contestId
int64 0
1.01k
| index
stringclasses 40
values | name
stringlengths 2
54
| type
stringclasses 2
values | rating
int64 0
3.4k
| tags
listlengths 0
7
| title
stringclasses 393
values | time-limit
stringclasses 7
values | memory-limit
stringclasses 6
values | problem-description
stringlengths 0
2.97k
| input-specification
stringlengths 4
1.87k
| output-specification
stringlengths 4
1.12k
| demo-input
listlengths 0
7
| demo-output
listlengths 0
7
| note
stringlengths 0
5.24k
| points
float64 0
3.5k
| test_cases
listlengths 0
402
| creationTimeSeconds
int64 1.37B
1.7B
| relativeTimeSeconds
int64 8
2.15B
| programmingLanguage
stringclasses 3
values | verdict
stringclasses 1
value | testset
stringclasses 9
values | passedTestCount
int64 1
402
| timeConsumedMillis
int64 15
8.06k
| memoryConsumedBytes
int64 0
514M
| code
stringlengths 11
61.4k
| prompt
stringlengths 297
7.35k
| response
stringlengths 25
61.4k
| score
float64 2.82
3.99
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
205
|
A
|
Little Elephant and Rozdil
|
PROGRAMMING
| 900
|
[
"brute force",
"implementation"
] | null | null |
The Little Elephant loves Ukraine very much. Most of all he loves town Rozdol (ukr. "Rozdil").
However, Rozdil is dangerous to settle, so the Little Elephant wants to go to some other town. The Little Elephant doesn't like to spend much time on travelling, so for his journey he will choose a town that needs minimum time to travel to. If there are multiple such cities, then the Little Elephant won't go anywhere.
For each town except for Rozdil you know the time needed to travel to this town. Find the town the Little Elephant will go to or print "Still Rozdil", if he stays in Rozdil.
|
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=105) — the number of cities. The next line contains *n* integers, separated by single spaces: the *i*-th integer represents the time needed to go from town Rozdil to the *i*-th town. The time values are positive integers, not exceeding 109.
You can consider the cities numbered from 1 to *n*, inclusive. Rozdil is not among the numbered cities.
|
Print the answer on a single line — the number of the town the Little Elephant will go to. If there are multiple cities with minimum travel time, print "Still Rozdil" (without the quotes).
|
[
"2\n7 4\n",
"7\n7 4 47 100 4 9 12\n"
] |
[
"2\n",
"Still Rozdil\n"
] |
In the first sample there are only two cities where the Little Elephant can go. The travel time for the first town equals 7, to the second one — 4. The town which is closest to Rodzil (the only one) is the second one, so the answer is 2.
In the second sample the closest cities are cities two and five, the travelling time to both of them equals 4, so the answer is "Still Rozdil".
| 500
|
[
{
"input": "2\n7 4",
"output": "2"
},
{
"input": "7\n7 4 47 100 4 9 12",
"output": "Still Rozdil"
},
{
"input": "1\n47",
"output": "1"
},
{
"input": "2\n1000000000 1000000000",
"output": "Still Rozdil"
},
{
"input": "7\n7 6 5 4 3 2 1",
"output": "7"
},
{
"input": "10\n1 1 1 1 1 1 1 1 1 1",
"output": "Still Rozdil"
},
{
"input": "4\n1000000000 100000000 1000000 1000000",
"output": "Still Rozdil"
},
{
"input": "20\n7 1 1 2 1 1 8 7 7 8 4 3 7 10 5 3 10 5 10 6",
"output": "Still Rozdil"
},
{
"input": "20\n3 3 6 9 8 2 4 1 7 3 2 9 7 7 9 7 2 6 2 7",
"output": "8"
},
{
"input": "47\n35 79 84 56 67 95 80 34 77 68 14 55 95 32 40 89 58 79 96 66 50 79 35 86 31 74 91 35 22 72 84 38 11 59 73 51 65 11 11 62 30 12 32 71 69 15 11",
"output": "Still Rozdil"
},
{
"input": "47\n3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3",
"output": "32"
},
{
"input": "25\n73 56 65 70 57 57 49 50 65 68 54 48 66 55 55 66 60 70 47 62 63 70 62 70 63",
"output": "19"
},
{
"input": "100\n922 938 103 689 526 118 314 496 373 47 224 544 495 656 804 754 269 356 354 536 817 597 787 178 516 659 790 993 786 169 866 779 997 350 674 437 219 546 564 893 402 449 751 628 238 686 392 951 716 439 332 563 215 146 746 311 866 773 548 675 731 183 890 802 488 944 473 25 662 559 732 534 777 144 502 593 839 692 84 337 679 718 1005 663 709 940 86 469 310 960 902 233 606 761 116 231 662 903 68 622",
"output": "68"
},
{
"input": "5\n5 5 2 3 1",
"output": "5"
},
{
"input": "1\n1000000000",
"output": "1"
},
{
"input": "3\n7 7 4",
"output": "3"
},
{
"input": "3\n2 2 1",
"output": "3"
},
{
"input": "3\n4 4 3",
"output": "3"
},
{
"input": "2\n10000001 10000002",
"output": "1"
},
{
"input": "4\n3 3 2 1",
"output": "4"
},
{
"input": "3\n1 2 3",
"output": "1"
},
{
"input": "2\n1000000000 100000000",
"output": "2"
},
{
"input": "1\n99999999",
"output": "1"
},
{
"input": "3\n5 5 3",
"output": "3"
},
{
"input": "3\n7 7 5",
"output": "3"
},
{
"input": "3\n3 3 1",
"output": "3"
},
{
"input": "4\n10 10 10 1",
"output": "4"
}
] | 1,623,928,363
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 45
| 218
| 8,192,000
|
n=int(input())
a=list(map(int,input().split()))
m=min(a)
print("Still Rozdil" if a.count(m)>1 else a.index(m)+1)
|
Title: Little Elephant and Rozdil
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
The Little Elephant loves Ukraine very much. Most of all he loves town Rozdol (ukr. "Rozdil").
However, Rozdil is dangerous to settle, so the Little Elephant wants to go to some other town. The Little Elephant doesn't like to spend much time on travelling, so for his journey he will choose a town that needs minimum time to travel to. If there are multiple such cities, then the Little Elephant won't go anywhere.
For each town except for Rozdil you know the time needed to travel to this town. Find the town the Little Elephant will go to or print "Still Rozdil", if he stays in Rozdil.
Input Specification:
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=105) — the number of cities. The next line contains *n* integers, separated by single spaces: the *i*-th integer represents the time needed to go from town Rozdil to the *i*-th town. The time values are positive integers, not exceeding 109.
You can consider the cities numbered from 1 to *n*, inclusive. Rozdil is not among the numbered cities.
Output Specification:
Print the answer on a single line — the number of the town the Little Elephant will go to. If there are multiple cities with minimum travel time, print "Still Rozdil" (without the quotes).
Demo Input:
['2\n7 4\n', '7\n7 4 47 100 4 9 12\n']
Demo Output:
['2\n', 'Still Rozdil\n']
Note:
In the first sample there are only two cities where the Little Elephant can go. The travel time for the first town equals 7, to the second one — 4. The town which is closest to Rodzil (the only one) is the second one, so the answer is 2.
In the second sample the closest cities are cities two and five, the travelling time to both of them equals 4, so the answer is "Still Rozdil".
|
```python
n=int(input())
a=list(map(int,input().split()))
m=min(a)
print("Still Rozdil" if a.count(m)>1 else a.index(m)+1)
```
| 3
|
|
617
|
C
|
Watering Flowers
|
PROGRAMMING
| 1,600
|
[
"implementation"
] | null | null |
A flowerbed has many flowers and two fountains.
You can adjust the water pressure and set any values *r*1(*r*1<=≥<=0) and *r*2(*r*2<=≥<=0), giving the distances at which the water is spread from the first and second fountain respectively. You have to set such *r*1 and *r*2 that all the flowers are watered, that is, for each flower, the distance between the flower and the first fountain doesn't exceed *r*1, or the distance to the second fountain doesn't exceed *r*2. It's OK if some flowers are watered by both fountains.
You need to decrease the amount of water you need, that is set such *r*1 and *r*2 that all the flowers are watered and the *r*12<=+<=*r*22 is minimum possible. Find this minimum value.
|
The first line of the input contains integers *n*, *x*1, *y*1, *x*2, *y*2 (1<=≤<=*n*<=≤<=2000, <=-<=107<=≤<=*x*1,<=*y*1,<=*x*2,<=*y*2<=≤<=107) — the number of flowers, the coordinates of the first and the second fountain.
Next follow *n* lines. The *i*-th of these lines contains integers *x**i* and *y**i* (<=-<=107<=≤<=*x**i*,<=*y**i*<=≤<=107) — the coordinates of the *i*-th flower.
It is guaranteed that all *n*<=+<=2 points in the input are distinct.
|
Print the minimum possible value *r*12<=+<=*r*22. Note, that in this problem optimal answer is always integer.
|
[
"2 -1 0 5 3\n0 2\n5 2\n",
"4 0 0 5 0\n9 4\n8 3\n-1 0\n1 4\n"
] |
[
"6\n",
"33\n"
] |
The first sample is (*r*<sub class="lower-index">1</sub><sup class="upper-index">2</sup> = 5, *r*<sub class="lower-index">2</sub><sup class="upper-index">2</sup> = 1): <img class="tex-graphics" src="https://espresso.codeforces.com/15e780f508832a19b14698dd8eb54b4c0dd131bf.png" style="max-width: 100.0%;max-height: 100.0%;"/> The second sample is (*r*<sub class="lower-index">1</sub><sup class="upper-index">2</sup> = 1, *r*<sub class="lower-index">2</sub><sup class="upper-index">2</sup> = 32): <img class="tex-graphics" src="https://espresso.codeforces.com/da4dc31002cc9b37092d64035ab56ad8544c0d7b.png" style="max-width: 100.0%;max-height: 100.0%;"/>
| 1,250
|
[
{
"input": "2 -1 0 5 3\n0 2\n5 2",
"output": "6"
},
{
"input": "4 0 0 5 0\n9 4\n8 3\n-1 0\n1 4",
"output": "33"
},
{
"input": "5 -6 -4 0 10\n-7 6\n-9 7\n-5 -1\n-2 1\n-8 10",
"output": "100"
},
{
"input": "10 -68 10 87 22\n30 89\n82 -97\n-52 25\n76 -22\n-20 95\n21 25\n2 -3\n45 -7\n-98 -56\n-15 16",
"output": "22034"
},
{
"input": "1 -10000000 -10000000 -10000000 -9999999\n10000000 10000000",
"output": "799999960000001"
}
] | 1,698,952,193
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 31
| 124
| 2,457,600
|
import sys
input=sys.stdin.readline
n,x1,y1,x2,y2=map(int,input().split())
l=[]
for _ in range(n):
x,y=map(int,input().split())
l.append([(x-x1)**2+(y-y1)**2,(x-x2)**2+(y-y2)**2])
l.sort(reverse=True)
s=10**18
q=0
for u,v in l:
s=min(s,u+q)
q=max(q,v)
print(min(s,q))
|
Title: Watering Flowers
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
A flowerbed has many flowers and two fountains.
You can adjust the water pressure and set any values *r*1(*r*1<=≥<=0) and *r*2(*r*2<=≥<=0), giving the distances at which the water is spread from the first and second fountain respectively. You have to set such *r*1 and *r*2 that all the flowers are watered, that is, for each flower, the distance between the flower and the first fountain doesn't exceed *r*1, or the distance to the second fountain doesn't exceed *r*2. It's OK if some flowers are watered by both fountains.
You need to decrease the amount of water you need, that is set such *r*1 and *r*2 that all the flowers are watered and the *r*12<=+<=*r*22 is minimum possible. Find this minimum value.
Input Specification:
The first line of the input contains integers *n*, *x*1, *y*1, *x*2, *y*2 (1<=≤<=*n*<=≤<=2000, <=-<=107<=≤<=*x*1,<=*y*1,<=*x*2,<=*y*2<=≤<=107) — the number of flowers, the coordinates of the first and the second fountain.
Next follow *n* lines. The *i*-th of these lines contains integers *x**i* and *y**i* (<=-<=107<=≤<=*x**i*,<=*y**i*<=≤<=107) — the coordinates of the *i*-th flower.
It is guaranteed that all *n*<=+<=2 points in the input are distinct.
Output Specification:
Print the minimum possible value *r*12<=+<=*r*22. Note, that in this problem optimal answer is always integer.
Demo Input:
['2 -1 0 5 3\n0 2\n5 2\n', '4 0 0 5 0\n9 4\n8 3\n-1 0\n1 4\n']
Demo Output:
['6\n', '33\n']
Note:
The first sample is (*r*<sub class="lower-index">1</sub><sup class="upper-index">2</sup> = 5, *r*<sub class="lower-index">2</sub><sup class="upper-index">2</sup> = 1): <img class="tex-graphics" src="https://espresso.codeforces.com/15e780f508832a19b14698dd8eb54b4c0dd131bf.png" style="max-width: 100.0%;max-height: 100.0%;"/> The second sample is (*r*<sub class="lower-index">1</sub><sup class="upper-index">2</sup> = 1, *r*<sub class="lower-index">2</sub><sup class="upper-index">2</sup> = 32): <img class="tex-graphics" src="https://espresso.codeforces.com/da4dc31002cc9b37092d64035ab56ad8544c0d7b.png" style="max-width: 100.0%;max-height: 100.0%;"/>
|
```python
import sys
input=sys.stdin.readline
n,x1,y1,x2,y2=map(int,input().split())
l=[]
for _ in range(n):
x,y=map(int,input().split())
l.append([(x-x1)**2+(y-y1)**2,(x-x2)**2+(y-y2)**2])
l.sort(reverse=True)
s=10**18
q=0
for u,v in l:
s=min(s,u+q)
q=max(q,v)
print(min(s,q))
```
| 3
|
|
75
|
A
|
Life Without Zeros
|
PROGRAMMING
| 1,000
|
[
"implementation"
] |
A. Life Without Zeros
|
2
|
256
|
Can you imagine our life if we removed all zeros from it? For sure we will have many problems.
In this problem we will have a simple example if we removed all zeros from our life, it's the addition operation. Let's assume you are given this equation *a*<=+<=*b*<==<=*c*, where *a* and *b* are positive integers, and *c* is the sum of *a* and *b*. Now let's remove all zeros from this equation. Will the equation remain correct after removing all zeros?
For example if the equation is 101<=+<=102<==<=203, if we removed all zeros it will be 11<=+<=12<==<=23 which is still a correct equation.
But if the equation is 105<=+<=106<==<=211, if we removed all zeros it will be 15<=+<=16<==<=211 which is not a correct equation.
|
The input will consist of two lines, the first line will contain the integer *a*, and the second line will contain the integer *b* which are in the equation as described above (1<=≤<=*a*,<=*b*<=≤<=109). There won't be any leading zeros in both. The value of *c* should be calculated as *c*<==<=*a*<=+<=*b*.
|
The output will be just one line, you should print "YES" if the equation will remain correct after removing all zeros, and print "NO" otherwise.
|
[
"101\n102\n",
"105\n106\n"
] |
[
"YES\n",
"NO\n"
] |
none
| 500
|
[
{
"input": "101\n102",
"output": "YES"
},
{
"input": "105\n106",
"output": "NO"
},
{
"input": "544\n397",
"output": "YES"
},
{
"input": "822\n280",
"output": "NO"
},
{
"input": "101\n413",
"output": "NO"
},
{
"input": "309\n139",
"output": "NO"
},
{
"input": "693\n970",
"output": "NO"
},
{
"input": "981\n1",
"output": "YES"
},
{
"input": "352\n276",
"output": "YES"
},
{
"input": "164\n691",
"output": "YES"
},
{
"input": "110036\n43",
"output": "YES"
},
{
"input": "100\n1000",
"output": "NO"
},
{
"input": "1000000000\n1000000000",
"output": "YES"
},
{
"input": "999999999\n999999999",
"output": "YES"
},
{
"input": "6\n4",
"output": "NO"
},
{
"input": "123456\n876543",
"output": "YES"
},
{
"input": "1234567\n9876543",
"output": "NO"
},
{
"input": "1111111\n1119111",
"output": "NO"
},
{
"input": "10502405\n40403403",
"output": "YES"
},
{
"input": "1\n1",
"output": "YES"
},
{
"input": "5\n4",
"output": "YES"
},
{
"input": "1\n6",
"output": "YES"
},
{
"input": "40\n17",
"output": "NO"
},
{
"input": "35\n81",
"output": "YES"
},
{
"input": "347\n908",
"output": "NO"
},
{
"input": "2081\n7450",
"output": "NO"
},
{
"input": "84355694\n373629503",
"output": "NO"
},
{
"input": "885992048\n510468672",
"output": "NO"
},
{
"input": "540144752\n647307841",
"output": "NO"
},
{
"input": "341781108\n784147010",
"output": "NO"
},
{
"input": "960440938\n572334653",
"output": "NO"
},
{
"input": "657414510\n768771903",
"output": "NO"
},
{
"input": "501871728\n725074574",
"output": "NO"
},
{
"input": "968\n851",
"output": "YES"
},
{
"input": "943\n939",
"output": "YES"
},
{
"input": "347\n908",
"output": "NO"
},
{
"input": "611\n41",
"output": "YES"
},
{
"input": "737\n289",
"output": "NO"
},
{
"input": "168\n571",
"output": "YES"
},
{
"input": "868\n463",
"output": "YES"
},
{
"input": "815732007\n913882008",
"output": "NO"
},
{
"input": "459039901\n453033850",
"output": "NO"
},
{
"input": "975305404\n484601256",
"output": "NO"
}
] | 1,595,439,627
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 43
| 218
| 6,963,200
|
a = input()
b = input()
c = int(a) + int(b)
na = ""
nb = ""
nc = ""
for i in a:
if i != "0":
na += i
for i in b:
if i != "0":
nb += i
for i in str(c):
if i!="0":
nc += i
if str(int(na)+int(nb)) == nc:
print("YES")
else:
print("NO")
|
Title: Life Without Zeros
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Can you imagine our life if we removed all zeros from it? For sure we will have many problems.
In this problem we will have a simple example if we removed all zeros from our life, it's the addition operation. Let's assume you are given this equation *a*<=+<=*b*<==<=*c*, where *a* and *b* are positive integers, and *c* is the sum of *a* and *b*. Now let's remove all zeros from this equation. Will the equation remain correct after removing all zeros?
For example if the equation is 101<=+<=102<==<=203, if we removed all zeros it will be 11<=+<=12<==<=23 which is still a correct equation.
But if the equation is 105<=+<=106<==<=211, if we removed all zeros it will be 15<=+<=16<==<=211 which is not a correct equation.
Input Specification:
The input will consist of two lines, the first line will contain the integer *a*, and the second line will contain the integer *b* which are in the equation as described above (1<=≤<=*a*,<=*b*<=≤<=109). There won't be any leading zeros in both. The value of *c* should be calculated as *c*<==<=*a*<=+<=*b*.
Output Specification:
The output will be just one line, you should print "YES" if the equation will remain correct after removing all zeros, and print "NO" otherwise.
Demo Input:
['101\n102\n', '105\n106\n']
Demo Output:
['YES\n', 'NO\n']
Note:
none
|
```python
a = input()
b = input()
c = int(a) + int(b)
na = ""
nb = ""
nc = ""
for i in a:
if i != "0":
na += i
for i in b:
if i != "0":
nb += i
for i in str(c):
if i!="0":
nc += i
if str(int(na)+int(nb)) == nc:
print("YES")
else:
print("NO")
```
| 3.93253
|
514
|
A
|
Chewbaсca and Number
|
PROGRAMMING
| 1,200
|
[
"greedy",
"implementation"
] | null | null |
Luke Skywalker gave Chewbacca an integer number *x*. Chewbacca isn't good at numbers but he loves inverting digits in them. Inverting digit *t* means replacing it with digit 9<=-<=*t*.
Help Chewbacca to transform the initial number *x* to the minimum possible positive number by inverting some (possibly, zero) digits. The decimal representation of the final number shouldn't start with a zero.
|
The first line contains a single integer *x* (1<=≤<=*x*<=≤<=1018) — the number that Luke Skywalker gave to Chewbacca.
|
Print the minimum possible positive number that Chewbacca can obtain after inverting some digits. The number shouldn't contain leading zeroes.
|
[
"27\n",
"4545\n"
] |
[
"22\n",
"4444\n"
] |
none
| 500
|
[
{
"input": "27",
"output": "22"
},
{
"input": "4545",
"output": "4444"
},
{
"input": "1",
"output": "1"
},
{
"input": "9",
"output": "9"
},
{
"input": "8772",
"output": "1222"
},
{
"input": "81",
"output": "11"
},
{
"input": "71723447",
"output": "21223442"
},
{
"input": "91730629",
"output": "91230320"
},
{
"input": "420062703497",
"output": "420032203402"
},
{
"input": "332711047202",
"output": "332211042202"
},
{
"input": "3395184971407775",
"output": "3304114021402224"
},
{
"input": "8464062628894325",
"output": "1434032321104324"
},
{
"input": "164324828731963982",
"output": "134324121231033012"
},
{
"input": "384979173822804784",
"output": "314020123122104214"
},
{
"input": "41312150450968417",
"output": "41312140440031412"
},
{
"input": "2156",
"output": "2143"
},
{
"input": "1932",
"output": "1032"
},
{
"input": "5902",
"output": "4002"
},
{
"input": "5728",
"output": "4221"
},
{
"input": "8537",
"output": "1432"
},
{
"input": "55403857",
"output": "44403142"
},
{
"input": "270739",
"output": "220230"
},
{
"input": "28746918",
"output": "21243011"
},
{
"input": "10279211",
"output": "10220211"
},
{
"input": "40289679",
"output": "40210320"
},
{
"input": "545203238506",
"output": "444203231403"
},
{
"input": "461117063340",
"output": "431112033340"
},
{
"input": "658492686568",
"output": "341402313431"
},
{
"input": "857373361868",
"output": "142323331131"
},
{
"input": "429325660016",
"output": "420324330013"
},
{
"input": "9894448650287940",
"output": "9104441340212040"
},
{
"input": "6354510839296263",
"output": "3344410130203233"
},
{
"input": "6873575462224593",
"output": "3123424432224403"
},
{
"input": "4237951492601449",
"output": "4232041402301440"
},
{
"input": "2680352384836991",
"output": "2310342314133001"
},
{
"input": "606187734191890310",
"output": "303112234101100310"
},
{
"input": "351499943576823355",
"output": "341400043423123344"
},
{
"input": "180593481782177068",
"output": "110403411212122031"
},
{
"input": "999999999999999999",
"output": "900000000000000000"
},
{
"input": "1000000000000000000",
"output": "1000000000000000000"
},
{
"input": "9999",
"output": "9000"
},
{
"input": "99",
"output": "90"
},
{
"input": "9991",
"output": "9001"
}
] | 1,673,115,945
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 43
| 46
| 0
|
x=input()
ans=''
for i in range(len(x)):
if i==0 and 4<int(x[i])<9 or i!=0 and int(x[i])>4:
ans+=str(9-int(x[i]))
else:
ans+=x[i]
print(ans)
|
Title: Chewbaсca and Number
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Luke Skywalker gave Chewbacca an integer number *x*. Chewbacca isn't good at numbers but he loves inverting digits in them. Inverting digit *t* means replacing it with digit 9<=-<=*t*.
Help Chewbacca to transform the initial number *x* to the minimum possible positive number by inverting some (possibly, zero) digits. The decimal representation of the final number shouldn't start with a zero.
Input Specification:
The first line contains a single integer *x* (1<=≤<=*x*<=≤<=1018) — the number that Luke Skywalker gave to Chewbacca.
Output Specification:
Print the minimum possible positive number that Chewbacca can obtain after inverting some digits. The number shouldn't contain leading zeroes.
Demo Input:
['27\n', '4545\n']
Demo Output:
['22\n', '4444\n']
Note:
none
|
```python
x=input()
ans=''
for i in range(len(x)):
if i==0 and 4<int(x[i])<9 or i!=0 and int(x[i])>4:
ans+=str(9-int(x[i]))
else:
ans+=x[i]
print(ans)
```
| 3
|
|
756
|
B
|
Travel Card
|
PROGRAMMING
| 1,600
|
[
"binary search",
"dp"
] | null | null |
A new innovative ticketing systems for public transport is introduced in Bytesburg. Now there is a single travel card for all transport. To make a trip a passenger scan his card and then he is charged according to the fare.
The fare is constructed in the following manner. There are three types of tickets:
1. a ticket for one trip costs 20 byteland rubles, 1. a ticket for 90 minutes costs 50 byteland rubles, 1. a ticket for one day (1440 minutes) costs 120 byteland rubles.
Note that a ticket for *x* minutes activated at time *t* can be used for trips started in time range from *t* to *t*<=+<=*x*<=-<=1, inclusive. Assume that all trips take exactly one minute.
To simplify the choice for the passenger, the system automatically chooses the optimal tickets. After each trip starts, the system analyses all the previous trips and the current trip and chooses a set of tickets for these trips with a minimum total cost. Let the minimum total cost of tickets to cover all trips from the first to the current is *a*, and the total sum charged before is *b*. Then the system charges the passenger the sum *a*<=-<=*b*.
You have to write a program that, for given trips made by a passenger, calculates the sum the passenger is charged after each trip.
|
The first line of input contains integer number *n* (1<=≤<=*n*<=≤<=105) — the number of trips made by passenger.
Each of the following *n* lines contains the time of trip *t**i* (0<=≤<=*t**i*<=≤<=109), measured in minutes from the time of starting the system. All *t**i* are different, given in ascending order, i. e. *t**i*<=+<=1<=><=*t**i* holds for all 1<=≤<=*i*<=<<=*n*.
|
Output *n* integers. For each trip, print the sum the passenger is charged after it.
|
[
"3\n10\n20\n30\n",
"10\n13\n45\n46\n60\n103\n115\n126\n150\n256\n516\n"
] |
[
"20\n20\n10\n",
"20\n20\n10\n0\n20\n0\n0\n20\n20\n10\n"
] |
In the first example, the system works as follows: for the first and second trips it is cheaper to pay for two one-trip tickets, so each time 20 rubles is charged, after the third trip the system understands that it would be cheaper to buy a ticket for 90 minutes. This ticket costs 50 rubles, and the passenger had already paid 40 rubles, so it is necessary to charge 10 rubles only.
| 1,000
|
[
{
"input": "3\n10\n20\n30",
"output": "20\n20\n10"
},
{
"input": "10\n13\n45\n46\n60\n103\n115\n126\n150\n256\n516",
"output": "20\n20\n10\n0\n20\n0\n0\n20\n20\n10"
},
{
"input": "7\n100\n138\n279\n308\n396\n412\n821",
"output": "20\n20\n20\n20\n20\n20\n0"
},
{
"input": "8\n0\n2\n51\n63\n69\n75\n80\n90",
"output": "20\n20\n10\n0\n0\n0\n0\n20"
},
{
"input": "8\n0\n3\n5\n6\n7\n8\n9\n10",
"output": "20\n20\n10\n0\n0\n0\n0\n0"
},
{
"input": "1\n0",
"output": "20"
}
] | 1,601,661,115
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 31
| 904
| 13,107,200
|
n = int(input())
dp = [0]
t = [0]
i,j = 1,1
for _ in range(n):
x = int(input())
t.append(x)
while x-t[i]>89:
i+=1
while x-t[j]>1439:
j+=1
try:
y = min(dp[-1]+20, dp[i-1]+50, dp[j-1]+120)
dp.append(y)
except:
print(i,j)
ans = []
for i in range(n):
ans.append(dp[i+1]-dp[i])
print(*ans)
|
Title: Travel Card
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
A new innovative ticketing systems for public transport is introduced in Bytesburg. Now there is a single travel card for all transport. To make a trip a passenger scan his card and then he is charged according to the fare.
The fare is constructed in the following manner. There are three types of tickets:
1. a ticket for one trip costs 20 byteland rubles, 1. a ticket for 90 minutes costs 50 byteland rubles, 1. a ticket for one day (1440 minutes) costs 120 byteland rubles.
Note that a ticket for *x* minutes activated at time *t* can be used for trips started in time range from *t* to *t*<=+<=*x*<=-<=1, inclusive. Assume that all trips take exactly one minute.
To simplify the choice for the passenger, the system automatically chooses the optimal tickets. After each trip starts, the system analyses all the previous trips and the current trip and chooses a set of tickets for these trips with a minimum total cost. Let the minimum total cost of tickets to cover all trips from the first to the current is *a*, and the total sum charged before is *b*. Then the system charges the passenger the sum *a*<=-<=*b*.
You have to write a program that, for given trips made by a passenger, calculates the sum the passenger is charged after each trip.
Input Specification:
The first line of input contains integer number *n* (1<=≤<=*n*<=≤<=105) — the number of trips made by passenger.
Each of the following *n* lines contains the time of trip *t**i* (0<=≤<=*t**i*<=≤<=109), measured in minutes from the time of starting the system. All *t**i* are different, given in ascending order, i. e. *t**i*<=+<=1<=><=*t**i* holds for all 1<=≤<=*i*<=<<=*n*.
Output Specification:
Output *n* integers. For each trip, print the sum the passenger is charged after it.
Demo Input:
['3\n10\n20\n30\n', '10\n13\n45\n46\n60\n103\n115\n126\n150\n256\n516\n']
Demo Output:
['20\n20\n10\n', '20\n20\n10\n0\n20\n0\n0\n20\n20\n10\n']
Note:
In the first example, the system works as follows: for the first and second trips it is cheaper to pay for two one-trip tickets, so each time 20 rubles is charged, after the third trip the system understands that it would be cheaper to buy a ticket for 90 minutes. This ticket costs 50 rubles, and the passenger had already paid 40 rubles, so it is necessary to charge 10 rubles only.
|
```python
n = int(input())
dp = [0]
t = [0]
i,j = 1,1
for _ in range(n):
x = int(input())
t.append(x)
while x-t[i]>89:
i+=1
while x-t[j]>1439:
j+=1
try:
y = min(dp[-1]+20, dp[i-1]+50, dp[j-1]+120)
dp.append(y)
except:
print(i,j)
ans = []
for i in range(n):
ans.append(dp[i+1]-dp[i])
print(*ans)
```
| 3
|
|
80
|
A
|
Panoramix's Prediction
|
PROGRAMMING
| 800
|
[
"brute force"
] |
A. Panoramix's Prediction
|
2
|
256
|
A prime number is a number which has exactly two distinct divisors: one and itself. For example, numbers 2, 7, 3 are prime, and 1, 6, 4 are not.
The next prime number after *x* is the smallest prime number greater than *x*. For example, the next prime number after 2 is 3, and the next prime number after 3 is 5. Note that there is exactly one next prime number after each number. So 5 is not the next prime number for 2.
One cold April morning Panoramix predicted that soon Kakofonix will break free from his straitjacket, and this will be a black day for the residents of the Gallic countryside.
Panoramix's prophecy tells that if some day Asterix and Obelix beat exactly *x* Roman soldiers, where *x* is a prime number, and next day they beat exactly *y* Roman soldiers, where *y* is the next prime number after *x*, then it's time to wait for Armageddon, for nothing can shut Kakofonix up while he sings his infernal song.
Yesterday the Gauls beat *n* Roman soldiers and it turned out that the number *n* was prime! Today their victims were a troop of *m* Romans (*m*<=><=*n*). Determine whether the Gauls should wait for the black day after today's victory of Asterix and Obelix?
|
The first and only input line contains two positive integers — *n* and *m* (2<=≤<=*n*<=<<=*m*<=≤<=50). It is guaranteed that *n* is prime.
Pretests contain all the cases with restrictions 2<=≤<=*n*<=<<=*m*<=≤<=4.
|
Print YES, if *m* is the next prime number after *n*, or NO otherwise.
|
[
"3 5\n",
"7 11\n",
"7 9\n"
] |
[
"YES",
"YES",
"NO"
] |
none
| 500
|
[
{
"input": "3 5",
"output": "YES"
},
{
"input": "7 11",
"output": "YES"
},
{
"input": "7 9",
"output": "NO"
},
{
"input": "2 3",
"output": "YES"
},
{
"input": "2 4",
"output": "NO"
},
{
"input": "3 4",
"output": "NO"
},
{
"input": "3 5",
"output": "YES"
},
{
"input": "5 7",
"output": "YES"
},
{
"input": "7 11",
"output": "YES"
},
{
"input": "11 13",
"output": "YES"
},
{
"input": "13 17",
"output": "YES"
},
{
"input": "17 19",
"output": "YES"
},
{
"input": "19 23",
"output": "YES"
},
{
"input": "23 29",
"output": "YES"
},
{
"input": "29 31",
"output": "YES"
},
{
"input": "31 37",
"output": "YES"
},
{
"input": "37 41",
"output": "YES"
},
{
"input": "41 43",
"output": "YES"
},
{
"input": "43 47",
"output": "YES"
},
{
"input": "2 5",
"output": "NO"
},
{
"input": "2 7",
"output": "NO"
},
{
"input": "2 6",
"output": "NO"
},
{
"input": "2 11",
"output": "NO"
},
{
"input": "3 6",
"output": "NO"
},
{
"input": "3 7",
"output": "NO"
},
{
"input": "3 9",
"output": "NO"
},
{
"input": "5 6",
"output": "NO"
},
{
"input": "5 9",
"output": "NO"
},
{
"input": "5 11",
"output": "NO"
},
{
"input": "5 13",
"output": "NO"
},
{
"input": "5 15",
"output": "NO"
},
{
"input": "7 8",
"output": "NO"
},
{
"input": "7 13",
"output": "NO"
},
{
"input": "13 15",
"output": "NO"
},
{
"input": "13 17",
"output": "YES"
},
{
"input": "19 21",
"output": "NO"
},
{
"input": "13 20",
"output": "NO"
},
{
"input": "41 49",
"output": "NO"
},
{
"input": "43 49",
"output": "NO"
},
{
"input": "47 50",
"output": "NO"
},
{
"input": "47 49",
"output": "NO"
},
{
"input": "47 48",
"output": "NO"
},
{
"input": "23 25",
"output": "NO"
},
{
"input": "2 50",
"output": "NO"
},
{
"input": "31 33",
"output": "NO"
}
] | 1,684,328,292
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 45
| 124
| 0
|
def f(a):
if a<2: return False
k = 0
for i in range(2, a // 2+1):
if (a % i == 0):
k = k+1
if (k <= 0): return True
return False
x, y=map(int, input().split())
c=0
if f(x) and f(y):
for i in range(x+1, y):
if f(i): c+=1
if c==0: print("YES")
else: print("NO")
else: print("NO")
|
Title: Panoramix's Prediction
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
A prime number is a number which has exactly two distinct divisors: one and itself. For example, numbers 2, 7, 3 are prime, and 1, 6, 4 are not.
The next prime number after *x* is the smallest prime number greater than *x*. For example, the next prime number after 2 is 3, and the next prime number after 3 is 5. Note that there is exactly one next prime number after each number. So 5 is not the next prime number for 2.
One cold April morning Panoramix predicted that soon Kakofonix will break free from his straitjacket, and this will be a black day for the residents of the Gallic countryside.
Panoramix's prophecy tells that if some day Asterix and Obelix beat exactly *x* Roman soldiers, where *x* is a prime number, and next day they beat exactly *y* Roman soldiers, where *y* is the next prime number after *x*, then it's time to wait for Armageddon, for nothing can shut Kakofonix up while he sings his infernal song.
Yesterday the Gauls beat *n* Roman soldiers and it turned out that the number *n* was prime! Today their victims were a troop of *m* Romans (*m*<=><=*n*). Determine whether the Gauls should wait for the black day after today's victory of Asterix and Obelix?
Input Specification:
The first and only input line contains two positive integers — *n* and *m* (2<=≤<=*n*<=<<=*m*<=≤<=50). It is guaranteed that *n* is prime.
Pretests contain all the cases with restrictions 2<=≤<=*n*<=<<=*m*<=≤<=4.
Output Specification:
Print YES, if *m* is the next prime number after *n*, or NO otherwise.
Demo Input:
['3 5\n', '7 11\n', '7 9\n']
Demo Output:
['YES', 'YES', 'NO']
Note:
none
|
```python
def f(a):
if a<2: return False
k = 0
for i in range(2, a // 2+1):
if (a % i == 0):
k = k+1
if (k <= 0): return True
return False
x, y=map(int, input().split())
c=0
if f(x) and f(y):
for i in range(x+1, y):
if f(i): c+=1
if c==0: print("YES")
else: print("NO")
else: print("NO")
```
| 3.969
|
551
|
A
|
GukiZ and Contest
|
PROGRAMMING
| 800
|
[
"brute force",
"implementation",
"sortings"
] | null | null |
Professor GukiZ likes programming contests. He especially likes to rate his students on the contests he prepares. Now, he has decided to prepare a new contest.
In total, *n* students will attend, and before the start, every one of them has some positive integer rating. Students are indexed from 1 to *n*. Let's denote the rating of *i*-th student as *a**i*. After the contest ends, every student will end up with some positive integer position. GukiZ expects that his students will take places according to their ratings.
He thinks that each student will take place equal to . In particular, if student *A* has rating strictly lower then student *B*, *A* will get the strictly better position than *B*, and if two students have equal ratings, they will share the same position.
GukiZ would like you to reconstruct the results by following his expectations. Help him and determine the position after the end of the contest for each of his students if everything goes as expected.
|
The first line contains integer *n* (1<=≤<=*n*<=≤<=2000), number of GukiZ's students.
The second line contains *n* numbers *a*1,<=*a*2,<=... *a**n* (1<=≤<=*a**i*<=≤<=2000) where *a**i* is the rating of *i*-th student (1<=≤<=*i*<=≤<=*n*).
|
In a single line, print the position after the end of the contest for each of *n* students in the same order as they appear in the input.
|
[
"3\n1 3 3\n",
"1\n1\n",
"5\n3 5 3 4 5\n"
] |
[
"3 1 1\n",
"1\n",
"4 1 4 3 1\n"
] |
In the first sample, students 2 and 3 are positioned first (there is no other student with higher rating), and student 1 is positioned third since there are two students with higher rating.
In the second sample, first student is the only one on the contest.
In the third sample, students 2 and 5 share the first position with highest rating, student 4 is next with third position, and students 1 and 3 are the last sharing fourth position.
| 500
|
[
{
"input": "3\n1 3 3",
"output": "3 1 1"
},
{
"input": "1\n1",
"output": "1"
},
{
"input": "5\n3 5 3 4 5",
"output": "4 1 4 3 1"
},
{
"input": "7\n1 3 5 4 2 2 1",
"output": "6 3 1 2 4 4 6"
},
{
"input": "11\n5 6 4 2 9 7 6 6 6 6 7",
"output": "9 4 10 11 1 2 4 4 4 4 2"
},
{
"input": "1\n2000",
"output": "1"
},
{
"input": "2\n2000 2000",
"output": "1 1"
},
{
"input": "3\n500 501 502",
"output": "3 2 1"
},
{
"input": "10\n105 106 1 1 1 11 1000 999 1000 999",
"output": "6 5 8 8 8 7 1 3 1 3"
},
{
"input": "6\n1 2 3 4 5 6",
"output": "6 5 4 3 2 1"
},
{
"input": "7\n6 5 4 3 2 1 1",
"output": "1 2 3 4 5 6 6"
},
{
"input": "8\n153 100 87 14 10 8 6 5",
"output": "1 2 3 4 5 6 7 8"
},
{
"input": "70\n11 54 37 62 1 46 13 17 38 47 28 15 63 5 61 34 49 66 32 59 3 41 58 28 23 62 41 64 20 5 14 41 10 37 51 32 65 46 61 8 15 19 16 44 31 42 19 46 66 25 26 58 60 5 19 18 69 53 20 40 45 27 24 41 32 23 57 56 62 10",
"output": "62 18 35 7 70 23 61 56 34 22 42 58 6 66 10 37 21 2 38 13 69 29 14 42 48 7 29 5 50 66 60 29 63 35 20 38 4 23 10 65 58 52 57 27 41 28 52 23 2 46 45 14 12 66 52 55 1 19 50 33 26 44 47 29 38 48 16 17 7 63"
},
{
"input": "5\n1 2000 1 1 2000",
"output": "3 1 3 3 1"
}
] | 1,524,931,215
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 36
| 1,497
| 7,475,200
|
n = int(input())
arr = list(map(int, input().split()))
answer = []
for i in range(n):
counter = 0
for j in range(n):
if (j != i):
if (arr[i] < arr[j]):
counter += 1
answer.append(counter + 1)
print(*answer)
|
Title: GukiZ and Contest
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Professor GukiZ likes programming contests. He especially likes to rate his students on the contests he prepares. Now, he has decided to prepare a new contest.
In total, *n* students will attend, and before the start, every one of them has some positive integer rating. Students are indexed from 1 to *n*. Let's denote the rating of *i*-th student as *a**i*. After the contest ends, every student will end up with some positive integer position. GukiZ expects that his students will take places according to their ratings.
He thinks that each student will take place equal to . In particular, if student *A* has rating strictly lower then student *B*, *A* will get the strictly better position than *B*, and if two students have equal ratings, they will share the same position.
GukiZ would like you to reconstruct the results by following his expectations. Help him and determine the position after the end of the contest for each of his students if everything goes as expected.
Input Specification:
The first line contains integer *n* (1<=≤<=*n*<=≤<=2000), number of GukiZ's students.
The second line contains *n* numbers *a*1,<=*a*2,<=... *a**n* (1<=≤<=*a**i*<=≤<=2000) where *a**i* is the rating of *i*-th student (1<=≤<=*i*<=≤<=*n*).
Output Specification:
In a single line, print the position after the end of the contest for each of *n* students in the same order as they appear in the input.
Demo Input:
['3\n1 3 3\n', '1\n1\n', '5\n3 5 3 4 5\n']
Demo Output:
['3 1 1\n', '1\n', '4 1 4 3 1\n']
Note:
In the first sample, students 2 and 3 are positioned first (there is no other student with higher rating), and student 1 is positioned third since there are two students with higher rating.
In the second sample, first student is the only one on the contest.
In the third sample, students 2 and 5 share the first position with highest rating, student 4 is next with third position, and students 1 and 3 are the last sharing fourth position.
|
```python
n = int(input())
arr = list(map(int, input().split()))
answer = []
for i in range(n):
counter = 0
for j in range(n):
if (j != i):
if (arr[i] < arr[j]):
counter += 1
answer.append(counter + 1)
print(*answer)
```
| 3
|
|
200
|
B
|
Drinks
|
PROGRAMMING
| 800
|
[
"implementation",
"math"
] | null | null |
Little Vasya loves orange juice very much. That's why any food and drink in his kitchen necessarily contains orange juice. There are *n* drinks in his fridge, the volume fraction of orange juice in the *i*-th drink equals *p**i* percent.
One day Vasya decided to make himself an orange cocktail. He took equal proportions of each of the *n* drinks and mixed them. Then he wondered, how much orange juice the cocktail has.
Find the volume fraction of orange juice in the final drink.
|
The first input line contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of orange-containing drinks in Vasya's fridge. The second line contains *n* integers *p**i* (0<=≤<=*p**i*<=≤<=100) — the volume fraction of orange juice in the *i*-th drink, in percent. The numbers are separated by a space.
|
Print the volume fraction in percent of orange juice in Vasya's cocktail. The answer will be considered correct if the absolute or relative error does not exceed 10<=<=-<=4.
|
[
"3\n50 50 100\n",
"4\n0 25 50 75\n"
] |
[
"66.666666666667\n",
"37.500000000000\n"
] |
Note to the first sample: let's assume that Vasya takes *x* milliliters of each drink from the fridge. Then the volume of pure juice in the cocktail will equal <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/c1fac6e64d3a8ee6a5ac138cbe51e60039b22473.png" style="max-width: 100.0%;max-height: 100.0%;"/> milliliters. The total cocktail's volume equals 3·*x* milliliters, so the volume fraction of the juice in the cocktail equals <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/ceb0664e55a1f9f5fa1243ec74680a4665a4d58d.png" style="max-width: 100.0%;max-height: 100.0%;"/>, that is, 66.(6) percent.
| 500
|
[
{
"input": "3\n50 50 100",
"output": "66.666666666667"
},
{
"input": "4\n0 25 50 75",
"output": "37.500000000000"
},
{
"input": "3\n0 1 8",
"output": "3.000000000000"
},
{
"input": "5\n96 89 93 95 70",
"output": "88.600000000000"
},
{
"input": "7\n62 41 78 4 38 39 75",
"output": "48.142857142857"
},
{
"input": "13\n2 22 7 0 1 17 3 17 11 2 21 26 22",
"output": "11.615384615385"
},
{
"input": "21\n5 4 11 7 0 5 45 21 0 14 51 6 0 16 10 19 8 9 7 12 18",
"output": "12.761904761905"
},
{
"input": "26\n95 70 93 74 94 70 91 70 39 79 80 57 87 75 37 93 48 67 51 90 85 26 23 64 66 84",
"output": "69.538461538462"
},
{
"input": "29\n84 99 72 96 83 92 95 98 97 93 76 84 99 93 81 76 93 99 99 100 95 100 96 95 97 100 71 98 94",
"output": "91.551724137931"
},
{
"input": "33\n100 99 100 100 99 99 99 100 100 100 99 99 99 100 100 100 100 99 100 99 100 100 97 100 100 100 100 100 100 100 98 98 100",
"output": "99.515151515152"
},
{
"input": "34\n14 9 10 5 4 26 18 23 0 1 0 20 18 15 2 2 3 5 14 1 9 4 2 15 7 1 7 19 10 0 0 11 0 2",
"output": "8.147058823529"
},
{
"input": "38\n99 98 100 100 99 92 99 99 98 84 88 94 86 99 93 100 98 99 65 98 85 84 64 97 96 89 79 96 91 84 99 93 72 96 94 97 96 93",
"output": "91.921052631579"
},
{
"input": "52\n100 94 99 98 99 99 99 95 97 97 98 100 100 98 97 100 98 90 100 99 97 94 90 98 100 100 90 99 100 95 98 95 94 85 97 94 96 94 99 99 99 98 100 100 94 99 99 100 98 87 100 100",
"output": "97.019230769231"
},
{
"input": "58\n10 70 12 89 1 82 100 53 40 100 21 69 92 91 67 66 99 77 25 48 8 63 93 39 46 79 82 14 44 42 1 79 0 69 56 73 67 17 59 4 65 80 20 60 77 52 3 61 16 76 33 18 46 100 28 59 9 6",
"output": "50.965517241379"
},
{
"input": "85\n7 8 1 16 0 15 1 7 0 11 15 6 2 12 2 8 9 8 2 0 3 7 15 7 1 8 5 7 2 26 0 3 11 1 8 10 31 0 7 6 1 8 1 0 9 14 4 8 7 16 9 1 0 16 10 9 6 1 1 4 2 7 4 5 4 1 20 6 16 16 1 1 10 17 8 12 14 19 3 8 1 7 10 23 10",
"output": "7.505882352941"
},
{
"input": "74\n5 3 0 7 13 10 12 10 18 5 0 18 2 13 7 17 2 7 5 2 40 19 0 2 2 3 0 45 4 20 0 4 2 8 1 19 3 9 17 1 15 0 16 1 9 4 0 9 32 2 6 18 11 18 1 15 16 12 7 19 5 3 9 28 26 8 3 10 33 29 4 13 28 6",
"output": "10.418918918919"
},
{
"input": "98\n42 9 21 11 9 11 22 12 52 20 10 6 56 9 26 27 1 29 29 14 38 17 41 21 7 45 15 5 29 4 51 20 6 8 34 17 13 53 30 45 0 10 16 41 4 5 6 4 14 2 31 6 0 11 13 3 3 43 13 36 51 0 7 16 28 23 8 36 30 22 8 54 21 45 39 4 50 15 1 30 17 8 18 10 2 20 16 50 6 68 15 6 38 7 28 8 29 41",
"output": "20.928571428571"
},
{
"input": "99\n60 65 40 63 57 44 30 84 3 10 39 53 40 45 72 20 76 11 61 32 4 26 97 55 14 57 86 96 34 69 52 22 26 79 31 4 21 35 82 47 81 28 72 70 93 84 40 4 69 39 83 58 30 7 32 73 74 12 92 23 61 88 9 58 70 32 75 40 63 71 46 55 39 36 14 97 32 16 95 41 28 20 85 40 5 50 50 50 75 6 10 64 38 19 77 91 50 72 96",
"output": "49.191919191919"
},
{
"input": "99\n100 88 40 30 81 80 91 98 69 73 88 96 79 58 14 100 87 84 52 91 83 88 72 83 99 35 54 80 46 79 52 72 85 32 99 39 79 79 45 83 88 50 75 75 50 59 65 75 97 63 92 58 89 46 93 80 89 33 69 86 99 99 66 85 72 74 79 98 85 95 46 63 77 97 49 81 89 39 70 76 68 91 90 56 31 93 51 87 73 95 74 69 87 95 57 68 49 95 92",
"output": "73.484848484848"
},
{
"input": "100\n18 15 17 0 3 3 0 4 1 8 2 22 7 21 5 0 0 8 3 16 1 0 2 9 9 3 10 8 17 20 5 4 8 12 2 3 1 1 3 2 23 0 1 0 5 7 4 0 1 3 3 4 25 2 2 14 8 4 9 3 0 11 0 3 12 3 14 16 7 7 14 1 17 9 0 35 42 12 3 1 25 9 3 8 5 3 2 8 22 14 11 6 3 9 6 8 7 7 4 6",
"output": "7.640000000000"
},
{
"input": "100\n88 77 65 87 100 63 91 96 92 89 77 95 76 80 84 83 100 71 85 98 26 54 74 78 69 59 96 86 88 91 95 26 52 88 64 70 84 81 76 84 94 82 100 66 97 98 43 94 59 94 100 80 98 73 69 83 94 70 74 79 91 31 62 88 69 55 62 97 40 64 62 83 87 85 50 90 69 72 67 49 100 51 69 96 81 90 83 91 86 34 79 69 100 66 97 98 47 97 74 100",
"output": "77.660000000000"
},
{
"input": "100\n91 92 90 91 98 84 85 96 83 98 99 87 94 70 87 75 86 90 89 88 82 83 91 94 88 86 90 99 100 98 97 75 95 99 95 100 91 92 76 93 95 97 88 93 95 81 96 89 88 100 98 87 90 96 100 99 58 90 96 77 92 82 100 100 93 93 98 99 79 88 97 95 98 66 96 83 96 100 99 92 98 98 92 93 100 97 98 100 98 97 100 100 94 90 99 100 98 79 80 81",
"output": "91.480000000000"
},
{
"input": "1\n0",
"output": "0.000000000000"
},
{
"input": "1\n100",
"output": "100.000000000000"
},
{
"input": "1\n78",
"output": "78.000000000000"
},
{
"input": "2\n0 100",
"output": "50.000000000000"
},
{
"input": "2\n100 100",
"output": "100.000000000000"
},
{
"input": "5\n0 0 0 0 1",
"output": "0.200000000000"
},
{
"input": "100\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 99",
"output": "99.990000000000"
},
{
"input": "100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1",
"output": "0.010000000000"
},
{
"input": "5\n100 100 100 100 100",
"output": "100.000000000000"
}
] | 1,683,607,250
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 31
| 92
| 0
|
x=int(input())
s=list(map(int,input().split()))
lis=[]
for i in range(x):
lis.append(s[i]/100)
print((sum(lis)/x)*100)
|
Title: Drinks
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Little Vasya loves orange juice very much. That's why any food and drink in his kitchen necessarily contains orange juice. There are *n* drinks in his fridge, the volume fraction of orange juice in the *i*-th drink equals *p**i* percent.
One day Vasya decided to make himself an orange cocktail. He took equal proportions of each of the *n* drinks and mixed them. Then he wondered, how much orange juice the cocktail has.
Find the volume fraction of orange juice in the final drink.
Input Specification:
The first input line contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of orange-containing drinks in Vasya's fridge. The second line contains *n* integers *p**i* (0<=≤<=*p**i*<=≤<=100) — the volume fraction of orange juice in the *i*-th drink, in percent. The numbers are separated by a space.
Output Specification:
Print the volume fraction in percent of orange juice in Vasya's cocktail. The answer will be considered correct if the absolute or relative error does not exceed 10<=<=-<=4.
Demo Input:
['3\n50 50 100\n', '4\n0 25 50 75\n']
Demo Output:
['66.666666666667\n', '37.500000000000\n']
Note:
Note to the first sample: let's assume that Vasya takes *x* milliliters of each drink from the fridge. Then the volume of pure juice in the cocktail will equal <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/c1fac6e64d3a8ee6a5ac138cbe51e60039b22473.png" style="max-width: 100.0%;max-height: 100.0%;"/> milliliters. The total cocktail's volume equals 3·*x* milliliters, so the volume fraction of the juice in the cocktail equals <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/ceb0664e55a1f9f5fa1243ec74680a4665a4d58d.png" style="max-width: 100.0%;max-height: 100.0%;"/>, that is, 66.(6) percent.
|
```python
x=int(input())
s=list(map(int,input().split()))
lis=[]
for i in range(x):
lis.append(s[i]/100)
print((sum(lis)/x)*100)
```
| 3
|
|
26
|
B
|
Regular Bracket Sequence
|
PROGRAMMING
| 1,400
|
[
"greedy"
] |
B. Regular Bracket Sequence
|
5
|
256
|
A bracket sequence is called regular if it is possible to obtain correct arithmetic expression by inserting characters «+» and «1» into this sequence. For example, sequences «(())()», «()» and «(()(()))» are regular, while «)(», «(()» and «(()))(» are not.
One day Johnny got bracket sequence. He decided to remove some of the brackets from it in order to obtain a regular bracket sequence. What is the maximum length of a regular bracket sequence which can be obtained?
|
Input consists of a single line with non-empty string of «(» and «)» characters. Its length does not exceed 106.
|
Output the maximum possible length of a regular bracket sequence.
|
[
"(()))(\n",
"((()())\n"
] |
[
"4\n",
"6\n"
] |
none
| 1,000
|
[
{
"input": "(()))(",
"output": "4"
},
{
"input": "((()())",
"output": "6"
},
{
"input": "(",
"output": "0"
},
{
"input": ")",
"output": "0"
},
{
"input": ")(()(",
"output": "2"
},
{
"input": "))))))(",
"output": "0"
},
{
"input": "()()(()(((",
"output": "6"
},
{
"input": "()))(()((((()(())",
"output": "10"
},
{
"input": "())))((()())())))))())",
"output": "14"
},
{
"input": ")))((((())(()((()((((()()())((",
"output": "16"
},
{
"input": "))()()((()()))())()(((((((())((((((((())()()((())(",
"output": "32"
},
{
"input": "))())))))))())))))()()))()()))))())))))()))))))))))))(()))())(()))))(()))))())))((((()()))))()))()))",
"output": "48"
}
] | 1,633,018,158
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 38
| 842
| 9,932,800
|
s = input()
x = len(s)
c = 0
for i in range(x):
if(s[i]=='('):
c+=1
elif(s[i]==')'):
c-=1
if(c<0):
x-=1
c = 0
print(x-c)
|
Title: Regular Bracket Sequence
Time Limit: 5 seconds
Memory Limit: 256 megabytes
Problem Description:
A bracket sequence is called regular if it is possible to obtain correct arithmetic expression by inserting characters «+» and «1» into this sequence. For example, sequences «(())()», «()» and «(()(()))» are regular, while «)(», «(()» and «(()))(» are not.
One day Johnny got bracket sequence. He decided to remove some of the brackets from it in order to obtain a regular bracket sequence. What is the maximum length of a regular bracket sequence which can be obtained?
Input Specification:
Input consists of a single line with non-empty string of «(» and «)» characters. Its length does not exceed 106.
Output Specification:
Output the maximum possible length of a regular bracket sequence.
Demo Input:
['(()))(\n', '((()())\n']
Demo Output:
['4\n', '6\n']
Note:
none
|
```python
s = input()
x = len(s)
c = 0
for i in range(x):
if(s[i]=='('):
c+=1
elif(s[i]==')'):
c-=1
if(c<0):
x-=1
c = 0
print(x-c)
```
| 3.897299
|
592
|
A
|
PawnChess
|
PROGRAMMING
| 1,200
|
[
"implementation"
] | null | null |
Galois is one of the strongest chess players of Byteforces. He has even invented a new variant of chess, which he named «PawnChess».
This new game is played on a board consisting of 8 rows and 8 columns. At the beginning of every game some black and white pawns are placed on the board. The number of black pawns placed is not necessarily equal to the number of white pawns placed.
Lets enumerate rows and columns with integers from 1 to 8. Rows are numbered from top to bottom, while columns are numbered from left to right. Now we denote as (*r*,<=*c*) the cell located at the row *r* and at the column *c*.
There are always two players A and B playing the game. Player A plays with white pawns, while player B plays with black ones. The goal of player A is to put any of his pawns to the row 1, while player B tries to put any of his pawns to the row 8. As soon as any of the players completes his goal the game finishes immediately and the succeeded player is declared a winner.
Player A moves first and then they alternate turns. On his move player A must choose exactly one white pawn and move it one step upward and player B (at his turn) must choose exactly one black pawn and move it one step down. Any move is possible only if the targeted cell is empty. It's guaranteed that for any scenario of the game there will always be at least one move available for any of the players.
Moving upward means that the pawn located in (*r*,<=*c*) will go to the cell (*r*<=-<=1,<=*c*), while moving down means the pawn located in (*r*,<=*c*) will go to the cell (*r*<=+<=1,<=*c*). Again, the corresponding cell must be empty, i.e. not occupied by any other pawn of any color.
Given the initial disposition of the board, determine who wins the game if both players play optimally. Note that there will always be a winner due to the restriction that for any game scenario both players will have some moves available.
|
The input consists of the board description given in eight lines, each line contains eight characters. Character 'B' is used to denote a black pawn, and character 'W' represents a white pawn. Empty cell is marked with '.'.
It's guaranteed that there will not be white pawns on the first row neither black pawns on the last row.
|
Print 'A' if player A wins the game on the given board, and 'B' if player B will claim the victory. Again, it's guaranteed that there will always be a winner on the given board.
|
[
"........\n........\n.B....B.\n....W...\n........\n..W.....\n........\n........\n",
"..B.....\n..W.....\n......B.\n........\n.....W..\n......B.\n........\n........\n"
] |
[
"A\n",
"B\n"
] |
In the first sample player A is able to complete his goal in 3 steps by always moving a pawn initially located at (4, 5). Player B needs at least 5 steps for any of his pawns to reach the row 8. Hence, player A will be the winner.
| 500
|
[
{
"input": ".BB.B.B.\nB..B..B.\n.B.BB...\nBB.....B\nBBB....B\nB..BB...\nBB.B...B\n....WWW.",
"output": "B"
},
{
"input": "B.B.BB.B\nW.WWW.WW\n.WWWWW.W\nW.BB.WBW\n.W..BBWB\nBB.WWBBB\n.W.W.WWB\nWWW..WW.",
"output": "A"
},
{
"input": "BB..BB..\nBW.W.W.B\n..B.....\n.....BB.\n.B..B..B\n........\n...BB.B.\nW.WWWW.W",
"output": "A"
},
{
"input": "BB......\nW....BBW\n........\n.B.B.BBB\n....BB..\nB....BB.\n...WWWW.\n....WW..",
"output": "A"
},
{
"input": ".B.B..B.\nB.B....B\n...B.B.B\n..B.W..B\n.BBB.B.B\nB.BB.B.B\nBB..BBBB\nW.W.W.WW",
"output": "B"
},
{
"input": "..BB....\n.B.B.B.B\n..B.B...\n..B..B.B\nWWWBWWB.\n.BB...B.\n..BBB...\n......W.",
"output": "B"
},
{
"input": "..BB....\n.WBWBWBB\n.....BBB\n..WW....\n.W.W...W\nWWW...W.\n.W....W.\nW...W.W.",
"output": "A"
},
{
"input": "....BB..\nBB......\n.B.....B\nWW..WWW.\n...BB.B.\nB...BB..\n..W..WWW\n...W...W",
"output": "B"
},
{
"input": "B...BBBB\n...BBB..\nBBWBWW.W\n.B..BB.B\nW..W..WW\nW.WW....\n........\nWW.....W",
"output": "A"
},
{
"input": ".B......\n.B....B.\n...W....\n......W.\nW.WWWW.W\nW.WW....\n..WWW...\n..W...WW",
"output": "A"
},
{
"input": "B.......\nBBB.....\n.B....B.\n.W.BWB.W\n......B.\nW..WW...\n...W....\nW...W..W",
"output": "A"
},
{
"input": ".....B..\n........\n........\n.BB..B..\n..BB....\n........\n....WWW.\n......W.",
"output": "B"
},
{
"input": "B.B...B.\n...BBBBB\n....B...\n...B...B\nB.B.B..B\n........\n........\nWWW..WW.",
"output": "B"
},
{
"input": "B.B...B.\n........\n.......B\n.BB....B\n.....W..\n.W.WW.W.\n...W.WW.\nW..WW..W",
"output": "A"
},
{
"input": "......B.\nB....B..\n...B.BB.\n...B....\n........\n..W....W\nWW......\n.W....W.",
"output": "B"
},
{
"input": ".BBB....\nB.B.B...\nB.BB.B..\nB.BB.B.B\n........\n........\nW.....W.\n..WW..W.",
"output": "B"
},
{
"input": "..B..BBB\n........\n........\n........\n...W.W..\n...W..W.\nW.......\n..W...W.",
"output": "A"
},
{
"input": "........\n.B.B....\n...B..BB\n........\n........\nW...W...\nW...W...\nW.WW.W..",
"output": "A"
},
{
"input": "B....BB.\n...B...B\n.B......\n........\n........\n........\n........\n....W..W",
"output": "B"
},
{
"input": "...BB.BB\nBB...B..\n........\n........\n........\n........\n..W..W..\n......W.",
"output": "A"
},
{
"input": "...BB...\n........\n........\n........\n........\n........\n......W.\nWW...WW.",
"output": "A"
},
{
"input": "...B.B..\n........\n........\n........\n........\n........\n........\nWWW...WW",
"output": "A"
},
{
"input": "BBBBBBB.\n........\n........\n........\n........\n........\n........\n.WWWWWWW",
"output": "A"
},
{
"input": ".BBBBBB.\nB.......\n........\n........\n........\n........\n........\n.WWWWWWW",
"output": "B"
},
{
"input": ".BBBBBBB\n........\n........\n........\n........\n........\n........\nWWWWWWW.",
"output": "A"
},
{
"input": ".BBBBBB.\n.......B\n........\n........\n........\n........\n........\nWWWWWWW.",
"output": "B"
},
{
"input": "B..BB...\n..B...B.\n.WBB...B\nBW......\nW.B...W.\n..BBW.B.\nBW..BB..\n......W.",
"output": "B"
},
{
"input": "B.BBBBBB\nB..BBB.B\nW.BB.W.B\nB.BWBB.B\nBWBWBBBB\n...BBBBB\nB.B...BB\nWW..WW.W",
"output": "B"
},
{
"input": "BBBB.BBB\nBBBB.B.B\nB.B..BBB\nB.BB.BWW\nB.BB.BBB\nB.BB.BBB\n..BW.BB.\nW.WWWWWW",
"output": "B"
},
{
"input": "BBBB.BBB\n.B....WB\nBB.B...B\nWWWW.WWB\nBB...BWW\nWWW..BBB\nW.BW.BB.\nWWWWWWW.",
"output": "B"
},
{
"input": "B.BBBBBB\nW.WWBBBW\nW.BB.WBB\nW.W.BBBW\nW.BWW.WB\nB..B..BB\nB.B.W.BB\nWWWWW.WW",
"output": "B"
},
{
"input": "BBBBBB.B\n.BBWBB.B\nWWW..B.W\n..WW.W.W\nBWB..W.W\n..BW.B.W\nB..B....\nWWWW.WWW",
"output": "B"
},
{
"input": ".B...BB.\nWBB.BWBB\n.BWBW...\n..W...B.\nWB.BWW..\nWBW.....\n.W..W.B.\n.W.W.WW.",
"output": "A"
},
{
"input": ".B..BBBB\nBB...WWB\nB..B.W.B\nWB.W...B\n...W.WW.\nW.....W.\nWB.W.W.W\n.WW...WW",
"output": "A"
},
{
"input": "B.BBBBBB\nW.BB.W.B\nW.BBW...\n..WWWW.B\n....W..B\n.WW.W..W\n.W..WW.W\nW.W....W",
"output": "A"
},
{
"input": "........\n.B......\n.W......\n........\n....B...\n........\n........\n.......W",
"output": "B"
}
] | 1,499,197,423
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 56
| 62
| 5,529,600
|
# Description of the problem can be found at http://codeforces.com/problemset/problem/592/A
l_w = [9] * 8
l_b = [9] * 8
for y in range(8):
i = 0
for c in input():
if c == "W":
if l_b[i] == 9 and l_w[i] == 9:
l_w[i] = y
l_b[i] = 10
elif c == "B":
l_b[i] = 7 - y
i += 1
min_w = min(l_w)
min_b = min(l_b)
if min_w > min_b:
print("B")
else:
print("A")
|
Title: PawnChess
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Galois is one of the strongest chess players of Byteforces. He has even invented a new variant of chess, which he named «PawnChess».
This new game is played on a board consisting of 8 rows and 8 columns. At the beginning of every game some black and white pawns are placed on the board. The number of black pawns placed is not necessarily equal to the number of white pawns placed.
Lets enumerate rows and columns with integers from 1 to 8. Rows are numbered from top to bottom, while columns are numbered from left to right. Now we denote as (*r*,<=*c*) the cell located at the row *r* and at the column *c*.
There are always two players A and B playing the game. Player A plays with white pawns, while player B plays with black ones. The goal of player A is to put any of his pawns to the row 1, while player B tries to put any of his pawns to the row 8. As soon as any of the players completes his goal the game finishes immediately and the succeeded player is declared a winner.
Player A moves first and then they alternate turns. On his move player A must choose exactly one white pawn and move it one step upward and player B (at his turn) must choose exactly one black pawn and move it one step down. Any move is possible only if the targeted cell is empty. It's guaranteed that for any scenario of the game there will always be at least one move available for any of the players.
Moving upward means that the pawn located in (*r*,<=*c*) will go to the cell (*r*<=-<=1,<=*c*), while moving down means the pawn located in (*r*,<=*c*) will go to the cell (*r*<=+<=1,<=*c*). Again, the corresponding cell must be empty, i.e. not occupied by any other pawn of any color.
Given the initial disposition of the board, determine who wins the game if both players play optimally. Note that there will always be a winner due to the restriction that for any game scenario both players will have some moves available.
Input Specification:
The input consists of the board description given in eight lines, each line contains eight characters. Character 'B' is used to denote a black pawn, and character 'W' represents a white pawn. Empty cell is marked with '.'.
It's guaranteed that there will not be white pawns on the first row neither black pawns on the last row.
Output Specification:
Print 'A' if player A wins the game on the given board, and 'B' if player B will claim the victory. Again, it's guaranteed that there will always be a winner on the given board.
Demo Input:
['........\n........\n.B....B.\n....W...\n........\n..W.....\n........\n........\n', '..B.....\n..W.....\n......B.\n........\n.....W..\n......B.\n........\n........\n']
Demo Output:
['A\n', 'B\n']
Note:
In the first sample player A is able to complete his goal in 3 steps by always moving a pawn initially located at (4, 5). Player B needs at least 5 steps for any of his pawns to reach the row 8. Hence, player A will be the winner.
|
```python
# Description of the problem can be found at http://codeforces.com/problemset/problem/592/A
l_w = [9] * 8
l_b = [9] * 8
for y in range(8):
i = 0
for c in input():
if c == "W":
if l_b[i] == 9 and l_w[i] == 9:
l_w[i] = y
l_b[i] = 10
elif c == "B":
l_b[i] = 7 - y
i += 1
min_w = min(l_w)
min_b = min(l_b)
if min_w > min_b:
print("B")
else:
print("A")
```
| 3
|
|
509
|
A
|
Maximum in Table
|
PROGRAMMING
| 800
|
[
"brute force",
"implementation"
] | null | null |
An *n*<=×<=*n* table *a* is defined as follows:
- The first row and the first column contain ones, that is: *a**i*,<=1<==<=*a*1,<=*i*<==<=1 for all *i*<==<=1,<=2,<=...,<=*n*. - Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula *a**i*,<=*j*<==<=*a**i*<=-<=1,<=*j*<=+<=*a**i*,<=*j*<=-<=1.
These conditions define all the values in the table.
You are given a number *n*. You need to determine the maximum value in the *n*<=×<=*n* table defined by the rules above.
|
The only line of input contains a positive integer *n* (1<=≤<=*n*<=≤<=10) — the number of rows and columns of the table.
|
Print a single line containing a positive integer *m* — the maximum value in the table.
|
[
"1\n",
"5\n"
] |
[
"1",
"70"
] |
In the second test the rows of the table look as follows:
| 0
|
[
{
"input": "1",
"output": "1"
},
{
"input": "5",
"output": "70"
},
{
"input": "2",
"output": "2"
},
{
"input": "3",
"output": "6"
},
{
"input": "4",
"output": "20"
},
{
"input": "6",
"output": "252"
},
{
"input": "7",
"output": "924"
},
{
"input": "9",
"output": "12870"
},
{
"input": "10",
"output": "48620"
},
{
"input": "8",
"output": "3432"
}
] | 1,613,179,563
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 10
| 77
| 0
|
def solve(n):
if n ==1 :
return 1
arr = [[1]*n]
for i in range(1,n):
row = [1]
for col in range(1,n):
row.append(row[col-1]+arr[i-1][col])
if i == n-1:
return row[-1]
arr.append(row)
def main():
print(solve(int(input())))
main()
|
Title: Maximum in Table
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
An *n*<=×<=*n* table *a* is defined as follows:
- The first row and the first column contain ones, that is: *a**i*,<=1<==<=*a*1,<=*i*<==<=1 for all *i*<==<=1,<=2,<=...,<=*n*. - Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula *a**i*,<=*j*<==<=*a**i*<=-<=1,<=*j*<=+<=*a**i*,<=*j*<=-<=1.
These conditions define all the values in the table.
You are given a number *n*. You need to determine the maximum value in the *n*<=×<=*n* table defined by the rules above.
Input Specification:
The only line of input contains a positive integer *n* (1<=≤<=*n*<=≤<=10) — the number of rows and columns of the table.
Output Specification:
Print a single line containing a positive integer *m* — the maximum value in the table.
Demo Input:
['1\n', '5\n']
Demo Output:
['1', '70']
Note:
In the second test the rows of the table look as follows:
|
```python
def solve(n):
if n ==1 :
return 1
arr = [[1]*n]
for i in range(1,n):
row = [1]
for col in range(1,n):
row.append(row[col-1]+arr[i-1][col])
if i == n-1:
return row[-1]
arr.append(row)
def main():
print(solve(int(input())))
main()
```
| 3
|
|
156
|
C
|
Cipher
|
PROGRAMMING
| 2,000
|
[
"combinatorics",
"dp"
] | null | null |
Sherlock Holmes found a mysterious correspondence of two VIPs and made up his mind to read it. But there is a problem! The correspondence turned out to be encrypted. The detective tried really hard to decipher the correspondence, but he couldn't understand anything.
At last, after some thought, he thought of something. Let's say there is a word *s*, consisting of |*s*| lowercase Latin letters. Then for one operation you can choose a certain position *p* (1<=≤<=*p*<=<<=|*s*|) and perform one of the following actions:
- either replace letter *s**p* with the one that alphabetically follows it and replace letter *s**p*<=+<=1 with the one that alphabetically precedes it; - or replace letter *s**p* with the one that alphabetically precedes it and replace letter *s**p*<=+<=1 with the one that alphabetically follows it.
Let us note that letter "z" doesn't have a defined following letter and letter "a" doesn't have a defined preceding letter. That's why the corresponding changes are not acceptable. If the operation requires performing at least one unacceptable change, then such operation cannot be performed.
Two words coincide in their meaning iff one of them can be transformed into the other one as a result of zero or more operations.
Sherlock Holmes needs to learn to quickly determine the following for each word: how many words can exist that coincide in their meaning with the given word, but differs from the given word in at least one character? Count this number for him modulo 1000000007 (109<=+<=7).
|
The input data contains several tests. The first line contains the only integer *t* (1<=≤<=*t*<=≤<=104) — the number of tests.
Next *t* lines contain the words, one per line. Each word consists of lowercase Latin letters and has length from 1 to 100, inclusive. Lengths of words can differ.
|
For each word you should print the number of different other words that coincide with it in their meaning — not from the words listed in the input data, but from all possible words. As the sought number can be very large, print its value modulo 1000000007 (109<=+<=7).
|
[
"1\nab\n",
"1\naaaaaaaaaaa\n",
"2\nya\nklmbfxzb\n"
] |
[
"1\n",
"0\n",
"24\n320092793\n"
] |
Some explanations about the operation:
- Note that for each letter, we can clearly define the letter that follows it. Letter "b" alphabetically follows letter "a", letter "c" follows letter "b", ..., "z" follows letter "y". - Preceding letters are defined in the similar manner: letter "y" precedes letter "z", ..., "a" precedes letter "b". - Note that the operation never changes a word's length.
In the first sample you can obtain the only other word "ba". In the second sample you cannot obtain any other word, so the correct answer is 0.
Consider the third sample. One operation can transform word "klmbfxzb" into word "klmcexzb": we should choose *p* = 4, and replace the fourth letter with the following one ("b" → "c"), and the fifth one — with the preceding one ("f" → "e"). Also, we can obtain many other words from this one. An operation can transform word "ya" only into one other word "xb".
Word "ya" coincides in its meaning with words "xb", "wc", "vd", ..., "ay" (overall there are 24 other words). The word "klmbfxzb has many more variants — there are 3320092814 other words that coincide with in the meaning. So the answer for the first word equals 24 and for the second one equals 320092793 — the number 3320092814 modulo 10<sup class="upper-index">9</sup> + 7
| 1,500
|
[
{
"input": "1\nab",
"output": "1"
},
{
"input": "1\naaaaaaaaaaa",
"output": "0"
},
{
"input": "2\nya\nklmbfxzb",
"output": "24\n320092793"
},
{
"input": "1\na",
"output": "0"
},
{
"input": "1\nz",
"output": "0"
},
{
"input": "1\naaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "0"
},
{
"input": "1\nmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmn",
"output": "39086755"
},
{
"input": "15\nejkf\nkc\nu\nznmjnznzn\nbjkcg\nwou\nywy\nqoojqlr\nnbkip\nsgmgjg\ndjjdd\nh\nkgbkri\nt\npvzbvkij",
"output": "4454\n12\n0\n667098198\n35884\n209\n20\n142184034\n186649\n4212829\n31439\n0\n3167654\n0\n474922754"
},
{
"input": "15\nieqqe\nwwbnobrb\ngyftfg\nclrn\nzwtviipwww\nmsmsiih\nofqsusmsmm\nyjomiiq\naedoeun\nz\nmwwmimiwiu\ngtdsifgg\nvmmmren\nzlgzousxzp\ngcpodkxebk",
"output": "195974\n543885418\n5715485\n10619\n87838649\n154292634\n869212338\n155736014\n55669004\n0\n792902040\n590044032\n155736014\n991368939\n271743066"
},
{
"input": "17\nwfvfmnmr\nkyururk\nnei\nmeb\nwldtalawww\njeobzb\nuuww\nwfkgzxmr\nrvvpxrihha\nqz\ngpodf\niatnevlia\njjnaunradf\nwoi\ny\nmewdykdldp\nnckg",
"output": "662991818\n51681734\n350\n170\n598684361\n3582684\n968\n541474246\n55368153\n9\n148439\n157054204\n91519085\n464\n0\n838428119\n5759"
},
{
"input": "17\nku\njf\nygbkcbf\ngmp\nnuaxjssqv\nawxxcxw\nyccccvc\na\nu\nnod\nmfgtj\nekkjbkzr\njtisatba\nxtkxlk\nt\nxkxzuizs\nnvvvqarn",
"output": "20\n14\n25664534\n486\n516112667\n64053170\n44165015\n0\n0\n450\n222299\n145570718\n897496632\n3582684\n0\n190441484\n326269025"
},
{
"input": "19\nqhovyphr\nttymgy\nqbed\nidxitl\nusbrx\nqevvydqdb\nltyjljj\ncgv\nsruvudcu\naqjbqjybyq\nrhtwwtthhh\nh\nksktyyst\npmwmnzswlw\nm\nuwaup\nxhvk\nj\nvii",
"output": "434174305\n2030279\n2924\n6460404\n177169\n583243193\n154292634\n434\n434174305\n191795714\n792902040\n0\n573191111\n676498805\n0\n195974\n9239\n0\n506"
},
{
"input": "10\njrojjyqqjtrfjf\nvuwzvmwjyfvifdfddymwfuzmvvummwdfzjzdvzuvfvjiuvyzymviyyumvziyimfzfiji\nwxzwojjzqzyqlojjbrjlbqrrwqw\nqfwppnuvbgegbqgbmeqpbguwmmqhunnquepepeewubbmnenvmwhnvhunnmsqmmgfepevupewvenmwpmgspnebv\nrxqzorkizznsiirciokscrrjqqqzkfijrrkkfrqjjifczcjcnqoisorszkjxcxvqzcfczqfcrvfrsckvvfjxnxzqjivqv\nnvimavvhfskwkhgvaowsficdmv\nqvrdgohdmgawrqo\npulanukntfhrthkxkprprhrhcouxxnkhoroptcxkfktotkokonoxptcocnfartlucnlncalnknhlpachofclannctpklackcc\ntqezktgzhipiaootfpqpzjgtqitagthef\nqaeigcacoqoc",
"output": "520219051\n945235283\n691128313\n324077859\n417775814\n827035318\n275780270\n145635612\n155578699\n486064325"
},
{
"input": "10\nnnclytzybytthncihlnnbclzcbhinhyzbhnbiyccltnnchylynhznycniiztzcthiyyhccybc\ngbcccdnjbgntyzayntwdf\ndzkxapreirktspflaudtlexeffifxxzxrjaxqfkcncxf\nnilfxfsyliingzbgsxbzxxmqqxnngsfqqqbqinglmbxgysbi\nsjquzchhssjrrzbuc\nhdhvdnjvhreiiekeinvdddneejkrdkjvikj\nanyamaosolahmhnmsmmmmhhofsaalfmomoshy\nnqvzznlicebqsviwivvhhiiciblbelvlelhisclecb\nlbtihlhulugddgtfwjiftfltijwitcgmgvjfcfcdwbliijqhidghdwibpgjqdumdijmhlbdfvcpcqqptcc\nkfjcmfzxhhkhfikihymhmhxuzeykfkmezcmieyxxshjckfxsx",
"output": "860385290\n566220124\n563237657\n25482967\n365565922\n211740598\n627945017\n550126162\n997587067\n505019519"
}
] | 1,647,882,454
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 42
| 748
| 11,059,200
|
MOD = int(1e9 + 7)
dp = [[0 for j in range(2501)] for i in range(101)]
dp[0][0] = 1
for i in range(100):
for j in range(i * 25 + 1):
for k in range(26):
dp[i + 1][j + k] = (dp[i + 1][j + k] + dp[i][j]) % MOD
for tc in range(int(input())):
S = input()
s = sum([ ord(c) - ord('a') for c in S ])
print((dp[len(S)][s] + MOD - 1) % MOD)
|
Title: Cipher
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Sherlock Holmes found a mysterious correspondence of two VIPs and made up his mind to read it. But there is a problem! The correspondence turned out to be encrypted. The detective tried really hard to decipher the correspondence, but he couldn't understand anything.
At last, after some thought, he thought of something. Let's say there is a word *s*, consisting of |*s*| lowercase Latin letters. Then for one operation you can choose a certain position *p* (1<=≤<=*p*<=<<=|*s*|) and perform one of the following actions:
- either replace letter *s**p* with the one that alphabetically follows it and replace letter *s**p*<=+<=1 with the one that alphabetically precedes it; - or replace letter *s**p* with the one that alphabetically precedes it and replace letter *s**p*<=+<=1 with the one that alphabetically follows it.
Let us note that letter "z" doesn't have a defined following letter and letter "a" doesn't have a defined preceding letter. That's why the corresponding changes are not acceptable. If the operation requires performing at least one unacceptable change, then such operation cannot be performed.
Two words coincide in their meaning iff one of them can be transformed into the other one as a result of zero or more operations.
Sherlock Holmes needs to learn to quickly determine the following for each word: how many words can exist that coincide in their meaning with the given word, but differs from the given word in at least one character? Count this number for him modulo 1000000007 (109<=+<=7).
Input Specification:
The input data contains several tests. The first line contains the only integer *t* (1<=≤<=*t*<=≤<=104) — the number of tests.
Next *t* lines contain the words, one per line. Each word consists of lowercase Latin letters and has length from 1 to 100, inclusive. Lengths of words can differ.
Output Specification:
For each word you should print the number of different other words that coincide with it in their meaning — not from the words listed in the input data, but from all possible words. As the sought number can be very large, print its value modulo 1000000007 (109<=+<=7).
Demo Input:
['1\nab\n', '1\naaaaaaaaaaa\n', '2\nya\nklmbfxzb\n']
Demo Output:
['1\n', '0\n', '24\n320092793\n']
Note:
Some explanations about the operation:
- Note that for each letter, we can clearly define the letter that follows it. Letter "b" alphabetically follows letter "a", letter "c" follows letter "b", ..., "z" follows letter "y". - Preceding letters are defined in the similar manner: letter "y" precedes letter "z", ..., "a" precedes letter "b". - Note that the operation never changes a word's length.
In the first sample you can obtain the only other word "ba". In the second sample you cannot obtain any other word, so the correct answer is 0.
Consider the third sample. One operation can transform word "klmbfxzb" into word "klmcexzb": we should choose *p* = 4, and replace the fourth letter with the following one ("b" → "c"), and the fifth one — with the preceding one ("f" → "e"). Also, we can obtain many other words from this one. An operation can transform word "ya" only into one other word "xb".
Word "ya" coincides in its meaning with words "xb", "wc", "vd", ..., "ay" (overall there are 24 other words). The word "klmbfxzb has many more variants — there are 3320092814 other words that coincide with in the meaning. So the answer for the first word equals 24 and for the second one equals 320092793 — the number 3320092814 modulo 10<sup class="upper-index">9</sup> + 7
|
```python
MOD = int(1e9 + 7)
dp = [[0 for j in range(2501)] for i in range(101)]
dp[0][0] = 1
for i in range(100):
for j in range(i * 25 + 1):
for k in range(26):
dp[i + 1][j + k] = (dp[i + 1][j + k] + dp[i][j]) % MOD
for tc in range(int(input())):
S = input()
s = sum([ ord(c) - ord('a') for c in S ])
print((dp[len(S)][s] + MOD - 1) % MOD)
```
| 3
|
|
765
|
B
|
Code obfuscation
|
PROGRAMMING
| 1,100
|
[
"greedy",
"implementation",
"strings"
] | null | null |
Kostya likes Codeforces contests very much. However, he is very disappointed that his solutions are frequently hacked. That's why he decided to obfuscate (intentionally make less readable) his code before upcoming contest.
To obfuscate the code, Kostya first looks at the first variable name used in his program and replaces all its occurrences with a single symbol *a*, then he looks at the second variable name that has not been replaced yet, and replaces all its occurrences with *b*, and so on. Kostya is well-mannered, so he doesn't use any one-letter names before obfuscation. Moreover, there are at most 26 unique identifiers in his programs.
You are given a list of identifiers of some program with removed spaces and line breaks. Check if this program can be a result of Kostya's obfuscation.
|
In the only line of input there is a string *S* of lowercase English letters (1<=≤<=|*S*|<=≤<=500) — the identifiers of a program with removed whitespace characters.
|
If this program can be a result of Kostya's obfuscation, print "YES" (without quotes), otherwise print "NO".
|
[
"abacaba\n",
"jinotega\n"
] |
[
"YES\n",
"NO\n"
] |
In the first sample case, one possible list of identifiers would be "number string number character number string number". Here how Kostya would obfuscate the program:
- replace all occurences of number with a, the result would be "a string a character a string a",- replace all occurences of string with b, the result would be "a b a character a b a",- replace all occurences of character with c, the result would be "a b a c a b a",- all identifiers have been replaced, thus the obfuscation is finished.
| 1,000
|
[
{
"input": "abacaba",
"output": "YES"
},
{
"input": "jinotega",
"output": "NO"
},
{
"input": "aaaaaaaaaaa",
"output": "YES"
},
{
"input": "aba",
"output": "YES"
},
{
"input": "bab",
"output": "NO"
},
{
"input": "a",
"output": "YES"
},
{
"input": "abcdefghijklmnopqrstuvwxyz",
"output": "YES"
},
{
"input": "fihyxmbnzq",
"output": "NO"
},
{
"input": "aamlaswqzotaanasdhcvjoaiwdhctezzawagkdgfffeqkyrvbcrfqgkdsvximsnvmkmjyofswmtjdoxgwamsaatngenqvsvrvwlbzuoeaolfcnmdacrmdleafbsmerwmxzyylfhemnkoayuhtpbikm",
"output": "NO"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "YES"
},
{
"input": "darbbbcwynbbbbaacbkvbakavabbbabzajlbajryaabbbccxraakgniagbtsswcfbkubdmcasccepybkaefcfsbzdddxgcjadybcfjtmqbspflqrdghgfwnccfveogdmifkociqscahdejctacwzbkhihajfilrgcjiofwfklifobozikcmvcfeqlidrgsgdfxffaaebzjxngsjxiclyolhjokqpdbfffooticxsezpgqkhhzmbmqgskkqvefzyijrwhpftcmbedmaflapmeljaudllojfpgfkpvgylaglrhrslxlprbhgknrctilngqccbddvpamhifsbmyowohczizjcbleehfrecjbqtxertnpfmalejmbxkhkkbyopuwlhkxuqellsybgcndvniyyxfoufalstdsdfjoxlnmigkqwmgojsppaannfstxytelluvvkdcezlqfsperwyjsdsmkvgjdbksswamhmoukcawiigkggztr",
"output": "NO"
},
{
"input": "bbbbbb",
"output": "NO"
},
{
"input": "aabbbd",
"output": "NO"
},
{
"input": "abdefghijklmnopqrstuvwxyz",
"output": "NO"
},
{
"input": "abcdeghijklmnopqrstuvwxyz",
"output": "NO"
},
{
"input": "abcdefghijklmnopqrsuvwxyz",
"output": "NO"
},
{
"input": "abcdefghijklmnopqrstuvwxy",
"output": "YES"
},
{
"input": "abcdefghijklmnopqrsutvwxyz",
"output": "NO"
},
{
"input": "acdef",
"output": "NO"
},
{
"input": "z",
"output": "NO"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaababaaababaabababccbabdbcbadccacdbdedabbeecbcabbdcaecdabbedddafeffaccgeacefbcahabfiiegecdbebabhhbdgfeghhbfahgagefbgghdbhadeicbdfgdchhefhigfcgdhcihecacfhadfgfejccibcjkfhbigbealjjkfldiecfdcafbamgfkbjlbifldghmiifkkglaflmjfmkfdjlbliijkgfdelklfnadbifgbmklfbqkhirhcadoadhmjrghlmelmjfpakqkdfcgqdkaeqpbcdoeqglqrarkipncckpfmajrqsfffldegbmahsfcqdfdqtrgrouqajgsojmmukptgerpanpcbejmergqtavwsvtveufdseuemwrhfmjqinxjodddnpcgqullrhmogflsxgsbapoghortiwcovejtinncozk",
"output": "NO"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "YES"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabbbabbbabbaaabbaaaaabaabbaa",
"output": "YES"
},
{
"input": "aababbabbaabbbbbaabababaabbbaaaaabbabbabbaabbbbabaabbaaababbaaacbbabbbbbbcbcababbccaaacbaccaccaababbccaacccaabaaccaaabacacbaabacbaacbaaabcbbbcbbaacaabcbcbccbacabbcbabcaccaaaaaabcbacabcbabbbbbabccbbcacbaaabbccbbaaaaaaaaaaaadbbbabdacabdaddddbaabbddbdabbdacbacbacaaaabbacadbcddddadaddabbdccaddbaaacbceebbceadbeaadecddbbbcaaecbdeaebaddbbdebbcbaabcacbdcdc",
"output": "YES"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabbbaabaabaababbbabbacacbbbacbbaaaabbccacbaabaaccbbbbbcbbbacabbccaaabbaaacabcbacbcabbbbecbecadcbacbaadeeadabeacdebccdbbcaecdbeeebbebcaaaeacdcbdeccdbbdcdebdcbdacebcecbacddeeaebcedffedfggbeedceacaecagdfedfabcfchffceachgcbicbcffeeebgcgiefcafhibhceiedgbfebbccegbehhibhhfedbaeedbghggffehggaeaidifhdhaggdjcfjhiaieaichjacedchejg",
"output": "NO"
},
{
"input": "b",
"output": "NO"
},
{
"input": "ac",
"output": "NO"
},
{
"input": "cde",
"output": "NO"
},
{
"input": "abd",
"output": "NO"
},
{
"input": "zx",
"output": "NO"
},
{
"input": "bcd",
"output": "NO"
},
{
"input": "aaac",
"output": "NO"
},
{
"input": "aacb",
"output": "NO"
},
{
"input": "acd",
"output": "NO"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaz",
"output": "NO"
},
{
"input": "abcdefghijklmnopqrstuvwxyzz",
"output": "YES"
},
{
"input": "bc",
"output": "NO"
},
{
"input": "aaaaaaaaad",
"output": "NO"
},
{
"input": "abb",
"output": "YES"
},
{
"input": "abcb",
"output": "YES"
},
{
"input": "aac",
"output": "NO"
},
{
"input": "abcbcb",
"output": "YES"
},
{
"input": "bb",
"output": "NO"
},
{
"input": "abbb",
"output": "YES"
},
{
"input": "bbb",
"output": "NO"
},
{
"input": "x",
"output": "NO"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaazz",
"output": "NO"
},
{
"input": "acbccccccccccc",
"output": "NO"
},
{
"input": "za",
"output": "NO"
},
{
"input": "ade",
"output": "NO"
},
{
"input": "bbbbbbbbbb",
"output": "NO"
},
{
"input": "bac",
"output": "NO"
},
{
"input": "bcddcb",
"output": "NO"
},
{
"input": "aaacb",
"output": "NO"
},
{
"input": "aaaaac",
"output": "NO"
},
{
"input": "aaaaaaaaaaad",
"output": "NO"
},
{
"input": "c",
"output": "NO"
},
{
"input": "abcccccccc",
"output": "YES"
},
{
"input": "aaaaaaac",
"output": "NO"
}
] | 1,679,997,358
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 59
| 46
| 0
|
s=input()
st=sorted(set(s),key=s.index)
for i in range(len(st)):
if st[i]!=chr(97+i):exit(print('NO'))
print('YES')
|
Title: Code obfuscation
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Kostya likes Codeforces contests very much. However, he is very disappointed that his solutions are frequently hacked. That's why he decided to obfuscate (intentionally make less readable) his code before upcoming contest.
To obfuscate the code, Kostya first looks at the first variable name used in his program and replaces all its occurrences with a single symbol *a*, then he looks at the second variable name that has not been replaced yet, and replaces all its occurrences with *b*, and so on. Kostya is well-mannered, so he doesn't use any one-letter names before obfuscation. Moreover, there are at most 26 unique identifiers in his programs.
You are given a list of identifiers of some program with removed spaces and line breaks. Check if this program can be a result of Kostya's obfuscation.
Input Specification:
In the only line of input there is a string *S* of lowercase English letters (1<=≤<=|*S*|<=≤<=500) — the identifiers of a program with removed whitespace characters.
Output Specification:
If this program can be a result of Kostya's obfuscation, print "YES" (without quotes), otherwise print "NO".
Demo Input:
['abacaba\n', 'jinotega\n']
Demo Output:
['YES\n', 'NO\n']
Note:
In the first sample case, one possible list of identifiers would be "number string number character number string number". Here how Kostya would obfuscate the program:
- replace all occurences of number with a, the result would be "a string a character a string a",- replace all occurences of string with b, the result would be "a b a character a b a",- replace all occurences of character with c, the result would be "a b a c a b a",- all identifiers have been replaced, thus the obfuscation is finished.
|
```python
s=input()
st=sorted(set(s),key=s.index)
for i in range(len(st)):
if st[i]!=chr(97+i):exit(print('NO'))
print('YES')
```
| 3
|
|
78
|
A
|
Haiku
|
PROGRAMMING
| 800
|
[
"implementation",
"strings"
] |
A. Haiku
|
2
|
256
|
Haiku is a genre of Japanese traditional poetry.
A haiku poem consists of 17 syllables split into three phrases, containing 5, 7 and 5 syllables correspondingly (the first phrase should contain exactly 5 syllables, the second phrase should contain exactly 7 syllables, and the third phrase should contain exactly 5 syllables). A haiku masterpiece contains a description of a moment in those three phrases. Every word is important in a small poem, which is why haiku are rich with symbols. Each word has a special meaning, a special role. The main principle of haiku is to say much using a few words.
To simplify the matter, in the given problem we will consider that the number of syllable in the phrase is equal to the number of vowel letters there. Only the following letters are regarded as vowel letters: "a", "e", "i", "o" and "u".
