contestId
int64 0
1.01k
| index
stringclasses 40
values | name
stringlengths 2
54
| type
stringclasses 2
values | rating
int64 0
3.4k
| tags
listlengths 0
7
| title
stringclasses 393
values | time-limit
stringclasses 7
values | memory-limit
stringclasses 6
values | problem-description
stringlengths 0
2.97k
| input-specification
stringlengths 4
1.87k
| output-specification
stringlengths 4
1.12k
| demo-input
listlengths 0
7
| demo-output
listlengths 0
7
| note
stringlengths 0
5.24k
| points
float64 0
3.5k
| test_cases
listlengths 0
402
| creationTimeSeconds
int64 1.37B
1.7B
| relativeTimeSeconds
int64 8
2.15B
| programmingLanguage
stringclasses 3
values | verdict
stringclasses 1
value | testset
stringclasses 9
values | passedTestCount
int64 1
402
| timeConsumedMillis
int64 15
8.06k
| memoryConsumedBytes
int64 0
514M
| code
stringlengths 11
61.4k
| prompt
stringlengths 297
7.35k
| response
stringlengths 25
61.4k
| score
float64 2.82
3.99
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
515
|
A
|
Drazil and Date
|
PROGRAMMING
| 1,000
|
[
"math"
] | null | null |
Someday, Drazil wanted to go on date with Varda. Drazil and Varda live on Cartesian plane. Drazil's home is located in point (0,<=0) and Varda's home is located in point (*a*,<=*b*). In each step, he can move in a unit distance in horizontal or vertical direction. In other words, from position (*x*,<=*y*) he can go to positions (*x*<=+<=1,<=*y*), (*x*<=-<=1,<=*y*), (*x*,<=*y*<=+<=1) or (*x*,<=*y*<=-<=1).
Unfortunately, Drazil doesn't have sense of direction. So he randomly chooses the direction he will go to in each step. He may accidentally return back to his house during his travel. Drazil may even not notice that he has arrived to (*a*,<=*b*) and continue travelling.
Luckily, Drazil arrived to the position (*a*,<=*b*) successfully. Drazil said to Varda: "It took me exactly *s* steps to travel from my house to yours". But Varda is confused about his words, she is not sure that it is possible to get from (0,<=0) to (*a*,<=*b*) in exactly *s* steps. Can you find out if it is possible for Varda?
|
You are given three integers *a*, *b*, and *s* (<=-<=109<=≤<=*a*,<=*b*<=≤<=109, 1<=≤<=*s*<=≤<=2·109) in a single line.
|
If you think Drazil made a mistake and it is impossible to take exactly *s* steps and get from his home to Varda's home, print "No" (without quotes).
Otherwise, print "Yes".
|
[
"5 5 11\n",
"10 15 25\n",
"0 5 1\n",
"0 0 2\n"
] |
[
"No\n",
"Yes\n",
"No\n",
"Yes\n"
] |
In fourth sample case one possible route is: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/0d30660ddf6eb6c64ffd071055a4e8ddd016cde5.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
| 500
|
[
{
"input": "5 5 11",
"output": "No"
},
{
"input": "10 15 25",
"output": "Yes"
},
{
"input": "0 5 1",
"output": "No"
},
{
"input": "0 0 2",
"output": "Yes"
},
{
"input": "999999999 999999999 2000000000",
"output": "Yes"
},
{
"input": "-606037695 998320124 820674098",
"output": "No"
},
{
"input": "948253616 -83299062 1031552680",
"output": "Yes"
},
{
"input": "711980199 216568284 928548487",
"output": "Yes"
},
{
"input": "-453961301 271150176 725111473",
"output": "No"
},
{
"input": "0 0 2000000000",
"output": "Yes"
},
{
"input": "0 0 1999999999",
"output": "No"
},
{
"input": "1000000000 1000000000 2000000000",
"output": "Yes"
},
{
"input": "-1000000000 1000000000 2000000000",
"output": "Yes"
},
{
"input": "-1000000000 -1000000000 2000000000",
"output": "Yes"
},
{
"input": "-1000000000 -1000000000 1000000000",
"output": "No"
},
{
"input": "-1 -1 3",
"output": "No"
},
{
"input": "919785634 216774719 129321944",
"output": "No"
},
{
"input": "-467780354 -721273539 1369030008",
"output": "No"
},
{
"input": "-232833910 -880680184 1774549792",
"output": "Yes"
},
{
"input": "45535578 402686155 1011249824",
"output": "No"
},
{
"input": "-203250176 -30379840 233630015",
"output": "No"
},
{
"input": "-814516648 -75830576 890347222",
"output": "No"
},
{
"input": "869184175 -511854751 1381038923",
"output": "No"
},
{
"input": "552884998 -262338193 815223187",
"output": "No"
},
{
"input": "-133874494 857573117 991447611",
"output": "Yes"
},
{
"input": "169406792 786701289 956108082",
"output": "No"
},
{
"input": "30237137 -989203246 1019440385",
"output": "Yes"
},
{
"input": "576608216 -617624133 1194232352",
"output": "No"
},
{
"input": "-662360368 97618995 759979367",
"output": "Yes"
},
{
"input": "-115989290 321714461 437703756",
"output": "No"
},
{
"input": "-1 -3 2",
"output": "No"
},
{
"input": "-2 -2 2",
"output": "No"
},
{
"input": "0 0 1",
"output": "No"
},
{
"input": "0 -1 7",
"output": "Yes"
},
{
"input": "1 2 7",
"output": "Yes"
},
{
"input": "0 5 6",
"output": "No"
},
{
"input": "0 -4 2",
"output": "No"
},
{
"input": "-5 5 2",
"output": "No"
},
{
"input": "-5 -2 7",
"output": "Yes"
},
{
"input": "5 -5 2",
"output": "No"
}
] | 1,595,778,380
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 40
| 108
| 6,656,000
|
a, b, s = map(int, input().split())
if s < abs(a) + abs(b):
print('NO')
elif s == a + b:
print('YES')
else:
if s % 2 == (abs(a)+abs(b)) % 2:
print('YES')
else:
print('NO')
|
Title: Drazil and Date
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Someday, Drazil wanted to go on date with Varda. Drazil and Varda live on Cartesian plane. Drazil's home is located in point (0,<=0) and Varda's home is located in point (*a*,<=*b*). In each step, he can move in a unit distance in horizontal or vertical direction. In other words, from position (*x*,<=*y*) he can go to positions (*x*<=+<=1,<=*y*), (*x*<=-<=1,<=*y*), (*x*,<=*y*<=+<=1) or (*x*,<=*y*<=-<=1).
Unfortunately, Drazil doesn't have sense of direction. So he randomly chooses the direction he will go to in each step. He may accidentally return back to his house during his travel. Drazil may even not notice that he has arrived to (*a*,<=*b*) and continue travelling.
Luckily, Drazil arrived to the position (*a*,<=*b*) successfully. Drazil said to Varda: "It took me exactly *s* steps to travel from my house to yours". But Varda is confused about his words, she is not sure that it is possible to get from (0,<=0) to (*a*,<=*b*) in exactly *s* steps. Can you find out if it is possible for Varda?
Input Specification:
You are given three integers *a*, *b*, and *s* (<=-<=109<=≤<=*a*,<=*b*<=≤<=109, 1<=≤<=*s*<=≤<=2·109) in a single line.
Output Specification:
If you think Drazil made a mistake and it is impossible to take exactly *s* steps and get from his home to Varda's home, print "No" (without quotes).
Otherwise, print "Yes".
Demo Input:
['5 5 11\n', '10 15 25\n', '0 5 1\n', '0 0 2\n']
Demo Output:
['No\n', 'Yes\n', 'No\n', 'Yes\n']
Note:
In fourth sample case one possible route is: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/0d30660ddf6eb6c64ffd071055a4e8ddd016cde5.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
|
```python
a, b, s = map(int, input().split())
if s < abs(a) + abs(b):
print('NO')
elif s == a + b:
print('YES')
else:
if s % 2 == (abs(a)+abs(b)) % 2:
print('YES')
else:
print('NO')
```
| 3
|
|
919
|
B
|
Perfect Number
|
PROGRAMMING
| 1,100
|
[
"binary search",
"brute force",
"dp",
"implementation",
"number theory"
] | null | null |
We consider a positive integer perfect, if and only if the sum of its digits is exactly $10$. Given a positive integer $k$, your task is to find the $k$-th smallest perfect positive integer.
|
A single line with a positive integer $k$ ($1 \leq k \leq 10\,000$).
|
A single number, denoting the $k$-th smallest perfect integer.
|
[
"1\n",
"2\n"
] |
[
"19\n",
"28\n"
] |
The first perfect integer is $19$ and the second one is $28$.
| 750
|
[
{
"input": "1",
"output": "19"
},
{
"input": "2",
"output": "28"
},
{
"input": "13",
"output": "136"
},
{
"input": "101",
"output": "1432"
},
{
"input": "1023",
"output": "100270"
},
{
"input": "9999",
"output": "10800010"
},
{
"input": "10000",
"output": "10800100"
},
{
"input": "2333",
"output": "310060"
},
{
"input": "9139",
"output": "10134010"
},
{
"input": "9859",
"output": "10422001"
},
{
"input": "5987",
"output": "2221201"
},
{
"input": "3",
"output": "37"
},
{
"input": "4",
"output": "46"
},
{
"input": "5",
"output": "55"
},
{
"input": "7",
"output": "73"
},
{
"input": "9",
"output": "91"
},
{
"input": "10",
"output": "109"
},
{
"input": "15",
"output": "154"
},
{
"input": "51",
"output": "613"
},
{
"input": "99",
"output": "1414"
},
{
"input": "138",
"output": "2224"
},
{
"input": "233",
"output": "5050"
},
{
"input": "666",
"output": "27100"
},
{
"input": "1234",
"output": "110206"
},
{
"input": "3567",
"output": "1033003"
},
{
"input": "4445",
"output": "1221301"
},
{
"input": "5689",
"output": "2114002"
},
{
"input": "6666",
"output": "3102004"
},
{
"input": "7777",
"output": "5300200"
},
{
"input": "8888",
"output": "10110061"
},
{
"input": "9411",
"output": "10214200"
},
{
"input": "5539",
"output": "2101114"
},
{
"input": "6259",
"output": "2511100"
},
{
"input": "2387",
"output": "312220"
},
{
"input": "8515",
"output": "10030114"
}
] | 1,699,443,127
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 35
| 436
| 1,843,200
|
# -*- coding: utf-8 -*-
"""
Created on Wed Nov 8 11:00:33 2023
@author: lakne
"""
k = int(input())
x = 10
i = 0
while i != k:
digits_sum = 0
x += 9
digits = str(x)
for digit in digits:
digits_sum += int(digit)
if digits_sum == 10:
i += 1
print(x)
|
Title: Perfect Number
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
We consider a positive integer perfect, if and only if the sum of its digits is exactly $10$. Given a positive integer $k$, your task is to find the $k$-th smallest perfect positive integer.
Input Specification:
A single line with a positive integer $k$ ($1 \leq k \leq 10\,000$).
Output Specification:
A single number, denoting the $k$-th smallest perfect integer.
Demo Input:
['1\n', '2\n']
Demo Output:
['19\n', '28\n']
Note:
The first perfect integer is $19$ and the second one is $28$.
|
```python
# -*- coding: utf-8 -*-
"""
Created on Wed Nov 8 11:00:33 2023
@author: lakne
"""
k = int(input())
x = 10
i = 0
while i != k:
digits_sum = 0
x += 9
digits = str(x)
for digit in digits:
digits_sum += int(digit)
if digits_sum == 10:
i += 1
print(x)
```
| 3
|
|
727
|
A
|
Transformation: from A to B
|
PROGRAMMING
| 1,000
|
[
"brute force",
"dfs and similar",
"math"
] | null | null |
Vasily has a number *a*, which he wants to turn into a number *b*. For this purpose, he can do two types of operations:
- multiply the current number by 2 (that is, replace the number *x* by 2·*x*); - append the digit 1 to the right of current number (that is, replace the number *x* by 10·*x*<=+<=1).
You need to help Vasily to transform the number *a* into the number *b* using only the operations described above, or find that it is impossible.
Note that in this task you are not required to minimize the number of operations. It suffices to find any way to transform *a* into *b*.
|
The first line contains two positive integers *a* and *b* (1<=≤<=*a*<=<<=*b*<=≤<=109) — the number which Vasily has and the number he wants to have.
|
If there is no way to get *b* from *a*, print "NO" (without quotes).
Otherwise print three lines. On the first line print "YES" (without quotes). The second line should contain single integer *k* — the length of the transformation sequence. On the third line print the sequence of transformations *x*1,<=*x*2,<=...,<=*x**k*, where:
- *x*1 should be equal to *a*, - *x**k* should be equal to *b*, - *x**i* should be obtained from *x**i*<=-<=1 using any of two described operations (1<=<<=*i*<=≤<=*k*).
If there are multiple answers, print any of them.
|
[
"2 162\n",
"4 42\n",
"100 40021\n"
] |
[
"YES\n5\n2 4 8 81 162 \n",
"NO\n",
"YES\n5\n100 200 2001 4002 40021 \n"
] |
none
| 1,000
|
[
{
"input": "2 162",
"output": "YES\n5\n2 4 8 81 162 "
},
{
"input": "4 42",
"output": "NO"
},
{
"input": "100 40021",
"output": "YES\n5\n100 200 2001 4002 40021 "
},
{
"input": "1 111111111",
"output": "YES\n9\n1 11 111 1111 11111 111111 1111111 11111111 111111111 "
},
{
"input": "1 1000000000",
"output": "NO"
},
{
"input": "999999999 1000000000",
"output": "NO"
},
{
"input": "1 2",
"output": "YES\n2\n1 2 "
},
{
"input": "1 536870912",
"output": "YES\n30\n1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576 2097152 4194304 8388608 16777216 33554432 67108864 134217728 268435456 536870912 "
},
{
"input": "11111 11111111",
"output": "YES\n4\n11111 111111 1111111 11111111 "
},
{
"input": "59139 946224",
"output": "YES\n5\n59139 118278 236556 473112 946224 "
},
{
"input": "9859 19718",
"output": "YES\n2\n9859 19718 "
},
{
"input": "25987 51974222",
"output": "YES\n5\n25987 259871 2598711 25987111 51974222 "
},
{
"input": "9411 188222222",
"output": "YES\n6\n9411 94111 941111 9411111 94111111 188222222 "
},
{
"input": "25539 510782222",
"output": "YES\n6\n25539 255391 2553911 25539111 255391111 510782222 "
},
{
"input": "76259 610072",
"output": "YES\n4\n76259 152518 305036 610072 "
},
{
"input": "92387 184774",
"output": "YES\n2\n92387 184774 "
},
{
"input": "8515 85151111",
"output": "YES\n5\n8515 85151 851511 8515111 85151111 "
},
{
"input": "91939 9193911",
"output": "YES\n3\n91939 919391 9193911 "
},
{
"input": "30518 610361",
"output": "YES\n3\n30518 61036 610361 "
},
{
"input": "46646 373168844",
"output": "YES\n7\n46646 466461 932922 9329221 93292211 186584422 373168844 "
},
{
"input": "30070 300701",
"output": "YES\n2\n30070 300701 "
},
{
"input": "13494 1079528",
"output": "YES\n5\n13494 134941 269882 539764 1079528 "
},
{
"input": "96918 775344422",
"output": "YES\n7\n96918 193836 1938361 3876722 38767221 387672211 775344422 "
},
{
"input": "13046 260921",
"output": "YES\n3\n13046 26092 260921 "
},
{
"input": "29174 5834811",
"output": "YES\n4\n29174 58348 583481 5834811 "
},
{
"input": "79894 319576421",
"output": "YES\n6\n79894 798941 1597882 15978821 31957642 319576421 "
},
{
"input": "96022 1920442",
"output": "YES\n3\n96022 960221 1920442 "
},
{
"input": "79446 6355681",
"output": "YES\n5\n79446 158892 317784 635568 6355681 "
},
{
"input": "5440 27853056",
"output": "YES\n11\n5440 10880 108801 217602 435204 870408 1740816 3481632 6963264 13926528 27853056 "
},
{
"input": "250000000 705032705",
"output": "NO"
},
{
"input": "17 35",
"output": "NO"
},
{
"input": "1 3",
"output": "NO"
},
{
"input": "2 11",
"output": "NO"
}
] | 1,595,721,076
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 33
| 202
| 14,131,200
|
lis = input().split()
a,b = int(lis[0]),int(lis[1])
parent = {}
parent[a]=None
stack = [a]
flag = False
while stack:
node = stack.pop()
if(node==b):
flag = True
break
elif(node<b):
n = [2*node,10*node+1]
for i in n:
parent[i]=node
stack.append(i)
if not flag:
print("NO")
else:
print("YES")
lis = []
curr = b
while(curr!=None):
lis.append(curr)
curr = parent[curr]
lis.reverse()
print(len(lis))
for i in lis:
print(i,end = " ")
print()
|
Title: Transformation: from A to B
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Vasily has a number *a*, which he wants to turn into a number *b*. For this purpose, he can do two types of operations:
- multiply the current number by 2 (that is, replace the number *x* by 2·*x*); - append the digit 1 to the right of current number (that is, replace the number *x* by 10·*x*<=+<=1).
You need to help Vasily to transform the number *a* into the number *b* using only the operations described above, or find that it is impossible.
Note that in this task you are not required to minimize the number of operations. It suffices to find any way to transform *a* into *b*.
Input Specification:
The first line contains two positive integers *a* and *b* (1<=≤<=*a*<=<<=*b*<=≤<=109) — the number which Vasily has and the number he wants to have.
Output Specification:
If there is no way to get *b* from *a*, print "NO" (without quotes).
Otherwise print three lines. On the first line print "YES" (without quotes). The second line should contain single integer *k* — the length of the transformation sequence. On the third line print the sequence of transformations *x*1,<=*x*2,<=...,<=*x**k*, where:
- *x*1 should be equal to *a*, - *x**k* should be equal to *b*, - *x**i* should be obtained from *x**i*<=-<=1 using any of two described operations (1<=<<=*i*<=≤<=*k*).
If there are multiple answers, print any of them.
Demo Input:
['2 162\n', '4 42\n', '100 40021\n']
Demo Output:
['YES\n5\n2 4 8 81 162 \n', 'NO\n', 'YES\n5\n100 200 2001 4002 40021 \n']
Note:
none
|
```python
lis = input().split()
a,b = int(lis[0]),int(lis[1])
parent = {}
parent[a]=None
stack = [a]
flag = False
while stack:
node = stack.pop()
if(node==b):
flag = True
break
elif(node<b):
n = [2*node,10*node+1]
for i in n:
parent[i]=node
stack.append(i)
if not flag:
print("NO")
else:
print("YES")
lis = []
curr = b
while(curr!=None):
lis.append(curr)
curr = parent[curr]
lis.reverse()
print(len(lis))
for i in lis:
print(i,end = " ")
print()
```
| 3
|
|
186
|
A
|
Comparing Strings
|
PROGRAMMING
| 1,100
|
[
"implementation",
"strings"
] | null | null |
Some dwarves that are finishing the StUDY (State University for Dwarven Youngsters) Bachelor courses, have been told "no genome, no degree". That means that all dwarves should write a thesis on genome. Dwarven genome is far from simple. It is represented by a string that consists of lowercase Latin letters.
Dwarf Misha has already chosen the subject for his thesis: determining by two dwarven genomes, whether they belong to the same race. Two dwarves belong to the same race if we can swap two characters in the first dwarf's genome and get the second dwarf's genome as a result. Help Dwarf Misha and find out whether two gnomes belong to the same race or not.
|
The first line contains the first dwarf's genome: a non-empty string, consisting of lowercase Latin letters.
The second line contains the second dwarf's genome: a non-empty string, consisting of lowercase Latin letters.
The number of letters in each genome doesn't exceed 105. It is guaranteed that the strings that correspond to the genomes are different. The given genomes may have different length.
|
Print "YES", if the dwarves belong to the same race. Otherwise, print "NO".
|
[
"ab\nba\n",
"aa\nab\n"
] |
[
"YES\n",
"NO\n"
] |
- First example: you can simply swap two letters in string "ab". So we get "ba". - Second example: we can't change string "aa" into string "ab", because "aa" does not contain letter "b".
| 500
|
[
{
"input": "ab\nba",
"output": "YES"
},
{
"input": "aa\nab",
"output": "NO"
},
{
"input": "a\nza",
"output": "NO"
},
{
"input": "vvea\nvvae",
"output": "YES"
},
{
"input": "rtfabanpc\natfabrnpc",
"output": "YES"
},
{
"input": "mt\ntm",
"output": "YES"
},
{
"input": "qxolmbkkt\naovlajmlf",
"output": "NO"
},
{
"input": "b\ng",
"output": "NO"
},
{
"input": "ab\naba",
"output": "NO"
},
{
"input": "ba\na",
"output": "NO"
},
{
"input": "a\nab",
"output": "NO"
},
{
"input": "a\naa",
"output": "NO"
},
{
"input": "a\nz",
"output": "NO"
},
{
"input": "aabb\nbbaa",
"output": "NO"
},
{
"input": "ab\nbd",
"output": "NO"
},
{
"input": "bac\ndae",
"output": "NO"
},
{
"input": "abc\nakl",
"output": "NO"
},
{
"input": "cb\naa",
"output": "NO"
},
{
"input": "abaab\naabba",
"output": "NO"
},
{
"input": "aab\naaa",
"output": "NO"
},
{
"input": "abcde\nedcba",
"output": "NO"
},
{
"input": "abab\nbaba",
"output": "NO"
},
{
"input": "ab\nbac",
"output": "NO"
},
{
"input": "abcd\naqcb",
"output": "NO"
},
{
"input": "abc\nbad",
"output": "NO"
},
{
"input": "ab\nca",
"output": "NO"
},
{
"input": "abc\nab",
"output": "NO"
},
{
"input": "ab\nbae",
"output": "NO"
},
{
"input": "aaaabcccca\naaaadccccb",
"output": "NO"
},
{
"input": "acaa\nabca",
"output": "NO"
},
{
"input": "aba\naab",
"output": "YES"
},
{
"input": "ah\nla",
"output": "NO"
},
{
"input": "aab\naa",
"output": "NO"
},
{
"input": "abab\nabcd",
"output": "NO"
},
{
"input": "ed\nab",
"output": "NO"
}
] | 1,601,530,553
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 53
| 342
| 4,608,000
|
s1=str(input())
s2=str(input())
if len(s1)!=len(s2):
print('NO')
else:
key=[]
count=0
for i in range(len(s1)):
if s1[i]!=s2[i] and count==0:
key.append([s1[i],s2[i]])
count+=1
elif s1[i]!=s2[i] and count>0:
count+=1
key.append([s2[i],s1[i]])
if count!=2 :
print('NO')
elif len(key)!=2:
print('NO')
elif key[1]!=key[0]:
print('NO')
else:
print('YES')
|
Title: Comparing Strings
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Some dwarves that are finishing the StUDY (State University for Dwarven Youngsters) Bachelor courses, have been told "no genome, no degree". That means that all dwarves should write a thesis on genome. Dwarven genome is far from simple. It is represented by a string that consists of lowercase Latin letters.
Dwarf Misha has already chosen the subject for his thesis: determining by two dwarven genomes, whether they belong to the same race. Two dwarves belong to the same race if we can swap two characters in the first dwarf's genome and get the second dwarf's genome as a result. Help Dwarf Misha and find out whether two gnomes belong to the same race or not.
Input Specification:
The first line contains the first dwarf's genome: a non-empty string, consisting of lowercase Latin letters.
The second line contains the second dwarf's genome: a non-empty string, consisting of lowercase Latin letters.
The number of letters in each genome doesn't exceed 105. It is guaranteed that the strings that correspond to the genomes are different. The given genomes may have different length.
Output Specification:
Print "YES", if the dwarves belong to the same race. Otherwise, print "NO".
Demo Input:
['ab\nba\n', 'aa\nab\n']
Demo Output:
['YES\n', 'NO\n']
Note:
- First example: you can simply swap two letters in string "ab". So we get "ba". - Second example: we can't change string "aa" into string "ab", because "aa" does not contain letter "b".
|
```python
s1=str(input())
s2=str(input())
if len(s1)!=len(s2):
print('NO')
else:
key=[]
count=0
for i in range(len(s1)):
if s1[i]!=s2[i] and count==0:
key.append([s1[i],s2[i]])
count+=1
elif s1[i]!=s2[i] and count>0:
count+=1
key.append([s2[i],s1[i]])
if count!=2 :
print('NO')
elif len(key)!=2:
print('NO')
elif key[1]!=key[0]:
print('NO')
else:
print('YES')
```
| 3
|
|
794
|
B
|
Cutting Carrot
|
PROGRAMMING
| 1,200
|
[
"geometry",
"math"
] | null | null |
Igor the analyst has adopted *n* little bunnies. As we all know, bunnies love carrots. Thus, Igor has bought a carrot to be shared between his bunnies. Igor wants to treat all the bunnies equally, and thus he wants to cut the carrot into *n* pieces of equal area.
Formally, the carrot can be viewed as an isosceles triangle with base length equal to 1 and height equal to *h*. Igor wants to make *n*<=-<=1 cuts parallel to the base to cut the carrot into *n* pieces. He wants to make sure that all *n* pieces have the same area. Can you help Igor determine where to cut the carrot so that each piece have equal area?
|
The first and only line of input contains two space-separated integers, *n* and *h* (2<=≤<=*n*<=≤<=1000, 1<=≤<=*h*<=≤<=105).
|
The output should contain *n*<=-<=1 real numbers *x*1,<=*x*2,<=...,<=*x**n*<=-<=1. The number *x**i* denotes that the *i*-th cut must be made *x**i* units away from the apex of the carrot. In addition, 0<=<<=*x*1<=<<=*x*2<=<<=...<=<<=*x**n*<=-<=1<=<<=*h* must hold.
Your output will be considered correct if absolute or relative error of every number in your output doesn't exceed 10<=-<=6.
Formally, let your answer be *a*, and the jury's answer be *b*. Your answer is considered correct if .
|
[
"3 2\n",
"2 100000\n"
] |
[
"1.154700538379 1.632993161855\n",
"70710.678118654752\n"
] |
Definition of isosceles triangle: [https://en.wikipedia.org/wiki/Isosceles_triangle](https://en.wikipedia.org/wiki/Isosceles_triangle).
| 1,000
|
[
{
"input": "3 2",
"output": "1.154700538379 1.632993161855"
},
{
"input": "2 100000",
"output": "70710.678118654752"
},
{
"input": "1000 100000",
"output": "3162.277660168379 4472.135954999579 5477.225575051661 6324.555320336759 7071.067811865475 7745.966692414834 8366.600265340755 8944.271909999159 9486.832980505138 10000.000000000000 10488.088481701515 10954.451150103322 11401.754250991380 11832.159566199232 12247.448713915890 12649.110640673517 13038.404810405297 13416.407864998738 13784.048752090222 14142.135623730950 14491.376746189439 14832.396974191326 15165.750888103101 15491.933384829668 15811.388300841897 16124.515496597099 16431.676725154983 16733.2..."
},
{
"input": "2 1",
"output": "0.707106781187"
},
{
"input": "1000 1",
"output": "0.031622776602 0.044721359550 0.054772255751 0.063245553203 0.070710678119 0.077459666924 0.083666002653 0.089442719100 0.094868329805 0.100000000000 0.104880884817 0.109544511501 0.114017542510 0.118321595662 0.122474487139 0.126491106407 0.130384048104 0.134164078650 0.137840487521 0.141421356237 0.144913767462 0.148323969742 0.151657508881 0.154919333848 0.158113883008 0.161245154966 0.164316767252 0.167332005307 0.170293863659 0.173205080757 0.176068168617 0.178885438200 0.181659021246 0.184390889146 0..."
},
{
"input": "20 17",
"output": "3.801315561750 5.375872022286 6.584071688553 7.602631123499 8.500000000000 9.311283477588 10.057335631269 10.751744044572 11.403946685249 12.020815280171 12.607537428063 13.168143377105 13.705838172108 14.223220451079 14.722431864335 15.205262246999 15.673225577398 16.127616066859 16.569550386175"
},
{
"input": "999 1",
"output": "0.031638599858 0.044743737014 0.054799662435 0.063277199717 0.070746059996 0.077498425829 0.083707867056 0.089487474029 0.094915799575 0.100050037531 0.104933364623 0.109599324870 0.114074594073 0.118380800867 0.122535770349 0.126554399434 0.130449289063 0.134231211043 0.137909459498 0.141492119993 0.144986278734 0.148398187395 0.151733394554 0.154996851658 0.158192999292 0.161325838061 0.164398987305 0.167415734111 0.170379074505 0.173291748303 0.176156268782 0.178974948057 0.181749918935 0.184483153795 0..."
},
{
"input": "998 99999",
"output": "3165.413034717700 4476.570044210349 5482.656203071844 6330.826069435401 7078.078722492680 7753.646760213179 8374.895686665300 8953.140088420697 9496.239104153101 10009.914924893578 10498.487342658843 10965.312406143687 11413.059004696742 11843.891063542002 12259.591967329534 12661.652138870802 13051.332290848021 13429.710132631046 13797.715532900862 14156.157444985360 14505.744837393740 14847.103184390411 15180.787616204127 15507.293520426358 15827.065173588502 16140.502832606510 16447.968609215531 16749.7..."
},
{
"input": "574 29184",
"output": "1218.116624752432 1722.677051277028 2109.839883615525 2436.233249504864 2723.791577469041 2983.764177844748 3222.833656968322 3445.354102554056 3654.349874257297 3852.022989934325 4040.035795197963 4219.679767231051 4391.981950040022 4557.775066957079 4717.745401404559 4872.466499009729 5022.423508175150 5168.031153831084 5309.647268742708 5447.583154938083 5582.111638212139 5713.473414041731 5841.882108059006 5967.528355689497 6090.583123762161 6211.200439444432 6329.519650846576 6445.667313936643 6559.75..."
},
{
"input": "2 5713",
"output": "4039.701040918746"
},
{
"input": "937 23565",
"output": "769.834993893392 1088.711089153444 1333.393322867831 1539.669987786784 1721.403377803760 1885.702921177414 2036.791944396843 2177.422178306887 2309.504981680176 2434.432003204934 2553.253825229922 2666.786645735663 2775.679544129132 2880.458791498282 2981.558110676796 3079.339975573568 3174.110994119182 3266.133267460331 3355.632941582547 3442.806755607520 3527.827132142336 3610.846187821139 3691.998931463184 3771.405842354828 3849.174969466960 3925.403656108988 4000.179968603494 4073.583888793686 4145.688..."
},
{
"input": "693 39706",
"output": "1508.306216302128 2133.067107306117 2612.463000007259 3016.612432604256 3372.675230537060 3694.580605808168 3990.603149268227 4266.134214612233 4524.918648906384 4769.683052505315 5002.485788434792 5224.926000014517 5438.275401978402 5643.565095743912 5841.644856719264 6033.224865208513 6218.905845589392 6399.201321918350 6574.554372775177 6745.350461074120 6911.927407376938 7074.583247583148 7233.582498950279 7389.161211616337 7541.531081510641 7690.882829397851 7837.389000021776 7981.206298536455 8122.47..."
},
{
"input": "449 88550",
"output": "4178.932872810542 5909.903544975429 7238.124057127628 8357.865745621084 9344.377977012855 10236.253207728862 11056.417127089408 11819.807089950858 12536.798618431626 13214.946067032045 13859.952363194553 14476.248114255256 15067.356749640443 15636.135052384012 16184.937421313947 16715.731491242168 17230.181636963718 17729.710634926286 18215.546084421264 18688.755954025709 19150.276213793575 19600.932605874766 20041.458005232581 20472.506415457724 20894.664364052710 21308.460264455309 21714.372171382883 221..."
},
{
"input": "642 37394",
"output": "1475.823459881026 2087.129552632132 2556.201215516026 2951.646919762052 3300.041579082908 3615.014427137354 3904.661853880105 4174.259105264265 4427.470379643078 4666.963557534173 4894.752673229489 5112.402431032051 5321.157158133711 5522.025750238117 5715.839682061424 5903.293839524104 6084.976009853978 6261.388657896397 6432.965320127946 6600.083158165816 6763.072717296425 6922.225614943105 7077.800671741869 7230.028854274709 7379.117299405130 7525.252620551370 7668.603646548077 7809.323707760210 7947.55..."
},
{
"input": "961 53535",
"output": "1726.935483870968 2442.255582633666 2991.139999458060 3453.870967741935 3861.545134691976 4230.110754190240 4569.041820575576 4884.511165267332 5180.806451612903 5461.049501197232 5727.597037150849 5982.279998916119 6226.554436514989 6461.600909707837 6688.392369006905 6907.741935483871 7120.337408627144 7326.766747900998 7527.537256208063 7723.090269383951 7913.812575143900 8100.045409746687 8282.091632275692 8460.221508380480 8634.677419354839 8805.677730973862 8973.419998374179 9138.083641151152 9299.83..."
},
{
"input": "4 31901",
"output": "15950.500000000000 22557.413426632053 27627.076406127377"
},
{
"input": "4 23850",
"output": "11925.000000000000 16864.496731299158 20654.705880258862"
},
{
"input": "4 72694",
"output": "36347.000000000000 51402.420351574886 62954.850702705983"
},
{
"input": "4 21538",
"output": "10769.000000000000 15229.665853195861 18652.455146709240"
},
{
"input": "4 70383",
"output": "35191.500000000000 49768.296580252774 60953.465994560145"
},
{
"input": "5 1",
"output": "0.447213595500 0.632455532034 0.774596669241 0.894427191000"
},
{
"input": "5 1",
"output": "0.447213595500 0.632455532034 0.774596669241 0.894427191000"
},
{
"input": "5 1",
"output": "0.447213595500 0.632455532034 0.774596669241 0.894427191000"
},
{
"input": "5 1",
"output": "0.447213595500 0.632455532034 0.774596669241 0.894427191000"
},
{
"input": "5 1",
"output": "0.447213595500 0.632455532034 0.774596669241 0.894427191000"
},
{
"input": "20 1",
"output": "0.223606797750 0.316227766017 0.387298334621 0.447213595500 0.500000000000 0.547722557505 0.591607978310 0.632455532034 0.670820393250 0.707106781187 0.741619848710 0.774596669241 0.806225774830 0.836660026534 0.866025403784 0.894427191000 0.921954445729 0.948683298051 0.974679434481"
},
{
"input": "775 1",
"output": "0.035921060405 0.050800050800 0.062217101684 0.071842120811 0.080321932890 0.087988269013 0.095038192662 0.101600101600 0.107763181216 0.113592366849 0.119136679436 0.124434203368 0.129515225161 0.134404301006 0.139121668728 0.143684241621 0.148106326235 0.152400152400 0.156576272252 0.160643865780 0.164610978351 0.168484707835 0.172271353843 0.175976538026 0.179605302027 0.183162187956 0.186651305051 0.190076385325 0.193440830330 0.196747750735 0.200000000000 0.203200203200 0.206350781829 0.209453975235 0..."
},
{
"input": "531 1",
"output": "0.043396303660 0.061371641193 0.075164602800 0.086792607321 0.097037084957 0.106298800691 0.114815827305 0.122743282386 0.130188910981 0.137231161599 0.143929256529 0.150329205601 0.156467598013 0.162374100149 0.168073161363 0.173585214641 0.178927543753 0.184114923580 0.189160102178 0.194074169913 0.198866846404 0.203546706606 0.208121361089 0.212597601381 0.216981518301 0.221278599182 0.225493808401 0.229631654609 0.233696247231 0.237691344271 0.241620392998 0.245486564773 0.249292785005 0.253041759057 0..."
},
{
"input": "724 1",
"output": "0.037164707312 0.052558833123 0.064371161313 0.074329414625 0.083102811914 0.091034569355 0.098328573097 0.105117666246 0.111494121937 0.117525123681 0.123261389598 0.128742322627 0.133999257852 0.139057601643 0.143938292487 0.148658829249 0.153234013794 0.157676499368 0.161997203441 0.166205623829 0.170310084440 0.174317928887 0.178235674883 0.182069138710 0.185823536562 0.189503567803 0.193113483940 0.196657146194 0.200138073886 0.203559485381 0.206924332929 0.210235332491 0.213494989396 0.216705620524 0..."
},
{
"input": "917 1",
"output": "0.033022909334 0.046701446249 0.057197356781 0.066045818668 0.073841470086 0.080889277691 0.087370405666 0.093402892499 0.099068728003 0.104427608461 0.109524599747 0.114394713561 0.119065792869 0.123560412643 0.127897177895 0.132091637337 0.136156943250 0.140104338748 0.143943524609 0.147682940172 0.151329981692 0.154891174376 0.158372309576 0.161778555382 0.165114546671 0.168384459091 0.171592070342 0.174740811332 0.177833809176 0.180873923568 0.183863777748 0.186805784998 0.189702171441 0.192554995756 0..."
},
{
"input": "458 100",
"output": "4.672693135160 6.608186004551 8.093341918275 9.345386270320 10.448459488214 11.445713905748 12.362783988552 13.216372009102 14.018079405480 14.776353114139 15.497569889795 16.186683836551 16.847634693328 17.483616785299 18.097262694412 18.690772540640 19.266007352363 19.824558013653 20.367797170339 20.896918976429 21.412969991171 21.916873521973 22.409449036367 22.891427811495 23.363465675800 23.826153477212 24.280025754826 24.725567977104 25.163222626003 25.593394344267 26.016454316384 26.432744018204 26...."
}
] | 1,494,668,823
| 723
|
PyPy 3
|
OK
|
TESTS
| 31
| 109
| 819,200
|
from math import sqrt
n, h = map(int, input().split())
s = []
for i in range(1,n):
s.append(h*sqrt(i/n))
print(*s)
|
Title: Cutting Carrot
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Igor the analyst has adopted *n* little bunnies. As we all know, bunnies love carrots. Thus, Igor has bought a carrot to be shared between his bunnies. Igor wants to treat all the bunnies equally, and thus he wants to cut the carrot into *n* pieces of equal area.
Formally, the carrot can be viewed as an isosceles triangle with base length equal to 1 and height equal to *h*. Igor wants to make *n*<=-<=1 cuts parallel to the base to cut the carrot into *n* pieces. He wants to make sure that all *n* pieces have the same area. Can you help Igor determine where to cut the carrot so that each piece have equal area?
Input Specification:
The first and only line of input contains two space-separated integers, *n* and *h* (2<=≤<=*n*<=≤<=1000, 1<=≤<=*h*<=≤<=105).
Output Specification:
The output should contain *n*<=-<=1 real numbers *x*1,<=*x*2,<=...,<=*x**n*<=-<=1. The number *x**i* denotes that the *i*-th cut must be made *x**i* units away from the apex of the carrot. In addition, 0<=<<=*x*1<=<<=*x*2<=<<=...<=<<=*x**n*<=-<=1<=<<=*h* must hold.
Your output will be considered correct if absolute or relative error of every number in your output doesn't exceed 10<=-<=6.
Formally, let your answer be *a*, and the jury's answer be *b*. Your answer is considered correct if .
Demo Input:
['3 2\n', '2 100000\n']
Demo Output:
['1.154700538379 1.632993161855\n', '70710.678118654752\n']
Note:
Definition of isosceles triangle: [https://en.wikipedia.org/wiki/Isosceles_triangle](https://en.wikipedia.org/wiki/Isosceles_triangle).
|
```python
from math import sqrt
n, h = map(int, input().split())
s = []
for i in range(1,n):
s.append(h*sqrt(i/n))
print(*s)
```
| 3
|
|
959
|
A
|
Mahmoud and Ehab and the even-odd game
|
PROGRAMMING
| 800
|
[
"games",
"math"
] | null | null |
Mahmoud and Ehab play a game called the even-odd game. Ehab chooses his favorite integer *n* and then they take turns, starting from Mahmoud. In each player's turn, he has to choose an integer *a* and subtract it from *n* such that:
- 1<=≤<=*a*<=≤<=*n*. - If it's Mahmoud's turn, *a* has to be even, but if it's Ehab's turn, *a* has to be odd.
If the current player can't choose any number satisfying the conditions, he loses. Can you determine the winner if they both play optimally?
|
The only line contains an integer *n* (1<=≤<=*n*<=≤<=109), the number at the beginning of the game.
|
Output "Mahmoud" (without quotes) if Mahmoud wins and "Ehab" (without quotes) otherwise.
|
[
"1\n",
"2\n"
] |
[
"Ehab",
"Mahmoud"
] |
In the first sample, Mahmoud can't choose any integer *a* initially because there is no positive even integer less than or equal to 1 so Ehab wins.
In the second sample, Mahmoud has to choose *a* = 2 and subtract it from *n*. It's Ehab's turn and *n* = 0. There is no positive odd integer less than or equal to 0 so Mahmoud wins.
| 500
|
[
{
"input": "1",
"output": "Ehab"
},
{
"input": "2",
"output": "Mahmoud"
},
{
"input": "10000",
"output": "Mahmoud"
},
{
"input": "33333",
"output": "Ehab"
},
{
"input": "5",
"output": "Ehab"
},
{
"input": "1000000000",
"output": "Mahmoud"
},
{
"input": "999999999",
"output": "Ehab"
},
{
"input": "123123123",
"output": "Ehab"
},
{
"input": "22222221",
"output": "Ehab"
},
{
"input": "22222220",
"output": "Mahmoud"
},
{
"input": "3",
"output": "Ehab"
},
{
"input": "4",
"output": "Mahmoud"
},
{
"input": "6",
"output": "Mahmoud"
},
{
"input": "7",
"output": "Ehab"
},
{
"input": "8",
"output": "Mahmoud"
},
{
"input": "9",
"output": "Ehab"
},
{
"input": "10",
"output": "Mahmoud"
},
{
"input": "536870912",
"output": "Mahmoud"
},
{
"input": "536870913",
"output": "Ehab"
},
{
"input": "536870911",
"output": "Ehab"
}
] | 1,664,713,883
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 20
| 77
| 0
|
if __name__ == "__main__":
n = int(input())
print("Ehab" if n%2==1 else "Mahmoud")
|
Title: Mahmoud and Ehab and the even-odd game
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Mahmoud and Ehab play a game called the even-odd game. Ehab chooses his favorite integer *n* and then they take turns, starting from Mahmoud. In each player's turn, he has to choose an integer *a* and subtract it from *n* such that:
- 1<=≤<=*a*<=≤<=*n*. - If it's Mahmoud's turn, *a* has to be even, but if it's Ehab's turn, *a* has to be odd.
If the current player can't choose any number satisfying the conditions, he loses. Can you determine the winner if they both play optimally?
Input Specification:
The only line contains an integer *n* (1<=≤<=*n*<=≤<=109), the number at the beginning of the game.
Output Specification:
Output "Mahmoud" (without quotes) if Mahmoud wins and "Ehab" (without quotes) otherwise.
Demo Input:
['1\n', '2\n']
Demo Output:
['Ehab', 'Mahmoud']
Note:
In the first sample, Mahmoud can't choose any integer *a* initially because there is no positive even integer less than or equal to 1 so Ehab wins.
In the second sample, Mahmoud has to choose *a* = 2 and subtract it from *n*. It's Ehab's turn and *n* = 0. There is no positive odd integer less than or equal to 0 so Mahmoud wins.
|
```python
if __name__ == "__main__":
n = int(input())
print("Ehab" if n%2==1 else "Mahmoud")
```
| 3
|
|
688
|
A
|
Opponents
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Arya has *n* opponents in the school. Each day he will fight with all opponents who are present this day. His opponents have some fighting plan that guarantees they will win, but implementing this plan requires presence of them all. That means if one day at least one of Arya's opponents is absent at the school, then Arya will beat all present opponents. Otherwise, if all opponents are present, then they will beat Arya.
For each opponent Arya knows his schedule — whether or not he is going to present on each particular day. Tell him the maximum number of consecutive days that he will beat all present opponents.
Note, that if some day there are no opponents present, Arya still considers he beats all the present opponents.
|
The first line of the input contains two integers *n* and *d* (1<=≤<=*n*,<=*d*<=≤<=100) — the number of opponents and the number of days, respectively.
The *i*-th of the following *d* lines contains a string of length *n* consisting of characters '0' and '1'. The *j*-th character of this string is '0' if the *j*-th opponent is going to be absent on the *i*-th day.
|
Print the only integer — the maximum number of consecutive days that Arya will beat all present opponents.
|
[
"2 2\n10\n00\n",
"4 1\n0100\n",
"4 5\n1101\n1111\n0110\n1011\n1111\n"
] |
[
"2\n",
"1\n",
"2\n"
] |
In the first and the second samples, Arya will beat all present opponents each of the *d* days.
In the third sample, Arya will beat his opponents on days 1, 3 and 4 and his opponents will beat him on days 2 and 5. Thus, the maximum number of consecutive winning days is 2, which happens on days 3 and 4.
| 500
|
[
{
"input": "2 2\n10\n00",
"output": "2"
},
{
"input": "4 1\n0100",
"output": "1"
},
{
"input": "4 5\n1101\n1111\n0110\n1011\n1111",
"output": "2"
},
{
"input": "3 2\n110\n110",
"output": "2"
},
{
"input": "10 6\n1111111111\n0100110101\n1111111111\n0000011010\n1111111111\n1111111111",
"output": "1"
},
{
"input": "10 10\n1111111111\n0001001000\n1111111111\n1111111111\n1111111111\n1000000100\n1111111111\n0000011100\n1111111111\n1111111111",
"output": "1"
},
{
"input": "10 10\n0000100011\n0100001111\n1111111111\n1100011111\n1111111111\n1000111000\n1111000010\n0111001001\n1101010110\n1111111111",
"output": "4"
},
{
"input": "10 10\n1100110010\n0000000001\n1011100111\n1111111111\n1111111111\n1111111111\n1100010110\n1111111111\n1001001010\n1111111111",
"output": "3"
},
{
"input": "10 7\n0000111001\n1111111111\n0110110001\n1111111111\n1111111111\n1000111100\n0110000111",
"output": "2"
},
{
"input": "5 10\n00110\n11000\n10010\n00010\n11110\n01101\n11111\n10001\n11111\n01001",
"output": "6"
},
{
"input": "5 9\n11111\n11101\n11111\n11111\n01010\n01010\n00000\n11111\n00111",
"output": "3"
},
{
"input": "5 10\n11111\n00010\n11010\n11111\n11111\n00100\n11111\n11111\n01000\n11111",
"output": "2"
},
{
"input": "5 9\n11111\n11111\n11111\n11111\n11100\n11111\n11111\n11111\n00000",
"output": "1"
},
{
"input": "5 8\n11111\n10110\n01001\n11111\n01100\n10010\n11111\n11111",
"output": "2"
},
{
"input": "1 1\n1",
"output": "0"
},
{
"input": "100 1\n0011001100100010000011001100000001011101110110010001110001101100110011111101001011011001000010001111",
"output": "1"
},
{
"input": "100 1\n1011011100000101000111110000110111010101110010010011110010001110100011001110110101111100100110000000",
"output": "1"
},
{
"input": "100 1\n1110000011110101010111111100011001100000101101010110100101110000011100110110110101011100110110010011",
"output": "1"
},
{
"input": "100 1\n1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111",
"output": "0"
},
{
"input": "1 100\n1\n0\n0\n0\n1\n1\n0\n0\n0\n0\n1\n1\n0\n1\n1\n0\n0\n1\n1\n1\n0\n0\n1\n1\n1\n1\n1\n0\n1\n0\n0\n0\n1\n1\n0\n1\n0\n1\n0\n0\n0\n1\n0\n1\n0\n0\n0\n1\n1\n1\n0\n1\n1\n1\n0\n1\n0\n1\n1\n1\n1\n0\n0\n0\n0\n0\n0\n1\n1\n0\n1\n1\n1\n1\n1\n0\n1\n1\n1\n1\n1\n0\n1\n0\n0\n1\n0\n0\n1\n0\n0\n1\n0\n1\n1\n1\n0\n1\n0\n0",
"output": "6"
},
{
"input": "1 100\n0\n0\n0\n0\n1\n0\n0\n0\n0\n1\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0",
"output": "49"
},
{
"input": "1 100\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1",
"output": "0"
},
{
"input": "1 100\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0",
"output": "100"
},
{
"input": "2 2\n11\n10",
"output": "1"
},
{
"input": "1 1\n0",
"output": "1"
}
] | 1,578,335,430
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 56
| 109
| 0
|
n,d=map(int,input().split())
c=0
l=[]
for i in range(d):
a=input()
a=list(a)
if '0' in a:
c=c+1
else:
l.append(c)
c=0
l.append(c)
print(max(l))
|
Title: Opponents
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Arya has *n* opponents in the school. Each day he will fight with all opponents who are present this day. His opponents have some fighting plan that guarantees they will win, but implementing this plan requires presence of them all. That means if one day at least one of Arya's opponents is absent at the school, then Arya will beat all present opponents. Otherwise, if all opponents are present, then they will beat Arya.
For each opponent Arya knows his schedule — whether or not he is going to present on each particular day. Tell him the maximum number of consecutive days that he will beat all present opponents.
Note, that if some day there are no opponents present, Arya still considers he beats all the present opponents.
Input Specification:
The first line of the input contains two integers *n* and *d* (1<=≤<=*n*,<=*d*<=≤<=100) — the number of opponents and the number of days, respectively.
The *i*-th of the following *d* lines contains a string of length *n* consisting of characters '0' and '1'. The *j*-th character of this string is '0' if the *j*-th opponent is going to be absent on the *i*-th day.
Output Specification:
Print the only integer — the maximum number of consecutive days that Arya will beat all present opponents.
Demo Input:
['2 2\n10\n00\n', '4 1\n0100\n', '4 5\n1101\n1111\n0110\n1011\n1111\n']
Demo Output:
['2\n', '1\n', '2\n']
Note:
In the first and the second samples, Arya will beat all present opponents each of the *d* days.
In the third sample, Arya will beat his opponents on days 1, 3 and 4 and his opponents will beat him on days 2 and 5. Thus, the maximum number of consecutive winning days is 2, which happens on days 3 and 4.
|
```python
n,d=map(int,input().split())
c=0
l=[]
for i in range(d):
a=input()
a=list(a)
if '0' in a:
c=c+1
else:
l.append(c)
c=0
l.append(c)
print(max(l))
```
| 3
|
|
278
|
A
|
Circle Line
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
The circle line of the Berland subway has *n* stations. We know the distances between all pairs of neighboring stations:
- *d*1 is the distance between the 1-st and the 2-nd station;- *d*2 is the distance between the 2-nd and the 3-rd station;...- *d**n*<=-<=1 is the distance between the *n*<=-<=1-th and the *n*-th station;- *d**n* is the distance between the *n*-th and the 1-st station.
The trains go along the circle line in both directions. Find the shortest distance between stations with numbers *s* and *t*.
|
The first line contains integer *n* (3<=≤<=*n*<=≤<=100) — the number of stations on the circle line. The second line contains *n* integers *d*1,<=*d*2,<=...,<=*d**n* (1<=≤<=*d**i*<=≤<=100) — the distances between pairs of neighboring stations. The third line contains two integers *s* and *t* (1<=≤<=*s*,<=*t*<=≤<=*n*) — the numbers of stations, between which you need to find the shortest distance. These numbers can be the same.
The numbers in the lines are separated by single spaces.
|
Print a single number — the length of the shortest path between stations number *s* and *t*.
|
[
"4\n2 3 4 9\n1 3\n",
"4\n5 8 2 100\n4 1\n",
"3\n1 1 1\n3 1\n",
"3\n31 41 59\n1 1\n"
] |
[
"5\n",
"15\n",
"1\n",
"0\n"
] |
In the first sample the length of path 1 → 2 → 3 equals 5, the length of path 1 → 4 → 3 equals 13.
In the second sample the length of path 4 → 1 is 100, the length of path 4 → 3 → 2 → 1 is 15.
In the third sample the length of path 3 → 1 is 1, the length of path 3 → 2 → 1 is 2.
In the fourth sample the numbers of stations are the same, so the shortest distance equals 0.
| 500
|
[
{
"input": "4\n2 3 4 9\n1 3",
"output": "5"
},
{
"input": "4\n5 8 2 100\n4 1",
"output": "15"
},
{
"input": "3\n1 1 1\n3 1",
"output": "1"
},
{
"input": "3\n31 41 59\n1 1",
"output": "0"
},
{
"input": "5\n16 13 10 30 15\n4 2",
"output": "23"
},
{
"input": "6\n89 82 87 32 67 33\n4 4",
"output": "0"
},
{
"input": "7\n2 3 17 10 2 2 2\n4 2",
"output": "18"
},
{
"input": "3\n4 37 33\n3 3",
"output": "0"
},
{
"input": "8\n87 40 96 7 86 86 72 97\n6 8",
"output": "158"
},
{
"input": "10\n91 94 75 99 100 91 79 86 79 92\n2 8",
"output": "348"
},
{
"input": "19\n1 1 1 1 2 1 1 1 1 1 2 1 3 2 2 1 1 1 2\n7 7",
"output": "0"
},
{
"input": "34\n96 65 24 99 74 76 97 93 99 69 94 82 92 91 98 83 95 97 96 81 90 95 86 87 43 78 88 86 82 62 76 99 83 96\n21 16",
"output": "452"
},
{
"input": "50\n75 98 65 75 99 89 84 65 9 53 62 61 61 53 80 7 6 47 86 1 89 27 67 1 31 39 53 92 19 20 76 41 60 15 29 94 76 82 87 89 93 38 42 6 87 36 100 97 93 71\n2 6",
"output": "337"
},
{
"input": "99\n1 15 72 78 23 22 26 98 7 2 75 58 100 98 45 79 92 69 79 72 33 88 62 9 15 87 17 73 68 54 34 89 51 91 28 44 20 11 74 7 85 61 30 46 95 72 36 18 48 22 42 46 29 46 86 53 96 55 98 34 60 37 75 54 1 81 20 68 84 19 18 18 75 84 86 57 73 34 23 43 81 87 47 96 57 41 69 1 52 44 54 7 85 35 5 1 19 26 7\n4 64",
"output": "1740"
},
{
"input": "100\n33 63 21 27 49 82 86 93 43 55 4 72 89 85 5 34 80 7 23 13 21 49 22 73 89 65 81 25 6 92 82 66 58 88 48 96 1 1 16 48 67 96 84 63 87 76 20 100 36 4 31 41 35 62 55 76 74 70 68 41 4 16 39 81 2 41 34 73 66 57 41 89 78 93 68 96 87 47 92 60 40 58 81 12 19 74 56 83 56 61 83 97 26 92 62 52 39 57 89 95\n71 5",
"output": "2127"
},
{
"input": "100\n95 98 99 81 98 96 100 92 96 90 99 91 98 98 91 78 97 100 96 98 87 93 96 99 91 92 96 92 90 97 85 83 99 95 66 91 87 89 100 95 100 88 99 84 96 79 99 100 94 100 99 99 92 89 99 91 100 94 98 97 91 92 90 87 84 99 97 98 93 100 90 85 75 95 86 71 98 93 91 87 92 95 98 94 95 94 100 98 96 100 97 96 95 95 86 86 94 97 98 96\n67 57",
"output": "932"
},
{
"input": "100\n100 100 100 100 100 100 100 100 100 100 97 100 100 100 100 100 99 100 100 99 99 100 99 100 100 100 100 100 100 100 100 100 97 99 98 98 100 98 98 100 99 100 100 100 100 99 100 98 100 99 98 99 98 98 100 100 100 100 100 100 100 100 100 100 99 100 100 100 100 100 98 100 99 99 100 96 100 96 100 99 100 100 99 100 99 100 100 100 99 100 100 100 100 98 98 97 100 100 99 98\n16 6",
"output": "997"
},
{
"input": "100\n3 6 23 4 23 1 2 14 2 3 3 9 17 8 10 5 1 14 8 5 7 4 13 8 5 6 24 3 12 3 4 9 2 8 2 1 2 1 3 2 1 6 14 23 8 6 3 5 7 8 18 9 2 5 22 6 13 16 2 4 31 20 4 3 3 6 6 1 1 18 5 11 1 14 4 16 6 37 11 1 8 3 7 11 21 14 3 3 12 2 5 1 9 16 3 1 3 4 4 2\n98 24",
"output": "195"
},
{
"input": "100\n1 1 3 1 1 2 1 2 1 1 2 2 2 1 1 1 1 1 1 3 1 1 1 3 1 3 3 1 1 2 1 1 1 1 1 2 1 1 1 4 1 1 3 3 2 1 1 1 1 1 2 2 1 3 1 1 1 2 4 1 1 2 5 2 1 1 2 1 1 1 2 3 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 2 2 3 1 7 3 1 3 1 2 1 2 1\n49 10",
"output": "60"
},
{
"input": "100\n75 62 31 96 62 76 93 96 72 67 88 35 67 34 60 56 95 86 82 48 64 61 74 100 56 98 76 98 78 55 53 10 12 78 58 45 86 90 93 77 69 73 88 66 92 88 33 50 95 69 89 12 93 57 93 89 59 53 71 86 15 13 61 93 24 100 58 76 46 95 76 82 50 20 79 38 5 72 99 81 55 90 90 65 85 44 63 39 6 34 98 72 88 30 59 73 84 61 25 67\n86 25",
"output": "2523"
},
{
"input": "100\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100\n1 51",
"output": "5000"
},
{
"input": "4\n1 1 1 1\n2 4",
"output": "2"
},
{
"input": "4\n1 1 2 1\n2 4",
"output": "2"
}
] | 1,589,258,579
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 23
| 218
| 0
|
n = int(input())
L = [int(x) for x in input().split()]
[s, t] = sorted([int(x) for x in input().split()])
print(min(sum(L[(s-1):(t-1)]), sum(L)-sum(L[(s-1):(t-1)])))
|
Title: Circle Line
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
The circle line of the Berland subway has *n* stations. We know the distances between all pairs of neighboring stations:
- *d*1 is the distance between the 1-st and the 2-nd station;- *d*2 is the distance between the 2-nd and the 3-rd station;...- *d**n*<=-<=1 is the distance between the *n*<=-<=1-th and the *n*-th station;- *d**n* is the distance between the *n*-th and the 1-st station.
The trains go along the circle line in both directions. Find the shortest distance between stations with numbers *s* and *t*.
Input Specification:
The first line contains integer *n* (3<=≤<=*n*<=≤<=100) — the number of stations on the circle line. The second line contains *n* integers *d*1,<=*d*2,<=...,<=*d**n* (1<=≤<=*d**i*<=≤<=100) — the distances between pairs of neighboring stations. The third line contains two integers *s* and *t* (1<=≤<=*s*,<=*t*<=≤<=*n*) — the numbers of stations, between which you need to find the shortest distance. These numbers can be the same.
The numbers in the lines are separated by single spaces.
Output Specification:
Print a single number — the length of the shortest path between stations number *s* and *t*.
Demo Input:
['4\n2 3 4 9\n1 3\n', '4\n5 8 2 100\n4 1\n', '3\n1 1 1\n3 1\n', '3\n31 41 59\n1 1\n']
Demo Output:
['5\n', '15\n', '1\n', '0\n']
Note:
In the first sample the length of path 1 → 2 → 3 equals 5, the length of path 1 → 4 → 3 equals 13.
In the second sample the length of path 4 → 1 is 100, the length of path 4 → 3 → 2 → 1 is 15.
In the third sample the length of path 3 → 1 is 1, the length of path 3 → 2 → 1 is 2.
In the fourth sample the numbers of stations are the same, so the shortest distance equals 0.
|
```python
n = int(input())
L = [int(x) for x in input().split()]
[s, t] = sorted([int(x) for x in input().split()])
print(min(sum(L[(s-1):(t-1)]), sum(L)-sum(L[(s-1):(t-1)])))
```
| 3
|
|
25
|
A
|
IQ test
|
PROGRAMMING
| 1,300
|
[
"brute force"
] |
A. IQ test
|
2
|
256
|
Bob is preparing to pass IQ test. The most frequent task in this test is to find out which one of the given *n* numbers differs from the others. Bob observed that one number usually differs from the others in evenness. Help Bob — to check his answers, he needs a program that among the given *n* numbers finds one that is different in evenness.
|
The first line contains integer *n* (3<=≤<=*n*<=≤<=100) — amount of numbers in the task. The second line contains *n* space-separated natural numbers, not exceeding 100. It is guaranteed, that exactly one of these numbers differs from the others in evenness.
|
Output index of number that differs from the others in evenness. Numbers are numbered from 1 in the input order.
|
[
"5\n2 4 7 8 10\n",
"4\n1 2 1 1\n"
] |
[
"3\n",
"2\n"
] |
none
| 0
|
[
{
"input": "5\n2 4 7 8 10",
"output": "3"
},
{
"input": "4\n1 2 1 1",
"output": "2"
},
{
"input": "3\n1 2 2",
"output": "1"
},
{
"input": "3\n100 99 100",
"output": "2"
},
{
"input": "3\n5 3 2",
"output": "3"
},
{
"input": "4\n43 28 1 91",
"output": "2"
},
{
"input": "4\n75 13 94 77",
"output": "3"
},
{
"input": "4\n97 8 27 3",
"output": "2"
},
{
"input": "10\n95 51 12 91 85 3 1 31 25 7",
"output": "3"
},
{
"input": "20\n88 96 66 51 14 88 2 92 18 72 18 88 20 30 4 82 90 100 24 46",
"output": "4"
},
{
"input": "30\n20 94 56 50 10 98 52 32 14 22 24 60 4 8 98 46 34 68 82 82 98 90 50 20 78 49 52 94 64 36",
"output": "26"
},
{
"input": "50\n79 27 77 57 37 45 27 49 65 33 57 21 71 19 75 85 65 61 23 97 85 9 23 1 9 3 99 77 77 21 79 69 15 37 15 7 93 81 13 89 91 31 45 93 15 97 55 80 85 83",
"output": "48"
},
{
"input": "60\n46 11 73 65 3 69 3 53 43 53 97 47 55 93 31 75 35 3 9 73 23 31 3 81 91 79 61 21 15 11 11 11 81 7 83 75 39 87 83 59 89 55 93 27 49 67 67 29 1 93 11 17 9 19 35 21 63 31 31 25",
"output": "1"
},
{
"input": "70\n28 42 42 92 64 54 22 38 38 78 62 38 4 38 14 66 4 92 66 58 94 26 4 44 41 88 48 82 44 26 74 44 48 4 16 92 34 38 26 64 94 4 30 78 50 54 12 90 8 16 80 98 28 100 74 50 36 42 92 18 76 98 8 22 2 50 58 50 64 46",
"output": "25"
},
{
"input": "100\n43 35 79 53 13 91 91 45 65 83 57 9 42 39 85 45 71 51 61 59 31 13 63 39 25 21 79 39 91 67 21 61 97 75 93 83 29 79 59 97 11 37 63 51 39 55 91 23 21 17 47 23 35 75 49 5 69 99 5 7 41 17 25 89 15 79 21 63 53 81 43 91 59 91 69 99 85 15 91 51 49 37 65 7 89 81 21 93 61 63 97 93 45 17 13 69 57 25 75 73",
"output": "13"
},
{
"input": "100\n50 24 68 60 70 30 52 22 18 74 68 98 20 82 4 46 26 68 100 78 84 58 74 98 38 88 68 86 64 80 82 100 20 22 98 98 52 6 94 10 48 68 2 18 38 22 22 82 44 20 66 72 36 58 64 6 36 60 4 96 76 64 12 90 10 58 64 60 74 28 90 26 24 60 40 58 2 16 76 48 58 36 82 60 24 44 4 78 28 38 8 12 40 16 38 6 66 24 31 76",
"output": "99"
},
{
"input": "100\n47 48 94 48 14 18 94 36 96 22 12 30 94 20 48 98 40 58 2 94 8 36 98 18 98 68 2 60 76 38 18 100 8 72 100 68 2 86 92 72 58 16 48 14 6 58 72 76 6 88 80 66 20 28 74 62 86 68 90 86 2 56 34 38 56 90 4 8 76 44 32 86 12 98 38 34 54 92 70 94 10 24 82 66 90 58 62 2 32 58 100 22 58 72 2 22 68 72 42 14",
"output": "1"
},
{
"input": "99\n38 20 68 60 84 16 28 88 60 48 80 28 4 92 70 60 46 46 20 34 12 100 76 2 40 10 8 86 6 80 50 66 12 34 14 28 26 70 46 64 34 96 10 90 98 96 56 88 50 74 70 94 2 94 24 66 68 46 22 30 6 10 64 32 88 14 98 100 64 58 50 18 50 50 8 38 8 16 54 2 60 54 62 84 92 98 4 72 66 26 14 88 99 16 10 6 88 56 22",
"output": "93"
},
{
"input": "99\n50 83 43 89 53 47 69 1 5 37 63 87 95 15 55 95 75 89 33 53 89 75 93 75 11 85 49 29 11 97 49 67 87 11 25 37 97 73 67 49 87 43 53 97 43 29 53 33 45 91 37 73 39 49 59 5 21 43 87 35 5 63 89 57 63 47 29 99 19 85 13 13 3 13 43 19 5 9 61 51 51 57 15 89 13 97 41 13 99 79 13 27 97 95 73 33 99 27 23",
"output": "1"
},
{
"input": "98\n61 56 44 30 58 14 20 24 88 28 46 56 96 52 58 42 94 50 46 30 46 80 72 88 68 16 6 60 26 90 10 98 76 20 56 40 30 16 96 20 88 32 62 30 74 58 36 76 60 4 24 36 42 54 24 92 28 14 2 74 86 90 14 52 34 82 40 76 8 64 2 56 10 8 78 16 70 86 70 42 70 74 22 18 76 98 88 28 62 70 36 72 20 68 34 48 80 98",
"output": "1"
},
{
"input": "98\n66 26 46 42 78 32 76 42 26 82 8 12 4 10 24 26 64 44 100 46 94 64 30 18 88 28 8 66 30 82 82 28 74 52 62 80 80 60 94 86 64 32 44 88 92 20 12 74 94 28 34 58 4 22 16 10 94 76 82 58 40 66 22 6 30 32 92 54 16 76 74 98 18 48 48 30 92 2 16 42 84 74 30 60 64 52 50 26 16 86 58 96 79 60 20 62 82 94",
"output": "93"
},
{
"input": "95\n9 31 27 93 17 77 75 9 9 53 89 39 51 99 5 1 11 39 27 49 91 17 27 79 81 71 37 75 35 13 93 4 99 55 85 11 23 57 5 43 5 61 15 35 23 91 3 81 99 85 43 37 39 27 5 67 7 33 75 59 13 71 51 27 15 93 51 63 91 53 43 99 25 47 17 71 81 15 53 31 59 83 41 23 73 25 91 91 13 17 25 13 55 57 29",
"output": "32"
},
{
"input": "100\n91 89 81 45 53 1 41 3 77 93 55 97 55 97 87 27 69 95 73 41 93 21 75 35 53 56 5 51 87 59 91 67 33 3 99 45 83 17 97 47 75 97 7 89 17 99 23 23 81 25 55 97 27 35 69 5 77 35 93 19 55 59 37 21 31 37 49 41 91 53 73 69 7 37 37 39 17 71 7 97 55 17 47 23 15 73 31 39 57 37 9 5 61 41 65 57 77 79 35 47",
"output": "26"
},
{
"input": "99\n38 56 58 98 80 54 26 90 14 16 78 92 52 74 40 30 84 14 44 80 16 90 98 68 26 24 78 72 42 16 84 40 14 44 2 52 50 2 12 96 58 66 8 80 44 52 34 34 72 98 74 4 66 74 56 21 8 38 76 40 10 22 48 32 98 34 12 62 80 68 64 82 22 78 58 74 20 22 48 56 12 38 32 72 6 16 74 24 94 84 26 38 18 24 76 78 98 94 72",
"output": "56"
},
{
"input": "100\n44 40 6 40 56 90 98 8 36 64 76 86 98 76 36 92 6 30 98 70 24 98 96 60 24 82 88 68 86 96 34 42 58 10 40 26 56 10 88 58 70 32 24 28 14 82 52 12 62 36 70 60 52 34 74 30 78 76 10 16 42 94 66 90 70 38 52 12 58 22 98 96 14 68 24 70 4 30 84 98 8 50 14 52 66 34 100 10 28 100 56 48 38 12 38 14 91 80 70 86",
"output": "97"
},
{
"input": "100\n96 62 64 20 90 46 56 90 68 36 30 56 70 28 16 64 94 34 6 32 34 50 94 22 90 32 40 2 72 10 88 38 28 92 20 26 56 80 4 100 100 90 16 74 74 84 8 2 30 20 80 32 16 46 92 56 42 12 96 64 64 42 64 58 50 42 74 28 2 4 36 32 70 50 54 92 70 16 45 76 28 16 18 50 48 2 62 94 4 12 52 52 4 100 70 60 82 62 98 42",
"output": "79"
},
{
"input": "99\n14 26 34 68 90 58 50 36 8 16 18 6 2 74 54 20 36 84 32 50 52 2 26 24 3 64 20 10 54 26 66 44 28 72 4 96 78 90 96 86 68 28 94 4 12 46 100 32 22 36 84 32 44 94 76 94 4 52 12 30 74 4 34 64 58 72 44 16 70 56 54 8 14 74 8 6 58 62 98 54 14 40 80 20 36 72 28 98 20 58 40 52 90 64 22 48 54 70 52",
"output": "25"
},
{
"input": "95\n82 86 30 78 6 46 80 66 74 72 16 24 18 52 52 38 60 36 86 26 62 28 22 46 96 26 94 84 20 46 66 88 76 32 12 86 74 18 34 88 4 48 94 6 58 6 100 82 4 24 88 32 54 98 34 48 6 76 42 88 42 28 100 4 22 2 10 66 82 54 98 20 60 66 38 98 32 47 86 58 6 100 12 46 2 42 8 84 78 28 24 70 34 28 86",
"output": "78"
},
{
"input": "90\n40 50 8 42 76 24 58 42 26 68 20 48 54 12 34 84 14 36 32 88 6 50 96 56 20 92 48 16 40 34 96 46 20 84 30 50 20 98 8 44 96 42 8 76 70 38 84 30 40 88 84 72 2 22 52 58 16 62 100 66 80 40 50 32 14 62 88 72 22 99 76 50 84 82 8 82 98 46 26 40 2 98 18 78 30 72 70 18 34 68",
"output": "70"
},
{
"input": "80\n81 43 87 1 55 43 53 61 27 19 43 13 89 9 33 83 75 55 97 71 91 37 95 5 21 69 81 93 95 69 31 83 55 7 97 7 79 57 8 61 27 85 49 1 15 97 63 79 29 73 41 85 5 41 31 93 67 11 63 59 15 99 91 77 43 69 23 23 81 73 19 1 67 51 1 75 99 67 3 81",
"output": "39"
},
{
"input": "98\n13 83 61 27 35 1 85 95 97 73 95 65 73 45 5 43 27 83 91 19 11 3 85 59 9 39 69 23 45 7 51 85 5 71 5 95 1 51 75 3 43 57 3 11 33 71 21 99 47 41 87 39 71 87 31 85 91 49 83 5 49 85 47 91 55 99 33 23 31 23 23 73 29 77 55 31 25 5 81 49 91 15 15 39 87 5 9 40 69 47 29 33 11 21 49 79 51 83",
"output": "88"
},
{
"input": "3\n100 100 1",
"output": "3"
}
] | 1,621,336,517
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 32
| 124
| 0
|
n = int(input())
a = list(map(int, input().split()))
lista = []
lista1 = []
for x in range(len(a)):
if a[x] % 2 == 0:
lista.append(x+1)
else:
lista1.append(x+1)
if len(lista) == 1:
print(lista[0])
if len(lista1) == 1:
print(lista1[0])
|
Title: IQ test
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Bob is preparing to pass IQ test. The most frequent task in this test is to find out which one of the given *n* numbers differs from the others. Bob observed that one number usually differs from the others in evenness. Help Bob — to check his answers, he needs a program that among the given *n* numbers finds one that is different in evenness.
Input Specification:
The first line contains integer *n* (3<=≤<=*n*<=≤<=100) — amount of numbers in the task. The second line contains *n* space-separated natural numbers, not exceeding 100. It is guaranteed, that exactly one of these numbers differs from the others in evenness.
Output Specification:
Output index of number that differs from the others in evenness. Numbers are numbered from 1 in the input order.
Demo Input:
['5\n2 4 7 8 10\n', '4\n1 2 1 1\n']
Demo Output:
['3\n', '2\n']
Note:
none
|
```python
n = int(input())
a = list(map(int, input().split()))
lista = []
lista1 = []
for x in range(len(a)):
if a[x] % 2 == 0:
lista.append(x+1)
else:
lista1.append(x+1)
if len(lista) == 1:
print(lista[0])
if len(lista1) == 1:
print(lista1[0])
```
| 3.969
|
455
|
A
|
Boredom
|
PROGRAMMING
| 1,500
|
[
"dp"
] | null | null |
Alex doesn't like boredom. That's why whenever he gets bored, he comes up with games. One long winter evening he came up with a game and decided to play it.
Given a sequence *a* consisting of *n* integers. The player can make several steps. In a single step he can choose an element of the sequence (let's denote it *a**k*) and delete it, at that all elements equal to *a**k*<=+<=1 and *a**k*<=-<=1 also must be deleted from the sequence. That step brings *a**k* points to the player.
Alex is a perfectionist, so he decided to get as many points as possible. Help him.
|
The first line contains integer *n* (1<=≤<=*n*<=≤<=105) that shows how many numbers are in Alex's sequence.
The second line contains *n* integers *a*1, *a*2, ..., *a**n* (1<=≤<=*a**i*<=≤<=105).
|
Print a single integer — the maximum number of points that Alex can earn.
|
[
"2\n1 2\n",
"3\n1 2 3\n",
"9\n1 2 1 3 2 2 2 2 3\n"
] |
[
"2\n",
"4\n",
"10\n"
] |
Consider the third test example. At first step we need to choose any element equal to 2. After that step our sequence looks like this [2, 2, 2, 2]. Then we do 4 steps, on each step we choose any element equals to 2. In total we earn 10 points.
| 500
|
[
{
"input": "2\n1 2",
"output": "2"
},
{
"input": "3\n1 2 3",
"output": "4"
},
{
"input": "9\n1 2 1 3 2 2 2 2 3",
"output": "10"
},
{
"input": "5\n3 3 4 5 4",
"output": "11"
},
{
"input": "5\n5 3 5 3 4",
"output": "16"
},
{
"input": "5\n4 2 3 2 5",
"output": "9"
},
{
"input": "10\n10 5 8 9 5 6 8 7 2 8",
"output": "46"
},
{
"input": "10\n1 1 1 1 1 1 2 3 4 4",
"output": "14"
},
{
"input": "100\n6 6 8 9 7 9 6 9 5 7 7 4 5 3 9 1 10 3 4 5 8 9 6 5 6 4 10 9 1 4 1 7 1 4 9 10 8 2 9 9 10 5 8 9 5 6 8 7 2 8 7 6 2 6 10 8 6 2 5 5 3 2 8 8 5 3 6 2 1 4 7 2 7 3 7 4 10 10 7 5 4 7 5 10 7 1 1 10 7 7 7 2 3 4 2 8 4 7 4 4",
"output": "296"
},
{
"input": "100\n6 1 5 7 10 10 2 7 3 7 2 10 7 6 3 5 5 5 3 7 2 4 2 7 7 4 2 8 2 10 4 7 9 1 1 7 9 7 1 10 10 9 5 6 10 1 7 5 8 1 1 5 3 10 2 4 3 5 2 7 4 9 5 10 1 3 7 6 6 9 3 6 6 10 1 10 6 1 10 3 4 1 7 9 2 7 8 9 3 3 2 4 6 6 1 2 9 4 1 2",
"output": "313"
},
{
"input": "100\n7 6 3 8 8 3 10 5 3 8 6 4 6 9 6 7 3 9 10 7 5 5 9 10 7 2 3 8 9 5 4 7 9 3 6 4 9 10 7 6 8 7 6 6 10 3 7 4 5 7 7 5 1 5 4 8 7 3 3 4 7 8 5 9 2 2 3 1 6 4 6 6 6 1 7 10 7 4 5 3 9 2 4 1 5 10 9 3 9 6 8 5 2 1 10 4 8 5 10 9",
"output": "298"
},
{
"input": "100\n2 10 9 1 2 6 7 2 2 8 9 9 9 5 6 2 5 1 1 10 7 4 5 5 8 1 9 4 10 1 9 3 1 8 4 10 8 8 2 4 6 5 1 4 2 2 1 2 8 5 3 9 4 10 10 7 8 6 1 8 2 6 7 1 6 7 3 10 10 3 7 7 6 9 6 8 8 10 4 6 4 3 3 3 2 3 10 6 8 5 5 10 3 7 3 1 1 1 5 5",
"output": "312"
},
{
"input": "100\n4 9 7 10 4 7 2 6 1 9 1 8 7 5 5 7 6 7 9 8 10 5 3 5 7 10 3 2 1 3 8 9 4 10 4 7 6 4 9 6 7 1 9 4 3 5 8 9 2 7 10 5 7 5 3 8 10 3 8 9 3 4 3 10 6 5 1 8 3 2 5 8 4 7 5 3 3 2 6 9 9 8 2 7 6 3 2 2 8 8 4 5 6 9 2 3 2 2 5 2",
"output": "287"
},
{
"input": "100\n4 8 10 1 8 8 8 1 10 3 1 8 6 8 6 1 10 3 3 3 3 7 2 1 1 6 10 1 7 9 8 10 3 8 6 2 1 6 5 6 10 8 9 7 4 3 10 5 3 9 10 5 10 8 8 5 7 8 9 5 3 9 9 2 7 8 1 10 4 9 2 8 10 10 5 8 5 1 7 3 4 5 2 5 9 3 2 5 6 2 3 10 1 5 9 6 10 4 10 8",
"output": "380"
},
{
"input": "100\n4 8 10 1 8 8 8 1 10 3 1 8 6 8 6 1 10 3 3 3 3 7 2 1 1 6 10 1 7 9 8 10 3 8 6 2 1 6 5 6 10 8 9 7 4 3 10 5 3 9 10 5 10 8 8 5 7 8 9 5 3 9 9 2 7 8 1 10 4 9 2 8 10 10 5 8 5 1 7 3 4 5 2 5 9 3 2 5 6 2 3 10 1 5 9 6 10 4 10 8",
"output": "380"
},
{
"input": "100\n10 5 8 4 4 4 1 4 5 8 3 10 2 4 1 10 8 1 1 6 8 4 2 9 1 3 1 7 7 9 3 5 5 8 6 9 9 4 8 1 3 3 2 6 1 5 4 5 3 5 5 6 7 5 7 9 3 5 4 9 2 6 8 1 1 7 7 3 8 9 8 7 3 2 4 1 6 1 3 9 4 2 2 8 5 10 1 8 8 5 1 5 6 9 4 5 6 5 10 2",
"output": "265"
},
{
"input": "100\n7 5 1 8 5 6 6 2 6 2 7 7 3 6 2 4 4 2 10 2 2 2 10 6 6 1 5 10 9 1 5 9 8 9 4 1 10 5 7 5 7 6 4 8 8 1 7 8 3 8 2 1 8 4 10 3 5 6 6 10 9 6 5 1 10 7 6 9 9 2 10 10 9 1 2 1 7 7 4 10 1 10 5 5 3 8 9 8 1 4 10 2 4 5 4 4 1 6 2 9",
"output": "328"
},
{
"input": "100\n5 6 10 7 1 7 10 1 9 1 5 1 4 1 3 3 7 9 1 6 1 6 5 7 1 6 3 1 3 6 3 8 2 4 1 5 2 10 7 3 10 4 10 1 5 4 2 9 7 9 5 7 10 4 1 4 8 9 3 1 3 7 7 4 3 7 7 10 6 9 5 5 6 5 3 9 8 8 5 5 4 10 9 4 10 4 1 8 3 5 4 10 9 3 10 4 10 7 10 9",
"output": "324"
},
{
"input": "10\n7 4 5 3 9 1 10 3 4 5",
"output": "34"
},
{
"input": "10\n8 9 6 5 6 4 10 9 1 4",
"output": "39"
},
{
"input": "10\n1 7 1 4 9 10 8 2 9 9",
"output": "40"
},
{
"input": "1\n100000",
"output": "100000"
}
] | 1,668,867,258
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 47
| 202
| 7,065,600
|
n = int(input())
li = [int(a) for a in input().split()]
x = max(li)
lis = [0]*(x)
for i in li:
lis[i-1] += 1
ans = []
for i in range(x):
a = lis[i]*(i+1)
ans.append(a)
dp = [0]*x
dp[0] = ans[0]
dp[1] = max(ans[1],ans[0])
if x<=2:
print(max(dp))
if x>2:
for i in range(2,x):
dp[i] = max(dp[i-1],dp[i-2]+ans[i])
print(max(dp))
|
Title: Boredom
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Alex doesn't like boredom. That's why whenever he gets bored, he comes up with games. One long winter evening he came up with a game and decided to play it.
Given a sequence *a* consisting of *n* integers. The player can make several steps. In a single step he can choose an element of the sequence (let's denote it *a**k*) and delete it, at that all elements equal to *a**k*<=+<=1 and *a**k*<=-<=1 also must be deleted from the sequence. That step brings *a**k* points to the player.
Alex is a perfectionist, so he decided to get as many points as possible. Help him.
Input Specification:
The first line contains integer *n* (1<=≤<=*n*<=≤<=105) that shows how many numbers are in Alex's sequence.
The second line contains *n* integers *a*1, *a*2, ..., *a**n* (1<=≤<=*a**i*<=≤<=105).
Output Specification:
Print a single integer — the maximum number of points that Alex can earn.
Demo Input:
['2\n1 2\n', '3\n1 2 3\n', '9\n1 2 1 3 2 2 2 2 3\n']
Demo Output:
['2\n', '4\n', '10\n']
Note:
Consider the third test example. At first step we need to choose any element equal to 2. After that step our sequence looks like this [2, 2, 2, 2]. Then we do 4 steps, on each step we choose any element equals to 2. In total we earn 10 points.
|
```python
n = int(input())
li = [int(a) for a in input().split()]
x = max(li)
lis = [0]*(x)
for i in li:
lis[i-1] += 1
ans = []
for i in range(x):
a = lis[i]*(i+1)
ans.append(a)
dp = [0]*x
dp[0] = ans[0]
dp[1] = max(ans[1],ans[0])
if x<=2:
print(max(dp))
if x>2:
for i in range(2,x):
dp[i] = max(dp[i-1],dp[i-2]+ans[i])
print(max(dp))
```
| 3
|
|
764
|
B
|
Timofey and cubes
|
PROGRAMMING
| 900
|
[
"constructive algorithms",
"implementation"
] | null | null |
Young Timofey has a birthday today! He got kit of *n* cubes as a birthday present from his parents. Every cube has a number *a**i*, which is written on it. Timofey put all the cubes in a row and went to unpack other presents.
In this time, Timofey's elder brother, Dima reordered the cubes using the following rule. Suppose the cubes are numbered from 1 to *n* in their order. Dima performs several steps, on step *i* he reverses the segment of cubes from *i*-th to (*n*<=-<=*i*<=+<=1)-th. He does this while *i*<=≤<=*n*<=-<=*i*<=+<=1.
After performing the operations Dima went away, being very proud of himself. When Timofey returned to his cubes, he understood that their order was changed. Help Timofey as fast as you can and save the holiday — restore the initial order of the cubes using information of their current location.
|
The first line contains single integer *n* (1<=≤<=*n*<=≤<=2·105) — the number of cubes.
The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (<=-<=109<=≤<=*a**i*<=≤<=109), where *a**i* is the number written on the *i*-th cube after Dima has changed their order.
|
Print *n* integers, separated by spaces — the numbers written on the cubes in their initial order.
It can be shown that the answer is unique.
|
[
"7\n4 3 7 6 9 1 2\n",
"8\n6 1 4 2 5 6 9 2\n"
] |
[
"2 3 9 6 7 1 4",
"2 1 6 2 5 4 9 6"
] |
Consider the first sample.
1. At the begining row was [2, 3, 9, 6, 7, 1, 4]. 1. After first operation row was [4, 1, 7, 6, 9, 3, 2]. 1. After second operation row was [4, 3, 9, 6, 7, 1, 2]. 1. After third operation row was [4, 3, 7, 6, 9, 1, 2]. 1. At fourth operation we reverse just middle element, so nothing has changed. The final row is [4, 3, 7, 6, 9, 1, 2]. So the answer for this case is row [2, 3, 9, 6, 7, 1, 4].
| 1,000
|
[
{
"input": "7\n4 3 7 6 9 1 2",
"output": "2 3 9 6 7 1 4"
},
{
"input": "8\n6 1 4 2 5 6 9 2",
"output": "2 1 6 2 5 4 9 6"
},
{
"input": "1\n1424",
"output": "1424"
},
{
"input": "9\n-7 9 -4 9 -6 11 15 2 -10",
"output": "-10 9 15 9 -6 11 -4 2 -7"
},
{
"input": "2\n21968 5686",
"output": "5686 21968"
},
{
"input": "5\n241218936 -825949895 -84926813 491336344 -872198236",
"output": "-872198236 -825949895 -84926813 491336344 241218936"
},
{
"input": "42\n-557774624 828320986 -345782722 -62979938 -681259411 -945983652 -139095040 832293378 -82572118 432027535 88438103 568183540 961782904 73543295 615958219 -5050584 322982437 -146046730 759453379 129267920 -819827396 -348156048 805080102 390723009 -771277251 -79011872 -592313207 528489973 656201270 -127795621 17284747 145139617 -565641608 83452176 -223074608 545811186 -657981923 -204657836 154779765 -476867246 180386291 202782486",
"output": "202782486 828320986 -476867246 -62979938 -204657836 -945983652 545811186 832293378 83452176 432027535 145139617 568183540 -127795621 73543295 528489973 -5050584 -79011872 -146046730 390723009 129267920 -348156048 -819827396 805080102 759453379 -771277251 322982437 -592313207 615958219 656201270 961782904 17284747 88438103 -565641608 -82572118 -223074608 -139095040 -657981923 -681259411 154779765 -345782722 180386291 -557774624"
},
{
"input": "2\n1 2",
"output": "2 1"
},
{
"input": "6\n1 2 3 4 5 6",
"output": "6 2 4 3 5 1"
},
{
"input": "4\n0 1 2 3",
"output": "3 1 2 0"
},
{
"input": "10\n1 2 3 4 5 6 7 8 9 10",
"output": "10 2 8 4 6 5 7 3 9 1"
},
{
"input": "2\n4 5",
"output": "5 4"
},
{
"input": "2\n1 5",
"output": "5 1"
},
{
"input": "2\n2 5",
"output": "5 2"
},
{
"input": "2\n3 4",
"output": "4 3"
},
{
"input": "2\n10 0",
"output": "0 10"
},
{
"input": "66\n8229 5299 5562 1259 2258 1126 5026 8796 3497 7111 6680 1180 1426 4821 3322 3502 400 2951 4187 417 5234 1266 7525 7648 417 9297 174 670 1790 4121 9737 938 4616 3402 2009 2461 474 3728 327 3353 9773 6818 8781 874 2209 1260 1647 6126 9287 9638 5049 1256 4459 863 1835 4822 6809 348 5053 7784 6927 2140 9173 7817 5095 4184",
"output": "4184 5299 7817 1259 2140 1126 7784 8796 348 7111 4822 1180 863 4821 1256 3502 9638 2951 6126 417 1260 1266 874 7648 6818 9297 3353 670 3728 4121 2461 938 3402 4616 2009 9737 474 1790 327 174 9773 417 8781 7525 2209 5234 1647 4187 9287 400 5049 3322 4459 1426 1835 6680 6809 3497 5053 5026 6927 2258 9173 5562 5095 8229"
}
] | 1,661,945,698
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 34
| 358
| 18,329,600
|
import math
import sys
from collections import deque,OrderedDict,defaultdict
import heapq
from collections import Counter
def inp(): return sys.stdin.readline().rstrip()
def mpp(): return map(int,inp().split())
def lis(): return list(mpp())
def yn(n):
if n:
return "YES"
else:
return "NO"
def fn(arr,n):
for i in range(0,n//2,2):
arr[i],arr[n-i-1]=arr[n-i-1],arr[i]
return arr
def main():
n=int(inp())
arr=lis()
print(*fn(arr,n))
if __name__=="__main__":
main()
|
Title: Timofey and cubes
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Young Timofey has a birthday today! He got kit of *n* cubes as a birthday present from his parents. Every cube has a number *a**i*, which is written on it. Timofey put all the cubes in a row and went to unpack other presents.
In this time, Timofey's elder brother, Dima reordered the cubes using the following rule. Suppose the cubes are numbered from 1 to *n* in their order. Dima performs several steps, on step *i* he reverses the segment of cubes from *i*-th to (*n*<=-<=*i*<=+<=1)-th. He does this while *i*<=≤<=*n*<=-<=*i*<=+<=1.
After performing the operations Dima went away, being very proud of himself. When Timofey returned to his cubes, he understood that their order was changed. Help Timofey as fast as you can and save the holiday — restore the initial order of the cubes using information of their current location.
Input Specification:
The first line contains single integer *n* (1<=≤<=*n*<=≤<=2·105) — the number of cubes.
The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (<=-<=109<=≤<=*a**i*<=≤<=109), where *a**i* is the number written on the *i*-th cube after Dima has changed their order.
Output Specification:
Print *n* integers, separated by spaces — the numbers written on the cubes in their initial order.
It can be shown that the answer is unique.
Demo Input:
['7\n4 3 7 6 9 1 2\n', '8\n6 1 4 2 5 6 9 2\n']
Demo Output:
['2 3 9 6 7 1 4', '2 1 6 2 5 4 9 6']
Note:
Consider the first sample.
1. At the begining row was [2, 3, 9, 6, 7, 1, 4]. 1. After first operation row was [4, 1, 7, 6, 9, 3, 2]. 1. After second operation row was [4, 3, 9, 6, 7, 1, 2]. 1. After third operation row was [4, 3, 7, 6, 9, 1, 2]. 1. At fourth operation we reverse just middle element, so nothing has changed. The final row is [4, 3, 7, 6, 9, 1, 2]. So the answer for this case is row [2, 3, 9, 6, 7, 1, 4].
|
```python
import math
import sys
from collections import deque,OrderedDict,defaultdict
import heapq
from collections import Counter
def inp(): return sys.stdin.readline().rstrip()
def mpp(): return map(int,inp().split())
def lis(): return list(mpp())
def yn(n):
if n:
return "YES"
else:
return "NO"
def fn(arr,n):
for i in range(0,n//2,2):
arr[i],arr[n-i-1]=arr[n-i-1],arr[i]
return arr
def main():
n=int(inp())
arr=lis()
print(*fn(arr,n))
if __name__=="__main__":
main()
```
| 3
|
|
796
|
A
|
Buying A House
|
PROGRAMMING
| 800
|
[
"brute force",
"implementation"
] | null | null |
Zane the wizard had never loved anyone before, until he fell in love with a girl, whose name remains unknown to us.
The girl lives in house *m* of a village. There are *n* houses in that village, lining in a straight line from left to right: house 1, house 2, ..., house *n*. The village is also well-structured: house *i* and house *i*<=+<=1 (1<=≤<=*i*<=<<=*n*) are exactly 10 meters away. In this village, some houses are occupied, and some are not. Indeed, unoccupied houses can be purchased.
You will be given *n* integers *a*1,<=*a*2,<=...,<=*a**n* that denote the availability and the prices of the houses. If house *i* is occupied, and therefore cannot be bought, then *a**i* equals 0. Otherwise, house *i* can be bought, and *a**i* represents the money required to buy it, in dollars.
As Zane has only *k* dollars to spare, it becomes a challenge for him to choose the house to purchase, so that he could live as near as possible to his crush. Help Zane determine the minimum distance from his crush's house to some house he can afford, to help him succeed in his love.
|
The first line contains three integers *n*, *m*, and *k* (2<=≤<=*n*<=≤<=100, 1<=≤<=*m*<=≤<=*n*, 1<=≤<=*k*<=≤<=100) — the number of houses in the village, the house where the girl lives, and the amount of money Zane has (in dollars), respectively.
The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=100) — denoting the availability and the prices of the houses.
It is guaranteed that *a**m*<==<=0 and that it is possible to purchase some house with no more than *k* dollars.
|
Print one integer — the minimum distance, in meters, from the house where the girl Zane likes lives to the house Zane can buy.
|
[
"5 1 20\n0 27 32 21 19\n",
"7 3 50\n62 0 0 0 99 33 22\n",
"10 5 100\n1 0 1 0 0 0 0 0 1 1\n"
] |
[
"40",
"30",
"20"
] |
In the first sample, with *k* = 20 dollars, Zane can buy only house 5. The distance from house *m* = 1 to house 5 is 10 + 10 + 10 + 10 = 40 meters.
