 322 248 477 53 156 245 493 209 141 370 66 229 184 434 137 276 472 216 456 147 180 140 114 493 323 393 262 380 314 222 124 98 441 129 346 48 401 347 460 122 125 114 106 189 260 374 165 456",
"output": "NO"
},
{
"input": "20\n1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 3 3 3 3 3",
"output": "YES"
},
{
"input": "3\n999 999 1000",
"output": "NO"
},
{
"input": "9\n2 4 5 13 25 100 200 300 400",
"output": "NO"
},
{
"input": "9\n1 1 1 2 2 2 3 3 3",
"output": "YES"
},
{
"input": "3\n1 1 2",
"output": "NO"
},
{
"input": "3\n998 999 1000",
"output": "YES"
},
{
"input": "12\n1 1 1 1 1 1 1 1 1 2 2 4",
"output": "NO"
},
{
"input": "4\n4 3 4 5",
"output": "YES"
},
{
"input": "6\n1 1 1 2 2 2",
"output": "NO"
},
{
"input": "3\n2 3 2",
"output": "NO"
},
{
"input": "5\n10 5 6 3 2",
"output": "NO"
},
{
"input": "3\n1 2 1",
"output": "NO"
},
{
"input": "3\n1 2 3",
"output": "YES"
},
{
"input": "4\n998 999 1000 1000",
"output": "YES"
},
{
"input": "5\n2 3 9 9 4",
"output": "YES"
},
{
"input": "4\n1 2 4 4",
"output": "NO"
},
{
"input": "3\n1 1 1",
"output": "NO"
},
{
"input": "3\n2 2 3",
"output": "NO"
},
{
"input": "7\n1 2 2 2 4 5 6",
"output": "YES"
},
{
"input": "5\n1 3 10 3 10",
"output": "NO"
},
{
"input": "3\n1 2 2",
"output": "NO"
},
{
"input": "4\n1000 1000 999 998",
"output": "YES"
},
{
"input": "3\n5 3 7",
"output": "NO"
},
{
"input": "6\n1 1 2 2 3 3",
"output": "YES"
},
{
"input": "9\n6 6 6 5 5 5 4 4 4",
"output": "YES"
},
{
"input": "7\n5 6 6 6 7 7 7",
"output": "YES"
},
{
"input": "5\n2 3 3 3 4",
"output": "YES"
},
{
"input": "5\n2 1 2 1 3",
"output": "YES"
},
{
"input": "3\n1 2 7",
"output": "NO"
},
{
"input": "3\n1000 1000 1000",
"output": "NO"
},
{
"input": "5\n1 100 2 100 3",
"output": "YES"
},
{
"input": "5\n5 4 6 5 5",
"output": "YES"
},
{
"input": "12\n1 1 1 1 2 2 2 2 3 3 3 3",
"output": "YES"
},
{
"input": "5\n9 9 1 2 3",
"output": "YES"
},
{
"input": "6\n1 2 3 1 2 3",
"output": "YES"
},
{
"input": "7\n1 1 1 1 2 3 3",
"output": "YES"
},
{
"input": "3\n13 13 13",
"output": "NO"
},
{
"input": "3\n42 42 42",
"output": "NO"
},
{
"input": "8\n1 1 1 1 2 2 2 2",
"output": "NO"
},
{
"input": "6\n1 1 1 1 2 3",
"output": "YES"
},
{
"input": "6\n1 1 2 2 6 6",
"output": "NO"
},
{
"input": "6\n1 2 5 5 5 5",
"output": "NO"
},
{
"input": "9\n1 2 3 1 2 3 1 2 3",
"output": "YES"
},
{
"input": "4\n1 2 1 100",
"output": "NO"
},
{
"input": "5\n1 1 2 2 3",
"output": "YES"
}
] | 1,458,386,961
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 84
| 62
| 5,120,000
|
if __name__=='__main__':
n = int(input())
b = sorted(set(map(int,input().split(' '))))
for i in range(len(b)-2):
if len(set(b[i:i+3]))==3:
if b[i+2]-b[i]<=2 and b[i+2]-b[i+1]<=1:
print('YES')
break
else: print('NO')
'''
A = input()
stack = [] #Real Stack
Graph = {
')':'('
}
count = 0
def black(A):
#p for possibility
stak =[]
for e in A:
if e in ['(']:
stak.append(e)
else:
if stak==[] or Graph[e]!=stak[-1]:
p=False
else:
stak.pop(len(stak)-1) #pop last
if len(stak) ==0:
p=True
else:
p=False
if not p: return [0]
else:
#stak is not empty
stak = []
count = []
for e in range(len(A)):
if A[e]=='(' or stak==[]: stak.append(A[e])
else:
if A[e]==')' and Graph[A[e]]==stak[-1]:
while Graph[A[e]]==stak[-1]:
stak.pop(-1)
if e==len(A)-1: break
e+=1
if A[e]=='(' or stak==[]: break
count.append(1)
return count
rov = []
P = False
for e in A:
if e in ['(']: stack.append(e)
else:
if stack!=[]:
stack.append(e)
if stack.count('(')==stack.count(')'):
x=black(stack)
if x!=[0]: P = True
if x==[1]:
rov.append(1)
else:
rov.append(sum(x[:-1]))
stack=[]
if not P: print(0)
else:
pro =1
for i in rov: pro*=i
print(pro)
'''
|
Title: Bear and Three Balls
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Limak is a little polar bear. He has *n* balls, the *i*-th ball has size *t**i*.
Limak wants to give one ball to each of his three friends. Giving gifts isn't easy — there are two rules Limak must obey to make friends happy:
- No two friends can get balls of the same size. - No two friends can get balls of sizes that differ by more than 2.
For example, Limak can choose balls with sizes 4, 5 and 3, or balls with sizes 90, 91 and 92. But he can't choose balls with sizes 5, 5 and 6 (two friends would get balls of the same size), and he can't choose balls with sizes 30, 31 and 33 (because sizes 30 and 33 differ by more than 2).
Your task is to check whether Limak can choose three balls that satisfy conditions above.
Input Specification:
The first line of the input contains one integer *n* (3<=≤<=*n*<=≤<=50) — the number of balls Limak has.
The second line contains *n* integers *t*1,<=*t*2,<=...,<=*t**n* (1<=≤<=*t**i*<=≤<=1000) where *t**i* denotes the size of the *i*-th ball.
Output Specification:
Print "YES" (without quotes) if Limak can choose three balls of distinct sizes, such that any two of them differ by no more than 2. Otherwise, print "NO" (without quotes).
Demo Input:
['4\n18 55 16 17\n', '6\n40 41 43 44 44 44\n', '8\n5 972 3 4 1 4 970 971\n']
Demo Output:
['YES\n', 'NO\n', 'YES\n']
Note:
In the first sample, there are 4 balls and Limak is able to choose three of them to satisfy the rules. He must must choose balls with sizes 18, 16 and 17.
In the second sample, there is no way to give gifts to three friends without breaking the rules.
In the third sample, there is even more than one way to choose balls:
1. Choose balls with sizes 3, 4 and 5. 1. Choose balls with sizes 972, 970, 971.
|
```python
if __name__=='__main__':
n = int(input())
b = sorted(set(map(int,input().split(' '))))
for i in range(len(b)-2):
if len(set(b[i:i+3]))==3:
if b[i+2]-b[i]<=2 and b[i+2]-b[i+1]<=1:
print('YES')
break
else: print('NO')
'''
A = input()
stack = [] #Real Stack
Graph = {
')':'('
}
count = 0
def black(A):
#p for possibility
stak =[]
for e in A:
if e in ['(']:
stak.append(e)
else:
if stak==[] or Graph[e]!=stak[-1]:
p=False
else:
stak.pop(len(stak)-1) #pop last
if len(stak) ==0:
p=True
else:
p=False
if not p: return [0]
else:
#stak is not empty
stak = []
count = []
for e in range(len(A)):
if A[e]=='(' or stak==[]: stak.append(A[e])
else:
if A[e]==')' and Graph[A[e]]==stak[-1]:
while Graph[A[e]]==stak[-1]:
stak.pop(-1)
if e==len(A)-1: break
e+=1
if A[e]=='(' or stak==[]: break
count.append(1)
return count
rov = []
P = False
for e in A:
if e in ['(']: stack.append(e)
else:
if stack!=[]:
stack.append(e)
if stack.count('(')==stack.count(')'):
x=black(stack)
if x!=[0]: P = True
if x==[1]:
rov.append(1)
else:
rov.append(sum(x[:-1]))
stack=[]
if not P: print(0)
else:
pro =1
for i in rov: pro*=i
print(pro)
'''
```
| 3
|
|
151
|
A
|
Soft Drinking
|
PROGRAMMING
| 800
|
[
"implementation",
"math"
] | null | null |
This winter is so cold in Nvodsk! A group of *n* friends decided to buy *k* bottles of a soft drink called "Take-It-Light" to warm up a bit. Each bottle has *l* milliliters of the drink. Also they bought *c* limes and cut each of them into *d* slices. After that they found *p* grams of salt.
To make a toast, each friend needs *nl* milliliters of the drink, a slice of lime and *np* grams of salt. The friends want to make as many toasts as they can, provided they all drink the same amount. How many toasts can each friend make?
|
The first and only line contains positive integers *n*, *k*, *l*, *c*, *d*, *p*, *nl*, *np*, not exceeding 1000 and no less than 1. The numbers are separated by exactly one space.
|
Print a single integer — the number of toasts each friend can make.
|
[
"3 4 5 10 8 100 3 1\n",
"5 100 10 1 19 90 4 3\n",
"10 1000 1000 25 23 1 50 1\n"
] |
[
"2\n",
"3\n",
"0\n"
] |
A comment to the first sample:
Overall the friends have 4 * 5 = 20 milliliters of the drink, it is enough to make 20 / 3 = 6 toasts. The limes are enough for 10 * 8 = 80 toasts and the salt is enough for 100 / 1 = 100 toasts. However, there are 3 friends in the group, so the answer is *min*(6, 80, 100) / 3 = 2.
| 500
|
[
{
"input": "3 4 5 10 8 100 3 1",
"output": "2"
},
{
"input": "5 100 10 1 19 90 4 3",
"output": "3"
},
{
"input": "10 1000 1000 25 23 1 50 1",
"output": "0"
},
{
"input": "1 7 4 5 5 8 3 2",
"output": "4"
},
{
"input": "2 3 3 5 5 10 1 3",
"output": "1"
},
{
"input": "2 6 4 5 6 5 1 3",
"output": "0"
},
{
"input": "1 7 3 5 3 6 2 1",
"output": "6"
},
{
"input": "2 4 5 4 5 7 3 2",
"output": "1"
},
{
"input": "2 3 6 5 7 8 2 1",
"output": "4"
},
{
"input": "1 4 5 5 3 10 3 1",
"output": "6"
},
{
"input": "1 4 6 7 3 5 1 3",
"output": "1"
},
{
"input": "1 6 5 5 5 8 3 1",
"output": "8"
},
{
"input": "1 7 5 3 3 9 2 1",
"output": "9"
},
{
"input": "3 5 3 7 6 10 3 1",
"output": "1"
},
{
"input": "3 6 3 5 3 6 3 1",
"output": "2"
},
{
"input": "1 7 5 5 5 5 2 2",
"output": "2"
},
{
"input": "2 5 3 5 6 9 2 1",
"output": "3"
},
{
"input": "3 4 3 5 3 6 2 1",
"output": "2"
},
{
"input": "1 5 5 4 7 6 3 1",
"output": "6"
},
{
"input": "2 3 7 6 5 9 3 1",
"output": "3"
},
{
"input": "2 6 5 3 3 8 1 1",
"output": "4"
},
{
"input": "2 4 7 3 4 10 2 1",
"output": "5"
},
{
"input": "1 1000 1000 1000 1000 1000 1 1",
"output": "1000"
},
{
"input": "17 1000 1000 1000 1000 1000 3 7",
"output": "8"
},
{
"input": "115 1000 1000 1000 1000 1000 17 15",
"output": "0"
},
{
"input": "1 587 981 1 2 1 1 1",
"output": "1"
},
{
"input": "1 1 2 1 2 2 1 1",
"output": "2"
}
] | 1,680,699,498
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 27
| 92
| 0
|
import math
n,k,l,c,d,p,nl,np = input().split()
n = int(n)
k = int(k)
l = int(l)
c = int(c)
d = int(d)
p = int(p)
nl = int(nl)
np = int(np)
x = (k*l)/nl
y = (c*d)
z =(p/np)
if x < y and x < z:
print(math.floor(x/n))
elif y < x and y < z:
print(math.floor(y/n))
else:
print(math.floor(z/n))
|
Title: Soft Drinking
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
This winter is so cold in Nvodsk! A group of *n* friends decided to buy *k* bottles of a soft drink called "Take-It-Light" to warm up a bit. Each bottle has *l* milliliters of the drink. Also they bought *c* limes and cut each of them into *d* slices. After that they found *p* grams of salt.
To make a toast, each friend needs *nl* milliliters of the drink, a slice of lime and *np* grams of salt. The friends want to make as many toasts as they can, provided they all drink the same amount. How many toasts can each friend make?
Input Specification:
The first and only line contains positive integers *n*, *k*, *l*, *c*, *d*, *p*, *nl*, *np*, not exceeding 1000 and no less than 1. The numbers are separated by exactly one space.
Output Specification:
Print a single integer — the number of toasts each friend can make.
Demo Input:
['3 4 5 10 8 100 3 1\n', '5 100 10 1 19 90 4 3\n', '10 1000 1000 25 23 1 50 1\n']
Demo Output:
['2\n', '3\n', '0\n']
Note:
A comment to the first sample:
Overall the friends have 4 * 5 = 20 milliliters of the drink, it is enough to make 20 / 3 = 6 toasts. The limes are enough for 10 * 8 = 80 toasts and the salt is enough for 100 / 1 = 100 toasts. However, there are 3 friends in the group, so the answer is *min*(6, 80, 100) / 3 = 2.
|
```python
import math
n,k,l,c,d,p,nl,np = input().split()
n = int(n)
k = int(k)
l = int(l)
c = int(c)
d = int(d)
p = int(p)
nl = int(nl)
np = int(np)
x = (k*l)/nl
y = (c*d)
z =(p/np)
if x < y and x < z:
print(math.floor(x/n))
elif y < x and y < z:
print(math.floor(y/n))
else:
print(math.floor(z/n))
```
| 3
|
|
378
|
A
|
Playing with Dice
|
PROGRAMMING
| 800
|
[
"brute force"
] | null | null |
Two players are playing a game. First each of them writes an integer from 1 to 6, and then a dice is thrown. The player whose written number got closer to the number on the dice wins. If both payers have the same difference, it's a draw.
The first player wrote number *a*, the second player wrote number *b*. How many ways to throw a dice are there, at which the first player wins, or there is a draw, or the second player wins?
|
The single line contains two integers *a* and *b* (1<=≤<=*a*,<=*b*<=≤<=6) — the numbers written on the paper by the first and second player, correspondingly.
|
Print three integers: the number of ways to throw the dice at which the first player wins, the game ends with a draw or the second player wins, correspondingly.
|
[
"2 5\n",
"2 4\n"
] |
[
"3 0 3\n",
"2 1 3\n"
] |
The dice is a standard cube-shaped six-sided object with each side containing a number from 1 to 6, and where all numbers on all sides are distinct.
You can assume that number *a* is closer to number *x* than number *b*, if |*a* - *x*| < |*b* - *x*|.
| 500
|
[
{
"input": "2 5",
"output": "3 0 3"
},
{
"input": "2 4",
"output": "2 1 3"
},
{
"input": "5 3",
"output": "2 1 3"
},
{
"input": "1 6",
"output": "3 0 3"
},
{
"input": "5 1",
"output": "3 1 2"
},
{
"input": "6 3",
"output": "2 0 4"
},
{
"input": "2 3",
"output": "2 0 4"
},
{
"input": "5 6",
"output": "5 0 1"
},
{
"input": "4 4",
"output": "0 6 0"
},
{
"input": "1 1",
"output": "0 6 0"
},
{
"input": "6 4",
"output": "1 1 4"
},
{
"input": "1 4",
"output": "2 0 4"
},
{
"input": "5 5",
"output": "0 6 0"
},
{
"input": "4 5",
"output": "4 0 2"
},
{
"input": "4 3",
"output": "3 0 3"
},
{
"input": "1 5",
"output": "2 1 3"
},
{
"input": "6 5",
"output": "1 0 5"
},
{
"input": "2 2",
"output": "0 6 0"
},
{
"input": "1 3",
"output": "1 1 4"
},
{
"input": "3 6",
"output": "4 0 2"
},
{
"input": "3 1",
"output": "4 1 1"
},
{
"input": "3 2",
"output": "4 0 2"
},
{
"input": "3 5",
"output": "3 1 2"
},
{
"input": "3 3",
"output": "0 6 0"
},
{
"input": "6 2",
"output": "2 1 3"
},
{
"input": "4 1",
"output": "4 0 2"
},
{
"input": "5 2",
"output": "3 0 3"
},
{
"input": "4 2",
"output": "3 1 2"
},
{
"input": "2 1",
"output": "5 0 1"
},
{
"input": "6 1",
"output": "3 0 3"
},
{
"input": "4 6",
"output": "4 1 1"
},
{
"input": "2 6",
"output": "3 1 2"
},
{
"input": "3 4",
"output": "3 0 3"
},
{
"input": "1 2",
"output": "1 0 5"
},
{
"input": "6 6",
"output": "0 6 0"
},
{
"input": "5 4",
"output": "2 0 4"
},
{
"input": "3 3",
"output": "0 6 0"
},
{
"input": "1 1",
"output": "0 6 0"
}
] | 1,612,436,986
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 38
| 62
| 0
|
a,b = map(int, input() .split())
aw,bw,d=0,0,0
for i in range(1,7):
if abs(a-i) < abs(b-i):
aw+=1
elif abs(a-i) > abs(b-i):
bw+=1
elif abs(a-i) == abs(b-i):
d+=1
print(aw,d,bw)
|
Title: Playing with Dice
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Two players are playing a game. First each of them writes an integer from 1 to 6, and then a dice is thrown. The player whose written number got closer to the number on the dice wins. If both payers have the same difference, it's a draw.
The first player wrote number *a*, the second player wrote number *b*. How many ways to throw a dice are there, at which the first player wins, or there is a draw, or the second player wins?
Input Specification:
The single line contains two integers *a* and *b* (1<=≤<=*a*,<=*b*<=≤<=6) — the numbers written on the paper by the first and second player, correspondingly.
Output Specification:
Print three integers: the number of ways to throw the dice at which the first player wins, the game ends with a draw or the second player wins, correspondingly.
Demo Input:
['2 5\n', '2 4\n']
Demo Output:
['3 0 3\n', '2 1 3\n']
Note:
The dice is a standard cube-shaped six-sided object with each side containing a number from 1 to 6, and where all numbers on all sides are distinct.
You can assume that number *a* is closer to number *x* than number *b*, if |*a* - *x*| < |*b* - *x*|.
|
```python
a,b = map(int, input() .split())
aw,bw,d=0,0,0
for i in range(1,7):
if abs(a-i) < abs(b-i):
aw+=1
elif abs(a-i) > abs(b-i):
bw+=1
elif abs(a-i) == abs(b-i):
d+=1
print(aw,d,bw)
```
| 3
|
|
499
|
B
|
Lecture
|
PROGRAMMING
| 1,000
|
[
"implementation",
"strings"
] | null | null |
You have a new professor of graph theory and he speaks very quickly. You come up with the following plan to keep up with his lecture and make notes.
You know two languages, and the professor is giving the lecture in the first one. The words in both languages consist of lowercase English characters, each language consists of several words. For each language, all words are distinct, i.e. they are spelled differently. Moreover, the words of these languages have a one-to-one correspondence, that is, for each word in each language, there exists exactly one word in the other language having has the same meaning.
You can write down every word the professor says in either the first language or the second language. Of course, during the lecture you write down each word in the language in which the word is shorter. In case of equal lengths of the corresponding words you prefer the word of the first language.
You are given the text of the lecture the professor is going to read. Find out how the lecture will be recorded in your notes.
|
The first line contains two integers, *n* and *m* (1<=≤<=*n*<=≤<=3000, 1<=≤<=*m*<=≤<=3000) — the number of words in the professor's lecture and the number of words in each of these languages.
The following *m* lines contain the words. The *i*-th line contains two strings *a**i*, *b**i* meaning that the word *a**i* belongs to the first language, the word *b**i* belongs to the second language, and these two words have the same meaning. It is guaranteed that no word occurs in both languages, and each word occurs in its language exactly once.
The next line contains *n* space-separated strings *c*1,<=*c*2,<=...,<=*c**n* — the text of the lecture. It is guaranteed that each of the strings *c**i* belongs to the set of strings {*a*1,<=*a*2,<=... *a**m*}.
All the strings in the input are non-empty, each consisting of no more than 10 lowercase English letters.
|
Output exactly *n* words: how you will record the lecture in your notebook. Output the words of the lecture in the same order as in the input.
|
[
"4 3\ncodeforces codesecrof\ncontest round\nletter message\ncodeforces contest letter contest\n",
"5 3\njoll wuqrd\neuzf un\nhbnyiyc rsoqqveh\nhbnyiyc joll joll euzf joll\n"
] |
[
"codeforces round letter round\n",
"hbnyiyc joll joll un joll\n"
] |
none
| 500
|
[
{
"input": "4 3\ncodeforces codesecrof\ncontest round\nletter message\ncodeforces contest letter contest",
"output": "codeforces round letter round"
},
{
"input": "5 3\njoll wuqrd\neuzf un\nhbnyiyc rsoqqveh\nhbnyiyc joll joll euzf joll",
"output": "hbnyiyc joll joll un joll"
},
{
"input": "5 5\nqueyqj f\nb vn\ntabzvk qpfzoqx\nytnyonoc hnxsd\njpggvr lchinjmt\nqueyqj jpggvr b ytnyonoc b",
"output": "f jpggvr b hnxsd b"
},
{
"input": "10 22\nazbrll oen\ngh vdyayei\njphveblohx vfglv\nmfyxib jepnvhcuwo\nrpikazqj uam\nl rx\nokjenof qpnyi\nj tixqrno\nod itozmfct\nikkdxmirx ev\nqexftojc p\nkdazb zjs\nmbk ykvqjrxaxu\nhbcwhouzq pwt\nmirpsz zfaegpl\nuhkkvcj rlvwj\nef iqnnwtolrc\npjzfcpmeag ecdayth\nsa qcthz\ncbfhfxi qrnbvdryz\nwqel tj\natx smkbid\nef hbcwhouzq cbfhfxi hbcwhouzq mirpsz cbfhfxi cbfhfxi okjenof pjzfcpmeag kdazb",
"output": "ef pwt cbfhfxi pwt mirpsz cbfhfxi cbfhfxi qpnyi ecdayth zjs"
},
{
"input": "1 1\namit am\namit",
"output": "am"
},
{
"input": "1 1\na c\na",
"output": "a"
}
] | 1,599,227,024
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 37
| 264
| 4,403,200
|
def comp(words):
if len(words[1]) < len(words[0]):
return 1
return 0
n,m = map(int, input().split())
abi = [input().split() for i in range(m)]
ci = input().split()
choices = [abi[i][comp(abi[i])] for i in range(m)]
words_first = [abi[i][0] for i in range(m)]
ans = [choices[words_first.index(ci[i])] for i in range(n)]
print(" ".join(ans))
|
Title: Lecture
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You have a new professor of graph theory and he speaks very quickly. You come up with the following plan to keep up with his lecture and make notes.
You know two languages, and the professor is giving the lecture in the first one. The words in both languages consist of lowercase English characters, each language consists of several words. For each language, all words are distinct, i.e. they are spelled differently. Moreover, the words of these languages have a one-to-one correspondence, that is, for each word in each language, there exists exactly one word in the other language having has the same meaning.
You can write down every word the professor says in either the first language or the second language. Of course, during the lecture you write down each word in the language in which the word is shorter. In case of equal lengths of the corresponding words you prefer the word of the first language.
You are given the text of the lecture the professor is going to read. Find out how the lecture will be recorded in your notes.
Input Specification:
The first line contains two integers, *n* and *m* (1<=≤<=*n*<=≤<=3000, 1<=≤<=*m*<=≤<=3000) — the number of words in the professor's lecture and the number of words in each of these languages.
The following *m* lines contain the words. The *i*-th line contains two strings *a**i*, *b**i* meaning that the word *a**i* belongs to the first language, the word *b**i* belongs to the second language, and these two words have the same meaning. It is guaranteed that no word occurs in both languages, and each word occurs in its language exactly once.
The next line contains *n* space-separated strings *c*1,<=*c*2,<=...,<=*c**n* — the text of the lecture. It is guaranteed that each of the strings *c**i* belongs to the set of strings {*a*1,<=*a*2,<=... *a**m*}.
All the strings in the input are non-empty, each consisting of no more than 10 lowercase English letters.
Output Specification:
Output exactly *n* words: how you will record the lecture in your notebook. Output the words of the lecture in the same order as in the input.
Demo Input:
['4 3\ncodeforces codesecrof\ncontest round\nletter message\ncodeforces contest letter contest\n', '5 3\njoll wuqrd\neuzf un\nhbnyiyc rsoqqveh\nhbnyiyc joll joll euzf joll\n']
Demo Output:
['codeforces round letter round\n', 'hbnyiyc joll joll un joll\n']
Note:
none
|
```python
def comp(words):
if len(words[1]) < len(words[0]):
return 1
return 0
n,m = map(int, input().split())
abi = [input().split() for i in range(m)]
ci = input().split()
choices = [abi[i][comp(abi[i])] for i in range(m)]
words_first = [abi[i][0] for i in range(m)]
ans = [choices[words_first.index(ci[i])] for i in range(n)]
print(" ".join(ans))
```
| 3
|
|
447
|
A
|
DZY Loves Hash
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
DZY has a hash table with *p* buckets, numbered from 0 to *p*<=-<=1. He wants to insert *n* numbers, in the order they are given, into the hash table. For the *i*-th number *x**i*, DZY will put it into the bucket numbered *h*(*x**i*), where *h*(*x*) is the hash function. In this problem we will assume, that *h*(*x*)<==<=*x* *mod* *p*. Operation *a* *mod* *b* denotes taking a remainder after division *a* by *b*.
However, each bucket can contain no more than one element. If DZY wants to insert an number into a bucket which is already filled, we say a "conflict" happens. Suppose the first conflict happens right after the *i*-th insertion, you should output *i*. If no conflict happens, just output -1.
|
The first line contains two integers, *p* and *n* (2<=≤<=*p*,<=*n*<=≤<=300). Then *n* lines follow. The *i*-th of them contains an integer *x**i* (0<=≤<=*x**i*<=≤<=109).
|
Output a single integer — the answer to the problem.
|
[
"10 5\n0\n21\n53\n41\n53\n",
"5 5\n0\n1\n2\n3\n4\n"
] |
[
"4\n",
"-1\n"
] |
none
| 500
|
[
{
"input": "10 5\n0\n21\n53\n41\n53",
"output": "4"
},
{
"input": "5 5\n0\n1\n2\n3\n4",
"output": "-1"
},
{
"input": "10 6\n811966798\n734823552\n790326404\n929189974\n414343256\n560346537",
"output": "4"
},
{
"input": "2 2\n788371161\n801743052",
"output": "-1"
},
{
"input": "10 6\n812796223\n122860157\n199259103\n597650585\n447742024\n521549402",
"output": "3"
},
{
"input": "300 2\n822454942\n119374431",
"output": "-1"
},
{
"input": "300 2\n823284367\n507345500",
"output": "-1"
},
{
"input": "2 5\n791579811\n35613889\n997079893\n878677665\n693717467",
"output": "2"
},
{
"input": "20 5\n793926268\n28931770\n842870287\n974950617\n859404206",
"output": "-1"
},
{
"input": "100 15\n805069249\n778178198\n633897389\n844316223\n146759898\n870527016\n82668754\n42060733\n943602929\n979451110\n746979598\n47406033\n607284062\n850870259\n229415316",
"output": "5"
},
{
"input": "100 15\n806204335\n189490323\n718805086\n716787474\n262315718\n822030596\n894644222\n724054623\n141384399\n579354205\n192622443\n672556242\n97417563\n243354557\n208957882",
"output": "8"
},
{
"input": "100 15\n807033760\n577461392\n275221433\n532633429\n295714486\n783298996\n255799943\n99107143\n729119412\n59302896\n37640015\n313610861\n630550567\n534283052\n681062462",
"output": "8"
},
{
"input": "100 15\n808103310\n136224397\n360129131\n405104681\n263786657\n734802577\n67808179\n928584682\n926900882\n511722343\n483348395\n938695534\n120684068\n74152694\n808088675",
"output": "9"
},
{
"input": "2 2\n2\n2",
"output": "2"
},
{
"input": "300 2\n0\n300",
"output": "2"
},
{
"input": "2 2\n0\n0",
"output": "2"
}
] | 1,601,048,900
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 29
| 248
| 0
|
def hash(array, p):
table = {}
for i in range(len(array)):
hx = array[i] % p
if hx in table:
return i+1
else:
table[hx] = array[i]
return -1
n = list(map(int, input().split()))
i = 0
p = n[0]
array = []
while i < n[1]:
x = input()
array.append(int(x))
i+=1
print(hash(array, p))
|
Title: DZY Loves Hash
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
DZY has a hash table with *p* buckets, numbered from 0 to *p*<=-<=1. He wants to insert *n* numbers, in the order they are given, into the hash table. For the *i*-th number *x**i*, DZY will put it into the bucket numbered *h*(*x**i*), where *h*(*x*) is the hash function. In this problem we will assume, that *h*(*x*)<==<=*x* *mod* *p*. Operation *a* *mod* *b* denotes taking a remainder after division *a* by *b*.
However, each bucket can contain no more than one element. If DZY wants to insert an number into a bucket which is already filled, we say a "conflict" happens. Suppose the first conflict happens right after the *i*-th insertion, you should output *i*. If no conflict happens, just output -1.
Input Specification:
The first line contains two integers, *p* and *n* (2<=≤<=*p*,<=*n*<=≤<=300). Then *n* lines follow. The *i*-th of them contains an integer *x**i* (0<=≤<=*x**i*<=≤<=109).
Output Specification:
Output a single integer — the answer to the problem.
Demo Input:
['10 5\n0\n21\n53\n41\n53\n', '5 5\n0\n1\n2\n3\n4\n']
Demo Output:
['4\n', '-1\n']
Note:
none
|
```python
def hash(array, p):
table = {}
for i in range(len(array)):
hx = array[i] % p
if hx in table:
return i+1
else:
table[hx] = array[i]
return -1
n = list(map(int, input().split()))
i = 0
p = n[0]
array = []
while i < n[1]:
x = input()
array.append(int(x))
i+=1
print(hash(array, p))
```
| 3
|
|
37
|
A
|
Towers
|
PROGRAMMING
| 1,000
|
[
"sortings"
] |
A. Towers
|
2
|
256
|
Little Vasya has received a young builder’s kit. The kit consists of several wooden bars, the lengths of all of them are known. The bars can be put one on the top of the other if their lengths are the same.
Vasya wants to construct the minimal number of towers from the bars. Help Vasya to use the bars in the best way possible.
|
The first line contains an integer *N* (1<=≤<=*N*<=≤<=1000) — the number of bars at Vasya’s disposal. The second line contains *N* space-separated integers *l**i* — the lengths of the bars. All the lengths are natural numbers not exceeding 1000.
|
In one line output two numbers — the height of the largest tower and their total number. Remember that Vasya should use all the bars.
|
[
"3\n1 2 3\n",
"4\n6 5 6 7\n"
] |
[
"1 3\n",
"2 3\n"
] |
none
| 500
|
[
{
"input": "3\n1 2 3",
"output": "1 3"
},
{
"input": "4\n6 5 6 7",
"output": "2 3"
},
{
"input": "4\n3 2 1 1",
"output": "2 3"
},
{
"input": "4\n1 2 3 3",
"output": "2 3"
},
{
"input": "3\n20 22 36",
"output": "1 3"
},
{
"input": "25\n47 30 94 41 45 20 96 51 110 129 24 116 9 47 32 82 105 114 116 75 154 151 70 42 162",
"output": "2 23"
},
{
"input": "45\n802 664 442 318 318 827 417 878 711 291 231 414 807 553 657 392 279 202 386 606 465 655 658 112 887 15 25 502 95 44 679 775 942 609 209 871 31 234 4 231 150 110 22 823 193",
"output": "2 43"
},
{
"input": "63\n93 180 116 7 8 179 268 279 136 94 221 153 264 190 278 19 19 63 153 26 158 225 25 49 89 218 111 149 255 225 197 122 243 80 3 224 107 178 202 17 53 92 69 42 228 24 81 205 95 8 265 82 228 156 127 241 172 159 106 60 67 155 111",
"output": "2 57"
},
{
"input": "83\n246 535 994 33 390 927 321 97 223 922 812 705 79 80 977 457 476 636 511 137 6 360 815 319 717 674 368 551 714 628 278 713 761 553 184 414 623 753 428 214 581 115 439 61 677 216 772 592 187 603 658 310 439 559 870 376 109 321 189 337 277 26 70 734 796 907 979 693 570 227 345 650 737 633 701 914 134 403 972 940 371 6 642",
"output": "2 80"
},
{
"input": "105\n246 57 12 204 165 123 246 68 191 310 3 152 386 333 374 257 158 104 333 50 80 290 8 340 101 76 221 316 388 289 138 359 316 26 93 290 105 178 81 195 41 196 218 180 244 292 187 97 315 323 174 119 248 239 92 312 31 2 101 180 307 170 338 314 163 281 217 31 142 238 280 190 190 156 70 74 329 113 151 8 141 313 366 40 253 116 168 124 135 230 294 266 353 389 371 359 195 200 183 237 93 102 315 118 188",
"output": "2 92"
},
{
"input": "123\n112 277 170 247 252 115 157 293 256 143 196 90 12 164 164 42 8 223 167 109 175 232 239 111 148 51 9 254 93 32 268 162 231 91 47 162 161 191 195 145 247 292 129 199 230 94 144 217 18 205 176 20 143 198 121 243 211 262 230 277 195 255 108 290 220 275 158 2 286 200 60 267 278 207 123 150 123 116 131 13 12 226 33 244 30 275 263 45 158 192 254 149 242 176 62 224 221 288 250 160 155 225 132 143 276 293 218 145 197 175 33 129 79 206 210 192 222 262 190 52 274 243 233",
"output": "3 101"
},
{
"input": "5\n5 5 5 5 5",
"output": "5 1"
},
{
"input": "3\n1000 1000 1000",
"output": "3 1"
},
{
"input": "1\n1000",
"output": "1 1"
},
{
"input": "1\n1",
"output": "1 1"
},
{
"input": "5\n1 1000 1000 1000 1000",
"output": "4 2"
},
{
"input": "5\n1000 1000 1000 8 7",
"output": "3 3"
}
] | 1,580,255,448
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 61
| 218
| 307,200
|
n = int(input())
dic = {}
line = input()
items = line.split()
for item in items:
if item in dic:
dic[item] += 1
else:
dic[item] = 1
print(max(dic.values()), len(dic.keys()))
|
Title: Towers
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Little Vasya has received a young builder’s kit. The kit consists of several wooden bars, the lengths of all of them are known. The bars can be put one on the top of the other if their lengths are the same.
Vasya wants to construct the minimal number of towers from the bars. Help Vasya to use the bars in the best way possible.
Input Specification:
The first line contains an integer *N* (1<=≤<=*N*<=≤<=1000) — the number of bars at Vasya’s disposal. The second line contains *N* space-separated integers *l**i* — the lengths of the bars. All the lengths are natural numbers not exceeding 1000.
Output Specification:
In one line output two numbers — the height of the largest tower and their total number. Remember that Vasya should use all the bars.
Demo Input:
['3\n1 2 3\n', '4\n6 5 6 7\n']
Demo Output:
['1 3\n', '2 3\n']
Note:
none
|
```python
n = int(input())
dic = {}
line = input()
items = line.split()
for item in items:
if item in dic:
dic[item] += 1
else:
dic[item] = 1
print(max(dic.values()), len(dic.keys()))
```
| 3.944928
|
34
|
B
|
Sale
|
PROGRAMMING
| 900
|
[
"greedy",
"sortings"
] |
B. Sale
|
2
|
256
|
Once Bob got to a sale of old TV sets. There were *n* TV sets at that sale. TV set with index *i* costs *a**i* bellars. Some TV sets have a negative price — their owners are ready to pay Bob if he buys their useless apparatus. Bob can «buy» any TV sets he wants. Though he's very strong, Bob can carry at most *m* TV sets, and he has no desire to go to the sale for the second time. Please, help Bob find out the maximum sum of money that he can earn.
|
The first line contains two space-separated integers *n* and *m* (1<=≤<=*m*<=≤<=*n*<=≤<=100) — amount of TV sets at the sale, and amount of TV sets that Bob can carry. The following line contains *n* space-separated integers *a**i* (<=-<=1000<=≤<=*a**i*<=≤<=1000) — prices of the TV sets.
|
Output the only number — the maximum sum of money that Bob can earn, given that he can carry at most *m* TV sets.
|
[
"5 3\n-6 0 35 -2 4\n",
"4 2\n7 0 0 -7\n"
] |
[
"8\n",
"7\n"
] |
none
| 1,000
|
[
{
"input": "5 3\n-6 0 35 -2 4",
"output": "8"
},
{
"input": "4 2\n7 0 0 -7",
"output": "7"
},
{
"input": "6 6\n756 -611 251 -66 572 -818",
"output": "1495"
},
{
"input": "5 5\n976 437 937 788 518",
"output": "0"
},
{
"input": "5 3\n-2 -2 -2 -2 -2",
"output": "6"
},
{
"input": "5 1\n998 997 985 937 998",
"output": "0"
},
{
"input": "2 2\n-742 -187",
"output": "929"
},
{
"input": "3 3\n522 597 384",
"output": "0"
},
{
"input": "4 2\n-215 -620 192 647",
"output": "835"
},
{
"input": "10 6\n557 605 685 231 910 633 130 838 -564 -85",
"output": "649"
},
{
"input": "20 14\n932 442 960 943 624 624 955 998 631 910 850 517 715 123 1000 155 -10 961 966 59",
"output": "10"
},
{
"input": "30 5\n991 997 996 967 977 999 991 986 1000 965 984 997 998 1000 958 983 974 1000 991 999 1000 978 961 992 990 998 998 978 998 1000",
"output": "0"
},
{
"input": "50 20\n-815 -947 -946 -993 -992 -846 -884 -954 -963 -733 -940 -746 -766 -930 -821 -937 -937 -999 -914 -938 -936 -975 -939 -981 -977 -952 -925 -901 -952 -978 -994 -957 -946 -896 -905 -836 -994 -951 -887 -939 -859 -953 -985 -988 -946 -829 -956 -842 -799 -886",
"output": "19441"
},
{
"input": "88 64\n999 999 1000 1000 999 996 995 1000 1000 999 1000 997 998 1000 999 1000 997 1000 993 998 994 999 998 996 1000 997 1000 1000 1000 997 1000 998 997 1000 1000 998 1000 998 999 1000 996 999 999 999 996 995 999 1000 998 999 1000 999 999 1000 1000 1000 996 1000 1000 1000 997 1000 1000 997 999 1000 1000 1000 1000 1000 999 999 1000 1000 996 999 1000 1000 995 999 1000 996 1000 998 999 999 1000 999",
"output": "0"
},
{
"input": "99 17\n-993 -994 -959 -989 -991 -995 -976 -997 -990 -1000 -996 -994 -999 -995 -1000 -983 -979 -1000 -989 -968 -994 -992 -962 -993 -999 -983 -991 -979 -995 -993 -973 -999 -995 -995 -999 -993 -995 -992 -947 -1000 -999 -998 -982 -988 -979 -993 -963 -988 -980 -990 -979 -976 -995 -999 -981 -988 -998 -999 -970 -1000 -983 -994 -943 -975 -998 -977 -973 -997 -959 -999 -983 -985 -950 -977 -977 -991 -998 -973 -987 -985 -985 -986 -984 -994 -978 -998 -989 -989 -988 -970 -985 -974 -997 -981 -962 -972 -995 -988 -993",
"output": "16984"
},
{
"input": "100 37\n205 19 -501 404 912 -435 -322 -469 -655 880 -804 -470 793 312 -108 586 -642 -928 906 605 -353 -800 745 -440 -207 752 -50 -28 498 -800 -62 -195 602 -833 489 352 536 404 -775 23 145 -512 524 759 651 -461 -427 -557 684 -366 62 592 -563 -811 64 418 -881 -308 591 -318 -145 -261 -321 -216 -18 595 -202 960 -4 219 226 -238 -882 -963 425 970 -434 -160 243 -672 -4 873 8 -633 904 -298 -151 -377 -61 -72 -677 -66 197 -716 3 -870 -30 152 -469 981",
"output": "21743"
},
{
"input": "100 99\n-931 -806 -830 -828 -916 -962 -660 -867 -952 -966 -820 -906 -724 -982 -680 -717 -488 -741 -897 -613 -986 -797 -964 -939 -808 -932 -810 -860 -641 -916 -858 -628 -821 -929 -917 -976 -664 -985 -778 -665 -624 -928 -940 -958 -884 -757 -878 -896 -634 -526 -514 -873 -990 -919 -988 -878 -650 -973 -774 -783 -733 -648 -756 -895 -833 -974 -832 -725 -841 -748 -806 -613 -924 -867 -881 -943 -864 -991 -809 -926 -777 -817 -998 -682 -910 -996 -241 -722 -964 -904 -821 -920 -835 -699 -805 -632 -779 -317 -915 -654",
"output": "81283"
},
{
"input": "100 14\n995 994 745 684 510 737 984 690 979 977 542 933 871 603 758 653 962 997 747 974 773 766 975 770 527 960 841 989 963 865 974 967 950 984 757 685 986 809 982 959 931 880 978 867 805 562 970 900 834 782 616 885 910 608 974 918 576 700 871 980 656 941 978 759 767 840 573 859 841 928 693 853 716 927 976 851 962 962 627 797 707 873 869 988 993 533 665 887 962 880 929 980 877 887 572 790 721 883 848 782",
"output": "0"
},
{
"input": "100 84\n768 946 998 752 931 912 826 1000 991 910 875 962 901 952 958 733 959 908 872 840 923 826 952 980 974 980 947 955 959 822 997 963 966 933 829 923 971 999 926 932 865 984 974 858 994 855 949 941 992 861 951 949 991 711 763 728 935 485 716 907 869 952 960 859 909 963 978 942 968 933 923 909 997 962 687 764 924 774 875 1000 961 951 987 974 848 921 966 859 995 997 974 931 886 941 974 986 906 978 998 823",
"output": "0"
},
{
"input": "100 80\n-795 -994 -833 -930 -974 -980 -950 -940 -788 -927 -583 -956 -945 -949 -809 -974 -957 -736 -967 -908 -975 -961 -986 -983 -963 -771 -952 -847 -751 -741 -982 -959 -925 -931 -839 -937 -880 -914 -858 -998 -812 -911 -862 -965 -943 -984 -738 -920 -950 -998 -909 -998 -781 -901 -677 -940 -985 -951 -675 -952 -967 -949 -882 -641 -969 -937 -975 -993 -913 -941 -807 -851 -832 -960 -939 -943 -895 -929 -528 -880 -823 -930 -888 -862 -948 -966 -962 -857 -799 -969 -833 -998 -952 -878 -946 -971 -976 -974 -723 -992",
"output": "75068"
},
{
"input": "1 1\n0",
"output": "0"
},
{
"input": "1 1\n1",
"output": "0"
},
{
"input": "1 1\n555",
"output": "0"
},
{
"input": "1 1\n-1",
"output": "1"
},
{
"input": "1 1\n-24",
"output": "24"
}
] | 1,690,614,770
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 25
| 124
| 0
|
from sys import stdin,stdout
# from bisect import bisect_left,bisect
# from heapq import heapify,heappop,heappush
# from sys import setrecursionlimit
# from collections import defaultdict,Counter
# from itertools import permutations
# from math import gcd,ceil,sqrt,factorial
# setrecursionlimit(int(1e5))
input,print = stdin.readline,stdout.write
n,m = list(map(int,input().split()))
a = sorted(list(map(int,input().split())))
ans = 0
i = 0
while m>0 and i<n:
if a[i]<0:
ans-=a[i]
i+=1
m-=1
else:
break
print(str(ans)+"\n")
|
Title: Sale
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Once Bob got to a sale of old TV sets. There were *n* TV sets at that sale. TV set with index *i* costs *a**i* bellars. Some TV sets have a negative price — their owners are ready to pay Bob if he buys their useless apparatus. Bob can «buy» any TV sets he wants. Though he's very strong, Bob can carry at most *m* TV sets, and he has no desire to go to the sale for the second time. Please, help Bob find out the maximum sum of money that he can earn.
Input Specification:
The first line contains two space-separated integers *n* and *m* (1<=≤<=*m*<=≤<=*n*<=≤<=100) — amount of TV sets at the sale, and amount of TV sets that Bob can carry. The following line contains *n* space-separated integers *a**i* (<=-<=1000<=≤<=*a**i*<=≤<=1000) — prices of the TV sets.
Output Specification:
Output the only number — the maximum sum of money that Bob can earn, given that he can carry at most *m* TV sets.
Demo Input:
['5 3\n-6 0 35 -2 4\n', '4 2\n7 0 0 -7\n']
Demo Output:
['8\n', '7\n']
Note:
none
|
```python
from sys import stdin,stdout
# from bisect import bisect_left,bisect
# from heapq import heapify,heappop,heappush
# from sys import setrecursionlimit
# from collections import defaultdict,Counter
# from itertools import permutations
# from math import gcd,ceil,sqrt,factorial
# setrecursionlimit(int(1e5))
input,print = stdin.readline,stdout.write
n,m = list(map(int,input().split()))
a = sorted(list(map(int,input().split())))
ans = 0
i = 0
while m>0 and i<n:
if a[i]<0:
ans-=a[i]
i+=1
m-=1
else:
break
print(str(ans)+"\n")
```
| 3.969
|
391
|
A
|
Genetic Engineering
|
PROGRAMMING
| 0
|
[
"implementation",
"two pointers"
] | null | null |
You will receive 3 points for solving this problem.
Manao is designing the genetic code for a new type of algae to efficiently produce fuel. Specifically, Manao is focusing on a stretch of DNA that encodes one protein. The stretch of DNA is represented by a string containing only the characters 'A', 'T', 'G' and 'C'.
Manao has determined that if the stretch of DNA contains a maximal sequence of consecutive identical nucleotides that is of even length, then the protein will be nonfunctional. For example, consider a protein described by DNA string "GTTAAAG". It contains four maximal sequences of consecutive identical nucleotides: "G", "TT", "AAA", and "G". The protein is nonfunctional because sequence "TT" has even length.
Manao is trying to obtain a functional protein from the protein he currently has. Manao can insert additional nucleotides into the DNA stretch. Each additional nucleotide is a character from the set {'A', 'T', 'G', 'C'}. Manao wants to determine the minimum number of insertions necessary to make the DNA encode a functional protein.
|
The input consists of a single line, containing a string *s* of length *n* (1<=≤<=*n*<=≤<=100). Each character of *s* will be from the set {'A', 'T', 'G', 'C'}.