Three phases from a certain poem are given. Determine whether it is haiku or not.
|
The input data consists of three lines. The length of each line is between 1 and 100, inclusive. The *i*-th line contains the *i*-th phrase of the poem. Each phrase consists of one or more words, which are separated by one or more spaces. A word is a non-empty sequence of lowercase Latin letters. Leading and/or trailing spaces in phrases are allowed. Every phrase has at least one non-space character. See the example for clarification.
|
Print "YES" (without the quotes) if the poem is a haiku. Otherwise, print "NO" (also without the quotes).
|
[
"on codeforces \nbeta round is running\n a rustling of keys \n",
"how many gallons\nof edo s rain did you drink\n cuckoo\n"
] |
[
"YES",
"NO"
] |
none
| 500
|
[
{
"input": "on codeforces \nbeta round is running\n a rustling of keys ",
"output": "YES"
},
{
"input": "how many gallons\nof edo s rain did you drink\n cuckoo",
"output": "NO"
},
{
"input": " hatsu shigure\n saru mo komino wo\nhoshige nari",
"output": "YES"
},
{
"input": "o vetus stagnum\n rana de ripa salit\n ac sonant aquae",
"output": "NO"
},
{
"input": " furuike ya\nkawazu tobikomu\nmizu no oto ",
"output": "YES"
},
{
"input": " noch da leich\na stamperl zum aufwaerma\n da pfarrer kimmt a ",
"output": "NO"
},
{
"input": " sommerfuglene \n hvorfor bruge mange ord\n et kan gore det",
"output": "YES"
},
{
"input": " ab der mittagszeit\n ist es etwas schattiger\n ein wolkenhimmel",
"output": "NO"
},
{
"input": "tornando a vederli\ni fiori di ciliegio la sera\nson divenuti frutti",
"output": "NO"
},
{
"input": "kutaburete\nyado karu koro ya\nfuji no hana",
"output": "YES"
},
{
"input": " beginnings of poetry\n the rice planting songs \n of the interior",
"output": "NO"
},
{
"input": " door zomerregens\n zijn de kraanvogelpoten\n korter geworden",
"output": "NO"
},
{
"input": " derevo na srub\na ptitsi bezzabotno\n gnezdishko tam vyut",
"output": "YES"
},
{
"input": "writing in the dark\nunaware that my pen\nhas run out of ink",
"output": "NO"
},
{
"input": "kusaaiu\nuieueua\nuo efaa",
"output": "YES"
},
{
"input": "v\nh\np",
"output": "NO"
},
{
"input": "i\ni\nu",
"output": "NO"
},
{
"input": "awmio eoj\nabdoolceegood\nwaadeuoy",
"output": "YES"
},
{
"input": "xzpnhhnqsjpxdboqojixmofawhdjcfbscq\nfoparnxnbzbveycoltwdrfbwwsuobyoz hfbrszy\nimtqryscsahrxpic agfjh wvpmczjjdrnwj mcggxcdo",
"output": "YES"
},
{
"input": "wxjcvccp cppwsjpzbd dhizbcnnllckybrnfyamhgkvkjtxxfzzzuyczmhedhztugpbgpvgh\nmdewztdoycbpxtp bsiw hknggnggykdkrlihvsaykzfiiw\ndewdztnngpsnn lfwfbvnwwmxoojknygqb hfe ibsrxsxr",
"output": "YES"
},
{
"input": "nbmtgyyfuxdvrhuhuhpcfywzrbclp znvxw synxmzymyxcntmhrjriqgdjh xkjckydbzjbvtjurnf\nhhnhxdknvamywhsrkprofnyzlcgtdyzzjdsfxyddvilnzjziz qmwfdvzckgcbrrxplxnxf mpxwxyrpesnewjrx ajxlfj\nvcczq hddzd cvefmhxwxxyqcwkr fdsndckmesqeq zyjbwbnbyhybd cta nsxzidl jpcvtzkldwd",
"output": "YES"
},
{
"input": "rvwdsgdsrutgjwscxz pkd qtpmfbqsmctuevxdj kjzknzghdvxzlaljcntg jxhvzn yciktbsbyscfypx x xhkxnfpdp\nwdfhvqgxbcts mnrwbr iqttsvigwdgvlxwhsmnyxnttedonxcfrtmdjjmacvqtkbmsnwwvvrlxwvtggeowtgsqld qj\nvsxcdhbzktrxbywpdvstr meykarwtkbm pkkbhvwvelclfmpngzxdmblhcvf qmabmweldplmczgbqgzbqnhvcdpnpjtch ",
"output": "YES"
},
{
"input": "brydyfsmtzzkpdsqvvztmprhqzbzqvgsblnz naait tdtiprjsttwusdykndwcccxfmzmrmfmzjywkpgbfnjpypgcbcfpsyfj k\nucwdfkfyxxxht lxvnovqnnsqutjsyagrplb jhvtwdptrwcqrovncdvqljjlrpxcfbxqgsfylbgmcjpvpl ccbcybmigpmjrxpu\nfgwtpcjeywgnxgbttgx htntpbk tkkpwbgxwtbxvcpkqbzetjdkcwad tftnjdxxjdvbpfibvxuglvx llyhgjvggtw jtjyphs",
"output": "YES"
},
{
"input": "nyc aqgqzjjlj mswgmjfcxlqdscheskchlzljlsbhyn iobxymwzykrsnljj\nnnebeaoiraga\nqpjximoqzswhyyszhzzrhfwhf iyxysdtcpmikkwpugwlxlhqfkn",
"output": "NO"
},
{
"input": "lzrkztgfe mlcnq ay ydmdzxh cdgcghxnkdgmgfzgahdjjmqkpdbskreswpnblnrc fmkwziiqrbskp\np oukeaz gvvy kghtrjlczyl qeqhgfgfej\nwfolhkmktvsjnrpzfxcxzqmfidtlzmuhxac wsncjgmkckrywvxmnjdpjpfydhk qlmdwphcvyngansqhl",
"output": "NO"
},
{
"input": "yxcboqmpwoevrdhvpxfzqmammak\njmhphkxppkqkszhqqtkvflarsxzla pbxlnnnafqbsnmznfj qmhoktgzix qpmrgzxqvmjxhskkksrtryehfnmrt dtzcvnvwp\nscwymuecjxhw rdgsffqywwhjpjbfcvcrnisfqllnbplpadfklayjguyvtrzhwblftclfmsr",
"output": "NO"
},
{
"input": "qfdwsr jsbrpfmn znplcx nhlselflytndzmgxqpgwhpi ghvbbxrkjdirfghcybhkkqdzmyacvrrcgsneyjlgzfvdmxyjmph\nylxlyrzs drbktzsniwcbahjkgohcghoaczsmtzhuwdryjwdijmxkmbmxv yyfrokdnsx\nyw xtwyzqlfxwxghugoyscqlx pljtz aldfskvxlsxqgbihzndhxkswkxqpwnfcxzfyvncstfpqf",
"output": "NO"
},
{
"input": "g rguhqhcrzmuqthtmwzhfyhpmqzzosa\nmhjimzvchkhejh irvzejhtjgaujkqfxhpdqjnxr dvqallgssktqvsxi\npcwbliftjcvuzrsqiswohi",
"output": "NO"
},
{
"input": " ngxtlq iehiise vgffqcpnmsoqzyseuqqtggokymol zn\nvjdjljazeujwoubkcvtsbepooxqzrueaauokhepiquuopfild\ngoabauauaeotoieufueeknudiilupouaiaexcoapapu",
"output": "NO"
},
{
"input": "ycnvnnqk mhrmhctpkfbc qbyvtjznmndqjzgbcxmvrpkfcll zwspfptmbxgrdv dsgkk nfytsqjrnfbhh pzdldzymvkdxxwh\nvnhjfwgdnyjptsmblyxmpzylsbjlmtkkwjcbqwjctqvrlqqkdsrktxlnslspvnn mdgsmzblhbnvpczmqkcffwhwljqkzmk hxcm\nrghnjvzcpprrgmtgytpkzyc mrdnnhpkwypwqbtzjyfwvrdwyjltbzxtbstzs xdjzdmx yjsqtzlrnvyssvglsdjrmsrfrcdpqt",
"output": "NO"
},
{
"input": "ioeeaioeiuoeaeieuuieooaouiuouiioaueeaiaiuoaoiioeeaauooiuuieeuaeeoauieeaiuoieiaieuoauaaoioooieueueuai\nuooaoeeaoiuuoeioaoouaououoeioiaeueoioaiouaeaoioiuuaueeuaiuoiueoiuaoeeieeouaeeaeeieioeoiiieuuueuuieuo\naeeouieeieoueaioeoioooiouaeeeiaaioueauaueiouuuaieuuioiaeiueauueaoieauauoeueuaiueuuaueeoueauaeaoieeoo",
"output": "NO"
},
{
"input": "mkgycgmrqtmlwj vddlbsgdptyfrcj nmrddjchydvbsyhgzytfzvwbhqmmhkpsyrcnknpsqrr wcnf wfvgskrnsmnrcqgcnc q\npn cclcyjjdp rqkpgyrvyyd hhynrochfa pthyffqvskazfshvzcmvhmsrxvquzkdvivlbfypwbgltfbjmhzljvgzmxjlrjdjq\nauuouieuaaauoooeoiuoaueuueauiuuuiaeuwuoiaeoeaieauieouoaeiiieiioiuuuiuauioiiuoeauueieaueiaioeuaoaaau",
"output": "NO"
},
{
"input": "ab\na\na",
"output": "NO"
},
{
"input": "on codeforcs\nbeta round is runnineg\na rustling of keys",
"output": "NO"
},
{
"input": "coooooooooooooooood\nd\nd",
"output": "NO"
},
{
"input": "on codeforces \nbeta round is runninog\n a rustling of keys",
"output": "NO"
},
{
"input": "aaaaaaaaaaaaaaa\na\na",
"output": "NO"
},
{
"input": "aaaaaccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc\naaaaaaaccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc\naaaaaccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc",
"output": "YES"
},
{
"input": "cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc\ncccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc\ncccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc",
"output": "NO"
},
{
"input": "aaaaaa\naaaaaa\naaaaa",
"output": "NO"
}
] | 1,632,616,663
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 40
| 216
| 21,401,600
|
dem, a, b, c = 0, input(), input(), input()
for x in a:
if x in ['u', 'e', 'o', 'a', 'i']: dem += 1
if dem != 5: print("NO")
else:
for x in b:
if x in ['u', 'e', 'o', 'a', 'i']: dem += 1
if dem != 12: print("NO")
else:
for x in c:
if x in ['u', 'e', 'o', 'a', 'i']: dem += 1
if dem != 17: print("NO")
else: print("YES")
|
Title: Haiku
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Haiku is a genre of Japanese traditional poetry.
A haiku poem consists of 17 syllables split into three phrases, containing 5, 7 and 5 syllables correspondingly (the first phrase should contain exactly 5 syllables, the second phrase should contain exactly 7 syllables, and the third phrase should contain exactly 5 syllables). A haiku masterpiece contains a description of a moment in those three phrases. Every word is important in a small poem, which is why haiku are rich with symbols. Each word has a special meaning, a special role. The main principle of haiku is to say much using a few words.
To simplify the matter, in the given problem we will consider that the number of syllable in the phrase is equal to the number of vowel letters there. Only the following letters are regarded as vowel letters: "a", "e", "i", "o" and "u".
Three phases from a certain poem are given. Determine whether it is haiku or not.
Input Specification:
The input data consists of three lines. The length of each line is between 1 and 100, inclusive. The *i*-th line contains the *i*-th phrase of the poem. Each phrase consists of one or more words, which are separated by one or more spaces. A word is a non-empty sequence of lowercase Latin letters. Leading and/or trailing spaces in phrases are allowed. Every phrase has at least one non-space character. See the example for clarification.
Output Specification:
Print "YES" (without the quotes) if the poem is a haiku. Otherwise, print "NO" (also without the quotes).
Demo Input:
['on codeforces \nbeta round is running\n a rustling of keys \n', 'how many gallons\nof edo s rain did you drink\n cuckoo\n']
Demo Output:
['YES', 'NO']
Note:
none
|
```python
dem, a, b, c = 0, input(), input(), input()
for x in a:
if x in ['u', 'e', 'o', 'a', 'i']: dem += 1
if dem != 5: print("NO")
else:
for x in b:
if x in ['u', 'e', 'o', 'a', 'i']: dem += 1
if dem != 12: print("NO")
else:
for x in c:
if x in ['u', 'e', 'o', 'a', 'i']: dem += 1
if dem != 17: print("NO")
else: print("YES")
```
| 3.906136
|
378
|
A
|
Playing with Dice
|
PROGRAMMING
| 800
|
[
"brute force"
] | null | null |
Two players are playing a game. First each of them writes an integer from 1 to 6, and then a dice is thrown. The player whose written number got closer to the number on the dice wins. If both payers have the same difference, it's a draw.
The first player wrote number *a*, the second player wrote number *b*. How many ways to throw a dice are there, at which the first player wins, or there is a draw, or the second player wins?
|
The single line contains two integers *a* and *b* (1<=≤<=*a*,<=*b*<=≤<=6) — the numbers written on the paper by the first and second player, correspondingly.
|
Print three integers: the number of ways to throw the dice at which the first player wins, the game ends with a draw or the second player wins, correspondingly.
|
[
"2 5\n",
"2 4\n"
] |
[
"3 0 3\n",
"2 1 3\n"
] |
The dice is a standard cube-shaped six-sided object with each side containing a number from 1 to 6, and where all numbers on all sides are distinct.
You can assume that number *a* is closer to number *x* than number *b*, if |*a* - *x*| < |*b* - *x*|.
| 500
|
[
{
"input": "2 5",
"output": "3 0 3"
},
{
"input": "2 4",
"output": "2 1 3"
},
{
"input": "5 3",
"output": "2 1 3"
},
{
"input": "1 6",
"output": "3 0 3"
},
{
"input": "5 1",
"output": "3 1 2"
},
{
"input": "6 3",
"output": "2 0 4"
},
{
"input": "2 3",
"output": "2 0 4"
},
{
"input": "5 6",
"output": "5 0 1"
},
{
"input": "4 4",
"output": "0 6 0"
},
{
"input": "1 1",
"output": "0 6 0"
},
{
"input": "6 4",
"output": "1 1 4"
},
{
"input": "1 4",
"output": "2 0 4"
},
{
"input": "5 5",
"output": "0 6 0"
},
{
"input": "4 5",
"output": "4 0 2"
},
{
"input": "4 3",
"output": "3 0 3"
},
{
"input": "1 5",
"output": "2 1 3"
},
{
"input": "6 5",
"output": "1 0 5"
},
{
"input": "2 2",
"output": "0 6 0"
},
{
"input": "1 3",
"output": "1 1 4"
},
{
"input": "3 6",
"output": "4 0 2"
},
{
"input": "3 1",
"output": "4 1 1"
},
{
"input": "3 2",
"output": "4 0 2"
},
{
"input": "3 5",
"output": "3 1 2"
},
{
"input": "3 3",
"output": "0 6 0"
},
{
"input": "6 2",
"output": "2 1 3"
},
{
"input": "4 1",
"output": "4 0 2"
},
{
"input": "5 2",
"output": "3 0 3"
},
{
"input": "4 2",
"output": "3 1 2"
},
{
"input": "2 1",
"output": "5 0 1"
},
{
"input": "6 1",
"output": "3 0 3"
},
{
"input": "4 6",
"output": "4 1 1"
},
{
"input": "2 6",
"output": "3 1 2"
},
{
"input": "3 4",
"output": "3 0 3"
},
{
"input": "1 2",
"output": "1 0 5"
},
{
"input": "6 6",
"output": "0 6 0"
},
{
"input": "5 4",
"output": "2 0 4"
},
{
"input": "3 3",
"output": "0 6 0"
},
{
"input": "1 1",
"output": "0 6 0"
}
] | 1,630,472,816
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 38
| 92
| 6,963,200
|
n,m = map(int,input().split())
count = 0
sount = 0
Dount = 0
for i in range(1,7):
G = abs(n-i)
H = abs(m-i)
if G<H:
count = count + 1
elif H<G:
sount = sount + 1
else :
Dount = Dount + 1
if n>m or m>n:
print(count,Dount,sount)
else:
print(count,Dount,sount)
|
Title: Playing with Dice
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Two players are playing a game. First each of them writes an integer from 1 to 6, and then a dice is thrown. The player whose written number got closer to the number on the dice wins. If both payers have the same difference, it's a draw.
The first player wrote number *a*, the second player wrote number *b*. How many ways to throw a dice are there, at which the first player wins, or there is a draw, or the second player wins?
Input Specification:
The single line contains two integers *a* and *b* (1<=≤<=*a*,<=*b*<=≤<=6) — the numbers written on the paper by the first and second player, correspondingly.
Output Specification:
Print three integers: the number of ways to throw the dice at which the first player wins, the game ends with a draw or the second player wins, correspondingly.
Demo Input:
['2 5\n', '2 4\n']
Demo Output:
['3 0 3\n', '2 1 3\n']
Note:
The dice is a standard cube-shaped six-sided object with each side containing a number from 1 to 6, and where all numbers on all sides are distinct.
You can assume that number *a* is closer to number *x* than number *b*, if |*a* - *x*| < |*b* - *x*|.
|
```python
n,m = map(int,input().split())
count = 0
sount = 0
Dount = 0
for i in range(1,7):
G = abs(n-i)
H = abs(m-i)
if G<H:
count = count + 1
elif H<G:
sount = sount + 1
else :
Dount = Dount + 1
if n>m or m>n:
print(count,Dount,sount)
else:
print(count,Dount,sount)
```
| 3
|
|
841
|
B
|
Godsend
|
PROGRAMMING
| 1,100
|
[
"games",
"math"
] | null | null |
Leha somehow found an array consisting of *n* integers. Looking at it, he came up with a task. Two players play the game on the array. Players move one by one. The first player can choose for his move a subsegment of non-zero length with an odd sum of numbers and remove it from the array, after that the remaining parts are glued together into one array and the game continues. The second player can choose a subsegment of non-zero length with an even sum and remove it. Loses the one who can not make a move. Who will win if both play optimally?
|
First line of input data contains single integer *n* (1<=≤<=*n*<=≤<=106) — length of the array.
Next line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=109).
|
Output answer in single line. "First", if first player wins, and "Second" otherwise (without quotes).
|
[
"4\n1 3 2 3\n",
"2\n2 2\n"
] |
[
"First\n",
"Second\n"
] |
In first sample first player remove whole array in one move and win.
In second sample first player can't make a move and lose.
| 1,000
|
[
{
"input": "4\n1 3 2 3",
"output": "First"
},
{
"input": "2\n2 2",
"output": "Second"
},
{
"input": "4\n2 4 6 8",
"output": "Second"
},
{
"input": "5\n1 1 1 1 1",
"output": "First"
},
{
"input": "4\n720074544 345031254 849487632 80870826",
"output": "Second"
},
{
"input": "1\n0",
"output": "Second"
},
{
"input": "1\n999999999",
"output": "First"
},
{
"input": "2\n1 999999999",
"output": "First"
},
{
"input": "4\n3 3 4 4",
"output": "First"
},
{
"input": "2\n1 2",
"output": "First"
},
{
"input": "8\n2 2 2 1 1 2 2 2",
"output": "First"
},
{
"input": "5\n3 3 2 2 2",
"output": "First"
},
{
"input": "4\n0 1 1 0",
"output": "First"
},
{
"input": "3\n1 2 2",
"output": "First"
},
{
"input": "6\n2 2 1 1 4 2",
"output": "First"
},
{
"input": "8\n2 2 2 3 3 2 2 2",
"output": "First"
},
{
"input": "4\n2 3 3 4",
"output": "First"
},
{
"input": "10\n2 2 2 2 3 1 2 2 2 2",
"output": "First"
},
{
"input": "6\n2 2 1 1 2 2",
"output": "First"
},
{
"input": "3\n1 1 2",
"output": "First"
},
{
"input": "6\n2 4 3 3 4 6",
"output": "First"
},
{
"input": "6\n4 4 3 3 4 4",
"output": "First"
},
{
"input": "4\n1 1 2 2",
"output": "First"
},
{
"input": "4\n1 3 5 7",
"output": "First"
},
{
"input": "4\n2 1 1 2",
"output": "First"
},
{
"input": "4\n1 3 3 2",
"output": "First"
},
{
"input": "5\n3 2 2 2 2",
"output": "First"
},
{
"input": "3\n2 1 1",
"output": "First"
},
{
"input": "4\n1000000000 1000000000 1000000000 99999999",
"output": "First"
},
{
"input": "4\n2 2 1 1",
"output": "First"
},
{
"input": "5\n2 3 2 3 2",
"output": "First"
},
{
"input": "1\n1",
"output": "First"
},
{
"input": "4\n1000000000 1000000000 1000000000 1",
"output": "First"
},
{
"input": "5\n2 2 2 1 1",
"output": "First"
},
{
"input": "6\n2 1 1 1 1 2",
"output": "First"
},
{
"input": "6\n1 2 2 2 2 1",
"output": "First"
},
{
"input": "11\n2 2 2 2 2 1 2 2 2 2 2",
"output": "First"
},
{
"input": "5\n1 3 2 2 2",
"output": "First"
},
{
"input": "3\n2 3 2",
"output": "First"
},
{
"input": "2\n1 1",
"output": "First"
},
{
"input": "5\n4 4 4 3 3",
"output": "First"
},
{
"input": "5\n3 3 4 4 4",
"output": "First"
},
{
"input": "1\n2",
"output": "Second"
}
] | 1,503,780,222
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 88
| 561
| 78,540,800
|
def main():
n = int(input())
L = [int(x) for x in input().split()]
print(solver(L))
def solver(L):
for x in L:
if x % 2 == 1:
return 'First'
return 'Second'
main()
#print(solver([2, 2]))
|
Title: Godsend
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Leha somehow found an array consisting of *n* integers. Looking at it, he came up with a task. Two players play the game on the array. Players move one by one. The first player can choose for his move a subsegment of non-zero length with an odd sum of numbers and remove it from the array, after that the remaining parts are glued together into one array and the game continues. The second player can choose a subsegment of non-zero length with an even sum and remove it. Loses the one who can not make a move. Who will win if both play optimally?
Input Specification:
First line of input data contains single integer *n* (1<=≤<=*n*<=≤<=106) — length of the array.
Next line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=109).
Output Specification:
Output answer in single line. "First", if first player wins, and "Second" otherwise (without quotes).
Demo Input:
['4\n1 3 2 3\n', '2\n2 2\n']
Demo Output:
['First\n', 'Second\n']
Note:
In first sample first player remove whole array in one move and win.
In second sample first player can't make a move and lose.
|
```python
def main():
n = int(input())
L = [int(x) for x in input().split()]
print(solver(L))
def solver(L):
for x in L:
if x % 2 == 1:
return 'First'
return 'Second'
main()
#print(solver([2, 2]))
```
| 3
|
|
749
|
A
|
Bachgold Problem
|
PROGRAMMING
| 800
|
[
"greedy",
"implementation",
"math",
"number theory"
] | null | null |
Bachgold problem is very easy to formulate. Given a positive integer *n* represent it as a sum of maximum possible number of prime numbers. One can prove that such representation exists for any integer greater than 1.
Recall that integer *k* is called prime if it is greater than 1 and has exactly two positive integer divisors — 1 and *k*.
|
The only line of the input contains a single integer *n* (2<=≤<=*n*<=≤<=100<=000).
|
The first line of the output contains a single integer *k* — maximum possible number of primes in representation.
The second line should contain *k* primes with their sum equal to *n*. You can print them in any order. If there are several optimal solution, print any of them.
|
[
"5\n",
"6\n"
] |
[
"2\n2 3\n",
"3\n2 2 2\n"
] |
none
| 500
|
[
{
"input": "5",
"output": "2\n2 3"
},
{
"input": "6",
"output": "3\n2 2 2"
},
{
"input": "2",
"output": "1\n2"
},
{
"input": "3",
"output": "1\n3"
},
{
"input": "99999",
"output": "49999\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..."
},
{
"input": "100000",
"output": "50000\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..."
},
{
"input": "7",
"output": "3\n2 2 3"
},
{
"input": "4",
"output": "2\n2 2"
},
{
"input": "8",
"output": "4\n2 2 2 2"
},
{
"input": "9",
"output": "4\n2 2 2 3"
},
{
"input": "99995",
"output": "49997\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..."
},
{
"input": "99996",
"output": "49998\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..."
},
{
"input": "10",
"output": "5\n2 2 2 2 2"
},
{
"input": "11",
"output": "5\n2 2 2 2 3"
},
{
"input": "99997",
"output": "49998\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..."
},
{
"input": "99998",
"output": "49999\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..."
},
{
"input": "12",
"output": "6\n2 2 2 2 2 2"
},
{
"input": "13",
"output": "6\n2 2 2 2 2 3"
},
{
"input": "99993",
"output": "49996\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..."
},
{
"input": "99994",
"output": "49997\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..."
},
{
"input": "14",
"output": "7\n2 2 2 2 2 2 2"
},
{
"input": "15",
"output": "7\n2 2 2 2 2 2 3"
},
{
"input": "53",
"output": "26\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3"
},
{
"input": "57",
"output": "28\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3"
},
{
"input": "61",
"output": "30\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3"
},
{
"input": "774",
"output": "387\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..."
},
{
"input": "202",
"output": "101\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2"
},
{
"input": "530",
"output": "265\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..."
},
{
"input": "7166",
"output": "3583\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2..."
},
{
"input": "9294",
"output": "4647\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2..."
},
{
"input": "2422",
"output": "1211\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2..."
},
{
"input": "15326",
"output": "7663\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2..."
},
{
"input": "11454",
"output": "5727\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2..."
},
{
"input": "14878",
"output": "7439\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2..."
},
{
"input": "90672",
"output": "45336\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..."
},
{
"input": "99544",
"output": "49772\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..."
},
{
"input": "90472",
"output": "45236\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..."
},
{
"input": "23",
"output": "11\n2 2 2 2 2 2 2 2 2 2 3"
},
{
"input": "93",
"output": "46\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3"
},
{
"input": "19",
"output": "9\n2 2 2 2 2 2 2 2 3"
},
{
"input": "11110",
"output": "5555\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2..."
}
] | 1,657,878,516
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 41
| 92
| 614,400
|
# A. Bachgold Problem
n = int(input())
if n % 2 == 0:
d = int(n / 2)
print(d)
print(str("2 ") * d)
else:
d = n - 3
print(int((d / 2) + 1))
print(str("2 ") * int((d /2)) ,"3")
|
Title: Bachgold Problem
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Bachgold problem is very easy to formulate. Given a positive integer *n* represent it as a sum of maximum possible number of prime numbers. One can prove that such representation exists for any integer greater than 1.
Recall that integer *k* is called prime if it is greater than 1 and has exactly two positive integer divisors — 1 and *k*.
Input Specification:
The only line of the input contains a single integer *n* (2<=≤<=*n*<=≤<=100<=000).
Output Specification:
The first line of the output contains a single integer *k* — maximum possible number of primes in representation.
The second line should contain *k* primes with their sum equal to *n*. You can print them in any order. If there are several optimal solution, print any of them.
Demo Input:
['5\n', '6\n']
Demo Output:
['2\n2 3\n', '3\n2 2 2\n']
Note:
none
|
```python
# A. Bachgold Problem
n = int(input())
if n % 2 == 0:
d = int(n / 2)
print(d)
print(str("2 ") * d)
else:
d = n - 3
print(int((d / 2) + 1))
print(str("2 ") * int((d /2)) ,"3")
```
| 3
|
|
1
|
A
|
Theatre Square
|
PROGRAMMING
| 1,000
|
[
"math"
] |
A. Theatre Square
|
1
|
256
|
Theatre Square in the capital city of Berland has a rectangular shape with the size *n*<=×<=*m* meters. On the occasion of the city's anniversary, a decision was taken to pave the Square with square granite flagstones. Each flagstone is of the size *a*<=×<=*a*.
What is the least number of flagstones needed to pave the Square? It's allowed to cover the surface larger than the Theatre Square, but the Square has to be covered. It's not allowed to break the flagstones. The sides of flagstones should be parallel to the sides of the Square.
|
The input contains three positive integer numbers in the first line: *n*,<=<=*m* and *a* (1<=≤<=<=*n*,<=*m*,<=*a*<=≤<=109).
|
Write the needed number of flagstones.
|
[
"6 6 4\n"
] |
[
"4\n"
] |
none
| 0
|
[
{
"input": "6 6 4",
"output": "4"
},
{
"input": "1 1 1",
"output": "1"
},
{
"input": "2 1 1",
"output": "2"
},
{
"input": "1 2 1",
"output": "2"
},
{
"input": "2 2 1",
"output": "4"
},
{
"input": "2 1 2",
"output": "1"
},
{
"input": "1 1 3",
"output": "1"
},
{
"input": "2 3 4",
"output": "1"
},
{
"input": "1000000000 1000000000 1",
"output": "1000000000000000000"
},
{
"input": "12 13 4",
"output": "12"
},
{
"input": "222 332 5",
"output": "3015"
},
{
"input": "1000 1000 10",
"output": "10000"
},
{
"input": "1001 1000 10",
"output": "10100"
},
{
"input": "100 10001 1000000000",
"output": "1"
},
{
"input": "1000000000 1000000000 1000000000",
"output": "1"
},
{
"input": "1000000000 1000000000 999999999",
"output": "4"
},
{
"input": "1000000000 1000000000 192",
"output": "27126743055556"
},
{
"input": "1000000000 987654321 1",
"output": "987654321000000000"
},
{
"input": "456784567 1000000000 51",
"output": "175618850864484"
},
{
"input": "39916800 134217728 40320",
"output": "3295710"
}
] | 1,692,723,703
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 20
| 31
| 0
|
n, m, a = map(int, input().split())
# Calculate the number of flagstones needed for width and length
flagstones_width = (n + a - 1) // a # Ceiling division to account for remainder
flagstones_length = (m + a - 1) // a
# Calculate the total number of flagstones needed
total_flagstones = flagstones_width * flagstones_length
# Print the result
print(total_flagstones)
|
Title: Theatre Square
Time Limit: 1 seconds
Memory Limit: 256 megabytes
Problem Description:
Theatre Square in the capital city of Berland has a rectangular shape with the size *n*<=×<=*m* meters. On the occasion of the city's anniversary, a decision was taken to pave the Square with square granite flagstones. Each flagstone is of the size *a*<=×<=*a*.
What is the least number of flagstones needed to pave the Square? It's allowed to cover the surface larger than the Theatre Square, but the Square has to be covered. It's not allowed to break the flagstones. The sides of flagstones should be parallel to the sides of the Square.
Input Specification:
The input contains three positive integer numbers in the first line: *n*,<=<=*m* and *a* (1<=≤<=<=*n*,<=*m*,<=*a*<=≤<=109).
Output Specification:
Write the needed number of flagstones.
Demo Input:
['6 6 4\n']
Demo Output:
['4\n']
Note:
none
|
```python
n, m, a = map(int, input().split())
# Calculate the number of flagstones needed for width and length
flagstones_width = (n + a - 1) // a # Ceiling division to account for remainder
flagstones_length = (m + a - 1) // a
# Calculate the total number of flagstones needed
total_flagstones = flagstones_width * flagstones_length
# Print the result
print(total_flagstones)
```
| 3.9845
|
804
|
A
|
Find Amir
|
PROGRAMMING
| 1,000
|
[
"constructive algorithms",
"greedy",
"math"
] | null | null |
A few years ago Sajjad left his school and register to another one due to security reasons. Now he wishes to find Amir, one of his schoolmates and good friends.
There are *n* schools numerated from 1 to *n*. One can travel between each pair of them, to do so, he needs to buy a ticket. The ticker between schools *i* and *j* costs and can be used multiple times. Help Sajjad to find the minimum cost he needs to pay for tickets to visit all schools. He can start and finish in any school.
|
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=105) — the number of schools.
|
Print single integer: the minimum cost of tickets needed to visit all schools.
|
[
"2\n",
"10\n"
] |
[
"0\n",
"4\n"
] |
In the first example we can buy a ticket between the schools that costs <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/c67d72010e0498bfd065a6a38fdeaec90358507b.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
| 500
|
[
{
"input": "2",
"output": "0"
},
{
"input": "10",
"output": "4"
},
{
"input": "43670",
"output": "21834"
},
{
"input": "4217",
"output": "2108"
},
{
"input": "17879",
"output": "8939"
},
{
"input": "31809",
"output": "15904"
},
{
"input": "40873",
"output": "20436"
},
{
"input": "77859",
"output": "38929"
},
{
"input": "53022",
"output": "26510"
},
{
"input": "79227",
"output": "39613"
},
{
"input": "100000",
"output": "49999"
},
{
"input": "82801",
"output": "41400"
},
{
"input": "5188",
"output": "2593"
},
{
"input": "86539",
"output": "43269"
},
{
"input": "12802",
"output": "6400"
},
{
"input": "20289",
"output": "10144"
},
{
"input": "32866",
"output": "16432"
},
{
"input": "33377",
"output": "16688"
},
{
"input": "31775",
"output": "15887"
},
{
"input": "60397",
"output": "30198"
},
{
"input": "100000",
"output": "49999"
},
{
"input": "99999",
"output": "49999"
},
{
"input": "99998",
"output": "49998"
},
{
"input": "99997",
"output": "49998"
},
{
"input": "99996",
"output": "49997"
},
{
"input": "1",
"output": "0"
},
{
"input": "2",
"output": "0"
},
{
"input": "3",
"output": "1"
},
{
"input": "4",
"output": "1"
},
{
"input": "1",
"output": "0"
},
{
"input": "3",
"output": "1"
}
] | 1,493,991,412
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 31
| 62
| 0
|
n = input()
n = int(n)
if (n % 2) != 0:
print (n // 2)
else:
print ((n // 2) -1)
|
Title: Find Amir
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
A few years ago Sajjad left his school and register to another one due to security reasons. Now he wishes to find Amir, one of his schoolmates and good friends.
There are *n* schools numerated from 1 to *n*. One can travel between each pair of them, to do so, he needs to buy a ticket. The ticker between schools *i* and *j* costs and can be used multiple times. Help Sajjad to find the minimum cost he needs to pay for tickets to visit all schools. He can start and finish in any school.
Input Specification:
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=105) — the number of schools.
Output Specification:
Print single integer: the minimum cost of tickets needed to visit all schools.
Demo Input:
['2\n', '10\n']
Demo Output:
['0\n', '4\n']
Note:
In the first example we can buy a ticket between the schools that costs <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/c67d72010e0498bfd065a6a38fdeaec90358507b.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
|
```python
n = input()
n = int(n)
if (n % 2) != 0:
print (n // 2)
else:
print ((n // 2) -1)
```
| 3
|
|
192
|
B
|
Walking in the Rain
|
PROGRAMMING
| 1,100
|
[
"brute force",
"implementation"
] | null | null |
In Berland the opposition is going to arrange mass walking on the boulevard. The boulevard consists of *n* tiles that are lain in a row and are numbered from 1 to *n* from right to left. The opposition should start walking on the tile number 1 and the finish on the tile number *n*. During the walk it is allowed to move from right to left between adjacent tiles in a row, and jump over a tile. More formally, if you are standing on the tile number *i* (*i*<=<<=*n*<=-<=1), you can reach the tiles number *i*<=+<=1 or the tile number *i*<=+<=2 from it (if you stand on the tile number *n*<=-<=1, you can only reach tile number *n*). We can assume that all the opposition movements occur instantaneously.
In order to thwart an opposition rally, the Berland bloody regime organized the rain. The tiles on the boulevard are of poor quality and they are rapidly destroyed in the rain. We know that the *i*-th tile is destroyed after *a**i* days of rain (on day *a**i* tile isn't destroyed yet, and on day *a**i*<=+<=1 it is already destroyed). Of course, no one is allowed to walk on the destroyed tiles! So the walk of the opposition is considered thwarted, if either the tile number 1 is broken, or the tile number *n* is broken, or it is impossible to reach the tile number *n* from the tile number 1 if we can walk on undestroyed tiles.
The opposition wants to gather more supporters for their walk. Therefore, the more time they have to pack, the better. Help the opposition to calculate how much time they still have and tell us for how many days the walk from the tile number 1 to the tile number *n* will be possible.
|
The first line contains integer *n* (1<=≤<=*n*<=≤<=103) — the boulevard's length in tiles.
The second line contains *n* space-separated integers *a**i* — the number of days after which the *i*-th tile gets destroyed (1<=≤<=*a**i*<=≤<=103).
|
Print a single number — the sought number of days.
|
[
"4\n10 3 5 10\n",
"5\n10 2 8 3 5\n"
] |
[
"5\n",
"5\n"
] |
In the first sample the second tile gets destroyed after day three, and the only path left is 1 → 3 → 4. After day five there is a two-tile gap between the first and the last tile, you can't jump over it.
In the second sample path 1 → 3 → 5 is available up to day five, inclusive. On day six the last tile is destroyed and the walk is thwarted.
| 1,000
|
[
{
"input": "4\n10 3 5 10",
"output": "5"
},
{
"input": "5\n10 2 8 3 5",
"output": "5"
},
{
"input": "10\n10 3 1 6 7 1 3 3 8 1",
"output": "1"
},
{
"input": "10\n26 72 10 52 2 5 61 2 39 64",
"output": "5"
},
{
"input": "100\n8 2 1 2 8 3 5 8 5 1 9 3 4 1 5 6 4 2 9 10 6 10 10 3 9 4 10 5 3 1 5 10 7 6 8 10 2 6 4 4 2 2 10 7 2 7 3 2 6 3 6 4 7 6 2 5 5 8 6 9 5 2 7 5 8 6 5 8 10 6 10 8 5 3 1 10 6 1 7 5 1 8 10 5 1 3 10 7 10 5 7 1 4 3 8 6 3 4 9 6",
"output": "2"
},
{
"input": "100\n10 2 8 7 5 1 5 4 9 2 7 9 3 5 6 2 3 6 10 1 2 7 1 4 8 8 6 1 7 8 8 1 5 8 1 2 7 4 10 7 3 1 2 5 8 1 1 4 9 7 7 4 7 3 8 8 7 1 5 1 6 9 8 8 1 10 4 4 7 7 10 9 5 1 1 3 6 2 6 3 6 4 9 8 2 9 6 2 7 8 10 9 9 6 3 5 3 1 4 8",
"output": "1"
},
{
"input": "100\n21 57 14 6 58 61 37 54 43 22 90 90 90 14 10 97 47 43 19 66 96 58 88 92 22 62 99 97 15 36 58 93 44 42 45 38 41 21 16 30 66 92 39 70 1 73 83 27 63 21 20 84 30 30 30 77 93 30 62 96 33 34 28 59 48 89 68 62 50 16 18 19 42 42 80 58 31 59 40 81 92 26 28 47 26 8 8 74 86 80 88 82 98 27 41 97 11 91 42 67",
"output": "8"
},
{
"input": "100\n37 75 11 81 60 33 17 80 37 77 26 86 31 78 59 23 92 38 8 15 30 91 99 75 79 34 78 80 19 51 48 48 61 74 59 30 26 2 71 74 48 42 42 81 20 55 49 69 60 10 53 2 21 44 10 18 45 64 21 18 5 62 3 34 52 72 16 28 70 31 93 5 21 69 21 90 31 90 91 79 54 94 77 27 97 4 74 9 29 29 81 5 33 81 75 37 61 73 57 75",
"output": "15"
},
{
"input": "100\n190 544 642 723 577 689 757 509 165 193 396 972 742 367 83 294 404 308 683 399 551 770 564 721 465 839 379 68 687 554 821 719 304 533 146 180 596 713 546 743 949 100 458 735 17 525 568 907 957 670 914 374 347 801 227 884 284 444 686 410 127 508 504 273 624 213 873 658 336 79 819 938 3 722 649 368 733 747 577 746 940 308 970 963 145 487 102 559 790 243 609 77 552 565 151 492 726 448 393 837",
"output": "180"
},
{
"input": "100\n606 358 399 589 724 454 741 183 571 244 984 867 828 232 189 821 642 855 220 839 585 203 135 305 970 503 362 658 491 562 706 62 721 465 560 880 833 646 365 23 679 549 317 834 583 947 134 253 250 768 343 996 541 163 355 925 336 874 997 632 498 529 932 487 415 391 766 224 364 790 486 512 183 458 343 751 633 126 688 536 845 380 423 447 904 779 520 843 977 392 406 147 888 520 886 179 176 129 8 750",
"output": "129"
},
{
"input": "5\n3 2 3 4 2",
"output": "2"
},
{
"input": "5\n4 8 9 10 6",
"output": "4"
},
{
"input": "5\n2 21 6 5 9",
"output": "2"
},
{
"input": "5\n34 39 30 37 35",
"output": "34"
},
{
"input": "5\n14 67 15 28 21",
"output": "14"
},
{
"input": "5\n243 238 138 146 140",
"output": "140"
},
{
"input": "5\n46 123 210 119 195",
"output": "46"
},
{
"input": "5\n725 444 477 661 761",
"output": "477"
},
{
"input": "10\n2 2 3 4 4 1 5 3 1 2",
"output": "2"
},
{
"input": "10\n1 10 1 10 1 1 7 8 6 7",
"output": "1"
},
{
"input": "10\n5 17 8 1 10 20 9 18 12 20",
"output": "5"
},
{
"input": "10\n18 11 23 7 9 10 28 29 46 21",
"output": "9"
},
{
"input": "10\n2 17 53 94 95 57 36 47 68 48",
"output": "2"
},
{
"input": "10\n93 231 176 168 177 222 22 137 110 4",
"output": "4"
},
{
"input": "10\n499 173 45 141 425 276 96 290 428 95",
"output": "95"
},
{
"input": "10\n201 186 897 279 703 376 238 93 253 316",
"output": "201"
},
{
"input": "25\n3 2 3 2 2 2 3 4 5 1 1 4 1 2 1 3 5 5 3 5 1 2 4 1 3",
"output": "1"
},
{
"input": "25\n9 9 1 9 10 5 6 4 6 1 5 2 2 1 2 8 4 6 5 7 1 10 5 4 9",
"output": "2"
},
{
"input": "25\n2 17 21 4 13 6 14 18 17 1 16 13 24 4 12 7 8 16 9 25 25 9 11 20 18",
"output": "2"
},
{
"input": "25\n38 30 9 35 33 48 8 4 49 2 39 19 34 35 47 49 33 4 23 5 42 35 49 11 30",
"output": "8"
},
{
"input": "25\n75 34 77 68 60 38 76 89 35 68 28 36 96 63 43 12 9 4 37 75 88 30 11 58 35",
"output": "9"
},
{
"input": "25\n108 3 144 140 239 105 59 126 224 181 147 102 94 201 68 121 167 94 60 130 64 162 45 95 235",
"output": "94"
},
{
"input": "25\n220 93 216 467 134 408 132 220 292 11 363 404 282 253 141 313 310 356 214 256 380 81 42 128 363",
"output": "81"
},
{
"input": "25\n371 884 75 465 891 510 471 52 382 829 514 610 660 642 179 108 41 818 346 106 738 993 706 574 623",
"output": "108"
},
{
"input": "50\n1 2 1 3 2 5 2 2 2 3 4 4 4 3 3 4 1 2 3 1 5 4 1 2 2 1 5 3 2 2 1 5 4 5 2 5 4 1 1 3 5 2 1 4 5 5 1 5 5 5",
"output": "1"
},
{
"input": "50\n2 4 9 8 1 3 7 1 2 3 8 9 8 8 5 2 10 5 8 1 3 1 8 2 3 7 9 10 2 9 9 7 3 8 6 10 6 5 4 8 1 1 5 6 8 9 5 9 5 3",
"output": "1"
},
{
"input": "50\n22 9 5 3 24 21 25 13 17 21 14 8 22 18 2 3 22 9 10 11 25 22 5 10 16 7 15 3 2 13 2 12 9 24 3 14 2 18 3 22 8 2 19 6 16 4 5 20 10 12",
"output": "3"
},
{
"input": "50\n14 4 20 37 50 46 19 20 25 47 10 6 34 12 41 47 9 22 28 41 34 47 40 12 42 9 4 15 15 27 8 38 9 4 17 8 13 47 7 9 38 30 48 50 7 41 34 23 11 16",
"output": "9"
},
{
"input": "50\n69 9 97 15 22 69 27 7 23 84 73 74 60 94 43 98 13 4 63 49 7 31 93 23 6 75 32 63 49 32 99 43 68 48 16 54 20 38 40 65 34 28 21 55 79 50 2 18 22 95",
"output": "13"
},
{
"input": "50\n50 122 117 195 42 178 153 194 7 89 142 40 158 230 213 104 179 56 244 196 85 159 167 19 157 20 230 201 152 98 250 242 10 52 96 242 139 181 90 107 178 52 196 79 23 61 212 47 97 97",
"output": "50"
},
{
"input": "50\n354 268 292 215 187 232 35 38 179 79 108 491 346 384 345 103 14 260 148 322 459 238 220 493 374 237 474 148 21 221 88 377 289 121 201 198 490 117 382 454 359 390 346 456 294 325 130 306 484 83",
"output": "38"
},
{
"input": "50\n94 634 27 328 629 967 728 177 379 908 801 715 787 192 427 48 559 923 841 6 759 335 251 172 193 593 456 780 647 638 750 881 206 129 278 744 91 49 523 248 286 549 593 451 216 753 471 325 870 16",
"output": "16"
},
{
"input": "100\n5 5 4 3 5 1 2 5 1 1 3 5 4 4 1 1 1 1 5 4 4 5 1 5 5 1 2 1 3 1 5 1 3 3 3 2 2 2 1 1 5 1 3 4 1 1 3 2 5 2 2 5 5 4 4 1 3 4 3 3 4 5 3 3 3 1 2 1 4 2 4 4 1 5 1 3 5 5 5 5 3 4 4 3 1 2 5 2 3 5 4 2 4 5 3 2 4 2 4 3",
"output": "1"
},
{
"input": "100\n3 4 8 10 8 6 4 3 7 7 6 2 3 1 3 10 1 7 9 3 5 5 2 6 2 9 1 7 4 2 4 1 6 1 7 10 2 5 3 7 6 4 6 2 8 8 8 6 6 10 3 7 4 3 4 1 7 9 3 6 3 6 1 4 9 3 8 1 10 1 4 10 7 7 9 5 3 8 10 2 1 10 8 7 10 8 5 3 1 2 1 10 6 1 5 3 3 5 7 2",
"output": "2"
},
{
"input": "100\n14 7 6 21 12 5 22 23 2 9 8 1 9 2 20 2 24 7 14 24 8 19 15 19 10 24 9 4 21 12 3 21 9 16 9 22 18 4 17 19 19 9 6 1 13 15 23 3 14 3 7 15 17 10 7 24 4 18 21 14 25 20 19 19 14 25 24 21 16 10 2 16 1 21 1 24 13 7 13 20 12 20 2 16 3 6 6 2 19 9 16 4 1 2 7 18 15 14 10 22",
"output": "2"
},
{
"input": "100\n2 46 4 6 38 19 15 34 10 35 37 30 3 25 5 45 40 45 33 31 6 20 10 44 11 9 2 14 35 5 9 23 20 2 48 22 25 35 38 31 24 33 35 16 4 30 27 10 12 22 6 24 12 30 23 21 14 12 32 21 7 12 25 43 18 34 34 28 47 13 28 43 18 39 44 42 35 26 35 14 8 29 32 20 29 3 20 6 20 9 9 27 8 42 10 37 42 27 8 1",
"output": "1"
},
{
"input": "100\n85 50 17 89 65 89 5 20 86 26 16 21 85 14 44 31 87 31 6 2 48 67 8 80 79 1 48 36 97 1 5 30 79 50 78 12 2 55 76 100 54 40 26 81 97 96 68 56 87 14 51 17 54 37 52 33 69 62 38 63 74 15 62 78 9 19 67 2 60 58 93 60 18 96 55 48 34 7 79 82 32 58 90 67 20 50 27 15 7 89 98 10 11 15 99 49 4 51 77 52",
"output": "5"
},
{
"input": "100\n26 171 37 63 189 202 180 210 179 131 43 33 227 5 211 130 105 23 229 48 174 48 182 68 174 146 200 166 246 116 106 86 72 206 216 207 70 148 83 149 94 64 142 8 241 211 27 190 58 116 113 96 210 237 73 240 180 110 34 115 167 4 42 30 162 114 74 131 34 206 174 168 216 101 216 149 212 172 180 220 123 201 25 116 42 143 105 40 30 123 174 220 57 238 145 222 105 184 131 162",
"output": "26"
},
{
"input": "100\n182 9 8 332 494 108 117 203 43 473 451 426 119 408 342 84 88 35 383 84 48 69 31 54 347 363 342 69 422 489 194 16 55 171 71 355 116 142 181 246 275 402 155 282 160 179 240 448 49 101 42 499 434 258 21 327 95 376 38 422 68 381 170 372 427 149 38 48 400 224 246 438 62 43 280 40 108 385 351 379 224 311 66 125 300 41 372 358 5 221 223 341 201 261 455 165 74 379 214 10",
"output": "9"
},
{
"input": "100\n836 969 196 706 812 64 743 262 667 27 227 730 50 510 374 915 124 527 778 528 175 151 439 994 835 87 197 91 121 243 534 634 4 410 936 6 979 227 745 734 492 792 209 95 602 446 299 533 376 595 971 879 36 126 528 759 116 499 571 664 787 820 870 838 604 240 334 872 477 415 57 689 870 690 304 122 487 191 253 610 301 348 358 806 828 911 8 320 414 172 268 867 978 205 812 60 845 395 406 155",
"output": "121"
},
{
"input": "250\n5 3 5 1 3 5 3 4 4 3 1 5 2 2 1 1 5 2 3 3 2 5 4 3 2 4 2 3 5 4 1 2 3 5 2 2 5 4 1 3 3 5 4 4 4 4 4 2 4 2 3 5 1 4 3 3 2 3 5 3 3 4 4 2 3 1 3 4 1 4 5 4 1 2 3 4 1 5 3 3 2 3 5 4 2 5 2 2 3 5 4 3 5 4 2 1 4 1 4 1 1 3 5 1 1 2 1 3 4 5 4 3 2 5 1 3 5 1 1 3 3 5 1 4 5 1 2 1 1 5 5 3 5 1 4 1 4 4 4 4 4 1 4 3 4 5 4 1 2 2 5 2 2 4 2 3 5 3 5 5 3 3 2 2 2 1 1 4 4 4 2 1 4 5 3 1 5 4 4 5 5 5 3 3 5 2 1 4 5 4 1 1 1 5 3 5 2 3 3 2 1 3 4 1 4 1 5 3 1 2 5 5 2 1 4 4 2 3 5 2 4 1 3 4 5 5 4 3 2 2 3 2 4 2 5 3 5 5 1 5 3 2 2 4 2 5 5 5 2 5",
"output": "1"
},
{
"input": "1\n987",
"output": "987"
},
{
"input": "1\n1",
"output": "1"
},
{
"input": "2\n1 2",
"output": "1"
},
{
"input": "5\n2 5 5 5 5",
"output": "2"
},
{
"input": "1\n500",
"output": "500"
}
] | 1,696,788,816
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 85
| 124
| 1,740,800
|
n = int(input())
a = list(map(int, input().split()))
res = 0
while True:
if a[0] == 0 or a[-1] == 0:
print(res)
break
j = 0
while j < n:
if j == n - 1:
break
if j + 2 < n and a[j + 2] > 0:
j += 2
elif j + 1 < n and a[j + 1] > 0:
j += 1
else:
print(res)
exit(0)
for j in range(n):
a[j] -= 1
res += 1
|
Title: Walking in the Rain
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
In Berland the opposition is going to arrange mass walking on the boulevard. The boulevard consists of *n* tiles that are lain in a row and are numbered from 1 to *n* from right to left. The opposition should start walking on the tile number 1 and the finish on the tile number *n*. During the walk it is allowed to move from right to left between adjacent tiles in a row, and jump over a tile. More formally, if you are standing on the tile number *i* (*i*<=<<=*n*<=-<=1), you can reach the tiles number *i*<=+<=1 or the tile number *i*<=+<=2 from it (if you stand on the tile number *n*<=-<=1, you can only reach tile number *n*). We can assume that all the opposition movements occur instantaneously.
In order to thwart an opposition rally, the Berland bloody regime organized the rain. The tiles on the boulevard are of poor quality and they are rapidly destroyed in the rain. We know that the *i*-th tile is destroyed after *a**i* days of rain (on day *a**i* tile isn't destroyed yet, and on day *a**i*<=+<=1 it is already destroyed). Of course, no one is allowed to walk on the destroyed tiles! So the walk of the opposition is considered thwarted, if either the tile number 1 is broken, or the tile number *n* is broken, or it is impossible to reach the tile number *n* from the tile number 1 if we can walk on undestroyed tiles.
The opposition wants to gather more supporters for their walk. Therefore, the more time they have to pack, the better. Help the opposition to calculate how much time they still have and tell us for how many days the walk from the tile number 1 to the tile number *n* will be possible.
Input Specification:
The first line contains integer *n* (1<=≤<=*n*<=≤<=103) — the boulevard's length in tiles.
The second line contains *n* space-separated integers *a**i* — the number of days after which the *i*-th tile gets destroyed (1<=≤<=*a**i*<=≤<=103).
Output Specification:
Print a single number — the sought number of days.
Demo Input:
['4\n10 3 5 10\n', '5\n10 2 8 3 5\n']
Demo Output:
['5\n', '5\n']
Note:
In the first sample the second tile gets destroyed after day three, and the only path left is 1 → 3 → 4. After day five there is a two-tile gap between the first and the last tile, you can't jump over it.
In the second sample path 1 → 3 → 5 is available up to day five, inclusive. On day six the last tile is destroyed and the walk is thwarted.
|
```python
n = int(input())
a = list(map(int, input().split()))
res = 0
while True:
if a[0] == 0 or a[-1] == 0:
print(res)
break
j = 0
while j < n:
if j == n - 1:
break
if j + 2 < n and a[j + 2] > 0:
j += 2
elif j + 1 < n and a[j + 1] > 0:
j += 1
else:
print(res)
exit(0)
for j in range(n):
a[j] -= 1
res += 1
```
| 3
|
|
584
|
B
|
Kolya and Tanya
|
PROGRAMMING
| 1,500
|
[
"combinatorics"
] | null | null |
Kolya loves putting gnomes at the circle table and giving them coins, and Tanya loves studying triplets of gnomes, sitting in the vertexes of an equilateral triangle.
More formally, there are 3*n* gnomes sitting in a circle. Each gnome can have from 1 to 3 coins. Let's number the places in the order they occur in the circle by numbers from 0 to 3*n*<=-<=1, let the gnome sitting on the *i*-th place have *a**i* coins. If there is an integer *i* (0<=≤<=*i*<=<<=*n*) such that *a**i*<=+<=*a**i*<=+<=*n*<=+<=*a**i*<=+<=2*n*<=≠<=6, then Tanya is satisfied.
Count the number of ways to choose *a**i* so that Tanya is satisfied. As there can be many ways of distributing coins, print the remainder of this number modulo 109<=+<=7. Two ways, *a* and *b*, are considered distinct if there is index *i* (0<=≤<=*i*<=<<=3*n*), such that *a**i*<=≠<=*b**i* (that is, some gnome got different number of coins in these two ways).
|
A single line contains number *n* (1<=≤<=*n*<=≤<=105) — the number of the gnomes divided by three.
|
Print a single number — the remainder of the number of variants of distributing coins that satisfy Tanya modulo 109<=+<=7.
|
[
"1\n",
"2\n"
] |
[
"20",
"680"
] |
20 ways for *n* = 1 (gnome with index 0 sits on the top of the triangle, gnome 1 on the right vertex, gnome 2 on the left vertex): <img class="tex-graphics" src="https://espresso.codeforces.com/64df38b85ccb482cf88d02dc52e348e33313f9da.png" style="max-width: 100.0%;max-height: 100.0%;"/>
| 1,000
|
[
{
"input": "1",
"output": "20"
},
{
"input": "2",
"output": "680"
},
{
"input": "3",
"output": "19340"
},
{
"input": "4",
"output": "529040"
},
{
"input": "5",
"output": "14332100"
},
{
"input": "7",
"output": "459529590"
},
{
"input": "10",
"output": "848178170"
},
{
"input": "14",
"output": "356372551"
},
{
"input": "58000",
"output": "66667472"
},
{
"input": "6",
"output": "387302840"
},
{
"input": "8",
"output": "423769706"
},
{
"input": "9",
"output": "557078005"
},
{
"input": "15",
"output": "83420839"
},
{
"input": "20",
"output": "208683407"
},
{
"input": "22",
"output": "695178405"
},
{
"input": "48",
"output": "974152357"
},
{
"input": "74",
"output": "972015869"
},
{
"input": "100",
"output": "364994225"
},
{
"input": "866",
"output": "363347020"
},
{
"input": "1673",
"output": "112069243"
},
{
"input": "555",
"output": "506150275"
},
{
"input": "2000",
"output": "394190362"
},
{
"input": "9877",
"output": "915063121"
},
{
"input": "5984",
"output": "546302050"
},
{
"input": "2091",
"output": "982683445"
},
{
"input": "10000",
"output": "246305722"
},
{
"input": "10868",
"output": "118127713"
},
{
"input": "66115",
"output": "413345995"
},
{
"input": "62212",
"output": "587210092"
},
{
"input": "100000",
"output": "192156836"
},
{
"input": "2441",
"output": "149858187"
},
{
"input": "18569",
"output": "54080463"
},
{
"input": "69289",
"output": "582363404"
},
{
"input": "85417",
"output": "796810422"
},
{
"input": "68841",
"output": "371243141"
},
{
"input": "10000",
"output": "246305722"
},
{
"input": "4343",
"output": "682818914"
},
{
"input": "12312",
"output": "837337190"
},
{
"input": "5462",
"output": "719513799"
},
{
"input": "100",
"output": "364994225"
},
{
"input": "11",
"output": "550315374"
},
{
"input": "100000",
"output": "192156836"
}
] | 1,677,467,333
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 42
| 46
| 0
|
# LUOGU_RID: 103165456
n, m = int(input()), 1000000007
print((pow(27, n, m) - pow(7, n, m)) % m)
|
Title: Kolya and Tanya
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Kolya loves putting gnomes at the circle table and giving them coins, and Tanya loves studying triplets of gnomes, sitting in the vertexes of an equilateral triangle.
More formally, there are 3*n* gnomes sitting in a circle. Each gnome can have from 1 to 3 coins. Let's number the places in the order they occur in the circle by numbers from 0 to 3*n*<=-<=1, let the gnome sitting on the *i*-th place have *a**i* coins. If there is an integer *i* (0<=≤<=*i*<=<<=*n*) such that *a**i*<=+<=*a**i*<=+<=*n*<=+<=*a**i*<=+<=2*n*<=≠<=6, then Tanya is satisfied.
Count the number of ways to choose *a**i* so that Tanya is satisfied. As there can be many ways of distributing coins, print the remainder of this number modulo 109<=+<=7. Two ways, *a* and *b*, are considered distinct if there is index *i* (0<=≤<=*i*<=<<=3*n*), such that *a**i*<=≠<=*b**i* (that is, some gnome got different number of coins in these two ways).
Input Specification:
A single line contains number *n* (1<=≤<=*n*<=≤<=105) — the number of the gnomes divided by three.
Output Specification:
Print a single number — the remainder of the number of variants of distributing coins that satisfy Tanya modulo 109<=+<=7.
Demo Input:
['1\n', '2\n']
Demo Output:
['20', '680']
Note:
20 ways for *n* = 1 (gnome with index 0 sits on the top of the triangle, gnome 1 on the right vertex, gnome 2 on the left vertex): <img class="tex-graphics" src="https://espresso.codeforces.com/64df38b85ccb482cf88d02dc52e348e33313f9da.png" style="max-width: 100.0%;max-height: 100.0%;"/>
|
```python
# LUOGU_RID: 103165456
n, m = int(input()), 1000000007
print((pow(27, n, m) - pow(7, n, m)) % m)
```
| 3
|
|
928
|
A
|
Login Verification
|
PROGRAMMING
| 1,200
|
[
"*special",
"strings"
] | null | null |
When registering in a social network, users are allowed to create their own convenient login to make it easier to share contacts, print it on business cards, etc.
Login is an arbitrary sequence of lower and uppercase latin letters, digits and underline symbols («_»). However, in order to decrease the number of frauds and user-inattention related issues, it is prohibited to register a login if it is similar with an already existing login. More precisely, two logins *s* and *t* are considered similar if we can transform *s* to *t* via a sequence of operations of the following types:
- transform lowercase letters to uppercase and vice versa; - change letter «O» (uppercase latin letter) to digit «0» and vice versa; - change digit «1» (one) to any letter among «l» (lowercase latin «L»), «I» (uppercase latin «i») and vice versa, or change one of these letters to other.
For example, logins «Codeforces» and «codef0rces» as well as «OO0OOO00O0OOO0O00OOO0OO_lol» and «OO0OOO0O00OOO0O00OO0OOO_1oI» are considered similar whereas «Codeforces» and «Code_forces» are not.
You're given a list of existing logins with no two similar amonst and a newly created user login. Check whether this new login is similar with any of the existing ones.
|
The first line contains a non-empty string *s* consisting of lower and uppercase latin letters, digits and underline symbols («_») with length not exceeding 50 — the login itself.
The second line contains a single integer *n* (1<=≤<=*n*<=≤<=1<=000) — the number of existing logins.
The next *n* lines describe the existing logins, following the same constraints as the user login (refer to the first line of the input). It's guaranteed that no two existing logins are similar.
|
Print «Yes» (without quotes), if user can register via this login, i.e. none of the existing logins is similar with it.
Otherwise print «No» (without quotes).
|
[
"1_wat\n2\n2_wat\nwat_1\n",
"000\n3\n00\nooA\noOo\n",
"_i_\n3\n__i_\n_1_\nI\n",
"La0\n3\n2a0\nLa1\n1a0\n",
"abc\n1\naBc\n",
"0Lil\n2\nLIL0\n0Ril\n"
] |
[
"Yes\n",
"No\n",
"No\n",
"No\n",
"No\n",
"Yes\n"
] |
In the second sample case the user wants to create a login consisting of three zeros. It's impossible due to collision with the third among the existing.
In the third sample case the new login is similar with the second one.
| 500
|
[
{
"input": "1_wat\n2\n2_wat\nwat_1",
"output": "Yes"
},
{
"input": "000\n3\n00\nooA\noOo",
"output": "No"
},
{
"input": "_i_\n3\n__i_\n_1_\nI",
"output": "No"
},
{
"input": "La0\n3\n2a0\nLa1\n1a0",
"output": "No"
},
{
"input": "abc\n1\naBc",
"output": "No"
},
{
"input": "0Lil\n2\nLIL0\n0Ril",
"output": "Yes"
},
{
"input": "iloO\n3\niIl0\noIl0\nIooO",
"output": "Yes"
},
{
"input": "L1il0o1L1\n5\niLLoLL\noOI1Io10il\nIoLLoO\nO01ilOoI\nI10l0o",
"output": "Yes"
},
{
"input": "ELioO1lOoOIOiLoooi1iolul1O\n7\nOoEIuOIl1ui1010uiooOoi0Oio001L0EoEolO0\nOLIoOEuoE11u1u1iLOI0oO\nuEOuO0uIOOlO01OlEI0E1Oo0IO1LI0uE0LILO0\nEOo0Il11iIOOOIiuOiIiiLOLEOOII001EE\niOoO0LOulioE0OLIIIulli01OoiuOOOoOlEiI0EiiElIIu0\nlE1LOE1Oil\n1u0EOliIiIOl1u110il0l1O0u",
"output": "Yes"
},
{
"input": "0blo7X\n20\n1oobb6\nXIXIO2X\n2iYI2\n607XXol\n2I6io22\nOl10I\nbXX0Lo\nolOOb7X\n07LlXL\nlXY17\n12iIX2\n7lL70\nbOo11\n17Y6b62\n0O6L7\n1lX2L\n2iYl6lI\n7bXIi1o\niLIY2\n0OIo1X",
"output": "Yes"
},
{
"input": "lkUL\n25\nIIfL\nokl\nfoo\ni0U\noko\niIoU\nUUv\nvli\nv0Uk\n0Of\niill\n1vkl\nUIf\nUfOO\nlvLO\nUUo0\nIOf1\nlovL\nIkk\noIv\nLvfU\n0UI\nkol\n1OO0\n1OOi",
"output": "Yes"
},
{
"input": "L1lo\n3\nOOo1\nL1lo\n0lOl",
"output": "No"
},
{
"input": "LIoooiLO\n5\nLIoooiLO\nl0o01I00\n0OOl0lLO01\nil10i0\noiloi",
"output": "No"
},
{
"input": "1i1lQI\n7\nuLg1uLLigIiOLoggu\nLLLgIuQIQIIloiQuIIoIO0l0o000\n0u1LQu11oIuooIl0OooLg0i0IQu1O1lloI1\nQuQgIQi0LOIliLOuuuioLQou1l\nlLIO00QLi01LogOliOIggII1\no0Ll1uIOQl10IL0IILQ\n1i1lQI",
"output": "No"
},
{
"input": "oIzz1\n20\n1TTl0O\nloF0LT\n1lLzo\noi0Ov\nFlIF1zT\nzoITzx\n0TIFlT\nl1vllil\nOviix1F\nLFvI1lL\nLIl0loz\nixz1v\n1i1vFi\nTIFTol\noIzz1\nIvTl0o\nxv1U0O\niiiioF\n1oiLUlO\nxToxv1",
"output": "No"
},
{
"input": "00L0\n25\n0il\nIlkZ\nL0I\n00L0\nBd0\nZLd\n0d1k\nddk\nIdl\nkBd\nkBOL\nZ1lI\nkBL\nLOko\noZ0i\nZ1lO\nLiOk\niBld\nLO0d\ndIo\nZ10\n1k1i\n0o0L\nIoBd\ni0B0",
"output": "No"
},
{
"input": "Z\n1\nz",
"output": "No"
},
{
"input": "0\n1\no",
"output": "No"
},
{
"input": "0\n1\nO",
"output": "No"
},
{
"input": "o\n1\n0",
"output": "No"
},
{
"input": "o\n1\nO",
"output": "No"
},
{
"input": "o\n1\no",
"output": "No"
},
{
"input": "O\n1\no",
"output": "No"
},
{
"input": "O\n1\n0",
"output": "No"
},
{
"input": "1\n1\nl",
"output": "No"
},
{
"input": "1\n1\nL",
"output": "No"
},
{
"input": "1\n1\ni",
"output": "No"
},
{
"input": "1\n1\nI",
"output": "No"
},
{
"input": "1\n1\no",
"output": "Yes"
},
{
"input": "i\n1\n1",
"output": "No"
},
{
"input": "i\n1\nL",
"output": "No"
},
{
"input": "i\n1\nl",
"output": "No"
},
{
"input": "I\n1\nL",
"output": "No"
},
{
"input": "I\n1\nl",
"output": "No"
},
{
"input": "I\n1\n1",
"output": "No"
},
{
"input": "l\n1\n1",
"output": "No"
},
{
"input": "l\n1\nL",
"output": "No"
},
{
"input": "l\n1\ni",
"output": "No"
},
{
"input": "l\n1\nI",
"output": "No"
},
{
"input": "L\n1\nl",
"output": "No"
},
{
"input": "L\n1\n1",
"output": "No"
},
{
"input": "L\n1\ni",
"output": "No"
},
{
"input": "L\n1\nI",
"output": "No"
}
] | 1,519,487,710
| 1,210
|
Python 3
|
OK
|
TESTS
| 73
| 77
| 5,632,000
|
def unify_login(login):
login = login.lower()
login = login.replace('0', 'o')
login = login.replace('l', '1')
login = login.replace('i', '1')
return login
s = unify_login(input())
n = int(input())
logins = set()
for i in range(n):
logins.add(unify_login(input()))
if s in logins:
print('No')
else:
print('Yes')
|
Title: Login Verification
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
When registering in a social network, users are allowed to create their own convenient login to make it easier to share contacts, print it on business cards, etc.
Login is an arbitrary sequence of lower and uppercase latin letters, digits and underline symbols («_»). However, in order to decrease the number of frauds and user-inattention related issues, it is prohibited to register a login if it is similar with an already existing login. More precisely, two logins *s* and *t* are considered similar if we can transform *s* to *t* via a sequence of operations of the following types:
- transform lowercase letters to uppercase and vice versa; - change letter «O» (uppercase latin letter) to digit «0» and vice versa; - change digit «1» (one) to any letter among «l» (lowercase latin «L»), «I» (uppercase latin «i») and vice versa, or change one of these letters to other.
For example, logins «Codeforces» and «codef0rces» as well as «OO0OOO00O0OOO0O00OOO0OO_lol» and «OO0OOO0O00OOO0O00OO0OOO_1oI» are considered similar whereas «Codeforces» and «Code_forces» are not.
You're given a list of existing logins with no two similar amonst and a newly created user login. Check whether this new login is similar with any of the existing ones.
Input Specification:
The first line contains a non-empty string *s* consisting of lower and uppercase latin letters, digits and underline symbols («_») with length not exceeding 50 — the login itself.
The second line contains a single integer *n* (1<=≤<=*n*<=≤<=1<=000) — the number of existing logins.
The next *n* lines describe the existing logins, following the same constraints as the user login (refer to the first line of the input). It's guaranteed that no two existing logins are similar.
Output Specification:
Print «Yes» (without quotes), if user can register via this login, i.e. none of the existing logins is similar with it.
Otherwise print «No» (without quotes).
Demo Input:
['1_wat\n2\n2_wat\nwat_1\n', '000\n3\n00\nooA\noOo\n', '_i_\n3\n__i_\n_1_\nI\n', 'La0\n3\n2a0\nLa1\n1a0\n', 'abc\n1\naBc\n', '0Lil\n2\nLIL0\n0Ril\n']
Demo Output:
['Yes\n', 'No\n', 'No\n', 'No\n', 'No\n', 'Yes\n']
Note:
In the second sample case the user wants to create a login consisting of three zeros. It's impossible due to collision with the third among the existing.
In the third sample case the new login is similar with the second one.
|
```python
def unify_login(login):
login = login.lower()
login = login.replace('0', 'o')
login = login.replace('l', '1')
login = login.replace('i', '1')
return login
s = unify_login(input())
n = int(input())
logins = set()
for i in range(n):
logins.add(unify_login(input()))
if s in logins:
print('No')
else:
print('Yes')
```
| 3
|
|
217
|
A
|
Ice Skating
|
PROGRAMMING
| 1,200
|
[
"brute force",
"dfs and similar",
"dsu",
"graphs"
] | null | null |
Bajtek is learning to skate on ice. He's a beginner, so his only mode of transportation is pushing off from a snow drift to the north, east, south or west and sliding until he lands in another snow drift. He has noticed that in this way it's impossible to get from some snow drifts to some other by any sequence of moves. He now wants to heap up some additional snow drifts, so that he can get from any snow drift to any other one. He asked you to find the minimal number of snow drifts that need to be created.
We assume that Bajtek can only heap up snow drifts at integer coordinates.
|
The first line of input contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of snow drifts. Each of the following *n* lines contains two integers *x**i* and *y**i* (1<=≤<=*x**i*,<=*y**i*<=≤<=1000) — the coordinates of the *i*-th snow drift.
Note that the north direction coinсides with the direction of *Oy* axis, so the east direction coinсides with the direction of the *Ox* axis. All snow drift's locations are distinct.
|
Output the minimal number of snow drifts that need to be created in order for Bajtek to be able to reach any snow drift from any other one.
|
[
"2\n2 1\n1 2\n",
"2\n2 1\n4 1\n"
] |
[
"1\n",
"0\n"
] |
none
| 500
|
[
{
"input": "2\n2 1\n1 2",
"output": "1"
},
{
"input": "2\n2 1\n4 1",
"output": "0"
},
{
"input": "24\n171 35\n261 20\n4 206\n501 446\n961 912\n581 748\n946 978\n463 514\n841 889\n341 466\n842 967\n54 102\n235 261\n925 889\n682 672\n623 636\n268 94\n635 710\n474 510\n697 794\n586 663\n182 184\n806 663\n468 459",
"output": "21"
},
{
"input": "17\n660 646\n440 442\n689 618\n441 415\n922 865\n950 972\n312 366\n203 229\n873 860\n219 199\n344 308\n169 176\n961 992\n153 84\n201 230\n987 938\n834 815",
"output": "16"
},
{
"input": "11\n798 845\n722 911\n374 270\n629 537\n748 856\n831 885\n486 641\n751 829\n609 492\n98 27\n654 663",
"output": "10"
},
{
"input": "1\n321 88",
"output": "0"
},
{
"input": "9\n811 859\n656 676\n76 141\n945 951\n497 455\n18 55\n335 294\n267 275\n656 689",
"output": "7"
},
{
"input": "7\n948 946\n130 130\n761 758\n941 938\n971 971\n387 385\n509 510",
"output": "6"
},
{
"input": "6\n535 699\n217 337\n508 780\n180 292\n393 112\n732 888",
"output": "5"
},
{
"input": "14\n25 23\n499 406\n193 266\n823 751\n219 227\n101 138\n978 992\n43 74\n997 932\n237 189\n634 538\n774 740\n842 767\n742 802",
"output": "13"
},
{
"input": "12\n548 506\n151 198\n370 380\n655 694\n654 690\n407 370\n518 497\n819 827\n765 751\n802 771\n741 752\n653 662",
"output": "11"
},
{
"input": "40\n685 711\n433 403\n703 710\n491 485\n616 619\n288 282\n884 871\n367 352\n500 511\n977 982\n51 31\n576 564\n508 519\n755 762\n22 20\n368 353\n232 225\n953 955\n452 436\n311 330\n967 988\n369 364\n791 803\n150 149\n651 661\n118 93\n398 387\n748 766\n852 852\n230 228\n555 545\n515 519\n667 678\n867 862\n134 146\n859 863\n96 99\n486 469\n303 296\n780 786",
"output": "38"
},
{
"input": "3\n175 201\n907 909\n388 360",
"output": "2"
},
{
"input": "7\n312 298\n86 78\n73 97\n619 594\n403 451\n538 528\n71 86",
"output": "6"
},
{
"input": "19\n802 820\n368 248\n758 794\n455 378\n876 888\n771 814\n245 177\n586 555\n844 842\n364 360\n820 856\n731 624\n982 975\n825 856\n122 121\n862 896\n42 4\n792 841\n828 820",
"output": "16"
},
{
"input": "32\n643 877\n842 614\n387 176\n99 338\n894 798\n652 728\n611 648\n622 694\n579 781\n243 46\n322 305\n198 438\n708 579\n246 325\n536 459\n874 593\n120 277\n989 907\n223 110\n35 130\n761 692\n690 661\n518 766\n226 93\n678 597\n725 617\n661 574\n775 496\n56 416\n14 189\n358 359\n898 901",
"output": "31"
},
{
"input": "32\n325 327\n20 22\n72 74\n935 933\n664 663\n726 729\n785 784\n170 171\n315 314\n577 580\n984 987\n313 317\n434 435\n962 961\n55 54\n46 44\n743 742\n434 433\n617 612\n332 332\n883 886\n940 936\n793 792\n645 644\n611 607\n418 418\n465 465\n219 218\n167 164\n56 54\n403 405\n210 210",
"output": "29"
},
{
"input": "32\n652 712\n260 241\n27 154\n188 16\n521 351\n518 356\n452 540\n790 827\n339 396\n336 551\n897 930\n828 627\n27 168\n180 113\n134 67\n794 671\n812 711\n100 241\n686 813\n138 289\n384 506\n884 932\n913 959\n470 508\n730 734\n373 478\n788 862\n392 426\n148 68\n113 49\n713 852\n924 894",
"output": "29"
},
{
"input": "14\n685 808\n542 677\n712 747\n832 852\n187 410\n399 338\n626 556\n530 635\n267 145\n215 209\n559 684\n944 949\n753 596\n601 823",
"output": "13"
},
{
"input": "5\n175 158\n16 2\n397 381\n668 686\n957 945",
"output": "4"
},
{
"input": "5\n312 284\n490 509\n730 747\n504 497\n782 793",
"output": "4"
},
{
"input": "2\n802 903\n476 348",
"output": "1"
},
{
"input": "4\n325 343\n425 442\n785 798\n275 270",
"output": "3"
},
{
"input": "28\n462 483\n411 401\n118 94\n111 127\n5 6\n70 52\n893 910\n73 63\n818 818\n182 201\n642 633\n900 886\n893 886\n684 700\n157 173\n953 953\n671 660\n224 225\n832 801\n152 157\n601 585\n115 101\n739 722\n611 606\n659 642\n461 469\n702 689\n649 653",
"output": "25"
},
{
"input": "36\n952 981\n885 900\n803 790\n107 129\n670 654\n143 132\n66 58\n813 819\n849 837\n165 198\n247 228\n15 39\n619 618\n105 138\n868 855\n965 957\n293 298\n613 599\n227 212\n745 754\n723 704\n877 858\n503 487\n678 697\n592 595\n155 135\n962 982\n93 89\n660 673\n225 212\n967 987\n690 680\n804 813\n489 518\n240 221\n111 124",
"output": "34"
},
{
"input": "30\n89 3\n167 156\n784 849\n943 937\n144 95\n24 159\n80 120\n657 683\n585 596\n43 147\n909 964\n131 84\n345 389\n333 321\n91 126\n274 325\n859 723\n866 922\n622 595\n690 752\n902 944\n127 170\n426 383\n905 925\n172 284\n793 810\n414 510\n890 884\n123 24\n267 255",
"output": "29"
},
{
"input": "5\n664 666\n951 941\n739 742\n844 842\n2 2",
"output": "4"
},
{
"input": "3\n939 867\n411 427\n757 708",
"output": "2"
},
{
"input": "36\n429 424\n885 972\n442 386\n512 511\n751 759\n4 115\n461 497\n496 408\n8 23\n542 562\n296 331\n448 492\n412 395\n109 166\n622 640\n379 355\n251 262\n564 586\n66 115\n275 291\n666 611\n629 534\n510 567\n635 666\n738 803\n420 369\n92 17\n101 144\n141 92\n258 258\n184 235\n492 456\n311 210\n394 357\n531 512\n634 636",
"output": "34"
},
{
"input": "29\n462 519\n871 825\n127 335\n156 93\n576 612\n885 830\n634 779\n340 105\n744 795\n716 474\n93 139\n563 805\n137 276\n177 101\n333 14\n391 437\n873 588\n817 518\n460 597\n572 670\n140 303\n392 441\n273 120\n862 578\n670 639\n410 161\n544 577\n193 116\n252 195",
"output": "28"
},
{
"input": "23\n952 907\n345 356\n812 807\n344 328\n242 268\n254 280\n1000 990\n80 78\n424 396\n595 608\n755 813\n383 380\n55 56\n598 633\n203 211\n508 476\n600 593\n206 192\n855 882\n517 462\n967 994\n642 657\n493 488",
"output": "22"
},
{
"input": "10\n579 816\n806 590\n830 787\n120 278\n677 800\n16 67\n188 251\n559 560\n87 67\n104 235",
"output": "8"
},
{
"input": "23\n420 424\n280 303\n515 511\n956 948\n799 803\n441 455\n362 369\n299 289\n823 813\n982 967\n876 878\n185 157\n529 551\n964 989\n655 656\n1 21\n114 112\n45 56\n935 937\n1000 997\n934 942\n360 366\n648 621",
"output": "22"
},
{
"input": "23\n102 84\n562 608\n200 127\n952 999\n465 496\n322 367\n728 690\n143 147\n855 867\n861 866\n26 59\n300 273\n255 351\n192 246\n70 111\n365 277\n32 104\n298 319\n330 354\n241 141\n56 125\n315 298\n412 461",
"output": "22"
},
{
"input": "7\n429 506\n346 307\n99 171\n853 916\n322 263\n115 157\n906 924",
"output": "6"
},
{
"input": "3\n1 1\n2 1\n2 2",
"output": "0"
},
{
"input": "4\n1 1\n1 2\n2 1\n2 2",
"output": "0"
},
{
"input": "5\n1 1\n1 2\n2 2\n3 1\n3 3",
"output": "0"
},
{
"input": "6\n1 1\n1 2\n2 2\n3 1\n3 2\n3 3",
"output": "0"
},
{
"input": "20\n1 1\n2 2\n3 3\n3 9\n4 4\n5 2\n5 5\n5 7\n5 8\n6 2\n6 6\n6 9\n7 7\n8 8\n9 4\n9 7\n9 9\n10 2\n10 9\n10 10",
"output": "1"
},
{
"input": "21\n1 1\n1 9\n2 1\n2 2\n2 5\n2 6\n2 9\n3 3\n3 8\n4 1\n4 4\n5 5\n5 8\n6 6\n7 7\n8 8\n9 9\n10 4\n10 10\n11 5\n11 11",
"output": "1"
},
{
"input": "22\n1 1\n1 3\n1 4\n1 8\n1 9\n1 11\n2 2\n3 3\n4 4\n4 5\n5 5\n6 6\n6 8\n7 7\n8 3\n8 4\n8 8\n9 9\n10 10\n11 4\n11 9\n11 11",
"output": "3"
},
{
"input": "50\n1 1\n2 2\n2 9\n3 3\n4 4\n4 9\n4 16\n4 24\n5 5\n6 6\n7 7\n8 8\n8 9\n8 20\n9 9\n10 10\n11 11\n12 12\n13 13\n14 7\n14 14\n14 16\n14 25\n15 4\n15 6\n15 15\n15 22\n16 6\n16 16\n17 17\n18 18\n19 6\n19 19\n20 20\n21 21\n22 6\n22 22\n23 23\n24 6\n24 7\n24 8\n24 9\n24 24\n25 1\n25 3\n25 5\n25 7\n25 23\n25 24\n25 25",
"output": "7"
},
{
"input": "55\n1 1\n1 14\n2 2\n2 19\n3 1\n3 3\n3 8\n3 14\n3 23\n4 1\n4 4\n5 5\n5 8\n5 15\n6 2\n6 3\n6 4\n6 6\n7 7\n8 8\n8 21\n9 9\n10 1\n10 10\n11 9\n11 11\n12 12\n13 13\n14 14\n15 15\n15 24\n16 5\n16 16\n17 5\n17 10\n17 17\n17 18\n17 22\n17 27\n18 18\n19 19\n20 20\n21 20\n21 21\n22 22\n23 23\n24 14\n24 24\n25 25\n26 8\n26 11\n26 26\n27 3\n27 27\n28 28",
"output": "5"
},
{
"input": "3\n1 2\n2 1\n2 2",
"output": "0"
},
{
"input": "6\n4 4\n3 4\n5 4\n4 5\n4 3\n3 1",
"output": "0"
},
{
"input": "4\n1 1\n1 2\n2 1\n2 2",
"output": "0"
},
{
"input": "3\n1 1\n2 2\n1 2",
"output": "0"
},
{
"input": "8\n1 3\n1 1\n4 1\n2 2\n2 5\n5 9\n5 1\n5 4",
"output": "1"
},
{
"input": "10\n1 1\n1 2\n1 3\n1 4\n5 5\n6 6\n7 7\n8 8\n9 9\n100 100",
"output": "6"
},
{
"input": "7\n1 1\n2 2\n3 3\n4 4\n1 2\n2 3\n3 4",
"output": "0"
},
{
"input": "6\n1 1\n2 1\n2 2\n2 4\n4 3\n2 3",
"output": "0"
},
{
"input": "4\n3 1\n2 1\n2 2\n1 2",
"output": "0"
},
{
"input": "6\n1 1\n2 2\n2 1\n2 4\n4 3\n2 3",
"output": "0"
},
{
"input": "3\n1 2\n1 3\n1 4",
"output": "0"
},
{
"input": "4\n1 1\n2 2\n1 2\n2 1",
"output": "0"
},
{
"input": "4\n1 3\n2 1\n3 2\n3 1",
"output": "1"
},
{
"input": "7\n1 1\n1 2\n2 2\n3 3\n3 4\n4 4\n1 4",
"output": "0"
},
{
"input": "21\n12 12\n13 12\n12 11\n13 13\n10 10\n11 10\n11 11\n501 500\n501 501\n503 502\n500 500\n503 503\n502 501\n502 502\n700 700\n702 702\n703 702\n701 701\n702 701\n703 703\n701 700",
"output": "2"
},
{
"input": "6\n1 11\n6 8\n11 10\n1 10\n11 11\n6 9",
"output": "1"
},
{
"input": "4\n1 1\n2 2\n3 2\n3 1",
"output": "0"
},
{
"input": "3\n1 2\n3 4\n3 2",
"output": "0"
},
{
"input": "3\n1 1\n1 2\n2 2",
"output": "0"
},
{
"input": "4\n5 5\n5 4\n6 3\n6 4",
"output": "0"
},
{
"input": "3\n1 1\n2 2\n2 1",
"output": "0"
}
] | 1,597,069,516
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 76
| 218
| 6,963,200
|
from sys import stdin
def dfs(visited, l, i):
visited[i]= True
for j in range(n):
if not visited[j]:
if l[j][0]==l[i][0] or l[j][1]==l[i][1]:
dfs(visited,l,j)
n = int(stdin.readline().rstrip())
l = list()
for _ in range(n):
a, b = map(int, stdin.readline().rstrip().split(" "))
l.append([a,b])
visited = [False]*n
c = 0
for i in range(n):
if not visited[i]:
dfs(visited, l, i)
c+=1
print(c-1)
|
Title: Ice Skating
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Bajtek is learning to skate on ice. He's a beginner, so his only mode of transportation is pushing off from a snow drift to the north, east, south or west and sliding until he lands in another snow drift. He has noticed that in this way it's impossible to get from some snow drifts to some other by any sequence of moves. He now wants to heap up some additional snow drifts, so that he can get from any snow drift to any other one. He asked you to find the minimal number of snow drifts that need to be created.
We assume that Bajtek can only heap up snow drifts at integer coordinates.
Input Specification:
The first line of input contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of snow drifts. Each of the following *n* lines contains two integers *x**i* and *y**i* (1<=≤<=*x**i*,<=*y**i*<=≤<=1000) — the coordinates of the *i*-th snow drift.
Note that the north direction coinсides with the direction of *Oy* axis, so the east direction coinсides with the direction of the *Ox* axis. All snow drift's locations are distinct.
Output Specification:
Output the minimal number of snow drifts that need to be created in order for Bajtek to be able to reach any snow drift from any other one.
Demo Input:
['2\n2 1\n1 2\n', '2\n2 1\n4 1\n']
Demo Output:
['1\n', '0\n']
Note:
none
|
```python
from sys import stdin
def dfs(visited, l, i):
visited[i]= True
for j in range(n):
if not visited[j]:
if l[j][0]==l[i][0] or l[j][1]==l[i][1]:
dfs(visited,l,j)
n = int(stdin.readline().rstrip())
l = list()
for _ in range(n):
a, b = map(int, stdin.readline().rstrip().split(" "))
l.append([a,b])
visited = [False]*n
c = 0
for i in range(n):
if not visited[i]:
dfs(visited, l, i)
c+=1
print(c-1)
```
| 3
|
|
762
|
A
|
k-th divisor
|
PROGRAMMING
| 1,400
|
[
"math",
"number theory"
] | null | null |
You are given two integers *n* and *k*. Find *k*-th smallest divisor of *n*, or report that it doesn't exist.
Divisor of *n* is any such natural number, that *n* can be divided by it without remainder.
|
The first line contains two integers *n* and *k* (1<=≤<=*n*<=≤<=1015, 1<=≤<=*k*<=≤<=109).
|
If *n* has less than *k* divisors, output -1.
Otherwise, output the *k*-th smallest divisor of *n*.
|
[
"4 2\n",
"5 3\n",
"12 5\n"
] |
[
"2\n",
"-1\n",
"6\n"
] |
In the first example, number 4 has three divisors: 1, 2 and 4. The second one is 2.
In the second example, number 5 has only two divisors: 1 and 5. The third divisor doesn't exist, so the answer is -1.
| 0
|
[
{
"input": "4 2",
"output": "2"
},
{
"input": "5 3",
"output": "-1"
},
{
"input": "12 5",
"output": "6"
},
{
"input": "1 1",
"output": "1"
},
{
"input": "866421317361600 26880",
"output": "866421317361600"
},
{
"input": "866421317361600 26881",
"output": "-1"
},
{
"input": "1000000000000000 1000000000",
"output": "-1"
},
{
"input": "1000000000000000 100",
"output": "1953125"
},
{
"input": "1 2",
"output": "-1"
},
{
"input": "4 3",
"output": "4"
},
{
"input": "4 4",
"output": "-1"
},
{
"input": "9 3",
"output": "9"
},
{
"input": "21 3",
"output": "7"
},
{
"input": "67280421310721 1",
"output": "1"
},
{
"input": "6 3",
"output": "3"
},
{
"input": "3 3",
"output": "-1"
},
{
"input": "16 3",
"output": "4"
},
{
"input": "1 1000",
"output": "-1"
},
{
"input": "16 4",
"output": "8"
},
{
"input": "36 8",
"output": "18"
},
{
"input": "49 4",
"output": "-1"
},
{
"input": "9 4",
"output": "-1"
},
{
"input": "16 1",
"output": "1"
},
{
"input": "16 6",
"output": "-1"
},
{
"input": "16 5",
"output": "16"
},
{
"input": "25 4",
"output": "-1"
},
{
"input": "4010815561 2",
"output": "63331"
},
{
"input": "49 3",
"output": "49"
},
{
"input": "36 6",
"output": "9"
},
{
"input": "36 10",
"output": "-1"
},
{
"input": "25 3",
"output": "25"
},
{
"input": "22876792454961 28",
"output": "7625597484987"
},
{
"input": "1234 2",
"output": "2"
},
{
"input": "179458711 2",
"output": "179458711"
},
{
"input": "900104343024121 100000",
"output": "-1"
},
{
"input": "8 3",
"output": "4"
},
{
"input": "100 6",
"output": "20"
},
{
"input": "15500 26",
"output": "-1"
},
{
"input": "111111 1",
"output": "1"
},
{
"input": "100000000000000 200",
"output": "160000000000"
},
{
"input": "1000000000000 100",
"output": "6400000"
},
{
"input": "100 10",
"output": "-1"
},
{
"input": "1000000000039 2",
"output": "1000000000039"
},
{
"input": "64 5",
"output": "16"
},
{
"input": "999999961946176 33",
"output": "63245552"
},
{
"input": "376219076689 3",
"output": "376219076689"
},
{
"input": "999999961946176 63",
"output": "999999961946176"
},
{
"input": "1048576 12",
"output": "2048"
},
{
"input": "745 21",
"output": "-1"
},
{
"input": "748 6",
"output": "22"
},
{
"input": "999999961946176 50",
"output": "161082468097"
},
{
"input": "10 3",
"output": "5"
},
{
"input": "1099511627776 22",
"output": "2097152"
},
{
"input": "1000000007 100010",
"output": "-1"
},
{
"input": "3 1",
"output": "1"
},
{
"input": "100 8",
"output": "50"
},
{
"input": "100 7",
"output": "25"
},
{
"input": "7 2",
"output": "7"
},
{
"input": "999999961946176 64",
"output": "-1"
},
{
"input": "20 5",
"output": "10"
},
{
"input": "999999999999989 2",
"output": "999999999999989"
},
{
"input": "100000000000000 114",
"output": "10240000"
},
{
"input": "99999640000243 3",
"output": "9999991"
},
{
"input": "999998000001 566",
"output": "333332666667"
},
{
"input": "99999820000081 2",
"output": "9999991"
},
{
"input": "49000042000009 3",
"output": "49000042000009"
},
{
"input": "151491429961 4",
"output": "-1"
},
{
"input": "32416190071 2",
"output": "32416190071"
},
{
"input": "1000 8",
"output": "25"
},
{
"input": "1999967841 15",
"output": "1999967841"
},
{
"input": "26880 26880",
"output": "-1"
},
{
"input": "151491429961 3",
"output": "151491429961"
},
{
"input": "90000000000 300",
"output": "100000000"
},
{
"input": "98765004361 10",
"output": "-1"
},
{
"input": "15 2",
"output": "3"
},
{
"input": "16 2",
"output": "2"
},
{
"input": "1996 2",
"output": "2"
},
{
"input": "1997 2",
"output": "1997"
},
{
"input": "1999 2",
"output": "1999"
},
{
"input": "1998 2",
"output": "2"
},
{
"input": "1998 1",
"output": "1"
},
{
"input": "1998 7",
"output": "27"
},
{
"input": "1998 8",
"output": "37"
},
{
"input": "100000380000361 2",
"output": "10000019"
},
{
"input": "15 1",
"output": "1"
},
{
"input": "100000000000000 226",
"output": "-1"
},
{
"input": "844030857550613 517",
"output": "-1"
},
{
"input": "4567890 14",
"output": "430"
},
{
"input": "123123123 123123123",
"output": "-1"
},
{
"input": "24 4",
"output": "4"
},
{
"input": "999999993568952 17",
"output": "31622777"
},
{
"input": "99999999994190 9",
"output": "241656799"
},
{
"input": "999997874844049 4",
"output": "-1"
},
{
"input": "99999999999931 2",
"output": "99999999999931"
},
{
"input": "2 3",
"output": "-1"
},
{
"input": "67280421310721 2",
"output": "67280421310721"
}
] | 1,613,801,132
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 96
| 1,356
| 3,276,800
|
def div(x):
i=1;ans=[]
while i*i<=n:
if x%i==0 and i!=x//i:ans.append(i);ans.append(x//i)
elif x%i==0:ans.append(i)
i+=1
return ans
n,k=map(int,input().split())
ans=div(n)
if len(ans)<k:print(-1)
else:ans=sorted(ans);print(ans[k-1])
|
Title: k-th divisor
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You are given two integers *n* and *k*. Find *k*-th smallest divisor of *n*, or report that it doesn't exist.
Divisor of *n* is any such natural number, that *n* can be divided by it without remainder.
Input Specification:
The first line contains two integers *n* and *k* (1<=≤<=*n*<=≤<=1015, 1<=≤<=*k*<=≤<=109).
Output Specification:
If *n* has less than *k* divisors, output -1.
Otherwise, output the *k*-th smallest divisor of *n*.
Demo Input:
['4 2\n', '5 3\n', '12 5\n']
Demo Output:
['2\n', '-1\n', '6\n']
Note:
In the first example, number 4 has three divisors: 1, 2 and 4. The second one is 2.
In the second example, number 5 has only two divisors: 1 and 5. The third divisor doesn't exist, so the answer is -1.
|
```python
def div(x):
i=1;ans=[]
while i*i<=n:
if x%i==0 and i!=x//i:ans.append(i);ans.append(x//i)
elif x%i==0:ans.append(i)
i+=1
return ans
n,k=map(int,input().split())
ans=div(n)
if len(ans)<k:print(-1)
else:ans=sorted(ans);print(ans[k-1])
```
| 3
|
|
913
|
A
|
Modular Exponentiation
|
PROGRAMMING
| 900
|
[
"implementation",
"math"
] | null | null |
The following problem is well-known: given integers *n* and *m*, calculate
where 2*n*<==<=2·2·...·2 (*n* factors), and denotes the remainder of division of *x* by *y*.
You are asked to solve the "reverse" problem. Given integers *n* and *m*, calculate
|
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=108).
The second line contains a single integer *m* (1<=≤<=*m*<=≤<=108).
|
Output a single integer — the value of .
|
[
"4\n42\n",
"1\n58\n",
"98765432\n23456789\n"
] |
[
"10\n",
"0\n",
"23456789\n"
] |
In the first example, the remainder of division of 42 by 2<sup class="upper-index">4</sup> = 16 is equal to 10.
In the second example, 58 is divisible by 2<sup class="upper-index">1</sup> = 2 without remainder, and the answer is 0.
| 500
|
[
{
"input": "4\n42",
"output": "10"
},
{
"input": "1\n58",
"output": "0"
},
{
"input": "98765432\n23456789",
"output": "23456789"
},
{
"input": "8\n88127381",
"output": "149"
},
{
"input": "32\n92831989",
"output": "92831989"
},
{
"input": "92831989\n25",
"output": "25"
},
{
"input": "100000000\n100000000",
"output": "100000000"
},
{
"input": "7\n1234",
"output": "82"
},
{
"input": "1\n1",
"output": "1"
},
{
"input": "1\n100000000",
"output": "0"
},
{
"input": "100000000\n1",
"output": "1"
},
{
"input": "1\n2",
"output": "0"
},
{
"input": "2\n1",
"output": "1"
},
{
"input": "2\n2",
"output": "2"
},
{
"input": "2\n3",
"output": "3"
},
{
"input": "2\n4",
"output": "0"
},
{
"input": "2\n5",
"output": "1"
},
{
"input": "25\n33554432",
"output": "0"
},
{
"input": "26\n33554432",
"output": "33554432"
},
{
"input": "25\n67108864",
"output": "0"
},
{
"input": "26\n67108864",
"output": "0"
},
{
"input": "25\n92831989",
"output": "25723125"
},
{
"input": "26\n92831989",
"output": "25723125"
},
{
"input": "27\n92831989",
"output": "92831989"
},
{
"input": "29\n92831989",
"output": "92831989"
},
{
"input": "30\n92831989",
"output": "92831989"
},
{
"input": "31\n92831989",
"output": "92831989"
},
{
"input": "99812399\n93172892",
"output": "93172892"
},
{
"input": "67108864\n12345678",
"output": "12345678"
},
{
"input": "3\n98391849",
"output": "1"
},
{
"input": "13\n1231232",
"output": "2432"
},
{
"input": "18\n9842194",
"output": "142866"
},
{
"input": "24\n71237177",
"output": "4128313"
},
{
"input": "11\n65535",
"output": "2047"
},
{
"input": "11\n65536",
"output": "0"
},
{
"input": "12\n123",
"output": "123"
},
{
"input": "123456\n12",
"output": "12"
},
{
"input": "88\n888",
"output": "888"
},
{
"input": "888\n88",
"output": "88"
},
{
"input": "8888\n8888",
"output": "8888"
},
{
"input": "64\n128",
"output": "128"
},
{
"input": "128\n64",
"output": "64"
},
{
"input": "60\n9999999",
"output": "9999999"
},
{
"input": "200\n100000",
"output": "100000"
},
{
"input": "3\n8",
"output": "0"
},
{
"input": "10000000\n25024886",
"output": "25024886"
},
{
"input": "100\n100000",
"output": "100000"
},
{
"input": "99999999\n100000000",
"output": "100000000"
},
{
"input": "70\n12345678",
"output": "12345678"
}
] | 1,628,020,496
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 49
| 109
| 33,177,600
|
n=int(input())
m=int(input())
x=pow(m,1,2**n)
print(x)
|
Title: Modular Exponentiation
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
The following problem is well-known: given integers *n* and *m*, calculate
where 2*n*<==<=2·2·...·2 (*n* factors), and denotes the remainder of division of *x* by *y*.