In the second sample, Zane can buy houses 6 and 7. It is better to buy house 6 than house 7, since house *m* = 3 and house 6 are only 30 meters away, while house *m* = 3 and house 7 are 40 meters away.
| 500
|
[
{
"input": "5 1 20\n0 27 32 21 19",
"output": "40"
},
{
"input": "7 3 50\n62 0 0 0 99 33 22",
"output": "30"
},
{
"input": "10 5 100\n1 0 1 0 0 0 0 0 1 1",
"output": "20"
},
{
"input": "5 3 1\n1 1 0 0 1",
"output": "10"
},
{
"input": "5 5 5\n1 0 5 6 0",
"output": "20"
},
{
"input": "15 10 50\n20 0 49 50 50 50 50 50 50 0 50 50 49 0 20",
"output": "10"
},
{
"input": "7 5 1\n0 100 2 2 0 2 1",
"output": "20"
},
{
"input": "100 50 100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 0 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100",
"output": "10"
},
{
"input": "100 50 1\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 0 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100",
"output": "490"
},
{
"input": "100 77 50\n50 100 49 51 0 50 100 49 51 0 50 100 49 51 0 50 100 49 51 0 50 100 49 51 0 50 100 49 51 0 50 100 49 51 0 50 100 49 51 0 50 100 49 51 0 50 100 49 51 0 50 100 49 51 0 50 100 49 51 0 50 100 49 51 0 50 100 49 51 0 50 100 49 51 0 50 0 49 51 0 50 100 49 51 0 50 100 49 51 0 50 100 49 51 0 50 100 49 51 0",
"output": "10"
},
{
"input": "100 1 1\n0 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0",
"output": "980"
},
{
"input": "100 1 100\n0 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100",
"output": "10"
},
{
"input": "100 10 99\n0 0 0 0 0 0 0 0 0 0 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 99 98",
"output": "890"
},
{
"input": "7 4 5\n1 0 6 0 5 6 0",
"output": "10"
},
{
"input": "7 4 5\n1 6 5 0 0 6 0",
"output": "10"
},
{
"input": "100 42 59\n50 50 50 50 50 50 50 50 50 50 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 60 60 60 60 60 60 60 60 0 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 0",
"output": "90"
},
{
"input": "2 1 100\n0 1",
"output": "10"
},
{
"input": "2 2 100\n1 0",
"output": "10"
},
{
"input": "10 1 88\n0 95 0 0 0 0 0 94 0 85",
"output": "90"
},
{
"input": "10 2 14\n2 0 1 26 77 39 41 100 13 32",
"output": "10"
},
{
"input": "10 3 11\n0 0 0 0 0 62 0 52 1 35",
"output": "60"
},
{
"input": "20 12 44\n27 40 58 69 53 38 31 39 75 95 8 0 28 81 77 90 38 61 21 88",
"output": "10"
},
{
"input": "30 29 10\n59 79 34 12 100 6 1 58 18 73 54 11 37 46 89 90 80 85 73 45 64 5 31 0 89 19 0 74 0 82",
"output": "70"
},
{
"input": "40 22 1\n7 95 44 53 0 0 19 93 0 68 65 0 24 91 10 58 17 0 71 0 100 0 94 90 79 73 0 73 4 61 54 81 7 13 21 84 5 41 0 1",
"output": "180"
},
{
"input": "40 22 99\n60 0 100 0 0 100 100 0 0 0 0 100 100 0 0 100 100 0 100 100 100 0 100 100 100 0 100 100 0 0 100 100 100 0 0 100 0 100 0 0",
"output": "210"
},
{
"input": "50 10 82\n56 54 0 0 0 0 88 93 0 0 83 93 0 0 91 89 0 30 62 52 24 84 80 8 38 13 92 78 16 87 23 30 71 55 16 63 15 99 4 93 24 6 3 35 4 42 73 27 86 37",
"output": "80"
},
{
"input": "63 49 22\n18 3 97 52 75 2 12 24 58 75 80 97 22 10 79 51 30 60 68 99 75 2 35 3 97 88 9 7 18 5 0 0 0 91 0 91 56 36 76 0 0 0 52 27 35 0 51 72 0 96 57 0 0 0 0 92 55 28 0 30 0 78 77",
"output": "190"
},
{
"input": "74 38 51\n53 36 55 42 64 5 87 9 0 16 86 78 9 22 19 1 25 72 1 0 0 0 79 0 0 0 77 58 70 0 0 100 64 0 99 59 0 0 0 0 65 74 0 96 0 58 89 93 61 88 0 0 82 89 0 0 49 24 7 77 89 87 94 61 100 31 93 70 39 49 39 14 20 84",
"output": "190"
},
{
"input": "89 22 11\n36 0 68 89 0 85 72 0 38 56 0 44 0 94 0 28 71 0 0 18 0 0 0 89 0 0 0 75 0 0 0 32 66 0 0 0 0 0 0 48 63 0 64 58 0 23 48 0 0 52 93 61 57 0 18 0 0 34 62 17 0 41 0 0 53 59 44 0 0 51 40 0 0 100 100 54 0 88 0 5 45 56 57 67 24 16 88 86 15",
"output": "580"
},
{
"input": "97 44 100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 51 19",
"output": "520"
},
{
"input": "100 1 1\n0 0 0 0 10 54 84 6 17 94 65 82 34 0 61 46 42 0 2 16 56 0 100 0 82 0 0 0 89 78 96 56 0 0 0 0 0 0 0 0 77 70 0 96 67 0 0 32 44 1 72 50 14 11 24 61 100 64 19 5 67 69 44 82 93 22 67 93 22 61 53 64 79 41 84 48 43 97 7 24 8 49 23 16 72 52 97 29 69 47 29 49 64 91 4 73 17 18 51 67",
"output": "490"
},
{
"input": "100 1 50\n0 0 0 60 0 0 54 0 80 0 0 0 97 0 68 97 84 0 0 93 0 0 0 0 68 0 0 62 0 0 55 68 65 87 0 69 0 0 0 0 0 52 61 100 0 71 0 82 88 78 0 81 0 95 0 57 0 67 0 0 0 55 86 0 60 72 0 0 73 0 83 0 0 60 64 0 56 0 0 77 84 0 58 63 84 0 0 67 0 16 3 88 0 98 31 52 40 35 85 23",
"output": "890"
},
{
"input": "100 1 100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 91 70 14",
"output": "970"
},
{
"input": "100 1 29\n0 0 0 0 64 0 89 97 0 0 0 59 0 67 62 0 59 0 0 80 0 0 0 0 0 97 0 57 0 64 32 0 44 0 0 48 0 47 38 0 42 0 0 0 0 0 0 46 74 0 86 33 33 0 44 0 79 0 0 0 0 91 59 0 59 65 55 0 0 58 33 95 0 97 76 0 81 0 41 0 38 81 80 0 85 0 31 0 0 92 0 0 45 96 0 85 91 87 0 10",
"output": "990"
},
{
"input": "100 50 20\n3 0 32 0 48 32 64 0 54 26 0 0 0 0 0 28 0 0 54 0 0 45 49 0 38 74 0 0 39 42 62 48 75 96 89 42 0 44 0 0 30 21 76 0 50 0 79 0 0 0 0 99 0 84 62 0 0 0 0 53 80 0 28 0 0 53 0 0 38 0 62 0 0 62 0 0 88 0 44 32 0 81 35 45 49 0 69 73 38 27 72 0 96 72 69 0 0 22 76 10",
"output": "490"
},
{
"input": "100 50 20\n49 0 56 0 87 25 40 0 50 0 0 97 0 0 36 29 0 0 0 0 0 73 29 71 44 0 0 0 91 92 69 0 0 60 81 49 48 38 0 87 0 82 0 32 0 82 46 39 0 0 29 0 0 29 0 79 47 0 0 0 0 0 49 0 24 33 70 0 63 45 97 90 0 0 29 53 55 0 84 0 0 100 26 0 88 0 0 0 0 81 70 0 30 80 0 75 59 98 0 2",
"output": "500"
},
{
"input": "100 2 2\n0 0 43 90 47 5 2 97 52 69 21 48 64 10 34 97 97 74 8 19 68 56 55 24 47 38 43 73 72 72 60 60 51 36 33 44 100 45 13 54 72 52 0 15 3 6 50 8 88 4 78 26 40 27 30 63 67 83 61 91 33 97 54 20 92 27 89 35 10 7 84 50 11 95 74 88 24 44 74 100 18 56 34 91 41 34 51 51 11 91 89 54 19 100 83 89 10 17 76 20",
"output": "50"
},
{
"input": "100 100 34\n5 73 0 0 44 0 0 0 79 55 0 0 0 0 0 0 0 0 83 67 75 0 0 0 0 59 0 74 0 0 47 98 0 0 72 41 0 55 87 0 0 78 84 0 0 39 0 79 72 95 0 0 0 0 0 85 53 84 0 0 0 0 37 75 0 66 0 0 0 0 61 0 70 0 37 60 42 78 92 52 0 0 0 55 77 57 0 63 37 0 0 0 96 70 0 94 97 0 0 0",
"output": "990"
},
{
"input": "100 100 100\n43 79 21 87 84 14 28 69 92 16 3 71 79 37 48 37 72 58 12 72 62 49 37 17 60 54 41 99 15 72 40 89 76 1 99 87 14 56 63 48 69 37 96 64 7 14 1 73 85 33 98 70 97 71 96 28 49 71 56 2 67 22 100 2 98 100 62 77 92 76 98 98 47 26 22 47 50 56 9 16 72 47 5 62 29 78 81 1 0 63 32 65 87 3 40 53 8 80 93 0",
"output": "10"
},
{
"input": "100 38 1\n3 59 12 81 33 95 0 41 36 17 63 76 42 77 85 56 3 96 55 41 24 87 18 9 0 37 0 61 69 0 0 0 67 0 0 0 0 0 0 18 0 0 47 56 74 0 0 80 0 42 0 1 60 59 62 9 19 87 92 48 58 30 98 51 99 10 42 94 51 53 50 89 24 5 52 82 50 39 98 8 95 4 57 21 10 0 44 32 19 14 64 34 79 76 17 3 15 22 71 51",
"output": "140"
},
{
"input": "100 72 1\n56 98 8 27 9 23 16 76 56 1 34 43 96 73 75 49 62 20 18 23 51 55 30 84 4 20 89 40 75 16 69 35 1 0 16 0 80 0 41 17 0 0 76 23 0 92 0 34 0 91 82 54 0 0 0 63 85 59 98 24 29 0 8 77 26 0 34 95 39 0 0 0 74 0 0 0 0 12 0 92 0 0 55 95 66 30 0 0 29 98 0 0 0 47 0 0 80 0 0 4",
"output": "390"
},
{
"input": "100 66 1\n38 50 64 91 37 44 74 21 14 41 80 90 26 51 78 85 80 86 44 14 49 75 93 48 78 89 23 72 35 22 14 48 100 71 62 22 7 95 80 66 32 20 17 47 79 30 41 52 15 62 67 71 1 6 0 9 0 0 0 11 0 0 24 0 31 0 77 0 51 0 0 0 0 0 0 77 0 36 44 19 90 45 6 25 100 87 93 30 4 97 36 88 33 50 26 71 97 71 51 68",
"output": "130"
},
{
"input": "100 55 1\n0 33 45 83 56 96 58 24 45 30 38 60 39 69 21 87 59 21 72 73 27 46 61 61 11 97 77 5 39 3 3 35 76 37 53 84 24 75 9 48 31 90 100 84 74 81 83 83 42 23 29 94 18 1 0 53 52 99 86 37 94 54 28 75 28 80 17 14 98 68 76 20 32 23 42 31 57 79 60 14 18 27 1 98 32 3 96 25 15 38 2 6 3 28 59 54 63 2 43 59",
"output": "10"
},
{
"input": "100 55 1\n24 52 41 6 55 11 58 25 63 12 70 39 23 28 72 17 96 85 7 84 21 13 34 37 97 43 36 32 15 30 58 5 14 71 40 70 9 92 44 73 31 58 96 90 19 35 29 91 25 36 48 95 61 78 0 1 99 61 81 88 42 53 61 57 42 55 74 45 41 92 99 30 20 25 89 50 37 4 17 24 6 65 15 44 40 2 38 43 7 90 38 59 75 87 96 28 12 67 24 32",
"output": "10"
},
{
"input": "100 21 1\n62 5 97 80 81 28 83 0 26 0 0 0 0 23 0 0 90 0 0 0 0 0 0 0 0 54 71 8 0 0 42 0 73 0 17 0 1 31 71 78 58 72 84 39 54 59 13 29 16 41 71 35 88 55 70 50 33 100 100 60 52 90 7 66 44 55 51 42 90 17 86 44 46 8 52 74 8 22 2 92 34 37 58 98 70 74 19 91 74 25 4 38 71 68 50 68 63 14 60 98",
"output": "160"
},
{
"input": "5 2 20\n27 0 32 21 19",
"output": "30"
},
{
"input": "6 4 10\n10 0 0 0 0 10",
"output": "20"
},
{
"input": "8 7 100\n1 0 0 0 0 0 0 1",
"output": "10"
},
{
"input": "5 3 20\n1 21 0 0 1",
"output": "20"
},
{
"input": "4 3 1\n0 0 0 1",
"output": "10"
},
{
"input": "5 2 3\n4 0 5 6 1",
"output": "30"
},
{
"input": "5 3 87\n88 89 0 1 90",
"output": "10"
},
{
"input": "5 3 20\n15 30 0 15 35",
"output": "10"
},
{
"input": "6 3 50\n0 0 0 1 2 0",
"output": "10"
},
{
"input": "6 4 9\n100 9 10 0 0 9",
"output": "20"
},
{
"input": "5 4 20\n0 20 0 0 20",
"output": "10"
},
{
"input": "6 3 3\n1 5 0 2 2 0",
"output": "10"
},
{
"input": "5 4 100\n0 1 0 0 1",
"output": "10"
}
] | 1,583,659,565
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 58
| 109
| 307,200
|
n, m, k = map(int, input().split())
a = list(map(int, input().split()))
ans = 10 ** 10
for i in range(n):
if a[i] != 0 and a[i] <= k:
ans = min(ans, abs(i - (m - 1)) * 10)
print(ans)
|
Title: Buying A House
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Zane the wizard had never loved anyone before, until he fell in love with a girl, whose name remains unknown to us.
The girl lives in house *m* of a village. There are *n* houses in that village, lining in a straight line from left to right: house 1, house 2, ..., house *n*. The village is also well-structured: house *i* and house *i*<=+<=1 (1<=≤<=*i*<=<<=*n*) are exactly 10 meters away. In this village, some houses are occupied, and some are not. Indeed, unoccupied houses can be purchased.
You will be given *n* integers *a*1,<=*a*2,<=...,<=*a**n* that denote the availability and the prices of the houses. If house *i* is occupied, and therefore cannot be bought, then *a**i* equals 0. Otherwise, house *i* can be bought, and *a**i* represents the money required to buy it, in dollars.
As Zane has only *k* dollars to spare, it becomes a challenge for him to choose the house to purchase, so that he could live as near as possible to his crush. Help Zane determine the minimum distance from his crush's house to some house he can afford, to help him succeed in his love.
Input Specification:
The first line contains three integers *n*, *m*, and *k* (2<=≤<=*n*<=≤<=100, 1<=≤<=*m*<=≤<=*n*, 1<=≤<=*k*<=≤<=100) — the number of houses in the village, the house where the girl lives, and the amount of money Zane has (in dollars), respectively.
The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=100) — denoting the availability and the prices of the houses.
It is guaranteed that *a**m*<==<=0 and that it is possible to purchase some house with no more than *k* dollars.
Output Specification:
Print one integer — the minimum distance, in meters, from the house where the girl Zane likes lives to the house Zane can buy.
Demo Input:
['5 1 20\n0 27 32 21 19\n', '7 3 50\n62 0 0 0 99 33 22\n', '10 5 100\n1 0 1 0 0 0 0 0 1 1\n']
Demo Output:
['40', '30', '20']
Note:
In the first sample, with *k* = 20 dollars, Zane can buy only house 5. The distance from house *m* = 1 to house 5 is 10 + 10 + 10 + 10 = 40 meters.
In the second sample, Zane can buy houses 6 and 7. It is better to buy house 6 than house 7, since house *m* = 3 and house 6 are only 30 meters away, while house *m* = 3 and house 7 are 40 meters away.
|
```python
n, m, k = map(int, input().split())
a = list(map(int, input().split()))
ans = 10 ** 10
for i in range(n):
if a[i] != 0 and a[i] <= k:
ans = min(ans, abs(i - (m - 1)) * 10)
print(ans)
```
| 3
|
|
621
|
A
|
Wet Shark and Odd and Even
|
PROGRAMMING
| 900
|
[
"implementation"
] | null | null |
Today, Wet Shark is given *n* integers. Using any of these integers no more than once, Wet Shark wants to get maximum possible even (divisible by 2) sum. Please, calculate this value for Wet Shark.
Note, that if Wet Shark uses no integers from the *n* integers, the sum is an even integer 0.
|
The first line of the input contains one integer, *n* (1<=≤<=*n*<=≤<=100<=000). The next line contains *n* space separated integers given to Wet Shark. Each of these integers is in range from 1 to 109, inclusive.
|
Print the maximum possible even sum that can be obtained if we use some of the given integers.
|
[
"3\n1 2 3\n",
"5\n999999999 999999999 999999999 999999999 999999999\n"
] |
[
"6",
"3999999996"
] |
In the first sample, we can simply take all three integers for a total sum of 6.
In the second sample Wet Shark should take any four out of five integers 999 999 999.
| 500
|
[
{
"input": "3\n1 2 3",
"output": "6"
},
{
"input": "5\n999999999 999999999 999999999 999999999 999999999",
"output": "3999999996"
},
{
"input": "1\n1",
"output": "0"
},
{
"input": "15\n39 52 88 78 46 95 84 98 55 3 68 42 6 18 98",
"output": "870"
},
{
"input": "15\n59 96 34 48 8 72 67 90 15 85 7 90 97 47 25",
"output": "840"
},
{
"input": "15\n87 37 91 29 58 45 51 74 70 71 47 38 91 89 44",
"output": "922"
},
{
"input": "15\n11 81 49 7 11 14 30 67 29 50 90 81 77 18 59",
"output": "674"
},
{
"input": "15\n39 21 95 89 73 90 9 55 85 32 30 21 68 59 82",
"output": "848"
},
{
"input": "15\n59 70 48 54 26 67 84 39 40 18 77 69 70 88 93",
"output": "902"
},
{
"input": "15\n87 22 98 32 88 36 72 31 100 97 17 16 60 22 20",
"output": "798"
},
{
"input": "15\n15 63 51 13 37 9 43 19 55 79 57 60 50 59 31",
"output": "632"
},
{
"input": "1\n4",
"output": "4"
},
{
"input": "2\n1 4",
"output": "4"
},
{
"input": "3\n1 2 4",
"output": "6"
},
{
"input": "2\n9 3",
"output": "12"
},
{
"input": "2\n1000000000 1001",
"output": "1000000000"
},
{
"input": "3\n1 8 4",
"output": "12"
},
{
"input": "3\n7 4 4",
"output": "8"
},
{
"input": "5\n2 3 4 5 3",
"output": "14"
},
{
"input": "2\n4 5",
"output": "4"
},
{
"input": "3\n2 4 5",
"output": "6"
},
{
"input": "3\n2 2 3",
"output": "4"
},
{
"input": "2\n2 3",
"output": "2"
},
{
"input": "4\n2 3 7 7",
"output": "16"
},
{
"input": "2\n999999999 2",
"output": "2"
},
{
"input": "2\n2 5",
"output": "2"
},
{
"input": "3\n5 3 1",
"output": "8"
},
{
"input": "4\n3 2 5 7",
"output": "14"
}
] | 1,560,674,862
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 87
| 187
| 8,499,200
|
# import sys
# sys.stdin=open("input.in",'r')
# sys.stdout=open("out.out",'w')
n=int(input())
a=list(map(int,input().split()))
s=sum(a)
if s%2==0:
print(s)
else:
o=[]
for i in range(n):
if a[i]%2!=0:
o.append(a[i])
o.sort()
s-=o[0]
print(s)
|
Title: Wet Shark and Odd and Even
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Today, Wet Shark is given *n* integers. Using any of these integers no more than once, Wet Shark wants to get maximum possible even (divisible by 2) sum. Please, calculate this value for Wet Shark.
Note, that if Wet Shark uses no integers from the *n* integers, the sum is an even integer 0.
Input Specification:
The first line of the input contains one integer, *n* (1<=≤<=*n*<=≤<=100<=000). The next line contains *n* space separated integers given to Wet Shark. Each of these integers is in range from 1 to 109, inclusive.
Output Specification:
Print the maximum possible even sum that can be obtained if we use some of the given integers.
Demo Input:
['3\n1 2 3\n', '5\n999999999 999999999 999999999 999999999 999999999\n']
Demo Output:
['6', '3999999996']
Note:
In the first sample, we can simply take all three integers for a total sum of 6.
In the second sample Wet Shark should take any four out of five integers 999 999 999.
|
```python
# import sys
# sys.stdin=open("input.in",'r')
# sys.stdout=open("out.out",'w')
n=int(input())
a=list(map(int,input().split()))
s=sum(a)
if s%2==0:
print(s)
else:
o=[]
for i in range(n):
if a[i]%2!=0:
o.append(a[i])
o.sort()
s-=o[0]
print(s)
```
| 3
|
|
653
|
A
|
Bear and Three Balls
|
PROGRAMMING
| 900
|
[
"brute force",
"implementation",
"sortings"
] | null | null |
Limak is a little polar bear. He has *n* balls, the *i*-th ball has size *t**i*.
Limak wants to give one ball to each of his three friends. Giving gifts isn't easy — there are two rules Limak must obey to make friends happy:
- No two friends can get balls of the same size. - No two friends can get balls of sizes that differ by more than 2.
For example, Limak can choose balls with sizes 4, 5 and 3, or balls with sizes 90, 91 and 92. But he can't choose balls with sizes 5, 5 and 6 (two friends would get balls of the same size), and he can't choose balls with sizes 30, 31 and 33 (because sizes 30 and 33 differ by more than 2).
Your task is to check whether Limak can choose three balls that satisfy conditions above.
|
The first line of the input contains one integer *n* (3<=≤<=*n*<=≤<=50) — the number of balls Limak has.
The second line contains *n* integers *t*1,<=*t*2,<=...,<=*t**n* (1<=≤<=*t**i*<=≤<=1000) where *t**i* denotes the size of the *i*-th ball.
|
Print "YES" (without quotes) if Limak can choose three balls of distinct sizes, such that any two of them differ by no more than 2. Otherwise, print "NO" (without quotes).
|
[
"4\n18 55 16 17\n",
"6\n40 41 43 44 44 44\n",
"8\n5 972 3 4 1 4 970 971\n"
] |
[
"YES\n",
"NO\n",
"YES\n"
] |
In the first sample, there are 4 balls and Limak is able to choose three of them to satisfy the rules. He must must choose balls with sizes 18, 16 and 17.
In the second sample, there is no way to give gifts to three friends without breaking the rules.
In the third sample, there is even more than one way to choose balls:
1. Choose balls with sizes 3, 4 and 5. 1. Choose balls with sizes 972, 970, 971.
| 500
|
[
{
"input": "4\n18 55 16 17",
"output": "YES"
},
{
"input": "6\n40 41 43 44 44 44",
"output": "NO"
},
{
"input": "8\n5 972 3 4 1 4 970 971",
"output": "YES"
},
{
"input": "3\n959 747 656",
"output": "NO"
},
{
"input": "4\n1 2 2 3",
"output": "YES"
},
{
"input": "50\n998 30 384 289 505 340 872 223 663 31 929 625 864 699 735 589 676 399 745 635 963 381 75 97 324 612 597 797 103 382 25 894 219 458 337 572 201 355 294 275 278 311 586 573 965 704 936 237 715 543",
"output": "NO"
},
{
"input": "50\n941 877 987 982 966 979 984 810 811 909 872 980 957 897 845 995 924 905 984 914 824 840 868 910 815 808 872 858 883 952 823 835 860 874 959 972 931 867 866 987 982 837 800 921 887 910 982 980 828 869",
"output": "YES"
},
{
"input": "3\n408 410 409",
"output": "YES"
},
{
"input": "3\n903 902 904",
"output": "YES"
},
{
"input": "3\n399 400 398",
"output": "YES"
},
{
"input": "3\n450 448 449",
"output": "YES"
},
{
"input": "3\n390 389 388",
"output": "YES"
},
{
"input": "3\n438 439 440",
"output": "YES"
},
{
"input": "11\n488 688 490 94 564 615 641 170 489 517 669",
"output": "YES"
},
{
"input": "24\n102 672 983 82 720 501 81 721 982 312 207 897 159 964 611 956 118 984 37 271 596 403 772 954",
"output": "YES"
},
{
"input": "36\n175 551 70 479 875 480 979 32 465 402 640 116 76 687 874 678 359 785 753 401 978 629 162 963 886 641 39 845 132 930 2 372 478 947 407 318",
"output": "YES"
},
{
"input": "6\n10 79 306 334 304 305",
"output": "YES"
},
{
"input": "34\n787 62 26 683 486 364 684 891 846 801 969 837 359 800 836 359 471 637 732 91 841 836 7 799 959 405 416 841 737 803 615 483 323 365",
"output": "YES"
},
{
"input": "30\n860 238 14 543 669 100 428 789 576 484 754 274 849 850 586 377 711 386 510 408 520 693 23 477 266 851 728 711 964 73",
"output": "YES"
},
{
"input": "11\n325 325 324 324 324 325 325 324 324 324 324",
"output": "NO"
},
{
"input": "7\n517 517 518 517 518 518 518",
"output": "NO"
},
{
"input": "20\n710 710 711 711 711 711 710 710 710 710 711 710 710 710 710 710 710 711 711 710",
"output": "NO"
},
{
"input": "48\n29 30 29 29 29 30 29 30 30 30 30 29 30 30 30 29 29 30 30 29 30 29 29 30 29 30 29 30 30 29 30 29 29 30 30 29 29 30 30 29 29 30 30 30 29 29 30 29",
"output": "NO"
},
{
"input": "7\n880 880 514 536 881 881 879",
"output": "YES"
},
{
"input": "15\n377 432 262 376 261 375 377 262 263 263 261 376 262 262 375",
"output": "YES"
},
{
"input": "32\n305 426 404 961 426 425 614 304 404 425 615 403 303 304 615 303 305 405 427 614 403 303 425 615 404 304 427 403 206 616 405 404",
"output": "YES"
},
{
"input": "41\n115 686 988 744 762 519 745 519 518 83 85 115 520 44 687 686 685 596 988 687 989 988 114 745 84 519 519 746 988 84 745 744 115 114 85 115 520 746 745 116 987",
"output": "YES"
},
{
"input": "47\n1 2 483 28 7 109 270 651 464 162 353 521 224 989 721 499 56 69 197 716 313 446 580 645 828 197 100 138 789 499 147 677 384 711 783 937 300 543 540 93 669 604 739 122 632 822 116",
"output": "NO"
},
{
"input": "31\n1 2 1 373 355 692 750 920 578 666 615 232 141 129 663 929 414 704 422 559 568 731 354 811 532 618 39 879 292 602 995",
"output": "NO"
},
{
"input": "50\n5 38 41 4 15 40 27 39 20 3 44 47 30 6 36 29 35 12 19 26 10 2 21 50 11 46 48 49 17 16 33 13 32 28 31 18 23 34 7 14 24 45 9 37 1 8 42 25 43 22",
"output": "YES"
},
{
"input": "50\n967 999 972 990 969 978 963 987 954 955 973 970 959 981 995 983 986 994 979 957 965 982 992 977 953 975 956 961 993 997 998 958 980 962 960 951 996 991 1000 966 971 988 976 968 989 984 974 964 985 952",
"output": "YES"
},
{
"input": "50\n850 536 761 506 842 898 857 723 583 637 536 943 895 929 890 612 832 633 696 731 553 880 710 812 665 877 915 636 711 540 748 600 554 521 813 796 568 513 543 809 798 820 928 504 999 646 907 639 550 911",
"output": "NO"
},
{
"input": "3\n3 1 2",
"output": "YES"
},
{
"input": "3\n500 999 1000",
"output": "NO"
},
{
"input": "10\n101 102 104 105 107 109 110 112 113 115",
"output": "NO"
},
{
"input": "50\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "NO"
},
{
"input": "50\n1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000",
"output": "NO"
},
{
"input": "3\n1000 999 998",
"output": "YES"
},
{
"input": "49\n343 322 248 477 53 156 245 493 209 141 370 66 229 184 434 137 276 472 216 456 147 180 140 114 493 323 393 262 380 314 222 124 98 441 129 346 48 401 347 460 122 125 114 106 189 260 374 165 456",
"output": "NO"
},
{
"input": "20\n1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 3 3 3 3 3",
"output": "YES"
},
{
"input": "3\n999 999 1000",
"output": "NO"
},
{
"input": "9\n2 4 5 13 25 100 200 300 400",
"output": "NO"
},
{
"input": "9\n1 1 1 2 2 2 3 3 3",
"output": "YES"
},
{
"input": "3\n1 1 2",
"output": "NO"
},
{
"input": "3\n998 999 1000",
"output": "YES"
},
{
"input": "12\n1 1 1 1 1 1 1 1 1 2 2 4",
"output": "NO"
},
{
"input": "4\n4 3 4 5",
"output": "YES"
},
{
"input": "6\n1 1 1 2 2 2",
"output": "NO"
},
{
"input": "3\n2 3 2",
"output": "NO"
},
{
"input": "5\n10 5 6 3 2",
"output": "NO"
},
{
"input": "3\n1 2 1",
"output": "NO"
},
{
"input": "3\n1 2 3",
"output": "YES"
},
{
"input": "4\n998 999 1000 1000",
"output": "YES"
},
{
"input": "5\n2 3 9 9 4",
"output": "YES"
},
{
"input": "4\n1 2 4 4",
"output": "NO"
},
{
"input": "3\n1 1 1",
"output": "NO"
},
{
"input": "3\n2 2 3",
"output": "NO"
},
{
"input": "7\n1 2 2 2 4 5 6",
"output": "YES"
},
{
"input": "5\n1 3 10 3 10",
"output": "NO"
},
{
"input": "3\n1 2 2",
"output": "NO"
},
{
"input": "4\n1000 1000 999 998",
"output": "YES"
},
{
"input": "3\n5 3 7",
"output": "NO"
},
{
"input": "6\n1 1 2 2 3 3",
"output": "YES"
},
{
"input": "9\n6 6 6 5 5 5 4 4 4",
"output": "YES"
},
{
"input": "7\n5 6 6 6 7 7 7",
"output": "YES"
},
{
"input": "5\n2 3 3 3 4",
"output": "YES"
},
{
"input": "5\n2 1 2 1 3",
"output": "YES"
},
{
"input": "3\n1 2 7",
"output": "NO"
},
{
"input": "3\n1000 1000 1000",
"output": "NO"
},
{
"input": "5\n1 100 2 100 3",
"output": "YES"
},
{
"input": "5\n5 4 6 5 5",
"output": "YES"
},
{
"input": "12\n1 1 1 1 2 2 2 2 3 3 3 3",
"output": "YES"
},
{
"input": "5\n9 9 1 2 3",
"output": "YES"
},
{
"input": "6\n1 2 3 1 2 3",
"output": "YES"
},
{
"input": "7\n1 1 1 1 2 3 3",
"output": "YES"
},
{
"input": "3\n13 13 13",
"output": "NO"
},
{
"input": "3\n42 42 42",
"output": "NO"
},
{
"input": "8\n1 1 1 1 2 2 2 2",
"output": "NO"
},
{
"input": "6\n1 1 1 1 2 3",
"output": "YES"
},
{
"input": "6\n1 1 2 2 6 6",
"output": "NO"
},
{
"input": "6\n1 2 5 5 5 5",
"output": "NO"
},
{
"input": "9\n1 2 3 1 2 3 1 2 3",
"output": "YES"
},
{
"input": "4\n1 2 1 100",
"output": "NO"
},
{
"input": "5\n1 1 2 2 3",
"output": "YES"
}
] | 1,599,447,062
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 84
| 156
| 1,331,200
|
n = int(input())
l = list(map(int,input().split()))
l.sort()
for i in range(len(l)):
for j in range(i,len(l)):
if l[j] - l[i] == 1:
for k in range(j,len(l)):
if l[k] - l[j] == 1:
print("YES")
exit(0)
print("NO")
|
Title: Bear and Three Balls
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Limak is a little polar bear. He has *n* balls, the *i*-th ball has size *t**i*.
Limak wants to give one ball to each of his three friends. Giving gifts isn't easy — there are two rules Limak must obey to make friends happy:
- No two friends can get balls of the same size. - No two friends can get balls of sizes that differ by more than 2.
For example, Limak can choose balls with sizes 4, 5 and 3, or balls with sizes 90, 91 and 92. But he can't choose balls with sizes 5, 5 and 6 (two friends would get balls of the same size), and he can't choose balls with sizes 30, 31 and 33 (because sizes 30 and 33 differ by more than 2).
Your task is to check whether Limak can choose three balls that satisfy conditions above.
Input Specification:
The first line of the input contains one integer *n* (3<=≤<=*n*<=≤<=50) — the number of balls Limak has.
The second line contains *n* integers *t*1,<=*t*2,<=...,<=*t**n* (1<=≤<=*t**i*<=≤<=1000) where *t**i* denotes the size of the *i*-th ball.
Output Specification:
Print "YES" (without quotes) if Limak can choose three balls of distinct sizes, such that any two of them differ by no more than 2. Otherwise, print "NO" (without quotes).
Demo Input:
['4\n18 55 16 17\n', '6\n40 41 43 44 44 44\n', '8\n5 972 3 4 1 4 970 971\n']
Demo Output:
['YES\n', 'NO\n', 'YES\n']
Note:
In the first sample, there are 4 balls and Limak is able to choose three of them to satisfy the rules. He must must choose balls with sizes 18, 16 and 17.
In the second sample, there is no way to give gifts to three friends without breaking the rules.
In the third sample, there is even more than one way to choose balls:
1. Choose balls with sizes 3, 4 and 5. 1. Choose balls with sizes 972, 970, 971.
|
```python
n = int(input())
l = list(map(int,input().split()))
l.sort()
for i in range(len(l)):
for j in range(i,len(l)):
if l[j] - l[i] == 1:
for k in range(j,len(l)):
if l[k] - l[j] == 1:
print("YES")
exit(0)
print("NO")
```
| 3
|
|
672
|
A
|
Summer Camp
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Every year, hundreds of people come to summer camps, they learn new algorithms and solve hard problems.
This is your first year at summer camp, and you are asked to solve the following problem. All integers starting with 1 are written in one line. The prefix of these line is "123456789101112131415...". Your task is to print the *n*-th digit of this string (digits are numbered starting with 1.
|
The only line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=1000) — the position of the digit you need to print.
|
Print the *n*-th digit of the line.
|
[
"3\n",
"11\n"
] |
[
"3\n",
"0\n"
] |
In the first sample the digit at position 3 is '3', as both integers 1 and 2 consist on one digit.
In the second sample, the digit at position 11 is '0', it belongs to the integer 10.
| 500
|
[
{
"input": "3",
"output": "3"
},
{
"input": "11",
"output": "0"
},
{
"input": "12",
"output": "1"
},
{
"input": "13",
"output": "1"
},
{
"input": "29",
"output": "9"
},
{
"input": "30",
"output": "2"
},
{
"input": "1000",
"output": "3"
},
{
"input": "999",
"output": "9"
},
{
"input": "100",
"output": "5"
},
{
"input": "123",
"output": "6"
},
{
"input": "8",
"output": "8"
},
{
"input": "157",
"output": "3"
},
{
"input": "289",
"output": "1"
},
{
"input": "179",
"output": "4"
},
{
"input": "942",
"output": "0"
},
{
"input": "879",
"output": "9"
},
{
"input": "394",
"output": "1"
},
{
"input": "423",
"output": "7"
},
{
"input": "952",
"output": "3"
},
{
"input": "121",
"output": "5"
},
{
"input": "613",
"output": "2"
},
{
"input": "945",
"output": "1"
},
{
"input": "270",
"output": "6"
},
{
"input": "781",
"output": "2"
},
{
"input": "453",
"output": "7"
},
{
"input": "171",
"output": "0"
},
{
"input": "643",
"output": "2"
},
{
"input": "570",
"output": "6"
},
{
"input": "750",
"output": "6"
},
{
"input": "500",
"output": "0"
},
{
"input": "2",
"output": "2"
},
{
"input": "1",
"output": "1"
},
{
"input": "108",
"output": "5"
},
{
"input": "500",
"output": "0"
},
{
"input": "189",
"output": "9"
},
{
"input": "491",
"output": "0"
},
{
"input": "191",
"output": "0"
}
] | 1,547,725,089
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 37
| 109
| 0
|
a='1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000'
b=int(input())
print(a[b-1])
|
Title: Summer Camp
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Every year, hundreds of people come to summer camps, they learn new algorithms and solve hard problems.
This is your first year at summer camp, and you are asked to solve the following problem. All integers starting with 1 are written in one line. The prefix of these line is "123456789101112131415...". Your task is to print the *n*-th digit of this string (digits are numbered starting with 1.
Input Specification:
The only line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=1000) — the position of the digit you need to print.
Output Specification:
Print the *n*-th digit of the line.
Demo Input:
['3\n', '11\n']
Demo Output:
['3\n', '0\n']
Note:
In the first sample the digit at position 3 is '3', as both integers 1 and 2 consist on one digit.
In the second sample, the digit at position 11 is '0', it belongs to the integer 10.
|
```python
a='1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000'
b=int(input())
print(a[b-1])
```
| 3
|
|
915
|
A
|
Garden
|
PROGRAMMING
| 900
|
[
"implementation"
] | null | null |
Luba thinks about watering her garden. The garden can be represented as a segment of length *k*. Luba has got *n* buckets, the *i*-th bucket allows her to water some continuous subsegment of garden of length exactly *a**i* each hour. Luba can't water any parts of the garden that were already watered, also she can't water the ground outside the garden.
Luba has to choose one of the buckets in order to water the garden as fast as possible (as mentioned above, each hour she will water some continuous subsegment of length *a**i* if she chooses the *i*-th bucket). Help her to determine the minimum number of hours she has to spend watering the garden. It is guaranteed that Luba can always choose a bucket so it is possible water the garden.
See the examples for better understanding.
|
The first line of input contains two integer numbers *n* and *k* (1<=≤<=*n*,<=*k*<=≤<=100) — the number of buckets and the length of the garden, respectively.
The second line of input contains *n* integer numbers *a**i* (1<=≤<=*a**i*<=≤<=100) — the length of the segment that can be watered by the *i*-th bucket in one hour.
It is guaranteed that there is at least one bucket such that it is possible to water the garden in integer number of hours using only this bucket.
|
Print one integer number — the minimum number of hours required to water the garden.
|
[
"3 6\n2 3 5\n",
"6 7\n1 2 3 4 5 6\n"
] |
[
"2\n",
"7\n"
] |
In the first test the best option is to choose the bucket that allows to water the segment of length 3. We can't choose the bucket that allows to water the segment of length 5 because then we can't water the whole garden.
In the second test we can choose only the bucket that allows us to water the segment of length 1.
| 0
|
[
{
"input": "3 6\n2 3 5",
"output": "2"
},
{
"input": "6 7\n1 2 3 4 5 6",
"output": "7"
},
{
"input": "5 97\n1 10 50 97 2",
"output": "1"
},
{
"input": "5 97\n1 10 50 100 2",
"output": "97"
},
{
"input": "100 100\n2 46 24 18 86 90 31 38 84 49 58 28 15 80 14 24 87 56 62 87 41 87 55 71 87 32 41 56 91 32 24 75 43 42 35 30 72 53 31 26 54 61 87 85 36 75 44 31 7 38 77 57 61 54 70 77 45 96 39 57 11 8 91 42 52 15 42 30 92 41 27 26 34 27 3 80 32 86 26 97 63 91 30 75 14 7 19 23 45 11 8 43 44 73 11 56 3 55 63 16",
"output": "50"
},
{
"input": "100 91\n13 13 62 96 74 47 81 46 78 21 20 42 4 73 25 30 76 74 58 28 25 52 42 48 74 40 82 9 25 29 17 22 46 64 57 95 81 39 47 86 40 95 97 35 31 98 45 98 47 78 52 63 58 14 89 97 17 95 28 22 20 36 68 38 95 16 2 26 54 47 42 31 31 81 21 21 65 40 82 53 60 71 75 33 96 98 6 22 95 12 5 48 18 27 58 62 5 96 36 75",
"output": "7"
},
{
"input": "8 8\n8 7 6 5 4 3 2 1",
"output": "1"
},
{
"input": "3 8\n4 3 2",
"output": "2"
},
{
"input": "3 8\n2 4 2",
"output": "2"
},
{
"input": "3 6\n1 3 2",
"output": "2"
},
{
"input": "3 6\n3 2 5",
"output": "2"
},
{
"input": "3 8\n4 2 1",
"output": "2"
},
{
"input": "5 6\n2 3 5 1 2",
"output": "2"
},
{
"input": "2 6\n5 3",
"output": "2"
},
{
"input": "4 12\n6 4 3 1",
"output": "2"
},
{
"input": "3 18\n1 9 6",
"output": "2"
},
{
"input": "3 9\n3 2 1",
"output": "3"
},
{
"input": "3 6\n5 3 2",
"output": "2"
},
{
"input": "2 10\n5 2",
"output": "2"
},
{
"input": "2 18\n6 3",
"output": "3"
},
{
"input": "4 12\n1 2 12 3",
"output": "1"
},
{
"input": "3 7\n3 2 1",
"output": "7"
},
{
"input": "3 6\n3 2 1",
"output": "2"
},
{
"input": "5 10\n5 4 3 2 1",
"output": "2"
},
{
"input": "5 16\n8 4 2 1 7",
"output": "2"
},
{
"input": "6 7\n6 5 4 3 7 1",
"output": "1"
},
{
"input": "2 6\n3 2",
"output": "2"
},
{
"input": "2 4\n4 1",
"output": "1"
},
{
"input": "6 8\n2 4 1 3 5 7",
"output": "2"
},
{
"input": "6 8\n6 5 4 3 2 1",
"output": "2"
},
{
"input": "6 15\n5 2 3 6 4 3",
"output": "3"
},
{
"input": "4 8\n2 4 8 1",
"output": "1"
},
{
"input": "2 5\n5 1",
"output": "1"
},
{
"input": "4 18\n3 1 1 2",
"output": "6"
},
{
"input": "2 1\n2 1",
"output": "1"
},
{
"input": "3 10\n2 10 5",
"output": "1"
},
{
"input": "5 12\n12 4 4 4 3",
"output": "1"
},
{
"input": "3 6\n6 3 2",
"output": "1"
},
{
"input": "2 2\n2 1",
"output": "1"
},
{
"input": "3 18\n1 9 3",
"output": "2"
},
{
"input": "3 8\n7 2 4",
"output": "2"
},
{
"input": "2 100\n99 1",
"output": "100"
},
{
"input": "4 12\n1 3 4 2",
"output": "3"
},
{
"input": "3 6\n2 3 1",
"output": "2"
},
{
"input": "4 6\n3 2 5 12",
"output": "2"
},
{
"input": "4 97\n97 1 50 10",
"output": "1"
},
{
"input": "3 12\n1 12 2",
"output": "1"
},
{
"input": "4 12\n1 4 3 2",
"output": "3"
},
{
"input": "1 1\n1",
"output": "1"
},
{
"input": "3 19\n7 1 1",
"output": "19"
},
{
"input": "5 12\n12 4 3 4 4",
"output": "1"
},
{
"input": "3 8\n8 4 2",
"output": "1"
},
{
"input": "3 3\n3 2 1",
"output": "1"
},
{
"input": "5 6\n3 2 4 2 2",
"output": "2"
},
{
"input": "2 16\n8 4",
"output": "2"
},
{
"input": "3 6\n10 2 3",
"output": "2"
},
{
"input": "5 3\n2 4 5 3 6",
"output": "1"
},
{
"input": "11 99\n1 2 3 6 5 4 7 8 99 33 66",
"output": "1"
},
{
"input": "3 12\n3 12 2",
"output": "1"
},
{
"input": "5 25\n24 5 15 25 23",
"output": "1"
},
{
"input": "2 4\n8 1",
"output": "4"
},
{
"input": "4 100\n2 50 4 1",
"output": "2"
},
{
"input": "3 28\n7 14 1",
"output": "2"
},
{
"input": "4 8\n2 8 4 1",
"output": "1"
},
{
"input": "4 6\n6 1 2 3",
"output": "1"
},
{
"input": "2 12\n4 3",
"output": "3"
},
{
"input": "4 12\n1 2 4 3",
"output": "3"
},
{
"input": "5 12\n2 3 12 6 4",
"output": "1"
},
{
"input": "4 4\n1 2 2 4",
"output": "1"
},
{
"input": "3 6\n2 3 2",
"output": "2"
},
{
"input": "4 21\n21 20 21 2",
"output": "1"
},
{
"input": "3 8\n3 4 2",
"output": "2"
},
{
"input": "1 25\n25",
"output": "1"
},
{
"input": "99 12\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99",
"output": "1"
},
{
"input": "98 12\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98",
"output": "1"
},
{
"input": "79 12\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79",
"output": "1"
},
{
"input": "4 32\n1 1 1 1",
"output": "32"
},
{
"input": "1 100\n1",
"output": "100"
},
{
"input": "2 100\n7 1",
"output": "100"
},
{
"input": "7 24\n1 3 6 4 5 2 7",
"output": "4"
},
{
"input": "6 87\n1 2 8 4 5 7",
"output": "87"
},
{
"input": "1 88\n1",
"output": "88"
},
{
"input": "1 89\n1",
"output": "89"
}
] | 1,694,612,981
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 83
| 46
| 0
|
#বিসমিল্লাহির রাহমানির রাহিম
#بِسْمِ ٱللَّٰهِ ٱلرَّحْمَٰنِ ٱلرَّحِيمِ
#Bismillahir Rahmanir Rahim
#PROBLEM :A. Garden
n,k=map(int,input().split())
l=list(map(int,input().split()))
m=0
for i in l:
if i>m and k%i==0:
m=i
print(k//m)
|
Title: Garden
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Luba thinks about watering her garden. The garden can be represented as a segment of length *k*. Luba has got *n* buckets, the *i*-th bucket allows her to water some continuous subsegment of garden of length exactly *a**i* each hour. Luba can't water any parts of the garden that were already watered, also she can't water the ground outside the garden.
Luba has to choose one of the buckets in order to water the garden as fast as possible (as mentioned above, each hour she will water some continuous subsegment of length *a**i* if she chooses the *i*-th bucket). Help her to determine the minimum number of hours she has to spend watering the garden. It is guaranteed that Luba can always choose a bucket so it is possible water the garden.
See the examples for better understanding.
Input Specification:
The first line of input contains two integer numbers *n* and *k* (1<=≤<=*n*,<=*k*<=≤<=100) — the number of buckets and the length of the garden, respectively.
The second line of input contains *n* integer numbers *a**i* (1<=≤<=*a**i*<=≤<=100) — the length of the segment that can be watered by the *i*-th bucket in one hour.
It is guaranteed that there is at least one bucket such that it is possible to water the garden in integer number of hours using only this bucket.
Output Specification:
Print one integer number — the minimum number of hours required to water the garden.
Demo Input:
['3 6\n2 3 5\n', '6 7\n1 2 3 4 5 6\n']
Demo Output:
['2\n', '7\n']
Note:
In the first test the best option is to choose the bucket that allows to water the segment of length 3. We can't choose the bucket that allows to water the segment of length 5 because then we can't water the whole garden.
In the second test we can choose only the bucket that allows us to water the segment of length 1.
|
```python
#বিসমিল্লাহির রাহমানির রাহিম
#بِسْمِ ٱللَّٰهِ ٱلرَّحْمَٰنِ ٱلرَّحِيمِ
#Bismillahir Rahmanir Rahim
#PROBLEM :A. Garden
n,k=map(int,input().split())
l=list(map(int,input().split()))
m=0
for i in l:
if i>m and k%i==0:
m=i
print(k//m)
```
| 3
|
|
75
|
A
|
Life Without Zeros
|
PROGRAMMING
| 1,000
|
[
"implementation"
] |
A. Life Without Zeros
|
2
|
256
|
Can you imagine our life if we removed all zeros from it? For sure we will have many problems.
In this problem we will have a simple example if we removed all zeros from our life, it's the addition operation. Let's assume you are given this equation *a*<=+<=*b*<==<=*c*, where *a* and *b* are positive integers, and *c* is the sum of *a* and *b*. Now let's remove all zeros from this equation. Will the equation remain correct after removing all zeros?
For example if the equation is 101<=+<=102<==<=203, if we removed all zeros it will be 11<=+<=12<==<=23 which is still a correct equation.
But if the equation is 105<=+<=106<==<=211, if we removed all zeros it will be 15<=+<=16<==<=211 which is not a correct equation.
|
The input will consist of two lines, the first line will contain the integer *a*, and the second line will contain the integer *b* which are in the equation as described above (1<=≤<=*a*,<=*b*<=≤<=109). There won't be any leading zeros in both. The value of *c* should be calculated as *c*<==<=*a*<=+<=*b*.
|
The output will be just one line, you should print "YES" if the equation will remain correct after removing all zeros, and print "NO" otherwise.
|
[
"101\n102\n",
"105\n106\n"
] |
[
"YES\n",
"NO\n"
] |
none
| 500
|
[
{
"input": "101\n102",
"output": "YES"
},
{
"input": "105\n106",
"output": "NO"
},
{
"input": "544\n397",
"output": "YES"
},
{
"input": "822\n280",
"output": "NO"
},
{
"input": "101\n413",
"output": "NO"
},
{
"input": "309\n139",
"output": "NO"
},
{
"input": "693\n970",
"output": "NO"
},
{
"input": "981\n1",
"output": "YES"
},
{
"input": "352\n276",
"output": "YES"
},
{
"input": "164\n691",
"output": "YES"
},
{
"input": "110036\n43",
"output": "YES"
},
{
"input": "100\n1000",
"output": "NO"
},
{
"input": "1000000000\n1000000000",
"output": "YES"
},
{
"input": "999999999\n999999999",
"output": "YES"
},
{
"input": "6\n4",
"output": "NO"
},
{
"input": "123456\n876543",
"output": "YES"
},
{
"input": "1234567\n9876543",
"output": "NO"
},
{
"input": "1111111\n1119111",
"output": "NO"
},
{
"input": "10502405\n40403403",
"output": "YES"
},
{
"input": "1\n1",
"output": "YES"
},
{
"input": "5\n4",
"output": "YES"
},
{
"input": "1\n6",
"output": "YES"
},
{
"input": "40\n17",
"output": "NO"
},
{
"input": "35\n81",
"output": "YES"
},
{
"input": "347\n908",
"output": "NO"
},
{
"input": "2081\n7450",
"output": "NO"
},
{
"input": "84355694\n373629503",
"output": "NO"
},
{
"input": "885992048\n510468672",
"output": "NO"
},
{
"input": "540144752\n647307841",
"output": "NO"
},
{
"input": "341781108\n784147010",
"output": "NO"
},
{
"input": "960440938\n572334653",
"output": "NO"
},
{
"input": "657414510\n768771903",
"output": "NO"
},
{
"input": "501871728\n725074574",
"output": "NO"
},
{
"input": "968\n851",
"output": "YES"
},
{
"input": "943\n939",
"output": "YES"
},
{
"input": "347\n908",
"output": "NO"
},
{
"input": "611\n41",
"output": "YES"
},
{
"input": "737\n289",
"output": "NO"
},
{
"input": "168\n571",
"output": "YES"
},
{
"input": "868\n463",
"output": "YES"
},
{
"input": "815732007\n913882008",
"output": "NO"
},
{
"input": "459039901\n453033850",
"output": "NO"
},
{
"input": "975305404\n484601256",
"output": "NO"
}
] | 1,687,211,088
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 43
| 124
| 0
|
a=input()
b=input()
c=int(a)+int(b)
str_c=str(c)
if '0' in a:
a=a.replace('0','')
if '0' in b:
b=b.replace('0', '')
if '0' in str_c:
str_c=str_c.replace('0', '')
c=int(str_c)
if int(a)+int(b)==c:
print("YES")
else:
print("NO")
|
Title: Life Without Zeros
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Can you imagine our life if we removed all zeros from it? For sure we will have many problems.
In this problem we will have a simple example if we removed all zeros from our life, it's the addition operation. Let's assume you are given this equation *a*<=+<=*b*<==<=*c*, where *a* and *b* are positive integers, and *c* is the sum of *a* and *b*. Now let's remove all zeros from this equation. Will the equation remain correct after removing all zeros?
For example if the equation is 101<=+<=102<==<=203, if we removed all zeros it will be 11<=+<=12<==<=23 which is still a correct equation.
But if the equation is 105<=+<=106<==<=211, if we removed all zeros it will be 15<=+<=16<==<=211 which is not a correct equation.
Input Specification:
The input will consist of two lines, the first line will contain the integer *a*, and the second line will contain the integer *b* which are in the equation as described above (1<=≤<=*a*,<=*b*<=≤<=109). There won't be any leading zeros in both. The value of *c* should be calculated as *c*<==<=*a*<=+<=*b*.
Output Specification:
The output will be just one line, you should print "YES" if the equation will remain correct after removing all zeros, and print "NO" otherwise.
Demo Input:
['101\n102\n', '105\n106\n']
Demo Output:
['YES\n', 'NO\n']
Note:
none
|
```python
a=input()
b=input()
c=int(a)+int(b)
str_c=str(c)
if '0' in a:
a=a.replace('0','')
if '0' in b:
b=b.replace('0', '')
if '0' in str_c:
str_c=str_c.replace('0', '')
c=int(str_c)
if int(a)+int(b)==c:
print("YES")
else:
print("NO")
```
| 3.969
|
228
|
A
|
Is your horseshoe on the other hoof?
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Valera the Horse is going to the party with friends. He has been following the fashion trends for a while, and he knows that it is very popular to wear all horseshoes of different color. Valera has got four horseshoes left from the last year, but maybe some of them have the same color. In this case he needs to go to the store and buy some few more horseshoes, not to lose face in front of his stylish comrades.
Fortunately, the store sells horseshoes of all colors under the sun and Valera has enough money to buy any four of them. However, in order to save the money, he would like to spend as little money as possible, so you need to help Valera and determine what is the minimum number of horseshoes he needs to buy to wear four horseshoes of different colors to a party.
|
The first line contains four space-separated integers *s*1,<=*s*2,<=*s*3,<=*s*4 (1<=≤<=*s*1,<=*s*2,<=*s*3,<=*s*4<=≤<=109) — the colors of horseshoes Valera has.
Consider all possible colors indexed with integers.
|
Print a single integer — the minimum number of horseshoes Valera needs to buy.
|
[
"1 7 3 3\n",
"7 7 7 7\n"
] |
[
"1\n",
"3\n"
] |
none
| 500
|
[
{
"input": "1 7 3 3",
"output": "1"
},
{
"input": "7 7 7 7",
"output": "3"
},
{
"input": "81170865 673572653 756938629 995577259",
"output": "0"
},
{
"input": "3491663 217797045 522540872 715355328",
"output": "0"
},
{
"input": "251590420 586975278 916631563 586975278",
"output": "1"
},
{
"input": "259504825 377489979 588153796 377489979",
"output": "1"
},
{
"input": "652588203 931100304 931100304 652588203",
"output": "2"
},
{
"input": "391958720 651507265 391958720 651507265",
"output": "2"
},
{
"input": "90793237 90793237 90793237 90793237",
"output": "3"
},
{
"input": "551651653 551651653 551651653 551651653",
"output": "3"
},
{
"input": "156630260 609654355 668943582 973622757",
"output": "0"
},
{
"input": "17061017 110313588 434481173 796661222",
"output": "0"
},
{
"input": "24975422 256716298 337790533 690960249",
"output": "0"
},
{
"input": "255635360 732742923 798648949 883146723",
"output": "0"
},
{
"input": "133315691 265159773 734556507 265159773",
"output": "1"
},
{
"input": "28442865 741657755 978106882 978106882",
"output": "1"
},
{
"input": "131245479 174845575 497483467 131245479",
"output": "1"
},
{
"input": "139159884 616215581 958341883 616215581",
"output": "1"
},
{
"input": "147784432 947653080 947653080 947653080",
"output": "2"
},
{
"input": "94055790 756126496 756126496 94055790",
"output": "2"
},
{
"input": "240458500 511952208 240458500 511952208",
"output": "2"
},
{
"input": "681828506 972810624 972810624 681828506",
"output": "2"
},
{
"input": "454961014 454961014 454961014 454961014",
"output": "3"
},
{
"input": "915819430 915819430 915819430 915819430",
"output": "3"
},
{
"input": "671645142 671645142 671645142 671645142",
"output": "3"
},
{
"input": "132503558 132503558 132503558 132503558",
"output": "3"
},
{
"input": "5 5 999999 6",
"output": "1"
},
{
"input": "1 1 2 5",
"output": "1"
},
{
"input": "2 1 2 3",
"output": "1"
},
{
"input": "1 1 3 5",
"output": "1"
},
{
"input": "1 1 3 3",
"output": "2"
},
{
"input": "2 2 2 1",
"output": "2"
},
{
"input": "3 1 1 1",
"output": "2"
},
{
"input": "1 2 2 2",
"output": "2"
}
] | 1,691,940,798
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 34
| 92
| 0
|
# Read the input
colors = list(map(int, input().split()))
# Calculate the number of distinct colors
distinct_colors = len(set(colors))
# Calculate the minimum number of horseshoes to buy
minimum_horseshoes_to_buy = 4 - distinct_colors
# Print the result
print(minimum_horseshoes_to_buy)
|
Title: Is your horseshoe on the other hoof?
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Valera the Horse is going to the party with friends. He has been following the fashion trends for a while, and he knows that it is very popular to wear all horseshoes of different color. Valera has got four horseshoes left from the last year, but maybe some of them have the same color. In this case he needs to go to the store and buy some few more horseshoes, not to lose face in front of his stylish comrades.
Fortunately, the store sells horseshoes of all colors under the sun and Valera has enough money to buy any four of them. However, in order to save the money, he would like to spend as little money as possible, so you need to help Valera and determine what is the minimum number of horseshoes he needs to buy to wear four horseshoes of different colors to a party.
Input Specification:
The first line contains four space-separated integers *s*1,<=*s*2,<=*s*3,<=*s*4 (1<=≤<=*s*1,<=*s*2,<=*s*3,<=*s*4<=≤<=109) — the colors of horseshoes Valera has.
Consider all possible colors indexed with integers.
Output Specification:
Print a single integer — the minimum number of horseshoes Valera needs to buy.
Demo Input:
['1 7 3 3\n', '7 7 7 7\n']
Demo Output:
['1\n', '3\n']
Note:
none
|
```python
# Read the input
colors = list(map(int, input().split()))
# Calculate the number of distinct colors
distinct_colors = len(set(colors))
# Calculate the minimum number of horseshoes to buy
minimum_horseshoes_to_buy = 4 - distinct_colors
# Print the result
print(minimum_horseshoes_to_buy)
```
| 3
|
|
0
|
none
|
none
|
none
| 0
|
[
"none"
] | null | null |
Watchmen are in a danger and Doctor Manhattan together with his friend Daniel Dreiberg should warn them as soon as possible. There are *n* watchmen on a plane, the *i*-th watchman is located at point (*x**i*,<=*y**i*).
They need to arrange a plan, but there are some difficulties on their way. As you know, Doctor Manhattan considers the distance between watchmen *i* and *j* to be |*x**i*<=-<=*x**j*|<=+<=|*y**i*<=-<=*y**j*|. Daniel, as an ordinary person, calculates the distance using the formula .
The success of the operation relies on the number of pairs (*i*,<=*j*) (1<=≤<=*i*<=<<=*j*<=≤<=*n*), such that the distance between watchman *i* and watchmen *j* calculated by Doctor Manhattan is equal to the distance between them calculated by Daniel. You were asked to compute the number of such pairs.
|
The first line of the input contains the single integer *n* (1<=≤<=*n*<=≤<=200<=000) — the number of watchmen.
Each of the following *n* lines contains two integers *x**i* and *y**i* (|*x**i*|,<=|*y**i*|<=≤<=109).
Some positions may coincide.
|
Print the number of pairs of watchmen such that the distance between them calculated by Doctor Manhattan is equal to the distance calculated by Daniel.
|
[
"3\n1 1\n7 5\n1 5\n",
"6\n0 0\n0 1\n0 2\n-1 1\n0 1\n1 1\n"
] |
[
"2\n",
"11\n"
] |
In the first sample, the distance between watchman 1 and watchman 2 is equal to |1 - 7| + |1 - 5| = 10 for Doctor Manhattan and <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/bcb5b7064b5f02088da0fdcf677e6fda495dd0df.png" style="max-width: 100.0%;max-height: 100.0%;"/> for Daniel. For pairs (1, 1), (1, 5) and (7, 5), (1, 5) Doctor Manhattan and Daniel will calculate the same distances.
| 0
|
[
{
"input": "3\n1 1\n7 5\n1 5",
"output": "2"
},
{
"input": "6\n0 0\n0 1\n0 2\n-1 1\n0 1\n1 1",
"output": "11"
},
{
"input": "10\n46 -55\n46 45\n46 45\n83 -55\n46 45\n83 -55\n46 45\n83 45\n83 45\n46 -55",
"output": "33"
},
{
"input": "1\n-5 -90",
"output": "0"
},
{
"input": "2\n315 845\n-669 -762",
"output": "0"
},
{
"input": "3\n8911 7861\n-6888 7861\n8911 7861",
"output": "3"
},
{
"input": "2\n-1 1000000000\n0 -1",
"output": "0"
},
{
"input": "2\n1000000000 0\n-7 1",
"output": "0"
},
{
"input": "2\n1 4\n2 1",
"output": "0"
},
{
"input": "2\n1 0\n0 2333333",
"output": "0"
},
{
"input": "2\n2 1\n1 2",
"output": "0"
},
{
"input": "2\n1 1000000000\n2 -1000000000",
"output": "0"
},
{
"input": "2\n0 1000000000\n1 -7",
"output": "0"
},
{
"input": "2\n1 0\n0 19990213",
"output": "0"
}
] | 1,621,182,977
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 71
| 1,201
| 41,164,800
|
import math
import random
from queue import Queue
def main(arr):
x_val={}
y_val={}
same_val={}
for i in range(len(arr)):
x,y=arr[i]
if x not in x_val:
x_val[x]=0
if y not in y_val:
y_val[y]=0
if (x,y) not in same_val:
same_val[(x,y)]=0
y_val[y]+=1
x_val[x]+=1
same_val[(x,y)]+=1
ans=0
for e in arr:
x,y=e
ans+=x_val[x]+y_val[y]-same_val[(x,y)]-1
x_val[x]-=1
y_val[y]-=1
same_val[(x,y)]-=1
return ans
arr=[]
n=int(input())
for i in range(n):
arr.append(list(map(int,input().split())))
print(main(arr))
|
Title: none
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Watchmen are in a danger and Doctor Manhattan together with his friend Daniel Dreiberg should warn them as soon as possible. There are *n* watchmen on a plane, the *i*-th watchman is located at point (*x**i*,<=*y**i*).
They need to arrange a plan, but there are some difficulties on their way. As you know, Doctor Manhattan considers the distance between watchmen *i* and *j* to be |*x**i*<=-<=*x**j*|<=+<=|*y**i*<=-<=*y**j*|. Daniel, as an ordinary person, calculates the distance using the formula .
The success of the operation relies on the number of pairs (*i*,<=*j*) (1<=≤<=*i*<=<<=*j*<=≤<=*n*), such that the distance between watchman *i* and watchmen *j* calculated by Doctor Manhattan is equal to the distance between them calculated by Daniel. You were asked to compute the number of such pairs.
Input Specification:
The first line of the input contains the single integer *n* (1<=≤<=*n*<=≤<=200<=000) — the number of watchmen.
Each of the following *n* lines contains two integers *x**i* and *y**i* (|*x**i*|,<=|*y**i*|<=≤<=109).
Some positions may coincide.
Output Specification:
Print the number of pairs of watchmen such that the distance between them calculated by Doctor Manhattan is equal to the distance calculated by Daniel.
Demo Input:
['3\n1 1\n7 5\n1 5\n', '6\n0 0\n0 1\n0 2\n-1 1\n0 1\n1 1\n']
Demo Output:
['2\n', '11\n']
Note:
In the first sample, the distance between watchman 1 and watchman 2 is equal to |1 - 7| + |1 - 5| = 10 for Doctor Manhattan and <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/bcb5b7064b5f02088da0fdcf677e6fda495dd0df.png" style="max-width: 100.0%;max-height: 100.0%;"/> for Daniel. For pairs (1, 1), (1, 5) and (7, 5), (1, 5) Doctor Manhattan and Daniel will calculate the same distances.
|
```python
import math
import random
from queue import Queue
def main(arr):
x_val={}
y_val={}
same_val={}
for i in range(len(arr)):
x,y=arr[i]
if x not in x_val:
x_val[x]=0
if y not in y_val:
y_val[y]=0
if (x,y) not in same_val:
same_val[(x,y)]=0
y_val[y]+=1
x_val[x]+=1
same_val[(x,y)]+=1
ans=0
for e in arr:
x,y=e
ans+=x_val[x]+y_val[y]-same_val[(x,y)]-1
x_val[x]-=1
y_val[y]-=1
same_val[(x,y)]-=1
return ans
arr=[]
n=int(input())
for i in range(n):
arr.append(list(map(int,input().split())))
print(main(arr))
```
| 3
|
|
1
|
A
|
Theatre Square
|
PROGRAMMING
| 1,000
|
[
"math"
] |
A. Theatre Square
|
1
|
256
|
Theatre Square in the capital city of Berland has a rectangular shape with the size *n*<=×<=*m* meters. On the occasion of the city's anniversary, a decision was taken to pave the Square with square granite flagstones. Each flagstone is of the size *a*<=×<=*a*.
What is the least number of flagstones needed to pave the Square? It's allowed to cover the surface larger than the Theatre Square, but the Square has to be covered. It's not allowed to break the flagstones. The sides of flagstones should be parallel to the sides of the Square.
|
The input contains three positive integer numbers in the first line: *n*,<=<=*m* and *a* (1<=≤<=<=*n*,<=*m*,<=*a*<=≤<=109).
|
Write the needed number of flagstones.
|
[
"6 6 4\n"
] |
[
"4\n"
] |
none
| 0
|
[
{
"input": "6 6 4",
"output": "4"
},
{
"input": "1 1 1",
"output": "1"
},
{
"input": "2 1 1",
"output": "2"
},
{
"input": "1 2 1",
"output": "2"
},
{
"input": "2 2 1",
"output": "4"
},
{
"input": "2 1 2",
"output": "1"
},
{
"input": "1 1 3",
"output": "1"
},
{
"input": "2 3 4",
"output": "1"
},
{
"input": "1000000000 1000000000 1",
"output": "1000000000000000000"
},
{
"input": "12 13 4",
"output": "12"
},
{
"input": "222 332 5",
"output": "3015"
},
{
"input": "1000 1000 10",
"output": "10000"
},
{
"input": "1001 1000 10",
"output": "10100"
},
{
"input": "100 10001 1000000000",
"output": "1"
},
{
"input": "1000000000 1000000000 1000000000",
"output": "1"
},
{
"input": "1000000000 1000000000 999999999",
"output": "4"
},
{
"input": "1000000000 1000000000 192",
"output": "27126743055556"
},
{
"input": "1000000000 987654321 1",
"output": "987654321000000000"
},
{
"input": "456784567 1000000000 51",
"output": "175618850864484"
},
{
"input": "39916800 134217728 40320",
"output": "3295710"
}
] | 1,687,073,161
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 20
| 31
| 0
|
# Read the input
q, w, e = map(int, input().split())
# Calculate the number of flagstones needed
flagstones_needed = ((q + e - 1) // e) * ((w + e - 1) // e)
# Print the number of flagstones needed
print(flagstones_needed)
##v
|
Title: Theatre Square
Time Limit: 1 seconds
Memory Limit: 256 megabytes
Problem Description:
Theatre Square in the capital city of Berland has a rectangular shape with the size *n*<=×<=*m* meters. On the occasion of the city's anniversary, a decision was taken to pave the Square with square granite flagstones. Each flagstone is of the size *a*<=×<=*a*.
What is the least number of flagstones needed to pave the Square? It's allowed to cover the surface larger than the Theatre Square, but the Square has to be covered. It's not allowed to break the flagstones. The sides of flagstones should be parallel to the sides of the Square.
Input Specification:
The input contains three positive integer numbers in the first line: *n*,<=<=*m* and *a* (1<=≤<=<=*n*,<=*m*,<=*a*<=≤<=109).
Output Specification:
Write the needed number of flagstones.
Demo Input:
['6 6 4\n']
Demo Output:
['4\n']
Note:
none
|
```python
# Read the input
q, w, e = map(int, input().split())
# Calculate the number of flagstones needed
flagstones_needed = ((q + e - 1) // e) * ((w + e - 1) // e)
# Print the number of flagstones needed
print(flagstones_needed)
##v
```
| 3.9845
|
645
|
C
|
Enduring Exodus
|
PROGRAMMING
| 1,600
|
[
"binary search",
"two pointers"
] | null | null |
In an attempt to escape the Mischievous Mess Makers' antics, Farmer John has abandoned his farm and is traveling to the other side of Bovinia. During the journey, he and his *k* cows have decided to stay at the luxurious Grand Moo-dapest Hotel. The hotel consists of *n* rooms located in a row, some of which are occupied.
Farmer John wants to book a set of *k*<=+<=1 currently unoccupied rooms for him and his cows. He wants his cows to stay as safe as possible, so he wishes to minimize the maximum distance from his room to the room of his cow. The distance between rooms *i* and *j* is defined as |*j*<=-<=*i*|. Help Farmer John protect his cows by calculating this minimum possible distance.
|
The first line of the input contains two integers *n* and *k* (1<=≤<=*k*<=<<=*n*<=≤<=100<=000) — the number of rooms in the hotel and the number of cows travelling with Farmer John.
The second line contains a string of length *n* describing the rooms. The *i*-th character of the string will be '0' if the *i*-th room is free, and '1' if the *i*-th room is occupied. It is guaranteed that at least *k*<=+<=1 characters of this string are '0', so there exists at least one possible choice of *k*<=+<=1 rooms for Farmer John and his cows to stay in.
|
Print the minimum possible distance between Farmer John's room and his farthest cow.
|
[
"7 2\n0100100\n",
"5 1\n01010\n",
"3 2\n000\n"
] |
[
"2\n",
"2\n",
"1\n"
] |
In the first sample, Farmer John can book room 3 for himself, and rooms 1 and 4 for his cows. The distance to the farthest cow is 2. Note that it is impossible to make this distance 1, as there is no block of three consecutive unoccupied rooms.
In the second sample, Farmer John can book room 1 for himself and room 3 for his single cow. The distance between him and his cow is 2.
In the third sample, Farmer John books all three available rooms, taking the middle room for himself so that both cows are next to him. His distance from the farthest cow is 1.
| 1,500
|
[
{
"input": "7 2\n0100100",
"output": "2"
},
{
"input": "5 1\n01010",
"output": "2"
},
{
"input": "3 2\n000",
"output": "1"
},
{
"input": "10 1\n1101111101",
"output": "6"
},
{
"input": "2 1\n00",
"output": "1"
},
{
"input": "3 1\n010",
"output": "2"
},
{
"input": "8 7\n00000000",
"output": "4"
},
{
"input": "7 6\n0000000",
"output": "3"
},
{
"input": "112 12\n0110101000000010101110010111100101011010011110100111111100011101011111000111101101110100111011110001100110110010",
"output": "10"
},
{
"input": "9 8\n000000000",
"output": "4"
},
{
"input": "9 3\n010001000",
"output": "2"
},
{
"input": "5 3\n00000",
"output": "2"
},
{
"input": "8 7\n00000000",
"output": "4"
},
{
"input": "6 1\n000011",
"output": "1"
},
{
"input": "100 40\n0010010100000100011100010100110001101100110000110010000000001010000111100000100100100101010010001100",
"output": "30"
},
{
"input": "93 79\n000000000000000000011000000000000000000000000000000000000000000000010000000000100000100000000",
"output": "42"
},
{
"input": "31 11\n0000001011011100010000000110001",
"output": "7"
},
{
"input": "47 46\n00000000000000000000000000000000000000000000000",
"output": "23"
},
{
"input": "100 96\n0000000000000010000010000000000000000000000000000000000000000000000000000010000000000000000000000000",
"output": "50"
},
{
"input": "491 89\n01111101111111100000111010110001010001110111000010101111101000100010010111011101110110111101101010111000111000011100011010010010111111000011011010100110001000011100111000001011100010001111101111101000111001100110010100101000001110010100100100100101001100010101001000010000111110011000000100000100101000100101000001001101011011100000110101111110101001001000100110010000010110101011000101011001001011001000110000011111001110101011000000110101000000100110001101111000101001001001100001001110101",
"output": "73"
},
{
"input": "308 17\n01000000100000000000000001000001000010000000000000000001001110000001010001000110000000000000100101000000010000001000000000001100000110000000000000000001000000000000000100000001000010001000000001000000000000000100010000000000000000000000000000000000001000000000001001101100000000000010000000000000000000000000",
"output": "9"
},
{
"input": "8 4\n00111000",
"output": "5"
},
{
"input": "18 2\n010111110111011110",
"output": "5"
},
{
"input": "29 3\n01110011111111111111110110110",
"output": "17"
}
] | 1,604,410,085
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 87
| 1,622
| 3,072,000
|
n, k = [int(_) for _ in input().split()]
a = input()
k += 1
# size of n+1
f = [0] * (n+1)
f[1]=int(a[0]=='0')
for i in range(1,n+1):
f[i]=f[i-1]+int(a[i-1]=='0')
#sprint(f)
def check(dis):
for i in range(n):
if a[i]=='0':
left=max(i-dis,0)
right=min(i+dis,n-1)
if f[right+1]-f[left]>=k:return True
return False
l=1
r=n
ans=n
while l<=r:
mid=(l + r)// 2
# print(mid)
if check(mid):
# print(True)
ans=min(ans,mid)
r=mid-1
else:
# print(False)
l=mid+1
print(ans)
|
Title: Enduring Exodus
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
In an attempt to escape the Mischievous Mess Makers' antics, Farmer John has abandoned his farm and is traveling to the other side of Bovinia. During the journey, he and his *k* cows have decided to stay at the luxurious Grand Moo-dapest Hotel. The hotel consists of *n* rooms located in a row, some of which are occupied.
Farmer John wants to book a set of *k*<=+<=1 currently unoccupied rooms for him and his cows. He wants his cows to stay as safe as possible, so he wishes to minimize the maximum distance from his room to the room of his cow. The distance between rooms *i* and *j* is defined as |*j*<=-<=*i*|. Help Farmer John protect his cows by calculating this minimum possible distance.
Input Specification:
The first line of the input contains two integers *n* and *k* (1<=≤<=*k*<=<<=*n*<=≤<=100<=000) — the number of rooms in the hotel and the number of cows travelling with Farmer John.
The second line contains a string of length *n* describing the rooms. The *i*-th character of the string will be '0' if the *i*-th room is free, and '1' if the *i*-th room is occupied. It is guaranteed that at least *k*<=+<=1 characters of this string are '0', so there exists at least one possible choice of *k*<=+<=1 rooms for Farmer John and his cows to stay in.
Output Specification:
Print the minimum possible distance between Farmer John's room and his farthest cow.
Demo Input:
['7 2\n0100100\n', '5 1\n01010\n', '3 2\n000\n']
Demo Output:
['2\n', '2\n', '1\n']
Note:
In the first sample, Farmer John can book room 3 for himself, and rooms 1 and 4 for his cows. The distance to the farthest cow is 2. Note that it is impossible to make this distance 1, as there is no block of three consecutive unoccupied rooms.
In the second sample, Farmer John can book room 1 for himself and room 3 for his single cow. The distance between him and his cow is 2.
In the third sample, Farmer John books all three available rooms, taking the middle room for himself so that both cows are next to him. His distance from the farthest cow is 1.
|
```python
n, k = [int(_) for _ in input().split()]
a = input()
k += 1
# size of n+1
f = [0] * (n+1)
f[1]=int(a[0]=='0')
for i in range(1,n+1):
f[i]=f[i-1]+int(a[i-1]=='0')
#sprint(f)
def check(dis):
for i in range(n):
if a[i]=='0':
left=max(i-dis,0)
right=min(i+dis,n-1)
if f[right+1]-f[left]>=k:return True
return False
l=1
r=n
ans=n
while l<=r:
mid=(l + r)// 2
# print(mid)
if check(mid):
# print(True)
ans=min(ans,mid)
r=mid-1
else:
# print(False)
l=mid+1
print(ans)
```
| 3
|
|
690
|
A2
|
Collective Mindsets (medium)
|
PROGRAMMING
| 2,300
|
[] | null | null |
Way to go! Heidi now knows how many brains there must be for her to get one. But throwing herself in the midst of a clutch of hungry zombies is quite a risky endeavor. Hence Heidi wonders: what is the smallest number of brains that must be in the chest for her to get out at all (possibly empty-handed, but alive)?
The brain dinner night will evolve just as in the previous subtask: the same crowd is present, the *N*<=-<=1 zombies have the exact same mindset as before and Heidi is to make the first proposal, which must be accepted by at least half of the attendees for her to survive.
|
The only line of input contains one integer: *N*, the number of attendees (1<=≤<=*N*<=≤<=109).
|
Output one integer: the smallest number of brains in the chest which allows Heidi to merely survive.
|
[
"1\n",
"3\n",
"99\n"
] |
[
"0\n",
"1\n",
"49\n"
] |
none
| 0
|
[
{
"input": "1",
"output": "0"
},
{
"input": "3",
"output": "1"
},
{
"input": "2",
"output": "0"
},
{
"input": "4",
"output": "0"
},
{
"input": "5",
"output": "2"
},
{
"input": "6",
"output": "1"
},
{
"input": "7",
"output": "3"
},
{
"input": "8",
"output": "0"
},
{
"input": "9",
"output": "4"
},
{
"input": "10",
"output": "1"
},
{
"input": "11",
"output": "5"
},
{
"input": "12",
"output": "2"
},
{
"input": "13",
"output": "6"
},
{
"input": "14",
"output": "3"
},
{
"input": "15",
"output": "7"
},
{
"input": "16",
"output": "0"
},
{
"input": "17",
"output": "8"
},
{
"input": "18",
"output": "1"
},
{
"input": "19",
"output": "9"
},
{
"input": "20",
"output": "2"
},
{
"input": "99",
"output": "49"
},
{
"input": "100",
"output": "18"
},
{
"input": "9999",
"output": "4999"
},
{
"input": "21736",
"output": "2676"
},
{
"input": "873467",
"output": "436733"
},
{
"input": "4124980",
"output": "1013914"
},
{
"input": "536870910",
"output": "134217727"
},
{
"input": "536870912",
"output": "0"
},
{
"input": "876543210",
"output": "169836149"
},
{
"input": "987654321",
"output": "493827160"
},
{
"input": "1000000000",
"output": "231564544"
}
] | 1,480,957,157
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 31
| 77
| 0
|
n = int(input())
if (n % 2 == 1):
print(n // 2)
exit(0)
i = 1
while (i <= n):
i *= 2
i //= 2
n -= i
print(n // 2)
|
Title: Collective Mindsets (medium)
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Way to go! Heidi now knows how many brains there must be for her to get one. But throwing herself in the midst of a clutch of hungry zombies is quite a risky endeavor. Hence Heidi wonders: what is the smallest number of brains that must be in the chest for her to get out at all (possibly empty-handed, but alive)?
The brain dinner night will evolve just as in the previous subtask: the same crowd is present, the *N*<=-<=1 zombies have the exact same mindset as before and Heidi is to make the first proposal, which must be accepted by at least half of the attendees for her to survive.
Input Specification:
The only line of input contains one integer: *N*, the number of attendees (1<=≤<=*N*<=≤<=109).
Output Specification:
Output one integer: the smallest number of brains in the chest which allows Heidi to merely survive.
Demo Input:
['1\n', '3\n', '99\n']
Demo Output:
['0\n', '1\n', '49\n']
Note:
none
|
```python
n = int(input())
if (n % 2 == 1):
print(n // 2)
exit(0)
i = 1
while (i <= n):
i *= 2
i //= 2
n -= i
print(n // 2)
```
| 3
|
|
870
|
A
|
Search for Pretty Integers
|
PROGRAMMING
| 900
|
[
"brute force",
"implementation"
] | null | null |
You are given two lists of non-zero digits.
Let's call an integer pretty if its (base 10) representation has at least one digit from the first list and at least one digit from the second list. What is the smallest positive pretty integer?
|
The first line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=9) — the lengths of the first and the second lists, respectively.
The second line contains *n* distinct digits *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=9) — the elements of the first list.
The third line contains *m* distinct digits *b*1,<=*b*2,<=...,<=*b**m* (1<=≤<=*b**i*<=≤<=9) — the elements of the second list.
|
Print the smallest pretty integer.
|
[
"2 3\n4 2\n5 7 6\n",
"8 8\n1 2 3 4 5 6 7 8\n8 7 6 5 4 3 2 1\n"
] |
[
"25\n",
"1\n"
] |
In the first example 25, 46, 24567 are pretty, as well as many other integers. The smallest among them is 25. 42 and 24 are not pretty because they don't have digits from the second list.
In the second example all integers that have at least one digit different from 9 are pretty. It's obvious that the smallest among them is 1, because it's the smallest positive integer.
| 500
|
[
{
"input": "2 3\n4 2\n5 7 6",
"output": "25"
},
{
"input": "8 8\n1 2 3 4 5 6 7 8\n8 7 6 5 4 3 2 1",
"output": "1"
},
{
"input": "1 1\n9\n1",
"output": "19"
},
{
"input": "9 1\n5 4 2 3 6 1 7 9 8\n9",
"output": "9"
},
{
"input": "5 3\n7 2 5 8 6\n3 1 9",
"output": "12"
},
{
"input": "4 5\n5 2 6 4\n8 9 1 3 7",
"output": "12"
},
{
"input": "5 9\n4 2 1 6 7\n2 3 4 5 6 7 8 9 1",
"output": "1"
},
{
"input": "9 9\n5 4 3 2 1 6 7 8 9\n3 2 1 5 4 7 8 9 6",
"output": "1"
},
{
"input": "9 5\n2 3 4 5 6 7 8 9 1\n4 2 1 6 7",
"output": "1"
},
{
"input": "9 9\n1 2 3 4 5 6 7 8 9\n1 2 3 4 5 6 7 8 9",
"output": "1"
},
{
"input": "9 9\n1 2 3 4 5 6 7 8 9\n9 8 7 6 5 4 3 2 1",
"output": "1"
},
{
"input": "9 9\n9 8 7 6 5 4 3 2 1\n1 2 3 4 5 6 7 8 9",
"output": "1"
},
{
"input": "9 9\n9 8 7 6 5 4 3 2 1\n9 8 7 6 5 4 3 2 1",
"output": "1"
},
{
"input": "1 1\n8\n9",
"output": "89"
},
{
"input": "1 1\n9\n8",
"output": "89"
},
{
"input": "1 1\n1\n2",
"output": "12"
},
{
"input": "1 1\n2\n1",
"output": "12"
},
{
"input": "1 1\n9\n9",
"output": "9"
},
{
"input": "1 1\n1\n1",
"output": "1"
},
{
"input": "4 5\n3 2 4 5\n1 6 5 9 8",
"output": "5"
},
{
"input": "3 2\n4 5 6\n1 5",
"output": "5"
},
{
"input": "5 4\n1 3 5 6 7\n2 4 3 9",
"output": "3"
},
{
"input": "5 5\n1 3 5 7 9\n2 4 6 8 9",
"output": "9"
},
{
"input": "2 2\n1 8\n2 8",
"output": "8"
},
{
"input": "5 5\n5 6 7 8 9\n1 2 3 4 5",
"output": "5"
},
{
"input": "5 5\n1 2 3 4 5\n1 2 3 4 5",
"output": "1"
},
{
"input": "5 5\n1 2 3 4 5\n2 3 4 5 6",
"output": "2"
},
{
"input": "2 2\n1 5\n2 5",
"output": "5"
},
{
"input": "4 4\n1 3 5 8\n2 4 6 8",
"output": "8"
},
{
"input": "3 3\n1 5 3\n2 5 7",
"output": "5"
},
{
"input": "3 3\n3 6 8\n2 6 9",
"output": "6"
},
{
"input": "2 2\n1 4\n2 4",
"output": "4"
},
{
"input": "5 3\n3 4 5 6 7\n1 5 9",
"output": "5"
},
{
"input": "4 4\n1 2 3 4\n2 5 6 7",
"output": "2"
},
{
"input": "5 5\n1 2 3 4 5\n9 2 1 7 5",
"output": "1"
},
{
"input": "2 2\n1 3\n2 3",
"output": "3"
},
{
"input": "3 3\n3 2 1\n3 2 1",
"output": "1"
},
{
"input": "3 3\n1 3 5\n2 3 6",
"output": "3"
},
{
"input": "3 3\n5 6 7\n5 6 7",
"output": "5"
},
{
"input": "1 2\n5\n2 5",
"output": "5"
},
{
"input": "3 3\n2 4 9\n7 8 9",
"output": "9"
},
{
"input": "3 3\n1 2 4\n3 4 5",
"output": "4"
},
{
"input": "3 2\n1 4 9\n2 4",
"output": "4"
},
{
"input": "3 3\n3 5 6\n1 5 9",
"output": "5"
},
{
"input": "3 2\n1 2 4\n3 4",
"output": "4"
},
{
"input": "2 4\n8 9\n1 2 3 9",
"output": "9"
},
{
"input": "1 2\n9\n8 9",
"output": "9"
},
{
"input": "3 2\n1 2 4\n4 2",
"output": "2"
},
{
"input": "2 3\n4 5\n1 3 5",
"output": "5"
},
{
"input": "3 2\n1 2 3\n2 3",
"output": "2"
},
{
"input": "4 3\n1 3 5 9\n2 8 9",
"output": "9"
},
{
"input": "2 2\n1 9\n9 2",
"output": "9"
}
] | 1,565,715,061
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 52
| 124
| 0
|
n = [int(i) for i in input().split()]
list_n1 = [int(i) for i in input().split()]
list_n2 = [int(i) for i in input().split()]
list_n1.sort()
list_n2.sort()
con=0
for i in list_n1:
if i in list_n2:
print(i)
con=1
break
if con != 1:
if list_n1[0] == list_n2[0]:
print(list_n1[0])
elif list_n1[0] > list_n2[0]:
print(str(list_n2[0])+str(list_n1[0]))
else:
print(str(list_n1[0])+str(list_n2[0]))
|
Title: Search for Pretty Integers
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You are given two lists of non-zero digits.
Let's call an integer pretty if its (base 10) representation has at least one digit from the first list and at least one digit from the second list. What is the smallest positive pretty integer?
Input Specification:
The first line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=9) — the lengths of the first and the second lists, respectively.
The second line contains *n* distinct digits *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=9) — the elements of the first list.
The third line contains *m* distinct digits *b*1,<=*b*2,<=...,<=*b**m* (1<=≤<=*b**i*<=≤<=9) — the elements of the second list.
Output Specification:
Print the smallest pretty integer.
Demo Input:
['2 3\n4 2\n5 7 6\n', '8 8\n1 2 3 4 5 6 7 8\n8 7 6 5 4 3 2 1\n']
Demo Output:
['25\n', '1\n']
Note:
In the first example 25, 46, 24567 are pretty, as well as many other integers. The smallest among them is 25. 42 and 24 are not pretty because they don't have digits from the second list.
In the second example all integers that have at least one digit different from 9 are pretty. It's obvious that the smallest among them is 1, because it's the smallest positive integer.
|
```python
n = [int(i) for i in input().split()]
list_n1 = [int(i) for i in input().split()]
list_n2 = [int(i) for i in input().split()]
list_n1.sort()
list_n2.sort()
con=0
for i in list_n1:
if i in list_n2:
print(i)
con=1
break
if con != 1:
if list_n1[0] == list_n2[0]:
print(list_n1[0])
elif list_n1[0] > list_n2[0]:
print(str(list_n2[0])+str(list_n1[0]))
else:
print(str(list_n1[0])+str(list_n2[0]))
```
| 3
|
|
231
|
A
|
Team
|
PROGRAMMING
| 800
|
[
"brute force",
"greedy"
] | null | null |
One day three best friends Petya, Vasya and Tonya decided to form a team and take part in programming contests. Participants are usually offered several problems during programming contests. Long before the start the friends decided that they will implement a problem if at least two of them are sure about the solution. Otherwise, the friends won't write the problem's solution.
This contest offers *n* problems to the participants. For each problem we know, which friend is sure about the solution. Help the friends find the number of problems for which they will write a solution.
|
The first input line contains a single integer *n* (1<=≤<=*n*<=≤<=1000) — the number of problems in the contest. Then *n* lines contain three integers each, each integer is either 0 or 1. If the first number in the line equals 1, then Petya is sure about the problem's solution, otherwise he isn't sure. The second number shows Vasya's view on the solution, the third number shows Tonya's view. The numbers on the lines are separated by spaces.
|
Print a single integer — the number of problems the friends will implement on the contest.
|
[
"3\n1 1 0\n1 1 1\n1 0 0\n",
"2\n1 0 0\n0 1 1\n"
] |
[
"2\n",
"1\n"
] |
In the first sample Petya and Vasya are sure that they know how to solve the first problem and all three of them know how to solve the second problem. That means that they will write solutions for these problems. Only Petya is sure about the solution for the third problem, but that isn't enough, so the friends won't take it.
In the second sample the friends will only implement the second problem, as Vasya and Tonya are sure about the solution.
| 500
|
[
{
"input": "3\n1 1 0\n1 1 1\n1 0 0",
"output": "2"
},
{
"input": "2\n1 0 0\n0 1 1",
"output": "1"
},
{
"input": "1\n1 0 0",
"output": "0"
},
{
"input": "2\n1 0 0\n1 1 1",
"output": "1"
},
{
"input": "5\n1 0 0\n0 1 0\n1 1 1\n0 0 1\n0 0 0",
"output": "1"
},
{
"input": "10\n0 1 0\n0 1 0\n1 1 0\n1 0 0\n0 0 1\n0 1 1\n1 1 1\n1 1 0\n0 0 0\n0 0 0",
"output": "4"
},
{
"input": "15\n0 1 0\n1 0 0\n1 1 0\n1 1 1\n0 1 0\n0 0 1\n1 0 1\n1 0 1\n1 0 1\n0 0 0\n1 1 1\n1 1 0\n0 1 1\n1 1 0\n1 1 1",
"output": "10"
},
{
"input": "50\n0 0 0\n0 1 1\n1 1 1\n0 1 0\n1 0 1\n1 1 1\n0 0 1\n1 0 0\n1 1 0\n1 0 1\n0 1 0\n0 0 1\n1 1 0\n0 1 0\n1 1 0\n0 0 0\n1 1 1\n1 0 1\n0 0 1\n1 1 0\n1 1 1\n0 1 1\n1 1 0\n0 0 0\n0 0 0\n1 1 1\n0 0 0\n1 1 1\n0 1 1\n0 0 1\n0 0 0\n0 0 0\n1 1 0\n1 1 0\n1 0 1\n1 0 0\n1 0 1\n1 0 1\n0 1 1\n1 1 0\n1 1 0\n0 1 0\n1 0 1\n0 0 0\n0 0 0\n0 0 0\n0 0 1\n1 1 1\n0 1 1\n1 0 1",
"output": "29"
},
{
"input": "1\n1 1 1",
"output": "1"
},
{
"input": "8\n0 0 0\n0 0 1\n0 0 0\n0 1 1\n1 0 0\n1 0 1\n1 1 0\n1 1 1",
"output": "4"
},
{
"input": "16\n1 1 1\n1 1 1\n1 1 1\n1 1 1\n1 1 1\n1 1 1\n1 1 1\n1 1 1\n1 1 1\n1 1 1\n1 1 1\n1 1 1\n1 1 1\n1 1 1\n1 1 1\n1 1 1",
"output": "16"
}
] | 1,699,089,645
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 21
| 62
| 0
|
num = int(input())
ans = 0
for x in range(num):
(p,v,t) = input().split()
p = int(p)
v = int(v)
t = int(t)
if p+v+t >=2:
ans+=1
print(ans)
|
Title: Team
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
One day three best friends Petya, Vasya and Tonya decided to form a team and take part in programming contests. Participants are usually offered several problems during programming contests. Long before the start the friends decided that they will implement a problem if at least two of them are sure about the solution. Otherwise, the friends won't write the problem's solution.
This contest offers *n* problems to the participants. For each problem we know, which friend is sure about the solution. Help the friends find the number of problems for which they will write a solution.
Input Specification:
The first input line contains a single integer *n* (1<=≤<=*n*<=≤<=1000) — the number of problems in the contest. Then *n* lines contain three integers each, each integer is either 0 or 1. If the first number in the line equals 1, then Petya is sure about the problem's solution, otherwise he isn't sure. The second number shows Vasya's view on the solution, the third number shows Tonya's view. The numbers on the lines are separated by spaces.
Output Specification:
Print a single integer — the number of problems the friends will implement on the contest.
Demo Input:
['3\n1 1 0\n1 1 1\n1 0 0\n', '2\n1 0 0\n0 1 1\n']
Demo Output:
['2\n', '1\n']
Note:
In the first sample Petya and Vasya are sure that they know how to solve the first problem and all three of them know how to solve the second problem. That means that they will write solutions for these problems. Only Petya is sure about the solution for the third problem, but that isn't enough, so the friends won't take it.
In the second sample the friends will only implement the second problem, as Vasya and Tonya are sure about the solution.
|
```python
num = int(input())
ans = 0
for x in range(num):
(p,v,t) = input().split()
p = int(p)
v = int(v)
t = int(t)
if p+v+t >=2:
ans+=1
print(ans)
```
| 3
|
|
30
|
A
|
Accounting
|
PROGRAMMING
| 1,400
|
[
"brute force",
"math"
] |
A. Accounting
|
2
|
256
|
A long time ago in some far country lived king Copa. After the recent king's reform, he got so large powers that started to keep the books by himself.
The total income *A* of his kingdom during 0-th year is known, as well as the total income *B* during *n*-th year (these numbers can be negative — it means that there was a loss in the correspondent year).
King wants to show financial stability. To do this, he needs to find common coefficient *X* — the coefficient of income growth during one year. This coefficient should satisfy the equation:
Surely, the king is not going to do this job by himself, and demands you to find such number *X*.
It is necessary to point out that the fractional numbers are not used in kingdom's economy. That's why all input numbers as well as coefficient *X* must be integers. The number *X* may be zero or negative.
|
The input contains three integers *A*, *B*, *n* (|*A*|,<=|*B*|<=≤<=1000, 1<=≤<=*n*<=≤<=10).
|
Output the required integer coefficient *X*, or «No solution», if such a coefficient does not exist or it is fractional. If there are several possible solutions, output any of them.
|
[
"2 18 2\n",
"-1 8 3\n",
"0 0 10\n",
"1 16 5\n"
] |
[
"3",
"-2",
"5",
"No solution"
] |
none
| 500
|
[
{
"input": "2 18 2",
"output": "3"
},
{
"input": "-1 8 3",
"output": "-2"
},
{
"input": "0 0 10",
"output": "5"
},
{
"input": "1 16 5",
"output": "No solution"
},
{
"input": "0 1 2",
"output": "No solution"
},
{
"input": "3 0 4",
"output": "0"
},
{
"input": "1 1000 1",
"output": "1000"
},
{
"input": "7 896 7",
"output": "2"
},
{
"input": "4 972 1",
"output": "243"
},
{
"input": "-1 -1 5",
"output": "1"
},
{
"input": "-1 0 4",
"output": "0"
},
{
"input": "-7 0 1",
"output": "0"
},
{
"input": "-5 -5 3",
"output": "1"
},
{
"input": "-5 -5 9",
"output": "1"
},
{
"input": "-5 -5 6",
"output": "1"
},
{
"input": "-4 0 1",
"output": "0"
},
{
"input": "-5 0 3",
"output": "0"
},
{
"input": "-4 4 9",
"output": "-1"
},
{
"input": "10 0 6",
"output": "0"
},
{
"input": "-5 3 4",
"output": "No solution"
},
{
"input": "0 3 6",
"output": "No solution"
},
{
"input": "3 6 10",
"output": "No solution"
},
{
"input": "-3 7 5",
"output": "No solution"
},
{
"input": "-526 526 1",
"output": "-1"
},
{
"input": "-373 373 3",
"output": "-1"
},
{
"input": "-141 0 8",
"output": "0"
},
{
"input": "7 175 1",
"output": "25"
},
{
"input": "-5 -560 1",
"output": "112"
},
{
"input": "-1 -512 10",
"output": "No solution"
},
{
"input": "-3 -768 8",
"output": "2"
},
{
"input": "-3 -768 7",
"output": "No solution"
},
{
"input": "-3 -768 9",
"output": "No solution"
},
{
"input": "-3 -768 4",
"output": "4"
},
{
"input": "4 972 4",
"output": "No solution"
},
{
"input": "4 972 5",
"output": "3"
},
{
"input": "4 972 6",
"output": "No solution"
},
{
"input": "4 972 1",
"output": "243"
},
{
"input": "4 972 2",
"output": "No solution"
},
{
"input": "1 1000 1",
"output": "1000"
},
{
"input": "1 961 2",
"output": "31"
},
{
"input": "1 1000 3",
"output": "10"
},
{
"input": "1 625 4",
"output": "5"
},
{
"input": "4 972 5",
"output": "3"
},
{
"input": "1 729 6",
"output": "3"
},
{
"input": "7 896 7",
"output": "2"
},
{
"input": "3 768 8",
"output": "2"
},
{
"input": "1 512 9",
"output": "2"
},
{
"input": "1 1000 1",
"output": "1000"
},
{
"input": "1 961 2",
"output": "31"
},
{
"input": "1 1000 3",
"output": "10"
},
{
"input": "1 625 4",
"output": "5"
},
{
"input": "4 972 5",
"output": "3"
},
{
"input": "1 729 6",
"output": "3"
},
{
"input": "7 896 7",
"output": "2"
},
{
"input": "3 768 8",
"output": "2"
},
{
"input": "1 512 9",
"output": "2"
},
{
"input": "1 1000 1",
"output": "1000"
},
{
"input": "1 961 2",
"output": "31"
},
{
"input": "1 1000 3",
"output": "10"
},
{
"input": "1 625 4",
"output": "5"
},
{
"input": "4 972 5",
"output": "3"
},
{
"input": "1 729 6",
"output": "3"
},
{
"input": "7 896 7",
"output": "2"
},
{
"input": "3 768 8",
"output": "2"
},
{
"input": "1 512 9",
"output": "2"
},
{
"input": "1 1 5",
"output": "1"
},
{
"input": "1 1 4",
"output": "1"
},
{
"input": "1 -1 1",
"output": "-1"
}
] | 1,544,319,432
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 68
| 218
| 0
|
a, b, n = [int(x) for x in input().split(" ")]
for i in range(-1000,1001):
if a * (i ** n) == b:
print(i)
exit()
print("No solution")
|
Title: Accounting
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
A long time ago in some far country lived king Copa. After the recent king's reform, he got so large powers that started to keep the books by himself.
The total income *A* of his kingdom during 0-th year is known, as well as the total income *B* during *n*-th year (these numbers can be negative — it means that there was a loss in the correspondent year).
King wants to show financial stability. To do this, he needs to find common coefficient *X* — the coefficient of income growth during one year. This coefficient should satisfy the equation:
Surely, the king is not going to do this job by himself, and demands you to find such number *X*.
It is necessary to point out that the fractional numbers are not used in kingdom's economy. That's why all input numbers as well as coefficient *X* must be integers. The number *X* may be zero or negative.
Input Specification:
The input contains three integers *A*, *B*, *n* (|*A*|,<=|*B*|<=≤<=1000, 1<=≤<=*n*<=≤<=10).
Output Specification:
Output the required integer coefficient *X*, or «No solution», if such a coefficient does not exist or it is fractional. If there are several possible solutions, output any of them.
Demo Input:
['2 18 2\n', '-1 8 3\n', '0 0 10\n', '1 16 5\n']
Demo Output:
['3', '-2', '5', 'No solution']
Note:
none
|
```python
a, b, n = [int(x) for x in input().split(" ")]
for i in range(-1000,1001):
if a * (i ** n) == b:
print(i)
exit()
print("No solution")
```
| 3.9455
|
61
|
A
|
Ultra-Fast Mathematician
|
PROGRAMMING
| 800
|
[
"implementation"
] |
A. Ultra-Fast Mathematician
|
2
|
256
|
Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second.
One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part.
In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0.
Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length ∞ (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length.