This problem doesn't have subproblems. You will get 3 points for the correct submission.
|
The program should print on one line a single integer representing the minimum number of 'A', 'T', 'G', 'C' characters that are required to be inserted into the input string in order to make all runs of identical characters have odd length.
|
[
"GTTAAAG\n",
"AACCAACCAAAAC\n"
] |
[
"1\n",
"5\n"
] |
In the first example, it is sufficient to insert a single nucleotide of any type between the two 'T's in the sequence to restore the functionality of the protein.
| 3
|
[
{
"input": "GTTAAAG",
"output": "1"
},
{
"input": "AACCAACCAAAAC",
"output": "5"
},
{
"input": "GTGAATTTCC",
"output": "2"
},
{
"input": "CAGGGGGCCGCCCATGAAAAAAACCCGGCCCCTTGGGAAAACTTGGGTTA",
"output": "7"
},
{
"input": "CCCTTCACCCGGATCCAAATCCCTTAGAAATAATCCCCGACGGCGTTGTATCACCTCTGCACTTGTTAGTAAGGTCAGGCGTCCATTACGGAAGAACGTA",
"output": "19"
},
{
"input": "GCATTACATGGGGGGGTCCTACGAGCCCGGCATCCCGGAAACTAGCCGGTTAATTTGGTTTAAACCCTCCCACCCCGGATTGTAACCCCCCTCATTGGTT",
"output": "17"
},
{
"input": "TTCCCAGAGAAAAAAAGGGGCCCAAATGCCCTAAAAACCCCCTTTGCCCCCCAACCCCTTTTTAAAATAAAAAGGGGCCCATTCCCTTAAAAATTTTTTG",
"output": "10"
},
{
"input": "AGCCGCCCCCCCAAAAAAGGGGGAAAAAAAAAAAAAAAAAAAAACTTTTGGAAACCCCCCCCTTTTTTTTTTTTTTTTTTTTTTTTTGGGGAAGGGGGGG",
"output": "7"
},
{
"input": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA",
"output": "1"
},
{
"input": "AAAAAAAAAAAAAAAAAATTTTTTTTTTTTTTTTGGGGGGGGGGGGGGGGGGGGGGGTTTTTTTTTTTTTTGGGGGGGGGGGGGGGGGGGGAAAAATTTT",
"output": "5"
},
{
"input": "AACCGGTTAACCGGTTAACCGGTTAACCGGTTAACCGGTTAACCGGTTAACCGGTTAACCGGTTAACCGGTTAACCGGTTAACCGGTTAACCGGTTCCGG",
"output": "50"
},
{
"input": "A",
"output": "0"
},
{
"input": "TTT",
"output": "0"
},
{
"input": "GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG",
"output": "0"
},
{
"input": "G",
"output": "0"
},
{
"input": "T",
"output": "0"
},
{
"input": "C",
"output": "0"
},
{
"input": "AA",
"output": "1"
},
{
"input": "GGG",
"output": "0"
},
{
"input": "AAG",
"output": "1"
}
] | 1,562,432,064
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 20
| 139
| 0
|
s = input()
f = {}
t = 1
for i in range(len(s)):
if i > 0:
if s[i] == s[i-1]:
f[t] += 1
else:
t += 1
f[t] = 1
else:
f[t] = 1
count = 0
for x in f:
if f[x] % 2 == 0:
count += 1
print(count)
|
Title: Genetic Engineering
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You will receive 3 points for solving this problem.
Manao is designing the genetic code for a new type of algae to efficiently produce fuel. Specifically, Manao is focusing on a stretch of DNA that encodes one protein. The stretch of DNA is represented by a string containing only the characters 'A', 'T', 'G' and 'C'.
Manao has determined that if the stretch of DNA contains a maximal sequence of consecutive identical nucleotides that is of even length, then the protein will be nonfunctional. For example, consider a protein described by DNA string "GTTAAAG". It contains four maximal sequences of consecutive identical nucleotides: "G", "TT", "AAA", and "G". The protein is nonfunctional because sequence "TT" has even length.
Manao is trying to obtain a functional protein from the protein he currently has. Manao can insert additional nucleotides into the DNA stretch. Each additional nucleotide is a character from the set {'A', 'T', 'G', 'C'}. Manao wants to determine the minimum number of insertions necessary to make the DNA encode a functional protein.
Input Specification:
The input consists of a single line, containing a string *s* of length *n* (1<=≤<=*n*<=≤<=100). Each character of *s* will be from the set {'A', 'T', 'G', 'C'}.
This problem doesn't have subproblems. You will get 3 points for the correct submission.
Output Specification:
The program should print on one line a single integer representing the minimum number of 'A', 'T', 'G', 'C' characters that are required to be inserted into the input string in order to make all runs of identical characters have odd length.
Demo Input:
['GTTAAAG\n', 'AACCAACCAAAAC\n']
Demo Output:
['1\n', '5\n']
Note:
In the first example, it is sufficient to insert a single nucleotide of any type between the two 'T's in the sequence to restore the functionality of the protein.
|
```python
s = input()
f = {}
t = 1
for i in range(len(s)):
if i > 0:
if s[i] == s[i-1]:
f[t] += 1
else:
t += 1
f[t] = 1
else:
f[t] = 1
count = 0
for x in f:
if f[x] % 2 == 0:
count += 1
print(count)
```
| 3
|
|
441
|
C
|
Valera and Tubes
|
PROGRAMMING
| 1,500
|
[
"constructive algorithms",
"dfs and similar",
"implementation"
] | null | null |
Valera has got a rectangle table consisting of *n* rows and *m* columns. Valera numbered the table rows starting from one, from top to bottom and the columns – starting from one, from left to right. We will represent cell that is on the intersection of row *x* and column *y* by a pair of integers (*x*,<=*y*).
Valera wants to place exactly *k* tubes on his rectangle table. A tube is such sequence of table cells (*x*1,<=*y*1), (*x*2,<=*y*2), ..., (*x**r*,<=*y**r*), that:
- *r*<=≥<=2; - for any integer *i* (1<=≤<=*i*<=≤<=*r*<=-<=1) the following equation |*x**i*<=-<=*x**i*<=+<=1|<=+<=|*y**i*<=-<=*y**i*<=+<=1|<==<=1 holds; - each table cell, which belongs to the tube, must occur exactly once in the sequence.
Valera thinks that the tubes are arranged in a fancy manner if the following conditions are fulfilled:
- no pair of tubes has common cells; - each cell of the table belongs to some tube.
Help Valera to arrange *k* tubes on his rectangle table in a fancy manner.
|
The first line contains three space-separated integers *n*,<=*m*,<=*k* (2<=≤<=*n*,<=*m*<=≤<=300; 2<=≤<=2*k*<=≤<=*n*·*m*) — the number of rows, the number of columns and the number of tubes, correspondingly.
|
Print *k* lines. In the *i*-th line print the description of the *i*-th tube: first print integer *r**i* (the number of tube cells), then print 2*r**i* integers *x**i*1,<=*y**i*1,<=*x**i*2,<=*y**i*2,<=...,<=*x**ir**i*,<=*y**ir**i* (the sequence of table cells).
If there are multiple solutions, you can print any of them. It is guaranteed that at least one solution exists.
|
[
"3 3 3\n",
"2 3 1\n"
] |
[
"3 1 1 1 2 1 3\n3 2 1 2 2 2 3\n3 3 1 3 2 3 3\n",
"6 1 1 1 2 1 3 2 3 2 2 2 1\n"
] |
Picture for the first sample:
Picture for the second sample:
| 1,500
|
[
{
"input": "3 3 3",
"output": "3 1 1 1 2 1 3\n3 2 1 2 2 2 3\n3 3 1 3 2 3 3"
},
{
"input": "2 3 1",
"output": "6 1 1 1 2 1 3 2 3 2 2 2 1"
},
{
"input": "2 3 1",
"output": "6 1 1 1 2 1 3 2 3 2 2 2 1"
},
{
"input": "300 300 2",
"output": "2 1 1 1 2\n89998 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1 11 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 1 26 1 27 1 28 1 29 1 30 1 31 1 32 1 33 1 34 1 35 1 36 1 37 1 38 1 39 1 40 1 41 1 42 1 43 1 44 1 45 1 46 1 47 1 48 1 49 1 50 1 51 1 52 1 53 1 54 1 55 1 56 1 57 1 58 1 59 1 60 1 61 1 62 1 63 1 64 1 65 1 66 1 67 1 68 1 69 1 70 1 71 1 72 1 73 1 74 1 75 1 76 1 77 1 78 1 79 1 80 1 81 1 82 1 83 1 84 1 85 1 86 1 87 1 88 1 89 1 90 1 91 1 92 1 93 1 94 1 95 1 96 1 97 1 98 1 99 1 100 1 101 1 10..."
},
{
"input": "300 300 150",
"output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 1 6\n2 1 7 1 8\n2 1 9 1 10\n2 1 11 1 12\n2 1 13 1 14\n2 1 15 1 16\n2 1 17 1 18\n2 1 19 1 20\n2 1 21 1 22\n2 1 23 1 24\n2 1 25 1 26\n2 1 27 1 28\n2 1 29 1 30\n2 1 31 1 32\n2 1 33 1 34\n2 1 35 1 36\n2 1 37 1 38\n2 1 39 1 40\n2 1 41 1 42\n2 1 43 1 44\n2 1 45 1 46\n2 1 47 1 48\n2 1 49 1 50\n2 1 51 1 52\n2 1 53 1 54\n2 1 55 1 56\n2 1 57 1 58\n2 1 59 1 60\n2 1 61 1 62\n2 1 63 1 64\n2 1 65 1 66\n2 1 67 1 68\n2 1 69 1 70\n2 1 71 1 72\n2 1 73 1 74\n2 1 75 1 76\n2 1 77 1 78\n2 1 79 1 80\n..."
},
{
"input": "300 299 299",
"output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 1 6\n2 1 7 1 8\n2 1 9 1 10\n2 1 11 1 12\n2 1 13 1 14\n2 1 15 1 16\n2 1 17 1 18\n2 1 19 1 20\n2 1 21 1 22\n2 1 23 1 24\n2 1 25 1 26\n2 1 27 1 28\n2 1 29 1 30\n2 1 31 1 32\n2 1 33 1 34\n2 1 35 1 36\n2 1 37 1 38\n2 1 39 1 40\n2 1 41 1 42\n2 1 43 1 44\n2 1 45 1 46\n2 1 47 1 48\n2 1 49 1 50\n2 1 51 1 52\n2 1 53 1 54\n2 1 55 1 56\n2 1 57 1 58\n2 1 59 1 60\n2 1 61 1 62\n2 1 63 1 64\n2 1 65 1 66\n2 1 67 1 68\n2 1 69 1 70\n2 1 71 1 72\n2 1 73 1 74\n2 1 75 1 76\n2 1 77 1 78\n2 1 79 1 80\n..."
},
{
"input": "300 300 45000",
"output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 1 6\n2 1 7 1 8\n2 1 9 1 10\n2 1 11 1 12\n2 1 13 1 14\n2 1 15 1 16\n2 1 17 1 18\n2 1 19 1 20\n2 1 21 1 22\n2 1 23 1 24\n2 1 25 1 26\n2 1 27 1 28\n2 1 29 1 30\n2 1 31 1 32\n2 1 33 1 34\n2 1 35 1 36\n2 1 37 1 38\n2 1 39 1 40\n2 1 41 1 42\n2 1 43 1 44\n2 1 45 1 46\n2 1 47 1 48\n2 1 49 1 50\n2 1 51 1 52\n2 1 53 1 54\n2 1 55 1 56\n2 1 57 1 58\n2 1 59 1 60\n2 1 61 1 62\n2 1 63 1 64\n2 1 65 1 66\n2 1 67 1 68\n2 1 69 1 70\n2 1 71 1 72\n2 1 73 1 74\n2 1 75 1 76\n2 1 77 1 78\n2 1 79 1 80\n..."
},
{
"input": "300 299 44850",
"output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 1 6\n2 1 7 1 8\n2 1 9 1 10\n2 1 11 1 12\n2 1 13 1 14\n2 1 15 1 16\n2 1 17 1 18\n2 1 19 1 20\n2 1 21 1 22\n2 1 23 1 24\n2 1 25 1 26\n2 1 27 1 28\n2 1 29 1 30\n2 1 31 1 32\n2 1 33 1 34\n2 1 35 1 36\n2 1 37 1 38\n2 1 39 1 40\n2 1 41 1 42\n2 1 43 1 44\n2 1 45 1 46\n2 1 47 1 48\n2 1 49 1 50\n2 1 51 1 52\n2 1 53 1 54\n2 1 55 1 56\n2 1 57 1 58\n2 1 59 1 60\n2 1 61 1 62\n2 1 63 1 64\n2 1 65 1 66\n2 1 67 1 68\n2 1 69 1 70\n2 1 71 1 72\n2 1 73 1 74\n2 1 75 1 76\n2 1 77 1 78\n2 1 79 1 80\n..."
},
{
"input": "2 2 2",
"output": "2 1 1 1 2\n2 2 2 2 1"
},
{
"input": "2 3 3",
"output": "2 1 1 1 2\n2 1 3 2 3\n2 2 2 2 1"
},
{
"input": "3 3 4",
"output": "2 1 1 1 2\n2 1 3 2 3\n2 2 2 2 1\n3 3 1 3 2 3 3"
},
{
"input": "5 5 12",
"output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 2 5\n2 2 4 2 3\n2 2 2 2 1\n2 3 1 3 2\n2 3 3 3 4\n2 3 5 4 5\n2 4 4 4 3\n2 4 2 4 1\n2 5 1 5 2\n3 5 3 5 4 5 5"
},
{
"input": "7 5 17",
"output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 2 5\n2 2 4 2 3\n2 2 2 2 1\n2 3 1 3 2\n2 3 3 3 4\n2 3 5 4 5\n2 4 4 4 3\n2 4 2 4 1\n2 5 1 5 2\n2 5 3 5 4\n2 5 5 6 5\n2 6 4 6 3\n2 6 2 6 1\n2 7 1 7 2\n3 7 3 7 4 7 5"
},
{
"input": "135 91 4352",
"output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 1 6\n2 1 7 1 8\n2 1 9 1 10\n2 1 11 1 12\n2 1 13 1 14\n2 1 15 1 16\n2 1 17 1 18\n2 1 19 1 20\n2 1 21 1 22\n2 1 23 1 24\n2 1 25 1 26\n2 1 27 1 28\n2 1 29 1 30\n2 1 31 1 32\n2 1 33 1 34\n2 1 35 1 36\n2 1 37 1 38\n2 1 39 1 40\n2 1 41 1 42\n2 1 43 1 44\n2 1 45 1 46\n2 1 47 1 48\n2 1 49 1 50\n2 1 51 1 52\n2 1 53 1 54\n2 1 55 1 56\n2 1 57 1 58\n2 1 59 1 60\n2 1 61 1 62\n2 1 63 1 64\n2 1 65 1 66\n2 1 67 1 68\n2 1 69 1 70\n2 1 71 1 72\n2 1 73 1 74\n2 1 75 1 76\n2 1 77 1 78\n2 1 79 1 80\n..."
},
{
"input": "32 27 153",
"output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 1 6\n2 1 7 1 8\n2 1 9 1 10\n2 1 11 1 12\n2 1 13 1 14\n2 1 15 1 16\n2 1 17 1 18\n2 1 19 1 20\n2 1 21 1 22\n2 1 23 1 24\n2 1 25 1 26\n2 1 27 2 27\n2 2 26 2 25\n2 2 24 2 23\n2 2 22 2 21\n2 2 20 2 19\n2 2 18 2 17\n2 2 16 2 15\n2 2 14 2 13\n2 2 12 2 11\n2 2 10 2 9\n2 2 8 2 7\n2 2 6 2 5\n2 2 4 2 3\n2 2 2 2 1\n2 3 1 3 2\n2 3 3 3 4\n2 3 5 3 6\n2 3 7 3 8\n2 3 9 3 10\n2 3 11 3 12\n2 3 13 3 14\n2 3 15 3 16\n2 3 17 3 18\n2 3 19 3 20\n2 3 21 3 22\n2 3 23 3 24\n2 3 25 3 26\n2 3 27 4 27\n2 4 2..."
},
{
"input": "74 83 2667",
"output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 1 6\n2 1 7 1 8\n2 1 9 1 10\n2 1 11 1 12\n2 1 13 1 14\n2 1 15 1 16\n2 1 17 1 18\n2 1 19 1 20\n2 1 21 1 22\n2 1 23 1 24\n2 1 25 1 26\n2 1 27 1 28\n2 1 29 1 30\n2 1 31 1 32\n2 1 33 1 34\n2 1 35 1 36\n2 1 37 1 38\n2 1 39 1 40\n2 1 41 1 42\n2 1 43 1 44\n2 1 45 1 46\n2 1 47 1 48\n2 1 49 1 50\n2 1 51 1 52\n2 1 53 1 54\n2 1 55 1 56\n2 1 57 1 58\n2 1 59 1 60\n2 1 61 1 62\n2 1 63 1 64\n2 1 65 1 66\n2 1 67 1 68\n2 1 69 1 70\n2 1 71 1 72\n2 1 73 1 74\n2 1 75 1 76\n2 1 77 1 78\n2 1 79 1 80\n..."
},
{
"input": "296 218 5275",
"output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 1 6\n2 1 7 1 8\n2 1 9 1 10\n2 1 11 1 12\n2 1 13 1 14\n2 1 15 1 16\n2 1 17 1 18\n2 1 19 1 20\n2 1 21 1 22\n2 1 23 1 24\n2 1 25 1 26\n2 1 27 1 28\n2 1 29 1 30\n2 1 31 1 32\n2 1 33 1 34\n2 1 35 1 36\n2 1 37 1 38\n2 1 39 1 40\n2 1 41 1 42\n2 1 43 1 44\n2 1 45 1 46\n2 1 47 1 48\n2 1 49 1 50\n2 1 51 1 52\n2 1 53 1 54\n2 1 55 1 56\n2 1 57 1 58\n2 1 59 1 60\n2 1 61 1 62\n2 1 63 1 64\n2 1 65 1 66\n2 1 67 1 68\n2 1 69 1 70\n2 1 71 1 72\n2 1 73 1 74\n2 1 75 1 76\n2 1 77 1 78\n2 1 79 1 80\n..."
},
{
"input": "89 82 2330",
"output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 1 6\n2 1 7 1 8\n2 1 9 1 10\n2 1 11 1 12\n2 1 13 1 14\n2 1 15 1 16\n2 1 17 1 18\n2 1 19 1 20\n2 1 21 1 22\n2 1 23 1 24\n2 1 25 1 26\n2 1 27 1 28\n2 1 29 1 30\n2 1 31 1 32\n2 1 33 1 34\n2 1 35 1 36\n2 1 37 1 38\n2 1 39 1 40\n2 1 41 1 42\n2 1 43 1 44\n2 1 45 1 46\n2 1 47 1 48\n2 1 49 1 50\n2 1 51 1 52\n2 1 53 1 54\n2 1 55 1 56\n2 1 57 1 58\n2 1 59 1 60\n2 1 61 1 62\n2 1 63 1 64\n2 1 65 1 66\n2 1 67 1 68\n2 1 69 1 70\n2 1 71 1 72\n2 1 73 1 74\n2 1 75 1 76\n2 1 77 1 78\n2 1 79 1 80\n..."
},
{
"input": "15 68 212",
"output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 1 6\n2 1 7 1 8\n2 1 9 1 10\n2 1 11 1 12\n2 1 13 1 14\n2 1 15 1 16\n2 1 17 1 18\n2 1 19 1 20\n2 1 21 1 22\n2 1 23 1 24\n2 1 25 1 26\n2 1 27 1 28\n2 1 29 1 30\n2 1 31 1 32\n2 1 33 1 34\n2 1 35 1 36\n2 1 37 1 38\n2 1 39 1 40\n2 1 41 1 42\n2 1 43 1 44\n2 1 45 1 46\n2 1 47 1 48\n2 1 49 1 50\n2 1 51 1 52\n2 1 53 1 54\n2 1 55 1 56\n2 1 57 1 58\n2 1 59 1 60\n2 1 61 1 62\n2 1 63 1 64\n2 1 65 1 66\n2 1 67 1 68\n2 2 68 2 67\n2 2 66 2 65\n2 2 64 2 63\n2 2 62 2 61\n2 2 60 2 59\n2 2 58 2 57\n..."
},
{
"input": "95 4 177",
"output": "2 1 1 1 2\n2 1 3 1 4\n2 2 4 2 3\n2 2 2 2 1\n2 3 1 3 2\n2 3 3 3 4\n2 4 4 4 3\n2 4 2 4 1\n2 5 1 5 2\n2 5 3 5 4\n2 6 4 6 3\n2 6 2 6 1\n2 7 1 7 2\n2 7 3 7 4\n2 8 4 8 3\n2 8 2 8 1\n2 9 1 9 2\n2 9 3 9 4\n2 10 4 10 3\n2 10 2 10 1\n2 11 1 11 2\n2 11 3 11 4\n2 12 4 12 3\n2 12 2 12 1\n2 13 1 13 2\n2 13 3 13 4\n2 14 4 14 3\n2 14 2 14 1\n2 15 1 15 2\n2 15 3 15 4\n2 16 4 16 3\n2 16 2 16 1\n2 17 1 17 2\n2 17 3 17 4\n2 18 4 18 3\n2 18 2 18 1\n2 19 1 19 2\n2 19 3 19 4\n2 20 4 20 3\n2 20 2 20 1\n2 21 1 21 2\n2 21 3 21 4\n2..."
},
{
"input": "60 136 8",
"output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 1 6\n2 1 7 1 8\n2 1 9 1 10\n2 1 11 1 12\n2 1 13 1 14\n8146 1 15 1 16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 1 26 1 27 1 28 1 29 1 30 1 31 1 32 1 33 1 34 1 35 1 36 1 37 1 38 1 39 1 40 1 41 1 42 1 43 1 44 1 45 1 46 1 47 1 48 1 49 1 50 1 51 1 52 1 53 1 54 1 55 1 56 1 57 1 58 1 59 1 60 1 61 1 62 1 63 1 64 1 65 1 66 1 67 1 68 1 69 1 70 1 71 1 72 1 73 1 74 1 75 1 76 1 77 1 78 1 79 1 80 1 81 1 82 1 83 1 84 1 85 1 86 1 87 1 88 1 89 1 90 1 91 1 92 1 93 1 94 1 95 1 96 1 97 1 98 1 99..."
},
{
"input": "91 183 7827",
"output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 1 6\n2 1 7 1 8\n2 1 9 1 10\n2 1 11 1 12\n2 1 13 1 14\n2 1 15 1 16\n2 1 17 1 18\n2 1 19 1 20\n2 1 21 1 22\n2 1 23 1 24\n2 1 25 1 26\n2 1 27 1 28\n2 1 29 1 30\n2 1 31 1 32\n2 1 33 1 34\n2 1 35 1 36\n2 1 37 1 38\n2 1 39 1 40\n2 1 41 1 42\n2 1 43 1 44\n2 1 45 1 46\n2 1 47 1 48\n2 1 49 1 50\n2 1 51 1 52\n2 1 53 1 54\n2 1 55 1 56\n2 1 57 1 58\n2 1 59 1 60\n2 1 61 1 62\n2 1 63 1 64\n2 1 65 1 66\n2 1 67 1 68\n2 1 69 1 70\n2 1 71 1 72\n2 1 73 1 74\n2 1 75 1 76\n2 1 77 1 78\n2 1 79 1 80\n..."
},
{
"input": "2 15 3",
"output": "2 1 1 1 2\n2 1 3 1 4\n26 1 5 1 6 1 7 1 8 1 9 1 10 1 11 1 12 1 13 1 14 1 15 2 15 2 14 2 13 2 12 2 11 2 10 2 9 2 8 2 7 2 6 2 5 2 4 2 3 2 2 2 1"
},
{
"input": "139 275 10770",
"output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 1 6\n2 1 7 1 8\n2 1 9 1 10\n2 1 11 1 12\n2 1 13 1 14\n2 1 15 1 16\n2 1 17 1 18\n2 1 19 1 20\n2 1 21 1 22\n2 1 23 1 24\n2 1 25 1 26\n2 1 27 1 28\n2 1 29 1 30\n2 1 31 1 32\n2 1 33 1 34\n2 1 35 1 36\n2 1 37 1 38\n2 1 39 1 40\n2 1 41 1 42\n2 1 43 1 44\n2 1 45 1 46\n2 1 47 1 48\n2 1 49 1 50\n2 1 51 1 52\n2 1 53 1 54\n2 1 55 1 56\n2 1 57 1 58\n2 1 59 1 60\n2 1 61 1 62\n2 1 63 1 64\n2 1 65 1 66\n2 1 67 1 68\n2 1 69 1 70\n2 1 71 1 72\n2 1 73 1 74\n2 1 75 1 76\n2 1 77 1 78\n2 1 79 1 80\n..."
},
{
"input": "114 298 7143",
"output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 1 6\n2 1 7 1 8\n2 1 9 1 10\n2 1 11 1 12\n2 1 13 1 14\n2 1 15 1 16\n2 1 17 1 18\n2 1 19 1 20\n2 1 21 1 22\n2 1 23 1 24\n2 1 25 1 26\n2 1 27 1 28\n2 1 29 1 30\n2 1 31 1 32\n2 1 33 1 34\n2 1 35 1 36\n2 1 37 1 38\n2 1 39 1 40\n2 1 41 1 42\n2 1 43 1 44\n2 1 45 1 46\n2 1 47 1 48\n2 1 49 1 50\n2 1 51 1 52\n2 1 53 1 54\n2 1 55 1 56\n2 1 57 1 58\n2 1 59 1 60\n2 1 61 1 62\n2 1 63 1 64\n2 1 65 1 66\n2 1 67 1 68\n2 1 69 1 70\n2 1 71 1 72\n2 1 73 1 74\n2 1 75 1 76\n2 1 77 1 78\n2 1 79 1 80\n..."
},
{
"input": "260 182 9496",
"output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 1 6\n2 1 7 1 8\n2 1 9 1 10\n2 1 11 1 12\n2 1 13 1 14\n2 1 15 1 16\n2 1 17 1 18\n2 1 19 1 20\n2 1 21 1 22\n2 1 23 1 24\n2 1 25 1 26\n2 1 27 1 28\n2 1 29 1 30\n2 1 31 1 32\n2 1 33 1 34\n2 1 35 1 36\n2 1 37 1 38\n2 1 39 1 40\n2 1 41 1 42\n2 1 43 1 44\n2 1 45 1 46\n2 1 47 1 48\n2 1 49 1 50\n2 1 51 1 52\n2 1 53 1 54\n2 1 55 1 56\n2 1 57 1 58\n2 1 59 1 60\n2 1 61 1 62\n2 1 63 1 64\n2 1 65 1 66\n2 1 67 1 68\n2 1 69 1 70\n2 1 71 1 72\n2 1 73 1 74\n2 1 75 1 76\n2 1 77 1 78\n2 1 79 1 80\n..."
},
{
"input": "42 297 3703",
"output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 1 6\n2 1 7 1 8\n2 1 9 1 10\n2 1 11 1 12\n2 1 13 1 14\n2 1 15 1 16\n2 1 17 1 18\n2 1 19 1 20\n2 1 21 1 22\n2 1 23 1 24\n2 1 25 1 26\n2 1 27 1 28\n2 1 29 1 30\n2 1 31 1 32\n2 1 33 1 34\n2 1 35 1 36\n2 1 37 1 38\n2 1 39 1 40\n2 1 41 1 42\n2 1 43 1 44\n2 1 45 1 46\n2 1 47 1 48\n2 1 49 1 50\n2 1 51 1 52\n2 1 53 1 54\n2 1 55 1 56\n2 1 57 1 58\n2 1 59 1 60\n2 1 61 1 62\n2 1 63 1 64\n2 1 65 1 66\n2 1 67 1 68\n2 1 69 1 70\n2 1 71 1 72\n2 1 73 1 74\n2 1 75 1 76\n2 1 77 1 78\n2 1 79 1 80\n..."
},
{
"input": "236 156 9535",
"output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 1 6\n2 1 7 1 8\n2 1 9 1 10\n2 1 11 1 12\n2 1 13 1 14\n2 1 15 1 16\n2 1 17 1 18\n2 1 19 1 20\n2 1 21 1 22\n2 1 23 1 24\n2 1 25 1 26\n2 1 27 1 28\n2 1 29 1 30\n2 1 31 1 32\n2 1 33 1 34\n2 1 35 1 36\n2 1 37 1 38\n2 1 39 1 40\n2 1 41 1 42\n2 1 43 1 44\n2 1 45 1 46\n2 1 47 1 48\n2 1 49 1 50\n2 1 51 1 52\n2 1 53 1 54\n2 1 55 1 56\n2 1 57 1 58\n2 1 59 1 60\n2 1 61 1 62\n2 1 63 1 64\n2 1 65 1 66\n2 1 67 1 68\n2 1 69 1 70\n2 1 71 1 72\n2 1 73 1 74\n2 1 75 1 76\n2 1 77 1 78\n2 1 79 1 80\n..."
},
{
"input": "201 226 1495",
"output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 1 6\n2 1 7 1 8\n2 1 9 1 10\n2 1 11 1 12\n2 1 13 1 14\n2 1 15 1 16\n2 1 17 1 18\n2 1 19 1 20\n2 1 21 1 22\n2 1 23 1 24\n2 1 25 1 26\n2 1 27 1 28\n2 1 29 1 30\n2 1 31 1 32\n2 1 33 1 34\n2 1 35 1 36\n2 1 37 1 38\n2 1 39 1 40\n2 1 41 1 42\n2 1 43 1 44\n2 1 45 1 46\n2 1 47 1 48\n2 1 49 1 50\n2 1 51 1 52\n2 1 53 1 54\n2 1 55 1 56\n2 1 57 1 58\n2 1 59 1 60\n2 1 61 1 62\n2 1 63 1 64\n2 1 65 1 66\n2 1 67 1 68\n2 1 69 1 70\n2 1 71 1 72\n2 1 73 1 74\n2 1 75 1 76\n2 1 77 1 78\n2 1 79 1 80\n..."
},
{
"input": "299 299 100",
"output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 1 6\n2 1 7 1 8\n2 1 9 1 10\n2 1 11 1 12\n2 1 13 1 14\n2 1 15 1 16\n2 1 17 1 18\n2 1 19 1 20\n2 1 21 1 22\n2 1 23 1 24\n2 1 25 1 26\n2 1 27 1 28\n2 1 29 1 30\n2 1 31 1 32\n2 1 33 1 34\n2 1 35 1 36\n2 1 37 1 38\n2 1 39 1 40\n2 1 41 1 42\n2 1 43 1 44\n2 1 45 1 46\n2 1 47 1 48\n2 1 49 1 50\n2 1 51 1 52\n2 1 53 1 54\n2 1 55 1 56\n2 1 57 1 58\n2 1 59 1 60\n2 1 61 1 62\n2 1 63 1 64\n2 1 65 1 66\n2 1 67 1 68\n2 1 69 1 70\n2 1 71 1 72\n2 1 73 1 74\n2 1 75 1 76\n2 1 77 1 78\n2 1 79 1 80\n..."
},
{
"input": "299 298 100",
"output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 1 6\n2 1 7 1 8\n2 1 9 1 10\n2 1 11 1 12\n2 1 13 1 14\n2 1 15 1 16\n2 1 17 1 18\n2 1 19 1 20\n2 1 21 1 22\n2 1 23 1 24\n2 1 25 1 26\n2 1 27 1 28\n2 1 29 1 30\n2 1 31 1 32\n2 1 33 1 34\n2 1 35 1 36\n2 1 37 1 38\n2 1 39 1 40\n2 1 41 1 42\n2 1 43 1 44\n2 1 45 1 46\n2 1 47 1 48\n2 1 49 1 50\n2 1 51 1 52\n2 1 53 1 54\n2 1 55 1 56\n2 1 57 1 58\n2 1 59 1 60\n2 1 61 1 62\n2 1 63 1 64\n2 1 65 1 66\n2 1 67 1 68\n2 1 69 1 70\n2 1 71 1 72\n2 1 73 1 74\n2 1 75 1 76\n2 1 77 1 78\n2 1 79 1 80\n..."
},
{
"input": "298 299 100",
"output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 1 6\n2 1 7 1 8\n2 1 9 1 10\n2 1 11 1 12\n2 1 13 1 14\n2 1 15 1 16\n2 1 17 1 18\n2 1 19 1 20\n2 1 21 1 22\n2 1 23 1 24\n2 1 25 1 26\n2 1 27 1 28\n2 1 29 1 30\n2 1 31 1 32\n2 1 33 1 34\n2 1 35 1 36\n2 1 37 1 38\n2 1 39 1 40\n2 1 41 1 42\n2 1 43 1 44\n2 1 45 1 46\n2 1 47 1 48\n2 1 49 1 50\n2 1 51 1 52\n2 1 53 1 54\n2 1 55 1 56\n2 1 57 1 58\n2 1 59 1 60\n2 1 61 1 62\n2 1 63 1 64\n2 1 65 1 66\n2 1 67 1 68\n2 1 69 1 70\n2 1 71 1 72\n2 1 73 1 74\n2 1 75 1 76\n2 1 77 1 78\n2 1 79 1 80\n..."
},
{
"input": "299 299 2",
"output": "2 1 1 1 2\n89399 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1 11 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 1 26 1 27 1 28 1 29 1 30 1 31 1 32 1 33 1 34 1 35 1 36 1 37 1 38 1 39 1 40 1 41 1 42 1 43 1 44 1 45 1 46 1 47 1 48 1 49 1 50 1 51 1 52 1 53 1 54 1 55 1 56 1 57 1 58 1 59 1 60 1 61 1 62 1 63 1 64 1 65 1 66 1 67 1 68 1 69 1 70 1 71 1 72 1 73 1 74 1 75 1 76 1 77 1 78 1 79 1 80 1 81 1 82 1 83 1 84 1 85 1 86 1 87 1 88 1 89 1 90 1 91 1 92 1 93 1 94 1 95 1 96 1 97 1 98 1 99 1 100 1 101 1 10..."
},
{
"input": "299 299 1",
"output": "89401 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1 11 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 1 26 1 27 1 28 1 29 1 30 1 31 1 32 1 33 1 34 1 35 1 36 1 37 1 38 1 39 1 40 1 41 1 42 1 43 1 44 1 45 1 46 1 47 1 48 1 49 1 50 1 51 1 52 1 53 1 54 1 55 1 56 1 57 1 58 1 59 1 60 1 61 1 62 1 63 1 64 1 65 1 66 1 67 1 68 1 69 1 70 1 71 1 72 1 73 1 74 1 75 1 76 1 77 1 78 1 79 1 80 1 81 1 82 1 83 1 84 1 85 1 86 1 87 1 88 1 89 1 90 1 91 1 92 1 93 1 94 1 95 1 96 1 97 1 98 1 99 1 100 1 101 1 102 1..."
},
{
"input": "298 299 1",
"output": "89102 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1 11 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 1 26 1 27 1 28 1 29 1 30 1 31 1 32 1 33 1 34 1 35 1 36 1 37 1 38 1 39 1 40 1 41 1 42 1 43 1 44 1 45 1 46 1 47 1 48 1 49 1 50 1 51 1 52 1 53 1 54 1 55 1 56 1 57 1 58 1 59 1 60 1 61 1 62 1 63 1 64 1 65 1 66 1 67 1 68 1 69 1 70 1 71 1 72 1 73 1 74 1 75 1 76 1 77 1 78 1 79 1 80 1 81 1 82 1 83 1 84 1 85 1 86 1 87 1 88 1 89 1 90 1 91 1 92 1 93 1 94 1 95 1 96 1 97 1 98 1 99 1 100 1 101 1 102 1..."
},
{
"input": "299 298 11",
"output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 1 6\n2 1 7 1 8\n2 1 9 1 10\n2 1 11 1 12\n2 1 13 1 14\n2 1 15 1 16\n2 1 17 1 18\n2 1 19 1 20\n89082 1 21 1 22 1 23 1 24 1 25 1 26 1 27 1 28 1 29 1 30 1 31 1 32 1 33 1 34 1 35 1 36 1 37 1 38 1 39 1 40 1 41 1 42 1 43 1 44 1 45 1 46 1 47 1 48 1 49 1 50 1 51 1 52 1 53 1 54 1 55 1 56 1 57 1 58 1 59 1 60 1 61 1 62 1 63 1 64 1 65 1 66 1 67 1 68 1 69 1 70 1 71 1 72 1 73 1 74 1 75 1 76 1 77 1 78 1 79 1 80 1 81 1 82 1 83 1 84 1 85 1 86 1 87 1 88 1 89 1 90 1 91 1 92 1 93 1 94 1 95 1 96 1 97..."
},
{
"input": "298 300 12",
"output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 1 6\n2 1 7 1 8\n2 1 9 1 10\n2 1 11 1 12\n2 1 13 1 14\n2 1 15 1 16\n2 1 17 1 18\n2 1 19 1 20\n2 1 21 1 22\n89378 1 23 1 24 1 25 1 26 1 27 1 28 1 29 1 30 1 31 1 32 1 33 1 34 1 35 1 36 1 37 1 38 1 39 1 40 1 41 1 42 1 43 1 44 1 45 1 46 1 47 1 48 1 49 1 50 1 51 1 52 1 53 1 54 1 55 1 56 1 57 1 58 1 59 1 60 1 61 1 62 1 63 1 64 1 65 1 66 1 67 1 68 1 69 1 70 1 71 1 72 1 73 1 74 1 75 1 76 1 77 1 78 1 79 1 80 1 81 1 82 1 83 1 84 1 85 1 86 1 87 1 88 1 89 1 90 1 91 1 92 1 93 1 94 1 95 1 96 1..."
},
{
"input": "298 2 1",
"output": "596 1 1 1 2 2 2 2 1 3 1 3 2 4 2 4 1 5 1 5 2 6 2 6 1 7 1 7 2 8 2 8 1 9 1 9 2 10 2 10 1 11 1 11 2 12 2 12 1 13 1 13 2 14 2 14 1 15 1 15 2 16 2 16 1 17 1 17 2 18 2 18 1 19 1 19 2 20 2 20 1 21 1 21 2 22 2 22 1 23 1 23 2 24 2 24 1 25 1 25 2 26 2 26 1 27 1 27 2 28 2 28 1 29 1 29 2 30 2 30 1 31 1 31 2 32 2 32 1 33 1 33 2 34 2 34 1 35 1 35 2 36 2 36 1 37 1 37 2 38 2 38 1 39 1 39 2 40 2 40 1 41 1 41 2 42 2 42 1 43 1 43 2 44 2 44 1 45 1 45 2 46 2 46 1 47 1 47 2 48 2 48 1 49 1 49 2 50 2 50 1 51 1 51 2 52 2 52 1 53 1 ..."
},
{
"input": "2 298 1",
"output": "596 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1 11 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 1 26 1 27 1 28 1 29 1 30 1 31 1 32 1 33 1 34 1 35 1 36 1 37 1 38 1 39 1 40 1 41 1 42 1 43 1 44 1 45 1 46 1 47 1 48 1 49 1 50 1 51 1 52 1 53 1 54 1 55 1 56 1 57 1 58 1 59 1 60 1 61 1 62 1 63 1 64 1 65 1 66 1 67 1 68 1 69 1 70 1 71 1 72 1 73 1 74 1 75 1 76 1 77 1 78 1 79 1 80 1 81 1 82 1 83 1 84 1 85 1 86 1 87 1 88 1 89 1 90 1 91 1 92 1 93 1 94 1 95 1 96 1 97 1 98 1 99 1 100 1 101 1 102 1 1..."
},
{
"input": "300 300 500",
"output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 1 6\n2 1 7 1 8\n2 1 9 1 10\n2 1 11 1 12\n2 1 13 1 14\n2 1 15 1 16\n2 1 17 1 18\n2 1 19 1 20\n2 1 21 1 22\n2 1 23 1 24\n2 1 25 1 26\n2 1 27 1 28\n2 1 29 1 30\n2 1 31 1 32\n2 1 33 1 34\n2 1 35 1 36\n2 1 37 1 38\n2 1 39 1 40\n2 1 41 1 42\n2 1 43 1 44\n2 1 45 1 46\n2 1 47 1 48\n2 1 49 1 50\n2 1 51 1 52\n2 1 53 1 54\n2 1 55 1 56\n2 1 57 1 58\n2 1 59 1 60\n2 1 61 1 62\n2 1 63 1 64\n2 1 65 1 66\n2 1 67 1 68\n2 1 69 1 70\n2 1 71 1 72\n2 1 73 1 74\n2 1 75 1 76\n2 1 77 1 78\n2 1 79 1 80\n..."
},
{
"input": "300 300 501",
"output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 1 6\n2 1 7 1 8\n2 1 9 1 10\n2 1 11 1 12\n2 1 13 1 14\n2 1 15 1 16\n2 1 17 1 18\n2 1 19 1 20\n2 1 21 1 22\n2 1 23 1 24\n2 1 25 1 26\n2 1 27 1 28\n2 1 29 1 30\n2 1 31 1 32\n2 1 33 1 34\n2 1 35 1 36\n2 1 37 1 38\n2 1 39 1 40\n2 1 41 1 42\n2 1 43 1 44\n2 1 45 1 46\n2 1 47 1 48\n2 1 49 1 50\n2 1 51 1 52\n2 1 53 1 54\n2 1 55 1 56\n2 1 57 1 58\n2 1 59 1 60\n2 1 61 1 62\n2 1 63 1 64\n2 1 65 1 66\n2 1 67 1 68\n2 1 69 1 70\n2 1 71 1 72\n2 1 73 1 74\n2 1 75 1 76\n2 1 77 1 78\n2 1 79 1 80\n..."
},
{
"input": "300 300 44999",
"output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 1 6\n2 1 7 1 8\n2 1 9 1 10\n2 1 11 1 12\n2 1 13 1 14\n2 1 15 1 16\n2 1 17 1 18\n2 1 19 1 20\n2 1 21 1 22\n2 1 23 1 24\n2 1 25 1 26\n2 1 27 1 28\n2 1 29 1 30\n2 1 31 1 32\n2 1 33 1 34\n2 1 35 1 36\n2 1 37 1 38\n2 1 39 1 40\n2 1 41 1 42\n2 1 43 1 44\n2 1 45 1 46\n2 1 47 1 48\n2 1 49 1 50\n2 1 51 1 52\n2 1 53 1 54\n2 1 55 1 56\n2 1 57 1 58\n2 1 59 1 60\n2 1 61 1 62\n2 1 63 1 64\n2 1 65 1 66\n2 1 67 1 68\n2 1 69 1 70\n2 1 71 1 72\n2 1 73 1 74\n2 1 75 1 76\n2 1 77 1 78\n2 1 79 1 80\n..."
},
{
"input": "5 5 3",
"output": "2 1 1 1 2\n2 1 3 1 4\n21 1 5 2 5 2 4 2 3 2 2 2 1 3 1 3 2 3 3 3 4 3 5 4 5 4 4 4 3 4 2 4 1 5 1 5 2 5 3 5 4 5 5"
},
{
"input": "2 4 3",
"output": "2 1 1 1 2\n2 1 3 1 4\n4 2 4 2 3 2 2 2 1"
}
] | 1,611,553,897
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 44
| 436
| 307,200
|
def calcPos(x):
div = (x - 1) // n + 1
pos = (x - 1) % n + 1
if div & 1:
return (div, pos)
return (div, n - pos + 1)
m, n, k = map(int, input().split())
for i in range(1, k):
print(2, end=" ")
pair = calcPos((i << 1) - 1)
print(*pair, end=" ")
pair = calcPos(i << 1)
print(*pair, end="\n")
print(n * m - ((k - 1) << 1), end=" ")
i = (k << 1) - 1
while i <= n * m:
pair = calcPos(i)
print(*pair, end=" ")
i = i + 1
print("\n", end="")
|
Title: Valera and Tubes
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Valera has got a rectangle table consisting of *n* rows and *m* columns. Valera numbered the table rows starting from one, from top to bottom and the columns – starting from one, from left to right. We will represent cell that is on the intersection of row *x* and column *y* by a pair of integers (*x*,<=*y*).
Valera wants to place exactly *k* tubes on his rectangle table. A tube is such sequence of table cells (*x*1,<=*y*1), (*x*2,<=*y*2), ..., (*x**r*,<=*y**r*), that:
- *r*<=≥<=2; - for any integer *i* (1<=≤<=*i*<=≤<=*r*<=-<=1) the following equation |*x**i*<=-<=*x**i*<=+<=1|<=+<=|*y**i*<=-<=*y**i*<=+<=1|<==<=1 holds; - each table cell, which belongs to the tube, must occur exactly once in the sequence.
Valera thinks that the tubes are arranged in a fancy manner if the following conditions are fulfilled:
- no pair of tubes has common cells; - each cell of the table belongs to some tube.
Help Valera to arrange *k* tubes on his rectangle table in a fancy manner.
Input Specification:
The first line contains three space-separated integers *n*,<=*m*,<=*k* (2<=≤<=*n*,<=*m*<=≤<=300; 2<=≤<=2*k*<=≤<=*n*·*m*) — the number of rows, the number of columns and the number of tubes, correspondingly.
Output Specification:
Print *k* lines. In the *i*-th line print the description of the *i*-th tube: first print integer *r**i* (the number of tube cells), then print 2*r**i* integers *x**i*1,<=*y**i*1,<=*x**i*2,<=*y**i*2,<=...,<=*x**ir**i*,<=*y**ir**i* (the sequence of table cells).
If there are multiple solutions, you can print any of them. It is guaranteed that at least one solution exists.
Demo Input:
['3 3 3\n', '2 3 1\n']
Demo Output:
['3 1 1 1 2 1 3\n3 2 1 2 2 2 3\n3 3 1 3 2 3 3\n', '6 1 1 1 2 1 3 2 3 2 2 2 1\n']
Note:
Picture for the first sample:
Picture for the second sample:
|
```python
def calcPos(x):
div = (x - 1) // n + 1
pos = (x - 1) % n + 1
if div & 1:
return (div, pos)
return (div, n - pos + 1)
m, n, k = map(int, input().split())
for i in range(1, k):
print(2, end=" ")
pair = calcPos((i << 1) - 1)
print(*pair, end=" ")
pair = calcPos(i << 1)
print(*pair, end="\n")
print(n * m - ((k - 1) << 1), end=" ")
i = (k << 1) - 1
while i <= n * m:
pair = calcPos(i)
print(*pair, end=" ")
i = i + 1
print("\n", end="")
```
| 3
|
|
948
|
A
|
Protect Sheep
|
PROGRAMMING
| 900
|
[
"brute force",
"dfs and similar",
"graphs",
"implementation"
] | null | null |
Bob is a farmer. He has a large pasture with many sheep. Recently, he has lost some of them due to wolf attacks. He thus decided to place some shepherd dogs in such a way that all his sheep are protected.
The pasture is a rectangle consisting of *R*<=×<=*C* cells. Each cell is either empty, contains a sheep, a wolf or a dog. Sheep and dogs always stay in place, but wolves can roam freely around the pasture, by repeatedly moving to the left, right, up or down to a neighboring cell. When a wolf enters a cell with a sheep, it consumes it. However, no wolf can enter a cell with a dog.
Initially there are no dogs. Place dogs onto the pasture in such a way that no wolf can reach any sheep, or determine that it is impossible. Note that since you have many dogs, you do not need to minimize their number.
|
First line contains two integers *R* (1<=≤<=*R*<=≤<=500) and *C* (1<=≤<=*C*<=≤<=500), denoting the number of rows and the numbers of columns respectively.
Each of the following *R* lines is a string consisting of exactly *C* characters, representing one row of the pasture. Here, 'S' means a sheep, 'W' a wolf and '.' an empty cell.
|
If it is impossible to protect all sheep, output a single line with the word "No".
Otherwise, output a line with the word "Yes". Then print *R* lines, representing the pasture after placing dogs. Again, 'S' means a sheep, 'W' a wolf, 'D' is a dog and '.' an empty space. You are not allowed to move, remove or add a sheep or a wolf.
If there are multiple solutions, you may print any of them. You don't have to minimize the number of dogs.
|
[
"6 6\n..S...\n..S.W.\n.S....\n..W...\n...W..\n......\n",
"1 2\nSW\n",
"5 5\n.S...\n...S.\nS....\n...S.\n.S...\n"
] |
[
"Yes\n..SD..\n..SDW.\n.SD...\n.DW...\nDD.W..\n......\n",
"No\n",
"Yes\n.S...\n...S.\nS.D..\n...S.\n.S...\n"
] |
In the first example, we can split the pasture into two halves, one containing wolves and one containing sheep. Note that the sheep at (2,1) is safe, as wolves cannot move diagonally.
In the second example, there are no empty spots to put dogs that would guard the lone sheep.