You are asked to solve the "reverse" problem. Given integers *n* and *m*, calculate
Input Specification:
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=108).
The second line contains a single integer *m* (1<=≤<=*m*<=≤<=108).
Output Specification:
Output a single integer — the value of .
Demo Input:
['4\n42\n', '1\n58\n', '98765432\n23456789\n']
Demo Output:
['10\n', '0\n', '23456789\n']
Note:
In the first example, the remainder of division of 42 by 2<sup class="upper-index">4</sup> = 16 is equal to 10.
In the second example, 58 is divisible by 2<sup class="upper-index">1</sup> = 2 without remainder, and the answer is 0.
|
```python
n=int(input())
m=int(input())
x=pow(m,1,2**n)
print(x)
```
| 3
|
|
915
|
A
|
Garden
|
PROGRAMMING
| 900
|
[
"implementation"
] | null | null |
Luba thinks about watering her garden. The garden can be represented as a segment of length *k*. Luba has got *n* buckets, the *i*-th bucket allows her to water some continuous subsegment of garden of length exactly *a**i* each hour. Luba can't water any parts of the garden that were already watered, also she can't water the ground outside the garden.
Luba has to choose one of the buckets in order to water the garden as fast as possible (as mentioned above, each hour she will water some continuous subsegment of length *a**i* if she chooses the *i*-th bucket). Help her to determine the minimum number of hours she has to spend watering the garden. It is guaranteed that Luba can always choose a bucket so it is possible water the garden.
See the examples for better understanding.
|
The first line of input contains two integer numbers *n* and *k* (1<=≤<=*n*,<=*k*<=≤<=100) — the number of buckets and the length of the garden, respectively.
The second line of input contains *n* integer numbers *a**i* (1<=≤<=*a**i*<=≤<=100) — the length of the segment that can be watered by the *i*-th bucket in one hour.
It is guaranteed that there is at least one bucket such that it is possible to water the garden in integer number of hours using only this bucket.
|
Print one integer number — the minimum number of hours required to water the garden.
|
[
"3 6\n2 3 5\n",
"6 7\n1 2 3 4 5 6\n"
] |
[
"2\n",
"7\n"
] |
In the first test the best option is to choose the bucket that allows to water the segment of length 3. We can't choose the bucket that allows to water the segment of length 5 because then we can't water the whole garden.
In the second test we can choose only the bucket that allows us to water the segment of length 1.
| 0
|
[
{
"input": "3 6\n2 3 5",
"output": "2"
},
{
"input": "6 7\n1 2 3 4 5 6",
"output": "7"
},
{
"input": "5 97\n1 10 50 97 2",
"output": "1"
},
{
"input": "5 97\n1 10 50 100 2",
"output": "97"
},
{
"input": "100 100\n2 46 24 18 86 90 31 38 84 49 58 28 15 80 14 24 87 56 62 87 41 87 55 71 87 32 41 56 91 32 24 75 43 42 35 30 72 53 31 26 54 61 87 85 36 75 44 31 7 38 77 57 61 54 70 77 45 96 39 57 11 8 91 42 52 15 42 30 92 41 27 26 34 27 3 80 32 86 26 97 63 91 30 75 14 7 19 23 45 11 8 43 44 73 11 56 3 55 63 16",
"output": "50"
},
{
"input": "100 91\n13 13 62 96 74 47 81 46 78 21 20 42 4 73 25 30 76 74 58 28 25 52 42 48 74 40 82 9 25 29 17 22 46 64 57 95 81 39 47 86 40 95 97 35 31 98 45 98 47 78 52 63 58 14 89 97 17 95 28 22 20 36 68 38 95 16 2 26 54 47 42 31 31 81 21 21 65 40 82 53 60 71 75 33 96 98 6 22 95 12 5 48 18 27 58 62 5 96 36 75",
"output": "7"
},
{
"input": "8 8\n8 7 6 5 4 3 2 1",
"output": "1"
},
{
"input": "3 8\n4 3 2",
"output": "2"
},
{
"input": "3 8\n2 4 2",
"output": "2"
},
{
"input": "3 6\n1 3 2",
"output": "2"
},
{
"input": "3 6\n3 2 5",
"output": "2"
},
{
"input": "3 8\n4 2 1",
"output": "2"
},
{
"input": "5 6\n2 3 5 1 2",
"output": "2"
},
{
"input": "2 6\n5 3",
"output": "2"
},
{
"input": "4 12\n6 4 3 1",
"output": "2"
},
{
"input": "3 18\n1 9 6",
"output": "2"
},
{
"input": "3 9\n3 2 1",
"output": "3"
},
{
"input": "3 6\n5 3 2",
"output": "2"
},
{
"input": "2 10\n5 2",
"output": "2"
},
{
"input": "2 18\n6 3",
"output": "3"
},
{
"input": "4 12\n1 2 12 3",
"output": "1"
},
{
"input": "3 7\n3 2 1",
"output": "7"
},
{
"input": "3 6\n3 2 1",
"output": "2"
},
{
"input": "5 10\n5 4 3 2 1",
"output": "2"
},
{
"input": "5 16\n8 4 2 1 7",
"output": "2"
},
{
"input": "6 7\n6 5 4 3 7 1",
"output": "1"
},
{
"input": "2 6\n3 2",
"output": "2"
},
{
"input": "2 4\n4 1",
"output": "1"
},
{
"input": "6 8\n2 4 1 3 5 7",
"output": "2"
},
{
"input": "6 8\n6 5 4 3 2 1",
"output": "2"
},
{
"input": "6 15\n5 2 3 6 4 3",
"output": "3"
},
{
"input": "4 8\n2 4 8 1",
"output": "1"
},
{
"input": "2 5\n5 1",
"output": "1"
},
{
"input": "4 18\n3 1 1 2",
"output": "6"
},
{
"input": "2 1\n2 1",
"output": "1"
},
{
"input": "3 10\n2 10 5",
"output": "1"
},
{
"input": "5 12\n12 4 4 4 3",
"output": "1"
},
{
"input": "3 6\n6 3 2",
"output": "1"
},
{
"input": "2 2\n2 1",
"output": "1"
},
{
"input": "3 18\n1 9 3",
"output": "2"
},
{
"input": "3 8\n7 2 4",
"output": "2"
},
{
"input": "2 100\n99 1",
"output": "100"
},
{
"input": "4 12\n1 3 4 2",
"output": "3"
},
{
"input": "3 6\n2 3 1",
"output": "2"
},
{
"input": "4 6\n3 2 5 12",
"output": "2"
},
{
"input": "4 97\n97 1 50 10",
"output": "1"
},
{
"input": "3 12\n1 12 2",
"output": "1"
},
{
"input": "4 12\n1 4 3 2",
"output": "3"
},
{
"input": "1 1\n1",
"output": "1"
},
{
"input": "3 19\n7 1 1",
"output": "19"
},
{
"input": "5 12\n12 4 3 4 4",
"output": "1"
},
{
"input": "3 8\n8 4 2",
"output": "1"
},
{
"input": "3 3\n3 2 1",
"output": "1"
},
{
"input": "5 6\n3 2 4 2 2",
"output": "2"
},
{
"input": "2 16\n8 4",
"output": "2"
},
{
"input": "3 6\n10 2 3",
"output": "2"
},
{
"input": "5 3\n2 4 5 3 6",
"output": "1"
},
{
"input": "11 99\n1 2 3 6 5 4 7 8 99 33 66",
"output": "1"
},
{
"input": "3 12\n3 12 2",
"output": "1"
},
{
"input": "5 25\n24 5 15 25 23",
"output": "1"
},
{
"input": "2 4\n8 1",
"output": "4"
},
{
"input": "4 100\n2 50 4 1",
"output": "2"
},
{
"input": "3 28\n7 14 1",
"output": "2"
},
{
"input": "4 8\n2 8 4 1",
"output": "1"
},
{
"input": "4 6\n6 1 2 3",
"output": "1"
},
{
"input": "2 12\n4 3",
"output": "3"
},
{
"input": "4 12\n1 2 4 3",
"output": "3"
},
{
"input": "5 12\n2 3 12 6 4",
"output": "1"
},
{
"input": "4 4\n1 2 2 4",
"output": "1"
},
{
"input": "3 6\n2 3 2",
"output": "2"
},
{
"input": "4 21\n21 20 21 2",
"output": "1"
},
{
"input": "3 8\n3 4 2",
"output": "2"
},
{
"input": "1 25\n25",
"output": "1"
},
{
"input": "99 12\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99",
"output": "1"
},
{
"input": "98 12\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98",
"output": "1"
},
{
"input": "79 12\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79",
"output": "1"
},
{
"input": "4 32\n1 1 1 1",
"output": "32"
},
{
"input": "1 100\n1",
"output": "100"
},
{
"input": "2 100\n7 1",
"output": "100"
},
{
"input": "7 24\n1 3 6 4 5 2 7",
"output": "4"
},
{
"input": "6 87\n1 2 8 4 5 7",
"output": "87"
},
{
"input": "1 88\n1",
"output": "88"
},
{
"input": "1 89\n1",
"output": "89"
}
] | 1,522,376,648
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 83
| 93
| 7,065,600
|
#http://codeforces.com/problemset/problem/915/A
numBuckets, garLen = map(int, input().split())
buckets = list(map(int,input().split()))
biggest = 0
for x in buckets:
if(garLen%x == 0 and x > biggest):
biggest = x
else:
pass
print(int(garLen/biggest))
|
Title: Garden
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Luba thinks about watering her garden. The garden can be represented as a segment of length *k*. Luba has got *n* buckets, the *i*-th bucket allows her to water some continuous subsegment of garden of length exactly *a**i* each hour. Luba can't water any parts of the garden that were already watered, also she can't water the ground outside the garden.
Luba has to choose one of the buckets in order to water the garden as fast as possible (as mentioned above, each hour she will water some continuous subsegment of length *a**i* if she chooses the *i*-th bucket). Help her to determine the minimum number of hours she has to spend watering the garden. It is guaranteed that Luba can always choose a bucket so it is possible water the garden.
See the examples for better understanding.
Input Specification:
The first line of input contains two integer numbers *n* and *k* (1<=≤<=*n*,<=*k*<=≤<=100) — the number of buckets and the length of the garden, respectively.
The second line of input contains *n* integer numbers *a**i* (1<=≤<=*a**i*<=≤<=100) — the length of the segment that can be watered by the *i*-th bucket in one hour.
It is guaranteed that there is at least one bucket such that it is possible to water the garden in integer number of hours using only this bucket.
Output Specification:
Print one integer number — the minimum number of hours required to water the garden.
Demo Input:
['3 6\n2 3 5\n', '6 7\n1 2 3 4 5 6\n']
Demo Output:
['2\n', '7\n']
Note:
In the first test the best option is to choose the bucket that allows to water the segment of length 3. We can't choose the bucket that allows to water the segment of length 5 because then we can't water the whole garden.
In the second test we can choose only the bucket that allows us to water the segment of length 1.
|
```python
#http://codeforces.com/problemset/problem/915/A
numBuckets, garLen = map(int, input().split())
buckets = list(map(int,input().split()))
biggest = 0
for x in buckets:
if(garLen%x == 0 and x > biggest):
biggest = x
else:
pass
print(int(garLen/biggest))
```
| 3
|
|
192
|
A
|
Funky Numbers
|
PROGRAMMING
| 1,300
|
[
"binary search",
"brute force",
"implementation"
] | null | null |
As you very well know, this year's funkiest numbers are so called triangular numbers (that is, integers that are representable as , where *k* is some positive integer), and the coolest numbers are those that are representable as a sum of two triangular numbers.
A well-known hipster Andrew adores everything funky and cool but unfortunately, he isn't good at maths. Given number *n*, help him define whether this number can be represented by a sum of two triangular numbers (not necessarily different)!
|
The first input line contains an integer *n* (1<=≤<=*n*<=≤<=109).
|
Print "YES" (without the quotes), if *n* can be represented as a sum of two triangular numbers, otherwise print "NO" (without the quotes).
|
[
"256\n",
"512\n"
] |
[
"YES\n",
"NO\n"
] |
In the first sample number <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/92095692c6ea93e9e3b837a0408ba7543549d5b2.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
In the second sample number 512 can not be represented as a sum of two triangular numbers.
| 500
|
[
{
"input": "256",
"output": "YES"
},
{
"input": "512",
"output": "NO"
},
{
"input": "80",
"output": "NO"
},
{
"input": "828",
"output": "YES"
},
{
"input": "6035",
"output": "NO"
},
{
"input": "39210",
"output": "YES"
},
{
"input": "79712",
"output": "NO"
},
{
"input": "190492",
"output": "YES"
},
{
"input": "5722367",
"output": "NO"
},
{
"input": "816761542",
"output": "YES"
},
{
"input": "1",
"output": "NO"
},
{
"input": "2",
"output": "YES"
},
{
"input": "3",
"output": "NO"
},
{
"input": "4",
"output": "YES"
},
{
"input": "5",
"output": "NO"
},
{
"input": "6",
"output": "YES"
},
{
"input": "7",
"output": "YES"
},
{
"input": "8",
"output": "NO"
},
{
"input": "9",
"output": "YES"
},
{
"input": "10",
"output": "NO"
},
{
"input": "12",
"output": "YES"
},
{
"input": "13",
"output": "YES"
},
{
"input": "14",
"output": "NO"
},
{
"input": "15",
"output": "NO"
},
{
"input": "16",
"output": "YES"
},
{
"input": "17",
"output": "NO"
},
{
"input": "18",
"output": "YES"
},
{
"input": "19",
"output": "NO"
},
{
"input": "20",
"output": "YES"
},
{
"input": "41",
"output": "NO"
},
{
"input": "11",
"output": "YES"
},
{
"input": "69",
"output": "YES"
},
{
"input": "82",
"output": "NO"
},
{
"input": "85",
"output": "NO"
},
{
"input": "736",
"output": "NO"
},
{
"input": "895",
"output": "YES"
},
{
"input": "934",
"output": "YES"
},
{
"input": "6213",
"output": "YES"
},
{
"input": "7405",
"output": "NO"
},
{
"input": "9919",
"output": "NO"
},
{
"input": "40942",
"output": "YES"
},
{
"input": "41992",
"output": "NO"
},
{
"input": "68535",
"output": "NO"
},
{
"input": "405718",
"output": "NO"
},
{
"input": "1046146",
"output": "YES"
},
{
"input": "3761248",
"output": "YES"
},
{
"input": "6195181",
"output": "YES"
},
{
"input": "35354345",
"output": "NO"
},
{
"input": "81282830",
"output": "NO"
},
{
"input": "187719774",
"output": "NO"
},
{
"input": "296798673",
"output": "NO"
},
{
"input": "938938476",
"output": "NO"
},
{
"input": "1000000000",
"output": "NO"
},
{
"input": "999887464",
"output": "YES"
},
{
"input": "999111944",
"output": "NO"
},
{
"input": "999966520",
"output": "YES"
},
{
"input": "999912080",
"output": "NO"
},
{
"input": "999992017",
"output": "YES"
},
{
"input": "999990474",
"output": "NO"
},
{
"input": "999999190",
"output": "YES"
},
{
"input": "999999125",
"output": "NO"
},
{
"input": "999999940",
"output": "YES"
},
{
"input": "999999995",
"output": "NO"
},
{
"input": "1000000000",
"output": "NO"
},
{
"input": "1",
"output": "NO"
},
{
"input": "999999999",
"output": "YES"
},
{
"input": "83495494",
"output": "NO"
},
{
"input": "968022000",
"output": "YES"
},
{
"input": "399980000",
"output": "YES"
},
{
"input": "4",
"output": "YES"
},
{
"input": "999999998",
"output": "NO"
}
] | 1,663,850,195
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 71
| 156
| 2,457,600
|
a = set([i*(i+1)//2 for i in range(1,50000)])
n = int(input())
print("YES" if any(n-t in a for t in a) else "NO")
|
Title: Funky Numbers
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
As you very well know, this year's funkiest numbers are so called triangular numbers (that is, integers that are representable as , where *k* is some positive integer), and the coolest numbers are those that are representable as a sum of two triangular numbers.
A well-known hipster Andrew adores everything funky and cool but unfortunately, he isn't good at maths. Given number *n*, help him define whether this number can be represented by a sum of two triangular numbers (not necessarily different)!
Input Specification:
The first input line contains an integer *n* (1<=≤<=*n*<=≤<=109).
Output Specification:
Print "YES" (without the quotes), if *n* can be represented as a sum of two triangular numbers, otherwise print "NO" (without the quotes).
Demo Input:
['256\n', '512\n']
Demo Output:
['YES\n', 'NO\n']
Note:
In the first sample number <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/92095692c6ea93e9e3b837a0408ba7543549d5b2.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
In the second sample number 512 can not be represented as a sum of two triangular numbers.
|
```python
a = set([i*(i+1)//2 for i in range(1,50000)])
n = int(input())
print("YES" if any(n-t in a for t in a) else "NO")
```
| 3
|
|
740
|
B
|
Alyona and flowers
|
PROGRAMMING
| 1,200
|
[
"constructive algorithms"
] | null | null |
Little Alyona is celebrating Happy Birthday! Her mother has an array of *n* flowers. Each flower has some mood, the mood of *i*-th flower is *a**i*. The mood can be positive, zero or negative.
Let's define a subarray as a segment of consecutive flowers. The mother suggested some set of subarrays. Alyona wants to choose several of the subarrays suggested by her mother. After that, each of the flowers will add to the girl's happiness its mood multiplied by the number of chosen subarrays the flower is in.
For example, consider the case when the mother has 5 flowers, and their moods are equal to 1,<=<=-<=2,<=1,<=3,<=<=-<=4. Suppose the mother suggested subarrays (1,<=<=-<=2), (3,<=<=-<=4), (1,<=3), (1,<=<=-<=2,<=1,<=3). Then if the girl chooses the third and the fourth subarrays then:
- the first flower adds 1·1<==<=1 to the girl's happiness, because he is in one of chosen subarrays, - the second flower adds (<=-<=2)·1<==<=<=-<=2, because he is in one of chosen subarrays, - the third flower adds 1·2<==<=2, because he is in two of chosen subarrays, - the fourth flower adds 3·2<==<=6, because he is in two of chosen subarrays, - the fifth flower adds (<=-<=4)·0<==<=0, because he is in no chosen subarrays.
Thus, in total 1<=+<=(<=-<=2)<=+<=2<=+<=6<=+<=0<==<=7 is added to the girl's happiness. Alyona wants to choose such subarrays from those suggested by the mother that the value added to her happiness would be as large as possible. Help her do this!
Alyona can choose any number of the subarrays, even 0 or all suggested by her mother.
|
The first line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100) — the number of flowers and the number of subarrays suggested by the mother.
The second line contains the flowers moods — *n* integers *a*1,<=*a*2,<=...,<=*a**n* (<=-<=100<=≤<=*a**i*<=≤<=100).
The next *m* lines contain the description of the subarrays suggested by the mother. The *i*-th of these lines contain two integers *l**i* and *r**i* (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=*n*) denoting the subarray *a*[*l**i*],<=*a*[*l**i*<=+<=1],<=...,<=*a*[*r**i*].
Each subarray can encounter more than once.
|
Print single integer — the maximum possible value added to the Alyona's happiness.
|
[
"5 4\n1 -2 1 3 -4\n1 2\n4 5\n3 4\n1 4\n",
"4 3\n1 2 3 4\n1 3\n2 4\n1 1\n",
"2 2\n-1 -2\n1 1\n1 2\n"
] |
[
"7\n",
"16\n",
"0\n"
] |
The first example is the situation described in the statements.
In the second example Alyona should choose all subarrays.
The third example has answer 0 because Alyona can choose none of the subarrays.
| 1,000
|
[
{
"input": "5 4\n1 -2 1 3 -4\n1 2\n4 5\n3 4\n1 4",
"output": "7"
},
{
"input": "4 3\n1 2 3 4\n1 3\n2 4\n1 1",
"output": "16"
},
{
"input": "2 2\n-1 -2\n1 1\n1 2",
"output": "0"
},
{
"input": "5 6\n1 1 1 -1 0\n2 4\n1 3\n4 5\n1 5\n1 4\n4 5",
"output": "8"
},
{
"input": "8 3\n5 -4 -2 5 3 -4 -2 6\n3 8\n4 6\n2 3",
"output": "10"
},
{
"input": "10 10\n0 0 0 0 0 0 0 0 0 0\n5 9\n1 9\n5 7\n3 8\n1 6\n1 9\n1 6\n6 9\n1 10\n3 8",
"output": "0"
},
{
"input": "3 6\n0 0 0\n1 1\n1 1\n1 3\n3 3\n2 3\n1 2",
"output": "0"
},
{
"input": "3 3\n1 -1 3\n1 2\n2 3\n1 3",
"output": "5"
},
{
"input": "6 8\n0 6 -5 8 -3 -2\n6 6\n2 3\n5 6\n4 6\n3 4\n2 5\n3 3\n5 6",
"output": "13"
},
{
"input": "10 4\n6 5 5 -1 0 5 0 -3 5 -4\n3 6\n4 9\n1 6\n1 4",
"output": "50"
},
{
"input": "9 1\n-1 -1 -1 -1 2 -1 2 0 0\n2 5",
"output": "0"
},
{
"input": "3 8\n3 4 4\n1 2\n1 3\n2 3\n1 2\n2 2\n1 1\n2 3\n1 3",
"output": "59"
},
{
"input": "3 8\n6 7 -1\n1 1\n1 3\n2 2\n1 3\n1 3\n1 1\n2 3\n2 3",
"output": "67"
},
{
"input": "53 7\n-43 57 92 97 85 -29 28 -8 -37 -47 51 -53 -95 -50 -39 -87 43 36 60 -95 93 8 67 -22 -78 -46 99 93 27 -72 -84 77 96 -47 1 -12 21 -98 -34 -88 57 -43 5 -15 20 -66 61 -29 30 -85 52 53 82\n15 26\n34 43\n37 41\n22 34\n19 43\n2 15\n13 35",
"output": "170"
},
{
"input": "20 42\n61 86 5 -87 -33 51 -79 17 -3 65 -42 74 -94 40 -35 22 58 81 -75 5\n3 6\n12 13\n3 16\n3 16\n5 7\n5 16\n2 15\n6 18\n4 18\n10 17\n14 16\n4 15\n4 11\n13 20\n5 6\n5 15\n16 17\n3 14\n9 10\n5 19\n5 14\n2 4\n17 20\n10 11\n5 18\n10 11\n1 14\n1 6\n1 10\n8 16\n11 14\n12 20\n11 13\n4 5\n2 13\n1 5\n11 15\n1 18\n3 8\n8 20\n1 4\n10 13",
"output": "1502"
},
{
"input": "64 19\n-47 13 19 51 -25 72 38 32 54 7 -49 -50 -59 73 45 -87 -15 -72 -32 -10 -7 47 -34 35 48 -73 79 25 -80 -34 4 77 60 30 61 -25 23 17 -73 -73 69 29 -50 -55 53 15 -33 7 -46 -5 85 -86 77 -51 87 -69 -64 -24 -64 29 -20 -58 11 -26\n6 53\n13 28\n15 47\n20 52\n12 22\n6 49\n31 54\n2 39\n32 49\n27 64\n22 63\n33 48\n49 58\n39 47\n6 29\n21 44\n24 59\n20 24\n39 54",
"output": "804"
},
{
"input": "1 10\n-46\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1",
"output": "0"
},
{
"input": "10 7\n44 18 9 -22 -23 7 -25 -2 15 35\n6 8\n6 7\n3 3\n2 6\n9 10\n2 2\n1 5",
"output": "103"
},
{
"input": "4 3\n10 -2 68 35\n4 4\n1 1\n1 3",
"output": "121"
},
{
"input": "3 6\n27 -31 -81\n2 3\n2 3\n1 1\n1 2\n1 2\n2 2",
"output": "27"
},
{
"input": "7 3\n-24 -12 16 -43 -30 31 16\n3 6\n3 4\n1 7",
"output": "0"
},
{
"input": "10 7\n-33 -24 -86 -20 5 -91 38 -12 -90 -67\n7 8\n7 10\n4 7\n1 3\n6 10\n6 6\n3 5",
"output": "26"
},
{
"input": "4 4\n95 35 96 -27\n3 4\n3 3\n4 4\n3 3",
"output": "261"
},
{
"input": "7 7\n-33 26 -25 44 -20 -50 33\n4 6\n4 4\n3 7\n5 7\n1 4\n2 5\n4 6",
"output": "81"
},
{
"input": "5 3\n-35 -39 93 59 -4\n2 2\n2 3\n2 5",
"output": "163"
},
{
"input": "3 7\n0 0 0\n1 2\n1 2\n2 3\n3 3\n1 3\n1 2\n2 3",
"output": "0"
},
{
"input": "8 2\n17 32 30 -6 -39 -15 33 74\n6 6\n8 8",
"output": "74"
},
{
"input": "8 1\n-20 -15 21 -21 1 -12 -7 9\n4 7",
"output": "0"
},
{
"input": "7 9\n-23 -4 -44 -47 -35 47 25\n1 6\n3 5\n4 7\n6 7\n2 4\n2 3\n2 7\n1 2\n5 5",
"output": "72"
},
{
"input": "8 8\n0 6 -25 -15 29 -24 31 23\n2 8\n5 5\n3 3\n2 8\n6 6\n3 6\n3 4\n2 4",
"output": "79"
},
{
"input": "4 3\n-39 -63 9 -16\n1 4\n1 3\n2 4",
"output": "0"
},
{
"input": "9 1\n-3 -13 -13 -19 -4 -11 8 -11 -3\n9 9",
"output": "0"
},
{
"input": "9 6\n25 18 -62 0 33 62 -23 4 -15\n7 9\n2 3\n1 4\n2 6\n1 6\n2 3",
"output": "127"
},
{
"input": "4 5\n-12 39 8 -12\n1 4\n3 4\n1 3\n1 3\n2 3",
"output": "140"
},
{
"input": "3 9\n-9 7 3\n1 2\n1 1\n1 3\n1 2\n2 3\n1 3\n2 2\n1 2\n3 3",
"output": "22"
},
{
"input": "10 7\n0 4 3 3 -2 -2 -4 -2 -3 -2\n5 6\n1 10\n2 10\n7 10\n1 1\n6 7\n3 4",
"output": "6"
},
{
"input": "86 30\n16 -12 11 16 8 14 7 -29 18 30 -32 -10 20 29 -14 -21 23 -19 -15 17 -2 25 -22 2 26 15 -7 -12 -4 -28 21 -4 -2 22 28 -32 9 -20 23 38 -21 21 37 -13 -30 25 31 6 18 29 29 29 27 38 -15 -32 32 -7 -8 -33 -11 24 23 -19 -36 -36 -18 9 -1 32 -34 -26 1 -1 -16 -14 17 -17 15 -24 38 5 -27 -12 8 -38\n60 66\n29 48\n32 51\n38 77\n17 79\n23 74\n39 50\n14 29\n26 76\n9 76\n2 67\n23 48\n17 68\n33 75\n59 78\n46 78\n9 69\n16 83\n18 21\n17 34\n24 61\n15 79\n4 31\n62 63\n46 76\n79 82\n25 39\n5 81\n19 77\n26 71",
"output": "3076"
},
{
"input": "33 17\n11 6 -19 14 23 -23 21 15 29 19 13 -18 -19 20 16 -10 26 -22 3 17 13 -10 19 22 -5 21 12 6 28 -13 -27 25 6\n4 17\n12 16\n9 17\n25 30\n31 32\n4 28\n11 24\n16 19\n3 27\n7 17\n1 16\n15 28\n30 33\n9 31\n14 30\n13 23\n27 27",
"output": "1366"
},
{
"input": "16 44\n32 23 -27 -2 -10 -42 32 -14 -13 4 9 -2 19 35 16 22\n6 12\n8 11\n13 15\n12 12\n3 10\n9 13\n7 15\n2 11\n1 13\n5 6\n9 14\n3 16\n10 13\n3 15\n6 10\n14 16\n4 5\n7 10\n5 14\n1 16\n2 5\n1 6\n9 10\n4 7\n4 12\n2 5\n7 10\n7 9\n2 8\n9 10\n4 10\n7 12\n10 11\n6 6\n15 15\n8 12\n9 10\n3 3\n4 15\n10 12\n7 16\n4 14\n14 16\n5 6",
"output": "777"
},
{
"input": "63 24\n-23 -46 0 33 24 13 39 -6 -4 49 19 -18 -11 -38 0 -3 -33 -17 -4 -44 -22 -12 -16 42 16 -10 7 37 -6 16 -41 -18 -20 51 -49 28 -14 -22 -37 -7 -50 31 -41 -47 18 -8 -39 -29 35 -32 14 -29 44 -29 -19 -25 -47 -8 16 11 20 12 38\n21 61\n35 61\n29 61\n21 34\n12 48\n32 33\n9 27\n4 42\n4 60\n37 61\n19 44\n46 60\n51 53\n31 34\n23 32\n5 29\n43 59\n7 31\n29 48\n15 50\n19 51\n7 28\n17 41\n1 62",
"output": "82"
},
{
"input": "6 51\n45 -33 -17 -48 2 2\n2 5\n1 1\n1 3\n5 5\n4 6\n1 2\n2 3\n3 4\n1 6\n4 6\n3 5\n1 5\n2 2\n2 6\n4 6\n1 5\n1 5\n1 5\n1 6\n6 6\n3 5\n6 6\n1 6\n3 4\n3 3\n2 4\n3 3\n1 4\n2 4\n5 6\n4 5\n2 4\n1 5\n1 2\n4 5\n1 5\n5 6\n2 2\n3 4\n1 3\n1 2\n2 5\n3 6\n4 6\n3 4\n2 4\n1 4\n1 1\n4 6\n3 5\n1 4",
"output": "140"
},
{
"input": "3 5\n2 -1 3\n2 3\n2 3\n2 3\n2 3\n1 2",
"output": "9"
},
{
"input": "4 30\n1 1 1 1\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4",
"output": "120"
}
] | 1,479,921,043
| 2,143
|
Python 3
|
OK
|
TESTS
| 53
| 93
| 0
|
n, m = map(int, input().split())
a = [int(i) for i in input().split()]
ans = 0
for i in range(m):
s, e = map(int, input().split())
t = sum(a[s-1:e])
if t > 0:
ans += t
print(ans)
|
Title: Alyona and flowers
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Little Alyona is celebrating Happy Birthday! Her mother has an array of *n* flowers. Each flower has some mood, the mood of *i*-th flower is *a**i*. The mood can be positive, zero or negative.
Let's define a subarray as a segment of consecutive flowers. The mother suggested some set of subarrays. Alyona wants to choose several of the subarrays suggested by her mother. After that, each of the flowers will add to the girl's happiness its mood multiplied by the number of chosen subarrays the flower is in.
For example, consider the case when the mother has 5 flowers, and their moods are equal to 1,<=<=-<=2,<=1,<=3,<=<=-<=4. Suppose the mother suggested subarrays (1,<=<=-<=2), (3,<=<=-<=4), (1,<=3), (1,<=<=-<=2,<=1,<=3). Then if the girl chooses the third and the fourth subarrays then:
- the first flower adds 1·1<==<=1 to the girl's happiness, because he is in one of chosen subarrays, - the second flower adds (<=-<=2)·1<==<=<=-<=2, because he is in one of chosen subarrays, - the third flower adds 1·2<==<=2, because he is in two of chosen subarrays, - the fourth flower adds 3·2<==<=6, because he is in two of chosen subarrays, - the fifth flower adds (<=-<=4)·0<==<=0, because he is in no chosen subarrays.
Thus, in total 1<=+<=(<=-<=2)<=+<=2<=+<=6<=+<=0<==<=7 is added to the girl's happiness. Alyona wants to choose such subarrays from those suggested by the mother that the value added to her happiness would be as large as possible. Help her do this!
Alyona can choose any number of the subarrays, even 0 or all suggested by her mother.
Input Specification:
The first line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100) — the number of flowers and the number of subarrays suggested by the mother.
The second line contains the flowers moods — *n* integers *a*1,<=*a*2,<=...,<=*a**n* (<=-<=100<=≤<=*a**i*<=≤<=100).
The next *m* lines contain the description of the subarrays suggested by the mother. The *i*-th of these lines contain two integers *l**i* and *r**i* (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=*n*) denoting the subarray *a*[*l**i*],<=*a*[*l**i*<=+<=1],<=...,<=*a*[*r**i*].
Each subarray can encounter more than once.
Output Specification:
Print single integer — the maximum possible value added to the Alyona's happiness.
Demo Input:
['5 4\n1 -2 1 3 -4\n1 2\n4 5\n3 4\n1 4\n', '4 3\n1 2 3 4\n1 3\n2 4\n1 1\n', '2 2\n-1 -2\n1 1\n1 2\n']
Demo Output:
['7\n', '16\n', '0\n']
Note:
The first example is the situation described in the statements.
In the second example Alyona should choose all subarrays.
The third example has answer 0 because Alyona can choose none of the subarrays.
|
```python
n, m = map(int, input().split())
a = [int(i) for i in input().split()]
ans = 0
for i in range(m):
s, e = map(int, input().split())
t = sum(a[s-1:e])
if t > 0:
ans += t
print(ans)
```
| 3
|
|
469
|
A
|
I Wanna Be the Guy
|
PROGRAMMING
| 800
|
[
"greedy",
"implementation"
] | null | null |
There is a game called "I Wanna Be the Guy", consisting of *n* levels. Little X and his friend Little Y are addicted to the game. Each of them wants to pass the whole game.
Little X can pass only *p* levels of the game. And Little Y can pass only *q* levels of the game. You are given the indices of levels Little X can pass and the indices of levels Little Y can pass. Will Little X and Little Y pass the whole game, if they cooperate each other?
|
The first line contains a single integer *n* (1<=≤<=<=*n*<=≤<=100).
The next line contains an integer *p* (0<=≤<=*p*<=≤<=*n*) at first, then follows *p* distinct integers *a*1,<=*a*2,<=...,<=*a**p* (1<=≤<=*a**i*<=≤<=*n*). These integers denote the indices of levels Little X can pass. The next line contains the levels Little Y can pass in the same format. It's assumed that levels are numbered from 1 to *n*.
|
If they can pass all the levels, print "I become the guy.". If it's impossible, print "Oh, my keyboard!" (without the quotes).
|
[
"4\n3 1 2 3\n2 2 4\n",
"4\n3 1 2 3\n2 2 3\n"
] |
[
"I become the guy.\n",
"Oh, my keyboard!\n"
] |
In the first sample, Little X can pass levels [1 2 3], and Little Y can pass level [2 4], so they can pass all the levels both.
In the second sample, no one can pass level 4.
| 500
|
[
{
"input": "4\n3 1 2 3\n2 2 4",
"output": "I become the guy."
},
{
"input": "4\n3 1 2 3\n2 2 3",
"output": "Oh, my keyboard!"
},
{
"input": "10\n5 8 6 1 5 4\n6 1 3 2 9 4 6",
"output": "Oh, my keyboard!"
},
{
"input": "10\n8 8 10 7 3 1 4 2 6\n8 9 5 10 3 7 2 4 8",
"output": "I become the guy."
},
{
"input": "10\n9 6 1 8 3 9 7 5 10 4\n7 1 3 2 7 6 9 5",
"output": "I become the guy."
},
{
"input": "100\n75 83 69 73 30 76 37 48 14 41 42 21 35 15 50 61 86 85 46 3 31 13 78 10 2 44 80 95 56 82 38 75 77 4 99 9 84 53 12 11 36 74 39 72 43 89 57 28 54 1 51 66 27 22 93 59 68 88 91 29 7 20 63 8 52 23 64 58 100 79 65 49 96 71 33 45\n83 50 89 73 34 28 99 67 77 44 19 60 68 42 8 27 94 85 14 39 17 78 24 21 29 63 92 32 86 22 71 81 31 82 65 48 80 59 98 3 70 55 37 12 15 72 47 9 11 33 16 7 91 74 13 64 38 84 6 61 93 90 45 69 1 54 52 100 57 10 35 49 53 75 76 43 62 5 4 18 36 96 79 23",
"output": "Oh, my keyboard!"
},
{
"input": "1\n1 1\n1 1",
"output": "I become the guy."
},
{
"input": "1\n0\n1 1",
"output": "I become the guy."
},
{
"input": "1\n1 1\n0",
"output": "I become the guy."
},
{
"input": "1\n0\n0",
"output": "Oh, my keyboard!"
},
{
"input": "100\n0\n0",
"output": "Oh, my keyboard!"
},
{
"input": "100\n44 71 70 55 49 43 16 53 7 95 58 56 38 76 67 94 20 73 29 90 25 30 8 84 5 14 77 52 99 91 66 24 39 37 22 44 78 12 63 59 32 51 15 82 34\n56 17 10 96 80 69 13 81 31 57 4 48 68 89 50 45 3 33 36 2 72 100 64 87 21 75 54 74 92 65 23 40 97 61 18 28 98 93 35 83 9 79 46 27 41 62 88 6 47 60 86 26 42 85 19 1 11",
"output": "I become the guy."
},
{
"input": "100\n78 63 59 39 11 58 4 2 80 69 22 95 90 26 65 16 30 100 66 99 67 79 54 12 23 28 45 56 70 74 60 82 73 91 68 43 92 75 51 21 17 97 86 44 62 47 85 78 72 64 50 81 71 5 57 13 31 76 87 9 49 96 25 42 19 35 88 53 7 83 38 27 29 41 89 93 10 84 18\n78 1 16 53 72 99 9 36 59 49 75 77 94 79 35 4 92 42 82 83 76 97 20 68 55 47 65 50 14 30 13 67 98 8 7 40 64 32 87 10 33 90 93 18 26 71 17 46 24 28 89 58 37 91 39 34 25 48 84 31 96 95 80 88 3 51 62 52 85 61 12 15 27 6 45 38 2 22 60",
"output": "I become the guy."
},
{
"input": "2\n2 2 1\n0",
"output": "I become the guy."
},
{
"input": "2\n1 2\n2 1 2",
"output": "I become the guy."
},
{
"input": "80\n57 40 1 47 36 69 24 76 5 72 26 4 29 62 6 60 3 70 8 64 18 37 16 14 13 21 25 7 66 68 44 74 61 39 38 33 15 63 34 65 10 23 56 51 80 58 49 75 71 12 50 57 2 30 54 27 17 52\n61 22 67 15 28 41 26 1 80 44 3 38 18 37 79 57 11 7 65 34 9 36 40 5 48 29 64 31 51 63 27 4 50 13 24 32 58 23 19 46 8 73 39 2 21 56 77 53 59 78 43 12 55 45 30 74 33 68 42 47 17 54",
"output": "Oh, my keyboard!"
},
{
"input": "100\n78 87 96 18 73 32 38 44 29 64 40 70 47 91 60 69 24 1 5 34 92 94 99 22 83 65 14 68 15 20 74 31 39 100 42 4 97 46 25 6 8 56 79 9 71 35 54 19 59 93 58 62 10 85 57 45 33 7 86 81 30 98 26 61 84 41 23 28 88 36 66 51 80 53 37 63 43 95 75\n76 81 53 15 26 37 31 62 24 87 41 39 75 86 46 76 34 4 51 5 45 65 67 48 68 23 71 27 94 47 16 17 9 96 84 89 88 100 18 52 69 42 6 92 7 64 49 12 98 28 21 99 25 55 44 40 82 19 36 30 77 90 14 43 50 3 13 95 78 35 20 54 58 11 2 1 33",
"output": "Oh, my keyboard!"
},
{
"input": "100\n77 55 26 98 13 91 78 60 23 76 12 11 36 62 84 80 18 1 68 92 81 67 19 4 2 10 17 77 96 63 15 69 46 97 82 42 83 59 50 72 14 40 89 9 52 29 56 31 74 39 45 85 22 99 44 65 95 6 90 38 54 32 49 34 3 70 75 33 94 53 21 71 5 66 73 41 100 24\n69 76 93 5 24 57 59 6 81 4 30 12 44 15 67 45 73 3 16 8 47 95 20 64 68 85 54 17 90 86 66 58 13 37 42 51 35 32 1 28 43 80 7 14 48 19 62 55 2 91 25 49 27 26 38 79 89 99 22 60 75 53 88 82 34 21 87 71 72 61",
"output": "I become the guy."
},
{
"input": "100\n74 96 32 63 12 69 72 99 15 22 1 41 79 77 71 31 20 28 75 73 85 37 38 59 42 100 86 89 55 87 68 4 24 57 52 8 92 27 56 98 95 58 34 9 45 14 11 36 66 76 61 19 25 23 78 49 90 26 80 43 70 13 65 10 5 74 81 21 44 60 97 3 47 93 6\n64 68 21 27 16 91 23 22 33 12 71 88 90 50 62 43 28 29 57 59 5 74 10 95 35 1 67 93 36 32 86 40 6 64 78 46 89 15 84 53 18 30 17 85 2 3 47 92 25 48 76 51 20 82 52 83 99 63 80 11 94 54 39 7 58",
"output": "I become the guy."
},
{
"input": "100\n75 11 98 44 47 88 94 23 78 59 70 2 43 39 34 63 71 19 42 61 30 74 14 77 97 53 92 60 67 36 37 13 6 86 62 46 41 3 25 93 7 12 27 48 55 49 31 35 51 10 57 54 95 82 28 90 73 26 17 50 81 56 20 87 40 85 72 64 99 29 91 5 80 18 24 52\n72 93 59 5 88 47 9 58 48 1 43 50 100 87 61 91 45 98 99 56 25 84 53 73 78 54 63 38 37 2 77 95 89 85 4 90 10 33 12 22 74 32 34 70 71 52 96 57 15 66 31 27 75 8 21 39 62 44 67 94 81 68 14 19 36 28 11 79 16 65 46 83 76",
"output": "Oh, my keyboard!"
},
{
"input": "3\n1 2\n2 2 3",
"output": "Oh, my keyboard!"
},
{
"input": "4\n1 2\n3 1 3 4",
"output": "I become the guy."
},
{
"input": "6\n2 1 2\n3 4 5 6",
"output": "Oh, my keyboard!"
}
] | 1,694,079,944
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 29
| 46
| 0
|
# Input the total number of levels
n = int(input())
# Input levels Little X can pass
p, *x_levels = map(int, input().split())
# Input levels Little Y can pass
q, *y_levels = map(int, input().split())
# Create a set of levels that Little X can pass
x_set = set(x_levels)
# Create a set of levels that Little Y can pass
y_set = set(y_levels)
# Combine the sets of levels they can pass
combined_set = x_set.union(y_set)
# Check if they can pass all levels from 1 to n
if len(combined_set) == n:
print("I become the guy.")
else:
print("Oh, my keyboard!")
|
Title: I Wanna Be the Guy
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
There is a game called "I Wanna Be the Guy", consisting of *n* levels. Little X and his friend Little Y are addicted to the game. Each of them wants to pass the whole game.
Little X can pass only *p* levels of the game. And Little Y can pass only *q* levels of the game. You are given the indices of levels Little X can pass and the indices of levels Little Y can pass. Will Little X and Little Y pass the whole game, if they cooperate each other?
Input Specification:
The first line contains a single integer *n* (1<=≤<=<=*n*<=≤<=100).
The next line contains an integer *p* (0<=≤<=*p*<=≤<=*n*) at first, then follows *p* distinct integers *a*1,<=*a*2,<=...,<=*a**p* (1<=≤<=*a**i*<=≤<=*n*). These integers denote the indices of levels Little X can pass. The next line contains the levels Little Y can pass in the same format. It's assumed that levels are numbered from 1 to *n*.
Output Specification:
If they can pass all the levels, print "I become the guy.". If it's impossible, print "Oh, my keyboard!" (without the quotes).
Demo Input:
['4\n3 1 2 3\n2 2 4\n', '4\n3 1 2 3\n2 2 3\n']
Demo Output:
['I become the guy.\n', 'Oh, my keyboard!\n']
Note:
In the first sample, Little X can pass levels [1 2 3], and Little Y can pass level [2 4], so they can pass all the levels both.
In the second sample, no one can pass level 4.
|
```python
# Input the total number of levels
n = int(input())
# Input levels Little X can pass
p, *x_levels = map(int, input().split())
# Input levels Little Y can pass
q, *y_levels = map(int, input().split())
# Create a set of levels that Little X can pass
x_set = set(x_levels)
# Create a set of levels that Little Y can pass
y_set = set(y_levels)
# Combine the sets of levels they can pass
combined_set = x_set.union(y_set)
# Check if they can pass all levels from 1 to n
if len(combined_set) == n:
print("I become the guy.")
else:
print("Oh, my keyboard!")
```
| 3
|
|
58
|
A
|
Chat room
|
PROGRAMMING
| 1,000
|
[
"greedy",
"strings"
] |
A. Chat room
|
1
|
256
|
Vasya has recently learned to type and log on to the Internet. He immediately entered a chat room and decided to say hello to everybody. Vasya typed the word *s*. It is considered that Vasya managed to say hello if several letters can be deleted from the typed word so that it resulted in the word "hello". For example, if Vasya types the word "ahhellllloou", it will be considered that he said hello, and if he types "hlelo", it will be considered that Vasya got misunderstood and he didn't manage to say hello. Determine whether Vasya managed to say hello by the given word *s*.
|
The first and only line contains the word *s*, which Vasya typed. This word consisits of small Latin letters, its length is no less that 1 and no more than 100 letters.
|
If Vasya managed to say hello, print "YES", otherwise print "NO".
|
[
"ahhellllloou\n",
"hlelo\n"
] |
[
"YES\n",
"NO\n"
] |
none
| 500
|
[
{
"input": "ahhellllloou",
"output": "YES"
},
{
"input": "hlelo",
"output": "NO"
},
{
"input": "helhcludoo",
"output": "YES"
},
{
"input": "hehwelloho",
"output": "YES"
},
{
"input": "pnnepelqomhhheollvlo",
"output": "YES"
},
{
"input": "tymbzjyqhymedasloqbq",
"output": "NO"
},
{
"input": "yehluhlkwo",
"output": "NO"
},
{
"input": "hatlevhhalrohairnolsvocafgueelrqmlqlleello",
"output": "YES"
},
{
"input": "hhhtehdbllnhwmbyhvelqqyoulretpbfokflhlhreeflxeftelziclrwllrpflflbdtotvlqgoaoqldlroovbfsq",
"output": "YES"
},
{
"input": "rzlvihhghnelqtwlexmvdjjrliqllolhyewgozkuovaiezgcilelqapuoeglnwmnlftxxiigzczlouooi",
"output": "YES"
},
{
"input": "pfhhwctyqdlkrwhebfqfelhyebwllhemtrmeblgrynmvyhioesqklclocxmlffuormljszllpoo",
"output": "YES"
},
{
"input": "lqllcolohwflhfhlnaow",
"output": "NO"
},
{
"input": "heheeellollvoo",
"output": "YES"
},
{
"input": "hellooo",
"output": "YES"
},
{
"input": "o",
"output": "NO"
},
{
"input": "hhqhzeclohlehljlhtesllylrolmomvuhcxsobtsckogdv",
"output": "YES"
},
{
"input": "yoegfuzhqsihygnhpnukluutocvvwuldiighpogsifealtgkfzqbwtmgghmythcxflebrkctlldlkzlagovwlstsghbouk",
"output": "YES"
},
{
"input": "uatqtgbvrnywfacwursctpagasnhydvmlinrcnqrry",
"output": "NO"
},
{
"input": "tndtbldbllnrwmbyhvqaqqyoudrstpbfokfoclnraefuxtftmgzicorwisrpfnfpbdtatvwqgyalqtdtrjqvbfsq",
"output": "NO"
},
{
"input": "rzlvirhgemelnzdawzpaoqtxmqucnahvqnwldklrmjiiyageraijfivigvozgwngiulttxxgzczptusoi",
"output": "YES"
},
{
"input": "kgyelmchocojsnaqdsyeqgnllytbqietpdlgknwwumqkxrexgdcnwoldicwzwofpmuesjuxzrasscvyuqwspm",
"output": "YES"
},
{
"input": "pnyvrcotjvgynbeldnxieghfltmexttuxzyac",
"output": "NO"
},
{
"input": "dtwhbqoumejligbenxvzhjlhosqojetcqsynlzyhfaevbdpekgbtjrbhlltbceobcok",
"output": "YES"
},
{
"input": "crrfpfftjwhhikwzeedrlwzblckkteseofjuxjrktcjfsylmlsvogvrcxbxtffujqshslemnixoeezivksouefeqlhhokwbqjz",
"output": "YES"
},
{
"input": "jhfbndhyzdvhbvhmhmefqllujdflwdpjbehedlsqfdsqlyelwjtyloxwsvasrbqosblzbowlqjmyeilcvotdlaouxhdpoeloaovb",
"output": "YES"
},
{
"input": "hwlghueoemiqtjhhpashjsouyegdlvoyzeunlroypoprnhlyiwiuxrghekaylndhrhllllwhbebezoglydcvykllotrlaqtvmlla",
"output": "YES"
},
{
"input": "wshiaunnqnqxodholbipwhhjmyeblhgpeleblklpzwhdunmpqkbuzloetmwwxmeltkrcomulxauzlwmlklldjodozxryghsnwgcz",
"output": "YES"
},
{
"input": "shvksednttggehroewuiptvvxtrzgidravtnjwuqrlnnkxbplctzkckinpkgjopjfoxdbojtcvsuvablcbkrzajrlhgobkcxeqti",
"output": "YES"
},
{
"input": "hyyhddqhxhekehkwfhlnlsihzefwchzerevcjtokefplholrbvxlltdlafjxrfhleglrvlolojoqaolagtbeyogxlbgfolllslli",
"output": "YES"
},
{
"input": "iaagrdhhelxpdegueiulflquvlzidoprzkehthkldaytrjwhyhprwjxlltinxvuilxohqgjqcvkkdcuoliekcnlilwgqlnlzouoo",
"output": "YES"
},
{
"input": "wfluaeseldgxyvxpwuhkptdmlflnlhktwxiabsvkolsquymrmhzczzoybvlilhmvsuunggvgxzgyyffk",
"output": "NO"
},
{
"input": "loee",
"output": "NO"
},
{
"input": "izdipwylefqmjbuoznfglgcfvedeouflkeehxbasaqmiooppfsqlhprospqgxvzrcpwlfdddngoqvpwvggsnvvxhmjoslwjudjlo",
"output": "NO"
},
{
"input": "pplynflbjlseflaegzqpdxswgunhnlglqhycrbcwdfhclmcrwekkzsoosmfblljeenwfjyifcvxihhhbyhmhlkvtskeglaovjnsi",
"output": "YES"
},
{
"input": "xqjqmenkodmlhzyzmmvofdngktygbbxbzpluzcohohmalkoeuwfikblltaaigv",
"output": "NO"
},
{
"input": "hello",
"output": "YES"
},
{
"input": "oohell",
"output": "NO"
},
{
"input": "hell",
"output": "NO"
},
{
"input": "eloellohoelo",
"output": "NO"
},
{
"input": "helllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllo",
"output": "YES"
}
] | 1,652,422,159
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 40
| 62
| 0
|
hello = ["h", "e", "l", "l", "o"]
test = input()
index = -1
for letter in hello:
try:
index = test.index(letter, index + 1)
except ValueError:
print("NO")
exit(0)
print("YES")
|
Title: Chat room
Time Limit: 1 seconds
Memory Limit: 256 megabytes
Problem Description:
Vasya has recently learned to type and log on to the Internet. He immediately entered a chat room and decided to say hello to everybody. Vasya typed the word *s*. It is considered that Vasya managed to say hello if several letters can be deleted from the typed word so that it resulted in the word "hello". For example, if Vasya types the word "ahhellllloou", it will be considered that he said hello, and if he types "hlelo", it will be considered that Vasya got misunderstood and he didn't manage to say hello. Determine whether Vasya managed to say hello by the given word *s*.
Input Specification:
The first and only line contains the word *s*, which Vasya typed. This word consisits of small Latin letters, its length is no less that 1 and no more than 100 letters.
Output Specification:
If Vasya managed to say hello, print "YES", otherwise print "NO".
Demo Input:
['ahhellllloou\n', 'hlelo\n']
Demo Output:
['YES\n', 'NO\n']
Note:
none
|
```python
hello = ["h", "e", "l", "l", "o"]
test = input()
index = -1
for letter in hello:
try:
index = test.index(letter, index + 1)
except ValueError:
print("NO")
exit(0)
print("YES")
```
| 3.969
|
146
|
A
|
Lucky Ticket
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Petya loves lucky numbers very much. Everybody knows that lucky numbers are positive integers whose decimal record contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
Petya loves tickets very much. As we know, each ticket has a number that is a positive integer. Its length equals *n* (*n* is always even). Petya calls a ticket lucky if the ticket's number is a lucky number and the sum of digits in the first half (the sum of the first *n*<=/<=2 digits) equals the sum of digits in the second half (the sum of the last *n*<=/<=2 digits). Check if the given ticket is lucky.
|
The first line contains an even integer *n* (2<=≤<=*n*<=≤<=50) — the length of the ticket number that needs to be checked. The second line contains an integer whose length equals exactly *n* — the ticket number. The number may contain leading zeros.
|
On the first line print "YES" if the given ticket number is lucky. Otherwise, print "NO" (without the quotes).
|
[
"2\n47\n",
"4\n4738\n",
"4\n4774\n"
] |
[
"NO\n",
"NO\n",
"YES\n"
] |
In the first sample the sum of digits in the first half does not equal the sum of digits in the second half (4 ≠ 7).
In the second sample the ticket number is not the lucky number.
| 500
|
[
{
"input": "2\n47",
"output": "NO"
},
{
"input": "4\n4738",
"output": "NO"
},
{
"input": "4\n4774",
"output": "YES"
},
{
"input": "4\n4570",
"output": "NO"
},
{
"input": "6\n477477",
"output": "YES"
},
{
"input": "6\n777777",
"output": "YES"
},
{
"input": "20\n44444444444444444444",
"output": "YES"
},
{
"input": "2\n44",
"output": "YES"
},
{
"input": "10\n4745474547",
"output": "NO"
},
{
"input": "14\n77770004444444",
"output": "NO"
},
{
"input": "10\n4747777744",
"output": "YES"
},
{
"input": "10\n1234567890",
"output": "NO"
},
{
"input": "50\n44444444444444444444444444444444444444444444444444",
"output": "YES"
},
{
"input": "50\n44444444444444444444444444444444444444444444444447",
"output": "NO"
},
{
"input": "50\n74444444444444444444444444444444444444444444444444",
"output": "NO"
},
{
"input": "50\n07777777777777777777777777777777777777777777777770",
"output": "NO"
},
{
"input": "50\n77777777777777777777777777777777777777777777777777",
"output": "YES"
},
{
"input": "50\n44747747774474747747747447777447774747447477444474",
"output": "YES"
},
{
"input": "48\n447474444777444474747747744774447444747474774474",
"output": "YES"
},
{
"input": "32\n74474474777444474444747774474774",
"output": "YES"
},
{
"input": "40\n4747777444447747777447447747447474774777",
"output": "YES"
},
{
"input": "10\n4477477444",
"output": "YES"
},
{
"input": "18\n447747474447744747",
"output": "YES"
},
{
"input": "26\n44747744444774744774474447",
"output": "YES"
},
{
"input": "50\n44707747774474747747747447777447774747447477444474",
"output": "NO"
},
{
"input": "40\n4747777444447737777447447747447474774777",
"output": "NO"
},
{
"input": "36\n764477744747444444447747747474744444",
"output": "NO"
},
{
"input": "22\n4477407474777477744447",
"output": "NO"
},
{
"input": "32\n74274474777444474444747774474774",
"output": "NO"
},
{
"input": "16\n4744447974444747",
"output": "NO"
},
{
"input": "2\n11",
"output": "NO"
},
{
"input": "2\n22",
"output": "NO"
},
{
"input": "2\n33",
"output": "NO"
},
{
"input": "2\n74",
"output": "NO"
},
{
"input": "2\n55",
"output": "NO"
},
{
"input": "2\n66",
"output": "NO"
},
{
"input": "2\n77",
"output": "YES"
},
{
"input": "2\n88",
"output": "NO"
},
{
"input": "2\n99",
"output": "NO"
},
{
"input": "4\n4004",
"output": "NO"
},
{
"input": "14\n00077774444444",
"output": "NO"
},
{
"input": "6\n004444",
"output": "NO"
},
{
"input": "4\n0044",
"output": "NO"
},
{
"input": "14\n77771114444444",
"output": "NO"
},
{
"input": "14\n44444447777000",
"output": "NO"
},
{
"input": "6\n004774",
"output": "NO"
}
] | 1,694,067,982
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 46
| 92
| 0
|
n = int(input())
tnum = input()
counter = 0
for i in range(len(tnum)):
if tnum[i] == '7' or tnum[i] == '4':
continue
else:
counter +=1
if counter == 0:
s1 = 0
s2 = 0
for i in range(n//2):
s1 += int(tnum[i])
for i in range(n//2,n):
s2 += int(tnum[i])
print('YES' if s1 == s2 else 'NO')
else:
print('NO')
|
Title: Lucky Ticket
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Petya loves lucky numbers very much. Everybody knows that lucky numbers are positive integers whose decimal record contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
Petya loves tickets very much. As we know, each ticket has a number that is a positive integer. Its length equals *n* (*n* is always even). Petya calls a ticket lucky if the ticket's number is a lucky number and the sum of digits in the first half (the sum of the first *n*<=/<=2 digits) equals the sum of digits in the second half (the sum of the last *n*<=/<=2 digits). Check if the given ticket is lucky.
Input Specification:
The first line contains an even integer *n* (2<=≤<=*n*<=≤<=50) — the length of the ticket number that needs to be checked. The second line contains an integer whose length equals exactly *n* — the ticket number. The number may contain leading zeros.
Output Specification:
On the first line print "YES" if the given ticket number is lucky. Otherwise, print "NO" (without the quotes).
Demo Input:
['2\n47\n', '4\n4738\n', '4\n4774\n']
Demo Output:
['NO\n', 'NO\n', 'YES\n']
Note:
In the first sample the sum of digits in the first half does not equal the sum of digits in the second half (4 ≠ 7).
In the second sample the ticket number is not the lucky number.
|
```python
n = int(input())
tnum = input()
counter = 0
for i in range(len(tnum)):
if tnum[i] == '7' or tnum[i] == '4':
continue
else:
counter +=1
if counter == 0:
s1 = 0
s2 = 0
for i in range(n//2):
s1 += int(tnum[i])
for i in range(n//2,n):
s2 += int(tnum[i])
print('YES' if s1 == s2 else 'NO')
else:
print('NO')
```
| 3
|
|
439
|
B
|
Devu, the Dumb Guy
|
PROGRAMMING
| 1,200
|
[
"implementation",
"sortings"
] | null | null |
Devu is a dumb guy, his learning curve is very slow. You are supposed to teach him *n* subjects, the *i**th* subject has *c**i* chapters. When you teach him, you are supposed to teach all the chapters of a subject continuously.
Let us say that his initial per chapter learning power of a subject is *x* hours. In other words he can learn a chapter of a particular subject in *x* hours.
Well Devu is not complete dumb, there is a good thing about him too. If you teach him a subject, then time required to teach any chapter of the next subject will require exactly 1 hour less than previously required (see the examples to understand it more clearly). Note that his per chapter learning power can not be less than 1 hour.
You can teach him the *n* subjects in any possible order. Find out minimum amount of time (in hours) Devu will take to understand all the subjects and you will be free to do some enjoying task rather than teaching a dumb guy.
Please be careful that answer might not fit in 32 bit data type.
|
The first line will contain two space separated integers *n*, *x* (1<=≤<=*n*,<=*x*<=≤<=105). The next line will contain *n* space separated integers: *c*1,<=*c*2,<=...,<=*c**n* (1<=≤<=*c**i*<=≤<=105).
|
Output a single integer representing the answer to the problem.
|
[
"2 3\n4 1\n",
"4 2\n5 1 2 1\n",
"3 3\n1 1 1\n"
] |
[
"11\n",
"10\n",
"6\n"
] |
Look at the first example. Consider the order of subjects: 1, 2. When you teach Devu the first subject, it will take him 3 hours per chapter, so it will take 12 hours to teach first subject. After teaching first subject, his per chapter learning time will be 2 hours. Now teaching him second subject will take 2 × 1 = 2 hours. Hence you will need to spend 12 + 2 = 14 hours.
Consider the order of subjects: 2, 1. When you teach Devu the second subject, then it will take him 3 hours per chapter, so it will take 3 × 1 = 3 hours to teach the second subject. After teaching the second subject, his per chapter learning time will be 2 hours. Now teaching him the first subject will take 2 × 4 = 8 hours. Hence you will need to spend 11 hours.
So overall, minimum of both the cases is 11 hours.
Look at the third example. The order in this example doesn't matter. When you teach Devu the first subject, it will take him 3 hours per chapter. When you teach Devu the second subject, it will take him 2 hours per chapter. When you teach Devu the third subject, it will take him 1 hours per chapter. In total it takes 6 hours.
| 1,000
|
[
{
"input": "2 3\n4 1",
"output": "11"
},
{
"input": "4 2\n5 1 2 1",
"output": "10"
},
{
"input": "3 3\n1 1 1",
"output": "6"
},
{
"input": "20 4\n1 1 3 5 5 1 3 4 2 5 2 4 3 1 3 3 3 3 4 3",
"output": "65"
},
{
"input": "20 10\n6 6 1 2 6 4 5 3 6 5 4 5 6 5 4 6 6 2 3 3",
"output": "196"
},
{
"input": "1 1\n9273",
"output": "9273"
},
{
"input": "1 1\n1",
"output": "1"
},
{
"input": "1 2\n1",
"output": "2"
},
{
"input": "1 2\n2",
"output": "4"
},
{
"input": "2 1\n1 2",
"output": "3"
}
] | 1,524,197,719
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 31
| 187
| 14,438,400
|
n, x = map(int, input().split())
c = sorted(map(int, input().split()))
p = x
result = 0
for ci in c:
result += p * ci
if p > 1:
p -= 1
print(result)
|
Title: Devu, the Dumb Guy
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Devu is a dumb guy, his learning curve is very slow. You are supposed to teach him *n* subjects, the *i**th* subject has *c**i* chapters. When you teach him, you are supposed to teach all the chapters of a subject continuously.
Let us say that his initial per chapter learning power of a subject is *x* hours. In other words he can learn a chapter of a particular subject in *x* hours.
Well Devu is not complete dumb, there is a good thing about him too. If you teach him a subject, then time required to teach any chapter of the next subject will require exactly 1 hour less than previously required (see the examples to understand it more clearly). Note that his per chapter learning power can not be less than 1 hour.
You can teach him the *n* subjects in any possible order. Find out minimum amount of time (in hours) Devu will take to understand all the subjects and you will be free to do some enjoying task rather than teaching a dumb guy.
Please be careful that answer might not fit in 32 bit data type.
Input Specification:
The first line will contain two space separated integers *n*, *x* (1<=≤<=*n*,<=*x*<=≤<=105). The next line will contain *n* space separated integers: *c*1,<=*c*2,<=...,<=*c**n* (1<=≤<=*c**i*<=≤<=105).
Output Specification:
Output a single integer representing the answer to the problem.
Demo Input:
['2 3\n4 1\n', '4 2\n5 1 2 1\n', '3 3\n1 1 1\n']
Demo Output:
['11\n', '10\n', '6\n']
Note:
Look at the first example. Consider the order of subjects: 1, 2. When you teach Devu the first subject, it will take him 3 hours per chapter, so it will take 12 hours to teach first subject. After teaching first subject, his per chapter learning time will be 2 hours. Now teaching him second subject will take 2 × 1 = 2 hours. Hence you will need to spend 12 + 2 = 14 hours.
Consider the order of subjects: 2, 1. When you teach Devu the second subject, then it will take him 3 hours per chapter, so it will take 3 × 1 = 3 hours to teach the second subject. After teaching the second subject, his per chapter learning time will be 2 hours. Now teaching him the first subject will take 2 × 4 = 8 hours. Hence you will need to spend 11 hours.
So overall, minimum of both the cases is 11 hours.
Look at the third example. The order in this example doesn't matter. When you teach Devu the first subject, it will take him 3 hours per chapter. When you teach Devu the second subject, it will take him 2 hours per chapter. When you teach Devu the third subject, it will take him 1 hours per chapter. In total it takes 6 hours.
|
```python
n, x = map(int, input().split())
c = sorted(map(int, input().split()))
p = x
result = 0
for ci in c:
result += p * ci
if p > 1:
p -= 1
print(result)
```
| 3
|
|
554
|
A
|
Kyoya and Photobooks
|
PROGRAMMING
| 900
|
[
"brute force",
"math",
"strings"
] | null | null |
Kyoya Ootori is selling photobooks of the Ouran High School Host Club. He has 26 photos, labeled "a" to "z", and he has compiled them into a photo booklet with some photos in some order (possibly with some photos being duplicated). A photo booklet can be described as a string of lowercase letters, consisting of the photos in the booklet in order. He now wants to sell some "special edition" photobooks, each with one extra photo inserted anywhere in the book. He wants to make as many distinct photobooks as possible, so he can make more money. He asks Haruhi, how many distinct photobooks can he make by inserting one extra photo into the photobook he already has?
Please help Haruhi solve this problem.
|
The first line of input will be a single string *s* (1<=≤<=|*s*|<=≤<=20). String *s* consists only of lowercase English letters.
|
Output a single integer equal to the number of distinct photobooks Kyoya Ootori can make.
|
[
"a\n",
"hi\n"
] |
[
"51\n",
"76\n"
] |
In the first case, we can make 'ab','ac',...,'az','ba','ca',...,'za', and 'aa', producing a total of 51 distinct photo booklets.
| 250
|
[
{
"input": "a",
"output": "51"
},
{
"input": "hi",
"output": "76"
},
{
"input": "y",
"output": "51"
},
{
"input": "kgan",
"output": "126"
},
{
"input": "zoabkyuvus",
"output": "276"
},
{
"input": "spyemhyznjieyhhbk",
"output": "451"
},
{
"input": "xulsyfkuizjauadjjopu",
"output": "526"
},
{
"input": "e",
"output": "51"
},
{
"input": "zv",
"output": "76"
},
{
"input": "jgv",
"output": "101"
},
{
"input": "zsfo",
"output": "126"
},
{
"input": "jselr",
"output": "151"
},
{
"input": "dwemig",
"output": "176"
},
{
"input": "mddoxsf",
"output": "201"
},
{
"input": "jgirkrmi",
"output": "226"
},
{
"input": "spkxurcum",
"output": "251"
},
{
"input": "fykkiubdkt",
"output": "276"
},
{
"input": "fznbcxsxygs",
"output": "301"
},
{
"input": "qcrvrdqcbtou",
"output": "326"
},
{
"input": "qktrbjzrqgmlr",
"output": "351"
},
{
"input": "foamodbvptlxxg",
"output": "376"
},
{
"input": "ydzpjhsidipricw",
"output": "401"
},
{
"input": "lpfpndmjfvqejdgf",
"output": "426"
},
{
"input": "ofkvparuvjtggnmab",
"output": "451"
},
{
"input": "xxncfutrtxcwdzwbgs",
"output": "476"
},
{
"input": "zovhffccflkgqncsdte",
"output": "501"
},
{
"input": "cskgsxywlvfeicoueglr",
"output": "526"
},
{
"input": "gggggggggggggggggggg",
"output": "526"
},
{
"input": "qdqdddqddqqddqddqdqd",
"output": "526"
},
{
"input": "takttttaakaaktakttkt",
"output": "526"
},
{
"input": "coccoooogogcgocccmcg",
"output": "526"
},
{
"input": "kskkskkkssksssk",
"output": "401"
},
{
"input": "lllllllllllllll",
"output": "401"
}
] | 1,606,794,189
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 33
| 139
| 0
|
s=input()
print(26*(len(s)+1)-len(s))
|
Title: Kyoya and Photobooks
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Kyoya Ootori is selling photobooks of the Ouran High School Host Club. He has 26 photos, labeled "a" to "z", and he has compiled them into a photo booklet with some photos in some order (possibly with some photos being duplicated). A photo booklet can be described as a string of lowercase letters, consisting of the photos in the booklet in order. He now wants to sell some "special edition" photobooks, each with one extra photo inserted anywhere in the book. He wants to make as many distinct photobooks as possible, so he can make more money. He asks Haruhi, how many distinct photobooks can he make by inserting one extra photo into the photobook he already has?
Please help Haruhi solve this problem.
Input Specification:
The first line of input will be a single string *s* (1<=≤<=|*s*|<=≤<=20). String *s* consists only of lowercase English letters.
Output Specification:
Output a single integer equal to the number of distinct photobooks Kyoya Ootori can make.
Demo Input:
['a\n', 'hi\n']
Demo Output:
['51\n', '76\n']
Note:
In the first case, we can make 'ab','ac',...,'az','ba','ca',...,'za', and 'aa', producing a total of 51 distinct photo booklets.
|
```python
s=input()
print(26*(len(s)+1)-len(s))
```
| 3
|
|
400
|
A
|
Inna and Choose Options
|
PROGRAMMING
| 1,000
|
[
"implementation"
] | null | null |
There always is something to choose from! And now, instead of "Noughts and Crosses", Inna choose a very unusual upgrade of this game. The rules of the game are given below:
There is one person playing the game. Before the beginning of the game he puts 12 cards in a row on the table. Each card contains a character: "X" or "O". Then the player chooses two positive integers *a* and *b* (*a*·*b*<==<=12), after that he makes a table of size *a*<=×<=*b* from the cards he put on the table as follows: the first *b* cards form the first row of the table, the second *b* cards form the second row of the table and so on, the last *b* cards form the last (number *a*) row of the table. The player wins if some column of the table contain characters "X" on all cards. Otherwise, the player loses.
Inna has already put 12 cards on the table in a row. But unfortunately, she doesn't know what numbers *a* and *b* to choose. Help her win the game: print to her all the possible ways of numbers *a*,<=*b* that she can choose and win.
|
The first line of the input contains integer *t* (1<=≤<=*t*<=≤<=100). This value shows the number of sets of test data in the input. Next follows the description of each of the *t* tests on a separate line.
The description of each test is a string consisting of 12 characters, each character is either "X", or "O". The *i*-th character of the string shows the character that is written on the *i*-th card from the start.
|
For each test, print the answer to the test on a single line. The first number in the line must represent the number of distinct ways to choose the pair *a*,<=*b*. Next, print on this line the pairs in the format *a*x*b*. Print the pairs in the order of increasing first parameter (*a*). Separate the pairs in the line by whitespaces.
|
[
"4\nOXXXOXOOXOOX\nOXOXOXOXOXOX\nXXXXXXXXXXXX\nOOOOOOOOOOOO\n"
] |
[
"3 1x12 2x6 4x3\n4 1x12 2x6 3x4 6x2\n6 1x12 2x6 3x4 4x3 6x2 12x1\n0\n"
] |
none
| 500
|
[
{
"input": "4\nOXXXOXOOXOOX\nOXOXOXOXOXOX\nXXXXXXXXXXXX\nOOOOOOOOOOOO",
"output": "3 1x12 2x6 4x3\n4 1x12 2x6 3x4 6x2\n6 1x12 2x6 3x4 4x3 6x2 12x1\n0"
},
{
"input": "2\nOOOOOOOOOOOO\nXXXXXXXXXXXX",
"output": "0\n6 1x12 2x6 3x4 4x3 6x2 12x1"
},
{
"input": "13\nXXXXXXXXXXXX\nXXXXXXXXXXXX\nXXXXXXXXXXXX\nXXXXXXXXXXXX\nXXXXXXXXXXXX\nXXXXXXXXXXXX\nXXXXXXXXXXXX\nXXXXXXXXXXXX\nXXXXXXXXXXXX\nXXXXXXXXXXXX\nXXXXXXXXXXXX\nXXXXXXXXXXXX\nXXXXXXXXXXXX",
"output": "6 1x12 2x6 3x4 4x3 6x2 12x1\n6 1x12 2x6 3x4 4x3 6x2 12x1\n6 1x12 2x6 3x4 4x3 6x2 12x1\n6 1x12 2x6 3x4 4x3 6x2 12x1\n6 1x12 2x6 3x4 4x3 6x2 12x1\n6 1x12 2x6 3x4 4x3 6x2 12x1\n6 1x12 2x6 3x4 4x3 6x2 12x1\n6 1x12 2x6 3x4 4x3 6x2 12x1\n6 1x12 2x6 3x4 4x3 6x2 12x1\n6 1x12 2x6 3x4 4x3 6x2 12x1\n6 1x12 2x6 3x4 4x3 6x2 12x1\n6 1x12 2x6 3x4 4x3 6x2 12x1\n6 1x12 2x6 3x4 4x3 6x2 12x1"
}
] | 1,557,757,538
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 44
| 140
| 0
|
def is_possible(request, a):
b = 12 // a
for i in range(b):
if 'O' not in [request[i + j * b] for j in range(a)]:
return True
return False
def solve(request):
possible_ways = [1, 2, 3, 4, 6, 12]
count_ways = 0
ways = []
for i in possible_ways:
if is_possible(request, i):
count_ways += 1
ways += ['%dx%d' % (i, 12 // i)]
ways = [str(count_ways)] + ways
return ' '.join(ways)
def main():
n = int(input())
for _ in range(n):
print(solve(input()))
if __name__ == '__main__':
main()
|
Title: Inna and Choose Options
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
There always is something to choose from! And now, instead of "Noughts and Crosses", Inna choose a very unusual upgrade of this game. The rules of the game are given below:
There is one person playing the game. Before the beginning of the game he puts 12 cards in a row on the table. Each card contains a character: "X" or "O". Then the player chooses two positive integers *a* and *b* (*a*·*b*<==<=12), after that he makes a table of size *a*<=×<=*b* from the cards he put on the table as follows: the first *b* cards form the first row of the table, the second *b* cards form the second row of the table and so on, the last *b* cards form the last (number *a*) row of the table. The player wins if some column of the table contain characters "X" on all cards. Otherwise, the player loses.
Inna has already put 12 cards on the table in a row. But unfortunately, she doesn't know what numbers *a* and *b* to choose. Help her win the game: print to her all the possible ways of numbers *a*,<=*b* that she can choose and win.
Input Specification:
The first line of the input contains integer *t* (1<=≤<=*t*<=≤<=100). This value shows the number of sets of test data in the input. Next follows the description of each of the *t* tests on a separate line.
The description of each test is a string consisting of 12 characters, each character is either "X", or "O". The *i*-th character of the string shows the character that is written on the *i*-th card from the start.
Output Specification:
For each test, print the answer to the test on a single line. The first number in the line must represent the number of distinct ways to choose the pair *a*,<=*b*. Next, print on this line the pairs in the format *a*x*b*. Print the pairs in the order of increasing first parameter (*a*). Separate the pairs in the line by whitespaces.
Demo Input:
['4\nOXXXOXOOXOOX\nOXOXOXOXOXOX\nXXXXXXXXXXXX\nOOOOOOOOOOOO\n']
Demo Output:
['3 1x12 2x6 4x3\n4 1x12 2x6 3x4 6x2\n6 1x12 2x6 3x4 4x3 6x2 12x1\n0\n']
Note:
none
|
```python
def is_possible(request, a):
b = 12 // a
for i in range(b):
if 'O' not in [request[i + j * b] for j in range(a)]:
return True
return False
def solve(request):
possible_ways = [1, 2, 3, 4, 6, 12]
count_ways = 0
ways = []
for i in possible_ways:
if is_possible(request, i):
count_ways += 1
ways += ['%dx%d' % (i, 12 // i)]
ways = [str(count_ways)] + ways
return ' '.join(ways)
def main():
n = int(input())
for _ in range(n):
print(solve(input()))
if __name__ == '__main__':
main()
```
| 3
|
|
591
|
A
|
Wizards' Duel
|
PROGRAMMING
| 900
|
[
"implementation",
"math"
] | null | null |
Harry Potter and He-Who-Must-Not-Be-Named engaged in a fight to the death once again. This time they are located at opposite ends of the corridor of length *l*. Two opponents simultaneously charge a deadly spell in the enemy. We know that the impulse of Harry's magic spell flies at a speed of *p* meters per second, and the impulse of You-Know-Who's magic spell flies at a speed of *q* meters per second.
The impulses are moving through the corridor toward each other, and at the time of the collision they turn round and fly back to those who cast them without changing their original speeds. Then, as soon as the impulse gets back to it's caster, the wizard reflects it and sends again towards the enemy, without changing the original speed of the impulse.
Since Harry has perfectly mastered the basics of magic, he knows that after the second collision both impulses will disappear, and a powerful explosion will occur exactly in the place of their collision. However, the young wizard isn't good at math, so he asks you to calculate the distance from his position to the place of the second meeting of the spell impulses, provided that the opponents do not change positions during the whole fight.
|
The first line of the input contains a single integer *l* (1<=≤<=*l*<=≤<=1<=000) — the length of the corridor where the fight takes place.
The second line contains integer *p*, the third line contains integer *q* (1<=≤<=*p*,<=*q*<=≤<=500) — the speeds of magical impulses for Harry Potter and He-Who-Must-Not-Be-Named, respectively.
|
Print a single real number — the distance from the end of the corridor, where Harry is located, to the place of the second meeting of the spell impulses. Your answer will be considered correct if its absolute or relative error will not exceed 10<=-<=4.
Namely: let's assume that your answer equals *a*, and the answer of the jury is *b*. The checker program will consider your answer correct if .
|
[
"100\n50\n50\n",
"199\n60\n40\n"
] |
[
"50\n",
"119.4\n"
] |
In the first sample the speeds of the impulses are equal, so both of their meetings occur exactly in the middle of the corridor.
| 500
|
[
{
"input": "100\n50\n50",
"output": "50"
},
{
"input": "199\n60\n40",
"output": "119.4"
},
{
"input": "1\n1\n1",
"output": "0.5"
},
{
"input": "1\n1\n500",
"output": "0.001996007984"
},
{
"input": "1\n500\n1",
"output": "0.998003992"
},
{
"input": "1\n500\n500",
"output": "0.5"
},
{
"input": "1000\n1\n1",
"output": "500"
},
{
"input": "1000\n1\n500",
"output": "1.996007984"
},
{
"input": "1000\n500\n1",
"output": "998.003992"
},
{
"input": "1000\n500\n500",
"output": "500"
},
{
"input": "101\n11\n22",
"output": "33.66666667"
},
{
"input": "987\n1\n3",
"output": "246.75"
},
{
"input": "258\n25\n431",
"output": "14.14473684"
},
{
"input": "979\n39\n60",
"output": "385.6666667"
},
{
"input": "538\n479\n416",
"output": "287.9351955"
},
{
"input": "583\n112\n248",
"output": "181.3777778"
},
{
"input": "978\n467\n371",
"output": "545.0190931"
},
{
"input": "980\n322\n193",
"output": "612.7378641"
},
{
"input": "871\n401\n17",
"output": "835.576555"
},
{
"input": "349\n478\n378",
"output": "194.885514"
},
{
"input": "425\n458\n118",
"output": "337.9340278"
},
{
"input": "919\n323\n458",
"output": "380.0729834"
},
{
"input": "188\n59\n126",
"output": "59.95675676"
},
{
"input": "644\n428\n484",
"output": "302.2280702"
},
{
"input": "253\n80\n276",
"output": "56.85393258"
},
{
"input": "745\n152\n417",
"output": "199.0158172"
},
{
"input": "600\n221\n279",
"output": "265.2"
},
{
"input": "690\n499\n430",
"output": "370.6243272"
},
{
"input": "105\n68\n403",
"output": "15.15923567"
},
{
"input": "762\n462\n371",
"output": "422.6218487"
},
{
"input": "903\n460\n362",
"output": "505.3284672"
},
{
"input": "886\n235\n95",
"output": "630.9393939"
},
{
"input": "655\n203\n18",
"output": "601.6515837"
},
{
"input": "718\n29\n375",
"output": "51.53960396"
},
{
"input": "296\n467\n377",
"output": "163.7819905"
},
{
"input": "539\n61\n56",
"output": "281.017094"
},
{
"input": "133\n53\n124",
"output": "39.82485876"
},
{
"input": "998\n224\n65",
"output": "773.5363322"
},
{
"input": "961\n173\n47",
"output": "755.6954545"
},
{
"input": "285\n468\n62",
"output": "251.6603774"
},
{
"input": "496\n326\n429",
"output": "214.1668874"
},
{
"input": "627\n150\n285",
"output": "216.2068966"
},
{
"input": "961\n443\n50",
"output": "863.535497"
},
{
"input": "623\n422\n217",
"output": "411.4334898"
},
{
"input": "678\n295\n29",
"output": "617.3148148"
}
] | 1,501,729,216
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 45
| 77
| 4,608,000
|
n = int(input())
p = int(input())
q = int(input())
print(n/(p+q)*p)
|
Title: Wizards' Duel
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Harry Potter and He-Who-Must-Not-Be-Named engaged in a fight to the death once again. This time they are located at opposite ends of the corridor of length *l*. Two opponents simultaneously charge a deadly spell in the enemy. We know that the impulse of Harry's magic spell flies at a speed of *p* meters per second, and the impulse of You-Know-Who's magic spell flies at a speed of *q* meters per second.
The impulses are moving through the corridor toward each other, and at the time of the collision they turn round and fly back to those who cast them without changing their original speeds. Then, as soon as the impulse gets back to it's caster, the wizard reflects it and sends again towards the enemy, without changing the original speed of the impulse.
Since Harry has perfectly mastered the basics of magic, he knows that after the second collision both impulses will disappear, and a powerful explosion will occur exactly in the place of their collision. However, the young wizard isn't good at math, so he asks you to calculate the distance from his position to the place of the second meeting of the spell impulses, provided that the opponents do not change positions during the whole fight.
Input Specification:
The first line of the input contains a single integer *l* (1<=≤<=*l*<=≤<=1<=000) — the length of the corridor where the fight takes place.
The second line contains integer *p*, the third line contains integer *q* (1<=≤<=*p*,<=*q*<=≤<=500) — the speeds of magical impulses for Harry Potter and He-Who-Must-Not-Be-Named, respectively.
Output Specification:
Print a single real number — the distance from the end of the corridor, where Harry is located, to the place of the second meeting of the spell impulses. Your answer will be considered correct if its absolute or relative error will not exceed 10<=-<=4.
Namely: let's assume that your answer equals *a*, and the answer of the jury is *b*. The checker program will consider your answer correct if .
Demo Input:
['100\n50\n50\n', '199\n60\n40\n']
Demo Output:
['50\n', '119.4\n']
Note:
In the first sample the speeds of the impulses are equal, so both of their meetings occur exactly in the middle of the corridor.
|
```python
n = int(input())
p = int(input())
q = int(input())
print(n/(p+q)*p)
```
| 3
|
|
858
|
D
|
Polycarp's phone book
|
PROGRAMMING
| 1,600
|
[
"data structures",
"implementation",
"sortings"
] | null | null |
There are *n* phone numbers in Polycarp's contacts on his phone. Each number is a 9-digit integer, starting with a digit different from 0. All the numbers are distinct.
There is the latest version of Berdroid OS installed on Polycarp's phone. If some number is entered, is shows up all the numbers in the contacts for which there is a substring equal to the entered sequence of digits. For example, is there are three phone numbers in Polycarp's contacts: 123456789, 100000000 and 100123456, then:
- if he enters 00 two numbers will show up: 100000000 and 100123456, - if he enters 123 two numbers will show up 123456789 and 100123456, - if he enters 01 there will be only one number 100123456.
For each of the phone numbers in Polycarp's contacts, find the minimum in length sequence of digits such that if Polycarp enters this sequence, Berdroid shows this only phone number.
|
The first line contains single integer *n* (1<=≤<=*n*<=≤<=70000) — the total number of phone contacts in Polycarp's contacts.
The phone numbers follow, one in each line. Each number is a positive 9-digit integer starting with a digit from 1 to 9. All the numbers are distinct.
|
Print exactly *n* lines: the *i*-th of them should contain the shortest non-empty sequence of digits, such that if Polycarp enters it, the Berdroid OS shows up only the *i*-th number from the contacts. If there are several such sequences, print any of them.
|
[
"3\n123456789\n100000000\n100123456\n",
"4\n123456789\n193456789\n134567819\n934567891\n"
] |
[
"9\n000\n01\n",
"2\n193\n81\n91\n"
] |
none
| 2,000
|
[
{
"input": "3\n123456789\n100000000\n100123456",
"output": "9\n000\n01"
},
{
"input": "4\n123456789\n193456789\n134567819\n934567891",
"output": "2\n193\n81\n91"
},
{
"input": "1\n167038488",
"output": "4"
},
{
"input": "5\n115830748\n403459907\n556271610\n430358099\n413961410",
"output": "15\n40\n2\n35\n14"
},
{
"input": "5\n139127034\n452751056\n193432721\n894001929\n426470953",
"output": "39\n05\n32\n8\n53"
},
{
"input": "5\n343216531\n914073407\n420246472\n855857272\n801664978",
"output": "32\n07\n46\n27\n78"
},
{
"input": "5\n567323818\n353474649\n468171032\n989223926\n685081078",
"output": "67\n35\n03\n26\n78"
},
{
"input": "5\n774610315\n325796798\n989859836\n707706423\n310546337",
"output": "61\n32\n89\n23\n37"
},
{
"input": "10\n181033039\n210698534\n971006898\n391227170\n323096464\n560766866\n377374442\n654389922\n544146403\n779261493",
"output": "18\n53\n97\n27\n09\n07\n42\n99\n41\n93"
},
{
"input": "10\n197120216\n680990683\n319631438\n442393410\n888300189\n170777450\n164487872\n487350759\n651751346\n652859411",
"output": "12\n09\n43\n42\n01\n74\n72\n73\n46\n11"
},
{
"input": "10\n302417715\n621211824\n474451896\n961495400\n633841010\n839982537\n797812119\n510708100\n770758643\n228046084",
"output": "15\n62\n47\n14\n33\n98\n97\n100\n43\n60"
},
{
"input": "10\n506504092\n561611075\n265260859\n557114891\n838578824\n985006846\n456984731\n856424964\n658005674\n666280709",
"output": "40\n75\n60\n55\n78\n68\n31\n96\n74\n66"
},
{
"input": "10\n510613599\n931933224\n693094490\n508960931\n313762868\n396027639\n164098962\n749880019\n709024305\n498545812",
"output": "61\n22\n44\n08\n68\n39\n64\n88\n43\n12"
},
{
"input": "3\n638631659\n929648227\n848163730",
"output": "5\n2\n0"
},
{
"input": "4\n898855826\n343430636\n210120107\n467957087",
"output": "98\n3\n1\n57"
},
{
"input": "5\n202080398\n357502772\n269676952\n711559315\n111366203",
"output": "8\n57\n26\n93\n62"
},
{
"input": "9\n111111111\n111111110\n111111100\n111111000\n111110000\n111100000\n111000000\n110000000\n100000000",
"output": "111111111\n111111110\n111111100\n111111000\n111110000\n111100000\n111000000\n110000000\n00000000"
}
] | 1,588,244,130
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 53
| 2,839
| 85,708,800
|
n=int(input())
a=[]
d={}
for _ in range(n):
s=input()
g=set()
for i in range(len(s)):
for k in range(i,len(s)):
st=s[i:k+1]
if st in g:
continue
else:
g.add(st)
if st in d:
d[st]+=1
else:
d[st]=1
a.append(s)
for s in a:
ans=s
for i in range(len(s)):
for j in range(i,len(s)):
k=s[i:j+1]
if d[k]==1 and len(k) < len(ans):
ans=k
print(ans)
|
Title: Polycarp's phone book
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
There are *n* phone numbers in Polycarp's contacts on his phone. Each number is a 9-digit integer, starting with a digit different from 0. All the numbers are distinct.
There is the latest version of Berdroid OS installed on Polycarp's phone. If some number is entered, is shows up all the numbers in the contacts for which there is a substring equal to the entered sequence of digits. For example, is there are three phone numbers in Polycarp's contacts: 123456789, 100000000 and 100123456, then:
- if he enters 00 two numbers will show up: 100000000 and 100123456, - if he enters 123 two numbers will show up 123456789 and 100123456, - if he enters 01 there will be only one number 100123456.
For each of the phone numbers in Polycarp's contacts, find the minimum in length sequence of digits such that if Polycarp enters this sequence, Berdroid shows this only phone number.
Input Specification:
The first line contains single integer *n* (1<=≤<=*n*<=≤<=70000) — the total number of phone contacts in Polycarp's contacts.
The phone numbers follow, one in each line. Each number is a positive 9-digit integer starting with a digit from 1 to 9. All the numbers are distinct.
Output Specification:
Print exactly *n* lines: the *i*-th of them should contain the shortest non-empty sequence of digits, such that if Polycarp enters it, the Berdroid OS shows up only the *i*-th number from the contacts. If there are several such sequences, print any of them.
Demo Input:
['3\n123456789\n100000000\n100123456\n', '4\n123456789\n193456789\n134567819\n934567891\n']
Demo Output:
['9\n000\n01\n', '2\n193\n81\n91\n']
Note:
none
|
```python
n=int(input())
a=[]
d={}
for _ in range(n):
s=input()
g=set()
for i in range(len(s)):
for k in range(i,len(s)):
st=s[i:k+1]
if st in g:
continue
else:
g.add(st)
if st in d:
d[st]+=1
else:
d[st]=1
a.append(s)
for s in a:
ans=s
for i in range(len(s)):
for j in range(i,len(s)):
k=s[i:j+1]
if d[k]==1 and len(k) < len(ans):
ans=k
print(ans)
```
| 3
|
|
32
|
B
|
Borze
|
PROGRAMMING
| 800
|
[
"expression parsing",
"implementation"
] |
B. Borze
|
2
|
256
|
Ternary numeric notation is quite popular in Berland. To telegraph the ternary number the Borze alphabet is used. Digit 0 is transmitted as «.», 1 as «-.» and 2 as «--». You are to decode the Borze code, i.e. to find out the ternary number given its representation in Borze alphabet.
|
The first line contains a number in Borze code. The length of the string is between 1 and 200 characters. It's guaranteed that the given string is a valid Borze code of some ternary number (this number can have leading zeroes).
|
Output the decoded ternary number. It can have leading zeroes.
|
[
".-.--\n",
"--.\n",
"-..-.--\n"
] |
[
"012",
"20",
"1012"
] |
none
| 1,000
|
[
{
"input": ".-.--",
"output": "012"
},
{
"input": "--.",
"output": "20"
},
{
"input": "-..-.--",
"output": "1012"
},
{
"input": "---..",
"output": "210"
},
{
"input": "..--.---..",
"output": "0020210"
},
{
"input": "-.....----.",
"output": "10000220"
},
{
"input": ".",
"output": "0"
},
{
"input": "-.",
"output": "1"
},
{
"input": "--",
"output": "2"
},
{
"input": "..",
"output": "00"
},
{
"input": "--.",
"output": "20"
},
{
"input": ".--.",
"output": "020"
},
{
"input": ".-.-..",
"output": "0110"
},
{
"input": "----.-.",
"output": "2201"
},
{
"input": "-..--.-.",
"output": "10201"
},
{
"input": "..--..--.",
"output": "0020020"
},
{
"input": "-.-.---.--..-..-.-.-..-..-.--.",
"output": "112120010111010120"
},
{
"input": "---.-.-.------..-..-..-..-.-..-.--.-.-..-.-.-----..-.-.",
"output": "21112220010101011012011011221011"
},
{
"input": "-.-..--.-.-.-.-.-..-.-.-.---------.--.---..--...--.-----.-.-.-...--.-.-.---.------.--..-.--.-----.-...-..------",
"output": "11020111110111222212021020002022111100201121222020012022110010222"
},
{
"input": "-.-..-.--.---..---.-..---.-...-.-.----..-.---.-.---..-.--.---.-.-------.---.--....----.-.---.---.---.----.-----..---.-.-.-.-----.--.-------.-..",
"output": "110120210211021100112200121121012021122212120000220121212122022102111122120222110"
},
{
"input": ".-..-.-.---.-----.--.---...-.--.-.-....-..",
"output": "01011212212021001201100010"
},
{
"input": ".------.-.---..--...-..-..-.-.-.--.--.-..-.--...-.-.---.-.-.------..--..-.---..----.-..-.--.---.-.----.-.---...-.-.-.-----.-.-.---.---.-.....-.-...-----.-...-.---.-..-.-----.--...---.-.-..-.--.-.---..",
"output": "022201210200010101112020101200011211122200200121022010120211220121001112211121211000011002211001211012212000211101201210"
},
{
"input": ".-.--.---.-----.-.-----.-.-..-----..-..----..--.-.--.----..---.---..-.-.-----..-------.----..----.-..---...-----..-..-----...-..-.-.-----....---..---..-.-----...-.--...--.-.---.-.-.-.-.-...---..----.",
"output": "01202122112211102210102200201202200212101122102221220022010210022101022100101122100021021012210012000201211111100210220"
},
{
"input": "..-.-.-.---.-.-.-..-.-..-.-.---.-------.---..-----.---....-.---.--.--.-.---.---------.-..---.-.-.--..---.---.-.---.-.-..-.-..-.-.-.----.--.-....--------.-.---..----.------.-.-.--.--.-----.-----.----",
"output": "0011121111011011212221210221210001212020121222211021112002121121110110111220201000222201210220222011202022122122"
},
{
"input": "-..-------.------.-..--.-.-..--.-.-..-----..-.-.-..-..-..--.---..-----..---..-..--.-..-.-.---...-.....-------.---.-----.-...-.-...-.-.---.---.-----.--.--...-.--..-.-..-...-.-.-.-.---..---.-..-.-.-.-..",
"output": "102221222010201102011022101110101020210221021010201011210010000222121221100110011212122120200012001101001111210211011110"
},
{
"input": ".-.----.-.--..-.-.-.-..----..-.-...--.-.---.---.-------..-.--..-......--.------.--.----.--...-.--.--..-----..-.....--.--.-.-.------..--------.----------..-.---.----.---.-..--..-.....-..------.--.",
"output": "012201200111102200110020121212221012001000002022202022020001202002210100002020112220022220222220012122021102001000010222020"
},
{
"input": "------.-----.-....--.-.----.-.---.-.-..---.-.---.-----..-...-.-.---..-.-.-..-.-.-...-.-.-.----..--.------.----.-..-.--...-.-------...-.-..-.-.--.--.---..--..--------.--.-.-.---.-.-.-...----.--..-.--..",
"output": "222022110002012201211102112122101001121011101110011122002022202201012000122210011011202021020022220201121111002202001200"
},
{
"input": "-.---...----...--.--...-.--.----",
"output": "121002200020200012022"
},
{
"input": "--.--.--.---.--.-.---.-.-..-..--.-..---.-.....-..---.-----.--...-.-.-------.-.--.-.----.-..-.------.",
"output": "202020212012111010201021100001021221200011222112012201012220"
}
] | 1,659,706,035
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 30
| 156
| 0
|
t = input()
str1 = ""
i=0
while True:
try:
if t[i]=='.':
str1 +='0'
else:
if(t[i+1]=='.'):
str1+='1'
i = i+1
else:
str1+='2'
i = i+1
i+=1
except:
break
print(str1)
|
Title: Borze
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Ternary numeric notation is quite popular in Berland. To telegraph the ternary number the Borze alphabet is used. Digit 0 is transmitted as «.», 1 as «-.» and 2 as «--». You are to decode the Borze code, i.e. to find out the ternary number given its representation in Borze alphabet.