Now you are going to take part in Shapur's contest. See if you are faster and more accurate.
|
There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100.
|
Write one line — the corresponding answer. Do not omit the leading 0s.
|
[
"1010100\n0100101\n",
"000\n111\n",
"1110\n1010\n",
"01110\n01100\n"
] |
[
"1110001\n",
"111\n",
"0100\n",
"00010\n"
] |
none
| 500
|
[
{
"input": "1010100\n0100101",
"output": "1110001"
},
{
"input": "000\n111",
"output": "111"
},
{
"input": "1110\n1010",
"output": "0100"
},
{
"input": "01110\n01100",
"output": "00010"
},
{
"input": "011101\n000001",
"output": "011100"
},
{
"input": "10\n01",
"output": "11"
},
{
"input": "00111111\n11011101",
"output": "11100010"
},
{
"input": "011001100\n101001010",
"output": "110000110"
},
{
"input": "1100100001\n0110101100",
"output": "1010001101"
},
{
"input": "00011101010\n10010100101",
"output": "10001001111"
},
{
"input": "100000101101\n111010100011",
"output": "011010001110"
},
{
"input": "1000001111010\n1101100110001",
"output": "0101101001011"
},
{
"input": "01011111010111\n10001110111010",
"output": "11010001101101"
},
{
"input": "110010000111100\n001100101011010",
"output": "111110101100110"
},
{
"input": "0010010111110000\n0000000011010110",
"output": "0010010100100110"
},
{
"input": "00111110111110000\n01111100001100000",
"output": "01000010110010000"
},
{
"input": "101010101111010001\n001001111101111101",
"output": "100011010010101100"
},
{
"input": "0110010101111100000\n0011000101000000110",
"output": "0101010000111100110"
},
{
"input": "11110100011101010111\n00001000011011000000",
"output": "11111100000110010111"
},
{
"input": "101010101111101101001\n111010010010000011111",
"output": "010000111101101110110"
},
{
"input": "0000111111100011000010\n1110110110110000001010",
"output": "1110001001010011001000"
},
{
"input": "10010010101000110111000\n00101110100110111000111",
"output": "10111100001110001111111"
},
{
"input": "010010010010111100000111\n100100111111100011001110",
"output": "110110101101011111001001"
},
{
"input": "0101110100100111011010010\n0101100011010111001010001",
"output": "0000010111110000010000011"
},
{
"input": "10010010100011110111111011\n10000110101100000001000100",
"output": "00010100001111110110111111"
},
{
"input": "000001111000000100001000000\n011100111101111001110110001",
"output": "011101000101111101111110001"
},
{
"input": "0011110010001001011001011100\n0000101101000011101011001010",
"output": "0011011111001010110010010110"
},
{
"input": "11111000000000010011001101111\n11101110011001010100010000000",
"output": "00010110011001000111011101111"
},
{
"input": "011001110000110100001100101100\n001010000011110000001000101001",
"output": "010011110011000100000100000101"
},
{
"input": "1011111010001100011010110101111\n1011001110010000000101100010101",
"output": "0000110100011100011111010111010"
},
{
"input": "10111000100001000001010110000001\n10111000001100101011011001011000",
"output": "00000000101101101010001111011001"
},
{
"input": "000001010000100001000000011011100\n111111111001010100100001100000111",
"output": "111110101001110101100001111011011"
},
{
"input": "1101000000000010011011101100000110\n1110000001100010011010000011011110",
"output": "0011000001100000000001101111011000"
},
{
"input": "01011011000010100001100100011110001\n01011010111000001010010100001110000",
"output": "00000001111010101011110000010000001"
},
{
"input": "000011111000011001000110111100000100\n011011000110000111101011100111000111",
"output": "011000111110011110101101011011000011"
},
{
"input": "1001000010101110001000000011111110010\n0010001011010111000011101001010110000",
"output": "1011001001111001001011101010101000010"
},
{
"input": "00011101011001100101111111000000010101\n10010011011011001011111000000011101011",
"output": "10001110000010101110000111000011111110"
},
{
"input": "111011100110001001101111110010111001010\n111111101101111001110010000101101000100",
"output": "000100001011110000011101110111010001110"
},
{
"input": "1111001001101000001000000010010101001010\n0010111100111110001011000010111110111001",
"output": "1101110101010110000011000000101011110011"
},
{
"input": "00100101111000000101011111110010100011010\n11101110001010010101001000111110101010100",
"output": "11001011110010010000010111001100001001110"
},
{
"input": "101011001110110100101001000111010101101111\n100111100110101011010100111100111111010110",
"output": "001100101000011111111101111011101010111001"
},
{
"input": "1111100001100101000111101001001010011100001\n1000110011000011110010001011001110001000001",
"output": "0111010010100110110101100010000100010100000"
},
{
"input": "01100111011111010101000001101110000001110101\n10011001011111110000000101011001001101101100",
"output": "11111110000000100101000100110111001100011001"
},
{
"input": "110010100111000100100101100000011100000011001\n011001111011100110000110111001110110100111011",
"output": "101011011100100010100011011001101010100100010"
},
{
"input": "0001100111111011010110100100111000000111000110\n1100101011000000000001010010010111001100110001",
"output": "1101001100111011010111110110101111001011110111"
},
{
"input": "00000101110110110001110010100001110100000100000\n10010000110011110001101000111111101010011010001",
"output": "10010101000101000000011010011110011110011110001"
},
{
"input": "110000100101011100100011001111110011111110010001\n101011111001011100110110111101110011010110101100",
"output": "011011011100000000010101110010000000101000111101"
},
{
"input": "0101111101011111010101011101000011101100000000111\n0000101010110110001110101011011110111001010100100",
"output": "0101010111101001011011110110011101010101010100011"
},
{
"input": "11000100010101110011101000011111001010110111111100\n00001111000111001011111110000010101110111001000011",
"output": "11001011010010111000010110011101100100001110111111"
},
{
"input": "101000001101111101101111111000001110110010101101010\n010011100111100001100000010001100101000000111011011",
"output": "111011101010011100001111101001101011110010010110001"
},
{
"input": "0011111110010001010100010110111000110011001101010100\n0111000000100010101010000100101000000100101000111001",
"output": "0100111110110011111110010010010000110111100101101101"
},
{
"input": "11101010000110000011011010000001111101000111011111100\n10110011110001010100010110010010101001010111100100100",
"output": "01011001110111010111001100010011010100010000111011000"
},
{
"input": "011000100001000001101000010110100110011110100111111011\n111011001000001001110011001111011110111110110011011111",
"output": "100011101001001000011011011001111000100000010100100100"
},
{
"input": "0111010110010100000110111011010110100000000111110110000\n1011100100010001101100000100111111101001110010000100110",
"output": "1100110010000101101010111111101001001001110101110010110"
},
{
"input": "10101000100111000111010001011011011011110100110101100011\n11101111000000001100100011111000100100000110011001101110",
"output": "01000111100111001011110010100011111111110010101100001101"
},
{
"input": "000000111001010001000000110001001011100010011101010011011\n110001101000010010000101000100001111101001100100001010010",
"output": "110001010001000011000101110101000100001011111001011001001"
},
{
"input": "0101011100111010000111110010101101111111000000111100011100\n1011111110000010101110111001000011100000100111111111000111",
"output": "1110100010111000101001001011101110011111100111000011011011"
},
{
"input": "11001000001100100111100111100100101011000101001111001001101\n10111110100010000011010100110100100011101001100000001110110",
"output": "01110110101110100100110011010000001000101100101111000111011"
},
{
"input": "010111011011101000000110000110100110001110100001110110111011\n101011110011101011101101011111010100100001100111100100111011",
"output": "111100101000000011101011011001110010101111000110010010000000"
},
{
"input": "1001011110110110000100011001010110000100011010010111010101110\n1101111100001000010111110011010101111010010100000001000010111",
"output": "0100100010111110010011101010000011111110001110010110010111001"
},
{
"input": "10000010101111100111110101111000010100110111101101111111111010\n10110110101100101010011001011010100110111011101100011001100111",
"output": "00110100000011001101101100100010110010001100000001100110011101"
},
{
"input": "011111010011111000001010101001101001000010100010111110010100001\n011111001011000011111001000001111001010110001010111101000010011",
"output": "000000011000111011110011101000010000010100101000000011010110010"
},
{
"input": "1111000000110001011101000100100100001111011100001111001100011111\n1101100110000101100001100000001001011011111011010101000101001010",
"output": "0010100110110100111100100100101101010100100111011010001001010101"
},
{
"input": "01100000101010010011001110100110110010000110010011011001100100011\n10110110010110111100100111000111000110010000000101101110000010111",
"output": "11010110111100101111101001100001110100010110010110110111100110100"
},
{
"input": "001111111010000100001100001010011001111110011110010111110001100111\n110000101001011000100010101100100110000111100000001101001110010111",
"output": "111111010011011100101110100110111111111001111110011010111111110000"
},
{
"input": "1011101011101101011110101101011101011000010011100101010101000100110\n0001000001001111010111100100111101100000000001110001000110000000110",
"output": "1010101010100010001001001001100000111000010010010100010011000100000"
},
{
"input": "01000001011001010011011100010000100100110101111011011011110000001110\n01011110000110011011000000000011000111100001010000000011111001110000",
"output": "00011111011111001000011100010011100011010100101011011000001001111110"
},
{
"input": "110101010100110101000001111110110100010010000100111110010100110011100\n111010010111111011100110101011001011001110110111110100000110110100111",
"output": "001111000011001110100111010101111111011100110011001010010010000111011"
},
{
"input": "1001101011000001011111100110010010000011010001001111011100010100110001\n1111100111110101001111010001010000011001001001010110001111000000100101",
"output": "0110001100110100010000110111000010011010011000011001010011010100010100"
},
{
"input": "00000111110010110001110110001010010101000111011001111111100110011110010\n00010111110100000100110101000010010001100001100011100000001100010100010",
"output": "00010000000110110101000011001000000100100110111010011111101010001010000"
},
{
"input": "100101011100101101000011010001011001101110101110001100010001010111001110\n100001111100101011011111110000001111000111001011111110000010101110111001",
"output": "000100100000000110011100100001010110101001100101110010010011111001110111"
},
{
"input": "1101100001000111001101001011101000111000011110000001001101101001111011010\n0101011101010100011011010110101000010010110010011110101100000110110001000",
"output": "1000111100010011010110011101000000101010101100011111100001101111001010010"
},
{
"input": "01101101010011110101100001110101111011100010000010001101111000011110111111\n00101111001101001100111010000101110000100101101111100111101110010100011011",
"output": "01000010011110111001011011110000001011000111101101101010010110001010100100"
},
{
"input": "101100101100011001101111110110110010100110110010100001110010110011001101011\n000001011010101011110011111101001110000111000010001101000010010000010001101",
"output": "101101110110110010011100001011111100100001110000101100110000100011011100110"
},
{
"input": "0010001011001010001100000010010011110110011000100000000100110000101111001110\n1100110100111000110100001110111001011101001100001010100001010011100110110001",
"output": "1110111111110010111000001100101010101011010100101010100101100011001001111111"
},
{
"input": "00101101010000000101011001101011001100010001100000101011101110000001111001000\n10010110010111000000101101000011101011001010000011011101101011010000000011111",
"output": "10111011000111000101110100101000100111011011100011110110000101010001111010111"
},
{
"input": "111100000100100000101001100001001111001010001000001000000111010000010101101011\n001000100010100101111011111011010110101100001111011000010011011011100010010110",
"output": "110100100110000101010010011010011001100110000111010000010100001011110111111101"
},
{
"input": "0110001101100100001111110101101000100101010010101010011001101001001101110000000\n0111011000000010010111011110010000000001000110001000011001101000000001110100111",
"output": "0001010101100110011000101011111000100100010100100010000000000001001100000100111"
},
{
"input": "10001111111001000101001011110101111010100001011010101100111001010001010010001000\n10000111010010011110111000111010101100000011110001101111001000111010100000000001",
"output": "00001000101011011011110011001111010110100010101011000011110001101011110010001001"
},
{
"input": "100110001110110000100101001110000011110110000110000000100011110100110110011001101\n110001110101110000000100101001101011111100100100001001000110000001111100011110110",
"output": "010111111011000000100001100111101000001010100010001001100101110101001010000111011"
},
{
"input": "0000010100100000010110111100011111111010011101000000100000011001001101101100111010\n0100111110011101010110101011110110010111001111000110101100101110111100101000111111",
"output": "0100101010111101000000010111101001101101010010000110001100110111110001000100000101"
},
{
"input": "11000111001010100001110000001001011010010010110000001110100101000001010101100110111\n11001100100100100001101010110100000111100011101110011010110100001001000011011011010",
"output": "00001011101110000000011010111101011101110001011110010100010001001000010110111101101"
},
{
"input": "010110100010001000100010101001101010011010111110100001000100101000111011100010100001\n110000011111101101010011111000101010111010100001001100001001100101000000111000000000",
"output": "100110111101100101110001010001000000100000011111101101001101001101111011011010100001"
},
{
"input": "0000011110101110010101110110110101100001011001101010101001000010000010000000101001101\n1100111111011100000110000111101110011111100111110001011001000010011111100001001100011",
"output": "1100100001110010010011110001011011111110111110011011110000000000011101100001100101110"
},
{
"input": "10100000101101110001100010010010100101100011010010101000110011100000101010110010000000\n10001110011011010010111011011101101111000111110000111000011010010101001100000001010011",
"output": "00101110110110100011011001001111001010100100100010010000101001110101100110110011010011"
},
{
"input": "001110000011111101101010011111000101010111010100001001100001001100101000000111000000000\n111010000000000000101001110011001000111011001100101010011001000011101001001011110000011",
"output": "110100000011111101000011101100001101101100011000100011111000001111000001001100110000011"
},
{
"input": "1110111100111011010101011011001110001010010010110011110010011111000010011111010101100001\n1001010101011001001010100010101100000110111101011000100010101111111010111100001110010010",
"output": "0111101001100010011111111001100010001100101111101011010000110000111000100011011011110011"
},
{
"input": "11100010001100010011001100001100010011010001101110011110100101110010101101011101000111111\n01110000000110111010110100001010000101011110100101010011000110101110101101110111011110001",
"output": "10010010001010101001111000000110010110001111001011001101100011011100000000101010011001110"
},
{
"input": "001101011001100101101100110000111000101011001001100100000100101000100000110100010111111101\n101001111110000010111101111110001001111001111101111010000110111000100100110010010001011111",
"output": "100100100111100111010001001110110001010010110100011110000010010000000100000110000110100010"
},
{
"input": "1010110110010101000110010010110101011101010100011001101011000110000000100011100100011000000\n0011011111100010001111101101000111001011101110100000110111100100101111010110101111011100011",
"output": "1001101001110111001001111111110010010110111010111001011100100010101111110101001011000100011"
},
{
"input": "10010010000111010111011111110010100101100000001100011100111011100010000010010001011100001100\n00111010100010110010000100010111010001111110100100100011101000101111111111001101101100100100",
"output": "10101000100101100101011011100101110100011110101000111111010011001101111101011100110000101000"
},
{
"input": "010101110001010101100000010111010000000111110011001101100011001000000011001111110000000010100\n010010111011100101010101111110110000000111000100001101101001001000001100101110001010000100001",
"output": "000111001010110000110101101001100000000000110111000000001010000000001111100001111010000110101"
},
{
"input": "1100111110011001000111101001001011000110011010111111100010111111001100111111011101100111101011\n1100000011001000110100110111000001011001010111101000010010100011000001100100111101101000010110",
"output": "0000111101010001110011011110001010011111001101010111110000011100001101011011100000001111111101"
},
{
"input": "00011000100100110111100101100100000000010011110111110010101110110011100001010111010011110100101\n00011011111011111011100101100111100101001110010111000010000111000100100100000001110101111011011",
"output": "00000011011111001100000000000011100101011101100000110000101001110111000101010110100110001111110"
},
{
"input": "000101011001001100000111100010110101111011110101111101000110001101011010111110110011100100000001\n011000101010011111011000111000100000000011011000000001111110001000001111101010110000011100001111",
"output": "011101110011010011011111011010010101111000101101111100111000000101010101010100000011111000001110"
},
{
"input": "1000101001011010000100100100010010011101011001110101111011101111111110010101001101010001010101001\n0110110010011100011111011111110111000000010001110100001010111110101011010011111011111110000110000",
"output": "1110011011000110011011111011100101011101001000000001110001010001010101000110110110101111010011001"
},
{
"input": "01111010010101100111110111111011011010100001011101010000111100101101101110111011001100101011100111\n00001100110110100001111011000010001001001100000010111101000001111011100000010111010010000011000010",
"output": "01110110100011000110001100111001010011101101011111101101111101010110001110101100011110101000100101"
},
{
"input": "111101011101111000001011001101111010110111001101110100100011111011011101001101010101011010111000110\n101111100101101101001100110011000001111010011101110111110110101110011011110011111100001001110101101",
"output": "010010111000010101000111111110111011001101010000000011010101010101000110111110101001010011001101011"
},
{
"input": "1010000011010110011101001101110001110010000111011101110010110110111111001001110100101100010101010001\n0111101000111100101100000101111010100100001000011101010100110011100011010011010101000100101011100011",
"output": "1101101011101010110001001000001011010110001111000000100110000101011100011010100001101000111110110010"
},
{
"input": "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001\n1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111010",
"output": "1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111011"
},
{
"input": "0\n0",
"output": "0"
},
{
"input": "0\n1",
"output": "1"
}
] | 1,636,621,645
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 102
| 77
| 17,715,200
|
'''
//Abdurasul
#include<bits/stdc++.h>
using namespace std;
/**
##################################
## ___________________ ##
## | | Abdurasul... | ##
## |▓| _ _ | ##
## |▓| |_||_| | ##
## |▓| |_||_| | ##
## |▓| Microsoft | ##
## |▓|_________________| ##
## |/\ <><><><><><><><> \ ##
## \ \ <><><><><><<<>>> \ ##
## \ \ <<><><><><><><>> \ ##
## \ \__________________\ ##
## \|___________________| ##
##################################
**/
void seti(){
int n, m;
cin >> n >> m;
if(n % 2 == 0 && m % 2 == 0 && n % m == 0) cout << "YES";
else if(n % 2 == 1 && m % 2 == 1 && n % m == 0) cout << "YES";
else if(n % m == 0) cout << "YES";
else cout << "NO";
cout << endl;
}
int main(){
int n = 1;
//freopen("a.txt", "r", stdin);
//freopen("output.txt", "w", stdout);
cin >> n;
for(int i = 0; i < n; i++){
seti();
}
return 0;
}
'''
n = input()
m = input()
s = ''
for i in range(len(n)):
if n[i] == m[i]: s += '0'
else: s += '1'
print(s)
|
Title: Ultra-Fast Mathematician
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second.
One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part.
In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0.
Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length ∞ (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length.
Now you are going to take part in Shapur's contest. See if you are faster and more accurate.
Input Specification:
There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100.
Output Specification:
Write one line — the corresponding answer. Do not omit the leading 0s.
Demo Input:
['1010100\n0100101\n', '000\n111\n', '1110\n1010\n', '01110\n01100\n']
Demo Output:
['1110001\n', '111\n', '0100\n', '00010\n']
Note:
none
|
```python
'''
//Abdurasul
#include<bits/stdc++.h>
using namespace std;
/**
##################################
## ___________________ ##
## | | Abdurasul... | ##
## |▓| _ _ | ##
## |▓| |_||_| | ##
## |▓| |_||_| | ##
## |▓| Microsoft | ##
## |▓|_________________| ##
## |/\ <><><><><><><><> \ ##
## \ \ <><><><><><<<>>> \ ##
## \ \ <<><><><><><><>> \ ##
## \ \__________________\ ##
## \|___________________| ##
##################################
**/
void seti(){
int n, m;
cin >> n >> m;
if(n % 2 == 0 && m % 2 == 0 && n % m == 0) cout << "YES";
else if(n % 2 == 1 && m % 2 == 1 && n % m == 0) cout << "YES";
else if(n % m == 0) cout << "YES";
else cout << "NO";
cout << endl;
}
int main(){
int n = 1;
//freopen("a.txt", "r", stdin);
//freopen("output.txt", "w", stdout);
cin >> n;
for(int i = 0; i < n; i++){
seti();
}
return 0;
}
'''
n = input()
m = input()
s = ''
for i in range(len(n)):
if n[i] == m[i]: s += '0'
else: s += '1'
print(s)
```
| 3.947753
|
990
|
B
|
Micro-World
|
PROGRAMMING
| 1,200
|
[
"greedy",
"sortings"
] | null | null |
You have a Petri dish with bacteria and you are preparing to dive into the harsh micro-world. But, unfortunately, you don't have any microscope nearby, so you can't watch them.
You know that you have $n$ bacteria in the Petri dish and size of the $i$-th bacteria is $a_i$. Also you know intergalactic positive integer constant $K$.
The $i$-th bacteria can swallow the $j$-th bacteria if and only if $a_i > a_j$ and $a_i \le a_j + K$. The $j$-th bacteria disappear, but the $i$-th bacteria doesn't change its size. The bacteria can perform multiple swallows. On each swallow operation any bacteria $i$ can swallow any bacteria $j$ if $a_i > a_j$ and $a_i \le a_j + K$. The swallow operations go one after another.
For example, the sequence of bacteria sizes $a=[101, 53, 42, 102, 101, 55, 54]$ and $K=1$. The one of possible sequences of swallows is: $[101, 53, 42, 102, \underline{101}, 55, 54]$ $\to$ $[101, \underline{53}, 42, 102, 55, 54]$ $\to$ $[\underline{101}, 42, 102, 55, 54]$ $\to$ $[42, 102, 55, \underline{54}]$ $\to$ $[42, 102, 55]$. In total there are $3$ bacteria remained in the Petri dish.
Since you don't have a microscope, you can only guess, what the minimal possible number of bacteria can remain in your Petri dish when you finally will find any microscope.
|
The first line contains two space separated positive integers $n$ and $K$ ($1 \le n \le 2 \cdot 10^5$, $1 \le K \le 10^6$) — number of bacteria and intergalactic constant $K$.
The second line contains $n$ space separated integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^6$) — sizes of bacteria you have.
|
Print the only integer — minimal possible number of bacteria can remain.
|
[
"7 1\n101 53 42 102 101 55 54\n",
"6 5\n20 15 10 15 20 25\n",
"7 1000000\n1 1 1 1 1 1 1\n"
] |
[
"3\n",
"1\n",
"7\n"
] |
The first example is clarified in the problem statement.
In the second example an optimal possible sequence of swallows is: $[20, 15, 10, 15, \underline{20}, 25]$ $\to$ $[20, 15, 10, \underline{15}, 25]$ $\to$ $[20, 15, \underline{10}, 25]$ $\to$ $[20, \underline{15}, 25]$ $\to$ $[\underline{20}, 25]$ $\to$ $[25]$.
In the third example no bacteria can swallow any other bacteria.
| 0
|
[
{
"input": "7 1\n101 53 42 102 101 55 54",
"output": "3"
},
{
"input": "6 5\n20 15 10 15 20 25",
"output": "1"
},
{
"input": "7 1000000\n1 1 1 1 1 1 1",
"output": "7"
},
{
"input": "1 1\n1",
"output": "1"
},
{
"input": "1 4\n8",
"output": "1"
},
{
"input": "10 1\n1 2 3 5 6 8 10 11 9 4",
"output": "2"
},
{
"input": "9 2\n1 6 1 5 5 8 6 8 7",
"output": "4"
},
{
"input": "15 1\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "15"
},
{
"input": "2 1000000\n1 1000000",
"output": "1"
},
{
"input": "7 2\n1 5 5 8 9 8 8",
"output": "4"
},
{
"input": "10 1\n2 6 3 4 2 4 4 3 2 1",
"output": "4"
},
{
"input": "4 1\n2 2 1 1",
"output": "2"
},
{
"input": "10 1\n6 3 1 3 6 4 1 3 6 4",
"output": "7"
},
{
"input": "2 1\n1 1",
"output": "2"
},
{
"input": "2 1\n1 2",
"output": "1"
},
{
"input": "8 2\n3 13 9 8 3 13 9 14",
"output": "5"
},
{
"input": "8 1000000\n1 1 5 1000000 1000000 2 2 2",
"output": "2"
},
{
"input": "2 1\n999152 999153",
"output": "1"
}
] | 1,622,624,874
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 36
| 358
| 16,281,600
|
n,k = map(int, input().split())
v = list(map(int, input().split()))
v.sort()
ans = 0
cnt = 0
ar = [0] * 1000000
for i in range(len(v)):
while cnt>0 and v[i] > ar[cnt] and v[i] <= k+ar[cnt] :
cnt=cnt-1
cnt = cnt + 1
ar[cnt] = v[i]
print(cnt)
|
Title: Micro-World
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You have a Petri dish with bacteria and you are preparing to dive into the harsh micro-world. But, unfortunately, you don't have any microscope nearby, so you can't watch them.
You know that you have $n$ bacteria in the Petri dish and size of the $i$-th bacteria is $a_i$. Also you know intergalactic positive integer constant $K$.
The $i$-th bacteria can swallow the $j$-th bacteria if and only if $a_i > a_j$ and $a_i \le a_j + K$. The $j$-th bacteria disappear, but the $i$-th bacteria doesn't change its size. The bacteria can perform multiple swallows. On each swallow operation any bacteria $i$ can swallow any bacteria $j$ if $a_i > a_j$ and $a_i \le a_j + K$. The swallow operations go one after another.
For example, the sequence of bacteria sizes $a=[101, 53, 42, 102, 101, 55, 54]$ and $K=1$. The one of possible sequences of swallows is: $[101, 53, 42, 102, \underline{101}, 55, 54]$ $\to$ $[101, \underline{53}, 42, 102, 55, 54]$ $\to$ $[\underline{101}, 42, 102, 55, 54]$ $\to$ $[42, 102, 55, \underline{54}]$ $\to$ $[42, 102, 55]$. In total there are $3$ bacteria remained in the Petri dish.
Since you don't have a microscope, you can only guess, what the minimal possible number of bacteria can remain in your Petri dish when you finally will find any microscope.
Input Specification:
The first line contains two space separated positive integers $n$ and $K$ ($1 \le n \le 2 \cdot 10^5$, $1 \le K \le 10^6$) — number of bacteria and intergalactic constant $K$.
The second line contains $n$ space separated integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^6$) — sizes of bacteria you have.
Output Specification:
Print the only integer — minimal possible number of bacteria can remain.
Demo Input:
['7 1\n101 53 42 102 101 55 54\n', '6 5\n20 15 10 15 20 25\n', '7 1000000\n1 1 1 1 1 1 1\n']
Demo Output:
['3\n', '1\n', '7\n']
Note:
The first example is clarified in the problem statement.
In the second example an optimal possible sequence of swallows is: $[20, 15, 10, 15, \underline{20}, 25]$ $\to$ $[20, 15, 10, \underline{15}, 25]$ $\to$ $[20, 15, \underline{10}, 25]$ $\to$ $[20, \underline{15}, 25]$ $\to$ $[\underline{20}, 25]$ $\to$ $[25]$.
In the third example no bacteria can swallow any other bacteria.
|
```python
n,k = map(int, input().split())
v = list(map(int, input().split()))
v.sort()
ans = 0
cnt = 0
ar = [0] * 1000000
for i in range(len(v)):
while cnt>0 and v[i] > ar[cnt] and v[i] <= k+ar[cnt] :
cnt=cnt-1
cnt = cnt + 1
ar[cnt] = v[i]
print(cnt)
```
| 3
|
|
851
|
B
|
Arpa and an exam about geometry
|
PROGRAMMING
| 1,400
|
[
"geometry",
"math"
] | null | null |
Arpa is taking a geometry exam. Here is the last problem of the exam.
You are given three points *a*,<=*b*,<=*c*.
Find a point and an angle such that if we rotate the page around the point by the angle, the new position of *a* is the same as the old position of *b*, and the new position of *b* is the same as the old position of *c*.
Arpa is doubting if the problem has a solution or not (i.e. if there exists a point and an angle satisfying the condition). Help Arpa determine if the question has a solution or not.
|
The only line contains six integers *a**x*,<=*a**y*,<=*b**x*,<=*b**y*,<=*c**x*,<=*c**y* (|*a**x*|,<=|*a**y*|,<=|*b**x*|,<=|*b**y*|,<=|*c**x*|,<=|*c**y*|<=≤<=109). It's guaranteed that the points are distinct.
|
Print "Yes" if the problem has a solution, "No" otherwise.
You can print each letter in any case (upper or lower).
|
[
"0 1 1 1 1 0\n",
"1 1 0 0 1000 1000\n"
] |
[
"Yes\n",
"No\n"
] |
In the first sample test, rotate the page around (0.5, 0.5) by <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/9d845923f4d356a48d8ede337db0303821311f0c.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
In the second sample test, you can't find any solution.
| 1,000
|
[
{
"input": "0 1 1 1 1 0",
"output": "Yes"
},
{
"input": "1 1 0 0 1000 1000",
"output": "No"
},
{
"input": "1 0 2 0 3 0",
"output": "No"
},
{
"input": "3 4 0 0 4 3",
"output": "Yes"
},
{
"input": "-1000000000 1 0 0 1000000000 1",
"output": "Yes"
},
{
"input": "49152 0 0 0 0 81920",
"output": "No"
},
{
"input": "1 -1 4 4 2 -3",
"output": "No"
},
{
"input": "-2 -2 1 4 -2 0",
"output": "No"
},
{
"input": "5 0 4 -2 0 1",
"output": "No"
},
{
"input": "-4 -3 2 -1 -3 4",
"output": "No"
},
{
"input": "-3 -3 5 2 3 -1",
"output": "No"
},
{
"input": "-1000000000 -1000000000 0 0 1000000000 999999999",
"output": "No"
},
{
"input": "-1000000000 -1000000000 0 0 1000000000 1000000000",
"output": "No"
},
{
"input": "-357531221 381512519 -761132895 -224448284 328888775 -237692564",
"output": "No"
},
{
"input": "264193194 -448876521 736684426 -633906160 -328597212 -47935734",
"output": "No"
},
{
"input": "419578772 -125025887 169314071 89851312 961404059 21419450",
"output": "No"
},
{
"input": "-607353321 -620687860 248029390 477864359 728255275 -264646027",
"output": "No"
},
{
"input": "299948862 -648908808 338174789 841279400 -850322448 350263551",
"output": "No"
},
{
"input": "48517753 416240699 7672672 272460100 -917845051 199790781",
"output": "No"
},
{
"input": "-947393823 -495674431 211535284 -877153626 -522763219 -778236665",
"output": "No"
},
{
"input": "-685673792 -488079395 909733355 385950193 -705890324 256550506",
"output": "No"
},
{
"input": "-326038504 547872194 49630307 713863100 303770000 -556852524",
"output": "No"
},
{
"input": "-706921242 -758563024 -588592101 -443440080 858751713 238854303",
"output": "No"
},
{
"input": "-1000000000 -1000000000 0 1000000000 1000000000 -1000000000",
"output": "Yes"
},
{
"input": "1000000000 1000000000 0 -1000000000 -1000000000 1000000000",
"output": "Yes"
},
{
"input": "-999999999 -1000000000 0 0 1000000000 999999999",
"output": "Yes"
},
{
"input": "-1000000000 -999999999 0 0 1000000000 999999999",
"output": "No"
},
{
"input": "-1 -1000000000 0 1000000000 1 -1000000000",
"output": "Yes"
},
{
"input": "0 1000000000 1 0 0 -1000000000",
"output": "Yes"
},
{
"input": "0 1000000000 0 0 0 -1000000000",
"output": "No"
},
{
"input": "0 1 1 2 2 3",
"output": "No"
},
{
"input": "999999999 1000000000 0 0 -1000000000 -999999999",
"output": "Yes"
},
{
"input": "0 0 1 1 2 0",
"output": "Yes"
},
{
"input": "0 0 1 1 2 2",
"output": "No"
},
{
"input": "1 1 2 2 3 3",
"output": "No"
},
{
"input": "0 2 0 3 0 4",
"output": "No"
},
{
"input": "1 1 1 2 1 3",
"output": "No"
},
{
"input": "0 0 3 4 3 9",
"output": "Yes"
},
{
"input": "589824 196608 262144 196608 0 0",
"output": "Yes"
},
{
"input": "0 0 1000000000 1 1000000000 -999999999",
"output": "No"
},
{
"input": "0 0 2 45 0 90",
"output": "Yes"
},
{
"input": "0 0 0 2 0 1",
"output": "No"
},
{
"input": "0 2 4 5 4 0",
"output": "Yes"
},
{
"input": "0 0 2 0 4 0",
"output": "No"
},
{
"input": "1 1 3 3 5 5",
"output": "No"
},
{
"input": "1 1 2 2 3 1",
"output": "Yes"
}
] | 1,504,536,441
| 741
|
Python 3
|
OK
|
TESTS
| 46
| 61
| 0
|
def dist(x1,x2,y1,y2):
return (x1-x2)**2 + (y1-y2)**2
ax,ay,bx,by,cx,cy = map(int,input().split())
if ((by-ay)*(cx-bx) == (cy-by)*(bx-ax)):
print('No')
else:
if(dist(ax,bx,ay,by) == dist(bx,cx,by,cy)):
print('Yes')
else:
print('No')
|
Title: Arpa and an exam about geometry
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Arpa is taking a geometry exam. Here is the last problem of the exam.
You are given three points *a*,<=*b*,<=*c*.
Find a point and an angle such that if we rotate the page around the point by the angle, the new position of *a* is the same as the old position of *b*, and the new position of *b* is the same as the old position of *c*.
Arpa is doubting if the problem has a solution or not (i.e. if there exists a point and an angle satisfying the condition). Help Arpa determine if the question has a solution or not.
Input Specification:
The only line contains six integers *a**x*,<=*a**y*,<=*b**x*,<=*b**y*,<=*c**x*,<=*c**y* (|*a**x*|,<=|*a**y*|,<=|*b**x*|,<=|*b**y*|,<=|*c**x*|,<=|*c**y*|<=≤<=109). It's guaranteed that the points are distinct.
Output Specification:
Print "Yes" if the problem has a solution, "No" otherwise.
You can print each letter in any case (upper or lower).
Demo Input:
['0 1 1 1 1 0\n', '1 1 0 0 1000 1000\n']
Demo Output:
['Yes\n', 'No\n']
Note:
In the first sample test, rotate the page around (0.5, 0.5) by <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/9d845923f4d356a48d8ede337db0303821311f0c.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
In the second sample test, you can't find any solution.
|
```python
def dist(x1,x2,y1,y2):
return (x1-x2)**2 + (y1-y2)**2
ax,ay,bx,by,cx,cy = map(int,input().split())
if ((by-ay)*(cx-bx) == (cy-by)*(bx-ax)):
print('No')
else:
if(dist(ax,bx,ay,by) == dist(bx,cx,by,cy)):
print('Yes')
else:
print('No')
```
| 3
|
|
501
|
A
|
Contest
|
PROGRAMMING
| 900
|
[
"implementation"
] | null | null |
Misha and Vasya participated in a Codeforces contest. Unfortunately, each of them solved only one problem, though successfully submitted it at the first attempt. Misha solved the problem that costs *a* points and Vasya solved the problem that costs *b* points. Besides, Misha submitted the problem *c* minutes after the contest started and Vasya submitted the problem *d* minutes after the contest started. As you know, on Codeforces the cost of a problem reduces as a round continues. That is, if you submit a problem that costs *p* points *t* minutes after the contest started, you get points.
Misha and Vasya are having an argument trying to find out who got more points. Help them to find out the truth.
|
The first line contains four integers *a*, *b*, *c*, *d* (250<=≤<=*a*,<=*b*<=≤<=3500, 0<=≤<=*c*,<=*d*<=≤<=180).
It is guaranteed that numbers *a* and *b* are divisible by 250 (just like on any real Codeforces round).
|
Output on a single line:
"Misha" (without the quotes), if Misha got more points than Vasya.
"Vasya" (without the quotes), if Vasya got more points than Misha.
"Tie" (without the quotes), if both of them got the same number of points.
|
[
"500 1000 20 30\n",
"1000 1000 1 1\n",
"1500 1000 176 177\n"
] |
[
"Vasya\n",
"Tie\n",
"Misha\n"
] |
none
| 500
|
[
{
"input": "500 1000 20 30",
"output": "Vasya"
},
{
"input": "1000 1000 1 1",
"output": "Tie"
},
{
"input": "1500 1000 176 177",
"output": "Misha"
},
{
"input": "1500 1000 74 177",
"output": "Misha"
},
{
"input": "750 2500 175 178",
"output": "Vasya"
},
{
"input": "750 1000 54 103",
"output": "Tie"
},
{
"input": "2000 1250 176 130",
"output": "Tie"
},
{
"input": "1250 1750 145 179",
"output": "Tie"
},
{
"input": "2000 2000 176 179",
"output": "Tie"
},
{
"input": "1500 1500 148 148",
"output": "Tie"
},
{
"input": "2750 1750 134 147",
"output": "Misha"
},
{
"input": "3250 250 175 173",
"output": "Misha"
},
{
"input": "500 500 170 176",
"output": "Misha"
},
{
"input": "250 1000 179 178",
"output": "Vasya"
},
{
"input": "3250 1000 160 138",
"output": "Misha"
},
{
"input": "3000 2000 162 118",
"output": "Tie"
},
{
"input": "1500 1250 180 160",
"output": "Tie"
},
{
"input": "1250 2500 100 176",
"output": "Tie"
},
{
"input": "3500 3500 177 178",
"output": "Tie"
},
{
"input": "3000 3250 16 34",
"output": "Tie"
},
{
"input": "1750 3000 137 49",
"output": "Vasya"
},
{
"input": "500 1500 179 71",
"output": "Vasya"
},
{
"input": "1250 2000 101 180",
"output": "Misha"
},
{
"input": "250 750 180 176",
"output": "Vasya"
},
{
"input": "2250 2250 163 145",
"output": "Vasya"
},
{
"input": "3000 3000 176 78",
"output": "Vasya"
},
{
"input": "250 3500 8 178",
"output": "Vasya"
},
{
"input": "1750 1250 179 180",
"output": "Misha"
},
{
"input": "2750 1750 13 164",
"output": "Misha"
},
{
"input": "1750 2250 178 53",
"output": "Vasya"
},
{
"input": "2500 2750 73 179",
"output": "Misha"
},
{
"input": "1000 3500 178 175",
"output": "Vasya"
},
{
"input": "1000 500 7 162",
"output": "Misha"
},
{
"input": "1000 250 175 48",
"output": "Misha"
},
{
"input": "1750 500 166 177",
"output": "Misha"
},
{
"input": "250 250 0 0",
"output": "Tie"
},
{
"input": "250 3500 0 0",
"output": "Vasya"
},
{
"input": "250 3500 0 180",
"output": "Vasya"
},
{
"input": "3500 3500 180 180",
"output": "Tie"
},
{
"input": "3500 250 0 180",
"output": "Misha"
}
] | 1,658,775,563
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 40
| 62
| 0
|
a,b,c,d = map(int,input().split())
m = max(3*a/10,a-a/250*c)
v = max(3*b/10,b-b/250*d)
print('Misha' if m >v else 'Vasya' if m<v else 'Tie')
|
Title: Contest
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Misha and Vasya participated in a Codeforces contest. Unfortunately, each of them solved only one problem, though successfully submitted it at the first attempt. Misha solved the problem that costs *a* points and Vasya solved the problem that costs *b* points. Besides, Misha submitted the problem *c* minutes after the contest started and Vasya submitted the problem *d* minutes after the contest started. As you know, on Codeforces the cost of a problem reduces as a round continues. That is, if you submit a problem that costs *p* points *t* minutes after the contest started, you get points.
Misha and Vasya are having an argument trying to find out who got more points. Help them to find out the truth.
Input Specification:
The first line contains four integers *a*, *b*, *c*, *d* (250<=≤<=*a*,<=*b*<=≤<=3500, 0<=≤<=*c*,<=*d*<=≤<=180).
It is guaranteed that numbers *a* and *b* are divisible by 250 (just like on any real Codeforces round).
Output Specification:
Output on a single line:
"Misha" (without the quotes), if Misha got more points than Vasya.
"Vasya" (without the quotes), if Vasya got more points than Misha.
"Tie" (without the quotes), if both of them got the same number of points.
Demo Input:
['500 1000 20 30\n', '1000 1000 1 1\n', '1500 1000 176 177\n']
Demo Output:
['Vasya\n', 'Tie\n', 'Misha\n']
Note:
none
|
```python
a,b,c,d = map(int,input().split())
m = max(3*a/10,a-a/250*c)
v = max(3*b/10,b-b/250*d)
print('Misha' if m >v else 'Vasya' if m<v else 'Tie')
```
| 3
|
|
977
|
A
|
Wrong Subtraction
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Little girl Tanya is learning how to decrease a number by one, but she does it wrong with a number consisting of two or more digits. Tanya subtracts one from a number by the following algorithm:
- if the last digit of the number is non-zero, she decreases the number by one; - if the last digit of the number is zero, she divides the number by 10 (i.e. removes the last digit).
You are given an integer number $n$. Tanya will subtract one from it $k$ times. Your task is to print the result after all $k$ subtractions.
It is guaranteed that the result will be positive integer number.
|
The first line of the input contains two integer numbers $n$ and $k$ ($2 \le n \le 10^9$, $1 \le k \le 50$) — the number from which Tanya will subtract and the number of subtractions correspondingly.
|
Print one integer number — the result of the decreasing $n$ by one $k$ times.
It is guaranteed that the result will be positive integer number.
|
[
"512 4\n",
"1000000000 9\n"
] |
[
"50\n",
"1\n"
] |
The first example corresponds to the following sequence: $512 \rightarrow 511 \rightarrow 510 \rightarrow 51 \rightarrow 50$.
| 0
|
[
{
"input": "512 4",
"output": "50"
},
{
"input": "1000000000 9",
"output": "1"
},
{
"input": "131203 11",
"output": "12"
},
{
"input": "999999999 50",
"output": "9999"
},
{
"input": "999999999 49",
"output": "99990"
},
{
"input": "131203 9",
"output": "130"
},
{
"input": "900000000 16",
"output": "1"
},
{
"input": "909090909 50",
"output": "3"
},
{
"input": "1001 2",
"output": "100"
},
{
"input": "5 2",
"output": "3"
},
{
"input": "2 1",
"output": "1"
}
] | 1,694,578,632
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 11
| 46
| 0
|
a,b=map(int,input().split())
for x in range(b):
if a%10==0:
a=a/10
elif a%10!=0:
a=a-1
print(int(a))
|
Title: Wrong Subtraction
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Little girl Tanya is learning how to decrease a number by one, but she does it wrong with a number consisting of two or more digits. Tanya subtracts one from a number by the following algorithm:
- if the last digit of the number is non-zero, she decreases the number by one; - if the last digit of the number is zero, she divides the number by 10 (i.e. removes the last digit).
You are given an integer number $n$. Tanya will subtract one from it $k$ times. Your task is to print the result after all $k$ subtractions.
It is guaranteed that the result will be positive integer number.
Input Specification:
The first line of the input contains two integer numbers $n$ and $k$ ($2 \le n \le 10^9$, $1 \le k \le 50$) — the number from which Tanya will subtract and the number of subtractions correspondingly.
Output Specification:
Print one integer number — the result of the decreasing $n$ by one $k$ times.
It is guaranteed that the result will be positive integer number.
Demo Input:
['512 4\n', '1000000000 9\n']
Demo Output:
['50\n', '1\n']
Note:
The first example corresponds to the following sequence: $512 \rightarrow 511 \rightarrow 510 \rightarrow 51 \rightarrow 50$.
|
```python
a,b=map(int,input().split())
for x in range(b):
if a%10==0:
a=a/10
elif a%10!=0:
a=a-1
print(int(a))
```
| 3
|
|
546
|
A
|
Soldier and Bananas
|
PROGRAMMING
| 800
|
[
"brute force",
"implementation",
"math"
] | null | null |
A soldier wants to buy *w* bananas in the shop. He has to pay *k* dollars for the first banana, 2*k* dollars for the second one and so on (in other words, he has to pay *i*·*k* dollars for the *i*-th banana).
He has *n* dollars. How many dollars does he have to borrow from his friend soldier to buy *w* bananas?
|
The first line contains three positive integers *k*,<=*n*,<=*w* (1<=<=≤<=<=*k*,<=*w*<=<=≤<=<=1000, 0<=≤<=*n*<=≤<=109), the cost of the first banana, initial number of dollars the soldier has and number of bananas he wants.
|
Output one integer — the amount of dollars that the soldier must borrow from his friend. If he doesn't have to borrow money, output 0.
|
[
"3 17 4\n"
] |
[
"13"
] |
none
| 500
|
[
{
"input": "3 17 4",
"output": "13"
},
{
"input": "1 2 1",
"output": "0"
},
{
"input": "1 1 1",
"output": "0"
},
{
"input": "1 5 6",
"output": "16"
},
{
"input": "1 1000000000 1",
"output": "0"
},
{
"input": "1000 0 1000",
"output": "500500000"
},
{
"input": "859 453892 543",
"output": "126416972"
},
{
"input": "1000 1000000000 1000",
"output": "0"
},
{
"input": "1000 500500000 1000",
"output": "0"
},
{
"input": "1000 500500001 1000",
"output": "0"
},
{
"input": "1000 500499999 1000",
"output": "1"
},
{
"input": "634 87973 214",
"output": "14497197"
},
{
"input": "432 10000 241",
"output": "12587552"
},
{
"input": "111 111111111 111",
"output": "0"
},
{
"input": "20 43 3",
"output": "77"
}
] | 1,693,888,949
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 15
| 31
| 0
|
k,n,w = map(int,input().split())
cost = k*((w*(w+1))/2)
if n>=cost: print(0)
else: print(int(cost-n))
|
Title: Soldier and Bananas
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
A soldier wants to buy *w* bananas in the shop. He has to pay *k* dollars for the first banana, 2*k* dollars for the second one and so on (in other words, he has to pay *i*·*k* dollars for the *i*-th banana).
He has *n* dollars. How many dollars does he have to borrow from his friend soldier to buy *w* bananas?
Input Specification:
The first line contains three positive integers *k*,<=*n*,<=*w* (1<=<=≤<=<=*k*,<=*w*<=<=≤<=<=1000, 0<=≤<=*n*<=≤<=109), the cost of the first banana, initial number of dollars the soldier has and number of bananas he wants.
Output Specification:
Output one integer — the amount of dollars that the soldier must borrow from his friend. If he doesn't have to borrow money, output 0.
Demo Input:
['3 17 4\n']
Demo Output:
['13']
Note:
none
|
```python
k,n,w = map(int,input().split())
cost = k*((w*(w+1))/2)
if n>=cost: print(0)
else: print(int(cost-n))
```
| 3
|
|
369
|
A
|
Valera and Plates
|
PROGRAMMING
| 900
|
[
"greedy",
"implementation"
] | null | null |
Valera is a lazy student. He has *m* clean bowls and *k* clean plates.
Valera has made an eating plan for the next *n* days. As Valera is lazy, he will eat exactly one dish per day. At that, in order to eat a dish, he needs exactly one clean plate or bowl. We know that Valera can cook only two types of dishes. He can eat dishes of the first type from bowls and dishes of the second type from either bowls or plates.
When Valera finishes eating, he leaves a dirty plate/bowl behind. His life philosophy doesn't let him eat from dirty kitchenware. So sometimes he needs to wash his plate/bowl before eating. Find the minimum number of times Valera will need to wash a plate/bowl, if he acts optimally.
|
The first line of the input contains three integers *n*, *m*, *k* (1<=≤<=*n*,<=*m*,<=*k*<=≤<=1000) — the number of the planned days, the number of clean bowls and the number of clean plates.
The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=2). If *a**i* equals one, then on day *i* Valera will eat a first type dish. If *a**i* equals two, then on day *i* Valera will eat a second type dish.
|
Print a single integer — the minimum number of times Valera will need to wash a plate/bowl.
|
[
"3 1 1\n1 2 1\n",
"4 3 1\n1 1 1 1\n",
"3 1 2\n2 2 2\n",
"8 2 2\n1 2 1 2 1 2 1 2\n"
] |
[
"1\n",
"1\n",
"0\n",
"4\n"
] |
In the first sample Valera will wash a bowl only on the third day, so the answer is one.
In the second sample, Valera will have the first type of the dish during all four days, and since there are only three bowls, he will wash a bowl exactly once.
In the third sample, Valera will have the second type of dish for all three days, and as they can be eaten from either a plate or a bowl, he will never need to wash a plate/bowl.
| 500
|
[
{
"input": "3 1 1\n1 2 1",
"output": "1"
},
{
"input": "4 3 1\n1 1 1 1",
"output": "1"
},
{
"input": "3 1 2\n2 2 2",
"output": "0"
},
{
"input": "8 2 2\n1 2 1 2 1 2 1 2",
"output": "4"
},
{
"input": "2 100 100\n2 2",
"output": "0"
},
{
"input": "1 1 1\n2",
"output": "0"
},
{
"input": "233 100 1\n2 2 1 1 1 2 2 2 2 1 1 2 2 2 1 2 2 1 1 1 2 2 1 1 1 1 2 1 2 2 1 1 2 2 1 2 2 1 2 1 2 1 2 2 2 1 1 1 1 2 1 2 1 1 2 1 1 2 2 1 2 1 2 1 1 1 1 1 1 1 1 1 2 1 2 2 2 1 1 2 2 1 1 1 1 2 1 1 2 1 2 2 2 1 1 1 2 2 2 1 1 1 1 2 1 2 1 1 1 1 2 2 2 1 1 2 1 2 1 1 1 1 1 2 1 1 1 1 1 2 1 1 2 2 1 2 1 1 2 2 1 1 2 2 1 1 1 2 2 1 1 2 1 2 1 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 1 2 2 1 1 1 2 2 1 1 2 2 1 1 2 1 1 2 2 1 2 2 2 2 2 2 1 2 2 2 2 2 1 1 2 2 2 2 2 2 1 1 1 2 1 2 2 2 2 2 2 2 2 1 1 2 1 2 1 2 2",
"output": "132"
},
{
"input": "123 100 1\n2 2 2 1 1 2 2 2 2 1 1 2 2 2 1 2 2 2 2 1 2 2 2 1 1 1 2 2 2 2 1 2 2 2 2 2 2 1 2 1 2 1 2 2 2 1 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 1 1 1 1 1 1 1 1 2 2 2 2 2 1 1 2 2 1 1 1 1 2 1 2 2 1 2 2 2 1 1 1 2 2 2 1 2 2 2 2 1 2 2 2 2 1 2 2 2 1 1 2 1 2 1 2 1 1 1",
"output": "22"
},
{
"input": "188 100 1\n2 2 1 1 1 2 2 2 2 1 1 2 2 2 1 2 2 1 1 1 2 2 1 1 1 1 2 1 2 2 1 1 2 2 1 2 2 1 2 1 2 1 2 2 2 1 1 1 1 2 1 2 1 1 2 1 1 2 2 1 2 1 2 1 1 1 1 1 1 1 1 1 2 1 2 2 2 1 1 2 2 1 1 1 1 2 1 1 2 1 2 2 2 1 1 1 2 2 2 1 1 1 1 2 1 2 1 1 1 1 2 2 2 1 1 2 1 2 1 1 1 1 1 2 1 1 1 1 1 2 1 1 2 2 1 2 1 1 2 2 1 1 2 2 1 1 1 2 2 1 1 2 1 2 1 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 1 2 2 1 1 1 2 2 1 1 2 2 1 1 2 1",
"output": "87"
},
{
"input": "3 1 2\n1 1 1",
"output": "2"
},
{
"input": "3 2 2\n1 1 1",
"output": "1"
},
{
"input": "3 2 1\n1 1 1",
"output": "1"
},
{
"input": "3 1 1\n1 1 1",
"output": "2"
},
{
"input": "5 1 2\n2 2 2 2 2",
"output": "2"
},
{
"input": "5 2 2\n2 2 2 2 2",
"output": "1"
},
{
"input": "5 2 1\n2 2 2 2 2",
"output": "2"
},
{
"input": "5 1 1\n2 2 2 2 2",
"output": "3"
},
{
"input": "1 1 2\n2",
"output": "0"
},
{
"input": "1 2 2\n2",
"output": "0"
},
{
"input": "1 2 1\n2",
"output": "0"
},
{
"input": "1 1 1\n2",
"output": "0"
},
{
"input": "6 3 1\n1 1 2 2 2 2",
"output": "2"
},
{
"input": "100 40 20\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "40"
},
{
"input": "7 5 2\n2 2 1 1 1 1 1",
"output": "0"
},
{
"input": "10 4 4\n2 2 2 2 2 2 1 1 1 1",
"output": "2"
},
{
"input": "3 2 1\n2 1 1",
"output": "0"
},
{
"input": "7 6 1\n2 1 1 1 1 1 1",
"output": "0"
},
{
"input": "7 5 1\n1 1 1 2 2 2 2",
"output": "1"
},
{
"input": "5 3 1\n1 1 2 2 2",
"output": "1"
},
{
"input": "3 1 1\n2 2 2",
"output": "1"
},
{
"input": "5 2 2\n2 2 2 2 2",
"output": "1"
},
{
"input": "3 1 3\n1 1 1",
"output": "2"
},
{
"input": "5 2 1\n1 1 2 2 2",
"output": "2"
},
{
"input": "4 3 2\n2 1 1 1",
"output": "0"
},
{
"input": "4 2 1\n1 2 2 2",
"output": "1"
},
{
"input": "14 4 7\n1 1 1 2 2 2 2 2 2 2 2 2 2 2",
"output": "3"
},
{
"input": "12 10 4\n2 2 2 2 2 2 1 1 1 1 1 1",
"output": "0"
},
{
"input": "5 3 2\n2 2 1 1 1",
"output": "0"
}
] | 1,681,870,600
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 63
| 62
| 102,400
|
from collections import Counter
n, m, k = (int(i) for i in input().split())
a = (int(i) for i in input().split())
cnt = Counter(a)
m -= cnt[1]
k -= cnt[2]
k += max(0, m)
res = max(-m, 0) + max(-k, 0)
print(res)
|
Title: Valera and Plates
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Valera is a lazy student. He has *m* clean bowls and *k* clean plates.
Valera has made an eating plan for the next *n* days. As Valera is lazy, he will eat exactly one dish per day. At that, in order to eat a dish, he needs exactly one clean plate or bowl. We know that Valera can cook only two types of dishes. He can eat dishes of the first type from bowls and dishes of the second type from either bowls or plates.
When Valera finishes eating, he leaves a dirty plate/bowl behind. His life philosophy doesn't let him eat from dirty kitchenware. So sometimes he needs to wash his plate/bowl before eating. Find the minimum number of times Valera will need to wash a plate/bowl, if he acts optimally.
Input Specification:
The first line of the input contains three integers *n*, *m*, *k* (1<=≤<=*n*,<=*m*,<=*k*<=≤<=1000) — the number of the planned days, the number of clean bowls and the number of clean plates.
The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=2). If *a**i* equals one, then on day *i* Valera will eat a first type dish. If *a**i* equals two, then on day *i* Valera will eat a second type dish.
Output Specification:
Print a single integer — the minimum number of times Valera will need to wash a plate/bowl.
Demo Input:
['3 1 1\n1 2 1\n', '4 3 1\n1 1 1 1\n', '3 1 2\n2 2 2\n', '8 2 2\n1 2 1 2 1 2 1 2\n']
Demo Output:
['1\n', '1\n', '0\n', '4\n']
Note:
In the first sample Valera will wash a bowl only on the third day, so the answer is one.
In the second sample, Valera will have the first type of the dish during all four days, and since there are only three bowls, he will wash a bowl exactly once.
In the third sample, Valera will have the second type of dish for all three days, and as they can be eaten from either a plate or a bowl, he will never need to wash a plate/bowl.
|
```python
from collections import Counter
n, m, k = (int(i) for i in input().split())
a = (int(i) for i in input().split())
cnt = Counter(a)
m -= cnt[1]
k -= cnt[2]
k += max(0, m)
res = max(-m, 0) + max(-k, 0)
print(res)
```
| 3
|
|
452
|
A
|
Eevee
|
PROGRAMMING
| 1,000
|
[
"brute force",
"implementation",
"strings"
] | null | null |
You are solving the crossword problem K from IPSC 2014. You solved all the clues except for one: who does Eevee evolve into? You are not very into pokemons, but quick googling helped you find out, that Eevee can evolve into eight different pokemons: Vaporeon, Jolteon, Flareon, Espeon, Umbreon, Leafeon, Glaceon, and Sylveon.
You know the length of the word in the crossword, and you already know some letters. Designers of the crossword made sure that the answer is unambiguous, so you can assume that exactly one pokemon out of the 8 that Eevee evolves into fits the length and the letters given. Your task is to find it.
|
First line contains an integer *n* (6<=≤<=*n*<=≤<=8) – the length of the string.
Next line contains a string consisting of *n* characters, each of which is either a lower case english letter (indicating a known letter) or a dot character (indicating an empty cell in the crossword).
|
Print a name of the pokemon that Eevee can evolve into that matches the pattern in the input. Use lower case letters only to print the name (in particular, do not capitalize the first letter).
|
[
"7\nj......\n",
"7\n...feon\n",
"7\n.l.r.o.\n"
] |
[
"jolteon\n",
"leafeon\n",
"flareon\n"
] |
Here's a set of names in a form you can paste into your solution:
["vaporeon", "jolteon", "flareon", "espeon", "umbreon", "leafeon", "glaceon", "sylveon"]
{"vaporeon", "jolteon", "flareon", "espeon", "umbreon", "leafeon", "glaceon", "sylveon"}
| 500
|
[
{
"input": "7\n...feon",
"output": "leafeon"
},
{
"input": "7\n.l.r.o.",
"output": "flareon"
},
{
"input": "6\n.s..o.",
"output": "espeon"
},
{
"input": "7\nglaceon",
"output": "glaceon"
},
{
"input": "8\n.a.o.e.n",
"output": "vaporeon"
},
{
"input": "7\n.laceon",
"output": "glaceon"
},
{
"input": "7\n..lveon",
"output": "sylveon"
},
{
"input": "7\n.l.ceon",
"output": "glaceon"
},
{
"input": "7\n..areon",
"output": "flareon"
}
] | 1,680,615,152
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 20
| 46
| 0
|
n = int(input())
s = input()
masks = ['vaporeon', 'jolteon', 'flareon', 'espeon', 'umbreon', 'leafeon', 'glaceon', 'sylveon']
for mask in masks:
if len(mask) == n:
for i in range(n):
if s[i] != '.' and s[i] != mask[i]:
break
else:
print(mask)
break
|
Title: Eevee
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You are solving the crossword problem K from IPSC 2014. You solved all the clues except for one: who does Eevee evolve into? You are not very into pokemons, but quick googling helped you find out, that Eevee can evolve into eight different pokemons: Vaporeon, Jolteon, Flareon, Espeon, Umbreon, Leafeon, Glaceon, and Sylveon.
You know the length of the word in the crossword, and you already know some letters. Designers of the crossword made sure that the answer is unambiguous, so you can assume that exactly one pokemon out of the 8 that Eevee evolves into fits the length and the letters given. Your task is to find it.
Input Specification:
First line contains an integer *n* (6<=≤<=*n*<=≤<=8) – the length of the string.
Next line contains a string consisting of *n* characters, each of which is either a lower case english letter (indicating a known letter) or a dot character (indicating an empty cell in the crossword).
Output Specification:
Print a name of the pokemon that Eevee can evolve into that matches the pattern in the input. Use lower case letters only to print the name (in particular, do not capitalize the first letter).
Demo Input:
['7\nj......\n', '7\n...feon\n', '7\n.l.r.o.\n']
Demo Output:
['jolteon\n', 'leafeon\n', 'flareon\n']
Note:
Here's a set of names in a form you can paste into your solution:
["vaporeon", "jolteon", "flareon", "espeon", "umbreon", "leafeon", "glaceon", "sylveon"]
{"vaporeon", "jolteon", "flareon", "espeon", "umbreon", "leafeon", "glaceon", "sylveon"}
|
```python
n = int(input())
s = input()
masks = ['vaporeon', 'jolteon', 'flareon', 'espeon', 'umbreon', 'leafeon', 'glaceon', 'sylveon']
for mask in masks:
if len(mask) == n:
for i in range(n):
if s[i] != '.' and s[i] != mask[i]:
break
else:
print(mask)
break
```
| 3
|
|
556
|
A
|
Case of the Zeros and Ones
|
PROGRAMMING
| 900
|
[
"greedy"
] | null | null |
Andrewid the Android is a galaxy-famous detective. In his free time he likes to think about strings containing zeros and ones.
Once he thought about a string of length *n* consisting of zeroes and ones. Consider the following operation: we choose any two adjacent positions in the string, and if one them contains 0, and the other contains 1, then we are allowed to remove these two digits from the string, obtaining a string of length *n*<=-<=2 as a result.
Now Andreid thinks about what is the minimum length of the string that can remain after applying the described operation several times (possibly, zero)? Help him to calculate this number.
|
First line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=2·105), the length of the string that Andreid has.
The second line contains the string of length *n* consisting only from zeros and ones.
|
Output the minimum length of the string that may remain after applying the described operations several times.
|
[
"4\n1100\n",
"5\n01010\n",
"8\n11101111\n"
] |
[
"0\n",
"1\n",
"6\n"
] |
In the first sample test it is possible to change the string like the following: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/10df55364c21c6e8d5da31b6ab6f6294c4fc26b3.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
In the second sample test it is possible to change the string like the following: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/19ec5dcd85f0b5cf757aa076ace72df39634de2d.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
In the third sample test it is possible to change the string like the following: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/dc34a159e4230375fa325555527ebc748811f188.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
| 250
|
[
{
"input": "4\n1100",
"output": "0"
},
{
"input": "5\n01010",
"output": "1"
},
{
"input": "8\n11101111",
"output": "6"
},
{
"input": "1\n0",
"output": "1"
},
{
"input": "1\n1",
"output": "1"
},
{
"input": "2\n00",
"output": "2"
},
{
"input": "2\n01",
"output": "0"
},
{
"input": "2\n10",
"output": "0"
},
{
"input": "2\n11",
"output": "2"
},
{
"input": "3\n001",
"output": "1"
},
{
"input": "6\n110110",
"output": "2"
},
{
"input": "7\n0000011",
"output": "3"
},
{
"input": "6\n110010",
"output": "0"
},
{
"input": "6\n110100",
"output": "0"
},
{
"input": "3\n100",
"output": "1"
},
{
"input": "6\n010111",
"output": "2"
},
{
"input": "8\n01011100",
"output": "0"
},
{
"input": "6\n001011",
"output": "0"
},
{
"input": "7\n1110000",
"output": "1"
},
{
"input": "9\n011111101",
"output": "5"
}
] | 1,678,192,564
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 49
| 62
| 409,600
|
n = int(input())
s = input()
ones,zeros = s.count('1'),s.count('0')
print(n-(min(ones,zeros)*2))
|
Title: Case of the Zeros and Ones
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Andrewid the Android is a galaxy-famous detective. In his free time he likes to think about strings containing zeros and ones.
Once he thought about a string of length *n* consisting of zeroes and ones. Consider the following operation: we choose any two adjacent positions in the string, and if one them contains 0, and the other contains 1, then we are allowed to remove these two digits from the string, obtaining a string of length *n*<=-<=2 as a result.
Now Andreid thinks about what is the minimum length of the string that can remain after applying the described operation several times (possibly, zero)? Help him to calculate this number.
Input Specification:
First line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=2·105), the length of the string that Andreid has.
The second line contains the string of length *n* consisting only from zeros and ones.
Output Specification:
Output the minimum length of the string that may remain after applying the described operations several times.
Demo Input:
['4\n1100\n', '5\n01010\n', '8\n11101111\n']
Demo Output:
['0\n', '1\n', '6\n']
Note:
In the first sample test it is possible to change the string like the following: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/10df55364c21c6e8d5da31b6ab6f6294c4fc26b3.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
In the second sample test it is possible to change the string like the following: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/19ec5dcd85f0b5cf757aa076ace72df39634de2d.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
In the third sample test it is possible to change the string like the following: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/dc34a159e4230375fa325555527ebc748811f188.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
|
```python
n = int(input())
s = input()
ones,zeros = s.count('1'),s.count('0')
print(n-(min(ones,zeros)*2))
```
| 3
|
|
2
|
A
|
Winner
|
PROGRAMMING
| 1,500
|
[
"hashing",
"implementation"
] |
A. Winner
|
1
|
64
|
The winner of the card game popular in Berland "Berlogging" is determined according to the following rules. If at the end of the game there is only one player with the maximum number of points, he is the winner. The situation becomes more difficult if the number of such players is more than one. During each round a player gains or loses a particular number of points. In the course of the game the number of points is registered in the line "name score", where name is a player's name, and score is the number of points gained in this round, which is an integer number. If score is negative, this means that the player has lost in the round. So, if two or more players have the maximum number of points (say, it equals to *m*) at the end of the game, than wins the one of them who scored at least *m* points first. Initially each player has 0 points. It's guaranteed that at the end of the game at least one player has a positive number of points.
|
The first line contains an integer number *n* (1<=<=≤<=<=*n*<=<=≤<=<=1000), *n* is the number of rounds played. Then follow *n* lines, containing the information about the rounds in "name score" format in chronological order, where name is a string of lower-case Latin letters with the length from 1 to 32, and score is an integer number between -1000 and 1000, inclusive.
|
Print the name of the winner.
|
[
"3\nmike 3\nandrew 5\nmike 2\n",
"3\nandrew 3\nandrew 2\nmike 5\n"
] |
[
"andrew\n",
"andrew\n"
] |
none
| 0
|
[
{
"input": "3\nmike 3\nandrew 5\nmike 2",
"output": "andrew"
},
{
"input": "3\nandrew 3\nandrew 2\nmike 5",
"output": "andrew"
},
{
"input": "5\nkaxqybeultn -352\nmgochgrmeyieyskhuourfg -910\nkaxqybeultn 691\nmgochgrmeyieyskhuourfg -76\nkaxqybeultn -303",
"output": "kaxqybeultn"
},
{
"input": "7\nksjuuerbnlklcfdjeyq 312\ndthjlkrvvbyahttifpdewvyslsh -983\nksjuuerbnlklcfdjeyq 268\ndthjlkrvvbyahttifpdewvyslsh 788\nksjuuerbnlklcfdjeyq -79\nksjuuerbnlklcfdjeyq -593\nksjuuerbnlklcfdjeyq 734",
"output": "ksjuuerbnlklcfdjeyq"
},
{
"input": "12\natrtthfpcvishmqbakprquvnejr 185\natrtthfpcvishmqbakprquvnejr -699\natrtthfpcvishmqbakprquvnejr -911\natrtthfpcvishmqbakprquvnejr -220\nfcgslzkicjrpbqaifgweyzreajjfdo 132\nfcgslzkicjrpbqaifgweyzreajjfdo -242\nm 177\nm -549\natrtthfpcvishmqbakprquvnejr -242\nm 38\natrtthfpcvishmqbakprquvnejr -761\nfcgslzkicjrpbqaifgweyzreajjfdo 879",
"output": "fcgslzkicjrpbqaifgweyzreajjfdo"
},
{
"input": "15\naawtvezfntstrcpgbzjbf 681\nzhahpvqiptvksnbjkdvmknb -74\naawtvezfntstrcpgbzjbf 661\njpdwmyke 474\naawtvezfntstrcpgbzjbf -547\naawtvezfntstrcpgbzjbf 600\nzhahpvqiptvksnbjkdvmknb -11\njpdwmyke 711\nbjmj 652\naawtvezfntstrcpgbzjbf -1000\naawtvezfntstrcpgbzjbf -171\nbjmj -302\naawtvezfntstrcpgbzjbf 961\nzhahpvqiptvksnbjkdvmknb 848\nbjmj -735",
"output": "aawtvezfntstrcpgbzjbf"
},
{
"input": "17\nqdplghhx -649\nivhgbxiv 424\nivhgbxiv -72\nivhgbxiv 479\nugowfouebkelargxylsxn 83\nugowfouebkelargxylsxn -840\nivhgbxiv 382\nqdplghhx -904\nivhgbxiv -710\nugowfouebkelargxylsxn -838\nqdplghhx -974\nqdplghhx 571\nivhgbxiv -145\nugowfouebkelargxylsxn -788\nivhgbxiv 209\nivhgbxiv 420\nqdplghhx -158",
"output": "ivhgbxiv"
}
] | 1,620,703,681
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 20
| 186
| 20,172,800
|
import sys
def answer(n, name, score):
d = dict()
for i in range(n):
if name[i] in d:
d[name[i]] += score[i]
else:
d[name[i]] = score[i]
mx_val = max(d.values())
winners = set()
for k in d:
if d[k] == mx_val:
winners.add(k)
d = dict()
for w in winners:
d[w] = 0
for i in range(n):
if name[i] not in winners:
continue
d[name[i]] += score[i]
if d[name[i]] >= mx_val:
return name[i]
def main():
n = int(sys.stdin.readline())
name = ['x' for _ in range(n)]
score = [0 for _ in range(n)]
for i in range(n):
name[i], score[i] = sys.stdin.readline().split()
score[i] = int(score[i])
print(answer(n, name, score))
return
main()
|
Title: Winner
Time Limit: 1 seconds
Memory Limit: 64 megabytes
Problem Description:
The winner of the card game popular in Berland "Berlogging" is determined according to the following rules. If at the end of the game there is only one player with the maximum number of points, he is the winner. The situation becomes more difficult if the number of such players is more than one. During each round a player gains or loses a particular number of points. In the course of the game the number of points is registered in the line "name score", where name is a player's name, and score is the number of points gained in this round, which is an integer number. If score is negative, this means that the player has lost in the round. So, if two or more players have the maximum number of points (say, it equals to *m*) at the end of the game, than wins the one of them who scored at least *m* points first. Initially each player has 0 points. It's guaranteed that at the end of the game at least one player has a positive number of points.
Input Specification:
The first line contains an integer number *n* (1<=<=≤<=<=*n*<=<=≤<=<=1000), *n* is the number of rounds played. Then follow *n* lines, containing the information about the rounds in "name score" format in chronological order, where name is a string of lower-case Latin letters with the length from 1 to 32, and score is an integer number between -1000 and 1000, inclusive.
Output Specification:
Print the name of the winner.
Demo Input:
['3\nmike 3\nandrew 5\nmike 2\n', '3\nandrew 3\nandrew 2\nmike 5\n']
Demo Output:
['andrew\n', 'andrew\n']
Note:
none
|
```python
import sys
def answer(n, name, score):
d = dict()
for i in range(n):
if name[i] in d:
d[name[i]] += score[i]
else:
d[name[i]] = score[i]
mx_val = max(d.values())
winners = set()
for k in d:
if d[k] == mx_val:
winners.add(k)
d = dict()
for w in winners:
d[w] = 0
for i in range(n):
if name[i] not in winners:
continue
d[name[i]] += score[i]
if d[name[i]] >= mx_val:
return name[i]
def main():
n = int(sys.stdin.readline())
name = ['x' for _ in range(n)]
score = [0 for _ in range(n)]
for i in range(n):
name[i], score[i] = sys.stdin.readline().split()
score[i] = int(score[i])
print(answer(n, name, score))
return
main()
```
| 3.756701
|
92
|
A
|
Chips
|
PROGRAMMING
| 800
|
[
"implementation",
"math"
] |
A. Chips
|
2
|
256
|
There are *n* walruses sitting in a circle. All of them are numbered in the clockwise order: the walrus number 2 sits to the left of the walrus number 1, the walrus number 3 sits to the left of the walrus number 2, ..., the walrus number 1 sits to the left of the walrus number *n*.
The presenter has *m* chips. The presenter stands in the middle of the circle and starts giving the chips to the walruses starting from walrus number 1 and moving clockwise. The walrus number *i* gets *i* chips. If the presenter can't give the current walrus the required number of chips, then the presenter takes the remaining chips and the process ends. Determine by the given *n* and *m* how many chips the presenter will get in the end.
|
The first line contains two integers *n* and *m* (1<=≤<=*n*<=≤<=50, 1<=≤<=*m*<=≤<=104) — the number of walruses and the number of chips correspondingly.
|
Print the number of chips the presenter ended up with.
|
[
"4 11\n",
"17 107\n",
"3 8\n"
] |
[
"0\n",
"2\n",
"1\n"
] |
In the first sample the presenter gives one chip to the walrus number 1, two chips to the walrus number 2, three chips to the walrus number 3, four chips to the walrus number 4, then again one chip to the walrus number 1. After that the presenter runs out of chips. He can't give anything to the walrus number 2 and the process finishes.
In the third sample the presenter gives one chip to the walrus number 1, two chips to the walrus number 2, three chips to the walrus number 3, then again one chip to the walrus number 1. The presenter has one chip left and he can't give two chips to the walrus number 2, that's why the presenter takes the last chip.
| 500
|
[
{
"input": "4 11",
"output": "0"
},
{
"input": "17 107",
"output": "2"
},
{
"input": "3 8",
"output": "1"
},
{
"input": "46 7262",
"output": "35"
},
{
"input": "32 6864",
"output": "0"
},
{
"input": "36 6218",
"output": "14"
},
{
"input": "25 9712",
"output": "11"
},
{
"input": "9 7601",
"output": "5"
},
{
"input": "1 9058",
"output": "0"
},
{
"input": "29 7772",
"output": "26"
},
{
"input": "45 9465",
"output": "14"
},
{
"input": "46 866",
"output": "5"
},
{
"input": "29 1241",
"output": "20"
},
{
"input": "17 4248",
"output": "12"
},
{
"input": "20 8082",
"output": "11"
},
{
"input": "50 9555",
"output": "0"
},
{
"input": "4 7455",
"output": "2"
},
{
"input": "36 880",
"output": "4"
},
{
"input": "24 7440",
"output": "9"
},
{
"input": "44 7888",
"output": "12"
},
{
"input": "1 1",
"output": "0"
},
{
"input": "50 10000",
"output": "40"
},
{
"input": "1 10000",
"output": "0"
},
{
"input": "50 1",
"output": "0"
},
{
"input": "50 50",
"output": "5"
}
] | 1,672,755,987
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 25
| 92
| 0
|
n, m = map(int, input().split())
counter = 1
while(True):
if counter > n:
counter = 1
if m < counter or m == 0:
break
else:
m -= counter
counter += 1
print(m)
|
Title: Chips
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
There are *n* walruses sitting in a circle. All of them are numbered in the clockwise order: the walrus number 2 sits to the left of the walrus number 1, the walrus number 3 sits to the left of the walrus number 2, ..., the walrus number 1 sits to the left of the walrus number *n*.
The presenter has *m* chips. The presenter stands in the middle of the circle and starts giving the chips to the walruses starting from walrus number 1 and moving clockwise. The walrus number *i* gets *i* chips. If the presenter can't give the current walrus the required number of chips, then the presenter takes the remaining chips and the process ends. Determine by the given *n* and *m* how many chips the presenter will get in the end.
Input Specification:
The first line contains two integers *n* and *m* (1<=≤<=*n*<=≤<=50, 1<=≤<=*m*<=≤<=104) — the number of walruses and the number of chips correspondingly.
Output Specification:
Print the number of chips the presenter ended up with.
Demo Input:
['4 11\n', '17 107\n', '3 8\n']
Demo Output:
['0\n', '2\n', '1\n']
Note:
In the first sample the presenter gives one chip to the walrus number 1, two chips to the walrus number 2, three chips to the walrus number 3, four chips to the walrus number 4, then again one chip to the walrus number 1. After that the presenter runs out of chips. He can't give anything to the walrus number 2 and the process finishes.
In the third sample the presenter gives one chip to the walrus number 1, two chips to the walrus number 2, three chips to the walrus number 3, then again one chip to the walrus number 1. The presenter has one chip left and he can't give two chips to the walrus number 2, that's why the presenter takes the last chip.
|
```python
n, m = map(int, input().split())
counter = 1
while(True):
if counter > n:
counter = 1
if m < counter or m == 0:
break
else:
m -= counter
counter += 1
print(m)
```
| 3.977
|
47
|
A
|
Triangular numbers
|
PROGRAMMING
| 800
|
[
"brute force",
"math"
] |
A. Triangular numbers
|
2
|
256
|
A triangular number is the number of dots in an equilateral triangle uniformly filled with dots. For example, three dots can be arranged in a triangle; thus three is a triangular number. The *n*-th triangular number is the number of dots in a triangle with *n* dots on a side. . You can learn more about these numbers from Wikipedia (http://en.wikipedia.org/wiki/Triangular_number).
Your task is to find out if a given integer is a triangular number.
|
The first line contains the single number *n* (1<=≤<=*n*<=≤<=500) — the given integer.
|
If the given integer is a triangular number output YES, otherwise output NO.
|
[
"1\n",
"2\n",
"3\n"
] |
[
"YES\n",
"NO\n",
"YES\n"
] |
none
| 500
|
[
{
"input": "1",
"output": "YES"
},
{
"input": "2",
"output": "NO"
},
{
"input": "3",
"output": "YES"
},
{
"input": "4",
"output": "NO"
},
{
"input": "5",
"output": "NO"
},
{
"input": "6",
"output": "YES"
},
{
"input": "7",
"output": "NO"
},
{
"input": "8",
"output": "NO"
},
{
"input": "12",
"output": "NO"
},
{
"input": "10",
"output": "YES"
},
{
"input": "11",
"output": "NO"
},
{
"input": "9",
"output": "NO"
},
{
"input": "14",
"output": "NO"
},
{
"input": "15",
"output": "YES"
},
{
"input": "16",
"output": "NO"
},
{
"input": "20",
"output": "NO"
},
{
"input": "21",
"output": "YES"
},
{
"input": "22",
"output": "NO"
},
{
"input": "121",
"output": "NO"
},
{
"input": "135",
"output": "NO"
},
{
"input": "136",
"output": "YES"
},
{
"input": "137",
"output": "NO"
},
{
"input": "152",
"output": "NO"
},
{
"input": "153",
"output": "YES"
},
{
"input": "154",
"output": "NO"
},
{
"input": "171",
"output": "YES"
},
{
"input": "189",
"output": "NO"
},
{
"input": "190",
"output": "YES"
},
{
"input": "191",
"output": "NO"
},
{
"input": "210",
"output": "YES"
},
{
"input": "211",
"output": "NO"
},
{
"input": "231",
"output": "YES"
},
{
"input": "232",
"output": "NO"
},
{
"input": "252",
"output": "NO"
},
{
"input": "253",
"output": "YES"
},
{
"input": "254",
"output": "NO"
},
{
"input": "275",
"output": "NO"
},
{
"input": "276",
"output": "YES"
},
{
"input": "277",
"output": "NO"
},
{
"input": "299",
"output": "NO"
},
{
"input": "300",
"output": "YES"
},
{
"input": "301",
"output": "NO"
},
{
"input": "324",
"output": "NO"
},
{
"input": "325",
"output": "YES"
},
{
"input": "326",
"output": "NO"
},
{
"input": "350",
"output": "NO"
},
{
"input": "351",
"output": "YES"
},
{
"input": "352",
"output": "NO"
},
{
"input": "377",
"output": "NO"
},
{
"input": "378",
"output": "YES"
},
{
"input": "406",
"output": "YES"
},
{
"input": "434",
"output": "NO"
},
{
"input": "435",
"output": "YES"
},
{
"input": "464",
"output": "NO"
},
{
"input": "465",
"output": "YES"
},
{
"input": "495",
"output": "NO"
},
{
"input": "496",
"output": "YES"
},
{
"input": "497",
"output": "NO"
},
{
"input": "331",
"output": "NO"
},
{
"input": "413",
"output": "NO"
},
{
"input": "177",
"output": "NO"
},
{
"input": "122",
"output": "NO"
},
{
"input": "478",
"output": "NO"
},
{
"input": "188",
"output": "NO"
},
{
"input": "21",
"output": "YES"
},
{
"input": "474",
"output": "NO"
},
{
"input": "21",
"output": "YES"
},
{
"input": "48",
"output": "NO"
},
{
"input": "498",
"output": "NO"
},
{
"input": "499",
"output": "NO"
},
{
"input": "500",
"output": "NO"
}
] | 1,543,472,254
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 71
| 248
| 0
|
i=1
n=int(input())
for x in range(1,100):
a=(x*(x+1))//2
if(a==n):
print("YES")
quit()
print("NO")
quit()
|
Title: Triangular numbers
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
A triangular number is the number of dots in an equilateral triangle uniformly filled with dots. For example, three dots can be arranged in a triangle; thus three is a triangular number. The *n*-th triangular number is the number of dots in a triangle with *n* dots on a side. . You can learn more about these numbers from Wikipedia (http://en.wikipedia.org/wiki/Triangular_number).
Your task is to find out if a given integer is a triangular number.
Input Specification:
The first line contains the single number *n* (1<=≤<=*n*<=≤<=500) — the given integer.
Output Specification:
If the given integer is a triangular number output YES, otherwise output NO.
Demo Input:
['1\n', '2\n', '3\n']
Demo Output:
['YES\n', 'NO\n', 'YES\n']
Note:
none
|
```python
i=1
n=int(input())
for x in range(1,100):
a=(x*(x+1))//2
if(a==n):
print("YES")
quit()
print("NO")
quit()
```
| 3.938
|
854
|
A
|
Fraction
|
PROGRAMMING
| 800
|
[
"brute force",
"constructive algorithms",
"math"
] | null | null |
Petya is a big fan of mathematics, especially its part related to fractions. Recently he learned that a fraction is called proper iff its numerator is smaller than its denominator (*a*<=<<=*b*) and that the fraction is called irreducible if its numerator and its denominator are coprime (they do not have positive common divisors except 1).
During his free time, Petya thinks about proper irreducible fractions and converts them to decimals using the calculator. One day he mistakenly pressed addition button (<=+<=) instead of division button (÷) and got sum of numerator and denominator that was equal to *n* instead of the expected decimal notation.
Petya wanted to restore the original fraction, but soon he realized that it might not be done uniquely. That's why he decided to determine maximum possible proper irreducible fraction such that sum of its numerator and denominator equals *n*. Help Petya deal with this problem.
|
In the only line of input there is an integer *n* (3<=≤<=*n*<=≤<=1000), the sum of numerator and denominator of the fraction.
|
Output two space-separated positive integers *a* and *b*, numerator and denominator of the maximum possible proper irreducible fraction satisfying the given sum.
|
[
"3\n",
"4\n",
"12\n"
] |
[
"1 2\n",
"1 3\n",
"5 7\n"
] |
none
| 500
|
[
{
"input": "3",
"output": "1 2"
},
{
"input": "4",
"output": "1 3"
},
{
"input": "12",
"output": "5 7"
},
{
"input": "34",
"output": "15 19"
},
{
"input": "13",
"output": "6 7"
},
{
"input": "11",
"output": "5 6"
},
{
"input": "24",
"output": "11 13"
},
{
"input": "17",
"output": "8 9"
},
{
"input": "10",
"output": "3 7"
},
{
"input": "69",
"output": "34 35"
},
{
"input": "100",
"output": "49 51"
},
{
"input": "57",
"output": "28 29"
},
{
"input": "1000",
"output": "499 501"
},
{
"input": "999",
"output": "499 500"
},
{
"input": "998",
"output": "497 501"
},
{
"input": "997",
"output": "498 499"
},
{
"input": "996",
"output": "497 499"
},
{
"input": "995",
"output": "497 498"
},
{
"input": "994",
"output": "495 499"
},
{
"input": "5",
"output": "2 3"
},
{
"input": "6",
"output": "1 5"
},
{
"input": "8",
"output": "3 5"
},
{
"input": "9",
"output": "4 5"
},
{
"input": "423",
"output": "211 212"
},
{
"input": "876",
"output": "437 439"
},
{
"input": "29",
"output": "14 15"
}
] | 1,541,589,421
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 26
| 109
| 0
|
num=int(input())
if num>=3 and num<=1000:
if num/2==num//2:
a=int((num/2)-1)
b=int(num-a)
while a>=1:
w=2
while w<b:
if a/w==a//w and b/w==b//w:
a=a-1
b=b+1
break
w=w+1
if w==b:
print(str(a)+" "+str(b))
break
else:
a=int(num//2)
b=int(num-a)
while a>=1:
w=2
while w<b:
if a/w==a//w and b/w==b//w:
a=a-1
b=b+1
break
w=w+1
if w==b:
print(str(a)+" "+str(b))
break
|
Title: Fraction
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Petya is a big fan of mathematics, especially its part related to fractions. Recently he learned that a fraction is called proper iff its numerator is smaller than its denominator (*a*<=<<=*b*) and that the fraction is called irreducible if its numerator and its denominator are coprime (they do not have positive common divisors except 1).
During his free time, Petya thinks about proper irreducible fractions and converts them to decimals using the calculator. One day he mistakenly pressed addition button (<=+<=) instead of division button (÷) and got sum of numerator and denominator that was equal to *n* instead of the expected decimal notation.
Petya wanted to restore the original fraction, but soon he realized that it might not be done uniquely. That's why he decided to determine maximum possible proper irreducible fraction such that sum of its numerator and denominator equals *n*. Help Petya deal with this problem.
Input Specification:
In the only line of input there is an integer *n* (3<=≤<=*n*<=≤<=1000), the sum of numerator and denominator of the fraction.
Output Specification:
Output two space-separated positive integers *a* and *b*, numerator and denominator of the maximum possible proper irreducible fraction satisfying the given sum.
Demo Input:
['3\n', '4\n', '12\n']
Demo Output:
['1 2\n', '1 3\n', '5 7\n']
Note:
none
|
```python
num=int(input())
if num>=3 and num<=1000:
if num/2==num//2:
a=int((num/2)-1)
b=int(num-a)
while a>=1:
w=2
while w<b:
if a/w==a//w and b/w==b//w:
a=a-1
b=b+1
break
w=w+1
if w==b:
print(str(a)+" "+str(b))
break
else:
a=int(num//2)
b=int(num-a)
while a>=1:
w=2
while w<b:
if a/w==a//w and b/w==b//w:
a=a-1
b=b+1
break
w=w+1
if w==b:
print(str(a)+" "+str(b))
break
```
| 3
|
|
208
|
A
|
Dubstep
|
PROGRAMMING
| 900
|
[
"strings"
] | null | null |
Vasya works as a DJ in the best Berland nightclub, and he often uses dubstep music in his performance. Recently, he has decided to take a couple of old songs and make dubstep remixes from them.
Let's assume that a song consists of some number of words. To make the dubstep remix of this song, Vasya inserts a certain number of words "WUB" before the first word of the song (the number may be zero), after the last word (the number may be zero), and between words (at least one between any pair of neighbouring words), and then the boy glues together all the words, including "WUB", in one string and plays the song at the club.
For example, a song with words "I AM X" can transform into a dubstep remix as "WUBWUBIWUBAMWUBWUBX" and cannot transform into "WUBWUBIAMWUBX".
Recently, Petya has heard Vasya's new dubstep track, but since he isn't into modern music, he decided to find out what was the initial song that Vasya remixed. Help Petya restore the original song.
|
The input consists of a single non-empty string, consisting only of uppercase English letters, the string's length doesn't exceed 200 characters. It is guaranteed that before Vasya remixed the song, no word contained substring "WUB" in it; Vasya didn't change the word order. It is also guaranteed that initially the song had at least one word.
|
Print the words of the initial song that Vasya used to make a dubsteb remix. Separate the words with a space.
|
[
"WUBWUBABCWUB\n",
"WUBWEWUBAREWUBWUBTHEWUBCHAMPIONSWUBMYWUBFRIENDWUB\n"
] |
[
"ABC ",
"WE ARE THE CHAMPIONS MY FRIEND "
] |
In the first sample: "WUBWUBABCWUB" = "WUB" + "WUB" + "ABC" + "WUB". That means that the song originally consisted of a single word "ABC", and all words "WUB" were added by Vasya.
In the second sample Vasya added a single word "WUB" between all neighbouring words, in the beginning and in the end, except for words "ARE" and "THE" — between them Vasya added two "WUB".
| 500
|
[
{
"input": "WUBWUBABCWUB",
"output": "ABC "
},
{
"input": "WUBWEWUBAREWUBWUBTHEWUBCHAMPIONSWUBMYWUBFRIENDWUB",
"output": "WE ARE THE CHAMPIONS MY FRIEND "
},
{
"input": "WUBWUBWUBSR",
"output": "SR "
},
{
"input": "RWUBWUBWUBLWUB",
"output": "R L "
},
{
"input": "ZJWUBWUBWUBJWUBWUBWUBL",
"output": "ZJ J L "
},
{
"input": "CWUBBWUBWUBWUBEWUBWUBWUBQWUBWUBWUB",
"output": "C B E Q "
},
{
"input": "WUBJKDWUBWUBWBIRAQKFWUBWUBYEWUBWUBWUBWVWUBWUB",
"output": "JKD WBIRAQKF YE WV "
},
{
"input": "WUBKSDHEMIXUJWUBWUBRWUBWUBWUBSWUBWUBWUBHWUBWUBWUB",
"output": "KSDHEMIXUJ R S H "
},
{
"input": "OGWUBWUBWUBXWUBWUBWUBIWUBWUBWUBKOWUBWUB",
"output": "OG X I KO "
},
{
"input": "QWUBQQWUBWUBWUBIWUBWUBWWWUBWUBWUBJOPJPBRH",
"output": "Q QQ I WW JOPJPBRH "
},
{
"input": "VSRNVEATZTLGQRFEGBFPWUBWUBWUBAJWUBWUBWUBPQCHNWUBCWUB",
"output": "VSRNVEATZTLGQRFEGBFP AJ PQCHN C "
},
{
"input": "WUBWUBEWUBWUBWUBIQMJNIQWUBWUBWUBGZZBQZAUHYPWUBWUBWUBPMRWUBWUBWUBDCV",
"output": "E IQMJNIQ GZZBQZAUHYP PMR DCV "
},
{
"input": "WUBWUBWUBFVWUBWUBWUBBPSWUBWUBWUBRXNETCJWUBWUBWUBJDMBHWUBWUBWUBBWUBWUBVWUBWUBB",
"output": "FV BPS RXNETCJ JDMBH B V B "
},
{
"input": "WUBWUBWUBFBQWUBWUBWUBIDFSYWUBWUBWUBCTWDMWUBWUBWUBSXOWUBWUBWUBQIWUBWUBWUBL",
"output": "FBQ IDFSY CTWDM SXO QI L "
},
{
"input": "IWUBWUBQLHDWUBYIIKZDFQWUBWUBWUBCXWUBWUBUWUBWUBWUBKWUBWUBWUBNL",
"output": "I QLHD YIIKZDFQ CX U K NL "
},
{
"input": "KWUBUPDYXGOKUWUBWUBWUBAGOAHWUBIZDWUBWUBWUBIYWUBWUBWUBVWUBWUBWUBPWUBWUBWUBE",
"output": "K UPDYXGOKU AGOAH IZD IY V P E "
},
{
"input": "WUBWUBOWUBWUBWUBIPVCQAFWYWUBWUBWUBQWUBWUBWUBXHDKCPYKCTWWYWUBWUBWUBVWUBWUBWUBFZWUBWUB",
"output": "O IPVCQAFWY Q XHDKCPYKCTWWY V FZ "
},
{
"input": "PAMJGYWUBWUBWUBXGPQMWUBWUBWUBTKGSXUYWUBWUBWUBEWUBWUBWUBNWUBWUBWUBHWUBWUBWUBEWUBWUB",
"output": "PAMJGY XGPQM TKGSXUY E N H E "
},
{
"input": "WUBYYRTSMNWUWUBWUBWUBCWUBWUBWUBCWUBWUBWUBFSYUINDWOBVWUBWUBWUBFWUBWUBWUBAUWUBWUBWUBVWUBWUBWUBJB",
"output": "YYRTSMNWU C C FSYUINDWOBV F AU V JB "
},
{
"input": "WUBWUBYGPYEYBNRTFKOQCWUBWUBWUBUYGRTQEGWLFYWUBWUBWUBFVWUBHPWUBWUBWUBXZQWUBWUBWUBZDWUBWUBWUBM",
"output": "YGPYEYBNRTFKOQC UYGRTQEGWLFY FV HP XZQ ZD M "
},
{
"input": "WUBZVMJWUBWUBWUBFOIMJQWKNZUBOFOFYCCWUBWUBWUBAUWWUBRDRADWUBWUBWUBCHQVWUBWUBWUBKFTWUBWUBWUBW",
"output": "ZVMJ FOIMJQWKNZUBOFOFYCC AUW RDRAD CHQV KFT W "
},
{
"input": "WUBWUBZBKOKHQLGKRVIMZQMQNRWUBWUBWUBDACWUBWUBNZHFJMPEYKRVSWUBWUBWUBPPHGAVVPRZWUBWUBWUBQWUBWUBAWUBG",
"output": "ZBKOKHQLGKRVIMZQMQNR DAC NZHFJMPEYKRVS PPHGAVVPRZ Q A G "
},
{
"input": "WUBWUBJWUBWUBWUBNFLWUBWUBWUBGECAWUBYFKBYJWTGBYHVSSNTINKWSINWSMAWUBWUBWUBFWUBWUBWUBOVWUBWUBLPWUBWUBWUBN",
"output": "J NFL GECA YFKBYJWTGBYHVSSNTINKWSINWSMA F OV LP N "
},
{
"input": "WUBWUBLCWUBWUBWUBZGEQUEATJVIXETVTWUBWUBWUBEXMGWUBWUBWUBRSWUBWUBWUBVWUBWUBWUBTAWUBWUBWUBCWUBWUBWUBQG",
"output": "LC ZGEQUEATJVIXETVT EXMG RS V TA C QG "
},
{
"input": "WUBMPWUBWUBWUBORWUBWUBDLGKWUBWUBWUBVVZQCAAKVJTIKWUBWUBWUBTJLUBZJCILQDIFVZWUBWUBYXWUBWUBWUBQWUBWUBWUBLWUB",
"output": "MP OR DLGK VVZQCAAKVJTIK TJLUBZJCILQDIFVZ YX Q L "
},
{
"input": "WUBNXOLIBKEGXNWUBWUBWUBUWUBGITCNMDQFUAOVLWUBWUBWUBAIJDJZJHFMPVTPOXHPWUBWUBWUBISCIOWUBWUBWUBGWUBWUBWUBUWUB",
"output": "NXOLIBKEGXN U GITCNMDQFUAOVL AIJDJZJHFMPVTPOXHP ISCIO G U "
},
{
"input": "WUBWUBNMMWCZOLYPNBELIYVDNHJUNINWUBWUBWUBDXLHYOWUBWUBWUBOJXUWUBWUBWUBRFHTGJCEFHCGWARGWUBWUBWUBJKWUBWUBSJWUBWUB",
"output": "NMMWCZOLYPNBELIYVDNHJUNIN DXLHYO OJXU RFHTGJCEFHCGWARG JK SJ "
},
{
"input": "SGWLYSAUJOJBNOXNWUBWUBWUBBOSSFWKXPDPDCQEWUBWUBWUBDIRZINODWUBWUBWUBWWUBWUBWUBPPHWUBWUBWUBRWUBWUBWUBQWUBWUBWUBJWUB",
"output": "SGWLYSAUJOJBNOXN BOSSFWKXPDPDCQE DIRZINOD W PPH R Q J "
},
{
"input": "TOWUBWUBWUBGBTBNWUBWUBWUBJVIOJBIZFUUYHUAIEBQLQXPQKZJMPTCWBKPOSAWUBWUBWUBSWUBWUBWUBTOLVXWUBWUBWUBNHWUBWUBWUBO",
"output": "TO GBTBN JVIOJBIZFUUYHUAIEBQLQXPQKZJMPTCWBKPOSA S TOLVX NH O "
},
{
"input": "WUBWUBWSPLAYSZSAUDSWUBWUBWUBUWUBWUBWUBKRWUBWUBWUBRSOKQMZFIYZQUWUBWUBWUBELSHUWUBWUBWUBUKHWUBWUBWUBQXEUHQWUBWUBWUBBWUBWUBWUBR",
"output": "WSPLAYSZSAUDS U KR RSOKQMZFIYZQU ELSHU UKH QXEUHQ B R "
},
{
"input": "WUBXEMWWVUHLSUUGRWUBWUBWUBAWUBXEGILZUNKWUBWUBWUBJDHHKSWUBWUBWUBDTSUYSJHWUBWUBWUBPXFWUBMOHNJWUBWUBWUBZFXVMDWUBWUBWUBZMWUBWUB",
"output": "XEMWWVUHLSUUGR A XEGILZUNK JDHHKS DTSUYSJH PXF MOHNJ ZFXVMD ZM "
},
{
"input": "BMBWUBWUBWUBOQKWUBWUBWUBPITCIHXHCKLRQRUGXJWUBWUBWUBVWUBWUBWUBJCWUBWUBWUBQJPWUBWUBWUBBWUBWUBWUBBMYGIZOOXWUBWUBWUBTAGWUBWUBHWUB",
"output": "BMB OQK PITCIHXHCKLRQRUGXJ V JC QJP B BMYGIZOOX TAG H "
},
{
"input": "CBZNWUBWUBWUBNHWUBWUBWUBYQSYWUBWUBWUBMWUBWUBWUBXRHBTMWUBWUBWUBPCRCWUBWUBWUBTZUYLYOWUBWUBWUBCYGCWUBWUBWUBCLJWUBWUBWUBSWUBWUBWUB",
"output": "CBZN NH YQSY M XRHBTM PCRC TZUYLYO CYGC CLJ S "
},
{
"input": "DPDWUBWUBWUBEUQKWPUHLTLNXHAEKGWUBRRFYCAYZFJDCJLXBAWUBWUBWUBHJWUBOJWUBWUBWUBNHBJEYFWUBWUBWUBRWUBWUBWUBSWUBWWUBWUBWUBXDWUBWUBWUBJWUB",
"output": "DPD EUQKWPUHLTLNXHAEKG RRFYCAYZFJDCJLXBA HJ OJ NHBJEYF R S W XD J "
},
{
"input": "WUBWUBWUBISERPQITVIYERSCNWUBWUBWUBQWUBWUBWUBDGSDIPWUBWUBWUBCAHKDZWEXBIBJVVSKKVQJWUBWUBWUBKIWUBWUBWUBCWUBWUBWUBAWUBWUBWUBPWUBWUBWUBHWUBWUBWUBF",
"output": "ISERPQITVIYERSCN Q DGSDIP CAHKDZWEXBIBJVVSKKVQJ KI C A P H F "
},
{
"input": "WUBWUBWUBIWUBWUBLIKNQVWUBWUBWUBPWUBWUBWUBHWUBWUBWUBMWUBWUBWUBDPRSWUBWUBWUBBSAGYLQEENWXXVWUBWUBWUBXMHOWUBWUBWUBUWUBWUBWUBYRYWUBWUBWUBCWUBWUBWUBY",
"output": "I LIKNQV P H M DPRS BSAGYLQEENWXXV XMHO U YRY C Y "
},
{
"input": "WUBWUBWUBMWUBWUBWUBQWUBWUBWUBITCFEYEWUBWUBWUBHEUWGNDFNZGWKLJWUBWUBWUBMZPWUBWUBWUBUWUBWUBWUBBWUBWUBWUBDTJWUBHZVIWUBWUBWUBPWUBFNHHWUBWUBWUBVTOWUB",
"output": "M Q ITCFEYE HEUWGNDFNZGWKLJ MZP U B DTJ HZVI P FNHH VTO "
},
{
"input": "WUBWUBNDNRFHYJAAUULLHRRDEDHYFSRXJWUBWUBWUBMUJVDTIRSGYZAVWKRGIFWUBWUBWUBHMZWUBWUBWUBVAIWUBWUBWUBDDKJXPZRGWUBWUBWUBSGXWUBWUBWUBIFKWUBWUBWUBUWUBWUBWUBW",
"output": "NDNRFHYJAAUULLHRRDEDHYFSRXJ MUJVDTIRSGYZAVWKRGIF HMZ VAI DDKJXPZRG SGX IFK U W "
},
{
"input": "WUBOJMWRSLAXXHQRTPMJNCMPGWUBWUBWUBNYGMZIXNLAKSQYWDWUBWUBWUBXNIWUBWUBWUBFWUBWUBWUBXMBWUBWUBWUBIWUBWUBWUBINWUBWUBWUBWDWUBWUBWUBDDWUBWUBWUBD",
"output": "OJMWRSLAXXHQRTPMJNCMPG NYGMZIXNLAKSQYWD XNI F XMB I IN WD DD D "
},
{
"input": "WUBWUBWUBREHMWUBWUBWUBXWUBWUBWUBQASNWUBWUBWUBNLSMHLCMTICWUBWUBWUBVAWUBWUBWUBHNWUBWUBWUBNWUBWUBWUBUEXLSFOEULBWUBWUBWUBXWUBWUBWUBJWUBWUBWUBQWUBWUBWUBAWUBWUB",
"output": "REHM X QASN NLSMHLCMTIC VA HN N UEXLSFOEULB X J Q A "
},
{
"input": "WUBWUBWUBSTEZTZEFFIWUBWUBWUBSWUBWUBWUBCWUBFWUBHRJPVWUBWUBWUBDYJUWUBWUBWUBPWYDKCWUBWUBWUBCWUBWUBWUBUUEOGCVHHBWUBWUBWUBEXLWUBWUBWUBVCYWUBWUBWUBMWUBWUBWUBYWUB",
"output": "STEZTZEFFI S C F HRJPV DYJU PWYDKC C UUEOGCVHHB EXL VCY M Y "
},
{
"input": "WPPNMSQOQIWUBWUBWUBPNQXWUBWUBWUBHWUBWUBWUBNFLWUBWUBWUBGWSGAHVJFNUWUBWUBWUBFWUBWUBWUBWCMLRICFSCQQQTNBWUBWUBWUBSWUBWUBWUBKGWUBWUBWUBCWUBWUBWUBBMWUBWUBWUBRWUBWUB",
"output": "WPPNMSQOQI PNQX H NFL GWSGAHVJFNU F WCMLRICFSCQQQTNB S KG C BM R "
},
{
"input": "YZJOOYITZRARKVFYWUBWUBRZQGWUBWUBWUBUOQWUBWUBWUBIWUBWUBWUBNKVDTBOLETKZISTWUBWUBWUBWLWUBQQFMMGSONZMAWUBZWUBWUBWUBQZUXGCWUBWUBWUBIRZWUBWUBWUBLTTVTLCWUBWUBWUBY",
"output": "YZJOOYITZRARKVFY RZQG UOQ I NKVDTBOLETKZIST WL QQFMMGSONZMA Z QZUXGC IRZ LTTVTLC Y "
},
{
"input": "WUBCAXNCKFBVZLGCBWCOAWVWOFKZVQYLVTWUBWUBWUBNLGWUBWUBWUBAMGDZBDHZMRMQMDLIRMIWUBWUBWUBGAJSHTBSWUBWUBWUBCXWUBWUBWUBYWUBZLXAWWUBWUBWUBOHWUBWUBWUBZWUBWUBWUBGBWUBWUBWUBE",
"output": "CAXNCKFBVZLGCBWCOAWVWOFKZVQYLVT NLG AMGDZBDHZMRMQMDLIRMI GAJSHTBS CX Y ZLXAW OH Z GB E "
},
{
"input": "WUBWUBCHXSOWTSQWUBWUBWUBCYUZBPBWUBWUBWUBSGWUBWUBWKWORLRRLQYUUFDNWUBWUBWUBYYGOJNEVEMWUBWUBWUBRWUBWUBWUBQWUBWUBWUBIHCKWUBWUBWUBKTWUBWUBWUBRGSNTGGWUBWUBWUBXCXWUBWUBWUBS",
"output": "CHXSOWTSQ CYUZBPB SG WKWORLRRLQYUUFDN YYGOJNEVEM R Q IHCK KT RGSNTGG XCX S "
},
{
"input": "WUBWUBWUBHJHMSBURXTHXWSCHNAIJOWBHLZGJZDHEDSPWBWACCGQWUBWUBWUBXTZKGIITWUBWUBWUBAWUBWUBWUBVNCXPUBCQWUBWUBWUBIDPNAWUBWUBWUBOWUBWUBWUBYGFWUBWUBWUBMQOWUBWUBWUBKWUBWUBWUBAZVWUBWUBWUBEP",
"output": "HJHMSBURXTHXWSCHNAIJOWBHLZGJZDHEDSPWBWACCGQ XTZKGIIT A VNCXPUBCQ IDPNA O YGF MQO K AZV EP "
},
{
"input": "WUBKYDZOYWZSNGMKJSWAXFDFLTHDHEOGTDBNZMSMKZTVWUBWUBWUBLRMIIWUBWUBWUBGWUBWUBWUBADPSWUBWUBWUBANBWUBWUBPCWUBWUBWUBPWUBWUBWUBGPVNLSWIRFORYGAABUXMWUBWUBWUBOWUBWUBWUBNWUBWUBWUBYWUBWUB",
"output": "KYDZOYWZSNGMKJSWAXFDFLTHDHEOGTDBNZMSMKZTV LRMII G ADPS ANB PC P GPVNLSWIRFORYGAABUXM O N Y "
},
{
"input": "REWUBWUBWUBJDWUBWUBWUBNWUBWUBWUBTWWUBWUBWUBWZDOCKKWUBWUBWUBLDPOVBFRCFWUBWUBAKZIBQKEUAZEEWUBWUBWUBLQYPNPFWUBYEWUBWUBWUBFWUBWUBWUBBPWUBWUBWUBAWWUBWUBWUBQWUBWUBWUBBRWUBWUBWUBXJL",
"output": "RE JD N TW WZDOCKK LDPOVBFRCF AKZIBQKEUAZEE LQYPNPF YE F BP AW Q BR XJL "
},
{
"input": "CUFGJDXGMWUBWUBWUBOMWUBWUBWUBSIEWUBWUBWUBJJWKNOWUBWUBWUBYBHVNRNORGYWUBWUBWUBOAGCAWUBWUBWUBSBLBKTPFKPBIWUBWUBWUBJBWUBWUBWUBRMFCJPGWUBWUBWUBDWUBWUBWUBOJOWUBWUBWUBZPWUBWUBWUBMWUBRWUBWUBWUBFXWWUBWUBWUBO",
"output": "CUFGJDXGM OM SIE JJWKNO YBHVNRNORGY OAGCA SBLBKTPFKPBI JB RMFCJPG D OJO ZP M R FXW O "
},
{
"input": "WUBJZGAEXFMFEWMAKGQLUWUBWUBWUBICYTPQWGENELVYWANKUOJYWUBWUBWUBGWUBWUBWUBHYCJVLPHTUPNEGKCDGQWUBWUBWUBOFWUBWUBWUBCPGSOGZBRPRPVJJEWUBWUBWUBDQBCWUBWUBWUBHWUBWUBWUBMHOHYBMATWUBWUBWUBVWUBWUBWUBSWUBWUBWUBKOWU",
"output": "JZGAEXFMFEWMAKGQLU ICYTPQWGENELVYWANKUOJY G HYCJVLPHTUPNEGKCDGQ OF CPGSOGZBRPRPVJJE DQBC H MHOHYBMAT V S KOWU "
},
{
"input": "A",
"output": "A "
},
{
"input": "WUBA",
"output": "A "
},
{
"input": "WUBWUBA",
"output": "A "
},
{
"input": "AWUBWUBWUB",
"output": "A "
},
{
"input": "AWUBBWUBCWUBD",
"output": "A B C D "
},
{
"input": "WUBWWUBWUBWUBUWUBWUBBWUB",
"output": "W U B "
},
{
"input": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA",
"output": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA "
},
{
"input": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWUBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA",
"output": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA "
},
{
"input": "WUWUBBWWUBUB",
"output": "WU BW UB "
},
{
"input": "WUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUABWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUB",
"output": "WUAB "
},
{
"input": "ZWUB",
"output": "Z "
},
{
"input": "WU",
"output": "WU "
},
{
"input": "UB",
"output": "UB "
},
{
"input": "U",
"output": "U "
},
{
"input": "WUBW",
"output": "W "
},
{
"input": "WUBWU",
"output": "WU "
},
{
"input": "WUWUB",
"output": "WU "
},
{
"input": "UBWUB",
"output": "UB "
},
{
"input": "WUWUBUBWUBUWUB",
"output": "WU UB U "
},
{
"input": "WUBWWUBAWUB",
"output": "W A "
},
{
"input": "WUUUUU",
"output": "WUUUUU "
}
] | 1,689,098,642
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 71
| 92
| 0
|
s=str(input())
l=s.split("WUB")
res=""
for i in l:
if len(i)!=0:
res+=i+" "
print(res)
|
Title: Dubstep
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Vasya works as a DJ in the best Berland nightclub, and he often uses dubstep music in his performance. Recently, he has decided to take a couple of old songs and make dubstep remixes from them.