In the third example, there are no wolves, so the task is very easy. We put a dog in the center to observe the peacefulness of the meadow, but the solution would be correct even without him.
| 500
|
[
{
"input": "1 2\nSW",
"output": "No"
},
{
"input": "10 10\n....W.W.W.\n.........S\n.S.S...S..\nW.......SS\n.W..W.....\n.W...W....\nS..S...S.S\n....W...S.\n..S..S.S.S\nSS.......S",
"output": "Yes\nDDDDWDWDWD\nDDDDDDDDDS\nDSDSDDDSDD\nWDDDDDDDSS\nDWDDWDDDDD\nDWDDDWDDDD\nSDDSDDDSDS\nDDDDWDDDSD\nDDSDDSDSDS\nSSDDDDDDDS"
},
{
"input": "10 10\n....W.W.W.\n...W.....S\n.S.S...S..\nW......WSS\n.W..W.....\n.W...W....\nS..S...S.S\n...WWW..S.\n..S..S.S.S\nSS.......S",
"output": "No"
},
{
"input": "1 50\nW...S..............W.....S..S...............S...W.",
"output": "Yes\nWDDDSDDDDDDDDDDDDDDWDDDDDSDDSDDDDDDDDDDDDDDDSDDDWD"
},
{
"input": "2 4\n...S\n...W",
"output": "No"
},
{
"input": "4 2\n..\n..\n..\nSW",
"output": "No"
},
{
"input": "4 2\n..\n..\n..\nWS",
"output": "No"
},
{
"input": "2 4\n...W\n...S",
"output": "No"
},
{
"input": "50 1\nS\n.\n.\n.\n.\n.\n.\nS\n.\n.\n.\n.\n.\n.\n.\n.\nS\n.\nW\n.\nS\n.\n.\n.\n.\nS\n.\n.\n.\n.\n.\n.\n.\nW\n.\n.\n.\nW\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.",
"output": "Yes\nS\nD\nD\nD\nD\nD\nD\nS\nD\nD\nD\nD\nD\nD\nD\nD\nS\nD\nW\nD\nS\nD\nD\nD\nD\nS\nD\nD\nD\nD\nD\nD\nD\nW\nD\nD\nD\nW\nD\nD\nD\nD\nD\nD\nD\nD\nD\nD\nD\nD"
},
{
"input": "4 4\nW..S\nW..S\nW..S\nW..S",
"output": "Yes\nWDDS\nWDDS\nWDDS\nWDDS"
},
{
"input": "4 4\nSSSS\n....\n....\nWWWW",
"output": "Yes\nSSSS\nDDDD\nDDDD\nWWWW"
},
{
"input": "4 4\nWWWW\n....\n....\nSSSS",
"output": "Yes\nWWWW\nDDDD\nDDDD\nSSSS"
},
{
"input": "4 4\nS..W\nS..W\nS..W\nS..W",
"output": "Yes\nSDDW\nSDDW\nSDDW\nSDDW"
},
{
"input": "1 1\n.",
"output": "Yes\nD"
},
{
"input": "1 1\nW",
"output": "Yes\nW"
},
{
"input": "1 1\nS",
"output": "Yes\nS"
},
{
"input": "4 2\n..\n..\n.W\n.S",
"output": "No"
},
{
"input": "4 2\n..\n..\n.S\n.W",
"output": "No"
},
{
"input": "4 2\n..\n..\nW.\nS.",
"output": "No"
},
{
"input": "4 2\n..\n..\nS.\nW.",
"output": "No"
},
{
"input": "2 4\n....\n..SW",
"output": "No"
},
{
"input": "2 4\n....\n..WS",
"output": "No"
},
{
"input": "1 2\nS.",
"output": "Yes\nSD"
}
] | 1,670,439,906
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 98
| 78
| 1,433,600
|
r,c = list(map(int,input().split()))
mp = []
for i in range(r):
mp.append(input().replace('.','D'))
dx = (1,-1,0,0)
dy = (0,0,1,-1)
for i in range(r):
for j in range(c):
if (mp[i][j] != 'W'): continue
for k in range(4):
x = i + dx[k]
y = j + dy[k]
if x >= 0 and x < r and y >= 0 and y < c and mp[x][y] == 'S':
print("No");
exit(0)
print("Yes")
print("\n".join(mp))
|
Title: Protect Sheep
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Bob is a farmer. He has a large pasture with many sheep. Recently, he has lost some of them due to wolf attacks. He thus decided to place some shepherd dogs in such a way that all his sheep are protected.
The pasture is a rectangle consisting of *R*<=×<=*C* cells. Each cell is either empty, contains a sheep, a wolf or a dog. Sheep and dogs always stay in place, but wolves can roam freely around the pasture, by repeatedly moving to the left, right, up or down to a neighboring cell. When a wolf enters a cell with a sheep, it consumes it. However, no wolf can enter a cell with a dog.
Initially there are no dogs. Place dogs onto the pasture in such a way that no wolf can reach any sheep, or determine that it is impossible. Note that since you have many dogs, you do not need to minimize their number.
Input Specification:
First line contains two integers *R* (1<=≤<=*R*<=≤<=500) and *C* (1<=≤<=*C*<=≤<=500), denoting the number of rows and the numbers of columns respectively.
Each of the following *R* lines is a string consisting of exactly *C* characters, representing one row of the pasture. Here, 'S' means a sheep, 'W' a wolf and '.' an empty cell.
Output Specification:
If it is impossible to protect all sheep, output a single line with the word "No".
Otherwise, output a line with the word "Yes". Then print *R* lines, representing the pasture after placing dogs. Again, 'S' means a sheep, 'W' a wolf, 'D' is a dog and '.' an empty space. You are not allowed to move, remove or add a sheep or a wolf.
If there are multiple solutions, you may print any of them. You don't have to minimize the number of dogs.
Demo Input:
['6 6\n..S...\n..S.W.\n.S....\n..W...\n...W..\n......\n', '1 2\nSW\n', '5 5\n.S...\n...S.\nS....\n...S.\n.S...\n']
Demo Output:
['Yes\n..SD..\n..SDW.\n.SD...\n.DW...\nDD.W..\n......\n', 'No\n', 'Yes\n.S...\n...S.\nS.D..\n...S.\n.S...\n']
Note:
In the first example, we can split the pasture into two halves, one containing wolves and one containing sheep. Note that the sheep at (2,1) is safe, as wolves cannot move diagonally.
In the second example, there are no empty spots to put dogs that would guard the lone sheep.
In the third example, there are no wolves, so the task is very easy. We put a dog in the center to observe the peacefulness of the meadow, but the solution would be correct even without him.
|
```python
r,c = list(map(int,input().split()))
mp = []
for i in range(r):
mp.append(input().replace('.','D'))
dx = (1,-1,0,0)
dy = (0,0,1,-1)
for i in range(r):
for j in range(c):
if (mp[i][j] != 'W'): continue
for k in range(4):
x = i + dx[k]
y = j + dy[k]
if x >= 0 and x < r and y >= 0 and y < c and mp[x][y] == 'S':
print("No");
exit(0)
print("Yes")
print("\n".join(mp))
```
| 3
|
|
638
|
A
|
Home Numbers
|
PROGRAMMING
| 1,100
|
[
"*special",
"constructive algorithms",
"math"
] | null | null |
The main street of Berland is a straight line with *n* houses built along it (*n* is an even number). The houses are located at both sides of the street. The houses with odd numbers are at one side of the street and are numbered from 1 to *n*<=-<=1 in the order from the beginning of the street to the end (in the picture: from left to right). The houses with even numbers are at the other side of the street and are numbered from 2 to *n* in the order from the end of the street to its beginning (in the picture: from right to left). The corresponding houses with even and odd numbers are strictly opposite each other, that is, house 1 is opposite house *n*, house 3 is opposite house *n*<=-<=2, house 5 is opposite house *n*<=-<=4 and so on.
Vasya needs to get to house number *a* as quickly as possible. He starts driving from the beginning of the street and drives his car to house *a*. To get from the beginning of the street to houses number 1 and *n*, he spends exactly 1 second. He also spends exactly one second to drive the distance between two neighbouring houses. Vasya can park at any side of the road, so the distance between the beginning of the street at the houses that stand opposite one another should be considered the same.
Your task is: find the minimum time Vasya needs to reach house *a*.
|
The first line of the input contains two integers, *n* and *a* (1<=≤<=*a*<=≤<=*n*<=≤<=100<=000) — the number of houses on the street and the number of the house that Vasya needs to reach, correspondingly. It is guaranteed that number *n* is even.
|
Print a single integer — the minimum time Vasya needs to get from the beginning of the street to house *a*.
|
[
"4 2\n",
"8 5\n"
] |
[
"2\n",
"3\n"
] |
In the first sample there are only four houses on the street, two houses at each side. House 2 will be the last at Vasya's right.
The second sample corresponds to picture with *n* = 8. House 5 is the one before last at Vasya's left.
| 500
|
[
{
"input": "4 2",
"output": "2"
},
{
"input": "8 5",
"output": "3"
},
{
"input": "2 1",
"output": "1"
},
{
"input": "2 2",
"output": "1"
},
{
"input": "10 1",
"output": "1"
},
{
"input": "10 10",
"output": "1"
},
{
"input": "100000 100000",
"output": "1"
},
{
"input": "100000 2",
"output": "50000"
},
{
"input": "100000 3",
"output": "2"
},
{
"input": "100000 99999",
"output": "50000"
},
{
"input": "100 100",
"output": "1"
},
{
"input": "3000 34",
"output": "1484"
},
{
"input": "2000 1",
"output": "1"
},
{
"input": "100000 1",
"output": "1"
},
{
"input": "24842 1038",
"output": "11903"
},
{
"input": "1628 274",
"output": "678"
},
{
"input": "16186 337",
"output": "169"
},
{
"input": "24562 2009",
"output": "1005"
},
{
"input": "9456 3443",
"output": "1722"
},
{
"input": "5610 332",
"output": "2640"
},
{
"input": "1764 1288",
"output": "239"
},
{
"input": "28588 13902",
"output": "7344"
},
{
"input": "92480 43074",
"output": "24704"
},
{
"input": "40022 26492",
"output": "6766"
},
{
"input": "85766 64050",
"output": "10859"
},
{
"input": "67808 61809",
"output": "30905"
},
{
"input": "80124 68695",
"output": "34348"
},
{
"input": "95522 91716",
"output": "1904"
},
{
"input": "7752 2915",
"output": "1458"
},
{
"input": "5094 5058",
"output": "19"
},
{
"input": "6144 4792",
"output": "677"
},
{
"input": "34334 20793",
"output": "10397"
},
{
"input": "23538 10243",
"output": "5122"
},
{
"input": "9328 7933",
"output": "3967"
},
{
"input": "11110 9885",
"output": "4943"
},
{
"input": "26096 2778",
"output": "11660"
},
{
"input": "75062 5323",
"output": "2662"
},
{
"input": "94790 7722",
"output": "43535"
},
{
"input": "90616 32240",
"output": "29189"
},
{
"input": "96998 8992",
"output": "44004"
},
{
"input": "95130 19219",
"output": "9610"
},
{
"input": "92586 8812",
"output": "41888"
},
{
"input": "3266 3044",
"output": "112"
},
{
"input": "5026 4697",
"output": "2349"
},
{
"input": "3044 2904",
"output": "71"
},
{
"input": "6022 5396",
"output": "314"
},
{
"input": "31270 25522",
"output": "2875"
},
{
"input": "82156 75519",
"output": "37760"
},
{
"input": "34614 27913",
"output": "13957"
},
{
"input": "88024 61143",
"output": "30572"
},
{
"input": "91870 55672",
"output": "18100"
},
{
"input": "95718 4868",
"output": "45426"
},
{
"input": "99564 358",
"output": "49604"
},
{
"input": "89266 13047",
"output": "6524"
},
{
"input": "90904 16455",
"output": "8228"
},
{
"input": "94750 13761",
"output": "6881"
},
{
"input": "100000 23458",
"output": "38272"
},
{
"input": "100000 23457",
"output": "11729"
},
{
"input": "59140 24272",
"output": "17435"
},
{
"input": "9860 8516",
"output": "673"
},
{
"input": "25988 2733",
"output": "1367"
},
{
"input": "9412 5309",
"output": "2655"
},
{
"input": "25540 23601",
"output": "11801"
},
{
"input": "76260 6050",
"output": "35106"
},
{
"input": "92388 39118",
"output": "26636"
},
{
"input": "8516 5495",
"output": "2748"
},
{
"input": "91940 37847",
"output": "18924"
},
{
"input": "30518 286",
"output": "15117"
},
{
"input": "46646 19345",
"output": "9673"
}
] | 1,596,620,157
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 69
| 109
| 6,758,400
|
n,m=map(int,input().split())
if m%2==1:
m+=1
m//=2
print(m)
else :
n+=2
n-=m
n//=2
print(n)
|
Title: Home Numbers
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
The main street of Berland is a straight line with *n* houses built along it (*n* is an even number). The houses are located at both sides of the street. The houses with odd numbers are at one side of the street and are numbered from 1 to *n*<=-<=1 in the order from the beginning of the street to the end (in the picture: from left to right). The houses with even numbers are at the other side of the street and are numbered from 2 to *n* in the order from the end of the street to its beginning (in the picture: from right to left). The corresponding houses with even and odd numbers are strictly opposite each other, that is, house 1 is opposite house *n*, house 3 is opposite house *n*<=-<=2, house 5 is opposite house *n*<=-<=4 and so on.
Vasya needs to get to house number *a* as quickly as possible. He starts driving from the beginning of the street and drives his car to house *a*. To get from the beginning of the street to houses number 1 and *n*, he spends exactly 1 second. He also spends exactly one second to drive the distance between two neighbouring houses. Vasya can park at any side of the road, so the distance between the beginning of the street at the houses that stand opposite one another should be considered the same.
Your task is: find the minimum time Vasya needs to reach house *a*.
Input Specification:
The first line of the input contains two integers, *n* and *a* (1<=≤<=*a*<=≤<=*n*<=≤<=100<=000) — the number of houses on the street and the number of the house that Vasya needs to reach, correspondingly. It is guaranteed that number *n* is even.
Output Specification:
Print a single integer — the minimum time Vasya needs to get from the beginning of the street to house *a*.
Demo Input:
['4 2\n', '8 5\n']
Demo Output:
['2\n', '3\n']
Note:
In the first sample there are only four houses on the street, two houses at each side. House 2 will be the last at Vasya's right.
The second sample corresponds to picture with *n* = 8. House 5 is the one before last at Vasya's left.
|
```python
n,m=map(int,input().split())
if m%2==1:
m+=1
m//=2
print(m)
else :
n+=2
n-=m
n//=2
print(n)
```
| 3
|
|
581
|
A
|
Vasya the Hipster
|
PROGRAMMING
| 800
|
[
"implementation",
"math"
] | null | null |
One day Vasya the Hipster decided to count how many socks he had. It turned out that he had *a* red socks and *b* blue socks.
According to the latest fashion, hipsters should wear the socks of different colors: a red one on the left foot, a blue one on the right foot.
Every day Vasya puts on new socks in the morning and throws them away before going to bed as he doesn't want to wash them.
Vasya wonders, what is the maximum number of days when he can dress fashionable and wear different socks, and after that, for how many days he can then wear the same socks until he either runs out of socks or cannot make a single pair from the socks he's got.
Can you help him?
|
The single line of the input contains two positive integers *a* and *b* (1<=≤<=*a*,<=*b*<=≤<=100) — the number of red and blue socks that Vasya's got.
|
Print two space-separated integers — the maximum number of days when Vasya can wear different socks and the number of days when he can wear the same socks until he either runs out of socks or cannot make a single pair from the socks he's got.
Keep in mind that at the end of the day Vasya throws away the socks that he's been wearing on that day.
|
[
"3 1\n",
"2 3\n",
"7 3\n"
] |
[
"1 1\n",
"2 0\n",
"3 2\n"
] |
In the first sample Vasya can first put on one pair of different socks, after that he has two red socks left to wear on the second day.
| 500
|
[
{
"input": "3 1",
"output": "1 1"
},
{
"input": "2 3",
"output": "2 0"
},
{
"input": "7 3",
"output": "3 2"
},
{
"input": "100 100",
"output": "100 0"
},
{
"input": "4 10",
"output": "4 3"
},
{
"input": "6 10",
"output": "6 2"
},
{
"input": "6 11",
"output": "6 2"
},
{
"input": "10 40",
"output": "10 15"
},
{
"input": "11 56",
"output": "11 22"
},
{
"input": "34 30",
"output": "30 2"
},
{
"input": "33 33",
"output": "33 0"
},
{
"input": "100 45",
"output": "45 27"
},
{
"input": "100 23",
"output": "23 38"
},
{
"input": "45 12",
"output": "12 16"
},
{
"input": "1 1",
"output": "1 0"
},
{
"input": "1 100",
"output": "1 49"
},
{
"input": "100 1",
"output": "1 49"
},
{
"input": "68 59",
"output": "59 4"
},
{
"input": "45 99",
"output": "45 27"
},
{
"input": "99 100",
"output": "99 0"
},
{
"input": "100 98",
"output": "98 1"
},
{
"input": "59 12",
"output": "12 23"
},
{
"input": "86 4",
"output": "4 41"
},
{
"input": "68 21",
"output": "21 23"
},
{
"input": "100 11",
"output": "11 44"
},
{
"input": "100 10",
"output": "10 45"
},
{
"input": "15 45",
"output": "15 15"
},
{
"input": "11 32",
"output": "11 10"
},
{
"input": "34 96",
"output": "34 31"
},
{
"input": "89 89",
"output": "89 0"
}
] | 1,662,576,623
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 30
| 46
| 0
|
a, b = map(int,input().split())
print(min(a, b), (max(a, b)-min(a, b))//2 )
|
Title: Vasya the Hipster
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
One day Vasya the Hipster decided to count how many socks he had. It turned out that he had *a* red socks and *b* blue socks.
According to the latest fashion, hipsters should wear the socks of different colors: a red one on the left foot, a blue one on the right foot.
Every day Vasya puts on new socks in the morning and throws them away before going to bed as he doesn't want to wash them.
Vasya wonders, what is the maximum number of days when he can dress fashionable and wear different socks, and after that, for how many days he can then wear the same socks until he either runs out of socks or cannot make a single pair from the socks he's got.
Can you help him?
Input Specification:
The single line of the input contains two positive integers *a* and *b* (1<=≤<=*a*,<=*b*<=≤<=100) — the number of red and blue socks that Vasya's got.
Output Specification:
Print two space-separated integers — the maximum number of days when Vasya can wear different socks and the number of days when he can wear the same socks until he either runs out of socks or cannot make a single pair from the socks he's got.
Keep in mind that at the end of the day Vasya throws away the socks that he's been wearing on that day.
Demo Input:
['3 1\n', '2 3\n', '7 3\n']
Demo Output:
['1 1\n', '2 0\n', '3 2\n']
Note:
In the first sample Vasya can first put on one pair of different socks, after that he has two red socks left to wear on the second day.
|
```python
a, b = map(int,input().split())
print(min(a, b), (max(a, b)-min(a, b))//2 )
```
| 3
|
|
841
|
A
|
Generous Kefa
|
PROGRAMMING
| 900
|
[
"brute force",
"implementation"
] | null | null |
One day Kefa found *n* baloons. For convenience, we denote color of *i*-th baloon as *s**i* — lowercase letter of the Latin alphabet. Also Kefa has *k* friends. Friend will be upset, If he get two baloons of the same color. Kefa want to give out all baloons to his friends. Help Kefa to find out, can he give out all his baloons, such that no one of his friens will be upset — print «YES», if he can, and «NO», otherwise. Note, that Kefa's friend will not upset, if he doesn't get baloons at all.
|
The first line contains two integers *n* and *k* (1<=≤<=*n*,<=*k*<=≤<=100) — the number of baloons and friends.
Next line contains string *s* — colors of baloons.
|
Answer to the task — «YES» or «NO» in a single line.
You can choose the case (lower or upper) for each letter arbitrary.
|
[
"4 2\naabb\n",
"6 3\naacaab\n"
] |
[
"YES\n",
"NO\n"
] |
In the first sample Kefa can give 1-st and 3-rd baloon to the first friend, and 2-nd and 4-th to the second.
In the second sample Kefa needs to give to all his friends baloons of color a, but one baloon will stay, thats why answer is «NO».
| 500
|
[
{
"input": "4 2\naabb",
"output": "YES"
},
{
"input": "6 3\naacaab",
"output": "NO"
},
{
"input": "2 2\nlu",
"output": "YES"
},
{
"input": "5 3\novvoo",
"output": "YES"
},
{
"input": "36 13\nbzbzcffczzcbcbzzfzbbfzfzzbfbbcbfccbf",
"output": "YES"
},
{
"input": "81 3\nooycgmvvrophvcvpoupepqllqttwcocuilvyxbyumdmmfapvpnxhjhxfuagpnntonibicaqjvwfhwxhbv",
"output": "NO"
},
{
"input": "100 100\nxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx",
"output": "YES"
},
{
"input": "100 1\nnubcvvjvbjgnjsdkajimdcxvewbcytvfkihunycdrlconddlwgzjasjlsrttlrzsumzpyumpveglfqzmaofbshbojmwuwoxxvrod",
"output": "NO"
},
{
"input": "100 13\nvyldolgryldqrvoldvzvrdrgorlorszddtgqvrlisxxrxdxlqtvtgsrqlzixoyrozxzogqxlsgzdddzqrgitxxritoolzolgrtvl",
"output": "YES"
},
{
"input": "18 6\njzwtnkvmscqhmdlsxy",
"output": "YES"
},
{
"input": "21 2\nfscegcqgzesefghhwcexs",
"output": "NO"
},
{
"input": "32 22\ncduamsptaklqtxlyoutlzepxgyfkvngc",
"output": "YES"
},
{
"input": "49 27\noxyorfnkzwsfllnyvdhdanppuzrnbxehugvmlkgeymqjlmfxd",
"output": "YES"
},
{
"input": "50 24\nxxutzjwbggcwvxztttkmzovtmuwttzcbwoztttohzzxghuuthv",
"output": "YES"
},
{
"input": "57 35\nglxshztrqqfyxthqamagvtmrdparhelnzrqvcwqxjytkbuitovkdxueul",
"output": "YES"
},
{
"input": "75 23\nittttiiuitutuiiuuututiuttiuiuutuuuiuiuuuuttuuttuutuiiuiuiiuiitttuututuiuuii",
"output": "NO"
},
{
"input": "81 66\nfeqevfqfebhvubhuuvfuqheuqhbeeuebehuvhffvbqvqvfbqqvvhevqffbqqhvvqhfeehuhqeqhueuqqq",
"output": "YES"
},
{
"input": "93 42\npqeiafraiavfcteumflpcbpozcomlvpovlzdbldvoopnhdoeqaopzthiuzbzmeieiatthdeqovaqfipqlddllmfcrrnhb",
"output": "YES"
},
{
"input": "100 53\nizszyqyndzwzyzgsdagdwdazadiawizinagqqgczaqqnawgijziziawzszdjdcqjdjqiwgadydcnqisaayjiqqsscwwzjzaycwwc",
"output": "YES"
},
{
"input": "100 14\nvkrdcqbvkwuckpmnbydmczdxoagdsgtqxvhaxntdcxhjcrjyvukhugoglbmyoaqexgtcfdgemmizoniwtmisqqwcwfusmygollab",
"output": "YES"
},
{
"input": "100 42\naaaaaiiiiaiiiaaiaiiaaiiiiiaaaaaiaiiiaiiiiaiiiaaaaaiiiaaaiiaaiiiaiiiaiaaaiaiiiiaaiiiaiiaiaiiaiiiaaaia",
"output": "NO"
},
{
"input": "100 89\ntjbkmydejporbqhcbztkcumxjjgsrvxpuulbhzeeckkbchpbxwhedrlhjsabcexcohgdzouvsgphjdthpuqrlkgzxvqbuhqxdsmf",
"output": "YES"
},
{
"input": "100 100\njhpyiuuzizhubhhpxbbhpyxzhbpjphzppuhiahihiappbhuypyauhizpbibzixjbzxzpbphuiaypyujappuxiyuyaajaxjupbahb",
"output": "YES"
},
{
"input": "100 3\nsszoovvzysavsvzsozzvoozvysozsaszayaszasaysszzzysosyayyvzozovavzoyavsooaoyvoozvvozsaosvayyovazzszzssa",
"output": "NO"
},
{
"input": "100 44\ndluthkxwnorabqsukgnxnvhmsmzilyulpursnxkdsavgemiuizbyzebhyjejgqrvuckhaqtuvdmpziesmpmewpvozdanjyvwcdgo",
"output": "YES"
},
{
"input": "100 90\ntljonbnwnqounictqqctgonktiqoqlocgoblngijqokuquoolciqwnctgoggcbojtwjlculoikbggquqncittwnjbkgkgubnioib",
"output": "YES"
},
{
"input": "100 79\nykxptzgvbqxlregvkvucewtydvnhqhuggdsyqlvcfiuaiddnrrnstityyehiamrggftsqyduwxpuldztyzgmfkehprrneyvtknmf",
"output": "YES"
},
{
"input": "100 79\naagwekyovbviiqeuakbqbqifwavkfkutoriovgfmittulhwojaptacekdirgqoovlleeoqkkdukpadygfwavppohgdrmymmulgci",
"output": "YES"
},
{
"input": "100 93\nearrehrehenaddhdnrdddhdahnadndheeennrearrhraharddreaeraddhehhhrdnredanndneheddrraaneerreedhnadnerhdn",
"output": "YES"
},
{
"input": "100 48\nbmmaebaebmmmbbmxvmammbvvebvaemvbbaxvbvmaxvvmveaxmbbxaaemxmxvxxxvxbmmxaaaevvaxmvamvvmaxaxavexbmmbmmev",
"output": "YES"
},
{
"input": "100 55\nhsavbkehaaesffaeeffakhkhfehbbvbeasahbbbvkesbfvkefeesesevbsvfkbffakvshsbkahfkfakebsvafkbvsskfhfvaasss",
"output": "YES"
},
{
"input": "100 2\ncscffcffsccffsfsfffccssfsscfsfsssffcffsscfccssfffcfscfsscsccccfsssffffcfcfsfffcsfsccffscffcfccccfffs",
"output": "NO"
},
{
"input": "100 3\nzrgznxgdpgfoiifrrrsjfuhvtqxjlgochhyemismjnanfvvpzzvsgajcbsulxyeoepjfwvhkqogiiwqxjkrpsyaqdlwffoockxnc",
"output": "NO"
},
{
"input": "100 5\njbltyyfjakrjeodqepxpkjideulofbhqzxjwlarufwzwsoxhaexpydpqjvhybmvjvntuvhvflokhshpicbnfgsqsmrkrfzcrswwi",
"output": "NO"
},
{
"input": "100 1\nfnslnqktlbmxqpvcvnemxcutebdwepoxikifkzaaixzzydffpdxodmsxjribmxuqhueifdlwzytxkklwhljswqvlejedyrgguvah",
"output": "NO"
},
{
"input": "100 21\nddjenetwgwmdtjbpzssyoqrtirvoygkjlqhhdcjgeurqpunxpupwaepcqkbjjfhnvgpyqnozhhrmhfwararmlcvpgtnopvjqsrka",
"output": "YES"
},
{
"input": "100 100\nnjrhiauqlgkkpkuvciwzivjbbplipvhslqgdkfnmqrxuxnycmpheenmnrglotzuyxycosfediqcuadklsnzjqzfxnbjwvfljnlvq",
"output": "YES"
},
{
"input": "100 100\nbbbbbbbtbbttbtbbbttbttbtbbttttbbbtbttbbbtbttbtbbttttbbbbbtbbttbtbbtbttbbbtbtbtbtbtbtbbbttbbtbtbtbbtb",
"output": "YES"
},
{
"input": "14 5\nfssmmsfffmfmmm",
"output": "NO"
},
{
"input": "2 1\nff",
"output": "NO"
},
{
"input": "2 1\nhw",
"output": "YES"
},
{
"input": "2 2\nss",
"output": "YES"
},
{
"input": "1 1\nl",
"output": "YES"
},
{
"input": "100 50\nfffffttttttjjjuuuvvvvvdddxxxxwwwwgggbsssncccczzyyyyyhhhhhkrreeeeeeaaaaaiiillllllllooooqqqqqqmmpppppp",
"output": "YES"
},
{
"input": "100 50\nbbbbbbbbgggggggggggaaaaaaaahhhhhhhhhhpppppppppsssssssrrrrrrrrllzzzzzzzeeeeeeekkkkkkkwwwwwwwwjjjjjjjj",
"output": "YES"
},
{
"input": "100 50\nwwwwwwwwwwwwwwxxxxxxxxxxxxxxxxxxxxxxxxzzzzzzzzzzzzzzzzzzbbbbbbbbbbbbbbbbbbbbjjjjjjjjjjjjjjjjjjjjjjjj",
"output": "YES"
},
{
"input": "100 80\nbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm",
"output": "YES"
},
{
"input": "100 10\nbbttthhhhiiiiiiijjjjjvvvvpppssssseeeeeeewwwwgggkkkkkkkkmmmddddduuuzzzzllllnnnnnxxyyyffffccraaaaooooq",
"output": "YES"
},
{
"input": "100 20\nssssssssssbbbbbbbhhhhhhhyyyyyyyzzzzzzzzzzzzcccccxxxxxxxxxxddddmmmmmmmeeeeeeejjjjjjjjjwwwwwwwtttttttt",
"output": "YES"
},
{
"input": "1 2\na",
"output": "YES"
},
{
"input": "3 1\nabb",
"output": "NO"
},
{
"input": "2 1\naa",
"output": "NO"
},
{
"input": "2 1\nab",
"output": "YES"
},
{
"input": "6 2\naaaaaa",
"output": "NO"
},
{
"input": "8 4\naaaaaaaa",
"output": "NO"
},
{
"input": "4 2\naaaa",
"output": "NO"
},
{
"input": "4 3\naaaa",
"output": "NO"
},
{
"input": "1 3\na",
"output": "YES"
},
{
"input": "4 3\nzzzz",
"output": "NO"
},
{
"input": "4 1\naaaa",
"output": "NO"
},
{
"input": "3 4\nabc",
"output": "YES"
},
{
"input": "2 5\nab",
"output": "YES"
},
{
"input": "2 4\nab",
"output": "YES"
},
{
"input": "1 10\na",
"output": "YES"
},
{
"input": "5 2\nzzzzz",
"output": "NO"
},
{
"input": "53 26\naaaaaaaaaaaaaaaaaaaaaaaaaabbbbbbbbbbbbbbbbbbbbbbbbbbb",
"output": "NO"
},
{
"input": "4 1\nabab",
"output": "NO"
},
{
"input": "4 1\nabcb",
"output": "NO"
},
{
"input": "4 2\nabbb",
"output": "NO"
},
{
"input": "5 2\nabccc",
"output": "NO"
},
{
"input": "2 3\nab",
"output": "YES"
},
{
"input": "4 3\nbbbs",
"output": "YES"
},
{
"input": "10 2\nazzzzzzzzz",
"output": "NO"
},
{
"input": "1 2\nb",
"output": "YES"
},
{
"input": "1 3\nb",
"output": "YES"
},
{
"input": "4 5\nabcd",
"output": "YES"
},
{
"input": "4 6\naabb",
"output": "YES"
},
{
"input": "5 2\naaaab",
"output": "NO"
},
{
"input": "3 5\naaa",
"output": "YES"
},
{
"input": "5 3\nazzzz",
"output": "NO"
},
{
"input": "4 100\naabb",
"output": "YES"
},
{
"input": "3 10\naaa",
"output": "YES"
},
{
"input": "3 4\naaa",
"output": "YES"
},
{
"input": "12 5\naaaaabbbbbbb",
"output": "NO"
},
{
"input": "5 2\naabbb",
"output": "NO"
},
{
"input": "10 5\nzzzzzzzzzz",
"output": "NO"
},
{
"input": "2 4\naa",
"output": "YES"
},
{
"input": "1 5\na",
"output": "YES"
},
{
"input": "10 5\naaaaaaaaaa",
"output": "NO"
},
{
"input": "6 3\naaaaaa",
"output": "NO"
},
{
"input": "7 1\nabcdeee",
"output": "NO"
},
{
"input": "18 3\naaaaaabbbbbbcccccc",
"output": "NO"
},
{
"input": "8 2\naabbccdd",
"output": "YES"
},
{
"input": "4 2\nzzzz",
"output": "NO"
},
{
"input": "4 2\nabaa",
"output": "NO"
},
{
"input": "3 2\naaa",
"output": "NO"
},
{
"input": "3 1\nzzz",
"output": "NO"
},
{
"input": "5 4\nzzzzz",
"output": "NO"
},
{
"input": "6 2\naabbbc",
"output": "NO"
},
{
"input": "3 6\naaa",
"output": "YES"
},
{
"input": "2 1\nzz",
"output": "NO"
},
{
"input": "10 3\naaaeeeeeee",
"output": "NO"
},
{
"input": "4 5\naabb",
"output": "YES"
},
{
"input": "3 1\naaa",
"output": "NO"
},
{
"input": "5 2\naazzz",
"output": "NO"
},
{
"input": "6 2\nabbbbc",
"output": "NO"
},
{
"input": "4 2\nxxxx",
"output": "NO"
},
{
"input": "6 3\nzzzzzz",
"output": "NO"
},
{
"input": "3 2\nabb",
"output": "YES"
},
{
"input": "3 2\nzzz",
"output": "NO"
},
{
"input": "6 5\nzzzzzz",
"output": "NO"
},
{
"input": "6 3\nbcaaaa",
"output": "NO"
},
{
"input": "100 100\naaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "YES"
},
{
"input": "3 6\nabc",
"output": "YES"
}
] | 1,510,758,030
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 114
| 62
| 0
|
n, k = map(int, input().split())
a = list(input())
y = 0
for i in range(0, len(a)):
if a.count(a[i]) > k:
y = 1
if y == 0:
print("YES")
else:
print("NO")
|
Title: Generous Kefa
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
One day Kefa found *n* baloons. For convenience, we denote color of *i*-th baloon as *s**i* — lowercase letter of the Latin alphabet. Also Kefa has *k* friends. Friend will be upset, If he get two baloons of the same color. Kefa want to give out all baloons to his friends. Help Kefa to find out, can he give out all his baloons, such that no one of his friens will be upset — print «YES», if he can, and «NO», otherwise. Note, that Kefa's friend will not upset, if he doesn't get baloons at all.
Input Specification:
The first line contains two integers *n* and *k* (1<=≤<=*n*,<=*k*<=≤<=100) — the number of baloons and friends.
Next line contains string *s* — colors of baloons.
Output Specification:
Answer to the task — «YES» or «NO» in a single line.
You can choose the case (lower or upper) for each letter arbitrary.
Demo Input:
['4 2\naabb\n', '6 3\naacaab\n']
Demo Output:
['YES\n', 'NO\n']
Note:
In the first sample Kefa can give 1-st and 3-rd baloon to the first friend, and 2-nd and 4-th to the second.
In the second sample Kefa needs to give to all his friends baloons of color a, but one baloon will stay, thats why answer is «NO».
|
```python
n, k = map(int, input().split())
a = list(input())
y = 0
for i in range(0, len(a)):
if a.count(a[i]) > k:
y = 1
if y == 0:
print("YES")
else:
print("NO")
```
| 3
|
|
711
|
A
|
Bus to Udayland
|
PROGRAMMING
| 800
|
[
"brute force",
"implementation"
] | null | null |
ZS the Coder and Chris the Baboon are travelling to Udayland! To get there, they have to get on the special IOI bus. The IOI bus has *n* rows of seats. There are 4 seats in each row, and the seats are separated into pairs by a walkway. When ZS and Chris came, some places in the bus was already occupied.
ZS and Chris are good friends. They insist to get a pair of neighbouring empty seats. Two seats are considered neighbouring if they are in the same row and in the same pair. Given the configuration of the bus, can you help ZS and Chris determine where they should sit?
|
The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=1000) — the number of rows of seats in the bus.
Then, *n* lines follow. Each line contains exactly 5 characters, the first two of them denote the first pair of seats in the row, the third character denotes the walkway (it always equals '|') and the last two of them denote the second pair of seats in the row.
Each character, except the walkway, equals to 'O' or to 'X'. 'O' denotes an empty seat, 'X' denotes an occupied seat. See the sample cases for more details.
|
If it is possible for Chris and ZS to sit at neighbouring empty seats, print "YES" (without quotes) in the first line. In the next *n* lines print the bus configuration, where the characters in the pair of seats for Chris and ZS is changed with characters '+'. Thus the configuration should differ from the input one by exactly two charaters (they should be equal to 'O' in the input and to '+' in the output).
If there is no pair of seats for Chris and ZS, print "NO" (without quotes) in a single line.
If there are multiple solutions, you may print any of them.
|
[
"6\nOO|OX\nXO|XX\nOX|OO\nXX|OX\nOO|OO\nOO|XX\n",
"4\nXO|OX\nXO|XX\nOX|OX\nXX|OX\n",
"5\nXX|XX\nXX|XX\nXO|OX\nXO|OO\nOX|XO\n"
] |
[
"YES\n++|OX\nXO|XX\nOX|OO\nXX|OX\nOO|OO\nOO|XX\n",
"NO\n",
"YES\nXX|XX\nXX|XX\nXO|OX\nXO|++\nOX|XO\n"
] |
Note that the following is an incorrect configuration for the first sample case because the seats must be in the same pair.
O+|+X
XO|XX
OX|OO
XX|OX
OO|OO
OO|XX
| 500
|
[
{
"input": "6\nOO|OX\nXO|XX\nOX|OO\nXX|OX\nOO|OO\nOO|XX",
"output": "YES\n++|OX\nXO|XX\nOX|OO\nXX|OX\nOO|OO\nOO|XX"
},
{
"input": "4\nXO|OX\nXO|XX\nOX|OX\nXX|OX",
"output": "NO"
},
{
"input": "5\nXX|XX\nXX|XX\nXO|OX\nXO|OO\nOX|XO",
"output": "YES\nXX|XX\nXX|XX\nXO|OX\nXO|++\nOX|XO"
},
{
"input": "1\nXO|OX",
"output": "NO"
},
{
"input": "1\nOO|OO",
"output": "YES\n++|OO"
},
{
"input": "4\nXO|XX\nXX|XO\nOX|XX\nXO|XO",
"output": "NO"
},
{
"input": "9\nOX|XO\nOX|XO\nXO|OX\nOX|OX\nXO|OX\nXX|OO\nOX|OX\nOX|XO\nOX|OX",
"output": "YES\nOX|XO\nOX|XO\nXO|OX\nOX|OX\nXO|OX\nXX|++\nOX|OX\nOX|XO\nOX|OX"
},
{
"input": "61\nOX|XX\nOX|XX\nOX|XX\nXO|XO\nXX|XO\nXX|XX\nXX|XX\nOX|XX\nXO|XO\nOX|XO\nXO|OX\nXX|XX\nXX|XX\nOX|OX\nXX|OX\nOX|XO\nOX|XO\nXO|OX\nXO|XX\nOX|XX\nOX|XX\nXO|OX\nXO|XX\nXO|XX\nOX|XX\nXX|XX\nXX|XO\nXO|XX\nXX|XX\nXO|OX\nXX|XO\nXO|XX\nXO|XO\nXO|OX\nXX|OX\nXO|OX\nOX|XX\nXX|OX\nXX|XX\nOX|XO\nOX|XX\nXO|OX\nOX|XX\nOX|XX\nXO|XO\nXO|XX\nOX|XX\nXO|XO\nOX|XX\nXX|XX\nOX|XO\nXO|XO\nXO|XO\nOX|OX\nXX|OX\nXX|OX\nOX|XO\nOX|XX\nOX|OX\nXO|XX\nOX|XX",
"output": "NO"
},
{
"input": "1\nOO|XX",
"output": "YES\n++|XX"
},
{
"input": "10\nOO|XX\nXO|OX\nXO|OX\nXO|OX\nXO|OX\nXO|OX\nXO|OX\nXO|OX\nXO|OX\nXX|XX",
"output": "YES\n++|XX\nXO|OX\nXO|OX\nXO|OX\nXO|OX\nXO|OX\nXO|OX\nXO|OX\nXO|OX\nXX|XX"
},
{
"input": "10\nXX|XX\nXO|OX\nXO|OX\nXO|OX\nXO|OX\nXO|OX\nXO|OX\nXO|OX\nXO|OX\nXX|OO",
"output": "YES\nXX|XX\nXO|OX\nXO|OX\nXO|OX\nXO|OX\nXO|OX\nXO|OX\nXO|OX\nXO|OX\nXX|++"
},
{
"input": "5\nXX|XX\nXX|XX\nXO|OX\nOO|OX\nOX|XO",
"output": "YES\nXX|XX\nXX|XX\nXO|OX\n++|OX\nOX|XO"
},
{
"input": "6\nOO|XX\nXO|XX\nOX|OO\nXX|OX\nOO|XX\nOX|XX",
"output": "YES\n++|XX\nXO|XX\nOX|OO\nXX|OX\nOO|XX\nOX|XX"
}
] | 1,661,969,384
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 71
| 46
| 0
|
n = input()
l = []
for _ in range(int(n)):
l.append(input().split("|"))
ms = -1
for i in range(int(n)):
if "OO" in l[i]:
l[i][l[i].index("OO")] = "++"
ms = i
break
if ms == -1:
print("NO")
else:
print("YES")
for elem in l:
print(elem[0] + "|" + elem[1])
|
Title: Bus to Udayland
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
ZS the Coder and Chris the Baboon are travelling to Udayland! To get there, they have to get on the special IOI bus. The IOI bus has *n* rows of seats. There are 4 seats in each row, and the seats are separated into pairs by a walkway. When ZS and Chris came, some places in the bus was already occupied.
ZS and Chris are good friends. They insist to get a pair of neighbouring empty seats. Two seats are considered neighbouring if they are in the same row and in the same pair. Given the configuration of the bus, can you help ZS and Chris determine where they should sit?
Input Specification:
The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=1000) — the number of rows of seats in the bus.
Then, *n* lines follow. Each line contains exactly 5 characters, the first two of them denote the first pair of seats in the row, the third character denotes the walkway (it always equals '|') and the last two of them denote the second pair of seats in the row.
Each character, except the walkway, equals to 'O' or to 'X'. 'O' denotes an empty seat, 'X' denotes an occupied seat. See the sample cases for more details.
Output Specification:
If it is possible for Chris and ZS to sit at neighbouring empty seats, print "YES" (without quotes) in the first line. In the next *n* lines print the bus configuration, where the characters in the pair of seats for Chris and ZS is changed with characters '+'. Thus the configuration should differ from the input one by exactly two charaters (they should be equal to 'O' in the input and to '+' in the output).
If there is no pair of seats for Chris and ZS, print "NO" (without quotes) in a single line.
If there are multiple solutions, you may print any of them.
Demo Input:
['6\nOO|OX\nXO|XX\nOX|OO\nXX|OX\nOO|OO\nOO|XX\n', '4\nXO|OX\nXO|XX\nOX|OX\nXX|OX\n', '5\nXX|XX\nXX|XX\nXO|OX\nXO|OO\nOX|XO\n']
Demo Output:
['YES\n++|OX\nXO|XX\nOX|OO\nXX|OX\nOO|OO\nOO|XX\n', 'NO\n', 'YES\nXX|XX\nXX|XX\nXO|OX\nXO|++\nOX|XO\n']
Note:
Note that the following is an incorrect configuration for the first sample case because the seats must be in the same pair.
O+|+X
XO|XX
OX|OO
XX|OX
OO|OO
OO|XX
|
```python
n = input()
l = []
for _ in range(int(n)):
l.append(input().split("|"))
ms = -1
for i in range(int(n)):
if "OO" in l[i]:
l[i][l[i].index("OO")] = "++"
ms = i
break
if ms == -1:
print("NO")
else:
print("YES")
for elem in l:
print(elem[0] + "|" + elem[1])
```
| 3
|
|
59
|
A
|
Word
|
PROGRAMMING
| 800
|
[
"implementation",
"strings"
] |
A. Word
|
2
|
256
|
Vasya is very upset that many people on the Net mix uppercase and lowercase letters in one word. That's why he decided to invent an extension for his favorite browser that would change the letters' register in every word so that it either only consisted of lowercase letters or, vice versa, only of uppercase ones. At that as little as possible letters should be changed in the word. For example, the word HoUse must be replaced with house, and the word ViP — with VIP. If a word contains an equal number of uppercase and lowercase letters, you should replace all the letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to use the given method on one given word.
|
The first line contains a word *s* — it consists of uppercase and lowercase Latin letters and possesses the length from 1 to 100.
|
Print the corrected word *s*. If the given word *s* has strictly more uppercase letters, make the word written in the uppercase register, otherwise - in the lowercase one.
|
[
"HoUse\n",
"ViP\n",
"maTRIx\n"
] |
[
"house\n",
"VIP\n",
"matrix\n"
] |
none
| 500
|
[
{
"input": "HoUse",
"output": "house"
},
{
"input": "ViP",
"output": "VIP"
},
{
"input": "maTRIx",
"output": "matrix"
},
{
"input": "BNHWpnpawg",
"output": "bnhwpnpawg"
},
{
"input": "VTYGP",
"output": "VTYGP"
},
{
"input": "CHNenu",
"output": "chnenu"
},
{
"input": "ERPZGrodyu",
"output": "erpzgrodyu"
},
{
"input": "KSXBXWpebh",
"output": "KSXBXWPEBH"
},
{
"input": "qvxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaiv",
"output": "qvxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaiv"
},
{
"input": "Amnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfd",
"output": "amnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfd"
},
{
"input": "ISAGFJFARYFBLOPQDSHWGMCNKMFTLVFUGNJEWGWNBLXUIATXEkqiettmmjgydwcpafqrppdsrrrtguinqbgmzzfqwonkpgpcwenv",
"output": "isagfjfaryfblopqdshwgmcnkmftlvfugnjewgwnblxuiatxekqiettmmjgydwcpafqrppdsrrrtguinqbgmzzfqwonkpgpcwenv"
},
{
"input": "XHRPXZEGHSOCJPICUIXSKFUZUPYTSGJSDIYBCMNMNBPNDBXLXBzhbfnqvwcffvrdhtickyqhupmcehlsyvncqmfhautvxudqdhgg",
"output": "xhrpxzeghsocjpicuixskfuzupytsgjsdiybcmnmnbpndbxlxbzhbfnqvwcffvrdhtickyqhupmcehlsyvncqmfhautvxudqdhgg"
},
{
"input": "RJIQZMJCIMSNDBOHBRAWIENODSALETAKGKPYUFGVEFGCBRENZGAdkcetqjljtmttlonpekcovdzebzdkzggwfsxhapmjkdbuceak",
"output": "RJIQZMJCIMSNDBOHBRAWIENODSALETAKGKPYUFGVEFGCBRENZGADKCETQJLJTMTTLONPEKCOVDZEBZDKZGGWFSXHAPMJKDBUCEAK"
},
{
"input": "DWLWOBHNMMGTFOLFAECKBRNNGLYLYDXTGTVRLMEESZOIUATZZZXUFUZDLSJXMEVRTESSFBWLNZZCLCQWEVNNUCXYVHNGNXHCBDFw",
"output": "DWLWOBHNMMGTFOLFAECKBRNNGLYLYDXTGTVRLMEESZOIUATZZZXUFUZDLSJXMEVRTESSFBWLNZZCLCQWEVNNUCXYVHNGNXHCBDFW"
},
{
"input": "NYCNHJWGBOCOTSPETKKHVWFGAQYNHOVJWJHCIEFOUQZXOYUIEQDZALFKTEHTVDBVJMEUBJUBCMNVPWGDPNCHQHZJRCHYRFPVIGUB",
"output": "NYCNHJWGBOCOTSPETKKHVWFGAQYNHOVJWJHCIEFOUQZXOYUIEQDZALFKTEHTVDBVJMEUBJUBCMNVPWGDPNCHQHZJRCHYRFPVIGUB"
},
{
"input": "igxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwge",
"output": "igxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwge"
},
{
"input": "Ykkekrsqolzryiwsmdlnbmfautxxxauoojrddvwklgnlyrfcvhorrzbmtcrvpaypqhcffdqhwziipyyskcmztjprjqvmzzqhqnw",
"output": "ykkekrsqolzryiwsmdlnbmfautxxxauoojrddvwklgnlyrfcvhorrzbmtcrvpaypqhcffdqhwziipyyskcmztjprjqvmzzqhqnw"
},
{
"input": "YQOMLKYAORUQQUCQZCDYMIVDHGWZFFRMUVTAWCHERFPMNRYRIkgqrciokgajamehmcxgerpudvsqyonjonsxgbnefftzmygncks",
"output": "yqomlkyaoruqqucqzcdymivdhgwzffrmuvtawcherfpmnryrikgqrciokgajamehmcxgerpudvsqyonjonsxgbnefftzmygncks"
},
{
"input": "CDOZDPBVVVHNBJVBYHEOXWFLJKRWJCAJMIFCOZWWYFKVWOGTVJcuusigdqfkumewjtdyitveeiaybwrhomrwmpdipjwiuxfnwuz",
"output": "CDOZDPBVVVHNBJVBYHEOXWFLJKRWJCAJMIFCOZWWYFKVWOGTVJCUUSIGDQFKUMEWJTDYITVEEIAYBWRHOMRWMPDIPJWIUXFNWUZ"
},
{
"input": "WHIUVEXHVOOIJIDVJVPQUBJMEVPMPDKQWJKFBZSGSKUXMIPPMJWuckzcpxosodcjaaakvlxpbiigsiauviilylnnqlyucziihqg",
"output": "WHIUVEXHVOOIJIDVJVPQUBJMEVPMPDKQWJKFBZSGSKUXMIPPMJWUCKZCPXOSODCJAAAKVLXPBIIGSIAUVIILYLNNQLYUCZIIHQG"
},
{
"input": "VGHUNFOXKETUYMZDJNGTAOIOANYXSGYNFOGOFFLDAWEUKYFOZXCJTCAFXZYLQZERYZLRSQXYQGAPCSUDPMEYTNCTTTMFAGVDWBO",
"output": "VGHUNFOXKETUYMZDJNGTAOIOANYXSGYNFOGOFFLDAWEUKYFOZXCJTCAFXZYLQZERYZLRSQXYQGAPCSUDPMEYTNCTTTMFAGVDWBO"
},
{
"input": "EDUANHCQDOCJHFONTTSWBUJSTTIXBIXMAIUFSGFLXWAYIURTVAVZPYQDLAWIGCLMPHXCEFCJPFAAHXVNGQUFNHADAIUAZIDMHDd",
"output": "EDUANHCQDOCJHFONTTSWBUJSTTIXBIXMAIUFSGFLXWAYIURTVAVZPYQDLAWIGCLMPHXCEFCJPFAAHXVNGQUFNHADAIUAZIDMHDD"
},
{
"input": "EBWOVSNLYTWWXrnovgugogtjahnmatomubebyxakas",
"output": "ebwovsnlytwwxrnovgugogtjahnmatomubebyxakas"
},
{
"input": "AORNNDKTRLRVGDPXJKXFTPFpopuzrlqumrxssskvbm",
"output": "AORNNDKTRLRVGDPXJKXFTPFPOPUZRLQUMRXSSSKVBM"
},
{
"input": "DBBZJCWQEVGYHEEUHJAWRHBDPsnplijbwtdibqrrheebfxqcvn",
"output": "dbbzjcwqevgyheeuhjawrhbdpsnplijbwtdibqrrheebfxqcvn"
},
{
"input": "t",
"output": "t"
},
{
"input": "N",
"output": "N"
},
{
"input": "kv",
"output": "kv"
},
{
"input": "Ur",
"output": "ur"
},
{
"input": "CN",
"output": "CN"
}
] | 1,662,797,921
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 30
| 92
| 0
|
def Word(s):
lc=0
for i in range(0,len(s)):
if(ord(s[i])>=97 and ord(s[i])<=122):
lc=lc+1
uc=len(s)-lc
if(uc<=lc):
return s.lower()
else:
return s.upper()
s=input()
print(Word(s))
|
Title: Word
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Vasya is very upset that many people on the Net mix uppercase and lowercase letters in one word. That's why he decided to invent an extension for his favorite browser that would change the letters' register in every word so that it either only consisted of lowercase letters or, vice versa, only of uppercase ones. At that as little as possible letters should be changed in the word. For example, the word HoUse must be replaced with house, and the word ViP — with VIP. If a word contains an equal number of uppercase and lowercase letters, you should replace all the letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to use the given method on one given word.