Input Specification:
The first line contains a number in Borze code. The length of the string is between 1 and 200 characters. It's guaranteed that the given string is a valid Borze code of some ternary number (this number can have leading zeroes).
Output Specification:
Output the decoded ternary number. It can have leading zeroes.
Demo Input:
['.-.--\n', '--.\n', '-..-.--\n']
Demo Output:
['012', '20', '1012']
Note:
none
|
```python
t = input()
str1 = ""
i=0
while True:
try:
if t[i]=='.':
str1 +='0'
else:
if(t[i+1]=='.'):
str1+='1'
i = i+1
else:
str1+='2'
i = i+1
i+=1
except:
break
print(str1)
```
| 3.961
|
525
|
A
|
Vitaliy and Pie
|
PROGRAMMING
| 1,100
|
[
"greedy",
"hashing",
"strings"
] | null | null |
After a hard day Vitaly got very hungry and he wants to eat his favorite potato pie. But it's not that simple. Vitaly is in the first room of the house with *n* room located in a line and numbered starting from one from left to right. You can go from the first room to the second room, from the second room to the third room and so on — you can go from the (*n*<=-<=1)-th room to the *n*-th room. Thus, you can go to room *x* only from room *x*<=-<=1.
The potato pie is located in the *n*-th room and Vitaly needs to go there.
Each pair of consecutive rooms has a door between them. In order to go to room *x* from room *x*<=-<=1, you need to open the door between the rooms with the corresponding key.
In total the house has several types of doors (represented by uppercase Latin letters) and several types of keys (represented by lowercase Latin letters). The key of type *t* can open the door of type *T* if and only if *t* and *T* are the same letter, written in different cases. For example, key f can open door F.
Each of the first *n*<=-<=1 rooms contains exactly one key of some type that Vitaly can use to get to next rooms. Once the door is open with some key, Vitaly won't get the key from the keyhole but he will immediately run into the next room. In other words, each key can open no more than one door.
Vitaly realizes that he may end up in some room without the key that opens the door to the next room. Before the start his run for the potato pie Vitaly can buy any number of keys of any type that is guaranteed to get to room *n*.
Given the plan of the house, Vitaly wants to know what is the minimum number of keys he needs to buy to surely get to the room *n*, which has a delicious potato pie. Write a program that will help Vitaly find out this number.
|
The first line of the input contains a positive integer *n* (2<=≤<=*n*<=≤<=105) — the number of rooms in the house.
The second line of the input contains string *s* of length 2·*n*<=-<=2. Let's number the elements of the string from left to right, starting from one.
The odd positions in the given string *s* contain lowercase Latin letters — the types of the keys that lie in the corresponding rooms. Thus, each odd position *i* of the given string *s* contains a lowercase Latin letter — the type of the key that lies in room number (*i*<=+<=1)<=/<=2.
The even positions in the given string contain uppercase Latin letters — the types of doors between the rooms. Thus, each even position *i* of the given string *s* contains an uppercase letter — the type of the door that leads from room *i*<=/<=2 to room *i*<=/<=2<=+<=1.
|
Print the only integer — the minimum number of keys that Vitaly needs to buy to surely get from room one to room *n*.
|
[
"3\naAbB\n",
"4\naBaCaB\n",
"5\nxYyXzZaZ\n"
] |
[
"0\n",
"3\n",
"2\n"
] |
none
| 250
|
[
{
"input": "3\naAbB",
"output": "0"
},
{
"input": "4\naBaCaB",
"output": "3"
},
{
"input": "5\nxYyXzZaZ",
"output": "2"
},
{
"input": "26\naAbBcCdDeEfFgGhHiIjJkKlLmMnNoOpPqQrRsStTuUvVwWxXyY",
"output": "0"
},
{
"input": "26\nzAyBxCwDvEuFtGsHrIqJpKoLnMmNlOkPjQiRhSgTfUeVdWcXbY",
"output": "13"
},
{
"input": "5\naArRaRaR",
"output": "2"
},
{
"input": "2\ndA",
"output": "1"
},
{
"input": "2\ncB",
"output": "1"
},
{
"input": "10\nhNcMeXsSlHsUwYeMcA",
"output": "7"
},
{
"input": "100\nqDpInBmCrFwXpDbFgOzVvOcEmJrUcToAdEwEgTvBvBfWwRpGyEaXgDdRwVlQnYgWmWhMrHaIzPyXvGaFlRsVzHhZrOuVpXrKxFzAmWwPlFtNfPtJxVmLuHjKfYyArHrEnSwSzOvDpQhCgCqLlAcNpGhXrEeFuCmAqIkXyYtSsQwIxJzNiIuTgEbVuWrMwPrAlLyKaZ",
"output": "42"
},
{
"input": "2\ndD",
"output": "0"
},
{
"input": "2\ndE",
"output": "1"
},
{
"input": "3\ndDdD",
"output": "0"
},
{
"input": "3\ndEdD",
"output": "1"
},
{
"input": "3\ndEeD",
"output": "1"
},
{
"input": "3\ndEeF",
"output": "2"
}
] | 1,427,387,753
| 353
|
PyPy 3
|
OK
|
TESTS
| 46
| 124
| 2,150,400
|
n=int(input())
a=[0 for i in range(26)]
s=input().strip()
ans=0
for i in range(n-1):
a[ord(s[2*i])-97]+=1
if a[ord(s[2*i+1])-65]>0:
a[ord(s[2*i+1])-65]-=1
else:
ans+=1
print(ans)
|
Title: Vitaliy and Pie
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
After a hard day Vitaly got very hungry and he wants to eat his favorite potato pie. But it's not that simple. Vitaly is in the first room of the house with *n* room located in a line and numbered starting from one from left to right. You can go from the first room to the second room, from the second room to the third room and so on — you can go from the (*n*<=-<=1)-th room to the *n*-th room. Thus, you can go to room *x* only from room *x*<=-<=1.
The potato pie is located in the *n*-th room and Vitaly needs to go there.
Each pair of consecutive rooms has a door between them. In order to go to room *x* from room *x*<=-<=1, you need to open the door between the rooms with the corresponding key.
In total the house has several types of doors (represented by uppercase Latin letters) and several types of keys (represented by lowercase Latin letters). The key of type *t* can open the door of type *T* if and only if *t* and *T* are the same letter, written in different cases. For example, key f can open door F.
Each of the first *n*<=-<=1 rooms contains exactly one key of some type that Vitaly can use to get to next rooms. Once the door is open with some key, Vitaly won't get the key from the keyhole but he will immediately run into the next room. In other words, each key can open no more than one door.
Vitaly realizes that he may end up in some room without the key that opens the door to the next room. Before the start his run for the potato pie Vitaly can buy any number of keys of any type that is guaranteed to get to room *n*.
Given the plan of the house, Vitaly wants to know what is the minimum number of keys he needs to buy to surely get to the room *n*, which has a delicious potato pie. Write a program that will help Vitaly find out this number.
Input Specification:
The first line of the input contains a positive integer *n* (2<=≤<=*n*<=≤<=105) — the number of rooms in the house.
The second line of the input contains string *s* of length 2·*n*<=-<=2. Let's number the elements of the string from left to right, starting from one.
The odd positions in the given string *s* contain lowercase Latin letters — the types of the keys that lie in the corresponding rooms. Thus, each odd position *i* of the given string *s* contains a lowercase Latin letter — the type of the key that lies in room number (*i*<=+<=1)<=/<=2.
The even positions in the given string contain uppercase Latin letters — the types of doors between the rooms. Thus, each even position *i* of the given string *s* contains an uppercase letter — the type of the door that leads from room *i*<=/<=2 to room *i*<=/<=2<=+<=1.
Output Specification:
Print the only integer — the minimum number of keys that Vitaly needs to buy to surely get from room one to room *n*.
Demo Input:
['3\naAbB\n', '4\naBaCaB\n', '5\nxYyXzZaZ\n']
Demo Output:
['0\n', '3\n', '2\n']
Note:
none
|
```python
n=int(input())
a=[0 for i in range(26)]
s=input().strip()
ans=0
for i in range(n-1):
a[ord(s[2*i])-97]+=1
if a[ord(s[2*i+1])-65]>0:
a[ord(s[2*i+1])-65]-=1
else:
ans+=1
print(ans)
```
| 3
|
|
116
|
A
|
Tram
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Linear Kingdom has exactly one tram line. It has *n* stops, numbered from 1 to *n* in the order of tram's movement. At the *i*-th stop *a**i* passengers exit the tram, while *b**i* passengers enter it. The tram is empty before it arrives at the first stop. Also, when the tram arrives at the last stop, all passengers exit so that it becomes empty.
Your task is to calculate the tram's minimum capacity such that the number of people inside the tram at any time never exceeds this capacity. Note that at each stop all exiting passengers exit before any entering passenger enters the tram.
|
The first line contains a single number *n* (2<=≤<=*n*<=≤<=1000) — the number of the tram's stops.
Then *n* lines follow, each contains two integers *a**i* and *b**i* (0<=≤<=*a**i*,<=*b**i*<=≤<=1000) — the number of passengers that exits the tram at the *i*-th stop, and the number of passengers that enter the tram at the *i*-th stop. The stops are given from the first to the last stop in the order of tram's movement.
- The number of people who exit at a given stop does not exceed the total number of people in the tram immediately before it arrives at the stop. More formally, . This particularly means that *a*1<==<=0. - At the last stop, all the passengers exit the tram and it becomes empty. More formally, . - No passenger will enter the train at the last stop. That is, *b**n*<==<=0.
|
Print a single integer denoting the minimum possible capacity of the tram (0 is allowed).
|
[
"4\n0 3\n2 5\n4 2\n4 0\n"
] |
[
"6\n"
] |
For the first example, a capacity of 6 is sufficient:
- At the first stop, the number of passengers inside the tram before arriving is 0. Then, 3 passengers enter the tram, and the number of passengers inside the tram becomes 3. - At the second stop, 2 passengers exit the tram (1 passenger remains inside). Then, 5 passengers enter the tram. There are 6 passengers inside the tram now. - At the third stop, 4 passengers exit the tram (2 passengers remain inside). Then, 2 passengers enter the tram. There are 4 passengers inside the tram now. - Finally, all the remaining passengers inside the tram exit the tram at the last stop. There are no passenger inside the tram now, which is in line with the constraints.
Since the number of passengers inside the tram never exceeds 6, a capacity of 6 is sufficient. Furthermore it is not possible for the tram to have a capacity less than 6. Hence, 6 is the correct answer.
| 500
|
[
{
"input": "4\n0 3\n2 5\n4 2\n4 0",
"output": "6"
},
{
"input": "5\n0 4\n4 6\n6 5\n5 4\n4 0",
"output": "6"
},
{
"input": "10\n0 5\n1 7\n10 8\n5 3\n0 5\n3 3\n8 8\n0 6\n10 1\n9 0",
"output": "18"
},
{
"input": "3\n0 1\n1 1\n1 0",
"output": "1"
},
{
"input": "4\n0 1\n0 1\n1 0\n1 0",
"output": "2"
},
{
"input": "3\n0 0\n0 0\n0 0",
"output": "0"
},
{
"input": "3\n0 1000\n1000 1000\n1000 0",
"output": "1000"
},
{
"input": "5\n0 73\n73 189\n189 766\n766 0\n0 0",
"output": "766"
},
{
"input": "5\n0 0\n0 0\n0 0\n0 1\n1 0",
"output": "1"
},
{
"input": "5\n0 917\n917 923\n904 992\n1000 0\n11 0",
"output": "1011"
},
{
"input": "5\n0 1\n1 2\n2 1\n1 2\n2 0",
"output": "2"
},
{
"input": "5\n0 0\n0 0\n0 0\n0 0\n0 0",
"output": "0"
},
{
"input": "20\n0 7\n2 1\n2 2\n5 7\n2 6\n6 10\n2 4\n0 4\n7 4\n8 0\n10 6\n2 1\n6 1\n1 7\n0 3\n8 7\n6 3\n6 3\n1 1\n3 0",
"output": "22"
},
{
"input": "5\n0 1000\n1000 1000\n1000 1000\n1000 1000\n1000 0",
"output": "1000"
},
{
"input": "10\n0 592\n258 598\n389 203\n249 836\n196 635\n478 482\n994 987\n1000 0\n769 0\n0 0",
"output": "1776"
},
{
"input": "10\n0 1\n1 0\n0 0\n0 0\n0 0\n0 1\n1 1\n0 1\n1 0\n1 0",
"output": "2"
},
{
"input": "10\n0 926\n926 938\n938 931\n931 964\n937 989\n983 936\n908 949\n997 932\n945 988\n988 0",
"output": "1016"
},
{
"input": "10\n0 1\n1 2\n1 2\n2 2\n2 2\n2 2\n1 1\n1 1\n2 1\n2 0",
"output": "3"
},
{
"input": "10\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0",
"output": "0"
},
{
"input": "10\n0 1000\n1000 1000\n1000 1000\n1000 1000\n1000 1000\n1000 1000\n1000 1000\n1000 1000\n1000 1000\n1000 0",
"output": "1000"
},
{
"input": "50\n0 332\n332 268\n268 56\n56 711\n420 180\n160 834\n149 341\n373 777\n763 93\n994 407\n86 803\n700 132\n471 608\n429 467\n75 5\n638 305\n405 853\n316 478\n643 163\n18 131\n648 241\n241 766\n316 847\n640 380\n923 759\n789 41\n125 421\n421 9\n9 388\n388 829\n408 108\n462 856\n816 411\n518 688\n290 7\n405 912\n397 772\n396 652\n394 146\n27 648\n462 617\n514 433\n780 35\n710 705\n460 390\n194 508\n643 56\n172 469\n1000 0\n194 0",
"output": "2071"
},
{
"input": "50\n0 0\n0 1\n1 1\n0 1\n0 0\n1 0\n0 0\n1 0\n0 0\n0 0\n0 0\n0 0\n0 1\n0 0\n0 0\n0 1\n1 0\n0 1\n0 0\n1 1\n1 0\n0 1\n0 0\n1 1\n0 1\n1 0\n1 1\n1 0\n0 0\n1 1\n1 0\n0 1\n0 0\n0 1\n1 1\n1 1\n1 1\n1 0\n1 1\n1 0\n0 1\n1 0\n0 0\n0 1\n1 1\n1 1\n0 1\n0 0\n1 0\n1 0",
"output": "3"
},
{
"input": "50\n0 926\n926 971\n915 980\n920 965\n954 944\n928 952\n955 980\n916 980\n906 935\n944 913\n905 923\n912 922\n965 934\n912 900\n946 930\n931 983\n979 905\n925 969\n924 926\n910 914\n921 977\n934 979\n962 986\n942 909\n976 903\n982 982\n991 941\n954 929\n902 980\n947 983\n919 924\n917 943\n916 905\n907 913\n964 977\n984 904\n905 999\n950 970\n986 906\n993 970\n960 994\n963 983\n918 986\n980 900\n931 986\n993 997\n941 909\n907 909\n1000 0\n278 0",
"output": "1329"
},
{
"input": "2\n0 863\n863 0",
"output": "863"
},
{
"input": "50\n0 1\n1 2\n2 2\n1 1\n1 1\n1 2\n1 2\n1 1\n1 2\n1 1\n1 1\n1 2\n1 2\n1 1\n2 1\n2 2\n1 2\n2 2\n1 2\n2 1\n2 1\n2 2\n2 1\n1 2\n1 2\n2 1\n1 1\n2 2\n1 1\n2 1\n2 2\n2 1\n1 2\n2 2\n1 2\n1 1\n1 1\n2 1\n2 1\n2 2\n2 1\n2 1\n1 2\n1 2\n1 2\n1 2\n2 0\n2 0\n2 0\n0 0",
"output": "8"
},
{
"input": "50\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0",
"output": "0"
},
{
"input": "100\n0 1\n0 0\n0 0\n1 0\n0 0\n0 1\n0 1\n1 1\n0 0\n0 0\n1 1\n0 0\n1 1\n0 1\n1 1\n0 1\n1 1\n1 0\n1 0\n0 0\n1 0\n0 1\n1 0\n0 0\n0 0\n1 1\n1 1\n0 1\n0 0\n1 0\n1 1\n0 1\n1 0\n1 1\n0 1\n1 1\n1 0\n0 0\n0 0\n0 1\n0 0\n0 1\n1 1\n0 0\n1 1\n1 1\n0 0\n0 1\n1 0\n0 1\n0 0\n0 1\n0 1\n1 1\n1 1\n1 1\n0 0\n0 0\n1 1\n0 1\n0 1\n1 0\n0 0\n0 0\n1 1\n0 1\n0 1\n1 1\n1 1\n0 1\n1 1\n1 1\n0 0\n1 0\n0 1\n0 0\n0 0\n1 1\n1 1\n1 1\n1 1\n0 1\n1 0\n1 0\n1 0\n1 0\n1 0\n0 0\n1 0\n1 0\n0 0\n1 0\n0 0\n0 1\n1 0\n0 1\n1 0\n1 0\n1 0\n1 0",
"output": "11"
},
{
"input": "100\n0 2\n1 2\n2 1\n1 2\n1 2\n2 1\n2 2\n1 1\n1 1\n2 1\n1 2\n2 1\n1 2\n2 2\n2 2\n2 2\n1 2\n2 2\n2 1\n1 1\n1 1\n1 1\n2 2\n1 2\n2 2\n1 1\n1 1\n1 1\n1 1\n2 2\n1 2\n2 1\n1 1\n2 2\n1 1\n2 1\n1 1\n2 2\n2 1\n1 2\n1 1\n1 2\n2 1\n2 2\n1 1\n2 1\n1 1\n2 1\n1 1\n1 2\n2 2\n2 2\n1 1\n2 2\n1 2\n2 1\n2 1\n1 1\n1 1\n1 2\n1 2\n1 1\n1 1\n2 1\n1 2\n1 2\n2 1\n2 2\n2 2\n2 2\n2 1\n2 2\n1 1\n1 2\n1 2\n1 1\n2 2\n2 2\n1 1\n2 1\n1 1\n1 2\n1 2\n1 2\n1 1\n1 1\n2 2\n1 2\n2 1\n2 1\n2 1\n1 2\n1 2\n1 1\n2 2\n1 2\n2 0\n2 0\n2 0\n1 0",
"output": "7"
},
{
"input": "100\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0",
"output": "0"
},
{
"input": "2\n0 1\n1 0",
"output": "1"
},
{
"input": "2\n0 900\n900 0",
"output": "900"
},
{
"input": "2\n0 1\n1 0",
"output": "1"
},
{
"input": "2\n0 0\n0 0",
"output": "0"
},
{
"input": "2\n0 1000\n1000 0",
"output": "1000"
},
{
"input": "3\n0 802\n175 188\n815 0",
"output": "815"
},
{
"input": "3\n0 910\n910 976\n976 0",
"output": "976"
},
{
"input": "3\n0 2\n2 1\n1 0",
"output": "2"
}
] | 1,691,416,158
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 71
| 92
| 0
|
# N,M = map(int,input().split())
# N = int(input())
# A = list(map(int,input().split()))
N = int(input())
res = 0
cur = 0
for _ in range(N):
a,b = map(int,input().split())
cur -= a
cur += b
res = max(res, cur)
print(res)
|
Title: Tram
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Linear Kingdom has exactly one tram line. It has *n* stops, numbered from 1 to *n* in the order of tram's movement. At the *i*-th stop *a**i* passengers exit the tram, while *b**i* passengers enter it. The tram is empty before it arrives at the first stop. Also, when the tram arrives at the last stop, all passengers exit so that it becomes empty.
Your task is to calculate the tram's minimum capacity such that the number of people inside the tram at any time never exceeds this capacity. Note that at each stop all exiting passengers exit before any entering passenger enters the tram.
Input Specification:
The first line contains a single number *n* (2<=≤<=*n*<=≤<=1000) — the number of the tram's stops.
Then *n* lines follow, each contains two integers *a**i* and *b**i* (0<=≤<=*a**i*,<=*b**i*<=≤<=1000) — the number of passengers that exits the tram at the *i*-th stop, and the number of passengers that enter the tram at the *i*-th stop. The stops are given from the first to the last stop in the order of tram's movement.
- The number of people who exit at a given stop does not exceed the total number of people in the tram immediately before it arrives at the stop. More formally, . This particularly means that *a*1<==<=0. - At the last stop, all the passengers exit the tram and it becomes empty. More formally, . - No passenger will enter the train at the last stop. That is, *b**n*<==<=0.
Output Specification:
Print a single integer denoting the minimum possible capacity of the tram (0 is allowed).
Demo Input:
['4\n0 3\n2 5\n4 2\n4 0\n']
Demo Output:
['6\n']
Note:
For the first example, a capacity of 6 is sufficient:
- At the first stop, the number of passengers inside the tram before arriving is 0. Then, 3 passengers enter the tram, and the number of passengers inside the tram becomes 3. - At the second stop, 2 passengers exit the tram (1 passenger remains inside). Then, 5 passengers enter the tram. There are 6 passengers inside the tram now. - At the third stop, 4 passengers exit the tram (2 passengers remain inside). Then, 2 passengers enter the tram. There are 4 passengers inside the tram now. - Finally, all the remaining passengers inside the tram exit the tram at the last stop. There are no passenger inside the tram now, which is in line with the constraints.
Since the number of passengers inside the tram never exceeds 6, a capacity of 6 is sufficient. Furthermore it is not possible for the tram to have a capacity less than 6. Hence, 6 is the correct answer.
|
```python
# N,M = map(int,input().split())
# N = int(input())
# A = list(map(int,input().split()))
N = int(input())
res = 0
cur = 0
for _ in range(N):
a,b = map(int,input().split())
cur -= a
cur += b
res = max(res, cur)
print(res)
```
| 3
|
|
37
|
A
|
Towers
|
PROGRAMMING
| 1,000
|
[
"sortings"
] |
A. Towers
|
2
|
256
|
Little Vasya has received a young builder’s kit. The kit consists of several wooden bars, the lengths of all of them are known. The bars can be put one on the top of the other if their lengths are the same.
Vasya wants to construct the minimal number of towers from the bars. Help Vasya to use the bars in the best way possible.
|
The first line contains an integer *N* (1<=≤<=*N*<=≤<=1000) — the number of bars at Vasya’s disposal. The second line contains *N* space-separated integers *l**i* — the lengths of the bars. All the lengths are natural numbers not exceeding 1000.
|
In one line output two numbers — the height of the largest tower and their total number. Remember that Vasya should use all the bars.
|
[
"3\n1 2 3\n",
"4\n6 5 6 7\n"
] |
[
"1 3\n",
"2 3\n"
] |
none
| 500
|
[
{
"input": "3\n1 2 3",
"output": "1 3"
},
{
"input": "4\n6 5 6 7",
"output": "2 3"
},
{
"input": "4\n3 2 1 1",
"output": "2 3"
},
{
"input": "4\n1 2 3 3",
"output": "2 3"
},
{
"input": "3\n20 22 36",
"output": "1 3"
},
{
"input": "25\n47 30 94 41 45 20 96 51 110 129 24 116 9 47 32 82 105 114 116 75 154 151 70 42 162",
"output": "2 23"
},
{
"input": "45\n802 664 442 318 318 827 417 878 711 291 231 414 807 553 657 392 279 202 386 606 465 655 658 112 887 15 25 502 95 44 679 775 942 609 209 871 31 234 4 231 150 110 22 823 193",
"output": "2 43"
},
{
"input": "63\n93 180 116 7 8 179 268 279 136 94 221 153 264 190 278 19 19 63 153 26 158 225 25 49 89 218 111 149 255 225 197 122 243 80 3 224 107 178 202 17 53 92 69 42 228 24 81 205 95 8 265 82 228 156 127 241 172 159 106 60 67 155 111",
"output": "2 57"
},
{
"input": "83\n246 535 994 33 390 927 321 97 223 922 812 705 79 80 977 457 476 636 511 137 6 360 815 319 717 674 368 551 714 628 278 713 761 553 184 414 623 753 428 214 581 115 439 61 677 216 772 592 187 603 658 310 439 559 870 376 109 321 189 337 277 26 70 734 796 907 979 693 570 227 345 650 737 633 701 914 134 403 972 940 371 6 642",
"output": "2 80"
},
{
"input": "105\n246 57 12 204 165 123 246 68 191 310 3 152 386 333 374 257 158 104 333 50 80 290 8 340 101 76 221 316 388 289 138 359 316 26 93 290 105 178 81 195 41 196 218 180 244 292 187 97 315 323 174 119 248 239 92 312 31 2 101 180 307 170 338 314 163 281 217 31 142 238 280 190 190 156 70 74 329 113 151 8 141 313 366 40 253 116 168 124 135 230 294 266 353 389 371 359 195 200 183 237 93 102 315 118 188",
"output": "2 92"
},
{
"input": "123\n112 277 170 247 252 115 157 293 256 143 196 90 12 164 164 42 8 223 167 109 175 232 239 111 148 51 9 254 93 32 268 162 231 91 47 162 161 191 195 145 247 292 129 199 230 94 144 217 18 205 176 20 143 198 121 243 211 262 230 277 195 255 108 290 220 275 158 2 286 200 60 267 278 207 123 150 123 116 131 13 12 226 33 244 30 275 263 45 158 192 254 149 242 176 62 224 221 288 250 160 155 225 132 143 276 293 218 145 197 175 33 129 79 206 210 192 222 262 190 52 274 243 233",
"output": "3 101"
},
{
"input": "5\n5 5 5 5 5",
"output": "5 1"
},
{
"input": "3\n1000 1000 1000",
"output": "3 1"
},
{
"input": "1\n1000",
"output": "1 1"
},
{
"input": "1\n1",
"output": "1 1"
},
{
"input": "5\n1 1000 1000 1000 1000",
"output": "4 2"
},
{
"input": "5\n1000 1000 1000 8 7",
"output": "3 3"
}
] | 1,533,569,880
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 61
| 248
| 0
|
n = int(input())
max_len = 1
cur_len = 1
unique = 1
seq = sorted(list(map(int, input().split())))
for i in range(n - 1):
if seq[i] == seq[i + 1]:
cur_len += 1
if cur_len > max_len:
max_len = cur_len
else:
unique += 1
cur_len = 1
print(max_len, unique)
|
Title: Towers
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Little Vasya has received a young builder’s kit. The kit consists of several wooden bars, the lengths of all of them are known. The bars can be put one on the top of the other if their lengths are the same.
Vasya wants to construct the minimal number of towers from the bars. Help Vasya to use the bars in the best way possible.
Input Specification:
The first line contains an integer *N* (1<=≤<=*N*<=≤<=1000) — the number of bars at Vasya’s disposal. The second line contains *N* space-separated integers *l**i* — the lengths of the bars. All the lengths are natural numbers not exceeding 1000.
Output Specification:
In one line output two numbers — the height of the largest tower and their total number. Remember that Vasya should use all the bars.
Demo Input:
['3\n1 2 3\n', '4\n6 5 6 7\n']
Demo Output:
['1 3\n', '2 3\n']
Note:
none
|
```python
n = int(input())
max_len = 1
cur_len = 1
unique = 1
seq = sorted(list(map(int, input().split())))
for i in range(n - 1):
if seq[i] == seq[i + 1]:
cur_len += 1
if cur_len > max_len:
max_len = cur_len
else:
unique += 1
cur_len = 1
print(max_len, unique)
```
| 3.938
|
129
|
A
|
Cookies
|
PROGRAMMING
| 900
|
[
"implementation"
] | null | null |
Olga came to visit the twins Anna and Maria and saw that they have many cookies. The cookies are distributed into bags. As there are many cookies, Olga decided that it's no big deal if she steals a bag. However, she doesn't want the sisters to quarrel because of nothing when they divide the cookies. That's why Olga wants to steal a bag with cookies so that the number of cookies in the remaining bags was even, that is, so that Anna and Maria could evenly divide it into two (even 0 remaining cookies will do, just as any other even number). How many ways there are to steal exactly one cookie bag so that the total number of cookies in the remaining bags was even?
|
The first line contains the only integer *n* (1<=≤<=*n*<=≤<=100) — the number of cookie bags Anna and Maria have. The second line contains *n* integers *a**i* (1<=≤<=*a**i*<=≤<=100) — the number of cookies in the *i*-th bag.
|
Print in the only line the only number — the sought number of ways. If there are no such ways print 0.
|
[
"1\n1\n",
"10\n1 2 2 3 4 4 4 2 2 2\n",
"11\n2 2 2 2 2 2 2 2 2 2 99\n"
] |
[
"1\n",
"8\n",
"1\n"
] |
In the first sample Olga should take the only bag so that the twins ended up with the even number of cookies.
In the second sample Olga can take any of five bags with two cookies or any of three bags with four cookies — 5 + 3 = 8 ways in total.
In the third sample, no matter which bag with two cookies Olga chooses, the twins are left with 2 * 9 + 99 = 117 cookies. Thus, Olga has only one option: to take the bag with 99 cookies.
| 500
|
[
{
"input": "1\n1",
"output": "1"
},
{
"input": "10\n1 2 2 3 4 4 4 2 2 2",
"output": "8"
},
{
"input": "11\n2 2 2 2 2 2 2 2 2 2 99",
"output": "1"
},
{
"input": "2\n1 1",
"output": "0"
},
{
"input": "2\n2 2",
"output": "2"
},
{
"input": "2\n1 2",
"output": "1"
},
{
"input": "7\n7 7 7 7 7 7 7",
"output": "7"
},
{
"input": "8\n1 2 3 4 5 6 7 8",
"output": "4"
},
{
"input": "100\n1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 2 2 2 2 2",
"output": "50"
},
{
"input": "99\n99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99",
"output": "49"
},
{
"input": "82\n43 44 96 33 23 42 33 66 53 87 8 90 43 91 40 88 51 18 48 62 59 10 22 20 54 6 13 63 2 56 31 52 98 42 54 32 26 77 9 24 33 91 16 30 39 34 78 82 73 90 12 15 67 76 30 18 44 86 84 98 65 54 100 79 28 34 40 56 11 43 72 35 86 59 89 40 30 33 7 19 44 15",
"output": "50"
},
{
"input": "17\n50 14 17 77 74 74 38 76 41 27 45 29 66 98 38 73 38",
"output": "7"
},
{
"input": "94\n81 19 90 99 26 11 86 44 78 36 80 59 99 90 78 72 71 20 94 56 42 40 71 84 10 85 10 70 52 27 39 55 90 16 48 25 7 79 99 100 38 10 99 56 3 4 78 9 16 57 14 40 52 54 57 70 30 86 56 84 97 60 59 69 49 66 23 92 90 46 86 73 53 47 1 83 14 20 24 66 13 45 41 14 86 75 55 88 48 95 82 24 47 87",
"output": "39"
},
{
"input": "88\n64 95 12 90 40 65 98 45 52 54 79 7 81 25 98 19 68 82 41 53 35 50 5 22 32 21 8 39 8 6 72 27 81 30 12 79 21 42 60 2 66 87 46 93 62 78 52 71 76 32 78 94 86 85 55 15 34 76 41 20 32 26 94 81 89 45 74 49 11 40 40 39 49 46 80 85 90 23 80 40 86 58 70 26 48 93 23 53",
"output": "37"
},
{
"input": "84\n95 9 43 43 13 84 60 90 1 8 97 99 54 34 59 83 33 15 51 26 40 12 66 65 19 30 29 78 92 60 25 13 19 84 71 73 12 24 54 49 16 41 11 40 57 59 34 40 39 9 71 83 1 77 79 53 94 47 78 55 77 85 29 52 80 90 53 77 97 97 27 79 28 23 83 25 26 22 49 86 63 56 3 32",
"output": "51"
},
{
"input": "47\n61 97 76 94 91 22 2 68 62 73 90 47 16 79 44 71 98 68 43 6 53 52 40 27 68 67 43 96 14 91 60 61 96 24 97 13 32 65 85 96 81 77 34 18 23 14 80",
"output": "21"
},
{
"input": "69\n71 1 78 74 58 89 30 6 100 90 22 61 11 59 14 74 27 25 78 61 45 19 25 33 37 4 52 43 53 38 9 100 56 67 69 38 76 91 63 60 93 52 28 61 9 98 8 14 57 63 89 64 98 51 36 66 36 86 13 82 50 91 52 64 86 78 78 83 81",
"output": "37"
},
{
"input": "52\n38 78 36 75 19 3 56 1 39 97 24 79 84 16 93 55 96 64 12 24 1 86 80 29 12 32 36 36 73 39 76 65 53 98 30 20 28 8 86 43 70 22 75 69 62 65 81 25 53 40 71 59",
"output": "28"
},
{
"input": "74\n81 31 67 97 26 75 69 81 11 13 13 74 77 88 52 20 52 64 66 75 72 28 41 54 26 75 41 91 75 15 18 36 13 83 63 61 14 48 53 63 19 67 35 48 23 65 73 100 44 55 92 88 99 17 73 25 83 7 31 89 12 80 98 39 42 75 14 29 81 35 77 87 33 94",
"output": "47"
},
{
"input": "44\n46 56 31 31 37 71 94 2 14 100 45 72 36 72 80 3 38 54 42 98 50 32 31 42 62 31 45 50 95 100 18 17 64 22 18 25 52 56 70 57 43 40 81 28",
"output": "15"
},
{
"input": "22\n28 57 40 74 51 4 45 84 99 12 95 14 92 60 47 81 84 51 31 91 59 42",
"output": "11"
},
{
"input": "59\n73 45 94 76 41 49 65 13 74 66 36 25 47 75 40 23 92 72 11 32 32 8 81 26 68 56 41 8 76 47 96 55 70 11 84 14 83 18 70 22 30 39 28 100 48 11 92 45 78 69 86 1 54 90 98 91 13 17 35",
"output": "33"
},
{
"input": "63\n20 18 44 94 68 57 16 43 74 55 68 24 21 95 76 84 50 50 47 86 86 12 58 55 28 72 86 18 34 45 81 88 3 72 41 9 60 90 81 93 12 6 9 6 2 41 1 7 9 29 81 14 64 80 20 36 67 54 7 5 35 81 22",
"output": "37"
},
{
"input": "28\n49 84 48 19 44 91 11 82 96 95 88 90 71 82 87 25 31 23 18 13 98 45 26 65 35 12 31 14",
"output": "15"
},
{
"input": "61\n34 18 28 64 28 45 9 77 77 20 63 92 79 16 16 100 86 2 91 91 57 15 31 95 10 88 84 5 82 83 53 98 59 17 97 80 76 80 81 3 91 81 87 93 61 46 10 49 6 22 21 75 63 89 21 81 30 19 67 38 77",
"output": "35"
},
{
"input": "90\n41 90 43 1 28 75 90 50 3 70 76 64 81 63 25 69 83 82 29 91 59 66 21 61 7 55 72 49 38 69 72 20 64 58 30 81 61 29 96 14 39 5 100 20 29 98 75 29 44 78 97 45 26 77 73 59 22 99 41 6 3 96 71 20 9 18 96 18 90 62 34 78 54 5 41 6 73 33 2 54 26 21 18 6 45 57 43 73 95 75",
"output": "42"
},
{
"input": "45\n93 69 4 27 20 14 71 48 79 3 32 26 49 30 57 88 13 56 49 61 37 32 47 41 41 70 45 68 82 18 8 6 25 20 15 13 71 99 28 6 52 34 19 59 26",
"output": "23"
},
{
"input": "33\n29 95 48 49 91 10 83 71 47 25 66 36 51 12 34 10 54 74 41 96 89 26 89 1 42 33 1 62 9 32 49 65 78",
"output": "15"
},
{
"input": "34\n98 24 42 36 41 82 28 58 89 34 77 70 76 44 74 54 66 100 13 79 4 88 21 1 11 45 91 29 87 100 29 54 82 78",
"output": "13"
},
{
"input": "29\n91 84 26 84 9 63 52 9 65 56 90 2 36 7 67 33 91 14 65 38 53 36 81 83 85 14 33 95 51",
"output": "17"
},
{
"input": "100\n2 88 92 82 87 100 78 28 84 43 78 32 43 33 97 19 15 52 29 84 57 72 54 13 99 28 82 79 40 70 34 92 91 53 9 88 27 43 14 92 72 37 26 37 20 95 19 34 49 64 33 37 34 27 80 79 9 54 99 68 25 4 68 73 46 66 24 78 3 87 26 52 50 84 4 95 23 83 39 58 86 36 33 16 98 2 84 19 53 12 69 60 10 11 78 17 79 92 77 59",
"output": "45"
},
{
"input": "100\n2 95 45 73 9 54 20 97 57 82 88 26 18 71 25 27 75 54 31 11 58 85 69 75 72 91 76 5 25 80 45 49 4 73 8 81 81 38 5 12 53 77 7 96 90 35 28 80 73 94 19 69 96 17 94 49 69 9 32 19 5 12 46 29 26 40 59 59 6 95 82 50 72 2 45 69 12 5 72 29 39 72 23 96 81 28 28 56 68 58 37 41 30 1 90 84 15 24 96 43",
"output": "53"
},
{
"input": "100\n27 72 35 91 13 10 35 45 24 55 83 84 63 96 29 79 34 67 63 92 48 83 18 77 28 27 49 66 29 88 55 15 6 58 14 67 94 36 77 7 7 64 61 52 71 18 36 99 76 6 50 67 16 13 41 7 89 73 61 51 78 22 78 32 76 100 3 31 89 71 63 53 15 85 77 54 89 33 68 74 3 23 57 5 43 89 75 35 9 86 90 11 31 46 48 37 74 17 77 8",
"output": "40"
},
{
"input": "100\n69 98 69 88 11 49 55 8 25 91 17 81 47 26 15 73 96 71 18 42 42 61 48 14 92 78 35 72 4 27 62 75 83 79 17 16 46 80 96 90 82 54 37 69 85 21 67 70 96 10 46 63 21 59 56 92 54 88 77 30 75 45 44 29 86 100 51 11 65 69 66 56 82 63 27 1 51 51 13 10 3 55 26 85 34 16 87 72 13 100 81 71 90 95 86 50 83 55 55 54",
"output": "53"
},
{
"input": "100\n34 35 99 64 2 66 78 93 20 48 12 79 19 10 87 7 42 92 60 79 5 2 24 89 57 48 63 92 74 4 16 51 7 12 90 48 87 17 18 73 51 58 97 97 25 38 15 97 96 73 67 91 6 75 14 13 87 79 75 3 15 55 35 95 71 45 10 13 20 37 82 26 2 22 13 83 97 84 39 79 43 100 54 59 98 8 61 34 7 65 75 44 24 77 73 88 34 95 44 77",
"output": "55"
},
{
"input": "100\n15 86 3 1 51 26 74 85 37 87 64 58 10 6 57 26 30 47 85 65 24 72 50 40 12 35 91 47 91 60 47 87 95 34 80 91 26 3 36 39 14 86 28 70 51 44 28 21 72 79 57 61 16 71 100 94 57 67 36 74 24 21 89 85 25 2 97 67 76 53 76 80 97 64 35 13 8 32 21 52 62 61 67 14 74 73 66 44 55 76 24 3 43 42 99 61 36 80 38 66",
"output": "52"
},
{
"input": "100\n45 16 54 54 80 94 74 93 75 85 58 95 79 30 81 2 84 4 57 23 92 64 78 1 50 36 13 27 56 54 10 77 87 1 5 38 85 74 94 82 30 45 72 83 82 30 81 82 82 3 69 82 7 92 39 60 94 42 41 5 3 17 67 21 79 44 79 96 28 3 53 68 79 89 63 83 1 44 4 31 84 15 73 77 19 66 54 6 73 1 67 24 91 11 86 45 96 82 20 89",
"output": "51"
},
{
"input": "100\n84 23 50 32 90 71 92 43 58 70 6 82 7 55 85 19 70 89 12 26 29 56 74 30 2 27 4 39 63 67 91 81 11 33 75 10 82 88 39 43 43 80 68 35 55 67 53 62 73 65 86 74 43 51 14 48 42 92 83 57 22 33 24 99 5 27 78 96 7 28 11 15 8 38 85 67 5 92 24 96 57 59 14 95 91 4 9 18 45 33 74 83 64 85 14 51 51 94 29 2",
"output": "53"
},
{
"input": "100\n77 56 56 45 73 55 32 37 39 50 30 95 79 21 44 34 51 43 86 91 39 30 85 15 35 93 100 14 57 31 80 79 38 40 88 4 91 54 7 95 76 26 62 84 17 33 67 47 6 82 69 51 17 2 59 24 11 12 31 90 12 11 55 38 72 49 30 50 42 46 5 97 9 9 30 45 86 23 19 82 40 42 5 40 35 98 35 32 60 60 5 28 84 35 21 49 68 53 68 23",
"output": "48"
},
{
"input": "100\n78 38 79 61 45 86 83 83 86 90 74 69 2 84 73 39 2 5 20 71 24 80 54 89 58 34 77 40 39 62 2 47 28 53 97 75 88 98 94 96 33 71 44 90 47 36 19 89 87 98 90 87 5 85 34 79 82 3 42 88 89 63 35 7 89 30 40 48 12 41 56 76 83 60 80 80 39 56 77 4 72 96 30 55 57 51 7 19 11 1 66 1 91 87 11 62 95 85 79 25",
"output": "48"
},
{
"input": "100\n5 34 23 20 76 75 19 51 17 82 60 13 83 6 65 16 20 43 66 54 87 10 87 73 50 24 16 98 33 28 80 52 54 82 26 92 14 13 84 92 94 29 61 21 60 20 48 94 24 20 75 70 58 27 68 45 86 89 29 8 67 38 83 48 18 100 11 22 46 84 52 97 70 19 50 75 3 7 52 53 72 41 18 31 1 38 49 53 11 64 99 76 9 87 48 12 100 32 44 71",
"output": "58"
},
{
"input": "100\n76 89 68 78 24 72 73 95 98 72 58 15 2 5 56 32 9 65 50 70 94 31 29 54 89 52 31 93 43 56 26 35 72 95 51 55 78 70 11 92 17 5 54 94 81 31 78 95 73 91 95 37 59 9 53 48 65 55 84 8 45 97 64 37 96 34 36 53 66 17 72 48 99 23 27 18 92 84 44 73 60 78 53 29 68 99 19 39 61 40 69 6 77 12 47 29 15 4 8 45",
"output": "53"
},
{
"input": "100\n82 40 31 53 8 50 85 93 3 84 54 17 96 59 51 42 18 19 35 84 79 31 17 46 54 82 72 49 35 73 26 89 61 73 3 50 12 29 25 77 88 21 58 24 22 89 96 54 82 29 96 56 77 16 1 68 90 93 20 23 57 22 31 18 92 90 51 14 50 72 31 54 12 50 66 62 2 34 17 45 68 50 87 97 23 71 1 72 17 82 42 15 20 78 4 49 66 59 10 17",
"output": "54"
},
{
"input": "100\n32 82 82 24 39 53 48 5 29 24 9 37 91 37 91 95 1 97 84 52 12 56 93 47 22 20 14 17 40 22 79 34 24 2 69 30 69 29 3 89 21 46 60 92 39 29 18 24 49 18 40 22 60 13 77 50 39 64 50 70 99 8 66 31 90 38 20 54 7 21 5 56 41 68 69 20 54 89 69 62 9 53 43 89 81 97 15 2 52 78 89 65 16 61 59 42 56 25 32 52",
"output": "49"
},
{
"input": "100\n72 54 23 24 97 14 99 87 15 25 7 23 17 87 72 31 71 87 34 82 51 77 74 85 62 38 24 7 84 48 98 21 29 71 70 84 25 58 67 92 18 44 32 9 81 15 53 29 63 18 86 16 7 31 38 99 70 32 89 16 23 11 66 96 69 82 97 59 6 9 49 80 85 19 6 9 52 51 85 74 53 46 73 55 31 63 78 61 34 80 77 65 87 77 92 52 89 8 52 31",
"output": "44"
},
{
"input": "100\n56 88 8 19 7 15 11 54 35 50 19 57 63 72 51 43 50 19 57 90 40 100 8 92 11 96 30 32 59 65 93 47 62 3 50 41 30 50 72 83 61 46 83 60 20 46 33 1 5 18 83 22 34 16 41 95 63 63 7 59 55 95 91 29 64 60 64 81 45 45 10 9 88 37 69 85 21 82 41 76 42 34 47 78 51 83 65 100 13 22 59 76 63 1 26 86 36 94 99 74",
"output": "46"
},
{
"input": "100\n27 89 67 60 62 80 43 50 28 88 72 5 94 11 63 91 18 78 99 3 71 26 12 97 74 62 23 24 22 3 100 72 98 7 94 32 12 75 61 88 42 48 10 14 45 9 48 56 73 76 70 70 79 90 35 39 96 37 81 11 19 65 99 39 23 79 34 61 35 74 90 37 73 23 46 21 94 84 73 58 11 89 13 9 10 85 42 78 73 32 53 39 49 90 43 5 28 31 97 75",
"output": "53"
},
{
"input": "100\n33 24 97 96 1 14 99 51 13 65 67 20 46 88 42 44 20 49 5 89 98 83 15 40 74 83 58 3 10 79 34 2 69 28 37 100 55 52 14 8 44 94 97 89 6 42 11 28 30 33 55 56 20 57 52 25 75 1 87 42 62 41 37 12 54 85 95 80 42 36 94 96 28 76 54 36 4 17 26 24 62 15 17 79 84 36 92 78 74 91 96 77 54 92 81 91 62 98 37 37",
"output": "43"
},
{
"input": "100\n86 24 61 15 11 85 1 31 47 36 23 36 59 34 3 27 16 29 82 28 58 52 52 66 71 61 98 39 60 20 67 41 67 90 73 29 92 17 70 95 58 98 58 32 21 73 46 56 87 72 80 75 40 27 94 31 59 92 93 37 14 99 96 21 97 23 81 91 52 52 96 94 92 28 38 29 52 16 57 27 17 24 91 21 79 55 96 98 95 94 23 78 79 12 77 35 32 75 100 82",
"output": "51"
},
{
"input": "100\n88 85 41 37 69 21 7 69 36 5 92 26 64 75 22 46 67 20 70 22 62 66 38 24 47 49 68 30 90 31 67 86 86 82 9 51 43 45 48 42 73 44 31 94 45 60 54 66 20 87 11 94 34 32 87 66 56 28 75 39 37 90 72 93 55 72 31 42 30 71 87 61 4 12 12 81 23 61 56 98 71 32 30 33 96 63 92 16 8 78 47 91 47 54 49 3 81 82 41 5",
"output": "47"
},
{
"input": "1\n2",
"output": "1"
},
{
"input": "5\n1 1 3 2 2",
"output": "3"
}
] | 1,644,289,268
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 52
| 154
| 0
|
n=int(input())
a=list(map(int,input().split()))
b=sum(a);ans=0
if b%2==0:
for x in a:
if x%2==0:ans+=1
else:
for x in a:
if x%2==1:ans+=1
print(ans)
|
Title: Cookies
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Olga came to visit the twins Anna and Maria and saw that they have many cookies. The cookies are distributed into bags. As there are many cookies, Olga decided that it's no big deal if she steals a bag. However, she doesn't want the sisters to quarrel because of nothing when they divide the cookies. That's why Olga wants to steal a bag with cookies so that the number of cookies in the remaining bags was even, that is, so that Anna and Maria could evenly divide it into two (even 0 remaining cookies will do, just as any other even number). How many ways there are to steal exactly one cookie bag so that the total number of cookies in the remaining bags was even?
Input Specification:
The first line contains the only integer *n* (1<=≤<=*n*<=≤<=100) — the number of cookie bags Anna and Maria have. The second line contains *n* integers *a**i* (1<=≤<=*a**i*<=≤<=100) — the number of cookies in the *i*-th bag.
Output Specification:
Print in the only line the only number — the sought number of ways. If there are no such ways print 0.
Demo Input:
['1\n1\n', '10\n1 2 2 3 4 4 4 2 2 2\n', '11\n2 2 2 2 2 2 2 2 2 2 99\n']
Demo Output:
['1\n', '8\n', '1\n']
Note:
In the first sample Olga should take the only bag so that the twins ended up with the even number of cookies.
In the second sample Olga can take any of five bags with two cookies or any of three bags with four cookies — 5 + 3 = 8 ways in total.
In the third sample, no matter which bag with two cookies Olga chooses, the twins are left with 2 * 9 + 99 = 117 cookies. Thus, Olga has only one option: to take the bag with 99 cookies.
|
```python
n=int(input())
a=list(map(int,input().split()))
b=sum(a);ans=0
if b%2==0:
for x in a:
if x%2==0:ans+=1
else:
for x in a:
if x%2==1:ans+=1
print(ans)
```
| 3
|
|
467
|
A
|
George and Accommodation
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
George has recently entered the BSUCP (Berland State University for Cool Programmers). George has a friend Alex who has also entered the university. Now they are moving into a dormitory.
George and Alex want to live in the same room. The dormitory has *n* rooms in total. At the moment the *i*-th room has *p**i* people living in it and the room can accommodate *q**i* people in total (*p**i*<=≤<=*q**i*). Your task is to count how many rooms has free place for both George and Alex.
|
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of rooms.
The *i*-th of the next *n* lines contains two integers *p**i* and *q**i* (0<=≤<=*p**i*<=≤<=*q**i*<=≤<=100) — the number of people who already live in the *i*-th room and the room's capacity.
|
Print a single integer — the number of rooms where George and Alex can move in.
|
[
"3\n1 1\n2 2\n3 3\n",
"3\n1 10\n0 10\n10 10\n"
] |
[
"0\n",
"2\n"
] |
none
| 500
|
[
{
"input": "3\n1 1\n2 2\n3 3",
"output": "0"
},
{
"input": "3\n1 10\n0 10\n10 10",
"output": "2"
},
{
"input": "2\n36 67\n61 69",
"output": "2"
},
{
"input": "3\n21 71\n10 88\n43 62",
"output": "3"
},
{
"input": "3\n1 2\n2 3\n3 4",
"output": "0"
},
{
"input": "10\n0 10\n0 20\n0 30\n0 40\n0 50\n0 60\n0 70\n0 80\n0 90\n0 100",
"output": "10"
},
{
"input": "13\n14 16\n30 31\n45 46\n19 20\n15 17\n66 67\n75 76\n95 97\n29 30\n37 38\n0 2\n36 37\n8 9",
"output": "4"
},
{
"input": "19\n66 67\n97 98\n89 91\n67 69\n67 68\n18 20\n72 74\n28 30\n91 92\n27 28\n75 77\n17 18\n74 75\n28 30\n16 18\n90 92\n9 11\n22 24\n52 54",
"output": "12"
},
{
"input": "15\n55 57\n95 97\n57 59\n34 36\n50 52\n96 98\n39 40\n13 15\n13 14\n74 76\n47 48\n56 58\n24 25\n11 13\n67 68",
"output": "10"
},
{
"input": "17\n68 69\n47 48\n30 31\n52 54\n41 43\n33 35\n38 40\n56 58\n45 46\n92 93\n73 74\n61 63\n65 66\n37 39\n67 68\n77 78\n28 30",
"output": "8"
},
{
"input": "14\n64 66\n43 44\n10 12\n76 77\n11 12\n25 27\n87 88\n62 64\n39 41\n58 60\n10 11\n28 29\n57 58\n12 14",
"output": "7"
},
{
"input": "38\n74 76\n52 54\n78 80\n48 49\n40 41\n64 65\n28 30\n6 8\n49 51\n68 70\n44 45\n57 59\n24 25\n46 48\n49 51\n4 6\n63 64\n76 78\n57 59\n18 20\n63 64\n71 73\n88 90\n21 22\n89 90\n65 66\n89 91\n96 98\n42 44\n1 1\n74 76\n72 74\n39 40\n75 76\n29 30\n48 49\n87 89\n27 28",
"output": "22"
},
{
"input": "100\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0",
"output": "0"
},
{
"input": "26\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2",
"output": "0"
},
{
"input": "68\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2",
"output": "68"
},
{
"input": "7\n0 1\n1 5\n2 4\n3 5\n4 6\n5 6\n6 8",
"output": "5"
},
{
"input": "1\n0 0",
"output": "0"
},
{
"input": "1\n100 100",
"output": "0"
},
{
"input": "44\n0 8\n1 11\n2 19\n3 5\n4 29\n5 45\n6 6\n7 40\n8 19\n9 22\n10 18\n11 26\n12 46\n13 13\n14 27\n15 48\n16 25\n17 20\n18 29\n19 27\n20 45\n21 39\n22 29\n23 39\n24 42\n25 37\n26 52\n27 36\n28 43\n29 35\n30 38\n31 70\n32 47\n33 38\n34 61\n35 71\n36 51\n37 71\n38 59\n39 77\n40 70\n41 80\n42 77\n43 73",
"output": "42"
},
{
"input": "3\n1 3\n2 7\n8 9",
"output": "2"
},
{
"input": "53\n0 1\n1 2\n2 3\n3 4\n4 5\n5 6\n6 7\n7 8\n8 9\n9 10\n10 11\n11 12\n12 13\n13 14\n14 15\n15 16\n16 17\n17 18\n18 19\n19 20\n20 21\n21 22\n22 23\n23 24\n24 25\n25 26\n26 27\n27 28\n28 29\n29 30\n30 31\n31 32\n32 33\n33 34\n34 35\n35 36\n36 37\n37 38\n38 39\n39 40\n40 41\n41 42\n42 43\n43 44\n44 45\n45 46\n46 47\n47 48\n48 49\n49 50\n50 51\n51 52\n52 53",
"output": "0"
},
{
"input": "55\n0 0\n1 1\n2 2\n3 3\n4 4\n5 5\n6 6\n7 7\n8 8\n9 9\n10 10\n11 11\n12 12\n13 13\n14 14\n15 15\n16 16\n17 17\n18 18\n19 19\n20 20\n21 21\n22 22\n23 23\n24 24\n25 25\n26 26\n27 27\n28 28\n29 29\n30 30\n31 31\n32 32\n33 33\n34 34\n35 35\n36 36\n37 37\n38 38\n39 39\n40 40\n41 41\n42 42\n43 43\n44 44\n45 45\n46 46\n47 47\n48 48\n49 49\n50 50\n51 51\n52 52\n53 53\n54 54",
"output": "0"
},
{
"input": "51\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 62\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 73\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 82\n55 68\n55 70\n55 63\n55 55\n55 55\n55 55\n55 75\n55 75\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 73\n55 55\n55 82\n55 99\n55 60",
"output": "12"
},
{
"input": "14\n1 1\n1 1\n1 55\n1 16\n1 1\n1 1\n1 55\n1 62\n1 53\n1 26\n1 1\n1 36\n1 2\n1 3",
"output": "8"
}
] | 1,691,669,235
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 27
| 46
| 0
|
a=int(input())
k=0
for i in range(a):
c=input()
c=c.split(" ")
x,y=int(c[0]),int(c[1])
if y-x>=2:
k+=1
else:
continue
print(k)
|
Title: George and Accommodation
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
George has recently entered the BSUCP (Berland State University for Cool Programmers). George has a friend Alex who has also entered the university. Now they are moving into a dormitory.
George and Alex want to live in the same room. The dormitory has *n* rooms in total. At the moment the *i*-th room has *p**i* people living in it and the room can accommodate *q**i* people in total (*p**i*<=≤<=*q**i*). Your task is to count how many rooms has free place for both George and Alex.
Input Specification:
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of rooms.
The *i*-th of the next *n* lines contains two integers *p**i* and *q**i* (0<=≤<=*p**i*<=≤<=*q**i*<=≤<=100) — the number of people who already live in the *i*-th room and the room's capacity.
Output Specification:
Print a single integer — the number of rooms where George and Alex can move in.
Demo Input:
['3\n1 1\n2 2\n3 3\n', '3\n1 10\n0 10\n10 10\n']
Demo Output:
['0\n', '2\n']
Note:
none
|
```python
a=int(input())
k=0
for i in range(a):
c=input()
c=c.split(" ")
x,y=int(c[0]),int(c[1])
if y-x>=2:
k+=1
else:
continue
print(k)
```
| 3
|
|
50
|
A
|
Domino piling
|
PROGRAMMING
| 800
|
[
"greedy",
"math"
] |
A. Domino piling
|
2
|
256
|
You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions:
1. Each domino completely covers two squares.
2. No two dominoes overlap.
3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board.
Find the maximum number of dominoes, which can be placed under these restrictions.
|
In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16).
|
Output one number — the maximal number of dominoes, which can be placed.
|
[
"2 4\n",
"3 3\n"
] |
[
"4\n",
"4\n"
] |
none
| 500
|
[
{
"input": "2 4",
"output": "4"
},
{
"input": "3 3",
"output": "4"
},
{
"input": "1 5",
"output": "2"
},
{
"input": "1 6",
"output": "3"
},
{
"input": "1 15",
"output": "7"
},
{
"input": "1 16",
"output": "8"
},
{
"input": "2 5",
"output": "5"
},
{
"input": "2 6",
"output": "6"
},
{
"input": "2 7",
"output": "7"
},
{
"input": "2 14",
"output": "14"
},
{
"input": "2 15",
"output": "15"
},
{
"input": "1 4",
"output": "2"
},
{
"input": "2 16",
"output": "16"
},
{
"input": "3 5",
"output": "7"
},
{
"input": "3 6",
"output": "9"
},
{
"input": "3 10",
"output": "15"
},
{
"input": "3 14",
"output": "21"
},
{
"input": "3 15",
"output": "22"
},
{
"input": "3 16",
"output": "24"
},
{
"input": "5 7",
"output": "17"
},
{
"input": "16 16",
"output": "128"
},
{
"input": "15 16",
"output": "120"
},
{
"input": "2 3",
"output": "3"
},
{
"input": "15 15",
"output": "112"
},
{
"input": "14 16",
"output": "112"
},
{
"input": "11 13",
"output": "71"
},
{
"input": "5 16",
"output": "40"
},
{
"input": "8 15",
"output": "60"
},
{
"input": "2 2",
"output": "2"
},
{
"input": "3 4",
"output": "6"
},
{
"input": "4 4",
"output": "8"
},
{
"input": "1 1",
"output": "0"
},
{
"input": "1 2",
"output": "1"
},
{
"input": "1 3",
"output": "1"
},
{
"input": "14 15",
"output": "105"
}
] | 1,618,471,106
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 35
| 124
| 0
|
a,b=map(int,input().split())
x=(a*b)/2
print(int(x))
|
Title: Domino piling
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions:
1. Each domino completely covers two squares.
2. No two dominoes overlap.
3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board.
Find the maximum number of dominoes, which can be placed under these restrictions.
Input Specification:
In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16).
Output Specification:
Output one number — the maximal number of dominoes, which can be placed.
Demo Input:
['2 4\n', '3 3\n']
Demo Output:
['4\n', '4\n']
Note:
none
|
```python
a,b=map(int,input().split())
x=(a*b)/2
print(int(x))
```
| 3.969
|
864
|
C
|
Bus
|
PROGRAMMING
| 1,500
|
[
"greedy",
"implementation",
"math"
] | null | null |
A bus moves along the coordinate line *Ox* from the point *x*<==<=0 to the point *x*<==<=*a*. After starting from the point *x*<==<=0, it reaches the point *x*<==<=*a*, immediately turns back and then moves to the point *x*<==<=0. After returning to the point *x*<==<=0 it immediately goes back to the point *x*<==<=*a* and so on. Thus, the bus moves from *x*<==<=0 to *x*<==<=*a* and back. Moving from the point *x*<==<=0 to *x*<==<=*a* or from the point *x*<==<=*a* to *x*<==<=0 is called a bus journey. In total, the bus must make *k* journeys.
The petrol tank of the bus can hold *b* liters of gasoline. To pass a single unit of distance the bus needs to spend exactly one liter of gasoline. The bus starts its first journey with a full petrol tank.
There is a gas station in point *x*<==<=*f*. This point is between points *x*<==<=0 and *x*<==<=*a*. There are no other gas stations on the bus route. While passing by a gas station in either direction the bus can stop and completely refuel its tank. Thus, after stopping to refuel the tank will contain *b* liters of gasoline.
What is the minimum number of times the bus needs to refuel at the point *x*<==<=*f* to make *k* journeys? The first journey starts in the point *x*<==<=0.
|
The first line contains four integers *a*, *b*, *f*, *k* (0<=<<=*f*<=<<=*a*<=≤<=106, 1<=≤<=*b*<=≤<=109, 1<=≤<=*k*<=≤<=104) — the endpoint of the first bus journey, the capacity of the fuel tank of the bus, the point where the gas station is located, and the required number of journeys.
|
Print the minimum number of times the bus needs to refuel to make *k* journeys. If it is impossible for the bus to make *k* journeys, print -1.
|
[
"6 9 2 4\n",
"6 10 2 4\n",
"6 5 4 3\n"
] |
[
"4\n",
"2\n",
"-1\n"
] |
In the first example the bus needs to refuel during each journey.
In the second example the bus can pass 10 units of distance without refueling. So the bus makes the whole first journey, passes 4 units of the distance of the second journey and arrives at the point with the gas station. Then it can refuel its tank, finish the second journey and pass 2 units of distance from the third journey. In this case, it will again arrive at the point with the gas station. Further, he can refill the tank up to 10 liters to finish the third journey and ride all the way of the fourth journey. At the end of the journey the tank will be empty.
In the third example the bus can not make all 3 journeys because if it refuels during the second journey, the tanks will contain only 5 liters of gasoline, but the bus needs to pass 8 units of distance until next refueling.
| 1,500
|
[
{
"input": "6 9 2 4",
"output": "4"
},
{
"input": "6 10 2 4",
"output": "2"
},
{
"input": "6 5 4 3",
"output": "-1"
},
{
"input": "2 2 1 1",
"output": "0"
},
{
"input": "10 4 6 10",
"output": "-1"
},
{
"input": "3 1 1 1",
"output": "-1"
},
{
"input": "2 1 1 1",
"output": "1"
},
{
"input": "1000000 51923215 2302 10000",
"output": "199"
},
{
"input": "10 11 3 2",
"output": "-1"
},
{
"input": "20 50 10 25",
"output": "11"
},
{
"input": "10 10 5 20",
"output": "20"
},
{
"input": "15 65 5 50",
"output": "12"
},
{
"input": "10 19 1 5",
"output": "3"
},
{
"input": "10 19 9 5",
"output": "3"
},
{
"input": "23 46 12 2",
"output": "0"
},
{
"input": "23 46 12 3",
"output": "1"
},
{
"input": "20 20 19 1",
"output": "0"
},
{
"input": "20 23 17 2",
"output": "1"
},
{
"input": "100 70 50 1",
"output": "1"
},
{
"input": "100 70 70 2",
"output": "2"
},
{
"input": "140 480 139 40",
"output": "18"
},
{
"input": "1000000 1000000000 1 1000",
"output": "0"
},
{
"input": "100000 1000000 50000 1000",
"output": "100"
},
{
"input": "1000000 1000000 500000 1000",
"output": "1000"
},
{
"input": "1000000 1000000 500000 10000",
"output": "10000"
},
{
"input": "1000000 2500000 500000 9999",
"output": "4998"
},
{
"input": "1000000 1500000 500000 9999",
"output": "9997"
},
{
"input": "1000000 1500000 500000 10000",
"output": "9998"
},
{
"input": "1000000 1 1 1",
"output": "-1"
},
{
"input": "2 1000000000 1 1",
"output": "0"
},
{
"input": "1000000 1000000000 1 1",
"output": "0"
},
{
"input": "1000000 1 999999 1",
"output": "-1"
},
{
"input": "1000000 1000000000 999999 1",
"output": "0"
},
{
"input": "2 1 1 10000",
"output": "-1"
},
{
"input": "1000000 1 1 10000",
"output": "-1"
},
{
"input": "1000000 1000000000 1 10000",
"output": "10"
},
{
"input": "1000000 1 999999 10000",
"output": "-1"
},
{
"input": "2 1000000000 1 10000",
"output": "0"
},
{
"input": "1000000 1000000000 999999 10000",
"output": "10"
},
{
"input": "10000 78393 3000 9999",
"output": "1428"
},
{
"input": "1000000 8839233 302200 9999",
"output": "1249"
},
{
"input": "900005 3333333 210000 9999",
"output": "3332"
},
{
"input": "6 7 4 2",
"output": "2"
},
{
"input": "3 1 2 1",
"output": "-1"
},
{
"input": "150 100 1 1",
"output": "-1"
},
{
"input": "10 5 6 1",
"output": "-1"
},
{
"input": "51 81 36 38",
"output": "36"
},
{
"input": "100 159 80 2",
"output": "1"
}
] | 1,615,510,104
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 48
| 62
| 307,200
|
a, b, f, k = map(int, input().split())
start = True
tank = b
refuels = 0
possible = True
while k > 0 and possible:
if k == 1:
# can reach end
if tank >= a:
k -= 1
continue
if start:
# need to refuel
# can reach fuel gas station, and can go from gas station to end
if tank >= f and b >= (a - f):
refuels += 1
else:
possible = False
else:
# we are at end
if tank >= (a - f) and b >= f:
refuels += 1
else:
possible = False
else:
# check if we need to refuel at each step
if start:
if tank < f:
possible = False
elif tank >= (a + (a - f)):
# we don't need to refuel
tank -= a
else:
# need to refuel
tank = (b - (a - f))
refuels += 1
else:
if tank < (a - f):
possible = False
elif tank >= (a + f):
tank -= a
else:
# need to refuel
tank = b - f
refuels += 1
start = not start
k -= 1
if not possible:
print(-1)
else:
print(refuels)
|
Title: Bus
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
A bus moves along the coordinate line *Ox* from the point *x*<==<=0 to the point *x*<==<=*a*. After starting from the point *x*<==<=0, it reaches the point *x*<==<=*a*, immediately turns back and then moves to the point *x*<==<=0. After returning to the point *x*<==<=0 it immediately goes back to the point *x*<==<=*a* and so on. Thus, the bus moves from *x*<==<=0 to *x*<==<=*a* and back. Moving from the point *x*<==<=0 to *x*<==<=*a* or from the point *x*<==<=*a* to *x*<==<=0 is called a bus journey. In total, the bus must make *k* journeys.
The petrol tank of the bus can hold *b* liters of gasoline. To pass a single unit of distance the bus needs to spend exactly one liter of gasoline. The bus starts its first journey with a full petrol tank.
There is a gas station in point *x*<==<=*f*. This point is between points *x*<==<=0 and *x*<==<=*a*. There are no other gas stations on the bus route. While passing by a gas station in either direction the bus can stop and completely refuel its tank. Thus, after stopping to refuel the tank will contain *b* liters of gasoline.
What is the minimum number of times the bus needs to refuel at the point *x*<==<=*f* to make *k* journeys? The first journey starts in the point *x*<==<=0.
Input Specification:
The first line contains four integers *a*, *b*, *f*, *k* (0<=<<=*f*<=<<=*a*<=≤<=106, 1<=≤<=*b*<=≤<=109, 1<=≤<=*k*<=≤<=104) — the endpoint of the first bus journey, the capacity of the fuel tank of the bus, the point where the gas station is located, and the required number of journeys.
Output Specification:
Print the minimum number of times the bus needs to refuel to make *k* journeys. If it is impossible for the bus to make *k* journeys, print -1.
Demo Input:
['6 9 2 4\n', '6 10 2 4\n', '6 5 4 3\n']
Demo Output:
['4\n', '2\n', '-1\n']
Note:
In the first example the bus needs to refuel during each journey.
In the second example the bus can pass 10 units of distance without refueling. So the bus makes the whole first journey, passes 4 units of the distance of the second journey and arrives at the point with the gas station. Then it can refuel its tank, finish the second journey and pass 2 units of distance from the third journey. In this case, it will again arrive at the point with the gas station. Further, he can refill the tank up to 10 liters to finish the third journey and ride all the way of the fourth journey. At the end of the journey the tank will be empty.
In the third example the bus can not make all 3 journeys because if it refuels during the second journey, the tanks will contain only 5 liters of gasoline, but the bus needs to pass 8 units of distance until next refueling.
|
```python
a, b, f, k = map(int, input().split())
start = True
tank = b
refuels = 0
possible = True
while k > 0 and possible:
if k == 1:
# can reach end
if tank >= a:
k -= 1
continue
if start:
# need to refuel
# can reach fuel gas station, and can go from gas station to end
if tank >= f and b >= (a - f):
refuels += 1
else:
possible = False
else:
# we are at end
if tank >= (a - f) and b >= f:
refuels += 1
else:
possible = False
else:
# check if we need to refuel at each step
if start:
if tank < f:
possible = False
elif tank >= (a + (a - f)):
# we don't need to refuel
tank -= a
else:
# need to refuel
tank = (b - (a - f))
refuels += 1
else:
if tank < (a - f):
possible = False
elif tank >= (a + f):
tank -= a
else:
# need to refuel
tank = b - f
refuels += 1
start = not start
k -= 1
if not possible:
print(-1)
else:
print(refuels)
```
| 3
|
|
483
|
A
|
Counterexample
|
PROGRAMMING
| 1,100
|
[
"brute force",
"implementation",
"math",
"number theory"
] | null | null |
Your friend has recently learned about coprime numbers. A pair of numbers {*a*,<=*b*} is called coprime if the maximum number that divides both *a* and *b* is equal to one.
Your friend often comes up with different statements. He has recently supposed that if the pair (*a*,<=*b*) is coprime and the pair (*b*,<=*c*) is coprime, then the pair (*a*,<=*c*) is coprime.
You want to find a counterexample for your friend's statement. Therefore, your task is to find three distinct numbers (*a*,<=*b*,<=*c*), for which the statement is false, and the numbers meet the condition *l*<=≤<=*a*<=<<=*b*<=<<=*c*<=≤<=*r*.
More specifically, you need to find three numbers (*a*,<=*b*,<=*c*), such that *l*<=≤<=*a*<=<<=*b*<=<<=*c*<=≤<=*r*, pairs (*a*,<=*b*) and (*b*,<=*c*) are coprime, and pair (*a*,<=*c*) is not coprime.
|
The single line contains two positive space-separated integers *l*, *r* (1<=≤<=*l*<=≤<=*r*<=≤<=1018; *r*<=-<=*l*<=≤<=50).
|
Print three positive space-separated integers *a*, *b*, *c* — three distinct numbers (*a*,<=*b*,<=*c*) that form the counterexample. If there are several solutions, you are allowed to print any of them. The numbers must be printed in ascending order.
If the counterexample does not exist, print the single number -1.
|
[
"2 4\n",
"10 11\n",
"900000000000000009 900000000000000029\n"
] |
[
"2 3 4\n",
"-1\n",
"900000000000000009 900000000000000010 900000000000000021\n"
] |
In the first sample pair (2, 4) is not coprime and pairs (2, 3) and (3, 4) are.
In the second sample you cannot form a group of three distinct integers, so the answer is -1.
In the third sample it is easy to see that numbers 900000000000000009 and 900000000000000021 are divisible by three.
| 500
|
[
{
"input": "2 4",
"output": "2 3 4"
},
{
"input": "10 11",
"output": "-1"
},
{
"input": "900000000000000009 900000000000000029",
"output": "900000000000000009 900000000000000010 900000000000000021"
},
{
"input": "640097987171091791 640097987171091835",
"output": "640097987171091792 640097987171091793 640097987171091794"
},
{
"input": "19534350415104721 19534350415104725",
"output": "19534350415104722 19534350415104723 19534350415104724"
},
{
"input": "933700505788726243 933700505788726280",
"output": "933700505788726244 933700505788726245 933700505788726246"
},
{
"input": "1 3",
"output": "-1"
},
{
"input": "1 4",
"output": "2 3 4"
},
{
"input": "1 1",
"output": "-1"
},
{
"input": "266540997167959130 266540997167959164",
"output": "266540997167959130 266540997167959131 266540997167959132"
},
{
"input": "267367244641009850 267367244641009899",
"output": "267367244641009850 267367244641009851 267367244641009852"
},
{
"input": "268193483524125978 268193483524125993",
"output": "268193483524125978 268193483524125979 268193483524125980"
},
{
"input": "269019726702209402 269019726702209432",
"output": "269019726702209402 269019726702209403 269019726702209404"
},
{
"input": "269845965585325530 269845965585325576",
"output": "269845965585325530 269845965585325531 269845965585325532"
},
{
"input": "270672213058376250 270672213058376260",
"output": "270672213058376250 270672213058376251 270672213058376252"
},
{
"input": "271498451941492378 271498451941492378",
"output": "-1"
},
{
"input": "272324690824608506 272324690824608523",
"output": "272324690824608506 272324690824608507 272324690824608508"
},
{
"input": "273150934002691930 273150934002691962",
"output": "273150934002691930 273150934002691931 273150934002691932"
},
{
"input": "996517375802030516 996517375802030524",
"output": "996517375802030516 996517375802030517 996517375802030518"
},
{
"input": "997343614685146644 997343614685146694",
"output": "997343614685146644 997343614685146645 997343614685146646"
},
{
"input": "998169857863230068 998169857863230083",
"output": "998169857863230068 998169857863230069 998169857863230070"
},
{
"input": "998996101041313492 998996101041313522",
"output": "998996101041313492 998996101041313493 998996101041313494"
},
{
"input": "999822344219396916 999822344219396961",
"output": "999822344219396916 999822344219396917 999822344219396918"
},
{
"input": "648583102513043 648583102513053",
"output": "648583102513044 648583102513045 648583102513046"
},
{
"input": "266540997167959130 266540997167959131",
"output": "-1"
},
{
"input": "267367244641009850 267367244641009850",
"output": "-1"
},
{
"input": "268193483524125978 268193483524125979",
"output": "-1"
},
{
"input": "269019726702209402 269019726702209402",
"output": "-1"
},
{
"input": "269845965585325530 269845965585325530",
"output": "-1"
},
{
"input": "270672213058376250 270672213058376254",
"output": "270672213058376250 270672213058376251 270672213058376252"
},
{
"input": "271498451941492378 271498451941492379",
"output": "-1"
},
{
"input": "272324690824608506 272324690824608508",
"output": "272324690824608506 272324690824608507 272324690824608508"
},
{
"input": "273150934002691930 273150934002691931",
"output": "-1"
},
{
"input": "996517375802030516 996517375802030518",
"output": "996517375802030516 996517375802030517 996517375802030518"
},
{
"input": "997343614685146644 997343614685146644",
"output": "-1"
},
{
"input": "2147483647 2147483649",
"output": "-1"
},
{
"input": "3 5",
"output": "-1"
},
{
"input": "1 7",
"output": "2 3 4"
},
{
"input": "9 12",
"output": "9 11 12"
},
{
"input": "4 4",
"output": "-1"
},
{
"input": "11 13",
"output": "-1"
},
{
"input": "2 2",
"output": "-1"
}
] | 1,597,487,859
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 42
| 109
| 307,200
|
a, b = map(int, input().split())
superbreak = 0
for i in range(a, b+1):
for j in range(i+1, b+1):
for k in range(j+1, b+1):
j2, i2, k2 = j, i, k
lst = sorted([j, i, k])
while j > 0:
i, j = j, i%j
if i == 1:
while k > 0:
j2, k = k, j2%k
if j2 == 1:
while k2 > 0:
i2, k2 = k2, i2%k2
if i2 != 1:
print(*lst)
superbreak = 1
if superbreak:
break
if superbreak:
break
else:
print(-1)
|
Title: Counterexample
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Your friend has recently learned about coprime numbers. A pair of numbers {*a*,<=*b*} is called coprime if the maximum number that divides both *a* and *b* is equal to one.
Your friend often comes up with different statements. He has recently supposed that if the pair (*a*,<=*b*) is coprime and the pair (*b*,<=*c*) is coprime, then the pair (*a*,<=*c*) is coprime.
You want to find a counterexample for your friend's statement. Therefore, your task is to find three distinct numbers (*a*,<=*b*,<=*c*), for which the statement is false, and the numbers meet the condition *l*<=≤<=*a*<=<<=*b*<=<<=*c*<=≤<=*r*.
More specifically, you need to find three numbers (*a*,<=*b*,<=*c*), such that *l*<=≤<=*a*<=<<=*b*<=<<=*c*<=≤<=*r*, pairs (*a*,<=*b*) and (*b*,<=*c*) are coprime, and pair (*a*,<=*c*) is not coprime.
Input Specification:
The single line contains two positive space-separated integers *l*, *r* (1<=≤<=*l*<=≤<=*r*<=≤<=1018; *r*<=-<=*l*<=≤<=50).
Output Specification:
Print three positive space-separated integers *a*, *b*, *c* — three distinct numbers (*a*,<=*b*,<=*c*) that form the counterexample. If there are several solutions, you are allowed to print any of them. The numbers must be printed in ascending order.
If the counterexample does not exist, print the single number -1.
Demo Input:
['2 4\n', '10 11\n', '900000000000000009 900000000000000029\n']
Demo Output:
['2 3 4\n', '-1\n', '900000000000000009 900000000000000010 900000000000000021\n']
Note:
In the first sample pair (2, 4) is not coprime and pairs (2, 3) and (3, 4) are.
In the second sample you cannot form a group of three distinct integers, so the answer is -1.
In the third sample it is easy to see that numbers 900000000000000009 and 900000000000000021 are divisible by three.
|
```python
a, b = map(int, input().split())
superbreak = 0
for i in range(a, b+1):
for j in range(i+1, b+1):
for k in range(j+1, b+1):
j2, i2, k2 = j, i, k
lst = sorted([j, i, k])
while j > 0:
i, j = j, i%j
if i == 1:
while k > 0:
j2, k = k, j2%k
if j2 == 1:
while k2 > 0:
i2, k2 = k2, i2%k2
if i2 != 1:
print(*lst)
superbreak = 1
if superbreak:
break
if superbreak:
break
else:
print(-1)
```
| 3
|
|
298
|
B
|
Sail
|
PROGRAMMING
| 1,200
|
[
"brute force",
"greedy",
"implementation"
] | null | null |
The polar bears are going fishing. They plan to sail from (*s**x*,<=*s**y*) to (*e**x*,<=*e**y*). However, the boat can only sail by wind. At each second, the wind blows in one of these directions: east, south, west or north. Assume the boat is currently at (*x*,<=*y*).
- If the wind blows to the east, the boat will move to (*x*<=+<=1,<=*y*). - If the wind blows to the south, the boat will move to (*x*,<=*y*<=-<=1). - If the wind blows to the west, the boat will move to (*x*<=-<=1,<=*y*). - If the wind blows to the north, the boat will move to (*x*,<=*y*<=+<=1).
Alternatively, they can hold the boat by the anchor. In this case, the boat stays at (*x*,<=*y*). Given the wind direction for *t* seconds, what is the earliest time they sail to (*e**x*,<=*e**y*)?
|
The first line contains five integers *t*,<=*s**x*,<=*s**y*,<=*e**x*,<=*e**y* (1<=≤<=*t*<=≤<=105,<=<=-<=109<=≤<=*s**x*,<=*s**y*,<=*e**x*,<=*e**y*<=≤<=109). The starting location and the ending location will be different.
The second line contains *t* characters, the *i*-th character is the wind blowing direction at the *i*-th second. It will be one of the four possibilities: "E" (east), "S" (south), "W" (west) and "N" (north).
|
If they can reach (*e**x*,<=*e**y*) within *t* seconds, print the earliest time they can achieve it. Otherwise, print "-1" (without quotes).
|
[
"5 0 0 1 1\nSESNW\n",
"10 5 3 3 6\nNENSWESNEE\n"
] |
[
"4\n",
"-1\n"
] |
In the first sample, they can stay at seconds 1, 3, and move at seconds 2, 4.
In the second sample, they cannot sail to the destination.
| 500
|
[
{
"input": "5 0 0 1 1\nSESNW",
"output": "4"
},
{
"input": "10 5 3 3 6\nNENSWESNEE",
"output": "-1"
},
{
"input": "19 -172106364 -468680119 -172106365 -468680119\nSSEEESSSESESWSEESSS",
"output": "13"
},
{
"input": "39 -1000000000 -1000000000 -999999997 -1000000000\nENEENWSWSSWESNSSEESNSESWSWNSWESNENWNWEE",
"output": "4"
},
{
"input": "41 -264908123 -86993764 -264908123 -86993723\nNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN",
"output": "41"
},
{
"input": "34 -1000000000 -1000000000 -999999983 -1000000000\nEEEEESSEWNSSSESWEWSWESEWSEESNEWEEE",
"output": "-1"
},
{
"input": "1 0 0 0 -1\nS",
"output": "1"
},
{
"input": "1 5 5 5 6\nE",
"output": "-1"
},
{
"input": "15 1 1 1 2\nNNNNNNNNNNNNNNN",
"output": "1"
},
{
"input": "11 1 1 1 2\nNNNNNNNNNNN",
"output": "1"
}
] | 1,653,909,933
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 43
| 218
| 204,800
|
inputs = [int(num) for num in input().split()]
t = inputs[0]
sx = inputs[1]
sy = inputs[2]
ex = inputs[3]
ey = inputs[4]
s = input()
if(ex>=sx):
right = abs(ex-sx)
left=0
else:
left = abs(sx-ex)
right=0
if(ey>=sy):
up = abs(ey-sy)
down =0
else:
up=0
down = abs(ey-sy)
time=0
flag=0
for i in range(0,len(s)):
if(s[i]=='S' and down>0):
down-=1
elif(s[i]=='N'and up>0):
up-=1
elif(s[i]=='E'and right>0):
right-=1
elif(s[i]=='W' and left>0):
left-=1
time+=1
if(down==0 and up==0 and left==0 and right==0):
flag=1
break
if(flag==1):
print(time)
else:
print(-1)
|
Title: Sail
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
The polar bears are going fishing. They plan to sail from (*s**x*,<=*s**y*) to (*e**x*,<=*e**y*). However, the boat can only sail by wind. At each second, the wind blows in one of these directions: east, south, west or north. Assume the boat is currently at (*x*,<=*y*).
- If the wind blows to the east, the boat will move to (*x*<=+<=1,<=*y*). - If the wind blows to the south, the boat will move to (*x*,<=*y*<=-<=1). - If the wind blows to the west, the boat will move to (*x*<=-<=1,<=*y*). - If the wind blows to the north, the boat will move to (*x*,<=*y*<=+<=1).
Alternatively, they can hold the boat by the anchor. In this case, the boat stays at (*x*,<=*y*). Given the wind direction for *t* seconds, what is the earliest time they sail to (*e**x*,<=*e**y*)?
Input Specification:
The first line contains five integers *t*,<=*s**x*,<=*s**y*,<=*e**x*,<=*e**y* (1<=≤<=*t*<=≤<=105,<=<=-<=109<=≤<=*s**x*,<=*s**y*,<=*e**x*,<=*e**y*<=≤<=109). The starting location and the ending location will be different.
The second line contains *t* characters, the *i*-th character is the wind blowing direction at the *i*-th second. It will be one of the four possibilities: "E" (east), "S" (south), "W" (west) and "N" (north).
Output Specification:
If they can reach (*e**x*,<=*e**y*) within *t* seconds, print the earliest time they can achieve it. Otherwise, print "-1" (without quotes).
Demo Input:
['5 0 0 1 1\nSESNW\n', '10 5 3 3 6\nNENSWESNEE\n']
Demo Output:
['4\n', '-1\n']
Note:
In the first sample, they can stay at seconds 1, 3, and move at seconds 2, 4.
In the second sample, they cannot sail to the destination.
|
```python
inputs = [int(num) for num in input().split()]
t = inputs[0]
sx = inputs[1]
sy = inputs[2]
ex = inputs[3]
ey = inputs[4]
s = input()
if(ex>=sx):
right = abs(ex-sx)
left=0
else:
left = abs(sx-ex)
right=0
if(ey>=sy):
up = abs(ey-sy)
down =0
else:
up=0
down = abs(ey-sy)
time=0
flag=0
for i in range(0,len(s)):
if(s[i]=='S' and down>0):
down-=1
elif(s[i]=='N'and up>0):
up-=1
elif(s[i]=='E'and right>0):
right-=1
elif(s[i]=='W' and left>0):
left-=1
time+=1
if(down==0 and up==0 and left==0 and right==0):
flag=1
break
if(flag==1):
print(time)
else:
print(-1)
```
| 3
|
|
378
|
A
|
Playing with Dice
|
PROGRAMMING
| 800
|
[
"brute force"
] | null | null |
Two players are playing a game. First each of them writes an integer from 1 to 6, and then a dice is thrown. The player whose written number got closer to the number on the dice wins. If both payers have the same difference, it's a draw.
The first player wrote number *a*, the second player wrote number *b*. How many ways to throw a dice are there, at which the first player wins, or there is a draw, or the second player wins?
|
The single line contains two integers *a* and *b* (1<=≤<=*a*,<=*b*<=≤<=6) — the numbers written on the paper by the first and second player, correspondingly.
|
Print three integers: the number of ways to throw the dice at which the first player wins, the game ends with a draw or the second player wins, correspondingly.
|
[
"2 5\n",
"2 4\n"
] |
[
"3 0 3\n",
"2 1 3\n"
] |
The dice is a standard cube-shaped six-sided object with each side containing a number from 1 to 6, and where all numbers on all sides are distinct.
You can assume that number *a* is closer to number *x* than number *b*, if |*a* - *x*| < |*b* - *x*|.
| 500
|
[
{
"input": "2 5",
"output": "3 0 3"
},
{
"input": "2 4",
"output": "2 1 3"
},
{
"input": "5 3",
"output": "2 1 3"
},
{
"input": "1 6",
"output": "3 0 3"
},
{
"input": "5 1",
"output": "3 1 2"
},
{
"input": "6 3",
"output": "2 0 4"
},
{
"input": "2 3",
"output": "2 0 4"
},
{
"input": "5 6",
"output": "5 0 1"
},
{
"input": "4 4",
"output": "0 6 0"
},
{
"input": "1 1",
"output": "0 6 0"
},
{
"input": "6 4",
"output": "1 1 4"
},
{
"input": "1 4",
"output": "2 0 4"
},
{
"input": "5 5",
"output": "0 6 0"
},
{
"input": "4 5",
"output": "4 0 2"
},
{
"input": "4 3",
"output": "3 0 3"
},
{
"input": "1 5",
"output": "2 1 3"
},
{
"input": "6 5",
"output": "1 0 5"
},
{
"input": "2 2",
"output": "0 6 0"
},
{
"input": "1 3",
"output": "1 1 4"
},
{
"input": "3 6",
"output": "4 0 2"
},
{
"input": "3 1",
"output": "4 1 1"
},
{
"input": "3 2",
"output": "4 0 2"
},
{
"input": "3 5",
"output": "3 1 2"
},
{
"input": "3 3",
"output": "0 6 0"
},
{
"input": "6 2",
"output": "2 1 3"
},
{
"input": "4 1",
"output": "4 0 2"
},
{
"input": "5 2",
"output": "3 0 3"
},
{
"input": "4 2",
"output": "3 1 2"
},
{
"input": "2 1",
"output": "5 0 1"
},
{
"input": "6 1",
"output": "3 0 3"
},
{
"input": "4 6",
"output": "4 1 1"
},
{
"input": "2 6",
"output": "3 1 2"
},
{
"input": "3 4",
"output": "3 0 3"
},
{
"input": "1 2",
"output": "1 0 5"
},
{
"input": "6 6",
"output": "0 6 0"
},
{
"input": "5 4",
"output": "2 0 4"
},
{
"input": "3 3",
"output": "0 6 0"
},
{
"input": "1 1",
"output": "0 6 0"
}
] | 1,659,316,307
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 38
| 46
| 0
|
a, b = list(map(int,input().split(" ")))
w, d, l = 0, 0, 0
for i in range(1,7):
t1, t2 = abs(i - a), abs(i - b)
if(t1 < t2):
w += 1
elif(t1 == t2):
d += 1
else:
l += 1
print(w,d,l)
|
Title: Playing with Dice
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Two players are playing a game. First each of them writes an integer from 1 to 6, and then a dice is thrown. The player whose written number got closer to the number on the dice wins. If both payers have the same difference, it's a draw.
The first player wrote number *a*, the second player wrote number *b*. How many ways to throw a dice are there, at which the first player wins, or there is a draw, or the second player wins?
Input Specification:
The single line contains two integers *a* and *b* (1<=≤<=*a*,<=*b*<=≤<=6) — the numbers written on the paper by the first and second player, correspondingly.
Output Specification:
Print three integers: the number of ways to throw the dice at which the first player wins, the game ends with a draw or the second player wins, correspondingly.
Demo Input:
['2 5\n', '2 4\n']
Demo Output:
['3 0 3\n', '2 1 3\n']
Note:
The dice is a standard cube-shaped six-sided object with each side containing a number from 1 to 6, and where all numbers on all sides are distinct.
You can assume that number *a* is closer to number *x* than number *b*, if |*a* - *x*| < |*b* - *x*|.
|
```python
a, b = list(map(int,input().split(" ")))
w, d, l = 0, 0, 0
for i in range(1,7):
t1, t2 = abs(i - a), abs(i - b)
if(t1 < t2):
w += 1
elif(t1 == t2):
d += 1
else:
l += 1
print(w,d,l)
```
| 3
|
|
557
|
B
|
Pasha and Tea
|
PROGRAMMING
| 1,500
|
[
"constructive algorithms",
"implementation",
"math",
"sortings"
] | null | null |
Pasha decided to invite his friends to a tea party. For that occasion, he has a large teapot with the capacity of *w* milliliters and 2*n* tea cups, each cup is for one of Pasha's friends. The *i*-th cup can hold at most *a**i* milliliters of water.
It turned out that among Pasha's friends there are exactly *n* boys and exactly *n* girls and all of them are going to come to the tea party. To please everyone, Pasha decided to pour the water for the tea as follows:
- Pasha can boil the teapot exactly once by pouring there at most *w* milliliters of water; - Pasha pours the same amount of water to each girl; - Pasha pours the same amount of water to each boy; - if each girl gets *x* milliliters of water, then each boy gets 2*x* milliliters of water.
In the other words, each boy should get two times more water than each girl does.
Pasha is very kind and polite, so he wants to maximize the total amount of the water that he pours to his friends. Your task is to help him and determine the optimum distribution of cups between Pasha's friends.
|
The first line of the input contains two integers, *n* and *w* (1<=≤<=*n*<=≤<=105, 1<=≤<=*w*<=≤<=109) — the number of Pasha's friends that are boys (equal to the number of Pasha's friends that are girls) and the capacity of Pasha's teapot in milliliters.
The second line of the input contains the sequence of integers *a**i* (1<=≤<=*a**i*<=≤<=109, 1<=≤<=*i*<=≤<=2*n*) — the capacities of Pasha's tea cups in milliliters.
|
Print a single real number — the maximum total amount of water in milliliters that Pasha can pour to his friends without violating the given conditions. Your answer will be considered correct if its absolute or relative error doesn't exceed 10<=-<=6.
|
[
"2 4\n1 1 1 1\n",
"3 18\n4 4 4 2 2 2\n",
"1 5\n2 3\n"
] |
[
"3",
"18",
"4.5"
] |
Pasha also has candies that he is going to give to girls but that is another task...
| 1,000
|
[
{
"input": "2 4\n1 1 1 1",
"output": "3.0000000000"
},
{
"input": "3 18\n4 4 4 2 2 2",
"output": "18.0000000000"
},
{
"input": "1 5\n2 3",
"output": "4.5000000000"
},
{
"input": "1 1\n1000000000 1000000000",
"output": "1.0000000000"
},
{
"input": "4 1000000000\n1 1 1 1 1 1 1 1",
"output": "6.0000000000"
},
{
"input": "4 1000000000\n1 1 1 1 2 2 2 2",
"output": "12.0000000000"
},
{
"input": "4 1\n3 3 3 3 4 4 4 4",
"output": "1.0000000000"
},
{
"input": "2 19\n3 3 5 5",
"output": "15.0000000000"
},
{
"input": "3 31\n3 3 3 5 5 5",
"output": "22.5000000000"
},
{
"input": "5 15\n2 3 4 1 2 4 5 3 5 10",
"output": "15.0000000000"
},
{
"input": "5 14\n2 3 4 1 2 4 5 3 5 10",
"output": "14.0000000000"
},
{
"input": "5 16\n2 3 4 1 2 4 5 3 5 10",
"output": "15.0000000000"
},
{
"input": "1 100\n1 200",
"output": "3.0000000000"
},
{
"input": "1 1\n1 1",
"output": "1.0000000000"
},
{
"input": "2 1000000000\n1 1 1 100",
"output": "3.0000000000"
},
{
"input": "4 30\n3 3 3 3 4 5 6 7",
"output": "24.0000000000"
},
{
"input": "2 100\n1 1 1 10",
"output": "3.0000000000"
},
{
"input": "3 18\n1 1 1 1 1 5",
"output": "4.5000000000"
}
] | 1,441,197,166
| 1,066
|
Python 3
|
OK
|
TESTS
| 50
| 233
| 16,896,000
|
def main():
n, w = [int(i) for i in input().split(" ")]
a = [int(i) for i in input().split(" ")]
a = sorted(a)
x = w / (3*n)
if (x <= a[0] and 2*x <= a[n]):
print(w)
else:
print(3*min(a[0], a[n]/2)*n)
if __name__ == "__main__":
main()
|
Title: Pasha and Tea
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Pasha decided to invite his friends to a tea party. For that occasion, he has a large teapot with the capacity of *w* milliliters and 2*n* tea cups, each cup is for one of Pasha's friends. The *i*-th cup can hold at most *a**i* milliliters of water.
It turned out that among Pasha's friends there are exactly *n* boys and exactly *n* girls and all of them are going to come to the tea party. To please everyone, Pasha decided to pour the water for the tea as follows:
- Pasha can boil the teapot exactly once by pouring there at most *w* milliliters of water; - Pasha pours the same amount of water to each girl; - Pasha pours the same amount of water to each boy; - if each girl gets *x* milliliters of water, then each boy gets 2*x* milliliters of water.
In the other words, each boy should get two times more water than each girl does.
Pasha is very kind and polite, so he wants to maximize the total amount of the water that he pours to his friends. Your task is to help him and determine the optimum distribution of cups between Pasha's friends.
Input Specification:
The first line of the input contains two integers, *n* and *w* (1<=≤<=*n*<=≤<=105, 1<=≤<=*w*<=≤<=109) — the number of Pasha's friends that are boys (equal to the number of Pasha's friends that are girls) and the capacity of Pasha's teapot in milliliters.
The second line of the input contains the sequence of integers *a**i* (1<=≤<=*a**i*<=≤<=109, 1<=≤<=*i*<=≤<=2*n*) — the capacities of Pasha's tea cups in milliliters.