Let's assume that a song consists of some number of words. To make the dubstep remix of this song, Vasya inserts a certain number of words "WUB" before the first word of the song (the number may be zero), after the last word (the number may be zero), and between words (at least one between any pair of neighbouring words), and then the boy glues together all the words, including "WUB", in one string and plays the song at the club.
For example, a song with words "I AM X" can transform into a dubstep remix as "WUBWUBIWUBAMWUBWUBX" and cannot transform into "WUBWUBIAMWUBX".
Recently, Petya has heard Vasya's new dubstep track, but since he isn't into modern music, he decided to find out what was the initial song that Vasya remixed. Help Petya restore the original song.
Input Specification:
The input consists of a single non-empty string, consisting only of uppercase English letters, the string's length doesn't exceed 200 characters. It is guaranteed that before Vasya remixed the song, no word contained substring "WUB" in it; Vasya didn't change the word order. It is also guaranteed that initially the song had at least one word.
Output Specification:
Print the words of the initial song that Vasya used to make a dubsteb remix. Separate the words with a space.
Demo Input:
['WUBWUBABCWUB\n', 'WUBWEWUBAREWUBWUBTHEWUBCHAMPIONSWUBMYWUBFRIENDWUB\n']
Demo Output:
['ABC ', 'WE ARE THE CHAMPIONS MY FRIEND ']
Note:
In the first sample: "WUBWUBABCWUB" = "WUB" + "WUB" + "ABC" + "WUB". That means that the song originally consisted of a single word "ABC", and all words "WUB" were added by Vasya.
In the second sample Vasya added a single word "WUB" between all neighbouring words, in the beginning and in the end, except for words "ARE" and "THE" — between them Vasya added two "WUB".
|
```python
s=str(input())
l=s.split("WUB")
res=""
for i in l:
if len(i)!=0:
res+=i+" "
print(res)
```
| 3
|
|
948
|
A
|
Protect Sheep
|
PROGRAMMING
| 900
|
[
"brute force",
"dfs and similar",
"graphs",
"implementation"
] | null | null |
Bob is a farmer. He has a large pasture with many sheep. Recently, he has lost some of them due to wolf attacks. He thus decided to place some shepherd dogs in such a way that all his sheep are protected.
The pasture is a rectangle consisting of *R*<=×<=*C* cells. Each cell is either empty, contains a sheep, a wolf or a dog. Sheep and dogs always stay in place, but wolves can roam freely around the pasture, by repeatedly moving to the left, right, up or down to a neighboring cell. When a wolf enters a cell with a sheep, it consumes it. However, no wolf can enter a cell with a dog.
Initially there are no dogs. Place dogs onto the pasture in such a way that no wolf can reach any sheep, or determine that it is impossible. Note that since you have many dogs, you do not need to minimize their number.
|
First line contains two integers *R* (1<=≤<=*R*<=≤<=500) and *C* (1<=≤<=*C*<=≤<=500), denoting the number of rows and the numbers of columns respectively.
Each of the following *R* lines is a string consisting of exactly *C* characters, representing one row of the pasture. Here, 'S' means a sheep, 'W' a wolf and '.' an empty cell.
|
If it is impossible to protect all sheep, output a single line with the word "No".
Otherwise, output a line with the word "Yes". Then print *R* lines, representing the pasture after placing dogs. Again, 'S' means a sheep, 'W' a wolf, 'D' is a dog and '.' an empty space. You are not allowed to move, remove or add a sheep or a wolf.
If there are multiple solutions, you may print any of them. You don't have to minimize the number of dogs.
|
[
"6 6\n..S...\n..S.W.\n.S....\n..W...\n...W..\n......\n",
"1 2\nSW\n",
"5 5\n.S...\n...S.\nS....\n...S.\n.S...\n"
] |
[
"Yes\n..SD..\n..SDW.\n.SD...\n.DW...\nDD.W..\n......\n",
"No\n",
"Yes\n.S...\n...S.\nS.D..\n...S.\n.S...\n"
] |
In the first example, we can split the pasture into two halves, one containing wolves and one containing sheep. Note that the sheep at (2,1) is safe, as wolves cannot move diagonally.
In the second example, there are no empty spots to put dogs that would guard the lone sheep.
In the third example, there are no wolves, so the task is very easy. We put a dog in the center to observe the peacefulness of the meadow, but the solution would be correct even without him.
| 500
|
[
{
"input": "1 2\nSW",
"output": "No"
},
{
"input": "10 10\n....W.W.W.\n.........S\n.S.S...S..\nW.......SS\n.W..W.....\n.W...W....\nS..S...S.S\n....W...S.\n..S..S.S.S\nSS.......S",
"output": "Yes\nDDDDWDWDWD\nDDDDDDDDDS\nDSDSDDDSDD\nWDDDDDDDSS\nDWDDWDDDDD\nDWDDDWDDDD\nSDDSDDDSDS\nDDDDWDDDSD\nDDSDDSDSDS\nSSDDDDDDDS"
},
{
"input": "10 10\n....W.W.W.\n...W.....S\n.S.S...S..\nW......WSS\n.W..W.....\n.W...W....\nS..S...S.S\n...WWW..S.\n..S..S.S.S\nSS.......S",
"output": "No"
},
{
"input": "1 50\nW...S..............W.....S..S...............S...W.",
"output": "Yes\nWDDDSDDDDDDDDDDDDDDWDDDDDSDDSDDDDDDDDDDDDDDDSDDDWD"
},
{
"input": "2 4\n...S\n...W",
"output": "No"
},
{
"input": "4 2\n..\n..\n..\nSW",
"output": "No"
},
{
"input": "4 2\n..\n..\n..\nWS",
"output": "No"
},
{
"input": "2 4\n...W\n...S",
"output": "No"
},
{
"input": "50 1\nS\n.\n.\n.\n.\n.\n.\nS\n.\n.\n.\n.\n.\n.\n.\n.\nS\n.\nW\n.\nS\n.\n.\n.\n.\nS\n.\n.\n.\n.\n.\n.\n.\nW\n.\n.\n.\nW\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.",
"output": "Yes\nS\nD\nD\nD\nD\nD\nD\nS\nD\nD\nD\nD\nD\nD\nD\nD\nS\nD\nW\nD\nS\nD\nD\nD\nD\nS\nD\nD\nD\nD\nD\nD\nD\nW\nD\nD\nD\nW\nD\nD\nD\nD\nD\nD\nD\nD\nD\nD\nD\nD"
},
{
"input": "4 4\nW..S\nW..S\nW..S\nW..S",
"output": "Yes\nWDDS\nWDDS\nWDDS\nWDDS"
},
{
"input": "4 4\nSSSS\n....\n....\nWWWW",
"output": "Yes\nSSSS\nDDDD\nDDDD\nWWWW"
},
{
"input": "4 4\nWWWW\n....\n....\nSSSS",
"output": "Yes\nWWWW\nDDDD\nDDDD\nSSSS"
},
{
"input": "4 4\nS..W\nS..W\nS..W\nS..W",
"output": "Yes\nSDDW\nSDDW\nSDDW\nSDDW"
},
{
"input": "1 1\n.",
"output": "Yes\nD"
},
{
"input": "1 1\nW",
"output": "Yes\nW"
},
{
"input": "1 1\nS",
"output": "Yes\nS"
},
{
"input": "4 2\n..\n..\n.W\n.S",
"output": "No"
},
{
"input": "4 2\n..\n..\n.S\n.W",
"output": "No"
},
{
"input": "4 2\n..\n..\nW.\nS.",
"output": "No"
},
{
"input": "4 2\n..\n..\nS.\nW.",
"output": "No"
},
{
"input": "2 4\n....\n..SW",
"output": "No"
},
{
"input": "2 4\n....\n..WS",
"output": "No"
},
{
"input": "1 2\nS.",
"output": "Yes\nSD"
}
] | 1,533,719,906
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 98
| 373
| 1,843,200
|
r,c=list(map(int,input().split()))
a=[]
for i in range(r):
a.append(list(input()))
ans="Yes"
for i in range(r):
for j in range(c-1):
if a[i][j]=='S' and a[i][j+1]=='W' or a[i][j]=='W' and a[i][j+1]=='S':
ans="No"
break
for i in range(r-1):
for j in range(c):
if a[i][j]=='S' and a[i+1][j]=='W' or a[i][j]=='W' and a[i+1][j]=='S':
ans="No"
break
print(ans)
if ans=="Yes":
for i in range(r):
z=""
for p in a[i]:
if p=='.':
z+='D'
else:
z+=p
print(z)
|
Title: Protect Sheep
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Bob is a farmer. He has a large pasture with many sheep. Recently, he has lost some of them due to wolf attacks. He thus decided to place some shepherd dogs in such a way that all his sheep are protected.
The pasture is a rectangle consisting of *R*<=×<=*C* cells. Each cell is either empty, contains a sheep, a wolf or a dog. Sheep and dogs always stay in place, but wolves can roam freely around the pasture, by repeatedly moving to the left, right, up or down to a neighboring cell. When a wolf enters a cell with a sheep, it consumes it. However, no wolf can enter a cell with a dog.
Initially there are no dogs. Place dogs onto the pasture in such a way that no wolf can reach any sheep, or determine that it is impossible. Note that since you have many dogs, you do not need to minimize their number.
Input Specification:
First line contains two integers *R* (1<=≤<=*R*<=≤<=500) and *C* (1<=≤<=*C*<=≤<=500), denoting the number of rows and the numbers of columns respectively.
Each of the following *R* lines is a string consisting of exactly *C* characters, representing one row of the pasture. Here, 'S' means a sheep, 'W' a wolf and '.' an empty cell.
Output Specification:
If it is impossible to protect all sheep, output a single line with the word "No".
Otherwise, output a line with the word "Yes". Then print *R* lines, representing the pasture after placing dogs. Again, 'S' means a sheep, 'W' a wolf, 'D' is a dog and '.' an empty space. You are not allowed to move, remove or add a sheep or a wolf.
If there are multiple solutions, you may print any of them. You don't have to minimize the number of dogs.
Demo Input:
['6 6\n..S...\n..S.W.\n.S....\n..W...\n...W..\n......\n', '1 2\nSW\n', '5 5\n.S...\n...S.\nS....\n...S.\n.S...\n']
Demo Output:
['Yes\n..SD..\n..SDW.\n.SD...\n.DW...\nDD.W..\n......\n', 'No\n', 'Yes\n.S...\n...S.\nS.D..\n...S.\n.S...\n']
Note:
In the first example, we can split the pasture into two halves, one containing wolves and one containing sheep. Note that the sheep at (2,1) is safe, as wolves cannot move diagonally.
In the second example, there are no empty spots to put dogs that would guard the lone sheep.
In the third example, there are no wolves, so the task is very easy. We put a dog in the center to observe the peacefulness of the meadow, but the solution would be correct even without him.
|
```python
r,c=list(map(int,input().split()))
a=[]
for i in range(r):
a.append(list(input()))
ans="Yes"
for i in range(r):
for j in range(c-1):
if a[i][j]=='S' and a[i][j+1]=='W' or a[i][j]=='W' and a[i][j+1]=='S':
ans="No"
break
for i in range(r-1):
for j in range(c):
if a[i][j]=='S' and a[i+1][j]=='W' or a[i][j]=='W' and a[i+1][j]=='S':
ans="No"
break
print(ans)
if ans=="Yes":
for i in range(r):
z=""
for p in a[i]:
if p=='.':
z+='D'
else:
z+=p
print(z)
```
| 3
|
|
817
|
A
|
Treasure Hunt
|
PROGRAMMING
| 1,200
|
[
"implementation",
"math",
"number theory"
] | null | null |
Captain Bill the Hummingbird and his crew recieved an interesting challenge offer. Some stranger gave them a map, potion of teleportation and said that only this potion might help them to reach the treasure.
Bottle with potion has two values *x* and *y* written on it. These values define four moves which can be performed using the potion:
- - - -
Map shows that the position of Captain Bill the Hummingbird is (*x*1,<=*y*1) and the position of the treasure is (*x*2,<=*y*2).
You task is to tell Captain Bill the Hummingbird whether he should accept this challenge or decline. If it is possible for Captain to reach the treasure using the potion then output "YES", otherwise "NO" (without quotes).
The potion can be used infinite amount of times.
|
The first line contains four integer numbers *x*1,<=*y*1,<=*x*2,<=*y*2 (<=-<=105<=≤<=*x*1,<=*y*1,<=*x*2,<=*y*2<=≤<=105) — positions of Captain Bill the Hummingbird and treasure respectively.
The second line contains two integer numbers *x*,<=*y* (1<=≤<=*x*,<=*y*<=≤<=105) — values on the potion bottle.
|
Print "YES" if it is possible for Captain to reach the treasure using the potion, otherwise print "NO" (without quotes).
|
[
"0 0 0 6\n2 3\n",
"1 1 3 6\n1 5\n"
] |
[
"YES\n",
"NO\n"
] |
In the first example there exists such sequence of moves:
1. <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/7c939890fb4ed35688177327dac981bfa9216c00.png" style="max-width: 100.0%;max-height: 100.0%;"/> — the first type of move 1. <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/afbfa42fbac4e0641e7466e3aac74cbbb08ed597.png" style="max-width: 100.0%;max-height: 100.0%;"/> — the third type of move
| 0
|
[
{
"input": "0 0 0 6\n2 3",
"output": "YES"
},
{
"input": "1 1 3 6\n1 5",
"output": "NO"
},
{
"input": "5 4 6 -10\n1 1",
"output": "NO"
},
{
"input": "6 -3 -7 -7\n1 2",
"output": "NO"
},
{
"input": "2 -5 -8 8\n2 1",
"output": "YES"
},
{
"input": "70 -81 -17 80\n87 23",
"output": "YES"
},
{
"input": "41 366 218 -240\n3456 1234",
"output": "NO"
},
{
"input": "-61972 -39646 -42371 -24854\n573 238",
"output": "NO"
},
{
"input": "-84870 -42042 94570 98028\n8972 23345",
"output": "YES"
},
{
"input": "-58533 -50999 -1007 -59169\n8972 23345",
"output": "NO"
},
{
"input": "-100000 -100000 100000 100000\n100000 100000",
"output": "YES"
},
{
"input": "-100000 -100000 100000 100000\n1 1",
"output": "YES"
},
{
"input": "5 2 5 3\n1 1",
"output": "NO"
},
{
"input": "5 5 5 5\n5 5",
"output": "YES"
},
{
"input": "0 0 1000 1000\n1 1",
"output": "YES"
},
{
"input": "0 0 0 1\n1 1",
"output": "NO"
},
{
"input": "1 1 4 4\n2 2",
"output": "NO"
},
{
"input": "100000 100000 99999 99999\n100000 100000",
"output": "NO"
},
{
"input": "1 1 1 6\n1 5",
"output": "NO"
},
{
"input": "2 9 4 0\n2 3",
"output": "YES"
},
{
"input": "0 0 0 9\n2 3",
"output": "NO"
},
{
"input": "14 88 14 88\n100 500",
"output": "YES"
},
{
"input": "-1 0 3 0\n4 4",
"output": "NO"
},
{
"input": "0 0 8 9\n2 3",
"output": "NO"
},
{
"input": "-2 5 7 -6\n1 1",
"output": "YES"
},
{
"input": "3 7 -8 8\n2 2",
"output": "NO"
},
{
"input": "-4 -8 -6 -1\n1 3",
"output": "NO"
},
{
"input": "0 8 6 2\n1 1",
"output": "YES"
},
{
"input": "-5 -2 -8 -2\n1 1",
"output": "NO"
},
{
"input": "1 4 -5 0\n1 1",
"output": "YES"
},
{
"input": "8 -4 4 -7\n1 2",
"output": "NO"
},
{
"input": "5 2 2 4\n2 2",
"output": "NO"
},
{
"input": "2 0 -4 6\n1 2",
"output": "NO"
},
{
"input": "-2 6 -5 -4\n1 2",
"output": "YES"
},
{
"input": "-6 5 10 6\n2 4",
"output": "NO"
},
{
"input": "3 -7 1 -8\n1 2",
"output": "NO"
},
{
"input": "4 1 4 -4\n9 4",
"output": "NO"
},
{
"input": "9 -3 -9 -3\n2 2",
"output": "NO"
},
{
"input": "-6 -6 -10 -5\n6 7",
"output": "NO"
},
{
"input": "-5 -2 2 2\n1 7",
"output": "NO"
},
{
"input": "9 0 8 1\n7 10",
"output": "NO"
},
{
"input": "-1 6 -7 -6\n6 4",
"output": "YES"
},
{
"input": "2 2 -3 -3\n3 1",
"output": "NO"
},
{
"input": "2 -6 7 2\n2 1",
"output": "NO"
},
{
"input": "-6 2 -7 -7\n1 2",
"output": "NO"
},
{
"input": "-5 -5 -1 -5\n2 2",
"output": "YES"
},
{
"input": "0 5 3 -6\n2 2",
"output": "NO"
},
{
"input": "0 -6 2 -1\n1 1",
"output": "NO"
},
{
"input": "-6 6 -5 -4\n1 2",
"output": "YES"
},
{
"input": "7 -7 1 -7\n2 2",
"output": "NO"
},
{
"input": "99966 -99952 -99966 99923\n1 1",
"output": "NO"
},
{
"input": "99921 99980 -99956 -99907\n3 4",
"output": "NO"
},
{
"input": "100000 100000 -100000 -100000\n1 1",
"output": "YES"
},
{
"input": "1 0 2 0\n5 1",
"output": "NO"
},
{
"input": "-3 0 -8 0\n7 2",
"output": "NO"
},
{
"input": "-9 4 -5 -1\n8 2",
"output": "NO"
},
{
"input": "-99999 -100000 100000 100000\n1 1",
"output": "NO"
},
{
"input": "0 0 -100 -100\n2 2",
"output": "YES"
},
{
"input": "9 -5 -3 -2\n1 4",
"output": "NO"
},
{
"input": "1 -10 -10 5\n7 5",
"output": "NO"
},
{
"input": "6 -9 -1 -9\n1 9",
"output": "NO"
}
] | 1,565,745,177
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 61
| 155
| 0
|
a,b,c,d=map(int,input().split())
x,y=map(int,input().split())
dx=abs(c-a)
dy=abs(d-b)
if dx%x==0 and dy%y==0 and (abs(dx//x-dy//y))%2==0:
print("YES")
else:
print("NO")
|
Title: Treasure Hunt
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Captain Bill the Hummingbird and his crew recieved an interesting challenge offer. Some stranger gave them a map, potion of teleportation and said that only this potion might help them to reach the treasure.
Bottle with potion has two values *x* and *y* written on it. These values define four moves which can be performed using the potion:
- - - -
Map shows that the position of Captain Bill the Hummingbird is (*x*1,<=*y*1) and the position of the treasure is (*x*2,<=*y*2).
You task is to tell Captain Bill the Hummingbird whether he should accept this challenge or decline. If it is possible for Captain to reach the treasure using the potion then output "YES", otherwise "NO" (without quotes).
The potion can be used infinite amount of times.
Input Specification:
The first line contains four integer numbers *x*1,<=*y*1,<=*x*2,<=*y*2 (<=-<=105<=≤<=*x*1,<=*y*1,<=*x*2,<=*y*2<=≤<=105) — positions of Captain Bill the Hummingbird and treasure respectively.
The second line contains two integer numbers *x*,<=*y* (1<=≤<=*x*,<=*y*<=≤<=105) — values on the potion bottle.
Output Specification:
Print "YES" if it is possible for Captain to reach the treasure using the potion, otherwise print "NO" (without quotes).
Demo Input:
['0 0 0 6\n2 3\n', '1 1 3 6\n1 5\n']
Demo Output:
['YES\n', 'NO\n']
Note:
In the first example there exists such sequence of moves:
1. <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/7c939890fb4ed35688177327dac981bfa9216c00.png" style="max-width: 100.0%;max-height: 100.0%;"/> — the first type of move 1. <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/afbfa42fbac4e0641e7466e3aac74cbbb08ed597.png" style="max-width: 100.0%;max-height: 100.0%;"/> — the third type of move
|
```python
a,b,c,d=map(int,input().split())
x,y=map(int,input().split())
dx=abs(c-a)
dy=abs(d-b)
if dx%x==0 and dy%y==0 and (abs(dx//x-dy//y))%2==0:
print("YES")
else:
print("NO")
```
| 3
|
|
507
|
A
|
Amr and Music
|
PROGRAMMING
| 1,000
|
[
"greedy",
"implementation",
"sortings"
] | null | null |
Amr is a young coder who likes music a lot. He always wanted to learn how to play music but he was busy coding so he got an idea.
Amr has *n* instruments, it takes *a**i* days to learn *i*-th instrument. Being busy, Amr dedicated *k* days to learn how to play the maximum possible number of instruments.
Amr asked for your help to distribute his free days between instruments so that he can achieve his goal.
|
The first line contains two numbers *n*, *k* (1<=≤<=*n*<=≤<=100, 0<=≤<=*k*<=≤<=10<=000), the number of instruments and number of days respectively.
The second line contains *n* integers *a**i* (1<=≤<=*a**i*<=≤<=100), representing number of days required to learn the *i*-th instrument.
|
In the first line output one integer *m* representing the maximum number of instruments Amr can learn.
In the second line output *m* space-separated integers: the indices of instruments to be learnt. You may output indices in any order.
if there are multiple optimal solutions output any. It is not necessary to use all days for studying.
|
[
"4 10\n4 3 1 2\n",
"5 6\n4 3 1 1 2\n",
"1 3\n4\n"
] |
[
"4\n1 2 3 4",
"3\n1 3 4",
"0\n"
] |
In the first test Amr can learn all 4 instruments.
In the second test other possible solutions are: {2, 3, 5} or {3, 4, 5}.
In the third test Amr doesn't have enough time to learn the only presented instrument.
| 500
|
[
{
"input": "4 10\n4 3 1 2",
"output": "4\n1 2 3 4"
},
{
"input": "5 6\n4 3 1 1 2",
"output": "3\n3 4 5"
},
{
"input": "1 3\n4",
"output": "0"
},
{
"input": "2 100\n100 100",
"output": "1\n1"
},
{
"input": "3 150\n50 50 50",
"output": "3\n1 2 3"
},
{
"input": "4 0\n100 100 100 100",
"output": "0"
},
{
"input": "100 7567\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100",
"output": "75\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75"
},
{
"input": "68 3250\n95 84 67 7 82 75 100 39 31 45 69 100 8 97 13 58 74 40 88 69 35 91 94 28 62 85 51 97 37 15 87 51 24 96 89 49 53 54 35 17 23 54 51 91 94 18 26 92 79 63 23 37 98 43 16 44 82 25 100 59 97 3 60 92 76 58 56 50",
"output": "60\n1 2 3 4 5 6 8 9 10 11 13 15 16 17 18 19 20 21 22 23 24 25 26 27 29 30 31 32 33 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 54 55 56 57 58 60 62 63 64 65 66 67 68"
},
{
"input": "100 10000\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100",
"output": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100"
},
{
"input": "25 1293\n96 13 7 2 81 72 39 45 5 88 47 23 60 81 54 46 63 52 41 57 2 87 90 28 93",
"output": "25\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25"
},
{
"input": "98 7454\n71 57 94 76 52 90 76 81 67 60 99 88 98 61 73 61 80 91 88 93 53 55 88 64 71 55 81 76 52 63 87 99 84 66 65 52 83 99 92 62 95 81 90 67 64 57 80 80 67 75 77 58 71 85 97 50 97 55 52 59 55 96 57 53 85 100 95 95 74 51 78 88 66 98 97 86 94 81 56 64 61 57 67 95 85 82 85 60 76 95 69 95 76 91 74 100 69 76",
"output": "98\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98"
},
{
"input": "5 249\n96 13 7 2 81",
"output": "5\n1 2 3 4 5"
},
{
"input": "61 3331\n12 63 99 56 57 70 53 21 41 82 97 63 42 91 18 84 99 78 85 89 6 63 76 28 33 78 100 46 78 78 32 13 11 12 73 50 34 60 12 73 9 19 88 100 28 51 50 45 51 10 78 38 25 22 8 40 71 55 56 83 44",
"output": "61\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61"
},
{
"input": "99 10000\n42 88 21 63 59 38 23 100 86 37 57 86 11 22 19 89 6 19 15 64 18 77 83 29 14 26 80 73 8 51 14 19 9 98 81 96 47 77 22 19 86 71 91 61 84 8 80 28 6 25 33 95 96 21 57 92 96 57 31 88 38 32 70 19 25 67 29 78 18 90 37 50 62 33 49 16 47 39 9 33 88 69 69 29 14 66 75 76 41 98 40 52 65 25 33 47 39 24 80",
"output": "99\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99"
},
{
"input": "89 4910\n44 9 31 70 85 72 55 9 85 84 63 43 92 85 10 34 83 28 73 45 62 7 34 52 89 58 24 10 28 6 72 45 57 36 71 34 26 24 38 59 5 15 48 82 58 99 8 77 49 84 14 58 29 46 88 50 13 7 58 23 40 63 96 23 46 31 17 8 59 93 12 76 69 20 43 44 91 78 68 94 37 27 100 65 40 25 52 30 97",
"output": "89\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89"
},
{
"input": "40 2110\n91 18 52 22 26 67 59 10 55 43 97 78 20 81 99 36 33 12 86 32 82 87 70 63 48 48 45 94 78 23 77 15 68 17 71 54 44 98 54 8",
"output": "39\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40"
},
{
"input": "27 1480\n38 95 9 36 21 70 19 89 35 46 7 31 88 25 10 72 81 32 65 83 68 57 50 20 73 42 12",
"output": "27\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27"
},
{
"input": "57 2937\n84 73 23 62 93 64 23 17 53 100 47 67 52 53 90 58 19 84 33 69 46 47 50 28 73 74 40 42 92 70 32 29 57 52 23 82 42 32 46 83 45 87 40 58 50 51 48 37 57 52 78 26 21 54 16 66 93",
"output": "55\n1 2 3 4 5 6 7 8 9 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56"
},
{
"input": "6 41\n6 8 9 8 9 8",
"output": "5\n1 2 3 4 6"
},
{
"input": "9 95\n9 11 12 11 12 11 8 11 10",
"output": "9\n1 2 3 4 5 6 7 8 9"
},
{
"input": "89 6512\n80 87 61 91 85 51 58 69 79 57 81 67 74 55 88 70 77 61 55 81 56 76 79 67 92 52 54 73 67 72 81 54 72 81 65 88 83 57 83 92 62 66 63 58 61 66 92 77 73 66 71 85 92 73 82 65 76 64 58 62 64 51 90 59 79 70 86 89 86 51 72 61 60 71 52 74 58 72 77 91 91 60 76 56 64 55 61 81 52",
"output": "89\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89"
},
{
"input": "5 29\n6 3 7 2 1",
"output": "5\n1 2 3 4 5"
},
{
"input": "5 49\n16 13 7 2 1",
"output": "5\n1 2 3 4 5"
},
{
"input": "6 84\n16 21 25 6 17 16",
"output": "5\n1 2 4 5 6"
},
{
"input": "4 9\n7 4 2 1",
"output": "3\n2 3 4"
},
{
"input": "50 2500\n50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50",
"output": "50\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50"
},
{
"input": "100 10000\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100"
},
{
"input": "100 100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100"
},
{
"input": "96 514\n6 3 7 2 1 2 9 5 5 8 7 3 10 1 4 6 3 2 1 7 2 7 10 8 3 8 10 4 8 8 2 5 3 2 1 4 4 8 4 3 3 7 4 4 2 7 8 3 9 2 2 6 3 4 8 6 7 5 4 3 10 7 6 5 10 1 7 10 7 7 8 2 1 2 3 10 9 8 8 2 7 1 2 7 10 1 2 2 3 8 6 2 9 6 9 6",
"output": "96\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96"
},
{
"input": "47 350\n6 1 9 12 8 8 11 4 4 8 8 3 3 2 12 7 7 7 12 2 9 1 5 10 6 1 5 2 6 3 9 13 8 3 10 10 10 10 6 9 10 10 8 5 12 11 3",
"output": "47\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47"
},
{
"input": "100 200\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2",
"output": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100"
},
{
"input": "2 10000\n1 1",
"output": "2\n1 2"
},
{
"input": "1 2\n1",
"output": "1\n1"
},
{
"input": "1 3\n2",
"output": "1\n1"
},
{
"input": "34 4964\n37 27 90 83 36 59 80 7 28 41 97 72 64 8 40 30 76 4 92 51 52 44 42 13 38 64 60 66 47 93 30 35 71 71",
"output": "34\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34"
},
{
"input": "2 2\n1 10",
"output": "1\n1"
},
{
"input": "2 5\n1 1",
"output": "2\n1 2"
},
{
"input": "1 4\n3",
"output": "1\n1"
},
{
"input": "4 384\n1 2 3 4",
"output": "4\n1 2 3 4"
}
] | 1,589,912,843
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 39
| 140
| 0
|
n , k = map(int,input().split())
arr = list(map(int,input().split()))
arr = [[i,j] for i,j in enumerate(arr)]
#print(arr)
arr = sorted(arr,key = lambda x:x[1])
#print(arr)
out = []
for i in range(n):
if arr[i][1]<=k:
k -= arr[i][1]
out.append(arr[i][0]+1)
else:
break
print(len(out))
print(*out)
|
Title: Amr and Music
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Amr is a young coder who likes music a lot. He always wanted to learn how to play music but he was busy coding so he got an idea.
Amr has *n* instruments, it takes *a**i* days to learn *i*-th instrument. Being busy, Amr dedicated *k* days to learn how to play the maximum possible number of instruments.
Amr asked for your help to distribute his free days between instruments so that he can achieve his goal.
Input Specification:
The first line contains two numbers *n*, *k* (1<=≤<=*n*<=≤<=100, 0<=≤<=*k*<=≤<=10<=000), the number of instruments and number of days respectively.
The second line contains *n* integers *a**i* (1<=≤<=*a**i*<=≤<=100), representing number of days required to learn the *i*-th instrument.
Output Specification:
In the first line output one integer *m* representing the maximum number of instruments Amr can learn.
In the second line output *m* space-separated integers: the indices of instruments to be learnt. You may output indices in any order.
if there are multiple optimal solutions output any. It is not necessary to use all days for studying.
Demo Input:
['4 10\n4 3 1 2\n', '5 6\n4 3 1 1 2\n', '1 3\n4\n']
Demo Output:
['4\n1 2 3 4', '3\n1 3 4', '0\n']
Note:
In the first test Amr can learn all 4 instruments.
In the second test other possible solutions are: {2, 3, 5} or {3, 4, 5}.
In the third test Amr doesn't have enough time to learn the only presented instrument.
|
```python
n , k = map(int,input().split())
arr = list(map(int,input().split()))
arr = [[i,j] for i,j in enumerate(arr)]
#print(arr)
arr = sorted(arr,key = lambda x:x[1])
#print(arr)
out = []
for i in range(n):
if arr[i][1]<=k:
k -= arr[i][1]
out.append(arr[i][0]+1)
else:
break
print(len(out))
print(*out)
```
| 3
|
|
50
|
A
|
Domino piling
|
PROGRAMMING
| 800
|
[
"greedy",
"math"
] |
A. Domino piling
|
2
|
256
|
You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions:
1. Each domino completely covers two squares.
2. No two dominoes overlap.
3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board.
Find the maximum number of dominoes, which can be placed under these restrictions.
|
In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16).
|
Output one number — the maximal number of dominoes, which can be placed.
|
[
"2 4\n",
"3 3\n"
] |
[
"4\n",
"4\n"
] |
none
| 500
|
[
{
"input": "2 4",
"output": "4"
},
{
"input": "3 3",
"output": "4"
},
{
"input": "1 5",
"output": "2"
},
{
"input": "1 6",
"output": "3"
},
{
"input": "1 15",
"output": "7"
},
{
"input": "1 16",
"output": "8"
},
{
"input": "2 5",
"output": "5"
},
{
"input": "2 6",
"output": "6"
},
{
"input": "2 7",
"output": "7"
},
{
"input": "2 14",
"output": "14"
},
{
"input": "2 15",
"output": "15"
},
{
"input": "1 4",
"output": "2"
},
{
"input": "2 16",
"output": "16"
},
{
"input": "3 5",
"output": "7"
},
{
"input": "3 6",
"output": "9"
},
{
"input": "3 10",
"output": "15"
},
{
"input": "3 14",
"output": "21"
},
{
"input": "3 15",
"output": "22"
},
{
"input": "3 16",
"output": "24"
},
{
"input": "5 7",
"output": "17"
},
{
"input": "16 16",
"output": "128"
},
{
"input": "15 16",
"output": "120"
},
{
"input": "2 3",
"output": "3"
},
{
"input": "15 15",
"output": "112"
},
{
"input": "14 16",
"output": "112"
},
{
"input": "11 13",
"output": "71"
},
{
"input": "5 16",
"output": "40"
},
{
"input": "8 15",
"output": "60"
},
{
"input": "2 2",
"output": "2"
},
{
"input": "3 4",
"output": "6"
},
{
"input": "4 4",
"output": "8"
},
{
"input": "1 1",
"output": "0"
},
{
"input": "1 2",
"output": "1"
},
{
"input": "1 3",
"output": "1"
},
{
"input": "14 15",
"output": "105"
}
] | 1,620,137,809
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 35
| 154
| 0
|
# -*- coding: utf-8 -*-
"""
Created on Tue May 4 16:03:26 2021
@author: david
"""
import math
m , n = [ int(x) for x in input().split()]
untilm = math.floor( m / 2)
ntiles= untilm * n
if m % 2 == 1:
ntiles += math.floor(n/2)
print(ntiles)
|
Title: Domino piling
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions:
1. Each domino completely covers two squares.
2. No two dominoes overlap.
3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board.
Find the maximum number of dominoes, which can be placed under these restrictions.
Input Specification:
In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16).
Output Specification:
Output one number — the maximal number of dominoes, which can be placed.
Demo Input:
['2 4\n', '3 3\n']
Demo Output:
['4\n', '4\n']
Note:
none
|
```python
# -*- coding: utf-8 -*-
"""
Created on Tue May 4 16:03:26 2021
@author: david
"""
import math
m , n = [ int(x) for x in input().split()]
untilm = math.floor( m / 2)
ntiles= untilm * n
if m % 2 == 1:
ntiles += math.floor(n/2)
print(ntiles)
```
| 3.9615
|
743
|
C
|
Vladik and fractions
|
PROGRAMMING
| 1,500
|
[
"brute force",
"constructive algorithms",
"math",
"number theory"
] | null | null |
Vladik and Chloe decided to determine who of them is better at math. Vladik claimed that for any positive integer *n* he can represent fraction as a sum of three distinct positive fractions in form .
Help Vladik with that, i.e for a given *n* find three distinct positive integers *x*, *y* and *z* such that . Because Chloe can't check Vladik's answer if the numbers are large, he asks you to print numbers not exceeding 109.
If there is no such answer, print -1.
|
The single line contains single integer *n* (1<=≤<=*n*<=≤<=104).
|
If the answer exists, print 3 distinct numbers *x*, *y* and *z* (1<=≤<=*x*,<=*y*,<=*z*<=≤<=109, *x*<=≠<=*y*, *x*<=≠<=*z*, *y*<=≠<=*z*). Otherwise print -1.
If there are multiple answers, print any of them.
|
[
"3\n",
"7\n"
] |
[
"2 7 42\n",
"7 8 56\n"
] |
none
| 1,250
|
[
{
"input": "3",
"output": "2 7 42"
},
{
"input": "7",
"output": "7 8 56"
},
{
"input": "2",
"output": "2 3 6"
},
{
"input": "5",
"output": "5 6 30"
},
{
"input": "4",
"output": "4 5 20"
},
{
"input": "7",
"output": "7 8 56"
},
{
"input": "82",
"output": "82 83 6806"
},
{
"input": "56",
"output": "56 57 3192"
},
{
"input": "30",
"output": "30 31 930"
},
{
"input": "79",
"output": "79 80 6320"
},
{
"input": "28",
"output": "28 29 812"
},
{
"input": "4116",
"output": "4116 4117 16945572"
},
{
"input": "1",
"output": "-1"
},
{
"input": "6491",
"output": "6491 6492 42139572"
},
{
"input": "8865",
"output": "8865 8866 78597090"
},
{
"input": "1239",
"output": "1239 1240 1536360"
},
{
"input": "3614",
"output": "3614 3615 13064610"
},
{
"input": "5988",
"output": "5988 5989 35862132"
},
{
"input": "8363",
"output": "8363 8364 69948132"
},
{
"input": "737",
"output": "737 738 543906"
},
{
"input": "3112",
"output": "3112 3113 9687656"
},
{
"input": "9562",
"output": "9562 9563 91441406"
},
{
"input": "1936",
"output": "1936 1937 3750032"
},
{
"input": "4311",
"output": "4311 4312 18589032"
},
{
"input": "6685",
"output": "6685 6686 44695910"
},
{
"input": "9060",
"output": "9060 9061 82092660"
},
{
"input": "1434",
"output": "1434 1435 2057790"
},
{
"input": "3809",
"output": "3809 3810 14512290"
},
{
"input": "6183",
"output": "6183 6184 38235672"
},
{
"input": "8558",
"output": "8558 8559 73247922"
},
{
"input": "932",
"output": "932 933 869556"
},
{
"input": "7274",
"output": "7274 7275 52918350"
},
{
"input": "9648",
"output": "9648 9649 93093552"
},
{
"input": "2023",
"output": "2023 2024 4094552"
},
{
"input": "4397",
"output": "4397 4398 19338006"
},
{
"input": "6772",
"output": "6772 6773 45866756"
},
{
"input": "9146",
"output": "9146 9147 83658462"
},
{
"input": "1521",
"output": "1521 1522 2314962"
},
{
"input": "4938",
"output": "4938 4939 24388782"
},
{
"input": "6143",
"output": "6143 6144 37742592"
},
{
"input": "6230",
"output": "6230 6231 38819130"
},
{
"input": "10000",
"output": "10000 10001 100010000"
},
{
"input": "1",
"output": "-1"
},
{
"input": "101",
"output": "101 102 10302"
},
{
"input": "9999",
"output": "9999 10000 99990000"
},
{
"input": "512",
"output": "512 513 262656"
},
{
"input": "511",
"output": "511 512 261632"
},
{
"input": "513",
"output": "513 514 263682"
},
{
"input": "9973",
"output": "9973 9974 99470702"
},
{
"input": "9972",
"output": "9972 9973 99450756"
},
{
"input": "9974",
"output": "9974 9975 99490650"
},
{
"input": "9409",
"output": "9409 9410 88538690"
},
{
"input": "9408",
"output": "9408 9409 88519872"
},
{
"input": "9410",
"output": "9410 9411 88557510"
},
{
"input": "719",
"output": "719 720 517680"
},
{
"input": "720",
"output": "720 721 519120"
},
{
"input": "721",
"output": "721 722 520562"
},
{
"input": "9796",
"output": "9796 9797 95971412"
},
{
"input": "9797",
"output": "9797 9798 95991006"
},
{
"input": "9798",
"output": "9798 9799 96010602"
},
{
"input": "4999",
"output": "4999 5000 24995000"
},
{
"input": "9998",
"output": "9998 9999 99970002"
}
] | 1,578,695,874
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 62
| 155
| 0
|
x=int(input())
s=set()
s.add(x)
s.add(x+1)
s.add(x*(x+1))
if len(s)!=3:
print(-1)
else:
print(*list(s))
|
Title: Vladik and fractions
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Vladik and Chloe decided to determine who of them is better at math. Vladik claimed that for any positive integer *n* he can represent fraction as a sum of three distinct positive fractions in form .
Help Vladik with that, i.e for a given *n* find three distinct positive integers *x*, *y* and *z* such that . Because Chloe can't check Vladik's answer if the numbers are large, he asks you to print numbers not exceeding 109.
If there is no such answer, print -1.
Input Specification:
The single line contains single integer *n* (1<=≤<=*n*<=≤<=104).
Output Specification:
If the answer exists, print 3 distinct numbers *x*, *y* and *z* (1<=≤<=*x*,<=*y*,<=*z*<=≤<=109, *x*<=≠<=*y*, *x*<=≠<=*z*, *y*<=≠<=*z*). Otherwise print -1.
If there are multiple answers, print any of them.
Demo Input:
['3\n', '7\n']
Demo Output:
['2 7 42\n', '7 8 56\n']
Note:
none
|
```python
x=int(input())
s=set()
s.add(x)
s.add(x+1)
s.add(x*(x+1))
if len(s)!=3:
print(-1)
else:
print(*list(s))
```
| 3
|
|
31
|
A
|
Worms Evolution
|
PROGRAMMING
| 1,200
|
[
"implementation"
] |
A. Worms Evolution
|
2
|
256
|
Professor Vasechkin is studying evolution of worms. Recently he put forward hypotheses that all worms evolve by division. There are *n* forms of worms. Worms of these forms have lengths *a*1, *a*2, ..., *a**n*. To prove his theory, professor needs to find 3 different forms that the length of the first form is equal to sum of lengths of the other two forms. Help him to do this.
|
The first line contains integer *n* (3<=≤<=*n*<=≤<=100) — amount of worm's forms. The second line contains *n* space-separated integers *a**i* (1<=≤<=*a**i*<=≤<=1000) — lengths of worms of each form.
|
Output 3 distinct integers *i* *j* *k* (1<=≤<=*i*,<=*j*,<=*k*<=≤<=*n*) — such indexes of worm's forms that *a**i*<==<=*a**j*<=+<=*a**k*. If there is no such triple, output -1. If there are several solutions, output any of them. It possible that *a**j*<==<=*a**k*.
|
[
"5\n1 2 3 5 7\n",
"5\n1 8 1 5 1\n"
] |
[
"3 2 1\n",
"-1\n"
] |
none
| 500
|
[
{
"input": "5\n1 2 3 5 7",
"output": "3 2 1"
},
{
"input": "5\n1 8 1 5 1",
"output": "-1"
},
{
"input": "4\n303 872 764 401",
"output": "-1"
},
{
"input": "6\n86 402 133 524 405 610",
"output": "6 4 1"
},
{
"input": "8\n217 779 418 895 996 473 3 22",
"output": "5 2 1"
},
{
"input": "10\n858 972 670 15 662 114 33 273 53 310",
"output": "2 6 1"
},
{
"input": "100\n611 697 572 770 603 870 128 245 49 904 468 982 788 943 549 288 668 796 803 515 999 735 912 49 298 80 412 841 494 434 543 298 17 571 271 105 70 313 178 755 194 279 585 766 412 164 907 841 776 556 731 268 735 880 176 267 287 65 239 588 155 658 821 47 783 595 585 69 226 906 429 161 999 148 7 484 362 585 952 365 92 749 904 525 307 626 883 367 450 755 564 950 728 724 69 106 119 157 96 290",
"output": "1 38 25"
},
{
"input": "100\n713 572 318 890 577 657 646 146 373 783 392 229 455 871 20 593 573 336 26 381 280 916 907 732 820 713 111 840 570 446 184 711 481 399 788 647 492 15 40 530 549 506 719 782 126 20 778 996 712 761 9 74 812 418 488 175 103 585 900 3 604 521 109 513 145 708 990 361 682 827 791 22 596 780 596 385 450 643 158 496 876 975 319 783 654 895 891 361 397 81 682 899 347 623 809 557 435 279 513 438",
"output": "1 63 61"
},
{
"input": "100\n156 822 179 298 981 82 610 345 373 378 895 734 768 15 78 335 764 608 932 297 717 553 916 367 425 447 361 195 66 70 901 236 905 744 919 564 296 610 963 628 840 52 100 750 345 308 37 687 192 704 101 815 10 990 216 358 823 546 578 821 706 148 182 582 421 482 829 425 121 337 500 301 402 868 66 935 625 527 746 585 308 523 488 914 608 709 875 252 151 781 447 2 756 176 976 302 450 35 680 791",
"output": "1 98 69"
},
{
"input": "100\n54 947 785 838 359 647 92 445 48 465 323 486 101 86 607 31 860 420 709 432 435 372 272 37 903 814 309 197 638 58 259 822 793 564 309 22 522 907 101 853 486 824 614 734 630 452 166 532 256 499 470 9 933 452 256 450 7 26 916 406 257 285 895 117 59 369 424 133 16 417 352 440 806 236 478 34 889 469 540 806 172 296 73 655 261 792 868 380 204 454 330 53 136 629 236 850 134 560 264 291",
"output": "2 29 27"
},
{
"input": "99\n175 269 828 129 499 890 127 263 995 807 508 289 996 226 437 320 365 642 757 22 190 8 345 499 834 713 962 889 336 171 608 492 320 257 472 801 176 325 301 306 198 729 933 4 640 322 226 317 567 586 249 237 202 633 287 128 911 654 719 988 420 855 361 574 716 899 317 356 581 440 284 982 541 111 439 29 37 560 961 224 478 906 319 416 736 603 808 87 762 697 392 713 19 459 262 238 239 599 997",
"output": "1 44 30"
},
{
"input": "98\n443 719 559 672 16 69 529 632 953 999 725 431 54 22 346 968 558 696 48 669 963 129 257 712 39 870 498 595 45 821 344 925 179 388 792 346 755 213 423 365 344 659 824 356 773 637 628 897 841 155 243 536 951 361 192 105 418 431 635 596 150 162 145 548 473 531 750 306 377 354 450 975 79 743 656 733 440 940 19 139 237 346 276 227 64 799 479 633 199 17 796 362 517 234 729 62 995 535",
"output": "2 70 40"
},
{
"input": "97\n359 522 938 862 181 600 283 1000 910 191 590 220 761 818 903 264 751 751 987 316 737 898 168 925 244 674 34 950 754 472 81 6 37 520 112 891 981 454 897 424 489 238 363 709 906 951 677 828 114 373 589 835 52 89 97 435 277 560 551 204 879 469 928 523 231 163 183 609 821 915 615 969 616 23 874 437 844 321 78 53 643 786 585 38 744 347 150 179 988 985 200 11 15 9 547 886 752",
"output": "1 23 10"
},
{
"input": "4\n303 872 764 401",
"output": "-1"
},
{
"input": "100\n328 397 235 453 188 254 879 225 423 36 384 296 486 592 231 849 856 255 213 898 234 800 701 529 951 693 507 326 15 905 618 348 967 927 28 979 752 850 343 35 84 302 36 390 482 826 249 918 91 289 973 457 557 348 365 239 709 565 320 560 153 130 647 708 483 469 788 473 322 844 830 562 611 961 397 673 69 960 74 703 369 968 382 451 328 160 211 230 566 208 7 545 293 73 806 375 157 410 303 58",
"output": "1 79 6"
},
{
"input": "33\n52 145 137 734 180 847 178 286 716 134 181 630 358 764 593 762 785 28 1 468 189 540 764 485 165 656 114 58 628 108 605 584 257",
"output": "8 30 7"
},
{
"input": "57\n75 291 309 68 444 654 985 158 514 204 116 918 374 806 176 31 49 455 269 66 722 713 164 818 317 295 546 564 134 641 28 13 987 478 146 219 213 940 289 173 157 666 168 391 392 71 870 477 446 988 414 568 964 684 409 671 454",
"output": "2 41 29"
},
{
"input": "88\n327 644 942 738 84 118 981 686 530 404 137 197 434 16 693 183 423 325 410 345 941 329 7 106 79 867 584 358 533 675 192 718 641 329 900 768 404 301 101 538 954 590 401 954 447 14 559 337 756 586 934 367 538 928 945 936 770 641 488 579 206 869 902 139 216 446 723 150 829 205 373 578 357 368 960 40 121 206 503 385 521 161 501 694 138 370 709 308",
"output": "1 77 61"
},
{
"input": "100\n804 510 266 304 788 625 862 888 408 82 414 470 777 991 729 229 933 406 601 1 596 720 608 706 432 361 527 548 59 548 474 515 4 991 263 568 681 24 117 563 576 587 281 643 904 521 891 106 842 884 943 54 605 815 504 757 311 374 335 192 447 652 633 410 455 402 382 150 432 836 413 819 669 875 638 925 217 805 632 520 605 266 728 795 162 222 603 159 284 790 914 443 775 97 789 606 859 13 851 47",
"output": "1 77 42"
},
{
"input": "100\n449 649 615 713 64 385 927 466 138 126 143 886 80 199 208 43 196 694 92 89 264 180 617 970 191 196 910 150 275 89 693 190 191 99 542 342 45 592 114 56 451 170 64 589 176 102 308 92 402 153 414 675 352 157 69 150 91 288 163 121 816 184 20 234 836 12 593 150 793 439 540 93 99 663 186 125 349 247 476 106 77 523 215 7 363 278 441 745 337 25 148 384 15 915 108 211 240 58 23 408",
"output": "1 6 5"
},
{
"input": "90\n881 436 52 308 97 261 153 931 670 538 702 156 114 445 154 685 452 76 966 790 93 42 547 65 736 364 136 489 719 322 239 628 696 735 55 703 622 375 100 188 804 341 546 474 484 446 729 290 974 301 602 225 996 244 488 983 882 460 962 754 395 617 61 640 534 292 158 375 632 902 420 979 379 38 100 67 963 928 190 456 545 571 45 716 153 68 844 2 102 116",
"output": "1 14 2"
},
{
"input": "80\n313 674 262 240 697 146 391 221 793 504 896 818 92 899 86 370 341 339 306 887 937 570 830 683 729 519 240 833 656 847 427 958 435 704 853 230 758 347 660 575 843 293 649 396 437 787 654 599 35 103 779 783 447 379 444 585 902 713 791 150 851 228 306 721 996 471 617 403 102 168 197 741 877 481 968 545 331 715 236 654",
"output": "1 13 8"
},
{
"input": "70\n745 264 471 171 946 32 277 511 269 469 89 831 69 2 369 407 583 602 646 633 429 747 113 302 722 321 344 824 241 372 263 287 822 24 652 758 246 967 219 313 882 597 752 965 389 775 227 556 95 904 308 340 899 514 400 187 275 318 621 546 659 488 199 154 811 1 725 79 925 82",
"output": "1 63 60"
},
{
"input": "60\n176 502 680 102 546 917 516 801 392 435 635 492 398 456 653 444 472 513 634 378 273 276 44 920 68 124 800 167 825 250 452 264 561 344 98 933 381 939 426 51 568 548 206 887 342 763 151 514 156 354 486 546 998 649 356 438 295 570 450 589",
"output": "2 26 20"
},
{
"input": "50\n608 92 889 33 146 803 402 91 868 400 828 505 375 558 584 129 361 776 974 123 765 804 326 186 61 927 904 511 762 775 640 593 300 664 897 461 869 911 986 789 607 500 309 457 294 104 724 471 216 155",
"output": "3 25 11"
},
{
"input": "40\n40 330 98 612 747 336 640 381 991 366 22 167 352 12 868 166 603 40 313 869 609 981 609 804 54 729 8 854 347 300 828 922 39 633 695 988 4 530 545 176",
"output": "5 10 8"
},
{
"input": "30\n471 920 308 544 347 222 878 671 467 332 215 180 681 114 151 203 492 951 653 614 453 510 540 422 399 532 113 198 932 825",
"output": "2 21 9"
},
{
"input": "20\n551 158 517 475 595 108 764 961 590 297 761 841 659 568 82 888 733 214 993 359",
"output": "3 20 2"
},
{
"input": "10\n983 748 726 406 196 993 2 251 66 263",
"output": "-1"
},
{
"input": "9\n933 266 457 863 768 257 594 136 145",
"output": "-1"
},
{
"input": "8\n537 198 48 771 944 868 700 163",
"output": "7 8 1"
},
{
"input": "7\n140 779 639 679 768 479 158",
"output": "2 3 1"
},
{
"input": "6\n744 359 230 586 944 442",
"output": "-1"
},
{
"input": "5\n700 939 173 494 120",
"output": "-1"
},
{
"input": "4\n303 872 764 401",
"output": "-1"
},
{
"input": "3\n907 452 355",
"output": "-1"
},
{
"input": "3\n963 630 333",
"output": "1 3 2"
},
{
"input": "3\n2 2 4",
"output": "3 2 1"
},
{
"input": "3\n2 4 100",
"output": "-1"
}
] | 1,609,782,831
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 39
| 218
| 0
|
a=int(input())
b=list(map(int,input().split()))
for i in range(a):
for j in range(a):
for k in range(a):
if(i!=j!=k):
if(b[i]==b[j]+b[k]):
print(i+1,j+1,k+1)
exit()
print(-1)
# CodeBy: RAHUL MAHAJAN
# A2OJ: rahulmahajan
# CC: anonymous0201
# CF: rahulmahajan
# CSES: rahulmahajan
|
Title: Worms Evolution
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Professor Vasechkin is studying evolution of worms. Recently he put forward hypotheses that all worms evolve by division. There are *n* forms of worms. Worms of these forms have lengths *a*1, *a*2, ..., *a**n*. To prove his theory, professor needs to find 3 different forms that the length of the first form is equal to sum of lengths of the other two forms. Help him to do this.
Input Specification:
The first line contains integer *n* (3<=≤<=*n*<=≤<=100) — amount of worm's forms. The second line contains *n* space-separated integers *a**i* (1<=≤<=*a**i*<=≤<=1000) — lengths of worms of each form.
Output Specification:
Output 3 distinct integers *i* *j* *k* (1<=≤<=*i*,<=*j*,<=*k*<=≤<=*n*) — such indexes of worm's forms that *a**i*<==<=*a**j*<=+<=*a**k*. If there is no such triple, output -1. If there are several solutions, output any of them. It possible that *a**j*<==<=*a**k*.
Demo Input:
['5\n1 2 3 5 7\n', '5\n1 8 1 5 1\n']
Demo Output:
['3 2 1\n', '-1\n']
Note:
none
|
```python
a=int(input())
b=list(map(int,input().split()))
for i in range(a):
for j in range(a):
for k in range(a):
if(i!=j!=k):
if(b[i]==b[j]+b[k]):
print(i+1,j+1,k+1)
exit()
print(-1)
# CodeBy: RAHUL MAHAJAN
# A2OJ: rahulmahajan
# CC: anonymous0201
# CF: rahulmahajan
# CSES: rahulmahajan
```
| 3.9455
|
739
|
A
|
Alyona and mex
|
PROGRAMMING
| 1,700
|
[
"constructive algorithms",
"greedy"
] | null | null |
Alyona's mother wants to present an array of *n* non-negative integers to Alyona. The array should be special.
Alyona is a capricious girl so after she gets the array, she inspects *m* of its subarrays. Subarray is a set of some subsequent elements of the array. The *i*-th subarray is described with two integers *l**i* and *r**i*, and its elements are *a*[*l**i*],<=*a*[*l**i*<=+<=1],<=...,<=*a*[*r**i*].
Alyona is going to find mex for each of the chosen subarrays. Among these *m* mexes the girl is going to find the smallest. She wants this minimum mex to be as large as possible.
You are to find an array *a* of *n* elements so that the minimum mex among those chosen by Alyona subarrays is as large as possible.
The mex of a set *S* is a minimum possible non-negative integer that is not in *S*.
|
The first line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=105).
The next *m* lines contain information about the subarrays chosen by Alyona. The *i*-th of these lines contains two integers *l**i* and *r**i* (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=*n*), that describe the subarray *a*[*l**i*],<=*a*[*l**i*<=+<=1],<=...,<=*a*[*r**i*].
|
In the first line print single integer — the maximum possible minimum mex.
In the second line print *n* integers — the array *a*. All the elements in *a* should be between 0 and 109.
It is guaranteed that there is an optimal answer in which all the elements in *a* are between 0 and 109.
If there are multiple solutions, print any of them.
|
[
"5 3\n1 3\n2 5\n4 5\n",
"4 2\n1 4\n2 4\n"
] |
[
"2\n1 0 2 1 0\n",
"3\n5 2 0 1"
] |
The first example: the mex of the subarray (1, 3) is equal to 3, the mex of the subarray (2, 5) is equal to 3, the mex of the subarray (4, 5) is equal to 2 as well, thus the minumal mex among the subarrays chosen by Alyona is equal to 2.
| 500
|
[
{
"input": "5 3\n1 3\n2 5\n4 5",
"output": "2\n0 1 0 1 0"
},
{
"input": "4 2\n1 4\n2 4",
"output": "3\n0 1 2 0"
},
{
"input": "1 1\n1 1",
"output": "1\n0"
},
{
"input": "2 1\n2 2",
"output": "1\n0 0"
},
{
"input": "5 6\n2 4\n2 3\n1 4\n3 4\n2 5\n1 3",
"output": "2\n0 1 0 1 0"
},
{
"input": "8 3\n2 3\n2 8\n3 6",
"output": "2\n0 1 0 1 0 1 0 1"
},
{
"input": "10 10\n1 9\n4 8\n4 8\n5 9\n1 9\n3 8\n1 6\n1 9\n1 6\n6 9",
"output": "4\n0 1 2 3 0 1 2 3 0 1"
},
{
"input": "3 6\n1 3\n1 3\n1 1\n1 1\n3 3\n3 3",
"output": "1\n0 0 0"
},
{
"input": "3 3\n1 3\n2 2\n1 3",
"output": "1\n0 0 0"
},
{
"input": "6 8\n3 5\n3 6\n4 6\n2 5\n2 5\n1 3\n3 6\n3 5",
"output": "3\n0 1 2 0 1 2"
},
{
"input": "10 4\n4 10\n4 6\n6 8\n1 10",
"output": "3\n0 1 2 0 1 2 0 1 2 0"
},
{
"input": "9 1\n1 1",
"output": "1\n0 0 0 0 0 0 0 0 0"
},
{
"input": "3 8\n2 3\n1 3\n1 2\n2 3\n1 3\n2 2\n1 2\n1 2",
"output": "1\n0 0 0"
},
{
"input": "3 8\n1 2\n1 2\n1 1\n2 3\n2 3\n1 1\n1 3\n1 3",
"output": "1\n0 0 0"
},
{
"input": "7 3\n7 7\n3 7\n5 7",
"output": "1\n0 0 0 0 0 0 0"
},
{
"input": "9 9\n4 5\n5 8\n1 8\n4 8\n3 4\n7 8\n1 4\n7 8\n6 7",
"output": "2\n0 1 0 1 0 1 0 1 0"
},
{
"input": "10 10\n1 5\n7 10\n2 10\n2 5\n2 9\n5 9\n3 10\n4 9\n6 9\n2 7",
"output": "4\n0 1 2 3 0 1 2 3 0 1"
},
{
"input": "8 7\n5 8\n3 7\n1 8\n3 4\n2 8\n2 7\n4 6",
"output": "2\n0 1 0 1 0 1 0 1"
},
{
"input": "10 3\n2 4\n8 10\n4 6",
"output": "3\n0 1 2 0 1 2 0 1 2 0"
},
{
"input": "5 8\n3 4\n1 5\n3 4\n3 5\n3 4\n1 4\n1 5\n2 5",
"output": "2\n0 1 0 1 0"
},
{
"input": "9 4\n5 9\n3 8\n2 8\n1 4",
"output": "4\n0 1 2 3 0 1 2 3 0"
},
{
"input": "7 7\n2 4\n1 4\n3 6\n2 6\n5 7\n3 6\n1 4",
"output": "3\n0 1 2 0 1 2 0"
},
{
"input": "6 2\n4 6\n2 5",
"output": "3\n0 1 2 0 1 2"
},
{
"input": "7 9\n6 7\n1 2\n2 5\n4 7\n1 7\n5 6\n2 3\n6 7\n1 2",
"output": "2\n0 1 0 1 0 1 0"
}
] | 1,678,948,649
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 69
| 686
| 12,288,000
|
from itertools import cycle
if __name__ == '__main__':
n, m = map(int, input().split())
res = float('inf')
for _ in range(m):
l, r = map(int, input().split())
res = min(res, r - l + 1)
print(res)
k = 0
for i in cycle(range(res)):
print(i, end=' ')
k += 1
if k == n:
break
|
Title: Alyona and mex
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Alyona's mother wants to present an array of *n* non-negative integers to Alyona. The array should be special.
Alyona is a capricious girl so after she gets the array, she inspects *m* of its subarrays. Subarray is a set of some subsequent elements of the array. The *i*-th subarray is described with two integers *l**i* and *r**i*, and its elements are *a*[*l**i*],<=*a*[*l**i*<=+<=1],<=...,<=*a*[*r**i*].
Alyona is going to find mex for each of the chosen subarrays. Among these *m* mexes the girl is going to find the smallest. She wants this minimum mex to be as large as possible.
You are to find an array *a* of *n* elements so that the minimum mex among those chosen by Alyona subarrays is as large as possible.
The mex of a set *S* is a minimum possible non-negative integer that is not in *S*.
Input Specification:
The first line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=105).
The next *m* lines contain information about the subarrays chosen by Alyona. The *i*-th of these lines contains two integers *l**i* and *r**i* (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=*n*), that describe the subarray *a*[*l**i*],<=*a*[*l**i*<=+<=1],<=...,<=*a*[*r**i*].
Output Specification:
In the first line print single integer — the maximum possible minimum mex.
In the second line print *n* integers — the array *a*. All the elements in *a* should be between 0 and 109.
It is guaranteed that there is an optimal answer in which all the elements in *a* are between 0 and 109.
If there are multiple solutions, print any of them.
Demo Input:
['5 3\n1 3\n2 5\n4 5\n', '4 2\n1 4\n2 4\n']
Demo Output:
['2\n1 0 2 1 0\n', '3\n5 2 0 1']
Note:
The first example: the mex of the subarray (1, 3) is equal to 3, the mex of the subarray (2, 5) is equal to 3, the mex of the subarray (4, 5) is equal to 2 as well, thus the minumal mex among the subarrays chosen by Alyona is equal to 2.
|
```python
from itertools import cycle
if __name__ == '__main__':
n, m = map(int, input().split())
res = float('inf')
for _ in range(m):
l, r = map(int, input().split())
res = min(res, r - l + 1)
print(res)
k = 0
for i in cycle(range(res)):
print(i, end=' ')
k += 1
if k == n:
break
```
| 3
|
|
431
|
A
|
Black Square
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Quite recently, a very smart student named Jury decided that lectures are boring, so he downloaded a game called "Black Square" on his super cool touchscreen phone.
In this game, the phone's screen is divided into four vertical strips. Each second, a black square appears on some of the strips. According to the rules of the game, Jury must use this second to touch the corresponding strip to make the square go away. As Jury is both smart and lazy, he counted that he wastes exactly *a**i* calories on touching the *i*-th strip.
You've got a string *s*, describing the process of the game and numbers *a*1,<=*a*2,<=*a*3,<=*a*4. Calculate how many calories Jury needs to destroy all the squares?
|
The first line contains four space-separated integers *a*1, *a*2, *a*3, *a*4 (0<=≤<=*a*1,<=*a*2,<=*a*3,<=*a*4<=≤<=104).
The second line contains string *s* (1<=≤<=|*s*|<=≤<=105), where the *і*-th character of the string equals "1", if on the *i*-th second of the game the square appears on the first strip, "2", if it appears on the second strip, "3", if it appears on the third strip, "4", if it appears on the fourth strip.
|
Print a single integer — the total number of calories that Jury wastes.
|
[
"1 2 3 4\n123214\n",
"1 5 3 2\n11221\n"
] |
[
"13\n",
"13\n"
] |
none
| 500
|
[
{
"input": "1 2 3 4\n123214",
"output": "13"
},
{
"input": "1 5 3 2\n11221",
"output": "13"
},
{
"input": "5 5 5 1\n3422",
"output": "16"
},
{
"input": "4 3 2 1\n2",
"output": "3"
},
{
"input": "5651 6882 6954 4733\n2442313421",
"output": "60055"
},
{
"input": "0 0 0 0\n4132",
"output": "0"
},
{
"input": "3163 5778 83 7640\n11141442444",
"output": "64270"
},
{
"input": "1809 1302 7164 6122\n3144121413113111223311232232114144321414421243443243422322144324121433444342231344234443332241322442",
"output": "420780"
},
{
"input": "0 0 0 0\n1",
"output": "0"
},
{
"input": "1 2 3 4\n4",
"output": "4"
},
{
"input": "2343 7653 1242 5432\n1",
"output": "2343"
},
{
"input": "2343 7653 1242 5432\n2",
"output": "7653"
},
{
"input": "2343 7653 1242 5432\n3",
"output": "1242"
},
{
"input": "2343 7653 1242 5432\n4",
"output": "5432"
},
{
"input": "1 2 3 4\n123412",
"output": "13"
},
{
"input": "50 50 50 50\n11111111111111111111111111111111111111111111111111111",
"output": "2650"
},
{
"input": "1 2 3 4\n11111111111111111111111111111111111111111111111111",
"output": "50"
},
{
"input": "1 2 3 4\n23123231321231231231231231221232123121312321",
"output": "87"
},
{
"input": "1 2 3 4\n1111111111111222222222233333333333444444444444444",
"output": "126"
},
{
"input": "2 3 1 4\n121321232412342112312313213123123412131231231232",
"output": "105"
}
] | 1,694,454,558
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 49
| 62
| 204,800
|
x=list(map(int,input().split()))
w=input()
s=0
for i in w :
s+=x[int(i)-1]
print(s)
|
Title: Black Square
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Quite recently, a very smart student named Jury decided that lectures are boring, so he downloaded a game called "Black Square" on his super cool touchscreen phone.
In this game, the phone's screen is divided into four vertical strips. Each second, a black square appears on some of the strips. According to the rules of the game, Jury must use this second to touch the corresponding strip to make the square go away. As Jury is both smart and lazy, he counted that he wastes exactly *a**i* calories on touching the *i*-th strip.
You've got a string *s*, describing the process of the game and numbers *a*1,<=*a*2,<=*a*3,<=*a*4. Calculate how many calories Jury needs to destroy all the squares?
Input Specification:
The first line contains four space-separated integers *a*1, *a*2, *a*3, *a*4 (0<=≤<=*a*1,<=*a*2,<=*a*3,<=*a*4<=≤<=104).
The second line contains string *s* (1<=≤<=|*s*|<=≤<=105), where the *і*-th character of the string equals "1", if on the *i*-th second of the game the square appears on the first strip, "2", if it appears on the second strip, "3", if it appears on the third strip, "4", if it appears on the fourth strip.
Output Specification:
Print a single integer — the total number of calories that Jury wastes.
Demo Input:
['1 2 3 4\n123214\n', '1 5 3 2\n11221\n']
Demo Output:
['13\n', '13\n']
Note:
none
|
```python
x=list(map(int,input().split()))
w=input()
s=0
for i in w :
s+=x[int(i)-1]
print(s)
```
| 3
|
|
990
|
C
|
Bracket Sequences Concatenation Problem
|
PROGRAMMING
| 1,500
|
[
"implementation"
] | null | null |
A bracket sequence is a string containing only characters "(" and ")".
A regular bracket sequence is a bracket sequence that can be transformed into a correct arithmetic expression by inserting characters "1" and "+" between the original characters of the sequence. For example, bracket sequences "()()", "(())" are regular (the resulting expressions are: "(1)+(1)", "((1+1)+1)"), and ")(" and "(" are not.
You are given $n$ bracket sequences $s_1, s_2, \dots , s_n$. Calculate the number of pairs $i, j \, (1 \le i, j \le n)$ such that the bracket sequence $s_i + s_j$ is a regular bracket sequence. Operation $+$ means concatenation i.e. "()(" + ")()" = "()()()".
If $s_i + s_j$ and $s_j + s_i$ are regular bracket sequences and $i \ne j$, then both pairs $(i, j)$ and $(j, i)$ must be counted in the answer. Also, if $s_i + s_i$ is a regular bracket sequence, the pair $(i, i)$ must be counted in the answer.
|
The first line contains one integer $n \, (1 \le n \le 3 \cdot 10^5)$ — the number of bracket sequences. The following $n$ lines contain bracket sequences — non-empty strings consisting only of characters "(" and ")". The sum of lengths of all bracket sequences does not exceed $3 \cdot 10^5$.
|
In the single line print a single integer — the number of pairs $i, j \, (1 \le i, j \le n)$ such that the bracket sequence $s_i + s_j$ is a regular bracket sequence.
|
[
"3\n)\n()\n(\n",
"2\n()\n()\n"
] |
[
"2\n",
"4\n"
] |
In the first example, suitable pairs are $(3, 1)$ and $(2, 2)$.
In the second example, any pair is suitable, namely $(1, 1), (1, 2), (2, 1), (2, 2)$.
| 0
|
[
{
"input": "3\n)\n()\n(",
"output": "2"
},
{
"input": "2\n()\n()",
"output": "4"
},
{
"input": "7\n()(\n)\n)(\n())\n(((\n()()()\n()",
"output": "6"
},
{
"input": "6\n(\n((\n(((\n))))\n)))))\n))))))",
"output": "0"
},
{
"input": "9\n(()\n((())\n(\n)\n(()()(()())))\n)\n)(()(\n)())(\n)()(",
"output": "9"
},
{
"input": "2\n(((((((((()\n)))))))))",
"output": "1"
},
{
"input": "1\n)(",
"output": "0"
},
{
"input": "1\n()",
"output": "1"
},
{
"input": "2\n(((\n)))",
"output": "1"
},
{
"input": "10\n()()(\n)((\n)()(((()(\n(((()(\n)(()((\n))\n()()()()\n))()))((\n)\n))())(",
"output": "2"
},
{
"input": "3\n)())(\n()(()(\n(((",
"output": "0"
},
{
"input": "2\n((((((((((((((((((((((((\n))))))))))))))))))))))))",
"output": "1"
},
{
"input": "2\n((\n))",
"output": "1"
}
] | 1,528,794,316
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 30
| 545
| 7,987,200
|
from collections import Counter
def i_ints():
return list(map(int, input().split()))
#############
def calc(s):
m = res = 0
for c in s:
if c == '(':
res += 1
else:
res -= 1
if res < m:
m = res
if m < 0 and res > m:
return None
return res
n, = i_ints()
s = [input() for _ in range(n)]
s = [c for c in map(calc, s) if c is not None]
cs = Counter(s)
print(sum(cs[c] * cs[-c] for c in cs if c >= 0))
|
Title: Bracket Sequences Concatenation Problem
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
A bracket sequence is a string containing only characters "(" and ")".
A regular bracket sequence is a bracket sequence that can be transformed into a correct arithmetic expression by inserting characters "1" and "+" between the original characters of the sequence. For example, bracket sequences "()()", "(())" are regular (the resulting expressions are: "(1)+(1)", "((1+1)+1)"), and ")(" and "(" are not.
You are given $n$ bracket sequences $s_1, s_2, \dots , s_n$. Calculate the number of pairs $i, j \, (1 \le i, j \le n)$ such that the bracket sequence $s_i + s_j$ is a regular bracket sequence. Operation $+$ means concatenation i.e. "()(" + ")()" = "()()()".
If $s_i + s_j$ and $s_j + s_i$ are regular bracket sequences and $i \ne j$, then both pairs $(i, j)$ and $(j, i)$ must be counted in the answer. Also, if $s_i + s_i$ is a regular bracket sequence, the pair $(i, i)$ must be counted in the answer.
Input Specification:
The first line contains one integer $n \, (1 \le n \le 3 \cdot 10^5)$ — the number of bracket sequences. The following $n$ lines contain bracket sequences — non-empty strings consisting only of characters "(" and ")". The sum of lengths of all bracket sequences does not exceed $3 \cdot 10^5$.
Output Specification:
In the single line print a single integer — the number of pairs $i, j \, (1 \le i, j \le n)$ such that the bracket sequence $s_i + s_j$ is a regular bracket sequence.
Demo Input:
['3\n)\n()\n(\n', '2\n()\n()\n']
Demo Output:
['2\n', '4\n']
Note:
In the first example, suitable pairs are $(3, 1)$ and $(2, 2)$.
In the second example, any pair is suitable, namely $(1, 1), (1, 2), (2, 1), (2, 2)$.
|
```python
from collections import Counter
def i_ints():
return list(map(int, input().split()))
#############
def calc(s):
m = res = 0
for c in s:
if c == '(':
res += 1
else:
res -= 1
if res < m:
m = res
if m < 0 and res > m:
return None
return res
n, = i_ints()
s = [input() for _ in range(n)]
s = [c for c in map(calc, s) if c is not None]
cs = Counter(s)
print(sum(cs[c] * cs[-c] for c in cs if c >= 0))
```
| 3
|
|
18
|
C
|
Stripe
|
PROGRAMMING
| 1,200
|
[
"data structures",
"implementation"
] |
C. Stripe
|
2
|
64
|
Once Bob took a paper stripe of *n* squares (the height of the stripe is 1 square). In each square he wrote an integer number, possibly negative. He became interested in how many ways exist to cut this stripe into two pieces so that the sum of numbers from one piece is equal to the sum of numbers from the other piece, and each piece contains positive integer amount of squares. Would you help Bob solve this problem?
|
The first input line contains integer *n* (1<=≤<=*n*<=≤<=105) — amount of squares in the stripe. The second line contains *n* space-separated numbers — they are the numbers written in the squares of the stripe. These numbers are integer and do not exceed 10000 in absolute value.
|
Output the amount of ways to cut the stripe into two non-empty pieces so that the sum of numbers from one piece is equal to the sum of numbers from the other piece. Don't forget that it's allowed to cut the stripe along the squares' borders only.
|
[
"9\n1 5 -6 7 9 -16 0 -2 2\n",
"3\n1 1 1\n",
"2\n0 0\n"
] |
[
"3\n",
"0\n",
"1\n"
] |
none
| 0
|
[
{
"input": "9\n1 5 -6 7 9 -16 0 -2 2",
"output": "3"
},
{
"input": "3\n1 1 1",
"output": "0"
},
{
"input": "2\n0 0",
"output": "1"
},
{
"input": "4\n100 1 10 111",
"output": "1"
},
{
"input": "10\n0 4 -3 0 -2 2 -3 -3 2 5",
"output": "3"
},
{
"input": "10\n0 -1 2 2 -1 1 0 0 0 2",
"output": "0"
},
{
"input": "10\n-1 -1 1 -1 0 1 0 1 1 1",
"output": "1"
},
{
"input": "10\n0 0 0 0 0 0 0 0 0 0",
"output": "9"
},
{
"input": "50\n-4 -3 3 4 -1 0 2 -4 -3 -4 1 4 3 0 4 1 0 -3 4 -3 -2 2 2 1 0 -4 -4 -5 3 2 -1 4 5 -3 -3 4 4 -5 2 -3 4 -5 2 5 -4 4 1 -2 -4 3",
"output": "3"
},
{
"input": "15\n0 4 0 3 -1 4 -2 -2 -4 -4 3 2 4 -1 -3",
"output": "0"
},
{
"input": "10\n3 -1 -3 -1 3 -2 0 3 1 -2",
"output": "0"
},
{
"input": "100\n-4 2 4 4 1 3 -3 -3 2 1 -4 0 0 2 3 -1 -4 -3 4 -2 -3 -3 -3 -1 -2 -3 -1 -4 0 4 0 -1 4 0 -4 -4 4 -4 -2 1 -4 1 -3 -2 3 -4 4 0 -1 3 -1 4 -1 4 -1 3 -3 -3 -2 -2 4 -3 -3 4 -3 -2 -1 0 -2 4 0 -3 -1 -2 -3 1 -4 1 -3 -3 -3 -2 -3 0 1 -2 -2 -4 -3 -1 2 3 -1 1 1 0 3 -3 -1 -2",
"output": "1"
},
{
"input": "100\n-2 -1 1 0 -2 -1 2 2 0 0 2 1 0 2 0 2 1 0 -1 -1 -1 0 -2 -1 2 -1 -2 2 -2 2 -2 -2 2 1 1 1 -2 2 0 0 2 -1 2 2 2 0 -1 -1 -1 1 -2 2 2 2 -2 0 0 -2 0 -2 -2 0 -1 -1 -2 -1 1 2 -2 -1 1 -2 -1 0 -2 2 2 -1 -2 2 0 0 0 1 0 1 2 1 -2 -2 -1 -1 -2 -2 -2 -1 2 2 2 -2",
"output": "6"
},
{
"input": "100\n2 7 6 0 8 -2 0 1 8 -1 7 -4 -1 1 0 3 4 -4 3 7 8 -4 -6 6 4 -2 -5 7 4 6 1 6 3 8 -2 6 -6 -3 0 -1 -7 -8 -2 5 8 6 -2 -2 -5 -4 -7 -3 -5 -3 -3 -1 5 8 4 0 -7 -6 8 -4 -1 7 2 6 6 4 -5 -4 -5 -2 2 -2 -7 -1 5 -8 -6 -2 -5 4 2 8 -6 7 -8 -1 -5 8 6 -3 -1 7 -1 2 -8 -8",
"output": "0"
},
{
"input": "1\n0",
"output": "0"
},
{
"input": "1\n10000",
"output": "0"
},
{
"input": "1\n-10000",
"output": "0"
}
] | 1,640,239,038
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 45
| 218
| 7,372,800
|
import sys
sum = 0
cur = 0
res = 0
n = int(sys.stdin.readline().strip())
stripe = list(map(int, sys.stdin.readline().split()))
if n == 1:
print(0)
exit()
for i in range(len(stripe)):
sum += stripe[i]
sum = sum / 2
for i in range(len(stripe) - 1):
cur += stripe[i]
if cur == sum:
res += 1
print(res)
|
Title: Stripe
Time Limit: 2 seconds
Memory Limit: 64 megabytes
Problem Description:
Once Bob took a paper stripe of *n* squares (the height of the stripe is 1 square). In each square he wrote an integer number, possibly negative. He became interested in how many ways exist to cut this stripe into two pieces so that the sum of numbers from one piece is equal to the sum of numbers from the other piece, and each piece contains positive integer amount of squares. Would you help Bob solve this problem?
Input Specification:
The first input line contains integer *n* (1<=≤<=*n*<=≤<=105) — amount of squares in the stripe. The second line contains *n* space-separated numbers — they are the numbers written in the squares of the stripe. These numbers are integer and do not exceed 10000 in absolute value.
Output Specification:
Output the amount of ways to cut the stripe into two non-empty pieces so that the sum of numbers from one piece is equal to the sum of numbers from the other piece. Don't forget that it's allowed to cut the stripe along the squares' borders only.
Demo Input:
['9\n1 5 -6 7 9 -16 0 -2 2\n', '3\n1 1 1\n', '2\n0 0\n']
Demo Output:
['3\n', '0\n', '1\n']
Note:
none
|
```python
import sys
sum = 0
cur = 0
res = 0
n = int(sys.stdin.readline().strip())
stripe = list(map(int, sys.stdin.readline().split()))
if n == 1:
print(0)
exit()
for i in range(len(stripe)):
sum += stripe[i]
sum = sum / 2
for i in range(len(stripe) - 1):
cur += stripe[i]
if cur == sum:
res += 1
print(res)
```
| 3.890568
|
908
|
A
|
New Year and Counting Cards
|
PROGRAMMING
| 800
|
[
"brute force",
"implementation"
] | null | null |
Your friend has *n* cards.
You know that each card has a lowercase English letter on one side and a digit on the other.
Currently, your friend has laid out the cards on a table so only one side of each card is visible.
You would like to know if the following statement is true for cards that your friend owns: "If a card has a vowel on one side, then it has an even digit on the other side." More specifically, a vowel is one of 'a', 'e', 'i', 'o' or 'u', and even digit is one of '0', '2', '4', '6' or '8'.
For example, if a card has 'a' on one side, and '6' on the other side, then this statement is true for it. Also, the statement is true, for example, for a card with 'b' and '4', and for a card with 'b' and '3' (since the letter is not a vowel). The statement is false, for example, for card with 'e' and '5'. You are interested if the statement is true for all cards. In particular, if no card has a vowel, the statement is true.
To determine this, you can flip over some cards to reveal the other side. You would like to know what is the minimum number of cards you need to flip in the worst case in order to verify that the statement is true.
|
The first and only line of input will contain a string *s* (1<=≤<=|*s*|<=≤<=50), denoting the sides of the cards that you can see on the table currently. Each character of *s* is either a lowercase English letter or a digit.
|
Print a single integer, the minimum number of cards you must turn over to verify your claim.
|
[
"ee\n",
"z\n",
"0ay1\n"
] |
[
"2\n",
"0\n",
"2\n"
] |
In the first sample, we must turn over both cards. Note that even though both cards have the same letter, they could possibly have different numbers on the other side.
In the second sample, we don't need to turn over any cards. The statement is vacuously true, since you know your friend has no cards with a vowel on them.
In the third sample, we need to flip the second and fourth cards.
| 500
|
[
{
"input": "ee",
"output": "2"
},
{
"input": "z",
"output": "0"
},
{
"input": "0ay1",
"output": "2"
},
{
"input": "0abcdefghijklmnopqrstuvwxyz1234567896",
"output": "10"
},
{
"input": "0a0a9e9e2i2i9o9o6u6u9z9z4x4x9b9b",
"output": "18"
},
{
"input": "01234567890123456789012345678901234567890123456789",
"output": "25"
},
{
"input": "qwertyuioplkjhgfdsazxcvbnmqwertyuioplkjhgfdsazxcvb",
"output": "10"
},
{
"input": "cjw2dwmr10pku4yxohe0wglktd",
"output": "4"
},
{
"input": "6z2tx805jie8cfybwtfqvmlveec3iak5z5u3lu62vbxyqht6",
"output": "13"
},
{
"input": "kaq7jyialrfp4ilkni90eq8v3amcbygon7py0hb8z26fbl8ss1",
"output": "13"
},
{
"input": "hpwn50zgbmct80k9rizjqg40nycgs0acwikjqt11nr6m61krfs",
"output": "8"
},
{
"input": "l3rw91a4m25l8iytxyeuixsegzcbm4h41ornf3pixkrmwznrzc",
"output": "14"
},
{
"input": "2222",
"output": "0"
},
{
"input": "13579",
"output": "5"
},
{
"input": "1",
"output": "1"
},
{
"input": "0",
"output": "0"
},
{
"input": "a",
"output": "1"
},
{
"input": "y",
"output": "0"
},
{
"input": "w",
"output": "0"
},
{
"input": "oo",
"output": "2"
},
{
"input": "oy",
"output": "1"
},
{
"input": "yo",
"output": "1"
},
{
"input": "yy",
"output": "0"
},
{
"input": "a0",
"output": "1"
},
{
"input": "a9",
"output": "2"
},
{
"input": "y0",
"output": "0"
},
{
"input": "y7",
"output": "1"
},
{
"input": "0a",
"output": "1"
},
{
"input": "3a",
"output": "2"
},
{
"input": "06",
"output": "0"
},
{
"input": "07",
"output": "1"
},
{
"input": "70",
"output": "1"
},
{
"input": "77",
"output": "2"
},
{
"input": "13570",
"output": "4"
},
{
"input": "0000000000011111",
"output": "5"
},
{
"input": "1357",
"output": "4"
},
{
"input": "uuuuuuuuuuuuuuuuuu",
"output": "18"
},
{
"input": "gabieurat",
"output": "5"
}
] | 1,571,502,625
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 38
| 109
| 0
|
abc = input()
q = 0
for sym in abc:
if sym in 'aueoi' or sym.isdigit() and int(sym) % 2 == 1:
q += 1
print(q)
|
Title: New Year and Counting Cards
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Your friend has *n* cards.
You know that each card has a lowercase English letter on one side and a digit on the other.
Currently, your friend has laid out the cards on a table so only one side of each card is visible.
You would like to know if the following statement is true for cards that your friend owns: "If a card has a vowel on one side, then it has an even digit on the other side." More specifically, a vowel is one of 'a', 'e', 'i', 'o' or 'u', and even digit is one of '0', '2', '4', '6' or '8'.
For example, if a card has 'a' on one side, and '6' on the other side, then this statement is true for it. Also, the statement is true, for example, for a card with 'b' and '4', and for a card with 'b' and '3' (since the letter is not a vowel). The statement is false, for example, for card with 'e' and '5'. You are interested if the statement is true for all cards. In particular, if no card has a vowel, the statement is true.
To determine this, you can flip over some cards to reveal the other side. You would like to know what is the minimum number of cards you need to flip in the worst case in order to verify that the statement is true.
Input Specification:
The first and only line of input will contain a string *s* (1<=≤<=|*s*|<=≤<=50), denoting the sides of the cards that you can see on the table currently. Each character of *s* is either a lowercase English letter or a digit.
Output Specification:
Print a single integer, the minimum number of cards you must turn over to verify your claim.
Demo Input:
['ee\n', 'z\n', '0ay1\n']
Demo Output:
['2\n', '0\n', '2\n']
Note:
In the first sample, we must turn over both cards. Note that even though both cards have the same letter, they could possibly have different numbers on the other side.
In the second sample, we don't need to turn over any cards. The statement is vacuously true, since you know your friend has no cards with a vowel on them.
In the third sample, we need to flip the second and fourth cards.
|
```python
abc = input()
q = 0
for sym in abc:
if sym in 'aueoi' or sym.isdigit() and int(sym) % 2 == 1:
q += 1
print(q)
```
| 3
|
|
609
|
A
|
USB Flash Drives
|
PROGRAMMING
| 800
|
[
"greedy",
"implementation",
"sortings"
] | null | null |
Sean is trying to save a large file to a USB flash drive. He has *n* USB flash drives with capacities equal to *a*1,<=*a*2,<=...,<=*a**n* megabytes. The file size is equal to *m* megabytes.
Find the minimum number of USB flash drives needed to write Sean's file, if he can split the file between drives.
|
The first line contains positive integer *n* (1<=≤<=*n*<=≤<=100) — the number of USB flash drives.
The second line contains positive integer *m* (1<=≤<=*m*<=≤<=105) — the size of Sean's file.
Each of the next *n* lines contains positive integer *a**i* (1<=≤<=*a**i*<=≤<=1000) — the sizes of USB flash drives in megabytes.
It is guaranteed that the answer exists, i. e. the sum of all *a**i* is not less than *m*.
|
Print the minimum number of USB flash drives to write Sean's file, if he can split the file between drives.
|
[
"3\n5\n2\n1\n3\n",
"3\n6\n2\n3\n2\n",
"2\n5\n5\n10\n"
] |
[
"2\n",
"3\n",
"1\n"
] |
In the first example Sean needs only two USB flash drives — the first and the third.
In the second example Sean needs all three USB flash drives.
In the third example Sean needs only one USB flash drive and he can use any available USB flash drive — the first or the second.
| 0
|
[
{
"input": "3\n5\n2\n1\n3",
"output": "2"
},
{
"input": "3\n6\n2\n3\n2",
"output": "3"
},
{
"input": "2\n5\n5\n10",
"output": "1"
},
{
"input": "5\n16\n8\n1\n3\n4\n9",
"output": "2"
},
{
"input": "10\n121\n10\n37\n74\n56\n42\n39\n6\n68\n8\n100",
"output": "2"
},
{
"input": "12\n4773\n325\n377\n192\n780\n881\n816\n839\n223\n215\n125\n952\n8",
"output": "7"
},
{
"input": "15\n7758\n182\n272\n763\n910\n24\n359\n583\n890\n735\n819\n66\n992\n440\n496\n227",
"output": "15"
},
{
"input": "30\n70\n6\n2\n10\n4\n7\n10\n5\n1\n8\n10\n4\n3\n5\n9\n3\n6\n6\n4\n2\n6\n5\n10\n1\n9\n7\n2\n1\n10\n7\n5",
"output": "8"
},
{
"input": "40\n15705\n702\n722\n105\n873\n417\n477\n794\n300\n869\n496\n572\n232\n456\n298\n473\n584\n486\n713\n934\n121\n303\n956\n934\n840\n358\n201\n861\n497\n131\n312\n957\n96\n914\n509\n60\n300\n722\n658\n820\n103",
"output": "21"
},
{
"input": "50\n18239\n300\n151\n770\n9\n200\n52\n247\n753\n523\n263\n744\n463\n540\n244\n608\n569\n771\n32\n425\n777\n624\n761\n628\n124\n405\n396\n726\n626\n679\n237\n229\n49\n512\n18\n671\n290\n768\n632\n739\n18\n136\n413\n117\n83\n413\n452\n767\n664\n203\n404",
"output": "31"
},
{
"input": "70\n149\n5\n3\n3\n4\n6\n1\n2\n9\n8\n3\n1\n8\n4\n4\n3\n6\n10\n7\n1\n10\n8\n4\n9\n3\n8\n3\n2\n5\n1\n8\n6\n9\n10\n4\n8\n6\n9\n9\n9\n3\n4\n2\n2\n5\n8\n9\n1\n10\n3\n4\n3\n1\n9\n3\n5\n1\n3\n7\n6\n9\n8\n9\n1\n7\n4\n4\n2\n3\n5\n7",
"output": "17"
},
{
"input": "70\n2731\n26\n75\n86\n94\n37\n25\n32\n35\n92\n1\n51\n73\n53\n66\n16\n80\n15\n81\n100\n87\n55\n48\n30\n71\n39\n87\n77\n25\n70\n22\n75\n23\n97\n16\n75\n95\n61\n61\n28\n10\n78\n54\n80\n51\n25\n24\n90\n58\n4\n77\n40\n54\n53\n47\n62\n30\n38\n71\n97\n71\n60\n58\n1\n21\n15\n55\n99\n34\n88\n99",
"output": "35"
},
{
"input": "70\n28625\n34\n132\n181\n232\n593\n413\n862\n887\n808\n18\n35\n89\n356\n640\n339\n280\n975\n82\n345\n398\n948\n372\n91\n755\n75\n153\n948\n603\n35\n694\n722\n293\n363\n884\n264\n813\n175\n169\n646\n138\n449\n488\n828\n417\n134\n84\n763\n288\n845\n801\n556\n972\n332\n564\n934\n699\n842\n942\n644\n203\n406\n140\n37\n9\n423\n546\n675\n491\n113\n587",
"output": "45"
},
{
"input": "80\n248\n3\n9\n4\n5\n10\n7\n2\n6\n2\n2\n8\n2\n1\n3\n7\n9\n2\n8\n4\n4\n8\n5\n4\n4\n10\n2\n1\n4\n8\n4\n10\n1\n2\n10\n2\n3\n3\n1\n1\n8\n9\n5\n10\n2\n8\n10\n5\n3\n6\n1\n7\n8\n9\n10\n5\n10\n10\n2\n10\n1\n2\n4\n1\n9\n4\n7\n10\n8\n5\n8\n1\n4\n2\n2\n3\n9\n9\n9\n10\n6",
"output": "27"
},
{
"input": "80\n2993\n18\n14\n73\n38\n14\n73\n77\n18\n81\n6\n96\n65\n77\n86\n76\n8\n16\n81\n83\n83\n34\n69\n58\n15\n19\n1\n16\n57\n95\n35\n5\n49\n8\n15\n47\n84\n99\n94\n93\n55\n43\n47\n51\n61\n57\n13\n7\n92\n14\n4\n83\n100\n60\n75\n41\n95\n74\n40\n1\n4\n95\n68\n59\n65\n15\n15\n75\n85\n46\n77\n26\n30\n51\n64\n75\n40\n22\n88\n68\n24",
"output": "38"
},
{
"input": "80\n37947\n117\n569\n702\n272\n573\n629\n90\n337\n673\n589\n576\n205\n11\n284\n645\n719\n777\n271\n567\n466\n251\n402\n3\n97\n288\n699\n208\n173\n530\n782\n266\n395\n957\n159\n463\n43\n316\n603\n197\n386\n132\n799\n778\n905\n784\n71\n851\n963\n883\n705\n454\n275\n425\n727\n223\n4\n870\n833\n431\n463\n85\n505\n800\n41\n954\n981\n242\n578\n336\n48\n858\n702\n349\n929\n646\n528\n993\n506\n274\n227",
"output": "70"
},
{
"input": "90\n413\n5\n8\n10\n7\n5\n7\n5\n7\n1\n7\n8\n4\n3\n9\n4\n1\n10\n3\n1\n10\n9\n3\n1\n8\n4\n7\n5\n2\n9\n3\n10\n10\n3\n6\n3\n3\n10\n7\n5\n1\n1\n2\n4\n8\n2\n5\n5\n3\n9\n5\n5\n3\n10\n2\n3\n8\n5\n9\n1\n3\n6\n5\n9\n2\n3\n7\n10\n3\n4\n4\n1\n5\n9\n2\n6\n9\n1\n1\n9\n9\n7\n7\n7\n8\n4\n5\n3\n4\n6\n9",
"output": "59"
},
{
"input": "90\n4226\n33\n43\n83\n46\n75\n14\n88\n36\n8\n25\n47\n4\n96\n19\n33\n49\n65\n17\n59\n72\n1\n55\n94\n92\n27\n33\n39\n14\n62\n79\n12\n89\n22\n86\n13\n19\n77\n53\n96\n74\n24\n25\n17\n64\n71\n81\n87\n52\n72\n55\n49\n74\n36\n65\n86\n91\n33\n61\n97\n38\n87\n61\n14\n73\n95\n43\n67\n42\n67\n22\n12\n62\n32\n96\n24\n49\n82\n46\n89\n36\n75\n91\n11\n10\n9\n33\n86\n28\n75\n39",
"output": "64"
},
{
"input": "90\n40579\n448\n977\n607\n745\n268\n826\n479\n59\n330\n609\n43\n301\n970\n726\n172\n632\n600\n181\n712\n195\n491\n312\n849\n722\n679\n682\n780\n131\n404\n293\n387\n567\n660\n54\n339\n111\n833\n612\n911\n869\n356\n884\n635\n126\n639\n712\n473\n663\n773\n435\n32\n973\n484\n662\n464\n699\n274\n919\n95\n904\n253\n589\n543\n454\n250\n349\n237\n829\n511\n536\n36\n45\n152\n626\n384\n199\n877\n941\n84\n781\n115\n20\n52\n726\n751\n920\n291\n571\n6\n199",
"output": "64"
},
{
"input": "100\n66\n7\n9\n10\n5\n2\n8\n6\n5\n4\n10\n10\n6\n5\n2\n2\n1\n1\n5\n8\n7\n8\n10\n5\n6\n6\n5\n9\n9\n6\n3\n8\n7\n10\n5\n9\n6\n7\n3\n5\n8\n6\n8\n9\n1\n1\n1\n2\n4\n5\n5\n1\n1\n2\n6\n7\n1\n5\n8\n7\n2\n1\n7\n10\n9\n10\n2\n4\n10\n4\n10\n10\n5\n3\n9\n1\n2\n1\n10\n5\n1\n7\n4\n4\n5\n7\n6\n10\n4\n7\n3\n4\n3\n6\n2\n5\n2\n4\n9\n5\n3",
"output": "7"
},
{
"input": "100\n4862\n20\n47\n85\n47\n76\n38\n48\n93\n91\n81\n31\n51\n23\n60\n59\n3\n73\n72\n57\n67\n54\n9\n42\n5\n32\n46\n72\n79\n95\n61\n79\n88\n33\n52\n97\n10\n3\n20\n79\n82\n93\n90\n38\n80\n18\n21\n43\n60\n73\n34\n75\n65\n10\n84\n100\n29\n94\n56\n22\n59\n95\n46\n22\n57\n69\n67\n90\n11\n10\n61\n27\n2\n48\n69\n86\n91\n69\n76\n36\n71\n18\n54\n90\n74\n69\n50\n46\n8\n5\n41\n96\n5\n14\n55\n85\n39\n6\n79\n75\n87",
"output": "70"
},
{
"input": "100\n45570\n14\n881\n678\n687\n993\n413\n760\n451\n426\n787\n503\n343\n234\n530\n294\n725\n941\n524\n574\n441\n798\n399\n360\n609\n376\n525\n229\n995\n478\n347\n47\n23\n468\n525\n749\n601\n235\n89\n995\n489\n1\n239\n415\n122\n671\n128\n357\n886\n401\n964\n212\n968\n210\n130\n871\n360\n661\n844\n414\n187\n21\n824\n266\n713\n126\n496\n916\n37\n193\n755\n894\n641\n300\n170\n176\n383\n488\n627\n61\n897\n33\n242\n419\n881\n698\n107\n391\n418\n774\n905\n87\n5\n896\n835\n318\n373\n916\n393\n91\n460",
"output": "78"
},
{
"input": "100\n522\n1\n5\n2\n4\n2\n6\n3\n4\n2\n10\n10\n6\n7\n9\n7\n1\n7\n2\n5\n3\n1\n5\n2\n3\n5\n1\n7\n10\n10\n4\n4\n10\n9\n10\n6\n2\n8\n2\n6\n10\n9\n2\n7\n5\n9\n4\n6\n10\n7\n3\n1\n1\n9\n5\n10\n9\n2\n8\n3\n7\n5\n4\n7\n5\n9\n10\n6\n2\n9\n2\n5\n10\n1\n7\n7\n10\n5\n6\n2\n9\n4\n7\n10\n10\n8\n3\n4\n9\n3\n6\n9\n10\n2\n9\n9\n3\n4\n1\n10\n2",
"output": "74"
},
{
"input": "100\n32294\n414\n116\n131\n649\n130\n476\n630\n605\n213\n117\n757\n42\n109\n85\n127\n635\n629\n994\n410\n764\n204\n161\n231\n577\n116\n936\n537\n565\n571\n317\n722\n819\n229\n284\n487\n649\n304\n628\n727\n816\n854\n91\n111\n549\n87\n374\n417\n3\n868\n882\n168\n743\n77\n534\n781\n75\n956\n910\n734\n507\n568\n802\n946\n891\n659\n116\n678\n375\n380\n430\n627\n873\n350\n930\n285\n6\n183\n96\n517\n81\n794\n235\n360\n551\n6\n28\n799\n226\n996\n894\n981\n551\n60\n40\n460\n479\n161\n318\n952\n433",
"output": "42"
},
{
"input": "100\n178\n71\n23\n84\n98\n8\n14\n4\n42\n56\n83\n87\n28\n22\n32\n50\n5\n96\n90\n1\n59\n74\n56\n96\n77\n88\n71\n38\n62\n36\n85\n1\n97\n98\n98\n32\n99\n42\n6\n81\n20\n49\n57\n71\n66\n9\n45\n41\n29\n28\n32\n68\n38\n29\n35\n29\n19\n27\n76\n85\n68\n68\n41\n32\n78\n72\n38\n19\n55\n83\n83\n25\n46\n62\n48\n26\n53\n14\n39\n31\n94\n84\n22\n39\n34\n96\n63\n37\n42\n6\n78\n76\n64\n16\n26\n6\n79\n53\n24\n29\n63",
"output": "2"
},
{
"input": "100\n885\n226\n266\n321\n72\n719\n29\n121\n533\n85\n672\n225\n830\n783\n822\n30\n791\n618\n166\n487\n922\n434\n814\n473\n5\n741\n947\n910\n305\n998\n49\n945\n588\n868\n809\n803\n168\n280\n614\n434\n634\n538\n591\n437\n540\n445\n313\n177\n171\n799\n778\n55\n617\n554\n583\n611\n12\n94\n599\n182\n765\n556\n965\n542\n35\n460\n177\n313\n485\n744\n384\n21\n52\n879\n792\n411\n614\n811\n565\n695\n428\n587\n631\n794\n461\n258\n193\n696\n936\n646\n756\n267\n55\n690\n730\n742\n734\n988\n235\n762\n440",
"output": "1"
},
{
"input": "100\n29\n9\n2\n10\n8\n6\n7\n7\n3\n3\n10\n4\n5\n2\n5\n1\n6\n3\n2\n5\n10\n10\n9\n1\n4\n5\n2\n2\n3\n1\n2\n2\n9\n6\n9\n7\n8\n8\n1\n5\n5\n3\n1\n5\n6\n1\n9\n2\n3\n8\n10\n8\n3\n2\n7\n1\n2\n1\n2\n8\n10\n5\n2\n3\n1\n10\n7\n1\n7\n4\n9\n6\n6\n4\n7\n1\n2\n7\n7\n9\n9\n7\n10\n4\n10\n8\n2\n1\n5\n5\n10\n5\n8\n1\n5\n6\n5\n1\n5\n6\n8",
"output": "3"
},
{
"input": "100\n644\n94\n69\n43\n36\n54\n93\n30\n74\n56\n95\n70\n49\n11\n36\n57\n30\n59\n3\n52\n59\n90\n82\n39\n67\n32\n8\n80\n64\n8\n65\n51\n48\n89\n90\n35\n4\n54\n66\n96\n68\n90\n30\n4\n13\n97\n41\n90\n85\n17\n45\n94\n31\n58\n4\n39\n76\n95\n92\n59\n67\n46\n96\n55\n82\n64\n20\n20\n83\n46\n37\n15\n60\n37\n79\n45\n47\n63\n73\n76\n31\n52\n36\n32\n49\n26\n61\n91\n31\n25\n62\n90\n65\n65\n5\n94\n7\n15\n97\n88\n68",
"output": "7"
},
{
"input": "100\n1756\n98\n229\n158\n281\n16\n169\n149\n239\n235\n182\n147\n215\n49\n270\n194\n242\n295\n289\n249\n19\n12\n144\n157\n92\n270\n122\n212\n97\n152\n14\n42\n12\n198\n98\n295\n154\n229\n191\n294\n5\n156\n43\n185\n184\n20\n125\n23\n10\n257\n244\n264\n79\n46\n277\n13\n22\n97\n212\n77\n293\n20\n51\n17\n109\n37\n68\n117\n51\n248\n10\n149\n179\n192\n239\n161\n13\n173\n297\n73\n43\n109\n288\n198\n81\n70\n254\n187\n277\n1\n295\n113\n95\n291\n293\n119\n205\n191\n37\n34\n116",
"output": "6"
},
{
"input": "100\n20562\n721\n452\n11\n703\n376\n183\n197\n203\n406\n642\n346\n446\n256\n760\n201\n360\n702\n707\n388\n779\n653\n610\n497\n768\n670\n134\n780\n306\n661\n180\n259\n256\n362\n6\n121\n415\n747\n170\n67\n439\n728\n193\n622\n481\n38\n225\n343\n303\n253\n436\n305\n68\n794\n247\n291\n600\n750\n188\n199\n757\n28\n776\n749\n253\n351\n53\n629\n129\n578\n209\n89\n651\n262\n638\n353\n469\n31\n144\n460\n176\n535\n562\n366\n639\n234\n577\n364\n761\n617\n303\n450\n778\n311\n289\n221\n274\n239\n626\n194\n36",
"output": "30"
},
{
"input": "100\n32630\n548\n21\n756\n138\n56\n719\n97\n86\n599\n531\n464\n137\n737\n239\n626\n179\n170\n271\n335\n178\n298\n597\n616\n104\n190\n216\n333\n606\n621\n310\n70\n286\n593\n655\n472\n556\n77\n625\n744\n395\n487\n762\n316\n469\n258\n475\n596\n651\n180\n737\n101\n511\n708\n163\n713\n475\n557\n649\n705\n583\n97\n447\n119\n91\n372\n194\n394\n667\n384\n635\n611\n746\n758\n613\n54\n508\n405\n188\n570\n254\n28\n599\n767\n115\n737\n194\n148\n686\n705\n236\n762\n613\n770\n633\n401\n773\n448\n274\n141\n718",
"output": "52"
},
{
"input": "1\n1\n1",
"output": "1"
}
] | 1,585,903,986
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 34
| 156
| 0
|
m=int(input());s=int(input());lis=[]
for i in range(m):
lis.append(int(input()))
lis.sort(reverse=True)
mx=0;i=0
while(s>mx):
mx+=lis[i]
i+=1
print(i)
|
Title: USB Flash Drives
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Sean is trying to save a large file to a USB flash drive. He has *n* USB flash drives with capacities equal to *a*1,<=*a*2,<=...,<=*a**n* megabytes. The file size is equal to *m* megabytes.