Input Specification:
The first line contains a word *s* — it consists of uppercase and lowercase Latin letters and possesses the length from 1 to 100.
Output Specification:
Print the corrected word *s*. If the given word *s* has strictly more uppercase letters, make the word written in the uppercase register, otherwise - in the lowercase one.
Demo Input:
['HoUse\n', 'ViP\n', 'maTRIx\n']
Demo Output:
['house\n', 'VIP\n', 'matrix\n']
Note:
none
|
```python
def Word(s):
lc=0
for i in range(0,len(s)):
if(ord(s[i])>=97 and ord(s[i])<=122):
lc=lc+1
uc=len(s)-lc
if(uc<=lc):
return s.lower()
else:
return s.upper()
s=input()
print(Word(s))
```
| 3.977
|
353
|
C
|
Find Maximum
|
PROGRAMMING
| 1,600
|
[
"implementation",
"math",
"number theory"
] | null | null |
Valera has array *a*, consisting of *n* integers *a*0,<=*a*1,<=...,<=*a**n*<=-<=1, and function *f*(*x*), taking an integer from 0 to 2*n*<=-<=1 as its single argument. Value *f*(*x*) is calculated by formula , where value *bit*(*i*) equals one if the binary representation of number *x* contains a 1 on the *i*-th position, and zero otherwise.
For example, if *n*<==<=4 and *x*<==<=11 (11<==<=20<=+<=21<=+<=23), then *f*(*x*)<==<=*a*0<=+<=*a*1<=+<=*a*3.
Help Valera find the maximum of function *f*(*x*) among all *x*, for which an inequality holds: 0<=≤<=*x*<=≤<=*m*.
|
The first line contains integer *n* (1<=≤<=*n*<=≤<=105) — the number of array elements. The next line contains *n* space-separated integers *a*0,<=*a*1,<=...,<=*a**n*<=-<=1 (0<=≤<=*a**i*<=≤<=104) — elements of array *a*.
The third line contains a sequence of digits zero and one without spaces *s*0*s*1... *s**n*<=-<=1 — the binary representation of number *m*. Number *m* equals .
|
Print a single integer — the maximum value of function *f*(*x*) for all .
|
[
"2\n3 8\n10\n",
"5\n17 0 10 2 1\n11010\n"
] |
[
"3\n",
"27\n"
] |
In the first test case *m* = 2<sup class="upper-index">0</sup> = 1, *f*(0) = 0, *f*(1) = *a*<sub class="lower-index">0</sub> = 3.
In the second sample *m* = 2<sup class="upper-index">0</sup> + 2<sup class="upper-index">1</sup> + 2<sup class="upper-index">3</sup> = 11, the maximum value of function equals *f*(5) = *a*<sub class="lower-index">0</sub> + *a*<sub class="lower-index">2</sub> = 17 + 10 = 27.
| 1,000
|
[
{
"input": "2\n3 8\n10",
"output": "3"
},
{
"input": "5\n17 0 10 2 1\n11010",
"output": "27"
},
{
"input": "18\n4382 3975 9055 7554 8395 204 5313 5739 1555 2306 5423 828 8108 9736 2683 7940 1249 5495\n110001100101110111",
"output": "88691"
},
{
"input": "43\n475 2165 8771 7146 8980 7209 9170 9006 6278 6661 4740 6321 7532 6869 3788 7918 1707 5070 3809 5189 2494 8255 1123 3197 190 5712 9873 3286 9997 133 9030 3067 8043 5297 5398 4240 8315 2141 1436 3297 247 8438 2300\n0111011100100011110010011110011011010001101",
"output": "222013"
},
{
"input": "1\n0\n1",
"output": "0"
},
{
"input": "1\n1\n0",
"output": "0"
},
{
"input": "1\n1\n1",
"output": "1"
},
{
"input": "1\n0\n0",
"output": "0"
},
{
"input": "2\n10000 10000\n11",
"output": "20000"
},
{
"input": "2\n10000 9999\n10",
"output": "10000"
},
{
"input": "2\n9999 10000\n10",
"output": "9999"
},
{
"input": "2\n10000 10000\n00",
"output": "0"
}
] | 1,698,075,124
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 36
| 186
| 12,697,600
|
from itertools import accumulate
from os import path
from sys import stdin, stdout
filename = "../templates/input.txt"
if path.exists(filename):
stdin = open(filename, 'r')
def input():
return stdin.readline().rstrip()
def print(*args, sep=' ', end='\n'):
stdout.write(sep.join(map(str, args)))
stdout.write(end)
def solution():
n = int(input())
nums = [int(num) for num in input().split()]
s = input()
pref = list(accumulate(nums, initial=0))
best = sum(nums[i] if s[i] == '1' else 0 for i in range(n))
total = 0
for i in range(n - 1, -1, -1):
if s[i] == '1':
best = max(best, total + pref[i])
total += nums[i]
print(best)
def main():
t = 1
while t:
solution()
t -= 1
if __name__ == '__main__':
main()
|
Title: Find Maximum
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Valera has array *a*, consisting of *n* integers *a*0,<=*a*1,<=...,<=*a**n*<=-<=1, and function *f*(*x*), taking an integer from 0 to 2*n*<=-<=1 as its single argument. Value *f*(*x*) is calculated by formula , where value *bit*(*i*) equals one if the binary representation of number *x* contains a 1 on the *i*-th position, and zero otherwise.
For example, if *n*<==<=4 and *x*<==<=11 (11<==<=20<=+<=21<=+<=23), then *f*(*x*)<==<=*a*0<=+<=*a*1<=+<=*a*3.
Help Valera find the maximum of function *f*(*x*) among all *x*, for which an inequality holds: 0<=≤<=*x*<=≤<=*m*.
Input Specification:
The first line contains integer *n* (1<=≤<=*n*<=≤<=105) — the number of array elements. The next line contains *n* space-separated integers *a*0,<=*a*1,<=...,<=*a**n*<=-<=1 (0<=≤<=*a**i*<=≤<=104) — elements of array *a*.
The third line contains a sequence of digits zero and one without spaces *s*0*s*1... *s**n*<=-<=1 — the binary representation of number *m*. Number *m* equals .
Output Specification:
Print a single integer — the maximum value of function *f*(*x*) for all .
Demo Input:
['2\n3 8\n10\n', '5\n17 0 10 2 1\n11010\n']
Demo Output:
['3\n', '27\n']
Note:
In the first test case *m* = 2<sup class="upper-index">0</sup> = 1, *f*(0) = 0, *f*(1) = *a*<sub class="lower-index">0</sub> = 3.
In the second sample *m* = 2<sup class="upper-index">0</sup> + 2<sup class="upper-index">1</sup> + 2<sup class="upper-index">3</sup> = 11, the maximum value of function equals *f*(5) = *a*<sub class="lower-index">0</sub> + *a*<sub class="lower-index">2</sub> = 17 + 10 = 27.
|
```python
from itertools import accumulate
from os import path
from sys import stdin, stdout
filename = "../templates/input.txt"
if path.exists(filename):
stdin = open(filename, 'r')
def input():
return stdin.readline().rstrip()
def print(*args, sep=' ', end='\n'):
stdout.write(sep.join(map(str, args)))
stdout.write(end)
def solution():
n = int(input())
nums = [int(num) for num in input().split()]
s = input()
pref = list(accumulate(nums, initial=0))
best = sum(nums[i] if s[i] == '1' else 0 for i in range(n))
total = 0
for i in range(n - 1, -1, -1):
if s[i] == '1':
best = max(best, total + pref[i])
total += nums[i]
print(best)
def main():
t = 1
while t:
solution()
t -= 1
if __name__ == '__main__':
main()
```
| 3
|
|
306
|
A
|
Candies
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Polycarpus has got *n* candies and *m* friends (*n*<=≥<=*m*). He wants to make a New Year present with candies to each friend. Polycarpus is planning to present all candies and he wants to do this in the fairest (that is, most equal) manner. He wants to choose such *a**i*, where *a**i* is the number of candies in the *i*-th friend's present, that the maximum *a**i* differs from the least *a**i* as little as possible.
For example, if *n* is divisible by *m*, then he is going to present the same number of candies to all his friends, that is, the maximum *a**i* won't differ from the minimum one.
|
The single line of the input contains a pair of space-separated positive integers *n*, *m* (1<=≤<=*n*,<=*m*<=≤<=100;*n*<=≥<=*m*) — the number of candies and the number of Polycarpus's friends.
|
Print the required sequence *a*1,<=*a*2,<=...,<=*a**m*, where *a**i* is the number of candies in the *i*-th friend's present. All numbers *a**i* must be positive integers, total up to *n*, the maximum one should differ from the minimum one by the smallest possible value.
|
[
"12 3\n",
"15 4\n",
"18 7\n"
] |
[
"4 4 4 ",
"3 4 4 4 ",
"2 2 2 3 3 3 3 "
] |
Print *a*<sub class="lower-index">*i*</sub> in any order, separate the numbers by spaces.
| 500
|
[
{
"input": "12 4",
"output": "3 3 3 3 "
},
{
"input": "15 6",
"output": "2 2 2 3 3 3 "
},
{
"input": "18 8",
"output": "2 2 2 2 2 2 3 3 "
},
{
"input": "1 1",
"output": "1 "
},
{
"input": "2 1",
"output": "2 "
},
{
"input": "100 1",
"output": "100 "
},
{
"input": "100 100",
"output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 "
},
{
"input": "100 10",
"output": "10 10 10 10 10 10 10 10 10 10 "
},
{
"input": "64 8",
"output": "8 8 8 8 8 8 8 8 "
},
{
"input": "81 27",
"output": "3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 "
},
{
"input": "100 99",
"output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 "
},
{
"input": "100 51",
"output": "1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 "
},
{
"input": "100 49",
"output": "2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 "
},
{
"input": "100 13",
"output": "7 7 7 7 8 8 8 8 8 8 8 8 8 "
},
{
"input": "97 11",
"output": "8 8 9 9 9 9 9 9 9 9 9 "
},
{
"input": "19 3",
"output": "6 6 7 "
},
{
"input": "99 10",
"output": "9 10 10 10 10 10 10 10 10 10 "
},
{
"input": "88 5",
"output": "17 17 18 18 18 "
},
{
"input": "87 34",
"output": "2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 "
},
{
"input": "97 55",
"output": "1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 "
}
] | 1,595,317,439
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 20
| 186
| 6,656,000
|
n,m=map(int,input().split())
l=[n//m for i in range(m)]
z=n%m
for j in range(z):
l[j]+=1
print(*l)
|
Title: Candies
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Polycarpus has got *n* candies and *m* friends (*n*<=≥<=*m*). He wants to make a New Year present with candies to each friend. Polycarpus is planning to present all candies and he wants to do this in the fairest (that is, most equal) manner. He wants to choose such *a**i*, where *a**i* is the number of candies in the *i*-th friend's present, that the maximum *a**i* differs from the least *a**i* as little as possible.
For example, if *n* is divisible by *m*, then he is going to present the same number of candies to all his friends, that is, the maximum *a**i* won't differ from the minimum one.
Input Specification:
The single line of the input contains a pair of space-separated positive integers *n*, *m* (1<=≤<=*n*,<=*m*<=≤<=100;*n*<=≥<=*m*) — the number of candies and the number of Polycarpus's friends.
Output Specification:
Print the required sequence *a*1,<=*a*2,<=...,<=*a**m*, where *a**i* is the number of candies in the *i*-th friend's present. All numbers *a**i* must be positive integers, total up to *n*, the maximum one should differ from the minimum one by the smallest possible value.
Demo Input:
['12 3\n', '15 4\n', '18 7\n']
Demo Output:
['4 4 4 ', '3 4 4 4 ', '2 2 2 3 3 3 3 ']
Note:
Print *a*<sub class="lower-index">*i*</sub> in any order, separate the numbers by spaces.
|
```python
n,m=map(int,input().split())
l=[n//m for i in range(m)]
z=n%m
for j in range(z):
l[j]+=1
print(*l)
```
| 3
|
|
401
|
A
|
Vanya and Cards
|
PROGRAMMING
| 800
|
[
"implementation",
"math"
] | null | null |
Vanya loves playing. He even has a special set of cards to play with. Each card has a single integer. The number on the card can be positive, negative and can even be equal to zero. The only limit is, the number on each card doesn't exceed *x* in the absolute value.
Natasha doesn't like when Vanya spends a long time playing, so she hid all of his cards. Vanya became sad and started looking for the cards but he only found *n* of them. Vanya loves the balance, so he wants the sum of all numbers on found cards equal to zero. On the other hand, he got very tired of looking for cards. Help the boy and say what is the minimum number of cards does he need to find to make the sum equal to zero?
You can assume that initially Vanya had infinitely many cards with each integer number from <=-<=*x* to *x*.
|
The first line contains two integers: *n* (1<=≤<=*n*<=≤<=1000) — the number of found cards and *x* (1<=≤<=*x*<=≤<=1000) — the maximum absolute value of the number on a card. The second line contains *n* space-separated integers — the numbers on found cards. It is guaranteed that the numbers do not exceed *x* in their absolute value.
|
Print a single number — the answer to the problem.
|
[
"3 2\n-1 1 2\n",
"2 3\n-2 -2\n"
] |
[
"1\n",
"2\n"
] |
In the first sample, Vanya needs to find a single card with number -2.
In the second sample, Vanya needs to find two cards with number 2. He can't find a single card with the required number as the numbers on the lost cards do not exceed 3 in their absolute value.
| 500
|
[
{
"input": "3 2\n-1 1 2",
"output": "1"
},
{
"input": "2 3\n-2 -2",
"output": "2"
},
{
"input": "4 4\n1 2 3 4",
"output": "3"
},
{
"input": "2 2\n-1 -1",
"output": "1"
},
{
"input": "15 5\n-2 -1 2 -4 -3 4 -4 -2 -2 2 -2 -1 1 -4 -2",
"output": "4"
},
{
"input": "15 16\n-15 -5 -15 -14 -8 15 -15 -12 -5 -3 5 -7 3 8 -15",
"output": "6"
},
{
"input": "1 4\n-3",
"output": "1"
},
{
"input": "10 7\n6 4 6 6 -3 4 -1 2 3 3",
"output": "5"
},
{
"input": "2 1\n1 -1",
"output": "0"
},
{
"input": "1 1\n0",
"output": "0"
},
{
"input": "8 13\n-11 -1 -11 12 -2 -2 -10 -11",
"output": "3"
},
{
"input": "16 11\n3 -7 7 -9 -2 -3 -4 -2 -6 8 10 7 1 4 6 7",
"output": "2"
},
{
"input": "67 15\n-2 -2 6 -4 -7 4 3 13 -9 -4 11 -7 -6 -11 1 11 -1 11 14 10 -8 7 5 11 -13 1 -1 7 -14 9 -11 -11 13 -4 12 -11 -8 -5 -11 6 10 -2 6 9 9 6 -11 -2 7 -10 -1 9 -8 -5 1 -7 -2 3 -1 -13 -6 -9 -8 10 13 -3 9",
"output": "1"
},
{
"input": "123 222\n44 -190 -188 -185 -55 17 190 176 157 176 -24 -113 -54 -61 -53 53 -77 68 -12 -114 -217 163 -122 37 -37 20 -108 17 -140 -210 218 19 -89 54 18 197 111 -150 -36 -131 -172 36 67 16 -202 72 169 -137 -34 -122 137 -72 196 -17 -104 180 -102 96 -69 -184 21 -15 217 -61 175 -221 62 173 -93 -106 122 -135 58 7 -110 -108 156 -141 -102 -50 29 -204 -46 -76 101 -33 -190 99 52 -197 175 -71 161 -140 155 10 189 -217 -97 -170 183 -88 83 -149 157 -208 154 -3 77 90 74 165 198 -181 -166 -4 -200 -89 -200 131 100 -61 -149",
"output": "8"
},
{
"input": "130 142\n58 -50 43 -126 84 -92 -108 -92 57 127 12 -135 -49 89 141 -112 -31 47 75 -19 80 81 -5 17 10 4 -26 68 -102 -10 7 -62 -135 -123 -16 55 -72 -97 -34 21 21 137 130 97 40 -18 110 -52 73 52 85 103 -134 -107 88 30 66 97 126 82 13 125 127 -87 81 22 45 102 13 95 4 10 -35 39 -43 -112 -5 14 -46 19 61 -44 -116 137 -116 -80 -39 92 -75 29 -65 -15 5 -108 -114 -129 -5 52 -21 118 -41 35 -62 -125 130 -95 -11 -75 19 108 108 127 141 2 -130 54 96 -81 -102 140 -58 -102 132 50 -126 82 6 45 -114 -42",
"output": "5"
},
{
"input": "7 12\n2 5 -1 -4 -7 4 3",
"output": "1"
},
{
"input": "57 53\n-49 7 -41 7 38 -51 -23 8 45 1 -24 26 37 28 -31 -40 38 25 -32 -47 -3 20 -40 -32 -44 -36 5 33 -16 -5 28 10 -22 3 -10 -51 -32 -51 27 -50 -22 -12 41 3 15 24 30 -12 -34 -15 -29 38 -10 -35 -9 6 -51",
"output": "8"
},
{
"input": "93 273\n-268 -170 -163 19 -69 18 -244 35 -34 125 -224 -48 179 -247 127 -150 271 -49 -102 201 84 -151 -70 -46 -16 216 240 127 3 218 -209 223 -227 -201 228 -8 203 46 -100 -207 126 255 40 -58 -217 93 172 -97 23 183 102 -92 -157 -117 173 47 144 -235 -227 -62 -128 13 -151 158 110 -116 68 -2 -148 -206 -52 79 -152 -223 74 -149 -69 232 38 -70 -256 -213 -236 132 -189 -200 199 -57 -108 -53 269 -101 -134",
"output": "8"
},
{
"input": "1 1000\n997",
"output": "1"
},
{
"input": "4 3\n2 -1 -2 -1",
"output": "1"
},
{
"input": "1 1\n-1",
"output": "1"
},
{
"input": "1 1\n1",
"output": "1"
},
{
"input": "2 2\n1 -1",
"output": "0"
},
{
"input": "2 2\n-1 1",
"output": "0"
},
{
"input": "2 3\n-1 1",
"output": "0"
},
{
"input": "2 2\n-2 2",
"output": "0"
},
{
"input": "2 2\n2 2",
"output": "2"
},
{
"input": "4 2\n-1 -1 -1 -1",
"output": "2"
},
{
"input": "4 1\n-1 -1 -1 1",
"output": "2"
},
{
"input": "3 2\n2 2 2",
"output": "3"
},
{
"input": "10 300\n300 300 300 300 300 300 300 300 300 300",
"output": "10"
}
] | 1,580,223,171
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 47
| 156
| 0
|
import math
n, x = map(int, input().split())
l = list(map(int, input().split()))
c = 0
for i in range(n):
c += l[i]
c = abs(c)
print(math.ceil(c / x))
|
Title: Vanya and Cards
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Vanya loves playing. He even has a special set of cards to play with. Each card has a single integer. The number on the card can be positive, negative and can even be equal to zero. The only limit is, the number on each card doesn't exceed *x* in the absolute value.
Natasha doesn't like when Vanya spends a long time playing, so she hid all of his cards. Vanya became sad and started looking for the cards but he only found *n* of them. Vanya loves the balance, so he wants the sum of all numbers on found cards equal to zero. On the other hand, he got very tired of looking for cards. Help the boy and say what is the minimum number of cards does he need to find to make the sum equal to zero?
You can assume that initially Vanya had infinitely many cards with each integer number from <=-<=*x* to *x*.
Input Specification:
The first line contains two integers: *n* (1<=≤<=*n*<=≤<=1000) — the number of found cards and *x* (1<=≤<=*x*<=≤<=1000) — the maximum absolute value of the number on a card. The second line contains *n* space-separated integers — the numbers on found cards. It is guaranteed that the numbers do not exceed *x* in their absolute value.
Output Specification:
Print a single number — the answer to the problem.
Demo Input:
['3 2\n-1 1 2\n', '2 3\n-2 -2\n']
Demo Output:
['1\n', '2\n']
Note:
In the first sample, Vanya needs to find a single card with number -2.
In the second sample, Vanya needs to find two cards with number 2. He can't find a single card with the required number as the numbers on the lost cards do not exceed 3 in their absolute value.
|
```python
import math
n, x = map(int, input().split())
l = list(map(int, input().split()))
c = 0
for i in range(n):
c += l[i]
c = abs(c)
print(math.ceil(c / x))
```
| 3
|
|
847
|
A
|
Union of Doubly Linked Lists
|
PROGRAMMING
| 1,500
|
[
"implementation"
] | null | null |
Doubly linked list is one of the fundamental data structures. A doubly linked list is a sequence of elements, each containing information about the previous and the next elements of the list. In this problem all lists have linear structure. I.e. each element except the first has exactly one previous element, each element except the last has exactly one next element. The list is not closed in a cycle.
In this problem you are given *n* memory cells forming one or more doubly linked lists. Each cell contains information about element from some list. Memory cells are numbered from 1 to *n*.
For each cell *i* you are given two values:
- *l**i* — cell containing previous element for the element in the cell *i*; - *r**i* — cell containing next element for the element in the cell *i*.
If cell *i* contains information about the element which has no previous element then *l**i*<==<=0. Similarly, if cell *i* contains information about the element which has no next element then *r**i*<==<=0.
For example, for the picture above the values of *l* and *r* are the following: *l*1<==<=4, *r*1<==<=7; *l*2<==<=5, *r*2<==<=0; *l*3<==<=0, *r*3<==<=0; *l*4<==<=6, *r*4<==<=1; *l*5<==<=0, *r*5<==<=2; *l*6<==<=0, *r*6<==<=4; *l*7<==<=1, *r*7<==<=0.
Your task is to unite all given lists in a single list, joining them to each other in any order. In particular, if the input data already contains a single list, then there is no need to perform any actions. Print the resulting list in the form of values *l**i*, *r**i*.
Any other action, other than joining the beginning of one list to the end of another, can not be performed.
|
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of memory cells where the doubly linked lists are located.
Each of the following *n* lines contains two integers *l**i*, *r**i* (0<=≤<=*l**i*,<=*r**i*<=≤<=*n*) — the cells of the previous and the next element of list for cell *i*. Value *l**i*<==<=0 if element in cell *i* has no previous element in its list. Value *r**i*<==<=0 if element in cell *i* has no next element in its list.
It is guaranteed that the input contains the correct description of a single or more doubly linked lists. All lists have linear structure: each element of list except the first has exactly one previous element; each element of list except the last has exactly one next element. Each memory cell contains information about one element from some list, each element of each list written in one of *n* given cells.
|
Print *n* lines, the *i*-th line must contain two integers *l**i* and *r**i* — the cells of the previous and the next element of list for cell *i* after all lists from the input are united in a single list. If there are many solutions print any of them.
|
[
"7\n4 7\n5 0\n0 0\n6 1\n0 2\n0 4\n1 0\n"
] |
[
"4 7\n5 6\n0 5\n6 1\n3 2\n2 4\n1 0\n"
] |
none
| 0
|
[
{
"input": "7\n4 7\n5 0\n0 0\n6 1\n0 2\n0 4\n1 0",
"output": "4 7\n5 6\n0 5\n6 1\n3 2\n2 4\n1 0"
},
{
"input": "2\n2 0\n0 1",
"output": "2 0\n0 1"
},
{
"input": "1\n0 0",
"output": "0 0"
},
{
"input": "4\n0 2\n1 0\n0 4\n3 0",
"output": "0 2\n1 3\n2 4\n3 0"
},
{
"input": "5\n0 0\n0 0\n0 0\n0 0\n0 0",
"output": "0 2\n1 3\n2 4\n3 5\n4 0"
},
{
"input": "2\n0 0\n0 0",
"output": "0 2\n1 0"
},
{
"input": "2\n0 2\n1 0",
"output": "0 2\n1 0"
},
{
"input": "5\n5 3\n4 0\n1 4\n3 2\n0 1",
"output": "5 3\n4 0\n1 4\n3 2\n0 1"
},
{
"input": "5\n2 0\n0 1\n0 4\n3 5\n4 0",
"output": "2 3\n0 1\n1 4\n3 5\n4 0"
},
{
"input": "5\n3 4\n0 0\n0 1\n1 0\n0 0",
"output": "3 4\n0 3\n2 1\n1 5\n4 0"
},
{
"input": "5\n3 0\n0 0\n0 1\n0 0\n0 0",
"output": "3 4\n0 3\n2 1\n1 5\n4 0"
},
{
"input": "10\n7 5\n5 0\n4 7\n10 3\n1 2\n0 9\n3 1\n9 10\n6 8\n8 4",
"output": "7 5\n5 0\n4 7\n10 3\n1 2\n0 9\n3 1\n9 10\n6 8\n8 4"
},
{
"input": "10\n6 2\n1 0\n9 4\n3 6\n10 8\n4 1\n0 10\n5 0\n0 3\n7 5",
"output": "6 2\n1 0\n9 4\n3 6\n10 8\n4 1\n0 10\n5 9\n8 3\n7 5"
},
{
"input": "10\n0 9\n4 0\n5 0\n7 2\n0 3\n8 10\n0 4\n0 6\n1 0\n6 0",
"output": "0 9\n4 8\n5 7\n7 2\n9 3\n8 10\n3 4\n2 6\n1 5\n6 0"
},
{
"input": "10\n7 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 1\n0 0\n0 0\n0 0",
"output": "7 8\n0 3\n2 4\n3 5\n4 6\n5 7\n6 1\n1 9\n8 10\n9 0"
},
{
"input": "10\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0",
"output": "0 2\n1 3\n2 4\n3 5\n4 6\n5 7\n6 8\n7 9\n8 10\n9 0"
},
{
"input": "100\n0 0\n0 0\n0 0\n97 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 29\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n12 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 4\n0 0\n0 0\n0 0",
"output": "0 2\n1 3\n2 5\n97 98\n3 6\n5 7\n6 8\n7 9\n8 10\n9 11\n10 12\n11 29\n29 14\n13 15\n14 16\n15 17\n16 18\n17 19\n18 20\n19 21\n20 22\n21 23\n22 24\n23 25\n24 26\n25 27\n26 28\n27 30\n12 13\n28 31\n30 32\n31 33\n32 34\n33 35\n34 36\n35 37\n36 38\n37 39\n38 40\n39 41\n40 42\n41 43\n42 44\n43 45\n44 46\n45 47\n46 48\n47 49\n48 50\n49 51\n50 52\n51 53\n52 54\n53 55\n54 56\n55 57\n56 58\n57 59\n58 60\n59 61\n60 62\n61 63\n62 64\n63 65\n64 66\n65 67\n66 68\n67 69\n68 70\n69 71\n70 72\n71 73\n72 74\n73 75\n74 76\n75..."
},
{
"input": "100\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 80\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n21 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0",
"output": "0 2\n1 3\n2 4\n3 5\n4 6\n5 7\n6 8\n7 9\n8 10\n9 11\n10 12\n11 13\n12 14\n13 15\n14 16\n15 17\n16 18\n17 19\n18 20\n19 21\n20 80\n80 23\n22 24\n23 25\n24 26\n25 27\n26 28\n27 29\n28 30\n29 31\n30 32\n31 33\n32 34\n33 35\n34 36\n35 37\n36 38\n37 39\n38 40\n39 41\n40 42\n41 43\n42 44\n43 45\n44 46\n45 47\n46 48\n47 49\n48 50\n49 51\n50 52\n51 53\n52 54\n53 55\n54 56\n55 57\n56 58\n57 59\n58 60\n59 61\n60 62\n61 63\n62 64\n63 65\n64 66\n65 67\n66 68\n67 69\n68 70\n69 71\n70 72\n71 73\n72 74\n73 75\n74 76\n75 7..."
},
{
"input": "100\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0",
"output": "0 2\n1 3\n2 4\n3 5\n4 6\n5 7\n6 8\n7 9\n8 10\n9 11\n10 12\n11 13\n12 14\n13 15\n14 16\n15 17\n16 18\n17 19\n18 20\n19 21\n20 22\n21 23\n22 24\n23 25\n24 26\n25 27\n26 28\n27 29\n28 30\n29 31\n30 32\n31 33\n32 34\n33 35\n34 36\n35 37\n36 38\n37 39\n38 40\n39 41\n40 42\n41 43\n42 44\n43 45\n44 46\n45 47\n46 48\n47 49\n48 50\n49 51\n50 52\n51 53\n52 54\n53 55\n54 56\n55 57\n56 58\n57 59\n58 60\n59 61\n60 62\n61 63\n62 64\n63 65\n64 66\n65 67\n66 68\n67 69\n68 70\n69 71\n70 72\n71 73\n72 74\n73 75\n74 76\n75 7..."
}
] | 1,682,694,104
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 23
| 62
| 1,945,600
|
import sys
input = lambda: sys.stdin.readline().rstrip()
from collections import defaultdict
class Node:
value = 0
left = None
right = None
def __repr__(self):
return 'value:'+str(self.value)
lib = defaultdict(Node)
N = int(input())
for i in range(N):
l,r = map(int, input().split())
node = lib[i+1]
node.value = i+1
if l>0:
node.left = lib[l]
if r>0:
node.right = lib[r]
v = set()
for i in range(N):
#print(lib[i+1])
t = lib[i+1]
while t.left:
t = t.left
v.add(t)
v = list(v)
pre = None
for t in v:
if pre and t.left==None:
t.left = pre
pre.right = t
while t.right:
t = t.right
pre = t
for i in range(N):
t = lib[i+1]
l,r=t.left,t.right
if l==None:
l = 0
else:
l = l.value
if r==None:
r = 0
else:
r = r.value
print(l,r)
|
Title: Union of Doubly Linked Lists
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Doubly linked list is one of the fundamental data structures. A doubly linked list is a sequence of elements, each containing information about the previous and the next elements of the list. In this problem all lists have linear structure. I.e. each element except the first has exactly one previous element, each element except the last has exactly one next element. The list is not closed in a cycle.
In this problem you are given *n* memory cells forming one or more doubly linked lists. Each cell contains information about element from some list. Memory cells are numbered from 1 to *n*.
For each cell *i* you are given two values:
- *l**i* — cell containing previous element for the element in the cell *i*; - *r**i* — cell containing next element for the element in the cell *i*.
If cell *i* contains information about the element which has no previous element then *l**i*<==<=0. Similarly, if cell *i* contains information about the element which has no next element then *r**i*<==<=0.
For example, for the picture above the values of *l* and *r* are the following: *l*1<==<=4, *r*1<==<=7; *l*2<==<=5, *r*2<==<=0; *l*3<==<=0, *r*3<==<=0; *l*4<==<=6, *r*4<==<=1; *l*5<==<=0, *r*5<==<=2; *l*6<==<=0, *r*6<==<=4; *l*7<==<=1, *r*7<==<=0.
Your task is to unite all given lists in a single list, joining them to each other in any order. In particular, if the input data already contains a single list, then there is no need to perform any actions. Print the resulting list in the form of values *l**i*, *r**i*.
Any other action, other than joining the beginning of one list to the end of another, can not be performed.
Input Specification:
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of memory cells where the doubly linked lists are located.
Each of the following *n* lines contains two integers *l**i*, *r**i* (0<=≤<=*l**i*,<=*r**i*<=≤<=*n*) — the cells of the previous and the next element of list for cell *i*. Value *l**i*<==<=0 if element in cell *i* has no previous element in its list. Value *r**i*<==<=0 if element in cell *i* has no next element in its list.
It is guaranteed that the input contains the correct description of a single or more doubly linked lists. All lists have linear structure: each element of list except the first has exactly one previous element; each element of list except the last has exactly one next element. Each memory cell contains information about one element from some list, each element of each list written in one of *n* given cells.
Output Specification:
Print *n* lines, the *i*-th line must contain two integers *l**i* and *r**i* — the cells of the previous and the next element of list for cell *i* after all lists from the input are united in a single list. If there are many solutions print any of them.
Demo Input:
['7\n4 7\n5 0\n0 0\n6 1\n0 2\n0 4\n1 0\n']
Demo Output:
['4 7\n5 6\n0 5\n6 1\n3 2\n2 4\n1 0\n']
Note:
none
|
```python
import sys
input = lambda: sys.stdin.readline().rstrip()
from collections import defaultdict
class Node:
value = 0
left = None
right = None
def __repr__(self):
return 'value:'+str(self.value)
lib = defaultdict(Node)
N = int(input())
for i in range(N):
l,r = map(int, input().split())
node = lib[i+1]
node.value = i+1
if l>0:
node.left = lib[l]
if r>0:
node.right = lib[r]
v = set()
for i in range(N):
#print(lib[i+1])
t = lib[i+1]
while t.left:
t = t.left
v.add(t)
v = list(v)
pre = None
for t in v:
if pre and t.left==None:
t.left = pre
pre.right = t
while t.right:
t = t.right
pre = t
for i in range(N):
t = lib[i+1]
l,r=t.left,t.right
if l==None:
l = 0
else:
l = l.value
if r==None:
r = 0
else:
r = r.value
print(l,r)
```
| 3
|
|
686
|
A
|
Free Ice Cream
|
PROGRAMMING
| 800
|
[
"constructive algorithms",
"implementation"
] | null | null |
After their adventure with the magic mirror Kay and Gerda have returned home and sometimes give free ice cream to kids in the summer.
At the start of the day they have *x* ice cream packs. Since the ice cream is free, people start standing in the queue before Kay and Gerda's house even in the night. Each person in the queue wants either to take several ice cream packs for himself and his friends or to give several ice cream packs to Kay and Gerda (carriers that bring ice cream have to stand in the same queue).
If a carrier with *d* ice cream packs comes to the house, then Kay and Gerda take all his packs. If a child who wants to take *d* ice cream packs comes to the house, then Kay and Gerda will give him *d* packs if they have enough ice cream, otherwise the child will get no ice cream at all and will leave in distress.
Kay wants to find the amount of ice cream they will have after all people will leave from the queue, and Gerda wants to find the number of distressed kids.
|
The first line contains two space-separated integers *n* and *x* (1<=≤<=*n*<=≤<=1000, 0<=≤<=*x*<=≤<=109).
Each of the next *n* lines contains a character '+' or '-', and an integer *d**i*, separated by a space (1<=≤<=*d**i*<=≤<=109). Record "+ *d**i*" in *i*-th line means that a carrier with *d**i* ice cream packs occupies *i*-th place from the start of the queue, and record "- *d**i*" means that a child who wants to take *d**i* packs stands in *i*-th place.
|
Print two space-separated integers — number of ice cream packs left after all operations, and number of kids that left the house in distress.
|
[
"5 7\n+ 5\n- 10\n- 20\n+ 40\n- 20\n",
"5 17\n- 16\n- 2\n- 98\n+ 100\n- 98\n"
] |
[
"22 1\n",
"3 2\n"
] |
Consider the first sample.
1. Initially Kay and Gerda have 7 packs of ice cream. 1. Carrier brings 5 more, so now they have 12 packs. 1. A kid asks for 10 packs and receives them. There are only 2 packs remaining. 1. Another kid asks for 20 packs. Kay and Gerda do not have them, so the kid goes away distressed. 1. Carrier bring 40 packs, now Kay and Gerda have 42 packs. 1. Kid asks for 20 packs and receives them. There are 22 packs remaining.
| 500
|
[
{
"input": "5 7\n+ 5\n- 10\n- 20\n+ 40\n- 20",
"output": "22 1"
},
{
"input": "5 17\n- 16\n- 2\n- 98\n+ 100\n- 98",
"output": "3 2"
},
{
"input": "6 1000000000\n+ 1000000000\n+ 1000000000\n+ 1000000000\n+ 1000000000\n+ 1000000000\n+ 1000000000",
"output": "7000000000 0"
},
{
"input": "5 12\n- 12\n+ 7\n- 6\n- 1\n+ 46",
"output": "46 0"
},
{
"input": "11 1000\n- 100\n+ 100\n+ 100\n+ 100\n+ 100\n- 100\n- 100\n- 100\n- 100\n- 100\n- 100",
"output": "700 0"
},
{
"input": "1 0\n- 526403222",
"output": "0 1"
},
{
"input": "1 897986543\n- 371188251",
"output": "526798292 0"
},
{
"input": "1 0\n+ 1",
"output": "1 0"
},
{
"input": "1 0\n- 1",
"output": "0 1"
},
{
"input": "1 10\n+ 10",
"output": "20 0"
},
{
"input": "1 3\n- 5",
"output": "3 1"
},
{
"input": "1 0\n- 5",
"output": "0 1"
},
{
"input": "1 0\n+ 5",
"output": "5 0"
}
] | 1,589,596,704
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 34
| 109
| 6,963,200
|
I=[int(i) for i in input().split()]
M,N=[],[]
for i in range(I[0]):
k=[i for i in input().split()]
M.append(k[0])
N.append(k[1])
s,count=I[1],0
for i in range(I[0]):
if M[i]=="+":
s+=int(N[i])
else:
if s<int(N[i]):
count+=1
else:
s-=int(N[i])
print(s,count)
|
Title: Free Ice Cream
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
After their adventure with the magic mirror Kay and Gerda have returned home and sometimes give free ice cream to kids in the summer.
At the start of the day they have *x* ice cream packs. Since the ice cream is free, people start standing in the queue before Kay and Gerda's house even in the night. Each person in the queue wants either to take several ice cream packs for himself and his friends or to give several ice cream packs to Kay and Gerda (carriers that bring ice cream have to stand in the same queue).
If a carrier with *d* ice cream packs comes to the house, then Kay and Gerda take all his packs. If a child who wants to take *d* ice cream packs comes to the house, then Kay and Gerda will give him *d* packs if they have enough ice cream, otherwise the child will get no ice cream at all and will leave in distress.
Kay wants to find the amount of ice cream they will have after all people will leave from the queue, and Gerda wants to find the number of distressed kids.
Input Specification:
The first line contains two space-separated integers *n* and *x* (1<=≤<=*n*<=≤<=1000, 0<=≤<=*x*<=≤<=109).
Each of the next *n* lines contains a character '+' or '-', and an integer *d**i*, separated by a space (1<=≤<=*d**i*<=≤<=109). Record "+ *d**i*" in *i*-th line means that a carrier with *d**i* ice cream packs occupies *i*-th place from the start of the queue, and record "- *d**i*" means that a child who wants to take *d**i* packs stands in *i*-th place.
Output Specification:
Print two space-separated integers — number of ice cream packs left after all operations, and number of kids that left the house in distress.
Demo Input:
['5 7\n+ 5\n- 10\n- 20\n+ 40\n- 20\n', '5 17\n- 16\n- 2\n- 98\n+ 100\n- 98\n']
Demo Output:
['22 1\n', '3 2\n']
Note:
Consider the first sample.
1. Initially Kay and Gerda have 7 packs of ice cream. 1. Carrier brings 5 more, so now they have 12 packs. 1. A kid asks for 10 packs and receives them. There are only 2 packs remaining. 1. Another kid asks for 20 packs. Kay and Gerda do not have them, so the kid goes away distressed. 1. Carrier bring 40 packs, now Kay and Gerda have 42 packs. 1. Kid asks for 20 packs and receives them. There are 22 packs remaining.
|
```python
I=[int(i) for i in input().split()]
M,N=[],[]
for i in range(I[0]):
k=[i for i in input().split()]
M.append(k[0])
N.append(k[1])
s,count=I[1],0
for i in range(I[0]):
if M[i]=="+":
s+=int(N[i])
else:
if s<int(N[i]):
count+=1
else:
s-=int(N[i])
print(s,count)
```
| 3
|
|
633
|
A
|
Ebony and Ivory
|
PROGRAMMING
| 1,100
|
[
"brute force",
"math",
"number theory"
] | null | null |
Dante is engaged in a fight with "The Savior". Before he can fight it with his sword, he needs to break its shields. He has two guns, Ebony and Ivory, each of them is able to perform any non-negative number of shots.