Output Specification:
Print a single real number — the maximum total amount of water in milliliters that Pasha can pour to his friends without violating the given conditions. Your answer will be considered correct if its absolute or relative error doesn't exceed 10<=-<=6.
Demo Input:
['2 4\n1 1 1 1\n', '3 18\n4 4 4 2 2 2\n', '1 5\n2 3\n']
Demo Output:
['3', '18', '4.5']
Note:
Pasha also has candies that he is going to give to girls but that is another task...
|
```python
def main():
n, w = [int(i) for i in input().split(" ")]
a = [int(i) for i in input().split(" ")]
a = sorted(a)
x = w / (3*n)
if (x <= a[0] and 2*x <= a[n]):
print(w)
else:
print(3*min(a[0], a[n]/2)*n)
if __name__ == "__main__":
main()
```
| 3
|
|
805
|
A
|
Fake NP
|
PROGRAMMING
| 1,000
|
[
"greedy",
"math"
] | null | null |
Tavak and Seyyed are good friends. Seyyed is very funny and he told Tavak to solve the following problem instead of longest-path.
You are given *l* and *r*. For all integers from *l* to *r*, inclusive, we wrote down all of their integer divisors except 1. Find the integer that we wrote down the maximum number of times.
Solve the problem to show that it's not a NP problem.
|
The first line contains two integers *l* and *r* (2<=≤<=*l*<=≤<=*r*<=≤<=109).
|
Print single integer, the integer that appears maximum number of times in the divisors.
If there are multiple answers, print any of them.
|
[
"19 29\n",
"3 6\n"
] |
[
"2\n",
"3\n"
] |
Definition of a divisor: [https://www.mathsisfun.com/definitions/divisor-of-an-integer-.html](https://www.mathsisfun.com/definitions/divisor-of-an-integer-.html)
The first example: from 19 to 29 these numbers are divisible by 2: {20, 22, 24, 26, 28}.
The second example: from 3 to 6 these numbers are divisible by 3: {3, 6}.
| 500
|
[
{
"input": "19 29",
"output": "2"
},
{
"input": "3 6",
"output": "2"
},
{
"input": "39 91",
"output": "2"
},
{
"input": "76 134",
"output": "2"
},
{
"input": "93 95",
"output": "2"
},
{
"input": "17 35",
"output": "2"
},
{
"input": "94 95",
"output": "2"
},
{
"input": "51 52",
"output": "2"
},
{
"input": "47 52",
"output": "2"
},
{
"input": "38 98",
"output": "2"
},
{
"input": "30 37",
"output": "2"
},
{
"input": "56 92",
"output": "2"
},
{
"input": "900000000 1000000000",
"output": "2"
},
{
"input": "37622224 162971117",
"output": "2"
},
{
"input": "760632746 850720703",
"output": "2"
},
{
"input": "908580370 968054552",
"output": "2"
},
{
"input": "951594860 953554446",
"output": "2"
},
{
"input": "347877978 913527175",
"output": "2"
},
{
"input": "620769961 988145114",
"output": "2"
},
{
"input": "820844234 892579936",
"output": "2"
},
{
"input": "741254764 741254768",
"output": "2"
},
{
"input": "80270976 80270977",
"output": "2"
},
{
"input": "392602363 392602367",
"output": "2"
},
{
"input": "519002744 519002744",
"output": "519002744"
},
{
"input": "331900277 331900277",
"output": "331900277"
},
{
"input": "419873015 419873018",
"output": "2"
},
{
"input": "349533413 349533413",
"output": "349533413"
},
{
"input": "28829775 28829776",
"output": "2"
},
{
"input": "568814539 568814539",
"output": "568814539"
},
{
"input": "720270740 720270743",
"output": "2"
},
{
"input": "871232720 871232722",
"output": "2"
},
{
"input": "305693653 305693653",
"output": "305693653"
},
{
"input": "634097178 634097179",
"output": "2"
},
{
"input": "450868287 450868290",
"output": "2"
},
{
"input": "252662256 252662260",
"output": "2"
},
{
"input": "575062045 575062049",
"output": "2"
},
{
"input": "273072892 273072894",
"output": "2"
},
{
"input": "770439256 770439256",
"output": "770439256"
},
{
"input": "2 1000000000",
"output": "2"
},
{
"input": "6 8",
"output": "2"
},
{
"input": "2 879190747",
"output": "2"
},
{
"input": "5 5",
"output": "5"
},
{
"input": "999999937 999999937",
"output": "999999937"
},
{
"input": "3 3",
"output": "3"
},
{
"input": "5 100",
"output": "2"
},
{
"input": "2 2",
"output": "2"
},
{
"input": "3 18",
"output": "2"
},
{
"input": "7 7",
"output": "7"
},
{
"input": "39916801 39916801",
"output": "39916801"
},
{
"input": "3 8",
"output": "2"
},
{
"input": "13 13",
"output": "13"
},
{
"input": "4 8",
"output": "2"
},
{
"input": "3 12",
"output": "2"
},
{
"input": "6 12",
"output": "2"
},
{
"input": "999999103 999999103",
"output": "999999103"
},
{
"input": "100000007 100000007",
"output": "100000007"
},
{
"input": "3 99",
"output": "2"
},
{
"input": "999999733 999999733",
"output": "999999733"
},
{
"input": "5 10",
"output": "2"
},
{
"input": "982451653 982451653",
"output": "982451653"
},
{
"input": "999900001 1000000000",
"output": "2"
},
{
"input": "999727999 999727999",
"output": "999727999"
},
{
"input": "2 999999999",
"output": "2"
},
{
"input": "242 244",
"output": "2"
},
{
"input": "3 10",
"output": "2"
},
{
"input": "15 27",
"output": "2"
},
{
"input": "998244353 998244353",
"output": "998244353"
},
{
"input": "5 15",
"output": "2"
},
{
"input": "999999797 999999797",
"output": "999999797"
},
{
"input": "2 3",
"output": "2"
},
{
"input": "999999929 999999929",
"output": "999999929"
},
{
"input": "3 111111",
"output": "2"
},
{
"input": "12 18",
"output": "2"
},
{
"input": "479001599 479001599",
"output": "479001599"
},
{
"input": "10000019 10000019",
"output": "10000019"
},
{
"input": "715827883 715827883",
"output": "715827883"
},
{
"input": "999992977 999992977",
"output": "999992977"
},
{
"input": "11 11",
"output": "11"
},
{
"input": "29 29",
"output": "29"
},
{
"input": "1000003 1000003",
"output": "1000003"
},
{
"input": "6 15",
"output": "2"
},
{
"input": "1200007 1200007",
"output": "1200007"
},
{
"input": "3 1000000000",
"output": "2"
},
{
"input": "990000023 990000023",
"output": "990000023"
},
{
"input": "1717 1717",
"output": "1717"
},
{
"input": "141650963 141650963",
"output": "141650963"
},
{
"input": "1002523 1002523",
"output": "1002523"
},
{
"input": "900000011 900000011",
"output": "900000011"
},
{
"input": "104729 104729",
"output": "104729"
},
{
"input": "4 12",
"output": "2"
},
{
"input": "100003 100003",
"output": "100003"
},
{
"input": "17 17",
"output": "17"
},
{
"input": "10 100",
"output": "2"
}
] | 1,640,972,947
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 93
| 109
| 0
|
Homura = [int(i) for i in input().split()]
l = Homura[0]
r = Homura[1]
if l == r:
print(l)
else:
print(2)
|
Title: Fake NP
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Tavak and Seyyed are good friends. Seyyed is very funny and he told Tavak to solve the following problem instead of longest-path.
You are given *l* and *r*. For all integers from *l* to *r*, inclusive, we wrote down all of their integer divisors except 1. Find the integer that we wrote down the maximum number of times.
Solve the problem to show that it's not a NP problem.
Input Specification:
The first line contains two integers *l* and *r* (2<=≤<=*l*<=≤<=*r*<=≤<=109).
Output Specification:
Print single integer, the integer that appears maximum number of times in the divisors.
If there are multiple answers, print any of them.
Demo Input:
['19 29\n', '3 6\n']
Demo Output:
['2\n', '3\n']
Note:
Definition of a divisor: [https://www.mathsisfun.com/definitions/divisor-of-an-integer-.html](https://www.mathsisfun.com/definitions/divisor-of-an-integer-.html)
The first example: from 19 to 29 these numbers are divisible by 2: {20, 22, 24, 26, 28}.
The second example: from 3 to 6 these numbers are divisible by 3: {3, 6}.
|
```python
Homura = [int(i) for i in input().split()]
l = Homura[0]
r = Homura[1]
if l == r:
print(l)
else:
print(2)
```
| 3
|
|
8
|
B
|
Obsession with Robots
|
PROGRAMMING
| 1,400
|
[
"constructive algorithms",
"graphs",
"implementation"
] |
B. Obsession with Robots
|
2
|
64
|
The whole world got obsessed with robots,and to keep pace with the progress, great Berland's programmer Draude decided to build his own robot. He was working hard at the robot. He taught it to walk the shortest path from one point to another, to record all its movements, but like in many Draude's programs, there was a bug — the robot didn't always walk the shortest path. Fortunately, the robot recorded its own movements correctly. Now Draude wants to find out when his robot functions wrong. Heh, if Draude only remembered the map of the field, where he tested the robot, he would easily say if the robot walked in the right direction or not. But the field map was lost never to be found, that's why he asks you to find out if there exist at least one map, where the path recorded by the robot is the shortest.
The map is an infinite checkered field, where each square is either empty, or contains an obstruction. It is also known that the robot never tries to run into the obstruction. By the recorded robot's movements find out if there exist at least one such map, that it is possible to choose for the robot a starting square (the starting square should be empty) such that when the robot moves from this square its movements coincide with the recorded ones (the robot doesn't run into anything, moving along empty squares only), and the path from the starting square to the end one is the shortest.
In one movement the robot can move into the square (providing there are no obstrutions in this square) that has common sides with the square the robot is currently in.
|
The first line of the input file contains the recording of the robot's movements. This recording is a non-empty string, consisting of uppercase Latin letters L, R, U and D, standing for movements left, right, up and down respectively. The length of the string does not exceed 100.
|
In the first line output the only word OK (if the above described map exists), or BUG (if such a map does not exist).
|
[
"LLUUUR\n",
"RRUULLDD\n"
] |
[
"OK\n",
"BUG\n"
] |
none
| 0
|
[
{
"input": "LLUUUR",
"output": "OK"
},
{
"input": "RRUULLDD",
"output": "BUG"
},
{
"input": "L",
"output": "OK"
},
{
"input": "R",
"output": "OK"
},
{
"input": "R",
"output": "OK"
},
{
"input": "RR",
"output": "OK"
},
{
"input": "DL",
"output": "OK"
},
{
"input": "LD",
"output": "OK"
},
{
"input": "RUL",
"output": "BUG"
},
{
"input": "ULD",
"output": "BUG"
},
{
"input": "DDR",
"output": "OK"
},
{
"input": "RRDD",
"output": "OK"
},
{
"input": "RRLR",
"output": "BUG"
},
{
"input": "RRDL",
"output": "BUG"
},
{
"input": "LRUD",
"output": "BUG"
},
{
"input": "RDRLL",
"output": "BUG"
},
{
"input": "DRDRD",
"output": "OK"
},
{
"input": "ULURL",
"output": "BUG"
},
{
"input": "LUUDU",
"output": "BUG"
},
{
"input": "RDLUR",
"output": "BUG"
},
{
"input": "DLDLDDRR",
"output": "OK"
},
{
"input": "RDRDDD",
"output": "OK"
},
{
"input": "UULLDLUR",
"output": "BUG"
},
{
"input": "LULU",
"output": "OK"
},
{
"input": "LLDDLDLLDDDLLLDLLLLLUU",
"output": "OK"
},
{
"input": "LLDDLDLLDDDLLLDLLLLLUU",
"output": "OK"
},
{
"input": "LLDDLDLLDDDLLLDLLLLLUU",
"output": "OK"
},
{
"input": "URRRRRURRURUURRRRRDDDDLDDDRDDDDLLDLL",
"output": "OK"
},
{
"input": "R",
"output": "OK"
},
{
"input": "UL",
"output": "OK"
},
{
"input": "UDR",
"output": "BUG"
},
{
"input": "DDDR",
"output": "OK"
},
{
"input": "UUUDU",
"output": "BUG"
},
{
"input": "LULULL",
"output": "OK"
},
{
"input": "DLURUUU",
"output": "BUG"
},
{
"input": "UURUURRUUU",
"output": "OK"
},
{
"input": "DDDDRDDLDDDDDDDRDDLD",
"output": "OK"
},
{
"input": "URRRLULUURURLRLLLLULLRLRURLULRLULLULRRUU",
"output": "BUG"
},
{
"input": "RURRRRLURRRURRUURRRRRRRRDDULULRRURRRDRRRRRRRRRRLDR",
"output": "BUG"
},
{
"input": "RLRRRRRDRRDRRRRDLRRRRRRRDLRLDDLRRRRLDLDRDRRRRDRDRDRDLRRURRLRRRRDRRRRRRRRLDDRLRRDRRRRRRRDRDRLDRDDDRDR",
"output": "BUG"
},
{
"input": "DDUL",
"output": "BUG"
},
{
"input": "UUULLLLRDD",
"output": "BUG"
},
{
"input": "LLLLLLLLRRRRDDDDDDDUUUUUU",
"output": "BUG"
},
{
"input": "DDDDDDDDDDDDUUUUUUUUUUUURRRRRRRRRRRRRLLLLLLLLLLLLLLL",
"output": "BUG"
},
{
"input": "DDDDDDDDDDDDDDDDDDDDDDDDDLLLLLLLLLLLLLLLLLLLLLLLLRRRRRRRRRRRRRRRRRRRRRRRRRRRUUUUUUUUUUUUUUUUUUUUUUUU",
"output": "BUG"
},
{
"input": "DLUR",
"output": "BUG"
},
{
"input": "UUUURDLLLL",
"output": "BUG"
},
{
"input": "RRRRRRRRRRRURLLLLLLLLLLLL",
"output": "BUG"
},
{
"input": "LLLLLLLLLLLLLLLLLLLLLLLLLLRUUUUUUUUUUUUUUUUUUUUUUUUU",
"output": "BUG"
},
{
"input": "UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUURDRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR",
"output": "BUG"
},
{
"input": "DDLDRRR",
"output": "BUG"
},
{
"input": "RRUULLD",
"output": "BUG"
},
{
"input": "LUUUULLLLDDDDRRRD",
"output": "BUG"
},
{
"input": "DDDDLLLDDDRRRUURRRR",
"output": "BUG"
},
{
"input": "DDDDDDDLLDDRRURRRRRRR",
"output": "BUG"
},
{
"input": "DDDDDDDDDDLLLLLLLLLLLDDDDDDDDDDDRRRRRRRRRRRUUUUUUUUUURRRRRRRRRR",
"output": "BUG"
},
{
"input": "DDDLLLLLLLDDDDDDDRRRRRRRUUUUUURRR",
"output": "BUG"
},
{
"input": "RRRUUULLLDD",
"output": "BUG"
},
{
"input": "DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDLLLLDDDDRRRRUUURRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR",
"output": "BUG"
},
{
"input": "RRRRRRRRRRRDDDDDDDDDDDDDDDDDDDRRRRRRRRRRRRRRRRRRRUUUUUUUUUUUUUUUUUUULLLLLLLLLLLLLLLLLLUUUUUUUUUUU",
"output": "BUG"
}
] | 1,585,464,962
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 60
| 218
| 307,200
|
# maa chudaaye duniya
d = [[0,1], [0, -1], [1, 0], [-1, 0], [0, 0]]
path = input()
vis = []
cur = [0, 0]
f = True
for p in path:
prev = cur
if p == 'L': index = 0
elif p == 'R' : index = 1
elif p == 'U' : index = 2
else: index = 3
cur = [cur[0] + d[index][0], cur[1] + d[index][1]]
if cur in vis:
f = False
print('BUG')
break
for dx, dy in d:
vis.append([prev[0] + dx, prev[1] + dy])
if f:
print('OK')
|
Title: Obsession with Robots
Time Limit: 2 seconds
Memory Limit: 64 megabytes
Problem Description:
The whole world got obsessed with robots,and to keep pace with the progress, great Berland's programmer Draude decided to build his own robot. He was working hard at the robot. He taught it to walk the shortest path from one point to another, to record all its movements, but like in many Draude's programs, there was a bug — the robot didn't always walk the shortest path. Fortunately, the robot recorded its own movements correctly. Now Draude wants to find out when his robot functions wrong. Heh, if Draude only remembered the map of the field, where he tested the robot, he would easily say if the robot walked in the right direction or not. But the field map was lost never to be found, that's why he asks you to find out if there exist at least one map, where the path recorded by the robot is the shortest.
The map is an infinite checkered field, where each square is either empty, or contains an obstruction. It is also known that the robot never tries to run into the obstruction. By the recorded robot's movements find out if there exist at least one such map, that it is possible to choose for the robot a starting square (the starting square should be empty) such that when the robot moves from this square its movements coincide with the recorded ones (the robot doesn't run into anything, moving along empty squares only), and the path from the starting square to the end one is the shortest.
In one movement the robot can move into the square (providing there are no obstrutions in this square) that has common sides with the square the robot is currently in.
Input Specification:
The first line of the input file contains the recording of the robot's movements. This recording is a non-empty string, consisting of uppercase Latin letters L, R, U and D, standing for movements left, right, up and down respectively. The length of the string does not exceed 100.
Output Specification:
In the first line output the only word OK (if the above described map exists), or BUG (if such a map does not exist).
Demo Input:
['LLUUUR\n', 'RRUULLDD\n']
Demo Output:
['OK\n', 'BUG\n']
Note:
none
|
```python
# maa chudaaye duniya
d = [[0,1], [0, -1], [1, 0], [-1, 0], [0, 0]]
path = input()
vis = []
cur = [0, 0]
f = True
for p in path:
prev = cur
if p == 'L': index = 0
elif p == 'R' : index = 1
elif p == 'U' : index = 2
else: index = 3
cur = [cur[0] + d[index][0], cur[1] + d[index][1]]
if cur in vis:
f = False
print('BUG')
break
for dx, dy in d:
vis.append([prev[0] + dx, prev[1] + dy])
if f:
print('OK')
```
| 3.943211
|
9
|
A
|
Die Roll
|
PROGRAMMING
| 800
|
[
"math",
"probabilities"
] |
A. Die Roll
|
1
|
64
|
Yakko, Wakko and Dot, world-famous animaniacs, decided to rest from acting in cartoons, and take a leave to travel a bit. Yakko dreamt to go to Pennsylvania, his Motherland and the Motherland of his ancestors. Wakko thought about Tasmania, its beaches, sun and sea. Dot chose Transylvania as the most mysterious and unpredictable place.
But to their great regret, the leave turned to be very short, so it will be enough to visit one of the three above named places. That's why Yakko, as the cleverest, came up with a truly genius idea: let each of the three roll an ordinary six-sided die, and the one with the highest amount of points will be the winner, and will take the other two to the place of his/her dreams.
Yakko thrown a die and got Y points, Wakko — W points. It was Dot's turn. But she didn't hurry. Dot wanted to know for sure what were her chances to visit Transylvania.
It is known that Yakko and Wakko are true gentlemen, that's why if they have the same amount of points with Dot, they will let Dot win.
|
The only line of the input file contains two natural numbers Y and W — the results of Yakko's and Wakko's die rolls.
|
Output the required probability in the form of irreducible fraction in format «A/B», where A — the numerator, and B — the denominator. If the required probability equals to zero, output «0/1». If the required probability equals to 1, output «1/1».
|
[
"4 2\n"
] |
[
"1/2\n"
] |
Dot will go to Transylvania, if she is lucky to roll 4, 5 or 6 points.
| 0
|
[
{
"input": "4 2",
"output": "1/2"
},
{
"input": "1 1",
"output": "1/1"
},
{
"input": "1 2",
"output": "5/6"
},
{
"input": "1 3",
"output": "2/3"
},
{
"input": "1 4",
"output": "1/2"
},
{
"input": "1 5",
"output": "1/3"
},
{
"input": "1 6",
"output": "1/6"
},
{
"input": "2 1",
"output": "5/6"
},
{
"input": "2 2",
"output": "5/6"
},
{
"input": "2 3",
"output": "2/3"
},
{
"input": "2 4",
"output": "1/2"
},
{
"input": "2 5",
"output": "1/3"
},
{
"input": "2 6",
"output": "1/6"
},
{
"input": "3 1",
"output": "2/3"
},
{
"input": "3 2",
"output": "2/3"
},
{
"input": "3 3",
"output": "2/3"
},
{
"input": "3 4",
"output": "1/2"
},
{
"input": "3 5",
"output": "1/3"
},
{
"input": "3 6",
"output": "1/6"
},
{
"input": "4 1",
"output": "1/2"
},
{
"input": "4 3",
"output": "1/2"
},
{
"input": "4 4",
"output": "1/2"
},
{
"input": "4 5",
"output": "1/3"
},
{
"input": "4 6",
"output": "1/6"
},
{
"input": "5 1",
"output": "1/3"
},
{
"input": "5 2",
"output": "1/3"
},
{
"input": "5 3",
"output": "1/3"
},
{
"input": "5 4",
"output": "1/3"
},
{
"input": "5 5",
"output": "1/3"
},
{
"input": "5 6",
"output": "1/6"
},
{
"input": "6 1",
"output": "1/6"
},
{
"input": "6 2",
"output": "1/6"
},
{
"input": "6 3",
"output": "1/6"
},
{
"input": "6 4",
"output": "1/6"
},
{
"input": "6 5",
"output": "1/6"
},
{
"input": "6 6",
"output": "1/6"
}
] | 1,664,377,900
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 36
| 92
| 0
|
y,w=map(int,input().split())
mx=max(y,w)
a,b=0,0
mx=6-mx+1
if(mx==0):
a=0
b=1
elif(mx==1):
a=1
b=6
elif(mx==2):
a=1
b=3
elif(mx==3):
a=1
b=2
elif(mx==4):
a=2
b=3
elif(mx==5):
a=5
b=6
else:
a,b=1,1
print(a,end='')
print( '/' , end='')
print(b)
|
Title: Die Roll
Time Limit: 1 seconds
Memory Limit: 64 megabytes
Problem Description:
Yakko, Wakko and Dot, world-famous animaniacs, decided to rest from acting in cartoons, and take a leave to travel a bit. Yakko dreamt to go to Pennsylvania, his Motherland and the Motherland of his ancestors. Wakko thought about Tasmania, its beaches, sun and sea. Dot chose Transylvania as the most mysterious and unpredictable place.
But to their great regret, the leave turned to be very short, so it will be enough to visit one of the three above named places. That's why Yakko, as the cleverest, came up with a truly genius idea: let each of the three roll an ordinary six-sided die, and the one with the highest amount of points will be the winner, and will take the other two to the place of his/her dreams.
Yakko thrown a die and got Y points, Wakko — W points. It was Dot's turn. But she didn't hurry. Dot wanted to know for sure what were her chances to visit Transylvania.
It is known that Yakko and Wakko are true gentlemen, that's why if they have the same amount of points with Dot, they will let Dot win.
Input Specification:
The only line of the input file contains two natural numbers Y and W — the results of Yakko's and Wakko's die rolls.
Output Specification:
Output the required probability in the form of irreducible fraction in format «A/B», where A — the numerator, and B — the denominator. If the required probability equals to zero, output «0/1». If the required probability equals to 1, output «1/1».
Demo Input:
['4 2\n']
Demo Output:
['1/2\n']
Note:
Dot will go to Transylvania, if she is lucky to roll 4, 5 or 6 points.
|
```python
y,w=map(int,input().split())
mx=max(y,w)
a,b=0,0
mx=6-mx+1
if(mx==0):
a=0
b=1
elif(mx==1):
a=1
b=6
elif(mx==2):
a=1
b=3
elif(mx==3):
a=1
b=2
elif(mx==4):
a=2
b=3
elif(mx==5):
a=5
b=6
else:
a,b=1,1
print(a,end='')
print( '/' , end='')
print(b)
```
| 3.954
|
919
|
B
|
Perfect Number
|
PROGRAMMING
| 1,100
|
[
"binary search",
"brute force",
"dp",
"implementation",
"number theory"
] | null | null |
We consider a positive integer perfect, if and only if the sum of its digits is exactly $10$. Given a positive integer $k$, your task is to find the $k$-th smallest perfect positive integer.
|
A single line with a positive integer $k$ ($1 \leq k \leq 10\,000$).
|
A single number, denoting the $k$-th smallest perfect integer.
|
[
"1\n",
"2\n"
] |
[
"19\n",
"28\n"
] |
The first perfect integer is $19$ and the second one is $28$.
| 750
|
[
{
"input": "1",
"output": "19"
},
{
"input": "2",
"output": "28"
},
{
"input": "13",
"output": "136"
},
{
"input": "101",
"output": "1432"
},
{
"input": "1023",
"output": "100270"
},
{
"input": "9999",
"output": "10800010"
},
{
"input": "10000",
"output": "10800100"
},
{
"input": "2333",
"output": "310060"
},
{
"input": "9139",
"output": "10134010"
},
{
"input": "9859",
"output": "10422001"
},
{
"input": "5987",
"output": "2221201"
},
{
"input": "3",
"output": "37"
},
{
"input": "4",
"output": "46"
},
{
"input": "5",
"output": "55"
},
{
"input": "7",
"output": "73"
},
{
"input": "9",
"output": "91"
},
{
"input": "10",
"output": "109"
},
{
"input": "15",
"output": "154"
},
{
"input": "51",
"output": "613"
},
{
"input": "99",
"output": "1414"
},
{
"input": "138",
"output": "2224"
},
{
"input": "233",
"output": "5050"
},
{
"input": "666",
"output": "27100"
},
{
"input": "1234",
"output": "110206"
},
{
"input": "3567",
"output": "1033003"
},
{
"input": "4445",
"output": "1221301"
},
{
"input": "5689",
"output": "2114002"
},
{
"input": "6666",
"output": "3102004"
},
{
"input": "7777",
"output": "5300200"
},
{
"input": "8888",
"output": "10110061"
},
{
"input": "9411",
"output": "10214200"
},
{
"input": "5539",
"output": "2101114"
},
{
"input": "6259",
"output": "2511100"
},
{
"input": "2387",
"output": "312220"
},
{
"input": "8515",
"output": "10030114"
}
] | 1,650,130,299
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 35
| 264
| 4,096,000
|
import time
h=[]
f=int(input())
t=time.time()
for i in range(10,10**8//9,9):
u=sum(map(int, str(i)))
if u==10:
h.append(i)
print(h[f-1])
#print(time.time()-t)
|
Title: Perfect Number
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
We consider a positive integer perfect, if and only if the sum of its digits is exactly $10$. Given a positive integer $k$, your task is to find the $k$-th smallest perfect positive integer.
Input Specification:
A single line with a positive integer $k$ ($1 \leq k \leq 10\,000$).
Output Specification:
A single number, denoting the $k$-th smallest perfect integer.
Demo Input:
['1\n', '2\n']
Demo Output:
['19\n', '28\n']
Note:
The first perfect integer is $19$ and the second one is $28$.
|
```python
import time
h=[]
f=int(input())
t=time.time()
for i in range(10,10**8//9,9):
u=sum(map(int, str(i)))
if u==10:
h.append(i)
print(h[f-1])
#print(time.time()-t)
```
| 3
|
|
673
|
A
|
Bear and Game
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Bear Limak likes watching sports on TV. He is going to watch a game today. The game lasts 90 minutes and there are no breaks.
Each minute can be either interesting or boring. If 15 consecutive minutes are boring then Limak immediately turns TV off.
You know that there will be *n* interesting minutes *t*1,<=*t*2,<=...,<=*t**n*. Your task is to calculate for how many minutes Limak will watch the game.
|
The first line of the input contains one integer *n* (1<=≤<=*n*<=≤<=90) — the number of interesting minutes.
The second line contains *n* integers *t*1,<=*t*2,<=...,<=*t**n* (1<=≤<=*t*1<=<<=*t*2<=<<=... *t**n*<=≤<=90), given in the increasing order.
|
Print the number of minutes Limak will watch the game.
|
[
"3\n7 20 88\n",
"9\n16 20 30 40 50 60 70 80 90\n",
"9\n15 20 30 40 50 60 70 80 90\n"
] |
[
"35\n",
"15\n",
"90\n"
] |
In the first sample, minutes 21, 22, ..., 35 are all boring and thus Limak will turn TV off immediately after the 35-th minute. So, he would watch the game for 35 minutes.
In the second sample, the first 15 minutes are boring.
In the third sample, there are no consecutive 15 boring minutes. So, Limak will watch the whole game.
| 500
|
[
{
"input": "3\n7 20 88",
"output": "35"
},
{
"input": "9\n16 20 30 40 50 60 70 80 90",
"output": "15"
},
{
"input": "9\n15 20 30 40 50 60 70 80 90",
"output": "90"
},
{
"input": "30\n6 11 12 15 22 24 30 31 32 33 34 35 40 42 44 45 47 50 53 54 57 58 63 67 75 77 79 81 83 88",
"output": "90"
},
{
"input": "60\n1 2 4 5 6 7 11 14 16 18 20 21 22 23 24 25 26 33 34 35 36 37 38 39 41 42 43 44 46 47 48 49 52 55 56 57 58 59 60 61 63 64 65 67 68 70 71 72 73 74 75 77 78 80 82 83 84 85 86 88",
"output": "90"
},
{
"input": "90\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90",
"output": "90"
},
{
"input": "1\n1",
"output": "16"
},
{
"input": "5\n15 30 45 60 75",
"output": "90"
},
{
"input": "6\n14 29 43 59 70 74",
"output": "58"
},
{
"input": "1\n15",
"output": "30"
},
{
"input": "1\n16",
"output": "15"
},
{
"input": "14\n14 22 27 31 35 44 46 61 62 69 74 79 88 89",
"output": "90"
},
{
"input": "76\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90",
"output": "90"
},
{
"input": "1\n90",
"output": "15"
},
{
"input": "6\n13 17 32 47 60 66",
"output": "81"
},
{
"input": "84\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84",
"output": "90"
},
{
"input": "9\n6 20 27 28 40 53 59 70 85",
"output": "90"
},
{
"input": "12\n14 22 27 31 35 44 62 69 74 79 88 89",
"output": "59"
},
{
"input": "5\n15 30 45 60 74",
"output": "89"
},
{
"input": "72\n3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89",
"output": "54"
},
{
"input": "8\n1 16 30 31 32 33 34 50",
"output": "49"
},
{
"input": "12\n1 3 6 10 15 21 28 36 45 55 66 78",
"output": "90"
},
{
"input": "25\n1 2 3 4 5 6 7 8 9 10 11 23 36 50 65 81 82 83 84 85 86 87 88 89 90",
"output": "80"
},
{
"input": "8\n5 17 20 35 42 53 67 76",
"output": "90"
},
{
"input": "9\n15 28 39 48 55 60 63 64 74",
"output": "89"
},
{
"input": "10\n15 28 39 48 55 60 63 64 74 82",
"output": "90"
},
{
"input": "2\n1 18",
"output": "16"
},
{
"input": "9\n10 20 30 40 50 60 70 80 84",
"output": "90"
},
{
"input": "2\n16 50",
"output": "15"
},
{
"input": "6\n15 30 45 60 75 84",
"output": "90"
},
{
"input": "8\n15 20 30 40 50 60 73 83",
"output": "90"
},
{
"input": "8\n10 20 30 40 50 60 70 80",
"output": "90"
},
{
"input": "3\n1 20 90",
"output": "16"
},
{
"input": "6\n15 30 45 60 74 89",
"output": "90"
}
] | 1,540,440,077
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 34
| 109
| 0
|
n = int(input())
moment = list(map(int, input().split()))
def stupid_bear (a):
for i in range (len(a)):
if i == 0:
if a[i] > 15:
ans = 15
return ans
else:
if a[i]- a[i-1] > 15:
ans = a[i-1]+15
return ans
if a[i]- a[i-1] <= 15 and i == len(a)-1:
ans = a[i]
return ans
moment.append(90)
print (stupid_bear(moment))
|
Title: Bear and Game
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Bear Limak likes watching sports on TV. He is going to watch a game today. The game lasts 90 minutes and there are no breaks.
Each minute can be either interesting or boring. If 15 consecutive minutes are boring then Limak immediately turns TV off.
You know that there will be *n* interesting minutes *t*1,<=*t*2,<=...,<=*t**n*. Your task is to calculate for how many minutes Limak will watch the game.
Input Specification:
The first line of the input contains one integer *n* (1<=≤<=*n*<=≤<=90) — the number of interesting minutes.
The second line contains *n* integers *t*1,<=*t*2,<=...,<=*t**n* (1<=≤<=*t*1<=<<=*t*2<=<<=... *t**n*<=≤<=90), given in the increasing order.
Output Specification:
Print the number of minutes Limak will watch the game.
Demo Input:
['3\n7 20 88\n', '9\n16 20 30 40 50 60 70 80 90\n', '9\n15 20 30 40 50 60 70 80 90\n']
Demo Output:
['35\n', '15\n', '90\n']
Note:
In the first sample, minutes 21, 22, ..., 35 are all boring and thus Limak will turn TV off immediately after the 35-th minute. So, he would watch the game for 35 minutes.
In the second sample, the first 15 minutes are boring.
In the third sample, there are no consecutive 15 boring minutes. So, Limak will watch the whole game.
|
```python
n = int(input())
moment = list(map(int, input().split()))
def stupid_bear (a):
for i in range (len(a)):
if i == 0:
if a[i] > 15:
ans = 15
return ans
else:
if a[i]- a[i-1] > 15:
ans = a[i-1]+15
return ans
if a[i]- a[i-1] <= 15 and i == len(a)-1:
ans = a[i]
return ans
moment.append(90)
print (stupid_bear(moment))
```
| 3
|
|
96
|
A
|
Football
|
PROGRAMMING
| 900
|
[
"implementation",
"strings"
] |
A. Football
|
2
|
256
|
Petya loves football very much. One day, as he was watching a football match, he was writing the players' current positions on a piece of paper. To simplify the situation he depicted it as a string consisting of zeroes and ones. A zero corresponds to players of one team; a one corresponds to players of another team. If there are at least 7 players of some team standing one after another, then the situation is considered dangerous. For example, the situation 00100110111111101 is dangerous and 11110111011101 is not. You are given the current situation. Determine whether it is dangerous or not.
|
The first input line contains a non-empty string consisting of characters "0" and "1", which represents players. The length of the string does not exceed 100 characters. There's at least one player from each team present on the field.
|
Print "YES" if the situation is dangerous. Otherwise, print "NO".
|
[
"001001\n",
"1000000001\n"
] |
[
"NO\n",
"YES\n"
] |
none
| 500
|
[
{
"input": "001001",
"output": "NO"
},
{
"input": "1000000001",
"output": "YES"
},
{
"input": "00100110111111101",
"output": "YES"
},
{
"input": "11110111111111111",
"output": "YES"
},
{
"input": "01",
"output": "NO"
},
{
"input": "10100101",
"output": "NO"
},
{
"input": "1010010100000000010",
"output": "YES"
},
{
"input": "101010101",
"output": "NO"
},
{
"input": "000000000100000000000110101100000",
"output": "YES"
},
{
"input": "100001000000110101100000",
"output": "NO"
},
{
"input": "100001000011010110000",
"output": "NO"
},
{
"input": "010",
"output": "NO"
},
{
"input": "10101011111111111111111111111100",
"output": "YES"
},
{
"input": "1001101100",
"output": "NO"
},
{
"input": "1001101010",
"output": "NO"
},
{
"input": "1111100111",
"output": "NO"
},
{
"input": "00110110001110001111",
"output": "NO"
},
{
"input": "11110001001111110001",
"output": "NO"
},
{
"input": "10001111001011111101",
"output": "NO"
},
{
"input": "10000010100000001000110001010100001001001010011",
"output": "YES"
},
{
"input": "01111011111010111100101100001011001010111110000010",
"output": "NO"
},
{
"input": "00100000100100101110011001011011101110110110010100",
"output": "NO"
},
{
"input": "10110100110001001011110101110010100010000000000100101010111110111110100011",
"output": "YES"
},
{
"input": "00011101010101111001011011001101101011111101000010100000111000011100101011",
"output": "NO"
},
{
"input": "01110000110100110101110100111000101101011101011110110100100111100001110111",
"output": "NO"
},
{
"input": "11110110011000100111100111101101011111110100010101011011111101110110110111",
"output": "YES"
},
{
"input": "100100010101110010001011001110100011100010011110100101100011010001001010001001101111001100",
"output": "NO"
},
{
"input": "111110010001011010010011111100110110001111000010100011011100111101111101110010101111011110000001010",
"output": "NO"
},
{
"input": "111110111100010100000100001010111011101011000111011011011010110010100010000101011111000011010011110",
"output": "NO"
},
{
"input": "1011110110111010110111111010010010100011111011110000011000110010011110111010110100011010100010111000",
"output": "NO"
},
{
"input": "0010100111100010110110000011100111110100111110001010000100111111111010111100101101010101001011010110",
"output": "YES"
},
{
"input": "1111010100010100101011101100101101110011000010100010000001111100010011100101010001101111000001011000",
"output": "NO"
},
{
"input": "0101100011001110001110100111100011010101011000000000110110010010111100101111010111100011101100100101",
"output": "YES"
},
{
"input": "0001101110011101110000000010011111101001101111100001001010110000110001100000010001111011011110001101",
"output": "YES"
},
{
"input": "1000010000100000100010000100001000010000100001000010000100001000010000100001000010000100001000010000",
"output": "NO"
},
{
"input": "1000000000100000000010000000001000000000100000000010000000001000000000100000000010000000001000000000",
"output": "YES"
},
{
"input": "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001",
"output": "YES"
},
{
"input": "1111111111111111111111111111111111111111011111111111111111111111111111111111111111111111111111111111",
"output": "YES"
},
{
"input": "10100101000",
"output": "NO"
},
{
"input": "11110111011101",
"output": "NO"
},
{
"input": "10000000",
"output": "YES"
},
{
"input": "00000001",
"output": "YES"
},
{
"input": "01111111",
"output": "YES"
},
{
"input": "11111110",
"output": "YES"
}
] | 1,680,020,263
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 44
| 124
| 0
|
# https://codeforces.com/contest/96/problem/A
s = input()
print('YES' if '1' * 7 in s or '0' * 7 in s else 'NO')
|
Title: Football
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Petya loves football very much. One day, as he was watching a football match, he was writing the players' current positions on a piece of paper. To simplify the situation he depicted it as a string consisting of zeroes and ones. A zero corresponds to players of one team; a one corresponds to players of another team. If there are at least 7 players of some team standing one after another, then the situation is considered dangerous. For example, the situation 00100110111111101 is dangerous and 11110111011101 is not. You are given the current situation. Determine whether it is dangerous or not.
Input Specification:
The first input line contains a non-empty string consisting of characters "0" and "1", which represents players. The length of the string does not exceed 100 characters. There's at least one player from each team present on the field.
Output Specification:
Print "YES" if the situation is dangerous. Otherwise, print "NO".
Demo Input:
['001001\n', '1000000001\n']
Demo Output:
['NO\n', 'YES\n']
Note:
none
|
```python
# https://codeforces.com/contest/96/problem/A
s = input()
print('YES' if '1' * 7 in s or '0' * 7 in s else 'NO')
```
| 3.969
|
205
|
A
|
Little Elephant and Rozdil
|
PROGRAMMING
| 900
|
[
"brute force",
"implementation"
] | null | null |
The Little Elephant loves Ukraine very much. Most of all he loves town Rozdol (ukr. "Rozdil").
However, Rozdil is dangerous to settle, so the Little Elephant wants to go to some other town. The Little Elephant doesn't like to spend much time on travelling, so for his journey he will choose a town that needs minimum time to travel to. If there are multiple such cities, then the Little Elephant won't go anywhere.
For each town except for Rozdil you know the time needed to travel to this town. Find the town the Little Elephant will go to or print "Still Rozdil", if he stays in Rozdil.
|
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=105) — the number of cities. The next line contains *n* integers, separated by single spaces: the *i*-th integer represents the time needed to go from town Rozdil to the *i*-th town. The time values are positive integers, not exceeding 109.
You can consider the cities numbered from 1 to *n*, inclusive. Rozdil is not among the numbered cities.
|
Print the answer on a single line — the number of the town the Little Elephant will go to. If there are multiple cities with minimum travel time, print "Still Rozdil" (without the quotes).
|
[
"2\n7 4\n",
"7\n7 4 47 100 4 9 12\n"
] |
[
"2\n",
"Still Rozdil\n"
] |
In the first sample there are only two cities where the Little Elephant can go. The travel time for the first town equals 7, to the second one — 4. The town which is closest to Rodzil (the only one) is the second one, so the answer is 2.
In the second sample the closest cities are cities two and five, the travelling time to both of them equals 4, so the answer is "Still Rozdil".
| 500
|
[
{
"input": "2\n7 4",
"output": "2"
},
{
"input": "7\n7 4 47 100 4 9 12",
"output": "Still Rozdil"
},
{
"input": "1\n47",
"output": "1"
},
{
"input": "2\n1000000000 1000000000",
"output": "Still Rozdil"
},
{
"input": "7\n7 6 5 4 3 2 1",
"output": "7"
},
{
"input": "10\n1 1 1 1 1 1 1 1 1 1",
"output": "Still Rozdil"
},
{
"input": "4\n1000000000 100000000 1000000 1000000",
"output": "Still Rozdil"
},
{
"input": "20\n7 1 1 2 1 1 8 7 7 8 4 3 7 10 5 3 10 5 10 6",
"output": "Still Rozdil"
},
{
"input": "20\n3 3 6 9 8 2 4 1 7 3 2 9 7 7 9 7 2 6 2 7",
"output": "8"
},
{
"input": "47\n35 79 84 56 67 95 80 34 77 68 14 55 95 32 40 89 58 79 96 66 50 79 35 86 31 74 91 35 22 72 84 38 11 59 73 51 65 11 11 62 30 12 32 71 69 15 11",
"output": "Still Rozdil"
},
{
"input": "47\n3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3",
"output": "32"
},
{
"input": "25\n73 56 65 70 57 57 49 50 65 68 54 48 66 55 55 66 60 70 47 62 63 70 62 70 63",
"output": "19"
},
{
"input": "100\n922 938 103 689 526 118 314 496 373 47 224 544 495 656 804 754 269 356 354 536 817 597 787 178 516 659 790 993 786 169 866 779 997 350 674 437 219 546 564 893 402 449 751 628 238 686 392 951 716 439 332 563 215 146 746 311 866 773 548 675 731 183 890 802 488 944 473 25 662 559 732 534 777 144 502 593 839 692 84 337 679 718 1005 663 709 940 86 469 310 960 902 233 606 761 116 231 662 903 68 622",
"output": "68"
},
{
"input": "5\n5 5 2 3 1",
"output": "5"
},
{
"input": "1\n1000000000",
"output": "1"
},
{
"input": "3\n7 7 4",
"output": "3"
},
{
"input": "3\n2 2 1",
"output": "3"
},
{
"input": "3\n4 4 3",
"output": "3"
},
{
"input": "2\n10000001 10000002",
"output": "1"
},
{
"input": "4\n3 3 2 1",
"output": "4"
},
{
"input": "3\n1 2 3",
"output": "1"
},
{
"input": "2\n1000000000 100000000",
"output": "2"
},
{
"input": "1\n99999999",
"output": "1"
},
{
"input": "3\n5 5 3",
"output": "3"
},
{
"input": "3\n7 7 5",
"output": "3"
},
{
"input": "3\n3 3 1",
"output": "3"
},
{
"input": "4\n10 10 10 1",
"output": "4"
}
] | 1,560,230,753
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 45
| 310
| 8,396,800
|
import sys
n = int(input())
a = list(map(int, input().split()))
mi = sys.maxsize
c = 0
j = 0
for i in range(n):
if mi > a[i]:
mi = a[i]
c = 1
j = i
elif mi == a[i]:
c += 1
if c > 1:
print("Still Rozdil")
else:
print(j + 1)
|
Title: Little Elephant and Rozdil
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
The Little Elephant loves Ukraine very much. Most of all he loves town Rozdol (ukr. "Rozdil").
However, Rozdil is dangerous to settle, so the Little Elephant wants to go to some other town. The Little Elephant doesn't like to spend much time on travelling, so for his journey he will choose a town that needs minimum time to travel to. If there are multiple such cities, then the Little Elephant won't go anywhere.
For each town except for Rozdil you know the time needed to travel to this town. Find the town the Little Elephant will go to or print "Still Rozdil", if he stays in Rozdil.
Input Specification:
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=105) — the number of cities. The next line contains *n* integers, separated by single spaces: the *i*-th integer represents the time needed to go from town Rozdil to the *i*-th town. The time values are positive integers, not exceeding 109.
You can consider the cities numbered from 1 to *n*, inclusive. Rozdil is not among the numbered cities.
Output Specification:
Print the answer on a single line — the number of the town the Little Elephant will go to. If there are multiple cities with minimum travel time, print "Still Rozdil" (without the quotes).
Demo Input:
['2\n7 4\n', '7\n7 4 47 100 4 9 12\n']
Demo Output:
['2\n', 'Still Rozdil\n']
Note:
In the first sample there are only two cities where the Little Elephant can go. The travel time for the first town equals 7, to the second one — 4. The town which is closest to Rodzil (the only one) is the second one, so the answer is 2.
In the second sample the closest cities are cities two and five, the travelling time to both of them equals 4, so the answer is "Still Rozdil".
|
```python
import sys
n = int(input())
a = list(map(int, input().split()))
mi = sys.maxsize
c = 0
j = 0
for i in range(n):
if mi > a[i]:
mi = a[i]
c = 1
j = i
elif mi == a[i]:
c += 1
if c > 1:
print("Still Rozdil")
else:
print(j + 1)
```
| 3
|
|
26
|
A
|
Almost Prime
|
PROGRAMMING
| 900
|
[
"number theory"
] |
A. Almost Prime
|
2
|
256
|
A number is called almost prime if it has exactly two distinct prime divisors. For example, numbers 6, 18, 24 are almost prime, while 4, 8, 9, 42 are not. Find the amount of almost prime numbers which are between 1 and *n*, inclusive.
|
Input contains one integer number *n* (1<=≤<=*n*<=≤<=3000).
|
Output the amount of almost prime numbers between 1 and *n*, inclusive.
|
[
"10\n",
"21\n"
] |
[
"2\n",
"8\n"
] |
none
| 500
|
[
{
"input": "10",
"output": "2"
},
{
"input": "21",
"output": "8"
},
{
"input": "1",
"output": "0"
},
{
"input": "2",
"output": "0"
},
{
"input": "4",
"output": "0"
},
{
"input": "3",
"output": "0"
},
{
"input": "8",
"output": "1"
},
{
"input": "19",
"output": "6"
},
{
"input": "40",
"output": "19"
},
{
"input": "77",
"output": "41"
},
{
"input": "222",
"output": "125"
},
{
"input": "987",
"output": "501"
},
{
"input": "1000",
"output": "508"
},
{
"input": "2000",
"output": "958"
},
{
"input": "3000",
"output": "1375"
},
{
"input": "2999",
"output": "1375"
},
{
"input": "2998",
"output": "1375"
},
{
"input": "2997",
"output": "1374"
},
{
"input": "1429",
"output": "706"
},
{
"input": "1673",
"output": "808"
},
{
"input": "1500",
"output": "732"
},
{
"input": "500",
"output": "266"
},
{
"input": "856",
"output": "439"
}
] | 1,682,459,133
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 23
| 342
| 0
|
n=int(input());
primes=[2];
ans=0;
for i in range(3,n+1):
prime_divisor_count=0;
x=i;
for j in primes:
if x%j==0:
prime_divisor_count+=1;
if prime_divisor_count<3:
while x%j==0:
x//=j;
if prime_divisor_count==0:
primes.append(i);
elif prime_divisor_count==2:
ans+=1;
print(ans);
|
Title: Almost Prime
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
A number is called almost prime if it has exactly two distinct prime divisors. For example, numbers 6, 18, 24 are almost prime, while 4, 8, 9, 42 are not. Find the amount of almost prime numbers which are between 1 and *n*, inclusive.
Input Specification:
Input contains one integer number *n* (1<=≤<=*n*<=≤<=3000).
Output Specification:
Output the amount of almost prime numbers between 1 and *n*, inclusive.
Demo Input:
['10\n', '21\n']
Demo Output:
['2\n', '8\n']
Note:
none
|
```python
n=int(input());
primes=[2];
ans=0;
for i in range(3,n+1):
prime_divisor_count=0;
x=i;
for j in primes:
if x%j==0:
prime_divisor_count+=1;
if prime_divisor_count<3:
while x%j==0:
x//=j;
if prime_divisor_count==0:
primes.append(i);
elif prime_divisor_count==2:
ans+=1;
print(ans);
```
| 3.9145
|
467
|
A
|
George and Accommodation
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
George has recently entered the BSUCP (Berland State University for Cool Programmers). George has a friend Alex who has also entered the university. Now they are moving into a dormitory.
George and Alex want to live in the same room. The dormitory has *n* rooms in total. At the moment the *i*-th room has *p**i* people living in it and the room can accommodate *q**i* people in total (*p**i*<=≤<=*q**i*). Your task is to count how many rooms has free place for both George and Alex.
|
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of rooms.
The *i*-th of the next *n* lines contains two integers *p**i* and *q**i* (0<=≤<=*p**i*<=≤<=*q**i*<=≤<=100) — the number of people who already live in the *i*-th room and the room's capacity.
|
Print a single integer — the number of rooms where George and Alex can move in.
|
[
"3\n1 1\n2 2\n3 3\n",
"3\n1 10\n0 10\n10 10\n"
] |
[
"0\n",
"2\n"
] |
none
| 500
|
[
{
"input": "3\n1 1\n2 2\n3 3",
"output": "0"
},
{
"input": "3\n1 10\n0 10\n10 10",
"output": "2"
},
{
"input": "2\n36 67\n61 69",
"output": "2"
},
{
"input": "3\n21 71\n10 88\n43 62",
"output": "3"
},
{
"input": "3\n1 2\n2 3\n3 4",
"output": "0"
},
{
"input": "10\n0 10\n0 20\n0 30\n0 40\n0 50\n0 60\n0 70\n0 80\n0 90\n0 100",
"output": "10"
},
{
"input": "13\n14 16\n30 31\n45 46\n19 20\n15 17\n66 67\n75 76\n95 97\n29 30\n37 38\n0 2\n36 37\n8 9",
"output": "4"
},
{
"input": "19\n66 67\n97 98\n89 91\n67 69\n67 68\n18 20\n72 74\n28 30\n91 92\n27 28\n75 77\n17 18\n74 75\n28 30\n16 18\n90 92\n9 11\n22 24\n52 54",
"output": "12"
},
{
"input": "15\n55 57\n95 97\n57 59\n34 36\n50 52\n96 98\n39 40\n13 15\n13 14\n74 76\n47 48\n56 58\n24 25\n11 13\n67 68",
"output": "10"
},
{
"input": "17\n68 69\n47 48\n30 31\n52 54\n41 43\n33 35\n38 40\n56 58\n45 46\n92 93\n73 74\n61 63\n65 66\n37 39\n67 68\n77 78\n28 30",
"output": "8"
},
{
"input": "14\n64 66\n43 44\n10 12\n76 77\n11 12\n25 27\n87 88\n62 64\n39 41\n58 60\n10 11\n28 29\n57 58\n12 14",
"output": "7"
},
{
"input": "38\n74 76\n52 54\n78 80\n48 49\n40 41\n64 65\n28 30\n6 8\n49 51\n68 70\n44 45\n57 59\n24 25\n46 48\n49 51\n4 6\n63 64\n76 78\n57 59\n18 20\n63 64\n71 73\n88 90\n21 22\n89 90\n65 66\n89 91\n96 98\n42 44\n1 1\n74 76\n72 74\n39 40\n75 76\n29 30\n48 49\n87 89\n27 28",
"output": "22"
},
{
"input": "100\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0",
"output": "0"
},
{
"input": "26\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2",
"output": "0"
},
{
"input": "68\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2",
"output": "68"
},
{
"input": "7\n0 1\n1 5\n2 4\n3 5\n4 6\n5 6\n6 8",
"output": "5"
},
{
"input": "1\n0 0",
"output": "0"
},
{
"input": "1\n100 100",
"output": "0"
},
{
"input": "44\n0 8\n1 11\n2 19\n3 5\n4 29\n5 45\n6 6\n7 40\n8 19\n9 22\n10 18\n11 26\n12 46\n13 13\n14 27\n15 48\n16 25\n17 20\n18 29\n19 27\n20 45\n21 39\n22 29\n23 39\n24 42\n25 37\n26 52\n27 36\n28 43\n29 35\n30 38\n31 70\n32 47\n33 38\n34 61\n35 71\n36 51\n37 71\n38 59\n39 77\n40 70\n41 80\n42 77\n43 73",
"output": "42"
},
{
"input": "3\n1 3\n2 7\n8 9",
"output": "2"
},
{
"input": "53\n0 1\n1 2\n2 3\n3 4\n4 5\n5 6\n6 7\n7 8\n8 9\n9 10\n10 11\n11 12\n12 13\n13 14\n14 15\n15 16\n16 17\n17 18\n18 19\n19 20\n20 21\n21 22\n22 23\n23 24\n24 25\n25 26\n26 27\n27 28\n28 29\n29 30\n30 31\n31 32\n32 33\n33 34\n34 35\n35 36\n36 37\n37 38\n38 39\n39 40\n40 41\n41 42\n42 43\n43 44\n44 45\n45 46\n46 47\n47 48\n48 49\n49 50\n50 51\n51 52\n52 53",
"output": "0"
},
{
"input": "55\n0 0\n1 1\n2 2\n3 3\n4 4\n5 5\n6 6\n7 7\n8 8\n9 9\n10 10\n11 11\n12 12\n13 13\n14 14\n15 15\n16 16\n17 17\n18 18\n19 19\n20 20\n21 21\n22 22\n23 23\n24 24\n25 25\n26 26\n27 27\n28 28\n29 29\n30 30\n31 31\n32 32\n33 33\n34 34\n35 35\n36 36\n37 37\n38 38\n39 39\n40 40\n41 41\n42 42\n43 43\n44 44\n45 45\n46 46\n47 47\n48 48\n49 49\n50 50\n51 51\n52 52\n53 53\n54 54",
"output": "0"
},
{
"input": "51\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 62\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 73\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 82\n55 68\n55 70\n55 63\n55 55\n55 55\n55 55\n55 75\n55 75\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 73\n55 55\n55 82\n55 99\n55 60",
"output": "12"
},
{
"input": "14\n1 1\n1 1\n1 55\n1 16\n1 1\n1 1\n1 55\n1 62\n1 53\n1 26\n1 1\n1 36\n1 2\n1 3",
"output": "8"
}
] | 1,697,106,091
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 27
| 46
| 0
|
import sys
user_input = int(sys.stdin.readline().strip())
counter = 0
for i in range(user_input):
a, b = map(int, sys.stdin.readline().strip().split())
if (b - a) >= 2:
counter += 1
print(counter)
|
Title: George and Accommodation
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
George has recently entered the BSUCP (Berland State University for Cool Programmers). George has a friend Alex who has also entered the university. Now they are moving into a dormitory.
George and Alex want to live in the same room. The dormitory has *n* rooms in total. At the moment the *i*-th room has *p**i* people living in it and the room can accommodate *q**i* people in total (*p**i*<=≤<=*q**i*). Your task is to count how many rooms has free place for both George and Alex.
Input Specification:
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of rooms.
The *i*-th of the next *n* lines contains two integers *p**i* and *q**i* (0<=≤<=*p**i*<=≤<=*q**i*<=≤<=100) — the number of people who already live in the *i*-th room and the room's capacity.
Output Specification:
Print a single integer — the number of rooms where George and Alex can move in.
Demo Input:
['3\n1 1\n2 2\n3 3\n', '3\n1 10\n0 10\n10 10\n']
Demo Output:
['0\n', '2\n']
Note:
none
|
```python
import sys
user_input = int(sys.stdin.readline().strip())
counter = 0
for i in range(user_input):
a, b = map(int, sys.stdin.readline().strip().split())
if (b - a) >= 2:
counter += 1
print(counter)
```
| 3
|
|
224
|
A
|
Parallelepiped
|
PROGRAMMING
| 1,100
|
[
"brute force",
"geometry",
"math"
] | null | null |
You've got a rectangular parallelepiped with integer edge lengths. You know the areas of its three faces that have a common vertex. Your task is to find the sum of lengths of all 12 edges of this parallelepiped.
|
The first and the single line contains three space-separated integers — the areas of the parallelepiped's faces. The area's values are positive (<=><=0) and do not exceed 104. It is guaranteed that there exists at least one parallelepiped that satisfies the problem statement.
|
Print a single number — the sum of all edges of the parallelepiped.
|
[
"1 1 1\n",
"4 6 6\n"
] |
[
"12\n",
"28\n"
] |
In the first sample the parallelepiped has sizes 1 × 1 × 1, in the second one — 2 × 2 × 3.
| 500
|
[
{
"input": "1 1 1",
"output": "12"
},
{
"input": "4 6 6",
"output": "28"
},
{
"input": "20 10 50",
"output": "68"
},
{
"input": "9 4 36",
"output": "56"
},
{
"input": "324 9 36",
"output": "184"
},
{
"input": "1333 93 129",
"output": "308"
},
{
"input": "1022 584 112",
"output": "380"
},
{
"input": "66 174 319",
"output": "184"
},
{
"input": "912 276 1748",
"output": "444"
},
{
"input": "65 156 60",
"output": "120"
},
{
"input": "1 10000 10000",
"output": "40008"
},
{
"input": "1485 55 27",
"output": "332"
},
{
"input": "152 108 4104",
"output": "528"
},
{
"input": "1656 6900 1350",
"output": "740"
},
{
"input": "12 14 42",
"output": "60"
},
{
"input": "615 18 1230",
"output": "856"
},
{
"input": "680 60 408",
"output": "336"
},
{
"input": "644 966 6",
"output": "1308"
},
{
"input": "1 432 432",
"output": "1736"
},
{
"input": "2239 2239 1",
"output": "8964"
},
{
"input": "4106 8212 2",
"output": "16436"
},
{
"input": "10000 10000 10000",
"output": "1200"
},
{
"input": "3623 3623 1",
"output": "14500"
},
{
"input": "9801 9801 9801",
"output": "1188"
},
{
"input": "10000 1 10000",
"output": "40008"
},
{
"input": "9 9 9",
"output": "36"
},
{
"input": "9801 9702 9702",
"output": "1184"
}
] | 1,607,711,524
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 27
| 216
| 0
|
import sys
import math
f1,f2,f3=map(int,input().split())
c=math.sqrt(f3/(f1/f2))
b=f2/c
a=f3/c
print(int(4*(a+b+c)))
|
Title: Parallelepiped
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You've got a rectangular parallelepiped with integer edge lengths. You know the areas of its three faces that have a common vertex. Your task is to find the sum of lengths of all 12 edges of this parallelepiped.
Input Specification:
The first and the single line contains three space-separated integers — the areas of the parallelepiped's faces. The area's values are positive (<=><=0) and do not exceed 104. It is guaranteed that there exists at least one parallelepiped that satisfies the problem statement.
Output Specification:
Print a single number — the sum of all edges of the parallelepiped.
Demo Input:
['1 1 1\n', '4 6 6\n']
Demo Output:
['12\n', '28\n']
Note:
In the first sample the parallelepiped has sizes 1 × 1 × 1, in the second one — 2 × 2 × 3.
|
```python
import sys
import math
f1,f2,f3=map(int,input().split())
c=math.sqrt(f3/(f1/f2))
b=f2/c
a=f3/c
print(int(4*(a+b+c)))
```
| 3
|
|
1
|
A
|
Theatre Square
|
PROGRAMMING
| 1,000
|
[
"math"
] |
A. Theatre Square
|
1
|
256
|
Theatre Square in the capital city of Berland has a rectangular shape with the size *n*<=×<=*m* meters. On the occasion of the city's anniversary, a decision was taken to pave the Square with square granite flagstones. Each flagstone is of the size *a*<=×<=*a*.
What is the least number of flagstones needed to pave the Square? It's allowed to cover the surface larger than the Theatre Square, but the Square has to be covered. It's not allowed to break the flagstones. The sides of flagstones should be parallel to the sides of the Square.
|
The input contains three positive integer numbers in the first line: *n*,<=<=*m* and *a* (1<=≤<=<=*n*,<=*m*,<=*a*<=≤<=109).
|
Write the needed number of flagstones.
|
[
"6 6 4\n"
] |
[
"4\n"
] |
none
| 0
|
[
{
"input": "6 6 4",
"output": "4"
},
{
"input": "1 1 1",
"output": "1"
},
{
"input": "2 1 1",
"output": "2"
},
{
"input": "1 2 1",
"output": "2"
},
{
"input": "2 2 1",
"output": "4"
},
{
"input": "2 1 2",
"output": "1"
},
{
"input": "1 1 3",
"output": "1"
},
{
"input": "2 3 4",
"output": "1"
},
{
"input": "1000000000 1000000000 1",
"output": "1000000000000000000"
},
{
"input": "12 13 4",
"output": "12"
},
{
"input": "222 332 5",
"output": "3015"
},
{
"input": "1000 1000 10",
"output": "10000"
},
{
"input": "1001 1000 10",
"output": "10100"
},
{
"input": "100 10001 1000000000",
"output": "1"
},
{
"input": "1000000000 1000000000 1000000000",
"output": "1"
},
{
"input": "1000000000 1000000000 999999999",
"output": "4"
},
{
"input": "1000000000 1000000000 192",
"output": "27126743055556"
},
{
"input": "1000000000 987654321 1",
"output": "987654321000000000"
},
{
"input": "456784567 1000000000 51",
"output": "175618850864484"
},
{
"input": "39916800 134217728 40320",
"output": "3295710"
}
] | 1,670,592,131
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 20
| 46
| 0
|
n,m,a=map(int , input().split())
total1=0
total2=0
if(n%a==0):
total1=total1+n//a
else:
total1=total1+n//a+1
if(m%a==0):
total2=total2+m//a
else:
total2=total2+m//a+1
print(total1*total2)
|
Title: Theatre Square
Time Limit: 1 seconds
Memory Limit: 256 megabytes
Problem Description:
Theatre Square in the capital city of Berland has a rectangular shape with the size *n*<=×<=*m* meters. On the occasion of the city's anniversary, a decision was taken to pave the Square with square granite flagstones. Each flagstone is of the size *a*<=×<=*a*.
What is the least number of flagstones needed to pave the Square? It's allowed to cover the surface larger than the Theatre Square, but the Square has to be covered. It's not allowed to break the flagstones. The sides of flagstones should be parallel to the sides of the Square.
Input Specification:
The input contains three positive integer numbers in the first line: *n*,<=<=*m* and *a* (1<=≤<=<=*n*,<=*m*,<=*a*<=≤<=109).
Output Specification:
Write the needed number of flagstones.
Demo Input:
['6 6 4\n']
Demo Output:
['4\n']
Note:
none
|
```python
n,m,a=map(int , input().split())
total1=0
total2=0
if(n%a==0):
total1=total1+n//a
else:
total1=total1+n//a+1
if(m%a==0):
total2=total2+m//a
else:
total2=total2+m//a+1
print(total1*total2)
```
| 3.977
|
1,003
|
A
|
Polycarp's Pockets
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Polycarp has $n$ coins, the value of the $i$-th coin is $a_i$. Polycarp wants to distribute all the coins between his pockets, but he cannot put two coins with the same value into the same pocket.
For example, if Polycarp has got six coins represented as an array $a = [1, 2, 4, 3, 3, 2]$, he can distribute the coins into two pockets as follows: $[1, 2, 3], [2, 3, 4]$.
Polycarp wants to distribute all the coins with the minimum number of used pockets. Help him to do that.
|
The first line of the input contains one integer $n$ ($1 \le n \le 100$) — the number of coins.
The second line of the input contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 100$) — values of coins.
|
Print only one integer — the minimum number of pockets Polycarp needs to distribute all the coins so no two coins with the same value are put into the same pocket.
|
[
"6\n1 2 4 3 3 2\n",
"1\n100\n"
] |
[
"2\n",
"1\n"
] |
none
| 0
|
[
{
"input": "6\n1 2 4 3 3 2",
"output": "2"
},
{
"input": "1\n100",
"output": "1"
},
{
"input": "100\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100",
"output": "100"
},
{
"input": "100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "100"
},
{
"input": "100\n59 47 39 47 47 71 47 28 58 47 35 79 58 47 38 47 47 47 47 27 47 43 29 95 47 49 46 71 47 74 79 47 47 32 45 67 47 47 30 37 47 47 16 67 22 76 47 86 84 10 5 47 47 47 47 47 1 51 47 54 47 8 47 47 9 47 47 47 47 28 47 47 26 47 47 47 47 47 47 92 47 47 77 47 47 24 45 47 10 47 47 89 47 27 47 89 47 67 24 71",
"output": "51"
},
{
"input": "100\n45 99 10 27 16 85 39 38 17 32 15 23 67 48 50 97 42 70 62 30 44 81 64 73 34 22 46 5 83 52 58 60 33 74 47 88 18 61 78 53 25 95 94 31 3 75 1 57 20 54 59 9 68 7 77 43 21 87 86 24 4 80 11 49 2 72 36 84 71 8 65 55 79 100 41 14 35 89 66 69 93 37 56 82 90 91 51 19 26 92 6 96 13 98 12 28 76 40 63 29",
"output": "1"
},
{
"input": "100\n45 29 5 2 6 50 22 36 14 15 9 48 46 20 8 37 7 47 12 50 21 38 18 27 33 19 40 10 5 49 38 42 34 37 27 30 35 24 10 3 40 49 41 3 4 44 13 25 28 31 46 36 23 1 1 23 7 22 35 26 21 16 48 42 32 8 11 16 34 11 39 32 47 28 43 41 39 4 14 19 26 45 13 18 15 25 2 44 17 29 17 33 43 6 12 30 9 20 31 24",
"output": "2"
},
{
"input": "50\n7 7 3 3 7 4 5 6 4 3 7 5 6 4 5 4 4 5 6 7 7 7 4 5 5 5 3 7 6 3 4 6 3 6 4 4 5 4 6 6 3 5 6 3 5 3 3 7 7 6",
"output": "10"
},
{
"input": "100\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 99 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100",
"output": "99"
},
{
"input": "7\n1 2 3 3 3 1 2",
"output": "3"
},
{
"input": "5\n1 2 3 4 5",
"output": "1"
},
{
"input": "7\n1 2 3 4 5 6 7",
"output": "1"
},
{
"input": "8\n1 2 3 4 5 6 7 8",
"output": "1"
},
{
"input": "9\n1 2 3 4 5 6 7 8 9",
"output": "1"
},
{
"input": "10\n1 2 3 4 5 6 7 8 9 10",
"output": "1"
},
{
"input": "3\n2 1 1",
"output": "2"
},
{
"input": "11\n1 2 3 4 5 6 7 8 9 1 1",
"output": "3"
},
{
"input": "12\n1 2 1 1 1 1 1 1 1 1 1 1",
"output": "11"
},
{
"input": "13\n1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "13"
},
{
"input": "14\n1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "14"
},
{
"input": "15\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "15"
},
{
"input": "16\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "16"
},
{
"input": "3\n1 1 1",
"output": "3"
},
{
"input": "3\n1 2 3",
"output": "1"
},
{
"input": "10\n1 1 1 1 2 2 1 1 9 10",
"output": "6"
},
{
"input": "2\n1 1",
"output": "2"
},
{
"input": "56\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "56"
},
{
"input": "99\n35 96 73 72 70 83 22 93 98 75 45 32 81 82 45 54 25 7 53 72 29 2 94 19 21 98 34 28 39 99 55 85 44 23 6 47 98 2 33 34 19 57 49 35 67 4 60 4 4 23 55 6 57 66 16 68 34 45 84 79 48 63 4 9 46 88 98 13 19 27 83 12 4 63 57 22 44 77 44 62 28 52 44 64 9 24 55 22 48 4 2 9 80 76 45 1 56 22 92",
"output": "6"
},
{
"input": "10\n1 2 2 3 3 3 4 4 4 4",
"output": "4"
},
{
"input": "99\n97 44 33 56 42 10 61 85 64 26 40 39 82 34 75 9 51 51 39 73 58 38 74 31 13 99 58 1 28 89 76 19 52 7 40 56 12 27 72 72 67 75 62 46 22 55 35 16 18 39 60 63 92 42 85 69 34 61 73 50 57 95 30 4 45 63 76 58 32 35 48 81 10 78 95 79 55 97 21 21 22 94 30 17 78 57 89 93 100 44 16 89 68 55 19 46 42 73 21",
"output": "3"
},
{
"input": "5\n5 5 5 5 1",
"output": "4"
},
{
"input": "6\n2 3 2 5 2 6",
"output": "3"
},
{
"input": "3\n58 59 58",
"output": "2"
},
{
"input": "9\n1 2 3 4 5 6 7 8 8",
"output": "2"
},
{
"input": "97\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "97"
},
{
"input": "3\n95 95 4",
"output": "2"
},
{
"input": "3\n2 2 5",
"output": "2"
}
] | 1,697,005,260
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 37
| 46
| 307,200
|
from collections import defaultdict
if __name__ == "__main__":
n = int(input())
a = list(map(int, input().split()))
mp = defaultdict(int)
for num in a:
mp[num] += 1
mx = max(mp.values())
print(mx)
|
Title: Polycarp's Pockets
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Polycarp has $n$ coins, the value of the $i$-th coin is $a_i$. Polycarp wants to distribute all the coins between his pockets, but he cannot put two coins with the same value into the same pocket.
For example, if Polycarp has got six coins represented as an array $a = [1, 2, 4, 3, 3, 2]$, he can distribute the coins into two pockets as follows: $[1, 2, 3], [2, 3, 4]$.
Polycarp wants to distribute all the coins with the minimum number of used pockets. Help him to do that.
Input Specification:
The first line of the input contains one integer $n$ ($1 \le n \le 100$) — the number of coins.
The second line of the input contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 100$) — values of coins.
Output Specification:
Print only one integer — the minimum number of pockets Polycarp needs to distribute all the coins so no two coins with the same value are put into the same pocket.
Demo Input:
['6\n1 2 4 3 3 2\n', '1\n100\n']
Demo Output:
['2\n', '1\n']
Note:
none
|
```python
from collections import defaultdict
if __name__ == "__main__":
n = int(input())
a = list(map(int, input().split()))
mp = defaultdict(int)
for num in a:
mp[num] += 1
mx = max(mp.values())
print(mx)
```
| 3
|
|
168
|
A
|
Wizards and Demonstration
|
PROGRAMMING
| 900
|
[
"implementation",
"math"
] | null | null |
Some country is populated by wizards. They want to organize a demonstration.
There are *n* people living in the city, *x* of them are the wizards who will surely go to the demonstration. Other city people (*n*<=-<=*x* people) do not support the wizards and aren't going to go to the demonstration. We know that the city administration will react only to the demonstration involving at least *y* percent of the city people. Having considered the matter, the wizards decided to create clone puppets which can substitute the city people on the demonstration.
So all in all, the demonstration will involve only the wizards and their puppets. The city administration cannot tell the difference between a puppet and a person, so, as they calculate the percentage, the administration will consider the city to be consisting of only *n* people and not containing any clone puppets.
Help the wizards and find the minimum number of clones to create to that the demonstration had no less than *y* percent of the city people.
|
The first line contains three space-separated integers, *n*, *x*, *y* (1<=≤<=*n*,<=*x*,<=*y*<=≤<=104,<=*x*<=≤<=*n*) — the number of citizens in the city, the number of wizards and the percentage the administration needs, correspondingly.
Please note that *y* can exceed 100 percent, that is, the administration wants to see on a demonstration more people that actually live in the city (<=><=*n*).
|
Print a single integer — the answer to the problem, the minimum number of clones to create, so that the demonstration involved no less than *y* percent of *n* (the real total city population).
|
[
"10 1 14\n",
"20 10 50\n",
"1000 352 146\n"
] |
[
"1\n",
"0\n",
"1108\n"
] |
In the first sample it is necessary that at least 14% of 10 people came to the demonstration. As the number of people should be integer, then at least two people should come. There is only one wizard living in the city and he is going to come. That isn't enough, so he needs to create one clone.
In the second sample 10 people should come to the demonstration. The city has 10 wizards. They will all come to the demonstration, so nobody has to create any clones.
| 500
|
[
{
"input": "10 1 14",
"output": "1"
},
{
"input": "20 10 50",
"output": "0"
},
{
"input": "1000 352 146",
"output": "1108"
},
{
"input": "68 65 20",
"output": "0"
},
{
"input": "78 28 27",
"output": "0"
},
{
"input": "78 73 58",
"output": "0"
},
{
"input": "70 38 66",
"output": "9"
},
{
"input": "54 4 38",
"output": "17"
},
{
"input": "3 1 69",
"output": "2"
},
{
"input": "11 9 60",
"output": "0"
},
{
"input": "71 49 65",
"output": "0"
},
{
"input": "78 55 96",
"output": "20"
},
{
"input": "2765 768 9020",
"output": "248635"
},
{
"input": "3478 1728 9727",
"output": "336578"
},
{
"input": "9678 6173 5658",
"output": "541409"
},
{
"input": "1138 570 6666",
"output": "75290"
},
{
"input": "7754 204 9038",
"output": "700603"
},
{
"input": "8403 7401 4769",
"output": "393339"
},
{
"input": "4909 2111 8860",
"output": "432827"
},
{
"input": "6571 6449 8965",
"output": "582642"
},
{
"input": "9178 2255 7996",
"output": "731618"
},
{
"input": "6151 6148 3746",
"output": "224269"
},
{
"input": "8890 5449 8734",
"output": "771004"
},
{
"input": "7879 2590 2818",
"output": "219441"
},
{
"input": "8484 6400 547",
"output": "40008"
},
{
"input": "7835 6710 1639",
"output": "121706"
},
{
"input": "2379 1436 9663",
"output": "228447"
},
{
"input": "6487 5670 8",
"output": "0"
},
{
"input": "4470 2543 6",
"output": "0"
},
{
"input": "7261 5328 10",
"output": "0"
},
{
"input": "3871 3795 7",
"output": "0"
},
{
"input": "9620 6557 6",
"output": "0"
},
{
"input": "4890 1112 5",
"output": "0"
},
{
"input": "1 1 1",
"output": "0"
},
{
"input": "1 1 10000",
"output": "99"
},
{
"input": "10000 1 1",
"output": "99"
},
{
"input": "10000 1 10000",
"output": "999999"
},
{
"input": "10000 10000 1",
"output": "0"
},
{
"input": "10000 10000 10000",
"output": "990000"
},
{
"input": "67 1 3",
"output": "2"
},
{
"input": "7878 4534 9159",
"output": "717013"
},
{
"input": "1 1 1",
"output": "0"
},
{
"input": "3271 5 50",
"output": "1631"
}
] | 1,594,465,542
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 43
| 624
| 29,900,800
|
import decimal
D = decimal.Decimal
l1 = [int(x) for x in input().split()]
n,x,y = l1[0],l1[1],l1[2]
need = n*y
have = x*100
extra = 0
i=0
while need-have>extra:
extra+=100
i+=1
print(i)
|
Title: Wizards and Demonstration
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Some country is populated by wizards. They want to organize a demonstration.
There are *n* people living in the city, *x* of them are the wizards who will surely go to the demonstration. Other city people (*n*<=-<=*x* people) do not support the wizards and aren't going to go to the demonstration. We know that the city administration will react only to the demonstration involving at least *y* percent of the city people. Having considered the matter, the wizards decided to create clone puppets which can substitute the city people on the demonstration.
So all in all, the demonstration will involve only the wizards and their puppets. The city administration cannot tell the difference between a puppet and a person, so, as they calculate the percentage, the administration will consider the city to be consisting of only *n* people and not containing any clone puppets.
Help the wizards and find the minimum number of clones to create to that the demonstration had no less than *y* percent of the city people.
Input Specification:
The first line contains three space-separated integers, *n*, *x*, *y* (1<=≤<=*n*,<=*x*,<=*y*<=≤<=104,<=*x*<=≤<=*n*) — the number of citizens in the city, the number of wizards and the percentage the administration needs, correspondingly.
Please note that *y* can exceed 100 percent, that is, the administration wants to see on a demonstration more people that actually live in the city (<=><=*n*).
Output Specification:
Print a single integer — the answer to the problem, the minimum number of clones to create, so that the demonstration involved no less than *y* percent of *n* (the real total city population).
Demo Input:
['10 1 14\n', '20 10 50\n', '1000 352 146\n']
Demo Output:
['1\n', '0\n', '1108\n']
Note:
In the first sample it is necessary that at least 14% of 10 people came to the demonstration. As the number of people should be integer, then at least two people should come. There is only one wizard living in the city and he is going to come. That isn't enough, so he needs to create one clone.
In the second sample 10 people should come to the demonstration. The city has 10 wizards. They will all come to the demonstration, so nobody has to create any clones.
|
```python
import decimal
D = decimal.Decimal
l1 = [int(x) for x in input().split()]
n,x,y = l1[0],l1[1],l1[2]
need = n*y
have = x*100
extra = 0
i=0
while need-have>extra:
extra+=100
i+=1
print(i)
```
| 3
|
|
937
|
A
|
Olympiad
|
PROGRAMMING
| 800
|
[
"implementation",
"sortings"
] | null | null |
The recent All-Berland Olympiad in Informatics featured *n* participants with each scoring a certain amount of points.
As the head of the programming committee, you are to determine the set of participants to be awarded with diplomas with respect to the following criteria:
- At least one participant should get a diploma. - None of those with score equal to zero should get awarded. - When someone is awarded, all participants with score not less than his score should also be awarded.
Determine the number of ways to choose a subset of participants that will receive the diplomas.
|
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of participants.
The next line contains a sequence of *n* integers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=600) — participants' scores.
It's guaranteed that at least one participant has non-zero score.
|
Print a single integer — the desired number of ways.
|
[
"4\n1 3 3 2\n",
"3\n1 1 1\n",
"4\n42 0 0 42\n"
] |
[
"3\n",
"1\n",
"1\n"
] |
There are three ways to choose a subset in sample case one.
1. Only participants with 3 points will get diplomas. 1. Participants with 2 or 3 points will get diplomas. 1. Everyone will get a diploma!
The only option in sample case two is to award everyone.
Note that in sample case three participants with zero scores cannot get anything.
| 500
|
[
{
"input": "4\n1 3 3 2",
"output": "3"
},
{
"input": "3\n1 1 1",
"output": "1"
},
{
"input": "4\n42 0 0 42",
"output": "1"
},
{
"input": "10\n1 0 1 0 1 0 0 0 0 1",
"output": "1"
},
{
"input": "10\n572 471 540 163 50 30 561 510 43 200",
"output": "10"
},
{
"input": "100\n122 575 426 445 172 81 247 429 97 202 175 325 382 384 417 356 132 502 328 537 57 339 518 211 479 306 140 168 268 16 140 263 593 249 391 310 555 468 231 180 157 18 334 328 276 155 21 280 322 545 111 267 467 274 291 304 235 34 365 180 21 95 501 552 325 331 302 353 296 22 289 399 7 466 32 302 568 333 75 192 284 10 94 128 154 512 9 480 243 521 551 492 420 197 207 125 367 117 438 600",
"output": "94"
},
{
"input": "100\n600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600",
"output": "1"
},
{
"input": "78\n5 4 13 2 5 6 2 10 10 1 2 6 7 9 6 3 5 7 1 10 2 2 7 0 2 11 11 3 1 13 3 10 6 2 0 3 0 5 0 1 4 11 1 1 7 0 12 7 5 12 0 2 12 9 8 3 4 3 4 11 4 10 2 3 10 12 5 6 1 11 2 0 8 7 9 1 3 12",
"output": "13"
},
{
"input": "34\n220 387 408 343 184 447 197 307 337 414 251 319 426 322 347 242 208 412 188 185 241 235 216 259 331 372 322 284 444 384 214 297 389 391",
"output": "33"
},
{
"input": "100\n1 2 1 0 3 0 2 0 0 1 2 0 1 3 0 3 3 1 3 0 0 2 1 2 2 1 3 3 3 3 3 2 0 0 2 1 2 3 2 3 0 1 1 3 3 2 0 3 1 0 2 2 2 1 2 3 2 1 0 3 0 2 0 3 0 2 1 0 3 1 0 2 2 1 3 1 3 0 2 3 3 1 1 3 1 3 0 3 2 0 2 3 3 0 2 0 2 0 1 3",
"output": "3"
},
{
"input": "100\n572 471 540 163 50 30 561 510 43 200 213 387 500 424 113 487 357 333 294 337 435 202 447 494 485 465 161 344 470 559 104 356 393 207 224 213 511 514 60 386 149 216 392 229 429 173 165 401 395 150 127 579 344 390 529 296 225 425 318 79 465 447 177 110 367 212 459 270 41 500 277 567 125 436 178 9 214 342 203 112 144 24 79 155 495 556 40 549 463 281 241 316 2 246 1 396 510 293 332 55",
"output": "93"
},
{
"input": "99\n5 4 13 2 5 6 2 10 10 1 2 6 7 9 6 3 5 7 1 10 2 2 7 0 2 11 11 3 1 13 3 10 6 2 0 3 0 5 0 1 4 11 1 1 7 0 12 7 5 12 0 2 12 9 8 3 4 3 4 11 4 10 2 3 10 12 5 6 1 11 2 0 8 7 9 1 3 12 2 3 9 3 7 13 7 13 0 11 8 12 2 5 9 4 0 6 6 2 13",
"output": "13"
},
{
"input": "99\n1 0 1 0 1 0 0 0 0 1 0 0 1 1 0 1 1 1 1 0 0 0 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1 0 1 0 1 1 1 1 0 0 1 1 0 0 0 0 1 0 1 0 1 0 1 0 0 0 1 0 0 1 0 1 1 0 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 0 1 0 0 0 1 1 0 0 0 0 0 1",
"output": "1"
},
{
"input": "99\n21 74 25 44 71 80 46 28 96 1 74 24 81 83 16 55 31 1 27 36 56 38 17 10 78 5 39 67 67 15 39 62 92 48 90 9 54 67 30 79 56 17 33 27 75 54 20 79 21 44 10 66 66 73 90 3 34 33 64 79 20 94 0 51 24 30 1 52 95 21 88 98 6 65 31 1 67 32 74 91 83 9 93 27 53 11 8 79 42 20 50 91 19 96 6 24 66 16 37",
"output": "61"
},
{
"input": "2\n0 1",
"output": "1"
},
{
"input": "2\n0 600",
"output": "1"
},
{
"input": "4\n1 1 1 2",
"output": "2"
},
{
"input": "4\n0 0 1 2",
"output": "2"
},
{
"input": "1\n5",
"output": "1"
},
{
"input": "2\n0 5",
"output": "1"
},
{
"input": "5\n1 0 0 1 2",
"output": "2"
}
] | 1,637,753,599
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 21
| 62
| 307,200
|
a=int(input())
n=[]
count=0
n=input().split(" ")
b=[0]*100000
n=[int(i) for i in n]
for i in range(a):
if n[i]>0:
p=n[i]
b[p]=b[p]+1
for i in range(100000):
if b[i]>0:
count=count+1
print(count)
|
Title: Olympiad
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
The recent All-Berland Olympiad in Informatics featured *n* participants with each scoring a certain amount of points.
As the head of the programming committee, you are to determine the set of participants to be awarded with diplomas with respect to the following criteria:
- At least one participant should get a diploma. - None of those with score equal to zero should get awarded. - When someone is awarded, all participants with score not less than his score should also be awarded.
Determine the number of ways to choose a subset of participants that will receive the diplomas.
Input Specification:
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of participants.
The next line contains a sequence of *n* integers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=600) — participants' scores.
It's guaranteed that at least one participant has non-zero score.
Output Specification:
Print a single integer — the desired number of ways.
Demo Input:
['4\n1 3 3 2\n', '3\n1 1 1\n', '4\n42 0 0 42\n']
Demo Output:
['3\n', '1\n', '1\n']
Note:
There are three ways to choose a subset in sample case one.
1. Only participants with 3 points will get diplomas. 1. Participants with 2 or 3 points will get diplomas. 1. Everyone will get a diploma!
The only option in sample case two is to award everyone.
Note that in sample case three participants with zero scores cannot get anything.
|
```python
a=int(input())
n=[]
count=0
n=input().split(" ")
b=[0]*100000
n=[int(i) for i in n]
for i in range(a):
if n[i]>0:
p=n[i]
b[p]=b[p]+1
for i in range(100000):
if b[i]>0:
count=count+1
print(count)
```
| 3
|
|
581
|
A
|
Vasya the Hipster
|
PROGRAMMING
| 800
|
[
"implementation",
"math"
] | null | null |
One day Vasya the Hipster decided to count how many socks he had. It turned out that he had *a* red socks and *b* blue socks.
According to the latest fashion, hipsters should wear the socks of different colors: a red one on the left foot, a blue one on the right foot.
Every day Vasya puts on new socks in the morning and throws them away before going to bed as he doesn't want to wash them.
Vasya wonders, what is the maximum number of days when he can dress fashionable and wear different socks, and after that, for how many days he can then wear the same socks until he either runs out of socks or cannot make a single pair from the socks he's got.
Can you help him?
|
The single line of the input contains two positive integers *a* and *b* (1<=≤<=*a*,<=*b*<=≤<=100) — the number of red and blue socks that Vasya's got.
|
Print two space-separated integers — the maximum number of days when Vasya can wear different socks and the number of days when he can wear the same socks until he either runs out of socks or cannot make a single pair from the socks he's got.
Keep in mind that at the end of the day Vasya throws away the socks that he's been wearing on that day.
|
[
"3 1\n",
"2 3\n",
"7 3\n"
] |
[
"1 1\n",
"2 0\n",
"3 2\n"
] |
In the first sample Vasya can first put on one pair of different socks, after that he has two red socks left to wear on the second day.
| 500
|
[
{
"input": "3 1",
"output": "1 1"
},
{
"input": "2 3",
"output": "2 0"
},
{
"input": "7 3",
"output": "3 2"
},
{
"input": "100 100",
"output": "100 0"
},
{
"input": "4 10",
"output": "4 3"
},
{
"input": "6 10",
"output": "6 2"
},
{
"input": "6 11",
"output": "6 2"
},
{
"input": "10 40",
"output": "10 15"
},
{
"input": "11 56",
"output": "11 22"
},
{
"input": "34 30",
"output": "30 2"
},
{
"input": "33 33",
"output": "33 0"
},
{
"input": "100 45",
"output": "45 27"
},
{
"input": "100 23",
"output": "23 38"
},
{
"input": "45 12",
"output": "12 16"
},
{
"input": "1 1",
"output": "1 0"
},
{
"input": "1 100",
"output": "1 49"
},
{
"input": "100 1",
"output": "1 49"
},
{
"input": "68 59",
"output": "59 4"
},
{
"input": "45 99",
"output": "45 27"
},
{
"input": "99 100",
"output": "99 0"
},
{
"input": "100 98",
"output": "98 1"
},
{
"input": "59 12",
"output": "12 23"
},
{
"input": "86 4",
"output": "4 41"
},
{
"input": "68 21",
"output": "21 23"
},
{
"input": "100 11",
"output": "11 44"
},
{
"input": "100 10",
"output": "10 45"
},
{
"input": "15 45",
"output": "15 15"
},
{
"input": "11 32",
"output": "11 10"
},
{
"input": "34 96",
"output": "34 31"
},
{
"input": "89 89",
"output": "89 0"
}
] | 1,698,343,025
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 30
| 46
| 0
|
r,b = list(map(int,input().split()))
d = min(r,b)
s = (max(r,b)-d)//2
print(d,s)
|
Title: Vasya the Hipster
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
One day Vasya the Hipster decided to count how many socks he had. It turned out that he had *a* red socks and *b* blue socks.
According to the latest fashion, hipsters should wear the socks of different colors: a red one on the left foot, a blue one on the right foot.
Every day Vasya puts on new socks in the morning and throws them away before going to bed as he doesn't want to wash them.
Vasya wonders, what is the maximum number of days when he can dress fashionable and wear different socks, and after that, for how many days he can then wear the same socks until he either runs out of socks or cannot make a single pair from the socks he's got.
Can you help him?
Input Specification:
The single line of the input contains two positive integers *a* and *b* (1<=≤<=*a*,<=*b*<=≤<=100) — the number of red and blue socks that Vasya's got.
Output Specification:
Print two space-separated integers — the maximum number of days when Vasya can wear different socks and the number of days when he can wear the same socks until he either runs out of socks or cannot make a single pair from the socks he's got.
Keep in mind that at the end of the day Vasya throws away the socks that he's been wearing on that day.
Demo Input:
['3 1\n', '2 3\n', '7 3\n']
Demo Output:
['1 1\n', '2 0\n', '3 2\n']
Note:
In the first sample Vasya can first put on one pair of different socks, after that he has two red socks left to wear on the second day.
|
```python
r,b = list(map(int,input().split()))
d = min(r,b)
s = (max(r,b)-d)//2
print(d,s)
```
| 3
|
|
61
|
A
|
Ultra-Fast Mathematician
|
PROGRAMMING
| 800
|
[
"implementation"
] |
A. Ultra-Fast Mathematician
|
2
|
256
|
Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second.
One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part.
In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0.
Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length ∞ (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length.