Find the minimum number of USB flash drives needed to write Sean's file, if he can split the file between drives.
Input Specification:
The first line contains positive integer *n* (1<=≤<=*n*<=≤<=100) — the number of USB flash drives.
The second line contains positive integer *m* (1<=≤<=*m*<=≤<=105) — the size of Sean's file.
Each of the next *n* lines contains positive integer *a**i* (1<=≤<=*a**i*<=≤<=1000) — the sizes of USB flash drives in megabytes.
It is guaranteed that the answer exists, i. e. the sum of all *a**i* is not less than *m*.
Output Specification:
Print the minimum number of USB flash drives to write Sean's file, if he can split the file between drives.
Demo Input:
['3\n5\n2\n1\n3\n', '3\n6\n2\n3\n2\n', '2\n5\n5\n10\n']
Demo Output:
['2\n', '3\n', '1\n']
Note:
In the first example Sean needs only two USB flash drives — the first and the third.
In the second example Sean needs all three USB flash drives.
In the third example Sean needs only one USB flash drive and he can use any available USB flash drive — the first or the second.
|
```python
m=int(input());s=int(input());lis=[]
for i in range(m):
lis.append(int(input()))
lis.sort(reverse=True)
mx=0;i=0
while(s>mx):
mx+=lis[i]
i+=1
print(i)
```
| 3
|
|
361
|
B
|
Levko and Permutation
|
PROGRAMMING
| 1,200
|
[
"constructive algorithms",
"math",
"number theory"
] | null | null |
Levko loves permutations very much. A permutation of length *n* is a sequence of distinct positive integers, each is at most *n*.
Let’s assume that value *gcd*(*a*,<=*b*) shows the greatest common divisor of numbers *a* and *b*. Levko assumes that element *p**i* of permutation *p*1,<=*p*2,<=... ,<=*p**n* is good if *gcd*(*i*,<=*p**i*)<=><=1. Levko considers a permutation beautiful, if it has exactly *k* good elements. Unfortunately, he doesn’t know any beautiful permutation. Your task is to help him to find at least one of them.
|
The single line contains two integers *n* and *k* (1<=≤<=*n*<=≤<=105, 0<=≤<=*k*<=≤<=*n*).
|
In a single line print either any beautiful permutation or -1, if such permutation doesn’t exist.
If there are multiple suitable permutations, you are allowed to print any of them.
|
[
"4 2\n",
"1 1\n"
] |
[
"2 4 3 1",
"-1\n"
] |
In the first sample elements 4 and 3 are good because *gcd*(2, 4) = 2 > 1 and *gcd*(3, 3) = 3 > 1. Elements 2 and 1 are not good because *gcd*(1, 2) = 1 and *gcd*(4, 1) = 1. As there are exactly 2 good elements, the permutation is beautiful.
The second sample has no beautiful permutations.
| 1,000
|
[
{
"input": "4 2",
"output": "2 1 3 4 "
},
{
"input": "1 1",
"output": "-1"
},
{
"input": "7 4",
"output": "3 1 2 4 5 6 7 "
},
{
"input": "10 9",
"output": "1 2 3 4 5 6 7 8 9 10 "
},
{
"input": "10000 5000",
"output": "5000 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 15..."
},
{
"input": "7 0",
"output": "7 1 2 3 4 5 6 "
},
{
"input": "1 0",
"output": "1 "
},
{
"input": "7 7",
"output": "-1"
},
{
"input": "100000 47",
"output": "99953 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 1..."
},
{
"input": "100000 100000",
"output": "-1"
},
{
"input": "100000 43425",
"output": "56575 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 1..."
},
{
"input": "7 6",
"output": "1 2 3 4 5 6 7 "
},
{
"input": "100000 99999",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155..."
},
{
"input": "47 46",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 "
},
{
"input": "5 0",
"output": "5 1 2 3 4 "
},
{
"input": "4 2",
"output": "2 1 3 4 "
},
{
"input": "1533 1052",
"output": "481 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154..."
},
{
"input": "81314 52747",
"output": "28567 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 1..."
},
{
"input": "17767 145",
"output": "17622 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 1..."
},
{
"input": "18168 7942",
"output": "10226 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 1..."
},
{
"input": "26593 15915",
"output": "10678 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 1..."
},
{
"input": "26593 8877",
"output": "17716 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 1..."
},
{
"input": "13852 12727",
"output": "1125 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 15..."
},
{
"input": "4 1",
"output": "3 1 2 4 "
},
{
"input": "8834 8834",
"output": "-1"
},
{
"input": "8485 8484",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155..."
},
{
"input": "14564 14564",
"output": "-1"
},
{
"input": "8254 8253",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155..."
},
{
"input": "81314 81312",
"output": "2 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155..."
},
{
"input": "5795 5792",
"output": "3 1 2 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155..."
},
{
"input": "6417 3",
"output": "6414 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 15..."
},
{
"input": "6896 0",
"output": "6896 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 15..."
},
{
"input": "6778 1",
"output": "6777 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 15..."
},
{
"input": "9448 1",
"output": "9447 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 15..."
},
{
"input": "5938 2",
"output": "5936 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 15..."
},
{
"input": "3072 0",
"output": "3072 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 15..."
},
{
"input": "8576 0",
"output": "8576 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 15..."
},
{
"input": "2 1",
"output": "1 2 "
},
{
"input": "4 4",
"output": "-1"
},
{
"input": "5 5",
"output": "-1"
},
{
"input": "2 2",
"output": "-1"
},
{
"input": "100000 1",
"output": "99999 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 1..."
},
{
"input": "100000 50000",
"output": "50000 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 1..."
},
{
"input": "4 1",
"output": "3 1 2 4 "
},
{
"input": "100000 9999",
"output": "90001 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 1..."
},
{
"input": "100000 99000",
"output": "1000 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 15..."
},
{
"input": "100000 12347",
"output": "87653 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 1..."
}
] | 1,526,397,606
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 47
| 171
| 31,641,600
|
n,k=map(int,input().split())
a=list(range(1,n+1))
x=n-k
if x&1==0:a[0],a[-1]=n,1;x-=2
else: x-=1
for i in range(1,n-1,2):
if x<1:break
a[i],a[i+1]=a[i+1],a[i]
x-=2
if x!=0:print(-1)
else:print(' '.join(map(str,a)))
|
Title: Levko and Permutation
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Levko loves permutations very much. A permutation of length *n* is a sequence of distinct positive integers, each is at most *n*.
Let’s assume that value *gcd*(*a*,<=*b*) shows the greatest common divisor of numbers *a* and *b*. Levko assumes that element *p**i* of permutation *p*1,<=*p*2,<=... ,<=*p**n* is good if *gcd*(*i*,<=*p**i*)<=><=1. Levko considers a permutation beautiful, if it has exactly *k* good elements. Unfortunately, he doesn’t know any beautiful permutation. Your task is to help him to find at least one of them.
Input Specification:
The single line contains two integers *n* and *k* (1<=≤<=*n*<=≤<=105, 0<=≤<=*k*<=≤<=*n*).
Output Specification:
In a single line print either any beautiful permutation or -1, if such permutation doesn’t exist.
If there are multiple suitable permutations, you are allowed to print any of them.
Demo Input:
['4 2\n', '1 1\n']
Demo Output:
['2 4 3 1', '-1\n']
Note:
In the first sample elements 4 and 3 are good because *gcd*(2, 4) = 2 > 1 and *gcd*(3, 3) = 3 > 1. Elements 2 and 1 are not good because *gcd*(1, 2) = 1 and *gcd*(4, 1) = 1. As there are exactly 2 good elements, the permutation is beautiful.
The second sample has no beautiful permutations.
|
```python
n,k=map(int,input().split())
a=list(range(1,n+1))
x=n-k
if x&1==0:a[0],a[-1]=n,1;x-=2
else: x-=1
for i in range(1,n-1,2):
if x<1:break
a[i],a[i+1]=a[i+1],a[i]
x-=2
if x!=0:print(-1)
else:print(' '.join(map(str,a)))
```
| 3
|
|
119
|
A
|
Epic Game
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Simon and Antisimon play a game. Initially each player receives one fixed positive integer that doesn't change throughout the game. Simon receives number *a* and Antisimon receives number *b*. They also have a heap of *n* stones. The players take turns to make a move and Simon starts. During a move a player should take from the heap the number of stones equal to the greatest common divisor of the fixed number he has received and the number of stones left in the heap. A player loses when he cannot take the required number of stones (i. e. the heap has strictly less stones left than one needs to take).
Your task is to determine by the given *a*, *b* and *n* who wins the game.
|
The only string contains space-separated integers *a*, *b* and *n* (1<=≤<=*a*,<=*b*,<=*n*<=≤<=100) — the fixed numbers Simon and Antisimon have received correspondingly and the initial number of stones in the pile.
|
If Simon wins, print "0" (without the quotes), otherwise print "1" (without the quotes).
|
[
"3 5 9\n",
"1 1 100\n"
] |
[
"0",
"1"
] |
The greatest common divisor of two non-negative integers *a* and *b* is such maximum positive integer *k*, that *a* is divisible by *k* without remainder and similarly, *b* is divisible by *k* without remainder. Let *gcd*(*a*, *b*) represent the operation of calculating the greatest common divisor of numbers *a* and *b*. Specifically, *gcd*(*x*, 0) = *gcd*(0, *x*) = *x*.
In the first sample the game will go like that:
- Simon should take *gcd*(3, 9) = 3 stones from the heap. After his move the heap has 6 stones left.- Antisimon should take *gcd*(5, 6) = 1 stone from the heap. After his move the heap has 5 stones left.- Simon should take *gcd*(3, 5) = 1 stone from the heap. After his move the heap has 4 stones left.- Antisimon should take *gcd*(5, 4) = 1 stone from the heap. After his move the heap has 3 stones left.- Simon should take *gcd*(3, 3) = 3 stones from the heap. After his move the heap has 0 stones left.- Antisimon should take *gcd*(5, 0) = 5 stones from the heap. As 0 < 5, it is impossible and Antisimon loses.
In the second sample each player during each move takes one stone from the heap. As *n* is even, Antisimon takes the last stone and Simon can't make a move after that.
| 500
|
[
{
"input": "3 5 9",
"output": "0"
},
{
"input": "1 1 100",
"output": "1"
},
{
"input": "23 12 16",
"output": "1"
},
{
"input": "95 26 29",
"output": "1"
},
{
"input": "73 32 99",
"output": "1"
},
{
"input": "1 1 1",
"output": "0"
},
{
"input": "41 12 65",
"output": "1"
},
{
"input": "13 61 100",
"output": "1"
},
{
"input": "100 100 10",
"output": "0"
},
{
"input": "12 24 26",
"output": "1"
},
{
"input": "73 21 96",
"output": "1"
},
{
"input": "17 22 81",
"output": "1"
},
{
"input": "14 88 97",
"output": "1"
},
{
"input": "42 81 17",
"output": "0"
},
{
"input": "34 36 19",
"output": "1"
},
{
"input": "21 87 12",
"output": "1"
},
{
"input": "97 92 98",
"output": "1"
},
{
"input": "49 25 62",
"output": "1"
},
{
"input": "29 17 44",
"output": "1"
},
{
"input": "10 1 10",
"output": "0"
},
{
"input": "99 98 100",
"output": "1"
},
{
"input": "100 100 1",
"output": "0"
},
{
"input": "11 99 55",
"output": "0"
},
{
"input": "8 13 21",
"output": "0"
},
{
"input": "34 55 89",
"output": "0"
},
{
"input": "21 34 55",
"output": "1"
},
{
"input": "13 21 34",
"output": "1"
},
{
"input": "34 21 55",
"output": "0"
},
{
"input": "10 20 84",
"output": "1"
},
{
"input": "4 2 5",
"output": "0"
},
{
"input": "3 2 3",
"output": "0"
},
{
"input": "31 23 1",
"output": "0"
},
{
"input": "100 100 100",
"output": "0"
},
{
"input": "100 1 100",
"output": "0"
},
{
"input": "1 100 100",
"output": "1"
},
{
"input": "1 1 100",
"output": "1"
},
{
"input": "17 23 100",
"output": "1"
},
{
"input": "99 98 100",
"output": "1"
},
{
"input": "1 1 2",
"output": "1"
},
{
"input": "2 1 1",
"output": "0"
},
{
"input": "1 2 1",
"output": "0"
},
{
"input": "2 1 2",
"output": "0"
},
{
"input": "10 10 3",
"output": "1"
},
{
"input": "2 2 1",
"output": "0"
},
{
"input": "9 5 1",
"output": "0"
}
] | 1,603,038,618
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 45
| 216
| 307,200
|
import math
a,b,n = input().split()
a= int(a)
b= int(b)
n= int(n)
flag = 0
check =0
while(flag==0):
if check == 0:
n = n - math.gcd(a,n)
if n < 0:
print(1)
flag = 1
check = 1
else:
n = n - math.gcd(b,n)
if n<0 :
flag = 1
print(0)
check = 0
|
Title: Epic Game
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Simon and Antisimon play a game. Initially each player receives one fixed positive integer that doesn't change throughout the game. Simon receives number *a* and Antisimon receives number *b*. They also have a heap of *n* stones. The players take turns to make a move and Simon starts. During a move a player should take from the heap the number of stones equal to the greatest common divisor of the fixed number he has received and the number of stones left in the heap. A player loses when he cannot take the required number of stones (i. e. the heap has strictly less stones left than one needs to take).
Your task is to determine by the given *a*, *b* and *n* who wins the game.
Input Specification:
The only string contains space-separated integers *a*, *b* and *n* (1<=≤<=*a*,<=*b*,<=*n*<=≤<=100) — the fixed numbers Simon and Antisimon have received correspondingly and the initial number of stones in the pile.
Output Specification:
If Simon wins, print "0" (without the quotes), otherwise print "1" (without the quotes).
Demo Input:
['3 5 9\n', '1 1 100\n']
Demo Output:
['0', '1']
Note:
The greatest common divisor of two non-negative integers *a* and *b* is such maximum positive integer *k*, that *a* is divisible by *k* without remainder and similarly, *b* is divisible by *k* without remainder. Let *gcd*(*a*, *b*) represent the operation of calculating the greatest common divisor of numbers *a* and *b*. Specifically, *gcd*(*x*, 0) = *gcd*(0, *x*) = *x*.
In the first sample the game will go like that:
- Simon should take *gcd*(3, 9) = 3 stones from the heap. After his move the heap has 6 stones left.- Antisimon should take *gcd*(5, 6) = 1 stone from the heap. After his move the heap has 5 stones left.- Simon should take *gcd*(3, 5) = 1 stone from the heap. After his move the heap has 4 stones left.- Antisimon should take *gcd*(5, 4) = 1 stone from the heap. After his move the heap has 3 stones left.- Simon should take *gcd*(3, 3) = 3 stones from the heap. After his move the heap has 0 stones left.- Antisimon should take *gcd*(5, 0) = 5 stones from the heap. As 0 < 5, it is impossible and Antisimon loses.
In the second sample each player during each move takes one stone from the heap. As *n* is even, Antisimon takes the last stone and Simon can't make a move after that.
|
```python
import math
a,b,n = input().split()
a= int(a)
b= int(b)
n= int(n)
flag = 0
check =0
while(flag==0):
if check == 0:
n = n - math.gcd(a,n)
if n < 0:
print(1)
flag = 1
check = 1
else:
n = n - math.gcd(b,n)
if n<0 :
flag = 1
print(0)
check = 0
```
| 3
|
|
381
|
A
|
Sereja and Dima
|
PROGRAMMING
| 800
|
[
"greedy",
"implementation",
"two pointers"
] | null | null |
Sereja and Dima play a game. The rules of the game are very simple. The players have *n* cards in a row. Each card contains a number, all numbers on the cards are distinct. The players take turns, Sereja moves first. During his turn a player can take one card: either the leftmost card in a row, or the rightmost one. The game ends when there is no more cards. The player who has the maximum sum of numbers on his cards by the end of the game, wins.
Sereja and Dima are being greedy. Each of them chooses the card with the larger number during his move.
Inna is a friend of Sereja and Dima. She knows which strategy the guys are using, so she wants to determine the final score, given the initial state of the game. Help her.
|
The first line contains integer *n* (1<=≤<=*n*<=≤<=1000) — the number of cards on the table. The second line contains space-separated numbers on the cards from left to right. The numbers on the cards are distinct integers from 1 to 1000.
|
On a single line, print two integers. The first number is the number of Sereja's points at the end of the game, the second number is the number of Dima's points at the end of the game.
|
[
"4\n4 1 2 10\n",
"7\n1 2 3 4 5 6 7\n"
] |
[
"12 5\n",
"16 12\n"
] |
In the first sample Sereja will take cards with numbers 10 and 2, so Sereja's sum is 12. Dima will take cards with numbers 4 and 1, so Dima's sum is 5.
| 500
|
[
{
"input": "4\n4 1 2 10",
"output": "12 5"
},
{
"input": "7\n1 2 3 4 5 6 7",
"output": "16 12"
},
{
"input": "42\n15 29 37 22 16 5 26 31 6 32 19 3 45 36 33 14 25 20 48 7 42 11 24 28 9 18 8 21 47 17 38 40 44 4 35 1 43 39 41 27 12 13",
"output": "613 418"
},
{
"input": "43\n32 1 15 48 38 26 25 14 20 44 11 30 3 42 49 19 18 46 5 45 10 23 34 9 29 41 2 52 6 17 35 4 50 22 33 51 7 28 47 13 39 37 24",
"output": "644 500"
},
{
"input": "1\n3",
"output": "3 0"
},
{
"input": "45\n553 40 94 225 415 471 126 190 647 394 515 303 189 159 308 6 139 132 326 78 455 75 85 295 135 613 360 614 351 228 578 259 258 591 444 29 33 463 561 174 368 183 140 168 646",
"output": "6848 6568"
},
{
"input": "44\n849 373 112 307 479 608 856 769 526 82 168 143 573 762 115 501 688 36 214 450 396 496 236 309 287 786 397 43 811 141 745 846 350 270 276 677 420 459 403 722 267 54 394 727",
"output": "9562 9561"
},
{
"input": "35\n10 15 18 1 28 16 2 33 6 22 23 4 9 25 35 8 7 26 3 20 30 14 31 19 27 32 11 5 29 24 21 34 13 17 12",
"output": "315 315"
},
{
"input": "17\n580 376 191 496 73 44 520 357 483 149 81 178 514 300 216 598 304",
"output": "3238 2222"
},
{
"input": "30\n334 443 223 424 168 549 189 303 429 559 516 220 459 134 344 346 316 446 209 148 487 526 69 286 102 366 518 280 392 325",
"output": "5246 4864"
},
{
"input": "95\n122 29 188 265 292 287 183 225 222 187 155 256 64 148 173 278 218 136 290 17 31 130 2 87 57 283 255 280 68 166 174 142 102 39 116 206 288 154 26 78 296 172 184 232 77 91 277 8 249 186 94 93 207 251 257 195 101 299 193 124 293 65 58 35 24 302 220 189 252 125 27 284 247 182 141 103 198 97 234 83 281 216 85 180 267 236 109 143 149 239 79 300 191 244 71",
"output": "8147 7807"
},
{
"input": "1\n1",
"output": "1 0"
}
] | 1,699,964,593
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 34
| 46
| 0
|
x=int(input())
y=list(map(int,input().split()))
s=0
d=0
ch=True
l,r=0,len(y)-1
while l<=r:
if ch:
if y[l]>y[r]:
s+=y[l]
l+=1
else:
s+=y[r]
r-=1
ch=False
else:
if y[l]>y[r]:
d+=y[l]
l+=1
else:
d+=y[r]
r-=1
ch=True
print(s,d)
|
Title: Sereja and Dima
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Sereja and Dima play a game. The rules of the game are very simple. The players have *n* cards in a row. Each card contains a number, all numbers on the cards are distinct. The players take turns, Sereja moves first. During his turn a player can take one card: either the leftmost card in a row, or the rightmost one. The game ends when there is no more cards. The player who has the maximum sum of numbers on his cards by the end of the game, wins.
Sereja and Dima are being greedy. Each of them chooses the card with the larger number during his move.
Inna is a friend of Sereja and Dima. She knows which strategy the guys are using, so she wants to determine the final score, given the initial state of the game. Help her.
Input Specification:
The first line contains integer *n* (1<=≤<=*n*<=≤<=1000) — the number of cards on the table. The second line contains space-separated numbers on the cards from left to right. The numbers on the cards are distinct integers from 1 to 1000.
Output Specification:
On a single line, print two integers. The first number is the number of Sereja's points at the end of the game, the second number is the number of Dima's points at the end of the game.
Demo Input:
['4\n4 1 2 10\n', '7\n1 2 3 4 5 6 7\n']
Demo Output:
['12 5\n', '16 12\n']
Note:
In the first sample Sereja will take cards with numbers 10 and 2, so Sereja's sum is 12. Dima will take cards with numbers 4 and 1, so Dima's sum is 5.
|
```python
x=int(input())
y=list(map(int,input().split()))
s=0
d=0
ch=True
l,r=0,len(y)-1
while l<=r:
if ch:
if y[l]>y[r]:
s+=y[l]
l+=1
else:
s+=y[r]
r-=1
ch=False
else:
if y[l]>y[r]:
d+=y[l]
l+=1
else:
d+=y[r]
r-=1
ch=True
print(s,d)
```
| 3
|
|
732
|
A
|
Buy a Shovel
|
PROGRAMMING
| 800
|
[
"brute force",
"constructive algorithms",
"implementation",
"math"
] | null | null |
Polycarp urgently needs a shovel! He comes to the shop and chooses an appropriate one. The shovel that Policarp chooses is sold for *k* burles. Assume that there is an unlimited number of such shovels in the shop.
In his pocket Polycarp has an unlimited number of "10-burle coins" and exactly one coin of *r* burles (1<=≤<=*r*<=≤<=9).
What is the minimum number of shovels Polycarp has to buy so that he can pay for the purchase without any change? It is obvious that he can pay for 10 shovels without any change (by paying the requied amount of 10-burle coins and not using the coin of *r* burles). But perhaps he can buy fewer shovels and pay without any change. Note that Polycarp should buy at least one shovel.
|
The single line of input contains two integers *k* and *r* (1<=≤<=*k*<=≤<=1000, 1<=≤<=*r*<=≤<=9) — the price of one shovel and the denomination of the coin in Polycarp's pocket that is different from "10-burle coins".
Remember that he has an unlimited number of coins in the denomination of 10, that is, Polycarp has enough money to buy any number of shovels.
|
Print the required minimum number of shovels Polycarp has to buy so that he can pay for them without any change.
|
[
"117 3\n",
"237 7\n",
"15 2\n"
] |
[
"9\n",
"1\n",
"2\n"
] |
In the first example Polycarp can buy 9 shovels and pay 9·117 = 1053 burles. Indeed, he can pay this sum by using 10-burle coins and one 3-burle coin. He can't buy fewer shovels without any change.
In the second example it is enough for Polycarp to buy one shovel.
In the third example Polycarp should buy two shovels and pay 2·15 = 30 burles. It is obvious that he can pay this sum without any change.
| 500
|
[
{
"input": "117 3",
"output": "9"
},
{
"input": "237 7",
"output": "1"
},
{
"input": "15 2",
"output": "2"
},
{
"input": "1 1",
"output": "1"
},
{
"input": "1 9",
"output": "9"
},
{
"input": "1000 3",
"output": "1"
},
{
"input": "1000 1",
"output": "1"
},
{
"input": "1000 9",
"output": "1"
},
{
"input": "1 2",
"output": "2"
},
{
"input": "999 9",
"output": "1"
},
{
"input": "999 8",
"output": "2"
},
{
"input": "105 6",
"output": "2"
},
{
"input": "403 9",
"output": "3"
},
{
"input": "546 4",
"output": "4"
},
{
"input": "228 9",
"output": "5"
},
{
"input": "57 2",
"output": "6"
},
{
"input": "437 9",
"output": "7"
},
{
"input": "997 6",
"output": "8"
},
{
"input": "109 1",
"output": "9"
},
{
"input": "998 9",
"output": "5"
},
{
"input": "4 2",
"output": "3"
},
{
"input": "9 3",
"output": "7"
},
{
"input": "8 2",
"output": "4"
},
{
"input": "1 3",
"output": "3"
},
{
"input": "1 4",
"output": "4"
},
{
"input": "1 5",
"output": "5"
},
{
"input": "1 6",
"output": "6"
},
{
"input": "1 7",
"output": "7"
},
{
"input": "1 8",
"output": "8"
},
{
"input": "100 3",
"output": "1"
},
{
"input": "1000 2",
"output": "1"
},
{
"input": "1000 4",
"output": "1"
},
{
"input": "1000 5",
"output": "1"
},
{
"input": "1000 6",
"output": "1"
},
{
"input": "1000 7",
"output": "1"
},
{
"input": "1000 8",
"output": "1"
},
{
"input": "23 4",
"output": "8"
},
{
"input": "33 1",
"output": "7"
},
{
"input": "33 2",
"output": "4"
},
{
"input": "666 5",
"output": "5"
},
{
"input": "2 3",
"output": "5"
},
{
"input": "5 5",
"output": "1"
},
{
"input": "3 6",
"output": "2"
},
{
"input": "12 4",
"output": "2"
},
{
"input": "15 5",
"output": "1"
},
{
"input": "2 5",
"output": "5"
},
{
"input": "25 5",
"output": "1"
},
{
"input": "2 9",
"output": "5"
},
{
"input": "6 7",
"output": "5"
},
{
"input": "8 9",
"output": "5"
},
{
"input": "2 7",
"output": "5"
},
{
"input": "4 7",
"output": "5"
},
{
"input": "2 1",
"output": "5"
},
{
"input": "261 1",
"output": "1"
}
] | 1,676,799,391
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 54
| 46
| 0
|
k,r=map(int,input().split());res=0;i=0
while True:
i+=1
t=k*i
m=t%10
if m==0 or m==r:
res+=1
break
res+=1
print(res)
|
Title: Buy a Shovel
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Polycarp urgently needs a shovel! He comes to the shop and chooses an appropriate one. The shovel that Policarp chooses is sold for *k* burles. Assume that there is an unlimited number of such shovels in the shop.
In his pocket Polycarp has an unlimited number of "10-burle coins" and exactly one coin of *r* burles (1<=≤<=*r*<=≤<=9).
What is the minimum number of shovels Polycarp has to buy so that he can pay for the purchase without any change? It is obvious that he can pay for 10 shovels without any change (by paying the requied amount of 10-burle coins and not using the coin of *r* burles). But perhaps he can buy fewer shovels and pay without any change. Note that Polycarp should buy at least one shovel.
Input Specification:
The single line of input contains two integers *k* and *r* (1<=≤<=*k*<=≤<=1000, 1<=≤<=*r*<=≤<=9) — the price of one shovel and the denomination of the coin in Polycarp's pocket that is different from "10-burle coins".
Remember that he has an unlimited number of coins in the denomination of 10, that is, Polycarp has enough money to buy any number of shovels.
Output Specification:
Print the required minimum number of shovels Polycarp has to buy so that he can pay for them without any change.
Demo Input:
['117 3\n', '237 7\n', '15 2\n']
Demo Output:
['9\n', '1\n', '2\n']
Note:
In the first example Polycarp can buy 9 shovels and pay 9·117 = 1053 burles. Indeed, he can pay this sum by using 10-burle coins and one 3-burle coin. He can't buy fewer shovels without any change.
In the second example it is enough for Polycarp to buy one shovel.
In the third example Polycarp should buy two shovels and pay 2·15 = 30 burles. It is obvious that he can pay this sum without any change.
|
```python
k,r=map(int,input().split());res=0;i=0
while True:
i+=1
t=k*i
m=t%10
if m==0 or m==r:
res+=1
break
res+=1
print(res)
```
| 3
|
|
543
|
A
|
Writing Code
|
PROGRAMMING
| 1,800
|
[
"dp"
] | null | null |
Programmers working on a large project have just received a task to write exactly *m* lines of code. There are *n* programmers working on a project, the *i*-th of them makes exactly *a**i* bugs in every line of code that he writes.
Let's call a sequence of non-negative integers *v*1,<=*v*2,<=...,<=*v**n* a plan, if *v*1<=+<=*v*2<=+<=...<=+<=*v**n*<==<=*m*. The programmers follow the plan like that: in the beginning the first programmer writes the first *v*1 lines of the given task, then the second programmer writes *v*2 more lines of the given task, and so on. In the end, the last programmer writes the remaining lines of the code. Let's call a plan good, if all the written lines of the task contain at most *b* bugs in total.
Your task is to determine how many distinct good plans are there. As the number of plans can be large, print the remainder of this number modulo given positive integer *mod*.
|
The first line contains four integers *n*, *m*, *b*, *mod* (1<=≤<=*n*,<=*m*<=≤<=500, 0<=≤<=*b*<=≤<=500; 1<=≤<=*mod*<=≤<=109<=+<=7) — the number of programmers, the number of lines of code in the task, the maximum total number of bugs respectively and the modulo you should use when printing the answer.
The next line contains *n* space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=500) — the number of bugs per line for each programmer.
|
Print a single integer — the answer to the problem modulo *mod*.
|
[
"3 3 3 100\n1 1 1\n",
"3 6 5 1000000007\n1 2 3\n",
"3 5 6 11\n1 2 1\n"
] |
[
"10\n",
"0\n",
"0\n"
] |
none
| 500
|
[
{
"input": "3 3 3 100\n1 1 1",
"output": "10"
},
{
"input": "3 6 5 1000000007\n1 2 3",
"output": "0"
},
{
"input": "3 5 6 11\n1 2 1",
"output": "0"
},
{
"input": "2 3 3 1000\n1 2",
"output": "1"
},
{
"input": "3 10 10 150691913\n8 7 10",
"output": "0"
},
{
"input": "100 500 500 895583345\n20 39 5 5 41 47 36 33 34 22 21 33 7 4 15 35 16 37 39 46 27 4 12 35 43 26 23 40 16 50 27 7 49 28 17 28 16 22 18 12 25 34 28 24 10 21 38 10 40 50 35 18 23 38 10 42 22 19 24 45 33 34 50 24 29 36 39 11 37 18 10 2 9 38 17 36 49 1 32 6 20 5 37 18 31 44 1 36 24 35 13 35 8 10 26 45 43 28 38 22",
"output": "501"
},
{
"input": "100 100 100 960694994\n1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 1 1 0 1 0 0 0 1 1 0 0 1 1 0 1 1 0 1 1 0 1 0 1 0 1 0 0 1 1 1 0 1 1 1 1 1 0 1 0 0 0 0 0 1 0 1 0 1 0 1 1 1 1 0 0 1 0 0 1 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0 0 1 0 1 0 1 1 0 1 0 1",
"output": "527886216"
},
{
"input": "123 432 342 1000000007\n72 20 34 115 65 29 114 41 18 16 122 104 88 37 119 11 108 91 13 110 47 73 80 35 62 12 9 116 55 66 54 113 50 57 8 25 98 105 0 120 93 78 61 17 84 48 42 106 63 103 7 59 90 89 28 49 53 71 51 83 75 67 64 95 107 3 32 85 69 99 33 79 109 56 10 23 87 19 121 94 44 82 102 27 112 52 21 1 5 74 117 111 76 24 4 101 30 36 97 60 92 46 22 68 118 58 38 70 39 26 43 77 6 2 40 100 81 96 14 31 15 45 86",
"output": "902925242"
},
{
"input": "100 500 499 1000000007\n72 20 34 92 65 29 40 41 18 16 86 14 88 37 31 11 39 91 13 43 47 73 80 35 62 12 9 81 55 66 54 2 50 57 8 25 98 58 0 15 93 78 61 17 84 48 42 38 63 68 7 59 90 89 28 49 53 71 51 83 75 67 64 95 70 3 32 85 69 99 33 79 26 56 10 23 87 19 45 94 44 82 22 27 6 52 21 1 5 74 96 77 76 24 4 46 30 36 97 60",
"output": "416898599"
},
{
"input": "1 1 0 1000\n0",
"output": "1"
},
{
"input": "1 4 25 1000\n6",
"output": "1"
},
{
"input": "1 5 1 10\n1",
"output": "0"
},
{
"input": "1 5 5 1000\n1",
"output": "1"
},
{
"input": "1 5 5 1000\n500",
"output": "0"
},
{
"input": "2 500 250 100\n100 200",
"output": "0"
},
{
"input": "2 500 50 10000\n0 50",
"output": "2"
},
{
"input": "100 500 500 1000000007\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0",
"output": "925584498"
},
{
"input": "10 9 20 48620\n1 1 1 1 1 1 1 1 2 2",
"output": "0"
},
{
"input": "21 63 40 1009\n4 4 2 2 4 4 3 2 4 2 0 3 3 4 3 4 3 0 4 2 4",
"output": "1002"
},
{
"input": "29 157 50 1\n3 0 0 3 1 1 2 0 4 4 1 2 2 1 0 0 2 0 3 2 2 3 3 1 4 1 1 4 1",
"output": "0"
},
{
"input": "1 1 1 1\n0",
"output": "0"
},
{
"input": "1 1 1 1\n2",
"output": "0"
}
] | 1,453,685,242
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 59
| 1,107
| 2,252,800
|
def main():
n, m, b, mod = map(int, input().split())
row_zero = [1] + [0] * b
b += 1
dp = [[0] * b for _ in range(m)]
for a in list(map(int, input().split())):
cur = row_zero
for nxt in dp:
for i, u in zip(range(a, b), cur):
nxt[i] = (nxt[i] + u) % mod
cur = nxt
print(sum(dp[-1]) % mod)
if __name__ == '__main__':
main()
|
Title: Writing Code
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Programmers working on a large project have just received a task to write exactly *m* lines of code. There are *n* programmers working on a project, the *i*-th of them makes exactly *a**i* bugs in every line of code that he writes.
Let's call a sequence of non-negative integers *v*1,<=*v*2,<=...,<=*v**n* a plan, if *v*1<=+<=*v*2<=+<=...<=+<=*v**n*<==<=*m*. The programmers follow the plan like that: in the beginning the first programmer writes the first *v*1 lines of the given task, then the second programmer writes *v*2 more lines of the given task, and so on. In the end, the last programmer writes the remaining lines of the code. Let's call a plan good, if all the written lines of the task contain at most *b* bugs in total.
Your task is to determine how many distinct good plans are there. As the number of plans can be large, print the remainder of this number modulo given positive integer *mod*.
Input Specification:
The first line contains four integers *n*, *m*, *b*, *mod* (1<=≤<=*n*,<=*m*<=≤<=500, 0<=≤<=*b*<=≤<=500; 1<=≤<=*mod*<=≤<=109<=+<=7) — the number of programmers, the number of lines of code in the task, the maximum total number of bugs respectively and the modulo you should use when printing the answer.
The next line contains *n* space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=500) — the number of bugs per line for each programmer.
Output Specification:
Print a single integer — the answer to the problem modulo *mod*.
Demo Input:
['3 3 3 100\n1 1 1\n', '3 6 5 1000000007\n1 2 3\n', '3 5 6 11\n1 2 1\n']
Demo Output:
['10\n', '0\n', '0\n']
Note:
none
|
```python
def main():
n, m, b, mod = map(int, input().split())
row_zero = [1] + [0] * b
b += 1
dp = [[0] * b for _ in range(m)]
for a in list(map(int, input().split())):
cur = row_zero
for nxt in dp:
for i, u in zip(range(a, b), cur):
nxt[i] = (nxt[i] + u) % mod
cur = nxt
print(sum(dp[-1]) % mod)
if __name__ == '__main__':
main()
```
| 3
|
|
285
|
C
|
Building Permutation
|
PROGRAMMING
| 1,200
|
[
"greedy",
"implementation",
"sortings"
] | null | null |
Permutation *p* is an ordered set of integers *p*1,<=<=*p*2,<=<=...,<=<=*p**n*, consisting of *n* distinct positive integers, each of them doesn't exceed *n*. We'll denote the *i*-th element of permutation *p* as *p**i*. We'll call number *n* the size or the length of permutation *p*1,<=<=*p*2,<=<=...,<=<=*p**n*.
You have a sequence of integers *a*1,<=*a*2,<=...,<=*a**n*. In one move, you are allowed to decrease or increase any number by one. Count the minimum number of moves, needed to build a permutation from this sequence.
|
The first line contains integer *n* (1<=≤<=*n*<=≤<=3·105) — the size of the sought permutation. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (<=-<=109<=≤<=*a**i*<=≤<=109).
|
Print a single number — the minimum number of moves.
Please, do not use the %lld specifier to read or write 64-bit integers in C++. It is preferred to use the cin, cout streams or the %I64d specifier.
|
[
"2\n3 0\n",
"3\n-1 -1 2\n"
] |
[
"2\n",
"6\n"
] |
In the first sample you should decrease the first number by one and then increase the second number by one. The resulting permutation is (2, 1).
In the second sample you need 6 moves to build permutation (1, 3, 2).
| 1,500
|
[
{
"input": "2\n3 0",
"output": "2"
},
{
"input": "3\n-1 -1 2",
"output": "6"
},
{
"input": "5\n-3 5 -3 3 3",
"output": "10"
},
{
"input": "10\n9 6 -2 4 1 1 1 9 6 2",
"output": "18"
},
{
"input": "9\n2 0 0 6 5 4 1 9 3",
"output": "15"
},
{
"input": "100\n-77 57 -95 -23 53 -28 82 -83 38 -73 85 28 25 6 -43 4 -10 -30 -9 -92 14 34 -93 61 36 -100 90 -68 28 16 100 -3 97 30 36 -55 62 -62 53 74 -50 -23 67 11 22 -30 -19 83 7 84 43 90 -65 -75 -15 97 90 15 66 2 13 -91 91 -44 46 51 51 -58 95 77 20 30 76 79 91 60 76 2 82 42 -93 94 -57 88 65 -95 -66 100 -9 33 -67 54 -99 97 53 13 54 66 60 -48",
"output": "3459"
}
] | 1,629,715,840
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 33
| 467
| 46,182,400
|
n = int(input())
numbers = list(map(int, input().split()))
numbers = sorted(numbers)
res = 0
for i in range(n):
if (numbers[i] != (i + 1)):
res += abs((i+1) - numbers[i])
print(res)
|
Title: Building Permutation
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Permutation *p* is an ordered set of integers *p*1,<=<=*p*2,<=<=...,<=<=*p**n*, consisting of *n* distinct positive integers, each of them doesn't exceed *n*. We'll denote the *i*-th element of permutation *p* as *p**i*. We'll call number *n* the size or the length of permutation *p*1,<=<=*p*2,<=<=...,<=<=*p**n*.
You have a sequence of integers *a*1,<=*a*2,<=...,<=*a**n*. In one move, you are allowed to decrease or increase any number by one. Count the minimum number of moves, needed to build a permutation from this sequence.
Input Specification:
The first line contains integer *n* (1<=≤<=*n*<=≤<=3·105) — the size of the sought permutation. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (<=-<=109<=≤<=*a**i*<=≤<=109).
Output Specification:
Print a single number — the minimum number of moves.
Please, do not use the %lld specifier to read or write 64-bit integers in C++. It is preferred to use the cin, cout streams or the %I64d specifier.
Demo Input:
['2\n3 0\n', '3\n-1 -1 2\n']
Demo Output:
['2\n', '6\n']
Note:
In the first sample you should decrease the first number by one and then increase the second number by one. The resulting permutation is (2, 1).
In the second sample you need 6 moves to build permutation (1, 3, 2).
|
```python
n = int(input())
numbers = list(map(int, input().split()))
numbers = sorted(numbers)
res = 0
for i in range(n):
if (numbers[i] != (i + 1)):
res += abs((i+1) - numbers[i])
print(res)
```
| 3
|
|
20
|
A
|
BerOS file system
|
PROGRAMMING
| 1,700
|
[
"implementation"
] |
A. BerOS file system
|
2
|
64
|
The new operating system BerOS has a nice feature. It is possible to use any number of characters '/' as a delimiter in path instead of one traditional '/'. For example, strings //usr///local//nginx/sbin// and /usr/local/nginx///sbin are equivalent. The character '/' (or some sequence of such characters) at the end of the path is required only in case of the path to the root directory, which can be represented as single character '/'.
A path called normalized if it contains the smallest possible number of characters '/'.
Your task is to transform a given path to the normalized form.
|
The first line of the input contains only lowercase Latin letters and character '/' — the path to some directory. All paths start with at least one character '/'. The length of the given line is no more than 100 characters, it is not empty.
|
The path in normalized form.
|
[
"//usr///local//nginx/sbin\n"
] |
[
"/usr/local/nginx/sbin\n"
] |
none
| 500
|
[
{
"input": "//usr///local//nginx/sbin",
"output": "/usr/local/nginx/sbin"
},
{
"input": "////a//b/////g",
"output": "/a/b/g"
},
{
"input": "/a/b/c",
"output": "/a/b/c"
},
{
"input": "/",
"output": "/"
},
{
"input": "////",
"output": "/"
},
{
"input": "/a//aa/a//",
"output": "/a/aa/a"
},
{
"input": "/aa//b/aa",
"output": "/aa/b/aa"
},
{
"input": "////////////////////////////////////////////////////////////////////////////////////////////////////",
"output": "/"
},
{
"input": "/opt///pokerband///srvb/opt///pokerband///srvb////pokerband///srvb/",
"output": "/opt/pokerband/srvb/opt/pokerband/srvb/pokerband/srvb"
},
{
"input": "/root/pokerband/trunk/server/game/code/src/main/java/com/uosipa/pokerband/gameserver/game/",
"output": "/root/pokerband/trunk/server/game/code/src/main/java/com/uosipa/pokerband/gameserver/game"
},
{
"input": "/root//pokerband/trunk/server/game/code/src///main/java/com/uosipa/pokerband//gameserver/game//",
"output": "/root/pokerband/trunk/server/game/code/src/main/java/com/uosipa/pokerband/gameserver/game"
},
{
"input": "/root//pokerband/trunk/server/game/code/src///main/java/com/uosipa/pokerband//gameserver/game//test/",
"output": "/root/pokerband/trunk/server/game/code/src/main/java/com/uosipa/pokerband/gameserver/game/test"
},
{
"input": "/root//pokerband/trunk/server/game/code/src///main/java/com/uosipa/pokerband//gameserver/game//testt",
"output": "/root/pokerband/trunk/server/game/code/src/main/java/com/uosipa/pokerband/gameserver/game/testt"
},
{
"input": "///a//a////a/a//a//a//a/////",
"output": "/a/a/a/a/a/a/a"
},
{
"input": "/zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz",
"output": "/zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz"
},
{
"input": "/zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz/",
"output": "/zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz"
},
{
"input": "/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a",
"output": "/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a"
},
{
"input": "///////////////////////////////////////////////////////////////////////////////////////////////////z",
"output": "/z"
},
{
"input": "/z//////////////////////////////////////////////////////////////////////////////////////////////////",
"output": "/z"
}
] | 1,588,699,986
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 19
| 310
| 819,200
|
import re
n = input()
to_remove = "/"
pattern = "(?P<char>[" + re.escape(to_remove) + "])(?P=char)+"
n = re.sub(pattern, r"\1", n)
if n[-1] == "/" and len(n) > 1:
n = n[:-1]
print(n)
|
Title: BerOS file system
Time Limit: 2 seconds
Memory Limit: 64 megabytes
Problem Description:
The new operating system BerOS has a nice feature. It is possible to use any number of characters '/' as a delimiter in path instead of one traditional '/'. For example, strings //usr///local//nginx/sbin// and /usr/local/nginx///sbin are equivalent. The character '/' (or some sequence of such characters) at the end of the path is required only in case of the path to the root directory, which can be represented as single character '/'.
A path called normalized if it contains the smallest possible number of characters '/'.
Your task is to transform a given path to the normalized form.
Input Specification:
The first line of the input contains only lowercase Latin letters and character '/' — the path to some directory. All paths start with at least one character '/'. The length of the given line is no more than 100 characters, it is not empty.
Output Specification:
The path in normalized form.
Demo Input:
['//usr///local//nginx/sbin\n']
Demo Output:
['/usr/local/nginx/sbin\n']
Note:
none
|
```python
import re
n = input()
to_remove = "/"
pattern = "(?P<char>[" + re.escape(to_remove) + "])(?P=char)+"
n = re.sub(pattern, r"\1", n)
if n[-1] == "/" and len(n) > 1:
n = n[:-1]
print(n)
```
| 3.916396
|
999
|
A
|
Mishka and Contest
|
PROGRAMMING
| 800
|
[
"brute force",
"implementation"
] | null | null |
Mishka started participating in a programming contest. There are $n$ problems in the contest. Mishka's problem-solving skill is equal to $k$.
Mishka arranges all problems from the contest into a list. Because of his weird principles, Mishka only solves problems from one of the ends of the list. Every time, he chooses which end (left or right) he will solve the next problem from. Thus, each problem Mishka solves is either the leftmost or the rightmost problem in the list.
Mishka cannot solve a problem with difficulty greater than $k$. When Mishka solves the problem, it disappears from the list, so the length of the list decreases by $1$. Mishka stops when he is unable to solve any problem from any end of the list.
How many problems can Mishka solve?
|
The first line of input contains two integers $n$ and $k$ ($1 \le n, k \le 100$) — the number of problems in the contest and Mishka's problem-solving skill.
The second line of input contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 100$), where $a_i$ is the difficulty of the $i$-th problem. The problems are given in order from the leftmost to the rightmost in the list.
|
Print one integer — the maximum number of problems Mishka can solve.
|
[
"8 4\n4 2 3 1 5 1 6 4\n",
"5 2\n3 1 2 1 3\n",
"5 100\n12 34 55 43 21\n"
] |
[
"5\n",
"0\n",
"5\n"
] |
In the first example, Mishka can solve problems in the following order: $[4, 2, 3, 1, 5, 1, 6, 4] \rightarrow [2, 3, 1, 5, 1, 6, 4] \rightarrow [2, 3, 1, 5, 1, 6] \rightarrow [3, 1, 5, 1, 6] \rightarrow [1, 5, 1, 6] \rightarrow [5, 1, 6]$, so the number of solved problems will be equal to $5$.
In the second example, Mishka can't solve any problem because the difficulties of problems from both ends are greater than $k$.
In the third example, Mishka's solving skill is so amazing that he can solve all the problems.
| 0
|
[
{
"input": "8 4\n4 2 3 1 5 1 6 4",
"output": "5"
},
{
"input": "5 2\n3 1 2 1 3",
"output": "0"
},
{
"input": "5 100\n12 34 55 43 21",
"output": "5"
},
{
"input": "100 100\n44 47 36 83 76 94 86 69 31 2 22 77 37 51 10 19 25 78 53 25 1 29 48 95 35 53 22 72 49 86 60 38 13 91 89 18 54 19 71 2 25 33 65 49 53 5 95 90 100 68 25 5 87 48 45 72 34 14 100 44 94 75 80 26 25 7 57 82 49 73 55 43 42 60 34 8 51 11 71 41 81 23 20 89 12 72 68 26 96 92 32 63 13 47 19 9 35 56 79 62",
"output": "100"
},
{
"input": "100 99\n84 82 43 4 71 3 30 92 15 47 76 43 2 17 76 4 1 33 24 96 44 98 75 99 59 11 73 27 67 17 8 88 69 41 44 22 91 48 4 46 42 21 21 67 85 51 57 84 11 100 100 59 39 72 89 82 74 19 98 14 37 97 20 78 38 52 44 83 19 83 69 32 56 6 93 13 98 80 80 2 33 71 11 15 55 51 98 58 16 91 39 32 83 58 77 79 88 81 17 98",
"output": "98"
},
{
"input": "100 69\n80 31 12 89 16 35 8 28 39 12 32 51 42 67 64 53 17 88 63 97 29 41 57 28 51 33 82 75 93 79 57 86 32 100 83 82 99 33 1 27 86 22 65 15 60 100 42 37 38 85 26 43 90 62 91 13 1 92 16 20 100 19 28 30 23 6 5 69 24 22 9 1 10 14 28 14 25 9 32 8 67 4 39 7 10 57 15 7 8 35 62 6 53 59 62 13 24 7 53 2",
"output": "39"
},
{
"input": "100 2\n2 2 2 2 1 1 1 2 1 2 2 2 1 2 2 2 2 1 2 1 2 1 1 1 2 1 2 1 2 1 1 2 2 2 2 2 1 2 1 2 1 1 2 1 2 1 1 2 1 2 1 2 2 1 2 1 2 1 1 2 1 2 2 1 1 2 2 2 1 1 2 1 1 2 2 2 1 1 1 2 2 2 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 2 2 16",
"output": "99"
},
{
"input": "100 3\n86 53 82 40 2 20 59 2 46 63 75 49 24 81 70 22 9 9 93 72 47 23 29 77 78 51 17 59 19 71 35 3 20 60 70 9 11 96 71 94 91 19 88 93 50 49 72 19 53 30 38 67 62 71 81 86 5 26 5 32 63 98 1 97 22 32 87 65 96 55 43 85 56 37 56 67 12 100 98 58 77 54 18 20 33 53 21 66 24 64 42 71 59 32 51 69 49 79 10 1",
"output": "1"
},
{
"input": "13 7\n1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "13"
},
{
"input": "1 5\n4",
"output": "1"
},
{
"input": "3 2\n1 4 1",
"output": "2"
},
{
"input": "1 2\n100",
"output": "0"
},
{
"input": "7 4\n4 2 3 4 4 2 3",
"output": "7"
},
{
"input": "1 2\n1",
"output": "1"
},
{
"input": "1 2\n15",
"output": "0"
},
{
"input": "2 1\n1 1",
"output": "2"
},
{
"input": "5 3\n3 4 3 2 1",
"output": "4"
},
{
"input": "1 1\n2",
"output": "0"
},
{
"input": "1 5\n1",
"output": "1"
},
{
"input": "6 6\n7 1 1 1 1 1",
"output": "5"
},
{
"input": "5 5\n6 5 5 5 5",
"output": "4"
},
{
"input": "1 4\n2",
"output": "1"
},
{
"input": "9 4\n1 2 1 2 4 2 1 2 1",
"output": "9"
},
{
"input": "1 1\n1",
"output": "1"
},
{
"input": "1 10\n5",
"output": "1"
},
{
"input": "5 5\n1 1 1 1 1",
"output": "5"
},
{
"input": "100 10\n2 5 1 10 10 2 7 7 9 4 1 8 1 1 8 4 7 9 10 5 7 9 5 6 7 2 7 5 3 2 1 82 4 80 9 8 6 1 10 7 5 7 1 5 6 7 19 4 2 4 6 2 1 8 31 6 2 2 57 42 3 2 7 1 9 5 10 8 5 4 10 8 3 5 8 7 2 7 6 5 3 3 4 10 6 7 10 8 7 10 7 2 4 6 8 10 10 2 6 4",
"output": "71"
},
{
"input": "100 90\n17 16 5 51 17 62 24 45 49 41 90 30 19 78 67 66 59 34 28 47 42 8 33 77 90 41 61 16 86 33 43 71 90 95 23 9 56 41 24 90 31 12 77 36 90 67 47 15 92 50 79 88 42 19 21 79 86 60 41 26 47 4 70 62 44 90 82 89 84 91 54 16 90 53 29 69 21 44 18 28 88 74 56 43 12 76 10 22 34 24 27 52 28 76 90 75 5 29 50 90",
"output": "63"
},
{
"input": "100 10\n6 4 8 4 1 9 4 8 5 2 2 5 2 6 10 2 2 5 3 5 2 3 10 5 2 9 1 1 6 1 5 9 16 42 33 49 26 31 81 27 53 63 81 90 55 97 70 51 87 21 79 62 60 91 54 95 26 26 30 61 87 79 47 11 59 34 40 82 37 40 81 2 7 1 8 4 10 7 1 10 8 7 3 5 2 8 3 3 9 2 1 1 5 7 8 7 1 10 9 8",
"output": "61"
},
{
"input": "100 90\n45 57 52 69 17 81 85 60 59 39 55 14 87 90 90 31 41 57 35 89 74 20 53 4 33 49 71 11 46 90 71 41 71 90 63 74 51 13 99 92 99 91 100 97 93 40 93 96 100 99 100 92 98 96 78 91 91 91 91 100 94 97 95 97 96 95 17 13 45 35 54 26 2 74 6 51 20 3 73 90 90 42 66 43 86 28 84 70 37 27 90 30 55 80 6 58 57 51 10 22",
"output": "72"
},
{
"input": "100 10\n10 2 10 10 10 10 10 10 10 7 10 10 10 10 10 10 9 10 10 10 10 10 10 10 10 7 9 10 10 10 37 10 4 10 10 10 59 5 95 10 10 10 10 39 10 10 10 10 10 10 10 5 10 10 10 10 10 10 10 10 10 10 10 10 66 10 10 10 10 10 5 10 10 10 10 10 10 44 10 10 10 10 10 10 10 10 10 10 10 7 10 10 10 10 10 10 10 10 10 2",
"output": "52"
},
{
"input": "100 90\n57 90 90 90 90 90 90 90 81 90 3 90 39 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 92 90 90 90 90 90 90 90 90 98 90 90 90 90 90 90 90 90 90 90 90 90 90 54 90 90 90 90 90 62 90 90 91 90 90 90 90 90 90 91 90 90 90 90 90 90 90 3 90 90 90 90 90 90 90 2 90 90 90 90 90 90 90 90 90 2 90 90 90 90 90",
"output": "60"
},
{
"input": "100 10\n10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 6 10 10 10 10 10 10 78 90 61 40 87 39 91 50 64 30 10 24 10 55 28 11 28 35 26 26 10 57 45 67 14 99 96 51 67 79 59 11 21 55 70 33 10 16 92 70 38 50 66 52 5 10 10 10 2 4 10 10 10 10 10 10 10 10 10 6 10 10 10 10 10 10 10 10 10 10 8 10 10 10 10 10",
"output": "56"
},
{
"input": "100 90\n90 90 90 90 90 90 55 21 90 90 90 90 90 90 90 90 90 90 69 83 90 90 90 90 90 90 90 90 93 95 92 98 92 97 91 92 92 91 91 95 94 95 100 100 96 97 94 93 90 90 95 95 97 99 90 95 98 91 94 96 99 99 94 95 95 97 99 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 12 90 3 90 90 90 90 90 90 90",
"output": "61"
},
{
"input": "100 49\n71 25 14 36 36 48 36 49 28 40 49 49 49 38 40 49 33 22 49 49 14 46 8 44 49 11 37 49 40 49 2 49 3 49 37 49 49 11 25 49 49 32 49 11 49 30 16 21 49 49 23 24 30 49 49 49 49 49 49 27 49 42 49 49 20 32 30 29 35 49 30 49 9 49 27 25 5 49 49 42 49 20 49 35 49 22 15 49 49 49 19 49 29 28 13 49 22 7 6 24",
"output": "99"
},
{
"input": "100 50\n38 68 9 6 50 18 19 50 50 20 33 34 43 50 24 50 50 2 50 50 50 50 50 21 30 50 41 40 50 50 50 50 50 7 50 21 19 23 1 50 24 50 50 50 25 50 50 50 50 50 50 50 7 24 28 18 50 5 43 50 20 50 13 50 50 16 50 3 2 24 50 50 18 5 50 4 50 50 38 50 33 49 12 33 11 14 50 50 50 33 50 50 50 50 50 50 7 4 50 50",
"output": "99"
},
{
"input": "100 48\n8 6 23 47 29 48 48 48 48 48 48 26 24 48 48 48 3 48 27 28 41 45 9 29 48 48 48 48 48 48 48 48 48 48 47 23 48 48 48 5 48 22 40 48 48 48 20 48 48 57 48 32 19 48 33 2 4 19 48 48 39 48 16 48 48 44 48 48 48 48 29 14 25 43 46 7 48 19 30 48 18 8 39 48 30 47 35 18 48 45 48 48 30 13 48 48 48 17 9 48",
"output": "99"
},
{
"input": "100 57\n57 9 57 4 43 57 57 57 57 26 57 18 57 57 57 57 57 57 57 47 33 57 57 43 57 57 55 57 14 57 57 4 1 57 57 57 57 57 46 26 57 57 57 57 57 57 57 39 57 57 57 5 57 12 11 57 57 57 25 37 34 57 54 18 29 57 39 57 5 57 56 34 57 24 7 57 57 57 2 57 57 57 57 1 55 39 19 57 57 57 57 21 3 40 13 3 57 57 62 57",
"output": "99"
},
{
"input": "100 51\n51 51 38 51 51 45 51 51 51 18 51 36 51 19 51 26 37 51 11 51 45 34 51 21 51 51 33 51 6 51 51 51 21 47 51 13 51 51 30 29 50 51 51 51 51 51 51 45 14 51 2 51 51 23 9 51 50 23 51 29 34 51 40 32 1 36 31 51 11 51 51 47 51 51 51 51 51 51 51 50 39 51 14 4 4 12 3 11 51 51 51 51 41 51 51 51 49 37 5 93",
"output": "99"
},
{
"input": "100 50\n87 91 95 73 50 50 16 97 39 24 58 50 33 89 42 37 50 50 12 71 3 55 50 50 80 10 76 50 52 36 88 44 66 69 86 71 77 50 72 50 21 55 50 50 78 61 75 89 65 2 50 69 62 47 11 92 97 77 41 31 55 29 35 51 36 48 50 91 92 86 50 36 50 94 51 74 4 27 55 63 50 36 87 50 67 7 65 75 20 96 88 50 41 73 35 51 66 21 29 33",
"output": "3"
},
{
"input": "100 50\n50 37 28 92 7 76 50 50 50 76 100 57 50 50 50 32 76 50 8 72 14 8 50 91 67 50 55 82 50 50 24 97 88 50 59 61 68 86 44 15 61 67 88 50 40 50 36 99 1 23 63 50 88 59 76 82 99 76 68 50 50 30 31 68 57 98 71 12 15 60 35 79 90 6 67 50 50 50 50 68 13 6 50 50 16 87 84 50 67 67 50 64 50 58 50 50 77 51 50 51",
"output": "3"
},
{
"input": "100 50\n43 50 50 91 97 67 6 50 86 50 76 60 50 59 4 56 11 38 49 50 37 50 50 20 60 47 33 54 95 58 22 50 77 77 72 9 57 40 81 57 95 50 81 63 62 76 13 87 50 39 74 69 50 99 63 1 11 62 84 31 97 99 56 73 70 36 45 100 28 91 93 9 19 52 73 50 83 58 84 52 86 12 50 44 64 52 97 50 12 71 97 52 87 66 83 66 86 50 9 49",
"output": "6"
},
{
"input": "88 10\n10 8 1 10 10 1 3 7 10 5 8 8 10 2 7 10 10 10 10 10 1 10 10 10 10 1 2 9 10 9 10 10 10 64 100 25 10 12 9 52 13 8 10 56 10 4 10 7 10 3 10 79 74 8 73 10 10 10 9 10 3 5 10 10 10 5 1 10 10 4 3 10 10 10 4 10 6 4 10 10 10 10 3 3 8 5 6 8",
"output": "66"
},
{
"input": "100 50\n80 39 33 69 75 50 23 88 50 50 67 90 87 50 29 15 55 32 60 50 50 50 38 95 62 50 50 88 8 97 45 50 42 12 22 93 49 50 24 50 50 71 60 4 50 72 57 57 50 50 50 83 69 17 1 31 72 55 50 11 50 80 93 41 91 94 20 60 50 50 51 48 53 56 76 73 50 72 19 98 50 50 50 50 50 28 48 45 62 11 16 67 93 88 63 50 50 66 48 95",
"output": "0"
},
{
"input": "100 50\n70 50 38 50 38 50 32 30 50 31 26 42 50 33 34 50 50 50 28 21 50 44 50 47 50 50 9 40 50 50 50 50 50 42 50 50 16 50 50 3 24 50 50 50 4 26 50 2 50 50 33 1 27 50 50 50 8 29 50 23 33 50 6 29 50 50 15 50 50 50 32 50 43 50 50 50 31 50 4 50 50 31 50 50 31 16 50 17 50 17 31 13 25 16 50 10 50 47 50 66",
"output": "0"
},
{
"input": "2 8\n8 8",
"output": "2"
},
{
"input": "1 6\n3",
"output": "1"
},
{
"input": "1 5\n5",
"output": "1"
}
] | 1,626,427,420
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 48
| 155
| 20,172,800
|
from collections import deque
n, k = map(int, input().split())
deq = deque([*map(int, input().split())])
while len(deq) > 0:
if deq[0] <= k:
deq.popleft()
elif deq[-1] <= k:
deq.pop()
else:
break
print(n-len(deq))
|
Title: Mishka and Contest
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Mishka started participating in a programming contest. There are $n$ problems in the contest. Mishka's problem-solving skill is equal to $k$.
Mishka arranges all problems from the contest into a list. Because of his weird principles, Mishka only solves problems from one of the ends of the list. Every time, he chooses which end (left or right) he will solve the next problem from. Thus, each problem Mishka solves is either the leftmost or the rightmost problem in the list.
Mishka cannot solve a problem with difficulty greater than $k$. When Mishka solves the problem, it disappears from the list, so the length of the list decreases by $1$. Mishka stops when he is unable to solve any problem from any end of the list.
How many problems can Mishka solve?
Input Specification:
The first line of input contains two integers $n$ and $k$ ($1 \le n, k \le 100$) — the number of problems in the contest and Mishka's problem-solving skill.
The second line of input contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 100$), where $a_i$ is the difficulty of the $i$-th problem. The problems are given in order from the leftmost to the rightmost in the list.
Output Specification:
Print one integer — the maximum number of problems Mishka can solve.
Demo Input:
['8 4\n4 2 3 1 5 1 6 4\n', '5 2\n3 1 2 1 3\n', '5 100\n12 34 55 43 21\n']
Demo Output:
['5\n', '0\n', '5\n']
Note:
In the first example, Mishka can solve problems in the following order: $[4, 2, 3, 1, 5, 1, 6, 4] \rightarrow [2, 3, 1, 5, 1, 6, 4] \rightarrow [2, 3, 1, 5, 1, 6] \rightarrow [3, 1, 5, 1, 6] \rightarrow [1, 5, 1, 6] \rightarrow [5, 1, 6]$, so the number of solved problems will be equal to $5$.
In the second example, Mishka can't solve any problem because the difficulties of problems from both ends are greater than $k$.
In the third example, Mishka's solving skill is so amazing that he can solve all the problems.
|
```python
from collections import deque
n, k = map(int, input().split())
deq = deque([*map(int, input().split())])
while len(deq) > 0:
if deq[0] <= k:
deq.popleft()
elif deq[-1] <= k:
deq.pop()
else:
break
print(n-len(deq))
```
| 3
|
|
608
|
A
|
Saitama Destroys Hotel
|
PROGRAMMING
| 1,000
|
[
"implementation",
"math"
] | null | null |
Saitama accidentally destroyed a hotel again. To repay the hotel company, Genos has volunteered to operate an elevator in one of its other hotels. The elevator is special — it starts on the top floor, can only move down, and has infinite capacity. Floors are numbered from 0 to *s* and elevator initially starts on floor *s* at time 0.
The elevator takes exactly 1 second to move down exactly 1 floor and negligible time to pick up passengers. Genos is given a list detailing when and on which floor passengers arrive. Please determine how long in seconds it will take Genos to bring all passengers to floor 0.
|
The first line of input contains two integers *n* and *s* (1<=≤<=*n*<=≤<=100, 1<=≤<=*s*<=≤<=1000) — the number of passengers and the number of the top floor respectively.
The next *n* lines each contain two space-separated integers *f**i* and *t**i* (1<=≤<=*f**i*<=≤<=*s*, 1<=≤<=*t**i*<=≤<=1000) — the floor and the time of arrival in seconds for the passenger number *i*.
|
Print a single integer — the minimum amount of time in seconds needed to bring all the passengers to floor 0.
|
[
"3 7\n2 1\n3 8\n5 2\n",
"5 10\n2 77\n3 33\n8 21\n9 12\n10 64\n"
] |
[
"11\n",
"79\n"
] |
In the first sample, it takes at least 11 seconds to bring all passengers to floor 0. Here is how this could be done:
1. Move to floor 5: takes 2 seconds.
2. Pick up passenger 3.
3. Move to floor 3: takes 2 seconds.
4. Wait for passenger 2 to arrive: takes 4 seconds.
5. Pick up passenger 2.
6. Go to floor 2: takes 1 second.
7. Pick up passenger 1.
8. Go to floor 0: takes 2 seconds.
This gives a total of 2 + 2 + 4 + 1 + 2 = 11 seconds.
| 500
|
[
{
"input": "3 7\n2 1\n3 8\n5 2",
"output": "11"
},
{
"input": "5 10\n2 77\n3 33\n8 21\n9 12\n10 64",
"output": "79"
},
{
"input": "1 1000\n1000 1000",
"output": "2000"
},
{
"input": "1 1\n1 1",
"output": "2"
},
{
"input": "1 1000\n1 1",
"output": "1000"
},
{
"input": "1 1000\n1 1000",
"output": "1001"
},
{
"input": "100 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1",
"output": "2"
},
{
"input": "2 7\n6 3\n1 5",
"output": "9"
},
{
"input": "2 100\n99 2\n1 10",
"output": "101"
},
{
"input": "5 5\n1 1\n2 1\n3 1\n4 1\n5 1",
"output": "6"
},
{
"input": "3 7\n1 6\n5 5\n6 1",
"output": "10"
},
{
"input": "2 100\n4 100\n7 99",
"output": "106"
},
{
"input": "2 10\n9 3\n1 4",
"output": "12"
},
{
"input": "2 5\n4 4\n5 4",
"output": "9"
},
{
"input": "2 10\n9 10\n6 11",
"output": "19"
},
{
"input": "2 100\n99 9\n1 10",
"output": "108"
},
{
"input": "2 7\n3 5\n7 4",
"output": "11"
},
{
"input": "4 4\n4 6\n4 8\n1 7\n2 9",
"output": "12"
},
{
"input": "2 1000\n1 2\n1000 1",
"output": "1001"
},
{
"input": "2 20\n1 1\n2 2",
"output": "20"
},
{
"input": "2 20\n10 10\n19 9",
"output": "28"
}
] | 1,626,528,359
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 39
| 124
| 20,172,800
|
m,s=map(int,input().split());l=[];c=0;f=s
for i in range(m):l.append(list(map(int,input().split())))
l.sort(reverse=True)
for i in range(m):
w=abs(l[i][0]-s);c+=w
e=0 if l[i][1]<=c else (l[i][1]-c)
c+=e;s=l[i][0]
print(c+s)
|
Title: Saitama Destroys Hotel
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Saitama accidentally destroyed a hotel again. To repay the hotel company, Genos has volunteered to operate an elevator in one of its other hotels. The elevator is special — it starts on the top floor, can only move down, and has infinite capacity. Floors are numbered from 0 to *s* and elevator initially starts on floor *s* at time 0.
The elevator takes exactly 1 second to move down exactly 1 floor and negligible time to pick up passengers. Genos is given a list detailing when and on which floor passengers arrive. Please determine how long in seconds it will take Genos to bring all passengers to floor 0.
Input Specification:
The first line of input contains two integers *n* and *s* (1<=≤<=*n*<=≤<=100, 1<=≤<=*s*<=≤<=1000) — the number of passengers and the number of the top floor respectively.
The next *n* lines each contain two space-separated integers *f**i* and *t**i* (1<=≤<=*f**i*<=≤<=*s*, 1<=≤<=*t**i*<=≤<=1000) — the floor and the time of arrival in seconds for the passenger number *i*.
Output Specification:
Print a single integer — the minimum amount of time in seconds needed to bring all the passengers to floor 0.
Demo Input:
['3 7\n2 1\n3 8\n5 2\n', '5 10\n2 77\n3 33\n8 21\n9 12\n10 64\n']
Demo Output:
['11\n', '79\n']
Note:
In the first sample, it takes at least 11 seconds to bring all passengers to floor 0. Here is how this could be done:
1. Move to floor 5: takes 2 seconds.
2. Pick up passenger 3.
3. Move to floor 3: takes 2 seconds.
4. Wait for passenger 2 to arrive: takes 4 seconds.
5. Pick up passenger 2.
6. Go to floor 2: takes 1 second.
7. Pick up passenger 1.
8. Go to floor 0: takes 2 seconds.
This gives a total of 2 + 2 + 4 + 1 + 2 = 11 seconds.
|
```python
m,s=map(int,input().split());l=[];c=0;f=s
for i in range(m):l.append(list(map(int,input().split())))
l.sort(reverse=True)
for i in range(m):
w=abs(l[i][0]-s);c+=w
e=0 if l[i][1]<=c else (l[i][1]-c)
c+=e;s=l[i][0]
print(c+s)
```
| 3
|
|
615
|
A
|
Bulbs
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Vasya wants to turn on Christmas lights consisting of *m* bulbs. Initially, all bulbs are turned off. There are *n* buttons, each of them is connected to some set of bulbs. Vasya can press any of these buttons. When the button is pressed, it turns on all the bulbs it's connected to. Can Vasya light up all the bulbs?
If Vasya presses the button such that some bulbs connected to it are already turned on, they do not change their state, i.e. remain turned on.
|
The first line of the input contains integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100) — the number of buttons and the number of bulbs respectively.
Each of the next *n* lines contains *x**i* (0<=≤<=*x**i*<=≤<=*m*) — the number of bulbs that are turned on by the *i*-th button, and then *x**i* numbers *y**ij* (1<=≤<=*y**ij*<=≤<=*m*) — the numbers of these bulbs.
|
If it's possible to turn on all *m* bulbs print "YES", otherwise print "NO".
|
[
"3 4\n2 1 4\n3 1 3 1\n1 2\n",
"3 3\n1 1\n1 2\n1 1\n"
] |
[
"YES\n",
"NO\n"
] |
In the first sample you can press each button once and turn on all the bulbs. In the 2 sample it is impossible to turn on the 3-rd lamp.
| 500
|
[
{
"input": "3 4\n2 1 4\n3 1 3 1\n1 2",
"output": "YES"
},
{
"input": "3 3\n1 1\n1 2\n1 1",
"output": "NO"
},
{
"input": "3 4\n1 1\n1 2\n1 3",
"output": "NO"
},
{
"input": "1 5\n5 1 2 3 4 5",
"output": "YES"
},
{
"input": "1 5\n5 4 4 1 2 3",
"output": "NO"
},
{
"input": "1 5\n5 1 1 1 1 5",
"output": "NO"
},
{
"input": "2 5\n4 3 1 4 2\n4 2 3 4 5",
"output": "YES"
},
{
"input": "5 7\n2 6 7\n5 1 1 1 1 1\n3 6 5 4\n0\n4 4 3 2 1",
"output": "YES"
},
{
"input": "100 100\n0\n0\n0\n1 53\n0\n0\n1 34\n1 54\n0\n1 14\n0\n1 33\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 82\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 34\n0\n0\n1 26\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 34\n0\n0\n0\n0\n0\n1 3\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 40\n0\n0\n0\n1 26\n0\n0\n0\n0\n0\n1 97\n0\n1 5\n0\n0\n0\n0\n0",
"output": "NO"
},
{
"input": "100 100\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0",
"output": "NO"
},
{
"input": "5 6\n3 1 2 6\n3 1 2 6\n1 1\n2 3 4\n3 1 5 6",
"output": "YES"
},
{
"input": "5 2\n1 1\n1 1\n1 1\n1 1\n1 1",
"output": "NO"
},
{
"input": "1 4\n3 1 2 3",
"output": "NO"
},
{
"input": "1 4\n3 2 3 4",
"output": "NO"
},
{
"input": "2 4\n3 2 3 4\n1 1",
"output": "YES"
},
{
"input": "2 4\n3 1 2 3\n1 4",
"output": "YES"
},
{
"input": "5 1\n0\n0\n0\n0\n0",
"output": "NO"
},
{
"input": "1 1\n0",
"output": "NO"
},
{
"input": "1 10\n10 1 2 3 4 5 6 7 8 9 10",
"output": "YES"
},
{
"input": "1 1\n1 1",
"output": "YES"
},
{
"input": "1 100\n99 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99",
"output": "NO"
},
{
"input": "1 3\n3 1 2 1",
"output": "NO"
},
{
"input": "1 100\n100 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100",
"output": "YES"
}
] | 1,630,228,101
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 45
| 77
| 6,758,400
|
n, m = map(int, input().split())
li = []
for _ in range(n):
li.extend(list(map(int, input().split()))[1:])
if len(set(li)) != m:
print("NO")
else:
print("YES")
|
Title: Bulbs
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Vasya wants to turn on Christmas lights consisting of *m* bulbs. Initially, all bulbs are turned off. There are *n* buttons, each of them is connected to some set of bulbs. Vasya can press any of these buttons. When the button is pressed, it turns on all the bulbs it's connected to. Can Vasya light up all the bulbs?
If Vasya presses the button such that some bulbs connected to it are already turned on, they do not change their state, i.e. remain turned on.
Input Specification:
The first line of the input contains integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100) — the number of buttons and the number of bulbs respectively.
Each of the next *n* lines contains *x**i* (0<=≤<=*x**i*<=≤<=*m*) — the number of bulbs that are turned on by the *i*-th button, and then *x**i* numbers *y**ij* (1<=≤<=*y**ij*<=≤<=*m*) — the numbers of these bulbs.
Output Specification:
If it's possible to turn on all *m* bulbs print "YES", otherwise print "NO".
Demo Input:
['3 4\n2 1 4\n3 1 3 1\n1 2\n', '3 3\n1 1\n1 2\n1 1\n']
Demo Output:
['YES\n', 'NO\n']
Note:
In the first sample you can press each button once and turn on all the bulbs. In the 2 sample it is impossible to turn on the 3-rd lamp.
|
```python
n, m = map(int, input().split())
li = []
for _ in range(n):
li.extend(list(map(int, input().split()))[1:])
if len(set(li)) != m:
print("NO")
else:
print("YES")
```
| 3
|
|
66
|
B
|
Petya and Countryside
|
PROGRAMMING
| 1,100
|
[
"brute force",
"implementation"
] |
B. Petya and Countryside
|
2
|
256
|
Little Petya often travels to his grandmother in the countryside. The grandmother has a large garden, which can be represented as a rectangle 1<=×<=*n* in size, when viewed from above. This rectangle is divided into *n* equal square sections. The garden is very unusual as each of the square sections possesses its own fixed height and due to the newest irrigation system we can create artificial rain above each section.
Creating artificial rain is an expensive operation. That's why we limit ourselves to creating the artificial rain only above one section. At that, the water from each watered section will flow into its neighbouring sections if their height does not exceed the height of the section. That is, for example, the garden can be represented by a 1<=×<=5 rectangle, where the section heights are equal to 4, 2, 3, 3, 2. Then if we create an artificial rain over any of the sections with the height of 3, the water will flow over all the sections, except the ones with the height of 4. See the illustration of this example at the picture:
As Petya is keen on programming, he decided to find such a section that if we create artificial rain above it, the number of watered sections will be maximal. Help him.
|
The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=1000). The second line contains *n* positive integers which are the height of the sections. All the numbers are no less than 1 and not more than 1000.
|
Print a single number, the maximal number of watered sections if we create artificial rain above exactly one section.
|
[
"1\n2\n",
"5\n1 2 1 2 1\n",
"8\n1 2 1 1 1 3 3 4\n"
] |
[
"1\n",
"3\n",
"6\n"
] |
none
| 1,000
|
[
{
"input": "1\n2",
"output": "1"
},
{
"input": "5\n1 2 1 2 1",
"output": "3"
},
{
"input": "8\n1 2 1 1 1 3 3 4",
"output": "6"
},
{
"input": "10\n1 2 3 4 5 6 7 8 9 10",
"output": "10"
},
{
"input": "10\n10 9 8 7 6 5 4 3 2 1",
"output": "10"
},
{
"input": "2\n100 100",
"output": "2"
},
{
"input": "3\n100 100 100",
"output": "3"
},
{
"input": "11\n1 2 3 4 5 6 5 4 3 2 1",
"output": "11"
},
{
"input": "100\n1 2 3 4 5 6 7 8 9 10 11 100 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 1 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1",
"output": "61"
},
{
"input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 1 82 83 84 85 86 87 88 89 90 91 92 93 94 100 5 4 3 2 1",
"output": "81"
},
{
"input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 1 86 87 88 89 90 91 92 93 100 6 5 4 3 2 1",
"output": "85"
},
{
"input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 1 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 100 7 6 5 4 3 2 1",
"output": "61"
},
{
"input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 100 8 7 6 1 4 3 2 1",
"output": "96"
},
{
"input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 100 10 9 8 7 6 5 4 3 2 1",
"output": "100"
},
{
"input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 1 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 100 11 10 9 8 7 6 5 4 3 2 1",
"output": "55"
},
{
"input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 1 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 100 12 11 10 9 8 7 6 5 4 3 2 1",
"output": "59"
},
{
"input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 100 13 12 11 10 9 8 7 6 5 4 3 2 1",
"output": "86"
},
{
"input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 100 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1",
"output": "83"
},
{
"input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 100 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 1 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1",
"output": "74"
},
{
"input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 100 9 8 7 6 5 4 3 2 1",
"output": "100"
},
{
"input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 100 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 1 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1",
"output": "52"
},
{
"input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 100 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 1 2 1",
"output": "98"
},
{
"input": "10\n1 4 4 4 4 4 1 2 4 3",
"output": "7"
}
] | 1,655,611,176
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 80
| 404
| 0
|
import sys
def score(i, ns):
s = 1
n = ns[i]
prev = n
for j in range(i + 1, len(ns)):
if ns[j] <= prev:
s += 1
prev = ns[j]
else:
break
prev = n
for j in range(i - 1, -1, -1):
if ns[j] <= prev:
s += 1
prev = ns[j]
else:
break
return s
input()
ns = [int(i) for i in input().split()]
a = [score(i, ns) for i in range(len(ns))]
print(max(a))
|
Title: Petya and Countryside
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Little Petya often travels to his grandmother in the countryside. The grandmother has a large garden, which can be represented as a rectangle 1<=×<=*n* in size, when viewed from above. This rectangle is divided into *n* equal square sections. The garden is very unusual as each of the square sections possesses its own fixed height and due to the newest irrigation system we can create artificial rain above each section.
Creating artificial rain is an expensive operation. That's why we limit ourselves to creating the artificial rain only above one section. At that, the water from each watered section will flow into its neighbouring sections if their height does not exceed the height of the section. That is, for example, the garden can be represented by a 1<=×<=5 rectangle, where the section heights are equal to 4, 2, 3, 3, 2. Then if we create an artificial rain over any of the sections with the height of 3, the water will flow over all the sections, except the ones with the height of 4. See the illustration of this example at the picture:
As Petya is keen on programming, he decided to find such a section that if we create artificial rain above it, the number of watered sections will be maximal. Help him.
Input Specification:
The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=1000). The second line contains *n* positive integers which are the height of the sections. All the numbers are no less than 1 and not more than 1000.
Output Specification:
Print a single number, the maximal number of watered sections if we create artificial rain above exactly one section.
Demo Input:
['1\n2\n', '5\n1 2 1 2 1\n', '8\n1 2 1 1 1 3 3 4\n']
Demo Output:
['1\n', '3\n', '6\n']
Note:
none
|
```python
import sys
def score(i, ns):
s = 1
n = ns[i]
prev = n
for j in range(i + 1, len(ns)):
if ns[j] <= prev:
s += 1
prev = ns[j]
else:
break
prev = n
for j in range(i - 1, -1, -1):
if ns[j] <= prev:
s += 1
prev = ns[j]
else:
break
return s
input()
ns = [int(i) for i in input().split()]
a = [score(i, ns) for i in range(len(ns))]
print(max(a))
```
| 3.899
|
32
|
B
|
Borze
|
PROGRAMMING
| 800
|
[
"expression parsing",
"implementation"
] |
B. Borze
|
2
|
256
|
Ternary numeric notation is quite popular in Berland. To telegraph the ternary number the Borze alphabet is used. Digit 0 is transmitted as «.», 1 as «-.» and 2 as «--». You are to decode the Borze code, i.e. to find out the ternary number given its representation in Borze alphabet.
|
The first line contains a number in Borze code. The length of the string is between 1 and 200 characters. It's guaranteed that the given string is a valid Borze code of some ternary number (this number can have leading zeroes).
|
Output the decoded ternary number. It can have leading zeroes.
|
[
".-.--\n",
"--.\n",
"-..-.--\n"
] |
[
"012",
"20",
"1012"
] |
none
| 1,000
|
[
{
"input": ".-.--",
"output": "012"
},
{
"input": "--.",
"output": "20"
},
{
"input": "-..-.--",
"output": "1012"
},
{
"input": "---..",
"output": "210"
},
{
"input": "..--.---..",
"output": "0020210"
},
{
"input": "-.....----.",
"output": "10000220"
},
{
"input": ".",
"output": "0"
},
{
"input": "-.",
"output": "1"
},
{
"input": "--",
"output": "2"
},
{
"input": "..",
"output": "00"
},
{
"input": "--.",
"output": "20"
},
{
"input": ".--.",
"output": "020"
},
{
"input": ".-.-..",
"output": "0110"
},
{
"input": "----.-.",
"output": "2201"
},
{
"input": "-..--.-.",
"output": "10201"
},
{
"input": "..--..--.",
"output": "0020020"
},
{
"input": "-.-.---.--..-..-.-.-..-..-.--.",
"output": "112120010111010120"
},
{
"input": "---.-.-.------..-..-..-..-.-..-.--.-.-..-.-.-----..-.-.",
"output": "21112220010101011012011011221011"
},
{
"input": "-.-..--.-.-.-.-.-..-.-.-.---------.--.---..--...--.-----.-.-.-...--.-.-.---.------.--..-.--.-----.-...-..------",
"output": "11020111110111222212021020002022111100201121222020012022110010222"
},
{
"input": "-.-..-.--.---..---.-..---.-...-.-.----..-.---.-.---..-.--.---.-.-------.---.--....----.-.---.---.---.----.-----..---.-.-.-.-----.--.-------.-..",
"output": "110120210211021100112200121121012021122212120000220121212122022102111122120222110"
},
{
"input": ".-..-.-.---.-----.--.---...-.--.-.-....-..",
"output": "01011212212021001201100010"
},
{
"input": ".------.-.---..--...-..-..-.-.-.--.--.-..-.--...-.-.---.-.-.------..--..-.---..----.-..-.--.---.-.----.-.---...-.-.-.-----.-.-.---.---.-.....-.-...-----.-...-.---.-..-.-----.--...---.-.-..-.--.-.---..",
"output": "022201210200010101112020101200011211122200200121022010120211220121001112211121211000011002211001211012212000211101201210"
},
{
"input": ".-.--.---.-----.-.-----.-.-..-----..-..----..--.-.--.----..---.---..-.-.-----..-------.----..----.-..---...-----..-..-----...-..-.-.-----....---..---..-.-----...-.--...--.-.---.-.-.-.-.-...---..----.",
"output": "01202122112211102210102200201202200212101122102221220022010210022101022100101122100021021012210012000201211111100210220"
},
{
"input": "..-.-.-.---.-.-.-..-.-..-.-.---.-------.---..-----.---....-.---.--.--.-.---.---------.-..---.-.-.--..---.---.-.---.-.-..-.-..-.-.-.----.--.-....--------.-.---..----.------.-.-.--.--.-----.-----.----",
"output": "0011121111011011212221210221210001212020121222211021112002121121110110111220201000222201210220222011202022122122"
},
{
"input": "-..-------.------.-..--.-.-..--.-.-..-----..-.-.-..-..-..--.---..-----..---..-..--.-..-.-.---...-.....-------.---.-----.-...-.-...-.-.---.---.-----.--.--...-.--..-.-..-...-.-.-.-.---..---.-..-.-.-.-..",
"output": "102221222010201102011022101110101020210221021010201011210010000222121221100110011212122120200012001101001111210211011110"
},
{
"input": ".-.----.-.--..-.-.-.-..----..-.-...--.-.---.---.-------..-.--..-......--.------.--.----.--...-.--.--..-----..-.....--.--.-.-.------..--------.----------..-.---.----.---.-..--..-.....-..------.--.",
"output": "012201200111102200110020121212221012001000002022202022020001202002210100002020112220022220222220012122021102001000010222020"
},
{
"input": "------.-----.-....--.-.----.-.---.-.-..---.-.---.-----..-...-.-.---..-.-.-..-.-.-...-.-.-.----..--.------.----.-..-.--...-.-------...-.-..-.-.--.--.---..--..--------.--.-.-.---.-.-.-...----.--..-.--..",
"output": "222022110002012201211102112122101001121011101110011122002022202201012000122210011011202021020022220201121111002202001200"
},
{
"input": "-.---...----...--.--...-.--.----",
"output": "121002200020200012022"
},
{
"input": "--.--.--.---.--.-.---.-.-..-..--.-..---.-.....-..---.-----.--...-.-.-------.-.--.-.----.-..-.------.",
"output": "202020212012111010201021100001021221200011222112012201012220"
}
] | 1,645,804,183
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 30
| 92
| 0
|
s=input()
t=""
i=0
while i<len(s):
if s[i] ==".":
t=t+"0"
i+=1
elif s[i]=="-" and s[i+1]==".":
t=t+"1"
i+=2
elif s[i]=="-" and s[i+1]=="-":
t=t+"2"
i+=2
print(t)
|
Title: Borze
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Ternary numeric notation is quite popular in Berland. To telegraph the ternary number the Borze alphabet is used. Digit 0 is transmitted as «.», 1 as «-.» and 2 as «--». You are to decode the Borze code, i.e. to find out the ternary number given its representation in Borze alphabet.
Input Specification:
The first line contains a number in Borze code. The length of the string is between 1 and 200 characters. It's guaranteed that the given string is a valid Borze code of some ternary number (this number can have leading zeroes).
Output Specification:
Output the decoded ternary number. It can have leading zeroes.
Demo Input:
['.-.--\n', '--.\n', '-..-.--\n']
Demo Output:
['012', '20', '1012']
Note:
none
|
```python
s=input()
t=""
i=0
while i<len(s):
if s[i] ==".":
t=t+"0"
i+=1
elif s[i]=="-" and s[i+1]==".":
t=t+"1"
i+=2
elif s[i]=="-" and s[i+1]=="-":
t=t+"2"
i+=2
print(t)
```
| 3.977
|
994
|
A
|
Fingerprints
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
You are locked in a room with a door that has a keypad with 10 keys corresponding to digits from 0 to 9. To escape from the room, you need to enter a correct code. You also have a sequence of digits.
Some keys on the keypad have fingerprints. You believe the correct code is the longest not necessarily contiguous subsequence of the sequence you have that only contains digits with fingerprints on the corresponding keys. Find such code.
|
The first line contains two integers $n$ and $m$ ($1 \le n, m \le 10$) representing the number of digits in the sequence you have and the number of keys on the keypad that have fingerprints.
The next line contains $n$ distinct space-separated integers $x_1, x_2, \ldots, x_n$ ($0 \le x_i \le 9$) representing the sequence.
The next line contains $m$ distinct space-separated integers $y_1, y_2, \ldots, y_m$ ($0 \le y_i \le 9$) — the keys with fingerprints.
|
In a single line print a space-separated sequence of integers representing the code. If the resulting sequence is empty, both printing nothing and printing a single line break is acceptable.
|
[
"7 3\n3 5 7 1 6 2 8\n1 2 7\n",
"4 4\n3 4 1 0\n0 1 7 9\n"
] |
[
"7 1 2\n",
"1 0\n"
] |
In the first example, the only digits with fingerprints are $1$, $2$ and $7$. All three of them appear in the sequence you know, $7$ first, then $1$ and then $2$. Therefore the output is 7 1 2. Note that the order is important, and shall be the same as the order in the original sequence.
In the second example digits $0$, $1$, $7$ and $9$ have fingerprints, however only $0$ and $1$ appear in the original sequence. $1$ appears earlier, so the output is 1 0. Again, the order is important.
| 500
|
[
{
"input": "7 3\n3 5 7 1 6 2 8\n1 2 7",
"output": "7 1 2"
},
{
"input": "4 4\n3 4 1 0\n0 1 7 9",
"output": "1 0"
},
{
"input": "9 4\n9 8 7 6 5 4 3 2 1\n2 4 6 8",
"output": "8 6 4 2"
},
{
"input": "10 5\n3 7 1 2 4 6 9 0 5 8\n4 3 0 7 9",
"output": "3 7 4 9 0"
},
{
"input": "10 10\n1 2 3 4 5 6 7 8 9 0\n4 5 6 7 1 2 3 0 9 8",
"output": "1 2 3 4 5 6 7 8 9 0"
},
{
"input": "1 1\n4\n4",
"output": "4"
},
{
"input": "3 7\n6 3 4\n4 9 0 1 7 8 6",
"output": "6 4"
},
{
"input": "10 1\n9 0 8 1 7 4 6 5 2 3\n0",
"output": "0"
},
{
"input": "5 10\n6 0 3 8 1\n3 1 0 5 4 7 2 8 9 6",
"output": "6 0 3 8 1"
},
{
"input": "8 2\n7 2 9 6 1 0 3 4\n6 3",
"output": "6 3"
},
{
"input": "5 4\n7 0 1 4 9\n0 9 5 3",
"output": "0 9"
},
{
"input": "10 1\n9 6 2 0 1 8 3 4 7 5\n6",
"output": "6"
},
{
"input": "10 2\n7 1 0 2 4 6 5 9 3 8\n3 2",
"output": "2 3"
},
{
"input": "5 9\n3 7 9 2 4\n3 8 4 5 9 6 1 0 2",
"output": "3 9 2 4"
},
{
"input": "10 6\n7 1 2 3 8 0 6 4 5 9\n1 5 8 2 3 6",
"output": "1 2 3 8 6 5"
},
{
"input": "8 2\n7 4 8 9 2 5 6 1\n6 4",
"output": "4 6"
},
{
"input": "10 2\n1 0 3 5 8 9 4 7 6 2\n0 3",
"output": "0 3"
},
{
"input": "7 6\n9 2 8 6 1 3 7\n4 2 0 3 1 8",
"output": "2 8 1 3"
},
{
"input": "1 6\n3\n6 8 2 4 5 3",
"output": "3"
},
{
"input": "1 8\n0\n9 2 4 8 1 5 0 7",
"output": "0"
},
{
"input": "6 9\n7 3 9 4 1 0\n9 1 5 8 0 6 2 7 4",
"output": "7 9 4 1 0"
},
{
"input": "10 2\n4 9 6 8 3 0 1 5 7 2\n0 1",
"output": "0 1"
},
{
"input": "10 5\n5 2 8 0 9 7 6 1 4 3\n9 6 4 1 2",
"output": "2 9 6 1 4"
},
{
"input": "6 3\n8 3 9 2 7 6\n5 4 3",
"output": "3"
},
{
"input": "4 10\n8 3 9 6\n4 9 6 2 7 0 8 1 3 5",
"output": "8 3 9 6"
},
{
"input": "1 2\n1\n1 0",
"output": "1"
},
{
"input": "3 6\n1 2 3\n4 5 6 1 2 3",
"output": "1 2 3"
},
{
"input": "1 2\n2\n1 2",
"output": "2"
},
{
"input": "1 10\n9\n0 1 2 3 4 5 6 7 8 9",
"output": "9"
}
] | 1,562,573,883
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 31
| 140
| 0
|
n , m =map(int,input().split())
nums = [int(i) for i in input().split()]
fp = [int(i) for i in input().split()]
ind =[]
for i in fp:
if i in nums:
ind.append(nums.index(i))
ind.sort()
ans = ""
for i in ind:
ans += str(nums[i]) + " "
print(ans)
|
Title: Fingerprints
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You are locked in a room with a door that has a keypad with 10 keys corresponding to digits from 0 to 9. To escape from the room, you need to enter a correct code. You also have a sequence of digits.
Some keys on the keypad have fingerprints. You believe the correct code is the longest not necessarily contiguous subsequence of the sequence you have that only contains digits with fingerprints on the corresponding keys. Find such code.
Input Specification:
The first line contains two integers $n$ and $m$ ($1 \le n, m \le 10$) representing the number of digits in the sequence you have and the number of keys on the keypad that have fingerprints.
The next line contains $n$ distinct space-separated integers $x_1, x_2, \ldots, x_n$ ($0 \le x_i \le 9$) representing the sequence.
The next line contains $m$ distinct space-separated integers $y_1, y_2, \ldots, y_m$ ($0 \le y_i \le 9$) — the keys with fingerprints.
Output Specification:
In a single line print a space-separated sequence of integers representing the code. If the resulting sequence is empty, both printing nothing and printing a single line break is acceptable.
Demo Input:
['7 3\n3 5 7 1 6 2 8\n1 2 7\n', '4 4\n3 4 1 0\n0 1 7 9\n']
Demo Output:
['7 1 2\n', '1 0\n']
Note:
In the first example, the only digits with fingerprints are $1$, $2$ and $7$. All three of them appear in the sequence you know, $7$ first, then $1$ and then $2$. Therefore the output is 7 1 2. Note that the order is important, and shall be the same as the order in the original sequence.