For every bullet that hits the shield, Ebony deals *a* units of damage while Ivory deals *b* units of damage. In order to break the shield Dante has to deal exactly *c* units of damage. Find out if this is possible.
|
The first line of the input contains three integers *a*, *b*, *c* (1<=≤<=*a*,<=*b*<=≤<=100,<=1<=≤<=*c*<=≤<=10<=000) — the number of units of damage dealt by Ebony gun and Ivory gun, and the total number of damage required to break the shield, respectively.
|
Print "Yes" (without quotes) if Dante can deal exactly *c* damage to the shield and "No" (without quotes) otherwise.
|
[
"4 6 15\n",
"3 2 7\n",
"6 11 6\n"
] |
[
"No\n",
"Yes\n",
"Yes\n"
] |
In the second sample, Dante can fire 1 bullet from Ebony and 2 from Ivory to deal exactly 1·3 + 2·2 = 7 damage. In the third sample, Dante can fire 1 bullet from ebony and no bullets from ivory to do 1·6 + 0·11 = 6 damage.
| 250
|
[
{
"input": "4 6 15",
"output": "No"
},
{
"input": "3 2 7",
"output": "Yes"
},
{
"input": "6 11 6",
"output": "Yes"
},
{
"input": "3 12 15",
"output": "Yes"
},
{
"input": "5 5 10",
"output": "Yes"
},
{
"input": "6 6 7",
"output": "No"
},
{
"input": "1 1 20",
"output": "Yes"
},
{
"input": "12 14 19",
"output": "No"
},
{
"input": "15 12 26",
"output": "No"
},
{
"input": "2 4 8",
"output": "Yes"
},
{
"input": "4 5 30",
"output": "Yes"
},
{
"input": "4 5 48",
"output": "Yes"
},
{
"input": "2 17 105",
"output": "Yes"
},
{
"input": "10 25 282",
"output": "No"
},
{
"input": "6 34 323",
"output": "No"
},
{
"input": "2 47 464",
"output": "Yes"
},
{
"input": "4 53 113",
"output": "Yes"
},
{
"input": "6 64 546",
"output": "Yes"
},
{
"input": "1 78 725",
"output": "Yes"
},
{
"input": "1 84 811",
"output": "Yes"
},
{
"input": "3 100 441",
"output": "Yes"
},
{
"input": "20 5 57",
"output": "No"
},
{
"input": "14 19 143",
"output": "No"
},
{
"input": "17 23 248",
"output": "No"
},
{
"input": "11 34 383",
"output": "Yes"
},
{
"input": "20 47 568",
"output": "Yes"
},
{
"input": "16 58 410",
"output": "Yes"
},
{
"input": "11 70 1199",
"output": "Yes"
},
{
"input": "16 78 712",
"output": "Yes"
},
{
"input": "20 84 562",
"output": "No"
},
{
"input": "19 100 836",
"output": "Yes"
},
{
"input": "23 10 58",
"output": "No"
},
{
"input": "25 17 448",
"output": "Yes"
},
{
"input": "22 24 866",
"output": "Yes"
},
{
"input": "24 35 67",
"output": "No"
},
{
"input": "29 47 264",
"output": "Yes"
},
{
"input": "23 56 45",
"output": "No"
},
{
"input": "25 66 1183",
"output": "Yes"
},
{
"input": "21 71 657",
"output": "Yes"
},
{
"input": "29 81 629",
"output": "No"
},
{
"input": "23 95 2226",
"output": "Yes"
},
{
"input": "32 4 62",
"output": "No"
},
{
"input": "37 15 789",
"output": "Yes"
},
{
"input": "39 24 999",
"output": "Yes"
},
{
"input": "38 32 865",
"output": "No"
},
{
"input": "32 50 205",
"output": "No"
},
{
"input": "31 57 1362",
"output": "Yes"
},
{
"input": "38 68 1870",
"output": "Yes"
},
{
"input": "36 76 549",
"output": "No"
},
{
"input": "35 84 1257",
"output": "No"
},
{
"input": "39 92 2753",
"output": "Yes"
},
{
"input": "44 1 287",
"output": "Yes"
},
{
"input": "42 12 830",
"output": "No"
},
{
"input": "42 27 9",
"output": "No"
},
{
"input": "49 40 1422",
"output": "No"
},
{
"input": "44 42 2005",
"output": "No"
},
{
"input": "50 55 2479",
"output": "No"
},
{
"input": "48 65 917",
"output": "No"
},
{
"input": "45 78 152",
"output": "No"
},
{
"input": "43 90 4096",
"output": "Yes"
},
{
"input": "43 94 4316",
"output": "Yes"
},
{
"input": "60 7 526",
"output": "Yes"
},
{
"input": "53 11 735",
"output": "Yes"
},
{
"input": "52 27 609",
"output": "Yes"
},
{
"input": "57 32 992",
"output": "Yes"
},
{
"input": "52 49 421",
"output": "No"
},
{
"input": "57 52 2634",
"output": "Yes"
},
{
"input": "54 67 3181",
"output": "Yes"
},
{
"input": "52 73 638",
"output": "No"
},
{
"input": "57 84 3470",
"output": "No"
},
{
"input": "52 100 5582",
"output": "No"
},
{
"input": "62 1 501",
"output": "Yes"
},
{
"input": "63 17 858",
"output": "Yes"
},
{
"input": "70 24 1784",
"output": "Yes"
},
{
"input": "65 32 1391",
"output": "Yes"
},
{
"input": "62 50 2775",
"output": "No"
},
{
"input": "62 58 88",
"output": "No"
},
{
"input": "66 68 3112",
"output": "Yes"
},
{
"input": "61 71 1643",
"output": "No"
},
{
"input": "69 81 3880",
"output": "No"
},
{
"input": "63 100 1960",
"output": "Yes"
},
{
"input": "73 6 431",
"output": "Yes"
},
{
"input": "75 19 736",
"output": "Yes"
},
{
"input": "78 25 247",
"output": "No"
},
{
"input": "79 36 2854",
"output": "Yes"
},
{
"input": "80 43 1864",
"output": "Yes"
},
{
"input": "76 55 2196",
"output": "Yes"
},
{
"input": "76 69 4122",
"output": "Yes"
},
{
"input": "76 76 4905",
"output": "No"
},
{
"input": "75 89 3056",
"output": "Yes"
},
{
"input": "73 100 3111",
"output": "Yes"
},
{
"input": "84 9 530",
"output": "No"
},
{
"input": "82 18 633",
"output": "No"
},
{
"input": "85 29 2533",
"output": "Yes"
},
{
"input": "89 38 2879",
"output": "Yes"
},
{
"input": "89 49 2200",
"output": "Yes"
},
{
"input": "88 60 4140",
"output": "Yes"
},
{
"input": "82 68 1299",
"output": "No"
},
{
"input": "90 76 2207",
"output": "No"
},
{
"input": "83 84 4923",
"output": "Yes"
},
{
"input": "89 99 7969",
"output": "Yes"
},
{
"input": "94 9 168",
"output": "No"
},
{
"input": "91 20 1009",
"output": "No"
},
{
"input": "93 23 2872",
"output": "Yes"
},
{
"input": "97 31 3761",
"output": "Yes"
},
{
"input": "99 46 1341",
"output": "Yes"
},
{
"input": "98 51 2845",
"output": "No"
},
{
"input": "93 66 3412",
"output": "No"
},
{
"input": "95 76 3724",
"output": "Yes"
},
{
"input": "91 87 6237",
"output": "Yes"
},
{
"input": "98 97 7886",
"output": "Yes"
},
{
"input": "12 17 15",
"output": "No"
},
{
"input": "93 94 95",
"output": "No"
},
{
"input": "27 43 27",
"output": "Yes"
},
{
"input": "17 43 68",
"output": "Yes"
},
{
"input": "44 12 12",
"output": "Yes"
},
{
"input": "44 50 150",
"output": "Yes"
},
{
"input": "1 1 10000",
"output": "Yes"
},
{
"input": "2 3 10000",
"output": "Yes"
},
{
"input": "100 1 10",
"output": "Yes"
},
{
"input": "3 2 1",
"output": "No"
},
{
"input": "1 1 1",
"output": "Yes"
},
{
"input": "9 9 10000",
"output": "No"
},
{
"input": "2 3 9995",
"output": "Yes"
},
{
"input": "3 5 4",
"output": "No"
},
{
"input": "99 98 100",
"output": "No"
},
{
"input": "6 10 2",
"output": "No"
},
{
"input": "1 6 5",
"output": "Yes"
},
{
"input": "1 4 3",
"output": "Yes"
},
{
"input": "3 2 3",
"output": "Yes"
},
{
"input": "1 7 6",
"output": "Yes"
},
{
"input": "2 3 9871",
"output": "Yes"
},
{
"input": "10 5 5",
"output": "Yes"
},
{
"input": "10 8 2",
"output": "No"
}
] | 1,693,949,458
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 134
| 62
| 1,536,000
|
a,b,c=[int(e) for e in input().split()]
print("YES" if 1 in ((c-i*a)%b==0 for i in range(c//a+1)) else "NO")
|
Title: Ebony and Ivory
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Dante is engaged in a fight with "The Savior". Before he can fight it with his sword, he needs to break its shields. He has two guns, Ebony and Ivory, each of them is able to perform any non-negative number of shots.
For every bullet that hits the shield, Ebony deals *a* units of damage while Ivory deals *b* units of damage. In order to break the shield Dante has to deal exactly *c* units of damage. Find out if this is possible.
Input Specification:
The first line of the input contains three integers *a*, *b*, *c* (1<=≤<=*a*,<=*b*<=≤<=100,<=1<=≤<=*c*<=≤<=10<=000) — the number of units of damage dealt by Ebony gun and Ivory gun, and the total number of damage required to break the shield, respectively.
Output Specification:
Print "Yes" (without quotes) if Dante can deal exactly *c* damage to the shield and "No" (without quotes) otherwise.
Demo Input:
['4 6 15\n', '3 2 7\n', '6 11 6\n']
Demo Output:
['No\n', 'Yes\n', 'Yes\n']
Note:
In the second sample, Dante can fire 1 bullet from Ebony and 2 from Ivory to deal exactly 1·3 + 2·2 = 7 damage. In the third sample, Dante can fire 1 bullet from ebony and no bullets from ivory to do 1·6 + 0·11 = 6 damage.
|
```python
a,b,c=[int(e) for e in input().split()]
print("YES" if 1 in ((c-i*a)%b==0 for i in range(c//a+1)) else "NO")
```
| 3
|
|
665
|
B
|
Shopping
|
PROGRAMMING
| 1,400
|
[
"brute force"
] | null | null |
Ayush is a cashier at the shopping center. Recently his department has started a ''click and collect" service which allows users to shop online.
The store contains *k* items. *n* customers have already used the above service. Each user paid for *m* items. Let *a**ij* denote the *j*-th item in the *i*-th person's order.
Due to the space limitations all the items are arranged in one single row. When Ayush receives the *i*-th order he will find one by one all the items *a**ij* (1<=≤<=*j*<=≤<=*m*) in the row. Let *pos*(*x*) denote the position of the item *x* in the row at the moment of its collection. Then Ayush takes time equal to *pos*(*a**i*1)<=+<=*pos*(*a**i*2)<=+<=...<=+<=*pos*(*a**im*) for the *i*-th customer.
When Ayush accesses the *x*-th element he keeps a new stock in the front of the row and takes away the *x*-th element. Thus the values are updating.
Your task is to calculate the total time it takes for Ayush to process all the orders.
You can assume that the market has endless stock.
|
The first line contains three integers *n*, *m* and *k* (1<=≤<=*n*,<=*k*<=≤<=100,<=1<=≤<=*m*<=≤<=*k*) — the number of users, the number of items each user wants to buy and the total number of items at the market.
The next line contains *k* distinct integers *p**l* (1<=≤<=*p**l*<=≤<=*k*) denoting the initial positions of the items in the store. The items are numbered with integers from 1 to *k*.
Each of the next *n* lines contains *m* distinct integers *a**ij* (1<=≤<=*a**ij*<=≤<=*k*) — the order of the *i*-th person.
|
Print the only integer *t* — the total time needed for Ayush to process all the orders.
|
[
"2 2 5\n3 4 1 2 5\n1 5\n3 1\n"
] |
[
"14\n"
] |
Customer 1 wants the items 1 and 5.
*pos*(1) = 3, so the new positions are: [1, 3, 4, 2, 5].
*pos*(5) = 5, so the new positions are: [5, 1, 3, 4, 2].
Time taken for the first customer is 3 + 5 = 8.
Customer 2 wants the items 3 and 1.
*pos*(3) = 3, so the new positions are: [3, 5, 1, 4, 2].
*pos*(1) = 3, so the new positions are: [1, 3, 5, 4, 2].
Time taken for the second customer is 3 + 3 = 6.
Total time is 8 + 6 = 14.
Formally *pos*(*x*) is the index of *x* in the current row.
| 0
|
[
{
"input": "2 2 5\n3 4 1 2 5\n1 5\n3 1",
"output": "14"
},
{
"input": "4 4 4\n1 2 3 4\n3 4 2 1\n4 3 2 1\n4 1 2 3\n4 1 2 3",
"output": "59"
},
{
"input": "1 1 1\n1\n1",
"output": "1"
},
{
"input": "10 1 100\n1 55 67 75 40 86 24 84 82 26 81 23 70 79 51 54 21 78 31 98 68 93 66 88 99 65 20 52 35 85 16 12 94 100 59 56 18 33 47 46 71 8 38 57 2 92 3 95 6 4 87 22 48 80 15 29 11 45 72 76 44 60 91 90 39 74 41 36 13 27 53 83 32 5 30 63 89 64 49 17 9 97 69 14 50 77 37 96 10 42 28 34 61 19 73 7 62 43 58 25\n33\n69\n51\n7\n68\n70\n1\n35\n24\n7",
"output": "335"
},
{
"input": "100 1 1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1",
"output": "100"
},
{
"input": "3 2 3\n3 1 2\n1 2\n2 1\n2 3",
"output": "13"
},
{
"input": "10 10 10\n3 4 1 2 8 9 5 10 6 7\n9 10 7 8 6 1 2 3 4 5\n2 5 3 6 1 4 9 7 8 10\n2 9 1 8 4 7 5 10 6 3\n10 9 7 1 3 6 2 8 5 4\n2 5 1 3 7 10 4 9 8 6\n6 1 8 7 9 2 3 5 4 10\n1 3 2 8 6 9 4 10 5 7\n5 2 4 8 6 1 10 9 3 7\n5 1 7 10 4 6 2 8 9 3\n2 1 3 9 7 10 6 4 8 5",
"output": "771"
}
] | 1,461,252,786
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 10
| 124
| 23,347,200
|
n, m, k = map(int, input().split())
p = list(map(int, input().split()))
r = 0
#p = {key: p.index(key) + 1 for key in p}
for i in range(0, n):
a = list(map(int, input().split()))
for j in range(0, len(a)):
index = p.index(a[j])
r += index + 1
p.insert(0, p.pop(index))
print(r)
|
Title: Shopping
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Ayush is a cashier at the shopping center. Recently his department has started a ''click and collect" service which allows users to shop online.
The store contains *k* items. *n* customers have already used the above service. Each user paid for *m* items. Let *a**ij* denote the *j*-th item in the *i*-th person's order.
Due to the space limitations all the items are arranged in one single row. When Ayush receives the *i*-th order he will find one by one all the items *a**ij* (1<=≤<=*j*<=≤<=*m*) in the row. Let *pos*(*x*) denote the position of the item *x* in the row at the moment of its collection. Then Ayush takes time equal to *pos*(*a**i*1)<=+<=*pos*(*a**i*2)<=+<=...<=+<=*pos*(*a**im*) for the *i*-th customer.
When Ayush accesses the *x*-th element he keeps a new stock in the front of the row and takes away the *x*-th element. Thus the values are updating.
Your task is to calculate the total time it takes for Ayush to process all the orders.
You can assume that the market has endless stock.
Input Specification:
The first line contains three integers *n*, *m* and *k* (1<=≤<=*n*,<=*k*<=≤<=100,<=1<=≤<=*m*<=≤<=*k*) — the number of users, the number of items each user wants to buy and the total number of items at the market.
The next line contains *k* distinct integers *p**l* (1<=≤<=*p**l*<=≤<=*k*) denoting the initial positions of the items in the store. The items are numbered with integers from 1 to *k*.
Each of the next *n* lines contains *m* distinct integers *a**ij* (1<=≤<=*a**ij*<=≤<=*k*) — the order of the *i*-th person.
Output Specification:
Print the only integer *t* — the total time needed for Ayush to process all the orders.
Demo Input:
['2 2 5\n3 4 1 2 5\n1 5\n3 1\n']
Demo Output:
['14\n']
Note:
Customer 1 wants the items 1 and 5.
*pos*(1) = 3, so the new positions are: [1, 3, 4, 2, 5].
*pos*(5) = 5, so the new positions are: [5, 1, 3, 4, 2].
Time taken for the first customer is 3 + 5 = 8.
Customer 2 wants the items 3 and 1.
*pos*(3) = 3, so the new positions are: [3, 5, 1, 4, 2].
*pos*(1) = 3, so the new positions are: [1, 3, 5, 4, 2].
Time taken for the second customer is 3 + 3 = 6.
Total time is 8 + 6 = 14.
Formally *pos*(*x*) is the index of *x* in the current row.
|
```python
n, m, k = map(int, input().split())
p = list(map(int, input().split()))
r = 0
#p = {key: p.index(key) + 1 for key in p}
for i in range(0, n):
a = list(map(int, input().split()))
for j in range(0, len(a)):
index = p.index(a[j])
r += index + 1
p.insert(0, p.pop(index))
print(r)
```
| 3
|
|
712
|
A
|
Memory and Crow
|
PROGRAMMING
| 800
|
[
"implementation",
"math"
] | null | null |
There are *n* integers *b*1,<=*b*2,<=...,<=*b**n* written in a row. For all *i* from 1 to *n*, values *a**i* are defined by the crows performing the following procedure:
- The crow sets *a**i* initially 0. - The crow then adds *b**i* to *a**i*, subtracts *b**i*<=+<=1, adds the *b**i*<=+<=2 number, and so on until the *n*'th number. Thus, *a**i*<==<=*b**i*<=-<=*b**i*<=+<=1<=+<=*b**i*<=+<=2<=-<=*b**i*<=+<=3....
Memory gives you the values *a*1,<=*a*2,<=...,<=*a**n*, and he now wants you to find the initial numbers *b*1,<=*b*2,<=...,<=*b**n* written in the row? Can you do it?
|
The first line of the input contains a single integer *n* (2<=≤<=*n*<=≤<=100<=000) — the number of integers written in the row.
The next line contains *n*, the *i*'th of which is *a**i* (<=-<=109<=≤<=*a**i*<=≤<=109) — the value of the *i*'th number.
|
Print *n* integers corresponding to the sequence *b*1,<=*b*2,<=...,<=*b**n*. It's guaranteed that the answer is unique and fits in 32-bit integer type.
|
[
"5\n6 -4 8 -2 3\n",
"5\n3 -2 -1 5 6\n"
] |
[
"2 4 6 1 3 \n",
"1 -3 4 11 6 \n"
] |
In the first sample test, the crows report the numbers 6, - 4, 8, - 2, and 3 when he starts at indices 1, 2, 3, 4 and 5 respectively. It is easy to check that the sequence 2 4 6 1 3 satisfies the reports. For example, 6 = 2 - 4 + 6 - 1 + 3, and - 4 = 4 - 6 + 1 - 3.
In the second sample test, the sequence 1, - 3, 4, 11, 6 satisfies the reports. For example, 5 = 11 - 6 and 6 = 6.
| 500
|
[
{
"input": "5\n6 -4 8 -2 3",
"output": "2 4 6 1 3 "
},
{
"input": "5\n3 -2 -1 5 6",
"output": "1 -3 4 11 6 "
},
{
"input": "10\n13 -2 532 -63 -23 -63 -64 -23 12 10",
"output": "11 530 469 -86 -86 -127 -87 -11 22 10 "
},
{
"input": "10\n0 0 0 0 0 0 0 0 0 0",
"output": "0 0 0 0 0 0 0 0 0 0 "
},
{
"input": "10\n1 -1 1 -1 1 -1 1 -1 1 -1",
"output": "0 0 0 0 0 0 0 0 0 -1 "
},
{
"input": "10\n-1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000",
"output": "0 0 0 0 0 0 0 0 0 1000000000 "
},
{
"input": "10\n124 532 -642 6482 -124 952 -235 7594 34 -12",
"output": "656 -110 5840 6358 828 717 7359 7628 22 -12 "
},
{
"input": "10\n1294 35852 32749 537295 12048 53729 29357 58320 64739 1240",
"output": "37146 68601 570044 549343 65777 83086 87677 123059 65979 1240 "
}
] | 1,602,930,054
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 49
| 296
| 8,499,200
|
# https://codeforces.com/problemset/problem/712/A
n = int(input())
t = tuple(map(int, input().split()))
for i in range(1, n):
print(t[i - 1] + t[i], end=" ")
print(t[-1])
|
Title: Memory and Crow
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
There are *n* integers *b*1,<=*b*2,<=...,<=*b**n* written in a row. For all *i* from 1 to *n*, values *a**i* are defined by the crows performing the following procedure:
- The crow sets *a**i* initially 0. - The crow then adds *b**i* to *a**i*, subtracts *b**i*<=+<=1, adds the *b**i*<=+<=2 number, and so on until the *n*'th number. Thus, *a**i*<==<=*b**i*<=-<=*b**i*<=+<=1<=+<=*b**i*<=+<=2<=-<=*b**i*<=+<=3....
Memory gives you the values *a*1,<=*a*2,<=...,<=*a**n*, and he now wants you to find the initial numbers *b*1,<=*b*2,<=...,<=*b**n* written in the row? Can you do it?
Input Specification:
The first line of the input contains a single integer *n* (2<=≤<=*n*<=≤<=100<=000) — the number of integers written in the row.
The next line contains *n*, the *i*'th of which is *a**i* (<=-<=109<=≤<=*a**i*<=≤<=109) — the value of the *i*'th number.
Output Specification:
Print *n* integers corresponding to the sequence *b*1,<=*b*2,<=...,<=*b**n*. It's guaranteed that the answer is unique and fits in 32-bit integer type.
Demo Input:
['5\n6 -4 8 -2 3\n', '5\n3 -2 -1 5 6\n']
Demo Output:
['2 4 6 1 3 \n', '1 -3 4 11 6 \n']
Note:
In the first sample test, the crows report the numbers 6, - 4, 8, - 2, and 3 when he starts at indices 1, 2, 3, 4 and 5 respectively. It is easy to check that the sequence 2 4 6 1 3 satisfies the reports. For example, 6 = 2 - 4 + 6 - 1 + 3, and - 4 = 4 - 6 + 1 - 3.
In the second sample test, the sequence 1, - 3, 4, 11, 6 satisfies the reports. For example, 5 = 11 - 6 and 6 = 6.
|
```python
# https://codeforces.com/problemset/problem/712/A
n = int(input())
t = tuple(map(int, input().split()))
for i in range(1, n):
print(t[i - 1] + t[i], end=" ")
print(t[-1])
```
| 3
|
|
432
|
A
|
Choosing Teams
|
PROGRAMMING
| 800
|
[
"greedy",
"implementation",
"sortings"
] | null | null |
The Saratov State University Olympiad Programmers Training Center (SSU OPTC) has *n* students. For each student you know the number of times he/she has participated in the ACM ICPC world programming championship. According to the ACM ICPC rules, each person can participate in the world championship at most 5 times.
The head of the SSU OPTC is recently gathering teams to participate in the world championship. Each team must consist of exactly three people, at that, any person cannot be a member of two or more teams. What maximum number of teams can the head make if he wants each team to participate in the world championship with the same members at least *k* times?
|
The first line contains two integers, *n* and *k* (1<=≤<=*n*<=≤<=2000; 1<=≤<=*k*<=≤<=5). The next line contains *n* integers: *y*1,<=*y*2,<=...,<=*y**n* (0<=≤<=*y**i*<=≤<=5), where *y**i* shows the number of times the *i*-th person participated in the ACM ICPC world championship.
|
Print a single number — the answer to the problem.
|
[
"5 2\n0 4 5 1 0\n",
"6 4\n0 1 2 3 4 5\n",
"6 5\n0 0 0 0 0 0\n"
] |
[
"1\n",
"0\n",
"2\n"
] |
In the first sample only one team could be made: the first, the fourth and the fifth participants.
In the second sample no teams could be created.
In the third sample two teams could be created. Any partition into two teams fits.
| 500
|
[
{
"input": "5 2\n0 4 5 1 0",
"output": "1"
},
{
"input": "6 4\n0 1 2 3 4 5",
"output": "0"
},
{
"input": "6 5\n0 0 0 0 0 0",
"output": "2"
},
{
"input": "3 4\n0 1 0",
"output": "1"
},
{
"input": "3 4\n0 2 0",
"output": "0"
},
{
"input": "6 5\n0 0 0 0 0 0",
"output": "2"
},
{
"input": "12 2\n0 1 2 3 4 0 1 2 3 4 0 1",
"output": "3"
},
{
"input": "15 2\n0 1 2 3 4 0 1 2 3 4 0 1 2 3 4",
"output": "4"
},
{
"input": "13 1\n5 0 5 0 1 5 0 4 1 1 1 4 1",
"output": "3"
},
{
"input": "20 1\n5 0 4 2 2 3 2 1 2 4 1 3 5 5 5 4 4 1 3 0",
"output": "5"
},
{
"input": "20 2\n1 4 5 1 3 4 0 5 0 3 3 0 4 0 0 1 4 2 0 4",
"output": "4"
},
{
"input": "20 2\n1 4 5 1 3 4 0 5 0 3 3 0 4 0 0 1 4 2 0 4",
"output": "4"
},
{
"input": "20 2\n1 4 5 1 3 4 0 5 0 3 3 0 4 0 0 1 4 2 0 4",
"output": "4"
},
{
"input": "20 2\n1 4 5 1 3 4 0 5 0 3 3 0 4 0 0 1 4 2 0 4",
"output": "4"
},
{
"input": "6 3\n4 4 4 4 4 4",
"output": "0"
},
{
"input": "1 4\n1",
"output": "0"
},
{
"input": "1 1\n0",
"output": "0"
},
{
"input": "2 3\n0 0",
"output": "0"
}
] | 1,698,690,116
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 35
| 77
| 1,638,400
|
n,k=map(int,input().split())
l=list(map(int,input().split()))
t=0
for i in l:
if k+i<=5:
t+=1
print(t//3)
|
Title: Choosing Teams
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
The Saratov State University Olympiad Programmers Training Center (SSU OPTC) has *n* students. For each student you know the number of times he/she has participated in the ACM ICPC world programming championship. According to the ACM ICPC rules, each person can participate in the world championship at most 5 times.
The head of the SSU OPTC is recently gathering teams to participate in the world championship. Each team must consist of exactly three people, at that, any person cannot be a member of two or more teams. What maximum number of teams can the head make if he wants each team to participate in the world championship with the same members at least *k* times?
Input Specification:
The first line contains two integers, *n* and *k* (1<=≤<=*n*<=≤<=2000; 1<=≤<=*k*<=≤<=5). The next line contains *n* integers: *y*1,<=*y*2,<=...,<=*y**n* (0<=≤<=*y**i*<=≤<=5), where *y**i* shows the number of times the *i*-th person participated in the ACM ICPC world championship.
Output Specification:
Print a single number — the answer to the problem.
Demo Input:
['5 2\n0 4 5 1 0\n', '6 4\n0 1 2 3 4 5\n', '6 5\n0 0 0 0 0 0\n']
Demo Output:
['1\n', '0\n', '2\n']
Note:
In the first sample only one team could be made: the first, the fourth and the fifth participants.
In the second sample no teams could be created.
In the third sample two teams could be created. Any partition into two teams fits.
|
```python
n,k=map(int,input().split())
l=list(map(int,input().split()))
t=0
for i in l:
if k+i<=5:
t+=1
print(t//3)
```
| 3
|
|
499
|
A
|
Watching a movie
|
PROGRAMMING
| 1,000
|
[
"greedy",
"implementation"
] | null | null |
You have decided to watch the best moments of some movie. There are two buttons on your player:
1. Watch the current minute of the movie. By pressing this button, you watch the current minute of the movie and the player automatically proceeds to the next minute of the movie. 1. Skip exactly *x* minutes of the movie (*x* is some fixed positive integer). If the player is now at the *t*-th minute of the movie, then as a result of pressing this button, it proceeds to the minute (*t*<=+<=*x*).
Initially the movie is turned on in the player on the first minute, and you want to watch exactly *n* best moments of the movie, the *i*-th best moment starts at the *l**i*-th minute and ends at the *r**i*-th minute (more formally, the *i*-th best moment consists of minutes: *l**i*,<=*l**i*<=+<=1,<=...,<=*r**i*).
Determine, what is the minimum number of minutes of the movie you have to watch if you want to watch all the best moments?
|
The first line contains two space-separated integers *n*, *x* (1<=≤<=*n*<=≤<=50, 1<=≤<=*x*<=≤<=105) — the number of the best moments of the movie and the value of *x* for the second button.
The following *n* lines contain the descriptions of the best moments of the movie, the *i*-th line of the description contains two integers separated by a space *l**i*, *r**i* (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=105).
It is guaranteed that for all integers *i* from 2 to *n* the following condition holds: *r**i*<=-<=1<=<<=*l**i*.
|
Output a single number — the answer to the problem.
|
[
"2 3\n5 6\n10 12\n",
"1 1\n1 100000\n"
] |
[
"6\n",
"100000\n"
] |
In the first sample, the player was initially standing on the first minute. As the minutes from the 1-st to the 4-th one don't contain interesting moments, we press the second button. Now we can not press the second button and skip 3 more minutes, because some of them contain interesting moments. Therefore, we watch the movie from the 4-th to the 6-th minute, after that the current time is 7. Similarly, we again skip 3 minutes and then watch from the 10-th to the 12-th minute of the movie. In total, we watch 6 minutes of the movie.
In the second sample, the movie is very interesting, so you'll have to watch all 100000 minutes of the movie.
| 500
|
[
{
"input": "2 3\n5 6\n10 12",
"output": "6"
},
{
"input": "1 1\n1 100000",
"output": "100000"
},
{
"input": "10 1\n2156 3497\n4784 7775\n14575 31932\n33447 35902\n36426 47202\n48772 60522\n63982 68417\n78537 79445\n90081 90629\n94325 95728",
"output": "53974"
},
{
"input": "10 3\n2156 3497\n4784 7775\n14575 31932\n33447 35902\n36426 47202\n48772 60522\n63982 68417\n78537 79445\n90081 90629\n94325 95728",
"output": "53983"
},
{
"input": "10 10\n2156 3497\n4784 7775\n14575 31932\n33447 35902\n36426 47202\n48772 60522\n63982 68417\n78537 79445\n90081 90629\n94325 95728",
"output": "54038"
},
{
"input": "10 1000\n2156 3497\n4784 7775\n14575 31932\n33447 35902\n36426 47202\n48772 60522\n63982 68417\n78537 79445\n90081 90629\n94325 95728",
"output": "58728"
},
{
"input": "12 14\n2156 3497\n4784 7775\n14575 23857\n29211 30739\n31932 33447\n35902 36426\n47202 48772\n60522 63982\n68417 78537\n79445 86918\n90081 90629\n94325 95728",
"output": "41870"
},
{
"input": "12 17\n2156 3497\n4784 7775\n14575 23857\n29211 30739\n31932 33447\n35902 36426\n47202 48772\n60522 63982\n68417 78537\n79445 86918\n90081 90629\n94325 95728",
"output": "41872"
},
{
"input": "18 111\n1449 2156\n3497 4784\n7775 14575\n23857 24593\n29211 30739\n31932 33447\n35902 36426\n36991 38506\n39679 47202\n48772 60016\n60522 61868\n63340 63982\n68417 78537\n79445 86568\n86918 87940\n90081 90310\n90629 94325\n95728 96263",
"output": "58967"
},
{
"input": "1 1\n14575 60522",
"output": "45948"
},
{
"input": "1 10\n14575 60522",
"output": "45952"
},
{
"input": "2 10\n14575 36426\n60522 79445",
"output": "40785"
},
{
"input": "3 1\n14575 36426\n48772 60522\n79445 90081",
"output": "44240"
},
{
"input": "1 100000\n1 100000",
"output": "100000"
},
{
"input": "1 2\n2 100000",
"output": "100000"
},
{
"input": "1 3\n4 100000",
"output": "99997"
},
{
"input": "2 100\n5 6\n7 7",
"output": "7"
},
{
"input": "1 10000\n500 600",
"output": "600"
},
{
"input": "2 3\n1 3\n4 8",
"output": "8"
},
{
"input": "3 1\n1 2\n3 4\n6 7",
"output": "6"
},
{
"input": "1 1\n1 1",
"output": "1"
},
{
"input": "1 3\n5 6",
"output": "3"
},
{
"input": "1 5\n7 10",
"output": "5"
},
{
"input": "1 100\n5 6",
"output": "6"
},
{
"input": "1 2\n1 1",
"output": "1"
},
{
"input": "1 100000\n100000 100000",
"output": "100000"
},
{
"input": "2 3\n1 1\n5 6",
"output": "3"
}
] | 1,672,076,130
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 41
| 62
| 0
|
from sys import stdin; inp = stdin.readline
from math import dist, ceil, floor, sqrt, log
def IA(): return list(map(int, inp().split()))
def FA(): return list(map(float, inp().split()))
def SA(): return inp().split()
def I(): return int(inp())
def F(): return float(inp())
def S(): return inp()
def main():
n, x = IA()
c = 0
curr = 1
for _ in range(n):
s, e = IA()
diff = s-curr
rem = diff%x
c += rem + (e-s) + 1
curr = e+1
return c
if __name__ == '__main__':
print(main())
|
Title: Watching a movie
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You have decided to watch the best moments of some movie. There are two buttons on your player:
1. Watch the current minute of the movie. By pressing this button, you watch the current minute of the movie and the player automatically proceeds to the next minute of the movie. 1. Skip exactly *x* minutes of the movie (*x* is some fixed positive integer). If the player is now at the *t*-th minute of the movie, then as a result of pressing this button, it proceeds to the minute (*t*<=+<=*x*).
Initially the movie is turned on in the player on the first minute, and you want to watch exactly *n* best moments of the movie, the *i*-th best moment starts at the *l**i*-th minute and ends at the *r**i*-th minute (more formally, the *i*-th best moment consists of minutes: *l**i*,<=*l**i*<=+<=1,<=...,<=*r**i*).
Determine, what is the minimum number of minutes of the movie you have to watch if you want to watch all the best moments?
Input Specification:
The first line contains two space-separated integers *n*, *x* (1<=≤<=*n*<=≤<=50, 1<=≤<=*x*<=≤<=105) — the number of the best moments of the movie and the value of *x* for the second button.
The following *n* lines contain the descriptions of the best moments of the movie, the *i*-th line of the description contains two integers separated by a space *l**i*, *r**i* (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=105).
It is guaranteed that for all integers *i* from 2 to *n* the following condition holds: *r**i*<=-<=1<=<<=*l**i*.
Output Specification:
Output a single number — the answer to the problem.
Demo Input:
['2 3\n5 6\n10 12\n', '1 1\n1 100000\n']
Demo Output:
['6\n', '100000\n']
Note:
In the first sample, the player was initially standing on the first minute. As the minutes from the 1-st to the 4-th one don't contain interesting moments, we press the second button. Now we can not press the second button and skip 3 more minutes, because some of them contain interesting moments. Therefore, we watch the movie from the 4-th to the 6-th minute, after that the current time is 7. Similarly, we again skip 3 minutes and then watch from the 10-th to the 12-th minute of the movie. In total, we watch 6 minutes of the movie.
In the second sample, the movie is very interesting, so you'll have to watch all 100000 minutes of the movie.
|
```python
from sys import stdin; inp = stdin.readline
from math import dist, ceil, floor, sqrt, log
def IA(): return list(map(int, inp().split()))
def FA(): return list(map(float, inp().split()))
def SA(): return inp().split()
def I(): return int(inp())
def F(): return float(inp())
def S(): return inp()
def main():
n, x = IA()
c = 0
curr = 1
for _ in range(n):
s, e = IA()
diff = s-curr
rem = diff%x
c += rem + (e-s) + 1
curr = e+1
return c
if __name__ == '__main__':
print(main())
```
| 3
|
|
233
|
A
|
Perfect Permutation
|
PROGRAMMING
| 800
|
[
"implementation",
"math"
] | null | null |
A permutation is a sequence of integers *p*1,<=*p*2,<=...,<=*p**n*, consisting of *n* distinct positive integers, each of them doesn't exceed *n*. Let's denote the *i*-th element of permutation *p* as *p**i*. We'll call number *n* the size of permutation *p*1,<=*p*2,<=...,<=*p**n*.
Nickolas adores permutations. He likes some permutations more than the others. He calls such permutations perfect. A perfect permutation is such permutation *p* that for any *i* (1<=≤<=*i*<=≤<=*n*) (*n* is the permutation size) the following equations hold *p**p**i*<==<=*i* and *p**i*<=≠<=*i*. Nickolas asks you to print any perfect permutation of size *n* for the given *n*.
|
A single line contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the permutation size.
|
If a perfect permutation of size *n* doesn't exist, print a single integer -1. Otherwise print *n* distinct integers from 1 to *n*, *p*1,<=*p*2,<=...,<=*p**n* — permutation *p*, that is perfect. Separate printed numbers by whitespaces.
|
[
"1\n",
"2\n",
"4\n"
] |
[
"-1\n",
"2 1 \n",
"2 1 4 3 \n"
] |
none
| 500
|
[
{
"input": "1",
"output": "-1"
},
{
"input": "2",
"output": "2 1 "
},
{
"input": "4",
"output": "2 1 4 3 "
},
{
"input": "3",
"output": "-1"
},
{
"input": "5",
"output": "-1"
},
{
"input": "6",
"output": "2 1 4 3 6 5 "
},
{
"input": "7",
"output": "-1"
},
{
"input": "20",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 "
},
{
"input": "8",
"output": "2 1 4 3 6 5 8 7 "
},
{
"input": "9",
"output": "-1"
},
{
"input": "10",
"output": "2 1 4 3 6 5 8 7 10 9 "
},
{
"input": "11",
"output": "-1"
},
{
"input": "21",
"output": "-1"
},
{
"input": "50",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 40 39 42 41 44 43 46 45 48 47 50 49 "
},
{
"input": "51",
"output": "-1"
},
{
"input": "52",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 40 39 42 41 44 43 46 45 48 47 50 49 52 51 "
},
{
"input": "84",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 40 39 42 41 44 43 46 45 48 47 50 49 52 51 54 53 56 55 58 57 60 59 62 61 64 63 66 65 68 67 70 69 72 71 74 73 76 75 78 77 80 79 82 81 84 83 "
},
{
"input": "86",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 40 39 42 41 44 43 46 45 48 47 50 49 52 51 54 53 56 55 58 57 60 59 62 61 64 63 66 65 68 67 70 69 72 71 74 73 76 75 78 77 80 79 82 81 84 83 86 85 "
},
{
"input": "100",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 40 39 42 41 44 43 46 45 48 47 50 49 52 51 54 53 56 55 58 57 60 59 62 61 64 63 66 65 68 67 70 69 72 71 74 73 76 75 78 77 80 79 82 81 84 83 86 85 88 87 90 89 92 91 94 93 96 95 98 97 100 99 "
},
{
"input": "98",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 40 39 42 41 44 43 46 45 48 47 50 49 52 51 54 53 56 55 58 57 60 59 62 61 64 63 66 65 68 67 70 69 72 71 74 73 76 75 78 77 80 79 82 81 84 83 86 85 88 87 90 89 92 91 94 93 96 95 98 97 "
},
{
"input": "96",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 40 39 42 41 44 43 46 45 48 47 50 49 52 51 54 53 56 55 58 57 60 59 62 61 64 63 66 65 68 67 70 69 72 71 74 73 76 75 78 77 80 79 82 81 84 83 86 85 88 87 90 89 92 91 94 93 96 95 "
},
{
"input": "33",
"output": "-1"
},
{
"input": "34",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 "
},
{
"input": "36",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 "
},
{
"input": "38",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 "
},
{
"input": "40",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 40 39 "
},
{
"input": "42",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 40 39 42 41 "
},
{
"input": "44",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 40 39 42 41 44 43 "
},
{
"input": "46",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 40 39 42 41 44 43 46 45 "
},
{
"input": "48",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 40 39 42 41 44 43 46 45 48 47 "
}
] | 1,672,031,338
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 30
| 92
| 0
|
def perm(l):
global a
if len(l)==0:
return
a = a+str(l[1])+' '
a+=str(l[0]) + ' '
return perm(l[2:])
x = int(input())
l=[]
for i in range(x):
l.append(i+1)
a= ''
if x%2 ==1:
print(-1)
exit()
perm(l)
print(a.strip())
|
Title: Perfect Permutation
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
A permutation is a sequence of integers *p*1,<=*p*2,<=...,<=*p**n*, consisting of *n* distinct positive integers, each of them doesn't exceed *n*. Let's denote the *i*-th element of permutation *p* as *p**i*. We'll call number *n* the size of permutation *p*1,<=*p*2,<=...,<=*p**n*.
Nickolas adores permutations. He likes some permutations more than the others. He calls such permutations perfect. A perfect permutation is such permutation *p* that for any *i* (1<=≤<=*i*<=≤<=*n*) (*n* is the permutation size) the following equations hold *p**p**i*<==<=*i* and *p**i*<=≠<=*i*. Nickolas asks you to print any perfect permutation of size *n* for the given *n*.
Input Specification:
A single line contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the permutation size.
Output Specification:
If a perfect permutation of size *n* doesn't exist, print a single integer -1. Otherwise print *n* distinct integers from 1 to *n*, *p*1,<=*p*2,<=...,<=*p**n* — permutation *p*, that is perfect. Separate printed numbers by whitespaces.
Demo Input:
['1\n', '2\n', '4\n']
Demo Output:
['-1\n', '2 1 \n', '2 1 4 3 \n']
Note:
none
|
```python
def perm(l):
global a
if len(l)==0:
return
a = a+str(l[1])+' '
a+=str(l[0]) + ' '
return perm(l[2:])
x = int(input())
l=[]
for i in range(x):
l.append(i+1)
a= ''
if x%2 ==1:
print(-1)
exit()
perm(l)
print(a.strip())
```
| 3
|
|
219
|
A
|
k-String
|
PROGRAMMING
| 1,000
|
[
"implementation",
"strings"
] | null | null |
A string is called a *k*-string if it can be represented as *k* concatenated copies of some string. For example, the string "aabaabaabaab" is at the same time a 1-string, a 2-string and a 4-string, but it is not a 3-string, a 5-string, or a 6-string and so on. Obviously any string is a 1-string.
You are given a string *s*, consisting of lowercase English letters and a positive integer *k*. Your task is to reorder the letters in the string *s* in such a way that the resulting string is a *k*-string.
|
The first input line contains integer *k* (1<=≤<=*k*<=≤<=1000). The second line contains *s*, all characters in *s* are lowercase English letters. The string length *s* satisfies the inequality 1<=≤<=|*s*|<=≤<=1000, where |*s*| is the length of string *s*.
|
Rearrange the letters in string *s* in such a way that the result is a *k*-string. Print the result on a single output line. If there are multiple solutions, print any of them.
If the solution doesn't exist, print "-1" (without quotes).
|
[
"2\naazz\n",
"3\nabcabcabz\n"
] |
[
"azaz\n",
"-1\n"
] |
none
| 500
|
[
{
"input": "2\naazz",
"output": "azaz"
},
{
"input": "3\nabcabcabz",
"output": "-1"
},
{
"input": "1\na",
"output": "a"
},
{
"input": "2\nabba",
"output": "abab"
},
{
"input": "2\naaab",
"output": "-1"
},
{
"input": "7\nabacaba",
"output": "-1"
},
{
"input": "5\naaaaa",
"output": "aaaaa"
},
{
"input": "3\naabaaaaabb",
"output": "-1"
},
{
"input": "2\naaab",
"output": "-1"
},
{
"input": "2\nbabac",
"output": "-1"
},
{
"input": "3\nbbbccc",
"output": "bcbcbc"
},
{
"input": "2\naa",
"output": "aa"
},
{
"input": "250\ncececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececece",
"output": "cececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececece"
},
{
"input": "15\nabaabbbcababaaaabaabbbcababaaaabaabbbcababaaaabaabbbcababaaaabaabbbcababaaaabaabbbcababaaaabaabbbcababaaaabaabbbcababaaaabaabbbcababaaaabaabbbcababaaaabaabbbcababaaaabaabbbcababaaaabaabbbcababaaaabaabbbcababaaaabaabbbcababaaa",
"output": "aaaaaaaabbbbbbcaaaaaaaabbbbbbcaaaaaaaabbbbbbcaaaaaaaabbbbbbcaaaaaaaabbbbbbcaaaaaaaabbbbbbcaaaaaaaabbbbbbcaaaaaaaabbbbbbcaaaaaaaabbbbbbcaaaaaaaabbbbbbcaaaaaaaabbbbbbcaaaaaaaabbbbbbcaaaaaaaabbbbbbcaaaaaaaabbbbbbcaaaaaaaabbbbbbc"
},
{
"input": "1\naaa",
"output": "aaa"
},
{
"input": "1\naabaab",
"output": "aaaabb"
},
{
"input": "2\naabbbbccccccdddddddd",
"output": "abbcccddddabbcccdddd"
},
{
"input": "3\naaaaaaaaacccdddddd",
"output": "aaacddaaacddaaacdd"
},
{
"input": "3\naaaaaaaaacccbbbbbb",
"output": "aaabbcaaabbcaaabbc"
},
{
"input": "2\naazzzz",
"output": "azzazz"
},
{
"input": "2\naaaa",
"output": "aaaa"
},
{
"input": "2\naaaazz",
"output": "aazaaz"
},
{
"input": "2\naaaabb",
"output": "aabaab"
},
{
"input": "2\naabbbb",
"output": "abbabb"
},
{
"input": "2\naaaazzzz",
"output": "aazzaazz"
},
{
"input": "2\naaazz",
"output": "-1"
},
{
"input": "2\nbbbbaa",
"output": "abbabb"
},
{
"input": "2\naaaaaabbbb",
"output": "aaabbaaabb"
},
{
"input": "2\naaaaaazz",
"output": "aaazaaaz"
},
{
"input": "2\naaaabbbb",
"output": "aabbaabb"
},
{
"input": "2\naabaab",
"output": "aabaab"
},
{
"input": "1\naaaaa",
"output": "aaaaa"
},
{
"input": "2\nbbaaaa",
"output": "aabaab"
},
{
"input": "2\nacaccc",
"output": "accacc"
}
] | 1,651,128,826
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 42
| 124
| 0
|
no = int(input())
n1 = (input())
dp = {}
for i in n1:
if i not in dp:
dp[i] = 1
else:
dp[i] += 1
set1 = list(set(n1))
flag = 0
for i in set1:
if dp[i] % no != 0:
flag+=1
break
if flag == 1:
print(-1)
else:
str1 = ""
for i in range(no):
for j in dp:
str1 += j*int((dp[j]/no))
print(str1)
|
Title: k-String
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
A string is called a *k*-string if it can be represented as *k* concatenated copies of some string. For example, the string "aabaabaabaab" is at the same time a 1-string, a 2-string and a 4-string, but it is not a 3-string, a 5-string, or a 6-string and so on. Obviously any string is a 1-string.
You are given a string *s*, consisting of lowercase English letters and a positive integer *k*. Your task is to reorder the letters in the string *s* in such a way that the resulting string is a *k*-string.
Input Specification:
The first input line contains integer *k* (1<=≤<=*k*<=≤<=1000). The second line contains *s*, all characters in *s* are lowercase English letters. The string length *s* satisfies the inequality 1<=≤<=|*s*|<=≤<=1000, where |*s*| is the length of string *s*.
Output Specification:
Rearrange the letters in string *s* in such a way that the result is a *k*-string. Print the result on a single output line. If there are multiple solutions, print any of them.
If the solution doesn't exist, print "-1" (without quotes).