Now you are going to take part in Shapur's contest. See if you are faster and more accurate.
|
There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100.
|
Write one line — the corresponding answer. Do not omit the leading 0s.
|
[
"1010100\n0100101\n",
"000\n111\n",
"1110\n1010\n",
"01110\n01100\n"
] |
[
"1110001\n",
"111\n",
"0100\n",
"00010\n"
] |
none
| 500
|
[
{
"input": "1010100\n0100101",
"output": "1110001"
},
{
"input": "000\n111",
"output": "111"
},
{
"input": "1110\n1010",
"output": "0100"
},
{
"input": "01110\n01100",
"output": "00010"
},
{
"input": "011101\n000001",
"output": "011100"
},
{
"input": "10\n01",
"output": "11"
},
{
"input": "00111111\n11011101",
"output": "11100010"
},
{
"input": "011001100\n101001010",
"output": "110000110"
},
{
"input": "1100100001\n0110101100",
"output": "1010001101"
},
{
"input": "00011101010\n10010100101",
"output": "10001001111"
},
{
"input": "100000101101\n111010100011",
"output": "011010001110"
},
{
"input": "1000001111010\n1101100110001",
"output": "0101101001011"
},
{
"input": "01011111010111\n10001110111010",
"output": "11010001101101"
},
{
"input": "110010000111100\n001100101011010",
"output": "111110101100110"
},
{
"input": "0010010111110000\n0000000011010110",
"output": "0010010100100110"
},
{
"input": "00111110111110000\n01111100001100000",
"output": "01000010110010000"
},
{
"input": "101010101111010001\n001001111101111101",
"output": "100011010010101100"
},
{
"input": "0110010101111100000\n0011000101000000110",
"output": "0101010000111100110"
},
{
"input": "11110100011101010111\n00001000011011000000",
"output": "11111100000110010111"
},
{
"input": "101010101111101101001\n111010010010000011111",
"output": "010000111101101110110"
},
{
"input": "0000111111100011000010\n1110110110110000001010",
"output": "1110001001010011001000"
},
{
"input": "10010010101000110111000\n00101110100110111000111",
"output": "10111100001110001111111"
},
{
"input": "010010010010111100000111\n100100111111100011001110",
"output": "110110101101011111001001"
},
{
"input": "0101110100100111011010010\n0101100011010111001010001",
"output": "0000010111110000010000011"
},
{
"input": "10010010100011110111111011\n10000110101100000001000100",
"output": "00010100001111110110111111"
},
{
"input": "000001111000000100001000000\n011100111101111001110110001",
"output": "011101000101111101111110001"
},
{
"input": "0011110010001001011001011100\n0000101101000011101011001010",
"output": "0011011111001010110010010110"
},
{
"input": "11111000000000010011001101111\n11101110011001010100010000000",
"output": "00010110011001000111011101111"
},
{
"input": "011001110000110100001100101100\n001010000011110000001000101001",
"output": "010011110011000100000100000101"
},
{
"input": "1011111010001100011010110101111\n1011001110010000000101100010101",
"output": "0000110100011100011111010111010"
},
{
"input": "10111000100001000001010110000001\n10111000001100101011011001011000",
"output": "00000000101101101010001111011001"
},
{
"input": "000001010000100001000000011011100\n111111111001010100100001100000111",
"output": "111110101001110101100001111011011"
},
{
"input": "1101000000000010011011101100000110\n1110000001100010011010000011011110",
"output": "0011000001100000000001101111011000"
},
{
"input": "01011011000010100001100100011110001\n01011010111000001010010100001110000",
"output": "00000001111010101011110000010000001"
},
{
"input": "000011111000011001000110111100000100\n011011000110000111101011100111000111",
"output": "011000111110011110101101011011000011"
},
{
"input": "1001000010101110001000000011111110010\n0010001011010111000011101001010110000",
"output": "1011001001111001001011101010101000010"
},
{
"input": "00011101011001100101111111000000010101\n10010011011011001011111000000011101011",
"output": "10001110000010101110000111000011111110"
},
{
"input": "111011100110001001101111110010111001010\n111111101101111001110010000101101000100",
"output": "000100001011110000011101110111010001110"
},
{
"input": "1111001001101000001000000010010101001010\n0010111100111110001011000010111110111001",
"output": "1101110101010110000011000000101011110011"
},
{
"input": "00100101111000000101011111110010100011010\n11101110001010010101001000111110101010100",
"output": "11001011110010010000010111001100001001110"
},
{
"input": "101011001110110100101001000111010101101111\n100111100110101011010100111100111111010110",
"output": "001100101000011111111101111011101010111001"
},
{
"input": "1111100001100101000111101001001010011100001\n1000110011000011110010001011001110001000001",
"output": "0111010010100110110101100010000100010100000"
},
{
"input": "01100111011111010101000001101110000001110101\n10011001011111110000000101011001001101101100",
"output": "11111110000000100101000100110111001100011001"
},
{
"input": "110010100111000100100101100000011100000011001\n011001111011100110000110111001110110100111011",
"output": "101011011100100010100011011001101010100100010"
},
{
"input": "0001100111111011010110100100111000000111000110\n1100101011000000000001010010010111001100110001",
"output": "1101001100111011010111110110101111001011110111"
},
{
"input": "00000101110110110001110010100001110100000100000\n10010000110011110001101000111111101010011010001",
"output": "10010101000101000000011010011110011110011110001"
},
{
"input": "110000100101011100100011001111110011111110010001\n101011111001011100110110111101110011010110101100",
"output": "011011011100000000010101110010000000101000111101"
},
{
"input": "0101111101011111010101011101000011101100000000111\n0000101010110110001110101011011110111001010100100",
"output": "0101010111101001011011110110011101010101010100011"
},
{
"input": "11000100010101110011101000011111001010110111111100\n00001111000111001011111110000010101110111001000011",
"output": "11001011010010111000010110011101100100001110111111"
},
{
"input": "101000001101111101101111111000001110110010101101010\n010011100111100001100000010001100101000000111011011",
"output": "111011101010011100001111101001101011110010010110001"
},
{
"input": "0011111110010001010100010110111000110011001101010100\n0111000000100010101010000100101000000100101000111001",
"output": "0100111110110011111110010010010000110111100101101101"
},
{
"input": "11101010000110000011011010000001111101000111011111100\n10110011110001010100010110010010101001010111100100100",
"output": "01011001110111010111001100010011010100010000111011000"
},
{
"input": "011000100001000001101000010110100110011110100111111011\n111011001000001001110011001111011110111110110011011111",
"output": "100011101001001000011011011001111000100000010100100100"
},
{
"input": "0111010110010100000110111011010110100000000111110110000\n1011100100010001101100000100111111101001110010000100110",
"output": "1100110010000101101010111111101001001001110101110010110"
},
{
"input": "10101000100111000111010001011011011011110100110101100011\n11101111000000001100100011111000100100000110011001101110",
"output": "01000111100111001011110010100011111111110010101100001101"
},
{
"input": "000000111001010001000000110001001011100010011101010011011\n110001101000010010000101000100001111101001100100001010010",
"output": "110001010001000011000101110101000100001011111001011001001"
},
{
"input": "0101011100111010000111110010101101111111000000111100011100\n1011111110000010101110111001000011100000100111111111000111",
"output": "1110100010111000101001001011101110011111100111000011011011"
},
{
"input": "11001000001100100111100111100100101011000101001111001001101\n10111110100010000011010100110100100011101001100000001110110",
"output": "01110110101110100100110011010000001000101100101111000111011"
},
{
"input": "010111011011101000000110000110100110001110100001110110111011\n101011110011101011101101011111010100100001100111100100111011",
"output": "111100101000000011101011011001110010101111000110010010000000"
},
{
"input": "1001011110110110000100011001010110000100011010010111010101110\n1101111100001000010111110011010101111010010100000001000010111",
"output": "0100100010111110010011101010000011111110001110010110010111001"
},
{
"input": "10000010101111100111110101111000010100110111101101111111111010\n10110110101100101010011001011010100110111011101100011001100111",
"output": "00110100000011001101101100100010110010001100000001100110011101"
},
{
"input": "011111010011111000001010101001101001000010100010111110010100001\n011111001011000011111001000001111001010110001010111101000010011",
"output": "000000011000111011110011101000010000010100101000000011010110010"
},
{
"input": "1111000000110001011101000100100100001111011100001111001100011111\n1101100110000101100001100000001001011011111011010101000101001010",
"output": "0010100110110100111100100100101101010100100111011010001001010101"
},
{
"input": "01100000101010010011001110100110110010000110010011011001100100011\n10110110010110111100100111000111000110010000000101101110000010111",
"output": "11010110111100101111101001100001110100010110010110110111100110100"
},
{
"input": "001111111010000100001100001010011001111110011110010111110001100111\n110000101001011000100010101100100110000111100000001101001110010111",
"output": "111111010011011100101110100110111111111001111110011010111111110000"
},
{
"input": "1011101011101101011110101101011101011000010011100101010101000100110\n0001000001001111010111100100111101100000000001110001000110000000110",
"output": "1010101010100010001001001001100000111000010010010100010011000100000"
},
{
"input": "01000001011001010011011100010000100100110101111011011011110000001110\n01011110000110011011000000000011000111100001010000000011111001110000",
"output": "00011111011111001000011100010011100011010100101011011000001001111110"
},
{
"input": "110101010100110101000001111110110100010010000100111110010100110011100\n111010010111111011100110101011001011001110110111110100000110110100111",
"output": "001111000011001110100111010101111111011100110011001010010010000111011"
},
{
"input": "1001101011000001011111100110010010000011010001001111011100010100110001\n1111100111110101001111010001010000011001001001010110001111000000100101",
"output": "0110001100110100010000110111000010011010011000011001010011010100010100"
},
{
"input": "00000111110010110001110110001010010101000111011001111111100110011110010\n00010111110100000100110101000010010001100001100011100000001100010100010",
"output": "00010000000110110101000011001000000100100110111010011111101010001010000"
},
{
"input": "100101011100101101000011010001011001101110101110001100010001010111001110\n100001111100101011011111110000001111000111001011111110000010101110111001",
"output": "000100100000000110011100100001010110101001100101110010010011111001110111"
},
{
"input": "1101100001000111001101001011101000111000011110000001001101101001111011010\n0101011101010100011011010110101000010010110010011110101100000110110001000",
"output": "1000111100010011010110011101000000101010101100011111100001101111001010010"
},
{
"input": "01101101010011110101100001110101111011100010000010001101111000011110111111\n00101111001101001100111010000101110000100101101111100111101110010100011011",
"output": "01000010011110111001011011110000001011000111101101101010010110001010100100"
},
{
"input": "101100101100011001101111110110110010100110110010100001110010110011001101011\n000001011010101011110011111101001110000111000010001101000010010000010001101",
"output": "101101110110110010011100001011111100100001110000101100110000100011011100110"
},
{
"input": "0010001011001010001100000010010011110110011000100000000100110000101111001110\n1100110100111000110100001110111001011101001100001010100001010011100110110001",
"output": "1110111111110010111000001100101010101011010100101010100101100011001001111111"
},
{
"input": "00101101010000000101011001101011001100010001100000101011101110000001111001000\n10010110010111000000101101000011101011001010000011011101101011010000000011111",
"output": "10111011000111000101110100101000100111011011100011110110000101010001111010111"
},
{
"input": "111100000100100000101001100001001111001010001000001000000111010000010101101011\n001000100010100101111011111011010110101100001111011000010011011011100010010110",
"output": "110100100110000101010010011010011001100110000111010000010100001011110111111101"
},
{
"input": "0110001101100100001111110101101000100101010010101010011001101001001101110000000\n0111011000000010010111011110010000000001000110001000011001101000000001110100111",
"output": "0001010101100110011000101011111000100100010100100010000000000001001100000100111"
},
{
"input": "10001111111001000101001011110101111010100001011010101100111001010001010010001000\n10000111010010011110111000111010101100000011110001101111001000111010100000000001",
"output": "00001000101011011011110011001111010110100010101011000011110001101011110010001001"
},
{
"input": "100110001110110000100101001110000011110110000110000000100011110100110110011001101\n110001110101110000000100101001101011111100100100001001000110000001111100011110110",
"output": "010111111011000000100001100111101000001010100010001001100101110101001010000111011"
},
{
"input": "0000010100100000010110111100011111111010011101000000100000011001001101101100111010\n0100111110011101010110101011110110010111001111000110101100101110111100101000111111",
"output": "0100101010111101000000010111101001101101010010000110001100110111110001000100000101"
},
{
"input": "11000111001010100001110000001001011010010010110000001110100101000001010101100110111\n11001100100100100001101010110100000111100011101110011010110100001001000011011011010",
"output": "00001011101110000000011010111101011101110001011110010100010001001000010110111101101"
},
{
"input": "010110100010001000100010101001101010011010111110100001000100101000111011100010100001\n110000011111101101010011111000101010111010100001001100001001100101000000111000000000",
"output": "100110111101100101110001010001000000100000011111101101001101001101111011011010100001"
},
{
"input": "0000011110101110010101110110110101100001011001101010101001000010000010000000101001101\n1100111111011100000110000111101110011111100111110001011001000010011111100001001100011",
"output": "1100100001110010010011110001011011111110111110011011110000000000011101100001100101110"
},
{
"input": "10100000101101110001100010010010100101100011010010101000110011100000101010110010000000\n10001110011011010010111011011101101111000111110000111000011010010101001100000001010011",
"output": "00101110110110100011011001001111001010100100100010010000101001110101100110110011010011"
},
{
"input": "001110000011111101101010011111000101010111010100001001100001001100101000000111000000000\n111010000000000000101001110011001000111011001100101010011001000011101001001011110000011",
"output": "110100000011111101000011101100001101101100011000100011111000001111000001001100110000011"
},
{
"input": "1110111100111011010101011011001110001010010010110011110010011111000010011111010101100001\n1001010101011001001010100010101100000110111101011000100010101111111010111100001110010010",
"output": "0111101001100010011111111001100010001100101111101011010000110000111000100011011011110011"
},
{
"input": "11100010001100010011001100001100010011010001101110011110100101110010101101011101000111111\n01110000000110111010110100001010000101011110100101010011000110101110101101110111011110001",
"output": "10010010001010101001111000000110010110001111001011001101100011011100000000101010011001110"
},
{
"input": "001101011001100101101100110000111000101011001001100100000100101000100000110100010111111101\n101001111110000010111101111110001001111001111101111010000110111000100100110010010001011111",
"output": "100100100111100111010001001110110001010010110100011110000010010000000100000110000110100010"
},
{
"input": "1010110110010101000110010010110101011101010100011001101011000110000000100011100100011000000\n0011011111100010001111101101000111001011101110100000110111100100101111010110101111011100011",
"output": "1001101001110111001001111111110010010110111010111001011100100010101111110101001011000100011"
},
{
"input": "10010010000111010111011111110010100101100000001100011100111011100010000010010001011100001100\n00111010100010110010000100010111010001111110100100100011101000101111111111001101101100100100",
"output": "10101000100101100101011011100101110100011110101000111111010011001101111101011100110000101000"
},
{
"input": "010101110001010101100000010111010000000111110011001101100011001000000011001111110000000010100\n010010111011100101010101111110110000000111000100001101101001001000001100101110001010000100001",
"output": "000111001010110000110101101001100000000000110111000000001010000000001111100001111010000110101"
},
{
"input": "1100111110011001000111101001001011000110011010111111100010111111001100111111011101100111101011\n1100000011001000110100110111000001011001010111101000010010100011000001100100111101101000010110",
"output": "0000111101010001110011011110001010011111001101010111110000011100001101011011100000001111111101"
},
{
"input": "00011000100100110111100101100100000000010011110111110010101110110011100001010111010011110100101\n00011011111011111011100101100111100101001110010111000010000111000100100100000001110101111011011",
"output": "00000011011111001100000000000011100101011101100000110000101001110111000101010110100110001111110"
},
{
"input": "000101011001001100000111100010110101111011110101111101000110001101011010111110110011100100000001\n011000101010011111011000111000100000000011011000000001111110001000001111101010110000011100001111",
"output": "011101110011010011011111011010010101111000101101111100111000000101010101010100000011111000001110"
},
{
"input": "1000101001011010000100100100010010011101011001110101111011101111111110010101001101010001010101001\n0110110010011100011111011111110111000000010001110100001010111110101011010011111011111110000110000",
"output": "1110011011000110011011111011100101011101001000000001110001010001010101000110110110101111010011001"
},
{
"input": "01111010010101100111110111111011011010100001011101010000111100101101101110111011001100101011100111\n00001100110110100001111011000010001001001100000010111101000001111011100000010111010010000011000010",
"output": "01110110100011000110001100111001010011101101011111101101111101010110001110101100011110101000100101"
},
{
"input": "111101011101111000001011001101111010110111001101110100100011111011011101001101010101011010111000110\n101111100101101101001100110011000001111010011101110111110110101110011011110011111100001001110101101",
"output": "010010111000010101000111111110111011001101010000000011010101010101000110111110101001010011001101011"
},
{
"input": "1010000011010110011101001101110001110010000111011101110010110110111111001001110100101100010101010001\n0111101000111100101100000101111010100100001000011101010100110011100011010011010101000100101011100011",
"output": "1101101011101010110001001000001011010110001111000000100110000101011100011010100001101000111110110010"
},
{
"input": "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001\n1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111010",
"output": "1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111011"
},
{
"input": "0\n0",
"output": "0"
},
{
"input": "0\n1",
"output": "1"
}
] | 1,593,862,511
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 102
| 124
| 0
|
s1 = input()
s2 = input()
s3 = str(int(s1) + int(s2))
s3 = s3.replace('2', '0')
print(s3.zfill(len(s1)))
|
Title: Ultra-Fast Mathematician
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second.
One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part.
In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0.
Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length ∞ (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length.
Now you are going to take part in Shapur's contest. See if you are faster and more accurate.
Input Specification:
There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100.
Output Specification:
Write one line — the corresponding answer. Do not omit the leading 0s.
Demo Input:
['1010100\n0100101\n', '000\n111\n', '1110\n1010\n', '01110\n01100\n']
Demo Output:
['1110001\n', '111\n', '0100\n', '00010\n']
Note:
none
|
```python
s1 = input()
s2 = input()
s3 = str(int(s1) + int(s2))
s3 = s3.replace('2', '0')
print(s3.zfill(len(s1)))
```
| 3.969
|
994
|
A
|
Fingerprints
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
You are locked in a room with a door that has a keypad with 10 keys corresponding to digits from 0 to 9. To escape from the room, you need to enter a correct code. You also have a sequence of digits.
Some keys on the keypad have fingerprints. You believe the correct code is the longest not necessarily contiguous subsequence of the sequence you have that only contains digits with fingerprints on the corresponding keys. Find such code.
|
The first line contains two integers $n$ and $m$ ($1 \le n, m \le 10$) representing the number of digits in the sequence you have and the number of keys on the keypad that have fingerprints.
The next line contains $n$ distinct space-separated integers $x_1, x_2, \ldots, x_n$ ($0 \le x_i \le 9$) representing the sequence.
The next line contains $m$ distinct space-separated integers $y_1, y_2, \ldots, y_m$ ($0 \le y_i \le 9$) — the keys with fingerprints.
|
In a single line print a space-separated sequence of integers representing the code. If the resulting sequence is empty, both printing nothing and printing a single line break is acceptable.
|
[
"7 3\n3 5 7 1 6 2 8\n1 2 7\n",
"4 4\n3 4 1 0\n0 1 7 9\n"
] |
[
"7 1 2\n",
"1 0\n"
] |
In the first example, the only digits with fingerprints are $1$, $2$ and $7$. All three of them appear in the sequence you know, $7$ first, then $1$ and then $2$. Therefore the output is 7 1 2. Note that the order is important, and shall be the same as the order in the original sequence.
In the second example digits $0$, $1$, $7$ and $9$ have fingerprints, however only $0$ and $1$ appear in the original sequence. $1$ appears earlier, so the output is 1 0. Again, the order is important.
| 500
|
[
{
"input": "7 3\n3 5 7 1 6 2 8\n1 2 7",
"output": "7 1 2"
},
{
"input": "4 4\n3 4 1 0\n0 1 7 9",
"output": "1 0"
},
{
"input": "9 4\n9 8 7 6 5 4 3 2 1\n2 4 6 8",
"output": "8 6 4 2"
},
{
"input": "10 5\n3 7 1 2 4 6 9 0 5 8\n4 3 0 7 9",
"output": "3 7 4 9 0"
},
{
"input": "10 10\n1 2 3 4 5 6 7 8 9 0\n4 5 6 7 1 2 3 0 9 8",
"output": "1 2 3 4 5 6 7 8 9 0"
},
{
"input": "1 1\n4\n4",
"output": "4"
},
{
"input": "3 7\n6 3 4\n4 9 0 1 7 8 6",
"output": "6 4"
},
{
"input": "10 1\n9 0 8 1 7 4 6 5 2 3\n0",
"output": "0"
},
{
"input": "5 10\n6 0 3 8 1\n3 1 0 5 4 7 2 8 9 6",
"output": "6 0 3 8 1"
},
{
"input": "8 2\n7 2 9 6 1 0 3 4\n6 3",
"output": "6 3"
},
{
"input": "5 4\n7 0 1 4 9\n0 9 5 3",
"output": "0 9"
},
{
"input": "10 1\n9 6 2 0 1 8 3 4 7 5\n6",
"output": "6"
},
{
"input": "10 2\n7 1 0 2 4 6 5 9 3 8\n3 2",
"output": "2 3"
},
{
"input": "5 9\n3 7 9 2 4\n3 8 4 5 9 6 1 0 2",
"output": "3 9 2 4"
},
{
"input": "10 6\n7 1 2 3 8 0 6 4 5 9\n1 5 8 2 3 6",
"output": "1 2 3 8 6 5"
},
{
"input": "8 2\n7 4 8 9 2 5 6 1\n6 4",
"output": "4 6"
},
{
"input": "10 2\n1 0 3 5 8 9 4 7 6 2\n0 3",
"output": "0 3"
},
{
"input": "7 6\n9 2 8 6 1 3 7\n4 2 0 3 1 8",
"output": "2 8 1 3"
},
{
"input": "1 6\n3\n6 8 2 4 5 3",
"output": "3"
},
{
"input": "1 8\n0\n9 2 4 8 1 5 0 7",
"output": "0"
},
{
"input": "6 9\n7 3 9 4 1 0\n9 1 5 8 0 6 2 7 4",
"output": "7 9 4 1 0"
},
{
"input": "10 2\n4 9 6 8 3 0 1 5 7 2\n0 1",
"output": "0 1"
},
{
"input": "10 5\n5 2 8 0 9 7 6 1 4 3\n9 6 4 1 2",
"output": "2 9 6 1 4"
},
{
"input": "6 3\n8 3 9 2 7 6\n5 4 3",
"output": "3"
},
{
"input": "4 10\n8 3 9 6\n4 9 6 2 7 0 8 1 3 5",
"output": "8 3 9 6"
},
{
"input": "1 2\n1\n1 0",
"output": "1"
},
{
"input": "3 6\n1 2 3\n4 5 6 1 2 3",
"output": "1 2 3"
},
{
"input": "1 2\n2\n1 2",
"output": "2"
},
{
"input": "1 10\n9\n0 1 2 3 4 5 6 7 8 9",
"output": "9"
}
] | 1,642,761,874
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 31
| 93
| 0
|
#!/usr/bin/env python
# coding: utf-8
# In[18]:
n, m = map(int,input().split())
x = list(map(int,input().strip().split()))[:n]
y = list(map(int,input().strip().split()))[:m]
a = []
for i in x:
for j in y:
if i == j:
a.append(j)
print(*a)
# In[ ]:
|
Title: Fingerprints
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You are locked in a room with a door that has a keypad with 10 keys corresponding to digits from 0 to 9. To escape from the room, you need to enter a correct code. You also have a sequence of digits.
Some keys on the keypad have fingerprints. You believe the correct code is the longest not necessarily contiguous subsequence of the sequence you have that only contains digits with fingerprints on the corresponding keys. Find such code.
Input Specification:
The first line contains two integers $n$ and $m$ ($1 \le n, m \le 10$) representing the number of digits in the sequence you have and the number of keys on the keypad that have fingerprints.
The next line contains $n$ distinct space-separated integers $x_1, x_2, \ldots, x_n$ ($0 \le x_i \le 9$) representing the sequence.
The next line contains $m$ distinct space-separated integers $y_1, y_2, \ldots, y_m$ ($0 \le y_i \le 9$) — the keys with fingerprints.
Output Specification:
In a single line print a space-separated sequence of integers representing the code. If the resulting sequence is empty, both printing nothing and printing a single line break is acceptable.
Demo Input:
['7 3\n3 5 7 1 6 2 8\n1 2 7\n', '4 4\n3 4 1 0\n0 1 7 9\n']
Demo Output:
['7 1 2\n', '1 0\n']
Note:
In the first example, the only digits with fingerprints are $1$, $2$ and $7$. All three of them appear in the sequence you know, $7$ first, then $1$ and then $2$. Therefore the output is 7 1 2. Note that the order is important, and shall be the same as the order in the original sequence.
In the second example digits $0$, $1$, $7$ and $9$ have fingerprints, however only $0$ and $1$ appear in the original sequence. $1$ appears earlier, so the output is 1 0. Again, the order is important.
|
```python
#!/usr/bin/env python
# coding: utf-8
# In[18]:
n, m = map(int,input().split())
x = list(map(int,input().strip().split()))[:n]
y = list(map(int,input().strip().split()))[:m]
a = []
for i in x:
for j in y:
if i == j:
a.append(j)
print(*a)
# In[ ]:
```
| 3
|
|
467
|
A
|
George and Accommodation
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
George has recently entered the BSUCP (Berland State University for Cool Programmers). George has a friend Alex who has also entered the university. Now they are moving into a dormitory.
George and Alex want to live in the same room. The dormitory has *n* rooms in total. At the moment the *i*-th room has *p**i* people living in it and the room can accommodate *q**i* people in total (*p**i*<=≤<=*q**i*). Your task is to count how many rooms has free place for both George and Alex.
|
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of rooms.
The *i*-th of the next *n* lines contains two integers *p**i* and *q**i* (0<=≤<=*p**i*<=≤<=*q**i*<=≤<=100) — the number of people who already live in the *i*-th room and the room's capacity.
|
Print a single integer — the number of rooms where George and Alex can move in.
|
[
"3\n1 1\n2 2\n3 3\n",
"3\n1 10\n0 10\n10 10\n"
] |
[
"0\n",
"2\n"
] |
none
| 500
|
[
{
"input": "3\n1 1\n2 2\n3 3",
"output": "0"
},
{
"input": "3\n1 10\n0 10\n10 10",
"output": "2"
},
{
"input": "2\n36 67\n61 69",
"output": "2"
},
{
"input": "3\n21 71\n10 88\n43 62",
"output": "3"
},
{
"input": "3\n1 2\n2 3\n3 4",
"output": "0"
},
{
"input": "10\n0 10\n0 20\n0 30\n0 40\n0 50\n0 60\n0 70\n0 80\n0 90\n0 100",
"output": "10"
},
{
"input": "13\n14 16\n30 31\n45 46\n19 20\n15 17\n66 67\n75 76\n95 97\n29 30\n37 38\n0 2\n36 37\n8 9",
"output": "4"
},
{
"input": "19\n66 67\n97 98\n89 91\n67 69\n67 68\n18 20\n72 74\n28 30\n91 92\n27 28\n75 77\n17 18\n74 75\n28 30\n16 18\n90 92\n9 11\n22 24\n52 54",
"output": "12"
},
{
"input": "15\n55 57\n95 97\n57 59\n34 36\n50 52\n96 98\n39 40\n13 15\n13 14\n74 76\n47 48\n56 58\n24 25\n11 13\n67 68",
"output": "10"
},
{
"input": "17\n68 69\n47 48\n30 31\n52 54\n41 43\n33 35\n38 40\n56 58\n45 46\n92 93\n73 74\n61 63\n65 66\n37 39\n67 68\n77 78\n28 30",
"output": "8"
},
{
"input": "14\n64 66\n43 44\n10 12\n76 77\n11 12\n25 27\n87 88\n62 64\n39 41\n58 60\n10 11\n28 29\n57 58\n12 14",
"output": "7"
},
{
"input": "38\n74 76\n52 54\n78 80\n48 49\n40 41\n64 65\n28 30\n6 8\n49 51\n68 70\n44 45\n57 59\n24 25\n46 48\n49 51\n4 6\n63 64\n76 78\n57 59\n18 20\n63 64\n71 73\n88 90\n21 22\n89 90\n65 66\n89 91\n96 98\n42 44\n1 1\n74 76\n72 74\n39 40\n75 76\n29 30\n48 49\n87 89\n27 28",
"output": "22"
},
{
"input": "100\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0",
"output": "0"
},
{
"input": "26\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2",
"output": "0"
},
{
"input": "68\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2",
"output": "68"
},
{
"input": "7\n0 1\n1 5\n2 4\n3 5\n4 6\n5 6\n6 8",
"output": "5"
},
{
"input": "1\n0 0",
"output": "0"
},
{
"input": "1\n100 100",
"output": "0"
},
{
"input": "44\n0 8\n1 11\n2 19\n3 5\n4 29\n5 45\n6 6\n7 40\n8 19\n9 22\n10 18\n11 26\n12 46\n13 13\n14 27\n15 48\n16 25\n17 20\n18 29\n19 27\n20 45\n21 39\n22 29\n23 39\n24 42\n25 37\n26 52\n27 36\n28 43\n29 35\n30 38\n31 70\n32 47\n33 38\n34 61\n35 71\n36 51\n37 71\n38 59\n39 77\n40 70\n41 80\n42 77\n43 73",
"output": "42"
},
{
"input": "3\n1 3\n2 7\n8 9",
"output": "2"
},
{
"input": "53\n0 1\n1 2\n2 3\n3 4\n4 5\n5 6\n6 7\n7 8\n8 9\n9 10\n10 11\n11 12\n12 13\n13 14\n14 15\n15 16\n16 17\n17 18\n18 19\n19 20\n20 21\n21 22\n22 23\n23 24\n24 25\n25 26\n26 27\n27 28\n28 29\n29 30\n30 31\n31 32\n32 33\n33 34\n34 35\n35 36\n36 37\n37 38\n38 39\n39 40\n40 41\n41 42\n42 43\n43 44\n44 45\n45 46\n46 47\n47 48\n48 49\n49 50\n50 51\n51 52\n52 53",
"output": "0"
},
{
"input": "55\n0 0\n1 1\n2 2\n3 3\n4 4\n5 5\n6 6\n7 7\n8 8\n9 9\n10 10\n11 11\n12 12\n13 13\n14 14\n15 15\n16 16\n17 17\n18 18\n19 19\n20 20\n21 21\n22 22\n23 23\n24 24\n25 25\n26 26\n27 27\n28 28\n29 29\n30 30\n31 31\n32 32\n33 33\n34 34\n35 35\n36 36\n37 37\n38 38\n39 39\n40 40\n41 41\n42 42\n43 43\n44 44\n45 45\n46 46\n47 47\n48 48\n49 49\n50 50\n51 51\n52 52\n53 53\n54 54",
"output": "0"
},
{
"input": "51\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 62\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 73\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 82\n55 68\n55 70\n55 63\n55 55\n55 55\n55 55\n55 75\n55 75\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 73\n55 55\n55 82\n55 99\n55 60",
"output": "12"
},
{
"input": "14\n1 1\n1 1\n1 55\n1 16\n1 1\n1 1\n1 55\n1 62\n1 53\n1 26\n1 1\n1 36\n1 2\n1 3",
"output": "8"
}
] | 1,691,935,300
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 27
| 62
| 0
|
ct =0
n = int(input())
for i in range(n):
p,q = map(int,input().split())
if(p+2 <=q):
ct = ct +1
print(ct)
|
Title: George and Accommodation
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
George has recently entered the BSUCP (Berland State University for Cool Programmers). George has a friend Alex who has also entered the university. Now they are moving into a dormitory.
George and Alex want to live in the same room. The dormitory has *n* rooms in total. At the moment the *i*-th room has *p**i* people living in it and the room can accommodate *q**i* people in total (*p**i*<=≤<=*q**i*). Your task is to count how many rooms has free place for both George and Alex.
Input Specification:
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of rooms.
The *i*-th of the next *n* lines contains two integers *p**i* and *q**i* (0<=≤<=*p**i*<=≤<=*q**i*<=≤<=100) — the number of people who already live in the *i*-th room and the room's capacity.
Output Specification:
Print a single integer — the number of rooms where George and Alex can move in.
Demo Input:
['3\n1 1\n2 2\n3 3\n', '3\n1 10\n0 10\n10 10\n']
Demo Output:
['0\n', '2\n']
Note:
none
|
```python
ct =0
n = int(input())
for i in range(n):
p,q = map(int,input().split())
if(p+2 <=q):
ct = ct +1
print(ct)
```
| 3
|
|
762
|
A
|
k-th divisor
|
PROGRAMMING
| 1,400
|
[
"math",
"number theory"
] | null | null |
You are given two integers *n* and *k*. Find *k*-th smallest divisor of *n*, or report that it doesn't exist.
Divisor of *n* is any such natural number, that *n* can be divided by it without remainder.
|
The first line contains two integers *n* and *k* (1<=≤<=*n*<=≤<=1015, 1<=≤<=*k*<=≤<=109).
|
If *n* has less than *k* divisors, output -1.
Otherwise, output the *k*-th smallest divisor of *n*.
|
[
"4 2\n",
"5 3\n",
"12 5\n"
] |
[
"2\n",
"-1\n",
"6\n"
] |
In the first example, number 4 has three divisors: 1, 2 and 4. The second one is 2.
In the second example, number 5 has only two divisors: 1 and 5. The third divisor doesn't exist, so the answer is -1.
| 0
|
[
{
"input": "4 2",
"output": "2"
},
{
"input": "5 3",
"output": "-1"
},
{
"input": "12 5",
"output": "6"
},
{
"input": "1 1",
"output": "1"
},
{
"input": "866421317361600 26880",
"output": "866421317361600"
},
{
"input": "866421317361600 26881",
"output": "-1"
},
{
"input": "1000000000000000 1000000000",
"output": "-1"
},
{
"input": "1000000000000000 100",
"output": "1953125"
},
{
"input": "1 2",
"output": "-1"
},
{
"input": "4 3",
"output": "4"
},
{
"input": "4 4",
"output": "-1"
},
{
"input": "9 3",
"output": "9"
},
{
"input": "21 3",
"output": "7"
},
{
"input": "67280421310721 1",
"output": "1"
},
{
"input": "6 3",
"output": "3"
},
{
"input": "3 3",
"output": "-1"
},
{
"input": "16 3",
"output": "4"
},
{
"input": "1 1000",
"output": "-1"
},
{
"input": "16 4",
"output": "8"
},
{
"input": "36 8",
"output": "18"
},
{
"input": "49 4",
"output": "-1"
},
{
"input": "9 4",
"output": "-1"
},
{
"input": "16 1",
"output": "1"
},
{
"input": "16 6",
"output": "-1"
},
{
"input": "16 5",
"output": "16"
},
{
"input": "25 4",
"output": "-1"
},
{
"input": "4010815561 2",
"output": "63331"
},
{
"input": "49 3",
"output": "49"
},
{
"input": "36 6",
"output": "9"
},
{
"input": "36 10",
"output": "-1"
},
{
"input": "25 3",
"output": "25"
},
{
"input": "22876792454961 28",
"output": "7625597484987"
},
{
"input": "1234 2",
"output": "2"
},
{
"input": "179458711 2",
"output": "179458711"
},
{
"input": "900104343024121 100000",
"output": "-1"
},
{
"input": "8 3",
"output": "4"
},
{
"input": "100 6",
"output": "20"
},
{
"input": "15500 26",
"output": "-1"
},
{
"input": "111111 1",
"output": "1"
},
{
"input": "100000000000000 200",
"output": "160000000000"
},
{
"input": "1000000000000 100",
"output": "6400000"
},
{
"input": "100 10",
"output": "-1"
},
{
"input": "1000000000039 2",
"output": "1000000000039"
},
{
"input": "64 5",
"output": "16"
},
{
"input": "999999961946176 33",
"output": "63245552"
},
{
"input": "376219076689 3",
"output": "376219076689"
},
{
"input": "999999961946176 63",
"output": "999999961946176"
},
{
"input": "1048576 12",
"output": "2048"
},
{
"input": "745 21",
"output": "-1"
},
{
"input": "748 6",
"output": "22"
},
{
"input": "999999961946176 50",
"output": "161082468097"
},
{
"input": "10 3",
"output": "5"
},
{
"input": "1099511627776 22",
"output": "2097152"
},
{
"input": "1000000007 100010",
"output": "-1"
},
{
"input": "3 1",
"output": "1"
},
{
"input": "100 8",
"output": "50"
},
{
"input": "100 7",
"output": "25"
},
{
"input": "7 2",
"output": "7"
},
{
"input": "999999961946176 64",
"output": "-1"
},
{
"input": "20 5",
"output": "10"
},
{
"input": "999999999999989 2",
"output": "999999999999989"
},
{
"input": "100000000000000 114",
"output": "10240000"
},
{
"input": "99999640000243 3",
"output": "9999991"
},
{
"input": "999998000001 566",
"output": "333332666667"
},
{
"input": "99999820000081 2",
"output": "9999991"
},
{
"input": "49000042000009 3",
"output": "49000042000009"
},
{
"input": "151491429961 4",
"output": "-1"
},
{
"input": "32416190071 2",
"output": "32416190071"
},
{
"input": "1000 8",
"output": "25"
},
{
"input": "1999967841 15",
"output": "1999967841"
},
{
"input": "26880 26880",
"output": "-1"
},
{
"input": "151491429961 3",
"output": "151491429961"
},
{
"input": "90000000000 300",
"output": "100000000"
},
{
"input": "98765004361 10",
"output": "-1"
},
{
"input": "15 2",
"output": "3"
},
{
"input": "16 2",
"output": "2"
},
{
"input": "1996 2",
"output": "2"
},
{
"input": "1997 2",
"output": "1997"
},
{
"input": "1999 2",
"output": "1999"
},
{
"input": "1998 2",
"output": "2"
},
{
"input": "1998 1",
"output": "1"
},
{
"input": "1998 7",
"output": "27"
},
{
"input": "1998 8",
"output": "37"
},
{
"input": "100000380000361 2",
"output": "10000019"
},
{
"input": "15 1",
"output": "1"
},
{
"input": "100000000000000 226",
"output": "-1"
},
{
"input": "844030857550613 517",
"output": "-1"
},
{
"input": "4567890 14",
"output": "430"
},
{
"input": "123123123 123123123",
"output": "-1"
},
{
"input": "24 4",
"output": "4"
},
{
"input": "999999993568952 17",
"output": "31622777"
},
{
"input": "99999999994190 9",
"output": "241656799"
},
{
"input": "999997874844049 4",
"output": "-1"
},
{
"input": "99999999999931 2",
"output": "99999999999931"
},
{
"input": "2 3",
"output": "-1"
},
{
"input": "67280421310721 2",
"output": "67280421310721"
}
] | 1,595,050,802
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 96
| 1,700
| 23,449,600
|
import math as m
n,k = map(int,input().split())
f = []
s = []
for x in range(1,int(m.sqrt(n))+1):
if n%x == 0:
f.append(x)
if n//x not in f:
s.append(n//x)
c = f+s[::-1]
try:
print(c[k-1])
except:
print(-1)
|
Title: k-th divisor
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You are given two integers *n* and *k*. Find *k*-th smallest divisor of *n*, or report that it doesn't exist.
Divisor of *n* is any such natural number, that *n* can be divided by it without remainder.
Input Specification:
The first line contains two integers *n* and *k* (1<=≤<=*n*<=≤<=1015, 1<=≤<=*k*<=≤<=109).
Output Specification:
If *n* has less than *k* divisors, output -1.
Otherwise, output the *k*-th smallest divisor of *n*.
Demo Input:
['4 2\n', '5 3\n', '12 5\n']
Demo Output:
['2\n', '-1\n', '6\n']
Note:
In the first example, number 4 has three divisors: 1, 2 and 4. The second one is 2.
In the second example, number 5 has only two divisors: 1 and 5. The third divisor doesn't exist, so the answer is -1.
|
```python
import math as m
n,k = map(int,input().split())
f = []
s = []
for x in range(1,int(m.sqrt(n))+1):
if n%x == 0:
f.append(x)
if n//x not in f:
s.append(n//x)
c = f+s[::-1]
try:
print(c[k-1])
except:
print(-1)
```
| 3
|
|
447
|
B
|
DZY Loves Strings
|
PROGRAMMING
| 1,000
|
[
"greedy",
"implementation"
] | null | null |
DZY loves collecting special strings which only contain lowercase letters. For each lowercase letter *c* DZY knows its value *w**c*. For each special string *s*<==<=*s*1*s*2... *s*|*s*| (|*s*| is the length of the string) he represents its value with a function *f*(*s*), where
Now DZY has a string *s*. He wants to insert *k* lowercase letters into this string in order to get the largest possible value of the resulting string. Can you help him calculate the largest possible value he could get?
|
The first line contains a single string *s* (1<=≤<=|*s*|<=≤<=103).
The second line contains a single integer *k* (0<=≤<=*k*<=≤<=103).
The third line contains twenty-six integers from *w**a* to *w**z*. Each such number is non-negative and doesn't exceed 1000.
|
Print a single integer — the largest possible value of the resulting string DZY could get.
|
[
"abc\n3\n1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n"
] |
[
"41\n"
] |
In the test sample DZY can obtain "abcbbc", *value* = 1·1 + 2·2 + 3·2 + 4·2 + 5·2 + 6·2 = 41.
| 1,000
|
[
{
"input": "abc\n3\n1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "41"
},
{
"input": "mmzhr\n3\n443 497 867 471 195 670 453 413 579 466 553 881 847 642 269 996 666 702 487 209 257 741 974 133 519 453",
"output": "29978"
},
{
"input": "ajeeseerqnpaujubmajpibxrccazaawetywxmifzehojf\n23\n359 813 772 413 733 654 33 87 890 433 395 311 801 852 376 148 914 420 636 695 583 733 664 394 407 314",
"output": "1762894"
},
{
"input": "uahngxejpomhbsebcxvelfsojbaouynnlsogjyvktpwwtcyddkcdqcqs\n34\n530 709 150 660 947 830 487 142 208 276 885 542 138 214 76 184 273 753 30 195 722 236 82 691 572 585",
"output": "2960349"
},
{
"input": "xnzeqmouqyzvblcidmhbkqmtusszuczadpooslqxegldanwopilmdwzbczvrwgnwaireykwpugvpnpafbxlyggkgawghysufuegvmzvpgcqyjkoadcreaguzepbendwnowsuekxxivkziibxvxfoilofxcgnxvfefyezfhevfvtetsuhwtyxdlkccdkvqjl\n282\n170 117 627 886 751 147 414 187 150 960 410 70 576 681 641 729 798 877 611 108 772 643 683 166 305 933",
"output": "99140444"
},
{
"input": "pplkqmluhfympkjfjnfdkwrkpumgdmbkfbbldpepicbbmdgafttpopzdxsevlqbtywzkoxyviglbbxsohycbdqksrhlumsldiwzjmednbkcjishkiekfrchzuztkcxnvuykhuenqojrmzaxlaoxnljnvqgnabtmcftisaazzgbmubmpsorygyusmeonrhrgphnfhlaxrvyhuxsnnezjxmdoklpquzpvjbxgbywppmegzxknhfzyygrmejleesoqfwheulmqhonqaukyuejtwxskjldplripyihbfpookxkuehiwqthbfafyrgmykuxglpplozycgydyecqkgfjljfqvigqhuxssqqtfanwszduwbsoytnrtgc\n464\n838 95 473 955 690 84 436 19 179 437 674 626 377 365 781 4 733 776 462 203 119 256 381 668 855 686",
"output": "301124161"
},
{
"input": "qkautnuilwlhjsldfcuwhiqtgtoihifszlyvfaygrnivzgvwthkrzzdtfjcirrjjlrmjtbjlzmjeqmuffsjorjyggzefwgvmblvotvzffnwjhqxorpowzdcnfksdibezdtfjjxfozaghieksbmowrbeehuxlesmvqjsphlvauxiijm\n98\n121 622 0 691 616 959 838 161 581 862 876 830 267 812 598 106 337 73 588 323 999 17 522 399 657 495",
"output": "30125295"
},
{
"input": "tghyxqfmhz\n8\n191 893 426 203 780 326 148 259 182 140 847 636 778 97 167 773 219 891 758 993 695 603 223 779 368 165",
"output": "136422"
},
{
"input": "nyawbfjxnxjiyhwkydaruozobpphgjqdpfdqzezcsoyvurnapu\n30\n65 682 543 533 990 148 815 821 315 916 632 771 332 513 472 864 12 73 548 687 660 572 507 192 226 348",
"output": "2578628"
},
{
"input": "pylrnkrbcjgoytvdnhmlvnkknijkdgdhworlvtwuonrkhrilkewcnofodaumgvnsisxooswgrgtvdeauyxhkipfoxrrtysuepjcf\n60\n894 206 704 179 272 337 413 828 119 182 330 46 440 102 250 191 242 539 678 783 843 431 612 567 33 338",
"output": "9168707"
},
{
"input": "vhjnkrxbyhjhnjrxvwxmhxwoxttbtqosfxtcuvhfjlkyfspeypthsdkkwnqdpxdlnxsgtzvkrgqosgfjrwetqbxgoarkjhrjbspzgblsapifltkfxbfdbxqwoohlgyzijmiwnpmveybyzvasoctxsmgjehpyysmqblwnmkappbecklqjfmxhlyceordroflnposohfplrvijxbwvqdtvzhobtrumiujnyrfbwthvciinuveoizkccelxtaveiiagryqnyvsgfnipnavrtmdqlcnldepocbpzmqnarkdvykds\n276\n364 244 798 82 582 9 309 950 286 547 892 371 569 159 705 975 740 845 655 179 130 993 255 552 882 657",
"output": "144901921"
},
{
"input": "gsaddmezrnttfalbwlqbnedumvikplfosw\n12\n290 850 872 361 483 895 152 118 974 619 701 154 899 285 328 712 669 984 407 340 851 775 324 892 554 860",
"output": "809931"
},
{
"input": "a\n0\n5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "5"
},
{
"input": "lol\n3\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "21"
}
] | 1,621,027,115
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 24
| 93
| 1,331,200
|
s=input()
k=int(input())
l=list(map(int,input().split()))
t=[chr(x) for x in range(ord('a'), ord('z') + 1)]
d={}
for i in range(26):
if t[i] not in d:
d[t[i]]=l[i]
m=max(l)
i=l.index(m)
s=s+t[i]*k
r=0
for i in range(len(s)):
r=r+((i+1)*d[s[i]])
print(r)
|
Title: DZY Loves Strings
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
DZY loves collecting special strings which only contain lowercase letters. For each lowercase letter *c* DZY knows its value *w**c*. For each special string *s*<==<=*s*1*s*2... *s*|*s*| (|*s*| is the length of the string) he represents its value with a function *f*(*s*), where
Now DZY has a string *s*. He wants to insert *k* lowercase letters into this string in order to get the largest possible value of the resulting string. Can you help him calculate the largest possible value he could get?
Input Specification:
The first line contains a single string *s* (1<=≤<=|*s*|<=≤<=103).
The second line contains a single integer *k* (0<=≤<=*k*<=≤<=103).
The third line contains twenty-six integers from *w**a* to *w**z*. Each such number is non-negative and doesn't exceed 1000.
Output Specification:
Print a single integer — the largest possible value of the resulting string DZY could get.
Demo Input:
['abc\n3\n1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n']
Demo Output:
['41\n']
Note:
In the test sample DZY can obtain "abcbbc", *value* = 1·1 + 2·2 + 3·2 + 4·2 + 5·2 + 6·2 = 41.
|
```python
s=input()
k=int(input())
l=list(map(int,input().split()))
t=[chr(x) for x in range(ord('a'), ord('z') + 1)]
d={}
for i in range(26):
if t[i] not in d:
d[t[i]]=l[i]
m=max(l)
i=l.index(m)
s=s+t[i]*k
r=0
for i in range(len(s)):
r=r+((i+1)*d[s[i]])
print(r)
```
| 3
|
|
712
|
B
|
Memory and Trident
|
PROGRAMMING
| 1,100
|
[
"implementation",
"strings"
] | null | null |
Memory is performing a walk on the two-dimensional plane, starting at the origin. He is given a string *s* with his directions for motion:
- An 'L' indicates he should move one unit left. - An 'R' indicates he should move one unit right. - A 'U' indicates he should move one unit up. - A 'D' indicates he should move one unit down.
But now Memory wants to end at the origin. To do this, he has a special trident. This trident can replace any character in *s* with any of 'L', 'R', 'U', or 'D'. However, because he doesn't want to wear out the trident, he wants to make the minimum number of edits possible. Please tell Memory what is the minimum number of changes he needs to make to produce a string that, when walked, will end at the origin, or if there is no such string.
|
The first and only line contains the string *s* (1<=≤<=|*s*|<=≤<=100<=000) — the instructions Memory is given.
|
If there is a string satisfying the conditions, output a single integer — the minimum number of edits required. In case it's not possible to change the sequence in such a way that it will bring Memory to to the origin, output -1.
|
[
"RRU\n",
"UDUR\n",
"RUUR\n"
] |
[
"-1\n",
"1\n",
"2\n"
] |
In the first sample test, Memory is told to walk right, then right, then up. It is easy to see that it is impossible to edit these instructions to form a valid walk.
In the second sample test, Memory is told to walk up, then down, then up, then right. One possible solution is to change *s* to "LDUR". This string uses 1 edit, which is the minimum possible. It also ends at the origin.
| 1,000
|
[
{
"input": "RRU",
"output": "-1"
},
{
"input": "UDUR",
"output": "1"
},
{
"input": "RUUR",
"output": "2"
},
{
"input": "DDDD",
"output": "2"
},
{
"input": "RRRR",
"output": "2"
},
{
"input": "RRRUUD",
"output": "2"
},
{
"input": "UDURLRDURLRD",
"output": "1"
},
{
"input": "RLRU",
"output": "1"
},
{
"input": "RDDLLDLUUUDDRDRURLUUURLLDDLRLUURRLLRRLDRLLUDRLRULLDLRRLRLRLRUDUUDLULURLLDUURULURLLRRRURRRDRUUDLDRLRDRLRRDDLDLDLLUDRUDRLLLLDRDUULRUURRDLULLULDUDULRURRDDDLLUDRLUDDLDDDRRDDDULLLLDLDRLRRLRRDDRLULURRUDRDUUUULDURUDRDLDDUDUDRRURDULRRUDRLRRDLUURURDLDRLRDUDDDLDDDURURLUULRDUUULRURUDUDRRUDULLLUUUDRLLDRRDDLRUDRDRDLLRURURRRULURURRRLUUULRRRUURUUDURUDDLLDLDRLRDLDRLLDLDRDRRLRRRURUUUDRDLRLRUDRLULUUULUDDLULDLRLLRDUULLRLRURLRURULLLUDUDDLRULRDUURURLDLUURRRDURRLLDRUUDRDLLDUUDLURUDDUUUULRLLURLUDDRLRRDRURLRUDRLDDRLLL",
"output": "-1"
},
{
"input": "LDLDLDLDLDRULD",
"output": "5"
},
{
"input": "LULULURULLLU",
"output": "5"
},
{
"input": "DRDRDDRR",
"output": "4"
},
{
"input": "LR",
"output": "0"
},
{
"input": "UL",
"output": "1"
},
{
"input": "UD",
"output": "0"
},
{
"input": "R",
"output": "-1"
},
{
"input": "LU",
"output": "1"
},
{
"input": "RR",
"output": "1"
},
{
"input": "UDLR",
"output": "0"
},
{
"input": "RRRRRLLUUUUDD",
"output": "-1"
},
{
"input": "UUUUDLLLLR",
"output": "3"
},
{
"input": "LLRUD",
"output": "-1"
},
{
"input": "LLRDDU",
"output": "1"
}
] | 1,473,528,542
| 2,642
|
Python 3
|
OK
|
TESTS
| 75
| 77
| 307,200
|
#!/usr/bin/python3
s = input()
if len(s) % 2 != 0:
print(-1)
else:
dy = s.count('U') - s.count('D')
dx = s.count('R') - s.count('L')
print((abs(dx) + abs(dy)) // 2)
|
Title: Memory and Trident
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Memory is performing a walk on the two-dimensional plane, starting at the origin. He is given a string *s* with his directions for motion:
- An 'L' indicates he should move one unit left. - An 'R' indicates he should move one unit right. - A 'U' indicates he should move one unit up. - A 'D' indicates he should move one unit down.
But now Memory wants to end at the origin. To do this, he has a special trident. This trident can replace any character in *s* with any of 'L', 'R', 'U', or 'D'. However, because he doesn't want to wear out the trident, he wants to make the minimum number of edits possible. Please tell Memory what is the minimum number of changes he needs to make to produce a string that, when walked, will end at the origin, or if there is no such string.
Input Specification:
The first and only line contains the string *s* (1<=≤<=|*s*|<=≤<=100<=000) — the instructions Memory is given.
Output Specification:
If there is a string satisfying the conditions, output a single integer — the minimum number of edits required. In case it's not possible to change the sequence in such a way that it will bring Memory to to the origin, output -1.
Demo Input:
['RRU\n', 'UDUR\n', 'RUUR\n']
Demo Output:
['-1\n', '1\n', '2\n']
Note:
In the first sample test, Memory is told to walk right, then right, then up. It is easy to see that it is impossible to edit these instructions to form a valid walk.
In the second sample test, Memory is told to walk up, then down, then up, then right. One possible solution is to change *s* to "LDUR". This string uses 1 edit, which is the minimum possible. It also ends at the origin.
|
```python
#!/usr/bin/python3
s = input()
if len(s) % 2 != 0:
print(-1)
else:
dy = s.count('U') - s.count('D')
dx = s.count('R') - s.count('L')
print((abs(dx) + abs(dy)) // 2)
```
| 3
|
|
9
|
A
|
Die Roll
|
PROGRAMMING
| 800
|
[
"math",
"probabilities"
] |
A. Die Roll
|
1
|
64
|
Yakko, Wakko and Dot, world-famous animaniacs, decided to rest from acting in cartoons, and take a leave to travel a bit. Yakko dreamt to go to Pennsylvania, his Motherland and the Motherland of his ancestors. Wakko thought about Tasmania, its beaches, sun and sea. Dot chose Transylvania as the most mysterious and unpredictable place.
But to their great regret, the leave turned to be very short, so it will be enough to visit one of the three above named places. That's why Yakko, as the cleverest, came up with a truly genius idea: let each of the three roll an ordinary six-sided die, and the one with the highest amount of points will be the winner, and will take the other two to the place of his/her dreams.
Yakko thrown a die and got Y points, Wakko — W points. It was Dot's turn. But she didn't hurry. Dot wanted to know for sure what were her chances to visit Transylvania.
It is known that Yakko and Wakko are true gentlemen, that's why if they have the same amount of points with Dot, they will let Dot win.
|
The only line of the input file contains two natural numbers Y and W — the results of Yakko's and Wakko's die rolls.
|
Output the required probability in the form of irreducible fraction in format «A/B», where A — the numerator, and B — the denominator. If the required probability equals to zero, output «0/1». If the required probability equals to 1, output «1/1».
|
[
"4 2\n"
] |
[
"1/2\n"
] |
Dot will go to Transylvania, if she is lucky to roll 4, 5 or 6 points.
| 0
|
[
{
"input": "4 2",
"output": "1/2"
},
{
"input": "1 1",
"output": "1/1"
},
{
"input": "1 2",
"output": "5/6"
},
{
"input": "1 3",
"output": "2/3"
},
{
"input": "1 4",
"output": "1/2"
},
{
"input": "1 5",
"output": "1/3"
},
{
"input": "1 6",
"output": "1/6"
},
{
"input": "2 1",
"output": "5/6"
},
{
"input": "2 2",
"output": "5/6"
},
{
"input": "2 3",
"output": "2/3"
},
{
"input": "2 4",
"output": "1/2"
},
{
"input": "2 5",
"output": "1/3"
},
{
"input": "2 6",
"output": "1/6"
},
{
"input": "3 1",
"output": "2/3"
},
{
"input": "3 2",
"output": "2/3"
},
{
"input": "3 3",
"output": "2/3"
},
{
"input": "3 4",
"output": "1/2"
},
{
"input": "3 5",
"output": "1/3"
},
{
"input": "3 6",
"output": "1/6"
},
{
"input": "4 1",
"output": "1/2"
},
{
"input": "4 3",
"output": "1/2"
},
{
"input": "4 4",
"output": "1/2"
},
{
"input": "4 5",
"output": "1/3"
},
{
"input": "4 6",
"output": "1/6"
},
{
"input": "5 1",
"output": "1/3"
},
{
"input": "5 2",
"output": "1/3"
},
{
"input": "5 3",
"output": "1/3"
},
{
"input": "5 4",
"output": "1/3"
},
{
"input": "5 5",
"output": "1/3"
},
{
"input": "5 6",
"output": "1/6"
},
{
"input": "6 1",
"output": "1/6"
},
{
"input": "6 2",
"output": "1/6"
},
{
"input": "6 3",
"output": "1/6"
},
{
"input": "6 4",
"output": "1/6"
},
{
"input": "6 5",
"output": "1/6"
},
{
"input": "6 6",
"output": "1/6"
}
] | 1,690,809,800
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 36
| 92
| 0
|
'''
t=int(input())
ans=[]
for _ in range(t):
a,b,c=map(int,input().split())
if c>b:
d=2*(c-b)+b-1
else:d=b-1
a-=1
if a>d:ans.append(2)
elif a==d:ans.append(3)
else:ans.append(1)
print(*ans,sep='\n')'''
import math
a=6-max(map(int,input().split()))+1
b=math.gcd(a,6)
print('{}/{}'.format(a//b,6//b))
|
Title: Die Roll
Time Limit: 1 seconds
Memory Limit: 64 megabytes
Problem Description:
Yakko, Wakko and Dot, world-famous animaniacs, decided to rest from acting in cartoons, and take a leave to travel a bit. Yakko dreamt to go to Pennsylvania, his Motherland and the Motherland of his ancestors. Wakko thought about Tasmania, its beaches, sun and sea. Dot chose Transylvania as the most mysterious and unpredictable place.
But to their great regret, the leave turned to be very short, so it will be enough to visit one of the three above named places. That's why Yakko, as the cleverest, came up with a truly genius idea: let each of the three roll an ordinary six-sided die, and the one with the highest amount of points will be the winner, and will take the other two to the place of his/her dreams.
Yakko thrown a die and got Y points, Wakko — W points. It was Dot's turn. But she didn't hurry. Dot wanted to know for sure what were her chances to visit Transylvania.
It is known that Yakko and Wakko are true gentlemen, that's why if they have the same amount of points with Dot, they will let Dot win.
Input Specification:
The only line of the input file contains two natural numbers Y and W — the results of Yakko's and Wakko's die rolls.
Output Specification:
Output the required probability in the form of irreducible fraction in format «A/B», where A — the numerator, and B — the denominator. If the required probability equals to zero, output «0/1». If the required probability equals to 1, output «1/1».
Demo Input:
['4 2\n']
Demo Output:
['1/2\n']
Note:
Dot will go to Transylvania, if she is lucky to roll 4, 5 or 6 points.
|
```python
'''
t=int(input())
ans=[]
for _ in range(t):
a,b,c=map(int,input().split())
if c>b:
d=2*(c-b)+b-1
else:d=b-1
a-=1
if a>d:ans.append(2)
elif a==d:ans.append(3)
else:ans.append(1)
print(*ans,sep='\n')'''
import math
a=6-max(map(int,input().split()))+1
b=math.gcd(a,6)
print('{}/{}'.format(a//b,6//b))
```
| 3.954
|
709
|
A
|
Juicer
|
PROGRAMMING
| 900
|
[
"implementation"
] | null | null |
Kolya is going to make fresh orange juice. He has *n* oranges of sizes *a*1,<=*a*2,<=...,<=*a**n*. Kolya will put them in the juicer in the fixed order, starting with orange of size *a*1, then orange of size *a*2 and so on. To be put in the juicer the orange must have size not exceeding *b*, so if Kolya sees an orange that is strictly greater he throws it away and continues with the next one.
The juicer has a special section to collect waste. It overflows if Kolya squeezes oranges of the total size strictly greater than *d*. When it happens Kolya empties the waste section (even if there are no more oranges) and continues to squeeze the juice. How many times will he have to empty the waste section?
|
The first line of the input contains three integers *n*, *b* and *d* (1<=≤<=*n*<=≤<=100<=000, 1<=≤<=*b*<=≤<=*d*<=≤<=1<=000<=000) — the number of oranges, the maximum size of the orange that fits in the juicer and the value *d*, which determines the condition when the waste section should be emptied.
The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=1<=000<=000) — sizes of the oranges listed in the order Kolya is going to try to put them in the juicer.
|
Print one integer — the number of times Kolya will have to empty the waste section.
|
[
"2 7 10\n5 6\n",
"1 5 10\n7\n",
"3 10 10\n5 7 7\n",
"1 1 1\n1\n"
] |
[
"1\n",
"0\n",
"1\n",
"0\n"
] |
In the first sample, Kolya will squeeze the juice from two oranges and empty the waste section afterwards.
In the second sample, the orange won't fit in the juicer so Kolya will have no juice at all.
| 500
|
[
{
"input": "2 7 10\n5 6",
"output": "1"
},
{
"input": "1 5 10\n7",
"output": "0"
},
{
"input": "3 10 10\n5 7 7",
"output": "1"
},
{
"input": "1 1 1\n1",
"output": "0"
},
{
"input": "2 951637 951638\n44069 951637",
"output": "1"
},
{
"input": "50 100 129\n55 130 91 19 116 3 63 52 104 76 75 27 151 99 149 147 39 148 84 9 132 49 40 112 124 141 144 93 36 32 146 74 48 38 150 55 94 32 107 69 77 81 33 57 62 98 78 127 154 126",
"output": "12"
},
{
"input": "100 1000 1083\n992 616 818 359 609 783 263 989 501 929 362 394 919 1081 870 830 1097 975 62 346 531 367 323 457 707 360 949 334 867 116 478 417 961 963 1029 114 867 1008 988 916 983 1077 959 942 572 961 579 318 721 337 488 717 111 70 416 685 987 130 353 107 61 191 827 849 106 815 211 953 111 398 889 860 801 71 375 320 395 1059 116 222 931 444 582 74 677 655 88 173 686 491 661 186 114 832 615 814 791 464 517 850",
"output": "36"
},
{
"input": "2 6 8\n2 1",
"output": "0"
},
{
"input": "5 15 16\n7 11 5 12 8",
"output": "2"
},
{
"input": "15 759966 759967\n890397 182209 878577 548548 759966 812923 759966 860479 200595 381358 299175 339368 759966 907668 69574",
"output": "4"
},
{
"input": "5 234613 716125\n642626 494941 234613 234613 234613",
"output": "0"
},
{
"input": "50 48547 567054\n529808 597004 242355 559114 78865 537318 631455 733020 655072 645093 309010 855034 306058 625046 524574 834944 27330 664392 443637 821584 338013 490702 289520 675471 885846 258814 134220 571301 84875 94132 200425 928833 375166 521232 317961 175315 947093 89971 322071 174033 48547 998535 954205 704114 943163 438900 48547 538422 48547 48547",
"output": "0"
},
{
"input": "5 10 20\n10 10 10 10 1",
"output": "1"
},
{
"input": "5 10 11\n10 10 10 10 1",
"output": "2"
},
{
"input": "3 10 10\n4 3 3",
"output": "0"
},
{
"input": "3 5 5\n5 5 5",
"output": "1"
},
{
"input": "3 4 14\n5 5 5",
"output": "0"
},
{
"input": "2 7 10\n1234 1234",
"output": "0"
},
{
"input": "1 5 6\n10",
"output": "0"
},
{
"input": "3 4 6\n1 2 3",
"output": "0"
},
{
"input": "5 10 12\n13 13 13 13 13",
"output": "0"
},
{
"input": "3 4 5\n5 7 9",
"output": "0"
},
{
"input": "3 10 100\n5 5 5",
"output": "0"
},
{
"input": "5 1 2\n2 2 2 2 2",
"output": "0"
},
{
"input": "5 5 5\n5 5 5 5 5",
"output": "2"
},
{
"input": "2 2 5\n5 5",
"output": "0"
},
{
"input": "3 1 4\n2 2 2",
"output": "0"
}
] | 1,687,494,331
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 58
| 171
| 13,619,200
|
# -*- coding: utf-8 -*-
"""
Created on Fri Jun 23 06:20:28 2023
@author: RadmediX
"""
(n,b,d) = tuple(map(int, input().split()))
oranges = list(map(int, input().split()))
waste = 0
emptyNum = 0
for orange in oranges:
waste += orange if orange <= b else 0
if waste > d:
emptyNum+=1
waste=0
print(emptyNum)
|
Title: Juicer
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Kolya is going to make fresh orange juice. He has *n* oranges of sizes *a*1,<=*a*2,<=...,<=*a**n*. Kolya will put them in the juicer in the fixed order, starting with orange of size *a*1, then orange of size *a*2 and so on. To be put in the juicer the orange must have size not exceeding *b*, so if Kolya sees an orange that is strictly greater he throws it away and continues with the next one.
The juicer has a special section to collect waste. It overflows if Kolya squeezes oranges of the total size strictly greater than *d*. When it happens Kolya empties the waste section (even if there are no more oranges) and continues to squeeze the juice. How many times will he have to empty the waste section?
Input Specification:
The first line of the input contains three integers *n*, *b* and *d* (1<=≤<=*n*<=≤<=100<=000, 1<=≤<=*b*<=≤<=*d*<=≤<=1<=000<=000) — the number of oranges, the maximum size of the orange that fits in the juicer and the value *d*, which determines the condition when the waste section should be emptied.
The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=1<=000<=000) — sizes of the oranges listed in the order Kolya is going to try to put them in the juicer.
Output Specification:
Print one integer — the number of times Kolya will have to empty the waste section.
Demo Input:
['2 7 10\n5 6\n', '1 5 10\n7\n', '3 10 10\n5 7 7\n', '1 1 1\n1\n']
Demo Output:
['1\n', '0\n', '1\n', '0\n']
Note:
In the first sample, Kolya will squeeze the juice from two oranges and empty the waste section afterwards.
In the second sample, the orange won't fit in the juicer so Kolya will have no juice at all.
|
```python
# -*- coding: utf-8 -*-
"""
Created on Fri Jun 23 06:20:28 2023
@author: RadmediX
"""
(n,b,d) = tuple(map(int, input().split()))
oranges = list(map(int, input().split()))
waste = 0
emptyNum = 0
for orange in oranges:
waste += orange if orange <= b else 0
if waste > d:
emptyNum+=1
waste=0
print(emptyNum)
```
| 3
|
|
467
|
B
|
Fedor and New Game
|
PROGRAMMING
| 1,100
|
[
"bitmasks",
"brute force",
"constructive algorithms",
"implementation"
] | null | null |
After you had helped George and Alex to move in the dorm, they went to help their friend Fedor play a new computer game «Call of Soldiers 3».
The game has (*m*<=+<=1) players and *n* types of soldiers in total. Players «Call of Soldiers 3» are numbered form 1 to (*m*<=+<=1). Types of soldiers are numbered from 0 to *n*<=-<=1. Each player has an army. Army of the *i*-th player can be described by non-negative integer *x**i*. Consider binary representation of *x**i*: if the *j*-th bit of number *x**i* equal to one, then the army of the *i*-th player has soldiers of the *j*-th type.
Fedor is the (*m*<=+<=1)-th player of the game. He assume that two players can become friends if their armies differ in at most *k* types of soldiers (in other words, binary representations of the corresponding numbers differ in at most *k* bits). Help Fedor and count how many players can become his friends.
|
The first line contains three integers *n*, *m*, *k* (1<=≤<=*k*<=≤<=*n*<=≤<=20; 1<=≤<=*m*<=≤<=1000).
The *i*-th of the next (*m*<=+<=1) lines contains a single integer *x**i* (1<=≤<=*x**i*<=≤<=2*n*<=-<=1), that describes the *i*-th player's army. We remind you that Fedor is the (*m*<=+<=1)-th player.
|
Print a single integer — the number of Fedor's potential friends.
|
[
"7 3 1\n8\n5\n111\n17\n",
"3 3 3\n1\n2\n3\n4\n"
] |
[
"0\n",
"3\n"
] |
none
| 1,000
|
[
{
"input": "7 3 1\n8\n5\n111\n17",
"output": "0"
},
{
"input": "3 3 3\n1\n2\n3\n4",
"output": "3"
},
{
"input": "4 2 2\n5\n6\n7",
"output": "2"
},
{
"input": "4 7 4\n9\n10\n5\n12\n4\n12\n7\n10",
"output": "7"
},
{
"input": "2 7 2\n1\n1\n1\n1\n1\n1\n1\n1",
"output": "7"
},
{
"input": "6 8 2\n46\n59\n38\n5\n13\n54\n26\n62\n18",
"output": "2"
},
{
"input": "5 6 3\n16\n9\n24\n5\n17\n27\n20",
"output": "4"
},
{
"input": "7 9 1\n27\n7\n12\n29\n51\n67\n9\n112\n62\n68",
"output": "0"
},
{
"input": "9 20 2\n197\n45\n217\n9\n156\n335\n21\n90\n33\n292\n151\n153\n289\n483\n362\n509\n234\n115\n343\n341\n50",
"output": "1"
},
{
"input": "13 27 7\n1893\n370\n7320\n5753\n4418\n2146\n2702\n5013\n5959\n1929\n7611\n7013\n540\n3454\n4271\n2887\n4724\n3520\n2111\n5845\n1868\n7659\n3040\n3775\n6507\n4917\n7506\n2515",
"output": "20"
},
{
"input": "1 1 1\n1\n1",
"output": "1"
},
{
"input": "20 1 1\n1000\n2",
"output": "0"
},
{
"input": "3 3 3\n3\n3\n3\n7",
"output": "3"
},
{
"input": "2 2 1\n2\n1\n1",
"output": "1"
},
{
"input": "3 3 2\n7\n7\n6\n2",
"output": "3"
},
{
"input": "20 1 1\n9999\n9997",
"output": "1"
},
{
"input": "5 4 1\n1\n2\n4\n8\n16",
"output": "0"
},
{
"input": "5 2 2\n9\n7\n10",
"output": "1"
}
] | 1,687,167,007
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 43
| 109
| 1,433,600
|
n, m, k = map(int,input().split())
x = [int(input()) for t in range (m + 1)]
print(sum(bin(x[m]^y).count('1') <= k for y in x)-1)
|
Title: Fedor and New Game
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
After you had helped George and Alex to move in the dorm, they went to help their friend Fedor play a new computer game «Call of Soldiers 3».
The game has (*m*<=+<=1) players and *n* types of soldiers in total. Players «Call of Soldiers 3» are numbered form 1 to (*m*<=+<=1). Types of soldiers are numbered from 0 to *n*<=-<=1. Each player has an army. Army of the *i*-th player can be described by non-negative integer *x**i*. Consider binary representation of *x**i*: if the *j*-th bit of number *x**i* equal to one, then the army of the *i*-th player has soldiers of the *j*-th type.
Fedor is the (*m*<=+<=1)-th player of the game. He assume that two players can become friends if their armies differ in at most *k* types of soldiers (in other words, binary representations of the corresponding numbers differ in at most *k* bits). Help Fedor and count how many players can become his friends.
Input Specification:
The first line contains three integers *n*, *m*, *k* (1<=≤<=*k*<=≤<=*n*<=≤<=20; 1<=≤<=*m*<=≤<=1000).
The *i*-th of the next (*m*<=+<=1) lines contains a single integer *x**i* (1<=≤<=*x**i*<=≤<=2*n*<=-<=1), that describes the *i*-th player's army. We remind you that Fedor is the (*m*<=+<=1)-th player.
Output Specification:
Print a single integer — the number of Fedor's potential friends.
Demo Input:
['7 3 1\n8\n5\n111\n17\n', '3 3 3\n1\n2\n3\n4\n']
Demo Output:
['0\n', '3\n']
Note:
none
|
```python
n, m, k = map(int,input().split())
x = [int(input()) for t in range (m + 1)]
print(sum(bin(x[m]^y).count('1') <= k for y in x)-1)
```
| 3
|
|
312
|
B
|
Archer
|
PROGRAMMING
| 1,300
|
[
"math",
"probabilities"
] | null | null |
SmallR is an archer. SmallR is taking a match of archer with Zanoes. They try to shoot in the target in turns, and SmallR shoots first. The probability of shooting the target each time is for SmallR while for Zanoes. The one who shoots in the target first should be the winner.
Output the probability that SmallR will win the match.
|
A single line contains four integers .
|
Print a single real number, the probability that SmallR will win the match.
The answer will be considered correct if the absolute or relative error doesn't exceed 10<=-<=6.
|
[
"1 2 1 2\n"
] |
[
"0.666666666667"
] |
none
| 1,000
|
[
{
"input": "1 2 1 2",
"output": "0.666666666667"
},
{
"input": "1 3 1 3",
"output": "0.600000000000"
},
{
"input": "1 3 2 3",
"output": "0.428571428571"
},
{
"input": "3 4 3 4",
"output": "0.800000000000"
},
{
"input": "1 2 10 11",
"output": "0.523809523810"
},
{
"input": "4 5 4 5",
"output": "0.833333333333"
},
{
"input": "466 701 95 721",
"output": "0.937693791148"
},
{
"input": "268 470 444 885",
"output": "0.725614009325"
},
{
"input": "632 916 713 821",
"output": "0.719292895126"
},
{
"input": "269 656 918 992",
"output": "0.428937461623"
},
{
"input": "71 657 187 695",
"output": "0.310488463257"
},
{
"input": "435 852 973 978",
"output": "0.511844133157"
},
{
"input": "518 816 243 359",
"output": "0.719734031025"
},
{
"input": "882 962 311 811",
"output": "0.966386645447"
},
{
"input": "684 774 580 736",
"output": "0.906051574446"
},
{
"input": "486 868 929 999",
"output": "0.577723252958"
},
{
"input": "132 359 996 998",
"output": "0.368154532345"
},
{
"input": "933 977 266 450",
"output": "0.972879407907"
},
{
"input": "298 833 615 872",
"output": "0.441270817024"
},
{
"input": "34 554 14 958",
"output": "0.817324099167"
},
{
"input": "836 934 800 905",
"output": "0.906105535462"
},
{
"input": "482 815 69 509",
"output": "0.914365577772"
},
{
"input": "284 423 137 521",
"output": "0.885974839378"
},
{
"input": "648 881 486 703",
"output": "0.800911421248"
},
{
"input": "450 885 755 836",
"output": "0.533901011176"
},
{
"input": "533 773 823 998",
"output": "0.729222130525"
},
{
"input": "897 957 92 898",
"output": "0.993193806364"
},
{
"input": "699 925 441 928",
"output": "0.866816866175"
},
{
"input": "64 704 148 603",
"output": "0.289486317811"
},
{
"input": "719 735 626 990",
"output": "0.986124079764"
},
{
"input": "1 1000 1 1000",
"output": "0.500250125063"
}
] | 1,373,445,779
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 31
| 78
| 102,400
|
a, b, c, d = map(int, input().split())
print("{0:.10f}".format(a / b / (1 - ((1 - a / b) * (1 - c / d)))))
|
Title: Archer
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
SmallR is an archer. SmallR is taking a match of archer with Zanoes. They try to shoot in the target in turns, and SmallR shoots first. The probability of shooting the target each time is for SmallR while for Zanoes. The one who shoots in the target first should be the winner.
Output the probability that SmallR will win the match.
Input Specification:
A single line contains four integers .
Output Specification:
Print a single real number, the probability that SmallR will win the match.
The answer will be considered correct if the absolute or relative error doesn't exceed 10<=-<=6.
Demo Input:
['1 2 1 2\n']
Demo Output:
['0.666666666667']
Note:
none
|
```python
a, b, c, d = map(int, input().split())
print("{0:.10f}".format(a / b / (1 - ((1 - a / b) * (1 - c / d)))))
```
| 3
|
|
50
|
A
|
Domino piling
|
PROGRAMMING
| 800
|
[
"greedy",
"math"
] |
A. Domino piling
|
2
|
256
|
You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions:
1. Each domino completely covers two squares.
2. No two dominoes overlap.
3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board.
Find the maximum number of dominoes, which can be placed under these restrictions.
|
In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16).
|
Output one number — the maximal number of dominoes, which can be placed.
|
[
"2 4\n",
"3 3\n"
] |
[
"4\n",
"4\n"
] |
none
| 500
|
[
{
"input": "2 4",
"output": "4"
},
{
"input": "3 3",
"output": "4"
},
{
"input": "1 5",
"output": "2"
},
{
"input": "1 6",
"output": "3"
},
{
"input": "1 15",
"output": "7"
},
{
"input": "1 16",
"output": "8"
},
{
"input": "2 5",
"output": "5"
},
{
"input": "2 6",
"output": "6"
},
{
"input": "2 7",
"output": "7"
},
{
"input": "2 14",
"output": "14"
},
{
"input": "2 15",
"output": "15"
},
{
"input": "1 4",
"output": "2"
},
{
"input": "2 16",
"output": "16"
},
{
"input": "3 5",
"output": "7"
},
{
"input": "3 6",
"output": "9"
},
{
"input": "3 10",
"output": "15"
},
{
"input": "3 14",
"output": "21"
},
{
"input": "3 15",
"output": "22"
},
{
"input": "3 16",
"output": "24"
},
{
"input": "5 7",
"output": "17"
},
{
"input": "16 16",
"output": "128"
},
{
"input": "15 16",
"output": "120"
},
{
"input": "2 3",
"output": "3"
},
{
"input": "15 15",
"output": "112"
},
{
"input": "14 16",
"output": "112"
},
{
"input": "11 13",
"output": "71"
},
{
"input": "5 16",
"output": "40"
},
{
"input": "8 15",
"output": "60"
},
{
"input": "2 2",
"output": "2"
},
{
"input": "3 4",
"output": "6"
},
{
"input": "4 4",
"output": "8"
},
{
"input": "1 1",
"output": "0"
},
{
"input": "1 2",
"output": "1"
},
{
"input": "1 3",
"output": "1"
},
{
"input": "14 15",
"output": "105"
}
] | 1,695,113,787
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 35
| 92
| 0
|
n,m = map(int,input().split())
if m % 2 == 0:
ans = int(m / 2) * n
else:
ans = int(m // 2) * n + int(n // 2)
print(ans)
|
Title: Domino piling
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions:
1. Each domino completely covers two squares.
2. No two dominoes overlap.
3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board.
Find the maximum number of dominoes, which can be placed under these restrictions.
Input Specification:
In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16).
Output Specification:
Output one number — the maximal number of dominoes, which can be placed.
Demo Input:
['2 4\n', '3 3\n']
Demo Output:
['4\n', '4\n']
Note:
none
|
```python
n,m = map(int,input().split())
if m % 2 == 0:
ans = int(m / 2) * n
else:
ans = int(m // 2) * n + int(n // 2)
print(ans)
```
| 3.977
|
50
|
A
|
Domino piling
|
PROGRAMMING
| 800
|
[
"greedy",
"math"
] |
A. Domino piling
|
2
|
256
|
You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions:
1. Each domino completely covers two squares.
2. No two dominoes overlap.
3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board.
Find the maximum number of dominoes, which can be placed under these restrictions.
|
In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16).
|
Output one number — the maximal number of dominoes, which can be placed.
|
[
"2 4\n",
"3 3\n"
] |
[
"4\n",
"4\n"
] |
none
| 500
|
[
{
"input": "2 4",
"output": "4"
},
{
"input": "3 3",
"output": "4"
},
{
"input": "1 5",
"output": "2"
},
{
"input": "1 6",
"output": "3"
},
{
"input": "1 15",
"output": "7"
},
{
"input": "1 16",
"output": "8"
},
{
"input": "2 5",
"output": "5"
},
{
"input": "2 6",
"output": "6"
},
{
"input": "2 7",
"output": "7"
},
{
"input": "2 14",
"output": "14"
},
{
"input": "2 15",
"output": "15"
},
{
"input": "1 4",
"output": "2"
},
{
"input": "2 16",
"output": "16"
},
{
"input": "3 5",
"output": "7"
},
{
"input": "3 6",
"output": "9"
},
{
"input": "3 10",
"output": "15"
},
{
"input": "3 14",
"output": "21"
},
{
"input": "3 15",
"output": "22"
},
{
"input": "3 16",
"output": "24"
},
{
"input": "5 7",
"output": "17"
},
{
"input": "16 16",
"output": "128"
},
{
"input": "15 16",
"output": "120"
},
{
"input": "2 3",
"output": "3"
},
{
"input": "15 15",
"output": "112"
},
{
"input": "14 16",
"output": "112"
},
{
"input": "11 13",
"output": "71"
},
{
"input": "5 16",
"output": "40"
},
{
"input": "8 15",
"output": "60"
},
{
"input": "2 2",
"output": "2"
},
{
"input": "3 4",
"output": "6"
},
{
"input": "4 4",
"output": "8"
},
{
"input": "1 1",
"output": "0"
},
{
"input": "1 2",
"output": "1"
},
{
"input": "1 3",
"output": "1"
},
{
"input": "14 15",
"output": "105"
}
] | 1,663,072,842
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 35
| 92
| 0
|
a,b = map(int,input().split())
s = a*b
s = s//2
print(s)
|
Title: Domino piling
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions:
1. Each domino completely covers two squares.
2. No two dominoes overlap.
3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board.
Find the maximum number of dominoes, which can be placed under these restrictions.
Input Specification:
In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16).
Output Specification:
Output one number — the maximal number of dominoes, which can be placed.
Demo Input:
['2 4\n', '3 3\n']
Demo Output:
['4\n', '4\n']
Note:
none
|
```python
a,b = map(int,input().split())
s = a*b
s = s//2
print(s)
```
| 3.977
|
987
|
C
|
Three displays
|
PROGRAMMING
| 1,400
|
[
"brute force",
"dp",
"implementation"
] | null | null |
It is the middle of 2018 and Maria Stepanovna, who lives outside Krasnokamensk (a town in Zabaikalsky region), wants to rent three displays to highlight an important problem.
There are $n$ displays placed along a road, and the $i$-th of them can display a text with font size $s_i$ only. Maria Stepanovna wants to rent such three displays with indices $i < j < k$ that the font size increases if you move along the road in a particular direction. Namely, the condition $s_i < s_j < s_k$ should be held.
The rent cost is for the $i$-th display is $c_i$. Please determine the smallest cost Maria Stepanovna should pay.
|
The first line contains a single integer $n$ ($3 \le n \le 3\,000$) — the number of displays.
The second line contains $n$ integers $s_1, s_2, \ldots, s_n$ ($1 \le s_i \le 10^9$) — the font sizes on the displays in the order they stand along the road.
The third line contains $n$ integers $c_1, c_2, \ldots, c_n$ ($1 \le c_i \le 10^8$) — the rent costs for each display.
|
If there are no three displays that satisfy the criteria, print -1. Otherwise print a single integer — the minimum total rent cost of three displays with indices $i < j < k$ such that $s_i < s_j < s_k$.
|
[
"5\n2 4 5 4 10\n40 30 20 10 40\n",
"3\n100 101 100\n2 4 5\n",
"10\n1 2 3 4 5 6 7 8 9 10\n10 13 11 14 15 12 13 13 18 13\n"
] |
[
"90\n",
"-1\n",
"33\n"
] |
In the first example you can, for example, choose displays $1$, $4$ and $5$, because $s_1 < s_4 < s_5$ ($2 < 4 < 10$), and the rent cost is $40 + 10 + 40 = 90$.
In the second example you can't select a valid triple of indices, so the answer is -1.
| 1,250
|
[
{
"input": "5\n2 4 5 4 10\n40 30 20 10 40",
"output": "90"
},
{
"input": "3\n100 101 100\n2 4 5",
"output": "-1"
},
{
"input": "10\n1 2 3 4 5 6 7 8 9 10\n10 13 11 14 15 12 13 13 18 13",
"output": "33"
},
{
"input": "3\n1 2 3\n100000000 100000000 100000000",
"output": "300000000"
},
{
"input": "3\n999999998 999999999 1000000000\n100000000 100000000 99999999",
"output": "299999999"
},
{
"input": "10\n802030518 598196518 640274071 983359971 71550121 96204862 799843967 446173607 796619138 402690754\n23219513 68171337 12183499 5549873 73542337 66661387 79397647 34495917 31413076 50918417",
"output": "85904709"
},
{
"input": "20\n452405440 586588704 509061481 552472140 16115810 148658854 66743034 628305150 677780684 519361360 208050516 401554301 954478790 346543678 387546138 832279893 641889899 80960260 717802881 588066499\n61699500 83254572 59454419 27833657 55743179 99661234 94729965 75591136 62937826 3626886 73906880 3664913 39990362 94385934 33153747 23840219 64514676 14746017 13062847 65187713",
"output": "72432912"
},
{
"input": "3\n1 2 3\n1 1 1",
"output": "3"
}
] | 1,617,620,424
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 33
| 280
| 10,752,000
|
import bisect
n=int(input())
s=list(map(int,input().split()))
c=list(map(int,input().split()))
ans=10**18
for mid in range(1,n-1):
l1=[c[i] for i in range(mid) if s[i]<s[mid]]+[10**18]
l2=[c[i] for i in range(mid+1,n) if s[i]>s[mid]]+[10**18]
ans=min(ans,min(l1)+c[mid]+min(l2))
if ans>=10**18:
print(-1)
else:
print(ans)
|
Title: Three displays
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
It is the middle of 2018 and Maria Stepanovna, who lives outside Krasnokamensk (a town in Zabaikalsky region), wants to rent three displays to highlight an important problem.
There are $n$ displays placed along a road, and the $i$-th of them can display a text with font size $s_i$ only. Maria Stepanovna wants to rent such three displays with indices $i < j < k$ that the font size increases if you move along the road in a particular direction. Namely, the condition $s_i < s_j < s_k$ should be held.
The rent cost is for the $i$-th display is $c_i$. Please determine the smallest cost Maria Stepanovna should pay.
Input Specification:
The first line contains a single integer $n$ ($3 \le n \le 3\,000$) — the number of displays.
The second line contains $n$ integers $s_1, s_2, \ldots, s_n$ ($1 \le s_i \le 10^9$) — the font sizes on the displays in the order they stand along the road.
The third line contains $n$ integers $c_1, c_2, \ldots, c_n$ ($1 \le c_i \le 10^8$) — the rent costs for each display.
Output Specification:
If there are no three displays that satisfy the criteria, print -1. Otherwise print a single integer — the minimum total rent cost of three displays with indices $i < j < k$ such that $s_i < s_j < s_k$.
Demo Input:
['5\n2 4 5 4 10\n40 30 20 10 40\n', '3\n100 101 100\n2 4 5\n', '10\n1 2 3 4 5 6 7 8 9 10\n10 13 11 14 15 12 13 13 18 13\n']
Demo Output:
['90\n', '-1\n', '33\n']
Note:
In the first example you can, for example, choose displays $1$, $4$ and $5$, because $s_1 < s_4 < s_5$ ($2 < 4 < 10$), and the rent cost is $40 + 10 + 40 = 90$.
In the second example you can't select a valid triple of indices, so the answer is -1.
|
```python
import bisect
n=int(input())
s=list(map(int,input().split()))
c=list(map(int,input().split()))
ans=10**18
for mid in range(1,n-1):
l1=[c[i] for i in range(mid) if s[i]<s[mid]]+[10**18]
l2=[c[i] for i in range(mid+1,n) if s[i]>s[mid]]+[10**18]
ans=min(ans,min(l1)+c[mid]+min(l2))
if ans>=10**18:
print(-1)
else:
print(ans)
```
| 3
|
|
686
|
A
|
Free Ice Cream
|
PROGRAMMING
| 800
|
[
"constructive algorithms",
"implementation"
] | null | null |
After their adventure with the magic mirror Kay and Gerda have returned home and sometimes give free ice cream to kids in the summer.
At the start of the day they have *x* ice cream packs. Since the ice cream is free, people start standing in the queue before Kay and Gerda's house even in the night. Each person in the queue wants either to take several ice cream packs for himself and his friends or to give several ice cream packs to Kay and Gerda (carriers that bring ice cream have to stand in the same queue).
If a carrier with *d* ice cream packs comes to the house, then Kay and Gerda take all his packs. If a child who wants to take *d* ice cream packs comes to the house, then Kay and Gerda will give him *d* packs if they have enough ice cream, otherwise the child will get no ice cream at all and will leave in distress.
Kay wants to find the amount of ice cream they will have after all people will leave from the queue, and Gerda wants to find the number of distressed kids.
|
The first line contains two space-separated integers *n* and *x* (1<=≤<=*n*<=≤<=1000, 0<=≤<=*x*<=≤<=109).
Each of the next *n* lines contains a character '+' or '-', and an integer *d**i*, separated by a space (1<=≤<=*d**i*<=≤<=109). Record "+ *d**i*" in *i*-th line means that a carrier with *d**i* ice cream packs occupies *i*-th place from the start of the queue, and record "- *d**i*" means that a child who wants to take *d**i* packs stands in *i*-th place.
|
Print two space-separated integers — number of ice cream packs left after all operations, and number of kids that left the house in distress.
|
[
"5 7\n+ 5\n- 10\n- 20\n+ 40\n- 20\n",
"5 17\n- 16\n- 2\n- 98\n+ 100\n- 98\n"
] |
[
"22 1\n",
"3 2\n"
] |
Consider the first sample.
1. Initially Kay and Gerda have 7 packs of ice cream. 1. Carrier brings 5 more, so now they have 12 packs. 1. A kid asks for 10 packs and receives them. There are only 2 packs remaining. 1. Another kid asks for 20 packs. Kay and Gerda do not have them, so the kid goes away distressed. 1. Carrier bring 40 packs, now Kay and Gerda have 42 packs. 1. Kid asks for 20 packs and receives them. There are 22 packs remaining.
| 500
|
[
{
"input": "5 7\n+ 5\n- 10\n- 20\n+ 40\n- 20",
"output": "22 1"
},
{
"input": "5 17\n- 16\n- 2\n- 98\n+ 100\n- 98",
"output": "3 2"
},
{
"input": "6 1000000000\n+ 1000000000\n+ 1000000000\n+ 1000000000\n+ 1000000000\n+ 1000000000\n+ 1000000000",
"output": "7000000000 0"
},
{
"input": "5 12\n- 12\n+ 7\n- 6\n- 1\n+ 46",
"output": "46 0"
},
{
"input": "11 1000\n- 100\n+ 100\n+ 100\n+ 100\n+ 100\n- 100\n- 100\n- 100\n- 100\n- 100\n- 100",
"output": "700 0"
},
{
"input": "1 0\n- 526403222",
"output": "0 1"
},
{
"input": "1 897986543\n- 371188251",
"output": "526798292 0"
},
{
"input": "1 0\n+ 1",
"output": "1 0"
},
{
"input": "1 0\n- 1",
"output": "0 1"
},
{
"input": "1 10\n+ 10",
"output": "20 0"
},
{
"input": "1 3\n- 5",
"output": "3 1"
},
{
"input": "1 0\n- 5",
"output": "0 1"
},
{
"input": "1 0\n+ 5",
"output": "5 0"
}
] | 1,628,326,693
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 34
| 62
| 6,758,400
|
times,ice_cream = map(int,input().split())
sad_kids = 0
for x in range(times):
sign,order = input().split()
if sign in '+':
ice_cream+= int(order)
else:
if ice_cream >= int(order):
ice_cream -= int(order)
else:
sad_kids += 1
print(ice_cream,end=' ')
print(sad_kids)
|
Title: Free Ice Cream
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
After their adventure with the magic mirror Kay and Gerda have returned home and sometimes give free ice cream to kids in the summer.
At the start of the day they have *x* ice cream packs. Since the ice cream is free, people start standing in the queue before Kay and Gerda's house even in the night. Each person in the queue wants either to take several ice cream packs for himself and his friends or to give several ice cream packs to Kay and Gerda (carriers that bring ice cream have to stand in the same queue).
If a carrier with *d* ice cream packs comes to the house, then Kay and Gerda take all his packs. If a child who wants to take *d* ice cream packs comes to the house, then Kay and Gerda will give him *d* packs if they have enough ice cream, otherwise the child will get no ice cream at all and will leave in distress.
Kay wants to find the amount of ice cream they will have after all people will leave from the queue, and Gerda wants to find the number of distressed kids.
Input Specification:
The first line contains two space-separated integers *n* and *x* (1<=≤<=*n*<=≤<=1000, 0<=≤<=*x*<=≤<=109).
Each of the next *n* lines contains a character '+' or '-', and an integer *d**i*, separated by a space (1<=≤<=*d**i*<=≤<=109). Record "+ *d**i*" in *i*-th line means that a carrier with *d**i* ice cream packs occupies *i*-th place from the start of the queue, and record "- *d**i*" means that a child who wants to take *d**i* packs stands in *i*-th place.
Output Specification:
Print two space-separated integers — number of ice cream packs left after all operations, and number of kids that left the house in distress.
Demo Input:
['5 7\n+ 5\n- 10\n- 20\n+ 40\n- 20\n', '5 17\n- 16\n- 2\n- 98\n+ 100\n- 98\n']
Demo Output:
['22 1\n', '3 2\n']
Note:
Consider the first sample.
1. Initially Kay and Gerda have 7 packs of ice cream. 1. Carrier brings 5 more, so now they have 12 packs. 1. A kid asks for 10 packs and receives them. There are only 2 packs remaining. 1. Another kid asks for 20 packs. Kay and Gerda do not have them, so the kid goes away distressed. 1. Carrier bring 40 packs, now Kay and Gerda have 42 packs. 1. Kid asks for 20 packs and receives them. There are 22 packs remaining.
|
```python
times,ice_cream = map(int,input().split())
sad_kids = 0
for x in range(times):
sign,order = input().split()
if sign in '+':
ice_cream+= int(order)
else:
if ice_cream >= int(order):
ice_cream -= int(order)
else:
sad_kids += 1
print(ice_cream,end=' ')
print(sad_kids)
```
| 3
|
|
357
|
A
|
Group of Students
|
PROGRAMMING
| 1,000
|
[
"brute force",
"greedy",
"implementation"
] | null | null |
At the beginning of the school year Berland State University starts two city school programming groups, for beginners and for intermediate coders. The children were tested in order to sort them into groups. According to the results, each student got some score from 1 to *m* points. We know that *c*1 schoolchildren got 1 point, *c*2 children got 2 points, ..., *c**m* children got *m* points. Now you need to set the passing rate *k* (integer from 1 to *m*): all schoolchildren who got less than *k* points go to the beginner group and those who get at strictly least *k* points go to the intermediate group. We know that if the size of a group is more than *y*, then the university won't find a room for them. We also know that if a group has less than *x* schoolchildren, then it is too small and there's no point in having classes with it. So, you need to split all schoolchildren into two groups so that the size of each group was from *x* to *y*, inclusive.
Help the university pick the passing rate in a way that meets these requirements.
|
The first line contains integer *m* (2<=≤<=*m*<=≤<=100). The second line contains *m* integers *c*1, *c*2, ..., *c**m*, separated by single spaces (0<=≤<=*c**i*<=≤<=100). The third line contains two space-separated integers *x* and *y* (1<=≤<=*x*<=≤<=*y*<=≤<=10000). At least one *c**i* is greater than 0.
|
If it is impossible to pick a passing rate in a way that makes the size of each resulting groups at least *x* and at most *y*, print 0. Otherwise, print an integer from 1 to *m* — the passing rate you'd like to suggest. If there are multiple possible answers, print any of them.
|
[
"5\n3 4 3 2 1\n6 8\n",
"5\n0 3 3 4 2\n3 10\n",
"2\n2 5\n3 6\n"
] |
[
"3\n",
"4\n",
"0\n"
] |
In the first sample the beginner group has 7 students, the intermediate group has 6 of them.