In the second example digits $0$, $1$, $7$ and $9$ have fingerprints, however only $0$ and $1$ appear in the original sequence. $1$ appears earlier, so the output is 1 0. Again, the order is important.
|
```python
n , m =map(int,input().split())
nums = [int(i) for i in input().split()]
fp = [int(i) for i in input().split()]
ind =[]
for i in fp:
if i in nums:
ind.append(nums.index(i))
ind.sort()
ans = ""
for i in ind:
ans += str(nums[i]) + " "
print(ans)
```
| 3
|
|
897
|
B
|
Chtholly's request
|
PROGRAMMING
| 1,300
|
[
"brute force"
] | null | null |
— I experienced so many great things.
— You gave me memories like dreams... But I have to leave now...
— One last request, can you...
— Help me solve a Codeforces problem?
— ......
— What?
Chtholly has been thinking about a problem for days:
If a number is palindrome and length of its decimal representation without leading zeros is even, we call it a zcy number. A number is palindrome means when written in decimal representation, it contains no leading zeros and reads the same forwards and backwards. For example 12321 and 1221 are palindromes and 123 and 12451 are not. Moreover, 1221 is zcy number and 12321 is not.
Given integers *k* and *p*, calculate the sum of the *k* smallest zcy numbers and output this sum modulo *p*.
Unfortunately, Willem isn't good at solving this kind of problems, so he asks you for help!
|
The first line contains two integers *k* and *p* (1<=≤<=*k*<=≤<=105,<=1<=≤<=*p*<=≤<=109).
|
Output single integer — answer to the problem.
|
[
"2 100\n",
"5 30\n"
] |
[
"33\n",
"15\n"
] |
In the first example, the smallest zcy number is 11, and the second smallest zcy number is 22.
In the second example, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/68fffad54395f7d920ad0384e07c6215ddc64141.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
| 1,000
|
[
{
"input": "2 100",
"output": "33"
},
{
"input": "5 30",
"output": "15"
},
{
"input": "42147 412393322",
"output": "251637727"
},
{
"input": "77809 868097296",
"output": "440411873"
},
{
"input": "5105 443422097",
"output": "363192634"
},
{
"input": "75615 376679484",
"output": "373089399"
},
{
"input": "22951 23793302",
"output": "1898631"
},
{
"input": "12785 993582106",
"output": "286204743"
},
{
"input": "60276 428978808",
"output": "376477293"
},
{
"input": "84776 104860385",
"output": "10209596"
},
{
"input": "41984 653766991",
"output": "17823101"
},
{
"input": "100000 1000000000",
"output": "495495496"
},
{
"input": "41163 472310076",
"output": "207304047"
},
{
"input": "6983 765352180",
"output": "586866999"
},
{
"input": "33493 967727004",
"output": "305705165"
},
{
"input": "90898 94010922",
"output": "65928728"
},
{
"input": "67298 349286579",
"output": "156435206"
},
{
"input": "92452 296773064",
"output": "229486976"
},
{
"input": "58832 563860457",
"output": "16775206"
},
{
"input": "90234 156145441",
"output": "44023160"
},
{
"input": "91454 977186148",
"output": "681779748"
},
{
"input": "11108 444095250",
"output": "188075844"
},
{
"input": "46304 584475527",
"output": "275627129"
},
{
"input": "1 1",
"output": "0"
},
{
"input": "1 1000000000",
"output": "11"
},
{
"input": "100000 1",
"output": "0"
}
] | 1,527,402,184
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 26
| 186
| 0
|
k,p = map(int,input().split())
ans = 0
for i in range(1,k+1):
x = str(i)
ans+=int(x+x[::-1])
print(ans%p)
|
Title: Chtholly's request
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
— I experienced so many great things.
— You gave me memories like dreams... But I have to leave now...
— One last request, can you...
— Help me solve a Codeforces problem?
— ......
— What?
Chtholly has been thinking about a problem for days:
If a number is palindrome and length of its decimal representation without leading zeros is even, we call it a zcy number. A number is palindrome means when written in decimal representation, it contains no leading zeros and reads the same forwards and backwards. For example 12321 and 1221 are palindromes and 123 and 12451 are not. Moreover, 1221 is zcy number and 12321 is not.
Given integers *k* and *p*, calculate the sum of the *k* smallest zcy numbers and output this sum modulo *p*.
Unfortunately, Willem isn't good at solving this kind of problems, so he asks you for help!
Input Specification:
The first line contains two integers *k* and *p* (1<=≤<=*k*<=≤<=105,<=1<=≤<=*p*<=≤<=109).
Output Specification:
Output single integer — answer to the problem.
Demo Input:
['2 100\n', '5 30\n']
Demo Output:
['33\n', '15\n']
Note:
In the first example, the smallest zcy number is 11, and the second smallest zcy number is 22.
In the second example, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/68fffad54395f7d920ad0384e07c6215ddc64141.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
|
```python
k,p = map(int,input().split())
ans = 0
for i in range(1,k+1):
x = str(i)
ans+=int(x+x[::-1])
print(ans%p)
```
| 3
|
|
197
|
A
|
Plate Game
|
PROGRAMMING
| 1,600
|
[
"constructive algorithms",
"games",
"math"
] | null | null |
You've got a rectangular table with length *a* and width *b* and the infinite number of plates of radius *r*. Two players play the following game: they take turns to put the plates on the table so that the plates don't lie on each other (but they can touch each other), and so that any point on any plate is located within the table's border. During the game one cannot move the plates that already lie on the table. The player who cannot make another move loses. Determine which player wins, the one who moves first or the one who moves second, provided that both players play optimally well.
|
A single line contains three space-separated integers *a*, *b*, *r* (1<=≤<=*a*,<=*b*,<=*r*<=≤<=100) — the table sides and the plates' radius, correspondingly.
|
If wins the player who moves first, print "First" (without the quotes). Otherwise print "Second" (without the quotes).
|
[
"5 5 2\n",
"6 7 4\n"
] |
[
"First\n",
"Second\n"
] |
In the first sample the table has place for only one plate. The first player puts a plate on the table, the second player can't do that and loses.
In the second sample the table is so small that it doesn't have enough place even for one plate. So the first player loses without making a single move.
| 1,000
|
[
{
"input": "5 5 2",
"output": "First"
},
{
"input": "6 7 4",
"output": "Second"
},
{
"input": "100 100 1",
"output": "First"
},
{
"input": "1 1 100",
"output": "Second"
},
{
"input": "13 7 3",
"output": "First"
},
{
"input": "23 7 3",
"output": "First"
},
{
"input": "9 9 2",
"output": "First"
},
{
"input": "13 13 2",
"output": "First"
},
{
"input": "21 21 10",
"output": "First"
},
{
"input": "20 21 10",
"output": "First"
},
{
"input": "20 20 10",
"output": "First"
},
{
"input": "9 13 2",
"output": "First"
},
{
"input": "19 7 3",
"output": "First"
},
{
"input": "19 19 10",
"output": "Second"
},
{
"input": "19 20 10",
"output": "Second"
},
{
"input": "19 21 10",
"output": "Second"
},
{
"input": "1 100 1",
"output": "Second"
},
{
"input": "2 100 1",
"output": "First"
},
{
"input": "3 100 1",
"output": "First"
},
{
"input": "100 100 49",
"output": "First"
},
{
"input": "100 100 50",
"output": "First"
},
{
"input": "100 100 51",
"output": "Second"
},
{
"input": "100 99 50",
"output": "Second"
},
{
"input": "4 10 5",
"output": "Second"
},
{
"input": "8 11 2",
"output": "First"
},
{
"input": "3 12 5",
"output": "Second"
},
{
"input": "14 15 5",
"output": "First"
},
{
"input": "61 2 3",
"output": "Second"
},
{
"input": "82 20 5",
"output": "First"
},
{
"input": "16 80 10",
"output": "Second"
},
{
"input": "2 1 20",
"output": "Second"
},
{
"input": "78 82 5",
"output": "First"
},
{
"input": "8 55 7",
"output": "Second"
},
{
"input": "75 55 43",
"output": "Second"
},
{
"input": "34 43 70",
"output": "Second"
},
{
"input": "86 74 36",
"output": "First"
},
{
"input": "86 74 37",
"output": "First"
},
{
"input": "86 74 38",
"output": "Second"
},
{
"input": "24 70 11",
"output": "First"
},
{
"input": "24 70 12",
"output": "First"
},
{
"input": "24 70 13",
"output": "Second"
},
{
"input": "78 95 38",
"output": "First"
},
{
"input": "78 95 39",
"output": "First"
},
{
"input": "78 95 40",
"output": "Second"
},
{
"input": "88 43 21",
"output": "First"
},
{
"input": "88 43 22",
"output": "Second"
},
{
"input": "88 43 23",
"output": "Second"
},
{
"input": "30 40 14",
"output": "First"
},
{
"input": "30 40 15",
"output": "First"
},
{
"input": "30 40 16",
"output": "Second"
},
{
"input": "2 5 2",
"output": "Second"
},
{
"input": "5 100 3",
"output": "Second"
},
{
"input": "44 58 5",
"output": "First"
},
{
"input": "4 4 6",
"output": "Second"
},
{
"input": "10 20 6",
"output": "Second"
},
{
"input": "100 1 1",
"output": "Second"
},
{
"input": "60 60 1",
"output": "First"
},
{
"input": "100 1 2",
"output": "Second"
},
{
"input": "2 4 2",
"output": "Second"
},
{
"input": "10 90 11",
"output": "Second"
},
{
"input": "20 5 6",
"output": "Second"
},
{
"input": "1 44 2",
"output": "Second"
},
{
"input": "10 5 5",
"output": "Second"
},
{
"input": "5 100 4",
"output": "Second"
},
{
"input": "99 99 50",
"output": "Second"
},
{
"input": "1 100 2",
"output": "Second"
},
{
"input": "100 20 12",
"output": "Second"
},
{
"input": "10 2 4",
"output": "Second"
},
{
"input": "1 50 2",
"output": "Second"
},
{
"input": "10 4 3",
"output": "Second"
},
{
"input": "74 1 1",
"output": "Second"
},
{
"input": "6 6 1",
"output": "First"
},
{
"input": "10 10 1",
"output": "First"
},
{
"input": "21 41 5",
"output": "First"
},
{
"input": "13 1 2",
"output": "Second"
},
{
"input": "1 100 3",
"output": "Second"
},
{
"input": "1 64 2",
"output": "Second"
},
{
"input": "3 4 1",
"output": "First"
},
{
"input": "15 15 1",
"output": "First"
},
{
"input": "15 16 1",
"output": "First"
},
{
"input": "16 15 1",
"output": "First"
},
{
"input": "16 16 1",
"output": "First"
},
{
"input": "15 15 2",
"output": "First"
},
{
"input": "15 16 2",
"output": "First"
},
{
"input": "16 15 2",
"output": "First"
},
{
"input": "16 16 2",
"output": "First"
},
{
"input": "15 15 3",
"output": "First"
},
{
"input": "15 16 3",
"output": "First"
},
{
"input": "16 15 3",
"output": "First"
},
{
"input": "16 16 3",
"output": "First"
},
{
"input": "15 17 3",
"output": "First"
},
{
"input": "16 17 3",
"output": "First"
},
{
"input": "17 17 3",
"output": "First"
},
{
"input": "17 15 3",
"output": "First"
},
{
"input": "17 16 3",
"output": "First"
}
] | 1,507,543,462
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 95
| 124
| 0
|
a,b,r=list(map(int,input().split()))
print('Second'if r+r>min(a,b)else'First')
|
Title: Plate Game
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You've got a rectangular table with length *a* and width *b* and the infinite number of plates of radius *r*. Two players play the following game: they take turns to put the plates on the table so that the plates don't lie on each other (but they can touch each other), and so that any point on any plate is located within the table's border. During the game one cannot move the plates that already lie on the table. The player who cannot make another move loses. Determine which player wins, the one who moves first or the one who moves second, provided that both players play optimally well.
Input Specification:
A single line contains three space-separated integers *a*, *b*, *r* (1<=≤<=*a*,<=*b*,<=*r*<=≤<=100) — the table sides and the plates' radius, correspondingly.
Output Specification:
If wins the player who moves first, print "First" (without the quotes). Otherwise print "Second" (without the quotes).
Demo Input:
['5 5 2\n', '6 7 4\n']
Demo Output:
['First\n', 'Second\n']
Note:
In the first sample the table has place for only one plate. The first player puts a plate on the table, the second player can't do that and loses.
In the second sample the table is so small that it doesn't have enough place even for one plate. So the first player loses without making a single move.
|
```python
a,b,r=list(map(int,input().split()))
print('Second'if r+r>min(a,b)else'First')
```
| 3
|
|
822
|
A
|
I'm bored with life
|
PROGRAMMING
| 800
|
[
"implementation",
"math",
"number theory"
] | null | null |
Holidays have finished. Thanks to the help of the hacker Leha, Noora managed to enter the university of her dreams which is located in a town Pavlopolis. It's well known that universities provide students with dormitory for the period of university studies. Consequently Noora had to leave Vičkopolis and move to Pavlopolis. Thus Leha was left completely alone in a quiet town Vičkopolis. He almost even fell into a depression from boredom!
Leha came up with a task for himself to relax a little. He chooses two integers *A* and *B* and then calculates the greatest common divisor of integers "*A* factorial" and "*B* factorial". Formally the hacker wants to find out GCD(*A*!,<=*B*!). It's well known that the factorial of an integer *x* is a product of all positive integers less than or equal to *x*. Thus *x*!<==<=1·2·3·...·(*x*<=-<=1)·*x*. For example 4!<==<=1·2·3·4<==<=24. Recall that GCD(*x*,<=*y*) is the largest positive integer *q* that divides (without a remainder) both *x* and *y*.
Leha has learned how to solve this task very effective. You are able to cope with it not worse, aren't you?
|
The first and single line contains two integers *A* and *B* (1<=≤<=*A*,<=*B*<=≤<=109,<=*min*(*A*,<=*B*)<=≤<=12).
|
Print a single integer denoting the greatest common divisor of integers *A*! and *B*!.
|
[
"4 3\n"
] |
[
"6\n"
] |
Consider the sample.
4! = 1·2·3·4 = 24. 3! = 1·2·3 = 6. The greatest common divisor of integers 24 and 6 is exactly 6.
| 500
|
[
{
"input": "4 3",
"output": "6"
},
{
"input": "10 399603090",
"output": "3628800"
},
{
"input": "6 973151934",
"output": "720"
},
{
"input": "2 841668075",
"output": "2"
},
{
"input": "7 415216919",
"output": "5040"
},
{
"input": "3 283733059",
"output": "6"
},
{
"input": "11 562314608",
"output": "39916800"
},
{
"input": "3 990639260",
"output": "6"
},
{
"input": "11 859155400",
"output": "39916800"
},
{
"input": "1 1",
"output": "1"
},
{
"input": "5 3",
"output": "6"
},
{
"input": "1 4",
"output": "1"
},
{
"input": "5 4",
"output": "24"
},
{
"input": "1 12",
"output": "1"
},
{
"input": "9 7",
"output": "5040"
},
{
"input": "2 3",
"output": "2"
},
{
"input": "6 11",
"output": "720"
},
{
"input": "6 7",
"output": "720"
},
{
"input": "11 11",
"output": "39916800"
},
{
"input": "4 999832660",
"output": "24"
},
{
"input": "7 999228288",
"output": "5040"
},
{
"input": "11 999257105",
"output": "39916800"
},
{
"input": "11 999286606",
"output": "39916800"
},
{
"input": "3 999279109",
"output": "6"
},
{
"input": "999632727 11",
"output": "39916800"
},
{
"input": "999625230 7",
"output": "5040"
},
{
"input": "999617047 3",
"output": "6"
},
{
"input": "999646548 7",
"output": "5040"
},
{
"input": "999639051 3",
"output": "6"
},
{
"input": "12 12",
"output": "479001600"
},
{
"input": "12 1",
"output": "1"
},
{
"input": "1213 5",
"output": "120"
},
{
"input": "8 9",
"output": "40320"
},
{
"input": "12 9",
"output": "362880"
},
{
"input": "12 1000000000",
"output": "479001600"
},
{
"input": "1000000000 1",
"output": "1"
},
{
"input": "12 13",
"output": "479001600"
},
{
"input": "2 29845",
"output": "2"
},
{
"input": "10 21",
"output": "3628800"
},
{
"input": "12 20",
"output": "479001600"
},
{
"input": "15 12",
"output": "479001600"
},
{
"input": "1 1",
"output": "1"
},
{
"input": "1000000000 12",
"output": "479001600"
},
{
"input": "11 30",
"output": "39916800"
},
{
"input": "17 12",
"output": "479001600"
},
{
"input": "4 19",
"output": "24"
},
{
"input": "12 15",
"output": "479001600"
},
{
"input": "20 6",
"output": "720"
},
{
"input": "10 20",
"output": "3628800"
},
{
"input": "10 10",
"output": "3628800"
},
{
"input": "22 12",
"output": "479001600"
},
{
"input": "20 12",
"output": "479001600"
},
{
"input": "12 23",
"output": "479001600"
},
{
"input": "12 22",
"output": "479001600"
},
{
"input": "18 3",
"output": "6"
},
{
"input": "14 10",
"output": "3628800"
},
{
"input": "14 12",
"output": "479001600"
},
{
"input": "8 3",
"output": "6"
},
{
"input": "5 5",
"output": "120"
}
] | 1,647,020,767
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 59
| 46
| 0
|
a, b = map(int, input().split())
suma1 = 1
for i in range(1, min(a,b)+1):
suma1 *= i
print(suma1)
|
Title: I'm bored with life
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Holidays have finished. Thanks to the help of the hacker Leha, Noora managed to enter the university of her dreams which is located in a town Pavlopolis. It's well known that universities provide students with dormitory for the period of university studies. Consequently Noora had to leave Vičkopolis and move to Pavlopolis. Thus Leha was left completely alone in a quiet town Vičkopolis. He almost even fell into a depression from boredom!
Leha came up with a task for himself to relax a little. He chooses two integers *A* and *B* and then calculates the greatest common divisor of integers "*A* factorial" and "*B* factorial". Formally the hacker wants to find out GCD(*A*!,<=*B*!). It's well known that the factorial of an integer *x* is a product of all positive integers less than or equal to *x*. Thus *x*!<==<=1·2·3·...·(*x*<=-<=1)·*x*. For example 4!<==<=1·2·3·4<==<=24. Recall that GCD(*x*,<=*y*) is the largest positive integer *q* that divides (without a remainder) both *x* and *y*.
Leha has learned how to solve this task very effective. You are able to cope with it not worse, aren't you?
Input Specification:
The first and single line contains two integers *A* and *B* (1<=≤<=*A*,<=*B*<=≤<=109,<=*min*(*A*,<=*B*)<=≤<=12).
Output Specification:
Print a single integer denoting the greatest common divisor of integers *A*! and *B*!.
Demo Input:
['4 3\n']
Demo Output:
['6\n']
Note:
Consider the sample.
4! = 1·2·3·4 = 24. 3! = 1·2·3 = 6. The greatest common divisor of integers 24 and 6 is exactly 6.
|
```python
a, b = map(int, input().split())
suma1 = 1
for i in range(1, min(a,b)+1):
suma1 *= i
print(suma1)
```
| 3
|
|
50
|
A
|
Domino piling
|
PROGRAMMING
| 800
|
[
"greedy",
"math"
] |
A. Domino piling
|
2
|
256
|
You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions:
1. Each domino completely covers two squares.
2. No two dominoes overlap.
3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board.
Find the maximum number of dominoes, which can be placed under these restrictions.
|
In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16).
|
Output one number — the maximal number of dominoes, which can be placed.
|
[
"2 4\n",
"3 3\n"
] |
[
"4\n",
"4\n"
] |
none
| 500
|
[
{
"input": "2 4",
"output": "4"
},
{
"input": "3 3",
"output": "4"
},
{
"input": "1 5",
"output": "2"
},
{
"input": "1 6",
"output": "3"
},
{
"input": "1 15",
"output": "7"
},
{
"input": "1 16",
"output": "8"
},
{
"input": "2 5",
"output": "5"
},
{
"input": "2 6",
"output": "6"
},
{
"input": "2 7",
"output": "7"
},
{
"input": "2 14",
"output": "14"
},
{
"input": "2 15",
"output": "15"
},
{
"input": "1 4",
"output": "2"
},
{
"input": "2 16",
"output": "16"
},
{
"input": "3 5",
"output": "7"
},
{
"input": "3 6",
"output": "9"
},
{
"input": "3 10",
"output": "15"
},
{
"input": "3 14",
"output": "21"
},
{
"input": "3 15",
"output": "22"
},
{
"input": "3 16",
"output": "24"
},
{
"input": "5 7",
"output": "17"
},
{
"input": "16 16",
"output": "128"
},
{
"input": "15 16",
"output": "120"
},
{
"input": "2 3",
"output": "3"
},
{
"input": "15 15",
"output": "112"
},
{
"input": "14 16",
"output": "112"
},
{
"input": "11 13",
"output": "71"
},
{
"input": "5 16",
"output": "40"
},
{
"input": "8 15",
"output": "60"
},
{
"input": "2 2",
"output": "2"
},
{
"input": "3 4",
"output": "6"
},
{
"input": "4 4",
"output": "8"
},
{
"input": "1 1",
"output": "0"
},
{
"input": "1 2",
"output": "1"
},
{
"input": "1 3",
"output": "1"
},
{
"input": "14 15",
"output": "105"
}
] | 1,688,359,579
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 35
| 92
| 0
|
count = 0
n,m = map(int,input().split())
total = m*n
while(total>1):
count += 1
total -= 2
print(count)
|
Title: Domino piling
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions:
1. Each domino completely covers two squares.
2. No two dominoes overlap.
3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board.
Find the maximum number of dominoes, which can be placed under these restrictions.
Input Specification:
In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16).
Output Specification:
Output one number — the maximal number of dominoes, which can be placed.
Demo Input:
['2 4\n', '3 3\n']
Demo Output:
['4\n', '4\n']
Note:
none
|
```python
count = 0
n,m = map(int,input().split())
total = m*n
while(total>1):
count += 1
total -= 2
print(count)
```
| 3.977
|
96
|
A
|
Football
|
PROGRAMMING
| 900
|
[
"implementation",
"strings"
] |
A. Football
|
2
|
256
|
Petya loves football very much. One day, as he was watching a football match, he was writing the players' current positions on a piece of paper. To simplify the situation he depicted it as a string consisting of zeroes and ones. A zero corresponds to players of one team; a one corresponds to players of another team. If there are at least 7 players of some team standing one after another, then the situation is considered dangerous. For example, the situation 00100110111111101 is dangerous and 11110111011101 is not. You are given the current situation. Determine whether it is dangerous or not.
|
The first input line contains a non-empty string consisting of characters "0" and "1", which represents players. The length of the string does not exceed 100 characters. There's at least one player from each team present on the field.
|
Print "YES" if the situation is dangerous. Otherwise, print "NO".
|
[
"001001\n",
"1000000001\n"
] |
[
"NO\n",
"YES\n"
] |
none
| 500
|
[
{
"input": "001001",
"output": "NO"
},
{
"input": "1000000001",
"output": "YES"
},
{
"input": "00100110111111101",
"output": "YES"
},
{
"input": "11110111111111111",
"output": "YES"
},
{
"input": "01",
"output": "NO"
},
{
"input": "10100101",
"output": "NO"
},
{
"input": "1010010100000000010",
"output": "YES"
},
{
"input": "101010101",
"output": "NO"
},
{
"input": "000000000100000000000110101100000",
"output": "YES"
},
{
"input": "100001000000110101100000",
"output": "NO"
},
{
"input": "100001000011010110000",
"output": "NO"
},
{
"input": "010",
"output": "NO"
},
{
"input": "10101011111111111111111111111100",
"output": "YES"
},
{
"input": "1001101100",
"output": "NO"
},
{
"input": "1001101010",
"output": "NO"
},
{
"input": "1111100111",
"output": "NO"
},
{
"input": "00110110001110001111",
"output": "NO"
},
{
"input": "11110001001111110001",
"output": "NO"
},
{
"input": "10001111001011111101",
"output": "NO"
},
{
"input": "10000010100000001000110001010100001001001010011",
"output": "YES"
},
{
"input": "01111011111010111100101100001011001010111110000010",
"output": "NO"
},
{
"input": "00100000100100101110011001011011101110110110010100",
"output": "NO"
},
{
"input": "10110100110001001011110101110010100010000000000100101010111110111110100011",
"output": "YES"
},
{
"input": "00011101010101111001011011001101101011111101000010100000111000011100101011",
"output": "NO"
},
{
"input": "01110000110100110101110100111000101101011101011110110100100111100001110111",
"output": "NO"
},
{
"input": "11110110011000100111100111101101011111110100010101011011111101110110110111",
"output": "YES"
},
{
"input": "100100010101110010001011001110100011100010011110100101100011010001001010001001101111001100",
"output": "NO"
},
{
"input": "111110010001011010010011111100110110001111000010100011011100111101111101110010101111011110000001010",
"output": "NO"
},
{
"input": "111110111100010100000100001010111011101011000111011011011010110010100010000101011111000011010011110",
"output": "NO"
},
{
"input": "1011110110111010110111111010010010100011111011110000011000110010011110111010110100011010100010111000",
"output": "NO"
},
{
"input": "0010100111100010110110000011100111110100111110001010000100111111111010111100101101010101001011010110",
"output": "YES"
},
{
"input": "1111010100010100101011101100101101110011000010100010000001111100010011100101010001101111000001011000",
"output": "NO"
},
{
"input": "0101100011001110001110100111100011010101011000000000110110010010111100101111010111100011101100100101",
"output": "YES"
},
{
"input": "0001101110011101110000000010011111101001101111100001001010110000110001100000010001111011011110001101",
"output": "YES"
},
{
"input": "1000010000100000100010000100001000010000100001000010000100001000010000100001000010000100001000010000",
"output": "NO"
},
{
"input": "1000000000100000000010000000001000000000100000000010000000001000000000100000000010000000001000000000",
"output": "YES"
},
{
"input": "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001",
"output": "YES"
},
{
"input": "1111111111111111111111111111111111111111011111111111111111111111111111111111111111111111111111111111",
"output": "YES"
},
{
"input": "10100101000",
"output": "NO"
},
{
"input": "11110111011101",
"output": "NO"
},
{
"input": "10000000",
"output": "YES"
},
{
"input": "00000001",
"output": "YES"
},
{
"input": "01111111",
"output": "YES"
},
{
"input": "11111110",
"output": "YES"
}
] | 1,687,282,253
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 44
| 92
| 0
|
STR=str(input())
str0="0000000"
str1="1111111"
if (str0 in STR) or (str1 in STR):
print("YES")
else:
print("NO")
|
Title: Football
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Petya loves football very much. One day, as he was watching a football match, he was writing the players' current positions on a piece of paper. To simplify the situation he depicted it as a string consisting of zeroes and ones. A zero corresponds to players of one team; a one corresponds to players of another team. If there are at least 7 players of some team standing one after another, then the situation is considered dangerous. For example, the situation 00100110111111101 is dangerous and 11110111011101 is not. You are given the current situation. Determine whether it is dangerous or not.
Input Specification:
The first input line contains a non-empty string consisting of characters "0" and "1", which represents players. The length of the string does not exceed 100 characters. There's at least one player from each team present on the field.
Output Specification:
Print "YES" if the situation is dangerous. Otherwise, print "NO".
Demo Input:
['001001\n', '1000000001\n']
Demo Output:
['NO\n', 'YES\n']
Note:
none
|
```python
STR=str(input())
str0="0000000"
str1="1111111"
if (str0 in STR) or (str1 in STR):
print("YES")
else:
print("NO")
```
| 3.977
|
879
|
B
|
Table Tennis
|
PROGRAMMING
| 1,200
|
[
"data structures",
"implementation"
] | null | null |
*n* people are standing in a line to play table tennis. At first, the first two players in the line play a game. Then the loser goes to the end of the line, and the winner plays with the next person from the line, and so on. They play until someone wins *k* games in a row. This player becomes the winner.
For each of the participants, you know the power to play table tennis, and for all players these values are different. In a game the player with greater power always wins. Determine who will be the winner.
|
The first line contains two integers: *n* and *k* (2<=≤<=*n*<=≤<=500, 2<=≤<=*k*<=≤<=1012) — the number of people and the number of wins.
The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=*n*) — powers of the player. It's guaranteed that this line contains a valid permutation, i.e. all *a**i* are distinct.
|
Output a single integer — power of the winner.
|
[
"2 2\n1 2\n",
"4 2\n3 1 2 4\n",
"6 2\n6 5 3 1 2 4\n",
"2 10000000000\n2 1\n"
] |
[
"2 ",
"3 ",
"6 ",
"2\n"
] |
Games in the second sample:
3 plays with 1. 3 wins. 1 goes to the end of the line.
3 plays with 2. 3 wins. He wins twice in a row. He becomes the winner.
| 1,000
|
[
{
"input": "2 2\n1 2",
"output": "2 "
},
{
"input": "4 2\n3 1 2 4",
"output": "3 "
},
{
"input": "6 2\n6 5 3 1 2 4",
"output": "6 "
},
{
"input": "2 10000000000\n2 1",
"output": "2"
},
{
"input": "4 4\n1 3 4 2",
"output": "4 "
},
{
"input": "2 2147483648\n2 1",
"output": "2"
},
{
"input": "3 2\n1 3 2",
"output": "3 "
},
{
"input": "3 3\n1 2 3",
"output": "3 "
},
{
"input": "5 2\n2 1 3 4 5",
"output": "5 "
},
{
"input": "10 2\n7 10 5 8 9 3 4 6 1 2",
"output": "10 "
},
{
"input": "100 2\n62 70 29 14 12 87 94 78 39 92 84 91 61 49 60 33 69 37 19 82 42 8 45 97 81 43 54 67 1 22 77 58 65 17 18 28 25 57 16 90 40 13 4 21 68 35 15 76 73 93 56 95 79 47 74 75 30 71 66 99 41 24 88 83 5 6 31 96 38 80 27 46 51 53 2 86 32 9 20 100 26 36 63 7 52 55 23 3 50 59 48 89 85 44 34 64 10 72 11 98",
"output": "70 "
},
{
"input": "4 10\n2 1 3 4",
"output": "4"
},
{
"input": "10 2\n1 2 3 4 5 6 7 8 9 10",
"output": "10 "
},
{
"input": "10 2\n10 9 8 7 6 5 4 3 2 1",
"output": "10 "
},
{
"input": "4 1000000000000\n3 4 1 2",
"output": "4"
},
{
"input": "100 10\n19 55 91 50 31 23 60 84 38 1 22 51 27 76 28 98 11 44 61 63 15 93 52 3 66 16 53 36 18 62 35 85 78 37 73 64 87 74 46 26 82 69 49 33 83 89 56 67 71 25 39 94 96 17 21 6 47 68 34 42 57 81 13 10 54 2 48 80 20 77 4 5 59 30 90 95 45 75 8 88 24 41 40 14 97 32 7 9 65 70 100 99 72 58 92 29 79 12 86 43",
"output": "91 "
},
{
"input": "100 50\n2 4 82 12 47 63 52 91 87 45 53 1 17 25 64 50 9 13 22 54 21 30 43 24 38 33 68 11 41 78 99 23 28 18 58 67 79 10 71 56 49 61 26 29 59 20 90 74 5 75 89 8 39 95 72 42 66 98 44 32 88 35 92 3 97 55 65 51 77 27 81 76 84 69 73 85 19 46 62 100 60 37 7 36 57 6 14 83 40 48 16 70 96 15 31 93 80 86 94 34",
"output": "100 "
},
{
"input": "2 1000000000000\n1 2",
"output": "2"
},
{
"input": "5 2\n1 4 3 5 2",
"output": "4 "
},
{
"input": "5 2\n1 3 2 4 5",
"output": "3 "
},
{
"input": "4 1000000000000\n3 1 2 4",
"output": "4"
},
{
"input": "4 2\n1 3 2 4",
"output": "3 "
},
{
"input": "10 3\n8 1 9 2 3 10 4 5 6 7",
"output": "9 "
},
{
"input": "5 2\n2 1 4 3 5",
"output": "4 "
},
{
"input": "3 4294967297\n2 1 3",
"output": "3"
},
{
"input": "4 4294967297\n3 2 1 4",
"output": "4"
},
{
"input": "5 4294967298\n3 2 1 4 5",
"output": "5"
},
{
"input": "10 4\n5 4 7 1 2 9 3 6 8 10",
"output": "9 "
},
{
"input": "11 21474836489\n10 1 2 3 4 5 6 7 8 9 11",
"output": "11"
}
] | 1,572,788,874
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 43
| 171
| 921,600
|
import math
import os
import random
import re
import sys
playerWins = input().split()
player = int(playerWins[0])
wins = int(playerWins[1])
powerValue = list(map(int, input().rstrip().split()[:player]))
a=0
checker = []
if wins > 1000:
wins = 1000
while len(checker) < wins:
if powerValue[a] > powerValue[a+1]:
checker.append(powerValue[a+1])
powerValue.append(powerValue[a+1])
del powerValue[a+1]
elif powerValue[a] < powerValue[a+1]:
powerValue.append(powerValue[a])
del powerValue[a]
checker.clear()
checker.append(powerValue[a+1])
print(powerValue[a])
|
Title: Table Tennis
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
*n* people are standing in a line to play table tennis. At first, the first two players in the line play a game. Then the loser goes to the end of the line, and the winner plays with the next person from the line, and so on. They play until someone wins *k* games in a row. This player becomes the winner.
For each of the participants, you know the power to play table tennis, and for all players these values are different. In a game the player with greater power always wins. Determine who will be the winner.
Input Specification:
The first line contains two integers: *n* and *k* (2<=≤<=*n*<=≤<=500, 2<=≤<=*k*<=≤<=1012) — the number of people and the number of wins.
The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=*n*) — powers of the player. It's guaranteed that this line contains a valid permutation, i.e. all *a**i* are distinct.
Output Specification:
Output a single integer — power of the winner.
Demo Input:
['2 2\n1 2\n', '4 2\n3 1 2 4\n', '6 2\n6 5 3 1 2 4\n', '2 10000000000\n2 1\n']
Demo Output:
['2 ', '3 ', '6 ', '2\n']
Note:
Games in the second sample:
3 plays with 1. 3 wins. 1 goes to the end of the line.
3 plays with 2. 3 wins. He wins twice in a row. He becomes the winner.
|
```python
import math
import os
import random
import re
import sys
playerWins = input().split()
player = int(playerWins[0])
wins = int(playerWins[1])
powerValue = list(map(int, input().rstrip().split()[:player]))
a=0
checker = []
if wins > 1000:
wins = 1000
while len(checker) < wins:
if powerValue[a] > powerValue[a+1]:
checker.append(powerValue[a+1])
powerValue.append(powerValue[a+1])
del powerValue[a+1]
elif powerValue[a] < powerValue[a+1]:
powerValue.append(powerValue[a])
del powerValue[a]
checker.clear()
checker.append(powerValue[a+1])
print(powerValue[a])
```
| 3
|
|
263
|
A
|
Beautiful Matrix
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
You've got a 5<=×<=5 matrix, consisting of 24 zeroes and a single number one. Let's index the matrix rows by numbers from 1 to 5 from top to bottom, let's index the matrix columns by numbers from 1 to 5 from left to right. In one move, you are allowed to apply one of the two following transformations to the matrix:
1. Swap two neighboring matrix rows, that is, rows with indexes *i* and *i*<=+<=1 for some integer *i* (1<=≤<=*i*<=<<=5). 1. Swap two neighboring matrix columns, that is, columns with indexes *j* and *j*<=+<=1 for some integer *j* (1<=≤<=*j*<=<<=5).
You think that a matrix looks beautiful, if the single number one of the matrix is located in its middle (in the cell that is on the intersection of the third row and the third column). Count the minimum number of moves needed to make the matrix beautiful.
|
The input consists of five lines, each line contains five integers: the *j*-th integer in the *i*-th line of the input represents the element of the matrix that is located on the intersection of the *i*-th row and the *j*-th column. It is guaranteed that the matrix consists of 24 zeroes and a single number one.
|
Print a single integer — the minimum number of moves needed to make the matrix beautiful.
|
[
"0 0 0 0 0\n0 0 0 0 1\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n",
"0 0 0 0 0\n0 0 0 0 0\n0 1 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n"
] |
[
"3\n",
"1\n"
] |
none
| 500
|
[
{
"input": "0 0 0 0 0\n0 0 0 0 1\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "3"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 1 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "1"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 1 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "0"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 1",
"output": "4"
},
{
"input": "0 1 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "3"
},
{
"input": "1 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "4"
},
{
"input": "0 0 1 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "2"
},
{
"input": "0 0 0 1 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "3"
},
{
"input": "0 0 0 0 1\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "4"
},
{
"input": "0 0 0 0 0\n1 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "3"
},
{
"input": "0 0 0 0 0\n0 1 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "2"
},
{
"input": "0 0 0 0 0\n0 0 1 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "1"
},
{
"input": "0 0 0 0 0\n0 0 0 1 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "2"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n1 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "2"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 1 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "1"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 1\n0 0 0 0 0\n0 0 0 0 0",
"output": "2"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n1 0 0 0 0\n0 0 0 0 0",
"output": "3"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 1 0 0 0\n0 0 0 0 0",
"output": "2"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 1 0 0\n0 0 0 0 0",
"output": "1"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 1 0\n0 0 0 0 0",
"output": "2"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 1\n0 0 0 0 0",
"output": "3"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n1 0 0 0 0",
"output": "4"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 1 0 0 0",
"output": "3"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 1 0 0",
"output": "2"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 1 0",
"output": "3"
}
] | 1,694,875,313
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 25
| 92
| 0
|
rows = [input() for _ in range(5)]
for j in range(5):
ix = rows[j].find('1')
if (ix != - 1):
ix = ix - (ix // 2)
print(abs(2-j)+abs(ix-2))
|
Title: Beautiful Matrix
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You've got a 5<=×<=5 matrix, consisting of 24 zeroes and a single number one. Let's index the matrix rows by numbers from 1 to 5 from top to bottom, let's index the matrix columns by numbers from 1 to 5 from left to right. In one move, you are allowed to apply one of the two following transformations to the matrix:
1. Swap two neighboring matrix rows, that is, rows with indexes *i* and *i*<=+<=1 for some integer *i* (1<=≤<=*i*<=<<=5). 1. Swap two neighboring matrix columns, that is, columns with indexes *j* and *j*<=+<=1 for some integer *j* (1<=≤<=*j*<=<<=5).
You think that a matrix looks beautiful, if the single number one of the matrix is located in its middle (in the cell that is on the intersection of the third row and the third column). Count the minimum number of moves needed to make the matrix beautiful.
Input Specification:
The input consists of five lines, each line contains five integers: the *j*-th integer in the *i*-th line of the input represents the element of the matrix that is located on the intersection of the *i*-th row and the *j*-th column. It is guaranteed that the matrix consists of 24 zeroes and a single number one.
Output Specification:
Print a single integer — the minimum number of moves needed to make the matrix beautiful.
Demo Input:
['0 0 0 0 0\n0 0 0 0 1\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n', '0 0 0 0 0\n0 0 0 0 0\n0 1 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n']
Demo Output:
['3\n', '1\n']
Note:
none
|
```python
rows = [input() for _ in range(5)]
for j in range(5):
ix = rows[j].find('1')
if (ix != - 1):
ix = ix - (ix // 2)
print(abs(2-j)+abs(ix-2))
```
| 3
|
|
946
|
A
|
Partition
|
PROGRAMMING
| 800
|
[
"greedy"
] | null | null |
You are given a sequence *a* consisting of *n* integers. You may partition this sequence into two sequences *b* and *c* in such a way that every element belongs exactly to one of these sequences.
Let *B* be the sum of elements belonging to *b*, and *C* be the sum of elements belonging to *c* (if some of these sequences is empty, then its sum is 0). What is the maximum possible value of *B*<=-<=*C*?
|
The first line contains one integer *n* (1<=≤<=*n*<=≤<=100) — the number of elements in *a*.
The second line contains *n* integers *a*1, *a*2, ..., *a**n* (<=-<=100<=≤<=*a**i*<=≤<=100) — the elements of sequence *a*.
|
Print the maximum possible value of *B*<=-<=*C*, where *B* is the sum of elements of sequence *b*, and *C* is the sum of elements of sequence *c*.
|
[
"3\n1 -2 0\n",
"6\n16 23 16 15 42 8\n"
] |
[
"3\n",
"120\n"
] |
In the first example we may choose *b* = {1, 0}, *c* = { - 2}. Then *B* = 1, *C* = - 2, *B* - *C* = 3.
In the second example we choose *b* = {16, 23, 16, 15, 42, 8}, *c* = {} (an empty sequence). Then *B* = 120, *C* = 0, *B* - *C* = 120.
| 0
|
[
{
"input": "3\n1 -2 0",
"output": "3"
},
{
"input": "6\n16 23 16 15 42 8",
"output": "120"
},
{
"input": "1\n-1",
"output": "1"
},
{
"input": "100\n-100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100",
"output": "10000"
},
{
"input": "2\n-1 5",
"output": "6"
},
{
"input": "3\n-2 0 1",
"output": "3"
},
{
"input": "12\n-1 -2 -3 4 4 -6 -6 56 3 3 -3 3",
"output": "94"
},
{
"input": "4\n1 -1 1 -1",
"output": "4"
},
{
"input": "4\n100 -100 100 -100",
"output": "400"
},
{
"input": "3\n-2 -5 10",
"output": "17"
},
{
"input": "5\n1 -2 3 -4 5",
"output": "15"
},
{
"input": "3\n-100 100 -100",
"output": "300"
},
{
"input": "6\n1 -1 1 -1 1 -1",
"output": "6"
},
{
"input": "6\n2 -2 2 -2 2 -2",
"output": "12"
},
{
"input": "9\n12 93 -2 0 0 0 3 -3 -9",
"output": "122"
},
{
"input": "6\n-1 2 4 -5 -3 55",
"output": "70"
},
{
"input": "6\n-12 8 68 -53 1 -15",
"output": "157"
},
{
"input": "2\n-2 1",
"output": "3"
},
{
"input": "3\n100 -100 100",
"output": "300"
},
{
"input": "5\n100 100 -1 -100 2",
"output": "303"
},
{
"input": "6\n-5 -4 -3 -2 -1 0",
"output": "15"
},
{
"input": "6\n4 4 4 -3 -3 2",
"output": "20"
},
{
"input": "2\n-1 2",
"output": "3"
},
{
"input": "1\n100",
"output": "100"
},
{
"input": "5\n-1 -2 3 1 2",
"output": "9"
},
{
"input": "5\n100 -100 100 -100 100",
"output": "500"
},
{
"input": "5\n1 -1 1 -1 1",
"output": "5"
},
{
"input": "4\n0 0 0 -1",
"output": "1"
},
{
"input": "5\n100 -100 -1 2 100",
"output": "303"
},
{
"input": "2\n75 0",
"output": "75"
},
{
"input": "4\n55 56 -59 -58",
"output": "228"
},
{
"input": "2\n9 71",
"output": "80"
},
{
"input": "2\n9 70",
"output": "79"
},
{
"input": "2\n9 69",
"output": "78"
},
{
"input": "2\n100 -100",
"output": "200"
},
{
"input": "4\n-9 4 -9 5",
"output": "27"
},
{
"input": "42\n91 -27 -79 -56 80 -93 -23 10 80 94 61 -89 -64 81 34 99 31 -32 -69 92 79 -9 73 66 -8 64 99 99 58 -19 -40 21 1 -33 93 -23 -62 27 55 41 57 36",
"output": "2348"
},
{
"input": "7\n-1 2 2 2 -1 2 -1",
"output": "11"
},
{
"input": "6\n-12 8 17 -69 7 -88",
"output": "201"
},
{
"input": "3\n1 -2 5",
"output": "8"
},
{
"input": "6\n-2 3 -4 5 6 -1",
"output": "21"
},
{
"input": "2\n-5 1",
"output": "6"
},
{
"input": "4\n2 2 -2 4",
"output": "10"
},
{
"input": "68\n21 47 -75 -25 64 83 83 -21 89 24 43 44 -35 34 -42 92 -96 -52 -66 64 14 -87 25 -61 -78 83 -96 -18 95 83 -93 -28 75 49 87 65 -93 -69 -2 95 -24 -36 -61 -71 88 -53 -93 -51 -81 -65 -53 -46 -56 6 65 58 19 100 57 61 -53 44 -58 48 -8 80 -88 72",
"output": "3991"
},
{
"input": "5\n5 5 -10 -1 1",
"output": "22"
},
{
"input": "3\n-1 2 3",
"output": "6"
},
{
"input": "76\n57 -38 -48 -81 93 -32 96 55 -44 2 38 -46 42 64 71 -73 95 31 -39 -62 -1 75 -17 57 28 52 12 -11 82 -84 59 -86 73 -97 34 97 -57 -85 -6 39 -5 -54 95 24 -44 35 -18 9 91 7 -22 -61 -80 54 -40 74 -90 15 -97 66 -52 -49 -24 65 21 -93 -29 -24 -4 -1 76 -93 7 -55 -53 1",
"output": "3787"
},
{
"input": "5\n-1 -2 1 2 3",
"output": "9"
},
{
"input": "4\n2 2 -2 -2",
"output": "8"
},
{
"input": "6\n100 -100 100 -100 100 -100",
"output": "600"
},
{
"input": "100\n-59 -33 34 0 69 24 -22 58 62 -36 5 45 -19 -73 61 -9 95 42 -73 -64 91 -96 2 53 -8 82 -79 16 18 -5 -53 26 71 38 -31 12 -33 -1 -65 -6 3 -89 22 33 -27 -36 41 11 -47 -32 47 -56 -38 57 -63 -41 23 41 29 78 16 -65 90 -58 -12 6 -60 42 -36 -52 -54 -95 -10 29 70 50 -94 1 93 48 -71 -77 -16 54 56 -60 66 76 31 8 44 -61 -74 23 37 38 18 -18 29 41",
"output": "4362"
},
{
"input": "2\n-1 1",
"output": "2"
},
{
"input": "3\n1 -2 100",
"output": "103"
},
{
"input": "5\n1 -2 3 1 2",
"output": "9"
},
{
"input": "10\n100 -10 -100 10 10 10 10 10 10 10",
"output": "280"
},
{
"input": "4\n2 0 -2 4",
"output": "8"
},
{
"input": "4\n3 -3 1 -1",
"output": "8"
},
{
"input": "3\n1 -1 1",
"output": "3"
},
{
"input": "4\n2 5 -2 4",
"output": "13"
},
{
"input": "2\n-2 2",
"output": "4"
},
{
"input": "3\n1 -2 1",
"output": "4"
},
{
"input": "5\n-1 -2 1 1 -1",
"output": "6"
},
{
"input": "4\n-2 0 2 4",
"output": "8"
},
{
"input": "8\n-42 7 87 -16 -5 65 -88 1",
"output": "311"
},
{
"input": "3\n1 -3 4",
"output": "8"
},
{
"input": "1\n1",
"output": "1"
},
{
"input": "2\n0 1",
"output": "1"
},
{
"input": "3\n-1 2 -1",
"output": "4"
},
{
"input": "18\n-21 12 65 66 -24 62 82 35 -45 -47 28 37 5 -32 22 -14 -69 -95",
"output": "761"
},
{
"input": "4\n-1 1 -1 1",
"output": "4"
},
{
"input": "5\n-1 2 1 1 1",
"output": "6"
},
{
"input": "3\n1 1 1",
"output": "3"
}
] | 1,642,390,256
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 72
| 155
| 3,481,600
|
import sys
import math
import collections
import heapq
import decimal
input=sys.stdin.readline
n=int(input())
l=sorted([int(i) for i in input().split()])
if(l[0]>=0):
print(sum(l))
else:
s1,s2=0,0
for i in range(n):
if(l[i]<0):
s1+=l[i]
else:
s2+=l[i]
print(s2-s1)
|
Title: Partition
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You are given a sequence *a* consisting of *n* integers. You may partition this sequence into two sequences *b* and *c* in such a way that every element belongs exactly to one of these sequences.
Let *B* be the sum of elements belonging to *b*, and *C* be the sum of elements belonging to *c* (if some of these sequences is empty, then its sum is 0). What is the maximum possible value of *B*<=-<=*C*?
Input Specification:
The first line contains one integer *n* (1<=≤<=*n*<=≤<=100) — the number of elements in *a*.
The second line contains *n* integers *a*1, *a*2, ..., *a**n* (<=-<=100<=≤<=*a**i*<=≤<=100) — the elements of sequence *a*.
Output Specification:
Print the maximum possible value of *B*<=-<=*C*, where *B* is the sum of elements of sequence *b*, and *C* is the sum of elements of sequence *c*.
Demo Input:
['3\n1 -2 0\n', '6\n16 23 16 15 42 8\n']
Demo Output:
['3\n', '120\n']
Note:
In the first example we may choose *b* = {1, 0}, *c* = { - 2}. Then *B* = 1, *C* = - 2, *B* - *C* = 3.
In the second example we choose *b* = {16, 23, 16, 15, 42, 8}, *c* = {} (an empty sequence). Then *B* = 120, *C* = 0, *B* - *C* = 120.
|
```python
import sys
import math
import collections
import heapq
import decimal
input=sys.stdin.readline
n=int(input())
l=sorted([int(i) for i in input().split()])
if(l[0]>=0):
print(sum(l))
else:
s1,s2=0,0
for i in range(n):
if(l[i]<0):
s1+=l[i]
else:
s2+=l[i]
print(s2-s1)
```
| 3
|
|
287
|
A
|
IQ Test
|
PROGRAMMING
| 1,100
|
[
"brute force",
"implementation"
] | null | null |
In the city of Ultima Thule job applicants are often offered an IQ test.
The test is as follows: the person gets a piece of squared paper with a 4<=×<=4 square painted on it. Some of the square's cells are painted black and others are painted white. Your task is to repaint at most one cell the other color so that the picture has a 2<=×<=2 square, completely consisting of cells of the same color. If the initial picture already has such a square, the person should just say so and the test will be completed.
Your task is to write a program that determines whether it is possible to pass the test. You cannot pass the test if either repainting any cell or no action doesn't result in a 2<=×<=2 square, consisting of cells of the same color.
|
Four lines contain four characters each: the *j*-th character of the *i*-th line equals "." if the cell in the *i*-th row and the *j*-th column of the square is painted white, and "#", if the cell is black.
|
Print "YES" (without the quotes), if the test can be passed and "NO" (without the quotes) otherwise.
|
[
"####\n.#..\n####\n....\n",
"####\n....\n####\n....\n"
] |
[
"YES\n",
"NO\n"
] |
In the first test sample it is enough to repaint the first cell in the second row. After such repainting the required 2 × 2 square is on the intersection of the 1-st and 2-nd row with the 1-st and 2-nd column.
| 500
|
[
{
"input": "###.\n...#\n###.\n...#",
"output": "NO"
},
{
"input": ".##.\n#..#\n.##.\n#..#",
"output": "NO"
},
{
"input": ".#.#\n#.#.\n.#.#\n#.#.",
"output": "NO"
},
{
"input": "##..\n..##\n##..\n..##",
"output": "NO"
},
{
"input": "#.#.\n#.#.\n.#.#\n.#.#",
"output": "NO"
},
{
"input": ".#.#\n#.#.\n#.#.\n#.#.",
"output": "NO"
},
{
"input": ".#.#\n#.#.\n#.#.\n.#.#",
"output": "NO"
},
{
"input": "#.#.\n#.#.\n#.#.\n#.#.",
"output": "NO"
},
{
"input": ".#.#\n.#.#\n.#.#\n.#.#",
"output": "NO"
},
{
"input": "#..#\n.##.\n####\n####",
"output": "YES"
},
{
"input": "#.#.\n.###\n#.#.\n.###",
"output": "YES"
},
{
"input": "#..#\n.##.\n.##.\n#..#",
"output": "YES"
},
{
"input": ".##.\n.#..\n##.#\n#..#",
"output": "YES"
},
{
"input": ".##.\n##..\n#..#\n..##",
"output": "YES"
},
{
"input": "##..\n##..\n..##\n..##",
"output": "YES"
},
{
"input": ".#..\n###.\n.#.#\n..#.",
"output": "YES"
},
{
"input": "###.\n###.\n...#\n...#",
"output": "YES"
},
{
"input": "#.##\n##.#\n#.##\n##.#",
"output": "YES"
},
{
"input": ".#.#\n#.#.\n.#.#\n#.##",
"output": "YES"
},
{
"input": "##..\n..##\n##..\n...#",
"output": "YES"
},
{
"input": ".#..\n..##\n##..\n..##",
"output": "YES"
},
{
"input": "##..\n...#\n##..\n...#",
"output": "YES"
},
{
"input": ".#..\n..#.\n.#..\n..#.",
"output": "YES"
},
{
"input": "....\n....\n....\n.#.#",
"output": "YES"
},
{
"input": "....\n....\n....\n...#",
"output": "YES"
}
] | 1,589,972,216
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 30
| 140
| 0
|
def iq_test():
maze = []
for i in range(4):
maze.append(input())
for i in range(len(maze) - 1):
for j in range(len(maze[i]) - 1):
dic = {'#': 0, '.': 0}
dic[maze[i][j]] += 1
dic[maze[i + 1][j]] += 1
dic[maze[i + 1][j + 1]] += 1
dic[maze[i][j + 1]] += 1
if dic['#'] >= 3:
return 'YES'
elif dic['.'] >= 3:
return 'YES'
return 'NO'
print(iq_test())
|
Title: IQ Test
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
In the city of Ultima Thule job applicants are often offered an IQ test.
The test is as follows: the person gets a piece of squared paper with a 4<=×<=4 square painted on it. Some of the square's cells are painted black and others are painted white. Your task is to repaint at most one cell the other color so that the picture has a 2<=×<=2 square, completely consisting of cells of the same color. If the initial picture already has such a square, the person should just say so and the test will be completed.
Your task is to write a program that determines whether it is possible to pass the test. You cannot pass the test if either repainting any cell or no action doesn't result in a 2<=×<=2 square, consisting of cells of the same color.
Input Specification:
Four lines contain four characters each: the *j*-th character of the *i*-th line equals "." if the cell in the *i*-th row and the *j*-th column of the square is painted white, and "#", if the cell is black.
Output Specification:
Print "YES" (without the quotes), if the test can be passed and "NO" (without the quotes) otherwise.
Demo Input:
['####\n.#..\n####\n....\n', '####\n....\n####\n....\n']
Demo Output:
['YES\n', 'NO\n']
Note:
In the first test sample it is enough to repaint the first cell in the second row. After such repainting the required 2 × 2 square is on the intersection of the 1-st and 2-nd row with the 1-st and 2-nd column.
|
```python
def iq_test():
maze = []
for i in range(4):
maze.append(input())
for i in range(len(maze) - 1):
for j in range(len(maze[i]) - 1):
dic = {'#': 0, '.': 0}
dic[maze[i][j]] += 1
dic[maze[i + 1][j]] += 1
dic[maze[i + 1][j + 1]] += 1
dic[maze[i][j + 1]] += 1
if dic['#'] >= 3:
return 'YES'
elif dic['.'] >= 3:
return 'YES'
return 'NO'
print(iq_test())
```
| 3
|
|
25
|
A
|
IQ test
|
PROGRAMMING
| 1,300
|
[
"brute force"
] |
A. IQ test
|
2
|
256
|
Bob is preparing to pass IQ test. The most frequent task in this test is to find out which one of the given *n* numbers differs from the others. Bob observed that one number usually differs from the others in evenness. Help Bob — to check his answers, he needs a program that among the given *n* numbers finds one that is different in evenness.
|
The first line contains integer *n* (3<=≤<=*n*<=≤<=100) — amount of numbers in the task. The second line contains *n* space-separated natural numbers, not exceeding 100. It is guaranteed, that exactly one of these numbers differs from the others in evenness.
|
Output index of number that differs from the others in evenness. Numbers are numbered from 1 in the input order.
|
[
"5\n2 4 7 8 10\n",
"4\n1 2 1 1\n"
] |
[
"3\n",
"2\n"
] |
none
| 0
|
[
{
"input": "5\n2 4 7 8 10",
"output": "3"
},
{
"input": "4\n1 2 1 1",
"output": "2"
},
{
"input": "3\n1 2 2",
"output": "1"
},
{
"input": "3\n100 99 100",
"output": "2"
},
{
"input": "3\n5 3 2",
"output": "3"
},
{
"input": "4\n43 28 1 91",
"output": "2"
},
{
"input": "4\n75 13 94 77",
"output": "3"
},
{
"input": "4\n97 8 27 3",
"output": "2"
},
{
"input": "10\n95 51 12 91 85 3 1 31 25 7",
"output": "3"
},
{
"input": "20\n88 96 66 51 14 88 2 92 18 72 18 88 20 30 4 82 90 100 24 46",
"output": "4"
},
{
"input": "30\n20 94 56 50 10 98 52 32 14 22 24 60 4 8 98 46 34 68 82 82 98 90 50 20 78 49 52 94 64 36",
"output": "26"
},
{
"input": "50\n79 27 77 57 37 45 27 49 65 33 57 21 71 19 75 85 65 61 23 97 85 9 23 1 9 3 99 77 77 21 79 69 15 37 15 7 93 81 13 89 91 31 45 93 15 97 55 80 85 83",
"output": "48"
},
{
"input": "60\n46 11 73 65 3 69 3 53 43 53 97 47 55 93 31 75 35 3 9 73 23 31 3 81 91 79 61 21 15 11 11 11 81 7 83 75 39 87 83 59 89 55 93 27 49 67 67 29 1 93 11 17 9 19 35 21 63 31 31 25",
"output": "1"
},
{
"input": "70\n28 42 42 92 64 54 22 38 38 78 62 38 4 38 14 66 4 92 66 58 94 26 4 44 41 88 48 82 44 26 74 44 48 4 16 92 34 38 26 64 94 4 30 78 50 54 12 90 8 16 80 98 28 100 74 50 36 42 92 18 76 98 8 22 2 50 58 50 64 46",
"output": "25"
},
{
"input": "100\n43 35 79 53 13 91 91 45 65 83 57 9 42 39 85 45 71 51 61 59 31 13 63 39 25 21 79 39 91 67 21 61 97 75 93 83 29 79 59 97 11 37 63 51 39 55 91 23 21 17 47 23 35 75 49 5 69 99 5 7 41 17 25 89 15 79 21 63 53 81 43 91 59 91 69 99 85 15 91 51 49 37 65 7 89 81 21 93 61 63 97 93 45 17 13 69 57 25 75 73",
"output": "13"
},
{
"input": "100\n50 24 68 60 70 30 52 22 18 74 68 98 20 82 4 46 26 68 100 78 84 58 74 98 38 88 68 86 64 80 82 100 20 22 98 98 52 6 94 10 48 68 2 18 38 22 22 82 44 20 66 72 36 58 64 6 36 60 4 96 76 64 12 90 10 58 64 60 74 28 90 26 24 60 40 58 2 16 76 48 58 36 82 60 24 44 4 78 28 38 8 12 40 16 38 6 66 24 31 76",
"output": "99"
},
{
"input": "100\n47 48 94 48 14 18 94 36 96 22 12 30 94 20 48 98 40 58 2 94 8 36 98 18 98 68 2 60 76 38 18 100 8 72 100 68 2 86 92 72 58 16 48 14 6 58 72 76 6 88 80 66 20 28 74 62 86 68 90 86 2 56 34 38 56 90 4 8 76 44 32 86 12 98 38 34 54 92 70 94 10 24 82 66 90 58 62 2 32 58 100 22 58 72 2 22 68 72 42 14",
"output": "1"
},
{
"input": "99\n38 20 68 60 84 16 28 88 60 48 80 28 4 92 70 60 46 46 20 34 12 100 76 2 40 10 8 86 6 80 50 66 12 34 14 28 26 70 46 64 34 96 10 90 98 96 56 88 50 74 70 94 2 94 24 66 68 46 22 30 6 10 64 32 88 14 98 100 64 58 50 18 50 50 8 38 8 16 54 2 60 54 62 84 92 98 4 72 66 26 14 88 99 16 10 6 88 56 22",
"output": "93"
},
{
"input": "99\n50 83 43 89 53 47 69 1 5 37 63 87 95 15 55 95 75 89 33 53 89 75 93 75 11 85 49 29 11 97 49 67 87 11 25 37 97 73 67 49 87 43 53 97 43 29 53 33 45 91 37 73 39 49 59 5 21 43 87 35 5 63 89 57 63 47 29 99 19 85 13 13 3 13 43 19 5 9 61 51 51 57 15 89 13 97 41 13 99 79 13 27 97 95 73 33 99 27 23",
"output": "1"
},
{
"input": "98\n61 56 44 30 58 14 20 24 88 28 46 56 96 52 58 42 94 50 46 30 46 80 72 88 68 16 6 60 26 90 10 98 76 20 56 40 30 16 96 20 88 32 62 30 74 58 36 76 60 4 24 36 42 54 24 92 28 14 2 74 86 90 14 52 34 82 40 76 8 64 2 56 10 8 78 16 70 86 70 42 70 74 22 18 76 98 88 28 62 70 36 72 20 68 34 48 80 98",
"output": "1"
},
{
"input": "98\n66 26 46 42 78 32 76 42 26 82 8 12 4 10 24 26 64 44 100 46 94 64 30 18 88 28 8 66 30 82 82 28 74 52 62 80 80 60 94 86 64 32 44 88 92 20 12 74 94 28 34 58 4 22 16 10 94 76 82 58 40 66 22 6 30 32 92 54 16 76 74 98 18 48 48 30 92 2 16 42 84 74 30 60 64 52 50 26 16 86 58 96 79 60 20 62 82 94",
"output": "93"
},
{
"input": "95\n9 31 27 93 17 77 75 9 9 53 89 39 51 99 5 1 11 39 27 49 91 17 27 79 81 71 37 75 35 13 93 4 99 55 85 11 23 57 5 43 5 61 15 35 23 91 3 81 99 85 43 37 39 27 5 67 7 33 75 59 13 71 51 27 15 93 51 63 91 53 43 99 25 47 17 71 81 15 53 31 59 83 41 23 73 25 91 91 13 17 25 13 55 57 29",
"output": "32"
},
{
"input": "100\n91 89 81 45 53 1 41 3 77 93 55 97 55 97 87 27 69 95 73 41 93 21 75 35 53 56 5 51 87 59 91 67 33 3 99 45 83 17 97 47 75 97 7 89 17 99 23 23 81 25 55 97 27 35 69 5 77 35 93 19 55 59 37 21 31 37 49 41 91 53 73 69 7 37 37 39 17 71 7 97 55 17 47 23 15 73 31 39 57 37 9 5 61 41 65 57 77 79 35 47",
"output": "26"
},
{
"input": "99\n38 56 58 98 80 54 26 90 14 16 78 92 52 74 40 30 84 14 44 80 16 90 98 68 26 24 78 72 42 16 84 40 14 44 2 52 50 2 12 96 58 66 8 80 44 52 34 34 72 98 74 4 66 74 56 21 8 38 76 40 10 22 48 32 98 34 12 62 80 68 64 82 22 78 58 74 20 22 48 56 12 38 32 72 6 16 74 24 94 84 26 38 18 24 76 78 98 94 72",
"output": "56"
},
{
"input": "100\n44 40 6 40 56 90 98 8 36 64 76 86 98 76 36 92 6 30 98 70 24 98 96 60 24 82 88 68 86 96 34 42 58 10 40 26 56 10 88 58 70 32 24 28 14 82 52 12 62 36 70 60 52 34 74 30 78 76 10 16 42 94 66 90 70 38 52 12 58 22 98 96 14 68 24 70 4 30 84 98 8 50 14 52 66 34 100 10 28 100 56 48 38 12 38 14 91 80 70 86",
"output": "97"
},
{
"input": "100\n96 62 64 20 90 46 56 90 68 36 30 56 70 28 16 64 94 34 6 32 34 50 94 22 90 32 40 2 72 10 88 38 28 92 20 26 56 80 4 100 100 90 16 74 74 84 8 2 30 20 80 32 16 46 92 56 42 12 96 64 64 42 64 58 50 42 74 28 2 4 36 32 70 50 54 92 70 16 45 76 28 16 18 50 48 2 62 94 4 12 52 52 4 100 70 60 82 62 98 42",
"output": "79"
},
{
"input": "99\n14 26 34 68 90 58 50 36 8 16 18 6 2 74 54 20 36 84 32 50 52 2 26 24 3 64 20 10 54 26 66 44 28 72 4 96 78 90 96 86 68 28 94 4 12 46 100 32 22 36 84 32 44 94 76 94 4 52 12 30 74 4 34 64 58 72 44 16 70 56 54 8 14 74 8 6 58 62 98 54 14 40 80 20 36 72 28 98 20 58 40 52 90 64 22 48 54 70 52",
"output": "25"
},
{
"input": "95\n82 86 30 78 6 46 80 66 74 72 16 24 18 52 52 38 60 36 86 26 62 28 22 46 96 26 94 84 20 46 66 88 76 32 12 86 74 18 34 88 4 48 94 6 58 6 100 82 4 24 88 32 54 98 34 48 6 76 42 88 42 28 100 4 22 2 10 66 82 54 98 20 60 66 38 98 32 47 86 58 6 100 12 46 2 42 8 84 78 28 24 70 34 28 86",
"output": "78"
},
{
"input": "90\n40 50 8 42 76 24 58 42 26 68 20 48 54 12 34 84 14 36 32 88 6 50 96 56 20 92 48 16 40 34 96 46 20 84 30 50 20 98 8 44 96 42 8 76 70 38 84 30 40 88 84 72 2 22 52 58 16 62 100 66 80 40 50 32 14 62 88 72 22 99 76 50 84 82 8 82 98 46 26 40 2 98 18 78 30 72 70 18 34 68",
"output": "70"
},
{
"input": "80\n81 43 87 1 55 43 53 61 27 19 43 13 89 9 33 83 75 55 97 71 91 37 95 5 21 69 81 93 95 69 31 83 55 7 97 7 79 57 8 61 27 85 49 1 15 97 63 79 29 73 41 85 5 41 31 93 67 11 63 59 15 99 91 77 43 69 23 23 81 73 19 1 67 51 1 75 99 67 3 81",
"output": "39"
},
{
"input": "98\n13 83 61 27 35 1 85 95 97 73 95 65 73 45 5 43 27 83 91 19 11 3 85 59 9 39 69 23 45 7 51 85 5 71 5 95 1 51 75 3 43 57 3 11 33 71 21 99 47 41 87 39 71 87 31 85 91 49 83 5 49 85 47 91 55 99 33 23 31 23 23 73 29 77 55 31 25 5 81 49 91 15 15 39 87 5 9 40 69 47 29 33 11 21 49 79 51 83",
"output": "88"
},
{
"input": "3\n100 100 1",
"output": "3"
}
] | 1,567,751,717
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 32
| 248
| 0
|
n=int(input())
a=list(map(int,input().split()))
o=[]
e=[]
for i in range(n):
if(a[i]%2==0):
o.append(i)
else:
e.append(i)
print(e[0]+1) if(len(e)==1) else print(o[0]+1)
|
Title: IQ test
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Bob is preparing to pass IQ test. The most frequent task in this test is to find out which one of the given *n* numbers differs from the others. Bob observed that one number usually differs from the others in evenness. Help Bob — to check his answers, he needs a program that among the given *n* numbers finds one that is different in evenness.
Input Specification:
The first line contains integer *n* (3<=≤<=*n*<=≤<=100) — amount of numbers in the task. The second line contains *n* space-separated natural numbers, not exceeding 100. It is guaranteed, that exactly one of these numbers differs from the others in evenness.
Output Specification:
Output index of number that differs from the others in evenness. Numbers are numbered from 1 in the input order.
Demo Input:
['5\n2 4 7 8 10\n', '4\n1 2 1 1\n']
Demo Output:
['3\n', '2\n']
Note:
none
|
```python
n=int(input())
a=list(map(int,input().split()))
o=[]
e=[]
for i in range(n):
if(a[i]%2==0):
o.append(i)
else:
e.append(i)
print(e[0]+1) if(len(e)==1) else print(o[0]+1)
```
| 3.938
|
399
|
A
|
Pages
|
PROGRAMMING
| 0
|
[
"implementation"
] | null | null |
User ainta is making a web site. This time he is going to make a navigation of the pages. In his site, there are *n* pages numbered by integers from 1 to *n*. Assume that somebody is on the *p*-th page now. The navigation will look like this:
When someone clicks the button "<<" he is redirected to page 1, and when someone clicks the button ">>" he is redirected to page *n*. Of course if someone clicks on a number, he is redirected to the corresponding page.
There are some conditions in the navigation:
- If page 1 is in the navigation, the button "<<" must not be printed. - If page *n* is in the navigation, the button ">>" must not be printed. - If the page number is smaller than 1 or greater than *n*, it must not be printed.
You can see some examples of the navigations. Make a program that prints the navigation.
|
The first and the only line contains three integers *n*, *p*, *k* (3<=≤<=*n*<=≤<=100; 1<=≤<=*p*<=≤<=*n*; 1<=≤<=*k*<=≤<=*n*)
|
Print the proper navigation. Follow the format of the output from the test samples.
|
[
"17 5 2\n",
"6 5 2\n",
"6 1 2\n",
"6 2 2\n",
"9 6 3\n",
"10 6 3\n",
"8 5 4\n"
] |
[
"<< 3 4 (5) 6 7 >> ",
"<< 3 4 (5) 6 ",
"(1) 2 3 >> ",
"1 (2) 3 4 >>",
"<< 3 4 5 (6) 7 8 9",
"<< 3 4 5 (6) 7 8 9 >>",
"1 2 3 4 (5) 6 7 8 "
] |
none
| 500
|
[
{
"input": "17 5 2",
"output": "<< 3 4 (5) 6 7 >> "
},
{
"input": "6 5 2",
"output": "<< 3 4 (5) 6 "
},
{
"input": "6 1 2",
"output": "(1) 2 3 >> "
},
{
"input": "6 2 2",
"output": "1 (2) 3 4 >> "
},
{
"input": "9 6 3",
"output": "<< 3 4 5 (6) 7 8 9 "
},
{
"input": "10 6 3",
"output": "<< 3 4 5 (6) 7 8 9 >> "
},
{
"input": "8 5 4",
"output": "1 2 3 4 (5) 6 7 8 "
},
{
"input": "100 10 20",
"output": "1 2 3 4 5 6 7 8 9 (10) 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 >> "
},
{
"input": "100 25 11",
"output": "<< 14 15 16 17 18 19 20 21 22 23 24 (25) 26 27 28 29 30 31 32 33 34 35 36 >> "
},
{
"input": "5 2 1",
"output": "1 (2) 3 >> "
},
{
"input": "5 3 1",
"output": "<< 2 (3) 4 >> "
},
{
"input": "79 35 12",
"output": "<< 23 24 25 26 27 28 29 30 31 32 33 34 (35) 36 37 38 39 40 41 42 43 44 45 46 47 >> "
},
{
"input": "100 99 5",
"output": "<< 94 95 96 97 98 (99) 100 "
},
{
"input": "100 99 15",
"output": "<< 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 (99) 100 "
},
{
"input": "100 100 17",
"output": "<< 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 (100) "
},
{
"input": "100 35 28",
"output": "<< 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 (35) 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 >> "
},
{
"input": "100 46 38",
"output": "<< 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 (46) 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 >> "
},
{
"input": "100 46 48",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 (46) 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 >> "
},
{
"input": "100 10 100",
"output": "1 2 3 4 5 6 7 8 9 (10) 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 "
},
{
"input": "3 1 1",
"output": "(1) 2 >> "
},
{
"input": "3 2 1",
"output": "1 (2) 3 "
},
{
"input": "17 5 3",
"output": "<< 2 3 4 (5) 6 7 8 >> "
},
{
"input": "3 1 3",
"output": "(1) 2 3 "
},
{
"input": "7 5 1",
"output": "<< 4 (5) 6 >> "
},
{
"input": "5 5 5",
"output": "1 2 3 4 (5) "
},
{
"input": "5 3 5",
"output": "1 2 (3) 4 5 "
}
] | 1,585,235,351
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 26
| 155
| 0
|
x=input()
xx=x.split( )
n=int(xx[0])
p=int(xx[1])
k=int(xx[2])
if p-k<=1:
kk=p-1
while kk!=0:
print(p-kk,end=' ')
kk-=1
else:
kk=k
print('<<',end=' ')
while kk!=0:
print(p-kk,end=' ')
kk-=1
print('(',end='')
print(p,end='')
print(')',end=' ')
if p+k>=n:
kk=n-p
for i in range(1,kk+1):
print(p+i,end=' ')
else:
kk=k
for i in range(1,kk+1):
print(p+i,end=' ')
print('>>')
|
Title: Pages
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
User ainta is making a web site. This time he is going to make a navigation of the pages. In his site, there are *n* pages numbered by integers from 1 to *n*. Assume that somebody is on the *p*-th page now. The navigation will look like this:
When someone clicks the button "<<" he is redirected to page 1, and when someone clicks the button ">>" he is redirected to page *n*. Of course if someone clicks on a number, he is redirected to the corresponding page.
There are some conditions in the navigation:
- If page 1 is in the navigation, the button "<<" must not be printed. - If page *n* is in the navigation, the button ">>" must not be printed. - If the page number is smaller than 1 or greater than *n*, it must not be printed.
You can see some examples of the navigations. Make a program that prints the navigation.
Input Specification:
The first and the only line contains three integers *n*, *p*, *k* (3<=≤<=*n*<=≤<=100; 1<=≤<=*p*<=≤<=*n*; 1<=≤<=*k*<=≤<=*n*)
Output Specification:
Print the proper navigation. Follow the format of the output from the test samples.
Demo Input:
['17 5 2\n', '6 5 2\n', '6 1 2\n', '6 2 2\n', '9 6 3\n', '10 6 3\n', '8 5 4\n']
Demo Output:
['<< 3 4 (5) 6 7 >> ', '<< 3 4 (5) 6 ', '(1) 2 3 >> ', '1 (2) 3 4 >>', '<< 3 4 5 (6) 7 8 9', '<< 3 4 5 (6) 7 8 9 >>', '1 2 3 4 (5) 6 7 8 ']
Note:
none
|
```python
x=input()
xx=x.split( )
n=int(xx[0])
p=int(xx[1])
k=int(xx[2])
if p-k<=1:
kk=p-1
while kk!=0:
print(p-kk,end=' ')
kk-=1
else:
kk=k
print('<<',end=' ')
while kk!=0:
print(p-kk,end=' ')
kk-=1
print('(',end='')
print(p,end='')
print(')',end=' ')
if p+k>=n:
kk=n-p
for i in range(1,kk+1):
print(p+i,end=' ')
else:
kk=k
for i in range(1,kk+1):
print(p+i,end=' ')
print('>>')
```
| 3
|
|
552
|
B
|
Vanya and Books
|
PROGRAMMING
| 1,200
|
[
"implementation",
"math"
] | null | null |
Vanya got an important task — he should enumerate books in the library and label each book with its number. Each of the *n* books should be assigned with a number from 1 to *n*. Naturally, distinct books should be assigned distinct numbers.
Vanya wants to know how many digits he will have to write down as he labels the books.
|
The first line contains integer *n* (1<=≤<=*n*<=≤<=109) — the number of books in the library.
|
Print the number of digits needed to number all the books.
|
[
"13\n",
"4\n"
] |
[
"17\n",
"4\n"
] |
Note to the first test. The books get numbers 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, which totals to 17 digits.
Note to the second sample. The books get numbers 1, 2, 3, 4, which totals to 4 digits.
| 1,000
|
[
{
"input": "13",
"output": "17"
},
{
"input": "4",
"output": "4"
},
{
"input": "100",
"output": "192"
},
{
"input": "99",
"output": "189"
},
{
"input": "1000000000",
"output": "8888888899"
},
{
"input": "1000000",
"output": "5888896"
},
{
"input": "999",
"output": "2889"
},
{
"input": "55",
"output": "101"
},
{
"input": "222222222",
"output": "1888888896"
},
{
"input": "8",
"output": "8"
},
{
"input": "13",
"output": "17"
},
{
"input": "313",
"output": "831"
},
{
"input": "1342",
"output": "4261"
},
{
"input": "30140",
"output": "139594"
},
{
"input": "290092",
"output": "1629447"
},
{
"input": "2156660",
"output": "13985516"
},
{
"input": "96482216",
"output": "760746625"
},
{
"input": "943006819",
"output": "8375950269"
},
{
"input": "1",
"output": "1"
},
{
"input": "7",
"output": "7"
},
{
"input": "35",
"output": "61"
},
{
"input": "996",
"output": "2880"
},
{
"input": "6120",
"output": "23373"
},
{
"input": "30660",
"output": "142194"
},
{
"input": "349463",
"output": "1985673"
},
{
"input": "8171970",
"output": "56092686"
},
{
"input": "36123011",
"output": "277872985"
},
{
"input": "986747865",
"output": "8769619683"
},
{
"input": "9",
"output": "9"
},
{
"input": "10",
"output": "11"
},
{
"input": "11",
"output": "13"
},
{
"input": "101",
"output": "195"
},
{
"input": "1000",
"output": "2893"
},
{
"input": "1001",
"output": "2897"
},
{
"input": "9999",
"output": "38889"
},
{
"input": "10000",
"output": "38894"
},
{
"input": "10001",
"output": "38899"
},
{
"input": "99999",
"output": "488889"
},
{
"input": "100000",
"output": "488895"
},
{
"input": "100001",
"output": "488901"
},
{
"input": "999999",
"output": "5888889"
},
{
"input": "1000001",
"output": "5888903"
},
{
"input": "9999999",
"output": "68888889"
},
{
"input": "10000000",
"output": "68888897"
},
{
"input": "10000001",
"output": "68888905"
},
{
"input": "99999999",
"output": "788888889"
},
{
"input": "100000000",
"output": "788888898"
},
{
"input": "100000001",
"output": "788888907"
},
{
"input": "999999999",
"output": "8888888889"
},
{
"input": "95",
"output": "181"
},
{
"input": "995",
"output": "2877"
},
{
"input": "9995",
"output": "38873"
},
{
"input": "99995",
"output": "488869"
},
{
"input": "999999995",
"output": "8888888853"
},
{
"input": "999999998",
"output": "8888888880"
}
] | 1,567,625,026
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 55
| 155
| 0
|
#encoding: utf-8
n = int(input())
digits_number = 0
power_10 = 1
while power_10 <= n:
digits_number += n - (power_10 - 1)
power_10 *= 10
print(digits_number)
|
Title: Vanya and Books
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Vanya got an important task — he should enumerate books in the library and label each book with its number. Each of the *n* books should be assigned with a number from 1 to *n*. Naturally, distinct books should be assigned distinct numbers.
Vanya wants to know how many digits he will have to write down as he labels the books.
Input Specification:
The first line contains integer *n* (1<=≤<=*n*<=≤<=109) — the number of books in the library.
Output Specification:
Print the number of digits needed to number all the books.
Demo Input:
['13\n', '4\n']
Demo Output:
['17\n', '4\n']
Note:
Note to the first test. The books get numbers 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, which totals to 17 digits.
Note to the second sample. The books get numbers 1, 2, 3, 4, which totals to 4 digits.
|
```python
#encoding: utf-8
n = int(input())
digits_number = 0
power_10 = 1
while power_10 <= n:
digits_number += n - (power_10 - 1)
power_10 *= 10
print(digits_number)
```
| 3
|
|
41
|
A
|
Translation
|
PROGRAMMING
| 800
|
[
"implementation",
"strings"
] |
A. Translation
|
2
|
256
|
The translation from the Berland language into the Birland language is not an easy task. Those languages are very similar: a berlandish word differs from a birlandish word with the same meaning a little: it is spelled (and pronounced) reversely. For example, a Berlandish word code corresponds to a Birlandish word edoc. However, it's easy to make a mistake during the «translation». Vasya translated word *s* from Berlandish into Birlandish as *t*. Help him: find out if he translated the word correctly.
|
The first line contains word *s*, the second line contains word *t*. The words consist of lowercase Latin letters. The input data do not consist unnecessary spaces. The words are not empty and their lengths do not exceed 100 symbols.
|
If the word *t* is a word *s*, written reversely, print YES, otherwise print NO.
|
[
"code\nedoc\n",
"abb\naba\n",
"code\ncode\n"
] |
[
"YES\n",
"NO\n",
"NO\n"
] |
none
| 500
|
[
{
"input": "code\nedoc",
"output": "YES"
},
{
"input": "abb\naba",
"output": "NO"
},
{
"input": "code\ncode",
"output": "NO"
},
{
"input": "abacaba\nabacaba",
"output": "YES"
},
{
"input": "q\nq",
"output": "YES"
},
{
"input": "asrgdfngfnmfgnhweratgjkk\nasrgdfngfnmfgnhweratgjkk",
"output": "NO"
},
{
"input": "z\na",
"output": "NO"
},
{
"input": "asd\ndsa",
"output": "YES"
},
{
"input": "abcdef\nfecdba",
"output": "NO"
},
{
"input": "ywjjbirapvskozubvxoemscfwl\ngnduubaogtfaiowjizlvjcu",
"output": "NO"
},
{
"input": "mfrmqxtzvgaeuleubcmcxcfqyruwzenguhgrmkuhdgnhgtgkdszwqyd\nmfxufheiperjnhyczclkmzyhcxntdfskzkzdwzzujdinf",
"output": "NO"
},
{
"input": "bnbnemvybqizywlnghlykniaxxxlkhftppbdeqpesrtgkcpoeqowjwhrylpsziiwcldodcoonpimudvrxejjo\ntiynnekmlalogyvrgptbinkoqdwzuiyjlrldxhzjmmp",
"output": "NO"
},
{
"input": "pwlpubwyhzqvcitemnhvvwkmwcaawjvdiwtoxyhbhbxerlypelevasmelpfqwjk\nstruuzebbcenziscuoecywugxncdwzyfozhljjyizpqcgkyonyetarcpwkqhuugsqjuixsxptmbnlfupdcfigacdhhrzb",
"output": "NO"
},
{
"input": "gdvqjoyxnkypfvdxssgrihnwxkeojmnpdeobpecytkbdwujqfjtxsqspxvxpqioyfagzjxupqqzpgnpnpxcuipweunqch\nkkqkiwwasbhezqcfeceyngcyuogrkhqecwsyerdniqiocjehrpkljiljophqhyaiefjpavoom",
"output": "NO"
},
{
"input": "umeszdawsvgkjhlqwzents\nhxqhdungbylhnikwviuh",
"output": "NO"
},
{
"input": "juotpscvyfmgntshcealgbsrwwksgrwnrrbyaqqsxdlzhkbugdyx\nibqvffmfktyipgiopznsqtrtxiijntdbgyy",
"output": "NO"
},
{
"input": "zbwueheveouatecaglziqmudxemhrsozmaujrwlqmppzoumxhamwugedikvkblvmxwuofmpafdprbcftew\nulczwrqhctbtbxrhhodwbcxwimncnexosksujlisgclllxokrsbnozthajnnlilyffmsyko",
"output": "NO"
},
{
"input": "nkgwuugukzcv\nqktnpxedwxpxkrxdvgmfgoxkdfpbzvwsduyiybynbkouonhvmzakeiruhfmvrktghadbfkmwxduoqv",
"output": "NO"
},
{
"input": "incenvizhqpcenhjhehvjvgbsnfixbatrrjstxjzhlmdmxijztphxbrldlqwdfimweepkggzcxsrwelodpnryntepioqpvk\ndhjbjjftlvnxibkklxquwmzhjfvnmwpapdrslioxisbyhhfymyiaqhlgecpxamqnocizwxniubrmpyubvpenoukhcobkdojlybxd",
"output": "NO"
},
{
"input": "w\nw",
"output": "YES"
},
{
"input": "vz\nzv",
"output": "YES"
},
{
"input": "ry\nyr",
"output": "YES"
},
{
"input": "xou\nuox",
"output": "YES"
},
{
"input": "axg\ngax",
"output": "NO"
},
{
"input": "zdsl\nlsdz",
"output": "YES"
},
{
"input": "kudl\nldku",
"output": "NO"
},
{
"input": "zzlzwnqlcl\nlclqnwzlzz",
"output": "YES"
},
{
"input": "vzzgicnzqooejpjzads\nsdazjpjeooqzncigzzv",
"output": "YES"
},
{
"input": "raqhmvmzuwaykjpyxsykr\nxkysrypjkyawuzmvmhqar",
"output": "NO"
},
{
"input": "ngedczubzdcqbxksnxuavdjaqtmdwncjnoaicvmodcqvhfezew\nwezefhvqcdomvciaonjcnwdmtqajdvauxnskxbqcdzbuzcdegn",
"output": "YES"
},
{
"input": "muooqttvrrljcxbroizkymuidvfmhhsjtumksdkcbwwpfqdyvxtrlymofendqvznzlmim\nmimlznzvqdnefomylrtxvydqfpwwbckdskmutjshhmfvdiumykziorbxcjlrrvttqooum",
"output": "YES"
},
{
"input": "vxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaivg\ngviayyikkitmuomcpiakhbxszgbnhvwyzkftwoagzixaearxpjacrnvpvbuzenvovehkmmxvblqyxvctroddksdsgebcmlluqpxv",
"output": "YES"
},
{
"input": "mnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfdc\ncdfmkdgrdptkpewbsqvszipgxvgvuiuzbkkwuowbafkikgvnqdkxnayzdjygvezmtsgywnupocdntipiyiorblqkrzjpzatxahnm",
"output": "NO"
},
{
"input": "dgxmzbqofstzcdgthbaewbwocowvhqpinehpjatnnbrijcolvsatbblsrxabzrpszoiecpwhfjmwuhqrapvtcgvikuxtzbftydkw\nwkdytfbztxukivgctvparqhuwmjfhwpceiozsprzbaxrslbbqasvlocjirbnntajphenipthvwocowbweabhtgdcztsfoqbzmxgd",
"output": "NO"
},
{
"input": "gxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwgeh\nhegwxvocotmzstqfbmpjvijgkcyodlxyjawrpkczpmdspsuhoiruavnnnuwvtwohglkdxjetshkboalvzqbgjgthoteceixioxg",
"output": "YES"
},
{
"input": "sihxuwvmaambplxvjfoskinghzicyfqebjtkysotattkahssumfcgrkheotdxwjckpvapbkaepqrxseyfrwtyaycmrzsrsngkh\nhkgnsrszrmcyaytwrfyesxrqpeakbpavpkcjwxdtoehkrgcfmusshakttatosyktjbeqfycizhgniksofjvxlpbmaamvwuxhis",
"output": "YES"
},
{
"input": "ycnahksbughnonldzrhkysujmylcgcfuludjvjiahtkyzqvkopzqcnwhltbzfugzojqkjjlggmvnultascmygelkiktmfieok\nkoeifmtkiklegkmcsatlunvmggkjjlqjozgufzbtlhwncqzpokvqzykthaijvjdulufcgclymjusyyhrzdlnonhgubskhancy",
"output": "NO"
},
{
"input": "wbqasaehtkfojruzyhrlgwmtyiovmzyfifslvlemhqheyaelzwnthrenjsbmntwaoryzwfbxmscmypvxlfmzpnkkjlvwvmtz\nztmvwvljkknpzmflxvpymcsmxbfwzyroawtnmbsjnerhtnwzleayehqhmelvlsfifyzmvoiytmwglrhyzurjofktheasaqbw",
"output": "YES"
},
{
"input": "imippqurprbhfugngtgifelytadegwrgaefnfhbjjnmzikvjaccotqzemufqieqldgnbmviisgkynzeldlhqxuqphjfmyij\njiymfjhpquxqhldleznykgsiivmbngdlqeiqfumezqtoccajvkizmnjjbhfnfeagrwgedatylefigtgngufhbrpruqppimi",
"output": "YES"
},
{
"input": "bikydffiuisckpvzqlteqfhegsagimodb\nbdomigasgehfqetlqzvpkcsiuiffdykib",
"output": "YES"
}
] | 1,635,104,816
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 40
| 92
| 4,300,800
|
# -*- coding: utf-8 -*-
"""
Created on Sun Oct 24 15:39:01 2021
@author: Nikiq
"""
s = input()
s = s[::-1]
#[::-1] reverses a string, s.reverse() reverses a list
#print(s)
n = input()
if s == n:
print("YES")
else:
print("NO")
|
Title: Translation
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
The translation from the Berland language into the Birland language is not an easy task. Those languages are very similar: a berlandish word differs from a birlandish word with the same meaning a little: it is spelled (and pronounced) reversely. For example, a Berlandish word code corresponds to a Birlandish word edoc. However, it's easy to make a mistake during the «translation». Vasya translated word *s* from Berlandish into Birlandish as *t*. Help him: find out if he translated the word correctly.
Input Specification:
The first line contains word *s*, the second line contains word *t*. The words consist of lowercase Latin letters. The input data do not consist unnecessary spaces. The words are not empty and their lengths do not exceed 100 symbols.
Output Specification:
If the word *t* is a word *s*, written reversely, print YES, otherwise print NO.
Demo Input:
['code\nedoc\n', 'abb\naba\n', 'code\ncode\n']
Demo Output:
['YES\n', 'NO\n', 'NO\n']
Note:
none
|
```python
# -*- coding: utf-8 -*-
"""
Created on Sun Oct 24 15:39:01 2021
@author: Nikiq
"""
s = input()
s = s[::-1]
#[::-1] reverses a string, s.reverse() reverses a list
#print(s)
n = input()
if s == n:
print("YES")
else:
print("NO")
```
| 3.968989
|
670
|
C
|
Cinema
|
PROGRAMMING
| 1,300
|
[
"implementation",
"sortings"
] | null | null |
Moscow is hosting a major international conference, which is attended by *n* scientists from different countries. Each of the scientists knows exactly one language. For convenience, we enumerate all languages of the world with integers from 1 to 109.
In the evening after the conference, all *n* scientists decided to go to the cinema. There are *m* movies in the cinema they came to. Each of the movies is characterized by two distinct numbers — the index of audio language and the index of subtitles language. The scientist, who came to the movie, will be very pleased if he knows the audio language of the movie, will be almost satisfied if he knows the language of subtitles and will be not satisfied if he does not know neither one nor the other (note that the audio language and the subtitles language for each movie are always different).
Scientists decided to go together to the same movie. You have to help them choose the movie, such that the number of very pleased scientists is maximum possible. If there are several such movies, select among them one that will maximize the number of almost satisfied scientists.
|
The first line of the input contains a positive integer *n* (1<=≤<=*n*<=≤<=200<=000) — the number of scientists.
The second line contains *n* positive integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=109), where *a**i* is the index of a language, which the *i*-th scientist knows.
The third line contains a positive integer *m* (1<=≤<=*m*<=≤<=200<=000) — the number of movies in the cinema.
The fourth line contains *m* positive integers *b*1,<=*b*2,<=...,<=*b**m* (1<=≤<=*b**j*<=≤<=109), where *b**j* is the index of the audio language of the *j*-th movie.
The fifth line contains *m* positive integers *c*1,<=*c*2,<=...,<=*c**m* (1<=≤<=*c**j*<=≤<=109), where *c**j* is the index of subtitles language of the *j*-th movie.
It is guaranteed that audio languages and subtitles language are different for each movie, that is *b**j*<=≠<=*c**j*.
|
Print the single integer — the index of a movie to which scientists should go. After viewing this movie the number of very pleased scientists should be maximum possible. If in the cinema there are several such movies, you need to choose among them one, after viewing which there will be the maximum possible number of almost satisfied scientists.
If there are several possible answers print any of them.
|
[
"3\n2 3 2\n2\n3 2\n2 3\n",
"6\n6 3 1 1 3 7\n5\n1 2 3 4 5\n2 3 4 5 1\n"
] |
[
"2\n",
"1\n"
] |
In the first sample, scientists must go to the movie with the index 2, as in such case the 1-th and the 3-rd scientists will be very pleased and the 2-nd scientist will be almost satisfied.
In the second test case scientists can go either to the movie with the index 1 or the index 3. After viewing any of these movies exactly two scientists will be very pleased and all the others will be not satisfied.
| 1,000
|
[
{
"input": "3\n2 3 2\n2\n3 2\n2 3",
"output": "2"
},
{
"input": "6\n6 3 1 1 3 7\n5\n1 2 3 4 5\n2 3 4 5 1",
"output": "1"
},
{
"input": "1\n10\n1\n10\n3",
"output": "1"
},
{
"input": "2\n1 6\n1\n6\n1",
"output": "1"
},
{
"input": "1\n5\n2\n2 2\n5 5",
"output": "1"
},
{
"input": "2\n4 4\n2\n4 7\n7 5",
"output": "1"
},
{
"input": "10\n3 1 8 8 1 1 5 1 3 5\n2\n1 4\n3 1",
"output": "1"
},
{
"input": "10\n7 6 1 2 7 3 9 7 7 9\n10\n2 9 6 5 9 3 10 3 1 6\n4 6 7 9 7 4 1 9 2 5",
"output": "5"
},
{
"input": "20\n2 2 1 6 6 5 10 2 5 5 4 8 6 8 8 10 2 1 5 6\n20\n1 9 1 1 5 1 9 10 1 10 9 9 8 7 5 1 1 10 2 7\n3 5 9 10 10 8 2 9 6 7 8 8 6 5 3 4 6 3 7 4",
"output": "5"
},
{
"input": "2\n10 8\n10\n8 3 10 8 8 8 3 8 8 8\n10 10 8 3 10 3 8 3 10 10",
"output": "1"
},
{
"input": "5\n9 9 2 4 2\n5\n4 1 1 1 2\n2 4 4 9 7",
"output": "5"
},
{
"input": "1\n320994883\n1\n332200603\n942930950",
"output": "1"
},
{
"input": "3\n1000000000 1 1000000000\n2\n1000000000 1\n1 1000000000",
"output": "1"
},
{
"input": "5\n1 2 3 3 4\n2\n1 2\n3 4",
"output": "1"
},
{
"input": "3\n1 3 2\n2\n1 3\n2 4",
"output": "1"
},
{
"input": "5\n2 2 3 3 4\n3\n5 2 2\n6 3 4",
"output": "2"
},
{
"input": "2\n1 2\n2\n3 3\n4 1",
"output": "2"
},
{
"input": "12\n3 2 1 1 4 4 5 1 6 6 7 7\n4\n3 2 4 7\n2 1 5 6",
"output": "4"
},
{
"input": "14\n1 1 2 2 2 3 3 3 4 5 5 5 6 6\n3\n1 3 5\n2 6 4",
"output": "2"
}
] | 1,611,722,150
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 138
| 1,372
| 49,561,600
|
from collections import defaultdict
n = int(input())
lang = list(map(int, input().split()))
m = int(input())
B = list(map(int,input().split()))
C = list(map(int, input().split()))
ind = [i for i in range(m)]
movies = [list(x) for x in zip(B,C,ind)]
lcount = defaultdict(int)
for i in lang:
lcount[i] += 1
movies.sort(key=lambda x:(lcount[x[0]], lcount[x[1]]), reverse=True)
print(movies[0][2]+1)
|
Title: Cinema
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Moscow is hosting a major international conference, which is attended by *n* scientists from different countries. Each of the scientists knows exactly one language. For convenience, we enumerate all languages of the world with integers from 1 to 109.
In the evening after the conference, all *n* scientists decided to go to the cinema. There are *m* movies in the cinema they came to. Each of the movies is characterized by two distinct numbers — the index of audio language and the index of subtitles language. The scientist, who came to the movie, will be very pleased if he knows the audio language of the movie, will be almost satisfied if he knows the language of subtitles and will be not satisfied if he does not know neither one nor the other (note that the audio language and the subtitles language for each movie are always different).
Scientists decided to go together to the same movie. You have to help them choose the movie, such that the number of very pleased scientists is maximum possible. If there are several such movies, select among them one that will maximize the number of almost satisfied scientists.
Input Specification:
The first line of the input contains a positive integer *n* (1<=≤<=*n*<=≤<=200<=000) — the number of scientists.
The second line contains *n* positive integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=109), where *a**i* is the index of a language, which the *i*-th scientist knows.
The third line contains a positive integer *m* (1<=≤<=*m*<=≤<=200<=000) — the number of movies in the cinema.
The fourth line contains *m* positive integers *b*1,<=*b*2,<=...,<=*b**m* (1<=≤<=*b**j*<=≤<=109), where *b**j* is the index of the audio language of the *j*-th movie.
The fifth line contains *m* positive integers *c*1,<=*c*2,<=...,<=*c**m* (1<=≤<=*c**j*<=≤<=109), where *c**j* is the index of subtitles language of the *j*-th movie.
It is guaranteed that audio languages and subtitles language are different for each movie, that is *b**j*<=≠<=*c**j*.
Output Specification:
Print the single integer — the index of a movie to which scientists should go. After viewing this movie the number of very pleased scientists should be maximum possible. If in the cinema there are several such movies, you need to choose among them one, after viewing which there will be the maximum possible number of almost satisfied scientists.
If there are several possible answers print any of them.
Demo Input:
['3\n2 3 2\n2\n3 2\n2 3\n', '6\n6 3 1 1 3 7\n5\n1 2 3 4 5\n2 3 4 5 1\n']
Demo Output:
['2\n', '1\n']
Note:
In the first sample, scientists must go to the movie with the index 2, as in such case the 1-th and the 3-rd scientists will be very pleased and the 2-nd scientist will be almost satisfied.
In the second test case scientists can go either to the movie with the index 1 or the index 3. After viewing any of these movies exactly two scientists will be very pleased and all the others will be not satisfied.
|
```python
from collections import defaultdict
n = int(input())
lang = list(map(int, input().split()))
m = int(input())
B = list(map(int,input().split()))
C = list(map(int, input().split()))
ind = [i for i in range(m)]
movies = [list(x) for x in zip(B,C,ind)]
lcount = defaultdict(int)
for i in lang:
lcount[i] += 1
movies.sort(key=lambda x:(lcount[x[0]], lcount[x[1]]), reverse=True)
print(movies[0][2]+1)
```
| 3
|
|
127
|
A
|
Wasted Time
|
PROGRAMMING
| 900
|
[
"geometry"
] | null | null |
Mr. Scrooge, a very busy man, decided to count the time he wastes on all sorts of useless stuff to evaluate the lost profit. He has already counted the time he wastes sleeping and eating. And now Mr. Scrooge wants to count the time he has wasted signing papers.
Mr. Scrooge's signature can be represented as a polyline *A*1*A*2... *A**n*. Scrooge signs like that: first it places a pen at the point *A*1, then draws a segment from point *A*1 to point *A*2, then he draws a segment from point *A*2 to point *A*3 and so on to point *A**n*, where he stops signing and takes the pen off the paper. At that the resulting line can intersect with itself and partially repeat itself but Scrooge pays no attention to it and never changes his signing style. As Scrooge makes the signature, he never takes the pen off the paper and his writing speed is constant — 50 millimeters per second.
Scrooge signed exactly *k* papers throughout his life and all those signatures look the same.
Find the total time Scrooge wasted signing the papers.
|
The first line contains two integers *n* and *k* (2<=≤<=*n*<=≤<=100, 1<=≤<=*k*<=≤<=1000). Each of the following *n* lines contains the coordinates of the polyline's endpoints. The *i*-th one contains coordinates of the point *A**i* — integers *x**i* and *y**i*, separated by a space.