Demo Input:
['2\naazz\n', '3\nabcabcabz\n']
Demo Output:
['azaz\n', '-1\n']
Note:
none
|
```python
no = int(input())
n1 = (input())
dp = {}
for i in n1:
if i not in dp:
dp[i] = 1
else:
dp[i] += 1
set1 = list(set(n1))
flag = 0
for i in set1:
if dp[i] % no != 0:
flag+=1
break
if flag == 1:
print(-1)
else:
str1 = ""
for i in range(no):
for j in dp:
str1 += j*int((dp[j]/no))
print(str1)
```
| 3
|
|
41
|
A
|
Translation
|
PROGRAMMING
| 800
|
[
"implementation",
"strings"
] |
A. Translation
|
2
|
256
|
The translation from the Berland language into the Birland language is not an easy task. Those languages are very similar: a berlandish word differs from a birlandish word with the same meaning a little: it is spelled (and pronounced) reversely. For example, a Berlandish word code corresponds to a Birlandish word edoc. However, it's easy to make a mistake during the «translation». Vasya translated word *s* from Berlandish into Birlandish as *t*. Help him: find out if he translated the word correctly.
|
The first line contains word *s*, the second line contains word *t*. The words consist of lowercase Latin letters. The input data do not consist unnecessary spaces. The words are not empty and their lengths do not exceed 100 symbols.
|
If the word *t* is a word *s*, written reversely, print YES, otherwise print NO.
|
[
"code\nedoc\n",
"abb\naba\n",
"code\ncode\n"
] |
[
"YES\n",
"NO\n",
"NO\n"
] |
none
| 500
|
[
{
"input": "code\nedoc",
"output": "YES"
},
{
"input": "abb\naba",
"output": "NO"
},
{
"input": "code\ncode",
"output": "NO"
},
{
"input": "abacaba\nabacaba",
"output": "YES"
},
{
"input": "q\nq",
"output": "YES"
},
{
"input": "asrgdfngfnmfgnhweratgjkk\nasrgdfngfnmfgnhweratgjkk",
"output": "NO"
},
{
"input": "z\na",
"output": "NO"
},
{
"input": "asd\ndsa",
"output": "YES"
},
{
"input": "abcdef\nfecdba",
"output": "NO"
},
{
"input": "ywjjbirapvskozubvxoemscfwl\ngnduubaogtfaiowjizlvjcu",
"output": "NO"
},
{
"input": "mfrmqxtzvgaeuleubcmcxcfqyruwzenguhgrmkuhdgnhgtgkdszwqyd\nmfxufheiperjnhyczclkmzyhcxntdfskzkzdwzzujdinf",
"output": "NO"
},
{
"input": "bnbnemvybqizywlnghlykniaxxxlkhftppbdeqpesrtgkcpoeqowjwhrylpsziiwcldodcoonpimudvrxejjo\ntiynnekmlalogyvrgptbinkoqdwzuiyjlrldxhzjmmp",
"output": "NO"
},
{
"input": "pwlpubwyhzqvcitemnhvvwkmwcaawjvdiwtoxyhbhbxerlypelevasmelpfqwjk\nstruuzebbcenziscuoecywugxncdwzyfozhljjyizpqcgkyonyetarcpwkqhuugsqjuixsxptmbnlfupdcfigacdhhrzb",
"output": "NO"
},
{
"input": "gdvqjoyxnkypfvdxssgrihnwxkeojmnpdeobpecytkbdwujqfjtxsqspxvxpqioyfagzjxupqqzpgnpnpxcuipweunqch\nkkqkiwwasbhezqcfeceyngcyuogrkhqecwsyerdniqiocjehrpkljiljophqhyaiefjpavoom",
"output": "NO"
},
{
"input": "umeszdawsvgkjhlqwzents\nhxqhdungbylhnikwviuh",
"output": "NO"
},
{
"input": "juotpscvyfmgntshcealgbsrwwksgrwnrrbyaqqsxdlzhkbugdyx\nibqvffmfktyipgiopznsqtrtxiijntdbgyy",
"output": "NO"
},
{
"input": "zbwueheveouatecaglziqmudxemhrsozmaujrwlqmppzoumxhamwugedikvkblvmxwuofmpafdprbcftew\nulczwrqhctbtbxrhhodwbcxwimncnexosksujlisgclllxokrsbnozthajnnlilyffmsyko",
"output": "NO"
},
{
"input": "nkgwuugukzcv\nqktnpxedwxpxkrxdvgmfgoxkdfpbzvwsduyiybynbkouonhvmzakeiruhfmvrktghadbfkmwxduoqv",
"output": "NO"
},
{
"input": "incenvizhqpcenhjhehvjvgbsnfixbatrrjstxjzhlmdmxijztphxbrldlqwdfimweepkggzcxsrwelodpnryntepioqpvk\ndhjbjjftlvnxibkklxquwmzhjfvnmwpapdrslioxisbyhhfymyiaqhlgecpxamqnocizwxniubrmpyubvpenoukhcobkdojlybxd",
"output": "NO"
},
{
"input": "w\nw",
"output": "YES"
},
{
"input": "vz\nzv",
"output": "YES"
},
{
"input": "ry\nyr",
"output": "YES"
},
{
"input": "xou\nuox",
"output": "YES"
},
{
"input": "axg\ngax",
"output": "NO"
},
{
"input": "zdsl\nlsdz",
"output": "YES"
},
{
"input": "kudl\nldku",
"output": "NO"
},
{
"input": "zzlzwnqlcl\nlclqnwzlzz",
"output": "YES"
},
{
"input": "vzzgicnzqooejpjzads\nsdazjpjeooqzncigzzv",
"output": "YES"
},
{
"input": "raqhmvmzuwaykjpyxsykr\nxkysrypjkyawuzmvmhqar",
"output": "NO"
},
{
"input": "ngedczubzdcqbxksnxuavdjaqtmdwncjnoaicvmodcqvhfezew\nwezefhvqcdomvciaonjcnwdmtqajdvauxnskxbqcdzbuzcdegn",
"output": "YES"
},
{
"input": "muooqttvrrljcxbroizkymuidvfmhhsjtumksdkcbwwpfqdyvxtrlymofendqvznzlmim\nmimlznzvqdnefomylrtxvydqfpwwbckdskmutjshhmfvdiumykziorbxcjlrrvttqooum",
"output": "YES"
},
{
"input": "vxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaivg\ngviayyikkitmuomcpiakhbxszgbnhvwyzkftwoagzixaearxpjacrnvpvbuzenvovehkmmxvblqyxvctroddksdsgebcmlluqpxv",
"output": "YES"
},
{
"input": "mnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfdc\ncdfmkdgrdptkpewbsqvszipgxvgvuiuzbkkwuowbafkikgvnqdkxnayzdjygvezmtsgywnupocdntipiyiorblqkrzjpzatxahnm",
"output": "NO"
},
{
"input": "dgxmzbqofstzcdgthbaewbwocowvhqpinehpjatnnbrijcolvsatbblsrxabzrpszoiecpwhfjmwuhqrapvtcgvikuxtzbftydkw\nwkdytfbztxukivgctvparqhuwmjfhwpceiozsprzbaxrslbbqasvlocjirbnntajphenipthvwocowbweabhtgdcztsfoqbzmxgd",
"output": "NO"
},
{
"input": "gxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwgeh\nhegwxvocotmzstqfbmpjvijgkcyodlxyjawrpkczpmdspsuhoiruavnnnuwvtwohglkdxjetshkboalvzqbgjgthoteceixioxg",
"output": "YES"
},
{
"input": "sihxuwvmaambplxvjfoskinghzicyfqebjtkysotattkahssumfcgrkheotdxwjckpvapbkaepqrxseyfrwtyaycmrzsrsngkh\nhkgnsrszrmcyaytwrfyesxrqpeakbpavpkcjwxdtoehkrgcfmusshakttatosyktjbeqfycizhgniksofjvxlpbmaamvwuxhis",
"output": "YES"
},
{
"input": "ycnahksbughnonldzrhkysujmylcgcfuludjvjiahtkyzqvkopzqcnwhltbzfugzojqkjjlggmvnultascmygelkiktmfieok\nkoeifmtkiklegkmcsatlunvmggkjjlqjozgufzbtlhwncqzpokvqzykthaijvjdulufcgclymjusyyhrzdlnonhgubskhancy",
"output": "NO"
},
{
"input": "wbqasaehtkfojruzyhrlgwmtyiovmzyfifslvlemhqheyaelzwnthrenjsbmntwaoryzwfbxmscmypvxlfmzpnkkjlvwvmtz\nztmvwvljkknpzmflxvpymcsmxbfwzyroawtnmbsjnerhtnwzleayehqhmelvlsfifyzmvoiytmwglrhyzurjofktheasaqbw",
"output": "YES"
},
{
"input": "imippqurprbhfugngtgifelytadegwrgaefnfhbjjnmzikvjaccotqzemufqieqldgnbmviisgkynzeldlhqxuqphjfmyij\njiymfjhpquxqhldleznykgsiivmbngdlqeiqfumezqtoccajvkizmnjjbhfnfeagrwgedatylefigtgngufhbrpruqppimi",
"output": "YES"
},
{
"input": "bikydffiuisckpvzqlteqfhegsagimodb\nbdomigasgehfqetlqzvpkcsiuiffdykib",
"output": "YES"
}
] | 1,647,410,159
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 40
| 124
| 0
|
arr1 = input()
arr2 = input()
if len(arr1) != len(arr2):
print("NO")
else:
i = 0
j = len(arr1)-1
msg = "YES"
while i < len(arr1):
if arr1[i] == arr2[j]:
i += 1
j -= 1
else:
msg = "NO"
break
print(msg)
|
Title: Translation
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
The translation from the Berland language into the Birland language is not an easy task. Those languages are very similar: a berlandish word differs from a birlandish word with the same meaning a little: it is spelled (and pronounced) reversely. For example, a Berlandish word code corresponds to a Birlandish word edoc. However, it's easy to make a mistake during the «translation». Vasya translated word *s* from Berlandish into Birlandish as *t*. Help him: find out if he translated the word correctly.
Input Specification:
The first line contains word *s*, the second line contains word *t*. The words consist of lowercase Latin letters. The input data do not consist unnecessary spaces. The words are not empty and their lengths do not exceed 100 symbols.
Output Specification:
If the word *t* is a word *s*, written reversely, print YES, otherwise print NO.
Demo Input:
['code\nedoc\n', 'abb\naba\n', 'code\ncode\n']
Demo Output:
['YES\n', 'NO\n', 'NO\n']
Note:
none
|
```python
arr1 = input()
arr2 = input()
if len(arr1) != len(arr2):
print("NO")
else:
i = 0
j = len(arr1)-1
msg = "YES"
while i < len(arr1):
if arr1[i] == arr2[j]:
i += 1
j -= 1
else:
msg = "NO"
break
print(msg)
```
| 3.969
|
432
|
A
|
Choosing Teams
|
PROGRAMMING
| 800
|
[
"greedy",
"implementation",
"sortings"
] | null | null |
The Saratov State University Olympiad Programmers Training Center (SSU OPTC) has *n* students. For each student you know the number of times he/she has participated in the ACM ICPC world programming championship. According to the ACM ICPC rules, each person can participate in the world championship at most 5 times.
The head of the SSU OPTC is recently gathering teams to participate in the world championship. Each team must consist of exactly three people, at that, any person cannot be a member of two or more teams. What maximum number of teams can the head make if he wants each team to participate in the world championship with the same members at least *k* times?
|
The first line contains two integers, *n* and *k* (1<=≤<=*n*<=≤<=2000; 1<=≤<=*k*<=≤<=5). The next line contains *n* integers: *y*1,<=*y*2,<=...,<=*y**n* (0<=≤<=*y**i*<=≤<=5), where *y**i* shows the number of times the *i*-th person participated in the ACM ICPC world championship.
|
Print a single number — the answer to the problem.
|
[
"5 2\n0 4 5 1 0\n",
"6 4\n0 1 2 3 4 5\n",
"6 5\n0 0 0 0 0 0\n"
] |
[
"1\n",
"0\n",
"2\n"
] |
In the first sample only one team could be made: the first, the fourth and the fifth participants.
In the second sample no teams could be created.
In the third sample two teams could be created. Any partition into two teams fits.
| 500
|
[
{
"input": "5 2\n0 4 5 1 0",
"output": "1"
},
{
"input": "6 4\n0 1 2 3 4 5",
"output": "0"
},
{
"input": "6 5\n0 0 0 0 0 0",
"output": "2"
},
{
"input": "3 4\n0 1 0",
"output": "1"
},
{
"input": "3 4\n0 2 0",
"output": "0"
},
{
"input": "6 5\n0 0 0 0 0 0",
"output": "2"
},
{
"input": "12 2\n0 1 2 3 4 0 1 2 3 4 0 1",
"output": "3"
},
{
"input": "15 2\n0 1 2 3 4 0 1 2 3 4 0 1 2 3 4",
"output": "4"
},
{
"input": "13 1\n5 0 5 0 1 5 0 4 1 1 1 4 1",
"output": "3"
},
{
"input": "20 1\n5 0 4 2 2 3 2 1 2 4 1 3 5 5 5 4 4 1 3 0",
"output": "5"
},
{
"input": "20 2\n1 4 5 1 3 4 0 5 0 3 3 0 4 0 0 1 4 2 0 4",
"output": "4"
},
{
"input": "20 2\n1 4 5 1 3 4 0 5 0 3 3 0 4 0 0 1 4 2 0 4",
"output": "4"
},
{
"input": "20 2\n1 4 5 1 3 4 0 5 0 3 3 0 4 0 0 1 4 2 0 4",
"output": "4"
},
{
"input": "20 2\n1 4 5 1 3 4 0 5 0 3 3 0 4 0 0 1 4 2 0 4",
"output": "4"
},
{
"input": "6 3\n4 4 4 4 4 4",
"output": "0"
},
{
"input": "1 4\n1",
"output": "0"
},
{
"input": "1 1\n0",
"output": "0"
},
{
"input": "2 3\n0 0",
"output": "0"
}
] | 1,664,946,997
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 35
| 108
| 1,638,400
|
n , k = map(int, input().split())
l = [int(i) for i in input().split()]
c = 0
res = 0
for i in l:
if i+k <= 5:
c += 1
if c == 3:
c = 0
res += 1
print(res)
|
Title: Choosing Teams
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
The Saratov State University Olympiad Programmers Training Center (SSU OPTC) has *n* students. For each student you know the number of times he/she has participated in the ACM ICPC world programming championship. According to the ACM ICPC rules, each person can participate in the world championship at most 5 times.
The head of the SSU OPTC is recently gathering teams to participate in the world championship. Each team must consist of exactly three people, at that, any person cannot be a member of two or more teams. What maximum number of teams can the head make if he wants each team to participate in the world championship with the same members at least *k* times?
Input Specification:
The first line contains two integers, *n* and *k* (1<=≤<=*n*<=≤<=2000; 1<=≤<=*k*<=≤<=5). The next line contains *n* integers: *y*1,<=*y*2,<=...,<=*y**n* (0<=≤<=*y**i*<=≤<=5), where *y**i* shows the number of times the *i*-th person participated in the ACM ICPC world championship.
Output Specification:
Print a single number — the answer to the problem.
Demo Input:
['5 2\n0 4 5 1 0\n', '6 4\n0 1 2 3 4 5\n', '6 5\n0 0 0 0 0 0\n']
Demo Output:
['1\n', '0\n', '2\n']
Note:
In the first sample only one team could be made: the first, the fourth and the fifth participants.
In the second sample no teams could be created.
In the third sample two teams could be created. Any partition into two teams fits.
|
```python
n , k = map(int, input().split())
l = [int(i) for i in input().split()]
c = 0
res = 0
for i in l:
if i+k <= 5:
c += 1
if c == 3:
c = 0
res += 1
print(res)
```
| 3
|
|
588
|
A
|
Duff and Meat
|
PROGRAMMING
| 900
|
[
"greedy"
] | null | null |
Duff is addicted to meat! Malek wants to keep her happy for *n* days. In order to be happy in *i*-th day, she needs to eat exactly *a**i* kilograms of meat.
There is a big shop uptown and Malek wants to buy meat for her from there. In *i*-th day, they sell meat for *p**i* dollars per kilogram. Malek knows all numbers *a*1,<=...,<=*a**n* and *p*1,<=...,<=*p**n*. In each day, he can buy arbitrary amount of meat, also he can keep some meat he has for the future.
Malek is a little tired from cooking meat, so he asked for your help. Help him to minimize the total money he spends to keep Duff happy for *n* days.
|
The first line of input contains integer *n* (1<=≤<=*n*<=≤<=105), the number of days.
In the next *n* lines, *i*-th line contains two integers *a**i* and *p**i* (1<=≤<=*a**i*,<=*p**i*<=≤<=100), the amount of meat Duff needs and the cost of meat in that day.
|
Print the minimum money needed to keep Duff happy for *n* days, in one line.
|
[
"3\n1 3\n2 2\n3 1\n",
"3\n1 3\n2 1\n3 2\n"
] |
[
"10\n",
"8\n"
] |
In the first sample case: An optimal way would be to buy 1 kg on the first day, 2 kg on the second day and 3 kg on the third day.
In the second sample case: An optimal way would be to buy 1 kg on the first day and 5 kg (needed meat for the second and third day) on the second day.
| 750
|
[
{
"input": "3\n1 3\n2 2\n3 1",
"output": "10"
},
{
"input": "3\n1 3\n2 1\n3 2",
"output": "8"
},
{
"input": "1\n39 52",
"output": "2028"
},
{
"input": "2\n25 56\n94 17",
"output": "2998"
},
{
"input": "5\n39 21\n95 89\n73 90\n9 55\n85 32",
"output": "6321"
},
{
"input": "12\n70 11\n74 27\n32 11\n26 83\n57 18\n97 28\n75 43\n75 21\n84 29\n16 2\n89 63\n21 88",
"output": "6742"
},
{
"input": "2\n100 68\n38 80",
"output": "9384"
}
] | 1,593,668,284
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 30
| 343
| 0
|
n = int(input())
spent = 0
best_price = 101
for i in range(n):
needed, price = map(int, input().split())
best_price = min(best_price, price)
spent += needed * best_price
print(spent)
|
Title: Duff and Meat
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Duff is addicted to meat! Malek wants to keep her happy for *n* days. In order to be happy in *i*-th day, she needs to eat exactly *a**i* kilograms of meat.
There is a big shop uptown and Malek wants to buy meat for her from there. In *i*-th day, they sell meat for *p**i* dollars per kilogram. Malek knows all numbers *a*1,<=...,<=*a**n* and *p*1,<=...,<=*p**n*. In each day, he can buy arbitrary amount of meat, also he can keep some meat he has for the future.
Malek is a little tired from cooking meat, so he asked for your help. Help him to minimize the total money he spends to keep Duff happy for *n* days.
Input Specification:
The first line of input contains integer *n* (1<=≤<=*n*<=≤<=105), the number of days.
In the next *n* lines, *i*-th line contains two integers *a**i* and *p**i* (1<=≤<=*a**i*,<=*p**i*<=≤<=100), the amount of meat Duff needs and the cost of meat in that day.
Output Specification:
Print the minimum money needed to keep Duff happy for *n* days, in one line.
Demo Input:
['3\n1 3\n2 2\n3 1\n', '3\n1 3\n2 1\n3 2\n']
Demo Output:
['10\n', '8\n']
Note:
In the first sample case: An optimal way would be to buy 1 kg on the first day, 2 kg on the second day and 3 kg on the third day.
In the second sample case: An optimal way would be to buy 1 kg on the first day and 5 kg (needed meat for the second and third day) on the second day.
|
```python
n = int(input())
spent = 0
best_price = 101
for i in range(n):
needed, price = map(int, input().split())
best_price = min(best_price, price)
spent += needed * best_price
print(spent)
```
| 3
|
|
509
|
B
|
Painting Pebbles
|
PROGRAMMING
| 1,300
|
[
"constructive algorithms",
"greedy",
"implementation"
] | null | null |
There are *n* piles of pebbles on the table, the *i*-th pile contains *a**i* pebbles. Your task is to paint each pebble using one of the *k* given colors so that for each color *c* and any two piles *i* and *j* the difference between the number of pebbles of color *c* in pile *i* and number of pebbles of color *c* in pile *j* is at most one.
In other words, let's say that *b**i*,<=*c* is the number of pebbles of color *c* in the *i*-th pile. Then for any 1<=≤<=*c*<=≤<=*k*, 1<=≤<=*i*,<=*j*<=≤<=*n* the following condition must be satisfied |*b**i*,<=*c*<=-<=*b**j*,<=*c*|<=≤<=1. It isn't necessary to use all *k* colors: if color *c* hasn't been used in pile *i*, then *b**i*,<=*c* is considered to be zero.
|
The first line of the input contains positive integers *n* and *k* (1<=≤<=*n*,<=*k*<=≤<=100), separated by a space — the number of piles and the number of colors respectively.
The second line contains *n* positive integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=100) denoting number of pebbles in each of the piles.
|
If there is no way to paint the pebbles satisfying the given condition, output "NO" (without quotes) .
Otherwise in the first line output "YES" (without quotes). Then *n* lines should follow, the *i*-th of them should contain *a**i* space-separated integers. *j*-th (1<=≤<=*j*<=≤<=*a**i*) of these integers should be equal to the color of the *j*-th pebble in the *i*-th pile. If there are several possible answers, you may output any of them.
|
[
"4 4\n1 2 3 4\n",
"5 2\n3 2 4 1 3\n",
"5 4\n3 2 4 3 5\n"
] |
[
"YES\n1\n1 4\n1 2 4\n1 2 3 4\n",
"NO\n",
"YES\n1 2 3\n1 3\n1 2 3 4\n1 3 4\n1 1 2 3 4\n"
] |
none
| 0
|
[
{
"input": "4 4\n1 2 3 4",
"output": "YES\n1 \n1 1 \n1 1 2 \n1 1 2 3 "
},
{
"input": "5 2\n3 2 4 1 3",
"output": "NO"
},
{
"input": "5 4\n3 2 4 3 5",
"output": "YES\n1 1 1 \n1 1 \n1 1 1 2 \n1 1 1 \n1 1 1 2 3 "
},
{
"input": "4 3\n5 6 7 8",
"output": "YES\n1 1 1 1 1 \n1 1 1 1 1 1 \n1 1 1 1 1 1 2 \n1 1 1 1 1 1 2 3 "
},
{
"input": "5 6\n3 7 2 1 2",
"output": "YES\n1 1 2 \n1 1 2 3 4 5 6 \n1 1 \n1 \n1 1 "
},
{
"input": "9 5\n5 8 7 3 10 1 4 6 3",
"output": "NO"
},
{
"input": "2 1\n7 2",
"output": "NO"
},
{
"input": "87 99\n90 28 93 18 80 94 68 58 72 45 93 72 11 54 54 48 74 63 73 7 4 54 42 67 8 13 89 32 2 26 13 94 28 46 77 95 94 63 60 7 16 55 90 91 97 80 7 97 8 12 1 32 43 20 79 38 48 22 97 11 92 97 100 41 72 2 93 68 26 2 79 36 19 96 31 47 52 21 12 86 90 83 57 1 4 81 87",
"output": "YES\n1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 \n1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 \n1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 5..."
},
{
"input": "5 92\n95 10 4 28 56",
"output": "YES\n1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 \n1 1 1 1 1 2 3 4 5 6 \n1 1 1 1 \n1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 \n1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43..."
},
{
"input": "96 99\n54 72 100 93 68 36 73 98 79 31 51 88 53 65 69 84 19 65 52 19 62 12 80 45 100 45 78 93 70 56 57 97 21 70 55 15 95 100 51 44 93 1 67 29 4 39 57 82 81 66 66 89 42 18 48 70 81 67 17 62 70 76 79 82 70 26 66 22 16 8 49 23 16 30 46 71 36 20 96 18 53 5 45 5 96 66 95 20 87 3 45 4 47 22 24 7",
"output": "YES\n1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 \n1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 \n1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 5..."
},
{
"input": "56 97\n96 81 39 97 2 75 85 17 9 90 2 31 32 10 42 87 71 100 39 81 2 38 90 81 96 7 57 23 2 25 5 62 22 61 47 94 63 83 91 51 8 93 33 65 38 50 5 64 76 57 96 19 13 100 56 39",
"output": "NO"
},
{
"input": "86 98\n27 94 18 86 16 11 74 59 62 64 37 84 100 4 48 6 37 11 50 73 11 30 87 14 89 55 35 8 99 63 54 16 99 20 40 91 75 18 28 36 31 76 98 40 90 41 83 32 81 61 81 43 5 36 33 35 63 15 86 38 63 27 21 2 68 67 12 55 36 79 93 93 29 5 22 52 100 17 81 50 6 42 59 57 83 20",
"output": "YES\n1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 \n1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 \n1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 \n1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 4..."
},
{
"input": "21 85\n83 25 85 96 23 80 54 14 71 57 44 88 30 92 90 61 17 80 59 85 12",
"output": "YES\n1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 \n1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 \n1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 6..."
},
{
"input": "87 71\n44 88 67 57 57 80 69 69 40 32 92 54 64 51 69 54 31 53 29 42 32 85 100 90 46 56 40 46 68 81 60 42 99 89 61 96 48 42 78 95 71 67 30 42 57 82 41 76 29 79 32 62 100 89 81 55 88 90 86 54 54 31 28 67 69 49 45 54 68 77 64 32 60 60 66 66 83 57 56 89 57 82 73 86 60 61 62",
"output": "NO"
},
{
"input": "63 87\n12 63 17 38 52 19 27 26 24 40 43 12 84 99 59 37 37 12 36 88 22 56 55 57 33 64 45 71 85 73 84 38 51 36 14 15 98 68 50 33 92 97 44 79 40 60 43 15 52 58 38 95 74 64 77 79 85 41 59 55 43 29 27",
"output": "YES\n1 1 1 1 1 1 1 1 1 1 1 1 \n1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 \n1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 \n1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 \n1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 \n1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 \n1 ..."
},
{
"input": "39 39\n87 88 86 86 96 70 79 64 85 80 81 74 64 65 90 64 83 78 96 63 78 80 62 62 76 89 69 73 100 100 99 69 69 89 97 64 94 94 71",
"output": "YES\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 \n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 \n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1..."
},
{
"input": "100 67\n82 34 100 55 38 32 97 34 100 49 49 41 48 100 74 51 53 50 46 38 35 69 93 61 96 86 43 59 90 45 52 100 48 45 63 60 52 66 83 46 66 47 74 37 56 48 42 88 39 68 38 66 77 40 60 60 92 38 45 57 63 91 85 85 89 53 64 66 99 89 49 54 48 58 94 65 78 34 78 62 95 47 64 50 84 52 98 79 57 69 39 61 92 46 63 45 90 51 79 39",
"output": "NO"
},
{
"input": "100 35\n99 90 67 85 68 67 76 75 77 78 81 85 98 88 70 77 89 87 68 91 83 74 70 65 74 86 82 79 81 93 80 66 93 72 100 99 96 66 89 71 93 80 74 97 73 80 93 81 70 68 80 72 75 70 78 67 73 79 76 75 77 78 85 96 72 84 100 68 77 71 79 91 75 100 67 94 73 79 88 73 92 71 68 66 81 68 81 73 69 75 76 84 70 82 66 83 89 90 79 91",
"output": "YES\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 \n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 \n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1..."
},
{
"input": "100 15\n92 87 87 99 91 87 94 94 97 90 98 90 91 95 99 97 95 100 93 95 92 100 87 87 94 89 90 99 89 99 95 90 89 88 92 97 88 86 86 95 96 92 89 89 86 92 89 89 100 100 95 86 86 97 97 98 89 88 97 89 93 100 99 99 93 92 87 97 91 90 96 86 99 86 87 95 99 100 88 86 86 93 100 88 88 89 94 88 88 95 89 86 99 98 91 97 87 88 100 94",
"output": "YES\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 \n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 \n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ..."
},
{
"input": "17 1\n79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79",
"output": "YES\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 \n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 \n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 \n1 1 1 1 1 1 1 1 1 1 1 1 1 ..."
},
{
"input": "27 2\n53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53",
"output": "YES\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 \n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 \n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 \n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 \n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ..."
},
{
"input": "48 3\n85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85",
"output": "YES\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 \n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 \n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ..."
},
{
"input": "1 1\n1",
"output": "YES\n1 "
},
{
"input": "1 100\n1",
"output": "YES\n1 "
}
] | 1,603,471,448
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 24
| 109
| 307,200
|
n, k = list(map(int, input().split()))
A = list(map(int, input().split()))
flag = 1
if max(A) - min(A) > k:
print("NO")
flag = 0
if flag:
print("YES")
for i in A:
for j in range(i):
print((j % k) + 1, end=" ")
print()
|
Title: Painting Pebbles
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
There are *n* piles of pebbles on the table, the *i*-th pile contains *a**i* pebbles. Your task is to paint each pebble using one of the *k* given colors so that for each color *c* and any two piles *i* and *j* the difference between the number of pebbles of color *c* in pile *i* and number of pebbles of color *c* in pile *j* is at most one.
In other words, let's say that *b**i*,<=*c* is the number of pebbles of color *c* in the *i*-th pile. Then for any 1<=≤<=*c*<=≤<=*k*, 1<=≤<=*i*,<=*j*<=≤<=*n* the following condition must be satisfied |*b**i*,<=*c*<=-<=*b**j*,<=*c*|<=≤<=1. It isn't necessary to use all *k* colors: if color *c* hasn't been used in pile *i*, then *b**i*,<=*c* is considered to be zero.
Input Specification:
The first line of the input contains positive integers *n* and *k* (1<=≤<=*n*,<=*k*<=≤<=100), separated by a space — the number of piles and the number of colors respectively.
The second line contains *n* positive integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=100) denoting number of pebbles in each of the piles.
Output Specification:
If there is no way to paint the pebbles satisfying the given condition, output "NO" (without quotes) .
Otherwise in the first line output "YES" (without quotes). Then *n* lines should follow, the *i*-th of them should contain *a**i* space-separated integers. *j*-th (1<=≤<=*j*<=≤<=*a**i*) of these integers should be equal to the color of the *j*-th pebble in the *i*-th pile. If there are several possible answers, you may output any of them.
Demo Input:
['4 4\n1 2 3 4\n', '5 2\n3 2 4 1 3\n', '5 4\n3 2 4 3 5\n']
Demo Output:
['YES\n1\n1 4\n1 2 4\n1 2 3 4\n', 'NO\n', 'YES\n1 2 3\n1 3\n1 2 3 4\n1 3 4\n1 1 2 3 4\n']
Note:
none
|
```python
n, k = list(map(int, input().split()))
A = list(map(int, input().split()))
flag = 1
if max(A) - min(A) > k:
print("NO")
flag = 0
if flag:
print("YES")
for i in A:
for j in range(i):
print((j % k) + 1, end=" ")
print()
```
| 3
|
|
0
|
none
|
none
|
none
| 0
|
[
"none"
] | null | null |
You've got a string $a_1, a_2, \dots, a_n$, consisting of zeros and ones.
Let's call a sequence of consecutive elements $a_i, a_{i<=+<=1}, \ldots,<=a_j$ ($1\leq<=i\leq<=j\leq<=n$) a substring of string $a$.
You can apply the following operations any number of times:
- Choose some substring of string $a$ (for example, you can choose entire string) and reverse it, paying $x$ coins for it (for example, «0101101» $\to$ «0111001»); - Choose some substring of string $a$ (for example, you can choose entire string or just one symbol) and replace each symbol to the opposite one (zeros are replaced by ones, and ones — by zeros), paying $y$ coins for it (for example, «0101101» $\to$ «0110001»).
You can apply these operations in any order. It is allowed to apply the operations multiple times to the same substring.
What is the minimum number of coins you need to spend to get a string consisting only of ones?
|
The first line of input contains integers $n$, $x$ and $y$ ($1<=\leq<=n<=\leq<=300\,000, 0 \leq x, y \leq 10^9$) — length of the string, cost of the first operation (substring reverse) and cost of the second operation (inverting all elements of substring).
The second line contains the string $a$ of length $n$, consisting of zeros and ones.
|
Print a single integer — the minimum total cost of operations you need to spend to get a string consisting only of ones. Print $0$, if you do not need to perform any operations.
|
[
"5 1 10\n01000\n",
"5 10 1\n01000\n",
"7 2 3\n1111111\n"
] |
[
"11\n",
"2\n",
"0\n"
] |
In the first sample, at first you need to reverse substring $[1 \dots 2]$, and then you need to invert substring $[2 \dots 5]$.
Then the string was changed as follows:
«01000» $\to$ «10000» $\to$ «11111».
The total cost of operations is $1 + 10 = 11$.
In the second sample, at first you need to invert substring $[1 \dots 1]$, and then you need to invert substring $[3 \dots 5]$.
Then the string was changed as follows:
«01000» $\to$ «11000» $\to$ «11111».
The overall cost is $1 + 1 = 2$.
In the third example, string already consists only of ones, so the answer is $0$.
| 0
|
[
{
"input": "5 1 10\n01000",
"output": "11"
},
{
"input": "5 10 1\n01000",
"output": "2"
},
{
"input": "7 2 3\n1111111",
"output": "0"
},
{
"input": "1 60754033 959739508\n0",
"output": "959739508"
},
{
"input": "1 431963980 493041212\n1",
"output": "0"
},
{
"input": "1 314253869 261764879\n0",
"output": "261764879"
},
{
"input": "1 491511050 399084767\n1",
"output": "0"
},
{
"input": "2 163093925 214567542\n00",
"output": "214567542"
},
{
"input": "2 340351106 646854722\n10",
"output": "646854722"
},
{
"input": "2 222640995 489207317\n01",
"output": "489207317"
},
{
"input": "2 399898176 552898277\n11",
"output": "0"
},
{
"input": "2 690218164 577155357\n00",
"output": "577155357"
},
{
"input": "2 827538051 754412538\n10",
"output": "754412538"
},
{
"input": "2 636702427 259825230\n01",
"output": "259825230"
},
{
"input": "2 108926899 102177825\n11",
"output": "0"
},
{
"input": "3 368381052 440077270\n000",
"output": "440077270"
},
{
"input": "3 505700940 617334451\n100",
"output": "617334451"
},
{
"input": "3 499624340 643020827\n010",
"output": "1142645167"
},
{
"input": "3 75308005 971848814\n110",
"output": "971848814"
},
{
"input": "3 212627893 854138703\n001",
"output": "854138703"
},
{
"input": "3 31395883 981351561\n101",
"output": "981351561"
},
{
"input": "3 118671447 913685773\n011",
"output": "913685773"
},
{
"input": "3 255991335 385910245\n111",
"output": "0"
},
{
"input": "3 688278514 268200134\n000",
"output": "268200134"
},
{
"input": "3 825598402 445457315\n100",
"output": "445457315"
},
{
"input": "3 300751942 45676507\n010",
"output": "91353014"
},
{
"input": "3 517900980 438071829\n110",
"output": "438071829"
},
{
"input": "3 400190869 280424424\n001",
"output": "280424424"
},
{
"input": "3 577448050 344115384\n101",
"output": "344115384"
},
{
"input": "3 481435271 459737939\n011",
"output": "459737939"
},
{
"input": "3 931962412 913722450\n111",
"output": "0"
},
{
"input": "4 522194562 717060616\n0000",
"output": "717060616"
},
{
"input": "4 659514449 894317797\n1000",
"output": "894317797"
},
{
"input": "4 71574977 796834337\n0100",
"output": "868409314"
},
{
"input": "4 248832158 934154224\n1100",
"output": "934154224"
},
{
"input": "4 71474110 131122047\n0010",
"output": "202596157"
},
{
"input": "4 308379228 503761290\n1010",
"output": "812140518"
},
{
"input": "4 272484957 485636409\n0110",
"output": "758121366"
},
{
"input": "4 662893590 704772137\n1110",
"output": "704772137"
},
{
"input": "4 545183479 547124732\n0001",
"output": "547124732"
},
{
"input": "4 684444619 722440661\n1001",
"output": "722440661"
},
{
"input": "4 477963686 636258459\n0101",
"output": "1114222145"
},
{
"input": "4 360253575 773578347\n1101",
"output": "773578347"
},
{
"input": "4 832478048 910898234\n0011",
"output": "910898234"
},
{
"input": "4 343185412 714767937\n1011",
"output": "714767937"
},
{
"input": "4 480505300 892025118\n0111",
"output": "892025118"
},
{
"input": "4 322857895 774315007\n1111",
"output": "0"
},
{
"input": "4 386548854 246539479\n0000",
"output": "246539479"
},
{
"input": "4 523868742 128829368\n1000",
"output": "128829368"
},
{
"input": "4 956155921 11119257\n0100",
"output": "22238514"
},
{
"input": "4 188376438 93475808\n1100",
"output": "93475808"
},
{
"input": "4 754947032 158668188\n0010",
"output": "317336376"
},
{
"input": "4 927391856 637236921\n1010",
"output": "1274473842"
},
{
"input": "4 359679035 109461393\n0110",
"output": "218922786"
},
{
"input": "4 991751283 202031630\n1110",
"output": "202031630"
},
{
"input": "4 339351517 169008463\n0001",
"output": "169008463"
},
{
"input": "4 771638697 346265644\n1001",
"output": "346265644"
},
{
"input": "4 908958584 523522825\n0101",
"output": "1047045650"
},
{
"input": "4 677682252 405812714\n1101",
"output": "405812714"
},
{
"input": "4 815002139 288102603\n0011",
"output": "288102603"
},
{
"input": "4 952322026 760327076\n1011",
"output": "760327076"
},
{
"input": "4 663334158 312481698\n0111",
"output": "312481698"
},
{
"input": "4 840591339 154834293\n1111",
"output": "0"
},
{
"input": "14 3 11\n10110100011001",
"output": "20"
},
{
"input": "19 1 1\n1010101010101010101",
"output": "9"
},
{
"input": "1 10 1\n1",
"output": "0"
},
{
"input": "1 100 1\n1",
"output": "0"
},
{
"input": "5 1000 1\n11111",
"output": "0"
},
{
"input": "5 10 1\n11111",
"output": "0"
},
{
"input": "7 3 2\n1111111",
"output": "0"
},
{
"input": "5 1 10\n10101",
"output": "11"
},
{
"input": "1 3 2\n1",
"output": "0"
},
{
"input": "2 10 1\n11",
"output": "0"
},
{
"input": "4 148823922 302792601\n1010",
"output": "451616523"
},
{
"input": "1 2 1\n1",
"output": "0"
},
{
"input": "5 2 3\n00011",
"output": "3"
},
{
"input": "1 5 0\n1",
"output": "0"
},
{
"input": "7 2 3\n1001001",
"output": "5"
},
{
"input": "10 1 1000000000\n1111010111",
"output": "1000000001"
},
{
"input": "25 999999998 999999999\n1011001110101010100111001",
"output": "7999999985"
},
{
"input": "2 0 1\n00",
"output": "1"
},
{
"input": "2 1 100\n10",
"output": "100"
},
{
"input": "7 20 3\n1111111",
"output": "0"
},
{
"input": "1 1 0\n1",
"output": "0"
},
{
"input": "3 1 10\n010",
"output": "11"
},
{
"input": "2 1 0\n11",
"output": "0"
},
{
"input": "7 100 3\n1111111",
"output": "0"
},
{
"input": "5 1 1000\n10101",
"output": "1001"
},
{
"input": "5 2 1\n11111",
"output": "0"
},
{
"input": "1 1000 1\n1",
"output": "0"
},
{
"input": "1 799543940 488239239\n1",
"output": "0"
},
{
"input": "6 1 1000\n010101",
"output": "1002"
},
{
"input": "5 11 1\n11111",
"output": "0"
},
{
"input": "5 2 3\n10101",
"output": "5"
},
{
"input": "3 10 1\n111",
"output": "0"
},
{
"input": "7 9 10\n1001011",
"output": "19"
},
{
"input": "5 5 6\n10101",
"output": "11"
},
{
"input": "1 1000000000 0\n1",
"output": "0"
},
{
"input": "4 0 1\n0101",
"output": "1"
},
{
"input": "8 2 3\n10101010",
"output": "9"
},
{
"input": "6 3 100\n010101",
"output": "106"
},
{
"input": "3 3 2\n111",
"output": "0"
},
{
"input": "1 20 1\n1",
"output": "0"
},
{
"input": "2 1 2\n01",
"output": "2"
}
] | 1,530,460,217
| 6,317
|
Python 3
|
OK
|
TESTS
| 115
| 295
| 4,608,000
|
n, x, y = list(map(int, (input().split(" "))))
s = list(map(int, list(input())))
t = []
last0 = False
isfirst = True
for i in s:
if i == 0:
if isfirst:
t.append(i)
isfirst = False
last0 = True
else:
if last0:
continue
else:
last0 = True
t.append(i)
else:
if isfirst:
t.append(i)
isfirst = False
last0 = False
if not last0:
continue
else:
last0 = False
t.append(i)
if x < y: #дорогая замена
s = 0
for i in t:
if i == 0:
s += 1
if s != 0:
print((s - 1) * x + y)
else:
print(0)
else: #дорогой разворот
s = 0
for i in t:
if i == 0:
s += 1
print(s * y)
|
Title: none
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You've got a string $a_1, a_2, \dots, a_n$, consisting of zeros and ones.
Let's call a sequence of consecutive elements $a_i, a_{i<=+<=1}, \ldots,<=a_j$ ($1\leq<=i\leq<=j\leq<=n$) a substring of string $a$.
You can apply the following operations any number of times:
- Choose some substring of string $a$ (for example, you can choose entire string) and reverse it, paying $x$ coins for it (for example, «0101101» $\to$ «0111001»); - Choose some substring of string $a$ (for example, you can choose entire string or just one symbol) and replace each symbol to the opposite one (zeros are replaced by ones, and ones — by zeros), paying $y$ coins for it (for example, «0101101» $\to$ «0110001»).
You can apply these operations in any order. It is allowed to apply the operations multiple times to the same substring.
What is the minimum number of coins you need to spend to get a string consisting only of ones?
Input Specification:
The first line of input contains integers $n$, $x$ and $y$ ($1<=\leq<=n<=\leq<=300\,000, 0 \leq x, y \leq 10^9$) — length of the string, cost of the first operation (substring reverse) and cost of the second operation (inverting all elements of substring).
The second line contains the string $a$ of length $n$, consisting of zeros and ones.
Output Specification:
Print a single integer — the minimum total cost of operations you need to spend to get a string consisting only of ones. Print $0$, if you do not need to perform any operations.
Demo Input:
['5 1 10\n01000\n', '5 10 1\n01000\n', '7 2 3\n1111111\n']
Demo Output:
['11\n', '2\n', '0\n']
Note:
In the first sample, at first you need to reverse substring $[1 \dots 2]$, and then you need to invert substring $[2 \dots 5]$.
Then the string was changed as follows:
«01000» $\to$ «10000» $\to$ «11111».
The total cost of operations is $1 + 10 = 11$.
In the second sample, at first you need to invert substring $[1 \dots 1]$, and then you need to invert substring $[3 \dots 5]$.
Then the string was changed as follows:
«01000» $\to$ «11000» $\to$ «11111».
The overall cost is $1 + 1 = 2$.
In the third example, string already consists only of ones, so the answer is $0$.
|
```python
n, x, y = list(map(int, (input().split(" "))))
s = list(map(int, list(input())))
t = []
last0 = False
isfirst = True
for i in s:
if i == 0:
if isfirst:
t.append(i)
isfirst = False
last0 = True
else:
if last0:
continue
else:
last0 = True
t.append(i)
else:
if isfirst:
t.append(i)
isfirst = False
last0 = False
if not last0:
continue
else:
last0 = False
t.append(i)
if x < y: #дорогая замена
s = 0
for i in t:
if i == 0:
s += 1
if s != 0:
print((s - 1) * x + y)
else:
print(0)
else: #дорогой разворот
s = 0
for i in t:
if i == 0:
s += 1
print(s * y)
```
| 3
|
|
902
|
A
|
Visiting a Friend
|
PROGRAMMING
| 1,100
|
[
"greedy",
"implementation"
] | null | null |
Pig is visiting a friend.
Pig's house is located at point 0, and his friend's house is located at point *m* on an axis.
Pig can use teleports to move along the axis.
To use a teleport, Pig should come to a certain point (where the teleport is located) and choose where to move: for each teleport there is the rightmost point it can move Pig to, this point is known as the limit of the teleport.
Formally, a teleport located at point *x* with limit *y* can move Pig from point *x* to any point within the segment [*x*;<=*y*], including the bounds.
Determine if Pig can visit the friend using teleports only, or he should use his car.
|
The first line contains two integers *n* and *m* (1<=≤<=*n*<=≤<=100,<=1<=≤<=*m*<=≤<=100) — the number of teleports and the location of the friend's house.
The next *n* lines contain information about teleports.
The *i*-th of these lines contains two integers *a**i* and *b**i* (0<=≤<=*a**i*<=≤<=*b**i*<=≤<=*m*), where *a**i* is the location of the *i*-th teleport, and *b**i* is its limit.
It is guaranteed that *a**i*<=≥<=*a**i*<=-<=1 for every *i* (2<=≤<=*i*<=≤<=*n*).
|
Print "YES" if there is a path from Pig's house to his friend's house that uses only teleports, and "NO" otherwise.
You can print each letter in arbitrary case (upper or lower).
|
[
"3 5\n0 2\n2 4\n3 5\n",
"3 7\n0 4\n2 5\n6 7\n"
] |
[
"YES\n",
"NO\n"
] |
The first example is shown on the picture below:
Pig can use the first teleport from his house (point 0) to reach point 2, then using the second teleport go from point 2 to point 3, then using the third teleport go from point 3 to point 5, where his friend lives.