In the second sample another correct answer is 3.
| 500
|
[
{
"input": "5\n3 4 3 2 1\n6 8",
"output": "3"
},
{
"input": "5\n0 3 3 4 2\n3 10",
"output": "4"
},
{
"input": "2\n2 5\n3 6",
"output": "0"
},
{
"input": "3\n0 1 0\n2 10",
"output": "0"
},
{
"input": "5\n2 2 2 2 2\n5 5",
"output": "0"
},
{
"input": "10\n1 1 1 1 1 1 1 1 1 1\n1 10",
"output": "10"
},
{
"input": "10\n1 1 1 1 1 1 1 1 1 1\n5 5",
"output": "6"
},
{
"input": "6\n0 0 1 1 0 0\n1 6",
"output": "4"
},
{
"input": "7\n3 2 3 3 2 1 1\n5 10",
"output": "4"
},
{
"input": "4\n1 0 0 100\n1 100",
"output": "4"
},
{
"input": "100\n46 6 71 27 94 59 99 82 5 41 18 89 86 2 31 35 52 18 1 14 54 11 28 83 42 15 13 77 22 70 87 65 79 35 44 71 79 9 95 57 5 59 42 62 66 26 33 66 67 45 39 17 97 28 36 100 52 23 68 29 83 6 61 85 71 2 85 98 85 65 95 53 35 96 29 28 82 80 52 60 61 46 46 80 11 3 35 6 12 10 64 7 7 7 65 93 58 85 20 12\n2422 2429",
"output": "52"
},
{
"input": "10\n3 6 1 5 3 7 0 1 0 8\n16 18",
"output": "6"
},
{
"input": "10\n3 3 0 4 0 5 2 10 7 0\n10 24",
"output": "8"
},
{
"input": "10\n9 4 7 7 1 3 7 3 8 5\n23 31",
"output": "7"
},
{
"input": "10\n9 6 9 5 5 4 3 3 9 10\n9 54",
"output": "10"
},
{
"input": "10\n2 4 8 5 2 2 2 5 6 2\n14 24",
"output": "7"
},
{
"input": "10\n10 58 86 17 61 12 75 93 37 30\n10 469",
"output": "10"
},
{
"input": "10\n56 36 0 28 68 54 34 48 28 92\n92 352",
"output": "10"
},
{
"input": "10\n2 81 94 40 74 62 39 70 87 86\n217 418",
"output": "8"
},
{
"input": "10\n48 93 9 96 70 14 100 93 44 79\n150 496",
"output": "8"
},
{
"input": "10\n94 85 4 9 30 45 90 76 0 65\n183 315",
"output": "7"
},
{
"input": "100\n1 0 7 9 0 4 3 10 9 4 9 7 4 4 7 7 6 1 3 3 8 1 4 3 5 8 0 0 6 2 3 5 0 1 5 8 6 3 2 4 9 5 8 6 0 2 5 1 9 5 9 0 6 0 4 5 9 7 1 4 7 5 4 5 6 8 2 3 3 2 8 2 9 5 9 2 4 7 7 8 10 1 3 0 8 0 9 1 1 7 7 8 9 3 5 9 9 8 0 8\n200 279",
"output": "63"
},
{
"input": "100\n5 4 9 7 8 10 7 8 10 0 10 9 7 1 0 7 8 5 5 8 7 7 7 2 5 8 0 7 5 7 1 7 6 5 4 10 6 1 4 4 8 7 0 3 2 10 8 6 1 3 2 6 8 1 9 3 9 5 2 0 3 6 7 5 10 0 2 8 3 10 1 3 8 8 0 2 10 3 4 4 0 7 4 0 9 7 10 2 7 10 9 9 6 6 8 1 10 1 2 0\n52 477",
"output": "91"
},
{
"input": "100\n5 1 6 6 5 4 5 8 0 2 10 1 10 0 6 6 0 1 5 7 10 5 8 4 4 5 10 4 10 3 0 10 10 1 2 6 2 6 3 9 4 4 5 5 7 7 7 4 3 2 1 4 5 0 2 1 8 5 4 5 10 7 0 3 5 4 10 4 10 7 10 1 8 3 9 8 6 9 5 7 3 4 7 8 4 0 3 4 4 1 6 6 2 0 1 5 3 3 9 10\n22 470",
"output": "98"
},
{
"input": "100\n73 75 17 93 35 7 71 88 11 58 78 33 7 38 14 83 30 25 75 23 60 10 100 7 90 51 82 0 78 54 61 32 20 90 54 45 100 62 40 99 43 86 87 64 10 41 29 51 38 22 5 63 10 64 90 20 100 33 95 72 40 82 92 30 38 3 71 85 99 66 4 26 33 41 85 14 26 61 21 96 29 40 25 14 48 4 30 44 6 41 71 71 4 66 13 50 30 78 64 36\n2069 2800",
"output": "57"
},
{
"input": "100\n86 19 100 37 9 49 97 9 70 51 14 31 47 53 76 65 10 40 4 92 2 79 22 70 85 58 73 96 89 91 41 88 70 31 53 33 22 51 10 56 90 39 70 38 86 15 94 63 82 19 7 65 22 83 83 71 53 6 95 89 53 41 95 11 32 0 7 84 39 11 37 73 20 46 18 28 72 23 17 78 37 49 43 62 60 45 30 69 38 41 71 43 47 80 64 40 77 99 36 63\n1348 3780",
"output": "74"
},
{
"input": "100\n65 64 26 48 16 90 68 32 95 11 27 29 87 46 61 35 24 99 34 17 79 79 11 66 14 75 31 47 43 61 100 32 75 5 76 11 46 74 81 81 1 25 87 45 16 57 24 76 58 37 42 0 46 23 75 66 75 11 50 5 10 11 43 26 38 42 88 15 70 57 2 74 7 72 52 8 72 19 37 38 66 24 51 42 40 98 19 25 37 7 4 92 47 72 26 76 66 88 53 79\n1687 2986",
"output": "65"
},
{
"input": "100\n78 43 41 93 12 76 62 54 85 5 42 61 93 37 22 6 50 80 63 53 66 47 0 60 43 93 90 8 97 64 80 22 23 47 30 100 80 75 84 95 35 69 36 20 58 99 78 88 1 100 10 69 57 77 68 61 62 85 4 45 24 4 24 74 65 73 91 47 100 35 25 53 27 66 62 55 38 83 56 20 62 10 71 90 41 5 75 83 36 75 15 97 79 52 88 32 55 42 59 39\n873 4637",
"output": "85"
},
{
"input": "100\n12 25 47 84 72 40 85 37 8 92 85 90 12 7 45 14 98 62 31 62 10 89 37 65 77 29 5 3 21 21 10 98 44 37 37 37 50 15 69 27 19 99 98 91 63 42 32 68 77 88 78 35 13 44 4 82 42 76 28 50 65 64 88 46 94 37 40 7 10 58 21 31 17 91 75 86 3 9 9 14 72 20 40 57 11 75 91 48 79 66 53 24 93 16 58 4 10 89 75 51\n666 4149",
"output": "88"
},
{
"input": "10\n8 0 2 2 5 1 3 5 2 2\n13 17",
"output": "6"
},
{
"input": "10\n10 4 4 6 2 2 0 5 3 7\n19 24",
"output": "5"
},
{
"input": "10\n96 19 75 32 94 16 81 2 93 58\n250 316",
"output": "6"
},
{
"input": "10\n75 65 68 43 89 57 7 58 51 85\n258 340",
"output": "6"
},
{
"input": "100\n59 51 86 38 90 10 36 3 97 35 32 20 25 96 49 39 66 44 64 50 97 68 50 79 3 33 72 96 32 74 67 9 17 77 67 15 1 100 99 81 18 1 15 36 7 34 30 78 10 97 7 19 87 47 62 61 40 29 1 34 6 77 76 21 66 11 65 96 82 54 49 65 56 90 29 75 48 77 48 53 91 21 98 26 80 44 57 97 11 78 98 45 40 88 27 27 47 5 26 6\n2479 2517",
"output": "53"
},
{
"input": "100\n5 11 92 53 49 42 15 86 31 10 30 49 21 66 14 13 80 25 21 25 86 20 86 83 36 81 21 23 0 30 64 85 15 33 74 96 83 51 84 4 35 65 10 7 11 11 41 80 51 51 74 52 43 83 88 38 77 20 14 40 37 25 27 93 27 77 48 56 93 65 79 33 91 14 9 95 13 36 24 2 66 31 56 28 49 58 74 17 88 36 46 73 54 18 63 22 2 41 8 50\n2229 2279",
"output": "52"
},
{
"input": "2\n0 1\n1 1",
"output": "0"
},
{
"input": "4\n1 0 0 4\n1 3",
"output": "0"
},
{
"input": "4\n1 0 0 0\n1 10",
"output": "0"
},
{
"input": "3\n2 1 4\n3 3",
"output": "0"
},
{
"input": "5\n2 0 2 0 0\n2 2",
"output": "3"
},
{
"input": "4\n1 2 3 4\n1 7",
"output": "4"
},
{
"input": "2\n7 1\n1 6",
"output": "0"
},
{
"input": "5\n1 3 7 8 9\n4 6",
"output": "0"
},
{
"input": "2\n5 2\n5 6",
"output": "0"
},
{
"input": "2\n1 0\n1 2",
"output": "0"
},
{
"input": "4\n2 3 9 10\n5 14",
"output": "4"
},
{
"input": "3\n1 2 1\n1 1",
"output": "0"
},
{
"input": "4\n2 3 9 50\n5 30",
"output": "0"
},
{
"input": "3\n7 1 1\n6 8",
"output": "0"
},
{
"input": "6\n1 1 2 3 4 5\n3 9",
"output": "5"
},
{
"input": "3\n4 5 5\n4 9",
"output": "3"
},
{
"input": "6\n1 2 3 4 5 6\n1 3",
"output": "0"
},
{
"input": "5\n3 4 3 2 10\n6 8",
"output": "0"
},
{
"input": "5\n1 1 3 4 6\n2 2",
"output": "0"
},
{
"input": "5\n5 3 5 8 10\n2 20",
"output": "4"
},
{
"input": "4\n0 0 5 0\n3 6",
"output": "0"
},
{
"input": "8\n1 1 1 1 2 2 2 1\n3 7",
"output": "6"
},
{
"input": "3\n1 100 100\n101 200",
"output": "0"
}
] | 1,623,216,855
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 58
| 124
| 0
|
#%%
r = int(input())
ins = (list(map(int, input().split(" "))))
low, high = list(map(int, input().split(" ")))
for i in range(1, len(ins)):
ins[i] += ins[i-1]
if ins[-1] > (high * 2): print(0)
else:
for i in range(len(ins)):
if low<= ins[i] <= high and low <= ins[-1] - ins[i] <= high:
print(i+2)
break
else:
print(0)
|
Title: Group of Students
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
At the beginning of the school year Berland State University starts two city school programming groups, for beginners and for intermediate coders. The children were tested in order to sort them into groups. According to the results, each student got some score from 1 to *m* points. We know that *c*1 schoolchildren got 1 point, *c*2 children got 2 points, ..., *c**m* children got *m* points. Now you need to set the passing rate *k* (integer from 1 to *m*): all schoolchildren who got less than *k* points go to the beginner group and those who get at strictly least *k* points go to the intermediate group. We know that if the size of a group is more than *y*, then the university won't find a room for them. We also know that if a group has less than *x* schoolchildren, then it is too small and there's no point in having classes with it. So, you need to split all schoolchildren into two groups so that the size of each group was from *x* to *y*, inclusive.
Help the university pick the passing rate in a way that meets these requirements.
Input Specification:
The first line contains integer *m* (2<=≤<=*m*<=≤<=100). The second line contains *m* integers *c*1, *c*2, ..., *c**m*, separated by single spaces (0<=≤<=*c**i*<=≤<=100). The third line contains two space-separated integers *x* and *y* (1<=≤<=*x*<=≤<=*y*<=≤<=10000). At least one *c**i* is greater than 0.
Output Specification:
If it is impossible to pick a passing rate in a way that makes the size of each resulting groups at least *x* and at most *y*, print 0. Otherwise, print an integer from 1 to *m* — the passing rate you'd like to suggest. If there are multiple possible answers, print any of them.
Demo Input:
['5\n3 4 3 2 1\n6 8\n', '5\n0 3 3 4 2\n3 10\n', '2\n2 5\n3 6\n']
Demo Output:
['3\n', '4\n', '0\n']
Note:
In the first sample the beginner group has 7 students, the intermediate group has 6 of them.
In the second sample another correct answer is 3.
|
```python
#%%
r = int(input())
ins = (list(map(int, input().split(" "))))
low, high = list(map(int, input().split(" ")))
for i in range(1, len(ins)):
ins[i] += ins[i-1]
if ins[-1] > (high * 2): print(0)
else:
for i in range(len(ins)):
if low<= ins[i] <= high and low <= ins[-1] - ins[i] <= high:
print(i+2)
break
else:
print(0)
```
| 3
|
|
278
|
A
|
Circle Line
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
The circle line of the Berland subway has *n* stations. We know the distances between all pairs of neighboring stations:
- *d*1 is the distance between the 1-st and the 2-nd station;- *d*2 is the distance between the 2-nd and the 3-rd station;...- *d**n*<=-<=1 is the distance between the *n*<=-<=1-th and the *n*-th station;- *d**n* is the distance between the *n*-th and the 1-st station.
The trains go along the circle line in both directions. Find the shortest distance between stations with numbers *s* and *t*.
|
The first line contains integer *n* (3<=≤<=*n*<=≤<=100) — the number of stations on the circle line. The second line contains *n* integers *d*1,<=*d*2,<=...,<=*d**n* (1<=≤<=*d**i*<=≤<=100) — the distances between pairs of neighboring stations. The third line contains two integers *s* and *t* (1<=≤<=*s*,<=*t*<=≤<=*n*) — the numbers of stations, between which you need to find the shortest distance. These numbers can be the same.
The numbers in the lines are separated by single spaces.
|
Print a single number — the length of the shortest path between stations number *s* and *t*.
|
[
"4\n2 3 4 9\n1 3\n",
"4\n5 8 2 100\n4 1\n",
"3\n1 1 1\n3 1\n",
"3\n31 41 59\n1 1\n"
] |
[
"5\n",
"15\n",
"1\n",
"0\n"
] |
In the first sample the length of path 1 → 2 → 3 equals 5, the length of path 1 → 4 → 3 equals 13.
In the second sample the length of path 4 → 1 is 100, the length of path 4 → 3 → 2 → 1 is 15.
In the third sample the length of path 3 → 1 is 1, the length of path 3 → 2 → 1 is 2.
In the fourth sample the numbers of stations are the same, so the shortest distance equals 0.
| 500
|
[
{
"input": "4\n2 3 4 9\n1 3",
"output": "5"
},
{
"input": "4\n5 8 2 100\n4 1",
"output": "15"
},
{
"input": "3\n1 1 1\n3 1",
"output": "1"
},
{
"input": "3\n31 41 59\n1 1",
"output": "0"
},
{
"input": "5\n16 13 10 30 15\n4 2",
"output": "23"
},
{
"input": "6\n89 82 87 32 67 33\n4 4",
"output": "0"
},
{
"input": "7\n2 3 17 10 2 2 2\n4 2",
"output": "18"
},
{
"input": "3\n4 37 33\n3 3",
"output": "0"
},
{
"input": "8\n87 40 96 7 86 86 72 97\n6 8",
"output": "158"
},
{
"input": "10\n91 94 75 99 100 91 79 86 79 92\n2 8",
"output": "348"
},
{
"input": "19\n1 1 1 1 2 1 1 1 1 1 2 1 3 2 2 1 1 1 2\n7 7",
"output": "0"
},
{
"input": "34\n96 65 24 99 74 76 97 93 99 69 94 82 92 91 98 83 95 97 96 81 90 95 86 87 43 78 88 86 82 62 76 99 83 96\n21 16",
"output": "452"
},
{
"input": "50\n75 98 65 75 99 89 84 65 9 53 62 61 61 53 80 7 6 47 86 1 89 27 67 1 31 39 53 92 19 20 76 41 60 15 29 94 76 82 87 89 93 38 42 6 87 36 100 97 93 71\n2 6",
"output": "337"
},
{
"input": "99\n1 15 72 78 23 22 26 98 7 2 75 58 100 98 45 79 92 69 79 72 33 88 62 9 15 87 17 73 68 54 34 89 51 91 28 44 20 11 74 7 85 61 30 46 95 72 36 18 48 22 42 46 29 46 86 53 96 55 98 34 60 37 75 54 1 81 20 68 84 19 18 18 75 84 86 57 73 34 23 43 81 87 47 96 57 41 69 1 52 44 54 7 85 35 5 1 19 26 7\n4 64",
"output": "1740"
},
{
"input": "100\n33 63 21 27 49 82 86 93 43 55 4 72 89 85 5 34 80 7 23 13 21 49 22 73 89 65 81 25 6 92 82 66 58 88 48 96 1 1 16 48 67 96 84 63 87 76 20 100 36 4 31 41 35 62 55 76 74 70 68 41 4 16 39 81 2 41 34 73 66 57 41 89 78 93 68 96 87 47 92 60 40 58 81 12 19 74 56 83 56 61 83 97 26 92 62 52 39 57 89 95\n71 5",
"output": "2127"
},
{
"input": "100\n95 98 99 81 98 96 100 92 96 90 99 91 98 98 91 78 97 100 96 98 87 93 96 99 91 92 96 92 90 97 85 83 99 95 66 91 87 89 100 95 100 88 99 84 96 79 99 100 94 100 99 99 92 89 99 91 100 94 98 97 91 92 90 87 84 99 97 98 93 100 90 85 75 95 86 71 98 93 91 87 92 95 98 94 95 94 100 98 96 100 97 96 95 95 86 86 94 97 98 96\n67 57",
"output": "932"
},
{
"input": "100\n100 100 100 100 100 100 100 100 100 100 97 100 100 100 100 100 99 100 100 99 99 100 99 100 100 100 100 100 100 100 100 100 97 99 98 98 100 98 98 100 99 100 100 100 100 99 100 98 100 99 98 99 98 98 100 100 100 100 100 100 100 100 100 100 99 100 100 100 100 100 98 100 99 99 100 96 100 96 100 99 100 100 99 100 99 100 100 100 99 100 100 100 100 98 98 97 100 100 99 98\n16 6",
"output": "997"
},
{
"input": "100\n3 6 23 4 23 1 2 14 2 3 3 9 17 8 10 5 1 14 8 5 7 4 13 8 5 6 24 3 12 3 4 9 2 8 2 1 2 1 3 2 1 6 14 23 8 6 3 5 7 8 18 9 2 5 22 6 13 16 2 4 31 20 4 3 3 6 6 1 1 18 5 11 1 14 4 16 6 37 11 1 8 3 7 11 21 14 3 3 12 2 5 1 9 16 3 1 3 4 4 2\n98 24",
"output": "195"
},
{
"input": "100\n1 1 3 1 1 2 1 2 1 1 2 2 2 1 1 1 1 1 1 3 1 1 1 3 1 3 3 1 1 2 1 1 1 1 1 2 1 1 1 4 1 1 3 3 2 1 1 1 1 1 2 2 1 3 1 1 1 2 4 1 1 2 5 2 1 1 2 1 1 1 2 3 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 2 2 3 1 7 3 1 3 1 2 1 2 1\n49 10",
"output": "60"
},
{
"input": "100\n75 62 31 96 62 76 93 96 72 67 88 35 67 34 60 56 95 86 82 48 64 61 74 100 56 98 76 98 78 55 53 10 12 78 58 45 86 90 93 77 69 73 88 66 92 88 33 50 95 69 89 12 93 57 93 89 59 53 71 86 15 13 61 93 24 100 58 76 46 95 76 82 50 20 79 38 5 72 99 81 55 90 90 65 85 44 63 39 6 34 98 72 88 30 59 73 84 61 25 67\n86 25",
"output": "2523"
},
{
"input": "100\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100\n1 51",
"output": "5000"
},
{
"input": "4\n1 1 1 1\n2 4",
"output": "2"
},
{
"input": "4\n1 1 2 1\n2 4",
"output": "2"
}
] | 1,547,936,241
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 23
| 218
| 0
|
input()
Stations = list(map(int, input().split()))
First, Second = list(map(int, input().split()))
Count1, Count2 = 0, 0
i = First - 1
while i != Second - 1:
Count1 += Stations[i]
i = (i + 1) % len(Stations)
i = (First - 2 if First - 2 >= 0 else len(Stations) - 1)
while i != Second - 1:
Count2 += Stations[i]
i = (i - 1 if i - 1 >= 0 else len(Stations) - 1)
Count2 += Stations[Second - 1]
print(min(Count2, Count1))
|
Title: Circle Line
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
The circle line of the Berland subway has *n* stations. We know the distances between all pairs of neighboring stations:
- *d*1 is the distance between the 1-st and the 2-nd station;- *d*2 is the distance between the 2-nd and the 3-rd station;...- *d**n*<=-<=1 is the distance between the *n*<=-<=1-th and the *n*-th station;- *d**n* is the distance between the *n*-th and the 1-st station.
The trains go along the circle line in both directions. Find the shortest distance between stations with numbers *s* and *t*.
Input Specification:
The first line contains integer *n* (3<=≤<=*n*<=≤<=100) — the number of stations on the circle line. The second line contains *n* integers *d*1,<=*d*2,<=...,<=*d**n* (1<=≤<=*d**i*<=≤<=100) — the distances between pairs of neighboring stations. The third line contains two integers *s* and *t* (1<=≤<=*s*,<=*t*<=≤<=*n*) — the numbers of stations, between which you need to find the shortest distance. These numbers can be the same.
The numbers in the lines are separated by single spaces.
Output Specification:
Print a single number — the length of the shortest path between stations number *s* and *t*.
Demo Input:
['4\n2 3 4 9\n1 3\n', '4\n5 8 2 100\n4 1\n', '3\n1 1 1\n3 1\n', '3\n31 41 59\n1 1\n']
Demo Output:
['5\n', '15\n', '1\n', '0\n']
Note:
In the first sample the length of path 1 → 2 → 3 equals 5, the length of path 1 → 4 → 3 equals 13.
In the second sample the length of path 4 → 1 is 100, the length of path 4 → 3 → 2 → 1 is 15.
In the third sample the length of path 3 → 1 is 1, the length of path 3 → 2 → 1 is 2.
In the fourth sample the numbers of stations are the same, so the shortest distance equals 0.
|
```python
input()
Stations = list(map(int, input().split()))
First, Second = list(map(int, input().split()))
Count1, Count2 = 0, 0
i = First - 1
while i != Second - 1:
Count1 += Stations[i]
i = (i + 1) % len(Stations)
i = (First - 2 if First - 2 >= 0 else len(Stations) - 1)
while i != Second - 1:
Count2 += Stations[i]
i = (i - 1 if i - 1 >= 0 else len(Stations) - 1)
Count2 += Stations[Second - 1]
print(min(Count2, Count1))
```
| 3
|
|
978
|
A
|
Remove Duplicates
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Petya has an array $a$ consisting of $n$ integers. He wants to remove duplicate (equal) elements.
Petya wants to leave only the rightmost entry (occurrence) for each element of the array. The relative order of the remaining unique elements should not be changed.
|
The first line contains a single integer $n$ ($1 \le n \le 50$) — the number of elements in Petya's array.
The following line contains a sequence $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 1\,000$) — the Petya's array.
|
In the first line print integer $x$ — the number of elements which will be left in Petya's array after he removed the duplicates.
In the second line print $x$ integers separated with a space — Petya's array after he removed the duplicates. For each unique element only the rightmost entry should be left.
|
[
"6\n1 5 5 1 6 1\n",
"5\n2 4 2 4 4\n",
"5\n6 6 6 6 6\n"
] |
[
"3\n5 6 1 \n",
"2\n2 4 \n",
"1\n6 \n"
] |
In the first example you should remove two integers $1$, which are in the positions $1$ and $4$. Also you should remove the integer $5$, which is in the position $2$.
In the second example you should remove integer $2$, which is in the position $1$, and two integers $4$, which are in the positions $2$ and $4$.
In the third example you should remove four integers $6$, which are in the positions $1$, $2$, $3$ and $4$.
| 0
|
[
{
"input": "6\n1 5 5 1 6 1",
"output": "3\n5 6 1 "
},
{
"input": "5\n2 4 2 4 4",
"output": "2\n2 4 "
},
{
"input": "5\n6 6 6 6 6",
"output": "1\n6 "
},
{
"input": "7\n1 2 3 4 2 2 3",
"output": "4\n1 4 2 3 "
},
{
"input": "9\n100 100 100 99 99 99 100 100 100",
"output": "2\n99 100 "
},
{
"input": "27\n489 489 487 488 750 230 43 645 42 42 489 42 973 42 973 750 645 355 868 112 868 489 750 489 887 489 868",
"output": "13\n487 488 230 43 42 973 645 355 112 750 887 489 868 "
},
{
"input": "40\n151 421 421 909 117 222 909 954 227 421 227 954 954 222 421 227 421 421 421 151 421 227 222 222 222 222 421 183 421 227 421 954 222 421 954 421 222 421 909 421",
"output": "8\n117 151 183 227 954 222 909 421 "
},
{
"input": "48\n2 2 2 903 903 2 726 2 2 2 2 2 2 2 2 2 2 726 2 2 2 2 2 2 2 726 2 2 2 2 62 2 2 2 2 2 2 2 2 726 62 726 2 2 2 903 903 2",
"output": "4\n62 726 903 2 "
},
{
"input": "1\n1",
"output": "1\n1 "
},
{
"input": "13\n5 37 375 5 37 33 37 375 37 2 3 3 2",
"output": "6\n5 33 375 37 3 2 "
},
{
"input": "50\n1 2 3 4 5 4 3 2 1 2 3 2 1 4 5 5 4 3 2 1 1 2 3 4 5 4 3 2 1 2 3 2 1 4 5 5 4 3 2 1 4 3 2 5 1 6 6 6 6 6",
"output": "6\n4 3 2 5 1 6 "
},
{
"input": "47\n233 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "2\n233 1 "
},
{
"input": "47\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "1\n1 "
},
{
"input": "2\n964 964",
"output": "1\n964 "
},
{
"input": "2\n1000 1000",
"output": "1\n1000 "
},
{
"input": "1\n1000",
"output": "1\n1000 "
},
{
"input": "45\n991 991 996 996 992 992 999 1000 998 1000 992 999 996 999 991 991 999 993 992 999 1000 997 992 999 996 991 994 996 991 999 1000 993 999 997 999 992 991 997 991 998 998 995 998 994 993",
"output": "10\n996 1000 999 992 997 991 995 998 994 993 "
},
{
"input": "6\n994 993 1000 998 991 994",
"output": "5\n993 1000 998 991 994 "
},
{
"input": "48\n992 995 992 991 994 992 995 999 996 993 999 995 993 992 1000 992 997 996 991 993 992 998 998 998 999 995 992 992 993 992 992 995 996 995 997 991 997 991 999 994 994 997 1000 998 1000 992 1000 999",
"output": "10\n993 996 995 991 994 997 998 992 1000 999 "
},
{
"input": "3\n6 6 3",
"output": "2\n6 3 "
},
{
"input": "36\n999 1000 993 993 1000 999 996 997 998 995 995 997 999 995 1000 998 998 994 993 998 994 999 1000 995 996 994 991 991 999 996 993 999 996 998 991 997",
"output": "9\n1000 995 994 993 999 996 998 991 997 "
},
{
"input": "49\n991 997 995 991 995 998 994 996 997 991 998 993 992 999 996 995 991 991 999 997 995 993 997 1000 997 993 993 994 999 994 992 991 1000 996 994 996 996 999 992 992 1000 991 997 993 991 994 997 991 996",
"output": "10\n998 995 999 992 1000 993 994 997 991 996 "
},
{
"input": "2\n1000 999",
"output": "2\n1000 999 "
},
{
"input": "28\n997 994 991 994 994 995 1000 992 995 994 994 995 991 996 991 996 991 999 999 993 994 997 995 992 991 992 998 1000",
"output": "10\n996 999 993 994 997 995 991 992 998 1000 "
},
{
"input": "15\n991 995 995 1000 991 993 997 998 1000 994 1000 992 991 995 992",
"output": "8\n993 997 998 994 1000 991 995 992 "
},
{
"input": "6\n1000 1 1000 2 1000 1",
"output": "3\n2 1000 1 "
},
{
"input": "6\n1000 1 1000 2 1 1000",
"output": "3\n2 1 1000 "
},
{
"input": "7\n1 1000 1 999 1000 1 2",
"output": "4\n999 1000 1 2 "
}
] | 1,682,118,349
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 28
| 62
| 0
|
n = int(input())
a = list(map(int, input().split()))
c = set(a)
li = []
for i in range(len(a)-1, -1, -1):
if a[i] in li:
continue
else:
li.append(a[i])
li.reverse()
print(len(li))
print(*li)
|
Title: Remove Duplicates
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Petya has an array $a$ consisting of $n$ integers. He wants to remove duplicate (equal) elements.
Petya wants to leave only the rightmost entry (occurrence) for each element of the array. The relative order of the remaining unique elements should not be changed.
Input Specification:
The first line contains a single integer $n$ ($1 \le n \le 50$) — the number of elements in Petya's array.
The following line contains a sequence $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 1\,000$) — the Petya's array.
Output Specification:
In the first line print integer $x$ — the number of elements which will be left in Petya's array after he removed the duplicates.
In the second line print $x$ integers separated with a space — Petya's array after he removed the duplicates. For each unique element only the rightmost entry should be left.
Demo Input:
['6\n1 5 5 1 6 1\n', '5\n2 4 2 4 4\n', '5\n6 6 6 6 6\n']
Demo Output:
['3\n5 6 1 \n', '2\n2 4 \n', '1\n6 \n']
Note:
In the first example you should remove two integers $1$, which are in the positions $1$ and $4$. Also you should remove the integer $5$, which is in the position $2$.
In the second example you should remove integer $2$, which is in the position $1$, and two integers $4$, which are in the positions $2$ and $4$.
In the third example you should remove four integers $6$, which are in the positions $1$, $2$, $3$ and $4$.
|
```python
n = int(input())
a = list(map(int, input().split()))
c = set(a)
li = []
for i in range(len(a)-1, -1, -1):
if a[i] in li:
continue
else:
li.append(a[i])
li.reverse()
print(len(li))
print(*li)
```
| 3
|
|
660
|
A
|
Co-prime Array
|
PROGRAMMING
| 1,200
|
[
"greedy",
"implementation",
"math",
"number theory"
] | null | null |
You are given an array of *n* elements, you must make it a co-prime array in as few moves as possible.
In each move you can insert any positive integral number you want not greater than 109 in any place in the array.
An array is co-prime if any two adjacent numbers of it are co-prime.
In the number theory, two integers *a* and *b* are said to be co-prime if the only positive integer that divides both of them is 1.
|
The first line contains integer *n* (1<=≤<=*n*<=≤<=1000) — the number of elements in the given array.
The second line contains *n* integers *a**i* (1<=≤<=*a**i*<=≤<=109) — the elements of the array *a*.
|
Print integer *k* on the first line — the least number of elements needed to add to the array *a* to make it co-prime.
The second line should contain *n*<=+<=*k* integers *a**j* — the elements of the array *a* after adding *k* elements to it. Note that the new array should be co-prime, so any two adjacent values should be co-prime. Also the new array should be got from the original array *a* by adding *k* elements to it.
If there are multiple answers you can print any one of them.
|
[
"3\n2 7 28\n"
] |
[
"1\n2 7 9 28\n"
] |
none
| 0
|
[
{
"input": "3\n2 7 28",
"output": "1\n2 7 1 28"
},
{
"input": "1\n1",
"output": "0\n1"
},
{
"input": "1\n548",
"output": "0\n548"
},
{
"input": "1\n963837006",
"output": "0\n963837006"
},
{
"input": "10\n1 1 1 1 1 1 1 1 1 1",
"output": "0\n1 1 1 1 1 1 1 1 1 1"
},
{
"input": "10\n26 723 970 13 422 968 875 329 234 983",
"output": "2\n26 723 970 13 422 1 968 875 1 329 234 983"
},
{
"input": "10\n319645572 758298525 812547177 459359946 355467212 304450522 807957797 916787906 239781206 242840396",
"output": "7\n319645572 1 758298525 1 812547177 1 459359946 1 355467212 1 304450522 807957797 916787906 1 239781206 1 242840396"
},
{
"input": "100\n1 1 1 1 2 1 1 1 1 1 2 2 1 1 2 1 2 1 1 1 2 1 1 2 1 2 1 1 2 2 2 1 1 2 1 1 1 2 2 2 1 1 1 2 1 2 2 1 2 1 1 2 2 1 2 1 2 1 2 2 1 1 1 2 1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 1 1 1 1 2 2 2 2 2 2 2 1 1 1 2 1 2 1",
"output": "19\n1 1 1 1 2 1 1 1 1 1 2 1 2 1 1 2 1 2 1 1 1 2 1 1 2 1 2 1 1 2 1 2 1 2 1 1 2 1 1 1 2 1 2 1 2 1 1 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 1 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 1 2 1 2 1"
},
{
"input": "100\n591 417 888 251 792 847 685 3 182 461 102 348 555 956 771 901 712 878 580 631 342 333 285 899 525 725 537 718 929 653 84 788 104 355 624 803 253 853 201 995 536 184 65 205 540 652 549 777 248 405 677 950 431 580 600 846 328 429 134 983 526 103 500 963 400 23 276 704 570 757 410 658 507 620 984 244 486 454 802 411 985 303 635 283 96 597 855 775 139 839 839 61 219 986 776 72 729 69 20 917",
"output": "38\n591 1 417 1 888 251 792 1 847 685 3 182 461 102 1 348 1 555 956 771 901 712 1 878 1 580 631 342 1 333 1 285 899 525 1 725 537 718 929 653 84 1 788 1 104 355 624 803 1 253 853 201 995 536 1 184 65 1 205 1 540 1 652 549 1 777 248 405 677 950 431 580 1 600 1 846 1 328 429 134 983 526 103 500 963 400 23 1 276 1 704 1 570 757 410 1 658 507 620 1 984 1 244 1 486 1 454 1 802 411 985 303 635 283 96 1 597 1 855 1 775 139 839 1 839 61 219 986 1 776 1 72 1 729 1 69 20 917"
},
{
"input": "5\n472882027 472882027 472882027 472882027 472882027",
"output": "4\n472882027 1 472882027 1 472882027 1 472882027 1 472882027"
},
{
"input": "2\n1000000000 1000000000",
"output": "1\n1000000000 1 1000000000"
},
{
"input": "2\n8 6",
"output": "1\n8 1 6"
},
{
"input": "3\n100000000 1000000000 1000000000",
"output": "2\n100000000 1 1000000000 1 1000000000"
},
{
"input": "5\n1 2 3 4 5",
"output": "0\n1 2 3 4 5"
},
{
"input": "20\n2 1000000000 2 1000000000 2 1000000000 2 1000000000 2 1000000000 2 1000000000 2 1000000000 2 1000000000 2 1000000000 2 1000000000",
"output": "19\n2 1 1000000000 1 2 1 1000000000 1 2 1 1000000000 1 2 1 1000000000 1 2 1 1000000000 1 2 1 1000000000 1 2 1 1000000000 1 2 1 1000000000 1 2 1 1000000000 1 2 1 1000000000"
},
{
"input": "2\n223092870 23",
"output": "1\n223092870 1 23"
},
{
"input": "2\n100000003 100000003",
"output": "1\n100000003 1 100000003"
},
{
"input": "2\n999999937 999999937",
"output": "1\n999999937 1 999999937"
},
{
"input": "4\n999 999999937 999999937 999",
"output": "1\n999 999999937 1 999999937 999"
},
{
"input": "2\n999999929 999999929",
"output": "1\n999999929 1 999999929"
},
{
"input": "2\n1049459 2098918",
"output": "1\n1049459 1 2098918"
},
{
"input": "2\n352229 704458",
"output": "1\n352229 1 704458"
},
{
"input": "2\n7293 4011",
"output": "1\n7293 1 4011"
},
{
"input": "2\n5565651 3999930",
"output": "1\n5565651 1 3999930"
},
{
"input": "2\n997 997",
"output": "1\n997 1 997"
},
{
"input": "3\n9994223 9994223 9994223",
"output": "2\n9994223 1 9994223 1 9994223"
},
{
"input": "2\n99999998 1000000000",
"output": "1\n99999998 1 1000000000"
},
{
"input": "3\n1000000000 1000000000 1000000000",
"output": "2\n1000000000 1 1000000000 1 1000000000"
},
{
"input": "2\n130471 130471",
"output": "1\n130471 1 130471"
},
{
"input": "3\n1000000000 2 2",
"output": "2\n1000000000 1 2 1 2"
},
{
"input": "2\n223092870 66526",
"output": "1\n223092870 1 66526"
},
{
"input": "14\n1000000000 1000000000 223092870 223092870 6 105 2 2 510510 510510 999999491 999999491 436077930 570018449",
"output": "10\n1000000000 1 1000000000 1 223092870 1 223092870 1 6 1 105 2 1 2 1 510510 1 510510 999999491 1 999999491 436077930 1 570018449"
},
{
"input": "2\n3996017 3996017",
"output": "1\n3996017 1 3996017"
},
{
"input": "2\n999983 999983",
"output": "1\n999983 1 999983"
},
{
"input": "2\n618575685 773990454",
"output": "1\n618575685 1 773990454"
},
{
"input": "3\n9699690 3 7",
"output": "1\n9699690 1 3 7"
},
{
"input": "2\n999999999 999999996",
"output": "1\n999999999 1 999999996"
},
{
"input": "2\n99999910 99999910",
"output": "1\n99999910 1 99999910"
},
{
"input": "12\n1000000000 1000000000 223092870 223092870 6 105 2 2 510510 510510 999999491 999999491",
"output": "9\n1000000000 1 1000000000 1 223092870 1 223092870 1 6 1 105 2 1 2 1 510510 1 510510 999999491 1 999999491"
},
{
"input": "3\n999999937 999999937 999999937",
"output": "2\n999999937 1 999999937 1 999999937"
},
{
"input": "2\n99839 99839",
"output": "1\n99839 1 99839"
},
{
"input": "3\n19999909 19999909 19999909",
"output": "2\n19999909 1 19999909 1 19999909"
},
{
"input": "4\n1 1000000000 1 1000000000",
"output": "0\n1 1000000000 1 1000000000"
},
{
"input": "2\n64006 64006",
"output": "1\n64006 1 64006"
},
{
"input": "2\n1956955 1956955",
"output": "1\n1956955 1 1956955"
},
{
"input": "3\n1 1000000000 1000000000",
"output": "1\n1 1000000000 1 1000000000"
},
{
"input": "2\n982451707 982451707",
"output": "1\n982451707 1 982451707"
},
{
"input": "2\n999999733 999999733",
"output": "1\n999999733 1 999999733"
},
{
"input": "3\n999999733 999999733 999999733",
"output": "2\n999999733 1 999999733 1 999999733"
},
{
"input": "2\n3257 3257",
"output": "1\n3257 1 3257"
},
{
"input": "2\n223092870 181598",
"output": "1\n223092870 1 181598"
},
{
"input": "3\n959919409 105935 105935",
"output": "2\n959919409 1 105935 1 105935"
},
{
"input": "2\n510510 510510",
"output": "1\n510510 1 510510"
},
{
"input": "3\n223092870 1000000000 1000000000",
"output": "2\n223092870 1 1000000000 1 1000000000"
},
{
"input": "14\n1000000000 2 1000000000 3 1000000000 6 1000000000 1000000000 15 1000000000 1000000000 1000000000 100000000 1000",
"output": "11\n1000000000 1 2 1 1000000000 3 1000000000 1 6 1 1000000000 1 1000000000 1 15 1 1000000000 1 1000000000 1 1000000000 1 100000000 1 1000"
},
{
"input": "7\n1 982451653 982451653 1 982451653 982451653 982451653",
"output": "3\n1 982451653 1 982451653 1 982451653 1 982451653 1 982451653"
},
{
"input": "2\n100000007 100000007",
"output": "1\n100000007 1 100000007"
},
{
"input": "3\n999999757 999999757 999999757",
"output": "2\n999999757 1 999999757 1 999999757"
},
{
"input": "3\n99999989 99999989 99999989",
"output": "2\n99999989 1 99999989 1 99999989"
},
{
"input": "5\n2 4 982451707 982451707 3",
"output": "2\n2 1 4 982451707 1 982451707 3"
},
{
"input": "2\n20000014 20000014",
"output": "1\n20000014 1 20000014"
},
{
"input": "2\n99999989 99999989",
"output": "1\n99999989 1 99999989"
},
{
"input": "2\n111546435 111546435",
"output": "1\n111546435 1 111546435"
},
{
"input": "2\n55288874 33538046",
"output": "1\n55288874 1 33538046"
},
{
"input": "5\n179424673 179424673 179424673 179424673 179424673",
"output": "4\n179424673 1 179424673 1 179424673 1 179424673 1 179424673"
},
{
"input": "2\n199999978 199999978",
"output": "1\n199999978 1 199999978"
},
{
"input": "2\n1000000000 2",
"output": "1\n1000000000 1 2"
},
{
"input": "3\n19999897 19999897 19999897",
"output": "2\n19999897 1 19999897 1 19999897"
},
{
"input": "2\n19999982 19999982",
"output": "1\n19999982 1 19999982"
},
{
"input": "2\n10000007 10000007",
"output": "1\n10000007 1 10000007"
},
{
"input": "3\n999999937 999999937 2",
"output": "1\n999999937 1 999999937 2"
},
{
"input": "5\n2017 2017 2017 2017 2017",
"output": "4\n2017 1 2017 1 2017 1 2017 1 2017"
},
{
"input": "2\n19999909 39999818",
"output": "1\n19999909 1 39999818"
},
{
"input": "2\n62615533 7919",
"output": "1\n62615533 1 7919"
},
{
"input": "5\n39989 39989 33 31 29",
"output": "1\n39989 1 39989 33 31 29"
},
{
"input": "2\n1000000000 100000",
"output": "1\n1000000000 1 100000"
},
{
"input": "2\n1938 10010",
"output": "1\n1938 1 10010"
},
{
"input": "2\n199999 199999",
"output": "1\n199999 1 199999"
},
{
"input": "2\n107273 107273",
"output": "1\n107273 1 107273"
},
{
"input": "3\n49999 49999 49999",
"output": "2\n49999 1 49999 1 49999"
},
{
"input": "2\n1999966 1999958",
"output": "1\n1999966 1 1999958"
},
{
"input": "2\n86020 300846",
"output": "1\n86020 1 300846"
},
{
"input": "2\n999999997 213",
"output": "1\n999999997 1 213"
},
{
"input": "2\n200000014 200000434",
"output": "1\n200000014 1 200000434"
}
] | 1,625,572,872
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 93
| 109
| 1,331,200
|
from collections import deque, defaultdict, Counter
from itertools import product, groupby, permutations, combinations
from math import gcd, floor, inf, log2, sqrt, log10
from bisect import bisect_right, bisect_left
from statistics import mode
from string import ascii_uppercase
lists = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197}
num = int(input())
arr = list(map(int, input().split()))
cnt = 0
ans = [arr[0]]
for i in range(1, num):
if gcd(arr[i-1], arr[i]) != 1:
cnt += 1
for d in lists:
if gcd(arr[i-1], d) == 1 and gcd(arr[i], d) == 1:
dif = d
break
ans.append(dif)
ans.append(arr[i])
print(cnt)
print(*ans)
|
Title: Co-prime Array
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You are given an array of *n* elements, you must make it a co-prime array in as few moves as possible.
In each move you can insert any positive integral number you want not greater than 109 in any place in the array.
An array is co-prime if any two adjacent numbers of it are co-prime.
In the number theory, two integers *a* and *b* are said to be co-prime if the only positive integer that divides both of them is 1.
Input Specification:
The first line contains integer *n* (1<=≤<=*n*<=≤<=1000) — the number of elements in the given array.
The second line contains *n* integers *a**i* (1<=≤<=*a**i*<=≤<=109) — the elements of the array *a*.
Output Specification:
Print integer *k* on the first line — the least number of elements needed to add to the array *a* to make it co-prime.
The second line should contain *n*<=+<=*k* integers *a**j* — the elements of the array *a* after adding *k* elements to it. Note that the new array should be co-prime, so any two adjacent values should be co-prime. Also the new array should be got from the original array *a* by adding *k* elements to it.
If there are multiple answers you can print any one of them.
Demo Input:
['3\n2 7 28\n']
Demo Output:
['1\n2 7 9 28\n']
Note:
none
|
```python
from collections import deque, defaultdict, Counter
from itertools import product, groupby, permutations, combinations
from math import gcd, floor, inf, log2, sqrt, log10
from bisect import bisect_right, bisect_left
from statistics import mode
from string import ascii_uppercase
lists = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197}
num = int(input())
arr = list(map(int, input().split()))
cnt = 0
ans = [arr[0]]
for i in range(1, num):
if gcd(arr[i-1], arr[i]) != 1:
cnt += 1
for d in lists:
if gcd(arr[i-1], d) == 1 and gcd(arr[i], d) == 1:
dif = d
break
ans.append(dif)
ans.append(arr[i])
print(cnt)
print(*ans)
```
| 3
|
|
707
|
A
|
Brain's Photos
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Small, but very brave, mouse Brain was not accepted to summer school of young villains. He was upset and decided to postpone his plans of taking over the world, but to become a photographer instead.
As you may know, the coolest photos are on the film (because you can specify the hashtag #film for such).
Brain took a lot of colourful pictures on colored and black-and-white film. Then he developed and translated it into a digital form. But now, color and black-and-white photos are in one folder, and to sort them, one needs to spend more than one hour!
As soon as Brain is a photographer not programmer now, he asks you to help him determine for a single photo whether it is colored or black-and-white.
Photo can be represented as a matrix sized *n*<=×<=*m*, and each element of the matrix stores a symbol indicating corresponding pixel color. There are only 6 colors:
- 'C' (cyan)- 'M' (magenta)- 'Y' (yellow)- 'W' (white)- 'G' (grey)- 'B' (black)
The photo is considered black-and-white if it has only white, black and grey pixels in it. If there are any of cyan, magenta or yellow pixels in the photo then it is considered colored.
|
The first line of the input contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100) — the number of photo pixel matrix rows and columns respectively.
Then *n* lines describing matrix rows follow. Each of them contains *m* space-separated characters describing colors of pixels in a row. Each character in the line is one of the 'C', 'M', 'Y', 'W', 'G' or 'B'.
|
Print the "#Black&White" (without quotes), if the photo is black-and-white and "#Color" (without quotes), if it is colored, in the only line.
|
[
"2 2\nC M\nY Y\n",
"3 2\nW W\nW W\nB B\n",
"1 1\nW\n"
] |
[
"#Color",
"#Black&White",
"#Black&White"
] |
none
| 500
|
[
{
"input": "2 2\nC M\nY Y",
"output": "#Color"
},
{
"input": "3 2\nW W\nW W\nB B",
"output": "#Black&White"
},
{
"input": "1 1\nW",
"output": "#Black&White"
},
{
"input": "2 3\nW W W\nB G Y",
"output": "#Color"
},
{
"input": "1 1\nW",
"output": "#Black&White"
},
{
"input": "5 5\nW G B Y M\nG B Y M C\nB Y M C W\nY M C W G\nM C W G B",
"output": "#Color"
},
{
"input": "1 6\nC M Y W G B",
"output": "#Color"
},
{
"input": "1 3\nW G B",
"output": "#Black&White"
},
{
"input": "1 1\nW",
"output": "#Black&White"
},
{
"input": "5 5\nW G B W G\nG B W G B\nB W G B W\nW G B W G\nG B W G B",
"output": "#Black&White"
},
{
"input": "2 3\nW W W\nB G C",
"output": "#Color"
},
{
"input": "2 3\nW W W\nB G M",
"output": "#Color"
},
{
"input": "3 3\nC B W\nB Y M\nB B W",
"output": "#Color"
},
{
"input": "1 3\nW C W",
"output": "#Color"
},
{
"input": "3 3\nB W B\nB C W\nB W W",
"output": "#Color"
},
{
"input": "1 2\nW Y",
"output": "#Color"
},
{
"input": "1 1\nG",
"output": "#Black&White"
},
{
"input": "1 3\nB G W",
"output": "#Black&White"
},
{
"input": "2 2\nW W\nB C",
"output": "#Color"
},
{
"input": "1 1\nM",
"output": "#Color"
},
{
"input": "1 2\nW C",
"output": "#Color"
},
{
"input": "2 3\nW W M\nW W M",
"output": "#Color"
},
{
"input": "3 2\nW W\nW W\nB C",
"output": "#Color"
},
{
"input": "2 3\nW W C\nW W W",
"output": "#Color"
},
{
"input": "1 3\nG G G",
"output": "#Black&White"
},
{
"input": "1 1\nC",
"output": "#Color"
},
{
"input": "1 2\nC W",
"output": "#Color"
},
{
"input": "1 3\nW W C",
"output": "#Color"
},
{
"input": "2 2\nW B\nB G",
"output": "#Black&White"
},
{
"input": "2 2\nB B\nY Y",
"output": "#Color"
},
{
"input": "2 2\nG G\nC C",
"output": "#Color"
},
{
"input": "1 2\nB C",
"output": "#Color"
},
{
"input": "1 4\nG G G C",
"output": "#Color"
},
{
"input": "1 1\nB",
"output": "#Black&White"
},
{
"input": "2 1\nY\nB",
"output": "#Color"
}
] | 1,674,701,445
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 50
| 62
| 0
|
t=[]
a=[int(x) for x in input().split()]
x=0
for i in range(a[0]):
t=input().split()
x+=t.count('W')+t.count('B')+t.count('G')
if x==a[0]*a[1]:
print("#Black&White")
else:
print("#Color")
|
Title: Brain's Photos
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Small, but very brave, mouse Brain was not accepted to summer school of young villains. He was upset and decided to postpone his plans of taking over the world, but to become a photographer instead.
As you may know, the coolest photos are on the film (because you can specify the hashtag #film for such).
Brain took a lot of colourful pictures on colored and black-and-white film. Then he developed and translated it into a digital form. But now, color and black-and-white photos are in one folder, and to sort them, one needs to spend more than one hour!
As soon as Brain is a photographer not programmer now, he asks you to help him determine for a single photo whether it is colored or black-and-white.
Photo can be represented as a matrix sized *n*<=×<=*m*, and each element of the matrix stores a symbol indicating corresponding pixel color. There are only 6 colors:
- 'C' (cyan)- 'M' (magenta)- 'Y' (yellow)- 'W' (white)- 'G' (grey)- 'B' (black)
The photo is considered black-and-white if it has only white, black and grey pixels in it. If there are any of cyan, magenta or yellow pixels in the photo then it is considered colored.
Input Specification:
The first line of the input contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100) — the number of photo pixel matrix rows and columns respectively.
Then *n* lines describing matrix rows follow. Each of them contains *m* space-separated characters describing colors of pixels in a row. Each character in the line is one of the 'C', 'M', 'Y', 'W', 'G' or 'B'.
Output Specification:
Print the "#Black&White" (without quotes), if the photo is black-and-white and "#Color" (without quotes), if it is colored, in the only line.
Demo Input:
['2 2\nC M\nY Y\n', '3 2\nW W\nW W\nB B\n', '1 1\nW\n']
Demo Output:
['#Color', '#Black&White', '#Black&White']
Note:
none
|
```python
t=[]
a=[int(x) for x in input().split()]
x=0
for i in range(a[0]):
t=input().split()
x+=t.count('W')+t.count('B')+t.count('G')
if x==a[0]*a[1]:
print("#Black&White")
else:
print("#Color")
```
| 3
|
|
711
|
A
|
Bus to Udayland
|
PROGRAMMING
| 800
|
[
"brute force",
"implementation"
] | null | null |
ZS the Coder and Chris the Baboon are travelling to Udayland! To get there, they have to get on the special IOI bus. The IOI bus has *n* rows of seats. There are 4 seats in each row, and the seats are separated into pairs by a walkway. When ZS and Chris came, some places in the bus was already occupied.
ZS and Chris are good friends. They insist to get a pair of neighbouring empty seats. Two seats are considered neighbouring if they are in the same row and in the same pair. Given the configuration of the bus, can you help ZS and Chris determine where they should sit?
|
The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=1000) — the number of rows of seats in the bus.
Then, *n* lines follow. Each line contains exactly 5 characters, the first two of them denote the first pair of seats in the row, the third character denotes the walkway (it always equals '|') and the last two of them denote the second pair of seats in the row.
Each character, except the walkway, equals to 'O' or to 'X'. 'O' denotes an empty seat, 'X' denotes an occupied seat. See the sample cases for more details.
|
If it is possible for Chris and ZS to sit at neighbouring empty seats, print "YES" (without quotes) in the first line. In the next *n* lines print the bus configuration, where the characters in the pair of seats for Chris and ZS is changed with characters '+'. Thus the configuration should differ from the input one by exactly two charaters (they should be equal to 'O' in the input and to '+' in the output).
If there is no pair of seats for Chris and ZS, print "NO" (without quotes) in a single line.
If there are multiple solutions, you may print any of them.
|
[
"6\nOO|OX\nXO|XX\nOX|OO\nXX|OX\nOO|OO\nOO|XX\n",
"4\nXO|OX\nXO|XX\nOX|OX\nXX|OX\n",
"5\nXX|XX\nXX|XX\nXO|OX\nXO|OO\nOX|XO\n"
] |
[
"YES\n++|OX\nXO|XX\nOX|OO\nXX|OX\nOO|OO\nOO|XX\n",
"NO\n",
"YES\nXX|XX\nXX|XX\nXO|OX\nXO|++\nOX|XO\n"
] |
Note that the following is an incorrect configuration for the first sample case because the seats must be in the same pair.
O+|+X
XO|XX
OX|OO
XX|OX
OO|OO
OO|XX
| 500
|
[
{
"input": "6\nOO|OX\nXO|XX\nOX|OO\nXX|OX\nOO|OO\nOO|XX",
"output": "YES\n++|OX\nXO|XX\nOX|OO\nXX|OX\nOO|OO\nOO|XX"
},
{
"input": "4\nXO|OX\nXO|XX\nOX|OX\nXX|OX",
"output": "NO"
},
{
"input": "5\nXX|XX\nXX|XX\nXO|OX\nXO|OO\nOX|XO",
"output": "YES\nXX|XX\nXX|XX\nXO|OX\nXO|++\nOX|XO"
},
{
"input": "1\nXO|OX",
"output": "NO"
},
{
"input": "1\nOO|OO",
"output": "YES\n++|OO"
},
{
"input": "4\nXO|XX\nXX|XO\nOX|XX\nXO|XO",
"output": "NO"
},
{
"input": "9\nOX|XO\nOX|XO\nXO|OX\nOX|OX\nXO|OX\nXX|OO\nOX|OX\nOX|XO\nOX|OX",
"output": "YES\nOX|XO\nOX|XO\nXO|OX\nOX|OX\nXO|OX\nXX|++\nOX|OX\nOX|XO\nOX|OX"
},
{
"input": "61\nOX|XX\nOX|XX\nOX|XX\nXO|XO\nXX|XO\nXX|XX\nXX|XX\nOX|XX\nXO|XO\nOX|XO\nXO|OX\nXX|XX\nXX|XX\nOX|OX\nXX|OX\nOX|XO\nOX|XO\nXO|OX\nXO|XX\nOX|XX\nOX|XX\nXO|OX\nXO|XX\nXO|XX\nOX|XX\nXX|XX\nXX|XO\nXO|XX\nXX|XX\nXO|OX\nXX|XO\nXO|XX\nXO|XO\nXO|OX\nXX|OX\nXO|OX\nOX|XX\nXX|OX\nXX|XX\nOX|XO\nOX|XX\nXO|OX\nOX|XX\nOX|XX\nXO|XO\nXO|XX\nOX|XX\nXO|XO\nOX|XX\nXX|XX\nOX|XO\nXO|XO\nXO|XO\nOX|OX\nXX|OX\nXX|OX\nOX|XO\nOX|XX\nOX|OX\nXO|XX\nOX|XX",
"output": "NO"
},
{
"input": "1\nOO|XX",
"output": "YES\n++|XX"
},
{
"input": "10\nOO|XX\nXO|OX\nXO|OX\nXO|OX\nXO|OX\nXO|OX\nXO|OX\nXO|OX\nXO|OX\nXX|XX",
"output": "YES\n++|XX\nXO|OX\nXO|OX\nXO|OX\nXO|OX\nXO|OX\nXO|OX\nXO|OX\nXO|OX\nXX|XX"
},
{
"input": "10\nXX|XX\nXO|OX\nXO|OX\nXO|OX\nXO|OX\nXO|OX\nXO|OX\nXO|OX\nXO|OX\nXX|OO",
"output": "YES\nXX|XX\nXO|OX\nXO|OX\nXO|OX\nXO|OX\nXO|OX\nXO|OX\nXO|OX\nXO|OX\nXX|++"
},
{
"input": "5\nXX|XX\nXX|XX\nXO|OX\nOO|OX\nOX|XO",
"output": "YES\nXX|XX\nXX|XX\nXO|OX\n++|OX\nOX|XO"
},
{
"input": "6\nOO|XX\nXO|XX\nOX|OO\nXX|OX\nOO|XX\nOX|XX",
"output": "YES\n++|XX\nXO|XX\nOX|OO\nXX|OX\nOO|XX\nOX|XX"
}
] | 1,680,913,294
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 71
| 46
| 0
|
n = input()
rows = []
flag = False
for i in range(int(n)):
row = input()
if not flag and 'OO' in row:
row = row.replace('OO', '++', 1)
flag = True
rows.append(row)
if flag:
print("YES")
for i in range(int(n)):
print(rows[i])
else:
print("NO")
|
Title: Bus to Udayland
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
ZS the Coder and Chris the Baboon are travelling to Udayland! To get there, they have to get on the special IOI bus. The IOI bus has *n* rows of seats. There are 4 seats in each row, and the seats are separated into pairs by a walkway. When ZS and Chris came, some places in the bus was already occupied.
ZS and Chris are good friends. They insist to get a pair of neighbouring empty seats. Two seats are considered neighbouring if they are in the same row and in the same pair. Given the configuration of the bus, can you help ZS and Chris determine where they should sit?
Input Specification:
The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=1000) — the number of rows of seats in the bus.
Then, *n* lines follow. Each line contains exactly 5 characters, the first two of them denote the first pair of seats in the row, the third character denotes the walkway (it always equals '|') and the last two of them denote the second pair of seats in the row.
Each character, except the walkway, equals to 'O' or to 'X'. 'O' denotes an empty seat, 'X' denotes an occupied seat. See the sample cases for more details.
Output Specification:
If it is possible for Chris and ZS to sit at neighbouring empty seats, print "YES" (without quotes) in the first line. In the next *n* lines print the bus configuration, where the characters in the pair of seats for Chris and ZS is changed with characters '+'. Thus the configuration should differ from the input one by exactly two charaters (they should be equal to 'O' in the input and to '+' in the output).
If there is no pair of seats for Chris and ZS, print "NO" (without quotes) in a single line.
If there are multiple solutions, you may print any of them.
Demo Input:
['6\nOO|OX\nXO|XX\nOX|OO\nXX|OX\nOO|OO\nOO|XX\n', '4\nXO|OX\nXO|XX\nOX|OX\nXX|OX\n', '5\nXX|XX\nXX|XX\nXO|OX\nXO|OO\nOX|XO\n']
Demo Output:
['YES\n++|OX\nXO|XX\nOX|OO\nXX|OX\nOO|OO\nOO|XX\n', 'NO\n', 'YES\nXX|XX\nXX|XX\nXO|OX\nXO|++\nOX|XO\n']
Note:
Note that the following is an incorrect configuration for the first sample case because the seats must be in the same pair.
O+|+X
XO|XX
OX|OO
XX|OX
OO|OO
OO|XX
|
```python
n = input()
rows = []
flag = False
for i in range(int(n)):
row = input()
if not flag and 'OO' in row:
row = row.replace('OO', '++', 1)
flag = True
rows.append(row)
if flag:
print("YES")
for i in range(int(n)):
print(rows[i])
else:
print("NO")
```
| 3
|
|
766
|
A
|
Mahmoud and Longest Uncommon Subsequence
|
PROGRAMMING
| 1,000
|
[
"constructive algorithms",
"strings"
] | null | null |
While Mahmoud and Ehab were practicing for IOI, they found a problem which name was Longest common subsequence. They solved it, and then Ehab challenged Mahmoud with another problem.
Given two strings *a* and *b*, find the length of their longest uncommon subsequence, which is the longest string that is a subsequence of one of them and not a subsequence of the other.
A subsequence of some string is a sequence of characters that appears in the same order in the string, The appearances don't have to be consecutive, for example, strings "ac", "bc", "abc" and "a" are subsequences of string "abc" while strings "abbc" and "acb" are not. The empty string is a subsequence of any string. Any string is a subsequence of itself.
|
The first line contains string *a*, and the second line — string *b*. Both of these strings are non-empty and consist of lowercase letters of English alphabet. The length of each string is not bigger than 105 characters.
|
If there's no uncommon subsequence, print "-1". Otherwise print the length of the longest uncommon subsequence of *a* and *b*.
|
[
"abcd\ndefgh\n",
"a\na\n"
] |
[
"5\n",
"-1\n"
] |
In the first example: you can choose "defgh" from string *b* as it is the longest subsequence of string *b* that doesn't appear as a subsequence of string *a*.
| 500
|
[
{
"input": "abcd\ndefgh",
"output": "5"
},
{
"input": "a\na",
"output": "-1"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaacccccccccccccccccccccccccccccccccccccccccccccccccc\naaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaadddddddddddddddddddddddddddddddddddddddddddddddddd",
"output": "100"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa\nbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb",
"output": "199"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa\nbbbbbbbbbbbbbbbbbbb",
"output": "99"
},
{
"input": "abcde\nfghij",
"output": "5"
},
{
"input": "abcde\nabcdf",
"output": "5"
},
{
"input": "abcde\nbbcde",
"output": "5"
},
{
"input": "abcde\neabcd",
"output": "5"
},
{
"input": "abcdefgh\nabdcefgh",
"output": "8"
},
{
"input": "mmmmm\nmnmmm",
"output": "5"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa\naaaaaaaaaaaaaaaaaabaaaaaaaaaaaaaaa",
"output": "34"
},
{
"input": "abcdefghijklmnopqrstuvwxyz\nzabcdefghijklmnopqrstuvwxy",
"output": "26"
},
{
"input": "a\nab",
"output": "2"
},
{
"input": "b\nab",
"output": "2"
},
{
"input": "ab\nb",
"output": "2"
},
{
"input": "ab\nc",
"output": "2"
},
{
"input": "aaaaaa\naaaaaa",
"output": "-1"
},
{
"input": "abacaba\nabacaba",
"output": "-1"
},
{
"input": "aabb\nbbaa",
"output": "4"
},
{
"input": "ab\nba",
"output": "2"
},
{
"input": "abcd\nabc",
"output": "4"
},
{
"input": "abaa\nabaa",
"output": "-1"
},
{
"input": "ab\nab",
"output": "-1"
},
{
"input": "ab\nabcd",
"output": "4"
},
{
"input": "abc\nabcd",
"output": "4"
},
{
"input": "mo\nmomo",
"output": "4"
},
{
"input": "koooooooooooooooo\nloooooooooooooooo",
"output": "17"
},
{
"input": "aaa\naa",
"output": "3"
},
{
"input": "abc\nabc",
"output": "-1"
},
{
"input": "abcd\nabcd",
"output": "-1"
},
{
"input": "abc\ncba",
"output": "3"
},
{
"input": "ahc\nahc",
"output": "-1"
},
{
"input": "abc\nbac",
"output": "3"
},
{
"input": "aa\naaa",
"output": "3"
},
{
"input": "aaa\naaa",
"output": "-1"
},
{
"input": "abc\nacb",
"output": "3"
},
{
"input": "abc\nab",
"output": "3"
},
{
"input": "abb\nabb",
"output": "-1"
},
{
"input": "abc\ncab",
"output": "3"
},
{
"input": "aaaaaa\naaaaa",
"output": "6"
},
{
"input": "aa\naab",
"output": "3"
},
{
"input": "len\nlena",
"output": "4"
},
{
"input": "aaaaa\naa",
"output": "5"
},
{
"input": "aaa\naaaa",
"output": "4"
},
{
"input": "bcd\nabcd",
"output": "4"
},
{
"input": "aaabbc\naaaccc",
"output": "6"
},
{
"input": "abcd\nzycd",
"output": "4"
},
{
"input": "baa\nzaa",
"output": "3"
},
{
"input": "asdf\nadfs",
"output": "4"
},
{
"input": "abcdefgh\nabcdefgh",
"output": "-1"
},
{
"input": "aba\naab",
"output": "3"
},
{
"input": "aba\naba",
"output": "-1"
},
{
"input": "abcccc\naccccc",
"output": "6"
},
{
"input": "acb\nabc",
"output": "3"
},
{
"input": "a\naa",
"output": "2"
},
{
"input": "abababab\nab",
"output": "8"
},
{
"input": "ababab\nab",
"output": "6"
}
] | 1,699,714,759
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 73
| 62
| 307,200
|
a = input()
b = input()
print(max(len(a), len(b)) if a != b else -1)
|
Title: Mahmoud and Longest Uncommon Subsequence
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
While Mahmoud and Ehab were practicing for IOI, they found a problem which name was Longest common subsequence. They solved it, and then Ehab challenged Mahmoud with another problem.
Given two strings *a* and *b*, find the length of their longest uncommon subsequence, which is the longest string that is a subsequence of one of them and not a subsequence of the other.
A subsequence of some string is a sequence of characters that appears in the same order in the string, The appearances don't have to be consecutive, for example, strings "ac", "bc", "abc" and "a" are subsequences of string "abc" while strings "abbc" and "acb" are not. The empty string is a subsequence of any string. Any string is a subsequence of itself.
Input Specification:
The first line contains string *a*, and the second line — string *b*. Both of these strings are non-empty and consist of lowercase letters of English alphabet. The length of each string is not bigger than 105 characters.
Output Specification:
If there's no uncommon subsequence, print "-1". Otherwise print the length of the longest uncommon subsequence of *a* and *b*.
Demo Input:
['abcd\ndefgh\n', 'a\na\n']
Demo Output:
['5\n', '-1\n']
Note:
In the first example: you can choose "defgh" from string *b* as it is the longest subsequence of string *b* that doesn't appear as a subsequence of string *a*.
|
```python
a = input()
b = input()
print(max(len(a), len(b)) if a != b else -1)
```
| 3
|
|
214
|
A
|
System of Equations
|
PROGRAMMING
| 800
|
[
"brute force"
] | null | null |
Furik loves math lessons very much, so he doesn't attend them, unlike Rubik. But now Furik wants to get a good mark for math. For that Ms. Ivanova, his math teacher, gave him a new task. Furik solved the task immediately. Can you?
You are given a system of equations:
You should count, how many there are pairs of integers (*a*,<=*b*) (0<=≤<=*a*,<=*b*) which satisfy the system.
|
A single line contains two integers *n*,<=*m* (1<=≤<=*n*,<=*m*<=≤<=1000) — the parameters of the system. The numbers on the line are separated by a space.
|
On a single line print the answer to the problem.
|
[
"9 3\n",
"14 28\n",
"4 20\n"
] |
[
"1\n",
"1\n",
"0\n"
] |
In the first sample the suitable pair is integers (3, 0). In the second sample the suitable pair is integers (3, 5). In the third sample there is no suitable pair.
| 500
|
[
{
"input": "9 3",
"output": "1"
},
{
"input": "14 28",
"output": "1"
},
{
"input": "4 20",
"output": "0"
},
{
"input": "18 198",
"output": "1"
},
{
"input": "22 326",
"output": "1"
},
{
"input": "26 104",
"output": "1"
},
{
"input": "14 10",
"output": "0"
},
{
"input": "8 20",
"output": "0"
},
{
"input": "2 8",
"output": "0"
},
{
"input": "20 11",
"output": "0"
},
{
"input": "57 447",
"output": "1"
},
{
"input": "1 1",
"output": "2"
},
{
"input": "66 296",
"output": "1"
},
{
"input": "75 683",
"output": "1"
},
{
"input": "227 975",
"output": "1"
},
{
"input": "247 499",
"output": "1"
},
{
"input": "266 116",
"output": "1"
},
{
"input": "286 916",
"output": "1"
},
{
"input": "307 341",
"output": "1"
},
{
"input": "451 121",
"output": "1"
},
{
"input": "471 921",
"output": "1"
},
{
"input": "502 346",
"output": "1"
},
{
"input": "535 59",
"output": "1"
},
{
"input": "555 699",
"output": "1"
},
{
"input": "747 351",
"output": "1"
},
{
"input": "790 64",
"output": "1"
},
{
"input": "810 704",
"output": "1"
},
{
"input": "855 225",
"output": "1"
},
{
"input": "902 34",
"output": "1"
},
{
"input": "922 514",
"output": "1"
},
{
"input": "971 131",
"output": "1"
},
{
"input": "991 931",
"output": "1"
},
{
"input": "840 780",
"output": "0"
},
{
"input": "102 595",
"output": "0"
},
{
"input": "139 433",
"output": "0"
},
{
"input": "968 288",
"output": "0"
},
{
"input": "563 354",
"output": "0"
},
{
"input": "994 975",
"output": "0"
},
{
"input": "456 221",
"output": "0"
},
{
"input": "205 210",
"output": "0"
},
{
"input": "1 11",
"output": "0"
},
{
"input": "1000 1000",
"output": "0"
},
{
"input": "3 3",
"output": "0"
},
{
"input": "11 99",
"output": "0"
},
{
"input": "2 2",
"output": "1"
},
{
"input": "11 1",
"output": "0"
},
{
"input": "6 6",
"output": "1"
},
{
"input": "100 452",
"output": "0"
},
{
"input": "420 380",
"output": "0"
},
{
"input": "31 31",
"output": "0"
},
{
"input": "2 6",
"output": "0"
},
{
"input": "112 134",
"output": "0"
},
{
"input": "13 13",
"output": "0"
},
{
"input": "1 571",
"output": "0"
}
] | 1,682,503,159
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 54
| 122
| 0
|
def system_of_equations_a():
n,m = map(int, input().split())
a, c = 0, 0
while(a <= int(math.sqrt(n))):
b = n - a*a
if(a + b*b == m):
c += 1
a += 1
print(c)
if __name__ == '__main__':
import math
system_of_equations_a()
|
Title: System of Equations
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Furik loves math lessons very much, so he doesn't attend them, unlike Rubik. But now Furik wants to get a good mark for math. For that Ms. Ivanova, his math teacher, gave him a new task. Furik solved the task immediately. Can you?
You are given a system of equations:
You should count, how many there are pairs of integers (*a*,<=*b*) (0<=≤<=*a*,<=*b*) which satisfy the system.
Input Specification:
A single line contains two integers *n*,<=*m* (1<=≤<=*n*,<=*m*<=≤<=1000) — the parameters of the system. The numbers on the line are separated by a space.
Output Specification:
On a single line print the answer to the problem.
Demo Input:
['9 3\n', '14 28\n', '4 20\n']
Demo Output:
['1\n', '1\n', '0\n']
Note:
In the first sample the suitable pair is integers (3, 0). In the second sample the suitable pair is integers (3, 5). In the third sample there is no suitable pair.
|
```python
def system_of_equations_a():
n,m = map(int, input().split())
a, c = 0, 0
while(a <= int(math.sqrt(n))):
b = n - a*a
if(a + b*b == m):
c += 1
a += 1
print(c)
if __name__ == '__main__':
import math
system_of_equations_a()
```
| 3
|
|
255
|
A
|
Greg's Workout
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Greg is a beginner bodybuilder. Today the gym coach gave him the training plan. All it had was *n* integers *a*1,<=*a*2,<=...,<=*a**n*. These numbers mean that Greg needs to do exactly *n* exercises today. Besides, Greg should repeat the *i*-th in order exercise *a**i* times.
Greg now only does three types of exercises: "chest" exercises, "biceps" exercises and "back" exercises. Besides, his training is cyclic, that is, the first exercise he does is a "chest" one, the second one is "biceps", the third one is "back", the fourth one is "chest", the fifth one is "biceps", and so on to the *n*-th exercise.
Now Greg wonders, which muscle will get the most exercise during his training. We know that the exercise Greg repeats the maximum number of times, trains the corresponding muscle the most. Help Greg, determine which muscle will get the most training.
|
The first line contains integer *n* (1<=≤<=*n*<=≤<=20). The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=25) — the number of times Greg repeats the exercises.
|
Print word "chest" (without the quotes), if the chest gets the most exercise, "biceps" (without the quotes), if the biceps gets the most exercise and print "back" (without the quotes) if the back gets the most exercise.
It is guaranteed that the input is such that the answer to the problem is unambiguous.
|
[
"2\n2 8\n",
"3\n5 1 10\n",
"7\n3 3 2 7 9 6 8\n"
] |
[
"biceps\n",
"back\n",
"chest\n"
] |
In the first sample Greg does 2 chest, 8 biceps and zero back exercises, so the biceps gets the most exercises.
In the second sample Greg does 5 chest, 1 biceps and 10 back exercises, so the back gets the most exercises.
In the third sample Greg does 18 chest, 12 biceps and 8 back exercises, so the chest gets the most exercise.
| 500
|
[
{
"input": "2\n2 8",
"output": "biceps"
},
{
"input": "3\n5 1 10",
"output": "back"
},
{
"input": "7\n3 3 2 7 9 6 8",
"output": "chest"
},
{
"input": "4\n5 6 6 2",
"output": "chest"
},
{
"input": "5\n8 2 2 6 3",
"output": "chest"
},
{
"input": "6\n8 7 2 5 3 4",
"output": "chest"
},
{
"input": "8\n7 2 9 10 3 8 10 6",
"output": "chest"
},
{
"input": "9\n5 4 2 3 4 4 5 2 2",
"output": "chest"
},
{
"input": "10\n4 9 8 5 3 8 8 10 4 2",
"output": "biceps"
},
{
"input": "11\n10 9 7 6 1 3 9 7 1 3 5",
"output": "chest"
},
{
"input": "12\n24 22 6 16 5 21 1 7 2 19 24 5",
"output": "chest"
},
{
"input": "13\n24 10 5 7 16 17 2 7 9 20 15 2 24",
"output": "chest"
},
{
"input": "14\n13 14 19 8 5 17 9 16 15 9 5 6 3 7",
"output": "back"
},
{
"input": "15\n24 12 22 21 25 23 21 5 3 24 23 13 12 16 12",
"output": "chest"
},
{
"input": "16\n12 6 18 6 25 7 3 1 1 17 25 17 6 8 17 8",
"output": "biceps"
},
{
"input": "17\n13 8 13 4 9 21 10 10 9 22 14 23 22 7 6 14 19",
"output": "chest"
},
{
"input": "18\n1 17 13 6 11 10 25 13 24 9 21 17 3 1 17 12 25 21",
"output": "back"
},
{
"input": "19\n22 22 24 25 19 10 7 10 4 25 19 14 1 14 3 18 4 19 24",
"output": "chest"
},
{
"input": "20\n9 8 22 11 18 14 15 10 17 11 2 1 25 20 7 24 4 25 9 20",
"output": "chest"
},
{
"input": "1\n10",
"output": "chest"
},
{
"input": "2\n15 3",
"output": "chest"
},
{
"input": "3\n21 11 19",
"output": "chest"
},
{
"input": "4\n19 24 13 15",
"output": "chest"
},
{
"input": "5\n4 24 1 9 19",
"output": "biceps"
},
{
"input": "6\n6 22 24 7 15 24",
"output": "back"
},
{
"input": "7\n10 8 23 23 14 18 14",
"output": "chest"
},
{
"input": "8\n5 16 8 9 17 16 14 7",
"output": "biceps"
},
{
"input": "9\n12 3 10 23 6 4 22 13 12",
"output": "chest"
},
{
"input": "10\n1 9 20 18 20 17 7 24 23 2",
"output": "back"
},
{
"input": "11\n22 25 8 2 18 15 1 13 1 11 4",
"output": "biceps"
},
{
"input": "12\n20 12 14 2 15 6 24 3 11 8 11 14",
"output": "chest"
},
{
"input": "13\n2 18 8 8 8 20 5 22 15 2 5 19 18",
"output": "back"
},
{
"input": "14\n1 6 10 25 17 13 21 11 19 4 15 24 5 22",
"output": "biceps"
},
{
"input": "15\n13 5 25 13 17 25 19 21 23 17 12 6 14 8 6",
"output": "back"
},
{
"input": "16\n10 15 2 17 22 12 14 14 6 11 4 13 9 8 21 14",
"output": "chest"
},
{
"input": "17\n7 22 9 22 8 7 20 22 23 5 12 11 1 24 17 20 10",
"output": "biceps"
},
{
"input": "18\n18 15 4 25 5 11 21 25 12 14 25 23 19 19 13 6 9 17",
"output": "chest"
},
{
"input": "19\n3 1 3 15 15 25 10 25 23 10 9 21 13 23 19 3 24 21 14",
"output": "back"
},
{
"input": "20\n19 18 11 3 6 14 3 3 25 3 1 19 25 24 23 12 7 4 8 6",
"output": "back"
},
{
"input": "1\n19",
"output": "chest"
},
{
"input": "2\n1 7",
"output": "biceps"
},
{
"input": "3\n18 18 23",
"output": "back"
},
{
"input": "4\n12 15 1 13",
"output": "chest"
},
{
"input": "5\n11 14 25 21 21",
"output": "biceps"
},
{
"input": "6\n11 9 12 11 22 18",
"output": "biceps"
},
{
"input": "7\n11 1 16 20 21 25 20",
"output": "chest"
},
{
"input": "8\n1 2 20 9 3 22 17 4",
"output": "back"
},
{
"input": "9\n19 2 10 19 15 20 3 1 13",
"output": "back"
},
{
"input": "10\n11 2 11 8 21 16 2 3 19 9",
"output": "back"
},
{
"input": "20\n25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 24",
"output": "chest"
},
{
"input": "12\n4 24 21 3 13 24 22 13 12 21 1 15",
"output": "back"
},
{
"input": "13\n14 14 16 2 13 5 1 14 9 4 16 8 3",
"output": "biceps"
},
{
"input": "14\n1 9 15 4 11 8 25 3 9 14 13 2 1 11",
"output": "biceps"
},
{
"input": "15\n4 19 10 6 16 12 5 11 7 23 1 24 11 7 17",
"output": "back"
},
{
"input": "16\n2 8 2 8 13 22 20 12 22 23 18 13 18 22 11 17",
"output": "chest"
},
{
"input": "17\n24 5 5 16 10 8 22 6 4 13 10 10 5 23 8 20 8",
"output": "chest"
},
{
"input": "18\n14 8 9 12 11 18 24 1 14 24 18 5 12 17 1 10 1 22",
"output": "chest"
},
{
"input": "19\n21 2 10 6 9 1 24 5 2 19 10 13 10 7 19 2 6 13 24",
"output": "chest"
},
{
"input": "20\n7 1 14 17 6 6 18 13 12 3 25 4 3 19 22 24 16 14 1 23",
"output": "biceps"
},
{
"input": "1\n19",
"output": "chest"
},
{
"input": "20\n2 1 2 2 1 2 2 1 2 1 1 1 1 1 1 1 1 1 1 22",
"output": "biceps"
}
] | 1,584,802,471
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 61
| 248
| 0
|
# Дано n упражнений
# Каждое упраженине это A1.. A2.. A3......
# 1. Грудь
# 2. Бицепс
# 3. Спина
n = int(input()) # Кол-во упражнений
tren = list(map(int,input().split()))
grud = 0
bic = 0
spin = 0
upr = 1
for i in tren:
if upr == 1:
grud += i
elif upr == 2:
bic += i
elif upr == 3:
spin += i
upr += 1
if upr > 3:
upr = 1
if bic < grud > spin:
print('chest')
elif grud < bic > spin:
print('biceps')
elif bic < spin > grud:
print('back')
|
Title: Greg's Workout
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Greg is a beginner bodybuilder. Today the gym coach gave him the training plan. All it had was *n* integers *a*1,<=*a*2,<=...,<=*a**n*. These numbers mean that Greg needs to do exactly *n* exercises today. Besides, Greg should repeat the *i*-th in order exercise *a**i* times.
Greg now only does three types of exercises: "chest" exercises, "biceps" exercises and "back" exercises. Besides, his training is cyclic, that is, the first exercise he does is a "chest" one, the second one is "biceps", the third one is "back", the fourth one is "chest", the fifth one is "biceps", and so on to the *n*-th exercise.
Now Greg wonders, which muscle will get the most exercise during his training. We know that the exercise Greg repeats the maximum number of times, trains the corresponding muscle the most. Help Greg, determine which muscle will get the most training.
Input Specification:
The first line contains integer *n* (1<=≤<=*n*<=≤<=20). The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=25) — the number of times Greg repeats the exercises.
Output Specification:
Print word "chest" (without the quotes), if the chest gets the most exercise, "biceps" (without the quotes), if the biceps gets the most exercise and print "back" (without the quotes) if the back gets the most exercise.
It is guaranteed that the input is such that the answer to the problem is unambiguous.
Demo Input:
['2\n2 8\n', '3\n5 1 10\n', '7\n3 3 2 7 9 6 8\n']
Demo Output:
['biceps\n', 'back\n', 'chest\n']
Note:
In the first sample Greg does 2 chest, 8 biceps and zero back exercises, so the biceps gets the most exercises.
In the second sample Greg does 5 chest, 1 biceps and 10 back exercises, so the back gets the most exercises.
In the third sample Greg does 18 chest, 12 biceps and 8 back exercises, so the chest gets the most exercise.
|
```python
# Дано n упражнений
# Каждое упраженине это A1.. A2.. A3......
# 1. Грудь
# 2. Бицепс
# 3. Спина
n = int(input()) # Кол-во упражнений
tren = list(map(int,input().split()))
grud = 0
bic = 0
spin = 0
upr = 1
for i in tren:
if upr == 1:
grud += i
elif upr == 2:
bic += i
elif upr == 3:
spin += i
upr += 1
if upr > 3:
upr = 1
if bic < grud > spin:
print('chest')
elif grud < bic > spin:
print('biceps')
elif bic < spin > grud:
print('back')
```
| 3
|
|
608
|
B
|
Hamming Distance Sum
|
PROGRAMMING
| 1,500
|
[
"combinatorics",
"strings"
] | null | null |
Genos needs your help. He was asked to solve the following programming problem by Saitama:
The length of some string *s* is denoted |*s*|. The Hamming distance between two strings *s* and *t* of equal length is defined as , where *s**i* is the *i*-th character of *s* and *t**i* is the *i*-th character of *t*. For example, the Hamming distance between string "0011" and string "0110" is |0<=-<=0|<=+<=|0<=-<=1|<=+<=|1<=-<=1|<=+<=|1<=-<=0|<==<=0<=+<=1<=+<=0<=+<=1<==<=2.
Given two binary strings *a* and *b*, find the sum of the Hamming distances between *a* and all contiguous substrings of *b* of length |*a*|.
|
The first line of the input contains binary string *a* (1<=≤<=|*a*|<=≤<=200<=000).
The second line of the input contains binary string *b* (|*a*|<=≤<=|*b*|<=≤<=200<=000).
Both strings are guaranteed to consist of characters '0' and '1' only.
|
Print a single integer — the sum of Hamming distances between *a* and all contiguous substrings of *b* of length |*a*|.
|
[
"01\n00111\n",
"0011\n0110\n"
] |
[
"3\n",
"2\n"
] |
For the first sample case, there are four contiguous substrings of *b* of length |*a*|: "00", "01", "11", and "11". The distance between "01" and "00" is |0 - 0| + |1 - 0| = 1. The distance between "01" and "01" is |0 - 0| + |1 - 1| = 0. The distance between "01" and "11" is |0 - 1| + |1 - 1| = 1. Last distance counts twice, as there are two occurrences of string "11". The sum of these edit distances is 1 + 0 + 1 + 1 = 3.
The second sample case is described in the statement.
| 1,000
|
[
{
"input": "01\n00111",
"output": "3"
},
{
"input": "0011\n0110",
"output": "2"
},
{
"input": "0\n0",
"output": "0"
},
{
"input": "1\n0",
"output": "1"
},
{
"input": "0\n1",
"output": "1"
},
{
"input": "1\n1",
"output": "0"
},
{
"input": "1001101001101110101101000\n01111000010011111111110010001101000100011110101111",
"output": "321"
},
{
"input": "1110010001000101001011111\n00011011000000100001010000010100110011010001111010",
"output": "316"
}
] | 1,451,131,398
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 30
| 342
| 7,270,400
|
a,b,cum,total,ans=input(),input(),[0],0,0
for i in range(len(b)):
total+=int(b[i])
cum.append(total)
for i in range(len(a)):
one = cum[len(b)-(len(a)-i)+1]- cum[i]
zero = len(b)-len(a)+1-one
if a[i]=='0':
ans+=one
else:
ans+=zero
# print("i:",i,"one:",one,"zero:",zero,"ans:",ans,"large:",len(b)-(len(a)-i)+1,"cum:",cum[len(b)-(len(a)-i)+1],"small:",i,"cum:",cum[i])
print(ans)
|
Title: Hamming Distance Sum
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Genos needs your help. He was asked to solve the following programming problem by Saitama:
The length of some string *s* is denoted |*s*|. The Hamming distance between two strings *s* and *t* of equal length is defined as , where *s**i* is the *i*-th character of *s* and *t**i* is the *i*-th character of *t*. For example, the Hamming distance between string "0011" and string "0110" is |0<=-<=0|<=+<=|0<=-<=1|<=+<=|1<=-<=1|<=+<=|1<=-<=0|<==<=0<=+<=1<=+<=0<=+<=1<==<=2.
Given two binary strings *a* and *b*, find the sum of the Hamming distances between *a* and all contiguous substrings of *b* of length |*a*|.
Input Specification:
The first line of the input contains binary string *a* (1<=≤<=|*a*|<=≤<=200<=000).
The second line of the input contains binary string *b* (|*a*|<=≤<=|*b*|<=≤<=200<=000).
Both strings are guaranteed to consist of characters '0' and '1' only.
Output Specification:
Print a single integer — the sum of Hamming distances between *a* and all contiguous substrings of *b* of length |*a*|.
Demo Input:
['01\n00111\n', '0011\n0110\n']
Demo Output:
['3\n', '2\n']
Note:
For the first sample case, there are four contiguous substrings of *b* of length |*a*|: "00", "01", "11", and "11". The distance between "01" and "00" is |0 - 0| + |1 - 0| = 1. The distance between "01" and "01" is |0 - 0| + |1 - 1| = 0. The distance between "01" and "11" is |0 - 1| + |1 - 1| = 1. Last distance counts twice, as there are two occurrences of string "11". The sum of these edit distances is 1 + 0 + 1 + 1 = 3.
The second sample case is described in the statement.
|
```python
a,b,cum,total,ans=input(),input(),[0],0,0
for i in range(len(b)):
total+=int(b[i])
cum.append(total)
for i in range(len(a)):
one = cum[len(b)-(len(a)-i)+1]- cum[i]
zero = len(b)-len(a)+1-one
if a[i]=='0':
ans+=one
else:
ans+=zero
# print("i:",i,"one:",one,"zero:",zero,"ans:",ans,"large:",len(b)-(len(a)-i)+1,"cum:",cum[len(b)-(len(a)-i)+1],"small:",i,"cum:",cum[i])
print(ans)
```
| 3
|
|
707
|
A
|
Brain's Photos
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Small, but very brave, mouse Brain was not accepted to summer school of young villains. He was upset and decided to postpone his plans of taking over the world, but to become a photographer instead.
As you may know, the coolest photos are on the film (because you can specify the hashtag #film for such).
Brain took a lot of colourful pictures on colored and black-and-white film. Then he developed and translated it into a digital form. But now, color and black-and-white photos are in one folder, and to sort them, one needs to spend more than one hour!
As soon as Brain is a photographer not programmer now, he asks you to help him determine for a single photo whether it is colored or black-and-white.
Photo can be represented as a matrix sized *n*<=×<=*m*, and each element of the matrix stores a symbol indicating corresponding pixel color. There are only 6 colors:
- 'C' (cyan)- 'M' (magenta)- 'Y' (yellow)- 'W' (white)- 'G' (grey)- 'B' (black)
The photo is considered black-and-white if it has only white, black and grey pixels in it. If there are any of cyan, magenta or yellow pixels in the photo then it is considered colored.
|
The first line of the input contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100) — the number of photo pixel matrix rows and columns respectively.
Then *n* lines describing matrix rows follow. Each of them contains *m* space-separated characters describing colors of pixels in a row. Each character in the line is one of the 'C', 'M', 'Y', 'W', 'G' or 'B'.
|
Print the "#Black&White" (without quotes), if the photo is black-and-white and "#Color" (without quotes), if it is colored, in the only line.
|
[
"2 2\nC M\nY Y\n",
"3 2\nW W\nW W\nB B\n",
"1 1\nW\n"
] |
[
"#Color",
"#Black&White",
"#Black&White"
] |
none
| 500
|
[
{
"input": "2 2\nC M\nY Y",
"output": "#Color"
},
{
"input": "3 2\nW W\nW W\nB B",
"output": "#Black&White"
},
{
"input": "1 1\nW",
"output": "#Black&White"
},
{
"input": "2 3\nW W W\nB G Y",
"output": "#Color"
},
{
"input": "1 1\nW",
"output": "#Black&White"
},
{
"input": "5 5\nW G B Y M\nG B Y M C\nB Y M C W\nY M C W G\nM C W G B",
"output": "#Color"
},
{
"input": "1 6\nC M Y W G B",
"output": "#Color"
},
{
"input": "1 3\nW G B",
"output": "#Black&White"
},
{
"input": "1 1\nW",
"output": "#Black&White"
},
{
"input": "5 5\nW G B W G\nG B W G B\nB W G B W\nW G B W G\nG B W G B",
"output": "#Black&White"
},
{
"input": "2 3\nW W W\nB G C",
"output": "#Color"
},
{
"input": "2 3\nW W W\nB G M",
"output": "#Color"
},
{
"input": "3 3\nC B W\nB Y M\nB B W",
"output": "#Color"
},
{
"input": "1 3\nW C W",
"output": "#Color"
},
{
"input": "3 3\nB W B\nB C W\nB W W",
"output": "#Color"
},
{
"input": "1 2\nW Y",
"output": "#Color"
},
{
"input": "1 1\nG",
"output": "#Black&White"
},
{
"input": "1 3\nB G W",
"output": "#Black&White"
},
{
"input": "2 2\nW W\nB C",
"output": "#Color"
},
{
"input": "1 1\nM",
"output": "#Color"
},
{
"input": "1 2\nW C",
"output": "#Color"
},
{
"input": "2 3\nW W M\nW W M",
"output": "#Color"
},
{
"input": "3 2\nW W\nW W\nB C",
"output": "#Color"
},
{
"input": "2 3\nW W C\nW W W",
"output": "#Color"
},
{
"input": "1 3\nG G G",
"output": "#Black&White"
},
{
"input": "1 1\nC",
"output": "#Color"
},
{
"input": "1 2\nC W",
"output": "#Color"
},
{
"input": "1 3\nW W C",
"output": "#Color"
},
{
"input": "2 2\nW B\nB G",
"output": "#Black&White"
},
{
"input": "2 2\nB B\nY Y",
"output": "#Color"
},
{
"input": "2 2\nG G\nC C",
"output": "#Color"
},
{
"input": "1 2\nB C",
"output": "#Color"
},
{
"input": "1 4\nG G G C",
"output": "#Color"
},
{
"input": "1 1\nB",
"output": "#Black&White"
},
{
"input": "2 1\nY\nB",
"output": "#Color"
}
] | 1,698,637,028
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 50
| 62
| 1,740,800
|
user = str(input())
b = user.split()
c = [int(x) for x in b]
Black = 0
Colored = 0
for x in range(c[0]):
user_put = str(input())
d = user_put.split()
for x in d:
if x == "W" or x == "B" or x == "G":
Black = Black + 1
else:
Colored = Colored + 1
if Black > 0 and Colored > 0:
print("#Color")
elif Black == 0 and Colored > 0:
print("#Color")
elif Black > 0 and Colored == 0:
print("#Black&White")
|
Title: Brain's Photos
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Small, but very brave, mouse Brain was not accepted to summer school of young villains. He was upset and decided to postpone his plans of taking over the world, but to become a photographer instead.
As you may know, the coolest photos are on the film (because you can specify the hashtag #film for such).
Brain took a lot of colourful pictures on colored and black-and-white film. Then he developed and translated it into a digital form. But now, color and black-and-white photos are in one folder, and to sort them, one needs to spend more than one hour!
As soon as Brain is a photographer not programmer now, he asks you to help him determine for a single photo whether it is colored or black-and-white.
Photo can be represented as a matrix sized *n*<=×<=*m*, and each element of the matrix stores a symbol indicating corresponding pixel color. There are only 6 colors:
- 'C' (cyan)- 'M' (magenta)- 'Y' (yellow)- 'W' (white)- 'G' (grey)- 'B' (black)
The photo is considered black-and-white if it has only white, black and grey pixels in it. If there are any of cyan, magenta or yellow pixels in the photo then it is considered colored.
Input Specification:
The first line of the input contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100) — the number of photo pixel matrix rows and columns respectively.
Then *n* lines describing matrix rows follow. Each of them contains *m* space-separated characters describing colors of pixels in a row. Each character in the line is one of the 'C', 'M', 'Y', 'W', 'G' or 'B'.
Output Specification:
Print the "#Black&White" (without quotes), if the photo is black-and-white and "#Color" (without quotes), if it is colored, in the only line.
Demo Input:
['2 2\nC M\nY Y\n', '3 2\nW W\nW W\nB B\n', '1 1\nW\n']
Demo Output:
['#Color', '#Black&White', '#Black&White']
Note:
none
|
```python
user = str(input())
b = user.split()
c = [int(x) for x in b]
Black = 0
Colored = 0
for x in range(c[0]):
user_put = str(input())
d = user_put.split()
for x in d:
if x == "W" or x == "B" or x == "G":
Black = Black + 1
else:
Colored = Colored + 1
if Black > 0 and Colored > 0:
print("#Color")
elif Black == 0 and Colored > 0:
print("#Color")
elif Black > 0 and Colored == 0:
print("#Black&White")
```
| 3
|
|
119
|
A
|
Epic Game
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Simon and Antisimon play a game. Initially each player receives one fixed positive integer that doesn't change throughout the game. Simon receives number *a* and Antisimon receives number *b*. They also have a heap of *n* stones. The players take turns to make a move and Simon starts. During a move a player should take from the heap the number of stones equal to the greatest common divisor of the fixed number he has received and the number of stones left in the heap. A player loses when he cannot take the required number of stones (i. e. the heap has strictly less stones left than one needs to take).
Your task is to determine by the given *a*, *b* and *n* who wins the game.
|
The only string contains space-separated integers *a*, *b* and *n* (1<=≤<=*a*,<=*b*,<=*n*<=≤<=100) — the fixed numbers Simon and Antisimon have received correspondingly and the initial number of stones in the pile.
|
If Simon wins, print "0" (without the quotes), otherwise print "1" (without the quotes).
|
[
"3 5 9\n",
"1 1 100\n"
] |
[
"0",
"1"
] |
The greatest common divisor of two non-negative integers *a* and *b* is such maximum positive integer *k*, that *a* is divisible by *k* without remainder and similarly, *b* is divisible by *k* without remainder. Let *gcd*(*a*, *b*) represent the operation of calculating the greatest common divisor of numbers *a* and *b*. Specifically, *gcd*(*x*, 0) = *gcd*(0, *x*) = *x*.
In the first sample the game will go like that:
- Simon should take *gcd*(3, 9) = 3 stones from the heap. After his move the heap has 6 stones left.- Antisimon should take *gcd*(5, 6) = 1 stone from the heap. After his move the heap has 5 stones left.- Simon should take *gcd*(3, 5) = 1 stone from the heap. After his move the heap has 4 stones left.- Antisimon should take *gcd*(5, 4) = 1 stone from the heap. After his move the heap has 3 stones left.- Simon should take *gcd*(3, 3) = 3 stones from the heap. After his move the heap has 0 stones left.- Antisimon should take *gcd*(5, 0) = 5 stones from the heap. As 0 < 5, it is impossible and Antisimon loses.
In the second sample each player during each move takes one stone from the heap. As *n* is even, Antisimon takes the last stone and Simon can't make a move after that.
| 500
|
[
{
"input": "3 5 9",
"output": "0"
},
{
"input": "1 1 100",
"output": "1"
},
{
"input": "23 12 16",
"output": "1"
},
{
"input": "95 26 29",
"output": "1"
},
{
"input": "73 32 99",
"output": "1"
},
{
"input": "1 1 1",
"output": "0"
},
{
"input": "41 12 65",
"output": "1"
},
{
"input": "13 61 100",
"output": "1"
},
{
"input": "100 100 10",
"output": "0"
},
{
"input": "12 24 26",
"output": "1"
},
{
"input": "73 21 96",
"output": "1"
},
{
"input": "17 22 81",
"output": "1"
},
{
"input": "14 88 97",
"output": "1"
},
{
"input": "42 81 17",
"output": "0"
},
{
"input": "34 36 19",
"output": "1"
},
{
"input": "21 87 12",
"output": "1"
},
{
"input": "97 92 98",
"output": "1"
},
{
"input": "49 25 62",
"output": "1"
},
{
"input": "29 17 44",
"output": "1"
},
{
"input": "10 1 10",
"output": "0"
},
{
"input": "99 98 100",
"output": "1"
},
{
"input": "100 100 1",
"output": "0"
},
{
"input": "11 99 55",
"output": "0"
},
{
"input": "8 13 21",
"output": "0"
},
{
"input": "34 55 89",
"output": "0"
},
{
"input": "21 34 55",
"output": "1"
},
{
"input": "13 21 34",
"output": "1"
},
{
"input": "34 21 55",
"output": "0"
},
{
"input": "10 20 84",
"output": "1"
},
{
"input": "4 2 5",
"output": "0"
},
{
"input": "3 2 3",
"output": "0"
},
{
"input": "31 23 1",
"output": "0"
},
{
"input": "100 100 100",
"output": "0"
},
{
"input": "100 1 100",
"output": "0"
},
{
"input": "1 100 100",
"output": "1"
},
{
"input": "1 1 100",
"output": "1"
},
{
"input": "17 23 100",
"output": "1"
},
{
"input": "99 98 100",
"output": "1"
},
{
"input": "1 1 2",
"output": "1"
},
{
"input": "2 1 1",
"output": "0"
},
{
"input": "1 2 1",
"output": "0"
},
{
"input": "2 1 2",
"output": "0"
},
{
"input": "10 10 3",
"output": "1"
},
{
"input": "2 2 1",
"output": "0"
},
{
"input": "9 5 1",
"output": "0"
}
] | 1,639,812,421
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 45
| 92
| 0
|
def nod(x, y):
if x < y:
x, y = y, x
while y != 0:
d = y
y = x % y
x = d
return x
a, b, n = map(int, input().split())
while n != 0:
n = n - nod(a, n)
if n == 0:
r = '0'
print(r)
break
n -= nod(b, n)
if n == 0:
r = '1'
print(r)
break
|
Title: Epic Game
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Simon and Antisimon play a game. Initially each player receives one fixed positive integer that doesn't change throughout the game. Simon receives number *a* and Antisimon receives number *b*. They also have a heap of *n* stones. The players take turns to make a move and Simon starts. During a move a player should take from the heap the number of stones equal to the greatest common divisor of the fixed number he has received and the number of stones left in the heap. A player loses when he cannot take the required number of stones (i. e. the heap has strictly less stones left than one needs to take).
Your task is to determine by the given *a*, *b* and *n* who wins the game.
Input Specification:
The only string contains space-separated integers *a*, *b* and *n* (1<=≤<=*a*,<=*b*,<=*n*<=≤<=100) — the fixed numbers Simon and Antisimon have received correspondingly and the initial number of stones in the pile.
Output Specification:
If Simon wins, print "0" (without the quotes), otherwise print "1" (without the quotes).
Demo Input:
['3 5 9\n', '1 1 100\n']
Demo Output:
['0', '1']
Note:
The greatest common divisor of two non-negative integers *a* and *b* is such maximum positive integer *k*, that *a* is divisible by *k* without remainder and similarly, *b* is divisible by *k* without remainder. Let *gcd*(*a*, *b*) represent the operation of calculating the greatest common divisor of numbers *a* and *b*. Specifically, *gcd*(*x*, 0) = *gcd*(0, *x*) = *x*.