All points *A**i* are different. The absolute value of all coordinates does not exceed 20. The coordinates are measured in millimeters.
|
Print one real number — the total time Scrooges wastes on signing the papers in seconds. The absolute or relative error should not exceed 10<=-<=6.
|
[
"2 1\n0 0\n10 0\n",
"5 10\n3 1\n-5 6\n-2 -1\n3 2\n10 0\n",
"6 10\n5 0\n4 0\n6 0\n3 0\n7 0\n2 0\n"
] |
[
"0.200000000",
"6.032163204",
"3.000000000"
] |
none
| 500
|
[
{
"input": "2 1\n0 0\n10 0",
"output": "0.200000000"
},
{
"input": "5 10\n3 1\n-5 6\n-2 -1\n3 2\n10 0",
"output": "6.032163204"
},
{
"input": "6 10\n5 0\n4 0\n6 0\n3 0\n7 0\n2 0",
"output": "3.000000000"
},
{
"input": "10 95\n-20 -5\n2 -8\n14 13\n10 3\n17 11\n13 -12\n-6 11\n14 -15\n-13 14\n19 8",
"output": "429.309294877"
},
{
"input": "30 1000\n4 -13\n14 13\n-14 -16\n-9 18\n17 11\n2 -8\n2 15\n8 -1\n-9 13\n8 -12\n-2 20\n11 -12\n19 8\n9 -15\n-20 -5\n-18 20\n-13 14\n-12 -17\n-4 3\n13 -12\n11 -10\n18 7\n-6 11\n10 13\n10 3\n6 -14\n-1 10\n14 -15\n2 11\n-8 10",
"output": "13629.282573522"
},
{
"input": "2 1\n-20 -10\n-10 -6",
"output": "0.215406592"
},
{
"input": "2 13\n13 -10\n-3 -2",
"output": "4.651021393"
},
{
"input": "2 21\n13 8\n14 10",
"output": "0.939148551"
},
{
"input": "2 75\n-3 12\n1 12",
"output": "6.000000000"
},
{
"input": "2 466\n10 16\n-6 -3",
"output": "231.503997374"
},
{
"input": "2 999\n6 16\n-17 -14",
"output": "755.286284531"
},
{
"input": "2 1000\n-17 -14\n-14 -8",
"output": "134.164078650"
},
{
"input": "3 384\n-4 -19\n-17 -2\n3 4",
"output": "324.722285390"
},
{
"input": "5 566\n-11 8\n2 -7\n7 0\n-7 -9\n-7 5",
"output": "668.956254495"
},
{
"input": "7 495\n-10 -13\n-9 -5\n4 9\n8 13\n-4 2\n2 10\n-18 15",
"output": "789.212495576"
},
{
"input": "10 958\n7 13\n20 19\n12 -7\n10 -10\n-13 -15\n-10 -7\n20 -5\n-11 19\n-7 3\n-4 18",
"output": "3415.618464093"
},
{
"input": "13 445\n-15 16\n-8 -14\n8 7\n4 15\n8 -13\n15 -11\n-12 -4\n2 -13\n-5 0\n-20 -14\n-8 -7\n-10 -18\n18 -5",
"output": "2113.552527680"
},
{
"input": "18 388\n11 -8\n13 10\n18 -17\n-15 3\n-13 -15\n20 -7\n1 -10\n-13 -12\n-12 -15\n-17 -8\n1 -2\n3 -20\n-8 -9\n15 -13\n-19 -6\n17 3\n-17 2\n6 6",
"output": "2999.497312668"
},
{
"input": "25 258\n-5 -3\n-18 -14\n12 3\n6 11\n4 2\n-19 -3\n19 -7\n-15 19\n-19 -12\n-11 -10\n-5 17\n10 15\n-4 1\n-3 -20\n6 16\n18 -19\n11 -19\n-17 10\n-17 17\n-2 -17\n-3 -9\n18 13\n14 8\n-2 -5\n-11 4",
"output": "2797.756635934"
},
{
"input": "29 848\n11 -10\n-19 1\n18 18\n19 -19\n0 -5\n16 10\n-20 -14\n7 15\n6 8\n-15 -16\n9 3\n16 -20\n-12 12\n18 -1\n-11 14\n18 10\n11 -20\n-20 -16\n-1 11\n13 10\n-6 13\n-7 -10\n-11 -10\n-10 3\n15 -13\n-4 11\n-13 -11\n-11 -17\n11 -5",
"output": "12766.080247922"
},
{
"input": "36 3\n-11 20\n-11 13\n-17 9\n15 9\n-6 9\n-1 11\n12 -11\n16 -10\n-20 7\n-18 6\n-15 -2\n20 -20\n16 4\n-20 -8\n-12 -15\n-13 -6\n-9 -4\n0 -10\n8 -1\n1 4\n5 8\n8 -15\n16 -12\n19 1\n0 -4\n13 -4\n17 -13\n-7 11\n14 9\n-14 -9\n5 -8\n11 -8\n-17 -5\n1 -3\n-16 -17\n2 -3",
"output": "36.467924851"
},
{
"input": "48 447\n14 9\n9 -17\n-17 11\n-14 14\n19 -8\n-14 -17\n-7 10\n-6 -11\n-9 -19\n19 10\n-4 2\n-5 16\n20 9\n-10 20\n-7 -17\n14 -16\n-2 -10\n-18 -17\n14 12\n-6 -19\n5 -18\n-3 2\n-3 10\n-5 5\n13 -12\n10 -18\n10 -12\n-2 4\n7 -15\n-5 -5\n11 14\n11 10\n-6 -9\n13 -4\n13 9\n6 12\n-13 17\n-9 -12\n14 -19\n10 12\n-15 8\n-1 -11\n19 8\n11 20\n-9 -3\n16 1\n-14 19\n8 -4",
"output": "9495.010556306"
},
{
"input": "50 284\n-17 -13\n7 12\n-13 0\n13 1\n14 6\n14 -9\n-5 -1\n0 -10\n12 -3\n-14 6\n-8 10\n-16 17\n0 -1\n4 -9\n2 6\n1 8\n-8 -14\n3 9\n1 -15\n-4 -19\n-7 -20\n18 10\n3 -11\n10 16\n2 -6\n-9 19\n-3 -1\n20 9\n-12 -5\n-10 -2\n16 -7\n-16 -18\n-2 17\n2 8\n7 -15\n4 1\n6 -17\n19 9\n-10 -20\n5 2\n10 -2\n3 7\n20 0\n8 -14\n-16 -1\n-20 7\n20 -19\n17 18\n-11 -18\n-16 14",
"output": "6087.366930474"
},
{
"input": "57 373\n18 3\n-4 -1\n18 5\n-7 -15\n-6 -10\n-19 1\n20 15\n15 4\n-1 -2\n13 -14\n0 12\n10 3\n-16 -17\n-14 -9\n-11 -10\n17 19\n-2 6\n-12 -15\n10 20\n16 7\n9 -1\n4 13\n8 -2\n-1 -16\n-3 8\n14 11\n-12 3\n-5 -6\n3 4\n5 7\n-9 9\n11 4\n-19 10\n-7 4\n-20 -12\n10 16\n13 11\n13 -11\n7 -1\n17 18\n-19 7\n14 13\n5 -1\n-7 6\n-1 -6\n6 20\n-16 2\n4 17\n16 -11\n-4 -20\n19 -18\n17 16\n-14 -8\n3 2\n-6 -16\n10 -10\n-13 -11",
"output": "8929.162822862"
},
{
"input": "60 662\n15 17\n-2 -19\n-4 -17\n10 0\n15 10\n-8 -14\n14 9\n-15 20\n6 5\n-9 0\n-13 20\n13 -2\n10 9\n7 5\n4 18\n-10 1\n6 -15\n15 -16\n6 13\n4 -6\n2 5\n18 19\n8 3\n-7 14\n-12 -20\n14 19\n-15 0\n-2 -12\n9 18\n14 4\n2 -20\n3 0\n20 9\n-5 11\n-11 1\n2 -19\n-14 -4\n18 6\n16 16\n15 3\n-1 -5\n9 20\n12 -8\n-1 10\n-4 -9\n3 6\n3 -12\n14 -10\n-8 10\n-18 6\n14 -2\n-14 -12\n-10 -7\n10 -6\n14 1\n6 14\n15 19\n4 14\n3 -14\n-9 -13",
"output": "16314.207721932"
},
{
"input": "61 764\n-9 15\n11 -8\n-6 -7\n-13 -19\n16 -16\n-5 -1\n20 -19\n-14 -1\n-11 4\n7 -2\n-3 2\n-14 -17\n15 18\n20 15\n-13 -2\n15 8\n3 13\n19 -10\n2 -6\n15 -3\n-12 11\n4 -16\n-14 20\n0 2\n11 -7\n-6 -11\n16 7\n8 -3\n16 -10\n-3 9\n9 5\n4 -1\n-17 9\n14 -4\n8 6\n-19 12\n10 -17\n-5 7\n7 -3\n5 3\n6 -14\n9 9\n-16 -19\n11 -16\n-17 15\n8 5\n16 -19\n-7 10\n14 -15\n15 19\n-20 -16\n6 -2\n-4 6\n7 -15\n1 -8\n20 -17\n3 7\n10 12\n10 -11\n-19 10\n0 -11",
"output": "22153.369189802"
}
] | 1,673,078,020
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 42
| 92
| 0
|
import math
n,k = map(int,input().split())
a,b = map(int,input().split())
sum = 0
for i in range(n-1):
c,d = map(int,input().split())
if b == d or a == c:
i = abs(a-c)+abs(b-d)
else:
t = (a-c)**2 + (b-d)**2
i = math.sqrt(t)
sum += (i * k)
a,b = c,d
print(round(sum/50, 6))
# Sat Jan 07 2023 10:53:39 GMT+0300 (Moscow Standard Time)
|
Title: Wasted Time
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Mr. Scrooge, a very busy man, decided to count the time he wastes on all sorts of useless stuff to evaluate the lost profit. He has already counted the time he wastes sleeping and eating. And now Mr. Scrooge wants to count the time he has wasted signing papers.
Mr. Scrooge's signature can be represented as a polyline *A*1*A*2... *A**n*. Scrooge signs like that: first it places a pen at the point *A*1, then draws a segment from point *A*1 to point *A*2, then he draws a segment from point *A*2 to point *A*3 and so on to point *A**n*, where he stops signing and takes the pen off the paper. At that the resulting line can intersect with itself and partially repeat itself but Scrooge pays no attention to it and never changes his signing style. As Scrooge makes the signature, he never takes the pen off the paper and his writing speed is constant — 50 millimeters per second.
Scrooge signed exactly *k* papers throughout his life and all those signatures look the same.
Find the total time Scrooge wasted signing the papers.
Input Specification:
The first line contains two integers *n* and *k* (2<=≤<=*n*<=≤<=100, 1<=≤<=*k*<=≤<=1000). Each of the following *n* lines contains the coordinates of the polyline's endpoints. The *i*-th one contains coordinates of the point *A**i* — integers *x**i* and *y**i*, separated by a space.
All points *A**i* are different. The absolute value of all coordinates does not exceed 20. The coordinates are measured in millimeters.
Output Specification:
Print one real number — the total time Scrooges wastes on signing the papers in seconds. The absolute or relative error should not exceed 10<=-<=6.
Demo Input:
['2 1\n0 0\n10 0\n', '5 10\n3 1\n-5 6\n-2 -1\n3 2\n10 0\n', '6 10\n5 0\n4 0\n6 0\n3 0\n7 0\n2 0\n']
Demo Output:
['0.200000000', '6.032163204', '3.000000000']
Note:
none
|
```python
import math
n,k = map(int,input().split())
a,b = map(int,input().split())
sum = 0
for i in range(n-1):
c,d = map(int,input().split())
if b == d or a == c:
i = abs(a-c)+abs(b-d)
else:
t = (a-c)**2 + (b-d)**2
i = math.sqrt(t)
sum += (i * k)
a,b = c,d
print(round(sum/50, 6))
# Sat Jan 07 2023 10:53:39 GMT+0300 (Moscow Standard Time)
```
| 3
|
|
835
|
A
|
Key races
|
PROGRAMMING
| 800
|
[
"math"
] | null | null |
Two boys decided to compete in text typing on the site "Key races". During the competition, they have to type a text consisting of *s* characters. The first participant types one character in *v*1 milliseconds and has ping *t*1 milliseconds. The second participant types one character in *v*2 milliseconds and has ping *t*2 milliseconds.
If connection ping (delay) is *t* milliseconds, the competition passes for a participant as follows:
1. Exactly after *t* milliseconds after the start of the competition the participant receives the text to be entered. 1. Right after that he starts to type it. 1. Exactly *t* milliseconds after he ends typing all the text, the site receives information about it.
The winner is the participant whose information on the success comes earlier. If the information comes from both participants at the same time, it is considered that there is a draw.
Given the length of the text and the information about participants, determine the result of the game.
|
The first line contains five integers *s*, *v*1, *v*2, *t*1, *t*2 (1<=≤<=*s*,<=*v*1,<=*v*2,<=*t*1,<=*t*2<=≤<=1000) — the number of characters in the text, the time of typing one character for the first participant, the time of typing one character for the the second participant, the ping of the first participant and the ping of the second participant.
|
If the first participant wins, print "First". If the second participant wins, print "Second". In case of a draw print "Friendship".
|
[
"5 1 2 1 2\n",
"3 3 1 1 1\n",
"4 5 3 1 5\n"
] |
[
"First\n",
"Second\n",
"Friendship\n"
] |
In the first example, information on the success of the first participant comes in 7 milliseconds, of the second participant — in 14 milliseconds. So, the first wins.
In the second example, information on the success of the first participant comes in 11 milliseconds, of the second participant — in 5 milliseconds. So, the second wins.
In the third example, information on the success of the first participant comes in 22 milliseconds, of the second participant — in 22 milliseconds. So, it is be a draw.
| 500
|
[
{
"input": "5 1 2 1 2",
"output": "First"
},
{
"input": "3 3 1 1 1",
"output": "Second"
},
{
"input": "4 5 3 1 5",
"output": "Friendship"
},
{
"input": "1000 1000 1000 1000 1000",
"output": "Friendship"
},
{
"input": "1 1 1 1 1",
"output": "Friendship"
},
{
"input": "8 8 1 1 1",
"output": "Second"
},
{
"input": "15 14 32 65 28",
"output": "First"
},
{
"input": "894 197 325 232 902",
"output": "First"
},
{
"input": "1 2 8 8 5",
"output": "Friendship"
},
{
"input": "37 261 207 1 1000",
"output": "Friendship"
},
{
"input": "29 344 406 900 1",
"output": "Friendship"
},
{
"input": "1 2 8 9 8",
"output": "First"
},
{
"input": "2 9 8 8 9",
"output": "Friendship"
},
{
"input": "213 480 811 134 745",
"output": "First"
},
{
"input": "2 313 856 964 421",
"output": "Friendship"
},
{
"input": "1 10 2 6 10",
"output": "Friendship"
},
{
"input": "2 7 6 2 3",
"output": "Friendship"
},
{
"input": "637 324 69 612 998",
"output": "Second"
},
{
"input": "13 849 819 723 918",
"output": "Friendship"
},
{
"input": "9 5 7 8 7",
"output": "First"
},
{
"input": "6 5 7 10 4",
"output": "Friendship"
},
{
"input": "61 464 623 89 548",
"output": "First"
},
{
"input": "641 31 29 161 802",
"output": "Friendship"
},
{
"input": "3 3 1 6 9",
"output": "Friendship"
},
{
"input": "2 3 9 8 2",
"output": "Friendship"
},
{
"input": "485 117 368 567 609",
"output": "First"
},
{
"input": "4 202 512 995 375",
"output": "Friendship"
},
{
"input": "424 41 41 909 909",
"output": "Friendship"
},
{
"input": "884 913 263 641 265",
"output": "Second"
},
{
"input": "12 462 8 311 327",
"output": "Second"
},
{
"input": "436 306 266 493 580",
"output": "Second"
},
{
"input": "69 1 2 1 2",
"output": "First"
}
] | 1,626,628,095
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 32
| 77
| 6,758,400
|
s,v1,v2,t1,t2=list(map(int,input().split()))
c1=(s*v1)+(2*t1)
c2=(s*v2)+(2*t2)
if(c1<c2):
print("First")
elif c1==c2:
print("Friendship")
else:
print("Second")
|
Title: Key races
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Two boys decided to compete in text typing on the site "Key races". During the competition, they have to type a text consisting of *s* characters. The first participant types one character in *v*1 milliseconds and has ping *t*1 milliseconds. The second participant types one character in *v*2 milliseconds and has ping *t*2 milliseconds.
If connection ping (delay) is *t* milliseconds, the competition passes for a participant as follows:
1. Exactly after *t* milliseconds after the start of the competition the participant receives the text to be entered. 1. Right after that he starts to type it. 1. Exactly *t* milliseconds after he ends typing all the text, the site receives information about it.
The winner is the participant whose information on the success comes earlier. If the information comes from both participants at the same time, it is considered that there is a draw.
Given the length of the text and the information about participants, determine the result of the game.
Input Specification:
The first line contains five integers *s*, *v*1, *v*2, *t*1, *t*2 (1<=≤<=*s*,<=*v*1,<=*v*2,<=*t*1,<=*t*2<=≤<=1000) — the number of characters in the text, the time of typing one character for the first participant, the time of typing one character for the the second participant, the ping of the first participant and the ping of the second participant.
Output Specification:
If the first participant wins, print "First". If the second participant wins, print "Second". In case of a draw print "Friendship".
Demo Input:
['5 1 2 1 2\n', '3 3 1 1 1\n', '4 5 3 1 5\n']
Demo Output:
['First\n', 'Second\n', 'Friendship\n']
Note:
In the first example, information on the success of the first participant comes in 7 milliseconds, of the second participant — in 14 milliseconds. So, the first wins.
In the second example, information on the success of the first participant comes in 11 milliseconds, of the second participant — in 5 milliseconds. So, the second wins.
In the third example, information on the success of the first participant comes in 22 milliseconds, of the second participant — in 22 milliseconds. So, it is be a draw.
|
```python
s,v1,v2,t1,t2=list(map(int,input().split()))
c1=(s*v1)+(2*t1)
c2=(s*v2)+(2*t2)
if(c1<c2):
print("First")
elif c1==c2:
print("Friendship")
else:
print("Second")
```
| 3
|
|
58
|
A
|
Chat room
|
PROGRAMMING
| 1,000
|
[
"greedy",
"strings"
] |
A. Chat room
|
1
|
256
|
Vasya has recently learned to type and log on to the Internet. He immediately entered a chat room and decided to say hello to everybody. Vasya typed the word *s*. It is considered that Vasya managed to say hello if several letters can be deleted from the typed word so that it resulted in the word "hello". For example, if Vasya types the word "ahhellllloou", it will be considered that he said hello, and if he types "hlelo", it will be considered that Vasya got misunderstood and he didn't manage to say hello. Determine whether Vasya managed to say hello by the given word *s*.
|
The first and only line contains the word *s*, which Vasya typed. This word consisits of small Latin letters, its length is no less that 1 and no more than 100 letters.
|
If Vasya managed to say hello, print "YES", otherwise print "NO".
|
[
"ahhellllloou\n",
"hlelo\n"
] |
[
"YES\n",
"NO\n"
] |
none
| 500
|
[
{
"input": "ahhellllloou",
"output": "YES"
},
{
"input": "hlelo",
"output": "NO"
},
{
"input": "helhcludoo",
"output": "YES"
},
{
"input": "hehwelloho",
"output": "YES"
},
{
"input": "pnnepelqomhhheollvlo",
"output": "YES"
},
{
"input": "tymbzjyqhymedasloqbq",
"output": "NO"
},
{
"input": "yehluhlkwo",
"output": "NO"
},
{
"input": "hatlevhhalrohairnolsvocafgueelrqmlqlleello",
"output": "YES"
},
{
"input": "hhhtehdbllnhwmbyhvelqqyoulretpbfokflhlhreeflxeftelziclrwllrpflflbdtotvlqgoaoqldlroovbfsq",
"output": "YES"
},
{
"input": "rzlvihhghnelqtwlexmvdjjrliqllolhyewgozkuovaiezgcilelqapuoeglnwmnlftxxiigzczlouooi",
"output": "YES"
},
{
"input": "pfhhwctyqdlkrwhebfqfelhyebwllhemtrmeblgrynmvyhioesqklclocxmlffuormljszllpoo",
"output": "YES"
},
{
"input": "lqllcolohwflhfhlnaow",
"output": "NO"
},
{
"input": "heheeellollvoo",
"output": "YES"
},
{
"input": "hellooo",
"output": "YES"
},
{
"input": "o",
"output": "NO"
},
{
"input": "hhqhzeclohlehljlhtesllylrolmomvuhcxsobtsckogdv",
"output": "YES"
},
{
"input": "yoegfuzhqsihygnhpnukluutocvvwuldiighpogsifealtgkfzqbwtmgghmythcxflebrkctlldlkzlagovwlstsghbouk",
"output": "YES"
},
{
"input": "uatqtgbvrnywfacwursctpagasnhydvmlinrcnqrry",
"output": "NO"
},
{
"input": "tndtbldbllnrwmbyhvqaqqyoudrstpbfokfoclnraefuxtftmgzicorwisrpfnfpbdtatvwqgyalqtdtrjqvbfsq",
"output": "NO"
},
{
"input": "rzlvirhgemelnzdawzpaoqtxmqucnahvqnwldklrmjiiyageraijfivigvozgwngiulttxxgzczptusoi",
"output": "YES"
},
{
"input": "kgyelmchocojsnaqdsyeqgnllytbqietpdlgknwwumqkxrexgdcnwoldicwzwofpmuesjuxzrasscvyuqwspm",
"output": "YES"
},
{
"input": "pnyvrcotjvgynbeldnxieghfltmexttuxzyac",
"output": "NO"
},
{
"input": "dtwhbqoumejligbenxvzhjlhosqojetcqsynlzyhfaevbdpekgbtjrbhlltbceobcok",
"output": "YES"
},
{
"input": "crrfpfftjwhhikwzeedrlwzblckkteseofjuxjrktcjfsylmlsvogvrcxbxtffujqshslemnixoeezivksouefeqlhhokwbqjz",
"output": "YES"
},
{
"input": "jhfbndhyzdvhbvhmhmefqllujdflwdpjbehedlsqfdsqlyelwjtyloxwsvasrbqosblzbowlqjmyeilcvotdlaouxhdpoeloaovb",
"output": "YES"
},
{
"input": "hwlghueoemiqtjhhpashjsouyegdlvoyzeunlroypoprnhlyiwiuxrghekaylndhrhllllwhbebezoglydcvykllotrlaqtvmlla",
"output": "YES"
},
{
"input": "wshiaunnqnqxodholbipwhhjmyeblhgpeleblklpzwhdunmpqkbuzloetmwwxmeltkrcomulxauzlwmlklldjodozxryghsnwgcz",
"output": "YES"
},
{
"input": "shvksednttggehroewuiptvvxtrzgidravtnjwuqrlnnkxbplctzkckinpkgjopjfoxdbojtcvsuvablcbkrzajrlhgobkcxeqti",
"output": "YES"
},
{
"input": "hyyhddqhxhekehkwfhlnlsihzefwchzerevcjtokefplholrbvxlltdlafjxrfhleglrvlolojoqaolagtbeyogxlbgfolllslli",
"output": "YES"
},
{
"input": "iaagrdhhelxpdegueiulflquvlzidoprzkehthkldaytrjwhyhprwjxlltinxvuilxohqgjqcvkkdcuoliekcnlilwgqlnlzouoo",
"output": "YES"
},
{
"input": "wfluaeseldgxyvxpwuhkptdmlflnlhktwxiabsvkolsquymrmhzczzoybvlilhmvsuunggvgxzgyyffk",
"output": "NO"
},
{
"input": "loee",
"output": "NO"
},
{
"input": "izdipwylefqmjbuoznfglgcfvedeouflkeehxbasaqmiooppfsqlhprospqgxvzrcpwlfdddngoqvpwvggsnvvxhmjoslwjudjlo",
"output": "NO"
},
{
"input": "pplynflbjlseflaegzqpdxswgunhnlglqhycrbcwdfhclmcrwekkzsoosmfblljeenwfjyifcvxihhhbyhmhlkvtskeglaovjnsi",
"output": "YES"
},
{
"input": "xqjqmenkodmlhzyzmmvofdngktygbbxbzpluzcohohmalkoeuwfikblltaaigv",
"output": "NO"
},
{
"input": "hello",
"output": "YES"
},
{
"input": "oohell",
"output": "NO"
},
{
"input": "hell",
"output": "NO"
},
{
"input": "eloellohoelo",
"output": "NO"
},
{
"input": "helllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllo",
"output": "YES"
}
] | 1,664,593,404
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 40
| 46
| 0
|
# -*- coding: utf-8 -*-
"""
Created on Sat Oct 1 10:20:34 2022
@author: thinkpad
"""
line = input()
word = 'hello'
c = 0
for i in range(len(line)):
if c<5 and line[i] == word[c]:
c+=1
if c==5:
break
if c == 5:
print('YES')
else:
print('NO')
|
Title: Chat room
Time Limit: 1 seconds
Memory Limit: 256 megabytes
Problem Description:
Vasya has recently learned to type and log on to the Internet. He immediately entered a chat room and decided to say hello to everybody. Vasya typed the word *s*. It is considered that Vasya managed to say hello if several letters can be deleted from the typed word so that it resulted in the word "hello". For example, if Vasya types the word "ahhellllloou", it will be considered that he said hello, and if he types "hlelo", it will be considered that Vasya got misunderstood and he didn't manage to say hello. Determine whether Vasya managed to say hello by the given word *s*.
Input Specification:
The first and only line contains the word *s*, which Vasya typed. This word consisits of small Latin letters, its length is no less that 1 and no more than 100 letters.
Output Specification:
If Vasya managed to say hello, print "YES", otherwise print "NO".
Demo Input:
['ahhellllloou\n', 'hlelo\n']
Demo Output:
['YES\n', 'NO\n']
Note:
none
|
```python
# -*- coding: utf-8 -*-
"""
Created on Sat Oct 1 10:20:34 2022
@author: thinkpad
"""
line = input()
word = 'hello'
c = 0
for i in range(len(line)):
if c<5 and line[i] == word[c]:
c+=1
if c==5:
break
if c == 5:
print('YES')
else:
print('NO')
```
| 3.977
|
931
|
A
|
Friends Meeting
|
PROGRAMMING
| 800
|
[
"brute force",
"greedy",
"implementation",
"math"
] | null | null |
Two friends are on the coordinate axis *Ox* in points with integer coordinates. One of them is in the point *x*1<==<=*a*, another one is in the point *x*2<==<=*b*.
Each of the friends can move by one along the line in any direction unlimited number of times. When a friend moves, the tiredness of a friend changes according to the following rules: the first move increases the tiredness by 1, the second move increases the tiredness by 2, the third — by 3 and so on. For example, if a friend moves first to the left, then to the right (returning to the same point), and then again to the left his tiredness becomes equal to 1<=+<=2<=+<=3<==<=6.
The friends want to meet in a integer point. Determine the minimum total tiredness they should gain, if they meet in the same point.
|
The first line contains a single integer *a* (1<=≤<=*a*<=≤<=1000) — the initial position of the first friend.
The second line contains a single integer *b* (1<=≤<=*b*<=≤<=1000) — the initial position of the second friend.
It is guaranteed that *a*<=≠<=*b*.
|
Print the minimum possible total tiredness if the friends meet in the same point.
|
[
"3\n4\n",
"101\n99\n",
"5\n10\n"
] |
[
"1\n",
"2\n",
"9\n"
] |
In the first example the first friend should move by one to the right (then the meeting happens at point 4), or the second friend should move by one to the left (then the meeting happens at point 3). In both cases, the total tiredness becomes 1.
In the second example the first friend should move by one to the left, and the second friend should move by one to the right. Then they meet in the point 100, and the total tiredness becomes 1 + 1 = 2.
In the third example one of the optimal ways is the following. The first friend should move three times to the right, and the second friend — two times to the left. Thus the friends meet in the point 8, and the total tiredness becomes 1 + 2 + 3 + 1 + 2 = 9.
| 500
|
[
{
"input": "3\n4",
"output": "1"
},
{
"input": "101\n99",
"output": "2"
},
{
"input": "5\n10",
"output": "9"
},
{
"input": "1\n2",
"output": "1"
},
{
"input": "1\n1000",
"output": "250000"
},
{
"input": "999\n1000",
"output": "1"
},
{
"input": "1000\n999",
"output": "1"
},
{
"input": "1000\n1",
"output": "250000"
},
{
"input": "2\n1",
"output": "1"
},
{
"input": "2\n999",
"output": "249001"
},
{
"input": "2\n998",
"output": "248502"
},
{
"input": "999\n2",
"output": "249001"
},
{
"input": "998\n2",
"output": "248502"
},
{
"input": "2\n1000",
"output": "249500"
},
{
"input": "1000\n2",
"output": "249500"
},
{
"input": "1\n999",
"output": "249500"
},
{
"input": "999\n1",
"output": "249500"
},
{
"input": "188\n762",
"output": "82656"
},
{
"input": "596\n777",
"output": "8281"
},
{
"input": "773\n70",
"output": "123904"
},
{
"input": "825\n729",
"output": "2352"
},
{
"input": "944\n348",
"output": "89102"
},
{
"input": "352\n445",
"output": "2209"
},
{
"input": "529\n656",
"output": "4096"
},
{
"input": "19\n315",
"output": "22052"
},
{
"input": "138\n370",
"output": "13572"
},
{
"input": "546\n593",
"output": "576"
},
{
"input": "285\n242",
"output": "484"
},
{
"input": "773\n901",
"output": "4160"
},
{
"input": "892\n520",
"output": "34782"
},
{
"input": "864\n179",
"output": "117649"
},
{
"input": "479\n470",
"output": "25"
},
{
"input": "967\n487",
"output": "57840"
},
{
"input": "648\n106",
"output": "73712"
},
{
"input": "58\n765",
"output": "125316"
},
{
"input": "235\n56",
"output": "8100"
},
{
"input": "285\n153",
"output": "4422"
},
{
"input": "943\n13",
"output": "216690"
},
{
"input": "675\n541",
"output": "4556"
},
{
"input": "4\n912",
"output": "206570"
}
] | 1,672,277,144
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 40
| 62
| 0
|
import math as m
a=int(input())
b=int(input())
if b<a:
a,b=b,a
d=a+m.ceil(abs(a-b)/2)
x=d-a
y=b-d
stress=0
for i in range(1,x+1):
stress+=i
for i in range(1,y+1):
stress+=i
print(stress)
|
Title: Friends Meeting
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Two friends are on the coordinate axis *Ox* in points with integer coordinates. One of them is in the point *x*1<==<=*a*, another one is in the point *x*2<==<=*b*.
Each of the friends can move by one along the line in any direction unlimited number of times. When a friend moves, the tiredness of a friend changes according to the following rules: the first move increases the tiredness by 1, the second move increases the tiredness by 2, the third — by 3 and so on. For example, if a friend moves first to the left, then to the right (returning to the same point), and then again to the left his tiredness becomes equal to 1<=+<=2<=+<=3<==<=6.
The friends want to meet in a integer point. Determine the minimum total tiredness they should gain, if they meet in the same point.
Input Specification:
The first line contains a single integer *a* (1<=≤<=*a*<=≤<=1000) — the initial position of the first friend.
The second line contains a single integer *b* (1<=≤<=*b*<=≤<=1000) — the initial position of the second friend.
It is guaranteed that *a*<=≠<=*b*.
Output Specification:
Print the minimum possible total tiredness if the friends meet in the same point.
Demo Input:
['3\n4\n', '101\n99\n', '5\n10\n']
Demo Output:
['1\n', '2\n', '9\n']
Note:
In the first example the first friend should move by one to the right (then the meeting happens at point 4), or the second friend should move by one to the left (then the meeting happens at point 3). In both cases, the total tiredness becomes 1.
In the second example the first friend should move by one to the left, and the second friend should move by one to the right. Then they meet in the point 100, and the total tiredness becomes 1 + 1 = 2.
In the third example one of the optimal ways is the following. The first friend should move three times to the right, and the second friend — two times to the left. Thus the friends meet in the point 8, and the total tiredness becomes 1 + 2 + 3 + 1 + 2 = 9.
|
```python
import math as m
a=int(input())
b=int(input())
if b<a:
a,b=b,a
d=a+m.ceil(abs(a-b)/2)
x=d-a
y=b-d
stress=0
for i in range(1,x+1):
stress+=i
for i in range(1,y+1):
stress+=i
print(stress)
```
| 3
|
|
999
|
A
|
Mishka and Contest
|
PROGRAMMING
| 800
|
[
"brute force",
"implementation"
] | null | null |
Mishka started participating in a programming contest. There are $n$ problems in the contest. Mishka's problem-solving skill is equal to $k$.
Mishka arranges all problems from the contest into a list. Because of his weird principles, Mishka only solves problems from one of the ends of the list. Every time, he chooses which end (left or right) he will solve the next problem from. Thus, each problem Mishka solves is either the leftmost or the rightmost problem in the list.
Mishka cannot solve a problem with difficulty greater than $k$. When Mishka solves the problem, it disappears from the list, so the length of the list decreases by $1$. Mishka stops when he is unable to solve any problem from any end of the list.
How many problems can Mishka solve?
|
The first line of input contains two integers $n$ and $k$ ($1 \le n, k \le 100$) — the number of problems in the contest and Mishka's problem-solving skill.
The second line of input contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 100$), where $a_i$ is the difficulty of the $i$-th problem. The problems are given in order from the leftmost to the rightmost in the list.
|
Print one integer — the maximum number of problems Mishka can solve.
|
[
"8 4\n4 2 3 1 5 1 6 4\n",
"5 2\n3 1 2 1 3\n",
"5 100\n12 34 55 43 21\n"
] |
[
"5\n",
"0\n",
"5\n"
] |
In the first example, Mishka can solve problems in the following order: $[4, 2, 3, 1, 5, 1, 6, 4] \rightarrow [2, 3, 1, 5, 1, 6, 4] \rightarrow [2, 3, 1, 5, 1, 6] \rightarrow [3, 1, 5, 1, 6] \rightarrow [1, 5, 1, 6] \rightarrow [5, 1, 6]$, so the number of solved problems will be equal to $5$.
In the second example, Mishka can't solve any problem because the difficulties of problems from both ends are greater than $k$.
In the third example, Mishka's solving skill is so amazing that he can solve all the problems.
| 0
|
[
{
"input": "8 4\n4 2 3 1 5 1 6 4",
"output": "5"
},
{
"input": "5 2\n3 1 2 1 3",
"output": "0"
},
{
"input": "5 100\n12 34 55 43 21",
"output": "5"
},
{
"input": "100 100\n44 47 36 83 76 94 86 69 31 2 22 77 37 51 10 19 25 78 53 25 1 29 48 95 35 53 22 72 49 86 60 38 13 91 89 18 54 19 71 2 25 33 65 49 53 5 95 90 100 68 25 5 87 48 45 72 34 14 100 44 94 75 80 26 25 7 57 82 49 73 55 43 42 60 34 8 51 11 71 41 81 23 20 89 12 72 68 26 96 92 32 63 13 47 19 9 35 56 79 62",
"output": "100"
},
{
"input": "100 99\n84 82 43 4 71 3 30 92 15 47 76 43 2 17 76 4 1 33 24 96 44 98 75 99 59 11 73 27 67 17 8 88 69 41 44 22 91 48 4 46 42 21 21 67 85 51 57 84 11 100 100 59 39 72 89 82 74 19 98 14 37 97 20 78 38 52 44 83 19 83 69 32 56 6 93 13 98 80 80 2 33 71 11 15 55 51 98 58 16 91 39 32 83 58 77 79 88 81 17 98",
"output": "98"
},
{
"input": "100 69\n80 31 12 89 16 35 8 28 39 12 32 51 42 67 64 53 17 88 63 97 29 41 57 28 51 33 82 75 93 79 57 86 32 100 83 82 99 33 1 27 86 22 65 15 60 100 42 37 38 85 26 43 90 62 91 13 1 92 16 20 100 19 28 30 23 6 5 69 24 22 9 1 10 14 28 14 25 9 32 8 67 4 39 7 10 57 15 7 8 35 62 6 53 59 62 13 24 7 53 2",
"output": "39"
},
{
"input": "100 2\n2 2 2 2 1 1 1 2 1 2 2 2 1 2 2 2 2 1 2 1 2 1 1 1 2 1 2 1 2 1 1 2 2 2 2 2 1 2 1 2 1 1 2 1 2 1 1 2 1 2 1 2 2 1 2 1 2 1 1 2 1 2 2 1 1 2 2 2 1 1 2 1 1 2 2 2 1 1 1 2 2 2 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 2 2 16",
"output": "99"
},
{
"input": "100 3\n86 53 82 40 2 20 59 2 46 63 75 49 24 81 70 22 9 9 93 72 47 23 29 77 78 51 17 59 19 71 35 3 20 60 70 9 11 96 71 94 91 19 88 93 50 49 72 19 53 30 38 67 62 71 81 86 5 26 5 32 63 98 1 97 22 32 87 65 96 55 43 85 56 37 56 67 12 100 98 58 77 54 18 20 33 53 21 66 24 64 42 71 59 32 51 69 49 79 10 1",
"output": "1"
},
{
"input": "13 7\n1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "13"
},
{
"input": "1 5\n4",
"output": "1"
},
{
"input": "3 2\n1 4 1",
"output": "2"
},
{
"input": "1 2\n100",
"output": "0"
},
{
"input": "7 4\n4 2 3 4 4 2 3",
"output": "7"
},
{
"input": "1 2\n1",
"output": "1"
},
{
"input": "1 2\n15",
"output": "0"
},
{
"input": "2 1\n1 1",
"output": "2"
},
{
"input": "5 3\n3 4 3 2 1",
"output": "4"
},
{
"input": "1 1\n2",
"output": "0"
},
{
"input": "1 5\n1",
"output": "1"
},
{
"input": "6 6\n7 1 1 1 1 1",
"output": "5"
},
{
"input": "5 5\n6 5 5 5 5",
"output": "4"
},
{
"input": "1 4\n2",
"output": "1"
},
{
"input": "9 4\n1 2 1 2 4 2 1 2 1",
"output": "9"
},
{
"input": "1 1\n1",
"output": "1"
},
{
"input": "1 10\n5",
"output": "1"
},
{
"input": "5 5\n1 1 1 1 1",
"output": "5"
},
{
"input": "100 10\n2 5 1 10 10 2 7 7 9 4 1 8 1 1 8 4 7 9 10 5 7 9 5 6 7 2 7 5 3 2 1 82 4 80 9 8 6 1 10 7 5 7 1 5 6 7 19 4 2 4 6 2 1 8 31 6 2 2 57 42 3 2 7 1 9 5 10 8 5 4 10 8 3 5 8 7 2 7 6 5 3 3 4 10 6 7 10 8 7 10 7 2 4 6 8 10 10 2 6 4",
"output": "71"
},
{
"input": "100 90\n17 16 5 51 17 62 24 45 49 41 90 30 19 78 67 66 59 34 28 47 42 8 33 77 90 41 61 16 86 33 43 71 90 95 23 9 56 41 24 90 31 12 77 36 90 67 47 15 92 50 79 88 42 19 21 79 86 60 41 26 47 4 70 62 44 90 82 89 84 91 54 16 90 53 29 69 21 44 18 28 88 74 56 43 12 76 10 22 34 24 27 52 28 76 90 75 5 29 50 90",
"output": "63"
},
{
"input": "100 10\n6 4 8 4 1 9 4 8 5 2 2 5 2 6 10 2 2 5 3 5 2 3 10 5 2 9 1 1 6 1 5 9 16 42 33 49 26 31 81 27 53 63 81 90 55 97 70 51 87 21 79 62 60 91 54 95 26 26 30 61 87 79 47 11 59 34 40 82 37 40 81 2 7 1 8 4 10 7 1 10 8 7 3 5 2 8 3 3 9 2 1 1 5 7 8 7 1 10 9 8",
"output": "61"
},
{
"input": "100 90\n45 57 52 69 17 81 85 60 59 39 55 14 87 90 90 31 41 57 35 89 74 20 53 4 33 49 71 11 46 90 71 41 71 90 63 74 51 13 99 92 99 91 100 97 93 40 93 96 100 99 100 92 98 96 78 91 91 91 91 100 94 97 95 97 96 95 17 13 45 35 54 26 2 74 6 51 20 3 73 90 90 42 66 43 86 28 84 70 37 27 90 30 55 80 6 58 57 51 10 22",
"output": "72"
},
{
"input": "100 10\n10 2 10 10 10 10 10 10 10 7 10 10 10 10 10 10 9 10 10 10 10 10 10 10 10 7 9 10 10 10 37 10 4 10 10 10 59 5 95 10 10 10 10 39 10 10 10 10 10 10 10 5 10 10 10 10 10 10 10 10 10 10 10 10 66 10 10 10 10 10 5 10 10 10 10 10 10 44 10 10 10 10 10 10 10 10 10 10 10 7 10 10 10 10 10 10 10 10 10 2",
"output": "52"
},
{
"input": "100 90\n57 90 90 90 90 90 90 90 81 90 3 90 39 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 92 90 90 90 90 90 90 90 90 98 90 90 90 90 90 90 90 90 90 90 90 90 90 54 90 90 90 90 90 62 90 90 91 90 90 90 90 90 90 91 90 90 90 90 90 90 90 3 90 90 90 90 90 90 90 2 90 90 90 90 90 90 90 90 90 2 90 90 90 90 90",
"output": "60"
},
{
"input": "100 10\n10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 6 10 10 10 10 10 10 78 90 61 40 87 39 91 50 64 30 10 24 10 55 28 11 28 35 26 26 10 57 45 67 14 99 96 51 67 79 59 11 21 55 70 33 10 16 92 70 38 50 66 52 5 10 10 10 2 4 10 10 10 10 10 10 10 10 10 6 10 10 10 10 10 10 10 10 10 10 8 10 10 10 10 10",
"output": "56"
},
{
"input": "100 90\n90 90 90 90 90 90 55 21 90 90 90 90 90 90 90 90 90 90 69 83 90 90 90 90 90 90 90 90 93 95 92 98 92 97 91 92 92 91 91 95 94 95 100 100 96 97 94 93 90 90 95 95 97 99 90 95 98 91 94 96 99 99 94 95 95 97 99 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 12 90 3 90 90 90 90 90 90 90",
"output": "61"
},
{
"input": "100 49\n71 25 14 36 36 48 36 49 28 40 49 49 49 38 40 49 33 22 49 49 14 46 8 44 49 11 37 49 40 49 2 49 3 49 37 49 49 11 25 49 49 32 49 11 49 30 16 21 49 49 23 24 30 49 49 49 49 49 49 27 49 42 49 49 20 32 30 29 35 49 30 49 9 49 27 25 5 49 49 42 49 20 49 35 49 22 15 49 49 49 19 49 29 28 13 49 22 7 6 24",
"output": "99"
},
{
"input": "100 50\n38 68 9 6 50 18 19 50 50 20 33 34 43 50 24 50 50 2 50 50 50 50 50 21 30 50 41 40 50 50 50 50 50 7 50 21 19 23 1 50 24 50 50 50 25 50 50 50 50 50 50 50 7 24 28 18 50 5 43 50 20 50 13 50 50 16 50 3 2 24 50 50 18 5 50 4 50 50 38 50 33 49 12 33 11 14 50 50 50 33 50 50 50 50 50 50 7 4 50 50",
"output": "99"
},
{
"input": "100 48\n8 6 23 47 29 48 48 48 48 48 48 26 24 48 48 48 3 48 27 28 41 45 9 29 48 48 48 48 48 48 48 48 48 48 47 23 48 48 48 5 48 22 40 48 48 48 20 48 48 57 48 32 19 48 33 2 4 19 48 48 39 48 16 48 48 44 48 48 48 48 29 14 25 43 46 7 48 19 30 48 18 8 39 48 30 47 35 18 48 45 48 48 30 13 48 48 48 17 9 48",
"output": "99"
},
{
"input": "100 57\n57 9 57 4 43 57 57 57 57 26 57 18 57 57 57 57 57 57 57 47 33 57 57 43 57 57 55 57 14 57 57 4 1 57 57 57 57 57 46 26 57 57 57 57 57 57 57 39 57 57 57 5 57 12 11 57 57 57 25 37 34 57 54 18 29 57 39 57 5 57 56 34 57 24 7 57 57 57 2 57 57 57 57 1 55 39 19 57 57 57 57 21 3 40 13 3 57 57 62 57",
"output": "99"
},
{
"input": "100 51\n51 51 38 51 51 45 51 51 51 18 51 36 51 19 51 26 37 51 11 51 45 34 51 21 51 51 33 51 6 51 51 51 21 47 51 13 51 51 30 29 50 51 51 51 51 51 51 45 14 51 2 51 51 23 9 51 50 23 51 29 34 51 40 32 1 36 31 51 11 51 51 47 51 51 51 51 51 51 51 50 39 51 14 4 4 12 3 11 51 51 51 51 41 51 51 51 49 37 5 93",
"output": "99"
},
{
"input": "100 50\n87 91 95 73 50 50 16 97 39 24 58 50 33 89 42 37 50 50 12 71 3 55 50 50 80 10 76 50 52 36 88 44 66 69 86 71 77 50 72 50 21 55 50 50 78 61 75 89 65 2 50 69 62 47 11 92 97 77 41 31 55 29 35 51 36 48 50 91 92 86 50 36 50 94 51 74 4 27 55 63 50 36 87 50 67 7 65 75 20 96 88 50 41 73 35 51 66 21 29 33",
"output": "3"
},
{
"input": "100 50\n50 37 28 92 7 76 50 50 50 76 100 57 50 50 50 32 76 50 8 72 14 8 50 91 67 50 55 82 50 50 24 97 88 50 59 61 68 86 44 15 61 67 88 50 40 50 36 99 1 23 63 50 88 59 76 82 99 76 68 50 50 30 31 68 57 98 71 12 15 60 35 79 90 6 67 50 50 50 50 68 13 6 50 50 16 87 84 50 67 67 50 64 50 58 50 50 77 51 50 51",
"output": "3"
},
{
"input": "100 50\n43 50 50 91 97 67 6 50 86 50 76 60 50 59 4 56 11 38 49 50 37 50 50 20 60 47 33 54 95 58 22 50 77 77 72 9 57 40 81 57 95 50 81 63 62 76 13 87 50 39 74 69 50 99 63 1 11 62 84 31 97 99 56 73 70 36 45 100 28 91 93 9 19 52 73 50 83 58 84 52 86 12 50 44 64 52 97 50 12 71 97 52 87 66 83 66 86 50 9 49",
"output": "6"
},
{
"input": "88 10\n10 8 1 10 10 1 3 7 10 5 8 8 10 2 7 10 10 10 10 10 1 10 10 10 10 1 2 9 10 9 10 10 10 64 100 25 10 12 9 52 13 8 10 56 10 4 10 7 10 3 10 79 74 8 73 10 10 10 9 10 3 5 10 10 10 5 1 10 10 4 3 10 10 10 4 10 6 4 10 10 10 10 3 3 8 5 6 8",
"output": "66"
},
{
"input": "100 50\n80 39 33 69 75 50 23 88 50 50 67 90 87 50 29 15 55 32 60 50 50 50 38 95 62 50 50 88 8 97 45 50 42 12 22 93 49 50 24 50 50 71 60 4 50 72 57 57 50 50 50 83 69 17 1 31 72 55 50 11 50 80 93 41 91 94 20 60 50 50 51 48 53 56 76 73 50 72 19 98 50 50 50 50 50 28 48 45 62 11 16 67 93 88 63 50 50 66 48 95",
"output": "0"
},
{
"input": "100 50\n70 50 38 50 38 50 32 30 50 31 26 42 50 33 34 50 50 50 28 21 50 44 50 47 50 50 9 40 50 50 50 50 50 42 50 50 16 50 50 3 24 50 50 50 4 26 50 2 50 50 33 1 27 50 50 50 8 29 50 23 33 50 6 29 50 50 15 50 50 50 32 50 43 50 50 50 31 50 4 50 50 31 50 50 31 16 50 17 50 17 31 13 25 16 50 10 50 47 50 66",
"output": "0"
},
{
"input": "2 8\n8 8",
"output": "2"
},
{
"input": "1 6\n3",
"output": "1"
},
{
"input": "1 5\n5",
"output": "1"
}
] | 1,676,967,323
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 48
| 77
| 0
|
from collections import deque
n, k = map(int, input().split())
lst = deque(map(int, input().split()))
while len(lst) > 0 and lst[0] <= k:
lst.popleft()
while len(lst) > 0 and lst[-1] <= k:
lst.pop()
print(n - len(lst))
|
Title: Mishka and Contest
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Mishka started participating in a programming contest. There are $n$ problems in the contest. Mishka's problem-solving skill is equal to $k$.
Mishka arranges all problems from the contest into a list. Because of his weird principles, Mishka only solves problems from one of the ends of the list. Every time, he chooses which end (left or right) he will solve the next problem from. Thus, each problem Mishka solves is either the leftmost or the rightmost problem in the list.
Mishka cannot solve a problem with difficulty greater than $k$. When Mishka solves the problem, it disappears from the list, so the length of the list decreases by $1$. Mishka stops when he is unable to solve any problem from any end of the list.
How many problems can Mishka solve?
Input Specification:
The first line of input contains two integers $n$ and $k$ ($1 \le n, k \le 100$) — the number of problems in the contest and Mishka's problem-solving skill.
The second line of input contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 100$), where $a_i$ is the difficulty of the $i$-th problem. The problems are given in order from the leftmost to the rightmost in the list.
Output Specification:
Print one integer — the maximum number of problems Mishka can solve.
Demo Input:
['8 4\n4 2 3 1 5 1 6 4\n', '5 2\n3 1 2 1 3\n', '5 100\n12 34 55 43 21\n']
Demo Output:
['5\n', '0\n', '5\n']
Note:
In the first example, Mishka can solve problems in the following order: $[4, 2, 3, 1, 5, 1, 6, 4] \rightarrow [2, 3, 1, 5, 1, 6, 4] \rightarrow [2, 3, 1, 5, 1, 6] \rightarrow [3, 1, 5, 1, 6] \rightarrow [1, 5, 1, 6] \rightarrow [5, 1, 6]$, so the number of solved problems will be equal to $5$.
In the second example, Mishka can't solve any problem because the difficulties of problems from both ends are greater than $k$.
In the third example, Mishka's solving skill is so amazing that he can solve all the problems.
|
```python
from collections import deque
n, k = map(int, input().split())
lst = deque(map(int, input().split()))
while len(lst) > 0 and lst[0] <= k:
lst.popleft()
while len(lst) > 0 and lst[-1] <= k:
lst.pop()
print(n - len(lst))
```
| 3
|
|
61
|
A
|
Ultra-Fast Mathematician
|
PROGRAMMING
| 800
|
[
"implementation"
] |
A. Ultra-Fast Mathematician
|
2
|
256
|
Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second.
One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part.
In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0.
Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length ∞ (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length.
Now you are going to take part in Shapur's contest. See if you are faster and more accurate.
|
There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100.
|
Write one line — the corresponding answer. Do not omit the leading 0s.
|
[
"1010100\n0100101\n",
"000\n111\n",
"1110\n1010\n",
"01110\n01100\n"
] |
[
"1110001\n",
"111\n",
"0100\n",
"00010\n"
] |
none
| 500
|
[
{
"input": "1010100\n0100101",
"output": "1110001"
},
{
"input": "000\n111",
"output": "111"
},
{
"input": "1110\n1010",
"output": "0100"
},
{
"input": "01110\n01100",
"output": "00010"
},
{
"input": "011101\n000001",
"output": "011100"
},
{
"input": "10\n01",
"output": "11"
},
{
"input": "00111111\n11011101",
"output": "11100010"
},
{
"input": "011001100\n101001010",
"output": "110000110"
},
{
"input": "1100100001\n0110101100",
"output": "1010001101"
},
{
"input": "00011101010\n10010100101",
"output": "10001001111"
},
{
"input": "100000101101\n111010100011",
"output": "011010001110"
},
{
"input": "1000001111010\n1101100110001",
"output": "0101101001011"
},
{
"input": "01011111010111\n10001110111010",
"output": "11010001101101"
},
{
"input": "110010000111100\n001100101011010",
"output": "111110101100110"
},
{
"input": "0010010111110000\n0000000011010110",
"output": "0010010100100110"
},
{
"input": "00111110111110000\n01111100001100000",
"output": "01000010110010000"
},
{
"input": "101010101111010001\n001001111101111101",
"output": "100011010010101100"
},
{
"input": "0110010101111100000\n0011000101000000110",
"output": "0101010000111100110"
},
{
"input": "11110100011101010111\n00001000011011000000",
"output": "11111100000110010111"
},
{
"input": "101010101111101101001\n111010010010000011111",
"output": "010000111101101110110"
},
{
"input": "0000111111100011000010\n1110110110110000001010",
"output": "1110001001010011001000"
},
{
"input": "10010010101000110111000\n00101110100110111000111",
"output": "10111100001110001111111"
},
{
"input": "010010010010111100000111\n100100111111100011001110",
"output": "110110101101011111001001"
},
{
"input": "0101110100100111011010010\n0101100011010111001010001",
"output": "0000010111110000010000011"
},
{
"input": "10010010100011110111111011\n10000110101100000001000100",
"output": "00010100001111110110111111"
},
{
"input": "000001111000000100001000000\n011100111101111001110110001",
"output": "011101000101111101111110001"
},
{
"input": "0011110010001001011001011100\n0000101101000011101011001010",
"output": "0011011111001010110010010110"
},
{
"input": "11111000000000010011001101111\n11101110011001010100010000000",
"output": "00010110011001000111011101111"
},
{
"input": "011001110000110100001100101100\n001010000011110000001000101001",
"output": "010011110011000100000100000101"
},
{
"input": "1011111010001100011010110101111\n1011001110010000000101100010101",
"output": "0000110100011100011111010111010"
},
{
"input": "10111000100001000001010110000001\n10111000001100101011011001011000",
"output": "00000000101101101010001111011001"
},
{
"input": "000001010000100001000000011011100\n111111111001010100100001100000111",
"output": "111110101001110101100001111011011"
},
{
"input": "1101000000000010011011101100000110\n1110000001100010011010000011011110",
"output": "0011000001100000000001101111011000"
},
{
"input": "01011011000010100001100100011110001\n01011010111000001010010100001110000",
"output": "00000001111010101011110000010000001"
},
{
"input": "000011111000011001000110111100000100\n011011000110000111101011100111000111",
"output": "011000111110011110101101011011000011"
},
{
"input": "1001000010101110001000000011111110010\n0010001011010111000011101001010110000",
"output": "1011001001111001001011101010101000010"
},
{
"input": "00011101011001100101111111000000010101\n10010011011011001011111000000011101011",
"output": "10001110000010101110000111000011111110"
},
{
"input": "111011100110001001101111110010111001010\n111111101101111001110010000101101000100",
"output": "000100001011110000011101110111010001110"
},
{
"input": "1111001001101000001000000010010101001010\n0010111100111110001011000010111110111001",
"output": "1101110101010110000011000000101011110011"
},
{
"input": "00100101111000000101011111110010100011010\n11101110001010010101001000111110101010100",
"output": "11001011110010010000010111001100001001110"
},
{
"input": "101011001110110100101001000111010101101111\n100111100110101011010100111100111111010110",
"output": "001100101000011111111101111011101010111001"
},
{
"input": "1111100001100101000111101001001010011100001\n1000110011000011110010001011001110001000001",
"output": "0111010010100110110101100010000100010100000"
},
{
"input": "01100111011111010101000001101110000001110101\n10011001011111110000000101011001001101101100",
"output": "11111110000000100101000100110111001100011001"
},
{
"input": "110010100111000100100101100000011100000011001\n011001111011100110000110111001110110100111011",
"output": "101011011100100010100011011001101010100100010"
},
{
"input": "0001100111111011010110100100111000000111000110\n1100101011000000000001010010010111001100110001",
"output": "1101001100111011010111110110101111001011110111"
},
{
"input": "00000101110110110001110010100001110100000100000\n10010000110011110001101000111111101010011010001",
"output": "10010101000101000000011010011110011110011110001"
},
{
"input": "110000100101011100100011001111110011111110010001\n101011111001011100110110111101110011010110101100",
"output": "011011011100000000010101110010000000101000111101"
},
{
"input": "0101111101011111010101011101000011101100000000111\n0000101010110110001110101011011110111001010100100",
"output": "0101010111101001011011110110011101010101010100011"
},
{
"input": "11000100010101110011101000011111001010110111111100\n00001111000111001011111110000010101110111001000011",
"output": "11001011010010111000010110011101100100001110111111"
},
{
"input": "101000001101111101101111111000001110110010101101010\n010011100111100001100000010001100101000000111011011",
"output": "111011101010011100001111101001101011110010010110001"
},
{
"input": "0011111110010001010100010110111000110011001101010100\n0111000000100010101010000100101000000100101000111001",
"output": "0100111110110011111110010010010000110111100101101101"
},
{
"input": "11101010000110000011011010000001111101000111011111100\n10110011110001010100010110010010101001010111100100100",
"output": "01011001110111010111001100010011010100010000111011000"
},
{
"input": "011000100001000001101000010110100110011110100111111011\n111011001000001001110011001111011110111110110011011111",
"output": "100011101001001000011011011001111000100000010100100100"
},
{
"input": "0111010110010100000110111011010110100000000111110110000\n1011100100010001101100000100111111101001110010000100110",
"output": "1100110010000101101010111111101001001001110101110010110"
},
{
"input": "10101000100111000111010001011011011011110100110101100011\n11101111000000001100100011111000100100000110011001101110",
"output": "01000111100111001011110010100011111111110010101100001101"
},
{
"input": "000000111001010001000000110001001011100010011101010011011\n110001101000010010000101000100001111101001100100001010010",
"output": "110001010001000011000101110101000100001011111001011001001"
},
{
"input": "0101011100111010000111110010101101111111000000111100011100\n1011111110000010101110111001000011100000100111111111000111",
"output": "1110100010111000101001001011101110011111100111000011011011"
},
{
"input": "11001000001100100111100111100100101011000101001111001001101\n10111110100010000011010100110100100011101001100000001110110",
"output": "01110110101110100100110011010000001000101100101111000111011"
},
{
"input": "010111011011101000000110000110100110001110100001110110111011\n101011110011101011101101011111010100100001100111100100111011",
"output": "111100101000000011101011011001110010101111000110010010000000"
},
{
"input": "1001011110110110000100011001010110000100011010010111010101110\n1101111100001000010111110011010101111010010100000001000010111",
"output": "0100100010111110010011101010000011111110001110010110010111001"
},
{
"input": "10000010101111100111110101111000010100110111101101111111111010\n10110110101100101010011001011010100110111011101100011001100111",
"output": "00110100000011001101101100100010110010001100000001100110011101"
},
{
"input": "011111010011111000001010101001101001000010100010111110010100001\n011111001011000011111001000001111001010110001010111101000010011",
"output": "000000011000111011110011101000010000010100101000000011010110010"
},
{
"input": "1111000000110001011101000100100100001111011100001111001100011111\n1101100110000101100001100000001001011011111011010101000101001010",
"output": "0010100110110100111100100100101101010100100111011010001001010101"
},
{
"input": "01100000101010010011001110100110110010000110010011011001100100011\n10110110010110111100100111000111000110010000000101101110000010111",
"output": "11010110111100101111101001100001110100010110010110110111100110100"
},
{
"input": "001111111010000100001100001010011001111110011110010111110001100111\n110000101001011000100010101100100110000111100000001101001110010111",
"output": "111111010011011100101110100110111111111001111110011010111111110000"
},
{
"input": "1011101011101101011110101101011101011000010011100101010101000100110\n0001000001001111010111100100111101100000000001110001000110000000110",
"output": "1010101010100010001001001001100000111000010010010100010011000100000"
},
{
"input": "01000001011001010011011100010000100100110101111011011011110000001110\n01011110000110011011000000000011000111100001010000000011111001110000",
"output": "00011111011111001000011100010011100011010100101011011000001001111110"
},
{
"input": "110101010100110101000001111110110100010010000100111110010100110011100\n111010010111111011100110101011001011001110110111110100000110110100111",
"output": "001111000011001110100111010101111111011100110011001010010010000111011"
},
{
"input": "1001101011000001011111100110010010000011010001001111011100010100110001\n1111100111110101001111010001010000011001001001010110001111000000100101",
"output": "0110001100110100010000110111000010011010011000011001010011010100010100"
},
{
"input": "00000111110010110001110110001010010101000111011001111111100110011110010\n00010111110100000100110101000010010001100001100011100000001100010100010",
"output": "00010000000110110101000011001000000100100110111010011111101010001010000"
},
{
"input": "100101011100101101000011010001011001101110101110001100010001010111001110\n100001111100101011011111110000001111000111001011111110000010101110111001",
"output": "000100100000000110011100100001010110101001100101110010010011111001110111"
},
{
"input": "1101100001000111001101001011101000111000011110000001001101101001111011010\n0101011101010100011011010110101000010010110010011110101100000110110001000",
"output": "1000111100010011010110011101000000101010101100011111100001101111001010010"
},
{
"input": "01101101010011110101100001110101111011100010000010001101111000011110111111\n00101111001101001100111010000101110000100101101111100111101110010100011011",
"output": "01000010011110111001011011110000001011000111101101101010010110001010100100"
},
{
"input": "101100101100011001101111110110110010100110110010100001110010110011001101011\n000001011010101011110011111101001110000111000010001101000010010000010001101",
"output": "101101110110110010011100001011111100100001110000101100110000100011011100110"
},
{
"input": "0010001011001010001100000010010011110110011000100000000100110000101111001110\n1100110100111000110100001110111001011101001100001010100001010011100110110001",
"output": "1110111111110010111000001100101010101011010100101010100101100011001001111111"
},
{
"input": "00101101010000000101011001101011001100010001100000101011101110000001111001000\n10010110010111000000101101000011101011001010000011011101101011010000000011111",
"output": "10111011000111000101110100101000100111011011100011110110000101010001111010111"
},
{
"input": "111100000100100000101001100001001111001010001000001000000111010000010101101011\n001000100010100101111011111011010110101100001111011000010011011011100010010110",
"output": "110100100110000101010010011010011001100110000111010000010100001011110111111101"
},
{
"input": "0110001101100100001111110101101000100101010010101010011001101001001101110000000\n0111011000000010010111011110010000000001000110001000011001101000000001110100111",
"output": "0001010101100110011000101011111000100100010100100010000000000001001100000100111"
},
{
"input": "10001111111001000101001011110101111010100001011010101100111001010001010010001000\n10000111010010011110111000111010101100000011110001101111001000111010100000000001",
"output": "00001000101011011011110011001111010110100010101011000011110001101011110010001001"
},
{
"input": "100110001110110000100101001110000011110110000110000000100011110100110110011001101\n110001110101110000000100101001101011111100100100001001000110000001111100011110110",
"output": "010111111011000000100001100111101000001010100010001001100101110101001010000111011"
},
{
"input": "0000010100100000010110111100011111111010011101000000100000011001001101101100111010\n0100111110011101010110101011110110010111001111000110101100101110111100101000111111",
"output": "0100101010111101000000010111101001101101010010000110001100110111110001000100000101"
},
{
"input": "11000111001010100001110000001001011010010010110000001110100101000001010101100110111\n11001100100100100001101010110100000111100011101110011010110100001001000011011011010",
"output": "00001011101110000000011010111101011101110001011110010100010001001000010110111101101"
},
{
"input": "010110100010001000100010101001101010011010111110100001000100101000111011100010100001\n110000011111101101010011111000101010111010100001001100001001100101000000111000000000",
"output": "100110111101100101110001010001000000100000011111101101001101001101111011011010100001"
},
{
"input": "0000011110101110010101110110110101100001011001101010101001000010000010000000101001101\n1100111111011100000110000111101110011111100111110001011001000010011111100001001100011",
"output": "1100100001110010010011110001011011111110111110011011110000000000011101100001100101110"
},
{
"input": "10100000101101110001100010010010100101100011010010101000110011100000101010110010000000\n10001110011011010010111011011101101111000111110000111000011010010101001100000001010011",
"output": "00101110110110100011011001001111001010100100100010010000101001110101100110110011010011"
},
{
"input": "001110000011111101101010011111000101010111010100001001100001001100101000000111000000000\n111010000000000000101001110011001000111011001100101010011001000011101001001011110000011",
"output": "110100000011111101000011101100001101101100011000100011111000001111000001001100110000011"
},
{
"input": "1110111100111011010101011011001110001010010010110011110010011111000010011111010101100001\n1001010101011001001010100010101100000110111101011000100010101111111010111100001110010010",
"output": "0111101001100010011111111001100010001100101111101011010000110000111000100011011011110011"
},
{
"input": "11100010001100010011001100001100010011010001101110011110100101110010101101011101000111111\n01110000000110111010110100001010000101011110100101010011000110101110101101110111011110001",
"output": "10010010001010101001111000000110010110001111001011001101100011011100000000101010011001110"
},
{
"input": "001101011001100101101100110000111000101011001001100100000100101000100000110100010111111101\n101001111110000010111101111110001001111001111101111010000110111000100100110010010001011111",
"output": "100100100111100111010001001110110001010010110100011110000010010000000100000110000110100010"
},
{
"input": "1010110110010101000110010010110101011101010100011001101011000110000000100011100100011000000\n0011011111100010001111101101000111001011101110100000110111100100101111010110101111011100011",
"output": "1001101001110111001001111111110010010110111010111001011100100010101111110101001011000100011"
},
{
"input": "10010010000111010111011111110010100101100000001100011100111011100010000010010001011100001100\n00111010100010110010000100010111010001111110100100100011101000101111111111001101101100100100",
"output": "10101000100101100101011011100101110100011110101000111111010011001101111101011100110000101000"
},
{
"input": "010101110001010101100000010111010000000111110011001101100011001000000011001111110000000010100\n010010111011100101010101111110110000000111000100001101101001001000001100101110001010000100001",
"output": "000111001010110000110101101001100000000000110111000000001010000000001111100001111010000110101"
},
{
"input": "1100111110011001000111101001001011000110011010111111100010111111001100111111011101100111101011\n1100000011001000110100110111000001011001010111101000010010100011000001100100111101101000010110",
"output": "0000111101010001110011011110001010011111001101010111110000011100001101011011100000001111111101"
},
{
"input": "00011000100100110111100101100100000000010011110111110010101110110011100001010111010011110100101\n00011011111011111011100101100111100101001110010111000010000111000100100100000001110101111011011",
"output": "00000011011111001100000000000011100101011101100000110000101001110111000101010110100110001111110"
},
{
"input": "000101011001001100000111100010110101111011110101111101000110001101011010111110110011100100000001\n011000101010011111011000111000100000000011011000000001111110001000001111101010110000011100001111",
"output": "011101110011010011011111011010010101111000101101111100111000000101010101010100000011111000001110"
},
{
"input": "1000101001011010000100100100010010011101011001110101111011101111111110010101001101010001010101001\n0110110010011100011111011111110111000000010001110100001010111110101011010011111011111110000110000",
"output": "1110011011000110011011111011100101011101001000000001110001010001010101000110110110101111010011001"
},
{
"input": "01111010010101100111110111111011011010100001011101010000111100101101101110111011001100101011100111\n00001100110110100001111011000010001001001100000010111101000001111011100000010111010010000011000010",
"output": "01110110100011000110001100111001010011101101011111101101111101010110001110101100011110101000100101"
},
{
"input": "111101011101111000001011001101111010110111001101110100100011111011011101001101010101011010111000110\n101111100101101101001100110011000001111010011101110111110110101110011011110011111100001001110101101",
"output": "010010111000010101000111111110111011001101010000000011010101010101000110111110101001010011001101011"
},
{
"input": "1010000011010110011101001101110001110010000111011101110010110110111111001001110100101100010101010001\n0111101000111100101100000101111010100100001000011101010100110011100011010011010101000100101011100011",
"output": "1101101011101010110001001000001011010110001111000000100110000101011100011010100001101000111110110010"
},
{
"input": "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001\n1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111010",
"output": "1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111011"
},
{
"input": "0\n0",
"output": "0"
},
{
"input": "0\n1",
"output": "1"
}
] | 1,586,890,320
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 102
| 124
| 0
|
x=str(input())
y=str(input())
c=0
l=len(x)
ll=len(y)
if(l==ll):
for i in range(l):
if(x[i]==y[i]):
print("0",end="")
else:
print("1",end="")
|
Title: Ultra-Fast Mathematician
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second.
One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part.
In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0.
Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length ∞ (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length.
Now you are going to take part in Shapur's contest. See if you are faster and more accurate.
Input Specification:
There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100.
Output Specification:
Write one line — the corresponding answer. Do not omit the leading 0s.
Demo Input:
['1010100\n0100101\n', '000\n111\n', '1110\n1010\n', '01110\n01100\n']
Demo Output:
['1110001\n', '111\n', '0100\n', '00010\n']
Note:
none
|
```python
x=str(input())
y=str(input())
c=0
l=len(x)
ll=len(y)
if(l==ll):
for i in range(l):
if(x[i]==y[i]):
print("0",end="")
else:
print("1",end="")
```
| 3.969
|
80
|
A
|
Panoramix's Prediction
|
PROGRAMMING
| 800
|
[
"brute force"
] |
A. Panoramix's Prediction
|
2
|
256
|
A prime number is a number which has exactly two distinct divisors: one and itself. For example, numbers 2, 7, 3 are prime, and 1, 6, 4 are not.
The next prime number after *x* is the smallest prime number greater than *x*. For example, the next prime number after 2 is 3, and the next prime number after 3 is 5. Note that there is exactly one next prime number after each number. So 5 is not the next prime number for 2.
One cold April morning Panoramix predicted that soon Kakofonix will break free from his straitjacket, and this will be a black day for the residents of the Gallic countryside.
Panoramix's prophecy tells that if some day Asterix and Obelix beat exactly *x* Roman soldiers, where *x* is a prime number, and next day they beat exactly *y* Roman soldiers, where *y* is the next prime number after *x*, then it's time to wait for Armageddon, for nothing can shut Kakofonix up while he sings his infernal song.
Yesterday the Gauls beat *n* Roman soldiers and it turned out that the number *n* was prime! Today their victims were a troop of *m* Romans (*m*<=><=*n*). Determine whether the Gauls should wait for the black day after today's victory of Asterix and Obelix?
|
The first and only input line contains two positive integers — *n* and *m* (2<=≤<=*n*<=<<=*m*<=≤<=50). It is guaranteed that *n* is prime.
Pretests contain all the cases with restrictions 2<=≤<=*n*<=<<=*m*<=≤<=4.
|
Print YES, if *m* is the next prime number after *n*, or NO otherwise.
|
[
"3 5\n",
"7 11\n",
"7 9\n"
] |
[
"YES",
"YES",
"NO"
] |
none
| 500
|
[
{
"input": "3 5",
"output": "YES"
},
{
"input": "7 11",
"output": "YES"
},
{
"input": "7 9",
"output": "NO"
},
{
"input": "2 3",
"output": "YES"
},
{
"input": "2 4",
"output": "NO"
},
{
"input": "3 4",
"output": "NO"
},
{
"input": "3 5",
"output": "YES"
},
{
"input": "5 7",
"output": "YES"
},
{
"input": "7 11",
"output": "YES"
},
{
"input": "11 13",
"output": "YES"
},
{
"input": "13 17",
"output": "YES"
},
{
"input": "17 19",
"output": "YES"
},
{
"input": "19 23",
"output": "YES"
},
{
"input": "23 29",
"output": "YES"
},
{
"input": "29 31",
"output": "YES"
},
{
"input": "31 37",
"output": "YES"
},
{
"input": "37 41",
"output": "YES"
},
{
"input": "41 43",
"output": "YES"
},
{
"input": "43 47",
"output": "YES"
},
{
"input": "2 5",
"output": "NO"
},
{
"input": "2 7",
"output": "NO"
},
{
"input": "2 6",
"output": "NO"
},
{
"input": "2 11",
"output": "NO"
},
{
"input": "3 6",
"output": "NO"
},
{
"input": "3 7",
"output": "NO"
},
{
"input": "3 9",
"output": "NO"
},
{
"input": "5 6",
"output": "NO"
},
{
"input": "5 9",
"output": "NO"
},
{
"input": "5 11",
"output": "NO"
},
{
"input": "5 13",
"output": "NO"
},
{
"input": "5 15",
"output": "NO"
},
{
"input": "7 8",
"output": "NO"
},
{
"input": "7 13",
"output": "NO"
},
{
"input": "13 15",
"output": "NO"
},
{
"input": "13 17",
"output": "YES"
},
{
"input": "19 21",
"output": "NO"
},
{
"input": "13 20",
"output": "NO"
},
{
"input": "41 49",
"output": "NO"
},
{
"input": "43 49",
"output": "NO"
},
{
"input": "47 50",
"output": "NO"
},
{
"input": "47 49",
"output": "NO"
},
{
"input": "47 48",
"output": "NO"
},
{
"input": "23 25",
"output": "NO"
},
{
"input": "2 50",
"output": "NO"
},
{
"input": "31 33",
"output": "NO"
}
] | 1,666,917,221
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 45
| 92
| 0
|
lst=[2,3,5,7,11,13,17,19,23,29,31,37,41,43,47]
n,m=map(int,input().split())
ind=lst.index(n)
if ind==len(lst)-1:
print('NO')
else:
if m==lst[ind+1]:
print('YES')
else:
print('NO')
|
Title: Panoramix's Prediction
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
A prime number is a number which has exactly two distinct divisors: one and itself. For example, numbers 2, 7, 3 are prime, and 1, 6, 4 are not.
The next prime number after *x* is the smallest prime number greater than *x*. For example, the next prime number after 2 is 3, and the next prime number after 3 is 5. Note that there is exactly one next prime number after each number. So 5 is not the next prime number for 2.
One cold April morning Panoramix predicted that soon Kakofonix will break free from his straitjacket, and this will be a black day for the residents of the Gallic countryside.
Panoramix's prophecy tells that if some day Asterix and Obelix beat exactly *x* Roman soldiers, where *x* is a prime number, and next day they beat exactly *y* Roman soldiers, where *y* is the next prime number after *x*, then it's time to wait for Armageddon, for nothing can shut Kakofonix up while he sings his infernal song.
Yesterday the Gauls beat *n* Roman soldiers and it turned out that the number *n* was prime! Today their victims were a troop of *m* Romans (*m*<=><=*n*). Determine whether the Gauls should wait for the black day after today's victory of Asterix and Obelix?
Input Specification:
The first and only input line contains two positive integers — *n* and *m* (2<=≤<=*n*<=<<=*m*<=≤<=50). It is guaranteed that *n* is prime.
Pretests contain all the cases with restrictions 2<=≤<=*n*<=<<=*m*<=≤<=4.
Output Specification:
Print YES, if *m* is the next prime number after *n*, or NO otherwise.
Demo Input:
['3 5\n', '7 11\n', '7 9\n']
Demo Output:
['YES', 'YES', 'NO']
Note:
none
|
```python
lst=[2,3,5,7,11,13,17,19,23,29,31,37,41,43,47]
n,m=map(int,input().split())
ind=lst.index(n)
if ind==len(lst)-1:
print('NO')
else:
if m==lst[ind+1]:
print('YES')
else:
print('NO')
```
| 3.977
|
263
|
A
|
Beautiful Matrix
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
You've got a 5<=×<=5 matrix, consisting of 24 zeroes and a single number one. Let's index the matrix rows by numbers from 1 to 5 from top to bottom, let's index the matrix columns by numbers from 1 to 5 from left to right. In one move, you are allowed to apply one of the two following transformations to the matrix:
1. Swap two neighboring matrix rows, that is, rows with indexes *i* and *i*<=+<=1 for some integer *i* (1<=≤<=*i*<=<<=5). 1. Swap two neighboring matrix columns, that is, columns with indexes *j* and *j*<=+<=1 for some integer *j* (1<=≤<=*j*<=<<=5).
You think that a matrix looks beautiful, if the single number one of the matrix is located in its middle (in the cell that is on the intersection of the third row and the third column). Count the minimum number of moves needed to make the matrix beautiful.
|
The input consists of five lines, each line contains five integers: the *j*-th integer in the *i*-th line of the input represents the element of the matrix that is located on the intersection of the *i*-th row and the *j*-th column. It is guaranteed that the matrix consists of 24 zeroes and a single number one.
|
Print a single integer — the minimum number of moves needed to make the matrix beautiful.
|
[
"0 0 0 0 0\n0 0 0 0 1\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n",
"0 0 0 0 0\n0 0 0 0 0\n0 1 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n"
] |
[
"3\n",
"1\n"
] |
none
| 500
|
[
{
"input": "0 0 0 0 0\n0 0 0 0 1\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "3"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 1 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "1"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 1 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "0"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 1",
"output": "4"
},
{
"input": "0 1 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "3"
},
{
"input": "1 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "4"
},
{
"input": "0 0 1 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "2"
},
{
"input": "0 0 0 1 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "3"
},
{
"input": "0 0 0 0 1\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "4"
},
{
"input": "0 0 0 0 0\n1 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "3"
},
{
"input": "0 0 0 0 0\n0 1 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "2"
},
{
"input": "0 0 0 0 0\n0 0 1 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "1"
},
{
"input": "0 0 0 0 0\n0 0 0 1 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "2"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n1 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "2"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 1 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "1"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 1\n0 0 0 0 0\n0 0 0 0 0",
"output": "2"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n1 0 0 0 0\n0 0 0 0 0",
"output": "3"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 1 0 0 0\n0 0 0 0 0",
"output": "2"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 1 0 0\n0 0 0 0 0",
"output": "1"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 1 0\n0 0 0 0 0",
"output": "2"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 1\n0 0 0 0 0",
"output": "3"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n1 0 0 0 0",
"output": "4"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 1 0 0 0",
"output": "3"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 1 0 0",
"output": "2"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 1 0",
"output": "3"
}
] | 1,695,308,358
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 25
| 92
| 0
|
for i in range(5):
p=input()
if '1' in p:
x=abs(i-2)
s=p.split()
for j in range(5):
if s[j]=='1':
y=abs(j-2)
print(x+y)
|
Title: Beautiful Matrix
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You've got a 5<=×<=5 matrix, consisting of 24 zeroes and a single number one. Let's index the matrix rows by numbers from 1 to 5 from top to bottom, let's index the matrix columns by numbers from 1 to 5 from left to right. In one move, you are allowed to apply one of the two following transformations to the matrix:
1. Swap two neighboring matrix rows, that is, rows with indexes *i* and *i*<=+<=1 for some integer *i* (1<=≤<=*i*<=<<=5). 1. Swap two neighboring matrix columns, that is, columns with indexes *j* and *j*<=+<=1 for some integer *j* (1<=≤<=*j*<=<<=5).
You think that a matrix looks beautiful, if the single number one of the matrix is located in its middle (in the cell that is on the intersection of the third row and the third column). Count the minimum number of moves needed to make the matrix beautiful.
Input Specification:
The input consists of five lines, each line contains five integers: the *j*-th integer in the *i*-th line of the input represents the element of the matrix that is located on the intersection of the *i*-th row and the *j*-th column. It is guaranteed that the matrix consists of 24 zeroes and a single number one.
Output Specification:
Print a single integer — the minimum number of moves needed to make the matrix beautiful.
Demo Input:
['0 0 0 0 0\n0 0 0 0 1\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n', '0 0 0 0 0\n0 0 0 0 0\n0 1 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n']
Demo Output:
['3\n', '1\n']
Note:
none
|
```python
for i in range(5):
p=input()
if '1' in p:
x=abs(i-2)
s=p.split()
for j in range(5):
if s[j]=='1':
y=abs(j-2)
print(x+y)
```
| 3
|
|
965
|
A
|
Paper Airplanes
|
PROGRAMMING
| 800
|
[
"math"
] | null | null |
To make a paper airplane, one has to use a rectangular piece of paper. From a sheet of standard size you can make $s$ airplanes.
A group of $k$ people decided to make $n$ airplanes each. They are going to buy several packs of paper, each of them containing $p$ sheets, and then distribute the sheets between the people. Each person should have enough sheets to make $n$ airplanes. How many packs should they buy?
|
The only line contains four integers $k$, $n$, $s$, $p$ ($1 \le k, n, s, p \le 10^4$) — the number of people, the number of airplanes each should make, the number of airplanes that can be made using one sheet and the number of sheets in one pack, respectively.
|
Print a single integer — the minimum number of packs they should buy.
|
[
"5 3 2 3\n",
"5 3 100 1\n"
] |
[
"4\n",
"5\n"
] |
In the first sample they have to buy $4$ packs of paper: there will be $12$ sheets in total, and giving $2$ sheets to each person is enough to suit everyone's needs.
In the second sample they have to buy a pack for each person as they can't share sheets.
| 500
|
[
{
"input": "5 3 2 3",
"output": "4"
},
{
"input": "5 3 100 1",
"output": "5"
},
{
"input": "10000 10000 1 1",
"output": "100000000"
},
{
"input": "1 1 10000 10000",
"output": "1"
},
{
"input": "300 300 21 23",
"output": "196"
},
{
"input": "300 2 37 51",
"output": "6"
},
{
"input": "2 400 23 57",
"output": "1"
},
{
"input": "1 1 1 1",
"output": "1"
},
{
"input": "10000 10000 3 2",
"output": "16670000"
},
{
"input": "1 2 1 2",
"output": "1"
},
{
"input": "1 1 2 2",
"output": "1"
},
{
"input": "1 1 10 10",
"output": "1"
},
{
"input": "5324 5439 32 13",
"output": "69622"
},
{
"input": "9000 1 2432 1",
"output": "9000"
},
{
"input": "230 1234 9124 23",
"output": "10"
},
{
"input": "11 1 1 1",
"output": "11"
},
{
"input": "6246 8489 1227 9",
"output": "4858"
},
{
"input": "9 20 5 7",
"output": "6"
}
] | 1,650,349,203
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 18
| 62
| 409,600
|
#!/usr/bin/env python
import math
import sys
import itertools
import fractions
if __name__ == '__main__':
wtf = sys.stdin.read()
wtf = wtf.strip().split('\n')
k,n,s,p = map(int, wtf[0].split())
sp = math.ceil(n/s)
pp = (sp/p)
ans = math.ceil(k*pp)
print(ans)
|
Title: Paper Airplanes
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
To make a paper airplane, one has to use a rectangular piece of paper. From a sheet of standard size you can make $s$ airplanes.
A group of $k$ people decided to make $n$ airplanes each. They are going to buy several packs of paper, each of them containing $p$ sheets, and then distribute the sheets between the people. Each person should have enough sheets to make $n$ airplanes. How many packs should they buy?
Input Specification:
The only line contains four integers $k$, $n$, $s$, $p$ ($1 \le k, n, s, p \le 10^4$) — the number of people, the number of airplanes each should make, the number of airplanes that can be made using one sheet and the number of sheets in one pack, respectively.
Output Specification:
Print a single integer — the minimum number of packs they should buy.
Demo Input:
['5 3 2 3\n', '5 3 100 1\n']
Demo Output:
['4\n', '5\n']
Note:
In the first sample they have to buy $4$ packs of paper: there will be $12$ sheets in total, and giving $2$ sheets to each person is enough to suit everyone's needs.
In the second sample they have to buy a pack for each person as they can't share sheets.
|
```python
#!/usr/bin/env python
import math
import sys
import itertools
import fractions
if __name__ == '__main__':
wtf = sys.stdin.read()
wtf = wtf.strip().split('\n')
k,n,s,p = map(int, wtf[0].split())
sp = math.ceil(n/s)
pp = (sp/p)
ans = math.ceil(k*pp)
print(ans)
```
| 3
|
|
744
|
A
|
Hongcow Builds A Nation
|
PROGRAMMING
| 1,500
|
[
"dfs and similar",
"graphs"
] | null | null |
Hongcow is ruler of the world. As ruler of the world, he wants to make it easier for people to travel by road within their own countries.
The world can be modeled as an undirected graph with *n* nodes and *m* edges. *k* of the nodes are home to the governments of the *k* countries that make up the world.
There is at most one edge connecting any two nodes and no edge connects a node to itself. Furthermore, for any two nodes corresponding to governments, there is no path between those two nodes. Any graph that satisfies all of these conditions is stable.
Hongcow wants to add as many edges as possible to the graph while keeping it stable. Determine the maximum number of edges Hongcow can add.
|
The first line of input will contain three integers *n*, *m* and *k* (1<=≤<=*n*<=≤<=1<=000, 0<=≤<=*m*<=≤<=100<=000, 1<=≤<=*k*<=≤<=*n*) — the number of vertices and edges in the graph, and the number of vertices that are homes of the government.
The next line of input will contain *k* integers *c*1,<=*c*2,<=...,<=*c**k* (1<=≤<=*c**i*<=≤<=*n*). These integers will be pairwise distinct and denote the nodes that are home to the governments in this world.
The following *m* lines of input will contain two integers *u**i* and *v**i* (1<=≤<=*u**i*,<=*v**i*<=≤<=*n*). This denotes an undirected edge between nodes *u**i* and *v**i*.
It is guaranteed that the graph described by the input is stable.
|
Output a single integer, the maximum number of edges Hongcow can add to the graph while keeping it stable.
|
[
"4 1 2\n1 3\n1 2\n",
"3 3 1\n2\n1 2\n1 3\n2 3\n"
] |
[
"2\n",
"0\n"
] |
For the first sample test, the graph looks like this:
For the second sample test, the graph looks like this:
| 500
|
[
{
"input": "4 1 2\n1 3\n1 2",
"output": "2"
},
{
"input": "3 3 1\n2\n1 2\n1 3\n2 3",
"output": "0"
},
{
"input": "10 3 2\n1 10\n1 2\n1 3\n4 5",
"output": "33"
},
{
"input": "1 0 1\n1",
"output": "0"
},
{
"input": "1000 0 1\n72",
"output": "499500"
},
{
"input": "24 38 2\n4 13\n7 1\n24 1\n2 8\n17 2\n2 18\n22 2\n23 3\n5 9\n21 5\n6 7\n6 19\n6 20\n11 7\n7 20\n13 8\n16 8\n9 10\n14 9\n21 9\n12 10\n10 22\n23 10\n17 11\n11 24\n20 12\n13 16\n13 23\n15 14\n17 14\n14 20\n19 16\n17 20\n17 23\n18 22\n18 23\n22 19\n21 20\n23 24",
"output": "215"
},
{
"input": "10 30 1\n4\n1 2\n3 1\n4 1\n1 6\n1 8\n10 1\n2 4\n2 7\n3 4\n3 5\n7 3\n3 9\n10 3\n5 4\n6 4\n7 4\n9 4\n10 4\n6 5\n5 8\n9 5\n10 5\n6 7\n9 6\n10 6\n7 8\n9 7\n10 7\n9 8\n10 8",
"output": "15"
},
{
"input": "10 13 2\n5 10\n2 1\n1 4\n2 3\n2 8\n3 4\n7 3\n4 6\n8 4\n4 9\n6 7\n6 9\n10 6\n7 8",
"output": "23"
},
{
"input": "10 10 3\n2 5 6\n1 3\n4 1\n4 3\n5 3\n3 9\n8 4\n9 4\n5 10\n8 7\n10 8",
"output": "18"
},
{
"input": "10 5 3\n1 5 9\n1 3\n1 8\n2 3\n8 4\n5 7",
"output": "17"
},
{
"input": "6 4 2\n1 4\n1 2\n2 3\n4 5\n5 6",
"output": "2"
},
{
"input": "7 8 2\n1 4\n1 2\n2 3\n4 5\n4 6\n4 7\n5 6\n5 7\n6 7",
"output": "1"
},
{
"input": "5 2 3\n1 3 4\n1 5\n2 4",
"output": "0"
},
{
"input": "5 3 2\n1 2\n2 3\n2 4\n1 5",
"output": "1"
},
{
"input": "9 5 2\n1 5\n1 2\n2 3\n3 4\n5 6\n6 7",
"output": "13"
},
{
"input": "6 4 1\n1\n2 3\n3 4\n4 5\n5 6",
"output": "11"
},
{
"input": "6 4 2\n1 5\n1 2\n2 3\n3 4\n5 6",
"output": "3"
},
{
"input": "7 3 3\n1 5 6\n1 2\n1 3\n6 7",
"output": "4"
},
{
"input": "5 2 2\n1 2\n1 3\n2 4",
"output": "2"
},
{
"input": "11 7 2\n1 4\n1 2\n1 3\n4 5\n4 6\n5 6\n9 10\n1 11",
"output": "24"
},
{
"input": "20 4 5\n1 3 9 10 20\n5 6\n1 2\n7 9\n4 10",
"output": "89"
}
] | 1,514,935,649
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 61
| 514
| 5,632,000
|
class Union:
def __init__(self, n):
self.ancestors = [i for i in range(n+1)]
self.size = [0]*(n+1)
def get_root(self, node):
if self.ancestors[node] == node:
return node
self.ancestors[node] = self.get_root(self.ancestors[node])
return self.ancestors[node]
def merge(self, a, b):
a, b = self.get_root(a), self.get_root(b)
self.ancestors[a] = b
def combination(number):
return (number * (number - 1)) >> 1
n, m, k = map(int, input().split())
biggest, others, res = 0, n, -m
homes = list(map(int, input().split()))
union = Union(n)
for _ in range(m):
a, b = map(int, input().split())
union.merge(a, b)
for i in range(1, n+1):
union.size[union.get_root(i)] += 1
for home in homes:
size = union.size[union.get_root(home)]
biggest = max(biggest, size)
res += combination(size)
others -= size
res -= combination(biggest)
res += combination(biggest + others)
print(res)
|
Title: Hongcow Builds A Nation
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Hongcow is ruler of the world. As ruler of the world, he wants to make it easier for people to travel by road within their own countries.
The world can be modeled as an undirected graph with *n* nodes and *m* edges. *k* of the nodes are home to the governments of the *k* countries that make up the world.
There is at most one edge connecting any two nodes and no edge connects a node to itself. Furthermore, for any two nodes corresponding to governments, there is no path between those two nodes. Any graph that satisfies all of these conditions is stable.
Hongcow wants to add as many edges as possible to the graph while keeping it stable. Determine the maximum number of edges Hongcow can add.
Input Specification:
The first line of input will contain three integers *n*, *m* and *k* (1<=≤<=*n*<=≤<=1<=000, 0<=≤<=*m*<=≤<=100<=000, 1<=≤<=*k*<=≤<=*n*) — the number of vertices and edges in the graph, and the number of vertices that are homes of the government.
The next line of input will contain *k* integers *c*1,<=*c*2,<=...,<=*c**k* (1<=≤<=*c**i*<=≤<=*n*). These integers will be pairwise distinct and denote the nodes that are home to the governments in this world.
The following *m* lines of input will contain two integers *u**i* and *v**i* (1<=≤<=*u**i*,<=*v**i*<=≤<=*n*). This denotes an undirected edge between nodes *u**i* and *v**i*.
It is guaranteed that the graph described by the input is stable.
Output Specification:
Output a single integer, the maximum number of edges Hongcow can add to the graph while keeping it stable.
Demo Input:
['4 1 2\n1 3\n1 2\n', '3 3 1\n2\n1 2\n1 3\n2 3\n']
Demo Output:
['2\n', '0\n']
Note:
For the first sample test, the graph looks like this:
For the second sample test, the graph looks like this:
|
```python
class Union:
def __init__(self, n):
self.ancestors = [i for i in range(n+1)]
self.size = [0]*(n+1)
def get_root(self, node):
if self.ancestors[node] == node:
return node
self.ancestors[node] = self.get_root(self.ancestors[node])
return self.ancestors[node]
def merge(self, a, b):
a, b = self.get_root(a), self.get_root(b)
self.ancestors[a] = b
def combination(number):
return (number * (number - 1)) >> 1
n, m, k = map(int, input().split())
biggest, others, res = 0, n, -m
homes = list(map(int, input().split()))
union = Union(n)
for _ in range(m):
a, b = map(int, input().split())
union.merge(a, b)
for i in range(1, n+1):
union.size[union.get_root(i)] += 1
for home in homes:
size = union.size[union.get_root(home)]
biggest = max(biggest, size)
res += combination(size)
others -= size
res -= combination(biggest)
res += combination(biggest + others)
print(res)
```
| 3
|
|
808
|
A
|
Lucky Year
|
PROGRAMMING
| 900
|
[
"implementation"
] | null | null |
Apart from having lots of holidays throughout the year, residents of Berland also have whole lucky years. Year is considered lucky if it has no more than 1 non-zero digit in its number. So years 100, 40000, 5 are lucky and 12, 3001 and 12345 are not.
You are given current year in Berland. Your task is to find how long will residents of Berland wait till the next lucky year.
|
The first line contains integer number *n* (1<=≤<=*n*<=≤<=109) — current year in Berland.
|
Output amount of years from the current year to the next lucky one.
|
[
"4\n",
"201\n",
"4000\n"
] |
[
"1\n",
"99\n",
"1000\n"
] |
In the first example next lucky year is 5. In the second one — 300. In the third — 5000.
| 0
|
[
{
"input": "4",
"output": "1"
},
{
"input": "201",
"output": "99"
},
{
"input": "4000",
"output": "1000"
},
{
"input": "9",
"output": "1"
},
{
"input": "10",
"output": "10"
},
{
"input": "1",
"output": "1"
},
{
"input": "100000000",
"output": "100000000"
},
{
"input": "900000000",
"output": "100000000"
},
{
"input": "999999999",
"output": "1"
},
{
"input": "1000000000",
"output": "1000000000"
},
{
"input": "9999999",
"output": "1"
},
{
"input": "100000001",
"output": "99999999"
},
{
"input": "3660",
"output": "340"
},
{
"input": "21",
"output": "9"
},
{
"input": "900000001",
"output": "99999999"
},
{
"input": "62911",
"output": "7089"
},
{
"input": "11",
"output": "9"
},
{
"input": "940302010",
"output": "59697990"
},
{
"input": "91",
"output": "9"
},
{
"input": "101",
"output": "99"
},
{
"input": "1090",
"output": "910"
},
{
"input": "987654321",
"output": "12345679"
},
{
"input": "703450474",
"output": "96549526"
},
{
"input": "1091",
"output": "909"
},
{
"input": "89",
"output": "1"
},
{
"input": "109",
"output": "91"
},
{
"input": "190",
"output": "10"
},
{
"input": "19",
"output": "1"
},
{
"input": "8",
"output": "1"
},
{
"input": "482",
"output": "18"
},
{
"input": "1",
"output": "1"
},
{
"input": "2",
"output": "1"
},
{
"input": "3",
"output": "1"
},
{
"input": "4",
"output": "1"
},
{
"input": "5",
"output": "1"
},
{
"input": "6",
"output": "1"
},
{
"input": "7",
"output": "1"
},
{
"input": "8",
"output": "1"
},
{
"input": "9",
"output": "1"
},
{
"input": "10",
"output": "10"
},
{
"input": "11",
"output": "9"
},
{
"input": "12",
"output": "8"
},
{
"input": "13",
"output": "7"
},
{
"input": "14",
"output": "6"
},
{
"input": "15",
"output": "5"
},
{
"input": "16",
"output": "4"
},
{
"input": "17",
"output": "3"
},
{
"input": "18",
"output": "2"
},
{
"input": "19",
"output": "1"
},
{
"input": "20",
"output": "10"
},
{
"input": "21",
"output": "9"
},
{
"input": "22",
"output": "8"
},
{
"input": "23",
"output": "7"
},
{
"input": "24",
"output": "6"
},
{
"input": "25",
"output": "5"
},
{
"input": "26",
"output": "4"
},
{
"input": "27",
"output": "3"
},
{
"input": "28",
"output": "2"
},
{
"input": "29",
"output": "1"
},
{
"input": "30",
"output": "10"
},
{
"input": "31",
"output": "9"
},
{
"input": "32",
"output": "8"
},
{
"input": "33",
"output": "7"
},
{
"input": "34",
"output": "6"
},
{
"input": "35",
"output": "5"
},
{
"input": "36",
"output": "4"
},
{
"input": "37",
"output": "3"
},
{
"input": "38",
"output": "2"
},
{
"input": "39",
"output": "1"
},
{
"input": "40",
"output": "10"
},
{
"input": "41",
"output": "9"
},
{
"input": "42",
"output": "8"
},
{
"input": "43",
"output": "7"
},
{
"input": "44",
"output": "6"
},
{
"input": "45",
"output": "5"
},
{
"input": "46",
"output": "4"
},
{
"input": "47",
"output": "3"
},
{
"input": "48",
"output": "2"
},
{
"input": "49",
"output": "1"
},
{
"input": "50",
"output": "10"
},
{
"input": "51",
"output": "9"
},
{
"input": "52",
"output": "8"
},
{
"input": "53",
"output": "7"
},
{
"input": "54",
"output": "6"
},
{
"input": "55",
"output": "5"
},
{
"input": "56",
"output": "4"
},
{
"input": "57",
"output": "3"
},
{
"input": "58",
"output": "2"
},
{
"input": "59",
"output": "1"
},
{
"input": "60",
"output": "10"
},
{
"input": "61",
"output": "9"
},
{
"input": "62",
"output": "8"
},
{
"input": "63",
"output": "7"
},
{
"input": "64",
"output": "6"
},
{
"input": "65",
"output": "5"
},
{
"input": "66",
"output": "4"
},
{
"input": "67",
"output": "3"
},
{
"input": "68",
"output": "2"
},
{
"input": "69",
"output": "1"
},
{
"input": "70",
"output": "10"
},
{
"input": "71",
"output": "9"
},
{
"input": "72",
"output": "8"
},
{
"input": "73",
"output": "7"
},
{
"input": "74",
"output": "6"
},
{
"input": "75",
"output": "5"
},
{
"input": "76",
"output": "4"
},
{
"input": "77",
"output": "3"
},
{
"input": "78",
"output": "2"
},
{
"input": "79",
"output": "1"
},
{
"input": "80",
"output": "10"
},
{
"input": "81",
"output": "9"
},
{
"input": "82",
"output": "8"
},
{
"input": "83",
"output": "7"
},
{
"input": "84",
"output": "6"
},
{
"input": "85",
"output": "5"
},
{
"input": "86",
"output": "4"
},
{
"input": "87",
"output": "3"
},
{
"input": "88",
"output": "2"
},
{
"input": "89",
"output": "1"
},
{
"input": "90",
"output": "10"
},
{
"input": "91",
"output": "9"
},
{
"input": "92",
"output": "8"
},
{
"input": "93",
"output": "7"
},
{
"input": "94",
"output": "6"
},
{
"input": "95",
"output": "5"
},
{
"input": "96",
"output": "4"
},
{
"input": "97",
"output": "3"
},
{
"input": "98",
"output": "2"
},
{
"input": "99",
"output": "1"
},
{
"input": "100",
"output": "100"
},
{
"input": "100",
"output": "100"
},
{
"input": "100",
"output": "100"
},
{
"input": "1000",
"output": "1000"
},
{
"input": "1000",
"output": "1000"
},
{
"input": "1000",
"output": "1000"
},
{
"input": "10000",
"output": "10000"
},
{
"input": "10000",
"output": "10000"
},
{
"input": "101",
"output": "99"
},
{
"input": "110",
"output": "90"
},
{
"input": "1001",
"output": "999"
},
{
"input": "1100",
"output": "900"
},
{
"input": "1010",
"output": "990"
},
{
"input": "10010",
"output": "9990"
},
{
"input": "10100",
"output": "9900"
},
{
"input": "102",
"output": "98"
},
{
"input": "120",
"output": "80"
},
{
"input": "1002",
"output": "998"
},
{
"input": "1200",
"output": "800"
},
{
"input": "1020",
"output": "980"
},
{
"input": "10020",
"output": "9980"
},
{
"input": "10200",
"output": "9800"
},
{
"input": "108",
"output": "92"
},
{
"input": "180",
"output": "20"
},
{
"input": "1008",
"output": "992"
},
{
"input": "1800",
"output": "200"
},
{
"input": "1080",
"output": "920"
},
{
"input": "10080",
"output": "9920"
},
{
"input": "10800",
"output": "9200"
},
{
"input": "109",
"output": "91"
},
{
"input": "190",
"output": "10"
},
{
"input": "1009",
"output": "991"
},
{
"input": "1900",
"output": "100"
},
{
"input": "1090",
"output": "910"
},
{
"input": "10090",
"output": "9910"
},
{
"input": "10900",
"output": "9100"
},
{
"input": "200",
"output": "100"
},
{
"input": "200",
"output": "100"
},
{
"input": "2000",
"output": "1000"
},
{
"input": "2000",
"output": "1000"
},
{
"input": "2000",
"output": "1000"
},
{
"input": "20000",
"output": "10000"
},
{
"input": "20000",
"output": "10000"
},
{
"input": "201",
"output": "99"
},
{
"input": "210",
"output": "90"
},
{
"input": "2001",
"output": "999"
},
{
"input": "2100",
"output": "900"
},
{
"input": "2010",
"output": "990"
},
{
"input": "20010",
"output": "9990"
},
{
"input": "20100",
"output": "9900"
},
{
"input": "202",
"output": "98"
},
{
"input": "220",
"output": "80"
},
{
"input": "2002",
"output": "998"
},
{
"input": "2200",
"output": "800"
},
{
"input": "2020",
"output": "980"
},
{
"input": "20020",
"output": "9980"
},
{
"input": "20200",
"output": "9800"
},
{
"input": "208",
"output": "92"
},
{
"input": "280",
"output": "20"
},
{
"input": "2008",
"output": "992"
},
{
"input": "2800",
"output": "200"
},
{
"input": "2080",
"output": "920"
},
{
"input": "20080",
"output": "9920"
},
{
"input": "20800",
"output": "9200"
},
{
"input": "209",
"output": "91"
},
{
"input": "290",
"output": "10"
},
{
"input": "2009",
"output": "991"
},
{
"input": "2900",
"output": "100"
},
{
"input": "2090",
"output": "910"
},
{
"input": "20090",
"output": "9910"
},
{
"input": "20900",
"output": "9100"
},
{
"input": "800",
"output": "100"
},
{
"input": "800",
"output": "100"
},
{
"input": "8000",
"output": "1000"
},
{
"input": "8000",
"output": "1000"
},
{
"input": "8000",
"output": "1000"
},
{
"input": "80000",
"output": "10000"
},
{
"input": "80000",
"output": "10000"
},
{
"input": "801",
"output": "99"
},
{
"input": "810",
"output": "90"
},
{
"input": "8001",
"output": "999"
},
{
"input": "8100",
"output": "900"
},
{
"input": "8010",
"output": "990"
},
{
"input": "80010",
"output": "9990"
},
{
"input": "80100",
"output": "9900"
},
{
"input": "802",
"output": "98"
},
{
"input": "820",
"output": "80"
},
{
"input": "8002",
"output": "998"
},
{
"input": "8200",
"output": "800"
},
{
"input": "8020",
"output": "980"
},
{
"input": "80020",
"output": "9980"
},
{
"input": "80200",
"output": "9800"
},
{
"input": "808",
"output": "92"
},
{
"input": "880",
"output": "20"
},
{
"input": "8008",
"output": "992"
},
{
"input": "8800",
"output": "200"
},
{
"input": "8080",
"output": "920"
},
{
"input": "80080",
"output": "9920"
},
{
"input": "80800",
"output": "9200"
},
{
"input": "809",
"output": "91"
},
{
"input": "890",
"output": "10"
},
{
"input": "8009",
"output": "991"
},
{
"input": "8900",
"output": "100"
},
{
"input": "8090",
"output": "910"
},
{
"input": "80090",
"output": "9910"
},
{
"input": "80900",
"output": "9100"
},
{
"input": "900",
"output": "100"
},
{
"input": "900",
"output": "100"
},
{
"input": "9000",
"output": "1000"
},
{
"input": "9000",
"output": "1000"
},
{
"input": "9000",
"output": "1000"
},
{
"input": "90000",
"output": "10000"
},
{
"input": "90000",
"output": "10000"
},
{
"input": "901",
"output": "99"
},
{
"input": "910",
"output": "90"
},
{
"input": "9001",
"output": "999"
},
{
"input": "9100",
"output": "900"
},
{
"input": "9010",
"output": "990"
},
{
"input": "90010",
"output": "9990"
},
{
"input": "90100",
"output": "9900"
},
{
"input": "902",
"output": "98"
},
{
"input": "920",
"output": "80"
},
{
"input": "9002",
"output": "998"
},
{
"input": "9200",
"output": "800"
},
{
"input": "9020",
"output": "980"
},
{
"input": "90020",
"output": "9980"
},
{
"input": "90200",
"output": "9800"
},
{
"input": "908",
"output": "92"
},
{
"input": "980",
"output": "20"
},
{
"input": "9008",
"output": "992"
},
{
"input": "9800",
"output": "200"
},
{
"input": "9080",
"output": "920"
},
{
"input": "90080",
"output": "9920"
},
{
"input": "90800",
"output": "9200"
},
{
"input": "909",
"output": "91"
},
{
"input": "990",
"output": "10"
},
{
"input": "9009",
"output": "991"
},
{
"input": "9900",
"output": "100"
},
{
"input": "9090",
"output": "910"
},
{
"input": "90090",
"output": "9910"
},
{
"input": "90900",
"output": "9100"
},
{
"input": "92651241",
"output": "7348759"
}
] | 1,681,842,590
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 271
| 108
| 0
|
def is_ok(n):
return len([i for i in str(n) if i != '0']) == 1
n = int(input())
if is_ok(n + 1):
print(1)
else:
n_ = int(str(int(str(n)[0]) + 1) + '0' * (len(str(n)) - 1))
print(n_ - n)
|
Title: Lucky Year
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Apart from having lots of holidays throughout the year, residents of Berland also have whole lucky years. Year is considered lucky if it has no more than 1 non-zero digit in its number. So years 100, 40000, 5 are lucky and 12, 3001 and 12345 are not.