The second example is shown on the picture below:
You can see that there is no path from Pig's house to his friend's house that uses only teleports.
| 500
|
[
{
"input": "3 5\n0 2\n2 4\n3 5",
"output": "YES"
},
{
"input": "3 7\n0 4\n2 5\n6 7",
"output": "NO"
},
{
"input": "1 1\n0 0",
"output": "NO"
},
{
"input": "30 10\n0 7\n1 2\n1 2\n1 4\n1 4\n1 3\n2 2\n2 4\n2 6\n2 9\n2 2\n3 5\n3 8\n4 8\n4 5\n4 6\n5 6\n5 7\n6 6\n6 9\n6 7\n6 9\n7 7\n7 7\n8 8\n8 8\n9 9\n9 9\n10 10\n10 10",
"output": "NO"
},
{
"input": "30 100\n0 27\n4 82\n11 81\n14 32\n33 97\n33 34\n37 97\n38 52\n45 91\n49 56\n50 97\n57 70\n59 94\n59 65\n62 76\n64 65\n65 95\n67 77\n68 100\n71 73\n80 94\n81 92\n84 85\n85 100\n88 91\n91 95\n92 98\n92 98\n99 100\n100 100",
"output": "YES"
},
{
"input": "70 10\n0 4\n0 4\n0 8\n0 9\n0 1\n0 5\n0 7\n1 3\n1 8\n1 8\n1 6\n1 6\n1 2\n1 3\n1 2\n1 3\n2 5\n2 4\n2 3\n2 4\n2 6\n2 2\n2 5\n2 7\n3 7\n3 4\n3 7\n3 4\n3 8\n3 4\n3 9\n3 3\n3 7\n3 9\n3 3\n3 9\n4 6\n4 7\n4 5\n4 7\n5 8\n5 5\n5 9\n5 7\n5 5\n6 6\n6 9\n6 7\n6 8\n6 9\n6 8\n7 7\n7 8\n7 7\n7 8\n8 9\n8 8\n8 9\n8 8\n9 9\n9 9\n9 9\n9 9\n9 9\n9 9\n10 10\n10 10\n10 10\n10 10\n10 10",
"output": "NO"
},
{
"input": "30 10\n0 7\n1 2\n1 2\n1 4\n1 4\n1 3\n2 2\n2 4\n2 6\n2 9\n2 2\n3 5\n3 8\n4 8\n4 5\n4 6\n5 6\n5 7\n6 6\n6 9\n6 7\n6 9\n7 7\n7 7\n8 10\n8 10\n9 9\n9 9\n10 10\n10 10",
"output": "YES"
},
{
"input": "50 100\n0 95\n1 100\n1 38\n2 82\n5 35\n7 71\n8 53\n11 49\n15 27\n17 84\n17 75\n18 99\n18 43\n18 69\n21 89\n27 60\n27 29\n38 62\n38 77\n39 83\n40 66\n48 80\n48 100\n50 51\n50 61\n53 77\n53 63\n55 58\n56 68\n60 82\n62 95\n66 74\n67 83\n69 88\n69 81\n69 88\n69 98\n70 91\n70 76\n71 90\n72 99\n81 99\n85 87\n88 97\n88 93\n90 97\n90 97\n92 98\n98 99\n100 100",
"output": "YES"
},
{
"input": "70 10\n0 4\n0 4\n0 8\n0 9\n0 1\n0 5\n0 7\n1 3\n1 8\n1 8\n1 10\n1 9\n1 6\n1 2\n1 3\n1 2\n2 6\n2 5\n2 4\n2 3\n2 10\n2 2\n2 6\n2 2\n3 10\n3 7\n3 7\n3 4\n3 7\n3 4\n3 8\n3 4\n3 10\n3 5\n3 3\n3 7\n4 8\n4 8\n4 9\n4 6\n5 7\n5 10\n5 7\n5 8\n5 5\n6 8\n6 9\n6 10\n6 6\n6 9\n6 7\n7 8\n7 9\n7 10\n7 10\n8 8\n8 8\n8 9\n8 10\n9 10\n9 9\n9 10\n9 10\n9 9\n9 9\n10 10\n10 10\n10 10\n10 10\n10 10",
"output": "YES"
},
{
"input": "85 10\n0 9\n0 4\n0 2\n0 5\n0 1\n0 8\n0 7\n1 2\n1 4\n1 5\n1 9\n1 1\n1 6\n1 6\n2 5\n2 7\n2 7\n2 7\n2 7\n3 4\n3 7\n3 9\n3 5\n3 3\n4 4\n4 6\n4 5\n5 6\n5 6\n5 6\n5 6\n5 7\n5 8\n5 5\n5 7\n5 8\n5 9\n5 8\n6 8\n6 7\n6 8\n6 9\n6 9\n6 6\n6 9\n6 7\n7 7\n7 7\n7 7\n7 8\n7 7\n7 8\n7 8\n7 9\n8 8\n8 8\n8 8\n8 8\n8 8\n8 9\n8 9\n9 9\n9 9\n9 9\n9 9\n9 9\n9 9\n9 9\n9 9\n9 9\n10 10\n10 10\n10 10\n10 10\n10 10\n10 10\n10 10\n10 10\n10 10\n10 10\n10 10\n10 10\n10 10\n10 10\n10 10",
"output": "NO"
},
{
"input": "30 40\n0 0\n4 8\n5 17\n7 32\n7 16\n8 16\n10 19\n12 22\n12 27\n13 21\n13 28\n13 36\n14 28\n14 18\n18 21\n21 26\n21 36\n22 38\n23 32\n24 30\n26 35\n29 32\n29 32\n31 34\n31 31\n33 33\n33 35\n35 40\n38 38\n40 40",
"output": "NO"
},
{
"input": "70 100\n0 99\n1 87\n1 94\n1 4\n2 72\n3 39\n3 69\n4 78\n5 85\n7 14\n8 59\n12 69\n14 15\n14 76\n17 17\n19 53\n19 57\n19 21\n21 35\n21 83\n24 52\n24 33\n27 66\n27 97\n30 62\n30 74\n30 64\n32 63\n35 49\n37 60\n40 99\n40 71\n41 83\n42 66\n42 46\n45 83\n51 76\n53 69\n54 82\n54 96\n54 88\n55 91\n56 88\n58 62\n62 87\n64 80\n67 90\n67 69\n68 92\n72 93\n74 93\n77 79\n77 91\n78 97\n78 98\n81 85\n81 83\n81 83\n84 85\n86 88\n89 94\n89 92\n92 97\n96 99\n97 98\n97 99\n99 99\n100 100\n100 100\n100 100",
"output": "NO"
},
{
"input": "1 10\n0 10",
"output": "YES"
},
{
"input": "70 40\n0 34\n1 16\n3 33\n4 36\n4 22\n5 9\n5 9\n7 16\n8 26\n9 29\n9 25\n10 15\n10 22\n10 29\n10 20\n11 27\n11 26\n11 12\n12 19\n13 21\n14 31\n14 36\n15 34\n15 37\n16 21\n17 31\n18 22\n20 27\n20 32\n20 20\n20 29\n21 29\n21 34\n21 30\n22 40\n23 23\n23 28\n24 29\n25 38\n26 35\n27 37\n28 39\n28 33\n28 40\n28 33\n29 31\n29 33\n30 38\n30 36\n30 30\n30 38\n31 37\n31 35\n31 32\n31 36\n33 39\n33 40\n35 38\n36 38\n37 38\n37 40\n38 39\n38 40\n38 39\n39 39\n39 40\n40 40\n40 40\n40 40\n40 40",
"output": "YES"
},
{
"input": "50 40\n0 9\n1 26\n1 27\n2 33\n2 5\n3 30\n4 28\n5 31\n5 27\n5 29\n7 36\n8 32\n8 13\n9 24\n10 10\n10 30\n11 26\n11 22\n11 40\n11 31\n12 26\n13 25\n14 32\n17 19\n21 29\n22 36\n24 27\n25 39\n25 27\n27 32\n27 29\n27 39\n27 29\n28 38\n30 38\n32 40\n32 38\n33 33\n33 40\n34 35\n34 34\n34 38\n34 38\n35 37\n36 39\n36 39\n37 37\n38 40\n39 39\n40 40",
"output": "YES"
},
{
"input": "70 40\n0 34\n1 16\n3 33\n4 36\n4 22\n5 9\n5 9\n7 16\n8 26\n9 29\n9 25\n10 15\n10 22\n10 29\n10 20\n11 27\n11 26\n11 12\n12 19\n13 21\n14 31\n14 36\n15 34\n15 37\n16 21\n17 31\n18 22\n20 27\n20 32\n20 20\n20 29\n21 29\n21 34\n21 30\n22 22\n23 28\n23 39\n24 24\n25 27\n26 38\n27 39\n28 33\n28 39\n28 34\n28 33\n29 30\n29 35\n30 30\n30 38\n30 34\n30 31\n31 36\n31 31\n31 32\n31 38\n33 34\n33 34\n35 36\n36 38\n37 38\n37 39\n38 38\n38 38\n38 38\n39 39\n39 39\n40 40\n40 40\n40 40\n40 40",
"output": "NO"
},
{
"input": "10 100\n0 34\n8 56\n17 79\n24 88\n28 79\n45 79\n48 93\n55 87\n68 93\n88 99",
"output": "NO"
},
{
"input": "10 10\n0 2\n3 8\n3 5\n3 3\n3 9\n3 8\n5 7\n6 10\n7 10\n9 10",
"output": "NO"
},
{
"input": "50 10\n0 2\n0 2\n0 6\n1 9\n1 3\n1 2\n1 6\n1 1\n1 1\n2 7\n2 6\n2 4\n3 9\n3 8\n3 8\n3 8\n3 6\n3 4\n3 7\n3 4\n3 6\n3 5\n4 8\n5 5\n5 7\n6 7\n6 6\n7 7\n7 7\n7 7\n7 8\n7 8\n8 8\n8 8\n8 9\n8 8\n8 9\n9 9\n9 9\n9 9\n10 10\n10 10\n10 10\n10 10\n10 10\n10 10\n10 10\n10 10\n10 10\n10 10",
"output": "NO"
},
{
"input": "10 40\n0 21\n1 19\n4 33\n6 26\n8 39\n15 15\n20 24\n27 27\n29 39\n32 37",
"output": "NO"
},
{
"input": "50 10\n0 2\n0 2\n0 6\n1 9\n1 3\n1 2\n1 6\n1 1\n1 1\n2 7\n2 6\n2 4\n3 9\n3 8\n3 8\n3 8\n3 6\n3 4\n3 7\n3 4\n3 6\n3 10\n4 6\n5 9\n5 5\n6 7\n6 10\n7 8\n7 7\n7 7\n7 7\n7 10\n8 8\n8 8\n8 10\n8 8\n8 8\n9 10\n9 10\n9 10\n10 10\n10 10\n10 10\n10 10\n10 10\n10 10\n10 10\n10 10\n10 10\n10 10",
"output": "YES"
},
{
"input": "1 1\n0 1",
"output": "YES"
},
{
"input": "30 40\n0 0\n4 8\n5 17\n7 32\n7 16\n8 16\n10 19\n12 22\n12 27\n13 21\n13 28\n13 36\n14 28\n14 18\n18 21\n21 26\n21 36\n22 38\n23 32\n24 30\n26 35\n29 32\n29 32\n31 34\n31 31\n33 33\n33 35\n35 36\n38 38\n40 40",
"output": "NO"
},
{
"input": "30 100\n0 27\n4 82\n11 81\n14 32\n33 97\n33 34\n37 97\n38 52\n45 91\n49 56\n50 97\n57 70\n59 94\n59 65\n62 76\n64 65\n65 95\n67 77\n68 82\n71 94\n80 90\n81 88\n84 93\n85 89\n88 92\n91 97\n92 99\n92 97\n99 99\n100 100",
"output": "NO"
},
{
"input": "10 100\n0 34\n8 56\n17 79\n24 88\n28 79\n45 79\n48 93\n55 87\n68 93\n79 100",
"output": "YES"
},
{
"input": "10 40\n0 21\n1 19\n4 33\n6 26\n8 39\n15 15\n20 24\n27 27\n29 39\n37 40",
"output": "YES"
},
{
"input": "85 10\n0 9\n0 4\n0 2\n0 5\n0 1\n0 8\n0 7\n1 2\n1 10\n1 2\n1 5\n1 10\n1 8\n1 1\n2 8\n2 7\n2 5\n2 5\n2 7\n3 5\n3 7\n3 5\n3 4\n3 7\n4 7\n4 8\n4 6\n5 7\n5 10\n5 5\n5 6\n5 6\n5 6\n5 6\n5 7\n5 8\n5 5\n5 7\n6 10\n6 9\n6 7\n6 10\n6 8\n6 7\n6 10\n6 10\n7 8\n7 9\n7 8\n7 8\n7 8\n7 8\n7 7\n7 7\n8 8\n8 8\n8 10\n8 9\n8 9\n8 9\n8 9\n9 9\n9 10\n9 9\n9 9\n9 9\n9 9\n9 10\n9 10\n9 9\n10 10\n10 10\n10 10\n10 10\n10 10\n10 10\n10 10\n10 10\n10 10\n10 10\n10 10\n10 10\n10 10\n10 10\n10 10",
"output": "YES"
},
{
"input": "50 100\n0 95\n1 7\n1 69\n2 83\n5 67\n7 82\n8 31\n11 25\n15 44\n17 75\n17 27\n18 43\n18 69\n18 40\n21 66\n27 29\n27 64\n38 77\n38 90\n39 52\n40 60\n48 91\n48 98\n50 89\n50 63\n53 54\n53 95\n55 76\n56 59\n60 96\n62 86\n66 70\n67 77\n69 88\n69 98\n69 80\n69 95\n70 74\n70 77\n71 99\n72 73\n81 87\n85 99\n88 96\n88 91\n90 97\n90 99\n92 92\n98 99\n100 100",
"output": "NO"
},
{
"input": "50 40\n0 9\n1 26\n1 27\n2 33\n2 5\n3 30\n4 28\n5 31\n5 27\n5 29\n7 36\n8 32\n8 13\n9 24\n10 10\n10 30\n11 26\n11 22\n11 35\n11 23\n12 36\n13 31\n14 31\n17 17\n21 25\n22 33\n24 26\n25 32\n25 25\n27 39\n27 29\n27 34\n27 32\n28 34\n30 36\n32 37\n32 33\n33 35\n33 33\n34 38\n34 38\n34 36\n34 36\n35 36\n36 36\n36 39\n37 37\n38 39\n39 39\n40 40",
"output": "NO"
},
{
"input": "10 10\n0 2\n3 8\n3 5\n3 3\n3 9\n3 8\n5 7\n6 9\n7 7\n9 9",
"output": "NO"
},
{
"input": "70 100\n0 99\n1 87\n1 94\n1 4\n2 72\n3 39\n3 69\n4 78\n5 85\n7 14\n8 59\n12 69\n14 15\n14 76\n17 17\n19 53\n19 57\n19 21\n21 35\n21 83\n24 52\n24 33\n27 66\n27 97\n30 62\n30 74\n30 64\n32 63\n35 49\n37 60\n40 99\n40 71\n41 83\n42 66\n42 46\n45 83\n51 76\n53 69\n54 82\n54 96\n54 88\n55 91\n56 88\n58 62\n62 87\n64 80\n67 90\n67 69\n68 92\n72 93\n74 93\n77 79\n77 91\n78 97\n78 98\n81 85\n81 83\n81 83\n84 85\n86 88\n89 94\n89 100\n92 97\n96 96\n97 98\n97 100\n99 100\n100 100\n100 100\n100 100",
"output": "YES"
},
{
"input": "2 2\n0 2\n0 1",
"output": "YES"
},
{
"input": "2 100\n0 49\n50 100",
"output": "NO"
},
{
"input": "2 100\n0 50\n50 100",
"output": "YES"
},
{
"input": "10 100\n0 10\n10 20\n20 30\n30 40\n40 50\n50 60\n60 70\n70 80\n80 90\n90 100",
"output": "YES"
},
{
"input": "100 10\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 10",
"output": "YES"
},
{
"input": "1 4\n1 4",
"output": "NO"
},
{
"input": "3 5\n0 2\n2 5\n3 4",
"output": "YES"
},
{
"input": "2 5\n0 5\n1 2",
"output": "YES"
},
{
"input": "5 5\n0 2\n0 2\n3 5\n3 5\n3 5",
"output": "NO"
},
{
"input": "4 10\n0 3\n2 10\n4 10\n5 7",
"output": "YES"
},
{
"input": "3 8\n0 0\n1 8\n2 8",
"output": "NO"
},
{
"input": "6 8\n0 3\n1 5\n2 3\n5 6\n6 7\n7 8",
"output": "YES"
}
] | 1,513,698,530
| 830
|
Python 3
|
OK
|
TESTS
| 55
| 77
| 5,529,600
|
from sys import exit
n, m = map(int, input().split())
t = [-1 for i in range(101)]
for _ in range(n):
a, b = map(int, input().split())
t[a] = max(t[a], b)
cur = m
while True:
beg = cur
for i, v in enumerate(t):
if cur <= v and cur >= i:
if i == 0:
print('Yes')
exit(0)
if i < beg:
beg = i
if beg == cur:
print('No')
exit(0)
cur = beg
|
Title: Visiting a Friend
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Pig is visiting a friend.
Pig's house is located at point 0, and his friend's house is located at point *m* on an axis.
Pig can use teleports to move along the axis.
To use a teleport, Pig should come to a certain point (where the teleport is located) and choose where to move: for each teleport there is the rightmost point it can move Pig to, this point is known as the limit of the teleport.
Formally, a teleport located at point *x* with limit *y* can move Pig from point *x* to any point within the segment [*x*;<=*y*], including the bounds.
Determine if Pig can visit the friend using teleports only, or he should use his car.
Input Specification:
The first line contains two integers *n* and *m* (1<=≤<=*n*<=≤<=100,<=1<=≤<=*m*<=≤<=100) — the number of teleports and the location of the friend's house.
The next *n* lines contain information about teleports.
The *i*-th of these lines contains two integers *a**i* and *b**i* (0<=≤<=*a**i*<=≤<=*b**i*<=≤<=*m*), where *a**i* is the location of the *i*-th teleport, and *b**i* is its limit.
It is guaranteed that *a**i*<=≥<=*a**i*<=-<=1 for every *i* (2<=≤<=*i*<=≤<=*n*).
Output Specification:
Print "YES" if there is a path from Pig's house to his friend's house that uses only teleports, and "NO" otherwise.
You can print each letter in arbitrary case (upper or lower).
Demo Input:
['3 5\n0 2\n2 4\n3 5\n', '3 7\n0 4\n2 5\n6 7\n']
Demo Output:
['YES\n', 'NO\n']
Note:
The first example is shown on the picture below:
Pig can use the first teleport from his house (point 0) to reach point 2, then using the second teleport go from point 2 to point 3, then using the third teleport go from point 3 to point 5, where his friend lives.
The second example is shown on the picture below:
You can see that there is no path from Pig's house to his friend's house that uses only teleports.
|
```python
from sys import exit
n, m = map(int, input().split())
t = [-1 for i in range(101)]
for _ in range(n):
a, b = map(int, input().split())
t[a] = max(t[a], b)
cur = m
while True:
beg = cur
for i, v in enumerate(t):
if cur <= v and cur >= i:
if i == 0:
print('Yes')
exit(0)
if i < beg:
beg = i
if beg == cur:
print('No')
exit(0)
cur = beg
```
| 3
|
|
285
|
C
|
Building Permutation
|
PROGRAMMING
| 1,200
|
[
"greedy",
"implementation",
"sortings"
] | null | null |
Permutation *p* is an ordered set of integers *p*1,<=<=*p*2,<=<=...,<=<=*p**n*, consisting of *n* distinct positive integers, each of them doesn't exceed *n*. We'll denote the *i*-th element of permutation *p* as *p**i*. We'll call number *n* the size or the length of permutation *p*1,<=<=*p*2,<=<=...,<=<=*p**n*.
You have a sequence of integers *a*1,<=*a*2,<=...,<=*a**n*. In one move, you are allowed to decrease or increase any number by one. Count the minimum number of moves, needed to build a permutation from this sequence.
|
The first line contains integer *n* (1<=≤<=*n*<=≤<=3·105) — the size of the sought permutation. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (<=-<=109<=≤<=*a**i*<=≤<=109).
|
Print a single number — the minimum number of moves.
Please, do not use the %lld specifier to read or write 64-bit integers in C++. It is preferred to use the cin, cout streams or the %I64d specifier.
|
[
"2\n3 0\n",
"3\n-1 -1 2\n"
] |
[
"2\n",
"6\n"
] |
In the first sample you should decrease the first number by one and then increase the second number by one. The resulting permutation is (2, 1).
In the second sample you need 6 moves to build permutation (1, 3, 2).
| 1,500
|
[
{
"input": "2\n3 0",
"output": "2"
},
{
"input": "3\n-1 -1 2",
"output": "6"
},
{
"input": "5\n-3 5 -3 3 3",
"output": "10"
},
{
"input": "10\n9 6 -2 4 1 1 1 9 6 2",
"output": "18"
},
{
"input": "9\n2 0 0 6 5 4 1 9 3",
"output": "15"
},
{
"input": "100\n-77 57 -95 -23 53 -28 82 -83 38 -73 85 28 25 6 -43 4 -10 -30 -9 -92 14 34 -93 61 36 -100 90 -68 28 16 100 -3 97 30 36 -55 62 -62 53 74 -50 -23 67 11 22 -30 -19 83 7 84 43 90 -65 -75 -15 97 90 15 66 2 13 -91 91 -44 46 51 51 -58 95 77 20 30 76 79 91 60 76 2 82 42 -93 94 -57 88 65 -95 -66 100 -9 33 -67 54 -99 97 53 13 54 66 60 -48",
"output": "3459"
}
] | 1,594,764,730
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 33
| 561
| 32,153,600
|
d = int(input())
e = [int(i) for i in input().split()]
e.sort()
s = [int(i) for i in range(1, d+1, 1) ]
answer = 0
for i in range(d):
if e[i] != s[i]:
answer+=abs(e[i]-s[i])
print(answer)
|
Title: Building Permutation
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Permutation *p* is an ordered set of integers *p*1,<=<=*p*2,<=<=...,<=<=*p**n*, consisting of *n* distinct positive integers, each of them doesn't exceed *n*. We'll denote the *i*-th element of permutation *p* as *p**i*. We'll call number *n* the size or the length of permutation *p*1,<=<=*p*2,<=<=...,<=<=*p**n*.
You have a sequence of integers *a*1,<=*a*2,<=...,<=*a**n*. In one move, you are allowed to decrease or increase any number by one. Count the minimum number of moves, needed to build a permutation from this sequence.
Input Specification:
The first line contains integer *n* (1<=≤<=*n*<=≤<=3·105) — the size of the sought permutation. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (<=-<=109<=≤<=*a**i*<=≤<=109).
Output Specification:
Print a single number — the minimum number of moves.
Please, do not use the %lld specifier to read or write 64-bit integers in C++. It is preferred to use the cin, cout streams or the %I64d specifier.
Demo Input:
['2\n3 0\n', '3\n-1 -1 2\n']
Demo Output:
['2\n', '6\n']
Note:
In the first sample you should decrease the first number by one and then increase the second number by one. The resulting permutation is (2, 1).
In the second sample you need 6 moves to build permutation (1, 3, 2).
|
```python
d = int(input())
e = [int(i) for i in input().split()]
e.sort()
s = [int(i) for i in range(1, d+1, 1) ]
answer = 0
for i in range(d):
if e[i] != s[i]:
answer+=abs(e[i]-s[i])
print(answer)
```
| 3
|
|
791
|
A
|
Bear and Big Brother
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Bear Limak wants to become the largest of bears, or at least to become larger than his brother Bob.
Right now, Limak and Bob weigh *a* and *b* respectively. It's guaranteed that Limak's weight is smaller than or equal to his brother's weight.
Limak eats a lot and his weight is tripled after every year, while Bob's weight is doubled after every year.
After how many full years will Limak become strictly larger (strictly heavier) than Bob?
|
The only line of the input contains two integers *a* and *b* (1<=≤<=*a*<=≤<=*b*<=≤<=10) — the weight of Limak and the weight of Bob respectively.
|
Print one integer, denoting the integer number of years after which Limak will become strictly larger than Bob.
|
[
"4 7\n",
"4 9\n",
"1 1\n"
] |
[
"2\n",
"3\n",
"1\n"
] |
In the first sample, Limak weighs 4 and Bob weighs 7 initially. After one year their weights are 4·3 = 12 and 7·2 = 14 respectively (one weight is tripled while the other one is doubled). Limak isn't larger than Bob yet. After the second year weights are 36 and 28, so the first weight is greater than the second one. Limak became larger than Bob after two years so you should print 2.
In the second sample, Limak's and Bob's weights in next years are: 12 and 18, then 36 and 36, and finally 108 and 72 (after three years). The answer is 3. Remember that Limak wants to be larger than Bob and he won't be satisfied with equal weights.
In the third sample, Limak becomes larger than Bob after the first year. Their weights will be 3 and 2 then.
| 500
|
[
{
"input": "4 7",
"output": "2"
},
{
"input": "4 9",
"output": "3"
},
{
"input": "1 1",
"output": "1"
},
{
"input": "4 6",
"output": "2"
},
{
"input": "1 10",
"output": "6"
},
{
"input": "1 1",
"output": "1"
},
{
"input": "1 2",
"output": "2"
},
{
"input": "1 3",
"output": "3"
},
{
"input": "1 4",
"output": "4"
},
{
"input": "1 5",
"output": "4"
},
{
"input": "1 6",
"output": "5"
},
{
"input": "1 7",
"output": "5"
},
{
"input": "1 8",
"output": "6"
},
{
"input": "1 9",
"output": "6"
},
{
"input": "1 10",
"output": "6"
},
{
"input": "2 2",
"output": "1"
},
{
"input": "2 3",
"output": "2"
},
{
"input": "2 4",
"output": "2"
},
{
"input": "2 5",
"output": "3"
},
{
"input": "2 6",
"output": "3"
},
{
"input": "2 7",
"output": "4"
},
{
"input": "2 8",
"output": "4"
},
{
"input": "2 9",
"output": "4"
},
{
"input": "2 10",
"output": "4"
},
{
"input": "3 3",
"output": "1"
},
{
"input": "3 4",
"output": "1"
},
{
"input": "3 5",
"output": "2"
},
{
"input": "3 6",
"output": "2"
},
{
"input": "3 7",
"output": "3"
},
{
"input": "3 8",
"output": "3"
},
{
"input": "3 9",
"output": "3"
},
{
"input": "3 10",
"output": "3"
},
{
"input": "4 4",
"output": "1"
},
{
"input": "4 5",
"output": "1"
},
{
"input": "4 6",
"output": "2"
},
{
"input": "4 7",
"output": "2"
},
{
"input": "4 8",
"output": "2"
},
{
"input": "4 9",
"output": "3"
},
{
"input": "4 10",
"output": "3"
},
{
"input": "5 5",
"output": "1"
},
{
"input": "5 6",
"output": "1"
},
{
"input": "5 7",
"output": "1"
},
{
"input": "5 8",
"output": "2"
},
{
"input": "5 9",
"output": "2"
},
{
"input": "5 10",
"output": "2"
},
{
"input": "6 6",
"output": "1"
},
{
"input": "6 7",
"output": "1"
},
{
"input": "6 8",
"output": "1"
},
{
"input": "6 9",
"output": "2"
},
{
"input": "6 10",
"output": "2"
},
{
"input": "7 7",
"output": "1"
},
{
"input": "7 8",
"output": "1"
},
{
"input": "7 9",
"output": "1"
},
{
"input": "7 10",
"output": "1"
},
{
"input": "8 8",
"output": "1"
},
{
"input": "8 9",
"output": "1"
},
{
"input": "8 10",
"output": "1"
},
{
"input": "9 9",
"output": "1"
},
{
"input": "9 10",
"output": "1"
},
{
"input": "10 10",
"output": "1"
},
{
"input": "10 10",
"output": "1"
},
{
"input": "1 2",
"output": "2"
}
] | 1,696,426,021
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 62
| 93
| 0
|
a , b = map(int , input().split())
is_big = False
years = 0
while (is_big == False):
if a > b :
break
else :
a *= 3
b *= 2
years += 1
print(years)
|
Title: Bear and Big Brother
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Bear Limak wants to become the largest of bears, or at least to become larger than his brother Bob.
Right now, Limak and Bob weigh *a* and *b* respectively. It's guaranteed that Limak's weight is smaller than or equal to his brother's weight.
Limak eats a lot and his weight is tripled after every year, while Bob's weight is doubled after every year.
After how many full years will Limak become strictly larger (strictly heavier) than Bob?
Input Specification:
The only line of the input contains two integers *a* and *b* (1<=≤<=*a*<=≤<=*b*<=≤<=10) — the weight of Limak and the weight of Bob respectively.
Output Specification:
Print one integer, denoting the integer number of years after which Limak will become strictly larger than Bob.
Demo Input:
['4 7\n', '4 9\n', '1 1\n']
Demo Output:
['2\n', '3\n', '1\n']
Note:
In the first sample, Limak weighs 4 and Bob weighs 7 initially. After one year their weights are 4·3 = 12 and 7·2 = 14 respectively (one weight is tripled while the other one is doubled). Limak isn't larger than Bob yet. After the second year weights are 36 and 28, so the first weight is greater than the second one. Limak became larger than Bob after two years so you should print 2.
In the second sample, Limak's and Bob's weights in next years are: 12 and 18, then 36 and 36, and finally 108 and 72 (after three years). The answer is 3. Remember that Limak wants to be larger than Bob and he won't be satisfied with equal weights.
In the third sample, Limak becomes larger than Bob after the first year. Their weights will be 3 and 2 then.
|
```python
a , b = map(int , input().split())
is_big = False
years = 0
while (is_big == False):
if a > b :
break
else :
a *= 3
b *= 2
years += 1
print(years)
```
| 3
|
|
432
|
A
|
Choosing Teams
|
PROGRAMMING
| 800
|
[
"greedy",
"implementation",
"sortings"
] | null | null |
The Saratov State University Olympiad Programmers Training Center (SSU OPTC) has *n* students. For each student you know the number of times he/she has participated in the ACM ICPC world programming championship. According to the ACM ICPC rules, each person can participate in the world championship at most 5 times.
The head of the SSU OPTC is recently gathering teams to participate in the world championship. Each team must consist of exactly three people, at that, any person cannot be a member of two or more teams. What maximum number of teams can the head make if he wants each team to participate in the world championship with the same members at least *k* times?
|
The first line contains two integers, *n* and *k* (1<=≤<=*n*<=≤<=2000; 1<=≤<=*k*<=≤<=5). The next line contains *n* integers: *y*1,<=*y*2,<=...,<=*y**n* (0<=≤<=*y**i*<=≤<=5), where *y**i* shows the number of times the *i*-th person participated in the ACM ICPC world championship.
|
Print a single number — the answer to the problem.
|
[
"5 2\n0 4 5 1 0\n",
"6 4\n0 1 2 3 4 5\n",
"6 5\n0 0 0 0 0 0\n"
] |
[
"1\n",
"0\n",
"2\n"
] |
In the first sample only one team could be made: the first, the fourth and the fifth participants.
In the second sample no teams could be created.
In the third sample two teams could be created. Any partition into two teams fits.
| 500
|
[
{
"input": "5 2\n0 4 5 1 0",
"output": "1"
},
{
"input": "6 4\n0 1 2 3 4 5",
"output": "0"
},
{
"input": "6 5\n0 0 0 0 0 0",
"output": "2"
},
{
"input": "3 4\n0 1 0",
"output": "1"
},
{
"input": "3 4\n0 2 0",
"output": "0"
},
{
"input": "6 5\n0 0 0 0 0 0",
"output": "2"
},
{
"input": "12 2\n0 1 2 3 4 0 1 2 3 4 0 1",
"output": "3"
},
{
"input": "15 2\n0 1 2 3 4 0 1 2 3 4 0 1 2 3 4",
"output": "4"
},
{
"input": "13 1\n5 0 5 0 1 5 0 4 1 1 1 4 1",
"output": "3"
},
{
"input": "20 1\n5 0 4 2 2 3 2 1 2 4 1 3 5 5 5 4 4 1 3 0",
"output": "5"
},
{
"input": "20 2\n1 4 5 1 3 4 0 5 0 3 3 0 4 0 0 1 4 2 0 4",
"output": "4"
},
{
"input": "20 2\n1 4 5 1 3 4 0 5 0 3 3 0 4 0 0 1 4 2 0 4",
"output": "4"
},
{
"input": "20 2\n1 4 5 1 3 4 0 5 0 3 3 0 4 0 0 1 4 2 0 4",
"output": "4"
},
{
"input": "20 2\n1 4 5 1 3 4 0 5 0 3 3 0 4 0 0 1 4 2 0 4",
"output": "4"
},
{
"input": "6 3\n4 4 4 4 4 4",
"output": "0"
},
{
"input": "1 4\n1",
"output": "0"
},
{
"input": "1 1\n0",
"output": "0"
},
{
"input": "2 3\n0 0",
"output": "0"
}
] | 1,666,521,268
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 35
| 46
| 102,400
|
# This is a sample Python script.
# Press Shift+F10 to execute it or replace it with your code.
# Press Double Shift to search everywhere for classes, files, tool windows, actions, and settings.
import math
import collections
if __name__ == '__main__':
n, k = map(int, input().split(' '))
p = [int(e) for e in input().split(' ')]
#print(n, k, p)
print(len([e for e in p if e + k < 6]) // 3)
|
Title: Choosing Teams
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
The Saratov State University Olympiad Programmers Training Center (SSU OPTC) has *n* students. For each student you know the number of times he/she has participated in the ACM ICPC world programming championship. According to the ACM ICPC rules, each person can participate in the world championship at most 5 times.
The head of the SSU OPTC is recently gathering teams to participate in the world championship. Each team must consist of exactly three people, at that, any person cannot be a member of two or more teams. What maximum number of teams can the head make if he wants each team to participate in the world championship with the same members at least *k* times?
Input Specification:
The first line contains two integers, *n* and *k* (1<=≤<=*n*<=≤<=2000; 1<=≤<=*k*<=≤<=5). The next line contains *n* integers: *y*1,<=*y*2,<=...,<=*y**n* (0<=≤<=*y**i*<=≤<=5), where *y**i* shows the number of times the *i*-th person participated in the ACM ICPC world championship.
Output Specification:
Print a single number — the answer to the problem.
Demo Input:
['5 2\n0 4 5 1 0\n', '6 4\n0 1 2 3 4 5\n', '6 5\n0 0 0 0 0 0\n']
Demo Output:
['1\n', '0\n', '2\n']
Note:
In the first sample only one team could be made: the first, the fourth and the fifth participants.
In the second sample no teams could be created.
In the third sample two teams could be created. Any partition into two teams fits.
|
```python
# This is a sample Python script.
# Press Shift+F10 to execute it or replace it with your code.
# Press Double Shift to search everywhere for classes, files, tool windows, actions, and settings.
import math
import collections
if __name__ == '__main__':
n, k = map(int, input().split(' '))
p = [int(e) for e in input().split(' ')]
#print(n, k, p)
print(len([e for e in p if e + k < 6]) // 3)
```
| 3
|
|
408
|
A
|
Line to Cashier
|
PROGRAMMING
| 900
|
[
"implementation"
] | null | null |
Little Vasya went to the supermarket to get some groceries. He walked about the supermarket for a long time and got a basket full of products. Now he needs to choose the cashier to pay for the products.
There are *n* cashiers at the exit from the supermarket. At the moment the queue for the *i*-th cashier already has *k**i* people. The *j*-th person standing in the queue to the *i*-th cashier has *m**i*,<=*j* items in the basket. Vasya knows that:
- the cashier needs 5 seconds to scan one item; - after the cashier scans each item of some customer, he needs 15 seconds to take the customer's money and give him the change.
Of course, Vasya wants to select a queue so that he can leave the supermarket as soon as possible. Help him write a program that displays the minimum number of seconds after which Vasya can get to one of the cashiers.
|
The first line contains integer *n* (1<=≤<=*n*<=≤<=100) — the number of cashes in the shop. The second line contains *n* space-separated integers: *k*1,<=*k*2,<=...,<=*k**n* (1<=≤<=*k**i*<=≤<=100), where *k**i* is the number of people in the queue to the *i*-th cashier.
The *i*-th of the next *n* lines contains *k**i* space-separated integers: *m**i*,<=1,<=*m**i*,<=2,<=...,<=*m**i*,<=*k**i* (1<=≤<=*m**i*,<=*j*<=≤<=100) — the number of products the *j*-th person in the queue for the *i*-th cash has.
|
Print a single integer — the minimum number of seconds Vasya needs to get to the cashier.
|
[
"1\n1\n1\n",
"4\n1 4 3 2\n100\n1 2 2 3\n1 9 1\n7 8\n"
] |
[
"20\n",
"100\n"
] |
In the second test sample, if Vasya goes to the first queue, he gets to the cashier in 100·5 + 15 = 515 seconds. But if he chooses the second queue, he will need 1·5 + 2·5 + 2·5 + 3·5 + 4·15 = 100 seconds. He will need 1·5 + 9·5 + 1·5 + 3·15 = 100 seconds for the third one and 7·5 + 8·5 + 2·15 = 105 seconds for the fourth one. Thus, Vasya gets to the cashier quicker if he chooses the second or the third queue.
| 500
|
[
{
"input": "1\n1\n1",
"output": "20"
},
{
"input": "4\n1 4 3 2\n100\n1 2 2 3\n1 9 1\n7 8",
"output": "100"
},
{
"input": "4\n5 4 5 5\n3 1 3 1 2\n3 1 1 3\n1 1 1 2 2\n2 2 1 1 3",
"output": "100"
},
{
"input": "5\n5 3 6 6 4\n7 5 3 3 9\n6 8 2\n1 10 8 5 9 2\n9 7 8 5 9 10\n9 8 3 3",
"output": "125"
},
{
"input": "5\n10 10 10 10 10\n6 7 8 6 8 5 9 8 10 5\n9 6 9 8 7 8 8 10 8 5\n8 7 7 8 7 5 6 8 9 5\n6 5 10 5 5 10 7 8 5 5\n10 9 8 7 6 9 7 9 6 5",
"output": "480"
},
{
"input": "10\n9 10 10 10 9 5 9 7 8 7\n11 6 10 4 4 15 7 15 5\n3 9 11 12 11 1 13 13 1 5\n6 15 9 12 3 2 8 12 11 10\n7 1 1 6 10 2 6 1 14 2\n8 14 2 3 6 1 14 1 12\n6 10 9 3 5\n13 12 12 7 13 4 4 8 10\n5 6 4 3 14 9 13\n8 12 1 5 7 4 13 1\n1 9 5 3 5 1 4",
"output": "240"
},
{
"input": "10\n5 5 5 5 5 5 5 5 5 5\n5 5 4 5 4\n6 5 7 7 6\n5 4 4 5 5\n4 4 5 5 5\n7 6 4 5 7\n4 6 5 4 5\n6 6 7 6 6\n4 5 4 4 7\n7 5 4 4 5\n6 6 7 4 4",
"output": "190"
},
{
"input": "1\n1\n100",
"output": "515"
},
{
"input": "1\n90\n90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90",
"output": "41850"
}
] | 1,600,602,288
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 20
| 109
| 0
|
n=int(input())
no_of_people=list(map(int,input().split()))
T=10**10
for i in range(n):
prod=list(map(int,input().split()))
T=min(T,(15*len(prod))+sum([5*x for x in prod]))
print(T)
|
Title: Line to Cashier
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Little Vasya went to the supermarket to get some groceries. He walked about the supermarket for a long time and got a basket full of products. Now he needs to choose the cashier to pay for the products.
There are *n* cashiers at the exit from the supermarket. At the moment the queue for the *i*-th cashier already has *k**i* people. The *j*-th person standing in the queue to the *i*-th cashier has *m**i*,<=*j* items in the basket. Vasya knows that:
- the cashier needs 5 seconds to scan one item; - after the cashier scans each item of some customer, he needs 15 seconds to take the customer's money and give him the change.
Of course, Vasya wants to select a queue so that he can leave the supermarket as soon as possible. Help him write a program that displays the minimum number of seconds after which Vasya can get to one of the cashiers.
Input Specification:
The first line contains integer *n* (1<=≤<=*n*<=≤<=100) — the number of cashes in the shop. The second line contains *n* space-separated integers: *k*1,<=*k*2,<=...,<=*k**n* (1<=≤<=*k**i*<=≤<=100), where *k**i* is the number of people in the queue to the *i*-th cashier.
The *i*-th of the next *n* lines contains *k**i* space-separated integers: *m**i*,<=1,<=*m**i*,<=2,<=...,<=*m**i*,<=*k**i* (1<=≤<=*m**i*,<=*j*<=≤<=100) — the number of products the *j*-th person in the queue for the *i*-th cash has.
Output Specification:
Print a single integer — the minimum number of seconds Vasya needs to get to the cashier.
Demo Input:
['1\n1\n1\n', '4\n1 4 3 2\n100\n1 2 2 3\n1 9 1\n7 8\n']
Demo Output:
['20\n', '100\n']
Note:
In the second test sample, if Vasya goes to the first queue, he gets to the cashier in 100·5 + 15 = 515 seconds. But if he chooses the second queue, he will need 1·5 + 2·5 + 2·5 + 3·5 + 4·15 = 100 seconds. He will need 1·5 + 9·5 + 1·5 + 3·15 = 100 seconds for the third one and 7·5 + 8·5 + 2·15 = 105 seconds for the fourth one. Thus, Vasya gets to the cashier quicker if he chooses the second or the third queue.
|
```python
n=int(input())
no_of_people=list(map(int,input().split()))
T=10**10
for i in range(n):
prod=list(map(int,input().split()))
T=min(T,(15*len(prod))+sum([5*x for x in prod]))
print(T)
```
| 3
|
|
257
|
B
|
Playing Cubes
|
PROGRAMMING
| 1,300
|
[
"games",
"greedy",
"implementation"
] | null | null |
Petya and Vasya decided to play a little. They found *n* red cubes and *m* blue cubes. The game goes like that: the players take turns to choose a cube of some color (red or blue) and put it in a line from left to right (overall the line will have *n*<=+<=*m* cubes). Petya moves first. Petya's task is to get as many pairs of neighbouring cubes of the same color as possible. Vasya's task is to get as many pairs of neighbouring cubes of different colors as possible.
The number of Petya's points in the game is the number of pairs of neighboring cubes of the same color in the line, the number of Vasya's points in the game is the number of neighbouring cubes of the different color in the line. Your task is to calculate the score at the end of the game (Petya's and Vasya's points, correspondingly), if both boys are playing optimally well. To "play optimally well" first of all means to maximize the number of one's points, and second — to minimize the number of the opponent's points.
|
The only line contains two space-separated integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=105) — the number of red and blue cubes, correspondingly.
|
On a single line print two space-separated integers — the number of Petya's and Vasya's points correspondingly provided that both players play optimally well.
|
[
"3 1\n",
"2 4\n"
] |
[
"2 1\n",
"3 2\n"
] |
In the first test sample the optimal strategy for Petya is to put the blue cube in the line. After that there will be only red cubes left, so by the end of the game the line of cubes from left to right will look as [blue, red, red, red]. So, Petya gets 2 points and Vasya gets 1 point.
If Petya would choose the red cube during his first move, then, provided that both boys play optimally well, Petya would get 1 point and Vasya would get 2 points.
| 500
|
[
{
"input": "3 1",
"output": "2 1"
},
{
"input": "2 4",
"output": "3 2"
},
{
"input": "1 1",
"output": "0 1"
},
{
"input": "2 1",
"output": "1 1"
},
{
"input": "4 4",
"output": "3 4"
},
{
"input": "10 7",
"output": "9 7"
},
{
"input": "5 13",
"output": "12 5"
},
{
"input": "7 11",
"output": "10 7"
},
{
"input": "1 2",
"output": "1 1"
},
{
"input": "10 10",
"output": "9 10"
},
{
"input": "50 30",
"output": "49 30"
},
{
"input": "80 120",
"output": "119 80"
},
{
"input": "304 122",
"output": "303 122"
},
{
"input": "500 800",
"output": "799 500"
},
{
"input": "900 1000",
"output": "999 900"
},
{
"input": "1 1000",
"output": "999 1"
},
{
"input": "997 9",
"output": "996 9"
},
{
"input": "341 678",
"output": "677 341"
},
{
"input": "784 913",
"output": "912 784"
},
{
"input": "57 888",
"output": "887 57"
},
{
"input": "100000 100000",
"output": "99999 100000"
},
{
"input": "10000 100000",
"output": "99999 10000"
},
{
"input": "9999 99999",
"output": "99998 9999"
},
{
"input": "12 100000",
"output": "99999 12"
},
{
"input": "9999 31411",
"output": "31410 9999"
},
{
"input": "12930 98391",
"output": "98390 12930"
},
{
"input": "98813 893",
"output": "98812 893"
},
{
"input": "99801 38179",
"output": "99800 38179"
},
{
"input": "831 69318",
"output": "69317 831"
},
{
"input": "99999 99997",
"output": "99998 99997"
},
{
"input": "74 99",
"output": "98 74"
},
{
"input": "159 259",
"output": "258 159"
},
{
"input": "245 317",
"output": "316 245"
},
{
"input": "947 883",
"output": "946 883"
},
{
"input": "7131 3165",
"output": "7130 3165"
},
{
"input": "11536 12192",
"output": "12191 11536"
},
{
"input": "25938 40897",
"output": "40896 25938"
},
{
"input": "81314 31958",
"output": "81313 31958"
},
{
"input": "294 83621",
"output": "83620 294"
},
{
"input": "64896 18105",
"output": "64895 18105"
}
] | 1,629,539,714
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 40
| 218
| 20,172,800
|
import math,io,os,sys
# input = io.BytesIO(os.read(0,os.fstat(0).st_size)).readline
# sys.stdout.write(str(x) + "\n")
n,m=map(int,input().split())
q=min(n,m)
print(n+m-1-q,q)
|
Title: Playing Cubes
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Petya and Vasya decided to play a little. They found *n* red cubes and *m* blue cubes. The game goes like that: the players take turns to choose a cube of some color (red or blue) and put it in a line from left to right (overall the line will have *n*<=+<=*m* cubes). Petya moves first. Petya's task is to get as many pairs of neighbouring cubes of the same color as possible. Vasya's task is to get as many pairs of neighbouring cubes of different colors as possible.
The number of Petya's points in the game is the number of pairs of neighboring cubes of the same color in the line, the number of Vasya's points in the game is the number of neighbouring cubes of the different color in the line. Your task is to calculate the score at the end of the game (Petya's and Vasya's points, correspondingly), if both boys are playing optimally well. To "play optimally well" first of all means to maximize the number of one's points, and second — to minimize the number of the opponent's points.
Input Specification:
The only line contains two space-separated integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=105) — the number of red and blue cubes, correspondingly.
Output Specification:
On a single line print two space-separated integers — the number of Petya's and Vasya's points correspondingly provided that both players play optimally well.
Demo Input:
['3 1\n', '2 4\n']
Demo Output:
['2 1\n', '3 2\n']
Note:
In the first test sample the optimal strategy for Petya is to put the blue cube in the line. After that there will be only red cubes left, so by the end of the game the line of cubes from left to right will look as [blue, red, red, red]. So, Petya gets 2 points and Vasya gets 1 point.
If Petya would choose the red cube during his first move, then, provided that both boys play optimally well, Petya would get 1 point and Vasya would get 2 points.
|
```python
import math,io,os,sys
# input = io.BytesIO(os.read(0,os.fstat(0).st_size)).readline
# sys.stdout.write(str(x) + "\n")
n,m=map(int,input().split())
q=min(n,m)
print(n+m-1-q,q)
```
| 3
|
|
680
|
A
|
Bear and Five Cards
|
PROGRAMMING
| 800
|
[
"constructive algorithms",
"implementation"
] | null | null |
A little bear Limak plays a game. He has five cards. There is one number written on each card. Each number is a positive integer.
Limak can discard (throw out) some cards. His goal is to minimize the sum of numbers written on remaining (not discarded) cards.
He is allowed to at most once discard two or three cards with the same number. Of course, he won't discard cards if it's impossible to choose two or three cards with the same number.
Given five numbers written on cards, cay you find the minimum sum of numbers on remaining cards?
|
The only line of the input contains five integers *t*1, *t*2, *t*3, *t*4 and *t*5 (1<=≤<=*t**i*<=≤<=100) — numbers written on cards.
|
Print the minimum possible sum of numbers written on remaining cards.
|
[
"7 3 7 3 20\n",
"7 9 3 1 8\n",
"10 10 10 10 10\n"
] |
[
"26\n",
"28\n",
"20\n"
] |
In the first sample, Limak has cards with numbers 7, 3, 7, 3 and 20. Limak can do one of the following.
- Do nothing and the sum would be 7 + 3 + 7 + 3 + 20 = 40. - Remove two cards with a number 7. The remaining sum would be 3 + 3 + 20 = 26. - Remove two cards with a number 3. The remaining sum would be 7 + 7 + 20 = 34.
You are asked to minimize the sum so the answer is 26.
In the second sample, it's impossible to find two or three cards with the same number. Hence, Limak does nothing and the sum is 7 + 9 + 1 + 3 + 8 = 28.
In the third sample, all cards have the same number. It's optimal to discard any three cards. The sum of two remaining numbers is 10 + 10 = 20.
| 500
|
[
{
"input": "7 3 7 3 20",
"output": "26"
},
{
"input": "7 9 3 1 8",
"output": "28"
},
{
"input": "10 10 10 10 10",
"output": "20"
},
{
"input": "8 7 1 8 7",
"output": "15"
},
{
"input": "7 7 7 8 8",
"output": "16"
},
{
"input": "8 8 8 2 2",
"output": "4"
},
{
"input": "8 8 2 2 2",
"output": "6"
},
{
"input": "5 50 5 5 60",
"output": "110"
},
{
"input": "100 100 100 100 100",
"output": "200"
},
{
"input": "1 1 1 1 1",
"output": "2"
},
{
"input": "29 29 20 20 20",
"output": "58"
},
{
"input": "20 29 20 29 20",
"output": "58"
},
{
"input": "31 31 20 20 20",
"output": "60"
},
{
"input": "20 20 20 31 31",
"output": "60"
},
{
"input": "20 31 20 31 20",
"output": "60"
},
{
"input": "20 20 20 30 30",
"output": "60"
},
{
"input": "30 30 20 20 20",
"output": "60"
},
{
"input": "8 1 8 8 8",
"output": "9"
},
{
"input": "1 1 1 8 1",
"output": "9"
},
{
"input": "1 2 3 4 5",
"output": "15"
},
{
"input": "100 99 98 97 96",
"output": "490"
},
{
"input": "1 1 100 100 100",
"output": "2"
},
{
"input": "100 100 99 99 98",
"output": "296"
},
{
"input": "98 99 100 99 100",
"output": "296"
},
{
"input": "1 90 1 91 1",
"output": "181"
},
{
"input": "60 1 75 1 92",
"output": "227"
},
{
"input": "15 40 90 40 90",
"output": "95"
},
{
"input": "1 1 15 20 20",
"output": "17"
},
{
"input": "90 11 11 10 10",
"output": "110"
},
{
"input": "20 21 22 23 24",
"output": "110"
},
{
"input": "1 1 2 98 99",
"output": "199"
},
{
"input": "3 7 7 7 10",
"output": "13"
},
{
"input": "1 3 3 3 1",
"output": "2"
},
{
"input": "1 9 9 9 10",
"output": "11"
},
{
"input": "100 1 1 1 1",
"output": "101"
},
{
"input": "2 2 2 100 100",
"output": "6"
},
{
"input": "1 2 2 2 2",
"output": "3"
},
{
"input": "1 1 2 2 5",
"output": "7"
},
{
"input": "1 2 3 4 1",
"output": "9"
},
{
"input": "11 10 10 10 10",
"output": "21"
},
{
"input": "2 2 2 10 10",
"output": "6"
},
{
"input": "1 1 1 1 4",
"output": "5"
},
{
"input": "98 98 98 98 23",
"output": "121"
},
{
"input": "1 2 3 100 100",
"output": "6"
},
{
"input": "2 2 5 10 10",
"output": "9"
},
{
"input": "2 2 3 3 3",
"output": "4"
},
{
"input": "1 1 1 1 2",
"output": "3"
},
{
"input": "12 12 7 7 7",
"output": "21"
}
] | 1,592,140,416
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 48
| 124
| 0
|
t = list(map(int, input().split(" ")))
t.sort()
sum1 = 0
sum2 = 0
for i in t:
if t.count(i) >= 3:
sum1 = 3 * i
if t.count(i) == 2:
sum2 = 2 * i
print(sum(t)-max(sum1,sum2))
|
Title: Bear and Five Cards
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
A little bear Limak plays a game. He has five cards. There is one number written on each card. Each number is a positive integer.
Limak can discard (throw out) some cards. His goal is to minimize the sum of numbers written on remaining (not discarded) cards.
He is allowed to at most once discard two or three cards with the same number. Of course, he won't discard cards if it's impossible to choose two or three cards with the same number.
Given five numbers written on cards, cay you find the minimum sum of numbers on remaining cards?
Input Specification:
The only line of the input contains five integers *t*1, *t*2, *t*3, *t*4 and *t*5 (1<=≤<=*t**i*<=≤<=100) — numbers written on cards.
Output Specification:
Print the minimum possible sum of numbers written on remaining cards.
Demo Input:
['7 3 7 3 20\n', '7 9 3 1 8\n', '10 10 10 10 10\n']
Demo Output:
['26\n', '28\n', '20\n']
Note:
In the first sample, Limak has cards with numbers 7, 3, 7, 3 and 20. Limak can do one of the following.
- Do nothing and the sum would be 7 + 3 + 7 + 3 + 20 = 40. - Remove two cards with a number 7. The remaining sum would be 3 + 3 + 20 = 26. - Remove two cards with a number 3. The remaining sum would be 7 + 7 + 20 = 34.
You are asked to minimize the sum so the answer is 26.
In the second sample, it's impossible to find two or three cards with the same number. Hence, Limak does nothing and the sum is 7 + 9 + 1 + 3 + 8 = 28.