In the first sample the game will go like that:
- Simon should take *gcd*(3, 9) = 3 stones from the heap. After his move the heap has 6 stones left.- Antisimon should take *gcd*(5, 6) = 1 stone from the heap. After his move the heap has 5 stones left.- Simon should take *gcd*(3, 5) = 1 stone from the heap. After his move the heap has 4 stones left.- Antisimon should take *gcd*(5, 4) = 1 stone from the heap. After his move the heap has 3 stones left.- Simon should take *gcd*(3, 3) = 3 stones from the heap. After his move the heap has 0 stones left.- Antisimon should take *gcd*(5, 0) = 5 stones from the heap. As 0 < 5, it is impossible and Antisimon loses.
In the second sample each player during each move takes one stone from the heap. As *n* is even, Antisimon takes the last stone and Simon can't make a move after that.
|
```python
def nod(x, y):
if x < y:
x, y = y, x
while y != 0:
d = y
y = x % y
x = d
return x
a, b, n = map(int, input().split())
while n != 0:
n = n - nod(a, n)
if n == 0:
r = '0'
print(r)
break
n -= nod(b, n)
if n == 0:
r = '1'
print(r)
break
```
| 3
|
|
122
|
B
|
Lucky Substring
|
PROGRAMMING
| 1,000
|
[
"brute force",
"implementation"
] | null | null |
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya was delivered a string *s*, containing only digits. He needs to find a string that
- represents a lucky number without leading zeroes,- is not empty,- is contained in *s* as a substring the maximum number of times.
Among all the strings for which the three conditions given above are fulfilled, Petya only needs the lexicographically minimum one. Find this string for Petya.
|
The single line contains a non-empty string *s* whose length can range from 1 to 50, inclusive. The string only contains digits. The string can contain leading zeroes.
|
In the only line print the answer to Petya's problem. If the sought string does not exist, print "-1" (without quotes).
|
[
"047\n",
"16\n",
"472747\n"
] |
[
"4\n",
"-1\n",
"7\n"
] |
The lexicographical comparison of strings is performed by the < operator in the modern programming languages. String *x* is lexicographically less than string *y* either if *x* is a prefix of *y*, or exists such *i* (1 ≤ *i* ≤ *min*(|*x*|, |*y*|)), that *x*<sub class="lower-index">*i*</sub> < *y*<sub class="lower-index">*i*</sub> and for any *j* (1 ≤ *j* < *i*) *x*<sub class="lower-index">*j*</sub> = *y*<sub class="lower-index">*j*</sub>. Here |*a*| denotes the length of string *a*.
In the first sample three conditions are fulfilled for strings "4", "7" and "47". The lexicographically minimum one is "4".
In the second sample *s* has no substrings which are lucky numbers.
In the third sample the three conditions are only fulfilled for string "7".
| 1,000
|
[
{
"input": "047",
"output": "4"
},
{
"input": "16",
"output": "-1"
},
{
"input": "472747",
"output": "7"
},
{
"input": "1925",
"output": "-1"
},
{
"input": "5486846414848445484",
"output": "4"
},
{
"input": "516160414",
"output": "4"
},
{
"input": "9458569865994896",
"output": "4"
},
{
"input": "94894948577777777884888",
"output": "7"
},
{
"input": "00000",
"output": "-1"
},
{
"input": "9589",
"output": "-1"
},
{
"input": "7665711",
"output": "7"
},
{
"input": "538772857",
"output": "7"
},
{
"input": "8679647744",
"output": "4"
},
{
"input": "23607019991994",
"output": "4"
},
{
"input": "86145305734278927901987281894864719533015270066521",
"output": "7"
},
{
"input": "22438808523154336905543301642540261833729318191",
"output": "4"
},
{
"input": "290732082244359495795943967215788554387079",
"output": "7"
},
{
"input": "6363333480463521971676988087733137609715",
"output": "7"
},
{
"input": "637789221789855555993957058",
"output": "7"
},
{
"input": "11536708648794535307468278326553811",
"output": "7"
},
{
"input": "619433861636130069773",
"output": "7"
},
{
"input": "7",
"output": "7"
},
{
"input": "00000000000000000000000000000000000000000000000000",
"output": "-1"
},
{
"input": "0000000000000000000000000000000000000047",
"output": "4"
},
{
"input": "8175012266795100056032281135654854227489558885698",
"output": "4"
},
{
"input": "8862708665262955384044574268728167940741129",
"output": "4"
},
{
"input": "538772857",
"output": "7"
},
{
"input": "94872076199824813574576121510803",
"output": "7"
},
{
"input": "44101164480392494025995467",
"output": "4"
},
{
"input": "0445460407410702955646485",
"output": "4"
},
{
"input": "91076008557028243309",
"output": "7"
},
{
"input": "33120039",
"output": "-1"
},
{
"input": "4",
"output": "4"
},
{
"input": "74747474747474747474747474747474747474747474747474",
"output": "4"
},
{
"input": "74747474747474747474747774747474747474747474747474",
"output": "7"
},
{
"input": "74747474747474747474747474747474744474747474747474",
"output": "4"
},
{
"input": "47474747474747474747474747474747474747474747474747",
"output": "4"
},
{
"input": "40",
"output": "4"
},
{
"input": "07",
"output": "7"
},
{
"input": "007",
"output": "7"
},
{
"input": "44",
"output": "4"
},
{
"input": "74",
"output": "4"
}
] | 1,691,150,669
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 42
| 92
| 0
|
text = input()
empat = 0
tujuh = 0
for dt in text:
if dt == "4":
empat = empat + 1
elif dt == "7":
tujuh = tujuh + 1
if empat == 0 and tujuh == 0:
print(-1)
elif empat >= tujuh:
print(4)
else:
print(7)
quit()
|
Title: Lucky Substring
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya was delivered a string *s*, containing only digits. He needs to find a string that
- represents a lucky number without leading zeroes,- is not empty,- is contained in *s* as a substring the maximum number of times.
Among all the strings for which the three conditions given above are fulfilled, Petya only needs the lexicographically minimum one. Find this string for Petya.
Input Specification:
The single line contains a non-empty string *s* whose length can range from 1 to 50, inclusive. The string only contains digits. The string can contain leading zeroes.
Output Specification:
In the only line print the answer to Petya's problem. If the sought string does not exist, print "-1" (without quotes).
Demo Input:
['047\n', '16\n', '472747\n']
Demo Output:
['4\n', '-1\n', '7\n']
Note:
The lexicographical comparison of strings is performed by the < operator in the modern programming languages. String *x* is lexicographically less than string *y* either if *x* is a prefix of *y*, or exists such *i* (1 ≤ *i* ≤ *min*(|*x*|, |*y*|)), that *x*<sub class="lower-index">*i*</sub> < *y*<sub class="lower-index">*i*</sub> and for any *j* (1 ≤ *j* < *i*) *x*<sub class="lower-index">*j*</sub> = *y*<sub class="lower-index">*j*</sub>. Here |*a*| denotes the length of string *a*.
In the first sample three conditions are fulfilled for strings "4", "7" and "47". The lexicographically minimum one is "4".
In the second sample *s* has no substrings which are lucky numbers.
In the third sample the three conditions are only fulfilled for string "7".
|
```python
text = input()
empat = 0
tujuh = 0
for dt in text:
if dt == "4":
empat = empat + 1
elif dt == "7":
tujuh = tujuh + 1
if empat == 0 and tujuh == 0:
print(-1)
elif empat >= tujuh:
print(4)
else:
print(7)
quit()
```
| 3
|
|
61
|
A
|
Ultra-Fast Mathematician
|
PROGRAMMING
| 800
|
[
"implementation"
] |
A. Ultra-Fast Mathematician
|
2
|
256
|
Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second.
One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part.
In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0.
Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length ∞ (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length.
Now you are going to take part in Shapur's contest. See if you are faster and more accurate.
|
There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100.
|
Write one line — the corresponding answer. Do not omit the leading 0s.
|
[
"1010100\n0100101\n",
"000\n111\n",
"1110\n1010\n",
"01110\n01100\n"
] |
[
"1110001\n",
"111\n",
"0100\n",
"00010\n"
] |
none
| 500
|
[
{
"input": "1010100\n0100101",
"output": "1110001"
},
{
"input": "000\n111",
"output": "111"
},
{
"input": "1110\n1010",
"output": "0100"
},
{
"input": "01110\n01100",
"output": "00010"
},
{
"input": "011101\n000001",
"output": "011100"
},
{
"input": "10\n01",
"output": "11"
},
{
"input": "00111111\n11011101",
"output": "11100010"
},
{
"input": "011001100\n101001010",
"output": "110000110"
},
{
"input": "1100100001\n0110101100",
"output": "1010001101"
},
{
"input": "00011101010\n10010100101",
"output": "10001001111"
},
{
"input": "100000101101\n111010100011",
"output": "011010001110"
},
{
"input": "1000001111010\n1101100110001",
"output": "0101101001011"
},
{
"input": "01011111010111\n10001110111010",
"output": "11010001101101"
},
{
"input": "110010000111100\n001100101011010",
"output": "111110101100110"
},
{
"input": "0010010111110000\n0000000011010110",
"output": "0010010100100110"
},
{
"input": "00111110111110000\n01111100001100000",
"output": "01000010110010000"
},
{
"input": "101010101111010001\n001001111101111101",
"output": "100011010010101100"
},
{
"input": "0110010101111100000\n0011000101000000110",
"output": "0101010000111100110"
},
{
"input": "11110100011101010111\n00001000011011000000",
"output": "11111100000110010111"
},
{
"input": "101010101111101101001\n111010010010000011111",
"output": "010000111101101110110"
},
{
"input": "0000111111100011000010\n1110110110110000001010",
"output": "1110001001010011001000"
},
{
"input": "10010010101000110111000\n00101110100110111000111",
"output": "10111100001110001111111"
},
{
"input": "010010010010111100000111\n100100111111100011001110",
"output": "110110101101011111001001"
},
{
"input": "0101110100100111011010010\n0101100011010111001010001",
"output": "0000010111110000010000011"
},
{
"input": "10010010100011110111111011\n10000110101100000001000100",
"output": "00010100001111110110111111"
},
{
"input": "000001111000000100001000000\n011100111101111001110110001",
"output": "011101000101111101111110001"
},
{
"input": "0011110010001001011001011100\n0000101101000011101011001010",
"output": "0011011111001010110010010110"
},
{
"input": "11111000000000010011001101111\n11101110011001010100010000000",
"output": "00010110011001000111011101111"
},
{
"input": "011001110000110100001100101100\n001010000011110000001000101001",
"output": "010011110011000100000100000101"
},
{
"input": "1011111010001100011010110101111\n1011001110010000000101100010101",
"output": "0000110100011100011111010111010"
},
{
"input": "10111000100001000001010110000001\n10111000001100101011011001011000",
"output": "00000000101101101010001111011001"
},
{
"input": "000001010000100001000000011011100\n111111111001010100100001100000111",
"output": "111110101001110101100001111011011"
},
{
"input": "1101000000000010011011101100000110\n1110000001100010011010000011011110",
"output": "0011000001100000000001101111011000"
},
{
"input": "01011011000010100001100100011110001\n01011010111000001010010100001110000",
"output": "00000001111010101011110000010000001"
},
{
"input": "000011111000011001000110111100000100\n011011000110000111101011100111000111",
"output": "011000111110011110101101011011000011"
},
{
"input": "1001000010101110001000000011111110010\n0010001011010111000011101001010110000",
"output": "1011001001111001001011101010101000010"
},
{
"input": "00011101011001100101111111000000010101\n10010011011011001011111000000011101011",
"output": "10001110000010101110000111000011111110"
},
{
"input": "111011100110001001101111110010111001010\n111111101101111001110010000101101000100",
"output": "000100001011110000011101110111010001110"
},
{
"input": "1111001001101000001000000010010101001010\n0010111100111110001011000010111110111001",
"output": "1101110101010110000011000000101011110011"
},
{
"input": "00100101111000000101011111110010100011010\n11101110001010010101001000111110101010100",
"output": "11001011110010010000010111001100001001110"
},
{
"input": "101011001110110100101001000111010101101111\n100111100110101011010100111100111111010110",
"output": "001100101000011111111101111011101010111001"
},
{
"input": "1111100001100101000111101001001010011100001\n1000110011000011110010001011001110001000001",
"output": "0111010010100110110101100010000100010100000"
},
{
"input": "01100111011111010101000001101110000001110101\n10011001011111110000000101011001001101101100",
"output": "11111110000000100101000100110111001100011001"
},
{
"input": "110010100111000100100101100000011100000011001\n011001111011100110000110111001110110100111011",
"output": "101011011100100010100011011001101010100100010"
},
{
"input": "0001100111111011010110100100111000000111000110\n1100101011000000000001010010010111001100110001",
"output": "1101001100111011010111110110101111001011110111"
},
{
"input": "00000101110110110001110010100001110100000100000\n10010000110011110001101000111111101010011010001",
"output": "10010101000101000000011010011110011110011110001"
},
{
"input": "110000100101011100100011001111110011111110010001\n101011111001011100110110111101110011010110101100",
"output": "011011011100000000010101110010000000101000111101"
},
{
"input": "0101111101011111010101011101000011101100000000111\n0000101010110110001110101011011110111001010100100",
"output": "0101010111101001011011110110011101010101010100011"
},
{
"input": "11000100010101110011101000011111001010110111111100\n00001111000111001011111110000010101110111001000011",
"output": "11001011010010111000010110011101100100001110111111"
},
{
"input": "101000001101111101101111111000001110110010101101010\n010011100111100001100000010001100101000000111011011",
"output": "111011101010011100001111101001101011110010010110001"
},
{
"input": "0011111110010001010100010110111000110011001101010100\n0111000000100010101010000100101000000100101000111001",
"output": "0100111110110011111110010010010000110111100101101101"
},
{
"input": "11101010000110000011011010000001111101000111011111100\n10110011110001010100010110010010101001010111100100100",
"output": "01011001110111010111001100010011010100010000111011000"
},
{
"input": "011000100001000001101000010110100110011110100111111011\n111011001000001001110011001111011110111110110011011111",
"output": "100011101001001000011011011001111000100000010100100100"
},
{
"input": "0111010110010100000110111011010110100000000111110110000\n1011100100010001101100000100111111101001110010000100110",
"output": "1100110010000101101010111111101001001001110101110010110"
},
{
"input": "10101000100111000111010001011011011011110100110101100011\n11101111000000001100100011111000100100000110011001101110",
"output": "01000111100111001011110010100011111111110010101100001101"
},
{
"input": "000000111001010001000000110001001011100010011101010011011\n110001101000010010000101000100001111101001100100001010010",
"output": "110001010001000011000101110101000100001011111001011001001"
},
{
"input": "0101011100111010000111110010101101111111000000111100011100\n1011111110000010101110111001000011100000100111111111000111",
"output": "1110100010111000101001001011101110011111100111000011011011"
},
{
"input": "11001000001100100111100111100100101011000101001111001001101\n10111110100010000011010100110100100011101001100000001110110",
"output": "01110110101110100100110011010000001000101100101111000111011"
},
{
"input": "010111011011101000000110000110100110001110100001110110111011\n101011110011101011101101011111010100100001100111100100111011",
"output": "111100101000000011101011011001110010101111000110010010000000"
},
{
"input": "1001011110110110000100011001010110000100011010010111010101110\n1101111100001000010111110011010101111010010100000001000010111",
"output": "0100100010111110010011101010000011111110001110010110010111001"
},
{
"input": "10000010101111100111110101111000010100110111101101111111111010\n10110110101100101010011001011010100110111011101100011001100111",
"output": "00110100000011001101101100100010110010001100000001100110011101"
},
{
"input": "011111010011111000001010101001101001000010100010111110010100001\n011111001011000011111001000001111001010110001010111101000010011",
"output": "000000011000111011110011101000010000010100101000000011010110010"
},
{
"input": "1111000000110001011101000100100100001111011100001111001100011111\n1101100110000101100001100000001001011011111011010101000101001010",
"output": "0010100110110100111100100100101101010100100111011010001001010101"
},
{
"input": "01100000101010010011001110100110110010000110010011011001100100011\n10110110010110111100100111000111000110010000000101101110000010111",
"output": "11010110111100101111101001100001110100010110010110110111100110100"
},
{
"input": "001111111010000100001100001010011001111110011110010111110001100111\n110000101001011000100010101100100110000111100000001101001110010111",
"output": "111111010011011100101110100110111111111001111110011010111111110000"
},
{
"input": "1011101011101101011110101101011101011000010011100101010101000100110\n0001000001001111010111100100111101100000000001110001000110000000110",
"output": "1010101010100010001001001001100000111000010010010100010011000100000"
},
{
"input": "01000001011001010011011100010000100100110101111011011011110000001110\n01011110000110011011000000000011000111100001010000000011111001110000",
"output": "00011111011111001000011100010011100011010100101011011000001001111110"
},
{
"input": "110101010100110101000001111110110100010010000100111110010100110011100\n111010010111111011100110101011001011001110110111110100000110110100111",
"output": "001111000011001110100111010101111111011100110011001010010010000111011"
},
{
"input": "1001101011000001011111100110010010000011010001001111011100010100110001\n1111100111110101001111010001010000011001001001010110001111000000100101",
"output": "0110001100110100010000110111000010011010011000011001010011010100010100"
},
{
"input": "00000111110010110001110110001010010101000111011001111111100110011110010\n00010111110100000100110101000010010001100001100011100000001100010100010",
"output": "00010000000110110101000011001000000100100110111010011111101010001010000"
},
{
"input": "100101011100101101000011010001011001101110101110001100010001010111001110\n100001111100101011011111110000001111000111001011111110000010101110111001",
"output": "000100100000000110011100100001010110101001100101110010010011111001110111"
},
{
"input": "1101100001000111001101001011101000111000011110000001001101101001111011010\n0101011101010100011011010110101000010010110010011110101100000110110001000",
"output": "1000111100010011010110011101000000101010101100011111100001101111001010010"
},
{
"input": "01101101010011110101100001110101111011100010000010001101111000011110111111\n00101111001101001100111010000101110000100101101111100111101110010100011011",
"output": "01000010011110111001011011110000001011000111101101101010010110001010100100"
},
{
"input": "101100101100011001101111110110110010100110110010100001110010110011001101011\n000001011010101011110011111101001110000111000010001101000010010000010001101",
"output": "101101110110110010011100001011111100100001110000101100110000100011011100110"
},
{
"input": "0010001011001010001100000010010011110110011000100000000100110000101111001110\n1100110100111000110100001110111001011101001100001010100001010011100110110001",
"output": "1110111111110010111000001100101010101011010100101010100101100011001001111111"
},
{
"input": "00101101010000000101011001101011001100010001100000101011101110000001111001000\n10010110010111000000101101000011101011001010000011011101101011010000000011111",
"output": "10111011000111000101110100101000100111011011100011110110000101010001111010111"
},
{
"input": "111100000100100000101001100001001111001010001000001000000111010000010101101011\n001000100010100101111011111011010110101100001111011000010011011011100010010110",
"output": "110100100110000101010010011010011001100110000111010000010100001011110111111101"
},
{
"input": "0110001101100100001111110101101000100101010010101010011001101001001101110000000\n0111011000000010010111011110010000000001000110001000011001101000000001110100111",
"output": "0001010101100110011000101011111000100100010100100010000000000001001100000100111"
},
{
"input": "10001111111001000101001011110101111010100001011010101100111001010001010010001000\n10000111010010011110111000111010101100000011110001101111001000111010100000000001",
"output": "00001000101011011011110011001111010110100010101011000011110001101011110010001001"
},
{
"input": "100110001110110000100101001110000011110110000110000000100011110100110110011001101\n110001110101110000000100101001101011111100100100001001000110000001111100011110110",
"output": "010111111011000000100001100111101000001010100010001001100101110101001010000111011"
},
{
"input": "0000010100100000010110111100011111111010011101000000100000011001001101101100111010\n0100111110011101010110101011110110010111001111000110101100101110111100101000111111",
"output": "0100101010111101000000010111101001101101010010000110001100110111110001000100000101"
},
{
"input": "11000111001010100001110000001001011010010010110000001110100101000001010101100110111\n11001100100100100001101010110100000111100011101110011010110100001001000011011011010",
"output": "00001011101110000000011010111101011101110001011110010100010001001000010110111101101"
},
{
"input": "010110100010001000100010101001101010011010111110100001000100101000111011100010100001\n110000011111101101010011111000101010111010100001001100001001100101000000111000000000",
"output": "100110111101100101110001010001000000100000011111101101001101001101111011011010100001"
},
{
"input": "0000011110101110010101110110110101100001011001101010101001000010000010000000101001101\n1100111111011100000110000111101110011111100111110001011001000010011111100001001100011",
"output": "1100100001110010010011110001011011111110111110011011110000000000011101100001100101110"
},
{
"input": "10100000101101110001100010010010100101100011010010101000110011100000101010110010000000\n10001110011011010010111011011101101111000111110000111000011010010101001100000001010011",
"output": "00101110110110100011011001001111001010100100100010010000101001110101100110110011010011"
},
{
"input": "001110000011111101101010011111000101010111010100001001100001001100101000000111000000000\n111010000000000000101001110011001000111011001100101010011001000011101001001011110000011",
"output": "110100000011111101000011101100001101101100011000100011111000001111000001001100110000011"
},
{
"input": "1110111100111011010101011011001110001010010010110011110010011111000010011111010101100001\n1001010101011001001010100010101100000110111101011000100010101111111010111100001110010010",
"output": "0111101001100010011111111001100010001100101111101011010000110000111000100011011011110011"
},
{
"input": "11100010001100010011001100001100010011010001101110011110100101110010101101011101000111111\n01110000000110111010110100001010000101011110100101010011000110101110101101110111011110001",
"output": "10010010001010101001111000000110010110001111001011001101100011011100000000101010011001110"
},
{
"input": "001101011001100101101100110000111000101011001001100100000100101000100000110100010111111101\n101001111110000010111101111110001001111001111101111010000110111000100100110010010001011111",
"output": "100100100111100111010001001110110001010010110100011110000010010000000100000110000110100010"
},
{
"input": "1010110110010101000110010010110101011101010100011001101011000110000000100011100100011000000\n0011011111100010001111101101000111001011101110100000110111100100101111010110101111011100011",
"output": "1001101001110111001001111111110010010110111010111001011100100010101111110101001011000100011"
},
{
"input": "10010010000111010111011111110010100101100000001100011100111011100010000010010001011100001100\n00111010100010110010000100010111010001111110100100100011101000101111111111001101101100100100",
"output": "10101000100101100101011011100101110100011110101000111111010011001101111101011100110000101000"
},
{
"input": "010101110001010101100000010111010000000111110011001101100011001000000011001111110000000010100\n010010111011100101010101111110110000000111000100001101101001001000001100101110001010000100001",
"output": "000111001010110000110101101001100000000000110111000000001010000000001111100001111010000110101"
},
{
"input": "1100111110011001000111101001001011000110011010111111100010111111001100111111011101100111101011\n1100000011001000110100110111000001011001010111101000010010100011000001100100111101101000010110",
"output": "0000111101010001110011011110001010011111001101010111110000011100001101011011100000001111111101"
},
{
"input": "00011000100100110111100101100100000000010011110111110010101110110011100001010111010011110100101\n00011011111011111011100101100111100101001110010111000010000111000100100100000001110101111011011",
"output": "00000011011111001100000000000011100101011101100000110000101001110111000101010110100110001111110"
},
{
"input": "000101011001001100000111100010110101111011110101111101000110001101011010111110110011100100000001\n011000101010011111011000111000100000000011011000000001111110001000001111101010110000011100001111",
"output": "011101110011010011011111011010010101111000101101111100111000000101010101010100000011111000001110"
},
{
"input": "1000101001011010000100100100010010011101011001110101111011101111111110010101001101010001010101001\n0110110010011100011111011111110111000000010001110100001010111110101011010011111011111110000110000",
"output": "1110011011000110011011111011100101011101001000000001110001010001010101000110110110101111010011001"
},
{
"input": "01111010010101100111110111111011011010100001011101010000111100101101101110111011001100101011100111\n00001100110110100001111011000010001001001100000010111101000001111011100000010111010010000011000010",
"output": "01110110100011000110001100111001010011101101011111101101111101010110001110101100011110101000100101"
},
{
"input": "111101011101111000001011001101111010110111001101110100100011111011011101001101010101011010111000110\n101111100101101101001100110011000001111010011101110111110110101110011011110011111100001001110101101",
"output": "010010111000010101000111111110111011001101010000000011010101010101000110111110101001010011001101011"
},
{
"input": "1010000011010110011101001101110001110010000111011101110010110110111111001001110100101100010101010001\n0111101000111100101100000101111010100100001000011101010100110011100011010011010101000100101011100011",
"output": "1101101011101010110001001000001011010110001111000000100110000101011100011010100001101000111110110010"
},
{
"input": "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001\n1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111010",
"output": "1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111011"
},
{
"input": "0\n0",
"output": "0"
},
{
"input": "0\n1",
"output": "1"
}
] | 1,589,472,667
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 102
| 109
| 6,656,000
|
n=input()
m=input()
res=""
for i in range(len(n)):
if n[i]!=m[i]:
res+='1'
else:
res+='0'
print(res)
|
Title: Ultra-Fast Mathematician
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second.
One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part.
In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0.
Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length ∞ (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length.
Now you are going to take part in Shapur's contest. See if you are faster and more accurate.
Input Specification:
There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100.
Output Specification:
Write one line — the corresponding answer. Do not omit the leading 0s.
Demo Input:
['1010100\n0100101\n', '000\n111\n', '1110\n1010\n', '01110\n01100\n']
Demo Output:
['1110001\n', '111\n', '0100\n', '00010\n']
Note:
none
|
```python
n=input()
m=input()
res=""
for i in range(len(n)):
if n[i]!=m[i]:
res+='1'
else:
res+='0'
print(res)
```
| 3.960352
|
588
|
A
|
Duff and Meat
|
PROGRAMMING
| 900
|
[
"greedy"
] | null | null |
Duff is addicted to meat! Malek wants to keep her happy for *n* days. In order to be happy in *i*-th day, she needs to eat exactly *a**i* kilograms of meat.
There is a big shop uptown and Malek wants to buy meat for her from there. In *i*-th day, they sell meat for *p**i* dollars per kilogram. Malek knows all numbers *a*1,<=...,<=*a**n* and *p*1,<=...,<=*p**n*. In each day, he can buy arbitrary amount of meat, also he can keep some meat he has for the future.
Malek is a little tired from cooking meat, so he asked for your help. Help him to minimize the total money he spends to keep Duff happy for *n* days.
|
The first line of input contains integer *n* (1<=≤<=*n*<=≤<=105), the number of days.
In the next *n* lines, *i*-th line contains two integers *a**i* and *p**i* (1<=≤<=*a**i*,<=*p**i*<=≤<=100), the amount of meat Duff needs and the cost of meat in that day.
|
Print the minimum money needed to keep Duff happy for *n* days, in one line.
|
[
"3\n1 3\n2 2\n3 1\n",
"3\n1 3\n2 1\n3 2\n"
] |
[
"10\n",
"8\n"
] |
In the first sample case: An optimal way would be to buy 1 kg on the first day, 2 kg on the second day and 3 kg on the third day.
In the second sample case: An optimal way would be to buy 1 kg on the first day and 5 kg (needed meat for the second and third day) on the second day.
| 750
|
[
{
"input": "3\n1 3\n2 2\n3 1",
"output": "10"
},
{
"input": "3\n1 3\n2 1\n3 2",
"output": "8"
},
{
"input": "1\n39 52",
"output": "2028"
},
{
"input": "2\n25 56\n94 17",
"output": "2998"
},
{
"input": "5\n39 21\n95 89\n73 90\n9 55\n85 32",
"output": "6321"
},
{
"input": "12\n70 11\n74 27\n32 11\n26 83\n57 18\n97 28\n75 43\n75 21\n84 29\n16 2\n89 63\n21 88",
"output": "6742"
},
{
"input": "2\n100 68\n38 80",
"output": "9384"
}
] | 1,621,110,657
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 30
| 171
| 8,294,400
|
import sys
def main():
inp = sys.stdin.read().strip().split('\n')
m = None
c = 0
for s in inp[1:]:
a, p = map(int, s.split())
if m == None or m > p: m = p
c += a*m
return c
print(main())
|
Title: Duff and Meat
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Duff is addicted to meat! Malek wants to keep her happy for *n* days. In order to be happy in *i*-th day, she needs to eat exactly *a**i* kilograms of meat.
There is a big shop uptown and Malek wants to buy meat for her from there. In *i*-th day, they sell meat for *p**i* dollars per kilogram. Malek knows all numbers *a*1,<=...,<=*a**n* and *p*1,<=...,<=*p**n*. In each day, he can buy arbitrary amount of meat, also he can keep some meat he has for the future.
Malek is a little tired from cooking meat, so he asked for your help. Help him to minimize the total money he spends to keep Duff happy for *n* days.
Input Specification:
The first line of input contains integer *n* (1<=≤<=*n*<=≤<=105), the number of days.
In the next *n* lines, *i*-th line contains two integers *a**i* and *p**i* (1<=≤<=*a**i*,<=*p**i*<=≤<=100), the amount of meat Duff needs and the cost of meat in that day.
Output Specification:
Print the minimum money needed to keep Duff happy for *n* days, in one line.
Demo Input:
['3\n1 3\n2 2\n3 1\n', '3\n1 3\n2 1\n3 2\n']
Demo Output:
['10\n', '8\n']
Note:
In the first sample case: An optimal way would be to buy 1 kg on the first day, 2 kg on the second day and 3 kg on the third day.
In the second sample case: An optimal way would be to buy 1 kg on the first day and 5 kg (needed meat for the second and third day) on the second day.
|
```python
import sys
def main():
inp = sys.stdin.read().strip().split('\n')
m = None
c = 0
for s in inp[1:]:
a, p = map(int, s.split())
if m == None or m > p: m = p
c += a*m
return c
print(main())
```
| 3
|
|
490
|
A
|
Team Olympiad
|
PROGRAMMING
| 800
|
[
"greedy",
"implementation",
"sortings"
] | null | null |
The School №0 of the capital of Berland has *n* children studying in it. All the children in this school are gifted: some of them are good at programming, some are good at maths, others are good at PE (Physical Education). Hence, for each child we know value *t**i*:
- *t**i*<==<=1, if the *i*-th child is good at programming, - *t**i*<==<=2, if the *i*-th child is good at maths, - *t**i*<==<=3, if the *i*-th child is good at PE
Each child happens to be good at exactly one of these three subjects.
The Team Scientific Decathlon Olympias requires teams of three students. The school teachers decided that the teams will be composed of three children that are good at different subjects. That is, each team must have one mathematician, one programmer and one sportsman. Of course, each child can be a member of no more than one team.
What is the maximum number of teams that the school will be able to present at the Olympiad? How should the teams be formed for that?
|
The first line contains integer *n* (1<=≤<=*n*<=≤<=5000) — the number of children in the school. The second line contains *n* integers *t*1,<=*t*2,<=...,<=*t**n* (1<=≤<=*t**i*<=≤<=3), where *t**i* describes the skill of the *i*-th child.
|
In the first line output integer *w* — the largest possible number of teams.
Then print *w* lines, containing three numbers in each line. Each triple represents the indexes of the children forming the team. You can print both the teams, and the numbers in the triplets in any order. The children are numbered from 1 to *n* in the order of their appearance in the input. Each child must participate in no more than one team. If there are several solutions, print any of them.
If no teams can be compiled, print the only line with value *w* equal to 0.
|
[
"7\n1 3 1 3 2 1 2\n",
"4\n2 1 1 2\n"
] |
[
"2\n3 5 2\n6 7 4\n",
"0\n"
] |
none
| 500
|
[
{
"input": "7\n1 3 1 3 2 1 2",
"output": "2\n3 5 2\n6 7 4"
},
{
"input": "4\n2 1 1 2",
"output": "0"
},
{
"input": "1\n2",
"output": "0"
},
{
"input": "2\n3 1",
"output": "0"
},
{
"input": "3\n2 1 2",
"output": "0"
},
{
"input": "3\n1 2 3",
"output": "1\n1 2 3"
},
{
"input": "12\n3 3 3 3 3 3 3 3 1 3 3 2",
"output": "1\n9 12 2"
},
{
"input": "60\n3 3 1 2 2 1 3 1 1 1 3 2 2 2 3 3 1 3 2 3 2 2 1 3 3 2 3 1 2 2 2 1 3 2 1 1 3 3 1 1 1 3 1 2 1 1 3 3 3 2 3 2 3 2 2 2 1 1 1 2",
"output": "20\n6 60 1\n17 44 20\n3 5 33\n36 21 42\n59 14 2\n58 26 49\n9 29 48\n23 19 24\n10 30 37\n41 54 15\n45 31 27\n57 55 38\n39 12 25\n35 34 11\n32 52 7\n8 50 18\n43 4 53\n46 56 51\n40 22 16\n28 13 47"
},
{
"input": "12\n3 1 1 1 1 1 1 2 1 1 1 1",
"output": "1\n3 8 1"
},
{
"input": "22\n2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 1 2 2 2 2",
"output": "1\n18 2 11"
},
{
"input": "138\n2 3 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 3 2 2 2 1 2 3 2 2 2 3 1 3 2 3 2 3 2 2 2 2 3 2 2 2 2 2 1 2 2 3 2 2 3 2 1 2 2 2 2 2 3 1 2 2 2 2 2 3 2 2 3 2 2 2 2 2 1 1 2 3 2 2 2 2 3 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 3 2 3 2 2 2 1 2 2 2 1 2 2 2 2 1 2 2 2 2 1 3",
"output": "18\n13 91 84\n34 90 48\n11 39 77\n78 129 50\n137 68 119\n132 122 138\n19 12 96\n40 7 2\n22 88 69\n107 73 46\n115 15 52\n127 106 87\n93 92 66\n71 112 117\n63 124 42\n17 70 101\n109 121 57\n123 25 36"
},
{
"input": "203\n2 2 1 2 1 2 2 2 1 2 2 1 1 3 1 2 1 2 1 1 2 3 1 1 2 3 3 2 2 2 1 2 1 1 1 1 1 3 1 1 2 1 1 2 2 2 1 2 2 2 1 2 3 2 1 1 2 2 1 2 1 2 2 1 1 2 2 2 1 1 2 2 1 2 1 2 2 3 2 1 2 1 1 1 1 1 1 1 1 1 1 2 2 1 1 2 2 2 2 1 1 1 1 1 1 1 2 2 2 2 2 1 1 1 2 2 2 1 2 2 1 3 2 1 1 1 2 1 1 2 1 1 2 2 2 1 1 2 2 2 1 2 1 3 2 1 2 2 2 1 1 1 2 2 2 1 2 1 1 2 2 2 2 2 1 1 2 1 2 2 1 1 1 1 1 1 2 2 3 1 1 2 3 1 1 1 1 1 1 2 2 1 1 1 2 2 3 2 1 3 1 1 1",
"output": "13\n188 72 14\n137 4 197\n158 76 122\n152 142 26\n104 119 179\n40 63 38\n12 1 78\n17 30 27\n189 60 53\n166 190 144\n129 7 183\n83 41 22\n121 81 200"
},
{
"input": "220\n1 1 3 1 3 1 1 3 1 3 3 3 3 1 3 3 1 3 3 3 3 3 1 1 1 3 1 1 1 3 2 3 3 3 1 1 3 3 1 1 3 3 3 3 1 3 3 1 1 1 2 3 1 1 1 2 3 3 3 2 3 1 1 3 1 1 1 3 2 1 3 2 3 1 1 3 3 3 1 3 1 1 1 3 3 2 1 3 2 1 1 3 3 1 1 1 2 1 1 3 2 1 2 1 1 1 3 1 3 3 1 2 3 3 3 3 1 3 1 1 1 1 2 3 1 1 1 1 1 1 3 2 3 1 3 1 3 1 1 3 1 3 1 3 1 3 1 3 3 2 3 1 3 3 1 3 3 3 3 1 1 3 3 3 3 1 1 3 3 3 2 1 1 1 3 3 1 3 3 3 1 1 1 3 1 3 3 1 1 1 2 3 1 1 3 1 1 1 1 2 3 1 1 2 3 3 1 3 1 3 3 3 3 1 3 2 3 1 1 3",
"output": "20\n198 89 20\n141 56 131\n166 204 19\n160 132 142\n111 112 195\n45 216 92\n6 31 109\n14 150 170\n199 60 18\n173 123 140\n134 69 156\n82 191 85\n126 200 80\n24 97 46\n62 86 149\n214 101 26\n79 171 78\n125 72 118\n172 103 162\n219 51 64"
},
{
"input": "61\n2 3 1 3 2 2 2 3 1 3 2 3 1 2 1 1 2 2 2 2 3 2 3 1 2 1 3 1 3 2 1 1 3 2 1 3 3 3 1 3 3 1 1 3 1 3 2 2 1 2 2 2 1 3 2 3 1 3 3 1 1",
"output": "20\n9 55 2\n24 34 27\n3 5 37\n35 17 41\n61 11 4\n60 19 54\n15 20 59\n26 14 29\n16 22 38\n43 50 12\n49 25 36\n57 51 40\n39 6 33\n32 30 10\n31 48 8\n13 47 23\n45 1 58\n53 52 56\n42 18 21\n28 7 44"
},
{
"input": "5\n1 2 2 3 3",
"output": "1\n1 3 4"
}
] | 1,689,689,070
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 41
| 46
| 307,200
|
a = int(input())
n = list(map(int, input().split()))
num1 = []
num2 = []
num3 = []
for i in range(0, a):
if n[i] == 1:
num1.append(i+1)
elif n[i] == 2:
num2.append(i+1)
elif n[i] == 3:
num3.append(i+1)
p = min(n.count(1),n.count(2) ,n.count(3))
print(p)
if p > 0:
for i in range(0, int(p)):
print(num1[i], end=" ")
print(num2[i], end=" ")
print(num3[i])
|
Title: Team Olympiad
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
The School №0 of the capital of Berland has *n* children studying in it. All the children in this school are gifted: some of them are good at programming, some are good at maths, others are good at PE (Physical Education). Hence, for each child we know value *t**i*:
- *t**i*<==<=1, if the *i*-th child is good at programming, - *t**i*<==<=2, if the *i*-th child is good at maths, - *t**i*<==<=3, if the *i*-th child is good at PE
Each child happens to be good at exactly one of these three subjects.
The Team Scientific Decathlon Olympias requires teams of three students. The school teachers decided that the teams will be composed of three children that are good at different subjects. That is, each team must have one mathematician, one programmer and one sportsman. Of course, each child can be a member of no more than one team.
What is the maximum number of teams that the school will be able to present at the Olympiad? How should the teams be formed for that?
Input Specification:
The first line contains integer *n* (1<=≤<=*n*<=≤<=5000) — the number of children in the school. The second line contains *n* integers *t*1,<=*t*2,<=...,<=*t**n* (1<=≤<=*t**i*<=≤<=3), where *t**i* describes the skill of the *i*-th child.
Output Specification:
In the first line output integer *w* — the largest possible number of teams.
Then print *w* lines, containing three numbers in each line. Each triple represents the indexes of the children forming the team. You can print both the teams, and the numbers in the triplets in any order. The children are numbered from 1 to *n* in the order of their appearance in the input. Each child must participate in no more than one team. If there are several solutions, print any of them.
If no teams can be compiled, print the only line with value *w* equal to 0.
Demo Input:
['7\n1 3 1 3 2 1 2\n', '4\n2 1 1 2\n']
Demo Output:
['2\n3 5 2\n6 7 4\n', '0\n']
Note:
none
|
```python
a = int(input())
n = list(map(int, input().split()))
num1 = []
num2 = []
num3 = []
for i in range(0, a):
if n[i] == 1:
num1.append(i+1)
elif n[i] == 2:
num2.append(i+1)
elif n[i] == 3:
num3.append(i+1)
p = min(n.count(1),n.count(2) ,n.count(3))
print(p)
if p > 0:
for i in range(0, int(p)):
print(num1[i], end=" ")
print(num2[i], end=" ")
print(num3[i])
```
| 3
|
|
289
|
B
|
Polo the Penguin and Matrix
|
PROGRAMMING
| 1,400
|
[
"brute force",
"dp",
"implementation",
"sortings",
"ternary search"
] | null | null |
Little penguin Polo has an *n*<=×<=*m* matrix, consisting of integers. Let's index the matrix rows from 1 to *n* from top to bottom and let's index the columns from 1 to *m* from left to right. Let's represent the matrix element on the intersection of row *i* and column *j* as *a**ij*.
In one move the penguin can add or subtract number *d* from some matrix element. Find the minimum number of moves needed to make all matrix elements equal. If the described plan is impossible to carry out, say so.
|
The first line contains three integers *n*, *m* and *d* (1<=≤<=*n*,<=*m*<=≤<=100,<=1<=≤<=*d*<=≤<=104) — the matrix sizes and the *d* parameter. Next *n* lines contain the matrix: the *j*-th integer in the *i*-th row is the matrix element *a**ij* (1<=≤<=*a**ij*<=≤<=104).
|
In a single line print a single integer — the minimum number of moves the penguin needs to make all matrix elements equal. If that is impossible, print "-1" (without the quotes).
|
[
"2 2 2\n2 4\n6 8\n",
"1 2 7\n6 7\n"
] |
[
"4\n",
"-1\n"
] |
none
| 1,000
|
[
{
"input": "2 2 2\n2 4\n6 8",
"output": "4"
},
{
"input": "1 2 7\n6 7",
"output": "-1"
},
{
"input": "3 2 1\n5 7\n1 2\n5 100",
"output": "104"
},
{
"input": "3 3 3\n5 8 5\n11 11 17\n14 5 2",
"output": "12"
},
{
"input": "3 3 3\n5 8 5\n11 11 17\n14 5 3",
"output": "-1"
},
{
"input": "2 2 4\n5 5\n5 5",
"output": "0"
},
{
"input": "7 4 5\n7 7 7 12\n7 12 12 7\n7 7 7 7\n7 7 12 7\n7 7 12 12\n12 12 7 12\n7 7 7 7",
"output": "9"
},
{
"input": "7 7 47\n91 91 91 91 91 91 91\n91 91 91 91 91 91 91\n91 91 91 91 91 91 91\n91 91 91 91 91 91 91\n91 91 91 91 91 91 91\n91 91 91 91 91 91 91\n91 91 91 91 91 91 91",
"output": "0"
},
{
"input": "7 7 47\n47 47 47 47 47 47 47\n47 47 47 47 77 47 47\n47 47 47 47 47 47 47\n47 47 47 47 47 47 47\n47 47 47 47 47 47 47\n47 47 47 47 47 47 47\n47 47 47 47 47 127 47",
"output": "-1"
},
{
"input": "7 5 47\n9583 1734 4601 5353 2110\n3802 5165 7985 6293 324\n7045 653 9160 7891 4930\n1781 3520 4178 2298 3943\n1405 2956 5447 5494 6528\n3097 1640 7750 4883 8032\n4225 8455 1875 4789 4366",
"output": "1508"
},
{
"input": "1 1 1\n1",
"output": "0"
},
{
"input": "1 1 8\n12",
"output": "0"
}
] | 1,594,832,091
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 31
| 216
| 7,065,600
|
def solve():
n, m, d = map(int, input().split())
a = []
l = list(map(int, input().split()))
thismod = l[0]%d
for i in range(m):
a.append(l[i])
if l[i]%d != thismod:
return -1
for i in range(1,n):
l = list(map(int, input().split()))
for j in range(m):
a.append(l[j])
if l[j]%d != thismod:
return -1
a.sort()
target = a[n*m//2]
#print(target)
score = 0
for i in range(n*m):
score += abs(a[i]-target)/d
return int(score)
print(solve())
|
Title: Polo the Penguin and Matrix
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Little penguin Polo has an *n*<=×<=*m* matrix, consisting of integers. Let's index the matrix rows from 1 to *n* from top to bottom and let's index the columns from 1 to *m* from left to right. Let's represent the matrix element on the intersection of row *i* and column *j* as *a**ij*.
In one move the penguin can add or subtract number *d* from some matrix element. Find the minimum number of moves needed to make all matrix elements equal. If the described plan is impossible to carry out, say so.
Input Specification:
The first line contains three integers *n*, *m* and *d* (1<=≤<=*n*,<=*m*<=≤<=100,<=1<=≤<=*d*<=≤<=104) — the matrix sizes and the *d* parameter. Next *n* lines contain the matrix: the *j*-th integer in the *i*-th row is the matrix element *a**ij* (1<=≤<=*a**ij*<=≤<=104).
Output Specification:
In a single line print a single integer — the minimum number of moves the penguin needs to make all matrix elements equal. If that is impossible, print "-1" (without the quotes).
Demo Input:
['2 2 2\n2 4\n6 8\n', '1 2 7\n6 7\n']
Demo Output:
['4\n', '-1\n']
Note:
none
|
```python
def solve():
n, m, d = map(int, input().split())
a = []
l = list(map(int, input().split()))
thismod = l[0]%d
for i in range(m):
a.append(l[i])
if l[i]%d != thismod:
return -1
for i in range(1,n):
l = list(map(int, input().split()))
for j in range(m):
a.append(l[j])
if l[j]%d != thismod:
return -1
a.sort()
target = a[n*m//2]
#print(target)
score = 0
for i in range(n*m):
score += abs(a[i]-target)/d
return int(score)
print(solve())
```
| 3
|
|
58
|
A
|
Chat room
|
PROGRAMMING
| 1,000
|
[
"greedy",
"strings"
] |
A. Chat room
|
1
|
256
|
Vasya has recently learned to type and log on to the Internet. He immediately entered a chat room and decided to say hello to everybody. Vasya typed the word *s*. It is considered that Vasya managed to say hello if several letters can be deleted from the typed word so that it resulted in the word "hello". For example, if Vasya types the word "ahhellllloou", it will be considered that he said hello, and if he types "hlelo", it will be considered that Vasya got misunderstood and he didn't manage to say hello. Determine whether Vasya managed to say hello by the given word *s*.
|
The first and only line contains the word *s*, which Vasya typed. This word consisits of small Latin letters, its length is no less that 1 and no more than 100 letters.
|
If Vasya managed to say hello, print "YES", otherwise print "NO".
|
[
"ahhellllloou\n",
"hlelo\n"
] |
[
"YES\n",
"NO\n"
] |
none
| 500
|
[
{
"input": "ahhellllloou",
"output": "YES"
},
{
"input": "hlelo",
"output": "NO"
},
{
"input": "helhcludoo",
"output": "YES"
},
{
"input": "hehwelloho",
"output": "YES"
},
{
"input": "pnnepelqomhhheollvlo",
"output": "YES"
},
{
"input": "tymbzjyqhymedasloqbq",
"output": "NO"
},
{
"input": "yehluhlkwo",
"output": "NO"
},
{
"input": "hatlevhhalrohairnolsvocafgueelrqmlqlleello",
"output": "YES"
},
{
"input": "hhhtehdbllnhwmbyhvelqqyoulretpbfokflhlhreeflxeftelziclrwllrpflflbdtotvlqgoaoqldlroovbfsq",
"output": "YES"
},
{
"input": "rzlvihhghnelqtwlexmvdjjrliqllolhyewgozkuovaiezgcilelqapuoeglnwmnlftxxiigzczlouooi",
"output": "YES"
},
{
"input": "pfhhwctyqdlkrwhebfqfelhyebwllhemtrmeblgrynmvyhioesqklclocxmlffuormljszllpoo",
"output": "YES"
},
{
"input": "lqllcolohwflhfhlnaow",
"output": "NO"
},
{
"input": "heheeellollvoo",
"output": "YES"
},
{
"input": "hellooo",
"output": "YES"
},
{
"input": "o",
"output": "NO"
},
{
"input": "hhqhzeclohlehljlhtesllylrolmomvuhcxsobtsckogdv",
"output": "YES"
},
{
"input": "yoegfuzhqsihygnhpnukluutocvvwuldiighpogsifealtgkfzqbwtmgghmythcxflebrkctlldlkzlagovwlstsghbouk",
"output": "YES"
},
{
"input": "uatqtgbvrnywfacwursctpagasnhydvmlinrcnqrry",
"output": "NO"
},
{
"input": "tndtbldbllnrwmbyhvqaqqyoudrstpbfokfoclnraefuxtftmgzicorwisrpfnfpbdtatvwqgyalqtdtrjqvbfsq",
"output": "NO"
},
{
"input": "rzlvirhgemelnzdawzpaoqtxmqucnahvqnwldklrmjiiyageraijfivigvozgwngiulttxxgzczptusoi",
"output": "YES"
},
{
"input": "kgyelmchocojsnaqdsyeqgnllytbqietpdlgknwwumqkxrexgdcnwoldicwzwofpmuesjuxzrasscvyuqwspm",
"output": "YES"
},
{
"input": "pnyvrcotjvgynbeldnxieghfltmexttuxzyac",
"output": "NO"
},
{
"input": "dtwhbqoumejligbenxvzhjlhosqojetcqsynlzyhfaevbdpekgbtjrbhlltbceobcok",
"output": "YES"
},
{
"input": "crrfpfftjwhhikwzeedrlwzblckkteseofjuxjrktcjfsylmlsvogvrcxbxtffujqshslemnixoeezivksouefeqlhhokwbqjz",
"output": "YES"
},
{
"input": "jhfbndhyzdvhbvhmhmefqllujdflwdpjbehedlsqfdsqlyelwjtyloxwsvasrbqosblzbowlqjmyeilcvotdlaouxhdpoeloaovb",
"output": "YES"
},
{
"input": "hwlghueoemiqtjhhpashjsouyegdlvoyzeunlroypoprnhlyiwiuxrghekaylndhrhllllwhbebezoglydcvykllotrlaqtvmlla",
"output": "YES"
},
{
"input": "wshiaunnqnqxodholbipwhhjmyeblhgpeleblklpzwhdunmpqkbuzloetmwwxmeltkrcomulxauzlwmlklldjodozxryghsnwgcz",
"output": "YES"
},
{
"input": "shvksednttggehroewuiptvvxtrzgidravtnjwuqrlnnkxbplctzkckinpkgjopjfoxdbojtcvsuvablcbkrzajrlhgobkcxeqti",
"output": "YES"
},
{
"input": "hyyhddqhxhekehkwfhlnlsihzefwchzerevcjtokefplholrbvxlltdlafjxrfhleglrvlolojoqaolagtbeyogxlbgfolllslli",
"output": "YES"
},
{
"input": "iaagrdhhelxpdegueiulflquvlzidoprzkehthkldaytrjwhyhprwjxlltinxvuilxohqgjqcvkkdcuoliekcnlilwgqlnlzouoo",
"output": "YES"
},
{
"input": "wfluaeseldgxyvxpwuhkptdmlflnlhktwxiabsvkolsquymrmhzczzoybvlilhmvsuunggvgxzgyyffk",
"output": "NO"
},
{
"input": "loee",
"output": "NO"
},
{
"input": "izdipwylefqmjbuoznfglgcfvedeouflkeehxbasaqmiooppfsqlhprospqgxvzrcpwlfdddngoqvpwvggsnvvxhmjoslwjudjlo",
"output": "NO"
},
{
"input": "pplynflbjlseflaegzqpdxswgunhnlglqhycrbcwdfhclmcrwekkzsoosmfblljeenwfjyifcvxihhhbyhmhlkvtskeglaovjnsi",
"output": "YES"
},
{
"input": "xqjqmenkodmlhzyzmmvofdngktygbbxbzpluzcohohmalkoeuwfikblltaaigv",
"output": "NO"
},
{
"input": "hello",
"output": "YES"
},
{
"input": "oohell",
"output": "NO"
},
{
"input": "hell",
"output": "NO"
},
{
"input": "eloellohoelo",
"output": "NO"
},
{
"input": "helllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllo",
"output": "YES"
}
] | 1,604,341,933
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 40
| 108
| 0
|
s = input()
word = "hello"
it = 0
for item in s:
if item == word[it]:
it += 1
if it == 5:
break
if it == 5:
print("YES")
else:
print("NO")
|
Title: Chat room
Time Limit: 1 seconds
Memory Limit: 256 megabytes
Problem Description:
Vasya has recently learned to type and log on to the Internet. He immediately entered a chat room and decided to say hello to everybody. Vasya typed the word *s*. It is considered that Vasya managed to say hello if several letters can be deleted from the typed word so that it resulted in the word "hello". For example, if Vasya types the word "ahhellllloou", it will be considered that he said hello, and if he types "hlelo", it will be considered that Vasya got misunderstood and he didn't manage to say hello. Determine whether Vasya managed to say hello by the given word *s*.
Input Specification:
The first and only line contains the word *s*, which Vasya typed. This word consisits of small Latin letters, its length is no less that 1 and no more than 100 letters.
Output Specification:
If Vasya managed to say hello, print "YES", otherwise print "NO".
Demo Input:
['ahhellllloou\n', 'hlelo\n']
Demo Output:
['YES\n', 'NO\n']
Note:
none
|
```python
s = input()
word = "hello"
it = 0
for item in s:
if item == word[it]:
it += 1
if it == 5:
break
if it == 5:
print("YES")
else:
print("NO")
```
| 3.946
|
828
|
B
|
Black Square
|
PROGRAMMING
| 1,300
|
[
"implementation"
] | null | null |
Polycarp has a checkered sheet of paper of size *n*<=×<=*m*. Polycarp painted some of cells with black, the others remained white. Inspired by Malevich's "Black Square", Polycarp wants to paint minimum possible number of white cells with black so that all black cells form a square.
You are to determine the minimum possible number of cells needed to be painted black so that the black cells form a black square with sides parallel to the painting's sides. All the cells that do not belong to the square should be white. The square's side should have positive length.
|
The first line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100) — the sizes of the sheet.
The next *n* lines contain *m* letters 'B' or 'W' each — the description of initial cells' colors. If a letter is 'B', then the corresponding cell is painted black, otherwise it is painted white.
|
Print the minimum number of cells needed to be painted black so that the black cells form a black square with sides parallel to the painting's sides. All the cells that do not belong to the square should be white. If it is impossible, print -1.
|
[
"5 4\nWWWW\nWWWB\nWWWB\nWWBB\nWWWW\n",
"1 2\nBB\n",
"3 3\nWWW\nWWW\nWWW\n"
] |
[
"5\n",
"-1\n",
"1\n"
] |
In the first example it is needed to paint 5 cells — (2, 2), (2, 3), (3, 2), (3, 3) and (4, 2). Then there will be a square with side equal to three, and the upper left corner in (2, 2).
In the second example all the cells are painted black and form a rectangle, so it's impossible to get a square.
In the third example all cells are colored white, so it's sufficient to color any cell black.
| 750
|
[
{
"input": "5 4\nWWWW\nWWWB\nWWWB\nWWBB\nWWWW",
"output": "5"
},
{
"input": "1 2\nBB",
"output": "-1"
},
{
"input": "3 3\nWWW\nWWW\nWWW",
"output": "1"
},
{
"input": "100 1\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nB\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nB",
"output": "-1"
},
{
"input": "1 1\nW",
"output": "1"
},
{
"input": "2 4\nWWWW\nWBWW",
"output": "0"
},
{
"input": "4 5\nWWWWW\nBBWWW\nBBWWW\nWWWWW",
"output": "0"
},
{
"input": "5 4\nWWWW\nWWWW\nWWWB\nWWWW\nWWWW",
"output": "0"
},
{
"input": "10 5\nWWWWB\nWWWWW\nWWWBB\nWWBWW\nWWWWW\nWWWWW\nWWWWW\nWWWWW\nWWWWW\nWWWWW",
"output": "12"
},
{
"input": "5 10\nWWWWWWWWWW\nWWWWBWBBWW\nWWWWWWWWWW\nWWWWBWWWWW\nWWWWWWBWWW",
"output": "11"
},
{
"input": "20 10\nWWWWWWWWWW\nWWWWWWWWWW\nWWWWWWWWWW\nWWWWWWWWWW\nWWWWWWWWWW\nWWBBWBWWWW\nWWBWWBWWWW\nWWWWBWWWWW\nWWWWBWWWWW\nWWWWWWWWWW\nWWWWWWWWWW\nWWWWWWWWWW\nWWWWWWWWWW\nWWWWWWWWWW\nWWWWWWWWWW\nWWWWWWWWWW\nWWWWWWWWWW\nWWWWWWWWWW\nWWWWWWWWWW\nWWWWWWWWWW",
"output": "9"
},
{
"input": "10 20\nWWWWWWWWWWWWWWWWWWWW\nWWWWWWWWWWWWWWWWWWWW\nWWWWWWWWWWWWWWWWWWWW\nWWWWWWWWWWWWWWWWWWWW\nWWWWWWWWWWWWWWWWWWWW\nWWWWWWWWWWWWWWWWWWWW\nWWWWWWWWWWWWWWWWWWWW\nWWWWWWWWWWWWWWWWWWBW\nWWWWWWWWWWWWWWWWWBWW\nWWWWWWWWWWWWWWWWWWWW",
"output": "2"
},
{
"input": "1 1\nW",
"output": "1"
},
{
"input": "1 1\nB",
"output": "0"
},
{
"input": "2 2\nWW\nWW",
"output": "1"
},
{
"input": "2 2\nWW\nWB",
"output": "0"
},
{
"input": "2 2\nWW\nBW",
"output": "0"
},
{
"input": "2 2\nWW\nBB",
"output": "2"
},
{
"input": "2 2\nWB\nWW",
"output": "0"
},
{
"input": "2 2\nWB\nWB",
"output": "2"
},
{
"input": "2 2\nWB\nBW",
"output": "2"
},
{
"input": "2 2\nWB\nBB",
"output": "1"
},
{
"input": "2 2\nBW\nWW",
"output": "0"
},
{
"input": "2 2\nBW\nWB",
"output": "2"
},
{
"input": "2 2\nBW\nBW",
"output": "2"
},
{
"input": "2 2\nBW\nBB",
"output": "1"
},
{
"input": "2 2\nBB\nWW",
"output": "2"
},
{
"input": "2 2\nBB\nWB",
"output": "1"
},
{
"input": "2 2\nBB\nBW",
"output": "1"
},
{
"input": "2 2\nBB\nBB",
"output": "0"
},
{
"input": "1 2\nWW",
"output": "1"
},
{
"input": "1 2\nWB",
"output": "0"
},
{
"input": "1 2\nBW",
"output": "0"
},
{
"input": "2 1\nW\nW",
"output": "1"
},
{
"input": "2 1\nW\nB",
"output": "0"
},
{
"input": "2 1\nB\nW",
"output": "0"
},
{
"input": "2 1\nB\nB",
"output": "-1"
},
{
"input": "20 10\nWWBWWWBBWW\nWWWWWBWWWW\nWWWWWWWWWW\nWWWWWWWWWW\nWWWBBBWWWW\nWWWWWWWWWW\nWWWWWWWWWW\nWWWWWWWWWW\nWBWWWWWBWW\nWBWWBWWWBW\nWWBWBWWWWW\nWWWBWWBBWW\nWWBBWBWBWW\nBBWWWWWBWW\nWWBWWBBBWW\nWWWBWBBWWW\nWWWBBWBWWW\nWWWWWWWWWW\nWWWBWWWWWW\nWWWWWWWWWW",
"output": "-1"
},
{
"input": "10 20\nWWWWWWWBWWWWWWWBWWWB\nWWWBWWWBWWWWWWWWWWWW\nBWWWWWWWWWWWWWWWWWBB\nWWWWWWBWWBWWBWWWBWWW\nWWWWWWWWBWWBWWWBWWWW\nWBWWWWWWWBWWWWWWWWWW\nWWWBWBWWBWWWWWBBWWWB\nWWBBWWWWWWWWWWWWWWWW\nWWWWWWWWWWWWWBWWWWBW\nWWWWWWWWWWWWBWWBWWWB",
"output": "-1"
},
{
"input": "1 100\nBWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW",
"output": "0"
},
{
"input": "1 100\nWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWB",
"output": "0"
},
{
"input": "1 100\nWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWBWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW",
"output": "0"
},
{
"input": "1 100\nBWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWBWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW",
"output": "-1"
},
{
"input": "1 100\nWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWBWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWB",
"output": "-1"
},
{
"input": "100 1\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nB",
"output": "0"
},
{
"input": "100 1\nB\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW",
"output": "0"
},
{
"input": "100 1\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nB\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW",
"output": "0"
},
{
"input": "100 1\nB\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nB\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW",
"output": "-1"
},
{
"input": "1 5\nWBBWW",
"output": "-1"
},
{
"input": "20 1\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nW\nB\nB\nB",
"output": "-1"
},
{
"input": "3 3\nWBW\nWBB\nWWW",
"output": "1"
},
{
"input": "4 6\nWWWWWW\nWWWBWW\nWWWWWB\nWWWWWW",
"output": "7"
},
{
"input": "5 5\nWBWBW\nWWWWW\nWWWWW\nWWWWW\nWWWWW",
"output": "7"
},
{
"input": "3 3\nBBB\nBBB\nBBB",
"output": "0"
},
{
"input": "5 5\nWWBWW\nWWWWW\nWWWWW\nWWWWW\nWWBWW",
"output": "23"
},
{
"input": "5 4\nWWBW\nBWWB\nWWWW\nWWWW\nWWWW",
"output": "13"
},
{
"input": "5 4\nWWWW\nWWWB\nWWWB\nWWWW\nWBBW",
"output": "12"
},
{
"input": "6 6\nWWBWWW\nWWWWWW\nWWWWWW\nWWWWWW\nWWWWWW\nWWWBWW",
"output": "34"
},
{
"input": "3 3\nBBW\nWWW\nBWW",
"output": "6"
},
{
"input": "3 3\nBWB\nWWW\nBWW",
"output": "6"
},
{
"input": "6 6\nWBWWWW\nBWWWBW\nWWWWWW\nWWBWWW\nWWWWWW\nWWWWWW",
"output": "21"
},
{
"input": "3 3\nWWW\nWBW\nWWW",
"output": "0"
},
{
"input": "3 3\nBBB\nWWW\nWWW",
"output": "6"
},
{
"input": "5 5\nWWBWW\nWWBWW\nWBBBW\nWWBWW\nWWBWW",
"output": "18"
},
{
"input": "5 2\nWB\nWB\nWB\nWW\nWW",
"output": "-1"
},
{
"input": "4 7\nBBBBBWW\nWWWWWWW\nWWWWWWW\nWWWWWWW",
"output": "-1"
},
{
"input": "5 4\nWWWW\nWWWB\nWWWW\nWWBB\nWWWW",
"output": "6"
},
{
"input": "4 4\nWWWW\nWBWW\nWWWW\nWWWW",
"output": "0"
},
{
"input": "2 5\nWWWWW\nBBBWW",
"output": "-1"
},
{
"input": "6 6\nWWBWWW\nWWWWWW\nWWWWBW\nWWWWWW\nWWWWWW\nWWBWWW",
"output": "33"
},
{
"input": "3 3\nWBW\nWBW\nWBW",
"output": "6"
},
{
"input": "3 5\nWWBBB\nBWBBB\nWWBBB",
"output": "-1"
},
{
"input": "5 5\nWWWWB\nBWWWW\nWWWWB\nWWWWW\nWWWWW",
"output": "22"
},
{
"input": "5 5\nBWWWB\nWWWWW\nWWWWW\nWWWWW\nBWWWW",
"output": "22"
},
{
"input": "4 5\nWWWWW\nBWWWW\nBBBWW\nWWWWW",
"output": "5"
},
{
"input": "4 4\nBBBB\nWWWW\nWWWW\nWWWW",
"output": "12"
},
{
"input": "4 6\nWWWWWW\nBWWWWW\nBWWWWW\nBBBBBB",
"output": "-1"
},
{
"input": "3 6\nWWWWWW\nBBBWWW\nWWWWWW",
"output": "6"
},
{
"input": "5 2\nWW\nBW\nBW\nBB\nWW",
"output": "-1"
},
{
"input": "5 5\nWWWWW\nWWWWW\nBBBBB\nWWWWW\nWWWWW",
"output": "20"
},
{
"input": "5 5\nWWWWW\nWWWWW\nWWWWB\nWBWWW\nWWWWW",
"output": "14"
},
{
"input": "1 5\nWWBWW",
"output": "0"
},
{
"input": "1 3\nBBB",
"output": "-1"
},
{
"input": "2 4\nWWBW\nBWBW",
"output": "-1"
},
{
"input": "6 6\nBBBBBB\nWWWWWW\nWWWWWW\nWWWWWW\nWWWWWW\nWWWWWW",
"output": "30"
},
{
"input": "4 4\nWWWW\nWWWW\nWWWW\nWWWW",
"output": "1"
},
{
"input": "3 3\nWWW\nWWW\nWWB",
"output": "0"
},
{
"input": "5 1\nB\nB\nW\nW\nW",
"output": "-1"
},
{
"input": "2 3\nWBW\nWBW",
"output": "2"
},
{
"input": "5 2\nWW\nWB\nWB\nWB\nWW",
"output": "-1"
},
{
"input": "5 5\nWWWWW\nBWWWW\nWWWWB\nWWWWW\nWWWWW",
"output": "23"
}
] | 1,550,500,002
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 128
| 124
| 307,200
|
while True:
try:
n,m=map(int,input().split())
a=[]
x1=y1=11111111
x2=y2=z=0
for i in range(0, n):
x=list(input())
a.append(x)
for i in range(0,n):
for j in range(0,m):
if a[i][j]=='B':
z+=1
x1 = min(x1, i)
x2 = max(x2, i)
y1 = min(y1, j)
y2 = max(y2, j)
if z==0:
print(1)
continue
ans=max(x2-x1,y2-y1)+1
if ans>n or ans>m:
print(-1)
else:
print(ans*ans-z)
except EOFError:
break
|
Title: Black Square
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Polycarp has a checkered sheet of paper of size *n*<=×<=*m*. Polycarp painted some of cells with black, the others remained white. Inspired by Malevich's "Black Square", Polycarp wants to paint minimum possible number of white cells with black so that all black cells form a square.
You are to determine the minimum possible number of cells needed to be painted black so that the black cells form a black square with sides parallel to the painting's sides. All the cells that do not belong to the square should be white. The square's side should have positive length.
Input Specification:
The first line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100) — the sizes of the sheet.
The next *n* lines contain *m* letters 'B' or 'W' each — the description of initial cells' colors. If a letter is 'B', then the corresponding cell is painted black, otherwise it is painted white.
Output Specification:
Print the minimum number of cells needed to be painted black so that the black cells form a black square with sides parallel to the painting's sides. All the cells that do not belong to the square should be white. If it is impossible, print -1.
Demo Input:
['5 4\nWWWW\nWWWB\nWWWB\nWWBB\nWWWW\n', '1 2\nBB\n', '3 3\nWWW\nWWW\nWWW\n']
Demo Output:
['5\n', '-1\n', '1\n']
Note:
In the first example it is needed to paint 5 cells — (2, 2), (2, 3), (3, 2), (3, 3) and (4, 2). Then there will be a square with side equal to three, and the upper left corner in (2, 2).
In the second example all the cells are painted black and form a rectangle, so it's impossible to get a square.
In the third example all cells are colored white, so it's sufficient to color any cell black.
|
```python
while True:
try:
n,m=map(int,input().split())
a=[]
x1=y1=11111111
x2=y2=z=0
for i in range(0, n):
x=list(input())
a.append(x)
for i in range(0,n):
for j in range(0,m):
if a[i][j]=='B':
z+=1
x1 = min(x1, i)
x2 = max(x2, i)
y1 = min(y1, j)
y2 = max(y2, j)
if z==0:
print(1)
continue
ans=max(x2-x1,y2-y1)+1
if ans>n or ans>m:
print(-1)
else:
print(ans*ans-z)
except EOFError:
break
```
| 3
|
|
71
|
A
|
Way Too Long Words
|
PROGRAMMING
| 800
|
[
"strings"
] |
A. Way Too Long Words
|
1
|
256
|
Sometimes some words like "localization" or "internationalization" are so long that writing them many times in one text is quite tiresome.
Let's consider a word too long, if its length is strictly more than 10 characters. All too long words should be replaced with a special abbreviation.
This abbreviation is made like this: we write down the first and the last letter of a word and between them we write the number of letters between the first and the last letters. That number is in decimal system and doesn't contain any leading zeroes.
Thus, "localization" will be spelt as "l10n", and "internationalization» will be spelt as "i18n".
You are suggested to automatize the process of changing the words with abbreviations. At that all too long words should be replaced by the abbreviation and the words that are not too long should not undergo any changes.
|
The first line contains an integer *n* (1<=≤<=*n*<=≤<=100). Each of the following *n* lines contains one word. All the words consist of lowercase Latin letters and possess the lengths of from 1 to 100 characters.
|
Print *n* lines. The *i*-th line should contain the result of replacing of the *i*-th word from the input data.
|
[
"4\nword\nlocalization\ninternationalization\npneumonoultramicroscopicsilicovolcanoconiosis\n"
] |
[
"word\nl10n\ni18n\np43s\n"
] |
none
| 500
|
[
{
"input": "4\nword\nlocalization\ninternationalization\npneumonoultramicroscopicsilicovolcanoconiosis",
"output": "word\nl10n\ni18n\np43s"
},
{
"input": "5\nabcdefgh\nabcdefghi\nabcdefghij\nabcdefghijk\nabcdefghijklm",
"output": "abcdefgh\nabcdefghi\nabcdefghij\na9k\na11m"
},
{
"input": "3\nnjfngnrurunrgunrunvurn\njfvnjfdnvjdbfvsbdubruvbubvkdb\nksdnvidnviudbvibd",
"output": "n20n\nj27b\nk15d"
},
{
"input": "1\ntcyctkktcctrcyvbyiuhihhhgyvyvyvyvjvytchjckt",
"output": "t41t"
},
{
"input": "24\nyou\nare\nregistered\nfor\npractice\nyou\ncan\nsolve\nproblems\nunofficially\nresults\ncan\nbe\nfound\nin\nthe\ncontest\nstatus\nand\nin\nthe\nbottom\nof\nstandings",
"output": "you\nare\nregistered\nfor\npractice\nyou\ncan\nsolve\nproblems\nu10y\nresults\ncan\nbe\nfound\nin\nthe\ncontest\nstatus\nand\nin\nthe\nbottom\nof\nstandings"
},
{
"input": "1\na",
"output": "a"
},
{
"input": "26\na\nb\nc\nd\ne\nf\ng\nh\ni\nj\nk\nl\nm\nn\no\np\nq\nr\ns\nt\nu\nv\nw\nx\ny\nz",
"output": "a\nb\nc\nd\ne\nf\ng\nh\ni\nj\nk\nl\nm\nn\no\np\nq\nr\ns\nt\nu\nv\nw\nx\ny\nz"
},
{
"input": "1\nabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghij",
"output": "a98j"
},
{
"input": "10\ngyartjdxxlcl\nfzsck\nuidwu\nxbymclornemdmtj\nilppyoapitawgje\ncibzc\ndrgbeu\nhezplmsdekhhbo\nfeuzlrimbqbytdu\nkgdco",
"output": "g10l\nfzsck\nuidwu\nx13j\ni13e\ncibzc\ndrgbeu\nh12o\nf13u\nkgdco"
},
{
"input": "20\nlkpmx\nkovxmxorlgwaomlswjxlpnbvltfv\nhykasjxqyjrmybejnmeumzha\ntuevlumpqbbhbww\nqgqsphvrmupxxc\ntrissbaf\nqfgrlinkzvzqdryckaizutd\nzzqtoaxkvwoscyx\noswytrlnhpjvvnwookx\nlpuzqgec\ngyzqfwxggtvpjhzmzmdw\nrlxjgmvdftvrmvbdwudra\nvsntnjpepnvdaxiporggmglhagv\nxlvcqkqgcrbgtgglj\nlyxwxbiszyhlsrgzeedzprbmcpduvq\nyrmqqvrkqskqukzqrwukpsifgtdc\nxpuohcsjhhuhvr\nvvlfrlxpvqejngwrbfbpmqeirxlw\nsvmasocxdvadmaxtrpakysmeaympy\nyuflqboqfdt",
"output": "lkpmx\nk26v\nh22a\nt13w\nq12c\ntrissbaf\nq21d\nz13x\no17x\nlpuzqgec\ng18w\nr19a\nv25v\nx15j\nl28q\ny26c\nx12r\nv26w\ns27y\ny9t"
},
{
"input": "100\nm\nz\ns\nv\nd\nr\nv\ny\ny\ne\np\nt\nc\na\nn\nm\np\ng\ni\nj\nc\na\nb\nq\ne\nn\nv\no\nk\nx\nf\ni\nl\na\nq\nr\nu\nb\ns\nl\nc\nl\ne\nv\nj\nm\nx\nb\na\nq\nb\na\nf\nj\nv\nm\nq\nc\nt\nt\nn\nx\no\ny\nr\nu\nh\nm\nj\np\nj\nq\nz\ns\nj\no\ng\nc\nm\nn\no\nm\nr\no\ns\nt\nh\nr\np\nk\nb\nz\ng\no\nc\nc\nz\nz\ng\nr",
"output": "m\nz\ns\nv\nd\nr\nv\ny\ny\ne\np\nt\nc\na\nn\nm\np\ng\ni\nj\nc\na\nb\nq\ne\nn\nv\no\nk\nx\nf\ni\nl\na\nq\nr\nu\nb\ns\nl\nc\nl\ne\nv\nj\nm\nx\nb\na\nq\nb\na\nf\nj\nv\nm\nq\nc\nt\nt\nn\nx\no\ny\nr\nu\nh\nm\nj\np\nj\nq\nz\ns\nj\no\ng\nc\nm\nn\no\nm\nr\no\ns\nt\nh\nr\np\nk\nb\nz\ng\no\nc\nc\nz\nz\ng\nr"
}
] | 1,679,511,174
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 20
| 46
| 0
|
n = int(input())
words = [input() for _ in range(n)]
new_words = []
for word in words:
if len(word) > 10:
curr = f"{word[0]}{len(word)-2}{word[-1]}"
else:
curr = word
new_words.append(curr)
[print(word) for word in new_words]
|
Title: Way Too Long Words
Time Limit: 1 seconds
Memory Limit: 256 megabytes
Problem Description:
Sometimes some words like "localization" or "internationalization" are so long that writing them many times in one text is quite tiresome.
Let's consider a word too long, if its length is strictly more than 10 characters. All too long words should be replaced with a special abbreviation.
This abbreviation is made like this: we write down the first and the last letter of a word and between them we write the number of letters between the first and the last letters. That number is in decimal system and doesn't contain any leading zeroes.
Thus, "localization" will be spelt as "l10n", and "internationalization» will be spelt as "i18n".
You are suggested to automatize the process of changing the words with abbreviations. At that all too long words should be replaced by the abbreviation and the words that are not too long should not undergo any changes.
Input Specification:
The first line contains an integer *n* (1<=≤<=*n*<=≤<=100). Each of the following *n* lines contains one word. All the words consist of lowercase Latin letters and possess the lengths of from 1 to 100 characters.
Output Specification:
Print *n* lines. The *i*-th line should contain the result of replacing of the *i*-th word from the input data.
Demo Input:
['4\nword\nlocalization\ninternationalization\npneumonoultramicroscopicsilicovolcanoconiosis\n']
Demo Output:
['word\nl10n\ni18n\np43s\n']
Note:
none
|
```python
n = int(input())
words = [input() for _ in range(n)]
new_words = []
for word in words:
if len(word) > 10:
curr = f"{word[0]}{len(word)-2}{word[-1]}"
else:
curr = word
new_words.append(curr)
[print(word) for word in new_words]
```
| 3.977
|
765
|
A
|
Neverending competitions
|
PROGRAMMING
| 900
|
[
"implementation",
"math"
] | null | null |
There are literally dozens of snooker competitions held each year, and team Jinotega tries to attend them all (for some reason they prefer name "snookah")! When a competition takes place somewhere far from their hometown, Ivan, Artsem and Konstantin take a flight to the contest and back.
Jinotega's best friends, team Base have found a list of their itinerary receipts with information about departure and arrival airports. Now they wonder, where is Jinotega now: at home or at some competition far away? They know that:
- this list contains all Jinotega's flights in this year (in arbitrary order), - Jinotega has only flown from his hometown to a snooker contest and back, - after each competition Jinotega flies back home (though they may attend a competition in one place several times), - and finally, at the beginning of the year Jinotega was at home.
Please help them to determine Jinotega's location!
|
In the first line of input there is a single integer *n*: the number of Jinotega's flights (1<=≤<=*n*<=≤<=100). In the second line there is a string of 3 capital Latin letters: the name of Jinotega's home airport. In the next *n* lines there is flight information, one flight per line, in form "XXX->YYY", where "XXX" is the name of departure airport "YYY" is the name of arrival airport. Exactly one of these airports is Jinotega's home airport.
It is guaranteed that flights information is consistent with the knowledge of Jinotega's friends, which is described in the main part of the statement.
|
If Jinotega is now at home, print "home" (without quotes), otherwise print "contest".
|
[
"4\nSVO\nSVO->CDG\nLHR->SVO\nSVO->LHR\nCDG->SVO\n",
"3\nSVO\nSVO->HKT\nHKT->SVO\nSVO->RAP\n"
] |
[
"home\n",
"contest\n"
] |
In the first sample Jinotega might first fly from SVO to CDG and back, and then from SVO to LHR and back, so now they should be at home. In the second sample Jinotega must now be at RAP because a flight from RAP back to SVO is not on the list.
| 500
|
[
{
"input": "4\nSVO\nSVO->CDG\nLHR->SVO\nSVO->LHR\nCDG->SVO",
"output": "home"
},
{
"input": "3\nSVO\nSVO->HKT\nHKT->SVO\nSVO->RAP",
"output": "contest"
},
{
"input": "1\nESJ\nESJ->TSJ",
"output": "contest"
},
{
"input": "2\nXMR\nFAJ->XMR\nXMR->FAJ",
"output": "home"
},
{
"input": "3\nZIZ\nDWJ->ZIZ\nZIZ->DWJ\nZIZ->DWJ",
"output": "contest"
},
{
"input": "10\nPVO\nDMN->PVO\nDMN->PVO\nPVO->DMN\nDMN->PVO\nPVO->DMN\nPVO->DMN\nPVO->DMN\nDMN->PVO\nPVO->DMN\nDMN->PVO",
"output": "home"
},
{
"input": "11\nIAU\nIAU->RUQ\nIAU->RUQ\nRUQ->IAU\nRUQ->IAU\nIAU->RUQ\nRUQ->IAU\nIAU->RUQ\nRUQ->IAU\nIAU->RUQ\nIAU->RUQ\nRUQ->IAU",
"output": "contest"
},
{
"input": "10\nHPN\nDFI->HPN\nHPN->KAB\nHPN->DFI\nVSO->HPN\nHPN->KZX\nHPN->VSO\nKZX->HPN\nLDW->HPN\nKAB->HPN\nHPN->LDW",
"output": "home"
},
{
"input": "11\nFGH\nFGH->BRZ\nUBK->FGH\nQRE->FGH\nFGH->KQK\nFGH->QRE\nKQK->FGH\nFGH->UBK\nBRZ->FGH\nFGH->ALX\nALX->FGH\nFGH->KQK",
"output": "contest"
},
{
"input": "50\nPFH\nJFV->PFH\nBVP->PFH\nPFH->BVP\nPFH->JFV\nPFH->ETQ\nPFH->LQJ\nZTO->PFH\nPFH->BVP\nPFH->RXO\nPFH->ZTO\nHWL->PFH\nPFH->HIV\nPFH->AFP\nPFH->HWL\nOBB->PFH\nHIV->PFH\nPFH->LSR\nAFP->PFH\nLQJ->PFH\nHWL->PFH\nETQ->PFH\nPFH->HWL\nLSR->PFH\nWBR->PFH\nBNZ->PFH\nHQR->PFH\nZTO->PFH\nPFH->WBR\nPFH->BYJ\nRXO->PFH\nFHZ->PFH\nFHZ->PFH\nPFN->PFH\nPFH->GMB\nPFH->JFV\nJFV->PFH\nGNZ->PFH\nPFH->BNZ\nPFH->GNZ\nPFH->HQR\nBYJ->PFH\nGMB->PFH\nPFH->FHZ\nPFH->FHZ\nPFH->ZTO\nPFH->UGD\nBVP->PFH\nUGD->PFH\nPFH->PFN\nPFH->OBB",
"output": "home"
},
{
"input": "1\nAAK\nAAK->ABA",
"output": "contest"
},
{
"input": "1\nXYZ\nXYZ->XYR",
"output": "contest"
}
] | 1,618,559,155
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 23
| 62
| 0
|
n = int(input())
ha = str(input())
for _ in range(0,n):
tl = str(input())
if n % 2 == 0:
print('home')
else:
print('contest')
|
Title: Neverending competitions
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
There are literally dozens of snooker competitions held each year, and team Jinotega tries to attend them all (for some reason they prefer name "snookah")! When a competition takes place somewhere far from their hometown, Ivan, Artsem and Konstantin take a flight to the contest and back.
Jinotega's best friends, team Base have found a list of their itinerary receipts with information about departure and arrival airports. Now they wonder, where is Jinotega now: at home or at some competition far away? They know that:
- this list contains all Jinotega's flights in this year (in arbitrary order), - Jinotega has only flown from his hometown to a snooker contest and back, - after each competition Jinotega flies back home (though they may attend a competition in one place several times), - and finally, at the beginning of the year Jinotega was at home.
Please help them to determine Jinotega's location!
Input Specification:
In the first line of input there is a single integer *n*: the number of Jinotega's flights (1<=≤<=*n*<=≤<=100). In the second line there is a string of 3 capital Latin letters: the name of Jinotega's home airport. In the next *n* lines there is flight information, one flight per line, in form "XXX->YYY", where "XXX" is the name of departure airport "YYY" is the name of arrival airport. Exactly one of these airports is Jinotega's home airport.
It is guaranteed that flights information is consistent with the knowledge of Jinotega's friends, which is described in the main part of the statement.
Output Specification:
If Jinotega is now at home, print "home" (without quotes), otherwise print "contest".
Demo Input:
['4\nSVO\nSVO->CDG\nLHR->SVO\nSVO->LHR\nCDG->SVO\n', '3\nSVO\nSVO->HKT\nHKT->SVO\nSVO->RAP\n']
Demo Output:
['home\n', 'contest\n']
Note:
In the first sample Jinotega might first fly from SVO to CDG and back, and then from SVO to LHR and back, so now they should be at home. In the second sample Jinotega must now be at RAP because a flight from RAP back to SVO is not on the list.
|
```python
n = int(input())
ha = str(input())
for _ in range(0,n):
tl = str(input())
if n % 2 == 0:
print('home')
else:
print('contest')
```
| 3
|
|
233
|
A
|
Perfect Permutation
|
PROGRAMMING
| 800
|
[
"implementation",
"math"
] | null | null |
A permutation is a sequence of integers *p*1,<=*p*2,<=...,<=*p**n*, consisting of *n* distinct positive integers, each of them doesn't exceed *n*. Let's denote the *i*-th element of permutation *p* as *p**i*. We'll call number *n* the size of permutation *p*1,<=*p*2,<=...,<=*p**n*.
Nickolas adores permutations. He likes some permutations more than the others. He calls such permutations perfect. A perfect permutation is such permutation *p* that for any *i* (1<=≤<=*i*<=≤<=*n*) (*n* is the permutation size) the following equations hold *p**p**i*<==<=*i* and *p**i*<=≠<=*i*. Nickolas asks you to print any perfect permutation of size *n* for the given *n*.
|
A single line contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the permutation size.
|
If a perfect permutation of size *n* doesn't exist, print a single integer -1. Otherwise print *n* distinct integers from 1 to *n*, *p*1,<=*p*2,<=...,<=*p**n* — permutation *p*, that is perfect. Separate printed numbers by whitespaces.
|
[
"1\n",
"2\n",
"4\n"
] |
[
"-1\n",
"2 1 \n",
"2 1 4 3 \n"
] |
none
| 500
|
[
{
"input": "1",
"output": "-1"
},
{
"input": "2",
"output": "2 1 "
},
{
"input": "4",
"output": "2 1 4 3 "
},
{
"input": "3",
"output": "-1"
},
{
"input": "5",
"output": "-1"
},
{
"input": "6",
"output": "2 1 4 3 6 5 "
},
{
"input": "7",
"output": "-1"
},
{
"input": "20",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 "
},
{
"input": "8",
"output": "2 1 4 3 6 5 8 7 "
},
{
"input": "9",
"output": "-1"
},
{
"input": "10",
"output": "2 1 4 3 6 5 8 7 10 9 "
},
{
"input": "11",
"output": "-1"
},
{
"input": "21",
"output": "-1"
},
{
"input": "50",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 40 39 42 41 44 43 46 45 48 47 50 49 "
},
{
"input": "51",
"output": "-1"
},
{
"input": "52",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 40 39 42 41 44 43 46 45 48 47 50 49 52 51 "
},
{
"input": "84",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 40 39 42 41 44 43 46 45 48 47 50 49 52 51 54 53 56 55 58 57 60 59 62 61 64 63 66 65 68 67 70 69 72 71 74 73 76 75 78 77 80 79 82 81 84 83 "
},
{
"input": "86",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 40 39 42 41 44 43 46 45 48 47 50 49 52 51 54 53 56 55 58 57 60 59 62 61 64 63 66 65 68 67 70 69 72 71 74 73 76 75 78 77 80 79 82 81 84 83 86 85 "
},
{
"input": "100",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 40 39 42 41 44 43 46 45 48 47 50 49 52 51 54 53 56 55 58 57 60 59 62 61 64 63 66 65 68 67 70 69 72 71 74 73 76 75 78 77 80 79 82 81 84 83 86 85 88 87 90 89 92 91 94 93 96 95 98 97 100 99 "
},
{
"input": "98",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 40 39 42 41 44 43 46 45 48 47 50 49 52 51 54 53 56 55 58 57 60 59 62 61 64 63 66 65 68 67 70 69 72 71 74 73 76 75 78 77 80 79 82 81 84 83 86 85 88 87 90 89 92 91 94 93 96 95 98 97 "
},
{
"input": "96",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 40 39 42 41 44 43 46 45 48 47 50 49 52 51 54 53 56 55 58 57 60 59 62 61 64 63 66 65 68 67 70 69 72 71 74 73 76 75 78 77 80 79 82 81 84 83 86 85 88 87 90 89 92 91 94 93 96 95 "
},
{
"input": "33",
"output": "-1"
},
{
"input": "34",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 "
},
{
"input": "36",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 "
},
{
"input": "38",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 "
},
{
"input": "40",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 40 39 "
},
{
"input": "42",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 40 39 42 41 "
},
{
"input": "44",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 40 39 42 41 44 43 "
},
{
"input": "46",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 40 39 42 41 44 43 46 45 "
},
{
"input": "48",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 40 39 42 41 44 43 46 45 48 47 "
}
] | 1,688,279,790
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 30
| 124
| 0
|
n = int(input())
result = []
if n%2 == 0:
for i in range(1,n+1):
if i%2 != 0:
result.append(str(i+1))
else:
result.append(str(i-1))
print(" ".join(result))
else:
print(-1)
|
Title: Perfect Permutation
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
A permutation is a sequence of integers *p*1,<=*p*2,<=...,<=*p**n*, consisting of *n* distinct positive integers, each of them doesn't exceed *n*. Let's denote the *i*-th element of permutation *p* as *p**i*. We'll call number *n* the size of permutation *p*1,<=*p*2,<=...,<=*p**n*.
Nickolas adores permutations. He likes some permutations more than the others. He calls such permutations perfect. A perfect permutation is such permutation *p* that for any *i* (1<=≤<=*i*<=≤<=*n*) (*n* is the permutation size) the following equations hold *p**p**i*<==<=*i* and *p**i*<=≠<=*i*. Nickolas asks you to print any perfect permutation of size *n* for the given *n*.
Input Specification:
A single line contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the permutation size.
Output Specification:
If a perfect permutation of size *n* doesn't exist, print a single integer -1. Otherwise print *n* distinct integers from 1 to *n*, *p*1,<=*p*2,<=...,<=*p**n* — permutation *p*, that is perfect. Separate printed numbers by whitespaces.
Demo Input:
['1\n', '2\n', '4\n']
Demo Output:
['-1\n', '2 1 \n', '2 1 4 3 \n']
Note:
none
|
```python
n = int(input())
result = []
if n%2 == 0:
for i in range(1,n+1):
if i%2 != 0:
result.append(str(i+1))
else:
result.append(str(i-1))
print(" ".join(result))
else:
print(-1)
```
| 3
|
|
68
|
A
|
Irrational problem
|
PROGRAMMING
| 1,100
|
[
"implementation",
"number theory"
] |
A. Irrational problem
|
2
|
256
|
Little Petya was given this problem for homework:
You are given function (here represents the operation of taking the remainder). His task is to count the number of integers *x* in range [*a*;*b*] with property *f*(*x*)<==<=*x*.
It is a pity that Petya forgot the order in which the remainders should be taken and wrote down only 4 numbers. Each of 24 possible orders of taking the remainder has equal probability of being chosen. For example, if Petya has numbers 1, 2, 3, 4 then he can take remainders in that order or first take remainder modulo 4, then modulo 2, 3, 1. There also are 22 other permutations of these numbers that represent orders in which remainder can be taken. In this problem 4 numbers wrote down by Petya will be pairwise distinct.
Now it is impossible for Petya to complete the task given by teacher but just for fun he decided to find the number of integers with property that probability that *f*(*x*)<==<=*x* is not less than 31.4159265352718281828459045%. In other words, Petya will pick up the number *x* if there exist at least 7 permutations of numbers *p*1,<=*p*2,<=*p*3,<=*p*4, for which *f*(*x*)<==<=*x*.
|
First line of the input will contain 6 integers, separated by spaces: *p*1,<=*p*2,<=*p*3,<=*p*4,<=*a*,<=*b* (1<=≤<=*p*1,<=*p*2,<=*p*3,<=*p*4<=≤<=1000,<=0<=≤<=*a*<=≤<=*b*<=≤<=31415).
It is guaranteed that numbers *p*1,<=*p*2,<=*p*3,<=*p*4 will be pairwise distinct.
|
Output the number of integers in the given range that have the given property.
|
[
"2 7 1 8 2 8\n",
"20 30 40 50 0 100\n",
"31 41 59 26 17 43\n"
] |
[
"0\n",
"20\n",
"9\n"
] |
none
| 500
|
[
{
"input": "2 7 1 8 2 8",
"output": "0"
},
{
"input": "20 30 40 50 0 100",
"output": "20"
},
{
"input": "31 41 59 26 17 43",
"output": "9"
},
{
"input": "1 2 3 4 0 0",
"output": "1"
},
{
"input": "1 2 3 4 1 1",
"output": "0"
},
{
"input": "1 2 999 1000 30 40",
"output": "0"
},
{
"input": "17 18 19 20 17 20",
"output": "0"
},
{
"input": "17 18 19 20 16 20",
"output": "1"
},
{
"input": "41 449 328 474 150 709",
"output": "0"
},
{
"input": "467 329 936 440 117 700",
"output": "212"
},
{
"input": "258 811 952 491 931 993",
"output": "0"
},
{
"input": "823 431 359 590 153 899",
"output": "206"
},
{
"input": "292 370 404 698 699 876",
"output": "0"
},
{
"input": "442 705 757 527 868 893",
"output": "0"
},
{
"input": "642 273 18 885 675 788",
"output": "0"
},
{
"input": "291 303 656 660 126 704",
"output": "165"
},
{
"input": "225 862 522 617 630 725",
"output": "0"
},
{
"input": "17 847 715 732 502 778",
"output": "0"
},
{
"input": "41 449 328 474 15724 19169",
"output": "0"
},
{
"input": "467 329 936 440 5705 28145",
"output": "0"
},
{
"input": "258 811 952 491 2995 11942",
"output": "0"
},
{
"input": "823 431 359 590 153 3902",
"output": "206"
},
{
"input": "292 370 404 698 19718 19895",
"output": "0"
},
{
"input": "442 705 757 527 1869 19912",
"output": "0"
},
{
"input": "642 273 18 885 23811 28703",
"output": "0"
},
{
"input": "291 303 656 660 7711 15141",
"output": "0"
},
{
"input": "225 862 522 617 1246 1341",
"output": "0"
},
{
"input": "17 847 715 732 778 27529",
"output": "0"
},
{
"input": "997 998 999 1000 0 31415",
"output": "997"
},
{
"input": "1 2 3 4 0 31415",
"output": "1"
},
{
"input": "541 931 822 948 131 193",
"output": "63"
},
{
"input": "956 800 909 916 89 194",
"output": "106"
},
{
"input": "735 794 942 991 419 490",
"output": "72"
},
{
"input": "818 926 827 575 153 395",
"output": "243"
},
{
"input": "792 858 887 679 179 356",
"output": "178"
},
{
"input": "937 683 742 515 366 373",
"output": "8"
},
{
"input": "616 747 501 875 146 264",
"output": "119"
},
{
"input": "760 773 638 655 111 196",
"output": "86"
},
{
"input": "697 855 997 589 97 192",
"output": "96"
},
{
"input": "998 834 706 722 277 475",
"output": "199"
},
{
"input": "100 101 102 103 10 20",
"output": "11"
}
] | 1,699,738,544
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 41
| 218
| 1,638,400
|
from itertools import permutations as per
p1, p2, p3, p4, a, b = map(int, input().split())
p = list(per([p1, p2, p3, p4], 4))
x = 0
for i in range(a, b + 1):
c = 0
for j in p:
if (((i % j[0]) % j[1]) % j[2]) % j[3] == i:
c += 1
if c >= 7:
x += 1
print(x)
|
Title: Irrational problem
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Little Petya was given this problem for homework:
You are given function (here represents the operation of taking the remainder). His task is to count the number of integers *x* in range [*a*;*b*] with property *f*(*x*)<==<=*x*.
It is a pity that Petya forgot the order in which the remainders should be taken and wrote down only 4 numbers. Each of 24 possible orders of taking the remainder has equal probability of being chosen. For example, if Petya has numbers 1, 2, 3, 4 then he can take remainders in that order or first take remainder modulo 4, then modulo 2, 3, 1. There also are 22 other permutations of these numbers that represent orders in which remainder can be taken. In this problem 4 numbers wrote down by Petya will be pairwise distinct.
Now it is impossible for Petya to complete the task given by teacher but just for fun he decided to find the number of integers with property that probability that *f*(*x*)<==<=*x* is not less than 31.4159265352718281828459045%. In other words, Petya will pick up the number *x* if there exist at least 7 permutations of numbers *p*1,<=*p*2,<=*p*3,<=*p*4, for which *f*(*x*)<==<=*x*.
Input Specification:
First line of the input will contain 6 integers, separated by spaces: *p*1,<=*p*2,<=*p*3,<=*p*4,<=*a*,<=*b* (1<=≤<=*p*1,<=*p*2,<=*p*3,<=*p*4<=≤<=1000,<=0<=≤<=*a*<=≤<=*b*<=≤<=31415).
It is guaranteed that numbers *p*1,<=*p*2,<=*p*3,<=*p*4 will be pairwise distinct.
Output Specification:
Output the number of integers in the given range that have the given property.
Demo Input:
['2 7 1 8 2 8\n', '20 30 40 50 0 100\n', '31 41 59 26 17 43\n']
Demo Output:
['0\n', '20\n', '9\n']
Note:
none
|
```python
from itertools import permutations as per
p1, p2, p3, p4, a, b = map(int, input().split())
p = list(per([p1, p2, p3, p4], 4))
x = 0
for i in range(a, b + 1):
c = 0
for j in p:
if (((i % j[0]) % j[1]) % j[2]) % j[3] == i:
c += 1
if c >= 7:
x += 1
print(x)
```
| 3.942448
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.