You are given current year in Berland. Your task is to find how long will residents of Berland wait till the next lucky year.
Input Specification:
The first line contains integer number *n* (1<=≤<=*n*<=≤<=109) — current year in Berland.
Output Specification:
Output amount of years from the current year to the next lucky one.
Demo Input:
['4\n', '201\n', '4000\n']
Demo Output:
['1\n', '99\n', '1000\n']
Note:
In the first example next lucky year is 5. In the second one — 300. In the third — 5000.
|
```python
def is_ok(n):
return len([i for i in str(n) if i != '0']) == 1
n = int(input())
if is_ok(n + 1):
print(1)
else:
n_ = int(str(int(str(n)[0]) + 1) + '0' * (len(str(n)) - 1))
print(n_ - n)
```
| 3
|
|
869
|
C
|
The Intriguing Obsession
|
PROGRAMMING
| 1,800
|
[
"combinatorics",
"dp",
"math"
] | null | null |
— This is not playing but duty as allies of justice, Nii-chan!
— Not allies but justice itself, Onii-chan!
With hands joined, go everywhere at a speed faster than our thoughts! This time, the Fire Sisters — Karen and Tsukihi — is heading for somewhere they've never reached — water-surrounded islands!
There are three clusters of islands, conveniently coloured red, blue and purple. The clusters consist of *a*, *b* and *c* distinct islands respectively.
Bridges have been built between some (possibly all or none) of the islands. A bridge bidirectionally connects two different islands and has length 1. For any two islands of the same colour, either they shouldn't be reached from each other through bridges, or the shortest distance between them is at least 3, apparently in order to prevent oddities from spreading quickly inside a cluster.
The Fire Sisters are ready for the unknown, but they'd also like to test your courage. And you're here to figure out the number of different ways to build all bridges under the constraints, and give the answer modulo 998<=244<=353. Two ways are considered different if a pair of islands exist, such that there's a bridge between them in one of them, but not in the other.
|
The first and only line of input contains three space-separated integers *a*, *b* and *c* (1<=≤<=*a*,<=*b*,<=*c*<=≤<=5<=000) — the number of islands in the red, blue and purple clusters, respectively.
|
Output one line containing an integer — the number of different ways to build bridges, modulo 998<=244<=353.
|
[
"1 1 1\n",
"1 2 2\n",
"1 3 5\n",
"6 2 9\n"
] |
[
"8\n",
"63\n",
"3264\n",
"813023575\n"
] |
In the first example, there are 3 bridges that can possibly be built, and no setup of bridges violates the restrictions. Thus the answer is 2<sup class="upper-index">3</sup> = 8.
In the second example, the upper two structures in the figure below are instances of valid ones, while the lower two are invalid due to the blue and purple clusters, respectively.
| 1,500
|
[
{
"input": "1 1 1",
"output": "8"
},
{
"input": "1 2 2",
"output": "63"
},
{
"input": "1 3 5",
"output": "3264"
},
{
"input": "6 2 9",
"output": "813023575"
},
{
"input": "7 3 7",
"output": "807577560"
},
{
"input": "135 14 39",
"output": "414849507"
},
{
"input": "5000 5000 5000",
"output": "986778560"
},
{
"input": "2 1 1",
"output": "18"
},
{
"input": "1 1 3",
"output": "32"
},
{
"input": "1 2 3",
"output": "156"
},
{
"input": "4 1 2",
"output": "315"
},
{
"input": "5 9 4",
"output": "661093467"
},
{
"input": "4 2 5",
"output": "326151"
},
{
"input": "9 4 10",
"output": "391175867"
},
{
"input": "16 8 29",
"output": "349763770"
},
{
"input": "17 46 45",
"output": "518654435"
},
{
"input": "28 47 1",
"output": "517406193"
},
{
"input": "94 87 10",
"output": "846321893"
},
{
"input": "84 29 61",
"output": "391253501"
},
{
"input": "179 856 377",
"output": "518957210"
},
{
"input": "1925 1009 273",
"output": "207866159"
},
{
"input": "1171 2989 2853",
"output": "234725427"
},
{
"input": "3238 2923 4661",
"output": "636587126"
},
{
"input": "1158 506 4676",
"output": "6109065"
},
{
"input": "4539 2805 2702",
"output": "356944655"
},
{
"input": "4756 775 3187",
"output": "56242066"
},
{
"input": "4998 4998 4998",
"output": "259368717"
},
{
"input": "4996 1 5000",
"output": "196902859"
},
{
"input": "2048 4096 1024",
"output": "445542375"
},
{
"input": "5000 1 1",
"output": "50020002"
}
] | 1,686,237,059
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 30
| 421
| 36,761,600
|
import math
import random
import time
from collections import defaultdict
alfabet = {'a': 1, 'b': 2,'c': 3,'d': 4,'e': 5,'f': 6,'g': 7,'h': 8,'i': 9,'j': 10,'k': 11,'l': 12,'m': 13,'n': 14,'o': 15,'p': 16,'q': 17,'r': 18,'s': 19,'t': 20,'u': 21,'v': 22,'w': 23,'x': 24,'y': 25,'z': 26}
alfabet_2={'1':"a", '2':"b", '3':"c", '4':"d", '5':"e", '6':"f", '7':"g", '8':"h", '9':"i", '10':"j", '11':"k", '12':"l", '13':"m", '14':"n", '15':"o", '16':"p", '17':"q", '18':"r", '19':"s", '20':"t", '21':"u", '22':"v", '23':"w", '24':"x", '25':"y", '26':"z"}
def prime_generator(nr_elemente_prime):
vector_prime=[-1]*nr_elemente_prime
vector_rasp=[0]*nr_elemente_prime
vector_prime[1]=1
vector_rasp[1]=1
#primes sieve
contor=2
for i in range(2,nr_elemente_prime):
if vector_prime[i]==-1:
vector_prime[i]=1
vector_rasp[contor]=i
contor=contor+1
for j in range(i+i,nr_elemente_prime,i):
if vector_prime[j]==-1:
vector_prime[j]=i
#print(i,j)
set_prime=set(vector_rasp)
set_prime.remove(0)
set_prime.remove(1)
answ_prime=list(set_prime)
answ_prime.sort()
return answ_prime
def binary_search(vector,valoarea):
left=0
right=len(vector)-1
while left<=right:
centru=(left+right)//2
# print(left,right,centru,vector[centru])
if vector[centru]<=valoarea:
left=centru+1
else:
right=centru-1
# print(left,right,centru,vector[centru])
return left
def main():
answ=[]
pp=10**9
#teste=int(input())
vector_factorial=[]
vector_factorial.append(1)
vector_factorial.append(1)
rest=998244353
#print(vector_factorial)
for i in range(2,5001):
#print("i=",i,vector_factorial[i-1])
val=i*vector_factorial[i-1]
#print("val=",val)
vector_factorial.append(val)
for gg in range(1):
#stringul=input()
#n=len(stringul)
#answer=''
#n=int(input())
a,b,c=list(map(int,input().split()))
#ab
rest= 998244353
total_ab=1
min_ab=min(a,b)
max_ab=max(a,b)
factorial=1
partial_max=max_ab
partial_min=min_ab
total_ab+=(max_ab*min_ab)
#print("min ab=",min_ab)
# print(math.comb(39,6))
for i in range(2,min_ab+1):
#print("i=",i)
factorial=vector_factorial[i]
partial_max=partial_max*(max_ab+1-i)//i
partial_min=partial_min*(min_ab+1-i)//i
c2=partial_max%rest
c1=partial_min%rest
total_ab+=(c1%rest*c2%rest*factorial%rest)%rest
#print(i,total_ab,vector_factorial[min_ab],vector_factorial[min_ab-i])
#print("i=",i,total_ab)
# print("total ab=",total_ab)
total_bc=1
min_ab=min(b,c)
max_ab=max(b,c)
partial_max=max_ab
partial_min=min_ab
factorial=1
total_bc+=(max_ab*min_ab)
for i in range(2,min_ab+1):
factorial=vector_factorial[i]
partial_max=partial_max*(max_ab+1-i)//i
partial_min=partial_min*(min_ab+1-i)//i
c2=partial_max%rest
c1=partial_min%rest
total_bc+=(c1%rest*c2%rest*factorial%rest)%rest
# print("total_bc=",total_bc)
total_ca=1
min_ab=min(a,c)
max_ab=max(a,c)
partial_max=max_ab
partial_min=min_ab
factorial=1
numitor_max=1
numitor_min=1
numarator_max=max_ab
numarator_min=min_ab
total_ca+=(max_ab*min_ab)
for i in range(2,min_ab+1):
factorial=vector_factorial[i]
partial_max=partial_max*(max_ab+1-i)//i
partial_min=partial_min*(min_ab+1-i)//i
c2=partial_max%rest
c1=partial_min%rest
total_ca+=(c1%rest*c2%rest*factorial%rest)%rest
answ=((total_ab*total_bc)%rest * total_ca)%rest
#print(total_ab,total_bc,total_ca)
print(int(answ))
main()
|
Title: The Intriguing Obsession
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
— This is not playing but duty as allies of justice, Nii-chan!
— Not allies but justice itself, Onii-chan!
With hands joined, go everywhere at a speed faster than our thoughts! This time, the Fire Sisters — Karen and Tsukihi — is heading for somewhere they've never reached — water-surrounded islands!
There are three clusters of islands, conveniently coloured red, blue and purple. The clusters consist of *a*, *b* and *c* distinct islands respectively.
Bridges have been built between some (possibly all or none) of the islands. A bridge bidirectionally connects two different islands and has length 1. For any two islands of the same colour, either they shouldn't be reached from each other through bridges, or the shortest distance between them is at least 3, apparently in order to prevent oddities from spreading quickly inside a cluster.
The Fire Sisters are ready for the unknown, but they'd also like to test your courage. And you're here to figure out the number of different ways to build all bridges under the constraints, and give the answer modulo 998<=244<=353. Two ways are considered different if a pair of islands exist, such that there's a bridge between them in one of them, but not in the other.
Input Specification:
The first and only line of input contains three space-separated integers *a*, *b* and *c* (1<=≤<=*a*,<=*b*,<=*c*<=≤<=5<=000) — the number of islands in the red, blue and purple clusters, respectively.
Output Specification:
Output one line containing an integer — the number of different ways to build bridges, modulo 998<=244<=353.
Demo Input:
['1 1 1\n', '1 2 2\n', '1 3 5\n', '6 2 9\n']
Demo Output:
['8\n', '63\n', '3264\n', '813023575\n']
Note:
In the first example, there are 3 bridges that can possibly be built, and no setup of bridges violates the restrictions. Thus the answer is 2<sup class="upper-index">3</sup> = 8.
In the second example, the upper two structures in the figure below are instances of valid ones, while the lower two are invalid due to the blue and purple clusters, respectively.
|
```python
import math
import random
import time
from collections import defaultdict
alfabet = {'a': 1, 'b': 2,'c': 3,'d': 4,'e': 5,'f': 6,'g': 7,'h': 8,'i': 9,'j': 10,'k': 11,'l': 12,'m': 13,'n': 14,'o': 15,'p': 16,'q': 17,'r': 18,'s': 19,'t': 20,'u': 21,'v': 22,'w': 23,'x': 24,'y': 25,'z': 26}
alfabet_2={'1':"a", '2':"b", '3':"c", '4':"d", '5':"e", '6':"f", '7':"g", '8':"h", '9':"i", '10':"j", '11':"k", '12':"l", '13':"m", '14':"n", '15':"o", '16':"p", '17':"q", '18':"r", '19':"s", '20':"t", '21':"u", '22':"v", '23':"w", '24':"x", '25':"y", '26':"z"}
def prime_generator(nr_elemente_prime):
vector_prime=[-1]*nr_elemente_prime
vector_rasp=[0]*nr_elemente_prime
vector_prime[1]=1
vector_rasp[1]=1
#primes sieve
contor=2
for i in range(2,nr_elemente_prime):
if vector_prime[i]==-1:
vector_prime[i]=1
vector_rasp[contor]=i
contor=contor+1
for j in range(i+i,nr_elemente_prime,i):
if vector_prime[j]==-1:
vector_prime[j]=i
#print(i,j)
set_prime=set(vector_rasp)
set_prime.remove(0)
set_prime.remove(1)
answ_prime=list(set_prime)
answ_prime.sort()
return answ_prime
def binary_search(vector,valoarea):
left=0
right=len(vector)-1
while left<=right:
centru=(left+right)//2
# print(left,right,centru,vector[centru])
if vector[centru]<=valoarea:
left=centru+1
else:
right=centru-1
# print(left,right,centru,vector[centru])
return left
def main():
answ=[]
pp=10**9
#teste=int(input())
vector_factorial=[]
vector_factorial.append(1)
vector_factorial.append(1)
rest=998244353
#print(vector_factorial)
for i in range(2,5001):
#print("i=",i,vector_factorial[i-1])
val=i*vector_factorial[i-1]
#print("val=",val)
vector_factorial.append(val)
for gg in range(1):
#stringul=input()
#n=len(stringul)
#answer=''
#n=int(input())
a,b,c=list(map(int,input().split()))
#ab
rest= 998244353
total_ab=1
min_ab=min(a,b)
max_ab=max(a,b)
factorial=1
partial_max=max_ab
partial_min=min_ab
total_ab+=(max_ab*min_ab)
#print("min ab=",min_ab)
# print(math.comb(39,6))
for i in range(2,min_ab+1):
#print("i=",i)
factorial=vector_factorial[i]
partial_max=partial_max*(max_ab+1-i)//i
partial_min=partial_min*(min_ab+1-i)//i
c2=partial_max%rest
c1=partial_min%rest
total_ab+=(c1%rest*c2%rest*factorial%rest)%rest
#print(i,total_ab,vector_factorial[min_ab],vector_factorial[min_ab-i])
#print("i=",i,total_ab)
# print("total ab=",total_ab)
total_bc=1
min_ab=min(b,c)
max_ab=max(b,c)
partial_max=max_ab
partial_min=min_ab
factorial=1
total_bc+=(max_ab*min_ab)
for i in range(2,min_ab+1):
factorial=vector_factorial[i]
partial_max=partial_max*(max_ab+1-i)//i
partial_min=partial_min*(min_ab+1-i)//i
c2=partial_max%rest
c1=partial_min%rest
total_bc+=(c1%rest*c2%rest*factorial%rest)%rest
# print("total_bc=",total_bc)
total_ca=1
min_ab=min(a,c)
max_ab=max(a,c)
partial_max=max_ab
partial_min=min_ab
factorial=1
numitor_max=1
numitor_min=1
numarator_max=max_ab
numarator_min=min_ab
total_ca+=(max_ab*min_ab)
for i in range(2,min_ab+1):
factorial=vector_factorial[i]
partial_max=partial_max*(max_ab+1-i)//i
partial_min=partial_min*(min_ab+1-i)//i
c2=partial_max%rest
c1=partial_min%rest
total_ca+=(c1%rest*c2%rest*factorial%rest)%rest
answ=((total_ab*total_bc)%rest * total_ca)%rest
#print(total_ab,total_bc,total_ca)
print(int(answ))
main()
```
| 3
|
|
682
|
A
|
Alyona and Numbers
|
PROGRAMMING
| 1,100
|
[
"constructive algorithms",
"math",
"number theory"
] | null | null |
After finishing eating her bun, Alyona came up with two integers *n* and *m*. She decided to write down two columns of integers — the first column containing integers from 1 to *n* and the second containing integers from 1 to *m*. Now the girl wants to count how many pairs of integers she can choose, one from the first column and the other from the second column, such that their sum is divisible by 5.
Formally, Alyona wants to count the number of pairs of integers (*x*,<=*y*) such that 1<=≤<=*x*<=≤<=*n*, 1<=≤<=*y*<=≤<=*m* and equals 0.
As usual, Alyona has some troubles and asks you to help.
|
The only line of the input contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=1<=000<=000).
|
Print the only integer — the number of pairs of integers (*x*,<=*y*) such that 1<=≤<=*x*<=≤<=*n*, 1<=≤<=*y*<=≤<=*m* and (*x*<=+<=*y*) is divisible by 5.
|
[
"6 12\n",
"11 14\n",
"1 5\n",
"3 8\n",
"5 7\n",
"21 21\n"
] |
[
"14\n",
"31\n",
"1\n",
"5\n",
"7\n",
"88\n"
] |
Following pairs are suitable in the first sample case:
- for *x* = 1 fits *y* equal to 4 or 9; - for *x* = 2 fits *y* equal to 3 or 8; - for *x* = 3 fits *y* equal to 2, 7 or 12; - for *x* = 4 fits *y* equal to 1, 6 or 11; - for *x* = 5 fits *y* equal to 5 or 10; - for *x* = 6 fits *y* equal to 4 or 9.
Only the pair (1, 4) is suitable in the third sample case.
| 500
|
[
{
"input": "6 12",
"output": "14"
},
{
"input": "11 14",
"output": "31"
},
{
"input": "1 5",
"output": "1"
},
{
"input": "3 8",
"output": "5"
},
{
"input": "5 7",
"output": "7"
},
{
"input": "21 21",
"output": "88"
},
{
"input": "10 15",
"output": "30"
},
{
"input": "1 1",
"output": "0"
},
{
"input": "1 1000000",
"output": "200000"
},
{
"input": "1000000 1",
"output": "200000"
},
{
"input": "1000000 1000000",
"output": "200000000000"
},
{
"input": "944 844",
"output": "159348"
},
{
"input": "368 984",
"output": "72423"
},
{
"input": "792 828",
"output": "131155"
},
{
"input": "920 969",
"output": "178296"
},
{
"input": "640 325",
"output": "41600"
},
{
"input": "768 170",
"output": "26112"
},
{
"input": "896 310",
"output": "55552"
},
{
"input": "320 154",
"output": "9856"
},
{
"input": "744 999",
"output": "148652"
},
{
"input": "630 843",
"output": "106218"
},
{
"input": "54 688",
"output": "7431"
},
{
"input": "478 828",
"output": "79157"
},
{
"input": "902 184",
"output": "33194"
},
{
"input": "31 29",
"output": "180"
},
{
"input": "751 169",
"output": "25384"
},
{
"input": "879 14",
"output": "2462"
},
{
"input": "7 858",
"output": "1201"
},
{
"input": "431 702",
"output": "60512"
},
{
"input": "855 355",
"output": "60705"
},
{
"input": "553 29",
"output": "3208"
},
{
"input": "721767 525996",
"output": "75929310986"
},
{
"input": "805191 74841",
"output": "12052259926"
},
{
"input": "888615 590981",
"output": "105030916263"
},
{
"input": "4743 139826",
"output": "132638943"
},
{
"input": "88167 721374",
"output": "12720276292"
},
{
"input": "171591 13322",
"output": "457187060"
},
{
"input": "287719 562167",
"output": "32349225415"
},
{
"input": "371143 78307",
"output": "5812618980"
},
{
"input": "487271 627151",
"output": "61118498984"
},
{
"input": "261436 930642",
"output": "48660664382"
},
{
"input": "377564 446782",
"output": "33737759810"
},
{
"input": "460988 28330",
"output": "2611958008"
},
{
"input": "544412 352983",
"output": "38433636199"
},
{
"input": "660540 869123",
"output": "114818101284"
},
{
"input": "743964 417967",
"output": "62190480238"
},
{
"input": "827388 966812",
"output": "159985729411"
},
{
"input": "910812 515656",
"output": "93933134534"
},
{
"input": "26940 64501",
"output": "347531388"
},
{
"input": "110364 356449",
"output": "7867827488"
},
{
"input": "636358 355531",
"output": "45248999219"
},
{
"input": "752486 871672",
"output": "131184195318"
},
{
"input": "803206 420516",
"output": "67552194859"
},
{
"input": "919334 969361",
"output": "178233305115"
},
{
"input": "35462 261309",
"output": "1853307952"
},
{
"input": "118887 842857",
"output": "20040948031"
},
{
"input": "202311 358998",
"output": "14525848875"
},
{
"input": "285735 907842",
"output": "51880446774"
},
{
"input": "401863 456686",
"output": "36705041203"
},
{
"input": "452583 972827",
"output": "88056992428"
},
{
"input": "235473 715013",
"output": "33673251230"
},
{
"input": "318897 263858",
"output": "16828704925"
},
{
"input": "402321 812702",
"output": "65393416268"
},
{
"input": "518449 361546",
"output": "37488632431"
},
{
"input": "634577 910391",
"output": "115542637921"
},
{
"input": "685297 235043",
"output": "32214852554"
},
{
"input": "801425 751183",
"output": "120403367155"
},
{
"input": "884849 300028",
"output": "53095895155"
},
{
"input": "977 848872",
"output": "165869588"
},
{
"input": "51697 397716",
"output": "4112144810"
},
{
"input": "834588 107199",
"output": "17893399803"
},
{
"input": "918012 688747",
"output": "126455602192"
},
{
"input": "1436 237592",
"output": "68236422"
},
{
"input": "117564 753732",
"output": "17722349770"
},
{
"input": "200988 302576",
"output": "12162829017"
},
{
"input": "284412 818717",
"output": "46570587880"
},
{
"input": "400540 176073",
"output": "14104855884"
},
{
"input": "483964 724917",
"output": "70166746198"
},
{
"input": "567388 241058",
"output": "27354683301"
},
{
"input": "650812 789902",
"output": "102815540084"
},
{
"input": "400999 756281",
"output": "60653584944"
},
{
"input": "100 101",
"output": "2020"
},
{
"input": "100 102",
"output": "2040"
},
{
"input": "103 100",
"output": "2060"
},
{
"input": "100 104",
"output": "2080"
},
{
"input": "3 4",
"output": "3"
},
{
"input": "11 23",
"output": "50"
},
{
"input": "8 14",
"output": "23"
},
{
"input": "23423 34234",
"output": "160372597"
},
{
"input": "1 4",
"output": "1"
},
{
"input": "999999 999999",
"output": "199999600001"
},
{
"input": "82 99",
"output": "1624"
},
{
"input": "21 18",
"output": "75"
},
{
"input": "234 234",
"output": "10952"
},
{
"input": "4 4",
"output": "4"
},
{
"input": "6 13",
"output": "15"
},
{
"input": "3 9",
"output": "6"
},
{
"input": "99999 99999",
"output": "1999960001"
},
{
"input": "34 33",
"output": "225"
},
{
"input": "2 2",
"output": "0"
},
{
"input": "333 1",
"output": "66"
},
{
"input": "3 3",
"output": "2"
},
{
"input": "8 2",
"output": "3"
},
{
"input": "2179 2218",
"output": "966605"
},
{
"input": "1000000 999999",
"output": "199999800000"
},
{
"input": "873828 774207",
"output": "135304750879"
},
{
"input": "13 19",
"output": "50"
},
{
"input": "1648 576469",
"output": "190004183"
},
{
"input": "11 13",
"output": "28"
},
{
"input": "5 8",
"output": "8"
},
{
"input": "650074 943659",
"output": "122689636154"
},
{
"input": "1 3",
"output": "0"
},
{
"input": "54 43",
"output": "465"
},
{
"input": "14 9",
"output": "26"
},
{
"input": "2 3",
"output": "1"
},
{
"input": "543 534",
"output": "57993"
},
{
"input": "321 123",
"output": "7896"
},
{
"input": "21 3",
"output": "12"
},
{
"input": "2 1",
"output": "0"
},
{
"input": "4 3",
"output": "3"
},
{
"input": "47474 74747",
"output": "709707816"
},
{
"input": "4 9",
"output": "8"
},
{
"input": "7 4",
"output": "6"
},
{
"input": "9 4",
"output": "8"
},
{
"input": "12414 4214",
"output": "10462520"
},
{
"input": "2 9",
"output": "4"
},
{
"input": "253 821",
"output": "41542"
},
{
"input": "2 4",
"output": "2"
}
] | 1,689,683,859
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 128
| 77
| 1,536,000
|
n, m = map(int, input().split())
li = [0] * 5
for i in range(1, m + 1):
if i % 5 == 0:
li[0] += 1
elif i % 5 == 1:
li[1] += 1
elif i % 5 == 2:
li[2] += 1
elif i % 5 == 3:
li[3] += 1
elif i % 5 == 4:
li[4] += 1
ans = n // 5 * sum(li)
if n % 5 == 0:
pass
elif n % 5 == 1:
ans += li[4]
elif n % 5 == 2:
ans += li[3] + li[4]
elif n % 5 == 3:
ans += li[3] + li[4] + li[2]
elif n % 5 == 4:
ans += li[3] + li[4] + li[2] + li[1]
print(ans)
|
Title: Alyona and Numbers
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
After finishing eating her bun, Alyona came up with two integers *n* and *m*. She decided to write down two columns of integers — the first column containing integers from 1 to *n* and the second containing integers from 1 to *m*. Now the girl wants to count how many pairs of integers she can choose, one from the first column and the other from the second column, such that their sum is divisible by 5.
Formally, Alyona wants to count the number of pairs of integers (*x*,<=*y*) such that 1<=≤<=*x*<=≤<=*n*, 1<=≤<=*y*<=≤<=*m* and equals 0.
As usual, Alyona has some troubles and asks you to help.
Input Specification:
The only line of the input contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=1<=000<=000).
Output Specification:
Print the only integer — the number of pairs of integers (*x*,<=*y*) such that 1<=≤<=*x*<=≤<=*n*, 1<=≤<=*y*<=≤<=*m* and (*x*<=+<=*y*) is divisible by 5.
Demo Input:
['6 12\n', '11 14\n', '1 5\n', '3 8\n', '5 7\n', '21 21\n']
Demo Output:
['14\n', '31\n', '1\n', '5\n', '7\n', '88\n']
Note:
Following pairs are suitable in the first sample case:
- for *x* = 1 fits *y* equal to 4 or 9; - for *x* = 2 fits *y* equal to 3 or 8; - for *x* = 3 fits *y* equal to 2, 7 or 12; - for *x* = 4 fits *y* equal to 1, 6 or 11; - for *x* = 5 fits *y* equal to 5 or 10; - for *x* = 6 fits *y* equal to 4 or 9.
Only the pair (1, 4) is suitable in the third sample case.
|
```python
n, m = map(int, input().split())
li = [0] * 5
for i in range(1, m + 1):
if i % 5 == 0:
li[0] += 1
elif i % 5 == 1:
li[1] += 1
elif i % 5 == 2:
li[2] += 1
elif i % 5 == 3:
li[3] += 1
elif i % 5 == 4:
li[4] += 1
ans = n // 5 * sum(li)
if n % 5 == 0:
pass
elif n % 5 == 1:
ans += li[4]
elif n % 5 == 2:
ans += li[3] + li[4]
elif n % 5 == 3:
ans += li[3] + li[4] + li[2]
elif n % 5 == 4:
ans += li[3] + li[4] + li[2] + li[1]
print(ans)
```
| 3
|
|
127
|
A
|
Wasted Time
|
PROGRAMMING
| 900
|
[
"geometry"
] | null | null |
Mr. Scrooge, a very busy man, decided to count the time he wastes on all sorts of useless stuff to evaluate the lost profit. He has already counted the time he wastes sleeping and eating. And now Mr. Scrooge wants to count the time he has wasted signing papers.
Mr. Scrooge's signature can be represented as a polyline *A*1*A*2... *A**n*. Scrooge signs like that: first it places a pen at the point *A*1, then draws a segment from point *A*1 to point *A*2, then he draws a segment from point *A*2 to point *A*3 and so on to point *A**n*, where he stops signing and takes the pen off the paper. At that the resulting line can intersect with itself and partially repeat itself but Scrooge pays no attention to it and never changes his signing style. As Scrooge makes the signature, he never takes the pen off the paper and his writing speed is constant — 50 millimeters per second.
Scrooge signed exactly *k* papers throughout his life and all those signatures look the same.
Find the total time Scrooge wasted signing the papers.
|
The first line contains two integers *n* and *k* (2<=≤<=*n*<=≤<=100, 1<=≤<=*k*<=≤<=1000). Each of the following *n* lines contains the coordinates of the polyline's endpoints. The *i*-th one contains coordinates of the point *A**i* — integers *x**i* and *y**i*, separated by a space.
All points *A**i* are different. The absolute value of all coordinates does not exceed 20. The coordinates are measured in millimeters.
|
Print one real number — the total time Scrooges wastes on signing the papers in seconds. The absolute or relative error should not exceed 10<=-<=6.
|
[
"2 1\n0 0\n10 0\n",
"5 10\n3 1\n-5 6\n-2 -1\n3 2\n10 0\n",
"6 10\n5 0\n4 0\n6 0\n3 0\n7 0\n2 0\n"
] |
[
"0.200000000",
"6.032163204",
"3.000000000"
] |
none
| 500
|
[
{
"input": "2 1\n0 0\n10 0",
"output": "0.200000000"
},
{
"input": "5 10\n3 1\n-5 6\n-2 -1\n3 2\n10 0",
"output": "6.032163204"
},
{
"input": "6 10\n5 0\n4 0\n6 0\n3 0\n7 0\n2 0",
"output": "3.000000000"
},
{
"input": "10 95\n-20 -5\n2 -8\n14 13\n10 3\n17 11\n13 -12\n-6 11\n14 -15\n-13 14\n19 8",
"output": "429.309294877"
},
{
"input": "30 1000\n4 -13\n14 13\n-14 -16\n-9 18\n17 11\n2 -8\n2 15\n8 -1\n-9 13\n8 -12\n-2 20\n11 -12\n19 8\n9 -15\n-20 -5\n-18 20\n-13 14\n-12 -17\n-4 3\n13 -12\n11 -10\n18 7\n-6 11\n10 13\n10 3\n6 -14\n-1 10\n14 -15\n2 11\n-8 10",
"output": "13629.282573522"
},
{
"input": "2 1\n-20 -10\n-10 -6",
"output": "0.215406592"
},
{
"input": "2 13\n13 -10\n-3 -2",
"output": "4.651021393"
},
{
"input": "2 21\n13 8\n14 10",
"output": "0.939148551"
},
{
"input": "2 75\n-3 12\n1 12",
"output": "6.000000000"
},
{
"input": "2 466\n10 16\n-6 -3",
"output": "231.503997374"
},
{
"input": "2 999\n6 16\n-17 -14",
"output": "755.286284531"
},
{
"input": "2 1000\n-17 -14\n-14 -8",
"output": "134.164078650"
},
{
"input": "3 384\n-4 -19\n-17 -2\n3 4",
"output": "324.722285390"
},
{
"input": "5 566\n-11 8\n2 -7\n7 0\n-7 -9\n-7 5",
"output": "668.956254495"
},
{
"input": "7 495\n-10 -13\n-9 -5\n4 9\n8 13\n-4 2\n2 10\n-18 15",
"output": "789.212495576"
},
{
"input": "10 958\n7 13\n20 19\n12 -7\n10 -10\n-13 -15\n-10 -7\n20 -5\n-11 19\n-7 3\n-4 18",
"output": "3415.618464093"
},
{
"input": "13 445\n-15 16\n-8 -14\n8 7\n4 15\n8 -13\n15 -11\n-12 -4\n2 -13\n-5 0\n-20 -14\n-8 -7\n-10 -18\n18 -5",
"output": "2113.552527680"
},
{
"input": "18 388\n11 -8\n13 10\n18 -17\n-15 3\n-13 -15\n20 -7\n1 -10\n-13 -12\n-12 -15\n-17 -8\n1 -2\n3 -20\n-8 -9\n15 -13\n-19 -6\n17 3\n-17 2\n6 6",
"output": "2999.497312668"
},
{
"input": "25 258\n-5 -3\n-18 -14\n12 3\n6 11\n4 2\n-19 -3\n19 -7\n-15 19\n-19 -12\n-11 -10\n-5 17\n10 15\n-4 1\n-3 -20\n6 16\n18 -19\n11 -19\n-17 10\n-17 17\n-2 -17\n-3 -9\n18 13\n14 8\n-2 -5\n-11 4",
"output": "2797.756635934"
},
{
"input": "29 848\n11 -10\n-19 1\n18 18\n19 -19\n0 -5\n16 10\n-20 -14\n7 15\n6 8\n-15 -16\n9 3\n16 -20\n-12 12\n18 -1\n-11 14\n18 10\n11 -20\n-20 -16\n-1 11\n13 10\n-6 13\n-7 -10\n-11 -10\n-10 3\n15 -13\n-4 11\n-13 -11\n-11 -17\n11 -5",
"output": "12766.080247922"
},
{
"input": "36 3\n-11 20\n-11 13\n-17 9\n15 9\n-6 9\n-1 11\n12 -11\n16 -10\n-20 7\n-18 6\n-15 -2\n20 -20\n16 4\n-20 -8\n-12 -15\n-13 -6\n-9 -4\n0 -10\n8 -1\n1 4\n5 8\n8 -15\n16 -12\n19 1\n0 -4\n13 -4\n17 -13\n-7 11\n14 9\n-14 -9\n5 -8\n11 -8\n-17 -5\n1 -3\n-16 -17\n2 -3",
"output": "36.467924851"
},
{
"input": "48 447\n14 9\n9 -17\n-17 11\n-14 14\n19 -8\n-14 -17\n-7 10\n-6 -11\n-9 -19\n19 10\n-4 2\n-5 16\n20 9\n-10 20\n-7 -17\n14 -16\n-2 -10\n-18 -17\n14 12\n-6 -19\n5 -18\n-3 2\n-3 10\n-5 5\n13 -12\n10 -18\n10 -12\n-2 4\n7 -15\n-5 -5\n11 14\n11 10\n-6 -9\n13 -4\n13 9\n6 12\n-13 17\n-9 -12\n14 -19\n10 12\n-15 8\n-1 -11\n19 8\n11 20\n-9 -3\n16 1\n-14 19\n8 -4",
"output": "9495.010556306"
},
{
"input": "50 284\n-17 -13\n7 12\n-13 0\n13 1\n14 6\n14 -9\n-5 -1\n0 -10\n12 -3\n-14 6\n-8 10\n-16 17\n0 -1\n4 -9\n2 6\n1 8\n-8 -14\n3 9\n1 -15\n-4 -19\n-7 -20\n18 10\n3 -11\n10 16\n2 -6\n-9 19\n-3 -1\n20 9\n-12 -5\n-10 -2\n16 -7\n-16 -18\n-2 17\n2 8\n7 -15\n4 1\n6 -17\n19 9\n-10 -20\n5 2\n10 -2\n3 7\n20 0\n8 -14\n-16 -1\n-20 7\n20 -19\n17 18\n-11 -18\n-16 14",
"output": "6087.366930474"
},
{
"input": "57 373\n18 3\n-4 -1\n18 5\n-7 -15\n-6 -10\n-19 1\n20 15\n15 4\n-1 -2\n13 -14\n0 12\n10 3\n-16 -17\n-14 -9\n-11 -10\n17 19\n-2 6\n-12 -15\n10 20\n16 7\n9 -1\n4 13\n8 -2\n-1 -16\n-3 8\n14 11\n-12 3\n-5 -6\n3 4\n5 7\n-9 9\n11 4\n-19 10\n-7 4\n-20 -12\n10 16\n13 11\n13 -11\n7 -1\n17 18\n-19 7\n14 13\n5 -1\n-7 6\n-1 -6\n6 20\n-16 2\n4 17\n16 -11\n-4 -20\n19 -18\n17 16\n-14 -8\n3 2\n-6 -16\n10 -10\n-13 -11",
"output": "8929.162822862"
},
{
"input": "60 662\n15 17\n-2 -19\n-4 -17\n10 0\n15 10\n-8 -14\n14 9\n-15 20\n6 5\n-9 0\n-13 20\n13 -2\n10 9\n7 5\n4 18\n-10 1\n6 -15\n15 -16\n6 13\n4 -6\n2 5\n18 19\n8 3\n-7 14\n-12 -20\n14 19\n-15 0\n-2 -12\n9 18\n14 4\n2 -20\n3 0\n20 9\n-5 11\n-11 1\n2 -19\n-14 -4\n18 6\n16 16\n15 3\n-1 -5\n9 20\n12 -8\n-1 10\n-4 -9\n3 6\n3 -12\n14 -10\n-8 10\n-18 6\n14 -2\n-14 -12\n-10 -7\n10 -6\n14 1\n6 14\n15 19\n4 14\n3 -14\n-9 -13",
"output": "16314.207721932"
},
{
"input": "61 764\n-9 15\n11 -8\n-6 -7\n-13 -19\n16 -16\n-5 -1\n20 -19\n-14 -1\n-11 4\n7 -2\n-3 2\n-14 -17\n15 18\n20 15\n-13 -2\n15 8\n3 13\n19 -10\n2 -6\n15 -3\n-12 11\n4 -16\n-14 20\n0 2\n11 -7\n-6 -11\n16 7\n8 -3\n16 -10\n-3 9\n9 5\n4 -1\n-17 9\n14 -4\n8 6\n-19 12\n10 -17\n-5 7\n7 -3\n5 3\n6 -14\n9 9\n-16 -19\n11 -16\n-17 15\n8 5\n16 -19\n-7 10\n14 -15\n15 19\n-20 -16\n6 -2\n-4 6\n7 -15\n1 -8\n20 -17\n3 7\n10 12\n10 -11\n-19 10\n0 -11",
"output": "22153.369189802"
}
] | 1,690,628,374
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 42
| 124
| 0
|
from math import sqrt
n, k = [int(i) for i in input().split()]
dur = 0
x, y = [int(i) for i in input().split()]
for i in range(n - 1):
x1, y1 = [int(i) for i in input().split()]
dur += (sqrt((x1 - x) ** 2 + (y1 - y) ** 2)) / 50
x, y = x1, y1
print(dur * k)
|
Title: Wasted Time
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Mr. Scrooge, a very busy man, decided to count the time he wastes on all sorts of useless stuff to evaluate the lost profit. He has already counted the time he wastes sleeping and eating. And now Mr. Scrooge wants to count the time he has wasted signing papers.
Mr. Scrooge's signature can be represented as a polyline *A*1*A*2... *A**n*. Scrooge signs like that: first it places a pen at the point *A*1, then draws a segment from point *A*1 to point *A*2, then he draws a segment from point *A*2 to point *A*3 and so on to point *A**n*, where he stops signing and takes the pen off the paper. At that the resulting line can intersect with itself and partially repeat itself but Scrooge pays no attention to it and never changes his signing style. As Scrooge makes the signature, he never takes the pen off the paper and his writing speed is constant — 50 millimeters per second.
Scrooge signed exactly *k* papers throughout his life and all those signatures look the same.
Find the total time Scrooge wasted signing the papers.
Input Specification:
The first line contains two integers *n* and *k* (2<=≤<=*n*<=≤<=100, 1<=≤<=*k*<=≤<=1000). Each of the following *n* lines contains the coordinates of the polyline's endpoints. The *i*-th one contains coordinates of the point *A**i* — integers *x**i* and *y**i*, separated by a space.
All points *A**i* are different. The absolute value of all coordinates does not exceed 20. The coordinates are measured in millimeters.
Output Specification:
Print one real number — the total time Scrooges wastes on signing the papers in seconds. The absolute or relative error should not exceed 10<=-<=6.
Demo Input:
['2 1\n0 0\n10 0\n', '5 10\n3 1\n-5 6\n-2 -1\n3 2\n10 0\n', '6 10\n5 0\n4 0\n6 0\n3 0\n7 0\n2 0\n']
Demo Output:
['0.200000000', '6.032163204', '3.000000000']
Note:
none
|
```python
from math import sqrt
n, k = [int(i) for i in input().split()]
dur = 0
x, y = [int(i) for i in input().split()]
for i in range(n - 1):
x1, y1 = [int(i) for i in input().split()]
dur += (sqrt((x1 - x) ** 2 + (y1 - y) ** 2)) / 50
x, y = x1, y1
print(dur * k)
```
| 3
|
|
242
|
B
|
Big Segment
|
PROGRAMMING
| 1,100
|
[
"implementation",
"sortings"
] | null | null |
A coordinate line has *n* segments, the *i*-th segment starts at the position *l**i* and ends at the position *r**i*. We will denote such a segment as [*l**i*,<=*r**i*].
You have suggested that one of the defined segments covers all others. In other words, there is such segment in the given set, which contains all other ones. Now you want to test your assumption. Find in the given set the segment which covers all other segments, and print its number. If such a segment doesn't exist, print -1.
Formally we will assume that segment [*a*,<=*b*] covers segment [*c*,<=*d*], if they meet this condition *a*<=≤<=*c*<=≤<=*d*<=≤<=*b*.
|
The first line contains integer *n* (1<=≤<=*n*<=≤<=105) — the number of segments. Next *n* lines contain the descriptions of the segments. The *i*-th line contains two space-separated integers *l**i*,<=*r**i* (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=109) — the borders of the *i*-th segment.
It is guaranteed that no two segments coincide.
|
Print a single integer — the number of the segment that covers all other segments in the set. If there's no solution, print -1.
The segments are numbered starting from 1 in the order in which they appear in the input.
|
[
"3\n1 1\n2 2\n3 3\n",
"6\n1 5\n2 3\n1 10\n7 10\n7 7\n10 10\n"
] |
[
"-1\n",
"3\n"
] |
none
| 1,000
|
[
{
"input": "3\n1 1\n2 2\n3 3",
"output": "-1"
},
{
"input": "6\n1 5\n2 3\n1 10\n7 10\n7 7\n10 10",
"output": "3"
},
{
"input": "4\n1 5\n2 2\n2 4\n2 5",
"output": "1"
},
{
"input": "5\n3 3\n1 3\n2 2\n2 3\n1 2",
"output": "2"
},
{
"input": "7\n7 7\n8 8\n3 7\n1 6\n1 7\n4 7\n2 8",
"output": "-1"
},
{
"input": "3\n2 5\n3 4\n2 3",
"output": "1"
},
{
"input": "16\n15 15\n8 12\n6 9\n15 16\n8 14\n3 12\n7 19\n9 13\n5 16\n9 17\n10 15\n9 14\n9 9\n18 19\n5 15\n6 19",
"output": "-1"
},
{
"input": "9\n1 10\n7 8\n6 7\n1 4\n5 9\n2 8\n3 10\n1 1\n2 3",
"output": "1"
},
{
"input": "1\n1 100000",
"output": "1"
},
{
"input": "6\n2 2\n3 3\n3 5\n4 5\n1 1\n1 5",
"output": "6"
},
{
"input": "33\n2 18\n4 14\n2 16\n10 12\n4 6\n9 17\n2 8\n4 12\n8 20\n1 10\n11 14\n11 17\n8 15\n3 16\n3 4\n6 9\n6 19\n4 17\n17 19\n6 16\n3 12\n1 7\n6 20\n8 16\n12 19\n1 3\n12 18\n6 11\n7 20\n16 18\n4 15\n3 15\n15 19",
"output": "-1"
},
{
"input": "34\n3 8\n5 9\n2 9\n1 4\n3 7\n3 3\n8 9\n6 10\n4 7\n6 7\n5 8\n5 10\n1 5\n8 8\n2 5\n3 5\n7 7\n2 8\n4 5\n1 1\n7 9\n5 6\n2 3\n1 2\n2 4\n8 10\n7 8\n1 3\n4 8\n9 10\n1 7\n10 10\n2 2\n1 8",
"output": "-1"
},
{
"input": "55\n3 4\n6 8\n9 10\n3 9\n9 9\n2 5\n4 8\n3 8\n8 10\n1 1\n4 9\n10 10\n6 6\n8 8\n1 8\n5 5\n4 5\n5 9\n2 2\n3 10\n4 6\n3 6\n1 6\n1 7\n6 10\n2 6\n3 7\n2 4\n4 4\n5 10\n1 4\n2 9\n1 3\n7 9\n7 8\n1 9\n1 10\n2 8\n8 9\n6 7\n1 2\n6 9\n7 7\n4 7\n3 3\n2 7\n4 10\n7 10\n2 3\n2 10\n5 7\n3 5\n5 8\n1 5\n5 6",
"output": "37"
},
{
"input": "1\n999999999 1000000000",
"output": "1"
},
{
"input": "3\n1 20\n2 22\n3 18",
"output": "-1"
},
{
"input": "1\n1000000000 1000000000",
"output": "1"
},
{
"input": "2\n100001 100008\n100005 100006",
"output": "1"
},
{
"input": "1\n1000000 10000000",
"output": "1"
},
{
"input": "3\n3 6\n2 4\n1 5",
"output": "-1"
},
{
"input": "2\n3 5\n1 2",
"output": "-1"
}
] | 1,634,142,386
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 45
| 1,838
| 20,172,800
|
n = int(input())
data = []
while len(data) != n:
data.append(list(map(int, input().split(' '))))
res = -1
minx = data[0][0]
maxx = 0
for i in data:
minx = min(minx, i[0])
maxx = max(maxx, i[1])
for i in range(0, len(data)):
if data[i][0] <= minx and data[i][1] >= maxx:
res = i + 1
print(res)
|
Title: Big Segment
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
A coordinate line has *n* segments, the *i*-th segment starts at the position *l**i* and ends at the position *r**i*. We will denote such a segment as [*l**i*,<=*r**i*].
You have suggested that one of the defined segments covers all others. In other words, there is such segment in the given set, which contains all other ones. Now you want to test your assumption. Find in the given set the segment which covers all other segments, and print its number. If such a segment doesn't exist, print -1.
Formally we will assume that segment [*a*,<=*b*] covers segment [*c*,<=*d*], if they meet this condition *a*<=≤<=*c*<=≤<=*d*<=≤<=*b*.
Input Specification:
The first line contains integer *n* (1<=≤<=*n*<=≤<=105) — the number of segments. Next *n* lines contain the descriptions of the segments. The *i*-th line contains two space-separated integers *l**i*,<=*r**i* (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=109) — the borders of the *i*-th segment.
It is guaranteed that no two segments coincide.
Output Specification:
Print a single integer — the number of the segment that covers all other segments in the set. If there's no solution, print -1.
The segments are numbered starting from 1 in the order in which they appear in the input.
Demo Input:
['3\n1 1\n2 2\n3 3\n', '6\n1 5\n2 3\n1 10\n7 10\n7 7\n10 10\n']
Demo Output:
['-1\n', '3\n']
Note:
none
|
```python
n = int(input())
data = []
while len(data) != n:
data.append(list(map(int, input().split(' '))))
res = -1
minx = data[0][0]
maxx = 0
for i in data:
minx = min(minx, i[0])
maxx = max(maxx, i[1])
for i in range(0, len(data)):
if data[i][0] <= minx and data[i][1] >= maxx:
res = i + 1
print(res)
```
| 3
|
|
581
|
A
|
Vasya the Hipster
|
PROGRAMMING
| 800
|
[
"implementation",
"math"
] | null | null |
One day Vasya the Hipster decided to count how many socks he had. It turned out that he had *a* red socks and *b* blue socks.
According to the latest fashion, hipsters should wear the socks of different colors: a red one on the left foot, a blue one on the right foot.
Every day Vasya puts on new socks in the morning and throws them away before going to bed as he doesn't want to wash them.
Vasya wonders, what is the maximum number of days when he can dress fashionable and wear different socks, and after that, for how many days he can then wear the same socks until he either runs out of socks or cannot make a single pair from the socks he's got.
Can you help him?
|
The single line of the input contains two positive integers *a* and *b* (1<=≤<=*a*,<=*b*<=≤<=100) — the number of red and blue socks that Vasya's got.
|
Print two space-separated integers — the maximum number of days when Vasya can wear different socks and the number of days when he can wear the same socks until he either runs out of socks or cannot make a single pair from the socks he's got.
Keep in mind that at the end of the day Vasya throws away the socks that he's been wearing on that day.
|
[
"3 1\n",
"2 3\n",
"7 3\n"
] |
[
"1 1\n",
"2 0\n",
"3 2\n"
] |
In the first sample Vasya can first put on one pair of different socks, after that he has two red socks left to wear on the second day.
| 500
|
[
{
"input": "3 1",
"output": "1 1"
},
{
"input": "2 3",
"output": "2 0"
},
{
"input": "7 3",
"output": "3 2"
},
{
"input": "100 100",
"output": "100 0"
},
{
"input": "4 10",
"output": "4 3"
},
{
"input": "6 10",
"output": "6 2"
},
{
"input": "6 11",
"output": "6 2"
},
{
"input": "10 40",
"output": "10 15"
},
{
"input": "11 56",
"output": "11 22"
},
{
"input": "34 30",
"output": "30 2"
},
{
"input": "33 33",
"output": "33 0"
},
{
"input": "100 45",
"output": "45 27"
},
{
"input": "100 23",
"output": "23 38"
},
{
"input": "45 12",
"output": "12 16"
},
{
"input": "1 1",
"output": "1 0"
},
{
"input": "1 100",
"output": "1 49"
},
{
"input": "100 1",
"output": "1 49"
},
{
"input": "68 59",
"output": "59 4"
},
{
"input": "45 99",
"output": "45 27"
},
{
"input": "99 100",
"output": "99 0"
},
{
"input": "100 98",
"output": "98 1"
},
{
"input": "59 12",
"output": "12 23"
},
{
"input": "86 4",
"output": "4 41"
},
{
"input": "68 21",
"output": "21 23"
},
{
"input": "100 11",
"output": "11 44"
},
{
"input": "100 10",
"output": "10 45"
},
{
"input": "15 45",
"output": "15 15"
},
{
"input": "11 32",
"output": "11 10"
},
{
"input": "34 96",
"output": "34 31"
},
{
"input": "89 89",
"output": "89 0"
}
] | 1,673,240,018
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 30
| 46
| 0
|
ips = [int(i) for i in input().split()]
a, b = ips[0], ips[1]
diffSocks = min(a, b)
sameSocks = (max(a, b) - min(a, b)) // 2
print(diffSocks, sameSocks)
|
Title: Vasya the Hipster
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
One day Vasya the Hipster decided to count how many socks he had. It turned out that he had *a* red socks and *b* blue socks.
According to the latest fashion, hipsters should wear the socks of different colors: a red one on the left foot, a blue one on the right foot.
Every day Vasya puts on new socks in the morning and throws them away before going to bed as he doesn't want to wash them.
Vasya wonders, what is the maximum number of days when he can dress fashionable and wear different socks, and after that, for how many days he can then wear the same socks until he either runs out of socks or cannot make a single pair from the socks he's got.
Can you help him?
Input Specification:
The single line of the input contains two positive integers *a* and *b* (1<=≤<=*a*,<=*b*<=≤<=100) — the number of red and blue socks that Vasya's got.
Output Specification:
Print two space-separated integers — the maximum number of days when Vasya can wear different socks and the number of days when he can wear the same socks until he either runs out of socks or cannot make a single pair from the socks he's got.
Keep in mind that at the end of the day Vasya throws away the socks that he's been wearing on that day.
Demo Input:
['3 1\n', '2 3\n', '7 3\n']
Demo Output:
['1 1\n', '2 0\n', '3 2\n']
Note:
In the first sample Vasya can first put on one pair of different socks, after that he has two red socks left to wear on the second day.
|
```python
ips = [int(i) for i in input().split()]
a, b = ips[0], ips[1]
diffSocks = min(a, b)
sameSocks = (max(a, b) - min(a, b)) // 2
print(diffSocks, sameSocks)
```
| 3
|
|
558
|
A
|
Lala Land and Apple Trees
|
PROGRAMMING
| 1,100
|
[
"brute force",
"implementation",
"sortings"
] | null | null |
Amr lives in Lala Land. Lala Land is a very beautiful country that is located on a coordinate line. Lala Land is famous with its apple trees growing everywhere.
Lala Land has exactly *n* apple trees. Tree number *i* is located in a position *x**i* and has *a**i* apples growing on it. Amr wants to collect apples from the apple trees. Amr currently stands in *x*<==<=0 position. At the beginning, he can choose whether to go right or left. He'll continue in his direction until he meets an apple tree he didn't visit before. He'll take all of its apples and then reverse his direction, continue walking in this direction until he meets another apple tree he didn't visit before and so on. In the other words, Amr reverses his direction when visiting each new apple tree. Amr will stop collecting apples when there are no more trees he didn't visit in the direction he is facing.
What is the maximum number of apples he can collect?
|
The first line contains one number *n* (1<=≤<=*n*<=≤<=100), the number of apple trees in Lala Land.
The following *n* lines contains two integers each *x**i*, *a**i* (<=-<=105<=≤<=*x**i*<=≤<=105, *x**i*<=≠<=0, 1<=≤<=*a**i*<=≤<=105), representing the position of the *i*-th tree and number of apples on it.
It's guaranteed that there is at most one apple tree at each coordinate. It's guaranteed that no tree grows in point 0.
|
Output the maximum number of apples Amr can collect.
|
[
"2\n-1 5\n1 5\n",
"3\n-2 2\n1 4\n-1 3\n",
"3\n1 9\n3 5\n7 10\n"
] |
[
"10",
"9",
"9"
] |
In the first sample test it doesn't matter if Amr chose at first to go left or right. In both cases he'll get all the apples.
In the second sample test the optimal solution is to go left to *x* = - 1, collect apples from there, then the direction will be reversed, Amr has to go to *x* = 1, collect apples from there, then the direction will be reversed and Amr goes to the final tree *x* = - 2.
In the third sample test the optimal solution is to go right to *x* = 1, collect apples from there, then the direction will be reversed and Amr will not be able to collect anymore apples because there are no apple trees to his left.
| 500
|
[
{
"input": "2\n-1 5\n1 5",
"output": "10"
},
{
"input": "3\n-2 2\n1 4\n-1 3",
"output": "9"
},
{
"input": "3\n1 9\n3 5\n7 10",
"output": "9"
},
{
"input": "1\n1 1",
"output": "1"
},
{
"input": "4\n10000 100000\n-1000 100000\n-2 100000\n-1 100000",
"output": "300000"
},
{
"input": "1\n-1 1",
"output": "1"
},
{
"input": "27\n-30721 24576\n-6620 92252\n88986 24715\n-94356 10509\n-6543 29234\n-68554 69530\n39176 96911\n67266 99669\n95905 51002\n-94093 92134\n65382 23947\n-6525 79426\n-448 67531\n-70083 26921\n-86333 50029\n48924 8036\n-27228 5349\n6022 10691\n-13840 56735\n50398 58794\n-63258 45557\n-27792 77057\n98295 1203\n-51294 18757\n35037 61941\n-30112 13076\n82334 20463",
"output": "1036452"
},
{
"input": "18\n-18697 44186\n56333 51938\n-75688 49735\n77762 14039\n-43996 81060\n69700 49107\n74532 45568\n-94476 203\n-92347 90745\n58921 44650\n57563 63561\n44630 8486\n35750 5999\n3249 34202\n75358 68110\n-33245 60458\n-88148 2342\n87856 85532",
"output": "632240"
},
{
"input": "28\n49728 91049\n-42863 4175\n-89214 22191\n77977 16965\n-42960 87627\n-84329 97494\n89270 75906\n-13695 28908\n-72279 13607\n-97327 87062\n-58682 32094\n39108 99936\n29304 93784\n-63886 48237\n-77359 57648\n-87013 79017\n-41086 35033\n-60613 83555\n-48955 56816\n-20568 26802\n52113 25160\n-88885 45294\n22601 42971\n62693 65662\n-15985 5357\n86671 8522\n-59921 11271\n-79304 25044",
"output": "891593"
},
{
"input": "25\n5704 67795\n6766 31836\n-41715 89987\n76854 9848\n11648 90020\n-79763 10107\n96971 92636\n-64205 71937\n87997 38273\n-9782 57187\n22186 6905\n-41130 40258\n-28403 66579\n19578 43375\n35735 52929\n-52417 89388\n-89430 1939\n9401 43491\n-11228 10112\n-86859 16024\n-51486 33467\n-80578 65080\n-52820 98445\n-89165 7657\n-97106 79422",
"output": "1109655"
},
{
"input": "16\n-41732 47681\n44295 28942\n-75194 99827\n69982 18020\n-75378 22026\n80032 22908\n-34879 41113\n36257 48574\n-35882 84333\n29646 71151\n-86214 80886\n72724 39364\n-42529 60880\n29150 29921\n-8471 80781\n79387 70834",
"output": "847241"
},
{
"input": "3\n-94146 4473\n28707 99079\n-4153 8857",
"output": "112409"
},
{
"input": "3\n-3 3\n-2 2\n-1 1",
"output": "1"
},
{
"input": "2\n100000 3\n-100000 9",
"output": "12"
},
{
"input": "2\n-100000 100000\n100000 99999",
"output": "199999"
}
] | 1,612,639,085
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 46
| 62
| 307,200
|
n=int(input())
trees=[]
left=0
for _ in range(n):
trees.append([int(x) for x in input().split()])
left+=trees[-1][0]<0
right=n-left
trees.sort()
ans=0
if right>=left:
for _ in range(min(left,right)*2+(left!=right)):
ans+=trees[_][1]
else:
for _ in range(len(trees)-1,len(trees)-min(left,right)*2-2,-1):
ans+=trees[_][1]
print(ans)
|
Title: Lala Land and Apple Trees
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Amr lives in Lala Land. Lala Land is a very beautiful country that is located on a coordinate line. Lala Land is famous with its apple trees growing everywhere.
Lala Land has exactly *n* apple trees. Tree number *i* is located in a position *x**i* and has *a**i* apples growing on it. Amr wants to collect apples from the apple trees. Amr currently stands in *x*<==<=0 position. At the beginning, he can choose whether to go right or left. He'll continue in his direction until he meets an apple tree he didn't visit before. He'll take all of its apples and then reverse his direction, continue walking in this direction until he meets another apple tree he didn't visit before and so on. In the other words, Amr reverses his direction when visiting each new apple tree. Amr will stop collecting apples when there are no more trees he didn't visit in the direction he is facing.
What is the maximum number of apples he can collect?
Input Specification:
The first line contains one number *n* (1<=≤<=*n*<=≤<=100), the number of apple trees in Lala Land.
The following *n* lines contains two integers each *x**i*, *a**i* (<=-<=105<=≤<=*x**i*<=≤<=105, *x**i*<=≠<=0, 1<=≤<=*a**i*<=≤<=105), representing the position of the *i*-th tree and number of apples on it.
It's guaranteed that there is at most one apple tree at each coordinate. It's guaranteed that no tree grows in point 0.
Output Specification:
Output the maximum number of apples Amr can collect.
Demo Input:
['2\n-1 5\n1 5\n', '3\n-2 2\n1 4\n-1 3\n', '3\n1 9\n3 5\n7 10\n']
Demo Output:
['10', '9', '9']
Note:
In the first sample test it doesn't matter if Amr chose at first to go left or right. In both cases he'll get all the apples.
In the second sample test the optimal solution is to go left to *x* = - 1, collect apples from there, then the direction will be reversed, Amr has to go to *x* = 1, collect apples from there, then the direction will be reversed and Amr goes to the final tree *x* = - 2.
In the third sample test the optimal solution is to go right to *x* = 1, collect apples from there, then the direction will be reversed and Amr will not be able to collect anymore apples because there are no apple trees to his left.
|
```python
n=int(input())
trees=[]
left=0
for _ in range(n):
trees.append([int(x) for x in input().split()])
left+=trees[-1][0]<0
right=n-left
trees.sort()
ans=0
if right>=left:
for _ in range(min(left,right)*2+(left!=right)):
ans+=trees[_][1]
else:
for _ in range(len(trees)-1,len(trees)-min(left,right)*2-2,-1):
ans+=trees[_][1]
print(ans)
```
| 3
|
|
151
|
A
|
Soft Drinking
|
PROGRAMMING
| 800
|
[
"implementation",
"math"
] | null | null |
This winter is so cold in Nvodsk! A group of *n* friends decided to buy *k* bottles of a soft drink called "Take-It-Light" to warm up a bit. Each bottle has *l* milliliters of the drink. Also they bought *c* limes and cut each of them into *d* slices. After that they found *p* grams of salt.
To make a toast, each friend needs *nl* milliliters of the drink, a slice of lime and *np* grams of salt. The friends want to make as many toasts as they can, provided they all drink the same amount. How many toasts can each friend make?
|
The first and only line contains positive integers *n*, *k*, *l*, *c*, *d*, *p*, *nl*, *np*, not exceeding 1000 and no less than 1. The numbers are separated by exactly one space.
|
Print a single integer — the number of toasts each friend can make.
|
[
"3 4 5 10 8 100 3 1\n",
"5 100 10 1 19 90 4 3\n",
"10 1000 1000 25 23 1 50 1\n"
] |
[
"2\n",
"3\n",
"0\n"
] |
A comment to the first sample:
Overall the friends have 4 * 5 = 20 milliliters of the drink, it is enough to make 20 / 3 = 6 toasts. The limes are enough for 10 * 8 = 80 toasts and the salt is enough for 100 / 1 = 100 toasts. However, there are 3 friends in the group, so the answer is *min*(6, 80, 100) / 3 = 2.
| 500
|
[
{
"input": "3 4 5 10 8 100 3 1",
"output": "2"
},
{
"input": "5 100 10 1 19 90 4 3",
"output": "3"
},
{
"input": "10 1000 1000 25 23 1 50 1",
"output": "0"
},
{
"input": "1 7 4 5 5 8 3 2",
"output": "4"
},
{
"input": "2 3 3 5 5 10 1 3",
"output": "1"
},
{
"input": "2 6 4 5 6 5 1 3",
"output": "0"
},
{
"input": "1 7 3 5 3 6 2 1",
"output": "6"
},
{
"input": "2 4 5 4 5 7 3 2",
"output": "1"
},
{
"input": "2 3 6 5 7 8 2 1",
"output": "4"
},
{
"input": "1 4 5 5 3 10 3 1",
"output": "6"
},
{
"input": "1 4 6 7 3 5 1 3",
"output": "1"
},
{
"input": "1 6 5 5 5 8 3 1",
"output": "8"
},
{
"input": "1 7 5 3 3 9 2 1",
"output": "9"
},
{
"input": "3 5 3 7 6 10 3 1",
"output": "1"
},
{
"input": "3 6 3 5 3 6 3 1",
"output": "2"
},
{
"input": "1 7 5 5 5 5 2 2",
"output": "2"
},
{
"input": "2 5 3 5 6 9 2 1",
"output": "3"
},
{
"input": "3 4 3 5 3 6 2 1",
"output": "2"
},
{
"input": "1 5 5 4 7 6 3 1",
"output": "6"
},
{
"input": "2 3 7 6 5 9 3 1",
"output": "3"
},
{
"input": "2 6 5 3 3 8 1 1",
"output": "4"
},
{
"input": "2 4 7 3 4 10 2 1",
"output": "5"
},
{
"input": "1 1000 1000 1000 1000 1000 1 1",
"output": "1000"
},
{
"input": "17 1000 1000 1000 1000 1000 3 7",
"output": "8"
},
{
"input": "115 1000 1000 1000 1000 1000 17 15",
"output": "0"
},
{
"input": "1 587 981 1 2 1 1 1",
"output": "1"
},
{
"input": "1 1 2 1 2 2 1 1",
"output": "2"
}
] | 1,699,268,262
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 27
| 92
| 0
|
n, k, l, c, d, p, nl, nd = map(int, input().split())
toasts_with_drink = (k * l) // (n * nl)
toasts_with_lime = (c * d) // n
toasts_with_salt = p // (n * nd)
max_toasts = min(toasts_with_drink, toasts_with_lime, toasts_with_salt)
print(max_toasts)
|
Title: Soft Drinking
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
This winter is so cold in Nvodsk! A group of *n* friends decided to buy *k* bottles of a soft drink called "Take-It-Light" to warm up a bit. Each bottle has *l* milliliters of the drink. Also they bought *c* limes and cut each of them into *d* slices. After that they found *p* grams of salt.
To make a toast, each friend needs *nl* milliliters of the drink, a slice of lime and *np* grams of salt. The friends want to make as many toasts as they can, provided they all drink the same amount. How many toasts can each friend make?
Input Specification:
The first and only line contains positive integers *n*, *k*, *l*, *c*, *d*, *p*, *nl*, *np*, not exceeding 1000 and no less than 1. The numbers are separated by exactly one space.
Output Specification:
Print a single integer — the number of toasts each friend can make.
Demo Input:
['3 4 5 10 8 100 3 1\n', '5 100 10 1 19 90 4 3\n', '10 1000 1000 25 23 1 50 1\n']
Demo Output:
['2\n', '3\n', '0\n']
Note:
A comment to the first sample:
Overall the friends have 4 * 5 = 20 milliliters of the drink, it is enough to make 20 / 3 = 6 toasts. The limes are enough for 10 * 8 = 80 toasts and the salt is enough for 100 / 1 = 100 toasts. However, there are 3 friends in the group, so the answer is *min*(6, 80, 100) / 3 = 2.
|
```python
n, k, l, c, d, p, nl, nd = map(int, input().split())
toasts_with_drink = (k * l) // (n * nl)
toasts_with_lime = (c * d) // n
toasts_with_salt = p // (n * nd)
max_toasts = min(toasts_with_drink, toasts_with_lime, toasts_with_salt)
print(max_toasts)
```
| 3
|
|
339
|
A
|
Helpful Maths
|
PROGRAMMING
| 800
|
[
"greedy",
"implementation",
"sortings",
"strings"
] | null | null |
Xenia the beginner mathematician is a third year student at elementary school. She is now learning the addition operation.
The teacher has written down the sum of multiple numbers. Pupils should calculate the sum. To make the calculation easier, the sum only contains numbers 1, 2 and 3. Still, that isn't enough for Xenia. She is only beginning to count, so she can calculate a sum only if the summands follow in non-decreasing order. For example, she can't calculate sum 1+3+2+1 but she can calculate sums 1+1+2 and 3+3.
You've got the sum that was written on the board. Rearrange the summans and print the sum in such a way that Xenia can calculate the sum.
|
The first line contains a non-empty string *s* — the sum Xenia needs to count. String *s* contains no spaces. It only contains digits and characters "+". Besides, string *s* is a correct sum of numbers 1, 2 and 3. String *s* is at most 100 characters long.
|
Print the new sum that Xenia can count.
|
[
"3+2+1\n",
"1+1+3+1+3\n",
"2\n"
] |
[
"1+2+3\n",
"1+1+1+3+3\n",
"2\n"
] |
none
| 500
|
[
{
"input": "3+2+1",
"output": "1+2+3"
},
{
"input": "1+1+3+1+3",
"output": "1+1+1+3+3"
},
{
"input": "2",
"output": "2"
},
{
"input": "2+2+1+1+3",
"output": "1+1+2+2+3"
},
{
"input": "2+1+2+2+2+3+1+3+1+2",
"output": "1+1+1+2+2+2+2+2+3+3"
},
{
"input": "1+2+1+2+2+2+2+1+3+3",
"output": "1+1+1+2+2+2+2+2+3+3"
},
{
"input": "2+3+3+1+2+2+2+1+1+2+1+3+2+2+3+3+2+2+3+3+3+1+1+1+3+3+3+2+1+3+2+3+2+1+1+3+3+3+1+2+2+1+2+2+1+2+1+3+1+1",
"output": "1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+3+3+3+3+3+3+3+3+3+3+3+3+3+3+3+3+3"
},
{
"input": "1",
"output": "1"
},
{
"input": "2+1+2+2+1+3+2+3+1+1+2+1+2+2+3+1+1+3+3+3+2+2+3+2+2+2+1+2+1+2+3+2+2+2+1+3+1+3+3+3+1+2+1+2+2+2+2+3+1+1",
"output": "1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+3+3+3+3+3+3+3+3+3+3+3+3+3"
},
{
"input": "2+2+1+1+1+3+1+1+3+3+2+3+1+3+1+1+3+1+1+2+2+2+2+1+2+1+2+1+1+1+3+1+3+2+3+2+3+3+1+1+1+2+3+2+1+3+1+3+2+2",
"output": "1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+3+3+3+3+3+3+3+3+3+3+3+3+3+3"
},
{
"input": "3+2+3+3+2+2+1+2+1+2+3+1+2+3+2+3+2+1+2+2+1+1+2+2+3+2+1+3+1+1+3+2+2+2+2+3+3+2+2+3+3+1+1+2+3+3+2+3+3+3",
"output": "1+1+1+1+1+1+1+1+1+1+1+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+3+3+3+3+3+3+3+3+3+3+3+3+3+3+3+3+3+3"
},
{
"input": "3",
"output": "3"
},
{
"input": "1+1",
"output": "1+1"
},
{
"input": "1+2",
"output": "1+2"
},
{
"input": "1+3",
"output": "1+3"
},
{
"input": "2+1",
"output": "1+2"
},
{
"input": "2+2",
"output": "2+2"
},
{
"input": "2+3",
"output": "2+3"
},
{
"input": "3+1",
"output": "1+3"
},
{
"input": "3+2",
"output": "2+3"
},
{
"input": "3+3",
"output": "3+3"
}
] | 1,696,045,573
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 21
| 62
| 0
|
# -*- coding: utf-8 -*-
"""
Created on Sat Sep 30 11:31:03 2023
@author: 20311
"""
order=list(map(str,input().split('+')))
order.sort()
print('+'.join(order))
|
Title: Helpful Maths
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Xenia the beginner mathematician is a third year student at elementary school. She is now learning the addition operation.
The teacher has written down the sum of multiple numbers. Pupils should calculate the sum. To make the calculation easier, the sum only contains numbers 1, 2 and 3. Still, that isn't enough for Xenia. She is only beginning to count, so she can calculate a sum only if the summands follow in non-decreasing order. For example, she can't calculate sum 1+3+2+1 but she can calculate sums 1+1+2 and 3+3.
You've got the sum that was written on the board. Rearrange the summans and print the sum in such a way that Xenia can calculate the sum.
Input Specification:
The first line contains a non-empty string *s* — the sum Xenia needs to count. String *s* contains no spaces. It only contains digits and characters "+". Besides, string *s* is a correct sum of numbers 1, 2 and 3. String *s* is at most 100 characters long.
Output Specification:
Print the new sum that Xenia can count.
Demo Input:
['3+2+1\n', '1+1+3+1+3\n', '2\n']
Demo Output:
['1+2+3\n', '1+1+1+3+3\n', '2\n']
Note:
none
|
```python
# -*- coding: utf-8 -*-
"""
Created on Sat Sep 30 11:31:03 2023
@author: 20311
"""
order=list(map(str,input().split('+')))
order.sort()
print('+'.join(order))
```
| 3
|
|
1,004
|
B
|
Sonya and Exhibition
|
PROGRAMMING
| 1,300
|
[
"constructive algorithms",
"greedy",
"implementation",
"math"
] | null | null |
Sonya decided to organize an exhibition of flowers. Since the girl likes only roses and lilies, she decided that only these two kinds of flowers should be in this exhibition.
There are $n$ flowers in a row in the exhibition. Sonya can put either a rose or a lily in the $i$-th position. Thus each of $n$ positions should contain exactly one flower: a rose or a lily.
She knows that exactly $m$ people will visit this exhibition. The $i$-th visitor will visit all flowers from $l_i$ to $r_i$ inclusive. The girl knows that each segment has its own beauty that is equal to the product of the number of roses and the number of lilies.
Sonya wants her exhibition to be liked by a lot of people. That is why she wants to put the flowers in such way that the sum of beauties of all segments would be maximum possible.
|
The first line contains two integers $n$ and $m$ ($1\leq n, m\leq 10^3$) — the number of flowers and visitors respectively.
Each of the next $m$ lines contains two integers $l_i$ and $r_i$ ($1\leq l_i\leq r_i\leq n$), meaning that $i$-th visitor will visit all flowers from $l_i$ to $r_i$ inclusive.
|
Print the string of $n$ characters. The $i$-th symbol should be «0» if you want to put a rose in the $i$-th position, otherwise «1» if you want to put a lily.
If there are multiple answers, print any.
|
[
"5 3\n1 3\n2 4\n2 5\n",
"6 3\n5 6\n1 4\n4 6\n"
] |
[
"01100",
"110010"
] |
In the first example, Sonya can put roses in the first, fourth, and fifth positions, and lilies in the second and third positions;
- in the segment $[1\ldots3]$, there are one rose and two lilies, so the beauty is equal to $1\cdot 2=2$; - in the segment $[2\ldots4]$, there are one rose and two lilies, so the beauty is equal to $1\cdot 2=2$; - in the segment $[2\ldots5]$, there are two roses and two lilies, so the beauty is equal to $2\cdot 2=4$.
The total beauty is equal to $2+2+4=8$.
In the second example, Sonya can put roses in the third, fourth, and sixth positions, and lilies in the first, second, and fifth positions;
- in the segment $[5\ldots6]$, there are one rose and one lily, so the beauty is equal to $1\cdot 1=1$; - in the segment $[1\ldots4]$, there are two roses and two lilies, so the beauty is equal to $2\cdot 2=4$; - in the segment $[4\ldots6]$, there are two roses and one lily, so the beauty is equal to $2\cdot 1=2$.
The total beauty is equal to $1+4+2=7$.
| 1,000
|
[
{
"input": "5 3\n1 3\n2 4\n2 5",
"output": "01010"
},
{
"input": "6 3\n5 6\n1 4\n4 6",
"output": "010101"
},
{
"input": "10 4\n3 3\n1 6\n9 9\n10 10",
"output": "0101010101"
},
{
"input": "1 1\n1 1",
"output": "0"
},
{
"input": "1000 10\n3 998\n2 1000\n1 999\n2 1000\n3 998\n2 1000\n3 998\n1 1000\n2 1000\n3 999",
"output": "0101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010..."
},
{
"input": "1000 20\n50 109\n317 370\n710 770\n440 488\n711 757\n236 278\n314 355\n131 190\n115 162\n784 834\n16 56\n677 730\n802 844\n632 689\n23 74\n647 702\n930 986\n926 983\n769 822\n508 558",
"output": "0101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010..."
},
{
"input": "1000 10\n138 238\n160 260\n716 816\n504 604\n98 198\n26 126\n114 214\n217 317\n121 221\n489 589",
"output": "0101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010..."
},
{
"input": "1000 5\n167 296\n613 753\n650 769\n298 439\n71 209",
"output": "0101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010..."
},
{
"input": "1000 5\n349 415\n714 773\n125 179\n1 80\n148 242",
"output": "0101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010..."
},
{
"input": "914 10\n587 646\n770 843\n825 875\n439 485\n465 521\n330 387\n405 480\n477 521\n336 376\n715 771",
"output": "0101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010..."
},
{
"input": "571 10\n13 94\n450 510\n230 293\n302 375\n304 354\n421 504\n24 87\n122 181\n221 296\n257 307",
"output": "0101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010..."
},
{
"input": "6 2\n1 6\n1 4",
"output": "010101"
},
{
"input": "2 1\n1 2",
"output": "01"
}
] | 1,530,809,534
| 1,034
|
Python 3
|
OK
|
TESTS
| 27
| 124
| 0
|
n, d = map(int, input().split())
print(''.join(str(i % 2) for i in range(n)))
|
Title: Sonya and Exhibition
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Sonya decided to organize an exhibition of flowers. Since the girl likes only roses and lilies, she decided that only these two kinds of flowers should be in this exhibition.
There are $n$ flowers in a row in the exhibition. Sonya can put either a rose or a lily in the $i$-th position. Thus each of $n$ positions should contain exactly one flower: a rose or a lily.
She knows that exactly $m$ people will visit this exhibition. The $i$-th visitor will visit all flowers from $l_i$ to $r_i$ inclusive. The girl knows that each segment has its own beauty that is equal to the product of the number of roses and the number of lilies.
Sonya wants her exhibition to be liked by a lot of people. That is why she wants to put the flowers in such way that the sum of beauties of all segments would be maximum possible.
Input Specification:
The first line contains two integers $n$ and $m$ ($1\leq n, m\leq 10^3$) — the number of flowers and visitors respectively.
Each of the next $m$ lines contains two integers $l_i$ and $r_i$ ($1\leq l_i\leq r_i\leq n$), meaning that $i$-th visitor will visit all flowers from $l_i$ to $r_i$ inclusive.
Output Specification:
Print the string of $n$ characters. The $i$-th symbol should be «0» if you want to put a rose in the $i$-th position, otherwise «1» if you want to put a lily.
If there are multiple answers, print any.
Demo Input:
['5 3\n1 3\n2 4\n2 5\n', '6 3\n5 6\n1 4\n4 6\n']
Demo Output:
['01100', '110010']
Note:
In the first example, Sonya can put roses in the first, fourth, and fifth positions, and lilies in the second and third positions;
- in the segment $[1\ldots3]$, there are one rose and two lilies, so the beauty is equal to $1\cdot 2=2$; - in the segment $[2\ldots4]$, there are one rose and two lilies, so the beauty is equal to $1\cdot 2=2$; - in the segment $[2\ldots5]$, there are two roses and two lilies, so the beauty is equal to $2\cdot 2=4$.
The total beauty is equal to $2+2+4=8$.
In the second example, Sonya can put roses in the third, fourth, and sixth positions, and lilies in the first, second, and fifth positions;
- in the segment $[5\ldots6]$, there are one rose and one lily, so the beauty is equal to $1\cdot 1=1$; - in the segment $[1\ldots4]$, there are two roses and two lilies, so the beauty is equal to $2\cdot 2=4$; - in the segment $[4\ldots6]$, there are two roses and one lily, so the beauty is equal to $2\cdot 1=2$.
The total beauty is equal to $1+4+2=7$.
|
```python
n, d = map(int, input().split())
print(''.join(str(i % 2) for i in range(n)))
```
| 3
|
|
540
|
A
|
Combination Lock
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Scrooge McDuck keeps his most treasured savings in a home safe with a combination lock. Each time he wants to put there the treasures that he's earned fair and square, he has to open the lock.
The combination lock is represented by *n* rotating disks with digits from 0 to 9 written on them. Scrooge McDuck has to turn some disks so that the combination of digits on the disks forms a secret combination. In one move, he can rotate one disk one digit forwards or backwards. In particular, in one move he can go from digit 0 to digit 9 and vice versa. What minimum number of actions does he need for that?
|
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=1000) — the number of disks on the combination lock.
The second line contains a string of *n* digits — the original state of the disks.
The third line contains a string of *n* digits — Scrooge McDuck's combination that opens the lock.
|
Print a single integer — the minimum number of moves Scrooge McDuck needs to open the lock.
|
[
"5\n82195\n64723\n"
] |
[
"13\n"
] |
In the sample he needs 13 moves:
- 1 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/b8967f65a723782358b93eff9ce69f336817cf70.png" style="max-width: 100.0%;max-height: 100.0%;"/> - 2 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/07fa58573ece0d32c4d555e498d2b24d2f70f36a.png" style="max-width: 100.0%;max-height: 100.0%;"/> - 3 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/cc2275d9252aae35a6867c6a5b4ba7596e9a7626.png" style="max-width: 100.0%;max-height: 100.0%;"/> - 4 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/b100aea470fcaaab4e9529b234ba0d7875943c10.png" style="max-width: 100.0%;max-height: 100.0%;"/> - 5 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/eb2cbe4324cebca65b85816262a85e473cd65967.png" style="max-width: 100.0%;max-height: 100.0%;"/>
| 500
|
[
{
"input": "5\n82195\n64723",
"output": "13"
},
{
"input": "12\n102021090898\n010212908089",
"output": "16"
},
{
"input": "1\n8\n1",
"output": "3"
},
{
"input": "2\n83\n57",
"output": "7"
},
{
"input": "10\n0728592530\n1362615763",
"output": "27"
},
{
"input": "100\n4176196363694273682807653052945037727131821799902563705176501742060696655282954944720643131654235909\n3459912084922154505910287499879975659298239371519889866585472674423008837878123067103005344986554746",
"output": "245"
},
{
"input": "1\n8\n1",
"output": "3"
},
{
"input": "2\n83\n57",
"output": "7"
},
{
"input": "3\n607\n684",
"output": "5"
},
{
"input": "4\n0809\n0636",
"output": "8"
},
{
"input": "5\n84284\n08941",
"output": "16"
},
{
"input": "25\n8037856825987124762280548\n9519431339078678836940020",
"output": "72"
},
{
"input": "125\n23269567683904664184142384849516523616863461607751021071772615078579713054027902974007001544768640273491193035874486891541257\n47635110303703399505805044019026243695451609639556649012447370081552870340011971572363458960190590266459684717415349529509024",
"output": "305"
},
{
"input": "5\n84284\n08941",
"output": "16"
},
{
"input": "25\n8037856825987124762285484\n9519431339078678836940202",
"output": "74"
},
{
"input": "125\n23269567689466418414238845152168634610771021717726157879713054270294007001544768647391193035874486891412573389247025830678706\n47635110307339950580504010224954516093956649124473708152870340117152363458960190596659684717415349529090241694059599629136831",
"output": "357"
},
{
"input": "5\n84284\n08941",
"output": "16"
},
{
"input": "25\n8378525987476228048406972\n9194339078883694020217816",
"output": "55"
},
{
"input": "125\n23269576839046618414238484916523616863461607750210717761078579713054027902974007015447686027349193035874486891541257338624472\n47635103037033950580504401926243695451609639556490124437081552870340011971572363489601905026645984717415349529509024169604599",
"output": "274"
},
{
"input": "1\n0\n0",
"output": "0"
},
{
"input": "1\n7\n7",
"output": "0"
},
{
"input": "1\n0\n5",
"output": "5"
},
{
"input": "1\n2\n7",
"output": "5"
},
{
"input": "1\n7\n9",
"output": "2"
},
{
"input": "1\n9\n7",
"output": "2"
},
{
"input": "1\n2\n9",
"output": "3"
},
{
"input": "1\n9\n2",
"output": "3"
},
{
"input": "25\n3164978461316464614169874\n9413979197249127496597357",
"output": "66"
},
{
"input": "4\n9999\n9999",
"output": "0"
},
{
"input": "2\n11\n11",
"output": "0"
}
] | 1,650,081,732
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 43
| 46
| 0
|
def get_least_moves(num1, num2):
if num1 > num2:
num1, num2 = num2, num1
if abs(num1 - num2) < 6:
return abs(num1 - num2)
else:
return (10 - num2) + num1
def main():
disks = int(input())
original = input()
combination = input()
min_moves = 0
for i in range(disks):
min_moves += get_least_moves(int(original[i]), int(combination[i]))
print(min_moves)
if __name__ == "__main__":
main()
|
Title: Combination Lock
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Scrooge McDuck keeps his most treasured savings in a home safe with a combination lock. Each time he wants to put there the treasures that he's earned fair and square, he has to open the lock.
The combination lock is represented by *n* rotating disks with digits from 0 to 9 written on them. Scrooge McDuck has to turn some disks so that the combination of digits on the disks forms a secret combination. In one move, he can rotate one disk one digit forwards or backwards. In particular, in one move he can go from digit 0 to digit 9 and vice versa. What minimum number of actions does he need for that?
Input Specification:
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=1000) — the number of disks on the combination lock.
The second line contains a string of *n* digits — the original state of the disks.
The third line contains a string of *n* digits — Scrooge McDuck's combination that opens the lock.
Output Specification:
Print a single integer — the minimum number of moves Scrooge McDuck needs to open the lock.
Demo Input:
['5\n82195\n64723\n']
Demo Output:
['13\n']
Note:
In the sample he needs 13 moves:
- 1 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/b8967f65a723782358b93eff9ce69f336817cf70.png" style="max-width: 100.0%;max-height: 100.0%;"/> - 2 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/07fa58573ece0d32c4d555e498d2b24d2f70f36a.png" style="max-width: 100.0%;max-height: 100.0%;"/> - 3 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/cc2275d9252aae35a6867c6a5b4ba7596e9a7626.png" style="max-width: 100.0%;max-height: 100.0%;"/> - 4 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/b100aea470fcaaab4e9529b234ba0d7875943c10.png" style="max-width: 100.0%;max-height: 100.0%;"/> - 5 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/eb2cbe4324cebca65b85816262a85e473cd65967.png" style="max-width: 100.0%;max-height: 100.0%;"/>
|
```python
def get_least_moves(num1, num2):
if num1 > num2:
num1, num2 = num2, num1
if abs(num1 - num2) < 6:
return abs(num1 - num2)
else:
return (10 - num2) + num1
def main():
disks = int(input())
original = input()
combination = input()
min_moves = 0
for i in range(disks):
min_moves += get_least_moves(int(original[i]), int(combination[i]))
print(min_moves)
if __name__ == "__main__":
main()
```
| 3
|
|
272
|
A
|
Dima and Friends
|
PROGRAMMING
| 1,000
|
[
"implementation",
"math"
] | null | null |
Dima and his friends have been playing hide and seek at Dima's place all night. As a result, Dima's place got messy. In the morning they decided that they need to clean the place.
To decide who exactly would clean the apartment, the friends want to play a counting-out game. First, all the guys stand in a circle, and then each of them shows some number of fingers on one hand (one to five), and then the boys count in a circle, starting from Dima, the number of people, respective to the total number of fingers shown. The person on who the countdown stops will clean the apartment.
For example, if Dima and one of his friends played hide and seek, and 7 fingers were shown during the counting-out, then Dima would clean the place. If there were 2 or say, 8 fingers shown, then his friend would clean the place.
Dima knows how many fingers each of his friends will show during the counting-out. Now he is interested in the number of ways to show some number of fingers on one hand (one to five), so that he did not have to clean the place. Help Dima.
|
The first line contains integer *n* (1<=≤<=*n*<=≤<=100) — the number of Dima's friends. Dima himself isn't considered to be his own friend. The second line contains *n* positive integers, not exceeding 5, representing, how many fingers the Dima's friends will show.
The numbers in the lines are separated by a single space.
|
In a single line print the answer to the problem.
|
[
"1\n1\n",
"1\n2\n",
"2\n3 5\n"
] |
[
"3\n",
"2\n",
"3\n"
] |
In the first sample Dima can show 1, 3 or 5 fingers. If Dima shows 3 fingers, then the counting-out will go like that: Dima, his friend, Dima, his friend.
In the second sample Dima can show 2 or 4 fingers.
| 500
|
[
{
"input": "1\n1",
"output": "3"
},
{
"input": "1\n2",
"output": "2"
},
{
"input": "2\n3 5",
"output": "3"
},
{
"input": "2\n3 5",
"output": "3"
},
{
"input": "1\n5",
"output": "3"
},
{
"input": "5\n4 4 3 5 1",
"output": "4"
},
{
"input": "6\n2 3 2 2 1 3",
"output": "4"
},
{
"input": "8\n2 2 5 3 4 3 3 2",
"output": "4"
},
{
"input": "7\n4 1 3 2 2 4 5",
"output": "4"
},
{
"input": "3\n3 5 1",
"output": "4"
},
{
"input": "95\n4 2 3 4 4 5 2 2 4 4 3 5 3 3 3 5 4 2 5 4 2 1 1 3 4 2 1 3 5 4 2 1 1 5 1 1 2 2 4 4 5 4 5 5 2 1 2 2 2 4 5 5 2 4 3 4 4 3 5 2 4 1 5 4 5 1 3 2 4 2 2 1 5 3 1 5 3 4 3 3 2 1 2 2 1 3 1 5 2 3 1 1 2 5 2",
"output": "5"
},
{
"input": "31\n3 2 3 3 3 3 4 4 1 5 5 4 2 4 3 2 2 1 4 4 1 2 3 1 1 5 5 3 4 4 1",
"output": "4"
},
{
"input": "42\n3 1 2 2 5 1 2 2 4 5 4 5 2 5 4 5 4 4 1 4 3 3 4 4 4 4 3 2 1 3 4 5 5 2 1 2 1 5 5 2 4 4",
"output": "5"
},
{
"input": "25\n4 5 5 5 3 1 1 4 4 4 3 5 4 4 1 4 4 1 2 4 2 5 4 5 3",
"output": "5"
},
{
"input": "73\n3 4 3 4 5 1 3 4 2 1 4 2 2 3 5 3 1 4 2 3 2 1 4 5 3 5 2 2 4 3 2 2 5 3 2 3 5 1 3 1 1 4 5 2 4 2 5 1 4 3 1 3 1 4 2 3 3 3 3 5 5 2 5 2 5 4 3 1 1 5 5 2 3",
"output": "4"
},
{
"input": "46\n1 4 4 5 4 5 2 3 5 5 3 2 5 4 1 3 2 2 1 4 3 1 5 5 2 2 2 2 4 4 1 1 4 3 4 3 1 4 2 2 4 2 3 2 5 2",
"output": "4"
},
{
"input": "23\n5 2 1 1 4 2 5 5 3 5 4 5 5 1 1 5 2 4 5 3 4 4 3",
"output": "5"
},
{
"input": "6\n4 2 3 1 3 5",
"output": "4"
},
{
"input": "15\n5 5 5 3 5 4 1 3 3 4 3 4 1 4 4",
"output": "5"
},
{
"input": "93\n1 3 1 4 3 3 5 3 1 4 5 4 3 2 2 4 3 1 4 1 2 3 3 3 2 5 1 3 1 4 5 1 1 1 4 2 1 2 3 1 1 1 5 1 5 5 1 2 5 4 3 2 2 4 4 2 5 4 5 5 3 1 3 1 2 1 3 1 1 2 3 4 4 5 5 3 2 1 3 3 5 1 3 5 4 4 1 3 3 4 2 3 2",
"output": "5"
},
{
"input": "96\n1 5 1 3 2 1 2 2 2 2 3 4 1 1 5 4 4 1 2 3 5 1 4 4 4 1 3 3 1 4 5 4 1 3 5 3 4 4 3 2 1 1 4 4 5 1 1 2 5 1 2 3 1 4 1 2 2 2 3 2 3 3 2 5 2 2 3 3 3 3 2 1 2 4 5 5 1 5 3 2 1 4 3 5 5 5 3 3 5 3 4 3 4 2 1 3",
"output": "5"
},
{
"input": "49\n1 4 4 3 5 2 2 1 5 1 2 1 2 5 1 4 1 4 5 2 4 5 3 5 2 4 2 1 3 4 2 1 4 2 1 1 3 3 2 3 5 4 3 4 2 4 1 4 1",
"output": "5"
},
{
"input": "73\n4 1 3 3 3 1 5 2 1 4 1 1 3 5 1 1 4 5 2 1 5 4 1 5 3 1 5 2 4 5 1 4 3 3 5 2 2 3 3 2 5 1 4 5 2 3 1 4 4 3 5 2 3 5 1 4 3 5 1 2 4 1 3 3 5 4 2 4 2 4 1 2 5",
"output": "5"
},
{
"input": "41\n5 3 5 4 2 5 4 3 1 1 1 5 4 3 4 3 5 4 2 5 4 1 1 3 2 4 5 3 5 1 5 5 1 1 1 4 4 1 2 4 3",
"output": "5"
},
{
"input": "100\n3 3 1 4 2 4 4 3 1 5 1 1 4 4 3 4 4 3 5 4 5 2 4 3 4 1 2 4 5 4 2 1 5 4 1 1 4 3 2 4 1 2 1 4 4 5 5 4 4 5 3 2 5 1 4 2 2 1 1 2 5 2 5 1 5 3 1 4 3 2 4 3 2 2 4 5 5 1 2 3 1 4 1 2 2 2 5 5 2 3 2 4 3 1 1 2 1 2 1 2",
"output": "5"
},
{
"input": "100\n2 1 1 3 5 4 4 2 3 4 3 4 5 4 5 4 2 4 5 3 4 5 4 1 1 4 4 1 1 2 5 4 2 4 5 3 2 5 4 3 4 5 1 3 4 2 5 4 5 4 5 2 4 1 2 5 3 1 4 4 5 3 4 3 1 2 5 4 2 5 4 1 5 3 5 4 1 2 5 3 1 1 1 1 5 3 4 3 5 1 1 5 5 1 1 2 2 1 5 1",
"output": "5"
},
{
"input": "100\n4 4 3 3 2 5 4 4 2 1 4 4 4 5 4 1 2 1 5 2 4 3 4 1 4 1 2 5 1 4 5 4 2 1 2 5 3 4 5 5 2 1 2 2 2 2 2 3 2 5 1 2 2 3 2 5 5 1 3 4 5 2 1 3 4 2 2 4 4 3 3 3 2 3 2 1 5 5 5 2 1 4 2 3 5 1 4 4 2 3 2 5 5 4 3 5 1 3 5 5",
"output": "5"
},
{
"input": "100\n4 4 2 5 4 2 2 3 4 4 3 2 3 3 1 3 4 3 3 4 1 3 1 4 5 3 4 3 1 1 1 3 3 2 3 4 3 4 2 2 1 5 1 4 5 1 1 1 3 3 1 1 3 2 5 4 2 5 2 4 5 4 4 1 1 2 1 1 4 5 1 1 5 3 3 2 5 5 5 1 4 1 4 1 1 3 2 3 4 4 2 5 5 2 5 1 1 3 5 3",
"output": "5"
},
{
"input": "100\n4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4",
"output": "4"
},
{
"input": "100\n5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5",
"output": "5"
}
] | 1,653,863,626
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 30
| 92
| 0
|
num=int(input())+1
total=sum(list(map(int,input().split())))
count=0
for i in range(total+1,total+6):
if i%num==1:
count+=1
print(5-count)
|
Title: Dima and Friends
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Dima and his friends have been playing hide and seek at Dima's place all night. As a result, Dima's place got messy. In the morning they decided that they need to clean the place.
To decide who exactly would clean the apartment, the friends want to play a counting-out game. First, all the guys stand in a circle, and then each of them shows some number of fingers on one hand (one to five), and then the boys count in a circle, starting from Dima, the number of people, respective to the total number of fingers shown. The person on who the countdown stops will clean the apartment.
For example, if Dima and one of his friends played hide and seek, and 7 fingers were shown during the counting-out, then Dima would clean the place. If there were 2 or say, 8 fingers shown, then his friend would clean the place.
Dima knows how many fingers each of his friends will show during the counting-out. Now he is interested in the number of ways to show some number of fingers on one hand (one to five), so that he did not have to clean the place. Help Dima.
Input Specification:
The first line contains integer *n* (1<=≤<=*n*<=≤<=100) — the number of Dima's friends. Dima himself isn't considered to be his own friend. The second line contains *n* positive integers, not exceeding 5, representing, how many fingers the Dima's friends will show.
The numbers in the lines are separated by a single space.
Output Specification:
In a single line print the answer to the problem.
Demo Input:
['1\n1\n', '1\n2\n', '2\n3 5\n']
Demo Output:
['3\n', '2\n', '3\n']
Note:
In the first sample Dima can show 1, 3 or 5 fingers. If Dima shows 3 fingers, then the counting-out will go like that: Dima, his friend, Dima, his friend.
In the second sample Dima can show 2 or 4 fingers.
|
```python
num=int(input())+1
total=sum(list(map(int,input().split())))
count=0
for i in range(total+1,total+6):
if i%num==1:
count+=1
print(5-count)
```
| 3
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.