In the third sample, all cards have the same number. It's optimal to discard any three cards. The sum of two remaining numbers is 10 + 10 = 20.
|
```python
t = list(map(int, input().split(" ")))
t.sort()
sum1 = 0
sum2 = 0
for i in t:
if t.count(i) >= 3:
sum1 = 3 * i
if t.count(i) == 2:
sum2 = 2 * i
print(sum(t)-max(sum1,sum2))
```
| 3
|
|
389
|
A
|
Fox and Number Game
|
PROGRAMMING
| 1,000
|
[
"greedy",
"math"
] | null | null |
Fox Ciel is playing a game with numbers now.
Ciel has *n* positive integers: *x*1, *x*2, ..., *x**n*. She can do the following operation as many times as needed: select two different indexes *i* and *j* such that *x**i* > *x**j* hold, and then apply assignment *x**i* = *x**i* - *x**j*. The goal is to make the sum of all numbers as small as possible.
Please help Ciel to find this minimal sum.
|
The first line contains an integer *n* (2<=≤<=*n*<=≤<=100). Then the second line contains *n* integers: *x*1, *x*2, ..., *x**n* (1<=≤<=*x**i*<=≤<=100).
|
Output a single integer — the required minimal sum.
|
[
"2\n1 2\n",
"3\n2 4 6\n",
"2\n12 18\n",
"5\n45 12 27 30 18\n"
] |
[
"2\n",
"6\n",
"12\n",
"15\n"
] |
In the first example the optimal way is to do the assignment: *x*<sub class="lower-index">2</sub> = *x*<sub class="lower-index">2</sub> - *x*<sub class="lower-index">1</sub>.
In the second example the optimal sequence of operations is: *x*<sub class="lower-index">3</sub> = *x*<sub class="lower-index">3</sub> - *x*<sub class="lower-index">2</sub>, *x*<sub class="lower-index">2</sub> = *x*<sub class="lower-index">2</sub> - *x*<sub class="lower-index">1</sub>.
| 500
|
[
{
"input": "2\n1 2",
"output": "2"
},
{
"input": "3\n2 4 6",
"output": "6"
},
{
"input": "2\n12 18",
"output": "12"
},
{
"input": "5\n45 12 27 30 18",
"output": "15"
},
{
"input": "2\n1 1",
"output": "2"
},
{
"input": "2\n100 100",
"output": "200"
},
{
"input": "2\n87 58",
"output": "58"
},
{
"input": "39\n52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52",
"output": "2028"
},
{
"input": "59\n96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96",
"output": "5664"
},
{
"input": "100\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100",
"output": "10000"
},
{
"input": "100\n70 70 77 42 98 84 56 91 35 21 7 70 77 77 56 63 14 84 56 14 77 77 63 70 14 7 28 91 63 49 21 84 98 56 77 98 98 84 98 14 7 56 49 28 91 98 7 56 14 91 14 98 49 28 98 14 98 98 14 70 35 28 63 28 49 63 63 56 91 98 35 42 42 35 63 35 42 14 63 21 77 56 42 77 35 91 56 21 28 84 56 70 70 91 98 70 84 63 21 98",
"output": "700"
},
{
"input": "39\n63 21 21 42 21 63 21 84 42 21 84 63 42 63 84 84 84 42 42 84 21 63 42 63 42 42 63 42 42 63 84 42 21 84 21 63 42 21 42",
"output": "819"
},
{
"input": "59\n70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70",
"output": "4130"
},
{
"input": "87\n44 88 88 88 88 66 88 22 22 88 88 44 88 22 22 22 88 88 88 88 66 22 88 88 88 88 66 66 44 88 44 44 66 22 88 88 22 44 66 44 88 66 66 22 22 22 22 88 22 22 44 66 88 22 22 88 66 66 88 22 66 88 66 88 66 44 88 44 22 44 44 22 44 88 44 44 44 44 22 88 88 88 66 66 88 44 22",
"output": "1914"
},
{
"input": "15\n63 63 63 63 63 63 63 63 63 63 63 63 63 63 63",
"output": "945"
},
{
"input": "39\n63 77 21 14 14 35 21 21 70 42 21 70 28 77 28 77 7 42 63 7 98 49 98 84 35 70 70 91 14 42 98 7 42 7 98 42 56 35 91",
"output": "273"
},
{
"input": "18\n18 18 18 36 36 36 54 72 54 36 72 54 36 36 36 36 18 36",
"output": "324"
},
{
"input": "46\n71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71",
"output": "3266"
},
{
"input": "70\n66 11 66 11 44 11 44 99 55 22 88 11 11 22 55 44 22 77 44 77 77 22 44 55 88 11 99 99 88 22 77 77 66 11 11 66 99 55 55 44 66 44 77 44 44 55 33 55 44 88 77 77 22 66 33 44 11 22 55 44 22 66 77 33 33 44 44 44 22 33",
"output": "770"
},
{
"input": "10\n60 12 96 48 60 24 60 36 60 60",
"output": "120"
},
{
"input": "20\n51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51",
"output": "1020"
},
{
"input": "50\n58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58",
"output": "2900"
},
{
"input": "98\n70 60 100 30 70 20 30 50 50 30 90 40 30 40 60 80 60 60 80 50 10 80 20 10 20 10 50 70 30 80 30 50 60 90 90 100 60 30 90 20 30 60 90 80 60 60 10 90 10 50 40 40 80 90 100 40 70 40 30 50 60 50 60 30 40 20 90 60 20 20 20 70 60 70 50 100 90 50 20 40 80 60 10 60 50 40 40 10 50 10 40 10 80 100 100 90 10 90",
"output": "980"
},
{
"input": "100\n82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82",
"output": "8200"
},
{
"input": "100\n11 87 77 93 3 54 21 93 9 71 37 23 69 85 74 3 48 99 51 31 56 19 21 96 39 6 4 4 29 69 100 42 1 22 81 53 48 49 81 61 10 7 40 61 7 71 51 59 79 44 50 35 95 80 83 8 98 40 18 94 84 49 52 74 66 69 39 37 100 44 38 62 2 80 46 31 35 53 5 60 21 49 63 55 20 53 80 53 66 34 23 92 77 50 86 63 65 24 12 70",
"output": "100"
},
{
"input": "2\n100 1",
"output": "2"
},
{
"input": "2\n18 30",
"output": "12"
},
{
"input": "2\n3 5",
"output": "2"
},
{
"input": "2\n1 10",
"output": "2"
},
{
"input": "2\n8 5",
"output": "2"
},
{
"input": "5\n2 3 5 8 18",
"output": "5"
},
{
"input": "5\n2 4 1 6 8",
"output": "5"
},
{
"input": "3\n12 10 5",
"output": "3"
},
{
"input": "3\n6 10 15",
"output": "3"
}
] | 1,684,003,271
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 34
| 46
| 0
|
n = int(input())
k = [int(x) for x in input().split()]
for i in range(max(k), 0, -1):
a = True
for x in k:
if x%i != 0:
a = False
break
if a:
print(i*n)
break
|
Title: Fox and Number Game
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Fox Ciel is playing a game with numbers now.
Ciel has *n* positive integers: *x*1, *x*2, ..., *x**n*. She can do the following operation as many times as needed: select two different indexes *i* and *j* such that *x**i* > *x**j* hold, and then apply assignment *x**i* = *x**i* - *x**j*. The goal is to make the sum of all numbers as small as possible.
Please help Ciel to find this minimal sum.
Input Specification:
The first line contains an integer *n* (2<=≤<=*n*<=≤<=100). Then the second line contains *n* integers: *x*1, *x*2, ..., *x**n* (1<=≤<=*x**i*<=≤<=100).
Output Specification:
Output a single integer — the required minimal sum.
Demo Input:
['2\n1 2\n', '3\n2 4 6\n', '2\n12 18\n', '5\n45 12 27 30 18\n']
Demo Output:
['2\n', '6\n', '12\n', '15\n']
Note:
In the first example the optimal way is to do the assignment: *x*<sub class="lower-index">2</sub> = *x*<sub class="lower-index">2</sub> - *x*<sub class="lower-index">1</sub>.
In the second example the optimal sequence of operations is: *x*<sub class="lower-index">3</sub> = *x*<sub class="lower-index">3</sub> - *x*<sub class="lower-index">2</sub>, *x*<sub class="lower-index">2</sub> = *x*<sub class="lower-index">2</sub> - *x*<sub class="lower-index">1</sub>.
|
```python
n = int(input())
k = [int(x) for x in input().split()]
for i in range(max(k), 0, -1):
a = True
for x in k:
if x%i != 0:
a = False
break
if a:
print(i*n)
break
```
| 3
|
|
567
|
A
|
Lineland Mail
|
PROGRAMMING
| 900
|
[
"greedy",
"implementation"
] | null | null |
All cities of Lineland are located on the *Ox* coordinate axis. Thus, each city is associated with its position *x**i* — a coordinate on the *Ox* axis. No two cities are located at a single point.
Lineland residents love to send letters to each other. A person may send a letter only if the recipient lives in another city (because if they live in the same city, then it is easier to drop in).
Strange but true, the cost of sending the letter is exactly equal to the distance between the sender's city and the recipient's city.
For each city calculate two values *min**i* and *max**i*, where *min**i* is the minimum cost of sending a letter from the *i*-th city to some other city, and *max**i* is the the maximum cost of sending a letter from the *i*-th city to some other city
|
The first line of the input contains integer *n* (2<=≤<=*n*<=≤<=105) — the number of cities in Lineland. The second line contains the sequence of *n* distinct integers *x*1,<=*x*2,<=...,<=*x**n* (<=-<=109<=≤<=*x**i*<=≤<=109), where *x**i* is the *x*-coordinate of the *i*-th city. All the *x**i*'s are distinct and follow in ascending order.
|
Print *n* lines, the *i*-th line must contain two integers *min**i*,<=*max**i*, separated by a space, where *min**i* is the minimum cost of sending a letter from the *i*-th city, and *max**i* is the maximum cost of sending a letter from the *i*-th city.
|
[
"4\n-5 -2 2 7\n",
"2\n-1 1\n"
] |
[
"3 12\n3 9\n4 7\n5 12\n",
"2 2\n2 2\n"
] |
none
| 500
|
[
{
"input": "4\n-5 -2 2 7",
"output": "3 12\n3 9\n4 7\n5 12"
},
{
"input": "2\n-1 1",
"output": "2 2\n2 2"
},
{
"input": "3\n-1 0 1",
"output": "1 2\n1 1\n1 2"
},
{
"input": "4\n-1 0 1 3",
"output": "1 4\n1 3\n1 2\n2 4"
},
{
"input": "3\n-1000000000 0 1000000000",
"output": "1000000000 2000000000\n1000000000 1000000000\n1000000000 2000000000"
},
{
"input": "2\n-1000000000 1000000000",
"output": "2000000000 2000000000\n2000000000 2000000000"
},
{
"input": "10\n1 10 12 15 59 68 130 912 1239 9123",
"output": "9 9122\n2 9113\n2 9111\n3 9108\n9 9064\n9 9055\n62 8993\n327 8211\n327 7884\n7884 9122"
},
{
"input": "5\n-2 -1 0 1 2",
"output": "1 4\n1 3\n1 2\n1 3\n1 4"
},
{
"input": "5\n-2 -1 0 1 3",
"output": "1 5\n1 4\n1 3\n1 3\n2 5"
},
{
"input": "3\n-10000 1 10000",
"output": "10001 20000\n9999 10001\n9999 20000"
},
{
"input": "5\n-1000000000 -999999999 -999999998 -999999997 -999999996",
"output": "1 4\n1 3\n1 2\n1 3\n1 4"
},
{
"input": "10\n-857422304 -529223472 82412729 145077145 188538640 265299215 527377039 588634631 592896147 702473706",
"output": "328198832 1559896010\n328198832 1231697178\n62664416 939835033\n43461495 1002499449\n43461495 1045960944\n76760575 1122721519\n61257592 1384799343\n4261516 1446056935\n4261516 1450318451\n109577559 1559896010"
},
{
"input": "10\n-876779400 -829849659 -781819137 -570920213 18428128 25280705 121178189 219147240 528386329 923854124",
"output": "46929741 1800633524\n46929741 1753703783\n48030522 1705673261\n210898924 1494774337\n6852577 905425996\n6852577 902060105\n95897484 997957589\n97969051 1095926640\n309239089 1405165729\n395467795 1800633524"
},
{
"input": "30\n-15 1 21 25 30 40 59 60 77 81 97 100 103 123 139 141 157 158 173 183 200 215 226 231 244 256 267 279 289 292",
"output": "16 307\n16 291\n4 271\n4 267\n5 262\n10 252\n1 233\n1 232\n4 215\n4 211\n3 195\n3 192\n3 189\n16 169\n2 154\n2 156\n1 172\n1 173\n10 188\n10 198\n15 215\n11 230\n5 241\n5 246\n12 259\n11 271\n11 282\n10 294\n3 304\n3 307"
},
{
"input": "10\n-1000000000 -999999999 -999999997 -999999996 -999999995 -999999994 -999999992 -999999990 -999999988 -999999986",
"output": "1 14\n1 13\n1 11\n1 10\n1 9\n1 8\n2 8\n2 10\n2 12\n2 14"
},
{
"input": "50\n-50000 -49459 -48875 -48456 -48411 -48096 -47901 -47500 -47150 -46808 -46687 -46679 -46337 -45747 -45604 -45194 -44752 -44242 -44231 -44122 -43636 -43274 -42916 -42881 -42386 -42095 -41830 -41618 -41145 -40897 -40534 -40007 -39761 -39389 -39104 -38909 -38630 -38561 -38364 -38255 -38214 -38084 -37959 -37607 -37202 -36890 -36681 -36136 -36123 -35886",
"output": "541 14114\n541 13573\n419 12989\n45 12570\n45 12525\n195 12210\n195 12015\n350 11614\n342 11264\n121 10922\n8 10801\n8 10793\n342 10451\n143 9861\n143 9718\n410 9308\n442 8866\n11 8356\n11 8345\n109 8236\n362 7750\n358 7388\n35 7084\n35 7119\n291 7614\n265 7905\n212 8170\n212 8382\n248 8855\n248 9103\n363 9466\n246 9993\n246 10239\n285 10611\n195 10896\n195 11091\n69 11370\n69 11439\n109 11636\n41 11745\n41 11786\n125 11916\n125 12041\n352 12393\n312 12798\n209 13110\n209 13319\n13 13864\n13 13877\n237 141..."
},
{
"input": "3\n-1000000000 999999999 1000000000",
"output": "1999999999 2000000000\n1 1999999999\n1 2000000000"
}
] | 1,677,536,385
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 54
| 436
| 8,089,600
|
import sys
inputs = []
for line in sys.stdin:
inputs.append(line)
length = int(inputs[0].strip())
integers = inputs[1].strip().split()
for i in range(0,len(integers)):
integers[i] = int(integers[i])
for i in range(0,length):
curr = integers[i]
if i < length-1:
next = integers[i+1]
else:
next = integers[0]
if i > 0:
prev = integers[i-1]
else:
prev = integers[-1]
nextdist = abs(curr - next)
prevdist = abs(curr - prev)
smaller = nextdist if nextdist < prevdist else prevdist
first = integers[0]
last = integers[-1]
firstdist = abs(curr - first)
lastdist = abs(curr - last)
bigger = firstdist if firstdist > lastdist else lastdist
print(f"{smaller} {bigger}")
|
Title: Lineland Mail
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
All cities of Lineland are located on the *Ox* coordinate axis. Thus, each city is associated with its position *x**i* — a coordinate on the *Ox* axis. No two cities are located at a single point.
Lineland residents love to send letters to each other. A person may send a letter only if the recipient lives in another city (because if they live in the same city, then it is easier to drop in).
Strange but true, the cost of sending the letter is exactly equal to the distance between the sender's city and the recipient's city.
For each city calculate two values *min**i* and *max**i*, where *min**i* is the minimum cost of sending a letter from the *i*-th city to some other city, and *max**i* is the the maximum cost of sending a letter from the *i*-th city to some other city
Input Specification:
The first line of the input contains integer *n* (2<=≤<=*n*<=≤<=105) — the number of cities in Lineland. The second line contains the sequence of *n* distinct integers *x*1,<=*x*2,<=...,<=*x**n* (<=-<=109<=≤<=*x**i*<=≤<=109), where *x**i* is the *x*-coordinate of the *i*-th city. All the *x**i*'s are distinct and follow in ascending order.
Output Specification:
Print *n* lines, the *i*-th line must contain two integers *min**i*,<=*max**i*, separated by a space, where *min**i* is the minimum cost of sending a letter from the *i*-th city, and *max**i* is the maximum cost of sending a letter from the *i*-th city.
Demo Input:
['4\n-5 -2 2 7\n', '2\n-1 1\n']
Demo Output:
['3 12\n3 9\n4 7\n5 12\n', '2 2\n2 2\n']
Note:
none
|
```python
import sys
inputs = []
for line in sys.stdin:
inputs.append(line)
length = int(inputs[0].strip())
integers = inputs[1].strip().split()
for i in range(0,len(integers)):
integers[i] = int(integers[i])
for i in range(0,length):
curr = integers[i]
if i < length-1:
next = integers[i+1]
else:
next = integers[0]
if i > 0:
prev = integers[i-1]
else:
prev = integers[-1]
nextdist = abs(curr - next)
prevdist = abs(curr - prev)
smaller = nextdist if nextdist < prevdist else prevdist
first = integers[0]
last = integers[-1]
firstdist = abs(curr - first)
lastdist = abs(curr - last)
bigger = firstdist if firstdist > lastdist else lastdist
print(f"{smaller} {bigger}")
```
| 3
|
|
897
|
A
|
Scarborough Fair
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Parsley, sage, rosemary and thyme.
Remember me to one who lives there.
He once was the true love of mine.
Willem is taking the girl to the highest building in island No.28, however, neither of them knows how to get there.
Willem asks his friend, Grick for directions, Grick helped them, and gave them a task.
Although the girl wants to help, Willem insists on doing it by himself.
Grick gave Willem a string of length *n*.
Willem needs to do *m* operations, each operation has four parameters *l*,<=*r*,<=*c*1,<=*c*2, which means that all symbols *c*1 in range [*l*,<=*r*] (from *l*-th to *r*-th, including *l* and *r*) are changed into *c*2. String is 1-indexed.
Grick wants to know the final string after all the *m* operations.
|
The first line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100).
The second line contains a string *s* of length *n*, consisting of lowercase English letters.
Each of the next *m* lines contains four parameters *l*,<=*r*,<=*c*1,<=*c*2 (1<=≤<=*l*<=≤<=*r*<=≤<=*n*, *c*1,<=*c*2 are lowercase English letters), separated by space.
|
Output string *s* after performing *m* operations described above.
|
[
"3 1\nioi\n1 1 i n\n",
"5 3\nwxhak\n3 3 h x\n1 5 x a\n1 3 w g\n"
] |
[
"noi",
"gaaak"
] |
For the second example:
After the first operation, the string is wxxak.
After the second operation, the string is waaak.
After the third operation, the string is gaaak.
| 500
|
[
{
"input": "3 1\nioi\n1 1 i n",
"output": "noi"
},
{
"input": "5 3\nwxhak\n3 3 h x\n1 5 x a\n1 3 w g",
"output": "gaaak"
},
{
"input": "9 51\nbhfbdcgff\n2 3 b b\n2 8 e f\n3 8 g f\n5 7 d a\n1 5 e b\n3 4 g b\n6 7 c d\n3 6 e g\n3 6 e h\n5 6 a e\n7 9 a c\n4 9 a h\n3 7 c b\n6 9 b g\n1 7 h b\n4 5 a e\n3 9 f a\n1 2 c h\n4 8 a c\n3 5 e d\n3 4 g f\n2 3 d h\n2 3 d e\n1 7 d g\n2 6 e g\n2 3 d g\n5 5 h h\n2 8 g d\n8 9 a f\n5 9 c e\n1 7 f d\n1 6 e e\n5 7 c a\n8 9 b b\n2 6 e b\n6 6 g h\n1 2 b b\n1 5 a f\n5 8 f h\n1 5 e g\n3 9 f h\n6 8 g a\n4 6 h g\n1 5 f a\n5 6 a c\n4 8 e d\n1 4 d g\n7 8 b f\n5 6 h b\n3 9 c e\n1 9 b a",
"output": "aahaddddh"
},
{
"input": "28 45\ndcbbaddjhbeefjadjchgkhgggfha\n10 25 c a\n13 19 a f\n12 28 e d\n12 27 e a\n9 20 b e\n7 17 g d\n22 26 j j\n8 16 c g\n14 16 a d\n3 10 f c\n10 26 d b\n8 17 i e\n10 19 d i\n6 21 c j\n7 22 b k\n17 19 a i\n4 18 j k\n8 25 a g\n10 27 j e\n9 18 g d\n16 23 h a\n17 26 k e\n8 16 h f\n1 15 d f\n22 28 k k\n11 20 c k\n6 11 b h\n17 17 e i\n15 22 g h\n8 18 c f\n4 16 e a\n8 25 b c\n6 24 d g\n5 9 f j\n12 19 i h\n4 25 e f\n15 25 c j\n15 27 e e\n11 20 b f\n19 27 e k\n2 21 d a\n9 27 k e\n14 24 b a\n3 6 i g\n2 26 k f",
"output": "fcbbajjfjaaefefehfahfagggfha"
},
{
"input": "87 5\nnfinedeojadjmgafnaogekfjkjfncnliagfchjfcmellgigjjcaaoeakdolchjcecljdeblmheimkibkgdkcdml\n47 56 a k\n51 81 o d\n5 11 j h\n48 62 j d\n16 30 k m",
"output": "nfinedeohadjmgafnaogemfjmjfncnliagfchjfcmellgigddckkdekkddlchdcecljdeblmheimkibkgdkcdml"
},
{
"input": "5 16\nacfbb\n1 2 e f\n2 5 a f\n2 3 b e\n4 4 f a\n2 3 f a\n1 2 b e\n4 5 c d\n2 4 e c\n1 4 e a\n1 3 d c\n3 5 e b\n3 5 e b\n2 2 e d\n1 3 e c\n3 3 a e\n1 5 a a",
"output": "acebb"
},
{
"input": "94 13\nbcaaaaaaccacddcdaacbdaabbcbaddbccbccbbbddbadddcccbddadddaadbdababadaacdcdbcdadabdcdcbcbcbcbbcd\n52 77 d d\n21 92 d b\n45 48 c b\n20 25 d a\n57 88 d b\n3 91 b d\n64 73 a a\n5 83 b d\n2 69 c c\n28 89 a b\n49 67 c b\n41 62 a c\n49 87 b c",
"output": "bcaaaaaaccacddcdaacddaaddcdbdddccdccddddddbdddddcdddcdddccdddcdcdcdcccdcddcdcdcddcdcdcdcdcdbcd"
},
{
"input": "67 39\nacbcbccccbabaabcabcaaaaaaccbcbbcbaaaacbbcccbcbabbcacccbbabbabbabaac\n4 36 a b\n25 38 a a\n3 44 b c\n35 57 b a\n4 8 a c\n20 67 c a\n30 66 b b\n27 40 a a\n2 56 a b\n10 47 c a\n22 65 c b\n29 42 a b\n1 46 c b\n57 64 b c\n20 29 b a\n14 51 c a\n12 55 b b\n20 20 a c\n2 57 c a\n22 60 c b\n16 51 c c\n31 64 a c\n17 30 c a\n23 36 c c\n28 67 a c\n37 40 a c\n37 50 b c\n29 48 c b\n2 34 b c\n21 53 b a\n26 63 a c\n23 28 c a\n51 56 c b\n32 61 b b\n64 67 b b\n21 67 b c\n8 53 c c\n40 62 b b\n32 38 c c",
"output": "accccccccaaaaaaaaaaaaaaaaaaaccccccccccccccccccccccccccccccccccccccc"
},
{
"input": "53 33\nhhcbhfafeececbhadfbdbehdfacfchbhdbfebdfeghebfcgdhehfh\n27 41 h g\n18 35 c b\n15 46 h f\n48 53 e g\n30 41 b c\n12 30 b f\n10 37 e f\n18 43 a h\n10 52 d a\n22 48 c e\n40 53 f d\n7 12 b h\n12 51 f a\n3 53 g a\n19 41 d h\n22 29 b h\n2 30 a b\n26 28 e h\n25 35 f a\n19 31 h h\n44 44 d e\n19 22 e c\n29 44 d h\n25 33 d h\n3 53 g c\n18 44 h b\n19 28 f e\n3 22 g h\n8 17 c a\n37 51 d d\n3 28 e h\n27 50 h h\n27 46 f b",
"output": "hhcbhfbfhfababbbbbbbbbbbbbbbbbeaaeaaeaaeabebdeaahahdh"
},
{
"input": "83 10\nfhbecdgadecabbbecedcgfdcefcbgechbedagecgdgfgdaahchdgchbeaedgafdefecdchceececfcdhcdh\n9 77 e e\n26 34 b g\n34 70 b a\n40 64 e g\n33 78 h f\n14 26 a a\n17 70 d g\n56 65 a c\n8 41 d c\n11 82 c b",
"output": "fhbecdgacebabbbebegbgfgbefbggebhgegagebgggfggaafbfggbfagbgggbfggfebgbfbeebebfbdhbdh"
},
{
"input": "1 4\ne\n1 1 c e\n1 1 e a\n1 1 e c\n1 1 d a",
"output": "a"
},
{
"input": "71 21\naaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa\n61 61 a a\n32 56 a a\n10 67 a a\n7 32 a a\n26 66 a a\n41 55 a a\n49 55 a a\n4 61 a a\n53 59 a a\n37 58 a a\n7 63 a a\n39 40 a a\n51 64 a a\n27 37 a a\n22 71 a a\n4 45 a a\n7 8 a a\n43 46 a a\n19 28 a a\n51 54 a a\n14 67 a a",
"output": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
},
{
"input": "30 4\neaaddabedcbbcccddbabdecadcecce\n2 17 c a\n16 29 e e\n16 21 c b\n7 11 b c",
"output": "eaaddacedacbaaaddbabdecadcecce"
},
{
"input": "48 30\naaaabaabbaababbbaabaabaababbabbbaabbbaabaaaaaaba\n3 45 a b\n1 14 a a\n15 32 a b\n37 47 a b\n9 35 a b\n36 39 b b\n6 26 a b\n36 44 a a\n28 44 b a\n29 31 b a\n20 39 a a\n45 45 a b\n21 32 b b\n7 43 a b\n14 48 a b\n14 33 a b\n39 44 a a\n9 36 b b\n4 23 b b\n9 42 b b\n41 41 b a\n30 47 a b\n8 42 b a\n14 38 b b\n3 15 a a\n35 47 b b\n14 34 a b\n38 43 a b\n1 35 b a\n16 28 b a",
"output": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabbbbbbbbbbb"
},
{
"input": "89 29\nbabaabaaabaaaababbbbbbbabbbaaaaababbaababababbababaaabbababaaabbbbaaabaaaaaabaaabaabbabab\n39 70 b b\n3 56 b b\n5 22 b a\n4 39 a b\n41 87 b b\n34 41 a a\n10 86 a b\n29 75 a b\n2 68 a a\n27 28 b b\n42 51 b a\n18 61 a a\n6 67 b a\n47 63 a a\n8 68 a b\n4 74 b a\n19 65 a b\n8 55 a b\n5 30 a a\n3 65 a b\n16 57 a b\n34 56 b a\n1 70 a b\n59 68 b b\n29 57 b a\n47 49 b b\n49 73 a a\n32 61 b b\n29 42 a a",
"output": "bbbbbbbbbbbbbbbbbbbbbbbbbbbbaaaaaaaaaaaaaaaaaaaaaaaaaaaaabbbbbbbbbbbbbaaaabbbbbbbbbbbbbab"
},
{
"input": "59 14\nfbebcfabdefbaaedcefdeecababcabebadfbccaaedaebfdaefdbbcbebbe\n5 32 e f\n8 46 e e\n31 43 e f\n3 10 e a\n53 54 f d\n55 59 d a\n39 58 e b\n54 56 f a\n9 40 b e\n28 37 d a\n7 35 e b\n7 56 c f\n23 26 e a\n15 44 e d",
"output": "fbabcfabdffbaafdfffdfffababfabfbaafdffaafdabbfdabfdbbfbbbbe"
},
{
"input": "7 17\nbbaabab\n3 5 a b\n5 7 a a\n5 5 a a\n4 4 b a\n7 7 a a\n5 6 b b\n1 3 b a\n6 7 a b\n4 6 a b\n6 6 a a\n2 4 b a\n1 7 b a\n4 6 b b\n2 5 b b\n2 5 a b\n1 4 a a\n4 4 b a",
"output": "abbabaa"
},
{
"input": "100 1\ndebaaagbfdgehagadabfgheegggfghghgeeeabgceffeffggcbcegfgebbdhebhfagcgadcbdbabddbcadgbgdebdfehceehcaef\n13 99 f c",
"output": "debaaagbfdgehagadabcgheegggcghghgeeeabgcecceccggcbcegcgebbdhebhcagcgadcbdbabddbcadgbgdebdcehceehcaef"
},
{
"input": "1 1\na\n1 1 a b",
"output": "b"
},
{
"input": "100 1\naaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa\n1 100 a b",
"output": "bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb"
},
{
"input": "2 2\naa\n1 2 a b\n1 2 b c",
"output": "cc"
},
{
"input": "3 3\naaa\n1 3 a b\n1 3 b c\n1 3 c d",
"output": "ddd"
},
{
"input": "2 2\naa\n2 2 a b\n1 1 a b",
"output": "bb"
}
] | 1,645,373,548
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 47
| 46
| 0
|
"""n,m=map(int,input().split())#len of string ,no. of operations
s=input()
l,r,c1,c2= input().split()
i=int(l)
j=int(r)
newstring=s[i:j]
k=newstring.replace(c1,c2)
newstr=s[:i]+k+s[j:]
print(newstr)"""
n,m=map(int,input().split())
s = input()
for j in range(m):
l,r,c1,c2 = map(str,input().split())
ne = s[int(l)-1:int(r)].replace(c1,c2)
s = s[0:int(l)-1]+ne+s[int(r):]
print(s)
|
Title: Scarborough Fair
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Parsley, sage, rosemary and thyme.
Remember me to one who lives there.
He once was the true love of mine.
Willem is taking the girl to the highest building in island No.28, however, neither of them knows how to get there.
Willem asks his friend, Grick for directions, Grick helped them, and gave them a task.
Although the girl wants to help, Willem insists on doing it by himself.
Grick gave Willem a string of length *n*.
Willem needs to do *m* operations, each operation has four parameters *l*,<=*r*,<=*c*1,<=*c*2, which means that all symbols *c*1 in range [*l*,<=*r*] (from *l*-th to *r*-th, including *l* and *r*) are changed into *c*2. String is 1-indexed.
Grick wants to know the final string after all the *m* operations.
Input Specification:
The first line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100).
The second line contains a string *s* of length *n*, consisting of lowercase English letters.
Each of the next *m* lines contains four parameters *l*,<=*r*,<=*c*1,<=*c*2 (1<=≤<=*l*<=≤<=*r*<=≤<=*n*, *c*1,<=*c*2 are lowercase English letters), separated by space.
Output Specification:
Output string *s* after performing *m* operations described above.
Demo Input:
['3 1\nioi\n1 1 i n\n', '5 3\nwxhak\n3 3 h x\n1 5 x a\n1 3 w g\n']
Demo Output:
['noi', 'gaaak']
Note:
For the second example:
After the first operation, the string is wxxak.
After the second operation, the string is waaak.
After the third operation, the string is gaaak.
|
```python
"""n,m=map(int,input().split())#len of string ,no. of operations
s=input()
l,r,c1,c2= input().split()
i=int(l)
j=int(r)
newstring=s[i:j]
k=newstring.replace(c1,c2)
newstr=s[:i]+k+s[j:]
print(newstr)"""
n,m=map(int,input().split())
s = input()
for j in range(m):
l,r,c1,c2 = map(str,input().split())
ne = s[int(l)-1:int(r)].replace(c1,c2)
s = s[0:int(l)-1]+ne+s[int(r):]
print(s)
```
| 3
|
|
707
|
C
|
Pythagorean Triples
|
PROGRAMMING
| 1,500
|
[
"math",
"number theory"
] | null | null |
Katya studies in a fifth grade. Recently her class studied right triangles and the Pythagorean theorem. It appeared, that there are triples of positive integers such that you can construct a right triangle with segments of lengths corresponding to triple. Such triples are called Pythagorean triples.
For example, triples (3,<=4,<=5), (5,<=12,<=13) and (6,<=8,<=10) are Pythagorean triples.
Here Katya wondered if she can specify the length of some side of right triangle and find any Pythagorean triple corresponding to such length? Note that the side which length is specified can be a cathetus as well as hypotenuse.
Katya had no problems with completing this task. Will you do the same?
|
The only line of the input contains single integer *n* (1<=≤<=*n*<=≤<=109) — the length of some side of a right triangle.
|
Print two integers *m* and *k* (1<=≤<=*m*,<=*k*<=≤<=1018), such that *n*, *m* and *k* form a Pythagorean triple, in the only line.
In case if there is no any Pythagorean triple containing integer *n*, print <=-<=1 in the only line. If there are many answers, print any of them.
|
[
"3\n",
"6\n",
"1\n",
"17\n",
"67\n"
] |
[
"4 5",
"8 10",
"-1",
"144 145",
"2244 2245"
] |
Illustration for the first sample.
| 1,500
|
[
{
"input": "3",
"output": "4 5"
},
{
"input": "6",
"output": "8 10"
},
{
"input": "1",
"output": "-1"
},
{
"input": "17",
"output": "144 145"
},
{
"input": "67",
"output": "2244 2245"
},
{
"input": "10",
"output": "24 26"
},
{
"input": "14",
"output": "48 50"
},
{
"input": "22",
"output": "120 122"
},
{
"input": "23",
"output": "264 265"
},
{
"input": "246",
"output": "15128 15130"
},
{
"input": "902",
"output": "203400 203402"
},
{
"input": "1000000000",
"output": "1250000000 750000000"
},
{
"input": "1998",
"output": "998000 998002"
},
{
"input": "2222222",
"output": "1234567654320 1234567654322"
},
{
"input": "2222226",
"output": "1234572098768 1234572098770"
},
{
"input": "1111110",
"output": "308641358024 308641358026"
},
{
"input": "9999998",
"output": "24999990000000 24999990000002"
},
{
"input": "1024",
"output": "1280 768"
},
{
"input": "8388608",
"output": "10485760 6291456"
},
{
"input": "4",
"output": "5 3"
},
{
"input": "8",
"output": "10 6"
},
{
"input": "16",
"output": "20 12"
},
{
"input": "492",
"output": "615 369"
},
{
"input": "493824",
"output": "617280 370368"
},
{
"input": "493804",
"output": "617255 370353"
},
{
"input": "493800",
"output": "617250 370350"
},
{
"input": "2048",
"output": "2560 1536"
},
{
"input": "8388612",
"output": "10485765 6291459"
},
{
"input": "44",
"output": "55 33"
},
{
"input": "444",
"output": "555 333"
},
{
"input": "4444",
"output": "5555 3333"
},
{
"input": "44444",
"output": "55555 33333"
},
{
"input": "444444",
"output": "555555 333333"
},
{
"input": "4444444",
"output": "5555555 3333333"
},
{
"input": "100000000",
"output": "125000000 75000000"
},
{
"input": "2",
"output": "-1"
},
{
"input": "3",
"output": "4 5"
},
{
"input": "5",
"output": "12 13"
},
{
"input": "7",
"output": "24 25"
},
{
"input": "9",
"output": "40 41"
},
{
"input": "11",
"output": "60 61"
},
{
"input": "13",
"output": "84 85"
},
{
"input": "15",
"output": "112 113"
},
{
"input": "19",
"output": "180 181"
},
{
"input": "111",
"output": "6160 6161"
},
{
"input": "113",
"output": "6384 6385"
},
{
"input": "115",
"output": "6612 6613"
},
{
"input": "117",
"output": "6844 6845"
},
{
"input": "119",
"output": "7080 7081"
},
{
"input": "111111",
"output": "6172827160 6172827161"
},
{
"input": "111113",
"output": "6173049384 6173049385"
},
{
"input": "111115",
"output": "6173271612 6173271613"
},
{
"input": "111117",
"output": "6173493844 6173493845"
},
{
"input": "111119",
"output": "6173716080 6173716081"
},
{
"input": "9999993",
"output": "49999930000024 49999930000025"
},
{
"input": "9999979",
"output": "49999790000220 49999790000221"
},
{
"input": "9999990",
"output": "24999950000024 24999950000026"
},
{
"input": "9999991",
"output": "49999910000040 49999910000041"
},
{
"input": "9999992",
"output": "12499990 7499994"
},
{
"input": "9999973",
"output": "49999730000364 49999730000365"
},
{
"input": "9999994",
"output": "24999970000008 24999970000010"
},
{
"input": "9999995",
"output": "49999950000012 49999950000013"
},
{
"input": "9999996",
"output": "12499995 7499997"
},
{
"input": "9999997",
"output": "49999970000004 49999970000005"
},
{
"input": "9999978",
"output": "24999890000120 24999890000122"
},
{
"input": "99999993",
"output": "4999999300000024 4999999300000025"
},
{
"input": "99999979",
"output": "4999997900000220 4999997900000221"
},
{
"input": "99999990",
"output": "2499999500000024 2499999500000026"
},
{
"input": "99999991",
"output": "4999999100000040 4999999100000041"
},
{
"input": "99999992",
"output": "124999990 74999994"
},
{
"input": "99999973",
"output": "4999997300000364 4999997300000365"
},
{
"input": "99999994",
"output": "2499999700000008 2499999700000010"
},
{
"input": "99999995",
"output": "4999999500000012 4999999500000013"
},
{
"input": "99999996",
"output": "124999995 74999997"
},
{
"input": "99999997",
"output": "4999999700000004 4999999700000005"
},
{
"input": "99999978",
"output": "2499998900000120 2499998900000122"
},
{
"input": "987654323",
"output": "487730530870294164 487730530870294165"
},
{
"input": "2",
"output": "-1"
},
{
"input": "4",
"output": "5 3"
},
{
"input": "8",
"output": "10 6"
},
{
"input": "64",
"output": "80 48"
},
{
"input": "999999999",
"output": "499999999000000000 499999999000000001"
},
{
"input": "16",
"output": "20 12"
},
{
"input": "999999937",
"output": "499999937000001984 499999937000001985"
},
{
"input": "999999998",
"output": "249999999000000000 249999999000000002"
},
{
"input": "433494437",
"output": "93958713454973484 93958713454973485"
},
{
"input": "484916147",
"output": "117571834810662804 117571834810662805"
},
{
"input": "999999929",
"output": "499999929000002520 499999929000002521"
},
{
"input": "982451653",
"output": "482605625241216204 482605625241216205"
},
{
"input": "2048",
"output": "2560 1536"
}
] | 1,673,987,336
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 90
| 46
| 0
|
n = int(input())
n2 = n**2
if n2%2:
a = (n2 - 1)//2
b = a + 1
else:
a = n2//4 - 1
b = a + 2
if not a or not b:
print(-1)
else:
print(a, b)
|
Title: Pythagorean Triples
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Katya studies in a fifth grade. Recently her class studied right triangles and the Pythagorean theorem. It appeared, that there are triples of positive integers such that you can construct a right triangle with segments of lengths corresponding to triple. Such triples are called Pythagorean triples.
For example, triples (3,<=4,<=5), (5,<=12,<=13) and (6,<=8,<=10) are Pythagorean triples.
Here Katya wondered if she can specify the length of some side of right triangle and find any Pythagorean triple corresponding to such length? Note that the side which length is specified can be a cathetus as well as hypotenuse.
Katya had no problems with completing this task. Will you do the same?
Input Specification:
The only line of the input contains single integer *n* (1<=≤<=*n*<=≤<=109) — the length of some side of a right triangle.
Output Specification:
Print two integers *m* and *k* (1<=≤<=*m*,<=*k*<=≤<=1018), such that *n*, *m* and *k* form a Pythagorean triple, in the only line.
In case if there is no any Pythagorean triple containing integer *n*, print <=-<=1 in the only line. If there are many answers, print any of them.
Demo Input:
['3\n', '6\n', '1\n', '17\n', '67\n']
Demo Output:
['4 5', '8 10', '-1', '144 145', '2244 2245']
Note:
Illustration for the first sample.
|
```python
n = int(input())
n2 = n**2
if n2%2:
a = (n2 - 1)//2
b = a + 1
else:
a = n2//4 - 1
b = a + 2
if not a or not b:
print(-1)
else:
print(a, b)
```
| 3
|
|
48
|
A
|
Rock-paper-scissors
|
PROGRAMMING
| 900
|
[
"implementation",
"schedules"
] |
A. Rock-paper-scissors
|
2
|
256
|
Uncle Fyodor, Matroskin the Cat and Sharic the Dog live their simple but happy lives in Prostokvashino. Sometimes they receive parcels from Uncle Fyodor’s parents and sometimes from anonymous benefactors, in which case it is hard to determine to which one of them the package has been sent. A photographic rifle is obviously for Sharic who loves hunting and fish is for Matroskin, but for whom was a new video game console meant? Every one of the three friends claimed that the present is for him and nearly quarreled. Uncle Fyodor had an idea how to solve the problem justly: they should suppose that the console was sent to all three of them and play it in turns. Everybody got relieved but then yet another burning problem popped up — who will play first? This time Matroskin came up with a brilliant solution, suggesting the most fair way to find it out: play rock-paper-scissors together. The rules of the game are very simple. On the count of three every player shows a combination with his hand (or paw). The combination corresponds to one of three things: a rock, scissors or paper. Some of the gestures win over some other ones according to well-known rules: the rock breaks the scissors, the scissors cut the paper, and the paper gets wrapped over the stone. Usually there are two players. Yet there are three friends, that’s why they decided to choose the winner like that: If someone shows the gesture that wins over the other two players, then that player wins. Otherwise, another game round is required. Write a program that will determine the winner by the gestures they have shown.
|
The first input line contains the name of the gesture that Uncle Fyodor showed, the second line shows which gesture Matroskin showed and the third line shows Sharic’s gesture.
|
Print "F" (without quotes) if Uncle Fyodor wins. Print "M" if Matroskin wins and "S" if Sharic wins. If it is impossible to find the winner, print "?".
|
[
"rock\nrock\nrock\n",
"paper\nrock\nrock\n",
"scissors\nrock\nrock\n",
"scissors\npaper\nrock\n"
] |
[
"?\n",
"F\n",
"?\n",
"?\n"
] |
none
| 0
|
[
{
"input": "rock\nrock\nrock",
"output": "?"
},
{
"input": "paper\nrock\nrock",
"output": "F"
},
{
"input": "scissors\nrock\nrock",
"output": "?"
},
{
"input": "scissors\npaper\nrock",
"output": "?"
},
{
"input": "paper\npaper\nrock",
"output": "?"
},
{
"input": "rock\npaper\nrock",
"output": "M"
},
{
"input": "rock\nscissors\nrock",
"output": "?"
},
{
"input": "paper\nscissors\nrock",
"output": "?"
},
{
"input": "scissors\nscissors\nrock",
"output": "S"
},
{
"input": "rock\nrock\npaper",
"output": "S"
},
{
"input": "paper\nrock\npaper",
"output": "?"
},
{
"input": "scissors\nrock\npaper",
"output": "?"
},
{
"input": "rock\npaper\npaper",
"output": "?"
},
{
"input": "paper\npaper\npaper",
"output": "?"
},
{
"input": "scissors\npaper\npaper",
"output": "F"
},
{
"input": "rock\nscissors\npaper",
"output": "?"
},
{
"input": "paper\nscissors\npaper",
"output": "M"
},
{
"input": "scissors\nscissors\npaper",
"output": "?"
},
{
"input": "rock\nrock\nscissors",
"output": "?"
},
{
"input": "paper\nrock\nscissors",
"output": "?"
},
{
"input": "scissors\nrock\nscissors",
"output": "M"
},
{
"input": "rock\npaper\nscissors",
"output": "?"
},
{
"input": "paper\npaper\nscissors",
"output": "S"
},
{
"input": "scissors\npaper\nscissors",
"output": "?"
},
{
"input": "rock\nscissors\nscissors",
"output": "F"
},
{
"input": "paper\nscissors\nscissors",
"output": "?"
},
{
"input": "scissors\nscissors\nscissors",
"output": "?"
}
] | 1,694,748,333
| 33
|
Python 3
|
OK
|
TESTS
| 27
| 92
| 0
|
def who_wins():
players = {"F":"" , "M":"" , "S":""}
choices = []
for i in players.keys():
players.update({i:input()})
for i in players.values():
choices.append(i)
number_of_each_choice = {x:choices.count(x) for x in set(choices)}
#print(number_of_each_choice)
max_choice = max(number_of_each_choice, key= lambda x: number_of_each_choice[x])
#key function here is called for each key in dictonary
#print(max_choice)
min_choice = min(number_of_each_choice, key= lambda x: number_of_each_choice[x])
#print(min_choice)
if number_of_each_choice[max_choice] == 2:
if min_choice[0] == "r" and max_choice[0] == "s":
winner = [i for i in players if players[i] == min_choice]
elif min_choice[0] == "p" and max_choice[0] == "r":
winner = [i for i in players if players[i] == min_choice]
elif min_choice[0] == "s" and max_choice[0] == "p":
winner = [i for i in players if players[i] == min_choice]
else:
winner = "?"
print(winner[0])
else:
print("?")
if __name__ == "__main__":
who_wins()
|
Title: Rock-paper-scissors
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Uncle Fyodor, Matroskin the Cat and Sharic the Dog live their simple but happy lives in Prostokvashino. Sometimes they receive parcels from Uncle Fyodor’s parents and sometimes from anonymous benefactors, in which case it is hard to determine to which one of them the package has been sent. A photographic rifle is obviously for Sharic who loves hunting and fish is for Matroskin, but for whom was a new video game console meant? Every one of the three friends claimed that the present is for him and nearly quarreled. Uncle Fyodor had an idea how to solve the problem justly: they should suppose that the console was sent to all three of them and play it in turns. Everybody got relieved but then yet another burning problem popped up — who will play first? This time Matroskin came up with a brilliant solution, suggesting the most fair way to find it out: play rock-paper-scissors together. The rules of the game are very simple. On the count of three every player shows a combination with his hand (or paw). The combination corresponds to one of three things: a rock, scissors or paper. Some of the gestures win over some other ones according to well-known rules: the rock breaks the scissors, the scissors cut the paper, and the paper gets wrapped over the stone. Usually there are two players. Yet there are three friends, that’s why they decided to choose the winner like that: If someone shows the gesture that wins over the other two players, then that player wins. Otherwise, another game round is required. Write a program that will determine the winner by the gestures they have shown.
Input Specification:
The first input line contains the name of the gesture that Uncle Fyodor showed, the second line shows which gesture Matroskin showed and the third line shows Sharic’s gesture.
Output Specification:
Print "F" (without quotes) if Uncle Fyodor wins. Print "M" if Matroskin wins and "S" if Sharic wins. If it is impossible to find the winner, print "?".
Demo Input:
['rock\nrock\nrock\n', 'paper\nrock\nrock\n', 'scissors\nrock\nrock\n', 'scissors\npaper\nrock\n']
Demo Output:
['?\n', 'F\n', '?\n', '?\n']
Note:
none
|
```python
def who_wins():
players = {"F":"" , "M":"" , "S":""}
choices = []
for i in players.keys():
players.update({i:input()})
for i in players.values():
choices.append(i)
number_of_each_choice = {x:choices.count(x) for x in set(choices)}
#print(number_of_each_choice)
max_choice = max(number_of_each_choice, key= lambda x: number_of_each_choice[x])
#key function here is called for each key in dictonary
#print(max_choice)
min_choice = min(number_of_each_choice, key= lambda x: number_of_each_choice[x])
#print(min_choice)
if number_of_each_choice[max_choice] == 2:
if min_choice[0] == "r" and max_choice[0] == "s":
winner = [i for i in players if players[i] == min_choice]
elif min_choice[0] == "p" and max_choice[0] == "r":
winner = [i for i in players if players[i] == min_choice]
elif min_choice[0] == "s" and max_choice[0] == "p":
winner = [i for i in players if players[i] == min_choice]
else:
winner = "?"
print(winner[0])
else:
print("?")
if __name__ == "__main__":
who_wins()
```
| 3.977
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.